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1.1 Modeling data by Networks and graphs

In statistics, more and more datasets can be represented as a form of a graph (also called
network), where individuals make links with each other, that we often call interactions. Famous
research topics are for example social networks studies, international trade exchange, biology,
consumption market and so on. These structures are valuable because they are easy to
visualize. This section is devoted to a reminder of some basic notions and formalizations about
network datasets, and some classical models similar to those studied in the present study.



1.1.1 Graphs

Mathematically speaking, a graph G = (V, E) is the data of a set of points V, called nodes
or vertices, and a set F of pairs of these vertices, called the edges. We often assume that
V = {1,...,n} where n is the number of vertices. The edges represents connections or
interactions between the entities. For example, {1,2} € E means that there is an edge between
vertex 1 and 2. We assume that edges are not directed, meaning that if i is connected to 7,
then j is connected to i. We also prohibit a node to be linked with itself. A graph can be fully
understand thank to a mathematical object called adjacency matrix. The adjacency matrix A of
agraph G = (V, E) is a square matrix of size n x n such that

1 if{i,j}ekE
Am{ {i,7}

0 otherwise.

More generally, some graphs could have labeled edges, then the adjacency matrix A is no
longer composed of 0 or 1 but of real entries. In the context of undirected graphs, adjacency
matrices are always symmetric and has null diagonal.

In a study conducted by [OW14b], the Political Weblog data was analyzed to examine the
level of interaction between liberal and conservative blogs during the 2004 US presidential
election. In this context, the weblogs were represented as vertices in a network, and an edge
was established between two weblogs if either one of them had a link to the other on their front
page.

Additionally, in order to understand how covariates can affect the structure of a network,
the authors analyzed a student friendship network from the US National Longitudinal Study
of Adolescent Health (Add Health). In this study, students were asked to provide information
about their gender, race, and school year (grades 7—12), and to nominate up to 5 friends of
each gender. The vertices of resulting network are the student, with a link present whenever
either of a pair of students nominated the other as a friend.

When discussing graphs, another matrix of interest that contains important structural
information about the network is the Laplacian matrix. This matrix is defined as follows: Let
D be a diagonal matrix where each diagonal entry D;; corresponds to the degree of the
vertex i in the graph, i.e. D;; = Z;;l A; j, where A is the adjacency matrix of the graph.
Then, the Laplacian matrix of the graph is defined as L = D — A. It is worth noting that the
Laplacian matrix is symmetric and positive semi-definite, and has a zero as eigenvalue, with
the associated eigenvector being the vector with all entries equal to one. The main properties
the the Laplacian matrix are given in [vL07, section 3]. One of the most important is that the
spectrum of L provides information about the connectivity and the community structure of the
graph. The next proposition is a well-known result in graphs literature that can also be found in
[vLO7].



Proposition 1. The number of connected components in a graph is equal to the multiplicity
of the zero eigenvalue of its Laplacian matrix, and the corresponding eigenvectors are the
indicators of these connected components.

This proposition emphasizes the link between the community structure of a graph and the
spectral properties of its adjacency matrix. This will motivate the spectral clustering algorithm
presented before in subsection 1.1.5.

1.1.2 Bipartite graphs

In this thesis, our focus will be on bipartite graphs, which are a specific type of graph where the
set of vertices, represented by V, is divided into two distinct sets, denoted as V; and V5. More
specifically, V' can be expressed as the union of V; and V5, and the intersection between
and V; is the empty set. The key characteristic of bipartite graphs is that edges in E can only
be formed between a vertex in V; and a vertex in V5. We often refer to V; as the left hand side
of the bipartite graph and 1, as the right hand side as visualize in figure 1. This structure is
commonly used to model interactions between two different types of individuals or entities.

Bipartite networks, as well as graphs, can be fully represented by there adjacency matrix
(sometimes called bi-adjacency matrix). Let denote n = |V1| and m = |V5| the cardinal of the
sets of vertices V; and V%, then the adjacency matrix of the bipartite graph G = (Vi U V5, E) is
the matrix A of size n x m such that for every i € V; and j € V5,

1 if{i,j}eFE
Am‘{ {1,5}

0 otherwise.

As before, in more general settings, edges could be labeled by real values, then matrix A
lives in R™*, and its coefficients are the edges label (the 0 label means no edge). Notice that
A is no longer automatically symmetric, even if n = m, this will be one of the most important
issue to tackle along this thesis.

The paper [DG14a] investigates the dynamics between individuals’ personality traits and
their achievements within the marriage market. The research focuses on an example of a
bipartite network, where the two distinct groups of vertices represent men and women. The
presence of an edge in this network signifies a marital union between two individuals. By
analyzing this bipartite structure, the study aims to uncover potential correlations between
individuals’ personality traits and their levels of success in finding a spouse. This is the sort
of situation where bipartite graphs arise as natural models or objects, that is, when there are
really two distinct types of nodes.

The statistical properties of a network dataset can be characterized by the statistical
properties of its adjacency matrix A. As such, for our study, both the adjacency matrices and



associated graphs will be considered random. One popular class of random graph models is
the stochastic block model.

Vo
Vi

—

— 1100 1
| o1 100
l‘ A=1o 010 0
<] 00101

a

Figure 1: Example of a bipartite graph and its adjacency matrix.

1.1.3 The stochastic block model

Returning to unipartite graphs can help us better understand the stochastic block model (SBM),
which is a widely-used generative model for random graphs exhibiting community structure. In
this model, subsets of vertices have higher edge densities with each other than with vertices
in other subsets. It was first introduced in 1983 by [HLL83] as a mathematical formulation in
the field of social networks. The SBM has been an active area of research for at least two
decades and has significant applications in statistics, machine learning, and network science.
It is commonly used as a benchmark for evaluating community detection algorithms for network
data. The stochastic block model takes the following parameters:

» The number of vertices of the graph, denoted by n.

 The partition of the set of vertices {1,...,n} into blocks C1,...,Ck. The sets C}, of the
partition are often called communities or clusters.

+ The symmetric matrix P € [0, 1)5>*X of probabilities of connections between vertices,
depending on what clusters the vertices belong to.

To build a graph on a given set of vertices, we need to define the set of edges. For the SBM,
the set of edges is independently sampled at random as follow : two vertices v € Cj and
v € Cy are connected with probability P, ,. In other words, the probability for a vertex u to be
connected to an other vertex v depend only on the community to which « and v belong. In term
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of adjacency matrix, the SBM corresponds exactly to sample a random symmetric matrix A
with independent entries A; ; drawn from the Bernouilli distribution of parameter Py, ; if i € Cj,
and j € C,. We can give some particular examples of the SBM, that are described bellow and
also depicted in Figures 2 and 3.

* When matrix P has all its entries equal to some p € [0, 1], the obtained network is an
Erd6s—Rényi graph, where all the edges appears independently and with the same
probability p. This case corresponds to K = 1, that is there is only one community.

» When the matrix P is diagonal, it implies that vertices are only connected within their own
community, leading to a strong segregation phenomenon. The adjacency matrix in this
case would be block diagonal with blocks representing K disconnected communities.

» The specific instance of the SBM, where the diagonal entries of P are all equal to p, while
the off-diagonal entries are equal to ¢, is called planted partition model. In this model,
two vertices in the same community are connected with probability p, while two vertices
in different communities are connected with probability ¢. This prototype of the SBM is
the most frequently analysed in the literature. It is called an assortative model if p > ¢,
and disassortative model, when p < gq.

* When all the diagonal entries of P are strictly larger than all off-diagonal entries, the
model is called strongly assortative. This means that vertices in the same community are
more strongly connected to each other than vertices in different communities.

* When each diagonal entry is strictly larger than the other entries in its own row and
column, the model is called weakly assortative. It extends the strongly assortative model.
Similar definitions exist for disassortative models, where the inequalities are reversed.
These conditions can affect the efficiency of community detection algorithms, with some
algorithms performing better on assortative or disassortative block models.

The stochastic block model can be extended to bipartite networks. In contrast to unipartite
networks, where a single type of community structure is present, bipartite networks have two
distinct types of community structure, one for each side of the bipartite graph. It can model a
situation where some workers have to look for some firms to work for. On one side, the workers
can be grouped into communities based on factors such as age range or professional skills.
On the other side, the firms can be classified into communities based on their line of business.
In the statistical applications, the goal is to identify the underlying community structure using
the data and not to provide it. The probability matrix associated with a bipartite stochastic
block model (BSBM) is not necessarily square, and the notion of assortativity does not apply. A
BSBM with two communities per side has been defined and studied in literature, as in [NST22]
and [FP16a]. These works also address the community detection problem.
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(a) Erdés-Rényi, p = 0.5 (b) Diagonal model (c) Planted model (0.7,0.2)

Figure 2: Representation of adjacency matrices for particular examples of the SBM. The central
figure represents a diagonal model where the probability matrix P = diag(0.7,0.1,0.5,0.4,0.9)
is diagonal.

1.1.4 Community detection

Community structures are a frequent occurrence in real-world networks. In social networks,
for instance, communities may form around shared interests, locations, occupations, and
so on. The presence of communities in a network can also have significant impacts on
various processes such as epidemic or rumor spreading. Therefore, detecting and studying
communities is crucial for gaining a proper understanding of these processes and how they
operate in different settings.

From a statistical standpoint, community detection involves the question of whether we can
recover the community structure from an observed network with latent community structure.
The observed network could be generated from a fully known, partially known, or unknown
SBM. However, to answer this question, we must first define what we mean by "recovery" of
the network structure. Typically, there are two types of recovery that researchers consider in
the literature.

* Partial recovery, which basically means that we are able to asymptotically recover the
community structure up to a small fraction of missclustered vertices, that is a large part
of the vertices in the network are correctly assigned to their corresponding communities.

» Exact recovery is define as a complete asymptotic structure recovery, every vertex in the
network is correctly assigned to its corresponding community.

The SBM and specifically the planted partition model discussed in subsection 1.1.3 have been
extensively studied in the literature with regards to recovery conditions. [ABH16, page 3]
presents a table summarizing some of these conditions in the context of a planted partition
model, which depend on the parameters p,, and ¢,, of the model that vary with the number of
vertices n. One notable observation is the following: for certain parameter settings, recovery
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Figure 3: Representation of adjacency matrix for strongly and weakly assortative model. Notice
that in figure 3b, there are 3 communities, but two of them are difficult to distinguish. Moreover,
we see that the inter-connectivity between communities 2 and 3 located at the bottom right of
the figure, is higher than the intra-connectivity within community 1 at the top left. This particular
phenomenon cannot occur in a strongly assortative model.

with high probability is achievable, whereas for others, recovery is impossible regardless of the
employed algorithm. There are also studies that address the recovery threshold question for
bipartite stochastic block models, as seen in [FP16a]. In addition, [NST22, Table 1] presents a
summary of recovery conditions and algorithms used for detecting the community structure in
bipartite stochastic block models. Numerous algorithms have been developed for both bipartite
and unipartite settings, with spectral clustering being one of the most widely used, as discussed
in the following subsection.

1.1.5 Spectral clustering

As seen in Proposition 1, the community structure of a unipartite graph is related to the
spectrum of the Laplacian matrix. Spectral clustering algorithms are based on this observation
to infer the partitioning of the vertices. [DH73] was first suggested using the eigenvectors of
adjacency matrices of graphs to find such partitions, and then literature has grown on this topic.
A nice overview over the history of spectral clustering can be found in [ST07] or [vL07, section
9].

To give an intuition on spectral clustering, let give a simple example. Consider the Laplacian
matrix that corresponds to a graph with two distinct connected components {1,2} and {3,4}
and assume that we want to cluster this graph into two communities.



C Co
1 -1 0 0
-1 1 0 0
L=
0 0 1 -1
0 0 -1 1

The Laplacian matrix L has eigenvalues 0 and 2 with both multiplicity 2, and normalized
eigenvectors are respectively given by

1
1 |-—1 1 0
) USZE ol U4:ﬁ 1
0 -1

1
V2

uy =z , U2

—_ = =
= = O O

Let consider the matrix U € R**2 formed by the two first eigenvectors. Note that the first
two rows are identical, as are the last two rows. Then we naturally group those rows indices
together, which give the desired clustering. If we add the third eigenvector in matrix U, we
see that row 1 is closer to row 3 than to row 2 (in the sens of the euclidean distance), which
leads to miss clustering. This example may be too simple to justify it will works with larger
networks. Consider another example with the graph representation given in figure 4. The first

y
I 4
2
I 3
1 2 . I ,
7
X
3 4 6 I
1 ®5
I 6
1 e
7

Figure 4: The left figure represents the graph considered, divided into two communities. The
right figure is a visualization of points in R? represented by the columns of matrix U. To make
points 2, 3, 4, as well as 6, and 7 distinguishable, we intentionally perturbed their coordinates.
The clusters clearly appear on this figure.
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two eigenvectors are given by the matrix rows and plotted in figure 4

U [m] N [0.38 0.38 0.38 038 038 038 0.38

Uz 1021 036 036 0.36 —0.30 —0.49 —0.49|

We observe that columns 2, 3, and 4 are identical, as well as columns 6 and 7. Moreover,
column 1 is closer to column 2, 3, and 4 than to column 6 and 7 and so on. Based on this
observation, if we want to cluster the graph into two communities, we will naturally group
vertices 1, 2, 3, and 4 together, and vertices 5, 6, and 7 together. This procedure consisting in
grouping the closest rows (or collumns) together is called k-means clustering. On this example,
adding the third eigenvector in matrix U does not affect the clustering, but when we consider
the five first eigenvectors, the clusters are not recovered. Obviously, if we consider only the
first eigenvector, it gives no information about the community structure of the graph. This make
us understand that the good choice of the number of eigenvectors to consider is exactly the
number of clusters we want in our graph.

So this approach generalizes to the case of larger networks: we compute the first K
eigenvectors of the Laplacian, form the matrix U, and apply the k-means algorithm to group
together rows of U that are the "closest". This procedure is described in algorithm 1.

Algorithm 1 Clustering algorithm

Require: A € R™*" the adjacency matrix of a graph, K € N the number of clusters.
Ensure: C,...,Ck the partition of [n] into K-clusters.
1: Compute L the Laplacian matrix associated to A.
2: Compute the K-first eigenvectors uy,...ux of Lwhere 0 = \; < A2 < --- < Mg are the
associated eigenvalues ordered in the increasing order.
3: Let U € R™*X be the matrix whose columns are the u;’s.
4: Cluster the rows of U with the k-means algorithm into K-subsets C1, ..., Ck of [n].

There are also clustering algorithms for bipartite networks, which operate similarly to those
for networks. These algorithms work directly on the adjacency matrix, and distinguish between
the left and right eigenvectors to recover the clusters of the left and right hand sides respectively
(see algorithm 2 for an example of clustering algorithm to recover the left clusters). Interested
readers are referred to [ZA19a], where spectral clustering algorithms for community detection
under a general bipartite stochastic block model are considered.

Algorithm 2 Clustering algorithm for bipartite networks (left-hand side)

Require: A € R™*™ the adjacency matrix of a bipartite graph, K € N the number of clusters
for the left-hand side.
Ensure: C4,...,Ck the partition of [n] into K-clusters.
1: Compute the K-first left-singular vectors w1, ... ux of A where o1 < 0y < --- < ok are the
associated singular values ordered in the increasing order.
2: Let U € R™*¥ be the matrix whose columns are the u;’s.
3: Cluster the rows of U with the k-means algorithm into K-subsets C, ..., Ck of [n].

11



1.2 Definition of the problem

Preliminary considerations In the field of economics, network datasets are frequently used
to model markets or interactions between different entities or individuals. As a result, there is a
vast literature on the topic of economic networks and link formation models, as evidenced by
the works of [Gra17, Gra20, DG14b, JW96, Dze19]. Both unipartite and bipartite networks can
be relevant for economic modeling. For example, international trade exchange can be modeled
using a unipartite graph where links represent the existence of trade exchange. On the other
hand, bipartite graphs are more appropriate for modeling consumer purchases of products or
workers hiring in a firm.

When modeling network formation, there are typically two types of variables to consider:
observable and unobservable.

» Observable variables are characteristics that we can access or compute from the data
we observe. For instance, in the context of international trade, we may have information
about the size, GDP or the geographic location of each country.

» On the other hand, unobservable variables are latent variables that we cannot observe
or calculate directly. In the case of the network of workers and firms, examples of
unobservable variables include for instance the sympathy of a worker, which may influence
the hiring process, or the attractivity (the good working atmosphere) of a firm, which may
influence the workers’ choices.

[Gra17] propose an econometric model of network formation for unipartite graph with both
observed and unobserved variables. In contrast [Gra20] presents a logistic model for bipartite
network with only observed variables.

Now comes the question of assumptions about the formation of links. The most common as-
sumption is that all links are formed independently, which is more or less realistic or sometimes
even irrelevant depending on the modeling situation, but it makes the mathematical problems
easier to deal with. A more realistic and weaker assumption is described in [DDG21a], that talk
about exchangeability. Roughly speaking, it means that we can permute the label of the vertices
without changing the distribution of the edges, or equivalently, we can apply any permutation of
rows and columns indices to the adjacency matrix without changing its distribution.

According to [Ald81, Theorem 1.4], a bipartite graph with row and column exchangeable
adjacency matrix A can be represented by a function ¢g* : [0, 1]* — R and independent uniformly
distributed random variables «, U;, V;, &;; in [0,1] in the sens that

A D ("0, U Vy, )5 €[], j € [m)])

Here, the random variables U;, V; and &; ; correspond to the aforementioned unobserved
variables. If additional observable feature vectors X; ; are available for each node pair (3, j),
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then an extended model can be considered, which is defined by ¢*(X; ;, o, U;, V;, & ;). We
aim to estimate the function ¢g* using the graph it generates, but this task can be challenging.
To simplify the problem, we propose to consider only the unobserved variables by removing
all observable variables. In a first step, we assume that the edges are formed independently
conditionally to the unobserved variables. We formally define the problem here after. In a
second step, we want to relax the independence assumption. Indeed, if we consider the
worker-firm network problem, a worker must choose one and only one firm to work for, thus,
links are not independent anymore.

Mathematical definition of the main problem Letn and m be two positive integers assumed
to be large, and H be an n x m random matrix with real entries H; ;. The entries of the matrix
H can be seen as the edge labels of a bipartite graph. We assume that the distribution of this
matrix H satisfies the following condition.

Assumption 1 (Full independence). There is a function W* : [0, 1]> — R, called the graphon,
and two random vectors U = (Uy,...,U,) and V = (V4,...,V,,) such that

A11 Uy,...,U,, V1,...,V,, are independent and drawn from the uniform distribution ¢/(|0, 1]).

A 1.2 conditionally to (U, V'), the entries H; ; are independent and E[H; ;|{U, V| = W*(U;, V;).

Assumption 1 should be understood as follows. Each vertex on the left-hand side of the
bipartite graph is assigned an unobserved variable U;, and similarly for the right-hand side with
the variables V;. Furthermore, assuming we know the variables U; and V}, we posit that the
entries of the adjacency matrix H are independent. To illustrate, let's consider an example
where they are drawn from a Bernoulli distribution with parameter W (U;, Vj)—meaning an edge
between i and j is present with a probability of W (U;, V;). More general distributions will be
considered later, allowing for edge labels.

We aim to investigate the minimax risk of estimating the graphon W* from the observation
of H, and demonstrate how it relies on crucial parameters of the problem. While the dimensions
of the matrix n and m are among these parameters, we also explore the impact of the
smoothness of W*, the degree of "sparsity" in interactions (represented by p), and the noise
level (represented by o). To be more accurate, o and p are positive real numbers such that

[WHlew = sup [W*(u,v)| <p
u,v€(0,1]

and  Var[H;.|U;,Vi] <c?as., Vie[n],Vjem].
5J J

To fix the idea, let assume that W* is piecewise constant with respect to a partition of the unit
square in axis-aligned rectangles, and denote ®* < [0, 1]"*™ the random matrix given by
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Notice that ®* is constant by block up to some permutations of rows and columns. Suppose
moreover that conditionally to (U, V'), entries H; ; are independently drawn from the Bernoulli
distribution with parameter ©; ;. This scenario corresponds to the bipartite stochastic block
model discussed in the previous subsection 1.1.3, where the associated probability matrix ©*
is unknown. Thus, the problem of estimating W* is equivalent to the community detection
problem for bipartite networks, as discussed in the previous subsections, where we seek to
estimate the clusters and the probability matrix. In addition to the Bernoulli distribution, we aim
to provide a risk upper bound for our estimation method for more general distributions. In this
thesis, we will also consider non parametric framework: the class of a-Hélder regular graphons
as another form of graphon regularity. To do so, we aim to approximate Hélder graphons by
piecewise constant graphons (see figure 5).

Graphon Observed mairix H Rearranged mairix H Oracle Estimator

1m

0.4

02

0.0
I

00 02 04 08 08 10 20 40 60 80 100 120 20 40 60 80 100 120 00 02 04 08 08 10

in in

Figure 5: An illustration of the graphon problem. The leftmost graph represents the unknown
graphon W*. The second leftmost graph is the adjacency matrix observed in the graph where
the links are made according to the Bernoulli model. The third graph is the adjacency matrix
that would be obtained after a rearrangement of the rows and columns if we had access to the
latent variables. The rightmost graph represents the histogram estimator obtained from the
rearranged adjacency matrix. Our goal is to design an estimator which is nearly as good as the
oracle, without having access to the latent variables.

Relaxation of the independence assumption The previous setting, which assumes in-
dependence between edges, may not be suitable for modeling certain common situations
encountered in practice. One such example is the worker-firm network, where the first set of
vertices represents workers and the second set represents firms. A worker is connected to a
firm if he is hired by that firm. In this scenario, it is reasonable to assume that each worker is
hired by at most one firm, resulting in a maximum degree of 1 for each vertex in the first set.
The idea, then, is to relax the independence assumption regarding link formation. We also
consider only unobserved latent variables in this model, and assume that the adjacency matrix
H now lives in [0, 1]"*™ and satisfy the following statement.

Assumption 2 (Relaxed independence). We consider a function W* : [0,1]2 — [0, +oo] called
the graphon and two random vectors U = (Uy,...,U,) and V = (V4,...,V,,) that satisfy

A21 Uy,...,U,,W1,...,V,, are independent and drawn from the uniform distribution on [0, 1].
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A 2.2 Conditionally to (U, V'), the rows of the matrix H are independent.

A 2.3 Each row of H sum to one and

W*(Ui, V)

Bl V= S e vy

Assumption A 2.1 is the same as A 1.1, we consider that the unobserved variables assigned
for each vertex are independent. However, assumption A 2.2 relaxes the independence
assumption on the links formed by individuals on the right-hand side. Instead, it only requires
that the rows of H are conditionally independent given (U, V'). In other words, while the edges
formed by distinct individuals on the right-hand side are independent, the links formed by a
single individual are not necessarily independent.

Our goal is twofold. First, we aim to estimate the mean matrix of H and provide a risk
bound for our estimation method. In this part, we do not consider part A 2.3 of assumption 2
that could be restrictive, but instead replace it with the following assumption:

> Hij<py, Vi=1,..m (A 2.3 (bis))

J=1

that is, the sum of each row of H is smaller than a positive parameter p,,. We will often
consider p,, = 1. Our goal is to analyze how the risk of our estimator behaves in relation to the
model parameters, specifically n and m, the size of our dataset, as well as the parameters p,,,
representing the row sum constraint, and p,, the noise level, which now satisfies

|Zillop < ps;, Vi=1,....,n (1.1)

where ; = E[H,H] | — E[H,JE[H;]" is the covariance matrix of the ith row of H. It will be
common to assume that the matrix ®* = E[H]| has rows whose sum is bounded by p, > 0.
This parameter may also appear in the upper bounds of the risk. Notice that p, could be much
smaller than p,,. For example, if H; is multinomial with parameters (1, m, (1/m,...,1/m)), then
pu = 1 and pg = 1/m. The second part of our work revolves around estimating the graphon W*
under the assumption 2 and condition (1.1). Furthermore, we focus exclusively on the class of
piecewise constant graphons for this estimation task.

1.3 Prior work

The field of economics extensively utilizes network datasets to model markets and interactions
among various entities and individuals. Consequently, there is a wide range of literature
focusing on economic networks and models for link formation. This is evident in the works of

1||32||op refers to the operator norm of a square matrix.
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[Gra17, Gra20, DG14b, JW96, Dze19, dPRST18]. Economic modeling can encompass both
unipartite networks as evidenced by [OW14b, Section 4], and bipartite networks as in [DG14b].
Both types of graph are relevant in this context.

For the past two decades, there has been significant research activity in the statistical
analysis of matrix and network data using block models similar to those considered in this
work. One prominent example is the stochastic block model, which was originally introduced by
[HLL83] and has since become one of the most extensively studied latent structures for network
data. Early references include [NS01] and [GNO3]. A key focus of research in this field has been
community detection, which aims to uncover the underlying block structure within networks.
Numerous studies, such as [ZLZ12, CRV15, LR15, Lei16, ZZ16, WB17, CLX18, XJL20], have
delved into this problem. Several studies, such as the one conducted by [CDP12], have dealt
with the estimation of parameters in a stochastic block model using accessible techniques like
variational inference. Notably, [GK21] presents a groundbreaking contribution by introducing
the first minimax-optimal and tractable estimator for parameter estimation in the stochastic
block model, especially when dealing with missing links. Additionally, [LM19] underscores the
efficacy of variational methods in approximating the maximum likelihood estimator for dynamic
stochastic block models.

Additionally, literature reviews by [GMZZ17, Abb18] provide comprehensive overviews of
the subject. It is important to note that the majority of these studies have primarily focused
on unipartite graphs with binary or discrete edge labels. The optimality of their approaches
has largely revolved around determining the minimum separation rate between community
parameters that allows for consistent recovery. While much attention has been given to
unipartite block models, similar problems for bipartite block models have also been investigated.
Studies by [FPV15, FP16b, Neu18, ZA19b, ZA20, CLC*21, NST22] have explored these
issues, shedding light on the unique characteristics of bipartite networks.

In contrast to the papers mentioned earlier, our focus is on the optimality of estimation
error in a model that encompasses bipartite graphs with real-valued edge labels. Con-
sistency of graphon estimators has been extensively studied in [ACC13, WO13, OW14a].
Moreover, minimax-rate optimality of the least squares estimator has been established in
[GLZ15, GLMZ16, KTV17, KV19], with additional insights provided in the survey article [GM21].
To better position our contributions within the existing state-of-the-art, it is beneficial to provide
a brief overview of the content covered in these papers.

In [GLZ15], the authors focused on binary observations H; ; and considered the dense
case p =< 1. They derived minimax rates of estimation for both piecewise constant and Hélder
continuous graphons. Building upon these results, [GLMZ16] extended the analysis to matrices
H with sub-Gaussian entries, some of which may be missing completely at random. However,
as discussed in subsection 2.3.1, their results are sub-optimal in certain cases concerning
the noise variance, such as when edge labels are drawn from the binomial distribution. For
unipartite graphs with binary edge labels, [KTV17] established the minimax-optimal rates of
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estimation for sparsely connected graphs where p < 1. While [GLZ15, GLMZ16] measured the
estimation error using the normalized Frobenius norm of the difference between the estimated
matrix and the true matrix, [KTV17] also considered the LLo-distance between the equivalence
classes of graphons. In [KV19], minimax optimal rates of graphon estimation in the cut distance
were established for unipartite graphs with binary observations. These findings contribute to
the current understanding of optimality in various estimation scenarios.

The problems investigated in the initial part of our work exhibit connections with recent
developments in econometrics. Specifically, as previously mentionned, according to [Ald81,
Theorem 1.4], if the matrix H satisfies row and column exchangeability, then there exists a
function ¢g* : [0,1]* — R and independent uniformly distributed random variables «, U;, V;,
&; in [0,1] such that the random matrices H and (g* (e, Us, V}, &i5); 4 € [n], j € [m]) follow the
same distribution. The problem addressed in chapter 2 is equivalent to estimating the random
function Wy, v) = fol g*(a,u,v, 2),dz based on observations g*(a, U;, Vj, &ij); i € [n], j € [m],
without assuming a specific parametric form for g*. Furthermore, if we have additional feature
vectors X; ; associated with each node pair (i, j), we can consider an extended model defined
by ¢* (X, o, Ui, V}, & 5). This approach is employed in [Gra17], where a particular parametric
form g*(x, o, u,v,2) = 1(x" B+ u+ v+ log(z/(1 — 2))) is considered. In such a parametric
setting, the parameter of interest is the vector 3, measuring the homophily of the graph (the
tendency of individuals to form connections with those like them-selves). Additionally, in [Gra20],
the assumption is made that the regression function f[071]3 9" (x, a, u, v, 2), du, dv, dz follows a
parametric form exp (a + 2 ' B)/(1 + exp (a + = ' B)), and the estimation problem for the vector
(a, B3) is studied. Asymptotic results, such as the law of large numbers and central limit theorem,
have been established for exchangeable arrays in [DDG21Db].

1.4 Contributions

We provide a summary of the main contributions of this thesis in four subsections.

+ The first subsection focuses on the mean estimation problem, which is crucial in both
independence contexts described in assumptions 1 and 2. This step is significant and
interesting on its own.

» The second subsection addresses the graphon estimation problem, building upon the
estimation procedure derived from the first step.

* In the third subsection, we establish lower bounds on the worst-case risk for any graphon
estimator over the set of piecewise constant graphons, under assumption of full indepen-
dence links. These lower bounds are applicable when the matrices have entries with a
Binomial conditional distribution given latent variables. Remarkably, in most cases, these
lower bounds are of the same order as the upper bounds obtained for the least-squares
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estimator.

 Finally, in the fourth subsection, we present an adaptation of Lloyd’s algorithm of al-
ternating minimization, incorporating a convex relaxation step, to our specific setting.
This adaptation allows us to obtain a computationally tractable approximation of the
least squares estimator, and some simulations base on synthetic data, only for the full
independence setting.

For the convenience of theorem statements, we will often adopt the symmetric framework,
where both sides of the bipartite graphs have an equal number of vertices, communities, etc.

1.4.1 Estimation of the mean matrix

Full independence assumption On the way to estimating the graphon W*, an important
intermediate step will consist in estimating the matrix ©* = W*(U;, V;). The estimation of this
matrix is of interest on its own. We perform this task by solving the least squares problem
over the set of constant-by-block matrices, with blocks generated by partitions of the sets of
rows and the columns of the matrix H. It will be further shown that the method of aggregation
by exponential weights can be used to ensure adaptivity to the number of blocks. Under
the condition that the graphon is piecewise constant or a-smooth in the sense of Hoélder
smoothness, we establish risk bounds for the graphon estimator derived from the estimator of
®*. These risk bounds are nonasymptotic, and shown to be rate optimal in the minimax sense
for a broad range of regimes.

The least square estimators of ®* are define as the best approximation of H by a constant
by block matrix. To be more accurate

Oo oK, L] € arg min  ||H - O, (1.2)

10,MM0
ng,mg

Here, 7;5;#0 represents a set of constant by block matrices (up to some permutations of rows
and columns) with K x L blocks. Parameters ng > 1, and mg > 1 refer to the minimal number
of entries in each block. We derive risk bounds for estimators of ®*. For the purpose of our
analysis, we consider ®* as a deterministic matrix, allowing us to assume independence of H; ;
rather than conditional independence given U and V. Furthermore, for the sake of simplicity,
in the statement of the next theorem, we make the assumption of symmetry, where n = m,
K =L, and ng = myg.

Theorem 1. Letn,ngy, K be positive integers such that K > 2,3 < ng <n. LetHbe ann x n
random matrix with independent entries satisfying E[H;;| € [0, p] for every i, j € [n] and some
p > 0. In addition, assume that the random variables (H,; — E[H,;]) satisfy the (¢%,b)-Bernstein
condition 2. Then, the least squares estimator ©'S of the mean matrix ©* = E[H], defined by

2We say that a zero-mean random variable ¢ satisfies the (a, b)-Bernstein condition, if we have E[e*¢] <
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(1.2), satisfies the exact oracle inequality

lere 1 3K?  2log K\ /2
*E[H@LS _ @*H'Q:} 1/2 g inf *HQ . @*”F + (250_2 + 4bp) 1/2( . + og ) 7
n ©@cTE n n

n
provided that v,,(ng) := n% log(en/no) < (o /b)>.

In table 1.1, we provide four main examples that illustrate the consequences of Theorem 1
in the non symmetric case for common distributions of H; ;. It is worth noting that in the

Model | Definition | (6% | Upper-bound
. . KL logK logL\Y2
Bernoulli H;; ~ B(O})) (p,1/3) 9\@(%+ e )

KL logK logL\Y2
Binomial | NH;; ~ B(N,O:,) | (o/N,1/3N) 9\@( 4ot o8 )

Nnm Nm Nn

; KL logK logL\Y?
o ¥ 1/3T ( )
Poisson | TH,; ~ P(TOY,) | (o/7.1/37) | oy (Al EK Lo8)
. KL logK logL\Y2
Sub-Gaussian | E[eMii] < e7™N (62,0) 50 <7+ ot | 8 )
nm m n

Table 1.1: Here is a summary of the second term obtained for upper bounds in the non
symmetric version of Theorem 1 for specific examples of (o2, b)-Bernstein distributions. In all
cases, we make the assumption that ©; ; < p, except for the sub-gaussian model.

symmetric case, we retrieve the upper-bound derived for unipartite graphs as described in
[KTV17]. This indicates that the results obtained in the current context extend and align with
the findings in the unipartite graph setting.

The least squares estimator ®'S exhibits a blockwise constant pattern with K L blocks. The
choice of K L as the number of blocks is a hyperparameter of the method. However, if the true
matrix ®* significantly deviates from being blockwise constant on K L blocks, the estimation
quality of @lr_zi,mo [K, L] may deteriorate due to a substantial bias. To mitigate this bias, one
approach is to compute the least squares estimator for multiple values of K, L, ng, and my,
and then aggregate these estimators. By doing so, the bias can be reduced and the overall
estimation performance can be improved. We also provide finite sample risk bound for this type
of aggregate estimator. Finally,the mathematical results can be readily adapted to the case of
missing observations, where certain values of the matrix H; ; are not observed.

Relaxed independence assumption In the case of relaxed independence assumption,
we are able to derive a comparable upper-bound. However, it is important to note that the
distributions applying in Theorem 2 are not as general as those assumed for full independence
in the previous framework. Although the scope may be narrower, these distributions still provide

exp { 52257y } provided that |A| < 1/b.
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valuable insights and results for our analysis. Once again, we state the next theorem only in
the symmetric framework.

Theorem 2. Letn,ngy, K be positive integers such that K > 2,1 < ng < n. LetH € [0, 1]"*"
be an n x n random matrix with independent rows such that each row sum to one and has
a covariance matrix ; satisfying ||Zi|lop < ps- We also assume that |©*||o < poo °. The
least-squares estimator ®'S defined by (1.2) satisfies the exact oracle inequality

3K? N 210gK>1/2

1 ~ 1 1 1
_E @LS_@* 2 /2< inf ~©® — O* 4 ~ /2(
Lg)) 77 < nt 10 — @ + (45 + 6pn) (P + 2

provided that v,,(ng) = Zlog(ne/no) < ps-

no

This result contains the case described previously where the vector H; has only one entry
equals to 1, and the others are null, which models a matching where individuals from the left
hand size have to choose one and only one item from the right hand size, as in the worker-firm
network.

1.4.2 Estimation of the graphon

Full independence assumption The illustration in figure 5 highlights the impact of missing
knowledge of latent variables on the graphon estimation problem. It demonstrates that the
rearranged adjacency matrix, obtained if the latent variables were known, provides significantly
more information about the true graphon W* compared to the original adjacency matrix. When
the latent variables U and V' are unknown, the graphon W* becomes unidentifiable. We define
equivalence between two graphons W and W if there exist two bijections 7; : [0, 1] — [0, 1] and
72 : [0,1] — [0, 1] that preserve the Lebesgue measure, such that W = W' o (11 ® 72) 4. ltcan
be observed that two matrices H generated by equivalent graphons W* and W* have the same
distribution. Therefore, the best we can do is to estimate the equivalence class containing W*.
This motivates the use of the (pseudo)-distance employed in this work to evaluate the quality of
an estimator W of W*, as follows:

_ - /2
S(W,W*) = inf ( / ‘W(Tl(u),Tg(v))—W*(u,v)}Qdudv)
T1,T2EM [0,1)2

= n,%lé/\/l HW o (7'1 ® 7'2) -W ”]LQ
where M is the set of all automorphisms 7 : [0,1] — [0, 1] such that 7 and 7—! are measurable,
and 7 preserves the Lebesgue measure in the sense that A\(7—1(B)) = A(B) for every Borel-set
B c[0,1].

%||A]|oc = max A; ; denotes the infinite norm of a matrix.
Y

“We use notation 7, @ 7 for the function from [0, 1]2 to [0, 1]2 defined by (11 ® 72)(u, v) = (71 (u), 72(v)).
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After estimating the matrix ®* and selecting a distance measure for graphon quality
assessment, the next step involves designing an estimator for the graphon W*. To achieve this,
we associate a graphon Wg with any n x m matrix ®, where Wg : [0,1]2 — [0, 1] is defined as
a constant function on each rectangle I; x J; = [=2, 1) x [LZ2, L) for (i, j) € [n] x [m] :

W@(U,U) = ei,j’ for all (’LL, U) e l; x Jj.

In the forthcoming theorem, we will analyze the estimator WLS = Wais-
we will classify W* into two categories based on its regularity: the class of piecewise constant
graphons and the class H, - ° of a-Holder graphons. The statement presented here specifically
addresses the simplified symmetric case. However, it is worth noting that we have also obtained
results for the asymmetric case, which are discussed in detail in Chapter 2. A summary of

these results can be found in table 1.2.

As mentioned earlier,

Theorem 3. Let H be a n x n random matrix satisfying Assumption 1 with some graphon
W*:[0,1)2 — [0, p]. Assume that for some constant ¢ > 0, conditionally to U,V , the random
variables (H;; — E[H;;|U, V) satisfy the (o2, b)-Bernstein condition.

1. Assume that the graphon W* is K -piecewise constant, meaning that for some integer
K >2andfor0=ay<...<ag =1 such that

8log(nK)

AK) = min] lag, — ap—1| =
n

ke[K

the function W* is constant on each rectangle [aj_1,a;[>. Then, the estimator WS —

Wes with e = @,Llﬁ [K] defined by (1.2) satisfies

3K2  2log K\ 2K\ 7
S+ ) He)

E[5(W'S, W22 < (2702 + 4bp)1/2< - (1.3)

provided that 1, (AF)) = %‘i/lﬁm) < (o/b)2.

2. Assume that the graphon W* is a-Hblder continuous, meaning that W* € H,, . for some
a € (0,1] and L > 0. Assume that

n2a o 2 (4b/0.)4(a+1) V3
log(2n) ~ (2502 + 4bp)

(1.4)

Let B = a/(2a+2). Then, there is a choice of K, ny such that the least squares estimator
WL = Wg,s with ©®° = OL3[K] satisfies

2502 + 4bp>6 N <(5002 + 8bp) log n) 12 N 4L

117LS *\21/2 < 1—26(
E[§(W"S, W*)?]/? < 6L o —7

(1.5)

n

°Ha, . is the set of functions W : [0,1]*> — R satisfying |W (z,y) — W(2',y)| < L((xz — 2')* + (y — y’)Q)“/Q for
allz,y,z',y €[0,1].
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We can also present specific instances for the different distributions discussed in table 1.1,
specifically in the context of Lipschitz graphons. It should be noted that for piecewise constant
graphons, the obtained results will be the same as those presented in table 1.1, with the
inclusion of an additional approximation error term p(\/g + @) v as outlined in (1.3). Once
again, we also provide an adaptive method for unknown K and L in the case of piecewise
constant graphon.

Distr. of H;; | Values (0%,b) |  Condition (1.4) | Risk Bound (1.5)
. L%nlog*(2n) 11VLpY* 8 /plogm AL
5
Bernoulli(p) (p,1/3) p° = " () /A + Jm + N
S L2Nnlogh(2n) | 11VLpY*  8\/plogm 4L
Binomial(V, p) /N N,1/3N 5> f
' ial(N, p)/ (p/ /3N) | p m3 (Nnm)1/4 vVNm + vm
. L2Tnlogh(2n) | 11VLpY*  8yplogm 4L
Poisson(Tp)/T T,1/3T P>
isson(T'p)/ (p/T.1/3T) | p -~ (Trm) 1/ T + N
2 1ol
sub-Gauss(0?) (02,0) 52> 3Lnlog™(2n) 11V Lo n 8a+/logm N 4L
25m? (nm)1/4 Jm o Jm

Table 1.2: Upper bound for Lipschitz-continuous graphons and various distributions, under the
non symmetric framework, with the additionnal assumption that n > m.

Relaxed independence assumption Now, let us assume that the matrix H is generated
according to a re-scaled graphon W*, with independent rows H; that sum to one as considered
in the model described in assumption 2, where

W*(Ui, Vj)
221:1 W*(Ulv Vf) .

EH|U,V]=0©" wih 6=

In the context of the full independence, we already know that the graphon W* is unidentifiable.
In addition to that, in the present context, we can multiply W* by a constant without changing
the distribution of H. To address this, we define a new equivalence class, where two graphons
W and W' are considered equivalent if and only if they satisfy the relation

W = CxW/(Tl & 7'2)

where C, is a constant that could depend on the first variable = and 7 and r» are bijections
that preserve the Lebesgue measure. It is evident that two such graphons will produce the
same matrix H. Moving forward, we assume that W* € ¢, where

¢ = {W, Iw(z) = m, Ve € [0,1]} with Iy (z) = /01 W(x,y),dy.
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Similar to before, the chosen distance within the class ¢ to measure the quality of estimators
is defined as

T1,T2EM

S(W' W)= inf (W (71 (u), a(v)) — W (u,0)|?, du, dv 2
0,1]2

= inf |[W'o(r1 ®72)— WLz
T1,T2EM
Estimating a graphon becomes a challenging task due to the intricate process of normalization
within the class %. In the subsequent theorem, we present an upper bound for the estimation
of piecewise constant graphons, in the symmetric framework.

Theorem 4. LetH < [0,1]"*" be a n x n random matrix satisfying assumption 2 with some
graphon W* : [0, 1]? — [0, p]. Assume that each row of H sum to one, its covariance matrix ;
satisfies ||X;|lop < py < 1 and its conditional mean matrix ©* satisfies || ®*| . < p. Assume
that the graphon W* is K -piecewise constant, meaning that for some integers K > 2 and for
0=ap <...<ag =1, such that

81 K
A = min |a, — agp_1| > 8log(nk)
ke[K] n

the function W* is constant on each rectangle [a;_1, a[*>. Then, the estimator WS = Wats
with ©° = BLS|K] defined by (1.2) satisfies

— 3K?2  2log K\ Y2 2K\
E[5(WS, W22 < (50p2+6p)1/2(7+ 05 ) +3p<7>

provided that i, (AU)) = HesC/8T)  , ang @ < 109 where w = YK L and

Wy = A — Q1

The obtained result in this theorem is similar to the one presented in Theorem 3, with the
additional requirement that @ is not excessively large, ensuring that the size of the intervals
lak, ar+1] is sufficiently large. For instance, if n = 315, the condition on w is satisfied as long as
the minimum difference between consecutive a;, values is greater than or equal to 1073. This
condition appears because of the aforementioned normalization in class %.

1.4.3 Lower bound on the minimax risk

In this section, we establish the optimality of the least squares estimator WS, under assump-
tion 1 of full independence, by demonstrating its convergence rate in the worst-case scenario
over the class W, [K, L]. This class consists of graphons W taht are constant over intervals I,
and Jy, where I, = [ay, ax+1) and Jy = [by, bey1) form a partition of [0, 1).

We focus on proving the lower bound for the binomial model, but the techniques utilized in
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the proof can be extended to the other models mentioned in the introduction. This establishes
the optimality of the least squares estimator within this class.

Theorem 5. Assume that conditionally to (U, V), the entries H; ; of the observed n x m matrix
H are independent and drawn from the Binomial distribution with parameter (N, W*(U;, Vj)).
There exist universal constants ¢, C > 0, such that for any K, L > C satisfying KL > Llog® L +
Klog? K and for any p > 0,

: — KL 1 2 [K [\
IQfSUPEW*[‘S%WvW*)r/Q>c[ﬁ(NnmAp+N\/7nm/\p) *”( W m> }

w W

where the inf is over all possible estimators W and the sup is over all W* e W,[K, L.

In this theorem, we could assume NH; ; ~ B(N, W*(U;,V;)) — instead of assuming H; j ~
B(N,W*(U;,V;)) ) —and obtain the same result. For the balanced setting, whenn =m, K = L,
this lower bound has to be compared with (1.3) and appears to be rate optimal up to a log K
factor. Figures 6 and 7 show the purple areas where the lower bound is of the order of the
upper bound for various parameters of the model, that is our estimator is minimax optimal.

To be more accurate, in Figure 6, we fix the sparsity parameter p and choose cluster
parameters K and L such that K/n = L/m = ~. The purple area in the figure represents pairs
(n,m) where the lower bound obtained from Theorem 5 exceeds half of the upper bound given
in (2.13). On the other hand, Figure 7 depicts the same criterion, but with fixed n and m, while
varying p and ~. Notably, we observe that the least square estimator achieves optimality in
many settings, even in highly asymmetric frameworks where for example, m is significantly
larger than n.

1.4.4 Algorithm and numerical experiments

The least squares estimator introduced in equation (1.2) and discussed in the preceding
sections is computationally intractable due to its combinatorial optimization nature. It is not
feasible to compute this estimator in polynomial time. In this section, our objective is to present
an algorithm that provides a computationally tractable approximation of eLs. Although there is
no guarantee that the algorithm always yields an estimator close to @LS, it is expected to be
the case in many scenarios.

The algorithm The proposed approximation can be seen as a variant of Lloyd’s algorithm
for k-means clustering [LI082]. To describe it, let’s recall that the least squares estimator is
defined as a solution that minimizes the distance induced by the Frobenius norm between H
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Figure 6: lllustration of the optimality of the least squares estimator for N = 1. The purple area
corresponds to the values of n and m, for some fixed values of p and v = K /n = L/m, for which
the lower bound is within a constant factor of the upper bound. More precisely, when py? A p? +
p(nm) Y2 A p? 4 2p%, /7 is larger than half of py? + (plog K)/(3m) + (plog L)/ (3n) + 2p%,/7.
We observe that unless p is very small, the upper bound established for the least-squares
estimator is within a constant factor of the lower bound for all estimators for most values of n
and m.

and a block constant matrix. This can be reformulated as follows

(Q,Z1,Z) carg  min  |H-Z:Q(Z)"|%. (1.6)
QGRKXL
Z1€Z(TL,K,n0)
Z>eZ(m,L,mg)
where Z,, Z, represent the block structure of the matrix® , that is the left and right clusters, and
Q gives the values in the different blocks. It is interesting to note that when two of the three
arguments Q, Z, or Z, of the objective function are fixed, the minimization problem with respect
to the remaining argument becomes computationally feasible. Therefore, we can employ the
alternating minimization algorithm outlined below, which guarantees a decrease in the cost
function £(Z1,Q, Z>) = |H — Z1Q(Z2) " |2 at each iteration.

Initialization Procedure As shown in figure 8, the initial matrices chosen for algorithm 3 can
significantly influence the final result. One approach to mitigate this issue is to run multiple
instances of the algorithm in parallel, each with different initialization matrices randomly chosen.
Among the resulting N estimators, the final estimator is selected as the one that minimizes the
objective function L.

8Z(n,K,no) = {Z € {0,1}"** : Z1x = 1,, and minye(x) 14 Zox > no} With 15 = (1,...,1)" € R%
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Figure 7: lllutration of the optimality of the least squares estimator. The purple area corresponds
to the values of p and v = K/n = L/m, for some fixed values of n and m, for which the lower
bound is within a constant factor of the upper bound. We observe that unless p is very small,
the upper bound and the lower bound for are of the same order.

Algorithm 3 Lloyd’s algorithm of alternating minimization for approximating the LSE (1.6)
Require: Z,, Z, the left and right cluster matrices with entries in {0, 1}, H the data matrix.
Ensure: (Z,,Q,Z>) local minimizer of L(-, -, -).

Repeat :

1. Compute Q = (Z7°™) THZ5°™ where Z7°™ is the matrix Z; with normalized columns
with respect to ¢!-norm (the number of 1 in the column), and similarly for Z5°r™.

2. Update Z; that minimize Z — L(Z,Q, Z-)
3. Update Z, that minimize Z — £(Z1,Q,Z)

Another strategy, often used in conjunction with Lloyd’s algorithm, is spectral initialization. In
the case where the graphon is piecewise constant, the problem can be seen as a bi-stochastic
block model for bipartite networks. One way to obtain initial values (Z;, Z,) is through the
spectral method proposed in [ZA19a]. This method involves computing the K-truncated
singular value decomposition of a regularized version of the matrix H. The K-truncated left
singular vectors are then used as input for k-means clustering, resulting in an initialization for
Z,. A similar procedure is applied to obtain the initialization for Z,. This spectral initialization
approach can provide a good starting point for Lloyd’s algorithm and improve the quality of the
final estimator.

To assess the impact of the initialization procedure on the estimator given by algorithm 3,
we conducted several runs using different cluster matrices. Specifically, we used matrices
obtained through spectral clustering as mentioned earlier, matrices generated randomly once,
and oracle clusters derived from the unobserved random variables. We then plotted the
resulting estimators after rearranging the rows and columns based on permutations that
ordered sequences of the unknown variables U; and V;. The results, depicted in Figure 8,
clearly demonstrate that clustering initialization yields superior outcomes compared to a single
random initialization.
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Numerical experiments In this paragraph, we briefly present some numerical experiments
to examine the behavior of the estimation error of the graphon WS and its relationship with
various model parameters. We refer the reader to Section 2.6 for more precision about those
numerical experiments. We begin by investigating the case of piecewise constant graphons
and analyze the estimation error of the matrix ®*. We explore how this error varies with the
parameter n for different values of (p, K, L), assuming m = n/2. Results are depicted in
figure 9, where the values of the graphon W* are randomly generated, and the error is drawing
in the log-scale for different types of initialization already mentioned in the previous paragraph.

From the experimental results, it can be observed that the error of the "spectral” version
consistently decreases as the value of n increases. Moreover, it converges to the oracle error
at a faster rate when the sparsity parameter p is larger and when the ratios n/K and m/L are
higher. This aligns with our intuition, as a higher p implies more links in the network, leading to
more accurate estimation. Similarly, larger values of n/K and m/L also contribute to improved
estimation accuracy. On the other hand, the "random" version of the algorithm exhibits a more
erratic behavior. In most cases, its error surpasses that of the "spectral” version when n/K
and m/L reach a certain threshold.

Additionally in figure 17, we present the estimation results for a Lipschitz-continuous
graphon, where the parameters K and L are chosen as functions of n and m respectively, based
on the recommendations provided by our theoretical findings. Interestingly, and somewhat
surprisingly, the random initialization behaves as well as the spectral one. We do not have any
explanation for this observation at this stage.
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(a) Graphon W* (b) Alg 3 - s.c. init.
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Figure 8: lllustration of the sensitivity of algorithm 3 to the initialization procedure. Plot 8a is
the True Graphon W*. Plot 8b is the obtained graphon after running algorithm 3 with spectral
clustering matrices as initialization. Plot 8c is the obtained graphon with a random initilization
of the algorithm. Plot 8d is the obtained graphon with the true (unknown) cluster matrices as
initialization. The parameter chosen here are (p, K, L,n,m) = (1, 8,8, 1000, 500). We permuted
the axes to plot the results. We can not do this in practice because we do not know the true
permutations.
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Figure 9: Evolution of the estimation error as a function of n, with m = n/2 for a piecewise
constant random graphon for different values of (p, K, L).
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Figure 10: Evolution of the estimation error as a function of n, with m = n/2 for a Lipschitz
graphon, for different values of p. The curves represent the error for various initializations of
algorithm 3. The true graphon is represented in figure 10d and figure 10e is a representation of
the rearranged estimated graphon with spectral initialisation. In practice, we can not rearranged
the estimated graphon because it requires the knwoledge of the latent variables.
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Chapter 2

Graphon estimation in bipartite
graphs with observable edge labels
and unobservable node labels

Abstract Many real-world data sets can be presented in the form of a matrix whose entries
correspond to the interaction between two entities of different natures (number of times a web
user visits a web page, a student’s grade in a subject, a patient’s rating of a doctor, etc.). We
assume in this chapter that the mentioned interaction is determined by unobservable latent
variables describing each entity. Our objective is to estimate the conditional expectation of the
data matrix given the unobservable variables. This is presented as a problem of estimation
of a bivariate function referred to as graphon. We study the cases of piecewise constant and
Holder-continuous graphons. We establish finite sample risk bounds for the least squares
estimator and the exponentially weighted aggregate. These bounds highlight the dependence
of the estimation error on the size of the data set, the maximum intensity of the interactions,
and the level of noise. As the analyzed least-squares estimator is intractable, we propose an
adaptation of Lloyd’s alternating minimization algorithm to compute an approximation of the
least-squares estimator. Finally, we present numerical experiments in order to illustrate the
empirical performance of the graphon estimator on synthetic data sets.
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2.1 Introduction

In this chapter ', we consider the problem of estimating the conditional mean of a random
matrix generated by a bivariate graphon and (unobserved) latent variables. More precisely,
let n and m be two positive integers assumed to be large, and H be an n x m random matrix
with real entries H; ;. We assume that the distribution of this matrix H satisfies the following
condition.

Assumption 3. There is a function W* : [0,1]> — R, called the graphon, and two random
vectors U = (Uy,...,U,) and V = (V4,...,V,,) such that

A11 Uy,...,U,,W1,...,V,, are independent and drawn from the uniform distribution 2/([0, 1}).
A 1.2 conditionally to (U, V'), the entries H; ; are independent and E[H; ;|U, V| = W*(U;, V;).

The aforementioned setting corresponds to the practical situation in which there are n users
and m items. Each user has an unobserved latent feature U and each item has an unobserved
latent feature V. We observe the label H that characterizes the interaction between the user
and the item. The function W* corresponds to the mean value of the interaction for given
values of the latent features.

"This chapter corresponds to a preprint paper accessible on arXiv [DMDK*23].
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Figure 11: An illustration of the graphon problem. The leftmost graph represents the unknown
graphon W*. The second leftmost graph is the adjacency matrix observed in the graph where
the links are made according to the Bernoulli model. The third graph is the adjacency matrix
that would be obtained after a rearrangement of the rows and columns if we had access to the
latent variables. The rightmost graph represents the histogram estimator obtained from the
rearranged adjacency matrix. Our goal is to design an estimator which is nearly as good as the
oracle, without having access to the latent variables.

The main examples to which the aforementioned setting as well as the results obtained in
this chapter are applicable are the following:

1. The entries H; ; take the values 0 and 1 and correspond to the presence of an edge in
the bipartite graph. In the example of customers and products, one might set H; ; = 1 if
and only if customer i has already bought the product j. It is important in this setting to
take into consideration the case of large and sparse graphs, in which the probabilities of
having an edge between two nodes are small for all pairs of nodes.

2. Each user is given N opportunities to interact with each item and the entries H; ;
represent the empirical frequency of interaction. For instance, if users are players and
items are games, each player plays each game N = 10 times, and H; ; = 3/10 means
that the player won the game 3 times out of 10. In this case H; ; are between 0 and 1. If
the aforementioned N trials are independent, then the variance of H; ; is of order 1/N.
Thus, the specificity of this setting is that the variance of the noise is small. One can
encompass this example in a more general setting of a sub-Gaussian distribution with a
small variance proxy o2 corresponding to 1/N.

3. H;; is the average number of interactions between the user and the item over a time
interval of length 7" > 0. More precisely, H; ; = N; ;(T')/T where N; ;(T') is a Poisson
random variable with intensity proportional to 7'. This parameter T' could be large, thus
allowing for a good estimation accuracy.

Our goal is to study the minimax risk of estimating W* and to highlight its dependence on
the important parameters of the problem. The sizes n and m of the matrix are among these
parameters, but we will also be interested in the dependence on the smoothness of W*, on
the “sparsity” of interactions (denoted by p) and on the noise level (denoted by o). These
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parameters p and o are positive real numbers such that

IW*|oo = sup |[W*(u,v)| <p and Var[H, ;|U;, Vj] < o?as., Viecln],Vje[m]
u,v€(0,1]
The parameters p and o may depend on n and m, but we choose to write p instead of p,, ,,, and
on,m for the sake of simplicity.

On the way to estimating the graphon W*, an important intermediate step will consist in
estimating the matrix ®* = W*(U;, V;). The estimation of this matrix is of interest on its own.
We perform this task by solving the least squares problem over the set of constant-by-block
matrices, with blocks generated by partitions of the sets of rows and the columns of the matrix
H. It will be further shown that the method of aggregation by exponential weights can be used
to ensure adaptivity to the number of blocks. Under the condition that the graphon is piecewise
constant or a-smooth in the sense of Holder smoothness, we establish risk bounds for the
graphon estimator derived from the estimator of ®*. These risk bounds are nonasymptotic,
and shown to be rate optimal in the minimax sense for a broad range of regimes.

Measuring the quality of an estimator Figure 11 provides an illustration of the graphon
estimation problem, in the case where H is the adjacency matrix of the bipartite graph, that is
the entries of H are either 0 or 1. We see in this figure that the absence of knowledge of the
latent variables has a strong impact on the recovery of the graphon. Indeed, the adjacency
matrix H depicted in the second leftmost plot carries little information on W*, as compared
with the rearranged adjacency matrix displayed in the third plot. In fact, when U and V are
unknown the graphon W* is unidentifiable. Let us say that two graphons W and W’ are
equivalent, if there exist two bijections that preserve the Lebesgue measure 7, : [0,1] — [0, 1]
and 7 : [0,1] — [0,1] such that® W = W’ o (1 ® 73). One can check that two matrices H
generated by equivalent graphons W* and W* have the same distribution. This implies that
one can at best estimate the equivalence class containing W*. This is the reason underlying
the (pseudo)-distance we use in this work when measuring the quality of an estimator W of
W*, namely

1/2
5(W W*) = inf (/ W (11(u), 12(v)) —W*(u,v)\zdudv>
7'1,7'26/\/1 [0, 1]2

= £ W - w
L nf [Wo(n @) 2
where M is the set of all automorphisms 7 : [0, 1] — [0, 1] such that ~ and 7~ are measurable,
and 7 preserves the Lebesgue measure in the sense that A\(7~!(B)) = \(B) for every Borel-set
B c [0, 1]. Two graphons W; and W, are called weakly isomorphic if (W7, Ws) = 0.

2We use notation 71 @ 7 for the function from [0, 1] to [0, 1]? defined by (71 ® 72)(u,v) = (1 (u), T2(v)).

34



Our contributions The main contributions of the present chapter are the following:

» We present a nonparametric framework based on bivariate graphon functions and unob-
servable latent variables that offer a flexible way of modeling random matrices and, in
particular, adjacency matrices of random bipartite graphs.

» We establish finite sample risk bounds for the estimator minimizing the squared error
over piecewise constant matrices with a given number of clusters, as well as for the
exponentially weighted aggregate that combines the mentioned least-squares estimators.
These results apply to adjacency matrices of bipartite graphs, whose entries are drawn
from the Bernoulli distribution, but they are also valid for the binomial distribution, the
scaled Poisson distribution and sub-Gaussian distributions.

» We present an adaptation of Lloyd’s algorithm of alternating minimization (including a
step of convex relaxation) to our setting, which allows us to obtain a computationally
tractable approximation of the least squares estimator.

 In the case of matrices with entries having a Binomial conditional distribution given
latent variables, we prove lower bounds on the worst-case risk, over the set of piecewise
constant graphons, for any graphon estimator. These lower bounds, in the vast majority
of cases, are of the same order as the upper bounds obtained for the least-squares
estimator.

Prior work Statistical analysis of matrix and network data, based on block models similar
to those considered in this work, is an active area of research since at least two decades.
The stochastic block model, introduced by [HLL83], is perhaps one of the most studied latent
structures for network data, see also [NS01] and [GNO3] for early references. Community
detection, which is the problem of detecting the underlying block structure, has been the
focus of much research effort, as evidenced by studies such as [ZLZ12, CRV15, LR15, Lei16,
7716, WB17, CLX18, XJL20] and literature reviews such as [GMZZ17, Abb18]. It should be
noted that the majority of these studies focused on unipartite graphs with binary or discrete
edge-labels, and their optimality was mostly related to identifying the smallest separation rate
between the parameters of the communities that enables their consistent recovery. Similar
problems for bipartite block models have been investigated in [FPV15, FP16b, Neu18, ZA19b,
ZA20, CLC"21, NST22]. Several studies, such as the one conducted by [CDP12], have delved
into the estimation of parameters in a stochastic block model using accessible techniques like
variational inference. Notably, [GK21] presents a groundbreaking contribution by introducing
the first minimax-optimal and tractable estimator for parameter estimation in the stochastic
block model, especially when dealing with missing links. Additionally, [LM19] underscores the
efficacy of variational methods in approximating the maximum likelihood estimator for dynamic
stochastic block models.

In contrast with the aforementioned papers, the focus here is on optimality in terms of
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the estimation error for a model that encompasses bipartite graphs with real-valued edge
labels. Consistency of graphon estimators has been studied in [ACC13, WO13, OW14a]. In
the same problem, minimax-rate-optimality of the least squares estimator has been established
in [GLZ15, GLMZ16, KTV17, KV19], see also the survey article [GM21]. To better present
our contributions within the current state-of-the-art, it is useful to provide a brief overview
of the contents of these papers. [GLZ15] considered the case of binary observations H; j,
focusing on the dense case p < 1, and obtained minimax rates of estimation over the classes
of piecewise constant and Hoélder continuous graphons. [GLMZ16] extended these results
to matrices H with sub-Gaussian entries, some of which might be missing completely at
random. However, as discussed in Subsection 2.3.1, their results are sub-optimal in some
cases w.r.t. the noise variance, for instance when edge-labels are drawn from the binomial
distribution. In the case of a unipartite graph with binary edge-labels, [KTV17] established
the minimax-optimal rates of estimation for sparsely connected graphs, where p < 1. While
[GLZ15, GLMZ16] measured the estimation error using the normalized Frobenius norm of the
difference between the estimated matrix and the true one, [KTV17] additionally considered the
Lo-distance between the equivalence classes of graphons. In [KV19], minimax optimal rates of
graphon estimation in the cut distance have been established for unipartite graphs with binary
observations.

The problems studied in this work have connections with some recent work in econo-
metrics. Indeed, as a consequence of [Ald81, Theorem 1.4], if the matrix H is row and
column exchangeable, then there is a function ¢* : [0,1]* — R and independent random
variables o, {U;}, {V;}, {&;} uniformly distributed in [0, 1] such that the random matrices H and
(g*(a, Ui, Vi, &j)ii € n),j € [m]) have the same distribution. The problem under consideration
in this chapter is equivalent to estimating the random function W*(u, v) = f01 9" (a,u,v,2)dz
from the observations g*(a, U;, Vj}, &j); i € [n], j € [m], without assuming any parametric form
of the function ¢*. If in addition to H; ;, we are also given a feature vector X ;, for every
pair of nodes (4, j) then the extended model defined by ¢*(X; ;, o, U;, V;,&; ;) can be consid-
ered. This approach is adopted, for instance, in [Gra17], where the specific parametric form
g*(x, o, u,v,2) = 1(z" B+ u+v+log(z/(1 — 2))) is considered. In such a parametric context,
the parameter of interest is the vector 3. In [Gra20], it is assumed that the regression function
Jioapp 97 (@, @, u, v, 2) dudv dz has a parametric form exp{a + " 8}/(1 + exp{a + ' 8}) and
the problem of estimating the vector (a, 3) is studied. Asymptotic results (law of large numbers
and central limit theorem) for exchangeable arrays have been proven in [DDG21b].

Notation For aninteger n > 1, we set [n] = {1,...,n}. In mathematical formulae, we use
bold capitals for matrices and bold italic letters for vectors. The integer part of a real number z
is denoted by |z |, whereas the minimum and the maximum of two real number x, y are denoted
by =z Ay and z V y, respectively. For two n x m matrices B and B, the inner product is defined
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as

(B,B) =tr(BB") =YY BBy,
i=1 j=1
and we denote by ||B||r = /(B, B) the Frobenius norm of the matrix B. The sup-norm of B
denoted by ||B||~ is defined as the largest in absolute value entry of B. We write B; , and B, ;
for the ith row and the jth column of B, respectively. The length of an interval I C R is denoted
by |I|. For n € N, 1,, is the n-vector with all its entries equal to one.

2.2 Estimators of the mean matrix and the graphon

In this section, we define the estimators of the mean matrix ®* = E[H|U, V'] and of the graphon
W* that are investigated in this chapter. We focus here on mathematical definitions only;
computational and algorithmic properties of these estimators and their tractable approximations
are deferred to Section 2.4.

2.2.1 Least squares estimator of ©*

Let us start by introducing some notation. For positive integers ng, n, K satisfying Kng < n
and K > 2, we define the set

Z(n, K,ng) = {Z € {0,1}™K . Z1x = 1,, and krél[l% 1) Zey > no}. (2.1)
The elements of this set can be seen as assignment matrices: each one of the n users is
assigned to one (and only one) of the K “communities”, and we have the condition that each
community has at least ny “members”. Similarly, we will repeatedly use the set Z(m, L, mg)
of the assignment matrices corresponding to the items. Since the n rows of H correspond to
the users and the m columns of H correspond to items, the elements of Z(n, K, ng) will be
denoted by Z"" whereas the elements of Z(m, L, mg) will be denoted by Z!**™, Matrices Z s
and Z**™ correspond to a biclustering: the clusters of users are specified by the matrix Z"";
in the same way, Z!**™ encodes the clusters of items.

Given the observed adjacency matrix H, the least squares estimator is defined by

(Q’ Zuser’ 2item)LS € arg min HH _ ZuserQ(Zitem)TH'Q:' (2.2)

QERK x L
Zvsere Z(n,K,ng)
Zitem e Z(m,L,mo)

Here, Z"e*Q(Z*™) T is a n x m constant-by-block matrix. The idea is thus to find the constant-
by-block matrix that is the closest to H in the metric induced by the Frobenius norm, where the
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blocs are given by the matrices Z*¢" and Z**™, and the sizes of blocks are at least ng x my.

These estimators computed by (2.2) lead to the constant-by-block least squares estimator
of ©* defined by O = ZuerQ(Zi**m)T. One can write ®'S in the following alternative way.
Let us consider the class of constant-by-block matrices

T = TK,L _ {@ _ ZuserQ(Zitem)T : (Q, Zuser’ Zitem) c RKXL « Zn,K,no « Zm,L,mg} ) (23)

10,10

The least squares estimator ©"° is a solution to

6 =y, K I]carg min [H- 0|2 (2.4)

no,mo
eﬂzo;mo
Our first results, reported in the next section, provide non asymptotic upper bounds on the risk
of the estimator ©'.

2.2.2 Aggregation by exponential weights

The least squares estimator ©'S is constant on KL blocks. The number of these blocks,
chosen beforehand, is a hyperparameter of the method. If the true matrix ®* is far from being
blockwise constant on K L blocks, then the quality of estimation by @}jmo [K, L] might be poor
because of the presence of a large bias. One can reduce this bias by computing the least
squares estimator for several values of K, L (but also ny and mg) and then by aggregating

these estimators.

To this end, we consider here the extended framework in which two independent copies
H and H' are observed, both satisfying Assumption A 1.2 (with exactly the same U and V).
The matrix H is used to construct estimators, whereas H' is used to define “weights” which are
used for computing the exponentially weighted aggregate (EWA). More precisely, we denote
by @%5, e @'5-5 least -squares estimators computed by solving (2.4) for s different values of
(K, L,ng, mp). We define

—~ s —~ H — aLs2
@EWA — Z UJZ(__)IK_S7 with wy = SGXP{H @ZJF/BZ} (25)
=1 > r—y exp{[|H' — @1ESHF/5}

where 3 > 0 is a parameter often referred to as the temperature. Since H' and @ks have
been computed on two independent data matrices, they are independent; this will play an
important role in the proofs. The choice of 5 depends on the nature of the observations and,
more precisely, on the distribution of the noise &, see the next section for more details.
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2.2.3 Adaptations in the case of missing values

The estimators of ®* presented in previous paragraphs use all the entries of the matrix H.
However, these estimators, as well as the mathematical results stated in the next sections, are
easy to adapt to the case of missing observations. More precisely, assume that we observe
some iid random variables M, ; taking values 0 and 1 such that the value H; ; is revealed to
the statistician if and only if M; ; = 1. Denoting by p = P(M; ; = 1) and assuming that M; ;
is independent of (H; ;,U;, V;) (this case is commonly referred to as missing completely at
random), we can define the adjusted observation matrix H by its entries EJ = H; jM; ;/p, for
i € [n] and j € [m]. Here, we assume that p is known. If this is not the case, we can easily
estimate it using the empirical mean of the random variables M; ;.

Then, to define the least-squares estimator of ©*, it suffices to replace H with H in
(2.2). Similar modifications can be made for defining the exponentially weighted aggregate.
Note that this strategy has been already successfully applied in [GLMZ16]. The entries
of matrix H are all observable, the conditional on (U, V') expectation of H is still ®*, and
Var[H; ;|Ui, V;] < (o + p*(1 — p)) /p, where o2 is an upper bound on the conditional variance
Var[H, ;|U;, V;] and p? is an upper bound on (©; ;).

2.2.4 Estimating the graphon

Having estimated the matrix ®*, the focus shifts to developing an estimator for the graphon
W*. To this end, for any n x m matrix ®, we define its associated graphon W : [0, 1]> — [0, 1]
as a constant function on each rectangle I; x J; = [(i — 1)/n,i/n[x[(j — 1)/m,j/m], for
(i,7) € [n] x [m], given by

We(u,v) =0;;, forall (u,v)el; x Jj. (2.6)

The rationale behind this definition is the following: when n and m are large, the order statistics
Uy and V{;y lie with high probability in the intervals I; and J;. Therefore, the matrix © defined
by @i,j = We(U;, V;) coincides, up to a permutation of rows and a permutation of columns,
with ®*. This means that the matrices generated by W* and Wg+ are equivalent. Hence, one
can expect that these two graphons are close.

In addition, for an estimated graphon defined by (2.6), the estimation error can be easily
related to the error, measured by the Frobenius norm, in estimating matrix ®*. Indeed, one

easily checks that [|Wg — We-+||L, = H@ — ©*||g/+/nm, which leads to

1© - O

§(Wg, W*) < |[Wg — WerllL, + 6(We+, W*) < =

F(We-, WH).  (2.7)

We will use this inequality both for ® = ©LS and ® = ©EWA. To ease notation, we often
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write WS and WEWA instead of Wgis and Wgewa, respectively. The decomposition provided
by (2.7) splits the graphon estimation error into two components: the error of estimating the
conditional mean matrix ®* and the bias of approximating W* by the piecewise constant
function Wg+. The former is the only term that depends on the estimation routine and on the
probabilistic assumptions on the noise; it will be analyzed in the next section under various
such assumptions. The latter depends only on the “smoothness properties” of the graphon.
The next result allows us to evaluate this term.

Proposition 2. Let O}, = W*(U;,V;) fori € [n] and j € [m], where W* : [0,1]> — [A, B] for
some A, B such that —oo < A < B < +.

1. (Piecewise constant graphon) More precisely, for0 = ag < ... < axg =1 and0 = by <
... < br, =1, the function W* is constant on each rectangle |ay, ap11[x[be, bes1[. If we
define Wg- : [0,1]2 — [A, B] by We-(u,v) = ©;; for all (u,v) € [(i —1)/n,i/n[x[(j —

1)/n,j/n][, then

2. (Hélder continuous graphon) If the graphon W* is a.-smooth, that is W* is in the Hélder
class® H, z, for some o € (0,1] and L > 0, then

E[6(Wer, W*)?]2 <

2 2
E[5(Wer, W2 <~ 4 2£

= /2 me/2’

The proof of this result, postponed until Subsection 2.7.2, follows essentially the steps of
[KTV17, Proposition 3.2] that deals with symmetric functions only. As a minor remark, the
constants in our results are smaller than those available in the literature.

2.3 Finite sample risk bounds

We have introduced in Section 2.2 the least-squares estimator and the exponentially weighted
aggregate for estimating the matrix ®*, as well as their associated graphon estimators. We
provide in this section upper bounds for the risks of these estimators. The main purpose of
these bounds is to highlight the behavior of the estimators when n, m are large and p, o are
small (o denoting the noise magnitude).

®Ha. . is the set of functions W : [0,1]*> — R satisfying |W (z,y) — W(z',y)| < L((x —2')* + (y — y’)Q)Q/2 for
allz,y, ',y €[0,1].
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2.3.1 Risk bounds for the least-squares estimator ©'S

We start by stating risk bounds for estimators of ®*. To this end, without loss of generality,
both in the statements and in the proofs, we treat ®* as a deterministic matrix; this is why we
require H; ; to be independent instead or requiring conditional independence given U, V.

Theorem 6. Let n, m,ng, mo, L, K be positive integers suchthat L > 2, K > 2,3 <ng <n
and 3 < myg < m. Let H be an n x m random matrix with independent entries satisfying
E[H;;] € [0, p] for every i € [n], j € [m] and some p > 0. In addition, assume that the random
variables (H,;; —E[H,;]) satisfy the (o2, b)-Bernstein condition. Then, the least squares estimator
®'S of the mean matrix @* = E[H], defined by (2.4), satisfies the exact oracle inequality

—~ % 1 %
E[jes e " _ . |e-e
Vvnm h QT o Vvnm

+ (2502 + 4bp) P*rn (K, L),

with r,, ., (K, L) given by

3KL logK logL\'2
+ + )
nm m n

Pam(, L) = (
provided that iy, y, (1o, mo) = mio log(en/ng) + % log(em/mg) < (o/b)2.

Lower bounds on the minimax risk of all possible estimators, showing that the risk bound in
Theorem 8 is rate optimal under various regimes, will be stated in Section 2.5. Let us mention
here the fact that in the particular case b = 0 corresponding to a sub-Gaussian distribution,
the condition E[H; ;] € [0, p] can be removed and the claim of the theorem remains true. This
causes no problem since p appears in the upper bound through the product b x p only.

Theorem 8 being stated for general distributions, it is helpful to see its consequences in the
cases of common distributions of H; ; mentioned in the introduction.

Corollary 1. We assume that the conditions on n, m, ng, mg, L, K required in Theorem 6 hold.

1. If H;;’s are independent Bernoulli—or any other distribution with support [0, 1]— random
variables with mean ©; ; < p, then they satisfy the (p, 1/3)-Bernstein condition and,

therefore,
E[|O — @*||2]" e -0 KL logK logL\Y2
[” ||F] < inf | [F 9y <7+ 0g n og ) (2.9)
\ nm @67;{3:{;10 \/ nm TLm m Tl

provided that m%) log(en/no) + nio log(em/mg) < 3p.

2. lfforsome N € N, (IVH;;)'s are independent binomial random variables with parameters
(N, ©; ;) such that © ; < p, then H, j's satisfy the (p/N, 1/3N)-Bernstein condition and,
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therefore,

E[js e " _ . |e- e poyp (KL sk gLy
/nm = T,fé v/nm Nnm Nm Nn

provided that - log(en/ng) + - log(em/mo) 3Np.

3. If Hi;'s are independent sub-Gaussian random variables with means ©; ; and variance
proxies Tfj < o2, then they satisfy the (o2, 0)-Bernstein condition and, therefore,

E[||OS — @*|2]"? _ o KL logK log Ly
[l [ P [ < [ (KL loal | loalyy:
v/ nm 967’”13:%10 vnm n m n

4. If forsome T' > 0, (T'H;;)’s are independent Poisson random variables with parameters
TO;,; < Tp, then H, ; satisfy the (p/T',1/3T)-Bernstein condition and, therefore,

E[||©S — @*|2]" _e* KL |, logK  logLy':
Il H < e 1© I +9f( og K log )
vnm ecTL,  Vnm Tm Tn

provided that - log(en/ng) + = log(em/mo) 3Tp.
The expression of the remainder term appearing in these risk bounds can be seen as

size of the parameter space

noise magnitude x
sample size

Indeed, K L+nlog K +mlog L is the order of magnitude of the logarithm of the covering number
of 775;,%0, a common measure of the complexity of the parameter space. In addition to being
instructive, this interpretation explains why this upper bound is optimal up to a multiplicative
constant under some mild conditions.

Note also that the least-squares estimator for which the risk bounds above are established
does not require the knowledge of p, o, and b. This explains the presence of a condition
on p requiring it to be not too small. For small values of p, our proofs may still be used to
get a risk bound for the least-squares estimator. For instance, in the Bernoulli model, when
p < mio log(en/ng) + % log(em/my), the remainder term is the same as in (2.9) with p replaced
by m% log(en/ng) + nio log(em/mg). However, for such a small value of p smaller risk bounds
can be obtained either for the estimator that outputs a matrix with all zero entries, or for the
constrained least-squares estimator with the constraint ||©® ||, < p (see [GLMZ16, KTV17] for
results with this flavor).

Remark 1. As mentioned in the introduction, an upper bound similar to the one of Theorem 6
has been established in [GLMZ16], under the condition that H; ; — E[H; ;| are o-sub-Gaussian.
The remainder term obtained therein is of the order (o + p)r, (K, L). Since, o being sub-
Gaussian is equivalent to the (o2,0)-Bernstein condition, our theorem applies to the same
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setting and yields a smaller remainder term, o7y, ,,, (K, L) (which is independent of p). Of particu-
lar interest is the case where the entries are scaled binomial random variables, as in the second
claim of the last corollary. In this scenario, the risk bound of [GLMZ16] includes a remainder
term of order r, ,,, (K, L) since the sub-Gaussian norm of the averages of independent Bernoulli
random variables is of constant order. Interestingly, our upper bound is substantially tighter
since its remainder term includes a deflation factor of \/p/N. In Section 2.5, we demonstrate
that this upper bound is tight, at least when n and m are of the same order of magnitude.

2.3.2 Risk bounds for the EWA ©EWA

In a framework pertaining to denoising the observed signal, [LB06] were the first to establish
sharp bounds. They did so for Gaussian noise only. Extensions to more general noise
distributions were developed in [DT07, DT08, DT12, Dal20, Dal22]. The results of this section
are consequences of those presented in [Dal22], which are, to our knowledge, the only results
in the literature applicable to models with asymmetric noise (as is the case in the Bernoulli and
the binomial models).

Theorem 7. Let H ann x m matrix with independent entries and let ®* = E[H|. Let H' be
an independent copy of H. Let‘y be a set of quadruplets (K, L,ny, my) =: p and let |'s ]
be the least squares estimator defined by (2.4). Let ©EWVA[] be the exponentially weighted
aggregate (2.5) applied to estimators {@'—S [p] : p € P} with some temperature parameter
B> 0. Letr, (K, L) be as in (2.8).

1. (Bernoulli/binomial model) Assume that for some N € N, N H; ; ~ binomial(, ©; ;) with
©;; < pforeveryiec [n] andj e [m]. For 8 =8/(3N), the estimator OEWA — @EWA[y]

satisfies
E[|©5"A — o°|2] " l©-ee. . [7 8log |98 ¥2
< mi inf ———— 4+ 9/ = rum(K, L
v/nm ;%%{Qle%’[p} vnm + NT ml )} +{ 3Nnm }

provided that max,cyp (m%) log(en/ng) + n—lo log(em/myp)) < 3Np.

2. (Gaussian model) Assume that H; ; ~ N (0} ;,07 ;) with o7 ; < o* for every i € [n] and

j € [m)]. For 3 = 402, the estimator ®@FWA = @EWA[p] satisfies

E[IQEWA _ @*||2 1/2 A s
[” HF] < min{ inf 7”® © HF—i— 507nm (K, L)} + {log Vm} .
vnm peP LoecTlp] /nm ’ nm

To prove the first claim of this theorem, it suffices to combine [Dal22, Cor. 4] with Theorem 6.
Similarly, the second claim follows from [Dal22, Cor. 2] and Theorem 6. Similar results can
be obtained for arbitrary distribution with bounded support and for the Laplace distribution,
using Corollary 3 and Corollary 5 from [Dal22], respectively. Unfortunately, we are not aware of

43



any result that makes it possible to carry these bounds over to the Poisson and the general
sub-Gaussian distributions.

Remark 2. The upper bounds obtained in Theorem 7 show that the extra error term due to
aggregation is not large, when the sample size nm is large. Note that log |33| is usually not large.
A reasonable choice for this set is the following: choose geometrically increasing sequences
K; = |2'7/2] and L; = [2'%9/2| for 0 < i < 2log,(n/10) and 0 < j < 2log,(m/10). Then, for
each K; and L;, choose ng < n/K; and mo < m/L; to be of the form [22+¢/2]. This method of
choosing 3¢ ensures that || < 4log3(n/7) log3(m/7). Therefore, the term log || is, in almost
all settings, of smaller order than K L; indeed, one can check that log |33| > 12 implies that

min(n,m) > 12 x 10%.

2.3.3 Risk bounds for the graphon estimators 175 and TWEWA

A suitable combination of the risk bounds established in Theorem 6 on the error of estimators
of the mean matrix ®* = E[H] and of inequality (2.7), allows us to get risk bounds for the
graphon estimators WS and WEWA. We will focus on two classes, piecewise constant and
Holder continuous graphons, for which the evaluation of the approximation error is provided in
Proposition 2. Obviously, using this strategy makes the term infgc7 ||© — ©*||[r—the oracle
error—appear in the error bound, where T is the set of constant by-block-matrices defined
in (2.3). In the case of the class of piecewise constant graphons, this oracle error vanishes,
whereas in the case of Hbélder continuous graphons, it needs to be evaluated, which is done
in the next proposition. Note that, unlike in Subsection 2.3.1 and Subsection 2.3.2, we now
return to the original framework of random ®* and all the expectations comprise integration
with respect to the latent variables U and V.

Proposition 3. Let W* be a-Hblder continuous, i.e., W* € H, » for some a € (0,1], £ > 0. Let
07 ; =W*(U;,V;) fori € [n] and j € [m]. Letng > 2, mg > 2, K < n/ng and L < m/mg be
four integers. Then, the n x m matrix ©®* with entries ©; ; satisfies

. |®—®*|ypr/2 3L/ 1 1
inf ——— < (7 )7

E i .
@cT v/nm 2 \Ke L«

where T = T,k is the set of constant-by-block matrices defined in (2.3).

We have now all the necessary ingredients to state the main results of this chapter, quan-
tifying the error of estimating the graphon. We do this first for the least squares estimator,
considering in particular that the parameters K and L of the set 7 (on which the minimum in
Equation (2.2) is computed) is fixed. We then state the result for the exponentially weighted
aggregate.

Theorem 8. Let H be a n x m random matrix satisfying Assumption 3 with some graphon
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W+ :[0,1]%2 — [0, p]. Assume that for some constant o > 0, conditionally to U,V , the random
variables (H;; — E[H;;|U, V) satisfy the (o2, b)-Bernstein condition.

1. Assume that the graphon W* is (K, L)-piecewise constant, meaning that for some
infegers K,L >2andfor0=ag < ...<ax =1,0=01 < ... < by =1, such that
8log(nK)

A .= min lag, — ag—1| > ———=, AL = min |by — by_1| >

8log(mL)
ke[K] n Le[L) m

, (2.10)

the function W* is constant on each rectangle [ay—1, ax[x[be—1,be[. Then, the estimator
WL = Wgs with ©'S = ©L3 | (K, L] defined by (2.4) satisfies

ng,mo

E[§(WS, W*)?)"? < (2702 +4bp)1/2<3KL 4 log K logL i (f g2 )
nm m

provided that i, (AUS)) = CoEC AT | BlsCe/ 8T (g /p)2.

2. Assume that the graphon W* is a-Hblder continuous, meaning that W* € H,, » for some
a € (0,1] and £ > 0. Assume that* the number of nodes n, m satisfy n > m and

m2a+1 (4b/0) (a+1) \/3
nlog*(2n) = (2502 + 4bp)

(2.11)

Let 5 = a/(2a+ 2). Then, there is a choice of K, L, ny, mq such that the least squares
estimator W'S = Wes With O'S = LS, [K, L] satisfies

no,mo

2 B 2 1/
250 —|—4bp> +((500 +8bp)logm> 2+ 4L (2.12)

E[(S(/WLS, W*)2]1/2 < GL1—28 (
m

3nm me/2

In order to ease understanding of these results, let us make some comments. First, one
can note that applying the first claim of the theorem to Bernoulli random variables® H; ; (the
Bernstein condition is then fulfilled with o2 = p, b = 1/3), we obtain

_ 1
E[5(WS, W)/ < 10(”55 + plgiK + plOgL ’ (\/ /= ) (2.13)

provided that _— A(L) log(2e/ A 4 = A(K) log(2e/AX)) < p. In the balanced setting n = m,
K =Land A®) = A(l) = 1/K, the upper bound in (2.13) simplifies to

o oY gy (K)

provided that p > 2(K/n)log(2¢K). The last expression is of the same order as the rate

“The assumption n > m does not cause any loss of generality, since n and m play symmetric roles in the
framework under consideration.

5In fact, exactly the same result holds if the Bernoulli distribution is replaced by any distribution supported by
[0,1].
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Distr. of H;; | Values (¢2,b) | Condition (2.11) | Risk Bound (2.12)

Bernoulli(p) (p,1/3) p° > £2n12§(2n) 1(17;/712)[1);24 8\/[\)/1%% + j%
Binomial(N, p)/N | (p/N,1/3N) | p° > LN ”554(2”) sjlv‘grzn’;ﬁ + 8*{;’?::” + j’%
sub-Gauss(o?) (02,0) o’ > 3£2?;15(:iz(2n) (Eﬁ + 80\/\/1? + j%
Poisson(Tp)/T | (p/T,1/3T) | p° > ﬁQTn:::E "(2n) E};ﬁ?iﬁ 8‘/5? + j%

Table 2.1: Upper bound for Lipschitz-continuous graphons and various distributions.

established in [KTV17, Corollary 3.3.i)] for graphons of unipartite graphs. Furthermore, it
holds under more general conditions on the observations and contains explicit values for the
constants.

Second, one can have a closer look at the order of magnitude of the three terms appearing
in (2.12) in the case n = m tending to infinity and assuming £, o,b and p to be of order one.
Then the first term is of order (n?)~/(22+2) which is known to be the minimax optimal rate of
estimating an a-Hoélder continuous, d = 2-variate regression function based on n? observations.
The second term, of order (logn/n)'/?, is dominated by the first term when o < 1, and has the
optimal order up to a logarithmic factor when a = 1. The third term being of order n=/2, is of
optimal order n~'/2 when a = 1, and is the largest term of the sum for all o < 1.

To the best of our knowledge, the question of whether there are estimators of Hélder-
continuous graphons that achieve a faster rate of convergence than n~%/2 remains open. The
common belief is that this term is unavoidable and it is the price to pay for not observing the
covariates U, V. Note that the deterioration caused by this lack of information, measured by the
ratio of the third and the first terms of the risk bound in (2.12) is of order n®(1—)/(2a+2) < ,0.086
when n and m are of the same order. From a practical point of view, this deterioration is not
significant, since even for n = 10?, n%986 < 6.

One can also draw the consequences of the second claim of the theorem under various
(conditional to U, V) distributions of H; ;. For o = 1 (5 = 1/4), that is Lipschitz-continuous
graphons, conditions (2.11) and inequality (2.12) are reported in Table 2.1.

To close this section, we state the risk bounds that can be obtained by combining Theorem 7
and Theorem 8. To keep the statement simple, only the case of piecewise constant graphon is
presented.

Corollary 2. Let n» < m and let H be a n x m random matrix satisfying Assumption 3 with
some (K, L)-piecewise constant graphon W* : [0,1]> — [0, p]. This means that for some
integers K,L > 2andfor0 =ap < ... <axg =1,0=15b; < ... < by = 1 such that (2.10)
holds, the function W* is constant on each rectangle [ax_1, ax[x[bs—1, b¢[. Let P be chosen as
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in Remark 2 and let WEWA[p] = Weewapy-

1. (Bernoulli/binomial model) Assume that for some N € N, conditionally to (U, V),NH, ; is
drawn from the binomial(V, ©; ;) distribution with ©; ; = W*(U;, V) < p for every i € [n]
and j € [m]. For 5 =8/(3N), we have

EWWEWAW*)Q]W<9(2pKL+loglog2m+plogK plogL v (\f f)
nm m

. () @
provided that eG/870)  losGe/AT Ny,

2. (Gaussian model) Assume that, conditionally to (U, V'), the entries H; ; are drawn from
the Gaussian N (W*(U;, V;), o%(U;, V;)) distribution with |[W* (u, v)| < p and 0% (u, v) < o
for every u,v € [0,1]. For 8 = 402, we have

E[(WEVA, W)V < 50(2KL topogm  BR logL e (V \/>>
nm m

2.4 Tractable approximation of the least-squares estimator

The least squares estimator introduced in (2.2) and studied in previous sections is a solution
to a combinatorial optimization problem that is computationally intractable. It is impossible to
compute this estimator in polynomial time. The goal of this section is to present a tractable
algorithm that computes an approximation of ®'S. Of course, there is no guarantee that the
presented algorithm provides an estimator that is always close to ®'S, but it is plausible that
this is true in many cases.

The proposed approximation can be seen as a version of Lloyd’s algorithm for k-means
clustering [LI082]. To describe it, let us recall that the least square estimator is defined by

((;27 Zuser’ them)LS € arg min HH _ ZuserQ(them)TH'Q:. (214)
QGRKXL
Zvs°re Z(n,K,no
( bl k) )
Zitem ¢ Z(m, L,mo)

It turns out that when we fix two of the three arguments Q, Z"*, Zi**™ of £, the minimization
problem with respect to the third becomes tractable. We can therefore use the alternating
minimization algorithm below, with the guarantee that the cost function £(Z"¢", Q, Zi**™) =
|H — ZuwserQ(Z**™) T ||2 decreases at each iteration. Different versions of this algorithm have

been studied in the literature on estimation and detection in the presence of a latent structure
[CO10, LR15, LZ16, GV19].

The rest of this section provides more details on each step of this algorithm, as well as on
the initialization and on a stopping criterion.
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Algorithm 4 Lloyd’s algorithm of alternating minimization for approximating the LSE (2.14)

Require: Zvuser, Zitm the left and right cluster matrices with entries in {0, 1}, H the data matrix.
Ensure: (Z1,Q, Z5) local minimizer of L(, -, -).

Repeat:
1. Compute Q = (ZIe )THZI'™ where Z is the matrix Z*" with normalized
columns with respect to ¢!-norm (the number of 1 in the column), and similarly for
them

norm*

2. Update Z"s* that minimize Z — L(Z, Q, Zi*™)
3. Update Z*™ that minimize Z — £(Z",Q, Z)

Minimization in the second argument Q When the clusters are known, meaning that we
know matrices Z" € Z(n, K,ng) and Z'*™ ¢ Z(m, L, my), see (2.1), the solution to

o~

Q = arg Qenﬂl{ilngL E(Zuser7 Q, Zitem)

is easy to compute: each entry @kz is the average of the coefficients H;; belonging to the
(k,1)-block defined by Z"* and Z'**™ (a coefficient (i, j) is in the block (k,1) if Z¥ =1 and
Ziem = 1). Formally, this is equivalent to Q = (Znser,) " HZjor, where Ziorm = (Z7Z) ' Z for
Z c {Zuser’ Zitem}_

Minimization with respect to Z"s¢* We focus now on the problem of minimizing the cost
function £(Z", Q, Z'**™) over Z*" ¢ Z(n, K,ng). Let us first consider the relatively simple
case ny = 0 when there is no constraint on the cardinality of left clusters. We aim to find
Zvser ¢ Rm<K that minimizes Z — £(Z, Q, Z1*™) under the constraints that Z € {0,1}"*X and
Z1yx = 1, (i.e., each row of Z has only one entry equal to 1). Let us define Ci*™ = {j €
[m], Zit™ = 1} to be the ¢-th right cluster and introduce notation

[ item _ 1
il |Cltem |

> Hy and D =diag(|C{"™|)ser

ecltem

Simple algebra yields
. n .
,C(Z, Q, them) _ Z HHiﬂ - ZI. (them)T”%’
where Z; , is ith row of Z. Since Z; , is allowed to have only one nonzero entry, and it should

be equal to one, Z,Q(Z"*™)" is merely equal to one row of Q(Z**™)T. This implies that
Zser = 1(j = k;), where

ki = arg kr»Iel[III(l] |Hie = Qua(Z"™)T|[; = arg min Z 2 (Hij=Qu)?

ke K]g 1 ecltem
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We can rewrite the above expression of k; as
i . Fritem
ki = arg min IDY2(H"™ — Qpa) "5

Thus, in order to determine Z", it suffices to compute the matrix Hi**™ ¢ R**L and then
find for each row of H'**™ the closest row of Q. Of course, the same procedure is valid for
minimizing £ with respect to Z**™ for known Z"°" and Q.

Let us return to the general case ny > 0. In this case, we show that the minimization of £
with respect to Z"°* can be done by solving a linear program. Indeed, let is define

K
$(Z) = —2tx(ZQ(Z"™) TH') + Y 1, Z.4Q,.DQ;,
k=1

Z(TL,K, no) = {Z S [0, 1]n><K :Z1g =1, and k:m[llr(l] ]-»IZo,lc = nO} .
S

Note that ¢ is a linear function of Z"¢", whereas Z(n, K, ng) is a convex polytope containing
Z(n, K, nyp).

Proposition 4. The following two claims hold true.

1. The function L(Z,Q, Z"*™) — ¢(Z) = |H||% is independent of Z.

2. The set of extreme points of Z(n, K,ny) is Z(n, K,ng). Equivalently, an element of

Z(n, K,ng) is an extreme point if and only if all its entries are either 0 or 1.

The set Z(n, K, ng) is a convex polytope because it is defined by linear constraints. A well
known result [BT97, p 65, Thm 2.7] implies that if £(-, Q, ZI**™) has a minimizer in the polytope

Z(n, K,np), then it has at least one solution in the set of its extreme points Z(n, K, ng). There
are many efficient solvers for finding such a solution.

Initialization The initialization of Algorithm 4 might have a strong impact on the final result.
One possible strategy is to run in parallel N instances of the algorithm with different initialization
values, chosen at random. The final estimator is the one that minimizes £ among the resulting
(V) candidates.

Another strategy, often used in conjunction with Lloyd’s algorithm, is based on spectral
initialization. When the graphon is piecewise constant, the problem under consideration is
nothing else but the bi-stochastic block model for bipartite networks. Therefore, initial values
(Zvser, Zi**™) can be obtained, for instance, by the spectral method from [ZA19a]. It consists in
computing the K-truncated singular value decomposition of a regularized version of matrix H,
and then, in applying k-means clustering to the K-truncated left singular vectors to obtain an
initialization for Z"s°*. The procedure is similar for Zit™,
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Stopping rule As mentioned, the cost function is non increasing over the iterations, and it
takes its values in a finite set since there is only a finite number of configurations for (Zs°r, Zitem),
This is why, from a certain iteration onwards, the values of the cost function remain constant.
However, the algorithm may require a large number of iterations to achieve consistency. This
suggests to stop iterating if either two consecutive values of the cost function are equal or the
maximum number of iterations is attained.

To conclude this section, we stress once again that there is no guarantee that the computa-
tionally tractable algorithms we presented here provide the global minimum of the cost function
L. However, as can be seen from the numerical examples in Section 2.6, results are quite
satisfactory.

2.5 Lower bounds on the minimax risk

We show in this section, that the least squares estimator WLSis optimal, among all possible
estimators, in the sense of its rate of convergence in the worst case over the class

K—-1L-1
WK, L] = {W (0,12 = [0, p] : I{THC ) {Teb ey st W=D ) W(ak,bg)]l[ksz},
k=0 ¢=0
where I}, = [ak, ag4+1) and Jy = [by, bey1) form a partition of [0, 1) into intervals. The lower bound
will be proven for the binomial model, but all the techniques used in the proof can be extended
to the other models presented in the introduction.

Theorem 9. Assume that conditionally to (U, V'), the entries H; ; of the observed n x m matrix
H are independent and drawn from the Binomial distribution with parameter (N, W*(U;, V})).
There exist universal constants ¢, C > 0, such that for any K, L > C satisfying KL > Llog® L +
Klog? K and for any p > 0,

1/2 1/2
lx%fsmgPEW (W, W] = c|Vp Nnm/\p—i-Nm/\p +p \/n-i-\/m ,
(2.15)

where the inf is over all possible estimators W and the sup is over all W* e W,[K, L.

In this theorem, we could assume N H; ; ~ B(N, W*(U;,V;)) — instead of assuming H; ; ~
B(N,W*(U;,V;)) ) — and obtain the same result. In that sens, the right-hand side of (2.15)
should be compared to (2.13). One can observe that if the values of n,m, K, L and p are such
that the dominating term in the upper bound is one of the terms p(K /n)'/* and p(L/m)/*, then
the lower bound in (2.15) is of the same order as the upper bound. Therefore, in this case, the
least squares estimator of the graphon is minimax-rate-optimal. Similarly, if the dominating term
is (pKL/(Nnm))"/? and p > KL/(Nnm), then the LSE is minimax-rate-optimal. Note also
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that if p is very small, that is smaller than both K'L/(Nnm) and (N?nm)~1/2, then the lower
bound in (2.15) is of order p, which might be much smaller than the upper bound established
for the LSE. This is not an artifact of the proof, but reflects the fact that in this situation the
naive estimator W = 0 is better than the LSE. Furthermore, this naive estimator turns out to be
minimax-rate-optimal under the mentioned constraint on p.

Figure 12 depicts the regions of the values of n and m where the lower and the upper
bounds are of the same order, illustrating thus the optimality of the least-squares estimator.
Similarly, Figure 13 shows the regions of the values of p and v = K/n = L/m, for fixed values
of n and m, where the lower bound is larger than half of the upper bound. We clearly see that
even for very unbalanced graphs (m much larger than n), the purple region covers almost the
whole square, which means that the least-squares estimator is minimax-rate-optimal in this
region.

p=0.002, y=0.1 p=0.0017, y=0.1 p=0.0015, y=0.1
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Figure 12: lllustration of the optimality of the least squares estimator for N = 1. The purple area
corresponds to the values of n and m, for some fixed values of p and v = K /n = L/m, for which
the lower bound is within a constant factor of the upper bound. More precisely, when py2 A p? +
p(nm)~Y2 A p? 4 2p%, /7 is larger than half of py? + (plog K)/(3m) + (plog L)/(3n) + 2p*\/7.
We observe that unless p is very small, the upper bound established for the least-squares

estimator is within a constant factor of the lower bound for all estimators for most values of n
and m.

2.6 Numerical experiments

In this section, we present the results of some numerical experiments illustrating the behavior
of the error of the estimated graphon WLS and its dependence on different parameters of the
model. We first consider the case of piecewise constant graphons and study the estimation
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n=1000, m=1000 n=1000, m = 10000 n=1000, m= 1e+05 n=1000, m=1e+06
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Figure 13: lllutration of the optimality of the least squares estimator. The purple area corre-
sponds to the values of p and v = K/n = L/m, for some fixed values of n and m, for which the
lower bound is within a constant factor of the upper bound. We observe that unless p is very
small, the upper bound and the lower bound for are of the same order.

error of the matrix ®*. We explore the dependence of this error on n for different values of
(p, K, L) (assuming that m = n/2) as well as on the sparsity parameter p for different values
of (n,m, K, L). We then show the results of the estimation for a Hélder-continuous graphon,
when parameters K and L are chosen as functions of n and m respectively, as recommended
by our theoretical results.

2.6.1 Estimation error of the piecewise constant matrix ©*

We report the results of two different experimental set-ups, referred to as rand-graphon and
cos-graphon. The two set-ups differ in the choice of the graphon only. In both cases, the
partitions on which the graphon is piecewise constant is the regular partition induced by the
rectangles of the form [(k — 1)/K,k/K) x [(¢ —1)/L,¢/L) for k € [K] and ¢ € [L]. In the
rand-graphon set-up, the values of W* are chosen at random between 0 and p, while in the
cos-graphon set-up, W* is defined as

2
W*(u,v):§p+§cos (7| Ku]|[Lv]), Yu,v € [0,1].
Note that the problem is harder than estimating this as a function on [0, 1]? — the usual function
estimation setting — because the variables U; and V; are not observed. The results obtained
in these two set-ups are depicted in Figure 14 and Figures 15 and 16, respectively. In each
experiment, we chose m = n/2 and computed the median of the squared error %H@ — O3

for 50 independent repetitions. The estimator © was computed by Algorithm 4.

For better legibility, the errors in the plots are presented using a log-scale. To check the
consistency of the numerical results with our theoretical results, we plotted (in green) the
remainder term appearing in the upper-bound in theorem 6. We also displayed the oracle
error (red curve) corresponding to the error of the best pseudo-estimator that is built with the
knowledge of the true left and right cluster matrices. We only computed the block averages
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in this case. The labels “spectral” and “random” refer to the initialization process used for the
algorithm. To display the uncertainty, we plotted colored areas corresponding to the quantiles
of order 0.1 and 0.9 respectively. (One may be surprised by the fact that this area grows with n
in some cases; this is an artifact of the log-scale). In Algorithm 4, we chose v = 1072 and the
maximum number of iterations equal to 40.

One can observe in these experimental results that the error of the “spectral” version always
decreases with n and gets closer to the oracle error faster when p is larger, as well as when
n/K and m/L are higher, following in that the intuition. Indeed, the bigger p is, the more links
there are, rendering the estimation more accurate. Similarly, the higher n/K and m/L are,
making again the estimation more accurate. The “random” version of the algorithm has a more
chaotic behavior. It is in most cases larger than the error of the “spectral” version when n/K
and m/L are large enough.

In the set-up of cos-graphon, we displayed in Figure 14 the behavior of the error as a
function of p. For small values of p, the random initialization appears to be better than the
spectral one. Moreover, the error is increasing for p € [0, 1/2] for both initializations. The reason
for such a behavior is that the estimator we computed tries to mimic the oracle estimator, which
knows the clusters and estimates the matrix ®* by computing cluster-wise averages. Thus, if
O* = (Z"°")*Q*(Z**™)*, where matrices (Z")* and (Z'*™)* represent the clusters, then the
oracle ®, = (Z')*Q,(Zitem)* satisfies

E[|6, — ©"||3]
nm

1
= Z Qu(l— Q)
Tl
= % ;ﬂ@cz(l — Q1)

(1@l pIQIR) (2.16)
nm

In the above formula, we used the matrix Q = Q*/p, which has all its entries in [0, 1], and
denoted by ||6||171 the sum of entries of the matrix Q. The right-hand side of (2.16) is a function
of p that increases for p € [0, ][@]1,1/2“6“%}, and decreases outside this interval. Recall that Q

has all its entries in the interval [0, 1]. As a consequence, '%é’; > 1, which gives an intuition

about the increasing behavior of the error for p € [0,1/2].

2.6.2 Estimation error for Holder-continuous graphons

To illustrate the behavior of the estimator of the graphon in the case where the latter is Holder-
continuous, we consider the function displayed in Figure 18 and given by

W*(u, v) = 5(1 +exp{ —10((u—1/2)% + (v — 1/2)2)}).
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Figure 14: Estimation error as a function of p, for W*(x,y) = % + £ cos(3m| Kz || Ly]).

This function being Lipschitz-continuous, we have a = 1.

The average squared error of estimation over 50 repetitions for different values of n and p
is depicted in Figure 17. Since the true distance ¢ is prohibitively hard to compute (because
of the minimization over all measure preserving bijections), we computed an approximation
of it denoted by 5. Roughly speaking, ¢ is obtained from & by replacing the minimum over all
bijections 71, 72 by the value of the cost function at the particular instances of bijections, 7,, and
T,,, Used in the proof of Proposition 2. More precisely, if o1 and o, are permutations of [n] and
[m], respectively, such that the sequences (Uafl(i))ie[n] and (Vagl(j))je[m] are nondecreasing,
then

n

o () = Z <01(Z71_1 e Z.;Ll)ﬂ[i—lﬂ)(nu)’ o (1) = 0'1(71),

=1 n
L foa(j) — 1 J—1 o2(m)
Toa(0) = (T —v= 7)1[171,1)("?‘)’ Too(1) = ——.
j=1
Then, we define
52(W7 W) = HW* 0 (Toy ® Toy) — WHH%Q

n m o1(8) o2(4)
W =28 [ [ W dedy + B,

=1 j=1 “n YT m

In numerical experiments, the integrals appearing in the right-hand side of the last display
are approximated by the Riemann sums. In this case also we observe that the error curves
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Figure 15: Graphon estimation in the rand-graphon set-up. The random graphon is represented
in the figure at bottom left. The others figures plot the error of our pseudo-estimator for different
settings.

obtained by Monte Carlo simulations are of the same shape as those predicted by the theory.

Interestingly, and somewhat surprisingly, the random initialization behaves as well as the
spectral one. We do not have any explanation for this observation at this stage.
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Figure 16: Graphon estimation in the cos-graphon set-up, W*(z,y) = 22 + £ cos (37| Kz || Ly]).
The graphon is represented in the figure at bottom left. The others figures plot the error of our
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2.7 Proofs of results stated in previous sections

2.7.1 Proof of Theorem 6 (risk bound for LSE of the mean) . . . . .. ... ..
2.7.2 Proof of Proposition 2 (approximation error for a graphon) . . . . . . ..
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Figure 18: Graphon representation for p = 0.9.
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2.7.1 Proof of Theorem 6 (risk bound for ©5)
Let us define
[I7(©") = arg min [|© — ©7|F,

the best approximation of ®* in Frobenius norm by a constant-by-block matrix. Note that the
matrix II7(®*) has at most K L distinct entries each of which is the average of the entries of a
submatrix of ©*. Since ® = ZwerQ(Zi**m)T is the least square estimator, we have

I -8 < ||| -~ 1mr(e7)]¢. (217)
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Let us define the mean-zero “noise” matrix E = H — E[H|] = H — ©* and rewrite (2.17) in the
following form

16 — ©°[2 < [|©° — II(©%).[? +2(6 — ©*,E) +2(6" - ("), E). (2.18)

The expectation of E being zero, the same is true for the last term in the right-hand. We want
to bound the expectation of (@ — ©*,E). To this end, we define

T ={©:3Q e R"*" such that © = Z™"Q(Z"™) "} C T,

and let II-(©") = arg ming = [|© — ©~[|¢ be the best Frobenius approximation of ©* in T. We
use the decomposition

(® - ©",E) = (II(0") - ©",E) + (© — II("),E). (2.19)

=)

[1]

=1

2

Lemma 1. Under the conditions of Theorem 6, we have

E(Z1) < 0y/2(nlog K +mlog L+ 1)E[|® — ©*|]" + bp(nlog K + mlog L + 1).

Proof. The main steps of the proof consist in applying the Bernstein inequality to =, for a fixed
© instead of I1:(©"), using the union bound and then integrating the high-probability bound.
For the first step, let ® € R™*™ satisfy ©; ; € [0, p| for every (i, j) € [n] x [m]. By definition of
the inner product, we have (© — O, E) =}, 1. (© — ©%)i; Eij. The random variables
E;; are independent and satisfy the (o2, b)-Bernstein condition. The nm-vector with entries
(® — ©");; has an infinity norm bounded by p. Therefore, the version of the Bernstein inequality
stated in Lemma 12 implies that for all > 0, we have

]P’((@ _©@"E) > 2r5|® — | + bpm) <e™®.

Let us define Qg7 = {(Z™,Z*™) = (Z,Z')}, for each pair of matrices Z € Z,  ,, and
Z' € Zi 1m,- Onthe event Qz 7/, the matrix I1(©*) is deterministic and its elements are
averages of the elements of ®*. Hence, 0 < (I1=(©"));; < [|©*|~ and

P({{Il-(©%) — ©",E) > V210 |[1(0%) — O || + bpa} NQzz) < e .

Note also that the cardinality of Z,, k., is at most K". Combining the last display with the
union bound, we get

P((H?(G)*) E) > \/2upo|l1(©") — ©*[|r + bpa2a:>
Z P ({{Il(©%) - ©",E) > V22 0||lI(©") — ©°||r + bpz} N Qz.2/)
(2,2")
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< K'"L™Me™®,

where in the first inequality in the above display the sum is over (Z, Z') from the set Z,, i ,,, ¥
Zm,L,m, and the factor K"L™ corresponds to an upper bound on the cardinality of this set.
Finally, choosing x = nlog K + mlog L + t for some ¢t > 0 and using the basic inequality
uv < Au? +v?/(4)) entails

2
P <E1 > A[I=(0) — |12 + (% + bp) (nlog K +mlog L + t)) Let

forany A > 0. Lemma 11 below ensures that
2 o
E(S1) < AE[[T1(©") — 0[] + (5 +bp) (nlog K +mlog L +1)

< AIE[H@ - @*H‘,%} + (;i +bp)(nlogK+mlogL+ 1).

Optimizing with respect to A > 0, we get

E(Z1) < a\/Q(n log K +mlog L + 1) IE[||@ — ©*||2]"* + bp(nlog K +mlog L +1).
This completes the proof of the lemma. O
We now switch to the evaluation of E(Z9). To this end, we first notice that
(H) - 11(©"), )] = E[(ILx(E), E)] = E[|lI:(E)|].
Lemma 2. Under the conditions of Theorem 6, we have

E[|T=(E)|?] < 4(b+ 0*)(3KL + nlog K + mlog L) (2p + bibn m(no, mo)).

Proof. Recall that ¢y, ., (ng, mg) = 218(en/mo) | 3loslem/mo) The gcheme of the proof is to apply

mo no

successively Lemma 14 and Lemma 15. We will proceed by vectorizing the matrices in order
to work with vectors only. To this end, let us consider an arbitrary bijection

¢ : [n] x [m] = [nm)].
Let A and M be partitions of [n] and [m], respectively, satisfying
IN|=K, M|=L and min |A| > ng min |B| > my.
AeN BeM

We define N x M ={A x B: A e N, Be M} which is a partition of [n] x [m] of cardinality
IV x M| = KL satisfying |A x B| > ngm, for every A x B € N' x M. We denote by G the
family of all partitions ¢(N x M), where A/ and M are as above.
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Since the entries of I1-(E) are averages of coefficients of E, if we vectorize E according to
the map ¢, meaning that we define (E); = Ey-1(; for all i € [nm], we have that

I~(E)|]2 < I E|?
ITI=(E)IF rgggH cEl3

with entries (E); satisfying the assumptions of Lemma 14. So by the union bound on G, we
obtain that

IT(E) [ < 4(t + log(2M|G])) (20” + bmax [TIGE |oc) (2.20)

with probability at least 1 — 0.5¢~¢, where log M < K Llog12 < 2.5K L.

Let A be the family of all the cells of the partitions in G, and let A(,;) = {¢(A x B) € A:
|A| = sand |B| =1} for j = (s,1) € [n] x [m]. Define

1 log | A(s

_ log(nm) o 108 Men]
nomo 8,1 sl

S log(4nm) n log [A(ng,mo)|

oMo nomo
7
> , Yn,m > 3.
nomo

According to Lemma 15, on an event of probability at least 1 — 0.5¢ ¢,
TG oo < max | S (B)|
a < max —
Geg e lee S U8R | Al = ¢

<2 +8) + oy )

o\/25(1 +¢t/7) + bF(1+t/7)
o\/2F (1 +t/14) + bF(1 4 t/7). (2.21)

<
<

Finally, combining (2.20) and (2.21), we have that with probability at least 1 — e,
ITL=(E) [ < 4(t + log(2M|G])) (20° + bo\/2F (1 +t/14) + b°F(1 +t/7)).
Using Lemma 11, we obtain the following upper bound on the expectation

E[|T=(E)||?] < 4(1 + log(2M|G|)) (20% + bo\/2F (1 + 1/7) + b*F(1 + 2/7))
< (14 log(2M|G|)) (90 + 163b?).

For any (s, ) such that ng < s < nand mg <1 < m, we have | A | < (1) ('), which implies
en\s rem\!
<(—) (=)
< (2) ()
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Therefore, taking the logarithm of the two sides, we get

log | A(s )| < log(en/s) N log(em/1)

= l

sl s

< log(en/no) n log(em/my) _

mo no

This implies that® § < (1/2)vn,m(no, mo). Therefore,
E[|I=(E)[F] < (1+log(2M|G)) (90 + 86>t m(no, mo))

where |G| = | F| < K"L™ and M < 125%. Taking into account the fact that K > 2 and L > 2,
this leads to

+log2+ KLlogl12 4+ nlog K +mlog L

1+1log(2M|G|) <1
<3KL+nlogK +mloglL.

The term E[||T1~(E)||?] is eventually bounded as follows:
IE[HH?(E)H,Q:] < (BKL +nlog K +mlog L) (90° 4 86ty m(no, mo)).
This completes the proof of the lemma. O

In order to ease notation in the rest of the proof, let us set A = nlog K+mlog L. To conclude,
we use the bounds on =; and =, obtained in Lemma 1 and Lemma 2, respectively, as well as
decompositions (2.18) and (2.19). Since E[(®@* —II7(©®%),E)] = (@* —II(©*),E[E]) = 0, we
arrive at

E[|© — ©*[}] < |©* — [170"|[? + 2E[E)] + 2E[=,]
< ||©* — TI70%|2 4 201/2(A + 1) E[||© — ©*||2]/> + 2bp(A + 1) + 2E[=y).

One can check that the last inequality leads to
(E[|© — O[] — 0/2(A + 1)) < @ — T (©")[} + 2(A + 1)(o? + bp) + 2E[E,].
This readily yields

E[|© — ©*|2] < ||©* — II(©%) | + o\/2(A+1) + (2(A+1)(0” + bp) + 2E[52])1/2
1©* — TL(®%) || + ((A + 1)(802 + 4bp) + 4E[=,])
< ||©* — I (©*)||¢ + (170% + 4bp + 8b*yy m (0, mo))1/2(3KL + A)72,

N

5This is true since % = e+ né‘}iﬁ:%?{)) < ,ig%g‘ggg) < 0.5 provided that ny > 3.
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where in the second line we have used the inequality /= + /y < v/2z + 2y. Finally, under the
condition v, ,,(ng, mo) < (o/b)?, we get the claim of the proposition.

2.7.2 Proof of Proposition 2 (approximation error for a graphon)

First claim (piecewise constant graphon) In what follows, X refers to the Lebesgue measure
on R and )\ is the Lebesgue measure on R2. Let W* be a graphon such that for some K x L
matrix Q* and some sequences ag < ... < ag, by < ... < by, satisfying a9 = by = 0 and
arx = by, =1, we have W*(u,v) = Q,’;,K for every u € [ag_1,ar) and v € [by_1, by). Equivalently,

K L
W* (u7 'U) = Z Z QZ,Zﬂ[ak_l,ak)x [bg_l,be) (u7 U)'

k=1 ¢=1

Let us also define the “weight” sequences w,(cl) =ap — g_1, wé ) = =by—by_1 and

1 & (2 1
= E Z ﬂ[ak—hak[(Ui) and wé ) - % Z ]l[bf—hbf[(%)
i=1 Jj=1

Notice that all the four weight sequences w®, w®), (") and ©@® are positive and sum to one.
As proved in [KTV17, p16], there exist two functions v; : [0,1] — [K] and v : [0, 1] — [L] such
that

1. Forallk € [K]and z € [aj_1, (ap—1 + w( ) Aay), we have ¥y (z) = k
2. Forall e [L] and z € [by—1, (be—1 + wé N A be), we have iy (z) = ¢
3. AWy (k) = @) for all k € [K]

4. My (0)) = o forall £ € [L].

Using these mappings 1 and 1», we construct the graphon W;(u,v) = Q;kb1(u),w2(v) which
satisfies §(We-, Wg) = 0. This leads to

5 (Wer, W*) = 62(W5, W*) < [IW), - W* 2,
< (B = 422 ((u,v) : Wiu, ) # W*(u,0)).

Our choice of W ensures that W*(u,v) = W;(u,v) except if u € [(ag—1 + u?,(:)) A ag, ay) or
€ [(be—y +@,") A by, by). This implies that

K L
2(Wee, W*) ( S — @) + 3w — @ )+). (2.22)
/=1

k=1
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Since U; are i.i.d. random variables uniformly distributed in [0, 1], n@l(:) follows the binomial
distribution B(n,wg)). This implies that E[@,(:)] = w}g}) for every k. Therefore,
_ 1 _
E[(w/(:) _ wl(cl))i] — §E[|wl(fl) _ wl(gl)”

< (M>I/Q < (w2
h 4n DN

(2.23)

Similar upper bound can be obtained for E[(wéz) - @f)) ]. Therefore combining (2.22), (2.23),
the Cauchy-Schwarz inequality and the fact that the weights w) sum to one, we get

B (Wer, W) < (ZE o)) + Bl - a).))

BA(\f\/’)

We thus conclude the proof by taking the square root of the obtained inequality.

Second claim (Hélder continuous graphon) To make the subsequent formulae more
compact, we set a, (i) = i/n and assume that £ = 1. We introduce I; = [a,(i — 1), ax () and
Jj = lam(j — 1), am(j)|. For every positive k € N, let &,, be the set of the permutations of [].
For o € &y, let 7, be the specific measure-preserving application

k . )
:Z(U(Z)k—l—kx_Z;l)]l[i(l‘) Vo € [0, 1], Tg(l):(jgﬂ).

i=1
Notice that 7, corresponds to permutation of intervals {I; : i € [k]} in accordance with o.
Using the definition of 6, we have
§*(We+,W*) < inf // — W (7o, (2), Tory (y)))Qd:Edy
I;xJ;

01€6,
0266, S Tl] ]e[m]

= if Y / / (01 — W*(x,y)) dudy. (2.24)

01€6,
oacen icnljelm] o X os )

Let oy be a random permutation satisfying U, ;) = U;; for example, let o, be such that
Upotry S Upt(gy <o < Uy, We choose oy similarly, so that Ve, (;)) = Vj. Recall that
0;; = W*(U;, V). Setting i’ = 01(i), j' = 02(j) and applying the triangle inequality, we get

‘@;‘J - Wi(z,y)l = [W(z,y) - W*(U(i’)7v(j/))|
< W (9) = W (a0 (), @i (1)
W (a1 (), a1 (7)) = W Uy, v(j,))‘. (2.25)
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If (z,y) € Lo, (i) X Joy(j) = Lir X Jjr, @S (an41(i'), am41(j")) belongs to the same set I, x Jj,
the Holder property yields

(W* () = W (anr () amsr (7)) < (g + )" (2.26)

For the second term in (2.25), we use again the Hdélder property, which leads to

{W* (a1 (), ams1(5")) = WUy, Vig) Y < {Jana (i) = Uan | + [am (57) = Vi |}

Then, denoting by >°, ; the double sum =, > (., we have
i’ 2 1 n i 2}
: lzj://li/x(]j/ (n+1 _U(i,)> N nELZ;<TL+1 _U(i’)>

S|

- E[i (n—zl— 1 U(i))ﬂ

1=

1
g ~max [Var(U(l))] <

i=1,...,n n

(2.27)

where we used the fact that U(;) is drawn from the beta distribution 3(i, n +1 —1). The term with
Vi, is treated similarly. Combining (2.24), the Minkowski inequality, (2.26) and (2.27), we get

E[6*(Wer, W)]?

1 1 \o/2
<<72+72> + E
n m

-/

/
zz,j://zi,wj/ (ni 1 U("/)>2 * (m]—i— 1 <j'))2

<<1+1>a/2+<1+1)06/2<2(1+1>06/2
S \n2  m2 dn  4m “"\n m '

This completes the proof.

2.7.3 Proof of Proposition 3 (approximation error for the matrix ©%)

Without loss of generality, we prove the desired inequality in the case where K = |n/ng| and
L = [m/my]. Indeed, if the inequality is true for some value of K, it is necessarily true for any
smaller value as well. The same is true for L. Furthermore, we assume £ = 1.

We construct the constant-by-block matrix © € T, where T is defined by (2.3) as follows.
Letn = ngK +r with 0 < r < ngand m = moL + s with 0 < s < my. Forall k € [K] and ¢ € [L],
set

I = [(k— 1)ng + 1, (kng) A n] and Jo=[(£ —1)mo + 1, (bmg) A m].
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The number of integers contained in each set of the form I, x J, is denoted by n;, ,. We set

- 1 .
Qre=— > W*Uu, V).

n
Wl ienjed

Finally, for every (i, j) € [n] x [m], we set

,—v

= Qo (i) /mol fov ()/mal = O Qe Vopreny Moy (hent
k.l

where oy (resp. oy) is a permutation of [n] (resp. [m]) transforming (U; : ¢ € [n]) (resp.
(Vj : j € [m])) into a nondecreasing sequence. In other terms, U,y = U and V, ;) = V{;
for all i and j. To bound the approximation error we are interested in, note that (> _, , stands for

Zke[K] ZZE[L])

B[ LI8-0 = LS Y Y E[@e-e

k.l oy (i)ely j:ov(5)€de

ﬁzz S E[(1L 5 3 Wi o - Wi Vo) |

k.t i€l jeJp el j'edy
(Jensen) ZZ > ( Z > E { i Vign) — W*(U(iwv(j)))QD-
kol i€l jETy k.t Vel j ey

Using the Hélder property and the Jensen inequality we obtain

E[(W*(U(i’)7 Vign) = WUy, V(j))) H

J (J) —
U(Z

<t=[] |1t H“-

Since |i —i'| <ng+1<(3/2)ng < (3n)/(2K), [KTV17, Lemma 4.10, p27] leads to

E[|Uun — Uy ?] < 9/(2K)>.

Similarly, E[|V(;y — U»|?] < 9/(2L)%. Therefore,
5[t 0] < e[(5) + (5p) T
<5 (gt )

where we have used the inequality (a + b)¢ < a® + b¢ for a,b > 0 and for ¢ € (0, 1].
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2.7.4 Proof of Theorem 8 (risk bound for T7'-5)

First claim: piecewise constant graphon In view of (2.7), the fact that W = Wg and
Proposition 2, we have

E[© - 7|
Vv nm

_El® n@*n I, ([ [ ) (2.28)

Let 7 and T* be the sets of all n x m matrices with real entries that are constant by block on
the same blocks as © and @, respectively. Clearly, T and T* are linear subspaces of the
space of n x m real matrices equipped with the scalar product (M, M) = tr(M] M,). Let =
be the orthogonal projections onto 7. We have II-H = ©. Therefore,

E[5(We-, W*)?]2

E[6(Wg, W22 <

1© — ©%[|r = |[II:H — ©|F

[T7(H — ©%)[|f + [[1I70" — 07|

<
®
< [H - % +[I(p/2)1n1,, — ©|F.

Above, (1) is a consequence of the triangle inequality, whereas (2) follows from the fact that I1--
is an orthogonal projection (hence, a contraction) and the matrix (p/2)1,1, belongs to the
image of II-. Hence

1 —~
—E[|© -0} |U,V] < (0 +0.5p)*

For every k € [K] and ¢ € [L], we define ny = nlay — ag_1], N, = #{i : U; € [ak_1,ax[},
myg = m|by — be—q| and My = #{j : V; € [bi—1,be[}. We also define the event Qy = {N}, >
ng/2; My > my/2 forall k € [K] and ¢ € [L]}. Since the event Q) is (U, V' )-measurable, we get

1 ~ 1 —~
—E[|® - ©"[}1g;] = ——E(E[|© - 0|} |U, V]1g;)
< (04 0.5p)2P(€2).

Using the union bound and the Chernoff inequality, one can check that

M=

L
P(Q5) < Y P(Nk < ng/2) + > P(My < my/2)
/=1

>
Il

1

L
e—nk/B + Z e—mg/8'
1 (=1

M=

<

e
Il
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Since we have assumed that ny, > 8log(nK) and m, > 8log(mL), we get P(Q§) < n~t +m™!
If the parameters ny and m used in the definition of the least squares estimator © satisfy
ng = miny, ny, /2 = nA%) /2 and my = min, m,/2 = mAL) /2, then on the event Qy we ca apply
Theorem 6. One can check that 1, (10, m0) = ¥nm(AYSE). This, in conjunction with the
previous inequalities, implies that

E[|© — 0[] _ E[|® - ©"|}1o,] + E[|® — Ol

nm nm
3KL loc K log L 0.5p)2 0.5p)2
(250 +4b,0)( °8 + o8 )+ (04 057) + (0 +05p)
nm ™m n n m
3KL logK logL\Y2 1 142
<{re+an) (T2 S 2E) TG

under condition that ,, ,, (AY1)) < (o/b)2. One can also check that if K, L > 2 and n,m > 5,

sV V)

This inequality, combined with (2.28), completes the proof of the theorem.

Second claim: Hélder continuous graphons Using Equation (2.7) and the Minkowski
inequality, we get

E[(S(/WLS, W*)2]1/2 _ E[d(W@L57 W*)2]1/2

E[||@ — ©*|2]'/
< 4
vnm

E[6(We-, W*)?]72.

Let us set

2\ 1/2(a+1)
Kl K 3nmL ) J
2502 + 4bp

In view of (2.11), we have

3nL?
2(a+1)
(K/m) = (2502 + 4bp)m2e+tl

3(o/2b) e+ A1
log*(2n)

(2.29)

Let us choose ng = [n/K | and my = |m/K |. Thanks to (2.29), we have

> (log4(2n))1/2(a+1) > log8 > 2.

=13
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This implies that mg > 2 and, therefore ny > 2. Using once again (2.29), one can check that

6log(em/2) < 6log(en/2)

< (o/b)2.
o o (o/b)

As a consequence,

3log(en/ngp) n 3log(em/my)

wn,m(nm mO) =

mo no
< 3log(en/2) N 3log(em/2)
mo no
< (o/b)>.

Combining Theorem 6, Proposition 3 and claim 2 of Proposition 2, we arrive at

E[5(WS, W) 7 < ;}é - % + (250% + 4bp) " (

3KL logK logL\'/2
+ - )
nm m n

2L 2L
no/2 me/2
3K?  2logK\Y2 4L
=)
nm m me/2
2502 + 4bp) 12 n ((5002 + 8bp) log K) Y2 AL
3nm ma/2’

3£ 2 1/2
< ﬁ + (250’ + 4bp) (

3L
<zt 3K(

m

In the last display, replacing K with its expression (2.29), we get the claim of the theorem.

2.7.5 Proof of Proposition 4 (relaxation to a linear program)

For further references, we recall that we are interested in solving the problem

in L(Z,Q,Z""). OPT 1
geabn (Z,Q ) ( )

First claim (linearlization of the cost function) We have

,C(Z, Q, Zitem) _ ||HH|2: - _9 tr(ZQ(Zitem>THT) + tr(ZQ(Zitem)TZitemQTZT)
= —2tr(ZQ(Z"™)"H") + tr(QDQ'Z' 7).

We will show that ¢(Z) = —2tr(ZQ(Z*™)THT) + tr(QDQ'Z"Z). We notice that because
of the constraint on the rows of Z, its columns are orthogonal, and Z'Z = diag(n; k € [K]),
where n; = Z/, 1, is the number of nonzero entries in the k-th column of Z. So we get

K K
r(QDQ'Z'Z) =Y mQ; . DQJ. =D Z];1,Q,.DQ;,.
k=1

= k=1
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This completes the proof of the first claim and entails that (OPT 1) is equivalent to

i : PT?2
"E g Stk orTa

Second claim (characterization of extreme points) An extreme point of a convex polytope
P is defined as a point in P that can not be written as a nontrivial convex combination of
two elements in P. First, let us prove that any point in Z(n, K,ng) is an extreme point. Let

Z e Z(n,K,ng), A€ (0,1), Z; and Zy € Z(n, K,ng) such that
Z=)\Z+(1-NZs.
Fix some ¢ € [n], because of the constrain on the lines of Z, there exist j € [K] such that
1=2Zi; =MZ1)ij + (1 = XN)(Z2)s5 - (2.30)

The only way to satisfy (2.30) is to have (Z1);; = (Z2);; = 1 because A € (0,1). Then
(Z1)ie = (Z2)i,e = Z; o because of the row constraints. Finally, this holds for each i € [n], so
Z = 7, = Z», which ensures that Z is an extreme point.

Now it remains to prove that any extreme point of Z(n, K, ng) has all its entries in {0,1}.

Let Z € Z(n, K,no) which has at least one entry in (0, 1). Let us prove that Z can not be an

extreme point, that is, we can write Z as a convex combination of two elements in Z(n, K, ng).
The proof uses the next two lemmas.

Lemma 3. Leti € [n], ko € [K] such that Z;,,, € (0,1). Then
1. There exists k;, € [K] such that Z; ;. € (0,1).

2. Either 71", Zi x, ¢ N, or there exists i, € [n] such that Z; ;,, € (0,1).

Proof of Lemma 3. The proof is a straightforward consequence of the row and column con-
straints. Indeed, as the sum of the elements of each line is an integer, if a coefficient is not
0 or 1, then there is another coefficient that lives in (0, 1) on the same line, which proves (7).
Moreover, if >~ | Z; ;, € N, the same argument gives that there is another coefficient in (0, 1)
on the column k. O

If we see matrix Z as a bi-adjacency matrix of a bipartite graph G, with weighted edges
given by the entries of Z, the next lemma formally says that either G contains a cycle, or it has
a path with extreme points that correspond to a column that sums to a number strictly greater
than ng (see Figure 19).

Lemma 4. LetZ € Z(n, K,no)\{0,1}"*X. There exists T > 1, and two sequences (i;)_, and
(k)L of different indices (with possibly ko = kr) such that

1. Zi,k, € (0,1) forall1 <t <T.
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2. Z; €(0,1) forall0 <t<T—1.

t+1kt

3. Either Y~ | Zix, > ng fort € {0,T} (we say that Z has a dead end path), or kr = ko (Z
has a cycle).

Proof of Lemma 4. Let us first assume that all columns of Z sum to some integers. We denote
Zi,k, ONne element of Z that is in (0, 1) According to part (i) of Lemma 3, there exists k; # ko
such that Z; , € (0,1). Following the same Lemma 3, we can find iy # i1, and k2 # k; such
that Z,,x, € (0,1) and Z;,x, € (0,1) (so T > 2). We iterate the same process until iteration 7',
with T" define as the first time at which we have ir = i;, or k7 = k;, forsome 0 < t,p < 7T — 1,
meaning that we met a row or a column we already had in the previous iterations. Notice that
to < T — 2 because we always have i; # i;+1 and k; # kq11. Then we consider the following
shifted sequences.

o i = (isrtg-1)i—1° and &f = kyq, fort € {0,...,T —to — 1} and k}_, =k, in the case
where i7 = i;,, meaning that we first met a row we already had in the previous iterations.
In this case, to > 1.

o i = (i1g40) 11 @nd k# = (ki14,){_g° in the case where kr = k,, meaning that we first
met a column we already had in the previous iterations.

These sequences i* and k# satisfy the cycle conditions of the lemma by construction.

Now we assume that there is a column k¢ which has a sum not in N. Then it has a
coordinate Z; i, € (0,1). Applying part (i) of Lemma 3 gives k; # ko such that Z;,x, € (0,1).

« 1> Zik, > no, then lemma is proven for T = 1 and the dead end path setting.

* Else, > " | Zix, = no then we can iterate similarly the previous process until iteration 7'
define as the first time at which we have ir = i, or ky = k;, forsome 0 <ty <7 —2or
Yy Ziky > no. In the first two cases, we consider the shifted sequences i# and k# as
before, that satisfy the conditions of the lemma. In the last case, the sequences (i;)L;
and (k;)L_, satisfy the desired dead end path conditions.

Notice that T' < +o00 because the number of rows and columns is finite. O

The end of the proof of Proposition 4 is similar to the one in [PC19, Prop 3.4], if we see Z
as the bi-adjacency matrix of a bipartite graph. Let us rewrite the proof adapted for our purpose.
We introduce

n n
. Zi k. — g . [ Zik
D SIS P DY TSP
! zfg[l%{ 2 £ ik 1o 2T g

. 17
=1

and ez = (1/2) min; 4 {1 —Zi  Zy. < 1}. So ¢1, €2 and 3 are positive real numbers. By
convention, the minimum of the empty set is +00. We finally define ¢ = min(ey, e2,¢3) € (0, 1).
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Hence, when we add or subtrack ¢ to one entry of Z that is in (0,1), it remains in (0,1).
Moreover, if this entry is in a column that sums to strictly more than ny, if we subtrack ¢ to this
entry, the sum of the column remains strictly greater than ny. We apply Lemma 4 which gives
to sequences (i;)]_, and (k;)L_, that satisfy the conditions of the lemma. Then we define Z.
such that (see Figure 19 for a visual construction of Z.)

0 if i;’éitork#kt
(Ze)ij = +e i i =1,k =k forsome0<t<T—1
T

—e if 1 =15,k =k forsome 1 <t <

(a) Cylcle (b) Dead end path

Figure 19: Examples of matrices Z.: The starting point is represented by a red square. On the
left hand side figure we met a line we had before like in the procedure described in Lemma 4.
Then we forget the past (what is before this line, that is the crossed-out square), which gives
the sequences we need to build Z.. On the right-hand side figure, we never met a line or a
column we had before, but we stop because the last column sums to strictly more than ny,
which gives the path to build Z..

The properties of the sequences imply that

* Z:1x = 0,. Indeed, the i-th row of Z sums to 0 when i ¢ {iy,...,ir}. Butif i =i, for
some ¢ € [T], then there is a +¢ on the k;-th column, and a —e on the k;_;-th column,
and 0 anywhere else.

+ Moreover we have Z!1,, = §.1x where 6. € {0,+¢}. Indeed, the k-th column sums to 0
for k ¢ {ko,...,kr}. For k =k, with ¢t € [T — 1], then there is a +¢ on the i,;-th row and
a —e on the i;-th row and 0 anywhere else. For ¢t € {0, 7'} we have two cases. If k; = ko,
then the ko-th column sums to 0. If kp # ko, there is only a +¢ on the ky-th column and
only a —e on the kp-th column.

The choice of e ensures that Z, =Z +Z. and Z_ = Z — Z. live in Z(n, K,np). Finally,
Z =(Z, +Z_)/2 and Z can not be an extreme point.
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2.7.6 Proof of Theorem 9 (lower bounds)

Although the general structure of the proof and some important parts of it are similar to those
of the proof of [KTV17, Proposition 3.4], there are some technical differences that are due to
the fact that the graphon and the observed matrix are not symmetric. Furthermore, the bounds
involve some terms depending on m and m, which was not the case in lower bounds proved in
the literature.

To get the desired lower bound, we divide the problem into the following three minimax
lower bounds

W W*eW,[K,L]

inf  sup By [02(W,W*)] > cp2<\/% + \/z) (2.31)
KL

inf  sup  Ep[62(W,WH)] > cp Ap (2.32)
W W*eW,[K,L] w5 ) <Nnm >
= 1
inf  sup  Ep-[02(W,W*)] > ¢p Ap (2.33)
W WHew,[2,2] [ ( )} (N\/n'm >

If these three inequalities hold true, then the desired result will be true with the constant ¢/3.
The rest of this section is split into three subsections, each of which contains the proof of one
of the inequalities (2.31), (2.32) and (2.33).

Proof of (2.31): error due to the unknown partition

Since (K,n) and (L, m) play symmetric roles, we will only prove the lower bound p?\/K/n.
The same arguments will lead to the lower bound p?+/L/m. As a consequence, we will get the
lower bound p?(\/K/nV \/L/m) > p*(\/K/n + +/L/m)/2.

Without loss of generality, we can assume that K is a multiple of 16. Indeed, by choosing
C > 17, forany K > 17, setting K’/ = 16| K /16, the inequality

—~ K’
inf  sup  Ew«[62(W,W)] > ep*\/ —
W W*eW,[K',L] n

would imply

inf  sup  Ew- [(52(W, W*)] zinf  sup = Ep- [(52(ﬁ\/, W) = ZpQ\/f.
W W*eW,|K,L] W W+*eW,[K’,L] n

To establish the desired lower bound, we follow the standard recipe [Tsy08, Theorem 2.7]

consisting in designing a finite set of graphons that has the following two properties: the

graphons from this set are well separated when the distance is measured by the metric 62 and,

in the same time, the distributions generated by these graphons are close, which makes it

difficult to differentiate them based on the data matrix H.
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To define this set, we choose a K x L matrix Q with entries from {0, p} and two positive
numbers ¢, &’; conditions on Q, ¢ and &’ will be specified later. For any K € N, define

a—1 a

K
1 1
K _ _ K . _ a _ - -
€ —{SE{ 1,—|—1} .Zsk 0}, 1375 |: <K+58k),Z<K+€Sk)>
k=1 k=1 k=1
fora € [K] and s € €%, with the convention that >-?_, = 0. Similarly, for every t € €%, we set
T =[3021 (3 +€t). 30— (f +<'te)). The length of an interval I will be denoted by |1].
We can now define the class of graphons W ;. for each s € €' and t € €% by

K L
Wsitelu,v) = T (Wl (v).
te(u,v) ;;le i (Wl (V)
We denote by Py, , . the distribution of H = (H,j,i € [n],j € [m]), where H is sampled
according to the Binomial model with graphon W, ; .. The next three lemmas, the proofs of
which are postponed to the end of this subsection, provide the main technical tools necessary
to establish the desired lower bound.

Lemma 5. If 4Ke < 1, then for all s and s’ from €% and all t ¢ €*, the following inequality
DxL(Pw,,.|[Pw, , ) < 6n(Ke)* holds true.

Lemma 6. Assume that K, L are large enough integers multiple of 16 and satisfying KL >
Llog? L + K log® K. There exists B ¢ {—1,1}%*L satisfying the following two properties.

i) Forall (ky,ks) € [K)?, k1 # ko, and for all (¢1,¢3) € [L)?, {1 # £s, it holds that

’<Bk1 .’BkQ ')’ < L/4 and |<B°517B032>‘ < K/4

i) Let; : [K/16] — [K]| and v; : [L/16] — [L], i = 1,2 be arbitrary bijections such that
either Im(m) N Im(m2) = @ orIm(vy) N Im(ve) = @. Then

K/16 L/16 KL

Z Z (Bm(k),yl(g) - B7r2(k),u2(€))2 > 512
k=1 (=1

Let us denote for each s € €%, A; = {k € [K] : s, = 1}. Notice that | 4| = K/2.

Lemma 7. Choose Q = B + 1,1/, where B is given by Lemma 6. Let s and s’ be two distinct
vectors from €% such that |AsAAy| > K/4. Fore' = 1/(4L), forany K € N, e € [0,1/(4K)]
andt € ¢, we have

eKp?
512 °

52 (Ws,t,ay Ws’ ,t,e) >

Lemma 4.4 in [KTV17] implies that there exists a subset €% ¢ ¥X such that log |£X| >
K/16 and |A.AAy| > K/4 for any s # s from €%, We consider the set {W, ;. : s € €%} for
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afixed t € L and for e~ = 24V/6nK. In view of Lemma 5 and Lemma 7, for any s, s’ € €X
such that s # s/, we have

2

2 P K 1 1 ox
1) (W8787WS’75) > 2T3 671’1/ and DKL(PW&EH PWs/,E) < 1762K < ﬁlogrﬁ |

Therefore, we can apply [Tsy08, Theorem 2.7] to get

= K
inf  sup Ep- [(52(W, W] = cp*\/ —
W W*eW,[K,L] n

for some universal constant ¢ > 0. This completes the proof of (2.31), module the proofs of
three technical lemmas appended below.

Proof of Lemma 5. One can check that, for every matrix A € [N]"*™, and for every s € €%,

PWsts H A HH/ ( ) Sts(ulav_]) ”(1 - Wsyt’g(Ui,Uj))N_Aij d'LLl de

1=1j5=1

Using the fact that W, ¢+ . is piecewise constant, we get

Py, (H=A) sz/ /( ) Qi (1 = Qu)V 447 du; duy

i,j k=1 ¢=1

_HZ< > 1_Qk€)N A” ks '|‘]f7a’|
1,5 kWt

_ZH( ) KZ]L”( _QKijLij) 7 IS,&J . |Jt753 )
KL i,

where the outer sum of the last line is over all matrices K and L having entries respectively in
[K]andin [L]. Let us define

N Ay Z A
V(K,L A) = H (A.->QK¢§LU(1 - QKiJ‘Lij)N A”’
ij

we,-(K, L) Hlfs

The computations above imply that

Pyw,..(H=A)
Dx(Pw,, ||Pw,, )= > Pw,, (H=A)log (P = = A)>
AG{O,I}"X""‘ Ws/,t,s
Yk YKL, A)ws ¢ (K, L)
= U(K,L, A K, L)l ( : — )
A;L ( Jws,t.( ) log ZK’,L/ \I/(K’,L’,A)ws/,t,e(K’,L’)

Itis clearthat ws (K, L) > 0and } 1, wst-(K, L) = 1. Since the function (z, y) — z log(z/y)
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is convex, we apply the Jensen inequality to get

U(K,L, t,
Di(Pw, . [IPw,, ) < Y U(K,L A)wes(K,L)log (\D(K

AKL
w K, L
= Z ws,t,e(Ka L) log (Sts((KL)>>
KL Ws' t.e )

The last expression can be seen as the Kullback-Leibler divergence between two product
distributions on [K]™*™ x [L]™*™. Since the Kullback-Leibler divergence between product
distributions is the sum of Kullback-Leibler divergences, we get

5

e

S e (K, L) log (wtt) - nZ| (
s’
Is,s‘ - ‘Is’,5|)2
I TLZ ‘15/76‘ )

K,L
k=1

where the last inequality follows from the fact that the Kullback-Leibler divergence does not
exceed the chi-square divergence. Since |I§,’5! = (1/K)+es), > (1/K) —e > 3/(4K), we get

(esk — €8}
Zws,m(K, L)log <St57) < nz k k

KL Wg' t 5(
< 6nK252.
This completes the proof of the lemma. O

Proof of Lemma 6. Let E be a K x L random matrix with iid Rademacher entries & ¢, i.e,
P(&e==+1) =1/2. Then (B, o, Erye) = Zle &y e€ky ¢~ By the Hoeffding inequality

P(|<E/€1 .7Ek2.>| 2 L/4) < 2671’/32 .

By the union bound, we obtain that for all k1 # ks € [K], | (Bk, o, 2k, )| < L/4 with probability
larger than 1 — 2K2e~L/32_ which is larger than 3/4 for L > 480. Similarly, one checks that

—e 7_'. < .
P(max [(Se.0, Bero)| < K/4) > 3/4

Thus, we get
P( max (B sy, Bas,)| < K/4and max [(E, o, Eiye)| < L/4) >1/2. (2.34)
ki #ks

L1702

For the second property stated in the lemma, we fix some A&;,); and 7;, v; as in the statement
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and define

K/16 L/16

Z Z (571'1 (k)1 (€ fﬂ'g (k),va2(2 ))2

k=1 (=1

ol

T(mi.2,v1:2,8) =

Clearly, T'[my.2,v1.2, 2] is a sum of K'L/28 i.i.d Bernouilli random variables with parameter 1/2.
Applying again the Hoeffding inequality, we have

P(T[W1;27V1;2,=]<W>=P<?—T> 511 ) <e /27

There are no more than (K/16)!?(L/16)!? functions 1,2, v1, 1o satisfying conditions of ii).
Therefore, the union bound implies that with probability at least 1 — (K /16)12(L/16)12e—95KL/2"
we have T[r.2, 1.2, 2] > KL/2" for all w1, 7, v1,v2. Choosing K and L large enough, and
using the condition KL > K log? K + Llog? L, we get that

K/16 L/16 KL
2
<7r1 221,11?1,1/2 Zl ; 67"1 (k)1 (€ S7"2 (k),cva(f )) > 512) > 1/2 (235)

Combining (2.34) and (2.35), we get that the probability that the random matrix = satisfies
properties i) and ii) is strictly positive. This implies that the set of such matrices is not empty. O

Proof of Lemma 7. Without loss of generality, throughout this proof, we assume that p = 1.
Furthermore, since t is fixed, we will often drop it in the notation and write W, . instead of
Ws,t,a-

It suffices to prove that for all measure preserving bijections = : [0,1] — [0,1] and 7 :
[0,1] — [0, 1],

eK
||Ws,a —Wsico (T1 @TQ)H]%Q = 512’
If ue I¥, and ' € I¥ for some k, k' € [K], then
L 1
‘/ s€u1} —1/2)( ss(u 1})—1/2 Zl/L—l—Etg (ng 2><Qk5—>‘
=1
1 Ls’ 1
—|(Bg.o, By, —_— <= 2.
< 37 Bres Bro) + == < <. (2.36)

For k. k' € [K], let wyw = MIF_ 7' (I5 )} where X is the Lebesgue measure on R .
Notice that S>1  wiw = (1/K) + 55k, and Zﬁ | Wk = (1/K) + es,. We also introduce
he (V) = Wee(uk _,v) — 1/2, where uf _ is any point from I¥ _. We have

Wee = Wa (i @m)7, = Zzwkk’uhsk het i © T2|I1,-
k=1 k'=1
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In view of the fact that |y 1 (v)| = 1/2 for all v € [0, 1] and (2.36), for any k&’ # k, we have

lher i © T2 = hr g 0 T2lIE, = s po 1E, + Ve 1T, — 2(her b, st gor)
>1/2—1/4=1/4.

By the triangle inequality

s — hst it © Tol|Ly + [|hs e — Rtk © TolLy = ||her gy © T2 — hgr g 0 To|L, = 1/2.

As a consequence, for any k € [K], there exists at most one k&’ € [K] such that ||hs; —
he 1 © To|lL, < 1/4. If such a k' exists, we denote it by =(k). If it does not exist, we set
m(k) = k. Using the same arguments, for any k&’ € [K], there is at most one k € [K] such that
|\hsx — hs k7 0 T2||L, < 1/4. This implies that = is injective and then it is a permutation of [K].
Furthermore, we get

=

1
[Wee =Wy eo (1 ® TQ)HIZLQ > 16 Z Z Wk k!
k=1 k' (k)

_
16

M=

(1/K + ESk — wkm(k)) . (237)

B
Il
—

If the sum Zszl(l/K + €5k — Wi(x)) 1S larger than Ke /16, then the lemma is proved.

In the sequel, we check that the same is true if >, (1/K + esj, — Wir(k)) < Ke/16 as
well. Note that the last inequality can be rewritten as Zle Wr,r(k) > 1 — Ke/16. Let us show
that the cardinality of the set A = {k € A, : ;r g >0 and wy, ) = 1/K} is at least 7K/16.
Indeed, notice that because wy, i < (1/K +esi) A (1/K 4 espr), wg rry = 1/K implies s > 0
and sw(k) > (. Therefore,

K
Ke
1_E<Zwkw<k D Wkt T D W) D We(h)
k=1 k:s, <0 keA k¢gA
s >0
K /1 K K
JE(L K ja)d—1ee(a-5),
2(K 5)“‘4'( +€>+(2 Az =1+l =3

which leads to |A| > TK/16.

Since s,s' € X are such that |A,AAy| > K/4, we have |4, N Ay| < 3K/8. Let us
choose B C An AS, of cardinality K/16 and set C' = w(B). Such a choice is possible since

K
AN AS| = 4] - |AN Ay| > 77—|,4 N Ayl

7K 3K K
>

~ 16 8 16

Note also that BN C = @. Indeed, if k € B, then n(k) € Ay. Therefore, 7(k) ¢ B meaning
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that k ¢ C.
For ¢,¢' € [L], letw,, = MJ{_ n7y'(J{.)}. Using the same arguments as above, we
obtain the existence of a permutation v : [L] — [L] such that, akin to (2.37),

~

1

[Wee— Wy oo (m1 @) H]LQ TGZ /L“‘E/tf_wé,u(é))'
b=1

Definetheset A’ ={¢ e [L] : t;, > O,wgvy(@ > 1/L}. If |A'| < L/16, then

L
S /L +ete—wp,) 2 1= W — > Wi (Legar + Lecar)
(=1 t,<0 ty>0
L/1 L 1 1 L
215 =) - (G- (g ) = (5 - )2
s\ ¢ 5 ~ A1) T 1A +e 5~ 14l )e
TLe'
=z —2>21/1
16 /16

and therefore |[Ws. — Wy .0 (11 ® TQ)H]%Q > 1/256 > Ke/64, where we used that 4Ke < 1.

Suppose now that |A’| > L/16. Let B’ be an arbitrary subset of A’ of cardinality L/16. We
have

HWs,a — Wy eo Tl p) H]L2 Z Z / - Ws',s(ﬁ 02y 72))2(%”) du dv
keBleB’
> Z Z W (k)W (o) (@it — Qriyw(e)’
keBeeB/
4[( Z Z B = w0)”
keB (e B’

By Lemma 6, the last term is larger than 1/(4 x 512) > Ke/512, and the claim of the lemma
follows. 0

Proof of (2.32): error due to the unknown values of the graphon

Similarly to the previous proof, we will use [Tsy08, Theorem 2.7], which needs a class of
graphons that are well separated for the distance § and that generate similar distributions on
the space of n x m matrices. In this proof, all the graphons of the set will have the same
partitions and will differ only by the values of the function taken on this partition.

Let Qo = {(p/2)(1 —¢), (p/2)(1 + &)} <L be the set of all K x L matrices with entries equal
either (p/2)(1 —e) or (p/2)(1 + ¢), where ¢ € (0,1/2) will be specified later. For any Q € Q,,
we define the graphon

K L
= Quljgem 1y W1y 1,e/1) (V) -

k=1 (=1
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We need two technical lemmas for completing the proof. These lemmas are stated below,
whereas their proofs are postponed to the end of this subsection. For any pair of permutations
m: [K] — [K]and v : [L] — [L], and any matrix Q, we denote by Q™" the matrix with permuted
rows and columns Q’,;’Z = Qr(k)w(0)-

Lemma 8. For K and L large enough satisfying KL > Llog? L + K log? K, there exists a set
Q C Q satisfyinglog |Q| > K L/32 andming, [|Q1—Q5"||2 > p?c2KL/8 forevery Qi,Qs € Q
such that Qq # Qs.

Lemma 9. The following assertions hold true

1. If Qi and Qg are such that min, , |Q1 — Q3"
p*e? /8.

,2: = p2<€2KL/8, then (52(WQ1,WQ2) >

2. For any pair of matrices Q1 and Q. from Q, we have Dk (Pwyq, || Pwg,) < 6Nnmps2.

We set £? = 5173 (§hmp A 1), Which allows us to apply [Tsy08, Theorem 2.7], since in view

of Lemma 9 and Lemma 8,

1 2 1 p‘KL 2
D We We < — W W > A

This completes the proof of (2.32).

Proof of Lemma 8. Without loss of generality, we assume in this proof that p = 2. We define
the pseudo-distance §(Q1, Q2) = min,, ||Q1 — Q5"”||r, where the minimum is taken over all
the permutations of [K] and [L]. Let Q be a maximal subset of Q of matrices Q that are
r .= pe\/K L/2-separated with respect to 6. By maximality of Q, we have the inclusion

QcC U B(S(Qar)v
QcQ

where B;(Q, ) is the ball centered at Q with radius r with respect to 6. So |Q|-|Bs(Q, )| > 25~

since all the balls have a the same cardinality. Notice that Bs(Q,r) C U, , Be(Q™", r) yielding

Bs(Q.7)| < KIL!Br(Q,7)|- If Qi1.Qz € Q, we have [|Q1 — Qa[f = 4p°c%dn(Q1, Q2) with
dy the Hamming distance. Then Bg(Q,7) = Bx(Q,r%/(2pe)?) with 72/(2pe)? = KL/8. The
Varshamov-Gilbert lemma [Tsy08, Lemma 2.9] yields

Q| [Bu(Q, KL/8)| < 2KF

with Q' a maximal subset of matrices Q that are K L/8-separated, and |Q’| > 25%/8. Thus we
obtain
2KL 2KL

=
Bs(Q,7)| ~ K!L![Br(Q,r)|
2KL 2KL

= >
K!'L'By(Q,KL/8)| ~ K!LI2KL2-KL/8

Q| >
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KL
= exp (? log 2 — log(K!L!))

KL
> exp (E — KlogK — LlogL)

The last term is larger than ¢®%/32 for K and L greater than some constants. O

Proof of Lemma 9. First claim Let 7, 7 : [0,1] — [0, 1] be two measure preserving bijections.
We want to prove that

Waq, — Wq, o (1 ® n)|I, > £%/8.

Forany k, k' € [K], let wyr = A([(k — 1)/K, k/K] N7 ' ([(K — 1)/K,k'/K])) where X is the
Lebesgue measure on [0, 1]. Similarly, for any £, ¢ € [L], letw; ,, = A([(e=1)/L,¢/L)n7y ([0 —
1)/L,¢'/L])).

We have that ), wp i = 1/K = >, wi i, that is the matrix Mw is doubly stochastic.
For any permutation 7 of [K], denote A(w) the corresponding permutation matrix. By the
Birkhoff-von Neumann theorem, Mw is a convex combination of permutation matrices, so there
exist positive numbers v, such thatw = > _~-A(7) and > _~, = 1/K, where the sums are
taken over all the permutations of [K]. Thus

Wa, —Wa,o(men)f, = D D wkwwipl(@Qre — (Q)w.el
k.k'€[K] ¢4 €[L]

= Z Z Z Ve AT e gy AW) e, | (Q1) ke — (Q2)wrer|°

™V kk'€[K] L e[L]

= Z Z Z '771'71/ Ql kt — (QZ) V(Z)‘Q

™V ke[K] Le[L]

= 7w [|Q1 - Q51

™,V

>p2e2KL/8

and the claim of the lemma follows.

Second claim Let¢ = (¢, .., (,) be a vector of n i.i.d random variables uniformly distributed
on [K]. We also denote by x = (x1,...,xm) @ vector of m i.i.d random variables uniformly
distributed on [L]. Let ®; € [0,1]"*™ with entries (©1);; = (Q1)¢, ;- Assume that H; is,
conditionally on ¢ and x, a matrix sampled according to the binomial model with parameter
N and the probability matrix ©. Notice that H; has distribution Py, . We introduce aa =
P(¢ =a), B, = P(x = b) and p\}), = P(H, = H|¢ = a,£ = b) forany a € [K]",b € [L]™ and
H < {0,1}"*™. We have similar notation pgl\b replacing the indices above. Then

W (0 aBbiian
Dxi(Pwq, , Pwg,) = E E E aBbPiap log< 0 )
H a b >a 2_b YalBbPiiap
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).

When a and b are fixed, the sum over H is the Kullback-Leibler divergence between two
nm-product of Binomial measures, each of which has as parameter either (N, p) or (N, q) with
p:=p(l+¢e)/2andq:= p(1 —¢)/2. This gives

(1)
1 Pya
(Jensen) < E Eb aafp EH pélilb 10g( g)b

PHab

l)KL(:PVVQ1 H PWQ2) < N?’meﬂ](p, Q)

where k(p, q) is the Kullback-Leibler divergence between two Bernoulli measures with parameter
p and g respectively. We have (p,q) < (p — q)*(p~t + ¢71) = 4pe?/(1 — &%) < 16pe?/3. This
completes the proof of the lemma. O

Proof of (2.33)

Fix some € € (0,1/4), and let W; = p/2 be a constant graphon. We define also Wy(u,v) =
p(1/2 + ¢) if (u,v) € [0,1/2)2 U [1/2,1]? and Wa(u,v) = p(1/2 — €) elsewhere. We get

S(Wh, Wa) = pe.
Thus we have
— 1 — —
inf By [62(W, W* >(/52W,W dP /52W,W dP )
- iy B OV O] 2 5 ([ SOV W) dus + [ 8507, Wo) Py

1 — —
>3 /52(W,W1) + 6%(W, Wa) min(dPyy, , dPyw,)

2
> (s(wlim/mln(dPWdeWz)

pe’ 2
P ? eXP(—X (PW1H PWz))v
where x?(Pyw, || Pw,) stands for the chi-square divergence between Py, and Pyy,. In the
last inequality, we used (2.24) and (2.26) from [Tsy08]. Finally, the next lemma gives an
upper-bound on the chi-square divergence, which allows us to complete the proof, taking
e2 = co/12pN/nm.

Lemma 10. There exists an absolute constant cy > 0 such that x?(Pyw, || Pw,) < 1/4 provided
that 12pN/nme? < cp.

Proof. Let L(H) be the Radon-Nikodym derivative of Py, with respect to Py,. We have that
X2(Pw, || Pw,) = Ew, [L(H)?] — 1, so it remains to prove that Ey, [L(H)?] < 5/4. In the sequel,
E[-] will refer to Ey, [ -]. We also introduce po = p/2, p1 = p(1/2 +¢) and ps = p(1/2 —¢).

As the graphon Wy € W,[2,2], we can assume that {U;} are i.i.d Bernouilli random
variables with parameter 1/2, and similarly for {V;}. Given {U;} and {V;}, define the set
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S = {(a,b) : Uy, = Vu}. For (i,5) € S (resp. S°), H;; has Binomial distribution of parameter
(N,p1) (resp. (N,p2)). Let u be the distribution of S, then we have

L(E) = [ Ls(H) du(S)

with

1-— p1)N|S(1 —PQ)Nnm_NISI H <p1(1 —P0)>Ha’b H pa(l — po))Ha’b .

LS(H):(I—JDO 1 —po po(1 — p1) Po(1=p2)

(a,b)eS (a,b)eSe

By Fubini theorem, we can write E[L(H)?] = /E[le(H)LSQ(H)] dp(Sh)dp(S2) with

E[Ls, (H)Lg,(H)] =
<1 —p >N(51|+S2|)<1 — pQ)N(2nm|Sl|SQ|)E H <p1(1 _p0)>2Ha,b
1—po 1 —po (@.b)e5: N5 po(1—p1)

p2(1 — po) )Tt pipa(l —po)? et
11 <p0(1 —p2)> 1 (p?)(l —p1)(1 —p2)> ]

(a,b)ESfI"IS; (a,b)ESlASQ

Recall that expectation is taken with respect to Pyy,. We can also use the independence of
variables H;; conditionally on {U;}, {V;} to get

N|S1NSa| 21 N|S$NSS|
(p1 — po)? (p2 — po) 0z
E[Lg, (H)Lg, (H :[1+7 14 2P0
[ 1( ) 2( )] po(l—po) p0<1_p0)
N|S1AS
o [q o pap2 + p§ — P1po —pzpo} |S145%]
Po(1 — po)
_ |:1 + p2€2 :|N|51052+Nsi:m55 |: B p2€2 :|NSlA52|
po(1 — po) Po(1 — po)
2e2 NSNS IENISINSS|-N|$145;]
< [1 + }
po(1 — po)

<exp [(3/2|Sl N Sa| + 3/2|ST N S§| — nm>4pr—:2] .

Thus, it remains to bound an exponential moment of 7' = |51 N Sa| + |S{ N S§| where S; and
Sy are independent and distributed according to .. We denote by {U;} and {U/} the variables
that aim to generate S; and S respectively, and similarly for {V;} and {V/}. For (i, j) € {0, 1}2,
define

Nij ={a,U, =iand U, = j}| and M;; =|{a,V,=iandV, = j}.
Then we get
|S1 N Sa| = NooMoo + Noi Mo1 + NigMip + N1iMip  and
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|ST N S5 = NooMi1 + No1Mio + NioMor + Ni1 Moo

which implies that " = (Noo + N11) (Moo + Mi1) + (No1 + Nio) (Mo1 + Mio). Notice that Noo+ N1y
follows a Binomial distribution with parameters (n,1/2) and Ny; + Nig = n — (Noo + N11) (and
similarly replacing N by M). Define X = (Noo + Ni1) —n/2and Y = (Mo + Mi1) —m/2, we
have

T = (X +n/2)(Y +m/2) + (n)2 — X)(m/2 —Y)

:2XY+%.

This gives
E[L*(H)] < Exy) {EXp ((XY - %) 12Np52)}
< Exy) [exp (12Np52XY)} .

As X (resp. Y) is sub-Gaussian, with sub-Gaussian norm less than /n (resp. v/m), XY is
sub-exponential with sub-exponential norm upper bounded by /nm. This entails that there
exists a constant ¢, such that E[exp (12Npe?XY)| < 5/4 as soon as 12N pe?/nm < ¢p. O

The three lower-bounds have been proved, which completes the proof of Theorem 9.

2.8 Auxiliary results

Lemma 11. Let X be a random variable and a € R, b, c,d > 0 be some constants. If
P(X >a+0bt+ct?) <det  forallt >0,
then E[X] < a + bd + 2cd.

Proof. In the case ¢ = 0, this inequality is well-known. Therefore, we consider only the case
¢ > 0. Without loss of generality, we assume that « = 0 and ¢ = 1. Indeed, we can always
reduce to this case by considering the random variable X’ = (X — a),/c with ¥/ = b/c. Thus,
we know that P(X > ¢? + bt) < de~t for every ¢t > 0. Note that the condition b > 0 entails that
the mapping t — 2 + bt defined on [0, +-00) is bijective. Setting z = 2 + bt, this implies that

P(X > z) <dexp{(b/2) — /2 + (b/2)?}, Vz > 0.

This inequality yields

E[X] < d/ooo exp {(b/2) —\/z + (b/2)?} dz
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= / e (2t +b)dt
0

= bd + 2d.

This completes the proof. O

Definition 1. We say that a zero-mean random variable ¢ satisfies the (a, b)-Bernstein condition,
if we have
E[e*] < exp {)\2a} provided that |\ < 1/b
h 2(1 = blAl) S
One can show that if ¢ satisfies the (a, b)-Bernstein condition, then the variance of ¢ is

bounded from above by a. Indeed, since z? < 2(e* — 1 — z — 23/6) for every = € R, replacing =
by A¢ for A small enough and taking the expectation, we get

NE[E%] < 2(E[e*] — 1 - AE[] — (A*/6)E[E?))

\2a

< 2<exp {M} - 1> - ()\3/3)E[§3]

Ma

= A2
o T o)

as A — 0. Dividing the two sides of the last inequality by A\? and letting A\ go to zero, we get
Var[¢] = E[§?] < a.

Lemma 12 (Bernstein inequality). Let & = (&1,...,&,) be a zero-mean random vector with
independent coordinates and let o« € R™ be a deterministic vector. Assume that for some
a,b >0, all ¢;’s satisfy the (a,b)-Bernstein condition. Then, for every é € (0,1), we have

P(o€ < v/2al08(1/8) e + bl log(1/8)) > 15,
P(|aT¢] < /2alog(2/0) ex]l2 + bllex] o log(2/8)) > 16,

Proof. Without loss of generality, we assume that ||a||.c = 1. The Markov inequality yields

]P)(aTE 2 t) g e*AtE[e)\aTg] — e*)\t H E[eAalfz]

i€[n]

Nal|ex|]3
< — M+ —=), VA A< 1/b.
exp( +2(1—b]/\|)> R\ /

One can check that, for A(u) =1 +u — /1 + 2u, u > 0,

MNA A <bt> £2
M- = Sh( < ) 2 o, V>0
|Asg)/b< 2(1—bW)) b2 \A/) 7 2(A+bt)
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Hence, we get

alla|3 bt
P(a' ¢ > t) <exp{— Hb2‘2h<a\|a”2>}’ vt € R.
2

Thus, if bt/al|al|2 > h~1(b?z/al|a||?), we have P(a'¢ > t) < e *. One can check that
h~'(v) = v + v/2v, which implies that the above condition of ¢ is equivalent to

t>

aHaH%( b2z N bv/2z >
b \alle Va2
= bz + ||a|2V2az.

Replacing z by log(1/6), we get the first inequality of the lemma.

For the second inequality, we simply remark that the moment generating function of the
random variables —¢; satisfy the same assumption as the one of ¢;’s. Therefore, we have

}P’(aTS < /2alog(1/6) |||l + blog(1/5)) >1-4,

IP’( —a'€ </2alog(1/8) ||l + blog(l/é)) >1-4.

Using the union bound and replacing ¢ by ¢/2, we get the second claim of the lemma. O

Lemma13. LetB >0and N € N.

1. If { is a zero mean random variable such that P(|¢| < B) = 1, then it satisfies the
(a, b)-Bernstein condition with a = Var[(] andb = B/3.

2. If ¢ is a the average of N independent zero-mean random variables each of which takes
values in [—-B, B], then it satisfies the (a,b)-Bernstein condition with a = Var[(] and
b= B/(3N).

3. If¢ = (¢’ —E[{'])/N with ¢’ drawn from a Poisson distribution with intensity N6, then it
satisfies the (a, b)-Bernstein condition with a = Var[¢] andb = 1/(3N).

Proof. The proof of these claims is quite standard and based on the inequality e* — z — 1 <
322 /(3 — |z|) provided that |z| < 3. O

Lemma 14. Let &y, ..., &N be centered and independent random variables satisfying (U?, be)-

Bernstein condition. For every partition G = { A4, ..., A} of [N], let us define the projection
matrix Il by
1 ;
(H(;’U)i = — Z Vy if i¢e Aj, Yv € RN.
Al o
J
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We have that with probability at least1 — e~ for allt > 0

1
v, v TTIgE < 5 Taé o]l + o¢y/2(t +log M) o] + be(t + log M)]jv]ls.

where log M < klog12 < 2.5k. On the same event, we have
ITGE|3 < 4(t + log M) (207 + e[ TG0 )

Proof. Let w € RY be a vector such that ||rgw|z = 1. We have w 'TIg¢ = 2icpy)ew)i&
where the terms of the last sum are independent. The Bernstein inequality yields

P(w TIg€ < 0eV2t + bet|[TTgw]|oo) =1 — e, t>0. (2.38)
3 ¢

Let Vz be the image of the unit ball of RY by Il and let Ng = {w1, ..., wy} be an e-net of V5
for e = 1/4. The set V; being included in the unit ball of a linear space of dimension &, [vH16,
Lemma 5.13] shows that A/ < 12*. Define

Uy, = arg min{||ul|c @ [|Ju — wp||2 < 1/4}, m=1,..., M.
ueVg

Using (2.38) and the union bound, we get

P(Vm € [M], u o€ < oer/2(t + log M) + be(t + log M) ||t ) =1 — e, t>0,
m ¢ ¢

where we used the fact that Ilgu,,, = u,,. Let w be an arbitrary vector from V. Let w,, be any
point from the net Az such that ||[w — w,, |2 < 1/4. We have

[umlloo < flwlleo and  flw — wpllz < 1/2.
This implies that, with probability at least 1 — e, for any vector w € Vg,

w'lgE = (w — up) Teé + upleE
< JJw — w12 a2 + w,, €
< (1/2)[[Tg€l2 + o/ 2(t + log M) + be(t + log M) ||t oo
< (1/2)[[Tg€l2 + oer/2(t + log M) + be(t + log M) ||w]| .

Since this inequality is valid for any vector w in the image of the unit ball ball by I, it is also
valid for w = v/||IIgv||2. Replacing this into the last display, then multiplying the two sides of
the inequality by ||TIgv||2, we get the first claim of the lemma.

For the second claim, we take v = &€ to get

TGl < 20¢1/2(t + log M)||TE||2 + 2be(t + log M) g€
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< (1/2) | NGE13 + 40Z(t +log M) + 2b¢ (¢ + log M) | TGE]|oo,

where we used the inequality 2uv < (1/2)u® + 202 for all u,v € R. Rearranging the terms of the
last display, we obtain the claim of the lemma. O

Lemma 15. Let &y, ..., &N be independent zero-mean random variables satisfying the (o—g, be)-
Bernstein condition with ag, be > 0. Let {A; : j € J} be families of subsets of {1,..., N} such
that Nj = minac 4, |A| > No. With probability at least1 — e~*, we have

; Ve [J].

max ——

((+1og217]) . 2log A | be(t+log(2lJ]) . belog|4,
A6A1|A|‘Z£z‘\ g\/ + + +

Ny Nj No Nj
Proof. Using the version of Lemma 12 of the Bernstein inequality, we find

P(| Y &| <oev/2lAlt+bet) > 1-2¢7,
leA

which yields

2 b5t> )
(!A\‘Z&‘\ o\ ) 2

It follows from the last display and the union bound that

2(t + log | A;) (t+log\«4j)) ¢
< >1-—2e".
P o e A 7 ¢

Taking the union bound over j € J, we get that with probability at least 1 — e,

V5 € [J].

! 3t 1 Tog(21]) + 108 | Ay]) _ belt + log(21J]) + log | 4,)
= <
v >« "5\/ N, * N,

This completes the proof of the lemma. O
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3.1 Introduction

Let us consider a bipartite graph with labeled edges. This means that the vertices of the graph
are split into two parts, of cardinalities n and m, respectively, so that there is no edge between
two vertices belonging to the same part. Thus, only vertices lying in different parts may be
connected by an edge. Such a graph is naturally encoded by its adjacency matrix, which is
an n x m matrix henceforth denoted by H such that H;; = 1 if the the ith vertex of the first
part is connected to the jth vertex of the second part, otherwise H; ; = 0. In a more general
setting that will be explained below, one can assume that the matrix H has real entries from
[0, 1] representing the “labels” of the edges of the graph.

To give a concrete example, let the vertices of the first part of the graph be workers and
those of the second part be firms. A worker is connected to a firm if they are employed by the
firm. Clearly, this graph evolves over time, but we consider here its state at a given time instant.
It could be tempting to apply the methodology of the previous chapter in this setting, but it can
be easily seen that this requires relaxing some of the assumptions considered therein. Indeed,
at a given time instant, a worker is employed by at most one firm, which means that every
row of H contains only one non-zero entry. This implies that no assumption of independence,
even conditional, can not be envisioned for modeling this setting. Having this and other similar
examples in mind, we introduce an alternative version of the assumption that the graph is
generated by a graphon.

Assumption 4. We consider a function W* : [0,1]?> — [0, +-oo[ called the graphon and two
random vectors U = (Uy,...,U,) and V = (V4,...,V,,) that satisfy

1. Uy,...,Up,V1,...,V,, are independent and drawn from the uniform distribution on [0, 1].

2. Conditionally to (U, V'), the rows of the matrix H are independent.

3. Each row of H sum to one and E[H, ;|U, V] = ZTZV IE[ZiE‘U/j)V)'
/=1 iy VL

In this assumption, as mentioned in the previous chapter, U;’s and Vj’s are unobserved
features of the vertices. In the example of workers and firms, one can think of U; as the
unobserved efficiency of the i-th worker, whereas V; is the attractiveness of the jth firm, which
is not directly observable. Part 2 of Assumption 4, referred to as the partial independence
assumption, indicates that if we were to observe the values of the latent vectors U and V,
then each worker would choose the firm independently of the other workers. However, there is
no assumption on the (conditional) independence of the choices made by a worker between
different firms. This allows us to cover the “many to one” situation described above, which
means that many workers may be employed by one firm but only one firm can be the employer
of a worker.

The focus of this chapter is on estimating the conditional mean, given the latent variables
U and V, of the random matrix H as well as on estimating the graphon W*.
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Besides the worker-firm example described above, the model under consideration can be
used in the following situations.

1. The entries of H live in {0, 1}. Condition 3 of Assumption 4 is satisfied if each row of H
has one entry equal to one, the others vanish. This corresponds to the matching setting,
where a worker, for instance, has to choose one and only one firm. In this case, the
matrix H is sparse and has exactly n nonzero entries. This is equivalent to assume that
conditionally to (U, V'), the rows of H are independent and drawn from the multinomial
distribution with parameters (1, m, ®;) where © lies in the probability simplex and its j
coordinate is proportional to W*(U;, Vj).

2. Consider that the setting of the previous paragraph has been repeated N times, resulting
in the observation of NV adjacency matrices Hy,...,Hy. We can set H = % fozl H,.
This may model the situation where we observe the employment graph at N different
time instances.

3. Let us assume that shareholders invest in different investment classes. Each share-
holder has a budget allocated to invest, and we observe the fraction of this budget
invested in each class. Here, entries of H are in [0, 1], they measure the fraction of the
budget invested by each shareholder in each class. One row of H corresponds to one
shareholder. A typical example is when conditionally to (U, V'), the ith row of H is drawn
from the Dirichlet distribution Dir(cx;) with parameter a; = (W*(U;, Vi), ..., W*(U;, V).

Our goal is twofold. First, we aim to estimate the mean matrix of H and provide a risk bound
for our estimation method. In this part, we do not consider part 3 of Assumption 4, but instead
replace it with the following assumption: the sum of each row H; of H is smaller than a positive
parameter p,,. Our objective is to investigate the behavior of the risk of our estimator as a
function of the model parameters, namely n and m, as well as p,, and the noise level denoted
by ps,, Which satisfies

[Zillop < ps;, Vi=1l...n (3.1)

where X; = E[H;H,] — E[H,|E[H;]" is the covariance matrix of the ith row of H. We will
often assume that the matrix ®* = E[H] has also rows whose sum is less than pg > 0. This
parameter may also appear in the upper bounds of the risk. Notice that p, could be much
smaller than p,,. For example, if H; is multinomial with parameters (1, m, (1/m,...,1/m)), then
pu = land pg = !/m. The second part of this work focuses on estimating the graphon W*
when H fully satisfies Assumption 4 as well as (3.1). Moreover we only consider the class
of piecewise constant graphon W*. Notice that part 3 of Assumption 4 poses identifiability
problems. Indeed, conditionally on (U,V'), W* and CW*, where C is a positive constant,
will generate the same matrix H. In addition, permuting the coordinates V; and U; will also

90



generate the same matrix H. These identifiability problems are treated in Subsection 3.3.1,
and they are important to understand the way of measuring the risk of our estimator.

Estimation procedure In the initial stage of our work, our objective is to estimate the mean
matrix ®* = E[H]. To accomplish this, we employ a least squares approach using constant-
by-block matrices, as proposed in Chapter 2. The number of blocks is assumed to be known
and serves as a hyperparameter in our model, influencing the upper bounds. While adaptive
methods exist for handling unknown block numbers, such as aggregation by exponential weights
discussed in Subsection 2.3.2, we do not delve into them in this study. In the subsequent stage,
we shift our focus to estimating the piecewise constant graphon W* and leverage the estimator
of the mean matrix to derive an estimator for W*.

Our contribution Our work makes a significant contribution by providing a sample risk bound
for the least squares method employed in estimating the mean of a random matrix under the
relaxed independence assumption, where the entries of the observed matrix are not necessarily
independent, but the rows are assumed to be. To tackle the least squares problem, we use
constant-by-block constraints, assuming that the number of blocks is known. Additionally, we
establish an upper bound for estimating a bivariate graphon function under piecewise constant
regularity within the framework of Assumption 4, which incorporates unobserved latent variables.
This framework allows for modeling a wide range of random matrices, particularly adjacency
matrices of bipartite graphs, with constraints on edge labels.

Notation For two n x m matrices B and D, the inner product is defined as

(B,D) =tr(BD') = Z Z Bi;Dij,
=1 j=1
and we denote by ||B||r = 1/(B,B) the Frobenius norm of the matrix B. We denote || B/, =
max;c|, || Bill, where p € {1,2}. For any integer N > 1, the notation [N] will refer to the set
{1,...,N}.

3.2 Estimators of the mean matrix and finite sample risk bound

In this section, we introduce the least square estimator for the mean matrix ®*, which is
computed from the matrix H where the rows of H consist of independent observed vectors
H/ . Furthermore, we provide an upper-bound on the risk associated with the least square
estimator.
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3.2.1 Definition of the least square estimator

The definition of the least square estimator is essentially identical to the one provided in
Equation (2.2). However, let’s revisit the framework for the sake of clarity. The approach
involves approximating the observed matrix H using a constant-by-block matrix.

For positive integers ng, n, K satisfying Kny < n, and K > 2, we define the set Z(n, K, ng)
as follows:

Z(n,K,ny) = {Z € {0,1}™K . Z1x = 1,, and krél[l% 12, > no} .

The elements of this set can be interpreted as assignment matrices, where each node of the
first set with cardinality n is assigned to one (and only one) of the K "communities," subject to
the condition that each community has at least ny "members." Similarly, we will make use of the
set Z(m, L, mg) corresponding to assignment matrices for the second set. By convention, we
consider the first set to be on the left side, and the second set on the right side. Consequently,
elements of Z(n, K, ng) will be denoted as Z"*, while elements of Z(m, L, mq) will be denoted
as Zi**™, These matrices represent a biclustering of the bipartite network, where the left
clusters are given by the matrix Z"", and similarly, Z**™ represents the right clusters. Given
the observed matrix H, the least square estimator is defined by

(6? zuser’ zitem) € arg min HH _ ZuserQ(Zitem)THQ‘ (3.2)
Qe[0,1]K L F
Zvsre Z(n,K,ng)
Zitem ¢ Z(m, L,mo)

Here, Z""Q(Z*™) T is a n x m constant-by-block matrix. The idea is thus to find the constant-
by-block matrix that is the closest to H in the metric induced by the Frobenius norm, where the
blocs are given by the matrices Z"* and Zi**™, and the sizes of blocks are at least ng and my.

These estimators computed by (3.2) lead to the constant-by-block least squares estimator
of ®* defined by ®LS = ZwerQ(Zit*m)T. One can write ®'S in the following alternative way.
Let us consider the class of constant-by-block matrices

7— — {@ — ZuserQ(Zitem)T c [07 1]n><m . (Q, Zuser’ Zitem) c [07 1]K><L % Zn,K,nO % Zm,L,mo} )
The estimator ®'S is a solution to

O c argmin |[H — 2. 3.3
€ leen%ll IE (3.3)

We aim at bounding the error of the estimator ©LS.
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3.2.2 Risk bound of the least square estimator

We present an upper bound on the error of the least squares estimator, which mirrors the one
obtained in Theorem 6. This bound illustrates the behavior of the error as n and m grow large,
while keeping pg,, piy» and py, of the order of one.

Proposition 5. Letn, m,ng, mg, L, K be positive integers suchthat L. > 2, K > 2,1 <ng <n
and1 < myg < m. LetH € [0,1]™*™ be an n x m random matrix with independent rows
such that |H||1 ~ < py. Assume that the mean matrix ®* satisfies ||©*||1 - < po and the
covariance matrix X; of H; is such that | X} ||.p < py, for every i € [n] and for some py, > 0.
The least-squares estimator ®'S defined by (3.3) satisfies the exact oracle inequality

E /@\LS_@*21/2  O*
[ B 10Ol

1
Vm St (40s + o) Prom(K.L),

provided that i (no, mo) = 280e/no) .y loglme/mo) 8(pprp®)2 and the remainder factor is

SKL logK logLyY:
- I

Pam(E, L) = (S + 22 4 28

This upper bound is particularly meaningful when the parameters p,., po, and p,, are
bounded when n and m go to infinity. If, for instance, p, is proportional to m, then the upper
bound will not converge to 0 as n and m increase. For next section, in view of the previous
remark, we will focus on the case where p, = p, = 1, this assumption being true in the
frameworks we are interested in. It is worth noting that the assumption | H||; .. < p,, €nsures
that ||©@*||1 o < py as well. However, it should be mentioned that in some cases, ||©*||; - may
be smaller than | H||; ~. If we further assume in Proposition 5 that ||©® || < poo, We can easily
adapt the proof to obtain the following upper bound

o 1©— Ol 2
f i+ (2 :
o T (2 Pz T+ 6poo(pe + pH)) "o (K L)

This bound can be compared to the bound obtained in the independent edges framework, as
given in Theorem 6, which applies to bounded labels (see Table 3.1).

The next corollary is a straightforward consequence of Proposition 5. It corresponds to
the particular setting where the rows of H sum to one. In this case, we have the following
inequalities

P S Poo < Po = Py = 1

This includes the case described in the introduction where each row H; has only one entry
equal to 1, and the others are null. This case, known as the multinomial model, models a
matching scenario where individuals from the left-hand side have to choose one and only one
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Assumption | Full independence | Partial Independence
Bounded data | b | Pe = Po + Pu
Bounded expectation | p | Do
Bounded variance | o? | s

Upper bound factor (0% + bp) 2 (ps + pEpoo)l/2
provided that wmm(no,mo)) < (o/b)? Un.m(no,mo) S pz/pi

Table 3.1: Comparison of the parameters and the factors appearing in the upper bound for full
independence and partial independence assumptions.

item from the right-hand side.

Corollary 3. Let n,m,ng, mg, L, K be positive integers suchthat L > 2, K > 2,1 <ny < n
and 1 < mgo < m. Let H € [0,1]"*™ be an n x m random matrix with independent rows such
that each row sum to one and has a covariance matrix 3; satisfying ||X;[/op < p5,. We also
assume that |©*|| < pso. The least-squares estimator O'S defined by (3.3) satisfies the
exact oracle inequality

S *
E[|6 - o' g]” _ . |e-e
v nm \(967 vnm

provided that v, ., (no, mo) < py,, With the remainder factor

1
+ (48,02 + 6poo) /QTn,m(K7 L)a

3KL logK logL\'2
+ + 2T
nm m n

P (K, L) = (

Notice that ||3;||op < pso, Which can simplifies the upper bound obtained in Corollary 3,
the factor before r, ., (K, L) becomes 8,/p, and corresponds to the optimal upper bound
obtained in the multinomial model in terms of the noise and the sparsity parameters. For the
reweighed multinomial model (second example presented in the introduction), the upper-bound
is sub-optimal in term of the variance noise, because p;,, is of the order of 1/N while p
behaves as a constant.

3.3 Estimators of the graphon and risk bound

Having obtained the estimation of the mean matrix ®*, our next objective is to construct an
estimator for W* within the framework of Assumption 4. Additionally, we will address the
identifiability issues mentioned in the introduction and provide an upper bound for the risk of
this graphon estimator.
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3.3.1 Identifiability and evaluation of the estimation

In this subsection, we define the estimator of W* when the matrix H is generated according to
some re-scaled graphon W*. Assume that H has independent rows H; that sum to one, so
iy Hij = 1 and let consider the model

WU, Vj)

EHU.V] =0 with 6} = s s
=1 (3

(3.4)

where W* : [0,1] — R is a graphon, U; and V; are iid sequences of uniform variables on
[0,1]. In the context of bipartite graphs, the matrix H represents an adjacency matrix. We
associate an unobserved latent variable U; with each vertex on the left-hand side, and similarly,
we assign the variables V; to the vertices on the right-hand side. They represent unobservable
characteristics, and they are assumed to be independent.

The goal is to construct an estimator of W* based on the observation of the matrix H.
However, it is important to note that model (3.4) is invariant under the rescaling of W* by a
positive constant. Moreover, if there exists 7, 71, ..., 7, sSome bijections from [0, 1] to [0, 1] that
preserve the Lebesgue measure and such that

Wiz,y) _  Wi(r(x), ni(y))
S Wiz ye) 220 W (@), Te(ye)

then, matrices H and H' respectively generated from W and W’ according to model (3.4) have
the same distribution. That is, the only observation of H will not allow to discriminate between
W and W’. It is important to well understand this claim to avoid identifiability issues. One can
rewrite (3.5) in a simpler way.

forall z,y1...,ym €[0,1] (3.5)

Proposition 6. If there exists T, 11, ..., T, Some bijections from [0, 1] to [0, 1] that preserve the
Lebesgue measure and such that for all x,y; . . .,ym € [0, 1], equation (3.5) is satisfied, then

W(z,y) = v(z)W'(mi(x), m(y)) forall z,ye][0,1]. (3.6)
where v is a positive function, and w1, m, are some measure preserving bijections of [0, 1].

Notice that the reciprocal is also true, the proof is straightforward. At the sight of Proposi-
tion 6, we say that two graphons W and W’ are weakly isomorphic if (3.6) is satisfied. Then,
as it is impossible to discriminate between two graphons that are equal up to a multiplicative
function that depends only on x, we will define the class of graphons

¢ = {W, I (@) = U Va € [0, 1]}

where Iy (x) = fol W (z,y)dy. Assume that W* € ¢, otherwise we normalize it, and it will not
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change the model (3.4). This normalization is motivated by the the fact that if W* € ¥, then
B[ > WU VA)|U:| = mlw-(U3) = 1,
=1

and, intuitively, we should have E[H|U;, V;] ~ W*(U;, V;). Now, the good distance on the class
% we choose for measuring the quality of an estimator of W* is

swowy= int (Wm0 - W P )"

- W om) - W,

or equivalently, the distance between two graphons that are not necessarily in ¢ is define as

/ 1/2
S(W' W)= inf <// Win (), 2v)) _ Wiu ‘ dudv)
T1,T2EM [0,1)2 mIyy 7'1( )) mIW
= inf W'o(n®) _
T1,T2EM mlyy o mlw |2

The distance 6 has important properties with regard to identifiability. Specifically, if two graphons
are weakly isomorphic, which means that there exists a positive function v, and measure-
preserving bijections 7 and 7, such that for almost all z,y € [0,1], we have W'(z,y) =
v(x)W (m(z), 72(y)), then §(W, W') = 0.

Having established the distance metric, we now proceed to define the graphon estimator.
Similar to the previous chapter, we define the function We(x,y) for any matrix @ € R™**™
as We(r,y) = O, 1my)- The least squares estimator, denoted by WS, is then define by
WS = Wg.s- Notice that

IW@ / W@ .CC Y d?/ - Ze[nz],]

Then, We € ¢ if and only if © is left stochastic, thatis >, ©;; = 1 for all i € [n] (all its row
sum to one). Hence, Wg+ € ¥ because of model (3.4).The next lemma guarantees that if H
has rows that sum to one, then ®'S will also have rows that sum to one, and WS € %.

Lemma 16. /fH < (R,)"*™ is left-stochastic, meaning that all its rows sum to one, then the
least square estimator ®'S define by (3.3) is also left-stochastic.

For an estimated graphon W defined above, such that © is left-stochastic (thatis Wg € ),
the error of estimation can be easily related to the error, measured by the Frobenius norm, of
estimation of the matrix ®*. Indeed, one easily checks that ||Wg — We-||L, |@ — O,

_ 1
_ﬁ|
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which leads to

1©—©"||r
vnm

The equation (3.7) provides a decomposition that divides the error of graphon estimation into
two distinct components: the error of estimating the conditional mean matrix ®*, and the
bias of approximating W* with a piecewise constant function Wg+. The former component
is influenced by the estimation method used and the probabilistic assumptions made about
the noise, and has been examined in the previous section. Meanwhile, the latter component
is dependent solely on the "smoothness properties" of the graphon. A forthcoming result will
enable us to assess this component.

(W, W") < [[Wg — We~

Ly t 5(W®* ) W*) < + 6(W@*7 W*) (37)

3.3.2 Risk bound for piecewise constant graphons

In this subsection, our focus is on deriving an upper bound for the risk of the least square
estimator of the graphon W*, given the assumption that W* is piecewise constant.

Proposition 7. Fori € [n] and j € [m], let ©;; define as follow

W*(Uiv V})

* j—

where W* : [0,1]?> — [A, B] for some A, B such that0 < A < B < +oo. Assume firstly that
W+* e &, that is Iy« (x) := fol W*(z,y)dy = 1/m and secondly that for0 = ap < ... < ax =1
and0=by < ... < b =1, the function W* is constant on each rectangle [aj, ax+1[x[be, bey1].
If we define We- : [0,1]> — [A, B] by We-(u,v) = ©5; for all (u,v) € [(i —1)/n,i/n[x[(j —

1)/n,j/n[, then
E[5(Wer, W*)] < (BJ‘;)(@ ; @)/ w2

provided that w < 1e%%%5™ where w = S —; and wf) = by — by_1.
Wy

The Bound obtained is quite similar to the one given in Proposition 2. To be more accurate,
the only difference lies in the presence of the second term \/%. It appears because of the
normalisation given by the graphon’s class 4. But one have that this term is much smaller
than the first one when A and B are fixed, then the obtained upper bounds are essentially
the same for full independence and partial Independence setting. Note that there is an
additional assumption here, we enforce w to be not too large, that is, the size of the intervals
[be, be11] is not too small. For example if m = 315, then this condition is satisfied as long as
minger) [be — be—1| = 10~3. Now we have all the tools to upper bound the risk estimation of
wts,
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Theorem 10. LetH € [0, 1]"*™ be a n x m random matrix satisfying

W*(Ui7 V])
>ty WH(Ui, Vi)

EHU,V]=©" with O} =

with some graphon W* : [0,1]> — [0, p] € €, that is Iyy«(x fo WH*(x,y)dy = /m. ASsume
that each row of H sum to one, its covariance matrix 3; sat/sf/es 1Zillop < ps; < 1 and its
conditional mean matrix ©* satisfies ||®*||» < p. Assume that the graphon W* is (K, L)-
piecewise constant, meaning that for some integers K,L > 2 andfor0 = ag < ... < ag =1,
0=0b; <...<br =1, such that

1 K
AT .= min |a — ap_1| > Mj AL .— mm by — be_q| = M7
]CE[K} n e [ m

the function W* is constant on each rectangle |aj_1, ar[x[be—1,be[. Then, the estimator
WL = Wg,s with ©'S = ©L3 | (K, L] defined by (3.3) satisfies

ng,mo

E[5(W"S, W*)?)"2 < (50, + GP)I/Q(BKL 4 loe K IOgL g (\/> \/7>
nm m

provided that wn,m(NK’L)) _ 210g75122/(f)(1()) n QIOgéQAe(/KA)(L))

- _ L 1 (2 _
w = Zﬁ:l W andwz = bg — bﬁ—l-

< py and w < 3e%9%™ where

In order to ease understanding of these results, let give the simple example of the multi-
nomial model, where each row of H are drawn from a multinomial distribution of parameter
(0,1,0;). Then p,, < po and the upper bound becomes

_ 1
E[é(WLS,W*)2]1/2<8(3pKL plogK plOgL 43 (\/ /2 )

This upper bound is optimal in term of the noise level and the sparsity parameter p. It can be
compared to the upper-bound obtain in part 1 of Theorem 8 in the Bernoulli setting. However,
this result becomes sub-optimal when applying a re-weighted multinomial model.
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3.4.1 Proof of Proposition 5 (risk bound for ©'5)

The proof of Proposition 5 presented here is an adaptation of the proof of Theorem 6 in
Chapter 2. Let us define

lI7(©") = arg min [|© — ©7|F,

the best approximation of ®* in Frobenius norm by a constant-by-block matrix. Note that the
matrix II7(®*) has at most K L distinct entries each of which is the average of the entries of a
submatrix of ©*. Since O = ZuerQ(Zit*m)T is the least square estimator, we have

| -8 |F < [|H - 1i7(©)||¢. (3.8)

Let us define the mean-zero “noise” matrix E = H — E[H] = H — ©®* and rewrite equation (3.8)
in the following form

|6 — [} < |© — I (®)||f +2(6° — ©",E) +-2(0" ~II7(0").E).  (3.9)

Since the mean of E is zero, the expectations of the last term in the right-hand side vanishes.
To bound the expectation of ('S — ©*, E), we define

7 ={©:3Q € [0,1]**L such that © = Z*'Q(Z"*")T} C T,

and let II-(©") = arg ming = [|© — ©[|¢ be the best Frobenius approximation of ©* in T. We
use the decomposition

('S~ 0" F) = (II(0") — 0" F) + (O —11:(6"). F) . S48

=2

m

Lemma 17. Under the conditions of Proposition 5, we have

E(E) < \/2;)2 (nlog K +mlog L + 1) IE[H@LS — O3] + (4/3)pg (nlog K + mlog L+ 1).

Proof. The main steps of the proof consist in applying the Bernstein inequality to =; for a

99



fixed © instead of [1;(©*), using the union bound and then integrating the high-probability
bound. For the first step, let ® € [0, 1] satisfying ||®||1,- < peg. By definition of the inner
product, we have (© — ©",E) =3_,,1(©; — ©;)" E;. The random variables (©; — ©})"E;
are independent and satisfy

(0~ ©7) Bi| < |© — ©[|1.0 < 2o,
E[{(®: - ©) E;}’] = (0, - ©))T51(®; - ©)) < |®; — O 3= lop < 1 1©; — O[3

Therefore, the Bernstein inequality implies that for all = > 0, we have
IP’((C-) —O"E) > \/2zp,., ||© — OF||r + (4/3)p®x) <e .

Let us define Qg 7 = {(Z1ser, Zitm) = (Z,Z/)}, for each pair of matrices Z € Z,, k., and Z' €
Zim,L,mo- On the event Q7 7/, the matrix I1-©" is deterministic and its elements are averages of
the elements of ®*. As I1- is an orthogonal projection, we have [[II=0"(|; « < @1, < pe
and

P ({( #(O%) — >/ 2zpy [[1(©%) — OF[|f + (4/3)pex} N Qz,zz) <e "’

Note also that the cardinality of Z,, k., is at most K". Combining the last display with the
union bound, we get

P((I(0") - ©"E) > \/2ap,, 117(O") e*HF+<4/s>p@x)
< ]P’({(H?(G)* ©".E) > \/21p; |TI+(©%) — ©°[|r + (4/3)pez} N Qz,2/ )
(z,z)
< K'L™Me™®,

where in the first inequality in the above display the sum is over (Z, Z') from the set Z,, i »,, ¥

Zm,L,m, and the factor K"L™ corresponds to an upper bound on the cardinality of this set.

Finally, choosing x = nlog K + mlog L + ¢ for some ¢t > 0 and using the basic inequality
v < \u? +02/(4)) entails

4
P (El > \II=(©%) — O*||2 + (% + %)(nlogl( +mlog L + t)> et

for any A > 0. Lemma 21 ensures that

4
E(E) < )\E[HH?((-)*) - @*H%} + (g%:\ + %)(n log K +mlog L + 1)

—~ 4
E[|[0 - o*|] + (gi + %)(nlogK+mlogL+ 1).
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Optimizing with respect to A > 0, we get

E(Z1) < \/2p5(nlog K +mlog L+ 1) E[|® — @[3 + (4/3)pg (nlog K +mlog L + 1).
This completes the proof of the lemma. |

We now switch to the evaluation of E(Z9). To this end, we first notice that

E(Sp) = E[(IIz(H) — I1=(©"), E)] = E[{Il=(E), E)] = E[||[IL=(E)|[#].
Lemma 18. Under the conditions of Proposition 5, we have
E[IB)[F] < (205 + 2000 + Po)*Ynm(no,mo) ) (BKL + nlog K +mlog L).

Proof. The idea is to apply Lemma 24 and Lemma 25 together. We denote by G the family
of all partitions 7o = {By x Cy : k € [K|,¢ € [L]} of [n] x [m] such that for each k € [n], and
le [m], ‘Bk| > ng and |Cg| > mg. We have

2 2
17 (B[ < max [z B

with rows of E satisfying the assumptions of Lemma 24 (||E||1 oo < py + pe)- SO by the union
bound on G, we obtain that

L7 (E)|[F < 8(t +1og(2MG])) (ps + (2/3)(py + Po) max 7 Ello) (3.11)

with probability at least 1 — 0.5¢~%, where log M < K Llog 12 < 2.5K L. According to Lemma 25,
on an event of probability at least 1 — 0.5¢~*

ZGB

2 2
P2 (+ 1 5) + M(t+g)’
ngmo 3ngmg

max NI E||e < max

7

where § = % + wn,m(no, mo) >

of subsets B C [n] and C C [m] such that B x C' € 75. Hence with probability at least 1 — 0.5¢~*

> 3, and the maximum is taken over all pairs

tmax [GE oo < /25 3(24/11+1) + s(py + po)B(2/11 + 1) (3.12)

< V205 (t/11+1) +2/3(py + po)F(2t/11 + 1)

Finally, combining (3.11) and (3.12), we have that with probability at least 1 — e,

ITLZ(E)|7 < (¢ + log(2M]G])) (ﬂz+2/3(pH + pe)V/2058(t/11+1)
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ooy + p)F(2E/11 4 1)),
Using Lemma 21, we obtain the following upper bound on the expectation
E (I (B) ] < (1+ 1oa(2M1G1) (s + %a(0s + p0)v/228(2/11 +1)
4oy + po) 5/ 4 1))
< (1+10g2M))) (205 + (pus + £6)?5)

But |G| < K"L™ and M < 12K%, Taking into account the fact that K > 2 and L > 2, this leads
to

1+1log(2M|G|) < 1+ 1log2+ KLlog12 + nlog K +mlog L
<3KL+nlog K +mloglL.
We also have that
log(4nm
S = M + wn,m(nOamO) < 2¢n,m(n0am0)v
nomyo

so the control of E[||TI~(E)||] is finally given by
E[HH?(E)H,%] < <2p2 +2(py + Po ) nm(no, mo)) (BKL +nlog K +mlogL).
This completes the proof of the lemma. |

In order to ease notation in the rest of the proof, let us set A = nlog K + mlog L + 1. To
conclude, we use the bounds on =; and =5 obtained in Lemma 17 and Lemma 18, respectively,
as well as decompositions (3.9) and (3.10). This implies that

E[6'S - [} < " - T1(6)]? +2(2p, AE[|O" - &)
+ ($/3)pe A + 2E[|TI7(E) 2]
One can check that the last inequality is equivalent to
(B8 — @2 — /2, 4) <[ ~ L (@")[2 + (20, +8p)A + 2B IL(E) [3].
This readily yields

E[|©" - o]
* * L
<@~ TIr(@")|lF + /25 A+ (205 + 3p0) A+ 2E[I=(E)2]) /*
* * 1
<O — I (©) ¢ + (8, + 6pe)A + 4E[|TL-(E)2])
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1/2
<10 1170l + (1605 + 690 + 804 + o) tnmn0,m0) ) rrm (K, L),

where in the second line we have used that \/a + vb < v/2a + 2b and we also denoted
() = (355 1 onk€ y wun)

nm m

3.4.2 Proof of Proposition 6 (identifiability property)

Proof. ltis easy to see that (3.5) is equivalent to

SOW ()W (r(a), melye)) = S W (r(a), 7 (y2)) W ().
=1

(=1

Since the first term of each sum is identical, we can factor it out of the equation. Then integrated
this equation with respect to y1, . .. ym—1, We get

(m = 2)Iw () Iy (7(x)) + Tw ()W (7 (2), Ton (ym)
= (m = 2)Iw (2) Iy (7(2)) + Iw (T(2))W (2, Ym)

where Iy (z / W (z,y)dy and Iy (x / W' (x,y)dy. Finally for all z,y € [0, 1],

W(z,y) = v(@)W(7(x), 7m(y))-

with v(z) = m

3.4.3 Proof of Lemma 16 (©'S is left-stochastic)

Recall that ©'5 = II=H with T = {@ : 3Q € [0,1]5*F such that ©® = ZUSBTQ(Z“G‘”)T} the
linear space of constant by block matrices, where the blocks are the same than ®'S. The
proof consists in given an exact expression of I1(®) for any matrix © € [0, 1]"*" with rows
summing to one. Let define ®; = iuserQl(iitem)T € T where Q; € REX has as entries some
averages of entries of ®, or more precisely

(Q1)ke = >N ey
|Bk|| Cil B, 1B,
i i
Then, for all @ = ZwerQ/(Zitem)T € T,
@ — Ol =0 -0 +]©, —0O| +2(0' - 0,0, — 0). (3.13)
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but

K L
(@ -01,0,-0)=> "> > > (Qu— Qi) ((Qu)re — 1)
k=11=1 ;B jeC,
K L
=3 (Qhe = (Qure) DD (ke — ©4)
k=1 (=1 i€By jeCy
=0
=0

Then according to (3.13), ©; is the solution to

[1=(®) = arg min [|©" — O|F.
e'cT

One can easily check that every rows of ®; sum to one, and we have proved that H?(Q) = 0.
Taking ® = H above prove the lemma.

3.4.4 Proof of Proposition 7 (approximation error for a graphon)

In what follows, X refers to the Lebesgue measure on R and )\ is the Lebesgue measure on R2.
Let W* be a graphon such that for some K x L matrix Q* and some sequences ap < ... < ag,
bp < ... < by satisfying ag = bp = 0 and ax = by = 1, we have W*(u,v) = Q;é for every
u € [ag—1,ar) and v € [by_1, by). Equivalently,

K L
= ZZQké]l[ak 1,05) X [be—1 b/)(u U)'
k=1 /=1
The condition W* € ¥ can be rewritten as
L 1
> @i Lot == Vke[K]
(=1

where we define the “weight” sequences w,(cl) =ap — Ag_1, wf) = b, — by_1 and

1< @) 1
- Ezﬂ[ak,l,ak[(Ui) and wé ) = % Z]]'[béfl’bl[(‘/})
i=1 J=1

Notice that all the four weight sequences w(®), w®), (") and @ are positive and sum to one.
As proved in [KTV17, p16], there exist two functions 1, : [0,1] — [K] and ¢ : [0,1] — [L] such
that

1. Forallk € [K]and z € [aj—1, (ak—1 + @,(Cl)) A ay), we have ¢y (z) = k

2. Forall ¢ € [L] and € [by—1, (be—1 + @2)) Abg), we have vy (x) = ¢
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3. Ay (k) = @l forall k € [K]
4. Ay (0) = o forall £ € [L] .

Using these mappings 1 and v, we construct the graphon W;;(u, v) = ijl(u)m(v).

Lemma 19. W satisfies §(We+, (mlw,.) W) = 0.

Proof. Indeed, it suffices to prove that there exist two measure preserving automorphisms
of [0, 1] called 7 and 7> such that W (u, v) = v(u)We+(71(u), 72(v)) for almost all u, v € [0, 1]
where v(u) is a positive random variable that could depend on u. On the one hand, one can
easily check that for any k € [K]

A({u, Wi, v) = Qi forsome ¢ € [L]}) = A({u, va(u) =k}) =@},
On the other hand, we have

We- (u7 U) = G)Fnu],[mv]
_ w (U[mﬂ ) V[mv] )
= v(WW" (U|'nu] ) V[mv] ).

But

A ({u7 W*(Ufnu-\ ’ mev})
= Qi forsome £ € (1]} ) = A(fu, Upuq € a1, a0)))

= <U {’U,, L <u< L and U; € [ak_l,ak)}>
n n
1
= n ZﬂUie[ak—l:ak)
=1
el

Then for any k € [K] we can find a measure preserving bijection 7, from the interior of zpl‘l(kz)
to the interior of {u, Upu € [ak_l,ak)}. Notice that each of these subsets is a finite reunion
of intervals. Lemma 22 prove the existence of 7. Now we construct r; such that ﬁ\/?\ =Ty
¥y (k)
which is a measure preserving automorphism of [0,1]. We have a similar outcome for the
v-axis, which gives 7», and proves the lemma. |
This lemma and the triangular inequality lead to

§(Wer, W*) = 8((mlws;) Wi, W*) < [[(mlws;) ™ Wy = WillL, + W) — WL,
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The second term is upper bounded in expectation by f (\/ \/7) (see Subsec-
tion 2.7.2). It now remains to upper-bound the expectation of first term.
—1 * *112 * 2 —1 2
lomIwy) ™ Wy = Wil = | Wi 0)? (1= (mlwy) ™ (w)) dudv

[0,1]2
K L

mZE’ 1ka' ef >
* /\2
mZeI 1 QW é/
L x \2,.~(2
. (@) w, 1 . o~
w;(gl) >r=1(Qk) <m_Zwaé?)> )
(Ze' lef’wé’ ) o=t

oo Qu? (*

—_

M= T

e
Il
—_

Using Lemma 20 bellow we get

—lyyr* * 12 332
E[H(mfwg,) Wy = Willt,] < —.

This ends the proof of Proposition 7.

Lemma 20. LetV4,...,V,, iid random variable drawn from the uniform distribution on [0, 1]. Let
Cy,...,Cr, be a partition of [0, 1] with w, = A(Cy). We set

SO R
Zgj = ]leECe and wy= E Z Zgj.
=1
for every sequence (ay, .. .,ar) of real number such that

0< <B V€€ and Zagwg

L 2
1
denoting ¢ = Xlaafiy (m > aﬂl)g) we have for every t € (0,1)

2
<Z€ 1 agtl)g) (=1
where w = Ze | w; - Moreover, if & < 7 exp (%m), then

Proof. For some real number ¢t > 0 let denote 5, = {Zfil agwy > t}. Then E[¢] =
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E[¢lq.,] + E[{1lq_,] and the aim is now to upper-bound each term. On the one hand

B_[[1 < 2
Ef¢lo.,) < TE K — Zam) }
m
=1
B 1 «
= fvar| 3oy
7j=1
where Y; = S°F | a,7,; are iid random variables. We have

L
Za%w(g—l B—-1,

(=1

Var(¥;) =

which leads to

EEHQ»] <

On the other hand

E[g]lﬂgt] = E[§19<t19>0]

_ N I )
Yy ap@e (1 ~
=E (ZL 1 2 E —Zag’wg ]IQ@]IQN)
L =1 aﬂw) (=1

== a21/17£]1A 0 1 L 2
l wp> ~
=K E B £ 3 <E — E agtUg) ]lQ@]lQM)
L ¢=1 < g =1 CL@/U)g/) (=1

[ L
<E Z wz>0 ( Z aewg) ]lQ<t]

L (=1

(L1 1/2 L 4 1/2
<E Z uuz>0 < Z > ]lQ<t]

1/4

<zﬂw>o>1” [(—zawa]

1

where we used multiple times the Cauchy-Schwartz inequality. Now it remains to upper-bound
each factor individually. For the third factor, assume that ¢ € (0,1), we use the classical
Bernstein inequality



1 m
~p(Ey, mZ¥31‘0

Recalling that Y; = S1, aeZy; are iid random variables, satisfying |Y;| < B and E[YQ] B,
the Bernstein inequality gives

0120 < (52050) <o (220=).

We can use once again the Hoeffding inequality and integration by parts arguments for the
second factor. Indeed

E[Y¥]
= 8/ e P(|Y| > x)dx
0
> —2ma?
7
<16/0 €T exp( 52 )dw
B%\4
().
m

Finally, we use the trangular inequality together with Lemma 23 to get a bound on the first term

£ (- ws) | -

L g 2172 L Lo 12
E < w/£>0> < E|: u/)\g>0}
2o )| <&
N
<2V2)y —.
For the final claim, we choose ¢t = 1 — /4% log(4w) > 1 provided that w < 304, [

3.4.5 Proof of Theorem 10 (risk bound for T77'-5)
In view of (3.7), the fact that W= Wg and Proposition 7, we have

E[|© - """
Vv nm

< E[|© - ®*H 1/2 <\/> \/>> \/7
E[”@ N Fl/Q—i—Qp(\/» f) (3.14)

Let 7 and T* be the sets of all n x m matrices with real entries that are constant by block on
the same blocks as © and @, respectively. Clearly, T and T* are linear subspaces of the

E[é(W@* ) W*)2]1/2

E[5(Wg, W*)272 <

N
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space of n x m real matrices equipped with the scalar product (M, M) = tr(M] M>). Let I
and I17~ be the orthogonal projections onto T and T* respectively. We have II-H = ® and
II-©®* = ®*. Therefore,

1© — ©%||F = |[IzH — 07|

[Tz

+(H - ") + |1;0° - |

<
®
< [H - % +[I(p/2)1n1,, — ©|F.

Above, (1) is a consequence of the triangle inequality, whereas (2) follows from the fact that I1-
is an orthogonal projection (hence, a contraction) and the matrix (p/2)1,1, belongs to the
image of I1--. Hence

“E[|® - 01} |U. V] < (v75 +050)"

For every k € [K] and ¢ € [L], we define ny = nlay — ar—1|, Np = #{i : U; € [ak_1,ax[},
myg = m|by — be_q] and My = #{j : V; € [bi—1,be[}. We also define the event Qy = {N}, >
ng/2; My > my/2 forall k € [K] and ¢ € [L]}. Since the event Q is (U, V' )-measurable, we get

1 =~ % 1 ~ * c
—E[||© - 0"[}10;] = —E(E[|® - 0"} | U, V]ig;) < (o5 +0.50)"P(%%).

Using the union bound and the Chernoff inequality, one can check that

Mx

L
e—nk/S + Ze—mg/S.
1 /=1

M=

L
P(Ni < ni/2) + Y P(My < my/2) <
k=1 (=1

B
Il

Since we have assumed that ny, > 8log(nK) and m; > 8log(mL), we get P(Q5) < n~! +m~L.
If the parameters ny and mg used in the definition of the least squares estimator 2} satisfy
ng = ming ng /2 = nAF) /2 and my = ming my/2 = mA) /2, then on the event Q, we ca apply
Proposition 5. One can check that v, (19, mo) = ¥, (AL, This, in conjunction with the
previous inequalities, implies that

E[|© - ©°[}] _ E[|© - ©°[?1q,]  E[|© - ©°[FLo]
nm nm nm

3KL loe K logLy ( +0.5p)2 ( +0.5p)2
(48p2+6,0)< R )+ VP VP

m n

n m

3KL logK log L2 1 12
<{(50p2+60)1/2(nm+ I EJFE}’

m n
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under condition that ,, , (A1) < p_.. One can also check that if K, L > 2 and n,m > 5, it

holds
1 1 1</K /L)
-+ —<= —+\/ — .
n m 3 n m

This inequality, combined with (3.14), completes the proof of the theorem.

3.5 Auxiliary results

Lemma 21. Let X be a random variable and a € R, b, c,d > 0 be some constants. If
P(X >a+0bt+ct?) <det  forallt >0,
then E[X] < a + bd + 2cd.

Proof. In the case ¢ = 0, this inequality is well-known. Therefore, we consider only the case
¢ > 0. Without loss of generality, we assume that « = 0 and ¢ = 1. Indeed, we can always
reduce to this case by considering the random variable X’ = (X — a)y/c with b/ = b/c. Thus,
we know that P(X > t2 + bt) < de~" for every t > 0. Note that the condition b > 0 entails that
the mapping t +— 2 + bt defined on [0, +-00) is bijective. Setting z = 2 + bt, this implies that

P(X > z) <dexp {(b/2) — /2 + (b/2)?}, Vz > 0.
This inequality yields

E[X] < d/oooexp{(b/Q) —\/z+(b/2)%} dz

= / e (2t +b) dt
0

= bd + 2d.

This completes the proof. O

Lemma 22. Let E C [0, 1] be a finite reunion of intervals with positive Lebesgue measure.
Then there exists a measure preserving bijection T : E — [0, \(E)][.

Proof. Let denote E = |JI", I, with I; N I; = (). We define for every = € E (see Figure 20)

i—1
7(z) = <x — iI;f I + ; )\(Ij)>]1a:eh
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Figure 20: Measure preserving bijection from E to [0, A(E)].

The map = is piecewise affine with directing coefficient 1, so it preserves the Lebesgue

measure, and it is bijective. O

Lemma 23 (Upper-bounding the moments of the inverse of a binomial). Let X be a random
variable with binomial distribution of parameter (n, p), we have for every k > 1

1X>0} Ch < G
XE ]S (n+1)(n+2)...(n+k)pk = (np)k’

2|

k(k+1)

with Ck =272

Proof. We prove the result by induction on & > 1. for the initialization, we use that X1 x-o > 1

and 7 < t% for every t > 1. It gives

1X>0} [ 2
E[ <E|——
X

Il
3
-~
+
—_
/_\ —_
. 3
N——
’B{Q.
—
|
=
1

Let assume that the statement is valid for some & > 1, then using the same trick than for the
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initialization, we get

Ix>0

Xk+1 S E

2k’+1

2k:+1 n ) »
_Z (i+1 k+1< pd—p)

2k+1 - 1 n+1
(n—i—l)pizo(i—i-l)k i+1

ok+1 Tl g <n+ 1
sy
(n+1Lp ="\ J

2k+1 ]ly>0
Yk

)pi+1 (1 _ p)nfi

)pj(l —p)"

(n+1)p
2k+1

(n+1p(n+2)(n+3)...(n+ 1+ k)p*

Y ~B(n+1,p)

k(k+1)
2

~X

The lemma is proved by induction on k. O

Lemma 24. Let Eq,..., E, be centered and independent random vectors in R™ such that
|E[EE]|lop < py With pg, > 0. For every partition To = {By, x Cy : k € [K],£ € [L]} of [n] x [m],
let us define the projection matrix 117, by

(M7 V)i = B H | > > Ve f (.§)€BrxCph, YV ERT™
k ¢ i'€By 7'€Cy

1. If|E|| < 1, then for all t > 0, we have that with probability at least1 — e~

H

t+10gM)
vV, (VIR E) < HH%EHFHVHF V205 (t +log M)||V]|F + V1100,

and on the same event, we have
TR E(f < 8(t +log M) (py, + (1/3) |75 E|1,00)-

2. If|E|l1,00 < pg, then for allt > 0, we have that with probability at least1 — e™*

’

2(t +log M)

1
WV, (V.IRE) < S IU7E[e Ve + /205 (t +log M) [ Ve + =

P 176V [loo

and |7 E|}f < 8(t +log M) (pg + (1/3)p | L7 Elloc) -

wherelog M < KLlog12 < 2.5KL.
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Proof. We prove only the first part of the lemma, the second one is proved similarly. Let W be
an n x m matrix of unit Frobenius norm. We have

(W, IIE) = (II;W,E) = ZET I, W

For i € [n], the random variables E; (II;; W); are independent and satisfy |E; (Il; W);| <
| (I W);ll1 and
Y E[(E! ([T W))%) =) (W) 215 W); < p, Z |07 W)ill3 = ps | T W < py.-

i=1 i=1

The Bernstein inequality yields
2t o
P((W. Tl (B)) < /205t + S I W) 2 1—¢™, £>0. (3.15)

Let Vi, = {II;A : ||A|r = 1}, be the image of the unit ball of R"*™ by II7, and let N7, =
{W1 ..., WM} be an e-net of V7, for e = 1/4. The set V7, being included in the unit ball of a
linear space of dimension KL, [vH16, Lemma 5.13] shows that M < 125%. Define

U” = argmin{||U||17oo U= W™ g < 1/4}, m=1,..., M.

S VTO

Using (3.15) and the union bound, we get

2(t + log M)

P(Vm € [M], (U™ T E) < \/2p5(t + log M) + 5

)21t 20,

where we used the fact that II; U™ = U™.

Let W be an arbitrary matrix from V7. Let W™ be any point from the net N7, such that
W — W™, <1/4. We have [|[U™|| o < [[W]1,00 and [|[W — U™||g < 1/2. This implies that,
with probability at least 1 — e~¢, for any matrix W € V7,

(II7; W, E) = (W — U™ Tl E) + (U™, 111, E)
< W = U [ Elf + (U™, 7 E)
< (V2 |UrEllF + /205 (t +log M) + (2/3)(t + log M)||U™ 1,00
< (12| Ellf + /205 (t + log M) + (2/3)(t + log M)|

Since this inequality is valid for any matrix W in the image of the unit ball by I1, it is also valid
for W =117, V/||Il7; V||e. Replacing this with the last display, then multiplying the two sides of
the inequality by ||II7; V||, we get the first claim of the lemma.
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For the second claim, we take V = I E to get

M7 E(3 < 24/2p5(t + log M) [T El2 + (4/3)(t + log M) Ell1,00
< (V2)|[TI7 BlJ3 + 4py (¢ + log M) + (4/3)(t + log M) L7 E|l1,0,

where we used the inequality 2uv < (1/2)u? + 2v? for all u,v € R. Rearranging the terms of
the last display, we obtain the claim of the lemma. O

Lemma 25. Let Eq,..., E, be centered and independent random vectors in R™ such that
|E:|l1 < pg and |[E[E;E]]||lop < py. With p, > 0, for everyi € [n]. For everyt > 0, on an event
of probability at least1 — 2e~t, the inequality

< Wﬁ (LB oy a)) + 228 (EEREOM) )

nomo 3 nomo

holds true for every pair of subsets B C [n] and C' C [m] such that |B| > ng and |C| > my.
Proof. The random variables E, 1¢, i € B are independent, zero mean and satisfy
[Ef1c| < pg. E[(E{ 1)) = 1531 < pg1cll = |C]py.

In view of the Bernstein inequality, this yields

20yt
IP( Y El1c¢| < \/2|B|IC|pyt + ’;E ) >1-27t  Vt>0.

i€B
This implies that
2p5.t 2p,t ) _
< =+ == >1-—2e", vt > 0.
VIBIIC] " 3[BJIC|

7
Let np € [n] and mc € [m] be two integers. The union bound combined with the last display

1
PR
[ B[[C]
leads to
2ps.t 205t ) n m\ _,
< = _ 4 B >1-2 e ".
V IBlIC| * 3|BJ|C] (nB> (mc)

Replacing ¢ by

t+ log ( " ) + log ( mn ) <t+nglog (ne/nB) + m¢log (me/mc)
np mc
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we obtain that with probability at least 1 — 2¢~*

b

ElC

<20 (it tmtrm ) + 0 (o (o)

for all B and C such that |B| = np and |C| = m¢. Applying once again a union bound over all
integers np € [ng,n| and m¢ € [mo, m], we check that the inequality

<205 (B ) )+ (B )

nomo nomo

E[1c

holds true for every pair of sets B and C such that | B| > ng and |C| > m with probability at
least 1 — 2e~t. O
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Chapter 4

Conclusion

Summary |In this thesis, we investigated the graphon estimation problem through the obser-
vation of a bipartite graph generated from this graphon and some unobserved latent variables,
under two main assumptions.

We started by supposing that all the edges of the observed graph are labeled independently,
that is all the entries of the observed adjacency matrix are independent, and drawn from some
distribution that satisfies Bernstein conditions. We provided finite sample risk upper-bounds for
both mean matrix and graphon least square estimators. Two main classes of graphon regularity
has been considered, the piecewise constant graphons, which generate a bipartite stochastic
block model, and the Hélder graphons. For the class of piecewise constant graphon, we proved
that the least square estimator is optimal in the sens that the lower bound on the minimax risk
is of the order of the upper-bound for many settings, when the entries of the adjacency matrix
are drawn from general Binomial distributions knowing the latent variables.

In a second step, we proposed to relax the independence assumption about edges labeling,
in order to model some situations with controlled number of edges for instance. In this
framework, the labeled are assumed to be in the segment [0,1]. We also provided upper-
bounds for the mean matrix and the graphon estimations, only for the class of piecewise
constant graphons. We did not neither investigate the case of Hdlder graphons nor the
optimality of our upper-bounds.

Matching lower and upper bounds for piecewise constant graphons Our research opens
up several avenues for further investigation and raises intriguing questions. One important
question relates to the optimality of the upper and lower bounds derived in our study for the
estimation of piecewise constant graphons. Although these bounds are optimal for various
parameter settings, there is a noticeable discrepancy between them, particularly due to the
appearance of logarithmic factors in the upper bound. This gap persists even in the symmetric
setting, and it is not specific to the bipartite framework we considered. This sub-optimality has
been observed in previous research, such as [KTV17], which focuses on the unipartite setting.

Additionally, in asymmetric settings, the lower bound fails to match the upper bound due to
the presence of the term \/% in the lower bound, which can be significantly smaller than the
term % + % in the upper bound. For instance, when considering a scenario with m = Cn with
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C a positive constant, potentially large, the upper bound is approximately v/C-times greater
than the lower bound.

Lower bound for general a-Holder continuous graphons The question of deriving lower
bounds for Hélder graphon estimation is indeed an important and interesting one. As discuss
in Theorem 8, the upper bound is known to be optimal (up to a logn factor) for Lipschitz
continuous graphons, that is when « = 1. In the case of Hélder continuous graphons, the
upper bound we derived in Theorem 8 is of the order n~%/2, but it is not known whether this
upper bound represents the optimal rate for estimation. To establish the optimality of the least
squares estimator for Holder graphons, it would be necessary to derive corresponding lower
bounds that match or closely approach this upper bound.

Holder graphon estimation in the relaxed independence setting In Chapter 3, we fo-
cused on deriving upper bounds for estimating piecewise constant graphons under a relaxed
independence assumption. However, extending these bounds to Hélder continuous graphons
poses additional challenges due to identifiability issues and the presence of normalization in
the distance definition.

The main issue arises from the fact that our model does not distinguish between a graphon
W and its normalized version I, W, where Iy (z) = fol W (z,y)dy. In the case of general
graphons, Iy can be very small, leading to a large approximation error that is reflected in the
upper bound. This makes it difficult to adapt the proofs from the full independence framework
to Hélder continuous graphons.

More general distributions for the adjacency matrix (relaxed independence setting)
In the relaxed independence setting, considering more general distributions of adjacency
matrices, including unbounded distributions, could indeed be a promising direction. One
possible approach is to explore (a, b)-Bernstein conditions, building upon the ideas discussed
in Chapter 2. These conditions could potentially address the sub-optimality issues related to
noise and sparsity parameters in the upper bound. However, for technical reasons, we did not
achieve to obtain satisfying upper bounds in this framework.

Explore other class of regularity Considering monotonicity assumptions for graphons can
be a valuable direction for future research. By imposing monotonicity constraints, such as
the assumption that the graphon is increasing in its first argument, we can certainly enhance
identifiability.

Assuming that the graphon is increasing in its first argument, that is = — W(x,y) is
increasing, implies that as the unobserved characteristic U; of the i-th node increases, the
probability for that node to form links also increases. This assumption aligns with realistic
scenarios where certain attributes or characteristics of nodes influence their connectivity
patterns. From a mathematical standpoint, we did not delve into the exploration of this
framework.

We can also study the cases of a-Hoélder regularity with o > 1.
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Chapter 5

Résume en francais

5.1 Définition du probleme

Considérations préliminaires Dans le domaine de I'économie, les ensembles de données
de réseaux sont fréquemment utilisés pour modéliser les marchés ou les interactions entre
différentes entités ou individus. En conséquence, il existe une vaste littérature sur le sujet
des réseaux économiques et des modeéles de formation de liens, comme en témoignent les
travaux de [Gra17, Gra20, DG14b, JW96, Dze19]. Les réseaux unipartites et bipartites peuvent
étre pertinents pour la modélisation économique. Par exemple, les échanges commerciaux
internationaux peuvent étre modélisés a I'aide d’un graphe unipartite ou les liens représentent
I'existence d’échanges commerciaux. En revanche, les graphes bipartites sont plus appropriés
pour modéliser les achats de produits par les consommateurs ou I'embauche de travailleurs
dans une entreprise.

Lors de la modélisation de la formation de réseaux, il y a généralement deux types de
variables a prendre en compte : les variables observables et les variables non observables.

+ Les variables observables sont des caractéristiques auxquelles nous pouvons accéder
ou que nous pouvons calculer a partir des données que nous observons. Par exemple,
dans le contexte du commerce international, nous pouvons avoir des informations sur la
taille, le PIB ou la localisation géographique de chaque pays.

* En revanche, les variables non observables sont des variables latentes que nous ne
pouvons pas observer ou calculer directement. Dans le cas du réseau de travailleurs et
d’entreprises, des exemples de variables non observables comprennent par exemple la
sympathie d’un travailleur, qui peut influencer le processus d’embauche, ou I'attractivité (la
bonne ambiance de travail) d’'une entreprise, qui peut influencer les choix des travailleurs.

[Gra17] propose un modele économétrique de formation de réseau pour un graphe unipartite
avec a la fois des variables observées et non observées. En revanche, [Gra20] présente un
modéle logistique pour un réseau bipartite avec uniquement des variables observées.

Maintenant se pose la question des hypothéses concernant la formation des liens. Lhypothése
la plus courante est que tous les liens sont formés de maniére indépendante, ce qui est plus ou
moins réaliste ou parfois méme non pertinent en fonction de la situation de modélisation, mais
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cela simplifie les problemes mathématiques a traiter. Une hypothése plus réaliste et plus faible
est décrite dans [DDG21a], qui parle d’échangeabilité. Grossierement parlant, cela signifie que
nous pouvons permuter les étiquettes des sommets sans changer la distribution des arétes, ou
de maniere équivalente, nous pouvons appliquer n'importe quelle permutation des indices de
lignes et de colonnes a la matrice d’adjacence de notre graphe sans changer sa loi.

Selon [Ald81, Théoreme 1.4], un graphe biparti avec une matrice d’adjacence échangeable
en lignes et en colonnes A peut étre représenté par une fonction g* : [0,1]* — R et des
variables aléatoires indépendantes et uniformément distribuées «, U;, Vj, &;; dans [0,1], de la
maniére suivante :

AE (g(0. U, V. )zi € [n].j € [m])

Ici, les variables aléatoires U;, V; et &; ; correspondent aux variables non observables men-
tionnées précédemment. Si des vecteurs de caractéristiques observables supplémentaires
X ; sont disponibles pour chaque paire de noeuds (i, j), alors un modéle étendu peut étre
envisagé, défini par ¢* (X, ;,a, U;, Vj}, & ;). Notre objectif est d’estimer la fonction ¢g* a partir
du graphe qu’elle génére, mais cette tache peut étre complexe. Pour simplifier le probléme,
nous proposons de ne considérer que les variables non observables en supprimant toutes
les variables observables. Dans une premiére étape, nous supposons que les arétes sont
formées de maniére indépendante conditionnellement aux variables non observables. Nous
définissons formellement le probléme ci-dessous. Dans une deuxiéme étape, nous souhaitons
assouplir 'hypothése d’indépendance. En effet, si nous considérons le probléme du réseau
travailleur-entreprise, un travailleur doit choisir une et une seule entreprise pour travailler, ce
qui signifie que les liens ne sont plus indépendants.

Définition mathématique du probléme principal Soient n et m deux entiers positifs sup-
posés grands, et H une matrice aléatoire de dimensions n x m avec des entrées réelles
H; ;. La matrice H peut étre vue comme la matrice d’adjacence d’un graphe biparti avec des
étiquettes d’arétes. Nous supposons que la distribution de cette matrice H satisfait la condition
suivante.

Hypothése 1 (Indépendance totale). Il existe une fonction W* : [0,1]?> — R, appelée le graphon,
et deux vecteurs aléatoires U = (Uy,...,U,) et V = (V4,..., V) tels que

H 1.1 Lesvariables Uy,...,U,,V1,...,V,, sont indépendantes et suivent une distribution uni-
forme U([0, 1]).

H 1.2 Conditionnellement a (U, V), les entrées H;; sont indépendantes et E[H; ;|U,V] =
W*(Us;, Vj).

Cette hypothése 1 doit étre comprise comme suit. Chaque sommet du cété gauche du
graphe biparti est associé a une variable non observée U;, et de méme pour le c6té droit avec
les variables V;. De plus, si nous connaissions les variables U; et V;, nous supposons que
les entrées de la matrice d’adjacence H sont indépendantes et suivent la loi de Bernoulli de
paramétre W*(U;, V;), ce qui signifie qu’une aréte entre i et j est présente avec une probabilité
W*(U;, V;). Des distributions plus générales seront considérées ultérieurement, permettant
des étiquettes d’arétes.
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Nous avons pour objectif d’étudier le risque minimax de I'estimation du graphon W* a
partir de I'observation de H, et de démontrer comment il dépend de parametres cruciaux du
probléeme. Bien que les dimensions de la matrice n et m figurent parmi ces parameétres, nous
explorons également I'impact de la régularité de W*, du degré de "parcimonie" ou "sparsité"
des interactions (représenté par p) et du niveau de bruit (représenté par o). Pour étre plus
précis, o et p sont des nombres réels positifs tels que

[W¥lw = sup [W*(u,v)| <p
u,v€[0,1]

et  Var[H,;|U;,V;] <c’as., Vi€ [n],Vjeml.

Pour fixer les idées, supposons que W* est en escalier (constant sur certains rectangles du
carré unité [0, 1)%) et définissons ©* < [0, 1]™*™ la matrice aléatoire

o;; =W*(U;,Vj).

Remarquez que ©* est constant par blocs, a quelques permutations pres des lignes et
des colonnes. Supposons de plus que conditionnellement & (U, V), les entrées H; ; sont
indépendamment tirées de la loi de Bernoulli de parametre ©; ;. Ce scénario correspond
stochastic block model présenté dans l'introduction, ou la matrice de probabilité associée @*
est inconnue. Ainsi, le probléme d’estimation de W* est équivalent au probleme de détection
de communauté, ou nous cherchons a estimer les clusters et la matrice de probabilité. En
plus de la distribution de Bernoulli, nous visons a fournir une borne supérieure du risque
pour notre méthode d’estimation pour des distributions plus générales. Dans cette thése,
nous examinerons également un cadre non paramétrique : la classe des graphons réguliers
a-Hoélder comme une autre forme de régularité des graphons. Pour ce faire, nous visons a
approximer les graphons Hélder par des graphons en escalier (voir figure 21).

Graphon Observed matrix H Rearranged matrix H Oracle Estimator

80 120 160 200 240
1m

80 120 160 200 240

40
40

00 02 04 06 08 1.0 20 40 &0 80 100 120 20 40 60 B8O 100 120 00 02 04 08 0.8 1.0
Figure 21: Une illustration du probleme de graphon. La figure la plus a gauche représente le
graphon inconnu W*. La deuxiéme figure la plus a gauche est la matrice d’adjacence observée
dans le graphe ou les liens sont formés selon le modéle de Bernoulli. La troisiéme figure est la
matrice d’adjacence qui serait obtenue aprés un réarrangement des lignes et des colonnes
si nous avions acces aux variables latentes. La figure la plus a droite représente I'estimateur
par histogramme obtenu a partir de la matrice d’adjacence réarrangée. Notre objectif est de
concevoir un estimateur qui soit presque aussi performant que I'oracle, sans avoir acces aux
variables latentes.
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Relachement de I’hypothese d’indépendance Le cadre précédent, qui suppose I'indépendance
entre les arétes, peut ne pas convenir pour modéliser certaines situations courantes rencon-
trées dans la pratique. Un exemple de ce type est le réseau travailleur-entreprise, ou le premier
ensemble de sommets représente les travailleurs et le deuxieme ensemble représente les
entreprises. Un travailleur est connecté a une entreprise s'il est embauché par cette derniére.
Dans ce scénario, il est raisonnable de supposer que chaque travailleur est embauché par
au plus une entreprise, ce qui entraine un degré maximal de 1 pour chaque sommet dans
le premier ensemble. Lidée est alors de relacher I’hypothése d’'indépendance concernant la
formation des liens. Nous ne considérons également que des variables latentes non observées
dans ce modeéle, et supposons que la matrice d’adjacence H vit maintenant dans [0, 1]"*™ et
satisfait 'énoncé suivant.

Hypothése 2 (Indépendance relachée). Nous considérons une fonction W* : [0, 1]> — [0, +o0]

appelée le graphon, et deux vecteurs aléatoires U = (Uy,...,U,) etV = (V4,...,V,,) qui
satisfont
H21 Uy,...,U,,V1,...,V,, sontindépendants et suivent une distribution uniforme sur [0, 1].

H 2.2 Conditionnellement a (U, V'), les lignes de la matrice H sont indépendantes.

H 2.3 Chaque ligne de H somme a un et

W*(U;, V)
E[H; ; = 1
[ :]|U7V] 227’121 W*(UZ’W)

Lhypothése H 2.1 est la méme que dans la hypothése 1, ou nous considérons que les vari-
ables non observées attribuées a chague sommet sont indépendantes. Cependant, I'hypothése
H 2.2 relache I'hypothése d’indépendance concernant les liens formés par les individus du
cbté droit. Au lieu de cela, elle exige uniquement que les lignes de H soient conditionnellement
indépendantes étant donne (U, V). En d’autres termes, alors que les arétes formées par des
individus distincts du c6té droit sont indépendantes, les liens formés par un seul individu ne
sont pas nécessairement indépendants.

Notre objectif est double. Tout d’abord, nous visons a estimer la matrice moyenne de H
et a fournir une borne de risque pour notre méthode d’estimation. Dans cette partie, nous ne
considérons pas la partie H 2.3 de I'hypothése hypothése 2 qui pourrait étre restrictive, mais
nous la remplagons plutét par I'hypothése suivante :

Y Hij<py Vi=1,...m (A 2.3 (bis))

J=1

c’est-a-dire, la somme de chaque ligne de H est inférieure a un parametre positif p,,. Nous
considérerons souvent p,, = 1. Notre objectif est d’analyser comment le risque de notre
estimateur se comporte par rapport aux paramétres du modeéle, en particulier n et m, la taille
de notre ensemble de données, ainsi que les parametres p,,, qui représentent la contrainte de
somme des lignes, et p,., le niveau de bruit, qui satisfait maintenant’

1Zillop < ps;, Vi=1,....n (5.1)

|32||op fait référence & la norme d’opérateur d’une matrice carrée.
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ou X; = E[H,H]| - E[H;|E[H,]" estla matrice de covariance de la i-€me ligne de H.

Il sera courant de supposer que la matrice ®* = E[H] a des lignes dont la somme est
bornée par po > 0. Ce paramétre peut également apparaitre dans les bornes supérieures du
risque. La deuxieme partie de notre travail tourne autour de I'estimation du graphon W* sous
I'hypothése hypothése 2 et la condition (5.1). De plus, nous nous concentrons exclusivement
sur la classe des graphons en escalier pour cette tache d’estimation.

5.2 Contributions

Nous présentons un résumé des principales contributions de cette thése en quatre sous-
sections.

+ La premiére sous-section se concentre sur le probléme d’estimation de la moyenne, qui
est crucial dans les deux contextes d’'indépendance décrits dans les hypotheses 1 and 2.
Cette étape est significative et intéressante en soi.

» La deuxieme sous-section aborde le probléme d’estimation du graphon, en s’appuyant
sur la procédure d’estimation dérivée de la premiére étape.

» Dans la troisieme sous-section, nous établissons des bornes inférieures sur le risque
dans le pire des cas pour tout estimateur de graphon dans I'ensemble des graphons en
escalier, sous I'hypothése de liens complétement indépendants. Ces bornes inférieures
s’appliquent lorsque les matrices ont des entrées avec une loi conditionnelle binomiale
étant donné les variables latentes. Remarquablement, dans la plupart des cas, ces
bornes inférieures sont du méme ordre que les bornes supérieures obtenues pour
I'estimateur des moindres carreés.

» Enfin, dans la quatrieme sous-section, nous présentons une adaptation de I'algorithme
de minimisation alternative de Lloyd, incorporant une étape de relaxation convexe, a
notre contexte spécifique. Cette adaptation nous permet d’obtenir une approximation
calculable de I'estimateur des moindres carrés, et certaines simulations basées sur des
données synthétiques, uniquement pour le contexte d’'indépendance compléte.

Pour simplifier les énoncés de théorémes, nous adopterons souvent le cadre symétrique, ou
les deux cbtés des graphes bipartites ont un nombre égal de sommets, de communautés, etc.

5.2.1 Estimation de la matrice moyenne

Hypothese d’indépendance compléte Sur la voie de I'estimation du graphon W*, une étape
intermédiaire importante consistera a estimer la matrice ®* = W*(U;, V;). Lestimation de
cette matrice est intéressante en elle-méme. Nous accomplissons cette tache en résolvant le
probléme des moindres carrés sur I'ensemble des matrices constantes par blocs, avec des
blocs générés par des partitions des ensembles de lignes et des colonnes de la matrice H. I
sera également démontré que la méthode d’agrégation par des poids exponentiels peut étre
utilisée pour assurer I'adaptabilité au nombre de blocs. Sous la condition que le graphon soit
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en escalier ou a-régulier au sens de la régularité de Holder, nous établissons des bornes de
risque pour I'estimateur de graphon dérivé de I'estimateur de ®*. Ces bornes de risque sont
non asymptotiques et se révelent étre optimales au sens minimax pour une large gamme de
régimes.

Les estimateurs des moindres carrés de ®* sont définis comme la meilleure approximation
de H par une matrice constante par blocs. Pour étre plus précis,

O, [K,L] € arg min H - O|F>. (5.2)

no,mo
O T g

Ilci, Tng, mo™ " représente un ensemble de matrices constantes par blocs avec K x L blocs.
Les parameétres ng > 1 et mg > 1 font référence au nombre minimal d’entrées dans chaque
bloc. Nous dérivons des bornes de risque pour les estimateurs de ®*. Dans le cadre de
notre analyse, nous considérons ®* comme une matrice déterministe, ce qui nous permet
de supposer I'indépendance de H; ; plutdt que I'indépendance conditionnelle étant donné U
et V. De plus, dans un but de simplicité, dans I'’énoncé du prochain théoréme, nous faisons
'hypothése de symétrie, oun = m, K = L et ng = my.

Théoréme 1. Soientn,ngy et K des entiers positifs tels que K > 2 et3 < ng < n. Soit H une
matrice aléatoire de taille n x n avec des entrées indépendantes satisfaisant E[H;;] € [0, p]
pour chaque i, j € [n] et pour un certain p > 0. De plus, supposons que les variables aléatoires
(H,;; — E[H;;]) satisfont la condition (o2, b)-Bernstein 2. Alors, I'estimateur des moindres carrés
®'S de la matrice moyenne ©* = E[H], défini par (5.2), satisfait I'inégalité oracle exacte

210gK>1/2

1o~ 1 3K?
EE[H@LS—@*H%]Wg inf —||®—@*||F—|—(2502—1—4bp)1/2(?+ "

OcTEn
& condition que ¥, (no) := ;>,log(en/ng) < (0/b)>.

Dans la table 5.1, nous fournissons quatre exemples principaux illustrant les conséquences
du théoreme 1 dans le cas non symetrique pour des distributions courantes de H; ;.

Il convient de noter que dans le cas symétrique, nous retrouvons la borne supérieure
obtenue pour les graphes unipartites telle que décrite dans [KTV17]. Cela indique que les
résultats obtenus dans le contexte actuel étendent et sont en accord avec les conclusions dans
le cadre des graphes unipartites.

Lestimateur des moindres carrés ©LS présente un motif constant par blocs avec K L blocs.
Le choix de KL comme nombre de blocs est un hyperparameétre de la méthode. Cependant, si
la vraie matrice ®* s’éloigne considérablement d’'une forme constante par blocs avec K L blocs,
la qualité de I'estimation de @}limo [K, L] peut se détériorer en raison d’un biais important.
Pour atténuer ce biais, une approche consiste a calculer I'estimateur des moindres carrés pour
plusieurs valeurs de K, L, ng et mg, puis a agréger ces estimateurs. En procédant ainsi, le biais
peut étre réduit et les performances globales de I'estimation peuvent étre améliorées. Nous
fournissons également une borne de risque a échantillon fini pour ce type d’estimateur agrégé.

Enfin, les résultats mathématiques peuvent étre aisément adaptés au cas des observations

2Une variable aléatoire centrée ¢ satisfait la condition de Bernstein de paramétres (a,b) si E[e*] <
2
exp { grrghy f tant que [A| < 1/b.
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Modeéle | Définition | (6% | Bornes supérieures

. y KL logK logL\Y2
Bernoulli Hij ~ B(O™) 0113 | W (G + T+ )
j KL logK logLyY
Binomial NHi,j ~ B(N,0") | (p/N,1/3N) 9\/ﬁ,< o ?\%m n ‘]’Vgn)
. . KL logK logL\Y?
Poisson THi j~P(TO); | (p/T.1/37) 9\/57(Tnm+ Tm Tn)

Sous-Gaussien | E[e*ii] < 7™V (62,0)

KL logK logL\Y?
50’( +0g +0g>

m n

Table 5.1: Voici un résumé du deuxiéme terme obtenu pour les bornes supérieures dans
la version non symétrique du théoréme 1 pour des exemples spécifiques de distributions
(0%,b)-Bernstein. Dans tous les cas, nous supposons que ©;; < p, sauf pour le modéle
sous-gaussien.

manquantes, ou certaines valeurs de la matrice H; ; ne sont pas observées.

Hypothése de I'indépendance relachée Dans le cas de I'hypothése de I'indépendance
relachée, nous sommes en mesure de déduire une borne supérieure comparable. Cependant,
il est important de noter que les distributions appliquées dans Théoréme 2 ne sont pas aussi
générales que celles supposées pour une indépendance totale dans le cadre précédent. Bien
que la portée puisse étre plus étroite, ces distributions fournissent néanmoins des informations
et des résultats précieux pour notre analyse. Encore une fois, nous énoncons le théoreme
suivant uniguement dans le cadre symétrique.

Théoréme 2. Soient n, ny et K des entiers positifs tels que K > 2 et1 < ng < n. Soit
H € [0, 1]™*™ une matrice aléatoire de taille n x n avec des lignes indépendantes telles que
la somme de chaque ligne soit égale a un et ayant une matrice de covariance X; satisfaisant
| Zillop < ps;- Nous supposons également que ||®*||« < poo-

Lestimateur des moindres carrés ®S défini par (5.2) satisfait 'inégalité oracle exacte
suivante :

3K? 2log K\Y2
=+ )
mn n

1 o * L . 1 * 1/
JEI8" — 0] < nf 10— ©°[F + (485 + 6s)

a condition que v, (ng) = 28lne/no)

no

Ce résultat englobe le cas précédemment décrit ou le vecteur H; a une seule entrée égale
a 1, et les autres sont nulles, ce qui modélise une mise en correspondance ou les individus
du cbté gauche doivent choisir un et un seul élément du cété droit, comme dans le réseau
travailleur-entreprise.

5.2.2 Estimation du graphon

Hypothése d’indépendance totale Lillustration dans la figure 21 met en évidence I'impact
de la connaissance manquante des variables latentes sur le probléme d’estimation du graphon.
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Elle montre que la matrice d’adjacence réarrangée, obtenue si les variables latentes étaient
connues, fournit des informations significativement plus précises sur le véritable graphon
W* par rapport a la matrice d’adjacence originale. Lorsque les variables latentes U et V'
sont inconnues, le graphon W* devient non identifiable. Nous définissons I'équivalence entre
deux graphons W et W’ s'il existe deux bijections 71 : [0,1] — [0,1] et 7» : [0,1] — [0, 1] qui
préservent la mesure de Lebesgue, telles que W = W’ o (r; ® 72) 3. On peut observer que deux
matrices H générées par des graphons équivalents W* et W* ont la méme distribution. Par
conséquent, la meilleure chose que nous puissions faire est d’estimer la classe d’équivalence
contenant W*. Cela motive I'utilisation de la (pseudo) distance employée dans ce travail pour
évaluer la qualité d’'un estimateur W de W*, comme suit :

—~ - 1/2
S(W,W*) = inf (/[0 . |W(n(u),72(v))—W*(u,v)|2dudv>

T1,T2EM

= inf W - W
Tl,ngleMH o (11 ® ) i
ol M est I'ensemble de toutes les automorphismes 7 : [0,1] — [0, 1] tels que 7 et 7! sont
mesurables, et T préserve la mesure de Lebesgue au sens ot A\(7~1(B)) = A(B) pour chaque
boréliens B C [0, 1].

Apres avoir estimé la matrice ®* et choisi une mesure de distance pour I'évaluation de
la qualité du graphon, I'étape suivante consiste a concevoir un estimateur pour le graphon
W*. Pour ce faire, nous associons un graphon Wg a toute matrice ® de taille n x m, ou
We : [0,1]2 — [0, 1] est défini comme une fonction constante sur chaque rectangle I; x .J; =

(=L 4y [%,%) pour (i, ) € [n] x [m]
We(u,v) = ©;;, pourtout (u,v)e€ ; x Jj.

Dans le théoreme qui suit, nous analyserons I'estimateur WLs = WaLs- Comme mentionné
précédemment, nous classerons W* en deux catégories en fonction de sa régularité : la
classe des graphons constant par morceaux et la classe H,, » . Lénoncé présenté ici traite
spécifiguement du cas symétrique simplifié. Cependant, il est important de noter que nous
avons également obtenu des résultats pour le cas asymétrique, qui sont discutés en détalil
dans le Chapter 2. Un résumé de ces résultats peut étre trouvé dans table 5.2.

Théoreme 3. Soit H une matrice aléatoire de taille n x n satisfaisant I'Hypothése 1 avec
un certain graphon W* : [0,1]> — [0,p]. Supposons que pour une constante ¢ > 0, con-
ditionnellement a U, V', les variables aléatoires (H;; — E[H;;|U, V) satisfont la condition
(02, b)-Bernstein.

1. Supposons que le graphon W* est K -piecewise constant, c’est-a-dire que pour un
certain entier K > 2 etpour0 =ag < ... < ax = 1 tel que

8log(nK)

AE) = min] lax, — ap—1| =
n

ke[K

®Nous utilisons la notation 7 ® 7> pour la fonction de [0, 1]* & [0, 1]? définie par (11 ® 72)(u,v .
*Hl,, . est 'ensemble des fonctions W : [0, 1]*> — R satisfaisant |W (z,y) —W (z’,3)| < z:((x—x’)2+(y—y’)2)“/2
pour tout z,y,z’,y’ € [0, 1].

N
I
—
2
~
S
&
3
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<
=
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la fonction W* est constante sur chaque rectangle [aj_1, a[*. Alors, I'estimateur WL =
Wg.s avec e = @'—5[ K| défini par (5.2) satisfait

— 3K2  2log K\ /2 2K\
E[é(WLS,W*)Q]l/Qg(27o2+4bp)1/2<?+ Of ) +p(n> : (5.3)

a condition que v, (A¥)) = %ﬁm) < (o/b)2.

2. Supposons que le graphon W* est a-Hblder continu, c’est-a-dire que W* € H,, » pour
un certain o € (0, 1] et £L > 0. Supposons que

nla+l (4b/0') (a+1) \/3
nlog*(2n) = (2502 + 4bp)

(5.4)

Soit p = a/(2a:+ 2). Alors, il existe un choix de K, ng tels que l'estimateur des moindres
carrés W' = W, avec ©'° = OL3[K] satisfait

(5.5)

2502 + 4bp)’8 N <(5002 + 8bp) log n) 12 AL

117LS *\211/2 1-28
E[§(WS, W22 < 6L ( o —7

n

Nous pouvons également présenter des exemples spécifiques pour les différentes distri-
butions discutées dans la table 5.1, en particulier dans le contexte des graphons Lipschitz.
Il convient de noter que pour les graphons constant par morceaux, les résultats obtenus
seront les mémes que ceux présentés dans la table 1.1, avec l'ajout d’'un terme d’erreur

1/2
d’approximation supplémentaire p(\/% + \/%) comme indiqué dans (1.3). Encore une fois,
nous fournissons également une méthode adaptative pour les valeurs inconnues de K et L
dans le cas des graphons constants par morceaux.

loi de H;; | Valeurs (¢2,b) |  Condition (5.4) | Borne de risque (5.5)
Bernoulli(p) 0 1/3) | P 52”1224(2@ 1(15'224 4 3 ,\)/1%7; \F
Binomial(N, p)/N | (p/N,1/3N) | pp > LN ”;i’f (2n) &ﬁii 4 B \Z%m t o=
Poisson(T'p)/T (p/T.1/3T) | p° = EQTn,,:E < izlﬂ:jfgi;j + 8\/5? + T
sous-Gauss(o?) (c2,0) o? > 3/:2712;53(2”) (17117\n/)£17/04 + 80\/\}? + jﬁm

Table 5.2: Borne supérieure pour les graphons Lipschitz et diverses distributions, dans un
cadre non symétrique, avec I'hypothése supplémentaire que n > m.

Hypothése de relaxation de I'indépendance A présent, supposons que la matrice H soit
générée en fonction d’un graphon renormalisé W*, dont les lignes H; sont indépendantes et
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dont la somme vaut 1, comme le prévoit le modéle décrit dans hypothése 2, ou

WU, Vj)
2 WH(Us, Vi)

EH|U,V]=0" avec 6=

Dans le contexte de I'indépendance totale, nous savons déja que le graphon W* est non
identifiable. De plus, dans ce contexte, nous pouvons multiplier W* par une constante sans
changer la loi de H. Pour remédier a cela, nous définissons une nouvelle classe d’équivalence,
ou deux graphons W et W’ sont considérés équivalents si et seulement s'ils satisfont la relation

W = CxW/(Tl & 7’2)

ou C, est une constante qui pourrait dépendre de la premiére variable x et r; et =, sont des
bijections de [0, 1] qui préservent la mesure de Lebesgue. Il est évident que deux tels graphons
produiront la méme matrice H. Pour la suite, nous supposons que W* € &, ou

1
¢ = {W, Iy (x) = 1Ym,Va € [0,1]} with Iy (z) = /0 W(x,y),dy.

Tout comme précédemment, la distance choisie au sein de la classe ¢ pour mesurer la qualité
des estimateurs est définie comme suit :
3
2 , du, dv)

Estimer un graphon devient une tache difficile en raison du processus complexe de normalisa-
tion au sein de la classe . Dans le théoréme suivant, nous présentons une borne supérieure
pour I'estimation des graphons morcelés, dans le cadre symétrique.

T1,T2€EM

SOV, W) = inf (//[01]2{W’(n(u),Tg(v))—W(u,v)

= infM (W' o (r1 &@T19) — Wpe.

T1,72€

Théoreme 4. SoitH € [0,1]"*™ une matrice aléatoire de taille n x n qui satisfait I'hypothése 2
pour un graphon W* : [0,1]2 — [0, p]. Supposons que chaque ligne de H somme & un, que
sa matric de covariance X; satisfait | X||o, < ps, < 1 et que sa moyenne conditionnelle ®*
satisfait ||®*|| - < p. Supposons également que le graphon W* est K -constant par morceaux,
ce qui signifie que pour des entiers K > 2 etpour0 =ag < ... < ax = 1 tels que

8log(nK)

A .= min lag, — ak—1| >
ke[K]

la fonction W* est constante sur chaque rectangle [ay_1, ai[?. Alors, I'estiamteur WS — Wats
avec ©'S = ©3[K| définit par (5.2) satisfait

— 3K?2  2log K\ Y2 2K\
B[S, W22 < (500, + 6;))1/2(7 + %) + 3p<7>

4log(2e/AK) _ Lo K
= % < py Btw < ieo.045n ouw = 2521 wik andwy = ap—ap_1.

pourvu que 1, (AK))

Le résultat obtenu dans ce théoréme est similaire a celui présenté dans le théoréeme 3,
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avec I'exigence supplémentaire que w ne soit pas excessivement grand, garantissant ainsi
que la taille des intervalles [ax, ar+1] Soit suffisamment grande. Par exemple, si n = 315, la
condition sur w est satisfaite tant que la différence minimale entre les valeurs consécutives
de a;, est supérieure ou égale & 10~3. Cette condition apparait en raison de la normalisation
susmentionnée dans la classe %.

5.2.3 Bonre inférieure sur le risque minimax

Dans cette section, nous établissons I'optimalité de I'estimateur des moindres carrés WS,
sous I'hypothése 1 de pleine indépendance, en démontrant sa vitesse de convergence dans le
pire des cas sur la classe W, [K, L]. Cette classe comprend les graphons W qui sont constants
sur les intervalles I, et Jy, ou I}, = [ag, ar+1) €t Jp = [bg, by + 1) forment une partition de [0, 1).

Nous nous concentrons sur la démonstration de la borne inférieure pour le modele binomial,
mais les techniques utilisées dans la preuve peuvent étre étendues aux autres modéles
mentionnés dans I'introduction. Cela établit 'optimalité de I'estimateur des moindres carrés
dans cette classe.

Théoréme 5. Supposons que conditionnellement & (U,V'), les entrées H; ; de la matrice
observée H de taille n x m sont indépendantes et suivent une distribution binomiale de
parametre (N, W*(U;, V;)). Il existe des constantes universelles c et C' > 0 telles que, pour tout
K et L supérieurs & C et satisfaisant KL > Llog? L + K log? K, ainsi que pour toute valeur de
p>0,0nait:

. = KL 1 & [k [L\"

w W=

ou l'infimum est pris sur tous les estimateurs possibles W etle supremum est pris sur tous les
W*e W, K, L.

Dans le contexte symétrique oun = m et K = L, cette borne inférieure doit étre comparée
a (5.3) et semble étre optimale en termes de taux, a un facteurlog K pres. Les figures 22 et 23
montrent les zones violettes ou la borne inférieure est de I'ordre de la borne supérieure pour
divers parametres du modeéle, ce qui signifie que notre estimateur est optimal dans le sens du
minimax.

Pour étre plus précis, dans la Figure 6, nous fixons le paramétre de densité p et choisissons
les parametres de cluster K et L de maniere a ce que K/n = L/m = ~. La zone violette dans
la figure représente les paires (n, m) ou la borne inférieure obtenue a partir de Theorem 5
dépasse la moitié de la borne supérieure donnée dans (2.13). D’autre part, la Figure 7 illustre le
méme critére, mais avec n et m fixes, tout en faisant varier p et ~. Il est a noter que l'estimateur
des moindres carrés atteint 'optimalité dans de nombreux cas, méme dans des cadres trés
asymétriques ou, par exemple, m est nettement plus grand que n.
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Figure 22: lllustration de I'optimalité de I'estimateur des moindres carrés pour N = 1. La zone
violette correspond aux valeurs de n et m, pour certaines valeurs fixesde pety = K/n = L/m,
pour lesquelles la borne inférieure est de I'ordre de la borne supérieure. Plus précisément,
lorsque py? A p? + p(nm)~Y/2 A p? + 2p%, /7 est supérieur & la moitié de py? + (plog K)/(3m) +
(plog L)/(3n) + 2p%,/7. Nous observons que sauf si p est trés petit, la borne supérieure
établie pour I'estimateur des moindres carrés est de I'ordre de la borne inférieure pour tous les
estimateurs, pour la plupart des valeurs de n et m.

5.2.4 Algorithme et expériences numériques

Lestimateur des moindres carrés introduit dans I'équation (5.2) et discuté dans les sections
précédentes est computationnellement incalculable, c’est a dire qu’il n’est pas possible de
calculer cet estimateur en temps polynomial. Dans cette section, notre objectif est de présenter
un algorithme qui fournit une approximation computationnellement réalisable de ©'S. Bien qu’il
n’y ait aucune garantie que I'algorithme produise toujours un estimateur proche de ®'S, on
peut s’attendre a ce que ce soit le cas dans de nombreux scénarios.

Lalgorithme Lapproximation proposée peut étre considérée comme une variante de I'algorithme
de Lloyd pour le clustering k-means [LIo82]. Pour le décrire, rappelons que I'estimateur des
moindres carrés est défini comme une solution qui minimise la distance induite par la norme de
Frobenius entre H et une matrice constante par blocs. Ceci peut étre reformulé comme suit :

= . 2
(Q,Z1,Z)"° € arg min HH - ZlQ(Zg)THF. (5.6)
QG]RKXL
ZlEZ(’V%K,TL())
Z2€Z(m’L7m0)

ou Z1,Z, représentent la structure par blocs de la matrice® , c’est-a-dire les clusters gauche
et droite, et Q donne les valeurs dans les différents blocs. |l est intéressant de noter que

°Z(n,K,no) ={Z € 0,1"*X : Z1g = 1,, et mingex) 1, Za >0} avec 1g = (1,...,1)" € R%
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Figure 23: lllustration de I'optimalité de I'estimateur des moindres carrés. La zone violette
correspond aux valeurs de p et v = K/n = L/m, pour certaines valeurs fixes de n et m, pour

lesquelles la borne inférieure est de I'ordre de la borne supérieure. Nous observons que sauf
si p est tres petit, la borne supérieure et la borne inférieure sont du méme ordre de grandeur.

lorsque deux des trois arguments Q, Z; ou Z, de la fonction objective sont fixés, le probleme
de minimisation par rapport a I'argument restant devient possible sur le plan computationnel.
Par conséquent, nous pouvons utiliser I'algorithme de minimisation alternée décrit ci-dessous,
qui garantit une diminution de la fonction de colt £(Z1, Q, Zs) = |H — Z;Q(Z2) "||2 & chaque
itération.

Algorithm 5 Algorithme de minimisation alternée de Lloyd pour I'approximation du LSE (5.6)

Require: Z,, Z, les matrices de clusters a droite et a gauche avec les entrées dans {0,1}, H
la matrice des données
Ensure: (Z;,Q,Z>) minimum local de L(-, -, -).
Répéter :
1. Calculer Q = (Z7°™) THZ5°™ ou Z7°™ est la matrice Z; avec des colones renor-
malisée par rapport & la norm ¢! (le nombre de 1 sur la colonne), et de méme pour
Zgorm.

2. Mettre a jour Z; qui minimise Z — L(Z,Q, Zs)
3. Mettre a jourZ, qui minimise Z — £(Z1,Q,Z)

La procédure d’initialisation Comme le montre la figure 24, les matrices initiales choisies
pour I'algorithm 5 peuvent influencer de maniere significative le résultat final. Une approche
pour atténuer ce probléme est d’exécuter plusieurs instances de I'algorithme en paralléle,
chacune avec différentes matrices d’initialisation choisies de maniére aléatoire. Parmi les N
estimateurs résultants, I'estimateur final est sélectionné comme celui qui minimise la fonction
objective L.

Une autre stratégie, souvent utilisée en conjonction avec I'algorithme de Lloyd, est I'initialisation
spectrale. Dans le cas ou le graphon est constant par morceaux, le probleme peut étre vu
comme un SBM pour les réseaux bipartites. Une maniére d’obtenir des valeurs initiales (Z;, Z)
est a travers la méthode spectrale proposée dans [ZA19a]. Cette méthode consiste a calculer
la décomposition en valeurs singuliéres tronquées a I'ordre K d’une version régularisée de
la matrice H. Les vecteurs singuliers gauches tronqués a I'ordre K sont ensuite utilisés en
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entrée pour le clustering par la méthode des k-mens, ce qui donne une initialisation pour
Z,. Une procédure similaire est appliquée pour obtenir l'initialisation de Z,. Cette approche
d’initialisation spectrale peut fournir un bon point de départ pour I'algorithme de Lloyd et
améliorer la qualité de I'estimateur final.

Pour évaluer I'impact de la procédure d'initialisation sur I'estimateur fourni par I'algorithm 5,
nous avons effectué plusieurs exécutions en utilisant différentes matrices de clusters. Plus
précisément, nous avons utilisé des matrices obtenues par regroupement spectral comme
mentionné précédemment, des matrices générées aléatoirement une fois, et des clusters
oracles calculés a partir des variables aléatoires non observées. Nous avons ensuite représenté
les estimateurs résultants aprés avoir réorganisé les lignes et les colonnes en fonction de
permutations qui ordonnaient des séquences des variables inconnues U; et V;. Les résultats,
illustrés dans la Figure 24, démontrent clairement que linitialisation par regroupement donne
de meilleurs résultats par rapport a une initialisation aléatoire unique.

Expériences numériques Dans ce paragraphe, nous présentons brievement quelques
expériences numériques pour examiner le comportement de I'erreur d’estimation du graphon
WS et sa relation avec divers parameétres du modeéle. Nous renvoyons le lecteur a la section
section 2.6 pour plus de précisions sur ces expériences numériques. Nous commengons par
étudier le cas des graphons constant par morceaux et analysons I'erreur d’estimation de la
matrice ®*. Nous examinons comment cette erreur varie en fonction du parametre n pour
différentes valeurs de (p, K, L), en supposant que m = n/2. Les résultats sont représentés
dans la figure 25, ou les valeurs du graphon W* sont générées de maniére aléatoire, et I'erreur
est tracée en échelle logarithmique pour différents types d'initialisation déja mentionnés dans
le paragraphe précédent.

A partir des résultats expérimentaux, on peut observer que I'erreur de la version "spectrale”
diminue a mesure que la valeur de n augmente. De plus, elle converge vers 'erreur oracle
a un rythme plus rapide lorsque le paramétre de parcimonie p est plus élevé et lorsque les
ratios n/K et m/L sont plus élevés. Cela est conforme a notre intuition, car un p plus élevé
implique plus de liens dans le réseau, ce qui conduit a une estimation plus précise. De méme,
des valeurs plus élevées de n/K et m/L contribuent également a une meilleure précision de
I'estimation. En revanche, la version "aléatoire" de I'algorithme présente un comportement plus
erratique. Dans la plupart des cas, son erreur dépasse celle de la version "spectrale” lorsque
n/K et m/L atteignent un certain seuil.

De plus, dans la figure 26, nous présentons les résultats d’estimation pour un graphon
Lipschitz-continu, ou les paramétres K et L sont choisis en fonction de n et m respectivement,
en suivant les recommandations fournies par nos résultats théoriques. De maniére intéressante,
et quelque peu surprenante, l'initialisation aléatoire se comporte aussi bien que linitialisation
spectrale. Nous n’avons pas d’explication pour cette observation a ce stade.
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Figure 24: lllustration de la sensibilité de I'algorithm 5 a la procédure d'initialisation. Nous
avons exécuté I'algorithm 5 pour différentes procédures d'initialisation et avons représenté les
estimateurs résultants aprées réarrangement. Linitialisation oracle signifie que nous utilisons
les vraies matrices de clusters (inconnues) comme initialisation. Les parametres choisis ici
sont (p, K, L,n,m) = (1,8,8,1000, 500).
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Error

Figure 26: Evolution de I'erreur d’estimation en fonction de n, avec m = n/2 pour un graphon
Lipschitz, pour différentes valeurs de p. Les courbes représentent I'erreur pour diverses
initialisations de I'algorithme de Lloyd (algorithm 5). Le vrai graphon est représenté dans
la figure 26d et la figure 26e est une représentation du graphon estimé réarrangé avec une
initialisation spectrale. En pratique, nous ne pouvons pas réarranger le graphon estimé car
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cela nécessite la connaissance des variables latentes.

134




Bibliography

[Abb18] Emmanuel Abbe. Community detection and stochastic block models: Recent
developments. Journal of Machine Learning Research, 18(177):1-86, 2018.

[ABH16] Emmanuel Abbe, Afonso S. Bandeira, and Georgina Hall. Exact recovery in the
stochastic block model. IEEE Trans. Inform. Theory, 62(1):471-487, 2016.

[ACC13] Edoardo M. Airoldi, Thiago B. Costa, and Stanley H. Chan. Stochastic blockmodel
approximation of a graphon: Theory and consistent estimation. In Advances in
Neurips 2013, pages 692—-700, 2013.

[Ald81] David J. Aldous. Representations for partially exchangeable arrays of random
variables. J. Multivariate Anal., 11(4):581-598, 1981.

[BT97] Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization. Athena
Scientific, 1997.

[CDP12] Alain A. Celisse, Jean-Jacques J.-J. Daudin, and Laurent L. Pierre. Consistency of
maximume-likelihood and variational estimators in the stochastic block model. Elec-
tronic Journal of Statistics , 6:1847—1899, 2012. AMS 2000 subject classifications:
Primary 62G05, 62G20; secondary 62E17, 62H30.

[CLCT21] Changxiao Cai, Gen Li, Yuejie Chi, H. Vincent Poor, and Yuxin Chen. Sub-
space estimation from unbalanced and incomplete data matrices: ¢, . statistical
guarantees. The Annals of Statistics, 49(2):944 — 967, 2021.

[CLX18] Yudong Chen, Xiaodong Li, and Jiaming Xu. Convexified modularity maximization
for degree-corrected stochastic block models. Ann. Statist., 46(4):1573-1602,
2018.

[CO10] Amin Coja-Oghlan. Graph partitioning via adaptive spectral techniques. Combi-
natorics, Probability and Computing, 19(2):227—284, 2010.

[CRV15] Peter Chin, Anup Rao, and Van Vu. Stochastic block model and community
detection in sparse graphs: A spectral algorithm with optimal rate of recovery. In
Conference on Learning Theory, pages 391-423. PMLR, 2015.

[Dal20] Arnak S. Dalalyan. Exponential weights in multivariate regression and a low-
rankness favoring prior. Annales de I'Institut Henri Poincaré, Probabilités et
Statistiques, 56(2):1465 — 1483, 2020.

[Dal22] Arnak S. Dalalyan. Simple proof of the risk bound for denoising by exponential
weights for asymmetric noise distributions. Preprint, Arxiv, December 2022.

135



[DDG21a] Laurant Davezies, Xavier D’haultfoeuille, and Yannick Guyonvarch. Empirical
process results for exchangeable arrays. The Annals of Statistics, 49(2):845—-
862, December 2021.

[DDG21b] Laurent Davezies, Xavier D’Haultfceuille, and Yannick Guyonvarch. Empirical
process results for exchangeable arrays. The Annals of Statistics, 49(2):845 —
862, 2021.

[DG14a] Arnaud Dupuy and Alfred Galichon. Personality traits and the marriage market.
Journal of Political Economy, 122(6):1271-1319, 2014.

[DG14b] Arnaud Dupuy and Alfred Galichon. Personality traits and the marriage market.
Journal of Political Economy, 122(6):1271-1319, 2014.

[DH73] W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of graphs. /1BM
J. Res. Develop., 17:420-425, 1973.

[DMDK*23] Etienne Donier-Meroz, Arnak S. Dalalyan, Francis Kramarz, Philippe Choné, and
Xavier D’Haultfoeuille. Graphon estimation in bipartite graphs with observable
edge labels and unobservable node labels, 2023.

[dPRST18] Aureo de Paula, Seth Richards-Shubik, and Elie Tamer. Identifying preferences in
networks with bounded degree. Econometrica, 86(1):263—288, 2018.

[DTO7] Arnak S. Dalalyan and Alexandre B. Tsybakov. Aggregation by exponential
weighting and sharp oracle inequalities. In Learning theory, volume 4539 of
Lecture Notes in Comput. Sci., pages 97—111. Springer, Berlin, 2007.

[DTO8] Arnak S. Dalalyan and Alexandre B. Tsybakov. Aggregation by exponential
weighting, sharp pac-bayesian bounds and sparsity. Machine Learning, 72(1-
2):39-61, 2008.

[DT12] A. S. Dalalyan and A. B. Tsybakov. Sparse regression learning by aggregation
and Langevin Monte-Carlo. J. Comput. System Sci., 78(5):1423—1443, 2012.

[Dze19] Andreas Dzemski. An Empirical Model of Dyadic Link Formation in a Network with
Unobserved Heterogeneity. The Review of Economics and Statistics, 101(5):763—
776, 12 2019.

[FP16a] Laura Florescu and Will Perkins. Spectral thresholds in the bipartite stochastic
block model. 29th Annual Conference on Learning Theory, PMLR 49:943—-959,
2016.

[FP16b] Laura Florescu and Will Perkins. Spectral thresholds in the bipartite stochastic
block model. In Proceedings of COLT 2016, volume 49 of JMLR Workshop and
Conference Proceedings, pages 943—-959. JMLR.org, 2016.

[FPV15] Vitaly Feldman, Will Perkins, and Santosh S. Vempala. Subsampled power
iteration: a unified algorithm for block models and planted CSP’s. In Advances in
Neurips 2015, pages 2836—2844, 2015.

[GK21] Solenne Gaucher and Olga Klopp. Optimality of variational inference for stochastic
block model with missing links. NeurlPS, 2021.

136



[GLMZ16] Chao Gao, Yu Lu, Zongming Ma, and Harrison H. Zhou. Optimal estimation
and completion of matrices with biclustering structures. J. Mach. Learn. Res.,
17:161:1-161:29, 2016.

[GLZ15] Chao Gao, Yu Lu, and Harrison H. Zhou. Rate-optimal graphon estimation. The
Annals of Statistics, 43(6):2624—2652, 2015.

[GM21] Chao Gao and Zongming Ma. Minimax Rates in Network Analysis: Graphon
Estimation, Community Detection and Hypothesis Testing. Statistical Science,
36(1):16 — 33, 2021.

[GMZZ17] Chao Gao, Zongming Ma, Anderson Y. Zhang, and Harrison H. Zhou. Achieving
optimal misclassification proportion in stochastic block models. Journal of Machine
Learning Research, 18(60):1—45, 2017.

[GNO3] Gérard Govaert and Mohamed Nadif. Clustering with block mixture models.
Pattern Recognition, 36(2):463—473, 2003. Biometrics.

[Gra17] Bryan S. Graham. An econometric model of network formation with degree
heterogeneity. Econometrica, 85(4):1033—-1063, 2017.

[Gra20] Bryan S. Graham. Sparse network asymptotics for logistic regression. Journal of
Multivariate Analysis, October 2020.

[GV19] Christophe Giraud and Nicolas Verzelen. Partial recovery bounds for clustering
with the relaxed k-means. Mathematical Statistics and Learning, 1(3):317-374,
2019.

[HLL83] Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic
blockmodels: First steps. Social Networks, 5(2):109-137, 1983.

[JW96] Matthew O. Jackson and Asher Wolinsky. A strategic model of social and economic
networks. J. Econom. Theory, 71(1):44—74, 1996.

[KTV17] Olga Klopp, Alexandre B. Tsybakov, and Nicolas Verzelen. Oracle inequalities
for network models and sparse graphon estimation. The Annals of Statistics,
45(1):316 — 354, 2017.

[KV19] Olga Klopp and Nicolas Verzelen. Optimal graphon estimation in cut distance.
Probability Theory and Related Fields, 174:1033—1090, 2019.

[LB0O6] G. Leung and A.R. Barron. Information theory and mixing least-squares regres-
sions. IEEE Transactions on Information Theory, 52(8):3396—3410, 2006.

[Lei16] Jing Lei. A goodness-of-fit test for stochastic block models. Ann. Statist.,
44(1):401-424, 2016.

[LIo82] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information
Theory, 28(2):129—-137, 1982.

[LM19] Léa Longepierre and Catherine Matias. Consistency of the maximum likelihood
and variational estimators in a dynamic stochastic block model. Electron. J.
Statist., 13(2):4157-4223, 2019.

137



[LR15] Jing Lei and Alessandro Rinaldo. Consistency of spectral clustering in stochastic
block models. Ann. Statist., 43(1):215-237, 2015.

[LZ16] Yu Lu and Harrison H Zhou. Statistical and computational guarantees of lloyd’s
algorithm and its variants. arXiv preprint arXiv:1612.02099, 2016.

[Neu18] Stefan Neumann. Bipartite stochastic block models with tiny clusters. In Advances
in NeurlPS 2018, pages 3871-3881, 2018.

[NS01] Krzysztof Nowicki and Tom A. B. Snijders. Estimation and prediction for stochastic
blockstructures. Journal of the American Statistical Association, 96(455):1077—
1087, 2001.

[NST22] Mohamed Ndaoud, Suzanne Sigalla, and Alexandre B. Tsybakov. Improved
clustering algorithms for the bipartite stochastic block model. IEEE Trans. Inf.
Theory, 68(3):1960—-1975, 2022.

[OW14a] Sofia C Olhede and Patrick J Wolfe. Network histograms and universality of
blockmodel approximation. Proceedings of the National Academy of Sciences,
111(41):14722-14727, 2014.

[OW14b] Sophia C. Olhede and Patrick J. Wolfe. Network histograms and universality
ofblockmodel approximation. PNAS, 11(41):14722-14727, Oct 2014.

[PC19] Gabriel Peyré and Marco Cuturi. Computational optimal transport: With appli-
cations to data science. Foundations and Trends® in Machine Learning, 11(5-
6):355-607, 2019.

[STO7] Daniel A. Spielman and Shang-Hua Teng. Spectral partitioning works: planar
graphs and finite element meshes. Linear Algebra Appl., 421(2-3):284—-305, 2007.

[Tsy08] Alexandre B Tsybakov. Introduction to Nonparametric Estimation. Springer, 2008.

[vH16] Ramon van Handel. Probability in High Dimension. APC 550 Lecture Notes,
Princeton University, December 2016.

[vLO7] Ulrike von Luxburg. A tutorial on spectral clustering. Stat. Comput., 17(4):395-416,
2007.

[WB17] Y. X. Rachel Wang and Peter J. Bickel. Likelihood-based model selection for
stochastic block models. Ann. Statist., 45(2):500-528, 2017.

[WO13] Patrick J. Wolfe and Sofia C. Olhede. Nonparametric graphon estimation, 2013.

[XJL20] Min Xu, Varun Jog, and Po-Ling Loh. Optimal rates for community estimation in
the weighted stochastic block model. Ann. Statist., 48(1):183—204, 2020.

[ZA19a] Zhixin Zhou and Arash A. Amini. Analysis of spectral clustering algorithms for
community detection: the general bipartite setting. Journal of Machine Learning
Research, 20:1-47, February 2019.

[ZA19b] Zhixin Zhou and Arash A. Amini. Analysis of spectral clustering algorithms for
community detection: the general bipartite setting. J. Mach. Learn. Res., 20:47:1—
47:47,2019.

138



[ZA20] Zhixin Zhou and Arash A. Amini. Optimal bipartite network clustering. J. Mach.
Learn. Res., 21:40:1-40:68, 2020.

[ZLZ12] Yunpeng Zhao, Elizaveta Levina, and Ji Zhu. Consistency of community detec-
tion in networks under degree-corrected stochastic block models. Ann. Statist.,

40(4):2266-2292, 2012.

[ZZ16] Anderson Y. Zhang and Harrison H. Zhou. Minimax rates of community detection
in stochastic block models. Ann. Statist., 44(5):2252—2280, 2016.

139






ECOLE

DOCTORALE

DE MATHEMATIQUES
HADAMARD

bg ¢oP

Titre: Estimation de graphon pour les graphes bipartites

Mots clés: réseaux bipartite, clustering, algorithme tractable, bornes non asymptotiques

Résumé: De nombreux ensembles de don-
nées peuvent étre représentés sous forme
d’'une matrice dont les entrées représentent
les interactions entre deux entités de natures
différentes. Ces matrices sont appelées matri-
ces d’adjacence de graphes bipartites. Dans
notre travail, nous faisons I'hypothése que ces
interactions sont déterminées par des vari-
ables latentes non observables.

Dans un premier temps, notre objectif est
d’estimer I'espérance conditionnelle de la ma-
trice de données sachant les variables non
observables, en supposant que les entrées
de la matrice sont i.i.d. Ce probléme peut
étre formulé comme I'estimation d’une fonc-
tion bivariée appelée graphon. Dans notre
étude, nous nous concentrons sur deux cas,
les graphons constants par morceaux et les

graphons Hdlder. Nous démontrons des
bornes de risque pour I'estimateur des moin-
dres carrés, et nous proposons une adaptation
de l'algorithme de Lloyd pour calculer une ap-
proximation de cet estimateur et nous présen-
tons les résultats d’expériences numeériques
pour évaluer les performances de ces méth-
odes.

Dans un deuxiéme temps, nous abordons
les limites du cadre précédent, qui peut ne
pas étre adapté pour modéliser des situa-
tions avec des degrés de sommet bornés.
Par conséquent, nous étendons notre étude
a I'hypothése de I'indépendance relaxée, ou
seules les lignes de la matrice d’adjacence
sont supposées indépendantes. Dans ce con-
texte, nous nous concentrons spécifiguement
sur les graphons constants par morceaux.

Title: Graphon estimation in bipartite networks

Keywords: bipartite networks, clustering, tractable algorithm, non asymptotic bounds

Abstract: Many real-world datasets can be
represented as matrices where the entries
represent interactions between two entities of
different natures. These matrices are com-
monly known as adjacency matrices of bipar-
tite graphs. In our work, we make the assump-
tion that these interactions are determined by
unobservable latent variables.

Firstly, our main objective is to estimate the
conditional expectation of the data matrix given
the unobservable variables under the assump-
tion that matrix entries are i.i.d. This estimation
problem can be framed as estimating a bivari-
ate function known as a graphon. In our study,
we focus on two cases: piecewise constant
graphons and Holder-continuous graphons.

We derive finite sample risk bounds for the
least squares estimator. Additionally, we pro-
pose an adaptation of Lloyd’s algorithm to
compute an approximation this estimator and
provide results from numerical experiments to
evaluate the performance of these methods.
Secondly, we address the limitations of the pre-
vious framework, which may not be suitable
for modeling situations with bounded degrees
of vertices, among other scenarios. Therefore,
we extend our study to the relaxed indepen-
dence assumption, where only the rows of the
adjacency matrix are assumed to be indepen-
dent. In this context, we specifically focus on
piecewise constant graphons.

YT
Qo0 Ecy

Institut Polytechnique de Paris
91120 Palaiseau, France




	Introduction
	Modeling data by Networks and graphs
	Graphs
	Bipartite graphs
	The stochastic block model
	Community detection
	Spectral clustering

	Definition of the problem
	Prior work
	Contributions
	Estimation of the mean matrix
	Estimation of the graphon
	Lower bound on the minimax risk
	Algorithm and numerical experiments


	Graphon estimation in bipartite graphs with observable edge labels and unobservable node labels 
	Introduction
	Estimators of the mean matrix and the graphon
	Least squares estimator of the mean matrix
	Aggregation by exponential weights
	Adaptations in the case of missing values
	Estimating the graphon

	Finite sample risk bounds
	Risk bounds for the least-squares estimator 
	Risk bounds for the EWA
	Risk bounds for the graphon estimators

	Tractable approximation of the least-squares estimator
	Lower bounds on the minimax risk
	Numerical experiments
	Estimation error of the piecewise constant matrix 
	Estimation error for Hölder-continuous graphons

	Proofs of results stated in previous sections
	Proof of ( (risk bound for LSE of the mean)
	Proof of ((approximation error for a graphon)
	Proof of ((approximation error for the mean matrix)
	Proof of ((risk bound for the LSE of the graphon)
	Proof of ((relaxation to a linear program)
	Proof of ((lower bounds)

	Auxiliary results

	Graphon estimation in bipartite graphs under relaxed independence assumption
	Introduction
	Estimators of the mean matrix and finite sample risk bound
	Definition of the least square estimator
	Risk bound of the least square estimator

	Estimators of the graphon and risk bound
	Identifiability and evaluation of the estimation
	Risk bound for piecewise constant graphons

	Proofs
	Proof of  (risk bound for LSE of the mean)
	Proof of  (identifiability property)
	Proof of 
	Proof of  (approximation error for a graphon)
	Proof of  (risk bound for the LSE of the graphon)

	Auxiliary results

	Conclusion
	Résumé en français
	Définition du problème
	Contributions
	Estimation de la matrice moyenne
	Estimation du graphon
	Bonre inférieure sur le risque minimax
	Algorithme et expériences numériques



