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Titre: Nouveaux traitements radar robustes aux erreurs de modèle :le cas des cibles hors grille
Mots clés: Détection, Radar, Statistiques Robustes, GLRT
Résumé: Le problème de détection d’une cibleradar est classiquement représenté par un testd’hypothèse binaire. Quand tous les paramètressont connus, pour résoudre ce test, on utilise letest du rapport de vraisemblance, optimal au sensde Neyman-Pearson. Cependant, ce cas de figuren’est pas réaliste et en contexte opérationnel, letest d’hypothèse dépendra de plusieurs paramètresinconnus. Une stratégie populaire consiste à in-troduire les estimateurs du maximum de vraisem-blance dans le test de détection: c’est le test du rap-port de vraisemblance généralisé (TRVG). Quand lesparamètres inconnus sont non linéaires, il n’existeen général pas de forme analytique pour les esti-mateurs du maximum de vraisemblance. En dé-tection radar, ces paramètres correspondent no-tamment à la distance et à l’angle de la cible ou àson effet Doppler. La stratégie retenue en pratiqueconsiste à effectuer des tests pour des valeurs de

paramètres fixées sur une grille discrète. Cela in-duit une désadaptation entre les vrais paramètresde cible et les paramètres sous test, qui en retourdégrade les performances de détection du test.
L’objectif de cette thèse est d’étudier l’impactdes effets de grille sur la détection radar ainsi quela recherche et l’étude de stratégies à mettre enoeuvre pour le contrer. Une attention particulièreest donnée à l’approximation et l’étude des TRVGhors-grille, définis comme les TRVG classiques (Fil-tre Adapté, Filtre Adapté Normalisé) testés en con-tinu sur l’espace de recherche des paramètres decibles. Ces détecteurs présentent les meilleuresperformances de détection connues dans la littéra-ture en présence de cibles hors-grille mais, d’unepart, leur statistique est difficile à évaluer, et, d’autrepart, une implémentation précise de ces tests enpratique semble coûteuse.

Title: New robust radar processing: the case of off-grid targets
Keywords: Detection, Radar, Robust Statistics, GLRT
Abstract: The problemof detecting a radar target isclassically represented by a binary hypothesis test.When all the parameters are known, to solve thistest, we use the likelihood ratio test, optimal in thesense ofNeyman-Pearson. However, this case is un-realistic and in an operational context, the hypoth-esis test will depend on several unknown parame-ters. A popular strategy is to introduce the maxi-mum likelihood estimators in the detection test: thisis the generalized likelihood ratio test (GLRT). Whenthe unknown parameters are non-linear, there is noanalytical form for the maximum likelihood estima-tors. In radar detection, these parameters corre-spond in particular to the distance and angle of thetarget or to its Doppler effect. The chosen strategyconsists of performing tests for parameter valuesfixed on a discrete grid. This induces a mismatch

between the true target parameters and the param-eters under test, which in turn degrades the detec-tion performance of the test.
The objective of this thesis is to study the im-pact of grid effects on radar detection, as well asto research and study strategies to counter them.Particular attention is given to the approximationand study of the off-grid GLRT, defined as the clas-sical GLRT tests (such as the Matched Filter and theNormalized Matched Filter) computed on the con-tinuous parameter space of the target. Those testspresent the best detection performance known inthe literature in the presence of off-grid targets, but,on the one hand, their statistic is difficult to evalu-ate, and, on the other hand, a precise implementa-tion of those tests seems intense computationally.
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Introduction

Context and objectives

Since the middle of the 20th century, Radar systems have widely been used in both military and
civil contexts in order to detect and track targets. The radar principle is well-known: it emits an electro-
magnetic wave toward a scene, and, if any target is present in the scene, the signal sent by the radar is
reflected by the target. The target will then be detected by the radar, which can proceed to estimate the
target parameters and track the target.

The use of signal processing is necessary in order to translate this physical principle into a working
system: indeed, without any instantaneous processing, the signal returned energy is well below that
of the ambient noise of the radar sensor. Detection theory intervenes in the first stage of the radar
processing chain. It aims to provide detection tests that can be used to discriminate incoming echo
signals from ambient noise or returns from static elements of the scene while limiting the probability of
false alarms (PFA) through the choice of an adequate threshold. The most common procedure is the
Generalized Likelihood Ratio Test (GLRT), which consists of replacing the unknown parameters of the
expected signal with their Maximum Likelihood Estimates (MLE) in the likelihood ratio. However, closed
forms for the MLE of unknown parameters do not always exist. In particular, this is the case for the
range, Doppler shift, and direction of arrival of radar targets. In this case, the classical solution consists
of discretizing the search space of the unknown parameters as a fixed, discrete grid, often designed to
have statistically independent tests. Detection tests are then run for each of the hypotheses in the grid.
Under the assumption that the target parameters lie on the grid, the GLRT detectors admit closed-form
solutions, making theoretical analysis easier. As a result, those "on-grid" detectors havewell-knownPFA-threshold relationships. Of course, in practice, the true target parameters will never be exactly aligned
with the tested parameters. This mismatch between the true and tested parameters will in return create
a degradation of the detection performance of the classical detectors:

• The Matched Filter is the GLRT derived when supposing every parameter of the signal model is
known except the amplitude of the target. The impact of off-grid targets on the Matched Filter
is well-known: it creates, in the worst-case scenario, the equivalent of a 3dB loss on the Signal to
Noise Ratio (SNR) per unknown parameter.

• The Normalized Matched Filter is the GLRT derived when supposing every parameter of the signal
model is known except the amplitude of the target and the power level of the noise. The impact
of the off-grid mismatch is much more dramatic: when a moderate (< 30) number of samples is
used, the mean probability of detection of the Normalized Matched Filter does not converge to 1

with SNR when target parameters are uniformly distributed.
In order to fight off this off-grid mismatch, several solutions are considered in the literature:

• The detection problem can also be considered as a sparse reconstruction problem (where the
sparsity comes from the low number of targets in the scene), for which the impact of a mismatch
between the reconstruction dictionary and the true signal components is well documented [Str12;
ZLG11]. Proposed solutions range from a refinement of the dictionary [FL12; SB11b] or the intro-
duction of a linear perturbation on the dictionary to model the impact of the off-grid mismatch
[ZLG11; Las+15]. However, the algorithms for sparse reconstruction make it delicate to control the
Probability of a False Alarm [Ani+12], which is very important in radar applications.

• Practical radar approaches consist of the usage of an apodization window to flatten the main lobe
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response of the detectors [Ric+10], at the cost of a loss in SNR and the introduction of a noise cor-
relation at the output, or an oversampling of the grid, which increases the probability of detection
but also increases the computational burden.

• In detection theory, the detection under a general mismatched signal model has been formalized
to allow for the robust detection of a received signal that is mismatched with respect to the ex-
pected signal [BOR09; De 05; Bes06; De +10b; BBR07; KS95]. However, the methods introduced
are not always suited for treating the case of the off-grid mismatch [BRO20]. A common approach
that is more tailored for the off-grid mismatch consists of merging the detection step with the
estimation of the target parameters in the radar processing chain: this procedure is commonly
referred to as "joint detection and estimation" [GCL10; Aub+20; Xin+11]. The unknown parameter
is estimated (not necessarily in the MLE sense), often through a first-order approximation of the
radar signal, and is then injected into a detection test.

During this thesis, we focus on what we call the "off-grid" GLRT, obtained when searching for the max-
imum of the classical GLRT tests over the whole, continuous parameter space. It corresponds to an
infinite oversampling of the GLRT tests. This solution presents the advantage of usually giving the best
PD for a given PFA. While very simple in principle, the use of those detectors raises several challenges,
because no closed-form are available:

• On the one hand, they are hard to analyze theoretically, and very few articles in the signal process-
ing literature offer a theoretical study. In particular, the computation of their statistic under the
null hypothesis ismuchmore involved thanwhen the target parameters are supposed known. As a
result, their PFA-threshold relationship is, to the best of our knowledge, unknown in the literature,barring some special cases [Hay03; Lei+20].

• On the other hand, a naive implementation of those detectors requires a large number of tests
made on a finely oversampled grid. This greatly increases the computational load, making this
solution difficult to use in operational contexts.

This thesis thus mostly focuses on addressing the aforementioned issues of the off-grid GLRT: we aim to
derive the PFA-threshold relationships of the considered detectors for various signal models and search
low computational methods to approximate them without unduly degrading the probability of detec-
tion. Specifically, we will focus on the off-grid GLRT deriving from the Matched Filter and the Normalized
Matched Filter, which are the most used radar detection tests.

Outline

The outline of the thesis is as follows:
• In chapter 1, we first review the basis of radar systems, introducing the signal models that will be
used in this document. We then focus on detection theory, presenting the radar detection prob-
lem as a binary hypothesis test. The basic Matched Filter and Normalized Matched Filter GLRT
detectors that are used to deal with the most common detection problems are then presented.
After this, we introduce the concepts of detection under mismatched signal models. The problem
of off-grid targets and how the previously introduced detectors react to them are natural develop-
ments, which leads to the presentation of the off-grid GLRT. Those detectors are the main point
of focus of this thesis.

• In chapter 2, we aim to address the problem of fixing the threshold guaranteeing a given probabil-
ity of false alarmwhen using the off-grid NormalizedMatched Filter. The treatment of this problem
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is mostly geometric: only the uniform distribution of the noise over the sphere is used, and the
reasoning thus works when the noise follows a Gaussian or a Complex Elliptically Symmetric dis-
tribution. We first show that computing this relationship reduces to a geometrical computation.
Specifically, it reduces to computing the volume of a tube around the manifold defined by the sig-
nal model in a cell embedded in the unit sphere. We thus introduce some tools from the volume of
tube theory, before applying them to derive the probability of false alarm-threshold relationships
for the Normalized Matched Filter with one or two unknown parameters. Those relationships are
only exact as long as the tubes do not self-overlap. We then extensively discuss the condition of
validity of those relationships, finding limit thresholds, before evaluating the PFA-threshold rela-tionships numerically, which shows that our theoretical relationships fit very well with what can
be observed empirically.
→ Contributions:

– An alternate new proof for the derivation of the PFA of the Normalized Matched Filter in
section 2.3.1 [Dev+23b].

– The derivation of a PFA-threshold relationship for the off-grid Normalized Matched Filter
with one unknown parameter (range, Doppler or angle using a chirp or FMCW waveform)
in equation (2.33) under white noise, and in equation (2.32) under colored noise [Dev+22a;
Dev+22b].

– The derivation of a PFA-threshold relationship for the off-grid Normalized Matched Filter
with two unknown parameters (Doppler-angle or range-Doppler using FMCW radar) over
the whole domain (in equation (2.36) under white noise, or in equation (2.40) under colored
noise), heuristic in the case of detection over a single cell (in equation (2.37) under white
noise, or in equation (2.41) under colored noise).

– The derivation of the domain of validity of those relationships in section 2.4 [Dev+23b].
• In chapter 3, we deal with the same issue of fixing the probability of false alarm but for the off-grid
Matched Filter. The treatment of this problem is this time statistical and the methods used rely
on the Gaussian nature of the noise. The off-grid Matched Filter test quantity is modeled as a ran-
dom field, and its PFA-threshold relationship is shown to be asymptotically equal to the expected
Euler characteristic of its excursion sets. We define those notions, before deriving asymptoticPFA-threshold relationships under white noise. Those relationships are then given for more general
contexts (with a degraded asymptotic order). We discuss the links between the method of the
chapter and the volume of tubes method of chapter 2. The PFA-threshold relationships are finallyevaluated numerically. Again, it is shown that those asymptotic relationships fit very well with what
is observed in simulations.
→ Contributions [Dev+23a; Dev+23c]:

– The derivation of an asymptotic PFA-threshold relationship for the off-grid Matched Filter
with one unknown parameter (Doppler, Angle or range using FMCW radar) under white noise
in equation (3.13), and derivation of a relationship with a higher asymptotic order for colored
Gaussian noise or chirp waveform detection in equation (3.15).

– The derivation of an asymptotic PFA-threshold relationship for the off-grid Matched Filter
with two unknown parameters (Doppler and Angle or range and Doppler using FMCW radar)
under white noise in equation (3.14), and derivation of a relationship with a higher asymptotic
order for colored Gaussian noise or chirp waveform detection in equation (3.15).

• After those theoretical developments, chapter 4 aims to approximate the off-grid detectors in prac-
tice. We start off by showing that just oversampling the grid is not an entirely satisfying solution
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for the Normalized Matched Filter, because the mean PD still does not converge to 1 with SNR
for some highly correlated noise distribution. Then, we review the techniques developed in joint
detection and estimation literature to propose detectors approximating the off-grid GLRT. One
of them is based on the interpolation of the main Fourier transform lobe, while the other is in-
spired by monopulse technique. Their performance is evaluated through simulations. We show
that their PFA-threshold relationship is well approximated by the relationships found in chapter 2,
and that their PD is very close to that of the GLRT. Then, we finish this thesis with experimentation
on real data from ONERA’s HYCAM radar. We highlight the effects of off-grid targets by show-
ing that the Normalized Matched Filter does not detect all targets even at very high SNR, and we
implement the previously studied approximations of the off-grid detectors. It is shown that the
interpolation-based detector as well as the monopulse-inspired one perform well, outperforming
the NMF oversampled by a factor of 2.
→ Contributions:

– The proposition of detectors modeled by equations (4.6), (4.7) to approximate the off-grid
Normalized Matched Filter with low computational cost [Dev+21].

– The test of those detectors in simulations and against real data from ONERA’s HYCAM radar.
• Finally, the conclusion reminds the developments that have been realized in the thesis and pro-
poses some search avenues that could be investigated in the future.
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1 - Basic Radar Detection Theory and the problem of off-grid
targets

This chapter presents the basic concepts of radar detection theory before introducing the issue of
detection under mismatched signal models. Our off-grid target problem, which fits into this context, is
then presented, as well as state-of-the-art solutions to it. The results and proofs therein are well-known
in the signal processing literature.

In Section 1.1, we give a brief introduction to how radar systems work and of the signals encountered
when dealing with radars. In Section 1.2, we present the formalization of the radar detection problem
as a binary Hypothesis test. We show how to solve this composite Hypothesis test with the Generalized
Likelihood Ratio Test in Section 1.3 where we also present the most common detectors. In Section 1.4,
we show how to extend the detection test to take into account mismatched signal models. The off-grid
mismatch is presented in Section 1.5, as well as the state-of-the-art solutions to deal with it. In Section
1.6, we present the off-grid GLRTs that are currently the detectors with the best probability of detection
in the presence of off-grid targets.

1.1 . Introduction to Radar

This section is meant to give the reader all of the basic radar knowledge and models that we will
reference in this document. Section 1.1.1 gives a quick overview of the radar principles and the operations
it performs. Section 1.1.2 introduces the waveforms and signal models we will use in this document.
Section 1.1.3 introduces the reader to the noise models of this thesis and the main ideas of statistical
signal detection.

1.1.1 . Basic principles of radar systems
A Radar (RAdio Detection and Ranging) is a system that primarily aims to detect and track targets

and estimate their range, velocity, and direction of arrival via the emission of electromagnetic waves.
Detection is the first step in the classical radar processing chain. It is usually followed by a refined

estimation of the target parameters, and then a tracking phase, as represented in Figure 1.1. This thesis
focuses on the detection step. The basic detection principle is the following: the radar emits an electro-
magnetic wave (a waveform with desirable properties multiplied by a carrier of frequency f0) toward a
scene, then listens if it receives any echo of the emitted signal. If this is the case, a target is present in
the scene. This principle is illustrated in Figure 1.2.

This principle also enables the radar to get the distance of the target from the radar. Indeed, the
distance d of the target to the radar is equal to the roundtrip delay r multiplied by the velocity of the
wave c divided by 2:

d =
c r

2
.

To retrieve the radial velocity from targets and to distinguish two targets located in the same range bin
or discriminate targets from the static environment, radars can take advantage of the Doppler effect to
perform distance-doppler detection bymeasuring fd , the frequency shift in time of the carrier frequency
f0, linked to the speed v with:

fd ≈
2 v

c
f0 , (1.1)

Monostatic radars perform both the emission and the reception of the signal, and cannot emit and
listen to the returns from the scene at the same time. In order not to leave a scene unchecked for too
long, they emit several pulses toward the scene.

23



Detection Estimation Tracking

Input : 
Received 
Signal 𝑟

If a target is 
detected

Output: Estimate of 
the target parameters

Output: 
Target 

trajectory

Output: Presence 
of a target or not

Figure 1.1: The classical Radar processing chain.
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Figure 1.2: Illustration of the basic Radar mechanism
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Figure 1.3: An example of a Range-Doppler map. Atarget has been injected in the 20th range bin, 10thDoppler bin.
Figure 1.4: The "data cube" formed by samples of thereceived signal after the emission of N pulses with
M sensors, andK range bins [Ric+10].

After processing, the data of a slice is often represented as a Range-Doppler map as in Figure 1.3,
where the x-axis and y-axis correspond, respectively, to different Doppler and distance bins. High energy
points, in yellow on the figure, will be considered as targets if their energy exceeds a certain threshold.
The inputs from several sensors can also be combined to detect a target more reliably. In this case, the
direction of arrival of the target can be deduced from the data. The received signal is often represented
as stored in a data cube as represented in Figure 1.4, and Doppler-Angle detection, usually called Space-
Time Adaptive Detection (STAP), is performed on each horizontal slice.

1.1.2 . Signal model
The signal received by the radar from a scene with L targets can be written:

y(t) =

L∑
i=1

αix(t− ri) + n(t) ,

where αi is the complex amplitude of the i-th target, ri is its delay, x is the transmitted waveform after
demodulation and n(t) is a perturbation coming from thermal noise and clutter. In this section, we focus
on the case L = 1 and we present the signal models used throughout this thesis, neglecting the noise
n(t) for the time being.

We note b(t) the used waveform and f0 the carrier frequency, so that
x(t− r) = b(t− r)e2iπf0(t−r)e−2iπf0t

= b(t− r)e−2iπf0r .

If the target moves at speed v toward the receiver, the delay r(t) at which the signal is received depends
on the time t, according to [Le 02; Tan19]:

r(t) =
2 d(t− r(t)/2)

c
.

where d(t) is the distance of the target from the radar. For a target with uniform radial velocity, d(t) =
d0 − vt, so that:

r(t) =
2 d0/c

1− v/c
− 2vt/c

1− v/c
.
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The received signal after demodulation is then,
y(t) = αx(t− r(t))

= αx

(
t

(
1 +

2v/c

1− v/c

)
− 2 d0/c

1− v/c

)
= α b

(
t

(
1 +

2v/c

1− v/c

)
− 2 d0/c

1− v/c

)
e
2iπf0

(
2vt/c
1−v/c

− 2 d0/c

1−v/c

)
. (1.2)

Typically in a radar setting, v << c, so that 1 + 2v/c

1− v/c
≈ 1 and

b

(
t

(
1 +

2v/c

1− v/c

)
− 2 d0/c

1− v/c

)
≈ b

(
t− 2d0/c

1− v/c

)
.

After putting the constant term e−2iπf0
2d0/c

1−v/c in the complex amplitude α, the received signal reads:
y(t) ≈ α b

(
t− 2d0/c

1− v/c

)
e2iπf0t

2v/c
1−v/c . (1.3)

Since v/c

1− v/c
≈ v

c
, we can write, with fd defined as in (1.1):

y(t) ≈ α b

(
t− 2d0/c

1− v/c

)
e2iπtfd . (1.4)

The most used radar waveform is a linear chirp taking the form:
b(t) = ΠTp(t)e

iπht2 ,

where ΠTP
(.) is the rectangular function of length TP and h is a constant related to the bandwidth B of

the chirp through the expression:
B = hTP .

Assuming that the term e2iπtfd can be considered constant over the duration TP of the chirp, it can be
approximated as the simple phase term e2iπfdt0 and put in the phase term α. The normalized sampled
vector b(r) obtained at instants tk =

k

B
(Shannon criteria) tomodel the received signal when performing

range detection is thus, notingK the number of non-zero coefficients:
(b(r))0≤k≤K−1 =

1√
K

ΠTp
(k/B − r)eiπh(k/B−r)2 . (1.5)

Remark 1.1.1. The range resolution, i.e. the ability to separate the echoes from two distinct targets, increases
with the bandwidth B, according to

∆range = c

2B
. (1.6)

Using a pulse of finite duration modulated by a simple cosine signal, the range resolution is inversely propor-
tional to the duration of the signal. However, decreasing the duration of the signal decreases the transmitted
energy and thus reduces the detection performance. This is why the chirp waveform, for which the bandwidth
is set as needed without impacting the duration of the signal, is often preferred.

In practice, often, to better characterize the Doppler shift of a target, several pulses are sent toward
the scene, regularly spaced by the pulse repetition interval TPRI , as schematized in Figure 1.5. While the
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Figure 1.6: Square amplitude of a complex sinusoidembedded in noise, SNR = −40dB

term e2iπtfd in (1.4) can be considered as constant over the duration of a pulse, it varies noticeably from
pulse to pulse. Noting θ = TPRIfd the normalized Doppler Shift, the Fourier steering vector representing
the change of the phase from pulse to pulse is the following:

(d(θ))0≤p≤N−1 =
1√
N
e2iπpθ . (1.7)

So that when performing distance-Doppler detection, the signal received from all pulses reshaped in a
single vector is the following:

s(r, θ) = b(r)⊗ d(θ) . (1.8)

Remark 1.1.2. The Doppler resolution, i.e. theminimumDoppler frequency difference to separate two targets,
increases with the total emission time, given by NTPRI , with:

∆Doppler = 1

NTPRI
. (1.9)

As mentioned before, it is also possible to combine the inputs from several sensors for detection,
which enables the radar to retrieve the angle information of the target. This situation is represented in
Figure 1.7. Sensors are aligned and separated by distance d. Furthermore, the target is supposed to be
far enough so that the angle that the target-to-sensor line makes with the sensor axis can be assumed
constant. Then, it can be seen that the additional distance dφ that the emitted wave travels from and to
sensor S1 in comparison to S2 is:

dφ = d cos ς.

There is thus a linear shift in the received signal phase from sensor to sensor that is proportional to
µ = d cos ς . The vector d(µ) defined in (1.7) also accounts for those phase shifts and is a signal model that
can be used to perform angle detection. When combining the angle and Doppler information, the re-
ceived signal model for performing STAP detection is, considering range pulse compression has already
been performed analogically:

s′(θ, µ) = d(θ)⊗ d(µ) , (1.10)
where the dimension of d(µ)may differ from that of d(θ). In this document, P will denote the number
of sensors. Retrieving the phase shift immediately allows us to deduce the direction of arrival (DOA) ς of
the target.
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Figure 1.7: Sensor array principle

Remark 1.1.3. In the following, we will always use the simple notation s(ξ) for the signal to be detected, where
ξ can represent one or several parameters. When needed (e.g. for the sake of giving closed form formula), the
signal model (either (1.5) for range detection, (1.7) for Doppler detection, (1.8) for distance-Doppler detection
or (1.10) for STAP detection) will be specified.

Alternatively to the chirp, during this thesis, we will also often consider the case of Frequency Mod-
ulated Continuous Waveform (FMCW). In this case, the transmitted waveform also has a linear instant
frequency but is repeated continuously (TPRI = TP ), so that the transmitted (x(t)) and received demod-
ulated signal (y(t)) are, assuming here that the term e2iπtfd is approximately constant and put in the
phase α:

x(t) = eiπht
2

,

y(t) = α eiπh(t−r)
2

.

In order to benefit from the low computational cost of the FFT algorithm (cf Remark 1.3.3) when perform-
ing FMCW detection, the received signal is usually multiplied analogically by the emitted signal before
sampling, forming what is called the beat signal. The signal after this operation is, up to a constant
complex factor, equal to:

c(t) = x(t)∗y(t) ,

= e−2iπhtr .

When sampling at rate 1

B
, defining the normalized delay τ as

τ = r
h

B
,

the received normalized sampled signal at instants tk =
k

B
reads:

(c(τ))0<k<K−1 =
1√
K
e−2iπkτ , (1.11)

which is a steering vector akin to (1.7). We can also define a distance-Doppler signal model using FMCW
as:

s(τ, θ) = c(τ)⊗ d(θ) , (1.12)
which is akin to (1.8). The results that we will find for Doppler or distance-Doppler detection using a chirp,
with signal models (1.7) and (1.8) can be extended to the FMCW signal model with only small adjustments.
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1.1.3 . Noise models and statistical signal detection
In practice, detecting an echo of a target is not a trivial task as the receiving channel is always polluted

by thermal noise which comes from the receptor and is unavoidable, and clutter, which is the signature
of non-relevant elements in the scene (i.e. ground, trees, buildings). In order to model those random
elements in the received signal, we will use the following random distributions in this thesis:

• The centered complex circular Gaussian distribution, denoted CN . The pdf fCN (0,R) of this distri-bution with a covariance matrixR reads:
fCN (0,R)(x) =

1

πN detR
e−xHR−1x , (1.13)

Note that this noise distribution is spherically invariant, meaning that random variablesX follow-
ing this distribution are distributed as the variables eiϕX , for any ϕ ∈ [0, 2π]. Furthermore, in the
case of a white noise (R = σ2I), the projection on the sphere of a vector following this distribution
is uniformly distributed.

• The family of Complex Elliptically Symmetric (CES) distributions (sometimes also called Spherically
Invariant Random Vector (SIRV) distributions) [Oll+12]. A vector nCES following a CES distributioncan be decomposed in the following way:

nCES = ΘnCN ,

where nCN follows a centered circular complex Gaussian noise distribution, and Θ is a scalar real
random variable, which represents the texture parameter that follows some scalar distribution.
Common examples of CES distributions include K-distributions when Θ follows a Gamma distri-
bution, or Weibull distributions, for which the distribution of the texture cannot be characterized
under a simple analytical form. CES distributions are covered extensively in [Jay02, Chapter 2].

Thermal noise is well represented by a centered white complex circular Gaussian distribution. Clutter is
oftenmore accurately represented by textured colored noise such as CES (complex elliptically symmetric)
distributions, especially when it is impulsive (e.g. waves in marine context [WTW07]). Howmuch an echo
signal is polluted by noise is quantified by the Signal to Noise Ratio (SNR), which depends on the target
reflectivity or distance to the radar, among other factors. Before any processing, a signal may look like
the one seen in Figure 1.6. In addition to the noise, the task of detecting echoes is also made harder
by the fact that the searched incoming signal is not known perfectly. This is due to many factors: for
example, how the incident signal reflects on the target depends on its materials and its shape, which in
return modify the incoming signal amplitude. Additionally, the distance of the target to the radar will
also modify the amplitude of the signal as well as its phase.

Because of all this, even after processing the signal through detectors, statistical objects that aim to
discriminate useful signal from noise, incoming echoes will not always be detected by the radar. The
Probability of Detection (PD) quantifies the ability of the radar system to detect targets. Having a large PDis desirable, but increasing the PD will tend to increase the tendency of the radar to detect echoes when
the received signal is only constituted of noise. This tendency is quantified by the Probability of False
Alarm (PFA), which is ideally as low as possible. Controlling the PFA is of utmost importance in radar
detection in order to make decisions. Statistical detection theory is detailed in the rest of the chapter.

1.2 . Formalization of the detection problem

The detection of a single target embedded in noise described in the previous section is widespread,
appears in many contexts other than radar, and is addressed by furnished literature [Kay09; SD91]. It is
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Ground Truth
No target Target

Chosen
Hypothesis

H0 True Negative Missed Detection
H1 False Alarm True Detection

Table 1.1: Possible outcomes of the Hypothesis Test
classically modeled as the following binary hypothesis test:{

H0 : r = n ,
H1 : r = α s(ξ) + n ,

(1.14)
where, in our radar context:

• r ∈ CN is the sampled received complex signal, that can be raw or preprocessed with an analogic
range matched filter;

• s(ξ) ∈ CN is the signal reflected by the target of parameters ξ:
– When ξ is equal to the scalar Doppler shift θ or to the Doppler and direction of arrival tuple

(θ, µ), an analogical range matched filter may have been performed, and s corresponds re-
spectilvely to signal model (1.7) or (1.10). This is less and less the case with modern numerical
radars.

– When ξ is equal to the range τ , s is modeled by either signal model (1.5) if a chirp waveform
is used, or (1.7) in the case of FMCW detection.

– When ξ is equal to the range and Doppler tuple (τ, θ), s is modeled by (1.8) when a chirp
waveform is used or (1.10) for FMCW distance-Doppler detection.

• n ∈ CN models the noise and, optionally, the clutter;
• α ∈ C is the complex amplitude of the target.

The dimension N of the signal is the number of collected samples: for Doppler detection, it usually
corresponds to the number of transmitted pulses. For angle detection, it usually corresponds to the
number of sensors. Hypothesis H0 is called the null hypothesis, and corresponds to the case where
no target is present in the scene. On the contrary, the hypothesis H1 corresponds to the case where atarget with parameters ξ is present in the scene. For a given received signal r, the goal is to predict which
hypothesis is more likely. Table 1.1 presents the different possible outcomes of the detection test, where
the y-axis represents the test decision while the x-axis represents the ground truth.

Two types of errors can arise in the result of a detection test: a False Alarm (called type I error in the
statistical literature) when H1 is decided when no target is present in the scene and a Missed Detection
(type II error) whenH0 is decided when a target is present in the scene. In radar context, False Alarms are
very costly and the goal is to maximize the probability of true detections (PD) (or, equivalently, minimize
the probability ofmisseddetections) under the constraint that the Probability of False Alarm (PFA) shouldbe equal to a given value. Typically in radar the fixed PFA is quite low; a PFA of 10−6 is not unusual. This
probability depends on the Signal to Noise Ratio (SNR), andPD versus SNR curves for a givenPFA, as wellas PD versus PFA curves for a given SNR (ROC curves) are commonly drawn to showcase performance.

To solve the hypothesis test, we use a detector Λ(r). It is a function of the received signal r. If the
test quantity Λ(r) is higher than a given threshold w2, then hypothesisH1 is decided, and otherwise, wemake the decision that we are under hypothesisH0. This is usually noted

Λ(r)
H1

≷
H0

w2 .

30



Let fH0 and fH1 be the pdf of r under each hypothesis. The sets of values DA of r for which Λ(r) is
greater than w2 is called the domain of acceptance of Λ. Then the PFA of the detector Λ associated with
the threshold w2 is given by:

PFA =

∫
r∈DA

fH0(r) dr .

Similarly, the PD is given by:
PD =

∫
r∈DA

fH1(r) dr .

For now, consider that the parameters α and ξ of the test are perfectly known and that n follows a prob-
ability distribution whose pdf is perfectly known. Then, the pdf fH0

and fH1
of r under each hypothesis

are perfectly known. Let us define the Likelihood Ratio Test (LRT):
Λ(r) =

fH1(r)

fH0
(r)

H1

≷
H0

w2 , (1.15)
where the threshold w2 ∈ R is fixed so as to guarantee a given PFA. Since fixing the PFA is so important
in radar detection, deriving PFA-threshold relationships is critical. This will be one of the major points
of focus of this thesis. The Neyman-Pearson criterion states that this test is the best in this setting in the
sense that it maximizes the PD for a given PFA:
Lemma 1.2.1. [NP33] The LRT is the uniformly most powerful test when all parameters are known, i.e. it yields
the best Probability of Detection for a given Probability of False Alarm.

1.3 . The Generalized Likelihood Ratio Test

Unfortunately, the modelization in the last section is not realistic in radar context: indeed, the target
amplitudeα and the target parameters ξ are unknown in practice, and often the pdf of the noise vectorn
depends on unknown parameters i.e. an unknown covariance matrix. In this case, the Neyman-Pearson
lemma 1.2.1 does not hold anymore as the LRT (1.15) is then ill-defined. Another strategy has to be devised
to detect targets.

When the unknown parameters are assumed deterministic, the most common strategy is to extend
the LRT through theGeneralized LikelihoodRatio Test (GLRT). It consists in replacing the unknownparam-
eters in the LRT test with their Maximum Likelihood Estimates (MLE). Formally, for unknown parameters
{λi}i∈[0,1] depending on each hypothesis {Hi}i∈[0,1], the GLRT is given by:

Λ′(r) =
max
λ1

fH1(r)

max
λ0

fH0
(r)

H1

≷
H0

w2 , (1.16)
Remark 1.3.1. In the Bayesian context, i.e. when the unknown parameters are supposed to be random vari-
ables (in radar context when the target amplitude is distributed according to a Swerling 1, 2, 3 or 4 fluctuation
model), the test that will give the best average (over the priors for the unknown parameters) PD for a given
PFA is the Average Likelihood Ratio Test (ALRT) [RB18]. The likelihood Ratio Test becomes:

Λ′(r) =

∫
fH1

(r) pλ1
(z) dz∫

fH0
(r) pλ0

(z) dz

H1

≷
H0

w2 ,

where pλ0
and pλ1

are the PDF of the unknown parameters underH0 andH1, respectively. This requires prior
knowledge of the parameter distribution, which is not always simple. The Bayesian context is outside the scope
of this thesis.
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For now, let us suppose that the unknown target parameters ξ are still known. The complex ampli-
tude of the targetα is supposed to be deterministic unknown, and non-fluctuating (in the radar literature,
such targets are said to be Swerling 0 [Ric+10]). Furthermore, let us assume that n is the thermal noise
plus clutter vector, following a centered circular Gaussian distributionwith covariancematrixR such that
R = σ2 Γ, where σ2 represents the power level of the noise and Γ is the structure of the interference. R
is a semi-positive definite (SPD) matrix. We write n ∼ CN (0, σ2Γ), and, following (1.13), the pdf fn(x) of
n reads:

fn(x) =
1

(σ2π)NΓ
ex

H(σ2 detΓ)−1x.

Γ is often structured as a Toeplitz matrix; in particular this is the case when the noise is stationary and
is sampled linearly in time and space [Fuh91]. A Toeplitz model for Γ that we will use throughout this
thesis in simulations is given by the following expression:

Γ(ρ) = To
([
1 ρ . . . ρN−1

])
,

=


1 ρ . . . ρN−1

ρ 1 . . . ρN−2

...
...

...
ρN−1 ρN−2 . . . 1

 , (1.17)

where To(.) is the Toeplitz matrix operator, and ρ is a scalar in the interval [0, 1[ that defines the level of
correlation of the noise. The higher ρ is, the more correlated the noise is. Inversely, for low values of ρ,
the noise is not very correlated, and Γ is close to the identity matrix I. When Γ is equal to I, the noise is
said to be white, and is, in this case, uncorrelated.

The GLRT then reduces to one of the well-known tests described in Table 1.2 according to which
parameters are unknown. In this thesis, we will mainly focus on the non-adaptive scenario (i.e. we will
assumeΓ known) and the two associated detectors: theMatched Filter (MF) and theNormalizedMatched
Filter (NMF).

1.3.1 . The Matched Filter (MF) [SD91]
In this section, the amplitude of the target is supposed to be unknown, so that the unknown param-

eters sets are λ0 = ∅ and λ1 = {α}.
Remark 1.3.2. The power level of the noise σ2 is thus known: in practice, this corresponds to contexts where
the noise distribution changes slowly so that σ2 can be reliably estimated, such as thermal noise or sky clutter.

UnderH1, the received signal r is such that:
r = α s(ξ) + n ,

so that
r ∼ CN (α s(ξ),R) .

The PDF fH1(x) of r underH1 can be written as:
fH1(x) =

1

πN detR
e−(x−α s(ξ))HR−1(x−α s(ξ)) .

Differentiating with respect to α∗ (since α is complex and fH1
is real-valued [PP+08]) gives:

∂fH1

∂α∗ = 2
(
s(ξ)HR−1x− αs(ξ)HR−1s(ξ)

)
fH1

(x) .

fH1 attains its maximum for:
α̂ =

s(ξ)HR−1x

s(ξ)HR−1s(ξ)
. (1.18)
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Injecting in (1.16), we see that in this case the GLRT reduces to the well-known Matched Filter (MF):
ΛMF(ξ) =

∣∣s(ξ)HR−1 r
∣∣2

s(ξ)HR−1 s(ξ)

H1

≷
H0

w2 . (1.19)
Remark 1.3.3. Under white noise, i.e. R = σ2I, if the processed signal is the Fourier steering vector (1.7)
(for example, when ξ is the scalar unknown Doppler shift θ or angle µ), the matched filter operation simply
reduces to a Discrete Fourier Transform. A fast and efficient implementation of the matched filter, in this case,
is thus the Fast Fourier Transform (FFT) algorithm [CT65]. It is also possible to enjoy the benefits of the FFT for
distance detection by using FMCW or performing a technique called deramping on the received signal when
using a chirp waveform. It consists in multiplying the received analog signal by the conjugate of the sent chirp
so that the received signal model is expressed as a steering vector, just like in the case of FMCW. However, in
order to apply this technique, the radar operator has to have a rather precise idea of the target location, so
that the support of the received signal overlaps with the support of the multiplied chirp.

The term R−1 in the products of (1.19) corresponds to a whitening of the received signal and the
reference signal. The denominator corresponds to a normalization of the reference signal. Noting

sw(ξ) =
R−1/2s(ξ)∥∥R−1/2s(ξ)

∥∥ , (1.20)
the whitened and normalized version of s(ξ) and

rw = R−1/2r ,

the whitened version of r, the MF reads:
ΛMF(ξ) =

∣∣sw(ξ)Hrw
∣∣2 H1

≷
H0

w2 .

Under the null hypothesis H0, it is straightforward to show that the random variable sw(ξ)Hrw follows
a centered normalized complex circular Gaussian distribution so that the test quantity ΛMF follows acentered 1

2X
2
2 distribution. Its PFA-threshold relationship is thus given by:

PFA = 1− FX 2
2

(
2w2

)
,

= e(−w
2) , (1.21)

where FX 2
2
is the CDF of the centered X 2

2 distribution (which is in fact an exponential distribution).
Under the hypothesis H1, ∣∣sw(ξ)Hrw

∣∣2 =
∣∣αsw(ξ)HR−1/2s(ξ) + sw(ξ)HR−1/2n

∣∣2. The random vari-
able sw(ξ)HR−1/2n follows a centered complex Gaussian distribution CN (0, 1). The SNR after integration
is defined as

SNR = |α|2 s(ξ)HR−1s(ξ) . (1.22)
ΛMF follows a non-central 12χ2

2 distribution with non-centrality parameter 2SNR. Its probability of detec-
tion is given by:

PD = 1− Fχ2
2(2SNR)(2w

2) ,

= Q1

(√
2SNR,

√
2w
)
, (1.23)

where Q1 is the Marcum Q-function [Mar60].
Remark 1.3.4. The MF works by comparing the squared norm of the projection of the received signal r on the
subspace spanned by the reference signal s with a threshold. It is thus an energy detector.
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1.3.2 . The Normalized Matched Filter (NMF) [SD91]
In this section, the power level of the noise σ2 is also assumed unknown so that λ0 = {σ2} and

λ1 = {σ2, α} .
Remark 1.3.5. In practice, this corresponds to contexts where the noise distribution changes rapidly from
burst to burst so that σ2 cannot be reliably estimated beforehand, such as sea clutter.

UnderH0,
r ∼ CN

(
0, σ2 Γ

)
,

and the PDF of r is given by:
fH0

(x) =
1

(σ2π)
N
detΓ

e−xH(σ2Γ)
−1

x .

Differentiating w.r.t the σ2 parameter, we get:
∂fH0

∂σ2
=

(
xHΓ−1x

σ2
−N

)
fH0

(x)

σ2
,

so that the MLE of σ2 is
σ̂2 =

xHΓ−1x

N
underH0 .

UnderH1,
r ∼ CN

(
α s(ξ), σ2Γ

)
,

so that the PDF of r reads
fH1

(x) =
1

(σ2π)
N
detΓ

e−(x−αs(ξ))H(σ2Γ)
−1

(x−αs(ξ)) .

α̂ is obtained as in Subsection 1.3.1, Equation (1.18). Differentiating once again w.r.t. σ2 yields:
∂fH1

∂σ2
=

(
(x− α s(ξ))

H
Γ−1 (x− α s(ξ))

σ2
−N

)
fH1

(x)

σ2
,

so that
σ̂2 =

(x− α̂ s(ξ))
H
Γ−1 (x− α̂ s(ξ))

N
,

=
1

N

(
xHΓ−1x−

∣∣s(ξ)HΓ−1x
∣∣2

s(ξ)HΓ−1s(ξ)

)
underH1 .

Injecting in (1.16), the GLRT reduces to:
xHΓ−1x

xHΓ−1x−
∣∣s(ξ)HΓ−1x

∣∣2
s(ξ)HΓ−1s(ξ)

H1

≷
H0

(
w2
)′
, (1.24)

which can be written in the equivalent form, known as the Normalized Matched Filter (NMF) test:
ΛNMF(ξ) =

∣∣s(ξ)HΓ−1 r
∣∣2(

s(ξ)HΓ−1 s(ξ)
) (

rHΓ−1 r
) H1

≷
H0

w2 , (1.25)
with

w2 = 1− 1

(w2)
′ . (1.26)

Equation (1.25) is the form that is generally found in the literature and used in practice.
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Remark 1.3.6. The NMF (1.25) is the MF (1.19) where the received signal r has been normalized.
Remark 1.3.7. Note that the NMF test quantity is the squared cosine of the angle between the received signal
Γ−1/2r and the tested signalΓ−1/2s(ξ): ΛNMF = cos2

(
Γ−1/2r,Γ−1/2s(ξ)

)
. The NMF is thus an angle detector

as it only depends on the angle between the signal of reference and the received signal. This is crucial as it will
allow us to translate our statistical problems into geometrical ones.

In Appendix 1.A, we show that remarkably, the test quantity underH0 follows a F distribution whose
parameters do not depend on σ2. The PFA of the detector thus does not depend on σ2: It is said to be
a Constant False Alarm Rate (CFAR) detector relative to σ2, which allows us to set an unvarying threshold
w guaranteeing a given PFA. Its PFA-threshold relationship is given by [CLR95]:

PFA =
(
1− w2

)N−1
. (1.27)

Remark 1.3.8. Also, note that both the MF and the NMF are CFAR relative to the structure of the covariance
matrix Γ since Γ does not appear in the expression of the threshold w2.

Noting
u =

Γ−1/2r∥∥∥Γ−1/2r
∥∥∥ ,

the whitened and normalized version of r, the NMF reads:
ΛNMF(ξ) =

∣∣sw(ξ)Hu
∣∣2 H1

≷
H0

w2 .

Remark 1.3.9. In addition to the context of Gaussian noise of unknown power level, the NMF is also widely
used to deal with noise following textured distributions such as CES distributions, and it can be shown to be
optimal under asymptotic conditions [CLR95; Jay+03]. This makes the NMF particularly good for detecting when
the clutter is impulsive.

1.3.3 . Adaptive detectors
In adaptive context, the covariance matrixR is supposed to be unknown and needs to be estimated

thanks to S secondary data vectors r1, . . . , rS containing only noise. The detection problem can then be
rewritten as: 

H0 :

{
r = n ,
ri = ni, 1 ≤ i ≤ S ,

H1 :

{
r = α s(ξ) + n ,
ri = ni, 1 ≤ i ≤ S .

,

where ri are the secondary data noise sample. The most popular covariance matrix estimator is the
sample covariance matrix:

R̂ =
1

S

S∑
i=1

rir
H
i .

It can be shown that the adaptive GLRTs reduce to Kelly’s detector [Kel86] for homogeneous noise power
level (i.e. the training noise data samples ni follow the same distribution as n ):

ΛKelly(ξ) =
∣∣∣s(ξ)HR̂−1 r

∣∣∣2(
s(ξ)HR̂−1 s(ξ)

) (
1 +

1

S
rHR̂−1 r

) H1

≷
H0

w2 , (1.28)
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λ0 λ1 GLRT
∅ {α} Matched Filter
{σ} {σ, α} Normalized Matched Filter
{R} {R, α} Kelly’s Detector [Kel86]
{R, σ} {R, σ, α} Adaptive Normalized Matched Filter [KS99]

Table 1.2: Overview of the most common GLRT detectors.
and the Adaptive Normalized Matched Filter (ANMF) [KS99] for inhomogeneous noise power level (i.e.
the training noise data samples ni follow the same distribution as n up to a scale factor σ2):

ΛANMF(ξ) =
∣∣∣s(ξ)HR̂−1 r

∣∣∣2(
s(ξ)HR̂−1 s(ξ)

) (
rHR̂−1 r

) H1

≷
H0

w2 . (1.29)

Remark 1.3.10. Another popular detector, under the hypothesis of homogeneous noise power level, is the
Adaptive Matched Filter (AMF) [Rob+92], which corresponds to the Matched Filter (1.19) where the sample co-
variance matrix has been injected in place ofR (two-step AMF detector).

Those detectors will not be detailed further as we mostly suppose that the noise covariance matrix
structure Γ is known in the developments of this thesis. However, they also suffer from the off-grid
mismatch of the target parameters [BRO20]. The extension of the results to the adaptive case will be
considered in the perspectives.

1.4 . Detection under mismatched signal model

In the previous section, we described the most common detection strategy to detect signals follow-
ing a perfectly known signal model. However, in an operational context, most of the time the incoming
signal under hypothesisH1 is not known perfectly, for example, because of small antenna steering mis-
alignment or sampling errors. Other factors inducing mismatch that are widely studied in the literature
include mismatches between the estimated covariance matrix and the true covariance matrix in the
adaptive context [Wat13], as well as mismatches due to the clutter being poorly modeled by the chosen
noise distribution [Bes14]. In this case, we speak about detection under a mismatched signal model (the
basis of which is covered in the reference textbook [BOR09]), because the expected signal distribution
underH1 does not match with the distribution of the actual received signal. This can lead to an undesir-
able loss in detection probability.

Detectors are said to be robust or selective based on how they react to a mismatched received
signal. Which property is more desirable depends on the application. A robust detector will tend to be
more sensitive to jamming, while a selective detector will tend to miss targets. Typically, a good trade-off
between selectivity and robustness has to be found.

Let us investigate the robustness of the popular radar detectors MF (1.19) and NMF (1.25) to a mis-
match between the expected signal and the received signal. As previously stated, the MF is an energy
detector while the NMF is an angle detector. This translates to totally different behavior regarding mis-
match:

• The MF is an energy detector and its acceptance zone is the domain above a hyperplane with
normal s. When projecting a mismatched signal on the signal of reference, some energy is lost,
however if the mismatched signal under test has enough energy, it will still be detected. This is
illustrated in Figure 1.8a. In this figure, the incoming signal s(ξ0 + δ) is mismatched w.r.t s(ξ0), and
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(a) MF (1.19).
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(b) NMF (1.25).
Figure 1.8: Illustration of the behavior of the detectors regarding mismatch.

some energy is lost after projecting. However, the incoming signal is powerful enough to still be
detected by the MF. The MF can thus be said to be a robust detector: even though its detection
probability is degraded when the received signals are mismatched with the expected signal, they
will still be detected if the SNR is high enough.

• The NMF is an angle detector and its acceptance zone is a cone around the signal of reference, as
illustrated in Figure 1.8b. In this figure, an incoming signal s(ξ + δ) is mismatched w.r.t. s(ξ0) withan angle δ such that s(ξ0 + δ) falls out of the detection cone. As such, it will never be detected by
the NMF, regardless of its energy. The NMF is thus a selective detector.

In the literature covering this topic, typically the detectors are made more robust by extending the
hypothesisH1 in the binary test (1.3.3) to allow for more than one signal. Examples of common types of
mismatch include a mismatch in a cone around the signal of reference [De 05; Bes06; Bes07; BDR07; De
+08] or a mismatch constrained quadratically [De +10b]. To enhance selectivity, an approach consists of
making the detectors more selective by extending the null hypothesis H0 to contain signals orthogonalto the signal of reference [BBR07]. To obtain good robustness to selectivity tradeoff, the use of tunable
detectors is proposed. They either depend on a parameter that is set according to the degree of ro-
bustness to selectivity wanted (see, for example, [Kal92]), or are expressed as the chaining of a robust
detector with a selective detector such as the Adaptive Sidelobe Banker [KS95] which chains the ANMF
with the AMF. In this case, the wanted degree of robustness to selectivity is obtained thanks to the setting
of the thresholds of both detectors. This last scheme will detect signals if and only if they belong in the
acceptance zone of both detectors.

1.5 . The off-grid issue

In this section, we investigate the off-grid issue that motivates this thesis. In Subsection 1.5.1, we
describe what is the off-grid mismatch before studying its impact on the detection performance of the
MF and the NMF in Subsection 1.5.2. We investigate the solutions of the literature in Subsection 1.5.3.

1.5.1 . Explaining the on-grid assumption
To derive the MF and the NMF tests, we assumed that the target parameters ξ were known. In prac-

tice, this is, of course, not true. The procedure detailed in Section 1.3 to characterize the GLRT consists
of injecting the MLE of the unknown parameters in the LRT. However, no analytical form for the MLE
of the target parameters ξ does exist. This is why the hypothesis that those parameters are known is
commonly made to allow for the derivation and theoretical study of the MF and the NMF.
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Tests are then run for values of the unknown parameters fixed on a discrete grid to explore the
target parameter space. For Range detection using signal model (1.5), a common example of a grid is the
following set of parameters:

Gτ =

{
k

B
, k ∈ [0, 1, . . . ,K − 1]

}
(range),

and for Doppler detection, using signal model (1.7):
Gθ =

{
k

N
, k ∈ [0, 1, . . . , N − 1]

}
(Doppler).

See that with this definition of the grid, the tested vectors for the signal model (1.7) are orthogonal.
Cochran’s theorem [Coc34] then states that the MF tests are independent. This enables us to easily fix
the global PFA when running tests on the grid as

PFAglobal = 1− (1− PFA)
N
. (1.30)

The cells of the grid are then defined as the intervals of parameters centered around the values of G.
With the previous examples, the cells Dk for k in [0,K − 1] (or in [0, N − 1]) are defined as:

Dk =

[
k

B
− 0.5

B
,
k

B
+

0.5

B

]
(range), (1.31)

or
Dk =

[
k

N
− 0.5

N
,
k

N
+

0.5

N

]
(Doppler). (1.32)

When performing distance-Doppler detection, the 2D grid Gτ,θ is the product Gτ × Gθ , and similarly, the
2D cells are products of the above 1D cells. The fact that the true parameters of the target θ0 may not lie
on the grid creates a mismatch δ ≜ θ− θ0 between the true parameters and the parameters under test.
Remark 1.5.1. Note that the off-grid-induced mismatch is not due to any mistake during the collection of
the data or poor modeling of the parameters of the detection problem as can be the case when the noise
distribution or covariance matrices are mismatched. It is entirely due to the grid heuristic made to solve the
hypothesis test.

Remark 1.5.2. Decomposing the parameter space in several cells is also a simple way to deal with the case of
multiple targets, the corresponding multiple hypothesis testing being much more involved [Kay09]. It is hoped
that in a single cell, only one target will be present, which is the context of the binary hypothesis test (1.3.3) we
are trying to solve. Interferences between targets with parameters lying in different cells are neglected in this
modelization.

Thismismatch lowers the output of the detectors. Underwhite noise, when r = s(ξ+δ), ∣∣s(ξ)Hs(ξ + δ)
∣∣

in the numerator of the detectors is worth:
• In the case of range detection (signal model (1.5)):∣∣s(τ)Hs(τ + δ)

∣∣ = 1

K

∣∣∣∣ sin(πδB)

sin(πδB/K)

∣∣∣∣ . (1.33)
• In the case of Doppler (or angle) detection (signal model (1.7)):∣∣s(θ)Hs(θ + δ)

∣∣ = 1

N

∣∣∣∣ sin(πδN)

sin(πδ)

∣∣∣∣ . (1.34)
The function ∣∣s(ξ)Hs(ξ + δ)

∣∣ (autocorrelation of s) is drawn in Figure 1.9 in the case of Doppler (or angle)
detection.
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Figure 1.9: Autocorrelation of s under white noise (2.69) for N = 10. Values θ1, θ2 represent the limits ofa cell Dk = [θ1, θ2].

1.5.2 . Impact of the off-grid mismatch on the detectors
As we saw in Section 1.4, the MF and the NMF do not react the same way to a mismatch. As a conse-

quence, their mean probability of detection for targets uniformly distributed in a cell will be impacted.
Formally, for a cell [ξ0 − ∆

2 , ξ0 +
∆
2 ] and given SNR a threshold w2, this quantity is defined as:

PDmean =
1

∆

∫ +∆
2

−∆
2

P (Λi(ξ0 + δ) > w2) dδ , for i ∈ {MF,NMF} , (1.35)
The impact of the off-grid mismatch is quantified in Figures 1.10a and 1.10b for white noise using signal
model (1.7) with a PFA of 10−6, computed by simulating 100 targets equispaced in a cell (PDmean beingindependent of the chosen cell under white noise). The mean detection probability of the detectors is
compared with the mean detection probability of the oracle detectors Λi(ξ0) (i ∈ {MF,NMF}) that are
always run at the true parameters ξ0 of the target, and the mean probability of the off-grid GLRT, to will
be defined later in section 1.6.

• The off-grid mismatch degrades the average MF detection probability by a non-negligible factor
compared with the oracle detector that knows the positions of the targets. However, the loss
is contained: it is well-known that at worst, the off-grid loss is limited to a 3dB loss in detection
probability per unknown parameter. As a result, the probability of detection of the MF converges
to 1 with the SNR. This is due to the robust nature of the MF.

• In the case of theNMF forDoppler detection, the loss in averagedetectionprobability ismuchmore
concerning: indeed, see that the probability of detection does not tend to 1 with SNR anymore.
This is explained by Figure 1.11a which shows the NMF response versus the mismatch in a cell. The
asymptotic PDmean is obtained as the ratio of the lobe width above the threshold over the total
width of the search domain [RBO16]. It can be seen that for PFA as high as 10−3, the targets at the
edge of a standard Fourier resolution cell fall out of the detection cone. Thus, with low PFA, some
targets on the edge of cells can never be detected, because of the selectivity of the NMF. This is a
significant issue of this detector, hence why it has been one of the main focuses of this thesis.
Remark 1.5.3. This is especially true for a low number of integrated samples, for which the NMF detec-
tion cone is very narrow. As the number of samples increases, the NMF becomes more robust to off-grid
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(a) MF (1.19) with signal model (1.7), N = 10.
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(b) NMF (1.25) with signal model (1.7), N = 10.
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(c) MF (1.19) with signal model (1.10), N = 8 and P = 4.
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(d) NMF (1.25) with signal model (1.10), N = 8 and P = 4.
Figure 1.10: Plot of thePD of theMF and theNMFagainst targetswith parameters randomly anduniformlydistributed in a Fourier resolution cell under white noise for a PFA = 10−6. The Oracle detector and theoff-grid GLRT are also plotted for comparison.
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(b) N = 20.
Figure 1.11: Noiseless NMF response (1.25) to a mismatched signal s (θ0 + δ) versus the mismatch δ.Dashed lines represent the thresholds for different PFA.

mismatch because the thresholds get lower, as illustrated in Figure 1.11b where the NMF response has
been redrawn as in Figure 1.11a, but this timewithN = 20. It can be seen that this time, the NMF response
is always higher than the thresholds for PFAs up to 10−4. As a result of this, the average probability
of detection of the NMF in the presence of off-grid targets increases with the number of pulses that are
used, as illustrated in Figure 1.12a where the NMF mean probability of detection for Doppler detection
has been drawn in the asymptotic regime versus the number of pulsesN for a PFA of 10−6. However, in
many applications, only a low number of integrated samples is used, and using 10 samples as in Figure
1.11a is a realistic scenario.

Figures 1.10c and 1.10d show the PD of the MF and the NMF in the STAP context. While the gap between
the oracle detector and the standard MF widens, the NMF performs much better, and its probability of
detection converges to a higher value with the SNR.
Remark 1.5.4. For detection with two unknown parameters, the asymptotic deficiency of the NMF PD is less
prevailing because the detection cone is wider even when using low values for both parameters. Indeed, Figure
1.12b shows the asymptotic PD of the NMF using signal model (1.10) for STAP detection and it can be seen that
an asymptotic PD of 1 is reached for N = 8 and P = 10.

While the off-grid mismatch already has a big impact on the detection performance of the typical
GLRT detectors under white noise, the situation is even worse under colored noise when Γ ̸= I. Even
though the Oracle detectors are not impacted by it, it can further degrade the PD of theMF and the NMF.
While in the white noise case, PDmean is cell-independent for those detectors, under colored noise, it
becomes cell-dependent. The PD of those detectors under a noise highly correlated is shown in Figures
1.13 and 1.14. As expected, the PD of the Oracle detectors, which was found to be independent of Γ in
(1.23) and (1.39), does not change after correction of the SNR. However, the PD of the MF and the NMF
severely decreases in the cell D0, and increases in the cell D5. This is a consequence of the fact that forhighly correlated noise, the detection cone gets thinner when testing for targets in D0 and widens whentesting for targets in D5, as illustrated in Figures 1.14a and 1.14b which represent the NMF response for
targets in D0 and D5

1.5.3 . The off-grid mismatch in the literature
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(a) Doppler detection with signal model (1.7).
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(b) STAP detection with signal model (1.10),N = 8 is fixed.
Figure 1.12: Mean probability of detection of the NMF for off-grid targets uniformly distributed in a cell,with SNR = 100dB after integration and PFA = 10−6 under white noise.

In this section, we explore the solutions given in the literature to mitigate the off-grid mismatch
impact.
1.5.3.1 Litterature on the off-grid mismatch in sparse signal reconstruction

The off-grid mismatch is a topic that has been covered extensively in sparse parameter estimation or
signal reconstruction.

The sparse signal reconstruction issue closely resembles our detection problem. In this application,
the radar scene is modeled as

y = Fx+ n ,

where y is the received signal, F is a matrix where each column corresponds to a possible received
signal (in radar applications, usually F is taken as the oversampled Fourier dictionary (1.7)), x is a vector
containing the target amplitudes at the target frequencies, and otherwise 0s and n is a noise vector. In
sparse contexts, the received signal x contains only a few non-zero components, which is usually true in
radar where only a few targets can be considered present in the scene. The goal of signal reconstruction
is to estimate the vector x, effectively detecting the targets in the scene and estimating the unknown
parameters at the same time, which is made possible by the sparsity of the received vector. This is
usually achieved with algorithms such as Lasso [Tib96] or Orthogonal Matching Pursuit [TG07].

When the target received vector is mismatched w.r.t. to the atoms of the dictionary matrix F, there
is an off-grid mismatch, similar to what we have described earlier in this section [SB11b; Str12]. The afore-
mentioned classical algorithms of signal reconstruction are very sensitive to off-grid mismatch, which
led to the development of several robustified algorithms. The proposed solutions include oversampling
the grid [FL12] or the addition of a linear perturbation to the dictionary matrix F to account for off-grid
mismatch, approximating themismatched signals with a first-order Taylor approximation [ZLG11], some-
times using a Bayesian prior on the unknown parameters [Las+15] at the cost of a higher computational
load. Another approach tailored for off-grid reconstruction consists of minimizing an atomic norm prob-
lem [Tan+13; BTR13], which avoids the usage of the grid.

One of the main drawbacks of sparse reconstruction algorithms compared to classical detection is
that it is most of the time significantly harder to control the rate of false alarms, as most algorithms do

42



0 5 10 15 20 25 30 35 40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) MF (1.19), cell D0.
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(b) MF (1.19), cell D5.
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(c) NMF (1.25), cell D0.
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(d) NMF (1.25), cell D5.
Figure 1.13: PD of theMF andNMF for Doppler detection (signal model (1.7)) under a very correlated noisemodel (ρ = 0.999 in (1.17)), with N = 10 and PFA = 10−6. The threshold of the GLRT is set accordingly ,and SNR is defined as the maximum achievable SNR |α|2 s(θ)HΓ−1s(θ) where θ is the true parameter ofthe target, which is attained when the true parameter of the target coincides with the tested parameter(it is the SNR for the oracle detector).
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Figure 1.14: NMF response for Doppler detection (signal model (1.7)) with N = 10 and ρ = 0.9 in cells D0and D5. The response under white noise is also drawn as a baseline.

not rely on a threshold as in detection, but rather on hyperparameters that can be hard to link with a
PFA [Ani+12]. It should however be noted that, as the selection rule of the pursuit algorithms (matching
pursuit, orthogonal matching pursuit) reduces to a simple Fourier transform, knowing the statistics of
the MF and the NMF makes it possible to set a stopping criterion enabling false alarm control for those
algorithms.

1.5.3.2 Litterature on the off-grid mismatch in detection

In radar applications, the loss in detection probability due to off-grid targets is sometimes called the
straddle loss [Can02; Ric+10]. Windowing is seen as a possible way to solve this issue since it enlarges
the main lobe, however, it also degrades the SNR, thus making this solution not always satisfying when
the SNR is already low. Another solution widely encountered is oversampling i.e. refining the grid G
(1.5.1) using smaller cells. This always increases the probability of detection at the cost of a higher com-
putational load and more involved theoretical statistical characterization since the test samples are not
independent anymore.

In detection theory, few authors have been interested specifically in dealing with the off-grid mis-
match, and the tools developed for increasing the robustness of detectors undermore generalmismatch
models mentioned in Section 1.4 are not suited for this application since the off-grid mismatch is very
structured and is not well-encaptured by such simple models. Consider, for example, adapting the cone
approach introduced in [De 05] to increase the robustness of the normalized matched filter to off-grid
signals. To do this, we could center the cone of sought-for signals at the center of the cell, and define
the cone extremities as the border of the cell, as represented in Figure 1.15 for real signals. However, in
doing this, a large array of unwanted signals will be included in the signal model ofH1, thus dramatically
decreasing the selectivity of the detector. Besides, a lower bound for the PFA is imposed by the cone
approach, which can be easily computed. In the real case, take the surface of a spherical cap of radius
half the length of a cell on the unit sphere SN−1, representing the minimum acceptance zone of the de-
tector to accept all signals in a cell as represented on Figure 1.15. Divide it by the surface of the sphere,
representing the space of all possible incoming normalized signals. This gives the lower bound for the
PFA, making it impossible to reach PFA as low as 10−6, yet very low PFA of this order are common in
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Searched Signal Cone
Cell 𝒟

Figure 1.15: Example of a cone of sought-for signals containing a cell for detection under ’cone mismatchmodel.
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(a) In white noise.
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(b) In highly correlated noise (ρ = 0.9 in (1.17)), cell D0.
Figure 1.16: PD of the NMF, DPSS NMF (using 2 vectors to model the cell) and a x2 oversampling forDoppler detection withN = 10 and PFA = 10−6 under different contexts. The PD of the GLRT describedin Section 1.6 and the oracle detectors are also drawn for comparison purposes.

radar detection [BRO20].
In [RBO16] (in the case of known covariance matrix) and [BRO20] (in the adaptive case), the authors

propose an approximation of the grid cells as linear subspaces thanks to Discrete Prolate Spheroidal
Sequence (DPSS) to apply matched subspace detectors [SF94]. This approach increases the detection
performance of the detector in the presence of off-grid targets and is, for high SNR values, better than
oversampling by a factor of 2. Furthermore, statistical analysis of those detectors is rather easy to per-
form: in particular, analytical PFA-threshold relationships can be computed. However, it does not quite
reach the oracle detection probability yet, as can be seen in Figure 1.16, in which the detection proba-
bilities of the previously described detectors are compared in white noise and highly correlated noise
contexts. This is especially true under correlated noise scenarios, where the PD of the DPSS NSMF does
not converge to 1. The detection probability of the off-grid GLRT is also shown. It is introduced in the
next section.
Remark 1.5.5. Another way to deal with the off-grid mismatch that sometimes appears in the literature,
which is perhaps the most powerful one, consists in performing joint detection and estimation, i.e. estimating
the unknown parameters ξ during the detection process (not necessarily in the MLE sense, which differentiates
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this from the GLRT) and injecting it in the detection test. This will be described in detail in Chapter 4.

1.6 . The off-grid GLRTs

As we saw in the previous section, the solutions devised in the literature to deal with the off-grid
mismatch are not entirely satisfying. Another way to tackle the loss in detection probability of the de-
tectors which is very straightforward is simply to consider the parameters of the target ξ as unknown in
the GLRT, thus performing "true" off-grid GLRT detection. In this thesis, we call those detectors off-grid
GLRT. However, as mentioned before, no analytical form of theMLE for ξ exists, and thus no-closed form
exists for the GLRT which reads as the maximum of a continuum of random variables:

Λoff-grid MF = max
ξ∈D

∣∣s(ξ)HR−1 r
∣∣2

s(ξ)HR−1 s(ξ)

H1

≷
H0

w2 (off-grid MF) (1.36)
and

Λoff-grid NMF = max
ξ∈D

∣∣s(ξ)HΓ−1 r
∣∣2(

s(ξ)HΓ−1 s(ξ)
) (

rHΓ−1 r
) H1

≷
H0

w2 (off-grid NMF). (1.37)
Their detection performance is shown in Figures 1.16a under white noise and 1.16b under correlated

noise distribution. They exhibit a betterPD than their on-grid counterpart (1.19) and (1.25), while still being
a bit lower than the oracle detector, which is explained by the fact that the threshold in (1.36) and (1.37)
has to be raised to account for the increased robustness. Of course, this was to be expected since the
GLRT works with less information than the oracle detector.
Remark 1.6.1. Note that the statistics of the off-grid GLRT under the null hypothesis will a priori depend on
the tested cell, so the thresholds have to be computed for each cell (this will not be the case under white noise).

Remark 1.6.2. Similarly, off-grid GLRT versions of the adaptive detectors presented in Section 1.3.3 can be
defined, as will be shown in the perspectives. It is also possible to define off-grid ALRTs for the detection of
off-grid targets in a Bayesian context when the unknown parameters ξ are assumed unknown and following
a prior distribution, as shown in [Sel65] (in the case of a known nonfluctuating amplitude) or [BRS68] (in the
case of a Swerling 1 target, that is with an amplitude following a Rayleigh distribution) for Doppler detection,
where the unknown Doppler shift follows a uniform distribution.

Our goal in this thesis is to answer the following questions:
• How can we compute the PFA-threshold relationship of those detectors? Indeed, as the testquantity now depends on a continuum of non-independent variables, it is more delicate to evalu-
ate than in the on-grid case. In Chapter 2, we find a new PFA-threshold relationship for the off-gridNormalized Matched Filter, and in Chapter 3, we focus on the PFA-threshold relationship for theoff-grid Matched Filter.

• How can we compute the test quantities? In order to implement the detectors perfectly, an
infinity of test quantities has to be computed. A naive approximation consists of oversampling the
on-grid tests using large oversampling factors, which is not always possible in applications where
computing power is limited. Chapter 4 investigates fast and efficient approximations.

1.7 . Synthesis

In this chapter, we first presented the radar detection problem and its formalization as a binary
hypothesis test. We then introduced the basis of detection theory, including the Generalized Likelihood
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Ratio Tests which are popular tools used to solve composite hypothesis tests. Then, we shifted our focus
to the issue of robust detection under mismatched signal models, which is related to the off-grid issue
that this thesis tackles. We showed that the usual GLRT detectors widely employed in radar suffer from
the presence of off-grid targets and that the solutions provided in the literature are not entirely satisfying.
We propose to use the off-grid GLRTs, obtained by deriving the GLRTs under the hypothesis that the
target parameters are unknown. The statistical characterization and the approximation of the off-grid
GLRTs are the focus of the contributions made during this thesis, which are detailed in the following
chapters, starting from the derivation of the PFA-threshold relationship of the off-grid NMF in the next
chapter.
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Appendix

1.A . On the statistic of the NMF

The goal of this section is to characterize the NMF test statistics, as was already done, for example,
in [CLR95] or [Jay02]. Starting back from (1.24), see that the NMF test quantity rewrites:

ΛNMF =
∥∥∥Γ−1/2x

∥∥∥2∥∥∥Γ−1/2x
∥∥∥2 − ∣∣s(ξ)HΓ−1x

∣∣2∥∥∥Γ−1/2s
∥∥∥2

.

Using Pythagoras theorem, we can decompose ∥∥∥Γ−1/2x
∥∥∥2 as:∥∥∥Γ−1/2x

∥∥∥2 =
∥∥∥xHΓ−1/2P⊥

s

∥∥∥2 + ∥∥∥xHΓ−1/2Ps

∥∥∥2 ,
where Ps = Γ−1/2s

(
sHΓ−1s

)−1
sHΓ−1/2 and P⊥

s = I − Ps are the projectors on s and its orthogonal.
Note that ∥∥∥xHΓ−1/2Ps

∥∥∥2 =

∣∣s(ξ)HΓ−1x
∣∣2∥∥∥Γ−1/2s

∥∥∥2 , so that

ΛNMF =
∥∥∥xHΓ−1/2P⊥

s

∥∥∥2 + ∥∥∥xHΓ−1/2Ps

∥∥∥2∥∥∥xHΓ−1/2P⊥
s

∥∥∥2 .

The NMF test is thus equivalent to the test:

ΛNMF′ =
∥∥∥xHΓ−1/2Ps

∥∥∥2
∥xHΓ−1/2P⊥

s ∥2

N−1

H1

≷
H0

(
w2
)′′

, (1.38)
with (

w2
)′′

= (N − 1)
((
w2
)′ − 1

)
.

As noted in Subsection 1.3.1, under H0, the random variable in the numerator follows a centered 1
2χ

2
2distribution. Similarly, the random variable in the denominator follows a centered 1

2(N−1)χ
2
2(N−1) distri-bution. Cochran’s theorem enables us to state that those variables are independent. By definition, the

test ratio then follows an F-distribution with parameters (2, 2(N − 1)). Its CDF FF (2,2(N−1))(x) is given by[ASR88]:
FF (2,2(N−1))(x) = I 2x

2x+2(N−1)
(1, N − 1) ,

= 1−
(
1− 2x

2x+ 2(N − 1)

)N−1

,

where I is the regularized incomplete Beta function. The PFA of the NMF is thus given by:
PFA = 1− FF (2,2(N−1))

((
w2
)′′)

,

=

(
1−

(
1− 1

(w2)
′

))N−1

,

=
(
1− w2

)N−1
.
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UnderH1, when the noise vectorn follows aGaussian distribution, as in Subsection 1.3.1 the upper part of(1.38) is distributed according a 1
2χ

2
2 distributionwith non-centrality parameterSNR = 2 |α|2 s(ξ)HR−1s(ξ).

Since the signal component of r is projected on P⊥
s , the denominator still follows a centered 1

2χ
2
2(N−1)distribution. Using Cochran’s theorem, those variables are still independent. By definition, this ratio fol-

lows a noncentral F-distribution with non-centrality parameter 2 |α|2 s(ξ)HR−1s(ξ) where (2, 2(N − 1))

are the degrees of freedom of the chi-squared variables. Its CDF F (x) reads:
F (x) =

∞∑
i=0

(
(SNR)

i

i!
e−SNR

)
I 2x

2x+2(N−1)
(1 + i,N − 1) .

Then,
PD = 1− F

((
w2
)′′)

. (1.39)
The PD can also be computed in the case of a SIRV signal model, and in this case, depends on the pdf of
the texture parameter Θ [OPB15].
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2 - On the statistics of the off-grid Normalized Matched Filter

At the end of the previous chapter, we introduced the off-gridGLRTs as our choice of detectors to deal
with the off-grid mismatch, and we observed that one question that arises is related to the computation
of their PFA for a given threshold. Indeed, since the statistics of the test are much more involved, so is
the computation of the PFA, and, as far as we know, no such PFA-threshold relationship exists in the
detection literature. However, applied statisticians have long been interested in the related problem of
computing the probability of a randomprocess exceeding a given threshold. The goal of this chapter is to
adapt their tools to the traditional detection hypothesis test formalism to provide a new PFA-thresholdrelationship for the off-grid Normalized Matched Filter. The approach that we will borrow in this chapter
translates this statistical problem into a geometrical one, which will enable us to provide some insightful
comments on the off-grid NMF. This approach is only valid under some conditions on the threshold w
which will be extensively discussed.

In Section 2.1, we show how computing the PFA-threshold relationship of the normalized matched
filter naturally reduces to the geometrical problem of computing the volume of tubes drawn around
submanifolds of the sphere S2N−1. In Section 2.2, we show how to compute the volume of such tubes
thanks to [Hot39; Wey39; SW95; KS89], which enables us to compute the PFA-threshold relationship oftheNormalizedMatched Filter, in Section 2.3, for the 1D signalmodels introduced in the previous chapter
as well as exact relationships in the case of STAP signal model (1.10) when testing on the whole parameter
space. The cases where the parameter space is reduced to a single cell are covered by heuristics. We
discuss the domain of validity of our relationships in Section 2.4. Finally, in Section 2.5, we evaluate our
relationships as well as their domain of validity through numerical simulations.

Corollary 2.3.0.1 was the subject of a publication at the conference IEEE ICASSP 2022 [Dev+22a], and
GRETSI 2022 [Dev+22b]. This work was extended, including our study on overlap, in a submitted journal
paper [Dev+23b].

2.1 . Motivation for a geometrical approach

In this section, we show how computing the PFA-threshold relationship of the off-grid NMF naturally
reduces to a geometrical problem. For that purpose, we will first start by rewriting the off-grid NMF
test (1.37) with real vectors, for any of the signal models. For the sake of clarity, in this whole chapter,
s denotes the whitened and normalized version of the received signal, noted sw in the previous section
(we withdraw the superscript w in (1.20)). Since we are interested in computing a PFA, in this chapter
the received signal r is only constituted of noise, either a Gaussian or SIRV distribution so that u, the
whitened and normalized version of r, is uniformly distributed over the sphere.

Let us introduce a parameter α that will play a role related to the phase of the target. For any α ∈
[0, 2π], note that

Re
(
s (ξ)

H
u exp (−iα)

)
≤
∣∣∣s (ξ)H u

∣∣∣ , (2.1)
those two quantities being equal for α = ∠s (ξ)H u. We then have, decomposing s (ξ) and u into real
and imaginary parts:

Re
(
s (ξ)

H
ue−iα

)
= (γ1(ξ) cosα+ γ2(ξ) sinα )

T
u, (2.2)
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where
γ1(ξ) =

[
Re(s (ξ))
Im(s (ξ))

]
,

γ2(ξ) =

[
−Im(s (ξ))
Re(s (ξ))

]
,

and
u =

[
Re(u)
Im(u)

]
is a 2N -real valued noise vector drawn uniformly on S2N−1. Denoting

γ(ξ, α) = γ1 (ξ) cosα+ γ2 (ξ) sinα , (2.3)
we have, from (2.1) and (2.2):

max
α∈[0,2π]

γ(ξ, α)Tu =
∣∣∣s (ξ)H u

∣∣∣ . (2.4)
All the above shows us that we can rewrite the NMF (1.25) test with real-valued vectors and that in the
process we introduce a manifold γ depending on the unknown parameters ξ and a phase term α. The
maximization of the product between γ and the incoming signal u with respect to α yields the NMF
test quantity (1.25). Now recall that the off-grid NMF is obtained by maximizing the NMF test quantity
with respect to the unknown parameters ξ, thus the off-grid NMF (1.37) can simply be written using real
vectors with the following expression:

max
(ξ,α)∈D×[0,2π]

γ(ξ, α)Tu
H1

≷
H0

w . (2.5)

Remark 2.1.1. By manifold in this thesis, we always mean a Riemannian manifold, i.e. a smooth manifold
equipped with a positive-definite inner product on the tangent space for each point in the manifold [RD16,
p.168]. Furthermore, we will always assume that the manifold admits a single, global chart, and we will work
using such a chart.

Remark 2.1.2. It is important to note that, due to the parameter α that appears in (2.3), the dimension M
of the manifolds γ is always one more than the number of parameters in the signal model. For example,
when dealing with Doppler detection (one unknown parameter),M = 2, and when dealing with range-Doppler
detection (two unknown parameters),M = 3.

As explained in Section 1.4, since γ and u are both normalized, the product γ(ξ, α)Tu for fixed (ξ, α)

reduces to the cosine of the angle between γ(ξ, α) and u. Comparing γ(ξ, α)Tu with w thus reduces to
checking whether the angle between γ(ξ, α) and u is lower than the angle ϕ = cos−1 w, or whether u
belongs to the spherical cap SCξ,α of radius ϕ centered around γ(ξ, α), defined as

SCξ,α =
{
u ∈ Sn−1,uTγ(ξ, α) > cos(ϕ)

}
,

as was shown in Figure 1.8b.
What happens when maximizing on α and ξ when performing the off-grid GLRT? Comparing
max

ξ,α∈D×[0,2π]
γ(ξ, α)Tu with the threshold w reduces to checking whether u belongs to the union of the

spherical caps SCξ,α for (ξ, α) varying in D × [0, 2π]. The union of spherical caps describes a tube T of
radius ϕ embedded on S2N−1 around the manifold γ such that

T =

{
u ∈ S2N−1, max

(ξ,α)∈D×[0,2π]
γ(ξ, α)Tu > w

}
.
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𝜙 𝛾(𝜉)

𝒮𝒞𝜉

Figure 2.2.1: Example of a tube T on S2 around acurve γ(ξ). Since the curve is non-closed, semi-spherical caps (in green) are present at the ends of
T .

𝜸

𝒯𝒞𝑤

𝑤

Figure 2.2.2: Example of cross-sections of γ embed-ded in R2.
The noise vector u is distributed uniformly over the unit sphere S2N−1 due to the spherical invariance
of the complex circular Gaussian distribution. A false alarm arises when a realization of u falls into the
tube T . Since u is uniformly distributed, the PFA will simply be given by the ratio of the volume of the
tube over the volume of the sphere so that the statistical problem of characterizing the PFA is translated
to the geometrical problem of finding the volume of the tube T . This problem has spanned furnished
literature in applied statistics since Hotelling’s original paper in 1939 [Hot39; Gra03]. The next section
presents the main results that we will use in order to find the volume of the tubes T that appear in our
application.

2.2 . On the volume of tubes

In this section, we give the reader an introduction to how to derive the volume of a tube around
manifolds constrained on the sphere Sn−1 that we need in order to compute our PFA-threshold rela-
tionships. We start with the presentation of Hotelling’s original approach for computing the volume of
tubes around a 1D curve drawn on the sphere, then we proceed to describe Weyl’s generalization for the
volume of tubes around manifolds of arbitrary dimension M < n − 1. Weyl’s approach does not take
into account the borders of the manifolds: we will then see in the literature how to deal with a manifold
with borders in the caseM = 2, and then propose a heuristic in the caseM = 3.

2.2.1 . The volume of tubes around curves: Hotelling’s original formulation (M = 1)

In this subsection, we present Hotelling’s original theorem for computing the surface of tubes on a
sphere. Consider a curve γ(ξ) on the sphere Sn−1, with ξ ∈ [0, b]. A tube T of geodesic radius ϕ is defined
as the set of points with geodesic distance to the curve inferior to ϕ. Formally:

T =
{
u ∈ Sn−1 : ∃ ξ ∈ [0, b],uTγ(ξ) > cos(ϕ)

}
.

T can be seen as the union of the spherical caps SCξ = {u ∈ Sn−1,uTγ(ξ) > cos(ϕ)
}. A graphical exam-

ple of such a tube is provided in Figure 2.2.1.
Alternatively, sometimes in the literature authors prefer to define tubes as the union of cross-sections,

defined as the set of points orthogonal to the derivative of γ at ξ located at a distance less than w as:
Cw(γ(ξ)) =

{
u ∈ Sn−1 : uT γ̇(ξ) = 0,uTγ(ξ) > w

}
.

where the notation γ̇ denotes the derivative of γ with respect to its scalar variable ξ. Figure 2.2.2 schema-
tizes the cross-sections of a curve γ embedded in R2. This only leaves the purple part in Figure 2.2.1. In
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this thesis, what we call a tube also contains the green semi-spherical caps at the ends.
In [Hot39], Hotelling gives a formula for computing the surface of the cross-sections of T :

Theorem 2.2.1. [Hot39] The surface enclosed by the cross-sections of a tube of geodesic radius ϕ around a
curve on the real unit sphere Sn−1 is the product of the length of the axial curve by the volume of the n − 2

ball of radius sinϕ:
π(n−2)/2

Γ
(n
2

) sinn−2(ϕ) . (2.6)
When dealing with a non-closed curve, one has to add the surface of the two end semi-spherical caps

to Hotelling’s formula in order to find the surface of T .
Note that, in general, for Hotelling’s formula to hold, it is necessary that each point in the tube belongs

to a unique cross-section. Following Hotelling, this restriction will be called the non-overlap condition.
Overlap phenomenons can happen when a tube draws back into itself (non-local overlap) or when its
curvature becomes too large (local overlap). Non-overlap is locally guaranteed when the radius of the
tube ϕ is low enough. More specifically, for a curve of constant radius of curvature ρ, Hotelling shows in
[Hot39] that the condition for having no local overlap is the following:

sinϕ ≤ ρ . (2.7)
In case of overlap, the surface given by Hotelling’s theorem becomes an upper bound. An in-depth study
of overlap phenomenon is given in Section 2.4.

2.2.2 . Extending Hotelling’s theorem with Weyl’s formula (M > 1)
2.2.2.1 Weyl’s first formula

In [Wey39], Hotteling’s approach is generalized in order to compute the surface of the "tubes" around
any arbitrary M-dimensional manifold γ(ξ) on the sphere Sn−1 for ξ in the set D. In this case, the tube
T of geodesic radius ϕ is defined as:

T =

{
u ∈ Sn−1 : max

ξ∈D
γ(ξ)Tu > cos(ϕ)

}
. (2.8)

Alternatively, similarly to what we noted in the previous section, tubes are sometimes defined in the
literature [Gra03] as the union of cross-sections Cw(γ(ξ)) such that:

Cw(γ(ξ)) =
{
u ∈ Sn−1 : uT

∂γ

∂ξT
= 0,uTγ(ξ) > w

}
. (2.9)

This definition only coincides with (2.8) if γ is closed, that is to say, if γ does not have boundaries. As
before, what we call a tube in this thesis is given by (2.8).

In the following, we present Weyl’s first result. It is proven in appendix 2.A following Weyl’s original
proof so that readers can get more familiar with this formula and the kind of computations we will make
in this chapter. Weyl’s theorem is as follows:
Theorem 2.2.2. [Wey39] Let γ(ξ) be aM -dimensional closed manifold embedded on the unit sphere Sn−1.
The volume of the cross-sections of T (which coincides with the volume of T when γ is closed) is, neglecting
overlap effects:

V =

∫
γ



∫
. . .

∫
t21+···+t2ν≤tan2 ϕ

det

(
δij +

ν∑
p=1

tpG
j
i (p)

)
1≤i,j≤M

(1 + t21 + · · ·+ t2ν)
n/2

dt1 . . . dtν


ds , (2.10)
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where

• ds =√det gij dξ1 . . . dξM is the surface element of γ,

• gij = ∂γT

∂ξi

∂γ

∂ξj 1≤i,j≤M
is called the first fundamental form of γ. We note

(
gij
)
= (gij)

−1,

• ν = n− 1−M is the codimension of the manifold,

• γ(ξ),n1, . . . ,nν is an arbitrary orthonormal basis for the manifold at ξ,

• Gij(p) = − ∂2γT

∂ξi∂ξj
np

1≤i,j≤M
is called the second fundamental form of γ for the normal n(p),

• Gji (p) =
M∑
k=1

gjkGik(p).

Remark 2.2.1. When γ is non-closed, in order to retrieve the volume of T as defined in (2.8), some correction
terms will need to be added to take into account the boundaries.

The first and second fundamental forms are essential tools of differential geometry in order to char-
acterize a manifold. The first fundamental form gij is the Riemannian metric induced by the standard
scalar product on RM , and is used to compute various quantities on the manifold, such as angles or
volumes, with√det gijdξ1 . . . dξM being the volume element that needs to be integrated.

A case of interest is the following:
Definition 2.2.1. Letγ be aM-dimensionalmanifold. γ is said to be Euclidean if there exists a parametrization
such that the first fundamental form gij reduces to I.

In this case, themetric ds2 is expressed as∑ dξ2i for every point in themanifold. Wewill see later that
in many cases we deal with, the manifolds γ of interest are Euclidean, which will considerably simplify
the computations.

The second fundamental form describes how themanifold curves relatively to its ambient space, and
will be of lesser interest in this thesis. Readers are referred to [Gal22; RD16; SS78] for an introduction to
differential geometry.

In order to useWeyl’s formula (2.10) to compute the volume of a tube, one needs to find an orthonor-
mal basis n to themanifold, and then compute the second fundamental form. But Weyl shows that (2.10)
can be expressed in terms of the first fundamental form gij only (V is then called an intrisic quantity). In
our applications, the coefficients gij can easily be found from the expression of the considered signals,
making it possible to obtain the volume of the tube of interest in a more direct and easy fashion. In the
next sections, we will first check that (2.10) reduces to the volume given by Hotelling’s theorem 2.2.1 when
M = 1. We will then develop the determinant in (2.10) and see how this formula simplifies for M = 2

andM = 3, only expressing it with quantities that are derived from the gij .
2.2.2.2 The caseM = 1

In this section, we will check that (2.10) reduces to Hotelling’s formula (2.6) whenM = 1. In this case, the
codimension is ν = n− 2, and

det

(
δij +

ν∑
p=1

tpG
j
i (p)

)
1≤i,j≤M

= 1 +

n−2∑
p=1

tpG
1
1(p) .

55



Per imparity of tp, the integral of the factors tp(
1 + t21 + · · ·+ t2n−2

)n/2 over the n− 2-dimensional ball of
radius tan2 ϕ is zero. After some technical computations, done in [Wey39, section 3], it is shown that
the integral of the factor 1(

1 + t21 + · · ·+ t2n−2

)n/2 is given by wn−3J0 where wn−3 is the surface of Sn−3,
obtained thanks to following formula giving the surface of Sν−1:

wν−1 =
2πν/2

Γ(ν/2)
, (2.11)

so that wn−3 =
2π(n−2)/2

Γ((n− 2)/2)
, and the term J0 is defined thanks to:

J0 ≜
∫ ϕ

0

sinν−1 ρ cosM ρ dρ . (2.12)

In our case J0 =
∫ ϕ
0
sinn−3 ρ cos ρ dρ is shown to be equal to sinn−2(ϕ)

n−2 by integrating by part, and the
volume V is thus expressed as

V = wn−3J0

∫
D
ds

=
π

n−2
2

Γ(n2 )
sinn−2(ϕ)

∫
D
ds .

Since ∫D ds is the length of γ, the volume V is what was given by Hotelling’s theorem 2.2.1.
2.2.2.3 The caseM = 2

In this section, we will see how to express (2.10) in a simple form depending only on the first fundamental
form gij forM = 2 . In this case, the codimension is ν = n− 3, and

det

(
δij +

ν∑
p=1

tpG
j
i (p)

)
1≤i,j≤M

= det


1 +

n−3∑
p=1

tpG
1
1(p)

n−3∑
p=1

tpG
2
1(p)

n−3∑
p=1

tpG
1
2(p) 1 +

n−3∑
p=1

tpG
2
2(p)


= 1 +

n−3∑
p=1

(G1
1(p)G

2
2(p)−G1

2(p)G
2
1(p))t

2
p +

n−3∑
p=1

n−3∑
q=1,q ̸=p

. . . tptq +

n−3∑
p=1

. . . tp .

where the dotted factors are of no interest to us since the integral of the terms tptq(
1 + t21 + · · ·+ t2n−3

)n/2
for p ̸= q and tp(

1 + t21 + · · ·+ t2n−3

)n/2 over the n−3-dimensional ball of radius tan2 ϕ is zero per imparity.
Again referring to [Wey39, section 3], it canbe shown that the integrals of the factors t2p(

1 + t21 + · · ·+ t2n−3

)n/2
for any p over the n−3-dimensional ball of radius tan2 ϕ are given bywn−4J2 where the term J2 is definedwith:

J2 ≜
1

ν

∫ ϕ

0

sinν+1 ρ cosM−2 ρ dρ (2.13)
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Integrating the term 1(
1 + t21 + · · ·+ t2n−3

)n/2 gives wn−4J0. This brings us to the following intermediate
result:

V = wn−4

(
J0

∫
D
ds+ J2

∫
D

n−3∑
p=1

G1
1(p)G

2
2(p)−G1

2(p)G
2
1(p)ds

)
, (2.14)

The integrand n−3∑
p=1

G1
1(p)G

2
2(p)−G1

2(p)G
2
1(p) in (2.14) can be expressed only in terms of the gij through

the Riemannian tensor, that we set out to define in the following. For that purpose, wewill need to define
the Christofel symbols of the second kind Γκαβ . For a manifold of arbitrary dimensionM , those symbols
are expressed in a coordinate system (u1, . . . , uM ) as [SS78, p.76]:

Γκαβ =
1

2

(
∂gακ
∂uβ

+
∂gβκ
∂uα

− ∂gαβ
∂uκ

)
, (2.15)

Γκαβ =
∑
λ

gλκ Γλαβ . (2.16)
Then the Riemannian tensor reads [Wey39, section 4]:

Rκλαβ =

(
∂Γκλβ
∂uα

− ∂Γκλα
∂uβ

)
+
∑
ρ

(
ΓκραΓ

ρ
λβ − ΓκρβΓ

ρ
λα

)
. (2.17)

Remark 2.2.2. Notice how the Riemannian tensor is entirely characterized by the first fundamental form (gij)

through the Christoffel symbols.

"Raising the index λ" [SS78], we note
Rκλαβ =

∑
µ

gλµRκµαβ . (2.18)
From the Gauss equations [Gra03, p.65], Weyl shows that for manifolds embedded on Sn−1

Rκλαβ −
(
δκαδ

λ
β − δκβδ

λ
α

)
=

ν∑
p=1

(
Gκα(p)G

λ
β(p)−Gκβ(p)G

λ
α(p)

)
, (2.19)

where the δκα are the kronecker symbols which equal 1 if α = κ and 0 otherwise.
Thus, the term n−3∑

p=1

G1
1(p)G

2
2(p)−G1

2(p)G
2
1(p) in (2.14) is linked to the Riemannian tensor withR12

12−1 =

n−3∑
p=1

G1
1(p)G

2
2(p) −G1

2(p)G
2
1(p). Taking all of this into account results in the following proposition for the

volume V :
Corollary 2.2.2.1. Consider a 2-dimensional manifold γ embedded on Sn−1. The volume of the tube T of
geodesic radius ϕ = cos−1 w about γ (defined in (2.8)) is given by:

V = wn−4

(
J0

∫
D
ds+ J2

∫
D
(R12

12 − 1) ds

)
. (2.20)

This expression of the volume only depends on the first fundamental form gij : indeed, the terms
wn−4 and J0, J2 are constant, while the Riemannian tensor depends on the Christoffel symbols of the
second kind, which in turn are determined by the first fundamental form.

An easy case arises when the manifold γ of interest is Euclidean. Indeed, in this case, the following
property holds:
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Corollary 2.2.2.2. If γ is defined as in Corollary 2.2.2.1 is Euclidean, the volume V further reduces to:

V = wn−4 (J0|D′| − J2|D′|) , (2.21)
where |D′| is the surface measure of the parameter space D′ for the parametrization ψ such that gij = I.

Proof. The proof relies on the fact that the Riemannian tensor Rκλαβ equals zero for Euclidean mani-
folds. Indeed, since there exists a parametrization such that the first fundamental form is constant, the
Christoffel symbols expressed in this parametrization equal zero (2.15), and thus so does the Riemannian
tensor. Thus, (2.20) reduces to:

V = wn−4

(
J0

∫
D′
ds− J2

∫
D′
ds

)
. (2.22)

For the parametrization ψ for which gij = I, the volume element simply reduces to ds = dψ1 . . . dψM . In
this case, the integrals ∫D′ ds simply reduce to:∫

D′
ds = |D′| ,

Injecting this expression in 2.22 yields the final result.
2.2.2.4 The caseM = 3

WhenM = 3, ν reduces to n− 4, and:

det

(
δij +

ν∑
p=1

tpG
j
i (p)

)
= det



1 +

n−4∑
p=1

tpG
1
1(p)

n−4∑
p=1

tpG
2
1(p)

n−4∑
p=1

tpG
3
1(p)

n−4∑
p=1

tpG
1
2(p) 1 +

n−4∑
p=1

tpG
2
2(p)

n−4∑
p=1

tpG
3
2(p)

n−4∑
p=1

tpG
1
3(p)

n−4∑
p=1

tpG
2
3(p) 1 +

n−4∑
p=1

tpG
3
3(p)


,

= 1 +

n−4∑
p=1

(G1
1(p)G

2
2(p)−G1

2(p)G
2
1(p))t

2
p +

n−4∑
p=1

(G1
1(p)G

3
3(p)−G1

3(p)G
3
1(p))t

2
p ,

+

n−4∑
p=1

(G3
3(p)G

2
2(p)−G3

2(p)G
2
3(p))t

2
p + . . . .

where dotted factors are odd and so their integral over the ball of radius tan2 ϕ cancels. The integrals of
1(

1 + t21 + · · ·+ t2n−3

)n/2 and t2p(
1 + t21 + · · ·+ t2n−3

)n/2 over the n−4 dimensional ball are equal town−5J0

andwn−5J2, respectively. From (2.19), the terms n−4∑
p=1

G1
1(p)G

2
2(p)−G1

2(p)G
2
1(p) = R12

12−1, n−4∑
p=1

G1
1(p)G

3
3(p)−

G1
3(p)G

3
1(p) = R13

13 − 1 and n−4∑
p=1

G3
3(p)G

2
2(p)−G3

2(p)G
2
3(p) = R23

23 − 1. In the end, the above computations
enable us to give the following corollary to Weyl’s formula:
Corollary 2.2.2.3. For a 3-dimensional manifold γ embedded on Sn−1, the volume of the tube T of geodesic
radius ϕ = cos−1 w about γ (defined in (2.8)) is given by:

V = wn−5

(
J0

∫
D
ds+ J2

∫
D
(R12

12 +R23
23 +R13

13 − 3) ds

)
. (2.23)
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Similarly to the caseM = 2, when γ is Euclidean, (2.23) reduces to the simple form:
V = wn−5 (J0|D′| − 3J2|D′|) , (2.24)

where D′ is the parameter space for the parametrization of γ such that gij = I.

And here again, this volume only depends on the first fundamental form gij through the Riemannian
tensor. The determinant computations that we did in the casesM = 2 andM = 3 are generalized for
any dimensionM in [Wey39, Section 4]. In the next section, we present Weyl’s final formula.
2.2.2.5 Weyl’s general formula (M > 3)

This section presents Weyl’s generalization of the formula (2.20) and (2.23) obtained in the previous sec-
tion. In this manuscript, we will limit our studies to a number of unknown parameters equal toM = 2

orM = 3, thus we will not need this general formulation in our developments : we will rather use the
formula developed by hand in the previous sections since the general formulation is much more in-
volved. It should, however, be useful to readers interested in extending our approach when the number
of unknown parameters exceeds 3, when considering a range-Doppler-angle signal model for example.

For α, β, κ, λ ∈ [1,M ], defineH
(
κλ
αβ

)
as:

H

(
κλ
αβ

)
≜ Rκλαβ −

(
δκαδ

λ
β − δκβδ

λ
α

)
=

ν∑
p=1

(
Gκα(p)G

λ
β(p)−Gκβ(p)G

λ
α(p)

)
. (2.25)

Then, for even k with 2 ≤ k ≤ M , define the following quantities Hk that appear when developing the
determinant in (2.10):

Hk =
∑
[α,β]

P

(
β
α

)
H

(
β1β2
α1α2

)
H

(
β3β4
α3α4

)
. . . H

(
βk−1βk
αk−1αk

)
, (2.26)

where α and β are any k-terms ordered arrangements of the numbers 1, . . .M , with α and β featur-
ing the same k-terms, excluding the redundant arrangements from the sum. In order to define what we
meanby redundant, decomposeα andβ as blocks of pairs as

((
α1 α2

β1 β2

)
,

(
α3 α4

β3 β4

)
, . . . ,

(
αk−1 αk
βk−1 βk

))
.

Two arrangements are said to be redundant if we can switch from one to the other by inverting any
pair α2e−1, α2e (or β2e−1, β2e) or by permuting blocks of pairs. For example, in the case M = 5, in or-
der to compute the term H4, only one of the pairs of arrangements

(
1 2 3 5
1 2 3 5

)
,
(
1 2 3 5
2 1 3 5

)
and(

3 5 1 2
3 5 1 2

)
will be kept in the sum:

(
1 2 3 5
2 1 3 5

)
is obtained by inverting 1 and 2 in the first β-

pair of terms in
(
1 2 3 5
1 2 3 5

)
, while

(
3 5 1 2
3 5 1 2

)
is obtained by inverting the two blocks of α and

β pairs in
(
1 2 3 5
1 2 3 5

)
. However, the arrangement

(
1 3 2 5
1 2 3 5

)
is not redundant with any of those

arrangements. P
(
β
α

)
is defined as the parity of the permutation from α to β. Furthermore, set:

H0 = 1 .

Weyl finally proves that the volume (2.10) reads:
V = wν−1

M∑
k=0,k even

Jk

∫
D
Hk ds , (2.27)
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where wν is the surface of the unit sphere Sν−1, obtained thanks to (2.11) and, for k ≥ 2,
Jk =

1

ν(ν + 2) . . . (ν + k − 2)

∫ ϕ

0

sinν+k−1 ρ cosM−k ρ dρ , (2.28)
with J0 defined as in (2.98)In the next section, we see how to deal with non-closed manifolds, with borders.

2.2.3 . Dealing with the borders
2.2.3.1 Theorems in the caseM = 2

Weyl’s result gives the volume of the cross-sections of a manifold: as such, it will not exactly give the
volume of a tube defined as in (2.8) around amanifold with boundaries. In [JS89] and [KS89], the result of
Weyl is extended formanifolds of dimensionsM = 2with boundaries. Below is the version given in [JS89]
in the special case where the manifold γ can be expressed as a linear combination of two orthogonal
curves γ1 and γ2, thus reducing the number of non-linear parameters to only one:
Theorem 2.2.3. [JS89] For i ∈ [1, 2], let γi : [θ1, θ2] → Sn−1 be regular curves. Assume γ1(θ)

Tγ2(θ) = 0

for all θ. Let Z(θ) =
[(
γ1(θ)

Tu
)2

+
(
γ2(θ)

Tu
)2]1/2 where u is uniformly distributed on Sn−1. Then for

0 < w < 1, we have:

P

(
max

θ1≤θ≤θ2
Z (θ) > w

)
≤ (1− w2)(n−2)/2 +

Γ
(n
2

)
w (1− w2)(n−3)/2

2π3/2 Γ

(
n− 1

2

) ∫ θ2

θ1

∫ 2π

0

[
∥γ̇1(θ) cosΩ + γ̇2(θ) sinΩ∥

2 −
(
γ̇1(θ)

Tγ2(θ)
)2]1/2

dΩ dθ , (2.29)

where γ̇i(θ) is the derivative of γi(θ) with respect to θ. When there is no overlap (see Section 2.4 for a detailed
study), this inequality becomes equality.

Remark 2.2.3. If we write γ = cosΩγ1(θ) + sinΩγ2(θ), making use of the fact that −γ̇1(θ)
Tγ2(θ) =

γ1(θ)
T γ̇2(θ) and −γ̇1(θ)

Tγ1(θ) = 0 (obtained by differentiating γ1(θ)
Tγ1(θ) = 1 and γ1(θ)

Tγ2(θ) = 0),
we have that

gij =

[
∥γ̇1(θ) cosΩ + γ̇2(θ) sinΩ∥

2
γ̇1(θ)

Tγ2(θ)
γ̇1(θ)

Tγ2(θ) 1

]
so that ds =

√
det gijdΩdθ is the integrand in (2.29), as well as the integrand ∫D ds in (2.20) derived from

Weyl’s formula (2.10) to get the volume of cross-sections.
The result provided in [KS89] is more general and does not rely on this assumption on γ. It makes

use of the Gauss-Bonnet theorem, which links the Gaussian curvature of γ with its Euler characteristic, a
quantity that will be the focus of Chapter 3. We will not need the volume expression developed in [KS89]
as, as we will see, the manifolds γ we will consider for M = 2 meet the hypotheses of theorem 2.2.3.
However, following the authors’ approach, we will use the Gauss-Bonnet theorem later in this Chapter
to prove a result on the PFA-threshold relationship of the NMF for STAP detection under colored noise.
2.2.3.2 An heuristic to treat the caseM = 3

While the articles that treat the borders rigorously mostly investigate the caseM = 2, we propose the
following heuristic to deal with the case M = 3 in the case of an Euclidean manifold. In this case, the
representation of the manifold γ inR3 is that of its parameter space for the parametrizationψ such that
gij = I.
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Figure 2.2.3: Illustration of γ when defined on a reg-ular cuboid of dimensions∆ψ1,∆ψ2,∆ψ3.

Those faces 
are stuck
together

𝜓2

𝜓1

𝜓3

Figure 2.2.4: Illustration of γ when defined on acuboid with two of its faces stuck together.

• If the parameter space is a regular rectangular cuboid of dimensions ∆ψ1,∆ψ2,∆ψ3, as repre-sented schematically in Figure 2.2.3, the heuristic consists of adding up
– the volume of the cross-sections of γ given by (2.24) with |γ| = ∆ψ1∆ψ2∆ψ3 (dotted, in
orange on the figure),

– the volume of the outer cross-sections of the borders ∂γ, which is, under the no overlap
regime, equal to half the volume of the cross-sections of the borders ∂γ. This volume is
given by (2.21) with |∂γ| = ∆ψ1∆ψ2 +∆ψ2∆ψ3 +∆ψ1∆ψ3 (in red on the figure).

– the volume of the cross-sections of the edges of the border ∂γE not enclosed in the bor-
der cross-sections (represented by green arrows on the figure). It can be obtained through
Hotelling’s formula (2.6), using∆ψ1 +∆ψ2 +∆ψ3 as the length of the edges.

– the volume of a single spherical cap (to take into account the 8 corners of the parameter
space, represented by yellow arrows on the figure).

• Sometimes the parameter space will be a rectangular cuboid but with two of its faces stuck to-
gether, as will happen when the manifold is closed along one of its dimensions when testing for
a Doppler shift in [0, 1] for example. This case is represented in Figure 2.2.4 where the previous
cuboid has its faces along dimension ψ1 stuck together, and the heuristic is this time obtained by
adding up:

– the volume of the cross-sections of γ given by (2.24) where this time |γ| = ∆ψ1∆ψ2∆ψ3,
– the volumeof the outer cross-sections of the borders ∂γ, givenby (2.21) with |∂γ| = ∆ψ1∆ψ2+

∆ψ1∆ψ3.
– the volume of the cross-sections of the edges of the border ∂γE not enclosed in the bor-
der cross-sections obtained through Hotelling’s formula (2.6) using ∆ψ1 as the length of theedges.

Note that in this case, there are no corners to take into account.
Now that we have presented all the theoretical tools that we will need, we can finally begin applying

them to the off-grid NMF in the next section.

2.3 . Application to the PFA-threshold relationship of the off-grid NMF
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Figure 2.3.1: T (in violet) embedded on the unit sphere S2 in R3. SCα is drawn in blue. [Hoh02]
We start this section with an easy application of Subsection 2.2.1 in order to find an original alterna-

tive derivation of the PFA-threshold relationship of the NMF. Then we apply the results of Subsection
2.2.3.1 on manifolds with borders in order to find new PFA-threshold relationships of the NMF with one
unknown parameter in Subsection 2.3.2. Finally, the particularization of Weyl’s formula forM = 3, along
with the heuristic detailed in 2.2.3.2, are used in order to find the PFA-threshold relationship with two
unknown parameters in Subsection 2.3.3.
Remark 2.3.1. Most results of this section can more or less be obtained as corollaries of the most general
result given in Subsection 2.3.3.2 by using Weyl’s general formula (2.27). We follow a more didactic approach,
extending the results little by little using more and more tools from the tube theory introduced in Section 2.2.

2.3.1 . An alternative derivation for the PFA-threshold relationship of the on-grid NMF
In this section, we provide a simple alternative derivation to the classical method [Jay02; SF94] for

the on-grid PFA of the NMF (1.25). In this simple case, ξ is fixed and the maximization is only performed
on α.

A false alarm occurs when u ∈ T , where T is a tube drawn around the curve γ(ξ, α) parameterized
by α for fixed ξ :

T =

{
u ∈ S2N−1, max

α∈[0,2π]
γ(ξ, α)Tu > w

}
. (2.30)

The tube T we deal with here is represented in Figure 2.3.1 in R3. Note that T is drawn around a closed
curve: indeed γ(ξ, 0) = γ(ξ, 2π), so that we will not have to add the volume of two semi-spherical caps
at its ends in order to retrieve its volume.

We can apply Theorem 2.2.1 to the tube T (2.30) to find the PFA of the NMF (1.27). The length of the
axial curve is equal to 2π. We prove that T does not overlap in Appendix 2.B.1 so that the surface given
by Hotelling’s formula is thus exact in this case. Applying Theorem 2.2.1 with n = 2N , ϕ = cos−1 w gives:

V = 2π
πN−1

Γ(N)
sin2(N−1)(ϕ)

=
2πN

Γ(N)

(
1− w2

)N−1
. (2.31)

Dividing (2.31) by the surface 2πN

Γ(N)
of S2N−1 leads to the well-known expected result (1.27). This geomet-

rical approach provides an alternative to the traditional one based on statistical tools [SF94].
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2.3.2 . The PFA-threshold relationship of the off-grid NMF with one unknown parameter
In this section, the unknown parameter vector ξ is a scalar ξ representing an unknown Doppler shift,

angle, or delay in radar. Unfortunately, Hotelling’s result is not immediately applicable to the considered
GLRT (2.5): since a maximization on the parameter ξ is introduced, the acceptance region, in this case, is
a new tube T around the two-dimensional manifold γ(ξ, α):

T =

{
u ∈ S2N−1, max

(ξ,α)∈D×[0,2π]
γ(ξ, α)Tu > w

}
.

Note that in this case, T follows a manifold that is often not closed since, writing D = [ξ1, ξ2], γ(ξ1, α) ̸=
γ(ξ2, α) in general. This is the case for a radar Doppler resolution cell Dk (1.32), for example. Unlike
previously, when computing the surface of the tube, a term accounting for its boundaries will appear.

Hotelling’s result does not cover this multi-dimensional manifold case as it gives the surface of a
tube around a curve. However, as wementioned in Subsection 2.3.3, there exist extensions of Hotelling’s
formula for the computation of the volume of tubes around 2D manifolds. Specifically, it turns out that
we can reformulate our problem in order to fulfill the assumptions of Theorem2.2.3withn = 2N . Indeed,
using (2.3) and (2.4), we can check that γ1(ξ) and γ2(ξ) are orthogonal, and that:∣∣∣s (ξ)H u

∣∣∣2 =
∣∣γ1(ξ)Tu∣∣2 + ∣∣γ2(ξ)Tu∣∣2 ,

so that Theorem 2.2.3 gives us the desired PFA (when equality holds in (2.29)). Follows the first original
result of the thesis:

Corollary 2.3.0.1. In the absence of overlap (low PFA regimes), for one unknown parameter using signal
models (1.7) for Doppler (or angle) detection and (1.5) for range detection with a chirp (swapping N withK in
this case), the PFA for the GLRT (1.37) is given by:

PFA = (1− w2)N−1 +
Γ(N)w (1− w2)N− 3

2

π1/2 Γ
(
N − 1

2

) ∫ ξ2

ξ1

∥∥∥γ̇1(ξ)
TP⊥

γ2(ξ)

∥∥∥ dξ , (2.32)
whereP⊥

γ2(ξ)
= I−γ2(ξ)γ2(ξ)

T is the orthogonal projector on γ2(ξ). Under white noise (Γ = σ2 I), this result
simplifies to:

PFA = (1− w2)N−1 +

√
π

3

Γ(N)w (1− w2)N− 3
2

Γ
(
N − 1

2

) √
(N2 − 1) (ξ2 − ξ1) . (2.33)

When D = [0, 1], i.e. when the whole spectral domain is under test for Doppler detection using signal model
(1.7), the first term has to be removed from the equations.

In the colored noise case, the integral in (2.32) can be easily evaluated numerically, using the following
expression of γ̇1(ξ):

γ̇1(ξ) =
(
I− γ1(ξ)γ1(ξ)

T
)
B−1

(
(Bγ2(ξ))⊙

[
x
x

])
,

where B =

[
Re(Γ−1/2) −Im(Γ−1/2)

Im(Γ−1/2) Re(Γ−1/2)

]−1

is designed to unwhiten γ1 and γ2 (and B−1 whitens them),
with x as in (2.78) in the case of Doppler detection using signal model (1.7) or (2.84) in case of range
detection using a chirp waveform with signal model (1.5).
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Proof. The proof is provided in Appendix 2.B.2. It is a straight application of Theorem 2.2.3 to our mani-
folds γ1, γ2.

Remark 2.3.2. Note that the white noise relationship obtained for range detection using a chirp waveform
(signal model (1.5) is the same as the one obtained when using an FMCW (signal model (1.7)) waveform.

Note that the first term (1−w2)N−1 in the expression (2.33) can be seen as the surface of two semi-
spherical caps at the extremities of a tube (to be exact, they must be seen as two semi-"strips" as can
be seen in figure 2.3.1, bordering the surface described by γ, but visualizing the tube around γ as simple
tube such as the one on 2.2.1 essentially allows for the same interpretations and is easier to represent).
The surface of the semi-spherical caps is equal to the PFA of the on-grid NMF expressed in (1.27). For
detection on the whole spectral domain (i.e. D = [0, 1]), this term disappears since themanifold is closed
in this case and the semi-spherical caps thus do not appear. The second term shows the influence of the
manifold induced by the off-grid nature of the problem. Here, the term

∫ ξ2

ξ1

∥∥∥γ̇1(ξ)
TP⊥

γ2(ξ)

∥∥∥ dξ, which
reduces to π

√
N2 − 1

3
(ξ2 − ξ1) under white noise, plays a role akin to the manifold length, and the rest

of the rightmost term is the surface of a cross-section divided by the area of S2N−1.
The relationships given in Corollary 2.3.0.1 are upper bounds in the presence of overlap. In this case,

they still hold interest in the radar context where controlling the PFA is fundamental. Besides, simula-
tions of Subsection 2.5.1 show that even in the presence of overlap, the relationship quickly becomes a
very precise approximation of the true PFA-threshold relationship. Section 2.4 investigates the condi-
tions under which no overlap happens.

2.3.3 . The PFA-threshold relationship of the NMF with two unknown parameter
When dealing with two unknown parameters, for example for range-Doppler or STAP detection, ξ

becomes a vector of two parameters, and as such the manifold γ(ξ, α) is defined onM = 3 parameters.
The theorems presented in Subsection 2.2.3.1 to deal with manifolds with borders and that we used to
find the PFA-threshold relationships in the cases of one unknown parameter are not enough to deal
with those contexts, and we have to start back from Weyl’s formula forM = 3 (2.23) in order to find the
PFA-threshold relationships of the off-grid GLRT. First, we tackle the case of white noise, in which we
will see that the considered manifolds are Euclidean. Then, we will consider the more involved case of
detection under colored noise.

2.3.3.1 Under white noise

In this section, we consider the noise to be white, that is to say, Γ = I. Our first step is to show that the
manifolds described by γ for STAP detection (signal model (1.10)) is Euclidean under this noise context,
which motivates the following lemma.
Lemma 2.3.1. The manifold described by γ (2.3) defined by s with signal model (1.10) is Euclidean under white
noise.

Proof. To prove the lemma, we have to exhibit a new parametrization ψ = (α, ζ) such that the first
fundamental form of the manifold (gij) =

(
∂γ

∂ψi

T ∂γ

∂ψj

)
is equal to the identity, for the STAP signal

model (1.10).
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Noting ψ′ = (α, θ, µ) the original parametrization, the first fundamental form
(
∂γ

∂ψ′
i

T ∂γ

∂ψ′
j

)
is not

identity. Actually, it is not even diagonal since the derivatives ∂γ
∂α

, ∂γ
∂θ

and ∂γ
∂µ

are not, in general, orthog-
onal. We redefine the steering vectors d(θ) and d(µ) (signal model Doppler or Angle (1.7)) that appear in
s (1.10). We take the following vector d′(v) and d′(u) instead of d(θ) and d(µ) in the derivations, changing
the origin of phases and rescaling the Doppler and angle parameters, the new set of variables under
consideration being ψ = (α, v, u):

(d′(v))k =
1√
N

exp

(
2iπ

(
k − N − 1

2

)
l−1
θ v

)
, (2.34)

(d′(u))k =
1√
P

exp

(
2iπ

(
k − P − 1

2

)
l−1
µ u

)
, (2.35)

for 0 ≤ n ≤ N − 1, 0 ≤ k ≤ P − 1 and where
lθ = π

√
N2 − 1

3
, v = lθ θ ,

lµ = π

√
P 2 − 1

3
, u = lµ µ .

Since d′∗ = JNd′ with JN defined in Appendix 2.C, d′ is centrosymetric. Thus the vector d′ is said to
be the centrosymmetric version of s. As the passage from s to d′ just introduces a constant phase term
e−2iπN−1

2 θ that can be put in the unknown complex amplitude α, it is equivalent to taking one or the
other. The passage from d′(θ) to d′(v) or d′(µ) to d′(u) is then just a reparametrization.
Remark 2.3.3. We will often make reference to this centrosymmetric parametrization in the rest of this thesis.
The vector of unknown parameters (v, u) will be noted ζ, and takes values in

D′ =

[
π
√

N2−1
3 θ1, π

√
N2−1

3 θ2

]
×
[
π
√

P 2−1
3 µ1, π

√
P 2−1

3 µ2

]
.

After some tedious computations, relegated in the appendix 2.B.3, we show that
∂γ

∂α

T ∂γ

∂α
=
∂γ

∂v

T ∂γ

∂v
=
∂γ

∂u

T ∂γ

∂u
= 1 ,

∂γ

∂u

T ∂γ

∂v
=
∂γ

∂u

T ∂γ

∂α
=
∂γ

∂v

T ∂γ

∂α
= 0.

This proves that the first fundamental form
(
∂γT

∂ψi

∂γ

∂ψj

)
1≤i,j≤3

is equal to the identity matrix, and thus
thatγ is Euclidean (the centrosymmetrymakes it so that the first fundamental form

(
∂γT

∂ψi

∂γ

∂ψj

)
1≤i,j≤3

is
diagonal, while the rescaling of the variables normalizes the diagonal terms so that the first fundamental
form is equal to identity).

The previous lemma enables us to express the PFA easily by using Weyl’s formula (2.27) when the
manifold γ is closed. γ is closed when performing detection on the whole Doppler and angle domains
i.e. when D = [0, 1]2.
Corollary 2.3.0.2. Using signal model (1.10) for STAP detection on the whole domain, i.e. D = [0, 1]2, when w
is chosen big enough so that no overlap phenomena happens, the PFA of the off-grid GLRT under white noise
is given by:

PFA =
π

6

(
1− w2

)NP−2 (
(2NP − 1)w2 − 1

) √
N2 − 1

√
P 2 − 1 . (2.36)
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A detailed study of the non-overlap conditions is provided in Section 2.4.

Proof. This is a straight application of Weyl’s formula (2.24) for an Euclideanmanifold. The detailed proof
is given in Appendix 2.B.4.

This is a nice result, however, we would like to extend it to the STAP cases where the search domain
is not the whole domain, for example when D is restricted to a single cell Dk, in order to detect multiple
targets in a scene. However in this case, the manifold γ is not closed anymore in this case, and Weyl’s
formula will only give the exact volume of T for closed manifolds. Extending Weyl results rigorously
to non-closed manifolds is not a trivial task: in fact, this appears to be an open problem in arbitrary
dimension [Adl00].

We propose here to treat the case of detection over an arbitrary domain through the heuristic de-
scribed in Subsection 2.2.3.2, which consists of adding corrections terms to the formula (2.36) which takes
into account the boundaries. Using the centrosymmetric parametrization ψ = (α, v, u), we are here in
the case of the rectangular cuboid of dimensions ∆α,∆v,∆u with two of its faces stuck together along
theα axis. Applying themethod detailed here yields a heuristic for the volume of the tube T , and dividing
it by the surface of S2N−1 gives the following heuristic for the PFA-threshold relationship:
Heuristic 2.3.1. For STAP detection, when testing on a search domain D = [θ1, θ2] × [µ1, µ2], the PFA-
threshold relationship of the off-grid GLRT is given by:

PFA =
π

6
(1− w2)NP−2

(
(2NP − 1)w2 − 1

) √
N2 − 1

√
P 2 − 1(θ2 − θ1) (µ2 − µ1)

+
(
(θ2 − θ1)

√
N2 − 1 + (µ2 − µ1)

√
P 2 − 1

)√π

3

Γ(NP )w (1− w2)NP− 3
2

Γ
(
NP − 1

2

)
+ (1− w2)NP−1 . (2.37)

Remark 2.3.4. We saw in Subsection 2.3.2 that the volume of tubes around a manifold γ with one unknown
parameter with borders could be expressed as a constant term, corresponding to the volume of a "strip" on
the sphere, represented in (2.3.1) plus another term, equal to the volume of the cross-section of γ. While an
accurate representation of the tube around γ is only possible when depicting γ as a surface on the sphere,
closed along one of its dimensions, looking at Figure 2.2.1 is a good way to make sense of what happens.
Similarly, the heuristic that we use here can be visualized by representing γ as a surface on the sphere in
Figure 2.3.2, losing a dimension in the process, in a way that is perhaps easier to understand than Figure 2.2.4

• the cross-sections of γ are represented in orange,

• the outer cross-sections around the borders ∂γ are represented in red,

• the volume represented in green corresponds to the green volume in Figure 2.2.1, i.e. the volume of the
strip in the phase α, and the volume around the edges of the borders ∂γE in the heuristic of Subsection
2.2.3.2.

Numerical simulations in Section 2.5 suggest that this seems to be the right way to address the prob-
lem of testing on a single cell for STAP detection.

Unfortunately, the distance-Doppler signal model (1.8) using a chirp does not seem to be Euclidean:
this is due to the fact that its derivates ∂s

∂r
depend on r. As a consequence, it cannot be treated as above.

However, note that the STAP "result" (2.37) can be extended for radar FMCW range-Doppler detection
since it shares the same signal model. We will see in simulations that the PFA-threshold relationship
obtained this way fits very well with the empirical relationship obtained when using a chirp and may be
used in order to set the PFA in this case. We suspect that as in the case of range detection using a chirp
waveform, the PFA-threshold relationship for range-Doppler detection using a chirp waveform is the
same as when using a FMCW waveform.
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Manifold 𝜸

Half volume of cross-
sections of 𝜕𝜸

Volume of spherical 
cap (on-grid 𝑃𝐹𝐴)

Volume of the 
cross sections of 𝜸

Figure 2.3.2: Representation of the heuristic method for the volume of tubes around amanifold with twounknown parameters, represented on S2 (bear in mind that this representation serves as a conceptualaid for the reader, while the actual manifold is three-dimensional).

2.3.3.2 Under colored noise

A white Gaussian noise model is sometimes unrealistic, especially for STAP detection: STAP detection
is precisely made in order to mitigate clutter which is not white Gaussian. It would thus be useful to
extend the previous results to colored noise distributions. Under colored noise, the consideredmanifold
associated with s is not Euclidean anymore: see that in the proof of Lemma 2.3.1, the step from the set of
equations (2.90),(2.91) to (2.94),(2.93),(2.95) is not possible whenΓ ̸= I since the norm of each component
of s is not constant anymore. This makes the computations less tractable. Indeed, in the general case,
Rκλαβ is not zero everywhere anymore. The terms R12

12, R23
23 and R13

13 have to be computed from (2.15),
(2.17) and (2.18) for each ξ in the search domain in order to apply Weyl’s formula (2.23) as is. While this
is possible once the first fundamental form gij has been obtained, this can be highly unpractical to use:an analytical expression seems hard to reach. In the following, we show how we can make use of the
Gauss-Bonnet Theorem 2.B.1 to simplify the expression greatly when testing on the whole domain.

Our first step is to find a useful expression for the first fundamental form (gij). In order to do that,we will have to consider some additional assumptions on the covariance matrixR (recall thatR = σ2I):
we will no longer consider any SPD matrix. Instead, let us make the hypothesis thatR can be written as:

R =

∫
ζ

p(ζ) su(ζ)su(ζ)H dζ + σ2 I , (2.38)
where ζ = (v, u) is the centrosymmetric parametrization for (θ, µ) in the proof of Lemma (2.3.1), p is a
real function onD such that p(ζ1, ζ2) represents the power density backscattered from the clutter in the
interval [ζ1, ζ1 + dζ1] × [ζ2, ζ2 + dζ2], and su is the unwhitened version of s. The term σ2I models the
thermal receiver noise. While we lose some generality, for radar applications this hypothesis is realistic.

Let us establish the following result on the first fundamental form of the manifold γ:
Proposition 2.3.1. The first fundamental form gij , 1 ≤ i, j ≤ 3 of γ when using signal model (1.10) with a
covariance matrix of the form (2.38) can be written as:

(gij) =

1 0

0

(
∂sH

∂ζi

∂s

∂ζj

) . (2.39)
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Proof. The proof is given in the Appendix 2.B.5. The matrix ∂sH
∂ζi

∂s

∂ζj
is shown to be real, so that gij is

well defined.
This proposition shows that, in themetric, the phase is decoupledwith the remaining unknown target

parameters ζ. This allows us to derive the following result, giving the probability of false alarm under an
easy-to-evaluate integral form in the following new corollary:
Corollary 2.3.0.3. Using signal model (1.10) for STAP detection on the whole domain, i.e. D = [0, 1]2, when w
is chosen big enough so that no overlap phenomena happens, the PFA of the off-grid GLRT with a covariance
matrix of the form (2.38) is given by (using the parametrization ψ = (α, ζ) from the proof of Lemma 2.3.1):

PFA =
π

2
sin2NP−4

(
(2NP − 1)w2 − 1

) ∫
ζ∈D′

√
det aij dζ1dζ2 , (2.40)

where

aij =
∂s(ζ)H

∂ζi

∂s(ζ)

∂ζj
.

The integral has to be evaluated numerically, with the derivates of s that are given by:

∂s(ζ)

∂v
= (I− s(ζ)s(ζ)H)Γ−1/2

((
Γ1/2s(ζ)

)
⊙
(
2iπ l−1

θ xN ⊗ 1P
))

,

∂s(ζ)

∂u
= (I− s(ζ)s(ζ)H)Γ−1/2

((
Γ1/2s(ζ)

)
⊙
(
1N ⊗ 2iπ l−1

µ xP
))

.

where xN ,xP are defined in (2.89) and 1N , 1P are the column vectors of size N and P composed of ones.

Proof. The proof is given in Appendix 2.B.6 and makes use of the shape of the metric found in the pre-
vious corollary as well as the Gauss-Bonnet theorem.

Note that this result covers the white noise result over the whole domain given in Subsection 2.3.3.1
(in this case, the determinant under the integral is equal to one). The integral term corresponds to the
surface described by γ.

In the case where the manifold γ is not closed, (for a search domain D ≠ [0, 1]2), even though it
makes less sense than in the Euclidean case, we still decide to apply the heuristic described in section
2.2.3.2, as we will see that it still gives very good results numerically in section 2.5.1. Thus, we express
the PFA as the sum of (2.40), with the integral limited to D, plus some terms accounting for the outer
cross-sections around the border surface that can be computed using (2.32) injecting the STAP values of
γ1 and γ2, plus the on-grid term (1−w2)NP−1 that accounts for the integral of the cross-sections around
the curve borders of the border surfaces. This leads to the following heuristic:
Heuristic 2.3.2. Using STAP signalmodel (1.10), thePFA for the NMF under colored noise with a search domain
D = [θ1, θ2]× [µ1, µ2] ̸= [0, 1]2 is given by (using the parametrization ψ = (α, u, v) from the proof of Lemma
2.3.1):

PFA =
π

2
(1− w2)NP−2

(
(2NP − 1)w2 − 1

) ∫
ζ∈D′

√
det aij dζ

+
1

2

Γ(NP )w (1− w2)NP− 3
2

π1/2Γ
(
NP − 1

2

) (∫ v2

v1

∥∥∥∥∂γ1

∂v
(v, u1)

TP⊥
γ2(v,u1)

∥∥∥∥ dv + ∫ v2

v1

∥∥∥∥∂γ1

∂v
(v, u2)

TP⊥
γ2(v,u2)

∥∥∥∥ dv
+

∫ u2

u1

∥∥∥∥∂γ1

∂u
(v1, u)

TP⊥
γ2(v1,u)

∥∥∥∥ du+

∫ u2

u1

∥∥∥∥∂γ1

∂u
(v2, u)

TP⊥
γ2(v2,u)

∥∥∥∥ du)+
(
1− w2

)NP−1
. (2.41)
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The derivatives of γ1 to be used in the integrals are:
∂γ1(ψ)

∂v
=
(
I− γ1(ψ)γ1(ψ)

T
)
B−1

(
(Bγ2(ψ))⊙

(
2π l−1

θ xN ⊗ 1P
2π l−1

θ xN ⊗ 1P

))
,

∂γ1(ψ)

∂u
=
(
I− γ1(ψ)γ1(ψ)

T
)
B−1

(
(Bγ2(ψ))⊙

(
1N ⊗ 2π l−1

θ xP
1N ⊗ 2π l−1

θ xP

))
.

Again, wewill see in Subsection 2.5.1 that this heuristic seems to beworking very well in practice, and that
the relationship obtained for FMCW-distance detection is a good approximate of the distance-Doppler
relationship using a chirp, which enables one to set the thresholds when using signal model (1.8).

2.4 . Derivation of the domain of validity of the previous PFA-threshold relationships

The goal of this section is to determine for which thresholds the PFA-threshold relationships derivedin the previous section holds equality. This requires us to investigate the conditions under which overlap
occurs. Wewill start by exhibiting general results on arbitraryM -dimensional manifolds from [JJ90; KT01]
as well as some original results on shift-invariant manifolds before delving into our specific problem
where we consider the manifold γ defined in (2.3) withM = 2 orM = 3.

Let us consider anM -dimensionalmanifoldM = {γ(ξ), ξ = (ξ1, . . . , ξM ) ∈ D} defined on the search
domain D over Sn−1 and let us consider the tube T over Sn−1 around M consisting of the points u

satisfying uTγ(ξ) > w for some ξ inD. M can be seen, loosely speaking, as the axis of T . Recall that the
cross-section Cw(γ(ξ)) defined in (2.9) is the set of points of T orthogonal to the derivatives of γ in ξ at
a distance less than w. Formally:

Cw(γ(ξ)) =
{
u ∈ T ,uT ∂γ

∂ξT
= 0,uTγ(ξ) > w

}
. (2.42)

Excluding the edge effects defined later in this section, the tube defined as the union of cross-sections
overlaps if and only if a point u of T belongs to more than one cross-section: in this case, Hotelling’s
geometrical approach and its extensions lead to an overestimation of the Probability of False Alarm.
Otherwise, the equality holds true in (2.29). There are two types of overlap defined in [Hot39]: local
overlap, which derives from local differential properties of the manifold generating the tube, and non-
local overlap, which depends on the overall shape of the tube. Global overlap encompasses both types
of overlap. It is linked to a limit overlap threshold wlim and there is no overlap if

w ≥ wlim . (2.43)
The limit threshold can be equivalently seen as an angle ϕlim such that

cosϕlim = wlim ,
and there is no overlap if

ϕ = cos−1 w ≤ ϕlim .
In the sequel, the conditions are expressed in terms of ϕlim.In addition to those phenomena, edge effects also have to be considered. They can appear when
dealing with non-closed manifold and cause the same problems as overlap i.e. an overestimation of the
PFA. In the 1D case illustrated in Figure 2.2.1, edge effects would occur when the green semi-spherical
caps at the end overlap each other. A manifold is said to be closed along dimension k if its k-th variable
ξk belongs to an interval [ξk1 , ξk2 ] such that γ(ξ1, . . . , ξk1 , . . . , ξM ) = γ(ξ1, . . . , ξk2 , . . . , ξM ) for all ξi, i ̸= k.
A manifold is said to be closed if it is closed along all its dimensions.

Figure 2.4.1 summarizes all the phenomena that can arise.
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Figure 2.4.1: Illustration of all the phenomena lead-ing to an overestimation of the PFA when using the
PFA-threshold relationships of the previous chap-ter.

Figure 2.4.2: Illustration of local overlap in 1D inthe Euclidean case. Here, the radius of the tube(in purple) is greater than the radius of curvature.This causes overlap: see, for example, that thepoint u belongs to both cross-sections Cw(γ(ξ)) and
Cw(γ(ξ′)).

2.4.1 . The general case
In this section, we give the conditions under which no overlap happens under general conditions for

anyM -dimensional manifold γ(ξ1, . . . , ξM ) embedded in Sn−1.
In [JJ90], a criterion for characterizing the overlap of a tube embedded on a sphere around a curve

is introduced that is a direct consequence of the fact that the union of the cross-section needs to be
disjoint. It turns out that the arguments used by the authors can be generalized in order to find overlap
criteria for tubes around anyM -dimensional manifolds, as suggested in [KT01].

Theorem 2.4.1. [JJ90; KT01] Let γ(ξ) be a C2 M -dimensional manifold parameterized by ξ = (ξ1, . . . , ξM ) ∈
D. Let ϕlim be the limit angle for which no overlap occurs, related to wlim (2.43) by cos(ϕlim) = wlim. LetQξ′ be

the projection onto the subspace spanned by γ(ξ′) and its derivatives ∂γ
∂ξ′

. ϕlim is given by:

cot2 ϕlim = sup
ξ,ξ′∈D2

1− γ(ξ)TQξ′γ(ξ)(
1− γ(ξ)Tγ(ξ′)

)2
≜ sup

ξ,ξ′∈D2

h(ξ, ξ′) . (2.44)

Remark 2.4.1. To clarify, this theorem gives the limit geodesic radius (angle) of the tube T around γ so that
all points in T belong to a single cross-section.

The criterion (2.44) encompasses both local and non-local overlap:
ϕlim = min{ϕlocal, ϕnon-local} , (2.45)

where ϕlocal and ϕnon-local are the limit angles such that local and non-local overlaps occur. Local overlap
occurs when ξ′ tends to ξ, and non-local overlap arises when the sup of h in (2.44) is attained for ξ ̸= ξ′.
Remark 2.4.2. Note that (2.44) does not take into account edge effects.

It can be simplified in the case of a shift-invariant manifold, a notion that we define as an analogy to
the shift-invariant curves introduced in [JJ90]:
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Definition 2.4.1. A real manifold γ(ξ) is said to be shift-invariant when, for any ξ, ξ′, the scalar product
γ(ξ)Tγ(ξ′) depends only on ξ − ξ′:

γ(ξ)Tγ(ξ′) = f(ξ − ξ′) , (2.46)
where f is an even function.

Remark 2.4.3. Note that shift-invariant manifolds are a subset of Euclidean manifolds: indeed, see that the
first fundamental form coefficients of the manifold are constants:

gij =
∂γ(ξ)T

∂ξi

∂γ(ξ)

∂ξj
,

= − ∂2f

∂ξi∂ξj

∣∣∣∣
0

.

where the second equality is obtained by derivating (2.46) w.r.t. ξi and ξ′j , then evaluating in ξ = ξ′. gij is thus
constant: it is then easy to reparametrize to have a first fundamental form equal to identity.

Then, similarly to the case of a single parameter, we have the following property:

Proposition 2.4.1. For a shift-invariant manifold γ(ξ), h as defined in (2.44) is a function of ξ−ξ′: h(ξ, ξ′) =
g(ξ − ξ′). Consequently,

cot2 ϕlim = sup
x∈E

g(x) , (2.47)
where E is the image of D ×D by the function (ξ, ξ′) → ξ − ξ′.

Proof. The proof is given in Appendix 2.B.7.
The implications of this result are detailed in the following sections.

2.4.1.1 On local overlap

In this section, we discuss the occurrence of local overlap around aM -dimensional manifold. The results
of this section are particularized to our complex signal models (1.5), (1.7), (1.8) and (1.10) in Subsection
2.4.2.1.

Local overlap is linked to the curvature of the manifold. To illustrate this, consider the case of a tube
around a curve in Euclidean space drawn in Figure 2.4.2: there is local overlap whenever the tube radius
is greater than the radius of curvature of the curve.

In [KT01], a local overlap criterion is developed extending Hotelling’s result to higher dimensions. We
recall that it corresponds to the case where ξ′ tends to ξ.

We define the local overlap angle ϕlocal in ξ similarly in the multi-dimensional case as:
Corollary 2.4.1.1. [KT01] In the case of a tube around anM -dimensionalmanifoldγ, using the same notations
as before with β representing the directions of convergence from ξ′ to ξ, the limit local overlap angle is given
by:

cot2 ϕlocal = sup
ξ∈D

sup
β∈SM−1

lim
ϵ→0

h(ξ, ξ + ϵβ)

= sup
ξ∈D

sup
β∈SM−1

∥∥∥∥∥∥(I−Qξ)
∑
i,j

βiβj
∂2γ

∂ξi∂ξj

∥∥∥∥∥∥
2

∑
i,j

βiβj
∂γT

∂ξi

∂γ

∂ξj

2 . (2.48)
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It coincides with the principal curvature of γ at ξ having the largest absolute value.

Proof. The proof is given in [KT01].
Formula (2.48) can be simplified in the case of an Euclidean manifold:

Corollary 2.4.1.2. Let γ(ξ) be a M -dimensional shift-invariant manifold, with ψ being a parameterization
such that gij = I. Then (2.48) reduces to:

cotϕ2local = sup
β∈SM−1

∥∥∥∥∥∥
∑
i,j

βiβj

(
∂2γ

∂ψi∂ψj

)∥∥∥∥∥∥
2

− 1 . (2.49)

Proof. The proof is given in the Appendix 2.B.8.
2.4.1.2 On non-local overlap

Non-local overlap arises when the tube draws back into itself, as shown in red in Figure 2.4.1 for a tube
spanned by a curve. In [JJ90], it is shown in the caseM = 1 that the limit angle around a closed manifold
γ(ξ) linked to this type of overlap can be characterized entirely by looking at the pairs of points (ξ, ξ′)
that minimize locally the distance ∥∥γ(ξ)− γ(ξ′)∥∥, with ξ ̸= ξ′. In such case, (2.44) reduces to an intuitive
geodesic distance criteria when ξ ̸= ξ′. In the general case,M is arbitrary, and the following holds:
Proposition 2.4.2. Consider a tube around the M -dimensional manifold γ lying on the sphere. The set of
pairs

(
ξ, ξ′

)
that characterizes non-local overlap is:

Ξ =

{(
ξ, ξ′

)
, ξ ̸= ξ′,

(
γ(ξ)− γ(ξ′)

)T ∂γ

∂ξk
= 0 and

(
γ(ξ)− γ(ξ′)

)T ∂γ

∂ξ′k
= 0, ∀k ∈ [1,M ]

}
. (2.50)

Then, if the manifold is closed:

ϕnon-local = min
(ξ,ξ′)∈Ξ

1

2
cos−1

(
γ(ξ)Tγ(ξ′)

)
. (2.51)

For a non-closed manifold, a term accounting for the boundaries must be taken into account:

ϕnon-local = min

{
min

(ξ,ξ′)∈Ξ

1

2
cos−1

(
γ(ξ)Tγ(ξ′)

)
, E

}
, (2.52)

where
E = inf

(ξ,ξ′)∈B×D
cot−1

√
h (ξ, ξ′) . (2.53)

Remark 2.4.4. In our case where the vectors γ(ξ) and γ(ξ′) lie on SM−1, the geometrical criteria(
γ(ξ)− γ(ξ′)

)T ∂γ(ξ)
∂ξk

= 0 and
(
γ(ξ)− γ(ξ′)

)T ∂γ(ξ′)
∂ξk

= 0 simply read γ(ξ′)T ∂γ(ξ)
∂ξk

= 0

and γ(ξ)T ∂γ(ξ
′)

∂ξk
= 0 since γ(ξ)T ∂γ(ξ)

∂ξ
= 0 and γ(ξ′)T ∂γ(ξ

′)

∂ξ
= 0.

The meaning of this criteria is illustrated in Figure 2.4.3 on a curve embedded in Euclidean space. A
pair of points is in Ξ if the tangent planes of γ at ξ, ξ′ are orthogonal to the vectors going from γ(ξ) to
γ(ξ′). See that in the 1D case of the figure, the pair of points (ξ1, ξ2) belongs toΞ since the tangents to the
curve at ξ1, ξ2 are parallel. Here, it is intuitive that a condition for non-overlap is that the cross-sectionsat ξ1 and ξ2 do not intersect.
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𝒯

𝒞𝑤(𝜸 𝜉2 )
𝒞𝑤(𝜸 𝜉1 ) 𝜸(𝜉2)

𝜸(𝜉1)

𝜸
Zone of non-
local overlap

Figure 2.4.3: Illustration of the non-local overlap criteria (2.51) for a curve γ embedded in Euclidean space.The yellow arrows represent the derivatives of γ.

Proof. In Appendix 2.B.9, we adapt the proof of of [JJ90, Proposition 4.2] for an M-dimensional manifold.

In the non-closed case, the limit angle ϕnon-local also encompasses instances of local overlap when ξ′
tends to ξ ∈ B. Plugging it in (2.45) still yields the right exact limit angle ϕlim.As noted in [JJ90], this formulation is not necessarily simpler to use than (2.44) since it can be as
involved to find the set of pairs Ξ as to compute (2.44). However, in Subsection 2.4.2.2, we show that in
our specific case, it enables us to reduce the computational complexity of the search.
2.4.1.3 On edge effects

The formula (2.44) does not take into account edge effects that can arise when dealing with non-closed
manifolds: indeed, in [JJ90], (2.44) is derived (for M = 1) by checking what is the minimal tube radius
so that a point in cross-sections Cw(γ(ξ)) does not belong to spherical caps CSξ′ . This leaves out the
overlapping of the end semi-spherical caps. Edge effects appear when a point u is such that there exist
two distinct points ξ1, ξ2 in B such that uTγ(ξ1) > w and uTγ(ξ2) > w, and u does not belong to any
cross-section. It is illustrated in Figure 2.4.1 in the caseM = 1. One has to check that the limit angle ϕlimis large enough so that edge effects do not appear.

2.4.2 . Application to the complex radar signal models
We apply here the general results of the previous section to our case of interest where γ is given by

(2.3) using signal model (1.5), (1.7), (1.8) or (1.10). This first result gives the limit global overlap threshold
for our application:
Corollary 2.4.1.3. With γ defined as in (2.3), the limit angle for no global overlap is:

cot2 ϕlim = sup
ξ, α ∈ D × [0, 2π]
ξ′, α′ ∈ D × [0, 2π]

1− γ(ξ, α)TQξ′,α′γ(ξ, α)(
1− γ(ξ, α)Tγ(ξ′, α′)

)2 , (2.54)

where
Qξ,α = Mξ,α

(
MT

ξ,αMξ,α

)−1
MT

ξ,α , (2.55)
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withMξ,α =

[
γ(ξ, α),

∂γ(ξ, α)

∂α
,
∂γ(ξ, α)

∂ξ

]
forM = 2 andMξ,α =

[
γ(ξ, α),

∂γ(ξ, α)

∂α
,
∂γ(ξ, α)

∂ξ1
,
∂γ(ξ, α)

∂ξ2

]
forM = 3.

Proof. We simply inject (2.3) in (2.44).
The derivatives of γ to be injected in this expression are given in Appendix 2.D.1.
Under white noise, for Doppler detection over one cell Dk, one can quickly check numerically that

the corresponding limit PFA is equal to (a more thorough test will be run in Subsection 2.5.2):
PFAlim ≈ 10−2.52 , (2.56)

Fortunately, this PFA is well above the common PFA encountered in radar applications.
The search domain in (2.54) is 2M -dimensional and so the criterion can be heavy to evaluate. We can

simplify the search of the global limit angle by first finding the local and non-local overlap angle ϕlocal and
ϕnon-local through (2.48) and (2.51) then combining them using (2.45). In the following sections, we then
set out to find the limit angles ϕlocal and ϕnon-local through the aforementioned equations.
2.4.2.1 On local overlap

The following corollary gives ϕlocal in our case:
Corollary 2.4.1.4. For our manifold γ defined in (2.3), definingQ⊥

ξ,α = I−Qξ,α we have,

• whenM = 2 for one unknown parameter ξ (signal model (1.5) or (1.7)):
cot2 ϕlocal = sup

ξ,α∈D×[0,2π]

sup
φ∈[0,2π]

J2(ξ, α, φ) , (2.57)
where

J2(ξ, α, φ) =

∥∥∥∥Q⊥
ξ,α

(
cos2 φ

∂2γ

∂ξ2
+ sin 2φ

∂2γ

∂ξ∂α
+ sin2 φ

∂2γ

∂α2

)∥∥∥∥
cos2 φ

∥∥∥∥∂γ∂ξ
∥∥∥∥2 sin 2φ∂γT∂ξ ∂γ

∂α
+ sin2 φ

∥∥∥∥∂γ∂α
∥∥∥∥2

,

• whenM = 3 for two unknown parameters ξ = (ξ1, ξ2) (signal model (1.10), (1.8)):
cot2 ϕlocal = sup

ξ,α∈D×[0,2π]

sup
β∈S2

J3(ξ, α,β) , (2.58)
where

J3(ξ, α,β) =

∥∥∥Q⊥
ξ,α

(
β2
1
∂2γ
∂α2 + β2

2
∂2γ
∂ξ21

+ β2
3
∂2γ
∂ξ22

+ 2β1β2
∂2γ
∂αξ1

+ 2β2β3
∂2γ
∂ξ1ξ2

+ 2β1β3
∂2γ
∂αξ2

)∥∥∥
β2
1

∥∥∥∂γ∂α∥∥∥2+ β2
2

∥∥∥ ∂γ∂ξ1 ∥∥∥2 + β2
3

∥∥∥ ∂γ∂ξ2 ∥∥∥2 + 2β1β2
∂γT

∂α
∂γ
∂ξ1

+ 2β2β3
∂γT

∂ξ1

∂γ
∂ξ2

+ 2β1β3
∂γT

∂α
∂γ
∂ξ2

.

This expression is easily evaluated numerically by setting β1 = cosφ1 cosφ2, β2 = sinφ1 cosφ2, β3 =

sinφ2 and maximizing for φ1, φ2 ∈ [0, 2π]2.

Proof. We simply inject (2.3) in (2.48), withM = 2 andM = 3.
In order to use this expression, one should inject the expressions for the second derivatives of γ that

are given in Appendix 2.D.2.
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It is then possible to find the analytical limit threshold for local overlap under white noise for Doppler
and STAP detection (signal models (1.7) and (1.10)) by observing that in those cases, themanifold γ is shift-
invariant. Indeed, with s following the signal model (1.7) (ξ = θ), remark that:

s(θ)Hs(θ′) =
1√
N

N−1∑
k=0

e2iπ k(θ
′−θ)

= fN (θ − θ′)

= Re (fN (θ − θ′)) + i Im (fN (θ − θ′)) . (2.59)
where fN (θ − θ′) = eiπ(N−1)(θ′−θ) sin(πN(θ′ − θ))

sin(π(θ′ − θ))
, and with s following signal model (1.10) (ξ = (θ, µ)),

using the mixed product property of the Kronecker product:
s(θ, µ)Hs(θ′, µ′) =

1√
NM

N−1∑
k=0

e2iπ k(θ
′−θ)

P−1∑
k=0

e2iπ k(µ
′−µ)

= fN (θ − θ′)fP (µ− µ′)

= Re (fN (θ − θ′)fP (µ− µ′)) + i Im (fN (θ − θ′)fP (µ− µ′)) . (2.60)
Then, recall that (for any signal model):

γ(ξ, α)Tγ(ξ′, α′) = cos (α− α′)Re
(
s(ξ)Hs(ξ)

)
+ sin(α− α′)Im

(
s(ξ)Hs(ξ)

)
.

Thus one finds, for Doppler detection:
γ(θ, α)Tγ(θ′, α′) = cos(α− α′)Re (f(θ − θ′)) + sin(α− α′) Im (f(θ − θ′)) ,

and for STAP detection:
γ(θ, µ, α)Tγ(θ′, µ′, α′) = cos(α− α′)Re (fN (θ − θ′)fP (µ− µ′)) + sin(α− α′) Im (fN (θ − θ′)fP (µ− µ′)) .

We then propose the following corollary to compute analytically the limit local overlap threshold under
white noise:
Corollary 2.4.1.5. Under white noise with one unknown parameter (signal model (1.7)), the limit local angle
(2.57) is:

ϕlocal = tan−1

(√
5− CN
2

)
,

and the limit local threshold is
w2
local = cos2

(
tan−1

(√
5− CN
2

))
, (2.61)

where in the case of Doppler detection (signal model (1.7))
CN =

3

5

3N2 − 7

(N − 1)2
. (2.62)

In the case of signal model (1.10) for STAP detection, the limit local overlap angle is found by maximizing the
following expression:

cot2 ϕlocal = max
φ,ψ∈[0,2π]

cos(φ)4 cos(ψ)4CN + sin(φ)4 cos(ψ)4CP + sin(ψ)4 (2.63)
+ 3

(
cos(φ)2 sin(φ)2 cos(ψ))4 + cos(φ)2 cos(ψ)2 sin(ψ)2 + sin(φ)2 cos(ψ)2 sin(ψ)2

)
− 1 (2.64)
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Proof. The proof is given in Appendix 2.B.10.
Note that for Doppler detection, lim

N→∞
CN =

9

5
: for N large enough,

w2local ≈ cos2
(
tan−1

(
2√
5

))
. (2.65)

For N = 10, according to (2.33) this corresponds to the limit:
PFAlocal ≈ 10−2.52 = PFAlim .

Thus local overlap is the limiting factor for this noise setting.
2.4.2.2 On non-local overlap

First, consider the case where the target is searched over the whole spectral domain, i.e. D = [0, 1]

for Doppler detection or D = [0, 1]2 for STAP detection. This corresponds to the operational context
where a single target is searched in the scene. In this case, the manifold γ in (2.3) is closed. In order to
compute the non-local limit angle ϕnon-local, one should evaluate criterion (2.51). For the case of a non-
closed manifold, i.e. D is partitioned when several targets are expected or when one of the unknown
parameters is the range of the target (in which case the manifold cannot be closed), one should instead
evaluate criterion (2.52). The following corollary simplifies the criteria.
Corollary 2.4.1.6. Consider a tube lying on the sphere around the manifold γ defined in (2.3). Define Ξ′ as:

Ξ′ =

{(
ξ, ξ′

)
, ξ ̸= ξ′, ∂

∂ξ

∣∣s(ξ)Hs(ξ′)
∣∣ = 0

}
. (2.66)

Then when D = [0, 1], ϕnon-local in (2.51) reduces to:
ϕnon-local = min

(ξ,ξ′)∈Ξ′

1

2
cos−1

∣∣s(ξ)Hs(ξ′)
∣∣ , (2.67)

and otherwise, ϕnon-local in (2.52) reduces to
ϕnon-local = min

{
min

(ξ,ξ′)∈Ξ′

1

2
cos−1

∣∣s(ξ)Hs(ξ′)
∣∣ , E} , (2.68)

where E has been defined in (2.53).
Proof. The proof is provided in Appendix 2.B.11.

This simplification allows us to simply investigate the critical points with (ξ ̸= ξ′) of ambiguity maps∣∣s(ξ)Hs(ξ′)
∣∣ such as the two-dimensional one drawn in Figure 2.4.4 for Doppler detection (signal model

(1.7)). In the case of a closed manifold the search (2.67) becomes two-dimensional for Doppler detection,
and four-dimensional for STAP detection (signal model (1.10)). When the manifold is non-closed, one has
to also evaluate E in (2.53) in order to compute (2.68). Since the boundaries are of dimensionM − 1, the
evaluation of E requires anM(M − 1) dimensional search. The search (2.68) is thus three-dimensional
in the case of one unknown parameter or five-dimensional in the case of two unknown parameters.

When considering Doppler or STAP detection under white noise (signal models (1.7) or (1.10)), the
search space can be further simplified. Indeed, we have shown in the previous section that in those
cases the products ∣∣s(ξ)Hs(ξ′)

∣∣ depend only on the difference δ = ξ′ − ξ. Finding the local maxima of∣∣s(ξ)Hs(ξ′)
∣∣ simply reduces in finding the local maxima of ∣∣s(ξ)Hs(ξ + δ)

∣∣ for any fixed ξ.
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Figure 2.4.4: Ambiguity map ∣∣s(θ)Hs(θ′)
∣∣ drawn for θ, θ′ ∈ D0 = [−0.5/N, 0.5/N ] for highly correlatednoise (ρ = 0.9, see Eq. (1.17)), with N = 10, with s following signal model (1.7) (ξ = θ). Yellow crossesrepresent local maxima with θ ̸= θ′.

In particular, for Doppler detection, the search space is one-dimensional, and ∣∣s(θ)Hs(θ + δ)
∣∣ repre-

sents the autocorrelation of s, and it is well known that:∣∣s(θ)Hs(θ + δ)
∣∣ = 1

N

∣∣∣∣ sin(πδN)

sin(πδ)

∣∣∣∣ . (2.69)
The autocorrelation of s is represented in Figure 1.9. In this case, in a single cell Dk the set Ξ is empty
since the derivative of ∣∣s(θ)Hs(θ + δ)

∣∣ only vanishes for δ = 0. If D = [0, 1], ϕlocal can be readily obtained
from the first secondary lobe level, i.e. for δ = 3

2N
(see figure 1.9).

2.4.3 . On edge effects
If detection is not performed over the whole parameter domain (D = [θ1, θ2] ⊊ [0, 1] for signal model

(1.7) or D = [θ1, θ2]× [µ1, µ2] ⊊ [0, 1]2 for signal model (1.10), the manifold always having boundaries for
range detection), then B = {ξ1, ξ2} × [0, 2π] and one has to take into account edge effects. In order to
ensure no edge effects arise, two criteria should be checked:

• The borders do not self-overlap.
• The borders do not overlap each other.

2.4.3.1 The case of one unknown parameter (M = 2)

Let us first treat the single parameter case, using signal model (1.7) (ξ = θ). The boundaries of the
manifold γ are tubes around the sub-manifolds {γ(θ1, α), α ∈ [0, 2π]} and {γ(θ2, α), α ∈ [0, 2π]}, and
the result in Subsection 2.B.1 in appendix shows those tubes do not self-overlap. We then simply need
to check that those tubes do not overlap with each other:
Proposition 2.4.3. Consider the tube around the manifold γ defined in (2.3) on a cell D = [θ1, θ2] ⊊ [0, 1].
No edge effects appear if

ϕ < ϕedge ≜
1

2
cos−1

(∣∣s(θ1)Hs(θ2)
∣∣) . (2.70)

In particular, under white noise, if [θ1, θ2] is a cellDk as defined in (1.32), s(θ1)Hs(θ2) = 0, so that ϕedge = π/4,
which corresponds to a limit threshold wedge =

√
2/2.
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Proof. No edge effect occurs if:
ϕ < min

α,α′

1

2
cos−1

(
γ(θ1, α)

Tγ(θ2, α
′)
)
. (2.71)

With (2.112), the minimum (2.71) is reached for α − α′ = ∠s(θ1)Hs(θ2). In this case, γ(θ1, α)Tγ(θ2, α′) =∣∣s(θ1)Hs(θ2)
∣∣, and the rightmost term of (2.71) reduces to ϕedge in (2.70).

Note that this is only a sufficient condition that checks whether the whole tubes at the ends of
the manifold overlap, while we are only interested in knowing whether the outer semi-tubes overlap.
If the length of the manifold for fixed α is very small, then the distance between s(θ1) and s(θ2) isvery small but overlap does not necessarily arise. Formula (2.70) is thus only meaningful if the length∫ θ2

θ1

∥∥∥γ̇1(θ)
TP⊥

γ2(θ)

∥∥∥ dθ (which reduces to π√
3

√
N2 − 1(θ2 − θ1) under white noise) is greater than the

threshold w, which should be the case for any reasonable cell length.
2.4.3.2 The case of two unknown parameters (M = 3)

For STAPdetection using signalmodel (1.10), with twounknownparameters (ξ = (θ, µ)), thePFA-thresholdrelationships have only been properly established in the case where there are no boundaries so that
there are no edge effects as well.

The situation is more involved than in the caseM = 2 if one were to try to find the limit overlap angle
for the heuristic relationships. Using a search domain [θ1, θ2] × [µ1, µ2] where neither of the intervalsis [0, 1] the boundary is a manifold formed of the surfaces {γ(θ1, µ, α) : (µ, α) ∈ [µ1, µ2] × [0, 2π]},
{γ(θ2, µ, α) : (µ, α) ∈ [µ1, µ2]× [0, 2π]}, {γ(θ, µ1, α) : (θ, α) ∈ [θ1, θ2]× [0, 2π]} and {γ(θ, µ2, α) : (θ, α) ∈
[θ1, θ2] × [0, 2π]}, and one should check that the outer half cross-sections around those borders do not
overlap. Unfortunately, the border of the manifold is not necessarily smooth: indeed, discontinuities
appear at the junctions of the surfaces (one can look at the green edges in figure 2.2.4 to understand
what we mean by junctions). As a consequence, the results of this chapter should not be applied to the
boundary in its entirety. Instead, each of the 4 surfaces can be treated independently with the results of
Subsections 2.4.2.1 and 2.4.2.2 and the results at the start of this section forM = 2 to check that the tubes
around them do not self-overlap. However, one should also check that the outer cross-sections of each
surface do not overlap with the outer cross-sections of the other surfaces, and this seems difficult, as
just relying on a distance criterion will not work, since the distance between the surfaces is always equal
to zero (thus, the distance criterion is non-informative). We do not have a clear-cut solution to provide
here.

The situation seems a bit easier if one of the two domains [θ1, θ2] or [µ1, µ2] is equal to [0, 1]: in
this case, the boundary of γ will consist of two disjoint surfaces that can be treated independently with
the results of section 2.4 to compute a limit angle ϕself so that each surface do not self-overlap. Then a
distance criterion will yield a limit angle ϕother that gives a sufficient condition so that both surfaces do
not overlap each other as (assuming here that the domain [θ1, θ2] is equal to [0, 1]):

ϕother = min
µ,µ′,α,α′

1

2
cos−1

(
γ(θ1, µ, α)

Tγ(θ2, µ
′, α′)

)
,

and a sufficient condition so that no edge effect arises is
ϕ < min (ϕother, ϕself) .

Needless to say, this seems to be a lot of work to check whether edge effects happen for a relationship
that is already a heuristic!
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2.5 . Numerical results

The goal of this section is to verify the relationships we derived in Sections 2.3 and 2.4 through nu-
merical simulations, respectively in Subsections 2.5.1 and 2.5.2.

2.5.1 . Goodness of fit of the PFA-threshold relationship
First, we will check the validity of the relationships obtained in Section 2.3. Figure 2.5.1a presents the

PFA-threshold relationship for one unknown parameter given by (2.33) using signal model (1.7) in Sub-
section 2.3.2 and empirically computed thresholds. The empirical relationship is obtained by computing
the empirical cumulative distribution (ecdf) of off-grid GLRT test quantities (1.37) using 108 complex circu-
lar white Gaussian noise samples for a steering vector size of N = 10 (we obtain all simulated empirical
PFA-threshold relationships this way in the rest of this thesis). The continuous research over the domain
D is replaced by a discrete search using 30 tests in the cell, where D = D0. As expected, this simulation
shows that the formula is not valid forPFA close to 1 because of overlap (they even exceed 1: amore pre-
cise approximation can be obtained simply by capping the relationships to 1). However, such high PFAhave no practical interest for standard applications in radar. Furthermore, the theoretical relationship
still seems to fit very well before reaching the limit threshold wlim for which no overlap happens.

We have also compared this formula with empirical thresholds for colored noise (Γ ̸= I). We define
the covariance matrix Γ using the Toeplitz covariance matrix model defined in (1.17) with ρ = 0.9. Results
can be observed in Figure 2.5.1b for the edge cell D0 where average detection performance has been
shown to be lower in Figure 1.13c. Zooming on the leftmost part of the curves, it can be seen that the
overlapping phenomenon for low PFA values tends to increase slightly with ρ: the gap between the
curves widens slightly and spans higher threshold values as noise becomes more correlated. This is not
surprising, as correlated noise bends the manifold, increasing the likeliness of both local and non-local
global overlap. However, the relationship still fits very well before attaining wlim.In Figures 2.5.2, we compare the empirical relationships obtained when using a chirp waveform (sig-
nal model (1.5)) for the cases ρ = 0 (Figure 2.5.2a) and ρ = 0.9 (Figure 2.5.2b). Remark that the relation-
ships still seem to fit pretty well.

The PFA-threshold relationship for two unknown parameters under white noise found in subsec-
tion 2.3.3.1 is compared with the empirical relationship, with the GLRT approximated with 15 × 15 test
points per cell on Figure 2.5.3a in the case of STAP detection over the whole domain (using relationship
(2.36)) and Figure 2.5.5a when not testing on the whole domain, and using the relationship (2.37) ob-
tained through our heuristic. Once again, the theoretical relationships seem to fit very well with what
is observed, even in the case of the relationship obtained through the heuristic. The empirical PFA-threshold relationship of the distance-Doppler signal model using a chirp waveform (signal model (1.8))
is then compared with the FMCW distance-Doppler relationship adapted from the STAP heuristic rela-
tionship (2.37) by replacing P with K and µ2 − µ1 by τ2 − τ1 in Figure 2.5.5b. It can be seen that both
relationships fit pretty well.

The relationship (2.40) found in Subsection 2.3.3.2 for STAP detection over the whole search domain
with colored Gaussian noise is tested in Figure 2.5.3b, still using the covariance matrix model (1.17) with
ρ = 0.9 (the matrix so defined is centrosymmetric so that the theorem applies). In order to obtain a
satisfying approximation of the off-grid GLRT when testing on the whole parameter space under colored
noise, a very large number of samples is neededwhen sampling uniformly: as such, we compute 250×250

(!) samples per test in order to obtain the empirical relationship on this figure. This is explained by the
fact that some of the lobes become very thin when using correlated noise, as was observed in figure
1.14a. Those computational challenges highlight the practical interest of the developed PFA-thresholdrelationships in this thesis, as obtaining the thresholds for very low PFAs with the developed relation-
ships is practically instantaneous. In figure 2.5.3b, both relationships fit very well, which tends to validate
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(a) Uncorrelated noise : ρ = 0.

(b) Highly correlated noise : ρ = 0.9.
Figure 2.5.1: Comparison between the theoretical PFA-threshold given in (2.33) for (a) and (2.32) for (b)and the empirical Monte Carlo PFA-threshold relationships for N = 10 and for several values of ρ (1.17)for Doppler (or angle) detection. The relationship is drawn for the search domainD0. The on-grid relation(1.27) is also drawn for comparison purposes. The limit overlap threshold wlim proposed in (2.43) is inpurple.
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(a) Uncorrelated noise : ρ = 0.
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(b) Highly correlated noise : ρ = 0.9.
Figure 2.5.2: Comparison between the theoretical PFA-threshold given in (2.33) for (a) and (2.32) for (b)and the empirical Monte Carlo PFA-threshold relationships for K = 20 and for several values of ρ (1.17)in range detection context using a chirp waveform (signal model (1.5)). The relationship is drawn for thesearch domain D0, with the on-grid relationship (1.27) in yellow.

corollary 2.3.0.3. It can be observed that the obtained PFA-threshold relationship is close to the white
noise case but not exactly the same.
Remark 2.5.1. It is remarkable that a non-white covariance matrix changes the PFA: we initially thought
that the covariance matrix induced a distortion of the signal manifold locally in each cell but that the overall
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(a) White noise.
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(b) ρ = 0.9.
Figure 2.5.3: Comparison between the theoreticalPFA-threshold for a search on the whole domain givenin (2.36) for the case of white noise (2.5.3a) and (2.40) for a the case of colored noise (2.5.5a), and theempirical Monte Carlo PFA-threshold relationships for STAP detection with N = 8, P = 4. The on-gridglobal relation (1.30) is also drawn.
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surface stayed the same. Since a greater PFA means a greater surface, figure 2.5.4 shows that there is a global
distortion of the manifold surface under the presence of a non-white covariance matrix. This is true for all
tested threshold values so this is not due to overlap.
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(b) w2 = 0.7.
Figure 2.5.4: Evolution of the global PFA (D = [0, 1]2) for STAP detection with N = 8, P = 4, and prede-fined thresholds. The PFA values are computed thanks to (2.40).

Finally, we compared the heuristic formula (2.40) for detection over D ̸= [0, 1]2 under colored noise,
in the case of STAP signal model. We take ρ = 0.9 in (1.17), and run tests in cell D0, using 90× 90 samples
per test. Again, this heuristic seems to be a perfectly appropriate way of estimating the PFA in this case.
In all the above cases, the derived formula are good approximation of the PFA-threshold relationship
well before the limit threshold for no overlap wlim.
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(a) STAP tests in the cell D0.
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(b) Range-Doppler test in the cell D0 .
Figure 2.5.5: Comparison between the heuristic PFA-threshold given in (2.37) for a search in a singlecell and the empirical Monte Carlo PFA-threshold relationships under white noise in the case of STAPdetection with N = 8, P = 4 and range-Doppler detection with K = 20, N = 10 using a chirp (in whichcase the theoretical relationship of the FMCW is used), under white noise. The on-grid relationship (1.27)is also drawn.
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Figure 2.5.6: Comparison of the heuristic PFA-threshold relationship (2.40) with the empirical relation-ship for STAP detection with N = 8, P = 4, over the search domain D0 with ρ = 0.9.
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2.5.2 . Numerical investigation of overlap
Aswe just noted, the simulations seem to fitwell for threshold values below limit overlap angle values

(2.54) so it is not trivial to verify them simply by looking at the figures: overlap seems to stop having a
significant impact on the relationship well before attaining wlim. In particular, we numerically check our
value of wlim under white noise for Doppler detection. The idea is to consider a point located on the
frontier of the tube in the direction where the curvature of γ is the strongest: this represents the worst-
case scenario for local overlap. We show that this point belongs to a single cross-section for a threshold
w very close belowwlim but belongs to several cross-sections as soon asw crosseswlim. For that purpose,consider the following point (for any v, α ∈ D × [0, 2π] since γ is shift invariant):

u = cos(ϕ)γ(v, α) + sin(ϕ)n , (2.72)
with cosϕ = w and n is the unit norm vector such that:

n ∝ γ(v, α) +
∑

i,j∈[1,2]

βiβj

(
∂2γ

∂ψi∂ψj

)
,

where ψ = (α, v) is the centrosymmetric parametrization of γ , and

(β1, β2) = argmax
(β1,β2)∈S1

∥∥∥∥∥∥
∑
i,j

βiβj

(
∂2γ

∂ψi∂ψj

)∥∥∥∥∥∥
2

,

where the right quantity has to bemaximized numerically with β1 = sin(φ), β2 = cos(φ). Note that, using
(2.107), n is orthogonal to γ(v, α):

γ(v, α)Tn ∝ 1 + β2
1γ(v, α)

T ∂
2γ

∂ψ2
1

+ β2
2γ(v, α)

T ∂
2γ

∂ψ2
2

∝ 1− β2
1 − β2

2

= 0 .

u is then indeed a point of the tube since uTγ(v, α) = cosϕ = w and ∥u∥ = 1. Figure 2.5.7 shows
that u belongs to only one cross-section when ϕ < ϕlim and to three cross-sections when ϕ > ϕlim.
To see that, define the complex vector u by u =

[
Re(u)
Im(u)

]
, and see that the derivative of the product∣∣uHs(v + δ)

∣∣2 w.r.t. δ vanishes to 0 above the threshold once in the first case, and three times in the
second, at values δ1, 0, δ2. Using (2.4), γ(v + δi,∠uHs(v + δi))

Tu =
∣∣∣s (v + δi)

H
u
∣∣∣ is a local maxima

w.r.t. α. Thus uT
∂γ

∂v
= uT

∂γ

∂α
= 0 for 3 values ψi =

(
v + δi,∠uHs(v + δi)

) so that u belongs to 3

cross-sections Cw(γ(ψi)) according to the definition (2.9). Even though it is hard to detect visually in
Figure 2.5.1a, overlap occurs right before the limit threshold value wlim found in (2.61): the limit threshold
is very conservative and formula (2.33) can be used as a good approximate of the true PFA threshold
relationship for thresholds well below that.

In Figure 2.5.8, we plot the relationship between ρ and the minimum threshold for which there is
no overlap wlim computed thanks to (2.45) for Doppler detection. The components wlocal and wnon-localare obtained thanks to (2.57) and (2.52). As we suspected, wlim tends to increase with ρ. The arising of
non-local overlap can be explained by looking at Figure 2.4.4: when ρ increases, a side-lobe enters cell
D0, and the distance between the pair of points maximizing the ambiguity function decreases, making
the manifold γ more prone to self-overlap.
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Figure 2.5.7: Illustration of the overlap phe-nomenon: squared projection of u defined in (2.72)on s(θ + δ) for θ + δ ∈ D0 for two values of ϕ:
ϕ = 0.95ϕlim and ϕ = 1.05ϕlim. The values of δ high-lighted in purple correspond to the critical points ofthis quantity.
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Figure 2.5.8: Comparison of the limit global over-lap thresholdswlim (yellow),wlocal (blue) andwnon-local(red) versus ρ obtained with (2.45), (2.57) and (2.52)for Doppler detection with N = 10, in the cell D0.
Borderless (D = [0, 1]) With borders (D ⊊ [0, 1])Doppler (Angle) Yes (2.32), (2.33) Yes (2.32), (2.33)Range N/A Yes (2.32), (2.33)STAP Yes (2.36),(2.40) Heuristic 2.3.1, 2.3.2Doppler-Range N/A Heuristic 2.3.2

Table 2.6.1: Recap of the PFA-threshold relationship obtained for the off-grid NMF
2.6 . Synthesis

In this chapter, we derived new PFA-threshold relationships for the off-grid Normalized Matched Fil-
ter thanks to a geometrical approach based on finding the volume of tubes around the manifolds linked
to the signals of reference in a cell. In particular, closed-form expressions are derived for signal model
(1.7) and (1.10) under white noise. All expressions are exact when the PFA is low enough, which seem
of great interest for radar applications. We derived precisely their domain of validity thanks to a thor-
ough study of the overlap phenomena that can appear when dealing with tubes. We verified numerically
that both the relationships and the limit thresholds wlim we computed seem correct thanks to numerical
simulations. Table 2.6.1 sums up the contexts in which we achieved the derivation of PFA-thresholds re-lationships. In the following chapter, we have a similar objective: we want to compute the PFA-thresholdrelationship of the off-grid Matched Filter. In order to do so, we will use a different but closely related
approach, based on the expected Euler characteristic of excursion sets.
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Appendix

2.A . On Weyl’s formula for the volume of tubes

Our goal in this section is to establishWeyl’s formula (2.10) following his proof in [Wey39], filling some
intermediate steps not provided in the original paper, making its reading quite difficult.

Consider anM -dimensional manifold γ(ξ) embedded on Sn−1, where ξ runs in a search domain D.
Our goal is to compute the volume V of the cross-sections spanned by γ, defined in (2.9), with a geodesic
radius w = cosϕ.

Defining the codimension as ν = n− 1−M , let us introduce an orthonormal basis n1(ξ), . . . ,nν(ξ)

to the orthogonal of γ and its tangent plane generated by
(
∂γ

∂ξ1
, . . . ,

∂γ

∂ξM

)
, so that:

ni(ξ)
Tγ(ξ) = 0 for i ∈ [1, ν] ,

ni(ξ)
T ∂γ

∂ξj
(ξ) = 0 for i ∈ [1, ν], j ∈ [1,M ] .

Following definition (2.9), the points u in a cross-section Cw(γ(ξ)) can be expressed as:
r̃ =

γ(ξ) + t1n1(ξ) + · · ·+ tνnν(ξ)

∥γ(ξ) + t1n1(ξ) + · · ·+ tνnν(ξ)∥

=
γ(ξ) + t1n1(ξ) + · · ·+ tνnν(ξ)√

1 + t21 + · · ·+ t2ν
,

where r̃Tγ(ξ) < w ≜ cosϕ so that 1√
1 + t21 + · · ·+ t2ν

< cosϕ, i.e. 1

cos2 ϕ
= 1+ tan2 ϕ > 1+ t21 + · · ·+ t2ν ,

and finally t21 + · · ·+ t2ν < tan2 ϕ. The manifold described by the union of the cross-sections can then be
parametrized by ξ1, . . . , ξM , t1, . . . , tν . Direct computation of the surface of thismanifold can be obtained
with:
V =

∫
D

∫
t21+···+t2ν<tan2 ϕ

√√√√det

((
∂r̃

∂ξ1
, . . . ,

∂r̃

∂ξM
,
∂r̃

∂t1
, . . . ,

∂r̃

∂tν

)T (
∂r̃

∂ξ1
, . . . ,

∂r̃

∂ξM
,
∂r̃

∂t1
, . . . ,

∂r̃

∂tν

))
dξdt1 . . . dtν .

In the following, we note u = γ(ξ) + t1n1(ξ) + · · ·+ tνnν(ξ) and U = ∥γ(ξ) + t1n1(ξ) + · · ·+ tνnν(ξ)∥,
such that r̃ =

u

U
. Uee how

det

(
u,

∂u

∂ξ1
, . . . ,

∂u

∂ξM
,
∂u

∂t1
, . . . ,

∂u

∂tν

)
= det

(
U r̃, U

∂r̃

∂ξ1
+

∂U

∂ξ1
r̃, . . . , U

∂r̃

∂ξM
+

∂U

∂ξM
r̃, U

∂r̃

∂t1
+

∂U

∂t1
r̃, . . . , U

∂r̃

∂tν
+

∂U

∂tν
r̃

)
= det

(
U r̃, U

∂r̃

∂ξ1
, . . . , U

∂r̃

∂ξM
, U

∂r̃

∂t1
, . . . , U

∂r̃

∂tν

)
= Un det

(
r̃,

∂r̃

∂ξ1
, . . . ,

∂r̃

∂ξM
,
∂r̃

∂t1
, . . . ,

∂r̃

∂tν

)

= Un

√√√√det

((
r̃,

∂r̃

∂ξ1
, . . . ,

∂r̃

∂ξM
,
∂r̃

∂t1
, . . . ,

∂r̃

∂tν

)T (
r̃,

∂r̃

∂ξ1
, . . . ,

∂r̃

∂ξM
,
∂r̃

∂t1
, . . . ,

∂r̃

∂tν

))

= Un

√√√√det

(
1 0

0
(

∂r̃
∂ξ1

, . . . , ∂r̃
∂ξM

, ∂r̃
∂t1

, . . . , ∂r̃
∂tν

)T (
∂r̃
∂ξ1

, . . . , ∂r̃
∂ξM

, ∂r̃
∂t1

, . . . , ∂r̃
∂tν

))

= Un

√√√√det

((
∂r̃

∂ξ1
, . . . ,

∂r̃

∂ξM
,
∂r̃

∂t1
, . . . ,

∂r̃

∂tν

)T (
∂r̃

∂ξ1
, . . . ,

∂r̃

∂ξM
,
∂r̃

∂t1
, . . . ,

∂r̃

∂tν

))
,
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where the passage from the first to the second line results from the multilinearity of the determinant,
noting that ∂U

∂ξi
r̃ is colinear to the first column U r̃. Thus,

V =

∫
D

∫
t21+···+t2ν<tan2 ϕ

det

(
u,

∂u

∂ξ1
, . . . ,

∂u

∂ξM
,
∂u

∂t1
, . . . ,

∂u

∂tν

)
Un

dξdt1 . . . dtν

=

∫
D

∫
t21+···+t2ν<tan2 ϕ

det

(
u,

∂u

∂ξ1
, . . . ,

∂u

∂ξM
,n1, . . . ,nν

)
(1 + t21 + · · ·+ t2ν)

n/2
dξdt1 . . . dtν . (2.73)

In the following, let gij =
∂γ

∂ξi

T ∂γ

∂ξj
and Gij(p) = − ∂2γT

∂ξi∂ξj
np =

∂γ

∂ξi

T ∂np
∂ξj

. gij is the first fundamental
form of γ, and Gij(p) is the second fundamental form of γ for the normal np. In order to evaluate the
terms ∂u

∂ξi
in (2.73), let us express the derivatives of the normals ∂ni

∂ξj
for i ∈ [1, ν] and j ∈ [1,M ] in the

basis
(
γ,

∂γ

∂ξ1
, . . . ,

∂γ

∂ξM
,n1, . . . ,nν

)
of Rn:

∂ni
∂ξj

= e1γ + e2
∂γ

∂ξ1
+ · · ·+ eM+1

∂γ

∂ξM
+ eM+2n1 + · · ·+ ennν .

Scalar multiplying by ∂γ

∂ξk
yields:

Gjk(i) = e2g1k + · · ·+ eM+1gMk .

Thus, the coefficients e2, . . . , eM+1 will be noted G1
j (i), . . . , G

M
j (i) in the following, as the operation

G1
j (i)g1k + · · · + GMj (i)gMk "lowers the indice" in tensor notation [SS78], thus giving Gjk(i). The vec-

tors ∂u
∂ξi

can then be expressed as:
∂u

∂ξi
=

∂γ

∂ξi
+

ν∑
j=1

tj
∂nj
∂ξi

=
∂γ

∂ξi
+

ν∑
j=1

tj

M∑
k=1

Gki (j)
∂γ

∂ξk
+ e1γ +

ν∑
l=1

eM+1+lnl

=

M∑
k=1

δki + ν∑
j=1

tjG
k
i (j)

 ∂γ

∂ξk
+ . . .

where δki is the Kronecker symbol. Exploiting the multilinearity property of the determinant, the dotted
terms are not involved in the determinant in (2.73). NotingG the matrix

δki + ν∑
j=1

tjG
k
i (j)


k,i∈[1,M ]2

:

det

(
u,

∂u

∂ξ1
, . . . ,

∂u

∂ξM
,n1, . . . ,nν

)
= det

(u, ∂γ
∂ξ1

, . . . ,
∂γ

∂ξM
,n1, . . . ,nν

)1 0 0
0 G 0
0 0 I


= detG det

(
u,

∂γ

∂ξ1
, . . . ,

∂γ

∂ξM
,n1, . . . ,nν

)
. (2.74)
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Note that:
det

(
u,

∂γ

∂ξ1
, . . . ,

∂γ

∂ξM
,n1, . . . ,nν

)
= det

(
γ,

∂γ

∂ξ1
, . . . ,

∂γ

∂ξM
,n1, . . . ,nν

)
(2.75)

=

√√√√det

((
γ,

∂γ

∂ξ1
, . . . ,

∂γ

∂ξM
,n1, . . . ,nν

)T (
γ,

∂γ

∂ξ1
, . . . ,

∂γ

∂ξM
,n1, . . . ,nν

))

=

√√√√√√√det


1 0 0

0

(
∂γT

∂ξi

∂γ

∂ξj

)
1≤i,j≤M

0

0 0 I


=
√
det gij . (2.76)√

det gijdξ1 . . . dξM is the manifold surface element, noted du in the following. Finally, injecting (2.76) in
(2.74) we obtain from (2.73):

V =

∫
γ



∫
. . .

∫
t21+···+t2ν≤tan2 ϕ

det

(
δij +

ν∑
p=1

tpG
j
i (p)

)
(1 + t21 + · · ·+ t2ν)

n/2
dt1 . . . dtν


du ,

This is Weyl’s result that was given in (2.10).

2.B . Proofs of the chapter

In the first section of the appendix, we prove that the tube T , defined in (2.30) for fixed ξ, does not
overlap. Then, we provide the proof of the results of the chapter.

2.B.1 . On the absence of overlap of the tube T (2.30) for fixed ξ
Since

∥∥∥∥∂γ(ξ, α)∂α

∥∥∥∥ = 1, γ(ξ, .) is parameterized by arc length. The radius of first curvature is then de-
fined as ρ =

∥∥∥∥∂2γ(ξ, α)∂α2

∥∥∥∥−1

=1. Then, since sin(cos−1 w) < 1 for all w, there is no local overlap according
to (2.7): the tube radius is indeed always smaller than the radius of curvature of the manifold.

Let us prove there is no non-local overlap either by searching the pairs of points of interest (α, α′) in
Ξ, that verify (cf. Remark 2.4.4):

γ(ξ, α′)T γ̇(ξ, α) = γ(ξ, α)T γ̇(ξ, α′) = 0 .

Those conditions imply that:
(cosα′γ1(ξ)+sinα′γ2(ξ))

T
(cosαγ2(ξ)− sinαγ1(ξ)) = 0 ,

that can be rewritten as:
− cosα′ sinα∥γ1(ξ)∥2 + sinα′ cosα∥γ2(ξ)∥2 = 0 ,

which is equivalent to:
sin(α− α′) = 0 .
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Thus, the set Ξ is defined as:
Ξ = {(α, α′) : α ̸= α′, sin(α− α′) = 0} ,

= {(α, α+ π), α ∈ [0, π]} .

Remark 2.B.1. The critical points of the ambiguity function are thus opposed on the sphere: since themanifold
we are dealing with is a great circle of the sphere, this seems logical.

For any α ∈ [0, π], we have γ(α, ξ)Tγ(α+ π, ξ) = −1, so that ϕnon-local = 1

2
arccos(−1) =

π

2
according

to (2.52): there is no non-local overlap for T . Thus, wlim = cosϕlim = 0 and the surface given by (2.31) is
exact for any threshold w.

2.B.2 . Proof of Corollary 2.3.0.1
We showed in the development that we were under the conditions of application of 3.2.3: all that

remains to do is to compute the integral in 2.29. We first calculate this integral for Doppler detection,
using signal model (1.7) with ξ = θ. First, notice that the derivatives γ̇1(θ) and γ̇2(θ) are orthogonal, andthat ∥γ̇1(θ)∥ = ∥γ̇2(θ)∥. Thus, for all Ω ∈ [0, 2π], we have that

∥γ̇1(θ) cosΩ + γ̇2(θ) sinΩ∥
2
= ∥γ̇1(θ)∥

2
,

which does not depend on Ω. The double integral simplifies:∫ θ2

θ1

∫ 2π

0

[
∥γ̇1(θ) cosΩ + γ̇2(θ) sinΩ∥

2 −
(
γ̇1(θ)

Tγ2(θ)
)2]1/2

dΩ dθ = 2π

∫ θ1

θ2

(
∥γ̇1(θ)∥

2 −
(
γ̇1(θ)

Tγ2(θ)
)2)1/2

dθ,

= 2π

∫ θ2

θ1

∥∥∥γ̇1(θ)
TP⊥

γ2(θ)

∥∥∥ dθ, (2.77)
In the case of white noise, this integral can be computed analytically. Let x be the following vector:

x = 2π [0, 1, . . . , N − 1]
T
, (2.78)

so that
γ̇1(θ) =

[
x
x

]
⊙ γ2(θ) , (2.79)

γ̇2(θ) = −
[
x
x

]
⊙ γ1(θ) . (2.80)

Then:
∥γ̇1(θ)∥ = ∥γ̇2(θ)∥ = 2π

√
(N − 1)(2N − 1)

6
. (2.81)

and
γ̇1(θ)

T γ2(θ) =

([
x
x

]
⊙ γ2(θ)

)T
γ2(θ)

=
2π

N

N−1∑
k=0

k = π (N − 1) . (2.82)
Then, injecting (2.81) and (2.82) into (2.77):

2π

∫ θ2

θ1

∥∥∥γ̇1(θ)
TP⊥

γ2(θ)

∥∥∥2 dθ = 2(θ2 − θ1)π
2

√
(N2 − 1)

3
. (2.83)
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Replacing the double integral in (2.29) with (2.83) gives the expected result.
In the case of range detection (ξ = r), using signal model (1.5), the derivates of γ1, γ2 depend on r.Noting

(x′)k = 2πh(tk−r) , (2.84)
where tk =

k

B
for k ∈ [0,K − 1], we have

γ̇1(r) =

[
x′

x′

]
⊙ γ2(r) , (2.85)

γ̇2(r) = −
[
x′

x′

]
⊙ γ1(r) , (2.86)

It follows that:
∥γ̇1(r)∥

2
=

4π2h2

K

(
K(2K − 1)(K − 1)

6B2
− K(K − 1)r

B
+Kr2

)
,

γ̇1(r)
Tγ2(r) =

2πh

K

(
K(K − 1)

2B
−Kr

)
.

so that: (
∥γ̇1(r)∥

2 −
(
γ̇1(r)

Tγ2(r)
)2)1/2

=
πh

B

√
K2 − 1

3
.

The integrand in (2.77) does not depend on r anymore. Evaluating (2.77) gives (recall that τ is the nor-
malized version of the delay r):

2π

∫ τ2

τ1

∥∥∥γ̇1(τ)
TP⊥

γ2(τ)

∥∥∥2 dτ = 2(τ2 − τ1)π
2

√
(K2 − 1)

3
,

which is basically the result that was obtained for the steering vector signal model (1.7).
2.B.3 . Extra computations for the proof of Lemma 2.3.1

In this section, we give the extra tedious computations of Lemma 2.3.1 not included in the proof.
Remark 2.B.2. We recall the mixed product property of the Kronecker product over the Hadamard product:
for any matricesA,B,C,D where, respectively,A and B share the same size thatC andD:

(A⊗B)⊙ (C⊗D) = (A⊙C)⊗ (B⊙D).

Using the mixed product property of the Kronecker product over the Hadamard product, see that
the derivatives of s are worth:

∂s(ζ)

∂v
= s(ζ)⊙

(
2iπ l−1

θ xN ⊗ 1P
)
, (2.87)

∂s(ζ)

∂u
= s(ζ)⊙

(
1N ⊗ 2iπ l−1

µ xP
)
, (2.88)

where
xA =

[
0− A− 1

2
, 1− A− 1

2
, . . . ,

A− 1

2

]T (2.89)
and 1A is the column vector of size A composed of ones. Note that xA is constructed such that

A∑
k=1

(xA)k = 0 ,

A∑
k=1

(xA)
2
k =

A(A2 − 1)

12
.
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The partial derivatives of γ are then:
∂γ(ψ)

∂v
= (cosαγ2(ζ)− sinαγ1(ζ))⊙

(
2π l−1

θ xN ⊗ 1P
2π l−1

θ xN ⊗ 1P

)
, (2.90)

∂γ(ψ)

∂u
= (cosαγ2(ζ)− sinαγ1(ζ))⊙

(
1N ⊗ 2π l−1

µ xP
1N ⊗ 2π l−1

µ xP

)
. (2.91)

Notice how theproductsγ1(ζ)
T

(
γ2(ζ)⊙

(
2π l−1

θ xN ⊗ 1P
2π l−1

θ xN ⊗ 1P

))
,γ2(ζ)

T

(
γ1(ζ)⊙

(
2π l−1

θ xN ⊗ 1P
2π l−1

θ xN ⊗ 1P

))
are

still zero since
γ1(ζ)

T

(
γ2(ζ)⊙

(
2π l−1

θ xN ⊗ 1P

2π l−1
θ xN ⊗ 1P

))
= −

(
Im (s)⊙

(
2π l−1

θ xN ⊗ 1P

))T
Re (s) +

(
Re (s)⊙

(
2π l−1

θ xN ⊗ 1P

))T
Im (s)

= −
NP∑
k=1

(Im (s))k
(
2π l−1

θ xN ⊗ 1P

)
k
(Re (s))k

+

NP∑
k=1

(Im (s))k
(
2π l−1

θ xN ⊗ 1P

)
k
(Re (s))k

= 0 . (2.92)

Remark 2.B.3. This could also be noticed simply by differentiating γ1(ζ)
Tγ1(ζ) = 1 and γ2(ζ)

Tγ2(ζ) = 1

with respect to v.

Similar reasoning yields that the products γ(ζ)T1
(
γ2(ζ)⊙

(
1N ⊗ 2π l−1

µ xP

1N ⊗ 2π l−1
µ xP

))
,γ2(ζ)

T

(
γ1(ζ)⊙

(
1N ⊗ 2π l−1

µ xP

1N ⊗ 2π l−1
µ xP

))
are zero. Also, note that:
γ1(ζ)

T

(
γ1(ζ)⊙

(
2π l−1

θ xN ⊗ 1P
2π l−1

θ xN ⊗ 1P

))
= γ2(ζ)

T

(
γ2(ζ)⊙

(
2π l−1

θ xN ⊗ 1P
2π l−1

θ xN ⊗ 1P

))
=
(
Re (s)⊙

(
2π l−1

θ xN ⊗ 1P
))T

Re (s) +
(
Im (s)⊙

(
2π l−1

θ xN ⊗ 1P
))T

Im (s)

=

NP∑
k=1

(Re (s))
2
k

(
2π l−1

θ xN ⊗ 1P
)
k
+

NP∑
k=1

(Im (s))
2
k

(
2π l−1

θ xN ⊗ 1P
)
k

=
1

NP

NP∑
k=1

(
2π l−1

θ xN ⊗ 1P
)
k

=
2π l−1

θ

N

N∑
k=1

(xN )k

= 0 .

Again, this is also true ofγ1(ζ)
T

(
γ1(ζ)⊙

(
1N ⊗ 2π l−1

µ xP
1N ⊗ 2π l−1

µ xP

))
andγ2(ζ)

T

(
γ2(ζ)⊙

(
1N ⊗ 2π l−1

µ xP
1N ⊗ 2π l−1

µ xP

))
.

Using these facts, we get that:
∂γ(ψ)T

∂α

∂γ(ψ)

∂v
=

1

NP

PN∑
k=1

2π l−1
θ (xN ⊗ 1P )k = 0 , (2.93)

∂γ(ψ)T

∂α

∂γ(ψ)

∂u
=

1

NP

PN∑
k=1

2π l−1
µ (1N ⊗ xP )k = 0 . (2.94)

Similar computations to (2.92) give us that:(
γ1(ζ)⊙

(
2π l−1

θ xN ⊗ 1P

2π l−1
θ xN ⊗ 1P

))T (
γ2(ζ)⊙

(
1N ⊗ 2π l−1

µ xP

1N ⊗ 2π l−1
µ xP

))
=

(
γ2(ζ)⊙

(
2π l−1

θ xN ⊗ 1P

2π l−1
θ xN ⊗ 1P

))T (
γ1(ζ)⊙

(
1N ⊗ 2π l−1

µ xP

1N ⊗ 2π l−1
µ xP

))
,

= 0 .
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Then, note that
(
γ1(ζ)⊙

(
2π l−1

θ xN ⊗ 1P

2π l−1
θ xN ⊗ 1P

))T (
γ1(ζ)⊙

(
1N ⊗ 2π l−1

µ xP

1N ⊗ 2π l−1
µ xP

))
=

(
γ2(ζ)⊙

(
2π l−1

θ xN ⊗ 1P

2π l−1
θ xN ⊗ 1P

))T (
γ2(ζ)⊙

(
1N ⊗ 2π l−1

µ xP

1N ⊗ 2π l−1
µ xP

))
=

1

NP

PN∑
k=1

4π2l−1
µ l−1

θ ((1N ⊗ xP )⊙ (xN ⊗ 1P ))k ,

=
4π2l−1

µ l−1
θ

NP

P∑
k=1

(xP )k

N∑
l=1

(xN )l

= 0 .

Thus
∂γ(ψ)T

∂v

∂γ(ψ)

∂u
=

1

NP

PN∑
k=1

−4π2l−1
µ l−1

θ ((1N ⊗ xP )⊙ (xN ⊗ 1P ))k = 0 . (2.95)

Finally,
(
γ1(ζ)⊙

(
2π l−1

θ xN ⊗ 1P

2π l−1
θ xN ⊗ 1P

))T (
γ1(ζ)⊙

(
2π l−1

θ xN ⊗ 1P

2π l−1
θ xN ⊗ 1P

))
=

(
γ1(ζ)⊙

(
1N ⊗ 2π l−1

µ xP

1N ⊗ 2π l−1
µ xP

))T (
γ1(ζ)⊙

(
1N ⊗ 2π l−1

µ xP

1N ⊗ 2π l−1
µ xP

))
=

1

NP

PN∑
k=1

4π2l−2
µ ((1N ⊗ xP )⊙ (1N ⊗ xP ))k

=
N

NP

P∑
k=1

4π2l−2
µ ((xP )⊙ (xP ))k

=
1

P
4π2 3

π2(P 2 − 1)

P (P 2 − 1)

12

= 1 .

and this also holds true replacing γ1(ζ) with γ2(ζ). In the end,
∂γ(ψ)T

∂v

∂γ(ψ)

∂v
=
∂γ(ψ)T

∂u

∂γ(ψ)

∂u
= 1 .

2.B.4 . Proof of Corollary 2.3.0.2

Proof. In Lemma 2.3.1, we proved that under white noise, for STAP detection (signal model (1.10)), γ is
Euclidean, meaning ds = dαdudv when integrated on the new parameter space [0, 2π] × D′ after the
change of variables ψ from the proof of Lemma (2.3.1). Then, from (2.24):

V = 2πw2NP−5 |D′| (J0 − 3J2) , (2.96)

where |D′| is the volumeof the parameter spaceD′. Since v andu range respectively from 0 toπ
√
N2 − 1

3

and from 0 to π
√
P 2 − 1

3
when testing on the whole domain, the volume |D′| is given by:

|D′| = π2

3

√
N2 − 1

√
P 2 − 1 , (2.97)
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the terms J0 and J2 are easily computed from (2.28):
J0 =

∫ ϕ

0

sin2NP−5 ρ cos3 ρ dρ ,

=
1

2(NP − 2)
sin2(NP−2) ϕ cos2 ϕ+

1

NP − 2

∫ ϕ

0

sin2NP−3 ρ cos ρ dρ ,

=
1

2(NP − 2)
sin2(NP−2) ϕ cos2 ϕ+

1

2(NP − 2)

1

NP − 1
sin2(NP−1) ϕ , (2.98)

J2 =
1

2(NP − 2)

∫ ϕ

0

sin2NP−3 ρ cos ρ dρ ,

=
1

2(NP − 2)

1

2(NP − 1)
sin2(NP−1) ϕ , (2.99)

so that
J0 − 3J2 =

sin2(NP−2) ϕ
(
(2NP − 1) cos2 ϕ− 1

)
2(NP − 2)2(NP − 1)

. (2.100)
and

w2NP−5 = 2
πNP−2

Γ(NP − 2)
. (2.101)

Plugging (2.97), (2.100), and (2.101) in (2.96) yields the volume of the cross-sections, assuming ϕ is low
enough so that there isn’t any overlap:

V =
πNP+1

3Γ(NP − 2)

sin2(NP−2) ϕ
(
(2NP − 1) cos2 ϕ− 1

)
(NP − 2)(NP − 1)

√
N2 − 1

√
P 2 − 1 . (2.102)

Dividing (2.102) by w2NP−1 =
2πNP

Γ(NP )
, the surface of the sphere S2NP−1, gives the expected result, re-

placing cos2 ϕ with w2 and sin2(NP−2) ϕ with (1− w2)NP−2.
2.B.5 . Proof of Proposition 2.3.1

In this section, we will need some definitions and results about complex centrosymmetric matrices.
Readers are referred to Appendix 2.C. Before proving the proposition, we need the following result on
the covariance matrixR as defined in (2.38).
Lemma 2.B.1. The matrixR as defined in (2.38) is centrosymmetric.
Proof. This is proved with a direct computation:

JN RJN = JN

(∫
ζ

p(ζ) su(ζ)su(ζ)H dζ + σ2 I

)
JN ,

=

∫
ζ

p(ζ)JN su(ζ)su(ζ)H JN dζ + σ2 JN I JN .

Since su and I are centrosymmetric:
JN RJN =

∫
ζ

p(ζ) su(ζ)∗su(ζ)H
∗
dζ + σ2 I ,

= R∗ .
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We can now prove proposition 2.3.1:
Proof. We note f(ζ, ζ′) the ambiguity function of s

f(ζ, ζ′) = s(ζ)Hs(ζ′) = su(ζ)HR−1su(ζ′) .

Using some trigonometry, it is easy to show that:
γ(α, ζ)Tγ(α′, ζ′) = cos(α− α′)Re(f(ζ, ζ′)) + sin(α− α′) Im(f(ζ, ζ′)) .

But the ambiguity function of s is real. Indeed, since su andR are centrosymmetric, according to Propo-
sition 2.C.1, f is real. Thus:

γ(α, ζ)Tγ(α′, ζ′) = cos(α− α′)f(ζ, ζ) .

Thus:
∂γ(α, ζ)T

∂α

∂γ(α′, ζ′)

∂α
= cos(α− α′)f(ζ, ζ′) ,

∂γ(α, ζ)T

∂α

∂γ(α′, ζ′)

∂ζi
= − sin(α− α′)

∂f(ζ, ζ′)

∂ζ ′i
for i ̸= 1 ,

∂γ(α, ζ)T

∂ζi

∂γ(α′, ζ′)

∂ζj
= cos(α− α′)

∂2f(ζ, ζ′)

∂ζi∂ζ ′j
for i, j ̸= 1 .

Evaluating for (α, ζ) = (α′, ζ′) gives the first fundamental form gij :
g11 = 1 ,

g1i = gi1 = 0 for i ̸= 1 ,

gij =
∂s(ζ)H

∂ζi

∂s(ζ)

∂ζj
for i, j ̸= 1 , (2.103)

which achieves the proof of the proposition.
2.B.6 . Proof of Corollary 2.3.0.3

Proof. In this proof, we use the centrosymmetric parametrization ψ = (α, ζ) from the proof of lemma
2.3.3.1, for which we proved that the first fundamental form gij is expressed as in (2.39). In the generalcase (Γ ̸= I), the Riemannian tensor components are a priori, not zero anymore, so we have to start the
computation of the volume V of the tube from (2.23):

V = w2NP−5

(
J0

∫
D′
ds+ J2

∫
D′
(R12

12 +R23
23 +R13

13 − 3) ds

)
. (2.104)

But R12
12 and R13

13 are, as we will see, in fact, equal to zero. See that the Christoffel symbols of the first
kind Γκαβ are zero as soon as one of the indices α, β, κ is equal to 1: indeed, in this case, 1 appears in
all of the terms in (2.15), either as ∂g1i

∂ψj
or ∂gij

∂α
. The terms g1i are either equal to 0 or 1 and are constant

either way so that ∂g1i
∂ψj

= 0, and the terms ∂gij
∂α

are also zero since gij does not depend on α as can be
seen in (2.103). From (2.16), it follows that the Christoffel symbols of the second kind Γκαβ are also zero
when α or β is equal to 1. Noting that

gij = (gij)
−1

=

1 0

0

(
∂sH

∂ζi

∂s

∂ζj

)−1

 ,
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Γ1
αβ = g11Γ1αβ + g21Γ2αβ + g31Γ3αβ is also equal to zero since g21 = g31 = 0. Now, see that R12

12 =

g21R1
112+g

22R1
212+g

23R1
312. From (2.17), all theR1

µ12 involved in this addition are zero, so thatR12
12 is alsozero. Similarly, R13

13 is zero. Thus,
V = w2NP−5

(
J0

∫
D′
ds+ J2

∫
D′
(R23

23 − 3) ds

)
. (2.105)

In order to further simplify this result, we will need some more definitions. The Ricci curvature tensor
Rij for 1 ≤ i, j ≤ 3 is defined as [SS78, p. 88]:

Rij ≜
M∑
k=1

Rkijk.

The scalar curvature R is then defined as [SS78, p. 89]:
R ≜

∑
1≤i,j≤M

gijRij .

Then,
R =

∑
1≤i,j,k≤M

gijRkijk

=
∑

1≤j,k≤M

∑
1≤i≤M

gijRkijk

=
∑

1≤j,k≤M

Rkjjk

From (2.19), noting that Gji (p) = Gij(p), we have that Rkjjk = −Rjkjk and Rjkjk = Rkjkj . This leads to:
R = −2

∑
1≤k<j≤M

Rkjkj

R23
23 in (2.105) is thus linked to the curvature scalarR of the surface Sα(ζ1, ζ2) obtained from γ(α, ζ)when

ζ1, ζ2 vary for fixedα (whichmetric is equal to (aij) =
(
g22 g23
g32 g33

)
and does not depend onα from (2.103))

with R23
23 = −R

2
. The scalar curvature is in turn linked to the Gaussian curvature K of this surface with

R = 2K [GHL+90, p.136], so that R23
23 = −K. Then,∫

α,ζ∈[0,2π]×D′
(R23

23 − 3)
√
det gij dα dζ1 dζ2 = 2π

∫
ζ∈D′

(−K − 3)
√

det aij dζ1 dζ2 .

We will need the Gauss-Bonnet theorem to get our final result:
Theorem 2.B.1. [KS89] (Gauss-Bonnet) Let γ be a compact 2D manifold with boundary ∂γ. Let K be the
Gaussian curvature of γ and kg be the geodesic curvature of ∂γ. Finally, let φ(γ) be its Euler characteristic.
Then:

2πφ(γ) =

∫
γ

Kds+

∫
∂γ

kgdl ,

where ds is the surface element of the surface γ, and dl is the line element of the curve ∂γ.

Since by hypothesis D = [0, 1]2, the surface Sα is closed and thus has no boundaries (∂γ = ∅).
Applying Gauss-Bonnet: ∫

ζ∈D′
K
√
det aij dζ1 dζ2 = χ(Sα) ,
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whereχ(Sα) is the Euler characteristic of the surfaceSα. AsSα is homeomorphic to the cartesian product
of two circles that the parameters ζ1 and ζ2 describe, it is a torus, thus its Euler characteristic is zero. Thisfinally gives us ∫

α,ζ∈[0,2π]×D′
(R23

23 − 3)
√
det gij dα dζ1 dζ2 = −6π

∫
ζ∈D′

√
det aij dζ1 dζ2 .

The values of the terms J0, J2, and w2NP−5 do not change from the case of the Euclidean manifold
treated in proof 2.B.4. Plugging (2.98), (2.99), (2.101) into (2.27) gives the final result.

2.B.7 . Proof of Proposition 2.4.1
Proof. Let γ(ξ)Tγ(ξ′) = f(ξ − ξ′). The quantity h(ξ, ξ′) depends on ξ and ξ′ through f(ξ − ξ′) in the
denominator, and, by the way of Qξ′ in the numerator, γ(ξ)T ∂γ(ξ′)

∂ξk
and ∂γ(ξ)T

∂ξi

∂γ(ξ′)

∂ξj
for k ∈ [1,M ]

and (i, j) ∈ [1,M ]2. Notice how
γ(ξ)T

∂γ(ξ′)

∂ξk
= − ∂f

∂ξk

∣∣∣∣
ξ−ξ′

,

∂γ(ξ)T

∂ξi

∂γ(ξ′)

∂ξj
= − ∂2f

∂ξi∂ξj

∣∣∣∣
ξ−ξ′

, (2.106)
so that in the end, h depends only on the difference ξ − ξ′.

2.B.8 . Proof of Corollary 2.4.1.2
Proof. First, note that a parametrization ψ such that gij = I exists since, as noted in remark 2.4.3, shift-
invariant manifolds are Euclidean. Note that differentiating γ(ψ)Tγ(ψ) = 1 twice yields:

γ(ψ)T
∂2γ(ψ)

∂ψi∂ψj
= −∂γ(ψ)

T

∂ψi

∂γ(ψ)

∂ψj
= −δij . (2.107)

It can be easily verified that the expression of the Christoffel symbols of the first kind in (2.15) is equivalent
to:

Γijk =
∂2γ(ψ)T

∂ψj∂ψk

∂γ(ψ)

∂ψi
. (2.108)

Since gij = I, (2.15) gives
Γijk = 0 . (2.109)

The denominator in (2.48) reduces to 1:∑
i,j

βiβj
∂γ(ψ)T

∂ψi

∂γ(ψ)

∂ψj
=
∑
i,j

βiβj δi,j =
∑
i

β2
i = 1 .

We thus have:

cot2 ϕlocal = sup
β∈SM−1

∥∥∥∥∥∥
∑
i,j

βiβj (I−Qψ)
∂2γ(ψ)

∂ψi∂ψj

∥∥∥∥∥∥
2

,

= sup
β∈SM−1


∥∥∥∥∥∥
∑
i,j

βiβj
∂2γ(ψ)

∂ψi∂ψj

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥Qψ

∑
i,j

βiβj
∂2γ(ψ)

∂ψi∂ψj

∥∥∥∥∥∥
2
 , (2.110)

where the maximization on ψ has been omitted using proposition 2.4.1.(
γ(ψ),

∂γ(ψ)

∂ψ1
, . . . ,

∂γ(ψ)

∂ψM

)
forms an orthonormal family so that the second term of (2.110) is, with
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Pythagoras’s theorem:∥∥∥∥∥∥Qψ

∑
i,j

βiβj
∂2γ(ψ)

∂ψi∂ψj

∥∥∥∥∥∥
2

=

∣∣∣∣∣∣
∑
i,j

βiβjγ(ψ)
T ∂

2γ(ψ)

∂ψi∂ψj

∣∣∣∣∣∣
2

+
∑
k

∣∣∣∣∣∣
∑
i,j

βiβj
∂γ(ψ)T

∂ψk

∂2γ(ψ)

∂ψi∂ψj

∣∣∣∣∣∣
2

,

=

∣∣∣∣∣∣
∑
i,j

βiβjδi,j

∣∣∣∣∣∣
2

+
∑
k

∣∣∣∣∣∣
∑
i,j

βiβjΓkij

∣∣∣∣∣∣
2

,

= 1 ,

using (2.107), (2.108) and (2.109).
2.B.9 . Proof of Proposition 2.4.2

Proof. Weadapt Johansen and Johnstone’s proof of Proposition 4.2 in [JJ90] to the case of anM -dimensio-
nal manifold. Following the authors, we consider the case of a manifold embedded in Rn. The result can
then be extended to a manifold embedded in Sn−1.

The start of the proof is the same: suppose that the limiting angle ϕglobal is lower than the local limit
angle ϕlocal. Following the autors, we can find x ∈ Rn, ξ and ξ′ in D such that ξ ̸= ξ′, x ∈ Cϕglobal (γ (ξ))

and x ∈ Cϕglobal
(
γ
(
ξ′
)). Define ϕξ and ϕξ′ as the the distances from γ (ξ) and γ (ξ′) to x. max{ϕξ, ϕξ′} =

ϕglobal, otherwise therewould be overlap for a radiusϕ < ϕglobal, which contradicts the definition of ϕglobal.
Since x belongs to the cross sections Cϕglobal (γ (ξ)) and Cϕglobal

(
γ
(
ξ′
)), the points ξ, ξ′ are strict lo-

cal minima of the function v → |x− γ(v)|. The strictness comes from the fact that by hypothesis,
|x− γ(ξ)| < ϕlocal and |x− γ(ξ′)| < ϕlocal: in the one-dimensional case, the distance between γ(s) and
γ(t) to x is less than the curvature radius of γ at s and t, so that xmoves away from γ(s) and γ(t)when
moving infinitesimally. Similar reasoning holds in the general case, making use of the fact that ϕlocal in(2.48) is the maximum of the principal curvatures of γ [KT01] (the maximum curvature of the curves ob-
tained when intersecting γ with plans containing the normal). We can then define frontiers Fξ and Fξ′

around ξ and ξ′ such that for all v ∈ Fξ, |x−γ(v)| > ϕξ and for all v ∈ Fξ′ , |x−γ(v)| > ϕξ′ . Furthermore,
we require the domains delimited by the frontiers to be disjoint. By contradiction, if (ξ, ξ′) /∈ Ξ, there
exists k ∈ [1,M ] such that (γ(ξ) − γ(ξ′))T ∂γ

∂ξk
̸= 0 and we can then proceed as Johansen to construct

a point x̃ ∈ Sn−1 such that |x̃− γ (ξ)| < ϕξ, ∣∣x̃− γ
(
ξ′
)∣∣ < ϕξ′ and with |x − x̃| small enough so that

∀v ∈ Fξ, |x̃− γ(v)| > ϕξ and ∀v ∈ Fξ′ , |x̃− γ(v)| > ϕξ′ . By the extreme value theorem, there are two
local minima ξ̃, ξ̃′ of the function v → |x̃ − γ (v) | in the (compact) domains encompassed by Fξ and
Fξ′ , such that ∣∣∣x̃− γ

(
ξ̃
)∣∣∣ < ϕξ and

∣∣∣x̃− γ
(
ξ̃′
)∣∣∣ < ϕξ′ . Since the domains delimited by Fξ and Fξ′ are

disjoint, ξ̃ and ξ̃′ are distinct. Thus x̃ belongs to two cross-sections with a distance less than ϕglobal since
ϕξ ≤ ϕglobal and ϕξ′ ≤ ϕglobal. This is impossible, and thus (ξ, ξ′) ∈ Ξ.

For a non-closed manifold, if the limit pair (ξ, ξ′) is in (D \ B)2, then nothing changes in the proof
above. ϕnon-local given in Equation (2.52) is thus a lower bound for the appearance of non-local overlapin this case.

2.B.10 . Proof of Corollary 2.4.1.5
Proof. The manifolds corresponding to the signal models under consideration ((1.7), (1.10)) have been
showed to be shift-invariant under white noise so that we can apply the result of Corollary 2.4.1.2 in order
to find ϕlocal. Vectors s are taken under their centrosymmetric forms, and we use the parametrization
ψ = (α, v) from the proof of Lemma 2.3.1. We need the expressions of the second derivatives of γ
under each signal model. Let us compute the value of ∂2γT

∂v2
∂2γ

∂v2
, where the superscript ⊙2 denotes the
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Hadarmad product of a vector with itself:
∂2γT

∂v2
∂2γ

∂v2
=

∥∥∥∥∥(cos(α)γ1(v) + sin(α)γ2(v))⊙
(
2π l−1

θ xN
2π l−1

θ xN

)⊙2
∥∥∥∥∥
2

=

(
2πl−1

θ

)4
N

N−1∑
n=0

(
n− N − 1

2

)4

=
144π4

N(N2 − 1)π4

N(N2 − 1)

60

(
3
N − 1

4

2

+ 3
N − 1

2
− 1

)
=

3

5

3N2 − 7

(N − 1)
2 ,

which is the constant CN (2.62). In the end, we find that:
∂2γT

∂v2
∂2γ

∂v2
= CN ,

∂2γT

∂v ∂α

∂2γ

∂v2
=
∂2γT

∂v ∂α

∂2γ

∂α2
= 0 ,

∂2γT

∂2v

∂2γ

∂α2
=
∂2γT

∂v ∂α

∂2γ

∂v ∂α
=
∂2γT

∂α2

∂2γ

∂α2
= 1 ,

Injecting the second derivative products into (2.49), with β1 = cosφ, β2 = sinφ and maximizing on φ, we
get:

cot2 ϕlocal = max
φ

CN cos4 φ+ 6 cos2 φ sin2 φ+ sin4 φ− 1 ,

= max
φ

(CN − 5) cos4 φ+ 4 cos2 φ . (2.111)

The maximum is obtained for cos2 φ =
2

5− CN
. Then, injecting this value in (2.111) and simplifying, we

obtain:
cot2 ϕlocal = 4

5− CN
.

Since w2local = cos2

(
tan−1 1√

cot2 ϕlocal

)
, result (2.61) holds.

For STAP detection, it is useful to note that when the total number of ∂v or ∂u in a second derivative
product is odd, this product equals zero, and it is equal to one when 2 or 0 such terms appear. The only
remaining products to compute are ∂2γT

∂v2
∂2γ

∂v2
and ∂2γT

∂u2
∂2γ

∂u2
, which are shown to be equal to CN and

CP (2.62). In the end, injecting in (2.49), with β = (cosφ cosψ, sinφ cosψ, sinψ) for φ,ψ ∈ [0, 2π] yields
expression (2.58).

2.B.11 . Proof of Corollary 2.4.1.6
Proof. First, see that:

γ(ξ, α)Tγ(ξ′, α′) = cos(α− α′)Re
(
s(ξ)Hs(ξ′)

)
+ sin(α− α′) Im

(
s(ξ)Hs(ξ′)

)
,

= Re
(
e−i (α−α

′) s(ξ)Hs(ξ′)
)
,

≤
∣∣s(ξ)H s(ξ′)

∣∣ , (2.112)
with the equality attained for α− α′ = ∠s(ξ)Hs(ξ′).
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Inequality (2.112) implies that the pairs of points (ξ, α), (ξ′, α′) with (ξ, ξ′) ∈ Ξ′ and (α, α′) chosen
arbitrarily so that α − α′ = ∠s(ξ)Hs(ξ′) belong to Ξ. Since the min of (2.52) is attained at the maxi-
mum of γ(ξ, α)Tγ(ξ′, α′) for ((ξ, α) , (ξ′, α′)) ∈ Ξ, and that this product is lower than the maximum
of ∣∣s(ξ)H s(ξ′)

∣∣, attained in Ξ for (ξ, ξ′) ∈ Ξ′, the only subset of points of Ξ worth investigating are the
points in Ξ′.

2.C . On complex centrosymmetric vectors

This short section formalizes the concept of complex centrosymmetric vectors and introduces some
properties used in Subsection 2.3.3.2. We will note JN the antidiagonal matrix of size N :

JN =


0 0 . . . 0 1
0 0 . . . 1 0
...

... . .
. ...

...
1 0 . . . 0 0

 .

Definition 2.C.1.

• A complex vector a ∈ CN is said to be complex centrosymmetric if:

a∗ = JN a .

• A complex square matrixA ∈ CN,N is said to be complex centrosymmetric if:

A∗ = JN AJN .

As an example, the vector d′(.) introduced in (2.34) is complex centrosymmetric. Let us introduce
some properties for this class of objects that we will need in the development of the section:
Proposition 2.C.1. LetA ∈ CN,N be a centrosymmetric matrix, and a ∈ CN , b ∈ CN be complex centrosym-
metric vectors. Then the following holds:

• IfA is invertible, thenA−1 is centrosymmetric.

• aHAb ∈ R.

• IfA is invertible, then aHA−1b ∈ R

Proof.

• Note that JN is invertible, with J−1
N = JN .

(A−1)∗ = (A∗)−1 = (JN AJN )
−1

,

= JN A−1 JN .

• aH Ab ∈ R if (aH Ab
)∗

= aHAb. See that(
aH Ab

)∗
= (a∗)

H
A∗ b∗ ,

= aH JN (JN AJN ) JN b ,

= aH Ab .

• The last property is obtained by combining the other two.
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2.D . Derivatives of γ

This section is an inventory of the derivatives of γ for the signal model considered under the general
case (Γ ̸= I), to be used in formulas (2.54), (2.57), (2.58) to determine the limit overlap angles.

2.D.1 . First order derivatives

ForM = 2, under signalmodel (1.7) (ξ = θ), the derivatives are givenby, withB =

[
Re(Γ−1/2) −Im(Γ−1/2)

Im(Γ−1/2) Re(Γ−1/2)

]−1

:
∂γ

∂θ
=
(
I− γ(θ, α)γ(θ, α)T

)
B−1

(
B (cosαγ2(θ)− sinαγ1(θ))⊙

[
x
x

])
, (2.113)

∂γ

∂α
= − sinαγ1(ξ) + cosαγ2(ξ) . (2.114)

with x defined as in (2.78). When using signal model (1.5) instead (ξ = r):
∂γ

∂r
=
(
I− γ(r, α)γ(r, α)T

)
B−1

(
B (cosαγ2(r)− sinαγ1(r))⊙

[
x′(r)
x′(r)

])
,

∂γ

∂α
= − sinαγ1(ξ) + cosαγ2(ξ) .

with x′ defined as in (2.84).
In the case ofM = 3, with parameters (α, v, u) for STAP detection with the centrosymmetric signal

model defined in the proof of Lemma 2.3.1
∂γ

∂v
= (I− γγT )B−1

(
B (cosαγ2 − sinαγ1)⊙

(
2π l−1

θ xN ⊗ 1P
2π l−1

θ xN ⊗ 1P

))
,

∂γ

∂u
= (I− γγT )B−1

(
B (cosαγ2 − sinαγ1)⊙

(
1N ⊗ 2π l−1

µ xP
1N ⊗ 2π l−1

µ xP

))
,

∂γ

∂α
= − sinαγ1(ξ) + cosαγ2(ξ) .

or (α, r, v) for distance-Doppler detection using a chirp (1.8) with a centrosymmetric steering vector:
∂γ

∂r
= (I− γγT )B−1

(
B (cosαγ2 − sinαγ1)⊙

(
x′ ⊗ 1N
x′ ⊗ 1N

))
,

∂γ

∂v
= (I− γγT )B−1

(
B (cosαγ2 − sinαγ1)⊙

(
1K ⊗ 2π l−1

θ xN
1K ⊗ 2π l−1

θ xN

))
,

∂γ

∂α
= − sinαγ1(ξ) + cosαγ2(ξ) ,

2.D.2 . Second order derivatives
In this section, squared vectors indicate the Hadamard product of the vector with itself: x⊙2 = x⊙x.

With M = 2, using signal model (1.7) for Doppler detection (ξ = θ), noting
γ̊Doppler = B−1

(
B (cosαγ2(θ)− sinαγ1(θ))⊙

[
x
x

])
, the second order derivatives are given by

∂2γ

∂θ2
= −

(
∂γ

∂θ
γT + γ

∂γT

∂θ

)
γ̊Doppler +

(
I− γγT

)(
−B−1

(
Bγ ⊙

[
x
x

]⊙2
)

− γ̊DopplerγT γ̊Doppler
)
,

∂2γ

∂θ∂α
= −

(
∂γ

∂α
γT + γ

∂γT

∂α

)
γ̊Doppler +

(
I− γγT

)(
−B−1

(
Bγ ⊙

[
x
x

]))
,

∂2γ

∂α2
= −γ
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In the range case, using signalmodel (1.5) andnoting γ̊Range = B−1

(
B (cosαγ2(r)− sinαγ1(r))⊙

[
x′(r)
x′(r)

])
:

∂2γ

∂r2
= −

(
∂γ

∂r
γT + γ

∂γT

∂r

)
γ̊Range +

(
I− γγT

)(
−B−1

(
Bγ ⊙

[
x′(r)
x′(r)

]⊙2
)

− 2πh (cosαγ2(r)− sinαγ1(r))− γ̊RangeγT γ̊Range
)
,

∂2γ

∂r∂α
= −

(
∂γ

∂α
γT + γ

∂γT

∂α

)
γ̊Range +

(
I− γγT

)(
−B−1

(
Bγ ⊙

[
x′(r)
x′(r)

]))
,

∂2γ

∂α2
= −γ .

WithM = 3 in the case of STAP detection using the centrosymmetric signal model and parametrization
(α, v, u) introduced in the proof of Lemma2.3.1, noting γ̊STAP,θ = B−1

(
B (cosαγ2 − sinαγ1)⊙

(
2π l−1

θ xN ⊗ 1P
2π l−1

θ xN ⊗ 1P

))
and γ̊STAP,µ = B−1

(
B (cosαγ2 − sinαγ1)⊙

(
1N ⊗ 2π l−1

µ xP
1N ⊗ 2π l−1

µ xP

))
:

∂2γ

∂v2
= −

(
∂γ

∂v
γT + γ

∂γT

∂v

)
γ̊STAP,θ +

(
I− γγT

)(
−B−1

(
Bγ ⊙

(
2π l−1

θ xN ⊗ 1P
2π l−1

θ xN ⊗ 1P

)⊙2
)

− γ̊STAP,θγT γ̊STAP,θ
)
,

∂2γ

∂u2
= −

(
∂γ

∂u
γT + γ

∂γT

∂u

)
γ̊STAP,µ +

(
I− γγT

)(
−B−1

(
Bγ ⊙

(
1N ⊗ 2π l−1

µ xP
1N ⊗ 2π l−1

µ xP

)⊙2
)

− γ̊STAP,µγT γ̊STAP,µ
)
,

∂2γ

∂v∂u
= −

(
∂γ

∂u
γT + γ

∂γT

∂u

)
γ̊STAP,θ

+
(
I− γγT

)(
−B−1

(
Bγ ⊙

(
2π l−1

θ xN ⊗ 1P
2π l−1

θ xN ⊗ 1P

)
⊙
(
1N ⊗ 2π l−1

µ xP
1N ⊗ 2π l−1

µ xP

))
− γ̊STAP,θγT γ̊STAP,µ

)
,

∂2γ

∂v∂α
= −

(
∂γ

∂α
γT + γ

∂γT

∂α

)
γ̊STAP,θ +

(
I− γγT

)(
−B−1

(
Bγ ⊙

(
2π l−1

θ xN ⊗ 1P
2π l−1

θ xN ⊗ 1P

)))
,

∂2γ

∂u∂α
= −

(
∂γ

∂α
γT + γ

∂γT

∂α

)
γ̊STAP,µ +

(
I− γγT

)(
−B−1

(
Bγ ⊙

(
1N ⊗ 2π l−1

µ xP
1N ⊗ 2π l−1

µ xP

)))
,

∂2γ

∂α2
= −γ .
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3 - On the statistics of the off-grid Matched Filter

In the previous section, we computed the PFA-threshold relationship of the Normalized Matched
Filter by computing the volume of tubes on the sphere. While the NMF detector suffers the most from
the presence of off-grid targets, there is also a gain when using the off-grid MF instead of the regular MF,
and we would like to find its PFA-threshold relationship. This is the aim of this chapter: we will find a
PFA-threshold relationship for the off-grid MF asymptotic in the threshold w2.

Unfortunately, the geometrical approach used in the previous chapter does not apply to theMatched
Filter detector as is, since the noise is not uniformly distributed on the unit sphere anymore. We use a
different approach in this chapter: we study the geometry of the parameter space associated with the
test vectors manifold. The tools we use are the expected Euler characteristics of excursion sets. This
method is deeply related to the volume of tubes approach, but is, in the case of the MF, easier to apply.

This chapter heavily draws from [Adl00] which introduces the expected Euler characteristic and links
them to the volume of tubes method. While the tools detailed here have been used for the detection
of a signal depending on unknown parameters [SW95; Wor01], as far as we know, it has rarely been
used with the signal processing detection GLRT formalism that we use, with complex signals. [Hay03]
applies them for Doppler detection, [Lei+20] for MIMO target detection, and [HTW00; HTW01] mix up
results about the distribution of the maxima of random fields with order statistics for determining PFA-threshold relationships for the matched filter in a general context, but all those studies neglect border
effects and as such are more suited when trying to detect a target globally rather than when the search
space is decomposed into several cells, which is useful for detecting several targets in a given scene.

In Section 3.1, we model the Matched Filter test quantity as a random field. We show the expected
Euler characteristics of the associated excursion sets are good estimates of the PFA: those notions arepresented in Section 3.2. This enables us to compute the PFA-threshold relationships for the Matched
Filter in Section 3.3 under white noise, before obtaining more general (but less precise) relationships
in Section 3.4. We show the links between the tube method and the Euler characteristic in 3.5, before
evaluating in simulations the obtained PFA-threshold relationships in Section 3.6.

The results of this chapter were the subject of publications at the conferences ICASSP 2023 [Dev+23a]
and GRETSI 2023 [Dev+23c].

3.1 . Motivation for the use of Expected Euler characteristics

In section 3.1.1, we start by recasting the off-grid Matched Filter as a random field, a notion that
is formalized in 3.1.2 along with the definition of stationarity for random fields, which will be a crucial
hypothesis for the main theorems used in this chapter. In section 3.1.3, we explain how we will evaluate
the PFA of the off-grid MF using the random field formalism.

3.1.1 . Modelling the off-grid matched filter as a random field

Our goal in this chapter is to evaluate the off-grid MF PFA. By hypothesis, underH0, the received sig-nal r follows a complex circular white Gaussian distribution. The white noise assumption will be manda-
tory in the first proposed results. In this chapter as well, s will denote the normalized and whitened
version of the searched signal. We note Y (ξ) the expression of the MF test quantity in (1.19) tested for a
parameter ξ:

Y (ξ) =
∣∣s(ξ)Hr

∣∣2 . (3.1)
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Recall how in the previous chapter, we showed that the product ∣∣s(ξ)Hr
∣∣ can be rewritten as∣∣s(ξ)Hr

∣∣ = max
α∈[0,2π]

γ(α, ξ)T r ,

where, as we defined previously in (2.3):
γ(ξ, α) = γ1 (ξ) cosα+ γ2 (ξ) sinα ,

with
γ1(ξ) =

[
Re(s (ξ))
Im(s (ξ))

]
,

γ2(ξ) =

[
−Im(s (ξ))
Re(s (ξ))

]
.

r =

[
Re(r)
Im(r)

]
is a 2N -real-valued noise vector following a centered Gaussian distribution of covariance

I2N/2. Recall that α is a phase scalar, such that γ(α, ξ)T r attains its maximum for α = ∠s(ξ)Hr. We
note

X(α, ξ) = γ(α, ξ)T r . (3.2)
Notice how

max
α∈[0,2π]

X(α, ξ) =
√
Y (ξ) .

The PFA to characterize in this chapter can be linked toX . Indeed:
PFA = P

(
max
ξ∈D

Y (ξ) > w2

)
= P

(
max

α,ξ∈[0,2π]×D
X(α, ξ) > w

)
. (3.3)

Our object X is a real-valued random field, a generalization of a stochastic process defined on a multi-
dimensional space. The problem of knowing when a random process exceeds a given threshold is well-
known in the statistical literature and has long been studied (see [Ric44], for example). Since then, it has
also been generalized to random fields [Adl00; Wor94]. In the sequel, we seek to apply the results from
this theory to our random field X in order to find the desired PFA-threshold relationship. Before doingso, we will introduce some basic definitions on random fields and will then study the stationarity of X
and its gradient covariance matrix: we will use this throughout the chapter.

3.1.2 . Some definitions on random fields and basic results onX
Formally, a real-valued random field is a collection of real-valued random variables indexed by ele-

ments in its parameter space T . As for stochastic processes, a real-valued random field Z(t) is said to
be Gaussian if and only if, for any t1, . . . , tk ∈ T , (Z(t1), . . . Z(tk)) follows a multivariate normal distri-
bution. Autocovariance and stationarity are defined similarly to stochastic processes:
Definition 3.1.1. The autocovariance of a real-valued random field Z(t) is defined as the following function
f :

f(t, t′) = E [(Z(t)− E[Z(t)]) (Z(t′)− E[Z(t′)])] ,

Z is said to be stationary i.i.f. f only depends on the difference t− t′.

The quantities Y and X defined in (3.1) and (3.2) are random fields. For Doppler or range detection
when ξ is a scalar (ξ = θ or ξ = r in signal models (1.7) or (1.5)), Y is a 1D χ2

2 random field, while X is a
2D Gaussian random field. For range-Doppler or STAP detection (signal model (1.8) or (1.10)), Y is a 2D

χ2
2 random field andX is a 3D Gaussian random field.
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Remark 3.1.1. Some of the results of this chapter can be obtained by applying results on χ2
2 random fields

to Y (such as the DT characteristic computed in [Wor94]). However, there are more results regarding the
Gaussian random fields in the literature, notably in Adler’s articles [Adl00; ATW07; ATW15], which motivates the
introduction ofX , on which we will focus from now on.

Under white noise, X is easily shown to be stationary for Doppler or STAP contexts (signal models
(1.7), (1.10)): indeedX is centered and:

E
[
X(α, ξ)TX(α′, ξ′)

]
= γ(α, ξ)TE[rrT ]γ(α′, ξ′)

=
1

2
γ(α, ξ)T Iγ(α′, ξ′)

=
1

2
γ(α, ξ)Tγ(α′, ξ′)

and we have shown in (2.59), (2.60) that γ was shift-invariant in those contexts, i.e. the product
γ(α, ξ)Tγ(α′, ξ′) depends only on the differences α′ − α, ξ′ − ξ. The stationarity ofX is thus equivalent
to the shift-invariancy of γ defined in (2.46). The function f that was defined as f ((α, ξ)T − (α′, ξ′)T

)
=

γ(α, ξ)Tγ(α′, ξ′) is also the autocorrelation function ofX , up to a factor 1/2.
The expectancy of the product of the derivatives ofX is constant: indeed,

E

[
∂XT

∂α

∂X

∂α

]
=

1

2

∂γ(ξ)T

∂α

∂γ(ξ)

∂α
,

=
1

2
,

E

[
∂XT

∂ξi

∂X

∂α

]
=

1

2

∂γ(ξ)T

∂ξi

∂γ(ξ)

∂α
,

= 0 ,

E

[
∂XT

∂ξi

∂X

∂ξj

]
=

1

2

∂γ(ξ)T

∂ξi

∂γ(ξ)

∂ξj
,

= −1

2

∂2f

∂ξi∂ξj

∣∣∣∣
0

.

Thus, the covariance matrix of its gradient, which we denote by Λ, is constant:

Λ = E



∂XT

∂α

∂X

∂α

∂XT

∂ξ

∂X

∂α
∂XT

∂ξ

∂X

∂α

∂XT

∂ξ

∂X

∂ξ


 ,

=
1

2
gij

It is half the first fundamental form gij of the manifold γ. In particular, for the centrosymmetric version
of the signal model (2.34), using parametrization ψ = (α, v, u), for which gij = I:

Λ =
1

2
I .

3.1.3 . A result to establish the PFA of the off-grid matched filter
Now that we have established those basic results onX , we are ready to introduce the result that we

will use in this chapter to compute our asymptotic PFA-threshold relationships. It relies on the excursion
set Aw(X) associated with a realization of X for a threshold w, defined as the set of parameters such
that the realizationX(α, ξ) exceeds w [Adl00]:

Aw(X) = {(α, ξ), X(α, ξ) > w} . (3.4)
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Examples of excursion sets canbe seen in figures 3.2.1 and 3.2.2. In [ATW07], it is shown thatE(φ(Aw(X))),
the expected Euler characteristic of Aw(X), that is defined in the next section, is a precise estimation of
the probability ofX(α, ξ) exceeding w and so the desired PFA:

|PFA − E [φ(Aw(X))]| < O
(
exp

(
−cw2

))
, (3.5)

for some c > 1.
Remark 3.1.2. This is actually only true for non-periodic random fields, i.e. random fields of autocorrelation
function f such that [ATW07, Eq. (14.1.12), p.361]:

f(s, t) = 1 ⇐⇒ t = s , (3.6)
We will need to make some adjustments later since the processX we defined is periodic in α.

Computing the expected Euler characteristic of the excursion set of our process X will then be the
focus of this chapter. In the next section, we define what is this Euler characteristic and introduce the
basic tools to calculate it.

3.2 . Expected Euler characteristics: a brief introduction

At the end of the previous section, we showed how the computation of PFAs approximately reduces
to the calculation of the expected Euler characteristic of the excursion set of the random field X asso-
ciated with the manifold γ. This section aims to briefly explain what is the expected Euler characteristic
of the excursion set of a random field and give some intuition as to why it is a good estimate of the
probability of an excursion, and then give the closed-form results we will use to compute the expected
Euler characteristic. This section is written based on Adler’s works [Adl00; ATW15], to which readers are
referred for a more thorough introduction.
Remark 3.2.1. For this explanation to be quick and simple, we will neglect border effects in the discussion
of Subsections 3.2.1 and 3.2.2, however the influence of the border is well taken into account in the formula of
Theorems 3.2.3 and 3.2.4.

3.2.1 . Some words on the expected Euler characteristic of excursion sets and why it ap-
proximates the PFA

We introduced the excursion set of a realization of X in (3.4) as the set Aw(X) of parameters for
which the realization ofX is higher than the thresholdw. To see how the expected Euler characteristic of
this set relates to the PFA, we begin by studying the simple case where the dimension of the parameter
space is M = 1. The random field X is a stochastic process, and Aw(X) is related to the number of
upcrossings Nw above w, a well-known quantity in probability theory. Indeed, counting the number of
disjoint intervals in Aw(X) gives the number of upcrossings (maybe one more if X is already above the
threshold at the start of its definition interval). An example of an excursion set Aw(X) is given in Figure
3.2.1. The expectation of the number of upcrossings is then linked to the probability P (maxt∈[0,T ]X(t) >

w) for a stationary stochastic processX defined on [0, T ] [Adl00, p.3]:
P ( max

t∈[0,T ]
X(t) > w) = P (Nw ≥ 1 orX(0) > w)

≤ P (Nw ≥ 1) + P (X(0) > w)

≤ E[Nw] + P (X(0) > w) (3.7)
And it can be shown that (3.7) can turn into:

P ( max
t∈[0,T ]

X(t) > w) = E[Nw] + P (X(0) > w) +O
(
exp

(
− w

2σ2

))
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Figure 3.2.1: Excursion set Aw(X) of a 1D random field, in red.
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(a) Realisation of a 2D random fieldZ , with an hyperplane
z = w at threshold w level.
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(b) Associated excursion set Aw(Z).
Figure 3.2.2: Realisation of a random field Z and associated excursion set.

It turns out that, for white Gaussian noise, the expectancy of the number of upcrossings was derived in
[Ric44], enabling to get expressions of the PFA in this case.

ForM > 1, we deal with multi-dimensional random fields, and the number of upcrossing is not de-
fined anymore. Instead, we need to consider a generalization of this quantity. Figure 3.2.2 represents
an example of a realization of a random field and the associated excursion set. In order to extend the
approach of the caseM = 1, we should find a quantity that counts the number of non-connected com-
ponents above the threshold. The Euler characteristic of excursion sets will allow us to achieve this. It is
however more involved than the number of upcrossings, so a little explanation is required.

The Euler characteristic φ(A) is a function associating an integer to a set A of RM . Let us give some
classical global characterizations forM = 1,M = 2 andM = 3:

• WhenM = 1, the Euler characteristic counts the number of disjoint intervals so that the expected
Euler characteristic of the excursion sets Aw(X) reduces to the number of upcrossings.

• WhenM = 2, the Euler characteristic is the sum of connected components ofAminus the number
of holes.

• When M = 3, it is the sum of the number of connected components plus the number of holes
minus the number of handles (think of a teacup handle). For example, the Euler characteristic of
a solid ball is 1, while that of a sphere is 2.
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(a) Appearance of a random field around its local maximaabove w for high threshold w level.
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(b) Associated excursion set.
Figure 3.2.3: Appearance of a random field X around a local maxima above w for high w values andassociated excursion set.

What we will need to keep in mind for the discussion below is that the Euler characteristic of a simple,
ellipsoid-like set equals one in any dimensionM .

To understand how the expected Euler characteristic of excursion sets relates to the PFA, we needto study to the shape of sets for which X goes above w. Denoting m a local maxima of a realization
of X above w, it can be proven that X is approximately parabolic around m so that the component
centered aroundm in Aw(X) has a simple,M -dimensional ellipsoïd form, as shown on Figure 3.2.3, of
Euler characteristic 1. Formally, in the neighborhood of the origin, supposing X(0) = w, when w → ∞,
thenX can be expressed as [Adl00, Eq (4.2.1)], with probability one:

X(ξ) = w − w

2σ
ξTΛξ +O(1) .

This result ensures that by computing the expected Euler characteristic of the excursion setE[φ(Aw(X))],
we are counting the number of components above w in multiple dimensions, as we were doing when
computing the number of intervals of Aw(X) in the caseM = 1 (plus another term depending on how
X behaves on the borders of the parameter space).

A rigorous mathematical formalization and proof of this informal discussion can be found in [ATW15,
Chapter 5, 6], leading to Equation (3.5).

3.2.2 . Computing the expected Euler characteristic of excursion sets
Now that we understand intuitively why the expected Euler characteristic will provide an approxima-

tion of the PFA, we will introduce some simple tools that can be used to compute it. First, we will give an
alternative definition of the Euler characteristic of excursion sets that uses local quantities rather than
the global shape of the manifold:
Theorem 3.2.1. [Adl00, Theorem 3.1.3] Let X : RM → R be C2 over a compact T ⊂ RM and assume that
X(t) < w for all t in the border ∂T of T . Then, if the χk, defined later, are all finite, the Euler characteristic of
the excursion set Aw(X) is given by:

φ(Aw(X)) = (−1)M−1
M−1∑
k=0

(−1)kχk , (3.8)
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Figure 3.2.4: Example of a realization of a random fieldX on a 2D parameter space.
where χk is the number of points t ∈ T satisfying the following conditions:

• X(t) = w ,

• ∂X

∂tj
= 0 , ∀j ∈ [1,M − 1]

• ∂X

∂tM
> 0 ,

• the index ofD(t)equals k

whereD(t) is the (M−1)×(M−1)matrix of second derivatives with elements ∂2X

∂ti∂tj
, i, j ∈ [1,M−1]2, and

the index ofD(t) is its number of negative eigenvalues (as a real symmetric matrix,D(t) is diagonalizable).

This characteristization is said to be point-like because we can compute the Euler characteristic of
the excursion set by considering each point separately. Let us use the simple realization ofX on Figure
3.2.4 in the 2D case to show how to use this characterization. The first condition requires that points in
a set χk lie along the contour line X(t) = w. The second condition states that those points should be
critical points of the 1D function ht2(t1) = X(t1, t2) obtained for fixed t2. The third condition implies that
the 1D function h′t1(t2) = X(t1, t2) obtained for fixed t1 increases. See that points A, B, C, D, and E are
the only points that verify the first three conditions. D(t) is a scalar that is worth 1 if t is a local maximum
of a function ht2 , and 0 otherwise. A, C, and E are local maxima for the functions ht2 with corresponding
t2 so that the index of D is 1 for those points and χ1 = 3. B and D being local minima, the index of D
is 0, thus χ0 = 2. Injecting in (3.8) gives 1, which is the value given by the global characterization we
mentioned earlier since this simple excursion set consists only of one connected set with no hole.

Let us then introduce the Kac-Rice "meta-theorem" (or counting theorem), which can be used to get
the mean number of points in T verifying certain conditions.
Theorem 3.2.2. [Adl00, Theorem 3.2.1] Let U and V be RM and RK valued N -parameter random fields on
T ⊂ RN and B ⊂ RK . We note ∇U(t) the N × N matrix of first-order partial derivatives of U at t. Under
regularity conditions on U,∇U and V detailed in [Adl00, p. 24], noting E [N(U, V : N)] the expectation of
the number of points in T such that U(t) = u ∈ RN and V (t) ∈ B , IB(v) the characteristic function of B
(worth 1 if v ∈ B and 0 otherwise), and pt(u,∇u, v) the joint density of (U(t),∇U(t), V (t)), we have, noting
D = N(N − 1)/2 +K:

E [N(U, V : N)] =

∫
T

∫
RD

|det∇u| IB(v) pt(u,∇u, v) d(∇u) dv dt .
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Evaluating this theorem for U =

(
X,

∂X

∂t1
, . . . ,

∂X

∂tM−1

)
, u = (w, 0, . . . , 0), V the vector composed

of ∂X
∂tM

and then the elements of D arranged linearly, and finally B = [0,+∞[×R(N−1)(N−2)/2 yields
the Euler characteristic. Indeed the choices of U and u ensure that the points we are counting follow
the first two conditions of the point-like characterization of Theorem 3.2.1. Then, taking ∂X

∂tM
as the first

component of V and restricting it to [0,+∞] ensures that the third condition is met. Finally, the choice
of R(N−1)(N−2)/2 as the remaining element of B guarantees that the fourth condition is met (this last
choice is less obvious, refer to [ATW15] for a detailed explanation). In the next subsections, we give the
results that come from applying this theorem to 2D and 3D sets, which are the results we rely on for
finding the PFA-threshold relationships.
3.2.2.1 On 2D parameter space

WhenM = 2, the following theorem gives the expected Euler characteristic of the excursion set Aw(X):
Theorem 3.2.3. [Adl00, Theorem 3.3.1] Let X be a zero-mean, isotropic stationary Gaussian random field on
the parameter space T ⊂ R2 with variance σ2 and gradient covariance matrix Λ = λ I and assume that ∂T ,
defined as the boundary of T , is continuously differentiable except at an at most finite number of points. Then

E [φ(Aw(X))] = |T | ρ2(w) +
|∂T |
2

ρ1(w) + φ(T )Ψ
(w
σ

)
, (3.9)

where σ2 is the variance ofX (which does not depend on ξ sinceX is stationary),

ρk(w) =
exp

(
−w2/2σ2

)
λk/2

(2π)(k+1)/2 σk
Hk−1

(w
σ

)
, (3.10)

withHk the k-th Hermite polynomial

Hk(x) = k!

⌊ k
2 ⌋∑
j=0

(−1)jxk−2j

j! (k − 2j)! 2j
.

Note thatH2(x) = x2−1,H1(x) = x, andH0(x) = 1. Ψ denotes the tail of the standard Gaussian distribution
function. |T | denotes the area measure of T , |∂T | denotes the line measure of ∂T .

The main idea of the proof is to apply the Kac-Rice Theorem 3.2.2 with the arguments discussed
earlier on 2D parameter spaces, which make up the first term. Then, adjustments are made to take
border effects into account, which leads to the next terms.

The hypothesis is made thatX is isotropic, i.e. that the autocorrelation depends only on the norm of
the difference of parameters: f(t, t′) can be rewritten f(∥t− t′∥). This hypothesis is made so that X is
stationary on the borders ∂T . In this caseX restricted to |∂T | becomes uncorrelated with its derivatives,
greatly simplifying the application of Kac-Rice Theorem 3.2.2 which yields the simple term |∂T |

2
ρ1(w) as

the second term in (3.9). Additionally in this case Λ, the covariance of the gradient matrix, is expressed
as a scalar λ times I.
3.2.2.2 Of 3D parameter space

Similarly to the case M = 2, for a random process defined on a 3D parameter space, we have the
following theorem to compute the expected Euler characteristic:
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Theorem 3.2.4. [Adl00, Theorem 3.3.2] Let X meet the same conditions as in Theorem 3.2.3, except it is now
defined on T ⊂ R3 and ∂T is twice continuously differentiable except at edges or creases of finite length and
vertices where the edges meet. Then:

E [φ(Aw(X))] = |T | ρ3(w) +
|∂T |
2

ρ2(w) +
H(∂T )

π
ρ1(w) + φ(T )Ψ

(w
σ

)
, (3.11)

whereH(∂T ) is given in Lemma 8 of [Wor95, p.655]:

H(∂T ) =
1

2

∫ ∫
∂T

(cmax + cmin) dtT dtU +
1

2

∫
∂TE

(π − ι) dtE . (3.12)
where (tT , tU ) is a set of unit orthogonal vectors in the tangent plane to the surface ∂T , cmax and cmin are
respectively the maximum and minimum inside curvature at point t. ∂TE is the set of edges of ∂T (void if ∂T
is smooth), tE is the unit tangent vector to ∂TE , and ι is the angular deficiency, i.e. the internal angle of ∂T
at tE between the two tangent planes to ∂T on either side of the edge. |T | denotes the volume measure of T ,
|∂T | denotes the area measure of ∂T . The other terms are defined as in Theorem 3.2.3.

3.3 . Application to the off-grid Matched Filter for white noise (Γ = I)

Now that we understand why the expected Euler characteristic approximation holds and know how
to compute it, we will derive it for our random field X (3.2) to find the PFA of the off-grid GLRT. Let us
first treat the case of one unknown parameter.

3.3.1 . For one unknown parameter
When performing Doppler (or angle) detection using signal model (1.7) (ξ = θ), the random fieldX is

defined on a 2D parameter space T . However, remember that condition (3.6) prevents us from directly
using Theorem 3.2.3 to X by considering a rectangular parameter space [0, 2π] × [θ1, θ2], since when
defined that way, X is periodic. Indeed, it is obvious that contradictions will arise in this case: for our
random field X(α, θ), we defined α as the phase belonging to [0, 2π], but we could also have defined α
as belonging in [0, 4π], for example, so that the parameter space T is either [0, 2π] × D or [0, 4π] × D.
The excursion probability is of course no higher in the second case, but Theorem 3.2.3 will yield different
answers in both instances. The answer to that issue is to consider that the process is borderless along
the axis α, as mentioned informally in [Adl00, Section 5.2]. It is represented schematically as a cylinder
in Figure 3.3.1a, but note that we treat it as a set of R2.

Another issue that appears is that X is not isotropic: indeed, in general, E(X(α, θ)X(α′, θ′)) is not
a function of the norm ∥(α− α′, θ − θ′)∥. However, even though in our caseX is not isotropic, there is no
difficulty seeing thatX is stationary along |∂T |. Indeed, ∂T is defined as the set {(α, θ1), (α, θ2), α ∈ [0, 2π]}.
X restricted on ∂T can be decomposed in two random processes X̄i(α) = X(α, θi), i ∈ [1, 2], and
E
[
X̄i(α)X̄i(α

′)
]
= E [X(α, θi)X(α′, θi)] depends only on α− α′, as we saw in Section 3.1. Furthermore,

as we noticed before when using the centrosymetric signal model (2.34) with X parametrized by (α, v),
the matrix Λ becomes proportional to identity, and the necessary hypotheses of the theorems hold.

The application of Theorem 3.2.3 to this parameter space yields the following corollary:
Corollary 3.3.0.1. The PFA-threshold relationship of the off-grid MF tested on a cellD = [θ1, θ2]with steering
vectors of size N for signal model (1.7) is:

PFA =

(√
π(N2 − 1)

3
(θ2 − θ1)w + 1

)
exp (−w2) +O

(
exp

(
−cw2

)) for some c > 1 . (3.13)
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(b) T treated as an object in R3, with some thickness l.
Figure 3.3.1: Representations of the search domains T for one unknown parameter.

When D = [0, 1], only the first term in the parenthesis should remain: this special case was given
in [Hay03] for Doppler detection based on earlier work from Rice [Ric44]. Note that the order of the
approximation O(.) is missing.
Remark 3.3.1. Contrary to most asymptotic results in the detection literature, we stress that this relationship
(like all the relationships of this chapter) is asymptotic in the threshold w2 but not in N .

Proof. Let us apply Theorem 3.2.3 to our process X for Doppler detection using the centrosymmetric
signal model (2.34). σ2 is equal to the variance of each component of r, i.e. σ2 = 1/2. Λ is equal
to 1

2
I, so that λ =

1

2
in theorem 3.2.3. The terms ρ2(w) and ρ1(w) are thus equal to exp(−w2)

(2π)3/2

√
2w

and exp(−w2)

2π
. As we mentioned earlier, for detection over a single cell, T is shaped akin to a hollow

cylinder. After reparametrizing using, as usual, the centrosymmetric signal model from the proof of
Lemma 2.3.1, v runs from π

√
N2 − 1

3
θ1 to π

√
N2 − 1

3
θ2, such that the cylinder is of radius 1 and height

π

√
N2 − 1

3
(θ2− θ1). This gives the surface |T | = 2π2

√
N2 − 1

3
(θ2− θ1), the length of the borders |∂T | =

4π and the Euler characteristic φ(T ) = 0 since the Euler characteristic of a cylinder is zero [Ale98, p.99].
Injecting everything into (3.9) gives the expected result.

In the case of detection over the whole domain (θ ∈ [0, 1]), T has no border along its Doppler axis
either: |∂T | = 0. T is shaped like a torus so that its Euler characteristic is still zero.
Remark 3.3.2. Alternatively, the same result could be obtained considering that the cylindric parameter space
is a surface embedded in R3, applying Theorem 3.2.4 without relying on the argument that periodic processes
can be considered borderless. Indeed, consider the related random field defined on R3:

X̃(x, y, z) = (xγ1(z) + y γ2(z))
T
r .

When x, y are restricted to the trigonometric circle ((x, y) = (cosα, sinα) for some α ∈ [0, 2π]) and z is in the
search domain D then

X̃(cosα, sinα, v) = X(α, v).

This new process is not periodic anymore: f(x1,x2) = 1 =⇒ x1 = x2. Note how the covariance matrix of
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the gradient Λ̃ is still equal to I times 1

2
: indeed,

E

[
∂X̃

∂x

T
∂X̃

∂x

]
= E

[
∂X̃

∂y

T
∂X̃

∂y

]

=
1

2
γ1(z)

Tγ1(z)

=
1

2
,

E

[
∂X̃

∂x

T
∂X̃

∂y

]
=

1

2
γ1(z)

Tγ2(z)

= 0 ,

E

[
∂X̃

∂x

T
∂X̃

∂z

]
=
x

2
γ̇1(z)

Tγ2(z)

= 0 according to computations similar to that of (2.92) ,
E

[
∂X̃

∂z

T
∂X̃

∂z

]
=

1

2

(
x2γ̇1(z)

T γ̇1(z) + y2γ̇2(z)
T γ̇2(z)

)
=

1

2
according to computations similar to that of (2.96) .

Since T is hollow, it has no volume: |T | = 0. Then, to help us characterize ∂T , consider the case where the
cylinder has a non-zero thickness l, using the same idea as Worsley in [Wor95, Section 4.4] to find the expected
Euler characteristic of the excursion sets of random fields defined on surfaces in R3. This thickened tube is
represented in Figure 3.3.1b. The frontier ∂T is composed of the outer face of the cylinder, the inner face, plus
some terms above and below, and there are 4 edges to the frontier, of angular deficiency ι = π/2. In our case,
the thickness l tends to 0, and the terms contributing in |∂T | are the inner and outer faces of the cylinder so

that |∂T | = 4π2

√
N2 − 1

3
(θ2 − θ1). For each point of the outer face, cmax = 1 and cmin = 0, while on the

inner face, cmax = 0 and cmin = −1, so that the sum of the curvatures on the inner face cancels that of the
outer face. Then,H(∂T ) in (3.12) is determined by the length of the 4 edges 8π: H(∂T ) =

1

2
8π(π − ι) = 2π2.

Injecting in (3.11), we fall back on the result given by formula (3.9).
As in the case of the off-grid NMF, the PFA of the off-grid MF is expressed as the sum of a term

proportional to the length of the cell plus another constant term e−w
2 , equal to the PFA of the on-grid

MF given in (1.27) plus a term of the order O (exp(−cw2)
). The first term corresponds to the probability

of having a local maximum falling in the interior of the search domain. The on-grid term corresponds to
the probability of having a local maximum falling outside the parameter space, but still close enough so
that there is an excursion corresponding to it inside the parameter space.

3.3.2 . Application to the Matched Filter with two unknown parameters
Now let us turn to the problem of finding the PFA-threshold relationship of the off-grid matched

filter with two unknown parameters for STAP detection, using signal model (1.8). The search domain
for ξ is a 2D cell D = [θ1, θ2] × [µ1, µ2], so that X takes 3 parameters as arguments. As in the case of
one unknown parameter, T should be borderless along axis α. T can then be viewed as a rectangular
cuboid of dimensions 2π,∆θ,∆µwhere its faces along the phase axis are stuck together, as represented
schematically in Figure 3.3.2 and which can only be properly represented in higher dimensions. X is still
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Figure 3.3.2: Two unknown parameters, with T treated as an object of R3. In this case, T can be viewedas a rectangular cuboid with two opposite faces stuck together.

not isotropic, but the necessary hypotheses are met for the same reasons as the 2D case when using
the centrosymmetric signal model (2.34) using parametrizationψ = (α, u, v). Let us apply Theorem 3.2.4
to this parameter space:
Heuristic 3.3.1. The PFA-threshold relationship of the off-grid MF with two unknown parameters is given, for
STAP detection (signal model (1.10)) tested on a cell D = [θ1, θ2]× [µ1, µ2] with steering vectors of size NP is:

PFA =

[
π

6
∆θ∆µ

√
(N2 − 1)(P 2 − 1)

(
2w2 − 1

)
+

√
π

3

(
∆θ
√
N2 − 1 + ∆µ

√
P 2 − 1

)
w + 1

]
e−w

2

+O
(
e−cw

2
) for some c > 1, (3.14)

Remark 3.3.3. The result is given as a heuristic because replicating the approach of remark 3.3.2 with this
parameter space is much more involved, and we are not entirely satisfied with relying on Adler’s informal
argument that parameter spaces for periodic processesmust be considered without boundaries [Adl00, section
5.2]. However, we have a very high degree of confidence that this holds, and simulations will strengthen this
belief.

As before, σ2 equals the variance of the terms of r so that σ2 = 1/2, and Λ =
1

2
I so that λ =

1

2
. We

have ρ3(w) = exp(−w2)

(2π)2
(
2w2 − 1

), ρ2(w) = exp(−w2)

(2π)3/2

√
2w, ρ1(w) = exp(−w2)

2π
. After reparametrizing

using the usual centrosymmetric parametrization ψ = (α, v, u) of the proof of Lemma 2.3.1, the cuboid
has a volume |T | =

2

3
π3
√

(N2 − 1)(P 2 − 1)∆θ∆µ and a surface
|∂T | = 4π2

(√
N2 − 1

3
∆θ +

√
P 2 − 1

3
∆µ

)
. The border |∂T | is composed of flat surfaces and the curva-

tures cmin, cmax equal zero. The angular deficiency between the surfaces that make up the ∂T is ι = π/2.
H(∂T ) is thus the product of ιwith half length of the edges 4π, thusH(∂T ) = 2π2. Injecting in (3.11) gives
the expected result.

Once again, when D = [0, 1]× [0, 1], only the first term in the bracket remains.
Three terms appear in the developed formula: the first term accounts for the acceptance zone inside

the surface of the 2D cell, while the second and third terms are the same as in (3.13). The second term
translates what happens at the edge of the cells and is similar to what happens on a 1D cell. The corners
of the cell explain the last term that is, once again, identical to the PFA for the on-grid MF given in (1.27).

Note that we could derive the relationships of this section only becauseX is stationary under white
noise. Unfortunately, the same methods cannot be applied to colored noise as is since X is not sta-
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tionary anymore. In the next section, we investigate a less precise approximation of the PFA-thresholdrelationship under contexts whereX is not stationary.

3.4 . Leading term approximation for detection under colored noise (Γ ̸= I) or using
a chirp waveform

Unfortunately, in the case of colored noise or using a chirp waveform for range or range-Doppler de-
tection (using signal models (1.5) or (1.8)), the randomfieldX is not stationary anymore and the theorems
that we applied in the previous section do not hold anymore, as the results given by the Kac-Rice count-
ing Theorem are more involved (the Lipschitz-Killing curvatures [ATW07, Section 7.6] of the parameter
space appear). However, it is easy to obtain the leading term of the Euler characteristic expansions so
we will obtain an approximation of the order O (wM−2e−w

2
). Indeed, formula (4.3.6) of [ATW15, p.130]

states that, for any real-valued processX with constant variance σ2 defined on RM :

E
[
φ(Aw(X))

]
≈

∫
T

|detΛ|1/2 dt

σ2M−1(2π)(M+1)/2
wM−1 e−w

2/2σ2

. (3.15)
Remark 3.4.1. This leading term approach was taken in [Lei+20] to compute the PFA in the case of MIMO
detection, neglecting border effects.

Remark 3.4.2. Let us check that under white noise case using signal models (1.7) or (1.10) for Doppler or STAP
detection, (3.15) reduces to the terms in respectively w and w2 in (3.13) and (3.14). We use the centrosymmetric
parametrization ψ = (α, v) or ψ = (α, v, u) of the proof of Lemma 2.3.1. In our cases, σ2 =

1

2
. For one

unknown parameter (M = 2), Λ =
1

2
I, so |detΛ|1/2 =

1

2
. |T | = 2π2

√
N2 − 1

3
(θ2 − θ1). Injecting in (3.15),

we can verify that the given approximation of the Euler characteristic reduces
√

π(N2−1)
3 (θ2 − θ1)w (term in

w in (3.13). Similarly, for two unknown parameters (M = 3), |T | = 2
π3

3

√
(N2 − 1) (P 2 − 1)(θ2−θ1)(µ2−µ1),

|detΛ|1/2 =

(
1

2

)1/2

: by injecting in (3.15), we verify that it reduces to the term π
3∆θ∆µ

√
(N2 − 1)(P 2 − 1)w2

(term in w2 in (3.14)).
As can be said earlier, what is interesting is that we can apply this corollary to find the PFA-thresholdrelationship of the off-grid MF under colored Gaussian noise or using a chirp waveform, even thoughX

is not stationary anymore:
• In the case of colored noise using signalmodels (1.7) or (1.10),Λ is equal to half the first fundamental
form gij of γ, and computing the integral in (3.15) is no different than computing the integrals in
(2.32) or (2.40). It can be achieved easily thanks to the derivatives of γ that are given in Appendix
2.D.2, and can be employed whether D = [0, 1] or whether D ⊊ [0, 1].

• It is interesting to see what this approximation reduces to when using a chirp waveform under
white noise (signal model (1.5)). Note that

– ∂γ

∂α

T ∂γ

∂α
= 1,

– ∂γ

∂α

T ∂γ

∂τ
= (− sinαγ1(τ) + cosαγ2(τ))

T
(
− sinα ˙γ1(τ) + cosα ˙γ2(τ)

),
– ∂γ

∂τ

T ∂γ

∂τ
=
(
− sinα ˙γ1(τ) + cosα ˙γ2(τ)

)T (
− sinα ˙γ1(τ) + cosα ˙γ2(τ)

).
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Since γ̇1
Tγ2 = 0 and ∥γ̇1∥ = ∥γ̇2∥,

|detΛ|1/2 =
1

2

(
∥γ̇1(r)∥

2 −
(
γ̇1(r)

Tγ2(r)
)2)1/2

,

=
πh

2B

√
K2 − 1

3
,

where the second equality comes from the computation we made in proof 2.B.2. In the end, the
leading term corresponds to the first term in (3.13) for FMCW range detection.

It is, unfortunately, less easy to obtain the next terms of the expansion. Before moving on to the
numerical tests of our PFA-threshold relationships, in the next section we provide a small intermede
to talk about how the tube method could be applied to the off-grid MF and how it relates to the Euler
characteristic.

3.5 . Applying the volume of tubes method to the MF

While using the tube method to find the PFA-threshold relationship of the MF does not appear as
naturally as in the case of the NMF, it is still possible to use it to get an approximate of its PFA-thresholdrelationship. There are deep links between the tubemethod and the Euler characteristic method [Sun93;
Adl00; TK02], and the results given by both methods are equivalent under a lot of settings, even though
the original approaches are quite different since the tube method is more focused on the geometry
described by manifolds while the Euler characteristic approach consists in considering the parameter
space on which the manifolds are defined. This was of course considerably hinted at by the fact that
the PFA-threshold relationships obtained in this chapter are very similar to the ones we found in the
previous chapter, as an expansion with a leading term depending on the volume of the manifold times
plus another term depending on the surface of the borders, plus a final on-grid term.

To begin with, let us see how to apply the tube formula to the matched filter. Consider the MF
expression given in (3.2) as γ(ξ, α)T r. When r follows a Gaussian distribution, there is a false alarm if
γ(ξ, α)T r > w. Let us note by u =

r

∥r∥
the normalized version of r. The norm of r is a random variable

that follows a χ squared distribution with two degrees of freedom, and u is uniformly distributed on the
unit 2N -sphere. The idea is to condition theMF output to the norm of r. This gives, adapting from [Adl00,
p.53]:

PFA = P

(
max

D×[0,2π]
γ(ξ, α)T r > w

)
=

∫
R+

P

(
max

D×[0,2π]
γ(ξ, α)T r > w

∣∣∣∣∥r∥) fχ2
2
(∥r∥) d∥r∥

=

∫
R+

P

(
max

D×[0,2π]
γ(ξ, α)Tu > w ∥r∥

)
fχ2

2
(∥r∥) d∥r∥

=

∫
R+

Vw∥r∥fχ2
2
(∥r∥) d∥r∥ , (3.16)

where Vw∥r∥ is the volume of the tube of geodesical radius w ∥r∥ around the manifold γ, defined in
(2.8): we once again translated the statistical problem of comparing the maxima of the random field
X(ξ, α) to a threshold to a volume of tube geometrical problem. This problem can be solved using the
results of Chapter 2, multiplying the relationships (2.32), (2.33), (2.36), (2.40), (2.37) or (2.41) (depending
on the context) by the volume of S2N−1 to get the volume of the tube back (the last two relationships
being heuristics). Remarkably, since the methods used in Chapter 2 provided relationships for colored
noise distributions, it means that this volume of tube approach can be applied to find the PFA-threshold
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relationship of the MF for Γ ̸= I. Unfortunately, the overlapping issue highlighted in Chapter 2 only
enables us to provide an approximation of the PFA, and this is unfortunately true for all thresholds.
Indeed, noting wlim the limit threshold for which there is no overlap, and decomposing (3.16) as∫

R
Vw∥r∥fχ2

2
(∥r∥) d∥r∥ =

∫ wlim
w

0

Vw∥r∥fχ2
2
(∥r∥) d∥r∥+

∫ ∞

wlim
w

Vw∥r∥fχ2
2
(∥r∥) d∥r∥ , (3.17)

the volumes Vw∥r∥ in the first term of the right-hand side of the equation are subject to overlap. The
contribution of the overlap in the final result is a priori hard to characterize and is one of the reasons
we used the Euler characteristics in this chapter. It reminds us of the terms O (e−w2/2σ2

) found in our
asymptotic relationships.

3.6 . Numerical validation

In order to verify (3.13) (resp. (3.14)), we computed an empirical PFA-threshold relationship with
5× 107 Monte Carlo draws in the Fourier resolution cell [0, 1/N ] (resp. [0, 1/N ]× [0, 1/P ]), with steering
vectors of fixed sizeN = 10 (resp. N = 8 and P = 4). The results are shown in Figure 3.6.1a (resp. 3.6.1b).
In both cases, the relationship seems to be very accurate, except for PFA close to one where there is a
noticeable mismatch.

We also compared the relationship that we get from using the formula (3.13) , (3.14) in the case of
FMCW range and range-Doppler detection with the empirical PFA-threshold relationship obtained whenusing a chirp waveform (signal model (1.5)). Remember that we have a strong case for doing so in the
case of range detection since Section 3.15 showed that the chirp leading term is the same as the leading
term of the FMCW relationship. Results can be observed in Figures 3.6.2a and 3.6.2b. It can be seen that
the FMCW relationships seem to be rather reasonable approximations of the chirp relationships.

Finally, in Figures 3.6.3a and 3.6.3b, the PFA-threshold relationship obtained empirically for colored
noise using model (1.17) with ρ = 0.9 for the covariance matrix R is compared with the leading term
approximation given by formula (3.15) for signal models (1.7) and (1.10). Unfortunately, in this case, the
approximation is less precise for the PFAs that are commonly used in radar detection. Furthermore, it is
lower than the empirical PFA, while we would prefer upper bounds that limit the risk of false alarms. It is
however still close enough to the true relationship, so that it may be good enough in some applications.
Remark 3.6.1. Those relationships may perhaps be made better for low thresholds using the "non-rigorous"
methodology used in [HTW00; HTW01], making use of order statistics.

3.7 . Synthesis

In this chapter, we derived some asymptoticPFA-threshold relationships for theMatched Filter using
signal models (1.7) and (1.10) thanks to expected Euler characteristics of excursion sets. We achieved
this by modeling the Matched Filter output as a stationary Gaussian Random Field. We showed that
those relationships fit very well with empirical relationships obtained with Monte Carlo draws. For more
involved cases where the random fields are not stationary anymore, i.e. when using signal models (1.5)
or (1.8) for range or range-Doppler detection, or when the covariance matrix R is not proportional to
identity anymore, we can easily compute the leading term of the approximations. The results obtained
are less precise, giving this time a lower bound for the PFA.Table 3.7.1 sums up the results we have been able to derive on the PFA-thresholds of the off-gridMF. Note that "leading term only" only refers to what we have found during this thesis, and it does not
mean that a more precise relationship cannot possibly be found.
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(a) One unknown parameter, signal model (1.7).
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Figure 3.6.1: Theoretical (3.13) (resp. (3.14)) (red) and empirical (blue) relationships obtained under whitenoise using 5 × 107 Monte Carlo draws with N = 10 (resp. N = 8 and P = 4) in Doppler and STAPcontexts (signal models (1.7) and (1.10)). The on-grid relationship (1.21) (yellow) is shown for comparisonpurposes.
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Figure 3.6.2: Theoretical (3.13) (resp. (3.14)) (red) and empirical (blue) relationships obtained under whitenoise using 5 × 107 Monte Carlo draws with K = 40 (resp. K = 40 and N = 10) for range and range-Doppler detection using FMCW relationships obtained through (3.13) and (3.14) (signal models (1.7) and(1.10)), compared with empirical relationship obtained using a chirp waveform (signal models (1.5) and(1.8)). The on-grid relationship (1.21) is also drawn (yellow).
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Figure 3.6.3: Leading term approximations (3.15) (red) and empirical (blue) relationships obtained undercolored noise with ρ = 0.9 in the covariance matrix model (1.17), using 5 × 107 Monte Carlo draws with
N = 10 (resp. N = 8 and P = 4) in Doppler and STAP contexts (signal models (1.7) and (1.10)) The on-gridrelationship (1.21) (yellow) is shown for comparison purposes.
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White noise Colored noiseDoppler (Angle) Yes (3.13) Leading term only (3.15)Range Leading term only Leading term onlySTAP Yes (3.14) Leading term onlyDoppler-Range Leading term only Leading term only
Table 3.7.1: Recap of the PFA-threshold relationships obtained for the off-grid MF.

In the following chapter, we show how to capitalize on thePFA-threshold relationships that we foundin the two previous chapters by developing an efficient approximation of the off-grid GLRT.
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4 - Practical aspects of the off-grid GLRT

In the first section, we presented the off-grid GLRTs as a solution to deal with off-grid targets, and
in Chapters 2 and 3, we studied the statistics of the off-grid GLRT detectors under the null hypothesis,
finding their PFA-threshold relationships. This chapter has amore practical purpose and aims to answer
the question of how to implement the GLRT in practice to cope with the presence of off-grid targets. This
is done through the use of the tools of joint detection and estimation. The chosen methods are then
going to be tested on experimental radar data: the idea will be to showcase the off-grid effects and
correct them with an implementation of the GLRT.

Section 4.1 gives the motivation for finding efficient approximations of the GLRT. In Section 4.2, we
investigate joint detection and estimation as a framework to approximate the GLRT. We test the detec-
tion performance of the chosen methods through simulations in Section 4.3. Finally, in Section 4.4, we
implement those detectors on real data from the ONERA HYCAM radar.

Part of the work in Sections 4.2 and 4.3 was presented in the 2021 SSP Workshop [Dev+21].

4.1 . On the need for approximations of the off-grid GLRT

In Section 1.6, we presented the off-grid GLRT as a way to properly detect off-grid targets, but we
highlighted the fact that these detectors are not straightforward to implement in practice. Indeed, while
the off-grid detectors present the best-known performance for the detection of off-grid targets, in order
to implement them perfectly, an infinite number of tests have to be run on a continuum of unknown
parameters.
Remark 4.1.1. In [De +10a], maximizing the test quantity in the off-grid GLRT is shown to be a semi-definite
positive convex estimation problem, so that interior point methods can achieve the required precision in poly-
nomial time in N.

A simple approximation can be obtained with a simple oversampling of the grid with large factors.
Formally, for one unknown parameter ξ the test oversampled by a factor of L is written:

Λi,L(ξ) = max
j∈[1,L]

Λ(ξj) , i ∈ {MF,NMF}
where the L points ξj are evenly spaced in the cell centered around ξ. Oversampling the grid by a large
factor is what we did, for example, in Section 2.5 and 3.6 to evaluate our PFA-threshold relationships,
where we simulated the GLRT detectors by finely oversampling the grid by factors of 30 to 100 (the main
lobe can be thinner under colored noise as explained in Subsection 1.5.2 and shown in Figure 1.14a and
1.14b, so that the number of samples needed for a satisfying approximation of the off-grid GLRT varies
according to the cell under test and the level of correlation of the noise). This is a valid method to ap-
proximate the behavior of the GLRT offline. However, in operational contexts, radars need to process
data in real-time, andmost of the time, such a costly approximation cannot be performed, and only a low
number of samples will be used. Figure 4.1.1 compares the average detection probability (in the sense
of (1.35)) of the oversampled MF and NMF for Doppler detection (signal model (1.7)) with N = 10 for
different oversampling factors in the case of white noise with thresholds set according to Monte Carlo
trials. It can be seen that in the case of the MF, even small oversampling factors (x2) are good estimates
of the GLRT. However, in the case of the NMF, significant losses in PD are observed for oversampling
factors below 5. In Figure 4.1.2, the same simulations are run with highly correlated noise distribution. In
the case of the MF, it can be observed that the oversampling by a factor of 2 is slightly worse than in the
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Figure 4.1.1: PD versus SNR for oversampled MF and NMF, Doppler detection with N = 10, white noise,
PFA = 10−6.

white noise case in order to approximate the off-gridMF, while still being satisfying formost applications.
However, the average PD of the oversampled NMF (factors x2 and x3) severely decreases. In particular,
the asymptotic PD for the NMF oversampled by a factor of 2 decreases below 0.6, and becomes lower
than 1 for the x3 oversampling factor!
Remark 4.1.2. Remember that, in accordance with the Remark 1.5.3, the asymptotic deficiency for the NMF
will not be observed for N large enough.

Remark 4.1.3. Figure 4.1.4 compares the NMF noiseless response around various frequencies in D0 (which
correspond to the frequencies tested by the NMF oversampled by a factor of 3) for ρ correlation factors of 0.9
and 0.999. As the noise keeps getting more correlated, the NMF response centered at 0 keeps getting thinner:
this was shown in Figure 1.14a. As a result, the PD of the NMF gets lower with the correlation of the noise.
However, see that the response of the NMF gets wider at other frequencies in the cell, centered at θ1 = −0.025

and θ2 = +0.025. This makes the asymptotic average PD over cell D0 of the oversampled detectors increase
with ρ after decreasing for a while, as can be seen by comparing Figure 4.1.2 to Figure 4.1.3.

The bad behavior of the oversampled NMF with a moderate number of samples for the detection
of off-grid targets raises the following question: can we find a better approximation of the off-grid NMF
running on the same low computational budget as an oversampling by a factor of 2? This is the goal of
section 4.2, where we investigate joint detection and estimation to achieve better detection probability
of off-grid targets.
Remark 4.1.4. Since in the rest of this chapter, we will only investigate Doppler detection, the unknown pa-
rameter vector ξ is noted θ.

4.2 . Joint detection and estimation for the approximation of the off-grid GLRT

4.2.1 . Proposed procedure
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Figure 4.1.2: PD versus SNR for oversampled MF and NMF, Doppler detection in cell D0 with N = 10,
ρ = 0.9 in (1.17), PFA = 10−6.
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Figure 4.1.3: PD versus SNR for oversampled MF and NMF, Doppler detection in cell D0 with N = 10,
ρ = 0.999 in (1.17), PFA = 10−6.
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Figure 4.1.4: NMF response at frequencies θ = −0.025, θ = 0 and θ = 0.025 for increasing noise correla-tion factors ρ using signal model (1.7) with N = 10.

As discussed in Section 1.1, classically, detection is the first step in the radar processing chain. It is
then followed by a refined estimation of the target parameters to improve the tracking of the target dur-
ing the next phase. In this section, we consider an alternative processing chain where the detection and
estimation steps are merged into a joint detection and estimation procedure to benefit from the refined
estimation of the parameter during the detection phase, in an attempt to reduce off-grid detection prob-
ability loss due to the presence of off-grid targets. We focus on the case of the signal model (1.7) so that
only one parameter has to be estimated.
Remark 4.2.1. Detecting on a grid is already a means to perform joint detection and estimation. Indeed, if a
target is detected in cell k, with standard Fourier resolution cells of width 1/N using N pulses, then a rough
estimate of its Doppler shift is the center of the cell i.e. θ̂ = k/N .

The new joint detection and estimation step consists of the following:
• Compute a set of tests on the grid as usual (or, equivalently when using signalmodel (1.7), compute
the FFT of the signal).

• For each cell, compute a correction term δ̂i, i ∈ [1, N ] for the possible positions of the target in the
cell using this set of tests.

• Inject this correction into a new set of tests at positions k/N + δ̂k to try and detect the target.
Remark 4.2.2. Once again, we stress that in this procedure, the target parameter θ is systematically esti-
mated for each cell, regardless of whether a target has been detected before.

The idea of performing joint detection and estimation to improve the detection performance has already
been investigated in [GCL10; Aub+20; Xin+11] as a means to regain some of the SNR lost because of the
target parameter uncertainty. In those works, the target power level σ2 is supposed to be known, while
we suppose it to be unknown.

4.2.2 . Estimation techniques for the target parameters
In this section, we investigate common estimation techniques for unknown target parameters. We

retain two estimates:
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• A collection of popular estimators based on interpolating the main FFT lobe is presented in [JK07],
which can be applied for Doppler or angle correction. Their correction term for unwindowed data
is given by:

δ̂inter = −Re

(
Xk+1 −Xk−1

2Xk −Xk−1 −Xk+1

)
, (4.1)

whereXk is the output of the FFT tested at position k/N , expressed as:
Xk = s

(
k

N

)H
r .

Interpolating themain FFT lobe to retrieve an estimate of the Doppler shift ismentioned in [Xin+11]
to apply a robust detection scheme.

• Another popular estimation method for the steering error in radar systems is given by monopulse
techniques [SB11a; Mos69]. Traditionally, those techniques have been developed to get a precise
estimation of the target angular location by computing the ratio between the radar sum and differ-
ence channels, which correspond to the sum and the difference of the received signals at different
angles. Indeed, without noise, this quantity is approximately proportional to the angle deviation
around the mean of both tested positions. It was investigated in a joint detection and estimation
scheme in [GCL10]. In this article, the authors compute the GLRT detector when the sumand differ-
ence channels are available for angle detection and estimation. Similarly, the authors of [ZWB09]
applied an idea related to monopulse to improve the detection rate of multiple unresolved tar-
gets. This approach is extended in [OR11] where a GLRT is derived using the information of three
adjacent matched filter returns.
The "monopulse-inspired" approximation thatwe consider thereafter thatwepresented in [Dev+21]
is inspired by the monopulse estimate but is a far cry from it. We use it to estimate the Doppler or
Angle deviation of a target. in a steering vector (1.7) by computing the ratio of the difference of two
adjacent test points on their sum. We describe our methodology in the following. First, consider
the ratio functions of the received signal (one per cell):

hθ(r) =
ΛNMF (θ − ∆

2 )− ΛNMF (θ +
∆
2 )

ΛNMF (θ − ∆
2 ) + ΛNMF (θ +

∆
2 )

, (4.2)
and the associated functions gθ (also one per cell):

gθ(δ) = hθ(s(θ0 + δ)) , (4.3)
that is designed to give the value of h for a received signal s(θ0 + δ) with a mismatch δ. If g is
one-to-one for values of δ in [−0.5/N, 0.5/N ], then we can retrieve the mismatch information δ
when injecting s(θ + δ) into the function h. It turns out that g is not always one-to-one for Γ ̸= I,
as shown in Figure 4.2.1. Hence in the following, we choose not to whiten the received signal in the
function h: we simply take

hθ(r) =
|Xθ−∆

2
|2 − |Xθ+∆

2
|2

|Xθ−∆
2
|2 + |Xθ+∆

2
|2
, (4.4)

where |Xk| is the absolute value of the FFT at position k/N . We retrieve the mismatch estimate
with:

δ̂mono = g−1
θ (hθ(r)) .

Remark 4.2.3. Traditionally, the monopulse estimate is computed as

δ̂mono = C
|Xθ−∆

2
| − |Xθ+∆

2
|

|Xθ−∆
2
|+ |Xθ+∆

2
|
, (4.5)
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Figure 4.2.1: Functions g inD0 for matrices Γ generated for different values of ρ in (1.17) at different cells.

where C is a constant: this is based on the assumption that the ratio difference/sum varies linearly with
the mismatch δ. From figure 4.2.1, our function g for ρ = 0 is also quite linear near 0, but not so much
near the edges. We thus propose instead to take one more step and inverse g to get a more precise
approximation of δ, with negligible computational cost once g has been tabulated.

Remark 4.2.4. Those estimates are easily extensible to signal model (1.10) (STAP or FMCW detection). Two
estimates are obtained for each cell and introduced in the final detection test.

The two estimates δ̂inter and δ̂mono present the advantage of being very fast to compute once the FFT
samples Xk have been obtained. When computing δ̂inter and δ̂mono, the received signal is not whitened:this may not give the optimal estimation of δ in colored noise context for low SNR, but this is fine: our
main goal is to correct the asymptotic PD deficiency of the NMF, and for high SNR, the noise is going to
be negligible compared to the useful component of the signal.

4.2.3 . Used detectors
Following our investigation of estimation techniques for the unknown target parameters, the detec-

tors we consider in the sequel are of the form:

Λinter(θ) =
∣∣∣s(θ + δ̂inter)HΓ−1 r

∣∣∣2(
s(θ + δ̂inter)HΓ−1 s(θ + δ̂inter)

) (
rHΓ−1 r

) H1

≷
H0

w2 , (4.6)

and
Λmono(θ) =

∣∣∣s(θ + δ̂mono)HΓ−1 r
∣∣∣2(

s(θ + δ̂mono)HΓ−1 s(θ + δ̂mono)
) (

rHΓ−1 r
) H1

≷
H0

w2 , (4.7)

where δ̂inter and δ̂mono have been introduced in (4.1) and (4.4). They should be used in the context wherethe power level of the noise σ2 is unknown (NMF assumption). While the first set of tests used in the
estimators are simple FFT s (without whitening the signals), this set of tests should be computed as
usual, i.e. whitening and normalizing the received signal.

The thresholdsw2 to be used should bemodified compared to theNMF threshold given by (1.27) since
the test parameters θ + δ̂inter and θ + δ̂mono depend on the received signal. However, those thresholds
are hard to evaluate theoretically since they depend on the non-independent random variables r, δ̂inter
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or δ̂mono, which is why at first glance they need to be evaluated through Monte Carlo trials. However, we
will show later that the PFA-threshold relationships derived in Chapter 2 are good approximates of the
PFA-threshold relationships of those detectors.Finally, let us describe someproperties of this approach. First, see thatwhen the SNR tends to infinity,
r is equivalent to αs(θ) and our procedure yields the true parameter value i.e. θ̂ = θ. This ensures that
the probability of detection tends to 1.
Remark 4.2.5. In the classical monopulse context, when Γ = I, θ̂ is an approximate MLE [Mos69] and the test
is an approximate GLRT. Simulations will show that our procedure is still close to the GLRT even when Γ ̸= I.

Our goal in introducing those detectors was to approximate the GLRT performance with a low com-
putational cost. This objective is met, since:

• Computing the first set of on-grid tests has the same computational cost as a regular NMF test
procedure.

• Then, computing the estimates δ̂inter or δ̂mono using the FFT samples obtained during the first step
requires only additions and divisions of scalars and has a negligible computational cost compared
with computing the NMF tests. The operation g−1

θ reduces to a simple lookup table operation once
the functions gθ have been tabulated offline.

• Finally, computing the last set of tests that are performed in each cell has once again the same
computational cost as a standard NMF test procedure.

In the end, we see that the joint detection and estimation scheme has the same computational cost
as oversampling by a factor of 2. We will show in the next section that its detection performance in
simulations is considerably better.
Remark 4.2.6. It would be incorrect to claim that since the estimate δ̂ would be computed anyway during the
estimation phase, this procedure does not increase the overall computational cost. Indeed, in the standard
radar processing chain, the refined estimates are only computed when a target is detected, while we compute
those estimates systematically for each resolution cell, leading to an increasing computational burden.

4.3 . Numerical Evaluation

The goal of this section is to evaluate numerically the detectors proposed in Section 4.2 through sim-
ulations. Since the final objective that we fixed in Section 4.1 is to approximate the off-grid NMF detector
for Doppler detection, the emphasis is made on the comparison with this detector. In Subsection 4.3.1,
we check if the PFA-threshold relationships of the obtained detectors approach the PFA-threshold re-
lationship computed in Chapter 2. In Subsection 4.3.2, we compare the PD of the obtained detectors.
Since the estimates in the detectors have been designed under the assumption of a white noise scenario,
we test their robustness against colored noise distributions.

4.3.1 . Comparison of the PFA-threshold relationships
As mentioned in Subsection 4.2.3, the derivation of the PFA-threshold relationships of the detectors(4.6) and (4.7) are more involved to compute than the PFA-threshold relationship of the NMF since the

tested point θ0 + δ̂ is depends on the signal under test. See in Figure 4.3.1 that there is a significant
gap between the PFA-threshold relationship of the NMF and that of the considered detectors. It would,
however, be nice if we could obtain an approximation of those relationships so that the threshold can
be set without having to resort to Monte Carlo simulations. Let us thus compare the PFA-thresholdrelationships of those detectors with the PFA-threshold relationship of the off-grid NMF (2.33) obtained
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in chapter 2 under white noise. The corrected test parameter θ + δ̂ being covered in the maxθ∈D of
the GLRT, we know that this is necessarily an upper bound so that it can be used without running the
risk of increasing the false alarm rate. Furthermore, since the detectors are an approximation of the
GLRT, there is a good chance that their PFA-threshold relationship is close to that of the GLRT. This
comparison can be seen in Figure 4.3.1 for the case of white noise and strongly colored noise (ρ = 0.9

in the model (1.17)). Under white noise, the PFA-threshold relationships of the detectors seem to fit
well with the PFA-threshold relationship (2.33) for low enough PFA (recall that for high PFA, the PFA-threshold relationships derived with the volume of tubes method suffer from overlap phenomena so a
mismatch was to be expected), although a small difference can be noticed (which seems to be stronger
for Λmono). Under colored noise, this difference increases a bit, especially for high PFAs.

4.3.2 . Comparison of the PD
In this section, we compare the detection performance of the chosen detectors with detectors of the

same range of computational cost: the subspace-based DPSS NSMF mentioned in Subsection 1.5.3 with
subspaces of size M = 2 (which was the dimension chosen in [RBO16]), and the NMF oversampled by
a factor x2, described at the start of this chapter. Target parameters are drawn uniformly in given cells,
and the signals are embedded in Gaussian Noise, with covariance matrices generated using the model
(1.17). As usual in Radar detection, a given PFA is fixed (here, the PFA is fixed at the low value 10−6).
For a precise evaluation of the detectors, thresholds are fixed with Monte Carlo simulation. The mean
detection rate is drawn for each SNR value. Results can be seen in Figure 4.3.2 for white noise (recall that
in that case, the detection performance does not depend on the tested cell) and in Figure 4.3.3 for highly
colored noise (ρ = 0.9) in cells D0 and D5.

First, let us note that themonopulse-based detector and the interpolation-based one offer very close
PD , with Λmono offering very slightly better performance across all tested contexts, which indicates more
robustness to noise. The performance offered is very close to those of the off-grid NMF: the only signifi-
cant gap seems to appear in cell D0 for ρ = 0.9, which may be explained by the fact that the covariance
matrix Γ is not taken into account in the estimation of δ. As such, the PD of those detectors tend to
1, which corrects the major flaw of the NMF detector that we were trying to correct, even in the cell D0where its competitors, the oversampled NMF by a factor of 2 and the subspace-based DPSS NSMF do not
reach an asymptotic PD of 1. This brings up our third point: the joint detection and estimation strategy
seems to always perform better than oversampling by a factor of 2 or approximating the cell structures
as subspace. Along with the fact that we dispose of a convenient approximation of the PFA-thresholdrelationships in the relationships computed in Chapter 2, those detectors look like good candidates to
approximate the GLRT detection performance of off-grid targets. In the final part of this chapter, we will
study the performance of those detectors when applied on real data.

4.4 . Implementation on real data

4.4.1 . The HYCAM radar dataset
HYCAM [Bro+13] is a demonstration Radar developed by ONERA, which can be seen in Figure 4.4.1.

It is located in the Onera Palaiseau center, near Orly airport, as can be seen on the map displayed in
Figure 4.4.2. Its main goal is to record raw signals to test novel concepts such as new waveforms or
multifunction radar. Our dataset consists of 83 recordings of civil aircraft departing or arriving at Orly
airport. Acquisitions have all been performed on the same day. The transmitted waveform is a train of
simple chirp pulses (signalmodel (1.5)) of duration 2µs, bandwidthB = 2MHz, with aPRI of 200µs. The
carrier frequency is 3Ghz. The range resolution is thus 75m, according to (1.6). The Doppler resolution
depends on the number of pulses used: for N = 10 pulses, the Doppler resolution given by (1.9) is of
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Figure 4.3.1: Comparison of the PFA-threshold relationships of (4.6) and (4.7) with the PFA of the off-gridGLRT (2.33) and the PFA of the NMF under Gaussian noise with N = 10, in one resolution cell.

500Hz, meaning the radar can differentiate targets that have at least a difference of 25m.s−1 in radial
speed. Each of those recordings corresponds to a collection of bursts of 2500 pulses. For each recording,
openly available flight path information enables access to the knowledge of the true target range, and
after distance compression, only the 30 range bins closest to the target are kept in the recording.
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Figure 4.3.2: PD versus SNR of the detectors Λinter (4.6), Λmono (4.7), the DPSS NSMF with subspace size
M = 2 and the NMF oversampled by a factor of 2, the standard NMF (1.25), the off-grid NMF (1.37), andthe oracle detector, with N = 10 under white noise and a fixed PFA of 10−6.
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(a) At cell D0.
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(b) At cell D5.
Figure 4.3.3: PD versus SNR of the detectors Λinter (4.6), Λmono (4.7), the DPSS NSMF with subspace size
M = 2 and the NMF oversampled by a factor of 2, the standard NMF (1.25), the off-grid NMF (1.37), andthe oracle detector, with N = 10 with ρ = 0.9 (1.17) and a fixed PFA of 10−6.
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Figure 4.4.1: Picture of the HYCAMRadar, taken from[Cat+13].
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Figure 4.4.2: Position of HYCAM relative to Orly air-port.
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(a) With clutter.
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(b) With mean removed.
Figure 4.4.3: Doppler-Range map obtained by performing a Fast Fourier Transform on N = 30 pulses,keeping 30 range bins that are the closest to the target.

Remark 4.4.1. Neglecting steering mistakes that can happen at the start and the end of an acquisition, a
target should always be present in our data. However, for some recordings, there was a mistake in the target
information so the direction in which the radar looked contained no target. For these recordings, data consists
of noise and clutter only.

Computing the Fast Fourier Transform along the Doppler axis yields a Doppler-Range map as can
be observed in Figure 4.4.3a. In all the acquisitions, a ray can be seen at zero Doppler. This is due to
stationary clutter returns, and it has to be filtered out by removing themean of each range bin over each
pulse. The resulting map can be seen in Figure 4.4.3b. After this operation, we can reasonably assume
the noise to follow a white Gaussian distribution.

4.4.2 . Highlighting the off-grid effects on the probability of detection of the NMF
Before implementing the detector studied in this chapter, let us verify that the presence of off-grid

targets degrades the probability of detection of the Normalized Matched Filter. Indeed, according to
Subsection 1.5.2, the presence of off-grid targets should degrade theNormalizedMatched Filter detection
probability so that it does not converge to 1 with the SNR.

In order to showcase this effect, wewill compare theNMFdetection ratewith that of the off-grid NMF.
Indeed, the SNR of the target is the same in both cases, but the target should be detected more often
by the off-grid NMF. To do this, we will need to implement the off-grid NMF. Since we do not have any
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Figure 4.4.4: Comparison of the empirical PFA-threshold relationships obtained empirically in the HY-CAM recordings with the off-grid relationship computed in (2.33) and the on-grid relationship (1.27), using
N = 10 pulses. In the selected data samples of both upper figures, the theoretical relationships do notfit well with the empirical PFAs, while it does for the selected lower figures.

computational cost requirement, we will simply approximate it by zero-padding the FFT, oversampling
by a factor of 30. We also need to set the threshold: for that purpose, wewant to see if thePFA-thresholdrelationship (2.33) for Doppler detection under white noise derived in Chapter 2 fits with the empirical
distribution that can be observed on the real radar data. The results of this experiment can be seen in
Figure 4.4.4, where each subfigure corresponds to the comparison of the PFA-threshold relationship fora given target recording, processing the data 10 pulses per 10 pulses. To compute the empirical PFA,we use off-grid NMF samples that are not in the Doppler cell where the target was detected nor in the
adjacent cells, and we exclude the zero-Doppler cell where the clutter has been removed. Overall, the
results are mixed: on the one hand, for part of the recordings (down), the relationship fits very well with
what can be observed, but on the other hand, for some recordings (up), the relationship does not fit at
all. In fact, the recordings for which the relationship fits well correspond to recordings where no target
is present. We can presume that the noise plus clutter samples that are used for the data in which a
target is present are contaminated by secondary lobes created by the target and thus do not follow a
white Gaussian distribution. In any case, those results are still good enough for us to validate our results
from Chapter 2 and prove the practical interest of the developed relationships. They can also be used
to discriminate a scene where no target is present from a scene contaminated by a target, which is what
we look to achieve here.
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Now that we know how to fix the PFA, we are interested in comparing the probability of detection
of the NMF and the off-grid NMF. Figure 4.4.5 represents scatter plots of the detection rate of those de-
tectors versus the SNR, which are computed over windows ofW = 15 consecutive bursts of 10 pulses.
When the target parameters are approximately constant overW consecutive scenes (this is the case for
low values ofW , including the value of 15we chose), averaging the detection rate overW scenes enables
us to get a reliable estimate of the PD of the detectors for those target parameters and this SNR. The
SNR is here empirically defined as the log of the average of the max of the oversampled Fourier trans-
form (which most likely corresponds to the target) in each of the 15 scenes, divided by the average of the
Fourier transform elsewhere in the scenes. Formally, notingFFT i the oversampled Fourier transform in
recording i, and ξiM = argmaxξ∈GO

FFT i(ξ) the parameters where the maximum of the Fourier trans-
form is attained for each recording, noting GO the oversampled grid over which the FFT is computed
and noting θ the Doppler component of ξ:

SNRempirical = 10 log10


W∑
i=1

FFT i(ξiM )

W∑
i=1

∑
ξ∈GO,|θ−θiM |>1/N,|θ|>1/N

FFT i(ξ)/Ni

 ,

where Ni is the number of points in the sum ranging on ξ ∈ GO, |θ − θiM | > 1/N . The off-grid phe-
nomenon is highlighted by the fact that when the SNR is large enough, the detection rate of the off-grid
GLRT is always 1, but this is not the case for the standard NMF: indeed, remark that in both plots there
are points at high target SNR (> 25) for which the target is never detected by the NMF. Thus, for some
target parameters, the NMF exhibits a probability of detection of 1 at high SNR , but for some parame-
ters, its probability of detection is 0 or somewhere between 0 and 1. The off-grid deficiency of the NMF
is further illustrated in Figure 4.4.6 which shows some NMF GLRT and NMF Doppler profiles separated
by 0.5s each, computed at the true range of the target. The target starts off-grid, with a Doppler shift
almost exactly between θ = 3/N and θ = 4/N . The target is seen by the NMF GLRT, but not the NMF.
Over time, the target Doppler gets closer to θ = 4/N . At this point, it is detected both by the NMF GLRT
and the NMF.

4.4.3 . Empirical performance of the detectors
In the previous section, we confirmed that the on-grid NMF used on the HYCAM radar dataset suffers

from a loss in detection performance compared with the off-grid GLRT, as we predicted in Subsection
1.5.2. Our goal in this section is to implement the detectors Λmono, Λinter considered earlier in the chapterand confront them to the NMF oversampled by a factor of 2. Following the results of subsection 4.3.1
as well as our findings on the PFA-threshold of the GLRT on empirical data in the previous section, the
thresholds fixed for theΛinter andΛmono detectors are those found using (2.33), whichmay be considered
as a precise upper bound. For full fairness of the comparison, the threshold for the NMF oversampled by
a factor of 2 is fixed using Monte Carlo simulations, (we do not take the threshold for the off-grid GLRT,
which is a bit higher). The detection performance of the detectors is evaluated in the same way as in the
previous section, through SNR versus detection rate scatter plot. The results on selected acquisitions (the
same as for Figure 4.4.5) can be seen in Figure 4.4.7. The results observed in Figure 4.3.2 corroborate
what could be seen in simulations: for all tested SNR, both Λinter and Λmono perform considerably better
than just oversampling the NMF tests by a factor of 2, consistently over all tested acquisitions. This
suggests that those detectors are robust to practical conditions. Both tested detectors present similar
performance on average.

To follow up this study, it would be interesting to extend the comparison of Λinter, Λmono and the
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(b) Aquisition 2
Figure 4.4.5: PD versus SNR of the standard NMF (1.25) and the off-grid NMF (1.37) computed on windowsof 15 consecutive sets of bursts of N = 10 pulses, for a fixed PFA of 10−6 on selected recordings fromthe HYCAM database.

oversampled NMF on real data in correlated noise contexts where the oversampled NMF detection rate
does not converge to 1.

4.5 . Synthesis
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Figure 4.4.6: Evolution of NMF GLRT (up) and NMF (down) test quantity over time. Doppler profiles arecomputed using N = 10 pulses, at the range bin of the target. The acquisitions are separated by 0.5s.

In this chapter, we have first been interested in investigating the joint detection and estimation lit-
erature as a way to approximate the off-grid GLRT. We proposed two estimates to inject in the NMF
detection test, based on interpolation and a "monopulse-inspired" technique. Numerical simulations
show that those detectors perform well against white noise, better than the simple solution based on
oversampling the GLRT. Besides, the theoretical PFA-threshold relationship of the NMF GLRT derived in
Chapter 2 is a close upper bound for the PFA-threshold relationships of those detectors.In the second part of this chapter, we aim to test those detectors against real data from ONERA’s
HYCAM radar. We show, using noise-only acquisitions, that the PFA-threshold relationships derived in
Chapter 2 are verified for scenes without targets, and that, as predicted, the NMF does not perform
well against real, off-grid targets: its PD does not converge to 1with the SNR. Then, we observe that both
detectors introduced performwell in simulations, reaching a detection rate of 1with SNR and performing
considerably better than oversampling the NMF by a factor of 2.
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(b) Aquisition 2
Figure 4.4.7: PD versus SNR of Λinter (4.6), (4.7) and the NMF oversampled by a factor of 2, computed onwindows of 15 consecutive sets of bursts ofN = 10 pulses, for a fixedPFA of 10−6 on selected recordingsfrom the HYCAM database.
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5 - Conclusion and perspectives

Conclusion

During this thesis, we worked on the off-grid GLRTs, the standard GLRTs used in the detection liter-
ature but tested continuously over the whole parameter space. We focused on the off-grid Normalized
Matched Filter and the off-grid Matched Filter. While conceptually simple, no analytical forms exist for
those detectors, making their theoretical analysis and efficient implementation hard to achieve.

Ourmajor focuswas the search ofPFA-threshold relationships for those detectors. We achieved that
goal thanks to the use of non-standard tools in the detection community, based on the volume of tubes
and the expected Euler characteristic of excursion sets, two approaches that seem very different at first
but are actually closely linked. We hope that our presentation of those tools gave the interested reader
a glimpse of how powerful they are for dealing with continuous statistical problems. PFA-thresholdrelationships are proposed for one or two unknown parameters for the off-grid NMF and the off-grid
MF. They are only exact for low enough PFA (or equivalently, high threshold w2 values) in the case of
the off-grid NMF, which is derived, and asymptotic in the threshold w in the case of the off-grid MF.
Simulations validate our results as the found theoretical relationships fit perfectly with what is observed
empirically through Monte Carlo simulations.

Noting that the performance offered by a simple oversampling of the signal was not always satisfying,
our other contribution was to find how to approximate the off-grid NMF at a low computational cost,
thanks to tools from the joint detection and estimation procedure. The obtained detectors are based
on an interpolation of the main Fourier transform lobe and on a monopulse-inspired technique. They
present theoretical performance close to that of the off-grid GLRT, and their PFA-threshold relationshipsarewell approximated by those found earlier in themanuscript. Tests on experimental data fromHYCAM
radar enable us to highlight the effects of off-grid targets on the PD of the NMF and validate the PFA-threshold relationships found in the manuscript. The proposed detectors are then tested against these
experimental data, and they exhibit good detection performance, outperforming a simple oversampling
of the NMF by a factor of 2.

Some avenues for future research are highlighted in the next section to expand the results of this
thesis.

Perspectives

The case of adaptive detection
In this thesis, we focused on the non-adaptive case, i.e. we supposed that the covariance matrices of

the noise plus clutter distribution wewere dealing with were known, up to a scale factor in the case of the
NMF. But in practice, the covariance matrix will have to be estimated from the data: this is the adaptive
problem, explained in Subsection 1.3.3. The adaptive detectors also suffer from an off-grid mismatch of
the target parameter, as can be seen in Figure 5.0.1a in the case of Kelly’s detector (1.28) and in Figure
5.0.1b in the case of the ANMF (1.29) [BRO20].

To fight against this off-grid mismatch, the adaptive off-grid GLRT can naturally be defined as:

ΛKelly-GLRT = max
ξ∈D

∣∣∣s(ξ)HR̂−1 r
∣∣∣2(

s(ξ)HR̂−1 s(ξ)
) (

1 +
1

S
rHR̂−1 r

) H1

≷
H0

w2 .
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(a) Kelly’s detector.
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(b) ANMF.
Figure 5.0.1: Comparison of the average PD over a cell of Kelly’s detector and the ANMF for Dopplerdetection (signal model (1.7)). The oracle detector knows the true position of the target, but not the truecovariance matrix. The SNR is again fixed as the maximum achievable SNR when R and the position ofthe target θ are known i.e. SNR = |α|2s(θ)R−1s(θ). N = 10 pulses, S = 20 training samples in cell D0,using covariance matrix model (1.17) with ρ = 0.9. PFA = 10−6, with thresholds set through Monte Carlosimulations.

in the case of homogeneous noise power level, and

ΛANMF-GLRT = max
ξ∈D

∣∣∣s(ξ)HR̂−1 r
∣∣∣2(

s(ξ)HR̂−1 s(ξ)
) (

rHR̂−1 r
) H1

≷
H0

w2 .

in the casewhere the power level of the noise differs from the training data. As can be seen in Figure 5.0.1,
the oracle PD is largely recovered when using the GLRT tests, even when accounting for the increased
threshold.

An interesting extension of the thesis work could be to extend the developed PFA-threshold rela-
tionships to those detectors. However, this case seems much more involved. Consider the ΛANMF-GLRTdetector, for example. Since R̂ is mismatched w.r.t. R, the vector R̂−1/2r is not properly whitened and
does not follow a white Gaussian distribution. As a result, it is not uniformly distributed over the unit
sphere, making it impossible to replicate the geometrical tube approach taken in Chapter 2 without ad-
justments. An early intuition could be to look at the volume of inhomogeneous tubes [KTT22], whose
radius depends on the tested point on the manifold: the radius of the tube could be expanded around
areas where the noise is concentrated.
Remark 5.0.1. Note that the search for the PD of the off-grid GLRTs could also perhaps be achieved using
those tools.

PFA-threshold relationships for the oversampled detectors
While we found satisfying PFA-threshold relationships for the off-grid GLRTs, which are continuousmaximums, the case of the oversampled detectors is surprisingly considerably harder to treat. Con-

sider the case of one of the detectors (MF or NMF) oversampled on L points. Clearly enough, the PFA-threshold relationships derived in this thesis give some upper bounds. Another bound that is easy to
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Figure 5.0.2: Comparison of the empirical PFA-threshold relationships obtained empirically oversam-pling the MF test with the Bonferroni bounds (5.1), the continuous relationship (3.13) and the min ofthose two relationships, using signal model (1.7) with N = 10 under white noise.

derive is the Bonferonni bound, obtained as [TWG07]:
PFAbon = LPFA, (5.1)

where the PFA referred to is the on-grid PFA ((1.21) or (1.27)). Which bound is better depends on the
roughness of the underlying random field, the Bonferroni bound being better when the tested points
are approximately independent. Taking theminimumof bothPFA-threshold relationships yields a betterupper bound PFAbound. A comparison between the Bonferonni bound, the continuous PFA-thresholdrelationship (3.13) and the empirical PFA-threshold relationship of the MF oversampled with factors 2
and 5 can be seen on Figure 5.0.2. While the Bonferonni bound is precise for L = 2, it gets worse for
an oversampling factor L = 5. An idea for future research could be to improve this bound, possibly
starting by investigating the methods given in [TWG07], which aim to combine both bounds to give a
more precise relationship.
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6 - Résumé en Français

Depuis lemilieu du 20ème siècle, les systèmes radar sont largement utilisés dans des contextes civils
et militaires pour la détection et le pistage de cibles. Leur principe est bien connu: ils émettent une onde
vers une scène et, si une cible est présente dans la scène, le signal revient vers le radar par effet écho.
La cible sera alors détectée par le radar, qui peut poursuivre par l’estimation des paramètres de la cible
et son pistage.

L’utilisation de méthodes de traitement du signal est nécessaire pour convertir ce principe physique
en un système utilisable en pratique. La théorie de la détection est utilisée dans la première étape de la
chaîne de traitement radar. Elle vient fournir des tests de détection, qui sont utilisés pour séparer des
échos d’un cible d’un bruit ambiant ou renvoyé par des éléments fixes de la scène, tout en limitant une
probabilité de fausse alarme via le choix d’un seuil adapté. La procédure la plus courante, dite du Rapport
de Vraisemblance généralisé (TRVG) consiste à remplacer les paramètres inconnus du signal attendu par
leur maximum de vraisemblance (MV) dans le rapport de vraisemblance. Cependant, il n’existe pas tou-
jours de forme analytique pour le MV de paramètres inconnus: c’est notamment le cas pour la distance
des cibles au Radar, leur décalage Doppler, ainsi que l’angle qu’elles forment avec un réseau de capteur.
Dans ce cas, la solution classique consiste à discrétiser l’espace de recherche des paramètre en une
grille fixe, de telle manière à avoir des tests statistiquement indépendants, pour pouvoir ensuite tester
la présence d’une cible pour chaque hypothèse sur la grille. Bien sûr, en pratique, les vrais paramètres
de cible ne seront jamais parfaitement alignés avec les paramètres sur grille. Cette désadaptation, en
retour, va avoir un impact négatif sur les performances de détection des détecteurs classiques. Il est
bien connu, par exemple, que le Filtre Adapté (MF) présente l’équivalent d’une perte de 3dB en Rapport
Signal à Bruit (RSB) par paramètre inconnu dans le pire des cas. Le cas du Filtre Adapté Normalisé (NMF),
utilisé dans des contextes où le niveau de puissance du clutter est difficile à estimer, tel qu’en contexte
marin, est plus spectaculaire. En effet, pour un nombre d’échantillon faibles à modérés, la probabilité
de détection moyenne de ce détecteur ne tend plus vers 1 avec le RSB quand les paramètres de cibles
sont uniformément répartis dans une cellule.

Pour pallier ce problème, plusieurs approches sont envisagées dans la littérature.
• Quand le problèmededétection est envisagé commeunproblèmede reconstructionparcimonieuse
(la parcimonie venant du faible nombre de cibles présente dans la scène), les performances de dé-
tection sont très fortement dégradée par la présence d’une désadaptation hors grille. Les solutions
envisagées consistent en un raffinement du dictionnaire ou en l’introduction d’une perturbation
linéaire.

• Les approches pratiques en radar consistent en l’utilisation d’une fenêtre d’apodisationpour aplatir
le lobe principal en contrepartie d’une perte en RSB et d’une corrélation du bruit, ou à surréchan-
tillonnage fin du signal reçu, qui permet d’améliorer les performances en détection au prix d’un
coût en calcul plus élevé.

• Endétection telle que classiquement envisagéedans la communauté traitement du signal, plusieurs
études ont été menées pour réaliser une détection robuste à une désadaptation entre le modèle
de signal attendu et le vrai signal reçu. Cesméthodes ne sont toutefois pas toujours adaptées pour
le traitement de la désadaptation hors-grille. Supposons que le vrai signal reçu repose dans un
cône autour du signal de référence, par exemple. Englober toute la variété des signaux hors-grille
dans le cône impose une borne inférieure à la probabilité de fausse alarme (PFA), hors en radar,on travaille couramment avec des PFA très faibles, de l’ordre de 10−6. Une autre approche con-
siste à fusionner les étapes de détection et d’estimation du paramètre de cible dans la chaîne de
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détection radar. Le paramètre inconnu est estimé, pas forcément au sens du TV, souvent via une
approximation au premier ordre dumodèle de signal radar, puis injecté dans un test de détection.

Durant cette thèse, nous choisissons de nous focaliser sur ce que nous appellerons le TRVG "hors-
grille", qui consiste simplement à effectuer le test de détection du TRVG en continu sur tout l’espace des
paramètres de cible possibles. Cette solution semble proposer lameilleure probabilité de détection pour
une probabilité de fausse alarme donnée. Bien que simple conceptuellement, elle présente toutefois
plusieurs désavantages. D’une part, la statistique de ce test est plus difficile à évaluer théoriquement
que la statistique des tests sur grille, car elle dépend de la distribution d’un continuum de variables
non-indépendantes. En particulier, sa statistique sous l’hypothèse nulle, qui permet de fixer un seuil
correspondant à une PFA donnée, est inconnue. D’autre part, une implémentation naïve de ce test
en pratique suppose la réalisation d’un grand nombre de tests en surréchantillonant finement la grille.
Cependant, la puissance de calcul requise pour implémenter ce surréchantillonnage n’est pas toujours
disponible dans des conditions opérationnelles réelles. Les contributions réalisées lors de cette thèse
visent donc à étudier la statistique des TRVG hors-grille sous l’hypothèse nulle ainsi qu’à la recherche de
méthode dans l’état de l’art offrant des performances de détection similaires à celle de ces détecteurs
présentant un coût en calcul raisonnable.

Dans le chapitre 2, nous montrons que la recherche du seuil pour le NMF hors-grille revient à un
calcul géométrique. Plus précisément, on montre que pour un seuil donné w et un signal complexe de
N échantillons, la PFA du NMF s’exprime comme le rapport du volume d’un tube de rayon ϕ = cos−1 w

autour de la variété des signaux normalisés sur la surface totale de la sphère S2N−1. Nous introduisons
les outils nécessaires au calcul du volume de tube, et notamment la formule de Weyl, que l’on applique
aux variétés définies par nos différents modèles de signaux. La formule de Weyl n’étant exacte que
quand il n’y a pas de recouvrement du tube par lui-même, dans la suite chapitre nous calculons le seuil
limite pour que cette condition ne soit pas vérifiée pour nos modèles de signaux. La validité de nos
relations PFA-seuil et du seuil limite sont confirmées par simulations numériques.

L’objectif du chapitre 3 est similaire à celui du chapitre 2 : nous y recherchons la relation PFA-seuil duMF hors-grille. La méthode géométrique ne s’applique plus aussi naturellement. Pour parvenir à notre
fin, nous modélisons la quantité à maximiser dans le MF hors-grille comme un champ aléatoire, puis
nous approximons la PFA comme l’espérance de la caractéristique d’Euler de l’ensemble d’excursion
associé au champ aléatoire, ces concepts étant définis dans le chapitre. Les relations PFA-seuils quenous obtenons sont une nouvelle fois validées par simulations numériques.

Enfin, après ces développements théoriques, le but du chapitre 4 est d’étudier les outils de la littéra-
ture permettant d’approximer les TRVG hors-grille en utilisant un faible coût de calcul, notamment dans
le cas du NMF, dont la probabilité de détection ne converge par vers 1 assymptotiquement. Après avoir
montré que des surréchantillonnages à faible cadence ne répondent pas totalement à notre probléma-
tique, car ils présentent toujours un défaut de probabilité de détection asymptotique dans des contextes
de bruit coloré, notre intérêt se porte notamment pour la procédure de détection et d’estimation jointe,
et nous identifions deux estimateurs du vrai paramètre de cible susceptibles d’être utilisés en pratique.
L’un approxime le paramètre par interpolation de la transformée de Fourier, tandis que l’autre est in-
spiré par la méthode d’écartométrie. Nous montrons en simulations que les performances de détection
approximent celle des TRVG hors-grille et que la relation PFA-seuil des détecteurs ainsi créés s’approchefortement des relations calculées au chapitre 2. Dans une deuxième partie du chapitre, nous étudions les
performances de ces détecteurs en conditions réelles en utilisant des données du radar de l’ONERA HY-
CAM. Après avoir mis en évidence la présence de cibles hors-grille, qui ne sont pas détectées par le NMF
malgré un fort RSB, nousmontrons que les détecteurs introduits plus tôt, basés sur une interpolation de
la transformée de Fourier et une idée inspirée de l’écartométrie, présentent une meilleure probabilité
de détection que celle d’un simple surréchantillonnage par un facteur 2.
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La conclusion est l’occasion de rappeler les résultats trouvés lors de cette thèse et d’amener de nou-
velles pistes de recherche, notamment l’étude des détecteurs adaptatifs hors-grille, pour lesquelles la
matrice de covariance du bruit n’est pas connue, ainsi que la recherche de relation PFA-seuil pour lesTRVG surréchantillonnés.
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