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Abstract

The quantum spin Hall effect is a unique phase of matter in which the bulk of a two-dimensional
material is an insulator, but its edges are perfect conductors, composed of special quantum
states generated by the non-trivial topology of the band structure. These edge states, com-
posed of massless Dirac fermions propagating in opposite directions according to their spin
polarization, are protected from backscattering by time-reversal symmetry. The conductance
of these edge states is quantized, similar to that of edge states in the quantum Hall effect
regime, but without application of an external magnetic field. These exotic edge states are one
of the remarkable consequences of the inverted band structure of materials called topological
insulators.

However, the quantum spin Hall effect has been rarely observed until now. Indeed, this
quantum phase was first expected theoretically in graphene in 2005 [KM05]. However, the
spin-orbit coupling, which is one of the essential effects at the origin of this topological phase,
is too weak for the quantum spin Hall effect to be observed there [BMC+22]. Soon, another
two-dimensional system was proposed, namely, HgTe/HgCdTe based quantum wells [BHZ06]
in which the quantum Hall effect was observed for the first time in 2007 [KWB+07]. In parallel,
another system, composed of composite quantum wells formed from Sb-based III-V semicon-
ductors, was proposed in 2008 [LHQ+08]. These topological insulators have the advantage of
being designed on mature growth and process technologies available in a large number of labo-
ratories. Finally, another more recent work has demonstrated the spin quantum Hall effect in a
two-dimensional material, WTe2 [WFG+18], at much higher temperatures. These last results
have motivated a large part of the scientific community for the search of new semiconductor
structures, in which the topological energy gap could be increased and the QSHE observed at
room temperature. Unfortunately, the band structure of II-VI semiconductors is very temper-
ature dependent, which limits the observation of the desired effect to ultra-low temperatures
only. By constrast, unlike HgTe/HgCdTe wells, the band structure of III-V semiconductor-
based wells varies very weakly with temperature. Therefore, in 2017, it was proposed in the
Charles Coulomb Laboratory (L2C) to significantly increase the gap of these topological insu-
lators by adding a third layer in the Sb-based composite quantum well [KIM+17]. Indeed, the
inversion asymmetry of the InAs/GaSb bilayer structure brings the gap opening at non-zero
k value by Rashba effect, while higher energies are expected at the Γ point due to quantum
confinement for symmetric structures.

In this thesis work, the objectives are not only to show the significant energy gap increase
for these original heterostructures, but also to highlight the existence of edge states.

To carry out this study, we first characterized the different III-V based growths provided by
our partner team led by E.Tournié from the Institut Electronique et Systèmes (IES). Processes
for the fabrication of Hall bar devices with an top dielectric gate in order to be able to move
the Fermi level in the band structure have been developed in the clean room of the Centrale
de Technologie de Montpellier (CTM). This was made possible by the interaction with the
group of S. Höfling (Technische Physik) of the University of Würzburg. This device fabrication
investigations allowed the fabrication of a base of devices which could be measured by magneto-
transport measurements from 300 mK to 300 K and under a magnetic field up to 13 T. We also
took advantage of a collaboration with the Laboratoire National des Champs Magnétiques
Intenses de Toulouse (LNCMI) to probe the evolution of Landau levels under pulsed fields up
to 55 T.

This manuscript is therefore organized as follows: in the first chapter, I present a review
of a recent work on topological insulators, from the emergence of this subject with graphene
to the beginning of this work. I also develop the theoretical concepts behind the experiments
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presented in this thesis. In chapter 2, I develop the experimental details and present the different
InAs/GaSb based growths studied. I also detail the fabrication processes of the devices made
from these same growths. Chapter 3 is devoted to the magneto-transport measurements for the
different devices. I demonstrate the validity of the theoretical calculations of the band structure
by showing a clear increase of the band gap size for the InAs/GaSb based structures, as well
as the existence of an edge conduction whose properties are compatible with the topological
character expected for these structures.
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Abstract-Français

L’effet Hall quantique de spin est une phase unique de la matière dans laquelle le cœur d’un
matériau bi-dimensionnel est un isolant, mais ses bords sont de parfaits conducteurs, composés
d’états quantiques particuliers générés par la topologie non-triviale de la structure de bandes.
Ces états de bords, composés de fermions de Dirac sans masse se propageant dans des directions
opposées selon leur polarisation de spin, sont protégés de la rétro-diffusion par la symétrie par
renversement du temps. La conductance de ces états de bords est quantifiée, de manière
similaire à celle des états de bords en régime d’effet Hall quantique, mais sans application
d’un champ magnétique extérieur. Ces états de bords exotiques sont l’une des conséquences
remarquables de la structure de bandes inversée des matériaux appelés isolants topologiques.

Pourtant, l’effet Hall quantique de spin n’a été que rarement observé jusqu’à présent. En
effet, cette phase quantique a tout d’abord été attendue théoriquement dans le graphène en
2005 [KM05]. Cependant, le couplage spin-orbite, qui se trouve être l’un des effets essentiels
à l’origine de cette phase topologique, y est trop faible pour que l’effet Hall quantique de spin
n’y soit observé [BMC+22]. Rapidement, un autre système bi-dimensionnel a été proposé, à
savoir, des puits quantiques à base de HgTe/HgCdTe [BHZ06] et l’effet Hall quantique y a été
observé pour la première fois en 2007 [KWB+07]. En parallèle, un autre système, composé
de puits quantiques composites formés à partir de semi-conducteurs III-V à base d’antimoine,
a été proposé en 2008 [LHQ+08]. Ces isolants topologiques ont l’avantage d’être conçus sur
une technologie de croissance et de process mature et disponible dans un grand nombre de
laboratoires. Enfin, un autre travail plus récent a mis en évidence l’effet Hall quantique de
spin dans un matériau bi-dimensionnel, le WTe2 [WFG+18], à des températures bien plus
élevée. Ce résultat a motivé une partie de la communauté pour augmenter l’énergie du gap
topologique dans les semi-conducteurs pour espérer observer l’effet Hall quantique de spin à
hautes températures. Or, la structure de bandes de semi-conducteurs II-VI est très dépendante
de la température, ce qui limite malheureusement l’observation de l’effet recherché aux ultra-
basses températures [TMK+16]. Cependant, contrairement aux puits de HgTe/HgCdTe, la
structure de bandes des puits à base de semi-conducteurs III-V varie très peu en fonction de
la température. En 2017, il a donc été proposé dans l’équipe du Laboratoire Charles Coulomb
(L2C) d’augmenter de manière significative le gap de ces isolants topologiques en ajoutant une
troisième couche de semi-conducteur dans le puits quantique composite à base d’antimoine pour
supprimer l’asymétrie d’inversion de la structure [KIM+17]. En effet, l’asymétrie d’inversion de
la structure bicouche InAs/GaSb amène l’ouverture du gap à une valeur k non nulle par effet
Rashba, alors que des énergies plus élevées sont attendues au point Γ en raison du confinement
quantique pour des structures symétriques.

Dans ce travail de thèse, les objectifs sont de non seulement montrer l’augmentation signi-
ficative de la taille du gap pour ces heterostructures originales, mais aussi mettre en évidence
l’existence des états de bord.

Pour mener à bien cette étude, nous avons tout d’abord caractérisé les différentes crois-
sances à base de III-V fournie par notre équipe partenaire dirigée par E.Tournié de l’Institut
Electronique et Systèmes (IES). Des procédés de fabrication de dispositifs de barre de Hall,
disposant d’une grille diélectrique supérieure afin de pouvoir déplacer le niveau de Fermi dans
la structure de bande, ont été mis au point dans la salle blanche de la Centrale de Technolo-
gie de Montpellier (CTM). Cela a été rendu possible notamment grace à l’interaction avec le
groupe de S.Höfling (Technische Physik) de l’université of Würzburg. Cette mise au point des
procédés de fabrication a permis de fournir une base de dispositifs permettant des mesures de
magnéto-transport de 300 mK à 300 K et sous un champ magnétique allant jusqu’à 13 T. Nous
avons aussi profité d’une collaboration avec le Laboratoire National des Champs Magnétiques
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Intenses de Toulouse (LNCMI) pour sonder l’évolution des niveaux de Landau sous des champ
pulsés jusqu’à 55 T.

Ce manuscrit est de ce fait organisé de la manière suivante: dans le premier chapitre, je
présente une revue des travaux récents autour des isolants topologiques, depuis l’émergence de
ce sujet avec le graphène jusqu’au début de ce travail. Je développe également les concepts
théoriques à la base des expériences présentées dans cette thèse. Dans le chapitre 2, je développe
les détails expérimentaux et présente les différentes croissances à base d’InAs/GaSb étudiées.
Je détaille également les procédés de fabrication des dispositifs réalisés à partir de ces mêmes
croissances. Le chapitre 3 est consacré aux mesures de magnéto-transport pour les différents
dispositifs. Je démontre la validité des calculs théoriques de la structure de bande en montrant
une nette augmentation de la taille de la bande interdite pour les structures à base d’InAs/GaSb,
ainsi que l’existence d’une conduction de bord dont les propriétés sont compatibles avec le
caractère topologique attendu pour ces structures.
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CHAPTER 1

InAs/GaSb: 2D topological insulators

1.1 Band theory and topology
Band theory

In the field of solid state physics, the set of approximations used in band theory distinguishes
two categories of materials: metals and (band) insulators. This theory models the energy states
accessible by electrons in the bulk of the material by bands of accessible energies and others
forbidden. The determination of this band structure is done solving the Schrödinger equation
from the Hamiltonian describing the system. The electrons obey the Fermi-Dirac distribution
(see Eq. 1.1) and fill the energy bands. The last band completely filled is the valence band and
the one above, in increasing order of energy, is the conduction band.

Figure 1.1: Schematic band structure of (a) an insulator, (b) a metal, (c) a Dirac cone. The blue
lines represent the conduction band and the red lines correspond to the valence band. The dashed
lines correspond to the Fermi energy EF .
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At low temperature (T → 0 K), the distinction between insulators and metals is then made
as follows:

• In an insulator, the Fermi level EF (i.e. the maximum accessible energy state) is in the
band gap separating the valence and conduction band. No unpopulated states are avail-
able so the Pauli exclusion principle leads the electrons to be frozen in the valence band.
If the gap is small enough to be thermally activated then we speak of a semiconductor.

• In a metal, the valence and conduction bands overlap as shown in Fig. 1.1(b). In the
extreme case, the gap is zero as for the Dirac cone shown in Fig. 1.1(c). The electrons
can then access unpopulated states, and conduct the current.

Note that one can tune a semiconductor from an insulating state to a metallic state by
changing the position of the Fermi level. In addition, for a semiconductor of small gap value,
the insulating state can be thermally activated. It means that the thermal broadening of
the Fermi-Dirac distribution is large enough to overlap both valence and conduction bands.
Figure 1.2 shows the Fermi-Dirac distribution as a function of the energy E, for different
temperatures T where the probability of occupation is defined as:

f(E) = 1

1 + e
E−EF

kBT

, (1.1)

where EF is the Fermi energy and kB is the Boltzmann constant. In the extreme case T = 0 K,
all allowed states are full for energies below the Fermi energy and empty for energies above.
Figure 1.2 shows that for kBT = EF

10 , states in a range depending of kBT have a non-negligible
probability of occupation, even for energies above the Fermi level.

Figure 1.2: Fermi-Dirac distribution for different temperatures.

Topological band theory

Topology is a field of mathematics that classifies geometric objects according to robust prop-
erties. By robust properties, we adress their conservation despite continuous deformations of
these objects. In the context of solid state physics, the application of topology concerns in par-
ticular the study of the continuous deformation of the band structure, i.e. of the Hamiltonian
that describes the system, in particular of insulators. We can then define that two insulators
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are topologically equivalent if it is possible to continuously deform their Hamiltonians into
each other without closing the gap. the topological object has topological properties which
allow to classify it. This is notably the case of the geometric phase (or Berry phase), which
is the time-independent phase, accumulated during the evolution of a state (e.g. described by
a wave function) on a closed circuit in a parameter space. The berry phase associated with
a trivial system is zero. Moreover, these topological classifications can also be conditioned by
the conservation of a certain number of symmetries of the system (time reversal, particle-hole,
inversion, translation, rotation, etc.). A first class of equivalence that we can consider is the
one to which the vacuum belongs and is called trivial. It can be shown that when the crystal
has an inversion symmetry, the Berry phase reduces to the parity of the Bloch wave function.
If the product of the parity of the wave function on all points of high symmetry is even, then
the system is trivial. If this product is odd, the system is non-trivial. Now there is only one
way to obtain a system in which the parity is different in a precise point of the Brillouin zone,
it is to have an inverted band structure. As soon as the structure is inverted, the system is
non-trivial.

The determination of equivalence classes through the identification of topological invariants,
and respecting the prescribed symmetries, may seem a very conceptual work in addition to
being tedious. The Royal Swedish Academy of Sciences has nevertheless awarded the Nobel
Prize in Physics in 2016 to D. J. Thouless, D. M. Haldane and J. M. Kosterlitz ’for theoretical
discoveries of topological phase transitions and topological phases of matter.’ These discoveries
have notably contributed to explain the Quantum Hall effect which is one of those phases whose
topology is non-trivial.

Bulk-edge correspondence

The particular interest in topological (i.e. non-trivial) insulators comes from the existence
of metallic edge states at the interface between two different topological phases. And so, at
the edge of any topological insulator, i.e. at the interface between it and vacuum. As an
illustration of this principle, one can interpret the appearance of edge states as follows: the
value of a topological invariant cannot change without gap closure. Thus the difference between
a topological invariant at the interface between vacuum (trivial insulator) and a topological
insulator can only be made by having a gap closure at the edge of the TI. This principle is
called the bulk-edge equivalence. Figure 1.3 illustrates the bulk-edge correspondence principle
for a Quantum Spin Hall Insulator (QSHI) in contact with a trivial one. Because of the
inversion symmetry, this topological insulator differs from the trivial case by the inversion of
the respective parity (s-type or p-type) of the valence and conduction bands. These topological
gaps are sometimes referred to as inverted gaps. The emergence of this topological phase is
developed in Section 1.2.
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Figure 1.3: Schematic illustration of the bulk-edge correspondence. The respective band structures
are directly superimposed on each associated region. Note that here not only the insulators but also the
interface are shown in volume for clarity. The interface should be a 2D plane for 3D insulators, or a 1D
edge channel for a 2D topological insulator. In addition, here, the topological phase transition occurs
in the real space, but the bulk-edge correspondence is expected for any topological phase transition
in the full parameter space.

Topological protection of edge states

We have just seen that the bulk-edge correspondence allows us to understand the existence of
these topological edge states. To understand even more the interest in these insulators is the
topological protection of these edge states which makes them immune to impurities, and whose
conduction does not depend on the material. In the following, we take up the simple argument
presented by X-L. Qi and S-C. Zhang in two papers [QZ10, QZ11]. The first of the necessary
conditions for the topological protection of these edge states is the spatial separation of the
counter-propagating states, illustrated for a 2-terminal device in Fig. 1.4 (a, b). Let us take
the case of the quantum Hall effect to begin with: the strong magnetic field applied to reach
the QHE forces the electrons to travel around the edge of the material in a single direction. If
the spatial separation between the two counter-propagating channels is large enough, then it is
impossible for an electron to be backscattered. Even when it encounters an impurity, as shown
in Fig. 1.4(a), the edge state electron simply takes a detour and continues to move in the same
direction.

The situation is similar for the QSHE In the case of QHE, a strong magnetic field is applied,
and breaks the time reversal symmetry. Conversely, in a QSHE, the magnetic field is zero and
the time-reversal symmetry is preserved. In the absence of a magnetic field, we then consider a
system with spin, which leads to 4 edge states, as shown in Fig. 1.4(b) (2 directions × 2 spins).
The spatial separation for a 2D system implies the existence of 2 counter-propagating states for
each edges. Nevertheless, it is precisely the reversal symmetry that protects the electrons from
backscattering from one state to the other. Indeed, spatial separation imposes a spin-flip for a
back-scattered electron. Either the spin rotates clockwise (i.e. by π) or counterclockwise (i.e.
by −π). That difference of 2π is associated to a −1 factor for the wave function of a spin-1/2
particle and leads to destructive interference of the two paths. Therefore, the backscattering of
electrons is suppressed.

In both QHE and QSHE, the topological protection of edge states from backscattering leads
to quantized value of conductance, as shown in Section 1.3.3.
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Figure 1.4: (a) Schematic representation of a spinless one-dimensional system has both a forward
and a backward channel. Those two basic degrees of freedom are spatially separated in a 2D system.
The upper edge contains only a forward mover and the lower edge has only a backward mover. The
states are robust: They will go around an impurity without scattering. (b) A spinful 1D system has
four basic channels, which are spatially separated in a 2D system: The upper edge contains a forward
mover with up spin and a backward mover with down spin, and conversely for the lower edge. (c)
Schematic representation of a quantum spin Hall edge state scattered by a nonmagnetic impurity.
The spin-flip is counterclockwise along the red curve and clockwise along the blue curve (figure and
caption from [QZ10]).

1.2 The emergence of topological insulators

1.2.1 Graphene
In 2005, Kane and Mele used the case of graphene to propose a new electronic state of matter,
topologically distinct from a band insulator [KM05]. Indeed, graphene, a monolayer of carbon
atoms organized in a honeycomb structure, presents a low-energy electronic state at very low
temperature, which is sensitive to perturbative terms, and in particular that of the spin-orbit
(SO) coupling. The unit cell of the associated Bravais lattice, shown in Fig. 1.5, contains
2 atoms located at δ1 and δ2 with respect to the lattice origin. Graphene is described by a
tight-binding Hamiltonian which takes into account only the nearest-neighbor hopping term:

H =
∑

⟨i,j⟩α
tc†

i,αcj,α, (1.2)

where c†
i,α(ci,α) is the fermionic operator that creates (annihilates) an electron at the α = A, B

site whose position is ri, and t the hopping constant.
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Figure 1.5: Honeycomb lattice and its Brillouin zone. Left: lattice structure of graphene, consisting
of two interpenetrating triangular lattices. The unit vectors of the lattice are a1 and a2, and the
nearest neighbor vectors are δi, i = 1, 2, 3. Right: corresponding Brillouin zone. The Dirac cones are
located at points K and K ′ (figure and caption after Ref. [NGP+09])

Introducing SO coupling, Kane and Mele also considered a second neighbor tight-binding
term, which depends on the spin. Equation 1.2 becomes :

H =
∑
⟨ij⟩α

tc†
i,αcj,α +

∑
⟨⟨ij⟩⟩αβ

it2νi,js
z
αβ, c†

i,αcj,β, (1.3)

where sz
α,β is a Pauli matrix representing the electron spin, and νij is a spin-dependent ampli-

tude. νij = −νji = ±1, depending on the orientation of the two closest bonds that the electron
crosses on its way from the j site to the i site. νij = +1(−1) if the electron makes a left turn
(right turn) to reach the second bond. At low energies, it can be shown by solving Eq. 1.3 that
SO coupling opens gaps of opposite signs at the K and K ′ points ∆SO = 3

√
3t2.

Fig. 1.6 shows the one dimensional energy bands for a strip where the edges are along the
zig-zag direction in the graphene plane. The bulk band gaps at the one dimensional projections
of the K and K ′ points are clearly seen. Two edge states traverse the gap, connecting the K and
K ′ points. These edge states are called helical because the direction of propagation is related
to the orientation of the associated spin. In doing so, they are protected from back-scattering.

Figure 1.6: Calculated band structure for a strip of monolayer graphene with edges along the zig-zag
direction (x-axis) as shown in the inset. The parameters are t2/t = 0.03 (figure and caption from Ref.
[KM05]).

As the authors point out, the particular interest in graphene in this article is also related to
the technical progress in the realization of graphene monolayers at that time. Unfortunately,
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experimental observations of these edge states are hampered by the small gap size ∆ = 45 µeV
[BMC+22], created by the SO coupling. Yet, as Kane and Mele (2005) themselves state in their
paper, their work on graphene ”may provide a starting point for the search for other spin-Hall
insulators in two dimensional or in layered materials with stronger SO interaction.”.
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1.2.2 HgCdTe and the Bernevig–Hughes–Zhang (BHZ) model
Indeed, in the following year a paper by Bernevig, Hughes and Zhang (BHZ) was published,
proposing another candidate material for the observation of insulating QSH [BHZ06]. They
calculated the band structure in HgTe quantum well (QW) confined between CdTe barriers.
Although this structure is not the focus of this thesis, the calculation of the band structure
of this topological insulator is briefly developed. A first point concerns the respective band
structures for the two respective bulk materials, HgTe and CdTe. As Hg and Te are heavy
atoms, relativistic corrective terms in the fine structure model have to be taken into account.
We are particularly interested in these corrections for the bands related to the 6s electrons
from Hg atoms (Cd respectively) and the 5p electrons of Te atoms. The first correction is the
Darwin term HD, related to the effect of the mean electric field of the nucleus [JC07]. As shown
in Fig. 1.7, it shifts the energy level of the s states. The second correction is the mass velocity
of the electron Hmv. Due the greater mass and core charge in Hg, the drop in energy is very
significative for the s state in HgTe. The last correction is the term induced by the spin-orbit
coupling HSO, which splits the p states into two bands. In HgTe, as the s and p states were
close enough in energy due to the mass velocity correction, the spin-orbit splitting shifts the
Γ8 states above the Γ6 states. These two bands are inverted compared to the usual situation,
as in CdTe.

Figure 1.7: Fine structure corrections to the band energies at the Γ point applied to the unperturbed
Hamiltonian H0 for (a) HgTe and (b) CdTe. The correction terms are the Darwin term HD, the
velocity mass term Hmv and the spin-orbit interaction HSO (figure adapted from Ref. [JC07]).

From the two bulk band structures near the Γ point shown in Fig. 1.8(a), BHZ established
the Hamiltonian corresponding to a HgTe layer confined between CdTe barriers. They neglected
the effect of the Γ7 band, and proposed a 4 QW subbands model where the |E1, mJ⟩ QW
subband state is a linear combination of the

∣∣∣Γ6, mJ = ±1
2

〉
and

∣∣∣Γ8, mJ = ±1
2

〉
states, while

the |H1, mJ⟩ QW subband state is a linear combination of
∣∣∣Γ8, mJ = ±3

2

〉
.
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Figure 1.8: (a) Bulk energy bands of HgTe and CdTe near the G point. (b) The CdTe-HgTe-CdTe
quantum well in the normal regime E1 > H1 with d < dc and in the inverted regime H1 > E1 with
d > dc. In this and other figures, Γ8/H1 symmetry is indicated in red and Γ6/E1 symmetry is indicated
in blue (figure and caption from Ref. [BHZ06]).

They deduced from parity arguments that the effective Hamiltonian takes the form:

Heff (k) =
(

H(k) 0
0 H⋆(−k)

)
,

H(k) = ε(k) + di(k)σi,

(1.4)

where σi are the Pauli matrices and
ε(k) = C − D(k2

x + k2
y),

d1 + id2 = A(kx + iky),
d3 = M − B(k2

x + k2
y),

(1.5)

with A, B, C, D and M parameters depending of the QW geometry. By changing the sign
of the mass M from negative to positive, one gets a gap closing at k = 0. Indeed, based
on the thickness d of the HgTe quantum well, one can engineer the energy of the H1 and E1
band. Under a critical thickness dc the H1 band is higher in energy than the E1 band as shown
in Fig. 1.8(b). Figure 1.9 shows the energy spectra of a HgTe layer confined between CdTe
barriers. A stricking result of these tight binding calculations is that when the HgTe has a
thickness exceeding 6.8 nm, the system is a QSHI

The simplified model given in Eqs. 1.4, 1.5 is known as the BHZ model. It is basically two
copies of the massive Dirac Hamiltonian H(k)
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Figure 1.9: The energy spectra of the quantum wells for a thin (d < dc) HgTe layer (a) and a thick
(d > dc) HgTe layer. The thin quantum well has an insulating energy gap, but inside the gap in the
thick quantum well are edge states, shown by red and blue lines. (from Ref. [QZ10, QZ11]).

This simplified Hamiltonian allows us to generalize some properties necessary for any ma-
terial candidate to be a topological insulator:

• an electron-like band (s-type parity),

• a hole-like band (p-type parity),

• a k-linear coupling between these two bands,

• an inverted gap separating these two bands.

In semiconductors with strong spin-orbit coupling, the first three properties are verified. It
is then sufficient that the band structure is inverted, i.e. that the hole-like band is higher in
energy than the electron-like band.

This theoretical work is very quickly followed by an experimental verification and in particu-
lar transport measurements at low temperature [KWB+07]. In 2007, the group of L. W. Molenkamp
has demonstrated the existence of helical edge states in HgCdTe quantum wells. Figure 1.10
shows the longitudinal resistance in both normal and topological insulator based on HgCdTe.
The Vg − Vthr = 0 V position corresponds to the gap regime. It is clear that the resistance
diverges in the gap for a normal insulator (black line) while finite plateaus of resistance are
observed for inverted gap regime (blue, green and red lines). For devices small enough com-
pared to the inelastic mean free path λ ≈ 3 µm, the edge states are protected from back-
scattering. According to the Landauer–Büttiker formalism (see Section 1.3.3), the expected
quantized value of conductance G = 2e2/h is observed for various small devices. This was
the first experimental observation of this new electronic state of matter. This achievement
is all the more remarkable since few research groups are able to grow HgCdTe layers and to
fabricate devices from it. Nevertheless, these same technological difficulties have motivated the
search for other candidates as topological insulators. In addition, a relatively small inverted
band gap (typically lower than 15 meV) in HgTe QWs grown on CdTe buffer makes it difficult
to observe the quantized edge conductance at elevated temperatures. Note that strain engi-
neering using virtual substrate increases the band-gap up to 55 meV in compressively strained
QWs [LLB+16]. Such high values, however, occur at low temperatures only, whereas increasing
temperature yields the band-gap vanishing and topological phase transition into trivial state
[TMK+16, KYB+16, IKD+16, MRK+17, KKJ+18]. Hence, the observation of the QSHI state
in HgTe Qws is so far limited to 15 K [BSH+18].
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Figure 1.10: (a) The longitudinal four-terminal resistance, R14,23, of various normal (d = 5.5 nm) (I)
and inverted (d = 7.3 nm) (II, III, and IV) QW structures as a function of the gate voltage measured
for B = 0 T at T = 30 mK. The device sizes are (20.0 × 13.3)µm2 for devices I and II, (1.0 × 1.0)µm2

for device III, and (1.0 × 0.5)µm2 for device IV. The inset shows R14,23(Vg) of two samples from the
same wafer, having the same device size (III) at 30 mK (green) and 1.8 K (black) on a linear scale.
(figure and caption from Ref. [LHQ+08]).
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1.2.3 InAs/GaSb quantum wells

As early as 1977, Sasaki et al. investigated the band inversion at the interface between InAs/-
GaSb. This inverted regime was believed to be a semi-metallic state but an hybridization gap
appears at finite k, which can be modelled by the BHZ model. As early as 2008, Liu et al.
proposed a new candidate based on InAs/GaSb quantum wells, confined between AlSb barriers
[LHQ+08]. QSHIs based on bilayers of InAs/GaSb QWs are attracting considerable interest
compared to HgTe QWs due to their ease of fabrication. However this system has no structural
inversion symmetry, unlike the previous case. Note that in the case of InAs/GaSb bilayers, the
hole band and the electron band do not lie in the same layer. The H1 band corresponds to
the valence band of the GaSb layer and is 150 meV higher than the E1 band in the conduction
band of the InAs layer. As a consequence of this inverted band sequence, the two bands cross
at finite k. However, a small hybridization gap is opened at the crossing points due to the
mixing between E1 and H1, as shown in Fig. 1.11.

Figure 1.11: (a) Bandgap and band offset diagram for an asymmetric AlSb/InAs/GaSb/AlSb struc-
ture. The left AlSb barrier layer is connected to a front gate while the right barrier is connected to a
back gate. The E1 subband is localized in the InAs layer and H1 is localized in the GaSb layer. The
outer AlSb barriers provide an overall confining potential for electron and hole states. (b) Schematic
band structure diagram. The dashed line shows the crossing of the edge states in the inverted regime.
Due to the hybridization between E1 and H1, the gap Eg appears (figure and caption from Ref.
[LHQ+08]).

The calculation of the band structure is performed using the BHZ Hamiltonian H0, consid-
ering 4 states in the ”spin basis”: {|E1, 1/2⟩ , |H1, 1/2⟩ , |E1, −1/2⟩ , |H1, −1/2⟩}. Only the terms
up to quadratic powers of k are considered:

H0 = ε(k)I4x4 +


M(k) Ak+ 0 0
Ak− −M(k) 0 0

0 0 M(k) −Ak−
0 0 −Ak+ −M(k)

 , (1.6)

where ε(k) = C0 + C2k
2, I4x4 is the 4 × 4 identity matrix, and M(k) = M0 + M2k

2. The total
Hamiltonian H takes into account two other terms. The first term is due to the zinc-blende
structure which has two different atoms per unit cell, leading to bulk inversion asymmetry
(BIA). The second term is due to the asymmetric structure of the quantum well (SIA), and
results in a k-linear Rashba term for electrons. The k-cubic term for holes is neglected. The
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additional terms are expressed in the previous basis as:

HBIA =


0 0 ∆ek+ −∆0
0 0 ∆0 ∆hk−

∆ek− ∆0 0 0
−∆0 ∆hk+ 0 0

 , HSIA =


0 0 iξek− 0
0 0 0 0

−iξ⋆
ek+ 0 0 0
0 0 0 0

 . (1.7)

The parameters ∆h, ∆e, ∆0 and ξe depend on the quantum well geometry. From the pure BHZ
Hamiltonian, there is a topological phase transition when the gap is closing (i.e. M0 = 0),
and quantum spin Hall phase corresponds to the region M0/M2 < 0. Liu et al. verified that
there is an adiabatic connection between the BHZ Hamiltonian H0 and the full Hamiltonian
H, meaning that the QSH state is preserved as long as the energy gap between E1 and H1
remains finite. However both terms modify the quantum phase transition between QSH phase
and trivial insulator (TI). Figure 1.11(b) shows that the gap-closing occurs at finite-k, rather
than at the Γ point.

In addition, Liu et al. also demonstrated that the QSH-TI phase transition can be tuned
with reasonable gate voltages. A dual-gate geometry is required to independently tune the
relative position between the E1 and H1 band edges and the Fermi level. Figure 1.12 shows the
phase diagram in the (Vf , Vb) plane, where Vf and Vg correspond to the gate voltages applied
on the front and back gate respectively. The calculation of the phase diagram is performed by
a self-consistent Poisson-Schrödinger type calculation with realistic parameters for InAs/GaSb
quantum wells. The respective thicknesses of InAs and GaSb layer is d1 = d2 = 10 nm.

Figure 1.12: The phase diagram for different front (Vf ) and back (Vb) gate voltages. Regions I,
II, III are in the inverted regime, in which the striped region II is the QSH phase with Fermi- level
in the bulk gap, and I, III are the p-doped and n-doped inverted system. Regions IV, V, VI are in
the normal regime, in which the striped region V is the NI phase with Fermi level in the bulk gap,
and IV, VI are the p-doped and n-doped normal semiconductors. The well configuration is set as
d1 = d2 = 10 nm, and the AlSb barrier thickness is taken 30 nm on each side in the self-consistent
calculation. Vf and Vb are defined with respect to the Fermi level in the quantum well (figure and
caption from Ref. [LHQ+08]).

However, the small inverted band-gap of about 3 meV to 4 meV induces a large residual
bulk conductance [NL01]. This limits the observation of quantized edge conductance values.
Experimentally, the residual bulk conductance can be reduced by means of various techniques
such as the use of low-purity Ga source for MBE growth [CFR+13]. Nevertheless, the obser-
vation of quantized edge conductance in the QSH regime was made possible for temperature
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below T ≈ 4 K by the addition of Si dopants at the InAs/GaSb interface [KRY+14, DKSD15].
These dopants serve as donors in InAs and acceptors in GaSb, creating a localization gap of
∆loc ≈ 2 meV. By definition, the conductance in the ballistic regime of the topological edge
states is not affected by disorder. Figure 1.13(a) exhibits the conductance plateaus obtained for
two different devices [DKSD15]. As shown in Section 1.3.3, the quantized value is dependent of
the device geometry i.e. whether it is a π-bar (red) or a Hall bar (blue) device. Du et al. also
shows that the conductance is independent of the temperature below 4 K (see Fig. 1.13(b)).
However a surprising behavior is observed considering magnetic field. Figure 1.13(c) shows
that the conductance plateaus are independent of the in-plane magnetic field. When a mag-
netic field B is applied, the time-reversal symmetry is broken and it is generally accepted that
the quantized conductance will be affected. For instance, in semiconductor-based QSH systems,
the counter-propagating edge modes are coupled by the magnetic field, leading to the opening
of a Zeeman gap in the edge spectrum. Skolasinski et al. have identified three mechanisms that
could explain this robustness [SPAW18]:

• the effective g-factor of the edge states is suppressed due to the heavy-hole contribution
of the edge-state wave function,

• the Dirac point of the edge states is hidden in the bulk band, making the Zeeman gap
opened by the magnetic field invisible to transport,

• the backscattering is strongly suppressed away from the Dirac point due to the nearly
anti-aligned spins of the counter-propagating edge states.

Figure 1.13: (a) Wide conductance plateaus quantized to 2e2/h and 4e2/h, respectively, for two
device configurations shown in inset, both have length 2 µm and width 1 µm. (b) Plateau persists
to 4 K, and conductance increases at higher temperature due to delocalized 2D bulk carriers. (c)
Plateau values measured for four different devices with in-plane magnetic field applied parallel (open
circles) or perpendicular (open triangles) to the edge axis. (d) The same four samples were measured
(T = 300 mK) in a field applied perpendicular to the 2D plane, with the 4-terminal signal of the
Hall bar devices showing increasing conductance, and the 2-terminal device (blue squares) showing
decreasing conductance (figure and caption adapted from Ref. [DKSD15]).
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1.2.4 Strained InAs/GaInSb quantum wells
Although the residual bulk conductance can be indeed reduced by means of various techniques
such as implantation of Si impurities at the InAs/GaSb interface, as previously mentioned,
the quantized values of edge conductance at higher temperature than 4 K have not yet been
observed even in strained InAs/GaSb QW bilayers. In order to observe the QSH phase at
higher temperature, one must increase the band-gap. In 2016, Akiho et al. proposed a strained
InAs/InxGa1−xSb QW structure as shown in Fig. 1.14(a) and demonstrate by 8-band k · p cal-
culations that the strain increases the energy gap. In0.25Ga0.75Sb has a 0.82% lattice mismatch
with respect to AlSb, which induces compressive strain in the InGaSb layer.

Figure 1.14: (a) The band edge profile of InAs/In0.25Ga0.75Sb quantum wells (QWs) with AlSb
barriers, assuming pseudomorphic growth on AlSb. (b) In-plane energy dispersions along the [100]
direction of unstrained InAs/GaSb QWs and strained InAs/In0.25Ga0.75Sb QWs. The shaded region
represents the energy gap. (c) Hybridization gap ∆ of InAs/InxGa1−xSb QWs (x = 0, 0.25, and
0.40) calculated as a function of InAs layer thickness dInAs. InxGa1−xSb layer thickness is 6 nm. The
blue solid line shows the calculation for unstrained QW with x = 0. Red and black solid (dashed)
lines show calculations assuming pseudomorphic growth on AlSb (GaSb). The inset shows the energy
dispersion for a QW with x = 0.40, dInAs = 6.5 nm, and dInGaSb = 6 nm, pseudomorphic on GaSb,
where ∆ reaches 25 meV (≈ 290 K) (figure and caption adapted from Ref. [ACI+16]).

The strain strengthens the Γ8 − Γ6 band inversion. Figure 1.14(b) shows the comparison
of the energy dispersion between unstrained and strained QW in the [100] direction for an
heterostructure with respective thicknesses dInAs = 10 nm and dInGaSb = 6 nm. Akiho et al.
have calculated that one can engineer the energy gap as shown in Fig. 1.14(c) to a maximum
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Figure 1.15: (a) Front gate voltage (VF G) dependence of ρxx at different temperatures for a CQW
with x = 0.25, dInAs = 8.5 nm and dInGaSb = 5.9 nm. (b) Temperature dependence of the peak
resistivity ρpeak

xx . The solid lines are fits with a double-exponential function. The inset is an Arrhenius
plot of the data in the high-temperature regime. The solid (dashed) lines are fits with a double-
(single-) exponential function (figure and caption adapted from Ref. [IAC+20]).

of 25 meV. These theoretical predictions were demonstrated experimentally in the following
years in the same group by activation energy measurements [IAC+20]. Figure 1.15(a) shows
the temperature evolution of the resistance peak associated with the topological gap and panel
(b) display the fitting of the peak value of resistivity. This work experimentally demonstrated
the possibility to increase the energy gap up to 35 meV.

1.2.5 Three layer InAs/GaSb quantum wells

Krishtopenko et al. [KT18b] proposed a triple-layered InAs/Ga(In)Sb/InAsS QW (TQW),
shown in Fig 1.16(a) which is distinct from the bilayer in that its band gap is located at the
center of the Brillouin zone. To remove the inversion asymmetry in the growth direction, an
additional layer of InAs is added to the InAs/GaSb bilayer. In the bilayers, the inverted gap
opens at finite k due to the mixing of E1 and H1 levels. However, the inverted band gap in
the three-layer InAs/GaSb QWs arises at k = 0 due to quantum confinement, while the E1-H1
mixing vanishes at k = 0. Since the confinement effect is much stronger than the E1 − H1
interaction at non-zero k, higher energies of the inverted band gap were expected in these novel
structures, with respect to the InAs/GaSb bilayers.

Band structure calculations have been performed on the basis of the full 8-band Kane
model with material parameters taken from [VMRM01] to investigate the band ordering. Fig-
ure 1.16(b) shows the positions of electron-like and hole-like subbands at zero quasimomentum
k in the TQW as a function of InAs-layer thickness d1, and with a fixed GaSb-layer thickness
d2 = 4 nm. The QWs are supposed to be grown on GaSb buffer along (001) crystallographic
direction. Krishtopenko et al. have explored the phase diagram, shown in Fig. 1.16(c), of the
three-layer structure. The solid curve, describing the crossing between E1 and H1 subbands,
divides the d1-d2 plane into white region, corresponding to the trivial insulator phase with
direct band ordering, and grey region with inverted band structure. The grey region is split
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Figure 1.16: Schematic representation of a symmetrical three-layer InAs/GaSb QW. (b) Energy of
electron-like (blue curves) and heavy-hole like (red curve) subbands at k = 0, as a function of the
InAs-layer thickness d1, and with GaSb-layer thickness d2 = 4 nm. (c) Phase diagram for different d1
and d2 in InAs/GaSB TQW (figure and caption from Ref. [KT18b]).

into open and striped areas, corresponding to QSHI and semimetal (SM) phase, respectively.
The SM phase is characterized by a vanishing indirect band gap, when the side maxima of the
valence subband exceed in energy the bottom of the conduction band.

The k · p band structure can be fitted by a 2-dimensional BHZ model:

Heff (kx, ky) =
(

H1(kx, ky) 0
0 H⋆

1(−kx, −ky)

)
,

H1(kx, ky) =

εE1(k) −Ak+ Sk−
−Ak− ϵH1(k) Rk2

−
Sk+ Rk2

+ ϵE2(k)

 ,

(1.8)

where k± = kx ± iky are the momentum k component in the 2D plane, k2 = k+k− and
εE1(k) = C + M + BE1k

2, εH1(k) = C − M + BH1k
2 and εE2(k) = C + M + ∆E1E2 + BE2k

2.
Here, C, M , A, BE1, BH1, BE2, R and S are structure parameters, which depend on d1 and
d2. As in HgCdTe, the sign of the mass parameter M defines the inversion of the E1 and H1
bands. As 3 bands are considered, an additional term ∆E1E2 describes the gap between the E1
and E2 subbands k = 0. The predicted phase diagram (see Fig. 1.16(c)) was also confirmed
by evidencing the existence of massless Dirac fermions in gapless band structures by cyclotron
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resonance measurement [KIM+17, RKB+17], but the inverted band structure (QSHI) was also
investigated by Landau levels (LLs) spectroscopy [KRGP+18].

A specific feature of inverted-band ordering under a quantizing magnetic field is the emer-
gence of a specific pair of LLs, also known as zero-mode LLs. The zero-mode LLS cross at a
critical magnetic field as the lowest zero-mode LL (at B = 0 T) arises from the valence band
and has an electron-like character, while the second level arises from the conduction band and
has a heavy-hole-like character. At lower magnetic field, the band ordering is inverted in a TI
and is driven into the trivial band ordering for higher magnetic field B > Bc. This typical
signature is shown in Fig. 1.17(a). Finally, Fig. 1.17(b) is the case of a QWs with trivial band
ordering, in which the electron- and heavy-hole-like levels arise at B = 0 T in the conduction
and valence band, respectively, and the zero-mode LLs do not cross.

Figure 1.17(c) shows the energy of the optical transition obtained by magneto-absorption.
The principle of the LL spectroscopy is more detailed in 2.3.1. At higher magnetic field, it is
clear that the higher energy transition observed has a non-zero energy at B = 0 T. Considering
the inverted ordering of zero-modes LLs between topological and trivial insulator, this optical
transition could be either the α1 (black arrow) or the β1 (grey arrow) transition, respectively.
However, by calculating the oscillator strength of these 2 transitions, Krishtopenko et al. have
shown that the β1 transition should not be observed. Therefore this transition can only be
attributed to the α1 transition which has a non-zero energy at zero magnetic field only for the
inverted band structure. In addition, one can see that the energies of these optical transitions
are independent of the temperature, as the experimental data at 100 K (green symbols) coincide
with the observed transitions at 2 K (orange symbols).

Figure 1.17: Landau-level fan chart for the three layer InAs/GaSb/InAs QW with (a) inverted-band
structure, d1 = 34 ML and d2 = 14 ML, and (b) trivial band ordering, d1 = 27 ML and d2 = 14 ML.
The numbers in the right side correspond to the LL indices. The expected dominant absorption
transitions are denoted by arrows and Greek letters. A pair of zero-mode LLs with indices −2 and
0 is shown by bold curves. (c) Fan chart of the most intense LL transitions. The arrows indicate
the magnetic fields, corresponding to integer LL filling factors ν at 2 K (figure and caption from Ref.
[KRGP+18]).
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1.3 Magnetotransport

1.3.1 Classical Drude model
A 2DEG under electrical and magnetic field is usually described by the Drude model where
charge carriers are described as classical independent particles. The probability of collision for
a carrier during the infinitesimal amount of time dt is dt/τ where τ is the mean free time. In
the case where carriers from independent subbands are involved in the conduction, we assume
they conduct as channels in parallel each described by a density of carrier ni, a charge q being e
or −e for electrons and holes respectively and of mobility µi = qτi/m∗

i where m∗
i is the effective

mass of the carriers. We detail here the relation between the carrier properties and the physical
quantities experimentally measured ρxx and ρxy.

Under electric and magnetic field the mean momentum ⟨p⟩ of each carrier channel verifies:

d⟨p⟩
dt

= −
⟨p⟩
τ

− q

[
E +

⟨p⟩
m∗ × B

]
. (1.9a)

One can derive Eq. 1.9a to the trivial case where B = 0, E ̸= 0 and obtain:

⟨p⟩ = −qτE. (1.9b)

Using the definition of current density j = −nq
⟨p⟩
m∗ we obtain the Ohm’s law:

j =
nq2τ

m∗ E,

with a conductivity given by σ0 =
nq2τ

m∗ .
An other trivial case is the one where B ̸= 0, E = 0. Equation 1.9a describes a cyclotron
motion:

d⟨p⟩
dt

= −
⟨p⟩
τ

−
qB

m∗⟨p⟩ ×
B
B

(1.9c)

We can easily identify the cyclotron frequency ωc = eB/m∗. With Hall bar devices, the
equation of motion 1.9a is also simplified as we only consider an in-plane magnetic field equal
to 0, and a perpendicular magnetic field B = Bz, the Ohm’s law becomes:(

jx

jy

)
=

σ0

1 + (ωcτ)2

(
1 ωcτ

−ωcτ 1

)(
Ex

Ey

)
. (1.10)

The conductance for a specific carrier type is now described by a symmetric 2 x 2 tensor σ̂
with:

σxx(B) =
σ0

1 + (ωcτ)2, σxy(B) =
ωcτ

1 + (ωcτ)2σ0. (1.11)

In the case of carrier channels in parallel, the respective conductivity tensors can be directly
summed such as σ̂ = ∑

i σ̂i. The resistivity tensor ρ̂ is directly related to the conductivity
tensor σ̂ by tensor inversion:

ρxx =
σxx

σ2
xx + σ2

xy

, ρxy = −
σxy

σ2
xx + σ2

xy

. (1.12)
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We derive Eq. 1.12 in the case of a single carrier channel:

ρxx =
1

enµ
, ρxy =

B

en
. (1.13)

In the case of electrons (n) and holes (p) conducting in parallel, Eq. 1.12 becomes:

ρxx =
1
e

(nµn + pµp) + (nµnµ2
p + pµpµ2

n)B2

(nµn + pµp)2 + µ2
nµ2

pB2(n − p)2 , (1.14a)

ρxy =
B

e

(nµ2
n − pµ2

p) + µ2
nµ2

pB2(n − p)
(nµn + pµp)2 + µ2

nµ2
pB2(n − p)2. (1.14b)

1.3.2 Shubnikov–de Haas oscillations
The energy levels of a 2D electron gas with a parabolic band (∝ k2) placed in a perpendicular
magnetic field, are called Landau levels:

EN = ℏωc(N + 1
2), (1.15)

with ℏωc = eB/m the cyclotron energy. A magneto-transport signature of these LLs are
oscillations of the longitudinal resistivity ρxx, called Shubnikov-de Haas Oscillations (SdHO),
and expressed according to the Liftshitz-Kosterlitz formula:

ρLK
xx (B, T ) = ρ0

[
1 − F LK(B, T ) cos

(
2π

hn

2eB

)]
,

F LK(B, T ) = 2e−π/ωcτq
2π2kBT/ℏωc

sinh (2π2kBT/ℏωc)
,

(1.16)

where ρ0 is the zero-magnetic field resistivity, τq the quantum lifetime, and n the carrier density.
We will refer to FLK(B, T ) as the envelope of the oscillations. The study of SdHO allows us to
extract many properties of the electron gas, such as the carrier concentration n, the effective
mass m∗, the quantum lifetime τq and consequently the Landau level broadening Γ:

• the carrier concentration n is extracted from the frequency of the oscillations f = hn / 2eB.
This extraction is often done by Fourier analysis, which usually requires a special treat-
ment of the experimental data to minimize numerical errors. A large number of periods
is also required for such an analysis. In our case, only a few periods are observed (< 10)
in the best case, so we extract "manually" the periodicity of these oscillations. (see Chap-
ter 3)

• the effective mass of carriers is extracted from the temperature dependence of the SdHO
enveloppe F LK(B, T ). The amplitude (i.e. the difference between the maximum (at
B = Bmax) and minimum (at B = Bmin) of the same period) is:

∆ρLK
xx (T ) = 2ρ0

[
F LK(Bmax, T ) + F LK(Bmin, T )

]
. (1.17)

It is assumed that the variation in magnetic field of the envelope function is negligible
over the same period:

∆ρLK
xx (T ) ≈ 4ρ0F

LK(Bn, T ),

≈ 4ρ0e
−π/ωcτq

2π2kBT/ℏωc

sinh (2π2kBT/ℏωc)
,

(1.18)
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where ωc = eBn

m∗ , Bn being the magnetic field at which a temperature-independent ρxx

node between the two chosen extremas appears. Then,

∆ρLK
xx (Tref)

∆ρLK
xx (T ) = X(Tref)

X(T )
sinh(X(T ))

sinh(X(Tref))
,

X(T ) = 2π2kBT

ℏωc

.

(1.19)

The effective mass of carriers is extracted in the regime of thermal activation of the LLs:
2π2kBT ≫ ℏωc:

sinh (X(T )) ∼ eX(T )/2

⇒ ∆ρLK
xx (Tref)

∆ρLK
xx (T )

X(T )
X(Tref)

∼ eX(T )

2 sinh X(Tref)

⇒ ln
(

∆ρLK
xx (Tref)

∆ρLK
xx (T )

X(T )
X(Tref)

)
∼ 2π2kB

eℏBn

m∗T − ln (2 sinh (X(Tref))). (1.20)

• the influence of scattering on the potential fluctuations limits the lifetime τq of an electron
in a certain quantum state. We consider a Lorentzian DoS for each LLs with a half-width
Γ = h/(2τq). Γ can be extracted by the magnetic field dependence of the resistivity ρxx.
If we consider the difference between a resistivity maximum and minimum on the same
oscillation, we get from Eq. 1.18

∆ρLK
xx (T )
4ρ0

≈ e−π/ωcτq
2π2kBT/ℏωc

sinh (2π2kBT/ℏωc)
. (1.21)

The quantum lifetime can be extracted at low temperature from the magnetic field
dependence of the SdHO amplitude.

1.3.3 Landauer–Büttiker formalism
In 1957, Landauer proposed to model the electric transport in materials with localized scatterers
[Lan57, Lan70]. Instead of computing currents from homogeneous distribution of the electrons
in the momentum space in the whole medium, Landauer considered the electric field as the
consequence of a continuous flow of charges between the scattering centers. He thus showed
that the average electric field obtained is identical in both cases, but locally non uniform and
concentrated around the scattering centers in his approach. Büttiker then took up this approach
to model the electric transport in quantum Hall insulators [Büt86, Büt88] where the electron
transport is carried by the chiral edge states between the different terminals. The current is
then defined by the matrix of transmission coefficients between the device probes and their
associated chemical potentials.

We model the electronic system by leads connected to the contacts, as shown in Fig. 1.18.
We imagine these contacts as large electron reservoirs that are in thermal equilibrium and
perfectly absorb all incident electrons. We can summarize the behavior of the system by a
transmission matrix where the element Tij describes the transmission probability (adjusted to
the number of channels) from probe i to probe j. The current flowing between the probe i and
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the probe j is then defined as:

Iij =
e

2π

∫ ∞

0
tij(k)fµi

(k)vkdk −
e

2π

∫ ∞

0
tji(k)fµj

(k)vkdk

=
e

2πℏ

∫ ∞

0
tij(E)f(E − µi)dE −

2e

2πℏ

∫ ∞

0
tji(E)f(E − µj)dE,

(1.22)

where tij(k) the probability of transmission from the contact i to contact j for an electron of
wave vector k , f the Fermi distribution function, vk = (1/ℏ)(dE/dk) the velocity for an electron
of wave vector k and µi is the chemical potential at the reservoir i. Note that experimentally,
we often consider the voltage of the probes Vi = µi/e. As

∫∞
0 tij(E)f(E − µi)dE = Tijµi, we

obtain:

Iij =
e

h
(Tijµi − Tjiµj). (1.23)

The net current at the probe i is then the sum of the currents between the probe i and all
the other probes:

Ii =
e

h

∑
j ̸=i

Tijµi − Tjiµj =
e

h

∑
j ̸=i

Tijµi −
∑
j ̸=i

Tjiµj


=

Ne

h
µi −

e

h

∑
j ̸=i

Tjiµj,

(1.24)

where N is the number of channels in the leads.
In the next paragraph we apply the Landauer-Büttiker formalism in the case of chiral edge

states (QHE) and then in the case of helical edge states (QSHE).

Chiral edge states (QHE)

We consider a standard Hall bar with 6 contacts in the quantum Hall regime and calculate
the four-probe longitudinal resistance R14,23 and transverse resistance R14,35. The current is
imposed between the probe 1 (µ1 = µ) and the probe 4 (µ4 = 0). The other contacts are
perfect voltage probes with zero net current. In the case of chiral edge states, the matrix of
transmission is simplified as the quantum Hall edge channels are protected from back-scattering
(T = 1) and connect only nearest neighbors contacts. If the magnetic field is strong enough
such that ν LLs are filled, then N = ν chiral edge states traverse the perimeter of the device
and we obtain as system of equations from Eq. 1.24:



I1
0
0

I4 = −I1
0
0


=

e

h



N 0 0 0 0 −N
−N N 0 0 0 0

0 −N N 0 0 0
0 0 −N N 0 0
0 0 0 −N N 0
0 0 0 0 −N N





µ
µ2
µ3
0
µ5
µ6


(1.25)

The four-probe measurement of the longitudinal and transverse resistance is then derived
from Eq. 1.25:

R14,23 =
V23

I14
= 0, (1.26)

R14,35 =
V35

I14
=

1
N

h

e2, (1.27)
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where (h/e2) is the quantum of resistance, also known as the von Klitzing constant [vKDP80].
An important consequence of the chirality of the edge channels is that the longitudinal resistance
is vanished, regardless of the number of voltage probes placed along the perimeter.

Helical edge states (QSHE)

The helical edge states can be considered as the coexistence of two chiral edge states with
opposite propagation directions. We calculate the four-probe longitudinal resistance R14,23 and
transverse resistance R14,35 in the quantum spin Hall regime. The system of equations 1.24 is:

I1
0
0

I4 = −I1
0
0


=



2 −1 0 0 0 −1
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1

−1 0 0 0 −1 2





µ
µ2
µ3
0
µ5
µ6


. (1.28)

In contrast to the chiral edge states, the resistance that is measured depends on the number
of contacts between source and drain of the current flow. We now have R14,23 = (1/2)(h/e2)
and R14,35 = 0. In this work, we often consider the non-local resistance as R26,35. In the QSH
regime, the non-local resistance is calculated from the system of equations:

0
I2
0
0
0

I6 = −I2


=



2 −1 0 0 0 −1
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1

−1 0 0 0 −1 2





µ1
µ
µ3
µ4
µ5
0


. (1.29)

One then obtain R26,35 = (2/3)(h/e2).
In both cases, we have assumed that edge states are protected from back-scattering. Al-

though helical edge states cannot be backscattered by elastic scatterers, inelastic scatterers
can. We now consider the case of QSH regime in a device where the edge length exceeds
the inelastic mean free path λ. In the QSH state, the Hall bar device is modelled as the
resistor network presented in Fig. 1.18(c) where each edge can be replaced by a resistor of
R0 = (h/e2). However if the length of the edge Ledge > λ then, following Abanin [ANZ+07],
one has Redge = (h/e2)(1 + Ledge/λ), which we often approximate by Redge = (h/e2)(Ledge/λ) in
the following. For a device with the dimensions shown in Fig. 1.18(c) where lp > λ and l1 > λ,
the four-probe measurements no longer lead to quantized value of resistances. Instead, one can
show that:

R14,23 =
h

e2
1
λ

lp

2 and R26,35 =
h

e2
1
λ

(2l1)2

4l1 + 2lp
.

1.3.4 Square lattice model
In the Landauer-Büttiker formalism presented above, it is assumed that the bulk does not
participate to the conduction. Nevertheless, in topological structures based on InAs/GaSb, a
residual contribution of the bulk has often been observed leading to measured resistance values
not corresponding to the expected quantization [KDS10, NPP+14, Beu16]. We propose a more
complete model where both the edge and the bulk are modeled by a 2D square lattice network



34 Chapter 1. InAs/GaSb: 2D topological insulators

Figure 1.18: (a) Hall bar scheme with chiral edge states. (b) Hall bar scheme with helical edge
states. Potentials for each probes are provided in the case where µ1 = 1 and µ4 = 0 are imposed.
(c) Network of resistor equivalent of the QSH edge states of panel (b). In the ballistic regime, each
resistor is independent of the edge length and is R0 = (h/e2). In the diffusive regime, resistors are
dependent of the Hall bar dimensions and Redge = (h/e2)(Ledge/λ) where Ledge is the length of the
corresponding edge.

of resistors, as shown in Fig. 1.19, where the square lattice array is purposely shown with a low
number of resistors for the readability of the figure. In practice, we try to have a sufficiently
large number of resistors to discretize the space with a mesh length of the order of 1 µm. We
call nW , nL and np the number of nodes along the Hall bar width, along the Hall bar length,
and between the lateral probes, respectively.

In the bulk, the conductance of one of the resistors (in red in Fig. 1.19) corresponds simply
to the bulk conductivity (in Ω/□). Thus, the conductance of one of the inner resistor is given
by Gb = σbulk. On the Hall bar edges, the 1D conductance is given by σedge (in unit of length
per Ohm). Thus, the conductance of a single edge resistor (in blue in Fig. 1.19) is given by
Ge = σedge/lc, where lc is the length of the mesh size (the length of one resistor). At each i
node of the network, the potential Vi obeys the equation of current conservation:∑

(i,j)=CN

Gi,j(Vj − Vi) = Ii, (1.30)

where (i, j) are the pairs of connected nodes (CN), Gi,j is the conductance element between
the nodes i and j, and Ii is the current imbalance at the node i. Gi,j can take only three
values: Gb, Ge or the contact conductance Gc. The exact value of Gc is unimportant for the
measurements in the four-probe configuration and disappears and the end of the calculation.
Note that Ii in Eq. 1.30 is defined by the boundary conditions, more specifically by the source
and drain contacts. The Ii value is non-zero only if the node i is connected to an additional
contact acting as a current source or drain. In the latter case, Ii = Gc(Vi − Vc), Vc is the
imposed voltage of the contact. The network is described by the set of coupled linear Eqs. 1.30
for the unknown Vi’s. This problem can be solved numerically when the voltages of the source
and drain contacts are imposed (i.e., when the currents Ii are known).

When nL, nW → ∞, the square network model becomes equivalent to the finite difference
method for the resolution of the Laplace equation ∇2V = 0. The voltages of the source and
drain contacts are imposed, yielding Dirichlet boundary conditions. The boundary conditions
imposed by the edge states are:

σedge∂
2V/∂x2 + σbulk∂V/∂y = 0. (1.31)
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Figure 1.19: Sketch of a resistance square network for a given Hall bar geometry (nL = 7, nW = 2).
The squares have a side length lc. The red resistors represent the contribution of the 1D edge state.
They have a resistance G−1

1 = σ−1
edgelc. The blue resistors model the 2D bulk and they have a resistance

G−1
2 = σ−1

bulk/□.

Basic tests have been conducted to check the validity of this approach. For instance, we
have checked that the model reproduces satisfactorily the expected non-local resistance R25,34
of an homogeneous device (i.e. without edge conduction), when the size of the square mesh
lc tends to zero. Figure 1.20 shows the evolution of the ratio RNL/RL as a function of the
geometric ratio lp/W , lp is the distance between the lateral probes; W is the Hall bar width.
For the simulation, nW = 21, and the number of nodes between the lateral probes np varies such
that the geometric ratio evolves from lp/W = 0.5 to 5. The model reproduces satisfactorily the
well known formula for the current spreading:

ROhmic
NL = 4

π
RL

W

lp
exp

(
−π

lp
W

)
(1.32)

Figure 1.21 shows the current dissipation in the configuration R2635 calculated from three
different cases: Gedge = Gbulk/100, Gedge = Gbulk, and Gedge = 100Gbulk. For completeness, a
simplified version of the python code that was developed for this figure is given in Annex.

Such a model can be used to extract both bulk and edge contribution. The procedure is
as follows. Experimentally, for a given Hall bar of known geometry, for a given gate voltage,
we measure two four-probes configurations. Usually, we measure the local resistance defined
asRL = R14,23, and the nonlocal resistance, defined as RNL = R26,35. These two resistances can
be fitted by a unique set of conductances (Gb, Ge) in the square lattice model. Therefore, the
bulk and edge conductances can be estimated for each gate voltage.

Note that in Chapter 3, we compare the extracted bulk conductivity σbulk to the additional
conductance of the "lateral" edge as Gedge = (Ge − Gb) lc

lp
where lp is the length between the

lateral probes.
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Figure 1.20: Comparison of the numerical estimate of the non-local resistance
R26,35 as given by the square network (blue circle symbols) and conventional formula
ROhmic

NL = (4/π) RL(W/lp) exp(−πlp/W ). Here, lp is the distance between the probes 2 and
3 while W is the Hall bar width.

Figure 1.21: Current dissipation in a Hall bar geometry (nL = 111, nW = 21) in the non-local
configuration. The calculation of the current dissipation is calculated for three different cases: (a)
Gedge = Gbulk/100, (b) Gedge = Gbulk, and (c) Gedge = 100Gbulk.
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Conclusion

In this chapter, we have detailed a state of the art focused on two dimensional topological
insulators, as well as the theoretical concepts used for this study. It is important to note that
the presentation of the topological insulators field is not intended to be exhaustive, because it
is limited to 2D topological insulators on the one hand, and we do not detail all the candidate
materials, such as those based on transition metal dichalcogenides [QLFL14, WFG+18]. Nev-
ertheless, the path that led to the work presented in the following chapters has been presented.





CHAPTER 2

Fabrication of InAs/GaSb based devices and Experimental setups

This chapter focuses on the fabrication processes and characterisation methods of the devices
under study. It is divided into three parts: the experimental setups and techniques used in these
investigations, the growth of heterostructures based on InAs/GaSb and their characterization,
and the fabrication process of the devices. The chapter provides details on each of these topics
and presents the various devices that are part of this work.

2.1 Experimental setup

2.1.1 Cryogenics and magnetic field
Investigation of quantum Hall effects such as the QSHE requires to reach low temperatures
down to the kelvin range. For this reason, both electrical and magneto-optic characterization
of the grown heterostructures and transport measurements of various gated Hall bars were
performed in a cryostat equipped either with a variable temperature insert (VTI) or with a 3He
insert for the temperatures below 1.7 K. The principle of these cooling systems have been nicely
described for many years [Pob07, Zha16]. We still provide here their main details. Figure 2.1
displays both insert principles.

The 4He dewar is made of an inner 4He bath at 4.2 K isolated from room temperature by
a vacuum jacketand a liquid Nitrogen jacket. The cryostat is equipped with a magnet insert
from Cryogenics Limited that supports the magnet in the lower section of the helium reservoir.
The superconducting magnet supplied in power by the Oxford Instruments Mercury IPS-M
allows a vertical magnetic field up to 13 T. The 3He insert allows reaching a temperature of
300 mK by pumping a liquid 3He bath. The bath is isolated using a 1 K-pot in which a small
volume of liquid 4He is filled from the cryostat bath through a needle valve and pumped by
an external pump at room temperature. The purpose of the 1 K-pot is also to cool down an
internal adsorption pump made of charcoal on the 3He line. The temperature of the sample
can be varied from 300 mK to 2 K by the use of a heater thermally connected to the adsorption
pump. To reach higher temperatures, all the liquid 3He in the sample chamber is vaporised and
pumped back to the 3He reservoir, while a heater in the sample chamber allows the control of
the temperature from 2 K to 200 K.

The principle of the VTI is similar to the 1 K-pot in the 3He insert. A liquid bath of 4He
is filled by a capillary terminated by a needle valve from the main cryostat bath and pumped
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Figure 2.1: Schematics of the Helium-4 cryostat set up with Helium-3 Insert on the left and Variable
Temperature Insert (VTI) on the right.

by an external pump, allowing to reach a minimal temperature of 1.7 K. The temperature is
controled directly through a 100 Ω-resistive heater placed on the measurement probe. The main
interest of the VTI is the timeliness of operation due to the ’top loading’ of samples, compared
to the 3He insert.

2.1.2 Electronics
A low frequency (f = 11 Hz) electrical current is applied between the source and drain electrodes
using the association of a voltage source at the output of a PerkinElmer 7225 lock-in amplifier
and a high resistance of 10 or 100 MΩ. The resulting intensity is at maximum I = 100 nA
in order to minimise the dissipated heat by the resistive devices. The current at the drain
is measured in real-time using a current preamplifier and a lock-in. The different voltages
between the other electrodes are measured with high-impedance 1 TΩ preamplifiers and lock-
ins. A schematic of the standard measurement configuration of a gated Hall bar device is shown
in Fig. 2.2. When a field-effect transistor configuration can be used to tune the Fermi level in
the investigated 2DEG, a Source Measure Unit (SMU) Keithley 2602 is used to simultaneously
apply a gate voltage Vg and measure the leak current Ileak between the 2DEG and the top gate.
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Figure 2.2: Schematic representation of the measurement setup for a Hall bar device. The current is
applied from the source to the drain terminal and measured with the middle lock-in. Lateral probes
allow the measurement of both longitudinal and transverse resistivities by the top and bottom lock-in
respectively. The yellow frame represents the top gate of the HB device used to tune the Fermi level.

2.2 Growth of III-V materials
In the framework of this PhD thesis, the growth of InAs/GaSb materials stands on the shoulder
of the Institut d’Électronique et Structure (IES1) and its long-expertise [RCC+05, SRT+07].
The studied samples were grown by molecular beam epitaxy (MBE) with the growth thickness
controled by reflection high-energy electron diffraction (RHEED). In the following, we detail
the several layers of the studied heterostructures shown in Fig. 2.3.

First of all, the growth is done on a substrate. Through the different growths, different
substrates have been considered. The first one, corresponding to the S3052 and S3054 samples
is a GaAs substrate. As it is transparent in the THz range, it was chosen to allow magneto-
absorption measurements. It is also a fairly standard substrate for the growth of TIs such as
InA/GaSb double wells. The second one is a GaSb substrate, more conventional for the growth
of high-mobility 2DEG in InAs QW [SDP+16, THT+18], and corresponds to the S3198 sample.

The first epitaxied layers on the substrate are those forming the buffer. The purpose of these
layers is to modify the strain in the QW layers induced by the difference of the lattices constants
between the QW layers and the pseudomorphic buffer. [KRGP+19]. In S3054, it consists of a
∼ 1 µm-thick layer of GaSb in order to fully relax the strain in the QW as GaAs has initially
a ∼ 8% mismatch with respect to GaSb. The buffer is then followed by a superlattices of few
nm-thick AlSb and GaSb layers. In S3052 and S3198, there is a metamorphic AlSb buffer,
which has a ∼ 2% lattice mismatch with respect to the Ga0.65In0.35Sb layer in the QW. Note
that due to the GaAs substrate, the metamorphic AlSb buffer is a AlSbGaAs layer in S3052.

The active part corresponds to the quantum well layers InAs/Ga1−xInxSb/InAs confined
by barriers of AlSb or AlSb0.9GaAs0.1, depending on the substrate. The respective thicknesses

1Université de Montpellier, Institut d’Électronique et des Systèmes, 860 rue St Priest, 34095 Montpellier
(cedex 5), France
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d1 and d2 are chosen to match the theoretical position of a QSHI in the phase diagram shown
in Section 1.2.5. The whole growth is covered by a cap layer of In0.75Ga0.25As for S3054 and
S3052, and GaSb for S3198 to protect the AlSb barrier from oxydation.

Figure 2.3: Schematic view of the layer structure for the S3054, S3052, and S3198 samples. The
colors indicate the function associated with the layer.

Band structure calculations were performed by using the eight-band Kane model [KYB+16],
which directly takes into account the interactions between Γ6, Γ8, and Γ7 bands in bulk materi-
als. This model well describes the electronic states in a wide range of narrow-gap semiconductor
QWs, particularly in the broken-gap InAs/Ga(In)Sb quantum wells (QWs) [KRGP+18, KT18b,
KRGP+19, KDS+19]. In the eight-band Kane Hamiltonian, we also took into account the terms,
describing the strain effect arising because of the mismatch of lattice constants in the buffer,
QW layers, and AlSb barriers. Parameters for the bulk materials and valence band offsets used
in the eight-band Kane model are taken from Refs [VMRM01, KIM+12, KIO+15].

Figures 2.4(a), 2.5(a) and 2.6(a) show the band structure calculation for S3054, S3052 and
S3198 samples respectively. All the samples have an inverted band structure with the hole-
like H1 band lying above the electron-like E1 band. The calculated band-gap for the samples
S3054, S3052 and S3198 is ∆ ≃ 15 meV, 30 meV and 45 meV respectively. Note that the
sample S3054 with the smaller gap is similar to the one studied in Ref. [KRGP+18], in which
the inverted band structure was evidenced by magneto-absorption measurements. The carrier
density is calculated assuming axial symmetry of the calculated band structure. To calculate
LLs, we used the so-called axial approximation. Within this approximation, one keeps in-plane
rotation symmetry by omitting the warping terms in the Hamiltonian. The calculations had
been performed by expanding the eight-component envelope wave functions in the basis set of
plane waves and by numerical solution of the eigenvalue problem.
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Figure 2.4: (a) Band structure, (b) density of states, and (c) Landau levels for growth S3054. The
bandgap is between the E1 and H1 subbands with an energy gap ∆ = 15 meV. The active part is a
TQW of InAs/GaSb with dInAs = 34 ML and dGaSb = 14 ML. The theoretical critical magnetic field
is Bc = 10.6 T.

Figure 2.5: (a) Band structure, (b) density of states, and (c) Landau levels for growth S3052. The
bandgap is between the E1 and H1 subbands with an energy gap ∆ = 30 meV. The active part is a
TQW of InAs/GaSb with dInAs = 25 ML, dGa1−xInxSb = 10 ML, and x = 0.35. The theoretical critical
magnetic field is Bc = 21.3 T.
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Figure 2.6: (a) Band structure, (b) density of states, and (c) Landau levels for growth S3198. The
bandgap is between the E1 and E2 subbands with an energy gap ∆ = 45 meV. The active part is a
TQW of InAs/GaSb with dInAs = 25 ML, dGa1−xInxSb = 10 ML, and x = 0.35. The theoretical critical
magnetic field is Bc = 17.2 T.

2.3 Characterization of the growth structures
Before any sample fabrication from the previously introduced heterostructures, preliminary
measurements of electrical transport and magneto-absorption have been performed.

2.3.1 Landau-level spectroscopy
A method for studying the band structure of 2D systems is the spectroscopy of allowed transi-
tions between Landau levels. As formerly mentioned, the sample S3054 with the smaller gap is
similar to the one studied by Krishtopenko et al. [KRGP+18] using this technique. Indeed, an
incident photon is absorbed if its energy ℏω is equal to the energy difference between two Lan-
dau level. To be observed, the transitions from Landau levels below the Fermi level to empty
states above the Fermi level must satisfy certain selection rules. However, in the situation of
three subbands (H1, E1, E2), the number of transitions satisfying the condition ∆n = ±1,
where n is the number of Landau levels in the classification of the eight-band Kane Hamilto-
nian, in the axial approximation, is extremely large. Here, we simply extrapolate linearly the
evolution of these transitions in order to estimate the associated energy at zero magnetic field.
A non-zero energy at zero magnetic field is interpreted as the inter-band transition signature.
This energy is then associated with the energy gap.

We now present the experimental study of the magneto-absorption spectra of growth S3052.
Figure 2.7 shows the experimental setup used for this measurement. The magneto-absorption
spectra is carried out by Fourier transform spectroscopy in the Faraday configuration in mag-
netic fields up to 16 T at T = 6 K. The sample is placed in liquid helium; radiation transmitted
through the sample was detected by a composite bolometer, the signal from which was amplified
and fed to the input of an analog-to-digital converter of the Fourier transform spectrometer.
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Figure 2.7: Schematic illustration of the terahertz magneto-spectroscopy setup. The first part is
composed of a Fourier spectrometer following the principle of the Michelson interferometer principle.
The superconducting coil (Coil 1) can provide magnetic field with inductance up to 16 T, while the
compensating coil (Coil 2) keeps the overall magnetic field at zero in the vicinity of the bolometer.
The bolometer is separated by a diamond window from the sample space (figure and caption adapted
from [Mar17]).

Figure 2.8 shows the magneto-absorption spectra as a false color map. The yellow color
correspond to maximum absorption intensity. Two absorption lines corresponding to interband
transition are observed and are linearly interpolated at B = 0 T. The zero-magnetic field
energy ∆ ≈ 300 cm−1 ≈ 38 meV is obtained, which is quite large compared to the expected gap
in S3052 ∆(th) = 30 meV. In addition, around E ≈ 550 cm−1 and 4 T < B < 12 T, an absorption
line independent of the magnetic field is observed and cannot be understood considering the
Landau level structure shown in Fig. 2.5(c). A second absorption line indepdent of the magnetic
field is observed at low energy (E ≈ 100 cm−1). Nevertheless the estimated gap value remains
of the expected order of magnitude, which motivates further investigation of this sample by
magneto-transport measurements.
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Figure 2.8: Magnetoabsorption spectra presented as a false color map for growth S3052. An increase
in the absorption intensity corresponds to the color transition from blue to yellow. The gray band
corresponds to the Reststrahlen region in the GaAs substrate. The black dashed lines highlight the
observed absorption lines.

2.3.2 The van der Pauw method
One of the most common measurements of magneto-transport is the measurement of substrate
resistivity as a function of magnetic field using the van der Pauw configuration (see Fig. 2.9).
Its interest is also related to the ease of measurement because the preparation of the samples
requires only to solder 4 contacts, (e.g., by indium) to the four corners of a square sample.
Note that the contact size must be small compared to the sample size. Moreover, the van der
Pauw measurement of the resistivity requires samples which are homogeneous, isotropic and
thin. This last condition is always verified for a 2DEG and note that we use in the following
the notation ρ directly for the 2D resistivity ρ2D = ρ3D/t where t is the thickness of the square
sample. Van der Pauw showed that one can extract the resistivity ρ of a square sample by
measuring the resistances RAB,CD = VCD/IAB and RBC,DA = VDA/IBC , where VCD is the
voltage between the contact C and D, IAB is the current applied between the contact A and
B. The two resistances satisfy the relation:

exp
(

π

ρ
RAB,CD

)
+ exp

(
π

ρ
RBC,DA

)
= 1. (2.1)
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Figure 2.9: Typical van der Pauw arrangement of the 4P probes placed along the periphery of a
thin and arbitrarily shaped sample (figure and caption adapted from [MEPT15]).

For a symmetric sample, such as a square, the reprocity theorem, one should verify RAB,CD =
RBC,DA = R and obtain:

ρ =
π

ln 2R. (2.2)

However, it is worth mentioning that this method extends to non-symmetrical sample. The
resistivity is then expressed as:

ρ =
π

ln 2
RAB,CD + RBC,DA

2 f, (2.3)

where f is a form coefficient, function of the RAB,CD/RBC,DA ratio and satisfies the condition

cosh
(

π

ln 2
RAB,CD + RBC,DA − 1
RAB,CD + RBC,DA + 1

)
=

1
2 exp

(
ln 2
f

)
. (2.4)

2.3.3 The poor man’s method: an extension of the van der Pauw
method to anisotropic media

Initially, we performed van der Pauw measurements directly on some selected samples. For
simplicity, all these samples had a square geometry, and the four contacts 1, 2, 3 and 4 were
placed clockwise on the four corners of the samples. Some samples exhibited a pronounced
electrical anisotropy, with R12,43 ≫ R23,14. In the van der Pauw procedure, such an experimental
anisotropy can a priori be cured by taking into account the f function, to extract the resistivity.
However, we know that the original shape of the sample is a square, hence a large difference in
the two van der Pauw resistances signals an isotropic conductivity, and the resistivity extracted
by the usual van der Pauw procedure is incorrect. Another method has to be implemented.

Most 2D materials have an easy direction, in which the conductivity σ∥ (the resistivity ρ∥) is
enhanced (reduced), and a perpendicular hard direction, in which the conductivity σ⊥ (the resis-
tivity ρ⊥) is reduced (enhanced). These directions are sometimes determined by the crystal lat-
tice. In our case, due to the cubic symmetry of the III-V semiconductor, the detected anisotropy
cannot be attributed neither to the band structure nor the mass anisotropy. Anisotropic con-
ductivity is sometimes observed in (In)GaAs channel heterostructures at low temperatures,
and has been tentatively attributed to anisotropic interface roughness [TSTH92], cross-hatch



48 Chapter 2. Fabrication of InAs/GaSb based devices and Experimental setups

Figure 2.10: (a) Illustration of the Schwarz-Christoffel mapping on a chessboard. (b) Steps of the
poor man’s method for the determination of anisotropic conductivity. Mathematically, the sample is
rotated, deformed and then mapped on a half-infinite plane.

morphology [LMV+03], lattice relaxation [GWK+94], dislocation distribution [MZN+10], com-
position modulation [EBC+08], and random piezoelectricity [LkS21]. More recently, a similar
anisotropy has been observed in (Al,Ga)Sb/InAs two-dimensional electron gases epitaxied on
GaAs (001) substrates, and attributed to piezoelectric scattering [WWZZ22]. This scattering
originates from interface roughness, which can have different correlation lengths in the [110]
and [11̄0] directions, and gives rise to anisotropic piezoelectric field and scattering.

A precise determination of the anisotropy can be performed by using different kinds of
devices (Hall bars of different orientations [LkS21], for instance, or a disk-shaped sample on
which four probes can be positioned at the periphery [MEPT15]). In our case, we developped
a poor man’s method to rapidly characterize such a possible anisotropy. Let us assume that we
have a 2D homogeneous sample in a plain domain G, whose electrical conductivity is defined
by an anisotropic tensor σ. We assume that G is defined in local coordinate (x, y). The x and
y axes do not necessarily coincide with the anisotropy axes x∥ and y⊥, and there is an angle
θ between the two coordinate systems. Such a situation is depicted in Fig. 2.10(b). In the
coordinates corresponding to the anisotropy axes, the conductivity tensor is simply

σ =
[
σ∥ 0
0 σ⊥

]
.

In the poor man’s method we developed, as shown in Fig. 2.10b, G is a perfect square. The
reason for this is that it is relatively easy to cleave square samples. The problem to solve is

∇ · j = 0, ∀(x, y) ∈ G,

j = σ∇φ,

ϕ|κ = const,

(σ∇φ)n|Γ\κ = 0.

(2.5)

Here, Γ is the contour of the domain G, κ is the part of the contour Γ that correspond to perfect
ohmic contacts κ1, κ2, ... and n is the contour normal. We choose to have eight infinitely small
ohmic contacts. Four contacts correspond to the corners of the square G. The four other
contacts are placed in the middle of the four edges of the square, see Fig. 2.10(b).
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The experimental procedure is relatively straightforward. We measure 16 different four
probes configurations. If the contacts are labeled clockwise, as shown in Fig. 2.11, then
the first four configurations are R13,75, R83,74, R82,64, R72,64. Then this pattern is repeated
4 times, increasing each contact number by two (n → (n + 2 mod 8) + 1). To evidence
graphically the anisotropy, it is easier to label these 16 configurations i = 1, 2...16 by the
angle φi between the x axis and the vector defined by the source and drain contacts (φi =
0◦, 26.5◦, 45◦, 63◦, 90◦, 116.5◦..). By doing so, the resistance can be graphically shown in a polar
plot, and any anisotropy is easily evidenced. We can now detail the mathematical transforma-
tions corresponding to this poor man’s method:

1. We initialize the problem by choosing some trial parameters σ∥, σ⊥, and θ.

2. We rotate the sample G, so as the anisotropy axes correspond to the axis x and y defined
previously.

3. We change the variables in problem 2.5 by

ξ = xσ⊥, η = y
√

d,

where d = σ∥σ⊥. This is depicted in Fig. 2.10 (b). The new domain is called Ĝ. We then
define a new problem as: 

∇ · ĵ = 0, ∀(ξ, η) ∈ Ĝ,

ĵ = s∇φ̂,

φ̂|κ̂ = const,

∂φ̂

∂n̂
|Γ̂\κ̂ = 0.

(2.6)

Here n̂ is the contour normal of Ĝ, and s =
√

d. Kleiza et al. [KSK07] demonstrated
that the problems 2.5 and 2.6 are equivalent. Remarkably the new problem is isotropic.

4. We can now apply a Schwarz-Christoffel (SC) transformation. A SC transformation, as
shown in Fig. 2.10, map a given shape into another one, preserving all local angles. We
map numerically the deformed, isotropic device Ĝ into the half-upper plane of the complex
plane. We extract from this transformation the positions of the eight contacts along the
real axis. This can be done easily by using some predefined numerical libraries 2.

5. We can now calculate in the half-upper plane the 16 resistances R13,75, R83,74, etc. using
the method initially proposed by van der Pauw. The properties of the SC transformation
combined with the equivalence of the problems 2.5 and 2.6, guarantees that these resis-
tances equal the resistances that would be measured in the original, anisotropic sample
shown in Fig. 2.10 (b).

6. We compare the numerical result with the experimental resistances which have been
measured. We evaluate a residual error by using the method of the least squares. We
then apply an optimization procedure based on the least-square method, we modify the
trial parameters σ∥, σ⊥, and θ, until the final convergence, where the error cannot be
reduced anymore.

2https://tobydriscoll.net/project/sc-toolbox/
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Figure 2.11: (a) Schematic representation of an anisotropic square sample with 8 contacts. (b)
Schematic representations of different four-probes configurations for the measurement of electric
anisotropy in a square sample with 8 contacts (blue circles). These configurations can be extended by
90◦ rotations to a total of 16 different resistivity directions φ.

The advantage of this method lies in its simplicity. Some parts of the grown samples
are mechanically cut into square pieces (the axis will then correspond to the [110] and [11̄0]
directions). Then, 8 contacts are deposited with indium, and the measurement are performed
in a cryostat. The measurement of the different resistances is automatized by using mechanical
switches (we used a Keithley 7001 switch system). The fitting procedure is implemented in
a MatLab program. With this technique, only one device has to be measured. Moreover, the
angle θ can be determined. We stress that with four probes only, it is usually not possible to
determine the anisotropy, especially if θ is not known.

Let us now illustrate the sensitivity of this method. Let us call Ri(ρ⊥, ρ∥, θ), i = 1, ...16,
the values of the 16 resistances calculated for a given anisotropic configuration (ρ⊥, ρ∥, θ).
Figure 2.12 shows in a polar plot the 16 normalized resistances R′

i(ρ⊥, ρ∥, θ = 0), defined as

R′
i(ρ⊥, ρ∥, θ) = Ri(ρ⊥, ρ∥, θ)

min(Ri(ρ⊥, ρ∥, θ)) .

Figure 2.12 (a) shows 6 different anisotropy factors corresponding to ρ⊥/ρ∥ = 1, 2, 3, 4, 5 and
6. For ρ⊥/ρ∥ = 1, R′

i gives a perfect circle in the polar coordinates. When the anisotropy
increases, the circle develops progressively 2-nodes. The main axes of the butterfly-like pattern
give the angle θ of the anisotropy. Figure 2.12 (b) demonstrates that this method is quite
sensitive. Indeed, for ρ⊥/ρ∥ = 6, the ratio max(Ri)/min(Ri) is as large as 30.
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Figure 2.12: Sensitivity of the poor man’s method. (a) Polar plot of the 16 normalized resistances
R′

i (see main text) versus the angle φi for different anisotropy ratio r = ρ⊥/ρ∥. We have chosen θ = 0◦.
(b) max(Ri)/min(Ri) as a function of r. The colorscale is the same for both panels.

Let us show now experimental results. Figure 2.13(a) shows the 16 resistances arranged
in polar coordinates for growth S3052. The resistances have been measured at seven different
temperatures, from 300 K down to 10 K. The measurements were performed in a 4He cryostat,
under a low Helium pressure. It is obvious from the graph that the anisotropy increases when
the temperature decreases. Also, is is clear that θ ≃ 0◦. Unfortunately, we could note discrim-
inate the two [110] and [11̄0] axes when we cut the sample, but it is clear from the analysis
that the anisotropy axes do correspond to these two crystallographic directions. Figure 2.13(b)
shows the easy and hard resistivities ρ⊥ and ρ∥ extracted from the fit, as a function of T . It
appears that r = ρ⊥/ρ∥ increases from r = 1.6 at T = 300 K to r = 5 at T = 10 K, correspond-
ing to a resistance ratio max(Ri)/min(Ri) = 2.7 and max(Ri)/min(Ri) = 20 respectively.

Previous studies of anisotropic electron transport in InAs-based structures usually refer to
mobility anisotropy [LMV+03, GWK+94, MZN+10, EBC+08]. Additional magneto-transport
measurements should be considered to extract mobility as a function of contact configuration
orientation. Figure 2.14 shows atomic force microscopy measurements of growth S3052 surface
that reveals an anisotropic distribution of trenches on the cap layer surface. The cross-hatch
morphology in III-V semiconductors is attributed to large lateral variations of the in-plane
strain, due to the lack of inversion symmetry. The correlation between the anisotropic transport
properties and the asymmetric cross-hatch morphology has already been reported in strained
InAs channel grown on GaAs substrates [LMV+03].
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Figure 2.13: (a, b) Polar plot of the resistance ratio R′
i for different temperatures for S3052 (a)

and S3198 (b). The symbols correspond to the experimental values, and the colored dashed lines
correspond to the fits. The solid and dashed black lines highlight the two resistance directions shown
in the (c, d) panels. (c, d) Temperature dependence of 2 specific resistivities directions ρ⊥ (up triangle)
and ρ∥ (down triangle).
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Figure 2.14: AFM image revealing the cross-hatch morphology of the surface for growth S3052.
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2.4 Hall bars fabrication
The fabrication process of devices for magneto-transport measurements has been developed in
the Centrale de Technologie en Microélectronique (CTM3). In addition, some samples grown
in the IES were also sent to the Technische physik group (TEP4) for the fabrication of Hall bar
devices. We will present here the process optimized at the CTM during my PhD; and devices
obtained from both clean rooms in Chapter 2.5.

In order to fabricate Hall bar devices from the CTM lithography mask, the sample wafer were
cleaved into 6 mm×6 mm square piece along the (100) and (010) directions. Optical lithography
was preferred to electron-beam lithography because of the large size of some devices. Different
lithography mask were used for the realisation of Hall bars. The lithography mask used in
CTM and the one used in TEP are presented in Figure 2.15 and Figure 2.16 respectively. The
CTM lithography mask is designed for the fabrication of 6 mm × 6 mm square samples with 6
Hall bars of different sizes and the TEP one is an array of 16 Hall bars, all with the same sizes
but different lengths between the lateral probes. More details are provided in Table 2.1.

Table 2.1: Hall bar dimensions for the (a) CTM and (b )TEP lithography mask.

(a) L (µm) W (µm) lp(µm) l1(µm) (b) L(µm) W (µm) lp(µm) l1(µm)
400 100 100 120 70 10
200 50 50 60 50 20CTM
40 10 10 12 30 30TEP 110 20

10 40

2.4.1 Alignment markers
The manufacture of Hall bar requires many steps of lithography, the first one being the fabri-
cation of alignment marks. These markers allow us to align the lithography mask at all stages
of the lithography. A 1.4 µm-thick layer of photoresist (AZ-5214) is made by spin-coating at
4000 rpm for 30 s and then dried after a post-deposition bake at 110 ◦C for 2 minutes. A first
UV-exposition for 7 s with the lithography mask followed by a post-exposure bake at 110 ◦C
for 2 minutes allows the inversion of the photoresist polarity. Initially, the photoresist has a
positive polarity. It follows that the chemical development will dissolve the exposed photoresist.
On the contrary for a negative photoresist, the areas exposed to UV-light are not opened after
chemical development.

Figure 2.17(a) shows the pattern of the alignment marks (CTM), where the red areas are the
opaque regions of the mask. After the first UV-exposure and post-exposure baking, the polarity
of the photoresist is inverted. A second exposure under UV-light without mask followed by
chemical development (in AZ-726 developper for 55 s) then opens the region initially under the
opaque regions of the lithography mask. Once the pattern is developed from the photoresist, a
metallic layer of Cr/Au (10/100 nm) is deposited on the sample by electron gun evaporation.
The Cr layer ensures good adhesion and the gold layer keeps the markers clearly visible. The
metallic layer deposited on photoresist is lifted-off by dissolving the photoresist with acetone.
The device is cleaned in an acetone bath in an isopropanol (IPA) bath. Figure 2.17(b) is a
microscope image of a sample after the fabrication of the markers and Table 2.2 summarizes
the fabrication process of the markers.

3Université de Montpellier, Centrale de Technologie. en Micro et nanoélectronique, 860 rue St Priest, 34097
Montpellier (cedex 5), France

4Technische Physik, Physikalisches Institut, University Würzburg, Am Hubland, 97074 Würzburg, Germany
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Figure 2.15: (a) Sketch of the 6 mm × 6 mm lithography mask combining 6 Hall bars (CTM) and
(b) zoom on the smallest Hall bar. The yellow patterns correspond to the Alignment markers. The
pink patterns correspond to the HB contacts and the blue patterns correspond to the dielectric layer.
The green pattern corresponds to the layer of the gate.

Figure 2.16: (a) Sketch of the Hall bar lithography mask for Würzburg devices (TEP) and (b) zoom
on one Hall bar.
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Figure 2.17: (a) Sketch of the marker layer from the CTM lithography mask. The red regions
correspond to the opaque part of the mask. (b) Microscope image after fabrication of the markers.
The green region corresponds to the cap-layer of the grown sample and the yellow patterns are the
Cr/Au markers.

2.4.2 Mesa definition
After the markers, we isolate the active part of the heterostructure i.e., the TQW and the
AlSb barriers, in well-defined regions. These regions consist in the Hall bar region itself, as
well as the part which will be metallized for the contacts (see Fig. 2.18(a)). The isolation is
made by etching the active part outside these regions, which are then usually called mesa. It
prevents the current to spread outside the Hall bar during transport measurements. There are
different etching options, such as wet etching or dry etching. This step is not trivial because
the size of the patterns can be relatively small, i.e., on the order of magnitude of a few microns.
Moreover, the etching method itself may influence the mesa flank properties and induces a non-
topological conduction through the edges. Finally, a certain precision of the etched thickness
is also expected, i.e., of the order of a few nanometers. For these reasons of resolution and
precision of etching depths, we preferred a dry etching rather than a wet etching based on
phosphoric acid (3 mL), hydrogen peroxide (5 mL), citric acid (55 mL, 1:2) and water (220 mL).

The Hall-bar mesa was patterned using UV-light lithography with a resolution down to
1 µm. The positive photoresist AZ-1518 is spin-coated with parameters : 4000 rpm, 30 s. The
1.8 µm thick layer of photoresist is baked for 1 min at 110 ◦C and exposed to UV-light for
35 s. The exposed regions (transparent region in Fig 2.18(a)) are opened after the development
performed using the AZ-726 developer for 25 s. InAs/GaSb based growths were etched by
dry etching using an Inductive Coupled Plasma ICP based on Chlorine-containing gas. The
sample is etched down to the superlattice of GaSb/AlSb. A schematized side-view of the mesa
definition is shown in Fig. 2.19. For both wet and dry etching recipes, the etch rate can vary
depending on the clean room condition and previous use. To ensure the precision of the etched
thickness, a first test must be performed on a test sample for the same wafer. Figure 2.18(b)
shows a microscope image of a device after defining the mesa and removing by an acetone
bath the remaining photoresist above the protected regions. The mesa definition process is
summarized in Table 2.3



2.4. Hall bars fabrication 57

Figure 2.18: (a) Sketch of the mesa layer from the CTM lithography mask. The blue regions
correspond to the opaque part of the mask. (b) Microscope image after the mesa pattern etching.
The lighter green region corresponds to the etched one.

Figure 2.19: Steps for Hall-bar mesa etching.
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2.4.3 Metallization
The metallization of the HB probes allows us to wire-bond any device to the device holder
for transport measurement. The contact pads are designed large enough to connect the device
by manual indium soldering. Even if this technique was prefered at the first stages of the HB
fabrication, it can be time-consuming on the long run and makes it difficult to disconnect and
reconnect another device from the same chip. Two different contact recipes for the metallic
deposition were subsequently tested. Both are perfomed using UV-light photo-lithography,
following the same lithography process as for the marks (see Section 2.4.1), using the contact
layer of the lithography mask, shown in Fig. 2.20(a).

The first recipe is to etch the heterostructure to deposit the metal directly on the top
InAs layer. For the same reasons of etched thickness and in-plane resolution mentioned in
Section 2.4.2, ICP dry-etching was prefered to wet etching recipes. A Ti/Pt/Au (10/30/150
nm) electron gun evaporation is performed directly after the etching to prevent oxydation of
the exposed InAs layer. Finally, the metal is lifted off in acetone. A schematized side-view of
this metallization recipe is shown in Fig. 2.21

The second metallization recipe tested differs as it does not require etch the contact pads. A
deposition by sputtering of AuGeNi/Au (70/150 nm) is directly performed after the lithography
process. After a lift-off, the device is then annealed for 3 minutes at 380 ◦C under nitrogen
atmosphere in order to vertically diffuse the AuGeNi though the heterostructure. However, this
alternative was not chosen in spite of the ohmicity of the contacts due to an isotropic diffusion
phenomena of the metal in the sample, which creates short-circuits between the contacts for
the smallest Hall bars. In addition, it was observed that the wire bonding was easier on devices
metallized following the first recipe. Both recipes are still summarized in Table 2.4.

The wire bonding was performed in the CTM by wedge bonding with aluminum wire.
However a ball bonding with gold wire could be also used in L2C as a back-up in case of
disconnection.

Figure 2.20: (a) Sketch of the contact layer from the CTM lithography mask. The blue regions
correspond to the opaque part of the mask. (b) Microscope image after the metallization of the
contacts (first recipe).
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Figure 2.21: Steps for metallic contact fabrication.

2.4.4 Estimation of the substrate resistivity
At this stage of fabrication, Hall bars could be tested and measured to improve the fabrication
steps up to this point. In Section 2.4.2 we mentioned that the purpose of the mesa-etching is
to design the Hall bar shapes and isolate the device. We investigate a possible contribution
in the conduction through the substrate by using two Hall bars bonded from the same chip.
Note that considering the etch depth, a conduction between 2 Hall bars can take place, in the
substrate, or in the buffer. However, we compare in the following experimental results obtained
from growths S3052 and S3198, both having a similar buffer structure but different substrates.

It is well known that the two-probe method is inappropriate for a correct determination of
the resistivity of an infinite homogenous plane. Indeed, a point contact has no size and gives
an infinite contribution to the resistance. However, if we measure the resistance between two
Hall devices, the typical size of the contact resistance can be roughly approximated as the size
of the Hall devices themselves. We could not find in the literature any formula giving the value
of the resistance between two circular contacts of radius a, of zero resistance, separated by
a distance d, and placed onto an infinite 2D plane of resistivity ρ. Therefore we solved this
problem numerically, using a finite difference scheme. The code is given in the annex and the
result in shown in Fig. 2.22. We find that for our geometries, where it is reasonable to take
d/a ≃ 3–10, the two-probe resistance is of the same order of magnitude than the resistivity
itself.



60 Chapter 2. Fabrication of InAs/GaSb based devices and Experimental setups

Figure 2.22: (a) Scheme of the equipotential lines in an infinite 2D plane when a current flows
between two circular, perfect contacts of radius a, separated by a distance d between their centers.
Here, d/a = 3. (b) Ratio of the measured resistance between the 2 contacts and the resistivity ρ of
the 2D plane, as a function of d/a.

Figure 2.23 shows that both substrates from the S3052 and S3198 growths are conducting
at room temperature. In the case of growth S3052 (GaAs substrate), the resistivity remains
lower than 10 kΩ even at T = 50 K. We compare the rough estimation of substrate resistivity
to the resistivity of the single Hall bar measured in the gap regime (see Chapter 3) for both
S3052 and S3198 based devices.

To safely determine the resistivity in the Hall bar, we restricted the temperature ranges to
temperatures where the resistivity of the devices is less than 1% of the measured resistances of
the etched areas (e.g., T < 25 K for S3052). In the case of the growth S3198, the gap regime
was not reached above 150 K (see Chapter 3). This being said, we still esteem that under
temperature of 250 K, the GaSb substrate doesn’t induce any parallel conduction, considering
that the resistivity measured between two Hall bars is above 10 MΩ.
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Figure 2.23: Temperature dependence of resistivities of the etched areas in growths S3052 (red) and
S3198 (blue) respectively. The solid lines correspond to the resistivity of the substrate S3052 and
S3198 growths. The dotted lines are the maximum of resistivity extracted in the gap regime for both
structures. The saturation at 10 MΩ is an artifact due to the input impedance of the electronics - the
real resistivity is much higher.

2.4.5 Dielectric Gate
The final step of the process is the fabrication of a top dielectric gate. The main purpose is
to obtain a field-effect transistor configuration to tune the Fermi level. Besides, the dielectric
layer also protects the flanks of the Hall bars from oxydation. In CTM, dielectric layers are
deposited by Plasma-Enhanced Chemical Vapor Deposition (PECVD). Two different recipes of
dielectric layer deposition were tested. The first one is a unique 300 nm thick layer of SiO2 and
the second one is a stack of Si3N4/SiO2/Si3N4 (3SiX) of thickness 100 nm each. The main idea
behind the second recipe is to reduce the leakage current of the dielectric gate thank to the
mismatch between SiO2 and Si3N4 defects. Note that for both dielectric deposition recipes, it
was not possible to obtain a dielectric gate on a cm2 surface scale without significative current
leakage. This is most probably due to a too important defect density. As a consequence, it
is difficult to make a generic characterization of the dielectric layers without the influence of
the previous fabrication steps. For this reason, the behavior of the top gate is specific to each
device and detailled in Section 2.5.

After the deposition, a new lithography step is done with positive resist as detailled in
Section 2.4.2, using the blue pattern shown in Fig 2.24(a). The non-protected areas (transparent
regions) are then etched by ICP based on Fluor gas. A second lithography process is done to
deposit a Ti/Au (10 nm/200 nm) layer for the top gate, following the same procedure as for
the alignement mark fabrication detailed in Section 2.4.1). Figure 2.24(b) shows a microscope
image a device after the fabrication of the top gate. On the one hand it is quite complicated to
realize dielectric gates on these structures (cf. the behavior of the different gates in Section 2.5),
on the other hand, the pattern itself has an importance with respect to the distribution of the
electric field induced by the top gate, in particular at the edges of the device. We have therefore
opted for metallic gate patterns covering a larger area than the mesa. A schematized side-view
of the top gate fabrication is shown in Fig. 2.25 and summarized in Table 2.5.
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Figure 2.24: (a) Sketch of the top gate layer from the CTM lithography mask. The blue pattern
corresponds to the dielectric and the purple one correponds to the metallic layer of the top gate. (b)
Microscope image after the metallization of the contacts.
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Figure 2.25: Steps for dielectric gate fabrication.
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Hall bar fabrication process

Table 2.2: I. Alignment marks

Sample cleaning Acetone bath
Isopropanol bath

Lithography

Spin-coating of AZ-5214 (-) resist at 4000 rpm for 30 s
First bake at 110 ◦C for 2 min
First UV exposition with lithography mask for 7 s
Second bake at 110 ◦C for 2 min
Second UV exposition without lithography mask for 60 s
Development in AZ-726 developer for 55 s

Metallic deposition Cr/Au (10/100 nm)

Lift-off Acetone bath
Isopropanol bath

Table 2.3: II. Mesa definition

Sample cleaning Acetone bath
Isopropanol bath

Lithography

Spin-coating of AZ-1518 (+) resist at 4000 rpm for 30 s
Bake at 110 ◦C for 1 min
UV exposition with lithography mask for 30 s
Development in AZ-726 developper for 25 s

Etching
Dry ecthing in ICP RIE Cl-gas
Oxford plasmalab 100 down
to the GaSb/AlSb superlattice

or

Wet etching in
H2O/C6H8O7/H2O2/H3PO4
(220/55/5/3 mL)
down to the GaSb/AlSb superlattice

Sample cleaning Acetone bath
Isopropanol bath
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Table 2.4: III. Metallization of the contact pads

Sample cleaning Acetone bath
Isopropanol bath

Lithography

Spin-coating of AZ-5214 (-) resist at 4000 rpm for 30 s
First bake at 110 ◦C for 2 min
First UV exposition with lithography mask for 7 s
Second bake at 110 ◦C for 2 min
Second UV exposition without lithography mask for 60 s
Development in AZ-726 developper for 55 s

Etching
Dry ecthing using the ICP RIE
Cl-gas Oxford plasmalab 100
down to the upper InAs layer

Metallic deposition
Ti/Pt/Au (10/30/150 nm) by
electron gun evaporator
using Univex 350

or AuGeNi/Au (70/150 nm) by
sputtering using Alcatel SCM 600

Lift-off Acetone bath
Isopropanol bath

Acetone bath
Isopropanol bath

Rebake Bake at 380 ◦C for 1 min
in Nitrogen atmosphere

Table 2.5: IV. Top gate

Sample cleaning Acetone bath
Isopropanol bath

Dielectric deposition Deposition of SiO2 and Si3N4 by PECVD using the Corial D250

Lithography

Spin-coating of AZ-1518 (+) resist at 4000 rpm for 30 s
Bake at 110 ◦C for 1 min
UV exposition with lithography mask for 30 s
Development in AZ-726 developper for 25 s

Etching Dry etching using the ICP RIE F-gas Corial 200 IL down to the cap layer

Sample cleaning Acetone bath
Isopropanol bath

Lithography

Spin-coating of AZ-5214 (-) resist at 4000 rpm for 30 s
First bake at 110 ◦C for 2 min
First UV exposition with lithography mask for 7 s
Second bake at 110 ◦C for 2 min
Second UV exposition without lithography mask for 60 s
Development in AZ-726 developper for 55 s

Metallic deposition Ti/Au (10/200 nm)

Lift-off Acetone bath
Isopropanol bath
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2.5 Device presentation
During this thesis, several samples with different expected gaps, different growth substates with
the respective advantages of being THz transparent for GaAs and presenting a lower electrical
anisotropy and leakage for GaSb were measured. The main devices analyzed in Chapter 3
are introduced here. Table 2.7 summarizes the characteristics of each devices detailled in the
following.

2.5.1 Hall Bar 0 (HB0)
The Hall bar 0 (HB0) was fabricated in the CTM from growth S3054. The layer structure
and the band structure of growth S3054 are given in Fig. 2.26(a). More detail on the energy
dispersion calculation is provided in Chapter 1. In the case of this device, the Hall bar mesa is
patterned by wet etching with a H3PO4/C6H8O7/H2O2/H2O solution (see Section 2.4.2) down
to and including the second barrier of AlGaAsSb.

Figure 2.26: (a) Microscope image of the 6 mm × 6 mm chip made from growth S3054 and using the
CTM lithography mask shown in Fig. 2.15. The chip has 6 Hall bars of different sizes. More details
are provided in Table 2.1. The Hall bar connected in the center of the image corresponds to device
HB0. (c) Microscope image of device HB0. The length L, the distance between the lateral probes
lp and the width W of the Hall bar are respectively 40 µm, 10 µm and 10 µm. The centered shape
corresponds to the mesa of the Hall bar and the contacts. It is covered by a tri-layer of dielectric
Si3N4/SiO2/Si3N4(100/100/100 nm) patterned in a square shape above the Hall bar mesa. A metallic
gate of rectangular shape, is patterned with 2 external contacts above the Hall bar mesa.

The device was covered by a tri-layer of dielectric Si3N4/SiO2/Si3N4 (100/100/100 nm)
deposited by PECVD. The dielectric layers were patterned by dry etching using the Corial
Inductively coupled plasma (ICP) etcher. The gate was completed by a Ti/Au coating (10/150
nm). Note that no metallization was made on this first device as we planned to directly connect
the contacts by indium soldering. From the 6 Hall bars fabricated, the one called HB0 bonded
had the following dimensions : L = 40 µm, W = 10 µm and lp = 10 µm. HB0 is shown
in Fig. 2.26 (b). Although the indium soldering allowed us to avoid a metallization step, it is
rather damaging for the chip. This choice was mainly motivated, at this stage of the thesis, to
minimize the technological uncertainties for the realization of this first chip. Indeed there is a
gate voltage hysteresis in this device.
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Figure 2.27(a) shows the gate voltage ramp applied to tune the Fermi level in device HB0
at T = 1.7 K and applying a bias current I = 100 nA. The resulting leakage current is shown
in panel (b) of the same figure and its absolute value does not exceed 0.6 nA. It is negligeable
compared to the bias current I applied to measure the longitudinal resistance Rxx shown in
panel (c). Although one direction of the gate voltage sweep is shown, Rxx is independent of
the direction of variation of the gate voltage.

Figure 2.27: Gate control of device HB0. (a) Gate voltage sweep applied to device HB0. The sweep
goes from Vg = 0.3 V to Vg = − 1.5 V in 750 steps. (b) Leakage current Ileak induced by the sweep
in Vg. (c) Longitudinal resistance Rxx as a function of the gate voltage measured at T = 1.7 K,
applying a bias current I = 100 nA. In the three panels, colors highlight the different regions of the
gate voltage sweep.
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2.5.2 Hall Bar 1 (HB1)

Figure 2.28: (a) Microscope image of the 6 mm × 6 mm chip made from growth S3052 using a CTM
lithography mask similar to the one shown in Fig. 2.15. The device has 12 Hall bars of different sizes.
The Hall bar evidenced by a red frame corresponds to device HB1. (c) Microscope image of device
HB1. The length L, the distance between the lateral probes lp and the width W of the Hall bar are
respectively 400, 100 and 100 µm. The Hall bar is covered by a 300 nm-thick dielectric layer of SiO2
patterned in a square shape above the Hall bar. A metallic gate is aso patterned above the dielectric
layer in a reduced rectangular shape above the Hall bar mesa.

The Hall bar 1 (HB1) was fabricated in CTM from growth S3052. The mask used to
manufacture device HB1 is not the same as the one used for the HB0. It is an old mask with
more Hall bars, with dimensions similar to those of the mask shown in Fig. 2.16. Only the size
of the contact pads differs. The layer structure and the band structure of growth S3052 are
given in Fig. 2.3 and Fig. 2.5 respectively. More detail on the energy dispersion calculation is
provided in Chapter 1. The Hall bar mesa is patterned by dry etching using chlorine gas in the
Oxford ICP (see Section 2.4.2) down to and including the second barrier of AlGaAsSb. The
device was covered by a 300 nm thick layer of SiO2 as dielectric layer deposited by PECVD. The
dielectric deposited is patterned by dry etching using the Corial Inductively coupled plasma
(ICP) etcher (see Section 2.4.5). The gate is completed by a Ti/Au coating (10/150 nm). Note
that no metallization has been done on this first sample as it was planned to directly connect
the contacts by indium soldering. This choice was motivated at this stage of the thesis for the
same reasons as previously mentioned (see Section 2.5.1). However, because of the reduced
size for contact pads, only the four lateral probes could be connected. HB1 has the following
dimensions : L = 400 µm, W = 100 µm and lp = 100 µm. HB1 is shown in Fig. 2.28 (a,
b). The gate voltage range applied is much larger than for device HB0 from growth S3054 as it
consists of a sweep from Vg = 0 V to Vg = −15 V, then to Vg = 5 V to Vg = 0 V. The counter
effect of such large gate voltage ramp is a significative hysteresis effect understood as the charge
trapping between the insulator/semiconductor interface [MPK+15, LLE+19]. The parameters
of the sweep have been chosen so that the observed resist peaks observed in Fig. 2.29 (c) are
not shifted after several repetition of the gate voltage sweep. The measurement is performed
at T = 300 mK and applying a bias AC I = 100 nA. Moreover, it is not possible to work
with a fixed gate voltage for this sample. Indeed, at fixed gate voltage the Fermi level is not
constant over time. Figure 2.30(a) shows the evolution of Vg for a sweep from 0 to − 5V
with a speed rate of 4 mV s−1. Panel (b) show the evolution of Rxx(Vg), following these sweep
parameters. It is clear that Rxx depends on the direction of variation of Vg. We show in the
inset the time dependence of Rxx and we define t = 0 as the time when we stop scanning the
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gate voltage at a non-zero value, for different Vg. The time dependence of Rxx in the inset is
normalized by the value at t = 0. The transient regime is all the more exacerbated as |V g| is
high. For example, if we set Vg = − 4 V then Rxx(t = 50s) = 0.95R0. It is estimated that
we get rid of this effect by scanning fast enough and with limits such that the position of the
peaks does not change between two sweeps. We have chosen to scan Vg quickly as shown in
Fig. 2.29 (a) at the speed rate of 0.2 V/s. As a general rule, the larger the first |Vg| bound value
is (here V min

g = − 15 V), the more the second |Vg| bound value must be artificially increased
(V max

g = 6 V) to compensate for the shift of the resistance peak on the Vg-axis.

Figure 2.29: Gate control for device HB1. (a) Gate voltage sweep applied to device HB1. The scan
is set such that Vg = 0 V → Vg = − 15 V → Vg = 6 V → Vg = 0 V with V step

g = 0.05 V and
tstep = 0.25 s. (b) Leakage current Ileak induced by the sweep in Vg. (c) Longitudinal resistance Rxx

as a function of the gate voltage measured at T = 300 mK and applying a bias current I = 100 nA.
In the three panels, colors highlight the different regions of the gate voltage scan.
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Figure 2.30: (a) Gate voltage sweep applied to device HB1. The scan is set such that Vg = 0 V →
Vg = − 5 V → Vg = 0 V with V step

g = 0.001 V and tstep = 0.25 s. (b) Longitudinal resistance
Rxxas a function of the gate voltage Vg. The inset show the time dependence of Rxx(t)/Rt = 0 at fixed
gate voltages. The color correspond to the different gate voltages. In panel (a, b) the circles highlight
the Vg shown in the inset and corresponding Rxx(t = 0) values.
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2.5.3 S3198 based devices

Figure 2.31: (a) Microscope image of the devices made from growth S3198 in TEP using the mask
similar to the one shown in Fig. 2.16. The four Hall bars have the same dimensions L = 100 µm and
W = 20 µm and only differ by the length between lateral probes lp. More details are provided in
Table. 2.1.

The four devices, shown in Fig. 2.31 were fabricated in Würzburg in the Technische Physik
group (TEP). The details of the fabrication process is given in detail in [Geb22]. We provide
some information on the fabrication process below:

• the devices are made by optical lithography from a single piece of growth S3198, and
individually cleaved at the end of the process;

• the mesa are patterned and etched by two steps of etching. The first step is a dry etching
in the Oxford ICP with a Chlorine-Argon mix down to the superlattice of GaSb/AlSb.
The second is a wet etching in a solution based on phosphoric acid and citric acid to
improve the quality of the side walls of the mesa;

• the dielectric layer is a superlattice of 10 repetitions of SiO2/Si3N4 (10/10 nm) deposited
on an other layer of Si3N4 (10 nm);

• the metallic contact are made by a deposition of Ti/Pt/Au following the same procedure
as detailled in Section 2.4.3.

We now detail the gate voltage response for the four different Hall bar devices. As for device
HB1, the range of gate voltage that has to be applied is rather large compared to device HB0.
A transcient regime and a significative hysteresis are also exhibited. As for device HB1, we
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assume that if Vg is scanned quickly enough, if the limits of the Vg sweep are chosen so that
the peak positions are reproductible, then one can consider that the proportionality between
the total amount of charge ntot and gate voltage Vg is verified by the relation:

Cg

e
(Vg − V th

g ) = ntot, (2.7)

where Cg is the capacitance of the dielectric layer, V th
g is the gate voltage at which the transition

between electrons (ntot = n − p > 0) and holes (ntot = n − p < 0) takes place, and e is the
electron charge.
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Hall Bar 4 (HB4)

Device HB4 has been measured in two different campaigns and the effect of the gate voltage
sweep was not the same during these two measurement campaigns. For this reason we show in
Fig. 2.32 the two sweeps for the two campaigns. In both cases, both the scan rate and the bound
values are determined in order to have the gate voltage position of the peaks unchanged between
two sweeps. It is clear that during the second campaign the insulating dielectric layer is less
efficient as before. First the second bound |Vg| value has to be increased (V max

g = 12 V → 15 V)
but also the scan rate is tripled (Vg/t = 0.2 V s−1 → 0.6 V s−1).

Figure 2.32: Gate control for device HB4. (a, d) Gate voltage sweep applied to device HB4. The
scan of the first campaign is set such that Vg = 0 V → Vg = − 10 V → Vg = 12 V → Vg = 0 V
with V step

g = 0.05 V and tstep = 0.25 s. The scan of the first campaign is set such that Vg = 0 V →
Vg = − 10 V → Vg = 15 V → Vg = 0 V with V step

g = 0.06 volt and tstep = 0.1 s. (b, e) Leakage
current Ileak induced by the sweep in Vg. (c, f) Longitudinal resistance Rxx as a function of the Vg

measured at T = 300 mK, and T = 3 K respectively and applying a bias current I = 10 nA. In
the six panels, colors highlight the different regions of the gate voltage scan.
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Hall Bar 6 (HB6)

Device HB6 has also been measured during only one campaign. It was attempted to measure
the device during a second campaign but the gate was too damaged to tune the Fermi level.
Figure 2.33 shows the gate voltage scan for device HB6 at T = 300 mK and applying a bias
current I = 10 nA. The behavior observed for the longitudinal resistance shown in Fig. 2.33 (c)
is very similar to the behavior of device HB4. The gate voltage bounds are V min

g = − 10 V
and V max

g = 10 V and the scan rate is Vg/t = 0.2 V s−1.

Figure 2.33: Gate control for device HB6 during the first campaign. (a) Gate voltage sweep applied
to device HB6. The scan is set such that Vg = 0 V → Vg = − 10 V → Vg = 10 V → Vg = 0 V
with V step

g = 0.05 V and tstep = 0.25 s. (b) Leakage current Ileak induced by the sweep in Vg.
(c) Longitudinal resistance Rxx as a function of Vg, measured at T = 300 mK, and applying a bias
current I = 10 nA. In the three panels, colors highlight the different regions of the gate voltage scan.
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Hall Bar 12 (HB12)

Device HB12 have been measured during a single campaign. Figure 2.34 shows the gate voltage
scan for device HB12 at T = 1.7 K and applying a bias current I = 500 nA. In the previous
devices, the longitudinal resistance had a magnitude of 50 kΩ or less. By comparison, Rxx can
reach values as high as 130 kΩ, as shown in Fig. 2.34 (c). We determined that it was easier to
get out of this insulating state by first applying a positive gate voltage. The parameters of gate
voltage limits and scan speed have been determined to keep the position of these peaks between
two scans and are V max

g = 15 V, V min
g = −15 V, and Vg/t = 0.2 V s−1. Figure 2.34(a) shows

that a mistake in the programmation of Vg sweeps was present during the measurements, and
a jump from Vg = − 12 V to Vg = − 15 V occured between the lowering and the raising of
the gate voltage. However, the behavior observed for Rxx shown in Fig. 2.34 (c) is very similar
to the behavior in the previous devices.

Figure 2.34: Gate control for device HB12. (a) Gate voltage sweep applied to device HB12.
The scan is set such that Vg = 0 V → Vg = 15 V → Vg = −15 V → Vg = 0 V with V step

g = 0.05 V
and tstep = 0.25 s. (b) Leakage current Ileak induced by the sweep in Vg. (c) Longitudinal resistance
Rxx as a function of the gate voltage. In the three panels, colors highlight the different regions of the
gate voltage scan.
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Hall Bar 14 (HB14)

Device HB14 has been measured during a single campaign on the pulsed high magnetic field
setup in the Laboratoire National des champs magnétiques intenses (LNCMI). The use of pulsed
magnetic field with a pulse duration of 500 ms is an additional constraint on the determination
of gate voltage scanning parameters. The time between two shots is more than one hour, so
it is particularly important that Rxx is reproducible for each gate voltage cycle. Moreover, the
scanning speed must be low enough so that the variation of the gate voltage is not too significant
over the time of a single pulse. The scan is shown in Fig. 2.35. The Vg scan parameters chosen
are V max

g = 10 V, V min
g = − 9 V, and Vg/t = 0.05 V s−1. The gate voltage variation during

a single pulse of B is then δVg = 25 mV.

Figure 2.35: Gate control for device HB14. (a) Gate voltage sweep applied to device HB14. The
scan is set such that Vg = 0 V → Vg = 10 V → Vg = − 9 V → Vg = 0 V with V step

g = 0.01 V and
tstep = 0.2 s. Gate voltage and leakage current Ileak (b) are respectively applied and measured by
a single sourcemeter. (c) Longitudinal resistance Rxx as a function of the gate voltage. In the three
panels, colors highlight the different regions of the gate voltage scan.

Conclusion

To conclude, we have presented a selection of devices, with which we could perform more
detailed transport measurements, that we present in the next Chapter. Tables 2.6 and 2.7
summarize the main parameters of the three growths studied and the several devices affiliated.
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Table 2.6: Growth parameters

Growth Substrate d1 (InAs) d2(Ga1−xInxSb) x ρ1/ρ2 (T = 1.8 K) ∆(th) (meV) Device L (µm) W (µm) lp (µm) Vg cycle Vg/t (V/s)

Rmax

or
Rleft

max|Rright
max

(kΩ)

|Imax
leak |

(nA)

S3054 GaAs 34 ML 14 ML 0 15 HB0 40 10 10 0.3 V → -1.5 V 5 kΩ
(T = 1.7 K) 0.6 nA

S3052 GaAs 25 ML 10 ML 0.35 4 30 HB1 400 100 100
0 V → -15 V
-15 V → 6 V

6 V → 0V
0.2 70|80 kΩ

(T = 300 mK) 0.5 nA

S3198 GaSb 25 ML 10 ML 0.35 1.2 45 HB4 110 20 10
0 V → -10 V
-10 V → 12 V

12 V → 0V
0.2 52|50 kΩ

(T = 300 mK) 0.7 nA

0 V → -10 V
-10 V → 15 V

15 V → 0V
0.6 38|20 kΩ

(T = 3.1 K) 3.1 nA

HB6 110 20 30
0 V → -10 V
-10 V → 10 V

10 V → 0V
0.2 50|40 kΩ

(T = 300 mK) 2.9 nA

HB12 110 20 50
0 V → 15 V

15 V → -15 V
-15 V → 0V

0.2 145|115 kΩ
(T = 2 K) 1.8 nA

HB14 110 20 70
0 V → 10 V
10 V → -9 V
-9 V → 0V

0.05 55|90 kΩ
(T = 1.7 K) 0.1 nA
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Table 2.7: Devices parameters

Device L (µm) W (µm) lp (µm) Vg cycle Vg/t (V/s)

Rmax

or
Rleft

max|Rright
max

(kΩ)

|Imax
leak |

(nA)

HB0 40 10 10 0.3 V → -1.5 V 5 kΩ
(T = 1.7 K) 0.6 nA

HB1 400 100 100
0 V → -15 V
-15 V → 6 V

6 V → 0V
0.2 70|80 kΩ

(T = 300 mK) 0.5

HB4 110 20 10
0 V → -10 V
-10 V → 12 V

12 V → 0V
0.2 52|50 kΩ

(T = 300 mK) 0.7

0 V → -10 V
-10 V → 15 V

15 V → 0V
0.6 38|20 kΩ

(T = 3.1 K) 3.1

HB6 110 20 30
0 V → -10 V
-10 V → 10 V

10 V → 0V
0.2 50|40 kΩ

(T = 300 mK) 2.9

HB12 110 20 50
0 V → 15 V

15 V → -15 V
-15 V → 0V

0.2 145|115 kΩ
(T = 2 K) 1.8

HB14 110 20 70
0 V → 10 V
10 V → -9 V
-9 V → 0V

0.05 55|90 kΩ
(T = 1.7 K) 0.1





CHAPTER 3

Experimental Results and analysis

The chapter is devoted to the presentation of the main experimental results accumulated during
this thesis. We could only measure Hall bars, because unfortunately we did not have Corbino,
TLM structures, H-bars,... at our disposal. Moreover, these Hall bars were relatively large,
so the observation of a quantum topological effect was out of reach. In these conditions,
the research on these devices followed three main axes: i) the determination of global band
structures by Hall effect, magnetoresistance, Shubnikov–de Haas oscillations ; ii) the detection of
possible edge conduction by local and non-local electrical measurements; iii) the determination
of the energy gap by thermal activation.

This chapter in divided into three sections, which correspond to three different grown struc-
tures. In the first section, we present the results obtained with the Hall bar HB0, from growth
S3054. This device has the smallest energy gap among all the studied devices. In the second
section, we present the results from HB1, which is the only device where a detailed analysis
of growth S3052 has been made. In the last part, we present a set of Hall bars made by the
University of Würzburg, from growth S3198.

3.1 Hall bar HB0: the small inverted gap of S3054
Let us focus now on experimental results obtained with the Hall bar HB0 presented in Chapter 2.
This device has been obtained from growth S3054. It is made of a 34/14/34 monolayer-thick
quantum well of InAs/GaSb/InAs. From the band dispersion given in Chapter 2, we expect a
inverted gap, with an energy gap of 15 meV. In this device, the ratio between the lateral probe
distance lp and the width W of the Hall bar is 1, so we identify the longitudinal resistivity ρxx

to the longitudinal resistance Rxx ≃ ρxx.
Measurements were performed by imposing a fixed gate voltage Vg while the perpendicular

magnetic field B was swept from 0 to 6T for both positive and negative orientations of the
magnetic field. Both magnetoresistances are shown in Fig. 3.1 for different gate voltages, at a
temperature of 1.7 K. For clarity, only magnetoresistances obtained from a reduced selection
of gate voltages are shown in panels (a,b). The gate voltage dependence of the longitudinal
resistivity at zero-magnetic field, ρ0(Vg), is extracted and displays a peak, indicating a gap
opening, as shown in Fig. 3.1(c). Fig. 3.1 (d) shows the gate voltage dependence of the Hall
coefficient RH = ρxy/B at B = 1 T. The change of sign of RH is related to a change of the
carrier charge. These measurements evidence the ambipolarity of the device, and we define the
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voltage at the charge neutrality point (CNP) VCNP = −0.6 V as the gate voltage corresponding
to RH ≃ 0 Ω.

Figure 3.1: (a) Longitudinal resistivity ρxx and (b) transverse resistivity ρxy as a function of magnetic
field B up to 6 T for a reduced selection of gate voltages. The color scale corresponds to the gate voltage
and is given in panel (b). (c) Gate voltage dependence of the zero-field longitudinal resistivity ρ0
extracted from the different magnetic field sweep. (d) Gate voltage dependence of the Hall coefficient
RH extracted at B = 1 T. In addition, in panel (a), the round symbols corresponds to the zero-
magnetic field value of the resistivity reported and highlighted by a black frame in panel (c). The Hall
resistivity extracted at B = 1 T are shown as square symbols in panel (b) and reported with a black
frame in panel (d). All magnetic field dependences of both resistivities components were measured in
a liquid He4 cryogenic system at a temperature T = 1.7 K and with a bias current I = 100 nA.

3.1.1 Single carrier model
We first focus on the behavior of the resistivity components at low magnetic field, where there is
no quantum effect such as Shubnikov-de Haas (SdH) oscillations or quantum Hall effect (QHE).
Both longitudinal and transverse resistivities are shown in Fig. 3.2 with a zoom in the magnetic
field range 0–1 T. These data are analyzed first within a single carrier approximation:

ρxx(B) =
1

enHµ
= ρ0, ρxy(B) =

B

enH

= BRH ,

where nH is the Hall carrier density. Figure. 3.2(a,b) shows ρxy(B) for two different gate voltage
ranges. The expected linear Hall resistances corresponding to the RH coefficients are also shown.
It is obvious that the experimental ρxy(B) is not perfectly linear. In addition, Figure. 3.2(c,d)
shows ρxx(B) at the same gate voltages. The constant solid lines, corresponding to ρxx(B = 0),
evidence that ρxx is not independent of B and even exhibits a positive magneto-resistance. A
positive magneto-resistance can be due to weak antilocalization, or disorder. From all this,
it seems that the single carrier model is not a very good assumption. This is confirmed in
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Fig. 3.3(a), where the single carrier concentration nH is extracted. From this figure, it is clear
that the single carrier model is bad, because nH(VG) is not linear and diverges at the CNP.
Nevertheless, we calculate the single carrier mobility given by nHeµ = 1/ρ0. The mobility
shown in Fig. 3.3 (b) is valid only far from the VCNP , in the regions I and II. The mobilities
µ ≈ 1 m2 V−1 s−1 are comparable to those reported in [KD11, IAC+20] for InAs/GaSb structures
on GaAs substrates.

In region III corresponding to gate voltage -0.84 V < Vg < -0.21 V, both longitudinal and
transverse resistances exhibit behaviors not corresponding to a single carrier model. Unfortu-
nately, we could not fit both ρxx and ρxy simultaneously by a two carriers model. We believe
that this issue is due to the importance of the disorder (and also possibly to weak localization
and weak anti-localization).

Figure 3.2: Zoom on the (a,b) transverse resistivity ρxy and (c,d) longitudinal resistivity ρxx as a
function of magnetic field B up to 1 T for different gate voltages. The colorscale is given in panel (a)
and is the same as the one in Fig. 3.1. In the four panels, the experimental data are indicated by open
circles and fitted in the framework of a single carrier model. The resulting fit is shown by solid lines.
The transverse resistivity is separated into panels (a) and (b) such as panel (a) shows gate voltages
between −0.18 V and 0.3 V (positive Hall effect in the conduction band) and Vg between −1.2 V and
−0.84 V (negative Hall effect in the valence band). Panel (b) shows gate voltages between −0.81 V and
0.57 V. This corresponds to a third regime in the vicinity of the CNP. The longitudinal resistivity is
also separated such as panels (c) and (d) show the longitudinal resistivity for gate voltages Vg < VCNP

and Vg > VCNP respectively.
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Figure 3.3: (a) Hall carrier concentration nH and (b) associated mobility µ as a function of gate
voltage Vg extracted from experimental data in the framework of a single carrier model. Filled and
open symbols represent the concentration and mobility associated with electrons and holes respectively.
The color scale corresponds to the gate voltage and is the same as in Fig. 3.1. The dashed lines separate
in both panels three regimes: electrons (I), holes (II), and puddles (III).

3.1.2 High magnetic field measurements
SdH analysis

We now detail the magneto-transport measurements performed of the HB0 device at higher
magnetic fields up to 6 T, and at a temperature of 1.7 K. At magnetic fields higher than 2 T, the
classical model of transport no longer describes the magnetoresistances as Shubnikov–de Haas
oscillations (SdHOs) emerge. Figure 3.1 (a, b) shows the evolution of the longitudinal mag-
netoresistivity ρxx(B) and the transverse magnetoresistivity ρxy(B) for different gate voltages.
In the following we only consider the SdHOs measured at the extreme values of gate voltages
Vg = −1.2 V and −1.05 V for the valence band and Vg = −0.03 V, 0.18 V and 0.3 V for the
conduction band, as the oscillations are less evident for intermediate gate voltages. The carrier
concentration nSdH is related to the SdHOs 1/B periodicity as ∆ (1/B) = gsgv×e/nSdHh, where
gs is the spin degeneracy and gv is the band degeneracy. We manually extract in Fig. 3.4(a)
the magnetic field values corresponding to the minima of the SdHOs and report them versus
the Landau Level indexes in Fig. 3.4(b). In the conduction band, the Landau level indexes
are extracted from the quantized values of the transverse resistivity. The corresponding carrier
densities are reported in Fig. 3.4(c) as symbols and compared to the concentration extracted
with the single carrier model. The concentrations calculated in both cases are the quite same,
if we assume that gs = 2, gv = 1 in the valence band and gs = 2, gv = 2 in the conduction band.

Estimation of the energy gap

From the previous analysis, we infer that there is no real gap. The magnetoresistances evidence
that both electrons and hole puddles exist and are always present, even at the CNP. The energy
gap cannot be measured from thermal activation, because of the presence of these puddles.
Nevertheless, we try to give an estimate of the energy gap below. These puddles modify
the DoS Dp(E) and De(E) of both valence and conduction bands. In Fig. 3.5 we show the
approximation made on Dp(E) and De(E) in the gap. We approximate the densities of states
in the gap, for both electrons and holes, as a linear variation as a function of energy.

At Vg = −1.05 V and Vg = 0.03 V, we extract carrier densities np
SdH = 4.62 × 1011 cm−2
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Figure 3.4: Carrier density extraction from SdH oscillations analysis. (a) Normalized longitudinal
resistivity ρxx (coloured solid lines) and the absolute value of it first derivative ∂ρxx

∂B (black dashed lines)
as a function magnetic field for different gate voltages. The colored solid lines correspond to ρxx and
the superposed dashed lines to the derivative. The circle symbols corresponds to the extracted minima.
The gate voltage values are provided on the right side of panel (a). We use the same color code to
represent the gate voltage in the whole figure . (b) Position of the SdH minima 1/B as a function of the
Landau level index for different gate voltages. Landau level indexes are determined by the quantized
value of the Hall plateaus observed in the transverse resistivity ρxy. Circle symbols correspond to the
extraction made from panel (a). Solid lines are the corresponding linear fits. The slope of the different
fits is extracted to calculate the corresponding SdH concentrations. (c) Carrier concentrations n as a
function of gate voltage Vg extracted from the experimental data. The black solid line corresponds to
the concentration calculated from RH .Circle symbols correspond to the concentrations extracted from
the SdH oscillations. All extractions are made from magneto-transport measurements performed at
T = 1.7 K and with a bias current I = 100 nA.
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and ne
SdH = 5.07 × 1011 cm−2 respectively. Hence, across the gap we measure from SdHO a

variation of the carrier density ∆n = np
SdH + ne

SdH = 9.7 × 1011 cm−2. The gap ∆ is linked to
these carrier densities by the relations:

np
SdH =

∫ ∆/2

−∆/2
Dp(E)dE = 2 ×

m∗

2πℏ2
∆
2 , (3.1)

ne
SdH =

∫ ∆/2

−∆/2
De(E)dE = 2 × 2 ×

m∗

2πℏ2
∆
2 , (3.2)

where we assume that across the gap there is still a parabolic dispersion, with m∗ = 0.0434 m0

Figure 3.5: Schematic illustration of the density of states at the vicinity of the band gap in HB0
device for holes (blue) and electrons (red).

as it was measured in similar samples by magneto-spectroscopy measurements [KRGP+18].
This gives an energy variation ∆EF = ∆n×2πℏ2/3m∗. The carrier concentrations are extracted
not exactly at the gap edges, so the resulting energy difference is larger than ∆, and we get
a upper estimate for the energy gap: ∆ < ∆EF ≈ 36 meV. This result is coherent with the
expected value of ∆ = 15 meV. Needless to say, this is a rough approximation.

3.1.3 Non-local measurements
Ballistic edge states model

So far we have evidenced the presence of puddles at the CNP. What about the possible survival
of topological edge states in such a situation ? From Fig. 3.1(c) we already know that the
resistivity peak maximum is ρ0 = 5.2 kΩ whereas a value of h/2e2 ≈ 13 kΩ is expected if the
conduction is driven by ballistic edge states. Therefore, we certainly do not have a ballistic
topological device.

Ohmic model

Let us check now if the device can be considered as diffusive and homogeneous in the gap. In
Fig. 3.6, we compare this peak resistance measured in the local configuration RL = R14,23 to
the four probe resistance measured in a non-local configuration RNL = R26,35. In the case of
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an homogeneous, ohmic device, this non-local resistance can be derived directly from the local
resistance using the formula:

ROhmic
NL = 4

π
RL

W

lp
exp

(
−π

lp
W

)
, (3.3)

where W = 10 µm, and lp = 10 µm are respectively the width and the lateral probe distance
of the Hall bar. Fig. 3.6 shows that close to the CNP, the measured RNL is ten times higher
than the expected value for an homogeneous device ROhmic

NL (RL). Therefore this model is not
appropriate.

Diffusive edge states model

We test now a third model. We assume that conduction is driven by topological edge states,
but the sample size Ledge is too large to allow for a ballistic regime: Ledge ≫ λ, where λ is the
inelastic mean free path of the edge states. The non-local resistance can again be derived only
from the local resistance, using the equations:

RL =
h

e2
1
λ

lp

2 , RNL =
h

e2
1
λ

(2l1)2

(4l1 + 2lp), (3.4)

where l1 is the distance between the source or drain contact and the closest lateral probe, lp is
the distance between two adjacent lateral probes. These two formula give two different values
for λ: λ = 35 µm and 157 µm for the local and non-local cases. Not only these values largely
exceed the device dimensions, but these two estimates differ. Thus this last model given by
Eq. 3.4 is also inadequate.

Coupled edge and bulk conduction model

We are left with a last possible model. We have seen in the previous chapters that a residual
bulk conduction is often observed in devices with small energy gaps. Let us assume now
that the conduction is not only carried by the edges but also by the bulk. We use our so-
called square lattice model to evaluate the contribution of both edges and bulk in this device.
The resistor network used to model device HB0 has node numbers nL = 201, nW = 51 and
nc = 60. This corresponds to the device HB0 size and geometry if we take a mesh length
of 0.2 µm. Figure 3.7(a) shows that the square lattice method converges to a solution that
exactly reproduces the experimental data. The corresponding bulk and edge conductivities
(σbulk, Gedge) are shown in Fig. 3.7(b). It appears that close to the CNP, Gedge > σbulk, but
σbulk is not negligible. Even more remarkably, the contribution of the edge Gedge does not vanish
in both valence and conduction bands, and seems relatively independent of the gate voltage.
This suggests that the edge conduction is not topological. Moreover, there is another simple
argument against a topological origin of the edge conduction. At the CNP, Gedge ≃ 2 × 102 µS
≃ 5e2/h. This value exceeds the quantum of conductance, which is the maximal possible value
for topological conductance. Thus, the edge conduction cannot be attributed to topological
edge states only: additional parasitic edge conduction is at play. Different phenomena can
induce trivial conduction through the edge. A first one can be of technological nature. Indeed,
a redeposition of Sb during the etching of the AlSb barrier can make conductive the mesa flanks.
Also, there could be a passivation of the dangling bonds after the exposure to air. Another
possibility is due to charge accumulation at the etched edge of the samples induced by the InAs
conduction band bending at the vacuum interface depending on the precise termination of the
semiconductor crystal. This last phenomenon is more relevant as the energy gap is small, i.e.
comparable to the energy gap of InAs/GaSb double quantum wells.
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Figure 3.6: Non-local (red solid line) and local (black solid line) resistances as a function of the
gate voltage at T = 2 K for device HB0. The blue dashed line corresponds to the non-local resistance
calculated from the local resistance for a device of homogeneous resistivity. The gate voltage is rescaled
to align the peak values of resistance on the position Vg − V max

g = 0 V. The measurements were done
at a temperature T = 1.7 K and with a bias current I = 100 nA.
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Figure 3.7: (a) Local resistance RL and non-local resistance RNL as a function of the gate voltage at
respectively T = 2 K for device HB0. The circle symbols correspond to the experimental data and the
dashed lines to the resistances calculated using the square lattice model. (b) Bulk conductivity σbulk
and edge conductance Gedge as a function of the gate voltage for respective devices. Both σbulk and
Gedge are extracted from the square network of dimensions nL, nW , nC = 81, 21, 24 (this corresponds
to the geometry of HB0). The edge conductance Gedge is multiplied by a factor 10 in order to be
compared to σbulk using the same y-scale.
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3.1.4 Conclusion
To conclude, we have evidenced an ambipolar behavior in device HB0. A charge neutrality
point separates valence and conduction bands. The gap is very disordered, with a probable
presence of charge puddles. Indeed, our square lattice model suggests that bulk conduction
persists even in the gap. Edge conduction is also detected. Remarkably this is a parasitic, non
topological edge conduction which is evidenced in this device.

3.2 Hall bar HB1, structure S3052
We now present the experimental results obtained in device HB1, introduced in Chapter 2. The
device was obtained from growth S3052, and the active part of the device consists of a 25/10/25
monolayer-thick InAs/GaInSb/InAs structure, corresponding to an theoretical energy gap of
30 meV.

We recall that only the four lateral contacts could be connected on this device. Moreover, the
ratio between the lateral probe distance lp and the width W of the Hall bar is lp/W = 1. Thus,
in the following, we identify the longitudinal and transverse resistivities ρxx and ρxy to the mea-
sured resistances R14,23 and R14,26 respectively. ρxx and ρxy have been symmetrized/antisym-
metrized with respect to the magnetic field direction. Finally, as also detailed in Chapter 2,
there is a sizable gate voltage hysteresis in HB1. To overcome this issue, we measured the
device by continuously sweeping the gate voltage Vg at fixed magnetic field B, from 0 to 2 T
for both positive and negative orientations of B.

3.2.1 Overview of the magnetoresistances
Figure 3.8 shows colormaps of the longitudinal and transverse resistivities ρxx and ρxy, as a
function of Vg and B, at T = 300 mK. In panel (a), ρxx exhibits Shubnikov-de Haas (SdH)
oscillations for Vg > −11 V, and a resistivity peak for Vg < −11 V. The linear interpolation
of the SdH oscillations converge to a charge neutrality point (CNP) at VCNP = −13.3 V and
B = 0 T. Panel (b) shows ρxy for Vg > −10.4 V. At lower Vg, ρxy varied rapidly and is not
shown here. ρxy shows Hall plateaus corresponding to filling factor ν = 1, 2, 3, 4, 6. The good
agreement between SdH oscillations in ρxx and Hall plateaus in ρxy evidences the stability of
the gate voltage sweeps.
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Figure 3.8: Magnetotransport measurements of device HB1. (a) Colormap of ρxx on a logarithmic
scale, as a function of Vg and B. The black dashed lines are guidelines for the eyes to evidence ρxx

minima associated to SdH oscillations. From Vg = −11 V to −15 V, ρxx increases up to a peak value of
ρxx = 300 kΩ, attributed to the band gap. (b) Colormap of ρxy(Vg, B). The hatched areas correspond
to quantum Hall plateaus. The filing factor ν for some plateaus is reported on the colormap. The
measurements were performed at T = 300 mK with a bias current I = 100 nA.
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Figure 3.9: (a, b) Longitudinal resistivity ρxx as a function of magnetic field B up to 12 T for a
reduced selection of gate voltages. (c) Gate voltage dependence of the zero-field longitudinal resistivity
ρ0 on a logarithmic scale. The black solid line corresponds to the experimental data and the symbols
correspond to the specific values of gate voltage corresponding to the magnetic field dependences in
panels (a, b, d, e). Distinction is made with square and round symbols to illustrate the separation
between gate voltage values in panels (a, b) and (d, e) espectively. (d, e) Transverse resistivity ρxy

as a function of magnetic field B for different gate voltages. The color of the lines corresponds to
the gate voltage and is identical in (a, b, c, d, e) panels. (f) Gate voltage dependence of the Hall
coefficient RH extracted at B = 1 T. The measurements were performed at T = 300 mK with a bias
current I = 100 nA.
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3.2.2 Single carrier model at low fields
We first analyze the behavior of device HB1 at low magnetic field. In Fig. 3.9(b,d), in the
region Vg > −11 V and B < 2.5 T, ρxy and ρxx are well described by a single carrier model as
ρxy increases linearly with B and ρxx is constant. The increase of both zero-field resistivity and
Hall coefficient as the gate voltage approaches the charge neutrality point VCNP is the expected
behavior for a single carrier model. The carrier concentration and average mobility extracted
from the experimental data are reported in Fig. 3.10. There is a good agreement between the
Hall carrier density and the expected carrier density given by n = C/e(V − VCNP ), where C
is the capacitance per unit area of the gate. The extracted mobility strongly decreases as the
Fermi energy approaches the gap, and lies in a range 0.1 m2 V−1 s−1 to 1 m2 V−1 s−1. This is
coherent with mobility values previously observed in similar structures. This is also in rough
agreement with the emergence of Hall plateaus and SdH oscillations at B > 2.5 T, where the
condition µB ≥ 1 is fulfilled.

For Vg < −11 V, the zero-field resistivity ρ0 peaks up to 300 kΩ, as shown in Fig. 3.9(c).
Moreover, as shown in Fig. 3.9(d), ρxy oscillates rapidly from positive to negative values. We
interpret these oscillations of ρxy in the gap as a signature of the presence of both hole and
electrons puddles. In this range of magnetic field, the single carrier model no longer describes
the resistivity tensor, and the extracted carrier properties are no longer relevant. Note that
ρxy at Vg = −15 V is negative in all the magnetic field range from 0 T to 2.5 T, evidencing a
majority of hole-like carriers. Thus, we believe that the gap is almost entirely crossed from the
top of the valence band (Vg = −15 V) to the bottom of the conduction band (Vg = −11 V).

3.2.3 High magnetic field behavior
Extraction of the carrier density from the SdH oscillations

We now analyze the magnetoresistances on the whole magnetic field range shown in Fig. 3.9(a,-
b,d,e). We first extract the carrier density from the SdH oscillations. Figure 3.11(a) shows
ρxx and the absolute value of its first derivative |∂ρxx/∂B| as a function of 1/B for several
gates voltages. The first derivative allows us to extract more precisely the inverse magnetic
field values corresponding to the minima of the SdH oscillations. In Fig. 3.11(b), we report the
extracted Landau level positions for the different gate voltage and calculate the related carrier
concentration nSdH by a simple linear fit as 1/B = νe/nSdHh. The corresponding Landau levels
indexes are extracted from the transverse resistivity quantized value ρxy = e2

νh
at the same

(B, Vg) coordinate in Fig. 3.9. The good agreement with the carrier densities extracted from
Hall effect and SdH oscillations (see Fig. 3.11 (c)) indicates that only one band is populated.
Coming back to the band structure presented in Chapter 2, this implies that the H1 band is
never populated; only the E1 band is filled [MGR+13]. Using the formula k =

√
4πnSdH, we

obtain kF = 0.3 nm−1 at Vg = 0 V. For such a large wave vector kF , both E1 and H1 should be
populated and the Fermi level should lie 20 meV above the bottom of the H1 band. Thus, the
theoretical band structure underestimates the energy of the H1 band with respect to E1.

Extraction of the effective mass of carrier from the SdH oscillations

Considering the quality of the device and, by contrast to the previous device HB0, the possibility
to use the top gate as we increase the temperature, we now investigate in more details the band
structure by considering the temperature dependence of the SdH oscillations. We stress that
the data set used for this analysis was obtained from another cooling cycle, and that there is
a small shift of the carrier density with respect to the data presented in the previous section.
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Figure 3.10: Carrier properties extracted from the single carrier model. (a) Hall carrier density
nH calculated from the Hall coefficient RH as a function of the gate voltage Vg. The black solid line
corresponds to the concentration calculated from RH and the red dashed line corresponds to the linear
evolution of concentration calculated from the gate capacitance per unit area C = 9.9 × 10 µF cm−2,
assuming the charge neutrality point VCNP = 13.3 V. (b) Hall mobility µH extracted from the zero-
field longitudinal resistivity ρ0 and Hall concentration nH as a function of Vg. In both panels, the
grey areas correspond to the gate voltage region in which the single carrier model is not valid. Carrier
properties are calculated from data measured at T = 300 mK with a bias current of I = 100 nA.



3.2. Hall bar HB1, structure S3052 95

Figure 3.11: Carrier density extraction from SdH oscillations analysis. (a) Normalized longitudinal
resistivity ρxx (colored solid lines) and the absolute value of it first derivative ∂ρxx

∂B (black dashed
lines) as a function of B for different Vg. The colored solid lines correspond to ρxx and the superposed
dashed lines to its derivative. The circles correspond to the extracted minima. The gate voltage values
are provided on the right side of panel (a). We use the same color code to represent Vg in the whole
figure. (b) Position of the SdH minima 1/B as a function of the Landau level index for different Vg.
Landau level indexes are determined by the quantized value of the Hall plateaus observed in ρxy. The
circles correspond to those shown in panel (a). Solid lines are linear fits. (c) Carrier densities n as
a function of gate voltage Vg extracted from the experimental data. Black solid line: carrier density
calculated from RH ; red dashed line: carrier density calculated from the gate capacitance per unit
area C = 9.9 × 10 µF cm−2, assuming CNP at Vg = 13.3 V; circles: carrier density extracted from the
SdH oscillations.
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For this new data set, HB1 was first cooled down to T = 300 mK and then warmed up until
the SdH oscillations vanished.

We already detailed in Chapter 1 the expression of the SdH oscillations and we now inves-
tigate the temperature dependence of their envelope:

∆ρLK
xx (B, T ) = 4ρ0e

−π/ωcτq
2π2kBT/ℏωc

sinh (2π2kBT/ℏωc)
, (3.5)

where ωc = eB/m∗ is the cyclotron frequency and τq is the quantum time. We have previously
demonstrated that, if we note ∆ρ(B, T ) the amplitude between two SdH extrema around an
average magnetic field B and at a temperature T , then :

T ≫ ℏωc

2π2kB

⇒ ln
(

∆ρxx(B, T )
∆ρxx(B, Tref)

Tref

T

)
∼ α − βT, (3.6)

with α = ln (2 sinh (2π2kBTref)/(ℏωc)), β = 2π2kB/ℏωc and Tref is a reference temperature.
Equation 3.6 shows that for high temperature, ln(∆ρxx(B, T )/T ) evolves linearly with T , with
a slope directly proportional to the effective mass m∗.

Figure 3.12(a) shows the temperature evolution of ρxx at Vg = 0 V. As T increases, the
positions of the SdH oscillations shift in magnetic field, leading to a change of carrier density.
To overcome this issue, the carrier density is extracted at the lowest and highest temperatures
and we determine an average carrier concentration nSdH = (2.70 ± 0.06) × 1011 cm−2. We define
∆ρxx(Bn, T ) as the resistivity difference between two successive extrema of the oscillations.
Here, Bn is the magnetic field at which a temperature-independent ρxx node between the
two chosen extrema appears. Three values of Bn have been chosen for the analysis: Bn =
3.3 T, 4.4 T and 5.6 T. These values are reported in Fig. 3.12(a) as vertical dashed lines.
For the reference temperature Tref , we have chosen Tref = 0.3 K, 0.3 K and 0.8 K for Bn =
3.3 T, 4.4 T and 5.6 T respectively. For Bn = 5.6 T, Tref is higher, because at lower T quantum
Hall effect is at play and the magnetoresistance goes to zero. For Bn = 3.3 T and 4.4 T, ∆R
could not be estimated for T > 20 K, as the SdH oscillations disappear at these temperatures.

Figure 3.12(b) shows the temperature dependence of these three sets of ∆ρxx(Bn, T ), and
the corresponding fit. The 3 sets have been fitted together, with the same effective mass as a
fit parameter. This gives m∗ = (0.046 ± 0.004) × m0, where m0 is the electron mass. This value
is in good agreement with previous estimates obtained in similar structures [KRGP+18].

From the theoretical band structure and the DoS presented in Chapter 2, we can calculate
the effective mass as a function of the density. Indeed, the effective mass can be easily derived
from the band structure as m∗ = ℏ/∆Ek, where ∆Ek is the Laplacian of the energy dispersion.
Figure 3.13 shows the theoretical effective mass of the E1 band, as a function of the carrier
density. The effective mass which has been estimated from the data is also indicated as a blue
symbol. It is clear that the measured effective mass is close to its expected value, providing
confirmation of the energy dispersion for the E1 band.

In Fig. 3.13, the effective mass is divided by m∗
ref = 0.056m0, which is the effective mass of

electrons in a single 7.5 nm thick InAs quantum well [KDM+88]. This ratio m∗/m∗
ref is greater

than one. This demonstrates that the electrons are not uniquely confined in the InAs quantum
wells, and makes us confident that the device can host topological carriers.

Extraction the Landau Level broadening from the SdH oscillations

We can now evaluate the quantum time τq in the exponential term in Eq. 3.5. The quantum
lifetime is directly related to the Landau Level broadening as Γ = ℏ/2τq. Figure 3.14(a) shows
the longitudinal resistivity as a function of the magnetic field, at T = 300 mK and Vg = 0 V.
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Figure 3.12: Effective mass obtained from SdH oscillations. (a) ρxx as a function of B for different
temperatures. The color scale corresponds to a temperature range from T = 300 mK to T = 40 K.
The vertical dashed lines correspond to the positions Bn = 3.3 T, 4.4 T and 5.6 T of the three nodes
of the SdH oscillations analyzed in panel (b). (b) T/∆R(Bn, T ) as a function of T for three magnetic
fields Bn. The variation of T/∆R(Bn, T ) is normalized by taking a temperature reference Tref . The
experimental T/∆R(Bn, T ) are indicated by the black squares. The red dashed lines correspond to
the fit. The fitting parameter m∗ is the effective mass and is imposed to be identical for the three Bn.

Figure 3.13: Red solid line: theoretical effective mass of the E1 band, extracted from the band
dispersion as a function of the carrier density. Blue circle: effective mass extracted from the SdH
analysis. The effective mass is normalized by the effective mass of electrons confined in a single
7.5 nm-thick InAs QW (m∗ = 0.056).[KDM+88]
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Note that the experimental data correspond to those presented for the determination of the
effective electron mass. We extract the envelope of SdH oscillations ∆Rxx as a function of
magnetic field. Indeed, one can rewrite Eq. 3.5 as:

∆Rxx

4R0
= RT e−π/ωcτq , (3.7)

where R0 is the resistance at B = 0 T, RT is a temperature dependent term given by

RT = X

sinh X

with
X = 2π2kBT

ℏωc

,

and ωc = eB/m∗ the cyclotron frequency. Here, as we work at T = 300 mK, RT ≈ 1. Fig-
ure 3.14(b) shows the evolution of the SdH amplitude as a function of the inverse magnetic field
on a logarithmic scale. The quantum lifetime τq is calculated from the slope of the linear fit.
The fit is not of very good quality. Nevertheless, we are confident that the data can be fitted,
because we have i) a rough exponential dependence and ii) lim1/B→0 ∆Rxx/4R0 = 1. A quan-
tum lifetime τq = 0.05 ps is obtained, leading to a Landau Level broadening Γ = 6 meV. This
value is quite comparable to what has been observed in similar InAs/GaSb TQWs [HZC86].

Estimation of the Fermi level

In order to find the position of the Fermi level EF as a function of both Vg and B, we calculated
the trajectories of EF (n) in the (B, E) plane for some fixed carrier density n, as shown in
Fig. 3.16. For such an analysis it is necessary to know the density of states (DoS) as a function
of B. The DoS was obtained from the theoretical LL dispersion reported in Chapter 2. We
introduced for each LL a constant Lorentzian broadening Γ = 6 meV. Fig. 3.16 shows the iso-
carrier density trajectories as colored dashed lines, labeled by the corresponding gate voltage Vg.
We also show with solid lines the trajectories of integer values of ν = 1, 2, 3, 4, 5, 6, 7 and 8.
Without broadening, the trajectories of the integer values of ν matches the LLs trajectories as
shown in Fig. 3.15(a). However, we represent in Fig. 3.15(b) the trajectories when considering
Lorentzian broadening with Γ = 6 meV.

We can now compare this theoretical representation with the experimental results. We
report on this graph the SdH minima previously indicated in Fig. 3.11. These minima appear
at the coordinates (Bmin,i(nSdH), EF (nSdH)), where nSdH is the carrier density extracted from
the SdH oscillations, at a given Vg, and Bmin,i, i = 1, 2, . . . are the magnetic fields at which
these minima appear.

As expected, the SdH minima correspond to the positions of the integer filling factors. More
remarkably, the model shows that EF can be more than 25 meV above the bottom of the E1
band. By comparison, the theoretical calculation predicts that the H1 band has its minimum
only 20 meV above the bottom of the E1 edge. This is another hint that the theoretical model
underestimates the energy of the H1 band.
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Figure 3.14: (a) Longitudinal resistance Rxx as a function of B for Vg = 0 V and T = 300 mK. The
red dots represent maxima and minima defining the SdH envelope function. The difference between
an adjacent maximum and minimum gives ∆Rxx. (b) ∆Rxx normalized by the background 4R0 as a
function of 1/B. Black squares: data, red dashed line: linear fit.

Figure 3.15: Color map of filling factor ν as a function of magnetic field and energy. The solid
lines correspond to the trajectories of the Landau Levels. Panel (a) corresponds to the case without
broadening and panel (b) to a LL broadening of Γ = 6 meV.
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Figure 3.16: Effective fan-chart of filling factor ν as a function of magnetic field and energy. The
energy reference is the bottom of the E1 band. The solid lines correspond to the trajectories of the
integer value of ν derived from the Landau Levels, with a LL Broadening of Γ = 6 meV. The dashed
lines correspond to Fermi Level trajectories at fixed concentrations. The Iso-carrier densities are
calculated for DoS where the LLs have a Lorentzian distribution with a half width of Γ/2. Triangle
symbols correspond to the experimental positions of the SdH minima extracted from Fig. 3.11 (a).

3.2.4 Activation energy
The magneto-transport measurements in the previous paragraphs provide a good description
of the conduction band and the associated transport regime. They also indicate the presence
of a gap. We now propose to evaluate the magnitude of the energy gap by thermal activation.
Figure 3.17 (a) shows the longitudinal resistivity peak in the vicinity of the gap. We define
V max

g as the gate voltage position of the peak value of the resistivity. Note that this position is
not the same as the temperature increases (see section 3.2.3) so the gate voltage dependence of
ρxx is shown as a function of Vg − V max

g (T ). In addition, as we previously concluded that the
contribution of the substrate conduction for temperatures T > 25 K is not negligible, only data
acquired at T < 25 K were used to determinate the energy gap. In Fig. 3.17 (b) we report the
peak values of the resistivity on a logarithmic scale as an inverse function of the temperature.
The temperature dependence of the resistivity is fitted by a sum of three terms:

(ρmax
xx )−1(T ) = σa(T ) + σloc(T ) + σ0, (3.8)

where
σa(T ) = σa exp

(
− ∆

2kBT

)
is the thermal activation term,

σloc(T ) = σloc exp
(

−
∆loc

kBT

)
is the localization gap term induced by nearest neighbor hopping [IAC+20, DKSD15], and σ0
is an additional term independent of the temperature. The three terms are represented inde-
pendently by dashed lines in Fig. 3.17 (b). From the fit, we obtain an energy gap ∆ = (30.0±
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Figure 3.17: Extraction of the activation energy from the temperature dependence of the longitudinal
resistance. (a) Longitudinal resistivity ρxx as a function of the gate voltage at different temperatures.
The color scale corresponds to the temperature. The gate voltage is rescaled to be centered on the gate
voltage position of the resistivity peak V max

g (T ). (b) Temperature dependence of the resistivity peak.
The colored circle symbols correspond to the experimental resistivity peaks. The colors correspond to
the temperature, with the same code as in panel (a). The solid line is the fit of the experimental data,
and the dashed lines are the 3 contributions to the fit: ρa, ρloc and ρ0, corresponding to the activation
energy, localization gap and edge state terms respectively.

0.3) meV and ∆loc = (1.3 ± 0.1) meV. The dispersion of both calculated values only includes
the standard deviation from the data fit. The measured energy gap nicely matches the theoret-
ical band structure expectations ∆th = 30 meV. In the framework of nearest neighbor model,
∆loc = (Da2)−1, where D is the density of states inside the band gap, and a is the distance
between nearest sites [QXW+13]. In Section 3.2.2, we argued that the band gap is in the range
−15 V < Vg < −11 V. The D value is defined as:

D = ∆V (C/e)/∆, (3.9)

where ∆V = 4 V is the difference of gate voltage values corresponding to the edges of valence
and conduction band, C = 9.9 × 1010 µF cm−2 is the capacitance per unit area of the dielectric
gate, and ∆ = 30 meV is the energy gap. We obtain D = 8.25 × 1012 eV cm−2 and a =
(97 ± 3) nm,which is a rather large value. Finally, the last term σ0 in Eq. 3.8 dominates at low
temperature and prevents the divergence of the resistivity in the band gap. It is interpreted as
the first hint of a possible contribution of edge states. We propose in the following to investigate
this possible contribution through non-local measurements.

3.2.5 Non-local measurement
Landauer-Büttiker model

We now investigate the transport properties in the band gap by local and non-local measure-
ments. Note that for this device, the local configuration does not correspond to the usual
one. Schemes of the Hall bar in non-local and local measurement configuration are provided
in Fig. 3.18(b) and (c) respectively. Figure 3.18(a) shows the resistance for both local RL and
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Figure 3.18: (a) Non-local (red solid line) and local (black solid line) resistances as a function of the
gate voltage at T = 300 mK. The blue dashed line corresponds to the non-local resistance calculated
from the local data for a device of a homogeneous, ohmic conduction. The dotted lines correspond to
the expected peak resistances for local and non-local configurations assuming edge states only, with
λ = 2.0 µm. The same color code is used to distinguish non-local and local configurations. (b) Scheme
of device HB1 in the non-local configuration. (c) Scheme of device HB1 in the local configuration. In
both (b,c) panels, the device in the band gap regime is modeled by taking only edge channels into
account. The edges of the device are modeled as resistors with Redge = (h/e2)Ledge/λ.
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non-local RNL configurations at B = 0 T, as a function of Vg. The experimental non-local
resistance is compared to the expected non-local resistance ROhmic

NL of an homogeneous device
(i.e. without edge conduction) defined by the formula:

ROhmic
NL =

4
π

RL

W

lp
exp

(
−π

lp

W

)
, (3.10)

where W = 100 µm and lp = 100 µm are respectively the width and the distance between the
lateral probes of the Hall bar. It is clear from Fig. 3.18(a) that the non-local resistance peak
of RNL = 1 MΩ is far too large to be explained by current spreading in homogeneous device.
We interpret this as due to an important contribution of edge conduction. However, in both
local and non-local configurations, the resistance values largely exceeds the expected values
for topological edge states in the ballistic regime, respectively RL = (1/2)h/e2 ≈ 13 kΩ and
RNL = (2/3)h/e2 ≈ 17 kΩ.

Considering the large dimensions of device HB1, the non-ballistic regime of topological edge
states is not surprising and we propose a more relevant model of edge states in a diffusive
regime. As shown in Fig. 3.18(b, c), we model the edges of the Hall bar as resistors. The
resistance value Redge of each edge is defined by taking into account its length:

Redge = h

e2

(
1 + Ledge

λ

)
≃ h

e2
Ledge

λ
,

where λ is the characteristic length at which the two counter-propagating edge states equilibrate.
More details on both ballistic and diffusive regimes in the Landauer-Büttiker description of edge
channels are provided in Chapter 1. From Fig. 3.18(b,c), one can demonstrate that

RL = 1
λ

h

e2
l2
p

2(lp + l1)

and
RNL =

1
λ

h

e2
2l2

1

lp + 2l1

with lp = 100 µm and l1 = 120 µm. We obtain λ = (2.0 ± 0.1) µm as the average of λ values
calculated from the two different configurations. The resulting values of resistance in both
measurement configurations are shown in Fig. 3.18(a) by horizontal dashed lines. The small
error on λ (5%) demonstrates that the diffusive topological edge state model is coherent with
the experiment. Nevertheless, we have assumed for the moment that only the edges contribute
to the conduction in the band gap at low temperature. In particular, this simple model does
not take into account bulk conduction. In order to be sure that the estimate of λ is not seriously
perturbed by residual bulk conduction, we have done a more complete numerical analysis, as
detailed below.

Square lattice model

We investigated further the bulk and edge contributions to the conduction in the band gap by
using the square lattice model detailed in Chapter 2. The network of resistors used to model
device HB1 has the dimensions: nL = 81, nW = 21 and nc = 24. This corresponds to the
size and geometry of HB1 if we take a mesh length of 5 µm. In Fig. 3.19(a,b), we show the
experimental local and non-local resistances for different temperatures from T = 1.7 K to 16 K.
Note that the experimental data were measured during a different campaign of measurements
than those presented in the previous sections. As a comparison, the peak value of resistivity at
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T = 4.2 K was ρmax
xx ≃ 300 kΩ during the previous campaigns and ρmax

xx ≃ 180 kΩ in Fig. 3.19(a).
During these last measurements, we also observed a jump of the non-local resistance peak, at low
temperature, see Fig. 3.19(b), and RNL jumped from 500 kΩ to 300 kΩ when T increased from
1.7 K to 3 K. We attribute these effects to some instabilities of the electrostatic environment.

In Fig. 3.19(a,b), the fit of both RN and RNL are also reported, superimposed on the
experimental data. The fits, indicated as solid lines, are perfectly superimposed on the experi-
mental points, indicated by symbols. It is clear that the square lattice model precisely fits the
experimental data for all temperatures and gate voltages.

In panel (c), the two parameters, the bulk conductivity σbulk and the edge conductance
Gedge, obtained from the square lattice fit, are reported as a function of Vg − V max

g , for the
different temperatures. We recall that Gedge is defined as Gedge = (Ge − Gb)lc/lp, where Ge

(Gb) is the conductance of the resistors at the mesh edge (in the mesh interior), (Ge − Gb) is
the additional conductance at the edge which is due to the edge state only, lp is the distance
between the lateral probes, and lc is the mesh size. The renormalization by the factor lc/lp is
important. Indeed, Ge is physically ill-defined, because limlc→0 Ge = ∞, but limlc→0 lcGe = σe,
where σe is the edge conduction, which is physically well defined, in meter per Ohm.

In the middle of the band gap (i.e., close to Vg − V max
g = 0 V), a significant reduction of the

bulk contribution compared to band gap edges is observed, associated with the emergence of
edge conductance. This effect is enhanced as the temperature decreases. On the contrary, in
the valence and conduction bands (|Vg − V max

g | ≥ 2 V), the edge conductance goes to zero and
only σbulk persists.

From the square lattice model, one can calculate λ, which is given in the diffusive regime
by λ = (e2/h)(Gedge/lp). From Gedge ≃ 1 µS in the middle of the gap at T = 1.7 K, using
lp = 100 µm, we obtain λ = 2 µm. This is coherent with our previous estimation, where
the bulk contribution was neglected. The negligible role of the bulk conduction at these low
temperatures is confirmed in Fig. 3.19(c).

The evolution of σbulk in the gap shows also a clear insulating behavior, whereas Gedge is
almost temperature independent. In fact, we would expect Gedge to have a metallic behavior,
but this is not strictly the case, and we observe in Fig. 3.19(d) that Gedge in the middle of
the gap has a weak increase when increasing the temperature. We still do not known if this
behavior has a physical meaning.

The disappearance of Gedge outside the band gap suggests that topological conduction is at
play. Indeed, one would expect edge conduction independent of the gate voltage, in the case of
parasitic edge conduction.

The edge conductance peak observed at Vg − V max
g = 1.8 V is more surprising. Initially, we

interpreted it as experimental error propagation, since RNL and RL are not measured during the
same gate voltage sweeps. A small gate offset between these sweeps could induce an unphysical
peak at the band edges. However, we could not get rid of this peak even after introducing
an artificial gate voltage offset. Moreover, we cannot attribute this phenomenon to possible
inhomogeneities of device HB1, since a similar behavior is also reproduced in other devices like
HB4 and HB6. Thus, we suggest that this peak could have some physical origin. For instance,
there are some recent theoretical studies predicting the coexistence of edge and bulk states in
complex valence bands of HgTe QWs [KT18a], and the bands of our 3L InAs/GaInSb QWs
share similarities with those of HgTe QWs [KYB+16].

3.2.6 Conclusion on HB1
To conclude, the band structure of growth S3052 has been investigated in details in the con-
duction band and the band gap, using device HB1. In the conduction band, the experimental
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observations confirm the theoretical predictions concerning the E1 band, but no signature of
the H1 band has been found. In the band gap, we have extracted an energy gap ∆ = 30 meV,
which is in good agreement with the theoretical expectations. We have also demonstrated that
at the lowest temperatures, the conduction is dominated by the contribution of the edges in
the gap. This additional conduction is consistent with edge states in a diffusive regime, but
the large size of the device compared to λ = 2 µm does not allow to highlight the topological
nature of these edge states. Nevertheless, compared to device HB0, a significant improvement
in the reduction of the residual conductivity in the band gap suggests that S3052 is a promising
QW structure to accommodate topological edge states.

In these investigations, we neglected the electrical anisotropy highlighted in Chapter 2. In
the next section, we study devices fabricated from quantum wells grown on a GaSb substrate,
where this anisotropy is small. Moreover, these devices are smaller in size, and can be considered
in order to approach the ballistic regime of topological edge states.
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Figure 3.19: (a) Local resistance RL and (b) non-local resistance RNL as a function of Vg for different
temperatures. In both panels, circle symbols correspond to the experimental data and the solid lines
to the resistances calculated using the square lattice model. The gate voltage is rescaled to align the
peak values of resistance on the position Vg − V max

g = 0 V. The same color scale corresponding to
the temperature is used in panels (a,b,c) and is provided in panel (a). (c) Bulk conductivity σbulk
(left panel) and edge conductance Gedge (right panel) as a function of Vg, for different temperatures.
Both σbulk and Gegde are extracted from the square lattice model using a square network of dimensions
nL, nW , nc = 81, 21, 24 (this corresponds to the geometry of HB1). The edge conductance is multiplied
by factor 10 in order to be compared to σbulk using the same y-scale.
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3.3 Devices HB4, HB6, HB12 and HB14: (S3198)
We present in this section the experimental results obtained with a set of four Hall bar devices
HB4, HB6, HB12 and HB14. All these devices have been already introduced in Chapter 2.
The active part of the devices is a 25/10/25 monolayer-thick structure of InAs/GaInSb/InAs
on a GaSb substrate. The band dispersion of the structure is shown in Chapter 2, and the
expected energy gap is about 45 meV. Experimentally, the devices have been made from the
same MBE growth S3198. As the devices are derived from the same growth and fabrication
process, and differ only in the distance between the lateral contacts lp, we group in this section
the presentation of the experimental results obtained with these devices.

We stress that not all the following results were obtained during the same measurement
campaigns. Notably, device HB14 was measured at the Laboratoire National des Champs
Magnétiques Intenses (LNCMI) in Toulouse. This allowed us to measure this device under
pulsed magnetic fields up to 55 T. We detail the results obtained on this device at the end of
this chapter.

For these four devices, the carrier density modulation by the gate voltage is only transient
with a characteristic time of approximately one minute. This behavior imposes to continuously
sweep the gate voltage Vg. In the case of devices HB4, HB6 and HB12, the magneto-resistances
were obtained following the same procedure as for device HB1. In the case of device HB14,
during the 500 ms pulse duration, the variation of the gate voltage was δVg = 0.025 V, so we
assumed that the magneto-resistances were measured at a quasi-constant gate voltage.

Figure 3.20 shows the longitudinal resistivity at B = 0 T, named ρ0, as a function of the
gate voltage for devices HB4 and HB6. As for device HB1, a band gap is evidenced by the
presence of a resistivity peak. We checked that this peak is associated with an inversion of the
sign of the Hall effect.

The position V max
g of the zero-field resistivity peak value ρmax

0 is not the same for the different
devices, and is also very dependent of the parameters of the gate voltage sweep. Hence, for
clarity, we often present in the following the gate voltage shifted by the position of the peak
maxima V max

g .

3.3.1 Low magnetic field (single carrier model)
As for the previous devices HB0 and HB1, we start the analysis with a single carrier model.
Figure. 3.21(a) shows the magnetic field dependence of the transverse resistivity of device HB6
at magnetic field B up to 12 T. In the region Vg − V max

g > 1 V, B < 2 T, the transverse
resistivity increases linearly with respect to B. It evidences a single carrier transport. The
same behavior is observed in the other devices. Near the band gap (i.e. |Vg −V max

g | < 2 V), the
Hall effect is very disturbed and oscillates with respect to B as it can be seen at the bottom
of panel 3.21(a). This is similar to what was observed in device HB1. Again, this effect is
interpreted as due to the presence of both electron and hole puddles in the gap. In the valence
band (VB), ρxy is bended below B = 2 T, evidencing the co-existence of different types of
carriers. The magnetoresistances of the other devices are not presented here, but they are very
similar to those of device HB6. The magnetoresistances of device HB14 are presented later (see
Fig. 3.29).

Hall carrier density and Hall mobility for devices HB4, HB6 and HB14 are shown in
Fig. 3.21(b,c). It is clear that these three devices are very similar. They have the same
gate dependence, with respect to mobility and carrier density, and they have approximately
the same mobility. The mobility for holes is not presented, because a model with only one
carrier is not valid in the valence band.
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Figure 3.20: (a, b) Longitudinal resistivity ρ0 as a function of gate voltage Vg from devices HB4 and
HB6 respectively. Both measurements were performed in a He3 insert at a temperature T = 300 mK
and with a bias current I = 10 nA.

Figure 3.21: Carrier properties extracted from the single carrier model for device HB6. (a) Transverse
resistivity ρxy of device HB6 as a function of magnetic field B for different gate voltages at T = 300 mK.
The color of the lines corresponds to the gate voltage and is provided in the upper left corner of the
panel. (b) Hall carrier density nH calculated from the Hall coefficient RH as a function of the gate
voltage Vg. RH is defined as ρxy(B = 1 T). The solid lines correspond to the concentration calculated
from RH for devices HB4 and HB6. Circle symbols correspond to the concentration extracted from
the Hall coefficient for each magnetic pulse performed on HB14. The dashed line corresponds to the
linear fit of the Hall concentration in HB14. Its slope corresponds to an effective gate voltage capacity
Cexp = 0.87 × Cth, where Cth = 3 × 102 µF m−2, assuming a charge neutrality point VCNP = V max

g .
The shadowed area corresponds to the band gap where the extracted Hall concentrations diverges.
(c) Hall mobility µH extracted from the zero-field longitudinal resistivity ρ0 and Hall concentration
nH as a function of gate voltage Vg. The gate voltage positions are restricted to the positive ones,
corresponding to the conduction band. The data were measured at T = 300 mK with a bias current
of I = 10 nA for devices HB4 and HB6. For device HB14, the measurements were done at T = 1.7 K
and I = 1 µA.
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3.3.2 Activation energy
In this section, the magnitude of the energy gap is evaluated by thermal activation. Fig-
ure 3.22(a,b,c,d) shows the longitudinal resistivity peak ρxx(Vg) in the vicinity of the gap for
device HB4, HB6, HB12 and HB14 respectively. The measurements have been done at tem-
peratures up to T = 150 K for devices HB4 and HB6, and up to T = 90 K only for devices
HB12 and HB14. The maximum ρmax

xx of the resistivity peak at Vg = V max
g is extracted. It is

shown as an inverse function of the temperature in Fig. 3.23 for the four Hall bar devices. The
same temperature dependence is evidenced for all devices. When the temperature decreases
from 80 K to 30 K, ρmax

xx (T ) increases exponentially. We attribute this exponential increase to
thermal activation. Then, from T = 30 K to 15 K, ρmax

xx still increases a bit. Finally, at lower T ,
ρmax

xx becomes constant. We attribute this last behavior to an additional edge conduction. We
stress that devices HB12 and HB14 were not measured above T = 90 K, thus the extraction of
the activation energy for these devices cannot be as precise as for devices HB4 and HB6.

The temperature evolution of ρmax
xx is fitted by the same sum of three terms as for device

HB1 in the previous section:

(ρmax
xx )−1(T ) = σa(T ) + σloc(T ) + σ0, (3.11)

where
σa(T ) = σ0

a exp
(

− ∆
2kBT

)
is the thermal activation term,

σloc(T ) = σ0
loc exp

(
− ∆loc

kBT

)

is the localization gap term induced by nearest neighbor hopping, and σ0 is an additional term
independent of temperature. The hopping term is introduced to get better fits around the
transition from thermal activation to edge conduction. Without this term, the quality of the
fits is significantly degraded. The five fit parameters are σ0, σ0

a, σ0
loc, ∆, and ∆loc.

The fits given by Eq. 3.11 are reported in Fig. 3.23. The fits for the four devices are all very
good - hopefully, as we have five parameters. For device HB12, and only this device, the three
terms of Eq. 3.11 are also reported separately by dashed lines in Fig 3.23. From these fits, we
obtain energy gaps ∆ = 35 meV, 53 meV, 36 meV and 39 meV for HB4, HB6, HB12 and HB14
respectively. These results give an average value ∆ = (41 ± 7) meV. The dispersion of ∆ is due
to the dispersion from device to device. We do not know the origin of this dispersion; possibly,
strain relaxation could differ from one device to another. The most important result is that,
as for device HB1, the measured energy gap matches the theoretical energy gap ∆th = 45 meV.
Table 3.1 shows all the fitting parameters for the four devices.

σ0
a (µS) σ0

loc (µS) σ0 (µS) ∆loc (meV) ∆ (meV)
HB4 847 51 13 3.9 35
HB6 1725 59 46 5.0 53
HB12 642 11 21 1.6 36
HB14 771 19 15 3.6 39

Table 3.1: Fitting parameters for the four devices

Let us briefly comment what we can learn from the fitting of the hopping term. As for device
HB1, we assume that ∆loc = (Da2)−1, where D is the density of states inside the band gap,
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Figure 3.22: Longitudinal resistivity ρxx as a function of the gate voltage at different temperatures
for devices HB4 (a), HB6 (b), HB12 (c) and HB14 (d). The color scales correspond to the temperature
and is given for each device. The gate voltage is rescaled to be centered on the gate voltage position
of the resistivity peak V max

g (T ).
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Figure 3.23: Extraction of the activation energy from the temperature dependence of the resistivity
peak. The blue, red, black and green circles correspond to the experimental resistivity peak for
devices HB4, HB6, HB12, HB14 respectively. The solid lines are the fits of the experimental data for
the same four devices. For device HB12, the dashed lines also shows the 3 contributions to the total
fit: ρ0

a = 1/σ0
a, ρ0

loc = 1/σ0
loc, and ρ0 = 1/σ0.

and a is the distance between the nearest hopping sites. From Section 3.3.1, we estimate that
the gate voltage difference between the edges of valence and conduction bands is ∆Vg = 2 V.
We have:

D = ∆Vg(C/e)/∆,

where C = 0.3 mF m−2 is the capacitance per unit area of the gate, and ∆ = 41 meV is the
energy gap. We obtain D = 8.8 × 1012 eV cm−2 and a = (64 ± 21) nm.These inter-site distances
are rather large and correspond to a low density of hopping sites, 0.025 × 1012 cm−2. The same
conclusion was obtained for device HB1. This suggests that the model of nearest neighbor
hopping is not realistic. Variable range hopping could be a more adequate model, and gives
also very good fits. In view of the data, as this additional, “hopping” term makes only a minor
contribution to the overall fit, we cannot conclude.

3.3.3 Non-local measurements
Landauer-Büttiker model

We now investigate the transport properties in the band gap by local and non-local mea-
surements. For the four different devices, the local and non-local resistances are defined as
RL = R14,23 = V23/I14 and RNL = R26,35 = V35/I26. The numbering of contacts and the equiva-
lent resistor network for a Hall bar device is provided in Chapter 1. Recall that contact 1 is one
end of the Hall bar. From this end, the contacts are then indexed clockwise. Figure 3.24(a,b)
shows both local RL and non-local RNL configurations around in the band gap for the four Hall
bar devices, as a function of the gate voltage, at the temperature T = 300 mK.

First, the experimental non-local resistances are compared to the expected non-local resis-
tance ROhmic

NL of an homogeneous device (i.e. without edge conduction) defined by the formula
which we already used:

ROhmic
NL = 4

π
RL

W

lp
exp

(
−π

lp
W

)
,
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Figure 3.24: (a,b,c,d) Non-local (red solid line) and local (black solid line) resistances as a func-
tion of the gate voltage at T = 300 mK for devices HB4, HB6, HB12, and HB14 respectively. The
blue dashed lines in panels (a,b) panels correspond to the non-local resistance calculated from the
local data for a device of homogeneous resistivity. Note that in the (c, d) panels, the non-local re-
sistance calculated from the local data is not represented as its magnitude is negligible compared
to both local and non-local resistances. The dotted lines correspond to the expected value of peak
resistance for local and non-local configurations for diffusive edge state with an equilibration length
λ = 12 µm, 7 µm, 5 µm and 3 µm for devices HB4, HB6, HB12, HB14 respectively.



3.3. Devices HB4, HB6, HB12 and HB14: (S3198) 113

where W and lp are the width of the Hall bar and the distance between the lateral contacts
respectively.

For devices HB12 and HB14, the geometric ratio are W/lp ≈ 1/3 and 1/4 respectively.
Hence, the expected magnitudes for the ohmic non-local resistance ROhmic

NL are 105 and 106 times
smaller than the local resistances RL. From Fig. 3.24(c,d), it is clear that the experimental
non-local resistances for devices HB12 and HB14 are several orders of magnitude higher than
ROhmic

NL in the gap. This ohmic model completely fails. Note that for HB12 and HB14 devices, in
both valence and conduction bands, the non-local resistance could not be measured; It dropped
below the sensitivity of the lock-in in the former case and saturated due to the offset DC of
the voltmeter in the latter case. This model also fails for devices HB4 and HB6, as shown in
Fig. 3.24(a,b), where ROhmic

NL is indicated and again appears to be much lower than RNL.
We assume now that the non-local peak is due to edge conduction and we fit RL and RNL

in the band gap as
RL = h

e2
1
λ

lp
2 , (3.12)

and
RNL = h

e2
1
λ

(2l1)2

(4l1 + 2lp) , (3.13)

where λ is the length at which counter propagating edge channels equilibrate. In Fig. 3.24
we show the resistances calculated with the λ values obtained for each device, considering
lp = 10 µm, 30 µm, 50 µm and 70 µm and l1 = 40 µm, 30 µm, 20 µm and 10 µm respectively.
We obtain λ = 12 µm, 7 µm, 5 µm and 3 µm for devices HB4, HB6, HB12, HB14 respectively.
This gives an average value λ = (6.8 ± 3.3) µm. Note that in the case of the HB4 device, λ
slightly exceeds lp, thus this result is inconsistent with a diffusive regime of topological edge
state. We argue in what follows that this inconsistency is not due to parasitic trivial edge
channels, and that it can be explained by taking into accound the residual bulk conduction in
the gap.

Square lattice model

We investigated further the bulk and edge contributions to the conduction in the band gap using
the square lattice model detailed in Chapter 2. The dimensions of the networks of resistors
used to model the HB devices are provided in Table 3.2. In Fig. 3.25, we show the experimental

Table 3.2: Hall bar dimensions for the Hall bar devices and for the associated resistor network.

L (µm) W (µm) lp (µm) l1(µm) mesh size (µm) nL nW nC

HB4 110 20 10 40 0.5 221 41 99
HB6 110 20 30 30 0.5 221 41 79
HB12 110 20 50 20 0.55 199 37 53
HB14 110 20 70 10 0.55 199 37 26

local and non-local resistances at respectively T = 300 mK and T = 2.0 K for devices HB6 and
HB14. In panels (a,c), it is clear that the square lattice model precisely fits the experimental
data for all gate voltage values. In panels (b,d), we show both bulk conductivity σbulk and edge
conductance Gedge obtained from the square lattice fit. We recall that Gedge is the conductivity
of one edge, σedge, in meter per Ohm, divided by the distance between the lateral probes, lp.
Therefore, σbulk and Gedge are in the same units (in Siemens) and can be directly compared.

In the middle of the band gap (i.e. close to Vg − V max
g = 0 V, a significant reduction of the

bulk contribution compared to band gap edges is observed. For device HB6, we get σbulk ≃ 2 µS
and Gedge ≃ 15 µS. For device HB14, we get σbulk ≃ 0.5 µS and Gedge ≃ 6.5 µS.



114 Chapter 3. Experimental Results and analysis

Figure 3.25: (a,c) Local resistance RL and non-local resistance RNL as a function of the gate voltage
at respectively T = 300 mK and T = 2 K for the devices HB6 and HB14. In both panels, the circles
correspond to experimental data and the dashed lines to the resistances calculated using the square
lattice model. The gate voltage is rescaled to align the peak values of resistance on the position
Vg − V max

g = 0 V. (b,d) Bulk conductivity σbulk and edge conductance Gedge as a function of the gate
voltage for HB6 and HB14. Both σbulk and Gedge are extracted from the square network of dimensions
given in Table 3.2. In panel (d), σbulk and Gedge are displayed only for a reduced gate voltage range
indicated by vertical dashed lines. Outside this range the experimental RNL is erroneous (lock-in
offset).

For HB6, in the valence and conduction bands (|Vg − V max
g | ≥ 2 V) the edge conductance is

shunted by the dominating bulk conductivity σbulk. More precisely, Gedge = 0 in the conduction
band, and becomes small in the valence bands. In facts, a close inspection of Fig. 3.25(a) reveals
that the fit of the non-local resistance is not perfect in the valence and conduction bands. We
attribute this behavior to small differences between the actual geometry of the device, and the
geometry used in the square lattice model. Indeed, the device is modeled by a perfect rectangle,
with point-contact lateral probes.

For HB14, the situation is different. We cannot evaluate Gedge in the bands, because RNL

was not measured correctly in these regions. Therefore, Fig. 3.25(d) shows Gedge and σbulk in
the band gap only.

Square lattice model: temperature

The local and the non-local resistances have been measured at a function of temperature for
devices HB4 and HB6. Figure 3.26(a,b) shows the experimental RN , RNL as solid lines for
device HB4. The temperature evolution of both resistances is striking. At low T , RNL is much
larger than RN in the gap. When the temperature increases, both resistivity peaks decrease,
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Figure 3.26: (a) Local resistance RL and (b) non-local resistance RNL as a function of the gate
voltage at different temperatures for device HB4. In both panels, open circles correspond to the
experimental data and the solid lines to the resistances calculated using the square lattice model. The
gate voltage is rescaled to align the peak values of resistance on the position Vg − V max

g = 0 V. The
same color scale corresponding to the temperature is used in panels (a,b,c) and is provided in panel
(a). (c) Bulk conductivity σbulk (left panel) and edge conductance 5×Gedge (right panel) as a function
of the gate voltage, for different temperatures. Both σbulk and Gedge are extracted from the square
network whose dimensions are given in Table 3.2.
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Figure 3.27: (a) Local resistance RL and (b) non-local resistance 2 × RNL as a function of the gate
voltage at different temperatures for the HB12 device. In both panels, circle symbols correspond to
the experimental data and the solid lines to the resistances calculated using the square lattice model.
The gate voltage is rescaled to align the peak values of resistance on the position Vg − V max

g = 0 V.
The same colorscale corresponding to the temperature is used in panels (a,b,c) and is provided in
panel (a). (c) Bulk conductivity σbulk (left panel) and edge conductance 5 × Gedge (right panel) as a
function of the gate voltage, for different temperatures. Both σbulk and Gedge are extracted from the
square lattice network whose dimensions are given in Table 3.2.
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but the RNL peak decreases faster. At T = 50 K, RNL is smaller than RN , for all gate voltages.
In the same panels, the results of the square lattice fit are also indicated with open circles.

Again, this model fits quite perfectly the data. Fig. 3.26(c,d) shows σbulk and Gedge, as extracted
from these fits. It appears that on the studied gate voltage range, σbulk is always insulating, as
it increases with temperature. This indicates that the band edges have not been reached yet -
this is confirmed by the direct analysis of the RL data in Fig. 3.26(a). The edge conductance
Gedge is non-zero in the gap only. There, it has a weak temperature dependence, suggesting a
unexpected insulating behavior. There are two prominent peaks at the two edges of the band
gap. These peaks are almost systematically observed for all devices. We have no definitive
explanation for the origin of these peaks.

Finally, as for HB4 in Fig. 3.26, Fig. 3.27 shows the RN and RNL peaks for device HB12,
and their analysis with the square lattice model. The edge of the valence band is well visible
here, as there is a crossover from insulating to metallic behavior in both RL and σbulk around
Vg − V max

g ≃ −1.5 V. The fits have been done on a reduced range of gate voltages and focus on
the band gap.

Figure 3.28(a) resumes the temperature dependence of σbulk and Gedge for both devices HB4
and HB12. The temperature dependence has been taken from the maximum of the resistivity
peak, at Vg = V max

g . Some remarkable properties can be listed:

1. the temperature dependence of Gedge corresponds to a weak (HB4) or a very weak (HB12)
insulating behavior. This seems to contradict the expectation that the edge states (at
least if topological) should have a metallic behavior;

2. the edge conduction dominates over the bulk conduction up to T ≃ 30 K. Above this
temperature, we observe a sudden collapse of Gedge that is probably an artifact of the
numerical model;

3. σbulk has the expected temperature dependence (thermal activation) at high T . However,
at low T , the temperature dependence of σbulk is much weaker. This could be a signature
of variable range hopping. This point would deserve more attention, as the residual bulk
conductivity is a problem in QSHI in general;

4. both devices have the same qualitative behavior. However, the overall conductivity of
device HB12 is much smaller. There is no reason for this difference as both devices are
from the same MBE growth, and the same lithography process.

Finally, Figure 3.28(b) summarizes the values of (Gedge, σbulk) at Vg = V max
g for the four

devices HB4, HB6, HB12 and HB14. The solid black line corresponds to the equation σbulk =
Gedge. Above this line, the conduction is therefore dominated by the bulk conductivity. The
vertical dashed line corresponds to Gedge = e2/h. This line corresponds to the case of perfect
ballistic conduction. On the right side of this line the edge conduction is larger than the
quantum of the conductance, and the edge conductance must have an additional parasitic
component. On the left side of the same line, purely topological and ballistic edge conduction
is possible. The main region of interest is the one painted in green, where purely topological
edge conduction is possible, dominating the residual volume conductivity. It appears that at
low temperatures, all four devices fall within this region of interest. When T increases, as
shown by the temperature evolution of BH4 and HB12, the global conductivity increases and
finally surpasses the contribution of the edge.
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Figure 3.28: (a) Bulk conductivity σbulk and edge conductance Gedge as an inverse function of T at
Vg = V max

g for devices HB4 and HB12. The squares correspond to σbulk and the circles to Gedge. The
color of these symbols corresponds to the temperature. Distinction is made between the two devices
by the color of both dashed and solid lines. The black lines correspond to device HB4, and the red lines
to device HB6. (b) Gedge and σbulk for HB4 (cross), HB6 (square), HB12 (triangle) and HB14 (circle),
at Vg = V max

g . The solid black line corresponds to the equation σbulk = Gedge and the vertical dashed
line to Gedge = e2

h (ballistic edge conduction). Red region: additional parasitic edge conductivity is
present. Green dashed region: diffusive edge conduction can be at play. The temperature dependence
of (Gedge, σbulk) is indicated for HB4 and HB12 (up to T = 57 K) with the same color scale as in panel
(a). The positions of HB6 and HB14 correspond to T = 0.3 K and 2 K respectively.
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Figure 3.29: (a,b) Longitudinal resistivity ρxx of device HB14 as a function of B in the range 0 T
to 55 T for a reduced selection of gate voltages highlighted in panel (c). (c) Gate voltage dependence
of the zero-field longitudinal resistivity ρ0. The black solid line corresponds to the experimental data
and the symbols correspond to the specific values of gate voltage corresponding to the magnetic field
dependence in (a,b,d) panels. (d) Transverse resistivity ρxy as a function of B for different Vg. The
color of the lines corresponds to the gate voltage and is identical in panels (a,b,c,d). The measurements
were done at T = 1.7 K with a bias current I = 1 µA.
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3.3.4 Device HB14 at very high magnetic fields

Because device HB14 was measured in pulsed magnetic field, it deserves a special attention
and a dedicated section. Figure 3.29 shows the gate voltage and magnetic field dependencies
of the longitudinal and transverse resistivities (ρxx and ρxy) for this device. Figure 3.29(a,b)
shows the longitudinal resistivity ρxx for different gate voltages, and Figure 3.29(d) shows the
transverse resistivity ρxy. SdH oscillations are clearly observed in ρxx, as well as quantized Hall
plateaus in ρxy.The ambipolarity is clearly observed, and Fig. 3.29(c) also shows ρ0(Vg), which
is the longitudinal resistivity at B = 0 T. There is an evident resistivity peak in the gap.

For clarity, the ρxx curves have been separated into two parts. Figure 3.29(a) shows ρxx when
the Fermi level lies in the valence or conduction band. Note that the colors of the solid lines refer
to the gate voltage positions and are provided by the color of the circle symbols in Fig. 3.29(c).
In the conduction band, ρxx is almost constant at low B, as expected if only one carrier is
present. By contrast, in the valence band, ρxx exhibits a strong positive magnetoresistance at
low fields (B < 5 T), which we attribute to the coexistence of two carriers. This is in agreement
with the curvature of the ρxy(B) curve observed on the hole side, see Fig. 3.29(d). All these
phenomena were already observed previously, see e.g. Fig. 3.21.

Fig. 3.29(b) only shows ρxx when the Fermi level is in the gap or close to the gap. The
situation is quite remarkable here: a large resistivity dip persists, whatever the gate voltage.
It culminates around Vg ≃ 0 V, at B ≃ 30 T, ρxx ≃ 50 kΩ. Some additional oscillations are
visible, that are quite similar to SdH oscillations. In the following, we will try to determine if
this dip can be a signature of topological effects.

SdH regime

Let us first analyze shortly the SdH oscillations that are visible in device HB14, far from the gap.
Figure 3.30 shows the longitudinal resistivity ρxx and the absolute value of its first derivative
|∂ρxx/∂B| as a function of the inverse magnetic field for several gates voltages. In Fig. 3.30(b),
we report the extracted Landau level positions for the different gate voltages and calculate
the related carrier concentration, as we did before for device HB1. The corresponding Landau
levels indexes are extracted from the transverse resistivity quantized values ρxy = e2/νh at the
same (B, Vg) coordinate in Fig. 3.29.

Figure 3.30(c) shows the carrier density extracted from both Hall effect (nH) and SdH
oscillations (nSdH). Let us first consider the conduction band. As for device HB1, the good
agreement between nH and nSdH indicates that there is only one kind of carrier. The situation
is different in the valence band. The carrier density nSdH is quite close to what is expected,
with the correct slope. Therefore, we can determine that nSdH is related to holes. The Hall
concentration is obviously wrong. There must be another kind of carriers, probably electron-
like, to compensate for the too high value of |nSdH|.

We believe that the presence of two different carriers in the valence band is an indirect
signature of the inverted gap. If this is true, a high magnetic field analysis can bring us another
critical hint. Indeed, at some magnetic field, one expect the crossing of the zero mode LLs.

Model of conductance

We are now in position to estimate the conductivity as a function of gate voltage and magnetic
field. As shown in Chapter 2, we have already calculated the LL dispersion by the k · p method
up to 25 T. As the k · p calculation is quite cumbersome, we fit the k · p result by the simpler
BHZ model. Within the representation defined by the basis states |E1, +i⟩, |H1, +i⟩, |E1, −i⟩
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Figure 3.30: Carrier density extraction from SdH oscillations analysis for HB14. (a) Normalized
longitudinal resistivity ρxx (coloured solid lines) and the absolute value of it first derivative ∂ρxx

∂B
(black dashed lines) as a function magnetic field for different gate voltages. The colored solid lines
correspond to ρxx and the superposed dashed lines to the derivative. The circle symbols correspond to
the extracted minima. The gate voltage values are provided on the sides of panel (a). We use the same
color code to represent the gate voltage in the whole figure . (b) Position of the SdH minima 1/B as
a function of the Landau level index for different gate voltages. Landau level indexes are determined
by the quantized value of the Hall plateaus observed in the transverse resistivity ρxy. Circle symbols
correspond to the extraction made from panel (a). Solid lines are the corresponding linear fits. The
slope of the different fits is extracted to calculate the corresponding SdH concentrations. (c) Carrier
concentrations n as a function of gate voltage Vg extracted from the experimental data. The black
dashed line corresponds to the linear evolution of the concentration calculated from RH . Circle symbols
correspond to the concentrations extracted from the Hall effect and square symbols correspond to the
SdH oscillations analysis. All extractions are made from magneto-transport measurements performed
at T = 1.7 K with a bias current of I = 1 µA.
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|H1, −i⟩, the effective 2D Hamiltonian has the form:

H2D(k) =
(

HBHZ(k) 0
0 H∗

BHZ(−k)

)
, (3.14)

where asterisk stands for complex conjugation, k = (kx, ky) is the momentum in the QW plane,
and HBHZ is the 2 × 2 BHZ Hamiltonian defined in the introduction. To calculate LLs in the
presence of an external magnetic field B oriented perpendicular to the QW plane, one should
make the Peierls substitution. Additionally, we add the Zeeman term in the Hamiltonian

HZ = 1
2µBB


ge 0 0 0
0 gh 0 0
0 0 −ge 0
0 0 0 −gh

 , (3.15)

where µBB is the Bohr magneton, ge and gh are the effective (out-of-plane) g-factors of the E1
and H1 subbands, respectively. Solving the eigenvalue problem, the LL dispersion in the BHZ
model is given by:

E(+)
n = C − 2Dn + B

a2
B

+ ge + gh

4 µBB ±

√√√√2nA2

a2
B

+
(

M − 2Bn + D
a2

B

+ ge − gh

4 µBB

)2

for n > 0,

(3.16)
E

(+)
0 = C + M − D + B

a2
B

+ ge

2 µBB for n = 0, (3.17)

E(−)
n = C − 2Dn − B

a2
B

− ge + gh

4 µBB ±

√√√√2nA2

a2
B

+
(

M − 2Bn + D
a2

B

− ge − gh

4 µBB

)2

for n > 0

(3.18)
E

(−)
0 = C − M − D − B

a2
B

− gh

2 µBB for n = 0, (3.19)

where B is the magnetic field, n is the index of the Landau level, (+)/(−) designates the
upper/lower block of the H2D Hamiltonian, and A, B, C, D,M are the BHZ parameters that
are to be adjusted, so that the dispersion of the BHZ LLs fit with those calculated by the
k · p method. We can get a reasonable fit with the parameters A = 2.3 eV Å, B = −40 eV Å2,
C = −0.035 eV, D = −18 eV Å2, M = −0.022 eV, ge = 0.5 and gh = 15. However, of course,
the critical magnetic field Bc at which the zero-mode LLs cross is still Bc ≃ 17 T, as given by
the k · p method.

If we assume that the dip at B = 27 T corresponds to the crossing of the zero-mode LLs,
then, we have to dilate the magnetic field, as B → 1.6B. How to justify such a renormalization?
In both type I and type II quantum wells, it has been found that short-range disorder increases
the characteristic field Bc [PHM+14]. However, this is a consequence of the same mechanism
that operates in topological Anderson insulators: a disorder-induced renormalization of the
band gap. Since it seems that the theoretical band gap (without disorder) corresponds to
the experimental one, one cannot simply justify an increase of Bc by short range disorder.
This kind of disorder should also increase the energy gap. We speculate, however, that long-
range disorder may affect the energy gap and Bc differently, because typically such disorder
should leave the energy gap at k = 0 unmodified, while the band dispersion (and thus the
LL dispersion, following the Onsager semi-classical quantization approach) should be affected.
We extracted both Hall mobility and quantum mobility from device HB14. The quantum
mobility is defined by the quantum time τq, extracted from the damping of the SdH oscillations:
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µq = eτq/m∗. We obtained µ = 5 m2 V−1 s−1, 7.5 m2 V−1 s−1, 9 m2 V−1 s−1 and 20 m2 V−1 s−1

(see Fig. 3.21), and µq = 0.8 m2 V−1 s−1, 1.1 m2 V−1 s−1, 1.2 m2 V−1 s−1 and 1.5 m2 V−1 s−1 at
Vg = 3 V, 5 V, 6 V and 9 V respectively. This yields µ/µq ≃ 5–15, in the conduction band.
Therefore, the disorder is long-range, and our hypothesis is plausible. Of course, we still lack
a more quantitative analysis to validate this model. For now, we simply assume that we can
somehow justify the magnetic field expansion, and our last task is to mimic the overall behavior
of the magnetoresistance.

Without disorder, the density of states D2D is a sum of δ-functions centered on the energy
EN of the LLs:

D2D(E) = eB

h

∑
N

δ(E − EN), (3.20)

where e is the elementary charge, h is the Planck constant, N is a global index over the LLs
E(+), E(−), E

(+)
0 , E

(−)
0 . The factor eB/h is the degeneracy of each Landau level. Because of

the finite value of τq, each LL is in fact broadened. We have chosen arbitrarily a Gaussian
broadening of width at half maximum Γ, related to the mean time of diffusion of the carriers
by Γ = ℏ/τq. The density of state becomes:

D2D(E) = eB

h

∑
N

A(E − EN), (3.21)

A(E) = 1√
2πΓ

exp
(

E2

2Γ2

)
. (3.22)

The density of states thus presents peaks, which are at the origin of the Shubnikov–de Haas
oscillations. It is now necessary to fill the Landau levels with holes or electrons. The filling
factor is given by the formula below:

ν(E) = h

eB

∫ E

−∞
D2D(E)dE = 1

2
∑
N

(
1 + erf

(
E − EN√

2Γ

))
+ Coffset. (3.23)

The offset term is a numerical artifact necessary to correctly fill the Landau levels. It is
determined so that ν = 0 when the energy E is in the gap. Once this offset is set, we can
calculate the Fermi level for a given carrier density, fixed by the gate voltage. To calculate the
Fermi level, we just have to find the zero of the following quantity:

f(E) = nexp − n(E) = nexp − eB

h
ν(E) (3.24)

where nexp is the experimental electron density, imposed by the gate voltage value. By doing
this calculation for each value of magnetic field, we obtain the evolution of the Fermi level.
At low field, we populate Landau levels up to a large index because of their low degeneracy.
When we increase the magnetic field, the degeneracy of each Landau level increases and, as
the number of electrons is fixed, we depopulate levels of high index to populate levels of low
index. The Fermi level thus falls progressively towards the lowest Landau levels. The disorder
influences the way, abrupt or smooth, in which the Fermi energy goes from one Landau level
to another. The more important the disorder is, the wider the levels are and the more easily
the Fermi energy will be stabilized between two neighboring Landau levels.

The last step is to calculate the conductivity from the density of state evaluated at the
Fermi level. The calculation of the conductivity is not obvious and a number of models exist.
We used a formula originally proposed by Gerhardts [Ger08].The conductivity is given by:

σxx =
∑
N

(
N + 1

2

)
σ0(EF − EN), (3.25)

σ0(E) = e2

h

[√
2πΓA(E)

]2
. (3.26)
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Figure 3.31: (a) Magnetoresistances ρxx at Vg − V max
g = 0 V, −4 V and 4 V as calculated by the

model. (b) Colormap of the longitudinal magnetoresistance, as a function of B and Vg − V max
g .

The transverse conductivity for one LL, σxy,N is given by the semicircle relation σ2
xx,N +

σ2
xy,N = 1.

The results of the simulation are reported in Fig. 3.31. Figure 3.31(a) shows only three
magnetoresistances at three different voltages: one in the gap, one in the valence band, and
the last one in the conduction band. The dramatic increase of the magnetoresistance when
the Fermi energy lies in the gap is obvious. The dip around B ≃ 30 T is well reproduced, and
its overall amplitude is of the same order of magnitude, although twice as small as the exper-
imental dip (20 kΩ versus 50 kΩ). The SdH oscillations are well reproduced in the conduction
band. For the chosen LL broadening, no SdH oscillations are visible in the valence band. For
completeness, a color map of the calculated magnetoresistance is shown in Fig. 3.31(b). Also,
Fig. 3.32 compares both experimental and numerical magnetoresistances, as a function of gate
voltage and magnetic field, evidencing the overall good agreement between the model and the
experiment.
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Figure 3.32: Three dimensional artistic view of the longitudinal magnetoresistance, as a function of
B and Vg − V max

g , for (a) device HB14 and (b) the simuation.





Conclusion

The aim of this thesis was to emphasize the potential of InAs/GaSb based structures for the
observation of the quantum spin Hall effect at higher temperatures. The idea at the origin of
this work was to restore the inversion symmetry of the structure of the composite quantum
well of InAs/GaSb, so as to amplify the energy of the topological gap in these structures to
values greater than thermal energy at room temperature. Our strategy was the addition of
a GaSb layer in the active part confined between the AlSb barriers. This wider gap gives
hope to observe edge states with quantized conductance in the quantum spin Hall regime at
temperatures higher than the tens of mK needed in II-VI structures. Of course, the first steps
consisted in fabricating Hall bar devices from these specific quantum wells and characterizing
their band structure by magneto-transport measurements, before attempting to measure the
conductance of their edge states. The final objective was to demonstrate the quantum spin Hall
effect in these new structures, through edge state studies using a non-local electronic transport
technique. We therefore first presented the samples whose growth was performed to restore the
inversion symmetry of the quantum well structure. We have seen that each layer is important
until even the choice of the substrate. Indeed, the characterization of the growths made on
GaAs subtrates revealed a strong electrical anisotropy, as well as a conduction in layers below
those of the TQWs. A simple method has been proposed to rapidly evaluate the anisotropy
from a 8-contact square sample.

Numerous devices were fabricated from these growths to finely probe the low temperature
transport properties of these structures. In the second chapter, I emphasize the fact that
an important part has been devoted to the development of the fabrication process of these
devices. Still, a better control of the steps of etching and deposition of dielectric is necessary
for the reduction of the size of the devices. We have limited ourselves in this work to the
realization of Hall bar devices with relatively standard geometries. The fabricated devices have
nevertheless allowed the study of these devices via magneto-transport measurements. We have
demonstrated the expected gap widening, up to 45 meV, by thermal activation measurements
of this gap. For comparison, a similar gap size has been measured in topological insulators
based on WTe2 [WFG+18] and has recently allowed the observation of the QSHE up to 100 K.
In general, we have confirmed the validity of the theoretical calculations on which this work is
based. Similarly, the magnetic field measurements have allowed us to reconstruct the expected
structure for the Landau levels and demonstrate the band inversion. The last results obtained
during the measurements under intense pulsed magnetic field motivate the continuation of these
measurements for a finer and quantitative description of the role of the long-range disorder in
the position of the Bc value, corresponding to a topological phase transition.
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Finally, we have highlighted the presence of edge conduction which dominates in the gap.
This was made possible by the use of a numerical model, developed for the occasion, to analyse
both local and non-local transport results. This model, which consists of a 2D square lattice
network of resistors, allows us to discriminate the resistivity of the bulk to the additional
conduction along the edges. If the too large size of our devices does not allow us to observe
the expected quantization for topological edge states, we were able to extract systematically
an inelastic mean free path λ of the order of a few microns. Although the reduction in size
of devices raises issues of technological realization, a resolution of less than a few microns is a
very reasonable and attainable goal in the short run. For such a perspective, it is quite logical
to consider devices of smaller sizes and other geometries, such as H-bars for the study of edge
states, or L-shape Hall bars to evaluate locally the electrical anisotropy, and Corbino to focus
on the contribution of the bulk in the conduction bands.



Appendix

Code for computing the resistance on an infinite 2D plane between 2 circular probes

This code has been developed for the FreeFem++ software.
1 //2D resistance between two circular perfect contacts .
2 real sc =1; // scale for testing
3 real a= 1*sc;
4 {
5 ofstream file("2p_v2.txt");
6 for (real d=3.0;d< 41; d=d+1.0)
7 {
8

9 real f= 100.0* sc;
10 // A and B are perfect contacts ( circles )
11 border A(t=0, 2*pi){x=a*cos(t)-d/2; y=a*sin(t);}
12 border B(t=0, 2*pi){x=a*cos(t)+d/2; y=a*sin(t);}
13 //E0 to impose a finer mesh close to the contacts
14 border E0(t=0, 2*pi){x=f*cos(t); y=f*sin(t);}
15 //E1= end of the world
16 border E1(t=0, 2*pi){x=d*cos(t); y=d*sin(t);}
17 mesh Th= buildmesh (A( -20) + B( -20) + E0 (40)+E1 (200));
18 // plot(Th ,wait =1);
19

20 fespace Vh (Th , P2);
21 Vh u,v,dxu ,dyu ,dj; // u: voltage
22 real sigma =1; // sigma is introduced for clarity only
23

24 problem croix(u,v)= int2d(Th)
25 ( sigma*dx(u)*dx(v) +sigma * dy(u)*dy(v))
26 + on(A,u=1)+ on(B,u=-1)+on (E0 ,u=0);
27

28 croix;
29 // plot the solution
30 // plot (u, fill =1, value =1, wait =1);
31

32 // extract nabla u # electric field
33 dxu= dx(u);
34

35 // integrate the current along the y axis , x=0.
36 real res =0.0;
37 real ni= 1200;
38 for (int nc =0;nc < ni; nc ++)
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39 {
40 real t= nc/ni;
41 y = -f*(1-t) + f*t;
42 res = res - dxu (0,y)*(2*f)/ni;
43 }
44 cout << " current = " << res << " a.u., " ;
45 cout << "R = " << 2/ res << " rho [Ohms] " << endl;
46

47 file << a << ", " << d << ", " << 2/ res << endl;
48 }
49 cout << "the end" << endl;
50 }

Code of the square lattice model

Below we provide a simplified version of the python code based on the square lattice model.
This code can calculate numerically the non-local resistance:

ROhmic
NL =

4
π

RL exp
(

−π
lp

W

)
, (3.27)

where lp is the distance between the lateral probes, and W is the Hall bar width.
1 # square lattice of resistors , following the idea of Nichele et al.
2

3 import numpy as np
4 from scipy. sparse import lil_matrix
5 from scipy. sparse . linalg import spsolve
6 from matplotlib import pyplot as plt
7

8 # defines the source and drain contacts
9 #with some contact conductance Gc

10 #for internal calculation , a voltage +/- 1 V is applied on source and drain
11 class DEVconnection :
12 def __init__ (self ,nijkl , V0=-1,V1=1,Gc =100.0) :
13 self.V0=V0
14 self.V1=V1
15 self.Gc= Gc
16 self.nijkl=nijkl
17 self. source = nijkl [0]
18 self.drain= nijkl [1]
19

20 #class for a Hall bar of given geometry
21 #L : total length (int , arb. unit (eg um))
22 #W: total width (int)
23 #Lc: distance between the lateral probes and the closed source /drain contact

(int)
24 #sca: scale of the square nerwork same unit as L,W, Lc
25 class HBtopol :
26 def __init__ (self , L=110 , W=20, Lc=40 , sca =1):
27

28 self.n_L = (L)*sca //5 -1 # or +1 if GT 18* sca -1
29 self.n_W = W*sca //5+1
30 self.n_c = (Lc)*sca //5 -1
31 self.ntot= self.n_L * self.n_W +2
32 self.sca= sca
33 self. lcarre = 5/ sca # size of the resistor square
34 self.lclp= self. lcarre / (L-Lc -Lc)



3.3. Devices HB4, HB6, HB12 and HB14: (S3198) 131

35

36 self. tcontacts = [self.n_L*self.n_W ,
37 self.n_c ,
38 self.n_L -self.n_c -1,
39 self.n_L*self.n_W +1,
40 -self.n_c -1-2,
41 -self.n_L+self.n_c -2]
42 self.Mb= self. G_matrix_setup (0,1, 0)
43 self.Me= self. G_matrix_setup (1,0, 0)
44 #MT= f_M_square_lattice (0,0, 1, n_L , n_W , n_c)
45

46 self.R1423= DEVconnection ([0,3, 1, 2])
47 self.R2635= DEVconnection ([1,5, 2, 4])
48

49 self. DEVconn_setup (self.R1423) #local configuration
50 self. DEVconn_setup (self.R2635) #non local configuration
51

52 #for a given configuration c, defines the B vector (out/out currents )
53 def DEVconn_setup (self ,c) : #Gc , V1 ,V0 , nijkl):
54 source = c.nijkl [0]
55 drain= c.nijkl [1]
56 # tcontacts lists the position of the 6 contacts
57

58 #add a Gc conductance for the source and drain
59 Mc= lil_matrix (( self.ntot ,self.ntot))
60 Mc[self. tcontacts [ source ],self. tcontacts [ source ]] += -c.Gc
61 Mc[self. tcontacts [drain], self. tcontacts [drain ]] += -c.Gc
62 c.Mc= Mc.tocsc ()
63 # contact vector
64 c.Vc= [0]* (self.ntot)
65 c.Vc[self. tcontacts [ source ]] += -c.V1* c.Gc
66 c.Vc[self. tcontacts [drain ]] += -c.V0*c.Gc
67

68 def G_matrix_setup (self ,Ge ,Gb , GT):
69 A= lil_matrix (( self.ntot ,self.ntot))
70 d1= [Ge for _ in range(self.n_L -1) ]+ [0]
71 d2= [Gb for _ in range (self.n_L -1) ]+[0]
72 d3= [Gb for _ in range (( self.n_W -1)*self.n_L)]
73 d= [*d1 , *d2*( self.n_W -2) , *d1]
74 A. setdiag (d, 1)
75 A. setdiag (d,-1)
76 A. setdiag (d3 ,self.n_L)
77 A. setdiag (d3 ,-self.n_L)
78 # charge transfer length for the contacts can be defined
79 GeT=Ge
80 GbT=Gb
81 # contact 0
82 d1= [GeT ]+ [0]*( self.n_L -1) # GeT= Ge
83 d2= [GbT ]+ [0]*( self.n_L -1) # GbT= Gb
84 d3= [*d1 , *d2* (self.n_W -2) , *d1 , *[0, 0]]
85 A[ -2 ,:]= d3
86 A[: , -2]=[[x] for x in d3]
87 # contact 3
88 d1= [0]*( self.n_L -1) +[ GeT]
89 d2= [0]*( self.n_L -1) +[ GbT]
90 d3= [*d1 , *d2*( self.n_W -2) , *d1 , *[0, 0]]
91 A[ -1 ,:]= d3
92 A[: , -1]=[[x] for x in d3]
93 # diagonal terms
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94 d1= [-GeT -Ge -Gb , *[ -2*Ge -Gb ]*( self.n_L -2) , -GeT -Ge -Gb]
95 d2= [-GbT -3*Gb , *[ -4* Gb ]*( self.n_L -2) , -GbT -3* Gb] * (self.n_W

-2)
96 d= [*d1 , *d2 , *d1 , *[ -2*GeT -GbT *( self.n_W -2) , -2*GeT -GbT *( self.n_W

-2) ]]
97 A. setdiag (d ,0)
98 return (A.tocsc ())
99

100 # calculate a four probe resistance for a Hall bar
101 #Ge conductance at the edge
102 #Gb bulk conductance
103 #c four probe configuration
104 def resistance_solver (self ,Ge ,Gb , c): #Gc , V0 , V1 , n_L , n_W , n_c , offc ,

Rijkl ,Mco ,Vc):
105 M1= spsolve (Ge*self.Me+ Gb*self.Mb + c.Mc , c.Vc)
106 Isource = c.Gc* (c.V1 -M1[self. tcontacts [c. source ]])
107 Idrain = c.Gc* (M1[self. tcontacts [c.drain ]]-c.V0)
108 current = ( Isource + Idrain )/2.0
109 V= M1[self. tcontacts [c.nijkl [2]]] - M1[self. tcontacts [c.nijkl [3]]]
110 R= V/ current
111 return (R)
112

113 def f_r_estim (L, W):
114 return (4 / np.pi * np.exp(-np.pi * L / W))
115

116 tW= np.array ([5 ,6 ,7 ,8 ,10 ,15 ,20 ,25 ,30 ,40])
117 t1= np.zeros(len(tW))
118 t1e=np.zeros(len(tW))
119 Lp =20 # distance between the lateral probes
120 for n, W1 in enumerate (tW):
121 HB= HBtopol (sca =30, L=120 ,W=W1 ,Lc=int ((120 - Lp)/2.0))
122 Rnl= HB. resistance_solver (1,1, HB.R2635)
123 t1[n]= Rnl
124 t1e[n]= f_r_estim (20, W1)
125 print(Rnl , f_r_estim (20, W1))
126

127 plt. figure ( figsize =(4 ,3))
128 plt.clf ()
129 plt. semilogy (Lp/tW , t1 ,’o’, Lp/tW , t1e ,’c--’)
130 plt. legend ([’model ’, ’theory ’])
131 plt. xlabel (r’$L_p/W$’)
132 plt. ylabel (r’$R_{NL }/\ rho$ ’)
133 plt.show ()
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