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Chapter 1

Introduction

Underwater robots are essential to conduct a wide variety of tasks which cannot be
performed by human beings for physical or safety reasons. These unmanned vessels,
however, face important challenges. Because of the rapid absorption of electromag-
netic waves within a few meters, real-time communication between an underwater
vehicle and a surface operator is limited. These high communication constraints led
to two opposite strategies in underwater robots conception, which correspond to
two vehicle families:

• Underwater Autonomous Vehicles (AUVs), designed to operate fully au-
tonomously;

• Remotely Operated Vehicles (ROVs), connected to a surface station by a phys-
ical link, in order to be teleoperated by a human operator.

FIGURE 1.1: Artists’view of an underwater robot chain, Pierre Strau-
mann

ROV cable management is one of the research axis of the COSMER Lab, Univer-
sity of Toulon, France, and lead to the introduction of the underwater robot chain
concept, which consists in managing the cable of a ROV using intermediary robotic
devices placed along the cable such that they control its shape, as in the artist’s view
provided in Figure 1.1. This concept was initially introduced as part as the PhD work
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of Matheus Laranjeira (Laranjeira et al., 2017; Laranjeira et al., 2018; Laranjeira et al.,
2019; Laranjeira, 2019; Laranjeira et al., 2020). In continuation of these works, the
current thesis focuses on the localization of a chain of ROV using embedded sensors
measurements, and has been prepared in the COSMER Lab in collaboration with the
CNR-I3S, Sophia-Antipolis, France.

The current chapter offers a general introduction to this thesis. The context of un-
derwater robotic applications and operational challenges is described in Section 1.1.
The scientific focus and the contribution are detailed in Section 1.2. The publications
issued in this context are listed in Section 1.3. Section 1.4 gives the outline of the
thesis.

1.1 Underwater robotic applications and operational chal-
lenges

1.1.1 Applications

Oceans cover 70% of Earth, but more than 95% of their volume remains unexplored.
Underwater operations, thus, represent a challenge for both scientific exploration,
and civil and military applications.

The scientific study of oceans, or oceanography, encompasses several fields: ge-
ology, biology, ocean physics and chemistry, meteorology. . . These fields are also in-
terconnected. For instance, the study of the seafloor not only allows studying the
seismic behavior of the ocean’s floor and thus predict earthquakes and tsunamis, but
also locate and characterize marine natural resources and to build accurate maps of
the oceans, which are a key tool for all other marine related fields, by associating
observations to a precise location, whithin a geographic context. The joint observa-
tion of soil erosion, marine ecosystems, physical phenomenon and water composi-
tion, for instance, is also crucial in measuring the impact of human activities on the
oceans. These scientific applications need to acquire measurements in places which
are not accessible by human beings. Oceans also house many archaeological sites
which have been preserved by water over years, whose exploration require both
measurements and manipulations.

Oceans have always played an important part in the industry for its exploitable
resources. Today, offshore industries exploit seabed resources, like oil and gas and
metals, but also use water currents as a renewable energy resource, through ma-
rine wind farms. These applications imply infrastructure installation, inspection,
maintenance, and eventual dismantling at depth sometimes exceeding 1,000 meters.
Oceans are also crucial in terms of trade and communication. Commercial routes
and intercontinental communications through optical fiber cables are particularly
important in today’s world. For these aspects, oceans are also a source of economic,
industrial and information power, and controlling the oceans involves political and
military issues.

Underwater operations also include rescue missions and wreck search in case of
plane crash or marine vessel accident. Water decontamination, more specially from
plastics and oils, is another actual challenge to preserve oceans from accidents, like
oil slicks, and man’s long-term impact.

Finally, various applications which require ocean’s observation but also marine
interventions. The underwater environment is, though, hostile to human beings.
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Because of the effect of pressure on the human body, divers are limited in terms of
depth, the recommended technical diving limit being of 100 meters. To this end,
manned submarine vessels have been developed. In 1948, Auguste Piccard per-
formed the first dive of a manned, controllable submarine engine. Such engins
were further investigated for scientific and military purposes. While military sub-
marines have a maximum immersion depth of a few hundred meters, scientific ves-
sels were designed to reach several thousands of meters, arising important technical
challenges and safety issues, and overall cost. Alongside with the development of
robotics and automation, scientific manned underwater vehicles have been gradu-
ally replaced by robots. Only few of them remain in activity, one noteworthy exam-
ple being the Nautile of the French Marine Institute Ifremer, which has been devel-
oped in the 1980s’ and is able to perform 8-hour dives, up to 6,000 meters, with 3
people onboard.

Short Stories #1– HERGÉ AND THE BATHYSCAPHE

In 1943, Hergé made a new character ringing Tintin’s doorbell, with a one-seat
shark-shaped submarine to sell. Resemblance between Professor Calculus (or
Tournesol) and its model Auguste Piccard is striking. The main physical dif-
ference relies on the character’s height, far lower than Piccard’s 1.96 m height.

FIGURE 1.2: Extract from Red Rackham’s Treasure (Le Trésor de
Rackham la Rouge), p.12, Hergé, 1945.

Closely following the scientific progress of his time, Hergé made him the au-
thor of key works on the conquest of space, which would lead him to the
moon in 1950, 19 years before the Americans.

1.1.2 Underwater environment and specific challenges

Underwater robotics is particularly challenged by the water medium and ocean
physics. Underwater systems need to be protected from hostile condition, but also to
cope with water physics, waves and currents when moving. In addition, the physi-
cal properties of the water impact the functions of some sensors and transceivers.

Increasing pressure, but also the water and the salt it contains are aggressive for
the engines, and in particular for the sensors and connection cables, which have thus
to be protected. Connection wires are commonly inserted into deformable tubes full
of oil, in order to protect them from water contact but allow equi-pressure with re-
spect to the water. A special attention has also to be given to sensor housing, in
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order to protect the sensors but not to deteriorate measurements. The aquatic envi-
ronment is also challenging in terms of operational reliability, since vessel assistance
or recovery in case of system failure is particularly difficult.

In addition, underwater robots control is necessarily 3-dimensional and is chal-
lenged by water dynamics, currents, and waves when operating close to the surface.
Environment perception can also be limited. During deep dives, robots may evolve
without features within their sensors’ ranges when diving down the water column,
before reaching their operating depth. Some sensors are also directly impacted by
water’s physical properties. For instance, the absorption of electromagnetic waves
by the water, but also diffusion phenomenon modify the visual perception from
cameras.

Electromagnetic waves’ absorption by the water medium has had a particularly
strong impact on underwater systems design by preventing real-time wireless com-
munications. Radio-waves are indeed completely absorbed by the water within a
few centimeters. Consequently, underwater unmanned vehicles (or UUVs) are di-
vided into two families: Underwater Autonomous Vehicles (AUVs), and Remotely
Operated Vehicles (ROVs).

AUVs are designed to be fully autonomous during their missions with no need
to communicate in real time with the surface. They are mainly used to cover wide
areas in missions such as seabed mapping or wreck search. However, such robots
can only achieve limited tasks and cannot face properly to unexpected situations nor
realize very precise tasks. On the other hand, remotely operated vehicles (ROVs) are
connected to the surface through a physical link and can thus be teleoperated in or-
der to accomplish tasks that require precision and adaptability. The tether can also
provide energy to the ROV for greater autonomy and reduce the ROV’s payload
thanks to the absence of onboard batteries. Still, the tether limits the mobility of the
ROV by involving an energy-intensive drag force, mechanical actions and risks of
entanglements. Tether management strategies are therefore crucial to limit these ef-
fects and allow exploration in cluttered environments such as caves, flooded mines
or shipwrecks. Such environments require the cable to be shaped to fit into a con-
strained free space. This can only be achieved by controlling the global shape of the
cable itself, which gives rise to a new type of active tether management strategy:
the chain of ROVs concept, also called underwater robot chain. This tether manage-
ment strategy consists in the addition of intermediary robots between the lead ROV
and the surface vessel, in order to actively control the three-dimension global shape
of the tether. Implementing, and more specially controlling such a system implies
a knowledge of its location with respect to its environments, what is the scientific
focus of the current thesis.

1.2 Scientific focus and contributions

This thesis focuses on the self-localization of a chain of ROVs using embedded sen-
sors measurements. While underwater robot localization with respect to its envi-
ronment can be estimated from the robot’s embedded sensors, the presence of an
umbilical can be taken as an advantage to localize the robot at its end point, as it can
be deduced from the knowledge of the cable three-dimensional state. As a result,
ROV chain localization has been examined with these two different but complemen-
tary approaches, namely:
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• the proprioceptive localization of a robot chain based on the estimation of the
three-dimensional state of the cable with respect to the robots, using inertial
measurements,

• the exteroceptive, multi-agent localization of the robot chain with respect to its
environment, using visual simultaneous localization and mapping techniques.

We list our contributions as follows:

Contribution 1. Chapter 3 presents the contributions in cable-based state estima-
tion for underwater tethered vehicles, which are:

• experimental evaluation of the validity of the catenary model for moving
submarine cables with negative buoyancy. This work focuses on a simple
model of flexible non-rigid hanging cables, namely the catenary model, and
presents an experimental evaluation of the validity of this model to approx-
imate the shape of dynamically moving underwater tethers with negative
buoyancy using motion tracking.

• an inertial-measurement-based catenary shape estimation method for a neg-
atively buoyant cable, connecting a pair of underwater robots. This work
uses the calculation of local cable tangents using the data acquired from IMUs
attached to the cable in one or two points, near its ends. The cable is modeled
by a catenary, whose parameters are deduced analytically from the tangent
measurements. The proposed method is evaluated experimentally, in the air
and in pool, and is compared to a visual-based shape estimation from previous
works, demonstrating better robustness and accuracy.

• a ROV localization method based on umbilical angle measurement. This
work is the result of a collaboration with Christophe Viel from the CNRS Lab-
STICC, ENSTA Bretagne. The umbilical is constrained to a piecewise linear
shape using sliding buoys and ballasts placed on it. Cable segments orienta-
tion is deduced from IMU measurements, from which the global cable shape
is deduced, allowing to locate the ROV at its end.

Contribution 2. Chapter 4, presents our contributions in underwater visual SLAM
for single and multi-agent scenarios, which can be listed as follow:

• monocular VSLAM benchmarking on underwater datasets. A qualitative
benchmark of six state-of-the-art monocular VSLAM algorithms (namely ORB-
SLAM, ORB-SLAM3, Dual-SLAM, DSO, LDSO and DSM) was performed on
eight underwater datasets featuring different underwater environments, cam-
era motions, and visual conditions, including two new datasets.

• multi-agent VSLAM. A new multi-agent and multi-map monocular SLAM
framework based on ORB-SLAM3, namely MAM3SLAM was introduced and
compared to the state-of-the-art multi-agent VSLAM on aerial and underwater
scenarios. New multi-agent underwater datasets were acquired and released.
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1.3 Publications

Journal papers:

• ROV localization based on umbilical angle measurement.
C. Viel, J. Drupt, C. Dune, V. Hugel,
Ocean Engineering, Volume 269, 2023, 113570, ISSN 0029-8018.

Conference papers:

• Inertial-measurement-based catenary shape estimation of underwater cables
for tethered robots.
J. Drupt, C. Dune, A. I. Comport, S. Seillier and V. Hugel,
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Kyoto, Japan, 2022, pp. 6867-6872.
Video 1: https://www.youtube.com/watch?v=TKLLVTSUN8s
Video 2: https://www.youtube.com/watch?v=x-SXut75vHk

• Qualitative evaluation of state-of-the-art DSO and ORB-SLAM-based monoc-
ular visual SLAM algorithms for underwater applications.
J. Drupt, C. Dune, A. I. Comport and V. Hugel,
OCEANS 2023, Limerick, Ireland, 2023, pp. 1-7.

• Estimation de forme de câble pesant pour la localisation de robots sous-marins
encordés : comparaison d’une approche visuelle à une nouvelle approche in-
ertielle.
J. Drupt, C. Dune, A. I. Comport and V. Hugel,
ORASIS 2023, Carqueiranne, France, 2023.

• An augmented catenary model for underwater tethered robots.
M. Filliung, J. Drupt, C. Peraud, C. Dune, N. Boizot, A. I. Comport and V.
Hugel,
Submitted to 2024 IEEE International Conference on Robotics and Automation
(ICRA).

Workshops:

• Validity of the catenary model for moving submarine cables with negative
buoyancy.
J. Drupt, C. Dune, A. I. Comport and V. Hugel,
3rd workshop on RObotic MAnipulation of Deformable Objects: challenges in
perception, planning and control for Soft Interaction (ROMADO-SI), Best Pa-
per Award, Kyoto, Japan, 2022.
Video: https://www.youtube.com/watch?v=kmcs9xKf3KQ

1.4 Thesis outline

Chapter 1 introduces the context of this thesis and its scientific focus. Chapter 2
presents the state-of-the art related works. Chapter 3 presents the contributions in
cable-based state estimation for underwater tethered systems. Chapter 4 describes
the contributions in visual SLAM for multiple underwater vehicles. Chapter 5 pro-
vides a general conclusion of this thesis and discusses perspectives.

https://www.youtube.com/watch?v=TKLLVTSUN8s
https://www.youtube.com/watch?v=x-SXut75vHk
https://www.youtube.com/watch?v=kmcs9xKf3KQ
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Chapter 2

State of the art

2.1 Introduction

The scientific focus of this thesis is the localization of a chain of ROVs in cluttered
environnement, with embedded sensors measurements. This subject arises three
main issues. First, robot chain localization involves a knowledge of its configuration,
which can be defined as the relative localization of the robots of the chain and of the
cable portions between them. Second, a knowledge of the environment is necessary
in order to locate the system with respect to the surrounding obstacles for future
cable control purposes. Third, chain geo-referencing may be required.

The main specificities of the system under study is to be underwater, tethered,
and multi-robot, with embedded sensors. In addition, cable and robot localization
problems are strongly coupled:

• knowing the shape of the cable allows localizing the robot at its end point;

• conversely, cable location can be deduced from robot location given a cable
model.

Consequently, the current chapter brings together several states-of-the-art, namely
underwater robotics including ROV cable management and underwater perception,
tethered robotic systems and online localization and mapping using embedded sen-
sors for multiple agents.

This chapter is therefore organized as follows. Section 2.2 focuses on the under-
water context of the ROV chain by presenting underwater unmanned vehicles, ROV
tether management strategies and the usual embedded sensors used for underwa-
ter vehicles perception. Section 2.3 presents the state-of-the-art on state estimation
for tethered robotic systems, including cable perception and shape estimation. Sec-
tion 2.4 focuses on simultaneous localization and mapping (SLAM) for an underwa-
ter robot using a monocular camera, and provides a discussion on the choice of this
sensor. Section 2.5 gives the state-of-the art on multi-agent monocular visual SLAM.

2.2 Unmanned underwater vehicles (UUVs) and cables

This section focuses on unmanned underwater vehicles (UUVs). These vehicles can
be teleoperated or autonomous. Teleoperation requires real-time communication be-
tween the UUV and a control station. Because of the rapid absorption of the electro-
magnetic waves by the water medium, a wireless real-time communication scheme
cannot be set for UUV teleoperation. Consequently, UUVs can be classified in three
categories:
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• Remotely Operated Vehicles (ROVs), which are connected to a surface station
via a cable for real-time control and feedback

• Autonomous Underwater Vehicles (AUVs) which cannot communicate to the
surface, or only in a very limited manner, and rely on embedded intelligence
in operating autonomously

• Hybrid ROVs (HROVs), which can operate as ROVs or AUVs.

Section 2.2.1 presents these three kinds or UUVs, Section 2.2.2 focuses on the specific
problem of ROV cable management, and Section 2.2.3 describes the usual sensors
involved in underwater perception for UUVs.

2.2.1 UUVs classification

UUVs can be classified into ROVs, AUVs and HROVs. Historically, ROVs were the
very first solution to the problem of UUV design. AUVs design has been investi-
gated more recently, in parallel with scientific advances in embedded intelligence.
HROVs are the most recent, and intend to combine the assets of both ROVs and
AUVs. ROVs, AUVs and HROVs are presented in Sections 2.2.1.1, 2.2.1.2 and 2.2.1.3
respectively.

2.2.1.1 Remotely Operated Vehicles (ROVs)

Remotely Operated Vehicles, or ROVs, are connected to the surface through a phys-
ical link and can thus be teleoperated in order to accomplish tasks that cannot be
fully automated because they require precision or adaptability. This cable can also
provide energy to the ROV for better autonomy with a lighter embedded payload.
ROVs are commonly used in missions involving manipulations or high safety re-
quirements, and are designed to be stable and maneuverable. Their applications
encompass many fields, including infrastructure inspection and maintenance, scien-
tific research for oceanographic or archaeological purposes, and search and rescue.

ROVs can be classified into three main categories according to their size and ca-
pabilities (Christ et al., 2014; Laranjeira, 2019). Work class ROVs weigh more than
1,000 kg and are designed to operate from 3,000 to 10,000 meter depth. They are
usually designed to handle tasks requiring heavy manipulation, such as offshore
infrastructure construction and maintenance for the oil and gas industry, or heavy
civil engineering. Because of the important amount of force involved, work class
ROVs are hydraulically propelled and actuated. Mid-sized ROVs are smaller vehi-
cles, with weight from 100 to 1,000 kg. They are designed to conduct similar opera-
tions as work class ROVs but at intermediate depth, around 1,000 meters. They are
usually all-electric vehicles, except from their manipulators which can by hydrauli-
cally powered. Both work class and mid-sized ROVs need to be deployed from
large vessels, with specific launch and recovery systems (LARS). Finally, observa-
tion class ROVs range from 100 kg to hand-carryable robots. They operate at depth
below 300 m and are fully electrically powered. Their missions include observation
and inspection tasks for various purposes including offshore industry and archaeo-
logical or oceanographic research, but also dexterous tasks like biological sampling
or archaeological excavation.

The design of the cable depends on the ROV class and the intended application.
The cables of work class and mid-sized ROVs are designed to provide them a signif-
icant amount of energy over distances of several hundred meters, and are thus very
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long, heavy cables, with negative buoyancy. On the other hand, smaller observation
class vehicles can embed their batteries, such that their cable only allows commu-
nications. Such cables are therefore lighter, with positive or neutral buoyancy, and
avoid lifting sediments or getting stuck in reliefs by dragging along the seabed if
the robot operates close to it. Nonetheless, ROV’s mobility is still limited by their
cable, by involving an energy-intensive drag force, mechanical actions and risks of
entanglements. Cable management strategies are therefore crucial to limit these ef-
fects and allow exploration in cluttered environments such as caves, flooded mines
or shipwrecks. Cable management is also critical when the ROV travels between the
surface and its working depth, or if multiple ROVs happen to be deployed together.

Figure 2.1 represents some examples of ROVs. Victor 6000 (Nokin, 1998) is a
4.6-ton work class engine developed by the French Marine Institute Ifremer. It has
been gradually modernized since its very first dive in 1999 and can operate up to
6,000 m depth, involving an 8,500 m cable. Its missions include seabed mapping,
wildlife sampling and water analysis. Ocean One (Khatib et al., 2016) is a 240 kg
humanoid archaeologist ROV from Stanford University. It has been designed to
conduct fine manipulation in archaeological explorations up to 1,000 m and provide
haptic feedback to the operator. The BlueROV21 is a hand-carryable 10 kg ROV
commercialized by Blue Robotics. It is an affordable, expandable ROV with open-
source electronics and software, intended for inspections and research up to 100 m.
Last, the ROVINGBAT2 is a 135 kg maintenance and inspection ROV developed by
Exail. It can crawl or be propelled by its thrusters, and operate up to 100 m. While
Victor 6000, Ocean One and the ROVINGBAT are supplied in energy via their cable,
the BlueROV2 embeds battery, and its cable is only intended for communication.

(A) Victor 6000, Ifremer.
Courtesy of Ifremer

(B) Ocean One, Stanford University.
Courtesy of (Khatib et al., 2016)

(C) BlueROV2, Blue Robotics (D) ROVINGBAT, Exail.
Courtesy of Exail

FIGURE 2.1: Examples of ROVs

1https://bluerobotics.com/store/rov/bluerov2/
2https://www.ecagroup.com/en/solutions/rovingbat-hybrid-rov

https://bluerobotics.com/store/rov/bluerov2/
https://www.ecagroup.com/en/solutions/rovingbat-hybrid-rov
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2.2.1.2 Autonomous Underwater Vehicles (AUVs)

Autonomous Underwater Vehicles, or AUVs, are not physically linked to any sur-
face station and are used for missions which can be fully automated. Embedded
intelligence is nonetheless still unable to cope with some tasks with an acceptable
safety level, and AUV applications are thus restricted. Excluded tasks include prop-
erly coping with unexpected situations, and tasks requiring high level environment
perception ans some safety critical tasks, which might be performed by an artifi-
cial intelligence but with a non-acceptable safety level. Typical AUV tasks include
seabed mapping, wreck and mine detection, offshore infrastructure inspection and
data collection for oceanographic purposes. Some AUVs embed acoustic modems to
maintain a communication with the surface, but it is limited in terms of bandwidth
and is not real-time. Such an equipment only allows communicating very simple
orders and light-weight information about mission progress (Creuze, 2014).

Because they are not physically connected to the surface, multiple AUVs can be
deployed quite easily from a single ship, simultaneously. AUV fleets can be used to
cover large areas in applications including seabed mapping, inspections or search
and rescue missions (Bechlioulis et al., 2019). AUV structure strongly depends on
the intended application. Torpedo-shape AUVs are the most common, and their
hydrodynamic shape enables them to cover great distances, at depth up to several
thousand meters. These AUVs are mainly propelled by three means: propellers
or thrusters, jet-pumps (Brizard, 2014) and buoyancy driven systems (Alam et al.,
2014). Torpedo-shape AUVs are although predominantly propelled by multiple pro-
pellers or thrusters. Rudders or fins can be used for directional control (Sahoo et al.,
2019).

Buoyancy driven AUVs are called gliders, and are an important sub-category of
AUVs. Gliders only control their buoyancy, pitch and roll. When diving, their verti-
cal displacement generates a forward motion using wings, or hydrofoils. Gliders are
used to collect chemical and physical measurements along the water column. They
can cover wide areas by gliding up and down, alternating ascent and descent cycles.
These missions can reach thousands of kilometers, and last several months (Merci
et al., 2023).

Alternatively, some bioinspired AUVs have been developed to mimic aquatic an-
imals, like fishes, snakes, or turtles. Biomimetic AUVs are also being investigated to
study aquatic life without disturbing the natural habitats (Sahoo et al., 2019). These
robots usually travel in water using undulatory propulsion. While electric motors
are commonly used for inducing this motion, some systems rely on hydraulically
driven elements (Katzschmann et al., 2018) or piezoelectric fibre composite (Ming
et al., 2014).

Various examples of AUVs are represented in Figure 2.2. Sparus II (Carreras et
al., 2018) is a 52 kg and 1.6 m long torpedo-shaped, multipurpose AUV developed
by the University of Girona. It can operate up to 200 m, with an 8 to 10-hour au-
tonomy. UlyX3 is a 2.7 t and 4.5 m long torpedo-shaped vessel developed by the
French Marine Research Institute Ifremer. It has been designed to collect scientific
data up to 6,000 meter depth, and has a 48-hour autonomy. SeaExplorer4 is a 59 kg,
2-m long underwater glider designed and commercialized by Alseamar. It can cover

3https://www.ifremer.fr/fr/flotte-oceanographique-francaise/decouvrez-les-navires-de-la-flotte-
oceanographique-francaise/ulyx

4https://www.alseamar-alcen.com/products/underwater-glider/seaexplorer

https://www.ifremer.fr/fr/flotte-oceanographique-francaise/decouvrez-les-navires-de-la-flotte-oceanographique-francaise/ulyx
https://www.ifremer.fr/fr/flotte-oceanographique-francaise/decouvrez-les-navires-de-la-flotte-oceanographique-francaise/ulyx
https://www.alseamar-alcen.com/products/underwater-glider/seaexplorer
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1,700 km within 110 days, up to 6,000 m depth. It can embed an on-demand sensor
payload to carry out scientific measurements. Finally, U-CAT (Salumäe et al., 2014)
is an experimental biomimetic turtle AUV from Tallin University of Technology. It
has been designed for inspecting the interior of shipwrecks, hence its small size and
4-fin actuation for precise manoeuvering.

(A) Sparus II, University of Girona.
Courtesy of (Carreras et al., 2018)

(B) UlyX, Ifremer.
Courtesy of Ifremer

(C) SeaExplorer glider, Alseamar.
Courtesy of Alseamar

(D) U-CAT, Tallin University
of Technology (Taltech).

Courtesy of Taltech

FIGURE 2.2: Examples of AUVs

2.2.1.3 Hybrid Vehicles

Lastly, some underwater unmanned vehicles are hybrid, and can work as a ROV or
as an AUV depending on their operational context. The main motivation in devel-
oping such hybrid vehicles (HROV) is to be able to disconnect a ROV from its cable
in case of entanglement, too important motion limitation or cable break. The cable
is then only a communication medium, and the vehicle embeds its own batteries.
An example of such robot is the Ariane HROV from Ifremer (Brignone et al., 2015;
Raugel et al., 2019), which is a 1.8 ton vehicle intended for oceanographic research
applications up to 2,500 m depth. HROVs have also been introduced for the leisure
sector or the diving sector (Ghader et al., 2023): Seasam drone5 has been initially
developed by Delair Marine (ex-Notilo Plus) as a hand-carryable sea diving com-
panion HROV, which can be teleoperated from the surface or used in autonomous
mode for specific operations and reach 100 m depth. These vehicles are illustrated
in Fig. 2.3.

2.2.2 ROV cable management strategies

As mentioned in Section 2.2.1.1, cable management strategies are essential in pre-
venting ROV cable entanglements and limiting their mechanical actions on the ve-
hicle. ROV cable management solutions are divided in two main kinds: passive or

5https://seasam.notiloplus.com/autonomous-rov-seasam/

https://seasam.notiloplus.com/autonomous-rov-seasam/
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(A) Ariane, Ifremer.
Courtesy of Ifremer

(B) Seasam, Delair Marine (ex-Notilo Plus).
Courtesy of Delair Marine (ex-Notilo Plus)

FIGURE 2.3: Examples of HROVs

active (Christ et al., 2014), and are described in Sections 2.2.2.1 and 2.2.2.2 respec-
tively.

2.2.2.1 Passive strategies

Heave compensators are the most classic passive solution. They consist in a lumped
mass fixed on the cable and positioned at the working depth, absorbing the cable
drag from the surface vessel, as shown in Figure 2.4. The cable is then composed
in two parts: the umbilical is used to reach the working depth from the boat to
the heave compensator, while the tether links the ROV to the heave compensator
and allow it to operate within a distance of around a few hundred meters from the
heave compensator, at working depth. Because the umbilical and the tether are not
subject to the same physical constraints, their design is usually different. A solution
to reduce cable entanglements when the ROV travels between the surface and the
working depth consists in moving the ROV is a cage which is winched from the boat.
This cage can be used as a passive heave compensator.

Boat

Lumped
mass ROV

LARS

Umbilical
Tether

FIGURE 2.4: Passive heave compensator (boat and LARS are optional)

Fixed buoys can also be used to keep a part of the cable at the surface, to enable
ROVs to work in more shallow waters (see Figure 2.5). Recent works investigate
a new passive cable management strategy by placing freely moving ballasts and
buoys on the cable to constrain its shape to taut segments and thus prevent entan-
glements (Viel, 2022b; Viel, 2022a). Depending on the combination of sliding buoys
and ballasts employed, this last approach can prevent the cable from dragging the
seafloor, ice caps, or ceilings of marine caves. An example of configuration is dis-
played in Figure 2.6.
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Boat

Buoys

ROV

LARS

FIGURE 2.5: Fixed buoys (boat and LARS are optional)

Boat

Sliding
mass

Sliding
buoy

ROV

LARS

FIGURE 2.6: Sliding ballasts and buoys (boat and LARS are optional)

2.2.2.2 Active strategies

Active strategies allow a finer control of the cable. The most common ones use a sys-
tem of winches that regulates the length of free tether available to the ROV. These
winch systems can be placed on the boat (Figure 2.7) or at the working depth, in asso-
ciation with a lumped mass (Figure 2.8). When this system is positioned at working
depth, the cable is divided into an umbilical part and a tether part, as explained in
Section 2.2.2.1. If the ROV is deployed from a cage (see Section 2.2.2.1), the winches
can be positioned in this cage, at working depth. Winch systems are usually referred
to as Tether Management Systems (TMS). Tether length regulation aims at reducing
the risk of entanglements, since too long cable are more likely to get tangled, but
it can can also compensate heave actively by rolling and unrolling the cable. Some
recent works propose to regulate the tether length according to a measure of the
tension of the cable (Tortorici et al., 2023).

However, these strategies are not well-suited for the exploration of cluttered en-
vironments such as caves, immersed mines or wrecks, which require the cable to be
shaped to fit into a constrained free space. This can only be achieved by control-
ling the global shape of the cable itself by additional robotic devices placed along
it, resulting in a robot chain, as represented in Figure 2.9. Control of the cable by a
single additional remotely operated vehicle has already been employed during the
exploration of the shipwreck La Lune by the archaeological robot Ocean One (Khatib
et al., 2016) off the coast of Toulon, France, as pictured in Figure 2.10. Ocean One’s
last 3 cable meters were operated by the Leonard ROV from the LIRMM, University
of Montpellier, France, in order to counteract currents and tensions during manip-
ulations requiring high precision and stability. Some recent works investigate the
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Boat

ROV

LARSWinch

FIGURE 2.7: Surface winch (boat and LARS are optional)

Boat

TMS
ROV

LARS

Umbilical
Tether

FIGURE 2.8: TMS at working depth (boat and LARS are optional)

automation of cable control in a robot chain configuration, with (Laranjeira et al.,
2020) studying the visual servoing of an underwater vehicle to the shape of the ca-
ble in the camera image.

Boat

Tether management
vehicles

ROV

LARS

Seafloor

FIGURE 2.9: Robot chain (boat and LARS are optional)
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FIGURE 2.10: Ocean One cable being managed by the Leonard ROV
on the shipwreck La Lune. Courtesy of the LIRMM, 2016.

Short Stories #2– DRAMATIC ENTANGLEMENTS: La Lune’S STERN LANTERN

In 1664, the French warship La Lune was sent by the French King Louis XIV
to fight the barbary pirates in the Mediterranean sea. On her return, a series
of incidents led to more than 3 times the number of passengers on board than
the ship could handle. Nonetheless, La Lune manages to reach the port of
Toulon, but was unfortunately denied access for preventive sanity reasons
and the ship was asked to respect a quarantine. On his way off the port, the
overweight finally resulted in La Lune sinking to the bottom off the coast of
Toulon, causing more than 700 deaths among the 1,000 men on board.

FIGURE 2.11: 1960 painting of La Lune. Courtesy of Musée
National de la Marine, S. Dondain, France.

The wreck of La Lune was discovered in 1993, at 100 m depth. Some parts of
the wreck were remarkably well preserved, including its stern lantern, what
is extremely rare and precious for archaeological research. Because of the im-
portant depth of the wreck, archaeological investigations were performed by
ROVs. But in the early 2000s, the incredibly well preserved stern lantern was
dramatically damaged by the cable of a ROV exploring the wreck.
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2.2.3 Perception for UUVs

GNSS positioning is not available to underwater robots because of the absorption of
electromagnetic waves in the first centimeters of the water column. In such GNSS-
denied environments, robotic systems strongly rely on their embedded sensors to
estimate their location. The most common sensors in underwater robotics are acous-
tic sensors, inertial measurement units (IMUs), pressure sensors and cameras.

2.2.3.1 Acoustic sensors

Acoustic sensors are the only short-to-wide-ranging sensors available underwater.
Indeed, while electromagnetic waves are absorbed by the water within short dis-
tances, acoustic waves can propagate up to a few kilometers. Underwater acoustic
sensors can be classified in 3 categories: positioning sensors, ranging and imaging
sensors, or SONARs, and Doppler Velocity Logs (DVLs). These acoustic sensors
are active. As a result, acoustic beams can interfere with each other and with their
environment. Therefore, the deployment of multiple acoustic transceivers requires
beams synchronization, which can increase measurement errors.

2.2.3.1.1 Positionning sensors Acoustic positioning sensors are transceivers
designed to measure a distance and optionally an angle with respect to other
transceivers of known position, allowing to triangulate the position of the mobile
system (Cong et al., 2021).

FIGURE 2.12: LBL, SBL and USBL positioning systems. Courtesy
of (Mallios et al., 2009)

Ultrashort baseline (USBL) and short baseline (SBL) positioning systems rely on
an array of acoustic transducers placed under a ship and a transponder installed in
the mobile robot. The pose of the robot can be estimated with respect to the boat by
travel time and phase difference. The global position of the vehicle can then be de-
duced from the GNSS localization of the ship. The distance between the transceivers
placed on the boat is less than one meter for USBL, and usually from 20 to 50 meters
for SBL. USBL systems have the advantage of smaller size and more simple struc-
ture, but are also less accurate, since positioning accuracy increases with the baseline
distance (Zhu et al., 2020). Pose estimation accuracy is although strongly affected by
ocean environmental parameters and by sizing uncertainties of the transceiver array.
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Such systems are therefore highly dependent on an accurate calibration. Pose esti-
mation error increases with the distance between the boat and the vehicle. Though
USBL systems usually range down to 10,000 m, their ranging error is of 1 or 2% for
most common systems, leading to poor vehicle localization accuracy in deep wa-
ter (Liu et al., 2020).

Contrary to USBL and SBL, long baseline (LBL) systems use a set of transducers
placed on the sea floor, with a baseline of 100 m to 20 km (Cong et al., 2021). These
systems are more accurate and allow localization at important depth. However,
they are very costly to install and need maintenance operations. LBL, SBL and USBL
positioning systems are illustrated in Figure 2.12.

2.2.3.1.2 SONAR SONARs (sound navigation ranging systems) measure their
distance to solid obstacles based on the time-of-flight of acoustic beams. SONARs
mainly include single beam, multi-beam and side-scan SONARs (Cong et al., 2021),
which are illustrated in Figure 2.13.

(A) Single-beam SONAR (B) Multi-beam SONAR (C) Side-scan SONAR

FIGURE 2.13: Typical SONARs. Courtesy of (Cong et al., 2021)

Single-beam SONARs consist of transceivers which emit a beam of short-pulse
acoustic signal and receive the signal reflected by the environment. The distance be-
tween the system and the closest obstacles along the signal direction can be deduced
from the time-of-flight. Signal response analysis can also provide information about
the material of the object which reflected the initial signal. Multi-beam SONAR is
a combination of multiple single beam SONARs, allowing larger coverage, faster
speed and better accuracy.

Side-scan SONARs are designed to create depth images of large areas — usually,
the sea floor. They emit acoustic pulses with a very small horizontal angle but a
wide vertical beam angle. The smaller the horizontal angle, the more accurate the
scanning. Some SONARs directly emit such a fan-shaped beam, while others use a
small rotating beam with a small vertical angle.

The output of a SONAR is named a SONAR image and represents a sectional vue
of the surroundings, along the axes of acoustic pulse emissions, where edges indi-
cate reflections of acoustic waves at the interface between two media with different
physical properties. SONAR images are generally noisy because of reverberation,
self interferences and marine environment noise (Yuan et al., 2021). Reverberation
consists in multiple reflections from non-target objects, and is particularly important
in cluttered environments such as ports or flooded caves and mines.
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An example of SONAR image is given in Figure 2.14. This figure is taken from
the work of (Pecheux et al., 2023) which focus on the calibration of a SONAR-vision
system, and illustrates well the differences in SONAR and optical images of the same
object. Multi-beam SONAR and optical images are recorded from the same robot,
and both sensors are oriented towards the wreck. However, while the optical images
is a frontal view of the wreck, the SONAR outputs a sectional view of the submerged
car where one can recognize the engine and passenger compartments.

(A) Optical image (B) Multi-beam SONAR image

FIGURE 2.14: Multi-beam SONAR and optical image recorded with
both sensors facing a car wreck. Courtesy of (Pecheux et al., 2023)

2.2.3.1.3 Doppler Velocity Log (DVL) DVLs measure their local, linear velocity
with respect to a reference surrounding surface — usually, the sea floor. It is com-
posed of four transducers which emit acoustic beams to the seafloor. The velocity
of the vehicle is deduced from the reflected beam using the Doppler effect and the
frequency shift between the transmitted and received signals. DVLs are usually able
to measure their linear velocity with an accuracy of about 0.2% of the actual veloc-
ity (Cohen et al., 2022). Their main limitation is that they require the vehicle to be
close enough to their reference surface. The maximum allowed distance is about a
few dozen meters, depending on the system.

While DVLs are most commonly used for measuring a velocity with respect
to the sea floor, some applications involve different referent reference surfaces. A
example can be found in robotic ship hull inspection, where a closed-loop control
based on DVL velocity measurements with respect to the hull can be implemented,
as in the ship hull inspection service of Delair Marine (ex-Notilo Plus)6.

2.2.3.2 Inertial Measurement Unit (IMU)

IMUs measure linear accelerations and angular velocities in 3-dimensions. They
often integrate a magnetometer and a filter in order to estimate a 3D orientation
relative to gravity vector and magnetic North. Such systems are also known as at-
titude and heading reference systems (AHRS). AHRS filters are generally Kalman-
based (Creuze, 2014). Although Kalman-based filters give the most accurate ori-
entation estimation, they demand high sampling rates and need large state vector
representations to describe the three-dimensional rotational kinematics, as well as
problem linearization. As a result, other filters are sometimes preferred to provide a
lighter computation load or allow lower sampling rates. Complementary filter and
Madgwick filter or examples of such alternative options (Madgwick et al., 2011).

6https://seasam.notiloplus.com/rov-inspection-of-ship-hull-at-anchorage/

https://seasam.notiloplus.com/rov-inspection-of-ship-hull-at-anchorage/
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IMUs can be classified in two categories (Creuze, 2014). On the one hand, fiber
optic gyroscope (FOG) IMUs have extremely small measurement bias. Their mea-
surements can therefore be integrated into a velocity and a position. Such IMUs are
called inertial navigation systems (INS) and are particularly expensive, about several
thousands euros. However, their velocity and positioning error is not bounded, and
they are therefore commonly associated with other sensors, usually a DVL, in order
to bound these errors. On the other hand, micro electro-mechanical IMUs involve
significantly higher bias and cost only a few euros. Although their measurements
are not accurate enough to estimate a position, they can still output an accurate ori-
entation estimation.

If no magnetometer is available, the horizontal component of the estimated ori-
entation can drift over time. This drift is commonly approximated by an affine ad-
ditive offset whose parameters need to be calibrated.

2.2.3.3 Pressure sensors

Pressure sensors are commonly used to measure robot depth, which is an affine
function of water pressure. Note that depth is measured with respect to the surface
and not with respect to the mean sea level, and is affected by tides. By abuse of
language, water pressure sensors are also denoted as depthmeters.

At small depth, such pressure sensors give a very accurate depth measure, with
a measurement resolution of a few millimeters. However, the deeper the measure-
ment the coarser the accuracy. First, pressure sensors designed for very important
depth need to resist very high pressured, but see their precision decrease signifi-
cantly because of this design (Creuze, 2014). An example can be given from the
pressure sensors series commercialized by BlueRobotics7, where the Bar02 sensor
has a maximum depth of 10 m and a 0.16 mm accuracy, the Bar30 has a maximum
depth of 300 m but a reduced 2 mm accuracy and the Bar100 has a maximum depth
of 1000 m but a coarser 3 cm accuracy. Second, pressure measurements at high depth
are limited by the resolution of the sensor, which is defined by the smallest degree of
pressure change that can be detected. Consequently, for a given sensor, deeper mea-
surements will necessarily decrease the accuracy of the reported depth. For instance,
Athen’s 8000 Series Ultra High-Precision Pressure Sensor8 can measure water pres-
sure up to 8,000 m depth with a 0.01% full scale resolution, involving 80 m accuracy
range at 8,000 m, since depth is proportional to water pressure.

2.2.3.4 Cameras

Although electromagnetic waves are absorbed by the water within a short distance,
optical sensors are still commonly used for small range underwater perception.
While some works investigate active, underwater time-of-flight optical sensors for
depth perception (Massot-Campos et al., 2015; Digumarti et al., 2016), cameras
are the most common underwater optical sensor, and most underwater vehicles
embed one or multiple color or grayscale cameras. Cameras are indeed cheap and
small-sized sensors providing a rich feedback, which can be interpreted directly by
a human operator. Cameras being passive sensors is also an advantage compared

7https://bluerobotics.com/store/sensors-cameras/sensors/bar30-sensor-r1/
8https://www.althensensors.com/sensors/pressure-sensors/ultra-high-precision-pressure-

sensors/8000-series-ultra-high-precision-pressure-sensor/

https://bluerobotics.com/store/sensors-cameras/sensors/bar30-sensor-r1/
https://www.althensensors.com/sensors/pressure-sensors/ultra-high-precision-pressure-sensors/8000-series-ultra-high-precision-pressure-sensor/
https://www.althensensors.com/sensors/pressure-sensors/ultra-high-precision-pressure-sensors/8000-series-ultra-high-precision-pressure-sensor/
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to usual acoustic sensors, since multiple cameras will not interfere with each other
nor with their surroundings.

Underwater vision is however challenging, due to the effect of water on visual
perception. First, camera protection from the water usually implies an external hous-
ing. Light rays are therefore deflected from the refraction at diopters between water,
the transparent material of the housing, and the air inside it. Second, light prop-
agation through the water is affected by backscattering, selective color absorption
and turbidity. These phenomena are illustrated in Figure 2.15, which is inspired
from (Wang et al., 2019). Finally, embedded light affect the aspect of the scene in
deep sea missions.
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FIGURE 2.15: Underwater visual conditions and related physical phe-
nomena

Correcting underwater images in order to remove the visual distortions caused
by the water is called underwater image restoration. Underwater image restora-
tion works can be classified between model-based ones, which rely on a physi-
cal model of underwater vision (Akkaynak et al., 2019; Boittiaux et al., 2023), and
model-agnostic ones, which can consist in classical image enhancement techniques
assumed to correct the effect of water but without any formal certainty (Torres-
Méndez et al., 2005), and deep learning techniques (Islam et al., 2020).

2.3 Cable-based state estimation for tethered vehicles

Tethered robots can be found in many applications, including marine, terrestrial and
aerial robotics. State estimation of such systems is necessary for their deployment
and control. Tethered robots state include both cable and robot localization in the
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operational space. Cable shape estimation can be performed according to different
models and sensors. In addition, cable three-dimensional shape encodes the position
of the robot, since the robot is located at one of the cable’s end points. It is therefore
also investigated for robot localization purpose. Note that, in this section, the words
‘cable’ and ‘tether’ are used as synonyms.

2.3.1 Tethered robotic applications

Tethered robots are involved in marine, terrestrial, aerial and hybrid robotics. Fig-
ure 2.16 shows some examples of tethered robotic systems.

(A) ROV tethered to a surface vessel.
Courtesy of Ifremer

(B) Agent tethered to an AUV.
Courtesy of (Yu et al., 2013)

(C) Tethered Robotic Explorer
(TRex). Courtesy of (McGarey

et al., 2017)

(D) Flying drones transporting a
cable. Courtesy of (D’Antonio et

al., 2021)

(E) ROV tethered to an USV. Courtesy of
IMODCO

(F) Aerial-underwater hybrid
system. Courtesy of (Debruyn

et al., 2020)

FIGURE 2.16: Examples of tethered robotic systems

In the field of marine robotics, tethers provide real-time communication and,
sometimes, energy to underwater vehicles. The most common operational scenario
consists in a ROV tethered to a control station in a surface vessel (Christ et al., 2014).
Other underwater tethered connection schemes are also in used, or investigated. A
ROV can be tethered to an unmanned surface vehicle (USV) instead of a boat (Tor-
torici et al., 2019). Such scheme can be interesting in automating ROV deployment
with the USV acting as a relay station for wireless communication to a further con-
trol station. In addition, the USV can be designed to be small and maneuverable
enough to facilitate ROV navigation by allowing access to shallow water and mov-
ing around to extend its operational area. These USV/ROV systems are currently
being investigated for offshore inspection tasks9. Alternatively, a ROV can be teth-
ered to a smaller surface GPS and WiFi relay station which provides georeferencing
and teleoperation from a distant surface location. An example of such device is the

9https://www.hydro-international.com/content/news/fully-remote-rov-inspection-of-offshore-
wind-farm-completed-by-fugro-s-blue-essence

https://www.hydro-international.com/content/news/fully-remote-rov-inspection-of-offshore-wind-farm-completed-by-fugro-s-blue-essence
https://www.hydro-international.com/content/news/fully-remote-rov-inspection-of-offshore-wind-farm-completed-by-fugro-s-blue-essence
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Seasam navigator of Delair Marine (ex-Notilo Plus)10. A tether can also connect un-
derwater vehicles together. The work of (Yu et al., 2013) considers the deployment
of a small tethered vehicle from a large, difficult-to-manoeuver AUV, when manip-
ulation or precise monitoring is necessary. The cable offers a connection to the AUV
central computation unit and supplies power to the agent. Recent works investigate
ROV tether management by controlling the cable shape using intermediary devices
placed along it. Such configuration has been investigated using passive buoys and
ballasts which can slide freely to their lowest potential energy position along the ca-
ble (Viel, 2022a; Viel, 2022b), or using intermediary, active, robotic agents connected
pairwise up to a surface station, forming a robot chain (Laranjeira et al., 2020).

In aerial and terrestrial robotics, robots transporting or manipulating de-
formable linear objects are another kind of tethered systems (Alonso-Mora et al.,
2015; D’Antonio et al., 2021). A stretched tether can allow a terrestrial robot to
explore a steep, rugged, and dangerous terrain by clinging it to a fixed support (Mc-
Garey et al., 2016). Finally, a tether can connect parts of a robotic hybrid system,
providing communication, power, and the insurance to keep the parts of the system
together (Debruyn et al., 2020). This last work presents an aerial/underwater
hybrid system, which consists in an aerial vehicle which can land at the water
surface and deploy a very small ROV. The two parts of the vehicle are connected by
a communication and power supply cable.

2.3.2 Cable modeling

Cable models can be classified in two main categories: dynamic models and quasi-
static model. While dynamic models are the most complete ones, and are derived
from the forces that apply to the cable, given its physical properties, simplified,
quasi-static models are usually preferred for real-life, online cable shape estimation.
Dynamic and quasi-static models are described in Sections 2.3.2.1 and 2.3.2.2 respec-
tively.

2.3.2.1 Dynamic models

A physical cable model can be derived from the dynamics of the cable and the forces
that apply to it. Cables are subject to external forces, which are exerted on the cable
by its environment, and internal forces caused by cable stiffness, damping and elas-
ticity. External forces exerted on underwater cables include its buoyancy, its weight,
drag forces, the mechanical action of currents, cable inertia, as well as the tension at
cable attachment points. Internal forces include flexion, torsion and elasticity (Tor-
torici, 2021).

Lumped-mass-spring and finite-element models are the most common ap-
proaches in cable dynamics modeling. Lumped-mass-spring methods model a
cable as mass points joined together by massless elastic elements (Buckham, 1997;
Soylu et al., 2010; Hong et al., 2020), as illustrated in Figure 2.17. Alternatively,
finite-element-based methods describe a cable as a continuous system and solve the
resulting partial differential equations (Eidsvik et al., 2016; Meng et al., 2020).

Dynamic models are commonly used for cable simulation. For instance, ca-
bles are modeled using a lumped-mass-spring method in the Vortex® mechanical

10https://seasam.notiloplus.com/rov-gps-seasam-navigator/

https://seasam.notiloplus.com/rov-gps-seasam-navigator/
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FIGURE 2.17: Lumped-mass-spring modeling of a ROV cable. Cour-
tesy of (Buckham, 1997)

simulator from CM Labs11, as well as in the mooring simulator MoorDyn12 (Hall,
2020). In the open-source physics-based simulation platform SOFA13, cables dynam-
ics modeling is based on a different model known as discrete Cosserat model (Renda
et al., 2018), which models linear structures with a series of rigid solids whose rela-
tive position is defined by a strain state14.

Because dynamic models can be computationally expensive and may require de-
tailed knowledge of the environment which is not always available in real-life appli-
cations, simplified models are often preferred for real-life, real-time applications.

2.3.2.2 Quasi-static models

Many works rely on a quasi-static model, involving less parameters. The most
widely used model for hanging cables is the catenary model (Laranjeira et al., 2020;
D’Antonio et al., 2021), which is a parametric curve defined as the shape of an ideal-
ized homogeneous hanging cable with fixed length and fixed ends, only subject to its
own weight. This definition can be extended to any such cable submitted to a verti-
cal force proportional to mass, like a cable in a liquid, also submitted to Archimedes
buoyancy. The quasi static shape of a non-elastic cable is sometimes approximated
geometrically by a parabolic curve (Smolentsev et al., 2023). Figure 2.18 represents
the catenary and parabolic curves between the same end points, with same curve
length.

11https://www.cm-labs.com/en/vortex-studio/
12https://github.com/FloatingArrayDesign/MoorDyn
13https://www.sofa-framework.org/about/story/
14https://www.sofa-framework.org/applications/plugins/cosserat-beam-cable-needle/

https://www.cm-labs.com/en/vortex-studio/
https://github.com/FloatingArrayDesign/MoorDyn
https://www.sofa-framework.org/about/story/
https://www.sofa-framework.org/applications/plugins/cosserat-beam-cable-needle/
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x

f (x) — Catenary curve — Parabolic curve

FIGURE 2.18: Catenary and parabolic curves

Short Stories #3– GAUDÍ AND THE CATENARY

In architecture, a catenary arch is a type of arch which follows an inverted
catenary curve. Symmetrically to the catenary curve, this arch is the only
physical shape from which an arch of uniform density and thickness can
withstand the weight of its material without collapsing. The architecture
of Gaudí’s Sagrada Familia (Barcelona, Spain) is completely based on cate-
nary arches. The plans for the basilica were drawn up using suspended wires
equipped with regularly spaced small weights in order to model an homoge-
nous weighting cable. The resulting catenary curves were then inverted to
create the basilica as we know it today.

FIGURE 2.19: Example of Gaudí’s hanging chain model. Cour-
tesy of (Dragicevic et al., 2012).

A quasi-static model can also be derived for elastic cables (Wu et al., 2021). While
the quasi-static approximation is well suited for aerial systems at low speed, under-
water scenarios involve hydrodynamic forces, and optionally waves and currents.
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Quasi-static modeling is nonetheless a reasonable assumption for modeling heavy
enough, negatively buoyant, underwater, hanging cables with moving ends, in the
absence of waves and currents (Laranjeira et al., 2020).

If taut, the cable can be simply modeled as straight. This model applies to the
stretched anchoring cables of some terrestrial robots (McGarey et al., 2017). A cable
can also be constrained to adopt a piecewise linear shape in order to simplify its
modeling. In (Viel, 2022b), the cable of a ROV is constrained into linear segments by
the addition of sliding buoys and ballasts.

2.3.3 Cable perception for shape estimation

Cables can be designed as proprioceptive sensors in order to compute their own
shape. Deformation of an optical fiber cable can be estimated based on interferom-
etry techniques (Duncan et al., 2007; Yu et al., 2013). IMU-coated cables can also
estimate their shape from IMU measurement integration (Frank et al., 2013). While
such cable can estimate any shape, their use is limited. Optical fiber cables are very
expensive, and IMU-coated cables cannot be handled properly by winches because
of the protrusions the IMUs make on the cable. In addition, both are very specific
and uncommon in real-life systems, and in both solutions the longer the cable, the
greater the shape estimation error.

Short Stories #4– OPTICAL FIBER CABLES AND OCEANOGRAPHY

Around 1.2 million kilometers of fiber optic communication cables run along
the seabed. The deformation of these cables can be measured using interfer-
ometric techniques that exploit the presence of small impurities within the
optical fiber. It is therefore possible to turn this cable network into a large-
scale distributed sensor in order to measure many physical phenomena on a
large scale, such as the Earth’s tectonic activity, swell and underwater noise.
Such seafloor fiber optic sensing is the focus of recent research works (Sladen
et al., 2019; Cheng et al., 2021).

FIGURE 2.20: Underwater communication cable network and
cable artist’s view. Courtesy of the International society for

optics and photonics

Alternative, less invasive, cable instrumentation solutions can be preferred. Ex-
ternal sensors can be positioned on an existing cable to compute local orientation
or curvature measurements. In (Merlet, 2018), an accelerometer is placed on a taut
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cable in order to estimate its 3D orientation. In (Tortorici et al., 2023), a curvature sen-
sor is positioned along the cable of a ROV to characterize cable tension. Cable angle
and tension can also be measured at its free length start or end point. In (McGarey
et al., 2017), these measurements are used to detect entanglements and estimate the
global 2D shape of the stretched, anchoring cable of a terrestrial robot. If the cable is
managed with a winch, the length of the unfolded cable can also be measured and
used for cable shape estimation purpose (Murtra et al., 2013).

Other solutions do not instrument the tether itself, and use external sensor feed-
back. Cameras and, in the air, RGB-D sensors are widely used for this purpose. The
projection of the cable in the image is often segmented based on a color filter (Laran-
jeira et al., 2017; Laranjeira et al., 2020; Wu et al., 2020; Zhu et al., 2021). The cable
must be a distinctive color from everything else around it, which can be difficult to
ensure in an uncontrolled environment. In addition, this strategy must be limited in
range for underwater applications, because of color absorption by the water (Laran-
jeira et al., 2020). Sim-to-real cable detection learning strategies are proposed to track
2D Bézier curves or splines (Sundaresan et al., 2020; Yan et al., 2020). RBG-D per-
ception is commonly used for aerial cable manipulation. In (Jin et al., 2022), the
two-dimensional state of a cable laying on a plane is estimated from color-based
segmentation and RGB-D perception. Visual and depth perception can also be com-
bined with a model for cable state estimation. In (Laranjeira et al., 2020), a colored
underwater tether is segmented in RGB images using a color threshold, and a cate-
nary curve is fitted on the resulting points in order to estimate the three dimensional
shape of the tether. Similarly, in (Smolentsev et al., 2023), a parabolic model is fitted
on a 3D point-cloud measured by a RGB-D camera for an aerial application.

2.3.4 Cable-based robot localization

Recently, a few works have been starting investigating cable shape estimation as a
solution for tethered robots localization. In (Yu et al., 2013), a small underwater vehi-
cle tethered to an AUV by a 1 meter optical fiber cable is located using the measure of
cable deformation. The cable used was commercialized by Measurand15 under the
name ShapeTape™ and was reported by the constructor to exhibit approximately
5% position error with regards to its length, leading to 5 cm for a 1 m cable. This
product is however discontinued. The small vehicle and cable used in this work are
pictured in Figure 2.21, where the cable is in blue.

In a terrestrial application, (McGarey et al., 2017) take advantage of cable entan-
glements to estimate obstacles and robot locations in two-dimensions. The major
originality of this work is to use entanglements as a source of information on system
and scene geometry instead of preventing them. Cable tension and local orientation
at its attachment point on the robot are measured using embedded tension and an-
gle sensors. These measurements are used to detect new entanglements and update
robot location and obstacle map, in combination with the knowledge of the cable
length unwound from the robot. This two dimensional localization and mapping
framework is called T-SLAM. Evaluations are conducted with a TRex robot (see Fig-
ure 2.16c) with a tether of length varying from 1 to 37 m along the experiments as
robot’s cable winds in and out. A robot position error between 0 and 2 m along the
experiments is reported. An example of obstacles settings and robot trajectory along
one of their test sequences named ‘Telephone Cord’ is shown in Figure 2.22.

15https://measurand.com/

https://measurand.com/
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FIGURE 2.21: Small underwater vehicle and ShapeTape™ cable.
Courtesy of (Yu et al., 2013)

FIGURE 2.22: Example of obstacles settings and robot trajectory for
T-SLAM validation. Courtesy of (McGarey et al., 2017)

2.4 Monocular visual SLAM for underwater

Although the three-dimensional state of an underwater robot chain may be esti-
mated using proprioceptive, cable-based strategies as described in Section 2.3, con-
trolling this system in cluttered environments requires localization with respect to
the surrounding obstacles. In other words, the system must be located with respect
to a three-dimensional map of its environment. In addition, this map may be un-
known, and the system should therefore be able to map its environment online. The
problem of online, simultaneous localization and mapping using embedded sensors
is known as SLAM.

Underwater SLAM algorithms usually rely on multi-sensor fusion. An overview
of the state-of-the-art underwater SLAM sensor sets is given in Table 2.1. Because
cameras, IMUs and pressure sensors can be low cost, lightweight and low-power
sensors, more especially when compared to acoustic sensors, they are widely used
in underwater perception. Therefore, even the smallest and cheapest underwater
robots embed at least a pressure sensor, an IMU and a monocular camera.
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TABLE 2.1: Sensors used in underwater specific SLAM

Camera SONAR IMU Pressure DVL

(Bellavia et al., 2015) stereo ∅ ∅ ∅ ∅
(Zhang et al., 2018) stereo ∅ ∅ ∅ ∅
(Ferrera, 2019) mono ∅ X X ∅
(Mallios et al., 2016) ∅ X ∅ ∅ ∅
(Pairet et al., 2022) ∅ X ∅ ∅ ∅
(Rahman et al., 2019) stereo X X X ∅
(Silveira et al., 2015) mono X X ∅ X
(Vargas et al., 2021) stereo ∅ X X X
(Xu et al., 2021) stereo ∅ X X X

Although underwater visual conditions are challenging (see Section 2.2.3.4),
cameras still provide rich perception of their environment, to the point that it is a
key feedback sensor for underwater robot teleoperation. Visual SLAM (VSLAM)
may thus be a solution for underwater localization and online mapping. Because
the smallest and cheapest underwater robots embed a single camera, a more specific
focus should be made on monocular VSLAM.

A first mention of visual-based SLAM for underwater applications can be found
in (Eustice et al., 2005; Eustice et al., 2006), where the wreck of the Titanic was
mapped using a visual-based SLAM information filter, combined with navigation
measurements involving a tilt sensor, a magnetometer, a DVL, and pressure and
altitude sensors. In line with this first work, many more recent, underwater visual-
based SLAM algorithms actually rely on additional navigation sensors (Zhang et al.,
2022) and are therefore not purely visual works, such that they will be considered
out of the scope of the VSLAM definition used in the current section.

FIGURE 2.23: Visual-based mapping of the Titanic realized in 2004.
Courtesy of (Eustice et al., 2005)

VSLAM is widely investigated for airborne applications but fewer works focus
on underwater VSLAM. As explained in Section 2.2.3.4, underwater visual percep-
tion is affected by several physical phenomena such that the image of an under-
water three-dimensional point depends on its viewing angle, distance, depth with
respect to the surface, but also on the possible presence of embedded lights. Coping
with this photometric distortion is therefore crucial in applying VSLAM techniques
underwater. While some works investigate an image restoration step for each in-
coming frame (Salvi et al., 2008; Cho et al., 2018), this operation is always an ap-
proximation and can be computationally expensive depending on model physical
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accuracy. Therefore, an interest has been shown for off-the-shelf, underwater robust
algorithms. Evaluations of state-of-the-art VSLAM algorithms on underwater sce-
narios demonstrate that while some stereo VSLAM works are robust to underwater
visual conditions, monocular ones are still limited (Quattrini Li et al., 2017; Joshi et
al., 2019). Two monocular works are nonetheless reported as able to give partial but
promising results on underwater scenarios: ORB-SLAM (Mur-Artal et al., 2015) and
DSO (Engel et al., 2018). It is worth noticing that DSO is not rigorously a VSLAM al-
gorithm but a visual odometry (VO), where difference between both is that VOs only
use information from the last few seconds in their computations.

The current section focuses on monocular VSLAM for underwater application.
In line with observations from previous studies (Quattrini Li et al., 2017; Hidalgo
et al., 2018; Joshi et al., 2019), the focus is made on monocular, ORB-SLAM and
DSO related works. The current section is structured as follows. An overview of
ORB-SLAM and DSO related algorithms is given in Section 2.4.1. Then, the problem
of monocular VSLAM for underwater is developed functionality by functionality.
Section 2.4.2 describes the pose tracking problem and how it is solved in DSO and
ORB-SLAM-based works. Sections 2.4.3, 2.4.4 and 2.4.5 do the same for local map-
ping, loop closing and SLAM recovery functionalities. Section 2.4.6 synthesizes the
computational workflows of the VSLAM algorithms under focus. Because evalua-
tion datasets are crucial in VSLAM validation, a review of opensource underwater
VSLAM evaluation datasets is given in Section 2.4.7. Finally, Section 2.4.8 discusses
underwater monocular VSLAM challenges and perspectives.

2.4.1 Algorithms overview

This sections provides an overview of the algorithms under focus. Section 2.4.1.1
gives a brief introduction to KeyFrame-based SLAM, which includes ORB-SLAM
and DSO-based works. Section 2.4.1.2 lists and explains the main functionalities
involved in ORB-SLAM and DSO-based works. A first classification of these works
is provided given the functionalities implemented. Finally, Section 2.4.1.3 focuses on
VSLAM works classification according to visual information used.

2.4.1.1 From filter-based to KeyFrame-based SLAM

Monocular VSLAM was first solved by seminal work Mono-SLAM (Davison et al.,
2007) using an extended Kalman filter (EKF). Map feature locations and camera pose
were estimated jointly at each incoming frame, in a single iteration. Filter-based
VSLAM, however, involved unnecessary high computational cost when processing
new frames with little new information, but also a significantly increasing frame
processing duration with the number of map features, as well as the accumulation
of linearization errors (Mur-Artal et al., 2015; Zou et al., 2019).

KeyFrame-based approaches were introduced in order to avoid these drawbacks
by separating camera pose estimation and mapping in two different tasks, where
pose estimation is performed for each incoming frame, and map features triangula-
tion and refinement operations are performed only on a subsample of frames, de-
noted KeyFrames (KF). In KF-based works, mapping is not bound to framerate, and
more costly mapping operations can therefore be conducted. A representative early
KF-based work is PTAM (Klein et al., 2007), which splits tracking and mapping tasks
on two parallel threads. In practice, KFs can be defined as a data structure created
from a frame and composed of a viewing position and orientation, or pose, and
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of visual information including map features observations. KF representation can
be slightly different from a work to another. At the time of writing, state-of-the-
art VSLAM works are KF-based, including ORB-SLAM (Mur-Artal et al., 2015) and
DSO (Engel et al., 2018).

2.4.1.2 Main functionalities and functional classification

ORB-SLAM (Mur-Artal et al., 2015) and DSO (Engel et al., 2018) solve the monocular
localization and mapping problem very differently but are still based on a quite sim-
ilar architecture which decomposes the VSLAM problem into four functionalities:

• pose tracking is the computation of the camera pose from its current image view
of the scene;

• local mapping consists in creating and completing a map sequentially with local,
three-dimensional information which can be deduced from the camera views;

• the loop closing problem involves recognizing a previously visited place and
update the map accordingly;

• SLAM recovery consists in handling tracking failures in order to keep comput-
ing a localization and building a map.

While solving the pose tracking and local mapping is part of the definition of VS-
LAM, not all algorithms implement loop closing and SLAM recovery functionalities.

ORB-SLAM (Mur-Artal et al., 2015) implements pose tracking, local mapping,
loop closing and a SLAM recovery strategy. However, underwater evaluations
demonstrate that one of the main limitations of ORB-SLAM in underwater envi-
ronments relies in its recovery module being sometimes inefficient. Consequently,
the current state-of-the-art focuses on ORB-SLAM-based works which aim at
improving its SLAM recovery capability, namely ORB-SLAMM (Daoud et al., 2018),
ORB-SLAM Atlas (Elvira et al., 2019) and Dual-SLAM (Huang et al., 2020).

Conversely, DSO (Engel et al., 2018) is a VO and therefore only implements lo-
calization and short term mapping, and does not include loop closing nor SLAM
recovery. Underwater evaluations of DSO report that its main drawback relies in the
absence of long-term data association, which can lead to map inconsistency and to a
lack of robustness to bad data association. These problems can cause critical SLAM
failure, from which the system cannot recover since it does not implement SLAM
recovery. Whereas no work addresses the problem of extending DSO with a SLAM
recovery strategy, recent works extend it with loop closing, namely LDSO (Gao et
al., 2018) and DSM (Zubizarreta et al., 2020), where LDSO’s loop closing strategy is
inspired by ORB-SLAM.

The implementation of loop closing and SLAM recovery functionalities in the
ORB-SLAM and DSO-based works under focus is recapped in Table 2.2. The ORB-
SLAM and DSO families are represented schematically in Figure 2.24.

2.4.1.3 Visual information-based classification

VSLAM works can be classified according to the visual information used at each
step of the VSLAM pipeline.

A first criteria consists in the selection of the pixels used. If dense, all pixels from
the image are used. If sparse, only a subsample of pixels are used. These pixels can
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TABLE 2.2: Functional classification of VSLAM works under focus

Loop closing SLAM recovery

ORB-SLAM (Mur-Artal et al., 2015) X X
ORB-SLAMM (Daoud et al., 2018) X X
ORB-SLAM Atlas (Elvira et al., 2019) X X
Dual-SLAM (Huang et al., 2020) X X

DSO (Engel et al., 2018) ∅ ∅
LDSO (Gao et al., 2018) X ∅
DSM (Zubizarreta et al., 2020) X ∅

ORB-SLAM (2015)

ORB-SLAMM (2018)

ORB-SLAM Atlas (2019)

Dual-SLAM (2020)

Improve SLAM recovery

(A) ORB-SLAM family

DSO (2018)
LDSO (2018)

DSM (2020)

Long-term data association
(loop closing)

(B) DSO family

FIGURE 2.24: ORB-SLAM and DSO-based works under focus

be selected according to different criteria in order to be representative of the scene
and easier to match from a frame to another. An example of dense and sparse point
selection is represented in Figure 2.25, where selected points are highlighted in red.
While dense methods avoid losing information from the incoming images and lead
to a more dense scene perception by triangulating a dense three-dimensional point
cloud, they are far more expensive than sparse ones in terms of computation and
memory. Both ORB-SLAM (Mur-Artal et al., 2015) and DSO (Engel et al., 2018) are
sparse, but rely on different image points selection criteria: ORB-SLAM selects FAST
corners at different scale levels (Rosten et al., 2006), and DSO selects pixel patches
centered on high gradient points.

(A) Dense pixel selection (B) Sparse pixel selection (example)

FIGURE 2.25: Examples of dense and sparse pixel selection
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A second classification can be done according to the information used to char-
acterize the selected points. Direct methods rely on the photometric pixel value,
while indirect methods use higher level descriptors. Some hybrid works combine
direct and indirect approaches depending on the step in the SLAM pipeline, like
OV2SLAM (Ferrera et al., 2021), SVO (Forster et al., 2017) or LDSO (Gao et al., 2018).
The main motivation of direct methods is to prevent loss of information caused
by the descriptor-based representation. In addition, direct methods can cope with
poorly textured environment and are robust to blur. Conversely, an argument in
favor of indirect methods is that the use of high level descriptors instead of photom-
etry is more robust to lighting variations and geometric and photometric distortion.
Direct methods can take distortion effects into account by accurate geometric and
photometric camera calibration (Engel et al., 2018), but the computation of these cal-
ibrations is constraining, and does not account for possible lighting changes. While
DSO (Engel et al., 2018) is a fully direct approach, ORB-SLAM (Mur-Artal et al.,
2015) is indirect and relies on ORB descriptors (Rublee et al., 2011).

Table 2.3 provides a classification of the VSLAM works under focus according to
the visual information used in each of their main functionalities between direct (D),
indirect (I), sparse (S) and dense (D) approaches.

TABLE 2.3: Visual information-based classification of VSLAM works
under focus

Pose
tracking

Local
mapping

Loop
closing

SLAM
recovery

ORB-SLAM I/S I/S I/S I/S
ORB-SLAMM I/S I/S I/S I/S
ORB-SLAM Atlas I/S I/S I/S I/S
Dual-SLAM I/S I/S I/S I/S

DSO D/S D/S ∅ ∅
LDSO D/S D/S I/S ∅
DSM D/S D/S D/S ∅

2.4.2 Pose estimation and tracking

In monocular VSLAM, the pose estimation problem consists in estimating the cur-
rent pose of a mobile camera in real time, given the image views or frames acquired
by the camera simultaneously while moving around a static scene. Section 2.4.2.1
describes the tracking problem with more details. Sections 2.4.2.2 and 2.4.2.3 ex-
plain how the tracking process is implemented in ORB-SLAM-based and DSO-based
works, respectively.

2.4.2.1 Problem description

Let us denote Fc the mobile camera coordinate frame. At time tn, an image I(tn).
I(tn) is an array of pixels which is a discrete representation of the projection of the
scene on a plane, from the camera’s point of view (see Appendix A.3). Figure 2.26
represents two image views from the same cubic, three-dimensional object, recorded
at t = tn and t = tm. Axes of frame Fc at each timestamp are represented in red,
green and blue respectively.
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tn

tm

I(tn)

I(tm)

FIGURE 2.26: Multiple views of the same object

The pose estimation problem consists in estimating the pose wTcn of the camera
at t = tn, were Fw indicates a world reference coordinate frame. Usually, Fw is se-
lected such that wTc0 = I4 where index 0 accounts for the first incoming frame. The
tracking problem is solved by using the geometrical relations between a set of three
dimensional points {Pi}i∈{0...N} and their projection in I(tn) and one or multiple
other image views of known pose. Figure 2.27 illustrates the correspondences be-
tween three-dimensional points from the scene and their projection in images I(tn)
and I(tm) by red, dotted line. Points from images I(tn) and I(tm) which correspond
to the same three-dimensional point are indicated in blue.

tn

tm

I(tm)

I(tn)

FIGURE 2.27: Image points and three-dimensional points correspon-
dences

At the very first iteration of a VSLAM algorithm, environment map is still empty,
and no environment knowledge is therefore available. The first tracking iteration is
called SLAM initialization, and computes a pose c1 Tc0 with respect to the initial cam-
era frame by aligning observations of the same three dimensional points between
frames I(t1) and I(t0). This initialization step also leads to map initialization, which
will be discussed further in Section 2.4.3. Because the scale of the transformation
cannot be computed from monocular camera input without a priori knowledge of
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the scene, a random scale factor is set at initialization. Further transformations and
scene reconstruction will thus be computed with this unknown scale factor with re-
spect to the real dimensions of the scene.

After map initialization, three-dimensional environment knowledge from the
map is available and can therefore be integrated in the pose tracking process. The
tracking process is also responsible for deciding wether data from the current frame
should be inserted in the map. In this case, the current frame is turned into a
KeyFrame (KF), which can be defined as a data structure which corresponds to a
viewing position and orientation, and map features observed in the corresponding
image. The two first KFs created come from initialization frames I(t0) and I(t1).
Later KF insertion is conditioned by some criteria which will be discussed further in
Section 2.4.3.

2.4.2.2 Tracking in ORB-SLAM-based works

ORB-SLAM (Mur-Artal et al., 2015) is a sparse, indirect VSLAM framework relying
on ORB features and descriptors (Rublee et al., 2011), which are extracted from each
incoming frame.

At initialization, ORB-SLAM first matches ORB points from frames I(t0) and
I(t1) using the ORB descriptors. These matches are used to compute transformation
according to the coordinates of the matched image points using a geometric model.
More specifically, a homography and a fundamental matrix (Hartley et al., 2004) are
computed. If the corresponding three-dimensional points are planar, nearly planar
or with low parallax, then the homography matrix characterizes well the transforma-
tion c1 Tc0 ; otherwise c1 Tc0 is better described by the fundamental matrix. The model
that best fits the observations is then conserved and used for computing the initial
pose and three-dimensional points triangulation. While this initialization algorithm
is preserved in most ORB-SLAM-based works, ORB-SLAMM (Daoud et al., 2018)
proposes to reduce initialization duration by using the fundamental matrix directly
instead of selecting the best model between the homography and the fundamental
matrix, based on the observation that the homography is rarely selected in practice.

After SLAM initialization, the tracking process uses both the previous frame and
three-dimensional points from the map. Let us consider a frame acquired at time
t = tn. First, an initial guess of the camera motion is performed by taking cn Tcn−1 ≈
cn−1 Tcn−2 . This initial guess is used for a guided matching between the ORB points
from frames I(tn−1) and I(tn), according to their ORB descriptors. The pose is then
optimized with the matched points. In a second time, some local map points are
selected and projected in I(tn) to perform a guided matching with ORB points from
I(tn). The pose is optimized again according to the resulting matches. The third
and last step consists in deciding wether data from the current frame I(tn) should
be turned into a KF and used to increment the map. KF decision criteria include
sufficient scene view change from the last KF inserted, time elapsed since the last
KF insertion and lack of new incoming information and the computation resources
available.

Except ORB-SLAMM’s initialization, all ORB-SLAM-based algorithms described
in Section 2.4, namely ORB-SLAMM (Daoud et al., 2018), ORB-SLAM Atlas (Elvira
et al., 2019) and Dual-SLAM (Huang et al., 2020) follow the same tracking process as
ORB-SLAM.
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2.4.2.3 Tracking in DSO-based works

DSO (Engel et al., 2018) is a sparse, fully direct VO. If available, a photometric cal-
ibration of the camera is used to apply a photometric correction of all pixel value
in each new incoming frame. Pixel intensity is then assumed to depend only on
the irradiance of the corresponding three-dimensional scene point and on the expo-
sure time. If the exposure time is known, it is also corrected, otherwise its impact is
ignored by the tracking process.

DSO’s tracking uses a selection of image points chosen such that they are well-
distributed in the image and with a high gradient magnitude with respect to their
immediate surroundings. These points are characterized by the values of pixels from
a patch which is centered on the selected image point. They are selected in a refer-
ence image, which is I(t0) at initialization and the image from the most recent KF
otherwise. The transformation between the frames is estimated using these active
points, based on a conventional two-frame direct image alignment, a multi-scale im-
age pyramid and a constant motion model. If the final residual is above a threshold,
the algorithm tries applying up to 27 small rotations to the current relative pose es-
timate in different directions in a RANSAC-like procedure in order to find a pose
estimate with an acceptable photometric residual. New KF decision criteria include
sufficient field of view changes, similarly to ORB-SLAM-based works, but also oc-
clusion and dis-occlusion detection and significant exposure time change, if avail-
able. Pose estimation according to the current tracking process is coarse, and is only
refined if the frame is selected for KF creation, in a local map optimization which
will be described in Section 2.4.3.

The same tracking process is implemented in the DSO-based work DSM (Zu-
bizarreta et al., 2020). Implementation in LDSO (Gao et al., 2018) is very similar,
but with a slightly different point selection in order to include a proportion of ORB
points. All selected points are still processed as in DSO during the tracking pro-
cess, and the inclusion of ORB points is reported not to impact on the tracking pro-
cess (Gao et al., 2018).

2.4.3 Local mapping

The local mapping process consists in the insertion of new, local observations in the
map. In the VSLAM approaches described in Section 2.4, this process consists in
new KF creation according to the decision of the tracking algorithm, insertion of this
new KF in the map and local map update including optimization and obsolete data
marginalization. Section 2.4.3.1 develops the local mapping problem, including map
representation and new data insertion steps. Sections 2.4.3.2 and 2.4.3.3 explain the
local mapping process implementations in ORB-SLAM-based and DSO-based works
respectively.

2.4.3.1 Problem description

The VSLAM approaches studied in Section 2.4 are KF pose-graph based works, what
is the predominant category of VSLAM at the time of writing. The map therefore
consists in a graph of KF and of a set of map points which have been triangulated
based on their observations in KFs. KF connections in the graph are determined
based on a combination of temporal and covisible criteria. The temporal criterion
connects KFs inserted consecutively in the map, and the covisibility criterion con-
nects KFs sharing a sufficient quantity of map points observations. The resulting
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graph is usually referred to as covisibility graph. Figure 2.28 represents an example of
map generated by running the monocular ORB-SLAM Atlas (Elvira et al., 2019) im-
plementation from ORB-SLAM3 (Campos et al., 2021) on the V1_01 sequence from
the EuRoC dataset (Burri et al., 2016). It is a sample view from ORB-SLAM3’s viewer.
KF poses are represented in blue, except from the first KF which is red. Covisibility
connections are drawn in green, and map points are indicated in black and red.

FIGURE 2.28: Example map visualization from ORB-SLAM3’s viewer

Map initialization is performed from the two frames used at SLAM initialization
(see Section 2.4.2), which are turned into two connected KFs and used to triangulate
the first map observations. When a new KF decision is taken at the end of the track-
ing process, a new KF is created and inserted in the map. KF insertion consists in
completing the map with the creation of a new node in the covisibility graph and its
connection to previous KF nodes, but also new observations of previous map points
with respect to the new KF and new map points triangulation. Map data is then
updated in a local window in order to best fit new map data. Updates include the
identification and marginalization of inaccurate, too redundant or no more relevant
map points or KFs, but also map optimization according to new observations. Map
optimization is usually performed by a local bundle adjustment (LBA) which opti-
mizes simultaneously KF poses and map points coordinates on a local window of
covisible KFs.

This optimization process is illustrated in Figure 2.29 using three connected KFs
recorded at timestamps t = tk, t = tn and t = tm. Three-dimensional points and
their projection in the frames are highlighted using the same color. The crosses de-
note the estimated location of the three-dimensional points. The LBA uses map point
(MPs) observations among the KFs to correct three-dimensional point location and
KF poses from the initial state of Figure 2.29a to the optimized state represented in
Figure 2.29b. KF pose estimations as initialization are represented in gray in Fig-
ure 2.29b to visualize the adjustment.
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FIGURE 2.29: LBA process illustration

2.4.3.2 Local mapping in ORB-SLAM-based works

In ORB-SLAM (Mur-Artal et al., 2015), KF data structures include a pose, the ORB
points detected in the original frame, the list of map points which have been detected
in the image and the coordinates of the corresponding points in the image. The cov-
isibility graph is then updated by connecting the new KF to the KF with most map
point observations in common, according to the map points detected in the new KF’s
frame during the tracking step. In a second time, map points are updated by culling
old map points according to observation consistency criteria and triangulating new
map points from the new KF. KF poses and map points coordinates are then updated
by a LBA on a local window composed of the newly inserted KF, all KFs connected
to it in the covisibility graph and all map points visible from these KFs. Finally, too
redundant KF are discarded from the map. In ORB-SLAM, the KF creation decision
criteria are very permissive in order to prevent missing important information. KF
without significant contribution to the map will be culled later on, as part of the local
mapping process. KF culling also regulates the number of KF, since the more KFs in
the map the higher memory and computational cost.

This process is similar in ORB-SLAMM (Daoud et al., 2018), ORB-SLAM At-
las (Elvira et al., 2019) and Dual-SLAM (Huang et al., 2020).

2.4.3.3 Local mapping in DSO-based works

In DSO (Engel et al., 2018), KF data structures include a pose and the original frame.
When a new KF is created, its pose is initialized with the coarse estimation computed
at tracking. DSO maintains and updates a window of a fixed, small number of active
KF selected among the most recent KFs. This KF window is updated by inserting
new incoming KF and marginalizing obsolete ones based on timestamp, KF pose
prior and redundancy such that the oldest, furthest and most redundant KFs are
marginalized. Only map information from the last seconds is therefore used by the
algorithm. One can notice that, similarly to ORB-SLAM, DSO’s KF insertion strategy
consists in creating many new KF and reduce their number afterwards by redundant
KF marginalization.

At new KF insertion, a fixed number of active points is selected among active
KF images. As for the tracking step, these points are described by the value of a
pixel patch around the selected image point. Active points are chosen such that they
are well-distributed in the images of the active KF and have sufficiently high image
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gradient magnitude with respect to their local neighborhood, but also that they can
be matched in subsequent KFs. Candidate active points are therefore tracked in
successive KFs along the epipolar line, by minimizing the photometric error, and
the active points are selected from the best matches.

A photometric bundle adjustment is then conducted on the active KF window
based on a photometric cost. Optimized parameters include KF poses, but also ac-
tive point inverse depth, camera intrinsic parameters, and exposure parameters if
the exposure time is unknown.

A similar process is implemented in LDSO (Gao et al., 2018) but with the in-
clusion of a proportion of ORB points, as for tracking, although their inclusion is
reported not to deteriorate the photometric optimization result compared to DSO.
ORB points are also included in the KF representation.

A fundamental difference between local mapping implementation in DSO and
DSM (Zubizarreta et al., 2020) relies in the selection of the active KFs. DSM’s local
KF window includes both temporal KFs, selected like in DSO, and covisible KFs, which
are older KFs selected such that they should provide complementary viewing infor-
mation. Covisible KFs selection is based on estimated KF poses and prior, coarse
pose estimation of the new KF, and thus accurate covisible KFs choice strongly re-
lies on a good pose prior. Robustness of covisible KF selection and integration in the
optimization can therefore be questioned.

2.4.4 Loop closing

Some SLAM algorithms are able to recognize a previously visited place and up-
date the map accordingly. This process is known as loop closing and can be decom-
posed in two problems: loop detection, or place recognition, and map update. Loop
closure implementation in ORB-SLAM-based and DSO-based works is described in
Sections 2.4.4.1 and 2.4.4.2 respectively.

2.4.4.1 Loop closing in ORB-SLAM-based works

Place recognition in ORB-SLAM (Mur-Artal et al., 2015) is based on DBoW2 bags
of visual worlds (BoW) (Galvez-López et al., 2012). The visual vocabulary is given
as input to the system, and a BoW representation of each new incoming KF Ki is
computed at insertion, using its ORB points. These representations are stored in a
database. Each new KF insertion triggers a query on the BoW database. KFs sharing
enough visual worlds with the new, incoming KF are identified as loop closure can-
didates. KF candidates are validated using further map point observations matching
and geometrical and covisibility criteria. If a valid candidate Kl is found, the simi-
larity transformation lSi between the poses of Kl and Ki is computed geometrically
from map point matches. The similarity transformation includes a rotation, a trans-
lation and a scale, which accounts for scale drift between insertions of Kl and Ki.

If a consistent estimation of lSi is found, the map update is triggered. First, the
poses of the neighbors of Ki in the covisibility graph are corrected using lSi. Dupli-
cated map points are fused, and new ones are intended to be triangulated according
to the updated map geometry. A global bundle adjustment (GBA) is then launched
in order to optimize map point coordinates and KF pose at a global scale. The cost
of this operation is limited by not including all covisibility connection constraints
but only those of a subgraph, called essential graph, which includes the covisibility
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graph spanning tree and covisibility edges accounting for a particularly high num-
ber of common map points between the connected KFs. Because these map updates
can be concurrent with local mapping update, the local mapping process is stopped
temporarily during these operations.

The exact same process is preserved in ORB-SLAMM (Daoud et al., 2018), ORB-
SLAM Atlas (Elvira et al., 2019) and Dual-SLAM (Huang et al., 2020).

2.4.4.2 Loop closing in DSO-based works

While DSO (Engel et al., 2018) does not implement any loop closure handling by
definition, loop closing is solved very differently in LDSO (Gao et al., 2018) and
DSM (Zubizarreta et al., 2020).

LDSO proposes an indirect loop closure handling strategy relying on an ORB
points map representation and BoW place recognition, similarly to ORB-SLAM, us-
ing an improved version of DBoW2 (Galvez-López et al., 2012), DBoW3. The ORB
points included in the set of active points are used to compute a BoW representa-
tion of each new KF, at insertion. The motivation in integrating these ORB points
in the tracking and local mapping steps is to ensure the consistency between these
processes and loop closing. When a new KF Ki is inserted, the BoW database is
queried in order to find loop candidates, just like in ORB-SLAM. ORB points from
Ki and candidates are matched and a similarity transformation with respect to the
loop candidate Kl is deduced. If a consistant lSi transformation is found, map up-
date is triggered in the form of a pose graph optimization of the map, where each
pair of consecutively inserted KF is connected by an edge, and Kl and Ki are con-
nected together. The poses of the KFs from the local window are set fixed in the
optimization process so that the global optimization does not interfere with the local
bundle adjustment.

In DSM, the integration of covisible KFs in the local optimization can be con-
sidered as a specific kind of loop closure process. Covisible KF selection can be
assimilated to a place recognition process where loop candidates are selected based
on a pose prior, within a long-term data association process. Long and short term
map data are then fused as part of the local mapping process.

2.4.5 SLAM recovery

In KF-based VSLAM works, the tracking process feeds the mapping process — in-
cluding local mapping and optionnally loop closing — by propagating a pose esti-
mation from frame to frame. However, it may happen that the tracking process fails.
In this case, the current pose is unknown and thus the SLAM pipeline is broken.

While SLAM recovery has not been investigated so far in a DSO-based frame-
work, several strategies have been investigated in the ORB-SLAM family. In ORB-
SLAM, it is performed by a relocalization process aiming at finding correspondences
between the current frame an a KF from the map using a BoW query. If a KF match
is found, the system perfoms a brute-force ORB features matching between the cur-
rent frame and the reference KF and a relative pose is deduced from the matches.
Relocalization is validated according to geometrical and consistency checks.
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The relocalization-based strategy is however limited. Indeed, depending on the
visual conditions and on the system getting out of the already mapped area, relocal-
ization may never succeed, or at least lead to important time gaps without localiza-
tion estimation, which can be critical for real-life applications. ORB-SLAMM (Daoud
et al., 2018) first investigated multi-mapping as a SLAM recovery strategy. In case
of SLAM failure, ORB-SLAMM initializes a new map without any relocalization at-
tempt. This strategy avoids waiting for relocalization and allows the SLAM algo-
rithm to continue running even if the maps are disjoint. A map merging thread
continuously performs a DBoW2-based place recognition in all previous maps for
each incoming KF. If a match is found between a pair of maps, it is used to compute
a transformation between them. Dual-SLAM (Huang et al., 2020) and ORB-SLAM
Atlas (Elvira et al., 2019) also rely on new map creation and multi-map fusion. In
case of tracking loss, Dual-SLAM initializes a new map and tries to fuse it with the
previous one by running a backward SLAM. ORB-SLAM Atlas initializes a new map
only if relocalization fails. All old maps are stored as disconnected entities. The loop
closure place recognition queries all maps, and two matched maps are then merged
similarly to loop closure optimization. All maps can be used for relocalization. A
major difference between ORB-SLAM Atlas and ORB-SLAMM is that ORB-SLAMM
does not fuse map observations nor reuse map information from old maps. In addi-
tion, ORB-SLAMM’s intermap place recognition is more permissive, with less con-
sistency checks.

2.4.6 Workflows of VSLAM works under focus

Figures 2.30 to 2.36 represent the workflows of the ORB-SLAM and DSO-based
works under focus. On can see that tracking and local mapping ar usually com-
puted on different, parallel threads, as well as loop closing if implemented. GBA
is always executed on an additional thread. The computational implementation of
SLAM recovery can be very different from the VSLAM work and the recovery algo-
rithm.

In DSO, LDSO and DSM (respectively Figures 2.34, 2.35 and 2.35), the photo-
metric optimization optimizes simultaneously points inverse depth, camera intrinsic
parameters, exposure parameters and camera poses.
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2.4.7 Underwater datasets for VSLAM evaluation

While airborne VSLAM evaluation can rely on standard, public datasets recorded
in different environments, featuring several sequences in the similar environments
and visual conditions with various trajectories of gradual difficulty (Geiger et al.,
2012; Burri et al., 2016; Schubert et al., 2018), there is no equivalent in the underwa-
ter field at the time of writing, because of the important cost and resources required
for acquiring such data. Previous works on VSLAM benchmark under underwater
conditions released their evaluation datasets, which are composed of heterogeneous
sequences recorded in completely different environments from one to another, with
various lighting conditions and camera settings (Quattrini Li et al., 2017; Joshi et al.,
2019). Such heterogeneous datasets are particularly interesting for comparing VS-
LAM methods under very different conditions, but are not suitable for a detailed
evaluation under specific conditions. (Ferrera et al., 2019) released AQUALOC, an
underwater visual-inertial-pressure dataset. Similarly to standard aerial datasets, it
is composed of several gradually more difficult sequences recorded in similar en-
vironments, on three different marine sites. All these sequences, however, show
quite similar conditions by featuring man-made objects lying on a planar sandy area
and involving only slow camera motion. As a result, the AQUALOC dataset only
represents a small portion of the wide variety of underwater environments and vi-
sual conditions. The generation of ground truth trajectories relative to underwater
datasets is more difficult than for aerial datasets. Whereas airborne datasets’ ground
truth commonly rely on laser scans or, sometimes, motion capture systems in smaller
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scale indoor environments, such systems are not available in the sea. In (Joshi et
al., 2019), the output trajectory of a visual-inertial-SONAR-depth SLAM (Rahman
et al., 2019) is used as a reference for visual and visual-inertial SLAM evaluation,
but this can only apply to data acquired with a very specific sensor system. In
AQUALOC (Ferrera et al., 2019), the offline Structure-from-Motion Colmap is used
to compute a reference trajectory. These two strategies assume that the use of more
sensors or time and computational resources will lead to a more reliable state estima-
tion than real-time visual-only SLAM. Although the absence of a ground truth only
allows a coarse comparison between VSLAM approaches, it has been shown that
such qualitative evaluations can be sufficient to discriminate many VSLAM works
in underwater fields (Quattrini Li et al., 2017; Joshi et al., 2019).

The current section describes the opensource underwater VSLAM evaluation
datasets available at the time of writing, which were released as part of the work
of (Quattrini Li et al., 2017) (A/In, A/Out – Line, A/Out – Front, D/W and G/W se-
quences)1, (Joshi et al., 2019) (Cemetery, Bus and Cave sequences)16 and (Ferrera et
al., 2019) (AQUALOC dataset, composed of Aqualoc Harbor and Aqualoc Arquaeo)17.
Section 2.4.7.1 describes data content of these datasets. Section 2.4.7.2 provides de-
scriptions of the recording conditions and of the motion and trajectory operated.

2.4.7.1 Sensors and data content

Table 2.4 presents the cameras involved in all the datasets. The A/Out – Line includes
two cameras indexed #1 and #2 with different framerates, no field overlapping and
no extrinsic calibration provided for a stereo use. Additional embedded sensors and
sensor framerates are given in Table 2.5.

TABLE 2.4: Camera description

Channels Mono/Stereo Distortion Dimensions Orientation

A/In RGB Mono Rad-tan 776×640 Forward

A/Out – Line #1 RGB Mono Rad-tan 776×640 Forward
A/Out – Line #2 RGB Mono Rad-tan 1024×768 Downward

A/Out – Front RGB Mono Rad-tan 1024×768 Forward

D/UW RGB Mono Rad-tan 640×480 Downward

G/UW RGB Stereo Rad-tan 1920×1080 Forward

Cemetery RGB Stereo Rad-tan 1200×1600 Forward

Bus RGB Stereo Rad-tan 1200×1600 Forward

Cave RGB Stereo Rad-tan 1200×1600 Forward

AQUALOC Harbor Gray Mono Fisheye 512×640 Downward

AQUALOC Arquaeo Gray Mono Rad-tan 608×968 Downward

1https://afrl.cse.sc.edu/afrl/resources/datasets/
17https://www.lirmm.fr/aqualoc/

https://afrl.cse.sc.edu/afrl/resources/datasets/
https://www.lirmm.fr/aqualoc/
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TABLE 2.5: Sensors and framerates

Camera IMU SONAR
Pressure
sensor

GPS

A/In 15 Hz 50 Hz ∅ ∅ ∅

A/Out – Line #1: 4 Hz
#2: 15 Hz

50 Hz ∅ ∅ ∅

A/Out – Front 15 Hz 50 Hz ∅ ∅ ∅

D/UW 2.5 Hz 10 Hz ∅ ∅ 2 Hz

G/UW 30 Hz ∅ ∅ ∅ ∅

Cemetery 15 Hz 100 Hz ∅ ∅ ∅

Bus 12.5 Hz 100 Hz 100 Hz 1 Hz ∅

Cave 12.5 Hz 100 Hz 100 Hz 1 Hz ∅

AQUALOC Harbor 20 Hz 200 Hz ∅ 5-10 Hz ∅

AQUALOC Arquaeo 20 Hz 200 Hz ∅ 60 Hz ∅

The Aqualoc Harbor and Aqualoc Arquaeo datasets are composed of 7 and 10 se-
quences respectively, recorded in quite similar conditions. They include a reference
trajectory computed from SfM. All other datasets are composed of a single sequence,
and provide no ground truth or reference trajectory for quantitative benchmarking.

2.4.7.2 Recording conditions and sequence description

Table 2.6 indicates the duration, approximate depth, presence of embedded lights
and presence of loop closures in the trajectory. Table 2.7 gives a qualitative descrip-
tion of the visual conditions and motion.

TABLE 2.6: Datasets description

Duration Depth Embedded light Loop closure(s)

A/In 88 s Unknown ∅ ∅

A/Out – Line 53 s Unknown ∅ ∅

A/Out – Front 88 s Unknown ∅ ∅

D/UW 602 s Unknown ∅ ∅

G/UW 272 s Unknown ∅ X

Cemetery 433 s 20 m ∅ X

Bus 584 s 20 m ∅ X

Cave 709 s 20 m X X

AQUALOC Harbor 2-15 min 3 m X X

AQUALOC Arquaeo 2-15 min 270 m and 380 m X X
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TABLE 2.7: Datasets visual condition and motion description

Description

A/In
Forward traveling inside a shipwreck off the Barbados coast. Water is
globally clear, but parts of the sequence feature suspended particles
and fishes.

A/Out – Line
Forward traveling over a coral reef on the off the Barbados coast,
including some mobile elements like seaweeds, fishes and suspended
particles. A part of camera #2’s field of view is occupied by its housing.

A/Out – Front Alongside a shipwreck, outside. A part of the camera housing is visible.

D/UW Drifter off the Barbados coast. Low image resolution and framerate. Fast,
abrupt motion.

G/UW
Complete tour around a shipwreck, but with small loop closure overlap.
Important scene aspect change between the two lateral sides of the wreck.
Turbid water. Quite slow motion.

Cemetery
Fake submerged cemetery, composed of large rocks aligned on a sandy
area. The camera follows the path delimited by the rock and never films
sand only areas. Quite slow motion.

Bus

Complete tour around a sunken bus, in turbid water. Small part of
the trajectory inside the bus. Important scene aspect change between the
two lateral sides of the wreck, with one side very poorly illuminated.
Quite slow motion.

Cave Inside an underwater cave, showing natural mineral-only environment
in clear water. Quite slow motion.

AQUALOC Harbor Around large man-made objects lying on the sand. Some loop closures
in the sequences are marked by an apriltag target. Quite slow motion.

AQUALOC Arquaeo
Around amphora hills with hight texture but sometimes facing low
textured sandy areas. Turbidity, backscattering, and presence of
suspended particles and fishes in some sequences. Quite slow motion.

2.4.8 Discussion

In state-of-the-art, opensource, monocular VSLAM evaluations in underwater sce-
narios, ORB-SLAM is demonstrated to be quite robust to underwater visual condi-
tions but subject to initialization difficulties and critical relocalization failure after
tracking failure, and DSO is reported to cope with poorly textured environment and
be robust to blur, as expected for a direct method, but also to suffer occasionnaly
from important inconsistencies and early failure (Quattrini Li et al., 2017; Hidalgo
et al., 2018; Joshi et al., 2019).

More frequent tracking failures in underwater scenarios can be explained by the
visual distortion, which impacts both visual data detection and matching. In ORB-
SLAM, the SLAM can still recover from a tracking failure by relocalizing in the map,
but this strategy is useless if the camera moves out of the previously mapped area,
hence the interest in new SLAM recovery techniques based on the creation of a new
map which is intended to be fused to the previous one. Such algorithms are im-
plemented in ORB-SLAMM, ORB-SLAM Atlas and Dual-SLAM with different map
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merging strategies. While these approaches may be particularly interesting for un-
derwater scenarios because of their robustness to SLAM failures, they have not been
compared yet on underwater scenarios. They are indeed posterior to the under-
water evaluation works mentionned in the current section (Quattrini Li et al., 2017;
Hidalgo et al., 2018; Joshi et al., 2019).

While no such SLAM recovery algorithms have been developped on a DSO-basis
at the time of writing, the long-term data association functionnalities implemented
in LDSO and DSM are expected to improve robustness to underwater conditions by
reducing the risks of tracking failures and map inconsistencies. Indeed, longer-term
data associations may improve map optimization by using older KFs with more
parallax, leading to better KF pose prior and knowledge of the scene geometry.
However, integration of long-term information is still limited in DSM and LDSO.
In LDSO, covisibility connections between two KFs from which a loop closure has
been completed are definitively lost after the GBA. This covisibility information are
therefore never used for local KF window selection in the pose tracking and local
mapping processes. Conversely, DSM takes advantage of longer-term map data to
select higher parallax views in the optimization window. The main drawback of
DSM is the selection process of these KFs, which entirely relies on a good pose prior.
Therefore, inconsistent pose prior from a bad pose tracking may lead to wrong long-
term data association and result in even more inconsistent mapping.

2.5 Multi-agent VSLAM for underwater

Some robotic applications involve the deployment of multiple agents, which can be
a team of moving ground vehicles, flying drones, underwater vehicles, or any group
of multiple mobile sensor sets. Applications include, for instance, environment ex-
ploration for multi-view mapping purpose (Michael et al., 2014; Özkahraman et al.,
2022) or within a rescue mission (Murphy et al., 2012; Cho et al., 2018), and object
transport and manipulation (D’Antonio et al., 2022). Such scenarios require localiz-
ing each robot with respect to each other, a possible collaborative environment map-
ping, hence an increased interest in multi-agent SLAM. These algorithms can involve
individual measurements, which characterize the state of the agent performing the
measurement, and optionally relative measurements, which describe the state of one
agent relatively to another.

2.5.1 Architectures and communication schemes

Multi-agent SLAM approaches can be classified according to the distribution of their
computations among the agents and a central server, as illustrated in Figure 2.37.

In fully centralized approaches, all localization computations are done on a cen-
tral server, which can be one of the agents or an external server. Other agents only
perform measurements and send their data to the server. Optionally, the server can
send their estimated location to the agents. Centralized approaches strongly rely on
the server having sufficient computational resources and bandwidth. As a result,
they are not scalable to high number of agents and are not robust to communication
failures.
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FIGURE 2.37: Multi-agent SLAM communication schemes

Conversely, decentralized approaches distribute the computations among the
agents (fully decentralized) or between the agents and a central server (partially de-
centralized). The main motivations of partially decentralized approaches are to re-
duce the server’s computational payload and provide a better robustness to commu-
nication failures, since agents can keep estimating a localization based on their own
measurements if the server is unavailable. Scalability of such methods is although
still dependent on the server’s computation resources and require to exchange sig-
nificant amounts of data.

Lastly, fully decentralized algorithms do not involve any server. Agents com-
municate their measurements and optionally a state prior to each other, and all
computations are distributed among them. The motivation of such approaches is
to reduce the communication bandwidth and computational requirements into a
more scalable multi-agent localization scheme. Works on these approaches focus on
reducing bandwidth requirements by communication sparsification, data marginal-
ization and condensing inter-robot data exchanges in order to improve scalability
and robustness to communication restrictions (Dubois et al., 2019). However, fully
decentralized algorithms are less accurate than the ones involving a central server,
since observations are never fused at a global scale.

2.5.2 Airborne works

Existing multi-agent VSLAM approaches adopt a centralized or partially decentral-
ized approach (Zou et al., 2019), even though a few works investigate the theoretical
aspects of a fully decentralized architecture (Cunningham et al., 2010; Cunningham
et al., 2013; Leonardos et al., 2017). In addition, none of these works investigate the
integration of relative measurement in a multi-agent VSLAM system.

Historically, multi-agent VSLAM has been investigated alongside the very first
VSLAM approaches, mostly building upon state-of-the-art single-agent algorithms
(Zou et al., 2019). The first multi-agent VSLAM built on PTAM. Taking advantage
of the keyframe map structure, PTAMM (Castle et al., 2008) builds a common map
with two PTAM tracking inputs. Agent-keyframe association is preserved though,
in order to limit the relocalization only on keyframes created by the lost agent, and
thus reduce its computational cost. C2TAM (Riazuelo et al., 2014) extends PTAM’s
system to a set of n collaborative agent with RGB-D input, and distributes the com-
putations between the agents themselves and a central server. Each agent runs a
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tracking thread and sends keyframes to the server, which runs a single common
mapping thread. The mapping thread initially creates and updates a map for each
agent, and tries to fuse maps according to place recognition. Using RGB-D input
allows to have the scale of the maps. After being updated by the server, the maps
are sent to the agents. Similarly to PTAM, both PTAMM and C2TAM are, though, re-
stricted to small office environments. Contrary to these works, CoSLAM (Zou et al.,
2013) implements a collaborative tracking which takes advantage of the overlapping
views of groups of camera to track the scene and triangulate points. In addition,
this approach allows to map dynamic objects in the environment. However, this
implies camera synchronization. Place recognition is also handled very differently
from PTAMM and C2TAM. All agents are initialized with a common overlapping
area, allowing to align their world reference frames. A loop closure detection is im-
plemented based on pose prior instead of keyframe descriptor matching, neglecting
the drift of individual agents localization and mapping. No relocalization is imple-
mented. CoSLAM is then very dependent on good tracking performances, and is
not adapted for agents with rare view overlaps. This work is although interesting
because it tries to tackle the multi-agent VSLAM problem in an original manner and
take advantage of the current view overlaps in all the steps of VSLAM’s pipeline,
contrary to most of the state of the art. Fusing the maps of multiple agents got
transformed by the place recognition capabilities provided by bags of visual words
(BoW) (Nister et al., 2006). A server backend for multiple keyframe maps fusion is
introduced in (Deutsch et al., 2016). Map overlaps are detected by BoW and a pose
graph optimization is performed. All maps, however, need to be at the same scale.

While interest in aforementioned multi-agent works is mostly historical, the most
recent multi-agent VSLAM approaches build upon ORB-SLAM (Mur-Artal et al.,
2015) and ORB-SLAM2 (Mur-Artal et al., 2017). CORB-SLAM (Li et al., 2018) in-
troduces a first ORB-SLAM based multi-agent architecture. Each agent runs ORB-
SLAM individually and builds its own maps. These maps are sent to a central server
which tries to detect overlapping regions by a DBoW2 place recognition similar to
ORB-SLAM’s loop closure. Matched maps are then fused into a single common map.
The global map is sent to the agents after each update. CCM-SLAM (Schmuck et al.,
2019) introduces a monocular partially decentralized framework which applies to
vehicles with limited onboard memory and computational resources, under com-
munication bandwidth constraints. Each agent conducts ORB-SLAM’s tracking and
local mapping and only maintains a window of local KFs. New KFs and map points
are sent to a central server, which stores the database of maps, handles loop closures
for each agent and performs inter-map DBoW2 place recognition and map merging,
with the same place recognition algorithm as ORB-SLAM. In addition, the server
provides agents KFs for their local window. Several agents can then localize in the
same map and share the same KFs. A key contribution of that work is the ability of
the agents to keep performing an individual visual odometry if communication with
the server is broken. A downside of this approach is that no SLAM failure handling
strategy is implemented. The evaluation of CCM-SLAM provided in (Schmuck et
al., 2019) focuses on real-time capabilities and limited bandwidth handling, result-
ing in a limited evaluation of the localization and mapping accuracy, which is only
based on Root-Mean-Square (RMS) Absolute Position Error (APE) on agent’s tra-
jectories. A comparison with state-of-the-art VSLAM is also missing, as well as an
evaluation of relative localization capabilities between agents and global map accu-
racy characterization. While ORB-SLAMM (Daoud et al., 2018) is presented initially
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as a single-agent monocular approach, it can be extended to a multi-agent fully cen-
tralized framework. In the multi-agent extension, a tracking thread, a local mapping
thread and a loop closing thread are run for each agent, but the system includes one
single multi-map database and one single map merging thread. This multi-agent im-
plementation is, however, only evaluated superficially, according to the global RMS
APE over agent trajectories, showing the same evaluation limits as CCM-SLAM. A
synthesis of these ORB-SLAM-based works is provided in Table 2.8. The workflows
of CORB-SLAM (Li et al., 2018), multi-agent ORB-SLAMM (Daoud et al., 2018) and
CCM-SLAM (Schmuck et al., 2019) are represented in Figures 2.38, 2.39 and 2.40
respectively.

TABLE 2.8: ORB-SLAM-based multi-agent VSLAM synthesis. Unless
otherwise stated, tracking (T), local mapping (LM), loop closing (LC),
place recognition (PR) and GBA operations are the same as the one
implemented in ORB-SLAM. Map merging is abbreviated into MM.

Agents Server Map merging Recovery

CORB-SLAM
(Li et al., 2018)

1 T thread
1 LM thread
1 LC thread
(1 LC GBA thread)
+ send maps
to the server

1 inter-map PR thread
(1 MM GBA thread)
+ send map updates
to the agents

Similar to
ORB-SLAM’s
LC + GBA

∅

ORB-SLAMM
(Daoud et al., 2018)

Send frames
to the server

1 T thread per agent
1 LM thread per agent
1 LC thread per agent
(1 LC GBA thread
per agent)
1 inter-map PR thread

Close to
ORB-SLAM’s LC
but with less
geometric
consistency
checks

Multi-map

CCM-SLAM
(Schmuck et al., 2019)

1 T thread
1 LM thread
+ send new KF
to the server

1 inter-map PR thread
(1 MM GBA thread)
+ send local KF
to the agents

Similar to
ORB-SLAM’s
LC + GBA

∅

2.5.3 Waterborne works

Multi-agent systems are also studied for underwater applications. Multiple AUVs
can be deployed simultaneously to cover wider areas in various applications includ-
ing infrastructure inspection, seabed mapping, search and rescue, oceanographic
studies (Bechlioulis et al., 2019). Some works investigate the problem of multi-agent
VSLAM for AUVs (Mangelson et al., 2018; Özkahraman et al., 2022). The main chal-
lenge in these works consists in managing information sharing between AUVs under
the bandwidth limitations of underwater wireless communications. Multiple ROV
applications are more rare and include archaeological exploration, recovery mis-
sions (Murphy et al., 2012) or tether management strategies like robot chains (Laran-
jeira et al., 2020). Although fully communicating multi-ROV configurations allow
the theoretical implementation of the state-of-the-art airborne multi-agent VSLAM
works, there are no works addressing this problem in the literature.
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2.6 Discussion and key scientific challenges

The scientific focus of this thesis is the localization of an underwater ROV chain,
which is a system of underwater, tethered robots, which can communicate together
and to a surface station, in real time. This localization problem involves locating
both the robots and the cable parts between them, with respect to their environ-
ment. The relative pose of the robots and cable parts 3-dimensional configurations
are strongly linked. On the one hand, cable shape can be deduced from robot’s rel-
ative pose according to a cable model. In this case, visual SLAM is considered as a
promising localization approach, which is also interesting in providing environment
knowledge. On the other hand, robot’s relative pose can be deduced from cable 3D
shape knowledge. This brings the following key scientific challenges:

• how can the shape of a cable linking a pair of underwater robots be estimated
with embedded sensors? and which what level of accuracy?

• to what extent can such a cable shape estimation be used for estimating the
relative pose of tethered underwater robots?
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• to what extent are the state-of-the-art VSLAM algorithms suitable for under-
water robot localization, in the single agent case?

• how can multiple underwater agents be localized within a multi-agent VSLAM
framework? and with what accuracy?

• may cable-based and VSLAM-based localization approaches be fused to im-
prove robot chain localization?
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Chapter 3

Cable-based state estimation

3.1 Introduction

In this chapter, we focus on the state estimation of a ROV connected to another
vehicle, based on an estimation of the shape of its umbilical. The tether is then
turned into an advantage by being converted into a localization system which can be
used when other systems are unusable or as a redundant system to another location
system. In addition, if the shape of the cable is known between the ROV and the
surface, it is then possible to deduce the GPS coordinates of the ROV from those of
the boat and the position of the cable end point placed on the ROV, which is then
known with respect to the boat.

In the work presented in this chapter, the shape of a submarine cable is estimated
according to a simple model and external sensor measurements involving pressure
sensors and IMUs. Two configurations have been studied, with different models.
First, the catenary model is investigated as a promising quasi-static model for a sub-
marine cable with negative buoyancy connecting a pair of ROV within a robot chain.
In a second time, a straight line model for a cable constrained into a piecewise lin-
ear shape is investigated in line with the work of Christophe Viel, CNRS-LabSTICC,
Brest, France (Viel, 2022a; Viel, 2022b), as part of a collaboration. The aim of this
collaboration was to invert the cable models developed in (Viel, 2022a; Viel, 2022b)
in which the shape of the cable of a ROV is expressed as a function of the ROV’s po-
sition, in order to compute the position of the ROV from an estimation of the cable
state, obtained from local inertial and depth measurements.

The contributions of this chapter are the following:

• a study of the validity of the catenary model for moving submarine cables with
negative buoyancy

• a new inertial-measurement based catenary shape estimation of a underwater
cable connecting a pair of underwater robots and its experimental validation
and comparison with a previous visual-based shape estimation method

• a new inertial-measurement based straight-line shape estimation for an under-
water cable constrained into a piecewise linear shape by a system of sliding
buoys and ballasts, including three models corresponding to different config-
urations and an experimental validation on several scenarios including a robot
connected to a fixed surface point and a pair of underwater robots connected
together by a cable in the context of a robot chain.

Section 3.2 presents the cable models considered and the experimental validation
of their validity for underwater cables with moving ends. Section 3.3 describes how
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the parameters of these models can be estimated using embedded sensors, namely
IMUs and depthmeters. Section 3.4 focuses on the model-based state estimation of
underwater tethered robotic systems according to the models and embedded mea-
surements of their parameters. Conclusions and perspectives are developed and
discussed in Section 3.5

3.2 Cable modeling

Two cables models are studied, namely the catenary model for a hanging cable, and
a straight-line model for a cable constrained into a piecewise linear shape by the
addition of sliding buoys and ballast along it. Sections 3.2.1 and 3.2.2 focus on these
two models respectively.

3.2.1 Catenary model

The catenary model is defined as the shape of an idealized homogeneous hanging
cable with fixed length and fixed ends, only subject to its own weight in the air. Un-
derwater cables are also submitted to a buoyancy force, opposed to the weight. The
catenary model then only applies to cables for which the resulting vertical force is
non-zero, i.e. only positively and negatively buoyant cables. This model is partic-
ularly interesting because of its simplicity, but extending it to an underwater cable
with moving ends assumes that the hydrodynamic forces exerted on the cable are
negligible compared to its weight, and that the motion is such that the cable is al-
ways close to its equilibrium state.

Section 3.2.1.1 introduces this model and the corresponding equations. An ex-
perimental validation of the model is presented in Section 3.2.1.2, and Section 3.2.1.3
provides a conclusion and a discussion.

3.2.1.1 Catenary equations for cable modeling

3.2.1.1.1 Static hanging cable Let us consider an homogeneous hanging cable
with fixed length and fixed ends, only subject to its own weight. It can be shown
that it conforms to a catenary shape defined in a vertical plane (Leibniz, 1691). The
catenary curve is defined in the orthogonal frame F2D with origin the curve’s lowest
point by the equation:

∀x ∈ R, y =
1
C
[cosh(Cx)− 1] (3.1)

where C ∈ R∗ and (x, y) denote the coordinates of a 2D point in F2D.

Figure 3.1 shows the parameterization of a catenary shape for a cable with fixed
length L whose attachment points are Pa1 and Pa2 . Let us define a direct Cartesian
frame F0 for the catenary, such that its center is P0, the lowest point of the catenary,
z0 is vertical, and y0 is orthogonal to the vertical plane that contains Pa1 and Pa2 . The
coordinates (X, Y, Z) of the cable points expressed in frame F0 are:

∀X ∈ [−D, D + ∆D],

{
Y = 0
Z = 1

C [cosh(CX)− 1]
(3.2)

C ∈ R∗ can be expressed geometrically as a function of parameters the cable’s
sag H, the difference of elevation of the attachment points ∆H and the cable length
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FIGURE 3.1: Catenary shape parameterization

L. H and ∆H are shown in Figure 3.1.

C =
2(2H + ∆H + 2L

√
H H+∆H

L2−∆H2 )

L2 − (2H + ∆H)2 (3.3)

C can also be defined from the laws of physics as:

C =
µg
T0

(3.4)

where µ is the cable’s linear mass, g is the value of Earth gravity and T0 is the hori-
zontal tension, which is constant throughout the cable.

It can be shown similarly that this model extends to an homogeneous hanging
cable with fixed length and fixed ends in a fluid, only subject to its own weight and
to Archimedes’ buoyancy with a non zero resulting force, with:

C =
(µ− vlρ)g

T0
(3.5)

where vl and ρ denote respectively the cable’s linear volume and the fluid’s density.

3.2.1.1.2 Static hanging cable in a robot chain We consider a subsystem of a
robot chain, composed of a robot and the section of cable in front of it. Let us in-
troduce two new coordinate frames, namely Fr and Fa1 , where Fr is the robot frame
in SNAME convention and Fa1 has origin Pa1 and axes aligned with Fr. The rotation
from Fa1 to F0 is considered to be a pure yaw rotation of magnitude α about the ver-
tical axis. If the cable conforms into a catenary curve, its three-dimensional shape
can be described by the set of parameters {H, ∆H, α}, given its fixed length L. This
system and its parameters are represented in Figure 3.2.

3.2.1.1.3 Inclined hanging cable in water As soon as the cable is moved in the
water, it may happen that the current or the movement of the ends leads the ca-
ble to a transitional position in an inclined plane. Let the inclined catenary curve
model be defined as a 3-dimensional catenary included in a non-vertical plane P ,
as represented in Figure 3.3. Fw is a world frame with origin Pw and zw vertical
and pointing upwards. Frame F0 is defined as previously, such that its center is P0,
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FIGURE 3.2: Static hanging cable connected to a robot

the lowest point of the catenary, z0 is vertical upwards, and y0 is orthogonal to the
vertical plane that contains Pa1 and Pa2 . The transformation from F0 to Fw is then:

wT0 =

[
Rz(ψ) wP0
01×3 1

]
(3.6)

where Rz(ψ) denotes a yaw rotation of angle ψ and wP0 is the coordinate vector of
P0 in Fw.

Let Fp be defined with origin P0, such that xp = x0 and zp is the normalized
projection of z0 in plane P . yp is then normal to P . The transformation between
frames Fp and F0 is then a pure rotation of angle γ around x0:

0Tp =

[
Rx(γ) 03×1
01×3 1

]
(3.7)

The coordinates of the inclined catenary curve contained in plane P are given in
frame Fp by (pX,p Y,p Z) where:{

pY = 0
pZ = 1

C [cosh(C pX)− 1]
(3.8)

In frameFw, the coordinate vector of a point P belonging to the inclined catenary
curve is finally wP =w T0

0Tp
pP. Alternatively, an inclined catenary curve is fully

defined by the set of parameters (γ, C,w X0,w Z0) where wX0 and wZ0 denote the
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FIGURE 3.3: Inclined catenary model. Frames Fp and F0 are repre-
sented in solid and dashed lines respectively.

x and y-coordinates of P0 in Fw. wY0 can be computed from wX0 and wZ0 based on
the constraint P0 ∈ P .

Note that the inclined catenary model is not a physical model. It is although
interesting as a potential approximation for describing the shape of a non-neutrally
buoyant cable in presence of currents, or in a transitional state. It is therefore neces-
sary to study the cable shape in an inclined plane in order to determine if its devia-
tion from a catenary curve is significant. In the following, we make the distinction
between the vertical catenary model, which lies in a vertical plane, and the inclined
catenary model.

3.2.1.2 Catenary model experimental validation

The 3D shape of real-life underwater, negatively-buoyant, moving cables is tracked
and compared to the vertical and inclined catenary models described in Sec-
tion 3.2.1.1. This section presents the methodology used, describes the experiments
and presents the results of model evaluation.

3.2.1.2.1 Numerical estimation method Let a set of N 3D points that belong to
a cable be defined as {Pi}i∈{1...N}. The plane P is defined as the plane that best
contains the points {Pi}i∈{1...N}. It is computed by minimizing point-plane distance.
Let us introduce n the unit vector perpendicular to P and d ∈ R such that:

∀ P ∈ R3, P ∈ P ⇐⇒ P · n + d = 0 (3.9)

where · denotes the Euclidian inner product. The distance of a point Pi to plane P
is:

di(n, d) =
(Pi · n + d)√

n · n (3.10)
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Plane parameters n and d are estimated by minimizing the cost function:

fP (n, d) =
N

∑
i=1

di(n, d)2 (3.11)

using the fminsearch Matlab function which implements the Nelder-Mead simplex
algorithm as described in (Lagarias et al., 1998). An initial guess is computed using
three arbitrarily chosen tracked points.

In a second time, the points {Pi}i∈{1...N} are projected on P . Let us denote
{Pi,proj}i∈{1...N} the projections of points {Pi}i∈{1...N} in plane P .

∀ i ∈ {1...N}, Pi,proj = Pi − (Pi · n + d)n (3.12)

Unit vectors xp, yp and zp are then computed as follows:

yp = n (3.13)

zp =
zw − (zw · n + d)n
‖zw − (zw · n + d)n‖ (3.14)

xp = yp× zp (3.15)

where × denotes the vector cross product and ‖·‖ is the Euclidian norm.

The rigid transformation matrix between frames Fp and Fw is then

pTw =

[pRw
pPw

0T 1

]
(3.16)

where

pRw =
[wxp

wyp
wzp

]T (3.17)

Let pPi,proj =
[pXi,proj

pYi,proj
pZi,proj

]T and wPi,proj be the coordinates of a point
Pi,proj in Fp and Fw respectively. By definition,

pPi,proj =
pTw

wPi,proj (3.18)

The inclined catenary parameters pPw and C are estimated by minimizing the cost
function:

fC(pPw, C) =

N

∑
i=1

(pZi,proj(
pPw)−

1
C
[cosh

(
C pXi,proj(

pPw)
)
− 1])2

N
(3.19)

An initial guess is computed by calculating the vertical catenary curve between the
pair of visible tracked points that are the closest to the cable’s ends. Again, the
optimization uses fminsearch Matlab function.

3.2.1.2.2 Evaluation metrics Three indicators have been selected to characterize
the catenary shape of the cable:

• the root mean square (RMS) distance eP between the tracked points and plane
P .



3.2. Cable modeling 65

• the inclination of the plane P with respect to the vertical, i.e. the absolute value
γ of the angle between the normal to the plane P and the normal to the vertical
plane with the same yaw orientation as plane P in Fw.

• the RMS distance eC between the projection of points {Pi}i∈{1...N} in plane P
and the points with same x-coordinate in frame Fp that belong to the fitted
inclined catenary curve.

eP is defined by the following relation:

eP =

√√√√√ N

∑
i=1

d2
i

N
(3.20)

where di is the point-plane distance as defined in (3.10), and eC can be expressed as
follows:

eC =

√√√√√ N

∑
i=1

(pZi,proj −
1
C
[cosh

(
C pXi,proj

)
− 1])2

N
(3.21)

3.2.1.2.3 Experimental set-up Figure 3.4 represents the experimental setup. A ca-
ble is deployed in a pool, with one end tied to a fixed point and the other end tied
to a stick. The stick is then moved by an operator. The cable is equipped with reg-
ularly spaced reflective markers that are tracked by a motion capture system (see
Figure 3.4). This experiment is reproduced with two cables of different linear mass
µ, diameter Φ, and material: a metal chain and a thin rope, denoted respectively
Cable 1 and Cable 2. Table 3.1 gives their respective characteristics. L̂ is the approx-
imate cable length.

Pa1
Pa2

Stick

Cable

Reflective marker
Mocap camera

FIGURE 3.4: Experimental setup. Attachment point Pa2 is fixed with
respect to the pool, while Pa1 is attached on a mobile stick.

The experiments are conducted in a pool, in open water, at shallow depth (<4m).
A 166.98s tracking sequence was recorded for Cable 1, as well as a 252.68s long
sequence for Cable 2.

3.2.1.2.4 Results Figures 3.5 and 3.6 illustrate the typical behavior of the cables
during subsequences that include movements of the tether’s end point in various di-
rections with slow and rapid motion, and correspond to time periods when the cable
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TABLE 3.1: Characteristics of the cables. Since Cable 1 is a chain, the
given diameter d corresponds to the width of a link.

Cable 1 Cable 2

µ when wet (kg/m) 9.20× 10−2 2.26× 10−2
L̂ (mm) 3500 2000
Φ (mm) 10 5
Material Steel Fabric
Max. number of tracked points 12 9
Spacing between markers (mm) 245 200

was well tracked by the motion capture system. Displayed parameters are the com-
puted values of γ, eP , eC and catenary parameter C, the number N of tracked points
and which tracked points are visible, as well as the velocity wv =

[wvx
wvy

wvz
]T

and acceleration wa =
[wax

way
waz
]T of the mobile end of the cable in Fw and the

distance d between the cable’s ends for Cable 1 and Cable 2 respectively.

One can observe that the greater the distance d, the smaller the parameter C.
Indeed, an increased distance between the end points implies more tension in the
cable and thus a lower C according to equations (3.4) and (3.5). The peaks in the
curves of γ, eP and eC occur when only few points are visible or when the set of
visible tracked points changes. The set of visible points changes when the tracking
system stops detecting some points or detects new ones. The more visible tracked
points, the more reliable the catenary likelihood indicators.
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Table 3.2 gives the mean, minimum, maximum, median and standard deviation
σ of indicators γ, eP and eC for Cable 1’s full tracking sequence. The same results for
Cable 2’s full sequence are displayed in Table 3.3. Only the values computed when
N > 6 are considered reliable and included in these statistics.

TABLE 3.2: Results for Cable 1

γ (◦) eP (mm) eC (mm)

mean 2.67 0.60 12.6
min 2.94× 10−5 0.08 0.19
max 29.1 4.55 286
median 1.70 0.45 4.38
σ 3.08 0.42 27.67

TABLE 3.3: Results for Cable 2

γ (◦) eP (mm) eC (mm)

mean 16.52 1.14 52.2
min 6.81× 10−4 0.10 0.30
max 82.0 3.65 500
median 11.3 1.09 19.2
σ 15.1 0.46 69.1

On the one hand, the results in Table 3.2 show that Cable 1’s shape stays very
close to the catenary shape along the entire sequence. The mean, median and stan-
dard deviation of eP are very small with respect to the cable length, with an order
of magnitude of 5× 10−4 m (cable length of approximately 3.5m). This validates the
assumption of a planar cable. The mean, median and standard deviation of angle
γ are also small, with an order of magnitude of 1◦, showing that this plane can be
well approximated as vertical. The maximum value for γ in the whole sequence
is about 30◦, but the small standard variation of about 3◦ indicates that such an
important angle is rare. This extremum corresponds to a fast lateral movement of
the cable. Finally, eC and their variations are small on the scale of Cable 1’s length,
with less than 1% of its length, indicating that it can be well approximated by a
catenary shape in the cable plane. Even the maximal value of eC represents only
approximately 10% of Cable 1’s length. Cable 1 can then be well approximated by
the vertical catenary model, even with its endpoints moving. In addition, the small
maximal values and standard deviation of eP and eC show that even if the cable’s
plane may be inclined from the vertical, it can then be well approximated by an
inclined catenary curve.

On the other hand, the results in Table 3.3 show that the vertical catenary model
is less accurate for Cable 2. eP and its variations have the same order of magnitude
than those of Cable 1. This indicates that the cable can be considered planar most
of the time, but the mean value and variations of γ show that this plane cannot
be considered vertical in the general case. The maximum value of γ shows that
the cable’s plane even came close to the horizontal plane at some point in the
sequence. The mean, median and standard deviation of eC are about four times
higher than those of Cable 2, showing that even in the cable’s plane, Cable 2 is much
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further from the vertical catenary model than Cable 1. Qualitatively, the changes
in direction of Cable 2’s end point movements create inflection points on the cable,
making its shape more different from a catenary at these moments. This does not
occur with Cable 1 during the tracking sequence. One can notice that the mean,
median and standard deviation of eC are however still small with respect to the
cable length. This shows that even a light cable like Cable 2 can be modelled by an
inclined catenary curve as a first estimate. Such an approximation is nevertheless
less accurate than modeling Cable 1 as a catenary.

Finally, these results show that the catenary curve is a good approximation of
an underwater cable with moving endpoints if it has a ‘heavy enough’ linear mass.
Cables with lower linear mass may be better approximated by an inclined catenary
by assuming that the cable’s plane may be inclined at an angle γ from the vertical,
but with less accuracy. It is then a question of design to guarantee that the cable
conforms to a catenary curve in a vertical plane. It must also be a compromise with
keeping the cable light enough not to impede the robot’s motion. In addition, it is
necessary to take into account the water flow generated by the thrusters which can
move the part of the cable located in their vicinity. The cable should thus be placed
out of the thruster’s flow as much as possible. Avoiding movements with abrupt
changes of direction will also help to keep the model valid.

3.2.1.3 Conclusions

This section introduced the catenary model for underwater weighing cables in a
vertical or inclined plane. Validity of these two models was evaluated based on the
motion tracking of two underwater cables with different linear mass while moving
one of their endpoints. The tracking data was then used to estimate the plane that
best contained the cable, and the catenary shape that was the closest to the projection
of the cable in this plane. Different metrics were used to characterize the catenary
likelihood of the two cables. The results show that the catenary equation still gives a
good shape approximation for underwater cables having a large enough linear mass,
even with their endpoints moving dynamically. The shape of cables with too light
weight to neglect hydrodynamics can be approximated using an inclined catenary
model, but with less accuracy.

Thus, the selection of such a cable when designing an underwater tethered sys-
tem can simplify the cable’s shape estimation by modelling it by a catenary curve,
while maintaining a good accuracy. The choice of the cable has to be a compromise
between a cable heavy enough to conform into a catenary and light enough not to
impede the robot’s motion. Avoiding abrupt changes of direction in the ROV’s mo-
tion will also contribute in keeping the model valid.

3.2.2 Straight-line model

This section considers a system composed of a ROV tethered to a fixed point or
another vehicle and whose cable is constrained into a piecewise linear shape by the
addition of a sliding buoy or ballast. While a fixed ballast or buoy placed on a cable
can only stretch one part of it, in the current system, these elements can move freely
on the cable and therefore always find their position at the lowest or highest point
corresponding to a minimum potential energy, where it stretches both parts of the
cable simultaneously.
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In this system, the cable can be modeled by a straight line shape which can be
expressed from cable segments three-dimensional orientation and from the relative
depth of the cable attachment points. The position of the ROV with respect to the
other cable attachment point is therefore a function of these parameters. The speci-
ficity of this model is to express the position of the ROV as a function of the shape
of its cable, which can be deduced from a small number of model parameters. The
cable can therefore be used as a localization system.

The assumptions, application scope and model equations have been developed
by Christophe Viel, CNRS-LabSTICC, Brest, France, and are not a contribution of
this thesis. There are are nonetheless essential to introduce further developments
based on this straight-line model in Sections 3.3 and 3.4 which belong to the contri-
butions of this thesis. These assumptions, scope and model are therefore given in
Appendix B.

We consider a system composed of a ROV tethered to another vehicle or to a
fixed point by its umbilical, where these attachment points are denoted R and O
respectively. The first part of the cable from O is constrained to be vertical down
to an anchor placed in A, and a sliding buoy or ballast is placed along the cable
between A and R, in B. The position R of the ROV can be deduced from cable
length Lt between A and R, anchor depth l0, relative depth OzR between R and O
and a set of four angles α, β, µ and η represented in Figure 3.7 for the sliding buoy
and ballast configurations.
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(A) Sliding ballast in plane (O, xO, zO)
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(B) Sliding ballast in plane (O, yO, zO)
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B
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β
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(C) Sliding buoy in plane (O, xO, zO)
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B
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η
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(D) Sliding buoy in plane (O, yO, zO)

FIGURE 3.7: Single sliding element system. Figures 3.7a and 3.7b
present a single-ballast configuration with A = O, and Figures 3.7c

and 3.7d present a single-buoy configuration.
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3.3 Model parameters measurement

In order to use the cable models developed in Section 3.2 for the the online state
estimation of underwater tethered robotic systems, model parameters must be mea-
sured from embedded sensors. This is the focus of the current section. Section 3.3.1
described cable attachment point depth measurement, which is used for both mod-
els. Sections 3.3.2 and 3.3.3 present parameter measurements for the catenary model
and straight-line model respectively.

Regarding the catenary model, the following assumptions are made in accor-
dance with conclusions of Section 3.2.1:

1. The cable is heavy enough to neglect the hydrodynamic forces applied to it;

2. Cable ends motion is free from sudden changes of direction;

so that the cable can be modeled by a vertical catenary. The inclined model is not
used in this section, and the vertical catenary model is simply referred to as ‘cate-
nary’. Note that these assumptions are not necessary for th straight-line model.

3.3.1 Cable attachment point depth measurement

The depth of the attachment point of the cable on the ROV can be measured using a
water pressure sensor and an IMU embedded in the ROV. Let Pa denote the attach-
ment point. Depending on the model and on the cable end considered, Pa can be
equal to Pa1 or R, or to Pa2 or O if these points are placed on a ROV. The pressure
sensor and the IMU are placed in Pd and Pir respectively. The IMU frame is denoted
Fir . An additional frame Fd is defined with origin Pd and same orientation as Fir .
This system is represented in Figure 3.8.

Pa

Pir

Fir

Pd

Fd

Surface

Fw

Ps

Fs

FIGURE 3.8: System involved in attachment point depth measure-
ment

Let PPd denote the water pressure measured at Pd.

PPd = Pwater + Pathm + Pb (3.22)

where Pathm is the atmospheric pressure, Pb is a sensor bias, and Pwater is the pressure
exerted by the water column, with:

Pwater = ρwater ∗ g ∗ dPd (3.23)
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ρwater is the volumetric mass of water, g is the value of gravity on Earth and dPd

is the depth of measurement point Pd with respect to the surface. Let us define
P0 = Pathm + Pb, which is the pressure returned by the pressure sensor at zero depth.
One can get:

Pwater = ρwater ∗ g ∗ dPd − P0 (3.24)

hence:
dPd =

PPd − P0

ρwater ∗ g
=

PPd

ρwater ∗ g
+ c2 (3.25)

where c2 = −P0
ρwater∗g .

The position dPa of Pa in frame Fd is fixed, and calibrated. The embedded IMU
of the robot measures its orientation wRri with respect to a world frame Fw with its
z-axis vertical, upwards. Depth at Pa1 can be deduced from dPd and wRri . Let us
define frame Fs with origin the surface point located vertically from Pd and with
same orientation as Fw, as illustrated in Figure 3.8.

Depth at Pa is then:
dPa = −szPa (3.26)

where szPa is the z-coordinate of Pa in Fs. In homogeneous coordinates, one gets:

sPa =
sTd

dPa (3.27)

where sTd is the rigid transformation between Fd et Fs. According to the definition
of frames Fd, Fs, Fri and Fw one gets:

sTd =

sRd

0
0

dPd

1

 =

wRri

0
0

dPd

1

 (3.28)

and finally:
dPa = −

[
0 0 1 0

] sTd
dPa (3.29)

3.3.2 Catenary parameters measurement

We consider a subsystem of an underwater robot chain which includes a ROV and
the section of hanging cable in front of it, which is modeled by a catenary curve. As
explained in Section 3.2.1.1, the three-dimensional catenary shape of the cable is de-
fined by three parameters {H, ∆H, α}, where ∆H can is the difference of attachment
points depth and can therefore be measured as explained in Section 3.3.1.

Parameters H and α are measured using IMUs placed tangent to the cable, near
its ends. This system is represented in Figure 3.9, with the same notations as in
Section 3.2.1.1 and 3.3.1. Fi1 and Fi2 are the frames of the IMUs placed on each side
of the cable at fixation points Pi1 and Pi2 respectively. Two additional frames Fb1

and Fb2 are defined, with respective origins Pi1 and Pi2 , and x-axes tangent to the
catenary. IMUs are attached to the cable along this axis, around which the sensor
can rotate when the friction of the water on the IMU is strong enough to induce a
twist in the cable.

The estimation of the H and α uses the IMU embedded onboard the robot and
one or both of the cable IMUs. All IMUs are assumed to measure their orientation
with respect to the same world frame Fw with z-axis vertical, upwards. The yaw
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FIGURE 3.9: Subsystem composed of a ROV and its front catenary
cable with notation, frame definitions, and 3D parameters.

angle α is determined from the rotation matrix rRb1 or rRb2 with:

rRbk = (wRir
ir Rr)

T wRik
ik Rbk , k ∈ {1, 2} (3.30)

where ik Rbk and ir Rr are constant calibrated matrices, and wRr and wRik are measured
by the robot and the catenary IMUs, respectively. α is then such that:

rRbk = Rz(α) Ry(θ) Rx(φ) (3.31)

where Rx, Ry and Rz denote elemental rotations around the x, y and z-axis respec-
tively (see Appendix A.1.1.2).
∀ k ∈ {1, 2} we define βk as the angle between the cable tangent at Pk, which

corresponds to the x-axis of Fbk , and the horizontal. Figure 3.10 shows the two cable
tangent angles βk, at points Pi1 and Pi2 that are placed at distances L1 and L2 from
extremities. R1 is the curvilinear distance along the cable from Pi1 to P0:

R1 = (L− (L1 + L2))
g(β1, β2)

1 + g(β1, β2)
(3.32)

with

g(β1, β2) =
|tan(β1)|
|tan(β2)|

(3.33)
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FIGURE 3.10: Introducing catenary tangent angles β1 and β2.

The catenary parameter C can be obtained with:

C =
1

R1
|tan(β1)| (3.34)

Equation 3.3 is used to recover H as the only positive root of the second degree
polynomial a2 H2 + a1 H + a0 = 0 where:

a2 = 4C2(∆H2 − L2) < 0
a1 = 4C(∆H2 − L2)(C∆H + 2) < 0
a0 = [C(L2 − ∆H2)− 2∆H]2 > 0

The catenary parameters can also be estimated with a single tangent, e.g. at Pi1
by approximating R1 with:

R1 =
(L− ∆H)

2
− L1 (3.35)

where the difference of length between L1 and L2 is approximated by the difference
of their altitude, what is valid only if segments Pi1 Pa1 and Pi2 Pa2 are close to the ver-
tical or if ∆H << L. Symmetrically, R2 is approximated using the tangent at Pi2 . It
is worth noticing that an exact expression of H can de derived from a single tangent,
but it involves solving a fourth degree equation and using additional conditions to
select the correct solution between the roots of the equation, such that the lowest
point lies between the attachment points.

3.3.3 Straight-line model angle parameters measurement

Similarly to Section 3.3.2, the orientation of a cable segment is measured using an
IMU placed along it, tangent to the cable. Angles (α, µ) and (β, η) can be deduced
from the 3D orientation of segments AB and BR respectively.

This set-up is illustrated in Figure 3.11 for the single sliding element configura-
tions described in Sections 3.2.2. All IMUs are assumed to give their orientation with
respect to the axis of reference frame FO. Similarly to Section 3.3.2, IMUk, k ∈ {1, 2}
is positioned at Pik . IMU frames are denotedFik and ∀ k ∈ {1, 2} frameFbk is defined
fixed with respect to Fik , with its x-axis tangent to the cable. Frames Fik , k ∈ {1, 2}
are not represented in Figure 3.11 for clarity reasons.
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FIGURE 3.11: IMU-measurement example configurations

3.4 Experiments

This section presents the experimental evaluation of underwater tethered system
state estimation using the models developed in Section 3.2 and model parameters
measurements described in Section 3.3. Section 3.4.1 focuses on the catenary shape
estimation of an underwater cable connecting a pair of robots in a robot chain frame-
work, and Section 3.4.2 focuses on the cable-based ROV localization using a straight
line cable model.

3.4.1 Catenary shape estimation of an underwater cable for tethered
robots

The catenary shape estimation method using the vertical catenary model described
in Section 3.2.1 and model parameters measurements detailed in Section 3.3.2 is
implemented on an underwater robotic system. Evaluations are conducted in two
times, first in an airborne set-up, and in a pool in a second time. This inertial-based
catenary shape estimation method is compared with a visual one from a previous
work (Laranjeira et al., 2019) where cable shape estimation is used as input for a
cable-shape-based visual servoing. This visual-based method is summarized in Ap-
pendix C. Section 3.4.1.1 describes the robotic system used as well as the evaluation
methodology. Sections 3.4.1.2 and 3.4.1.3 present the experiments in the air and in
a pool respectively. Section 3.4.1.4 provides a conclusion and a discussion on the
proposed catenary shape estimation of an underwater cable for tethered robots.

3.4.1.1 Robotic system and evaluation methodology

The system is composed of a BlueROV2 tethered to a fixed point by a 1.50 m long 70
g/m red negatively buoyant cable made out of colored ballasted cord (Fig. 3.16). The
robot embeds a camera, an IMU and a water pressure sensor. The cable is equipped
with a pair of PhidgetSpatial Precision 3/3/3 High Resolution IMUs, ensuring they
did not affect much the visibility of the cable from the embedded camera. The robot
and the cable are tracked with a motion capture (mocap) system used in the air and
in water. The process of ground truth recording using this mocap system is detailed
in Appendix D.

The following catenary estimation methods are compared and evaluated:

(i) optimized vision-based (vision-based optim.) (Laranjeira et al., 2019);

(ii) only vision-based initial guess (initial-guess) (Laranjeira et al., 2019);



3.4. Experiments 77

(iii) the proposed IMU-based method (IMU-based).

Regarding the IMU-based method, the estimation of H is compared with one or
both IMUs and the estimation of α using each one of the two cable IMUs separately.
IMU-based-1 refers to using only IMU 1, IMU-based-2 refers to using only IMU 2,
and IMU-based refers to using both. Since α estimation implies only one cable IMU,
there is no IMU-based estimation for this parameter. The mean, median and standard
deviation (σ) of the errors on H and α are compared for each method. These errors
are denoted eH and eα respectively.

3.4.1.2 Air configuration

A first series of experiments is set up out of water to test the estimations in a con-
trolled environment where the robot has no pitch or roll, and the system is not dis-
turbed by the hydrodynamics. As shown in Figure 3.12, the robot is placed on a cart
and moved around in two-dimensions. The system is equipped with reflective pas-
sive markers to be tracked by a 6 camera optical motion capture system. A statistical
analysis is computed on a 117s sequence.

IMU 2

IMU 1

Pa2

Pa1

Mocap camera

BlueROV2

Cart

Reflective
markers

FIGURE 3.12: Airborne system.

The vision-based optim. method fails to converge for 11.5 % of the sequence’s du-
ration, i.e. the optimization does not reach a catenary shape having a sufficiently low
cost within the number of allowed iterations. In the following, the results are only
evaluated when converged. Figure 3.13 shows the robot’s movements in a represen-
tative 15s sub-sequence of the full air sequence, including the trajectories of points
Pa1 and Pa1 and robot’s forward axis xr, which is the x-axis of frame Fr. The robot’s
motion is a composition of a lateral motion and a motion towards Pa2 . Figure 3.14
shows H and α parameters estimated by the three methods during the sub-sequence.

While the estimation of α overlaps the ground truth with all methods, the esti-
mation of H by the vision-based optim. method shows important errors from t = 29s
to 40s. This coincides with small angles α ∈ [−10, 10] degrees, i.e. one of the singu-
larities where the tether plane is aligned with the optical axis and projects as a line.
The error peak of the initial-guess method at t = 37.4s is due to an outlier below the
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FIGURE 3.13: Trajectory of the robot projected on a horizontal plane

tether that shifts the lowest point detection. Figure 3.15 illustrates vision-based optim.
and initial-guess methods. Figure 3.15a shows that both methods give overlapping
results. In Fig. 3.15b, one can observe that the optimization algorithm refines the
initial-guess result in terms of the reprojection error. Figures 3.15c, 3.15d and 3.15f
show examples of bad estimations for vision-based optim. when α is close to zero.
Figure 3.15e shows how an outlier below the cable disturbs the initial-guess method.
Finally, we notice that IMU-based methods using only one IMU or both show similar
results in the estimation of H in this setup.

When considering the whole sequence, all IMU-based methods greatly improve
the accuracy of H: the error is 5 to 10 times less than the vision-based optim. and
initial-guess estimations (Tab. 3.4).

TABLE 3.4: Airborne results.

Method
Visual-based
optim.

Initial
guess

IMU-
based 1

IMU-
based 2

IMU-
based

eH (m)
mean
median
σ

0.0425
0.0264
0.0402

0.0165
0.0312
0.0180

0.0039
0.0022
0.0131

0.0038
0.0031
0.0032

0.0033
0.0026
0.0030

eα (◦)
mean
median
σ

2.0331
1.9092
1.1038

3.1022
2.8962
1.5256

2.7004
2.6741
1.4499

2.0313
1.7106
1.5098

∅
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FIGURE 3.14: Estimation of H and α in the air, with fixed ∆H.

(A) t=25.6s (B) t=27.2s

(C) t=31.6s (D) t=34.3s

(E) t=37.4s (F) t=39.6s

FIGURE 3.15: Detected cable points (white), with lowest point (blue)
and estimated catenary projections for vision-based optim. (green) and

initial-guess (red) methods.

3.4.1.3 Underwater set-up

A similar set-up is deployed in an underwater environment, in the pool of the
Cephismer, Marine Nationale, France. Similarly to the previous airborne set-up,
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the robot and the cable are equipped with reflective markers and tracked with a
5-cameras underwater motion capture system. Cable IMUs are sealed in waterproof
housings (Fig. 3.16). The experiments were conducted in a steel made pool,
preventing the use of magnetometer data in the IMU measurements integration.
This leads to a drift of the yaw angle measurement around the vertical axis, which
was characterized on a static sequence and corrected. The following results are
based on a 92s sequence where the robot pitches and rolls. The hydrodynamic
effects and the thrusters’ flow distort the catenary model. Note that, as explained in
Section 3.4.1.1, there is no two-IMU based estimation of α.

IMU 1

IMU 2

Pa1

Pa2

Mocap camera

BlueROV2

Reflective
markers

FIGURE 3.16: Underwater system.

The tether moves out of the camera’s field of view during 2% of the sequence’s
duration. In the following, the vision-based methods (vision-based optim. and initial-
guess) are analyzed only when the cable is inside the field of view. 45.3% failure is
observed with the vision-based optim. method and 0.3% failure with the initial-guess
method. Figures 3.17 shows the trajectories applied during a representative sub-
sequence, for t ∈ [24, 40] s. The trajectories of points Pa1 and Pa1 are represented, as
well as the orientation of the robot’s forward axis xr, which is the x-axis of frame Fr.
For t ∈ [24, 29]s, the robot moves towards and backwards with yaw variations and
minor y, z, roll and pitch variations. For t ∈ [19, 40]s, the robot dives with minor x,
y, roll and yaw variations. The robot’s pitch changes when diving. Figure 3.18 gives
the estimations of H and α during the sub-sequence. Gaps in the curves correspond
to estimation failures. Table 3.5 presents a statistical analysis of the full sequence.

TABLE 3.5: Waterborne results.

Method
Visual-based
optim.

Initial
guess

IMU-
based 1

IMU-
based 2

IMU-
based

eH (m)
mean
median
σ

0.1514
0.1261
0.1188

0.1787
0.1612
0.1108

0.0835
0.0621
0.0978

0.0333
0.0299
0.0234

0.0438
0.0406
0.0266

eα (◦)
mean
median
σ

16.545
11.030
19.655

16.042
11.825
14.890

11.342
7.7013
10.608

13.270
11.013
10.692

∅
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FIGURE 3.17: Trajectory of the robot projected on vertical and hori-
zontal planes

First, the very important failure rate of the vision-based optim. method can be
noticed. In the underwater sequence, the color based detection fails at detecting
the farthest cable points due to water absorbance, as shown in Fig. 3.19. Further-
more, the cable projection in the image is deformed with regard to vision based
expectations due to roll, pitch, and hydrodynamics, including the currents created
by the thrusters. The error in the model makes the vision based optimization fail
to fit the cable shape projection properly. The initial-guess method gives more ro-
bust results with regard to the deformations since it only considers the lowest point.
Figure 3.19 illustrates the behaviour of the vision-based optim. and initial-guess meth-
ods. In Fig. 3.19a both methods fit the points quite well, whereas in Fig. 3.19f, the
vision-based optim. method clearly refines the initial-guess in terms of reprojection er-
ror. In Figs. 3.19b, 3.19d and 3.19f, the vision-based optim. method suffers from the
farthest part of the cable not being detected correctly because of color absorption.
Figure 3.19c clearly shows that the deformations of the cable projection in the im-
age make the projection model unsuitable for the vision-based optim. and initial-guess
estimations.

Considering the estimation of H, IMU-based methods perform 3 times better
than vision-based methods, and show a smaller dispersion. The estimation from
the IMU 1 is less accurate due to the thrusters’ flow that deforms the rope. For
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FIGURE 3.18: Estimation of H and α in the pool.

instance, in Fig. 3.18, one can see an important error for the IMU-based-1 method at
t ∈ [27, 29]s, which coincides with a backwards movement of the robot that propels
water onto IMU 1 (Figure 3.17).

Looking at α, all methods show similar estimation performances, but with dif-
ferent sources of errors. The initial-guess method is impacted by the quality of the
tether detection, since it needs the cable’s lowest projection point in the image to be
properly detected, but this error does not propagate over time. Vision-based optim.
method suffers from the detection and the deformation of the cable’s projection, and
eventually shows poor performances compared to the others due to its important
failure rate. IMU-based methods’ errors are partly due to the hydrodynamics of the
system, with IMU 1 being disturbed by the robot’s thrust, and IMU 2’s movement
being impacted by the propagation of the deformations along the cable. There may
also be yaw integration issues of IMUs in the absence of a magnetometer, in an in-
door environment. During the sequence, the yaw angle was corrected with shift and
drift calibration assuming constant drift, which needs to be updated over time. A
too sharp motion could also lead to bad yaw integration. In outdoor environments,
the method will be more robust through the use of magnetometers.

As a conclusion, it results from this analysis that combining visual and inertial
measurements in estimating α could lead to a much more robust estimation of this
parameter.

3.4.1.4 Conclusions

The current section evaluated a new catenary shape estimation for a negatively
buoyant underwater cable based on inertial measurements of one or two tangents
near the attachment points, where the model was presented in Section 3.2.1 and
model parameters estimation was described in Section 3.3.2. This estimation was
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(A) t=23.96s (B) t=25.53s

(C) t=27.56s (D) t=28.02s

(E) t=28.65s (F) t=33.40s

FIGURE 3.19: Detected tether points (white), with lowest point (blue)
and estimated catenary projections for vision-based optim. (green) and

initial-guess (red) methods in the image plane.

compared to vision-based estimation from previous work in experiments carried
out in the air and in a pool, using a motion tracking system for ground truth. It was
shown that the new method is significantly more accurate and robust in estimating
the catenary sag H, with an error less than 10 cm and often less than 5 cm. In ad-
dition, approximating H with a single IMU measurement gives the same order of
accuracy than computing the exact analytical solution given for two IMUs. On the
other hand, all the estimation methods evaluated have the same order of accuracy
in estimating the cable angle α, including the visual initial guess.

Although it has not been investigated in the current thesis, fusing visual and in-
ertial methods might be an interesting future work for improving estimation robust-
ness. Indeed, IMU integration may drift on long periods whereas vision will not,
and unlike vision IMUs are always available. The IMU-based computation is also
more robust to cable deformation. The visual and inertial approaches may also be
complementary in estimating the relative cable-robot orientation when the thrusters’
flow impacts the IMU orientation. Beyond the scope of the current thesis, the current
IMU-based cable shape estimation may also be used as a control input to regulate
the robot chain’s shape.

With regards to the problem of underwater robot chain localization, our IMU-
based cable shape estimation provides cable 3D localization information, which can
be used to localize the robots relative to each other. Distance between a pair of con-
secutive robots can be estimated robustly with our method from H. However, our
precision of about ten centimeters may be important compared to other localization
methods, and more specifically compared to VSLAM-based approaches. In addition,
estimation of α is still quite imprecise, and robot cable-based pose estimation accu-
racy may decrease very quickly when propagating from pair to pair along the robot
chain. Future works may thus investigate how the currently roughly accurate but
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robust inter-robot localization and a more accurate but maybe less robust VSLAM
based localization strategies may be complementary in locating an underwater robot
chain.

3.4.2 Cable-based ROV localization using a straight line cable model

The cable-based ROV localization strategy using the straight-line cable model in-
troduced in Section 3.2.2 and model parameters measurements described in Sec-
tion 3.3.3 is implemented on an underwater robotic system. This experimental study
focuses on a single sliding ballast configuration, which is studied for a ROV teth-
ered to a fixed point or to a secondary ROV in the context of an underwater robot
chain. Section 3.4.2.1 presents the evaluation of the proposed localization method
for a ROV tethered to a fixed point. Section 3.4.2.2 studies the influence of IMU po-
sitioning along the cable on localization accuracy. Section 3.4.2.3 focuses on a pair
of ROVs connected together in a robot chain context. A conclusion is provided in
Section 3.4.2.4

3.4.2.1 Single-ballast system towards a fixed point

The proposed cable-based localization system is first evaluated for a ROV tethered
to a fixed point, in the pool of the Cephismer, Marine Nationale, France. The robotic
system used is composed of a BlueROV2 from BlueRobotics tethered to a fixed point
by its Fathom Slim1 communication tether with a 240 g sliding ballast, such that
l0 = 0 and Lt = 3 m. The sliding ballast is made of a neutrally buoyant pulley to
which a mass is fixed, as illustrated in Figure 3.20.

FIGURE 3.20: Sliding ballast composed of a pulley and two masses of
120 g each.

The BlueROV2 embeds a pressure sensor and an IMU. As in the experiments de-
picted in Section 3.4.1.3, the cable is equipped with a pair of PhidgetSpatial Precision
3/3/3 High Resolution IMUs sealed in waterproof housing. As in Section 3.4.1.3, a
mocap system is installed in the pool in order to track reflective markers placed on
the ROV, the cable and the pulley and provide a ground truth of the state of the
system. This set-up is illustrated in Figure 3.21.

1https://bluerov-solutions.com/produkt/fathom-slim-rov-tether-rov-ready/

https://bluerov-solutions.com/produkt/fathom-slim-rov-tether-rov-ready/
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FIGURE 3.21: Experimental system

The distances between O and Pi1 and R and Pi2 (see Figure 3.11) are denoted
respectively li1 and li2 . IMUs are placed such that li1 = 0.4 m and li2 = 0.2 m. These
positions are selected arbitrarily to be far enough from the cable ends to make sure
angle measurement is not disturbed by the cable’s stiffness, but close enough to the
ends not to block the displacement of the sliding ballast. Three ROV localization
methods are compared:

• the proposed IMU-based ROV localization using model parameter measure-
ments from the embedded sensors

• the ground truth ROV localization provided by the mocap tracking of the sys-
tem

• the localization computed using mocap measurements of model parameters
instead of embedded sensor, which correspond to ideal parameters measure-
ments. This localization is referred to as mocap-based ROV localization.

Embedded sensor measurements and mocap measurements are put in the same the-
oretical referential FO by a change of coordinate frame for comparison purpose.
The data is processed offline, including a synchronization of clock between the IMU
and mocap measurements, as well as the transformation between mocap and sensor
frames.

Two motion sequences are recorded, indexed 1 and 2. Sequence 1 is a short se-
quence featuring very slow displacements with small range, while Sequences 2 is
a four-minute sequence showing ROV displacements closer to a real use case, with
higher speed, motion variation and displacement range. ROV localization results
and error with respect to mocap ground-truth are represented in Figures 3.22 and 3.23
for Sequences 1 and 2 respectively. The error e is the distance between the ground
truth and the estimated ROV position. In addition, we define the average distance
error Ed as the distance between the estimation of the position of R in FO computed
using our model and the position measured by the mocap system averaged over a
test sequence.
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FIGURE 3.22: IMU-based, mocap-based and ground truth ROV position
and positioning error for Sequence 1 ([li1 , li2 ] = [0.20,0.40] m).
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FIGURE 3.23: IMU-based, mocap-based and ground truth ROV position
and positioning error for Sequence 2 ([li1 , li2 ] = [0.20,0.40] m).

One can see that the results of mocap-based ROV localization are particularly close
to the ground truth in Sequence 1, with an error Ed of about 0.15 m only. IMU-based
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ROV localization shows a slightly lower accuracy but the corresponding results are
still very close to those of the mocap-based ROV localization, meaning that the cable
angles are estimated very accurately by the IMUs. This result shows that the pro-
posed localization method can lead to a very accurate ROV position estimation if the
ROV is close to stationary. ROV localization error is higher for Sequences 2 to 4. The
error is about 0.20 m for the IMU-based approach, which is thus acceptable for the
tested configuration. The mocap-based approach results in a 0.02 m error, showing
that the accuracy of the method is directly proportional to the accuracy of the angle
measurement. These results demonstrate the validity of the theoretical model and
the possibility of obtaining a fairly accurate position even when the ROV is in mo-
tion, since the umbilical remains stretched by the ballast during the displacement.

3.4.2.2 Influence of IMU positionning

Due to the stiffness of the cable, local cable orientation may vary slightly along the
cable and be more or less representative of the global cable segment orientation.
The influence of the positions of the IMUs along the cable is therefore examined by
reproducing the experiment described in Section 3.4.2.1 with different values of li1
and li2 . Two positions are compared for each IMU, with li1 = 0.40 m or 0.78 m and
li2 = 0.20 m or 0.40 m, resulting in four distinct {li1 , li2} configurations. Sequences 1
and 2 studied in Section 3.4.2.1 feature the {li1 = 0.40 m, li2 = 0.20 m} configuration.
Three additional sequences indexed from 3 to 5 are recorded in order to test the three
remaining {li1 , li2} configurations. Similarly to Sequence 2, Sequences 3, 4 and 5
involve motion close to a real ROV use case, with speed and motion variations and
large displacement range.

The position of the ROV is evaluated according to the IMU-based ROV localiza-
tion to mocap-based localization. The ROV localization results and error with respect
to mocap ground-truth are represented in Figures 3.24, 3.25 and 3.26. The mean, me-
dian and standard deviation (σ) of ROV position error for each {li1 , li2} configuration
are reported in Table 3.6, based on Sequences 2, 3, 4 and 5. Because Sequence 1 is the
only quasi-static sequence, it is omitted from this analysis.

TABLE 3.6: Statistics on ROV position error for each {li1 , li2} configu-
ration for IMU-based estimation

Seq. 2 Seq. 3 Seq. 4 Seq. 5

{li1 , li2} (m) {0.40, 0.20} {0.78, 0.20} {0.78, 0.40} {0.40, 0.40}
mean (m) 0.161 0.173 0.171 0.201
median (m) 0.156 0.168 0.150 0.206
σ (m) 0.057 0.090 0.089 0.069

One can observe that the position of the IMUs appears to have little impact on
the results. Indeed, all configurations lead to the same error order of magnitude, be-
tween 0.15 m and 0.20 m. These results show that the IMU-based method proposed
in this work is therefore flexible with respect to the installation of IMUs on the um-
bilical, whose position can be chosen so as to obstruct the sliding ballast as little as
possible.
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FIGURE 3.24: IMU-based, mocap-based and ground truth ROV position
and positioning error for Sequence 3 ([li1 , li2 ] = [0.78,0.20] m).
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FIGURE 3.25: IMU-based, mocap-based and ground truth ROV position
and positioning error for Sequence 4 ([li1 , li2 ] = [0.78,0.40] m).
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FIGURE 3.26: IMU-based, mocap-based and ground truth ROV position
and positioning error for Sequence 5 ([li1 , li2 ] = [0.40,0.40] m).

3.4.2.3 IMU-based localization in a chain of two ROVs

Lastly, a system composed of two BlueROVs tethered together by a cable equipped
with a sliding ballast is considered. In this experiment, the cable which connects the
robot is simulated by a 3 m long cord. As in the previous experiments, a pair of IMUs
are placed along the cable. The system is deployed in the pool of the Ifremer, La
Seyne-sur-mer, France, which is larger and deeper, making it easier to deploy a two-
robot system. However, this pool does not allow the installation of the underwater
mocap system. Instead, we take advantage of the embedded cameras of the ROV
to generate a Structure from Motion (SfM) localization baseline. This baseline is
assumed to be far less precise than the mocap ground truth used in the previous
sequences because of the accuracy of the SfM itself, but also and mostly because
transferring the SfM estimated pose to the attachment points involve calibrations
which introduce important sources of imprecision. However, a precision of a few
centimeters is to be expected, making this SfM baseline still suitable for evaluating
our approach.

The system is represented in Figure 3.27, and pictured in Figure 3.28. ∀ k ∈ {1, 2},
Robot k embeds an IMU in Pir,k , a camera in Pck and a pressure sensor in Pdk . Frames
Fir,k , Fck and Fdk are the frames associated to these sensors, respectively. Frame FO
is defined with its x-axis vertical, downwards, and with same yaw angle as Fir,1 . In
line with the conclusions of Section 3.4.2.2, the position of the IMUs along the cable
is chosen close to the attachment points, in order to obstruct the sliding ballast as little
as possible.

The pose of the camera frames Fc1 and Fc2 is estimated using the SfM software
Colmap (Schönberger et al., 2016) with respect to a reference frame Fwc , which is
defined arbitrarily. The position of attachment points O and R in frames Fc1 and
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FIGURE 3.27: Two-agent robot chain with a sliding ballast

Fc2 respectively is measured at the beginning of the experiment, in order to deter-
mine their relative position in Fwc according to the SfM reconstruction, along the
sequence. Since the transformation between frames Fwc and FO is unknown at any
time of the sequence, we use the distance between points O and R to characterize
the estimation error.

IMU 1

IMU 2

Sliding
ballast

FIGURE 3.28: Robotic system in the pool, featuring two BlueROV2
linked by a cable on which are placed a sliding ballast and two IMUs.
robots move around a fake reef which is used to compute the SfM

baseline.

A 60 s sequence is recorded. The distance d between attachment pointsO and R
computed from the SfM reconstruction and from our localization method and the
corresponding error are reported in Figure 3.29, as well as the distance error ed de-
fined as the absolute difference between the reference and estimated distance. One
can see that the accuracy is about 0.20 m, which is the same order of magnitude as
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for the system studied in Sections 3.4.2.1 and 3.4.2.2, featuring a sliding ballast sys-
tem tethered to a fixed point. Similarly, we can conclude that the current cable-based
ROV localization system can also be used in estimating the relative localization of
a pair of ROVs tethered by a cable equipped with a sliding ballast, with an accu-
racy about 20 cm here, which represent about 7% of the cable length in the studied
configuration.
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FIGURE 3.29: Relative distance estimation result.

3.4.2.4 Conclusions

The current section presented the experimental validation of a method to estimate
the position of a ROV by observing the shape of its umbilical, using the straight-line
model developed in Section 3.2.2 and model parameter measurement from embed-
ded sensors including two IMUs placed on the cable and an IMU and a water pres-
sure sensor placed in the ROV, as described in Section 3.3.3. By equipping the um-
bilical with moving ballast, the cable takes a predictable shape with straight lines,
simple to model. By measuring the angles at the ends of the cable and the depth
of the ROV, the shape of the umbilical can be reconstructed from these straight line
models and therefore the position of the ROV can be determined. This section inves-
tigated cable angle measurement using IMUs placed along the umbilical, and depth
measurement using the embedded pressure sensor of a ROV and its IMU. The slid-
ing element also allows avoiding entanglement of the cable with itself or with the
surrounding obstacles, without motorization or TMS, easy to set up. In addition, the
cable model is still valid in the presence of currents if the umbilical is taut.

The proposed IMU-based cable-based localization method was evaluated in a
pool in two scenarios featuring a 3 m long cable: a ROV tethered to a fixed point,
and a ROV tethered to another ROV, in the context of a robot chain. In the fixed
point scenario, a motion capture system was used to provide the ground truth state
of the system. Motion capture measurements of model parameters were also used
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to compute a cable model-based ROV localization with ideal model parameter mea-
surements. With ideal parameter measurements, the model allowed locating the
ROV with an accuracy of about 10 cm, embedded sensor-based measurements only
lead to an accuracy of about 20 cm. These results demonstrate the interest of the
proposed cable-based localization method for operational applications, but also that
its accuracy is directly impacted by the accuracy of parameters measurements, in-
cluding cable angles and cable attachment point depth. An analysis of the influence
of measurement errors is available in (Viel et al., 2023).

3.5 Conclusions and perspectives

This chapter focused on the state estimation of a ROV connected to another vehicle,
based on an estimation of the shape of its umbilical. The problem of cable shape
estimation was addressed by modeling the cable as a function of the relative depth
of its attachment points, which can be measured using a pressure sensor and an em-
bedded IMU, and the local 3D orientation of the cable in one or two points, which
can be measured by IMUs placed on the cable. In addition, if the shape of the tether
is known, the tether can be turned into an advantage by being converted into a
localization system which can be used when other systems are unusable or as a re-
dundant system to another location system.

Two models were considered. First, the catenary model was investigated for
modeling an underwater non-extensible weighted cable, even with moving end
points. This model is a physical, quasi-static model, which does not require con-
straining the cable into a specific shape. The validity of this model for heavy enough
underwater non-extensible weighing cable with moving ends was demonstrated
experimentally, allowing to develop an inertial-measurement-based catenary shape
estimation of underwater cables for tethered robots. The second model investigated
was a straight line model derived from the work of (Viel, 2022a), which involves
constraining the cable into a piecewise linear shape by the addition of sliding buoys
or ballasts on it. A cable-based ROV localization method was developed based on
this second model.

These two cable-based state estimation strategies were evaluated in a pool and
compared to a motion capture gold standard, for a robot tethered to a fixed point
and to provide an inter-robot relative localization in the context of a robot chain.
These experiments demonstrated that both of these models can locate the cable and
its end point with an order of accuracy of 20 cm for a length of 1.5 to 3 m.

The main asset of the cable-based tethered system state estimation methods stud-
ied in the current chapter, and in particular of the proposed cable-based ROV lo-
calization strategy, is that they are available even when navigating in open water,
where the seabed cannot be observed by the embedded sensors. They may therefore
be particularly useful for a ROV or a chain of ROVs traveling between the surface
and the working depth. A limitation of these approaches for system localization is
that they do not provide any information about the surrounding of the system, while
such information is still essential in order to control such a system in the presence
of obstacles. A cable-based perception of the environment may be studied by using
contact detection between the cable and surrounding obstacles, like in (McGarey et
al., 2017). Such approach in the underwater domain may although present safety
issues, since the cable may get stuck in the obstacles. Contact-free localization and
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mapping strategies using additional exteroceptive acoustic or optical may be an in-
teresting option in order to limit the risk of entanglements while locating the system
with respect to its environment. In addition, exteroceptive localization may be fused
to cable-based state-estimation in order to improve the accuracy but also the robust-
ness in the knowledge of the system’s state. An exteroceptive feedback should also
prevent inter-robot localization error propagation in robot chains composed of more
than two robots.

The work presented in Chapter 3 led to the following publications:

Journal papers:

• ROV localization based on umbilical angle measurement.
C. Viel, J. Drupt, C. Dune, V. Hugel,
Ocean Engineering, Volume 269, 2023, 113570, ISSN 0029-8018.

Conference papers:

• Inertial-measurement-based catenary shape estimation of underwater cables
for tethered robots.
J. Drupt, C. Dune, A. I. Comport, S. Seillier and V. Hugel,
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Kyoto, Japan, 2022, pp. 6867-6872.
Video 1: https://www.youtube.com/watch?v=TKLLVTSUN8s
Video 2: https://www.youtube.com/watch?v=x-SXut75vHk

• Estimation de forme de câble pesant pour la localisation de robots sous-marins
encordés : comparaison d’une approche visuelle à une nouvelle approche in-
ertielle.
J. Drupt, C. Dune, A. I. Comport and V. Hugel,
ORASIS 2023, Carqueiranne, France, 2023.

• An augmented catenary model for underwater tethered robots.
M. Filliung, J. Drupt, C. Peraud, C. Dune, N. Boizot, A. I. Comport and V.
Hugel,
Submitted to 2024 IEEE International Conference on Robotics and Automation
(ICRA).

Workshops:

• "Validity of the catenary model for moving submarine cables with negative
buoyancy.
J. Drupt, C. Dune, A. I. Comport and V. Hugel,
3rd workshop on RObotic MAnipulation of Deformable Objects: challenges
in perception, planning and control for Soft Interaction (ROMADO-SI), Best
Paper Award, Kyoto, Japan, 2022.
Video: https://www.youtube.com/watch?v=kmcs9xKf3KQ

In addition, a journal paper on ROV localization through IMU-based angle mea-
surement of an umbilical equipped with sliding ballast is currently being written, in
order to be submitted to the IEEE Journal of Oceanic Engineering.

https://www.youtube.com/watch?v=TKLLVTSUN8s
https://www.youtube.com/watch?v=x-SXut75vHk
https://www.youtube.com/watch?v=kmcs9xKf3KQ
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Chapter 4

Visual-based localization

4.1 Introduction

As discussed in Section 3.5, controlling a robot chain in the presence of obstacles
not only involves a knowledge of the system’s state but also of the location of the
system with respect to the surrounding obstacles. Consequently, this chapter focuses
on simultaneous localization and mapping for a chain of underwater vehicles.

As explained in Section 2.4, the most common exteroceptive sensors for under-
water are acoustic sensors and cameras, where cameras are low-cost, lightweight
and low power sensor compared to acoustic sensors, such that even the smallest
and most affordable underwater robots embed at least a monocular camera. Cam-
eras can provide a rich feedback on their surroundings but they do not interfere
with each other nor with their environment because they are passive sensors, un-
like acoustic ones. In particular, acoustic sensors may not be suitable in cluttered
environments because of multiple reflections of the acoustic waves on non-target
objects. In addition, visual simultaneous localization and mapping (VSLAM) algo-
rithms are very efficient, accurate and widely used in airborne applications. VSLAM
may therefore be a solution for underwater localization. More specifically, we focus
on monocular VSLAM as it is the most usual instrumentation, which does not re-
quire extrinsic calibration of multiple sensors.

Underwater conditions are, though, particularly challenging, because of selec-
tive color absorption, backscattering and suspended particles. In addition, the em-
bedded lights required for deep sea missions invalidate the lambertian assumption
of airborne VSLAM. Lastly, most airborne VSLAM systems are designed for highly
structured urban or industrial environments, whereas underwater vessels often op-
erate in natural, less structured environments.

In this chapter, monocular VSLAM is first investigated for a single underwater
robot. Six monocular VSLAM algorithms are first evaluated and compared on single
agent datasets in underwater conditions, highlighting the interest of the multimap
approach of ORB-SLAM3 (Campos et al., 2021) for underwater applications. In a sec-
ond time, a multi-ROV scenario is considered, where all robots can communicate in
real time with a central server through their cable. A new multi-agent and multi-map
fully centralized VSLAM algorithm is derived from ORB-SLAM3 and compared to
the state-of-the-art multi-agent VSLAM algorithm on underwater scenarios.

The contributions of this chapter include:

• A qualitative benchmark of six monocular, single agent VSLAM algorithms
on underwater scenarios, namely ORB-SLAM (Mur-Artal et al., 2015), ORB-
SLAM (Huang et al., 2020), ORB-SLAM3 (Campos et al., 2021), DSO (Engel
et al., 2018), LDSO (Gao et al., 2018) and DSM (Zubizarreta et al., 2020)
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• MAM3SLAM a new multi-agent and multi-map fully centralized monocular
VSLAM algorithm derived from ORB-SLAM3 (Campos et al., 2021)

• A benchmark of multi-agent monocular VSLAM algorithms on under-
water two-agent scenarios, including CCM-SLAM (Schmuck et al., 2019),
ORB-SLAMM (Daoud et al., 2018) and MAM3SLAM

• The collection of underwater two-agent datasets for multi-agent monocular
VSLAM benchmarking.

Section 4.2 presents the underwater evaluation of state-of-the-art monocular VS-
LAM algorithms on underwater scenarios, and Section 4.3 presents the work on
multi-agent VSLAM, including MAM3SLAM and the multi-agent monocular VS-
LAM benchmark. Finally, Section 4.4 provides a conclusion and discusses the per-
spectives from this chapter.

4.2 Underwater evaluation of monocular VSLAM

This Section focuses on monocular VSLAM algorithms for underwater robotic appli-
cations. A reliable VSLAM algorithm for such applications should be robust enough
to underwater visual deformations to perform correct data associations, but also —
ideally — implement an efficient SLAM recovery algorithm in order to handle track-
ing failures. In addition, such VSLAM algorithm should also be robust to occasion-
ally fast motion which may cause loss of sight of the surrounding visual features.
Indeed, while underwater vehicle motion is usually constrained for photogrammet-
ric surveys in order to be slow and with the camera always facing the seabed or the
surrounding objects, other kinds of missions may benefit from a more free trajectory.
Efficient SLAM recovery may also be a solution in such case.

In line with previous studies (Quattrini Li et al., 2017; Hidalgo et al., 2018; Joshi
et al., 2019), we focus on ORB-SLAM (Mur-Artal et al., 2015) and DSO (Engel et al.,
2018)-based works, as discussed in Section 2.4. Section 4.2.1 recaps the algorithms
under study. Section 4.2.2 introduces the methodology used in the benchmark, in-
cluding test datasets selection and evaluation criteria. Finally, evaluation results are
presented and discussed in Section 4.2.3, leading to a conclusion in Sections 4.2.4.

4.2.1 Algorithms under study

As discussed in Section 2.4.8, ORB-SLAM (Mur-Artal et al., 2015) is reported as ro-
bust to underwater visual conditions but subject to initialization difficulties and crit-
ical relocalization failure after tracking loss, hence the interest in ORB-SLAM-based
works featuring improved SLAM failure recovery functionalities. Section 4.2 fo-
cuses on the works ORB-SLAM (Huang et al., 2020) and ORB-SLAM Atlas (Elvira
et al., 2019) as released in ORB-SLAM3 (Campos et al., 2021). Note that, in the fol-
lowing, “ORB-SLAM3” simply refers to the ORB-SLAM Atlas implementation of
ORB-SLAM3.

Conversely, DSO is described as able to cope with poorly textured environment
and blur, but still limited by the absence of place recognition functionalities for loop
closing and map reuse via relocalization, leading respectively to map inconsistency
and a lack of robustness to bad data association, and to critical SLAM failure in case
of tracking loss. Section 4.2 focuses on DSO-based works which implement long-
term data association, what may limit these failures. Namely, the focus is made on
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LDSO (Loop Closure Direct Sparse Odometry) (Gao et al., 2018) and DSM (Direct
Sparse Mapping) (Zubizarreta et al., 2020).

While a detailed description of the VSLAM works under study is available in
Section 2.4, Table 4.1 recaps the main features of these algorithms. ORB-SLAM At-
las (Elvira et al., 2019) and ORB-SLAM (Huang et al., 2020) are expected to allow
the SLAM to recover more efficiently from tracking loss than ORB-SLAM, whereas
LDSO (Gao et al., 2018) and DSM (Zubizarreta et al., 2020) are expected to produce
less tracking loss than DSO due to better mapping performances through long term
data association handling.

TABLE 4.1: Overview of the algorithms under study

Front-end Loop closing SLAM recovery

ORB-SLAM
(Mur-Artal et al., 2015)

Indirect,
sparse

DBoW2 Relocalization (DBoW2)

ORB-SLAM3
(Campos et al., 2021)

Indirect,
sparse

DBoW2

Relocalization (DBoW2)
If failure: new map creation
with DBoW2 map matching
and merging.

ORB-SLAM
(Huang et al., 2020)

Indirect,
sparse

DBoW2
New map creation.
Backwards SLAM for map
matching and merging.

DSO
(Engel et al., 2018)

Direct,
sparse

∅ ∅

LDSO
(Gao et al., 2018)

Direct,
sparse

DBoW3 ∅

DSM
(Zubizarreta et al., 2020)

Direct,
sparse

Direct, using
pose prior

∅

4.2.2 Methodology

The evaluation was conducted using eight underwater datasets featuring various
visual conditions. Section 4.2.2.1 explains the dataset selection and describes the
eight chosen sequences. The evaluation method, including comparison criteria, is
detailed in Section 4.2.2.2.

4.2.2.1 Datasets

Airborne VSLAM evaluation can rely on standard, public datasets recorded in dif-
ferent environments, featuring several sequences in the similar environments and
visual conditions with various trajectories of gradual difficulty (Geiger et al., 2012;
Burri et al., 2016; Schubert et al., 2018). However, there is no equivalent in the un-
derwater field at the time of writing, because of the important cost and resources
required for acquiring such data. Previous works on VSLAM benchmark under
underwater conditions released their evaluation datasets, which are composed of
heterogeneous sequences recorded in completely different environments from one
to another, with various lighting conditions and camera settings (Quattrini Li et al.,



98 Chapter 4. Visual-based localization

2017; Joshi et al., 2019). Such heterogeneous datasets are particularly interesting for
comparing VSLAM methods under very different conditions, but are not suitable
for a detailed evaluation under specific conditions. (Ferrera et al., 2019) released
AQUALOC, an underwater visual-inertial-pressure dataset. Similarly to standard
aerial datasets, it is composed of several gradually more difficult sequences recorded
in similar environments, on three different marine sites. All theses sequences, how-
ever, show quite similar conditions by featuring man-made objects lying on a pla-
nar sandy area and involving only slow camera motion As a result, the AQUALOC
dataset only represents a small portion of the wide variety of underwater environ-
ments and visual conditions. The underwater environment can be highly structured,
such as caves, shipwrecks or offshore infrastructure, or highly unstructured, such as
natural underwater reliefs or sandbanks. In addition, because lighting conditions
and scene color aspect depend on the depth, the distance to the scene and the pres-
ence of embedded lights, these conditions can also be very different between two
underwater scenes. The presence of turbidity, suspended particles or mobile objects
or creatures is another factor in the variability of underwater scenes aspect.

The generation of ground truth trajectories relative to underwater datasets is
more difficult than for aerial datasets. Whereas airborne datasets’ ground truth com-
monly rely on laser scans or, sometimes, motion capture systems in smaller scale
indoor environments, such systems are not available in the sea. In (Joshi et al., 2019),
the output trajectory of a visual-inertial-SONAR-depth SLAM (Rahman et al., 2019)
is used as a reference for visual and visual-inertial SLAM evaluation, but this can
only apply to data acquired with a very specific sensor system. In AQUALOC (Fer-
rera et al., 2019), the offline Structure-from-Motion Colmap is used to compute a ref-
erence trajectory. These two strategies assume that the use of more sensors or time
and computational resources will lead to a more reliable state estimation than real-
time visual-only SLAM. While the absence of a ground truth only allows a coarse
comparison between VSLAM approaches, it has been shown that such qualitative
evaluations are already sufficient to discriminate most monocular VSLAM works in
underwater fields (Joshi et al., 2019). This is why the present work only considers
qualitative criteria to evaluate localization and mapping accuracy. In addition, the
no-need in ground truth allows diversifying the test sequences. Evaluation criteria
will be detailed in Section 4.2.2.2.

Section 4.2 aims at qualitatively characterizing the performances of VSLAM
methods in the underwater field. Therefore, evaluations are conducted on a selec-
tion of eight datasets chosen to have different environments and visual conditions.
The main characteristics of these datasets are recapped in Table 4.2.

The Bus dataset (Joshi et al., 2019) (Figure 4.1) is recorded in quite turbid water,
by a forward facing RGB camera. The camera slowly turns around a sunken bus,
hence several loop closures. The camera enters inside the bus during a small part
of the trajectory (Figure 4.1d), and one side of the bus is poorly illuminated (Fig-
ure 4.1c). Therefore, this sequence features important visual conditions variations
along the camera’s trajectory, which is the main difficulty of this sequence.
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(A) (B)

(C) (D)

FIGURE 4.1: Bus dataset (Joshi et al., 2019)

(A) (B)

(C) (D)

FIGURE 4.2: Cave dataset (Joshi et al., 2019)
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(A) (B)

(C) (D)

FIGURE 4.3: A/In dataset (Quattrini Li et al., 2017)

(A) (B)

(C) (D)

FIGURE 4.4: A/Out – Line #1 dataset (Quattrini Li et al., 2017)
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(A) (B)

(C) (D)

FIGURE 4.5: Aqualoc Harbor (AH) #01 dataset (Ferrera et al., 2019)

(A) (B)

(C) (D)

FIGURE 4.6: Aqualoc Archaeo (AA) #09 dataset (Ferrera et al., 2019)
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(A) (B)

(C) (D)

FIGURE 4.7: Cephismer dataset

(A) (B)

(C) (D)

FIGURE 4.8: St-Raphael dataset
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TABLE 4.2: Main characteristics of the evaluation datasets

Camera Duration
Embedded
light

Loop
closure(s)

Depth

Bus
(Joshi et al., 2019)

RGB
1200×1600 pixels
12.5 Hz

584 s ∅ X 20 m

Cave
(Joshi et al., 2019)

RGB
1200×1600 pixels
12.5 Hz

709 s X X 20 m

A/In
(Quattrini Li et al., 2017)

RGB
640×776 pixels
15 Hz

88 s ∅ ∅ Unknown

A/Out – Line #1
(Quattrini Li et al., 2017)

RGB
640×776 pixels
4 Hz

53 s ∅ ∅ Unknown

AQUALOC Harbor #01
(Ferrera et al., 2019)

Grayscale
512×640 pixels
20 Hz

289 s X X 3 m

AQUALOC Archaeo #09
(Ferrera et al., 2019)

Grayscale
608×968 pixels
20 Hz

349 s X X 380 m

Cephismer
RGB
480×640 pixels
5 Hz

156 s ∅ X 1.5 m

St-Raphael
RGB
480×640 pixels
20 Hz

472 s ∅ X 20 m

The Cave dataset (Joshi et al., 2019) (Figure 4.2) is recorded in an underwater cave,
with an embedded light source. It shows a natural mineral-only environment in
clear water. The RGB camera is facing forward, and its motion is slow. The sequence
includes several loop closures.

The A/In dataset (Quattrini Li et al., 2017) (Figure 4.3) is recorded inside a ship-
wreck, with a forward facing RGB camera. Environment structure is thus closer to
standard airborne indoor VSLAM evaluation datasets. The sequence mainly con-
sists in a forward travelling and does not include any loop closure. Water is globally
clear, but parts of the sequence feature suspended particles and fishes.

The A/Out – Line #1 dataset (Quattrini Li et al., 2017) (Figure 4.4) shows a coral
reef, including some mobile elements like seaweeds, fishes and suspended particles.
The RGB camera is facing forward. No loop closure is included.

The Aqualoc Harbor #01 dataset (Figure 4.5) is recorded with a downwards look-
ing grayscale fisheye camera, and shows large man-made objects lying on the sand.
The sequence includes a loop closure, which is marked by an apriltag target (Fig-
ure 4.5a).
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The Aqualoc Archaeo #09 dataset (Figure 4.6) involves a grayscale camera which is
slightly tilted downwards. The sequence features amphora hills with high texture,
but also low textured sandy areas (Figure 4.6c). Images show turbidity and backscat-
tering. The sequence includes loop closures. Both Aqualoc Harbor #01 and Aqualoc
Archaeo #09 use an embedded light source.

Both Cephismer and Saint-Raphael datasets are new datasets recorded by the em-
bedded RGB camera of a BlueROV2, in challenging visual conditions. The Cephismer
dataset (Figure 4.7) is recorded in a pool. The camera is slightly tilted downwards,
and a small portion of the housing appears in its field of view. The sequence features
fast motion, including pure rotations, around submarine spare parts. It is recorded
at a low frame rate, with the camera sometimes facing poorly textured areas. This
dataset is thus particularly challenging. It also includes several loop closures.

In the Saint-Raphael dataset (Figure 4.8), the ROV’s camera is facing forward. The
sequence is recorded at shallow depth, in the Mediterranean Sea, in turbid water.
The sequence includes fast motions and pure rotations, and the camera sometimes
happens to face plain water. Several loop closures are included. This dataset is also
very challenging.

Contrary to the other sequences, the Cephismer and Saint-Raphael datasets fea-
ture fast motion, and occasional loss of view of the surrounding objects and of the
seafloor. These sequences are therefore representative from a ROV use case where
ROV motion is not specifically constrained to simplify visual perception.

4.2.2.2 Evaluation method

Sequences are processed with ORB-SLAM (Mur-Artal et al., 2015), ORB-
SLAM3 (Campos et al., 2021), ORB-SLAM (Huang et al., 2020), DSO (Engel et
al., 2018), LDSO (Gao et al., 2018) and DSM (Zubizarreta et al., 2020). Since ORB-
SLAM, ORB-SLAM and DSM do not support fisheye camera models, these three
approaches are not evaluated on the Aqualoc Harbor #01 dataset. When possible,
evaluations are conducted in real-time conditions, using ROS middleware. The only
approaches that do not implement real-time processing are LDSO and DSM. The
evaluation of these two methods are therefore non-real-time in the present work.

The parameters of each VSLAM method are tuned manually for each dataset,
following all available documentation provided by the authors. For each VSLAM
approach, the following criteria are evaluated:

• Ability to track the complete trajectory, evaluated by the percentage of the se-
quence duration for which a localization is computed. One can notice that this
does not take into account the reliability of the estimated pose. This criteria is
common with the work (Joshi et al., 2019).

• Loop closure detection and handling capability, evaluated qualitatively by a color-
coded rating which indicates wether the SLAM system manages to detect and
process the main sequence’s loops (green), only a few of them (yellow), or none
of them (red).

• Localization and mapping consistency, also evaluated qualitatively by a color-
coded rating. A green one means that the SLAM outputs consistent trajectory
and map on almost all the sequence duration. A yellow one indicates consistent
trajectory and map on more than half of the sequence, and an orange one corre-
sponds to consistent trajectory and map during less than half of the sequence.
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Lastly, a red mark indicates that the SLAM is unable to initialize or produces
completely inconsistent outputs.

In the works (Quattrini Li et al., 2017; Joshi et al., 2019), loop closure detection
and handling capability and localization and mapping consistency are evaluated
together by a qualitative mark indicating failure, partial failure, partial success or
success. We chose to separate these two qualitative criteria and make more explicit
the definition of the four possible color-coded ratings.

4.2.3 Results

Evaluations are carried out in real-time on a computer with an Intel i7-10610U CPU
@ 1.80GHz × 8, 16 GB RAM, running Ubuntu 18.04 and ROS Melodic. In order to
take into account the non-deterministic behavior of multithreaded applications, the
reported observations are based on the median out of 3 runs per SLAM for each
dataset. Results are reported in Table 4.3, including the percentage of the sequence
for which a localization is computed, and qualitative loop closure capability and con-
sistency marks as defined in Section 4.2.2.2. ORB-SLAM3 being a multimap SLAM
system, the final number of disconnected maps is also indicated.

TABLE 4.3: Results

ORB-SLAM ORB-SLAM3 Dual-SLAM DSO LDSO DSM

Bus
% localized 38.08 64.03 (1 map) 33.83 15.74 21.25 14.65
Loop closure ∅
Consistency

Cave
% localized 79.81 99.96 (1 map) 99.78 7.89 2.97 46.26
Loop closure ∅
Consistency

A/In
% localized 91.23 99.62 (1 map) 99.62 99.03 99.00 99.60
Loop closure ∅ ∅ ∅ ∅ ∅ ∅
Consistency

A/Out
% localized 0.0 86.07 (1 map) 0.0 92.55 99.0 99.0
Loop closure ∅ ∅ ∅ ∅ ∅ ∅
Consistency

AH
% localized ∅ 99.71 (1 map) ∅ 77.73 79.08 ∅
Loop closure ∅ ∅ ∅ ∅
Consistency ∅ ∅ ∅

AA
% localized 99.79 99.51 (1 map) 99.72 88.07 99.0 82.50
Loop closure ∅
Consistency

Cephismer
% localized 3.88 66.72 (5 maps) 3.88 28.50 42.15 41.03
Loop closure ∅
Consistency

St-Raphael
% localized 6.81 64.46 (12 maps) 3.43 9.51 9.56 0.05
Loop closure ∅
Consistency
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First, one can notice that none of the tested methods manages to completely pro-
cess all sequences with visually consistent trajectory and map. In addition, DSO-
based approaches give particularly poor performances compared to ORB-SLAM-
based ones.

One can see from Table 4.3 that ORB-SLAM fails to process important parts of
the test sequences. This is caused by important initialization delays (ORB-SLAM
even fails to initialize on the A/In sequence) and tracking failure recovery disability,
hence the need for SLAM recovery strategies. Whereas ORB-SLAM’s failure recov-
ery strategy seems inefficient in the test datasets, leading to similar performances
than ORB-SLAM, one can see that ORB-SLAM3 significantly improves the localiza-
tion capabilities from ORB-SLAM. Indeed, ORB-SLAM3 outputs a localization on
longer sequence portions, due to faster initialization and new map creation in case
of SLAM failure, which allows keeping the SLAM running. ORB-SLAM3’s initial-
ization’s algorithm is the same as ORB-SLAM but with a different library, which
may lead to faster computation and explain the improved initialization capabilities
of ORB-SLAM3. ORB-SLAM3’s tracking failure handling strategy with new map
initialization is particularly interesting.

In the Bus dataset, this strategy allows covering a more important portion of
the sequence than ORB-SLAM, since the system does not have to wait to reach an
already mapped area to keep running. In difficult sequences leading to repetitive
tracking failures, like in the Cephismer and St-Raphael datasets, this multimap
approach results in disconnected trajectory parts and submaps, which cover an
important portion of the full video sequence. Finally, all ORB-SLAM-based ap-
proaches show the same good loop closure detection and handling capabilities,
which appears to be robust to underwater conditions. However, the same place
recognition module fails to detect most map overlaps when running ORB-SLAM3
on the Cephismer and St-Raphael scenarios, failing to fuse these maps into a global
one in these particularly difficult sequences.

Whereas ORB-SLAM based approaches, and namely ORB-SLAM3, manage to
consistently process the majority of the duration of all test sequences, DSO-based
methods prove to be far less robust to underwater visual conditions. Similarly to
(Joshi et al., 2019), we observe that DSO is able to process at least partially some of
the sequences and produce a quite realistic map of the environment during this time
interval. The best DSO results are observed for the most structured environments,
and in particular for the A/In, Aqualoc Harbor and Aqualoc Archaeo datasets which fea-
ture man-made objects. Images from these datasets show quite clear object contours,
which are more adequate for DSO’s tracking, which relies on close-to-contours pixel
patches.

DSO also suffers from local tracking inconsistencies, drift, and the incapacity to
recover from tracking failure that may happen soon after initialization like in the
Cave, Cephismer and St-Raphael datasets. As expected, these limits highlight the in-
terest of extending DSO with loop closing capabilities in order to reduce or correct
these local tracking inconsistencies and lead to a more reliable mapping of the en-
vironment, for more robustness. However, both LDSO and DSM’s loop closing im-
plementations on a DSO basis show important limitations in the underwater field.
LDSO fails to detect loops, and shows similar performances than DSO in terms of
delay before failure and SLAM consistency. It is also very slow compared to DSO,
and requires up to several seconds to process a single image. LDSO’s loop detection
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process is very close to the one of ORB-SLAM, which manages to detect and process
most loop closures. This difference in loop detection success with very close detec-
tion methods might be caused by the bad triangulation of map points used for loop
detection, which prevents any geometric consistency validation. Finally, DSM also
fails to give better performances than DSO on the evaluated underwater scenarios.
It is also extremely slow, up to dozens of seconds per frame. In addition, DSM’s loop
detection strongly relies on a good pose prior, resulting in loop detection failure in all
sequences because of localization drift. In the Cave dataset, bad pose prior even leads
to false loop detections, which decrease SLAM performances. On the other hand, in
the Aqualoc Archaeo dataset, DSM manages to detect accurate covisibilities between
recent but first disconnected KF, hence the yellow loop closing color-coded rating.
Successfully including older covisible KF with complementary points of view in the
tracking window leads to a less important trajectory drift than DSO and LDSO on
this sequence, as represented in Figure 4.9. Trajectories are given with an unknown
scale. They are aligned by a Umeyama Sim(3) alignment with respect to the most
complete trajectory, namely the one given by ORB-SLAM3. One can see the drift
of DSO-based approaches (DSO, LDSO, DSM) compared to ORB-SLAM-based ones
(ORB-SLAM, ORB-SLAM3, ORB-SLAM). Note that ORB-SLAM and ORB-SLAM es-
timated trajectories almost completely overlap in Figure 4.9. The trajectories ob-
tained on all datasets for all SLAM algorithms on their run with median localization
percentage among the three test runs are represented in Appendix E.
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FIGURE 4.9: Trajectories estimated by the six SLAM algorithms on
the Aqualoc Archaeo dataset.

4.2.4 Conclusions

Section 4.2 provides a qualitative underwater evaluation of recent monocular de-
velopments on DSO (Engel et al., 2018) and ORB-SLAM (Mur-Artal et al., 2015).
The main underwater VSLAM challenges appear to be the handling of tracking loss
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and place recognition. We demonstrated that DSO’s recent loop closure extensions
DSM (Zubizarreta et al., 2020) and LDSO (Gao et al., 2018) are not robust enough
to tracking failure. However, the recent multimap extension ORB-SLAM3 (Campos
et al., 2021) of ORB-SLAM seems very promising and allows keeping computing a
localization and a map even after a tracking loss with relocalization failure. While
ORB-SLAM3 appears to be already quite robust to underwater challenging visual
conditions, it may although be improved by investigating a more robust place recog-
nition algorithm for map fusion. The other ORB-SLAM multimap SLAM recovery
extension evaluated, ORB-SLAM (Huang et al., 2020), does not demonstrate impor-
tant robustness improvement compared to ORB-SLAM in the scenarios evaluated.

Finally, ORB-SLAM3 (Campos et al., 2021) appears to be the most robust
monocular VSLAM solution in handling underwater scenarios, at present time.
Even though its map overlap detection algorithm may be improved, ORB-SLAM3
can already be a solution for underwater visual-based, monocular, localization and
mapping in scenarios avoiding fast motions and featuring textured areas.

4.3 MAM3SLAM underwater-robust multi-agent and multi-
map VSLAM

This section investigates multi-agent monocular VSLAM for the localization of mul-
tiple underwater ROVs deployed in a common area. This scenario corresponds to
a chain of ROVs, but can also apply to other multi-ROV applications including ar-
chaeological exploration and recovery missions. These applications need individual
but also inter-robot localization within their environment in order to operate safely.
Underwater multi-agent SLAM is generally addressed in the case of AUVs which
have limited communication through the water medium (Mangelson et al., 2018;
Özkahraman et al., 2022). In contrast, multi-ROV systems can communicate in real
time with a central server, fitting the standard centralized or partially decentralized
communication configuration of airborne multi-agent VSLAM systems.

In accordance with the observations of Section 4.2, which highlights the robust-
ness of ORB-SLAM3 (Campos et al., 2021) to underwater conditions, Section 4.3.1 in-
troduces MAM3SLAM (multi-agent and multi-map monocular SLAM), a new fully
centralized multi-agent and multi-map monocular VSLAM framework based on
ORB-SLAM3. While the main motivation is underwater multi-agent tasks, which
correspond to a particulalry challenging environment„ this work equally applies for
airborne applications. MAM3SLAM is evaluated and compared to the state-of-the-
art multi-agent VSLAM on four two-agent scenarios, including one standard air-
borne dataset and three new underwater datasets recorded in a pool and in the sea.
Section 4.3.2 presents the new underwater datasets and their collection. Section 4.3.3
describes the evaluation methodology, and Section 4.3.4 presents and discusses the
results, before concluding in Section 4.3.1.

4.3.1 MAM3SLAM algorithm

MAM3SLAM builds on the ORB-SLAM Atlas (Elvira et al., 2019) implementation
provided by ORB-SLAM3 (Campos et al., 2021). MAM3SLAM algorithm is repre-
sented in Figure 4.10. A comparable representation of ORB-SLAM Atlas is provided
in Section 2.4.6.
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FIGURE 4.10: MAM3SLAM multi-map representation and workflow

4.3.1.1 Overall architecture

MAM3SLAM is a central multi-agent SLAM, meaning all computations are per-
formed on a central server. Agents only send frames to the server. A tracking thread
and a local mapping thread are run for each agent, on the central server. Loop clos-
ing and map merging tasks are conducted by one unique, common thread in the
multi-agent system. A system of n agents then runs on 2n + 1 threads, including n
tracking threads (one per agent), n local mapping threads (one per agent) and 1 sin-
gle, common loop closing and map merging thread. Similarly to ORB-SLAM Atlas,
an additional global bundle adjustment thread is launched after a loop correction
or map merging. Differences between ORB-SLAM Atlas and MAM3SLAM are the
following:

• The main contribution lies in creating multi-agent VSLAM instances, and mak-
ing maps a shared resource between multiple agents which was not imple-
mented in ORB-SLAM Atlas. To this end, multiple agents can localize in the
same map and access and update its data.

• Multi-threading support was implemented to allow concurrent map access
and update, hence the need to protect the map from concurrent modification.



110 Chapter 4. Visual-based localization

• A new KF insertion algorithm was implemented for agents locating on the
same map. This involves protection from concurrent modifications.

4.3.1.2 Shared multi-map resources

Maps are initialized individually by the server for each agent but are shared among
them using the multi-map representation proposed in ORB-SLAM Atlas and de-
noted as the Atlas. KFs from all maps are stored in a common database, to which
all agents contribute. When a new KF is inserted, a place recognition query is per-
formed over the KF database. If a match is found, a loop closing or a map merging
operation is performed, depending on whether the matched KF belongs to the same
map or not. This process is inspired by ORB-SLAM3, since having multiple agent
inputs does not modify the intrinsic behavior of the Atlas. Two matched mapsMi
and Mj become a single map Mk that includes all KFs from the original Mi and
Mj, and merges their map point observations. All the data originally contained in
Mi andMj is thus made available for tracking and local mapping viaMk. Making
the Atlas a central resource for multiple agents allows fusing maps created by dif-
ferent agents, enabling any agent to reuse the map KFs and map points created by
another agent in its own tracking process. If lost, agents can also relocalize in any
map, even if they never contributed to it. Furthermore, several agents can localize
on the same map, enabling relative localization estimation and collaborative map
incrementation.

A map is called active if at least one agent is currently localizing in it. Active
maps are being updated by new KF insertions and local mapping. Contrary to ORB-
SLAM3 where map fusion can only happen between the current active map and an
old released map, MAM3SLAM allows the fusion of two active maps. This operation
is, however, fully consistent with the ORB-SLAM3 merging algorithm and does not
affect the SLAM. When several agents localize on the same map, the map is protected
from concurrent updates from agents’ local mapping threads by a mutex.

4.3.1.3 New KF insertion

In ORB-SLAM3, a new KF is inserted if (i) less than 90% of the map points of the
current reference KF are visible in the current frame and if either (ii) more than 1
second passed since the last insertion or (iii) the local mapping is idle. The local
mapping thread periodically checks if some new KFs are to be inserted and processes
them one by one within a given period. However, in a multi-agent scenario, two
agents on the same map may slow down their local mapping due to the need to wait
for the mutex and thus delay the insertion of new KFs. Therefore, in MAM3SLAM,
KF insertion is modified so that the local mapping inserts all KFs into an insertion
queue at each iteration. If many KFs are inserted, however, this may reduce the idle
time of the local mapping, resulting in a decreasing number of new KF creation. As
a result, in MAM3SLAM, the KF insertion criterion of ORB-SLAM3 is modified to
force KF insertion if more than five consecutive frames satisfy criterion (i) but not
(ii) or (iii).

4.3.2 Underwater multi-agent datasets collection

To the best of our knowledge, there is no public, multi-agent, underwater VSLAM
datasets at the time of writing. Multi-agent VSLAM datasets can be either recorded



4.3. MAM3SLAM underwater-robust multi-agent and multi-map VSLAM 111

using multiple devices or simulated by playing simultaneously several video se-
quences recorded in the same environment. The first solution features real multi-
agent cases, where agents may see each other. Such datasets can also integrate dy-
namic changes in the environment, which will be observed synchronously by the
multiple agents. However, they represent a higher acquisition cost. The second so-
lution is less realistic with respect to a real multi-robot application. It is impossible
for the simulated agents to observe each other, and possible dynamic changes in
the environments will be observed out of sync among the simulated agents. These
datasets are although far simpler to acquire, because they only need the deploy-
ment of a single device, or can be realized from existing sequences recorded in the
same static environment. For instance, in (Schmuck et al., 2019), several sequences
of the EuRoC Machine Hall dataset (Burri et al., 2016) are used to simulate multiple
agents. In (Daoud et al., 2018), the same thing is performed with the KITTI odometry
dataset (Geiger et al., 2012).

As explained in Section 4.2.2.1, only few public underwater VSLAM datasets
are available. Unfortunately, none of them includes sequences recorded in the exact
same environment, or which may be divided in several disconnected sequences with
spatial overlap. Consequently, there was a need for creating underwater multi-agent
VSLAM datasets. Because of the operational cost of deploying multiple underwater
robots simultaneously, we privileged playing multiple agents from multiple videos
acquired on the same site in the absence of major aspect changes in the environment.
Three two-agent datasets were collected this way, featuring different environments
and challenges, denoted Ifremer tank, Cephismer tank and Sea diving, and illustrated
in Figures 4.11, 4.12 and 4.13 respectively.

(A) (B) (C)

FIGURE 4.11: Overview of the Ifremer tank dataset

(A) (B) (C)

FIGURE 4.12: Overview of the Cephismer tank dataset
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(A) (B) (C)

FIGURE 4.13: Overview of the Sea diving dataset

The Ifremer and Cephismer tank datasets are both recorded in a pool using the
embedded camera of a BlueROV2. The Ifremer tank is a quite easy sequence featur-
ing slow motion around a highly textured artificial marine reef. The agents move
around the reef with different radii and depths (Figure 4.14a). This dataset allows
evaluating the SLAM with easy underwater visual conditions, and allows validating
the proposed collaborative mapping approach.

The Cephismer tank dataset features fast motion, including pure rotations, around
submarine spare parts. It is recorded at low frame rate (5 Hz), and the camera
sometimes faces poorly textured areas. This dataset is thus particularly difficult.
Agents’ trajectories are represented in Figure 4.14b. Agent 1’s sequence is easier
than Agent 0’s, with more global scene views and less motion blur. The aim of this
dataset is to evaluate the robustness of the SLAM in particularly difficult visual con-
ditions leading to repeated tracking failure, and to show the interest of collaborative
mapping to improve individual localization when one of the agents has difficult vi-
sual conditions.

Finally, the Sea diving dataset extends the evaluation to a real underwater field
scenario. It is recorded by divers with a GoPro in the Mediterranean Sea, at shallow
depth, in clear water. Suspended particles, fish, and a second diver appear in some
frames. Different agent recordings are made moving slowly around a rock with very
closed trajectories (Figure 4.14c).

Generating a ground truth is particularly challenging in underwater environ-
ments. Similarly to (Ferrera et al., 2019), a comparative baseline for SLAM evaluation
is computed for all of our new underwater datasets using the Structure-from-Motion
software Colmap (Schönberger et al., 2016), which performs an offline reconstruction
of the scene with exhaustive matching between images, and outputs an accurate es-
timation of the camera trajectory. This output is not a ground truth, but is still a
fair reference for online SLAM evaluation. The scaling factor is retrieved from the
known dimensions of the submerged objects. The main characteristics of the three
datasets are summarized in Table 4.4. Trajectories of the agents are represented in
Figure 4.14, with respect to the surrounding objects.
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TABLE 4.4: Underwater multi-agent datasets description. All of them
are recorded with an RGB camera and between 1 and 5 m depth, with-

out embedded lights.

Camera Duration Description

Ifremer tank 480×640 pixels
10 Hz

100 s Textured fake reef in pool. Slow motion.

Cephismer tank 480×640 pixels
5 Hz

75 s

Submarine spare parts, in pool. Some poorly
textured areas (walls, floor). Fast motion and
motion blur. Agent 1’s sequence easier than
Agent 0’s.

Sea diving 380×640 pixels
8 Hz

100 s
Around a rock, at sea, at shallow depth, in
clear water. Presence of suspended particles,
fishes and a fellow diver.
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(C) Sea diving

FIGURE 4.14: Agent trajectories in the underwater sequences. The
black points are a sub-sample of the SfM reconstruction and give an
idea of the position of the surrounding objects with respect to the

agents’ trajectories.

4.3.3 Multi-agent VSLAM evaluation methodology

In order to evaluate MAM3SLAM and compare its performances with respect to
state-of-the-art multi-agent and multimap VSLAM, a choice of datasets and evalua-
tion criteria is necessary. Section 4.3.3.1 presents the competing multi-agent works
evaluated, Section 4.3.3.2 indicates the evaluation datasets used and Section 4.3.3.3
introduces evaluation criteria.
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4.3.3.1 Competing works

In accordance with the state-of-the-art in multi-agent VSLAM presented in Sec-
tion 2.5, we select ORB-SLAMM (Daoud et al., 2018) and CCM-SLAM (Schmuck
et al., 2019) for conducting a comparative evaluation with MAM3SLAM While ORB-
SLAMM is the only state-of-the-art both multi-agent and multimap VSLAM to the
best of our knowledge, CCM-SLAM is the most complete state-of-the-art real-time
multi-agent VSLAM framework at the time of writing. Workflow representations of
these two works is available in Figures 2.39 and 2.40 from Section 2.5, and can be
compared to Figure 4.10. A comparison between competing works is provided in
Table 4.5.

TABLE 4.5: Competing algorithms. Unless otherwise stated, tracking
(T), local mapping (LM), loop closing (LC), place recognition (PR) and
GBA operations are the same as the one implemented in ORB-SLAM.

Map merging is abbreviated into MM.

Agents Server Map merging Recovery

MAM3SLAM
Send frames
to the server

1 T thread per agent
1 LM thread per agent
1 LC & MM thread
(1 LC GBA thread)

Similar to
ORB-SLAM3’s MM

Multi-map

ORB-SLAMM
(Daoud et al., 2018)

Send frames
to the server

1 T thread per agent
1 LM thread per agent
1 LC thread per agent
(1 LC GBA thread
per agent)
1 inter-map PR thread

Close to
ORB-SLAM’s LC
but with less
geometric
consistency
checks

Multi-map

CCM-SLAM
(Schmuck et al., 2019)

1 T thread
1 LM thread
+ send new KF
to the server

1 inter-map PR thread
(1 MM GBA thread)
+ send local KF
to the agents

Similar to
ORB-SLAM’s
LC + GBA

∅

4.3.3.2 Datasets

In order to evaluate MAM3SLAM on a standard VSLAM benchmark, a first eval-
uation is conducted using the Machine Hall (MH) sequences from the EuRoC MAV
Dataset (Burri et al., 2016). In a second part, the underwater evaluation is performed
on the three new underwater datasets introduced in Section 4.3.2. The EuRoC MH
sequences are captured in the same industrial environment with the same lighting
conditions and are provided with a ground truth position from a Leica Total Station.
Similarly to (Schmuck et al., 2019), sequences MH_02 and MH_03 were used to simu-
late two agents. The agents start from a close position, but do not overlap much after
takeoff, each agent exploring a different part of the hall. An overview of this dataset
is given in Figure 4.15, as well as a brief summary in Table 4.6 and the corresponding
trajectories per agent in Figure 4.16.
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(A) (B) (C)

FIGURE 4.15: Overview of the EuRoC MH dataset

TABLE 4.6: EuRoC MH dataset description.

Camera Duration Description

EuRoC MH
(Burri et al., 2016)

Grayscale
480×752 pixels
20 Hz

135 s Flying drone in an industrial hall.
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FIGURE 4.16: Agent trajectories on the EuRoC MH dataset

4.3.3.3 Evaluation criteria

Two evaluations are conducted: localization and mapping performances, and
real-time performances. In related multi-agent VSLAM works (Daoud et al., 2018;
Schmuck et al., 2019), localization and mapping performances are only evaluated
by the RMS Absolute Position Error (APE) on each agent’s trajectory. However,
multi-agent SLAM also aims at estimating inter-agent relative poses and in mapping
their environment collaboratively. This is why additional comparison metrics are
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introduced here, in order to evaluate both individual agent localization, inter-agent
relative localization and collaborative mapping.

Individual localization is evaluated by the RMS APE, RMS Relative Position Error
(RPE) between two consecutive frames and the percentage of localization failure
with respect to the number of frames.

Relative localization is characterized by the percentage of the sequence for which
the agents are localized on the same map, and by the RMS Absolute Relative Position
Error (ARPE) between the two agents. If the system fails to merge all maps into a
single one, these metrics are given both as a statistic over all maps and for the map
with the largest number of KFs, denoted as the main map.

Collaborative mapping is first evaluated by the number Nmaps of unmerged maps at
the end of the sequence. Additional metrics are computed on the main map. Agent
contribution and map size are characterized by the number of KFs created by each
agent. The map’s spatial cover Lmap is computed as the sum of the edges of the
minimum spanning tree among the positions of the KF in the map, and evaluates
the size of the mapped area. Lmap is computed using the ground truth pose of the
KF to avoid introducing a bias due to poor estimation of the KF pose. The RMS APE
on the pose of the KFs of the main map is also computed.

Given an error metric e on a set of N poses Tj ∈ SE(3) defined on n disconnected
maps denotedMi, i ∈ {0...n− 1}, the global RMS associated to e is defined by:

eRMS =

√√√√√√
n

∑
i=1

∑
Tj∈Mi

e(Tj)
2

N
(4.1)

where Tj ∈ Mi denotes that pose Tj is defined in mapMi

In order to compare the real time performances of the algorithms evaluated, the
durations of the tracking (T), local mapping (LM) and place recognition (PR) oper-
ations are recorded. Place recognition includes inter and intra map loop detection,
loop fusion and map merging. Let top, op ∈ {T, LM, PR} denote the total dura-
tion of the op operation summed for all iterations for all agents on a sequence. Let
Ni, i ∈ N define the total number of frames of Agent i during the same sequence.
Since the different datasets evaluated have different durations and framerates, the
run time of each operation op is characterized by the quantity:

top =
top

∑
i

Ni
(4.2)

Because the tracking operation is triggered by a new incoming frame, tT is also the
average duration of a tracking operation.

4.3.4 Evaluation results

A quantitative evaluation of MAM3SLAM is performed on two-agent scenarios
on the four datasets described in Section 4.3.3.2, including one aerial dataset
and three underwater datasets. MAM3SLAM is compared to multi-agent ORB-
SLAMM (Daoud et al., 2018) and to CCM-SLAM (Schmuck et al., 2019). In
addition, ORB-SLAM3 (Campos et al., 2021) is used as a reference for individual
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localization performance, as it represents the current state-of-the-art for monoc-
ular VSLAM. Evaluations are carried out in real-time on a computer with an
Intel i7-10610U CPU @ 1.80GHz × 8, 16 GB RAM, running Ubuntu 18.04 and ROS
Melodic.

4.3.4.1 Localization and mapping evaluation

A localization and mapping performance evaluation is performed according to the
metrics described in Section 4.3.3.3. Given the non-deterministic behavior of mul-
tithreaded applications, all localization and mapping evaluation metrics are given
as their median values among 5 runs. The results are reported in Tables 4.7, 4.8, 4.9
and 4.10. If there are more than one map in the system, the RMS APE and RPE on
the main map are indicated in parentheses in the table. Since ORB-SLAMM does not
completely fuse the maps in the system but only computes an alignment, the total
number of maps in the system is shown in parentheses in the table. Estimated and
reference trajectories are aligned using the Sim(3) Umeyama alignment of the EVO
library (Grupp, 2017) in order to compute the error metrics. In Tables 4.7, 4.8, 4.9
and 4.10, the best result for each evaluation criterion among the multi-agent SLAM
works is shown in bold. If ORB-SLAM3 (Campos et al., 2021) gives a better result
than the multi-agent approaches, ORB-SLAM3’s result is also indicated in bold.

Figure 4.17 shows the trajectories estimated by MAM3SLAM on one of the five
runs, for the four datasets. Estimated and reference trajectories overlap particularly
well for the EuRoC MH, Ifremer tank and Sea diving datasets.

TABLE 4.7: Results on the EuRoC MH dataset

MAM3SLAM ORB-SLAMM CCM-SLAM ORB-SLAM3

#0
RMSAPE (m)
RMSRPE (m)
failure rate (%)

0.021
0.015
0.72

1.237
0.147
0.00

0.055
0.008
0.00

0.016
0.005
0.00

#1
RMSAPE (m)
RMSRPE (m)
failure rate (%)

0.034 (0.033)
0.011 (0.011)
1.55

2.624
1.436
1.48

0.152
0.135
0.00

0.027
0.010
0.00

% same map 99.38 100.00 100.00 ∅
RMSARPE (m) 0.025 2.841 0.135 ∅

Nmaps 2 1 (4) 1 ∅
KF per agent (#0,#1) 243, 249 306, 479 281, 360 ∅
Lmap (m) 135.292 150.224 145.347 ∅
KF RMSAPE (m) 0.031 2.162 0.159 ∅

CCM-SLAM fails to initialize on the Ifremer and Cephismer tank datasets, denoting
a lack of robustness.

MAM3SLAM demonstrates the best individual localization performances among
the multi-agent approaches evaluated, with the lowest RMS APE and RPE in all se-
quences, reaching centimetric accuracy on the EuRoC MH and Ifremer tank datasets.
CCM-SLAM’s performances are close to MAM3SLAMs but still with a lower accu-
racy, showing up to ten times higher RMS APE and RPE on EuRoC MH’s Agent 1
and Sea diving’s both agents. ORB-SLAMM shows particularly poor individual local-
ization performances, with RMS APE and RPE exceeding one meter in EuRoC MH
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TABLE 4.8: Results on the Ifremer tank dataset

MAM3SLAM ORB-SLAMM CCM-SLAM ORB-SLAM3

#0
RMSAPE (m)
RMSRPE (m)
failure rate (%)

0.026
0.026
0.00

0.489
0.461
0.00

∅
∅
100.00

0.012
0.038
0.00

#1
RMSAPE (m)
RMSRPE (m)
failure rate (%)

0.037
0.038
0.00

0.208
0.213
3.16

∅
∅
100.00

0.011
0.030
0.00

% same map 100.00 100.00 ∅ ∅
RMSARPE (m) 0.025 2.841 ∅ ∅

Nmaps 1 1 (5) ∅ ∅
KF per agent (#0,#1) 101, 128 89, 125 ∅ ∅
Lmap (m) 32.086 29.366 ∅ ∅
KF RMSAPE (m) 0.012 0.509 ∅ ∅

TABLE 4.9: Results on the Cephismer tank dataset

MAM3SLAM ORB-SLAMM CCM-SLAM ORB-SLAM3

#0
RMSAPE (m)
RMSRPE (m)
failure rate (%)

0.125 (0.142)
0.139 (0.152)
27.78

0.217 (0.327)
0.127 (0.158)
33.33

∅
∅
100.00

0.204 (0.241)
0.143 (0.159)
24.18

#1
RMSAPE (m)
RMSRPE (m)
failure rate (%)

0.115 (0.026)
0.043 (0.021)
23.08

0.286 (0.174)
0.099 (0.066)
18.85

∅
∅
100.00

0.074 (0.022)
0.050 (0.025)
26.28

% same map 13.92 0.00 ∅ ∅
RMSARPE (m) 0.204 ∅ ∅ ∅

Nmaps 4 6 (6) ∅ ∅
KF per agent (#0,#1) 74, 30 41, 0 ∅ ∅
Lmap (m) 8.412 2.855 ∅ ∅
KF RMSAPE (m) 0.107 0.327 ∅ ∅

and RMS APE 50 times higher than all other approaches on Sea diving’s Agent 1.
This is mainly caused by bad inter-map transformation estimation caused by the
lack of robustness of their inter-map place recognition and map merging algorithm
compared to the other approaches. An example of ORB-SLAMM map misalignment
is provided in Figure 4.18, were trajectories estimated by ORB-SLAMM are aligned
with respect to the reference trajectories using Umeyama alignment. In Figure 4.18a,
trajectories estimated on different maps are aligned together using the inter-map
transformation estimated by ORB-SLAMM, and the resulting trajectory is aligned
with respect to the reference ones. In Figure 4.18b, trajectories estimated on dif-
ferent maps are aligned individually with respect to the reference, without using
the inter-map transformation estimate from ORB-SLAMM. It can be observed that
ORB-SLAMM produces inconsistent inter-map alignments, which deteriorate sig-
nificantly the accuracy of the global trajectory. The same phenomenon happens on
all datasets.
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TABLE 4.10: Results on the Sea diving dataset

MAM3SLAM ORB-SLAMM CCM-SLAM ORB-SLAM3

#0
RMSAPE (m)
RMSRPE (m)
failure rate (%)

0.032
0.034
5.41

0.582 (0.485)
0.264 (0.135)
0.75

0.037
0.151
0.00

0.026
0.033
0.00

#1
RMSAPE (m)
RMSRPE (m)
failure rate (%)

0.031
0.041
0.00

1.203 (1.428)
0.112 (0.125)
1.88

0.028
0.144
0.00

0.021
0.040
0.00

% same map 100.00 6.00 100.00 ∅
RMSARPE (m) 0.033 2.088 0.050 ∅

Nmaps 1 5 (6) 1 ∅
KF per agent (#0,#1) 269, 285 21, 187 199, 202 ∅
Lmap (m) 39.556 16.235 36.053 ∅
KF RMSAPE (m) 0.063 0.433 0.049 ∅

One can notice that even if MAM3SLAM and CCM-SLAM show similar per-
formances, ORB-SLAM3 produces the most accurate individual localization on the
EuRoC MH, Ifremer tank and Sea diving datasets. This can be explained by the com-
puting resources available since more parallel computations are required by multi-
agent approaches. This can also explain the non-zero failure rates observed for
multi-agent approaches on these three datasets. However, MAM3SLAM outper-
forms ORB-SLAM3 in individual localization on the Cephismer tank, highlighting
the interest of the collaborative map construction and map sharing for particularly
difficult sequences. In this dataset, Agent 1’s sequence is easier than Agent 0’s. As a
result, ORB-SLAM3 outputs 2 times higher RMS APE and RPE on Agent 0 than on
Agent 1. However, in MAM3SLAM Agent 0’s localization relies on more complete
and reliable mapping data through the collaborative scene mapping, resulting in
agent performance smoothing, reaching a similar accuracy of about 10 cm for both
agents.

MAM3SLAM also outperforms the other evaluated methods on inter-agent rela-
tive localization. All methods localize the two agents on the same map almost 100%
of the EuRoC MH and Ifremer tank datasets, but MAM3SLAM outperforms the other
approaches on relative pose estimation with centimetric precision. It is also the only
SLAM approach capable of localizing the two agents on the same map for some pe-
riods of time on the Cephismer tank dataset, with a fair 20 cm accuracy. Finally, on
the Sea diving dataset, MAM3SLAM and CCM-SLAM localize the agents in the same
map 100 % of the sequence and with a similar relative localization accuracy, whereas,
ORB-SLAMM fails to fuse all maps of the system, resulting in a very small sequence
percentage for which a relative localization can be computed.
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FIGURE 4.17: Trajectories estimated by MAM3SLAM (solid) and ref-
erence trajectories (dashed) on the test datasets, after Umeyama align-

ment, showing estimated camera poses for every 5s.
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FIGURE 4.18: Trajectories estimated by ORB-SLAMM on the Eu-
RoC MH dataset (plain) and ground truth trajectories (dashed). Tra-
jectories are estimated over 5 maps, which are aligned by the system.
Parts of the trajectory from different maps are represented in a differ-

ent color.

Considering collaborative mapping, ORB-SLAMM produces inaccurate map
alignments and sometimes fails to detect map overlap, as with the Cephismer tank
and the Sea diving datasets. Map merging is far more robust in MAM3SLAM and
CCM-SLAM, which output a common, single map in most sequences. It is, however,
worth noticing that CCM-SLAM’s agents cannot initialize a new map, limiting to
two the maximum number of maps in the system for two agents. One can see that
MAM3SLAM produces two maps on the EuRoC MH dataset, but localizes the agents
on the same map during almost all the sequence. This is explained because one
of the agents fails to track the scene soon after initialization and relocalizes in the
map initialized by the other agent, which is incremented collaboratively along the
sequence. The second map is thus very small, with a median size of 3 KF. Finally, in
the general case, MAM3SLAM produces a more accurate main map than the other
approaches for an equivalent number of KF per agent and map size Lmap.

4.3.4.2 Computing time evaluation

A computing time evaluation is performed as described in Section 4.3.3.3. Fig-
ure 4.19 compares the quantities tT, tLM and tPR obtained in processing each one



122 Chapter 4. Visual-based localization

Ti
m

e
(m

s)

tT tLM tPR
0

25
50
75

100
125

(A) EuRoC MH

Ti
m

e
(m

s)

tT tLM tPR
0

25
50
75

100
125

(B) Ifremer tank

Ti
m

e
(m

s)

tT tLM tPR
0

25
50
75

100
125

(C) Cephismer tank

Ti
m

e
(m

s)

tT tLM tPR
0

25
50
75

100
125

(D) Sea diving

Mutex wait in MAM3LAM’s LMMAM3LAM
ORB-SLAMM CCM-SLAM

FIGURE 4.19: Computing time indicators tT , tLM and tPR

of the test datasets. As explained in Section 4.3.3.3, these quantities characterize the
total computational time dedicated to tracking (T), local mapping (LM) and place
recognition (PR) operations averaged per frame. The component of tLM which cor-
responds to the mutex wait is also indicated.

One can see that tracking durations are quite similar from an algorithm to an-
other. For the EuRoC MH, Cephismer tank and Sea diving datasets, tracking duration
represent about 10 ms per frame per agent. Tracking duration per frame is much
higher for the Ifremer tank dataset, what can be explained by the high number of ORB
features tracked (5,000 ORB features per frame are extracted, vs 1000 for EuRoC MH
and Sea diving). 5000 ORB features per frame are extracted for the Cephismer tank
dataset too, but most of them are not matched correctly and thus unused for pose
computation, hence a lower computational duration.

LM total computational duration is higher for MAM3SLAM. One can see that a
significant proportion of this duration corresponds to wait at mutex lock. In the eval-
uated configurations, the maximum duration of local mapping operations divided
by the number of incoming frames is of about 110 ms. This indicates that, in this
case, the system is able to create a new KF every 9 s, what is still a satisfying ratio.
However, this maximum KF insertion rate will decrease with the a higher number
of agents, since more agents will increase the total mutex wait duration. Our system
is thus limited to a small number of agents. One can notice that the total duration
of mutex wait in local mapping is very low for the Cephismer tank dataset. This is
due to the agents being located on the same map simultaneously more rarely and
the low framerate reducing the probability of a simultaneous KF creation intent by
the two agents.

Lastly, PR total computational duration is significantly higher for ORB-SLAMM
than for CCM-SLAM and MAM3SLAM. Indeed, ORB-SLAMM’s inter map place
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recognition consists in a loop over all KF from all maps which is repeated continu-
ously, while CCM-SLAM and MAM3SLAM only query the KF database at new KF
creation, what prevents unnecessary queries if the maps and KF are idle.

4.3.5 Conclusions

Section 4.3 introduced MAM3SLAM, a new fully centralized multi-agent and mul-
timap monocular VSLAM framework based on ORB-SLAM Atlas (Elvira et al., 2019)
and ORB-SLAM3 (Campos et al., 2021), as a solution for underwater multi-ROV lo-
calization. Three new underwater two-agent datasets including two in a pool and
one in the sea were acquired, and several multi-agent evaluation criteria were in-
troduced in order to realize a comparative evaluation of MAM3SLAM with respect
to the state-of-the-art multi-agent VSLAM CCM-SLAM (Schmuck et al., 2019) and
ORB-SLAMM (Daoud et al., 2018).

Four two-agent scenarios were evaluated, including a standard aerial dataset
and our three new underwater datasets.

A run time analysis demonstrated that MAM3SLAMs place recognition com-
putation time is significantly lower than competing works, and its tracking com-
putational time is of the same order of magnitude. This analysis also shows that
MAM3SLAMs local mapping takes significantly more time than the one of com-
peting approaches, because of the mutex wait imposed to prevent concurrent map
updates from different agents when they localize with respect to the same map, and
some low level software engineering would be required to extend MAM3SLAM to
more than two agents in future works. This extension would be a prerequisite for
using MAM3SLAM in a real-life underwater robot chain configuration.

Even though the current implementation did not focus on handling this scala-
bility problem and left it for future works, our two-agent MAM3SLAM proved to
outperform all other evaluated approaches, namely CCM-SLAM (Schmuck et al.,
2019) and ORB-SLAMM (Daoud et al., 2018), in terms of individual localization, rel-
ative localization and mapping accuracy, and demonstrates good robustness to poor
visual conditions. MAM3SLAM therefore proves to be a reliable multi-agent VS-
LAM approach for multi-ROV localization, reaching a centimetric accuracy on two
out of three underwater evaluation datasets.

In light with these results, MAM3SLAM seems a promising solution for multi-
ple ROV localization, for instance in an underwater robot chains. Some low level
software developments are nonetheless required to extend this approach to a higher
number of agents, while keeping the overall high level principle. In addition, fu-
ture works may focus on improving the robustness of the system by fusing multiple
inputs in order to increase the robustness to underwater visual conditions and es-
timate the scale of the environment. In particular, in the specific context of a robot
chain, inter-agent pose constraints might be used at different levels in the SLAM
pipeline, including scale estimation, inter-map place recognition and pose estima-
tion optimization. The system may also be extended to stereo camera input and fuse
inertial and eventually pressure measurements.

4.4 Conclusion and perspectives

This chapter focuses on the reliability of monocular VSLAM algorithms for locating
a chain of underwater ROV with respect to their environment. The problem
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of underwater monocular VSLAM is initially addressed for a single vehicle. In
line with previous works which highlight the interest of DSO (Engel et al., 2018)
and ORB-SLAM (Mur-Artal et al., 2015) for underwater scenarios but also their
limitations in performing accurate long-term data associations, a comparative
evaluation of promising recent works based on these algorithms is performed.
Namely, LDSO (Gao et al., 2018) and DSM (Zubizarreta et al., 2020) extend DSO
with place recognition capabilities, and ORB-SLAM3 (Campos et al., 2021) and
ORB-SLAM (Huang et al., 2020) extend ORB-SLAM with multi-map SLAM re-
covery strategies. A qualitative evaluation based on eight underwater datasets
featuring different visual conditions, including two new datasets, demonstrate that
ORB-SLAM3 outperforms other approaches and is robust to underwater visual
conditions, and that even though its place recognition algorithm may be improved
ORB-SLAM3 can already be a solution for underwater localization in scenarios
avoiding fast motions and featuring textured areas.

In accordance with these observations, we introduce MAM3SLAM a monocular,
multi-map and multi-agent, centralized VSLAM algorithm based on ORB-SLAM3,
as a solution for multi-ROV localization. MAM3SLAM is evaluated and compared to
state-of-the-art works ORB-SLAMM (Daoud et al., 2018) and CCM-SLAM (Schmuck
et al., 2019) on two-agent scenarios, on one airborne dataset and three new under-
water datasets including two in pool and one at sea. Individual localization, relative
localization and mapping accuracy are evaluated, and a runtime evaluation is con-
ducted. Results show that MAM3SLAM is able to run in real time on the test scenar-
ios, even though it is limited to a small number of agents, and that it significantly
outperforms the competing works in terms of robustness and accuracy, reaching a
centimetric accuracy on two out of three underwater evaluation datasets.

This chapter shows that a monocular VSLAM algorithm, and in particular
MAM3SLAM can be a solution for locating a chain of a small number of underwater
ROV with respect to their environment. Compared to the cable-based localization
strategies investigated in Chapter 3, the assets of this VSLAM approach are the
following:

• its accuracy, with individual and relative position errors of only a few cen-
timeters when avoiding fast motions, in scenes featuring textured areas. Cable
based localization error is at least ten times higher and will increase signifi-
cantly with the number of connected vehicles.

• an online mapping of the environment, including obstacles.

However, our cable-based localization strategy has assets too compared to VSLAM:

• our state estimation of the cable is always available, even when navigating in
plain water, where the sea bed cannot be observed by the embedded cameras

• it is far more robust than VSLAM. While VSLAM can fail to track environment
points and never recover from this failure, the only way cable-based localiza-
tion may completely fail is if the cable is significantly distorted from the model.
While this may happen to the catenary model in the presence of currents, the
straight line model is robust to such disturbances.

• monocular VSLAM returns a pose and a map with an unknown scale factor,
while the scale is given by cable length in cable-based localization algorithms
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• cable-based localization can give the location of the ROV with respect to a sur-
face point with known GPS coordinates, leading to an absolute localization of
the underwater vehicle

• in MAM3SLAM, agents are not located in the same map until the place recog-
nition module detects map overlap, while a cable based approach directly pro-
vides an inter-agent relative pose

As a result, VSLAM and cable-based localization strategies are very complementary,
and an interesting future work would be to combine them in a common localization
framework. A first option would be to use cable-based localization as a backup lo-
calization solution and be used temporarily instead of VSLAM if the VSLAM fails.
This option although involves to align the scales of the two localization methods.
A second option may be to integrate cable shape knowledge more tightly in the VS-
LAM framework in order to not only compute the scale of the scene, but also increase
SLAM robustness. Cable shape knowledge may be integrated in pose estimation in
order to make it more robust to challenging visual conditions, or be exploited for
recovering from tracking failure. Relative localization information from cable-based
localization can also be used to fuse information from multiple agents efficiently in
a common reference frame.

The work presented in Chapter 4 led to the following publication:

Conference paper:

• Qualitative evaluation of state-of-the-art DSO and ORB-SLAM-based monoc-
ular visual SLAM algorithms for underwater applications.
J. Drupt, C. Dune, A. I. Comport and V. Hugel,
OCEANS 2023, Limerick, Ireland, 2023, pp. 1-7.

In addition, a journal paper on MAM3SLAM for multi-ROV underwater local-
ization and mapping is currently being written, in order to be submitted to Ocean
Engineering.
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Chapter 5

Conclusion and perspectives

This thesis focused on underwater robot chains as a solution for managing the teth-
ers of ROVs. In this system, intermediary cable management robots are placed along
the cable in order to control its three-dimensional shape and limit the mechanical
impact of the cable on the ROV, including the risk of entanglements and energy-
intensive drag forces. All the robots in the chain are then connected together by the
communication cable, which can also provide them energy supply.

The current thesis investigated specifically the problem of localizing an under-
water robot chain with embedded sensors measurements. Robot chain localization
includes localization of the robots and of the cable which links them with respect to
their environment. While underwater robot localization with respect to its environ-
ment can be estimated from the robot’s embedded sensors, presence of an umbilical
can be taken as an advantage to localize the robot at its end point, as it can be de-
duced from cable 3D state knowledge. Two categories of localization approaches
were thus studied, namely tether-based state estimation and VSLAM-based localization.

5.1 Tether-based state estimation

The tether has been investigated as a localization system for the ROVs it connects. If
the three-dimensional shape of the tether linking a pair of vehicles can be estimated,
the relative location of the two vehicles can be deduced from the position of the
tether’s end points. We proposed to use a simple cable model parameterized by
cable ends relative depth and one or two local cable tangents. These parameters
were measured using IMUs placed along the cable and embedded pressure sensors.

Two categories of cable configuration have been studied, both involving a non-
extensible cable. First, the catenary model has been investigated for modeling an
underwater, non-extensible, slack, weighting cable. The catenary model is a phys-
ical, quasi-static model defined in a vertical plane. It does not require constraining
the cable into a specific shape. Its validity for an underwater cable with moving ends
was evaluated experimentally, demonstrating that the model well describes heavy
enough cables even with mobile ends. A new catenary shape estimation approach
was therefore introduced for a negatively buoyant underwater cable, using inertial
measurements of one or two cable tangents near the attachment points. An exper-
imental validation demonstrated that, for a cable of length 1.5 m, this method can
estimated the sag of the cable within a few centimeters and the orientation of the
cable plane within a dozen degrees. In a second time, a cable stretched by a sys-
tem of mobile buoys and ballast modeled by straight lines was investigated, in line
with the work of Christophe Viel (CNRS-LabSTICC, ENSTA Bretagne, France) with
whom we collaborated on this work. Cable shape estimation based on local tangent
measurements using IMUs was studied for locating the ROV at the cable end point.
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Evaluations in pool demonstrated that the accuracy of this approach in cable and
ROV localization is of about twenty centimeters, given a cable length of 3 m.

We demonstrated that the shape of the cable of a ROV can be estimated using a
cable model and one or two local tangent measurement using IMUs, as well as robot
depth knowledge using pressure measurements, and that the cable can be used as
a localization system for determining the relative position of the vehicles at its end
points. A strong asset of this cable-based localization strategy is that it is available
even when navigating in open water, where the seabed cannot be observed by the
embedded sensors. A limitation is however a limited accuracy and the propaga-
tion of errors along multiple tethered vehicles within a robot chain. In addition, the
cable-based system state estimation methods studied in the current work do not pro-
vide any exteroceptive information about the surroundings of the system, which are
nonetheless crucial for robot chain control and navigation.

5.2 VSLAM-based localization

Because the safe navigation and control of an underwater robot chain involves lo-
calization with respect to a previously unknown environment, we focused on si-
multaneous localization and mapping (SLAM) for such systems. While some works
address the SLAM problem from a cable-based environment perception (McGarey
et al., 2017), such strategies require the cable to enter in contact with obstacles, what
may be unwise in term of operational safety for an underwater system. Conse-
quently, we focused on a SLAM strategy using common underwater exteroceptive
sensors. Usual underwater exteroceptive sensors include acoustic sensors and cam-
eras, where cameras are lower cost, power and weight, such that even the small-
est and most affordable underwater robots embed at least an underwater camera.
In addition, cameras do not suffer from interferences nor multiple reflections from
non-target objects in cluttered environments, contrary to accoustic sensors. These
arguments lead us to focus on monocular VSLAM for underwater.

We first studied underwater monocular VSLAM for a single robot. In accor-
dance with previous studies (Quattrini Li et al., 2017; Joshi et al., 2019; Hidalgo et
al., 2018), we focused on ORB-SLAM (Mur-Artal et al., 2015) and DSO (Engel et al.,
2018)-based works designed to improve their long-term data association capabili-
ties. Namely, we studied LDSO (Gao et al., 2018) and DSM (Zubizarreta et al., 2020)
which extend DSO with place recognition capabilities, and ORB-SLAM3 (Campos et
al., 2021) and Dual-SLAM (Huang et al., 2020) which extend ORB-SLAM with multi-
map SLAM recovery strategies. The six aforementioned algorithms were evaluated
on eight underwater datasets featuring different visual conditions, including two
new datasets. Results highlighted the robustness of ORB-SLAM3 to underwater vi-
sual conditions and the interest of its multi-map SLAM recovery algorithm.

In line with these observations, we introduced MAM3SLAM a monocular, multi-
map and multi-agent, centralized VSLAM algorithm based on ORB-SLAM3, as a
solution for multi-ROV localization. MAM3SLAM was evaluated and compared to
state-of-the-art works ORB-SLAMM (Daoud et al., 2018) and CCM-SLAM (Schmuck
et al., 2019) on three new underwater two-agent datasets, demonstrating a better in-
dividual localization, relative localization and mapping accuracy, with an order of
magnitude of less than one centimeter in two out of the three underwater evalu-
ation datasets. Although a runtime evaluation of MAM3SLAM showed that some
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low level software engineering work may be required to increase SLAM scalabil-
ity, MAM3SLAM proved to be a promising solution for underwater-robust multiple
ROV localization, including in the context of a robot chain.

5.3 Perspectives

Table 5.1 recaps the assets and drawbacks of cable-based localization and monocular
VSLAM for the localization of an underwater robot chain.

TABLE 5.1: Assets and drawbacks of cable-based localization and
monocular VSLAM

Assets Drawbacks

Cable-based
localization

• Always available, even in open water
where the sea bed cannot be observed
• Far more robust than VSLAM
• Known scale factor
• Can give the location of the ROV with
respect to a surface point with known GPS
coordinates
• Directly provides an inter-agent relative
pose

• Coarse accuracy compared to
VSLAM, about 10 to 20 cm
• Fails if the cable is significantly
distorted from the model

Monocular
VSLAM

• Individual and relative localization
accuracy down to only a few centimeters
errors
• Online mapping of the environment,
including obstacles

• Unavailable in open water
• Risk of SLAM failure in case
of fast motion or in low textured
areas
• Unknown scale factor
• Requires place recognition to
provide an inter-agent relative
pose
• Does not give cable shape

It can be observed from this comparison that cable-based localization and
monocular VSLAM may me complementary for localizing an underwater robot
chain with respect to its environment.

• The two approaches can therefore provide different information about the sys-
tem’s state. Indeed, cable-based localization can give a geo-referenced position
while VSLAM cannot, and VSLAM computes an online mapping of the envi-
ronment, what has not been considered using the cable in order to prevent
entanglements (see Section 5.2).

• They are not efficient in the same conditions for robot localization. If the robot
moves slowly enough in a textured environment, VSLAM will be available
and give a localization estimate far more accurate than cable-based algorithms.
Conversely, cable-based approaches can give a quite coarse but robot localiza-
tion estimate in open water, or in a scenario where the SLAM would have
failed.

• Generally speaking, cable-based localization and VSLAM do not have the
same causes of failure.
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• VSLAM does not give any information about cable location, except for its at-
tachment points on the robots. A knowledge of cable shape is therefore neces-
sary, using either a proprioceptive cable (see Section 2.3.3) or a model derived
from measurable physical parameters.

In light of these complementary aspects, future works may investigate a fusion be-
tween cable-based localization and monocular VSLAM. A first option would be to
use cable-based localization only for the functionalities VSLAM does not implement,
including state estimation in open water, geo-referenced positioning, scale estima-
tion, relative localization between the robots before they happen to be located on the
same map, and optionally cable shape estimation if a cable shape cannot be deduced
directly from robot localization. Cable-based localization may also be a backup solu-
tion in case of VSLAM failure. A second option may be to integrate cable-based state
estimation and VSLAM more tightly, in a tethered-VSLAM framework. For instance,
an initial guess for inter-agent map fusion may be computed from their cable-based
relative pose, and cable-based pose estimate may be exploited for recovering from
tracking failure. Conversely, VSLAM robot localization may help detecting if the ca-
ble does not conform anymore to the expected model, what may, for instance, help
detecting entanglements or measure currents. Therefore, many works are still to be
done in the continuation of the research axis of the current thesis.
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Appendix A

Mathematical background and
system modeling

A.1 Rotations

The three-dimensional attitude of a rigid body can be given according to several rep-
resentations. The most common ones are rotation matrices, Euler angles, vector-axis
representation and quaternions. In the following, let us denote Fa = (Oa, xa, ya, za)
and Fb = (Ob, xb, yb, zb) two three-dimensional frames, and u a three-dimensional
vector. ∀ i ∈ {a, b}, iu denotes the coordinates of vector u in frame Fi.

A.1.1 Rotation matrix

A rotation matrix is defined as a matrix whose multiplication with a vector rotates
the vector while preserving its length. The special orthogonal group of 3× 3 rotation
matrices is denoted SO(3), such that ∀ R ∈ SO(3), det(R) = 1 and R is invertible,
with R−1 = RT.

A.1.1.1 Coordinate transformation between two frames

The attitude of a rigid body can be encoded by a rotation matrix. Let us define
aRb the unique rotation matrix which represents the orientation of frame Fa with
respect to frame Fb. The coordinates of vector u in frame Fa can be deduced from
its coordinates in Fb by the relation:

au =a Rb
bu (A.1)

where the columns of aRb are the coordinates of the unit vectors of frame Fb in
frame Fa, i.e.:

aRb =
[axb

ayb
azb
]

(A.2)

A.1.1.2 Elemental rotations

An elemental rotation is a rotation about one single coordinate axis. Elemental rota-
tions by an angle α about unit axes x, y and z of a coordinate system are respectively:
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Rx(α) =

1 0 0
0 cos(α) sin(α)
0 − sin(α) cos(α)

 (A.3)

Ry(α) =

cos(α) 0 − sin(α)
0 1 0

sin(α) 0 cos(α)

 (A.4)

Rz(α) =

 cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1

 (A.5)

A.1.1.3 Composition

Let us define frame Fc = (Oc, xc, yc, zc). The rotation matrix aRc between frames Fa
and Fc can be deduced from the rotation matrices aRb and bRc respectively between
frames Fb and Fa and frames Fc and Fb by the relation:

aRc =
c Rb

bRc (A.6)

A.1.2 Euler angles

Euler angles are one of the most common orientation representations. They are
based on the decomposition of the rotation into elemental rotations. Let i, j, k ∈
{x, y, z}3 where i 6= j and j 6= k. The tuple (i, j, k) then defines an Euler sequence,
denoted ijk. Any such ijk sequence can be defined according to an intrinsic or ex-
trinsic rotations convention, resulting in twelve possible Euler angles conventions.
Usually, in an intrinsics or extrinsic xyz or zyx Euler convention, the angles about
the x, y and z axes are denoted roll, pitch and yaw respectively.

A.1.2.1 Conventions by intrinsic rotations

Let us define {φ, θ, ψ} ∈ R3, the set of Euler angles giving the orientation of frame
Fa in frameFb in intrinsic ijk convention. RotatingFb toFa can then be decomposed
into the following, ordered, operations:

1. Rotate frame Fb of angle ψ around its k-axis. The rotated frame is denoted F ′b.

2. Rotate frame F ′b of angle θ around its j-axis. The rotated frame is denoted F ′′b .

3. Rotate frame F ′′b of angle φ around its i-axis. The rotated frame now has the
same orientation as Fa.

An example of such operations in intrinsic xyz convention is given in Figure A.1.
The decomposition of any three-dimensional rotation matrix aRb ∈ SO(3) in ijk
convention is given by:

aRc = Ri(φ) Rj(θ) Rk(ψ) (A.7)

Angles {φ, θ, ψ} are called Euler angles in ijk convention. The rotation is then repre-
sented by a set of three Euler angles in a given decomposition convention.
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FIGURE A.1: Euler intrinsic xyz rotations from Fb to Fa

A.1.2.2 Conventions by extrinsic rotations

Let us define {φ, θ, ψ} ∈ R3, the set of Euler angles giving the orientation of frameFa
in frame Fb in extrinsic ijk convention. Rotating Fb to Fa can then be decomposed
into the following, ordered, operations:

1. Rotate frame Fb of angle ψ around its k-axis. The rotated frame is denoted F ′b.

2. Rotate frame F ′b of angle θ around the j-axis of Fb. The rotated frame is de-
noted F ′′b .

3. Rotate frame F ′′b of angle φ around the i-axis of Fb. The rotated frame now has
the same orientation as Fa.

An example of such operations in extrinsic xyz convention is given in Figure A.2.
Note that equation A.7 is not valid for extrinsic conventions.
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FIGURE A.2: Euler extrinsic xyz rotations from Fb to Fa

A.1.2.3 Discussion

While Euler angles are widely used, they have two main limitations.

The first limitation is practical, since the co-existence of multiple conventions,
but also of conflicting notation conventions. For instance, extrinsic conventions are
sometimes written in uppercase to differentiate them from intrinsic conventions, but
the exact opposite notation convention is also sometimes employed. In addition,
the order of the Euler sequence is sometimes inverted from what we presented in
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this section, with an ijk sequence denoting an opposite order of applying the three
steps of Euler rotations. Consequently, Euler angles can be confusing because of the
coexistence of several conventions from a work to another.

The second limitation is mathematical, from the definition of Euler angles, and is
known as gimbal lock. It can be defined as the loss of one degree of freedom when
two of the three rotation axis involved in the Euler angles definition happen to be
aligned. An example is given in Figure A.3 for an intrinsic xyz convention. With
ψ = 90◦ and θ = 0◦, axis y′′b gets aligned with xb.

xb yb = x′b

zb = z′b

y′
b

ψ

ψ

(A) Step 1

xb yb = x′b = x′′b

zb = z′b = z′′b

y′
b = y′′

b

(B) Step 2

FIGURE A.3: Gimbal lock in Euler intrinsics xyz rotations from Fb to
Fa, with ψ = 90◦ and θ = −90◦.

A.1.3 Axis-angle representation

Alternatively, a rotation can be represented by the combination of a three-
dimensional unit vector u and an angle θ. The corresponding rotation is then a
rotation of angle θ around axis v. This (u, θ) representation is called angle-axis
representation. An interest of this representation is that, like rotation matrices, it is
unique.

A.1.4 Quaternion

Quaternions can be used to describe a three-dimensional rotation by a set of four
coordinates which encode a rotation axis and a rotation angle. In terms of mathe-
matics, the quaternion number system extends the complex numbers. Quaternions
are usually represented in the form:

q = w + xi + yj + zk (A.8)

where {w, x, y, z} ∈ R4 and i2 = j2 = k2 = ijk = −1. Quaternions can also be
written as four-dimensional vectors, with:

q =
[
x y z w

]T (A.9)

Let u define a three dimensional unit vector. Let au =
[aux

auy
auz
]T be the coor-

dinates of u in frame Fa. A rotation of angle θ around axis u can be represented by
the quaternion:

q = cos
(

θ

2

)
+ sin

(
θ

2

)
(auxi +a uy j +a uzk) (A.10)
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Such quaternion is called a unit quaternion. The definition of a rotation by a unit
quaternion is unique.

A.1.5 Conclusion

The three-dimensional orientation of a rigid body can be assimilated to a rotation. It
can be defined according to several representations, where the most common ones
are rotation matrices, Euler angles, axis-angle representation and quaternions. The
rotation matrix representation is unique, but involves nine coordinates for defining
only three degrees of freedom. Euler angles are widely used, but are confusing be-
cause of the coexistence of several conventions from a work to another, and because
of the gimbal lock phenomenon. Axis-angle representation and quaternions are both
unique, but are not as intuitive as rotation matrices and Euler angles. In this work,
we will use mostly rotation matrices.

A.2 Rigid transformations

The three-dimensional state of a rigid body is given by its orientation and its position
with respect to a reference frame. Let us define a frame Fb associated to a rigid body,
and a reference frame Fw. The rigid transformation between frames Fb and Fw is
the combination of a translation between their origins Pb and Pw respectively and
by their relative orientation. Let bPw denote the coordinates of Pw in Fb and let
bRw be the rotation matrix between the two frames. Finally, let us define a three-
dimensional point X. The coordinates bX of X in frame Fb can be deduced from its
coordinates in wX in Fw by the relation:

bX =b Rw
wX +b Pw (A.11)

A.2.1 Homogeneous coordinates

Let aX denote the coordinates of a point X in a frame Fa. Its homogeneous coordi-
nates in Fa are defined as:

aX =

[aX
1

]
(A.12)

A.2.2 Homogeneous transformation matrix

A rigid transformation, or pose, in three-dimensional Euclidian space can be
uniquely defined by the 4× 4 matrix:

T =

[
R t
0T 1

]
(A.13)

where R ∈ SO(3) and t ∈ R3. The group of rigid transformations in three-
dimensional Euclidian space is denoted SE(3).

Equation A.11 can be re-written using homogeneous coordinates and the matrix
bTw ∈ SE(3) such that:

bTw =

[bRw
bPw

0T 1

]
(A.14)
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as:

bX =b Tw wX (A.15)

A.2.3 Composition

Given three three-dimensional frames Fa, Fb and Fc, the rigid transformation aTc ∈
SE(3) between frames Fa and Fc can be deduced from the rigid transformations
aTb and bTc respectively between frames Fb and Fa and frames Fc and Fb by the
relation:

aTc =
c Tb

bTc (A.16)

A.3 Camera modeling

A camera is a physical system which projects incoming light rays onto a set of photo-
sensitive detectors, or pixels. Measurements from these pixels constitute an image.
Given the incident angle of the incoming light rays, the geometry of the resulting
image is a function of the internal geometry of the camera, which is usually defined
by a set of parameters, named intrinsic parameters. Some applications may require
a knowledge of the pose of the camera with respect to other sensors or frames: this
pose is known as the extrinsic parameters. The current section focuses on image for-
mation modeling according to the camera’s intrinsic parameters.

A.3.1 Pinhole model

The mathematical relationship between the coordinates of a 3D point and its pro-
jection onto the image of a camera is usually described using a simplified camera
model, named pinhole model. In an ideal pinhole camera, the light from a scene
passes through a very small aperture, or pinhole, and projects an inverted image
on an image plane, where the photometric senors are located. The small aperture is
considered a point, named optical center. This model is illustrated in Figure A.4. The
optical axis is defined as perpendicular to the image place and passing through the
optical center Pc. The optical axis intersects the image plane in O, which is called
the principal point. The camera frame Fc is defined with origin Pc and z-axis aligned
with the optical axis point in the opposite direction of the image plane. The focal
length f is the distance between the optical center Pc and the image plane along the
optical axis.

Let P be a three dimensional point of coordinates cP =
[
X Y Z

]T in Fc. The

projection of P in the image plane is denoted p and has coordinates
[
x y

]T in the
image plane. According to Thales’ theorem, one can get:{

x = f X
Z

y = f Y
Z

(A.17)
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FIGURE A.4: Pinhole model

In homogeneous coordinates, one gets:

p =
1
Z

 f 0 0
0 f 0
0 0 1

 1 0 0 0
0 1 0 0
0 0 1 0

 cP (A.18)

=
1
Z

K f Π0 cP (A.19)

where:

K f =

 f 0 0
0 f 0
0 0 1

 (A.20)

and:

Π0 =

1 0 0 0
0 1 0 0
0 0 1 0

 (A.21)

A.3.2 Pixel coordinates

Digital cameras output an image composed of discrete measurements from a pixel
grid. Coordinates of image points are given in terms of discrete pixel coordinates,
with respect to a two-dimensional frame Fπ whose origin Pπ is the image upper-left
corner, as represented in Figure A.5. The x and y-axis of Fπ have the same direction
of those of the camera frame Fc.

Let p′ =
[
u v 1

]T be the pixel coordinates of p and let
[
u0 v0 1

]T be the
pixel coordinates of the principal point O. Let (w, h) and (sx, sy) denote the width
and height of the image in pixels and in meters respectively. One gets:

p′ =


w
sx

sθ u0

0 h
sy

v0

0 0 1

 p (A.22)

= Ks p (A.23)
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FIGURE A.5: Pixel coordinates

where sθ accounts for a possible non-orthogonality of the pixel lines and columns on
the sensor. Usually, lines and columns are orthogonal and thus sθ = 0, leading to:

Ks =


w
sx

0 u0

0 h
sy

v0

0 0 1

 (A.24)

A.3.3 Calibration matrix

According to Sections A.3.1 and A.3.2, the coordinates in pixels of the projection of
a three-dimensional point P in the image are given by the relation:

p′ =
1
Z

Ks K f Π0
cP (A.25)

=
1
Z

K Π0
cP (A.26)

where cP the coordinates of P in the camera frame Fc with z-coordinate Z and with
Ks, K f and Π0 defined in Sections A.3.1 and A.3.2. The matrix K = Ks K f is called
calibration matrix. The calibration matrix is parameterized by the following eight
intrinsic parameters:

• focal length f ;

• image width w and height h in pixels;

• image width sx and height sy in meters;

• pixel coordinates
[
u0 v0

]T of the principal point O;

• possible flaw of orthogonality parameter sθ if pixel columns and lines on the
sensor or non-orthogonal.

A.3.4 Distortion correction

However, real cameras involve lenses which usually have some distortion, which
needs to be corrected. Image distortion is generally assumed to be a combination of
radial and tangential distortion. The effect on the image is illustrated in Figure A.6.
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(A) Barrel radial
distortion (k1 < 1)

(B) Pin-cushion radial
distortion (k1 > 1)

(C) Tangential
distortion

FIGURE A.6: Image distortion examples for regularly spaced values
of x′ and y′ (see Equation A.27). The blue grid shows zero distortion.

Radial distortion is usually modeled by six coefficients ki, i ∈ {1 . . . 6} and tan-
gential distortion is commonly modelled by two coefficients (p1, p2). Given a 3D
point P of coordinates cP =

[
X Y Z

]T in camera frame Fc and its projection p in

the image, the coordinates
[
x y

]T of p in the image are given by the relation:
x′ = f X

Z

y′ = f Y
Z

x = x′ 1+k1r2+k2r4+k3r6

1+k4r2+k5r4+k6r6 + 2p1x′y′ + p2(r2 + 2x′2)

y = y′ 1+k1r2+k2r4+k3r6

1+k4r2+k5r4+k6r6 + p1(r2 + 2y′2) + 2p2x′y′

(A.27)

where r2 = x′2 + y′2. Distortion parameters are also intrinsic parameters which need
to be calibrated in order to know the relationship between the 3D position of a point
in the camera frame and its projection in the image.

A.3.5 Camera intrinsic calibration

The intrinsic calibration of a camera consists in the estimation of the intrinsic pa-
rameters { f , w

sx
, h

sy
, sθ , u0, v0, k1, . . . , k6, p1, p2}. This calibration is performed using a

target with a pattern of known shape and dimension. The intrinsic parameters are
deduced from multiple views of the calibration target with different viewing angles.
If the camera is to be used underwater, this calibration is usually performed under-
water in order to include the refraction of light rays between water, camera housing
and camera in the calibrated distortion parameters.
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Appendix B

Straight-line model

The current section introduces the straight line model, where Section B.1 lists the
assumptions considered and described the application scope of the system under
study, and Section B.2 gives the equations of the model. These assumptions, scope
and model have been developed by Christophe Viel, CNRS-LabSTICC, Brest, France,
and are not a contribution of this thesis. They are nonetheless essential to introduce
further developments based on this straight-line model in Sections 3.3 and 3.4 which
belong to the contributions of this thesis.

B.1 Assumptions and application scope

The following assumptions are considered:

(A1) The ratio of mass to buoyancy of the umbilical is negligible compared to the
ballasts’ weight and the buoys’ buoyancy used in the configuration, or currents
applied on ballast/buoys;

(A2) The length variation of the umbilical is negligible compared to its length, con-
sidered constant;

(A3) When the umbilical is taut, its geometry can be assimilated to straight lines
between defined points, here the ballasts, the buoys, the boat and the ROV;

(A4) The motion of anchors and of the cable end point which is not located on the
ROV are assumed not to be affected by the action of the umbilical and the ROV,
and so can be considered motionless;

(A5) ROV motion and cable length are such that the umbilical remains taut. Con-
straints to have this assumption valid are discussed in (Viel, 2022a).

Due to the umbilical modeled by straight lines, with a negligible length variation,
the scope of application of the system is for ROVs with an umbilical shorter than
50 m. The umbilical must also be flexible and allow the sliding elements to move
freely on the cable. Applications of this system include:

• The exploration of shallow water from a boat with a depth of less than 50 m;

• The umbilical between a ROV and its cage in case of deep exploration. The
cable between the boat and the cage, then, does not need to respect the as-
sumptions described in the current section;

• A chain of ROVs connected with the same umbilical. The model is applicable
for each section of cable between each pair of ROVs.
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B.2 Model equations

Let us consider a system composed of a ROV tethered to another vehicle or to a fixed
point by its umbilical. These attachment points are denoted R and O respectively. A
reference frame FO is defined with origin O and its z-axis vertical, downwards. The
first part of the cable from O is constrained to be vertical down to an anchor placed
in A, and a sliding buoy or ballast is placed along the cable between A and R. The
position of the sliding element is denoted B. Depth of the anchor in A depends on
the intended application and the sliding element in use. A non-zero A depth is in
fact necessary if the sliding element is a buoy. The system is represented in Figure B.1
in both sliding buoy and sliding ballast configuration.

O

B

Rα

β

FO

(A) Sliding ballast in plane (O, xO, zO)

O

B

Rµ

η

FO

(B) Sliding ballast in plane (O, yO, zO)

O

A

B
Rα

β
FO

(C) Sliding buoy in plane (O, xO, zO)

O

A

B
R

µ

η

FO

(D) Sliding buoy in plane (O, yO, zO)

FIGURE B.1: Single sliding element system. Figures B.1a and B.1b
present a single-ballast configuration with A = O, and Figures B.1c

and B.1d present a single-buoy configuration.

An umbilical of length l is thus divided in three parts: segment OA of length
l0 between the first cable end and the anchor, segment AB of length l1 between the
anchor and the sliding element, and segment BR of length l2 between the sliding
element and the cable attachment point on the ROV. Cable length between anchor
A and attachment point R is fixed and equal to Lt = l1 + l2. Let us define angles α,
β, µ and η as follows:

• α is the angle between the z-axis of FO and segment AB around the y-axis of
FO, in plane (O, xO, zO);

• β is the angle between segment BR and the z-axis of FO around the y-axis of
FO, in plane (O, xO, zO);

• µ is the angle between segment AB and the z-axis of FO around the x-axis of
FO, in plane (O, yO, zO);

• η is the angle between the z-axis of FO and segment BR around the x-axis of
FO, in plane (O, yO, zO).
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These angles are represented in Figure B.1. In addition, we define l1x and l1y the
length of the projection of vector AB on planes (O, xO, zO) and (O, yO, zO) respec-
tively. l2x and l2y are defined similarly for vector BR. Finally, let sb be defined such
that sb = 1 if the sliding element is a ballast and sb = −1 if the sliding element is a
buoy.

The coordinates of R can be expressed in frame FO as{
OxR = l1x sin (α) + l2x sin (β)
OyR = l1y sin (µ) + l2y sin (η)

(B.1)

and {
OzR = l0 + sbl1x cos (α)− sbl2x cos (β)
OzR = l0 + sbl1y cos (µ)− sbl2y cos (η)

(B.2)

where

l2
1 = l2

1x + sin (µ)2 l2
1y (B.3)

l2
2 = l2

2x + sin (η)2 l2
2y (B.4)

Lt = l1 + l2 (B.5)

From these equations, one can get

l2
1x =

l2
1(

1 + tan (µ)2 cos (α)2
) (B.6)

l2
1y =

l2
1(

sin (µ)2 +
(

cos(µ)
cos(α)

)2
) (B.7)

l2
2x =

l2
2(

1 + tan (η)2 cos (β)2
) (B.8)

l2
2y =

l2
2(

sin (η)2 +
(

cos(η)
cos(β)

)2
) (B.9)

l1 and l2 can be expressed as a function of Lt, OzR, α, β, µ and η as follows:

l1 = Lt − l2 (B.10)

l2 =

(
Lt cos(α)

a1
− sb

(OzR − l0
))(

cos(α)
a1

+ cos(β)
a2

) (B.11)

where
a1 =

√
1 + tan (µ)2 cos (α)2 (B.12)

and
a2 =

√
1 + tan (η)2 cos (β)2 (B.13)

Consequently, the coordinates of R in FO can be deduced from Lt, OzR, α, β, µ, η
and fixed length l0.
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Appendix C

Visual-based catenary shape
estimation (Laranjeira et al., 2019)

The current section describes the visual-based catenary shape estimation of under-
water cables for tethered robots from (Laranjeira et al., 2019), which is compared to
our IMU-based approach is Section 3.4.1. Section C.1 presents the model and the
assumptions. Section C.2 explains the cable detection process in the image and Sec-
tion C.3 describes the model parameters estimation process.

C.1 System modeling and assumptions

Just like in Section 3.3.2, we consider a subsystem of a robot chain composed of a
robot and the section of cable in front of it, as represented in Figure C.1.
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D D + ∆D
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Pa1
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Pir

Fir

Pd

Fd
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Pr
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Pc

(A) Side view

Pa2

αF0

P0

Fa1

Pa1

Fir

Pir
Fd

Pd

Pc

Fc

(B) Top view

FIGURE C.1: Subsystem under study
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Fr is the robot frame in SNAME convention. Pa1 and Pa2 are the cable attachment
points and P0 is the cable’s lowest point. Frame Fa1 is defined with origin Pa1 and
axes aligned Fr. The cable is modeled by a catenary of catenary frame F0 (see Sec-
tion 3.2.1). In addition, the robot embeds a camera in Pc, oriented towards the cable,
and a pressure sensor in Pd. Let Fc denote the camera frame, with origin Pc. As
detailed in Section 3.2.1, the three-dimensional catenary shape of the cable is fully
described by the three parameters {H, ∆H, α}.

In addition, the following assumptions are made:

1. the robot remains horizontal ;

2. the axes of the camera frame Fc are aligned with those of the robot frame Fr ;

3. cable color is uniform and distinct from the robot’s environment.

C.2 Cable detection

The cable is detection in the image from the camera by a color segmentation in the
HSV space (Crevier, 1993), with threshold values set manually. To this end, an or-
ange cable is used in (Laranjeira et al., 2019). In our experiments reported in Sec-
tion 3.4.1, we selected a red cable. Red is known to be quickly absorbed by the water,
but the cable always remained close enough to the camera during our experiments
to allow the choice of this color. Cable detection is illustrated in Figure C.2, for the
red cable used in Section 3.4.1.3.

(A) Input image (B) Segmented cable

FIGURE C.2: Cable detection in the image

C.3 Model parameters estimation

Parameter ∆H is measured using the robot’s embedded pressure sensor.
While (Laranjeira et al., 2019) assumed that the robot stays horizontal, we pre-
ferred using the methodology described in Section 3.3.1 for this step in order to take
into account small pitch and roll variations in estimating ∆H.

In (Laranjeira et al., 2019), the estimation of parameters H and α is performed
under the assumption that points Pc, Pa1 and Pa2 are not aligned, what is called the
non-degenerate case. Because it only involved a minor change in the algorithm, we
modified the algorithm provided by (Laranjeira et al., 2019) in order to handle the
degenerate case, with points Pc, Pa1 and Pa2 aligned. These two cases are detailed in
Sections C.3.1 and C.3.2 respectively.
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C.3.1 Non-degenerate case

In the non-degenerate case, (Laranjeira et al., 2019) estimates parameters H and α
is performed in two steps, including an initial guess and an optimized estimation,
described in Sections C.3.1.1 and C.3.1.2 respectively.

C.3.1.1 Initial guess

The initial guess for parameters {H, α} is computed by assuming that the lowest
cable point observed in the image is the projection of P0. Actually, these points do
not match exactly due to perspective projection, but they are expected to be close
enough to make the initial guess consistent. Nonetheless, if the bottom of the cable
moves out of the field of view, the lowest point depth is underestimated.

Let
[
xB yb

]T denote the image coordinates of the lowest cable point observed
in the image (see Appendix A.3 for more details on image coordinates). If this point
coincides with the projection of P0 and under the zero roll and pitch assumptions,
one can get:

H = yb(
cZa1 + D cos(α))− cYa1 (C.1)

where cYa1 and cZa1 are the y and z-coordinates of Pa1 in Fc, and D is displayed on
Figure C.1.

In the non-degenerate case, xB cos(α) + sin(α) 6= 0. As a result, it can be shown
that:

D =
cXa1 − xc

BZa1

xB cos(α) + sin(α)
(C.2)

and {H, α} are such that:

g(α) = C(α)H(α)− cosh(C(α)D(α)) + 1 = 0 (C.3)

where C is defined in (3.3).

α is then estimated numerically by the bisection method, with α value bounded
as follows, due to the geometry of the system:{

α < arctan(−xB) if cXa1 − xB
cZa1 > 0

α > arctan(−xB) if cXa1 − xB
cZa1 < 0

(C.4)

In addition, if yB and ξmax +c Ya1 − yc
BZa1 have the same sign, with:

ξmax = max(0,−∆H) (C.5)

then: α > arctan
(

yB(
cXa1−xB

cZa1 )

ξmax+cYa1−yBcZa1
− xB

)
if yB(

cXa1 − xB
cZa1) > 0

α < arctan
(

yB(
cXa1−xB

cZa1 )

ξmax+cYa1−yBcZa1
− xB

)
if yB(

cXa1 − xB
cZa1) < 0

(C.6)

Finally, if yB et ξmin +
c Ya1 − yc

BZa1 have the same sign with:

ξmin = min(
L− ∆H

2
,−L) (C.7)
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then: α > arctan
(

yB(
cXa1−xc

BZa1 )

ξmin+cYa1−yc
BZa1
− xB

)
if yB(

cXa1 − xB
cZa1) > 0

α < arctan
(

yB(
cXa1−xc

BZa1 )

ξmin+cYa1−yc
BZa1
− xB

)
if yB(

cXa1 − xB
cZa1) < 0

(C.8)

H is then deduced using (C.1) and (C.2). Note that these bounds are slightly different
from the work (Laranjeira et al., 2019) because they have been recomputed in order
to take into account a non-zero value of cXa1 .

C.3.1.2 Optimized estimation

Assuming zero pitch and roll angles, the projection of the catenary in the image is
given as:

y(a, b, x) =
1

cZ
[−cosh(Cζ − CD)− 1

C
+ aHmax +

c Ya1 ] (C.9)

where
[
x y

]T denote the image coordinates of a cable point projection, and with
a = H

Hmax
and b = sin(α). Hmax is defined arbitrarily as a maximum value allowed

for H. ζ and cZ are defined as follows:

ζ =
cXa1 − xcZa1

b + x
√

1− b2
(C.10)

and
cZ =

cXa1

√
1− b2 + bcZa1

b + x
√

1− b2
(C.11)

Initial value of parameters {a, b} are computed from the α and H parameters esti-
mated with the initial guess depicted in Section C.3.1.1. Values of {a, b} are then
optimized using a Gauss-Newton algorithm that minimizes the function

Γ(a, b) = ∑
i

ri(a, b)2 (C.12)

with ri(a, b) = yi − y(a, b, xi), where
[
xi yi

]T are the observed image coordinates of
a cable point detected using the method described in Section C.2.

C.3.2 Degenerate case

Our estimation method to handle the degenerate case used the lowest cable point
observed in the image, juste like the initial guess of the non-degenerate case. In this
case, one gets:

α = arctan
(
−

cXa1
cZa1

)
(C.13)

Because (C.1) is still valid, it can be shown that H is such that:

f (H) = yB −
H +c Ya1

cZa1 +
1

C(H)
arccosh(C(H)H + 1) cos(α)

(C.14)

= 0 (C.15)

and that H is the only root of f . This equation is solved using the bisection method.
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Appendix D

Motion capture ground truth
recording

This chapter details how the robotic system was tracked using a mocap system in
Sections 3.2.1.2, 3.4.1 and 3.4.2. Because of their high accuracy, mocap measurements
were used as a ground truth for validation embedded sensor based state estimation
approaches. Section D.1 describes the motion capture system used in this work. Sec-
tion D.2 present the experimental set-up for tracking our robotic system. Section D.3
explains how these mocap measurements were aligned with respect to the system’s
embedded sensors in order to be used as a ground truth, including temporal and
frame alignment.

D.1 Motion capture system description

This work uses two Qualisys motion capture systems1: an aerial one in Sec-
tion 3.4.1.2 and an underwater one otherwise. While the cameras and connection
cables are different from these two systems (see Table D.1 and Figure D.1), they
work in a similar way in allowing the three-dimensional tracking of small markers
which can be placed on a system which can be a rigid or deformable body.

TABLE D.1: Motion capture cameras

Oqus 400 Miqus m5u

Field Airborne Underwater
Max. field of view 70◦× 70◦ 51◦× 51◦

Sensor resolution 3 MP 4 MP
Max. capture distance
with 19 mm markers

35 m 17 m

Max. framerate 1100 fps 180 fps
Wavelength range Infrared Ultraviolet

The mocap cameras emit light rays close to visible light, which are reflected by
the markers and allow their detection in the camera frames. Markers observations
from multiple cameras are then fused in order to triangulate their position. Two
kinds of markers are used in the current work: 19 mm spherical markers, and pieces
of reflective tape (Figure D.2). These markers both reflect infrared and ultraviolet
radiations and are thus compatible with both airborne and underwater camera sys-
tems.

1https://www.qualisys.com/

https://www.qualisys.com/
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(A) Oqus 400 (airborne) (B) Miqus m5u (underwater)

FIGURE D.1: Qualisys mocap cameras used. Courtesy of Qualisys.

19 mm

(A) Spherical marker (B) Reflective tape

FIGURE D.2: Qualisys reflective markers used. Courtesy of Qualisys.

This process requires a preliminary calibration of the intrinsic and extrinsic pa-
rameters of the mocap cameras. This calibration involves two targets: one is fixed,
and the other one is moved around the volume covered by the field of view of the
cameras. The fixed calibration target is used to define the origin and axis of a ref-
erence frame Fw,q in which mocap measurements are given, as represented in Fig-
ure D.3. The fixed target is usually placed on the floor, or at the bottom of the pool,
in order to have Fw,q’s z-axis vertical, upwards. Target dimensions are given by the
constructor with a 10−4 m precision. Calibration is deemed valid only if the residual
in mobile target tracking is below 3 mm. The accuracy of the tracking of reflective
markers after calibration is of about 1 cm.

Pw,q

Fw,q

FIGURE D.3: Mocap reference frame Fw,q, wih origin Pw,q
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System calibration and parameter tuning, marker observation matching from
different camera views and marker trajectory tracking over time are performed by
the Qualisys Track Manager (QTM) software from Qualisys, which also provides
post-processing tools.

It is worth noticing that these mocap systems can be disturbed by additional
light sources with overlapping range with respect to the light emitted by the active
cameras. For instance, the underwater system is highly disturbed by the sunlight
and is thus not suitable for outdoor, shallow depth tracking during daytime.

D.2 Experimental tracking set-up

D.2.1 Camera positioning

For each experiment, the volume in which the objects to be tracked will be placed,
or operational volume is defined. Mocap cameras are then placed in order to have this
volume covered by their field of view. Any point of the operational volume needs
to be in the field of at least three mocap cameras. Cameras are placed on modular
supports in order to adapt their placement to the configuration required. For an
airborne set-up, cameras are simply placed on tripods. For an underwater configu-
ration, camera supports can be positioned on the edges or at the bottom of the pool.
Figure D.4 shows an example of mocap camera positioning in the Cephismer pool.

(A) (B)

FIGURE D.4: Examples of motion capture camera positioning in the
Cephismer pool.

D.2.2 Robotic system tracking

Experiments from Chapter 4 require the tracking of cables, and rigid bodies, namely
a BlueROV but also a pulley in Sections 3.4.2. The QTM software allows to track
a rigid body, or 6-DOF body from a set of minimum three markers placed on it. A
mobile frame F6DOF,q associated to the rigid body is then defined. Its pose with
respect to the mocap reference frame Fw,q can be computed by the QTM software
anytime at least three markers of the 6-DOF body are tracked simultaneously. The
origin and axis of F6DOF,q can be set-up manually from the markers points of the 6-
DOF body. In addition, marker points of the 6-DOF body which may not have been
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detected and tracked correctly at certain times are reconstructed automatically from
the 6-DOF body pose. Both the ROV and the pulley were equipped with spherical
markers. Frames associated to the ROV and pulley 6DOF bodies are denoted Fr,q
and Fb,q respectively. Lastly, cable tracking is performed by tracking tape markers
regularly placed along the cable. Figure D.5 shows the robotic system involved in
Section 3.4.1.3’s experiments and its tracking in Fw,q by the mocap system.

FIGURE D.5: Motion tracking of Section 3.4.1.3’s robotic system

D.3 Alignment with respect to embedded sensors

In Sections 3.4.1 and 3.4.2, mocap data is used as a ground truth for evaluating em-
bedded sensor based robotic system state estimation. To this end, embedded sensor
measurements and mocap data have to be synchronized both temporally and spa-
tially, in order to be expressed with the same timeline and in the same frame.

D.3.1 Frames, notations and assumptions

We consider a robotic system including a robot tracked by a motion capture system.
The robot embeds a water pressure sensor in Pd and an IMU in Pir as illustrated in
Figure D.6. Fw,q is the Qualisys reference frame. The robot embeds a water pressure
sensor in Pd and an IMU in Pir . The IMU frame is denoted Fir , and the IMU ref-
erence frame is Fw,i with a vertical, upward z-axis. The following assumptions are
considered:

(A1) The water pressure sensor is calibrated such that the depth of Pd can be com-
puted from the pressure measurement

(A2) The IMU is able to measure the orientation of Fir with respect to Fw,i with a
negligible error during the mocap recording duration

(A3) The embedded sensors are already temporally synchronized and their relative
position is known, such that the position of Pd in Fir is known
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(A4) Fir has its x-axis, y-axis and z-axis aligned with the robots’s forward, lateral
and upward axis respectively

(A5) The mocap markers placed on the robot are such that pairs of markers are
aligned with the robots’s forward, lateral and upward axis

(A6) The expression of Pd from robot marker points is known, and thus the coordi-
nates of Pd in Fr,q are known

(A7) Fw,q has been defined using the static calibration target such that its z-axis is
vertical, upward. Consequently, the rotation between Fw,q and Fw,i is a unit
rotation around their common z-axis.

Pir

Fir

Pd

Surface

Fw,ir Fw,q

FIGURE D.6: System and frames

D.3.2 Temporal alignment

Because their are recorded by different computers, embedded sensor data and mo-
cap measurements have no reason to be temporally synchronized. Consequently, at
the same global time, mocap and embedded sensor data will have respective times-
tamps tq and tr such that:

tq = tr + ∆t (D.1)

∆t is estimated by aligning depth measurement realized from the water pressure
sensor and from the mocap recording. Let us denote dPd,r and dPd,q the measurements
of the depth of point Pd from the robot’s pressure sensor and the mocap system
respectively. As explained in Section 3.3.1:

dPd,r
PPd − P0

ρwater ∗ g
(D.2)

where P0 is assumed to have been calibrated. The coordinates of Pd in Fw,q are given
by:

w,qPd =w,q Tr,q
r,qPd (D.3)

where w,qTr,q is measured by the mocap and r,qPd is assumed to be known, from
Section D.3.1. Then:

dPd,q =
w,q zd + c1 (D.4)

where w,qzd is the z-coordinate of w,qPd and c1 is a constant which accounts for the
depth of the origin of Fw,q. ∆t is then tuned in order to have dPd,r(tr + ∆t) −w,q

zd(tq) = c1.
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D.3.3 Frame alignment

This section describes the calibration of the rotation wi Rw,q between the reference
frames Fw,q and Fw,i of the Qualisys and of the IMU. Because the experiments pre-
sented in this work only involve relative measurements between points of the sys-
tem and orientation measurements, calibration of wi Rw,q is sufficient for mocap and
embedded sensor measurements alignment. This transformation is such that:

wi Rw,q = Rz(ψ) (D.5)

and is estimated using the relation:

wi Rw,q =
wi Rir(t)

ir Rr,q
r,qRw,q(t) (D.6)

at any time t of the sequence, where wi Rir is measured by the embedded IMU and
r,qRw,q is measured by the Qualisys mocap system.

Marker positioning on the robot is given in Figure D.7. The unit vectors of frame
Fir can be expressed from points Plbb (left-bottom-back), Prb f (right-bottom-front) and
Prbb (right-bottom-back) by the relation:


r,qxir =

PrbbPrb f
‖PrbbPrb f ‖

r,qyir = PrbbPlbb
‖PrbbPlbb‖

r,qzir = r,qxir × r,qyir

(D.7)

where × denotes the vector cross product and ‖·‖ is the Euclidian norm. Finally:

ir Rr,q =
r,q RT

ir (D.8)

=
[r,qxir

r,qyir
r,qzir

]T (D.9)

Prb f Prbb

(A) Right side

Plbb

(B) Left side

FIGURE D.7: BlueROV equipped with mocap markers

ψ(t) ∈]− π, π] is computed as the yaw of wi Rir(t)
ir Rr,q

r,qRw,q(t) in the xyz in-
trinsic Euler convention (see Appendix A.1.2). ψ is finally taken as the mean value of
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ψ(t) over the sequence, assuming ψ(t) values are far enough from −π or π to have
remain continuous over time.
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Appendix E

Underwater evaluation of
monocular VSLAM: trajectories

The current section is a complement to Section 4.2. It illustrates the trajectories ob-
tained for the different VSLAM algorithms compared in Section 4.2 on the eight
underwater test datasets considered. For each dataset and each algorithm, the tra-
jectory represented corresponds to the run with the median localization percentage
among the three test runs. Trajectories are given with an unknown scale, and in a
random coordinate system. They are aligned by a Umeyama Sim(3) alignment with
respect to the most complete trajectory, namely the one given by ORB-SLAM3.
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Appendix F

Résumé en français

F.1 Introduction

Les opérations sous-marines représentent un défi tant pour l’exploration scientifique
que pour les applications civiles et militaires. Ces missions ne peuvent cependant
pas toujours être réalisées par des humains, pour des raisons physiques où liées à
leur dangerosité, ce qui a conduit à l’essors de la robotique sous-marine. Les robots
sous-marins sont toutefois, eux aussi, confrontés à d’importants défis. En raison
de l’absorption rapide des ondes électromagnétiques dans un rayon de quelques
mètres, la communication en temps réel entre un véhicule sous-marin et un opéra-
teur en surface est limitée. Ces contraintes ont conduit à deux stratégies opposées
dans la conception des robots sous-marins, qui correspondent à deux familles de
véhicules :

• les véhicules sous-marins autonomes (Autonomous Underwater Vehicles ou
AUVs), conçus pour fonctionner de manière totalement autonome ;

• les véhicules téléopérés (Remotely Operated Vehicles ou ROVs), reliés par câble
à une station de surface, afin d’être téléopérés.

FIGURE F.1: Vue d’artiste d’une cordée de robots sous-marins, Pierre
Straumann
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La gestion des câbles des ROV est l’un des axes de recherche du laboratoire
COSMER, Université de Toulon, France, et a conduit à l’introduction du concept
de cordée de robots sous-marins, où la forme globale du câble est contrôlée par un
ensemble de robots intermédiaires placés le long de celui-ci, et dont une vue d’artiste
est présentée en Figure F.1. Ce concept a été initialement introduit dans le cadre du
travail de doctorat de Matheus Laranjeira (Laranjeira et al., 2017; Laranjeira et al.,
2018; Laranjeira et al., 2019; Laranjeira, 2019; Laranjeira et al., 2020). Dans la con-
tinuité de ces travaux, cette thèse porte sur la localisation d’une cordée de ROVs à
l’aide de capteurs embarqués, et a été préparée au sein du laboratoire COSMER en
collaboration avec le CNR-I3S, Sophia-Antipolis, France.

Cette problématique de localization d’une cordée de robots sous-marins a été
envisagée à travers deux axes :

• une localisation proprioceptive qui exploite une estimation de la conforma-
tion tri-dimensionnelle du câble, dont peut être déduit le positionnement des
robots encordés ;

• une localisation extéroceptive et multi-agents de la cordée par rapport à son
environnement, en utilisant des techniques visuelles de localisation et car-
tographie simultanées.

Les contributions de cette thèse sont les suivantes:

• l’évaluation expérimentale du modèle de chaînette appliqué à des câbles
coulants, immergés ;

• une méthode d’estimation de la forme d’un câble coulant reliant deux robots
sous-marins à partir du modèle de chaînette et de mesures inertielles ;

• une méthode de localisation d’un ROV à partir de la forme de son câble, dans
le cadre d’une collaboration avec Christophe Viel du CNRS LabSTICC, ENSTA
Bretagne ;

• une évaluation comparative de méthodes visuelles de localisation et cartogra-
phie simultanées en milieu sous-marin ;

• un nouvel algorithme de localisation et cartographie simultanées multi-agent,
à partir de données visuelles, son évaluation et sa comparaison à des algo-
rithmes de l’état de l’art sur des jeux de données sous-marins acquis dans le
cadre de cette thèse.

Ces contributions ont mené aux publications listées ci-après :

Articles de journaux :

• ROV localization based on umbilical angle measurement.
C. Viel, J. Drupt, C. Dune, V. Hugel,
Ocean Engineering, Volume 269, 2023, 113570, ISSN 0029-8018.

Articles de congrés :

• Inertial-measurement-based catenary shape estimation of underwater cables
for tethered robots.
J. Drupt, C. Dune, A. I. Comport, S. Seillier and V. Hugel,
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2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Kyoto, Japan, 2022, pp. 6867-6872.
Vidéo 1 : https://www.youtube.com/watch?v=TKLLVTSUN8s
Vidéo 2 : https://www.youtube.com/watch?v=x-SXut75vHk

• Estimation de forme de câble pesant pour la localisation de robots sous-marins
encordés : comparaison d’une approche visuelle à une nouvelle approche in-
ertielle.
J. Drupt, C. Dune, A. I. Comport and V. Hugel,
ORASIS 2023, Carqueiranne, France, 2023.

• An augmented catenary model for underwater tethered robots.
M. Filliung, J. Drupt, C. Peraud, C. Dune, N. Boizot, A. I. Comport and V.
Hugel,
Soumis à 2024 IEEE International Conference on Robotics and Automation
(ICRA).

Workshops :

• "Validity of the catenary model for moving submarine cables with negative
buoyancy.
J. Drupt, C. Dune, A. I. Comport and V. Hugel,
3rd workshop on RObotic MAnipulation of Deformable Objects: challenges
in perception, planning and control for Soft Interaction (ROMADO-SI), Best
Paper Award, Kyoto, Japan, 2022.
Vidéo : https://www.youtube.com/watch?v=kmcs9xKf3KQ

F.2 État de l’art

Cette thèse s’intéresse à la localisation d’une cordée de ROVs à l’aide de capteurs
embarqués. Ce sujet implique à la fois d’estimer la configuration de la cordée, à
savoir la localisation relative des robots et la forme des portions de câble qui les
relient, mais aussi le positionnement de la cordée par rapport à son environnement,
et enfin, éventuellement, sa localisation géo-référencée.

F.2.1 Robots et câbles sous-marins

Les robots sous-marins (Unmanned Underwater Vehicles, ou UUVs) peuvent être
classés en trois catégories : ROVs, AUVs, et ROVs hybride (Hybrid ROVs or
HROVs), ces dernier pouvant être utilisés comme des ROVs ou AUVs selon le
contexte opérationnel (Christ et al., 2014; Creuze, 2014; Brignone et al., 2015). La
Figure F.2 présente quelques exemples d’UUVs. Les ROVs sont utilisés pour toutes
les missions qui ne peuvent pas être complètement automatisées ou qui présentent
des enjeux importants en termes de sûreté de fonctionnement.

La présence du câble est néanmoins lourde de conséquences sur les ROVs : il
risque en effet de s’emmêler lors de la plongée ou dans les obstacles environnants,
et exerce une gêne mécanique. Des méthodes ont donc été développées pour limiter
l’impact du câble sur le ROV (Christ et al., 2014), incluant des méthodes passives im-
pliquant l’ajout de masses ou de bouées sur le câble, et des méthodes actives mettant
en scène des systèmes mécatroniques permettant de réguler la longueur et parfois la
forme du câble. En particulier, le contrôle de la forme du câble par l’ajout de robots

https://www.youtube.com/watch?v=TKLLVTSUN8s
https://www.youtube.com/watch?v=x-SXut75vHk
https://www.youtube.com/watch?v=kmcs9xKf3KQ
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intermédiaires dédiés le long de celui-ci a rencontré un intérêt croissant ces dernières
années sous le nom de cordée de robots sous-marins (Laranjeira et al., 2020).

(A) Ocean One (ROV), Université de Stanford.
Source : (Khatib et al., 2016)

(B) BlueROV2 (ROV), Blue Robotics

(C) UlyX (AUV), Ifremer.
Source : Ifremer

(D) Seasam (HROV), Delair Marine.
Source : Delair Marine

FIGURE F.2: Exemples d’UUVs

Le GPS étant inutilisable sous l’eau, la localisation des UUVs repose essentielle-
ment sur leurs capteurs embarqués. Les capteurs les plus répandus en robotique
sous-marine incluent les capteurs acoustiques, les centrales inertielles (Inertial Mea-
surement Units, ou IMUs), les capteurs de pression et les caméras (Creuze, 2014;
Cong et al., 2021; Massot-Campos et al., 2015). Ces trois derniers types de cap-
teurs présentent habituellement des prix et des dimensions significativement moins
élevés que les capteurs acoustiques, et sont donc présents sur l’immense majorité
des UUVs, dont les modèles les plus petits et abordables. Les capteurs extéroceptifs
usuels sont les SONARs et les caméras. Outre leurs prix et dimensions attractifs, les
caméras sont particulièrement intéressantes dans des environnements confinés, où
les SONARs subissent des effets de réverbération du signal émis qui bruitent leur
mesure. La perception visuelle en milieu sous-marin est néanmoins compliquée par
l’absorption sélective des rayons lumineux par l’eau, les phénomènes de réfraction
sur les caissons étanches qui habritent les capteurs, mais aussi des phenomènes de
diffusion, par la turbidité de l’eau, ou encore l’impact d’un éventuel éclairage em-
barqué sur l’aspect visuel des alentours (Wang et al., 2019).

F.2.2 Estimation d’état pour les systèmes robotiques encordés

Les systèmes robotiques encordés sont présents à la fois en robotique marine et sous-
marine, terrestre et aérienne (Laranjeira et al., 2020; D’Antonio et al., 2021; McGarey
et al., 2016; Debruyn et al., 2020). Leur déploiement requiert une estimation de leur
état, dont la localisation des câbles et des robots. L’estimation de la forme du câble
peut être réalisée à partir de différents modèles et capteurs. La Figure F.3 présente
quelques exemples de systèmes encordés.
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(A) ROV. Source : Ifremer (B) Tethered Robotic Explorer (TRex).
Source : (McGarey et al., 2017)

(C) Transport d’objets déformables.
Source : (D’Antonio et al., 2021)

(D) Système hybride air-eau.
Source : (Debruyn et al., 2020)

FIGURE F.3: Exemples de systèmes robotique encordés

Les modèles de câbles peuvent être classés en deux catégories principales : les
modèles dynamiques (Hong et al., 2020; Meng et al., 2020) et les modèles quasi-
statiques (D’Antonio et al., 2021; Viel, 2022b). Les modèles dynamiques sont les
plus complets et sont dérivés des forces qui s’appliquent au câble, compte tenu
de ses propriétés physiques. Les modèles quasi-statiques sont toutefois plus sim-
ples, et généralement préférés pour estimer la forme d’un câble en temps réel. Le
modèle quasi-statique le plus répandu est le modèle caténaire (Laranjeira et al.,
2020; D’Antonio et al., 2021), qui correspond à la forme d’un câble suspendu, ho-
mogène, non-élastique uniquement soumis à son propre poids, avec ses extrémités
fixes. Cette définition peut être étendue à tout câble soumis à une force verticale
proportionnelle à sa masse linéique, comme un câble dans un liquide, également
soumis à la poussée d’Archimède.

Certains câbles en fibre optique ou recouverts d’IMUs sont conçus comme des
capteurs proprioceptifs, capables de mesurer leur forme (Yu et al., 2013; Frank et al.,
2013). Ceux-ci sont néanmoins assez rares en pratique. La forme d’un câble peut
également être estimée en associant un modèle et des mesures locales, nécessitant
une instrumentation légère du câble par des IMUs, capteurs de courbure ou encore
capteurs d’angle ou de tension (McGarey et al., 2017; Merlet, 2018; Tortorici et al.,
2023). Les mesures peuvent également provenir d’un capteur extérieur au câble, par
exemple une caméra (Laranjeira et al., 2020; Jin et al., 2022; Smolentsev et al., 2023).

Enfin, certains travaux utilisent la forme du câble pour déduire la localisation des
robots encordés, et vont jusqu’à utiliser les emmêlements du câble dans les obstacles
environnants pour en réaliser une cartographie (McGarey et al., 2017). Dans un tel
contexte, le câble n’est plus une source de gène mais bien un atout pour l’estimation
d’état du système global.
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F.2.3 SLAM visuel monoculaire en milieu sous-marin

La localisation d’un système robotique par rapport aux obstacles d’un environment
initialement inconnu nécessite une cartographie en ligne de celui-ci, et un calcul de
localisation au sein de la carte simultanément construite. Ce problème est connu
sous le non de SLAM (Simultaneous Localization and mapping). Les algorithmes SLAM
sous-marins reposent généralement sur la fusion de plusieurs capteurs. Toutefois,
l’omniprésence de caméras monoculaires, même sur les systèmes les plus petits
et abordable, couplée à la richesse des informations visuelles dans la perception
tri-dimensionnelle conduisent à s’intéresser au SLAM visuel (Visual SLAM, ou
VSLAM) pour la localisation et cartographie simultanée en milieu sous-marin. Les
algorithmes de VSLAM utilisent uniquement une perception visuelle pour résoudre
le problème du SLAM. Étant donné que les robots les plus légers embarquent
une unique caméra monoculaire, on s’intéressera plus spécifiquement au VSLAM
monoculaire.

Alors que de nombreux travaux s’intéressent au VSLAM aérien, la problème du
VSLAM sous-marin est moins étudié. En outre, la perception visuelle sous-marine
reste très différente de son pendant aérien de part l’absorption des couleurs, l’effet
des éclairages embarqués, les phénomènes de réfraction et de diffusion, la présence
de particules en suspension ou encore la présence d’environnements très peu struc-
turés. Des études (Joshi et al., 2019) montrent cependant que, parmi les algorithmes
de VSLAM monoculaires de l’état de l’art en libre accès, ORB-SLAM (Mur-Artal et
al., 2015) et DSO (Engel et al., 2018) sont les seules travaux présentant une certaine
robustesse à cet environnement, sous certaines limites.

Les algorithmes de VSLAM peuvent être classées selon plusieurs critères :

• les approches directes utilisent les caractéristiques photométrique des images,
tandis que les approches indirectes utilisent des caractéristiques de plus haut
niveau ;

• les méthodes denses utilisent tous les points de l’image, alors que les méthodes
éparses ne s’appuient que sur une sélection de points ;

• le traitement des fermetures de boucles, les méthodes dépourvues de cette
fonctionnalité étant communément appelées ‘odométries visuelles’ ;

• la présence d’un module de récupération, qui permet de continuer à calculer
une localisation et construire une carte malgré un échec du calcul de pose
courante.

ORB-SLAM (Mur-Artal et al., 2015) est une méthode indirecte, éparse, qui
implémente la fermeture de boucles et une stratégie de récupération par une
relocalisation dans la carte, qui s’avère cependant souvent inefficace lors des tests
sous-marins (Joshi et al., 2019), et devient inutile si le système sort de la zone déjà
cartographiée. Des travaux récents proposent une récupération par l’initialisation
d’une nouvelle carte, qui sera fusionnée par la suite avec la précédente (Daoud
et al., 2018; Elvira et al., 2019; Huang et al., 2020). DSO (Engel et al., 2018) est une
odométrie visuelle directe et éparse. Sous l’eau, DSO produit parfois des estimations
incohérentes qui ne sont jamais corrigées au cours du temps faute d’association de
données à long-terme, conduisant à des résultats parfois incohérents. Des travaux
récents se sont cependant intéressés à l’intégration d’association de données à
long-terme dans DSO (Gao et al., 2018; Zubizarreta et al., 2020), qui s’apparentent
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à une détection et gestion de fermeture de boucle. Ces développements reposant
sur ORB-SLAM (Mur-Artal et al., 2015) et DSO (Engel et al., 2018) pourraient donc
présenter une meilleure robustesse au contexte sous-marin.

F.2.4 SLAM multi-agent en milieu sous-marin

Certaines applications requièrent le déploiement de plusieurs robots simultané-
ment (Cho et al., 2018; Laranjeira et al., 2020; Özkahraman et al., 2022). Il est alors
nécessaire de les localiser l’un par rapport à l’autre, mais aussi par rapport à leur
environnement, menant à un problème de SLAM multi-agents. Les méthodes de
SLAM visuel multi-agent les plus récentes d’appuient sur ORB-SLAM (Mur-Artal
et al., 2015) et effectuent tout ou une partie des calculs sur un serveur central, avec
lequel les agents communiquent (Li et al., 2018; Daoud et al., 2018; Schmuck et al.,
2019). Ce schéma de communication peut être mis en œuvre en milieu sous-marin
pour un système multi-ROV.

F.3 Estimation d’état d’un système robotique sous-marin en-
cordé à partir de la forme prise par son câble

F.3.1 Estimation de forme de câble à partir du modèle de chaînette

L’état d’un système robotique encordé peut être caractérisé par une estimation de
la forme de son câble. Un câble coulant reliant deux robots sous-marins encordés
peut-être modélisé par une chaînette.
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FIGURE F.4: Système robotique et paramétrage considérés

La validité de cette modélisation est vérifiée expérimentalement en conditions
dynamiques, montrant que la modélisation d’une chaînette est adaptée à un câble
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suffisamment lourd, en l’absence de changement brusques dans la direction du mou-
vement de ses extrémités. Conformément à ces conclusions, le modèle de chaînette
est ensuite utilisé pour estimer la forme d’un câble coulant reliant deux robots sous-
marins consécutifs, au sein d’une cordée. Le système robotique considéré et le
paramétrage de la forme de chaînette sont indiqués sur la Figure F.4. La chaînette
est entièrement caractérisée par les paramètres {H, ∆H, α}. Ces paramètres sont
mesurés expérimentalement à partir des capteurs embarqués : une ou deux IMUs
fixées près des extrémités du câble ainsi qu’un capteur de pression et un IMU sup-
plémentaire, placés dans le robot.

Cette méthode d’estimation de forme de câble est validée expérimentalement,
d’abord dans l’air, puis en bassin, et comparée à une méthode visuelle issue de précé-
dents travaux (Laranjeira et al., 2020). La méthode proposée démontre de meilleures
robustesse et précision quant à l’estimation des paramètres de chaînette, avec une
erreur d’environ 5 cm sur H et 12◦ sur α pour un câble de 1.5 m.

F.3.2 Localisation d’un ROV à partir de son câble conformé en zigzags

En collaboration avec Christophe Viel du CNRS LabSTICC, ENSTA Bretagne,
France, une méthode de localisation d’un ROV à partir d’une caractérisation de
la forme de sont câble est développée. Le câble est contraint en forme de zigzags
par l’adjunction de bouées ou de masses libres de coulisser le long du câble. Les
paramètres du modèle établi par Christophe Viel sont estimés à l’aide de capteurs
embarqués consistant en deux IMUs fixées près des extrémités du câble ainsi
qu’un capteur de pression et un IMU supplémentaire, placés dans le robot. Le
conformation du câble et son instrumentation sont illustrés par la Figure F.5.
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FIGURE F.5: Câble en zigzags équipé d’IMUs

La méthode de localisation proposée est validée expérimentalement en bassin
pou un ROV relié à un point fixe et pour une paire de ROV en cordée, démontrant
une précision de l’ordre d’une quinzaine de centimètre pour un câble de 3 m.

F.4 Localisation visuelle pour un système robotique sous-
marin

F.4.1 Évaluation d’algorithmes de VSLAM en milieu sous-marin

Six algorithmes de VSLAM en libre accès s’appuyant sur ORB-SLAM (Mur-Artal
et al., 2015) et DSO (Engel et al., 2018) sont évalués et comparés sur huit séquences
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visuelles sous-marines présentant des environnements et conditions visuelles var-
iées. Les six algorithmes évalués sont ORB-SLAM (Mur-Artal et al., 2015), ORB-
SLAMM (Daoud et al., 2018), Dual-SLAM (Huang et al., 2020), DSO (Engel et al.,
2018), LDSO (Gao et al., 2018) et DSM (Zubizarreta et al., 2020), où ORB-SLAMM et
Dual-SLAM proposent des stratégies de récupération multi-cartes sur une architec-
ture similaire à celle d’ORB-SLAM et où LDSO et DSM introduisent des associations
de données sur le long terme dans un algorithme similaire à celui de DSO. La Fig-
ure F.6 donne un aperçu de quatre séquences test parmi les huit utilisées.

(A) Bus (Joshi et al., 2019) (B) Cave (Joshi et al., 2019)

(C) AQUALOC Harbor #01 (Ferrera et al., 2019) (D) St-Raphael

FIGURE F.6: Vues extraites de quatre séquences test parmi les huit

Cette évaluation montre que les méthodes développées à partir de DSO sont très
peu robustes aux conditions visuelles sous-marines, produisant des résultats sou-
vent incohérents du fait de mauvaises associations de données sur le long terme.
Si Dual-SLAM ne semble pas présenter de meilleures performances qu’ORB-SLAM,
ORB-SLAM Atlas présente une robustesse accrue particulièrement intéressante de
par son algorithme de récupération, permettant de poursuivre la localisation et la
cartographie malgré des conditions visuelles particulièrement compliquée. La prin-
cipale limite de cet algorithme reste toutefois de ne pas toujours réussir à fusionner
toutes les cartes locales qu’il crée.

F.4.2 MAM3SLAM: VSLAM multi-agent robuste au milieu sous-marin

Étant donnée la robustesse d’ORB-SLAM Atlas (Elvira et al., 2019) aux conditions
de visibilités sous-marines relevée lors des précédents tests, un nouvel algorithme
de VSLAM multi-agent centralisé est construit à partir d’ORB-SLAM Atlas afin de
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pouvoir être appliqué à des scénarios mettant en scène plusieurs ROVs opérant si-
multanément sur le même lieu. La Figure F.7 donne une représentation schéma-
tisée du principe de ce nouvel algorithme, nommé MAM3SLAM Plus précisément,
MAM3SLAM s’appuie sur l’implémentation d’ORB-SLAM Atlas publiée dans la li-
brairie ORB-SLAM3 (Campos et al., 2021). Pour des raisons de lisibilité, la Figure F.7
comporte quelques abréviations : ‘proc.’ pour ‘processus’, ‘optim.’ pour ‘optimisa-
tion’, ‘KF’ pour ‘trame-clef’ (‘KeyFrame’), ‘MP’ pour ‘point de la carte’ (‘Map point’),
‘BD’ pour ‘base de données’ et ‘covis.’ pour ‘covisibilité’.
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FIGURE F.7: Schéma de l’algorithme de MAM3SLAM

MAM3SLAM est évalué et comparé aux algorithmes de l’état de l’art ORB-
SLAMM (Daoud et al., 2018) et CCM-SLAM (Schmuck et al., 2019) sur quatre
séquences à deux agents, dont une aérienne issue du jeux de données EuRoc (Burri
et al., 2016) et trois nouvelles séquences sous-marines acquises dans le cadre de ce
travail de validation. MAM3SLAM montre de meilleures robustesse et précision
que les approches concurrentes, avec une erreur moyenne de l’ordre du centimètre
sur trois des quatre séquences test. Bien qu’un travail logiciel sur l’algorithme plus
approfondi reste nécessaire pour envisager l’extension de MAM3SLAM à plus de
deux agents simultanés, MAM3SLAM semble donc une solution de localisation et
cartographie simultanées prometteuse pour des systèmes multi-ROVs, dont font
partie les cordées de robots sous-marins.
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F.5 Conclusion générale et perspectives

La Tableau F.1 récapitule les avantages et inconvénients de l’estimation d’état à par-
tir du câble et du VSLAM monoculaire pour la localisation d’une cordée de robots
sous-marins.

TABLE F.1: Avantages et inconvénients de l’estimation d’état à partir
du câble et du VSLAM monoculaire

Avantages Inconvénients

Câble

• Toujours disponible, même en pleine
eau où le fond marin ne peut être observé
• Beaucoup plus robuste que le VSLAM
• Facteur d’échelle connu
• Peut donner la position des ROVs
par rapport à un point de surface de
coordonnées GPS connues
• Donne directement une position
relative inter-agents

• Précision médiocre par rapport au
VSLAM, environ 10 à 20 cm
• Échec si le câble est significativement
déformé par rapport au modèle

VSLAM
monoculaire

• Localisation individuelle et relative
précise jusqu’à quelques centimètres
• Cartographie en ligne

• Indisponible en pleine eau
• Risque d’échec du SLAM en cas de
mouvements rapides ou dans des
environnements peu texturés
• Facteur d’échelle inconnu
• Nécessite une reconnaissance de lieux
pour fournir une position relative inter-
agents
• Ne donne pas la forme du câble

Localisation par câble et le VSLAM monoculaire peuvent donc être complémen-
taires pour localiser une cordée de robots sous-marins par rapport à son environ-
nement.

• Les deux approches peuvent donc fournir des informations différentes sur
l’état du système. En effet, le câble peut donner une position géo-référencée
alors que le VSLAM ne le peut pas, et le VSLAM calcule une cartographie en
ligne de l’environnement, ce qui n’a pas été envisagé en utilisant le câble afin
d’éviter que le câble ne se coince.

• Elles ne sont pas efficaces dans les mêmes conditions. Si le robot se déplace
suffisamment lentement dans un environnement texturé, le VSLAM pourra
donner une estimation de localisation beaucoup plus précise que la localisation
par câble. Inversement, le câble peut permettre de localiser les robots dans des
conditions qui ne permettent pas le fonctionnement du VSLAM (pleine eau ou
conditions visuelles trop difficiles), bien qu’avec une précision moindre.

• De manière générale, la localisation par câble et le VSLAM n’ont pas les mêmes
causes d’échec.

• Le VSLAM ne donne aucune information sur l’état du câble, à l’exception de
ses points d’attache sur les robots. Une connaissance de la forme du câble est
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donc nécessaire, en utilisant soit un câble proprioceptif, soit un modèle dérivé
de paramètres physiques mesurables.

De futurs travaux pourraient s’intéresser à une fusion entre la localisation par câble
et le VSLAM monoculaire. Une première option consisterait à utiliser la localisation
par câble uniquement pour les fonctionnalités que le VSLAM ne met pas en œuvre,
notamment la localisation en pleine eau, ou géo-référencé, l’estimation de l’échelle
de l’environnement cartographié et des mouvements, la localisation relative entre
les robots avant que le VSLAM ne les localise sur la même carte et, éventuellement,
l’estimation de la forme du câble si celle-ci ne peut être déduite directement de la
pose relative des robots. La localisation par câble peut également s’avérer une so-
lution de secours en cas de défaillance du VSLAM. Une deuxième option pourrait
être de fusionner plus étroitement l’estimation d’état par câbles et le VSLAM. Par
exemple, une estimation initiale pour la fusion des cartes inter-agents pourrait être
calculée à partir de leur position relative estimée à l’aide d’une mesure de forme du
câble, et la localisation par câble câble pourrait aider à la récupération en cas d’échec
du SLAM. Inversement, la localisation du robot par VSLAM pourrait permettre de
détecter si le câble sort du modèle, permettant, par exemple, de détecter les blocages
du câble ou de mesurer les courants. Par conséquent, de nombreux travaux sont
envisageable dans le cadre de la poursuite de l’axe de recherche de la présente thèse.
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