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Résumé

Nous prouvons plusieurs résultats sur les distributions limites et les bornes absolues des
fonctions de discrépances pour des actions de translation sur le tore. Nous montrons
I'existence de lois limites, aprés normalisation adéquate, pour les fonctions de discrépance
des actions Z? par translations sur le tore relativement & des formes symétriques strictement
convexes. Nous obtenons également des bornes supérieures presque optimales pour les
fonctions de discrépance dans le cas des translations sur le tore relativement aux polygones
et dans le cas des formes linéaires relativement aux intervalles sur le cercle, qui étendent
le résultat de Beck des bornes absolues pour les translations sur le tore relativement aux
boites droites vers des cas plus généraux. En nous appuyant sur ’étude des discrépances,
nous donnons des exemples de marches aléatoires ergodiques sur R? guidés par les retours

dans une boite d’une translation irrationnelle sur le tore.

Mots-clés

Discrépances ergodiques, Dynamiques homogénes, Approximations diophantiennes, Marches

aléatoires ergodiques



On the deviations of ergodic averages on the torus
and their applications.

Abstract We prove several results on limiting distributions and absolute bounds of
discrepancy functions for translation actions on the torus. We show the existence of limit
laws, after adequate normalizations, for the discrepancy functions of Z2-actions by trans-
lations on the torus relative to symmetric, strictly convex bodies. We also obtain almost
optimal upper bounds for the maximal discrepancy functions in the case of toral transla-
tions relative to polygons and in the case of linear forms relative to intervals on the circle,
which extend Beck’s result of absolute bounds on toral translations for straight boxes to
more general settings. Building on the study of discrepancy functions, we give examples of

ergodic random walks on R? driven by the returns to a box of an irrational toral translation.

Keywords

Ergodic discrepancies, Homogeneous dynamics, Diophantine approximations, Ergodic ran-

dom walks



Résumé substantiel en francais

Les principaux objets de recherche de ce travail sont les comportements asymptotiques des
écarts ergodiques dans les problémes de comptage sur un tore de dimension d. Etant donné
une transformation ergodique 7' : X — X sur un espace mesuré (X, X, u), le théoréme

de Birkhoff énonce que pour une fonction u-intégrable f, sa moyenne temporelle partant
N—1

de un point générique z, ». f(T™xz)/N, converge vers sa moyenne spatiale [ fdu/u(X).
n—=

Si nous prenons la fonction f comme fonction caractéristique d’un ensemble mesurable

C C X, nous obtenons un probléme de comptage, et le théoréme de Birkhoff stipule que la

proportion de “visites” de l'orbite de x a I’ensemble C converge vers son volume Vol(C).

Dans le cadre classique de la translation sur le tore, I'espace X est choisi comme étant
un tore d-dimensionnel T? équipé de la mesure de Haar, la transformation ergodique est
la translation irrationnelle T : 2 — =+ a, z € T% ot a = (ag,---,0q) € R et
1,a1,...,aq sont linéairement indépendants sur Q ; la transformation est dans le sens de
prendre modulo 1 pour chaque coordonnée. Notre objet d’intérét est 1’écart ergodique,

défini comme la différence entre le nombre de visites réelles et sa valeur attendue :
N—1
De(w, 0 5N) =Y xe(Ta(x)) — N Vol(C), (1)
n=0

et deux questions naturelles sont les suivantes :

Q1. Distributions limites. Si on laisse le point de départ z et la translation T,
aléatoires, =, a € T? aléatoires, existe-t-il une distribution limite, aprés normalisation

adéquate, pour la fonction d’écart D¢ comme N — oo 7

Q2. Bornes absolues. Si nous fixons une transformation Ty, quelle est la borne

supérieure (absolue) optimale pour la fonction d’écart D¢ comme N — oo?

Ces deux questions forment les axes de ce travail, et les chapitres suivants tentent de
répondre aux questions ci-dessus dans différents contextes des actions Ty, et des formes de

I’ensemble C.



Les distributions limites

Dans les années 1960, Kesten[Kes60|, Kes62| a étudié le probléme de la distribution limite
dans le cas des rotations sur le cercle en dimension 1. Il a prouvé que la fonction d’écart,
relativement & un intervalle, converge vers une distribution de Cauchy aprés avoir été
normalisée par In N. Sa preuve s’appuie fortement sur ’algorithme de la fraction continue,
ce qui rend difficile les généralisations & des dimensions supérieures. Dans les années 2000,
Marklof[Mar(07]| a adopté une approche dynamique du probléme de distribution, montrant
que de telles fonctions d’écart normalisées sont souvent intimement liées & certaines orbites

sous les flots géodésiques et unipotents sur des espaces homogénes.

Suivant I’approche dynamique, Dolgopyat et Fayad ont étendu les résultats de Kesten
aux tores de dimension supérieure lorsque d > 2. Ils ont trouvé deux comportements
distincts pour C étant une boule et C étant une boite|DF12,DF14], qui sont tous deux des
généralisations naturelles de l'intervalle en dimension 1. Ils ont montré que les boites a
d-dimensions se comportent de la méme maniére que les intervalles & une dimension, et
que la fonction d’écart converge également vers une distribution de Cauchy aprés avoir été
normalisée par (In N)?. Quant aux boules, ils ont montré que le normalisateur devrait étre
NW@=1/2d ot que la fonction d’écart converge vers une fonction de distribution définie sur

Pespace produit des tores infinis et I'espace de Réseaux (d + 1)-dimensionnel.

Dans les deux cas, le premier ingrédient de la preuve est 'analyse harmonique de la
série de Fourier de I’écart, qui met en évidence la contribution principale de I’écart et aide &
trouver le bon normalisateur. Le deuxiéme ingrédient est le principe de correspondance de
Dani qui transfére I’étude des petits diviseurs qui apparait dans la contribution principale
a I’étude de la dynamique des actions diagonales et unipotentes sur I’espace homogéne des
réseaux. Dans le cas des boites, la contribution principale provient de tous les modes de
Fourier dont les normes sont inférieures a ’'ordre N, ce qui correspond aux excursions vers
le cusp jusqu’au temps In N des actions diagonales qui codent les petits diviseurs, ce qui
conduit & une distribution de Cauchy similaire au cas unidimensionnel. Dans le cas des
boules, la contribution principale ne vient que des modes de Fourier dont les normes sont
d’ordre de N, ce qui correspond aux excursions vers le cusp a la seule échelle de temps
In V des actions diagonales qui codent les petits diviseurs, ce qui conduit & une distribution
limite qui peut étre calculée comme les ensembles de niveau de la fonction d’écart exprimée

dans le langage des reseaux.

Dans le Chapitre suivant une approche similaire a celle de Dolgopyat et Fayad,
nous considérons la séquence d’actions Z2, {(nja1,n202) € T?}1<py ny<n par rapport a
un disque centré C dans T2, ce qui correspond au positionnement du réseau translaté
Zoy @ Zaw + 2 par rapport au reseau Z2 dans la norme euclidienne en R?, rappelons que z
est le point de départ de I'action. Plus précisément, la fonction d’écart mesure la fréquence

a laquelle les deux réseaux deviennent C-proches I'un de I'autre dans un rectangle croissant,



il est défini par :

De(ryz,a; N) = Z xe, (x1 + nia, T3 + ngas) — N?Vol(C,). (2)
0<n1<N—-1

0<na<N—1
Le paramétre r est la remise & I’échelle de C pour supprimer une éventuelle dépendance
irréguliére de la distribution limite sur C. Nous allons montrer qu’il existe deux comporte-
ments trés différents pour différentes parties de la série de Fourier de De. Aprés avoir choisi
des normalisateurs appropriés, la partie avec 0-coordonnées se comporte comme la somme
ergodique des observables lisses, et la partie sans 0-coordonnées se comporte de maniére

similaire aux déviations ergodiques des translations sur le tore pour les corps convexes.

Theorem 0.1. Soit C un corps analytique symétrique strictement convexe qui rentre dans
le cube unitaire de R%, et D¢ défini comme dans ([2)), on peut décomposer D¢ en deux

parties, notées D¢ 1 et Dc o, alors on a

(a) Pour D¢, soit (z,c) uniformément distribué dans T? x T2, pour tout rfixe, il

eziste une distribution limite pour D¢y /N, quand N — oo.

(b) Pour D¢ s, soit (r,x,c) uniformément distribué dans [a,b] x T? x T2, alors il existe
une distribution limite pour D¢ o/(VrN), quand N — oo.

Ce résultat montre que la distribution de la fonction d’écart pour Iaction Z2 sur T? par
rapport & un ensemble convexe peut étre comprise de la méme maniére qu'un développe-
ment de Taylor. Géométriquement, la partie principale avec le normalisateur IV représente
la résonance qui se produit naturellement puisque les deux réseaux Zaq @ Zas et Z2 sont
paralléles. La partie restante avec le normalisateur N 3 représente erreur de résidu, c’est-

a-dire linteraction entre la frontiére convexe lisse de C et Paction Z2 .

Bien que le résultat soit indiqué en 2 dimensions, en choisissant des normalisateurs
appropriés pour différentes parties de la série de Fourier, des résultats similaires peuvent
étre obtenus pour les dimensions pair de maniére simple. Alors que pour les dimensions
impaires, la “somme moyenne” des modes de Fourier composés de % coordonnées nulles a
des comportements fondamentalement différents, et nous n’avons pas encore de description

compléte pour cela.

Dans le cas général des actions Z2, oil l'on considére le reseaux Zoay @ Zow pour
les vecteurs bidimensionnels o et aw, la partie de résonance avec le normalisateur N
n’apparait pas, et nous pensons qu’une loi limite similaire & la partie résiduelle dans le cas
paralléle est valable dans le cas général de I'action Z? avec un normalisateur N %, bien que
pour le moment, nous soyons confrontés a des difficultés techniques causées par le facteur

supplémentaire In N qui découle du calcul de la mesure pour les cusps bidimensionnelles.
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Bornes absolues pour les translations sur le tore

Soit B I’ensemble de toutes les boites droites dans T, puis en prenant la borne supérieure
absolue de la fonction d’écart pour C € B et tous les points de départ possibles z € T,

nous arrivons 3 la fonction d’écart maximal suivante :

A(a; N) = max Z xc(x 4+ na) —nVol(C)| . (3)
zeTd |1SnsN

En 1923, Khintchine|Khi23| a prouvé les bornes précises suivantes pour d =1 :

| A ;N)
Z < 00 =

m (In N)4p(Inln N) est borné pour presque chaque a € Td, (4)

n=1

ot p(n) est une fonction croissante positive arbitraire de n. L’outil majeur de sa preuve est
la théorie métrique des irrationnels qui repose principalement sur les fractions continues.
En 1964, Schmidt[Sch64] a obtenu une borne supérieure de (In N)¥1+€ pour d > 1 en
utilisant l'inégalité d’Erdés—Turdn. Mais du fait de l'absence d’algorithme de fraction
continue en dimension supérieure, le cas d > 1 n’a été complétement résolu qu’en 1994
par Beck|Bec94|. Le résultat de Beck a étendu la loi zéro-un précise de Khintchine dans
(4) au cas des boites droites de dimensions supérieures. Beck a observé que, comme dans
le cas unidimensionnel, la série de Fourier de l'¢cart maximal A(a; N) est en fait une
somme de termes presque indépendants par paire de a, et 1'étude de A(a; N) réduite a
Panalyse des petits diviseurs des formes linéaires ||[njaq + - -+ + ngagl|. En employant ¢
la méthode du second moment ” (voir [Sch60,Sch64]), Beck a montré que 1’algorithme de
fraction continue utilisé dans le cas 1-d peut étre efficacement remplacé par des estimations
précises de la cardinalité des modes de Fourier pour dont les diviseurs sont limités & de petits
intervalles. L’amélioration du facteur critique de In N est obtenue par les annulations des
parties positives avec les parties négatives pour les termes & diviseurs presque identiques.
Pour une brillante discussion sur la facon dont les “irrégularités globales” des fonctions de
discordance proviennent des “irrégularités locales” des propriétés diophantiennes du vecteur

de translation e, nous nous référons a l'introduction de [Bec94].

Dans le chapitre 3] en allant dans une direction différente en dimension 1, au lieu de
rotations irrationnelles, nous pouvons considérer la séquence de formes d-linéaires liées a

o {Zl<i< d kiai}l <k <n- dont la fonction d’écart relativement & un intervalle [0, z) est
o 1<i<d
défini comme

D(a,z;N) = Z X[0,2) Z kici | — N,
1<k;<N 1<i<d
1<i<d
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et la fonction d’écart maximale est définie de la méme maniére :

A(a; N) = D s IN)| .
(o N) = max |D(ex, 2; N)|
En généralisant les idées de Beck aux petits diviseurs n Hle ||nal|, on obtient une borne

supérieure presque optimale pour I’écart maximal des formes linéaires :

Theorem 0.2. Pour tout € > 0, il existe un ensemble complet de mesures de o € R, tel
que

A(a ;N) < Cla, €)(InN)? - (Inln N)maxi3dite (5)

pour une constante C(a,€) > 0, et
A(a;N)> (InN)?-Inln N (6)

pour une infinité de N € N.

Par rapport aux translations sur le tore, le facteur supplémentaire (Inln N)»ax{d—1.2}
dans le cas des d—formes linéaires dans notre preuve est nécessaire pour controler les
petits diviseurs ”H?:l |na;||. Une observation intéressante est que dans la preuve, il
existe une dualité entre le cas des translations sur le tore relativement aux boites droites d-
dimensionnelles et le cas des formes d-linéaires relativement aux intervalles 1-dimensionnels.
Les petits diviseurs apparaissant dans le cas des traductions torales sont des formes d-
linéaires, et les petits diviseurs dans le cas des formes linéaires sont des produits de coor-
données de translation sur le tore. En utilisant cette dualité, nous pourrions simplifier la
preuve pour un cas en appliquant I'inégalité d’Erdés—Turan pour obtenir une version plus
faible du résultat de son cas dual, ce qui permet d’obtenir une estimation plus rapide de
la cardinalité des ensembles dyadiques pour le cas cible, ce qui est une étape importante
dans les deux preuves.

Dans le Chapitre [d] suite aux travaux de Beck sur les boites droites, nous considérons
des translations torales relativement & des triangles rectangles a jambes droites (paralléles
aux cotés du tore) dans T2. En remplacant B dans par ’ensemble des triangles droits
d’hypoténuse de pente 7, on peut définir de fagon similaire la fonction d’écart maximal
correspondante A(a, 7; N) pour les triangles droits. Ici la principale difficulté vient de
I’hypoténuse du triangle rectangle. L’inclinaison 7 déplace les diviseurs de la série de
Fourier de la fonction d’écart de nyng(nyag +noag—ns) a ny(n17—ng)(nia+nsas—ns), ce
qui ajoute une possibilité supplémentaire que le facteur |n;7—ng| soit petit. En généralisant
les critéres locaux de Beck aux nouveaux diviseurs, on obtient une borne supérieure presque

optimale et la méme borne inférieure pour les écarts maximaux dans le cas des triangles :

Theorem 0.3. Fizons tout € > 0, pour presque chaque o € R? et presque chaque 7 € RT,

Uécart mazimal Ao, 7; N) est essentiellement délimité par le haut par (In N)?(Inln N)2*¢,



12

mais pas par (In N)?Inln N. Plus précisément, il existe une constante C(a, 7,€) > 0, telle
que

A(a, 7;N) < C(a, 7,€)(In N)? - (Inln N)>T¢, (7)

et il existe une infinité de N € N, tels que
A(a,7;N) > (InN)? - Inln N. (8)

11 est facile de voir que les mémes limites sont valables pour presque tous les polygones
de T2, simplement en découpant les polygones en triangles rectangles. Malheureusement,
I’énoncé ne donne pas une loi zéro-un comme les résultats de Khintchine et Beck, le facteur
supplémentaire Inln N est nécessaire pour controler le petit facteur ni7 — no qui résulte
de I’hypoténuse de le triangle, qui ne se produit pas dans le cas des rectangles droits.
Notez que lorsque la pente 7 ou le vecteur de translation a est Liouville, les diviseurs
ni(niT — ng)(nia + naay — n3) peuvent étre trés petits, ce qui brise facilement la borne
supérieure logarithmique dans le cas diophantien. Par conséquent, la restriction & “presque
tous les 7 et presque tous les a” est nécessaire. Les polyédres de dimension supérieure
devraient suivre les mémes estimations, mais des calculs plus complexes sont nécessaires.

Le cas des disques est nettement plus difficile et semble étre un probléme dual au
probléme du cercle de Gauss. Si nous pouvions obtenir une borne supérieure uniforme
pour les triangles d’une classe spécifique de pentes, nous pouvons approximer le disque par
des triangles et obtenir la borne supérieure N st , qui correspond & la borne supérieure
classique R3¢ du probléme du cercle de Gauss. Alors que la borne optimale pour le
terme d’erreur dans le probléme du cercle de Gauss est supposée étre comprise entre R? et
R%J“, la borne optimale dans notre cas, les translations sur le tore relatives aux boules, est
supposée étre comprise entre N iet N i“, puisque le résultat de Dolgopyat et Fayad|[DF14]

montre déja que la magnitude moyenne de la fonction d’écart est de Ni.

Cascades cylindriques

Un cadre intéressant dans lequel les fonctions d’écart apparaissent naturellement est I’étude
des cascades cylindriques. Etant donné une fonction A : T — R”, une cascade cylindrique
au-dessus de la translation sur le tore T¢, est définie comme Wg, 4 : T¢xR" — T4xR", donné
par Wao a(z,y) = (z+a,y+ A(x)). Lorsque o est diophantienne et A est lisse, I’équation
cohomologique linéaire A(z) — [;q A(u)du = —B(x + a) + B(x) a une solution lisse B,
donc Wq 4 est conjugué lissement & la translation W, Jra A Un cas intéressant pour A non
lisse est lorsque les composants de A sont des fonctions indicatrices de moyenne nulle de
formes typiques dans T%, c’est-a-dire A = (Ay,...,44) , o A; = xc, — Vol(C;), et chaque
C; est une forme typique telle qu’une boite ou un polytope. Ici les sommes de Birkhoff de

A; sont précisément les déviations ergodiques dont nous avons discuté précédemment.
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La cascade cylindrique Wq 4 peut étre vue comme une marche aléatoire déterministe
dans R” pilotée par la translation sur le tore sur la base T%, ce qui rend naturel I'étude de
sa récurrence et ergodicité. Pour » = 1, la condition moyenne nulle de A =0 est a la fois
nécessaire et suffisante pour que la marche Wg, 4 soit récurrente lorsque « est irrationnel.
Pour d = 1, on sait que lorsque A est de moyenne nulle & variation bornée, la marche est
récurrente du fait de l’inégalité de Denjoy-Koksma. Nous renvoyons a [DF15|, Section 8
pour une introduction plus compléte des résultats en 1-d.

En dimension supérieure, seuls les exemples récurrents et transitoires sont connus
lorsque d = 2 et C; sont des polytopes|CC09|. Chevallier et Conze[CC09| ont montré
que pour que la marche de tout espace de base soit récurrente, une condition suffisante
est que les sommes de Birkhoff de A; croissent plus lentement que O(nl/ ") le long d’une
sous-séquence N,, pour la plupart des points de départ. En utilisant I’estimation L? des
déviations ergodiques de A, ils ont montré que pour presque chaque vecteur de translation
a, la marche Wq 4 est récurrente pour les polytopes. En fait, nous pouvons voir qu’a
partir de nos bornes absolues de la fonction d’écart pour les triangles, la croissance des
sommes de Birkhoff de A; au temps N est au plus d’ordre (In N)?¢, ce qui conduit aussi
a la récurrence par le critére de Chevallier et Conze.

L’ergodicité de la marche W, 4 peut étre établie si les sommes de Birkhoff de A de-
viennent de mieux en mieux réparties sur R" le long d’une sous-suite N,, de sorte que
la traduction TY» reste proche de l'identité. Cette idée donne naissance a la notion de
valeurs essentielles|Sch77|, qui est 'outil majeur pour notre construction de marches er-
godiques pour les rectangles. Dans le chapitre 5] en collaboration avec Fatna Abdedou,
nous construisons des exemples ergodiques des cascades cylindriques sur T2 x R en utilisant

des vecteurs de translation de Liouville. Plus précisément, nous avons le suivant :

Theorem 0.4 (Abdedou-W). Pour presque tout rectangle droit dans T2 avec un coin a
lorigine, soit A la fonction indicatrice centrée du rectangle, alors il existe un ensemble

Gs-dense de a, telle que la cascade cylindrigue W 4 soit ergodique sur T2 x R.

L’énoncé est pour un ensemble Gs-dense de a puisque les conditions de Liouville doivent
étre imposées au vecteur de translation pour atteindre l'ergodicité dans notre construc-
tion. Les contreparties de dimension supérieure dans T¢ x R” peuvent étre obtenues de
maniére similaire par la propriété de sous-groupe des valeurs essentielles, mais encore une
fois notre méthode exige que les longueurs des cotés supplémentaires des boites de dimen-
sion supérieure soient Liouville quand d > 2 ou r > 1. Exemples ergodiques utilisant
des polytopes dans T¢, d > 2, sont plus délicates en raison de leurs cotés inclinés, et leurs
constructions sont toujours en cours. Bien que les conditions de Liouville semblent inévita-
bles avec nos techniques actuelles, en raison du taux de divergence lent de la somme de
Birkhoff de A, c’est-a-dire la borne supérieure logarithmique absolue des écarts maximaux
dans le cas des polygones dans Théoréme I’ergodicité de la marche est attendue pour

les polytopes typiques et les vecteurs de translation typiques.
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Chapter 1

Introduction

The main objects of research in this work are the asymptotic behaviors of ergodic discrep-
ancies in counting problems on a d-dimensional torus. Given an ergodic transformation

T : X — X on a measure space (X, X, u), Birkhoff theorem states that for a p-integrable
N—1

function f, its time average starting from a generic point z, > f(7T"x)/N, converges to
n=0

its space average [ fdu/p(X). If we take the function f to be the characteristic function
of a measurable set C C X, we obtain a counting problem, and Birkhoff theorem states
that the proportion of “visits” of the orbit of x inside the set C converges to its volume
Vol(C).

In the classical setting of toral translation, the space X is chosen to be a d-dimensional
torus T? equipped with Haar measure, the ergodic transformation is the irrational trans-
lation Ty : = + x + «, where a = (o, ,aq9) € R* and 1,04,...,a4 are linearly
independent over Q; the map is in the sense of taking modulo 1 for each coordinate. Our
object of interest is the ergodic discrepancy, defined as the difference between the number

of actual visits in C and its expected value:

N-1
De(w,0;N) = > xe(Ta(x)) — NVol(C), (1.1)
n=0

and two natural questions are the following:

Q1. Limit distributions. If we let the starting point x and the translation T, to be
random, ie. z, a € T? random, does there exist a limiting distribution, after adequate
normalization, for the discrepancy function D¢ as N — 007

Q2. Absolute bounds. If we fix a transformation Ty, what is the optimal (absolute)
upper bound for the discrepancy function D¢ as N — oo?

These two questions form the axes of this work, and the following chapters are attempts
to answer the above questions in different settings of the actions Ty and the shapes of the
set C.

17
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1.1 Limiting distributions

In the 1960s, Kesten|Kes60, Kes62| studied the limiting distribution problem in the case
of 1-dimensional circle rotations. He proved that the discrepancy function, relative to an
interval, converges to a Cauchy distribution after being normalized by In N. His proof relies
heavily on the continued fraction algorithm, which makes it difficult for generalizations
to higher dimensions. In the 2000s, Marklof[Mar07| adopted a dynamical approach to
the distribution problem, showing that such normalized discrepancy functions are often
intimately related to certain orbits under the geodesic and unipotent flows on homogeneous

spaces.

Following the dynamical approach, Dolgopyat and Fayad extended Kesten’s results to
higher-dimensional tori when d > 2. Surprisingly, they found two distinct behaviors for C
being a ball and C being a box[DF12,|DF14], both of which are natural generalizations of
the 1-d interval. They showed that d-dimensional boxes behave similarly to 1-dimensional
intervals, and the discrepancy function also converges to a Cauchy distribution after being
normalized by (In N)%. As for balls, they showed that the normalizer should be N(@~1)/2d,
and that the discrepancy function converges to a distribution function defined over the

product space of infinite tori and the space of (d + 1)-dimensional lattice.

In both cases, the first ingredient of the proof is the harmonic analysis of the discrep-
ancy’s Fourier series, which highlights the main contribution of the discrepancy and helps
find the good normalizer. The second ingredient is the Dani’s correspondence principle
that transfers the study of small divisors which appears in the main contribution to the
study of dynamics of diagonal and unipotent actions on the homogeneous space of lattices.
In the case of boxes, the main contribution comes from all the Fourier modes whose norms
are less than order N, which corresponds to the cusp excursions up to time In N of the
diagonal actions that code the small divisors, and this leads to a Cauchy distribution sim-
ilar to the 1-dimensional case. In the case of ballg, the main contribution comes only from
the Fourier modes whose norms are of order N, which corresponds to the cusp excursions
at only the time scale In N of the diagonal actions that code the small divisors, and this
leads to a limiting distribution that can be calculated as the level sets of the transformed

discrepancy function expressed in the language of lattices.

In Chapter , following a similar approach as Dolgopyat and Fayad, we consider the Z2
action sequence {(niaq,nsaa) € T2}1§n1,n2§N relative to a centered disc C in T?, which
corresponds to the positioning of the translated lattice Zay & Zag + x relative to the lattice
Z? in the Euclidean norm in R?, recall that x is the starting point of the action. Specifically,

the discrepancy function measures how often the two lattices becomes C-close to each other
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in a growing rectangle, it is defined by:

De(ryz,a; N) = Z xe, (x1 + nia, T3 + ngas) — N?Vol(C,). (1.2)
0<n1<N-1

0<na<N—1
The parameter r is the rescale of C to suppress possible irregular dependence of the limit
distribution on C. We will show that there are two very different behaviors for different
parts in the Fourier series of D¢. After choosing suitable normalizers, the part with 0-
coordinates behaves as the ergodic sum of smooth observables, and the part without 0-

coordinates behaves similar to the ergodic deviations of toral translations for convex bodies.

Theorem 1. Let C be a symmetric (with respect to both azxes), strictly convex analytic body
that fits inside the unit cube of R?, and D¢ defined as in (1.2), we can decompose Dc into
two parts, noted by D¢ 1 and D¢ 2, then we have

(a) For D¢, let (z, ) be uniformly distributed in T> x T2, then for every fized r, there
ezists a limiting disribution for D¢ 1 /N, as N — oo.

(b) For D¢, Let (r,z, ) be uniformly distributed in [a,b] x T? x T2, then there exists
a limiting distribution for Deo/(r'/?NY/?) as N — occ.

This result shows that the distribution of the discrepancy function for the Z-action on
T2 relative to a convex set can be understood similarly as a Taylor expansion. Geometri-
cally, the main part with the normalizer N represents the resonance that naturally occurs
since the two lattices Zag @ Zas and Z2 are parallel. The remaining part with normalizer
N3 represents the residue error, i.e., the interaction between the smooth convex boundary
of C and the Z? action.

Although the result is stated in 2-dimension, by choosing suitable normalizers for dif-
ferent parts of the Fourier series, similar results can be obtained for even dimensions in
a straightforward way. While for odd dimensions, the “middle sum” of the Fourier modes
composed of % zero-coordinates has fundamentally different behaviors, and we do not
yet have a complete description for it.

In the general case of Z2-actions, where we consider the lattice Zay & Za for 2-
dimensional vectors a1 and as, the resonance part with the normalizer N does not appear,
and we believe that a limit law similar to the residue part in the parallel case holds in the
general Z2-action case with a normalizer N %, although for the moment, we face technical
difficulties caused by the extra factor In NV that arises from the measure computation for

2-dimensional cusps.

1.2 Absolute bounds for toral translations

Let B denote the set of all straight boxes in T¢, then by taking the absolute upper bound
of the discrepancy function (T.1)) for C € B and all possible starting points = € T%, we
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arrive at the following maximal discrepancy function:

A(a; N) = Icne%),( Z xc(x 4+ na) —nVol(C)| . (1.3)
zeT? lsnsN

In 1923, Khintchine[Khi23| proved the following precise bounds for d = 1:

1 A(a; N)
,; o) =T N N)

is bounded for almost every o € T%, (1.4)

where ¢(n) is an arbitrary positive increasing function of n. The major tool in his
proof is the metrical theory of irrationals which mainly relies on continued fractions. In
1964, Schmidt|Sch64] obtained an upper bound of (InN)%'*¢ for d > 1 by using the
Erdés—Turan-Koksma inequality. But due to the absence of a continued fraction algo-
rithm in higher dimensions, the case of d > 1 was not completely solved until 1994 by
Beck|Bec94]. Beck’s result extended Khintchine’s precise zero-one law in to the case
of straight boxes in higher dimensions. Beck observed that, similar to the 1-dimensional
case, the Fourier series of the maximal discrepancy A(e; N) is in fact a sum of almost
pairwise independent terms of a, and the study of A(a; N) reduced to the analysis of the
small divisors of linear forms ||njaq + -+ + ngagl|. By employing “the second-moment
method”(See [Sch60,Sch64]), Beck showed that the contintued fraction algorithm used in
the 1-d case can be effectively substituted by precise estimations of the cardinality of
Fourier modes for which the divisors are restricted to small intervals. The improvement
of the critical factor of In IV is achieved by the cancellations of the positive parts with the

negative parts for the terms with nearly identical divisors.

In Chapter [3 going into a different direction in dimension 1, instead of irrational

rotations, we can consider the a-related d-linear form sequence {ZKKd kiai}1<k,<N,
—v = —Mvr =
1<i<d
whose discrepancy function relative to an interval [0, x) is defined as

D(e,z;N) = Z X[0,z) Z kioy | — N,
1<k;<N 1<i<d
1<i<d

and the maximal discrepancy function is defined similarly:

A(a; N) = max |D(e,z; N)|.

0<x<1

By generalizing Beck’s ideas to the small divisors nH?Zl |Inc;||, we obtain an almost opti-

mal upper bound for the maximal discrepancy of linear forms:



1.2. ABSOLUTE BOUNDS FOR TORAL TRANSLATIONS 21
Theorem 2. For any € > 0, there exist a full measure set of o € R%, such that
A(o; N) < C(a, €)(In N)? - (Inln N)max{3dite (1.5)
for some constant C(a,€) > 0, and
A(a;N) > (InN)4-Inln N (1.6)

for infinitely many N € N.

Compared with toral translations, the additional factor (Inln N)®®{4=12} in the case
of d—linear forms in our proof is needed to control the small divisors anzl |lncil|. An
interesting observation is that in the proof, there exists a duality between the case of toral
translations relative to d-dimensional straight boxes and the case of d-linear forms relative
to 1-dimensional intervals. The small divisors arising in the case of toral translations are
d-linear forms, and the small divisors in the case of linear forms are products of coordinates
of toral translations. By using this duality, we could simplify the proof for one case by
applying the Erdés—Turan-Koksma inequality to obtain a weaker version of the result of
its dual case, which achieves a faster estimation of the cardinality of dyadic sets for the
target case, which is an important step in both proofs.

In Chapter 4] following Beck’s work on straight boxes, we consider toral translations
relative to right triangles with straight legs (parallel to the sides of the torus) in T?. By
replacing B in with the set of straight right triangles with hypotenuse of slope T,
we can define similarly the corresponding maximal discrepancy function A(a, 7; N) for
straight right triangles. Here the main difficulty comes from the hypotenuse of the right
triangle. The inclination 7 shifts the divisors in the Fourier series of the discrepancy
function from nina(niay + noas — n3) to ni(n17 — n2)(n1a + neag — ng), which adds an
additional possibility for the factor |n17 — na| to be small. By generalizing Beck’s local
criterions to the new divisors, we obtain an almost optimal upper bound and the same

lower bound for the maximal discrepancies in the case of triangles:

Theorem 3. Fiz any € > 0, for almost every a € R? and almost every 7 € R, the
mazimal discrepancy Ao, 7; N) is essentially bounded from above by (In N)?(Inln N)2*¢,
but not by (InN)?Inln N. Specifically, there exits C(c,7,€) > 0, such that

A(a, 7;N) < C(a, 7,€)(In N)? - (Inln N)>Te, (1.7)
and there exist infinitely many N € N, such that
A(e,7;N) > (InN)? - Inln N. (1.8)

It is easy to see that the same bounds hold for almost every polygon in T2, simply
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by cutting the polygons into right triangles. Unfortunately, the statement does not give a
zero-one law as the results of Khintchine and Beck, the additional factor Inln N is needed
to control the small factor n17 — ny that arise from the hypotenuse of the triangle, which
does not occur in the case of straight rectangles. Note that when the slope 7 or the
translation vector v is Liouville, the divisors ni(ni7 —ng)(nia+ noag — ng) could be very
small, which easily breaks the logarithmic upper bound in the diophantine case. Therefore,
the restriction to “almost every 7 and almost every o’ is necessary. Higher-dimensional
polyhedra are expected to follow the same estimations but more involved calculations are
needed.

The case of discs is significantly more difficult and seems to be a dual problem to the
Gauss circle problem. If we could obtain a uniform upper bound for triangles of a specific
class of slopes, we can approximate the disc by triangles and obtain the upper bound N %“,
which corresponds to the classical upper bound R3¢ of the Gauss circle problem. While
the optimal bound for the error term in the Gauss circle problem is conjectured to be
between R3 and R%“, the optimal bound in our case, toral translations relative to balls,
is conjectured to be between N7 and N%‘“, since the result of Dolgopyat and Fayad|DF14]

already shows that the average magnitude of the discrepancy function is N i

1.3 Cylindrical cascades

One interesting setting in which discrepancy functions naturally appear is the study of
cylindrical cascades. Given a function A4 : T — R”, a cylindrical cascade above the
toral translation Tj, is defined as Wy a: T? x R — T4 x R, given by Wy a(z,y) =
(x + a,y + A(z)). When a is Diophantine and A is smooth, the linear cohomological
equation A(x) — [;4 A(u)du = —B(x + o) + B(x) has a smooth solution B, thus Wq 4 is
smoothly conjugated to the translation Wa,de A- An interesting case for A non-smooth is
when the components of A are zero-mean indicator functions of typical shapes in T¢, that
is, A = (A1,...,A;), where A; = x¢, — Vol(C;), and each C; is a typical shape such as a
box or a polytope. Here the Birkhoff sums of A; are precisely the ergodic deviations that
we previous discussed.

The cylindrical cascade Wq 4 can be seen as a deterministic random walk in R" driven
by the toral translation on the base T%, which makes it natural to study its recurrence and
ergodicity. For r = 1, the zero mean condition de A = 0 is both necessary and sufficient
for the walk W, 4 to be recurrent when « is irrational[Atk76|. For d = 1, we know that
when A is of zero-mean with bounded variation, the walk is recurrent due to the Denjoy-
Koksma inequality. We refer to [DF15], Section 8 for a more complete introduction for the
results in 1-d.

In higher dimensions, only recurrent and transient examples are known when d = 2
and C; are polytopes[CC09|. Chevallier and Conze[CC09| showed that for the walk of any
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base space to be recurrent, a sufficient condition is that the Birkhoff sums of A; grow more
slowly than (’)(nl/ ") along some subsequence N,, for most starting points. By using the L2-
estimation of the ergodic deviations of A, they showed that for almost every translation
vector «, the walk Wg 4 is recurrent for polytopes. In fact, we can see that from our
absolute bounds of the discrepancy function for triangles, the growth of Birkhoff sums of
A; at time N are at most of order (In V)2*¢, which also leads to recurrence by the criterion
of Chevallier and Conze.

The ergodicity of the walk W, 4 can be established if the Birkhoff sums of A become
increasingly well distributed over R" along some subsequence N,,, such that the translation
TN stays close to identity. This idea gives rise to the notion of essential values[Sch77],
which is the major tool for our construction of ergodic walks for rectangles. In Chapter
as a joint work with Fatna Abdedou, we build ergodic examples of the cylindrical cascades

on T2 x R by using Liouville translation vectors. Specifically, we have the following:

Theorem 4 (Abdedou-W). For almost every straight rectangle in T? with a corner at the
origin, let A be the centered indicator function of the rectangle, then there exists o Gs-dense

set of a, such that the cylindrical cascades W, 4 is ergodic on T2 xR.

The statement is for a Gs-dense set of « since Liouville conditions need to be imposed
on the translation vector to achieve ergodicity in our construction. Higher-dimensional
counterparts in T% x R” can be obtained similarly by the subgroup property of the essential
values, but again our method requires that the lengths of additional sides of the higher-
dimensional boxes to be Liouville when d > 2 or r > 1. Ergodic examples using polytopes
in T¢, d > 2, are more delicate due to their inclined sides, and their constructions are
still in progress. Although Liouville conditions seem to be unavoidable with our current
techniques, due to the slow divergence rate of the Birkhoff sum of A, i.e., the logarithmic
absolute upper bound for the maximal discrepancies in the case of polygons in Theorem

Bl ergodicity of the walk is expected for typical polytopes and typical translation vectors.
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Chapter 2

Multidimensional Degenerate

Actions - Convex Bodies

2.1 Introduction

In a d-dimensional torus, given a translation vector a = (as,. .., aq) € RY, we can consider
the dynamical system (T%, Ty,p), where p is the Haar measure on T? and T, is the
translation from T¢ — T¢ defined by T(x) = z + «, in the sense of modulo 1 for each
coordinate. A translation T, is called irrational if the real numbers 1, aq, ..., aq are linearly
independent over Q. Ergodic theory states that, for every irrational translation, and for
almost every starting point x, the number of visits of the orbit {T?(x) : n > 1} to a
measurable set C before time N has a ratio converging to the measure of the set Vol(C),
as N — oo. Omne object of interest is the discrepancy function, defined as the difference
of the actual number of visits in C before time N and the expected visits NVol(C). In
dimension 1, Kesten [Kes60,Kes62| proved that the discrepancy function for the circle
rotation relative to an interval, after being normalized by In N, converges to a Cauchy
distribution.

There are different ways to extend this result to higher dimensions, one way is to study
the random toral translation relative to higher dimensional counterparts of the interval,
such as boxes and balls (analytic convex bodies), both of which were studied by Dolgopyat
and Fayad in [DF14,DF12|. They showed that d-dimensional boxes behave similarly to 1-
dimensional intervals, i.e., the discrepancy function, normalized by (In N)¢, also converges
to a Cauchy distribution. They showed that for balls, the discrepancy function, normalized
by N(d-1)/2d converges to a distribution function defined over the product space of infinite
tori and the homogeneous space SL(d + 1,R)/SL(d + 1,Z). Their proof consists of a
combination of harmonic analysis of the discrepancy’s Fourier series probability, and an
important ingredient is the equidistribution of locally unstable submanifolds over the whole

space of unimodular lattices.
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In this chapter, we follow a similar approach as Dolgopyat and Fayad, but instead of
translations, we will consider the degenerate Z2 action in dimension d = 2 (see the definition
below) relative to strictly convex, symmetric, and analytic bodies. Given a convex body C,
we denote C, the rescaled bodies with ratio r > 0 by the homothety centered at the origin,
where 7 < 79 so that C, can fit inside the unit cube of R2. Let a = (a1, a0) € T2 be the

action vector, we consider the following discrepancy function:

De(r,z,o; N) = Z xe, (71 + nioq, v + naag) — N?Vol(C,.) (2.1)

0<n1<N-1
0<no<N-1

where x¢, is the indicator function of the set C,.

We will show that by decomposing the discrepancy function into 2 components, each

component would admit a limiting distribution after a suitable normalization, specifically:

2
De(ryz,a;N) = ZDC’J(r,:L“,a;N) (2.2)
d=1

where D ; represents the part of the Fourier series of D¢ with coeflicients of d non-zero
coordinate(s), whose definitions will be clearer after we introduce the Fourier series of D¢
in Section 3.

Our main result is the following:

Theorem 2.1. Let C be a symmetric, strictly convex analytic body that fits inside the unit
cube of R?, and De, D¢ 4 defined as in and . For d = 1,2, there exists a limiting
distribution for each Dcd(r,:z,oz) after a suitable normalization, specifically, we have 2
distinct cases:

(a) For d = 1, assume that (x, ) are uniformly distributed in T2 x T2, then for every
fized r, the random variable D¢ 1(r,x,c; N)/N converges in distribution as N — oo.

(b) For d = 2, for any b > a > 0, assume that (r,z,a) are uniformly distributed in
X = [a,b] x T? x T2, the random variable D¢ o(r, x, o N)/(T%N%) converges in distribution

as N — oo, and the limit distribution is independent of the interval |a,b].

The explicit forms of D 7 will be given in Proposition and Propositionof Section
2.

Remark. In part (a) of Theorem[2.1, D¢ 1/N has similar behaviors to the ergodic deviation
of a smooth function, in which case r does not need to be random to achieve a limiting
distribution. In part (b), Dec o is similar to the case of irrational traslations relative to balls
in [DF14,DF12|, where r needs to be random in order to achieve asymptotic independence

between variables in Sections 6.

Remark. Though we only treat the special case d = 2, it will be clear from the proof that

for higher dimensions d > 2, D ;_as1 can be treated in the same way as D¢ 1 in our case,
’ 2
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and Dy 7 a1 can be treated in the same way as Dc,2 in our case. For odd dimensions, the
’ 2

sum D, ar1 exhibits distinctly different behavior and unfortunately could not be dealt with
)

by using the same method as in this paper.

Plan of the Chapter. This chapter is organized as follows: In Section 2 we will present
explicit expressions for the limiting distributions in Theorem In Section 3 we introduce
the Fourier series of the discrepancy function, and we give a proof of Theorem (a) by
showing that D¢ 1 /N is, in fact, a coboundary. The three remaining sections are devoted to
the proof of Theorem [2.1] (b). In Section 4, we show that the main contribution of the sum
D¢ comes from the “averagely resonant” Fourier modes, similar to Section 3 in [DF14]. In
Section 5, we use the Dani correspondence principle to relate the main contributing terms
to the dynamics on the product spaces of lattices in R?. In Section 6, we show that the
new variables, introduced in Section 5, become asymptotically independent, and therefore
proving the existence of a limiting distribution in Theorem (b).

2.2 Limiting distributions

2.2.1 Limiting Distribution for the case d = 1

Proposition 2.1. Let C be an analytic, symmetric (with respect to both azes), strictly
convez body in R?, assume that (x, ) are uniformly distributed in T2 x T2, then for every

fized v, there exists a function De (7, a,B) : (T?)? = R, such that as N — oo,
DC,I(Tv T, Qg N)/N = DC,I,T(xa «, 5)

in distribution, where (z, o, B) is uniformly distributed on (T?)3. The limiting function has
the following form:
DC,LT(J/’)@»B) = Be, (o, B) — Be, (o, ),

where )
_ ag(r 2mi(k,z)
BCT (Ck,(]?) o Z e2mi(k,x) _ 16 ’
k#£0
and ag(r) = 0 when kiky # 0 and ax(r) = xc,.(k) when kika = 0. Here xc,.(k) =
ng Xe, (u)e‘zm(k’“) du represents the kth Fourier coefficient of xc,. We will prove in Lemma

that for almost every o € T2, the series Be, (o, x) converges in L?(T?) with respect to

the x-variable.

2.2.2 Limiting Distribution for the case d = 2

Notations. Let M = SL(2,R)/SL(2,Z) denote the space of 2-dimensional unimodular
lattices of R%. M? =T, copies M- Given L = (L1, Lo) € M? we denote by e (L;) the short-

est non-zero vector in L; that lies in R2 .— {v=(vi,v2) €ER?:v; >0o0r [v; =0 and vy >
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0]}, and ea(L;) the shortest vector in R2NL; among those which have the shortest nonzero
projection on the orthocomplement of the line generated by ej(L;). Clearly the vectors
e1(L;),ea(L;) are well defined outside a set of Haar measure 0. In fact, these vectors
generate the lattice (see |[Arnl3]). We denote e(L;) = (e1(L;), ea(Li)).

Let Z be the set of prime vectors m € Z% (i.e. the coordinates are coprime) with
positive first nonzero coordinate, and let Z’ be the subset of Z such that both coordinates

are strictly positive, i.e.,

Z':={p=(p1,p2) € Z : p1 >0 and py > 0}.
For later usage in Section 4 and 5, we define 22 = {m = (m!,m?),m’ € Z}, and let
T2OO _ (T2)2 X TZIXZQ

We denote elements of T9° by (0, b), where 8 = (61,60%),0° € T2, and b = (bp,m) (p,m)ez’x 22-
For m = (m!',m?) € 22 and L = (L1, L) € M?, we denote by (X,,i, Z,,i) = (m?, e(L;))
the vector mte;(L;) + mbea(L;). Given a prime vector p = (p1,p2) € Z’, we denote
Xpm = (11 X1, 02X,,2) and Ry m = || Xpm| the Euclidean norm of X .

Limiting distribution. Let C be a strictly convex body with smooth boundary. For each
vector £ € S!, we denote by K(¢) = K¢(€) the standard curvature of the plane curve 9C

at the unique point (&) € 0C where the unit outer normal vector is &.

Denote
My = M? x T5°,

and let p be the Haar measure on My. Define the following function on My

LeLob)=2 Y ZZK‘()

peZ\{O} pEZ’ mezZ?

y sin (27r (ﬁb m— é)) ﬁ cos (27T]5p2‘ (mi, 91)) sin (’/TppiZmi)'
|]5|%Rﬁ,m i—1 PiZmi

The above series converges almost surely, and the proof is essentially the same as

Proposition 8.1 in [DF14]. The key observation is that the random variables by, are

independent, so {, m defined below

1 (X sin (277 (pbp m — % coS 27rp10Z m! 62)) sin (mpp; Z i)
5 m= K2 < p,m) . )
= ) - 11

7 3 . )
peZ\{0} D] Rpm i=1 PiZmi

are also independent, hence we could use Kolmogorov’s three series theorem and transfer
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our study to the convergence of the variances:

> Var(&m).

pEZ' mez?

By taking d = 2 in the proof of Proposition 8.1 of [DF14], and replacing the original

summation by the summation over (p, m), in which case the term Rf,’m in the denominator

(of the variance) can be written as the product of two copies of R]%m, and each one can
be used to control the summation over m’, i = 1,2, since the summation is in 2 dimension
for each m?, any power strictly greater than 1 suffices.

The distribution D¢ o of Theorem can now be described by the level set of the

function above:

Proposition 2.2. If C is an analytic, symmetric, strictly convex body in R?, for any

b > a > 0, assume that (r,x,q) are uniformly distributed in X = [a,b] x T? x T2, and

denote A the normalized, Lebesque measure on X, then there exists a distribution function
Dea(z) : R —[0,1], we have

D N

lim AM(r,z,a) € [a,b] x T2 x T| 572(’:;“”“’;0‘ )

N—oo r2

<z} =Dca(2). (2.4)
where De 2(2) is giwven by:
DC,Q(Z) = N{(La&b) € My EC(L707b) < Z}a Vz €R.

Remark. Note that C only affects the term K~ in the definition of (2.3), if we scale
C by ratio v, we have K¢, (¢) = r~1Kc(€), so immediately we have the following rescaling

relation for L¢:
‘CCT(Lv 0, b) = \/"j ’ ‘CC(Lv 0, b)

for any r > 0; hence in Proposition[2.4| we have De, 2(z) = Dc2(2/+/T), which is consistent
with the factor \/r in the normalizer when we apply Theorem (b) to both C and C, with
the intervals [a,b] and [a/r,b/r] respectively, and using the relation Dg, o(r1,x,0;N) =
Deo(rri,z,a;N).

2.3 Fourier series and proof of Proposition [2.1

In this section, we first introduce the Fourier series of the discrepancy function, and then
we show that the first part of the discrepancy function, normalized by N, is a coboundary,
thus proving the existence of the limiting distribution of D¢ ;.

In following sections, € > 0 is fixed and can be arbitrarily small. The constants C' may

vary between inequalities but it does not depend on any variables other than the dimension
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d, which is fixed to 2 in our case.

2.3.1 Fourier series for convex bodies.

We introduce the Fourier series for indicator function of the smooth strictly convex body
C by using the asymptotic formula obtained in [Her62|. For each vector ¢ € R?, define its
maximal projection on 9C by P(t) = sup,cse(t, x), if C is of class C%, then we have the

following formula for the Fourier mode:

(2mit])xe(t) = p(C,t) — p(C, —t) (2.5)

with
p(C,t) = |t "2 K3 (t/[t]) " PO=%) L O(Jt| 7).

By a change of variable, we have x¢, (k) = 72Xc(rk), and by grouping the corresponding

positive and negative terms in the Fourier series we get that for a symmetric body:

Xeo () = Vol(C,) =72 > e(r) cos(2n(k, x)), (2.6)
kez2—{0}

cr(r) = di(r) + O(|k|~2),

o - Lylk,7)
(k) = K3 (k/|K) sin(2n(rP(R)) — )

2.3.2 Proof for the limiting distribution when d =1

We recall that Dg¢ ; is the part of the Fourier series that consists of the following modes
k = (k1,0) and (0, k2), where k; # 0, and ko # 0.

Since summing over ng (resp. ni) from 0 to N — 1 for the mode k = (k1,0) (resp.
k = (0,k2)) results in N multiplies of the same term, and by grouping the terms for

ny = ng = n, and thus D¢ ; takes the form:

N-1
Dei(r,z,a;N) =N Z Ac, (z + nay),

n=0

where

Ac, () = ) Re,(k1,0)e™™% % 7 e, (0, k)22 =y " ag(r)e’T),
k170 ka0 kez2\{0}
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here ag(r) = 0 when kiks # 0 and ag(r) = xe, (k) when kike = 0. We will show that

D¢ /N is a coboundary (see (2.7)), and thus obtain its limiting distribution.

Lemma 2.1. For almost every o € T2, the series defined by:

ar(r)
Be(anw) =) o ¢

k0

is convergent in L?(x), and we have

Ac,.(x +na) = Be, (o, + (n+ 1)«)

2mi(k,x)

Y

— Be, (o, x + na).

(2.7)

Proof. The identity (2.7) is a direct calculation. For the convergence of the series B¢, (o, x),

note that |xc, (k)| < C’]k|_%, we have

/ |BCT‘ a, T | dx < C Z ’k1’3 ezkalal _ 1‘2 + Z ‘k2‘3 ez27rk2a2 _ 1‘2

k170

Therefore, it suffices to show that the series
Z |Fi |3||k‘ ai/?

is convergent for almost every a; € T, i =1, 2.

(2.8)

For the following proof, let the constant C(a;,0) vary from line to line. By a standard

application of Borel-Cantelli Lemma, we have for almost every «; € T, every k; > 0 and

every 6 > 0 we have

k]| > ——CL000)

which gives

[T |kl < Clew, 0) I [k,

where In1 is defined as 1 for convenience.

Then (2.8) can be estimated as follows:

3 3 (In [&;]) "+
< C(O[Z,(S)
(il [ Rics |2 !k ail|* @) |ki‘2Hkiaz’”

| (I [ R )17

1

k;i#0 k;#0
< C(a,
o ,;0 [FilIn k) 2+25||k ail
< C 0517
E-10) Z || (I [ K5 |) 19| K

E;#£0

| T [z ||

(2.9)

(2.10)

(2.11)
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Note that the integral
1

7 Kics || ([ ][+

is convergent and its value is independent of k; € N*, hence

/ 1
T || (I | Ko ]) 10 || es o ||| I || K az|]|1+5 Z | ki ln|k:] 1"“5
ki 70 ki£0

is convergent, thus

1
k%:o [l (i [ )10 [ v || I [ B )[40

is convergent for almost every a; € T. The L? convergence of Be,(c,z) follows from the

convegence of (2.8) through (2.11)). O

Proof of Proposition

By (2.7), we have

Dei(r,z,a;N)
N

= Be, (o, + Na) — Be, (a, ).

Since (o, x) is uniformly distributed on T2 x T2, as N — oo, the random vector (o, z, 2 +
Na) converges to (a, x,3), where «, z, 8 are independent random variables that are uni-
formly distributed on T? x T2 x T?. This proves the limiting distribution for Dec1/N.

2.4 Non-resonant terms

This section is devoted to highlighting the modes with main contributions in the Fourier
series D¢ 2, the final goal is to arrive at the sum as an equivalent expression for our
Fourier series in terms of limiting distributions. Throughout Section 4, we will use the
formula since we restrict ourselves to the case symmetric shapes.

For k = (ki1,k2) and a = (a1, a2), we use the notation {k;a;} := kja; + I; where [; is
the unique integer such that —1/2 < kja; +1; < 1/2. To evaluate D¢ 2, we sum up term
by term in the Fourier expansion of xc, for ny, ng, and we will simplify by using the

summation formula

N-1 N-1 s (N
(A B)sin(¥B
g cos(A—l—nB):COS( i 2 B)sm(z )
sin &
n=0 2

The normalized term, i.e. divided by vr N, for the mode k becomes
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cos(2m(k, x) + 7(N — 1) (37 {kiai})) T2, sin(wN {kii })
N= T2, sin(m{kias})

f(rwrv Qa; N7 k) = Ck(?“)

9

(2.12)
where N2 is the remaining normalizer, since r2 gets cancelled out.
Since the sum De o(r, z,; N') consists of all-non-zero coordinates modes, the normal-

ized sum becomes the following:

A(T7x?a;N): Z f(’r?x7a;N’k:)’
keZ2:12_, ki#0

note that we have D¢ o(r,z,0; N) = VrN - A(r,z,o; N).
Step 1. This step shows that the modes outside the circle of radius N/e have a negligible
combined contribution. Given a set S, for a function h defined on (T2)2 x S, we denote

by ||h||2 the supremum of the L? norms ||h(-, s)|| over all s € S. Let

Al(r,m,a;N): Z f(’l",l’,Od;N,k)
k€Z2:V1<i<2, 0<|k;|<X

Lemma 2.2. We have
|A = Ayl < CeY? (2.13)

Proof. Note that

1 ; ey —i o 12
sin(m N (k;a;) 2 oimNkio; _ o—imNkia;
Sl o = il il R
T Sln(ﬂ'(k}iai)) T eimkio; _ p—imkioy
2
ei2nNkia; _ q 2 N-1
= - daZ — 61271’TL]€,L'017; dal — N’
6127rkiai —1 T E
T n=0

for every 1 <1 < d.
In the L? norm of A — Ay, because the integral over x kills the cross terms, only the

square terms remain, and note that |d, (k)| = (9(|k:|7%), we get that

1 1 1
A=A <ON?& > i < ONy =Ce
K[> ¢

O

Step 2. We show that, within the range of |k| < N/e, by taking out a small measure set of
«, the divisors admit a lower bound, thus the major contribution of the sum comes from
the set of resonant terms in S(N, a) (see (2.16])).

Let
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1
Ex= J {a€T2:31§i§2, In|7|{na;}| <€21} (2.14)
N N1
1<|n|< T
and .
By = U {ai eT: |nlil{nai}] < = } . (2.15)
1<n|< Y N
Note that
> 1
i €2 1
|En| <2/EY| <2 :O(@).
VI
Let
2 . N 3
S(N,Oé)z keZ:V1<i<2, 0< |ki’<*, |k‘l|4|{klal}| < -0 (216)
€ €e2N1
No(r,m,a;N) = Y f(r,z,0;N, k), (2.17)
keS(N,x)
We have
Lemma 2.3. We have
IA = Aslpa(re(t2—py)) < Ce'/? (2.18)

Proof. By (2.13) it is sufficient to show that ||A; — A2||%2(T2X(T2_EN)) < Ce. Note that
ouside Ey, we have N%\ki]%{kiai} > €!/2, for 1 < i < 2, this lowerbound is in use

throughout the following calculations.

We have o
A1 — A2||%2(T'ZX(TLEN)) < N Z A
|k|< &
with
A c? ! X da
k= Cg — , 3 .
T2 H?Zl{kiai} {31997 Iki\l\{kiai}lzezjvzl[}

Decompose Ay, into 2 parts,

2
A <) Ak, ),
j=1
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where A(k, j) denote the sum when the j—coordinate violates the condition in S(NV, «)

|

2.4.
pZ;l/ ({k; ozl} 2 {pic <NT|k; \4\{k1a7}|<(p1+1)62}
" Z>1/ Ty )2 v b sy 2239 (2.19)
Pj
= A(k,i,pi) Y Ak, j,p;),
pi>1 p;j>1
where the index i # j. For p; > 1 we define
(kyivps) = {os € T pied < N3 kil [{iail] < (i + D |
and for p; > 1, define
Py 1,3 (pj +1)
(kodom) = {5 < N ke < 0
Then )
€2 1
N k|7 7 62N4|l<: I3
Thus %le§2 le§
4 4 4 4
A(k7iapi) < 61( ‘ 1 )3 = 1| ’ ) (2'20)
(E2pENIMT ey
similarly,
B 2V2( N7k |3)2
Ak, jops) < (e1)( ‘ilk %) 2y |2,
e?pIN1|kj| 4
By using ¢ = O (WT?)), we obtain
2
2 1
1.3 3 N2
Ap < |1<;|3 e [] N4|k|4) < Cet—
=1 |k’2
Summing over k, we get
3.1 1
Z A < CezNz - < CeN,
< [Kl2
O

|K|< %

and the claim follows

Step 3. In fact, with the bounded range of {k;a;} in Step 2, we can show that the main
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contribution of the Fourier series comes from the modes of coordinates of order N. Let

N N 1
S(N,a) = {kEZQ:Vl <i<2 Né <kl <—, 1}, (2.21)
€ e“N1

As(r,z,o; N) = Z flryx,a; N, k). (2.22)
keS(N,a)

We have

Lemma 2.4.
IA = Aslp2(rex(2—py)) < Ce'/?

Proof. By (2.18)) it is sufficient to show that ||Az — AQH%Q(T?x(TLE < Ce. We have

N))

C A
183 = Aol Fairexremy S 37 D A
|[k|<Ne3

with

=c 1 ) da.
kl_[/-l-g {I{ OCZ} {k |1|{k Oéz} 2 }

NZ

Repeating the argument in the Lemma by replacing A(k,j,p;) in (2.19) with
A(k,i,p;i), and using the inequality (2.20)) we obtain

Summing over |k| < Ne3, we get

S Ap<cein: Y

|k|<Ne3 |k|<Ne3 |2

and the claim follows. O

Step 4. Now the error terms in the Fourier series can be safely removed. Introduce

. d
Fora,as Nk = 20 (0 s N 1)
c(r)
and let
Alr,z,o;N) = Z f(r,z,o; N, k). (2.23)
keS(N,a)

Since |¢, — di| = (’)(\k|_5) and e is fixed, we have
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Lemma 2.5.

o N C N _
18 = Alfernepy < D pEwE SOWT: (2.24)
SN<|k|<

Therefore, A and A admit the same limiting distribution if there exists one.

Step 5. Observe that when e is fixed, the sum in (2.23)) is limited to large k; and small
{kieu}|, i = 1,2. By |sin({kias}) — {kioi}| = O ({kiai}?’) =0 (|kzi\’%]\7*%), and with
the same calculation as in (2.24]), we can replace fand A by the following

cos(2m(k, z) + m(N — 1)(37_ {kioi})) T sin(7 N {kia:})
w22 [T, {kioi}

g(r,w,a;N,k):dk(T') :

Then we have the following lemma:

Lemma 2.6. To prove Proposition it suffices to prove that

A}im M(r,z,a) € [a,b] x T x T | Al'(r,z,a;N) < 2} = D(2) (2.25)
— 00
where
A = Z g(r,x,a; N, k) (2.26)
keU(N,a)

and U(N, a) is any subset of Z2 that contains S(N, ).

2.5 Geometry of the space of lattices

2.5.1. Following |Dan85|, Section 2, and |[DF14]|, Section 4, we show by Dani correspon-
dence that the set S'(N, ) corresponds to a set of short vectors in lattices in M? = M x M,
where the lattice takes the form (L;, L2), and L; € M = SL(2,R)/SL(2,Z), hence the

discrepancy function A’ can be seen as a function on the homogeneous space M?2.

Let
e’ 0 1 0
= 5 A . = .
9T ( 0 €T & o; 1

Consider the product lattice L(N, a) = L(N,a1) x L(N, ag), where L(N, a;) = gin N Ao, Z2.
For each k = (k1,k2) € Z2, we associate the vectors k; = k;(k;) = (k;,[;), where [; is the
unique interger such that —% < kjo; +1; < % We then denote

(Xi, Zz) = (kZ/N, N{k,a,}) = glnNAaiki (2.27)
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We have k € S(N, a) (see (2.21) if and only if :
1 1
é <Xl < - Xzl < 5 (2.28)
€ €

Recall the definition of the shortest vectors {e1(V,a;), ea(N,a;)} of L(N, ;) in Section
2. The following Lemma is essentially the same as Lemma 4.1 in [DF14], since the two

components of our product lattice space are independent in the following argument.

Lemma 2.7. For every € > 0 there exists K(¢) > 0 such that for a outside Ey, each
k e S’(N, ) corresponds to a unique pair of vectors (m',m?) € Z% x Z% such that for

i=1,2, |mi|| < K(e) and
glnNAaiki = m’iel (N, Oéi) + MQEQ(N, Ozi).

Conversely, for e > 0 fized and N large enough, o ¢ En implies that for each pair of vectors
(m!', m?) € Z% x Z2, where |m|| < K(¢), i = 1,2, there exists a unique k = (ky, ko) € Z2
such that for i =1,2,

gin N A K = (m', e(N, ;) = mier(N, a;) + myea(N, o).
Denote U(N, i, €) the set of k = (ki, ka) € Z2 that corresponds to the set of pairs of vectors
V(N,a,€) = {(m',m?) € 22 x Z% | |m}| < K(e), i =1,2}. (2.29)

Remark. Note that m* = 0 iff k; = 0, hence in particular, each k € S'(N, «) corresponds

to a unique pair of vectors m = (m',m?) € (Z?\ {0})%.

Proof. From we can deduce that k& € S(N, «) implies g, NAq, ki is shorter that
R(e) = e % for i = 1,2. For each L; = L(N, «), the short vectors ej(L;),e2(L;) form
a basis in R?, hence the norm ||z| is equivalent to the norm || >i—12iei(Li)][. As a
consequence, for every L = (Li, Lg), there exists K (L), such that if m? € Z? satisfies
|m?|| > K(L), we have ||(m?, e(L;))|| > R(e). Now we show that the choice of K(L) can
be uniform for the set of lattices {L € M? | H?Zl L(N,«a;),a ¢ En}, it is enough to show

that the set )

2
(TTL(V,00).a ¢ Ex} = [[{L(N, i), i ¢ EY} (2.30)
i=1 i=1

is precompact, see (2.15) for the definition of E](\?, or equivalently, that each component
is precompact. By the definition of E](\zf) (see (2.15), when «; ¢ E](\Z,)7 if |X;| < €, then
| Zi| > e 1. For any | € Z, we have |N(kja; +1)| > |[N({kia;}| = |Zi|, thus for all vectors
in L;, either |X;| or |Z;| admits a lower bound § = 6(¢) > 0, take d(e) = € for example.

Therefore, all vectors in L; are longer than §. By the Mahler compactness criterion for
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lattices|Rag72|, the set is precompact. This shows that in fact, the constant K (L)
depends only on €, and therefore proves the first part of the lemma.

For the second part of the lemma, let ¢ > 0 be fixed and let N be much greater
than K(e). If |mi|| < K(e), by the equivalence between two norms, we have that
|(m?, e(N, a;))|| is bounded by some C(e,«;), which is much smaller than N. For ev-
ery m' € Z2, we have (m’, e(N, o)) = g vAao, ki for some unique k; = (k;, l;) € Z2. This
shows that ZZ = l;, where [; satisfies —% < ki + 1; < % Indeed, if l~Z is not equal to [;,
then |N(kja; + ;)| > N/2, contradicting the fact that ||gi, vAa,ksl| = ||(m?, e(N, ;)| is
much smaller than N. Therefore, we have l; = l;, ki = k;, which proves the unicity of the
vector k = (k1, ko) € Z2.

O

2.5.2. For n’ € Z2, a; € T, we define the coordinates of the corresponding vector as

and define n = (n',n?) € Z2 x 2%, Xp = (X,;1, X,;2) € R? and Ry, = || Xy|. We introduce
an equivalent function to g(r,x,«; N, k) with n as a variable:
dr(N,n) cos(2r N (Xn,z) + 78 (37, Z,) [T, sin(nZ,:)

h(’l”,l‘,()é;N,n): 3 5
R2TTA, Zi

with
d,(N,n) = %K_%(XH/RH) sin(27(rN P(Xn) — é)).

From Lemma we know that for a ¢ Ey,

> hir,z, 0 Nym) = > g(r,z,0; N, k), (2.32)

n=(nl,n2)eV(N,a,e) keU(N,a,e)

where U(N, a,€) D S(N, a).

Now we will reformulate the sum above as a function defined on the lattice space. If
we restrict ourselves to prime vectors n € Z? x Z2, the variables rNP(Xy) mod 1 will
become independent random variables that are uniformly distributed on T as N — oo.
In fact, any n = (n',n?) € (Z2\ {0})? could be rewritten as p(pym?!, pom?), where p is the
signed greatest common divisor such that the first coordinate of (pym!, pam?) is positive,

2

p = (p1,p2) € Z with strictly positive first entry, and m', m? are in Z. Since all the

vectors are multiples of the prime ones, we introduce
Xp7m = (ple17p2Xm2) (233)

and Ry m = || Xpmll-
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Now we can express our discrepancy function using prime vectors. Define

q(?",.f,Oé;N, mapvp) =

dy (N, p, ) cos (2mp (322, (pi (a7 (e, N)) ) + w5525 (2 (i) ) ) TTE sin (wppi Zy)

g 2
P12 Rpm [ Ti—1 (PiZi)

(2.34)
where . ¥ ,
dr(N,m,p,p) = ﬁK_% (}i;:::) sin(2n (prNP(Xpm) — §))’
and
vilo, z, N) = Nzxj(er1 (N, i), e21(N, o)), (2.35)

where e;; is the jy;, coordinate of the short vector e;.

By using symmetry of the convex body, for p™ = (p1, p2) and p~ = (p1, —p2), we have
K (Xt m/Rytm) = K (Xp- m/Ry- m) and P(X,+ m) = P(X,- ), we can regroup the

terms for p* and p~ for ¢(r, z,a; N, m, p,p), hence we arrive at

¢ (r,z,0; N,m,p,p) =

. dr(Na m)p>ﬁ) ﬁ COs (27T]5pi (mlv Vi (aa z, N)) + ﬂ—%pplzml) sin (Wﬁpzzml)
piZmi

2

3
PIZREm =1

Recall the definition of Z in Notations in Section 2, and that Z? = Z x Z. Define
Z.={m e 2Z?: |m'| < K(e); i = 1,2}. Since the Z consists of the primitive vectors
with positive first coordinate, we need to sum over both the positive and negative p’s. By
Lemma and the identity we have the following proposition:

Proposition 2.3. Assume that (r,x,a) are uniformly distributed in X = [a,b] x T? x T?,
if the sum

> > D alrwa;Nym,p,p). (2.36)

peZ\{0} p€EZ' meZ,

converge to the some low in distribution as N — oo and then € — 0, then the normalized

discrepancy function D¢ o in (2.4) of Theorem 1 converges to the same law.

2.5.3. Uniform distribution of unstable submanifold A,. For each i, A,, is the
unstable submanifold under the geodesic flow gr and will become equidistributed over the
whole manifold M as T — N, naturally the same uniform distribution law of holds in the

finite product space M2, hence we have the following proposition(see [MS10], Theorem
5.3):

Proposition 2.4. Denote by p the Haar measure on M?. If ® : (R> x R?)2 x R? = R is
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a bounded continuous function, then

lim O(e(L(N,a1)),e(L(N,a2)), a)do

N—oo J12

(2.37)
= [ @e(La),e(La) @)dulLy x Lo)da
M?2xT?

2.6 Oscillating terms

In this section we will prove that typical variables appeared in the sum will behave
like independent uniformly distributed random variables. We denote by uo the distribution
of (e(L1),e(Ls)) when L = (L1, Ls) is distributed according to Haar measure on M? =
[15 copies SL(2,R)/SL(2,Z). We denote by Az the Haar measure on (T2)2 x T2 %2,

The main result of this section is the following, from which the main theorem follows:

Proposition 2.5. Assume that (z,c,r) are uniformly distributed on T? x T2 x [a, b], then

the following random variables

e(N,aa), e(N,a2), ({yul{ra}), {2} {r22}), {Apm} : p€Z' me 2}

where Apm = rNP(Xpm), (yi1,72) = Yi(o,z,N) € R?, defined as in [2.35) fori= 1,2,
and the bracket {...} stands for the fractional part of the variable, converge in distribution

to pa X Age as N — 00.

We will prove Proposition in Section 2.6.2. In the next section, we first prove that
for different vectors (p(l),m(l)),. .. ,(p(K),m(K)) in 2/ x 22, {P(Xp(i)’m(i))}{il are typi-

cally independent over Q.

2.6.1. Exceptionally in this subsection we use the lower index for m; to represent a
vector in Z2, not to be confused with the coordinates in the Notations in section 2. For
m = (my,mg) € Z% x Z? with m; € Z2, and p = (p1, p2) € Z2, p1 > 1, define the function
Qpm : RPXR? = R as Qpm(z1,22) = P({pima, 21), (pama, 22)), where z; = (21, 2i2) € R

is a vector, and the bracket (-,-) means euclidean inner product in R?.

Proposition 2.6. For different vectors (p(l), m(l)),. .. ,(p(K), m(K)) in Z'x< 2%, ifly, ... lg

are such that

K
Z LiQ i) m) =0, (2.38)
i=1

thenl;, =0 fori=1,... K.

Proof. We adapt the proof for Lemma 5.2 and Proposition 5.4 in [DF14] to our case. It is

not too hard to see the following sublemma (see Lemma 5.2 in [DF14]):
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Sublemma 2.8. The function P is real analytic on and not equal to a polynomial on

(R\ {0})2.  Similarly, Qpm is real analytic on and not equal to a polynomial on (R \

{0h)? x (R\{0}).

_ 12142 t ¢ : ¢ t -
Proof. Note that P(t1,t2) = \/t{ + tQP(\/t?th%, \/t%ZTt%) Since P(\/tflftg’ \/I;Tt%) is bounded,
if P is a polynomial in ¢; or ts, the degree of ¢; or t2 is at most 1. But this is impossible

if t1 and to are non-zero, because P is strictly positive and non constant. The proof for

(Qp,m is similar. O

Let S, denote the partiel sum of the terms with the same m®:

S = Z LiQpi) m-

First we prove that all these partial sums S must be zero. Let z1 = day + 051, where

m(%)
o = (all,alg) B1 = (B11, B12) € R?, similarly define zo = §as + 6'B. Fix B; such that
(Bj,m ) # 0, for j = 1,2 and all 1 < i < K, and assume that <mg),a1> # 0 for all

1<4 S K. we have z1; = dou; + 061, and 295 = 0’ + 0'525, j = 1,2, and

(@) ()
Q1) ) (21, 22) Hp aj)| | P| 0+ MQ,i(V—{—MG’ ,
ptt,m J (4) (3)
mi’, o)l [(my”, az)
(2.39)

where the sign =+ in front of § (¢’ resp.) takes the same sign as <m¥), a1) ((méi)7 Q) Tesp.).
Fix all the other variables, expand the entire sum (2.38) in powers series of 6 and then 6,

and consider the coefficient of #26"2, we have:

K 2 B >
> (H J - >af8§P(i(5,i§’) = 0. (2.40)
=1

= 7aj>|

Since for j = 1,2, all mgi)’s are prime vectors in Z2, we can choose a; such that for one
value of my) g-i), ;)| is arbitrarily small, while for other values of m( s, [(m; (k) , )|

admit a uniform lower bound. Thus the sum of ;@) y¢) with identical mg) must be

» [(m

zero. Hence we have that S must be zero.

m(?)
Now we assume that all m(® are the same, we will prove that the partial sum with

()

the greatest p;’ is zero. For the sake of simplicity, we assume that m(l) (1,0) and

mg) (1,0). First we suppose that z91 # 0, choose j such that p( 7
()
all p;’, then

is the greatest among

. . . (4) (4)
Qp@‘),m(z‘)(zh z2) = P(pgl)zupgb)zm) = Pg])P <p(1])2117 p?j)221> )
by
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Consider the n-th partial derivative of Q) 5 with respect to z11, then

p(z) m(

o ) e (20 2.

- Q) m (21, 22) (pgj)> "1 92y, 7)1 (%2t

p 1j

()"

Since Tt < 1 for all 4 # j, we can take n sufficiently large by analyticity of P, then
Py

l; becomes the dominant coefficient in the linear combination of n-th derivatives, we must

(d) -

have the linear combination of terms of identical maximal p;’’ is zero. By repeating this

(4)

procedure for p,’, we can deduce that the coefficient /; in front the term of that has the

greatest pgi) among those having the greatest pgi) is zero. Inductively, all coefficients [; are

Zero. O

By Proposition[2.6] we can deduce the following: if we take a lattice L € M? and let z; =
(e11(Li), e21(Ls)), @ = 1,2, then P (Xpm(L)) = P((pim1, 21), (pam2, 22)) = Qpm(z1, 22)-
By analyticity, for any different (p(l), m(l)) e ,(p(K), m(K)) in 2’ x 22, if not all numbers

l; are zero, then we have

K
1% (L : ZliP(Xp(i),m(i)(L)) = 0) =0. (241)
=1

Now by Proposition [2.4] we have that

mes (a eT? .

ase — 0, N = .

Zl P( 2 m) (LN, a)))

< e> —0 (2.42)

2.6.2. Proof of Proposition Take integers ni1,n21, N2, N22, {lp’m}pezlymeze7 where
lpm are non-zero only for finitely many (p,m), and a function ® : (R? x R%)?2 — R of

compact support. It remains to show that

2

/// L(N, 1)), e(L(N, a2))exp | 2mi | Y (njyn +njpv2) + >, lpmApm

j:1 pGZ’,mEZe

2 25 (N1 tnans2) gy / > Lpm lpmApm g 4

TZ/ % Ze

dxdadr — L ®(e(L1),e(L2))du(L) /I’Qd
(2.43)

as N — oo.

Proof. This proof is very close to the proof of Proposition 5.1 in [DF14], it suffice to rewrite
the original proof with the new variables and use Proposition and (2.42)). If for all j
and p,m, n;; =0, njo =0 and [, m =0, (2.43) is a special case of (2.37). Then it suffice
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to prove (2.43) in the case that at least some n; or some [, m are non-zero, in which case
the right-hand side of (2.43)) is zero, and it reduces to the following:

2
/ / / O(e(L(N, 1)), e(L(N, ag)exp |2mi | Y (njyn + njevie) + Y. lpmApm | |dzdadr
j:l pEZ’,mEZe
—0
(2.44)

If nj; # 0 for at least one j, recall that v;(a,z, N) = Nzj(e11(N, o), ea1(N, ), then
the coefficient in front of z; in Zj(njl’yjl + njov52) is N(njiei1(N, o) + njoear (N, o )).
Note that the coordinates e11 (N, o) and e (N, o;) are typically Z-independent outside a
zero measure set of ;. Hence (2.37) implies that

1
mes <aj €T :|njien (N, a;) + njea (N, )| < \/N> =0 (2.45)

as N — oo. This limit states that most a; will not allow the coefficient in front of z; to be
too small, then the integral of (2.44)) can be decomposed into two parts, LHS = I + I,
where I corresponds to the part of integral for a; with |njie11(V, o) + njoear (N, aj)| <

\/% and I the part for a; with |njie11(N, a;) + njzea (N, ;)| > \/Lﬁ Then

1
I1] < Const(®)mes (a- eT:|njie11 (N, o) +njoean (N, ;)| < )
’ | ( ) J | J ( J) J ( ])| \/N
so it can be arbitrarily small as N — oo by (2.45) . For Iy, since the coefficient of x;
is not too small, we use integration by parts with respect to x; to achieve the following

estimation:

This proves the case where not all n;; vanish, the case where not all n;2 vanish is the same.

Similarly, if there exists some (p, m), such that [, m is non-zero, we can use and
integrate with respect to r to obtain , using the same decomposition and integration
techniques. O

2.6.3. Proof of Theorem [2.1((b). Combining Proposition and Proposition [2.5] by
letting N — oo and then € — 0, we can subsitute the variables in (2.36)) by uniformly
distribtuted random variables on the infinite tori, thus we obtain Theorem [2.1(b) and

Proposition



Chapter 3

Absolute Bounds - Linear Form

Sequences

3.1 Introduction

Given an irrational number o € R, the irrational rotation T, over T = (R/Z) = [0,1) is
defined by x — =+« mod 1 for x € T. By Weyl’s criterion (see [DT06], section 1.2.1),
the sequence {na mod 1}1<,<ny becomes equidistributed over T as N — oo, i.e., for any
interval B C T,

N
Ln=1 XB(n0) Vol(B), N — oc.

N
To measure the rate of convergence, we introduce the discrepancy function defined as the

difference between the actual number of hits in B before time N and the expected number
of hits N - Vol(B):
N

Dp(a; N) = ZXB(”CY mod 1) — NVol(B).

n=1

In 1920s, Khintchine [Khi23| proved that for any e > 0, for almost every irrational

rotation T,, the maximal discrepancy relative to all possible intervals in [0, 1):
A(a; N) = max |D a; N
(a; N) max, [ Djo,z) (a; N)|

is exactly between In N-Inln N and C(«, €)-In N(Inln N)'*€. His proof used the continued
fraction algorithm for irrationals. Due to the absence of the continued fraction algorithm in
higher dimensions, the research about the higher-dimensional counterpart of Khintchine’s
theorem proved to be difficult. Schmidt [Sch64]| proved that the maximal discrepancy

A(a; N)(see the definition below) in dimension k has an upper bound of C/(a, €)(In NV )*+1+e
for almost every a € RF, by using the Erdés-Turan-Koksma inequality, In 1994, by a

45
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suprising method which consists of a combination of Fourier analysis, the “second-moment
method” and combinatorics, J. Beck|Bec94| successfully got rid of the extra In N factor

and proved the following multidimensional analogue of Khintchine’s theorem:

Theorem 3.1. Let k > 2, a = (ay,...,a;) € R* be the translation vector, and B(x) =
[0,21) % --- x [0,2) C [0,1)*, define the ergodic discrepancy:

(a,x;m) Z XB(x — mVol(B(x))

1<n<m

and the mazimal discrepancy:

A(a;N)= max |[D(a,x;m)|.
1<m<N
x € [0,1]¢

Then for arbitray positive increasing function p(n) of n,

A(a;N) < (InN)* - p(Inln N) <= Z o (3.1)
n=1

for almost every a € R¥, where < denotes the Vinogradov symbol, e.g. f(N) < g(N)

means that |f(N)| < c-g(N) for all N with a uniform constant c.

In this chapter, we consider the sequence of linear forms {Zl<i<d kio; mod 1}1<k,<N
T i<i<d
relative to intervals in [0, 1). Define the ergodic discrepancy:

D(a,xz;N) = Z X[0,2) Z kio; mod 1| — N,
1<k;<N 1<i<d
1<i<d

and the maximal discrepancy:

A(a; N) = max, |D(at, z; N)|.

o<z

The term N is the expected value of the number of terms in the sequence {ZKKd iy } 1<k <N
1<i<d
whose fractional parts visit the interval [0, x).

The main result of this chapter is the following:

Theorem 3.2. Let p(n) be an arbilray positive increasing function of n, then for almost

every a € R, we have:

> (1) <o = A(a;N) < (InN)?. pmax{3d} 1y In N), (3.2)
n

n=1
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2 90(1?2) =00 = Al N) > (I N)? - p(InnN) i.o. | (3:3)
n=1

where i.0. stands for infinitely often for N, and the constant in (3.2) depends on o

Remark. Our result successfully keep the main factor (In N)?, but due to an absence
of a second moment estimation as in Beck|Bec94], we used an Ly estimation, and the
additional factor p(Inln N)max{z’d_l} 1s needed in our proof for controlling the small divisor
n Tz Inell

This chapter is organized as the following: in Section 2, for the convenience of following
estimations, we transform the ergodic discrepancy to the Fourier series using Poisson’s
summation formula. In Section 3 we estimate the contribution of the "tail" of the Fourier
series, i.e. the high frequency modes. Section 4 and 5 deal with the main part of the
discrepancy, Section 4 is about the constant part and Section 5 deals with the exponential
part, both of which will be properly defined later. Combining the section 3-5, we have an

overall estimation of the discrepancy, which gives the desired result above.

3.2 Poisson’s summation formula

In this section, following |[Bec94|, we use the Poisson formula to transform the ergodic
discrepancy into a Fourier series. The main result of this section, Proposition gives
a better version of the Fourier series by taking a roof-like average, which has better con-
vergent properties. First we adopt a heuristic way to obtain a formal Fourier series of the
ergodic discrepancy. By the Poisson formula, without considering possible problems with

convergence, we can write the ergodic sum D(a,x; N) as the following formal series:

1 — e2miniz d 1— e—27riN(n1ai—m+1)

D(e,z; N) = i%t? Z

2™ . 2w (nyo; — ny
nGZd+1\{O} 1 i—1 ( 1¢g z+1)

where the term (1 — e2™™%)/(27n,) is interpreted as —iz when n; = 0, and similarly
(1 — e 2miN(mai—ni11)) /(97 (nyey; — ny11)) is interpreted as iN.

To see this, note that the condition: 0 < {> ., kio;} < x is equivalent to Im € Z
such that: o

0< Z kio, —m < x;
1<i<d

1<k <N;

Consider the lattice inside R*1,

> ki —mi ki, kg | (B kam) € 205
1<i<d
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note that the fractional part of ;. ; kic; lying in [0, x) is equivalent to the lattice point
inside box

B=[0,z)x ][] (0,N].

d copies

So the sum becomes

Z X[O,z) Z k:,-oz,- mod 1 = Z XB Z kiai —m, kl, ey k:d

N 1<i<d (k1,...,kq,m)€Zd+1 1<i<d
d

On the other hand, we see that:

ar oy ... oag —1 kq
1 0 0 0 ko
Zkiai_m: 0 1 ... 0 O0f.-[:]=A-y
1<i<d : - : : ky
0 0 1 0 m
where
a1 oo g —1 k1
1 0 0 0 ko
A=|0 1 0 0], y=|":
: : kq
0 0 1 0 m

Apply the Poisson formula to the function f(y) = xg(A -y), y = (k1,...,kq,m) €
Z41 we have

Y oxsAy)= > fy)

yezd+1 yezd+1
§ : / 727riu-ydy
vezi+1 /R i
§ : A y —27r11/ ydy
ezd+1/R “
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Integrate with respect to each coordinate of z and we get

D(a,z;N) = Y f(y)

yezd+l

1— e27rin1x d 1— e—27riN(n1ai—m+1)

— id+1 Z 5

neZd+1\{0}

™y 2w (n1ay — nig1)

In fact, in order to avoid technical problems with the convergence, we will not study
D(a, z; N) directly, instead, we will follow Beck|Bec94| and use a special weighted average

of D(a,x; N) over a W neighborhood. To this end, we oscillate the target interval [0, x)

with an amplitude of and also the range for summation {1,..., N} with amplitude of

Nd7
2. Specifically, let u = (ug,...,ug+1), 0+ N = (ug + N, ..., ugr1 + N), and define :

D(a;a,b;u,u+ N) = Z X[a.b) Z kioy mod 1| —N%b—a) (3.4)
Ujp1 <k <NA4uip1 1<i<d
1<i<d

and define the ﬁ average:

s (0 [ [ )5

x D(a;up,xz +up;u,u+ N)duydug . . . dugy.

Using the Féjer kernel identity

2 . 2
Nt /Nd (1_Nd|yr>emydy: sin (27 577
2 Joz 2 2m

1 [? I\ orik sin 27k 2

oy ]. - ™ yd =

2 / 2( 9 )¢ W ok
We arrive at:

2
= . 1 — e2mime (sin 27 (=)
D(a,z; N) =i"*t >~ 97y ( o (u)d )

nezdtl
f[ 1 — e—2miN(ni;—nii1) sin 27 (nyq — nig1) 2
i—1 27T(TL10[1' - ni+1) 27‘(’(1110%' - TLZ'+1)
We claim that if D(a,z; N) is bounded from above by (In N)4p®!(Inln N), then so is
D(a,z; N).
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Proposition 3.1. For almost every o € [0,1)%, we have

|D(ev,z; N) — D(at,z; N)| < (In N,

Proof. Note that we have the following identity

1
Leb{ a € [0,1)4 Z ki || <

‘ d/2 1+e
1<i<d 1<i<d
d/2 14€”
1<i<d 1<i<d

Since the right hand side of the identity above is summable over k € Z¢ such that k > 1,

by a standard application of Borel-Cantelli Lemma, for almost every a € [0,1)?, there
exists a constant C'(a) > 0, and every k = (ki,...,kq) € Z% such that for |k| > 1, we

have:

C(a)
Z ki > /2 Tre:
1<i%d 1<i<d

Therefore, || Y1 <;cqkici| > 1/(N(In N)¥€) for [k| > 1 such that —2 < ky,..., kg <
N +2. Since the numbers of elements of the sequence {Y ;-4 kia;} which lie inside [0, z)
and [-2/N9, z +2/N9) differ only by the number of elements which lie inside the intervals
[—2/N?,0) and [z, z+2/N9), and the “gap” between two different elements of the sequence
is at least 1/(N%(In N)1*€), by using the Dirichlet principle, we have

D(a;up,x +u;u,u+ N) = D(a,z; N) + O ((lnN)Hé) ,

for almost every a € [0,1)%, and every uy € [-2/N% 2/N9, uz,u3 € [~2,2]. The constant
above only depend on « and ¢, therefore the same bound hold after integration over u;
and u. O

By Proposition we can now shift our attention to the asymptotic behavior of

D(a, z; N), which has better convergence property as shown in Section 3.
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3.3 Estimating the "tail" of the discrepancy function

This section is devoted to estimating the "tail" of D(«, z; N), note that D(c,x; N) is a
sum of the products (where n € Z41\0)

. 2
o) L (e 00
n,r o

2mny 2m (=) (36)
ﬁ 727”N(n10” nit1) <sin 271’(??,16% — n,'+1)>2
i—1 27T nlaz — nH_l) 27T(7”L105i — ni+1)
let:
Dy(a,a;N) = > f(n,z,a),
neUy(a;N)
where
1< |n| < N4,
nio; — n; =||niayl|, 1 <i<d
Us(a; N) = { n e 24+ I y ] = o] (3.7)
| [ il > (In V)
i=1

|| || denotes the distance to the closest integer, and s is a large enough but fixed integer
to be determined later(see Lemma [3.7)).

The main result of this section is the following:

Proposition 3.2. Let o(n) be a positive increasing function such that > o° < 00,

n=1 <p(
then for almost every a € [0,1]%, we have

Dy(e,2;N) — D(et,z, N)| < (In N)? max{3,d} (1 In N
¥

To prove Proposition , we need to control the components of the difference Dy — D
step by step.

3.3.1 Estimation for the sum when |n,| is large.

First we will show that the sum of the terms when |n4] is large does not contribute much.
Define
Di(a,z; N) anxa (3.8)

where

U(N) = {n € Z441\{0} : |n1| < N4In N)¥}

We show the following:
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Proposition 3.3. For almost every a € R we have
| D1(a, z; N) = D(a, ; N)| = O(1),

where O(1) represents an absolute bound which may depend on a, but does not depend on

z or N.

Proof. We will bound individual terms in f(n,x, a) with different methods according to

their magnitudes.

When |nia; — ni1] < 1/2 or |ny/N?| < 1, i.e., small, we use the bound

<1.

sin(27r(n1ai - ni+1)) ‘
271'(7110@' - ’n/iJrl)

and
sin(27(§4)
N

<1.
27r(N—g) -

When |nja; — nir1] > 1/2 or |ni /N9 > 1, i.e., large, we bound the numerator by 1,

that is,
sin(2m(nio; — niy1)) 1

< .
27T(TL10(,L' — ni+1) - 27T‘TL10£1' — N4l

and

sin(27 (7)) - 1
2n(§a) |~ 27lfal

By using the above inequalities, we can bound the partial sums where the terms have
zero or one large factor of |nja; — miy1|. For partial sums where the terms have two or
more large factors of [nyja; — niy1|, they are even smaller and thus can be bounded by the
partial sums with only one large factor of |nja; — nj+1|, the same way as Dlyj < Dl,o as
shown with details in the inequality (3.10).

we have the following upper bound, (see the explanation after the definition of Uy ;):

d
[Da(ev, 23 N) = D(e,z; N)| < Do+ ) D (3.9)
j=1
where d
= N2d 1
D= > ell
nGUl,O(a;N) ‘n1| i=1 |nlal - nH_l‘
where

1
Ul,()(a;N): {nEZd+1 : |n1| >Nd(1nN)d, |n1ai—ni+1| < 5, 1§i§d},
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and
2 1
Dui= Z 11
nel (o ’ 1|3 1<¢<d ‘nlaz - n7,+1| ]nlaj — nj+1’d+1’
i#]
where

U jla;N) = {n c Z4+1 . Ini| > Nd(lnN)d, |n1o; — njg1] < 5 i #J, nioy —njp| > o

Define ro, = [|n1c; — ni+1]], 1 < i < d, we have that for 1 < j <d,

N2d 1 s
D < < Dy, 3.10
D D S 1 et sk UL
Ta, =1 n e zd+1 . 1<i<d

7
In1| > N(In N)¢ #i
\nlai —m;+1| < 1/2

i
Therefore it suffices to show that Dy = O(1), we will first prove a lemma:

Lemma 3.1. Let p(n) be a positive increasing function such that > 7, ﬁ < 00, then

N

for almost every o € RY, the sum
o0

2 —

=z np(Inn) I Tizy (lnaille(] T [lnal]])

cConverges.

Proof. Note that the integral

1
J(n) = do
" /[0,1}‘1 [T (Inaslle (| In Ines )

o0
is finite and independent of n, the series 22 m also converges, so the integral
n=

[e.e]

1 = J(n)
da = — 3.11
/[(Ll]d (,; np(lnn) [T, ([naille(| o Hnaz'|||))> Zz ng(Inn) 240

n=

is finite. Therefore we have that the series
o

2 —

=z () [Timy (Inalle (| In flnail]]))

converges for almost every o € [0, 1]¢ and ever ¢ > 0, the periodicity of || - || gives the result

for almost every a € R%. O
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(e8]
Continuing with the proof for Proposition since Y 1/n? = O(1), by Borel-Cantelli
n=1

Lemma, we have for almost every a € R?,

1
||navi]| Zﬁ’ 1<i<d

for all but finitely many n € N, or equivalently,

IIn ||na;l|| <2Inn, 1<i<d, (3.12)

for all but finitely many n € N*.

Take ¢(n) = n'*¢ where € > 0 is small, then D; ¢ can be estimated as follows:

_ 1 1
D= 2.

2 d
n1>Nd(In N)d ni Hizl ||n1al||

< Y 1 1
n>Nd(In N)d (Inn) @D [T [nay||

1
oyt 1l m) T (i ([ i)

<

o0

<> !

= Inle(inn) T, (lnaille(| 1n [nailll)
=0(1),

finishing the proof. O

3.3.2 Estimation for the sum when |n;«; —n;,4| is larger than 1/2 for one

of 1 <i<d.
Let
DQ(OC,JJ;N): Z f(nvxaa)
nelUsz(o;N)
where n = (nq,...,ng41) satisfies
n| < N¢(InN)<,
Us(a; N) = {n e z% N\ {0} Il ( ) _ (3.13)
[n1ei — ni1| = [lmall, 1<i<d
We show that D; can be replaced by Ds:
Proposition 3.4. Let p(n) be a positive increasing function such that Y 7, ﬁ < 00,

then for almost every a € [0,1]%, we have

|Da(ce, ;3 N) — Dy(ax, 25 N)| < (In N)p%(In1n N)
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Proof. Since we can bound those n € Uy(a; N) for which |nja; — njy1| > 1/2 holds for
two or more indices ¢ by those n € U;(a; N) for which [nja; — ni41| > 1/2 holds for just
one index, as in (3.10), we have the following inequality:

d
_ _ 1 1 1
DQ(O(,CL‘;N)—Dl(OL,m;N) < T | )
| | ;HEZU:ZJ [nal 1§1:['Sd [mai —nipa| nia; —njpf?
7 (3.14)
d Né(nN)4 1
< O = T
jz::l nz:l n [Tz lncll
where
d d r .. 1
Uzj = §lml < NY(InN)% - |naeq —nia| <5, 044, [may —nj| 2 5 ¢

The proposition follows from the following lemma:

Lemma 3.2. Let p(n) be an arbitrary positive increasing function of n with > 2 ﬁ <

00, then for almost every o € R and every 1 < j < d, we have

N4(In N)4 1
———— < (In N)dgod(ln In N),
n; n [ Tizy lIncvill

Proof. 1t suffices to prove for every 1 < j < d the bound above holds, we employ the same
technique as in Lemma Denote da; = dory - - - d&j -+~ dag, where daj is omitted. Note
that the integral

1
J(n) = /
oui-t Tz, (Trcall | raal [p( oo ]

day - --daj - - - dag

(&)

is finite and independent of n, the series
n

m also converges, so the integral
=2 ®

o0

1
do;
/[0,1]d—1 <nz_:2 n(lnn)e(Inlnn) [T, .; (Inal|| In |na;ll|¢(] InIn Hnailll)> ’

(3.15)

RS J(n)
B ;:2 n(lnn)e(Inlnn)

is finite. Therefore we have that the series

[e.e]

1
nZ:; n(lnn)p(Ininn) IT; (Inaill] o lnail[e ([ Inn |fnesll])

converges for almost every a € [0,1]¢ and ever ¢ > 0, the periodicity of || - || gives the
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convergence for almost every a € R%. Using the inequality (3.12), we have

Ne(In N)4
Z Hz¢]\|nazH
- i (In N)4p(Inln N)4
= n(Inn)e(Inlnn) [T, ([lncll|In |[nai| (] Inln [|na;]])

< (InN)p(Inln N4,

O

Since the sum in (3.14)) is a finite sum over 1 < j < d, the proof for the proposition is
completed. O

3.3.3 Estimation for the sum when |n,| [, |[n1q;| is small.

Define:
Dsy(e,m;N)= Y f(n,z,a) (3.16)
neUsz(a:N)
where
1< |n1] < N%(n N),
d
Us(a; N) = ¢ ne ZHN\{0} | |ny| [ ] el > (In N)*, : (3.17)
i=1
[n1c; —niv1| = [lmaill, 1 <i<d

Note that in (3.17), {n;+1}i<i<a are respectively the closest integers to {nia;}1<i<d,
therefore in the sequel we only need to discuss n; instead of n € Z4+!1. The main result of

this step is the following:

Proposition 3.5. Let ¢(n) be an arbitrary positive increasing function of n with > >, %n) <

oo, then for almost every a, we have
|Ds(a,z;N) — Da(av, 23 N)| < (In N)4p*(Inln N).

First we need some preparation lemmas about the lower bound of the small divisors.

1

Lemma 3.3. Let p(n) be an arbitrary positive increasing function of n with > 2, 2 <

00, then for almost every a € [0,1]¢, we have for every |n| > 1,

1
i H Inasl > (In|n|)4p(Inln|n|)
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and

|lnag|| > i<d,

Infe(In[n])’

with a constant that depends on o € [0,1]%.

Proof. For € > 0 fixed, define
d
Eyi={a € [0,1)": [n[ ] Inaill < 1/(ln|n))*e(lnln [n])},
i=1

by direct calculation, we have:

2
Leb(En) < n(lnn)¢(lnln ‘n‘)

therefore Y Leb(E,) < oo, by Borel-Cantelli Lemma, we have that for for almost

neZ\{0}
every a,
d
[l [T llnasll > 1/(nfn)%e(nn |n)
i=1
with a constant that depends on a € [0,1]. The proof for |n|||nal| is similar. O

Proposition [B.5] follows easily from the following lemma:

Lemma 3.4. Let ¢(n) be an arbitrary positive increasing function of n with Y >, ﬁ <
0o, then for almost every a, and s € N fized, we have the following estimation:

1
> —————— < (InN)%*(Inln N) (3.18)
n Tz [[nos||

1< n < N(InN)?
n I, IInaull < (InN)*

where the inequality holds for a constant that depends on s, a.

Proof. Divide n in discussion into the following sets:

d
. . 21}—1 v
=< < ¢ < j
Sa(p,v) {6 sn<e (Inn)dp(lnln|n|) — n}j[l Inell < (Inn)dp(Inln |n|) }

Where 0 < p < InlnN 4+ 1, v < Inln N. By Lemma there exists a constant K =
K(a, ) > 0, such that v > —K. We prove a sublemma for the upper bound of the number
of elements inside each S (p,v):

Sublemma 3.5. Let o(n) be an arbitrary positive increasing function of n with > | ﬁn) <

00, then for almost every o, and every p > 1,v € Z,

#Sa(p,v) < 2%¢(Jv)), (3.19)
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with a constant that depends only on a, @, where |v| should be understood as max{|v|,1}
for &(|v|) to be well defined.

Proof. Define the corresponding set

—la d 2! n : no; >
C(n,v) = { € [0,1] ' (Inn)dp(Inln |n|) < 11;11 Inosl| < (Inn)dp(Inln |n|) }7

we have :

2’[}
Leb(C(n,v)) < n(lnn)e(lnlnn)’
and
Since
#Sa(p7v) = Z XC(n,v) (0()
eep_1§n<eep
We have: .
E#Salp ) = 3 Ol < =
e¢ <n<e®
" Leb{#Sa(p,v) = 2(lu)} < Sooe®:0)
= — 2%(|v]) e(p)e([v])
So
D Leb{#Sa(p,v) > 2"¢(Jv])} < oc.
p>1
veZ

By Borel-Cantelli Lemma, we have that for almost every a,

#5a(p,v) < 2%(v).
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Continuing with the proof for Lemma [3.4] we have the following estimation:

1
1<n < Ni(InN)? nHizl HTLO[ZH
nIT, Inas|| < (InN)®

< Y (M%m) Y el
p=1 —K<v<inln N

< (InN)4p(Inln N) - (p(Inln N) Inln N)
< (In N)4p3(Inln N).

Therefore Lemma, is proven.

29

(3.20)
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Proof for Proposition
Note that

‘Dg(a,x;N)—Dg(a,;r;N)‘ < Z !

rrd
1<n < Ni(nN)d n ][y [lnosl]

nITi, Inail| < (In N)®

Proposition [3.5] follows from Lemma [3.4]

3.3.4 Control the sum when n, is between N%/4 and N¢(In N)4.

The goal of this step is to prove the following:

Proposition 3.6. For almost every a, we have
|Dy(a,z;N) — D3(ov, 3 N)| < (InN)?Inln N.

With the proposition above, we could limit the range of (27n1/N%) in f(n,z,a) to
(—m/2,m/2), which makes f better-behaved for later estimations.

The range for n; in the difference Dy — D3 can be decomposed as follows:

2l1 < ‘nl‘ < 2l1+17

Ta(LN) =< ny € Z] 270 <oy < 270+ 1<i<d—1

Y

o i1 liti=h < ||pgay|| < 2% livi—ltL

where [ defines the range for |n1], l; 11 defines the range for [|[n1a;l|, 1 <i < d—1, and l441
defines the range for |n;| H?Zl In1¢a;]|. By Lemma , the range for 1 = (I1,...,lq+1) €
Li(N) is defined by:

2Ing N —2 <1 <2Inog N +2InsIn N,
Li(N):={1ez2 | 2<;,, <InN, 1<i<d-—1, . (3.21)
InlIn N < g1 <L <InN,

We will first prove a uniform upper bound for #7T4(1; N):

Lemma 3.6. If s > 3, then for almost every o € R and all the 1 in L1(N), we have
#To(1; N) < 2la+t

where the constant is uniform for 1 in Li(N).

Proof. The number of elements inside T (1; N) corresponds to the number of ny € [211, 21+1),

such that vector nja mod 1 = (nja; mod 1,...,njaq mod 1) visit one of the 2d target
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boxes:
d—1

H i[Q*lz‘H, 2*li+1+1) « i[QZ?zl liv1—I1 7 2221:1 lz‘+1*ll+1)7
=1

where the negative signs deal with the case when % < {nja;} < 1. Therefore the expected

value for #7T4(1; N) is O(2!4+1), from Theorem we know that the error term for the
cardinality is O((In21)%*€) for any target box, we have that

#To(1; N) = 2lat1 1 O(1219).

Note that 127¢ < (In N)?*¢ < (In N)® < 2la+1, the claim follows. O

Now we can estimate the contribution of the terms for which N¢/4 < n; < N4(In N).
Proof of Proposition

Proof. Inside each Ty (1; V), the divisors ny H ~_, [lna;|| is between 2la+1 and 2la+itdtl

therefore - -
Dy~ Dy

<22

leLl(N) Ta(l ‘”1| Hz 1 Inre|]

< > Z i

1€L1(N) Ta(1;N)

< (InN)4Inln N.

The last inequality follows from the range of I;’s in Li(N) (see (3.21)), which gives the
number of possible ;’s is O(Inln N), and the number of possible I;’s are O(In N) for
2<i<d+ 1. O

Proof of Proposition

Proof. Combining Propositions 3.2-3.5, we have

|Dy — D] < O(1) + (In N)%%(InIn N) + (In N)43(Inln N) + (In N)?Inln N
< (In N)dpmaxdd3t(In1n V).
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3.4 Cancellation of the main terms.

To estimate the contribution of the remaining terms, we first decompose the product

f(n,z, @) into 2 distinct parts,

B id+1 1
D4:W Z -g(n,a; N)

d
neUy(a;N) "M [[ii (n1as —niq1)

N Z N Z 627ri£s (n)

d
s nelUy(ogN) 1 [Tiz1 (o — nisa)

(3.22)

Now g(n, a; N) is the product below (observe that |g(n, a; N)| < 1):

. n 2 M
23 (s o
2m () . 2r(nio; — nit1) |

=1

and finally, L5 = Ls » N, is one of the 2441 _ 1 linear forms of d + 1 variables:

d

Es(n) = Es(nl, . ,nd+1) = (517111‘ — Z (5iN(n1ai — ni+1) (3.24)
=1

where s = (61,...,0441) € {0,1}4! and s # 0.

Note that the sign & in the second part of (3.22) is in fact + = (_1)Zfif % and so it
is independent of n € Z4+1,

We begin with the constant part of Dy:

Let

Ds(ae,z;N) = Z dg(n, a; N) ' 5.25)
neUs(a;N) "M [[i=i (1o —niy)

The goal of this section is to prove the following:

Proposition 3.7. For almost every a € [0,1]¢, we have

|Ds(at,z; N)| < In N

The idea is to decompose the Fourier modes into sets where all the factors of the divisor
are controlled in a small range, and by estimating of the cardinality of these sets, we can
cancel the positive terms with with the negative terms and achieve a cancellation of the

extra power of In V.

Let oy = 1/(In N)?, € = {e1,...,eqp1} € {£1}4 and 1= {Iy,... 1411} € Z%H, and
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define the sets:

nec ZdJrl : (1 + 5N)ll <eng < (1 + (5N)l1+1,

(1+ 5N)7li+1 <é€ir1(nia; —nip1) < (1+ 5N)7li+1+1, 1<i1<d-1

Sa(l,e N) = 4 4 Lp—lt+l [
(14 on)Zi=t i =l < ey (npag — nagr) < (14 dy)2i=t b=t
n;41’s are respectively the closest integer to nia;, 1 <1¢<d
(3.26)
where [;’s are positive integers, and the range of 1 = (I1,...,lz+1) is as the following:

Ly(N) = {1 € N+t

(In N)* < (14 6n)l+ < (14 6n)" < NY/4,
(146y)7l+ > (InN)*, 1<i<d—1.

which gives
lnlnN/(SN Llgr1 <l <InN/ony, L1 —liz1>InlnN/dy, 1 <i<d-1 (3.27)

By integration over a € [0, 1), the expected value for #S4(1, €; N) is:

E(l & N) = / #Sa(l,e; N) da = 0(6%+1(1+5N)ld+1)_
aecl0,1]4

A more precise description for the number of elements in #54(1, €; N) is the following:

Lemma 3.7. If s > (d 4 2)d + 3, then for almost every a € R?, and every 1 € Ly(N), we
have
|#Sa(l,e; N) — E(l,e; N)| < dnE(L € N)

where the constant is uniform for 1€ La(N) and N.

Proof. With the same reasoning as in Lemma 3.6} the number of elements inside Sa (1, € N)

corresponds to the number of
ny € [(1+ 5N)ll, (1+ 5N)l1+1),

such that vector nja lies inside the target box

d—1
T+ 63) 75 (14 6) 710) s [(1 4 Gy) Tl (1 4 gy) i lisn by,
=1

therefore, the expected value for #S4(1, €; N) is of order 5?\,“(1 + dn)la+1, from Theorem
We know that the error term is O(In(1 + dx)")%+€) for any box, i.e.

#8,(L e N) = B(L e N) + O ((1n(1 + 5N)ll)2+6) .
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Note that (In(146y)")%T¢ < (In N)?+e < 642 (In N)* < 6472(1+0n)l+t < SnE(l, € N),

the claim follows. O

For the sake of simplicity, we abbreviate Sq (1, €; N) and note it by S(1,€; N) in later
discussions. Using the Lemma above, we can estimate the sum Ds by cancelling out the

main terms.

Proof of Proposition

Proof. Let €t and €~ be two vectors in {—1, +1}9F! such that one and only one coordinate
is different, and the sign of the divisor is + for S(I,€™; N), and — for S(l,e~; N).

~ 5 5 g(n,o; N) 3 g(n,a; N)

s = n1 [1%, (n1oy — ng )+ n1 1%, (n1oy — nig1)
1€Ly(N), neS(Let;N) 1 i=1\7t1¢g i+1 neS(Le;N) 1 i=1\1t1¢¥g i+1
pairs of e+

Inside each S(1, €; V), denote by g(n, &; N) e /min the maximal /minimal value of g(n, a; N)
for n € S(1,€; N), we have:

’g(n7 (&3 N)max - g(n7 (&3 N)mzn’ < 5Ng(n7 a; N)min

and
0< g(naa;N)max <1

For each pair, the sum would cancel out as follows:

d d
neser;n) M i (mai —nivt) ol vy 1 Iz (mas = nas)
g(nva;N)max g(nya;N)min

(1+6n)E(l,e; N) —

(1 - 65)E(L & N)

T (14 0n)ln (1 + oy )laritd+T
) d+1 _ : , :
< Lol N)m‘”(”l(l _|_+5i]\)[l)d+1+d+1g (. 25 N)min) g vy 4 905 Nmaa é’ffé’ gl”j SnE(, €& N)
< 42
The other direction is the same:
g(n,a; N) n g(n,o; N) > —5%2,

d d
nes(er;vy) M s (e —nivn) gl vy 1 Iz (mics = na)

Summing over all the possible pairs of €* and Iy, ..., lg41, note that from (3.27),
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Oglprl Sll, 1§i§d, we have:

D« T e Y sbuesie Wy
5 N N 1 <Oy s :
1eL2(N) 71‘]51va Sllg% N

3.5 Estimation of small exponentials.

Finally we study the contribution of the linear forms Lg in (3.22)).

Let -
D B e T1Llg(n
Dg = DéS) _ e
“€U4Z(C¥;N) n1 T (nuos — niga)
f = (3.28)
g Z ( Z f(ngxaa)+ Z f(n,z:,a)7>
<L, neS(Let;N) neS(le—;N)
pairs of e+
where
— eZWiﬁs(n)
flm e = -g(n,a; N) (3.29)

n1 [T (nioy — nig1)

and £ is one of the 2471 — 1 linear forms Ls 2 N,o defined in . Following the same
line of reasoning as in J. Beck|Bec94|, we prove Lemma as a version of Key Lemma
as in [Bec94| that can be adopted in our case. We shall emphasize the key ingredient
in the proof is that arithmetic progressions will contribute like a single term inside the
progression. Using Lemma , we can estimate the number of e*-big vectors defined as
follows, which can be used to cancel the extra In NV in the crude estimation by bounding

every numerator by 1.

Definition 3.1. We say 1= (I,...,lgs1) is "eT-big" vector if

|S(1,€+;N)‘+’S(176_;N)| Til(n mil(n
. <| ) gmem o N it (3.30)
neS(l,et;N) nesS(l,e ;N)

where |S| = #S denotes the number of elements inside the set S, and as in the proof of
Proposition et and € are a pair of vectors in {—1,—i—1}dJr1 such that one and only
one coordinate is different, and the sign of the divisor is + for S(l,e"; N), and — for
S(N,1le).

For convenience denote

S(l,e;N) = S(l,e"; N)US(l,e ; N).
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Definition 3.2. Two integral vectors 1 = (l1,...,lq11) and h = (hy,..., hqr1) satisfying
(13.27) are called “neighbors" if

(1+0y)1~0 = (InN)?, (3.31)
(14 6y)iri7livt = (InN)™, 1<i<d—1, (3.32)
(1 + gp)harr=lart = (In N)(dHD), (3.33)

The notation 1—+h means that the ordered pair (1, h) of vectors satisfies (3.31)) to (3.33]).
Note that by slightly modifying the value of S5 ~ (In N)~¢, we can make sure that the

above definitions are met for integer vectors 1 and h.

Definition 3.3. A sequence H = (h() h® h®) . ) of vectors satisfying (3.27) is called
a "special line” if h(D—h®—hG) — . that is, any two consecutive vectors in H are

neighbors.
Lemma 3.8. For almost every o every special line contains at most one € -big vector.

Proof. Let H= (h) h® h®) . ) be a special line with two e*-big vectors h® and h(®,
1<p<q If
|£(m)| < (InN)~2 for every n € S(h® e*; N), (3.34)
then
11— e?£M)| <« (In N)~2 for every n € S(h®), € N). (3.35)

By repeating the argument of the cancellation of the main term with the above equation,

we obtain (Err means error for the number of elements in the set S)

Z €27ri£(n) - Z e27rill(n)

neS(h®) et;N) neS(h®) e—;N)

< (1+ (InN)2)(EM®P ¢ N))+ |Er]) — (1 - (InN)"2)(EMP), e N)) — |[Erx|)
< |Err|+ (In N)2E(h®) ¢ N))

< Sy(E(h®) e N))

S, e*; N)]

ST vy

But this contradicts the assumption that h(®) is e*-big, see (3.30). So there is an
n* € S(h(®, e*; N) such that
|£(n)| > (InN)~2, (3.36)

For every m € S(h(@, e*; N) (another e*-big vector), consider the "arithmetic progres-
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sion" with difference n*:
m+r-n"=(my+r-n*y,... mg1+r-n¥gq), r=0=+1,+2...

We will estimate how many consecutive members m + 7 -n* are contained in S(N, h?, €*).
Since n* € S(h”, e*; N), the definition for S(h?,e*; N) (see (3.26)) gives the following:

(p) )
(1+ )" < ent < (14 o)+, (3.37)
(p) (p)
(1+63) "5 < e (s — niyy) < (14 0y) bt (3.38)
(p) (p) (p) (p)
(1+ o) S W™ < ) (nfag — nfy) < (14 Oy) Zim b+, (3.39)

Definition 3.4. An m € S(h%,e*; N) is called an inner point if

(@) ) ) (a)
(1 o) (L ) < amn < (L= )0 (.40
—h@ ON A _ON §)+1
(14 0n) (14— I N)? —g) < €ipr(mia; —migr) < (1 (1nN)2)( 5N) +1 (3.41)
(® _p(@) oN 1) (® _p(@)
(1+5N)Zz L hify—hy (1—‘,—(lnN) ) ed+1(m1ad+1—md+1) < (1_(111 ]]\\][)2)<1+5N) i= 1h1§)»1 hy? +1
(3.42)

The rest of the points in S(h?,eT; N) are called border points.

For every inner point m € S(h?,e*; N), and for every |r| < (In N)*, it follows from

(3.31), (3.37) and (3.40) that,
(L+8n)"" < (1+6w)4" (1 +(15]NV)2)—(1HN)4<1+5N)’L§”+1
n
< e (my+r-nj) (3.43)
_O0N g
(In N)?

Similarly, from (3.32)), (3.38)) and (3.41), and from (3.33)), (3.39) and (3.42) we obtain the

following, for 1 <i <d—1,

< (1_ )( +(5 )h +1 (1I1N)4( _|_5 )h +1 (1+5N)h§”+1

(@) 2
(14 0n) "4 < erpn ((ma + rof)aips — (mig +7-nfyy)) < (L+6n)” LS (3.44)

and

@ (@) @ (@
(14+0n)>i= e €at1 ((m1 +rn})agir — (mas1 +r-njy)) < (1+6n) %= o =
(3.45)

In view of (3.43)-(B3.45), for any inner point m € S(h?, e*; N), at least (In N)* consecutive
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members in the progression m 4 r - n* are contained in S(h9, e*; N). Therefore, we can

decommpose S(h?, e*; N) into three parts:
S(h? e*; N) = APT U AP~ UBP (3.46)

where AP* denotes the family of arithmetic progreesions {m +7r-n*: 0 <r <[ — 1} in
S(h?,et; N) and S(h?, e ; N) respectively, where [ = [(m) is the length of the progression
starting from m, and [ > (In N)*. BP denotes a set of border points of S(h?, e*; N) that
are not included in any arithmetic progressions. Using ||£(n)| > (In N)~2 (see (3.36))), the

linearity of £, we obtain

-1
| Z 627ri£(n)| < Z | Z e27ri£(m+rn*)‘

APt arithmetic progressions r=0

_ Z | lzl e27ri[l(m)+r£(n*)

arithmetic progressions r=0 (347)
1
<« ¥ < Y
arithmetic pro; i HE(n) H ithmeti i
gressions arithmetic progressions

length _ [S(h?,et; N)|
< <
- Z (InN)2 =  (InN)?

arithmetic progressions

since each length > (In N)*. Similarly,

2mil(n) ’S(hqa € N)| 348
AP~

Finally, for border points, at least one of the inequalities in definition is violated, thus

the range for at least one components is shrunk with ratio (11157]1\\’,)2. Using the same reasoning

as in Lemma [3.6| and and the cardinality of the set BP can be controlled by the total

number of border points of S(h?, e*; N), we have for almost every a,

[S(h?,e*; N))|
(In N)?2

Combining (3.46])-(3.49)), for almost every a, we obtain

|BP| < (3.49)

. . (P e+ N
omiL(n) oricm)| _ [S(h'", e N)|
Z e2mL(n Z e2mil(n)| (ln N)Q
neS(h®) e+;N) neS(h(®) e—;N)
which contradicts the assumption that h(® is e*-big (see (8.30)), therefore for almost very

a, every special line contains at most one e*-big vector, which proves the lemma. O
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Corollary 3.3. The number of €*-big vectors is < (Inln N)(In N)déj:,(dﬂ).

Proof. First we estimate the number of maximal special lines. Let H = (h() h® h® . )

be a "special line", here h() is the first element of H, that is, if h(© —h® hoelds for some

h(® then at least one of the following inequalities is violated:
R(® s
(143" = (N,

(0) _(0)
(14+6n)" "M+ > (InN)$*1<i<d—1,

(0)
(14 6x)atr > (In N)®.

Thus, by (3.31)) and (3.33]), one of the inequalities below holds:

(InN)* < (14 83" < (In N)*+9,

(I N)* < (146300~ < (I N8, 1<i<d—1,

(InN)* < (14 5N)hle+>1 < (In N)s+9(d+1)

)

So at least one coordinate of hgl), hélle, or hgl) — hgl of the first element h™) of H is

restricted to a short interval of length const-Inln N -d", the rest, by the condition (3.27),
are restricted to an interval of length const-In N - (5]:,1. Since the starting vector determines

the whole special line, the number of special line is
< (InlnN) - (In N)%- 5,1,
By Lemma the total number of e*-big vectors is also

< (InlnN) - (In N)%- 53,10,

With the help of the Lemma [3.8] we can estimate the contribution of the exponential

terms, we have the following claim:
Proposition 3.8. For almost every o, we have

|Dg| < (InN)*(Inln N)
Proof.

Dg=> +>_

small  big
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where

Yo=> 0> Y fmra (3.50)

small € 1 not ef-bigneS(N le)
=% Y Y fnza (3.51)
big € lis e*-bigneS(N,lLe)

By Lemma [3.7] range for 1:(3.27)), and (3.30)),

D

small

—1 ) &

€ 1is not e*-big

5§lv+1
< Z In N
1€ Lo (N)

S (In Ny
In N 5?\]‘*‘1

< (InN)?

<

By Corollary [3.3]

DI« D> (46w E(LeN)

big 1is e*-big
< [(Inln N)(In N5 D] (1 + 65) 7lart - (14 Sy) k64
< (InN)4Inln N

O

Combining Proposition , we finally proved the convergent part of
Theorem 3.2

Proof for the divergent part of Theorem : The idea for the divergent part
is straightforward, we search for a “large” Fourier coefficient that dominates. For technical
simplicity, we consider a roof-like average of the discrepancy function D(a;a,b;u,u+ N)
in over the interval [—z, x] instead [0, z], from which we get a symmetric version of
D(a,z; N):
D(a,—z,z;0,N) = Y fan(z ) (3.52)

neZ3\{0}

where

sin(2mnyx) —2miN (n1ai—nit1)

fon(z, ) (3.53)

g(n>a;N)'H1_7T€(

™1 i1 nio; — nz‘+1)

By a result of Gallagher|Gal62| about metric simultaneous diophantine approximation, we

have the following lemma:

Lemma 3.9. Let ¢(n) be an arbitrary positive increasing function of n with %>, ﬁ =
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oo, then for almost every o = (o, ..., aq) € Rd, there exist infinitely many n € N, such
that:
d 1
; . 3.54
nZI:[l Inell < (Inn)dp(Inlnn) (3:54)

Proof. Let n be one of the infinite integers that satisfies (3.54)), and let n;, ; be the closest
integer to nja; for 1 < i < d, then by Lemma [3.3]and (B.54), we have for n} large enough:

d
1 1
- < gl < 3.55
it < Lo < oot (3:55)

Now we are looking for an integer N such that:

1
> = .
>, (3.56)

d
H ‘1 - 627riN(n{ai—n;-‘+1)
=1

that is, N(njo; —nj,,) is not close to 0.

By the same reasoning as in Lemma [3.3|and the upper bound for [T, |[n%ey]| in (3.55)

we have:

M < [Infaill < (ln:@%, 1<i<d, (3.57)
thus it is possible to choose
nilnn} < N < ni(lnnj)? (3.58)
such that is satisfied by pigeonhole principle.
With the choice of n* = (nj,...,nj, ;) and N* as above such that the inequalities

(3.55) and ([3.56) are satisfied, we are able to estimate the lower bound of the discrepancy

function by its projection of to e>™"i?.

D(a, —z,7;0, N*)sin(2rniz)dr = Sy + Sa, (3.59)
[0,1]

where 57 is the integral over the Fourier mode n*, and S, the rest:

S = g(n*,N*,a)/ Jor N+ () sin(2mnix)dx

[0,1]
d 2miN(nfa;—nl, ) (360)
; 1— 1 i+1
:g(n*,N*,a)le*l( y € - - )
ni [[iz (njos — ”i+1)
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Sz = Z g(n, N*, o) fo,n+ () sin(27niz)dz
(nz,...,nd+1)7é(n’2‘,...,nZ‘H_I) [0,1]
Hd (1-— ezWiN(”Tai—niH)) (3.61)
- Z g(n, N*,a)===1———
(2, nd+1)#(n5,- iy 1) ny Hi:l(nlai —Nit1)
Let 7o, = [Infa; —niy1]], 1 < i < d, then
|Sa| <
;rz;l n1”n10ézH Hﬁéz aj ;TZ_:l nl H 1 az (3 62)

1
< < 1 *\1+e€ < 1 N* 1+e
< ;TLTHTLTQZH (nnl) (H ) )

and on the other hand, note that since ||[n}a;l| is small, g(n*, N*, o) admits an absolute
) 1 y g ’

lower bound, then by (3.55) and (3.56]),

1S1] > (Inn})%p(Inlnn?) > (In N*)%p(Inln N*). (3.63)

Combining the inequalities (3.63)) and (B.62), we have the divergent part of Theorem[3.2] O



Chapter 4

Absolute Bounds - Irrational

translations - Triangles

4.1 Introduction

In this chapter, we consider the ergodic discrepancies of irrational toral translations relative
to triangles inside T2. The main ideas of the proof remain very similar to the case of linear
forms, with modifications to treat the new divisors. nevertheless we include the full proof
for the sake of completeness.

Let @ = (a1,a2) € [0,1]% be the translation vector, where 1, a1,y are rationally
independent, let a = (a1, a2) € R? be the starting point, and denote the right triangle of
sides x = (21, 22) € (0,1]? by:

DNx ={(y1,y2) | 0 <y1/z1 +y2/x2 <1, 0<vy; <ua;,i=1,2}. (4.1)

Define the ergodic discrepancy of the toral translation a starting from the point a relative

to the triangle Ay:

m
Dp (a,a;m) = ZXAX(UJ +na mod 1) — mVol(Ay)
n=1

Since the sequence {na mod 1} is equistributed over T2, the “expected number” of
points in the sequence that visit the triangle Ay before time m is mVol(Ax), and we
would like to prove a similar bound for the error term Da_ .
Notations. Through out this chapter, || - || denotes the distance to the closest integer.
For a given triangle Ay defined as above (4.1), let 7 = z1/x2 denote the slope of the
hypotenuse of the triangle. Without loss of generality, we assume that 7 € [0,1]. For
n = (n1,n9,n3) € Z3, and a vector a = (a1, a2) € R?, let na = nyay + ngas denote

the inner product of their first two coordinates. From Section 5, the n would denote

73
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(n1,m2) € Z?% instead of (ny, n2, n3), and n3 would denote the closest integer to niai+ngas,
since in Section 4 the other possibilities for ns have already been estimated.

The main result of this chapter is the following:

Theorem 4.1. Let a = (a1, 9) € R? be the translation vector, a = (ay,az) € [0,1]? be
the starting point, and for x = (w1, x2) € (0,1]? define the triangle Nx = {(y1,2) | 0 <
yi/x1 +y2/xe < 1, 0 <y; < x;,i = 1,2}, define the ergodic discrepancy:

Da, (a,a;m) = ZXAX((I +na mod 1) — mVol(Ax)

n=1

and the mazimal discrepancy for triangles of a fixed slope T:

Ala,7;N)=  max |Da, (a,a;m)|.
1<m< N;
a € [0,1]%
z1/22 = T

Given an arbitray positive increasing function o(n) of n, then for almost every a € R? and

almost every T € RT, we have:

i(ln)<oo = A(a,7;N) < (InN)* - ¢*(Inln N), (42)
n=1
i(ln)zoo = Aa,7;N) > (InN)? - o(Inln N) i.o. (4.3)
n=1

where i.0. stands for infinitely often, and the constant in (1.2) depends on o and 7.

Remark. Unfortunately the statement does not give a perfect equivalence, the additional
factor (Inln N) is needed for controlling the extra small divisors that arise from the hy-

potenuse of the triangle, which does not occur in the case of straight rectangles.

Remark. In fact, after fivzing a toral translation, the bound of the discrepancy is uniform
for any starting point a, therefore it is equivalent to translate the right triangle Ny inside
T2, and since every general shaped triangle could be decompsed into a finite sum or differ-
ence of right triangles, it is immediate that the theorem above hold true for almost every

triangle inside T2, hence we obtain a corollary:

Corollary 4.2. The same bounds in Theorem hold for almost every triangle € T2 (or
more generally almost every polygon), with a constant that depends on the slopes of the

sides of the triangle (or the polygon).

This chapter is organized as the following: in Section 2, for the convenience of later

estimations, we transform the ergodic discrepancy to its Fourier series by using Poisson’s
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summation formula. In Section 3 we estimate the contribution of the "tail" of the Fourier
series, i.e. the high frequency modes or the extremely small divisors. Section 4 and 5 deal
with the main part of the discrepancy, Section 4 is about the constant part and Section 5
deals with the exponential part, both of which will be properly defined later. Combining
the Section 3-5, we have an overall estimation of the discrepancy, which proves our main

theorem.

4.2 Poisson’s summation formula

In this section, following |Bec94|, we use the Poisson formula to transform the ergodic
discrepancy into a Fourier series. The main result of this section is Proposition It
gives the main subject of our analysis: a roof-like average of the original Fourier series
of the discrepancy, which has better convergence properties. Again, we adopt a heuristic
way to obtain a formal Fourier series of the ergodic discrepancy. By the Poisson formula,
without considering possible problems with convergence, we can write the ergodic sum

D(a, z; N) as the following formal series:

i3

(2m)?

2
§ H e—27rinjaj

nez3\{0} j=1

DAX(G,, Q N) =

1— 627rin2:)32 6727ri(n1a1+n2a27n3)N -1
ning nia1 + nora — N3

i3

+ (27T)3 Z 13[ e—27rinjaj

neZ3\{0} j=1

<e2ﬂ'in1$1 _ e27ri'rL2:Ez e—27ri(n1a1+n2a2—n3)N _ 1)

X
nl(nlé —ng) nioy + naag — ng

To see this, the ergodic sum could be calculated as follows, note that the condition: na

mod 1 € Ay is equivalent to Im = (my, ma, m3) € Z3 such that:

0<ma; —mip1 <z 1 =1,2;
2 miai—mit1 .
Zi:l - * < 1a

T

1 <my < N;
Consider the translated lattice in R3,
L(a,a) = {(a1 + miag — ma,as + mias — ms,my1) | m = (my, ma, ms) € Z3},

note that the fractional part of the vector na lying in Ay is equivalent to the lattice point
inside the following set:
B(x,N) = Ax x (0, N]

Let x(y) = xx,~(y) be the characteristic function of the box B(x, N), so the ergodic
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sum becomes

Z Xo,(@a+na modl) = Z x(a1 +mia; —me, az + mias —ms, my)
n=1 meZz3

Writing in matrix form:

aj (03] -1 0 mq
(a1 + miay —mgo, a2 +miae —mg,my) = las | + e 0 —1|-|mo| =a+A -m
0 1 0 ms
where
a; —1 0 m
A=|lay 0 —-1|, m=|mo]|,
1 0 0 ms

Apply the Poisson formula to the function fq(y) = xx,n(a + A -y), we have

S va+Am)= Y fo(m)

meZ3 meZ3
= Z/ fa(y _ZWiy.ydy
vezs3
Z/ (a+A-y) 27ri"'ydy
V625

7271'11/ A~1l(z—a))
det A Z /Rs dz

Integrate over the triangle Ay for the first 2 coordinates of z and integrate over (0, N|

for the last coordinate z3, we get:

Day(a,c;N) = Y f(m) — NVol(Ay)

meZ3

E : He 2minja;

n€Z3\{0} j=1

E H 6—27rinjaj

ncZ3\{0} j=1

( 627rin1x1 -1 6—27ri(n1oc1+n2a2—n3)N o 1)

ning niay + noaie — ng

13
T 2np

<627rin1:c1 _ 627rin2:c2 e—27ri(n1a1+n2a2—n3)N _ 1)

iy
(n1 — $n2)ng nioq + noag — N3

In order to avoid technical problems with the convergence, we will not study D (a, o;; N)
directly, instead, we will follow Beck|Bec94| and use a special weighted average of Da_ (a, a;m)

over a # neighborhood. To this end, we oscillate starting point a with an amplitude of

1

~z, and also the range for summation {1,..., N} with amplitude of 2, and then by using
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the Féjer kernal, we obtain our main object of interest. Specifically, let u = (uq,u2) be
the oscillation of the starting point, us be the oscillation of the summation range, then for

the oscillated discrepancy:

D, (a+u,a;u3, N + u3) = Z Xa,(@a+u+na mod1l)— NVol(Ay),

uz <n <N+ us

we define the % average:

pesw= (5) 41 [ [ H(-2m)-(-15)

-Da,(a+u,a;us, N + uz)duyduadus.

Using the Féjer kernel identity

2 . 2
]\72/N2 <1_ N2y|> e2miky gy <S1n(27r]\’f2)>
LA = —2
2 ,% 2 27TW
/2 1 ’y| Qﬂikyd sin 27k 2
_ WL\ pemiky g, —
L 2 Y ok

We arrive at:

DAX (a’7 a’ N)
B i3 Z 1— 627rin21:2 6—27ri(n1o<1+n20c2—n3)N -1
(2m)3 nez (0} ning niaq + nsag — ns
2 . 2 nj 2 . 2
' —orinja; sin(2m %) ~(sin2m(nyoy + nga — n3)
H ¢ 2m 2 (n1o + naag — n3)
e N 101 + npap — N3
i3 eQﬂ'inlxl _ 627Tin2x2 6727ri(n1o¢1+n20427n3)N -1 (4 4)
+ .
(2m)? nezzg\:{o} ni(n13t — no) niaq + nga — ng

) 2
f[ 727rm jaj Sin(zﬂ-%) sin 271—(”1041 + noao — n3) 2
P 21 % 2 (n1aq + noae — ngy)

=: Z filn,a,x,a, N) + Z fo(n,a,x,a,N)

nez3\ {0} neza\ {0}
= DAx,l(a, a; N) + DAmg(a, a; N).

We claim that the difference between Da (a,a; N) and Da (a,a; N) is bounded by
C(a,7,¢)(In N)'*¢ with a constant that depends on o and 7.

Proposition 4.1. For almost every o € [0,1)? and every e > 0, for a fized slope T = x1 /22,
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there exists a constant C(a,T,€), such that
|Da,(a,a; N) — Da_(a,o; N)| < Cla, 7, €)(In N)Ie,

Proof. We will prove that for (u1,u2,us) € [— 52, 1) X [~2,2],

|Da, (a +u, a;u3, N +u3) — Da,(a,a; N)| < C(a, ,€)(In N) e

The important thing is that for given a slope 7, the above constant does not depend on wu;

or x;.

Note that translating the starting point is equivalent to translating the triangle, the
difference above counts in fact the number of points of the translation which lie in the
difference of two translated triangles. The difference between two triangles can be decom-
posed into three parts, the horizontal strip denoted by H,.y, the vertical strip denoted by
Vu;n, and the tilted strip denoted by 7.y, it is sufficient to prove that each strip does not

contain more points than the desired bound.

For H,.n and V. n, the number of points of the sequence {na mod 1|1 <n < N}
inside the strips is limited by the number of n’s such that ||nay| < 2/N? or ||nas| <
2/N2. Since the series Yoy n% is convergent, by a standard application of Borel-Cantelli
Lemma, the number of n’s that solve the inequality ||nc;|| < 2/n? is finite for almost every

a; € [0,1), therefore there exists a constant C'(a) such that:
#{1 <n <N ||no| <2/N? i=1or2} < C(a),

thus the number of points inside H,,,n and V,.x has an upper bound C(a).

As for the tilted strip Ty, consider the vectors formed by any two different points
inside Ty, then the vectors form a subset of the sequence {na mod 1}_n<,<n, and they
fall inside the the strip Tr,n for any |u| < 2/N?, where T}y is a parallelogram centered
at the origin, with the slope 7, and of volume O(1/N?). Since for any n, [ x1,,y (na
mod 1)da = Vol(Tr.n) = O(1/N?), we have

N
mes {a € T? ‘ Z XT,.x(n mod 1) > (lnN)H'e}

n=—N
1 N
< e 2 VolTn)
n=—N

:O(anzv;w)’

which summable for N > 1, therefore by Borel-Cantelli Lemma, it happens only finitely
many times that the desired bound #{—N <n < N | (na mod 1) € Tr.x} < (In N)' € is
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violated for almost every a € [0,1]? | which means that there exists a constant C(a, 7, €),
such that:

#{-N<n<N|na modleT,yn}<C(a,e)(lnN)e

Since the vectors are no fewer than the points inside T),.x for any u, we have the desired

bound for all strips T,y with a given slope 7. O

By Proposition we can now shift our attention to the asymptotic behavior of

Da, (a,c; N), which has better convergence property as shown in Section 4.

4.3 Local lemmas

In this section we introduce four lemmas that describes some “almost always” properties
of a € R¥, these are modified versions of the lemmas in Section 4 of Beck|[Bec94], and can
be proved in the exact same way by modifying the denominators in the original proof of
Beck.

The first lemma estimates a sum of the “large terms” in Da_(a, c; N) (£.4).

oo 1
n=1pn) <

0o. Then for almost every o € R?, with na = nyoy +noaw, and every T € [0, 1] irrational,

Lemma 4.1. Let p(n) be an arbitrary positive increasing function of n with

Z (max{1, |n1|}|ni7 — ng| - |na|) ™t < (InN)? - (Inln N) (4.5)
nelU(a,7;N)

holds for all N, where

nj| < N?-(InN)%1<j <2
U(a,7;N)=<ne Z2\{O} max{1, |n;|}|niT — na| - |nal| < (lnN)40 (4.6)

‘7117' — TLQ’ Z 1/2

Proof. This is a modified version of Lemma 4.1 of Beck|Bec94], the key difference here is
that ng is replaced by n17 — ng, but since the additional condition |n;7 — ng| > 1/2 helps
avoid the difficult situation when ||n;7|| is small, Beck’s proof works here in the exact same

way after replacing ng by ni7 — na. O

The following lemma is used to handle the “small terms” in D _(a, c; N).

Let V = (v1,v2) € Z2 and W = (wy,wq) € Z2 satisfy v; < wj, 1 < j <2, that is
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V < W. Let Q(V, W) denote the lattice box

v < nyp < wy,
QI V,W)={necZ?| vy <mr—ny <ws p. (4.7)

|y —ng| > 1/2

For every real vector a € R?, constant C' > 1, integral vectors V € Z? and W € Z? with
V < W, let Z(ax,7;C; V, W) denote the number of integral solutions n € Q(7; V, W) of

inequality below for the fractional part:

0 < {na} < min {1 ¢ } . (4.8)

2’ max{l, |n1|} . |7”L17' — n2|

The “expected value” of Z(a,7;C; V, W), a € R?  is

Emov,w) = Y min{l ¢ } (4.9)

neQ(r:V, W) 2" max{1, |n;|} - [n17 — no
Lemma 4.2. For almost every o € R%, and every T € [0, 1] irrational,
Z(a,7;C;V,W) = E(1,C; V,W) + O(C%'ﬁf - (In N)9)

holds for all C = ¢*, ¢ =1,2,3,..., and for all lattice bozes Q(T; V, W) with —N <V <
W<N,N=234....

It is evident that Lemma remains true if we replace (4.8) by its complement:

1—min{1 ¢ }<{na}<1.

2" max{1, |n;j|} - |n1T — na]

Proof. This is a modified version of Lemma 4.2 of Beck|Bec94|, but similar to Lemma 3.1,
the condition |n17 — ng| > 1/2 helps avoid the difficult situation when ||n;7]| is small, and

Beck’s proof works here in the exact same way after replacing no by n17 — na. O
The next lemma is special case of Khintchine’s local criterion for linear forms.
00 1

n=1 5n) =
00. Then for almost every a € RF, there are infinitely many strictly positive integeral

Lemma 4.3. Let p(n) be an arbitrary positive increasing function of n with )

vectors n = (ny,...,n;) € N* such that
ni...ng - (In(ng...nk))* - p(nlnn?...n2)) - |nal < 1. (4.10)
The last lemma helps control the divisors when |[n17 — na| = ||ni7|| is small and |n| is

large:
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Lemma 4.4. Suppose that T is irrational, then for almost every o € R%, and almost every

7 € [0, 1], the series

S (Inal - (max{1, [n|n],ln [ne]})* - max{L, |na]} - o7 —nal) ™"
nez2\{0}

converges.

Proof. We denote the sum above by S, S can be divided into 2 parts: S = 51 + Sa, where

~1
S1= > (Ine|| - (max{1, [In|n1],Inn2[})* - max{1, |n1} - a7 —naf)
ny #0
ng : niT —n2| = ||ni7|
and
~1
Sy = Z (|ne| - (max{1, |In |n|,In |ng|})* - max{1, |n4|} - IniT — nal)

n:jniT—nz|>1/2

Let § > 0, and consider the integral with n € Z%\{0}.

1 1 1 -1
= [ [ [ (Inad i nad sz o] +9) " dasdasr.
0 Jo JO

The integral has an finite value independent of n. Hence the sum

Jl(n)
Z max{1, |ni| - (In|nq])*+9}

ny #0
ng : jniT — na2| = ||n17||
is convergent, and so
-1
2 (I il |74 a7l oy 14 ma {1, ] - (1 g [)*4°)
ny #0
ng : [n1T — na| = ||na7||

(4.11)
is convergent for almost every a € R?, and almost every 7 € [0,1]. Since > 00, n™2 = O(1),

the inequality
-2

2
Inedl| < | JT max{1,[ny[}

j=1
has only a finite number of integral solutions n € Z? for almost every a € R2. Hence

2
|In||na|| < QZmaX{O,ln Inj|} < max{0,In|nq|}, (4.12)
j=1



82CHAPTER 4. ABSOLUTE BOUNDS - IRRATIONAL TRANSLATIONS - TRIANGLES

the last part of the inequality comes from |ni7 — ng| < 1/2. By the same reasoning we

have:
|In||ni7]|| < 2max{0,1n |ni|} (4.13)
By .11)), (4.12)), and (4.13)), we have the series:
S <
-1
> (el o )2 flma [y )40 masc{1, g - (1 a )40
ny #0
ng : [niT — na| = ||na7||

which is convergent by taking § = 1/3.
For S;, we employ the same method, the integral

bt 146
aw= || (Imee]l o na[*+*)  daydas.

The integral has an finite value independent of n. Hence the sum

> &
ni max{1, (In|ni|)1+9}|ni7 — ng| max{1, (In |n17 — ny|)1+9}
n:|nit—mng| >1/2

is convergent, and so

1 1
n:nyT—nz|>1/2 [na| In|na| ’1+6 n1max{1, (In |n1|)1+6}
1
|n17 — ng| max{1, (In |ny7 — ng|)1+9}

is convergent for almost every a and every 7 irrational. By (4.12) and |ni7 — ng| <
|n1| 4+ [n2| < 2max{|ni|, |n2|}, the series Sy is convergent by taking § = 1/3. O

4.4 Estimating the "tail" of the discrepancy function

Recall that D, (a,c;N) is the sum of Da, i(a,a; N) and Da, 2(a, a; N)(see (£.4)),
where Da, 1(a,a; N) is already dealt with in Beck[Bec94|, see Lemma 4.1 below, this

section is devoted to estimating the “tail" of the second part of sum Da, 2(a, a; N).

Lemma 4.5. Let p(n) be an arbitrary positive increasing function of n with > 2 | ﬁ <
00, then for almost every o € T2,
max |Da, 1(a,c; N)| < (In N)?*p(Inln N). (4.14)

x,a€T2

Proof. Note that Da 1(a,c; N) in ([@.4) is in fact part of the sum (3.12) in Beck[Bec94],
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whose estimation is given by (6.1) for ) 4 and (8.14) for >, in Beck|Bec94]. Our sum
D, 1(a,c; N) has an additional factor of HJQ‘:1 e~2m"395 which can be estimated in the
same fashion, or it could be understood as part of the discrepancy function for the trans-
lated boxes H?Zl [a;, a; + x;], which is a finite sum or difference of the original boxes of the

form H?Zl[(), x;], therefore satisfies the same estimation as the original boxes. O

Note that Da, 2(a,a; N) is the sum of the products (where n € Z3\0)

i3 627rin1:1:1 _ 627rin2a:2 e—27ri(n1a1+n2a2—n3)N -1
f2(n7x7 a7a;N) -

271')3 Z

nez3\{0}
. ] 2 .
2 ominga; sm(27r%) sin 27 (nyay + npan — ng) \ >
11 (e o ) ) 2n(man +rmas — )
j=1 N* ’

(4.15)

x
ni(ni ik — n2) nio + naa — ng

let:

Ds(x,a,0;N) = Z fo(n,x,a,a; N),

neUs(a,T)

and

max{ni, |n17 — na|} < N?/4,

min{ni, |n7 — ne|} > (In N)4°,

Us(n,7; N) = { n e z3\ [0} tm, [m7 = nal} > (In N) (4.16)
na —n3| = [[ned|, [n1T —nof = 1/2,

In1|ni7 — nol|na| > (In N,

The main result of this section is the following:

00 1 <

Proposition 4.2. Let ¢(n) be an arbitrary positive increasing function of n with > | o)

o0, then for almost every a € [0,1)%, and almost every T € [0,1], we have
|Ds(x,a,a; N) — D, o(a,a; N)| < (In N)*¢*(InIn N)

To prove Proposition we need to control different components of D5 — D, 5 step
by step.

4.4.1 Estimation for the sum when |n,| or |n,| is large

Define

Dy(x,a,a;N) = Z fo(n,x,a,a; N), (4.17)
nelU; (a;N)

where

Ui(a; N) = {n € Z°\{0} | max{|ni,|n2|} < N*(InN)?}.
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We define another set that is parallel to Uy and abuse the notation n for (nq,ng) if ng is

the closest integer to nja; 4 noay:
Ul(a;N) = {n € ZQ\{O} | max{|ni|, |n2|} < NQ(lnN)Q} )
We show the following:
Proposition 4.3. For almost every a € R?, and almost every T € [0, 1], we have
|Dy(x,a,a;N) — Da, o(a, o5 N)| = O(1),

where O(1) represents an absolute bound which depends on o, 7, but does not depend on

a or N.

Proof. First we decompose the difference into 2 parts:

|D1(x,a,0;N) — Da, 2(a,0; N)| < Dy + D, (4.18)
where
—1
— mn,;
Diu= ) Inad[[ny|lna7 — na| ] [ (max{1, 53)?
n ¢ Uj(a) =1

-1

(o)
_ ; 1
D=% ]anan—ng\H(maX{l,%})Q =

"=l n¢Uj(a) =1
where 7 = [|njaq + na2ag — nal].

To estimate D1, we employ Lemma . For every a € R? and every 7 € [0, 1] that

satisfy Lemma [4.4]

_ -1
Dy < Z (Inel - (max{1,|In|nq|,In|no|})* - max{1, |[n|} - [ma7 — na)
n¢Uj (o)

< Z (Hna” - (max{1, |In|ny|,1n |ng|})? - max{1, |n1|} - |ni7 — n2|)
nez?\{0}
=0(1).

-1

.DLQ can be easily controlled by D1,13

_ 1 n;
b (5[ (i 20

=1 n ¢ Uj (@) i=1
< Dy
= 0(1).
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O

From the proof it is easy to see that the series D, o(a, a; N) is absolutely convergent

for almost every a € R? and 7 € [0, 1].

4.4.2 Estimation for the sum when |na — ns| is larger than 1/3.

Let
Do(x,a,a;N) = Z fo(n,x,a,a; N)
nelz(a;N)
where n = (n1, ng, ng) satisfies
1
Us(a; N) = {n € Z% |max{|n1|,|n2]} < N*(In N)?, |na —n3| < 3} (4.19)

We show that the difference between D; and D5 can be well controlled, hence we only need

to focus on the sum over (nq,n9) instead of (ny,n2,n3):

Proposition 4.4. Let ¢(n) be an arbitrary positive increasing function of n with > >, ﬁ <

o0, then for almost every a € R? and almost every T € [0,1], we have
|Da(x,a,0;N) — Di(x,a,05N)| < (In N)2p(Inln N),

Proof. Similar to the previous proposition, the difference above can be decomposed into 2

parts:
[Di(x, 0,05 N) = D(x, @, N)|
-1
> M5 \\2 1
< Z Z |ni||niT — nol H(maX{L sz}) = (420)
r=1neUj(a) o
< Dy + Doy,
where 1
DQ}l = S
1§|n1|§%(1n]v)2 [n1|[|na|
and |
Doo = S N
2,2 Z ‘n1||n17- _ n2|

nelU] (a):|n17—n2[>1/2

DQ’Q can be estimated easily:

2
Dys < H Z 1 < (lnN)Q.

.
§=1 \1<|n;|<N2(In N)?2 ]

For Dy 1, we apply the continued fraction algorithm as in the proof for (9.1) in Beck|Bec94],
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see [Lan95| for the basics of the theory of continued fractions. Let a; be the j-th partial
quotient of 7 and g; be the dnominator of the j-th convergent, then by Dirichlet’s “box

principle” and the estimation for the j-th convergent:

1
S q;T S -
2qj+1 g qj+1
have:
we have qj+1 1 ” gj+1—¢;—1
< 2t — L ajy1 - In(qiy1).
n;] ananH qj kz_; L 7+ ( 7+ )
J

Let s be the integer such that ¢, < N?T€ < ¢y41, then for almost every 7, we have
s < InN.

combined with In ¢; < j for almost every 7, we have

N2(In N)2

1 S
—) < a1 In V.
Z ni||na 7| Z J+

ni=1 7j=1

By a theorem of Khintchine about the the sum of partial quotient (see [Kok13|, p.46), if

¥ (n) is any increasing function, then

1
a1 (1) + -+ as(1) < s-1(s) @};nw(n) < 00
for almost every 7. Let 1)(n) = ¢(Inn), then
N2(In N)?2 s
mX::l il < ;ajH InN < (InN)?p(Inln N).
O
4.4.3 Estimation for the sum when |n;7 — ny| = ||ni7||.

An important difference between the case of triangles and the case of boxes is that the
divisor changes from nina(niay + noag — n3) to ny(nim — ng)(niay + noag — n3), which
adds a possibility for |n;7 — ng| to be small. In this section, we deal with the difference
by some metrical properties of ni|[nja; + naaal|, where ng is the closest integer to nq7.
Unfortunately, this would lead to a loss of ¢(Inln N) in the estimation.

Let

Ds3(x,a,a;N) = Z fo(n,x,a,a; N)
neUs(a,T)
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where n = (nq, ne, ng) satisfies

max{|n1|, |’I’L2‘} < N2(IHN)2,

1
Us(a,7;N) ={n€Z® | |lna—ng| < 3 (4.21)

In17 — na| = ||n17||

We show that the difference between D3 and Do can be controlled by the following propo-
sition, hence we only need to focus on the sum over (ny,ng) when |n;7 —ng| > 1/2, which

could be treated in the same way as Beck did.

Proposition 4.5. Let p(n) be an arbitrary positive increasing function of n with > - ﬁn) <

o0, then for almost every a € R? and almost every T € [0,1], we have

‘Dg(x,a,a;N) — Do(x, a,a;N)‘ < (InN)*¢*(Inln N),

Proof. Note that 7 = x1 /22, and x5 € (0, 1], we use the inequality:

e?ﬂinlxl — en2%2 627rin1x1 _ e27rin2x2
= |T2 <1,
niT™ —ng ni1r1y — Na2x2
. 1
therefore | fo(n,x, a,0; N)| < e
Let n5 denote the closest integer to n17, then
- - 1
‘D3(X7a7a;N)_DQ(X7O’7O‘;N)’<< Z

1<|n1|<N2(In N)2 In1|||niar + nsas||

we employ the same method as in Lemma the integral

1 1
Tow) = [ [ (e 1 ]| o (tn 1 e ])) ! vy

has an finite value independent of n. Hence the sum

i Ja(n1,n3)
o |n1]1n |nq|e(Inln [nq])
ni| =

is convergent, and so for almost every «, the series

Sy= Y (Ina|ln|n1fe(Inln ) [ne| In na| o(Inn [nal]) ™

[n1]=1

is convergent, here na=njaq + njas. Combined with the inequality (4.12)), we have for
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almost every a € R?

1
1<|nl<§\r:2(1n N)2 In1|[[niar + njas||

2(In 2
< i (IZN) (In N)?¢*(InIn N)

= Imln e (ntn o) [ne in fne (o fne))

< (InN)?p*(Inln N) - S3
< (InN)?¢*(Inln N)

O
4.4.4 Estimation for the sum when |n;||n;7 — nsl||na|| is small.
From now on, we can restrcit the range of our discussion to n = (n1,n2), Define:
Dy(x,a,;N)= > fo(n,x,a,0;N) (4.22)
neUs(n,7;N)
where
max{ni,ns} < N?(In N)?,
Us(n,7;N) = { n € Z\{0} ||na — n3| = |na|, |nim —nao| >1/2, (4.23)

|ni|n1T — nol|ne| < (In N)40

From Lemma (.1} we have the following estimation:

Proposition 4.6. Let p(n) be an arbitrary positive increasing function of n with > -, ﬁn) <

o0, then for almost every o € R? and every 7 € [0, 1] irrational, we have
|D4(x,a,0;5N) — Ds(x,a,0;5N)| < (In N)%¢(Inln N).

where the constant may depend on o and 7.

4.4.5 Estimation for the sum when n,; or n, is between N?/4 and N?(In N)2.

Define:

Ds(x,a,a;N) = Z fo(n,x,a,a;N)
neUs(n,7;N)
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where we recall that

max{nh ‘an - n2’} S N2/47

min{ny, |ni7 —ns|} > (In N 40,
Us(n,7;N) = { n € Z3\{0} {m,] b= (InN)
Ina — ng| = ||nal|, [n17—ng| >1/2,

40

|n1|niT — no|||ne|| > (In N)
The goal of this step is to prove the following:

Proposition 4.7. For almost every o € R%, we have
|Ds(x,a,0;N) — Dy(x,a,05N)| < (InN)*Inln N

By limiting the range of (27n1/N?) in fo(n,x,a,a; N) to (=7/2,7/2), fo becomes

better-behaved for later estimations.

Proof. For every v € Z?, with 1 < 2% < N2. (lnN)k, 1 <j <2, and every € = (e1,€9) €
{—1,+1}2, let

T(t;v,e) ={neczZ?: 271 <emny <29, 29271 < ¢ (ng7 — ng) < 22}

with the convention that if v; = 0 then the requirement above means n; = 0, and since
|n1T — na| > 1/2 we have vy > 0. Note that 0 < v; < InN, 1< j < 2. Let

2 . * - *
‘/ — : . < _
1(N) {V c”Z 1I£1’1j122’0] ¢ Inln N with ¢ 2 y

and
2

N
Vo(N) = {v € Z%: 35 € {1,2} such that T << NZ. (InN)k}.

Let C' = 29, ¢ an integer with 27 > (In N)40 = 2¢"InIn N "and write
T(1;v,€,q) = {n eT(r;v,e): 20— 1 ~ max{1, |n1|}ni7 — ng| - |na|| < 2‘1}

We use Lemma 3.2 to have the estimation for the cardinality for T'(7;v,€,q): for almost

every a € R?, since 29 > (In N)*° we have

24
T(r;v,€q)| < min{l’ }
1T( )| Z max{1, |ni|}|n1T — na|

neT(7;v,e)

+O((29) 17 (In N)2t+¢) < 24,

Note that |V;| = O(InN -InlnN), j = 1,2; and there are O(InN) choices for ¢ since
29 < (N%(In N)?)2. Combined with the fact that each set of T(7;v, €, q) would contribute
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O(1), the difference can be estimated by the following;:
|Ds — Da|

< >l Xt

ee{—1,+1}2 \veVi(N) veVa(N)

1
2 2 e - max{1, [na[}{[n1m — ny

q:29<(N2-(In N)2)2 neT'(;v,e,q)

24
< lnN . hllnN . Z F
¢:29<(N2(In N)2)2

< (InN)?-Inln N.

O

In next section we will tackle the main difficulty for the sum of f2(n,x,a,a; N) in Us.

4.5 Estimation of the exponential sums.

The form of the product fa(n,x,a,a; N) saves us the work for the constant part which is
dealt with in section 6 of Beck|Bec94|, and it remains to verify that everything in Beck’s
proof for the exponential part also works for the shifted divisor nj(ni7 — ng)(na — ng).
Since in Section 4 we already controlled the terms where |ni7 — ng| = ||n17|| which could
be very small, the remaining sum would behave similarly as the exponential sums in the
case of boxes.

To estimate the contribution of the remaining sum, first we highlight the essentials in

the sum Ds, which can be represented as follows:

eQﬂiﬁs(n)
Ds(x, a0 N) (Z 2 n1(niT — ng2)(na — ng) ~9(n, N, a)) (4.24)

neUs(n,7;N)

where g(n, N, ) is the product below (observe that |g(n, N, )| < 1):

sin 27(na — n3) 2 2 [sin2r %) ’
( N ) H<W> (4.25)

J=1

and Ls = Ls q.4,N,« is one of the 4 linear forms of 3 variables:
Es(n) = [,s(nl, ng, n3) =N (51:1,‘1 — (11) + n2(62x2 — ag) — 63N(na — ng) (4.26)

where s = (81,02,03) € {0,1}3, and 67 + 2 = 1.
Note from (#.15) that the sign + in ([@24) is in fact + = (—1)%27%%1 and so it is
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independent of n € Z3.

The main idea is to divide the divisors into small ranges and cancel out the positives
with the negatives, with the aim of getting rid of the extra In N in the usual estmations

by the Erdés—Turan-Koksma inequality.

Let 0y = (InN)72, and for every € = (e1,€2,€3) € {—1,+1}3 and 1 = (I3,1s,13) € N3

with
2

N
(InN)* < (14 6y)4 < - 1<7<2 and

N (4.27)
(In N0 < (14 60y)k < (‘Z)

and write

(1 + 5N)l1 <eng < (1 + 5N)l1+1,
Ule)={neZ?|(1+0y5)2 < ex(mr —nz) < (1+6dy5)27, (4.28)

(1+ 6N)12 < egni(nT —ng)(na —n3) < (1+ 5N)l3+1

where n = (n1,n2), and ng is the nearest integer to na = njay + neae. Note that by
([4.27) the range for 1 is of order (In N/dy)3.

Let €t and ¢~ be two vectors in {—1,+1}3 such that the corresponding first 2 coor-

dinates are equal: € =€, 1 < j <k, but the last coordinates are different: egr =1,
€3 = —1. Since in Section 4 we have done all the estimations by bounding the absolute

values of the terms, we can assume without loss of generality that the remaining terms in
D5 form a perfect union of boxes U(1,e") UU(1,€~) by attaching additional border points.

Therefore we have

Ds(x,a, 0 N)
(4.29)
:Z Z fg(n,x,a,a;N)+ Z f2(n7X,a’a;N)
s (Let) \neU(let) nelU(le™)
By Lemma 3.2, for both ¢* we have precisely the same estimation:
Lemma 4.6. For both €™ and ¢, we have
U1, eto)| = EQ1) + Err, (4.30)
where E(1) is the main term, and Err is the Error term and specifically:
E() < 63,1+ d6x)
() < 81 +w) o

Err < 65 (14 6x)5
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Proof. In Lemma, 3.2, by taking C; = (14 6n)B1L, Cy = (1 +6x)", and V, W, with
v =(1+68)5, wj= (1403 1<j<2,

we have that the main term

En= Y <mm{;,CTl_n2’}—min{1 (72}>

nelU(lye) 2 ’anan N nQ‘
< (C) — C2)6% < (1+0y)163,

and the error term )
Err < CF7° (InN)Me < 629(1 + 5,

since C1 > (In N)40, O

We adopt the same definition as Beck in [Bec94| for the e-big vectors, e-neighbors and

e-lines, although here the “neighbors" and “lines" do not depend on e.

Definition 4.1. We say that 1 = (I1,12,13) € N3 satisfying [£.27) is an e-big vector if

N _
U(1, e )1| +]\\]U(l,e )l <| T e ST il (4.32)
n neU(Let) nelU(l,e™)

where |U| = #U denotes the cardinality of the set U. Let U(L, ) = U(l,et) UU(1,¢7)

Definition 4.2. Two integral vecotrs 1 = (l1,12,13) and h = (hq, ha, hs) satisfying (4.27)

are called neighbors if
(1+06x)7 =(InN)?, 1<5 <2 and (4.33)
(1+d0y5)"l = (In N)?, (4.34)

The notation 1—h means that the ordered pair (1,h) of vectors satisfies (4.33) and
(@34).
Note that by slightly modifying the value of §x ~ (In N)~2, we can make sure that the

above definitions are met for integer vectors 1 and h.

Definition 4.3. A sequence H = (h() h®) h®) . ) of vectors satisfying [&27) is called
a "special line” if h(D—-h®) —hG)— . that is, any two consecutive vectors in H are

neighbors.

Lemma 4.7. For almost every o, almost every 7 > 0, every special line contains at most

one €*-big vector.
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Proof. Let H= (h) h® h® . ) be a special line with two e*-big vectors h® and h(®
1<p<gq.If
|£(n)|| < (In N)~2 for every n € U(h® %), (4.35)

then
|1 — e?MEM)| « (In N)~2 for every n € U(h®), ). (4.36)

By repeating the argument of the cancellation of the main term with the above equation,

we obtain (Err means error for the number of elements in .S)

Z 627ri£(n) o Z eQﬂ'iE(n)

ncU(h®) e+) neU(h®) )
< (L4 (InN) ) (EMP)) + [Exr|) - (1 = (InN)7*)(BE(LP)) - |Err))
< [Err| + (In N)"2E(h®)))
< n(E(h))
L mn, )

(InN)?

But this contradicts the assumption that h®) is e*-big, see . So there is an
n* € U(h®, et) such that

|£(n)| > (InN)~2, (4.37)

For every m € U(h(®, e*) (another e*-big vector), consider the "arithmetic progression”

with difference n*:
m+7r-n*=(my+r-n*;,me+r-n"y,m3+r-n*s), r=0,+1,+2 ...

We will estimate how many consecutive members m + 7 - n* are contained in U(h9, ¢*).
Since n* € U(hP, %), the definition for U(h?,e*) (see (4.28)) gives the following:

(14 on)"" < et < (143", (4.38)
(I14+6n)"2 <e(njT—n3) < (14+60n5)" T, (4.39)

(p) (p)
(1+6x)"" < |nf|lnfr — nbl|Ine < (1+ 6x)" *. (4.40)

Definition 4.4. An m € U(hY,¢%) is called an inner point if

( ) 1)
o (14 ) em < (1 ) e e

(a) 1) ) (a)
1+ 0wy (”M)SEQ(T””‘”’L“(“@JNVV) 1+ on)h+, (442)
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(a) o J (@)
(1+aw)"™ (1 + (MNV)) < fmalmy7 —ms| - [ mal| < (1 - ]NV)Q) (14 o)+,
(4.43)

The rest of the points in U(h?, eT) are called border points.

For every inner point m € U(h?, e*), and for every |r| < (In N)4, it follows from (4.33)),
([@38) and ([@41) that,

(14 03" < (14 o5)M" <1 0 5]%)2) — (I N1+ oy)n
n

< e (my+r-nj)

o () (») (444)
N hi?+1 4 hi+1
<|1- 14+don)" In N)*(1 4+ don5)™
(1= o) (4 80" 41 4 )1+ 6)
(
< (14 6y,
Similarly, from (4.33)), (4.39) and (4.42), we obtain the following,
(9) (9)
(1+0x5)"" < ea((my +1-n)7 — (Mg +1nd)) < (1+5y) " 11, (4.45)
and from (4.34)), (4.40) and (4.43]) we have:
(1+ 5N)hi(3q>
[ma + 7 nif[(ma + )T — (m2 + 7 - 05
< |lma|[ = |r| - n"a]
< lm+7-n)al (4.46)

< [malfl +[r[ - [[n*a]

(1+5N)h§‘”+1
Imy + 7 - ntl|(m1 +7-ni)T — (M2 + 7 nk)|’

where we use the In view of (#.44)-(4.46)), for any inner point m € U(hY,¢*), at least
(In N)* consecutive members in the progression m + r - n* are contained in U(h?,e*).

Therefore, we can decommpose U (h?, et) into three parts:
U(hY, et) = APT UAP~ UBP (4.47)

where AP* denotes the family of arithmetic progreesions {m +r-n*: 0 <r <[ —1}
in U(h? e") and U(hY,e™) respectively, where [ = [(m) is the length of the progression
starting from m, and [ > (In N)*. BP denotes a set of border points of U(h?, e) that are
not included in any arithmetic progressions. Using [|£(n)|| > (InN)™2 (see (£.37)), the
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linearity of £, we obtain

-1
| Z 627ri£(n)| < Z |2627ri£(m+rn*)‘

APt arithmetic progressions r=0

_ Z ’ l_zl e27ri£(m)+r£(n*)‘

arithmetic progressions r=0 (4.48)
1
« Y Loy
arithmetic progressions Hﬁ(n) H arithmetic progressions

length _ |U(h?€et)]
< <
- Z (InN)2 = (InN)?

arithmetic progressions

since each length > (In N)*. Similarly,

2mil(n) |U(hq7 67)|
| Azl.; e | < YL (4.49)

Finally, for border points, at least one of the inequalities in definition is violated,
thus the range for at least one components is shrunk by the ratio (lr?i]]\\’[)Q. Using the same
reasoning as in Lemmal[4.6] and the fact that the cardinality of the set BP can be controlled

by the total number of border points of U(h?, ), we have for almost every a, 7 > 0,

|U(h?, &)
(In N)?

Combining (4.47)-(4.50)), for almost every «, /3, we obtain

|BP| < (4.50)

(p) et
2ril(n) _ amicm)| o [U(Y), €7)]
g e E e < (1nN)2
neU(h®) et+) neU(h®) e-)

which contradicts the assumption that k(9 is e*-big (see (1.32)), therefore for almost
very o, > 0, every special line contains at most one e*-big vector, which proves the

lemma. O
Corollary 4.3. The number of €-big vectors is < 63> - (In N)?(Inln N).

Proof. First we estimate the number of maximal special lines. Let H = <h(1), h®@ he, .. )
be a "special line", here h() is the first element of H, that is, if h(© —h® holds for some
h(® | then at least one of the following inequalities is violated(see (4.27]):

1 (0)
(1463)%" >IN 1<j<2

(1+6x)" > (In N)©,
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Thus, by (.33)) and (4.34)), one of the inequalities below holds:

(In N < (1 4+63)5M” < N, 1<j<2

(N0 < (14 6x) < (10 N)Y20+27,

So at least one coordinate h§1) of the first element h(?) of H is restricted to an interval
of length const-Inln N - (5&1, the rest, by the condition (4.27)), are restricted to an interval
of length const-In NV - 5&1. Since the starting vector determines the whole special line, the
number of special line is

< (InInN) - (InN)?-5,°
By Lemma the total number of e*-big vectors is also
< (InInN)-(InN)?-5,°

O

With the help of Lemma4.7] we can estimate the contribution of the exponential terms,

we have the following:

Proposition 4.8. For almost every a we have

|Ds| < (InN)?(Inln N)

Proof.
Yy
small  big
where
= > > fmxaeoxN) (4.51)
small € 1not e-bigneU(le)
Y =>" > ) funxaa;N) (4.52)
small € lis e-bigneU(Le)

By Lemma range for 1: , and ,

small

<y N (1+5N)ZS'W

€ 1lis not e-big

<<Z—

63 (InN)?
< —= .
InN 0%y

< (InN)?
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By Corollary [4.3]

D l< > @+6n) 7B (BEQ) + Err)
big 1is e*-big

< [(Inln N)(In N)*63°] - [(1 4 0n) 7" - (1 + 6n)"0%]
< (InN)?Inln N

O

Combining Proposition {.1] £.2] and Lemma [4.5] we finally arrive at the con-

vergent part of our main Theorem The divergent part is easy:
Proof of the divergent part of Theorem

One way is to employ the same strategy as in Beck|Bec94|, and try to find a “large”
Fourier coefficient using Lemma 3.3. But an easier way is to use Beck’s result directly, since
Beck proved that for Y, ﬁ = 00, the maximal discrepancy function for boxes will be
greater than (In N)2p(Inln V) infinitely often, by cutting the box diagonally we know that
at least the discrepancy function for one of the triangles is greater than 1/2(In N)2¢(Inln N),
since the maximal descrepancy is defined over all starting points a € [0,1]2, we can trans-
late the triangle with the large discrepancy to the origin, hence the maximal discrepancy
defined as in the theorem 1.2 is also greater than 1/2(In N)?p(Inln N) infinitely often.

oo 1

Note that the coefficient 1/2 does not change the convergence of the series of > , o)

The proof for the main theorem 1.2 is completed. O
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Chapter 5

Ergodic Examples of Cylindrical

Cascades

5.1 Introduction

Let T = R/Z denote the torus, parameterized by [0,1). Given an irrational vector o =
(a1,...,aq9) € R let Ty, : T? — T denote the translation by « on T¢, given by: 2 — x4+«
(mod 1). Given an observable A(-) on R", the cylindrical cascade above Ty, relative to A(-)
will be denoted W, 4 : T x R™ — T4 x R™. Tt is given by Wy a(z,y) = (z + o,y + A(2)).
The dynamics of W, 4 is closely related to the Birkhoff sum of A, denoted by An(-):

N—1
An(z) = A(T}z).

n=0
We can see cylindrical cascade W, 4 as a random walk on the fiber R" driven by the
translation T,, on the base T¢, which makes it natural to study its recurrence and ergodicity.
For the walk W, o to be recurrent, A has to have zero mean, since otherwise Ay is
unbounded by the ergodic theorem. In fact, zero mean is also a sufficient condition if r =1
(see |Atk76|). For r > 1, a sufficient condition for recurrence, together with recurrent and
transient examples, is given by Chevallier and Conze|CCO09].

The ergodicity of the walk W, 4 can be established if the sums Ay, are increasingly
well distributed over R” along some subsequence N,,, while the translation TV stays close
to identity. This idea gives rise to the notion of essential values, introduced by Klaus
Schmidt in [Sch77]: @ € R" is called an essential value of A if for each B € T¢ of positive

measure, for each € > 0 there exists NV € Z such that
wBNT, VBN An() —a|< €]) > 0.
Denote E(A) the set of all essential values of A. The following lemma characterizes

99
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E(A) and gives a criterion for ergodicity,
Lemma 5.1 (|Aar97,Sch77]).
1. E(A) is a closed subgroup of R".

2. E(A) =R" iff Wy a4 is ergodic.
3. If A is integer valued and E(A) = Z" then W, 4 is ergodic in T4 x Z".

In this chapter, as a joint work with Fatna Abdedou, we construct ergodic examples
of cylindrical cascades W, 4 over T2 for sufficiently Liouville translation vectors o with A
being the centered indicator functions of straight rectangles with the origin as a corner.

Specifically, we prove the following:

Theorem 5.1 (Abdedou-W.). For almost every straight rectangle in T2 with a corner at
the origin, let A be the centered indicator function of the rectangle, then there exists a

Gs-dense set of a, such that the cylindrical cascades W 4 1s ergodic on T2 x R.

A more precise statement will be given in Section 5.3, together with a version extended
for the case of T? x R?, where we achieve ergodicity at the price of the genericity of the

side lengths of the second rectangle.

5.2 Arithmetic Notations

Let x be a real number,

1. Denote [z] the integer part of .

2. Denote {z} the signed distance of the = to the closest integer, i.e., {x} = z —n where
n is the only integer such that x —n € [-1/2,1/2).

3. Denote ||z|| = |[{z}| the distance of x to the closest integer.

5.3 Main results and Lemmata

A slightly more precise statement of Theorem 5.1 is the following:

Theorem 5.2 (Abdedou-W.). For almost every L = (I,1') € (0,1]?, there ezists a G-
dense set of o = (a1, ) € R? —Q?, such that the cylinder cascade Wa,a constructed over

the zero-mean indicator function A(-) = xp,(-) — Vol(BL) is ergodic.

For the case of T2 x R%, given two pairs of lengths (I1,1}), (I2,1), define the correspond-
ing rectangles By = [0,1;] x [0,{}] and By = [0,ls] x [0,05] and the zero-means indicator

functions

(5.1)
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Then we have the following result for the R? case.

Theorem 5.3 (Abdedou-W.). For almost every 11,1} € (0,1], there exist la, 1}, both belongs
to a Gs-dense set of (0,1, and a Gs-dense set of a = (a1,a3) € R? — Q?, such that the
cylindrical cascade W, 4 constructed over A(-) = (AY(-), A%(")) (defined in (5.1)) ) is ergodic.

It is not hard to see that by restricting the discussion in Theorem to the first
coordinate of A(-), we obtain Theorem as a corollary. In the next section, we will prove
Theorem in detail and keep Theorem as a corollary.

Our construction is based on the approximation of the rectangle by small rational
rectangles that tile the torus and the approximation of the translation vector by their

vertices. We start with the following observation:

Lemma 5.2. Let v denote the rational vector (p/q,p’/q') on T2, where the coordinates are
in reduced forms, i.e., (p,q) =1 and (p/,q¢') = 1. If in addition, the two denominators are
relatively prime, that is, (q,q') = 1, then we have an identity in T2 between the orbit of
translations by v and the vertices of the rectangles of side lengths 1/q and 1/q’:
i
{muv | OSquq’—l}—{(,j,> ‘ 0<i<g-1, OSqu’—l}- (5.2)
q q
Proof. Because the cardinalities of the two sets are both ¢q’, it is enough to show that for
Ogmangqq,_la

mv =nv in T = m = n. (5.3)

Note that mv = nv in T? is equivalent to
(m—mn)p/q € Z, and (m —n)p'/q € Z (5.4)

Since p and q are relatively prime, ¢ divides m — n, similarly ¢’ divides m — n, but ¢ and
¢ are also relatively prime, so we have that qq’ divides m — n, which is only possible when

m=mn,as |m-—n|<q¢ —1. O

Divide the torus T? by disjoint rectangles R/ of the form [i/q, (i + 1)/q) x [j /¢, (j +
1)/¢'), where 0 < i < qg—1,0 < j < ¢ — 1. If the translation vector « is close to the
rational vector (p/q,p’/q’), the above lemma implies that starting from the origin, within a
time range of q¢’, the orbit of the translation visit a close neighborhood of each and every
vertice of R%J exactly once. By approximating the rectangle By, = [0,1] x [0,1'] by a union
of R™, we can compute the Birkhoff sums for A = yp, — Vol(By) as follows.

Let

l=0b+0)/q, I'=® +8)/d, (5.5)
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where 6 = {ql}, &’ = {¢'l'}, and let
ar=(p+n)/g aa =@ +1)/d, (5.6)

where n = {qga1}, 0’ = {das}.

Lemma 5.3. Denote N = qq, if there exists a K > 0 such that

n<d/(Kq), n <d/(Kq).

then there exists a set F C T2 of measure (1 — 4q6)(1 — 4¢'8"), such that for every x € F,
every k between 0 and K — 1, the Birkhoff sum Agn(x) has the following form:

Ay (@) = kAn(2) = —k(b8' + 16 + 85). (5.7)

Proof. Define F to be the set of points that are not close to the boundaries of any R%/:

ifq+20 <@y < (i+1)/q— 25, } (5-8)

§/qd +28 <xo < (j+1)/¢d — 2

F = U {(zl,x2)€T2

0<i<qg—1
0<5<q -1

F is the disjoint union of gq’ rectangles, each is of measure (1/q — 40)(1/q — 44’), so the
measure of F is (1 —4¢d)(1 — 4¢'¥).
Note that for 0 < m < KN, so ma is d—close to m(p/q,p'/¢):
Imaa —mp/q| <mn/q <6,

(5.9)
lmay —mp'/q'| <mn' /¢ <6

Since the points in F are 26-away from the boundaries of R%/, the orbit {z +ma | 0 <
m < kN — 1} stays -away from the boundaries of R*/. By Lemma , for0<k< K-1,
the orbit {x +ma| kN <m < (k+1)N — 1} visits each R% exactly once and stays d-away
from the boundaries, thus the orbit visits the rectangle By bb’ times within a time range
of N. Therefore, for 0 < k < K — 1, we have

Agpn(z) = kAN ()
= k(b — qq'll")
=k — (b+6)(b +4))
= —k(bd' + V6 +68).

(5.10)

O

If we can show that An(x) can be increasingly small along a subsequence, then by

choosing the translation vector a to be Liouville enough, we can choose K to be large,
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and thus the sequence {Agn}to<k<i—1 becomes increasingly well-distributed in R, while
keeping the translation T*V close to identity. The following lemma states that this is
indeed the case for generic L = (I,1") € T2.

Lemma 5.4. For almost every l,l' € (0,1], there exist two sequences {qn tnen and {q}, }nen

such that the following properties hold,

1. qn,q), = 00, as n — oo,

2. qn and ¢, are relatively prime, i.e. (qn,q,) =1, Vn € N,

3.
e < Bl b b~ B S G ()
where by, and b], are the closest integers to q,l and ¢l
4. q), and qy, are approzimately of the same magnitude:
I < ¢ < gu(inlnlng,)? (5.12)
(In gn)?

Lemma [5.4] states that the Birkhoff sums for A can indeed be small along a subse-
quence, while the coprime condition between g, and ¢/, is satisfied. For examples in higher
dimensions, we need similar bounds for the second rectangle, but in order to approximate
the essential values along the two axes, we need the magnitude of the Birkhoff sums for
the second rectangle to alternate between large and small relative to the Birkhoff sums of
the first rectangle. This can be achieved by restricting the length of the second rectangle

in a Gg-dense set, as stated in the next lemma.

Lemma 5.5. For almost every 11,1} € (0,1], there exist la,l5 € (0,1] (each belongs to a
Gs-dense set of (0,1]), such that for the two sequences {qn}tnen, {4}, tnen defined as in

Lemma

1 3

- < | lo — A 2 513
Mg < ot =)+ oty )| S gt 69
. < @51 (@2nt1le = T2nt1) + G2ns1 (@ 10y — Thuy1)| < 3
4(Inlnlngapy) AR " r R ] = 2(Inlnln q(2n+1))1/4’
5.14

where 1, and r], are respectively the closest integer to qyla and ¢l lh.

Lemmais the key to our construction of ergodic examples on T? x R, where the main
difficulty is the coprime condition between ¢, and ¢},. If we do not require the coprime
condition, Lemma [5.4] can be easily obtained by using the classical version of Khintchine’s
divergence theorem for Diophantine approximation and Dirichlet principle. We dedicate
the last section of the chapter for its proof, together with the proof of Lemma [5.5 which

is relatively simple.
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5.4 Proof of the Theorems using the Lemmata
We first prove the inequality of essential value criterion for the special rectangles L ,

which can then naturally generalized to positive measure sets.

Lemma 5.6. For the irrationals ly,1},ls,l}, and the sequences {q,}, {¢},} in Lemmal5.5,
there exists a Gy-dense set of o = (v, ) € [0,1)2 such that for every box Ry = [i/qn, (i+
V/an] x [7/d,, G+ 1)/d,), 0<i<qg,—1,0<j<q,—1, foralla € R, and € > 0, there
exists N € N*, such that

1

jz (Ri{j mTc;NRf{j N[l An(-) = (a,0) |< 6]) > Wv

(5.15)
and the same inequality holds if we change (a,0) to (0,a).

Proof. By choosing a subsequence of n, we can assume that ¢,.1 > 2n(Ing,)?¢>, also
note that ¢/, and g, are of the same magnitude(see (5.12))), so it is possible to choose

a = (aq, ag) Liouville enough such that there exist two sequences {p, } and {p},} such that

(Pnsan) =1, (P}, q,) =1, and

1
~ n(lngn)?q¢iq,’

Pn
o — —

an

Pn| . 1

S 5.16
~ n(lngy)?gng? (5.16)

For any number v in T and ¢ > 0, we can choose ¢, large enough, such that there exists
a certain p,, relatively prime to ¢, with the property that |p,/¢, — 7| < €. Since aq is
sufficiently close to p,,/q, when g, is large, the choice of o naturally form a Gs-dense set

of T, similarly, the choice of ag also form a Gs-dense set of T.

For M,, = v/n(In ¢,)?qnq.,, and for every 0 < m < M, we have

Pn Pn 1
moap —m—|=mla; — —| < , (5.17)
In G| = V1N
and , , )
Pn by
mag —m—| =m|ag — —| < . (5.18)
an an |~ Vna,

For any i, j € N, denote by F; j(qn, ¢},) the set of points (z1, z2) satisfying the following

2 7 1+ 1 2
\/’EQn dn ! dn \/HQn ( )

and 5 . 5
IEAP X s (5.20)

< x9 < - .
vng,  q), @ V/ng,

Then the Haar measure of the set F; ; has the following lower bound,
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1 Fij(an: qn)} > (1 - }) qnlqn (5.21)

(5.22)

Hk\wm

v

nqn
for n > 4.

Note that the condition of = € F; j(¢n, ¢},) means that x is far away from the boundary
of the box R4’ while the condition for o (see (5.16))) means that {ma}1<m<nm, is close to
the boundaries of the rectangles [¢'/qn, (' + 1)/qn] X [§'/d, (5" + 1)/q,], this means that
the sequence of points {z + ma}i<m<n, are not close to the boundaries of the rectangle

B and Ba, i.e. the following,

b Tn
lz1 + maq — 1| Zmax{ Lh— =2 |l — 2 }
an dn

and

|x2 + mas — || > ma l’—% l'—i
2 2 — ]| Z Inaxq i q”2 /
n

where 0 < m < M,,.

Therefore, for © € F; j(qn,q,), Nn = qng,, by the coprime conditions of (py,q) and
(pl,, dh), {x+ma}i<m<n, will visit the center part of all the small rectangles [i/¢y, (i + 1)/qn] x
[7/4,, (7 +1)/q,] exactly once, then the number of visits inside the rectangle B; is equal

to bybl,, then we have
| AR) @) [=] bab, — andial; |

Let by + 0 b+ 6
n t Ok and ’1:7"4_ k

1 = ;
qn an

Thus, from (5.11)

| Ag\lfi(x) | :‘ bnb;—b — qnq;lll’l |
=[ bnbl, = (b + 6,)(b], + 47,) |
< 2| bpdl, + bpdl, |

< 2RHS of (5.11)
4

- (InInln g, )/2’

and similarly,
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Therefore, for x € F; j(gn, q,,), we have

Il (1) 4
—— < |A ‘ < 5.23
4(Ing,)? — ‘ N (7)] (Inlnln g,)%/2 (5:23)

Similarly, from (5.13) and (5.14) we have

@ (3«3
‘ANQn(x)’ — (lnqn)3’ (524)
1 2 3
< yAgvngu)\ < (5.25)

4(InInln gopyq)t/4 — (InlnIn gopy1)Y/4

For a € R and € > 0, by choosing n large enough, there exists Ko, = Koy(a) such that
| Kon| < v/2n(In ga,,)? and the following inequalities hold:

4 1
- <«
(Inlnlngo,)t/2 = /2

2
< 3\/2n(lnq§n) < 3v2n < 3v2n < ie, (5.27)
(In gop,) In gop, 2n V2
where we use the fact that In ¢, > n, which follows from the choice of g, 11 > ¢,. Therefore,
by Lemma for N = Ko, Nop = Konqong,, © € Fi j(q2n, d5,) C R;’ﬂ;, we have

‘K%Aﬁgn () — a’ < €, (5.26)

An(z) = Kon(AY) (2), AR (),

which implies that
|An(x) — (a,0)] <e. (5.28)
So we have
Fi(@2ns @30) N T ™ (Fij(q2n, G30)

N i i ) (5.29)
C T, (RZ)NR n{z€[0,1)°|An(z) — (a,0)]} < €}

Note that by inequality (5.17) and (5.18])

1 1
1 (Fij (q2n, g5n) N N (Fii(aon, 45,))) > <1 - ) (1 — > 1 (Fij(qon, 45,)) »

V2on V2n
1
> — > 0.
2qonq5,,

Similarly, we can obtain the positive measure when we substitute 2n with 2n+1, and (a, 0)
with (0,a). This finishes the proof of Lemma[5.6] O

Corollary 5.4. For almost every 11,1} € (0,1], a Gs-dense set of la,l, € (0,1], and a
Gs-dense set of a = (a1, az) € [0,1)2, we have E(A) = R.

Proof. By Theorem it suffices to prove that a similar conclusion in Lemma holds
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after we substitute R%/ by any set B of positive measure. In fact, for any positive measure

set B, there exists n large enough, such that

9 1

p (R N B) > (5.30)

for some 0 < i < g, —1and 0 < j <g), — 1, thus we can expect a slightly weaker lower
bound for a general positive measure set B.

For given a € R, € > 0, choose n large enough such that inequality holds, denote
N = N(a,€) = K2, Nay, = Kong, qon as in Lemma By inequality, we have

Fij(@2n, @) € {z | [An(2) = (a,0)| < €} (5.31)

Now with standard measure computations, we are ready to show the following desired
bound,

Il (E,j(qzn, Gon) N TN (B n Ré%i) M (B M Ré’i)) >0,

Let X =T, ( R%) N (B N R%), then we have the following bound for u(X):

—u (TN (BnRg) 0 (BORY))
= (TN (BORY)) +p (B RY) = (TN (BORE) U (B R))
>2u (B0 R”’) —u(TY (RY) U RY)
on (37) = o ()
g (R5).
where the inequality (TQ_N(Ri’j) U R;fl) < 2y (R%) comes from the fact that 7,7V

close to identity, as gangh,, divides N(see (5.16))).
Denote Y = F; j(qon, ¢5,). Note that X and ) are both subsets of Ré’i, by using the

lower bound (5.21)) of u()), we have

| \/

w(XNY) = p(X)+py) —pXuy)
> g (R51) + G (i) —n (52)

u (RS

v
»&H—‘I\DH—‘

Finally we obtain the following bound,
. . 1 .
p (T;N (B N R%) N (B N R;’fl) N Ji,j(qan,q’zn)) > (Rlz’%) > 0.

This proves that for every a € R, (a,0) € E(A), similarly we can prove that (0, a) belongs to
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E(A), by the subgroup property of essential value in Theorem we have F(A) =R?. [

Corollary 5.5. By restricting the above discussions to the first coordinate of AWV, it is
easy to see that in the case of T2 xR, for almost every l1,1; € (0,1], there exists a Gs-dense
set of a = (a1, a2) € [0,1)%, we have E(AM) =R,

5.5 Proofs of Lemmata and 5.5

We can see that the coprime condition is essential for Lemma [5.2] and to achieve it, we
need a stronger version of Khintchine’s divergence theorem, one that allows us to impose

prime conditions for the denominators.

Lemma 5.7 (|[DS41]). If there exists a function ¢ : N — Ry such that

(1) 221(q) = oo,

(i) there exists a strictly positive constant c, such that the following inequality

q=1 q=1

holds for infinitely many n, where ©(q) is the Euler’s totient function, then for almost

every | € R, there exist infinitely many pairs of integers (b, q) such that
lgtll = lql — bl < (q).

With the help of Lemma [5.7], we could restrict the approximation of I € R by rationals

with prime denominators, as shown in the next lemma.

Corollary 5.6. For almost every | € R, there exist infinitely many pairs of integers (b, q)

such that q is prime and

1
I =gl —p| < ——— 32
gl = |q p|<qlnlnlnq (5.32)

Proof of Corollary[5.6. Define

5@ 1/(¢Inlnlng) if g is prime and Inlnlng > 1,
q =

0 otherwise.
It suffices to check that condition (i) and (ii) of Lemma [5.7] are satisfied for ¥ (q).

Note that if ¢ is prime, we have ¢(q) = ¢ — 1 (¢ is the Euler’s totient function), then
©(q)/q > 1/2, and condition (ii) of Lemma [5.7] is satisfied.
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For condition (i), by the following inequality of the sum of the reciprocals of primes

1
> —>n(n+1) —In(x*/6), (5.33)
q<n a
q prime
we have ) )
>_ - -
Z ¥la) 2 Inlnlnn Z q
q<n q<n
q prime g prime
Inl - 2
5 I n(n+1) —In(7?/6) N
(5.33)) Inlnlnn
as m — oo, thus condition (i) is also satisfied. O

Now we proceed with the proof of Lemma [5.4]

Proof of Property 1. By Corollary we have that for almost every [ € (0, 1], there exist

an increasing sequence of prime numbers {¢,} such that ¢, — 0o, as n — oo, and

1

Wl < ——m—.
lantll < qnInlnlngq,

(5.34)

By choosing a subsequence of ¢,, we can assume that g, > n? and Inlnlng, > 1. By

Dirichlet’s principle, for every I’ € [0, 1], for all n € N, there exists ¢}, € N such that
¢, < gn(Inlnlng,)?, (5.35)

and
g, l'|| <

. 5.36
¢n(Inlnln g, )1/2 (5.36)

Since for almost every I’ € (0, 1], there exists a constant C(I’) such that ||nl’|| > C(I') /n?,
the inequality above implies that ¢, — oo as n — oo for almost every I’ € (0,1]. This
proves Property 1 of Lemma O

Proof of the right hand side of (5.11). Combining (5.34) and (5.36)), we have

2
’ nl " /l/ < B ——
tnllgnlll + anllanlll < (Inlnlng,)'/2

Since by, b, are respectively the closest integers to gl and ¢),l’ for 1,1 € (0,1], we have
b, < ¢ and b, < ¢, thus we obtain the right hand side of (5.11) from the inequality

above. O

Proof of Property 2. We prove that for almost every I’ € (0,1], we have (gn,q,,) = 1 when
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n is large enough, then Property 2 follows by choosing a subsequence of n. Define

Gn,k = {l/ € [0,1]

1
El'|| <
IkH < qn(lnlnlnqn)l/Q}’

and

Gn = U Gn,lm
kE€Sn

where

Sn = {k €N ‘ (kyan) #1, k < qn(lnlnlnn)l/Q}

denotes the set of k’s that violates the coprime condition. Note that when I’ does not

belong to G, the corresponding ¢/, that solves (5.35) and (5.36) is coprime to ¢y, so it
suffices to show that almost every I’ belongs to at most finitely many G,,.

Since ¢y, is prime, if (k, q,) # 1, then (k,¢,) = gn and g, | k. So we have

#5, < (Inlnln g,)"/2.

Thus
p(Gn) < D (G

kESn

< #S, - !

=T gu(Inlnln g,)Y/2

(Inlnlng,)'/?

~ gu(Inlnlng,)'/2

<L

S 3

and

o0

=1
G, < — < o0.
llu’( n)—;ng oo

n—=
By Borel-Cantelli Lemma, almost every I’ € (0,1] belongs to at most finitely many Gy,

which proves the coprime condition. O

To prove the left hand side of (5.11)), it suffices to show that the two signed distances,
qnl — by, and ¢}l — ¥

n, can be of the same sign infinitely many times, and that the lower

bound hold for one of the distances. First we introduce a Lemma about the asymptotic

estimation about the number of solution of the approximatiion inequality.

Lemma 5.8 ([Lan95, Chapter IT, Theorem 7]). Let ¢ : N — [0, 1] be a decreasing function,
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such that Y~32, ¢(k) diverges. For each positive integer N and irrational number [, let
N
B(N) = o(k),
k=1

and let \(I, N) denotes the number of solutions in integers b and q of the inequalities
0<qgl—b<o¢(k) and 1<g<N.
Then for almost every | € R, we have
AMIL,N)=®(N)+ o(®(N)).

Therefore, for almost every l € R, the number of solutions (b, q) for the above inequality is

infinite.

Proof of the left hand side of (5.11). By substituting by a subsequence, we can assume
that ¢, > 2¢,_1, and g,l — b, is positive for all n, i.e.

1

0<gnl —pn < ——7——.
gnInlnlng,

We first show that for almost every I’ € (0, 1], there exist infinitely many pairs (b, q,)
such that ¢, I" — b), are positive.

Define Qo = g0 = 0, Qn = gn(Inlnlng,)"/? for n > 1.

Define ¢ : N* — (0, 1] by

then ¢(k) is decreasing. Note that

an n . . 1/2
gia(Inlnlng, ) n

E k) = 1-— > —

k:1¢( ) Z( ¢i(Inlnln g;)1/2 -2’

=1

So Y ¢(k) diverges. By Lemma [5.8] for almost every I’ € (0, 1], there exist infinitely many

pairs of solutions (b/,,q},), such that

1
0<dl -1 < 7 d 1< <q(nlnlng,)"2.
o ~ ¢u(Inlnlng,)/? an < ¢, < gqn(lnlnlngy)

This shows that there are infinitely many n’s such that ¢,l — b, and ¢’ — b, have the
same sign.

It remains to show the lower bound for one of the distances, here we show it for by, |q},l' b/ |.
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By Borel-Cantelli Lemma, for almost every I’ € (0, 1], we have

1
K| > ————=

for all k large enough. By the inequality ¢/, < ¢,(Inlnlng,)'/2, we have

1
! 7!
@l > ———= 5.37
Iahl 2 s (5.37)
for all n large enough, which gives the desired lower bound
b 1 l
bollt || > 2 > )
O

Proof of Property 4 of Lemma[5.4 From the upper bound (5.35)) for ¢/, and the lower and

upper bounds (5.37)) (5.36)), we have that ¢/, and g, are approximately of the same magni-

tude:
dn

<q, < g(Inlnlng )%
(Ing,)2 — ™= ™" "

2

Proof of Lemma[5.5 By choosing a subsequence of {g,} if needed, we can assume that
2 5
Qn+1 = qn(ln Qn) . (538)

With (5.12) and (5.38]), we can choose I3 such that

1
————= < @y llganle]] < ——3 5.39
2(lnq2n)3 = anHQQ QH = (lnq2n)37 ( )
1 1
< Gons1ll@nsila] < , (5.40)
2(lnlnlnq2n+1)1/4 (Inlnln Q2n+1)1/4
and I} such that
1
Gnlldanlall < A gon)?’ (5.41)
1

G2n+111gan 4102l < : (5.42)

12 4(InlnIn gopy1)/4

The above choice of I (and 1) forms naturally a Gs-dense set of (0, 1], as we can approxi-

mate any given number well enough by a rational with a denominator that is large enough.
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From inequalities (5.39) and (5.41]), we have

1 1 1

<
4(Ingop)? ~ 2(Ingon)®  4(Inge,)3

S IQQn(qQHZQ - TQTL) + an(QQnZIQ - rén)‘
< 1 n 1
o (hl an)3 4(ln q2n)3

3

<
~ 2(Inga,)3

Similarly, from inequalities (5.40) and (5.42)), we have

1 3

17 < |1 (@2ns1l2 = T2p41) + G2nt1(@hni1ls = Tongr)| < 2 e

4(Inlnln gop41 Inlnlngont1)

O
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