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GENERAL INTRODUCTION

Importance of land-water interfaces

Land/water interfaces, including lake shores, watercourse banks, and coastal fringes, are a crucial part

of Earth. They play key roles in natural equilibriums and cycles maintaining terrestrial systems. Indeed,

coastal, estuarine, and fluvial areas shelter many ecosystems and provide ever-growing human communi-

ties with key services: food, cultural activities and protection from natural hazards emerging from rising

water levels and meteorological events (Barbier et al., 2011). Therefore, they constitute a basis on which en-

tire societies can rely and are the scene of a number of social-ecological processes at different time scales.

From semi-daily tides, attracting local strollers or regional fishers, to the development of entire touris-

tic zones over decades through seasonal activities, land-water continuum areas are constantly evolving

(Syvitski et al., 2005). Water-level changes bring new landscapes at various time scales (daily, seasonally,

yearly), sedimentary processes change the terrain’s morphology, and sudden events like storms generate

rapid changes in ecosystems (Syvitski et al., 2005).

On both sides of the shoreline, ecosystems are under the influence of marine or fluvial hydrodynamics

and terrestrial hydrological processes, making coastal fringes, estuaries, and watercourses a meeting point

for spatio-temporal changes. Monitoring these changes is crucial to protect such environments from ac-

celerated natural destructive processes (Leatherman et al., 2000) as well as to ensure that these attractive

areas can still sustain anthropic pressure. Indeed, in 2003, 41% of the global population lived within 100

m of the coastlines alone, which also hosted 21 of the 23 world megacities. Moreover, Martínez et al., 2007

showed that the wide diversity of ecosystems located at the interface between the Earth’s oceans and con-

tinents produced 77% of the estimated economic value of the services and goods provided by ecosystems

around the world in 2007, based on the method of Costanza et al., 1997.

Seagrasses, salt marshes, mangroves, macroalgae, sandy dunes, riparian vegetation, and beaches are

examples of habitats of the land-water continuum. They continually interact with the water levels, and

provide clear examples of how ecosystems sustain the ecological equilibrium of these areas. Seagrasses en-

sure water quality and are significant carbon sinks, along with salt marshes and mangroves (Barbier et al.,
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2011; Turner et al., 2015). Coastal and riparian vegetation also provides protection from hydrological haz-

ards to local communities and infrastructures, and supply many recreational activities such as snorkelling,

fishing, swimming, rafting, and land sailing (Barbier et al., 2011; Turner et al., 2015). Finally, they support

a wide range of endemic species by offering them nurseries, food, and oxygen (Barbier et al., 2011; Turner

et al., 2015).

All of these observations converge to show how ecologically, socially and economically important

land-water interface ecosystems are (Barbier et al., 2011; Costanza et al., 1997; Martínez et al., 2007). How-

ever, riverine, marine and terrestrial habitats are threatened by climate change and anthropic pressure

(Barbier et al., 2011), and numerous studies agree that their evolution is difficult to anticipate and must be

monitored to ensure continual support to littoral communities (Barbier et al., 2011; Costanza et al., 1997;

Martínez et al., 2007).

Monitoring and protecting land-water interfaces first implies having access to tools providing rele-

vant information to characterize them. Such tools necessarily rely on data acquisition at temporal and

spatial resolution resonating with the specifics of lakes, rivers, and coasts. Currently, the uninterrupted

observation of the submerged and dry sides of the waterlines remains a methodological challenge due to

the presence of water (Gao, 2009, Kutser et al., 2020). The vast diversity of surface covers occurring in

these areas also complicates their exploration at a time scale relevant to their fast evolution, and over large,

representative extents. Remote sensing, explained below, can adequately address this issue, by providing

a means of data collection without requiring direct access to fragile or remote areas and allowing faster

surveying of wide portions of terrain.

Remote sensing of land-water interfaces

Remote sensing (RS) refers to an ensemble of techniques used to study from a distance the properties of

artificial or natural objects based on how they interact with electromagnetic waves (Rees, 2001). Typically,

these measurements are made from aircrafts, satellites or, more recently, uninhabited airborne vehicles

(UAVs).

Practically, RS consists of remotely monitoring radiations reflected or emitted by areas, using a wide

range of dedicated sensors (Rees, 2001). RS is now widely used for Earth observation (EO), i.e. to gather

information about the different systems that constitute planet Earth. Imaging techniques, in particular,

constitute a large portion of EO processes. They can be separated into two categories: passive imagery, -

which captures the radiations emitted by objects -, and active imagery - which emits radiations towards

objects of interest and records the way they reflect it.
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RS imagery spans from 2D images to 3D models of the Earth’s topography thanks to stereoscopy

and Light Detection and Ranging (LiDAR, or lidar). Stereoscopy relies on a high overlap between im-

ages to find the 3D coordinates of their common points, thus allowing to derive 3D information from

photographs. On the other hand, lidar is an active imaging technique that derives 3D modelling of the

environment by emitting laser pulses and observing how they are reflected (Vosselman et al., 2010).

Traditionally, land-water interfaces are mainly observed with sonar or passive multispectral or hyper-

spectral imagery (Gao, 2009; Kutser et al., 2020), which causes several challenges to arise:

• The need for an integrated approach: as explained previously, ecosystems and hydrosystems

populating the land-water interface are connected to both hydrological and terrestrial processes.

Studying submerged areas and emerged areas along these fringes separately thus discards a large

part of informative content. However, submerged and emerged areas have conventionally been

studied separately. Typically, submerged areas are surveyed with acoustic waterborne techniques -

sonar systems - (Barrell et al., 2015; Komatsu et al., 2003; Pasqualini et al., 1998). On the other hand,

landcover remote sensing benefits from a wide range of RS imaging possibilities, from 2D aerial

photographs to 3D models of the topography obtained with active imagery. Merging separate un-

derwater and terrestrial campaigns - for example coupling sonar and passive imagery - could be a

solution. However, separate surveys often have a thin overlapping area, which can be challenging

to sample thoroughly with ground control points to find a coordinate transformation. Indeed, wa-

terborne surveying is not usable everywhere: uninhabited surface vehicles cannot be deployed too

far from their operating centre, and boats cannot access unsafe areas. The surveying of extremely

shallow waters is thus impossible without risking grounding for both tools. On the other side, pas-

sive imagery often does not penetrate water deep enough to bridge the gap (Kutser et al., 2020).

The fact that coastal surveys are split between bathymetric and topographic campaigns using dif-

ferent reference systems is a clear illustration of how the will to merge both domains and study

them as a common, complex system is still recent.

• The difficulty of seeing through water: the few approaches providing seamless land-water con-

tinuum observation usually rely on satellite or aerial imagery (McKenzie et al., 2020; Mumby et

al., 1997; Topouzelis et al., 2018), which covers both sides of the waterline. In particular, multi-

spectral or hyperspectral sensors gather insightful data on shallow waters (Sandidge et al., 1998;

Adler-Golden et al., 2005; Lesser et al., 2007; Klonowski et al., 2007). These data are either studied

directly (Kutser et al., 2020) or used to estimate bathymetry by inverting radiative transfer models,

which corrects the effects of the water column on the measured seabed reflectance (Stumpf et al.,

2003). In particular, hyperspectral imagery is often used for benthic classification tasks in combi-
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nation with radiative transfer models inversion (Lesser et al., 2007; Klonowski et al., 2007; Guyot

et al., 2019). Satellite and aerial imagery have the advantage of covering large areas with much lower

deployment costs than waterborne surveys or field expeditions by foot – especially in the case of

spaceborne sensors. However, the main issue with passive imagery is the depth range in which it is

usable (Kutser et al., 2020). Due to optical phenomena, past a certain depth threshold that varies

with water clarity, passive imagery can no longer give information on what lies beneath the water

surface because of light attenuation by water. In turbid rivers or lakes, this maximum depth can

be very low, and little to no information may be derived with passive imagery. Except in very clear

waters, this option consequently does not really cover the land-water interface.

• The importance of vertical structure information: There is a strong need for mapping ap-

proaches that provide three-dimensional structural information on ecosystems, allowing the map-

ping of carbon stocks, biomass production, or flow attenuation capacities (Enríquez et al., 2019;

Dubayah et al., 2020; Lu et al., 2023; Mury et al., 2020). In shallow waters, studies based on passive

sensors give access to the seabed covers’ elevation but not to the seabed’s elevation itself (Stumpf

et al., 2003; Lesser et al., 2007), which would provide information on the vertical structure of these

covers and enable biomass estimation or other structural assessments (Wedding et al., 2008; Lind-

berg et al., 2012).

• Finally, there is a need for surveying methods that could be deployed rapidly in case of natural

disaster assessments.

Topo-bathymetric lidar is an active imagery sensor that effectively addresses these needs. It relies on

light detection and ranging, based on laser telemetry, and exploits two sensors simultaneously (Lague et

al., 2020). One of them uses near-infrared (NIR) light, while the other operates in the green spectrum,

thus penetrating water surfaces (Guenther et al., 2000). Topo-bathymetric lidar is airborne, it provides

3D data at high vertical and horizontal density in shallow waters with reasonable turbidity and is quickly

usable on large extents (Lague et al., 2020). Yet, it is still largely underexploited for environmental knowl-

edge extraction about land-water interfaces.

Topo-bathymetric lidar was introduced a few decades ago, shortly after the advent of bathymetric

lidar, designed specifically for coastal waters (Lague et al., 2020, Fernandez-Diaz et al., 2014). Its objectives

are to provide measurements more adapted to the narrower inland water extents. It delivers one 3D point

cloud per wavelength, thus producing two distinct samplings, namely in vegetated or submerged areas.

It can also register the complete received energy over time for each laser shot: the full waveforms.

However, topo-bathymetric lidar data are very specific and difficult to process. The presence of water

strongly influences the resulting point clouds and waveforms (Guenther, 1985) and requires the devel-
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opment of new tools. Furthermore, in topo-bathymetric contexts, both NIR and green wavelength are

informative. Managing to accurately process both emerged and submerged areas thus often requires ex-

ploiting both lidar datasets simultaneously, which is a consequent processing challenge.

Indeed, independently of the presence of water, 3D point clouds pose many processing challenges.

They are irregularly structured, they present many zones of occlusions and they have irregular densities

(Guo et al., 2021b). These characteristics make the automatic identification of the objects they contain

challenging. Furthermore, due to their three dimensions, they are harder to process. 3D point cloud pro-

cessing has largely benefitted from global advances in data processing in the last decade (Guo et al., 2021b).

However, these progresses have mainly concerned topographic data processing (Morsy et al., 2022), and

have not fully transferred to bathymetric point clouds. The first explanation is the more recent advent

of green laser-based lidar and their lower accessibility due to their power requirements. Another major

explanation is the persisting separation between marine and terrestrial sciences. Most of the developed

point cloud processing approaches focus on terrestrial areas such as cities or forests (Mao et al., 2022b,

Huang et al., 2021; Axelsson et al., 2023; Liu et al., 2021a), which are more accessible to RS research. How-

ever, marine and terrestrial objects have distinct characteristics in shape, scale, and material. Transferring

methods developed for topographic lidar to topo-bathymetric lidar is thus not trivial. Consequently, very

few published research producing classified 3D point clouds from topo-bathymetric lidar exist, and even

less for topographic and benthic surfaces simultaneously. 3D classifications of bathymetric point clouds

including the possibility to identify a large variety of environments both submerged and emerged accu-

rately are thus still expected.

Waveforms are also challenging to process. They are complex series of recorded power (Mallet et

al., 2009) and, just as point clouds have numerous empty volumes, they often contain information on

less than a third of their length, the rest being filled by noise. Their values can vary by several orders of

magnitude over short time ranges due to the wide range of optical conditions encountered over a topo-

bathymetric area (Guenther et al., 2000). Lastly, lidar intensity measurements depend strongly on acquisi-

tion conditions and require expert knowledge to be processed with limited bias (Kashani et al., 2015). Most

of the time, lidar waveforms are consequently only exploited to detect returns from drowned or densely

vegetated surfaces, where signals get too weak to be detected in flight. They are then rarely included by the

constructors in the delivered datasets. Methods used to produce point clouds from waveforms are also

often proprietary software belonging to lidar constructors and are mostly driven by nautical charting

accuracy rather than applicative knowledge extraction maximization.

These factors make the exploitation of lidar waveforms still scarce, and even more for topo-bathymetric

ecosystem monitoring. The few existing approaches attempting to exploit their knowledge either reduce

them to 2D feature rasters (Collin et al., 2012) or only target one side of the water line (Hansen et al.,
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2021). They also remain very specific to the area or conditions for which they were designed. For exam-

ple, processing waveforms from shallow coastal areas with low turbidity is a completely different task

than extracting information from turbid river surveys. Yet, while point clouds are an excellent source of

geometric information (Hackel et al., 2016), waveforms provide the spectral knowledge to further char-

acterize the surveyed areas (Mallet et al., 2009). They could thus largely benefit from the observation of

land-water interfaces if more processing solutions were available.

In the end, methods able to handle the specifics of each side of the waterline exist, but few manage

to deal with both simultaneously. For bathymetric waveforms processing, Xing et al., 2019 even suggest

that finding one single method applicable to all conditions of depth and turbidity is still out of range for

current processing possibilities. A global observation is that at this time, it is still difficult to find topo-

bathymetric lidar processing approaches generalizable to the whole land-water continuum.

The main assumption of this thesis is that topo-bathymetric lidar remote sensing could significantly

improve our understanding of land-water interfaces. However, methods to fully exploit the data it

delivers are still expected. We thus aim to improve knowledge extraction from existing datasets to

enhance land-water interface thematic modelling. To this end, we investigate how machine learning

can apply to the requirements of topo-bathymetric lidar data.

Processing Earth observation data

Data processing aims to retrieve information from raw data by transforming it using different operations.

In practice, it mainly consists of finding mathematical functions to predict the value of a variable depend-

ing on the observations of another. Machine learning designates methods that use empirical data to solve

these mathematical problems by updating the parameters of model functions (Géron, 2022). They have

brought massive progress in lidar point cloud processing, namely in identifying objects present in the

data (Guo et al., 2021b). One goal of this work is to explore how existing advances can be extended to

bi-spectral datasets modeling land and water without interruption.

For waveforms, we wish to assess the applicability of other processing methods that have revealed

more adapted to complex problems: deep neural networks.
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The potential of deep neural networks

In parallel with the development of topo-bathymetric lidars, processing methods able to solve more com-

plex models have emerged and made significant advances in RS data processing. In particular, machine

learning and deep neural networks have made significant progress thanks to the increase in computing

power that characterized the last decades (Goodfellow et al., 2016).

Deep neural networks consist of interconnections of neurons organized in layers (Goodfellow et

al., 2016; Lecun et al., 2015). Each neuron performs a linear combination of its inputs associated with

a non-linear activation function. The connection of a potentially large number of neurons, organized

depending on applications (the so-called architecture), enables the modeling of very complex functions

(Cybenko, 1989). The training stage, performed by backpropagation (Lecun et al., 1989; Rumelhart et

al., 1986), consists of estimating the parameters of each neuron – the weights and the bias of the linear

operation.

Neural networks can adapt and generalize their learning to new inputs, making them powerful tools

in scientific research and data analysis. Through this process, features of the data progressively stand out

and are used to build task-adapted prediction rules (Rumelhart et al., 1986). While traditional process-

ing methods relying on machine learning implied descriptive feature engineering, neural networks thus

learn relevant features adapted to a given problem directly from the data (Goodfellow et al., 2016). They

consequently eliminate the need to define descriptive features of the data upstream, contrary to classical

machine learning which relies on such transformations.

Deep neural networks have brought new intakes on image processing tasks (Zhao et al., 2019; Khan

et al., 2021), time series prediction (Lim et al., 2020; Wen et al., 2022), or even natural language processing

(Bahdanau et al., 2014; Vaswani et al., 2017). However, they have nearly never been explored to improve

bathymetric waveform processing. It is thus still complicated to evaluate whether they could change our

ability to extract information from light’s interactions with nature in topo-bathymetric lidar waveforms.

Objectives of this thesis

The goal of this thesis is to provide new insights into knowledge extraction from topo-bathymetric li-

dar surveys for the observation of coastal areas and inland waters. We wish to determine to what extent

new data processing methods can contribute to this task. Our main objective is thus to bridge the gap

between a favourable instrumental context - with the increasing popularity and availability of lidar data

- and positive methodological circumstances - with unprecedented computing power and processing so-

lutions variety.

Consequently, this thesis addresses the following questions:
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• How to tackle the lack of accessible tools to extract semantic information from bi-spectral

lidar point clouds in complex natural areas? Can we address the unavailability of point clouds

classification methods adapted to topo-bathymetric surveys? Is it possible to fill this gap with a

method that can be used without expert knowledge in computer science?

• When waveforms are available, can we exploit them for further distinctions between nu-

merous land and sea covers? How many surface covers can we distinguish using waveforms only?

Does the lack of spatial knowledge negatively impact resulting products? Are waveforms enough

to separate surfaces with similar geometries? Is it possible to preserve generalizability without sac-

rificing accuracy? Can we handle acquisition-related bias without site-dependent pre-processing

strategies?

• To what extent can we deploy waveform processing for environmental knowledge extrac-

tion in (topo)-bathymetric environments? Can they be used to approximate environmental

properties even in the absence of synchronous field measurements? Is it possible to use a similar

approach for different types of waters (coastal/inland, turbid/clear, very shallow/deep)?

• How can we deal with the issue of labelled data availability considering the complexity

of manually interpreting waveforms? It is impossible to label waveforms manually without

introducing significant bias for some tasks (regression and object detection mainly). Yet, we first

start with supervised learning approaches to evaluate the potential of deep neural networks. In

this context, how can we propose robust processing methods if no field sampling campaigns were

organized during the lidar acquisition?

Organization of the manuscript

The manuscript contains five chapters. Chapter 1 gives a detailed presentation of lidar remote sensing. It

introduces airborne topographic, bathymetric, and topo-bathymetric lidar sensors and recalls the physical

principles behind their operation.

Chapter 2 presents existing strategies for lidar data processing. It first recalls how learning-based

data processing works and what challenges it faces. Then, it details the existing point cloud classification

workflows and how they address our needs. Finally, it also explores waveform processing methods and

their remaining challenges in the context of land-water interface observation.

After having introduced more in-depth the challenges and specifics of knowledge extraction from

topo-bathymetric lidar data, we propose several methodological contributions to it.
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In Chapter 3, we introduce 3DMASC, a new workflow for bi-spectral point clouds classification,

and its application to topo-bathymetric environments. 3DMASC is the result of our work on the un-

availability of accessible tools for complex environmental point cloud processing, namely in the presence

of two point clouds. With 3DMASC, we also introduce new point clouds features that could also be used

for other purposes than classification in the context of environmental knowledge extraction.

In Chapter 4 we evaluate new possibilities for the extraction of semantic information from lidar

waveforms. We wish to explore how they help to separate surfaces with similar geometry. Addressing sur-

face type identification from waveform components also paves the way to classified data delivery straight

from post-flight processing, without the intermediary step of point clouds analysis.

Finally, in Chapter 5 we explore advanced knowledge extraction from bathymetric lidar waveforms.

Namely, we propose a new method to improve lidar backscatter extraction in extremely shallow waters

and in deep or turbid waters. We also experiment on the possibility to retrieve water optical parameters in

one shot, without pre-processing, and without the need for in-situ measurements. To address the problem

of labelled data availability, we train these networks on synthetic datasets, and explore the application of

the derived models to real data through domain adaptation.
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22 Principles of lidar remote sensing

In this chapter, we introduce lidar remote sensing (RS). We expose its specificities in detail and discuss

its advantages and limits for land-water interface monitoring.

− Section 1.1 is dedicated to the global concepts of lidar.

− In section 1.2, we focus on airborne ones, which are analysed in this document. To better under-

stand why lidar is a key tool for land-water interfaces remote sensing, we present the differences

between near-infrared and green lidars respectively associated with near-infrared and green wave-

lengths.

− Section 1.3 presents bi-spectral topo-bathymetric lidar, which combines the strengths of both wave-

lengths in a single sensor.

− In section 1.4, we present applications of topo-bathymetric lidar for land-water areas observation.

− Finally, section 1.5 presents the physical principles dictating topographic and bathymetric wave-

forms, to lay the foundations for chapters 4 and 5, in which waveform processing methods are

developed.

As this first chapter solely recalls the processes lying behind lidar remote sensing, specialists of full-

waveform topographic and bathymetric lidar acquisitions are invited to continue to chapter 2, reserved

for lidar data processing.

1.1 Airborne Light Detection and Ranging

Before entering into details about lidar remote sensing, we recall key concepts about active remote sens-

ing.

1.1.1 Reminders on active and passive remote sensing

Practically, RS consists of remotely monitoring radiations reflected or emitted by areas, using a wide range

of dedicated sensors. RS is now widely used for Earth observation (EO), i.e. to gather information about

the different systems that constitute planet Earth. Imaging techniques, in particular, constitute a large

portion of EO processes, and can be applied to the study of the properties of each Earth system: the geo-

sphere, the cryosphere, the hydrosphere, the biosphere, the atmosphere, and the anthroposphere. Imaging

processes can be separated into two categories. Passive imagery, such as traditional photography, captures

the radiations emitted by objects. On the other hand, active imagery emits radiations towards objects of

interest and records the way they reflect it. Figure 1.1 illustrates both measurement methods.
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Figure 1.1: Illustration of the difference between passive and active remote sensing.

Electromagnetic (EM) waves are the vectors of this energy. They propagate through space without the

need for a medium. EM waves are a form of light, they are sinusoidal and characterized by their frequency

– their number of periods per second – and their wavelength – the distance they cover in one period. They

span the EM spectrum from small to large wavelengths, most of them being invisible to the human eye,

except for the visible part of the spectrum, which includes the colors of the rainbow, each corresponding

to specific wavelengths. The amount of energy that these waves transport is inversely proportional to their

wavelength, and is carried in discrete packets of energy with no mass, called photons. EM radiations thus

have the characteristics of both particles and waves.

The energy transported by EM waves can be absorbed, reflected, transmitted or refracted – transmit-

ted with a change of direction – by materials, as illustrated in Figure 1.2. Depending on the size of the

material compared to the incident wave, they can also be diffused inhomogeneously in all directions. The

proportion of each depends on the wavelength of the incident radiation and on the material intercept-

ing it. Analysing the interactions of EM waves with the Earth’s surface thus informs on its structure and

nature.

Both passive and active techniques include sensors operating in the visible spectrum of light or out-

side of it, thus capturing different interactions. Passive imagery sensors measure continuous wavelength

bands defined upstream, while active sensors often operate at a given, fixed wavelength. These sensors can

observe different characteristics of EM waves: particle-like or wave-like properties. In modern cameras,

for example, both are exploited: received light is filtered to isolate red, green and blue waves, whose pho-

tons are converted into electrons, further used to produce pixel information. On the other hand, lidar

sensors exploiting only photon counts or radar sensors based on wave interferences exist. In the following

paragraphs, we focus on lidar remote sensing, the active imaging technique used for this work.
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Figure 1.2: Illustration of electromagnetic wave transmission, absorption, reflection, and refraction.

1.1.2 Operating principles of lidar sensors

Light Detection And Ranging (LiDAR, or lidar) is a laser scanning technology that uses the reflection

of monochromatic light on objects to derive their position in space and model scenes in 3D (Vosselman

et al., 2010). When the emitted laser beam hits a material that reflects a portion of its energy toward the

sensor’s receiver, this backscatter is registered and used to compute the 3D coordinates of the hit material.

In practice, lidars can thus image any object with the capacity to reflect its energy. It must be noted that

the receiver records only the portion of the incident laser that is reflected in its direction.

Lidar sensors embed two main optical components: a laser emitter and a laser receptor. The time

taken by the emitted wave to travel from the emitter to the object, and from the object back to the receptor

is used in combination with the position of the emitter and receptor to derive the 3D position of the

object. Two main measurement are thus made by the sensor: range measurement, and digitized received

power measurements.

Several surfaces can be intercepted by the laser beam, thus resulting in multiple 3D positions. Laser

scanners are able to detect multiple returns originating from a single emitted pulse, up to 15, although the

first two returns concentrate around 90% of the total reflected signal (Mallet et al., 2009). Consequently,

on ground or concrete buildings, one backscatter is typically received, but in porous covers, several returns

may be recorded. All these targets reflect the incident beam differently depending on their geometry and

optical properties.

Lidar sensors can be used from a variety of platforms: planes for airborne laser scanning (ALS) (Puech

et al., 2014; Yan et al., 2015), tripods for terrestrial laser scanning (TLS) (Liang et al., 2016), or mobile ve-

hicles or surveyors (Kukko et al., 2012), resulting in mobile laser scanning (MLS). Satellite lidar sensors

also exist: NASA’s ICESat (Duncanson et al., 2020; Zwally et al., 2002) and GEDI (Duncanson et al.,

2020; Lang et al., 2022) are two missions embedding green and infrared laser scanners, respectively. More
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Figure 1.3: Working principle of Light Detection and Ranging.
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recently, lightweight lidar sensors have become available for uninhabited aircraft, increasing the accessi-

bility of ALS (Mandlburger et al., 2020, Mandlburger et al., 2016, Mano et al., 2020).

Figure 1.4: Illustration of terrestrial and airborne lidar surveys.

Most lidar sensors use pulsed light with a high emission frequency to maximize the amount of objects

reached. These laser pulses have a pre-defined length, typically of a few nanoseconds (Guenther et al.,

2000; Vosselman et al., 2010), and are directed towards the objects to study by rotating mirrors, that

allow lidar sensors to scan complete surfaces from a unique point of view by redirecting the emitted

light in varying directions (Vallet, 2011; Vosselman et al., 2010; Baltsavias, 1999). Other systems rely on

continuous light waves and their phase shift to derive target positions. However, they can only handle

shorter distances because of the weaker laser power.

A laser beam tends to diverge as it travels through space, thus forming a cone (Mallet et al., 2009;

Vosselman et al., 2010; Guenther, 1985). The larger the diameter of the cone, the more diluted the en-

ergy across the section of surface intercepted. This diameter depends on the divergence angle of the laser

pulse, which can be enlarged for safety reasons or to maximize the surface cross sections, or kept narrow

(Vosselman et al., 2010; Guenther et al., 2000; Baltsavias, 1999).

Lidar sensors based on pulsed lasers are also referred to as time-of-flight laser scanners, as they use the

time taken by the punctual laser pulses to travel back to the sensor to compute the position of the hit

target (Vosselman et al., 2010). The time elapsed is measured with a precise clock. This method provides

measurements with accuracies ranging from millimeter to decimeter scales, depending on the distance be-

tween the sensor and the target, and the sensor specificities. The largest uncertainty and factor of impact
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Figure 1.5: The difference between small and large laser divergence, and the resulting laser footprints.

on the measurement is the precision of the sensor’s measured position (Guenther et al., 2000; Vosselman

et al., 2010). More details on measurement uncertainty sources can be found in Baltsavias, 1999.

To determine the position of the hit targets, the shooting angle of the laser pulse and the position of

the sensor must be known for each emitted pulse (Vosselman et al., 2010; Guenther et al., 2000; Baltsavias,

1999). The position of the sensor is measured using the position of its support, determined using a global

positioning system (GPS). When the sensor is mounted on a vehicle, an inertial measurement unit (IMU)

is used in addition to the GPS to measure its attitude. The traveling direction of the laser pulse is then

obtained through precise measurements of the rotating mirror’s angle at the time of firing of the laser shot

(Guenther et al., 2000; Vallet, 2011; Vosselman et al., 2010; Baltsavias, 1999). This results in two vectors:

the vehicle’s displacement vector, and the laser pulse’s direction vector. Using these and the GPS position,

the coordinates of the intercepted surfaces can be determined using the time range and the speed of light

in the considered medium (Vosselman et al., 2010; Vallet, 2011; Baltsavias, 1999).

Two procedures exist to detect the interception of a surface by the laser beam (Kashani et al., 2015).

The first consists of monitoring the amount of energy received in real time and interpreting a sudden

increase as a backscatter. The second consists of recording the complete amount of energy captured by

the receiver over time. This time series of digitized received power is the full waveform. Each intercepted

surface forms a peak in the waveform, as it causes an energy increase in the direction of the receiver. The

post-flight re-analysis of waveforms is another option to determine when objects are intercepted. Both
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procedures allow to deduce the range using the following equation:

d = c × T

2 (1.1)

with d the range, c the speed of light in the considered medium, and T the time elapsed between the

emission of the laser pulse and the reception of the backscatter.

Apart from the technical procedure used to detect the presence of an object in the illuminated cone,

the physical possibility of sensing them is linked to two factors: the characteristics of the emitted laser

pulse, and the field of view (FOV) of the sensor’s receiver (Baltsavias, 1999). The FOV refers to the

portion of space seen by the receiver. The amount of energy backscattered in the direction of the sensor

and in the FOV determines the possibility of capturing the object reflecting it. The emitted laser pulse,

on the other hand, mostly impacts the vertical discrimination abilities of the sensor, i.e. the minimum

distance at which two objects can be separated (Baltsavias, 1999). In practice, the collected backscatter is

the result of a convolution operation between the emitted pulse and the intercepted surface’s response

(Abdallah et al., 2012; Guenther et al., 2000; Jutzi et al., 2006; Baltsavias, 1999). The pulse is more or less

asymmetrical and characterized by a specific width and amplitude. When it is convolved with two surface

responses, its width determines if both responses will be mixed in a single peak or if they will remain

separable (Jutzi et al., 2006). Though more details are given about this in Section 1.5, it is important to

note that all lidar sensors have a minimum separation ability, that is physically impossible to reduce to 0

(Guenther et al., 2000; Baltsavias, 1999). As an illustration, Leica Geosystems sensors have a mean vertical

separation of 50 cm.

Additionally to the X, Y, and Z coordinates of all backscatters, the GPS Time at which they were

generated is recorded, along with the total number of returns captured with each pulse, and the rank

among those of the point considered (Vosselman et al., 2010). The scan angle used to fire the laser beam,

a potential classification flag, and the received intensity are saved too. However, caution is required

regarding the interpretation of this attribute, as it is not an absolute measurement of the reflectance of the

target (Kashani et al., 2015). Indeed, although intensity depends on the optical parameters of the surface

intercepted, it is also greatly influenced by the sensor’s parameters, and sometimes also by the processing

used to generate its value, namely its measuring method (Kashani et al., 2015). For example, the recorded

value is not necessarily the amount of energy sensed by the receiver at the exact same time position of the

target as detailed in (Kashani et al., 2015). Precisions are given in Sections 1.1.3, 1.2, and 1.3.
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1.1.3 Airborne lidar

Further on, ALS is presented in depth, as this thesis analyses mainly ALS data.

ALS sensors are characterized by their brooming mechanisms, which have specific ranges of rota-

tion angles, and thus varying swaths (Vosselman et al., 2010; Gatziolis et al., 2008; Baltsavias, 1999). They

can also have different scanning patterns depending on how the mirrors move to redirect the laser

beams (Baltsavias, 1999). Typical scanning patterns include oblique parallel lines, ellipsoids, and roses-

like shapes, and impact the repartition of the laser shots on the ground (Gatziolis et al., 2008; Vosselman

et al., 2010). Lidars also differ in their laser footprint, which depends on the divergence angle and

the above-ground elevation of the flight (Gatziolis et al., 2008; Vosselman et al., 2010; Baltsavias, 1999).

A large footprint sensor benefits from a higher probability of penetrating through dense canopies, but

has a smaller point density and resolution on the ground (Jakubowski et al., 2013). These differences re-

sult in surface samplings that differ between sensors, and even between surveys. The combination of the

laser divergence, the scanning pattern and the laser power results in uneven point densities over space and

surveys.

Figure 1.6: The impact of the scanning pattern and the scan angle range on the surveying possibilities.

In airborne settings, surveys are made following a flight plan incorporating multiple flight lines that

overlap. Overlapping is necessary to ensure that there will be no holes in the survey’s coverage even if the

attitude of the plane impacts the sensor’s swath punctually (Gatziolis et al., 2008; Guenther et al., 2000;

Vosselman et al., 2010; Baltsavias, 1999). It also allows the possibility to correctly calibrate point clouds
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obtained with different flight lines to ensure low positioning errors and compensate for bias linked to

higher incidence angles (Vosselman et al., 2010; Guenther et al., 2000). Indeed, range measurement is less

precise at a higher incidence angle, due to the lower portion of energy backscattered towards the receiver.

Large incidence angles also impact the point pattern: density is often increased due to a slowdown of the

rotation mechanism at higher angles, causing more laser shots to be emitted in these directions. Some

scanning patterns also natively imply higher densities at larger incidence angles.

1.1.4 Lidar data: point clouds and waveforms

Lidar sensors can deliver data in two forms:

• full-waveforms: time series of received power for each laser shot;

• 3D point clouds, generated in flight, or from waveform analysis;

"Full-waveform", "backscattered signal", and "time series of received power" can all be used to

refer to the lidar waveform. Indeed, in practice, waveforms are a specific type of signal, and take the

form of series of values varying over time.

3D point clouds are obtained by grouping the 3D points captured by all the laser shots fired during

a survey. These points correspond to peaks generated in the waveforms by intercepted surfaces. As one

single shot can produce up to 15 returns, and hundreds of pulses are emitted in one second, dozens of

points per m² can be obtained, resulting in dense point clouds describing the relief. On the other hand,

one full waveform, i.e. hundreds of intensity samples, is recorded for each emitted pulse, or for every one

or two emitted pulses depending on data volume storage capacities. Figure 1.7 illustrates the products

obtained with one single shot, and a dozen of emitted pulses, respectively.

In the case of point clouds, each point is characterized by its cartesian coordinates, the additional

lidar attributes (number of returns, return number, intensity, GPS Time, scan angle, classification flag),

and any other attribute generated independently, resulting in an n-dimensional representation. In these

clouds, the distances between the points vary, which causes assumptions that are valid about gridded data

not to be applicable to point clouds.

In airborne lidar point clouds, the order of the points depends on varying factors such as the aircraft’s

flight plan, the brooming mechanism, the characteristics of the laser beam emitted, and the surface ge-

ometry (Vallet, 2011; Baltsavias, 1999). The local point repartition and point density depend on the targets

hit, but also on the ability of the laser beam at the time to intercept them (Baltsavias, 1999). Consequently,

point repartition and point density do not only depend on the physical characteristics of the scene, but
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Figure 1.7: The different data delivered by lidar sensors: waveforms (left) and point clouds (right).

also greatly on the sensor’s shot frequency, range determination procedure, mirror rotation mechanism,

receptor field of view, size of the laser beam on the intercepted cross-section, and shot incidence angle

(Baltsavias, 1999). Because of the combination of all of these factors, it is impossible to have two points at

exactly identical positions in space. Surveying the same scene simultaneously with two identical sensors

will thus never result in strictly similar samplings of the 3D scene, also because even if the laser shots are

fired simultaneously, it is impossible to replicate exactly the same sensor trajectory.

Lidar point clouds also have the particularity of not covering the complete volume of the objects they

represent. Although they have 3D coordinates, they are sometimes referred to as 2.5D data, since they do

not capture all the faces of the 3D polygons that they model, and tend to represent the upward face of

the 3D volumes, their sides – at best – but not their base, in the case of airborne lidar.

The full-waveforms can have a fixed, constant length, or an adaptative duration, automatically op-

timized in flight depending on the energy received to reduce the volume of data to save. Waveforms are

characterized by their time sampling interval, which is different depending on the sensors, and by their

received power units, which can be artificially offset to be constantly positive. Most of the time, when full

waveforms are recorded, the emitted laser impulses associated with each of them are also saved separately.

Although lidar data consist of 3D point clouds, potentially with associated full-waveforms, they can
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be converted to gridded data through a rasterization process. This is a popular way of visualizing or pro-

cessing lidar surveys more easily than by analyzing the point clouds, which require adapted methods, as

explained in Chapter 2. Rasterization consists in aggregating spatially the characteristics of the points

into squares of fixed size that will constitute the pixels of an image. Depending on the goal, the minimum

or average elevation or intensity can be used, resulting in different products. Other rasterization methods

derive more knowledge from the survey by analyzing the geometrical characteristics of the point clouds

before aggregating them into pixels, rather than simply using the raw point cloud characteristics (Guiotte

et al., 2020). Overall, although rasterization is a popular way to process lidar data, it leads to unavoidable

loss of information, as the inherent structure of point clouds contributes to information about the sur-

veyed surfaces.

Another possibility is to convert uneven, irregular point clouds into voxels, by aggregating informa-

tion into 3D cubes of fixed volume (Popescu et al., 2008), which is a compromise between 2D rasters –

and the implied loss of spatial information – and 3D point clouds – and the implied computation com-

plexity linked to their sparsity –, although voxelization also alters the native point repartition of point

clouds.

Globally, lidar offers the possibility to image Earth’s surfaces in 3D, providing additional informa-

tion than those offered by traditional imagery, whether passive or active. The ability of lidar to penetrate

through several layers of surface covers – for example in vegetated or submerged areas – allows to study

these different layers, their spatial repartition and vertical structures (Nayegandhi et al., 2009), whereas

passive imagery only gives access to the top of the surfaces. In the case of land-water interfaces, lidar offers

significant advantages by allowing to image the seafloor. In practice, the use of lidar sensors in geosciences

has been widely explored since their introduction. Examples of application of this technology to natural

environment observation include:

• Monitoring and mapping of landslides (Jaboyedoff et al., 2012, Bernard et al., 2021) and Earth

surface processes - erosion, active volcanoes monitoring, glacier mass balance estimation - (Eitel

et al., 2016)

• Forest extent and structure (crown or trunk diameters and heights), canopy structure, tree

species, tree health, and forest biomass mapping (Axelsson et al., 2023; Bye et al., 2017; Cao et al.,

2016; Dai et al., 2018; Hamraz et al., 2019; Liu et al., 2021a; Nie et al., 2017; Noordermeer et al., 2023;

Reitberger et al., 2009; Richardson et al., 2011; Scheeres et al., 2023)

• Structure and infrastructure (railways, dikes, roads, electrical networks) detection and map-

ping, including archaeological remains (paleostructures, ancient fisheries)
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• Benthic habitats or coastal zones mapping (dunes, salt marshes, coral reefs, mangroves, macroal-

gae) (Grande et al., 2009; Janowski et al., 2022; Launeau et al., 2018; Nayegandhi et al., 2006; Tull-

dahl et al., 2012; Wang et al., 2007; Zavalas et al., 2014)

• Fluvial areas monitoring (Kinzel et al., 2013; Lague et al., 2020; Laslier et al., 2019; Mandlburger

et al., 2015; McKean et al., 2009; Pan et al., 2015)

• Land-cover classification and map updating (Ekhtari et al., 2018; Matikainen et al., 2017)

1.2 Single wavelength topographic and bathymetric lidars

Most lidar sensors only use a unique laser wavelength, and are thus referred to as single-wavelength li-

dars. Common wavelengths are within the infrared, ultraviolet or green ranges. In the following sections,

only infrared and green lidars are discussed, as ultra-violet lidars are mostly used to study the atmosphere.

The laser wavelengths used are chosen in order to maximise the potential backscattered energy and to

minimize absorption or reflection by elements that are not the user’s subject of study.

1.2.1 Airborne topographic lidar

Near Infrared (NIR) lidars are commonly referred to as topographic lidars since they were designed

to improve topographic surveys. Depending on the use cases, they may use different wavelengths, among

which 1064 nm is a common value, along with 1550 nm and 1560 nm (Vosselman et al., 2010). Topographic

lidars typically have low divergence – and thus small footprints – and high shot densities, leading to high

spatial resolutions, and point densities above 30 pts/m² (Vosselman et al., 2010; Lague et al., 2020).

These sensors were the first laser scanning tools developed, and thus benefit from a longer experience

of use, leading to improved capacities, a great variety of settings and use cases, smaller and cheaper options,

and extensive processing possibilities. They are the most commonly used lidar and have recently been

popular as high-tech additions to vehicles, phones or tablets, and are now easy enough to transport to be

left on location for real-time geoscientific monitoring (Anders et al., 2020; Anders et al., 2019) or UAV-

borne sensing (Scheeres et al., 2023).

As infrared light is fully reflected and absorbed by water, infrared lidars are only suitable for emerged

areas (Vosselman et al., 2010; Guenther et al., 2000; Lague et al., 2020). However, in some cases, it remains

impossible for airborne lidars to reach the ground. This is particularly the case in rugged relief, and in

densely vegetated areas (Jakubowski et al., 2013; Vallet, 2011). In the latter, most of the incident light is

reflected by the canopy, leaving too little energy to penetrate further downward. In uneven relief, due
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to the incidence angles, some areas of the terrain remain inaccessible to ALS, as the illustration below,

inspired from (Vallet, 2011) shows.

Figure 1.8: The problem of unreachable areas in uneven terrain surveyed with airborne lidar.

Topographic lidars are very popular for forestry applications (Gatziolis et al., 2008), as vegetation in-

teractions with NIR light give information about the phenological state, chlorophyll concentration, and

water content of the plants (Korpela et al., 2023). The analysis of the backscattered intensities can thus be

very useful, in combination with the geometrical assessments enabled by lidar point clouds, to perform

assessments of forest compositions and health. However, lidar intensity is a very site- and acquisition-

dependent measurement. Kashani et al., 2015 investigated the parameters influencing the received inten-

sity and separated the factors into four main categories:

• Target surface characteristics

• Data acquisition geometry

• Instrumental effects

• Environmental effects

Table 1.1, reproduced from (Kashani et al., 2015) gives a summary of the different ways in which these

elements influence lidar intensity. For more details and references, the reader is invited to refer to (Kashani

et al., 2015).

An example of topographic lidar and its characteristics is given in Section 1.3.2.
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Category Factor Description

Target surface

characteristics

Reflectance

By definition, surfaces of higher reflectance will reflect a greater portion of

the incident laser radiation, thereby increasing the received signal power. In

radiometric calibration, this is typically the parameter of interest.

Roughness Surface roughness dictates the type of reflection.

Acquisition

geometry

Range The emitted pulse energy decays as a function of range.

Angle of incidence

Greater angles of incidence typically result in less of the incident laser

energy being backscattered in the direction of the receiver, thereby reducing

received optical power. Additionally, when the laser beam strikes a surface

obliquely, it increases the backscattering cross-section.

Multiple returns

When a single laser pulse reflects from objects, a correction can be applied

to compensate for the energy split between objects.

Instrumental

effects

Transmitted

energy

The amount of energy backscattered from targets is related to the amount

of energy transmitted with every pulse. Transmitted pulse energy is related

to peak transmitted power (which varies with pulse repetition frequency in

many systems) and transmit pulse width.

Intensity

bit-depth and

scaling

Different scanners use varying bit depth (e.g., 8-bit, 12-bit or 16-bit) when

digitizing the return signal. Recorded digital numbers are typically scaled to

fit the available dynamic range.

Amplifier for low

reflective surfaces

Some scanners amplify the intensity values measured on low reflective

surfaces.

Automatic gain

control

Some systems employ automatic gain control, which increases the dynamic

range that can be accommodated but can also result in discontinuities in

the intensity signal.

Brightness reducer

for near distances

Some scanners reduce the intensity values measured on close objects (e.g.,

less than 10 m distance).

Aperture size A larger aperture admits more light, increasing received signal strength.

Environmental

effects

Atmospheric

transmittance

Radiant energy attenuates in propagating through the atmosphere, as a

function of humidity, temperature, pressure and other variables.

Wetness

Wet surfaces also absorb more energy from the pulse, resulting in weaker

returns.

Table 1.1: Factors influencing the intensity parameter in lidar data.
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1.2.2 Airborne bathymetric lidar

Bathymetric lidars are the result of a later development of laser scanners for hydrographic charting

(Guenther et al., 2000; Pastol, 2011; Philpot, 2019; Wozencraft et al., 2005). Contrary to topographic li-

dars, they rely on green lasers, exploiting their lower absorption by water - illustrated in the absorption

spectrum of Figure 1.9 -, allowing them to eventually reach the bottom. Bathymetric lidars use lasers at

532 nm or 513 nm. Since they were created for large-scale hydrographic surveys, they are for now solely

airborne, carried by satellites or planes, though UAV prototypes are being designed (Mano et al., 2020).

Figure 1.9: Absorption of electromagnetic waves by pure freshwater depending on their wavelength (source: Saylam et al.,

2020).

When it encounters water, the green laser beam is partially reflected, absorbed, and transmitted. If the

water surface has a plane, mirror-like structure, specular reflection dominates, and few energy reaches the

receiver. However, if the surface is more rugous, the beam is typically mostly refracted and transmitted

to the water column, where it is impacted by optical properties, before eventually being reflected by the

seabed. To measure bathymetry, bathymetric lidar sensors thus exploit the time taken by the beam to

travel back and forth between the water surface and the seabed.

Bathymetric lidars have to overcome several challenges linked to the effects of water on light propaga-

tion in order to produce accurate samplings of seabeds and inland water floors. The main factors dictating

airborne lidar bathymetry are the following (Guenther et al., 2000; Philpot, 2019):



1.2. Single wavelength topographic and bathymetric lidars 37

• Light attenuation in water: yellow particles, phytoplankton and sediments in suspension in

the water column attenuate exponentially the amount of energy transmitted with depth, through

absorption and scattering of light. The possibility to image the seabed thus depends on water tur-

bidity, which is measured using the Diffuse Attenuation Coefficient, K , detailed in Section 1.5.

• Beam elongation: water also exponentially elongates – both in time and space – the laser pulse

with depth, resulting in a significant increase of the laser beam’s footprint when it reaches the

seabed. This results in lower spatial resolution and loss of accuracy if inhomogeneous geometries

are hit simultaneously. Energy is also backscattered in a wider range of directions and less concen-

trated. The FOV must thus be large to maximize the captured energy.

• Light refraction: at the surface, water deviates the laser beam’s trajectory due to refraction. All

ranges must thus be corrected according to the new direction and speed of the beam. This requires

to locate precisely the water surface.

• Water surface uncertainty: the first return generated when surveying submerged areas could

be mistaken for a surface backscatter. Located very close to the surface, it is the result of energy

reflected from the water surface and from particles of the water column below it. The combination

of both results in a single peak with a vertical offset of up to dozens of centimetres (Guenther et al.,

2000; Mandlburger et al., 2013) below the actual surface depending on water clarity. As bathymetry

is measured relatively to mean water levels or ellipsoids, an additional NIR channel is essential to

locate the water surface and respect the standards of hydrographic charting, as it does not suffer

from these effects.

• Strongly varying intensities: bathymetric lidars have to incorporate a receiver able to deal with

variations of several orders of magnitude of received energy, considering the differences between

strong water surface returns and exponentially attenuated seabed backscatters. If the dynamic range

of the receiver is not adapted, echoes can be saturated – thus unexploitable for range measurements

– or not detected.

As a result of these factors, airborne lidar bathymetry (ALB) always combines adapted receivers and

two lasers: a NIR laser to locate the water surface and compute refraction corrections and depths, and

a powerful green laser to image below water (Guenther et al., 2000; Philpot, 2019). Due to eye safety

restrictions, the green laser has a higher beam divergence angle, resulting in a large footprint diameter.

ALB is thus not usable for small object detection and is limited by water clarity and specular reflection

effects. Ideally, ALB acquisitions should be planned precisely to optimize the possibility of imaging the

seabed depending on the presence of waves, vegetation, the tide level, or phytoplankton blooms. More
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Category Factor Description

Acquisition

geometry

Water depth

In bathymetric lidar, pulse power decays

exponentially with the product of water depth and

the diffuse attenuation coefficient.

Off-nadir transmit angle

Affects the signal return due to pulse stretching and

retro-reflectance of the surface material.

Receiver field of view loss

factor

Loss factor due to a receiver FOV insufficient to

accommodate the spreading of the pulse in the water

column.

Altitude, refracted beam

angle, effective area of receiver

optics

Other acquisition geometry factors which have an

effect on the return power.

Diffuse attenuation

coefficient

Light travelling through the water column is

exponentially attenuated, due to absorption and

scattering by particles in the water.

Pulse stretching factor

Stretching of the pulse due to acquisition geometry

and scattering properties of the water.

Table 1.2: Factors influencing the lidar intensity in bathymetric surveys.

details are given in (Guenther, 1985; Guenther et al., 2000; Lague et al., 2020; Philpot, 2019). Figure 1.10

illustrates the difference between a topographic and a bathymetric lidar survey over a coastal area.

Figure 1.10: Illustration of the difference between topographic (left) and bathymetric (right) lidar surveys.

Over land, bathymetric lidars behave similarly to topographic lidars, but provide a different sampling

as they have different footprints and interactions with vegetation. Similarly to topographic lidars, several

parameters influence bathymetric lidar received intensity. The factors presented in Table 1.2, reused from

(Kashani et al., 2015) are specific to ALB and add up to those presented in the previous section for lidars

in general.

An example of bathymetric lidar and its associated characteristics is presented in Section 1.3.2.
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1.3 Multi-spectral airborne lidar

Although single-wavelength lidar sensors are more common, multi-spectral sensors also exist. Multi-

spectral lidars have the particularity to embed multiple lasers using multiple wavelengths. In practice,

they often combine single wavelength sensors that operate simultaneously. This has the advantage of ben-

efiting from different RS technologies in one single survey. The different wavelengths may be generated

by a single power source and separated into rays of proportional wavelengths, or generated each by a ded-

icated source. In both cases, there are at least as many receptors and recording systems as there are lasers

(Liang et al., 2016), meaning that each wavelength will produce its own individual dataset (Lague et al.,

2020). Whether generated by one or multiple sources, the emitted laser beams are never co-focal. They

consequently never hit the same surfaces in the exact same places, even on surfaces that react similarly.

In cases where they are generated by separate sources, they also may have different parameters (in terms

of footprint, divergence, power, etc). Multispectral surveys thus produce a rich sampling of the surveyed

areas: they not only reach the surfaces differently but they are also reflected by the surfaces differently,

resulting in several unique viewpoints of the same area.

The most common multispectral lidar sensors embed two to three lasers. These may be different

infrared wavelengths for example, or infrared and green lights, as in topo-bathymetric lidars (Lague et al.,

2020, Fernandez-Diaz et al., 2014). Since topo-bathymetric lidar is the main instrument used in this thesis,

along with bathymetric lidar, it will be the only example of multi-spectral lidar detailed here.

1.3.1 Topo-bathymetric lidar

Topo-bathymetric lidars were specifically introduced to satisfy the needs of shallow waters and land-

water interfaces surveying (Lague et al., 2020). Although bathymetric lidars embed NIR and green lasers

and can thus survey both emerged and submerged zones (Guenther et al., 2000; Philpot, 2019), their green

lasers are not adapted to rivers or shallow water parts of coastal bands and lakes. Indeed, to generate the

higher power needed to penetrate through the water column, they use a longer laser impulse, with a larger

width that results in highly overlapping echoes in shallow waters (Guenther et al., 2000; Philpot, 2019),

making it impossible to distinguish between water surface/column and water bottom returns. Their large

divergence resulting in wide footprints and low spatial resolution is also not adapted to the survey of

narrow inland water extents (Lague et al., 2020). Topo-bathymetric lidars thus embed a topographic lidar

and a green lidar with a smaller aperture – generating a smaller footprint – and sufficient power to survey

shallow waters while having a short enough impulse to avoid overlapping as much as possible.

Topo-bathymetric lidars operate both lasers simultaneously and register collected backscatter sep-

arately, resulting in two individual NIR and green point clouds. As NIR and green wavelengths have
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drastically different interactions with water and vegetation, the amount of information on the relief is

duplicated, and particularly useful to study vegetation, land-water transitions, and shallow waters.

Figure 1.11: The principle of topo-bathymetric lidar.

The following section illustrates the differences between the sensor specifications of topographic,

bathymetric, and topo-bathymetric lidars built by the same manufacturer.

1.3.2 Comparison of airborne lidar sensors

In this section, three lidar sensors are presented to illustrate how topographic, bathymetric, and topo-

bathymetric lidars differ. We chose to use Leica Geosystems’ instruments, as the company produces the

three types of airborne sensors discussed. However, in this thesis, data originating from different sensors

are exploited.

The parameters describing each sensor are summarized in Table 1.3. Aside from the operating wave-

lengths, the main distinct parameters are the scan speed and the laser divergence of the topo-bathymetric

and bathymetric sensors, which result in a larger footprint size, and a lower point density, both contribut-

ing to their coarser spatial resolution. The laser divergence of 4.75 mrad of the ALB sensor illustrates the

problem of energy dilution necessary for eye safety mentioned in Section 1.2.2. The characteristics of

Leica’s airborne topo-bathymetric system – the Chiroptera – illustrate well why such systems were in-

troduced: although it has both green and NIR wavelengths, the Chiroptera exploits a green laser with a

4.75 mrad divergence, in between the TerrainMapper’s 0.25 mrad, and the HawkEye’s 7.5 mrad. In prac-

tice, at a 500 m flying height, this produces laser footprints radiuses of 1.2 m and 2.4 m for the topo-

bathymetric and bathymetric lidars, respectively, and of 0.125 m for a topographic system flown at 1000
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m above ground level (AGL). This provides explanations as to why ALB was not suited to observe rivers

or inland water extents with small scales, as a narrow watercourse may be less large than 5 m, and thus not

observable with a bathymetric lidar.

Another important difference is the operating altitude of the three lidars: topographic lidars can be

used at much higher altitudes, while bathymetric and topo-bathymetric lidars are limited by the amount

of power needed for the green laser, and by its high divergence, resulting in an increasingly larger footprint

with flying height. Since the swath width – detailed in the above table – depends on the operating height

above the ground, this means that with a similar flight plan, topo-bathymetric and bathymetric lidars

cover a smaller surface than topographic sensors. As a result, the operating cost of bathymetric and topo-

bathymetric lidars is significantly higher, because more flight lines are needed to cover the same areas with

a reasonable overlap (Lague et al., 2020). This also explains why the increased availability of lidar data is

for now still largely limited to topographic surveys.

1.4 Lidar remote sensing of land-water interfaces

Airborne topo-bathymetric lidar constitutes a reliable remote sensing approach to survey land-water in-

terfaces, as the data it delivers have no interruption in transition areas (Guenther, 1985; Lague et al., 2020).

It also allows to cover large areas quicker than what sonars allow and can survey shallow waters as well

as deeper waters in adapted survey conditions (Guenther et al., 2000). Lidar provides adequate spatial

resolution and precision, too, and contrary to imagery-based bathymetry, it provides the elevations of the

seabed covers and of the seabed itself, making seabed covers 3D analyses accessible. Additionally, when it

penetrates through multiple layers of surface covers, it opens up to vertical structure analyses, inaccessible

to passive imagery. The authors of (Guenther et al., 2000) summarize the benefits of this technology as

five key points:

• Possibility to perform surveys quickly over large or small areas

• Ability to survey dangerous areas impossible to access by boat

• Simultaneous collection of data both above and below the waterline

• High mobility, allowing rapid assessments of seasonal changes or storm damage

• Capacity to complete surveys in short windows of operability conditions in areas in which tradi-

tional surveys could not (ice cover for example)

In the literature, uses of lidar sensors to observe the land-water continuum include:
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Sensor

Leica

TerrainMapper

Leica Chiroptera-5 Leica HawkEye-5

Type

Airborne topo.

lidar

Airbone TB lidar Airborne bathy. lidar

Channels Topo. Topo. Bathy. Topo.

Shallow

bathy.

Deep

bathy.

Laser wavelength

(nm)

1064 1064 515 1064 515 515

Laser divergence

(mrad)

0.25 0.5 4.75 0.5 4.75 7.5

Intensity digitisation 14 bits 14 bits 14 bits

Scan pattern

Oblique with even

distribution

Oblique front-back

palmer

Oblique front-back palmer

Max. scan speed

(scans/s)

300 140 170 100

Scan angle range 20◦ − 40◦ ±14◦
front/back,

±20◦
left/right

±14◦
front/back, ±20◦

left/right

Operation altitude

300 – 5500 m

AGL

400 – 600 m AGL 400 – 600 m AGL

Swath width 70% of AGL 70% of AGL 70% of AGL

Min. Vertical

separation

50 cm Below 50 cm Below 50 cm

Vertical accuracy Below 5 cm Below 5 cm

Relative to

depth
*

Below 5 cm Relative to depth
*

Horizontal accuracy Below 13 cm

Below 15

cm

Relative to

depth
*

Below 15

cm

Relative to depth
*

Table 1.3: Sensor specifications of three Leica Geosystems lidars
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• Evaluation of habitat complexity (Wedding et al., 2008), morphology (Wilson et al., 2019), or

biomass (Webster et al., 2020)

• Seabed types and underwater vegetation mapping (Schmidt et al., 2014; Eren et al., 2018; Kumpumäki

et al., 2015; Wang et al., 2007; Tulldahl et al., 2012; Zavalas et al., 2014; Pe’eri et al., 2007)

• Land-water separation (Hu et al., 2019; Morsy et al., 2016; Shaker et al., 2019)

• Coastal hydrographic and nautical charting (Pastol, 2011; Wozencraft et al., 2005)

• Intertidal and/or subtidal ecosystems mapping (Chust et al., 2010; Grande et al., 2009; Hansen

et al., 2021; Launeau et al., 2018; Nayegandhi et al., 2006)

• River geomorphology, bathymetry, and vegetation monitoring (Mandlburger et al., 2015;

Hilldale et al., 2008; Kinzel et al., 2013; Lague et al., 2020; Pan et al., 2015; McKean et al., 2009;

Laslier et al., 2019)

• Assessment of the consequences of natural events (Parrish et al., 2016)

• Coastal engineering structures surveying (Irish et al., 1998)

• Tidal inlets and beaches erosion monitoring (Irish et al., 1998)

However, although this shows that lidar can address multiple needs in environmental sciences, it is

still clear that integrated approaches of both emerged and submerged surface covers are still scarce, as most

of the applications still focus on one side of the waterline. Another limit is the actual use of the 3D data:

many of the aforementioned lidar-based studies exploit 2D products, or rasterize the data or the results,

thus not yet realizing real 3D mappings of surface layer structures. Lastly, none of these methods exploit

the information provided by the two distinct samplings offered by topo-bathymetric and bathymetric

lidar – as it is always used with a NIR laser too. There is thus still a lack of processing methods allowing

a global analysis, in 3D, of domains below and above the waterline, and fully exploiting the knowledge

contained in lidar surveys.

1.5 Lidar waveforms

Although lidar data are more commonly studied as collections of punctual range measurements, it should

be kept in mind that lidar originally consists of continuous light signals digitizing and processing. 3D

coordinates obtained through lidar surveys are often the result of a reanalysis of the reflection of the light
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wave emitted by the sensor (Guenther et al., 2000; Philpot, 2019; Kashani et al., 2015), as explained in

Section 1.1.2. Technical progress has allowed this transformation to be made in flight in order to provide

3D measurements more directly. In such settings, the receiver only triggers recording when the number

of received photons exceeds a certain threshold. However, there are obvious limitations in using a fixed

threshold: some backscatters may be missed, or, on the contrary, some false positives may be recorded as

useful information. A generation of lidar sensors with the capacity to digitize and record the complete

light signals received after laser emission has thus emerged, along with attempts to make more of each

lidar survey planned (Chauve et al., 2007; Mallet et al., 2009).

Full-waveform lidar systems record the complete backscattered signal in addition to the discrete

returns. A lidar waveform consists of a time series of received laser power, that practically contains

the portions of the laser beam that were reflected against various targets. Optical and mechanical tools

ensure that each laser return is recorded separately and linked to its initial impulse, even though current

sensors have very high measurement frequencies. The signals are digitized at constant time intervals and

are either triggered and stopped at fixed time windows after photon emission or depending on the received

energy. The length of a lidar waveform thus depends on the sampling capacities of the digitizer and the

recording settings. The signals are expressed as digitizer photon counts as a function of time (Pirotti et al.,

2011), and are relatively vertical (depending on the incidence angle) altimetric profiles.

Since the receiver cannot be completely desensitized to ambient light as it has to stay receptive to the

backscatters, the received energy is never zero (Guenther et al., 2000; Abdallah et al., 2012). It is however

higher when reflective targets cross the path of the emitted beam, causing the reflection of some of it

towards the receiver. Thus, waveforms contain the recording of the different objects laying within the il-

luminated cone, noticeable in the signal as peaks characterized by a range, width and amplitude (Pirotti

et al., 2011).

In practice, full-waveform lidar data contain more information than the lidar point clouds detected

during acquisition. First, adapted post-flight analysis allows the retrieval of more reflection points and

thus more knowledge of the scene’s topography. This is particularly the case in complex areas such as

urban (Mallet et al., 2011), vegetated mountainous (Chauve et al., 2009) or submerged zones (Kogut et

al., 2019). Pirotti et al., 2011 quantified this advantage and wrote that full-waveform processing increased

the point density by a factor of two relative to the conventional discrete-return lidar at equal mission time

in forestry applications. Secondly, lidar waveforms also contain finer information on the origin of each

backscatter, whether on its precise position - Kogut et al., 2019 show that waveform signal analysis allows

getting more accurate seabed points altitudes – or on its nature, since the different peaks are shaped by the

optical and geometrical characteristics of the hit targets (Jutzi et al., 2006; Wagner et al., 2006; Wagner,

2010). The next section explores the characteristics of lidar waveforms in detail to show to what extent
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they can give indications of the physical traits of the hit surfaces.

1.5.1 Shaping factors of lidar waveforms

Mathematically, lidar waveforms can be treated as a sum of N components, with N being the number of

surface elements that were intercepted by the laser pulse (Abdallah et al., 2012; Chauve et al., 2007; Pirotti

et al., 2011), and a noise component corresponding to noise internal to the receiver and to the ambient

light that is still captured in the background (Abdallah et al., 2012; Guenther, 1985; Guenther et al., 2000;

Philpot, 2019). While studying the satellite lidar GEDI, Zwally et al., 2002 showed that if the elements on

the beam path have a vertical height distribution that follows a Gaussian law, the waveform obtained can

be considered as a sum of Gaussian components sometimes with an added noise bias, because the trans-

mitted laser pulse has an approximately Gaussian distribution in time. They analyze a series of waveforms

acquired over oceans, sea ice, ice sheets or land and show that plane areas result in single Gaussian wave-

form components, while more geometrically complex areas can produce multiple distinct or overlapping

Gaussian-shaped peaks. Similarly, Wagner, 2010 states that small footprint lidar waveforms can also be

well modelled with a sum of Gaussian pulses, as waveform impulses can have shapes similar to an ideal

Gaussian function. A major conclusion of such analyses is that the shape of the echoes in the wave-

forms is mainly influenced by the transmitted pulse shape and the height distribution within the

laser footprint, namely the roughness and slope of the surface hit by the footprint (Zwally et al., 2002).

In practice, it has been formalized that the returned echoes in the waveforms are the result of a convolu-

tion between the transmitted laser pulse function and the corresponding response function of

the surface encountered. The surface response is a function of its geometric and radiometric properties.

In the following paragraphs, we present the global factors that shape lidar waveforms. Formal definitions

of these dynamics are introduced in section 1.5.3.

Influence of the intercepted surface geometry

The main factors of influence of the surface geometry on the backscattered signal are roughness, slope,

and the vertical repartition of targets. Surface slope impacts the asymmetry of the peak, as the part of

the surface closest to the sensor will start reflecting earlier than the furthest (Jutzi et al., 2006). Photons

will be reflected to the receiver for a longer time range, but in a progressively diminishing amount. This

process is called pulse stretching. The impacting slope can be the actual slope of the surface, but also the

relative slope induced by the incidence angle of the laser beam, which causes the same pulse stretching

effect. Surface roughness influences the angle of incidence of the laser rays, the slope over the hit area and

the range by generating multiple scattering (Jutzi et al., 2006). The waveform peak generated by a surface
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with high rugosity will thus have a different skewness, kurtosis and number of inflexion points than a

perfectly smooth and plane material, as Figure 1.12 illustrates.

Figure 1.12: Impact of the intercepted surface’s geometry on the resulting waveform shape.

A typical example of this phenomenon is vegetation. Contrary to land, trees produce less symmetric

returns in waveforms, which is mostly attributed to multiple scattering and to the distribution of the

scattering elements depending on the canopy shapes, foliage densities and on the slope of the ground

(Chauve et al., 2007; Chauve et al., 2009).

Jutzi et al., 2006 illustrated typical waveform shapes depending on the geometry of the surface portion

falling in the laser footprint, as featured in Figure 1.13:

Figure 1.13: Impact of the intercepted surface’s geometry on the resulting waveform shape, extract of Jutzi et al., 2006: a)

Plane surface, b) sloped surface, c) two significantly different elevated areas, d) two slightly different elevated areas, e) randomly

distributed small objects.

Finally, the vertical repartition of objects in the illuminated cone also influences the shape of the

received waveform. As mentioned previously, each object intercepted by the laser beam reflects it in its

own way, generating peaks of backscattered energy. However, if both objects are too close in reality, they
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can reflect energy during overlapping time intervals, and thus be difficult to separate in the signal. Figure

1.14 illustrates how, when they span over intersecting time intervals, surface backscatters can overlap in

the signal.

Figure 1.14: Impact of the vertical repartition of multiple intercepted targets on the resulting waveform.

It is important to note that peak shapes can be analyzed as a function of surface geometry because the

time sampling remains constant in the full waveform. However, this time sampling interval may translate

into a different space interval depending on the medium crossed, mostly in the case of bathymetric or

topo-bathymetric lidar. Thus, depending on the signal sampling and recording frequency, the vertical

resolution of waveforms captured in different surveys can vary. For example, Teledyne Optech’s Titan

samples once every nanosecond (a frequency of 1 GHz), which is 15 cm in air and 12 cm in water, while

Hexagon’s HawkEye samples once every 556 picoseconds, doubling the vertical resolution.

Influence of the transmitted laser pulse

Considering the physics of lidar remote sensing, it is globally assumed that the main factor governing

waveform peak shape independently of any geometrical or spectral specificity is the sensor’s laser im-

pulse. Initially, it was assumed that this emitted pulse was shaped as a Gaussian function with a fixed

width that could be estimated through calibration procedures (Chauve et al., 2007). Jutzi et al., 2006 thus

defined the waveform as a time-delayed Gaussian modulated by multiplicative noise following a Gaussian

distribution too. In this setting, the length of the pulse corresponds to the half of the pulse’s maximum

amplitude.

Some sensors have distorted impulses, i.e. pulses with more peaked, flattened or asymmetric shapes

and may thus not be accurately depicted by Gaussians (Chauve et al., 2007; Hofton et al., 2000; Jutzi
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et al., 2006). For example, Chauve et al., 2007 explain that RIEGL’s LMS-Q560 has a laser pulse with a

steeper ascending part and a longer but weaker descending one than a Gaussian.

In all cases, the shape of the emitted pulse contributes to the shape of the backscattered pulse, prin-

cipally through two aspects: the amplitude of the impulse, and its width. As the width of the impulse

is linked to its duration, it influences the duration during which the intercepted surfaces are illuminated,

and thus for how long they reflect energy. The overlapping of backscatters explained in Section 1.5.1 is thus

linked to the distance separating the targets, but also to the duration of the emitted laser pulse (Guenther

et al., 2000). The larger the impulse, the more likely the targets are to overlap, as there are more chances

that by the time the first target stops reflecting light, a second, close one has already been hit too. The

amplitude of the impulse, on the other side, influences the amplitude of the backscattered echoes, as

it dictates the amount of energy travelling to the surfaces and available for reflection. Both the width

and amplitude of the impulse are thus somewhat transmitted to the backscatters. Mathematically, this

is formalized through a convolution between the impulse function and the surface response function,

depending on its geometry, as depicted previously, and its physical properties.

Influence of the physical properties of the intercepted surface

Another factor influencing the shape of the backscatter in the waveform is the optical behaviour of the

surface intercepted (Chauve et al., 2009; Chauve et al., 2007; Kashani et al., 2015; Wagner, 2010). In partic-

ular, surface reflectance impacts the amplitude of the recorded peak, as it dictates the amount of energy

that is backscattered towards the sensor. Reflectance depends on the physical and chemical characteristics

of the objects, such as their water content or their chlorophyll concentration. It is thus informative on

the nature of the surfaces hit. In the case of multiple returns, different amounts of energy can be reflected

by the hit surfaces, resulting in a more complex waveform shape. Similarly to geometry, vegetation gives

practical examples of these radiometric factors: Chauve et al., 2007; Chauve et al., 2009 show how the

reflectance of each species, of the foliage, of the branches and of the ground shape the obtained peaks.

Figure 1.15 illustrates the impact of surface reflectance on the resulting waveform component for identical

incident pulse amplitudes.

However, the obtained amplitude values do not constitute accurate reflectance measurements, even

when discarding the noise, as they greatly depend on other phenomenons, such as meteorological condi-

tions on the day of the flight, sensor settings including receiver sensitivity and amplification, and emitted

laser pulse intensity, that is not constant (Kashani et al., 2015).
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Figure 1.15: Impact of the intercepted surface’s reflectance on the resulting waveform.

Instrumental effects: digitizer, FOV, ambient light (noise)

As presented in Kashani et al., 2015, the intensities measured by lidar sensors depend greatly on instrumen-

tal parameters (see Section 1.3.2). Waveform values are thus also dependent on sensor parameters such as

radiometric resolution, amplification or gain control. Among instrumental effects, two can significantly

impact the interpretability of waveform data: noise and FOV (Liang et al., 2022). Waveform noise de-

pends on the receiver’s sensitivity to ambient light and causes variations in the power values stored.

When backscattered echoes are weak, they are thus harder to identify, as they can be of similar amplitude

than noise. The FOV parameter is thus important, as it determines the amount of backscattered energy

that can be intercepted by the receiver, and consequently the strength of the peak in the waveform. A

larger FOV increases the amount of light that reaches the receiver, resulting in stronger backscatters, eas-

ier to separate from low amplitude noise. On the contrary, when a small FOV is used, there are greater

chances that only a small portion of the backscattered energy reaches the surface of the receiver, and that

surfaces with lower reflectance, or second and later returns, generate weak returns lost in noise. Figure

1.16 illustrates the FOV in bathymetric contexts (inspired from Philpot, 2019).

1.5.2 Specificities of bathymetric waveforms

Due to the different propagation of light in water, some specificities apply to waveform components

obtained in the presence of water, to which we will refer in this section as bathymetric waveforms.

Bathymetric waveforms include three main components: the air-water interface component, the

water column component, and the water bottom one (Guenther, 1985; Guenther et al., 2000; Philpot,

2019). They follow the same principles as classical waveform components but have specificities induced

by water. Abdallah et al., 2012 formulate mathematically the mechanisms behind the shape of a simple
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Figure 1.16: Illustration of the importance of the field of view in airborne lidar bathymetry.

bathymetric waveform, which is the sum of different components: roughly Gaussian noise, convolutions

of Gaussian functions with estimated backscattered energy values, and an exponential decay of the sig-

nal after the water surface. Figure 1.17 illustrates the typical structure of a bathymetric waveform, after

Guenther, 1985 and Guenther et al., 2000.

The air/water interface component

As explained by (Guenther et al., 2000) and introduced in Section 1.2.2, the first peak detectable in a

bathymetric waveform cannot be considered a pure representation of the water surface. It is rather a su-

perposition of energy reflected by the air/water interface, and particles from the higher part of the

water column, located just below the surface (Guenther et al., 2000; Mandlburger et al., 2013). The be-

ginnings of both components are simultaneous – when the pulse starts to hit the water – which explains

why they mix in the observed peak. However, they originate from different sources and thus have dif-

ferent characteristics. Since the air/water interface’s shape is mostly influenced by the transmitted pulse

shape and the incidence angle, it has a traditional lidar backscatter shape, i.e. more or less Gaussian with

a skewed character (Guenther et al., 2000). The water column component, on the other side, has a com-

pletely unique exponential signature, as detailed in the next section. The water column component has

a much longer rising time than the air/water interface and thus causes the global maximum of the result-

ing mixed peak to be attained later than the actual maximum of the air/water interface (Guenther et al.,

2000). As a matter of consequence, the resulting peak cannot be used to derive the position of the water
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Figure 1.17: The three components of the bathymetric waveform.

surface, as it will be delayed in time, and may cause an error up to dozens of centimetres in the estimated

position (Guenther et al., 2000; Lague et al., 2020; Mandlburger et al., 2013). This delay depends on the

water turbidity, which is the most influencing factor on the rising time of the water column component.

If water is very turbid, the water column part of the global return can be the most contributing of the

two, and the resulting error will be higher (Mandlburger et al., 2013). In clearer water, on the contrary,

the interface dominates. It is however very difficult to clearly identify if the first peak is dominated by

interface or water volume character (Guenther et al., 2000). If not post-processed and decomposed, the

first peak of bathymetric waveforms thus reflects “a certain level of penetration into the water column”

as explained by (Zhao et al., 2017), which partially depends on water parameters, but also on the laser

incidence angle and divergence. Later in the signal, both components end up forming an elongated peak

with a longer decreasing time than traditional surface signatures. The global effect of water on bathymet-

ric lidar waveforms is summarized in Figure 1.18.

On its own, the air/water surface component has the following characteristics:

• Its amplitude is mostly determined by the incidence angle on the water surface, which is also

influenced by the illuminated waves and their slopes, and the wind speed. Air/water interface peak

amplitudes thus have a high standard deviation spatially (Guenther et al., 2000), contrary to water

column components.

• Its shape mostly reflects the transmitted pulse, but is stretched by geometric effects of off-nadir

incidence angles
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Figure 1.18: The impact of water on bathymetric lidar waveforms. Yellow and blue dots represent yellow substances and

phytoplanktons, respectively.

The water column component

As it travels through the water column, the green laser beam is exponentially backscattered and ab-

sorbed by particles with depth, and partially transmitted (Guenther, 1985; Philpot, 2019). Optically, the

components that attenuate the most green light in water are yellow substances, phytoplanktons and

sediments. Their concentration adds up to the optical behaviour of clear water to impact the penetra-

tion of light in the water column. The water column is consequently visible in bathymetric waveforms

as an exponentially diminishing shaped peak, characterized by a width related to the depth of the water

body.

The attenuative power of water is approximated by the diffuse attenuation coefficient specific to

each wavelength, Kd. As stated in Guenther et al., 2000, Kd “is the exponential factor by which the

downwelling vector irradiance of the incident light field, at a given wavelength, decreases with increasing

depth”. The decay rate of light in water induced by Kd follows an exponential law, that can be formalized

as:

Pr = Pi × exp (−2KdD)

with Kd the diffuse attenuation coefficient of the considered water body, Pi the incident power and Pr

the received power at the depth D.

Kd can be measured locally by monitoring irradiance depending on depth (Guenther et al., 2000).

This coefficient is specific to each wavelength and depends on the scattering-to-absorption ratio, which

is related to the amount and nature of dissolved organic and inorganic material. These water proper-

ties vary with tides, weather, and in time and space. In waters where absorption is dominant, bathymetric
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lidars penetrate less deep than in scattering-dominated settings, which redistribute more of the energy.

The absorption and scattering coefficients are inherent optical properties (IOP) of the water (Ab-

dallah et al., 2012; Guenther, 1985; Guenther et al., 2000). They are expressed as the sum of the scattering

and absorption characteristics of the different elements that constitute turbid water: yellow substances,

phytoplankton and sediments.

The shape of the water column component in the waveform is therefore dictated partly by the local

value of Kd, and consequently by the concentrations of the water column in yellow substances, phyto-

plankton and sediments. It also depends on the sensor’s geometry, namely for narrow FOV lidars, which

do not capture all the diffused energy and thus integrate only a portion of Kd in their waveform, denoted

as Klidar. Practically, Kd or Klidar (depending on the FOV) can be approximated through the shape of

the water column component in the waveform, using the linear relationship existing between received

power and depth (Guenther, 1985; Guenther et al., 2000; Lague et al., 2020).

The seabed/riverbed/lakebed component

If there is enough remaining energy despite the effects of water turbidity on the laser beam, light reaches

the water bottom and is reflected back to the receiver. The amplitude of the backscatter depends partially

on the transmitted power and the seabed reflectance, similarly to any waveform component (Jutzi et al.,

2006; Wagner, 2010), but also on the effects of the water column, through the depth and Kd parame-

ters (Guenther et al., 2000; Kashani et al., 2015), since the power arriving at the seabed depends on the

exp (−2KdD) factor. The shape – and in particular the width and asymmetry – of this component is

linked to the geometry of the surface and to sensor-related factors just as topographic components (see

Section 1.5.1), but it must be remembered that the bathymetric lidar’s footprint on the seabed is much

larger due to its originally higher divergence necessary to emit a powerful wave, and to the scattering ef-

fects of water that exponentially spread the laser beam (Guenther et al., 2000). This spreading is both

spatial and temporal, causing the incident pulse to have a larger width, and increasing the probability

to have overlapping returns in shallow areas where air/water interface and water bottom returns occur

nearly simultaneously (Guenther et al., 2000). This wider footprint may also influence the incidence an-

gle on the seabed if it has a significant dip or roughness, potentially increasing the number of inflexion

points of the resulting peak due to multiple backscatters across the footprint. Finally, the refraction of

the incident beam impacts its path in water and thus the location in space of the backscatter.

Considering the specificities of lidar waveforms, simulators can be useful to formalize the numerous

interconnected parameters shaping them. In the next section, we thus summarize the interactions of the

laser beam on its travelling path in the form of radiative transfer equations.
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1.5.3 Simulation of airborne lidar waveforms

Due to the complex physical interactions that dictate the generation of lidar waveforms in bathymetric

environments, the development of processing methods adapted to such data often requires a calibration

phase on simulated data. In this section, we develop the mathematical formulations that enable the sim-

ulation of realistic bathymetric waveforms.

Globally, each waveform component can be seen as an environmental response function (ERF)

resulting from the interactions of the laser source pulse (LSP) and the surface impulse response func-

tion (IRF) (Guenther, 1985; Jutzi et al., 2006; Jutzi et al., 2003; Jutzi et al., 2007), so that:

ERF = LSP ∗ IRF (1.2)

The waveform (WF) is then defined as the sum of a noise component and as many ERFs as there were

surfaces intercepted by the laser beam (Guenther, 1985; Jutzi et al., 2006; Abdallah et al., 2012; Jutzi et al.,

2003; Tulldahl et al., 1999):

WF = Pnoise +
N∑

i=1
ERF i (1.3)

where Pnoise is a noise component and N is the number of intercepted surfaces. To formalize the energy

received by the sensor after backscattering over a target, the interactions of the laser pulse as it travels

towards and backwards the target must be considered. At each laser pulse emission, a surface Ai is illumi-

nated. Considering the range R to this surface, the divergence of the beam γ and the aperture diameter of

the laser emitter Da, Ai corresponds to the solid angle viewed by the beam (Baltsavias, 1999; Höfle et al.,

2007; Jutzi et al., 2003; Babushka et al., 2014):

Ai = π

4R2 (Da + Rγ)

The power Pin received by Ai is (Baltsavias, 1999; Höfle et al., 2007; Jutzi et al., 2003; Babushka et al.,

2014):

Pin = Pem × ηe × Tatm

Ai

with Pem the emitted power, ηe the optical efficiency of the emitter and Tatm the transmittance of the

atmosphere. The illuminated surface Ai then reflects a portion of this energy back to the receiver. If this

surface is Lambertian, it reflects energy uniformly in all directions with a cosine weighting depending on

the angle of incidence of the received radiation (Baltsavias, 1999; Höfle et al., 2007; Babushka et al., 2014).



1.5. Lidar waveforms 55

Thus, the portion of radiation directed at the sensor is

Pout = ρ × Pin

π
× Ai × cos θ

with ρ the reflectance of Ai and θ the angle of incidence of the laser beam on Ai. Finally, the power

arriving at a receiver characterized by a surface Ar and an optical efficiency ηr is (Baltsavias, 1999; Höfle

et al., 2007; Jutzi et al., 2003; Babushka et al., 2014):

Prec = Pout × Tatm × ηr × Ar

R2

since
Ar

R2 is the solid angle viewed by the reflected radiation, that is again affected by the transmittance

properties of the atmosphere (Baltsavias, 1999; Höfle et al., 2007; Babushka et al., 2014; Jutzi et al., 2003).

In the end, under the assumptions that the illuminated surface is the sole intercepted target and provided

it has Lambertian properties, the power reflected back to the receiver is

Prec = ρ

π
× Pem × ηe × Tatm

Ai

× Ai × Tatm × ηr × Ar

R2 × cos θ

which simplifies as

Prec = ρPemT 2
atmArηeηr cos θ

πR2 (1.4)

If several targets are hit successively, the received energy for the first return is described by Equation 1.4

(Baltsavias, 1999; Höfle et al., 2007; Jutzi et al., 2003; Babushka et al., 2014), but the returned energy of a

second target of reflectance ρt2 hit with an incidence angle θt2 is

Prect2
= ρt2PtransTatmArηr cos θt2

πR2 (1.5)

with

Ptrans = 1 − Poutt1
= 1 − ρt1PemηeTatm cos θt1

π

These simplified equations are valid under the assumption that each intercepted target has a surface cor-

responding to the illuminated surface. Otherwise, both surfaces do not compensate for each other. In the

specific context of bathymetric waveform simulation, three targets are intercepted: the air/water interface,

the water volume, and the water bottom. Consequently, a bathymetric lidar waveform can be expressed

(Tulldahl et al., 1999; Feigels, 1992; Guenther, 1985; Abdallah et al., 2012):

WF = Ps + Pc + Pb + N
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with Ps the return from the water surface, Pc the return from the water column, Pb the return from the

water bottom, and N the noise.

Water surface backscatter When the illuminated surface is water, the same principles apply, but con-

siderations linked to the specific interactions of light and water intervene. In particular, the reflectance

of a water surface depends on its roughness. When it is completely smooth like a mirror, specular reflec-

tion occurs (Babushka et al., 2014; Feigels, 1992), and little to no energy comes back to the receiver. Water

bodies are thus always surveyed with waves, which can be seen as a group of finite facets with Lambertian

reflection (Abdallah et al., 2012; Guenther, 1985). However, these facets and their characteristics depend

on the wind and the incidence angle (Guenther, 1985; Feigels, 1992). In the end, if we consider the water

surface to be the first surface intercepted, equation 1.4 can be adapted to the backscatter Ps of a water

surface (Guenther, 1985; Abdallah et al., 2012; Feigels, 1992; Kopilevich et al., 2008; Walker et al., 1999;

Tulldahl et al., 1999):

Ps = ρ(w)N(θ, ω)PemT 2
atmArηeηr

πR2

In practice, this represents the peak pulse power of the waveform return generated by a water surface.

This equation thus incorporates the different components influencing the pulse’s shape, as explained

before. The influence of the intercepted surface’s material is present through ρ(w)/π, which is the surface

reflectivity per unit solid angle (Guenther, 1985). The impact of its geometry is conveyed by N(θ, ω), the

normalized Cox-Munk wave slope distribution that depends on the incidence angle θ and on the wind

speed ω (Guenther, 1985). Finally, the parameters of acquisition are represented throug Pem, Tatm, Ar,

ηe, ηr and the scanning angle θ, that impacts the measure of R. In the end, Ps is simply the portion of the

emitted pulse power Pem reflected backwards after attenuation by a loss factor Ls that depends on water

surface geometry and reflectance. It must however be noted that the function used to take water surface

geometry into account in the above formalization of Ps - i.e. the Cox-Munk wave slope distribution -

is merely a model of waves in coastal waters. It is thus not generalizable directly to all types of water:

although lakes have waves generated by wind too, rivers do not follow similar patterns. Consequently,

the loss factor should be modified for fluvial waters simulation. In the end, a global formula for Ps is:

Ps = LsPemT 2
atmArηeηr

πR2 (1.6)

Water column backscatter After having penetrated through the air/water interface, the beam is re-

fracted and transmitted to the water column. The interactions of the laser pulse with the water column

can be seen as a succession of interceptions of very small surfaces: the particles suspended in water. As

a matter of consequence, the water column component of a bathymetric waveform is affected by sur-
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face material and geometry in a similar way that other components are. However, considering the size of

the particles hit relatively to the incident beam, the interactions are of a different nature - scattering and

absorption, as opposed to reflection (Guenther, 1985) - and occur repetitively until the light reaches the

bottom, thus involving a temporal component. In the end, the water column backscatter Pc is expressed

using Equation 1.5 (Guenther, 1985; Abdallah et al., 2012; Feigels, 1992; Kopilevich et al., 2008; Walker

et al., 1999; Tulldahl et al., 1999; Kim et al., 2016):

Pc = βπ exp (−2krw)(1 − Ls)PemT 2
atmArηeηr

n2
wR2 (1.7)

The
1
π

and cos θw weighting disappear as water column particles do not generate Lambertian reflection

but diffusion and absorption. The incident energy is absorbed exponentially with depth - denoted here

by the range in water rw - depending on a coefficient k. Since this absorption occurs both during down-

welling and upwelling, a factor of 2 is applied in the exponential (Guenther, 1985). k is a coefficient reflect-

ing the attenuation due to water turbidity and the influence of the FOV - thus not strictly similar to the

diffuse attenuation coefficient (Guenther, 1985; Feigels, 1992; Tulldahl et al., 1999). For large FOVs, k can

be approximated by the diffuse attenuation coefficient Kd (Guenther, 1985; Feigels, 1992). However, for

narrower FOVs, a loss factor linked to the sensor’s receiving optics must be incorporated to get k (Guen-

ther, 1985). Additionally, the incoming radiation is diffused by suspended particles of the water volume.

This diffusion occurs over 2π, but the receiver only captures the portion of energy diffused parallelly to

the incidence - i.e. at 180◦
-, which is βπ. A

1
n2

w
factor appears because the solid angle illuminated by the

incident beam is enlarged in water due to light refraction, both when it enters and leaves the water col-

umn (Guenther, 1985). In the end, contrary to Ps, Pc is computed for the complete time interval during

which light travels through water, and not only at one time step.

Water bottom backscatter Eventually, light reaches the water bottom. To model the backscatter gen-

erated by the water bottom, equation 1.5 must be modified to account for light attenuation (Guenther,

1985; Abdallah et al., 2012; Feigels, 1992; Kopilevich et al., 2008; Walker et al., 1999; Tulldahl et al., 1999;

Kim et al., 2016):

Pb = ρb exp (−2Kdrw)(1 − Ls)PemT 2
atmArηeηr

πn2
wR2 (1.8)

Although the seabed is assumed to have Lambertian reflection, the weighting in cos θw of its reflectivity

is not present in Equation 1.8 because it is, by definition, included in Kd (Guenther, 1985).

Noise component The last parameter to take into account to simulate realistic lidar waveforms is noise.

The noise of lidar waveforms is often considered Gaussian (Abdallah et al., 2012; Guenther, 1985; Tulldahl
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et al., 1999). Two types of noises can be considered in lidar waveforms: a background solar noise, caus-

ing the signal to never be truly zero, and a noise relative to the receiver electronics (Abdallah et al., 2012;

Guenther, 1985; Tulldahl et al., 1999; Feigels, 1992). The solar noise is linked to the background light that

cannot be suppressed and is thus also captured by the receiver. In the bathymetric case, for daytime acqui-

sitions - which are the most common as explained in Guenther, 1985 - it can be expressed as (Guenther,

1985; Feigels, 1992)

PN,D = ISAS∆BARηR

R2 (1.9)

with IS the solar irradiance reflected by the water column, AS the area within the receiver FOV on the

water surface, ∆B the bandwidth of the interference filter of the receiver, and AR the effective aperture

area of the receiver telescope. To simulate the solar noise, a Gaussian white noise with a mean of 0 and a

standard deviation of 1 can be convolved with PN,D. On the other hand, the electronic noise is a Gaussian

noise with a mean of 0 and a standard deviation varying with respect to the signal level (Abdallah et al.,

2012).

In the literature, multiple simulators of bathymetric lidar waveforms relying on these equations can be

found. They sometimes involve Monte Carlo processes (Guenther, 1985; Guenther et al., 2000), namely

for ray tracing (Gastellu-Etchegorry et al., 2016). Most of the time, they are built to better understand

lidar principles (Guenther, 1985; Feigels, 1992; Tulldahl et al., 1999; Walker et al., 1999; Kopilevich et al.,

2008) or to develop waveform processing approaches and better anticipate the results of lidar surveys

(Wu et al., 2011; Abdallah et al., 2012; Kim et al., 2016).

1.6 Conclusion

Topo-bathymetric lidar remote sensing has the potential to address the issue of land-water continuum

observation: it allows the simultaneous, seamless modelling of surfaces below and above the waterline

at large scales while preserving their physical integrity. However, this sensor produces very specific data

that are difficult to interpret straightforwardly. Similarly to other remote sensing imagery data, they thus

require the development of adapted processing methods, whether for visualization or information ex-

traction purposes.

3D point clouds are irregularly spaced and characterized by a great sparsity, which makes them in-

adapted to existing image processing tools without rasterization and the consequent loss of information.

Their third dimension also makes them heavier to process, which means that developing adequate meth-

ods is not trivial. On the other hand, lidar waveforms are particularly noisy and site- and acquisition-

dependant. The physical processes they originate from also make them difficult to accurately analyse.

For example, overlapping or weak returns require signal processing tools designed specifically to take into
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account the physics behind waveforms.

Though these data were still particularly challenging to deal with a few decades ago, the development

of advanced data processing techniques based on machine learning, combined with computing hard-

ware progresses, has resulted in major advances for lidar data processing. In chapter 2, we review methods

adapted to lidar data processing in complex environments and discuss the remaining challenges and op-

portunities for the objective of land-water areas observation.
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Remote sensing (RS) measurements - including lidar data - rarely constitute straightforward informa-

tion that can directly be used to draw conclusions on natural phenomena. Most RS data require process-

ing to be visualized in understandable forms and analyzed. The quantity of information contained in the

raw RS imagery data, their ever-increasing amount, and their complexity also necessitate automated pro-

cessing chains to be used to derive knowledge about Earth. The emitted or reflected radiations measured

can be a mere proxy of a target phenomenon or the studied subject. In both cases, processing methods

are required, to formalize intuitive analyses of imagery such as how reflectance informs on an object, or

to automate the conversion of raw recordings into knowledgeable information.

In this chapter, processing lidar data is discussed. We first introduce learning-based methods in general

in section 2.1. The processing of 3D point clouds and lidar waveforms is then discussed in sections 2.2 and

2.3, respectively. In the conclusion, we point out open challenges that arise from this chapter and that will

be developed in the next chapters.

2.1 Learning-based data processing methods

2.1.1 General notations

Data processing consists of extracting information Y from data X using a mathematical function link-

ing them so that f(X) = Y .

X can be an image - a group of pixels - or a point cloud - a group of 3D coordinates. Y can be a

numerical or a categorical variable. If Y is categorical, the task of deriving Y from X is classification. If

Y is numerical, this task is regression. The relation Y = f(X) can be known - for example, extracting

the slope from a digital terrain model is computing a gradient - or unknown. In this latter case, it can be

estimated based on examples of X and Y , using machine learning.

Learning f directly on samples of X is a delicate task since the relation from raw data X to inter-

pretable variables Y can be complex. To simplify this mathematical problem, X can be transformed into

features g(X) defined by the user. Learning Y = f(g(X)) is then a simpler problem. The features g(X)
are designed to formalize the descriptive characteristics of the processed data and increase the amount of

information available to derive the prediction rule.

In practice, to approximate f , a function fθ(g(X)), where θ is a set of parameters of f , is used. Pa-

rameters θ then have to be optimized to make fθ(g(X)) as close to Y as possible. For example, a simple

model can be linear regression, in which case

fθ(g(X)) = αg(X) + β, and θ = (α, β)
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Efficient methods to optimize the value of θ depending on g(X) exist for various models. In the last

decades, methods to optimize more complex functions have emerged, lifting the need to simplify the

mathematical problem by computing features g(X) and directly working on approximating fθ(X). A

typical example is neural networks. Such methods have quickly outperformed the simpler models used

to estimate fθ(g(X)).

Estimation of θ

In most cases, finding the value of θ is solving an optimization problem. Since θ is unknown, its value

is estimated based on data. The relation linking X and Y is learned on N couples (Xi, Yi), for example

by finding θ such that

∀i ∈ {0, 1, . . . , N}, fθ(Xi) ≈ Yi

The optimal value of θ, θoptim can be formalized as

θoptim = argmin
θ∈R

L(Y, fθ(X))

with L a loss function, defining the error between Y and fθ(X). L depends on the application and

must be defined by the user. Common loss functions are the Mean Squared Error (MSE) or the Mean

Absolute Error (MAE) for regression problems, and the Cross Entropy or the Focal Loss for classification

tasks.

To solve the optimization problem and find θoptim, numerous techniques exist. Among them, gradi-

ent descent is commonly used.

2.1.2 Main families of machine learning models

In this section, the most common models for f relying on transformations g(X) are reviewed. Among

them, one can list:

• Probabilistic methods involve modelling probability distributions for Y based on the uncer-

tainty and variability of input data X . These approaches offer a more comprehensive and robust

perspective for decision-making, especially in domains with noisy or incomplete data. Final deci-

sions regarding the values of Y are made by considering the underlying probability distributions,

and associated loss functions often aim to maximize probabilities.

• Margin-Maximization models, such as SVM (Support Vector Machines) for classification and
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SVR (Support Vector Regression) for regression, seek to either find the hyperplane that maximizes

the margin between different data classes (in the case of SVM) or maximize the margin around data

points (in the case of SVR) (Cortes et al., 1995). Leveraging the kernel trick, which allows data to be

projected into high-dimensional spaces where linear models are effective, these methods are well-

known for their efficiency in modelling non-linear relationships between features and target values

within a supervised learning framework.

• Hierarchical tree-based methods, such as decision trees, are widely employed for classification

and regression tasks (Breiman et al., 1984). They operate by recursively dividing the dataset into

smaller subgroups based on features, creating a tree-like structure. In classification, each leaf of the

tree represents a class, while in regression, each leaf contains a numerical value. These trees facilitate

decision-making by following a path from the root to a leaf, making them well-suited for modelling

complex relationships between features and target outputs.

It is worth noting that most machine learning algorithms are likely to be unstable to bias in the data,

such as the presence of outliers or the redundancy of information in the input. To reduce this sensitivity

and build robust learners, ensemble methods use multiple algorithms trained on random subsamples of

the training datasets and use the mean prediction of the group of algorithms obtained as the final decision

(Sagi et al., 2018).

Ensemble learning

Bagging is a part of ensemble learning that designates the method used to resample the training

dataset before building each algorithm of the ensemble. The different subsets are obtained ran-

domly and may thus contain similar samples. The advantage of bagging is to stabilize algorithms

with high variance and dependence on the input distribution.

Boosting is another strategy to make a machine learner more robust. When using ensemble learn-

ing, each model is built independently, regardless of the strengths or weaknesses of its companions

and its potential to improve the global result. This means that the ensemble of models will put on

the same level the highly and badly performing models obtained with different subsets of training

data. Boosting aims at weighing the individual models that populate the ensemble depending on

their performances, to try to compensate for the errors made in the group (Chen et al., 2016; Hastie

et al., 2009).

Random forests (Breiman, 2001) are an example of the use of ensemble learning. They are among

the most popular, robust and easy-to-deploy machine learning algorithms. They are the result of
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applying ensemble learning to hierarchical trees. Though they do not natively involve boosting,

they can be coupled with boosting methods such as AdaBoost (Hastie et al., 2009) or XGBoost

(Chen et al., 2016), that update the forest based on the individual trees. Random forests use a sub-

sampling of input samples and input features to build trees that perform regression or classification

(Breiman, 2001). Since they rely on ensemble learning, they produce their prediction in the form

of a proportion of classifiers that voted for a given output, thus resulting in prediction probability

information (Breiman, 2001). They are also popular for another statistic that they provide on the

features used to make the prediction: using the impact of a feature on accuracy or node impurity

when it is used, they compute an indicator on each feature’s importance in the obtained result

(Breiman, 2001; Breiman et al., 1984). It should be noted that ensemble learning can be used with

models based on pre-defined features and with feature learning approaches.

Feature selection for classical machine learning

When using machine learning algorithms based on pre-defined features, introducing a wide range of in-

formation to represent the data may not always be optimal. Some of the multiple descriptive features may

be irrelevant regarding the target variable, or redundant. Although irrelevant or redundant information

should intuitively not impact the prediction, it can impair the learning process by increasing the number

of parameters involved and complexifying the optimization process. Similarly to the scales exploited, an

optimized feature set should thus incorporate the most information possible, while also limiting redun-

dancy between attributes. Considering the variety of information derivable from 3D data, empirically

selecting the attributes to integrate into a classification is not only time-consuming but also hazardous,

as it might impair classification performances. Feature selection methods allow the automation of a great

part of the feature vector construction. They are mainly based on the estimation of an attribute’s relevance

relative to the predicted variables and on the minimization of correlation between relevant parameters.

As explained in Dash et al., 1997, feature selection methods can be split into three categories. Filter-based

or univariate methods aim at maximizing the relevance of the predictors used. They use relevance score

functions and rankings of the scores to only keep a subset of the most informative features for classifica-

tion. Popular score functions include Fisher’s index or Information Gain index, but adapted metrics that

take multiple aspects of feature relevance into account also exist (Weinmann et al., 2013). Multivariate

methods try to minimize feature redundancy among the relevant attributes, often by combining score

functions with correlation assessments (Dong et al., 2017; Weinmann et al., 2015). Both univariate and

multivariate approaches are independent of the classifier used, and its settings, which is sometimes seen

as a generalization advantage (Weinmann et al., 2015), but also do not account for inter-feature syner-

gies, and may evict highly correlated but still informative features (Guyon et al., 2003). Wrapper methods
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and embedded feature selection consist of exploiting classifier outputs to select features. They either use

classification accuracy obtained using each feature separately as a score to prune the input vector (Dong

et al., 2017) through backwards or forward selection, or rely on feature importance information provided

by algorithms, to evict least important predictors and improve accuracy (Guan et al., 2012). Random

forest-based metrics are among the most common embedded selection strategies.

Recently, neural networks have significantly developed due to their higher performances and abilities

to solve more complex problems. In the following sections, we detail the principles of neural networks.

2.1.3 Deep neural networks

Deep neural networks belong to probabilistic machine learning methods. They are used to model com-

plex probability distributions.

General principles

A neural network is a stack of neurons, also called perceptrons. A perceptron P is a system that takes an

input X of dimension N , X = {X1, . . . , XN} and models the output Y as:

Y = σ

(
w0 +

N∑
i=1

wiXi

)

Here, the parameters to optimize are the weights w0, . . . , wN . The function σ is called an activation

function. Its role is to incorporate non-linearity into the system, which is otherwise a mere linear regres-

sion. Figure 2.1 illustrates a perceptron.

Figure 2.1: Schema of a perceptron.

A perceptron forms an elementary function that can be combined multiple times in an intercon-

nected manner to form neural networks.
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It has been shown that no matter its complexity, any mathematical relation f can be approximated

with a limited number of stacked perceptrons (Cybenko, 1989). As a consequence, using a large number

of perceptrons to approximate a complex function f linking outputs of interest Y to observed data X

can be done with a combination of a (potentially large) number of perceptrons.

Figure 2.2 illustrates a neural network formed by stacking a finite number of perceptrons to estimate

a more complex function.

Figure 2.2: A neural network with one layer of stacked perceptrons. NL refers to the number of layers in the network.

Empirically, it reveals more efficient to successively use smaller stacks of perceptrons than to use a sin-

gle, very large, stack of perceptrons. Each stack of perceptrons then forms one layer of a neural network,

also called in this setting a multi-layer perceptron (MLP). Figure 2.3 illustrates the resulting neural net-

work.

Figure 2.3: A multi-layer perceptron. NL refers to the number of layers in the network.

The number of perceptrons per layer, the number of layers, and their interconnections are what we

call the architecture of the neural network. An architecture with multiple layers (typically a large number

of layers) results in what we call a deep neural network. In such cases, a closer look at the last layer of the

network shows that it works similarly to a single layer perceptron applied to transformed data, similarly

to approaching f based on features of the input X . At this stage of the network, the task is to approach a

simpler function on well-transformed data. When taking this point of view, the first layers of the network
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are in charge of performing the transformation of the inputs and thus learning features of the inputs. The

goal is then to learn the best transformation of X . This is one of the main strengths of deep neural

networks, which directly learn and compute features of the input data instead of requiring predefined

and pre-computed features as input.

The optimization of deep neural networks can be delicate, since the cost function associated with a

complex function f(X) can be very complicated and a large number of parameters w must be estimated.

This problem is dealt with thanks to:

1. Gradient backpropagation, a technique that allows efficient computation of the gradient in

complex networks (Lecun et al., 1998);

2. Access to large datasets: approximating thousands of parameters requires using a lot of observa-

tions;

3. Access to powerful computers with the capacity to perform heavy computations.

In this section, we presented deep neural networks based on perceptrons. Networks relying on other

operations also exist for different types of inputs and tasks. In the end, deep neural networks provide a

flexible framework to work with very complex relations.

Deep neural networks for 2D and 3D structured data

In EO, many different types of structured data can be collected. Structured data are organized around

neighbourhood relationships, with no independence between neighbouring measurements
1
. It can be

interesting to exploit this spatial structure when extracting information from the data. Several deep

neural network architectures are specifically designed to capture the relations between neighbour data

instances.

An option is to perform spatial convolutions to capture the patterns characterizing neighbourhood

dependencies. Such architectures are convolutional neural networks (CNNs). They follow the same

principles as MLP but simply replace the linear regressions with convolution operations.

1. Sometimes, point clouds are considered "unstructured data" although they have a spatial structure. This is simply be-

cause they do not follow a regularly gridded structure.
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In 2D, the convolution operation involves two elements: a kernel, and an input matrix. The kernel

is a square matrix containing weights and defined by its size. The size of the kernel is systematically

smaller than that of the input. During the operation, an element-wise multiplication is performed

between the kernel and the input. The values of this multiplication are then summed. In practice,

in a convolutional layer, the kernel is used as a sliding window to compute a feature map with

values corresponding to the convolution operation obtained by centring the kernel on each of the

input matrix elements successively. The weights of the kernel are learned during optimization.

2D Convolution

Convolutions use a sliding window - the kernel - of a given size to consider the whole input. To capture

long-range relations, a solution can be to use large-size windows. However, increasing the size of the kernel

results in a drastic increase of the dimension of θ, and thus of the number of parameters to estimate. To

limit the corresponding complexity and computation cost increases, another option is to reduce the size

of the input of the convolution, so that the same filter size virtually sees a wider portion of the input.

Pooling operations are used to reduce the size of the input to a layer, by applying mean or maximum

filters of size two to it, for example.

Different types of neural network architectures exist, mainly defined by the number and organisa-

tion of the neurons composing them, and by the type of linear operations they embed. Among the deep

neural networks family, convolutional ones (Lecun et al., 1995) are among the most performant thanks to

their native ability to consider the spatial context of the considered element in their prediction, and thus

learn motives in the data. Based on alternations of convolution and pooling operations, these networks

progressively learn more and more abstract features and consider increasingly larger portions of data to

incorporate multiple scales.

Convolutional networks use the same weights and operators across the whole input, contrary to

MLPs, which require the repetition of as many linear operators as desired outputs. This reduces the

number of parameters to optimize, as this number depends on the size of the convolution kernel, the

convolution stride and padding used, and the number of convolution filters performed, and not on the

size of the input and the output. The key to their performance is the use of such shared weights involving

strong local connections in multiple layers (Lecun et al., 1995; Zhou et al., 2020)

When processing structured data such as an image, a possibility is to produce a single output for the

whole image (image classification) or an output per pixel of the image (semantic segmentation).

The CNN is the typical architecture used to output one value per image. To produce per-pixel pre-

dictions, another typical architecture exists: U-Net. U-Net (Ronneberger et al., 2015) is named after its

U-shaped architecture, coupling two parts: one consisting of convolutions and downsampling opera-

tions, and the other made of upsampling operations and convolutions. The first is called the encoder,
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and the latter is the decoder. U-Net adds to each decoder layer’s input the encoder layer’s output of the

corresponding size to maximize the amount of learned features included in the prediction. The resulting

architecture is schematized in Figure 2.4, extracted from the original paper (Ronneberger et al., 2015).

Figure 2.4: The U-Net architecture, as illustrated in the original paper of Ronneberger et al., 2015.

Both of these typical architectures exist with multiple variants allowing them to solve a variety of

problems and tackle typical limitations identified by their predecessors.

Several typical variants are:

• Residual networks – introduced in (He et al., 2016) – connect convolution layers’ outputs to

their inputs before feeding them to the forward layers. Residual connections mitigate the problem

of vanishing gradients and thus allow deeper networks to be trained.

• Autoencoders (Rumelhart et al., 1986) are networks used to reconstruct their input. Their most

popular form incorporates two parts: an encoder in which the size of the feature maps is progres-

sively reduced to allow convolutions with constant kernel sizes to cover bigger portions of the data,

and a decoder in which feature maps are progressively upsampled to recover the size of the output.

Such networks are often used to learn and extract meaningful representations of unlabeled data.

• Inception networks – introduced in (Szegedy et al., 2015) – are CNNs that learn convolutions
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with different kernel sizes in parallel to make the receptive field of each layer vary, and thus learn

more representations of the data

• Siamese networks – a concept originally introduced in (Bromley et al., 1993) – combine two twin

networks that join at their outputs. They exist in different configurations, mostly used to fuse

several input sources (Hazirbas et al., 2017), or perform change detection (Caye Daudt et al., 2018).

• Region-based neural networks are a family of networks built to perform object detection and

classification. Among them, YOLO (Redmon et al., 2016) is the most famous, as it performs object

detection and classification simultaneously, and in real time.

Initially designed for 2D image processing, CNNs can originally only operate on regular Euclidean

data such as images and sequences (Lecun et al., 1995). Though they have been adapted to graphs using

adjacencies relationships to propagate weights (Zhou et al., 2020), their development for sparse 3D point

clouds was slowed down by their complex neighbourhood relations, causing specific architectures to be

developed, such as PointNet (Qi et al., 2017b; Qi et al., 2017a) and KPConv (Thomas et al., 2019), which

will be better introduced later in this Chapter.

1D Deep neural networks

Although all of the previously cited architectures were developed for image processing purposes, they

can all be adapted to other types of data on which convolutions can be performed – including graphs

and time series. Good examples are time-delayed CNNs (Lang, 1988), TempCNN (Pelletier et al., 2019)

and U-Time (Perslev et al., 2019), 1D versions of CNNs and UNet, or GNNs (Wu et al., 2021), graph

convolution networks, that exist in various configurations. However, sequential inputs with temporal

relations also benefit from specifically designed methods:

• Recurrent neural networks (RNN) (Rumelhart et al., 1986) include specific modules that mem-

orize information about previous timesteps when processing a given sequence sample.

• Long Short Term Memory (LSTM) (Hochreiter et al., 1997) gates and Gated Recurrent Units

(GRU) (Chung et al., 2014) are specific types of RNN modules, with different ways of selecting

the information to keep in memory.

• Transformers, introduced in (Vaswani et al., 2017) combine feed-forward MLPs with attention

mechanisms – introduced in (Bahdanau et al., 2014). Wen et al., 2022 sum up the self-attention

modules of the Transformer as “a fully connected layer with the weights that are dynamically gen-

erated based on the pairwise similarity of input patterns”. One of the main traits of Transformers
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is that they can attend to complete sequences thanks to self-attention, which gives them abilities

to model long-range dependencies and interactions in sequences that convolutions do not cap-

ture (Wen et al., 2022; Khan et al., 2021). By not relying on sequential computation, they are also

optimized for parallelisation. Finally, they experimentally appear to be scalable to very large mod-

els, high-complexity tasks, and large-scale datasets (Khan et al., 2021). However, these advantages

come at the expense of an increased need for training data and computationally intensive training

processes.

2.1.4 Current challenges

Below, we list some of the current limitations and challenges of deep neural networks.

Making more of available labelled datasets A first possibility to produce networks with a lower

training cost can be to exploit better the amount of labelled data available, even if it is not massive. Datasets

can be artificially augmented using data augmentation, which consists of artificially rotating, cropping,

or changing reflectance parameters of the labelled samples to simulate different conditions of observation

of the objects they represent (Perez et al., 2017).

Data can also be simulated, either using physics-based simulators (Gélis et al., 2021) or by relying on

generative networks (Goodfellow et al., 2014) to create new samples to train on.

Another way to reduce the training cost by finding data workarounds is to use domain adaptation or

other types of transfer learning in order to reuse another existing labelled dataset, and potentially even

another already trained model (Weiss et al., 2016). Domain adaptation consists of adapting a machine

learning model originally trained on data from one domain - the "source" domain - to generalize and

perform on data from another related domain - the "target" domain. For example, it can imply finding a

transformation between two data ensembles and transferring data from one domain to another, so the

features learned on the first dataset are also relevant to the other.

Weakly supervised and unsupervised learning The second possibility is to change the training

paradigm. Instead of relying on supervised learning, it is possible to use weak supervision (Zhou, 2018),

or even no supervision to learn the network’s parameters. This reduces, if not cancels, the labelling effort.

Weakly supervised learning has two main configurations:

• Using a limited amount of labelled samples. This includes few-shot learning (Wang et al., 2020b)

– generalizing to new classes with few examples of each –, zero-shot learning (Wang et al., 2019b)

– identifying objects never seen during training –, and active learning (Settles, 2009) – in which

the model queries the user to label a subset of samples.
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• Using incomplete annotations, which is also referred to as inexact supervision or weak supervi-

sion: for example using per-image annotations to derive per-pixel predictions (Xu et al., 2020).

Unsupervised learning (Barlow, 1989; Ghahramani, 2004) mostly consists of learning patterns on

unlabelled data samples. Clustering is then performed in the feature space to identify categories of items

with similar features. In the context of deep learning, the goal can be to learn descriptive features of the

data by using an encoder-decoder (Kingma et al., 2013; Rumelhart et al., 1986) trained to reproduce the

inputs, or to exploit contrastive learning (Khosla et al., 2020) to learn attributes common to data samples,

and attributes that separate them.

However, globally, these developments are still recent and remain methodological experiments rather

than solutions applicable to a large set of problems. Supervised learning is thus still present, mostly in

applied contexts.

Explainability

Increasing attention is also given to the explainability of results obtained with deep neural networks,

which are often pointed out as black boxes, which sometimes hinder their deployment.

According to Roscher et al., 2020, explainable machine learning in the natural sciences should incor-

porate transparency, interpretability, and explainability.

Several frameworks exist to address these objectives, such as Local Interpretable Model-agnostic Ex-

planations (LIME) (Ribeiro et al., 2016), or the use of Shapley values (Lundberg et al., 2017; Shapley,

1953). Other methods more specific to deep neural networks are also progressing, for example, Axiomatic

Attribution - or Integrated Gradients - analysis (Sundararajan et al., 2017) or Grad-CAM (Selvaraju et

al., 2020) which use gradients evolution or activation maps to identify the key elements behind a net-

work’s decision.

Computational cost

Another current challenge of deep learning is the computational complexity of most models. There are

more and more tasks requiring almost real-time solving, which is sometimes incompatible with complex

architectures.

A global trend in the field of feature learning at the time of this manuscript is thus to turn towards

lighter models while trying not to sacrifice performance. To this end, the Transformer architecture

(Vaswani et al., 2017) is increasingly adapted to other tasks than natural language processing (Wen et al.,

2022; Robert et al., 2023; Dosovitskiy et al., 2020; Khan et al., 2021) with modifications allowing to reduce

the computation cost initially associated to self-attention. Indeed, Transformers initially require a large
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amount of training data and a computation-intensive training phase to reach the high performances they

are praised for (Khan et al., 2021). However, they have the major advantage of being able to learn both

short-range and long-range dependencies, contrary to convolutional neural networks, thanks to their self-

attention mechanism (Wen et al., 2022; Khan et al., 2021). Coupling them with sampling strategies or

new self-attention modules designed to reduce the computation cost thus enables models to exploit their

strengths while limiting the computation expense. For example, the adaptation of the 3D PC processing

network Superpoint Graph (Landrieu et al., 2018) with a Transformer-inspired architecture results in a

network as accurate but 200 times more compact than its state-of-the-art equivalents, which also makes

its optimization much faster (Robert et al., 2023).

Current challenges of machine learning and lidar remote sensing

Machine learning has enabled great progress in EO and in the interpretation of RS imagery. However,

several factors caused lidar to be left out of the original development of machine learning algorithms,

which mostly focused on images, times series, and language:

• Lidar emerged in the 1970s, after the advent of the laser, while language processing and image pro-

cessing were investigated already in the late 1940s. This historically longer period of application

makes image processing more advanced than 3D data interpretation.

• Technical constraints long limited the analysis of lidar data in 3D, as they come with additional

complexity, requiring adapted visualization software and processing tools that are able to support

the heaviness of handling a third dimension.

• Lastly, the availability of lidar instruments and lidar data, as well as their cost has limited their

accessibility and thus their use.

As a consequence, lidar originally did not benefit from state-of-the-art data processing developments.

Lidar data were thus long reduced to 2D rasters, losing the spatial structure information of the point

clouds, in order to fit in the existing processing options and exploit the highly powerful 2D processing

methods available. As the computational power of computers increased, machine learning became pos-

sible on 3D data, but is still a very recent field compared to image analysis. Similarly, lidar waveforms ben-

efitted from the available machine learning algorithms such as random forests. However, their analysis

with deep learning methods, lifting the need to extract features, is still scarce.

Fewer data benchmarks, pre-trained models, or user-oriented software exist for 3D point clouds and

full waveforms than for other RS data. As a consequence, deep learning approaches, that allow a larger

automation of data analysis and have proven to outperform shallow learning in recent years, are still less
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accessible to lidar data. Limitations specific to 3D point clouds are discussed more deeply in Section

2.2, while those related to full waveforms are presented in Section 2.3.

2.2 3D point clouds classification in natural environments

Classification of 3D data is a challenge, as 3D data are unstructured, irregular, and unordered. Their

characterization is made harder by the local density variations, and the complex objects they contain.

In this section, we review methods for producing supervised 3D classifications. Clustering methods and

approaches relying on rasterized lidar data are not reviewed. Existing supervised 3D point cloud classifi-

cation methods can be organized into two categories: handcrafted features with conventional classifiers

and learned features with deep neural networks. Before entering into the details of each paradigm, let us

recall the specifics and motivations of lidar point clouds processing.

2.2.1 Motivations and specifics of 3D lidar point clouds processing

3D point clouds are unordered and irregular data. Practically, this means that the points are not regis-

tered in a logical order and can thus be interchangeable, that their spatial repartition does not follow any a

priori structure, and that they are not regularly spaced, which results in point clouds being a particularly

sparse type of data.

The main information provided by airborne lidar point clouds is a model of the relief of the sur-

veyed area. Lidar point clouds are thus often used to characterize the geomorphological structure of

sites, either by analyzing the surface topography – thus including any object located over the ground –

or by considering only the terrain’s elevation - which implies removing all points resulting from inter-

ceptions of overhanging objects. To produce such Digital Terrain Models (DTMs) or Digital Surface

Models (DSMs), point clouds are often pre-processed and regularly gridded to output 2D rasters of the

desired information. Airborne lidar point clouds can provide information on the nature of the scene

too, which allows the generation of land use/land cover 3D maps, or the production of models analyz-

ing specific types of objects, such as Digital vegetation Height Models (DHMs) or canopy models. In

particular, topo-bathymetric lidar data classification is necessary to respond to the following challenges:

• identification of bathymetric points to derive seabed topography;

• accurate classification of the water surface;

• correction of the effects of refraction on the delivered 3D point coordinates;

• detection of variations in seabed types.
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Additionally, point clouds can be used to study characteristics of the scene that are not the nature

of the objects intercepted. For example, the dip, roughness or mean elevation can be studied directly to

characterize the terrain, or used to approximate related parameters about the environment. Extracting

knowledge from point clouds can thus be an end in itself or simply a step towards other goals.

To illustrate, automatically detecting the nature of the surfaces sampled in the data is the finality for 3D

mapping purposes, but a mere pre-processing task in biomass assessment studies.

To access all the knowledge contained in lidar point clouds without manually estimating the neces-

sary parameters – point nature, dip of the surface, etc – data processing methods specifically designed for

point cloud characteristics extraction exist. In particular, many methods allow the extraction of descrip-

tive parameters of the point cloud that allow automatic interpretation, such as automatic classification

of the point’s nature.

When similar surveys are conducted on multiple dates, the changes occurring in the scene can be

studied using lidar point clouds too (De Gélis, 2023). However, here we will not mention methods tack-

ling the issue of point clouds comparison, as it is out of the scope of this thesis. We will only describe

how descriptive information can be extracted from point clouds to allow automatic knowledge extrac-

tion, namely to characterize the nature of the objects at the origin of each point. Similarly, though the

methods described in the following sections can be used to perform regression and approach physical

parameters or any other desired numerical output, regression methods on lidar point clouds will not be

detailed hereafter, as solely the classification of categorical variables is developed in the thesis.

2.2.2 3D point clouds classification using handcrafted features

Semantic classification of point clouds consists of attributing a label to each point, which can also be

seen as point classification. To perform this task with supervised machine learning classifiers, an input

vector must be fed to the classifier. This vector often consists of a group of handcrafted data attributes

– also called features, or descriptors – that encode characteristics of the points and their context. The

following sections detail how a 3D point cloud can be automatically described using mathematically for-

malized characteristics, and how the resulting attributes can be used to obtain a classified point cloud.

Features definition

The spatial repartition of the points in a PC and, for multiple return lidar, the echoes’ number, order-

ing and characteristics depend on a combination of sensor physics and surface geometry. The reflected

intensity is also linked to the albedo of the surveyed object and to the sensor. They thus act as prox-

ies of the actual surface characteristics. PC classifications consequently exploit the geometry of the PCs
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(Hackel et al., 2016) and their spectral dynamics (Chehata et al., 2009) or their local dimensionality

(Brodu et al., 2012; Vandapel et al., 2004). For example, the eigenvectors of each point’s neighbourhood

covariance matrix are popular attributes in identifying isolated points, lines, planes, volumes, contours

and edges in PCs (Gross et al., 2006). Using ratios of these eigenvalues allows the assessment of the lin-

earity, planarity, sphericity, anisotropy, eigenentropy, omnivariance, scattering or change of curvature of

the 3D shape (Chehata et al., 2009; Gross et al., 2006; Pauly, 2003). Estimates of the PC’s local point

density (Weinmann et al., 2013) or the verticality (Demantké et al., 2012) are other helpful parameters

to classify points. Multiple returns characteristics associated with airborne lidar data also constitute

information on the objects surveyed: the number of returns, return number or ratio of both are useful

for identifying ground, buildings or vegetation (Chehata et al., 2009). Height-derived features such as

elevation variations between points of a neighbourhood or point distribution kurtosis or skewness are

also used for classification purposes (Antonarakis et al., 2008; Chehata et al., 2009; Guan et al., 2012; Yan

et al., 2015). They can be combined with distance-to-ground features, corresponding to the distance

between the points to classify and the ground, through the analysis of a digital terrain model, for exam-

ple (Blomley et al., 2017; Chehata et al., 2009; Niemeyer et al., 2012). Another possibility to assess the

geometrical characteristics of point clouds locally is to use histogram-based features that analyse the

variations of geometrical features around the point through histograms, whose bins are used as descrip-

tors (Blomley et al., 2016; Blomley et al., 2017; Himmelsbach et al., 2009; Osada et al., 2002; Rusu et al.,

2009; Tombari et al., 2010; Wohlkinger et al., 2011). However, computing these features experimentally

demands a higher computation time (Garstka et al., 2016).

Though some studies solely exploit PC geometry to identify 3D objects (West et al., 2004), the ra-

diometric information contained in lidar data can further improve PC interpretation where objects

have similar geometries (Yan et al., 2015). Radiometric information is rarely used on its own (Song et al.,

2002) and is often integrated as a complement to previously mentioned geometrical features. It is often

among the most contributive features to improve segmentation (Dai et al., 2018) and classification results

(Im et al., 2008). The most popular attribute is the mean value of the backscattered intensity over a

neighbourhood or between the first and last returns (Antonarakis et al., 2008). Combining multispec-

tral radiometric measurements provides even more reliable information than single wavelength data

(Morsy et al., 2017b). Using multispectral lidar systems allows to incorporate intensity ratios – for ex-

ample, vegetation indexes – to classification predictors (Chen et al., 2017; Morsy et al., 2017b; Wichmann

et al., 2015) or to compare surface reflectances in different optical domains (Chen et al., 2017; Gong et al.,

2015) and even create colour composites with different channel combinations (Wichmann et al., 2015),

thus refining point identification (Im et al., 2008). However, these existing methods perform nearest

neighbour interpolations of different intensities. Among the reviewed features, no solution to formalize
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the sampling differences of multi-spectral point clouds exists.

Features extraction

3D point clouds are unordered and have varying densities. Also, points are 0-dimensional and thus do

not contain any meaningful geometrical information other than their Z coordinate. For these reasons,

descriptors are computed on the neighbourhood of each point, which describes the local geometry.

The spherical neighbourhood is the most common for PC processing, defined by its radius or diame-

ter and comprising each point’s nearest neighbours with respect to 3D Euclidean distance. Cylindrical

neighbourhoods are also exploited by Niemeyer et al., 2012, and cubic or cuboid ones are explored by

Dong et al., 2017. Overall, spherical neighbourhoods are considered the most helpful, based on the obser-

vations of Thomas et al., 2018 and Hermosilla et al., 2018, which compared the use of nearest neighbours

(NN) and spherical searches to describe PCs. They are considered more stable than NN to the variations

of density (Hermosilla et al., 2018), surface slope or orientation and point pattern that occurs in PCs, and

more efficient for handcrafted feature extraction (Thomas et al., 2018). Thomas et al., 2019 additionally

states that a consistent spherical domain helps classifiers learn more meaningful representations of the

local aspect of the PCs during training.

Figure 2.5: Illustration of spherical and cylindrical neighbourhoods for 3D point cloud processing.

Independently from the type of neighbourhood implemented, descriptive features of 3D data can

be computed at a single constant scale (Chehata et al., 2009) or multiple scales (Blomley et al., 2017;

Brodu et al., 2012; Hackel et al., 2016; Hackel et al., 2017; Niemeyer et al., 2012).
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Multiple scales successively applied to each point have proven to have greater descriptive power than

a single constant scale since they can better capture scene elements of different sizes (e.g., vegetation) and

the variations of object geometry with scale (Brodu et al., 2012; Hackel et al., 2016; Hackel et al., 2017;

Thomas et al., 2018). Considering the diversity of objects in PCs, the neighbourhood type, the number of

scales used, and their values impact the classification of the data and thus require careful parameterization.

Automatic optimal scale identification has been investigated to avoid empiric selection. It mainly

relies on minimizing information redundancy – through correlation or entropy estimates – and maximiz-

ing relevance in terms of classification accuracy. For single-scale classification, Niemeyer et al., 2011 advised

an optimal scale of 7 NN in terms of classification accuracy when classifying urban scenes with lidar data.

Rather than defining a fixed set of multiple scales, Demantke et al., 2012 try to identify automatically the

most relevant scale to describe each point’s neighbourhood by using its dimensionality. Similarly, Wein-

mann et al., 2015 select each point’s individual optimal scale before extracting and selecting descriptive

features. These approaches combine the use of multiple scales across the PC and the computation of

features at a single scale for each point. Dong et al., 2017 propose to select an optimal neighbourhood

type and its scale for each feature rather than optimizing the scale for each point, thus combining the

advantages of different types of neighbourhoods, multiple scales and uncorrelated features.

3D points classification

Many classification algorithms have been developed to classify 3D PCs. The most common ones classify

each point individually without considering the relationships between the point’s label and its neigh-

bour’s assigned labels. They include instance-based techniques such as NN classification, rule-based

predictions as applied by decision trees, probabilistic learners like Maximum Likelihood, max-margin

learners as Support Vector Machines, and ensemble learning (Kotsiantis et al., 2007; Sagi et al., 2018). En-

semble learning (Sagi et al., 2018) is the most popular among individual point classification strategies. It

relies on bagging, which consists of assembling several independent weak learners and combining them

into a single strong learner using a voting mechanism. Random Forest (RF) models implement ensemble

learning. Their ease of use, efficiency, robustness to overfitting, generalization abilities and production

of a feature importance metric (Breiman, 2001; Pal, 2005) explain their frequent use for 3D data classifi-

cation. They have been used for point-based classifications of both topographic and TB lidar (Chehata

et al., 2009; Hansen et al., 2021; Letard et al., 2022b; Letard et al., 2022a). In RF, since the decision trees

are independent, one cannot compensate for the potential weaknesses of another to improve the global

performance of the forest. Algorithms like AdaBoost (Hastie et al., 2009) and XGBoost (Chen et al.,

2016) overcome this limitation by incorporating boosting, which consists of training each weak learner

to correct their predecessor’s errors; however, they require setting additional parameters, such as the rate
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at which the weak learner’s parameters are updated, or when to stop optimizing. Most of the time, the

multiple iterations needed to optimize the decision trees can also not be performed in parallel, since they

rely on previous training iterations, thus increasing the global computation time.

Individual point classifiers can only consider the spatial context of each point by encrypting it into

the feature vector. However, they ignore that neighbour points’ labels tend to be linked. Some algo-

rithms thus implement contextual classification, which involves estimating the relationships between

3D points from a neighbourhood – often different from the one used for feature extraction – in the train-

ing data. Additionally to the classification performance objective, they aim to produce spatially consistent

classifications of 3D PCs, avoiding the noisy output that individual point classifiers can produce. Thus,

they tend to reach higher accuracies. Examples of such approaches are applications of Associative (Munoz

et al., 2008; Triebel et al., 2006) and Non-associative Markov Networks (Najafi et al., 2014), Conditional

Random Fields (Lim et al., 2009; Niemeyer et al., 2012; Niemeyer et al., 2011; Vosselman et al., 2017), and

Markov Random Fields (Lu et al., 2012) to 3D data. However, modelling 3D spatial relationships is com-

putationally intensive and thus challenging to apply to large 3D datasets. These approaches also depend

on the relationships observable in the training data, which makes exact inference of correlations between

labels unattainable. In Landrieu et al., 2017, a structured regularization framework allowing the conserva-

tion of a probabilistic approach and relying on a computationally lighter optimization is thus proposed,

allowing the regularisation of any point-based classification with contextual information while keeping a

form of precision information.

2.2.3 Supervised classification of learned features

In general, neural networks are mainly based on linear combinations or convolution operators. When

3D data emerged, their processing with neural networks posed many conceptual and computational is-

sues. One first issue is the heavy computations needed to load and process data in three dimensions,

which is progressively solved by technical advances in computer hardware. A second, major issue, was to

adapt proven methods to unstructured, irregular 3D data. As a result, although convolutional neu-

ral networks (CNN) are among the most performant deep neural networks, partly thanks to their abil-

ity to extract high-level features while considering spatial context, their application to 3D PCs is not

straightforward.

To process 3D PCs, the first methods thus converted them into structures that could be processed

by other proven 3D networks. Typical examples are the so-called projection networks, like SnapNet

(Boulch et al., 2018), that convert point clouds into multiple 2D snapshots that are segmented individu-

ally and then reprojected in 3D using the principles of stereoscopy. The first deep learning methods on

unordered 3D data were PointNet and PointNet++ - an enhanced version of PointNet -, two architec-
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tures relying on multi-layer perceptrons published in 2017 (Qi et al., 2017b; Qi et al., 2017a).

The development of 3D convolutional networks is more recent and includes a wide range of varia-

tions to optimize performances and complexity. Some networks perform convolution using transformed

points (Atzmon et al., 2018; Hua et al., 2018; Li et al., 2018; Xu et al., 2018), voxelized PCs (Graham et al.,

2018; Tchapmi et al., 2018), or graphs.

Graphs can be derived from adjacencies between points (Mao et al., 2022c; Wang et al., 2019a; Wang

et al., 2019c; Wei et al., 2023; Wen et al., 2021) or groups of points (Hui et al., 2021; Landrieu et al., 2019;

Landrieu et al., 2018) – called superpoints. The main example of such superpoints-based networks is SPG

(Landrieu et al., 2018) – for SuperPoint Graph – a network that performs graph convolution on a graph

whose edges are partitions of geometrically similar elements of the input point clouds. The obtained

partitions are embedded using PointNet, resulting in edges of an oriented graph with attributes that is

then segmented with graph convolution networks.

The last type of 3D convolutional networks relies on kernel points, introduced in KPConv (Thomas

et al., 2019), that replicate in 3D the principle of the 2D convolution operation, that uses a weighted kernel.

Currently, KPConv (Thomas et al., 2019) and SPG (Landrieu et al., 2018) are among the state-of-the-art

architectures for 3D points classification.

However, research around 3D deep learning is very active and working towards different improve-

ments of existing solutions. Examples of recent experiments include the use of spatially sparse convo-

lutions (Graham et al., 2018; Schmohl et al., 2019), that are specifically designed to handle the sparsity

of PCs. Some architectures also incorporate state of the art 2D deep learning solutions to 3D networks,

such as attention mechanisms (Deng et al., 2021; Huang et al., 2021; Wang et al., 2019a; Zeng et al., 2023;

Zhang et al., 2022) or residual connections (Huang et al., 2018; Ye et al., 2018; Zeng et al., 2023). In a simi-

lar attempt to adapt 2D principles to 3D, multiple projects combine several receptive fields as in inception

networks to improve 3D processing (Mao et al., 2022a; Mao et al., 2022c).

3D deep neural networks have also started being applied to airborne lidar surveys (Huang et al., 2021;

Lin et al., 2021; Mao et al., 2022a; Schmohl et al., 2019; Wen et al., 2021; Yang et al., 2018; Zeng et al.,

2023; Zhang et al., 2022; Zhao et al., 2018a). However, existing work on airborne lidar processing with 3D

deep neural networks concerns urban areas or forests exclusively and thus does not address the issue of

complex and diverse natural or semi-urban environments.

Current evolutions also tackle the biggest challenges faced by 3D deep learning: computational com-

plexity, applicability to large datasets, and limitations linked to the amount of labelled training

data required. The first motivation for the development of SPG is the constatation of the authors that

“Deep learning architectures specifically designed for 3D point clouds [. . . ] display good results, but are

limited by the size of inputs they can handle at once”. They thus introduce SPG to propose a method
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with lighter computation able to perform on large datasets, since the superpoints, similarly to superpix-

els, are orders of magnitude less numerous than the number of points of the input point clouds. SPG

thus offers a method that is applicable to real, large datasets.

More recently, adaptations of the Transformer architecture on 3D data have been investigated

to build on the performances offered by the attention mechanism while designing lightweight architec-

tures (Hu et al., 2020; Zhao et al., 2021a; Guo et al., 2021a; Lai et al., 2022; Park et al., 2022; Cheng et al.,

2023; Robert et al., 2023). For example, the Transformer-based version of SPG: SuperPoint Transformer,

reaches state-of-the-art performance while drastically reducing the number of parameters to optimize

compared to other networks (Robert et al., 2023). Such solutions - often combining high-performance

architecture modules based on attention with sampling techniques that counterbalance the computa-

tional cost associated with the original Transformer - allow the reduction of the computational cost of

3D neural networks and thus make them more usable in practice. Another possibility is to use networks

performing on features rather than points for faster, lighter alternatives (Gao et al., 2023).

To simplify the use of 3D deep neural networks, the development of approaches to train the algo-

rithms on a limited amount of labelled data also currently arises. An option is to rely on few-shot

learning, which consists of training models using a small amount of labelled training samples, thus dras-

tically reducing the number of labelled samples required to train (Dong et al., 2018; Feng et al., 2022;

Garcia et al., 2018; He et al., 2023; Li et al., 2022; Mao et al., 2022b; Xu et al., 2020; Zhao et al., 2021b).

Domain adaptation is also a possible strategy to reuse previously learned weights to process new, un-

labelled data (Cazorla et al., 2022; Jaritz et al., 2023; Yuan et al., 2023). Experiments of unsupervised

representation learning on 3D point clouds also exist, using the encoding of contrastive transforma-

tions of the input point clouds (Jiang et al., 2021), or optimal transport-based clustering and contrasting

processes (Mei et al., 2022).

2.2.4 The specific case of bispectral lidar point clouds

TB lidars have the specificity of embedding two different non-co-focal lasers, thus producing two dis-

tinct samplings of the same scene under the form of two separate PCs whose points systematically

have different positions. Figure 2.6 illustrates the sampling difference in submerged areas that can be used

to characterize them in point clouds.

At this time, no research on the application of 3D deep neural networks to TB areas surveyed with

airborne bispectral lidar has yet been published. Existing approaches rely exclusively on handcrafted fea-

tures extracted on full-waveforms (Launeau et al., 2018; Leigh et al., 2016), rasters (Wedding et al., 2008;

Laslier et al., 2019), or PCs (Hansen et al., 2021).

There is, however, more research on the classification of multispectral airborne lidar data over terres-
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Figure 2.6: The sampling differences of infrared and green lidars over submerged areas.

trial areas, using 3D PCs (Morsy et al., 2017b; Morsy et al., 2017a; Morsy et al., 2022; Morsy et al., 2016;

Wang et al., 2020a), including an application of PointNet++ over mixed urban areas (Jing et al., 2021). In

this paper, however, the multispectral character of the data is summed up in one single point cloud with

several intensity attributes, obtained using nearest neighbour interpolations over the three available

spectral channels.

There is thus no direct processing of multiple PCs simultaneously, as in Ekhtari et al., 2018, in which

the authors create a synthetic individual multispectral point cloud from the three PCs of their mul-

tispectral survey and use it for classification. Other approaches exploit the information contained in each

point cloud of each wavelength individually and use it contiguously to perform classification (Wang et

al., 2020a).

Another existing possibility consists in computing spectral ratios between the different spectral

channels to exploit the multiple wavelengths of the sensors, as in (Matikainen et al., 2017; Morsy et al.,

2022; Morsy et al., 2017b; Morsy et al., 2017a; Morsy et al., 2016; Shaker et al., 2019).

However, existing papers often do not include a wide range of possible classes, sometimes only tack-

ling the problem of land/water distinction (Shaker et al., 2019).
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2.2.5 Limitations of existing classification methods for environmental lidar

point clouds

Although 3D point cloud processing has drastically progressed over the last fifteen years, some limitations

remain, hindering the exploitation of airborne lidar point clouds at their full potential.

Regarding supervised classification of handcrafted features, there is still a lack of methods involv-

ing sufficiently varying and exhaustive features to describe the many facets of complex environ-

mental point clouds. Urban point clouds or forest point clouds are widely studied, but scenes mixing

a great variety of classes with very different characteristic scales and shapes still lack representation in ex-

isting research and remain difficult to automatically analyse. This results in many environmental science

studies either not exploiting existing lidar surveys, or reducing them to rasters, thus losing the precious

information of spatial structure and point repartition.

Although descriptive features adapted to a great variety of environments and shapes exist separately

in multiple explorative studies, an accessible and applicable framework unifying the different per-

spectives of urban, forestry, other topographic environments, and bathymetric objects is needed

to provide better tools for environmental studies to be improved with 3D knowledge.

Deep learning can be a solution to the issue of representation of the many aspects of environmental

point clouds. However, its large-scale applicability is still limited by several factors. The computa-

tional requirements of 3D deep learning necessitate specific hardware settings, which limits their accessi-

bility to a wide range of environmental researchers. Their increased complexity in handling, optimising

and parameterising without extended knowledge about machine learning, scientific programming and

mathematics is another factor limiting their deployments for 3D analyses by thematic users. This com-

plexity also limits their interpretability and explainability, which is a key aspect of understanding uncer-

tainties in environmental studies. Finally, the difficulty of training networks to perform the desired tasks

is a major drawback.

There is indeed a great lack of foundation models to analyse 3D data in natural environments.

Most of the available models and experiments for airborne lidar are made with benchmark data acquired

in urban environments. Few data in forested areas are available, and none in mixed, natural environments

including built-up areas, densely vegetated zones, and submerged surfaces. However, supervised classifi-

cation implies the construction of a labelled dataset to be used for training and testing the classifiers. The

complexity of PC processing makes point labelling fastidious and time-consuming. A solution to train

supervised methods despite the lack of benchmark data can be to simulate lidar PCs, as featured in (Gélis

et al., 2021) for change detection and classification, but it requires yet again the availability of simula-

tors adapted to natural environments and does not really solve the problem of classifying real lidar data

acquired over complex natural areas.
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Developments in that direction are currently numerous, and this area of deep learning research is

very active, as illustrated in Section 2.1.4. Nevertheless, these developments are still recent and, although

highly performing, 3D deep neural networks are still experimental and less accessible to non-specialist

users than more classical machine learning algorithms. The recent advances towards lower supervision

and smaller amounts of labelled data still show lower performances than fully-supervised approaches

and remain experimental, and thus not deployable to operational data processing at a large scale, and by

non-specialist users. Finally, there are, to our knowledge, no methods capable of considering two point

clouds derived from two different wavelengths.

Overall, there is a lack of available methods exploiting both the spectral and the geometrical

differences between the different point clouds obtained through multispectral lidar surveys for

the classification of land-water interface areas. In these areas, the sampling of the environment obtained

with NIR or green wavelength is extremely distinct both spectrally and geometrically, providing key in-

formation about the environment. Yet, currently, existing classification methods do not exploit it. There

is thus a need for a framework that would allow the classification of 3D point clouds representing a variety

of land use/land covers, and supporting their cohabitation with seabed use/seabed covers.

In the next section, we review existing lidar waveform processing methods, their specifics, and the

challenges they still have to face.

2.3 Lidar waveforms processing in topo-bathymetric areas

2.3.1 Motivations and specifics of lidar waveforms processing

Lidar waveform processing first consists of extracting the targets present in the illuminated cone by detect-

ing variations in the amount of energy received (Chauve et al., 2007). Then, the information contained

by waveforms about the intercepted surfaces’ geometry and reflectance can be used to study them more

deeply.

Waveform processing is however a complicated process. The size of the datasets obtained is sig-

nificant: for example, the Leica HawkEye-5 presented in Chapter 1 shoots up to 170 times per second,

thus producing 170 waveforms containing between 512 (shallow bathymetry channel) and 1064 (deep

bathymetry channel) samples at each second. Waveforms are also particularly noisy due to receiver in-

ternal noise and ambient light, which can be complicated to deal with. Lastly, as lidar intensity measure-

ments are sensor and acquisition-dependent, specific measures need to be applied to compare wave-

forms. It is also worth noting that additional precautions such as time and space matching of waveforms

recorded with different sensors, wavelengths or during different acquisitions are necessary since it is im-
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possible to have strictly identical interceptions. In the following paragraphs we review existing methods

to tackle normalization and denoising of lidar waveforms.

Normalization

Similarly to discrete lidar return intensities, lidar waveform values can be influenced by sensor character-

istics and acquisition conditions (see Kashani et al., 2015 for details). Thus, in order to be able to compare

waveforms and limit the bias of varying emitted intensities and different illumination conditions, wave-

form data must be normalized in pre-processing.

Contrary to typical machine learning tasks that involve data normalization among the complete train-

ing or test dataset, waveforms are mostly normalized individually to decrease or delete a maximum of

elements that could cause bias (Lang et al., 2022; Pirotti et al., 2011). By normalizing each signal individ-

ually, signal patterns, pulse shapes and the relative amplitude differences between different waveform ele-

ments can be compared, and overfitting on specific cases with specific intensity ranges is reduced. Pirotti

et al., 2011 and Lang et al., 2022 perform normalization by dividing each sample’s returned energy from

the total received energy, so that the integral of the waveform is equal to one, thus converting it into a

distribution. Another option is to normalize each waveform between 0 and 1, which also allows the com-

parison of pulse shapes and reduces varying backscattered intensity bias.

Denoising

Currently, noise is problematic for most of the existing waveform processing methods. Denois-

ing is even considered “a prerequisite” in Zhou et al., 2021. In the literature, several methods to reduce

noise can be found. Many of them rely on thresholding the waveform amplitudes (Drake et al., 2002;

Lang et al., 2022; Pirotti et al., 2011). The threshold is often determined using an estimation of the noise

level by analyzing waveform amplitudes in sections of the signal that precede the first reflective element

(Drake et al., 2002; Lang et al., 2022; Zhao et al., 2022). Some sensors record this noise level for each

waveform, as NASA’s Land Vegetation and Ice Surveyor (LVIS), so it can be deducted from waveform

amplitudes (Pirotti et al., 2011; Zhou et al., 2021). For bathymetric waveforms, Yang et al., 2022 use an

adaptative threshold depending on the return-to-noise ratio of the last return in the signal. Most of the

time, threshold methods are based on a unique value for each waveform, as a uniform threshold to fit all

signals is impossible to find, and a wrong value can cause over- or under-smoothing (Yang et al., 2022).

The other category of waveform denoising methods relies on smoothing the whole signal to reduce

the noise-induced content, based for example on Wiener filters (Jutzi et al., 2006).
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2.3.2 Detecting and locating objects in the signal

Waveform processing serves two objectives: the first and most popular one is to detect intercepted tar-

gets in the signal, and potentially to increase the number of returns extracted (Chauve et al., 2007;

Mallet et al., 2009). The secondary aim is to extract information on the environment surveyed

(Kumpumäki et al., 2015). Overall, it allows the extraction of more information from the lidar survey

than range measurements and their associated intensity.

Waveforms are still rarely considered as a whole signal; they are mostly processed to separate the

backscatters identified, which are then studied individually. To detect and locate each object hit by the

laser, three approaches exist: signal peak detection, waveform decomposition, and waveform deconvolu-

tion. All three approaches allow the production of point clouds, but some also provide additional infor-

mation on the objects behind the peaks.

Classical peak detection

Peak detection in denoised waveforms is often made using thresholding of their second derivative, or

by monitoring their first-derivative zero-crossings. Another possibility is to analyse the centre of

gravity of the second derivative or use a Ramer-Douglas-Peucker curve fitting algorithm to detect in-

flexion points (Qin et al., 2012). Peak detection is made on denoised signals to avoid overdetection of

peaks because of high-frequency noise. This procedure is used to detect inflexion points in waveforms

and estimate the number of surfaces that were intercepted by the laser. It is sometimes used as a starting

point for more advanced procedures used to locate targets.

Waveform decomposition

Waveform decomposition consists of modelling the signal using different functions to separate

it into a sum of components. Once decomposed, it becomes possible to extract statistical parameters

from the obtained elements to characterize the objects behind them (Chauve et al., 2007). In practice,

this consists of estimating the parameters of a finite mixture model (Mallet et al., 2010). The process

implies three phases:

• Components detection, which consists of performing peak detection to identify the number of

fittings to perform;

• Initialisation, which consists of estimating the initial parameters of the used model for each of

the detected peaks;
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• Optimization, which consists of finding the considered mathematical function’s parameters that

best fit the portion of the signal analysed, for each component. Non-linear least squares with the

Levenberg-Marquardt algorithm or maximum likelihood estimates with the expectation-maximization

algorithm are among the most popular optimization methods for waveform decomposition. Both

depend on the initial values of the parameters and can be falsely induced into local optimums if

they are faulty.

Decomposition of topographic waveforms Different mathematical assumptions can be used to de-

scribe the peaks, depending on the transmitted waveform (Jutzi et al., 2006). The most common one is to

consider the backscatters to be Gaussians, and thus perform Gaussian decomposition on the denoised

waveform (Pirotti et al., 2011; Qin et al., 2012; Yang et al., 2022; Zhu et al., 2012; Ma et al., 2019). In this

context, a finite number of Gaussian components are fitted to the signal until their sum is close to the

initial waveform. However, since waveform components are not strictly Gaussian (see Chapter 1),

other more complex parametric models have been investigated to improve waveform processing possi-

bilities. Standard extensions are skewed normal, lognormal, generalized Gaussian functions, or Weibull

distributions (Bruggisser et al., 2017; Chauve et al., 2007; Fang et al., 2022; Montes-Hugo et al., 2016).

Gaussians can also be used in combination with point processes (Mallet et al., 2010), or mixed with

other of the above examples to fit components with different shapes, for example in bathymetric cases

where different shapes are represented (Kogut et al., 2019). More complex models, like B-splines (Liu et

al., 2022a; Shen et al., 2017) or wavelet extraction, are also used to allow for non-Gaussian-shaped pulses.

The fitting functions are chosen depending on the applicative context, namely the transmitted

pulse shape, and the size of the footprint (Mallet et al., 2010). Their parameters also constitute descrip-

tive features of their characteristics, which vary with the chosen model. However, the more complex the

model, the more difficult the optimization, as there are more parameters to update and a greater degree

of freedom. In any case, the model has to be adapted to the shape of the transmitted waveform for the

decomposition procedure to be successful.

Bathymetric waveform decomposition For bathymetric waveforms, specific models have to be used,

as the global shape of the signal is significantly impacted by the water column component, which has

an exponential shape (Wang et al., 2015). Consequently, obtaining an accurate decomposition requires

the use of mixture models including adapted functions. In most proposed approaches, the air/water in-

terface and the water bottom components are approximated with the same function, which is different

from the one used for the water column.

For the water column, one of the first propositions was to use triangle functions (Abdallah et

al., 2013). Models were then progressively improved to increase decomposition performance, and thus
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bathymetry detection. Quadrilateral functions, for example, allowed to improve the detection when

combined with Gaussians for the seabed and water surface (Abady et al., 2014; Ding et al., 2018). Another

option is to build on the inherent exponential shape of the signal decay and use exponentials to perform

decomposition. For example, Schwarz et al., 2017 use multiple concatenated exponentials to decompose

bathymetric waveforms. In Schwarz et al., 2019, they propose to combine two rectangle functions with

an exponential model to isolate the air/water interface, the seabed, and the water column component,

respectively, as illustrated in Figure 2.7.

Figure 2.7: Illustration of the waveform decomposition method proposed in Schwarz et al., 2019: a) model with 10 parameters

E0 . . . E3, τ0 . . . τ4 and γ to estimate; surface and bottom are modelled by boxcars to account for beam spreading caused by

off-nadir incidence; effects from the water volume are modelled by two exponential segments; the tail below the bottom takes

care of late echoes, likely caused by multiple scattering; τcog is the centre of gravity of the bottom and tail segments with respect

to τ2 (Schwarz et al., 2019). b) Illustration of the application of this method in Richter et al., 2021.

Two main problems specific to bathymetric waveform decomposition must be kept in mind (Xing

et al., 2019):

• Separating overlapping echoes in extremely shallow waters;

• Detecting weak seabed returns.

The methods presented above (Abady et al., 2014; Ding et al., 2018; Schwarz et al., 2017; Schwarz

et al., 2019) show good results in shallow waters. However, in cases when the seabed return remains too

weak, it can still be difficult not to falsely mistake noise for a weak backscatter. Several solutions have been

proposed to tackle this issue.

The first is to enhance the signal level, for example by correcting the effects of signal attenuation in

water (Richter et al., 2017), or by smoothing out the detector and ambient light noises (Launeau et al.,

2018; Saylam et al., 2017; Zhao et al., 2022).
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Another possibility is to use waveform stacking techniques, namely orthowaveforms processing

methods. They consist of stacking spatially close waveforms to increase the signal-to-noise ratio. In the

case of orthowaveforms, this stacking is performed vertically using voxels to take the beam trajectory into

account, as illustrated in Figure 2.8 extracted from Richter et al., 2022. The mean backscattered intensity

of each voxel is then kept to obtain a spatially averaged and ortho-rectified waveform. Mader et al., 2019;

Mader et al., 2021; and Mader et al., 2023 illustrate how such techniques can make weak returns much

easier to identify, and can reduce the computational complexity of seabed detection by reducing the range

of the waveform in which to search for the water bottom return.

Figure 2.8: Principle of ortho full-waveforms generation, extracted from Richter et al., 2022.

For the separation of overlapping echoes, namely in extremely shallow water areas, a possibility is to

work on the temporal sampling of the waveform. Using temporal resolution augmentation models as

in (Yang et al., 2022) can help identify when one component ends and the other starts.

Since several studies (Parrish et al., 2011; Zhou et al., 2021; Xing et al., 2019) point out that there is

no universal processing strategy, most of the existing bathymetric waveform decomposition methods are

designed for typical use cases. Consequently, (Xing et al., 2019) suggests that the best alternative is to

design methods adapted to different ranges of depths, rather than attempting to find a global method.

The authors of Xing et al., 2019 indeed state that the high variability of depths and attenuation processes,

in reality, is too difficult to model.
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General fitting procedure Waveform decomposition is iterative, as peaks are fitted one after another.

After the first fitting, the difference between the denoised waveform and the first fitting is analysed. If

additional peaks are detected in it, a new optimization phase is launched. This allows the detection of

additional echoes that could not be identified with peak detection initially. The process is repeated until

the difference between the denoised waveform and the sum of the estimated components is low (Song

et al., 2019). Examples obtained with different decomposition methods after optimization are presented

in Figure 2.9, modified from Zhou et al., 2019.

Figure 2.9: Modified from Zhou et al., 2019: comparisons of results using Gaussian (a),c)), and Weibull decompositions (b),

d)) for two different waveforms. The black dashed line is the modelled waveform (IGW), the red solid line is the raw waveform

(RW), and the dashed and numbered lines correspond to the detected components.

To avoid false detections, the results of waveform decomposition are sometimes filtered out, for exam-

ple by comparing the full width at half maximum of the obtained component and that of the transmitted

pulse, or by comparing its amplitude to the standard deviation of the waveform’s background noise (Par-

rish et al., 2011; Song et al., 2019).
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Waveform deconvolution

While decomposition analyses waveform components as they are received, another possibility is to reverse

the effects of the transmitted pulse to access the intercepted surface characteristics independently from

the influence of the sensor. As the received signal is a convolution between the transmitted pulse

and the target response function (Chauve et al., 2007; Jutzi et al., 2003), performing deconvolution

theoretically gives access to the original intercepted surfaces’ signatures. For that, the system’s

impulse function must be known, which is often the case with full-waveform systems. If transmitted

pulses are not recorded, the typical pulse function of a sensor can be estimated by analyzing waveforms

resulting from shots on plane surfaces at a low incidence angle.

Deconvolution can be performed using the Wiener filter (Jutzi et al., 2006). However, this often

requires a denoising step upstream, as this method is sensitive to noise. The other popular deconvolution

method for waveform processing is the Richardson-Lucy algorithm, which is more robust to noise

and allows to retrieve the main components of the waveforms successfully (Parrish et al., 2011; Wang et

al., 2015; Wu et al., 2011; Zhou et al., 2021). The Gold deconvolution (Morháč et al., 2003) method is

another alternative explored in Zhou et al., 2017, where the authors highlight its performances in dense

vegetation and its low tendency to false detections.

Although these methods come at the expense of a higher computation cost, all comparative studies on

waveform processing tend to agree on the superior performances of the Richardson-Lucy deconvolution,

which often misses less backscatters (Parrish et al., 2011; Wang et al., 2015; Wu et al., 2011; Zhou et al., 2021).

However, it must be noted that deconvolution techniques do not provide the same information

obtained with waveform decomposition. They consist more of a signal enhancement strategy, but

output a processed signal and not discrete echo locations and parameters. They are consequently used in

combination with peak detection or decomposition strategies (Xing et al., 2019; Zhou et al., 2017),

which become easier to use because the signal is significantly denoised. An advantage is that, in theory,

decomposing a deconvolved waveform gives access to the surface response function. On the contrary,

when using decomposition alone, the fitted components are still the result of the convolution of the

system impulse and the surface response. Comparisons of decomposition and deconvolution approaches

for satellite lidar waveforms processing also highlight the superiority of deconvolution to identify several

vertical elements, namely in vegetated areas, thus describing canopy structures better (Neuenschwander,

2008).

Deep learning for waveform return detection

Few studies use machine learning to perform lidar return detection in the waveform data. In (Aßmann

et al., 2021), a 1D CNN encoder is built to extract the locations of peaks in waveforms and thus detect



2.3. Lidar waveforms processing in topo-bathymetric areas 93

Figure 2.10: Illustration of waveform decomposition and deconvolution Zhou et al., 2019: Comparisons of the decompo-

sition results with Lucy-Richardson approach and Gold approach for three sample pulses (a) to c)). The solid black line is

the original waveform. The coloured dash lines are Gaussian components after Gaussian decomposition of the deconvolution

result.

intercepted surfaces. A similar network was exploited in (Liu et al., 2021b) to estimate the water depth

from bathymetric waveforms automatically. Finally, (Liu et al., 2022b) use dense and residual networks

to automatically estimate waveform peak location and amplitude. Overall, these three investigations

of the abilities of deep neural networks to perform waveform processing find high-quality results and

show the possibility of using such approaches on large waveform datasets.

2.3.3 Identifying objects in the signal / extracting semantic information

Waveform classification may consist of attributing one unique label to each waveform or classifying

each target in the waveform. In the latter case, processing can be closer to semantic segmentation or

object detection and classification rather than usual classification. Similarly to point cloud classifica-

tion, full-waveform classification can be made with pre-defined features, or with learned features.

Lidar waveforms feature extraction and classification

The most commonly used approach to identify the intercepted surfaces using waveforms is to classify

waveform features with classical machine learning algorithms, namely Support Vector Machine (Launeau

et al., 2018), Random Forests (Narayanan et al., 2009), or other algorithms taking spatial context into

account such as CRF (Niemeyer et al., 2011). Often, the features obtained through waveform decom-
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position and the optimization of finite mixture models on the components are used to describe the geo-

metrical and optical parameters of the objects hit. Although the parameters derived depend on the model

used, typically, they include the width of the peak or its full-width at half maximum, its amplitude, but

also sometimes its skewness and kurtosis (Bruggisser et al., 2017).

Peak width informs mostly on the geometry, i.e. the slope and roughness of the intercepted surfaces

(Song et al., 2019), but not about its material (Heinzel et al., 2011; Wagner, 2010). Amplitude-related

statistics, on the other hand, are more linked to the material of the targets. However, these observations

remain empirical, and some papers consider the geometric and radiometric properties of the targets too

correlated in the waveform shapes to be accessible separately (Chauve et al., 2007).

Once peaks are identified, other parameters can be computed, even if they are not related to the func-

tion used for decomposition. Usual parameters computed to describe waveforms include peaks-wise pa-

rameters and global signal characteristics. On peaks, area-under-curve, standard deviation or variance,

mean or median amplitude, skewness, or kurtosis are common parameters (Heinzel et al., 2011; Mallet

et al., 2011; Narayanan et al., 2009; Neuenschwander, 2009; Niemeyer et al., 2011). The location at which

the waveform amplitude overcomes the noise threshold, the location of the last component’s centre, and

the difference between both are other informing features about the global nature of the hit area (Pirotti et

al., 2011; Drake et al., 2002). Over the whole waveform, the number of components hit, and spatial filters

about the neighbouring waveforms are examples of classification predictors (Heinzel et al., 2011). How-

ever, among these examples, (Heinzel et al., 2011) identify peak intensity – i.e. amplitude – as the most

important parameter for classification, along with the median peak width and the mean total number

of targets within a waveform. Similarly, Neuenschwander et al., 2008 cite the total integrated waveform

energy as an efficient feature to discriminate vegetation from built surfaces. It is interesting to note that

Neuenschwander, 2009 also observe higher accuracy when performing the same landcover classification

task using waveform features than classical satellite imagery.

Applications to land-water surface covers classification The specific task of classifying land and

water surface covers with lidar waveform features has been explored multiple times (Teo et al., 2017;

Collin et al., 2012; Eren et al., 2018; Tulldahl et al., 2012; Hansen et al., 2021; Schmidt et al., 2014; Wang

et al., 2007). Up to now, existing approaches only include classical machine learning combined with

handcrafted feature extraction, except for land-water separation, which has been explored with deep

learning, as the next section will explain.

Several trends emerge from the literature on this subject:

• There are many approaches classifying either terrestrial or marine classes, but very few

study both simultaneously. For example, there are many applications of waveform feature clas-
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sification to identify vegetation species or trees (Kinzel et al., 2013; Bruggisser et al., 2017), but even

when applied to the characterization of coastal vegetation, they solely tackle emerged vegetation

(Nayegandhi et al., 2006). The same can be observed for marine covers. Wang et al., 2007 analyse

waveform features in shallow coastal areas to derive seabed type variations, thus mapping seagrass

meadows and underwater sand at depths between 0.8 and 4.3 m, while Hansen et al., 2021 use

topo-bathymetric lidar data but only classify emerged boulders of a coastal environment. Similarly,

Schmidt et al., 2014 use waveform features with a contextual random field and a random forest to

separate mussel bed, land, and water of a coastal zone on emerged areas only. A last example is the

use of topobathymetric lidar for coral reefs morphology assessments (Wilson et al., 2019), which

shows again how topo-bathymetric lidar is often used for separate marine and terrestrial surveys.

Only Collin et al., 2012 classify a large range of terrestrial and marine classes simultaneously in 2D

rasters using a bathymetric lidar.

• Some studies only aim at separating water and land, for example Guo et al., 2023 and Liang

et al., 2022.

• Many methods include a rasterization step: most of the published research on lidar waveform

processing in land-water areas produces 2D outputs (Wedding et al., 2008; Teo et al., 2017; Collin

et al., 2012; Eren et al., 2018), or simple analysis of correlation between measured characteristics

and waveform features (Wilson et al., 2019; Nayegandhi et al., 2009). Few publications exploit the

spatial wealth of lidar data and render classifications in 3D (Hansen et al., 2021; Tulldahl et al.,

1999).

• Only two approaches propose the use of two wavelengths. Although several previously cited

papers exploit surveys relying on dual-wavelength systems (Wilson et al., 2019; Hansen et al., 2021),

only Collin et al., 2012 and Leigh et al., 2016 exploit both wavelengths. Among them, Leigh et al.,

2016 proposes to use waveform features extracted from orthowaveforms from both wavelengths,

while Collin et al., 2012 only extracts features from the green waveforms considered to be in the

water.

Other studies such as (Butler et al., 2020; Grande et al., 2009; Chust et al., 2010) used 2D lidar-derived

data and imagery along with machine learning classifiers to map coastal land- and sea covers. However,

they did not exploit the full-waveforms and obtained low accuracy when classifying only lidar digital

elevation models, and thus had to exploit additional imagery.
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Feature learning on lidar waveforms

Feature learning directly on lidar waveforms without previous transformation into images or voxels

has not been investigated much. Existing research is limited to classification – one label per waveform –

of urban environments surveyed with topographic lidars (Zorzi et al., 2019; Hu et al., 2019), or worldwide

regression of canopy heights with a 1D CNN (Lang et al., 2022).

Some approaches consider individual waveforms only, such as FWNet, using a PointNet encoder on

waveforms and their first return’s coordinates (Shinohara et al., 2020). In Hu et al., 2019, waveforms are

also used individually to discriminate shallow water and land with accuracies between 98% and 99% when

comparing a 1D fully connected network and a 1D CNN, respectively.

In Liang et al., 2022, a sense of spatial consistency is introduced by associating waveforms obtained

using eight different lidar channels with varying footprints in an ensemble learning approach using one

1D CNN per channel and a voting system to perform ocean-land waveform classification with 99% of

resulting accuracy.

Waveforms can also be associated with traditional lidar data rasters to improve the obtained results.

1D CNN predictions on waveforms are used in combination with DEMs and 2D CNNs in Zorzi et al.,

2019 to combine the wealth of spatialized representations and waveform data for urban environment

classification.

2.3.4 Estimating environmental parameters from lidar waveforms

We showed the use of waveform decomposition parameters as proxies for categorical variables extraction.

Waveform decomposition can also open opportunities for regression approaches with the objec-

tive of estimating environmental parameters. With the advent of satellite lidar sensors, this becomes

even more promising, as worldwide products of water optical properties and seabed or vegetation char-

acteristics become feasible (Lu et al., 2022).

Regression can be performed on topographic waveforms, mainly to extract estimations of vegetation

parameters, or on bathymetric waveforms, in which case the regression typically targets the optical prop-

erties of water.

Topographic waveforms

Vegetation parameters can be derived from topographic waveforms with two main approaches:

• Radiative transfer models inversion; for example, Koetz et al., 2006 inverse a 3D radiative trans-

fer model (RTM) to derive forest biophysical parameters from the interactions between the in-

frared laser and the canopy structure. Their approach is tested on synthetic and real data, and they
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manage to successfully retrieve parameters such as leaf area index (LAI) or vertical crown extension.

Such methods are common in forestry, but can also be applied to other types of vegetation, namely

crops. Hmida et al., 2017 show that RTM model inversion can be used to estimate the height, LAI

and ground reflectance for different cultures - namely maize and wheat - and at different pheno-

logical states.

• Regression based on waveform decomposition parameters; Adams et al., 2012 show that cor-

relations exist between waveform shape parameters and the LAI in forested areas. They mainly out-

line the role of the decays of energy in waveforms acquired over coniferous foliage, and the width

of the decomposed peaks. They suggest that such parameters are more reliable for LAI estimation

than intensity-based parameters that are strongly affected by shadowing. Similarly, Hancock et al.,

2015 explore the use of waveform decomposition methods to estimate the reflectance of vegetation

for different types of lidar systems.

Bathymetric waveforms

Over water extents, bathymetric lidar has been shown to be an efficient tool for the estimation of optical

parameters linked to the water body. These parameters are mostly linked to the way water attenu-

ates or scatters light. The diffuse attenuation coefficient, Kd, which is the factor of the exponential

attenuation with depth of the downwelling irradiance, is one of the most studied parameters. It is also

used to approximate water turbidity more globally, as it is linked to the presence of suspended sedi-

ments and other yellow substances. Kd is not strictly an inherent water parameter, as it is not invariant to

the incident radiance, and thus depends on ambient illumination conditions. Inherent optical proper-

ties (IOP) include the scattering and absorption coefficients, which respectively describe how light

is attenuated and scattered by water. Their sum is the beam attenuation coefficient, which is some-

times also studied with lidar waveforms. Kd, the scattering, the absorption, and the beam attenuation

coefficient depend on the distance covered by the beam and on the wavelength of the incident radiation.

Other examples of IOPs are the more specific parameters describing the scattering events. The vol-

ume scattering function (VSF), describes how a volume scatters incident light across angles varying

between π and 2π depending on its volume. The scattering coefficient is the integral of the VSF over a

sphere. The backscatter coefficient describes the portion of radiation scattered in the backward hemi-

sphere. The way light is scattered across angles - the VSF - depends strongly on the characteristics of the

particles present in the water. They tend to be inhomogeneous. For example, in natural waters, they are

peaked in the forward direction. VSF observations made in Petzold, 1972 show that about 75% of the

scattering takes place within ten degrees of the incident direction. The particulate backscattering co-
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efficient bbp denotes the scattering due solely to particulates when removing scattering by freshwater or

seawater.

One last example of IOP is the single scattering albedo, sometimes denoted ω0. It corresponds to

the ratio of total scattering to total absorption. It ranges from 0 to 1, 0 designating pure absorption, and 1

pure scattering. Physically, the value of ω0 depends on the presence of organic and inorganic particulates.

Watkins et al., 2023 explain the significant potential of lidar-derived estimations of water properties.

As the authors recall, Kd and bbp are key descriptors of the water quality of inland water extents and are

usually hard to measure. They are either obtained via expensive and time-consuming sampling campaigns

or using passive imagery, which can result in errors of more than 50%. By comparing in-situ measurements

of Kd and bbp to estimations made with ICESat-2 data acquired the same day, Watkins et al., 2023 find high

agreement, which the authors interpret as a confirmation of the potential of lidar sensors for freshwater

lakes monitoring.

While other properties such as phytoplankton subsurface stratification can be approached too (Lu

et al., 2021), the literature on this subject mostly features estimates of water optical parameters, namely

the beam attenuation coefficient or turbidity.

Globally, 3 approaches can be distinguished:

• Using exponential fitting on the waveform to approach Kd through an empirical relationship

• Inverting radiative transfer models (RTM) based on the lidar equation and optimizing their

parameters to best fit the observed waveforms

• Using regression methods and empirical observations of Kd to have training couples of wave-

forms and Kd values

Use of exponential fittings and waveform decomposition parameters Most papers dealing with

the estimation of IOPs or other water parameters use exponential fittings on bathymetric waveforms.

The slope of the exponential is then used to estimate the turbidity of the water column (Richter

et al., 2017) through an approximation of Kd, Kestim, based on a relation between the waveform power

p and the depth z (Lu et al., 2023):

Kestim = 0.5 d

dz
ln (pz)

This procedure may be applied to orthowaveforms to benefit from a better signal-to-noise ratio (Pan

et al., 2016; Richter et al., 2021; Richter et al., 2022). For example, Richter et al., 2021 show that fitting



2.3. Lidar waveforms processing in topo-bathymetric areas 99

an exponential between the maximum and the minimum of the useful part of the waveform allows an

efficient estimation of the value of Kd. Figure 2.11 illustrates this approach.

Figure 2.11: Extract of Richter et al., 2021: Schematic representation of volume backscatter extraction and exponential func-

tion approximation.

In another paper, the authors also explore the fitting of several exponential segments to also work in

water with pronounced turbidity stratification (Richter et al., 2022).

Additionally to exponential functions, the parameters of fitted triangle functions or Weibull distri-

butions are also used as proxies of suspended sediments concentration or of the diffuse attenuation coef-

ficient (Zhao et al., 2018b; Montes-Hugo et al., 2016).

However, it should be noted that depending on the sensor’s FOV, the approximated value of

Kd may not be the true diffuse attenuation coefficient, but a parameter linked to the sensor, as all

the diffused energy may not be captured by the receiver. Values estimated with narrow FOV lidars are

thus closer to a Klidar parameter than to the real Kd. Feygels et al., 2003 exploit this nuance to derive

knowledge on water optical properties. The authors show that using sensors with three different FOVs -

one narrow, one intermediate, and one large - results in three different estimations k. They suggest using

the differences between these three estimations as proxies of different functions of seawater IOPs, which

are established through physical simulation models.

Lu et al., 2023 use exponential fittings on ICESat-2 waveforms to map Klidar around the globe dur-

ing daytime and nighttime and across seasons, and observe a relation between its values and the sea ice

concentrations. Their spatial rendering of Klidar confirms the potential of lidar for water extents moni-

toring identified in Watkins et al., 2023. Figure 2.12 is an extract of Lu et al., 2023 illustrating typical results

obtained with their approach.

Regression approaches Several regression approaches are based on observations of MODIS,

NASA’s Moderate-Resolution Imaging Spectroradiometer to train models able to predict water proper-
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Figure 2.12: Extract of Lu et al., 2023: Seasonal distributions of ICESat-2 observed effective lidar attenuation coefficient

(klidar) during nighttime (a) March-May; (b) June – August; (c) September – November; and (d) December – February.

Data are seasonally averaged climatologies for the 2018 -2020 period binned to 0.5 latitude by 0.5 longitude pixels.

ties from satellite lidars.

For example, Zhang et al., 2023 build a MLP to retrieve particulate organic carbon and bbp from mea-

surements of the CALIOP polarized lidar. They use specific measurements available through this sensor

- the ocean column-integrated depolarization ratio and the subsurface column-integrated perpendicular

backscatter data - to predict bbp and particulate organic carbon. The relation between these CALIOP

features and bbp and particulate organic carbon are learnt using MODIS products. The authors even

highlight that their network has higher estimation performances than physical models-based estimations

usually exploited to analyse CALIOP data.

Corcoran et al., 2021 develop an approach based on similar principles to estimate the diffuse atten-

uation coefficient Kd from ICESat-2 measurements. They also use a regression model - here, a random

forest - and train it using MODIS measurements of Kd490 transformed into Kd532 with a physical rela-

tion.

Inversion of radiative transfer models Finally, RTM inversion can also be used on bathymetric

waveforms, this time to retrieve water optical properties. However, caution is advised in Tuell et al., 2005,

which states that a procedure of normalization of the waveform power should be applied to compen-

sate for the effects of signal compression and of the frequency of the receiver. The authors thus develop

a method to normalize and calibrate measurements of lidar waveforms to enable the estimation of IOPs

from these signals. Kopilevich et al., 2005 then use these normalized waveforms to estimate seafloor re-
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flectance and IOPs, using an analytical solution to the RTM.

2.3.5 Current state of full-waveform lidar data exploitation

The potential of full-wavefom lidar data analysis lies in two possibilities: improved backscat-

tered pulse detection and ranging, and access to physical parameters of the intercepted surfaces.

Indeed, compared to real-time pulse detection systems, a finer look at the signal can allow the retrieval of

weaker echoes, sometimes surrounded by noise and difficult to separate with fixed amplitude thresholds.

In particular, full-waveform data processing can significantly improve the detected surface backscat-

ters in submerged areas, and under vegetation, where they still are the most challenging. Additionally, the

possibility of retrieving information about the geometry and the material of the objects surveyed opens

opportunities for various environmental applications relying on 3D structural assessments or on the pos-

sibility of accessing covered surfaces.

Examples of applications enabled by full-waveform analysis include point clouds densification in

rugged, vegetated or submerged areas, coastal habitats 3D mapping, vegetation health, species, biomass,

and structure evaluation.

However, the presented approaches include rasterized products of lidar waveforms and do not always

compensate for effects affecting full-waveform component shapes, making them site-limited.

Additionally, there is a lack of methods allowing to classify the intercepted surfaces directly from lidar

waveforms, without intermediary steps, and without summarizing them into one class. Namely, seman-

tic segmentation of full waveform or simultaneous target detection and classification could be further

investigated, in light of recent advances in machine learning applied to 2D images.

Waveforms also have underexploited potential to provide additional environmental parameters, namely

in topo-bathymetric environments, where they could be used to derive:

• Aquatic and terrestrial vegetation health, structural complexity, volumes, types, and biomass

• Water quality

• Marine, aquatic and terrestrial ecosystem functions or services

• Land-water ecosystems 3D connectivity

• Blue and green carbon stocks

• Blue and green corridors
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All of these directly or indirectly influence waveform shapes and could thus potentially be estimated

from full-waveform topo-bathymetric lidar surveys.

Lidar waveform processing is however still limited by two main factors: data availability,

and data complexity. The first problem, accessibility, is due to the rare delivery of full waveforms

by sensor constructors along 3D point clouds. This is partially due to the confidentiality of proprietary

formats and associated pre-processing that play a major role in today’s sensor evolutions. Another expla-

nation is that waveforms are not commonly requested data.

This is linked to the second limitation: the complexity of full-waveform data. Full-waveforms are

noisy data, occupying a large volume of memory, in unusual formats. As a result, waveforms are

difficult to visualize and manipulate. Although basic processing can be achieved with limited knowledge,

retrieving additional information from these signals requires an advanced understanding of how lidars

work and how green and/or infrared lasers interact with their environment.

The noise in the data is a largely limiting factor for bathymetric waveform analysis, in which weaker

seafloor returns can be surrounded by noise, and thus considered false detections, as the estimated level of

noise is often used to filter the results of waveform decomposition or deconvolution (Parrish et al., 2011).

Another difficulty is the difficulty of interpreting backscattered intensities, as explained in Chap-

ter 1 (Kashani et al., 2015). Although emitted pulse information can be used to calibrate or correct the

waveform intensities, their information is still not trivial to interpret, as it is linked to various optical and

geometrical processes. Overall, there is a lack of accessible methods to develop and popularize the

use of full waveforms to improve environmental assessments.

The development of such methods is also hindered by the low availability of benchmark labelled

datasets on which to base new approaches and the complexity of producing labelled waveform data.

Currently, a possibility is to use waveform simulators to investigate further how to work with these

data. In a world where data is the key, the main obstacle remains the access to representative enough

samples to provide the lidar community with powerful foundation tools to make more of their surveys.

Globally, stimulating full-waveform analysis and encouraging the development of processing meth-

ods would also allow for improvement in the methods used by lidar sensor constructors to produce and

deliver the data, and thus to increase the quality of lidar-derived products for the whole community. Ex-

ploiting lidar surveys more deeply would also justify their use in environmental remote sensing despite

their significant environmental cost.
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2.4 Conclusion

Lidar data has the potential to provide knowledge on many environmental phenomena, in particular

over areas at the interface between land and water. This potential is still largely underexploited due to the

lack of methods both adapted to the complexity of lidar data processing and accessible – in terms of ease

of use and of predictions interpretability – to people who could make the most of lidar data: thematic

specialists, and governmental agencies.

There are two main types of approaches for data processing: classical machine learning which relies

on the optimization of functions on handcrafted features of data, and deep learning, which learns the

function directly on the data. Handcrafted descriptive features of 3D point clouds are numerous and

efficient in describing scene geometry and spectral characteristics. On the other side, feature learning on

3D point clouds is recent and still difficult to apply easily to large datasets for thematic specialists due

to its complexity and computation cost. Overall, there is a need for accessible point cloud information

extraction methods, that would allow thematic specialists with no specific machine learning knowledge

to exploit their lidar data in 3D and perform advanced analyses not allowed by 2D data.

On the other hand, waveform processing methods are more scarce; they are limited by noise and do

not fully exploit the possibilities offered by machine learning, which could be useful considering the mod-

elling complexity necessary to exploit them. Full-waveform lidar data exploitation is also held back by the

low accessibility to data.

Globally, the current state of machine learning is highly favourable to the development

of methods for topo-bathymetric lidar point clouds and waveforms processing. Numerous

methods to solve complex problems now exist, for 3D data and for 1D time series. In the fol-

lowing chapters, we propose learning-based methods to contribute to the development of

knowledge extraction from lidar surveys. In Chapter 3, we explore bi-spectral point clouds

classification; in Chapter 4, we experiment with machine learning and deep learning to ex-

tract semantic information from waveforms; lastly, in Chapter 5 we exploit physical models

to go further in waveform processing.
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When it comes to extracting knowledge from lidar data acquired over complex natural environments,

a first possibility is to process the most common lidar product: the 3D point clouds. As explained in Chap-

ter 2, there are currently no methods specifically designed to exploit the wealth of bi-spectral lidar point

clouds, and thus few detailed classification approaches adapted to topo-bathymetric environments. In

this chapter, we introduce a workflow specifically designed to exploit the three sources of information

contained in dual-cloud surveys: the information contained in the first point cloud, in the second point

cloud, and the knowledge represented by the sampling differences between them. The result of these de-

velopments is a CloudCompare plugin called 3DMASC, for 3D classification using Multiple Attributes,

Scales and Clouds. The global concept is explained below, in figure 3.1. This work was submitted to the

ISPRS Journal of Photogrammetry and Remote Sensing on February 6
th

, 2023. It has been through two

rounds of review, the first answered on August 4
th

, 2023 and the second on September 25
th

, 2023, and is

currently under review.

Figure 3.1: Graphical abstract of the method presented in chapter 3.
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This work was developed over several years: the initial idea and the first developments were part of

another research project led by Arthur Le Guennec, Dimitri Lague, Sebastien Lefèvre, and Thomas Cor-

petti. Part of this PhD was dedicated to deepening the initial developments by:

• investing more features - namely experimenting with previously unexplored combinations of sta-

tistical operators and lidar point cloud descriptors such as mean values of echo features -;

• designing and implementing the feature selection, classification evaluation, and model explainabil-

ity procedures;

• manually labelling data and performing an extensive set of experiments necessary to better assess

the performances of the plugin and its application to multiple use cases;

• contributing to the publication of the plugin, of open-source Python scripts and labelled datasets,

and ensuring its diffusion and accessibility to the community through scientific communications,

online documentation, and a dedicated workshop at a summer school.

A careful reader may wonder why no neural networks are involved in this chapter, despite their undeni-

able usefulness and growing popularity for lidar data processing. This is a deliberate decision that resulted

from a thorough reflection on the current state of 3D point cloud classification in geosciences and of 3D

deep neural networks dedicated to classification or semantic segmentation. We indeed realized that al-

though significant advances had occurred in computer vision that benefitted 3D data classification, there

were still no tools accessible to thematic experts relying on 3D point clouds. As a matter of consequence,

geoscientists who find advantages in using 3D data still lack accessible tools to automatically process them

and often end up under-exploiting their costly datasets or converting them to 2D rasters at the expense

of information loss. With this work, our principal aim is to open 3D point cloud classification to users

with other areas of expertise than 3D data processing or machine learning. Our belief is that at the mo-

ment, deep neural networks are not the optimal solution to fulfill this need. Indeed, efficient 3D neural

networks are still recent and, although highly performing, they remain - for now - experimental and less

accessible to non-specialist users than more classical machine learning algorithms. They require dedicated

and well-parameterized graphics processing units (GPUs), which limits their accessibility to a wide range

of environmental researchers. Their increased complexity to handle, optimize, and parameterize with-

out extended knowledge about machine learning, scientific programming and mathematics is another

factor limiting their deployments for 3D analyses by thematic users. The recent advances towards lower

supervision and smaller amounts of labelled data still show lower performances than fully-supervised

approaches. Finally, there are, to our knowledge, no methods capable of considering two point clouds

derived from two different wavelengths. As a consequence, because of the lack of foundation models for
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3D data processing in natural environments, the low availability of labelled data in such scenes, and the

more complex and debated explainability of deep learning models, we prefer to turn towards machine

learning on handcrafted features, as our goal is to provide a generalizable and accessible tool.

3.1 3DMASC: classification of bi-spectral point clouds

3D data are becoming increasingly popular among geoscientists, as they constitute major opportunities

for enhanced observation of natural processes and more precise risk assessments. In particular, in com-

plex, natural environments combining vegetated terrains, artificialized portions, and submerged areas,

specific 3D point clouds obtained through topo-bathymetric (TB) lidar sensors are an opportunity to

gather knowledge inaccessible to other surveying methods. Indeed, TB lidar sensors were introduced

specifically to enable the documentation of shallow waters at high resolution (Fernandez-Diaz et al., 2014;

Fernandez-Diaz et al., 2016; Mandlburger et al., 2015; McKean et al., 2009; Quadros et al., 2008; Wang

et al., 2007). These sensors combine the strengths of topographic lidar sensors, equipped with small foot-

prints near infrared (NIR) lasers and high shot densities particularly useful to image vegetated areas, that

cannot penetrate water, and large footprint bathymetric lidars, able to image seafloors deeper than 30 m

in clear waters (Guenther et al., 2000; Philpot, 2019), but with reduced point density and spatial resolu-

tion, and high mobilization costs. TB lidar sensors practically consist in combining both types of sensors;

a NIR laser (λ = 1064 nm) and a green laser (λ = 532 nm), and their respective benefits. Associated TB

lidar datasets are bi-spectral, consisting of one point cloud (PC) per wavelength, with submerged topogra-

phies as detailed as emerged parts (see Figure 3.2). Due to the different specificities of each laser, namely

their footprint size, scanning angle range, and wavelength, the obtained PCs are systematically different,

and provide distinct samplings of the same scene, in particular over vegetation and submerged surfaces.

TB lidar sensors are useful in the study of varying subjects. Combining high-resolution data about the

submerged and emerged surfaces offers new opportunities to map habitats in fluvial (Fernandez-Diaz et

al., 2014; Mandlburger et al., 2015; McKean et al., 2009; Pan et al., 2015) or coastal (Chust et al., 2010;

Hansen et al., 2021; Launeau et al., 2018; Parrish et al., 2016; Smeeckaert et al., 2013; Wilson et al., 2019)

environments, improve high-resolution modelling of flood inundation (Lague et al., 2020; Mandlburger

et al., 2015) or track sediment transport at the land-water interface. These bispectral sensors also showed

useful for vegetated or urbanized terrain assessment (Dai et al., 2018; Ekhtari et al., 2018; Laslier et al., 2019;

Morsy et al., 2017b; Wichmann et al., 2015). However, to fully use them and leverage the scientific poten-

tial of such extensive datasets over complex natural scenes, adapted processing methods are necessary. In

particular, automatic classification of the green lidar data directly at the 3D PC level is essential.

In such areas, the exploitation of the PCs obtained with both wavelengths is beneficial, mainly (i)
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because the rich spectral information provided by the combined surveys can be leveraged to distinguish

vegetated, submerged, and urban objects that can be mixed in the same scenes, and (ii) because the in-

creased geometric information provided by a simultaneous sampling with two lasers provides additional

information and chances to image a greater portion of the terrain.

Several methodological challenges complexify the development of adapted classification workflows.

First, the refraction of the green laser in water makes it critical to detect all green points below water

during data production to subsequently perform accurate refraction correction on the position of the

received echoes. This correction requires accurately knowing the spatial extent of water in the scene and

the local water elevation, which the NIR channel gives when data are available in the area. While rela-

tively straightforward in coastal environments or large lakes as water has a constant elevation, detecting

water surfaces is far more challenging in fluvial environments for four reasons: (i) water elevation de-

creases downstream, sometimes abruptly at the vicinity of dams; (ii) rivers can have several active braids

or complex hydrological connection with abandoned channels or lakes in adjacent floodplains; (iii) full

mirror-like NIR reflection may occur on flat water such that the NIR PC may lack water surface echoes

over large areas (Figure 3.2); (iv) vegetation frequently grows on the floodplain such that river banks and

small lakes may be completely below vegetation making things even more complex as canopy interception

reduces the backscattered intensity and the likelihood of having a water surface NIR echo and bottom

green echo (Figure 3.2).

Second, the backscattered green laser energy generates two prominent echoes in an ideal clear water

column. The first is a volume echo located just below the water surface. Its position can deviate from

the actual water surface by several dozens of centimetres depending on water characteristics, leaving no

other possibility than to use the corresponding NIR survey to derive the real water surface.(Guenther

et al., 2000;Lague et al., 2020; Philpot, 2019). Though this volume echo is of no use, it is systematic for

any shot. The second echo corresponds to the bathymetry. However, in turbid or deep waters, it some-

times has such a weak amplitude that its signal-to-noise ratio hinders its detection. For a given sensor and

flight elevation, the maximum measurable water depth thus highly depends on water clarity and bottom

reflectance (Guenther et al., 2000; Lague et al., 2020; Philpot, 2019). For instance, in clear coastal waters,

the Teledyne Optech Titan sensor can reach depth down to 10-15 m over bright sand but can be limited

to 0.5 m over dark rocks and will typically only reach depths of 1-4 m in rivers owing to the reduced water

clarity (Lague et al., 2020). Thus, it is commonplace in inland water surveys that deeper parts of rivers or

lakes are locally not detected due to green laser extinction.

Consequently, as for ground detection below dense vegetation, one cannot assume that simple oper-

ations such as picking the lowest green point over a specific area or extracting the last recorded echo in the

green PC will systematically isolate the seabed or riverbed. Similarly, because of the green water surface
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Figure 3.2: Strengths and challenges of topo-bathymetric lidar data. Examples of (a) the coastal setting of the surroundings

of Fréhel (France) and (b) along the Ain River (France). Datasets are presented in the RGF93 coordinates system.

uncertainty, and the incomplete sampling of the NIR water surface, removing all green points below a

given depth is impossible as a large part of the very shallow seabed will be discarded, and depth may be

mis-estimated.

While the use of both NIR and green PCs appears essential to derive an accurate classification of

submerged parts, the exact method is not straightforward, and there is currently no available solution to

automatically separate bathymetric echoes from volume echoes over large PC datasets in complex inland

water environments.

Additionally, beyond the detection and separation of bathymetric and volume echoes of the green

laser, classifying the nature of the land-water continuum – seabed or riverbed covers and above-ground

features – on 3D PCs is a significant challenge. Most of the existing approaches rely on 2D rasters clas-

sified with traditional algorithms like maximum likelihood, support vector machine, or decision trees

(Letard et al., 2021b; Sun et al., 2017; Tulldahl et al., 2012; Wedding et al., 2008; Zavalas et al., 2014). Al-

though these methods exploit geometrical features, they analyse averaged features due to the rasterization

step, which may produce mixed pixels (Pi-Fuei Hsieh et al., 2001) and smooth out the geometry of the

scene, as the spatial point pattern information is lost when the data is condensed into regularly spaced

observations. Few studies provide 3D classifications of underwater environments using bathymetric lidar

(Hansen et al., 2021; Letard et al., 2022b; Letard et al., 2022a). Additionally, some approaches require

full-waveform data (Letard et al., 2022b; Letard et al., 2022a), which is complex to process and often

unavailable or unpublished. Over land, the bi-spectral backscattered intensity of TB lidar offers new clas-
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sification opportunities, as explored in urban environments by (Morsy et al., 2017b; Morsy et al., 2022;

Teo et al., 2017). The two distinct samplings of each laser, provided by their different footprint sizes can

also provide useful information. However, there have been, to date, no applications attempting to classify

both clouds of a topobathymetric survey directly, and fusing them into a single cloud to apply workflows

existing for forested or urban environments is impossible. Indeed, mixing the data obtained with the two

different sensors would be incorrect due to their different precisions, densities, spatial resolutions, and

optical characteristics. Spectral information would become unusable, and, due to the reasons explained

above, the water surface sampling obtained would be unexploitable. Additionally, the capacity of one

or the other sensor to image specific parts of natural scenes is information in itself, that would be lost if

both clouds were to be fused for processing, but that can be exploited by directly operating on the dif-

ferences between the point clouds. A processing method adapted to multiple clouds and applicable to

configurations in which vegetated, urban, and submerged settings are combined is thus expected.

This work presents an original framework called 3DMASC for 3D point classification with Multiple

Attributes, Multiple Scales, and Multiple Clouds, and its application to coastal and fluvial TB airborne

lidar datasets. 3DMASC operates directly at the 3D PC level to produce outputs in 3D, thus preserving

the rich information of spatial point patterns. This classification process relies on multiple 3D features

that make it generalisable to a variety of 3D data types and to different point classes. By assessing point

cloud characteristics at different scales simultaneously, it can distinguish classes characterized by different

sizes while balancing salt and pepper-like noise, or errors at the borders between classes, which often come

with small and large scales, respectively. Finally, our workflow operates directly on the differences between

distinct samplings offered by multiple point clouds, thus leveraging the underexploited knowledge of

multi-cloud surveys. 3DMASC combines proven classical elements of single PC semantic classification,

such as geometric feature extraction from multi-scale spherical neighbourhoods (Brodu et al., 2012) or

k-nearest neighbours (Thomas et al., 2018) and a random forest model (Breiman, 2001). In addition, it

adds new features specifically engineered to leverage the NIR and green PCs. Our contributions consist

in:

• Designing new joint-cloud features calculated on two PCs using their local geometry and backscat-

tered intensity. 3DMASC uses a flexible method to compute features from two PCs, resulting in

more than 80 different features;

• Screening over 80 features, both classical and new, to select the essential features and scales con-

tributing to 3D point classification to optimize classifiers in terms of computational efficiency,

generalization ability, and interpretability;

• Demonstrating that with limited training data (< 2000 points per class) and less than ten features
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and five scales, the classification accuracy of TB lidar datasets can be excellent (>0.95);

• Providing a plugin in the open source software Cloudcompare (CC) that can be used easily by non-

specialists to classify any 3D PC and by experts for fast 3D feature computation and visualization;

• Sharing two manually labelled state-of-the-art lidar datasets with two different levels of detail (up

to 13 classes).

Sections 3.2 and 3.3 introduce our methodology. Experimental results are then shown in section 3.4,

associated with a discussion in section 3.5, and a conclusion in section 3.6.

3.2 Description of the 3DMASC workflow

In this section, we describe the 3DMASC method, included in a CloudCompare plugin (Girardeau-

Montaut, 2022). The method consists first of computing descriptive features at multiple neighbourhoods

of different sizes, involving one or two different PCs covering the area considered for classification. An

optional features and scales selection method is then applied to reduce feature redundancy and ensure the

relevance of the kept attributes. Finally, a random forest model is trained and used for classification, and

its results are analyzed using prediction probability, Shapley explanations and feature importance values.

Section 5.5 provides details of the implementation and operation.

3.2.1 3D features extraction

3DMASC operates directly on unordered sets of points, producing a 3D classification without requiring

an intermediate rasterization step. A PC is a set of n 3D points Pk | k=1,. . . ,n in which each element Pk is

a vector of coordinates (x,y,z) with associated point-based features: intensity, multi-echo characteristics,

and potentially red – green – blue (RGB) colour (see Section 5.5 for a detailed list of features). On top of

point-based features, 3DMASC uses neighbourhood-based features defined using a spherical neighbour-

hood or a k-nearest neighbour search (kNN). A maximum of four different 3D entities are involved in

the process of neighbourhood feature extraction:

• 1-2) two point clouds. The originality of 3DMASC lies in using up to two PCs to characterize the

scene of interest. For topo-bathymetric applications, they originate from different wavelengths,

typically 532 nm and 1064 nm. We refer to them as PC1 and PC2, respectively.

• 3) A set of core points (Brodu et al., 2012), denoted PCX, that 3DMASC classifies at the end of

the process. They may be a subset of points from PC1 or PC2 with a regular subsampling or other

positions spread within the extent of PC1 and PC2.
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• 4) An optional context PC, denoted CTX, containing any relevant context information in its Clas-

sification attribute at a potentially much lower resolution than PC1 or PC2. A typical CTX would

be previously classified ground points at 2 m spatial resolution.

Neighbourhood selection and scales

3DMASC mainly uses a spherical neighbourhood search in the relevant PC – PC1 or PC2, depending on

the feature to compute – to capture the surroundings of each core point (Figure 3.3a). The neighbour-

hood scale is defined as the sphere diameter. 3DMASC uses a multi-scale classifier computing multiple

neighbourhoods for each core point (Figure 3.3c). The user typically provides minimum and maximum

scales and a step (e.g., 1 m) between successive scales. The minimum scale must be consistent with the

PC’s density to compute features for most core points. The largest scale is typically set by the size of the

objects of interest. Defining the optimal set of scales for various types of TB airborne lidar (e.g., coastal,

fluvial. . . ) is a challenge not yet resolved that we address in this work. Beyond ensuring classification suc-

cess, it is also crucial for operational efficiency, as the feature computation time increases strongly with

the scale and number of different scales.

3DMASC also supports kNN to measure the vertical or horizontal distance between PC1 and PC2,

or CTX (Figure 3.3b). This supplements relative position measurements between PCs where diameter-

based features are impossible to compute due to a lack of neighbours.

Single cloud neighbourhood-based features

Single cloud features describe PC1 or PC2 once at a time. Since many criteria characterize a 3D object and

can help identify its nature, the plugin natively encompasses 15 different features (see Section 5.5 for the

complete list of features). The broad set of features available is presented in the following paragraphs.

Six dimensionality-based features aim to describe the local PC’s general aspect and identify if the

object has a linear, planar or spherical outlook (e.g., Brodu et al., 2012; Gross et al., 2006; Vandapel et al.,

2004). They rely on the eigenvalues of the covariance matrix of the points. 3DMASC can directly use the

3 normalized eigenvalues or classical combinations resulting in sphericity, linearity and planarity metrics.

Six geometry-based features inform on the shape of the PC. 3DMASC computes and uses the slope

angle, the detrended roughness, the curvature, the anisotropy, the number of points at a given scale and

the first-order moment, introduced for contour detection in Hackel et al., 2017.

Three height-based features characterize the vertical structure of the local neighbourhood with

respect to the minimum elevation Zmin and maximum elevation Zmax. For a core point with elevation

Z , 3DMASC computes Zmax − Z , Z − Zmin and the local thickness of the point cloud Zmax − Zmin

as explained in Chehata et al., 2009.
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Optional contextual features are used to place each core point in its spatial context and get its posi-

tion relative to the ground, the water surface, or any specific pre-existing class, labelled in the CTX point

cloud. They are computed with a kNN neighbourhood. They generalize the distance to ground fea-

ture used in Chehata et al., 2009 and Niemeyer et al., 2012.On top of these classical features, we propose

novel 3D descriptors based on the application of statistical operators on point-based features within

spherical neighbourhoods. Six statistical descriptors can be used: mean, mode, median, standard devi-

ation, range and skewness. They are designed to inform on the variations of backscattered intensity and

multi-echo LiDAR features: return number, number of returns and their ratio called echo ratio. These

4 point-based features combined with the 6 statistical descriptors result in 24 neighbourhood-based fea-

tures at a given scale. To our knowledge, these types of rich multi-scale statistics were never used before

for raw 3D PC classification.

Similar features can be built from the 3 components of the RGB colour information, and we evaluate

at a later stage the benefits of this information for classification.

Dual cloud features

Dual cloud features describe the geometrical, spectral, height statistics or multi-echo characteristics differ-

ences between the neighbourhood of the core point in PC1 and PC2. Spectral ratios have been introduced

in the context of multi-spectral lidar classification (Chen et al., 2017; Morsy et al., 2017b; Wichmann et

al., 2015), but geometrical, height statistics and multi-echo characteristics are new contributions. We de-

signed them to leverage the bi-spectral information and improve the descriptions of scenes characterized

by a different 3D aspect in PC1 and PC2. In TB lidar datasets, the NIR and green PCs are most signifi-

cantly distinct above water and vegetation (Figure 3.2), but they can also be slightly different over other

surfaces. This is due to the different surface optical characteristics and the NIR and green laser emitters

that can have different angles of incidence or aperture. These may cause differences in the returned sig-

nal intensity, and the 3D position of the points. The definition of these features assumes that both PCs

are correctly registered and that the alignment error is as low as possible for geometric differences to be

related to objects’ characteristics and not registration errors.

Dual-cloud features result from mathematical operations between single cloud features of the same

core point’s neighbourhood in PC1 and PC2. They can be feature differences, additions, multiplications,
or divisions. Here we have used differences to measure dissimilarity in particular for elevation, geometry

and multi-echo features, and divisions to normalize one feature by another, typically for intensity. Figure

3.3a illustrates two examples of dual cloud features: the mode of the difference of elevation that is expected

to be close to zero on the ground, but different over water; and the median intensity ratio between the

green and NIR channel that is expected to be distinct over different grounds. A selection of dominant
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Figure 3.3: Illustration of the main characteristics of 3DMASC: a) examples of new dual-cloud features providing a better

description of the differences between clouds, b) the generalized contextual attributes placing each point in its spatial setting

and c) the multi-scale spherical neighbourhoods used to describe the many aspects of 3D objects.

features is presented, illustrated and explained in Section 3.4.

Dual cloud features also encompass a distance computation (vertical or horizontal) between the core

points PC and another PC (PC1, PC2, or CTX), using kNN.

3.2.2 Random forest classification

3DMASC uses a Random Forest (RF) algorithm (Breiman, 2001) to perform PC classification, i.e., pre-

dict a label y ∈ {1, 2, . . . , c} for each point Pk of the input PC P , using the predictor vector F {Fkij|k =
1, . . . , n; i = 1, . . . , f ; j = 1, . . . , s}, where f = number of features, s = number of scales and n =
number of core points and each Fkij ∈ ℜ. For instance, the label can represent the type of object sampled

by P.

Here, the feature importance is the product between the probability of reaching a node (i.e., the pro-

portion of samples that get that node) and the Gini impurity decrease of that node. Feature importance

is normalized to sum up to 1. A higher value symbolizes a more significant influence of the feature on the

prediction.

RF does not handle Not-a-Number (NaN) values which may be present with our features (depending

on the scale, NaN values can occur if the spherical neighborhoods does not contain the minimal number

of points required to compute the covariance matrix for example). This requires specific pre-processing

of the predictor vector. Indeed, replacing NaNs with a fixed value may imply irrelevant representations

of the local sub-clouds and thus incorporate bias in the classifier training. To tackle this issue, 3DMASC
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relies on the RF implementation of the cross-plateform library OpenCV (Bradski, 2000), which incor-

porates surrogate splits to handle missing measurements. We use base settings and forests populated with

150 decision trees, having a maximum node depth of 25, as advised in (Oshiro et al., 2012). We also com-

pared it with the RF implementation in the python library Scikit-learn (Pedregosa et al., 2011), and found

similar results.

To further improve the robustness of the classifiers, we also exploit the prediction probability output

by RF and use it as a classification confidence indicator, as seen in Brodu et al., 2012 and Letard et al.,

2022b. The prediction probability corresponds to the proportion of forest trees that voted for the class

assigned to the point. It ranges between 0 and 1.

3.2.3 Features and scale pre-selection to control the size of the predictor vector

We propose a feature selection routine (Dash et al., 1997) to improve the explainability and efficiency –

through the number of predictors – of the trained algorithm, as there can be almost 90 features per scale

in TB environments.

Although information redundancy supposedly does not impact RF performances, it disrupts the ex-

plainability of the feature importance values, since if two features bring similar information, their relative

importance will be underrepresented. Thus, we keep only a set of uncorrelated features, by using a bivari-

ate feature selection (Dash et al., 1997; Guyon et al., 2003), incorporating an assessment of the features’

Information Gain (IG) (Dash et al., 1997) and the Pearson linear correlation coefficient of attribute pairs.

The correlation threshold and the scale at which each feature is evaluated are user-defined, and deter-

mined after an empirical investigation.

The same bivariate procedure allows the selection of scales. However, we also decided to promote

small scales to limit the computation cost of the classifier. The selection process relies on a majority voting

procedure. Since it is impossible to consider a scale independently from its application to a feature, we

retain the scales that are the most often selected when they are evaluated for each feature independently.

Considering the variety of features included in 3DMASC, removing correlated features and scales

does not provide a significantly smaller set of features. Typically, in our experiments on two datasets devel-

oped in the next sections, around 40 features per scale of interest remain after correlation-based pruning.

The classifier obtained may thus not be easier to explain, and the application steps may be unnecessarily

computationally heavy.

To further reduce the dimension of the predictor vector, we considered a feature ranking depending

on the IG. However, defining a fixed number of features and scales is highly task- and site-dependent,

and filter-based selection would not consider internal synergies between features. Consequently, we use

an embedded backward feature selection, relying on the RF feature importance, as detailed in (Dash et al.,
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1997; Aggarwal, 2014). This selection is performed on the uncorrelated set previously obtained. The opti-

mized predictor vector is then identified through automatic out-of-bag score (OOB) monitoring. OOB

corresponds to the performance score obtained by the RF algorithm on a sample that is not part of the

subsample of data used to build the trees (Breiman, 2001). It is used to estimate the generalization ability

of the model, i.e. the performance of the classifier on new, unseen data. In practice, we tested the perfor-

mance of each model build during optimization on our test dataset and indeed observed that prediction

accuracies on the test data varied similarly to OOB (see Section 5.5, Figure 5.20). We thus use a sliding win-

dow to monitor the variations of OOB over a given number of iterations (in our experiments, ten) and

keep the last best iteration before OOB starts to drop (i.e. varies more than a user-defined threshold).In

the rest of the paper, we will refer to this step as classifier optimization, which, since the OOB score is

obtained using the training data, is performed completely independently from the test data.

3.2.4 Framework implementation

Figure 3.4: The 3DMASC workflow.

Figure 3.4 sums up the global framework introduced in this work and illustrates how the different

steps explained follow each other when processing a PC. As detailed in Appendix A, the Cloudcompare

3DMASC plugin can be used at two levels of complexity: for beginners, a complete graphical user in-

terface (GUI) exists from feature computation to classifier training and class inference; for expert users,

3DMASC can be called through command line solely for fast feature computation with its parallelized

C++ implementation, and the results subsequently used in any other environment such as python. Fea-

ture and scales preselection, as well as classifier optimization described in section 3.2.3 follows this latter

approach and operates through a complementary Python script. To avoid feature preselection and clas-

sifier optimization for non-specialist users, a key objective of this work is to identify a minimal set of

features and scales that can systematically be used for TB lidar classification.
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3.3 Published datasets and experiment protocol

3.3.1 Experimental datasets and classes

To illustrate the use of 3DMASC for bispectral lidar data classification, we selected two topo-bathymetric

lidar datasets, representing one coastal and one fluvial environment, respectively (Figure 3.2). These two

datasets only differ in the type of environment they model. They were both surveyed with a Teledyne-

Optech Titan airborne lidar with two wavelengths, 532 nm and 1064 nm (Lague et al., 2020). The green

laser points with a forward pitch of 7◦, which is necessary to avoid strong surface reflection on water

and has a beam divergence of 0.7 mrad. The NIR laser has no forward pitch and a beam divergence of 0.3

mrad. Consequently, the incidence angle, surface sampling and laser spot size are never the same at a given

location of the scene for the two lasers. The sensor produces high-density PCs, typically 36 pts/m² on land

– when combining both wavelengths – and 18 pts/m² under water in a single pass (Lague et al., 2020).

More details about the sensor and the acquisition conditions – typical aircraft altitude, speed, overlap

between flight lines and preprocessing – are available in (Lague et al., 2020). The mean vertical offset

between the two channels measured on flat horizontal surfaces is typically less than 1 cm. The precision

evaluated as the standard deviation of point elevation measured on flat horizontal surfaces is around 5 cm

on topography and 10 cm on submerged surfaces.

The first site lies on the French coast of the Channel, in Britanny, near the town of Fréhel; the second

is a portion of the Ain River in South-Eastern France near its confluence with the Rhône River. The

surveys were conducted in May 2021 and September 2016, respectively. Figure 3.2 features the two scenes.

They both contain natural and anthropic land covers and include a part of the bathymetric environment:

in the first case, shallow sea water with green laser extinction at 10.5 m; in the second case, a river with green

laser extinction at 3.5 m. The flights combined lidar surveys and simultaneous RGB imagery acquisitions

with the control camera, which produced orthoimages with ground sampling distances of 25 cm and a

registration error of about 20 cm. As RGB imagery acquisition was not the main objective of the surveys,

pronounced shadows exist in particular on the Ain survey as it happened late in the afternoon.

3.3.2 Classes definition and 3D annotation

We evaluate the performances of 3DMASC on two levels of detail: a primary classification of 5 land covers

– strictly identical for both areas – and advanced labelling of 11 and 13 types of objects on the Ain and

Fréhel datasets, respectively. We chose the classes depending on the diversity of land and sea covers we

could observe in each area. Table 3.1 contains all the categories that we use for the primary and advanced

classifications.
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Basic classes (primary

classification)

Detailed classes (advanced classification)

Both Ain (river) Fréhel (coast)

Ground

Bare ground

Sand

Pebble/Cobble

Rock

Artificial ground Artificial ground

Vegetated ground Vegetated ground

Vegetation

Intermediate

Vegetation

High

Artificial elements

Buildings Buildings

Power lines Power lines

Vehicles Vehicles

Seabed/Riverbed

Riverbed

Sandy seabed

Rocky seabed

Swimming pools /

Water Water column

Water column

Surf zone

Table 3.1: List of classes defined for the experiments on two levels of detail.
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Artificial ground includes roads and surfaces covered with concrete or tar (parking lots, dykes). Veg-

etated ground is grass or other low vegetation, such as low-growing heather in moors. In the Ain survey,

intermediate vegetation is defined as bushes or shrubs with a different aspect than high trees and a smaller

growing height. We did not use a classical classification based on a strict height threshold, as usually made

in vegetation mapping applications (Letard et al., 2022a). Our objective was to avoid the traditional mis-

classification of low branches attached to high trees as shrubs while they are points belonging to high

vegetation. The definition of intermediate vegetation and high vegetation therefore balances 3D aspect

and height above ground. Compared to other classes that can be objectively defined, our separation be-

tween intermediate and high vegetation is rather subjective. The lack of various types of vegetation in the

Frehel datasets prevented us from refining the vegetation class.

We annotated portions of data manually using visual interpretation of the PCs and the RGB im-

agery acquired simultaneously using Cloudcompare (Girardeau-Montaut, 2022) including new specific

developments for quick labelling of 3D point clouds. Four training and test datasets – one for each level

of detail of each scene – were created, all labelled and balanced, for the classification experiments. They

all contain 2000 points of each label. To eliminate potential spatial bias due to the use of multi-scale

spherical neighbourhoods, we forced each training and test point of the same label to be at least 20

m away, considering we used spheres with diameters up to 15 m. Figure 3.5 illustrates the resulting sets

of points labelled for training and testing. The annotated datasets are available along with the source

codes of the plugin and of the scripts used to perform further analysis at the following link https:
//github.com/p-leroy/lidar_platform. These datasets contain the NIR and green high-density

surveys of both areas, a context PC representing a raw ground detection of each site at 2 m spacing, and

the annotated training and test points, with two levels of detail, one with 5 broad classes, another with 11

or 13 detailed classes depending on the area.

3.3.3 Evaluation metrics

We use the Overall Accuracy (OA) to quantify the correct proportion of global predictions. The pre-

cision estimates, for each label, the actual correct proportion of positive predictions. The recall value

evaluates the part of true positives identified correctly (Sokolova et al., 2006). Precision thus tends to

outline over-estimation of some classes, while recall highlights under-estimation. Often, the goal is to

balance precision and recall so there is no clear tendency of over- or under-estimation of the classes con-

sidered. In a context in which under- or over-estimation of a given class is not targeted, the smaller the

difference between both metrics, the better the result. The F-score combines the information provided

by both precision and recall through their harmonic mean (Sokolova et al., 2006).

In addition to performance quantification, we wish to address the explainability of the method. Ac-

https://github.com/p-leroy/lidar_platform
https://github.com/p-leroy/lidar_platform
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Figure 3.5: Location of the training and test datasets in both experimental areas; the coast around Fréhel (up) and the sur-

roundings of the Ain river (down) (RGF93).
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cording to Roscher et al., 2020, explainable machine learning in the natural sciences should incorpo-

rate three elements: transparency, interpretability, and explainability. We address each of these elements

by, respectively, detailing the method, exploring feature and scale importance and selection mechanisms,

analysing explicative elements of the decision rules behind the results obtained and their reproducibility

among different environments. The class-wise performances are explainable with the approach of Lund-

berg et al., 2017 by computing the Shapley values (Shapley, 1953). These range between 0 and 1 and quan-

tify, for each point, the influence of each feature on the label prediction, based on game theory concepts.

We performed this analysis using the SHAP Python library (Lundberg et al., 2017). Using these values as

a complement to the variable importance measurement and a low number of predictors in the optimized

models allows us to have a more robust explanation, less dependent on the randomness of descriptors

and sample selection at each node of the decision trees.

3.4 Results obtained with 3DMASC

This section first presents the overall classification results obtained in the fluvial and coastal environments

and the impact of feature preselection and optimization. We then present the class-wise results and the

dominant scales and features that emerge from the experiment. Finally, we explore the benefits of using

RGB information, contextual data and classification capabilities when using only green lidar data. All

results presented are obtained on a test dataset strictly different from the training dataset.

3.4.1 Overall classification results depending on the number of predictors

We use three different terminologies: Full predictor Set (FS) classification implies the computation of all

features at all selected scales; Optimized Classification (OC) does not consider all features at all scales;

Single Scale Classification uses an identical single scale for all feature calculations. The starting set of

features contains 88 features, which include all possible features of 3DMASC computed on PC1, PC2

and their difference or ratio between both PCs (see Appendix B). They are calculated at 29 different

scales from 1 m to 15 m with a 0.5 m increment and for kNNs with k in {1; 2; 3; 4; 5; 10}. The complete

predictor vector has 2011 columns (4 point-based features, 23 features computed at 29 scales for 3 spherical

neighbourhoods – green, NIR, both – and 6 kNN-based features).

To determine the scale to use for feature evaluation – i.e. IG assessment – we analyzed the OA ob-

tained when selecting features based on their IG at scales varying from 1 m to 12 m. This first analysis

shows that features computed at 2 m allow the best selection for OA (see Supplementary Material). Sim-

ilarly, testing for the optimal correlation threshold results in a value of 0.85 to obtain the highest OA (see

Supplementary Material). A scale of 4 m would have been valid too for the Ain dataset, but since there
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was no difference between using 2 m and 4 m for this area, we picked 2 m in order to ensure comparability

of the results between the two zones.

Impact of correlation and feature pre-selection

It is expected that the same feature computed at two scales separated with a small gap will produce redun-

dant information. Here we explore if all types of features exhibit similar levels of correlation with scale.

Figure 3.6 presents the mean absolute Pearson coefficient between features computed at scales separated

by 1 m or 3 m for different types of single-cloud or dual-cloud attributes: geometrical, echo-based, and

intensity-based.

Figure 3.6: Linear correlation between features computed at scales separated by ds=1 m or ds=3 m for different examples of

features. SC = Single Cloud; DC = Dual Cloud. The threshold at 0.85 emerged from an empirical analysis.

The general tendency is for absolute linear correlation to increase with scale and to saturate or increase

only slightly above a threshold scale of about 4 to 6 m. The maximum linear correlation level depends on

the type of feature and environment. Dual-cloud geometric features are less correlated than single-cloud

features. Intensity-based features exhibit high linear correlation levels suggesting a potentially strong re-

dundancy across scales. The comparison between the dual cloud geometric features at Fréhel for steps of

1 m and 3 m shows that the larger is the step between scales, the lower the linear correlation. As expected

intuitively, the step between scales should thus tend to increase with scale, in particular above 6 m, to

limit information redundancy.

These results indicate that given the high linear correlation of certain features, especially above 4-6

m, there is hardly a need for a large number of individual scales above this scale, in particular for single

cloud intensity and geometric features. Consequently, we enforce the maximum number of scales kept

in the preselection phase to be 10, compared to the initial 29. Finally, Figure 3.6 demonstrates that intra-
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feature scale correlation is site-dependent and that there are no clear principles ruling correlation dynam-

ics. Consequently, selecting scales for features based on their linear correlation is impossible without first

computing them.

After feature preselection accounting for absolute linear correlation, different features are eliminated

depending on the site. Overall, there were fewer correlated features on the Ain site and more correlation

when using a higher number of classes (and therefore feature samples). The number of features pass-

ing the selection step ranges between 36 (Fréhel, primary classification) and 44 (Ain, primary classifier).

Height-derived and dimensionality-based attributes were the most pruned types of features during cor-

relation filtering. NIR and green roughness, and return numbers are strongly correlated in both areas.

Measures of echo ratio were too much correlated in the Ain, whereas they were not in Fréhel, which

reflects the differences between riverine and coastal TB surveys.

Impact of predictors number and optimization: from full predictor set to optimized classifiers

We explore the influence of the number of features and the number of scales used on the OA and present

the results in Figure 3.7.

Figure 3.7: Classification accuracy depending on the number of features computed at different numbers of scales.

The results confirm the conclusions of (Brodu et al., 2012; Thomas et al., 2018) on the superiority

of multi-scale algorithms compared to single-scale classifiers. This analysis also illustrates the decreasing

benefit of increasing the number of features and scales past 20 features and 6 scales, even using uncorre-

lated entities only. Figure 3.7 highlights that adding features increases OA more than adding scales. For

instance, adding a second scale to a single feature classifier systematically results in an OA surge, while

harvesting 10 features at the same two scales produces more accurate results than relying on two features

computed at the same 10 scales. Due to the majority voting used for scale selection, the scale used for
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single-scale classification varies, explaining the variations of accuracy (see Figure 3.7, single-scale curve),

and showing the dependence between the features’ relevance and their computation scales.

Since the accuracies presented are the results of applying the trained algorithms to data unseen dur-

ing training, these results also showcase the stability of RF relative to overfitting and generalization. Even

when training the model with hundreds of predictors, OAs remain stable (between 92% and 98% depend-

ing on the use case) when classifying the distinct test points (see Figure 3.7). Furthermore, 3DMASC’s

features succeed at characterizing the nature of the objects lying behind the points, as accuracies converge

towards values ranging between 92% (Fréhel, advanced) and 98% (Ain, primary). It is, however, delicate

to determine the ideal number of features and scales to retain. The optimization procedure provides

more information on the required number of predictors to achieve high-accuracy identification of the

different classes. Figure 3.8 presents the OOB evolution when reducing the predictor set iteratively. The

small-range oscillations observable in the OOB score can be explained by the random drawing used to get

the out-of-bag samples on which to compute the score, which results in the non-respect of the samples’

spatial independence, as the 20 m distance criterion only applies between samples of the training and test

sets and not within each of them.

Figure 3.8: Out-of-bag score depending on the number of predictors used during classifier optimization.

With the automatic monitoring of the OOB’s significant variations, a set of parameters is chosen,

providing optimized classifiers for the four experiments and corresponding training datasets. Table 3.2

gathers the main characteristics of the optimized classifiers.

The results in Table 3.2 confirm what we observed in Figure 3.7: a small number of features and scales

produces highly accurate classifications. The most complex classifier obtained incorporates 37 predictors,

including 16 features and nine different scales. Table 3.2 also outlines that more predictors are needed to

correctly identify a larger number of labels: advanced classifications require 19 and 12 more predictors

than primary for the Ain and Fréhel areas, respectively. The optimized models obtain accuracies ranging

between 90.7% and 97.6% and harvest more features than scales, confirming the superior efficiency of
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Classifier Ain (5cl) Ain (11 cl) Fréhel (5 cl) Fréhel (13 cl)

FS OA 97.9% 94.6% 92.8% 91.9%

FS nb of pred. 371 352 315 330

OC OA 97.6% 94% 91.6% 90.7%

OC nb of pred. 18 37 22 34

Nb of features 12 16 12 19

Nb of scales 5 9 6 6

Mean confidence 0.93 0.9 0.89 0.83

Table 3.2: Characteristics of the four models. FS = full predictor set, OC = optimized classification. Nb

of pred. refers to the number of predictors used.

feature diversity over scale abundance. Overall, the maximal difference in OA between full set and opti-

mized classifiers is 1.2%. Models are highly simplified: on average, the optimization reduces the predictor

vector’s dimension by 93%. However, the fully iterative procedure is necessary to determine the number

of predictors to use and limit the loss of OA. For example, when using the 18 highest-ranked predictors

at the first RF classification of the Ain, the OA is 94%, which is almost a 4% difference.

3.4.2 Class-wise results with optimized classifier

Class-wise metrics

Figure 3.9 illustrates the application of the optimized classifiers for advanced classification.

The land-water transition is well identified and the main elements such as ground and above-ground

features are separated. Figure 3.10 sums up the class-wise results obtained for each experiment. The main

classes of the Ain site obtain F-scores higher than 85%. In the coastal area, they are distinguished with

F-scores over 88%.

The difficulty imposed by the distinction of objects with similar geometries does not impact the per-

formances severely. All F1-scores are higher than 83%, and average confidences are over 70% and 80% in

primary and advanced cases, respectively, except for vehicles in the advanced Fréhel experiment. These ob-

servations suggest efficient construction of the classifiers, as correct predictions obtain the vote of most

of the decision trees.

The identification of water column echoes is highly accurate (99%) in both advanced classifications,

but there is more confusion in the primary experiments, where the broader classes may be harder to define.
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Figure 3.9: Classified point clouds of both areas using the optimized classifiers, with Fréhel on top and the Ain under.

Figure 3.10: Precision, recall, and prediction confidence per class for the four classifiers after optimization.
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Classifier Selected scales

Ain, primary 1.5 m, 4 m, 5.5 m, 14 m, 10NN

Ain, advanced 1.5m, 2 m, 2.5 m, 3 m, 3.5m, 4 m, 5.5 m, 7.5 m, 5NN

Fréhel, primary 3 m, 3.5 m, 5.5 m, 6 m, 14.5 m, 1NN

Fréhel, advanced 3.5 m, 4.5 m, 6.5 m, 7 m, 14.5 m, 1NN

Table 3.3: Remaining scales in the four optimized multi-scales classifiers. kNN indicates k nearest neigh-

bours.

The surf zone is also challenging to distinguish from ground or rocky seabed in some areas of Fréhel.

Some classes show gaps between precision and recall, reflecting the over-detection of building in rocky

areas or of intermediate vegetation in the Ain (see Figure 3.9).

Dominant scales analysis

The optimized predictor vectors indicate that some features are particularly informative at specific scales,

and conversely, some scales are essential for given features only. The optimization phase alters the sys-

tematic multi-scale character of the classification since the number of predictors in the optimized models

is smaller than the product between the number of scales and the number of features. For example, the

advanced classification of the Ain has an optimized predictor vector exploiting 16 features at nine scales,

yet, its total size is 37. In contrast, if the optimized classification systematically used all available scales for

a feature, it would be 144.

Table 3.3 sums up the specific scales retained for each experiment. It shows that finer scales are neces-

sary to describe the Ain site: the minimal scale selected is 1.5 m, whereas it is double for Fréhel. All clas-

sifiers follow a similar pattern: they exploit small to medium scales up to about 6 m, and a much larger

scale of about 14 m without transitioning via a medium value. The advanced models both reuse similar

scales to their primary equivalents but incorporate new ones in between, reducing the typical sampling

step of object sizes. However, the 11-label classifier of the Ain is the only one discarding the 14 m scale,

thus exploiting only small to medium diameters.

To better identify the contribution of specific scales to various classes in the two environments, Figure

3.11 shows the Shapley analysis for the standard classification.

Dominant scales are different between the Ain area and Fréhel. Water column and seabed/riverbed

are dominated by features computed with around 3 m, 6 m and 14.5 m diameter in Fréhel, whereas 6 m

and 10NN features are more useful in the Ain. Similarly, artificial elements and trees do not exploit the
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Figure 3.11: Mean absolute Shapley value obtained by each scale of the optimized predictor vector depending on the class

considered (a scale of 0 m represents features computed with a kNN search).

same sphere sizes over the two sites. The scales also adapt to each label. For example, artificial elements
– containing buildings, vehicles, and power lines – rely less on kNN features than riverbed in the Ain or

ground in Frehel.

We can also identify two groups of classes having similar scale contribution patterns. The first includes

water column and seabed/riverbed, and the second includes ground and artificial elements in Fréhel, while

it is composed of ground and vegetation in the other area. In Fréhel, vegetation follows similar trends as

the bathymetric classes.

Dominant features analysis

To simplify, we only review the dominant features of the primary classifications in this section. Several

features stood out from the rest and passed both the selection and optimization phases. They theoretically

contain the essential information to distinguish the defined classes. Table 3.4 introduces and illustrates

each of them.

The optimized sets of predictors obtained, presented in Figure 3.12 and Table 3.4, seem to be tailored

to each site. The Shapley analysis, in Figure 3.12, corroborates this observation. Only five features com-

mon to both sites are identifiable: vertical distance of green points to their NIR neighbours (kNN),

mean green intensity, mean echo ratio in the green neighbourhood, mean number of returns in the green
neighbourhood, and mean number of returns in the NIR neighbourhood.

Two groups of labels have similar feature contribution patterns. Ground, seabedriverbed, and

water column on one side and vegetation and artificial elements on the other. The first group is mainly

identified by multi-echo features, NIR intensity, and dual-cloud features. The second relies primarily on

dual cloud features – median intensity differences namely – and NIR multi-echo attributes.
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RGB image RGB image

Z difference with NIR

kNN

Z difference with NIR

kNN

Third eigenvalue

(green)

Sphericity (green)

Difference of Z modes

Ratio of median

intensities

Standard deviation of

Z (green)

Skewness of intensity

(NIR)

Standard deviation of

Z (NIR)

Mode of intensity

(green)

Difference of

roughness

Mode of intensity

(NIR)

Mean intensity

(green)

Mean intensity

(green)

Mean EchoRatio

(green)

Mean EchoRatio

(green)

Mean Nb of Returns

(green)

Mean EchoRatio

(NIR)

Mean Nb of Returns

(NIR)

Mean Nb of Returns

(green)

Mean Nb of Returns

(NIR)

Mean Return Nb

(green)

Table 3.4: Optimized set of features for both sites. For dual-cloud features corresponding to a difference,

blue values are negative, white is zero, and red is positive. For other features which are strictly positive,

blue indicates lower values, green intermediate values, and red higher values.
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Figure 3.12: Mean absolute Shapley value obtained by each feature of the optimized predictor vector depending on the class

considered.

In both cases, the TB aspect of the datasets is fully exploited: in both areas, there are four NIR

PC features and five to six green PC attributes involved in the optimized sets. NIR PC-derived features are

more contributive to topographic objects, while both PCs are equally crucial for ground/seabed/water
column distinction. The experiments on Fréhel also draw more on NIR intensity-derived parameters than

the models to process the Ain, in which only one green spectral parameter is involved with low relative

importance (Figure 3.12). The class-wise feature importance analysis also shows that features do not have

the same descriptive power in both NIR and green domains. The number of returns of the NIR

echoes is more informative on the nature of the surface than its green equivalent.

Both results show a predominance of newly introduced 3DMASC features over classical fea-

tures used in other studies (Chehata et al., 2009; Hackel et al., 2016; Thomas et al., 2018; Weinmann et al.,

2015). 8 out of 12 for the Ain site and 10 out of 12 for Fréhel are attributes we propose with 3DMASC:

means, modes, or skewness values of PC characteristics. Geometrical and dimensionality-based features

are scarce: only NIR PC roughness, NIR PC dip, green PC sphericity, and green PC third eigenvalue

pass the optimization phase. The mean green intensity is the only other example of a classical feature ob-

servable (see Table 3.4). Intensity-based features constitute nearly half of the predictors of the Fréhel opti-

mized classification but are few in the Ain model. The other half of the Fréhel predictor set is dominated

by multi-echo features of both wavelengths, that evict height-based features and geometrical features. In

the Ain, they appear through the differences in elevation modes. Other dual cloud features stand out: ver-
tical distances between green and NIR points, elevation mode differences, and median intensity differences
between the two PCs (Table 3.4).

Figure 3.12 also reveals that the new 3DMASC features outperform usually dominant charac-

teristics like intensity. The difference in elevation modes between NIR and green PCs, is more relevant
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to identify vegetation than intensity, in particular in the Ain. Similarly, the roughness difference between

PCs dominates single cloud NIR roughness, even for ground and over-ground object separation. The

ratio of median NIR and green intensities is particularly useful for outlining vegetation and artificial ele-

ments. Dual cloud features are present in both OC classifiers, illustrating how they complement separate

single cloud attributes. Multi-echo features also contribute significantly to the predictions. The mean

number of returns is particularly useful to characterize vegetation and artificial elements.

3.4.3 Results using other predictors

In this section, we test 3DMASC in different settings: using a context PC, RGB information, and sim-

ulating the unavailability of the NIR wavelength. All results are summed up in Figure 3.13. They are

obtained by running the complete framework on initial predictor vectors including contextual features,

RGB-derived features, or green features only. The presence or absence in the optimized predictor set of

each tested attribute is thus already an indication of their informative character.

Figure 3.13: F-score obtained for each class depending on the experiment. Initial = optimized classifier obtained with the

initial set of predictors. CTX = optimized classifier obtained when adding contextual features. RGB = optimized classifier

obtained with RGB features added. Green = optimized classifier obtained using only green features.

The contextual features used were vertical distances to a PC containing only ground or water surface

points, for different scales (1 m, 3 m, 5 m, and 10 NN). These predictors allowed to use smaller scales (see
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Supplementary Materials) and improved the prediction confidence and quality of all classes in the Ain

area. In Fréhel, they improved the accuracy of seabed, but tend to penalize water column and vegetation.

The reflectance in the blue domain is the only RGB-derived attribute that passed optimization. Its

mode is used in two models: Fréhel primary and Fréhel advanced. This shows that RGB features are not

crucial to detect the classes of the Ain but may serve to differentiate coastal land and sea covers. They

also seem to penalize our classifier optimization framework when they are used but do not appear in the

best models, as the losses in F-scores on the advanced classification of the Ain reveal. This shows that

RGB parameters may evict some more useful features and reduce the classifier’s abilities on unseen data.

However, in the primary case in this area, F1 scores are higher when the optimization is performed on this

extended feature set: when including the RGB attributes, the OOB significantly drop when the number

of predictors is below 40, causing the presence of additional intensity-based 3DMASC attributes in the

optimized classifier, which seems to increase F1 scores of several classes.

When using green laser data only, OAs range between 85% (Fréhel, advanced) and 94% (Ain, primary).

Predictor vectors are dominated by multi-echo features and intensity-derived attributes. In Fréhel, dip

and standard deviation of intensity are the only new features selected. In the Ain, point-based echo ratio,

mean return number and mode and standard deviation of intensity appear. Overall, more scales are used

per feature and seven and eleven features are selected for Fréhel and the Ain, respectively. In the 5 class

experiment of the Ain, a performance decline is only observed for riverbed. Although its F-score drops by

2%, it remains at 90%, showing that a single bathymetric PC already provides highly accurate detections of

the water column and the riverbed. In Fréhel, the classification of seabed is even improved when excluding

NIR data. In both settings, the distinction of topographic classes is less accurate when discarding NIR

information.

3.5 Discussion

Starting with a set of 88 features computed at 29 scales, we obtained optimized, compact classifiers ranging

from 18 to 37 predictors – scales and attributes – and resulting in good to excellent classification for up

to 13 classes. In this section, we discuss these results with respect to existing work on PC classification.

3.5.1 Classifier optimization and number of predictors used

Through 3DMASC, we obtain classifications of TB scenes with OAs over 90%, using light classifiers

that harvest a maximum of 37 predictors (Table 3.2), some of them using as little as 18 predictors (Ain, 5

classes). Average prediction confidence is high and accompanied by high accuracy, a synonym of effective

classifier training. Low values of confidence can be linked with classification errors and used to filter out
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Classifierr Confidence threshold OA Remaining points

Ain, advanced

0.5 95% 96%

0.6 97% 92%

0.7 98% 87%

0.8 98% 80%

Fréhel, advanced

0.5 94% 92%

0.6 96% 84%

0.7 97% 76%

0.8 97% 67%

Table 3.5: Overall accuracy depending on the confidence threshold applied to filter the predictions.

misclassified points. Table 3.5 shows the results of applying a confidence threshold below which points

are removed. It illustrates that there is necessarily a balance to find between result quality and spatial

resolution of the classified PC, as aiming at fewer classification errors means accepting to reduce the local

density of the data.

The optimization step seems to efficiently balance computational efficiency and high-quality classi-

fications. The low number of predictors makes the models applicable to large datasets, easily explainable

with Shapley values and thus accessible to non-specialist users. These characteristics allow 3DMASC to

be an interesting alternative to current state-of-the-art methods that are 3D deep neural networks. Dis-

cussing the performances of deep neural networks is out of the scope of this study, but they have proven to

output significantly good results on 3D semantic segmentation applications (Guo et al., 2021b). However,

to our knowledge, no available and accessible deep learning framework for multiple 3D PC classification

or for airborne lidar data in similar natural settings exists that could be easily reused by environmental

scientists without a significant background in deep learning. Indeed, the developments still mostly focus

on urban areas (Huang et al., 2021; Lin et al., 2021; Mao et al., 2022a; Schmohl et al., 2019; Wen et al., 2021;

Yang et al., 2018; Zeng et al., 2023; Zhang et al., 2022; Zhao et al., 2018a), where the variety of scales and

geometry is quite dissimilar to what we observe in natural, TB settings. Neural network hyperparameters

are also harder to optimize without expert knowledge and require more complex and intensive training,

and thus, computing power and are thus less easy to master for thematic users.

In this context, we addressed the need for an approach allowing for high-accuracy multi-class clas-
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Samples per

class

Overall accuracy

Ain Fréhel

5 cl. 11 cl. 5 cl. 13 cl.

1600 98% 95% 91% 91%

1200 98% 95% 91% 91%

800 97% 95% 91% 90%

400 96% 95% 90% 90%

100 94% 93% 89% 90%

Table 3.6: Classification accuracy depending on the number of training samples used. Tests are performed

using the complete set of 3DMASC features

sification while relying on less complex computation, and staying accessible to environmental scientists

through open-source software. We chose to experiment on datasets containing 2000 labelled points per

class, but when randomly subsampling the labelled data, we observe that high accuracies are already pos-

sible with a few hundred ground truth points per class, as featured in Table 3.6.

Neural networks are also more abstract and thus harder to decipher, contrary to 3DMASC thanks to

feature importance and Shapley values that contribute to an explainable machine learning approach. In-

deed, we refer to the definition of Roscher et al., 2020, identifying transparency, interpretability, and

explainability as major traits of explainable machine learning. In this work, transparency is addressed

through the detailed description of the method construction choices and the exploration of some key

parameters such as feature selection choices, scales choices, etc. Interpretability is addressed through ex-

tensive analysis of the features’ importances, the iterative pruning of the descriptor vector, the exploration

of meaningful scales and the consideration of two different environments and datasets. Finally, explain-

ability is considered through the analysis of the decision process in the two environments depending

on the class – typical feature and scales for different classes – but also through the experiments on two

datasets and the application to much larger sets of points, giving insights on the robustness and repro-

ducibility of the method.
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3.5.2 Dominant scales

Taking advantage of the explainability of the method, we identify typical characteristics of OC classifica-

tions. First, a typical set of scales emerges from the experiments, including small and medium sphere

diameters ranging between 1.5 m and 7.5 m and one larger scale around 14 m (Table 3.3). The global range

of scales selected does not vary between primary and advanced classifiers, except for the Ain where we can

expect that the introduction of smaller-scale objects - vehicles, swimming pools, intermediate vegetation –

penalizes very large scales. Advanced classifiers rather add scales within the core range, reducing the step

between two options.

Second, the exact optimized sets of scales that arise are specific to each environment, which

questions the possibility of identifying optimal neighbourhoods without analyzing their application con-

text. For example, out of four experiments, three different optimized NN neighbourhoods stand out: 10,

five, and one (see Table 3.3), contrasting with the conclusions of Niemeyer et al., 2011 that select one single

optimal scale of seven NN for their different experiments, and with the results of Dong et al., 2017 who

also find a single scale of five NN as the most often selected neighbourhood. Furthermore, the fact that

each selected scale is not used for each feature tends to be consistent with the work of Dong et al., 2017,

choosing to optimize each feature’s neighbourhood rather than identifying a global optimal scale.

Third, scale selection results are consistent with the intra-feature correlations we observed

in Figure 3.6. Although these estimates could be complemented with other measurements of non-linear

correlations as in (Weinmann et al., 2015), this first consideration for correlation already provides insight-

ful information on the relevance of the different scales for our study areas. These suggested that less scales

were needed above 6 m than below, which is in line with the fact that we only obtain one large scale. This

large scale also outlines the necessary trade-off between classification accuracy and classification res-

olution. If we investigate the role of this much larger scale, we find that, though it helps to mitigate some

errors linked to larger scale roughness in the PCs – for example confusion of rocks with buildings – it also

smoothes out the results, blurring classes borders and even missing smaller objects like cars. In Figure 3.14,

cars can be identified in the PC, but many of them are missed and labelled as ground when large scales

are used. Limiting the range of scales to 7 m produces a result in which these cars are correctly detected,

but the ground incorporates false building labels.

Our observations thus question the relevance of large scales, which appear to be selected for certain

point types as they pass the score filtering selection, but end up penalizing the global classifier application

through several aspects. Table 3.7 illustrates the confidence filtering analysis obtained on the Fréhel ad-

vanced classifier optimized on scales within 1 to 7 m only. It shows that, without the possibility to select

larger scales, the classification reaches similar accuracies and confidences. However, they clearly affect the

computation efficiency. The advanced Fréhel OC classifier obtained on scales up to 7 m incorporates ten
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Figure 3.14: Extracts of classification results obtained depending on the maximal scale included.

more features, but the computation time is divided by three (3450 points per second versus 1102 points

per second). Suppressing large scales may thus improve classification speed, while maintaining high OAs.

3.5.3 Computation time

Computational efficiency is an important aspect of 3DMASC. The computation of the spherical neigh-

bourhoods is the main bottleneck of the workflow, similar to what is observed in other studies (Hackel

et al., 2016; Weinmann et al., 2015) and sometimes even drives the choice of the neighbourhood type. Ta-

ble 3.8 illustrates the time necessary to compute all implemented features at different single or combined

Classifier

Confidence

threshold

OA

Remaining

points (%)

Fréhel,

advanced

(Max scale

= 7 m)

0.5 94% 91%

0.6 96% 84%

0.7 97% 76%

0.8 98% 66%

Table 3.7: Overall accuracy depending on the confidence threshold for a reduced set of possible scales.
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1 m 4 m 7 m 10 m

Single scale (pts/s) 28082 7337 2109 928

1-4 m 1-7 m 1-10 m

Multi-scale (pts/s) 4069 854 275

Up to 7 m Up to 15 m

Optimised multi-scale (pts/s) 3450 1102

Table 3.8: Feature computation time depending on the scale set.

scales.

These results were obtained using a computer equipped with 128 Go of memory and a 12 core AMD

Ryzen ™ 9 5900X CPU. The test file was the data of the Ain area; it contained 106 410 018 green points,

61 043 388 NIR points, and 5 700 844 core points having a 1 m spacing. Table 3.8 shows how crucial

scale selection and optimization are: without optimization, computing scales from 1 m to 10 m lasts 5

hours and 45 minutes (275 pts/s). After optimisation using scales up to 7 m, the computing time drops

to ≃ 28 minutes (3450 pts/s). This computation speed could be increased by implementing pyramidal

computation into the 3DMASC plugin, which consists of subsampling the data when increasing the

neighbourhood size as made by Thomas et al., 2018.

Additionally to the selection of a scale range, the number of different diameters within the interval,

and the number of features to compute for each neighbourhood also has an impact – though less sig-

nificant – on the processing time. Table 3.8 shows that the optimised descriptor set relying on scales up

to 7 m is three times faster to compute than the complete set of features on scales between 1 and 7 m.

Consequently, although predictor selection is not crucial for classification performance (see Table 3.3), it

is essential to the practical applicability of the method.

3.5.4 Class-wise results: dominant features

Five of the maximal 12 features needed to perform basic classification are common to both experiments.

These are multi-echo features computed on both PCs, vertical distance of green points to their NIR neighbours
(kNN), and mean green intensity. They are then combined with site-specific attributes. In Fréhel, the

optimized predictor set retains mainly multi-echo attributes and intensity-derived information. In the

Ain, multi-echo features and height-derived parameters dominate. However, classical features of 3D

data interpretation such as dimensionality-based features delineating the shape of local PCs from the

combination of eigenvalues (Brodu et al., 2012; Gross et al., 2006; Vandapel et al., 2004; Weinmann et

al., 2013) are almost unused. They only become more prominent when complexifying the number and
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types of classes to detect. This is also certainly linked to the fact we analyze airborne lidar data, while these

features were designed in priority to describe terrestrial and mobile laser scanning, that include a greater

diversity of surface orientations.

Point-based attributes are also absent from the optimized classifications. Newly introduced fea-

tures based on statistical operators applied to multi-echo features or intensity values systematically out-

perform them in terms of contribution. Such operators had been tested on height-derived values (An-

tonarakis et al., 2008; Dong et al., 2017) but never applied to other types of features. The use of statisti-

cal operators is particularly informative and able to drastically improve the informative power

of point-based characteristics, namely multi-echo attributes, that never particularly stood out in exist-

ing PC classification literature but appear essential to the success of our experiments. We interpret this

result as a way for decision trees to compensate for their inability to consider spatial relationships between

points and include a level of spatial consistency of the considered attributes. These operators also limit

bias linked to intensity values, that are unavoidable to classify diverse environments (Song et al.,

2002; Yan et al., 2015). Intensity median, mode, skewness or ratio values constitute half of the primary

predictors in Fréhel, and are prominent in both advanced models. By being less sensitive to outliers, stan-

dard deviation and skewness mitigate the limitations of this measure, which varies with the acquisition

conditions and does not constitute an absolute estimation of surface reflectance (Kashani et al., 2015).

Overall, the features we present seem to describe natural environments better.

We compared classifications of the Ain obtained with 3DMASC features and with features used in

Thomas et al., 2018; Hackel et al., 2016; Chehata et al., 2009; and Rusu et al., 2009. In order to ensure a fair

comparison, all features were computed at the same scales and on the green PC only, and then classified

with a RF model. Consequently, the 3DMASC version compared to these existing methods only includes

single cloud features. In practice, only the features differ, with 3DMASC incorporating spatial statistics

of multi-echo attributes and all other features, but no information about the NIR cloud – and thus no

dual cloud feature, or contextual feature.

Additionally to the point feature histograms developed in Rusu et al., 2009, the compared approaches

rely mainly on features derived from the covariance matrix of the core point’s neighbourhoods, on height-

based parameters, and, less frequently on echo-based parameters. Due to the unavailability of waveform

data on our test areas, we did not include waveform-derived attributes originally exploited in Chehata

et al., 2009.

We computed each feature set on the green PC only and at multi-scale spherical neighbourhoods with

diameters of 2, 3, 4, 5, 6, and 7 m. The feature point histograms were computed only on the green PC

too, with a normal computation scale of 0.5 m and a feature computation scale of 2 m. Histogram-based

features also involve the spatial repartition of features (Osada et al., 2002; Rusu et al., 2009; Tombari et al.,
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Dual

cloud

Single cloud

Dual-

cloud

3DMASC

Single-

cloud

3DMASC

Thomas et al.,

2018

(covariance-based)

Hackel et al., 2016

(covariance- and

height-based)

Chehata et al., 2009

(covariance-,

height-, echo-,

plane-based)

Rusu et al., 2009

(fast point feature

histogram)

97.6% 93.7% 74.3% 82.6% 84.9% 71.3%

With single-cloud

3DMASC

93.7% 93.7% 93.7% 93.7%

Table 3.9: Classification overall accuracies obtained with different types of single-cloud features on the 5

classes of the Ain dataset.

2010). Although they have been used for classification before with satisfactory results (Arbeiter et al., 2012;

Blomley et al., 2016; Blomley et al., 2017; Garstka et al., 2016; Himmelsbach et al., 2009; Wohlkinger et al.,

2011), we made the choice not to include them in 3DMASC to avoid increasing the predictor selection

difficulty, as they require the choice of two scales – one to compute the normal, the other to compute

the features – and selecting the number of bins to use. Their higher computation time also played a role

in this decision (Garstka et al., 2016). Details about the features used in each experiment are provided in

Supplementary Materials. Overall Accuracies obtained on the test set for 5 classes in the riverine area by

each approach are summed up in Table 3.9.

These results show that in natural environments, using our features produces systematically higher re-

sults than other existing features and that none of these features, in particular fast point feature histogram

improved the single cloud 3DMASC classification results. They also show that using solely covariance-

based features produces among the lowest OA in our riverine environment, while it generated more

precise classifications of urban environments (Thomas et al., 2018), highlighting the need for methods

adapted to the different types of 3D data currently in use.

We also introduce new measures of the optical behaviour of the surfaces present in the PCs,

which were mostly estimated through mean intensity, and propose new inter-channel ratios to comple-

ment existing multispectral attributes (Morsy et al., 2017b; Wichmann et al., 2015). Previous studies ana-

lyzing multispectral lidar faced the difficulty of linking points to their equivalents in PCs of other wave-

lengths since they are never in strictly identic positions due to the sensor configuration (Lague et al.,

2020). These new ratios, along with our dual-cloud features compensate the limits of point matching,

used in existing multispectral lidar analysis work (Morsy et al., 2017b) when they are used on datasets with

correct geometrical and radiometric calibration (Kashani et al., 2015; Yan et al., 2012).

Dual-cloud features systematically stand out among highly contributive features. Their lower
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inter-scale correlation likely contributes to their more informative character, along with their ability to

compensate for the limits of shallow learning classifiers, that are unable to learn features, and thus to bring

out and use connections between features. For example, a difference in roughness between NIR and green

PC is particularly high for points belonging to the water column, and much lower for the riverbed or the

bottom of swimming pools, due to the full reflection of NIR laser on the water surface and scattering

of the green light in the water column. The same optical phenomenon explains the higher difference in

elevation modes between PCs in swimming pools and riverbed. The inherent points position differences

of TB sensors, illustrated in Figure 1.7, explain the varying vertical distances between green and NIR

PCs in vegetated areas, and their systematically negative value in bathymetric zones. Similarly, the use of

a previously classified ground PC as a contextual feature allows for improvement in the labelling

of points at the limit between ground and above-ground features, namely building walls and lower tree

branches, explaining the improvement observed when they are included, and the smaller scales needed to

capture the signature of such variations.

Using these observations, we recommend the following set of features to use on topo-bathymetric

environments: the NIR and green number of returns and echo ratios, the green return number, the ver-
tical distance to the 1 and 10 nearest neighbours of the core points in the NIR PC, the mode of the green

and NIR intensities, the skewness of the NIR intensity, the ratio of median intensities, the NIR and green

elevations’ standard deviation, the difference of elevation modes, the NIR roughness and the difference of
roughness, the NIR dip, and the green PC sphericity. With these 19 features computed at scales between 1.5

and 14 m, we observed OAs of 98% and 91% for 5 classes on the riverine and coastal datasets, respectively,

and 94% and 90% on their 11 and 13-class versions.

3.6 Conclusion

In this chapter, we have introduced 3DMASC, a method for explainable machine learning multispectral

point cloud classification. 3DMASC operates directly on sets of unordered, unstructured points and pre-

dicts a label for each, with a confidence index and information on the origin of the decision, through fea-

ture importance. It differs from previous point cloud classification methods in its capacity to handle mul-

tiple clouds simultaneously and describe the spatial and statistical repartition of point cloud attributes,

introducing indirect context consideration in the model and new multispectral feature ratios. 3DMASC

also stands out from state-of-the-art 3D classification methods with its accessibility: it is explainable us-

ing Shapley values, usable without dedicated GPUs, and easy to handle for thematic specialists such as

geomorphologists, ecologists, or cartographers. We focus on providing compromise in terms of compu-

tation cost, processing time, complexity, and resulting metrics, with respect to the current state-of-the-art
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methods. We demonstrate the performance of the approach on two different airborne lidar use cases: the

detection of land and sea covers in (1) a fluvial environment and (2) a coastal area. Results show that the

method produces highly accurate classifications of basic or detailed categories of points. Furthermore,

models excel in TB environments thanks to the newly introduced features and require a limited num-

ber of training points (≤ 2000 per class), scales, and attributes. We also implemented a feature selection

framework that allows us to draw three main conclusions about the definition of the predictor’s vector:

(1) statistics of point-based attributes are more informative than classical dimensionality or geometrical

features on this type of data, (2) multi-echo features, vertical distances between the two PCs and mean

intensities appear to constitute an essential base of features to use and (3) dual cloud features are highly

contributive to separate ground, artificial elements and vegetation. Our results also stress the superior-

ity of multi-cloud classification compared to single-cloud, especially for bi-spectral lidar. We release our

source code through an open-source plugin in CloudCompare (Girardeau-Montaut, 2022), hoping it will

help applications of 3D remote sensing for earth observation and conservation. Although this chapter il-

lustrates specific use cases of the workflow on topo-bathymetric lidar datasets, 3DMASC can be extended

to PC time series analysis, and 3D data interpretation in general. It may be applied to terrestrial laser scan-

ning data, to structure from motion PCs, or even to drone lidar sensors, which are still too compact to

incorporate dual-wavelength lidar sensors but already enlarge the access to lidar surveys.
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In Chapter 3, we exploited the geometric information contained in 3D PCs to perform semantic seg-

mentation. However, as explained in Chapter 1, lidar surveys initially produce much more detailed data

about the terrain surveyed: the full waveforms. Although the availability of this information is a major

issue and constitutes a limitation to their systematic use for lidar data classification, waveforms provide

additional knowledge on the structure and nature of the surfaces surveyed. Each object of the surveyed

environment illuminated by the sensor’s laser reflects light in a specific way, generating a characteristic

signature in these signals. For specific applications, waveforms can thus be particularly useful.

In this chapter, we investigate how these raw spectral measurements can be used to derive semantic

information about topo-bathymetric (TB) environments and we propose methods to perform 3D map-

ping of land- and sea-covers based on lidar waveforms.

As introduced in Chapter 2, when it comes to learning-based supervised classification or semantic

segmentation, there are two main possibilities: learning separation rules of handcrafted features com-

puted upstream or learning data representations and their separations into classes simultaneously. In this

chapter, we investigate both approaches, as there is little information available in the scientific literature

about land-water interface classification with TB lidar waveforms. We propose two workflows based on

bispectral lidar waveform features to map the land-water continuum seamlessly. With these methods,

we aim to bridge the gap between marine and terrestrial surveys, to demonstrate that efficient methods

can be developed to automatically map the land-water interface surface covers, and to show that an inte-

grated vision of coastal zones is feasible and advised. The results and methods presented in the following

Sections resulted in three conference proceedings: one for the International Geosciences and Remote

Sensing Symposium (IGARSS) of 2021 (Letard et al., 2021b), another at the occasion of IEE OCEANS

conference of 2021 (Letard et al., 2021a), and the last during the International Society of Photogrammetry

and Remote Sensing Congress of 2022 (Letard et al., 2022b). The methodology presented in Section 4.2

was published as a paper for a special issue on coastal ecosystems observation in MDPI’s Remote Sensing

in 2022 (Letard et al., 2022a).

4.1 Context

4.1.1 Methodological context

Though many methods have been proposed to process airborne topographic lidar waveforms (Mallet et

al., 2009; Mallet et al., 2011; Reitberger et al., 2009; Zorzi et al., 2019), bathymetric lidar waveforms are, to

the best of our knowledge, much less explored. They are often only analyzed to retrieve bathymetry, and

are even less employed for classification tasks. Yet, these data include more detailed information on the
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physical properties of the environment surveyed than the elevation contained in rasters or PCs, by regis-

tering also the way the Earth’s covers interact with light. This information is particularly useful to classify

covers that have distinct spectral signatures (e.g., Letard et al., 2022a) or subtle geometric features at the

decimeter scale that discrete echoes cannot capture (e.g. Launeau et al., 2018). Exploiting full-waveform

lidar data requires adapted processing methods, as this sensor produces rich but complex information on

the environment, with sometimes dozens of point records and several waveforms of up to a thousand

samples per square metre. Although efficient tools exist to process lidar-derived rasters or PCs, methods

to efficiently exploit the knowledge enclosed by the waveforms are still expected, as they remain mainly

experimental. Lastly, we pointed out the absence of solutions for bi-spectral PC processing; the same

issue persists for bi-spectral waveform data exploitation, which is still largely under-explored (the only

experiment on bi-spectral waveform features being that of Leigh et al., 2016 using orthowaveforms).

Classification of land or water covers using lidar data has been scarcely explored recently. Even when

using waveform data, most of the published research is based on 2D data classification (Wedding et al.,

2008; Teo et al., 2017; Collin et al., 2012; Letard et al., 2021b; Eren et al., 2018) while fewer articles ex-

ploit them directly in 3D (Hansen et al., 2021; Tulldahl et al., 2012; Chehata et al., 2009). Many studies

researching ways to classify lidar data used machine learning algorithms such as support vector machine

(SVM), maximum likelihood, or random forests. Currently, there is a consensus on the efficiency of ran-

dom forests thanks to their ease of application to large datasets and their low tendency to overfit (Yan et

al., 2015). Furthermore, random forests offer the possibility to retrieve information about the predictors’

contributions easily.

In Section 4.2, we thus tackle the problem of bi-spectral waveform classification for the identifi-

cation of multiple surface covers in TB environments. To this end, we exploit the strengths of random

forests and implement a feature extraction process to derive 3D maps of marine and terrestrial habitats

without interruption between land and water.

However, the exploitation of full-waveform data often relies on backscatter detection (Klonowski et

al., 2007; Sandidge et al., 1998; Kutser et al., 2006; Wedding et al., 2008) followed by feature extraction

and classification (Klonowski et al., 2007; Adler-Golden et al., 2005; Collin et al., 2012; Eren et al., 2018;

Tulldahl et al., 2012). Whether based on simple peak detection (Collin et al., 2012) or on decomposition

approaches (Song et al., 2019; Shen et al., 2017), the necessary identification of waveform components is

often application-dependent and requires advanced settings (Sandidge et al., 1998; Kutser et al., 2006).

Both traditional peak detection and feature extraction methods rely on computations that are very sen-

sitive to noise (Kutser et al., 2006) which may hinder the obtention of reliable and generalizable results.

In Section 4.3, we thus explore a semantic segmentation approach to classify each waveform com-

ponent in one shot, without having to pre-detect them with decomposition methods.



146 Topo-bathymetric lidar waveforms classification

Before diving into the specifics of both methods, we present the study area and the datasets used in

the following paragraphs.

4.1.2 Datasets used for methodological developments

Study area

The study area was chosen along the northern coasts of Brittany, France, near the town of Fréhel, for

its ecological diversity and because of the availability of full-waveform lidar data acquired by the French

Hydrographic Office (Shom) as part of the Litto3D® project (Pastol, 2011). This seaside region is set in

an ecologically rich environment encompassing: fine sand and pebble beaches, a sandy dune, rocky areas

provided with seaweeds, seagrass meadows, wooded areas, crop fields and salt marshes through which a

river flows towards the sea. These ecosystems host a great variety of species: shellfishes, endemic dune

plant vegetation, green, red or brown seaweeds, Zostera Marina plants, evergreen and deciduous trees,

crops and endemic salt marshes plants such as Halimione portulacoides, sea poa or purslane. There are also

typical urban land covers, due to the presence of a small resort town, Sables d’Or les Pins (48°38’27”N:

2°24’24”W). Buildings, tar or concrete-covered paths, boats in mooring, and vehicles in parking lots are

thus also present in the selected zone.

Data acquisition

The lidar data
1

used for this research were acquired over the coast of Sables d’Or les Pins in September

2019 by the Shom as part of the Litto3D® project (Pastol, 2011), using a Leica HawkEye III 4X sensor.

This sensor produces laser pulses at wavelengths of 513 nm and 1064 nm on three different channels.

To reach dozens of meters deep seabeds, the system is set to emit more powerful beams in the green

wavelength, compromising on point density to meet both accuracy and safety requirements.

Depths under 10 m have a dedicated shallow green laser, while a more powerful laser, the deep channel,

is used to detect deeper seabed. These two channels provide PCs with a density of at least five points per

m² and one point per m² and they have a laser spot size diameter of 1.8 m and 3.4 m, respectively. The NIR

laser has a laser spot size of 0.2 m and a point density of at least 10 points per m². Each green waveform

and every 32 NIR waveforms were recorded with a time-frequency of 1.8 GHz, resulting in a backscat-

tered intensity value every 556 picoseconds. The survey was conducted with constant laser amplification.

Due to the power needed to penetrate through several meters of water, the shallow laser’ backscattered

intensities tend to be saturated over highly reflective land surfaces, but they are still usable for surface

1. Available online at https://diffusion.shom.fr/donnees/altimetrie-littorale.html

https://diffusion.shom.fr/donnees/altimetrie-littorale.html


4.1. Context 147

characterization. The deep channel’s returned intensities, however, are systematically saturated and do

not provide usable information for land cover classification.

Over the studied area, there are on average 6.7 green waveforms and 0.5 IR waveforms per square

metre. The reanalyzed echo PC of the shallow green wavelength was also used to accurately position the

raw waveforms since this PC underwent refraction correction before delivery. The effects of refraction

were not corrected in the raw waveform files.

A ground-truth data acquisition campaign took place in 2021 to gather knowledge on the land and

sea covers in this area, through uninhabited airborne vehicle (UAV) and uninhabited surface vehicle

(USV) RGB imagery, and geolocalized photoquadrats. They helped label the lidar data to perform

semantic information extraction.

The UAV imagery was acquired over five smaller areas of interest, each representing typical coastal

habitats, in March and April 2021 using an RGB DJI Phantom 4 Pro V2, and a Parrot Sequoia+ includ-

ing a NIR nadiral sensor (770 nm to 810 nm) with a zenithal irradiance sensor. These flights were cali-

brated with a total of 55 ground control points. 150 photoquadrats were captured with RGB cameras and

georeferenced, to seize the ecological diversity of the study area. Over a seagrass meadow of the study site,

a PowerVision unmanned surface vehicle (USV) was used to acquire underwater images in September

2021.

Finally, an RGB orthoimage
2

acquired in 2014 over the whole area was also used to give extra infor-

mation on the habitats present on site four years prior to the data acquisition.

Five orthoimages and digital surface models were derived from the UAV imagery using the pho-

togrammetric reconstruction procedure on the Pix4D software. Two separate processes were performed

for each acquisition: an RGB and a Green-Red-NIR reconstruction. The positions of the ground con-

trol points were integrated to improve the quality of the derived products. The photoquadrats used as

ground truth were simply linked to their position after GNSS data post-processing.

2. The "Ortho-littorale v2": https://www.geoportail.gouv.fr/donnees/ortho-littorale-v2

https://www.geoportail.gouv.fr/donnees/ortho-littorale-v2
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Figure 4.1: Study area and ground truth data spatial coverage (datum: WGS 84; projection: UTM30N).



4.1. Context 149

Figure 4.2: Orthoimages resulting from the ground-truth data acquisition campaigns in Sables d’Or les Pins.
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Class name Illustration Waveform Class name Illustration Waveform

Algae Seagrass

Submerged

rock

Submerged

sand

Rock Pebble

Wet sand

Dry sand/bare

ground

Artificial

ground

Roof

Boat Car

Salt marsh

Low

vegetation

(lawn)

Intermediate

vegetation

(shrub)
Tree

Table 4.1: Classes of land and sea covers identified in the study area and studied in the next sections.

Waveforms were normalized between 0 and 1 over the scene for this illustration.
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4.2 Classification of bispectral waveform features with random

forests

To enhance land-water areas surface cover mapping, we first developed a 3D classification approach re-

lying on handcrafted bispectral - green and NIR - waveform features. The resulting methodology

contains three main steps:

• Green and NIR waveforms are first processed individually to derive handcrafted features;

• The resulting features are matched using a spatial criterion to produce a vector of bispectral infor-

mation usable for classification;

• A random forest model is used to produce a classification of the feature vector, which is then ren-

dered in 3D.

In the following sections, we detail each step and provide insights into the technical choices that

resulted in this method. We then illustrate the performances obtained with it for the classification of

diverse land- and sea-covers of the study area.

We evaluated our new workflow in different experiments with incremental complexity. In this chap-

ter, we only provide a concise summary of the main observations we made, and present the most advanced

results we got.

4.2.1 Methodology

With this methodology, our main contributions consist in:

• introducing bi-spectral waveform features-based coastal surface covers mapping;

• enhancing existing approaches using waveform features classification in coastal settings by avoiding

data rasterization,

• illustrating the potential of TB waveform data to distinguish between terrestrial and benthic ob-

jects in complex natural environments.

Waveform features extraction

Extracting tailored features from the relevant part of the waveforms is the base of the approach. Since

more than half of the registered lidar signal is noise, extracting waveform features first implies outlin-

ing the actual portion of information in these signals. Here, we wish to describe the surfaces and their
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covers. In bathymetric waveforms, this corresponds to the benthic return, i.e. any return detected after

the water surface component, that we discard from the information considered for feature extraction.

In topographic cases, this consists of the complete waveform portion containing signal and not solely

noise. Consequently, peaks corresponding to surface returns were isolated from noise in emerged do-

mains, while peaks corresponding to benthic surfaces were isolated from noise and water surface or col-

umn returns in submerged domains. Figure 4.3 illustrates the portion of signal considered for feature

extraction in bathymetric and topographic cases.

Figure 4.3: Illustration of the topographic (left) and bathymetric (right) waveform portions used for coastal surface cover

classification.

Waveforms peak detection Since our approach aims at identifying surface covers in the waveforms,

but not at separating them when they are multiple, isolating noise or irrelevant information - water sur-

face and water column in our case - from surface signatures amounts to detecting the start of the first

relevant peak in the waveform, and the end of the last return. We thus perform peak detection to

identify the portions of the signals to describe with features and to classify.

To this end, we start by smoothing all waveforms with a Savitzky Golay filter, whose principle is to

estimate piecewise polynomial functions. This step attenuates the noise and eases the identification of

waveform peaks while limiting the number of false detections linked to abrupt sign changes that occur

due to high-frequency noise.

Green and IR waveform peaks are not processed the same way since both wavelengths interact dif-

ferently with water. In both cases, the first derivative of the smoothed waveform is computed and

thresholded to make the increases in received energy stand out from the parts containing only noise.
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Bathymetric waveforms segmentation Of both NIR and green wavelengths, only green penetrates

water. Consequently, bathymetric waveforms can by definition only be green waveforms. However,

green waveforms can also be acquired over land, and thus correspond to topographic domains. To make

the distinction, we relied on a pre-classification identifying submerged areas made by LSS - Leica’s Survey

Software - before the data was delivered to us. In submerged areas, we monitored the number of peaks

detected to isolate the seabed from the water surface and the water column.

In bathymetric cases, one of the main difficulties is to handle variations of several orders of magni-

tude of the waveform energy (Guenther et al., 2000). We thus implemented a two-step thresholding

to balance over- and under-detections of seabed peaks. The first, higher threshold T1 is well suited to the

detection of the most significant peaks; however, depending on local conditions affecting the reflection

of light, some bottom returns may be less intense and hard to expose. Thus, a second, lower threshold

T2 is used when only one peak is identified with T1, to try to detect peaks after the water surface (i.e., the

peak already detected with T1). This lower threshold would exacerbate noise if it were used on the whole

waveform, but it is adapted to the detection of weaker returns when used on the underwater part of the

waveform (i.e. only the portion following a first, major peak detected with T1). If no additional return

is identified with this thresholding, we conclude that no seabed was recorded/detected and discard the

waveform, since there is no seabed return to compute features on.

Topographic waveforms segmentation In the case of topographic waveforms - i.e. NIR wave-

forms or green waveforms acquired on land -, the separation of noise and useful information is more

straightforward, as we wish to analyse all the backscattered energy. The sole processing is thus to isolate

signal from noise. To this end, we evaluate the mean level of noise observable at the beginning and at the

end of the waveform - i.e. before and after any scene-originating reflection - and isolate the part of the

waveform having an intensity above this noise level. In this context, the number of peaks present has no

effect on the procedure we adopt: if there are several peaks, features are computed on the group of peaks.

If there is only one peak - which occurs with bare ground or low vegetation -, features are computed on

this peak.

Correction of light attenuation in water As explained in Chapter 1, green light is attenuated by

water exponentially with depth depending on its turbidity. This could induce a bias in our classification.

For example, benthic surfaces with high reflectances located in deeper waters could be falsely mistaken

for seabeds characterised by low reflectances, only because their backscatter has travelled a longer path

in water and has thus been more severely attenuated. To limit such classification biases, we estimate the

attenuation of the signal and reverse it to correct the exponential decay of bathymetric lidar waveforms.
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Figure 4.4: Waveform processing method flowchart and illustration on two different waveforms: one acquired over the sea,

the other over land.
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This attenuation coefficient, which is close to Kd because we use data acquired with large FOV sen-

sors, is estimated by fitting a decreasing exponential function to the water column component of the

signal, which allows the evaluation of the intensity gradient with depth. This component is delimitated

using the peak detection made to locate the seabed, which necessarily involves the detection of a surface

peak.

However, there are mathematical limitations to this approach: in very shallow water areas, no cor-

rection is applied since the exponential fitting is impossible on less than two waveform samples, which

corresponds to depths under 0.125 m. In places where depths are smaller than 0.125 m - and over land -,

the attenuation coefficient is thus fixed at 0.

Figure 4.5 illustrates the effects of attenuation correction on two types of bathymetric waveforms.

Figure 4.5: Illustration of the peak detection and signal attenuation correction obtained on two different bathymetric wave-

forms. Red and green vertical lines illustrate the resulting delineation of the air/water interface and water bottom returns,

respectively.

Parameters extraction Before feature extraction, all truncated waveforms are divided by the peak en-

ergy of their incident pulse - i.e. the laser pulse they reflected. This allows us to obtain pseudo-reflectances

and limit potential bias induced by variations of emitted laser intensity. Table 4.2 presents the features

computed for each waveform after delineation of the useful signal and conversion to pseudo-reflectances.

Precisions about the NIR intensities To simulate a case in which only one wavelength is equipped

with full-waveform recording - which is frequently the case - we made experiments with green wave-

forms only, in which NIR data were incorporated through the PC’s intensity attribute. Intensities of
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Name Definition

Diffuse attenuation coefficient

estimated value

Value of the coefficient of attenuation of light in water (0 for depths below

0.125 m and on land)

Complexity of the peak Number of sign changes of the peak’s first derivative

Mean Mean pseudo-reflectance of the peak (after attenuation correction)

Median Median pseudo-reflectance of the peak (after attenuation correction)

Maximum Maximum pseudo-reflectance of the peak (after attenuation correction)

Standard deviation

Standard deviation of the pseudo-reflectance of the peak (after attenuation

correction)

Variance

Variance of the pseudo-reflectance of the peak (after attenuation

correction)

Skewness Skewness of the peak (after attenuation correction)

Kurtosis Kurtosis of the peak (after attenuation correction)

Area under curve Area under the curve formed by the peak (after attenuation correction)

Amplitude

Amplitude of the pseudo-reflectance of the peak (after attenuation

correction)

Time range Time duration of the peak (in number of samples)

Total

Sum of pseudo-reflectance values forming the peak (after attenuation

correction)

Height

Difference of altitude between the peak of the first layer of cover and the

last peak

Maximum before correction Maximum pseudo-reflectance of the peak (without attenuation correction)

Position of the maximum in the peak Position of the maximum in the peak (in sample indices)

DZ Difference between the elevation of the IR return and the green return

Table 4.2: Name and definition of the features extracted from the green waveforms during processing and

used as input variables to the random forest model.
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the NIR PC were matched with each point of the green waveforms PC using the median NIR intensity

of the 10 nearest neighbours of each green waveform. To this end, we used the PC processing software

CloudCompare (Girardeau-Montaut, 2022), in which the neighbourhood search is made with 3D Eu-

clidean distances. The NIR PC was cleaned manually beforehand, to ensure all noise points, significantly

above the surface, were removed from the data. The median intensity of the 10 closest neighbours in the

NIR PC was chosen for two reasons. First, the number of 10 neighbours was relevant considering the

difference between the two lasers’ spot sizes and the resulting density of the PCs. Second, the use of the

median intensity was more suited to the task than the mean intensity to avoid outliers’ artefacts in spheres

located at the interface of two habitats.

Precisions about the considered elevations For topographic waveforms, the elevation used corre-

sponds to the last return’s altitude (extracted from the PC). For bathymetric waveforms, it was computed

using the depth of the last return identified by our algorithm and the altitude of our detected surface re-

turn, positioned with the PC. The vertical reference used is the French IGN 1969 system.

Classification

The features are directly classified to produce a 3D habitat map so as to avoid information loss linked to

rasterization.

We chose to use random forest models for their performance on multi-class problems implying

dozens of features and their robustness to overfitting. The possibility to retrieve feature importance and

prediction probability made them particularly suited to our needs. This type of algorithm has also been

tested multiple times in 3D PCs classification research, with consistent observations of high accuracy in

land cover identification (Yan et al., 2015; Chehata et al., 2009).

Our random forest classification model contains 150 trees and relies on classical parameters: nodes ex-

pand until the tree leaves are pure, and splits are made using Gini impurity, calculated using the following

formula:

GiniIndex = 1 −∑
j p2

j ,

where pj is the proportion of samples of class j in the node. This criterion is close to 0 when the split is

optimal, here when the nodes are pure.

Considering that we wish to apply the obtained model to a dataset containing millions of items, we

choose a high number of trees, knowing that more trees theoretically equal better classification accuracy

and that the number of trees needs to be adapted to the complexity of the dataset. We also based our

choice on the observation made in Oshiro et al., 2012 on several different datasets that state that past 128
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trees in the forest, classification accuracy gains become negligible for each additional tree, compared to

computational demands.

We control the model’s overfitting by monitoring the generalization score obtained on out-of-bag

samples at each fitting step. The random forest implementation of the Python library scikit-learn was

used to derive the results presented in Section 4.2.2 below.

Feature selection

To avoid potential negative feedback on the classification accuracy due to information redundancy among

the N predictors, we conduct a column drop-based feature importance analysis and use it to select the

most relevant classification attributes. To this end, we compute, for each predictor, the difference of accu-

racy obtained when removing it, compared to the performance of the complete feature set. The predictors

that contribute negatively to the classification accuracy are not used to derive the final classification.

Production of a 3D map of land and sea covers

To visualize our classification results as PCs, we associate the predictions obtained with the planar coor-

dinates of each waveform’s last return and the elevation computed above. These coordinates are derived

using the original green PC, which is corrected from the effects of laser refraction in water. This allows us

to obtain the result under the form of a PC, and has the advantage of preserving the spatial density res-

olution, while also avoiding the critical issue of mixed pixels (Pi-Fuei Hsieh et al., 2001), often associated

with rasterization.

Evaluation metrics

We assess the classifications obtained using the following metrics:

• overall accuracy (OA, ratio of correct predictions, best when its value is 1);

• precision (fraction of correct predictions among each ground truth class, best when its value is 1);

• recall (fraction of correct estimation for each predicted class, best when its value is 1);

• F1-score (harmonic mean of precision and recall, best when its value is 1).

As precision, recall, and F1-score as class-wise metrics, we use their unweighted mean to asses the

results globally. A class-wise analysis is also performed, using confusion matrixes.



4.2. Classification of bispectral waveform features 159

4.2.2 Results

The resulting workflow was successfully used for three classification tasks relying on lidar waveforms:

• Classification of Posidonia Oceanica seagrass meadows in Corsica, using bathymetric lidar wave-

form features and a 2D Maximum Likelihood classifier;

• Classification of 21 different land- and sea-covers in Sables d’Or les Pins using green waveform fea-

tures and NIR intensities and a random forest model;

• Classification of 17 different land- and sea-covers in Sables d’Or les Pins using both NIR and green

waveforms and a random forest model.

These three experiments were published in conference proceedings (Letard et al., 2021b; Letard et

al., 2022b) and in a journal article (Letard et al., 2022a). Each experiment was the occasion to refine the

method and explore its strengths and weaknesses. Since they were used to improve the design and im-

plementation of the feature extraction method mostly, the different tests enumerated above were made

with distinct settings - different training and test datasets, and different predictors and classifiers. In this

section, we present a summary of the main observations we made, but all details and results about the

three analyses can be found in the corresponding publications (Letard et al., 2021b; Letard et al., 2022b;

Letard et al., 2022a).

Globally, all experiments show that full-waveform lidar is a powerful tool to classify TB areas. The

obtained classification accuracies were consistently higher than 80% for the different tasks, and the visual

results showed high precision and detail in the classified products.

In this section, we present more in-depth the results of the most advanced experiment, in which we

used NIR and green waveform features to identify the set of 17 classes defined in Table 4.1 in the study

area. A set of 1000 samples of each class was used to train the model. Another set of 500 distinct samples of

each class was then used to assess the quality of the model’s predictions. These samples form the training

and test datasets of 17000 and 8500 feature sets respectively, that are shown in Figure 4.6.

Performances obtained depending on the predictors used

Classification experiments were led on five different sets of predictors in order to evaluate their relevance

and added value. These five sets are the following:

• all green waveform features (11 features)

• all NIR waveform features (11 features)
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Figure 4.6: Distribution of the distinct a) train and b) test samples across the studied area (the natural colored imagery was

acquired four years prior to the lidar survey).



4.2. Classification of bispectral waveform features 161

Feature Set Overall Accuracy F-Score

Green waveform features 0.823 0.821

NIR waveform features 0.315 0.292

DZ 0.216 0.216

Green + NIR waveform features 0.846 0.842

Green + NIR waveform features + DZ 0.848 0.843

Table 4.3: Performance metrics obtained by different feature sets for the classification of 17 coastal surface

covers.

• DZ (one feature only)

• green and NIR waveform features (22 features)

• all waveform features, plus DZ (23 features)

The performances of the classifications obtained for these sets are presented in Table 4.3.

Overall, the most relevant predictors for the classification of coastal land and sea covers are descriptors

of the green lidar waveforms. IR data or differential elevation values appear to misclassify more than two-

thirds of the points. The combination of green and NIR waveform features with elevation predictors

produces the best classification performances.

Similar trends were observed in other experiments made with green waveform features, NIR inten-

sities and elevations. Although the exact figures, detailed in the corresponding publication (Letard et al.,

2022b) cannot be compared directly because the experimental settings are different, this shows that over-

all, there is a performance trend for coastal environments, in which NIR features < Green features < NIR

+ Green features < NIR + Green features + Z features.

Performance differences between NIR and green waveform features

Since each wavelength of the TB lidar was designed to survey a specific type of environment (NIR laser for

topography and green laser for bathymetry), we performed an in-depth analysis of the classification results

obtained using successively green data only and green + NIR data. This analysis features the mean preci-

sion and recall obtained for each class. It allowed us to observe which type of habitat was best described

by each wavelength. The mean prediction confidence obtained for each point is also taken into account,

in order to better understand the potential classification errors and what they imply. This prediction

confidence corresponds to the probability that each point really belongs to the class it was assigned. The
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complete class-wise analysis conducted for the green model and the Green + IR + DZ model is presented

in Figure 4.7.

Figure 4.7: Class-wise classification metrics obtained when using a) green and b) bispectral waveform features as predictors.

The use of green waveform parameters produced accurate labelling, though the algorithm showed

weaker performances on topographic classes such as lawn and artificial ground. The combination of both

wavelengths and DZ produces a more accurate result and improves the recall of every class except low

vegetation (lawn). Class-wise recall and precision values reveal that some classes were overestimated at

the expense of others. This is the case of submerged rock, algae and lawn, which have lower recall values

than precision.

Permutation-based feature selection

To generate the final coastal habitat classification, we analysed the contribution of each feature to the

overall accuracy, and excluded from the predictors the features that impacted it negatively:

• green waveform skewness,

• IR waveform AUC,

• IR waveform skewness,

• IR waveform maximum,

• IR waveforms’ mean.

Bispectral dataset classification

The metrics and the map obtained with the final set of features are presented in Table 4.4 and Figure 4.8.

Selecting attributes based on their importance makes the overall accuracy reach 86%. Globally, the

classifier’s tendency to overestimate submerged rock or algae identified with the low recall in Figure 4.7
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OA Precision Recall F-score

0.856 0.862 0.856 0.852

Table 4.4: Performance metrics obtained after bi-spectral waveform feature selection.

is still observable in the final result, illustrated in Figure 4.8, where these classes respectively invade the

seagrass meadow and the surf zone.

Other obvious confusions exist between rock and dry sand, or submerged rock and surf zone or sub-
merged sediment. They are also revealed by the precision and recall values of these classes in Table 4.7.

One of the main confusions is between pebble and sand, yet it is not as clearly quantified by the metrics.

Prediction confidence analysis

To further assess the abilities of our method to classify land and sea covers, we analysed the prediction

confidence obtained across the studied area for the bispectral waveform features classification. Figure 4.9

shows the maps obtained when setting a confidence threshold, below which the points are labelled as

unclassified.

Most points are kept with a threshold set at 70% (which means the probability that the point belongs

to the class it was given is at least 70%). This is in line with the mean confidence of 77% obtained on

the test dataset (see Figure 4.7). However, when the threshold is increased at 90%, more complex areas,

mainly at the interface between different classes, disappear, as they are classified with a lower confidence.

A closer look at the misclassified samples shows that the confidence level is globally lower for them.

Indeed, on the test dataset, samples that were wrongfully classified have a median confidence of 47% with

a standard deviation of 17%. The overall accuracy values obtained when filtering the points based on their

confidence predictions confirm that misclassified points can be discarded using this criterion: Table 4.5

presents the accuracies obtained for different confidence thresholds.

Additional observations on the green waveform features made during side experiments

Though the exact OA figures cannot be compared directly because the exact training and test points were

not identical, global performance trends depending on the type of predictors can be analysed.

Similarly to what we observed in Chapter 3 with PC features, the features failing at the selection step

vary depending on the application case. Indeed, in the two other experiments made with this method,

different feature importance dynamics were observed.
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Figure 4.8: Coastal surface covers map obtained when classifying a selected set of bispectral waveform features.

Threshold 0.6 0.7 0.8 0.9

OA 0.95 0.97 0.98 0.99

Remaining

points (%)

65% 55% 44% 32%

Table 4.5: Overall accuracy of the resulting classification depending on the prediction confidence thresh-

old.
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Figure 4.9: Land and sea covers map obtained at a) a 70% confidence level and b) a 90% confidence level.
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When experimenting with a completely different dataset acquired in Corsica and containing seagrass

green waveforms and sandy seabed green waveforms, the following features lowered the classification ac-

curacy:

• Mean of the green peak after attenuation correction

• Maximum of the green peak after attenuation correction

• Standard deviation of the green peak after attenuation correction

• Green peak kurtosis

• Green peak AUC after attenuation correction

• Amplitude of the green peak after attenuation correction

• Total energy of the green peak after attenuation correction

Similarly, experiments on the Sables d’Or les Pins dataset including only green waveform features

resulted in the following features eviction:

• Mean of the green peak after attenuation correction

• Maximum of the green peak after attenuation correction

• Standard deviation of the green peak after attenuation correction

• Variance of the green peak after attenuation correction

• Skewness of the green peak after attenuation correction

• Green peak AUC after attenuation correction

• Amplitude of the green peak after attenuation correction

A more detailed analysis of the contributions of the different types of green waveform features in

this same experiment revealed that the most informative green waveform features were those describ-

ing peak shape - complexity, skewness, kurtosis, area under curve, time range, and height of the green

waveform - and those linked to the lidar acquisition - diffuse attenuation coefficient estimated value,

maximum, maximum before attenuation correction and position of the maximum in the peak of the

green waveform.
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4.2.3 Discussion

In the following paragraphs, we discuss the results obtained with our bi-spectral waveform classification

method based on handcrafted features extraction.

Usability of full-waveform lidar for coastal habitat mapping

The final result obtained confirms the observations of (Mallet et al., 2011) and the observations we made in

our two other experiments: they illustrate the potential of lidar waveforms for classification tasks. Here, a

single dataset made the classification of 17 different land and sea covers possible with high accuracy (86%,

see Table 4.3). The resulting 3D map is presented in Figure 4.10. It is dense and has a high spatial resolution,

suited to the realisation of ecological assessments such as ecosystem services evaluation, as performed in

Martínez et al., 2007 and Costanza et al., 1997.

Considering the thematic objectives of this research, the results are promising, since all ecosystems

that provide goods and services are described with relatively high precision (on average, 87%, see Figure

4.7) and in 3D, contrary to other methods developed in existing papers (Collin et al., 2012).

Figure 4.10: Resulting 3D PC of a coastal area and its habitats classified with full-waveform topo-bathymetric lidar.

One of the main objectives of this study was to develop a method for seamless spatial modelling of

marine and terrestrial habitats. Here, the land-water continuum is classified without interruption, which

is a key methodological aspect of coastal habitat monitoring (Collin et al., 2012). Figure 4.10 shows this

uninterrupted restitution of the land-water interface. However, our approach has limitations that neces-

sitate further investigation: the classifier has a tendency to overestimate algae at the expense of seagrass,
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and pebble at the expense of sand, for example, as observed in our other experiment using only green

waveforms (Letard et al., 2022b). Besides the quality of the training and test datasets established, a source

of explanation for these classification errors could be found in the technical specifications of the sensor.

The diameter of the HawkEye III’s green laser’s footprint is 1.80 m, which means that the returned wave-

form condensates information in a 2.5 m2 area. This parameter may have an influence on the ability of a

given array of features to describe pebbles or sand, mostly at interfaces between classes.

Even though these classes are close semantically and can have similar waveform signatures due to

their size, physical properties, and texture relative to the laser spot size, a better distinction is needed for

ecological applications. Boats and cars are also often falsely detected. Figures 4.8 and 4.10 illustrate well

this issue, as a great number of points are classified as cars on land, and part of the boulders of the dyke

are labelled as boats. Figure 4.11 focuses on the sandy dune, which features many false detections of cars.

Figure 4.11: Extract of the resulting 3D classification: the sandy dune of Sables d’Or les Pins and its surroundings.

These errors may be explained by the albedo of cars and boats, which can vary considerably between

two different types of vehicles. The wide colour spectrum they can have is difficult to model in a train-

ing dataset which can lead the classifier to learn confused information. The procedure to adopt for these

types of classes in order not to compromise the wider objective - ecological monitoring - should be further

discussed. These classes could be merged in a more global vehicles class, or an unclassified class could be

added to handle unusual feature vectors and avoid their detection at the expense of natural habitats map-

ping, as in Figure 4.11 where the sandy dune - a key ecosystem - is mapped as car. Despite these mistakes,

the possibility of having 3D assessments of the spatial repartition of different ecosystems already bears en-

couraging perspectives for coastal ecology and could enhance results outlined by previous studies using

rasterized TB lidar data (Wedding et al., 2008; Collin et al., 2012).

The highly informative content of lidar waveforms, already stated in existing research on the topic

(Mallet et al., 2011; Collin et al., 2012) is illustrated by their constant contribution to the resulting clas-

sification accuracy (Table 4.3). Lidar waveforms contain enough information to describe surface covers,
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despite their lack of information on their neighbourhood’s geometry and spatial repartition (Table 4.3).

This loss of spatial context information - compared to PC classification techniques involving neighbour-

hoods (Brodu et al., 2012) - is also one of the strengths of waveform-based processing. It avoids spatial

averaging of information that can result in classification artefacts depending on the neighbourhood ra-

dius defined (Brodu et al., 2012). Classifications based on waveforms and not on spatial context may con-

sequently gain in horizontal resolution, keeping in mind the influence of the laser’s footprint diameter.

However, both wavelengths do not perform equally, as expected since they were each specifically designed

for different environments (Philpot, 2019). Infrared waveforms cannot be used alone to study both dry

and wet environments: the metrics obtained for the IR model (Table 4.3) quantify the limitations of to-

pographic lidar for the survey of highly diverse environments. Green lidar waveform features perform

better: their classification reaches 82% of overall accuracy, and similar values of precision and recall. Their

ability to label some classes of ground is limited, which is why dual-wavelength datasets are relevant.

Comparison to existing waveform-based methods

Our results showed that TB lidar is tailored for the classification of coastal habitats. Elevations and green

waveform features were complimentary and achieved high-precision results when combined. To the best

of our knowledge, no similar papers proposing point-based land and water cover mapping from bispectral

lidar data were published, so no direct comparisons of results are possible. However, our observations

corroborate those made in Chehata et al., 2009, which successfully used random forest algorithms to

classify full-waveform lidar data over urban areas and obtained an overall accuracy of over 94% when

identifying four types of land covers. Chehata et al., 2009 only focuses on terrestrial areas but confirms

the high accuracy we observe when using waveform features without rasterization for mapping purposes.

Class-wise, our results seem more homogeneous for the land covers we have in common, although this

means that our approach performs less accurately than theirs on some urban classes. Indeed, Chehata

et al., 2009 presents a recall of 94.8% for buildings, which is higher than what we obtain on our roof class

(81%), but our vegetation classes (trees and shrubs) have an average recall of 94%, while theirs is 68.9%, and

our natural ground classes (soil, lawn, salt marsh) reach an average recall of 82.6%, higher than the 32.7%

presented in Chehata et al., 2009. However, the method introduced in Chehata et al., 2009 performs

better than ours on artificial ground, with recalls of 96% and 88%, respectively.

Although we found no other research performing point-based classification of subtidal, intertidal,

and supra-tidal habitats, we can compare our findings to those in Tulldahl et al., 2012, where the au-

thors also observed that the use of waveform data improves seabed maps and obtained an OA of 86%

for their classification of seabed substrates and aquatic macrovegetation. Their approach provides a bet-

ter mapping of low underwater vegetation on soft substrate (100% versus 82.5% of PA in our case) but a
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less accurate detection of hard seabed substrate (68% versus 76% of PA in our study). Again, although we

have less accurate results for some classes, our method seems to provide more balanced and homogeneous

performances among different classes.

Our results also corroborate those from Collin et al., 2012, where 19 land-water continuum habitats

were classified with an OA of 90%, and the authors concluded that the best classification results were

obtained when combining spectral information and elevation. However, Collin et al., 2012 used digital

models of waveform features that they obtained by rasterizing their data, and they relied on a maximum

likelihood classifier. Although our metrics are similar when using green waveforms only, our classification

has the advantage of preserving the spatial density and repartition of the data.

Other studies such as Butler et al., 2020, Grande et al., 2009, and Chust et al., 2010 used 2D lidar-

derived data and imagery along with machine learning classifiers to map similar coastal habitats as the ones

we attempted to map. They obtained performance scores in the same range as ours, with OAs between

84% and 92%. The authors did not use waveform data in these studies and observed low accuracy when

classifying only digital elevation models obtained with lidar surveys, therefore requiring the additional

processing of imagery. Our approach has the advantage of requiring only one source of data out of the

two sources often used in existing literature, which facilitates both acquisition procedures and processing.

Globally, our results are in line with Collin et al., 2012, Chehata et al., 2009, and Neuenschwander, 2009,

which all state that bathymetric lidar waveforms are well-suited for benthic habitats mapping and ob-

serve the same complementarity between spectral and elevation information for habitat mapping. Our

method offers an OA similar to existing research in lidar data classification for habitat mapping, while

extending the application to a wider range of habitats—both marine and terrestrial—and avoiding in-

formation loss through rasterization. Although the recall obtained for some classes is lower than results

previously presented in other studies (Tulldahl et al., 2012; Chehata et al., 2009), this method also has

the advantage of offering homogeneous performances and low inter-classes recall differences, contrary to

these aforementioned existing research results.

The random forest models trained showed low overfitting, as the extended application results illus-

trated. The classification of boats located outside of the training and test data collection area, for example,

illustrated that the classifiers obtained could be applied to other datasets accurately. Natural, semi-natural

and anthropic habitats were well distinguished, and vegetation was precisely isolated, which opened per-

spectives for ecological assessments of those coastal areas.

Feature extraction method design

We defined 16 features to extract from the portions of the waveforms that correspond to layers of ground

or seabed covers. These were efficiently retrieved both on land and underwater. To perform feature ex-
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traction, we relied on a previous land-water distinction made by the sensor’s constructor software before

the data was delivered to us. This is a rather easy step that is well covered in the literature and often per-

formed in pre-processing to generate PCs since the effects of light refraction in water need to be corrected

to derive PCs with correct positions. We consequently preferred building on that already strong aspect

of lidar processing and focusing on distinguishing more detailed classes below and above the waterline,

rather than focusing on the waterline itself.

However, our approach did not handle extremely shallow waters, where the surface component and

the bottom return overlap in the waveforms. In these cases, the peak detection employed did not distin-

guish the seabed from the water surface and no features were retrieved. There was consequently a 24 m

wide band without bathymetric waveform features in our bispectral waveform features dataset. We also

noticed cases of confusion between seabed return and noise in the water column component of the wave-

form, which resulted in a mis-located detected seabed. These issues could be handled by improving the

way the different waveform components are isolated: using waveform decomposition (Shen et al., 2017)

or deconvolution (Zhou et al., 2017; Wu et al., 2011) could produce better results on that aspect.

Another aspect of our feature extraction method that could be improved is the correction of the at-

tenuation of the signal in water that we perform on bathymetric waveforms. This exponential correction

produces extremely high values of backscattered intensities underwater, which make little sense physi-

cally. On the other hand, topographic waveforms are not corrected: their typical intensity order of mag-

nitude is thus several times smaller, which might disrupt the classifier when building some tree nodes. The

fact that the permutation-based feature importance assessment revealed that the uncorrected intensities

were among the highest-ranked predictors and that several parameters expressing statistical variations of

corrected intensities were discarded suggests that this correction hinders the classification process.

Contribution of the bispectral information

The combination of infrared and green datasets produces the most accurate classification overall in both

our experiments with bi-spectral data (Letard et al., 2022b; Letard et al., 2022a). The addition of the

infrared features to the green parameters improves the distinction of the different types of grounds, and

results in an increase of 3% of the overall accuracy, precision and recall.

The increase in accuracy obtained when adding NIR information was even higher in our first exper-

iment on this study area, where we distinguished 21 different classes. In both cases, an explanation of the

shortcomings of the green waveforms on topographic classes can be found in the sensor specifications and

the data. Indeed, the HawkEye III was particularly designed for bathymetry extraction, consequently, its

green lasers are set to be powerful enough to reach the seabed up to several dozens of meters in coastal

waters. Over land, this laser power is so high that most of the waveforms originating from highly reflec-
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tive surfaces are saturated. The green wavelength alone might consequently not capture fine variations

of backscattered intensities over land to allow the separation of similar environments such as plane habi-

tats, different types of herbaceous vegetation, etc. The shapes of the saturated waveform returns are also

affected: the shape of a saturated peak around its maximum is not assessable. This can explain why there

was a lot of confusion between topographic habitats when using green waveforms only to study more

detailed classes - e.g. separating tar from concrete, or differentiating between low, medium and high salt

marsh vegetation.

Additionally, the infrared laser models a more concise and precise surface, while the larger size of

the green laser may sometimes result in the mixing of different land covers into one single return, but is

able to penetrate through water (Philpot, 2019). We suggest that the combination of two types of spot

sizes and wavelengths optimises the information collected on a given area in terms of albedo, water con-

tent and surface rugosity, which all impact the waveform and characterise natural surfaces. Having two

different lasers also provides a good understanding of the vertical complexity of the scene. Surfaces are

sampled with varying sizes of laser beams thanks to the dual-laser system. A wider footprint hits a wider

portion of the surface at a time: it can mix information about several layers of covers and create interme-

diate points between the canopy and the ground. This phenomenon is documented in all laser scanning

systems (Brodu et al., 2012). The smaller footprint of the infrared laser may not always penetrate through

dense covers but creates fewer mixed points. The combination of both sources of data results in local dif-

ferences in elevation and a greater vertical density over more complex surface covers and non-planar areas.

Bispectral lidar thus gives a more thorough review of the vertical structure of the environment, which can

explain the improvement of the classification accuracy (+0.2%) when adding DZ to the predictors. Using

DZ is also a way of including spatial context data, which is particularly contributive in PCs classification

(Brodu et al., 2012), to the model, without making it too dependent on the training area or involving

neighbours. Finally, the few predictors discarded after the importance analysis - green waveforms’ skew-

ness, IR waveforms’ AUC, skewness, maximum and mean - show that both wavelengths contain relevant

information. They also confirm the theoretically more exhaustive nature of the green waveform. Indeed,

infrared waveforms seem to contain fewer essential details on the surveyed scene, as most of the features

dropped after this step concerned the characteristics of the infrared return, whereas nearly all descriptive

parameters of the green returns were useful to the random forest model.

Contribution of the elevations

Our first experiments included elevations as predictors since most of the existing approaches for coast

habitat classification with lidar data used DTMs. Elevations contributed greatly to the improvement of

the classification OA but were largely outperformed by spectral predictors when used alone. This was
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expected since many different habitats coexist at similar altitudes and are mainly differentiated by their

reflectance. However, the classification accuracy of surface types whose elevation is an intrinsic quality -

e.g. salt marsh - greatly benefitted from the use of elevation as a complement to waveform features.

Despite these observations, we decided not to keep the Z coordinate as a predictor as it greatly limits

the generalization abilities of the resulting classifier, which is too specific to the absolute elevations of the

area it was trained on. Considering we obtained high accuracies without this information in our later

experiments, we decided that this feature was not essential. Furthermore, the elevation values extracted

with our approach were not always consistent with those provided by the original PCs in marine areas.

This can be explained by peak detection artefacts caused by high noise in the water column in very shal-

low areas namely. To remove artefacts due to water quality or sea foam, a post-processing step could be

implemented, and the neighbouring elevations could be used to regularize the processed PC obtained.

Classification algorithm and prediction confidence

Overall, our observations corroborate existing research on the classification of lidar data using random

forest algorithms (Yan et al., 2015; Hansen et al., 2021). In both our experiments with random forests, the

model was quickly applied to a great number of features and points and shows a good ability to exploit

information and detect between 17 and 21 classes. The average prediction probability for 17 classes is 77%.

This criterion and the qualitative results in Figures 4.8 and 4.9 outside the test dataset show that the

classifier is robust to overfitting and is generalisable to a wider scene.

The average prediction confidence being high, it can be used to filter the results and preserve the

overall quality of the map even if it means compromising on the 3D density in some areas, as introduced

by Brodu et al., 2012. Table 4.4 and Figure 4.9 show how points can be removed by applying a confidence

criterion in order to prioritise solid predictions, and thus improve the overall accuracy, as in Brodu et

al., 2012. The points affected by this filtering step give indications of the strengths and weaknesses of

the random forest model. Misclassified points with high prediction probability are evidence of training

errors. This is the case of the false detections of submerged rock along the surf zone, which Figure 4.12

shows more clearly.

In Figure 4.12, the false detections of submerged rock are located along the surf zone points. The sub-

merged rocks detected next to the rocks in the foreground are true positives. These mislabelled points

have a confidence value higher than 90%, as Figure 4.9b) reveals, which means that their descriptive fea-

tures correspond to the usual range of statistics describing submerged rock. In this case, further inves-

tigation into the most distinctive feature of submerged rock could help identify the origin of the issue.

A hypothesis could be that the similar DZ (i.e. water depth) of all the samples of submerged rock in the

scene introduces a bias that causes the surf zone to be confused for submerged rock.
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Figure 4.12: Extract of the resulting 3D classification: the land-water interface and its habitats.

The prediction confidence is also lower for areas at the interface between very distinct environments

(Figure 4.9b), where the waveforms might integrate mixed information due to the size of the laser spots.

The same issue was documented in Brodu et al., 2012 in 3D terrestrial laser scanning data classification.

These areas were less documented in our training data, and the prediction probability underlines this

lower confidence. On the other hand, errors made with low confidence reveal poorly represented ranges

of values among the training dataset, that are difficult to place in the possible labels. They reveal less about

the training process than about the quality of the dataset.

Brodu et al., 2012 identify that some areas of 3D PCs can have lower classification confidence due to

a smaller point density compared to the rest of the scene. In their case, the classifier relies on geometrical

features, and this difference in the dataset’s constitution explains why their features are not as distinc-

tive. In our case, outliers and erratic values of intensity or elevation in the data can be difficult to classify

correctly, since they are not included in the training data, that are rigorously selected for their represen-

tativity of each class. In this respect, our results illustrate how important the quality of the lidar dataset

is for classification tasks. Vertical or radiometric calibration issues can severely impact the possibility of

detecting the nature of the surface, as we can see in Figure 4.8, and as suggested in Brodu et al., 2012.

Flight lines can be recognized through the classification obtained around the salt marsh and on the beach

between the boat moorings and the dune. In our dataset, these lines had saturated intensities difficult to

interpret, and the elevations at the interface between flight lines differed by several centimetres.

The possibility to analyse the prediction confidence is thus a great indicator of the potential biases in

the method. It also offers the possibility to improve the classification accuracy (Brodu et al., 2012): more

than 10% of OA can be gained thanks to confidence-based filtering (see Table 4.4).

Further developments to allow the classification of each surface cover backscatter could improve the

classification’s resolution. Indeed, in this work, we did not consider multiple covers individually but
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merged them as a group. Classifying each waveform peak independently could improve the vertical den-

sity of the map and further increase the quality of the results. An improved separation of the different

echoes could also limit the difficulties encountered in very shallow waters. In the next section, we explore

another approach to get closer to these objectives.

4.3 Semantic segmentation of lidar waveforms with U-Time

The method introduced in the previous section illustrated the limits of waveform classification tech-

niques relying on pre-detection of the backscatters. In this Section, we process bi-spectral lidar data and

propose an approach able to detect and classify waveform components without supervised peak detec-

tion and feature extraction. More precisely, we focus on the ability of U-time (Perslev et al., 2019), a neural

network inspired by the well-known U-Net developed for image analysis, to classify waveform samples.

In practice, we aim at:

• (1) identifying real peaks from noise and signal not corresponding to backscatter and

• (2) classifying them to discriminate coastal ecosystems efficiently and automatically detect the pres-

ence of water or vegetation.

We propose to use a neural network adapted to lidar waveform processing as a classification tech-

nique that allows the detection and characterization of various coastal ecosystems, and that correctly sep-

arates subtidal, intertidal and supratidal areas. This network is calibrated and validated using very high-

resolution UAV optical imagery and lays the foundations for future integrated approaches of land-water

continuum mapping.

When we first developed this approach, we were not able to extract the infrared waveforms from the

survey data, due to a technical issue in the pre-data delivery processing. Consequently, in this study, only

the green shallow channel full-waveforms are used. As we were unable to exploit the NIR waveforms, we

used the NIR PC intensities instead.

Since then, we managed to retrieve the NIR waveforms as well, and used them in our first approach, as

presented in Section 4.2. However, we decided not to incorporate them into our semantic segmentation

workflow considering the results we obtained with green waveforms only, and preferred moving towards

different approaches.
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4.3.1 Data preprocessing

Green lidar waveforms labelling

In order to train our waveform processing algorithm and assess its performance, 1500 green waveforms

per habitat were selected and their echoes were located and labelled.

Waveforms already contained echo positions obtained via the machine’s constructor peak detection

algorithm. These positions practically consist of the points present in the delivered PCs. We filtered these

peak locations and used them as ground truth after labelling them depending on the nature of the ground

in the area (green PC files and green waveform files were linked using the GPS time information). Peak

locations corresponding to noise points were removed using the noise classification flag present in the

PCs delivered by Leica’s survey software.

We then selected areas of interest for each type of ground to discriminate using the UAV orthomo-

saics, the orthoimage from 2014 and the ground-truth data, and selected representative waveforms in

these areas. The 2014 orthoimage was used as past ground-truth to confirm the ground type since there is

a 1.5-year gap between the lidar acquisition and the UAV and photoquadrat ones. For each representative

area, the echoes were assigned to the label corresponding to the type of cover observable both in 2014 and

2021.

For underwater objects, several echoes corresponding to different cover types were present. The dis-

tinction between the seabed echoes and the sea surface return was made using the flag corresponding to

the sea surface present in the PC for refraction correction purposes. This detection is considered to be

trustworthy as (1) the surface position is easily distinguishable in shallow water areas using the NIR PC

and (2) this is the flag used by the French Marine hydrographic and oceanographic service to process their

lidar PCs and produce their underwater maps. No very shallow water areas were selected to create the

labelled dataset in order to avoid return location uncertainties.

Waveforms were individually visually checked before and after echo selection and labelling to make

sure no outliers were noticeable in the dataset. In practice, nine covers were identified as well as a “water

surface” class since it is relevant for underwater waveforms. Finally, a “non-useful” class was created for

all discrete values not assigned to a specific object. All the echo classes are summed up in Table I.

In total, 13500 labels – 1500 per cover type – were generated, in the form of series of 512 values alter-

nating between 0 (= non-useful) and the label of the relevant class at the position of an echo. For each

cover type, 1000 waveforms were dedicated to training and validating the classification and 500 were

kept to test the trained algorithm. There are consequently two datasets: a 9000-item training dataset,

and a 4500-item test dataset, one item consisting of a couple of waveform and label time series.
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Green lidar waveforms preprocessing

In order to achieve more generalizable results, we converted the backscattered intensities into pseudo-

reflectance values. Indeed, lidar intensities depend on many acquisition-related parameters and cannot

be considered as an absolute measurement of a surface’s albedo (Kashani et al., 2015). Since the laser im-

pulse is registered for each waveform, we divided the backscattered signal by the maximum of the impulse

to obtain pseudo-reflectances, which would probably be less dependent on our dataset. To be passed as

input of U-time, all waveforms were normalised between 0 and 1, and only the 512 first samples were kept

since the last samples of the waveforms usually only contain noise.

Infrared lidar data analysis

To construct our bispectral dataset, the NIR backscattered intensity was extracted from the NIR PC

at each position where a green waveform was selected for the train and test datasets. To get this parameter,

the NIR PC was first cleaned up by removing noisy points observable meters above the surface. The

resulting PC was then gridded at a 5 m resolution, to obtain a digital intensity model. No interpolation

was made in order to preserve the data, empty cells were consequently left empty. Finally, the value of

the digital infrared intensity model was extracted for each position at which a green waveform was used.

The 5 m resolution was chosen to account for the impossibility of finding a green point at the exact same

position as an infrared point, due to the differences between both lasers and due to their non-cofocality.

Although they could not be converted into pseudo-reflectance values, the infrared intensities were also

normalized between 0 and 1 before being passed to the network.

4.3.2 Semantic segmentation of waveforms

Neural network architecture

Before entering into details, let us recall that the main idea behind deep neural networks is to model com-

plex relations between inputs (waveforms here) and outputs (labels associated with each point) through

the succession of a large number of elementary operations performed with neurons. The parameters asso-

ciated with each neuron are learned during the training phase, aiming at finding the optimal parameters

that minimize the loss function, i.e. the discrepancy between estimated labels and real ones, with ad-hoc

optimization tools.

When spatial/temporal relations exist between input data, as with waveforms, convolutional net-

works are often used to capture multi-scale relationships between inputs. In image processing, efficient

networks performing convolution/deconvolution of the data have enabled impressive results for image
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understanding and classification. In this work, we rely on a 1-dimensional (1D) version of a convolu-

tional/deconvolutional network, named U-time, to process the waveforms. The chosen architecture

is a network inspired by the U-Net neural network, characterized by its so-called skip connections link-

ing the encoder (convolution) and the decoder (deconvolution) parts of the model.

To adapt the network to our time series, we only use 1D convolutions, contrary to the original archi-

tecture that was created to process 2-dimensional images. The encoder part consists of four convolution

blocks of a fixed-size kernel, each encompassing two sequences of convolution, batch normalization and

activation with a rectified linear activation unit (ReLU). The two last operations enable us to keep only

the main interesting part of the information. Max pooling, i.e.reducing by two the size of the filtered

waveforms, is performed at the end of each of these blocks. By doing so, the convolution of the next level

(with the same size kernel) embeds large-scale information.

The decoder part consists of four sequences of upsampling, skip connection and convolution block.

Both parts are linked by a convolution block. Our architecture consequently has a depth of four max-

pooling layers, meaning that at the end of the encoding part, the waveform is synthesized into 32 samples.

This seems adapted to the problem, considering there are one to five echoes detected, which are often

located in the second third of the signal, surrounded by noise at the beginning and the end. The size of

the convolution kernel is 3. More details about the architecture are presented in Figure 4.13.

Training

Two different networks were trained: a monospectral model, processing green waveforms only, and a

bispectral model that uses both the green waveforms and the infrared intensity values to perform echo

detection and classification.

Both networks were trained on batches of 30 items using weighted categorical cross-entropy as the

loss function and stochastic gradient descent for the optimization process. Categorical cross-entropy

is defined by the following expression:

L = −
∑

Ytrue log (Ypred)

where Ytrue are the true class probabilities and Ypred the predicted class probabilities. Both Ypred and

Ytrue are normalized so they sum to 1 for each waveform.

The set of weights resulting in the lowest validation loss was kept for each configuration (mono- or

bi-spectral).
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Figure 4.13: Diagram of the 1-dimensional U-time neural network architecture implemented to detect

and label returns corresponding to sea- or land-covers in green waveforms.

Post-processing

The network tends to label several adjacent samples as an echo. However, in the labelled data, echoes are

located in the form of single waveform samples. Consequently, the predictions were post-processed to

keep only one sample as the location of a detected echo. Each time several contiguous samples obtained

a label different than zero, the sample with the highest prediction probability was kept as is, while the

others were re-labelled as zero (class “nothing”).

Quantitative assessment of the results

Accuracy (ratio of good classification, best when its value is 1), precision (fraction of correct classes

among each ground truth class, best when its value is 1), recall (fraction of correct classification for each

estimated class, best when its value is 1), F1-score (combination of precision and recall, best when its value

is 1), and confusion matrices were used to assess the quality of the predictions quantitatively. Different

assessments were performed to identify the strengths and weaknesses of our approach.

The quality of the peak detection was assessed by considering this task as a binary problem (presence

or absence of a return). By analyzing the predicted location of the samples having a label different than
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zero regardless of the accuracy of the label, we can assess the performance of our architecture for waveform

components detection by computing accuracy, precision, recall and F1-score. Considering the width of

the peaks, the fact that the training labels correspond approximately to their maximum and the usual

considerations for waveform processing, a margin of error can be accepted for the location of the peaks.

The peak detection assessment was therefore also conducted with a tolerance of ±2 samples offset.

The second aim of our approach is to detect the land- or sea covers in the waveforms. The different

objects do not necessarily need to be placed correctly in the waveforms since the simple information of

their presence or absence can already be used for mapping purposes. Classes detection is therefore a

relevant criterion to evaluate our approach. It was assessed by considering the classes predicted in each

waveform, regardless of their occurrence or positions and aims at determining whether the neural net-

work detects the different objects correctly. Accuracy, precision, recall and F1-score were computed for

this task too.

The last evaluation criterion is the quantification of the quality of the global classification, i.e.

assessing the prediction made on each sample for each waveform. Confusion matrixes were computed to

get detailed information on the behaviour of the networks and the main confusions impacting both peak

detection and classification.

4.3.3 Results

Monospectral network

The first network was trained only on the green waveforms. It reached its lowest validation loss (0.11) on

the 106
th

training epoch. The weights obtained at this epoch were kept to test the model’s performance.

The following observations were made based on the testing dataset.

Qualitatively, the results show good identification of the different ecosystems. The parts of the wave-

form that are labelled as a return are consistent with the waveform components. As expected, before

post-processing, continuous ranges of samples are often labelled as echoes of the same class, covering the

whole peak. Since the ground-truth dataset is labelled with one sample indicating a peak, post-processing

is useful if we want to assess quantitatively the quality of the detection and classification. Examples of

results obtained in the testing dataset are presented in Figure 4.14.

Peaks detection Although most of the returns seem to be correctly placed when visualizing the predic-

tions, metrics presented in Table 4.6 show that less than half the returns predicted actually exist. However,

more than half of the echoes are properly detected.

If we choose to tolerate an error of 2 in the predicted location of the echoes (i.e. consider that if an
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Figure 4.14: Examples of predictions made by the green waveforms-based U-time. The black signal cor-

responds to the waveform. Each coloured vertical line refers to a predicted peak. All nine cover types are

pictured.
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Metric

No location error

tolerance

Location error

tolerance of 2

Precision 0.42 0.63

Recall 0.62 0.94

Accuracy 0.99 0.99

F-score 0.50 0.76

Table 4.6: Performance metrics of the peak detection obtained with the green waveforms-based neural

network

echo was predicted two samples further or earlier than the truth it is a correct prediction), the statistics

improve significantly. Let us recall that this margin of error does not massively impact waveform analysis,

since peaks are wider than 2 samples and the locations indicated in the training data correspond to the

middle/maximum of the peaks (our goal here is not to improve nautical charting, but explore semantic

information extraction possibilities).

With this error margin, more than 60% of the echoes predicted are real, and 94% of the existing

returns are identified by the model. There is still an overestimation of the presence of returns, but few

of the real echoes are missed. Furthermore, 98% of the echoes truly located 2 samples away from the

detection were originally detected by the network but erased during post-processing. In practice, it

means that our network predicts these echo positions, but not with the highest probability of the local

neighbourhood.

Classes detection In terms of land- or sea-cover identification, the monospectral network performs

well. On average, 89% of the covers predicted at a given location are present in reality, and 99% of the

objects hit by the laser beam are identified. Few covers are missed, but some are inaccurately predicted,

as Table 4.7 reflects.

General classification The average accuracy of the classification after post-processing is 0.61. The con-

fusion matrix obtained (Figure 4.8) gives further indications of the performances of the network for each

type of sample. Considering the values present in the first column (predicted = 0), the major source of

error is the mislocation or misdetection of the echoes. Indeed, the highest percentages of confusion are

obtained when a label 0 is predicted instead of the actual label. Moreover, the percentage of misclassifi-

cation often corresponds to the difference between 1 and the accuracy obtained for a class.

The few cover type errors can be summed up as follows. Shallow sandy seabed, trees, and seagrasses are
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Metric Average value

Precision 0.89

Recall 0.99

Accuracy 0.97

F-score 0.94

Table 4.7: Performance metrics of the class detection obtained with the green waveforms-based neural

network.

Predicted labels

T
r
u

e
l
a
b

e
l
s

Label 0 1 2 3 4 5 6 7 8 9 10

0 1 0 0 0 0 0 0 0 0 0 0

1 0.25 0.74 0 0 0 0.006 0 0 0.002 0 0

2 0.53 0 0.47 0 0 0 0 0 0 0 0

3 0.68 0 0 0.29 0.001 0 0.002 0.007 0.002 0.002 0

4 0.55 0 0 0.002 0.44 0 0 00.004 0 0 0

5 0.39 0.002 0 0 0 0.6 0 0 0.002 0 0

6 0.31 0 0 0.002 0 0 0.65 0 0 0.03 0

7 0.52 0 0 0 0 0 0 0.48 0 0 0

8 0.33 0.001 0 0 0 0 0.001 0 0.66 0.001 0

9 0.28 0 0 0 0 0 0.02 0 0 0.69 0

10 0.26 0 0 0 0 0 0 0 0 0 0.74

Table 4.8: Confusion matrix of the classification of waveforms’ pseudo-reflectance samples obtained with

the green waveforms based neural network.
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Figure 4.15: Examples of a prediction error made by the green waveforms-based U-time. The black sig-

nal corresponds to the waveform. The coloured vertical lines refer to a predicted peak. Here, the peak is

located correctly, but the label is wrong.

sometimes mixed up. Rock is also mistaken for other types of terrestrial covers having similar saturated

echoes (pebble, tree, salt marsh vegetation, or field), and inversely. Bare ground types can be misidentified

too. Figure 4.15 illustrates this confusion between bare ground types.

The confusion matrix obtained on the post-processed results with a tolerance for a location error

of 2 for the peaks (Figure 4.9) confirms the observation made above. The major explanation for the low

accuracies obtained for most of the classes is the improper location of the returns by a few samples.

Cover types errors remain rare, but there are still missed returns, and false detections, mostly of deep
sandy seabed and trees. The average accuracy reaches 92%.

Bispectral network

The second network was trained on green waveforms and corresponding NIR intensities. Its lowest

validation loss (0.07) was observable on the 82
nd

epoch of the training process, providing the weights for

the final model. The testing dataset was processed with this model and accounts for this configuration’s

performances for the detection and classification of waveform components.

Once again, visual appreciation of the predictions shows proper identification of most of the ecosys-

tems and the returns. Overestimation of the number of samples to be labelled for a given echo is still

observable and justifies the need for post-processing. Examples of results are presented in Figure 4.16.

Peaks detection The bispectral network shows slightly poorer precision, recall, and F-score for peak

detection when no margin of error is tolerated than the monospectral model. 62% of the detected echoes
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Figure 4.16: Example of class confusion in the green waveforms-based U-time predictions. The black sig-

nal corresponds to the green waveform. The black horizontal lines correspond to the near-infrared inten-

sity values matched with each green waveform. Each coloured vertical line refers to a predicted peak.
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Predicted labels

T
r
u

e
l
a
b

e
l
s

Label 0 1 2 3 4 5 6 7 8 9 10

0 1 0 0 0 0 0 0 0 0 0 0

1 0 0.98 0 0 0 0.01 0 0 0.004 0 0

2 0.06 0 0.94 0 0 0 0 0 0 0 0

3 0.2 0 0 0.75 0.03 0 0.002 0.01 0.002 0.002 0

4 0.07 0 0 0.05 0.88 0 0 0.004 0 0 0

5 0.03 0.002 0 0 0 0.96 0 0 0.002 0 0

6 0.02 0 0 0.01 0.002 0 0.89 0 0.002 0.07 0

7 0.07 0 0 0.01 0 0 0 0.92 0 0 0

8 0.09 0.001 0 0.003 0.001 0.002 0.001 0 0.9 0.001 0

9 0 0 0 0.006 0 0 0.04 0 0 0.95 0

10 0 0 0 0 0 0 0 0 0 0 1

Table 4.9: Confusion matrix of the classification of waveforms’ pseudo-reflectance samples obtained with

the green waveforms-based neural network, with a tolerance of a location error of ± 2 samples for the

returns.

do not exist in the truth dataset. And 2% less returns are properly detected. Table 4.10 enumerates the

performance statistics of this second network for peak detection.

If, as previously, we set an error margin of ±2 for the location of the peaks, the statistics increase,

but slightly less than for the first configuration. Almost 60% of the echoes are true positives, and the

network suitably detects 94% of the true returns. As for the first network, 98% of the echoes actu-

ally located within 2 samples of the predictions were originally labelled as such, but erased during post-

processing.

Class detection The bispectral network predicts land- and sea-covers somewhat better, as proven

by the metrics presented in Table 4.11. Only 9% of the covers predicted are false positives, and 99% of

the habitats are found. The average accuracy of the identification of classes is 98%. The global class

detection metrics can be read in Table 4.11.

General classification The global classification task was performed with an average accuracy of

0.61. More details about classification errors can be found in the confusion matrix presented in Figure

4.12. Confusion between the label 0 and the others is again the biggest source of errors and appears to be
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Metric

No location error

tolerance

Location error

tolerance of 2

Precision 0.38 0.59

Recall 0.60 0.94

Accuracy 0.99 0.99

F-score 0.46 0.73

Table 4.10: Performance metrics of the peak detection obtained with the infrared intensities and green

waveforms-based neural network.

Metric Average value

Precision 0.91

Recall 0.99

Accuracy 0.98

F-score 0.95

Table 4.11: Performance metrics of the class detection obtained with the infrared intensities and green

waveforms-based neural network.
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Predicted labels

T
r
u

e
l
a
b

e
l
s

Label 0 1 2 3 4 5 6 7 8 9 10

0 1 0 0 0 0 0 0 0 0 0 0

1 0.3 0.69 0 0 0 0.002 0 0 0.004 0 0

2 0.53 0 0.47 0 0 0 0 0 0 0 0

3 0.69 0 0 0.3 0 0 0 0 0.003 0.003 0

4 0.42 0 0 0 0.58 0 0 0 0 0 0

5 0.41 0 0 0 0 0.59 0 0 0 0 0

6 0.40 0 0 0 0 0 0.56 0.002 0 0.003 0

7 0.47 0 0 0 0 0 0 0.53 0 0 0

8 0.41 0 0 0 0 0 0 0 0.59 0.001 0

9 0.34 0 0 0 0 0 0.01 0 0 0.65 0

10 0.27 0 0 0 0 0 0 0 0.0007 0 0.73

Table 4.12: Confusion matrix of the classification of waveforms’ pseudo-reflectance samples obtained

with the infrared intensities and green waveforms based neural network.

dragging down the accuracy scores of most of the classes.

Less confusion between classes other than “nothing” is observable. Underwater sand, seagrass and

tree are still mistaken for each other, as well as rock, trees and dry sand or pebble, field and dry sand. Con-

fusion between tree and sea surface also occurrs, which was not the case for the first network. However,

globally, there seems to be less confusion between terrestrial covers. The separation between subtidal

and supratidal areas is somewhat better, except for the false tree detections in marine environments.

Similarly to the green-based predictions, with tolerance for a margin error of 2 samples in the peak

locations, the average accuracy increases. It reaches 93%, a 1% improvement, with green and infrared-based

predictions. As shown in Figure 4.13, it also confirms that the slight offset in the location of some peaks

accounts for most of the accuracy loss for ten out of eleven classes. Class confusions remain similar, and

there are still inopportune detections of tree or deep sandy seabed, on top of missed echoes (for seven out

of eleven classes).
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Predicted labels

T
r
u

e
l
a
b

e
l
s

Label 0 1 2 3 4 5 6 7 8 9 10

0 1 0 0 0 0 0 0 0 0 0 0

1 0 0.99 0 0 0 0.006 0 0 0.004 0 0

2 0.04 0 0.96 0 0 0 0 0 0 0 0

3 0.23 0 0 0.76 0.005 0.002 0 0 0.005 0.005 0

4 0.06 0 0 0.015 0.92 0 0 0 0.006 0.002 0

5 0.03 0 0 0 0 0.97 0 0 0 0 0

6 0.01 0 0 0.006 0 0 0.9 0.004 0 0.075 0

7 0.07 0 0 0.002 0.006 0 0.004 0.92 0 0.002 0

8 0.12 0 0 0.001 0 0 0 0 0.88 0.002 0

9 0 0 0 0 0 0 0.03 0 0 0.97 0

10 0 0 0 0 0 0 0 0 0.001 0 0.996

Table 4.13: Confusion matrix of the classification of waveforms’ pseudo-reflectance samples obtained

with the infrared intensities and green waveforms based neural network, with a tolerance of a location

error of ± 2 samples for the returns.

4.3.4 Discussion

Detection of returns

U-time detects almost entire peaks and not only their maximum halfway location, as they are indicated

in the training data. However, this peak detection is consistent with typical waveform behaviour: peaks

constitute a significant pseudo-reflectance variation compared to their surroundings in the waveforms.

Since noise has approximately always the same shape and pseudo-reflectance and is labelled as “non-

useful” in all the waveforms, U-time attributing to the rest of the peaks labels different than 0 is expected.

To assess the quality of our peak detection, we performed post-processing to obtain results compa-

rable to the labelled data. The post-processed results showed poor precision and recall for peak location.

Since the peaks in our training data were located around their maximum, we know that an offset of about

2 samples in their predicted location will still correspond to the peak in the waveform data and thus not

alter their semantics. Considering this, we obtain metrics that show the proposed architecture is able to

detect peaks in waveforms accurately and efficiently since little preprocessing was needed, and no impulse

function modelling or curve fitting was required.

Moreover, the fact that 98% of the detected peaks located within the margin of error was labelled as
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peaks before pre-processing asserts the ability of the proposed approach to correctly detect peaks. How-

ever, it is clear that the main limitation of this approach is the waveform labelling procedure. Indeed,

using discrete peak locations is not adapted to convolutional neural networks with this approach, since

they are mostly based on patterns of variation, and will therefore perform better in identifying the whole

range of samples corresponding to the peaks. Labelling the peaks continuously in the training data would

avoid needing post-processing and allow the use of the intersection over union as a relevant performance

metric.

Furthermore, since the files storing the waveforms are structured to contain up to four returns, in

some cases, all the actual returns might not be indicated. For example, our approach seems to overestimate

the number of tree returns, but in some cases, the detected peaks seem to be relevant. Figure 4.17 illustrates

such additional detections of tree. Our method could therefore be helpful to improve echo extraction

from waveform data as in (Chauve et al., 2007), but the extra returns’ accuracy has to be evaluated first.

For the peak detection task, the proposed approach showed satisfying performances with limited pre-

processing, contrary to traditional full-waveform analyses. The green-only based U-time showed some-

what better results, but the small difference makes both networks equivalent.

Classification

The detection of the different classes, regardless of their positions in the waveforms, is more robust

and accurate and shows little confusion. There are more false detections than missed detections,

and further analysis and visualization of the predictions show that most of the false detections could

be avoided. Indeed, most of the false detections are tree returns in marine environments and deep sandy
seabed returns before the water surface or after the seabed return. Figure 4.17 gives an example of false de-

tection of deep sand before the detection of a water surface return. By adapting the network architecture,

these issues could probably be solved.

A recurrent neural network could be useful to make future predictions depend more on previous

predictions along the pseudo-reflectance time series. For example, it could mitigate the apparition of false

detections of deep sandy seabed when a seabed return has already been identified earlier in the time series.

Region-based convolutional neural networks could also determine the useful range of the waveform and

avoid untimely peak detection outside of it.

Another possible improvement is the addition of other types of data to further distinguish dif-

ferent environments. Geometrical features, traditionally used to classify PCs (Zhang et al., 2013; Yan et

al., 2015), could make better use of the rich spatial context inherent to lidar data. However, they imply

pre-processing: it would therefore be interesting to see if the resulting improvements could advocate for

a more complex processing chain.
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Figure 4.17: Examples of false predictions made by the green waveforms-based U-time. The black signal

corresponds to the green waveform. Each coloured vertical line refers to a predicted peak.

Using both green and infrared waveforms is another solution. Indeed, since green wavelengths pene-

trate water and infrared do not, infrared intensity is an efficient predictor for the presence or absence of

water. The bispectral neural network already shows a slight improvement in the separation of marine and

terrestrial habitats, although tree returns are still detected in marine waveforms. Relying on more detailed

infrared information would provide a better distinction between land- and sea-covers. However, further

investigation on how to match NIR and green waveforms is required. Indeed, fusion encoders would

need to be well designed to avoid the network to consider both wavelengths to be properly matched tem-

porally, while they are not. Otherwise, training could be biased if a false equivalence of both signals in

time and space is inferred.

Nonetheless, the results of our study show that there is not a massive difference in performance be-

tween the green waveforms-based network and the bispectral configuration, which is an interesting obser-

vation. The general classification is performed with an average accuracy above 92% with an error tolerance,

and habitat detection in waveforms shows precision, recall, accuracy, and F-scores of at least 0.9 for both

networks. Our approach therefore allows the classification of coastal and estuarine habitats based on li-

dar waveform processing, even with only one wavelength. It also obtains higher performance metrics

than existent methods for similar coastal environment mapping (our experiments on seagrass meadows

of Corsica with handcrafter features reported an 86% accuracy for seagrass and shallow sand mapping

(Letard et al., 2021b), and Collin et al., 2012 obtained 90% of accuracy on their classification of coastal

ecosystems). The green waveforms-based network also identifies correctly almost 100% of the water
surface returns for shallow and deep waters, a promising perspective for full-waveform lidar processing

for coastal and estuarine areas management.
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Indeed, if the approach is valid on various water depths, it could make full-waveform lidar analysis

more accessible and limit the need for a second wavelength dataset, as TB lidar acquisitions are expensive

and land-water separation is traditionally made by using both green and NIR PCs (Lague et al., 2020).

However, considering the tendency of our networks to label complete peak shapes and not punctual

peak locations, this approach may be unsuitable to very shallow waters. Indeed, semantic segmentation

doesn’t allow class overlapping. Overlapping echoes may thus be impossible to delineate with U-time.

4.4 Conclusion

In this chapter, we investigated processing options to extract semantic information from topo-bathymetric

lidar waveforms. We started by using proven methods for waveform classification and adapting them to

bi-spectral datasets and a wider range of terrestrial and marine classes. Using a random forest algorithm

and handcrafted waveform features, we obtained 3D classifications with accuracies above 85% and a mean

prediction confidence of 77%. To further enhance waveform-based classification, we developed a semantic

segmentation approach with a limited need for pre-processing compared to the more traditional method

we first used. To achieve that, we trained two temporal convolutional networks, inspired by the U-Net

architecture: one processing only green waveforms, the other processing green waveforms and infrared

intensities. Our networks enable accurate sea- and land-cover classification through green lidar waveform

processing. By tolerating an error of ±2 samples in the detected peaks’ locations (this error implies no

semantics change, and corresponds to 0.12 cm in reality), the waveforms classification reaches an average

accuracy of 92% and 93% for the monospectral and the bispectral networks, respectively. In both experi-

ments, we exploited the prediction probability and concluded it was a major tool for post-processing and

a reliable way of filtering over-detections or classification errors.

In our first approach, we observed a significant performance increase when coupling both green and

NIR wavelengths. However, a major advantage of the deep semantic segmentation method is its abil-

ity to perform excellently with green data only. Water surface returns were correctly identified in almost

100% of the cases by the green waveforms-based network, which also showed the best peak detection

performances. The addition of infrared intensities did not show a significant improvement in waveform

semantic segmentation.

Overall, our results with both traditional machine learning and deep neural networks illustrate once

more the significant usefulness of topo-bathymetric lidar for diverse and complex environment survey-

ing. Classified or segmented waveforms pave the way for enhanced ecological assessments of land-water

areas by providing 3D information about the surface covers. Indeed, combining vertical structure infor-

mation with the knowledge waveforms provide on the physical properties of the environment could serve
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Figure 4.18: Examples of false predictions made by the green waveforms-based U-time. The black signal

corresponds to the green waveform. Each coloured vertical line refers to a predicted peak.

as proxy data to evaluate ecosystem functions or water properties. As a matter of example, studying veg-

etation thickness or volume becomes possible, which is a key parameter of biomass assessments. Figure

4.18 below illustrates this opportunity
3
. It features preliminary results of seagrass meadow height extrac-

tion in Corsica. Although it should be refined with refraction correction, it already shows the benefits of

a finer separation of underwater vegetation and seabed.

Confronting both methods, we conclude that globally, deep neural networks have significant advan-

tages over a more classical machine learning approach:

• They require less pre-processing, and thus involve a lower uncertainty propagation;

• They do not require feature engineering;

• They seem to learn more abstract features allowing them to extract equivalent information from

green waveforms alone and bi-spectral information.

This latter point is particularly interesting in the context of topo-bathymetric waveforms analysis.

Indeed, full-waveform lidar data is massive and requires adapted storage and computing power to be used.

The possibility of needing only one of both wavelengths to be recorded as waveforms is thus attractive.

Furthermore, as we introduced in Chapter 1, studying bathymetric areas with lidar typically necessitates

3. Further details on the method used to obtain this result can be found in Letard et al., 2021b
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the use of the NIR wavelength due to green surface return uncertainty. It is thus interesting to experiment

with new data processing methods that could lift this requirement.

Consequently, in the next chapter, we focus on tackling the main limitations of this approach: its

inadequacy to localize precisely actual backscatters, and its inapplicability to extremely shallow waters.

Once we manage to improve these points, a spatial application of a deep learning-based waveform pro-

cessing method will become possible for uninterrupted land-water interface modelling, and, potentially,

for ecological assessments.
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Full-waveforms processing usually comes with two challenges: detecting intercepted surfaces, and

characterizing them. Two main families of approaches can be used to automatically extract the nature of

the surfaces illuminated: feature engineering combined with classical machine learning, or deep neural

networks trained to learn consistent representations of the data. In this Chapter, we further explore the

knowledge extraction possibilities offered by deep neural networks for lidar waveform processing pre-

sented in the previous chapter by investigating straightforward simultaneous component detection and

identification from raw lidar signals and bathymetric waveform inversion. To this end, we base our exper-

iments on physical models of lidar waveforms, both to allow the training of our models through access to

simulated labelled data and to increase the quantities of training samples. At the end of sections 5.3 and

5.4, we discuss the application of these models to real data acquired with an Optech Titan lidar sensor.

5.1 Context

In the previous chapter, we saw how crucial backscatter detection is for the extraction of semantic infor-

mation from lidar waveforms. In U-time, we proposed a unified approach to perform both echo detection

and classification simultaneously. However, this approach requires to classify each time step and to lo-

calize the echoes with a single position. This is not optimal, as backscatters modify the local shape of the

waveform on multiple time steps. Although attributing the class 0 (’non useful’) to noise is a solution,

it is not optimal since the associated optimization problem is difficult. In a similar way, changing the

pre-processing in order to label all the echo is an alternative, but this would make the characterization

of overlapping returns impossible - at least not with this semantic segmentation approach. Therefore,

here we turn towards object detection and classification frameworks, which seemed more adequate for

waveform processing.

Additionally, our first experiments with neural networks to analyse lidar waveforms encouraged us to

go further and exploit them for different extraction tasks. For example, waveforms contain information

on water’s optical properties (Lu et al., 2022) or vegetation’s physical characteristics. In chapter 2, we

saw that the extraction of such knowledge is mostly based on regression approaches trained with in-situ

measurements. However, it is in practice difficult to access such data, as simultaneous field samplings and

airborne surveys are time-consuming and expensive. Another possibility reviewed in chapter 2 was to

inverse radiative transfer models (RTMs). This task is however complicated, as the parameters are inter-

related and there are thus many possible solutions. Such approaches were also outperformed by neural

networks-based regressions in (Zhang et al., 2023). In the second half of this chapter, we thus explore the

possibility of developing a non-iterative environmental parameter estimation method. We also wish to

analyse whether waveforms collected without synchronous field measurements can still be exploited for
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environmental parameter analyses. In particular, we investigate the possibility of using physical models

designed for waveform simulation for algorithm optimization.

Whether for waveform component detection and identification or for parameters estimation, a major

problem arises: how to extract precise labels? Indeed, in the case of object detection, two issues remain:

• It is difficult to assess with precision the beginning and end of a backscatter without introducing

bias. This difficulty exists for peaks that are easy to spot with the naked eye but is increased for less

prominent ones.

• Some echoes are impossible to spot with certainty by the human eye. Consequently, if some com-

ponents are missed by the operator - for example, weak or overlapping returns - the algorithm is

trained on unstable information. It can thus falsely label mixed backscatters as a single return and

have trouble identifying it with its mixed features. In the end, it will be neither stable nor reliable.

In the case of environmental parameters estimation, similar issues arise to label the position of

the water surface and the water bottom. However, the main difficulty lies in the obtention of the right

parameter values to predict. It is in fact impossible to associate a value with each parameter without syn-

chronous measurements. As reviewed in chapter 2, some methods thus use MODIS observations at dif-

ferent wavelengths and convert them into the desired spectral domain. The issue is that this approach

is not adapted for shallow coastal waters or narrower inland water extents. Here, we want to assess the

possibility of using a similar network for different types of water.

This issue of labelled data availability is addressed in this chapter. We suggest using a radiative transfer

model rigorous enough to realistically reproduce typical waveforms. We then generate as much labelled

data as desired, and design and train our own algorithms on them. In a second step, we apply the resulting

networks to real waveforms acquired with a narrow FOV topo-bathymetric system to evaluate how they

handle the domain change.

5.2 Main principles

To reach our objectives, we developed a simulation model for bathymetric waveforms and for single-

return topographic waveforms. Since waveform components’ shapes depend on the emitted laser im-

pulse, we choose to include it as an input on the side of the waveform to process. However, emitted

laser impulses are not registered for all sensors. Yet, they contain crucial information as they influence the

global parameters of the waveform peaks (see chapter 1). We thus make the hypothesis that their main

characteristics - namely their width, skewness and asymmetry - can be evaluated on a planar emerged sur-

face intercepted at a low off-nadir angle. Consequently, we simulate such waveforms as well and use them
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as inputs to our networks. Our simulations are made on the parameterized for a topo-bathymetric sensor

such as the one we used for real data collection: the Optech Titan.

5.2.1 Training on simulated waveforms

We relied on a physical model of lidar waveforms to simulate training, validation, and test data. As ex-

plained in Chapter 1, each waveform component is the result of the convolution between the incident

laser pulse and the response function of the intercepted surface. The waveform is then the sum of all in-

dividual components, plus a noise component. In this section, we detail how we simulate the incident

laser pulses, the surface response functions, and the noise component.

Incident laser pulses We first simulate the pulses emitted by the sensor. These functions depend on

the peak laser power Pem, the time duration of the pulse - which corresponds to its width - we, the time

t and the time step at which the pulse is emitted te. Our model includes four different impulse functions

I(Pem, we, t, te) to generalize to different types of laser beams:

• A Gaussian impulse function (Jutzi et al., 2006);

Ig(Pem, we, t, te) = Pem
2

we

√
ln(2)

π
exp(−4 ln(2)t − te

2

w2
e

)

• An extreme value distribution;

IEV (Pem, we, t, te) = te + Pem exp
(

− exp
(

− t

we

)
− t

we

+ 1
)

• A generalized extreme value function;

IGEV (Pem, we, t, te) = te + Pem

exp
(
−(1 + 0.15 t

we
) −1

0.15
)

(1 + 0.15 t
we

)−1− 1
0.15

exp(−1)

• A log-normal distribution

Ilogn(Pem, we, t, te) = Pem
1

twe

√
2π

exp
(

− ln(t − te)2

2w2
e

)

These functions are illustrated in Figure 5.1:
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Figure 5.1: Impulse functions used for waveform simulation.

The main differences between these different impulse models are their skewness and asymmetry. In

particular, Gaussian impulses are completely symmetric and much less skewed than the other functions.

GEV and EV are close, but GEV has a slightly shorter rising time and shorter tail. The EV distribution

has the longest rising time, with log-normal impulses close behind. GEV, EV, and log-normal functions

are all asymmetric, and thus have a shorter rising-time than tail. GEV and EV are particularly similar to

the shape of the pulse function of the Optech Titan sensor used in this document for real data processing.

To define the incident laser beams, we take into account the effects of non-nadir incidence through

pulse stretching modelling, which increases the width of the emitted pulse depending on the range, the

beam divergence angle, and the incidence angle. To this end, we follow the pulse stretching modelling

introduced in Guenther et al., 2000. It relies on the estimation of the time delay generated by non-nadir

surface interception, ∆t:

∆t = 2H

c

[
1

cos(θ + γ
2 ) − 1

cos(θ − γ
2 )

]

where c is the speed of light, H the operating altitude, θ the beam incidence angle, and γ the beam diver-

gence angle.

Since the water depth is negligible compared to H , we use the same expression to compute ∆t for

topographic surfaces, water surface, and water bottom returns and simply use the corresponding values

of θ.

This time delay is caused by the difference in range between the closest portions of a non-planar sur-

face and its furthest portions. Depending on the value of ∆t compared to the width of the emitted pulse
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we, it causes the incident pulse to be stretched by a factor τ :

• If ∆t < 2we, τ = 0.1∆t

• If ∆t ≥ 2we, τ = we ×
(

0.5∆t
we

− 0.4
)

In our model, each intercepted surface’s response function is thus convolved with an incident impulse

of width we + τ to produce the waveform components.

Intercepted surface response function For the concerned applications, we simulate four types of

components: topographic surfaces, water surfaces, water columns, and seabeds. Contrary to the other

components, water columns do not necessitate the definition of a response function, as they have a very

specific behaviour, explained in Chapter 1. However, for all other surfaces, a response function represent-

ing the geometry of the cross-section and its material must be defined.

To introduce sufficient variability and representativity in our datasets, we take into account different

settings for the seabed and topographic surface components. We model these surfaces using Gaussian

pulses with varying widths representing surface geometries and amplitudes symbolizing various materi-

als. These amplitudes correspond to the received powers Prec and Pb backscattered by topographic and

benthic surfaces.

Since we aim at simulating small footprint lidar data, we consider water surfaces to be locally plane

and thus simulate them with Dirac distributions δ, which we multiply with the value of the received

power after reflection on the water surface.

To compute the power backscattered by each component, our simulator relies on 4 main physical

equations, introduced in Chapter 1:

• Equation 1.4 describing the power received after reflection on a single topographic surface:

Prec = ρPemT 2
atmArηeηr cos θ

πR2

• Equation 1.6 describing the water surface backscatter power for bathymetric waveforms:

Ps = LsPemT 2
atmArηeηr

πR2

• Equation 1.7 describing the water column component of bathymetric waveforms:

Pc = βπ exp (−2Kdrw)(1 − Ls)PemT 2
atmArηeηr

n2
wR2
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• Equation 1.8 describing the received power after reflection on the seabed for bathymetric wave-

forms:

Pb = ρb exp (−2Kdrw)(1 − Ls)PemT 2
atmArηeηr

πn2
wR2

Globally, we make the hypothesis that the water column is homogeneous and that the factor of loss

linked to the FOV is included in the loss factor Ls. Indeed, since we simulate a topo-bathymetric lidar

survey, the FOV is probably too narrow to capture all energy and provide a precise estimate of the diffuse

attenuation coefficient.

Noise To generate the final waveform, we sum all components with a noise component µ. We incor-

porate two noise functions:

• a Gaussian white noise N (0, 1)

• a Gaussian white noise summed with a sinusoidal noise of fixed period (30 time steps)

sin(t × 2π

30 ) + N (0, 1)

These noise time series are multiplied by a factor N , which corresponds to a percentage of the maximum

waveform energy.

Final waveforms In the end, bathymetric waveforms Wbathy are obtained with the following equation:

Wbathy = I(Pem, we+τs)∗(δ(ts)×Ps)+I(Pem, we)∗(Pc)+I(Pem, we+τb)∗(N (tb, wb)×Pb)+µN

where τs and τb are the stretching factors at the water surface and the water bottom, wb is the width of

the seabed surface response Gaussian denoting its geometry, and ts and tb are the time steps at which the

water surface and the water bottom are intercepted.

Topographic waveforms Wtopo are obtained with:

Wtopo = I(Pem, we + τt) ∗ (N (tt, wt) × Prec) + µN

where τt is the stretching factor at the topographic surface, tt is the time step at which this surface is

intercepted, and wt is the width of its surface response function, denoting its geometry.

Simulation of training, validation and test datasets In our processing approach, we do not assume

that the emitted pulse is always available. We thus simulate simple topographic waveforms acquired over
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Label Definition

1 Extremely turbid waters

2 Extremely shallow turbid waters (overlapping echoes)

3 Turbid waters

4 Turbid waters with high energy loss at the air/water interface

5 Deep turbid waters (weak echoes)

6 Extremely shallow clear to moderately turbid waters (overlapping echoes)

7 Clear to moderately turbid waters

8 Clear to moderately turbid waters with high energy loss at the air/water interface

9 Deep clear to moderately turbid waters (weak echoes)

10 Very deep clear waters with highly reflective seabeds

11 Shallow clear to turbid waters with low albedo seabeds

Table 5.1: Definition of the 11 types of bathymetric waveforms simulated.

planar, tar-like surfaces with low incidence angles to approximate the impulse function. When processing

real data, such waveforms can be used to estimate the laser pulse function, as they are very close to it in

shape. To train our networks, we thus need arrays of simulated bathymetric and topographic waveforms

and their inherent parameters. To limit bias and favour generalizability, we train our networks to be robust

to various environmental contexts but also to different sensor parameters. For a given set of bathymetric

waveform parameters, we thus simulate signals for each impulse function type, and then disturb each

of them with each type of noise implemented, for three different levels of noise. The initial bathymetric

waveform parameters - Kd, Ls, Rb, βπ, depth, θ and wb - and the impulse parameters - Pem and we

- are drawn randomly within fixed ranges. For each bathymetric waveform, a topographic waveform is

simulated with the same impulse function parameters and the same noise function and noise level. The

topographic waveform parameters are fixed: the reflectance of the ground is set at 0.05 to denote tar, θ is

set at 0.17 rad, and the width of the Gaussian surface response function is 0.1 m.

To reflect the complexity of benthic environments, we simulated eleven types of bathymetric wave-

forms in different physical contexts. They are presented in Table 5.1.

For each type of bathymetric environment, the parameters of the model are drawn randomly from

a uniform law within pre-defined ranges of parameters. Each waveform depends on the values of depth,

Kd, βπ, Ls, Rb, θ, Pem, we, wb, the type of impulse function, the type of noise, and the noise level N .

Some parameter ranges are common to the whole simulation, they are presented in Table 5.2.

However, other parameters related to the physical context vary within different ranges depending on
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θ Pem we wb

0.08 to 0.6 rad 2 to 4 mJ 0.2 to 0.8 m 0.1 m to we

Table 5.2: Simulation parameters common to all waveform types.

Label Depth Kd βπ Rb Ls

1 0.2 m to 2.5 m 1.5 m
-1

to 5 m
-1

0.1 to 0.4 0.03 to 0.85 0.05 to 0.85

2 0.2 m to 1 m 0.7 m
-1

to 1.5 m
-1

0.003 to 0.009 0.03 to 0.85 0.05 to 0.85

3 1 m to 3 m 0.7 m
-1

to 1.5 m
-1

0.003 to 0.009 0.03 to 0.85 0.05 to 0.3

4 1 m to 3 m 0.7 m
-1

to 1.5 m
-1

0.003 to 0.009 0.03 to 0.85 0.3 to 0.85

5 3 m to 5 m 0.7 m
-1

to 1.5 m
-1

0.003 to 0.009 0.03 to 0.85 0.05 to 0.6

6 0.2 m to 1 m 0.1 m
-1

to 0.7 m
-1

0.0002 to 0.003 0.03 to 0.85 0.05 to 0.85

7 1 m to 4 m 0.1 m
-1

to 0.7 m
-1

0.0002 to 0.003 0.03 to 0.85 0.05 to 0.3

8 1 m to 4 m 0.1 m
-1

to 0.7 m
-1

0.0002 to 0.003 0.03 to 0.85 0.3 to 0.85

9 4 m to 10 m 0.1 m
-1

to 0.7 m
-1

0.0002 to 0.003 0.03 to 0.85 0.05 to 0.5

10 6 m to 20 m 0.1 m
-1

to 0.4 m
-1

0.0002 to 0.002 0.5 to 0.85 0.05 to 0.4

11 1 m to 2.5 m 0.1 m
-1

to 1 m
-1

0.0002 to 0.008 0.03 to 0.2 0.05 to 0.5

Table 5.3: Specific simulation parameters associated to each waveform type.

the type of environment simulated. They are summed up in Table 5.3.

For each set of simulation parameters drawn randomly, waveforms are simulated with each type of

impulse function, each type of noise, and each level of noise, resulting in 24 simulated waveforms per

random drawing. Table 5.4 illustrates the result obtained for one drawing of simulation parameters.
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Gaussian impulse EV impulse GEV impulse Log-normal impulse

Low

Gaussian

noise

Medium

Gaussian

noise

High

Gaussian

noise

Low

Sin-Gauss

noise

Medium

Sin-Gauss

noise

High

Sin-Gauss

noise

Table 5.4: Illustration of the different waveforms obtained for a single set of simulation parameters.
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The training dataset is composed of 200 random drawings of bathymetric waveform parameters, re-

sulting in 200 × 24 × 11 training couples of bathymetric and topographic waveforms. The validation

dataset has half the amount of items, and the test dataset is as large as the training set.

5.2.2 Application to real data and domain adaptation

After having trained and evaluated the models on simulated data, we apply them to real waveforms to

evaluate the applicability of the developed approaches. These data were acquired with an Optech Titan

topo-bathymetric lidar equipped with a 1064 nm NIR laser and a 523 nm green laser. Only green wave-

forms were recorded. They are samples with a time interval of 1 ns, corresponding to 0.1275 m in water.

The sensor does not start and end recording received power at fixed time intervals. Consequently, the

waveforms obtained have varying lenghts, and are typically shorter in shallow waters. More details about

the sensor can be found in Chapter 3 and in Lague et al., 2020.

The impulse function is estimated by selecting a waveform acquired over a road with a low incidence

angle. The same example of topographic waveform is used to process all bathymetric waveforms acquired

during the same survey.

The trained models are first applied to the raw Titan waveforms. In a second step, we explore the

possibility of using ad-hoc techniques, and in particular domain adaptation.

Domain adaptation is a specific case of transfer learning that consists of adapting a machine learning

model trained on data from a source domain to make it generalize and perform well on data from another

related domain. It is necessary when a model is applied to a dataset that has a different distribution than

the training dataset used to build this model. In such cases, the network tends to perform poorly on the

new distribution. In our case, the domain adaptation process involves projecting insufficiently labelled

data into the domain of another set of correctly labelled data to benefit from the knowledge of models

learned on this annotated dataset.

There are several possible methods to perform this type of domain adaptation task. Here, we use

optimal transport (OT) to transport real waveforms in the simulated waveforms’ domain.

Optimal transport for domain adaptation

Optimal transport is an old mathematical problem that consists of finding the best correspondence be-

tween production in mines and transport towards manufactures. It can be viewed as a problem of distri-

bution matching and enables to find a transport map that transfers a dataset in a source domain into a

target one (or vice versa). For that, a cost matrix between all elements of source and target distributions

is computed. From this matrix, the lowest transportation cost between one distribution and the other is
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estimated.

In this study, we use optimal transport in two different manners. The first aims to perform domain

adaptation, while the second consists of transporting outputs back to their original domain. These two

ways are detailed below.

1 Input waveforms adaptation.

The goal is to transport real waveforms into the domain of simulated ones. For that, we consider

the simulated dataset as a distribution of waveforms, and the real dataset as another distribution

of waveforms. We then use optimal transport to find a transformation between both domains.

2 Domain adaptation of the predictions.

When facing a classification problem, the outputs of the model applied to the transported wave-

forms can be directly exploited. However, in this case, we estimate information related to the loca-

tion within the waveform. In this situation, we have positions within the waveform derived from

the transported space (simulated data). To obtain a consistent result (positions in the domain of

real data), estimating the position in the original waveform is necessary. Optimal transport can also

be utilized here, but unlike the previous case where we transported the entire set of source wave-

forms to the set of target waveforms (both distributions consisting of a set of waveforms), here we

transport each real transported waveform (to be applied to the neural network) back to its origi-

nal. In this case, each waveform is treated as a distribution, and the transport solution will estimate

the transformation allowing the transition from one waveform to another, thereby allowing us to

adjust the estimated output positions on the original waveform.

Within OT, each time step of the real waveform is associated with a linear combination of time

steps of the transported waveforms and vice versa. Figure 5.2 extracted from the Python POT li-

brary website
1

illustrates the transport matrix between two distributions. The lightest colours in

the matrix represent the optimal correspondences between both series.

To keep discrete box locations, we first normalize the coefficients of the transport matrix across

lines. We then determine time step correspondences using the highest normalized transport matrix

coefficient and keep the value of this coefficient as a matching score.

For example, if the solution has a form

Tti = α1Trj−1 + α2Trj + α3Trj+1

1. https://pythonot.github.io/

https://pythonot.github.io/
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Figure 5.2: Illustration of the transport matrix between two distributions, from https://pythonot.github.io/.

with Tt the transported positions, Tr the real positions, i the position in the transported time

series, j the position in the real time series, α1 < α2, and α3 < α2, we take j as the correspondence

for i, with a matching score α2. In Figure 5.2, Tt is the blue distribution, and Tr the red one. In such

a context, the 20
th

element of Tt would be associated principally with the 60
th

element of Tr, but

also with the adjacent positions, as the transport matrix illustrates.

To summarize, the global approach used in this chapter is to base the design and optimization of neu-

ral networks for waveform processing on physical models to tackle the issue of labelled data unavailability.

Optimal transport is then used to perform domain adaptation and process real data. In Section 5.3, we

present a neural network designed to perform waveform component detection and identification. In Sec-

tion 5.4, a network to estimate parameters related to the water column from bathymetric waveforms is

introduced.

5.3 Simultaneous waveform pattern detection and identification

In this section, we investigate object detection using deep neural networks as a solution for bathymetric

waveform component detection in challenging settings. To this end, we develop a convolutional neural

network inspired by the existing image processing network YOLO, and adapt it to bathymetric waveform

processing. The network is trained using simulated data; its performances are thus discussed regarding

metrics obtained on simulated test data. Preliminary results of its application to real acquisitions are also

presented.

https://pythonot.github.io/
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5.3.1 Methodological background: the YOLO approach

In image processing, object detection and identification is a common problem that has resulted in the de-

velopment of multiple dedicated solutions and is now well dealt with (Zhao et al., 2019). Options allow-

ing real-time detection to perform object tracking in videos exist, along with slower approaches favouring

higher precision in the prediction of object locations and higher accuracy in their identification.

Globally, two main types of frameworks exist to solve the problem of object detection in images (Zhao

et al., 2019):

• Region proposal-based networks: also called two-stage detectors, they first scan the whole image

to predict regions of interest (ROIs) and then classify these ROIs. The network generating region

proposals and the CNN used to perform classification are trained separately. Thus, the time spent

handling these different elements is a bottleneck for real-time applications (Zhao et al., 2019).

• Regression/Classification-based networks: these networks are also referred to as single-stage

detectors, as they only contain one step. They perform a global classification and regression task by

directly predicting bounding box coordinates and class probabilities from the image pixels. They

thus reduce the time expense and are thus more suited to real-time application (Zhao et al., 2019).

In the second category - regression/classification-based - the YOLO approach is a popular framework

(Zhao et al., 2019). YOLO was introduced in Redmon et al., 2016 and stands for "You Only Look Once".

As its name suggests, its principle is to encode the image with convolution operations only one time and

perform unified object detection and classification.

The global principle of YOLO is illustrated in Figure 5.3. It first consists of splitting the input image

into a grid. Each grid cell is then responsible for the object it contains. From a one-shot convolutional

encoding, several bounding boxes are predicted for each grid cell, with an objectness score and a class

probability. A threshold is applied to the objectness score to keep only boxes containing objects.

In practice, YOLO predicts, for each cell of the grid, the offset of the bounding box’s planar coordi-

nates compared to the bottom left corner of the cell. In Redmon et al., 2017 and Redmon et al., 2018, the

authors introduce several improvements to the initial approach. Instead of predicting bounding boxes

for only one scale, YOLOv3 has three outputs consisting of three grids of different sizes. This allows it to

better handle the presence of objects of varying sizes in the images. The three different prediction layers

each specialize in handling different ranges of box width and height using anchor boxes. Anchor boxes

are boxes used to initialize the three different prediction layers. They are supposed to represent different

widths and heights of boxes present in the training data and help attribute each box to its responsible pre-

diction layer during training. Each grid cell of each output layer predicts three possible bounding boxes.

They are then pruned depending on their objectness score and prediction confidence.
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Figure 5.3: Illustration of the approach used in the YOLO network, from Redmon et al., 2016.

YOLOv3 relies on a convolutional backbone named Darknet, which implements the principles of

Inception networks (Szegedy et al., 2015) and residual networks (He et al., 2016). It is optimized by sum-

ming errors on bounding box x, w, and label. In this section, we exploit this version of the network and

adapt it to 1D data.

5.3.2 A YOLO-inspired network for waveform pattern identification

Several changes have to be incorporated into YOLOv3 to adapt it to waveform processing. The following

paragraphs explain the resulting design and the corresponding architecture, input, and output changes.

Figure 5.5 features a simplified illustration of the resulting architecture.

Backbone There are several possibilities to encode the information available in lidar waveforms. Since

lidar waveforms are specific types of time series, they can be processed with traditional MLPs and CNNs,

but also with networks dedicated to sequential input processing. Among them, we investigated LSTM-

and GRU-based recurrent neural networks. We also experimented with Transformers. In the end, we

observed better performances with convolution-based networks and thus decided not to use RNNs,

whether based on GRU or LSTM modules. However, as expected considering their increasing popu-

larity in the machine learning community, we found interesting properties of Transformers in terms of
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performance and optimization, and thus keep them as a solution to further investigate in the future to

reduce the computation cost of our approaches.

In the end, we base our advanced developments for waveform processing on convolutional encoders

built from convolutional blocks organized as illustrated in Figure 5.4.

Figure 5.4: Illustration of the convolutional block used as the base of our waveform encoders.

We thus kept the convolutional encoding used in YOLOv3. The main change we applied was to turn

all 2D convolutions into 1D convolutions.

We also adapted some aspects of the Darknet architecture, namely the downsampling factor: its value

is 16 for us, versus 32 in the original YOLOv3. This means that at the end of the encoding, feature maps

have a length equal to one-sixteenth of the input waveform size.

We evaluated how adding dot-product self-attention or cross-attention could help. Qualitatively, we

did not find any added value. However, we observed that replacing skip connections with cross-attention

resulted in a significant performance decrease. Further quantitative evaluation would thus be required to

choose whether to add attention and in which form.

Data fusion with parallel encoders To accommodate for our dual input - bathymetric and topo-

graphic waveforms - we doubled the original YOLOv3 encoder to have two parallel encodings for each

waveform, as Figure 5.5 illustrates.
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Originally we used strictly identical encoders for the bathymetric waveform and its topographic coun-

terpart. However, we observed that it biased the application to real data: the network seemed to attribute

more weight to bathymetric waveform peaks located around the topographic waveform’s only backscat-

ter, namely to locate the water surface.

We thus changed the topographic waveform encoding. To help the network focus on the shape of the

backscatter rather than its temporal location, we changed the way it is fed to the network. Now, we only

input the portion of the topographic waveform located close to its maximum. The input topographic

waveform has a size of 64, with 32 samples on each side of the maximum. We found that our network

performs better this way and generalizes better to real data.

This resulted in changes in the topographic waveform encoder, which has the same depth as the bathy-

metric waveform but performs fewer pooling operations. After encoding, both feature vectors have the

same sizes - reduced in length by a factor of 16 - and are concatenated before being further convolved.

Prediction layers We also had to adapt the prediction layers of YOLOv3. Instead of predicting x and y

coordinates and the height and width of each bounding box (BB), we predict only one coordinate x and

an associated width.

In the end, we have three prediction layers corresponding to three grids: a 16x16 grid, a 32x32 grid,

and a 64x64 grid. Each of them predicts three vectors per grid cell. These vectors contain the following

elements:

• x: the offset of the BB centre compared to the left corner of the cell;

• w: the width of the BB;

• o: the objectness score of the BB, ranging from 0 to 1 and representing a probability that the bound-

ing box predicted actually represents an object;

• a list c1, . . . , cn, with n the number of classes, containing the class probability of the object.

A predicted BB is considered to be an object if its objectness is above a user-defined threshold. If it

overcomes the threshold, it is attributed the class for which it has the highest probability.

Optimization We kept the same optimization and training process as defined in YOLOv3. We thus

use anchors during weight optimization. Similarly to the outputs, we adapted the dimensions of the an-

chors. Initially, anchors are typical boxes, defined by width and height. In our version, they are defined

as typical time ranges and are thus only characterized by a width. We used anchors adapted to the typical

size of our waveform components. The 64x64 grid thus specializes in widths below 10 samples, the 32x32
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grid typically deals with boxes between 10 and 20 samples large, while the 16x16 grid handles the largest

components with widths up to 50 time steps. In our labeled data, we consider the box to start and to stop

when the signal is at one-tenth of the peak’s maximum.

During training, validation, and testing, predictions are considered valid depending on several pa-

rameters. The main criterion is their maximum IoU with any of the true boxes. For each predicted BB,

its IoU with all labelled components is computed. The prediction is attributed to the labelled box with

which it has the highest IoU. If this IoU is below a user-defined threshold, the detection is considered to

be a false positive. Otherwise, the object is considered a true positive. We will name this threshold the IoU
threshold from now on.

Predictions can also be filtered depending on the predicted objectness of each bounding box. We will

name this threshold the object threshold from now on. Lastly, when several overlapping boxes are predicted

for the same class, they can be filtered depending on their objectness, too. To this end, the user sets an

IoU threshold. If multiple predictions of the same class have an IoU over this value, only the one with

the maximum objectness score is kept. Further on we will refer to this threshold as the NMS threshold,

NMS being short for non-maximal suppression.

Figure 5.5: Architecture 1DYoloFusion of our bathymetric waveform component detection and identification network.

5.3.3 Training on simulated data and consequent challenges

Simulated data distributions are more homogeneous than natural data distributions, as it is impossible to

simulate natural variations exactly. Consequently, even though our simulated data includes several types
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of laser impulsions and noises to represent a maximum of cases, there is a risk of overfitting when train-

ing on simulated data, since they are all generated with similar background patterns. If this occurs, the

network potentially learns patterns on the training data that make it good at predicting outputs on them,

but not at processing the validation data. Instead, we want the network to learn the best transformations

and representations of lidar waveform to predict accurate component location, width, and type.

Our first training of FuseYolo1D showed, as expected, an issue of overfitting. Typically, this results in

high validation loss compared to training loss, and an ever-decreasing training loss. Both are observable

in the validation and training loss curves in Figure 5.6.

Figure 5.6: Training and validation loss during network optimization without data augmentation.

To tackle this issue, the complexity of the training dataset should be increased to capture the under-

lying features of the data instead of simple patterns. In our case, simply increasing the number of input

training samples does not solve the problem, since it only provides the network with more similar training

items. We thus explored data augmentation techniques to make the network more robust and thus more

accurate on validation waveforms.

In image processing, training data are often augmented using random rotations, cropping, resizing, or

histogram equalization. However, applying these transformations to our data makes little sense. Resizing

the waveforms would bias all the temporal information, and mirror-like rotations would also discard all

sequential information, which is the base of the waveform data.

Consequently, we explored more advanced data augmentation methods:

• Mixup (Zhang et al., 2017), which consists of randomly augmenting the dataset with linear com-
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binations of different training inputs and their respective outputs;

• Cut-out (DeVries et al., 2017), which consists of randomly setting portions of the training items to

0;

• CutMix (Yun et al., 2019), which randomly replaces portions of training inputs with the corre-

sponding portions of other training inputs.

All these modifications aim at preventing from overfitting by learning on more complex data. Figure

5.7, originally published in Yun et al., 2019 illustrates the results of each method on a dog image from

ImageNet, an image classification benchmark dataset.

Figure 5.7: Illustration of the principles of Mixup, Cut-out, and CutMix, from Yun et al., 2019. In Mixup, two different

input images are mixed with a linear combination; in Cut-out, a portion of the image is set to 0; in CutMix, a portion of the

input image is replaced with the corresponding part of another one.

In the case of waveforms, the mixup process is slightly different, as we do not necessarily mix data of

different classes, but simply select randomly a waveform of the training dataset to mix with each train-

ing waveform. Additionally, the labels are not mixed as in classification applications but concatenated.

Similarly, when applying cutout, the output associated with each waveform must be adapted as well, to

discard the components originally labeled in the part set to 0. Lastly, for CutMix, components labelled

in the portion of the waveform replaced by another must also be replaced by the corresponding boxes of

this second waveform.

Applying data augmentation to our training dataset helps the neural network’s convergence, as illus-

trated by the different training and validation loss curves presented in figure 5.8. However, the training

process could still be improved by applying the same augmentations to the validation dataset, as the re-

sulting curves display lower loss for the validation data than for the training one, which suggests that the

training data is harder to fit than the validation data in this current setting.
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Figure 5.8: Training and validation loss during optimization depending on the data augmentation settings.

5.3.4 Results obtained on simulated waveforms

Evaluation metrics

To evaluate the quality of the predictions made by our 1DYoloFusion architecture on the test dataset, we

compute several metrics adapted to object detection:

• Average precision, aP (without taking duplicates into account);

• Average recall, aR (without taking duplicates into account);

• Mean Intersection over Union of the predictions and their closer true box, mIoUp ;

• Mean Intersection over Union of the validated detections and their associated true boxes, mIoUd;

• First percentile of the distribution of detected components’ signal-to-noise ratio (SNR), SNR0.1;

• Percentage of missed components;

• Percentage of duplicate detections.

We consider duplicates to be validated predictions that have the same associated true box as another

detection. When multiple predictions have the same associated true box, the one with the maximal IoU

with the associated true box is kept, while the others are considered duplicates.

Overall results

The obtained metric averaged on both classes over all types of waveforms are presented in Table 5.5 below.

Since a prediction is a true positive only if it has an IoU over a given threshold with a true box, we analyze

the influence of this threshold on the metrics. By default, the IoU threshold used is 0.5, but we also assess
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Class

IoU threshold = 0.5 IoU threshold = 0.75

aP aR mIoUp mIoUd SNR0.1 aP aR mIoUp mIoUd SNR0.1

Water

surface

0.46 0.99 0.49 0.85 24.47 0.40 0.95 0.49 0.88 24.5

Water

bottom

0.77 0.81 0.65 0.78 10.87 0.59 0.61 0.65 0.84 10.78

Table 5.5: Average performance metrics obtained by the network for each type of bathymetric waveform

component.

the performances obtained when applying a threshold of 0.75 when distinguishing between predictions
and detections. Here, we used an object threshold of 0.7 and a NMS threshold of 0.1.

Globally, several observations can be made. Water surface detection has a much lower average preci-

sion than average recall. This illustrates the tendency of our network to detect more surface components

than actually exist. However, the average precision of 0.99 means that 99% of the water surface anno-

tations in the test dataset are correctly detected. Given the way we computed recall and precision - i.e.

without taking duplicates into account - the average precision of the surface detections suggests many

false positives.

Water bottom detection features more balanced metrics. The average precision symbolizes a lower

tendency to predict false additional seabed components. The average recall of 81% illustrates the capacity

of our YOLO-based network to detect most seabed components. More water bottom components than

water surface components are missed, which is expected since weak seabed returns occur more frequently

than invisible surface backscatters.

Globally, predictions have a relatively high mean IoU with true components. This suggests that there

are more predictions located close to real components than completely away from them. Additionally,

the IoU of validated predictions is relatively high, even though SNR0.1 is relatively low.

Increasing the IoU threshold does not impact significantly the lowest SNRs that can be detected.

However, its results in a decrease of average precision and average recall for both classes, the most signif-

icant impact being on water bottom. Indeed, aP and aR lose 6% and 4% respectively for water surface,

while they face a 18% and 20% decrease for water bottom.

Performance depending on the type of waveform

Although the developed approach allows the simultaneous detection and classification of waveform com-

ponents, our main interest is to evaluate its detection capacity in challenging settings that usually make
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Label aP aR mIoUp mIoUd SNR0.1 Missed (%) Duplicates (%)

1 0.48 0.99 0.50 0.79 24.5 0.48 17.6

2 0.68 0.99 0.62 0.78 24.73 0.48 19.9

3 0.42 1.00 0.48 0.89 25.7 0.0 9.9

4 0.37 1.00 0.43 0.89 24.4 0.0 9.7

5 0.32 1.00 0.37 0.86 24.4 0.0 14.6

6 0.67 0.99 0.61 0.75 24.2 0.95 18.9

7 0.46 0.99 0.50 0.87 21.3 0.3 13.6

8 0.39 1.00 0.45 0.89 24.4 0.0 9.5

9 0.39 1.00 0.42 0.86 25.0 0.0 21.6

10 0.49 1.00 0.48 0.87 24.7 0.0 16.2

11 0.41 1.00 0.48 0.88 24.7 0.0 10.7

Table 5.6: Performance metrics of the water surface detection for each type of waveform.

other methods fail. Indeed, since we focus on bathymetric return detection in these experiments, the clas-

sification is not challenging at all. Consequently, we focus on the ability to detect echoes in bathymetric

waveforms in the following paragraphs.

To this end, we analyze the abilities of our method to separate surface and bottom components in

overlapping echoes - i.e. extremely shallow waters - and to detect weak water bottom returns with peak

intensities close to the noise level.

The following tables present detection metrics depending on the types of waveform defined for data

simulation (cf. Table 5.1). Labels 2 and 6 correspond to waveforms containing only overlapping water

surface and water bottom returns. Labels 5, 9, and 10 regroup waveforms containing only strong water

surface and weak water bottom returns.

Table 5.6 first summarizes the results obtained for water surface detection. The metrics were com-

puted for an IoU threshold of 0.5, an object treshold of 0.7, and an NMS threshold of 0.1.

Globally, the number of duplicate detections of water surface components is high. It is at its lowest

for very turbid shallow waters and clear shallow waters, and at its highest for extremely shallow waters and

very deep clear waters. However, as expected considering the average recall for the whole class, missed de-

tections are scarce: they never overcome 1% of the true components and are 0 for most types of waveforms.

The most varying factor is the average precision, still denoting a high tendency to falsely detect addi-

tional water surface echoes. Similarly to the percentage of duplicates, it appears as the main differentiating

factor between overlapping and clearly separate water surfaces. Indeed, extremely shallow waters feature
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much higher average precisions than other classes (≃ 67.5% versus 32% tp 48%). There seem to be three

main categories of waveforms sharing similar ranges of aP:

• extremely shallow waters, with 0.99% of aR and 67.5% of aP;

• waters with prominent surface echoes - extremely turbid shallow waters, moderately turbid shallow

waters, and deep clear waters -, with 0.99% of aR and 47.6% of aP;

• waters with less strong surface returns - shallow turbid waters, moderately turbid waters with high

surface loss factor, deep moderately turbid waters, and shallow waters with high albedo -, with an

aR of 99% and an aP of 38.3%

In the end, these three categories are consistent with the definition of the waveforms they symbol-

ize. For example, overlapping echoes have a strong surface component and deep clear waters also feature

a prominent surface return compared to the amplitude of the seabed return. They may include fewer

patterns that are likely to be considered similar to surface returns.

However, although they have higher average precisions, extremely shallow waters and extremely tur-

bid waters feature a mean mIoUd of 77%, while the other categories have a mean mIoUd of 88%.

Overall the lowest values of SNR detected do not vary significantly depending of the type of wave-

form. They are only slightly lower for clear to moderately shallow waters with low energy loss at the water

surface, which are typically the easiest waveforms to process.

In table 5.7, the detection metrics are detailed for the water bottom class. The same parameters as

those used for surface detection metrics were used: an IoU threshold of 0.5, an object treshold of 0.7, and

an NMS threshold of 0.1.

For the detection of water bottom components, different tendencies emerge. Overall, there are dif-

ferent categories of settings characterized by decreasing performance metrics. Extremely shallow waters

and shallow waters with low loss of energy at the air/water interface or with dark seabeds (labels 2, 3, 6,

7, 11) have the highest metrics: their aP, aR, and mIoUd are the highest, and they have the lowest percents

of missed annotations.

Shallow waters with high loss of energy at the air/water interface (labels 4 and 8) come second, with

around 21% of missed annotations and mean aP and aR of ≃78%.

Water bottom components of extremely turbid waters and deeper waters of varying turbidity (labels

1, 5, 9, and 10) come last. They have globally lower aP (≃58%) and aR (≃65%), and between 28% and 45%

of missed annotations.

Overall, a major difference with water surface detection is the absence of duplicates for water bottom

predictions. However, the proportion of missed components is much higher, with a peak at 45% for deep

clear waters.



5.3. Simultaneous waveform pattern detection and identification 219

Label aP aR mIoUp mIoUd SNR0.1 Missed (%) Duplicates (%)

1 0.64 0.67 0.57 0.75 15.9 32.6 0.0

2 0.94 0.96 0.78 0.82 23.1 4.11 0.0

3 0.92 0.92 0.76 0.80 15.3 8.04 0.0

4 0.77 0.79 0.64 0.74 10.4 20.54 0.0

5 0.69 0.72 0.60 0.73 9.3 27.9 0.0

6 0.94 0.95 0.78 0.81 22.9 4.70 0.0

7 0.94 0.95 0.77 0.81 19.4 4.94 0.0

8 0.76 0.79 0.65 0.76 11.5 21.37 0.0

9 0.53 0.66 0.46 0.74 9.8 33.51 0.0

10 0.46 0.55 0.40 0.76 12.2 45.3 0.0

11 0.94 0.94 0.77 0.81 13.4 5.83 0.0

Table 5.7: Performance metrics of the water bottom detection for each type of waveform.

Deep clear waters are the category for which we obtain the lowest performance. They include waters

with Kd ranging from 0.1 m
-1

to 0.4 m
-1

, and cover depths between 6 m and 20 m. They are a particularly

challenging category, as they contain mostly weak returns, potentially sometimes impossible to distin-

guish from noise. However, although they obtain weak performance metrics, the visual results on weak

echoes show that our method is still able to detect components with low SNR.

Illustration of the results obtained with this method

In this section, we present visual results of waveform component detections obtained with our YOLO-

derived network. These qualitative results allow us to better comprehend the performances of the net-

work. We present visual results for each category of waters: turbid waters, moderately turbid waters, ex-

tremely turbid waters, deep clear waters, and shallow waters with low albedo seabeds.

These illustrations highlight the ability of the network to separate water surface and water bottom

in extremely shallow waters for different noise levels and different impulse widths. They also show the

possibility of identifying very weak seabed returns, without background noise detections. Lastly, they

also show the ability of the network to handle different configurations: surface return weaker than the

seabed backscatter, strong geometrical pulse stretching or low reflectance of the water bottom.
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Very turbid waters

Table 5.8: Illustration of the results obtained in very turbid waters.
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Clear to moderately turbid waters

Table 5.9: Illustration of the results obtained in moderately turbid waters.
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Extremely turbid waters

Very deep clear waters

Shallow waters with dark seabeds

Table 5.10: Illustration of the results obtained in extremely turbid waters, very deep clear waters, and

shallow waters with dark seabeds.
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To visualize the predictions, we also added a filter on the class-specific confidence score. Let us recall

that, contrary to the objectness score used to validate a prediction or not, this score is defined in Redmon

et al., 2016 as:

Pr ( Class i) × IoU
truth

pred
= Pr ( Class i | Object ) × Pr ( Object ) × IoU

truth

pred

As it is typically not used for prediction validation, we did not use it when computing performance met-

rics. However, the qualitative results suggest that it might be a good addition to the filters used to con-

sider a prediction a detection or not. Indeed, in the illustrations presented in Tables 5.8, 5.9, and 5.10,

over-detections of water surface components are not visible, which suggests that they were removed by

applying a threshold of 0.8 on the class-specific confidence score.

Despite this visual improvement when further filtering predictions, some errors persist. We illustrate

them is the next paragraphs.

Typical errors

Several types of mistakes can be found by analyzing qualitatively the test predictions. The main types of

errors are the following:

• Overestimated or underestimated component widths: the most common mistake is in the

estimation of the component width, illustrated below. This is expected, since the mIoUd metric

does not reach 100%. The width is more frequently under-estimated than it is over-estimated. This

error is also not symmetric: the network tends to underestimate the tail of the components more

than their rising time.

• Un-detected water surface in extremely shallow areas: visually, we observe that overlapping

components with large widths tend to result in a clean detection of the water bottom, but some-

times at the expense of the water surface (see illustration below). It should be noted that it is much

less frequent on narrower components.
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• Mislocated water bottom echo with a low IoU with the true component: another common

source of error is the mislocation of the seabed return. We observe that most of the time, the de-

tected component intersects the true box, but is largely offset and thus does not overcome the IoU

threshold used, as featured in the following figure.

• False supplementary detection of water bottom, but annotated seabed correctly detected:

in some cases, correct detections of seabed components are accompanied by false positives close to

them. We distinguish two subcases.

– When only weak seabed returns exist: this error occurs more frequently when there are no

strong seabed returns in the waveform, as illustrated below.
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– We have also observed several cases of supplementary false detections even when a strong

seabed return is detected, as illustrated below.

• False detections of water bottom and missed annotated seabed: sometimes, the seabed com-

ponent is completely missed, and falsely predicted at another location in the waveform. It is mostly

the case in deep waters, where the returns are very weak and may have similar features with the

noise. Illustrations below show this type of errors.

Rarely observed errors

Less frequent errors (observed once or twice over the 400 predictions visually checked) include:

• Seabed component mistaken for a mixed backscatter. The examples below show large and

prominent seabed returns mistaken for mixed surface/bottom components.
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• Prominent seabed return missed or mislocated. We also observed the following predictions,

in which strong water bottom components were missed.

• Prominent surface echo mislocated and duplicated. The last type of uncommon mistake is the

prediction of the water surface in the noise that precedes actual information. It was not systemati-

cally paired with an error on the water bottom identification, as shown below.

These rare errors could be linked to the data augmentation procedures we used, which mixed different

waveforms without taking into account spatial or temporal relevance.
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Detection of the water bottom backscatter depending on its characteristics

Signal-to-noise ratio An interesting metric to evaluate our ability to predict weak water-bottom com-

ponents is the signal-to-noise ratio (SNR). We used the following expression to compute it in dB:

SNR = 10 log10

(
Psignal

Pnoise

)
, where Psignal =

∑c1
c0 signal

2

c1 − c0 + 1 , and Pnoise =
∑c1

c0 noise
2

c1 − c0 + 1

As expected, when the noise is too strong compared to the signal, the network is not able to correctly

predict the position of the water bottom component in the waveform. This is reflected by the percentage

of detected components for very low SNR values, which is presented in Figure 5.9. In Figure 5.9, we com-

pare the proportion of detected water bottom components depending on the SNR of these components

for two IoU thresholds. The values presented are averaged over bins of SNR values increasing with 0.5

dB.

Figure 5.9: Percentage of water bottom components detected depending on component signal-to-noise ratio.

Overall, fewer components are detected for the higher IoU threshold, as already observed in Table 5.5.

For the 0.5 threshold, we observe that the proportion of detected seabed returns converges close to 95%

for SNR values above ≃ 22 dB, where the signal power is approximately 100 times stronger than the noise

power. However, half components are systematically detected for SNRs over 10 dB, and even for lower

values close to 5 dB, although performance is less stable between 5 dB and 10 dB.

When using an IoU threshold of 0.7, the proportion of detected components has a less stable conver-

gence, and varies around a lower level, which is around 80%. It also starts oscillating above 70% for higher
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SNRs: ≃ 22 dB versus ≃ 15 db for the lower IoU threshold.

Component width Another parameter that may interfere with the network’s ability to identify water

bottom components is their width. As explained in chapter 1, waveform component width depends on

several factors, including the geometry of the intercepted surface and the duration of the incident pulse.

In water, depending on the turbidity and depth, the incident pulse can be stretched spatially and tem-

porally. In real datasets, the network could thus be faced with varying component widths. Figure 5.10

illustrates the mean percentage of detected water bottom components depending on their true width.

Widths were binned with a step of 5 and are expressed in waveform time steps.

Figure 5.10: Percentage of water bottom components detected depending on component width.

Once again, we compare two IoU threshold values: 0.5 and 0.7. The stricter threshold of 0.7 has a

similar trend than is 0.5 counterpart, but globally ranges between lower proportions (≃ 42% to ≃ 75%

versus 70% to 90% for the 0.5 thresold).

Globally, the proportion of detected components increases with their width. This is expected, as the

main criterion to consider a prediction true is its IoU with the annotated component. Wider components

have a greater chance to intersect a greater portion of the true component.

It is interesting to note that very short backscatters are already well detected with a 0.5 IoU threshold:

70% of the components with widths below 10 time steps (corresponding to 10 ns in our simulations) are

correctly identified.
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Component depth Lastly, we analyse the proportion of detected water bottom components depend-

ing on their depth. The results are presented in Figure 5.11, obtained by binning component depths with

a step of 0.3 m.

Figure 5.11: Percentage of water bottom components detected depending on component depth.

Similar to what we observed when analyzing the SNR (see Figure 5.9), the 0.7 IoU threshold shows

less stability than the 0.5 threshold. However, in both cases, the proportion of components detected de-

creases with increasing depth. For depths over 10 m, the values fluctuate highly, but tend to feature lower

values than at smaller depths, where they approach 90% for the 0.5 threshold.

It is interesting to note that, although there is a significant decrease with depth, the network still de-

tects ≃ 20 % of the components at depths of 19 m when using an IoU threshold of 0.5. Similarly, extremely

shallow waters (with depths below 1 m) are detected in 79% of cases with an IoU threshold of 0.7 and in

more than 85% of cases with a lower threshold. Yet, extremely shallow waters are particularly difficult to

handle as they feature a large number of overlapping surface and bottom returns.

Our main results can be summed up as three key points:

• Excellent results are observed for the detection of the water surface component, although it is some-

times missed in extremely shallow waters;

• Overlapping water component results are detected with average precision and recall of 95%, while

70% of seabed returns having SNRs over 15 dB are detected, illustrating the capacity to locate weak
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backscatters. These performances are seemingly not affected by the seabed geometry. Additionnaly,

depths up to 19 m are handled, depending on local conditions.

• Globally, the network tends to not completely align the detected bounding boxes with the true

components. Indeed, increasing the IoU threshold used for prediction validation results in perfor-

mance decreases.

5.3.5 Application to real data

We applied the trained network to two different sets of real waveforms. Both were acquired East of Sables

d’Or les Pins, the area studied in chapters 3 and 4. The first area contains shallow waters in which re-

turns are easily detected in flight. The second, on the contrary, features deeper waters, for which seabed

returns were not detected in flight. We present preliminary results of these first, uncompleted tests in the

following paragraphs.

Direct application

When processing real data, several differences must be taken into account. First, data need to be nor-

malized as they were in the simulated data. To this end, both topographic and bathymetric inputs are

normalized between 0 and the maximum power of both inputs. This enables us to maintain the relation-

ships of relative reflectance between both waveforms, while providing the network with a reduced range

of values.

We also observed that overall, the Titan waveforms start very close to the first return and can be short

in shallow waters. This is explained by the recording mechanism of the sensor. To have more homoge-

neous lengths, instead of applying a significant zero padding at the right end of the waveforms, we also

pad them on their left side by replicating the noise observed at the end of the signal. We found that it

improved the results we obtained when applying the network to real data, and transformed data.

For prediction, we used a NMS threshold of 0.45 and an objectness threshold of 0.5.

When applying the network directly to the data, we observed poor detection performance. There

were 3 main cases:

• At best, peaks were detected but mis-classified, as illustrated below.
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• The water surface return is often ignored, even if it is prominent. In such cases, the water bottom

component is either detected correctly - with additional false positives - or mistaken for the water

surface. Sometimes, weak surface returns were ignored and seabed components were considered to

be mixed surface and bottom returns. These three cases are illustrated below.

• Other cases featured completely irrelevant detections, or no detections at all even though promi-

nent echoes were present, as the following examples illustrate.
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Consequently, we decided to apply domain adaptation to better evaluate if these poor performances

were linked to a too-big domain change or to the network itself.

Domain adaptation

We first used our complete simulated dataset to find the transformation between simulated and real data.

However, this resulted in inaccurate results, such as concatenations of different types of waveforms with

a much higher number of returns than the original waveform contained. Consequently, we restrained

our OT computations to simulated waveform types consistent with each real dataset. In practice, real

waveforms originating from shallow waters of Sables d’Or les Pins were transported in the domain of the

type 7 waveforms (shallow moderately turbid waters, see Table 5.1). The second type of real waveforms

- deeper waters - were transported into the domain of the type 9 waveforms (deep moderately turbid

waters, see Table 5.1).

Using domain adaptation based on the Earth Mover’s Distance (EMD), the results seem more rele-

vant. Investigating the main changes between real and transported waveforms reveals the importance of

reflectance domain changes. Indeed, it seems that the biggest change, that may explain poor performances

with DA, is the much lower power of the real bathymetric waveforms relative to the topographic return

used to estimate the incident pulse.

Most of the time, transported waveforms feature relevant detections, but with wrong classifications.

However, the issue of irrelevant detections in noise and ignored prominent echoes is solved. There are

also multiple very close detections of the same components frequently. This suggests the need to adapt

the different thresholds used for prediction filtering (they may need to be stricter).

When transporting the predictions back into the domain of the simulated waveforms, we observe

that surface returns are sometimes still missed, but fewer water bottom components are ignored.

Figure 5.12 illustrates the difference between the three steps - direct application, domain adaptation,

and transport back to the original domain - for a shallow water waveform.
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a)

b)

c)

Figure 5.12: Illustration of our workflow for component detection in real waveforms: a) direct prediction, b) prediction on

transported waveform c) original waveform with transported predictions. The dark black lines are the waveforms, in figures

a) and b) lighter lines represent the associated topographic waveform.
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Spatialization

To evaluate visually if the network makes spatially relevant predictions, we projected the detected compo-

nents into a 3D point cloud using the beam firing vector of the original waveforms. This time, we applied

an object threshold of 0.78 to see if multiple detections are discarded.

In the shallow area, the results show high spatial consistency, as Figure 5.13 illustrates. However, noisy

over-detections persist in the water column and below the seabed.

Figure 5.13: Point cloud obtained with our detection method in coastal shallow waters. The point cloud is colored depending

on the attributed class: green = seabed, blue = water surface.

It is also interesting to note that the correspondence score computed when transporting predictions

back into the real waveforms domain can be used to filter out noisy detections in the water column. Figure

5.14 shows the result of the application of a 0.4 correspondence score threshold.

Figure 5.14: Filtered point cloud obtained with our detection method in coastal shallow waters. Only points with a corre-

spondence confidence higher than 0.4 are kept. The points are coloured depending on their correspondence confidence; green

symbolizes lower confidence than red.

On the second area, which features greater depths, the results also show spatial consistency, but the

seabed is not detected. Figure 5.15 shows the resulting point cloud, obtained with an object threshold of

0.1 to maximise the number of detections included.

For this area, the detection of the water surface is particularly confident. Figure 5.16 shows the point

cloud obtained by keeping only points with a correspondence score of 1.

Similarly to the first area, applying a correspondence score threshold helps to remove some of the

noisy detections in the water column. However, even with a strict threshold, some of them persist.
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Figure 5.15: Point cloud obtained with our detection method in deeper coastal waters. The point cloud is colored depending

on the attributed class: green = seabed, blue = water surface.

Figure 5.16: Filtered point cloud obtained with our detection method in deeper coastal waters. Only points with a corre-

spondence confidence of 1 are kept.

This result suggests that further investigations around domain adaptation and the application to real

data should be led to improve knowledge transfer on real datasets.

5.3.6 Discussion

In this section, we have investigated improved detection and identification of bathymetric waveform com-

ponents using a deep neural network based on the YOLOv3 architecture (Redmon et al., 2018). Since our

goal is to investigate if this methodological direction would be interesting to pursue, we started with an

easy classification task including only two types of echoes: water surface and water bottom. Our prelimi-

nary results are promising: the network is robust to variations in environmental settings and seems to be

applicable to real cases.

Detection performance

Although there are, at first, multiple duplicate detections of the water surface, they can be easily filtered

using the class-specific score that the network outputs for each predicted bounding box. It is also interest-

ing to note that there are few background noise detections. In our test dataset, we observe false detections

of water bottom components in noise portions mostly when the seabed is difficult to identify. Such false

positive are not systematic and they do not appear before the water surface return, which suggests that
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the network does not randomly pick out noise as water bottom components.

One of the main strengths of the network is its ability to separate water surface and water bottom

returns in extremely shallow waters. In some cases, the water surface is missed, but the detection of the

seabed in depths below 1 m is strong (≃ 95% of average precision and recall). This is particularly promising

for bathymetric waveform processing, as such settings are typically difficult to deal with.

The network also manages to identify very weak returns, as Tables 5.9, 5.8 and 5.10 illustrate. Analysing

the SNR of the annotated components also shows that weak returns are well detected: above 15 dB, more

than 70% of the annotations are correctly detected on average when using an IoU threshold of 0.5. This is

promising, as it could increase the amount of lidar backscatters retrievable from bathymetric lidar surveys.

Similarly, the network could improve backscatter detection in low albedo shallow water bottoms. Such

settings are frequent in coastal areas, where rock can be covered in low albedo algae. Figure 1.7 in Chapter

3 illustrated how such configurations impacted topo-bathymetric surveys, resulting in wholes in the point

clouds.

Lastly, the robustness of the network to varying water bottom geometries is another strength. In-

deed, it has been shown that geometrical pulse stretching on the seabed leads to a bias in the estimated

position of this component in waveforms (Bouhdaoui et al., 2014). Although we did not model all pulse

stretching effects in our simulated data, this suggests that further developments could be interesting for

the extraction of sloped seabed returns, for example.

Architecture choices and potential improvements

We chose to explore the contribution of object detection approaches with YOLO because it is one of the

dominant architectures in this domain (Zhao et al., 2019). YOLO is mainly praised for its fast application,

allowing real-time detection, which is interesting for massive dataset processing. In Redmon et al., 2018,

the authors highlight the strong performances of YOLOv3 with IoU thresholds of 0.5, which are similar

to other state-of-the-art methods, but faster. However, YOLO is globally known to struggle to get per-

fectly aligned bounding boxes, and thus have lower IoUs than two-step region proposal and classification

frameworks (Redmon et al., 2018; Zhao et al., 2019). Practically this results in performance drops when

increasing the IoU threshold used to validate predictions during testing. We observed similar phenomena

when analysing the results of our network. Indeed, figures 5.9, 5.10, and 5.11, as well as Table 5.5 showed a

significant performance decrease for water bottom detection when increasing the IoU threshold from 0.5

to 0.7. We also observed that globally the predicted bounding boxes were narrower than the annotated

boxes.

Several improvements could be explored to tackle this issue. The one we consider the most promis-

ing is to adapt our network so it handles asymmetric components better. Indeed, when visually analyzing
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the results, we observed that misestimations of component width were not similar for the peaks’ rising

times and tails. YOLO was built for object detection in images, in which getting aligned bounding boxes

is more essential than perfectly estimating their centre (image components also do not necessarily have

a native centre). However, for waveform detection, the component’s centre is more important than the

global bounding box, as it is used to determine the position of the backscatter. Extracting component

width is mostly useful if component feature extraction is an objective. However, since the network per-

forms simultaneous classification, this objective takes second place compared to the correct location of

backscatters. Since waveform components are mostly asymmetric due to the incident pulses - it is com-

monly admitted that the pulse is more efficient if it has a short rising time, no matter is tail (Guenther

et al., 2000) - the hypothesis made in YOLO that box width is symmetric relative to box centre is not

valid for waveform processing. This may explain the offset we observed for some components. In the fu-

ture, the architecture should thus be improved to predict a "left width" and a "right width" describing the

spreading of the backscatter on each side of its location.

If this modification does not improve the results, a spatial-temporal approach taking into account

neighborhing waveforms during encoding could be investigated. Indeed, spatial stacking of waveforms

has the advantage of increasing the SNR, which is helpful for decomposition (Mader et al., 2023; Mader

et al., 2019; Mader et al., 2021). Instead of stacking waveforms - which causes the spatial resolution of the

derived products to be lower - we suggest using them for feature learning, but still predicting detections

for each waveform.

In the meantime, our network can already be used as a primary detection that can be refined using

other techniques if needed. In such a setting, it would have the advantage of reducing the search area

for iterative decomposition methods. In the future, using a topographic waveform simulator (Gastellu-

Etchegorry et al., 2016), it could be extended to a wider range of component classes, both topographic

and bathymetric, to allow topo-bathymetric waveform processing on large extents. However, large-scale

applications would first require improvements in the workflow used to apply the network to real datasets.

Application to real data

Our results highlight the contribution of physical models to the development of tools adapted to wave-

form processing: while we were not able to identify waveform returns in extremely shallow waters with

U-time because they were not possible to label, we managed to handle these cases with this network. By

simulating waveforms, we were able to train a network that is robust to different types of bathymetric en-

vironments. A key aspect is now to evaluate the possibility of transferring the knowledge acquired by the

network to real data processing. Although we only started exploring the application to real waveforms,

our preliminary results suggest that further developments are necessary.
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Indeed, during testing, we were able to predict weak returns in moderately shallow waters with an

average precision of 66%. However, when applying the same network to real data and using domain adap-

tation, we did not manage to retrieve weak seabed returns of a moderately turbid coastal area (see Figure

5.15). Furthermore, in very shallow waters, although the network localized correctly the water surface and

the water bottom, it misclassified a large amount of seabed components (see Figure 5.13). Yet, during test-

ing on simulated data, we did not observe such classification errors.

These observations suggest a problem of transfer learning. In these preliminary experiments, we in-

vestigated optimal transport between raw waveforms as a solution to domain adaptation. Other solutions

to better apply networks trained on simulated data to real data could be investigated. For example, the

network’s encoder could be pre-trained in the manner of an autoencoder on real waveforms, before be-

ing injected with a very low learning rate into the optimization of the detection network. This could

encourage the network to rely on features learned on real waveforms to derive prediction rules. Another

possibility could also be to perform optimal transport between waveform representations rather than raw

waveforms, similar to what is done in Damodaran et al., 2018.

If improving transfer learning does not solve the prediction errors at application time, one last possi-

bility is to consider encoder architecture changes. We experimented with attention layers when building

our YOLO-derived network. Although integrating it into the current architecture did not demonstrate

particular improvements, further research on this side could be relevant. Indeed, the attention mech-

anism is useful to help the network focus on relevant features, by performing feature weighting based

on similarity between layers. Multi-head attention could be useful to attend to different aspects of the

input waveform and limit irrelevant predictions such as those evocated previously. If adding it to the cur-

rent YOLO-based architecture does not work, replacing the convolutional encoder with a Transformer

encoder (Vaswani et al., 2017) could be explored. This would allow us to better capture long-range de-

pendencies in the waveforms and not only local interactions between samples, which could increase the

overall performance and encourage the learning of more global features.

5.4 Bathymetric waveform inversion and environmental param-

eters estimation

In this chapter, we investigate the potential offered by deep neural networks for advanced lidar waveform

exploitation when used in combination with physical models. With our YOLO-based network, we inves-

tigated the possibility of enhancing overlapping and weak echo detection in bathymetric waveforms to

extract more information than we previously did. In this section, we explore another possibility offered by

bathymetric lidar waveforms: the estimation of environmental parameters, including optical properties
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of water bodies (WOP).

Deriving inherent optical properties (IOP) of water bodies from lidar waveforms has been a research

subject since the advent of airborne lidar bathymetry (Guenther, 1985). Several solutions have been pro-

posed, and all have shown that bathymetric waveforms could effectively be used to approach IOPs. Up

to this day, most of the existing methods rely on waveform decomposition and the analysis of the wa-

ter column component’s characteristics or on regressions between waveform features and IOP or WOP

measurements.

Independently on the method used, estimations of IOPs and WOPs published in the scientific liter-

ature rely on the access to measured samples of these variables. However, measuring WOPs is strenuous

as it requires performing both in-situ measurements and airborne lidar acquisitions simultaneously, with

a large enough number of punctual records of the WOP values over the studied area.

Some approaches exploit satellite imagery of such properties at different wavelengths to approximate

them at the wavelength of the green laser used and rely on them for model fitting. For example, NASA’s

Moderate Resolution Imaging Spectroradiometer (MODIS) provides estimations of the diffuse attenu-

ation coefficient at 490 nm - Kd490 . However, the products derived from MODIS are not adequate to

study inland waters such as lakes and rivers, and their resolution - between 250 m and 1,000 m - makes

them unsuitable for observing land-water interfaces. Using satellite-derived approximations of WOPs to

train an estimation model would thus not fit our applicative objectives.

In this section, we thus aim to build a deep neural network for WOPs and IOPs estimation, as well as

the identification of water surface and seabed positions from bathymetric waveforms. We wish to assess

the possibility of estimating these parameters in one shot, without relying on in-situ measurements or

satellite observation to perform regression.

5.4.1 Methodology

To estimate WOPs and IOPs, as well as depth, water surface and water bottom position, we designed a

convolutional neural network. In total, we predict seven different parameters:

• The diffuse attenuation coefficient, Kd;

• The backscattering coefficient at 180◦
, βπ;

• The loss factor at the air/water interface (which includes loss liked to the FOV), Ls;

• The water bottom reflectance, Rb;

• The position of the water surface, S;
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• The position of the water bottom, B;

• The depth, D.

Based on the physical principles of lidar waveforms, we consider these parameters to be linked to

the incident pulse and its angle of incidence on the water surface, which may cause geometrical pulse

stretching. Consequently, our network takes the following parameters as inputs:

• The considered bathymetric waveform;

• The angle of incidence of the incident beam on the water surface, θb;

• A green waveform acquired at a low off-nadir angle on a plane, tar-like topographic surface;

• The angle of incidence at which this other waveform was acquired, θt;

• The reflectance of the ground it intercepted, ρt;

Network architecture

Our network contains two parallel convolutional encoders, which each encode one of the input wave-

forms, as shown in Figure 5.17. The convolutional blocks used in these encoders have the structure de-

scribed in Section 5.3.2 and thus incorporate batch normalization, ReLu activation, max pooling, and

residual connections. At each new layer, the number of convolution filters is doubled.

Each encoder applies four convolutional blocks to its input, halving the size of its outputs four times.

After encoding, each feature map thus has a first dimension equal to 16. The feature maps resulting from

each encoding are concatenated to form a new vector of representations with a first dimension of 32. This

vector is passed through three convolutional blocks with a progressively reduced number of filters and no

max pooling. The resulting vector is concatenated with θb, θt, and ρt.

The network then combines four separate decoders to favour the use of features relevant to each type

of parameter:

• A convolutional decoder with ReLu activation to estimate Kd;

• A convolutional decoder with sigmoid activation to predict βπ;

• A second convolutional decoder with sigmoid activation to predict Ls and Rb;

• A third convolutional decoder to estimate S, B, and D.
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All decoders consist of four convolutional blocks with one convolution filter, their respective activa-

tion function and max pooling, and a perceptron per parameter to predict.

The values of Kd, βπ, Ls, and Rb are directly predicted. However, S, B, and D are predicted as a

proportion of the waveform’s length. This choice results from an empirical observation that the network

was harder to optimize when predicting S, B, and D directly as time indices.

Each output of the network has an individual loss. Kd, βπ, Ls, and Rb are optimized with a classical

MAE loss. For S, B, and D, the MAE is computed on the network’s output multiplied by the input size

(256) to convert the predictions into time indices and compare them with the true values. The resulting

architecture is illustrated in Figure 5.17.

Figure 5.17: Architecture of the deep neural network used for environmental parameter estimation from bathymetric wave-

forms.

Optimization on simulated data

The network is optimized on a reduced set of waveform types. Indeed, to first assess the validity of our

approach, we do not include extremely turbid waters (label 1 in Table 5.1) and extremely shallow waters,

which are rarely used for parameter estimation (labels 2 and 6 in Table 5.1).

For each simulated bathymetric waveform, a topographic waveform was simulated on a plane ground

with a reflectance of 0.05 and an off-nadir angle of 10◦
using the same simulated laser pulse.

The network is optimized with an Adam optimizer, mini-batches of size 1000, and a learning rate of

10−4
until it reaches its lowest validation loss.
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Kd βπ Ls Rb S B D

Mean error

-0.01 ±0.26

m
-1

0.0005

±0.0021

0.002

±0.095

0.04 ±0.02

0.001

±0.185 m

0.007 ±1.31

m

-0.02 ±1.3

m

Table 5.11: Mean estimation error for each parameter.

Evaluation metrics

To evaluate our results, we analyze the prediction errors of each parameter. We also explore the variation

of these errors depending on the waveform simulation parameters and analyze error distributions for each

parameter.

5.4.2 Results obtained on simulated data

General performance

Table 5.11 gives a general overview of the performance of the network. Mean errors are relatively low,

but most of the parameters present a high standard deviation, suggesting the need to perform a more

thorough analysis.

Since the errors are differences between true values and predicted values, they must be considered

depending on the typical range the parameter covers. For example, βπ has a much lower error than Kd,

but considering βπ ranges from 0.0002 to 0.003 and Kd from 0.1 to 1, it does not reflect a better estimation

performance.

Globally, Kd, S, and Ls are predicted with relatively low errors compared to their typical values in

our data. However, βπ, Rb, B, and D seem to have less stable results.

Analyzing the distribution of the prediction errors for each parameter gives a more detailed idea of the

estimation quality. Figure 5.18 contains histograms of the prediction errors for each variable investigated.

The histograms obtained for Kd, S, B, and D follow Normal laws centred close to 0 and with varying

standard deviations. This is an interesting property as it means that error can be reduced by averaging

spatially consistent predictions.

However, Ls has a more bimodal distribution, which is more asymmetric. The histograms of βπ and

Rb confirm the lower quality of estimation we reach with the network. They cover large ranges of values

and are multimodal.
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Figure 5.18: Distribution of the estimation error for each parameter.
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Label

Mean error

Kd βπ Ls Rb S B D

3

0.17 ±0.23

m
-1

0.0027

±0.0018

0.003

±0.053

0.18 ±0.23

0.008

±0.078 m

0.034

±0.378 m

-0.011

±0.38 m

4

0.25 ±0.26

m
-1

0.0022

±0.0019

0.017

±0.083

0.15 ±0.25

0.016

±0.052 m

-0.115

±0.597 m

-0.146

±0.563 m

5

-0.05 ±0.23

m
-1

0.008

±0.0017

-0.036

±0.111

-0.02

±0.23

-0.048

±0.171 m

0.174

±0.660 m

0.140

±0.645 m

7

-0.04

±0.20 m
-1

-0.0009

±0.0009

-0.007

±0.112

0.11 ±0.21

0.026

±0.310 m

-0.009

±0.453 m

-0.068

±0.466 m

8

-0.20

±0.24 m
-1

0.0014

±0.0012

0.038

±0.109

0.08 ±0.22

0.013

±0.107 m

0.286

±0.604 m

0.289

±0.596 m

9

-0.002

±0.19 m
-1

-0.0003

±0.0009

-0.007

±0.095

-0.03

±0.24

-0.013

±0.323 m

-0.164

±1.673 m

0.008 ±1.53

m

10

-0.015

±0.09 m
-1

-0.0001

±0.0006

0.003

±0.095

0.03 ±0.11

-0.001

±0.121 m

-0.131

±3.035 m

-0.277

±3.11 m

11

-0.22 ±0.19

m
-1

0.0010

±0.0023

0.005

±0.069

-0.14

±0.06

0.003

±0.068 m

-0.019

±0.307 m

-0.088

±0.28 m

Table 5.12: Estimation error for each parameter depending on the type of bathymetric environment sim-

ulated.

Detailed error analysis

It is difficult to depict the processes behind estimation errors considering the interconnection of the esti-

mated parameters. Consequently, to better assess the strengths and weaknesses of the network, we evalu-

ate the estimation error for each variable depending on the parameters used for simulation. To this end,

we analysed error distributions for each predicted variable depending on the value of the parameters used

for simulation. We also compare prediction errors depending on the type of waveform simulated. Labels

3, 4, and 5 correspond to turbid waters. Labels 7, 8, and 9 represent clear to moderately turbid waters.

Label 10 contains waveforms simulated for great depths and clear waters, and label 11 represents shallow

waters with low albedo seabeds. Table 5.12 presents the metrics obtained for each parameter depending

on the waveform type (label). Lastly, we also explore the impact of the impulse function used and the type

and level of noise added. Table 5.13 summarizes the error for each parameter depending on the impulse

function used to generate the waveform. The following paragraphs concentrate on the observations made

after analysing all these elements.

Globally, the estimations seem robust to variations of bottom geometry, emitted power, emitted pulse
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Impulsion

Mean error

Kd βπ Ls Rb S B D

Gaussian

-0.02

±0.26 m
-1

0.0003

±0.0020

-0.002

±0.089

0.04 ±0.23

0.0003

±0.183 m

0.065

±1.387 m

0.026

±1.40 m

EV

-0.01 ±0.25

m
-1

0.0003

±0.0020

0.01

±0.095

0.04 ±0.23

-0.004

±0.174 m

0.004

±1.288 m

-0.020

±1.251 m

GEV

-0.003

±0.25 m
-1

0.0004

±0.0020

0.01

±0.094

0.04 ±0.23

-0.014

±0.161 m

-0.017

±1.289 m

-0.035

±1.277 m

Log-norm.

-0.01 ±0.26

m
-1

-0.0009

±0.0022

-0.01 ±0.10 0.06 ±0.23

0.020

±0.214 m

-0.023

±1.279 m

-0.047

±1.309 m

Table 5.13: Estimation error for each parameter depending on the impulse function used to simulate the

waveform.

duration and βπ variations. Indeed, the mean error and the standard deviations of the errors did not vary

significantly with increasing or decreasing emitted power, pulse duration or bottom component width.

We also observe that the type of pulse used for simulation does not impact significantly the estimation

performance. The error is slightly higher for log-normal impulses, which are more asymmetric. Similarly,

the network seems to be robust to different noise types and levels. The error distributions for both types

of noise and the three different levels used are very similar. We observe a slightly higher error for high

noise, for which the error distribution spreads on lightly wider values.

In the following paragraphs, we recap the main error tendencies for each estimated parameter.

Estimation of βπ Globally, the network is not very good at predicting βπ. Low values are over-estimated

while the larger ones are under-estimated. The error decreases for medium values, typically between 0.002

and 0.004, and for deep clear waters (label 10), for which the error standard deviation is also lower. How-

ever, prediction error is its highest in turbid waters.

Estimation of Kd Kd is predicted more accurately, but some trends can still be observed. For this pa-

rameter too, it seems that the network is worse at predicting extreme values - very low and very high Kd.

In shallow waters with dark seabeds, Kd is systematically overestimated. On the contrary, it is underes-

timated in turbid waters. In moderately turbid waters, when Ls is over ≃0.4, Kd is increasingly overes-

timated. Similarly, in shallow waters with dark seabeds and moderately turbid waters, lower reflectance

values are associated with a higher overestimation of Kd. Globally, error standard deviations are larger

for moderately to very turbid waters. There also seems to be an impact of depth: the error on Kd is lower

past ≃ 4 m of depth. However, it is difficult to explain such dynamics, as they can be linked to other
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parameters affecting the waveforms simulated at lower depths.

Estimation of Ls Contrary to Kd, there is no clear impact of depth on the estimation of Ls, except for

an increase in error standard deviation for very deep clear waters. However, when the incidence angle on

the water surface increases, Ls estimation errors tend to increase for all types of water. Ls is then mostly

over-estimated. While no significant variations are observed with increasing Kd, in very deep clear waters,

the Ls error significantly increases with increasing Ls.

Globally, for other types of waters, low Ls factors are overestimated and high Ls values are underes-

timated - similarly to Kd, the network does not handle extremes very well.

Estimation of Rb Reflectance is the second parameter - with βπ - for which estimation error is high.

Reflectance is systematically overestimated in shallow waters with dark seabeds and tends to be underes-

timated for other types of waters. However, globally, the error is lower for clear and moderately turbid

waters than for turbid ones. Very turbid waters are characterized by high error variations, demonstrating

unstable performances. The error standard deviation is much higher for such waters than for less turbid

ones. For these types of waveforms, the underestimation of Rb increases with the value of Kd, illustrating

more difficulty in estimating reflectance when turbidity is high.

It is interesting to note that in shallow waters with dark seabeds, the overestimation of Rb decreases

with Ls up to ≃ 0.4. This suggests that water surfaces letting most of the energy through are not charac-

terized correctly, which results in an error in the estimation of Rb.

Lastly, the estimation error is more significant for higher reflectances. It tends to stabilize for re-

flectances between 0.2 and 0.5, but features the same increasing error among extremes than observed

for the other parameters.

Estimation of the position of the water surface There are no particular correlations between βπ, Kd

or depth values and errors in water surface positioning. Similarly, the incidence angle on the water surface

does not impact the ability of the network to position it. However, the standard deviation of surface

positioning errors is much higher for moderately turbid waters and increases with increasing reflectances.

However, in moderately and very turbid waters, this standard deviation decreases with increasing Ls.

Estimation of the position of the water bottom As expected, bottom positioning errors are highest

for deep moderately turbid water and for very deep waters (label 10, where depths reach 20 m). For the

latter category, the error increases with water turbidity. However, the network seems robust to varying

Ls, reflectances, or water bottom geometries.
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Estimation of the depth Similarly to what we observed on water bottom positioning, the highest

errors and the highest error variability in the depth estimations are reached for very deep clear waters

and more globally for weak seabed returns. The variability of the depth estimation error increases in wa-

ters with higher Kd. For every category except shallow waters with dark seabeds, depth tends to be over-

estimated - for very deep clear and very turbid waters - or under-estimated - moderately turbid waters -

with increasing Kd.

However, for depth estimation, too, the network seems robust to varying reflectances and water bot-

tom geometries.

5.4.3 Illustration of typical results

Tables 5.14, 5.15, and 5.16 provide visual overviews of the results obtained. For each type of setting, illus-

trations of typical results for different waveforms are presented. They show the high quality of the water

surface and water bottom positioning, including in challenging settings. They also illustrate the ability

of the network to capture physical relationships between parameters in some cases, while struggling more

with others. For example, type 8 waveforms, representing waters with a high loss of energy at the air/water

interface, feature a much higher estimation error for Rb and βπ than type 7 waveforms (see Table 5.15).
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Very deep clear waters

Shallow waters with dark seabeds

Table 5.14: Results of the estimation network in very deep clear waters and shallow waters with low albedo

seabeds.
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Very turbid waters

Table 5.15: Results of the estimation network in moderately turbid waters.
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Clear to moderately turbid waters

Table 5.16: Results of the estimation network in very turbid waters.
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5.4.4 Discussion

In Section 5.4, we have proposed a convolutional network dedicated to the estimation of water optical

properties, and of water surface and bottom positions. The results appear promising, namely for water

surface and bottom positioning, depth estimation, and Kd evaluations. Indeed, as illustrated in Tables

5.14, 5.15, and 5.16, our network predicts very precisely the position of the water surface and water bot-

tom in challenging cases such as overlapping echoes of very shallow waters, and weak returns in deeper

or turbid environments. These results are particularly interesting relative to the literature on this subject.

Indeed, often, the range of parameters estimated in one shot is much lower, mostly including turbid-

ity through Kd and sometimes depth (Richter et al., 2022; Lu et al., 2023; Montes-Hugo et al., 2016).

Furthermore, we have seen in Chapter 2 that most of the approximations of Kd are based on the possi-

bility to locate the water column, and thus the seabed (Lu et al., 2023; Feygels et al., 2003; Richter et al.,

2021). When this return is mixed with the water surface or too weak, such methods can thus not per-

form. In most cases, the estimated Kd is also closer to a sensor-related parameter, linked to the system’s

FOV (Guenther, 1985; Lu et al., 2023; Feygels et al., 2003). However, in this study, by having access to the

value of Kd, we train the network to estimate Kd and not Klidar as in Lu et al., 2023 and incorporate

the loss linked to narrow FOVs in the Ls parameter. However, our results illustrate the complexity of

handling the interconnections between the physical parameters shaping the bathymetric waveform. For

example, the network struggles with the relationship between loss of energy at the air/water interface and

seabed reflectance. It could indicate that some combinations are not represented enough, such as low Kd

with very low seabed reflectances. However, it also indicates that our network potentially does not learn

enough representations to be able to capture such fine interconnections.

Besides complex physical interconnections, our network also struggles to estimate the extremes of the

parameter distributions. For example, it overestimates low values of Kd and underestimates high values of

Kd. The precision is also different depending on the parameters. For example, βπ, which is characterized

by particularly small values, is estimated with greater error and instability than surface position, seabed

position, Ls, Kd or depth.

Its ability to locate the position of the water bottom is however quite surprising. Indeed, although

uncertainty and error increase in very deep waters, the network manages to locate bathymetric compo-

nents relatively well. For example, in very turbid waters with depths up to 10 m, the mean error in the

bottom position is ≃ 0.17 m, with a standard deviation of ≃ 0.66 m.

The low error on water surface positioning (see Table 5.12 and the histograms in Figure 5.18) is also

promising. Usually, accurately positioning the air/water interface is a challenge due to complex interac-

tions between the green light and the upper layer of the water column (Guenther, 1985; Mandlburger et

al., 2013). Consequently, positioning precisely the water surface requires an additional NIR wavelength
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in order to derive accurate depths with green laser soundings. However, our results suggest that it is pos-

sible to derive air/water interface position without relying on a second wavelength, which is promising

for the development of lighter sensors, that could be embedded in uninhabited vehicles.

Lastly, the robustness of the network to different sensor configurations and seabed geometries illus-

trates the capacity of convolutional networks to solve complex problems. Indeed, it would have been

expected to have a larger rate of error in parameter estimation depending on noise or pulse stretching

(Bouhdaoui et al., 2014), namely for components positioning, noise being a limiting factor of decompo-

sition and deconvolution approaches.

To improve these preliminary results, several strategies are possible. The first is related to the network

architecture. Struggles to learn interconnections between some parameters may be a symptom of a too-

simple architecture. It is possible that learning more features would help deal with some of the limitations

observed. The depth of the convolutional encoder could thus be increased. It could also be modified with

the principles of Inception networks (Szegedy et al., 2015), which alternate different convolution kernel

sizes. It has been shown in Pelletier et al., 2019 that the size of the convolution kernel has an impact on the

information extracted in applications to sequential data. Thus, relying on different receptive fields could

be a strategy.

We also suggest training the network in several steps. We made the choice to exploit 4 different compo-

nents after realizing it helps the network perform better overall. With this setting, training the different

decoders separately successively could lead to increased performances of each prediction layer. Indeed,

with a pre-trained encoder, four successive optimization phases concentrating on one decoder at a time

could favour the learning of features and prediction rules more adapted to each task.

The use of the attention mechanism could also be helpful. In preliminary works about waveform

decomposition with autoencoders (Letard et al., 2023), we have observed that attentive convolutional en-

coders work well for bathymetric waveform processing. Using multi-head attention could maybe help

capture relations between surface loss and seabed reflectance estimation, for example. Moreover, when

experimenting with Transformers for waveform decomposition, we got positive results in terms of opti-

mization and results (these experiments require further work to derive more rigorous results). Changing

the structure of the encoder for an attention-based one is thus another possibility.

Histograms also suggest that parameter estimation could be improved by considering neighbour-

ing waveforms simultaneously. Indeed, parameters presenting error distributions following Normal laws

centred on 0 could be predicted with reduced error by averaging information spatially. Furthermore, sim-

ilarly to the approaches relying on orthowaveforms (Richter et al., 2021; Richter et al., 2017; Richter et

al., 2022), feature learning may be easier on increased SNR. We thus suggest, as for the YOLO-based de-

tection of components, to implement an encoder taking into account adjacent waveforms as contextual
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information.

Exploiting spatial context could also be useful to obtain spatially consistent estimations of WOPs and

IOPs. In the near future, we wish to further explore the application of the network to real data. Namely,

we would like to compare estimated values of Kd to other estimations obtained with regressions between

depth and received power.

Preliminary experiments of the application of the network to real data show similar results to those

obtained for the YOLO-based network. Concretely, in direct applications, the network performs poorly

in the detection of the water surface and the water bottom. They are often missed or located in noise

portions of the waveform. Application to real data should be further explored, as the domain adaptation

employed does not seem to be optimal. Indeed, the performance of the network in terms of water surface

and bottom positioning did not transfer to real data: when projecting the detections into a point cloud,

all detected components were systematically located above the water surface.

Considering our network’s ability to detect water surface and water bottom positions, we are ex-

ploring the extension of the approach to global waveform inversion. We are currently investigating the

possibility of adding other decoders to estimate the incident pulse and the water bottom geometry. In

our preliminary experiments, we observe promising results for pulse and seabed geometry estimation

when they are performed separately from physical parameters estimation. Combining both tasks results

in a global performance decrease for all predictions, confirming our intuition that the network should be

optimized differently to better face the complexity of the task.

5.5 Conclusion

In this Chapter, we have experimented with physical models for waveform simulation to build advanced

processing tools. In section 5.3, we proposed to use an object detection and identification framework to

locate and classify bathymetric waveform components simultaneously. Our results show the possibility

of relying on this method to separate water surface from water bottom backscatters in extremely shal-

low waters with high precision and recall (≃ 95%). This approach also detects seabed returns up to 19 m

depending on the local conditions. In practice, the network detects 70% of water bottom components

with signal-to-noise ratios as low as 15 dB. Through simulation of various bathymetric environments and

acquisition settings, we obtain a method that is robust to changes in seabed geometry and is not limited

by noise. Relatively to existing methods, the network has the advantage of performing in very challenging

settings without relying on multiple iterations or assumptions on the nature of the signal.

We also explored the transfer of knowledge learned from simulated data to real waveforms. Using

optimal transport-based domain adaptation, we show that the network successfully applies to shallow
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coastal waters. However, in deeper waters, our domain adaptation approach seems to reach its limits, as

the seabed is not detected, while it was identified in similar simulated environments.

In the second half of the chapter (section 5.4), we investigated water optical parameters and depth

estimation using a convolutional network with four separate decoders. Our method is able to predict

seven parameters simultaneously in one single step. The results are promising, but also show the need

to further improve the architecture. Indeed, some physical interconnections between parameters are not

captured by the network, resulting in difficulties in estimating some parameters. However, the network

predicts the position of the water surface with high precision and manages to locate the water bottom

in challenging conditions (overlapping returns and weak echoes except for very deep waters) in one shot.

Although its applicability to real data should be further evaluated, the network could be useful to position

the water surface without relying on a second wavelength in the NIR spectrum.

In the end, physical models enabled to develop advanced processing methods, handling challenging

settings such as highly overlapping very weak echoes. Without data simulation, it would have been im-

possible to label data to train our neural networks. Preliminary results suggest the transferability of the

approach to real waveforms. This is of great potential as neural networks have the advantage of being

more straightforward than classical methods, as they do not rely on iterative procedures and they can

handle noise or mixed components.



GENERAL CONCLUSION &
PERSPECTIVES

Contributions

In this thesis, we proposed a set of methods dedicated to the extraction of environmental knowl-

edge from topo-bathymetric lidar surveys. This work is motivated by the growing need for land-

water interface observation methods, as these ecologically rich areas are increasingly threatened by nat-

ural and anthropic pressure. Our main assumption is that topo-bathymetric lidar remote sensing has the

potential to address this need, by delivering adapted measurements of the characteristics of land-water in-

terfaces. By leveraging dual-wavelength laser telemetry, this sensor captures topo-bathymetric areas with-

out interruption at the waterline, in the form of 3D point clouds and waveforms. The spatial patterns in

the 3D point clouds provide rich information about the geometrical features of the surveyed areas. Wave-

forms provide complementary spectral information, that can be used to derive more backscatters from

the environment, or physical traits of the intercepted objects. However, adapted tools to exploit these

data at their full potential are still expected. Consequently, we investigated the solutions offered by

processing methods that emerged since the advent of topo-bathymetric lidars.

Our main contributions to topo-bathymetric lidar remote sensing can be summarized as follows:

• An open-source framework for bi-spectral point clouds classification accessible to the-

matic specialists with no expert knowledge of data processing and machine learning: in

Chapter 2, we highlighted the lack of solutions to classify bi-spectral point clouds. In Chapter 3, we

thus introduced 3DMASC, a bi-spectral point cloud classification method that relies on tailored

features and random forest models. Thanks to the associated feature and scale selection process,

3DMASC produces lightweight classifiers with high accuracy in topo-bathymetric environments

such as rivers or coasts. The approach is fully explainable through feature importance assessments

and SHAP analyses. It is also accessible to thematic specialists through an open-source plugin in

the CloudCompare (Girardeau-Montaut, 2022) software. The classifiers require a limited amount
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of labelled data and can be trained on common computers through a graphical interface or using

the command line.

• A bi-spectral lidar waveforms classification method for topo-bathymetric surface cover

identification: we also addressed the need for 3D classifications of land and seabed covers by de-

veloping an approach based on bi-spectral waveforms. Indeed, methods to identify surfaces from

waveforms are scarce in topo-bathymetric contexts. However, waveforms contain rich spectral knowl-

edge that allows the distinction of elements characterized by similar geometries. By extracting

handcrafted features from green and near-infrared waveforms, we characterize surface covers of

a coastal area at high spatial resolution. Our results highlight the contribution of bi-spectral in-

formation, and the ability to detect a wide range of classes with a single survey. However, as this

method is based on classical machine learning, it requires a strenuous pre-processing step, that is

not optimal in very shallow waters.

• A waveform semantic segmentation approach for the classification of land and seabed cov-

ers: to limit the need for pre-processing, which often implies site-specific decisions, we propose to

use deep neural networks for semantic knowledge extraction from waveforms. To allow the direct

identification of all covers present in lidar waveforms, we propose to perform semantic segmenta-

tion (i.e., 1 label per time step) instead of classification (1 label per waveform). Although we identify

labelling-related limitations, our results overcome those we obtained with classical machine learn-

ing. The performances of the network suggest that learned features contain better information

than handcrafted features: on green waveforms alone, the performances of our network are better

than those we obtained with classical machine learning on bi-spectral waveform features.

• A deep neural network for simultaneous bathymetric waveform component detection and

classification: with semantic segmentation, the labelling of overlapping backscatters is impossi-

ble. We thus go further in our exploitation of deep neural networks for waveform processing and

propose to use an object detection framework to detect bathymetric lidar backscatters. To lift the

limitations linked to data labelling, we train the network on a simulated dataset representing a large

range of acquisition conditions. This allows us to have labelled returns in extremely shallow waters,

where backscatters overlap and are sometimes impossible to spot with the naked eye. It also pro-

vides us with examples of very weak returns, another challenge of waveform processing difficult to

tackle with manual labelling without introducing bias. This method produces promising results:

it detects 95% of water bottom components in extremely shallow waters and 70% of components

characterized by an SNR over 15 dB. Although some returns are missed in very deep waters, the

application to the test dataset features many correct detections of very weak echoes. Lastly, the
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transfer of the method to the detection of shallow coastal water components is successful. With

this contribution, we also tackle the need for labelled data, which often constitutes a major draw-

back in knowledge extraction.

• Preliminary elements on the estimation of water optical properties from lidar waveforms

with no synchronous field measurements. In light of our previous results with deep neural net-

works, we explore environmental parameter extraction with a convolutional neural network. We

train it to predict the diffuse attenuation coefficient, the backscattering coefficient at 180◦
, the loss

of energy at the air/water interface, and the seabed reflectance. We also estimate the water surface

and the water bottom position, as well as the depth. Though the results are encouraging, they also

feature estimation errors suggesting that this task requires a more complex network. Indeed, some

interconnections between parameters, for example, loss at the water surface and prominence of the

seabed return independently from its reflectance, are not captured. However, water surface and wa-

ter bottom positions are particularly well predicted, except in greater depths. Several architecture

and optimization changes could potentially improve these preliminary estimations.

• To tackle the limitation of labelled data availability, we developed approaches using syn-

thetic data and explored the possibility of applying them to real surveys. To this end, we

used physical models of radiation transfers in order to generate a set of labelled waveforms in var-

ious acquisition configurations. By doing so, we lift the need to manually label waveform compo-

nents and have access to synchronous field measurements. Applying the obtained models to real

waveforms requires domain adaptation, but preliminary experiments already make it feasible for

water surface and water bottom detection in shallow coastal areas.

Last but not least, we also contribute to methodological improvements in the field of bi-spectral lidar

remote sensing by providing the community with open-source software and labelled datasets
2

usable

for point cloud classification.

Globally, with these methodological propositions, we highlight the potential of deep neural net-

works to enhance information extraction from lidar waveforms. We find their ability to model

complex problems without requiring upstream feature engineering particularly suited to the challenges

of waveform processing. It is also interesting to note that all three supervised networks proposed for green

waveform processing seem to reduce significantly a major challenge of bathymetric lidar surveys: the water

surface uncertainty. Indeed, all three approaches provided surface detections and positioning of extremely

2. 3DMASC CloudCompare plugin available at https://www.danielgm.net/cc/release/, Python scripts

made available at https://github.com/p-leroy/lidar_platform, and datasets soon available on https://
opentopography.org/

https://www.danielgm.net/cc/release/
https://github.com/p-leroy/lidar_platform
https://opentopography.org/
https://opentopography.org/
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high accuracy, while it is commonly admitted that deriving the position of the air/water interface from

bathymetric waveform components is a challenge (Guenther, 1985; Guenther et al., 2000; Lague et al.,

2020; Mandlburger et al., 2013). In a context characterized by the increasing popularity of bathymetric

lidar remote sensing, this may be an interesting avenue for the development of lightweight sensors unable

to embed dual-wavelength systems.

Similarly, the possibility of classifying a large diversity of topo-bathymetric surfaces with a single green

point cloud with 3DMASC is promising in light of the increasing availability of lidar surveys. Indeed,

bathymetric lidar surveys of the French littoral are now all available in open access through the Shom
3
.

The ongoing topographic lidar acquisitions over the complete metropolitan French territory also illus-

trate the increasing popularity of lidar remote sensing. This thesis takes place at a time when lidar

data are becoming easier to access for thematic specialists, through open-access platforms such as

OpenTopography (Krishnan et al., 2011) or governmental agencies
4
. Our methodological contributions

thus resonate with current trends in the academic and industrial domains. In a time where academia has

to rethink its practices relative to their carbon footprints, sharing environmentally costly data and pro-

viding tools to fully exploit it appears essential. By providing 3D data processing tools to environmental

specialists, we also wish to make 3D data acquisitions more sensible and in line with current global issues,

which force us to rethink the usefulness of operating airborne lidar sensors to derive 2D rasters. Finally,

most of the methods we introduced have a wider scope of application than the sole processing of lidar

waveforms, and may thus provide useful insights for other environmental assessments relying on 1D data.

Perspectives

Below, we list some perspectives opened by this work. They can be grouped in three main categories:

methodological aspects, perspectives on the application to large and real datasets, and potential applica-

tions to other thematic fields.

Methodological perspectives: potential improvements in our neural networks can first be envi-

sioned. In the medium term, our YOLO-based network could be adapted to handle component

asymmetry. This would imply to estimate the x-coordinate of the bounding box, its left-side-width,

and its right-side-width. The network could also be extended to topographic classes with the help

of a topographic waveforms simulator (Gastellu-Etchegorry et al., 2016), and by simulating more

types of underwater surfaces with our simulator. If it handles topographic and bathymetric classes,

3. https://diffusion.shom.fr/
4. For example, in France, https://geoservices.ign.fr/

https://diffusion.shom.fr/
https://geoservices.ign.fr/
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the classification derived from waveforms using this approach could then be compared to the re-

sults that can be obtained with 3DMASC and point clouds. Depending on the use cases, YOLO

could also be expanded with a regression module to predict parameters linked to the components,

for example, vegetation height or ground slope. Our networks based on radiative transfer models

could also directly integrate physical constraints.

Another perspective is to combine spatial and temporal encoding to incorporate spatial context

into waveform processing neural networks. Concretely, it could take the form of two parallel en-

coders: one handling a point cloud portion, the other the associated waveform or ensemble of

waveforms. This approach would exploit an increased amount of information while preserving

high spatial density. It could help with the detection of faint ground returns (Magruder et al., 2010)

and weak seabed backscatters, and globally allow the densification of point clouds and their simul-

taneous classification.

In the longer term, graph analyses could be added to 3DMASC to further enhance information

extraction from environmental point clouds. Concretely, the spatial patterns in class repartition

over the surveyed area could be studied using the classified point cloud. For example, a similar ap-

proach to that used in superpoint-based networks (Landrieu et al., 2018; Robert et al., 2023) could

be envisioned. Adjacent points with the same label could thus be summarized as a superpoint, and

the resulting ensemble of superpoints would be analyzed using graph theory. This would enable

the retrieval of spatial repartition information such as connectivity, local diversity, or dispersion,

among others.

Application to real and large datasets: our domain adaptation and prediction transport method

should be refined to improve the application of networks developed on simulated data to real data.

For example, transportation in the feature space instead of transportation in the input space could

be used (Shi et al., 2022). Other methods to learn transformations using neural networks and ad-

versarial training also exist (Shi et al., 2022), including some approaches specifically designed for

cases such as ours, in which data from a domain are labelled and data from the other domain are

not. Once an optimal strategy is defined, the estimation network should be finalized and assessed

on inland waters to see if spatial variations of turbidity can be captured.

Applications in other contexts: collaborations with environmental specialists around time series

processing could be developed. Indeed, the tools developed for waveform processing can be applied

to other types of 1D signals, and many environmental studies are based on 1D data. Examples of

other environmental information extraction with our networks could be bird identification and

counting from birdsong recordings, watercourse parameters monitoring for hydrology, or land-use
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change estimation from satellite time series.

To this end, a major long-term perspective would be to develop an unsupervised time series pat-

tern detection network, inspired by our YOLO-based network, to extract typical pattern changes

and anomalies from time series more globally. Again, it could have applications in a large range of

environmental applications.

Finally, evaluating our methods on satellite lidar data would be particularly important, as there

is also a global trend in satellite lidar development. Although satellite sensors have a much lower

spatial resolution, they lift the need to plan multiple acquisitions for environmental monitoring

and make global environmental assessments possible.
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ABSTRACT 
 
Topo-bathymetric lidar is a powerful tool to survey coastal 
ecosystems while ensuring data continuity between land and 
water regardless of the nature of the terrain, and allowing the 
collection of information up to several dozens of metres 
deep. This study analyzes the potential of full waveform 
lidar data to monitor key ecosystems for climate change 
mitigation: seagrasses. It proposes an original way of 
processing topo-bathymetric lidar waveforms to map their 
spatial repartition and extent in Corsica (France). Waveform 
statistical and shape parameters are computed and used to 
produce a map of seagrass meadows that reaches over 86% 
of overall accuracy. Seagrass height is also extracted, 
offering perspectives for structural complexity assessment 
and ecosystem services quantification. 
 

Index Terms— Topo-bathymetric lidar, Lidar 
waveform, Seagrass, 3D mapping, Machine learning. 
 

1. INTRODUCTION 
 
Seagrasses grow in worldwide nearshore areas and occupy 
thousands of square kilometers [1]. Seagrass meadows 
provide food support and habitat to marine species and 
human communities, protect coastlines by ensuring wave 
attenuation and are critical blue carbon sinks: they are 
therefore of great ecological interest to many coastal areas 
[2]. Although their role in ocean-climate change mitigation 
is widely recognized, seagrasses are threatened: a third of 
the European seagrass area was lost between 1869 and 2016 
[3] due to multiple anthropogenic and natural stressors [4]. 

Monitoring the extent, health and diversity of seagrass 
ecosystems is crucial to ensure efficient and sustainable 
management of coastal waters. Maps of seagrass meadows 
are currently made by processing observations acquired with 

various techniques [5], as for example satellites [5], [6], 
[7], airborne [7] or UAV [8] imagery. Bathymetry extracted 
from sonar [9], [10], [11] acquisitions or lidar surveys [12], 
[13] is also the base of many seagrass ecosystems maps. 
However, both passive imagery techniques and active sonar 
surveys have limitations: passive imagery is constrained by 
water turbidity [5], [14] while sonar is unusable in unsafe 
navigation areas. Collecting inaccessible information on 
seagrasses is therefore still necessary. There is also a strong 
need for mapping approaches that allow three-dimensional 
structural information on seagrasses. 

The present study shows how topo-bathymetric lidar can 
be used to survey seagrass ecosystems and provide both two-
dimensional – a map of the extent – and three-dimensional – 
structural complexity knowledge – information on their 
state. It features an original signal processing method that 
proves that not only bathymetry but also benthic return 
characteristics allow seagrass detection and 3D mapping. 
This method was assessed on the East coast of Corsica 
(France, Figure 1), where seagrasses play a key role in 
ecological equilibrium maintenance. It opens perspectives 
for the study of coastal ecosystems – topo-bathymetric lidar 
ensures data continuity between land and water – as well as 
possibilities to better understand seagrass structural 
complexity and ecology on extended areas, independently 
from the terrain’s safety. 
 

2. TOPOBATHYMETRIC LIDAR OPERATING 
PRINCIPLE 

 
Lidar uses the backscatter of a laser pulse to collect data on 
encountered obstacles, resulting in a dense point cloud. 
Topo-bathymetric lidar emits laser pulses on two different 
wavelengths: green (515 nm) and infrared (1064 nm). While 
the infrared wavelength is fully reflected by water, the green 
wavelength penetrates the water column and allows sea floor 



measurement in low turbidity situations. Airborne topo-
bathymetric lidar is therefore ideal to collect continuous data 
on coastal areas. 

Analysis of full waveform lidar data shows that the 
shape of the reflected signal provides information on the 
type of objects encountered. In marine areas, the 
backscattered signals contain three main parts: the sea 
surface return (a peak), the water column return and the 
benthic return (sea floor, a peak). Since light diffusion is 
impacted by water, the backscattered intensity of the benthic 
echo depends on the water column. Here, we focus on the 
benthic return’s shape and statistical parameters and their 
use for seagrass detection and mapping. 
 

3. MATERIAL AND METHOD 
 

3.1. Study area 
 

The study area is a 0.15 km² nearshore zone located near 
San Giuliano in Corsica, France. Seagrasses – Posidonia 
oceanica and Cymodocea nodosa – occupy around 42 000 
ha of the East Coast of Corsica [15]. The selected area 
encompasses experimental shallow coastal waters including 
a part of the large P. oceanica meadow known as NATURA 
2000 site « Grand herbier de la côte Orientale » and two 
small patches of P. oceanica surrounded by fine sediments. 
Depth ranges from 2 to 16.5 metres in this area. 
 

 
Figure 1. Location of the study area (WGS84 UTM32 N). 

 
3.2. Data used 
 
Topo-bathymetric lidar data acquired in October 2017 with 
a Leica HawkEye III system was used to conduct this study. 
The average point density across the zone is 0.99 point/m². 
Both the points and the full waveforms were used.  
 
 
 
 

3.3. Data processing method 
 
3.3.1. Signal processing 
The waveforms (Figure 2) – i.e. the backscattered intensity 
signal – were first smoothed using a Savitzky Golay filter 
whose principle is to estimate piecewise polynomial 
functions to remove noise. The detection of benthic habitats 
implied to detect the peaks of the waveforms corresponding 
to the sea surface and to the sea floor. This was made by 
applying a threshold to the first derivative of the smoothed 
waveform. A two-step thresholding was adopted to detect 
both major and smaller peaks and avoid loss of information. 

In order to remove the light attenuation component on 
the benthic echo, a decreasing exponential function is fitted 
to the water column component of the signal.  

To remotely sense benthic habitats with these data, we 
converted the intensities into pseudo-reflectance values, 
dividing them by the intensity of the emitted laser pulse.  

Various statistical parameters were then computed for 
each waveform, including benthic peak complexity, which 
was defined as the number of sign changes of the benthic 
return’s first derivative. Four of these parameters describe 
the shape of the benthic return: skewness, kurtosis, time 
range and complexity. Eight other ones give statistics on the 
intensity variations of the benthic return: mean, median, 
maximum, variance, standard deviation, area under curve 
and amplitude. Topography information was also extracted: 
a bathymetry map, a digital surface model (including the 
vegetation above the seabed) and the height difference 
between them were computed. Finally, the pseudo-
attenuation, the benthic return’s maximum before signal 
attenuation correction and the sea floor return’s maximum 
before correction were computed. 

 
3.3.2. Image processing 
The parameters extracted from the topo-bathymetric lidar 
waveforms were rasterized by linearly interpolating the 
values on a 1.5 m resolved grid and stacked together to 
create a 17-band raster.  

 
3.3.3. Machine learning classification 
To generate a map of the extent of seagrasses from the 
waveforms’ parameters, we performed a supervised image 
classification with a maximum likelihood probabilistic 
algorithm. The algorithm was trained by 8400 pixels 
collected on seagrass and sediment areas on the stacked 
bands, with the help of terrain knowledge provided by aerial 
imagery. The same number of 8400 pixels were also selected 
for results’ validation. 

The whole set of bands was first classified into two 
classes: sediment and seagrass. Then, we evaluated the 
contribution of each attribute by computing the accuracy 
difference between a classification in which it was used and 
another in which it was not. The parameters that lowered the 
accuracy were removed from the set of bands systematically, 



until the combination giving the best classification was 
found. 

A contribution index of each band of the selected set 
was computed by dividing the accuracy difference between 
the classifications with and without the given attribute by the 
accuracy of the classification obtained with the whole set. 

 
4. RESULTS 

 
4.1. Lidar waveform processing 
 
Figure 2 shows typical detection results for sediment and 
seagrass, and the output of the light attenuation correction.  

 

 
Figure 2. Extracts from the lidar dataset. a) sediment, b) 
uncorrected waveform, c) corrected waveform; d) seagrass, 
e) uncorrected waveform, f) corrected waveform. Red lines 
delimitate the sea surface return, green lines the benthic 
return; the pink curve is the fitted exponential. 
 
4.2. Machine learning waveform statistics classification 
 
The most efficient attributes’ combination is formed by nine 
parameters: benthic return maximum before pseudo-
attenuation correction, peak skewness, pseudo-attenuation 
index, bathymetry, peak complexity, peak intensity variance, 
peak median intensity, peak time range. 

Calibration pixels have a separability score (Jeffries-
Matusita distance) of 1.64 on these bands. 

The maximum likelihood classification of the eight most 
accurate attributes reaches 86.4% of global accuracy and a 
Kappa coefficient of 0.73. The height difference between the 
DEM and DSM computed give an overview of seagrass 
height in the meadow areas. These are presented in Figure 3. 

 
Figure 3. a) map of seabed types in the study area, b) top-
of-vegetation and seabed depth profile (metres). 
 

The contribution of each parameter of the selected set is 
presented in Figure 4. Contributions are sorted in 
descending order and range from 0.43 to 5.01 percent. 

  

 
Figure 4: Contribution of the selected attributes to the 
global accuracy of the best classification (in percent). 

 
5. DISCUSSION AND CONCLUSION 

 
The method used to remove the light attenuation component 
efficiently corrects the effects of a sediment plume on the 
reflected intensities. It confirms the usefulness of full 
waveform data in moderately turbid waters, when intensity 
alone is not enough to detect bottom variations. However, 
the correction is perfectible: the exponential over-corrects 
the attenuation, resulting in very high reflectance 
measurements. This weakness explains the apparition of 
pseudo-attenuation as one of the main predictors and the 
absence of the corrected intensity in the selected attributes.  

The analysis of the extracted parameters and their 
contribution to classification accuracy shows that the 
returned signal’s shape and intensity as well as the 
bathymetry are all relevant to precisely describe the seascape 
and its habitats. Results also underpin that the benthic 
return’s shape is determined by the nature of the sea floor 

and that waveform analysis is still underexploited.  
The seabed map obtained reaches 86% of global 

accuracy and shows both seagrass patches and seagrass 
extended meadows. Some parts of the site are however 
misclassified: in very dense vegetation areas, the signal 
seems unable to penetrate the canopy and the echo has the 



same shape as a bare ground echo, explaining the relatively 
low accuracy obtained. A correction that does not 
exponentially increase the intensity could compensate these 
effects, since the maximum of the benthic return has the 
potential to be more discriminant if well corrected.  

Lidar avoids technical limitations encountered by 
satellite or aerial images-based approaches [5], [14], [9] and 
is therefore efficient to monitor coastal ecosystems [12], 
including seagrasses, which usually require landscape-
specific mapping approaches to avoid mis-estimation of 
their extent due to their complex spatial organization [10].  
It also offers the possibility to extract seagrass height 
(Figure 3), which provides insightful elements for seascape 
analysis and structural ecology assessment of seagrasses. 
This height estimation could however be improved by 
interpolating bathymetry under seagrass areas, since the 
vegetation absorbs all the signal at some point, preventing 
the extraction of a real bottom echo and biasing the 
bathymetry and the derived vegetation height. 

The waveform decomposition [16], slope correction 
[13], use of bathymetry-derived parameters [12] or deep 
learning classification [17] might besides improve sea floor 
detection and 3D mapping. Although ground truth validation 
is expected to refine these results, our work already opens 
various perspectives for coastal habitats monitoring. Further 
investigation of full waveform data could allow seagrass 
species, phenological phase or health assessment and 
provide knowledge on their spatial dynamics depending on 
ocean currents, which can be studied with the same data. 
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Abstract—Coastal and estuarine ecosystems are facing spatio-

temporal changes and suffer from the effects of accelerated 

natural destructive processes due to climate change. Monitoring 

these areas is crucial to protect them and maintain the ecological 

balance of shorelines. In this context, full-waveform airborne 

topo-bathymetric lidar is a reliable tool to collect data seamlessly 

over land-water continuum zones, thanks to its dual wavelength 

configuration. It is therefore optimal for coastal habitats 

monitoring and mapping. However, lidar waveform processing 

often relies on peak detection and feature extraction that are 

difficult to configure and often sensitive to noise. In this article, we 

rather suggest not to rely on hand-crafted features by relying on 

U-time, a neural network inspired by the well-known UNet 

convolutional neural network, to identify peaks in waveforms and 

classify them to discriminate coastal ecosystems efficiently. The 

network is tested on green waveforms and we evaluate in addition 

the contribution of infrared intensities. Results show equivalent 

performances, and obtain over 92% of accuracy when accepting a 

2 samples margin of error for peaks location, which does not 

impact heavily waveform analysis, considering usual peaks 

widths. Our study shows green waveforms alone allow habitats 

detection with a F-score of 94%, outperforming previous methods. 

Keywords—full-waveform topo-bathymetric lidar, classification, 

coastal and estuarine ecosystems, temporal neural network 

I. INTRODUCTION 

Coastal and estuarine areas embody exceptionally diverse 
ecotones, sheltering many ecosystems and providing ever 
growing human communities with key services: food, cultural 
activities and protection from natural hazards emerging from 
rising oceans and meteorological events [1], [2]. Therefore, they 
constitute a basis on which entire societies can rely and are the 

scene of a number of social-ecological processes at different 
time scales. From semi-daily tides to the development of entire 
touristic zones over decades through seasonal activities, land-
water continuum areas are constantly evolving [3]. Water-level 
changes bring new landscapes at various time scales (daily, 
seasonally, yearly); in addition, sedimentary processes change 
the terrain’s morphology while sudden events like storms 
generate rapid changes on ecosystems [3]. On both sides of the 
shoreline, ecosystems are under the influence of marine 
hydrodynamics and terrestrial hydrological processes, making 
coastal fringes and estuaries a meeting point for spatio-temporal 
changes. Monitoring these changes is crucial to protect such 
environments from accelerated natural destructive processes [4] 
as well as to ensure that these attractive areas can still sustain 
anthropic pressure.  

The first step to monitor the land-water continuum areas’ 
dynamics consists in modelling their spatial structure seamlessly 
by gathering information both below and above the air-water 
and the land-water interfaces. Current researches on this topic 
exploit unmanned airborne vehicle (UAV) [5], manned aerial [6] 
or satellite imagery [7]. These approaches have proven to be 
effective over land, where infrared wavelengths bring high 
accuracy in vegetation detection, but are limited by the water’s 
clarity in estuarine or marine environments. The underwater 
areas are however often surveyed with acoustic data [8], which 
meets the spatial resolution requirements but does not bridge the 
gap between submerged and emerged domains and leaves non-
navigable zones unseen.  



To face these limitations, airborne topo-bathymetric lidar 
constitutes a reliable alternative by ensuring continuous 
information between land and water [9], [10]. LiDAR principle 
consists in sending a laser pulse and the backscattered signal 
(also called discrete echoes) embeds many information related 
to the encountered objects. In addition airborne lidar  covers 
large areas, penetrates depth of up to dozens of meters and has a 
higher spatial resolution than hyperspectral satellite imagery. 
Topo-bathymetric lidar is therefore ideal to capture continuous 
data on coastal or riverside areas. However, even if classifying 
discrete echoes in terrestrial lidar is an explored issue with 
interesting techniques [11], analyzing echoes both above and 
below water ground is still a challenging issue [12]. This indeed 
requires rigorous pre-processing to remove noise and water 
surface induced returns, and available approaches mostly rely on 
geometrical features and spatial context information [13,11, 12]. 

Full-waveform lidar data contain rich information related to 
the terrain, that have proven to be relevant to solve classification 
problems and enable the mapping of land- and water uses [9], 
[10]. Coupled with innovative processing algorithms, these data 
make high density mapping of the land-water continuum 
feasible. However, the exploitation of full-waveform data often 
relies on peaks detection [14, 15, 16, 17] followed by feature 
extraction and classification [14, 9, 10], that are often all 
application-dependent and require advanced settings [15, 16]. 
Both traditional peak detection and feature extraction methods 
rely on gradient computation that are very sensitive to noise [16] 
and therefore, this prevents from reliable results. In this study, 
we process bi-spectral lidar data acquired with a Leica HawkEye 
III 4X sensor that produces point clouds of unprecedented 
density in underwater areas, and propose an approach able to 
detect and classify waveform components without supervised 
peak detection and feature extraction.  

More precisely, we focus on the ability of U-time [18] , a 
neural network inspired from the well know UNet convolutional 
neural network adapted to image analysis, to classify waveform 
samples. In practice, we aim at (1) identifying real peaks from 
noise and signal not corresponding to a backscatter and (2) 
classifying them to discriminate coastal ecosystems efficiently 
and automatically detect the presence of water or vegetation. We 
propose neural network adapted to lidar waveform processing 
and classification technique that allows the detection and 
characterization of various coastal ecosystems, and that 
correctly separates subtidal, intertidal and supratidal areas, 
enabling the seamless monitoring of the coastal fringe at high 
spatial resolution. This network is calibrated and validated using 
very high-resolution UAV optical imagery and lays the 
foundations for future integrated approaches of the land-water 
continuum mapping. 

II. STUDY AREA AND DATA ACQUISITION 

A. Study area 

The study area (Fig. 1) consists in various coastal habitats 
located in Sables d’Or les Pins in Brittany, France (48°38’27’’N: 
2°24’24’’O). This seaside region is set in an ecologically rich 
environment encompassing: fine sand and pebble beaches, a 
sandy dune, rocky areas provided with seaweeds, seagrass 
meadows, wooded areas, crop fields and salt marshes through 
which a river flows towards the sea. These ecosystems host a  

Fig. 1. Natural-coloured imagery of the study area: Sables d’Or les Pins, 
France (datum; UTM30N). 

great variety of species: shellfishes, endemic dune plant 
vegetation, green, red or brown seaweeds, Zostera Marina 
plants, evergreen and deciduous trees, crops and endemic salt 
marshes plants such as Halimione portulacoides, sea poa or 
purslane.  

B. Full-waveform topo-bathymetric lidar 

Lidar is an active sensor that emits laser pulses to perform 
range determination and collect data on encountered obstacles, 
resulting in backscattered echoes (whose maxima correspond to 
encountered objects). Topo-bathymetric lidar emits both a green 
laser pulse around 532 nm wavelength and an infrared laser 
pulse at 1064 nm. While the infrared wavelength is fully 
reflected by water, the green wavelength penetrates the water 
column and allows sea floor measurement in low turbidity 
situations. Airborne topo-bathymetric lidar is therefore ideal to 
collect continuous data on coastal areas. 

Analysis of full waveform lidar data (i.e. all the 
backscattered signal and not only the localization of peaks) 
shows that the shape of the reflected signal provides information 
on the type of objects illuminated by the laser beam. In marine 
areas, the backscattered signals contain three main parts: the sea 
surface return (a peak), the water column return and the benthic 
return (corresponding to the sea floor, a peak) [12]. Since light 
diffusion is impacted by water, the backscattered intensity of the 
benthic echo depends on the water column’s clarity and on the 
depth. It thus explains why similar benthic covers behave 
differently when hit by the bathymetric laser beam. 

In this study dense topo-bathymetric lidar data were acquired 
over Sables d’Or les Pins in September 2019 with a Leica 
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HawkEye III 4X sensor. This topobathymetric lidar system 
produces laser pulses at wavelengths of 513 nm and 1064 nm. 
The HawkEye III system is mostly used for hydrographic 
purposes ; it thus relies on two green channels to collect 
bathymetry information: a shallow channel that reaches depths 
up to 10 meters, and a deep channel for deeper waters. To reach 
dozens of meters deep seabeds, the system is set to emit more 
powerful beams in the green wavelength, compromising on 
point density to meet both accuracy and safety requirements. 
However, the HawkEye 4X relies on a technology that increases 
the density and the spatial resolution that can be met. The point 
density of the resulting dataset ranges from 10 points per square 
meter for the topographic wavelength, to (at least) one and five 
points per square meter for the deep and shallow bathymetric 
sensors, respectively. This corresponds approximatively four 
times the point density of previous Leica HawkEye topo-
bathymetric systems. Full-waveform data are available for every 
bathymetric returns and for one topographic echo out of 32. Due 
to the green lasers’ power and the receiver’s limitations, the 
reflected signal is often saturated over emerged areas with high 
reflectivity. In these cases, the presence of the infrared channel 
provides additional information. In this study, only the green 
shallow channel full-waveforms are used, due to practical 
difficulties in extracting some infrared waveforms (the files 
delivered only empty waveforms). The infrared measured 
intensity was used instead. 

C. UAV surveys 

UAV imagery was acquired on five sub-sites in March and 
April 2021 to provide knowledge on sea- and land-cover over 
the areas of interest for this study. It was calibrated by an overall 
of 55 ground control points georeferenced using Topcon Hyper 
V and Trimble Geo7X D-GNSSs. Two cameras were used on 
the UAV: a RGB 5472 × 3648 DJI Phantom 4 Pro V2 producing 
8-bit images, and a Parrot Sequoia+ including a 1280 × 960 NIR 
nadiral sensor (770 nm to 810 nm) with a zenithal irradiance 
sensor, both producing 16-bit images.  

D. Ground-truth photoquadrats 

Ground-truth data were collected under the form of 
geolocated photoquadrats, providing punctual knowledge of the 
land use - land cover / sea use - sea cover and helping in labelling 
future training data. 30 photoquadrats were collected on each 
sub-site overflown by the UAV and their positions were 
recorded with Topcon Hyper V and Trimble Geo7X D-GNSSs. 

III. METHODOLOGY 

A. Data preprocessing 

1) UAV imagery and ground-truh data post-processing: An 

array of five orthoimages and digital surface models were 

derived from the UAV imagery using the photogrammetric 

reconstruction procedure on the Pix4D software. Two separate 

processes were performed for each acquisition: a RGB and a 

Green-Red-NIR reconstruction. The positions of the ground 

control points were integrated to improve the quality of the 

derived products. The photoquadrats used as ground-truth were 

simply linked to their position after GNSS data post-processing. 

2) Green lidar waveforms labeling: In order to train our 

waveform processing algorithm and assess its performances, 

1500 green waveforms per habitat were selected and their 

echoes were located and labeled. Waveforms already contain 

returns positions obtained via the machine’s constructor peak 

detection algorithm. We filtered these peaks locations and used 

them as ground truth after labeling them depending on the nature 

of the ground in the area (green point cloud files and green 

waveform files were linked using the gpstime parameter). Peak 

locations corresponding to noise points were removed using the 

noise classification flag present in the point clouds delivered by 

the Leica survey software. We then selected areas of interest for 

each type of ground to discriminate, using the UAV 

orthomosaics, an orthoimage from 2014 and the ground-truth 

data, and selected representative waveforms in these areas. The 

2014 orthoimage was used as past ground-truth to confirm the 

ground type since there is 1.5 years gap between the lidar 

acquisition and the UAV and photoquadrat ones. For each 

representative area, the echoes were assigned to the label 

corresponding to the type of cover observable both in 2014 and 

in 2021. For underwater objects, several echoes corresponding 

to different cover types were present. The distinction between 

the seabed echoes and the sea surface return was made using the 

flag corresponding to the sea surface present in the point cloud. 

This detection is considered to be trustworthy as (1) the sea 

surface echo is easily distinguishable in shallow water areas and 

(2) this is the flag used by the French Marine hydrographic and 

oceanographic service to process their lidar point clouds and 

produce their underwater maps. No very shallow water areas 

were selected to create the labeled dataset in order to avoid 

return location uncertainties. Waveforms were individually 

visually checked before and after echoes selection and labeling 

to make sure no outliers were noticeable in the dataset. In 

practice nine covers were identified as well as a “water surface” 

class since it is relevant for underwater waveforms. Finally, a 

“non useful” class was created for all discrete values not 

assigned to a specific object. All the echoes classes are sumed 

up in Table I. A total of 13500 labels – 1500 per cover type – 

was generated for the corresponding waveforms, under the form 

of series of 512 values alternating between 0 (= non useful) and 

the label of the relevant class at the position of an echo. For each 

cover type, 1000 waveforms were dedicated to training and 

validating the classification and 500 were kept to test the trained 

algorithm. There are consequently two datasets: a 9000 items 

training dataset, and a 4500 items test dataset, one item 

consisting in a couple waveform-label. 

3) Green lidar waveforms preprocessing:In order to 

achieve more generalizable results, we converted the 

backscattered intensities into pseudo-reflectance values. Indeed, 

lidar intensities depend on many acquisition related parameters 

and cannot be considered as an absolute measurement of a 

surface’s albedo. Since the laser impulse is registered for each 

waveform, we divided the backscattered signal by the maximum 

of the impulse to obtain pseudo-reflectances, that would 

probably be less dependent on our dataset. To be passed as input 

of the U-time, the waveforms also were normalised between 0  

This study was supported in part by a doctoral research grant from 
Région Bretagne and by the Saur Group patronage. 



TABLE I.  CLASSES USED TO LABEL INTENSITY SAMPLES IN THE LIDAR 

WAVEFORMS, INTEGER LABELS ASSOCIATED, PHOTOQUADRATS (NOT 

AVAILABLE FOR TERRAINS WITH LOW ACCESSIBILITY) AND TYPICAL SHAPE OF 

THE CORRESPONDING WAVEFORM COMPONENT. 

Class Label Photoquadrat Shape in waveform 

Non useful 0  

 

Shallow sand 1  

 

Deeper sand 2  

 

Emerged rock 3 

  

Salt marsh 4 

  

Seagrass 5 

  

Pebble 6 

  

Field 7 

  

Tree 8  

 

Emerged sand 9 

  

Sea surface 10  

 

 

and 1, and only the 512 first samples were kept since the last 
samples of the waveforms usually only contain noise. 

4) Infrared lidar data analysis: To construt our bispectral 

dataset, the infrared (IR) backscattered intensity was extracted 

from the IR  point cloud at each position were a green waveform 

was selected for the train and test datasets. To get this parameter, 

the IR point cloud was first cleaned up by removing noisy points 

observable meters above the surface. The resulting point cloud 

was then rasterized at a 5 meters resolution, to obtain a digital 

intensity model. No interpolation was made in order to preserve 

the data, empty cells were consequently left empty. Finally, the 

value of the digital infrared intensity model was extracted for 

each position at which a green waveform was used. The 5 meters 

resolution was chosen to account for the impossibility to find a 

green point at the exact same position as an infrared point, due 

to the differences of both lasers and to their non-cofocality. 

Although they could not be converted into pseudo-reflectance 

values, the infrared intensities were also normalized between 0 

and 1 before being passed to the U-time. 

B. Deep learning for echoes detection and classification 

1) Neural network architecture: Before entering into 

details, let us remind that the main idea behind deep neural 

networks is to model complex relations between inputs 

(waveforms here) and outputs (labels associated with  each 

point) through the succession  of a large number of elementary 

operations  performed with neurons. The parameters associated 

with each neuron are learned during the training phase, aiming 

at finding the optimal parameters that minimize the loss 

function, i.e. the discrepancy between estimated labels and real 

ones, with ad-hoc optimization tools. When spatial/temporal 

relations exist between input data,  as with waveforms, 

convolutional networks are often used to capture multi-scale 

relationships between  inputs. In image processing, efficient 

networks performing convolution/deconvolution  of the data 

have enabled impressive results for image understanding and 

classification.  In this work, we rely on a 1-dimensional (1D) 

version of a convolutional/deconvolutional network, named U-

time, to process the waveforms. The chosen architecture is a 

network inspired by the U-Net neural network, characterized by 

its so-called skip connections linking the encoder (convolution) 

and the decoder (deconvolution) parts of the model. To adapt the 

network to our time series, we only use 1D convolutions, 

contrary to the original architecture that was created to process 

2-dimensional images. The encoder part consists in four 

convolution blocks of a fixed-size kernel, each encompassing 

two sequences of convolution, batch normalization and 

activation with a rectified linear activation unit (ReLU). The two 

last operations enable to keep only the main interesting part of 

the information. Max pooling, i.e.reducing by two the size of the 

filtered waveforms, is performed at the end of each of these 

blocks. By doing so, the convolution  of the next level (with the 

same size kernel)  embed large scale information. The decoder 

part consists of four sequences of upsampling, skip connection 

and convolution block. Both parts are linked by a convolution 



block. Our architecture consequently has a depth of four max 

pooling layers, meaning that at the end of the encoding part, the 

waveform is synthesized into 32 samples, which seems adapted 

to the problem, considering there are between one and four to 

five echoes detected, which are often located in the second third 

of the signal, surrounded by noise at the beginning and the end. 

In practice the size of the convolution kernel is 3. More details 

about the architecture are presented in Fig. 2.  

2) Training: Two different networks were trained: a 

monospectral model, processing green waveforms only, and a 

bispectral model that uses both the green waveforms and the 

infrared intensity values to perform echoes detection and 

classification.  
Both networks were trained on batches of 30 samples using 

weighted categorical crossentropy as loss function and 
stochastic gradient descent as optimization process. The set of 
weights resulting in the lowest validation loss was kept for each 
configuration (mono- or bi-spectral). 

3) Post-processing: Since the network tends to label several 

following samples as an echo while the labeled data locate an 

echo under the form of a single position in the waveform, the 

predictions were post-processed to keep only one sample as the 

location of the detected echo. Each time a continuous array of 

samples obtained a label different than zero, the sample having  

the highest probability of the array was kept as is, while the 

others were re-labeled with a zero (class “nothing”). 

4) Quantitative assessment of the results: Accuracy (ratio 

of good classification, best when its  value is 1), precision 

(fraction of correct classes among each ground truth classes, , 

best when its  value is 1), recall (fraction of correct classification 

for each estimated class, best when its  value is 1), F-score 

(combination of precision and recall, best when its  value is 1) 

and confusion matrixes were used to assess the quality of the 

predictions quantitatively. Different assessments were 

performed to identify the strengths and weaknesses of our 

approach. 
The quality of the peak detection was assessed by 

considering this task as a binary problem (presence or absence 
of a return). By analyzing the predicted location of the samples 
having a label different than zero regardless of the accuracy of 
the label, we can assess the performance of our architecture for 
waveform components detection by computing accuracy, 
precision, recall and F-score. Considering the width of the 
peaks, the fact that the training labels correspond approximately 
to their maximum and the usual considerations for waveform 
processing, a margin of error can be accepted for the location of 
the peaks. The peak detection assessment was therefore also 
conducted with a tolerance of ±2 samples offset. 

Fig. 2. Diagram of the 1-dimensional U-time neural network architecture implemented to classify full-waveform pseudo-reflectance samples and intensity values 
and detect and label returns corresponding to sea- or land-covers. 

 



The second aim of our approach is to detect the land- or sea-
covers in the waveforms. The different objects do not 
necessarily need to be placed correctly in the waveforms, since 
the simple information of their presence or absence will be used 
for mapping or monitoring purposes. Classes detection is 
therefore a relevant criterium to evaluate our approach. It was 
assessed by considering the classes predicted in each waveform, 
regardless of their occurrence or positions and aims at 
determining whether the neural network detects the different 
objects correctly. Accuracy, precision, recall and F-score were 
computed for this task too. 

The last evaluation criterion is the quantification of the 
quality of the global classification, i.e. assessing the prediction 
made on each sample for each waveform. Confusion matrixes 
were computed to get detailed information on the behavior of 
the networks and the main confusions impacting both peak 
detection and classification. 

IV. RESULTS 

A. Monospectral network:  

The first network was trained only on the green waveforms. 
It reached its lowest validation loss (0.11) on the 106th training 
epoch. The weights obtained at this epoch were kept to test the 
model’s performances. The following observations were made 
based on the testing dataset. 

Qualitatively, the results show good identification of the 
different ecosystems. The parts of the waveform that are labeled 
as a return are consistent with the waveform components. As 
expected, before post-processing, continuous ranges of samples 
are often labeled as echoes of the same class, covering the whole 
peak. Since the ground-truth dataset is labeled with one sample 
indicating a peak, post-processing is useful if we want to assess 
quantitatively the quality of the detection and classification. 
Example of results obtained in the testing dataset are presented 
in Fig. 3. 

1) Peaks detection: Although most of the returns seem to be 

correctly placed when visualizing the predictions, metrics 

presented in Table II show that less than half the returns 

predicted actually exist. However, more than half of the echoes 

are properly detected.  
If we choose to tolerate an error of 2 in the predicted location 

of the echoes (i.e. consider that if an echo was predicted two 
samples further or earlier than the truth it is a correct prediction), 
the statistics improve significantly. Let us recall that this margin 
of error does not massively impact waveform analysis, since 
peaks are wider than 2 samples and the locations indicated in the 
training data correspond to the middle/maximum of the peaks. 

TABLE II.  PERFORMANCE METRICS OF THE PEAKS DETECTION 

OBTAINED WITH THE GREEN WAVEFORMS-BASED NEURAL NETWORK 

Metric 
No location error 

tolerance 

Location error 

tolerance of 2 

Precision 0.42 0.63 

Recall 0.62 0.94 

Accuracy 0.99 0.99 

F-score 0.50 0.76 

Fig. 3. Examples of predictions made by the green waveforms-based U-time. 
The black signal corresponds to the waveform. Each colored vertical line refers 
to a predicted peak. All nine cover types are pictured. A: shallow sandy seabed, 
B: deeper sandy seabed, C: rock, D: salt marsh, E: seagrasses, F: pebble, G: 
field, H: tree, I: emerged sand. 

With this error margin acceptance, more than 60% of the echoes 
predicted are real, and 94% of the existing returns are identified 
by the model. There is still an overestimation of the presence of 

 



returns, but few of the real echoes are missed. Furthermore, 98% 
of the echoes truly located 2 samples away from the detection 
were originally detected by the network but erased during post-
processing.  

2) Classes detection: In terms of land- or sea-cover 

identification, the monospectral network performs well. On 

average, 89% of the covers predicted at a given location are  

present in reality, and 99% of the objects hit by the laser beam 

are identified. Few covers are missed, but some are inaccurately 

predicted, as Table III reflects. 

3) General classification: The average accuracy of the 

classification after post-processing is 0.61. The confusion matrix 

obtained (Fig. 4) gives further indication on the performances of 

the network for each type of sample. Considering the values 

present in the first column (predicted = 0), the major source of 

error is the mislocation or misdetection of the echoes. Indeed, 

the highest percentages of confusion are obtained when a label 

0 is predicted instead of the actual label. Moreover, the 

percentage of misclassification often corresponds to the 

difference between 1 and the accuracy obtained for a class. 
The few cover type errors can be summed up as follows. 

Shallow sandy seabed, trees and seagrasses are sometimes 
mixed up. Rock is also mistaken for other types of terrestrial 
covers having similar saturated echoes (pebble, tree, salt marsh 
vegetation or field), and inversely. Bare ground types can be 
misidentified too.  

The confusion matrix obtained on the post processed results 
with a tolerance for a location error of 2 for the peaks (Fig. 5) 
confirms the observation made above. The major explanation for 

TABLE III.  PERFORMANCE METRICS OF THE CLASSES DETECTION 

OBTAINED WITH THE GREEN WAVEFORMS-BASED NEURAL NETWORK. 

Metric Average value 

Precision 0.89 

Recall 0.99 

Accuracy 0.97 

F-score 0.94 

 

Fig. 4. Confusion matrix of the classification of waveforms’ pseudo-
reflectance samples obtained with the green waveforms based neural network. 

 

Fig. 5. Confusion matrix of the classification of waveforms’ pseudo-
reflectance samples obtained with the green waveforms based neural network, 
with a tolerance of a location error of ± 2 samples for the returns. 

the low accuracies obtained for most of the classes is the 
improper location of the returns by a few samples. Cover types 
errors remain rare, but there are still missed returns, and false 
detections, mostly of deep sandy seabed and trees. The average 
accuracy reaches 92%. 

B. Bispectral network:  

The  second network was trained on green waveforms and 
corresponding infrared intensity values. Its lowest validation 
loss (0.07) was observable on the 82nd epoch of the training 
process, providing the weights for the final model. The testing 
dataset was processed with this model and accounts for this 
configuration’s performances for the detection and classification 
of waveform components. 

Once again, visual appreciation of the predictions show 
proper identification of most of the ecosystems and the returns. 
Overestimation of the number of samples to be labeled for a 
given echo is still observable and justifies again the need for 
post-processing. Example of results are presented in Fig. 6. 

1) Peak detections: The bispectral network shows slightly 

poorer precision, recall and F-score for peaks detection when no 

margin of error is tolerated than the monospectral model. 62% 

of the detected echoes do not exist in the truth dataset. And 2% 

less returns are properly detected. Table IV enumerates the 

performance statistics of this second network for peak detection: 
If, as previsously, we set an error margin of ±2 for the 

location of the peaks, the statistics increase, but slighly less than 
it was the case for the first configuration. Almost 60% of the 
echoes are true positives, and the network suitably detects 94% 
of the true returns. As for the first network, 98% of the echoes 
actually located within 2 samples of the predictions were 
originally labeled as such, but erased during post-processing. 

2) Classes detection: The bispectral network predicts land- 

and sea-covers somewhat better, as prove the metrics presented 

in Table V. Only 9% of the covers predicted are false positives, 

and 99% of the habitats are found. The average accuracy of the 

identification of habitats is 98%. 

3) General classification: The global classification task was 

performed with an average accuracy of 0.61. More details about  

 

 



Fig. 6. Examples of predictions made by the IR intensities and green 
waveforms-based U-time. The black horizontal line represents the normalized 
IR intensity and the black signal corresponds to the green waveform. Each 
colored vertical line refers to a predicted peak. All nine cover types are pictured. 
A: shallow sandy seabed, B: deeper sandy seabed, C: rock, D: salt marsh, E: 
seagrasses, F: pebble, G: field, H: tree, I: emerged sand. 

 

TABLE IV.  PERFORMANCE METRICS OF THE PEAKS DETECTION 

OBTAINED WITH THE INFRARED INTENSITIES AND GREEN WAVEFORMS-BASED 

NEURAL NETWORK. 

Metric No location error tolerance 
Location error 

tolerance of 2 

Precision 0.38 0.59 

Recall 0.60 0.94 

Accuracy 0.99 0.99 

F-score 0.46 0.73 

 

TABLE V.  PERFORMANCE METRICS OF THE CLASSES DETECTION 

OBTAINED WITH THE INFRARED INTENSITIES AND GREEN WAVEFORMS-BASED 

NEURAL NETWORK. 

Metric Average value 

Precision 0.91 

Recall 0.99 

Accuracy 0.98 

F-score 0.95 

 

classification errors can be found in the confusion matrix 

presented in Fig. 7. Confusion between the label 0 and the others 

is agains the biggest source of errors and appears to be dragging 

down the accuracy scores of most of the classes.  
Less confusion between classes other than “nothing” is 

observable. Underwater sand, seagrasses and trees are still 
mistaken for each other, as well as rock, trees and dry sand or 
pebble, fields and dry sand. Confusion between trees and sea 
surface also happen, which was not the case for the first network. 
However, globally, there seems to be less confusion between 
terrestrial covers. The separation between subtidal and 
supratidal areas is somewhat better, except for the false trees 
detections in marine environments. 

Similarly to the green-based predictions, with tolerance for 
a margin error of 2 samples in the peaks locations, the average 
accuracy increases. It reaches 93%, a 1% improvement, with 
green and infrared based predictions. As shown in Fig. 8, it also  

Fig. 7. Confusion matrix of the classification of waveforms’ pseudo-
reflectance samples obtained with the infrared intensities and green waveforms 
based neural network. 

 

 



Fig. 8. Confusion matrix of the classification of waveforms’ pseudo-
reflectance samples obtained with the infrared intensities and green waveforms  
based neural network, with a tolerance of a location error of ± 2 samples for the 
returns. 

confirms that the slight offset in the location of some peaks 
accounts for most of the accuracy loss for ten out of eleven 
classes. Habitats confusions remain similar, and there are still 
inopportune detections of trees or deep sandy seabed, on top of 
missed echoes (for seven out of eleven classes). 

V. DISCUSSION 

A. Detection of returns 

The U-time detects almost entire peaks and not only their 
maximum of halfway location, as they are indicated in the 
training data. However, this peaks detection is consistent with 
typical waveform behavior: peaks constitute a significant 
pseudo-reflectance variation compared to their surroundings in 
the waveforms. Since noise has approximately always the same 
shape and pseudo-reflectance and is labeled as “non useful” in 
all the waveforms, the U-time attributing to the rest of the peaks 
labels different than 0 is expectable. 

To assess the quality of our peak detection, we performed 
post-processing to obtain results comparable to the labeled data. 
The post-processed results showed poor precision and recall for 
peaks location. Since the peaks in our training data were located 
around their maximum, we know that an offset of about 2 
samples in their predicted location will still correspond to the 
peak in the waveform data. Considering this, we obtain metrics 
that show the proposed FCN architecture is able to detect peaks 
in waveforms accurately and efficiently, since few 
preprocessing was needed, and no impulse function modeling or 
curve fitting was required. Moreover, the fact that 98% of the 
detected peaks located within the margin of error were labelled 
as peaks before pre-processing asserts the ability of the proposed 
approach to correctly detect peaks. However, it is clear that the 
main limitation of this approach is the waveform labelling 
procedure. Indeed, using discrete peaks locations is not adapted 
to convolutional neural networks, that are mostly based on 
patterns of variation, and will therefore perform better in 
identifying the whole range of sample corresponding to the 
peaks. Labelling the peaks continuously in the training data 
would avoid needing post-processing and allow the use of 
intersection of union as a relevant performance metric. 

Furthermore, since the files storing the waveforms are 
structured to contain up to four returns, in some cases, all the 
actual returns might not be indicated. For example, our approach 
seems to overestimate the number of tree returns, but in some 
cases, the detected peaks seem to be relevant. This method could 
therefore be helpful to improve echoes extraction from 
waveform data as in [14], but the extra returns’ accuracy has to 
be evaluated first. 

For the peak detection task, the proposed approach showed 
satisfying performances with limited pre-processing, contrary to 
traditional full-waveform analyses. The green only based U-
time showed somewhat better results, but the small difference 
makes both networks equivalent. 

B. Classification 

The detection of the different habitats, regardless of their 
positions in the waveforms, is more robust and accurate and 
shows little confusion. There are more false detections than 
missed detections, and further analysis and visualization of the 
predictions shows that most of the false detections could be 
avoided. Indeed, most of the false detection are trees returns in 
marine environments and deep sandy seabed returns before the 
water surface of after the seabed return. By adapting the network 
architecture, these issues could probably be solved. A recurrent 
neural network could be useful to make future predictions 
depend more on previous predictions along the pseudo-
reflectance time series and avoid deep sandy seabed returns after 
another seabed return has already been identified. Region-based 
convolutional neural networks could also determine the useful 
range of the waveform and avoid untimely peak detection 
outside of it. 

Another possible improvement is the addition of other types 
of data to further distinguish different environments. 
Geometrical features, traditionally used to classify point clouds 
[13, 11], could make better use of the rich spatial context 
inherent to lidar data. However, they imply pre-processing: it 
would therefore be interesting to see if the resulting 
improvements could advocate for a more complex processing 
chain. Using both green and infrared waveforms is another 
solution. Indeed, since green wavelengths penetrate water and 
infrared do not, infrared intensity is an efficient predictor for the 
presence or absence of water. The bispectral neural network 
already shows slight improvement in the separation of marine 
and terrestrial habitats, although tree returns are still detected in 
marine waveforms. Relying on more detailed infrared 
information would provide better distinction of land- and sea-
covers.  

Nonetheless, the results of our study show that there is not a 
massive difference in performance between the green 
waveforms-based network and the bispectral configuration, 
which is an interesting observation. General classification is 
performed with an average accuracy above 92% with an error 
tolerance, and habitats detection in waveforms show precision, 
recall, accuracy and F-scores of at least 0.9 for both networks. 
Our approach therefore allows classification of coastal and 
estuarine habitats based on lidar waveforms processing, even 
with only one wavelength. It also obtains higher performance 
metrics than existent methods for similar coastal environments 
mapping ([10] reported a 86% accuracy for seagrass and shallow 

 



sand mapping, and [9] obtained 90% of accuracy on their 
classification of coastal ecosystems). The green waveforms-
based network also identifies correctly almost 100% of the water 
surface returns for shallow and deep waters, a promising 
perspective for full-waveform lidar processing for coastal and 
estuarine areas management. Indeed, if the approach is valid on 
very shallow waters, it could make full-waveform lidar analysis 
more accessible and limit the need for a second wavelength 
dataset, considering topo-bathymetric lidar data acquisition are 
expensive and land-water separation is traditionally made by 
using both green and infrared point clouds [12]. 

VI. CONCLUSION 

In this study, we aimed to propose a method for full-
waveform lidar data analysis with limited need for pre-
processing compared to traditional decomposition and feature 
extraction approaches. To achieve that, we put together a 
labelled dataset of green waveforms and intensities for 13500 
locations. We then trained two temporal convolutional 
networks, inspired by the UNet architecture: one processing 
only green waveforms, the other processing green waveforms 
and infrared intensities. Our networks enable accurate sea- and 
land-cover classification through green lidar waveform 
processing. By tolerating an error of ±2 samples in the detected 
peaks’ locations (this error being consistent with the way they 
are recorded and the usual peak width), the waveforms 
classification reaches an average accuracy of 92% and 93% for 
the monospectral and the bispectral networks, respectively. 
Water surface returns were correctly identified in almost 100% 
of the cases by the green waveforms-based network, which also 
shows the best peaks detection performances. The addition of 
infrared intensities does not show significant improvement of 
waveform samples classification. However, infrared waveforms 
could further improve habitats identification and thus coastal 
and estuarine ecosystems monitoring. Consequently, our further 
work will focus on tackling the main limitation of our approach 
– the waveform returns labeling procedure, that implies post-
processing of the predictions –, the use of bispectral waveform 
data, and the application of the method to very shallow waters. 
Better leveraging the strengths of topo-bathymetric lidar data 
could avoid classes confusion, since the bispectral network has 
somewhat better performances for classes detection. Adapting 
the approach to improve peaks delimitation would also 
strengthen the results. We also plan to extend the method on 
wider datasets to assess its robustness when producing high 
resolution uninterrupted mapping of coastal and estuarine areas. 
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ABSTRACT:

Mapping coastal habitats is essential to their preservation, but the presence of water hinders seamless data collection over land-water
interfaces. Thanks to its dual-wavelength and optical properties, topo-bathymetric lidar can address this task efficiently.
Topo-bathymetric lidar waveforms contain relevant information to classify land and water covers automatically but are rarely
analysed for both infrared and green wavelengths. The present study introduces a point-based approach for the classification of
coastal habitats using bispectral waveforms of topo-bathymetric lidar surveys and machine learning. Spectral features and differential
elevations are fed to a random forest algorithm to produce three-dimensional classified point clouds of 17 land and sea covers. The
resulting map reaches an overall accuracy of 86%, and 65% of the prediction probabilities are above 0.60. Using this prediction
confidence, it is possible to map coastal habitats and eliminate the classification errors due to noise in the data, that generate a clear
tendency of the algorithm to over-estimate some classes at the expense of some others. By filtering out points with a low prediction
confidence (under 0.7), the classification can be highly improved and reach an overall accuracy of 97%.

1. INTRODUCTION

The global coastal population has been growing fast for a few
decades. In 2003, 41% of the world's global population lived
within 100 km of the coastline (UNPD, 2005), and 21 of the 33
world’s megacities were located on coastal fringes. Moreover,
Martínez et al. (2007) showed that the wide diversity of
ecosystems located at the interface between the Earth’s oceans
and continents produced 77% of the estimated economic value
of the services and goods provided by ecosystems around the
world in 2007, based on the method in (Costanza et al, 1997).
All of these observations converge to show how ecologically,
socially and economically important coastal ecosystems are
(Martínez et al., 2007, Costanza et al., 1997 and Barbier et al.,
2011). However, marine and terrestrial habitats are threatened
by climate change and anthropic pressure (Barbier et al., 2011),
and numerous studies agree that their evolution is difficult to
anticipate and must be monitored to ensure continual support to
littoral communities (Barbier et al., 20011, Martínez et al.,
2007, Costanza et al., 1997).
Currently, the observation of coastal ecosystems without
interruption between marine and terrestrial domains remains a
methodological challenge due to the presence of water, which
complicates their exploration with passive imagery (Kutser et
al., 2020), and due to their vast diversity. Topo-bathymetric lidar
is particularly suited to the task, as an active sensor able to
penetrate the water surface and collect information both on
ground and on the sea- or river-bed (Philpot, 2019, Lague and
Feldmann, 2020). Lidar surveys of coastal areas are mostly used
as 2D rasters (Wedding et al., 2008), or 3D point clouds
(Hansen et al., 2021, Tulldahl and Wikström, 2012), that are
classified to study given land or sea covers. Nonetheless, the
origin of lidar data, which lies in signal processing of the lidar
waveforms - the complete laser signal backscattered by the

environment - and its potential contribution to coastal habitats
monitoring remain underexplored. Lidar waveform analysis has
been developed for topographic lidar data classification (Mallet
and Bretar, 2009, Mallet et al., 2011, Reitberger et al., 2009,
Zorzi et al., 2019), but little methodological research on the
exploitation of bathymetric or topo-bathymetric waveforms
exists. Yet, these data include more detailed information on the
physical properties of the environment surveyed than the
elevation contained in rasters or point clouds, by registering also
the way the Earth’s covers interact with light. This information
is particularly useful to classify covers that have distinct
spectral signatures (e.g., Letard et al., 2022) or subtle geometric
features at decimeter scale that discrete echoes cannot capture
(e.g. Launeau et al., 2018).
Exploiting lidar data requires adapted processing methods, as
this sensor produces rich but complex information on the
environment, with sometimes dozens of point records and
several waveforms of up to a thousand of samples per square
metre. Although efficient tools exist to process lidar derived
rasters or point clouds, methods to efficiently exploit the
knowledge enclosed by the waveforms are still expected, as
they remain mainly experimental.
In this study, we propose a topo-bathymetric lidar
waveform-based coastal habitat classification and explore its
abilities to map 17 different types of marine and terrestrial
covers. This method relies on the use of a random forest
algorithm to classify features extracted from green and infrared
(IR) lidar waveforms. The article focuses on addressing three
main questions: (1) are topo-bathymetric lidar waveforms
usable for detailed coastal habitat mapping?, (2) what is the
added value of bispectral lidar data compared to a simple
bathymetric lidar survey? and (3) what prediction confidence
can we expect of our algorithm?

* Corresponding author



2. MATERIALS AND STUDY AREA

In this section, we briefly recall the operating principles of
full-waveform lidar and describe our datasets.

2.1 Full-waveform lidar

Airborne lidar sensors emit laser pulses towards the ground and
record the backscattered signal, from which two types of data
can be obtained: lidar waveforms and lidar point clouds.
Waveforms are time series of the complete backscattered signal,
while point clouds are obtained through processing of the
waveforms: each major peak in the waveform corresponds to an
object encountered by the laser beam. The coordinates of these
obstacles can be computed using the time range for the laser
signal to travel back and forth, which enables the reconstitution
of the whole scene surveyed into 3D point clouds. Topographic
lidars operate with an IR laser, which is unable to travel through
water surfaces. Topo-bathymetric lidars use a green laser in
addition to the IR one, green lasers being able to reach the
ground below the water surface. They are thus able to collect
data on marine and terrestrial environments, without
interruption between submerged or emerged domains.
Lidar waveforms contain important information on the physical
properties of the objects encountered by the laser emitted,
namely through the way light is reflected by them. They can
therefore be used to map the Earth’s covers (Collin et al., 2012,
Letard et al., 2022). Each peak in the waveform has a different
shape depending on what it originated from on the ground.
Typical bathymetric waveforms have the particularity of
integrating three main components: a peak produced by the
water surface and elongated by a water column component, and
another peak corresponding to the bottom if it is reached. Two
typical waveform examples are presented in Figure 1.

Figure 1. Typical example of a) a bathymetric waveform and b)
a topographic waveform.

2.2 Lidar dataset

The lidar dataset was acquired in September 2019 for the Litto
3DⓇ (Shom et al., 2021) project operated by the French
Hydrographic Office (Shom). It was collected with a Leica
HawkEye III full-waveform topo-bathymetric lidar using
wavelengths at 1064 nm and 515 nm and collecting data with an
elliptic pattern. Each green waveform and every 32 IR
waveforms were recorded with a time frequency of 1.8 GHz,
resulting in a backscattered intensity value every 556
picoseconds. The survey was led with a constant laser
amplification, and the intensity of each emitted pulse linked to a
waveform is available. There are on average 6.7 green
waveforms and 0.5 IR waveforms per square metre. The green
laser’s spot size diameter is 1.8 m, while the IR laser’s is 0.2 m.

2.3 Study area and ground-truth data acquisition

The study area is located on the coasts of Brittany, France in a
town called Sables d’Or les Pins (48.6373, -2.4067). It features
typical coastal habitats such as salt marshes, seagrasses, sandy

dunes, sandy beaches, pebble beaches, pine trees or
macroalgaes. It is presented in Figure 2.
A ground-truth data acquisition campaign took place in 2021 to
gather knowledge on the land and sea covers in this area,
through unmanned airborne vehicles (UAV) and unmanned
surface vehicle (USV) RGB imagery. Figure 2 shows the areas
covered by these acquisitions. The UAV used was a RGB DJI
Phantom 4 Pro V2, and the USV was a PowerVision
PowerDolphin. The UAV flights were calibrated with a total of
55 ground control points. 150 geolocated photoquadrats were
also collected on site. Photogrammetric reconstructions of the
UAV images, and an RGB orthoimage from 2014 were used to
create the labelled lidar training and test datasets (necessary to
perform habitat classification) via photointerpretation.

Figure 2. The area studied, and the location of the 6
ground-truth data acquisitions (WGS 84/UTM 30N).

3. METHOD

In this study, we evaluate a point-based classification method
relying on the classification of features extracted from bispectral
waveforms. Green and IR waveforms are first processed to
extract features describing them. The attributes obtained with
each wavelength are then matched in a single dataset and fed to
a random forest algorithm to be classified into 16 classes. These
classes are presented and illustrated in Table 1.

Class name Illustration Class name Illustration

Algae Seagrass

Submerged
sand

Submerged
rock

Rock Pebble



Wet sand Surf zone

Dry sand Artificial
ground

Boat Roof

Car Salt marsh

Low
vegetation

(lawn)

Intermediate
vegetation

(shrub)

Tree

Table 1. Presentation of the land and sea covers classes studied.

3.1 Extraction of spectral features from the lidar
waveforms and constitution of a bispectral dataset

To extract parameters describing the ground modelled by the
waveforms, the peaks corresponding to the ground cover had to
be isolated from the noise (topographic waveforms) and from
the water components (bathymetric covers). All waveforms are
first divided by the emitted intensity of the laser pulse they
reflected. They are then smoothed using a Savitzky-Golay filter
to attenuate the noise. Green and IR waveforms were not
processed the same way since they do not have the same
behaviour in the presence of water. In both cases, the
first-derivative of the waveform was computed and thresholded
in order to detect peaks in the signals and isolate the noise.
For green waveforms, if more than one peak were detected,
features were computed on the group of peaks located after this
first peak. The exponential decay of the lidar waveform under
the influence of water was corrected as explained in (Letard et
al., 2021). If only one peak was identified, features were
computed on this peak.
For IR waveforms, features were computed on the group of
peaks identified. The features are presented in Table 2.

Feature name Definition
Complexity Number of sign changes of the first derivative

Mean Mean pseudo-reflectance
Median Median pseudo-reflectance

Maximum Maximum pseudo-reflectance
Standard
deviation Standard deviation of the pseudo-reflectance

Skewness Skewness of the peak
Kurtosis Kurtosis of the peak

Area under curve
(AUC) Area under the curve formed by the peak

Time range Time duration of the peak

Height Difference of elevation between the beginning
and the end of the peak

Position of the
maximum

Position of the maximum in the peak (in
sample indices)

Difference of
elevation (DZ)

Difference between the elevation of the IR
return and the green return

Table 2. Definition of the features extracted in the waveforms.

These features were computed for each waveform, resulting in
two sets of waveform features: a green waveform features
dataset and an IR waveform features dataset. They were
combined into a bispectral dataset using a nearest neighbour
matching method: each green waveform features set was
associated to its closest neighbour in the IR waveforms features
dataset. This was made using the software “CloudCompare”
(Girardeau-Montaut, 2016), which relies on the euclidean 3D
distance of each point to the rest of the cloud’s components to
find its nearest neighbour.

3.2 Random forest classification

The features were computed as attributes of the points forming
the two point clouds, in order to avoid any information loss that
could occur when rasterizing the data. These point clouds were
then directly classified into the 16 classes defined above.
A random forest classifier was chosen for its performance on
multiclass problems implying dozens of features and its
robustness to overfitting. The possibility to retrieve feature
importance and prediction probability made it particularly
suited to our needs. This algorithm has also been tested multiple
times in 3D point clouds classification research, with consistent
observations of high accuracy in land cover identification (Yan
et al., 2015, Chehata et al., 2009). The random forest model
employed was set to contain 150 trees and classical parameters.
We used the implementation of the “scikit-learn” library
(Pedregosa et al., 2011).
A set of 1000 samples of each class was used to train the model.
Another set of 500 distinct samples of each class were then used
to assess the quality of the model’s predictions. These samples
form the training and test datasets of 16000 and 8000 feature
sets respectively, that are shown in Figure 3.

Figure 3. Distribution of the distinct a) train and b) test samples
across the studied area (the natural colored imagery was

acquired four years prior to the lidar survey).



3.3 Classification result assessment

To quantify the performances of our classifier, the overall
accuracy (proportion of correct predictions, best when its value
is 1), the average precision (proportion of correct detections of
each label, best when its value is 1), the average recall
(proportion of points of each label that are identified correctly,
best when its value is 1) and the average F-score (combination
of precision and recall, best when its value is 1) were computed
for each classification on the test dataset (data that were never
seen by the algorithm during training).
A class-wise analysis was also performed, by detailing the
metrics obtained for each class for each experiment.

3.4 Feature selection

To avoid potential negative feedback on the classification
accuracy due to information redundancy among the 24
predictors, an importance analysis was performed to select the
most relevant attributes for the final habitat map. To evaluate
the contribution of each predictor to the overall classification
accuracy, they were each successively dropped to compare the
overall accuracy obtained without them to the reference
accuracy obtained on the complete set of features. The
predictors that contributed negatively to the classification
accuracy were removed from the classification attributes.

3.5 Production of a 3D habitat classification

The output of our method consisted in a set of labelled
waveform features vectors. Using the coordinates of each
waveform, this dataset was turned into a 3D point cloud of the
terrestrial and marine habitats of Sables d’Or les Pins.

4. RESULTS

4.1 Results obtained with different sets of predictors

Classification experiments were led on five different sets of
predictors in order to evaluate their relevance and added-value.
These five sets are the following:

- all green waveform features (11 features)
- all IR waveform features (11 features)
- DZ (one feature only)
- green and IR waveform features (22 features)
- all waveform features, plus DZ (23 features)

The performances of the classifications obtained for these sets
are presented in Table 3.

Model OA Precision Recall F-score
Green 0.823 0.825 0.823 0.821

IR 0.315 0.309 0.314 0.292
DZ 0.216 0.218 0.215 0.216

Green + IR 0.846 0.85 0.846 0.842
Green + IR +DZ 0.848 0.854 0.848 0.843

Table 3. Classification performances for different predictors.

Overall, the most relevant predictors for the classification of
coastal land and sea covers are descriptors of the green lidar
waveforms. IR data or differential elevation values appear to
misclassify more than two thirds of the points.

4.2 Classification performances difference between
both wavelengths

Since each wavelength of the topo-bathymetric lidar was
designed to survey a specific type of environment (IR laser for
topography and green laser for bathymetry), we performed an
in-depth analysis of the classification results obtained using
successively green data only and green + IR data. This analysis
features the mean precision and recall obtained for each class.
It allowed us to observe which type of habitat was best
described by each wavelength. The mean prediction confidence
obtained for each point is also taken into account, in order to
better understand the potential classification errors and what
they imply. This prediction confidence corresponds to the
probability of membership of each point to the class it was
assigned. The complete class-wise analysis conducted for the
green model, and the Green + IR + DZ model are presented in
Figure 4.

Figure 4. Class-wise classification metrics obtained when using
a) green and b) bispectral waveform features as predictors.

The use of green waveform parameters produced an accurate
labelling, though the algorithm showed weaker performances on
topographic classes as lawn and artificial ground. The
combination of both wavelengths and DZ produces a more
accurate result and improves the recall of every class except low
vegetation (lawn). Class-wise recall and precision values reveal
that some classes were overestimated at the expense of others.
This is the case of submerged rock, algae and lawn, which have
lower recall values than precision.



4.3 Bispectral dataset classification

To generate the final coastal habitat classification, we analysed
the contribution of each feature to the overall accuracy, and
excluded from the predictors the features that impacted it
negatively: green waveforms’ skewness, IR waveforms’ AUC,
IR waveforms’ skewness, IR waveforms’ maximum and IR
waveforms’ mean. The metrics and the map obtained with the
final set of features are presented in Table 5 and Figure 5.

OA Precision Recall F-score
0.856 0.862 0.856 0.852

Table 5. Performance metrics obtained after selecting the
features based on their contribution to the classification.

Selecting attributes based on their importance makes the overall
accuracy reach 86%. Globally, the classifier’s tendency to
overestimate submerged rock or algae identified with the low
recall in Figure 4 is observable in Figure 5, where these classes
respectively invade the seagrass meadow and the surf zone.

Figure 5. Coastal habitats map obtained when classifying a
selected set of bispectral waveform features.

Other obvious confusions exist between rock and dry sand, or
submerged rock and surf zone or submerged sediment. They are
also revealed by the precision and recall values of these classes
in Table 4. One of the main confusions is between pebble and
sand; yet it is not as clearly quantified by the metrics.

4.4 Prediction confidence analysis

To further assess the abilities of our method to classify land and
sea covers, we analysed the prediction confidence across the
studied area. Figure 6 shows the maps obtained when setting a
confidence threshold, below which the points are labelled as
unclassified. Most points are kept with a threshold set at 70%
(which means the probability that the point belongs to the class
it was given is at least 70%). This is in line with the mean

confidence of 77% obtained on the test dataset (see Figure 4).
However, when the threshold is increased at 90%, more
complex areas, mainly at the interface between different classes,
disappear, as they are classified with a lower confidence.

Figure 6. Land and sea covers map obtained at a) a 70%
confidence level and b) a 90% confidence level.

A closer look at the misclassified samples shows that the
confidence level is globally lower for them. Indeed, on the test
dataset, samples that were wrongfully classified have a median
confidence of 47% with a standard deviation of 17%. The
overall accuracy values obtained when filtering the points based
on their confidence predictions confirm that misclassified points
can be discarded using this criteria: Table 6 presents the
accuracies obtained for different confidence thresholds.

Threshold 0.6 0.7 0.8 0.9
OA 0.95 0.97 0.98 0.99

Table 5. Overall accuracy of the resulting classification
depending on the prediction confidence threshold.

5. DISCUSSION

5.1 Usability of full-waveform lidar for coastal habitat
mapping

The final result obtained confirms the observations of (Mallet et
al., 2011, Letard et al., 2022, Collin et al., 2012) and the
potential of lidar waveforms for classification tasks. Here, a
single dataset made the classification of 17 different land and
sea covers possible with high accuracy (86%, see Table 4). The
resulting 3D map is presented in Figure 7. It is dense and has a
high spatial resolution, suited to the realisation of ecological
assessments such as ecosystem services evaluation, as
performed in Martínez et al. (2007) and Costanza et al. (1997).
Considering the thematic objectives of this research, the results
are promising, since all habitats that provide goods and services
are described with a relatively high precision (on average, 87%,
see Figure 4) and in 3D, contrary to other methods developed in
existing papers (Collin et al., 2012, Letard et al., 2021).



Figure 7. Resulting 3D point cloud of a coastal area and its habitats classified with full-waveform topo-bathymetric lidar

One of the main objectives of this study was to develop a
method for seamless spatial modelisation of marine and
terrestrial habitats. Here, the land-water continuum is classified
without interruption, which is a key methodological aspect of
coastal habitat monitoring (Collin et al., 2012). Figure 7 shows
that the output of the classification produces an uninterrupted
restitution of the land-water interface. However, our approach
has limitations that necessitate further investigation: the
classifier has a tendency to overestimate algae at the expense of
seagrass, and pebble at the expense of sand, for example, as
observed in previous research (Letard et al. 2022). Even though
these classes are close semantically and can have similar
waveform signatures due to their size, physical properties, and
texture relative to the laser spot size, a better distinction is
needed for ecological applications. Boat and car are also often
falsely detected. Figures 5 and 7 illustrate well this issue, as a
great number of points are classified as car on land, and part of
the boulders of the dyke are labelled as boat. Figure 8 focuses
on the sandy dune, which features many false detections of car.

Figure 8. Extract of the resulting 3D classification: the sandy
dune of Sables d’Or les Pins and its surroundings.

These errors may be explained by the albedo of cars and boats,
which can vary considerably between two different types of
vehicles. The wide colour spectrum they can have is difficult to
model in a training dataset which can lead the classifier to learn
confused information. The procedure to adopt with such classes
in order not to compromise the wider objective - ecological
monitoring - should be further discussed. These classes could be
merged in a more global vehicles class, or an unclassified class
could be added to handle unusual feature vectors and avoid their
detection at the expense of natural habitats mapping, as in
Figure 8 where the sandy dune - a key ecosystem - is mapped as
car. Despite these mistakes, the possibility to have 3D
assessments of the spatial repartition of different ecosystems
already bears encouraging perspectives for coastal ecology, and
could enhance results outlined by previous studies using
rasterized topo-bathymetric lidar data (Wedding et al., 2008,
Collin et al., 2012). The highly informative content of lidar
waveforms, already stated in existing research on the topic
(Mallet et al., 2011, Collin et al., 2012) is illustrated by their
constant contribution to the resulting classification accuracy
(Table 3). Lidar waveforms contain enough information to

describe surface covers, despite their lack of information on
their neighbourhood’s geometry and spatial repartition (Table
3). This loss of spatial context information - compared to point
cloud classification techniques involving neighbourhoods
(Brodu and Lague, 2012) - is also one of the strengths of
waveform-based processing. It avoids spatial averaging of
information that can result in classification artefacts depending
on the neighbourhood radius defined (Brodu and Lague, 2012).
Classifications based on waveforms and not on spatial context
may consequently gain in horizontal resolution, keeping in mind
the influence of the laser’s footprint diameter (Letard et al.,
2022). However, both wavelengths do not perform equally, as
expected since they were each specifically designed for
different environments (Philpot, 2019). Infrared waveforms
cannot be used alone to study both dry and wet environments:
the metrics obtained for the IR model (Table 3) quantify the
limitations of topographic lidar for the survey of highly diverse
environments, and corroborates previous research results
(Letard et al. 2022). Green lidar waveform features perform
better: their classification reaches 82% of overall accuracy, and
similar values of precision and recall. Their ability to label some
classes of ground is limited, which is why dual-wavelength
datasets are relevant.

5.2 Contribution of the bispectral information

The combination of infrared and green datasets produces the
most accurate classification overall, as in (Letard et al., 2022).
The addition of the infrared features to the green parameters
improves the distinction of the different types of grounds, and
results in an increase of 3% of the overall accuracy, precision
and recall. This can be explained by the properties of the lidar
system: the infrared laser modelises a more concise and precise
surface, while the larger size of the green laser may sometimes
result in the mixing of different land covers into one single
return, but is able to penetrate through water (Philpot, 2019).
We suggest that the combination of two types of spot sizes and
wavelengths optimises the information collected on a given area
in terms of albedo, water content and surface rugosity, which all
impact the waveform and characterise natural surfaces.
Having two different lasers also provides a good understanding
of the vertical complexity of the scene (Collin et al., 2012).
Surfaces are sampled with varying sizes of laser beams thanks
to the dual-laser system. A wider footprint hits a wider portion
of surface at a time: it can mix information about several layers
of covers and create intermediate points between the canopy
and the ground. This phenomenon is documented in all laser
scanning systems (Brodu and Lague, 2012). The smaller
footprint of the infrared laser may not alway penetrate through
dense covers, but creates less mixed points. The combination of



both sources of data results in local differences of elevation and
a greater vertical density over more complex surface covers and
non planar areas. Bispectral lidar thus gives a more thorough
review of the vertical structure of the environment, which can
explain the improvement of the classification accuracy (+0.2%)
when adding DZ to the predictors. Using DZ is also a way of
including spatial context data, which is particularly contributive
in point clouds classification (Brodu and Lague, 2012), to the
model, without making it too dependent on the training area or
involving neighbours.
Finally, the few predictors discarded after the importance
analysis - green waveforms’ skewness, IR waveforms’ AUC,
skewness, maximum and mean - show that both wavelengths
contain relevant information. They also confirm the
theoretically more exhaustive nature of the green waveform.
Indeed, infrared waveforms seem to contain less essential
details on the surveyed scene, as most of the features dropped
after this step concerned the characteristics of the infrared
return, whereas nearly all descriptive parameters of the green
returns were useful to the random forest model.

5.3 Classification algorithm and prediction confidence

Overall, our observations corroborate existing research on the
classification of lidar data using random forest algorithms (Yan
et al., 2015, Hansen et al., 2021, Letard et al., 2022). As
documented in (Letard et al., 2022), the model was quickly
applied to a great number of features and points, and shows a
good ability to exploit information and detect the 17 classes.
The average prediction probability is 77%. This criteria and the
qualitative results in Figures 5 and 6 outside the test dataset
show that the classifier is robust to overfitting and is
generalisable to a wider scene. The average prediction
confidence being high, it can be used to filter the results and
preserve the overall quality of the map even if it means
compromising on the 3D density in some areas, as introduced
by Brodu and Lague (2012). Table 5 and Figure 6 show how
points can be removed by applying a confidence criteria in order
to prioritise solid predictions, and thus improve the overall
accuracy, as in Brodu and Lague (2012). The points affected by
this filtering step give indications on the strengths and
weaknesses of the random forest model. Misclassified points
with high prediction probability are evidence of training errors.
This is the case of the false detections of submerged rock along
the surf zone, which Figure 9 shows more clearly. In Figure 9,
the false detections of submerged rock are located along the surf
zone points. The submerged rocks detected next to the rocks in
the foreground are true positives. These mislabelled points have
a confidence value higher than 90%, as Figure 6 b) reveals,
which means that their descriptive features correspond to the
usual range of statistics describing submerged rock. In this case,
further investigation on the most distinctive feature of
submerged rock could help identify the origin of the issue. A
hypothesis could be that the similar DZ (i.e. water depth) of all
the samples of submerged rock in the scene introduces a bias
that causes the surf zone to be confused for submerged rock.

Figure 9. Extract of the resulting 3D classification: the
land-water interface and its habitats.

The prediction confidence is also lower for areas at the interface
between very distinct environments (Figure 6.b), where the
waveforms might integrate mixed information due to the size of
the laser spots. The same issue was documented in Brodu and
Lague (2012) in 3D terrestrial laser scanning data classification.
These areas were less documented in our training data, and the
prediction probability underlines this lower confidence.
On the other hand, errors made with low confidence reveal
poorly represented ranges of values among the training dataset,
that are difficult to place in the possible labels. They reveal less
about the training process than about the quality of the dataset.
Brodu and Lague (2012) identify that some areas of 3D point
clouds can have lower classification confidence due to a smaller
point density compared to the rest of the scene. In their case, the
classifier relies on geometrical features, and this difference in
the dataset’s constitution explains why their features are not as
distinctive. In our case, outliers and erratic values of intensity or
elevation in the data can be difficult to classify correctly, since
they are not included in the training data, that are rigorously
selected for their representativity of each class. In this respect,
our results illustrate how important the quality of the lidar
dataset is for classification tasks. Vertical or radiometric
calibration issues can severely impact the possibilities to detect
the nature of the surface, as we can see in Figure 5, and as
suggested in Brodu and Lague (2012). Flight lines can be
recognized through the classification obtained around the salt
marsh and on the beach between the boat moorings and the
dune. In our dataset, these lines had saturated intensities
difficult to interpret, and the elevations at the interface between
flight lines differed by several centimetres. The possibility to
analyse the prediction confidence is thus a great indicator of the
potential biases in the method. It also offers the possibility to
improve the classification accuracy (Brodu and Lague, 2012):
more than 10% of OA can be gained thanks to confidence-based
filtering (see Table 5).

6. CONCLUSION AND OUTLOOK

In this article, we presented a method to map terrestrial and
underwater habitats using a single source of data: full-waveform
topobathymetric lidar. Our results show how fit this sensor is to
survey diverse environments: using a random forest algorithm,
we obtain classification accuracies above 85% with a mean
prediction confidence of 77%. By filtering predictions
depending on their classification confidence, the quality of the
resulting map can be increased by up to 10%. Computing the
prediction confidence also gives an interesting insight on the
origin of the classification errors, which either reveal training
issues, or erratic values in the initial dataset. These could be
tackled with a deeper analysis of the most descriptive features
for each class, and with particular attention to the calibration of
the dataset and the definition of the classes during training. In
the end, we obtain an interesting 3D map of 17 different land
and sea covers that has potential for future ecological
assessments. The presence of vertical structure information
through the different spatial repartition of the points between
the two wavelengths makes this result encouraging for the
ecological monitoring of coastal areas. Indeed, combining
vertical structure information to the knowledge waveforms
provide on the physical properties of the environment could
serve as ecosystem services proxy data. Lidar waveform
processing also enables a finer horizontal resolution by avoiding
spatial averaging of information. In future work, classifying
each peak in the waveforms independently could improve the
vertical density of the map to further help with ecosystem
services valuation.
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ABSTRACT 
 
This paper is concerned with the decomposition of 
bathymetric lidar waveforms. Because of the presence of 
water, processing such data remains a challenge since water 
impacts their shape and signal-to-noise ratio, depending in 
particular on the associated turbidity. In this paper, we 
explore the use of attentive autoencoders to decompose 
bathymetric waveforms and recover their air/water interface, 
water column, and water bottom components simultaneously, 
without relying on assumptions about the impulse or target 
surface nature. On simulated waveforms, the method 
achieves lower decomposition error than existing approaches, 
handling overlapping echoes of very shallow waters and 
weak returns in deeper water. This opens to attractive 
strategies to process real bathymetric waveforms. 
 

Index Terms— full-waveform lidar, bathymetric lidar, 
signal decomposition, waveform decomposition, attention 
UTime 
 

1. INTRODUCTION  
 
Though airborne LiDAR data are mainly used as 2D products 
or 3D point clouds, their origin lies in the processing of 
backscattered laser signals and their conversion into spatial 
information. The precise extraction of the various signal 
components linked to the hit targets is thus crucial to 
interpreting with precision the observed scene. However, this 
extraction entirely relies on the ability both to process the 
noise efficiently and to remain sensitive enough to subtle 
variations denoting low-reflective or vertically close targets. 
Research on full-waveform lidar data processing revealed the 
potential of finer analysis to retrieve additional targets and 
increase the resulting point clouds’ density [1]–[3]. However, 
handling large datasets while minimizing the level of false 
detections – which produce noise in the point clouds and 
complexify their interpretation – is still a challenge, namely 
for airborne bathymetric lidar (ALB). ALB uses green lasers 
to penetrate water and produce bathymetric data. The 
resulting waveforms have two main peaks: one generated by 
the water surface and another occurring when, and if, the 
water bottom is hit [4], [5]. ALB signals have to compose 
with additional sources of noise due to the optical scattering 

of the laser beams in the water column, which 1) 
exponentially attenuates the reflected intensity of the water 
bottom and 2) reflects a portion of the signal towards the 
receptor without signifying a solid target, resulting in a third 
waveform component that elongates the surface peak [4], [5]. 
In addition, extracting meaningful information from 
waveforms is not trivial because of the noise that disrupts the 
signal and gets mixed up with weak information, which is 
often lost during processing. In this paper, instead of a 
deconvolution by inversion of the pulse response function 
that can be challenging due to the noise in the signal, we 
explore the use of deep neural networks to tackle these 
problems and perform bathymetric waveform decomposition. 
We use a temporal attentive autoencoder to reconstruct the 
three main components of the bathymetric lidar signal 
simultaneously: the water surface, the water column, and the 
bottom. Our method targets three main limitations of existing 
waveform processing methods: (1) it does not rely on an 
iterative process, and (2) it simultaneously recovers the three 
main bathymetric waveform components. 
 

2. WAVEFORM PROCESSING METHODS 
 
The collected waveform is a sum of sub-signals that each 
result from a convolution between the emitted pulse and the 
target surface function [6]. Traditionally, waveform 
processing is thus made either with deconvolution methods 
[7], [8] or decomposition procedures relying on the fitting of 
mathematical functions to previously detected peaks in the 
signal [6], [9]. These approaches rely on various assumptions 
about the components’ impulse function or nature. In [10] and 
[11], the authros show that waveforms can be considered as a 
sum of Gaussians corresponding to the objects in the 
illuminated cone. The emitted pulse and the target functions 
are thus often approximated with Gaussian functions of fixed 
width or more asymmetric shapes to fit the empirical sensor 
impulses [6], [12], [13]. When using the decomposition 
approach, Gaussian mixture models are often used to estimate 
iteratively the parameters of these Gaussian or other 
predefined functions, which are then used as proxies on the 
nature of the targets [14]. Deconvolution procedures include, 
among others, the Richardson-Lucy deconvolution and the 
Wiener filter deconvolution. Several comparative studies [8], 
[15], [16] show the superiority of Richardson-Lucy 



deconvolution in retrieving weak returns and recovering the 
amplitude of the different components but underline its costly 
iterative process. Several limitations appear with these 
classical approaches: 

(1) Decomposition methods relying on the fitting of 
mathematical functions are not always adapted to 
the presence of the water column component, which 
has an entirely different shape;  

(2) Target surface functions may not always be 
similar/gaussian, and returns may be poorly 
approximated or mixed; 

(3) The denoising methods or post-processing 
procedures used with these approaches to avoid 
false detections may lead to loss of information. 

 
3. PROPOSED DECOMPOSITION NETWORK 

 
We adapt U-Time, the 1D version of U-Net introduced in [17] 
and applied to bathymetric lidar waveforms in [18]. We use 
the resulting encoder-decoder structure to output three 
waveform components, as illustrated in Figure 1. 
The encoder is a stack of 4 identical blocks comprising two 
series of 1D convolution, rectified linear unit activation, and 
batch normalization. Each block is followed by a max pooling 
operation of size 2, thereby reducing by half the length of the 
feature vector passed on to the next step. In addition, at each 
step, the number of convolution filters, initially set to 16, is 
doubled to increase the network’s abstraction ability. 
The decoder is a stack of four blocks with a different 
structure. Each block starts with a cross-attention mechanism, 
followed by up-sampling of size 2, a typical U-Net skip 
connection, and two series of 1D convolution, rectified linear 
unit activation, and batch normalization. Contrary to the 
encoder, the number of filters at each block is reduced by half, 
thus returning to 16 in the last convolution layers. 
Additive attention, as introduced in [19], is used to better 
pass information about the waveform across the network and 
allow the model to focus on features from different 
representation spaces in the decoder, thereby reconstructing 
waveform components more effectively. Using this setup, 
each sample of the decoder layer attends to each sample of 
the corresponding encoder layer. 

Between the encoder and the decoder, two series of 128 
convolution filters with ReLu activation and batch 
normalization are applied to the 16 samples-long embedding 
of the input waveform. 
At the end of the decoder, three dense layers with sigmoid 
activation allow the network to output three sequences 
corresponding to the three waveform components. 
 
To constrain the network to learn both amplitude and shape 
relevance when reconstructing the waveform components, 
we designed a custom loss function, relying on the Mean 
Absolute Error (MAE) and the Bhattacharyya distance. 
 

𝑙𝑜𝑠𝑠 = (
1

𝑁
 ∑ 𝑎𝑏𝑠(𝑝𝑟𝑒𝑑 − 𝑡𝑟𝑢𝑒) × (1 + 𝑡𝑟𝑢𝑒)

𝑁

𝑖=0

)

+ (1 − ∑ √
𝑝𝑟𝑒𝑑 

∫ 𝑝𝑟𝑒𝑑
 ×  

𝑡𝑟𝑢𝑒

∫ 𝑡𝑟𝑢𝑒
) 

(1) 

 
where 𝑁 is the number of samples in the waveform, 𝑝𝑟𝑒𝑑 is 
the predicted sequence, and 𝑡𝑟𝑢𝑒 is the true sequence. 
Roughly, the idea of the first term is to ensure global 
consistency in the estimations, this consistency being 
balanced by the waveform intensity (more weight is applied 
for locations with high intensities); the second term rather 
focuses on shapes of the decomposed waveforms. Training is 
performed on batches of 100 waveforms using an Adam 
optimizer with a constant learning rate of 0.0001. The model 
was trained for 500 epochs. One training epoch took, on 
average, 32 seconds on an Nvidia Quadro RTX 5000 GPU. 
 

4. BATHYMETRIC WAVEFORMS SIMULATION 
 
To simplify the training process (that requires pairs of input 
waveforms and associated decompositions), to evaluate the 
approach, and to fully control the physical conditions and 
their output, we use simulated data obtained with a 
bathymetric waveform simulator [20]. For training, 
validation and testing, we simulated three sets of 15000, 
3700, and 10000 waveforms, respectively. In each dataset, 
five types of environments were simulated by varying the 
simulation parameters (the water body’s depth and turbidity). 
Different impulse functions were used to generalize the 
method to different sensors and a systematic noise is added. 
The parameters used are summarized in Table 1. 
 
Parameter Value(s) Parameter Value(s) 
Depth (m) [0.15, 20] Pulse amplitude [0.05, 1] 
Kd (m-1) [0.08, 0.85] Pulse width [0.1, 1] 
Bottom 
reflectance 

[0.03, 0.85] Pulse type (Generalized) 
extreme value  

Incidence on 
surface (rad) 

[0, 0.8] Incidence on 
bottom (rad) 

[0, 1.35] 

Vertical 
resolution (m) 

0.0626   

Table 1. Parameters used to simulate lidar waveforms. 

 
Figure 1. Illustration of the proposed waveform 
decomposition network architecture. 



5. EVALUATION METRICS AND COMPARISON 
 

To evaluate the performance of our method, we compare each 
retrieved component to its simulated equivalent.  
For each of the three components, three metrics are 
computed. They are defined in equations (2) – (4), where 𝑁 
is the waveform length, 𝑝𝑟𝑒𝑑 the predicted sequence, 𝑡𝑟𝑢𝑒 
the true sequence, and 𝐾𝐿 the Kullback-Leibler divergence. 
 
The weighted MAE, quantifies the mean element-wise 
amplitude error: 

 
The Kullback-Leibler divergence measures the relative 
entropy, or difference in information that two distributions 
contain. As it is not symmetric, we use a custom metric: 

 
The Bhattacharyya distance quantifies how far two samples 
of two distributions are from each other in time and 
amplitude. For consistency purposes, we used the metric B’: 

 
These three metrics range between 0 and 1, where 0 indicates 
high similarity and 1 indicates high dissimilarity. 
 
We compare our results to Gaussian Mixture Model (GMM) 
decompositions with two components – as the water column 
is not Gaussian, and as in [15]  – and a Lucy-Richardson (RL) 
deconvolution. Other methods will be tested in the future.  
 

6. RESULTS 
 
Results obtained with the best model and with the classical 
approaches on the test data are presented in Tables 2 and 3. 

 
Overall, the autoencoder reaches lower wMAEs than the 
GMM and RL methods, although it has higher amplitude 
errors than distribution distances, which shows that it tends 
to estimate component shapes better than their amplitude. 
Analyzing the metrics more deeply shows that there is no 
relationship between the value of wMAE, mKL and B’ and 

the turbidity of the simulated water body. It also highlights 
the higher decomposition errors when processing waveforms 
at depth below 0.5 m. Qualitative results, presented in Figure 
2 illustrate these observations: in Figure 2.a), which 
illustrates very shallow waters, the gap between the 
prediction and the simulation is broader than in Figures 2.b) 
and 2.c), and the amplitude error is noticeable, while the 
peaks appear close to their true locations. Figure 2.c) shows 
the ability of the network to recover very weak returns in 
deeper waters. Visual analysis of the corresponding GMM 
and RL results show that RL misses the bottom return in the 
cases presented in Figure 2.a) and mistakes noise for returns 
in the 2.c) one, while GMM with two components retrieves 
two returns in the first case, and falsely decomposes the 
surface return into two echoes in the second. 
 

7. DISCUSSION AND CONCLUSION 
 
Our results outline the potential of temporal attentive 
convolutional neural networks for lidar waveform 
decomposition. Using deep neural networks has the 
advantage of not necessitating setting fixed parameters. 
Compared to GMM and RL it is possible to reconstruct the 
three components of bathymetric waveforms simultaneously. 

𝑤𝑀𝐴𝐸 =
1

𝑁
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(3) 

a) b) c)  
Figure 2. Examples of waveform decomposition results in a) very shallow, b) shallow and c) deep water. 

𝐵′ = 1 −  ∑ √
𝑝𝑟𝑒𝑑 

∫ 𝑝𝑟𝑒𝑑
 ×  

𝑡𝑟𝑢𝑒

∫ 𝑡𝑟𝑢𝑒
 (4) 

Waveform 
component 

Median 
wMAE 

Median 
mKL 

Median 
B’ 

Total 0.00333 0.00056 0.00028 
Surface 0.00420 0.00040 0.00020 
Column 0.00302 0.00056 0.00028 
Bottom 0.00333 0.00074 0.00037 

Waveform component GMM  RL 
Total 0.235 0.122 

Surface 0.147 / 
Column / / 
Bottom 0.098 / 

Table 3. Results obtained with state-of-the-art approaches 

Table 2. Results obtained with the proposed approach. 



Amplitude errors are lower than with these two traditional 
methods, and overlapping or weak echoes not captured with 
GMM and RL are detected.  
Considering the correlation between the physical 
characteristics of the targets and their response functions, 
decomposing lidar waveforms into a sum of surface functions 
is of great potential to derive information on the nature or the 
structure of the objects detected. In the case of bathymetric 
lidar, it offers the potential to retrieve more information about 
the bathymetry. In addition, it may pave the way for water 
column turbidity assessments relying on remotely sensed 
rather than field measurements. Further developments to add 
physical constraints in the loss function and better estimate 
the maximum signal-to-noise ratio supported by the approach 
are being conducted. Application to real data should also give 
further information on the usability of attentive autoencoders 
to process large sets of bathymetric waveforms. 
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Additional content to Chapter 3

Cloudcompare q3DMASC plugin implementation and operation

Using the q3DMASC plugin for classifier training or inference requires a labelled core point file and up to

3 accessory point clouds used to compute the features around each core point: PC1 (e.g., green channel),

PC2 (e.g., NIR channel) and CTX (e.g., a point cloud with a populated classification field). For single

point cloud classification, only one accessory point cloud is needed. A text file contains the description

of point clouds, scales and features to be used for training. Upon training completion, a classifier file is

saved and can be subsequently used with q3DMASC to apply the classifier to other point clouds.

Here are the main characteristics of the q3DMASC plugin implemented in the open source software

CloudCompare (CC):

Accessibility: the q3DMASC plugin has been designed to be usable without programming language

knowledge (e.g., Python) directly in the CC GUI. As such it makes a great introductory tool for non-

specialists, for teaching and for quick tests without having to setup a complete programming environ-

ment. We have also modified the CC scissor tool to allow direct interactive labelling of 3D data, and

introduced a tool to automatically split point clouds according to classes, and a new plugin for labelling

data in 3D has just been released (QCloudLayers by Wiggins Tech). These simple tools associated with

the neat 3D visualization of CC greatly facilitate the creation of labelled 3D data for training.

Speed: (CC) written in C++ has a well proven, fast and fully parallelized 3D neighbourhood search

essential for fast computation of spherical neighbourhood or kNN search. While not critical during the

training phase as a limited number of samples is necessary, this is essential during application and produc-

tion phases to compute features on several millions of points without requiring a specific configuration

(e.g. GPU).

Scalability: the q3DMASC plugin can be used in command line mode without GUI in order to ap-

ply the classifier in batch mode for large point cloud projects that would not fit in the computer memory.

For instance, we have been able to use it routinely to process projects with more than 10 billions points

using tiling strategies.

Non data source specific: while some features of 3DMASC are specific to Airborne lidar (e.g., multi-

echo features), many geometric features can be used for any type of high resolution 3D point cloud cre-

ated, for instance, from terrestrial lidar, Structure From Motion (SFM), Satellite Stereo Photogrammetry

and multibeam sonar. There are in particular provision to use RGBNIR information that can be essential

for SFM.

Flexibility in feature creation: to generate complex single or dual cloud features over several scales,

the user has to create a text file containing the description of the various point clouds, the scales to be
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used and the features to be computed. Complex single cloud features can be generated using the follow-

ing formalism:

FEAT _SC#_STAT _PC#

in which FEAT corresponds to a predefined list of features (e.g., intensity, z, number of returns, spheric-

ity, . . . .), SC# indicates the scale at which they will be calculated, STAT is a statistical descriptor for

point-based features sampled within the spherical neighbourhood (mean, mode, median, std, range, skew),

PC# indicate the point cloud to be used for calculation around the core point.

Dual cloud features are generated with this formalism:

FEAT _SC#_STAT _PC#_PC$_MATH

In which PC$ indicates the second cloud to be used and MATH is an operator (minus, plus, divide,

multiply). For instance, the Z mode difference (Figure 2) between the green channel (PC1) and the NIR

channel (PC2) calculated at all possible scales is written Z_SCx_MODE_PC1_PC2_MINUS.

Contextual features are constructed using the following formalism:

DZk_SC0_PC#_CTX#

In which DZk (resp. DHk) indicates the vertical (resp. horizontal) distance to the k nearest neighbours,

PC# indicates the PC considered and CTX# the number in the classification field to consider (e.g., 2

for ground, 5 for vegetation. . . ). For instance, the average vertical distance to the 3 nearest ground points

of the NIR channel (PC2) that holds a valid classification field is DZ3_SC0_PC2_CTX2.

Explainability: We use a random forest algorithm that combines a good performance on many at-

tributes, simplified feature selection, and robustness to overfitting. After training, the GUI version of

3DMASC outputs the overall accuracy, RF feature ranking and allows to manually remove features that

are less contributing. After training completion, users can directly visualize feature values in 3D to un-

derstand why they contribute directly or not to classification success.

For training purposes, we chose the cross-platform OpenCV library (Bradski, 2000) implementation

of Random Forests as it allows classifiers created in Cloudcompare to be used in Python and vice-versa.

The downside of the C++ implementation of OpenCV is that the training is not parallelized, and is

consequently much slower than the RF implementation, e.g., of scikit-learn (Pedregosa et al., 2011). RF

training is thus the main bottleneck during classifier creation in the CC version. Classifier application is

extremely fast, and feature calculation becomes the main bottleneck. Expert users can directly train their

classifier in python with their favourite algorithm.
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Point-based features and single/dual cloud features constructed from them in spherical neighbourhood:

Name Single cloud feature stats.

Dual cloud features

Substraction Division

Elevation Std, Skew.

Mean,Median, Mode,

Std, Skew.

-

Intensity X Std, Skew. Mean, Median, Mode

Return Number Mean - -

Numb. of returns Mean - -

Echo Ratio Mean - -

R, G, B Mean, Mode, Median - -

Table 5.17: Point-based features available in 3DMASC.

*
: not used as a point-based feature.

Dimensionality-based features computed in spherical neighbourhood:

Name Formulation from eigenvalues Dual cloud features

PCA1
* λ1/(λ1 + λ2 + λ3) subtraction

PCA2
* λ2/(λ1 + λ2 + λ3) subtraction

PCA3/Surf variation
+ λ3/(λ1 + λ2 + λ3) subtraction

Sphericity
+ λ3/λ1 subtraction

Linearity
+ (λ1 − λ2)/λ1 subtraction

Planarity
+ (λ2 − λ3)/λ1 subtraction

Table 5.18: Dimensionality-based features available in 3DMASC.

*
: Brodu et al., 2012;

+
: Weinmann et al., 2013

Complete list of features used in Chapter 3
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Geometry-based features computed in spherical neighbourhood:

Name Information Dual cloud features

Verticality
*

Varies between 0 (horizontal) and 1 (vertical) subtraction

Detrended Roughness
*

Std of distance between points and best

fitting plane

subtraction

Curvature

Mean curvature in CC = average of

principal curvatures

subtraction

Nb of points - subtraction

Anisotropy

Ratio of distance to center of mass and

radius of sphere

subtraction

First Order Moment Hackel et al., 2016 subtraction

Table 5.19: Geometry-based features available in 3DMASC.

*
: Demantké et al., 2012

Height-based metrics computed in spherical neighbourhood:

Name Formulation Dual cloud features

Zrange Zmax − Zmin subtraction

Zmin Z − Zmin subtraction

Zmax Zmax − Z subtraction

Table 5.20: Height-based features available in 3DMASC.

Z is the core point’s elevation, Zmax and Zmin are the maximum and minimum elevation in the spherical neighbourhood,

respectively.

Contextual features in the NIR channel:

Name Formulation Target class

DZ to kNN Mean vertical distance to k nearest neighbours 1064 nm ground

DH to kNN Mean horizontal distance to k nearest neighbours 1064 nm ground

Table 5.21: Contextual features available in 3DMASC.
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Supplementary materials to the chapter

Figure 5.19 presents the results of the experiments made to determine the scale to use for evaluation and

the correlation threshold to apply during feature selection (OA=Overall Accuracy).

Figure 5.19: Results of the experiments performed to determine the correlation threshold to apply for feature selection, and

the scale at which to evaluate each feature.

Figure 5.20 illustrates the variation of the OA depending on the number of predictors used. The

predictors used at each iteration are identic to those involved in the realization of Figure 3.8 in the paper.

This figure shows that OA and OOB display similar dynamics when pruning the predictors set.

Figure 5.20: Overall accuracy depending on the number of predictors used for each experiment.

Figure 5.21 gives more detailed information on the correlation between features computed at different

scales.

Figure 5.22 illustrates the impact of large scales on classification accuracy depending on the presence

or absence of contextual features (vertical distances to a previously classified ground point cloud). Scales

were removed iteratively per decreasing order.

Table 5.22 details the features used to compare 3DMASC to other approaches. The eigenvalues re-

ferred to are those obtained on the covariance matrix of spherical neighbourhoods. For detailed math-

ematical expressions of the different attributes, please consult the original papers (Chehata et al., 2009;
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Figure 5.21: Linear correlation between features computed at scales separated by ds=1 m or ds=3 m for different families of

features. SC = Single Cloud ; DC = Dual Cloud

Figure 5.22: Classification performances depending on the maximal scale kept in the optimized predictor set, and in the

predictor set augmented with contextual attributes.
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Hackel et al., 2016; Thomas et al., 2018). The comparison to the fast point feature histogram introduced

in Rusu et al., 2009 was made using the dedicated computation framework implemented in the Python

Open3D library (Zhou et al., 2018).
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Name

Thomas et al.,

2018

Hackel et al.,

2016

Chehata et al.,

2009

Sum of eigenvalues X X

Omnivariance X X

Eigenentropy X X

Anisotropy X X

Linearity X X X

Planarity X X X

Sphericity X X X

Curvature X

Surface variation X X

Verticality X

Verticality based on 1st eigenvector X

Verticality based on 3rd eigenvector X

Vertical moment (1st order) X

Vertical moment (2nd order) X

Number of points X

Statistical moments of eigenvectors (1st and 2nd order) X X

Z range in neighbourhood X

Difference with minimal Z in neighbourhood X X

Difference with maximal Z in neighbourhood X

Standard deviation of Z in neighbourhood X

Residuals of the fitting of a plane to the neighbourhood X

Deviation angle of a fitted plan normal to the vertical X

Variance of the deviation angles of the three dimensions of

the neighbourhood

X

Distance to the fitted plan X

Number of returns X

Normalised return number X

Table 5.22: Description of the features used in each approach compared to 3DMASC on the Ain dataset.



RÉSUMÉ EN FRANÇAIS

Cette thèse s’intéresse à la définition de méthodes permettant d’extraire de l’information sur l’état de

l’environnement à l’aide du lidar topo-bathymétrique. Nous nous focalisons plus particulièrement sur le

milieu côtier, en développant des méthodes d’apprentissage (classique et profond) sur les ondes complètes

et les nuages de points.

L’importance des interfaces terre-eau

Les interfaces terre/eau, comprenant les rives des lacs, les berges des cours d’eau et les franges littorales,

sont une partie cruciale de la Terre. Elles jouent des rôles clés dans les équilibres et cycles naturels main-

tenant les systèmes terrestres. En effet, les zones côtières, estuariennes et fluviales abritent de nombreux

écosystèmes et fournissent aux communautés humaines en expansion constante des services essentiels

tels que de la nourriture, des activités culturelles et une protection face aux dangers naturels liés à la

montée du niveau de l’eau et aux événements météorologiques (Barbier et al., 2011). Par conséquent,

elles constituent une base sur laquelle des sociétés entières peuvent s’appuyer et sont le lieu de nombreux

processus socio-écologiques à différentes échelles temporelles. Des marées semi-quotidiennes attirant les

promeneurs locaux ou les pêcheurs régionaux au développement de zones touristiques entières sur des

décennies à travers des activités saisonnières, les zones de continuum terre-eau évoluent constamment

(Syvitski et al., 2005). Les changements de niveau d’eau créent de nouveaux paysages à différentes échelles

de temps (quotidiennes, saisonnières, annuelles), les processus sédimentaires modifient la morphologie

du terrain, et des événements soudains tels que des tempêtes génèrent des changements rapides dans les

écosystèmes (Syvitski et al., 2005).

De part et d’autre du rivage, les écosystèmes sont sous l’influence de l’hydrodynamique marine ou flu-

viale et des processus hydrologiques terrestres, faisant des franges côtières, des estuaires et des cours d’eau

un point de rencontre pour les changements spatio-temporels. La surveillance de ces changements est

cruciale pour protéger ces environnements contre les processus destructeurs naturels accélérés (Leather-

man et al., 2000) et pour s’assurer que ces zones attractives peuvent toujours supporter la pression an-

thropique. En effet, en 2003, 41 % de la population mondiale vivait à moins de 100 mètres des côtes, qui
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abritaient également 21 des 23 mégapoles mondiales. De plus, Martínez et al., 2007 ont montré que la

grande diversité d’écosystèmes situés à l’interface des océans et des continents produisait 77 % de la valeur

économique estimée des biens et services fournis par les écosystèmes dans le monde en 2007, selon la

méthode de Costanza et al., 1997.

Les herbiers marins, les prés salés, les mangroves, les macroalgues, les dunes, les ripisylves et les plages

sont des exemples d’habitats du continuum terre-eau. Ils interagissent continuellement avec le niveau de

l’eau et fournissent des exemples clairs de la manière dont les écosystèmes soutiennent l’équilibre écologique

de ces zones. Les herbiers marins garantissent la qualité de l’eau et sont d’importants puits de carbone,

tout comme les prés salés et les mangroves (Barbier et al., 2011; Turner et al., 2015). La végétation côtière

et riveraine offre également une protection contre les dangers hydrologiques pour les communautés lo-

cales et les infrastructures, et fournit de nombreuses activités récréatives telles que la plongée, la pêche,

la baignade, le rafting et le char à voile (Barbier et al., 2011; Turner et al., 2015). Enfin, ces écosystèmes

soutiennent une large gamme d’espèces endémiques en leur offrant des nurseries, de la nourriture et de

l’oxygène (Barbier et al., 2011; Turner et al., 2015).

Toutes ces observations convergent pour montrer combien les écosystèmes des interfaces terre-eau

sont importants d’un point de vue écologique, social et économique (Barbier et al., 2011; Costanza et

al., 1997; Martínez et al., 2007). Cependant, les habitats fluviaux, marins et terrestres sont menacés par le

changement climatique et la pression anthropique (Barbier et al., 2011), et de nombreuses études s’accordent

à dire que leur évolution est difficile à anticiper et doit être surveillée pour garantir un soutien continu

aux communautés littorales (Barbier et al., 2011; Costanza et al., 1997; Martínez et al., 2007).

La surveillance et la protection des interfaces terre-eau impliquent d’abord d’avoir accès à des out-

ils fournissant des informations pertinentes pour les caractériser. De tels outils reposent nécessairement

sur l’acquisition de données à une résolution temporelle et spatiale en phase avec les spécificités des lacs,

des rivières et des côtes. Actuellement, l’observation ininterrompue des surfaces immergées et émergées

le long de ces interfaces reste un défi méthodologique en raison de la présence d’eau (Gao, 2009; Kutser

et al., 2020). La vaste diversité des types de surfaces présentes dans ces zones complique également leur

exploration à une échelle temporelle pertinente avec leur évolution rapide, et sur des étendues larges et

représentatives. La télédétection, détaillée ci-dessous, peut répondre efficacement à ce problème en four-

nissant un moyen de collecte de données sans nécessiter un accès direct aux zones fragiles ou éloignées et

en permettant un relevé plus rapide de vastes portions de terrain.



299

La télédétection comme outil d’observation des interfaces terre-eau

La télédétection - ou remote sensing (RS) en anglais - désigne un ensemble de techniques utilisées pour

étudier à distance les propriétés d’objets artificiels ou naturels en fonction de leurs interactions avec les

ondes électromagnétiques (Rees, 2001). Typiquement, ces mesures sont réalisées à partir d’aéronefs, de

satellites ou, plus récemment, de véhicules aériens inhabités (UAV).

En pratique, la télédétection consiste à surveiller à distance les radiations réfléchies ou émises par des

objets, en utilisant une large gamme de capteurs dédiés (Rees, 2001). La télédétection est maintenant

largement utilisée pour l’observation de la Terre (Earth observation - EO - en anglais), c’est-à-dire pour

recueillir des informations sur les différents systèmes qui constituent la planète Terre. Les techniques

d’imagerie, en particulier, constituent une grande partie des processus d’EO. Elles peuvent être séparées

en deux catégories : l’imagerie passive, qui capture les radiations émises par les objets, et l’imagerie active,

qui émet des radiations vers des objets d’intérêt et enregistre la manière dont elles les réfléchissent.

Les données d’imagerie par télédétection vont des photographies 2D aux modèles 3D de la topogra-

phie de la Terre grâce à la stéréoscopie et à la télémétrie laser (LiDAR, ou lidar). La stéréoscopie repose

sur l’acquisition d’images avec un fort recouvrement pour déterminer les coordonnées 3D de leurs points

communs, permettant ainsi d’obtenir des informations en 3D à partir de photographies 2D. D’autre part,

le lidar est une technique d’imagerie active qui dérive une modélisation 3D de l’environnement en émet-

tant des impulsions laser et en observant la manière dont elles sont réfléchies par les surfaces interceptées

(Vosselman et al., 2010).

Traditionnellement, l’interface terre-eau est étudiée avec des méthodes d’imagerie passive ou des levés

sonar (Gao, 2009; Kutser et al., 2020), ce qui soulève plusieurs enjeux:

• La nécessité d’une approche intégrée : comme expliqué précédemment, les écosystèmes et les

hydrosystèmes peuplant l’interface terre-eau sont liés à la fois aux processus hydrologiques et ter-

restres. Étudier séparément les zones immergées et émergées le long de ces franges élimine ainsi une

large part de contenu informatif. Cependant, les zones immergées et émergées ont traditionnelle-

ment été étudiées séparément. Typiquement, les zones immergées sont étudiées avec des techniques

acoustiques - des systèmes sonar - (Barrell et al., 2015; Komatsu et al., 2003; Pasqualini et al., 1998).

D’un autre côté, les zones terrestres bénéficient d’une large gamme de possibilités d’imagerie par

télédétection, des photographies aériennes 2D aux modèles 3D de la topographie obtenus par im-

agerie active. Fusionner des campagnes distinctes sous-marines et terrestres - par exemple, coupler

sonar et imagerie passive - pourrait être une solution. Cependant, les relevés séparés ont souvent

une zone de recouvrement mince, qui peut être difficile à échantillonner avec des points de contrôle

au sol pour trouver une transformation de coordonnées. En effet, les méthodes d’hydrographie ne
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sont pas utilisables partout : les véhicules de surface inhabités ne peuvent pas être déployés trop

loin de leur centre opérationnel, et les bateaux ne peuvent pas accéder aux zones dangereuses.

L’échantillonage par sonar des eaux extrêmement peu profondes est donc impossible sans risquer

d’échouer pour les deux outils. D’autre part, l’imagerie passive ne pénètre souvent pas suffisam-

ment dans l’eau pour combler l’absence de données dans ces zones (Kutser et al., 2020). Le fait que

les relevés côtiers soient encore séparés en campagnes bathymétriques et topographiques reposant

sur de systèmes de coordonnées distincts témoigne par ailleurs d’une volonté encore récente de

fusionner les deux domaines et de les étudier comme un système commun et complexe.

• La difficulté de voir sous la surface d’eau : les quelques approches offrant une observation

continue du continuum terre-eau reposent généralement sur des images satellites ou aériennes qui

couvrent les deux côtés de la surface d’eau (McKenzie et al., 2020; Mumby et al., 1997; Topouzelis

et al., 2018). Ces données sont soit étudiées directement, soit utilisées pour estimer la bathymétrie

et la topographie à l’aide de modèles d’inversion des transferts radiatifs. Les images satellites et aéri-

ennes ont l’avantage de couvrir de grandes zones avec des coûts de déploiement bien inférieurs aux

relevés aquatiques ou aux expéditions sur le terrain à pied - en particulier dans le cas des capteurs

spatiaux. Cependant, le principal problème avec l’imagerie passive est la gamme de profondeur

dans laquelle elle est utilisable (Kutser et al., 2020). En raison de phénomènes optiques, au-delà

d’un certain seuil de profondeur qui varie avec la clarté de l’eau, l’imagerie passive ne peut plus

fournir d’informations sur ce qui se trouve sous la surface de l’eau en raison de l’atténuation de la

lumière par l’eau. Dans les rivières ou lacs turbides, cette profondeur maximale peut être très faible,

et peu voire aucune information ne peut être obtenue avec l’imagerie passive. Sauf dans des eaux

très claires, cette option ne couvre donc pas vraiment l’interface terre-eau.

• L’importance de l’accès à des informations sur la structure verticale du milieu : l’accès à

des approches fournissant des informations sur la structure tridimensionnelle des écosystèmes est

essentielle pour permettre de études écologiques plus approndies comme par exemple l’évaluation

des puits de carbone, de la production de biomasse ou encore des capacités d’atténuation des flux

inhérents aux écosystèmes des interfaces terre-eau (Enríquez et al., 2019; Dubayah et al., 2020; Lu et

al., 2023; Mury et al., 2020). Dans les eaux peu profondes, les études basées sur des capteurs passifs

donnent accès à l’élévation de couverts sous-marins mais pas à l’élévation du fond marin lui-même

lorsqu’il est recouvert par de la végétation (Stumpf et al., 2003; Lesser et al., 2007), ce qui fournirait

des informations sur la structure verticale de celle-ci et permettrait des estimations de biomasse ou

d’autres évaluations structurelles (Wedding et al., 2008; Lindberg et al., 2012).

• Enfin, des méthodes d’observation rapidement déployables en cas de catastrophes naturelles sont
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nécessaires pour permettre une évaluation rapide des potentiels dommages.

Le lidar topo-bathymétrique est un outil d’imagerie active qui répond efficacement à ces besoins. Il

repose sur la télémétrie laser, et exploite simultanément deux capteurs (Lague et al., 2020). L’un d’eux

utilise la lumière proche-infrarouge (near infrared - NIR - en anglais), tandis que l’autre opère dans le

spectre vert, pénétrant ainsi la surfaces d’eau (Guenther et al., 2000). Le lidar topo-bathymétrique est

aéroporté, il fournit des données 3D à une densité verticale et horizontale élevée dans les eaux peu pro-

fondes avec une turbidité raisonnable et peut être rapidement utilisé sur de vastes étendues (Lague et al.,

2020). Cependant, il reste largement sous-exploité pour l’extraction de connaissances environnementales

sur les interfaces terre-eau.

Le lidar topo-bathymétrique a été introduit il y a quelques décennies, peu de temps après l’avènement

du lidar bathymétrique, conçu spécifiquement pour les eaux côtières (Lague et al., 2020; Fernandez-Diaz

et al., 2014). Ses objectifs sont de fournir des mesures mieux adaptées aux étendues d’eau douces, qui sont

souvent plus étroites. Ce capteur produit un nuage de points 3D par longueur d’onde, générant ainsi

deux échantillonnages distincts d’une même scène, notamment dans les zones végétalisées ou immergées.

Il peut également enregistrer l’énergie complète reçue au fil du temps pour chaque tir laser : les formes

d’onde complètes.

Cependant, les données lidar topo-bathymétriques sont très spécifiques et difficiles à traiter.

La présence d’eau influence fortement les nuages de points et les formes d’onde résultants (Guenther, 1985)

et nécessite le développement de nouveaux outils. De plus, dans des contextes topo-bathymétriques, les

longueurs d’onde NIR et verte sont toutes deux informatives. Parvenir à traiter de manière précise à la fois

les zones émergées et immergées nécessite donc souvent l’exploitation simultanée de ces deux ensembles

de données, ce qui constitue un défi de traitement conséquent.

Indépendamment de la présence d’eau, les nuages de points 3D posent de nombreux défis de traite-

ment. Ils ont une structure irrégulière, présentent de nombreuses zones occultées et ont des densités ir-

régulières (Guo et al., 2021b). Ces caractéristiques rendent difficile l’identification automatique des objets

qu’ils contiennent. De plus, en raison de leurs tridimensionalité, ils sont plus difficiles à traiter. Le traite-

ment des nuages de points 3D a largement bénéficié des progrès globaux dans le traitement des données

au cours de la dernière décennie (Guo et al., 2021b). Cependant, ces progrès ont principalement concerné

le traitement des données topographiques (Morsy et al., 2022), et n’ont pas été pleinement transférés aux

nuages de points bathymétriques. La première explication est l’avènement plus récent du lidar vert et

son accessibilité réduite en raison de la puissance laser plus important qu’il requiert. Une autre explica-

tion majeure est la séparation persistante entre les sciences marines et terrestres. La plupart des approches

développées pour le traitement des nuages de points se concentrent sur des zones terrestres telles que les

villes ou les forêts (Mao et al., 2022b; Huang et al., 2021; Axelsson et al., 2023; Liu et al., 2021a), qui sont
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plus accessibles à l’étude par télédétection. Cependant, les objets marins et terrestres présentent des carac-

téristiques distinctes en termes de forme, d’échelle et de matériau. Le transfert de méthodes développées

pour le lidar topographique au lidar topo-bathymétrique n’est donc pas trivial. Par conséquent, très peu

de méthodes publiées produisent des nuages de points 3D classifiés à partir du lidar topo-bathymétrique,

et encore moins pour les surfaces topographiques et benthiques simultanément. Des outils de classifica-

tion 3D des nuages de points bathymétriques, incluant la possibilité d’identifier avec précision une grande

variété de classes à la fois immergées et émergées, sont donc toujours attendus.

Les formes d’onde sont également difficiles à traiter. Ce sont des séries complexes de puissance reçue

et enregistrée par le capteur (Mallet et al., 2009) et, tout comme les nuages de points ont de nombreuses

zones vides, elles contiennent souvent des informations sur moins d’un tiers de leur longueur, le reste

étant du bruit. Leurs valeurs peuvent varier de plusieurs ordres de grandeur sur de courtes plages de

temps en raison de la grande variété de conditions optiques rencontrées sur une zone topo-bathymétrique

(Guenther et al., 2000). Enfin, les mesures d’intensité lidar dépendent fortement des conditions d’acquisi-

tion et nécessitent des connaissances expertes pour être traitées avec un biais limité (Kashani et al., 2015).

La plupart du temps, les formes d’onde lidar ne sont donc exploitées que pour détecter les retours des

surfaces immergées ou densément végétalisées, où les signaux deviennent trop faibles pour être détec-

tés en vol. Elles sont ensuite rarement incluses par les constructeurs dans les jeux de données livrés. Les

méthodes utilisées pour produire des nuages de points à partir de formes d’onde sont par ailleurs souvent

couvertes par le secret industriel et sont principalement axées sur la précision de la bathymétrie plutôt que

sur la maximisation de l’extraction de connaissances applicatives.

Ces facteurs rendent l’exploitation des formes d’onde lidar encore rare, d’autant plus pour la surveil-

lance des écosystèmes topo-bathymétriques. Les approches existantes tentant de les exploiter les réduisent

souvent à des rasters d’attributs 2D (Collin et al., 2012) ou ne ciblent qu’un côté de la surface d’eau

(Hansen et al., 2021). Elles restent également très spécifiques aux zones ou aux conditions d’acquisition

pour lesquelles elles ont été développées. Par exemple, le traitement des formes d’onde provenant de zones

côtières peu profondes avec une faible turbidité est une tâche complètement différente de l’extraction

d’informations à partir de levés en rivières turbides. Cependant, alors que les nuages de points sont une

excellente source d’information géométrique (Hackel et al., 2016), les formes d’onde fournissent les con-

naissances spectrales nécessaires pour caractériser davantage les zones étudiées (Mallet et al., 2009). Elles

pourraient donc largement bénéficier à l’observation des interfaces terre-eau si davantage de solutions de

traitement étaient disponibles.

En fin de compte, des méthodes capables de gérer les spécificités des zones immergées et submergées

séparément existent, mais peu parviennent à traiter les deux simultanément. Pour le traitement des formes

d’onde bathymétriques, Xing et al., 2019 suggèrent même que trouver une méthode applicable à toutes
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les conditions de profondeur et de turbidité reste hors de portée des possibilités actuelles de traitement.

De manière générale, à l’heure actuelle, il est toujours difficile de trouver des approches de traitement des

données lidar topo-bathymétrique généralisables à l’ensemble du continuum terre-eau.

L’hypothèse principale de cette thèse est que la télédétection lidar topo-bathymétrique pourrait

considérablement améliorer notre compréhension des interfaces terre-eau. Cependant, des méth-

odes permettant d’exploiter pleinement les données qu’elle fournit doivent encore être dévelop-

pées. Ce travail vise donc à améliorer l’extraction de connaissances à partir de données ex-

istantes afin d’améliorer la modélisation des interfaces terre-eau. À cette fin, nous explorons

comment l’apprentissage automatique peut s’appliquer aux traitement des données lidar topo-

bathymétriques.

Les méthodes actuelles de traitement de données de télédétection

Globalement, le traitement des données vise à extraire des informations à partir de données brutes en les

transformant à l’aide de différentes opérations. En pratique, cela consiste principalement à trouver des

fonctions mathématiques permettant de prédire la une variable en fonction d’observations d’une autre.

L’apprentissage automatique rassemble des méthodes utilisant des données empiriques pour résoudre

ces problèmes mathématiques en optimisant les paramètres de fonctions modèle (Géron, 2022). Ce type

de méthodes a généré des progrès consequents dans le traitement des nuages de points lidar, notamment

dans l’identification des objets présents dans les données (Guo et al., 2021b). L’un des objectifs de ce travail

est d’explorer comment les avancées existantes peuvent être étendues aux jeux de données bi-spectraux

modélisant les zones terre-eau sans interruption.

Pour les formes d’onde, nous souhaitons évaluer l’applicabilité d’autres méthodes de traitement qui

se sont révélées plus adaptées aux problèmes complexes : les réseaux neuronaux profonds.

Le potentiel des réseaux de neurones profonds

En parallèle du développement des lidars topo-bathymétriques, des méthodes de traitement capables de

résoudre des problèmes plus complexes ont émergé et ont engendré des avancées significatives dans le

traitement des données de télédétection. En particulier, l’apprentissage automatique et les réseaux de neu-

rones profonds ont fait des progrès considérables grâce à l’augmentation de la puissance de calcul qui a

caractérisé les dernières décennies (Goodfellow et al., 2016).
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Les réseaux de neurones profonds sont constitués d’interconnexions de neurones organisés en couches

(Goodfellow et al., 2016; Lecun et al., 2015). Chaque neurone effectue une combinaison linéaire de ses en-

trées associée à une fonction d’activation non linéaire. La connexion d’un nombre potentiellement élevé

de neurones, organisés différemment en fonction de l’application (c’est ce qu’on appelle l’architecture),

permet de modéliser des fonctions très complexes (Cybenko, 1989). La phase d’entraînement, réalisée par

rétropropagation de l’erreur (Lecun et al., 1989; Rumelhart et al., 1986), consiste à estimer les paramètres

de chaque neurone - les poids de l’opération linéaire.

Les réseaux de neurones peuvent adapter et généraliser leur apprentissage à de nouvelles entrées, ce

qui en fait des outils puissants pour la recherche scientifique et l’analyse de données. Grâce à ce processus,

les motifs caractéristiques des données se dégagent progressivement et sont utilisés pour construire des

règles de prédiction adaptées à la tâche (Rumelhart et al., 1986). Alors que les méthodes de traitement tra-

ditionnelles reposant sur l’apprentissage automatique impliquent de définir en amont des transformation

à appliquer aux données, les réseaux de neurones apprennent les opérations pertinentes pour les données

et le problème directement sur les entrées (Goodfellow et al., 2016). Ils éliminent par conséquent le besoin

de définir en amont des descripteurs, contrairement à l’apprentissage automatique classique qui repose

sur une pré-transformation des observations.

Les réseaux de neurones profonds ont apporté de nouvelles perspectives dans les domaines du traite-

ment d’images (Zhao et al., 2019; Khan et al., 2021), de la prédiction de l’évolution de séries temporelles

(Lim et al., 2020; Wen et al., 2022), ou encore du traitement du langage (Bahdanau et al., 2014; Vaswani

et al., 2017). Cependant, ils n’ont presque jamais été explorés pour améliorer le traitement des formes

d’onde bathymétriques. Il est donc encore compliqué d’évaluer s’ils pourraient changer notre capacité

à extraire des informations à partir des interactions du laser vert avec l’environnement via l’analyse des

formes d’onde du lidar topo-bathymétrique.

Objectifs de cette thèse

L’objectif de cette thèse est de fournir de nouvelles perspectives sur l’extraction de connaissances à partir

des levés lidar topo-bathymétriques pour l’observation des rivages. Nous souhaitons évaluer dans quelle

mesure les nouvelles méthodes de traitement de données peuvent contribuer à cette tâche. Notre objectif

principal est donc de combiner un contexte instrumental favorable - avec la popularité et la disponibilité

croissantes des données lidar - et des circonstances méthodologiques positives - avec une puissance de

calcul et une variété de solutions de traitement sans précédent.

Par conséquent, cette thèse aborde les question suivantes:

• Comment répondre au manque d’outils accessibles pour l’extraction d’informations sé-
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mantiques à partir de nuages de points lidar bi-spectraux dans des zones naturelles com-

plexes ? Peut-on remédier à l’indisponibilité de méthodes de classification de nuages de points

adaptées aux levés topo-bathymétriques ? Est-il possible de combler cette lacune avec une méthode

pouvant être utilisée sans expertise en informatique ?

• Lorsque les formes d’onde sont disponibles, peut-on les exploiter pour distinguer un plus

grand nombre de surfaces terrestres et marines ? Combien de classes pouvons-nous distinguer

en utilisant uniquement des formes d’onde ? Le manque d’information spatiale a-t-il un impact né-

gatif sur les résultats ? Les formes d’onde suffisent-elles pour séparer des surfaces avec des géométries

similaires ? Est-il possible de préserver la généralisabilité sans sacrifier la précision ? Peut-on gérer

les biais liés à l’acquisition sans stratégies de prétraitement dépendantes du site ?

• Dans quelle mesure pouvons-nous déployer le traitement des formes d’onde pour l’extrac-

tion de connaissances environnementales dans des environnements (topo)-bathymétriques ?

Peuvent-elles être utilisées pour estimer des paramètres environnementaux même en l’absence de

mesures in-situ synchrones ? Est-il possible d’utiliser une approche similaire pour différents types

d’eaux (côtières/intérieures, troubles/claires, très peu profondes/profondes) ?

• Comment faire face à la question de la disponibilité de données labélisées compte tenu de la

complexité de l’interprétation des formes d’onde ? Il est impossible de labéliser manuellement

des formes d’onde sans introduire de biais significatifs pour certaines tâches (principalement la ré-

gression et la détection d’objets). Pourtant, nous utilisons des approches supervisées pour évaluer

le potentiel des réseaux neuronaux profonds. Dans ce contexte, comment pouvons-nous proposer

des méthodes de traitement robustes si aucune campagne de mesure in-situ n’a été organisée pen-

dant l’acquisition lidar ?

Contributions

Pour aborder chacune de ces questions, la thèse s’organise autour de cinq chapitres.

Le chapitre 1 offre une présentation détaillée de la télédétection lidar. Il introduit les capteurs li-

dar topographiques, bathymétriques et topo-bathymétriques et rappelle les principes physiques qui sous-

tendent leur fonctionnement.

Le chapitre 2 présente les stratégies existantes pour le traitement des données lidar. Il rap-

pelle d’abord le fonctionnement du traitement de données basé sur l’apprentissage et ses enjeux actuels.
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Ensuite, il détaille les processus existants pour la classification des nuages de points et comment ils répon-

dent à nos besoins. Enfin, il explore également les méthodes de traitement des formes d’onde et les défis

restants dans le contexte de l’observation de l’interface terre-eau. En particulier, ce chapitre souligne le

manque de solutions pour classifier les nuages de points bi-spectraux et l’absence d’approches exploitant

les formes d’ondes bi-spectrales.

Après avoir introduit de manière approfondie les défis et les spécificités de l’extraction de connais-

sances à partir des données lidar topo-bathymétriques, nous proposons plusieurs contributions méthodo-

logiques à ce sujet.

Dans le chapitre 3, nous présentons 3DMASC, une nouvelle méthode de classification de nu-

ages de points bi-spectraux, et son application aux environnements topo-bathymétriques.

3DMASC est le résultat de notre travail pour répondre au besoin d’outils accessibles pour le traitement de

nuages de points environnementaux complexes, notamment en présence de deux nuages de points. Avec

3DMASC, nous introduisons également de nouveaux descripteurs des nuages de points qui pourraient

être utilisées à d’autres fins que la classification dans le contexte de l’extraction de connaissances envi-

ronnementales. Grâce à un processus de sélection de descripteurs et d’échelles automatique, 3DMASC

produit des classifieurs légers aux résultats précis dans les environnements topo-bathymétriques tels que

les rivières ou les côtes. L’approche est entièrement explicable grâce à l’évaluation de l’importance des

descripteurs et à l’analyse SHAP. Elle est également accessible aux spécialistes thématiques via un plu-

gin open-source dans le logiciel CloudCompare (Girardeau-Montaut, 2022). Les classifieurs s’appuient

sur une quantité limitée de données labélisées et peuvent être entraînés sur des ordinateurs classiques via

une interface graphique ou via le terminal.

Dans le chapitre 4, nous évaluons de nouvelles possibilités pour l’extraction d’information sé-

mantique à partir des formes d’onde lidar. Nous abordons le besoin de classifications 3D des milieux

terrestres et sous-marins en développant des approches basée sur les formes d’ondes bi-spectrales. Nous

explorons leur capacité à caractériser des surfaces ayant une géométrie similaire, dans un premier temps

en utilisant des approches classiques d’apprentissage automatique s’appuyant sur des descripteurs sur

mesure. En extrayant des attributs des formes d’ondes vertes et proches infrarouge, nous obtenons

une classification 3D d’une zone côtière à haute résolution spatiale. Nos résultats mettent en évidence la

contribution de l’information bi-spectrale et la capacité à détecter un large éventail de classes avec un seul

levé lidar. Cependant, comme cette méthode est basée sur de l’apprentissage automatique classique, elle

nécessite une étape de prétraitement laborieuse, qui n’est pas optimale dans des eaux très peu profondes.
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Dans un second temps, pour limiter les prétraitements, qui sont souvent spécifiques au jeu de don-

nées, nous proposons donc d’utiliser des réseaux de neurones profonds. Pour permettre l’identification

directe de tous les objets présents dans les formes d’ondes lidar, nous proposons d’effectuer une seg-

mentation sémantique (c’est-à-dire 1 label par pas de temps) au lieu d’une classification (1 label par

forme d’onde). Malgré quelques limitations liées à la méthode de labélisation, nos résultats dépassent

ceux obtenus avec l’apprentissage automatique classique. Les performances du réseau suggèrent que les

attributs appris contiennent une information plus précise que ceux pré-définis : sur les seules formes

d’ondes vertes, les performances de notre réseau sont meilleures que celles obtenues avec l’apprentissage

automatique classique sur les formes d’ondes bi-spectrales.

Enfin, dans le chapitre 5, nous explorons l’extraction de connaissances plus fines à partir des formes

d’onde lidar bathymétriques. Nous proposons notamment une nouvelle méthode pour améliorer la dé-

tection des retours lidar dans les eaux très peu profondes et dans les eaux profondes ou troubles.

Avec l’approche de segmentation sémantique proposée dans le chapitre 4, l’identification d’échos super-

posés est impossible. Nous allons donc plus loin dans notre exploitation des réseaux de neurones profonds

pour le traitement des formes d’ondes et proposons d’utiliser une approche de détection d’objets pour

identifier les échos dans les formes d’onde bathymétriques. Pour lever les limitations liées à la labéli-

sation des données, nous entraînons le réseau sur un jeu de données simulé représentant une large gamme

de conditions d’acquisition. Cela nous permet d’avoir des retours labélisés dans des eaux extrêmement peu

profondes, où les composants se chevauchent et sont parfois impossibles à repérer à l’œil nu. Cela nous

fournit également des exemples de retours très faibles, un autre défi du traitement des formes d’ondes diffi-

cile à aborder avec une labélisation manuelle sans introduire de biais. Cette méthode produit des résultats

prometteurs : elle détecte 95 % des composants benthiques dans des eaux extrêmement peu profondes et

70 % des composants caractérisés par un rapport signal/bruit supérieur à 15 dB. Bien que certains retours

soient manqués dans les eaux très profondes, l’application au jeu de données test comporte de nombreuses

détections correctes d’échos très faibles. Enfin, le transfert de la méthode à la détection d’échos en zones

côtières peu profondes est réussi.

Nous étudions également la possibilité d’estimer les paramètres optiques de l’eau, sans prétraite-

ment et sans besoin de mesures in situ, en utilisant un réseau de neurones convolutif. Ce réseau

est conçu pour prédire le coefficient d’atténuation diffuse, le coefficient de rétrodiffusion à 180°, la perte

d’énergie à l’interface air/eau et la réflectance du fond à partir de formes d’ondes bathymétriques. Il estime

également la position de la surface de l’eau et du fond, ainsi que la profondeur. Bien que les résultats soient

encourageants, ils présentent également des erreurs suggérant le besoin d’un réseau plus complexe. En ef-

fet, certaines interactions entre paramètres, par exemple, le lien entre perte d’énergie à l’interface terre/eau
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et proéminence du retour du fond indépendamment de sa réflectance, ne sont pas capturées. Cependant,

les positions de la surface de l’eau et du fond sont particulièrement bien prédites, sauf à des profondeurs

plus importantes. Plusieurs modifications d’architecture et d’optimisation pourraient potentiellement

améliorer ces estimations préliminaires.

En entraînant ces réseaux sur des jeux de données synthétiques et en explorant leur application à des

données réelles par le biais de l’adaptation de domaine, nous abordons également le besoin de données

labélisées, qui constitue souvent un inconvénient majeur pour l’exploitation des données. En utilisant

des modèles physiques de transfert radiatif, nous éliminons le besoin de labéliser manuellement

les composantes des formes d’ondes et d’avoir accès à des mesures in-situ synchrones. L’application

des modèles obtenus aux formes d’ondes réelles nécessite une adaptation de domaine, mais des expérimen-

tations préliminaires rendent déjà cela réalisable pour la détection de la surface de l’eau et du fond marin

dans des zones côtières peu profondes.

Enfin, nous contribuons également aux améliorations méthodologiques dans le domaine de la télédé-

tection lidar bi-spectrale en mettant à la disposition de la communauté des outils open-source et des

jeux de données labelisés
5

utilisables pour la classification de nuages de points.

Dans l’ensemble, avec ces contributions méthodologiques, nous mettons en avant le potentiel des

réseaux de neurones profonds pour améliorer l’extraction d’information à partir des formes

d’ondes lidar. Nous constatons que leur capacité à modéliser des problèmes complexes sans nécessiter

de travail préalable sur les descripteurs les rend particulièrement adaptés aux défis du traitement des

formes d’ondes. Il est également intéressant de noter que les trois réseaux supervisés proposés pour le

traitement des formes d’ondes vertes semblent réduire de manière significative un obstacle majeur des

levés lidar bathymétriques : l’incertitude de la position de la surface de l’eau estimée. En effet, les trois

approches fournissent des détections de surface d’une précision très élevée, alors qu’il est généralement

admis que la détermination de la position de l’interface air/eau à partir des composantes bathymétriques

des formes d’ondes constitue un défi (Guenther, 1985; Guenther et al., 2000; Lague et al., 2020; Man-

dlburger et al., 2013). Dans le contexte actuel caractérisé par la popularité croissante de la télédétection

lidar bathymétrique, cela pourrait être une piste intéressante pour le développement de capteurs légers

ne reposant pas sur des systèmes à double longueur d’onde.

De plus, la possibilité d’identifier un grand nombre de surfaces topo-bathymétriques avec un seul nu-

age de points vert grâce à 3DMASC est prometteuse, d’autant plus au vu de la disponibilité croissante

5. Plugin 3DMASC dans CloudCompare disponible sur https://www.danielgm.net/cc/release/, scripts

Python accessibles sur https://github.com/p-leroy/lidar_platform, et jeux de données bientôt disponibles sur

https://opentopography.org/

https://www.danielgm.net/cc/release/
https://github.com/p-leroy/lidar_platform
https://opentopography.org/
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de levés lidar. En effet, les levés lidar bathymétriques du littoral français sont désormais tous disponibles

en libre accès via le Shom
6
. Les acquisitions lidar topographiques en cours sur l’ensemble du territoire

métropolitain français illustrent également la popularité croissante de la télédétection lidar. Cette thèse

intervient à un moment où les données lidar deviennent plus facilement accessibles pour les

spécialistes thématiques, via des plateformes en libre accès telles qu’OpenTopography (Krishnan et al.,

2011) ou des agences gouvernementales
7
. Nos contributions méthodologiques résonnent donc avec les

tendances actuelles dans les domaines académique et industriel. À une époque où le monde académique

doit repenser ses pratiques en matière d’empreinte carbone, le partage de données coûteuses sur le plan en-

vironnemental et la fourniture d’outils pour les exploiter pleinement semblent essentiels. En fournissant

des outils de traitement de données 3D aux spécialistes de l’environnement, nous souhaitons également

rendre les acquisitions de données 3D plus judicieuses et conformes aux enjeux mondiaux actuels, qui

nous obligent à repenser l’utilité de l’exploitation des capteurs lidar aéroportés pour dériver des rasters

2D. Enfin, la plupart des méthodes que nous avons introduites ont une portée d’application plus large

que le simple traitement des formes d’ondes lidar et peuvent ainsi fournir des perspectives utiles pour

d’autres études environnementales reposant sur des données 1D.

6. https://diffusion.shom.fr/
7. Par exemple, en France, https://geoservices.ign.fr/

https://diffusion.shom.fr/
https://geoservices.ign.fr/
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Titre : Extraction de connaissances à partir de lidar topo-bathymétrique : apprentissage auto-
matique et réseaux de neurones profonds pour les nuages de points et les formes d’onde.

Mot clés : interface terre/eau, lidar topo-bathymétrique, réseaux de neurones profonds

Résumé : Les interfaces terre-eau, fortement
vulnérables au changement climatique et à
la pression anthropique, requièrent une sur-
veillance accrue. Toutefois, l’observation inin-
terrompue des zones submergées et émer-
gées demeure un défi en raison de la pré-
sence d’eau. La télédétection lidar topo-
bathymétrique constitue une solution adé-
quate en assurant une représentation conti-
nue des zones terre-eau, matérialisée par
des nuages de points 3D et des formes
d’ondes 1D. Cependant, une pleine exploi-
tation de ces données requiert des outils
encore en attente de développement. Cette
thèse présente plusieurs méthodes d’extrac-

tion de connaissances des données lidar
topo-bathymétriques, incluant des approches
de classification basées sur des nuages de
points bi-spectraux et des formes d’ondes bi-
spectrales. En outre, des réseaux de neu-
rones profonds sont conçus pour la segmen-
tation sémantique, la détection et la classifi-
cation d’objets, ainsi que l’estimation de para-
mètres physiques de l’eau à partir des formes
d’ondes bathymétriques. L’utilisation de mo-
dèles de transfert radiatif guide des approches
visant à réduire la nécessité de données la-
bélisées, améliorant ainsi le traitement des
formes d’ondes lidar dans les eaux très peu
profondes ou turbides.

Title: Environmental knowledge extraction from topo-bathymetric lidar: machine learning and
deep neural networks for point clouds and waveforms.

Keywords: land/water interface, topo-bathymetric lidar, deep neural networks

Abstract: Land-water interfaces face escalat-
ing threats from climate change and human
activities, necessitating systematic observa-
tion to comprehend and effectively address
these challenges. Nevertheless, constraints
associated with the presence of water hinder
the uninterrupted observation of submerged
and emerged areas. Topo-bathymetric lidar re-
mote sensing emerges as a suitable solution,
ensuring a continuous representation of land-
water zones through 3D point clouds and 1D
waveforms. However, fully harnessing the po-
tential of this data requires tools specifically
crafted to address its unique characteristics.
This thesis introduces methodologies for ex-

tracting environmental knowledge from topo-
bathymetric lidar surveys. Initially, we intro-
duce methods for classifying land and seabed
covers using bi-spectral point clouds or wave-
form features. Subsequently, we employ deep
neural networks for semantic segmentation,
component detection and classification, and
the estimation of water physical parameters
based on bathymetric waveforms. Leveraging
radiative transfer models, these approaches
alleviate the need for manual waveform label-
ing, thereby enhancing waveform processing
in challenging settings like extremely shallow
or turbid waters.
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