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Chapter 1
Introduction

This thesis presents a comprehensive summary of my research work conducted since my PhD defense
in October 2018. It is structured into three inter-connected parts, each delving into specific aspects
of my research findings:

• Stochastic Volterra equations: theory and applications,

• Stochastic control and games with Volterra processes,

• Joint SPX-VIX modeling.

Context

Over the past few decades, the world’s financial markets have become increasingly complex, with a rise
in the number and diversity of market actors as well as a range of financial products. Despite losses
caused by successive financial crises, such as the 2008 crisis and the COVID-19 pandemic, this trend
continues unabated. Technological advances and increased capacity for massive data storage have
contributed to accelerating and developing the use of high-frequency algorithmic trading strategies.
In this context, financial valuation, hedging, and risk management require more precise models and
very fast calculation methods.

However, the increasing complexity of the models used makes their analysis more difficult and requires
the development of suitable mathematical tools and new numerical methods. In this context, my
research aims to develop more flexible models that allow for more realistic representations, capturing
interdependencies and temporal persistence, while preserving mathematical tractability. My main
strategy consists in identifying universal structures by embedding the problem in a “very large” or
even infinite dimension, in order to recover tractability. In many cases, the problem becomes linear
and/or simpler to solve in infinite dimensions. This phenomenon of the blessing of dimensionality
appears in several types of problems, such as Volterra processes, mean-field games, Deep Learning,
signatures. . . All of these topics are part of my recent and ongoing research. In a nutshell, I will
highlight in this thesis the blessing of dimensionality and put it in use in different contexts.

Stochastic Volterra equations: theory and applications

Several phenomena in the fields of finance and economics exhibit memory characteristics and strong
intertemporal dependence, which cannot be adequately modeled by stochastic processes such as Brow-
nian motion and the Poisson process, both characterized by independent increments. Stochastic

1



Chapter 1. Introduction 2

Volterra processes are a class of processes that extend standard Brownian motion and Poisson pro-
cesses to include memory; fractional Brownian motion and Hawkes processes are a special case.

In recent years, I specialized in the mathematical study, the numerical analysis and the practical im-
plementation of these equations, which fall outside the Markovian and semi-martingale frameworks.
Together with my co-authors we have developed new analytical and probabilistic techniques for study-
ing existence, uniqueness, and the characterization of the law of such processes. In addition, we have
identified several lifts in infinite dimension that allow to recover the Markovian and semi-martingale
character. This in turns allows to clarify simpler structures in infinite dimension, obtain explicit for-
mulas and develop suitable Markovian approximation schemes in a wide variety of practical problems
in finance.

Chapter 2 provides general weak existence, uniqueness and stability results for stochastic convolution
equations with jumps under mild regularity assumptions, allowing for non-Lipschitz coefficients and
singular kernels. In Section 2.1, we identify a good sample path space for solutions to stochastic
Volterra with jumps and we develop a weak solution and stability theory, for kernels in L2

loc. In
Section 2.2, under an affine specification, we show how such theory can be extended to the case of
kernels belonging only to L1

loc even in the presence of a Brownian component, and establish in addition
weak uniqueness.

Chapter 3 illustrates the flexibility and tractability of quadratic Gaussian Volterra processes for
multi-dimensional modeling of non-Markovian stochastic short rate and stochastic covariance models
in finance. In Section 3.2, we provide an analytic expression for the characteristic function of the
log-price in models with a certain Volterra quadratic structure for the stochastic variance process.
This nests for instance the fractional Stein-Stein model.

Stochastic control and games with Volterra processes

Chapter 4 provides an exhaustive treatment of solvability and approximation of linear-quadratic
control problems for a class of stochastic Volterra equations of convolution type, whose kernels are
Laplace transforms of certain signed matrix measures which are not necessarily finite.

Chapter 5 explicitly solves two intricate control problems in finance under a Volterra framework:

• Markowitz portfolio allocation problem for multivariate quadratic Volterra models,
• Optimal liquidation with general transient impact and trading signals.

Both models considered in Chapter 5 involve non-convolution kernels, they fall outside the scope of
the framework developed in Chapter 4. Yet, we are still able to solve both problems in terms of
explicit operator solutions similar to the one that appear in Chapter 3 by making educated quadratic
Ansatz on an adjusted forward process. The related operator Riccati equations that appear can
be solved explicitly exploiting again the structure of the solution that has been identified earlier in
Chapter 3 in an un-controlled case.

Chapter 6 pursues the study of controlled dynamics with Volterra processes but in the context of
stochastic games:

• A Stackelberg game: a Principal-Agent problem à la Holmström and Milgrom but where the
usual Brownian motion for modeling the revenues is replaced by a Gaussian Volterra process.
What is striking is that we are able to explicitly solve the problem for this class and show that
the optimal contract is still linear in the terminal value of the revenue, just like in Holmstrom-
Milgrom framework, with a recommended deterministic effort for the agent.

• A class of finite-player and mean-field games that we solve in terms of explicit operator formulas,
similar to the ones that appeared in Chapters 3 and 5. However, in contrast with these chapters,
there is an important methodological difference, we are able to develop a general direct approach
to solve the game directly, without having to guess any particular Ansatz and verify that is
indeed the solution.
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Joint SPX-VIX modeling

Chapter 7 introduces the first one factor Markovian stochastic volatility model that is able to jointly
calibrate SPX and VIX smiles: the Quintic Ornstein-Uhlenbeck model. It has only 6 effective param-
eters and an input curve that allows to match certain term structures and it is remarkably tractable.
More interestingly, we show that it outperforms its rough counterpart, by a clear margin, on all dates
and market conditions, on more than 10 years of data, contrary to widespread beliefs.

Chapter 8 reconciles rough volatility with jumps models and provides an interpretation of negative H
regimes. In Chapter 2, we saw how one could extend fractional processes based on Brownian motion
to negative Hurst indices H ∈ (−1/2, 1/2]. One of the aims of Chapter 8 is to give an interpretation of
the region H ∈ (−∞,−1/2] for which such processes can no longer be defined. In addition, Chapter
7 shows that calibrated values of the parameter H in the Quintic Ornsetin-Uhlenbeck model are
negative on average, which also motivates the theoretical understanding of negative H regimes.

Perspectives

Chapter 9 presents some perspectives and ongoing work.



. .



Part I

Stochastic Volterra equations:
theory and applications
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Chapter 2
A weak solution theory for stochastic
convolution equations with jumps

Summary

This chapter provides general weak existence, uniqueness and stability results for stochas-
tic convolution equations with jumps under mild regularity assumptions, allowing for non-
Lipschitz coefficients and singular kernels.

Based on:
[11] Abi Jaber, E., Cuchiero, C., Larsson, M., & Pulido, S. A weak solution theory for stochastic
Volterra equations of convolution type, Annals of Applied Probability, 31(6), 2924-2952, 2021.
[2] Abi Jaber, E. Weak existence and uniqueness for affine stochastic Volterra equations with
L1-kernels, Bernoulli, 27(3), 1583-1615, 2021.

A stochastic Volterra equation of convolution type is a stochastic equation of the form

Xt = g0(t) +
∫

[0,t)
K(t− s)dZs, (2.0.1)

where X is the d-dimensional process to be solved for, g0 is a given function, K is a given d × k
matrix-valued convolution kernel, and Z is a k-dimensional Itô semimartingale whose characteristics
are given functions of X. The solution concept is described in detail below.

In particular, conditions are needed to ensure that the stochastic integral on the right-hand side of
(2.0.1) is well-defined. Indeed, let us consider two simple cases with d = k = 1 and g0 ≡ 0:

• Z is a Poisson process N with jump times (Ti)i∈N, then,

Xt =
∫

[0,t)
K(t− s)dNs =

∑
Ti<t

K(t− Ti).

It is clear in this case that X is well defined as long as the kernel K ∈ L1
loc. But this means

that K can be singular at 0, which shows that the sample paths of X reach ∞ at each jump
time. Said differently, the sample paths of the process X do not belong to the usual càglàd (or
càdlàg) spaces used for the study of standard stochastic differential equations with jumps.

7
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• Z is a Brownian motion W , then, the stochastic convolution

Xt =
∫ t

0
K(t− s)dWs,

is well-defined, as an Itô stochastic integral for each t, as long as K ∈ L2
loc. Existence of a

version of X with continuous sample paths can be obtained under additional assumptions on
K.

In Section 2.1, we identify a good sample path space for solutions to (2.0.1) and we develop a weak
solution and stability theory, for kernels in L2

loc. In Section 2.2, under an affine specification of the
characteristics of Z, we show how such theory can be extended to the case of kernels belonging only
to L1

loc even in the presence of a Brownian component, and establish in addition weak uniqueness.

2.1 Weak solution and stability theory [11]

Solutions of (2.0.1) are neither semimartingales nor Markov processes in general. Classically, they
are constructed using Picard iteration, but only under Lipschitz or near-Lipschitz assumptions. Al-
ternatively, one can use scaling limits of Hawkes-type processes to generate continuous solutions for
well-chosen kernels and affine characteristics [131]. Yet another approach is to use projections of
Markovian solutions to certain degenerate stochastic partial differential equations [6, 38, 68, 67, 151].

We will also use approximation by jumps, but not via scaling limits of Hawkes processes, nor infinite
dimensional lifts. Instead we work with a priori Lp estimates for solutions of (2.0.1), combined with
a novel “Volterra” martingale problem in Rd that allows us to pass to weak limits in (2.0.1). In view
of the irregular path behavior that occurs, in particular, in the presence of jumps, this identifies Lp

spaces as a natural environment for the weak convergence analysis. With this approach we obtained
in [11]:

• existence of weak solutions for singular kernels, non-Lipschitz coefficients and general jump
behavior;

• strong existence and pathwise uniqueness under suitable Lipschitz conditions (but still singular
kernels and jumps);

• convergence and stability theorems in the spirit of classical martingale problem theory, allowing
for instance to study scaling limits of nonlinear Hawkes processes and to approximate stochastic
Volterra processes by Markovian semimartingales;

• path regularity under certain additional conditions on the kernel and the characteristics.

Let us now describe the solution concept for (2.0.1). For p ∈ [2,∞) we denote by Lp
loc = Lp

loc(R+,Rn)
the space of locally p-integrable functions from R+ to Rn, where the dimension n of the image space
will depend on the context. Let d, k ∈ N and consider the following data:

1. an initial condition g0 : R+ → Rd in Lp
loc,

2. a convolution kernel K : R+ → Rd×k in Lp
loc,

3. a characteristic triplet (b, a, ν) of measurable maps b : Rd → Rk and a : Rd → Sk
+ as well as a

kernel ν(x, dζ) from Rd into Rk such that ν(x, {0}) = 0 for all x ∈ Rd and, for some c ∈ R+,

|b(x)| + |a(x)| +
∫
Rk

(
1 ∧ |ζ|2

)
ν(x, dζ) ≤ c(1 + |x|p), x ∈ Rd.

Given this data, we can now state the following key definition.
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Definition 2.1. A weak Lp solution of (2.0.1) for the data (g0,K, b, a, ν) is an Rd-valued predictable
process X, defined on some filtered probability space (Ω,F ,F,P), that has trajectories in Lp

loc and
satisfies

Xt = g0(t) +
∫

[0,t)
K(t− s)dZs P ⊗ dt-a.e.

for some Rk-valued Itô semimartingale Z with Z0 = 0 whose differential characteristics with respect to
the Lebesgue measure (and with respect to some given truncation function) are b(X), a(X), ν(X, dζ).
For convenience we often refer to the pair (X,Z) as a weak Lp solution.

Throughout, we assume
∫
Rk |ζ|2ν(x, dζ) < ∞ for all x ∈ Rd so we can use the “truncation function”

χ(ζ) = ζ. The characteristics of Z are therefore understood with respect to this function. We can
now state our main result on existence of weak Lp solutions.

Theorem 2.2. Let d, k ∈ N, p ∈ [2,∞), and consider data (g0,K, b, a, ν) as in 1–3. Assume b a,
and x 7→ |ζ|2ν(x, dζ) are continuous. In addition, assume there exist a constant η ∈ (0, 1), a locally
bounded function cK : R+ → R+, and a constant cLG such that∫ T

0

|K(t)|p
tηp

dt+
∫ T

0

∫ T

0

|K(t) −K(s)|p
|t− s|1+ηp

ds dt ≤ cK(T ), T ≥ 0, (2.1.1)

and
|b(x)|2 + |a(x)| +

∫
Rk

|ζ|2ν(x, dζ)

+
(∫

Rk

|ζ|pν(x, dζ)
)2/p

≤ cLG(1 + |x|2), x ∈ Rd.

(2.1.2)

Then there is a weak Lp solution (X,Z) of (2.0.1) for the data (g0,K, b, a, ν).

Let us mention that several kernels of interest satisfy (2.1.1) such as the fractional kernel K(t) = tγ−1

with γ > 1
2 (which is singular when γ < 1) and locally Lipschitz kernels among others.

Let us give a brief overview of the proof of Theorem 2.2. The proof of Theorem 2.2 is based on
approximation and weak convergence of laws on suitable function spaces. The semimartingale Z has
trajectories in the Skorokhod space D = D(R+,Rk) of càdlàg functions. Weak convergence in D is
a classical tool used, for example, to obtain weak solutions of stochastic differential equations with
jumps (see, e.g., Ethier and Kurtz [81]). However, as explained in the introduction of this chapter,
the trajectories of X need not be càdlàg, only locally p-integrable. Thus it is natural to regard X as
a random element of the Polish space Lp

loc = Lp
loc(R+,Rd). It is in this space—or rather, the product

space Lp
loc ×D—that our weak convergence analysis takes place.

Relative compactness in Lp is characterized by the Kolmogorov–Riesz–Fréchet theorem; see e.g. Brezis
[45, Theorem 4.26]. A more convenient criterion in our context uses the Sobolev–Slobodeckij norms,
defined for any measurable function f : R+ → Rd by

∥f∥W η,p(0,T ) =
(∫ T

0
|f(t)|pdt+

∫ T

0

∫ T

0

|f(t) − f(s)|p
|t− s|1+ηp

ds dt

)1/p

,

where p ≥ 1, η ∈ (0, 1), T ≥ 0 are parameters. The relation between these norms and Lp spaces is
somewhat analogous to the relation between Hölder norms and spaces of continuous functions. In
particular, balls with respect to ∥ · ∥W η,p(0,T ) are relatively compact in Lp(0, T ); see e.g. Flandoli and
Gatarek [84, Theorem 2.1]. The following a priori estimate clarifies the role of the conditions (2.1.1)
and (2.1.2) in Theorem 2.2, and is the key tool that allows us to obtain convergent sequences of
approximate Lp solutions.

Theorem 2.3. Let d, k ∈ N, p ∈ [2,∞), and consider data (g0,K, b, a, ν) as in 1–3. Assume there
exists a constant cLG such that (2.1.2) holds. Then any weak Lp solution X of (2.0.1) for the data
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(g0,K, b, a, ν) satisfies

E[∥X∥p
Lp(0,T )] ≤ c,

where c < ∞ only depends on d, k, p, cLG, T, ∥g0∥Lp(0,T ), and, Lp-continuously, on K|[0,T ]. If in
addition there exist a constant η ∈ (0, 1) and a locally bounded function cK : R+ → R+ such that
(2.1.1) holds, then

E[∥X − g0∥p
W η,p(0,T )] ≤ c, (2.1.3)

where c < ∞ only depends on d, k, p, η, cK , cLG, T .

An immediate corollary is the following tightness result.

Corollary 2.4. Fix d, k, p, η, cK , cLG as in Theorem 2.3, and let G0 ⊂ Lp
loc be relatively compact. Let

X be the set of all weak Lp solutions X of (2.0.1) as g0 ranges through G0, K ranges through all kernels
that satisfy (2.1.1) with the given η and cK , and (b, a, ν) ranges through all characteristic triplets that
satisfy (2.1.2) with the given cLG. Then X is tight, in the sense that the family {Law(X) : X ∈ X } is
tight in P(Lp

loc).

Proof. Fix T ∈ R+ and let c be the constant in (2.1.3). For any m > 0, Markov’s inequality gives

sup
X∈X

P(∥X − g0∥W η,p(0,T ) > m) ≤ c

mp
.

The balls {f : ∥f∥W η,p(0,T ) ≤ m} are relatively compact in Lp(0, T ), so the above estimate implies
that the family {(X − g0)|[0,T ] : X ∈ X } is tight in Lp(0, T ). Since T was arbitrary, it follows that
X0 = {X − g0 : X ∈ X } is tight in Lp

loc. Since G0 is relatively compact, G0 + X0 is tight as well, and
it contains X . Thus X is tight.

The second main ingredient in the proof of Theorem 2.2 relies on a reformulation of (2.0.1) as a
certain martingale problem which is equivalent to the weak Lp solutions of (2.0.1). This point of
view is useful because it leads to the following stability result, which under appropriate conditions
asserts that the weak limit of a sequence of solutions is again a solution. Recall that D denotes the
Skorokhod space of càdlàg functions from R+ to Rk.

Theorem 2.5. Let d, k ∈ N, p ∈ [2,∞). For each n ∈ N, let (Xn, Zn) be a weak Lp solution of
(2.0.1) given data (gn

0 ,K
n, bn, an, νn) as in 1–3. Assume the triplets (bn, an, νn) all satisfy (2.1.2)

with a common constant cLG. Assume also, for some (g0,K, b, a, ν) and limiting process (X,Z), that

• gn
0 → g0 in Lp

loc,

• Kn → K in Lp
loc,

• (bn, an, νn) → (b, a, ν) in the sense that Anf → Af locally uniformly on Rd × Rk for every
f ∈ C2

c (Rk), where Af is defined in terms of the characteristic triplet by

Af(x, z) = b(x)⊤∇f(z) + 1
2Tr(a(x)∇2f(z))

+
∫
Rk

(f(z + ζ) − f(z) − ζ⊤∇f(z))ν(x, dζ),

and Anf is defined analogously,

• (Xn, Zn) ⇒ (X,Z) in Lp
loc ×D.

Then (X,Z) is a weak Lp solution of (2.0.1) for the data (g0,K, b, a, ν).
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It is important to appreciate that no pointwise convergence of characteristic triplets is required in
Theorem 2.5. For example, it may happen that an = 0 for all n, but the limiting triplet has a ̸= 0.
This is because diffusion can be approximated by small jumps, and we indeed make use of this in a
crucial manner.

Moreover, in the paper Abi Jaber et al. [11], we show that by combining the tightness and stability
results with an approximation scheme for the characteristic triplet, we reduce the existence question
to the pure jump case where Z is piecewise constant with bounded jump intensity. A solution X can
then be constructed directly. In addition, pathwise uniqueness is established under suitable Lipschitz
conditions. Finally, as applications, we show how our results can be applied to scaling limits of
Hawkes processes and approximations of solutions of (2.0.1) by means of finite-dimensional systems
of Markovian SDEs.

2.2 Existence and uniqueness for the L1-case under affine char-
acteristics [2]

As mentioned in the introduction of this chapter, if the driving semimartingale Z in (2.0.1) includes
a Brownian part, then, the kernel K needs to be at least in L2

loc. Interestingly, under affine character-
istics of Z in X, the formulation of the equation in (2.0.1) can be extended to the L1

loc-setting. The
idea is the following, assume for simplicity that a(x) = x and both b and ν are 0 so that

Xt = g0(t) +
∫ t

0
K(t− s)dZs

and Z has characteristics (0,
∫ ·

0 Xsds, 0) that are absolutely continuous with respect to the Lebesgue
measure, so that the differential characteristics (with respect to dt) of Z are given by (0, X, 0). Here,
we can think of Z as Z =

∫ ·
0

√
XsdWs. Then, by an application of stochastic Fubini’s theorem, the

dynamics of the integrated process X̄ :=
∫ ·

0 Xsds are given by

X̄t = G0(t) +
∫ t

0
K(t− s)Zsds,

with G0 =
∫ ·

0 g0(s)ds and Z has characteristics (0, X̄, 0). The advantage of such formulation is that
now the integral that appears is against the Lebesgue measure and makes sense for L1

loc kernel. This
motivates the study of stochastic Volterra equation with locally L1–kernels K in the form

X̄t = G0(t) +
∫ t

0
K(t− s)Zsds, t ≥ 0, (2.2.1)

for a given function G0 : R+ → R where Z is a real-valued semimartingale, starting from zero, with
affine characteristics in X̄

(bX̄, cX̄, ν(dζ)X̄),

with b ∈ R, c ≥ 0, ν a nonnegative measure on R+ such that
∫
R+
ζ2ν(dζ) < ∞, with respect to

the ‘truncation function’ χ(ζ) = ζ. For L2–kernels this formulation agrees with (2.0.1), where Z is
a semimartingale but whose characteristics are absolutely continuous with respect to the Lebesgue
measure. In the L1 setting, X̄ may fail to be absolutely continuous with respect to the Lebesgue
measure. For this reason, the study falls beyond the scope of Section 2.1.

Our motivation for studying such convolution equations is twofold. Stochastic Volterra equations
with kernels that are locally in L1 but not in L2 with c > 0 and ν ≡ 0 arise as scaling limits of
branching processes in population genetics, see Dawson and Fleischmann [76], Mytnik and Salisbury
[151], and self–exciting Hawkes processes in mathematical finance, see Jusselin and Rosenbaum [133].
The L1-framework allows for instance to make sense of fractional dynamics, inspired by the fractional
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Brownian motion, for negative Hurst indices H ∈ (−1/2, 0). In both of the motivating cases, one can
compute the Laplace transform of X̄, modulo a deterministic Riccati–Volterra equation of the form

ψ(t) =
∫ t

0
KH(t− s)

(
1
2ψ

2(s) − 1
)
ds,

either by using the dual process of the catalytic super-Brownian motion, see Dawson and Fleischmann
[76, Equations (4.2.1)-(4.2.2)], or by exploiting the affine structure of the approximating Hawkes
processes, see Jusselin and Rosenbaum [133, Theorem 3.4]. Both constructions provide solutions to
(2.2.1), but do not yield uniqueness. Establishing weak uniqueness is one of the main motivation of
my work in [2].

In [2], we provide a generic treatment of the limiting macroscopic equation (2.2.1) and we allow for
(infinite activity) jumps in Z. For instance, Hawkes processes can be recovered by setting c = 0
and ν = δ1. The strategy we adopt is based on approximations using stochastic Volterra equations
with L2 kernels, whose existence and uniqueness theory has been established in [11, 10] and the
references therein. By doing so, we avoid the infinite-dimensional analysis used for super-processes,
we also circumvent the need to study scaling limits of Hawkes processes, allowing for more generality
in the choice of kernels K and input functions G0. Along the way, we derive a general stability result
that encompasses the motivating example with Hawkes processes. Most importantly, we establish
weak uniqueness using a duality argument on the Fourier–Laplace transform of X̄ via a deterministic
Riccati–Volterra integral equation. In particular, this expression extends the one obtained for affine
Volterra processes with L2-kernels in Abi Jaber, Larsson, and Pulido [10], Cuchiero and Teichmann
[68]. We also illustrate the applicability of our results on a class of hyper-rough Volterra Heston
models with a Hurst index H ∈ (−1/2, 1/2] and jumps complementing the results of Abi Jaber et al.
[10], El Euch and Rosenbaum [80], Jusselin and Rosenbaum [133]. Such models have recently known
a growing interest to account for rough volatility [99].



Chapter 3
Modeling with Quadratic Gaussian Volterra
processes

Summary

This chapter illustrates the flexiblity and tractability of quadratic Gaussian Volterra processes
for multi-dimensional modeling of non-Markovian stochastic short rate and stochastic covari-
ance models.

Based on:
[3] Abi Jaber, E. The Laplace transform of the integrated Volterra Wishart process, Mathe-
matical Finance, 32(1), 309-348, 2022.
[4] Abi Jaber, E. The characteristic function of Gaussian stochastic volatility models: an an-
alytic expression, Finance & Stochastics, 26, 733–769, 2022.

In this chapter, we are essentially interested in studying models with a certain quadratic structure in
Gaussian Volterra processes. In particular, the d× d Volterra Wishart process XX⊤ where X is the
d×m-matrix valued Volterra Gaussian process

Xt = g0(t) +
∫ t

0
K(t, s)dWs,

for some given input curve g0 : [0, T ] → Rd×m, suitable kernel K : [0, T ]2 → Rd×d and d×m-matrix
Brownian motion W , for a fixed time horizon T > 0.

The introduction of the kernel K allows for flexibility in financial modeling as illustrated in the two
following examples. First, one can consider asymmetric (possibly negative) quadratic short rates of
the form

rt = tr
(
X⊤

t QXt

)
+ ξ(t)

where Q ∈ Sd
+, ξ is an input curve used for matching market term structures and tr stands for the

trace operator. The kernel K allows for richer autocorrelation structures than the one generated with
the conventional Hull and White [128] and Cox, Ingersoll, and Ross [66] models. Second, for d = m,
one can build stochastic covariance models for d–assets S = (S1, . . . , Sd) by considering the following
dynamics for the stock prices:

dSt = diag(St)XtdBt (3.0.1)

where B is d-dimensional and correlated with W . Then, the instantaneous covariance between the
assets is stochastic and given by d⟨log S⟩t

dt = XtX
⊤
t ∈ Sd

+. When d = m = 1, one recovers the

13

https://onlinelibrary.wiley.com/doi/abs/10.1111/mafi.12334
https://onlinelibrary.wiley.com/doi/abs/10.1111/mafi.12334
https://link.springer.com/article/10.1007/s00780-022-00489-4#citeas
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Volterra version of the Stein and Stein [171] or Schöbel and Zhu [168] model. Here, singular kernels
K satisfying lims↑t |K(t, s)| = ∞, allow to take into account roughness of the sample paths of the
volatility, as documented in Bennedsen et al. [35], Gatheral et al. [99]. As an illustrative example for
d = m = 1, one could consider the Riemann-Liouville fractional Brownian motion

Xt = 1
Γ(H + 1/2)

∫ t

0
(t− s)H−1/2dWs,

either with H ∈ (0, 1/2) to reproduce roughness when modeling the variance process, or with H ∈
(1/2, 1) to account for long memory in short rate models.

In order to keep the model tractable, one needs to come up with fast pricing and calibration techniques.
The main objective of the papers [3, 4] is to show that these models remain highly tractable, despite
the inherent non-markovianity and non-semimartingality due to the introduction of the kernel K.
Section 3.1 derives the Laplace transform of the multi-dimensional Volterra Wishart process. In
Section 3.2, we provide an analytic expression for the characteristic function of the log-price in models
of the form (3.0.1), in a one-dimensional setting. The extension of the formulas to the multi-dimension
are straightforward, and will later be used in Chapter 5 to solve Markowitz investment problem in a
multivariate setting for a large class of models that encompass the dynamics (3.0.1).

3.1 The Laplace transform of the Volterra Wishart process
[3]

Integrated quantities of the form
∫ ·

0 XsX
⊤
s ds play a key role for pricing zero-coupon bonds and options

on covariance risk. Let us first sketch a very simple way of recovering their Laplace transform. To
fix ideas, we consider the 1-dimensional setting with K : [0, T ] → R, W a standard Brownian motion
and

Xt = X0 +
∫ t

0
K(t, s)dWs.

where
∫ T

0
∫ T

0 |K(t, s)|2dtds < ∞. Define the conditional mean process gt and conditional covariance
function Σt by:

gt(s) := E
[
Xs

∣∣∣ Ft

]
1s≥t =

(
X0 +

∫ t

0
K(s, u)dWu

)
1s≥t,

Σt(s, u) :=
∫ s∧u

t

K(s, r)K(u, r)dr, t ≤ s, u ≤ T.

Our aim is to compute the conditional Laplace transform of the integrated squared process

Lt,T = E

[
exp

(
w

∫ T

t

X2
sds

) ∣∣∣ Ft

]
, w ≤ 0.

Fix t ∈ [0, T ], the idea is to exploit Gaussianity in 4 simple steps:

1. Switch from dynamic to static: Fix n and consider a mesh t = t0 < t1 < . . . < tn = T and
write

w

∫ T

t

X2
sds ≈ w

(T − t)
n

n∑
i=1

X2
tn

i
= w

(T − t)
n

Tr(XnX
⊤
n ),

where Xn = (Xtn
1
, . . . , Xtn

n
)⊤.

2. Since X is a Gaussian process: conditional on Ft, Xn is Gaussian with mean vector gn
t =

(gt(tn1 ), . . . , gt(tnn))⊤ and covariance matrix Σn
t = (Σt(tni , tnj ))1≤i,j≤n.
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3. It follows that conditional on Ft, XnX
⊤
n follows a Wishart distribution with explicit Laplace

transform:

Ln
t,T = E

[
exp

(
w

(T − t)
n

Tr
(
XnX

⊤
n

)) ∣∣∣ Ft

]
= exp

(
ϕn

t,T + (gn
t )⊤Ψn

t,T gn
t

)
, (3.1.1)

where

Ψn
t,T = w

(T − t)
n

(
In − 2w (T − t)

n
Σn

t

)−1
, ϕn

t,T = −1
2 log Det(In − 2w (T − t)

n
Σn

t ).

4. Sending n → ∞, one expects Ln
t,T → Lt,T so that

Ln
t,T = exp

(
ϕn

t,T + (gn
t )⊤Ψn

t,T gn
t

)
→ exp (ϕt,T + ⟨gt,Ψt,T gt⟩L2),

where

Ψn
t,T = w

(T − t)
n

(
In − 2w (T − t)

n
Σn

t

)−1
→ w (id − 2wΣt)−1 := Ψt,T

ϕn
t,T = −1

2 log det(In − 2w (T − t)
n

Σn
t ) → −1

2 log det(id − 2wΣt) := ϕt,T

where

• ⟨f, g⟩L2 =
∫ T

0 f(s)g(s)ds
• ∀K ∈ L2 ([0, T ]2,R

)
, K is the integral operator on L2([0, T ]) induced by the kernel K

(Kg)(s) =
∫ T

0 K(s, u)g(u)du.

The objects appearing in the limit depend on the infinite dimensional linear covariance operator Σ
and its associated determinant, the so-called Fredholm determinant that first appeared in [94]. The
statement and derivation are made precise in [3] in a multidimensional setting under mild assumptions
on the kernel K: for w ∈ Sd

+, using the integral operator Σt induced by the covariance kernel Σt,
i.e. (Σtf)(s) =

∫ T

0 Σt(s, u)f(u)du for f ∈ L2 ([0, T ],Rd×m
)
, the Laplace transform reads

E

[
exp

(
−
∫ T

t

tr
(
wXsX

⊤
s

)
ds

) ∣∣∣ Ft

]
=

exp
(

−⟨gt,
√
w (id + 2

√
wΣt

√
w)−1 √

wgt⟩L2
t

)
det (id + 2

√
wΣt

√
w)m/2

where ⟨f, g⟩L2
t

=
∫ T

t
tr
(
f(s)⊤g(s)

)
ds and det stands for the Fredholm determinant.

Two crucial remarks can be made at this stage:

• The Laplace transform is exponentially quadratic in the forward process (gt)t≤T . This has to
be contrasted with affine Volterra processes introduced in [10] where the Laplace transform is
exponentially linear in (gt)t≤T . In general, such quadratic representation cannot be recovered
from that of finite dimensional affine Volterra processes.

• Differentiating Ψt :=
√
w (id + 2

√
wΣt

√
w)−1 √

w yields that Ψ solves an operator Riccati
equation of the form

Ψ̇t = −2ΨΣ̇tΨ.

These two crucial points disentangle the underlying quadratic structure behind such non-Markovian
models and open the door for making good Ansatz in an uncontrolled setting but also in control
problems sharing a similar linear-quadratic structure in Volterra processes. Furthermore, the Ansatz
usually lead to some type of Riccati equations, using the second point above, we now know how to
generate explicit operator solutions to such Riccati equations. This will be the main key behind the
derivation of the characteristic function of the log-price in Volterra Stein-Stein models in Section 3.2.
More interestingly, the same idea can be exploited to its full potential for solving non-Markovian
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optimal control problems: the Markowitz problem in a multivariate Volterra Stein-Stein model and
the optimal portfolio liquidation problem with a general transient impact kernel in Chapter 5 below.

Although explicit, the expression for the Laplace transform is not known in closed form, except
for certain cases. We provide in [3] two approximation procedures either by closed form solutions
of conventional Wishart distributions or finite dimensional matrix Riccati equations stemming from
conventional linear-quadratic models. We show how these approximations can then be used to price
bonds with possible default risk, or options on covariance in multivariate (rough) volatility models
by Laplace transform techniques.

Practitioner’s corner. Let WH denote a fractional Brownian motion with Hurst index H ∈ (0, 1).
We can get the following straightforward approximation via closed form Wishart marginals:

Ln(H) := E

[
exp

(
− 1
n

n∑
i=1

(
WH

ti

)2
)]

→ E
[
exp

(
−
∫ 1

0

(
WH

s

)2
ds

)]
:= L(H)

To test the formulas numerically, we proceed as follows. First, we determine the reference value of
the right hand side for several values of H. For H = 1/2, the exact value is L(1/2) = cosh(

√
2)−1/2.

For H ∈ {0.1, 0.3, 0.7, 0.9}, we run a Monte–Carlo simulation to estimate L(H) with the trapezoidal
rule with a 95% confidence interval and 106 sample paths with 103 time steps for each sample path.
Second, for each value of H, we compute Ln(H) as in (3.1.1), for several values of n with the left
Riemann sum and the Gauss–Legendre quadrature. The results are collected in Figure 3.1 below.
We observe that the Gauss–Legendre quadrature performs better than the left Riemann sum rule,
especially for higher values of H. When H ≥ 0.5, even with n = 10, In(H) with the Gauss–Legendre
rule falls already within the 95% confidence interval of the Monte–Carlo simulation. Other quadrature
rules can be used to get a better approximation of the Fredholm determinant, depending on the kernel,
see for instance Bornemann [43].
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Figure 3.1: Convergence of Ln(H) with the Riemann sum (blue) and the Gauss–Legendre
quadrature (green) towards the benchmark MC value L(H) (red) for different values of

(H,n). The dashed lines delimit confidence intervals of the Monte–Carlo simulation.
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3.2 The characteristic function of the Volterra Stein-Stein
model [4]

For T > 0, we will consider the following generalized version of the Stein–Stein model:

dSt = StXtdBt, S0 > 0,

Xt = g0(t) +
∫ t

0
K(t, s)κXsds+

∫ t

0
K(t, s)νdWs,

with B = ρW +
√

1 − ρ2W⊥, ρ ∈ [−1, 1], κ, ν ∈ R, g0 a suitable deterministic input curve, K :
[0, T ]2 → R a measurable kernel and (W,W⊥) a two-dimensional Brownian motion.

For suitable u,w ∈ C, we provide in [4] the following analytical expression for the conditional joint
Fourier–Laplace transform of the log-price and the integrated variance:

E

[
exp

(
u log ST

St
+ w

∫ T

t

X2
sds

)∣∣∣Ft

]
= exp (⟨gt,Ψtgt⟩L2)

det (Φt)1/2 , (3.2.1)

with ⟨f, h⟩L2 =
∫ T

0 f(s)h(s)ds, det the Fredholm [94] determinant, gt the adjusted conditional mean
given by

gt(s) = 1t≤sE

[
Xs −

∫ T

t

K(s, r)κXrdr
∣∣∣ Ft

]
, s, t ≤ T ;

and Ψt a linear operator acting on L2 ([0, T ],R) defined by

Ψt = (id − bK∗)−1
a
(
id − 2aΣ̃t

)−1 (id − bK)−1
, t ≤ T, (3.2.2)

where K denotes the integral operator induced by K, K∗ the adjoint operator, id denotes the identity
operator, i.e. (idf) = f for all f ∈ L2 ([0, T ],C),

a = w + 1
2(u2 − u), b = κ+ ρνu,

and Σ̃t the adjusted covariance integral operator defined by

Σ̃t = (id − bK)−1Σt(id − bK∗)−1,

with Σt defined as the integral operator associated with the covariance kernel

Σt(s, u) = ν2
∫ T

t

K(s, z)K(u, z)dz, t ≤ s, u ≤ T,

and finally Φ is defined by
Φt = id − 2aΣ̃t.

The proof exploits the ideas that we have identified in the previous section: We adopt a dynamical
approach to derive the conditional characteristic function (3.2.1) via Itô’s formula on a quadratic
Ansatz on the adjusted conditional mean process (gt(s))t≤s combined with explicit operator solutions
to the underlying operator Riccati equations that appear.

From the numerical perspective, we show that the expression (3.2.1) lends itself to approximation by
closed form solutions using finite dimensional matrices after a straightforward discretization of the
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operators in the form

E

[
exp

(
u log ST

S0
+ w

∫ T

0
X2

sds

)]
≈

exp
(

T
n g

⊤
n Ψn

0 gn

)
Det(Φn

0 )1/2

where gn ∈ Rn and Φn
0 ,Ψn

0 ∈ Rn×n are entirely determined by (g0,K, ν, κ, u, w) and Det is the
standard determinant of a matrix.

Practitioner’s Corner. We illustrate the applicability of these formulas on an option pricing and
calibration example by Fourier inversion techniques in a (rough) fractional Stein–Stein model.

Figure 3.2: Convergence of the implied volatility slices for short (T = 0.05 year) and
long maturities (T = 1 year) of the operator discretization towards: (i) the explicit solution
of the conventional Stein–Stein model (H = 0.5 upper graphs); (ii) the 95% Monte-Carlo
confidence intervals (H = 0.2 lower graphs). The parameters are X0 = θ = 0.1, κ = 0,

ν = 0.25 and ρ = −0.7.

For real market data, we calibrate the fractional Stein–Stein model to: (i) the at-the-money skew.
Keeping the parameters X0 = 0.44, θ = 0.3, κ = 0 fixed, the calibrated parameters are given by

ν̂ = 0.5231458, ρ̂ = −0.9436174 and Ĥ = 0.2234273. (3.2.3)

This power-law like behaviour of the at-the-money skew observed on the market is captured by the
fractional Stein–Stein model as illustrated on Figure 3.3 with only three parameters. (ii) the implied
volatility surface of the S&P accross several maturities for in Figure 3.4.

Both calibration lead to Ĥ < 0.5 indicating that the rough regime of the fractional Stein–Stein model
is coherent with the observations on the market.
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Figure 3.3: Term structure of the at-the-money skew for the S&P index on June 20, 2018
(red dots) and for the rough Stein–Stein model with calibrated parameters (3.2.3) (blue

circles with dashed line).

Figure 3.4: The implied volatility surface of the S&P index (red) and the calibrated
fractional Stein–Stein model (blue) with parameters: X̂0 = 0.113, θ̂ = −0.044, κ̂ = −8.9e−

5, ν̂ = 0.176, ρ̂ = −0.704, and Ĥ = 0.279.

Related Literature. Conventional Wishart processes initiated by Bru [47] and introduced in fi-
nance by Gourieroux and Sufana [104] have been intensively applied, together with their variants,
in term structure and stochastic covariance modeling, see for instance Alfonsi [19], Buraschi et al.
[48], Cuchiero et al. [69, 70], Da Fonseca et al. [73, 74], Gouriéroux et al. [105], Muhle-Karbe et al. [150].
Conventional linear quadratic models have been characterized in Chen et al. [55], Cheng and Scaillet
[57]. Volterra Wishart processes have been recently studied in Cuchiero and Teichmann [67], Yue and
Huang [177]. Applications of certain quadratic Gaussian processes can be found in Benth and Rohde
[37], Corcuera et al. [65], Harms and Stefanovits [122], Kleptsyna et al. [136]. Gaussian stochastic
volatility models have been treated in Gulisashvili [113], Gulisashvili et al. [114]. Guassian quadratic
volatility models have been already considered several times in the context of non-Markovian and
rough volatility literature [67, 114, 121, 125] but there has been no derivation of the analytic form of
the characteristic function.
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Stochastic control and games with
Volterra processes
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Chapter 4
Linear-quadratic control of Volterra
processes for a class of convolution kernels

Summary

This chapter provides an exhaustive treatment of solvability and approximation of linear-
quadratic control problems for a class of stochastic Volterra equations of convolution type,
whose kernels are Laplace transforms of certain signed matrix measures which are not neces-
sarily finite.

Based on:
[14] Abi Jaber, E., Miller, E., & Pham, H. Linear–Quadratic control for a class of stochastic
Volterra equations: solvability and approximation, Annals of Applied Probability, 31(5), 2244-
2274, 2021.
[13] Abi Jaber, E., Miller, E., & Pham, H. Integral operator Riccati equations arising in
stochastic Volterra control problems, SIAM journal on Control and Optimization, 59(2), 1581-
1603, 2021.

In [14, 13], we address the optimal control of d-dimensional stochastic Volterra equations of the form:

Xα
t = g0(t) +

∫ t

0
K(t− s)

(
b(s,Xα

s , αs)ds+ σ(s,Xα
s , αs)dWs

)
, (4.0.1)

where g0 is a deterministic function and K is a (convolution) matrix-valued kernel of the form

K(t) =
∫
R+

e−θtµ(dθ), t > 0,

for some signed matrix measure µ. Our framework covers the case of the fractional kernel K(t)
= tH−1/2/Γ(H + 1/2) with H ≤ 1/2, arising from the Mandelbrot-Van Ness representation of the
fractional Brownian motion with Hurst index H. We mainly focus on the case where the coefficients b
and σ are in linear form with respect to the state and control arguments, and the cost to be minimized
is of linear-quadratic form.

Since the (controlled) stochastic Volterra process (4.0.1) is neither Markovian nor a semimartingale,
it is natural to consider Markovian lifts for which suitable stochastic tools and control methods
apply. Inspired by the Markovian representation of fractional Brownian motion introduced in [49],
and more recently generalized to several un–controlled stochastic Volterra equations in [6, 68, 122],
we establish the correspondence of the initial problem with a lifted Markovian controlled system

23
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(Y α
t )t∈[0,T ] taking its values in the possibly infinite-dimensional Banach space L1(µ). Next, in the

LQ case, i.e., when b, σ are of linear form, and the cost function is linear-quadratic, we prove by
means of a refined martingale verification argument combined with a squares completion technique,
that the value function is of quadratic form while the optimal control is in linear feedback form with
respect to these lifted state variables. The coefficients of the quadratic and linear form of the value
function and optimal control are expressed in terms of a non-standard system of integral operator
Riccati equations whose solvability (existence and uniqueness) is proved in [13].

A second important feature of our approach is to provide a natural approximation of such solution
by a suitable discretization of the measure µ, leading to conventional finite-dimensional LQ control
problems, which involve standard matrix Riccati equations that can be numerically implemented.

Notations. For a Banach space B, L2([0, T ],B) denotes the space of measurable and square integrable
functions from [0, T ] to B.

For any d × d1-matrix valued measure µ1 on R+, we denote by |µ1| its total variation, which is a
scalar nonnegative measure, refer to [110, Section 3.5] for more details. The space L1(µ1) consists
of µ1-a.e. equivalence classes of |µ1|-integrable functions φ : R+ → Rd1 endowed with the norm
∥φ∥L1(µ1) =

∫
R+

|µ1|(dθ)|φ(θ)|, where we identify the function φ with its class of equivalence. For
any such φ the integral ∫

R+

µ1(dθ)φ(θ)

is well defined by virtue of the inequality∣∣∣∣∣
∫
R+

µ1(dθ)φ(θ)
∣∣∣∣∣ ≤

∫
R+

|µ1|(dθ)|φ(θ)|,

see [110, Theorem 5.6]. If µ2 is a d × d2-matrix valued measure, the space L1(µ1 ⊗ µ2) consists of
µ1 ⊗ µ2-a.e. equivalence classes of |µ1| ⊗ |µ2|-integrable functions Φ : R2

+ → Rd×d endowed with the
norm ∥Φ∥L1(µ1⊗µ2) =

∫
R2

+
|µ1|(dθ)|Φ(θ, τ)||µ2|(dθ) < ∞. For any such Φ, the integral∫

R2
+

µ1(dθ)⊤Φ(θ, τ)µ2(dτ)

is again well defined by virtue of [110, Theorem 5.6]. Both (L1(µ1), ∥ · ∥L1(µ)) and (L1(µ1 ⊗ µ2), ∥ ·
∥L1(µ1⊗µ2)) are Banach spaces, see [164, Theorem 3.11]. We also denote by L∞(µ1) the set of measur-
able functions ψ : R+ → Rd1 , which are bounded µ1-a.e., and by L∞(µ1 ⊗ µ2) the set of measurable
functions Φ : R2

+ → Rd×d, which are bounded µ1 ⊗ µ2-a.e, that we endow with their usual norms
∥ψ∥L∞(µ1) and ∥Φ∥L∞(µ1⊗µ2).

4.1 Formulation of the problem [14, 13]

Let (Ω,F ,F = (Ft)t≥0,P) be a filtered probability space supporting a one dimensional Brownian
motion W . Fix T > 0 and d, d′,m ∈ N. We consider a controlled d-dimensional stochastic Volterra
equation of the form (4.0.1) where α is an element of the admissible set

A =
{
α : Ω × [0, T ] → Rm progressively measurable such that sup

0≤t≤T
E
[
|αt|4

]
< ∞

}
,

g0 : [0, T ] → Rd is a measurable function, K : [0, T ] → Rd×d′ is a measurable kernel, and b, σ :
[0, T ] × Rd × Rm → Rd′ are of affine form:

b(t, x, a) = β(t) +Bx+ Ca,

σ(t, x, a) = γ(t) +Dx+ Fa,
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where B,D ∈ Rd′×d, C,F ∈ Rd′×m, and β, γ : [0, T ] → Rd′ are measurable functions. We are chiefly
interested in the case where K is the Laplace transform

K(t) =
∫
R+

e−θtµ(dθ), t > 0, (4.1.1)

of a signed d× d′–measure µ satisfying∫
R+

(
1 ∧ θ−1/2

)
|µ|(dθ) < ∞, (4.1.2)

and

θ 7→
∫ T

0
e−θuuζ−1du ∈ L1(|µ|), for some ζ ∈ (0, 1/4), (4.1.3)

where |µ| denotes the total variation of µ. While condition (4.1.2) does not exclude µij(R+) = ±∞
for some i ≤ d, j ≤ d′, or equivalently a singularity of the kernel K at 0, it does ensure that
K ∈ L2([0, T ],Rd×d′) and that |µ| is σ-finite. The former implies that the stochastic convolution

t 7→
∫ t

0
K(t− s)ξsdWs

is well defined as an Itô integral, for every t ≤ T , for any progressively measurable process ξ such
that

sup
t≤T

E
[
|ξt|2

]
< ∞.

Condition (4.1.3) would yield the existence of a continuous version.

We can now make precise the concept of solution to the controlled equation (4.0.1). By a solution to
(4.0.1), we mean an F-adapted process Xα with continuous sample paths such that (4.0.1) holds for all
t ≤ T , P-almost surely. Under (4.1.1)-(4.1.2)-(4.1.3), assuming that β, γ are measurable and bounded,
one can show that the controlled stochastic Volterra equation (4.0.1) admits a unique continuous
solution Xα, for any continuous input curve g0, and any admissible control α ∈ A. Furthermore, it
holds that

sup
0≤t≤T

E
[
|Xα

t |4
]
< ∞. (4.1.4)

Remark 4.1. Notice that due to the possible singularity of the kernel K, and in contrast with standard
stochastic differential equations, the solution Xα to the controlled stochastic Volterra equation does
not satisfy in general the usual square integrability condition of the form: E[sup0≤t≤T |Xα

t |2] < ∞.
For this reason, we impose the stronger condition supt≤T E[|α|4t ] < ∞ for the set of admissible controls
A, which will turn out to be crucial for the martingale verification result.

We consider a cost functional given by

J(α) = E
[ ∫ T

0
f(Xα

s , αs)ds
]
,

where the running cost f has the following quadratic form

f(x, α) = x⊤Qx+ α⊤Nα+ 2x⊤L,

for some Q ∈ Sd
+, N ∈ Sm

+ and L ∈ Rd. Here Sd
+ denotes the set of d-dimensional nonnegative

symmetric matrices. Note that by virtue of (4.1.4), J(α) is well defined for any α ∈ A. The aim is to
solve

V0 = inf
α∈A

J(α). (4.1.5)
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Before going further, let us mention several kernels of interest that satisfy (4.1.1)-(4.1.2)–(4.1.3).

Example 4.2. 1. Smooth kernels: if |µij(R+)| < ∞, for every i = 1, . . . , d, j = 1, . . . , d′, then
(4.1.2)–(4.1.3) are satisfied and K is infinitely differentiable on [0, T ]. This is the case, for
instance, when µ(dθ) =

∑n
i=1 c

n
i δθn

i
(dθ), for some cn

i ∈ Rd×d′ and θn
i ∈ R+, i = 1, . . . , n, which

corresponds to

K(t) =
n∑

i=1
cn

i e
−θn

i t.

2. The fractional kernel (d = d′ = 1)

KH(t) = tH−1/2

Γ(H + 1/2) , (4.1.6)

for some H ∈ (0, 1/2), which is the Laplace transform of

µH(dθ) = θ−H−1/2

Γ(H + 1/2)Γ(1/2 −H)dθ, (4.1.7)

and more generally the Gamma kernel K(t) = KH(t)e−ζt for H ∈ (0, 1/2) and ζ ∈ R for which

µ(dθ) =
(θ − ζ)−H−1/21(ζ,∞)(θ)
Γ(H + 1/2)Γ(1/2 −H)dθ.

3. If K1 and K2 satisfy (4.1.1), then so does K1 + K2 and K1K2 with the respective measures
µ1 + µ2 and µ1 ∗ µ2. When µ1, µ2 satisfy (4.1.2)-(4.1.3), it is clear that µ1 + µ2 also satisfies
(4.1.2)-(4.1.3). Condition (4.1.2) is satisfied for the convolution µ1 ∗ µ2 provided

∫
[1,∞)2(θ +

τ)−1/2µ1(dθ)µ2(dτ) < ∞, which is the case for instance if either µ1(R+) or µ2(R+) are finite.
Similarly for (4.1.3).

4. If K is a completely monotone kernel, i.e. K is infinitely differentiable on (0,∞) such that
(−1)nK(n)(t) is nonnegative for each t > 0, then, by Bernstein’s theorem, there exists a non-
negative measure µ such that (4.1.1) holds, see [110, Theorem 5.2.5].

4.1.1 Markovian representation

The solution Xα of (4.0.1) is in general neither Markovian nor a semimartingale as illustrated by the
Riemann–Liouville fractional Brownian motion

t 7→ 1
Γ(H + 1/2)

∫ t

0
(t− s)H−1/2dWs, H ∈ (0, 1/2],

which is Markovian and a martingale only for H = 1/2. Markovian representations of fractional
Brownian motion have been introduced in [49], and more recently generalized to several un–controlled
stochastic Volterra equations for kernels of the form (4.1.1), see [6, Section 4]; [68, Section 5.1];
[122]. Inspired by these approaches, we establish, by means of stochastic Fubini’s theorem, the
correspondence of (4.0.1) with a possibly infinite dimensional Markovian controlled system of the
form 

dY α
t (θ) =

(
−θY α

t (θ) + b̃
(
t,
∫
R+
µ(dτ)Y α

t (τ), αt

))
dt

+ σ̃
(
t,
∫
R+
µ(dτ)Y α

t (τ), αt

)
dWt

Y α
0 (θ) = 0,

(4.1.8)

where the coefficients b̃ : [0, T ] × Rd × Rm → Rd′ , σ̃ : [0, T ] × Rd × Rm → Rd′ are defined by

b̃(t, x, a) = β̃(t) +Bx+ Ca,

σ̃(t, x, a) = γ̃(t) +Dx+ Fa,
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with
β̃ = β +Bg0 and γ̃ = γ +Dg0.

Theorem 4.3. Let g0, β, γ be bounded functions on [0, T ] and K be given as in (4.1.1) such that
(4.1.2)-(4.1.3) hold. Fix α ∈ A. Assume that there exists a progressively measurable process Xα that
solves (4.0.1), P-a.s., for each t ≤ T , and that (4.1.4) holds. Then, for each t ≤ T , Xα

t admits the
representation

Xα
t = g0(t) +

∫
R+

µ(dθ)Y α
t (θ), (4.1.9)

where, for each θ ∈ R+,

Y α
t (θ) =

∫ t

0
e−θ(t−s)b(s,Xα

s , αs)ds+
∫ t

0
e−θ(t−s)σ(s,Xα

s , αs)dWs.

In particular, Y α can be chosen to have continuous sample paths in L1(µ), satisfying

sup
t≤T

E
[
∥Y α

t ∥4
L1(µ)

]
< ∞, (4.1.10)

sup
t≤T

sup
θ∈R+

|Y α
t (θ)| < ∞,

and for each θ ∈ R+, t 7→ Y α
t (θ) solves (4.1.8). Conversely, assume that there exists a solution Y α

to (4.1.8) that is continuous in L1(µ), i.e., such that

Y α
t (θ) =

∫ t

0
e−θ(t−s)b̃

(
s,

∫
R+

µ(dτ)Y α
s (τ), αs

)
ds

+
∫ t

0
e−θ(t−s)σ̃

(
s,

∫
R+

µ(dτ)Y α
s (τ), αs

)
dWs, P ⊗ µ− a.e. (4.1.11)

for each t ≤ T , and that (4.1.10) holds. Then, the process Xα given by (4.1.9) is a continuous solution
to (4.0.1) such that (4.1.4) holds.

The following remark justifies our choice for carrying the analysis in the space L1(µ).
Remark 4.4. Inspecting the coefficients in (4.1.8), one observes that they are well-defined if Y α

t ∈
L1(µ) for all t ≤ T . One might be tempted to look for solutions in the Hilbert space L2(µ), but since
µ is not always a finite measure (as in (4.1.7) for instance), L2(µ) is not necessarily included in L1(µ).
Remark 4.5. An alternative lift approach, in the spirit of [6, 79, 119, 130, 172], consists in introducing
the double-indexed (controlled) processes

Gα
t (u) = E

[
Xα

u −
∫ u

t

K(u− s)b(s,Xα
s , αs)ds

∣∣∣ Ft

]
, 0 ≤ t ≤ u ≤ T.

The control problem can then be reformulated in terms of the infinite dimensional controlled Markov
process {Gα

t (.), t ∈ [0, T ]} with Itô dynamics

dGα
t (u) = K(u− t) (b(t,Xα

t , αt)dt+ σ(t,Xα
t , αt)dWt) , 0 ≤ t < u ≤ T.

This lift will be considered in the two upcoming chapters.

4.1.2 Formal derivation of the solution

Thanks to Theorem 4.3, the possibly non-Markovian initial problem can be formally recast as a
degenerate infinite dimensional Markovian problem in L1(µ) on the state variables Y α given by
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(4.1.8). To see this, we define the mean-reverting operator Amr acting on measurable functions
φ ∈ L1(µ) by

(Amrφ)(θ) = −θφ(θ), θ ∈ R+,

and consider the dual pairing

⟨φ,ψ⟩µ =
∫
R+

φ(θ)⊤µ(dθ)⊤ψ(θ), (φ,ψ) ∈ L1(µ) × L∞(µ⊤).

For any matrix–valued kernel G, we denote by G the integral operator induced by G, defined by:

(Gϕ)(θ) =
∫
R+

G(θ, θ′)µ(dθ′)ϕ(θ′).

Notice that when G ∈ L∞(µ⊗µ), the operator G is well-defined on L1(µ), and we have Gϕ ∈ L∞(µ⊤)
for ϕ ∈ L1(µ). In this case, ⟨ϕ,Gψ⟩µ is well defined for all φ,ψ ∈ L1(µ). When G ∈ L1(µ ⊗ µ),
the operator G is well-defined on L∞(µ), and we have Gϕ ∈ L1(µ⊤), for ϕ ∈ L∞(µ). In this case
⟨Gϕ, ψ⟩µ⊤ is well defined for all φ,ψ ∈ L∞(µ).

To fix ideas we set g0 = β = γ ≡ 0 and L = 0. Noting that relation (4.1.11) is the mild form of the
linear controlled dynamics in L1(µ),

dY α
t = (AmrY α

t + BY α
t + Cαt) dt+ (DY α

t + Fαt) dWt, Y α
0 = 0,

we see that the optimization problem (4.1.5) can be reformulated as a Markovian problem in L1(µ)
with cost functional,

J(α) = E

[∫ T

0

(
⟨Y α

s ,QY
α

s ⟩µ + α⊤
s Nαs

)
ds

]
, (4.1.12)

where, by a slight abuse of notations, C and F denote the respective constant operators from Rm

into L∞(µ) induced by the matrices C and F :

(Ca)(θ) = Ca, (Fa)(θ) = Fa, θ ∈ R+, a ∈ Rm.

Their adjoint operators C∗, F ∗ from L1(µ⊤) into Rm take the form

C∗g = C⊤
∫
R+

µ(dθ)⊤g(θ), F ∗g = F⊤
∫
R+

µ(dθ)⊤g(θ), g ∈ L1(µ⊤).

Given the linear–quadratic structure of the problem, standard results in finite-dimensional stochastic
control theory, see [176, Chapter 6], as well as in Hilbert spaces, see [83, 126], suggest that the optimal
value process V α associated to the functional (4.1.12) should be of linear–quadratic form

V α∗

t = ⟨Y α∗

t ,ΓtY
α∗

t ⟩µ,

with an optimal feedback control α∗ satisfying

α∗
t = − (N + F ∗ΓtF )−1 (C∗Γt + F ∗ΓtD)Y α∗

t , 0 ≤ t ≤ T,

where Γt is a symmetric operator from L1(µ) into L∞(µ⊤), and solves the operator Riccati equation:
ΓT = 0
Γ̇t = −ΓtA

mr − (ΓtA
mr)∗ − Q − D∗ΓtD − B∗Γt − (B∗Γt)∗

+ (C∗Γt + F ∗ΓtD)∗ (N + F ∗ΓtF )−1 (C∗Γt + F ∗ΓtD) , t ∈ [0, T ].
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In particular, when Γ is an integral operator, this formally induces the following Riccati equation for
the associated (symmetric) kernel Γ valued in L1(µ⊗ µ):

ΓT (θ, τ) = 0
Γ̇t(θ, τ) = (θ + τ)Γt(θ, τ) −Q−D⊤ ∫

R2
+
µ(dθ′)⊤Γt(θ′, τ ′)µ(dτ ′)D

− B⊤ ∫
R+
µ(dθ′)⊤Γt(θ′, τ) −

∫
R+

Γt(θ, τ ′)µ(dτ ′)B + St(θ)⊤N̂−1
t St(τ),

where

St(τ) = C⊤
∫
R+

µ(dθ)⊤Γt(θ, τ) + F⊤
∫
R2

+

µ(dθ′)⊤Γt(θ′, τ ′)µ(dτ ′)D

N̂t = N + F⊤
∫
R2

+

µ(dθ)⊤Γt(θ, τ)µ(dτ)F,

and provides an optimal control in the form

α∗
t = −N̂−1

t

∫
R+

St(θ)µ(dθ)Y α∗

t (θ), 0 ≤ t ≤ T.

Although the aforementioned infinite dimensional results provide formal expressions for the solution
of the problem, they cannot be directly applied, since they concern Hilbert spaces. Here the infinite
dimensional controlled process Y α takes its values in the non reflexive Banach space

(
L1(µ), ∥ · ∥L1(µ)

)
.

The rigorous derivation of the solution is the first main objective of the chapter. Our second goal is
to show how to obtain an analytic finite-dimensional approximation of the original control problem
after a suitable discretization of the operator Riccati equation.

4.2 Main results

4.2.1 Solvability: optimal control and value function

Let α ∈ A. Given the linear-quadratic structure of the problem and the formal analysis of Section
4.1.2, it is natural to consider a candidate optimal value process (V α

t )t≤T of linear-quadratic form in
the state variable Y α given by (4.1.11), that is

V α
t =

∫
R2

+

Y α
t (θ)⊤µ(dθ)⊤Γt(θ, τ)µ(dτ)Y α

t (τ) + 2
∫
R+

Λt(θ)⊤µ(dθ)Y α
t (θ) + χt, (4.2.1)

where the functions t 7→ Γt,Λt, χt are solutions, in a suitable sense, of the following system of Riccati
equations: 

Γ̇t(θ, τ) = (θ + τ)Γt(θ, τ) − R1(Γt)(θ, τ), ΓT (θ, τ) = 0
Λ̇t(θ) = θΛt(θ) − R2(t,Γt,Λt)(θ), ΛT (θ) = 0

χ̇t = −R3(t,Γt,Λt), χT = 0,
(4.2.2)
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where we defined

R1(Γ)(θ, τ) = Q+D⊤
∫
R2

+

µ(dθ′)⊤Γ(θ′, τ ′)µ(dτ ′)D +B⊤
∫
R+

µ(dθ′)⊤Γ(θ′, τ)

+
∫
R+

Γ(θ, τ ′)µ(dτ ′)B − S(Γ)(θ)⊤N̂−1(Γ)S(Γ)(τ) (4.2.3)

R2(t,Γ,Λ)(θ) = L+Qg0(t) +B⊤
∫
R+

µ(dθ′)⊤Λ(θ′) +
∫
R+

Γ(θ, τ ′)µ(dτ ′)β̃(t)

+ D⊤
∫
R2

+

µ(dθ′)⊤Γ(θ′, τ ′)µ(dτ ′)γ̃(t) − S(Γ)(θ)⊤N̂(Γ)−1h(t,Γ,Λ) (4.2.4)

R3(t,Γ,Λ) = g0(t)⊤Qg0(t) + 2L⊤g0(t) + γ̃(t)⊤
∫
R2

+

µ(dθ′)⊤Γ(θ′, τ ′)µ(dτ ′)γ̃(t)

+ 2β̃(t)⊤
∫
R+

µ(dθ′)⊤Λ(θ′) − h(t,Γ,Λ)N̂(Γ)−1h(t,Γ,Λ), (4.2.5)

with

S(Γ)(τ) = C⊤
∫
R+

µ(dθ)⊤Γ(θ, τ) + F⊤
∫
R2

+

µ(dθ′)⊤Γ(θ′, τ ′)µ(dτ ′)D

N̂(Γ) = N + F⊤
∫
R2

+

µ(dθ)⊤Γ(θ, τ)µ(dτ)F

h(t,Γ,Λ) = C⊤
∫
R+

µ(dθ)⊤Λ(θ) + F⊤
∫
R2

+

µ(dθ)⊤Γ(θ, τ)µ(dτ)γ̃(t).

(4.2.6)

The two following definitions specify the concept of solution to the system (4.2.2).

Definition 4.6. Let Γ : R2
+ → Rd×d such that Γ ∈ L∞(µ⊗ µ). We say that Γ is symmetric if

Γ(θ, τ) = Γ(τ, θ)⊤, µ⊗ µ− a.e.

and nonnegative if ∫
R2

+

φ(θ)⊤µ(dθ)⊤Γ(θ, τ)µ(dτ)φ(τ) ≥ 0, for all φ ∈ L1(µ).

We denote by Sd
+(µ⊗ µ) the set of all symmetric and nonnegative Γ ∈ L∞(µ⊗ µ).

Remark 4.7. The integral operator Γ associated to a symmetric kernel Γ ∈ L∞(µ⊗ µ) is symmetric,
in the sense that

⟨φ,Γψ⟩µ, = ⟨ψ,Γφ⟩µ, φ, ψ ∈ L1(µ).

Moreover, the nonnegativity of Γ translates into

⟨φ,Γφ⟩µ ≥ 0, φ ∈ L1(µ).

Definition 4.8. By a solution to the system (4.2.2), we mean a triplet (Γ,Λ, χ) ∈ C([0, T ], L1(µ ⊗
µ)) × C([0, T ], L1(µ⊤)) × C([0, T ],R) such that

Γt(θ, τ) =
∫ T

t

e−(θ+τ)(s−t)R1(Γs)(θ, τ)ds, 0 ≤ t ≤ T, µ⊗ µ− a.e. (4.2.7)

Λt(θ) =
∫ T

t

e−θ(s−t)R2(s,Γs,Λs)(θ)ds, 0 ≤ t ≤ T, µ− a.e. (4.2.8)

χt =
∫ T

t

R3(s,Γs,Λs)ds, 0 ≤ t ≤ T, (4.2.9)
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where R1, R2 and R3 are defined respectively by (4.2.3), (4.2.4) and (4.2.5). In particular N̂(Γt)
given by (4.2.6) is invertible for all t ≤ T .

The existence and uniqueness of a solution to the Riccati system is proved in [14], and is stated in
the next theorem.

Theorem 4.9. Let g0, β, γ be bounded functions on [0, T ]. Assume that µ satisfies (4.1.2) and that

Q ∈ Sd
+, N − λIm ∈ Sm

+ , (4.2.10)

for some λ > 0. Then, there exists a unique triplet (Γ,Λ, χ) ∈ C([0, T ], L1(µ⊗µ))×C([0, T ], L1(µ⊤))×
C([0, T ],R) to the system of Riccati equation (4.2.2) such that (4.2.7), (4.2.8), (4.2.9) hold and Γt ∈
Sd

+(µ⊗ µ), for all t ≤ T . Furthermore, there exists some positive constant M > 0 such that∫
R+

|µ|(dτ)|Γt(θ, τ)| ≤ M, for µ-almost every θ, 0 ≤ t ≤ T.

Our second main result addresses the solvability of the problem (4.1.5). Theorem 4.10 establishes
the existence of an optimal feedback control of linear form and provides an explicit expression for the
value function in terms of the solution to the Riccati equation.

Theorem 4.10. Let β, γ be bounded functions on [0, T ] and g0 be continuous. Fix K,µ as in (4.1.1)-
(4.1.2)–(4.1.3). Under (4.2.10), let (Γ,Λ, χ) be the solution to the system of Riccati equation (4.2.2)
produced by Theorem 4.9. Then, there exists an admissible control α∗ ∈ A with corresponding con-
trolled trajectory Y α∗ as in (4.1.11) such that

α∗
t = −N̂(Γt)−1

(
h(t,Γt,Λt) +

∫
R+

S(Γt)(θ)µ(dθ)Y α∗

t (θ)
)

(4.2.11)

for all t ≤ T . Furthermore, α∗ is an admissible optimal control, in the sense that

inf
α∈A

J(α) = J(α∗),

Y α∗ is the optimally controlled trajectory of the state variable and V α∗

t given by (4.2.1) is the optimal
value process of the problem, that is

V α∗

t = inf
α∈At(α∗)

E

[∫ T

t

f(Xα
s , αs)ds

∣∣∣ Ft

]
, 0 ≤ t ≤ T, (4.2.12)

where At(α) = {α′ ∈ A : α′
s = αs, s ≤ t}.

Remark 4.11. From (4.2.12), it follows that at initial time t = 0, the optimal value V0 is equal to V0
= V α∗

0 = χ0, hence

V0 =
∫ T

0
R3(t,Γt,Λt)dt.

In particular, for a constant initial condition g0(t) ≡ X0 for some X0 ∈ Rd, we have

V0 = X⊤
0 Ψ(T )X0 + Φ(T )X0 + ξ(T ),

for suitable functions Ψ,Φ, ξ, which corresponds to the usual linear–quadratic form in X0. However,
because of the possible non-Markovianity of the problem, for t > 0, the optimal value V α∗

t is not
necessarily linear–quadratic in Xα∗

t as in the standard case.

Remark 4.12. Conventional linear–quadratic models, see for instance [176, Chapter 7], are naturally
nested in our framework. Indeed, they are recovered by setting d = d′ and µ = δ0Id, which corresponds
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to K(t) ≡ Id. In this case, the Riccati equations for Γ(0, 0),Λ(0), χ reduce to the conventional matrix
Riccati equations and Y α = Xα so that we recover the usual expression for the optimal control
(4.2.11) and the value function

α∗
t = −N̂(Γt(0))−1

(
h(t,Γt(0, 0),Λt(0)) + S(Γt)(0)Xα∗

t

)
,

Vt = X⊤
t Γt(0, 0)Xt + 2X⊤

t Λt(0) + χt.

Conventional linear–quadratic models can also be recovered by considering a kernel which is a weighted
sum of exponentials as detailed in the following example. This will turn out to be of crucial importance
in the next section.

Example 4.13. We set d = d′ = m = 1 and

Kn(t) =
n∑

i=1
cn

i e
−θn

i t, (4.2.13)

for some n ∈ N, cn
i ∈ R, θn

i ≥ 0, i = 1, . . . , n. This corresponds to (4.1.1) with µ(dθ) =
∑n

i=1 c
n
i δθn

i
(dθ)

and Theorem 4.3 gives the representation

Xn,α
t = gn

0 (t) +
n∑

i=1
cn

i Y
n,i,α

t , (4.2.14)

where Y n,i,α := Y α(θn
i ) are such that

dY n,i,α
t =

[
− θn

i Y
n,i,α

t + b̃
(
t,

n∑
j=1

cn
j Y

n,j,α
t , αt

)]
dt+ σ̃

(
t,

n∑
j=1

cn
j Y

n,j,α
t , αt

)
dWt

Y n,i,α
0 = 0, i = 1, . . . , n.

(4.2.15)

Whence, the problem reduces to a conventional linear-quadratic control for the finite-dimensional
controlled system (Y n,i,α)1≤i≤n. In particular, the system of Riccati (4.2.2) reduces to a a standard
one in finite-dimension. For instance the equation for Γ reduces to the standard n×n–matrix Riccati
equation

Γ̇n
t = −Qn − (Bn)⊤Γn

t − Γn
t B

n − (Dn)⊤Γn
t D

n

+
(
(Fn)⊤Γn

t D
n + (Cn)⊤Γn

t

)⊤(
Nn + (Fn)⊤Γn

t F
n
)−1((Fn)⊤Γn

t D
n + (Cn)⊤Γn

t

)
Γn

T = 0,
(4.2.16)

where the coefficients (Bn, Cn, Dn, Fn, Nn, Qn) ∈ Rn×n ×Rn ×Rn×n ×Rn ×R+ × Sn
+ are defined by

Bn
i,j = Bcn

i − θn
i δij , Dn

i,j = Dcn
i ,

Cn
i = Ccn

i , Fn
i = Fcn

i ,

Qn
i,j = Q, Nn = N,

for all 1 ≤ i, j ≤ n.

4.2.2 Stability and approximation by conventional LQ problems

Another main result of the paper [14] concerns the approximation of the possibly non-Markovian
control problem by sequences of finite dimensional Markovian ones, which is of crucial importance
for numerical implementations. The main idea comes from the approximation of the measure µ,
appearing in (4.1.1), by simpler measures µn, or equivalently approximating K by simpler kernels Kn
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given by

Kn(t) =
∫
R+

e−θtµn(dθ), t > 0. (4.2.17)

We also authorize the approximation of the input curve g0. By substituting (K, g0) with (Kn, gn
0 ),

the approximating problem reads

V n
0 = inf

α∈A
Jn(α)

where

Jn(α) = inf
α∈A

E

[∫ T

0

(
(Xn,α

s )⊤QXn,α
s + 2L⊤

s X
n,α
s + α⊤

s Nαs

)
ds

]
,

Xtn, α = gn
0 (t) +

∫ t

0
Kn(t− s)b(s,Xn,α

s , αs)ds+
∫ t

0
Kn(t− s)σ(s,Xn,α

s , αs)dWs.

The following theorem establishes the stability of stochastic Volterra linear–quadratic control prob-
lems.

Theorem 4.14. Let β, γ be bounded and measurable functions on [0, T ] and g0 be continuous. Assume
that µ satisfies (4.1.2)–(4.1.3) and let K be as in (4.1.1). Let (gn

0 )n≥1 be a sequence of continuous
functions and (Kn)n≥1 be a sequence of kernels of the form (4.2.17) with respective measures µn

satisfying (4.1.2)-(4.1.3), for each n ∈ N. Assume (4.2.10) and that Q is invertible. Denote by V ∗

and V n∗ the respective optimal value processes given by Theorem 4.10 for the respective inputs (g0,K)
and (gn

0 ,K
n), for n ≥ 1. If

∥Kn −K∥L2(0,T ) → 0 and ∥gn
0 − g0∥L2(0,T ) → 0, as n → ∞,

then,

V n∗
0 → V ∗

0 , as n → ∞,

with a rate of convergence given by

|V ∗
0 − V n∗

0 | ≤ c
(

∥gn
0 − g0∥L2(0,T ) + ∥Kn −K∥L2(0,T )

)
,

for some positive constant c independent of n.

Combined with Example 4.13, Theorem 4.14 provides an approximation of linear–quadratic stochas-
tic Volterra optimal control problems by conventional Markovian linear–quadratic models in finite
dimension. To ease notations we restrict to the case d = d′ = m = 1, for higher dimension matrices
need to be replaced by tensors in what follows. The idea is to approximate µ by a discrete measure
µn as follows. Fix n ≥ 1 and (ηn

i )0≤i≤n a partition of R+. Let µn(dθ) =
∑n

i=1 c
n
i δθn

i
(dθ) with

cn
i =

∫ ηn
i

ηn
i−1

µ(dx) and θn
i = 1

cn
i

∫ ηn
i

ηn
i−1

θµ(dθ), i = 1, . . . , n. (4.2.18)

Then, for a suitable choice of the partition (ηn
i )0≤i≤n, we obtain the convergence

∥Kn −K∥L2(0,T ) → 0, as n → ∞,

where Kn is given by (4.2.13), see for instance [7, Proposition 3.3 and Remark 3.4]. In particular,
with the fractional kernel KH given by (4.1.6), an even n, and the geometric partition ηn

i = r
i−n/2
n ,
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i = 0, . . . , n, for some rn > 1, the coefficients (4.2.18) with µH as in (4.1.7) are explicitly given by

cn
i = (r1−α

n − 1)r(α−1)(1+n/2)
n

Γ(α)Γ(2 − α) r(1−α)i
n and xn

i = 1 − α

2 − α

r2−α
n − 1
r1−α

n − 1
ri−1−n/2

n , i = 1, . . . , n,

where α := H + 1/2. If the sequence (rn)n≥1 satisfies

rn ↓ 1 and n ln rn → ∞, as n → ∞,

then,
∥Kn −KH∥L2(0,T ) → 0, as n → ∞,

see [1, Lemma A.3]. In practice, the free parameter rn can be chosen by minimizing the L2 norm
between Kn and KH , for instance if n = 20, setting r20 = 2.5 yields very good approximations for
the un-controlled stochastic Volterra equation, see [1] for a more detailed practical study. For each
n, the approximate control problem is a conventional linear quadratic one in finite dimension for the
state variables (4.2.15) with the standard n × n matrix Riccati equation (4.2.16). This allows to
numerically solve the Riccati equations and simulate the process Xn,α given by (4.2.14), leading to
computation of the value function V n∗

0 and the optimal control αn as in (4.2.11) with µ replaced by
µn.

Related literature. The optimal control of stochastic Volterra equations has been considered in [175]
by maximum principle method leading to a characterization of the solution in terms of a backward
stochastic Volterra equation for the adjoint process. In [18], the authors also use the maximum
principle together with Malliavin calculus to obtain a corresponding adjoint equation as a standard
backward SDE. Although the kernel considered in these aforementioned papers is not restricted to be
of convolution type, the required conditions do not allow singularity of K at zero, hence excluding
the case of a fractional kernel with parameter H < 1/2. More recently, an extended Bellman equation
has been derived in [119] for the associated controlled Volterra equation. The solution to the LQ
control problem with controlled drift and additive noise has been obtained in [135] when the noise
is a fractional Brownian motion with Hurst parameter H > 1/2, and in [78] when the noise is a
general Gaussian process with an optimal control expressed as the sum of the well-known linear
feedback control for the associated deterministic linear-quadratic control problem and the prediction
of the response of the system to the future noise process. Recently, the paper [173] investigated LQ
problem of stochastic Volterra equations by providing characterizations of optimal control in terms
of some forward-backward system, but leaving aside their solvability, and under some coefficients
assumptions that preclude singular kernels such as the fractional kernel with parameter H < 1/2.
A related infinite-dimensional Riccati equation appeared in [20] for the minimization problem of an
energy functional defined in terms of a non-singular (i.e. K(0) < ∞) completely monotone kernel. We
stress that, although there exists several results for LQ control problems in infinite-dimension, and
even for Volterra processes (see [40]), they cannot be applied in our Banach-space context as they only
concern Hilbert spaces. Finally, we mention that some financial problems such as optimal execution
with transient Market impact [20] and hedging in the presence of Market impact with fractional
Brownian motion [27] can be formulated as controlled Volterra problems of linear-quadratic type, we
refer to Chapter 5.



Chapter 5
Portfolio optimization and liquidation in a
Volterra framework

Summary

In this chapter, we explicitely solve two intricate control problems in finance under a Volterra
framework:

• Markowitz portfolio allocation problem for multivariate quadratic Volterra models,

• Optimal liquidation with general transient impact and trading signals.

Based on:
[12] Abi Jaber, E., Miller, E., & Pham, H. Markowitz portfolio selection for multivariate affine
and quadratic Volterra models, SIAM journal on Financial Mathematics, 12(1), 369-409, 2021.
Jupyter Notebook
[8] Abi Jaber, E. & Neuman, E. Optimal Liquidation with Signals: the General Propagator
Case, Submitted to Mathematical Finance. Jupyter Notebook

Both models considered in this chapter involve non-convolution kernels, they fall outside the scope
of the framework developed in the previous chapter. Yet, we are still able to solve both problems in
terms of explicit operator solutions similar to the one that appear in Chapter 3 by making educated
quadratic Ansatz on an adjusted forward process. The related operator Riccati equations that appear
can be solved explicitly exploiting again the structure of the solution that has been identified earlier
in Chapter 3 in an un-controlled case.

5.1 Markowitz portfolio allocation problem for multivariate
quadratic Volterra models [12]

The Markowitz [147] mean-variance portfolio selection problem is the cornerstone of modern portfolio
allocation theory. Investment decisions rules are made according to a trade-off between return and
risk, and the use of Markowitz efficient portfolio strategies in the financial industry has become quite
popular mainly due to its natural and intuitive formulation. A vast volume of research has been
devoted over the last decades to extend Markowitz problem from static to continuous-time setting,
first in Black-Scholes and complete markets ([178]), and then to consider more general frameworks
with random coefficients and multiple assets, see e.g. [142], [60], or more recently [129] for taking into
account model uncertainty on the assets correlation.
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In the direction of more realistic modeling of asset prices, recent research on portfolio optimization
consider fractional and rough models: [89, 29, 120] consider fractional Ornstein-Uhlenbeck and He-
ston stochastic volatility models for power utility function criterion, and the work [118] studies the
Markowitz problem in a Volterra Heston model. These developments have been carried out in the
mono-asset case. However, investment in multi-assets by taking into account the correlation risk is
an importance feature in portfolio choice in financial markets. The basic goal of our work in [12] is
to enrich the literature on portfolio selection:

(i) by introducing a class of multivariate Volterra models, which captures stylized facts of financial
assets, namely various rough volatility patterns across assets, (possibly random) correlation
between stocks, and leverage effects, i.e., correlation between a stock and its volatility.

(ii) by keeping the model tractable for explicit computations of the optimal Markowitz portfolio
strategy, which can be a quite challenging task in multivariate non-Markovian settings.

Main contributions. In the work [12], we study the continuous-time Markowitz problem in a
multivariate setting with a focus on two classes: (i) affine Volterra models as in [10] that include
multivariate rough Heston models, (ii) quadratic Volterra models, which are new class of Volterra
models, and embrace multivariate rough Stein-Stein models, and rough Wishart type covariance
matrix models, in the spirit of (3.0.1). We provide:

• A generic verification result for the corresponding mean-variance problem, which is for-
mulated in an incomplete non-Markovian and non-semimartingale framework with unbounded
random coefficients of the volatility and market price of risk, and under general filtration. This
result expresses the solution to the Markowitz problem in terms of a Riccati backward stochas-
tic differential equation (BSDE) by checking in particular the admissibility condition of the
optimal control. We stress that related existing verification results in the literature (see [142],
[132], [60], [169]) cannot be applied directly to our setting, and we shall discuss more in detail
this point in Section 5.1.2.

• Explicit solutions to the Riccati BSDE in two concrete specifications of multivariate Volterra
models exploiting the representation of the solution in terms of a Laplace transform:

1. the affine case: the optimal Markowitz strategy is expressed in terms of multivariate
Riccati-Volterra equations which naturally extends the one obtained in [118]. We point
out that the martingale distortion arguments used in [118] for the univariate Volterra
Heston model, do not apply in higher dimensions, unless the correlation structure is
highly degenerate.

2. the quadratic case: our major result is to derive analytic expressions for the optimal
investment strategy by explicitly solving operator Riccati equations. This gives new ex-
plicit formulae for rough Stein-Stein and Wishart type covariance models. These analytic
expressions can be efficiently implemented: the integral operators can be approximated by
closed form expressions involving finite dimensional matrices and the underlying processes
can be simulated by the celebrated Cholesky decomposition algorithm.

• Numerical simulations of the optimal Markowitz strategy in a two-asset rough Stein-Stein
model to illustrate our results.1 We depict the impact of some parameters onto the optimal
investment when one asset is rough, and the other smooth (in the sense of the Hurst index
of their volatility), and show in particular that for positively correlated assets, the optimal
strategy is to “buy rough, sell smooth”, which is consistent with the empirical backtesting in
Glasserman and He [102].

1The code of our implementation can be found at the following link.

https://colab.research.google.com/drive/1P_SYE3WgFgwUKpOo8uCBDdIC04XyxE2a?usp=sharing
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Notations. Given a probability space (Ω,F ,P) and a filtration F = (Ft)t≥0 satisfying the usual
conditions, we denote by

L∞
F ([0, T ],Rd) =

{
Y : Ω × [0, T ] 7→ Rd, F − prog. measurable and bounded a.s.

}
Lp
F([0, T ],Rd) =

{
Y : Ω × [0, T ] 7→ Rd, F − prog. measurable s.t. E

[ ∫ T

0
|Ys|pds

]
< ∞

}

S∞
F ([0, T ],Rd) =

{
Y : Ω × [0, T ] 7→ Rd, F − prog. measurable s.t. sup

t≤T
|Yt(w)| < ∞ a.s.

}
.

Here | · | denotes the Euclidian norm on Rd. Classically, for p ∈ [1,∞), we define Lp,loc
F ([0, T ],Rd)

as the set of progressive processes Y for which there exists a sequence of increasing stopping times
τn ↑ ∞ such that the stopped processes Y τn are in Lp

F([0, T ],Rd) for every n ≥ 1, and we recall that
it consists of all progressive processes Y s.t.

∫ T

0 |Yt|pdt < ∞, a.s. To unclutter notation, we write
Lp,loc
F ([0, T ]) instead of Lp,loc

F ([0, T ],Rd) when the context is clear.

5.1.1 Formulation of the problem

Fix T > 0, d,N ∈ N. We consider a financial market on [0, T ] on some filtered probability space
(Ω,F ,F := (Ft)t≥0,P) with a non–risky asset S0, dS0

t = S0
t r(t)dt, with a deterministic short rate

r : R+ → R, and d risky assets with dynamics

dSt = diag(St)
[(
r(t)1d + σtλt

)
dt+ σtdBt

]
, (5.1.1)

driven by a d-dimensional Brownian motion B, with a d×d-matrix valued stochastic volatility process
σ and a Rd-valued continuous stochastic process λ, called market price of risk. Here 1d denotes the
vector in Rd with all components equal to 1. The market is typically incomplete, in the sense that
the dynamics of the continuous volatility process σ is driven by an N -dimensional process W =
(W 1, . . . ,WN )⊤ defined by:

W k
t = C⊤

k Bt +
√

1 − C⊤
k CkB

⊥,k
t , k = 1, . . . , N, (5.1.2)

where Ck ∈ Rd s.t. C⊤
k Ck ≤ 1, and B⊥ = (B⊥,1, . . . , B⊥,N )⊤ is an N–dimensional Brownian motion

independent of B. Note that d⟨W k⟩t = dt but W k and W j can be correlated, hence W is not
necessarily a Brownian motion. Observe that processes λ and σ are F-adapted, possibly unbounded,
but not necessarily adapted to the filtration generated by W . We point out that F may be strictly
larger than the augmented filtration generated by B and B⊥ as we shall deal with weak solutions to
stochastic Volterra equations.
Remark 5.1. In our applications, we will be chiefly interested in the case where λt is linear in σt, and
where the dynamics of the matrix-valued process σ is governed by a Volterra equation of the form

σt = g0(t) +
∫ t

0
µ(t, s, ω)ds+

∫ t

0
χ(t, s, ω)dWs.

The class of models that we developed includes in particular the case of Volterra Heston model when
d = 1 with λt = θσt, for some constant θ, as studied in [118], and the case of Wishart process for the
covariance matrix process Vt = σtσ

⊤
t , as studied in [60].

Mean-variance optimization problem. Let πt denote the vector of the amounts invested in the
risky assets S at time t in a self–financing strategy and set α = σ⊤π. Then, the dynamics of the
wealth Xα of the portfolio we seek to optimize is given by

dXα
t =

(
r(t)Xα

t + α⊤
t λt

)
dt+ α⊤

t dBt, t ≥ 0, Xα
0 = x0 ∈ R. (5.1.3)
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By a solution to (5.1.3), we mean an F-adapted continuous process Xα satisfying (5.1.3) on [0, T ]
P-a.s. and such that

E
[

sup
t≤T

|Xα
t |2
]
< ∞. (5.1.4)

The set of admissible investment strategies is naturally defined by

A = {α ∈ L2,loc
F ([0, T ],Rd) such that (5.1.3) has a solution satisfying (5.1.4)}.

The Markowitz portfolio selection problem in continuous-time consists in solving the following con-
strained problem

V (m) := inf
α∈A

{
Var(XT ) : s.t. E[XT ] = m

}
. (5.1.5)

given some expected return value m ∈ R, where Var(XT ) = E
[(
XT −E[XT ]

)2] stands for the variance.

5.1.2 A generic verification result

In this section, we establish a generic verification result for the optimization problem (5.1.5) given
the solution of a certain Riccati BSDE. We stress that our mean-variance problem deals with in-
complete markets with unbounded random coefficients σ and λ, so that existing results cannot be
applied directly to our setting: Lim [142] presents a general methodology to solve the MV problem
for the wealth process (5.1.3) in an incomplete market without assuming any particular dynamics on
σ nor that the excess return is proportional to σ. However, a nondegeneracy assumption is made
on σσ⊤, see Lim [142, Assumption (A.1)]. The main verification result in Lim [142, Proposition
3.3], based on a completion of squares argument, states that if a solution to a certain (nonlinear)
Riccati BSDE exists, then the MV is solvable. The difficulty resides in proving the existence of so-
lutions to such nonlinear BSDEs (see also Lim and Zhou [143] for similar results in complete markets).

Here, we assume that the excess return is proportional to σ (instead of the nondegeneracy condition)
and state a verification result in terms of solutions of Riccati BSDEs (completion of squares, ie LQ
problem with random coefficients).

Theorem 5.2 below, can be seen as unifying framework for the aforementioned results. We define
C ∈ RN×d by

C = (C1, . . . , CN )⊤
,

where we recall that the vectors Ci ∈ Rd come from the correlation structure (5.1.2). We will use the
matrix norm |A| = tr(A⊤A) in the subsequent theorem.

Theorem 5.2. Assume that there exists a solution triplet (Γ, Z1, Z2) ∈ S∞
F ([0, T ],R) ×L2,loc

F ([0, T ],Rd)×
L2,loc
F ([0, T ],RN ) to the Riccati BSDE{

dΓt = Γt

[(
− 2r(t) +

∣∣λt + Z1
t + CZ2

t

∣∣2 )dt+
(
Z1

t

)⊤
dBt +

(
Z2

t

)⊤
dWt

]
,

ΓT = 1,
(5.1.6)

such that

(H1) 0 < Γ0 < e
2
∫ T

0
r(s)ds, and Γt > 0, for all t ≤ T ,

(H2)

E
[

exp
(
a(p)

∫ T

0

(
|λs|2 +

∣∣Z1
s

∣∣2 +
∣∣Z2

s

∣∣2 )ds)] < ∞,
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for some p > 2 and a constant a(p) given by

a(p) = max
[
p (3 + |C|) , 3(8p2−2p)

(
1 + |C|2

)]
.

Then, the optimal investment strategy for the Markowitz problem (5.1.5) is given by the admissible
control

α∗
t = −

(
λt + Z1

t + CZ2
t

)(
Xα∗

t − ξ∗e
−
∫ T

t
r(s)ds)

,

where

ξ∗ = m− Γ0e
−
∫ T

0
r(t)dt

x0

1 − Γ0e
−2
∫ T

0
r(t)dt

. (5.1.7)

Furthermore, the value of (5.1.5) for the optimal wealth process X∗ = Xα∗ is

V (m) = Var(X∗
T ) = Γ0

∣∣x0 −me
−
∫ T

0
r(t)dt∣∣2

1 − Γ0e
−2
∫ T

0
r(t)dt

. (5.1.8)

In the sequel, we will provide concrete specifications of multivariate stochastic Volterra models for
which the solution to the non-linear Riccati BSDE (5.1.6) can be computed in closed and semi-closed
forms, while satisfying conditions (H1) and (H2). The key idea is to observe that, first, if such solution
exists, then, it admits the following representation as a Laplace transform:

Γt = E
[

exp
(∫ T

t

(
2r(s) −

∣∣λs + Z1
s + CZ2

s

∣∣2 )ds) ∣∣∣ Ft

]
, 0 ≤ t ≤ T.

In the special case where λ is deterministic, then the solution to (5.1.6) trivially exists with Z1 =
Z2 = 0, and condition (H1) and (H2) are obviously satisfied when λ is nonzero and bounded. In the
general case where λ is an (unbounded) stochastic process, the admissibility of the optimal control
is obtained under finiteness of a certain exponential moment of the solution triplet (Γ, Z1, Z2) and
the risk premium λ as precised in (H2). Such estimate is crucial to deal with the unbounded random
coefficients in (5.1.3), see for instance Han and Wong [118], Shen et al. [170], Shen [169] where similar
conditions appear. If the coefficients are bounded, such condition is not needed, see Lim [142, Lemma
3.1].

Our main interest is to find specific dynamics for the volatility σ and for the market price of risk λ
such that the Laplace transform can be computed in (semi)-explicit form. We shall consider models
as mentioned in Remark 5.1, where all the randomness in λ comes from the process W driving σ, and
for which we naturally expect that Z1 = 0. We solve more specifically this problem for two classes of
models:

1. Multivariate affine Volterra models of Heston type. This extends the results of Han and Wong
[118] to the multi dimensional case and provides semi-closed formulas. This part will not be
discussed here, we refer to the paper [12] for the full treatment.

2. Multivariate quadratic Volterra models of Stein-Stein and Wishart type in Section 5.1.3 for
which we derive new closed-form solutions, which is detailed below.

5.1.3 Multivariate quadratic Volterra models

The model. In this section, we assume that the components of the stochastic volatility matrix
σ in (5.1.1) are given by σij = γ⊤

ijY , where γij ∈ RN and Y = (Y 1, . . . , Y N )⊤ is the following
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N -dimensional Volterra Ornstein–Uhlenbeck process

Yt = g0(t) +
∫ t

0
K(t, s)DYsds+

∫ t

0
K(t, s)ηdWs, (5.1.9)

where D, η ∈ RN×N , g0 : R+ → RN is locally bounded, W is a N -dimensional process as in (5.1.2),
i.e.,

W k
t = C⊤

k Bt +
√

1 − C⊤
k CkB

⊥,k
t , (5.1.10)

where Ck ∈ Rd, such that C⊤
k Ck ≤ 1, k = 1, . . . , N , and K : [0, T ]2 → RN×N is a Volterra kernel in

L2. We stress that the process W is not necessarily a N -dimensional Brownian motion due to the
possible correlations.

Furthermore, the risk premium is assumed to be in the form

λt = ΘYt, t ≤ T,

for some Θ ∈ Rd×N , so that the dynamics for the stock prices (5.1.1) reads as

dSi
t = Si

t

(
r(t) +

N∑
k,ℓ=1

d∑
j=1

γℓ
ijΘjkY ℓ

t Y
k

t

)
dt+ Si

t

d∑
j=1

γ⊤
ijYtdB

j
t , i = 1, . . . , d. (5.1.11)

The appellation quadratic reflects the quadratic dependence of the drift and the covariance matrix
of logS in Y . Such models nest as special cases the Volterra extensions of the celebrated Stein and
Stein [171] or Schöbel and Zhu [168] model and certain Wishart models of Bru [47].

Remark 5.3. Note that with (5.1.10), there are no restrictions on the correlations between Y i and the
stocks Si in (5.1.9) and (5.1.11), in contrast with the correlation structure in the multivariate Volterra
Heston model. Moreover, the quadratic models allow us to deal with correlated stocks in contrast
with the multivariate Heston model where no correlation between the driving Brownian motion of
the assets Si and Sj is allowed in order to keep the affine structure.

The explicit solution. We provide an explicit solution for the Markowitz problem for quadratic
Volterra models, and our main result is stated in Theorem 5.5 below. Exploiting the quadratic struc-
ture of (5.1.9)-(5.1.11), recall Chapter 3, we provide an explicit solution to the Riccati BSDE in Lemma
5.4 below, in terms of the following family of linear operators (Ψt)0≤t≤T acting on L2 ([0, T ],RN

)
:

Ψt = −
(

id − K̂
)−∗

Θ⊤
(

id + 2ΘΣ̃tΘ⊤
)−1

Θ
(

id − K̂
)−1

, 0 ≤ t ≤ T, (5.1.12)

where F −∗ := (F −1)∗, and K̂ is the integral operator induced by the kernel K̂ = K(D − 2ηC⊤Θ)
and Σ̃t the integral operator defined by

Σ̃t = (id − K̂)−1Σt(id − K̂)−∗, t ∈ [0, T ],

with Σt defined as the integral operator associated to the kernel

Σt(s, u) =
∫ s∧u

t

K(s, z)η
(
U − 2C⊤C

)
η⊤K(u, z)⊤dz, t ∈ [0, T ],

where U = d⟨W ⟩t

dt =
(
1i=j + 1i ̸=j(Ci)⊤Cj

)
1≤i,j≤N

.

For this, denote by g the process

gt(s) = 1t≤s

(
g0(s) +

∫ t

0
K(s, u)DYudu+

∫ t

0
K(s, u)ηdWu

)
. (5.1.13)
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One notes that for each, s ≤ T , (gt(s))t≤s is the adjusted forward process

gt(s) = E
[
Ys −

∫ s

t

K(s, u)DYudu | Ft

]
, s ≥ t.

Lemma 5.4. Assume that (U − 2C⊤C) ∈ SN
+ . Let Ψ be the operator defined in (5.1.12). Then, the

process
(
Γ, Z1, Z2) defined by 

Γt = exp (ϕt + ⟨gt,Ψtgt⟩L2),
Z1

t = 0,
Z2

t = 2
(
(ΨtKη)∗gt

)
(t),

(5.1.14)

where g is given by (5.1.13) and ϕ is a deterministic function explicitely given in terms of Ψ, is a
S∞
F ([0, T ],R) × L2

F([0, T ],Rd) × L2
F([0, T ],RN )-valued solution to the Riccati-BSDE (5.1.6).

From Theorem 5.2, we can now explicitly solve the Markowitz problem (5.1.5) in the quadratic
Volterra model (5.1.9), (5.1.10) and (5.1.11).

Theorem 5.5. Modulo a certain moment condition that has been verified in [8], the optimal invest-
ment strategy for the Markowitz problem (5.1.5) is given by the admissible control

α∗
t = −

((
Θ + 2C [ΨtKη]∗

)
gt

)
(t)
(
Xα∗

t − ξ∗e
−
∫ T

t
r(s)ds

)
,

where ξ∗ is defined in (5.1.7), and the optimal value is given by (5.1.8) with Γ0 as in (5.1.14).

The following corollary treats the standard Markovian and semimartingale case for K = IN and shows
how to recover the well-known formulae in terms of the usual matrix Riccati equations in the spirit
of [60].

Corollary 5.6. Set K(t, s) = IN 1s≤t and g0(t) ≡ Y0 for some Y0 ∈ RN . Then, the solution to the
Riccati BSDE can be re-written in the form

Γt = exp
(
ϕt + Y ⊤

t PtYt

)
, and Z2

t = 2η⊤PtYt,

where P : [0, T ] 7→ RN×N and ϕ solve the conventional system of N ×N -matrix Riccati equations
Ṗt = Θ⊤Θ + Pt(2ηC⊤Θ −D) + (2ηC⊤Θ −D)⊤Pt + 2Pt(η(U − 2C⊤C)η⊤)Pt,

PT = 0,
ϕ̇t = −2r(t) − tr(PtηUη

⊤), t ∈ [0, T ],
ϕT = 0.

Furthermore, the optimal control reads

α∗
t = −

(
Θ + 2C(Dη)⊤PtYt

)(
Xα∗

t − ξ∗e
−
∫ T

t
r(s)ds

)
.

Practicioner’s corner. We proceed with a numerical experiment for a rough Stein-Stein model with
two assets. We illustrate the results of Section 5.1.3 on a special case of the two dimensional rough
Stein-Stein model. Our main motivation for considering the multivariate rough Stein-Stein model
is to study the ‘buy rough sell smooth’ strategy of Glasserman and He [102] that was backtested
empirically: this strategy consisting in buying the roughest assets while shorting on the smoothest
ones was shown to be profitable. Our numerical results below provide new insights on the strategy
by showing that the correlation between stocks plays a key role:

• ρ < 0: In the case of negatively correlated assets it is natural to expect the following strategy:
pick both assets in order to be protected from volatility and benefit from the drift.
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• ρ > 0: when the two stocks are positively correlated with ρ > 0, there is no minimization of
variance through diversification by going long in both assets. Thus in the case a positively
correlated assets, it is natural to expect the emergence of a starker choice between the assets.
In the ρ > 0 case, see on Figure 5.1, we observe a buy rough sell smooth strategy as the one
empirically found in Glasserman and He [102].

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

0.1

0.0

0.1

0.2

0.3

t t 
H1 = 0.08
H2 = 0.4

Figure 5.1: ρ = 0.7, when the two assets are positively correlated we recover the buy rough
sell smooth strategy as it is described in [102]. (the parameters are: H1 = 0.08, H2 = 0.4,

T = 2.1, η1 = η2 = 1, ci = −0.7.)

5.2 Optimal liquidation with general transient impact and
trading signals [8]

Price impact refers to the empirical fact that the execution of a large order affects the risky asset’s
price in an adverse and persistent manner leading to less favourable prices. Propagator models are a
central tool in describing this phenomena mathematically. More precisely, if the trader’s holdings in
a risky asset is denoted by Q = {Qt}t≥0, then the asset price St is given by,

St = S0 +
∫ t

0
G(t− s)dQs +Mt,

where M is a martingale and the price impact kernel G is called a propagator. It can be shown both
from theoretical arguments such as market efficiency paradox and empirically that G(t) must decay
for large values of t, therefore the integral on the right-hand-side of the above equation is referred to
as transient price impact (see e.g. Bouchaud et al. [44, Chapter 13]). The two extreme cases where
G is Dirac’s delta and when G = 1 are referred to as temporary price impact and permanent price
impact, respectively. They are core features in the well known Almgren-Chriss model [22, 23], up to
a multiplicative constant.

Considering the adverse effect of the price impact on the execution price, a trader who wishes to
minimize her trading costs has to split her order into a sequence of smaller orders which are executed
over a finite time horizon. At the same time, the trader also has an incentive to execute these split
orders rapidly because she does not want to carry the risk of an adverse price move far away from her
initial decision price. This trade-off between price impact and market risk is usually translated into
a stochastic optimal control problem where the trader aims to minimize a risk-cost functional over a
suitable class of execution strategies, see [52, 97, 103, 112, 141, 152] among others. In practice however,
apart from focusing on the trade-off between price impact and market risk, many traders and trading
algorithms also strive for using short term price predictors in their dynamic order execution schedules.
Most of such documented predictors relate to order book dynamics as discussed in [139, 140, 144, 61].
From the modelling point of view, incorporating signals into execution problems translates into taking
into consideration a non-martingale price process, which changes the problem significantly. The
resulting optimal strategies in this setting are often random and in particular signal-adaptive, in
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contrast to deterministic strategies, which are typically obtained in the martingale price case [46, 34].
Results on optimal trading with signals but without a transient price impact component (i.e. G = 0)
were derived in [51, 140, 33].

Results on optimal liquidation problems with a general class of price impact kernels are scarce as the
associated stochastic control problem is non-Markovian and often singular (except for the exponential
kernel case which makes the problem Markovian [155, 145, 108, 56, 167, 153]). Indeed the transient
price impact term and hence the asset execution price encode the entire trajectory of the agent’s
trading. A first contribution towards solving this problem was made by Gatheral et al. [98], who
solved the deterministic case without signals and without a risk-aversion term. They minimised the
following energy functional over left-continuous and adapted strategies Q = {Qt}t≥0 with a fuel
constraint, i.e. QT + = 0

C(Q) =
∫

[0,T ]

∫
[0,T ]

G(|t− s|)dQsdQt.

Here C(Q) represents the trader’s transaction costs and Q as before, is the trader’s holdings in the
risky asset. Under the assumption that the convolution kernel G is non-constant, nonincreasing,
convex and integrable, a necessary and sufficient first order condition in the form of a Fredholm
equation was derived in [98].

Our main objective in the paper [8] is to solve a general class of liquidation problems in the presence
of linear transient price impact, which is induced by a nonnegative-definite Volterra-type propagator,
along with taking into account a progressively measurable signal. We formulate these problems as
a minimization of revenue-risk aversion functionals over a class of absolutely continuous and signal-
adaptive strategies. Our solution to these problems solves an open problem put forward in [140] and
also significantly extends the deterministic theory of Alfonsi and Schied [20].

Let T > 0 denote a finite deterministic time horizon and fix a progressively measurable processes P =
(Pt)0≤t≤T satisfying

E

[∫ T

0
P 2

s ds

]
< ∞.

We consider a trader with an initial position of q > 0 shares in a risky asset. The number of shares
the trader holds at time t ∈ [0, T ] is prescribed as

Qu
t = q −

∫ t

0
usds,

where (us)s∈[0,T ] denotes the trading speed which is chosen from the set of admissible strategies

A :=
{
u : u progressively measurable s.t. E

[∫ T

0
u2

sds

]
< ∞

}
.

We assume that the trader’s trading activity causes price impact on the risky asset’s execution price.
We consider a Volterra kernel G : [0, T ]2 → R+, that is G(t, s) = 0 for s ≥ t, within a certain class of
square-integrable admissible kernels. Then, we introduce the actual price Su in which the orders are
executed along a certain admissible strategy u:

Su
t := Pt − λut − Zu

t , 0 ≤ t ≤ T,

where P plays the role of the unaffected price of the risky asset and

Zu
t = h0(t) +

∫ t

0
G(t, s)usds, 0 ≤ t ≤ T,

for some square integrable deterministic function h0 : [0, T ] → R.



Chapter 5. Portfolio optimization and liquidation in a Volterra framework 44

Specifically, the trader’s transaction not only instantaneously affects the execution price in (5.2.3) in
an adverse manner through a linear temporary price impact λ > 0 à la Almgren and Chriss [23]; it
also induces a longer lasting price distortion Zu because of the linear transient price impact (see e.g.
Gatheral et al. [98]).

We now suppose that the trader’s optimal trading objective is to unwind her initial position q > 0
in the presence of temporary and transient price impact, along with taking into account the asset’s
general price, through maximizing the performance functional

J(u) := E

[∫ T

0
(Pt − Zu

t )utdt− λ

∫ T

0
u2

tdt+Qu
TPT − ϕ

∫ T

0
(Qu

t )2dt− ϱ(Qu
T )2

]
, (5.2.5)

via her selling rate u ∈ A. The first three terms in (5.2.5) represent the trader’s terminal wealth; that
is, her final cash position including the accrued trading costs which are induced by temporary and
transient price impact as prescribed in (5.2.3), as well as her remaining final risky asset position’s
book value. The fourth and fifth terms in (5.2.5) implement a penalty ϕ≥0 and ϱ≥0 on her running
and terminal inventory, respectively. Also observe that J(u) < ∞ for any admissible strategy u ∈ A.

Our aim is to find the optimal strategy u∗ that maximizes the trader’s performance functional:

J(u∗) = sup
u∈A

J(u).

Our main results in [8] show that, remarkably, the problem can be solved explicitely despite the
path-dependency of the model. More precisely, we show that the optimal strategy u∗ is explicitly
given by the solution to a linear Volterra equation of the form

u∗
t = at +

∫ t

0
B(t, s)u∗

sds,

where {at}t∈[0,T ] is a stochastic process that depends linearly on the price process P and B is a
deterministic kernel. Both a and B are given explicitly in terms of the inputs of the model and of
the price impact kernel G and share some similarities with the operator formulas that have already
appeared in the previous Section, we refer to Section 6.2 below for a more general framework sharing
the same structure. Such expressions lend themselves naturally to numerical discretization schemes
as shown in the accompanying notebook.

Practicioner’s corner. we provide an efficient numerical discretization scheme for the optimal
trading speed u∗ in (4.2.11). We then illustrate numerically the effect of the transient impact kernel
G and the signal on the optimal trading speed. For simplicity, we will fix throughout this section the
penalization on the running inventory to zero, i.e. ϕ = 0 in (5.2.5). The code of our implementation can
be found at https://colab.research.google.com/drive/1VQasI92YhdBC0wnn_LxMkkx_45VyK1yQ.

In Figure 5.2 we illustrate the solultion for T = 10, a fractional kernel t−α with parameter α and a
positive Ornstein-Uhlenbeck signal. We notice that the monotonicity with respect to the α parameter
in the fractional kernel is preserved (see in the left panels). In this scenario, since the signal is positive
the agent is first buying in order to make a quick profit and then selling her inventory in order to
close the position. We observe that larger values of α allow the trader to buy more inventory at the
beginning of the trade.

Related literature. Our results significantly improve the results of [153] as we allow for a general
Volterra propagator instead of an exponential one. This turns the stochastic control problem to
become non-Markovian as the state variables (e.g. the execution price) depend on the entire trading
trajectory, unlike the exponential kernel case where the transient price impact could be regraded as a
mean-reverting state variable hence the problem become Markovian (see Lemma 5.3 in [153]). We also
generalise the price process dynamics in [153], which was assumed to be a semimartingale, while here
we assume that it is a progressively measurable process. Our main results also substantially generalise
the results of Alfonsi and Schied [20]. Finally, our work is also related to a recent paper by Forde
et al. [85], where a specific example of an optimal liquidation problem with power-law transient price

https://colab.research.google.com/drive/1VQasI92YhdBC0wnn_LxMkkx_45VyK1yQ
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Figure 5.2: Impact of parameters of the kernels on the optimal trading speed and inventory
with Ornstein-Uhlenbeck signal for the parameters h0 ≡ 0, q0 = 10, T = 10, λ = 0.5, ϱ =
2, ϕ = 0; for the OU signal: I0 = 2, γ = 0.3, σ = 0.5. First column: Fractional kernel; Second

column: Exponential kernel.

impact, a Gaussian signal, and without a risk-aversion term was studied. In the main result of [85], a
first order condition for the solution was derived in terms of Fredholm integral equations of the first
kind. Then, examples for explicit solutions were worked out for a specific choice of signals, which are
convolution of fractional kernels with respect to Brownian motion.
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Chapter 6
Stochastic games in a Volterra framework

Summary

In this chapter, we pursue the study of controlled dynamics with Volterra processes but in the
context of stochastic games.

Based on:
[9] Abi Jaber, E. & Villeneuve, S. Gaussian Agency problems with memory and Linear Con-
tracts, Finance & Stochastics, to appear.
[17] Abi Jaber, E., Neuman, E. & Voss, M. Equilibrium in Functional Stochastic Games with
Mean-Field Interaction, Submitted to Annals of Applied Probability.

We consider:

• A Stackelberg game [9]: a Principal-Agent problem à la Holmström and Milgrom but where the
usual Brownian motion for modeling the revenues is replaced by a Gaussian Volterra process.
What is striking is that we are able to solve explicitly the problem for this class and show that
the optimal contract is still linear in the terminal value of the revenue, just like in Holmstrom-
Milgrom framework, with a recommended deterministic effort for the agent.

• A class of finite-player and mean-field games [17] that we solve in terms of explicit operator
formulas, similar to the ones that appeared in Chapters 3 and 5. However, in contrast with
these chapters, there is an important methodological difference, we are able to develop a general
direct approach to solve the game directly, without having to guess any particular Ansatz and
verify that is indeed the solution.

6.1 Gaussian Agency problems with memory and linear con-
tracts [9]

The extensive literature analyzing the dynamic principal-agent problem has shown that it is important
but difficult to design the optimal shape of contracts in a tractable way. Indeed, optimal contracts
in dynamic agency problems are generally defined as complex functionals of a stream of contractible
variables, such as revenues. Moreover, as first identified by Rogerson [161] (see also [138]) theoretical
contracts exhibit memory, even in the most commonly used models that assume uncorrelated shocks,
which unfortunately prevents them from matching real-world practices (see Bolton and Dewatripont
[39]). In addition, firms’ revenues empirically show long memory and we lack a theoretical framework

47
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that justifies the signing of simple tractable contracts in an environment with inter-temporal links
across time periods.
In a Brownian setting, the breakthrough paper by Holmström and Milgrom [124] (HM) shows that
the optimal contract is linear in profits under some specific assumptions: the agent exerts effort
continuously, principal and agent have CARA utilities, the agent bears a pecuniary cost of effort and
finally the outcomes generated in the absence of effort are modeled by a fully observable Brownian
motion. Nevertheless, as pointed by Schättler and Sung [166], it appears to be very difficult to
find general conditions that ensure the optimal contract is linear in end-of-period outcomes. One
can read there at the current level of understanding of the principal-agent problem, one probably has
to be content with presenting examples and counterexamples, possibly understanding some classes of
problems in depth. In the paper [9], we study in details the optimality of linear contracts in end-of-
period outcomes in a rich class of Volterra models.

We consider a risk-averse investor, who owns a project and signs a fixed-term contract with a risk-
averse manager, the latter being necessary to operate a project. Time is continuous and the time
horizon is T > 0. In the absence of effort, the stochastic output process (Xt)t≤T of the project evolves
up to time T as

Xt = g0(t) +
∫ t

0
K(t, s)dBs, (6.1.1)

where B is a standard one-dimensional Brownian motion, g0 : [0, T ] → R is a measurable deterministic
input function, K : [0, T ]2 → R is a measurable Volterra Kernel, i.e. K(t, s) = 0 for s ≥ t such that

sup
t≤T

∫ T

0
K2(t, s)ds < ∞.

An important observation about this framework relates to assumptions about the asymmetry in
information, which has been interpreted by [124] as a distinction between linear optimal contracts
in outcomes X and those in accounts B. We denote by FB the augmented filtration generated by
(Bt)t≤T and FX the one generated by the output process (Xt)t≤T . It readily follows from (6.1.1)
that FX ⊂ FB . Hereafter, we assume that the agent has better information than the principal about
the project in the sense that he has access to the full information FB while the principal observes
only some aggregated information generated by the output FX . In general, these two filtrations do
not coincide even in one-dimensional models as shown in the following example corresponding to a
situation where the principal observes the output in a discretionary way.

Discrete observations of a Brownian motion: Assume Xt = f(t)Bt where f is a bounded function
on [0, T ]. Observe that X is a Volterra process with K(t, s) = f(t)1s≤t. Consider a subdivision
0 < t1 < . . . < tn = T of the interval [0, T ] and let f be the function defined as a linear combination
of unit impulses

f(t) =
N∑

i=1
1ti

(t).

The output process is purely discontinuous with Xti = Bti and Xt = 0 for t ̸= ti and may correspond
to a situation where the principal performs audits at regular intervals. Therefore, FX is strictly
included in FB . We deduce that, even in a situation where the principal knows the agent is not
exerting effort, the principal has a coarser information than the agent. In Volterra Gaussian models,
we must therefore be careful that there may be asymmetric information between the principal and
the agent regardless of the agency problem we introduce below.

Agency problem: We assume that the agent can exert a continuous effort (at)t≤T that modifies the
probability distribution of X as follows

Xt = g0(t) +
∫ t

0
K(t, s)(as ds+ dBa

s ),
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where Ba is also a Brownian motion. As is customary in the agency theory literature, while the
output process X is observable by both players, the effort is the agent’s private information. The
agent’s cost for exercising some effort level a is modeled through a strictly convex C2 function k(a)
satisfying k(0) = 0. To alleviate the exposition, we will assume hereafter that the effort cost function
is quadratic,

k(a) = κ
a2

2 , for some κ > 0. (6.1.2)

Hereafter and in accordance with the paper of Holmström and Milgrom [124], we model the preferences
of the principal and the agent with CARA utility functions that are given respectively by

UP (x) := − exp(−γPx) and UA(x) := − exp(−γAx), ∀x ∈ R.

In the beginning of the relationship, principal and agent agree on a contract of maturity T . To foster
incentives, the contract specifies a payment at time T which is modeled by a random variable ξ that
is supposed to be FX

T measurable. We assume that both players can fully commit to the contract
and that the agent has a reservation utility level R0 = UA(y0) < 0 below which he will refuse the
contract. The latter inequality is referred to the participation constraint of the agent who has the
option to reject a contract and enjoy a utility of autarky R0.

Description of the probabilistic background: For completeness, we recall the rigorous formulation of
the agency problem in order to make understandable the first-order conditions that we will give in
the next section. Let (Ω,F ,F := (Ft)t≤T ,P0) be a filtered probability space on which a F–Brownian
motion B := (Bt)t≤T is defined with natural (completed) filtration FB := (FB

t )t≤T .

The firm’s output or cash-flows observed by the principal are given by a stochastic process X with
dynamics under P0,

Xt = g0(t) +
∫ t

0
K(t, s)dBs,

The impact of the agent’s effort is modeled as a change of probability measure which changes the drift
of the driving Brownian process. More precisely, agent’s admissible actions are given by the following
set

A =
{

(at)t≤T F-progressively measurable: there exists A > 0 s.t.
∫ T

0
a2

sds ≤ A, P0 − a.s.
}
.

Observe that the set of admissible actions A is not empty because it contains bounded actions.
Clearly, any admissible process a ∈ A satisfies the Novikov’s criterion

E0

[
exp

(
1
2

∫ T

0
a2

sds

)]
< +∞,

where the notation E0 denotes the expectation under P0.

This ensures that the process
(

exp
(∫ T

0 as dBs − 1
2
∫ T

0 a2
s ds

))
0≤t≤T

is a martingale under P0. We
can therefore define a family of equivalent probability measures Pa by

dPa

dP0
= exp

(∫ T

0
as dBs − 1

2

∫ T

0
a2

s ds

)
,

where a ranges trough A. Hereafter, we will denote Ea the expectation under Pa. Under Pa, the
process Ba = B −

∫ ·
0 as ds is a F−Brownian motion by Girsanov theorem and X evolves as

Xt = g0(t) +
∫ t

0
K(t, s)(as ds+ dBa

s ). (6.1.3)
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Because, the effort is unobservable, the principal only observes the trajectory of the output process
X, the deterministic curve g0 but not the last two terms of the decomposition (6.1.3) separately.
Importantly, in the case of general Volterra processes, this moral hazard model leads to a novel simple
setting where we have persistence of past efforts on the output variation. It is well-documented that
the persistence of effort can have a significant impact on the future outcomes and that it is difficult
to provide a setting where the optimal contract with correlated-in-time efforts has a nice and explicit
form. This is mainly due to the way one models the complex relationship between past efforts and
current outcomes. The strength of the Volterra class is that it provides a simple and effective way
to introduce persistence of the agent’s efforts in dynamic contracting, while allowing an explicit
description of the optimal contract.

The Principal-agent problem: It is well known that principal-agent relationships can be viewed as a
Stackelberg game. The principal moves first by offering a contract that consists in a compensation
ξ, which belongs to the set of FX

T measurable random variables, to the agent. The latter then reacts
by choosing an effort policy based on the information available at each date inducing a probability
measure Pa. For any given contract ξ, let V A

0 (ξ) denote the agent’s utility at time 0 which is defined
as

V A
0 (ξ) := sup

a
Ea

(
UA

(
ξ −

∫ T

0
k(as) ds

))
(6.1.4)

recall the definition of k in (6.1.2). As common in agency problems, we define the concept of incentive-
compatible contracts.

Definition 6.1. A contract ξ is said to be incentive compatible if V A
0 is finite and if there exists an

effort policy a∗(ξ) ∈ A that maximizes (6.1.4), i.e.

V A
0 (ξ) = Ea∗(ξ)

(
UA

(
ξ −

∫ T

0
k(a∗

s(ξ)) ds
))

.

It is critical to understand what incentive-compatible contracts are, as these are the ones for which
the principal can enforce desirable efforts. As common in the literature, we will focus on a class Ξ
of contracts ξ that are incentive-compatible (IC). Before defining rigorously the class of IC contracts
Ξ we will focus on, we clarify the principal’s problem. By offering an incentive-compatible contract
ξ ∈ Ξ, the principal will be able to anticipate the optimal effort level a∗(ξ). Hence, she will propose
an incentive-compatible contract that maximizes the expected value of her CARA preference. Then,
her aim is to solve

V P
0 := sup

ξ∈Ξ
Ea∗(ξ) [UP (XT − ξ)] , (6.1.5)

under the participation constraint Ea∗(ξ)
(
UA

(
ξ −

∫ T

0 k(a∗
s(ξ)) ds

))
≥ R0.

Our main result is given by the following theorem which shows that the problem (6.1.5) admits an
optimal contract which is linear in end-of-period outcomes. The result of the Holmstrom-Milgrom
model thus extends to all Gaussian Volterra processes, even though these may exhibit very different
statistical properties. Following Schättler and Sung [165], we introduce the class of contracts we will
focus on. Let us define

f∗(z) := γA

2 |z|2 + inf
a∈R

{k(a) − az} = κγA − 1
2κ z2,

and consider the following class Ξ of Incentive Compatible contracts,

Ξ = {ξ = Y
(y,β)

T : FX
T −mes, where y ≥ y0, β = (βt)t≤T ∈ A and Y

(y,β)
T = y+

∫ T

0
f∗(βs)ds+

∫ T

0
βsdBs}.

We stress that the following class of contracts is not restrictive since any integrable contract ξ can be
written as the terminal value of a process Y (y,β) as in the set Ξ. Such approach is now well-know in
the semimartingale framework, see [72].

We have:
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Theorem 6.2. The optimal contract ξ∗ that maximizes the principal problem (6.1.5) is linear in
end-of-period profits XT and is given by

ξ∗ = y0 − γP + 1/κ
γA + γP + 1/κg0(T ) + κγA − 1

2κ

∫ T

0
(β∗

s )2 ds+ γP + 1/κ
γA + γP + 1/κXT ,

and the optimal level of recommended effort a∗ that maximizes the agent’s problem (6.1.4) is deter-
ministic and given by a∗ = β∗

κ with

β∗
t = γP + 1/κ

γA + γP + 1/κK(T, t), t ≤ T.

Similarly to HM, the optimal compensation is made up of a deterministic base salary

y0 − γP + 1/κ
γA + γP + 1/κg0(T ) + κγA + 1

2κ

∫ T

0
(β∗

s )2 ds

and a random compensation to foster incentives γP +1/κ
γA+γP +1/κXT . One of the striking results is, when

agents have CARA preferences, the incentive part of the optimal contract, through the performance-
based bonus coefficient γP +1/κ

γA+γP +1/κ , is common to all one-dimensional Volterra Gaussian models and
thus independent of the output dynamics, even though they have very different statistical properties.
Only the base salary is industry-specific depending on the output dynamic through the Volterra
kernel K. The optimal effort level is deterministic and firm-specific and can, depending on the choice
of the Volterra kernel, exhibit interesting behaviors. For instance, for the mean-reverting dynamics,
i.e. K(t, s) = e−λ(t−s)1s<t, the optimal effort is increasing if the mean-reverting intensity λ is positive.
The closer one gets to contract maturity, the more work the agent has to do. The intuition is that the
optimal effort should compensate for the natural tendency of the process to revert to its long-term
average. The closer the contract is to maturity, the greater the effort should be to allow X to deviate
from its long-term average and thus allow the principal to benefit from a greater profit. When the
mean-reverting intensity is negative, the effort must be greater at the beginning of the contract in
order to give the necessary impetus to the process to diverge towards large positive values. Once this
momentum is established, it is less effective to ask the agent to work.

6.2 N-player and mean-field games with memory [17]

In [17], we consider a class of finite-player and mean-field games that we solve in terms of explicit
operator formulas, similar to the ones that appeared in Chapters 3 and 5. However, in contrast with
these chapters, there is an important methodological difference, we are able to develop a general direct
approach to solve the game directly, without having to guess any particular Ansatz and verify that
is indeed the solution.

Specifically, we consider N -player stochastic games in which each agent i has an objective functional
of the form

J i(ui) :=E
[
−⟨u,A1u⟩L2 − ⟨ui,A2u

i⟩L2 − ⟨ui, (A3 + A∗
3)u⟩L2

+⟨bi, ui⟩L2 + ⟨b0, u⟩L2 + ci
]
,

where ui represents the agent’s control and u = N−1∑N
i=1 u

i captures a mean-field interaction
between all agents. Here, the symbols Ai, i = 1, 2, 3 denote non-anticipative linear operators on
L2([0, T ],R); (bi

s)s∈[0,T ], (b0
s)s∈[0,T ] are stochastic processes; and ci is a random variable. The inner

product is defined in the usual sense as ⟨f, g⟩L2 :=
∫ T

0 f(s)g(s)ds for f, g ∈ L2([0, T ],R).

We highlight in [17, Section 3], the versatility of the objective functional in (6.2.1), by showing that it
nests several important, challenging and diverse examples of dynamical stochastic games beyond the
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Markovian and semimartingale case. In particular, we introduce a general class of Linear-Quadratic
Stochastic Volterra game whose objective functional is shown to be equivalent to (6.2.1). Then, we
show how such framework accommodates and extends and solves three major examples that appeared
in the literature. An inter-bank lending and borrowing model with delay in the control which was
studied in Carmona et al. [50], Fouque and Zhang [90]. Advertising models Gozzi and Marinelli [107]
with mean-field effect and delay in the state. Multiplayer price impact games with general propagator
in the spirit of Abi Jaber and Neuman [8], Neuman and Voß [154].

To simplify the presentation, we only present here the solution to the corresponding mean-field game
in what follows. Let (Ω,FT ,F = (Ft)0≤t≤T ,P) denote a filtered probability space. We use the
notation Et = E[·|Ft] to represent the conditional expectation with respect to Ft. Moreover, let c
denote an FT -measurable random variable and let β, β0 denote F-progressively measurable processes
such that β0 is independent of β. We set

b := β + β0 (6.2.2)

and denote by F0 := (F0
t )0≤t≤T the filtration generated by β0 satisfying the usual conditions.

Assumption 6.2.1. We assume that for all t ≤ T , F0
T and Ft are conditionally independent given F0

t .

We also define the sets of admissible processes

U :=
{
v : F-progressively measurable s.t.

∫ T

0
E[v2

s ]ds < ∞

}
,

U0 :=
{
v : F0-progressively measurable s.t.

∫ T

0
E[v2

s ]ds < ∞

}
⊂ U .

The paradigm of the infinite-player mean field game limit of the finite-player game from (6.2.1) is the
following: First, we consider a generic player who seeks to implement a strategy v ∈ U in order to
maximize for a fixed µ ∈ U0 the objective function

J(v;µ) :=E [−⟨µ,A1µ⟩L2 − ⟨v,A2v⟩L2 − ⟨v,A3 + A∗
3µ⟩L2

+⟨b, v⟩L2 + ⟨b0, µ⟩L2 + c
]
,

(6.2.3)

with same operators A1,A2,A3 as well as F-progressively measurable process b0. Then, we determine
the F0-measurable process µ such that a mean field game equilibrium with common noise β0 is
obtained in the following sense.

Definition 6.3. A pair (v̂, µ̂) ∈ U × U0 is called a mean field game equilibrium if the control v̂ solves
the optimization problem

J(v̂; µ̂) → max
v∈U

(6.2.4)

under the consistency condition

E[v̂t|F0
T ] = µ̂t, Ω × [0, T ] almost everywhere. (6.2.5)

Remark 6.4. Note that due to Assumption 6.2.1, it holds in (6.2.5) that

E[v̂t|F0
T ] = E[v̂t|F0

t ]

for all t ∈ [0, T ]. Indeed, for all ξ ∈ F0
T it follows that

E[ξ E[v̂t|F0
t ]] = E[E[ξ|F0

t ]E[v̂t|F0
t ]] = E[E[ξv̂t|F0

t ]] = E[ξv̂t],

where the second equality is obtained from the conditional independence given by Assumption 6.2.1.
Remark 6.5. Observe that the process b defined in (6.2.2) in the generic player’s objective functional
in (6.2.3) encodes two different sources of noise. Specifically, β0 can be interpreted as representing
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some common noise affecting the whole system whereas β represents the generic player’s independent
individual source of noise; as well as other random or deterministic factors, which are idiosyncratic
to the generic player. In particular, the generic player in the mean field game can be thought of as
a representative player chosen from a population of heterogeneous players who are allowed to have
their own β, which are not necessarily (statistically) identical.

Using calculus of variation to write the first-order conditions of the optimization problems in (6.2.4),
leads to the following non-standard stochastic (adaptive) Fredholm equation for µ̂ with both forward
and backward components:

µ̂t = ft −
∫ t

0
K(t, r)µ̂rdr −

∫ T

t

L(r, t)Etµ̂rdr, t ≤ T, (6.2.6)

where f is progressively measurable, K,L are deterministic kernels determined by the inputs of the
model (A1,A2,A3, b

i, b0, ci). One of our main innovations is that we derive an explicit solutions to
(6.2.6) using an novel approach. Then, we use the solution to (6.2.6) to disentangle and solve the
optimisation problem of each player and hence to derive explicitly the Nash equilibrium. In addition
to solving (6.2.6), we derive a stability result for (6.2.6). This stability result is the crucial ingredient
for linking the N -player game to the mean-field game: (i) by deriving the convergence of the finite-
player game towards the mean-field limit, (ii) and establishing an ϵ-Nash equilibrium for the N -player
game using the mean-field game.

To state the mean field game equilibrium, it is convenient to introduce the following two solution
maps F and G of two associated Fredholm equations:

F (t, x) :=
(
(id − B̃)−1ãx

)
(t) G(t, x) :=

(
(id − B̂)−1âx

)
(t) t ≤ T, (6.2.7)

where
ãx

t := 1
2λ

(
xt − ⟨1t≤·Â2(·, t), D̃−1

t 1t≤·Et[x·]⟩L2

)
,

B̃(t, s) := 1{s≤t}
1

2λ

(
⟨1t≤·Â2(·, t), D̃−1

t 1t≤·Â2(·, s)⟩L2 − Â2(t, s)
)
,

D̃t := 2λid + (Â2)t + (Â∗
2)t;

(6.2.8)

and
âx

t := 1
2λ

(
xt − ⟨1t≤·Â2(·, t), D̂−1

t 1t≤·Et[x·]⟩L2

)
,

B̂(t, s) := 1{s≤t}
1

2λ

(
⟨1t≤·Â2(·, t), D̂−1

t 1t≤·(A3(·, s) + Â2(·, s))⟩L2

− (A3(t, s) + Â2(t, s))
)
,

D̂t := 2λid + (A3)t + (A∗
3)t + (Â2)t + (Â∗

2)t.

(6.2.9)

We are now ready to provide the solution to the mean field game:

Theorem 6.6. Assume that the linear operators D̃t and D̂t in (6.2.8) and (6.2.9) are invertible
for all t ∈ [0, T ]. Then, the unique mean field game equilibrium (v̂, µ̂) ∈ U × U0 in the sense of
Definition 6.3 is given by

v̂t = F (t, β + β0 − (A3 + A∗
3)µ̂),

µ̂t = G(t,E[β] + β0)

for all t ∈ [0, T ], where F and G are defined in (6.2.7).

The framework developed in the paper [17] is unique in that the solvability, stability, and consistency
of finite-player games with mean-field interaction boil down to the study of the stochastic Fredholm
equation (6.2.6). To our knowledge our approach gives the first canonical method for deriving explic-
itly Nash equilibrium to this general class of stochastic games. The closest result appeared in Huang
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et al. [127], where the authors derived a first order conditions for a special case of (6.2.1) in terms of
a system of stochastic integral equation but did not derive solution to the system. We also refer to
Bensoussan et al. [36] where first order condition for linear-quadratic stochastic games with delays in
the state and the control were derived. We show that we can derive explicit solutions to this class of
games as a corollary of our main results.



Part III

Joint SPX-VIX Modeling
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Chapter 7
The Quintic Ornstein-Uhlenbeck model
that jointly calibrates SPX and VIX smiles

Summary

In this chapter, we introduce the first one factor Markovian stochastic volatility model that is
able to jointly calibrate SPX and VIX smiles: the Quintic Ornstein-Uhlenbeck model. It has
only 6 effective parameters and an input curve that allows to match certain term structures
and it is remarkably tractable. More interestingly, we show that it outperforms its rough
counterpart, on all dates and market conditions, on more than 10 years of data.

Based on:
[15] Abi Jaber, E., Illand, C., & Li, S. Joint SPX–VIX calibration with Gaussian polynomial
volatility models: deep pricing with quantization hints, Submitted to Mathematical Finance.
[16] Abi Jaber, E., Illand, C., & Li, S. The quintic Ornstein-Uhlenbeck volatility model that
jointly calibrates SPX & VIX smiles, Risk Magazine, to appear, 2023. Jupyter Notebook

Launched in 1993 by the CBOE, the VIX has become one of the most widely followed volatility index.
It represents an estimation of the S&P 500 index (SPX) expected volatility over a one-month period.
More precisely, the VIX is calculated by aggregating weighted prices of SPX puts and calls over a wide
range of strikes and maturities [53]. By construction, the VIX expresses an interpolation between
several points of the SPX implied volatility term structure. Thus, the task of modeling and pricing
VIX options for a given maturity T naturally requires some consistency with SPX options maturing
up to one month ahead of T . Furthermore, computing the implied volatility of VIX options using
Black’s formula requires VIX futures that also need to be priced consistently.

By joint SPX–VIX calibration problem, we mean the calibration of a model across several maturities
to European call and put options on SPX and VIX together with VIX futures. Such joint calibration
turns out to be quite challenging for several reasons: multitude of instruments to be calibrated
(SPX and VIX call/put options, VIX futures) across several maturities (to stay consistent with the
construction of the VIX), characterized by low levels of implied volatilities of the VIX with an upward
slope, in contrast with the important at-the-money (ATM) SPX skew that becomes more pronounced
for smaller maturities.

In recent years, substantial progress has been made in developing relatively sophisticated stochastic
models that achieve decent joint fits by exploiting a wide variety of mathematical tools such as jump
processes [26, 63, 137, 156, 159], rough volatility [41, 100, 163], path-dependent volatility [116] and
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multiple-factors [88, 106, 116, 162].1 However, examples of illustrated fits of these models are usually
partial: in some cases VIX futures are not calibrated; in other cases VIX derivatives are calibrated
up to maturity slice T , while the SPX derivatives for maturity slices T + ∆ for ∆ ∈ (0, 1 month) are
missing. Although different in their mathematical nature, these models share in common the fact
that they allow for 1) large price movements of the SPX on very short time scales with some forms of
spikes in the ‘instantaneous’ volatility process due to a large ‘vol-of-vol’, and 2) fast mean reversions
towards relatively low volatility regimes. We believe these are the two crucial ingredients for the joint
calibration problem.

The aforementioned literature generally agrees that conventional one-factor continuous Markovian
stochastic volatility models are not able to achieve a decent joint calibration. Our main motivations
can be stated as follows:

Can joint calibration be achieved without appealing to multiple-factors, jumps, roughness or
path-dependency?

Is joint calibration possible with conventional one-factor continuous Markovian models?

In a nutshell, we show in the papers [15, 16] that the answer to both questions is a resounding: Yes.
By performing joint calibration on daily SPX-VIX implied volatility surface data between 2012 and
2022 using a large class of models, we identify for the first time a conventional one-factor Markovian
continuous stochastic volatility model that is able to achieve remarkable fits for a wide range of
maturity slices [Ts, Te] for VIX implied volatility surface and of maturity slices [Ts, Te + 1 month]
for SPX implied volatility surface, together with the term structure of VIX futures. What is even
more remarkable is that our conventional one-factor Markovian continuous stochastic volatility model,
dubbed the Quintic Ornstein-Uhlenbeck model, outperforms its rough and non-rough path-dependent
counterparts with the same number of parameters: 6 effective parameters that govern the dynamics
of the model in addition to the usual input curve that allows to match certain term structures.

7.1 The Quintic Ornstein-Uhlenbeck model [16]

The dynamics of the stock price S, with no interest nor dividends, is given by

dSt

St
= σtdBt,

σt =
√
ξ0(t) p(Xt)√

E [p(Xt)2]
, p(x) = α0 + α1x+ α3x

3 + α5x
5,

Xt = εH−1/2
∫ t

0
e−(1/2−H)ε−1(t−s)dWs,

with B = ρW +
√

1 − ρ2W⊥, (W,W⊥) a two-dimensional Brownian motion on a risk-neutral filtered
probability space (Ω,F , (Ft)t≥0,Q), ρ ∈ [−1, 1], non-negative coefficients α0, α1, α3, α5 ≥ 0 (α2 =
α4 = 0), ε > 0, H ∈ (−∞, 1/2] and an input curve ξ0 ∈ L2([0, T ],R+) for any T > 0, allowing
the model to match certain term-structures observed on the market. For instance, the normalization√
E [p(Xt)2] allows ξ0 to match the market forward variance curve since

E
[∫ t

0
σ2

sds

]
=
∫ t

0
ξ0(s)ds, t ≥ 0.

The process X driving the volatility is an Ornstein-Uhlenbeck process with a fast mean reversion of
order (1/2 −H)ε−1 and a large vol-of-vol of order εH−1/2 for small values of ε, that is

dXt = −(1/2 −H)ε−1Xtdt+ εH−1/2dWt.

1We mention also techniques involving optimal transport [115] and randomization of the parameters [111].
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Such parametrizations are reminiscent of the fast regimes extensively studied by Fouque et al. [92],
see also [91, Section 3.6], which corresponds to the case H = 0. They can also be linked to more
complex models such as jump models [149, 5] for H ≤ −1/2; and rough volatility models [15], for
which H ∈ (0, 1/2) would play the role of the Hurst index, see also Chapter 8. Letting the parameter
H ∈ (−∞, 1/2] free in our model introduces more flexibility and leads to better fits than in the
aforementioned models. Another advantage of such parametrization is to stabilize the calibrated value
of H through time as opposed to calibrating directly on mean reversion and vol-of-vol parameters
which are less stable through time, see [15, Figure 3].

Taking p a polynomial of degree five allows us to reproduce the upward slope of the VIX smile.
Restricting the coefficients α to be non-negative (with α2 = α4 = 0) the sign of the at-the-money
skew to be the same as ρ, see [15] for more details, as well as ensuring the martingale property of S,
whenever ρ ≤ 0 and α5 > 0.

We fix ε = 1/52 to further reduce the parameters, which gives 6 calibratable parameters:

Θ := {α0, α1, α3, α5, ρ,H},

plus the input curve ξ0(·). Numerical experiments show no significant adverse impact on the joint
calibration quality by narrowing the number of parameters.

We show that the model is tractable as it offers an explicit expression for the VIX squared which is
again polynomial in the driving Ornstein-Uhlenbeck factor, leading to efficient VIX derivative pricing
by integrating directly against a Gaussian density. Simulation of the volatility process is exact so
that pricing SPX products can be done efficiently and accurately by standard Monte Carlo techniques
with suitable antithetic and control variates. We also provide a notebook with our implementa-
tion here: https://colab.research.google.com/drive/14nh9civ_wgQv283eshBWnr146w7Xsbi5?
usp=sharing.

For the first time in the literature, remarkable joint fits of SPX and VIX volatility surfaces and VIX
futures are achieved between 1 week and beyond 1 year. Although it is challenging, but possible, for
another model to achieve similar fits, it would be very difficult to do so with a simpler continuous
model than our quintic Ornstein-Uhlenbeck volatility model.

An explicit expression for the VIX. One major advantage of our model is an explicit expression
of the VIX. In continuous time, the VIX can be expressed as

VIX2
T = − 2

∆E [log(ST +∆/ST ) | FT ] × 1002 = 1002

∆

∫ T +∆

T

ξT (u)du, (7.1.1)

with ∆ = 30 days and ξT (u) := E
[
σ2

u | FT

]
the forward variance process which can be computed

explicitly in our model as follows. First, we fix T ≤ u and rewrite X as

Xu = XT e
−(1/2−H)ε−1(u−T ) + εH−1/2

∫ u

T

e−(1/2−H)ε−1(u−s)dWs =: Zu
T +Gu

T ,

then, setting
g(u) = E[p(Xu)2],

we have that

ξT (u) = E
[
σ2

u | FT

]
= ξ0(u)

g(u) E

( 5∑
k=0

αkX
k
u

)2 ∣∣∣ FT

 = ξ0(u)
g(u) E

[ 10∑
k=0

(α ∗ α)kX
k
u

∣∣∣ FT

]
,

where (α ∗ α)k =
∑k

j=0 αjαk−j is the discrete convolution. Using the Binomial expansion, we can
further develop the expression for ξT (u) in terms of Zu and Gu to get

ξT (u) = ξ0(u)
g(u)

10∑
k=0

k∑
i=0

(α ∗ α)k

(
k

i

)(
XT e

−(1/2−H)ε−1(u−T )
)i

E
[
(Gu

T )k−i
]
, (7.1.2)

https://colab.research.google.com/drive/14nh9civ_wgQv283eshBWnr146w7Xsbi5?usp=sharing
https://colab.research.google.com/drive/14nh9civ_wgQv283eshBWnr146w7Xsbi5?usp=sharing
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where we used the fact that Zu
T is FT -measurable and that Gu

T is independent of FT , with
(

k
i

)
=

k!/((k − i)!i!) the binomial coefficient. Furthermore, Gu
T is a Gaussian random variable with mean

0 and variance ε2H

1−2H (1 − e−(1−2H)ε−1(u−T )). Recall that for a Gaussian variable Y ∼ N
(
0, σ2

Y

)
, its

moments E [Y p] for p ∈ N can be computed explicitly:

E [Y p] =
{

0 if p is odd
σp

Y (p− 1)!! if p is even

with p!! the double factorial. Therefore all moments of E
[
(Gu

T )i
]

are given explicitly.

Going back to (7.1.1) and plugging the expression (7.1.2), the explicit expression of the VIX2
T turns

out to be polynomial in XT :

VIX2
T = 1002

∆

10∑
k=0

k∑
i=0

(α ∗ α)k

(
k

i

)∫ T +∆

T

ξ0(u)
g(u) E

[
(Gu

T )k−i
]
e−(1/2−H)ε−1(u−T )iduXi

T

= 1002

∆

10∑
i=0

10∑
k=i

(
(α ∗ α)k

(
k

i

)∫ T +∆

T

ξ0(u)
g(u) E

[
(Gu

T )k−i
]
e−(1/2−H)ε−1(u−T )idu

)
Xi

T

= 1002

∆

10∑
i=0

βiX
i
T , (7.1.3)

where

βi =
10∑

k=i

(α ∗ α)k

(
k

i

)∫ T +∆

T

ξ0(u)
g(u) E

[
(Gu

T )k−i
] (
e−(1/2−H)ε−1(u−T )i

)
du.

The integral inside βi can be easily computed, at least numerically for a variety of choices for ξ0(·).

Pricing VIX derivatives. Thanks to the closed expression of (7.1.3), VIX2
T is a polynomial in

XT that we denote by h(XT ). Since XT is Gaussian with mean 0 and variance σ2
XT

= ε2H

1−2H (1 −
e−(1−2H)ε−1T ), pricing VIX derivatives with payoff function Φ is immediate by integrating directly
against the standard Gaussian density:

E [Φ(VIXT )] = E
[
Φ
(√

h(XT )
)]

= 1√
2π

∫
R

Φ
(√

h (σXT
x)
)
e−x2/2dx. (7.1.4)

Example 7.1. To price VIX future prices, set Φ(v) = v and to price VIX vanilla call price, set
Φ(v) = (v − K)+. This integral (7.1.4) can be computed efficiently using a variety of quadrature
techniques. The Gaussian quadrature with 400 nodes seems to be more than enough to price accurately
VIX call and future prices.

Practicioner’s corner. Figure 7.1 shows the joint fit on the 23 October 2017, with calibrated
parameters ρ = −0.6843, H = −0.0358, (α0, α1, α3, α5) = (0.5907, 1, 0.2893, 0.0549):
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Figure 7.1: SPX–VIX smiles (bid/ask in blue/red) and VIX futures (vertical black lines)
jointly calibrated with our model (full green lines) for 23 October 2017.

Figure 7.2: SPX–VIX smiles (bid/ask in blue/red) and VIX futures (vertical black lines)
jointly calibrated with our model for time dependent H (full green lines) for 23 October

2017.

7.2 Extensive empirical study and comparison with non-Markovian
and rough models [15]

In order to study the robustness of the quintic OU model in replicating the stylized facts of SPX-VIX
smiles and compare it to other models such as rough models, we have put in place in [15] a generic
method that ensures a fair comparison on more than 10 years of data.

More precisely, our methodology and contributions in [15] are summarized follows:

Gaussian polynomial volatility models. First, we introduce a general class of Gaussian polyno-
mial volatility models, which nests the Quintic Ornstein-Uhlenbeck model, in which the SPX spot
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price takes the form
dSt

St
= σt

(
ρdWt +

√
1 − ρ2dW⊥

t

)
,

where (W,W⊥) is two-dimensional Brownian motion. The SPX spot price S is correlated with the
volatility process σ which is, up to a normalizing deterministic term, defined as a polynomial function
p(X) of a Gaussian Volterra process X in the form

Xt =
∫ t

0
K(t− s)dWs,

for a locally square-integrable kernel K. The choice of the kernel introduces a good deal of flexibility in
the modeling of the volatility process, such as rough volatility [4, 7, 10, 30, 35, 80, 99, 100] for singular
fractional kernels of the form K(t) ∼ tH−1/2 with 0 < H≤1/2, or the log-modulated kernel that
extends the fractional kernel for the case H = 0, see [32]; path-dependent models with non-singular
kernel such as the shifted fractional kernel K(t) ∼ (t+ ε)H−1/2; exponential kernels K(t) ∼ e−λt for
which X is a (Markovian) Ornstein-Uhlenbeck process or weighted sums of exponentials [1, 6, 68, 122],
refer to Table 7.1 below. We will compare the performance of these different kernels on the joint
calibration problem. Although it is difficult to decouple the impact of the different input parameters
of the model, it turns out, that the choice of K has a major impact on the ATM-skew of the implied
volatility of the SPX and the level of the implied volatility of the VIX. While the choice of the
polynomial function p has a prominent impact on the shape of the VIX smile. Taking p a polynomial
of order 5 (and higher) allows us to reproduce the upward slope of the VIX smile.

Generic, fast and accurate pricing via quantization and Neural Networks. Second, in
order to ensure a fair comparison between the calibrated models with different kernels across 10 years
of daily joint implied volatility surfaces, we develop a generic unified method that applies to any
Gaussian polynomial volatility model for pricing SPX and VIX derivatives in an efficient and accurate
fashion. The method is based on functional quantization and Neural Networks. The tractability of
the quantization approach highly relies on the Gaussian nature of X combined with the polynomial
form of the volatility process σ. More precisely:

• Fast pricing of VIX derivatives via Quantization: we develop a functional quantization
approach for computing VIX derivatives in our class of Gaussian polynomial volatility models.
When computing expectations in the form of E[F (Y )] where no closed form solution is available,
a fast alternative to Monte Carlo is quantization. The idea is to approximate the random vari-
able Y with a discrete random variable Ŷ to compute efficiently the (conditional) expectations
of suitable functionals of Y . Quantization was first developed in the 1950’s for signal processing
[101, 109] and more recently has been studied for applications in numerical probability [157]
and mathematical finance [158, 160]. We will exploit the Gaussian nature of the process X to
develop a functional quantization approach.
A first attempt to use functional quantization for VIX futures in the context of the rough
Bergomi model appears in [42]. Unfortunately, the method is not precise enough in practice,
especially for the fractional kernel with small values of H even with a lot of quantization
trajectories, see [42, Figure 3] where the number of quantized points were pushed as far as
N = 1, 000, 000 but the approximated values for VIX futures are still well-off the correct
values. It is well known that the convergence of the quantization for fractional processes is very
slow of order 1/(logN)H , see [77].
Using a crucial moment-matching trick, we are able to make functional quantization usable in
practice by achieving very accurate results for both VIX future prices and VIX option smile
with only a couple of hundreds quantization points, even for fractional processes with very low
values of H.

• Fast pricing of SPX options via Neural Networks with Quantization hints:
In a first step, we extend the previous quantization ideas to quantize SPX. However, the
quantization is more delicate whenever ρ ̸= 0 since it involves the quantization of the stochastic
Itô integral

∫ t

0 σsdWs. It is well-known since the work of Wong and Zakai [174] that the
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approximation
∫ t

0 σsdŴs, where Ŵ is some smooth approximation of the Brownian motion,
will converge towards the Stratonovich stochastic integral defined by∫ t

0
σs ◦ dWs :=

∫ t

0
σsdWs + 1

2 ⟨σ,W ⟩t.

This an issue whenever the process σ is not a semimartingale and has infinite quadratic varia-
tion, which is the case for the fractional kernel with H < 1/2: the quadratic covariation ⟨σ,W ⟩
explodes.
To solve this issue, we subtract a diverging term, in order to recover convergence, in the
spirit of renormalization theory [117] and the approach in [31, Theorem 1.3], combined with
another moment-matching trick. Once again the moment-matching trick is used to improve the
accuracy.
Unfortunately, quantization results for SPX degrade (at a slower rate) as H goes to zero for the
SPX derivatives. We therefore develop an approach with Neural Networks acting as a corrector
to the quantization points for the SPX. The Neural Networks approach in our paper has a low
input dimension (strikes and the input curve are not part of the Neural Networks’ input) and
preserves the interpretability by directly modelling the joint density of log(S) and σ. It also
improves the SPX derivative pricing to a similar amplitude to that of Monte Carlo simulation,
while being extremely fast.

Extensive empirical study. Our final contribution is an extensive empirical joint calibration
study. A total of 1,422 days of SPX and VIX joint implied volatility surfaces between August 2011
to September 2022 were calibrated. Interestingly, the Quintic OU model, which is a conventional
one-factor Markovian continuous stochastic volatility model outperforms, in all market conditions, its
rough and non-rough path-dependent counterparts, with the same number of calibrated parameters.
A possible explanation for this performance lies in the unconstrained values of H that can be pushed
below zero once calibrated, something not possible for the rough fractional kernels.

More precisely, the class of model we consider is the following: we define the class of Gaussian
polynomial volatility models under a risk-neutral measure as follows. We fix a filtered probability
space (Ω,F , (Ft)t≥0,Q) satisfying the usual conditions and supporting a two-dimensional Brownian
motion (W,W⊥). For ρ ∈ [−1, 1], we set

B = ρW +
√

1 − ρ2W⊥,

which is again a Brownian motion. The dynamics of the stock price S are assumed to follow a
stochastic volatility model such that the volatility process σ is given by a polynomial (possibly of
infinite degree) of a Gaussian Volterra process X defined by the relations:

dSt

St
= σtdBt, S0 > 0,

σt =
√
ξ0(t) p(Xt)√

E [p(Xt)2]
, p(x) =

M∑
k=0

αkx
k,

Xt =
∫ t

0
K(t− s)dWs,

for some M ∈ N possibly infinite, real coefficients (αk)k=0,...,M , a non-negative square-integrable
kernel K ∈ L2([0, T ],R+) and input curve ξ0 ∈ L2([0, T ],R+) for any T > 0, with the convention
that 0/0 = 1. In particular, X is a Gaussian process such that E

[
X2

t

]
=
∫ t

0 K(s)2ds < ∞, for all
t ≥ 0. But X is not necessarily Markovian or a semi-martingale. We will be chiefly interested in
the performance of our class of model for the joint SPX-VIX calibration problem for four kernels
summarized in Table 7.1.
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Kernel K(t) Domain of H Semi-martingale Markovian
Fractional Kfrac tH−1/2 (0, 1/2] ✗ ✗

Log-modulated K log tH−1/2(θ log(1/t) ∨ 1)−β [0, 1/2] ✗ ✗

Shifted fractional Kshift (t+ ε)H−1/2 (−∞, 1/2] ✓ ✗

Exponential Kexp εH−1/2e−(1/2−H)ε−1t (−∞, 1/2] ✓ ✓

Table 7.1: The different kernels K considered in this paper and the properties of their
corresponding process Xt =

∫ t

0 K(t− s)dWs; ε > 0, θ > 0 and β > 1.

One major advantage of our class of Gaussian polynomial volatility models is an explicit expression
of the VIX, a bit more involved than the Markovian setting but still explicit in a Gaussian process,
which allows to implement the functional quantization procedure! For details, refer to [15].

Practicioner’s corner. We carried out joint calibration on SPX and VIX implied volatilities,
together with VIX futures using all four kernels in Table 7.1 for every 2nd day between August 2011
to September 2022. That is a total of 1,422 days of SPX and VIX joint implied volatility surfaces.
The VIX is calibrated up to maturity T = 2 months, and the SPX is calibrated up to maturity T +∆,
i.e. 3 months. Market data was purchased from the CBOE website https://datashop.cboe.com/.

To speed up the joint calibration, we applied functional quantization for fast pricing of VIX derivatives
and functional quantization with Neural Networks for fast pricing of SPX derivatives.

Based on empirical results, the exponential kernel Kexp produces the best joint fit compared to the
other kernels while being the simplest (semi-martingale and Markovian). For SPX maturities up to
3 months and VIX maturities up to 2 months, the exponential kernel Kexp can achieve remarkable
fits, as shown in Figure 7.1 of implied volatility surfaces dated 23 October 2017, with calibrated
parameters ρ = −0.6997, H = −0.06939, (α0, α1, α3, α5) = (0.82695, 0.84388, 0.55012, 0.03271).

The historical time series of joint calibration rooted mean square error (RMSE) in igure 7.3 show
that the exponential kernel Kexp outperforms other kernels for all market conditions for both SPX
and VIX fit.

Figure 7.3: RMSE across different kernels: the exponential kernel Kexp outperforms other
kernels in all market conditions.

https://datashop.cboe.com/
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The evolution of jointly calibrated parameters H and ρ also appear to be stable over time in the
case of the exponential kernel as shown in Figure 7.4. This further validates the robustness of the
exponential kernel Kexp to jointly fit SPX and VIX implied volatilities. Notice that H and ρ also
appear to be negatively correlated to one another. We observe that ρ is far from being saturated to
−1 and H is on average very small and dip below zero from time to time. The parameters ρ and H
for the shifted fractional kernel Kshift display a similar trend.

Figure 7.4: Evolution of the calibrated parameters ρ and H under the exponential kernel
Kexp, the blue line is the actual value of the calibrated parameters in time, the orange line

is the 30-day moving average.

Finally, we comment on the underperformance of the fractional kernel Kfrac(t) = tH−1/2, with
H ∈ (0, 1/2], which is extensively used in recent literature on rough volatility [30, 80]. Separate
calibration of SPX/VIX appears to be satisfactory, however there are inconsistencies in the value
of H between the two indices. In order to produce the steep VIX ATM skew and lower level of
VIX implied volatility, the calibrated H is very close to zero (similar to that of quadratic rough
Heston model in [163] where H = 0.01). This is problematic for the SPX due to the ‘vanishing skew’
phenomena as H → 0, observed in [87] that also plagues models such as the rough Bergomi model.

Despite pushing ρ to the boundary value −1 in most days (which should increase the SPX ATM skew
in stochastic volatility models) as shown in Figure 7.5, the joint calibrated SPX ATM skew is too flat
compared to the market data. The VIX implied volatility produced by the model is generally too
high and does not have enough ATM skew. One can try improving the VIX fit by pushing H closer
to zero, but this will further flatten the SPX ATM skew.

Figure 7.5: Fractional kernel Kfrac: Evolution of the calibrated parameters ρ and H under
the fractional kernel Kfrac, the blue line is the actual value of the calibrated parameters in
time, the orange line is the 30-day moving average. Note how ρ is saturated at -1 in most
days, but still not enough to capture the SPX ATM skew. H is unable to descent to near

zero due to the “vanishing” skew phenomena.
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Chapter 8
Reconciling rough volatility with jumps [5]

Summary

This chapter reconciles rough volatility with jumps models and provides an interpretation of
negative H regimes.

Based on: [5] Abi Jaber, E., & De Carvalho, N. Reconciling rough volatility with jumps,
Submitted to SIAM Journal on Financial Mathematics.

In Chapter 2, we saw how one could extend fractional processes based on Brownian motion to negative
Hurst indices H ∈ (−1/2, 1/2]. One of the aims of this chapter is to give an interpretation of the
region H ∈ (−∞,−1/2] for which such processes can no longer be defined. In addition, in Chapter
7 we saw that calibrated values of the parameter H in the Quintic Ornsetin-Uhlenbeck model are
negative on average, which also motivates a deeper study of negative H regimes.

Since the 1987 financial crash, financial option markets have exhibited a notable implied volatility
skew, especially for short-term maturities. This skew reflects the market’s expectation of significant
price movements on very short time scales in the underlying asset, which poses a challenge to tradi-
tional continuous models based on standard Brownian motion. To address this issue, the literature has
developed several classes of models that capture the skewness in implied volatilities. Three prominent
approaches are:

• conventional one-factor stochastic volatility models boosted with large mean-reversion and vol-
of-vol. This class of models have been justified by several empirical studies that have identified
the presence of very fast mean-reversion in the S&P volatility time series [21, 58, 92, 93] and
by the fact that they are able to correct conventional models to reproduce the behavior of the
at-the-money (ATM) skew for short maturities [149];

• jump diffusion models, especially the class of affine jump-diffusions for which valuation prob-
lems become (semi-)explicit using Fourier inversion techniques, see [75]. Such class of models
incorporates occasional and large jumps to explain the skew observed implicitly on option mar-
kets, see [64], and [25] for an empirical analysis of the impact of adding jumps to stochastic
volatility diffusion on the implied volatility surface;

• rough volatility models, where the volatility process is driven by variants of the Riemann-
Liouville fractional Brownian motion

WH
t = 1

Γ (H + 1/2)

∫ t

0
(t− s)H−1/2

dWs, t ≥ 0,

67
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with W a standard Brownian motion and H ∈ (0, 1/2) the Hurst index. Such models are able
to reproduce the roughness of the spot variance’s trajectories measured empirically [99, 35]
together with the explosive behavior of the ATM-skew [24, 30, 80, 95, 4].

So far, in the mathematical finance community, jump diffusion models and rough volatility models
have often been treated as distinct approaches, and, in some cases, they have even been opposed to
each other, see for instance [30, Section 5.3.1]. However, on the one side, connections between rough
volatility models and fast mean-reverting factors have been established in [1, 6, 7]. On the other side,
jump models have been related to fast regimes stochastic volatility models in [149, 148]. In parallel,
from the empirical point of view, it can be very challenging for the human eye and for statistical
estimators to distinguish between roughness, fast mean-reversions and jump-like behavior, as shown
in [7, 62, 96].

The above suggests that rough volatility and jump models may not be that different after all. Our
main motivation in [5] was to establish for the fist time in the literature a connection between rough
volatility and jump models through conventional volatility models with fast mean-reverting regimes.

We aim to reconcile these two classes of models through the use of the celebrated conventional
Heston model [123] but with a parametric specification which encodes a trade-off between a fast
mean-reversion and a large vol-of-vol. We define the reversionary Heston model as follows:

dSϵ
t = Sϵ

t

√
V ϵ

t

(
ρdWt +

√
1 − ρ2dW⊥

t

)
, Sϵ

0 = S0, (8.0.1)

dV ϵ
t =

(
ϵH− 1

2 θ − ϵ−1 (V ϵ
t − V0)

)
dt+ ϵH− 1

2 ξ
√
V ϵ

t dWt, V ϵ
0 = V0, (8.0.2)

where
(
W,W⊥) is a two-dimensional Brownian motion, θ ≥ 0, S0, ξ, V0 > 0, ρ ∈ [−1, 1]. The two

crucial parameters here are the reversionary time-scale ϵ > 0 and H ∈ R. Such parametrizations nest
as special cases the fast regimes extensively studied by Fouque et al. [92], Feng et al. [82], see also
[91, Section 3.6], which correspond to the case H = 0; and also the regimes studied in [149, 148] for
the case H = −1/2. Letting the parameter H ∈ (∞, 1/2] free in (8.0.2) introduces more flexibility in
practice and leads to better fits with stable calibrated parameters across time as shown in Chapter
7. In theory, it allows for a better understanding of the impact of the scaling in H on the limiting
behavior of the model as ϵ → 0 as highlighted in the paper.

In a nutshell, we show that:

1. for H > −1/2, the reversionary Heston model can be constructed as a proxy of rough and
hyper-rough Heston models where H ∈ (−1/2, 1/2] plays the role of the Hurst index,

2. for H ≤ −1/2, as ϵ → 0, the reversionary Heston model converges towards Lévy jump pro-
cesses of Normal Inverse Gaussian type with distinct regimes for H = −1/2 and H < −1/2
respectively,

3. the reversionary Heston model is capable of generating implied volatility surfaces and at-the-
money (ATM) skews similar to the ones generated by rough, hyper-rough and jump models,
and comes arbitrarily close to the ATM skew scaling as τ−0.5 for small τ that characterizes the
market, contrary to widespread understanding.

Our results allow for a reconciliation between rough and jump models as they suggest that jump
models and (hyper-)rough volatility models are complementary, and do not overlap. For H > −1/2,
the reversionary Heston model can be interpreted as a proxy of rough and hyper-rough volatility
models, while for H ≤ −1/2, it can be interpreted as a proxy of jump models. Jump models actually
start at H = −1/2 (and below), the first value for which hyper-rough volatility models can no-longer
be defined.

More precisely, our argument is structured as follows. First, we show how the reversionary Heston
model (8.0.1)-(8.0.2) can be obtained as a Markovian and semimartingale proxy of rough and hyper-
rough Heston models [80, 133] with Hurst index H ∈ (−1/2, 1/2). This is achieved using the resolvent
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of the first kind of the shifted fractional kernel. Second, we derive the joint conditional characteristic
functional of the log-price logSϵ and the integrated variance V ϵ :=

∫ ·
0 V

ϵ
s ds in the model (8.0.1)–

(8.0.2) in terms of a solution to a system of time-dependent Riccati ordinary differential equations.
Compared to the literature, we provide a novel and concise proof for the existence and uniqueness
of a global solution to such Riccati equations using the variation of constant formulas. Finally, we
establish the convergence of the log-price and the integrated variance (logSϵ, V

ϵ) in the reversionary
Heston model (8.0.1)-(8.0.2) towards a Lévy jump process (X,Y ), as ϵ goes to 0. More precisely,
we show that the limit (X,Y ) belongs to the class of Normal Inverse Gaussian - Inverse Gaussian
(NIG-IG) processes which we construct from its Lévy exponent and we connect such class to first
hitting-time representations in the same spirit of Barndorff-Nielsen [28]. Our main results provide the
convergence of the finite-dimensional distributions of the joint process (logSϵ, V

ϵ) through the study
of the limiting behavior of the Riccati equations and hence the characteristic functional. Interestingly,
the limiting behavior disentangles three different asymptotic regimes based on the values of H. The
convergence of the integrated variance process is even strengthened to a functional weak convergence
on the Skorokhod space of càdlàg paths on [0, T ] endowed with the M1 topology. We stress that the
usual J1 topology is not useful here, since jump processes cannot be obtained as limits of continuous
processes in the J1 topology.

Practitioner’s corner. We illustrate numerically our theoretical findings that suggests that for
H > −1/2 the reversionary model can be interpreted as a proxy of rough and hyper-rough volatility
models, while for H ≤ −1/2 it can be interpreted as a proxy of jump models. The resulting At-The-
Money (ATM) skews between 1 week and 1 year for the rough Heston model and the reversionary
Heston model are shown on Figure 8.1. The graphs show that the reversionary Heston model seems
to be able to generate similar shapes of the implied volatility surfaces of rough and hyper-rough
models and very steep skews even in the hyper rough regimes H ≤ 0. In Figure 8.2, we plot the
convergence of the smiles and the skew of the reversionary Heston model (logSϵ, V

ϵ) for the case
H = −1/2 towards the Normal Inverse Gaussian model. Similar to Figure 8.1, the graphs show that
the fast parametrizations introduced in the Heston model are able to reproduce very steep skews for
the implied volatility surface.
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Related Literature. Convergence of the reversionary Heston models towards jump processes: our
results clarify and extend the results of [149, 148], derived for the case H = −1/2, that establish
and make clear the precise limiting connection between the Heston log-price process and the normal
inverse-Gaussian (NIG) process of [28]. Connections between the long time behavior of the Heston
log-price process and NIG distribution were first exposed in [86, 134] and were the main motivations
behind the work of Mechkov [149].
Relevance of fast regimes in practice have been shown in Fouque et al. [92] ans Feng et al. [82].
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Chapter 9
Perspectives

Stochastic Volterra equations

A part of my current research agenda naturally builds on the first two parts of this thesis on the
theoretical study of Volterra equations and their applications in both uncontrolled and controlled en-
vironments to solve complex problems exhibiting memory and intertemporal dependence. Specifically,
my program aims to:

• Address the open problem of strong uniqueness for these equations with singular kernels such
as the fractional kernel and non-Lipschitz coefficients.

• Study Volterra equations with non-convolution kernels, including existence and uniqueness with
non-convolution kernels, as well as Riccati-Volterra with non-convolution kernels. One work in
this direction has already begun in collaboration with Aurélien Alfonsi and Guillaume Szulda.
Establishing invariance and viability properties of stochastic Volterra equations (as well as for
the Riccati-Volterra equation) with non-convolution kernels is not well understood and requires
new techniques. The techniques developed in [10] highly rely on the resolvent of the first kind
of the kernel, which is no longer a valid object for non-convolution kernels.

• Introduce and develop the class of Polynomial Volterra processes, for which moments can be
computed using a new system of integral equations (first work in progress in collaboration with
Christa Cuchiero, Luca Pelizzari, Sergio Pulido and Sara Svaluto-Ferro). Exploit such method
in practice: e.g. expansions of densities via moments.

• Develop a finer modeling of volatility and correlations in a multivariate framework.
• Develop a more parsimonious modeling of energy markets. In this regard, I am co-supervising

Nathan De Carvalho’s thesis at ENGIE, in collaboration with Huyên Pham (Université de
Paris).

• Study Principal-Agent problems in more complex and realistic dynamics in non-Markovian
settings beyond the Gaussian setting that has been treated here.

• Solve optimal execution and liquidation problems for multiple assets with persistent (cross)-
market impact using propagator models. Analytic solutions (in terms of infinite-dimensional
operators) can be obtained, building on the results in this thesis.

• Explore the direct approach developed in Section 6.2 and extend it to attack different types of
mean-field games under aggregated and individual constraints on state variables and controls
through a generalization of the KKT conditions, as well as in cooperative games and McKean-
Vlasov type optimal control problems. Several practical applications will be developed, such
as optimal trading with storage batteries, a first work is in progress with Nathan De Carvahlo
and Huyên Pham.
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Towards the use of signature in mathematical finance

One of my other main objectives is to explore the concept of ”signature”1 and more particularly
its property of linearization, both practical and theoretical, for the semi-explicit resolution of prob-
lems characterizing the law of certain rich dynamic models and control problems beyond the linear-
quadratic framework.

Different types of solutions will be considered. Heuristically, these solutions are based on the key
idea of functional linearization of a path via the signature. This linearization property would allow
the development of analytical formulas for optimal strategies in models with very rich dynamics that
go beyond the quadratic linear framework. We expect to derive these solutions through a system of
non-standard ordinary differential equations of Riccati type in infinite dimensions with values in a
tensor algebra. These equations fall outside the classical framework, and so far there are no existence
and uniqueness results for this type of equation, they have recently appeared in [71]. I plan to
study the theory of existence of these equations and to develop and test different numerical schemes
for an efficient numerical resolution of the problem by projecting/truncating the signature in finite
dimension. I also aim to obtain convergence and stability results for these methods, and if possible,
to exhibit convergence rates.

To avoid the curse of dimensionality related to the exponential growth of the number of terms of the
signature, I wish to explore new directions of dimensionality reduction. In addition, I plan to use
deep learning methods coupled with the signature to construct signals and improve the predictive
performance of supervised and unsupervised learning models. Several types of applications will be
considered. I plan to build more realistic models to model the stochastic correlations between assets
that would depend on the entire trajectory, and I will be interested in portfolio allocation problems
and signature computation in these new non-Markovian and non-semimartingale models.

This work will build on ongoing work with Louis-Amand Gérard’s for his PhD, which focuses on
practical applications of signature and deep learning methods for portfolio allocation and risk man-
agement. Finally, I am exploring these different techniques with Stéphane Crépey and Botao Li
(postdoc student) for generating realistic market trajectories as part of a project recently started.

Empirical performance and evaluation of stochastic volatility models

I would like to go beyond the third part of this thesis and put in place a general framework for
comparing the performance of different volatility models on real market data, in terms of calibration
performance, hedging, prediction and stability of calibrated parameters. Part of these points are
currently being addressed for the second half of Shaun Li’s PhD.

1a mathematical concept, initially introduced by Chen [54], consisting of the (infinite) sequence of iterated
integrals of a path, which plays a crucial role in the theory of rough paths [146] and has recently gained
popularity and attracted attention from the machine learning community [59].
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[55] Li Chen, Damir Filipović, and H Vincent Poor. Quadratic term structure models for risk-
free and defaultable rates. Mathematical Finance: An International Journal of Mathematics,
Statistics and Financial Economics, 14(4):515–536, 2004.

[56] Y. Chen, U. Horst, and H.H. Tran. Portfolio liquidation under transient price impact -
theoretical solution and implementation with 100 NASDAQ stocks. Preprint available on
arXiv:1912.06426, 2019.

[57] Peng Cheng and Olivier Scaillet. Linear-quadratic jump-diffusion modeling. Mathematical
Finance, 17(4):575–598, 2007.

[58] Mikhail Chernov, A Ronald Gallant, Eric Ghysels, and George Tauchen. Alternative models
for stock price dynamics. Journal of Econometrics, 116(1-2):225–257, 2003.

[59] Ilya Chevyrev and Andrey Kormilitzin. A primer on the signature method in machine learning.
arXiv preprint arXiv:1603.03788, 2016.

[60] Mei Choi Chiu and Hoi Ying Wong. Mean–variance portfolio selection with correlation risk.
Journal of Computational and Applied Mathematics, 263:432–444, 2014.

[61] R. Cont, A. Kukanov, and S. Stoikov. The price impact of order book events. Journal of
Financial Econometrics, 12(1):47–88, 2014.

[62] Rama Cont and Purba Das. Rough volatility: fact or artefact? arXiv preprint
arXiv:2203.13820, 2022.

[63] Rama Cont and Thomas Kokholm. A consistent pricing model for index options and volatility
derivatives. Mathematical Finance: An International Journal of Mathematics, Statistics and
Financial Economics, 23(2):248–274, 2013.

[64] Rama Cont and Peter Tankov. Financial modelling with jump processes. Chapman and Hal-
l/CRC, 2003.
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Abstract : Empirical studies indicate the presence
of memory and strong inter-temporal dependence
across various phenomena in the fields of finance
and economics. The Brownian motion and Poisson
processes, characterized by independent increments,
are not suitable for modeling such phenomena.
We will consider Stochastic Volterra processes : a
class of processes which extends the standard Brow-
nian motion and Poisson processes to include me-
mory ; the fractional Brownian motion and Hawkes

processes constitute a special case.
First, we develop the mathematical tools needed to
deal with these stochastic Volterra integral equa-
tions that go beyond the standard stochastic calculus
theory of Markovian processes and semimartingales.
Second, we explore the modeling flexibility of such
equations in introducing memory in a broad range of
problem in finance and economy including : volatilit
modeling, portfolio allocation, optimal execution, prin-
cipal agency, mean-field games . . .
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