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Abstract

In this thesis, we have studied the electrical and thermal transport properties of the non-
centrosymmetric compound EuPtSi, at low temperatures and under magnetic field.
The first part of the results focuses on the low-field (H < 5 T) magnetic phases that
are observed in EuPtSi below the ordering temperature TN = 4.1 K for the three main
directions H ∥ [110], H ∥ [111] and H ∥ [100]. From the angular dependence of the
resistivity under magnetic field, we confirmed the presence of anomalous phases: for the
direction H ∥ [111] the so-called skyrmion lattice A-phase, and for the H ∥ [100] direction
the skyrmion-related A’ and B phases. By studying these phases with various transport
probes, we have established the magnetic phase diagram with precision. We have also ev-
idenced the presence of additional anomalies at low-temperature related to the skyrmion
phases. Our temperature-dependent results for the H ∥ [111] and H ∥ [100] evidence the
metastable behavior of the A, A’ and B phases under field cooling. From the peculiar
metastable state for the H ∥ [100] direction, further field sweeps show that both the A’
and the B phases exist in the super-cooled regime with phase lines between them. From
transport measurements as a function of temperature, we also show an anomalous trans-
port in the conical ordered state.
The second part of our results focus on the Fermi surface of EuPtSi, studied with quantum
oscillations in the thermoelectric power. The temperature dependence of the quantum
oscillations recovers the effective mass of the carriers for each Fermi surface branch, with
results comparable to the literature. From the field-dependence of the quantum oscilla-
tions, we have recovered the Dingle temperature and mean-free path of the carriers using
a new analysis framework for the thermoelectric power, indicating that the latter is an
extremely sensitive probe to detect quantum oscillations.
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Introduction

In 2009, the observation of a magnetic skyrmion lattice (SkL) phase in MnSi [1] proved
the existence of an object that has been proposed more than 40 years earlier as a model
of the nucleon in nuclear physics [2]. The concept of skyrmions was then introduced in
solid state physics in the 1980s. Magnetic skyrmions are topologically protected particle-
like objects that are very promising for technological applications. With their small size
compared to magnetic domains, magnetic memories with high information density can
be devised, and individual skyrmions can be moved with low excitation currents i.e. low
energy consumption. For the prospect of potential applications, skyrmions are highly
sought-after and ongoing research aims to understand their fundamental properties, a lot
of which are still open questions.

Although some systems with preserved inversion symmetry have also been confirmed
to host skyrmions, a key ingredient for the formation of skyrmions was first found to
be the lack of inversion center of the crystal structure. From the discovery of the SkL
in MnSi, other compounds with the non-centrosymmetric space group P213 potentially
hosting skyrmions have been looked for, one of which is EuPtSi. EuPtSi orders in the
helical antiferromagnetic state with a low ordering temperature TN = 4.1 K, and shows a
rich phase diagram under field with different magnetic orders. The A-phase of EuPtSi for
a magnetic field H ∥ [111] has been confirmed to be a SkL phase in 2018, making it the
first 4f rare-earth skyrmion compound [3]. Moreover the helical ordering vector is small,
with a periodicity of 18 Å, and as such it is strongly pinned to the crystal structure. Under
applied magnetic field, this induces a strong anisotropy of the magnetic phase diagram.
The A-phase has been observed around the H ∥ [111] direction, whereas for H ∥ [110]
no such phase exists. In turn, the H ∥ [100] direction shows evidence of two different
skyrmion-like phases, named A’ and B.

The low thermal excitation needed to induce the A-phase allows it to be observed
at temperatures down to 450 mK which provides a rare opportunity for the study of
skyrmions close to their ground-state [4]. The A’ and B phases, on the other hand, are
observed in a very small angle range and down to 250 mK [5]. Their study proves to be
challenging from an experimental perspective and their formation mechanism and struc-
ture has yet to be reported. Moreover, it was recently shown that it is possible to stabilize
the SkL phases in a metastable state at lower temperature under magnetic field-cooling,
which still needs clarification [4].
The field-temperature phase diagram of EuPtSi is investigated using electrical and ther-
mal transport measurements at low temperature and high magnetic field for the three
main directions. We have compared the anomalous features of the SkL in longitudinal
and transverse resistivity with thermal conductivity and thermoelectric power. The ther-
moelectric power especially yields promising results, both in measurements related to the
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CONTENTS

magnetic orders and the analysis of the Fermi surface of EuPtSi through quantum oscil-
lations.

This thesis is divided into four main parts. The first chapter consists of theoretical con-
cepts needed to understand the experimental work of the later chapters. An introduction
to the thermoelectric power and its underlying theory is presented. An emphasis is put
on its sensitivity to changes in the electronic density of states and to the Fermi-surface
properties. Quantum oscillations are then presented through the Lifshitz-Kosevich theory
for magnetization and resistivity, and the Pantsulaya-Varlamov theory framework for the
thermoelectric power. Finally, we also introduce various magnetic orderings, the concept
of skyrmions and the prototypical skyrmion compound MnSi. The second chapter con-
sists of the experimental methods used for the transport measurements of the following
chapters. In the third chapter, we introduce EuPtSi in detail and present the electrical
and thermal transport results we have obtained. The field-dependent measurements are
first presented for the three different main directions, H ∥ [110], H ∥ [111] and H ∥ [100]
with the emphasis on the SkL A, A’ and B phases. A second part then focuses on the
temperature-dependent results where we study the metastable behavior of the SkL phases
down to 100 mK. The fourth and last chapter presents quantum oscillations measurements
in EuPtSi, mainly in thermoelectric power.

Other compounds have been studied during the period of this PhD thesis, albeit not to
the same extent as EuPtSi. The main results for MoTe2 are briefly presented in Appendix
B.
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Chapter 1

Theoretical background

In this chapter, we recall physical concepts and theoretical explanations concerning the
understanding of the results in the subsequent chapters. First we will introduce
thermoelectricity, the Seebeck and the Nernst coefficient and their interest as probes to
study transport properties of a metallic system. We will then describe quantum
oscillations in magnetization, resistivity and thermoelectric power and the corresponding
theoretical analyses. Finally, we will explore low-temperature magnetic orders that will
be encountered in the experimental results.

Chapter contents
1.1 Thermoelectricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 The origin of thermoelectricity . . . . . . . . . . . . . . . . . . 12

1.1.2 The Seebeck coefficient as a transport probe . . . . . . . . . . 14

1.1.3 A measure of the entropy per charge carrier . . . . . . . . . . 15

1.2 Quantum oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.1 Cyclotron orbit and Landau quantization . . . . . . . . . . . . 16

1.2.2 The Lifshitz-Kosevich theory . . . . . . . . . . . . . . . . . . . 17

1.2.3 Quantum oscillations in thermoelectric power . . . . . . . . . 21

1.3 Skyrmions and magnetic orders . . . . . . . . . . . . . . . . . . . . . . 23

1.3.1 Magnetic orders . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.2 Skyrmions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.3 The prototypical skyrmion compound MnSi . . . . . . . . . . 28

1.3.4 Skyrmions, not only interesting for fundamental research... . . 30

1.1 Thermoelectricity

Thermoelectric coefficients are very interesting probes to study the electronic properties
of a system, albeit not as common as resistivity or specific heat. In this work, we have
used a large array of probes, two of which are thermoelectric coefficients, the Seebeck and
the Nernst effects. This section will explain these two transport effects and how they can
be used to study a system.
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Chapter 1. Theoretical background

1.1.1 The origin of thermoelectricity

To understand how thermoelectricity works and what is actually measured through the
thermoelectric coefficients, let us start by recalling well known transport concepts for the
case of a one-dimensional system. Ohm’s law states that an electric field E applied along
a conductor produces a flow of charge Je:

Je = σE (1.1)

with σ the electrical conductivity in Ω−1m−1. As an analogy with electricity, a tempera-
ture difference across a solid generates a heat current. The thermal current JQ is linked
to a temperature gradient ∇T:

JQ = −κ∇T (1.2)

κ is the thermal conductivity in WK−1m−1. The − sign comes from the fact that heat flows
from hot to cold while the thermal gradient vector points the opposite way. Both σ and κ
are positive coefficients that are well defined properties of a solid body. Thermoelectricity
comes from the observation by T. J. Seebeck (1821) that the application of a thermal
gradient on a conducting solid produces a voltage difference.1 Later, J-C. Peltier (1834)
observed that one could induce a heating or cooling effect by injecting an electric current
through a conductor. Lord Kelvin (1854) accurately described the two effects as being
the same phenomenon. The existence of this phenomenon implies that the equations 1.1
and 1.2 should be modified, thus becoming:

Je = σE− α∇T (1.3a)
JQ = βE− κ′∇T (1.3b)

The first equation states that a charge current can be generated either by an electric
field E or a temperature gradient ∇T [6]. The second equation means that either a
temperature gradient or an electric field can induce a heat flow. Without thermal gradi-
ent, or conversely without electric field, the previous equations 1.1 and 1.2 are naturally
recovered. The coefficients linking these properties are σ the electrical conductivity, α
the Peltier coefficient (or thermoelectric conductivity) and κ the thermal conductivity.
Linking the Seebeck and Peltier effect, β is related to α through the Kelvin relation:

β = αT (1.4)

The Seebeck coefficient S along the x direction is defined as:

S = − Ex

∇Tx

(1.5)

The − sign reflects the opposite potential difference compared to a resistivity experiment
if the entropy carriers are electrons. The Seebeck coefficient is the measure of the electric

1Both the Seebeck and the Peltier effect were first observed across the junction of two wires of different
materials, leading to the first thermocouple. For our explanation, we will however consider a single
homogeneous medium.
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1.1. Thermoelectricity

field generated by a thermal gradient in the absence of a thermal current. In other words,
by setting Je = 0 in equation 1.3a, we obtain:

S =
α

σ
(1.6)

We can note that both the Peltier coefficient (in AK−1m−1) and the electrical conductivity
(in Ω−1m−1) depend on the sample dimensions. This geometrical factor with a unit of
length, however, vanishes in the ratio, therefore the Seebeck coefficient being an intensive
quantity.2

The results have been presented so far for the case of a one-dimensional system. However
with the application of a magnetic field, the Lorentz force on the charged particles is
perpendicular to their direction of propagation. This additional force causes the charge
flow to deviate. Rewriting equations 1.1 and 1.2 and taking the transverse components of
a longitudinal field and temperature gradient respectively, we then obtain the Hall effect
for electricity and the so-called thermal Hall effect as its temperature analogue. It comes
naturally that transverse thermoelectric effects are also observed, the Nernst and Etting-
hausen effects (transverse counterparts to the Seebeck and Peltier effects respectively).
[7, 8, 9]

We can then write the Seebeck coefficient as the thermoelectric tensor Ŝ:

Ŝ = σ̂−1α̂ (1.7)

Which gives:

Sxx =
σyyαxx − σxyαxy

σxxσyy + σ2
xy

(1.8)

If αxy ≪ αxx and σxy ≪ σxx, it becomes:

Sxx =
αxx

σxx

(1.9)

and we recover equation 1.6. By the same process, under the application of a magnetic
field along z, a longitudinal thermal gradient along x gives rise to a transverse electric
field along y, and the Nernst coefficient is:

N = Sxy =
Ey

∇xT
(1.10)

Experimentally, because the voltage difference is measured perpendicularly to the tem-
perature difference, a geometric factor has to be taken into account, which was not the
case for the Seebeck effect where both are measured at the same points or contacts of
the sample. Given the length l and the width w of the sample, the geometric factor is
f = l/w and the Nernst coefficient is recovered as N = f ∆Vy

∆Tx
.

2In practice, this is ensured by measuring the temperature difference and the voltage difference at the
same points of the sample.
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Chapter 1. Theoretical background

1.1.2 The Seebeck coefficient as a transport probe

As a transport probe, the Seebeck coefficient depends on the density of states (DOS) of the
charge carriers. In the case of electrons at finite temperature T , their energy distribution
is given by the Fermi-Dirac distribution:

f(ϵ, T ) =
1

exp
(

ϵ−µ
kBT

)
+ 1

(1.11)

where µ is the chemical potential and kB the Boltzmann constant. At T = 0 K electrons
occupy all the states below µ = ϵF the Fermi energy and none of the states above ϵF .
With temperature, this distribution is broadened. The total number of electrons Ntot in
the volume V of the solid gives the carrier density n = Ntot/V . We then have:

n =

∫ ∞

0

f(ϵ)g(ϵ)dϵ =

∫ ϵF

0

g(ϵ)dϵ (1.12)

and g(ϵ) is the density of states, or the number of states per unit of energy and unit of
volume. The Drude formula for the electrical conductivity gives:

σ =
e2

3

[
g(ϵ)v2F τ(ϵ)

]
ϵ=ϵF

(1.13)

with vF the electrons velocity, e the elementary charge and τ the scattering time of the
electrons. The Drude formula states the conductivity as being proportional to the DOS
and to the scattering term at the Fermi energy [10]. As is well described in the book by
K. Behnia [6] and as such will not be explained here, in the Boltzmann picture one can
link the Seebeck coefficient to the electrical conductivity using the Mott formula [11]:

S = −π2

3

k2
BT

e

(
∂ln σ(ϵ)

∂ϵ

)
ϵ=ϵF

(1.14)

By substituting equation 1.13 into 1.14, we have

S = −π2

3

k2
BT

e

(
∂ln g(ϵ)

∂ϵ
+

∂ln τ(ϵ)

∂ϵ

)
(1.15)

As such, the Seebeck coefficient is proportional to the logarithmic derivative of the DOS
and the scattering term with respect to the energy at the Fermi level. Variations in the
DOS will thus impact the Seebeck coefficient, making it a very good probe to detect
quantum oscillations, as described in section 1.2, in order to study the Fermi surface of
a metal. From the previous equation, we can see that the Seebeck coefficient depends on
the temperature and the concentration of impurities through τ in the second term ∂ln τ(ϵ)

∂ϵ
.

This term corresponds to the phonon-drag contribution and arises when the thermal
gradient produces a lattice heat current in addition to the electronic current. This phonon-
drag contribution thus contributes mainly with a large electron-phonon coupling. In the
zero-temperature limit, however, this term can be neglected and the only contribution to
the Seebeck effect remaining is the diffusive contribution ∂ln g(ϵ)

∂ϵ
, i.e. generated by the

diffusive movement of the charge carriers.
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1.1. Thermoelectricity

In the case of a free electron gas, ignoring the phonon-drag contribution in the low-
temperature regime, the DOS becomes:

g(ϵ) =
1

2π2

(
2m

ℏ2

) 3
2

ϵ
1
2 (1.16)

From equation 1.14, it is easy to see that the Seebeck coefficient is linear with temperature,
and S → 0 for T → 0 K. The scattering-independent Seebeck coefficient is thus:

S =
π2

3

k2
B

e

T

TF

(1.17)

with TF the Fermi temperature.
Considering equations 1.13 and 1.16 at the Fermi energy, with ϵF = 1

2

ℏ2k2F
m

, we can link
the conductivity to the mean-free path l = τvF and the Fermi surface SF = 4πk2

F with a
cross-section A = πk2

F :

σ =
e2k2

F l

3π2ℏ
=

le2A

3π3ℏ
(1.18)

This equation is valid in the assumption of a spherical Fermi surface and an isotropic
τ(ϵ) = τ [12]. The logarithmic term in equation 1.14 then becomes:

S = −π2

3

k2
BT

e

(
1

l

∂ln l(ϵ)

∂ϵ
+

1

A

∂ln A(ϵ)

∂ϵ

)
ϵ=ϵF

(1.19)

From this equation, we can see that variations in the Fermi surface will impact the Seebeck
coefficient in a major way. If the curvature of the Fermi surface is positive, i.e. in the case
of electrons, the sign of the Seebeck is negative. For holes, the Fermi surface curvature
would be negative, yielding a positive Seebeck coefficient. In most metals, however, the
Fermi surface is not spherical and the scattering term τ is anisotropic. While equation
1.19 is not applicable in this case, as a first approximation we can divide the Fermi surface
in multiple sub-surfaces i for which the previous assumptions still apply. In equation 1.18,
we then replace lA by

∑
i liAi. For a multi-band system, the total Seebeck coefficient is

then the sum of the Seebeck coefficient for all the bands i, weighted by the conductivity

S =

∑
i σiSi∑
i σi

(1.20)

where
∑

i σi = σ the total conductivity previously established.

1.1.3 A measure of the entropy per charge carrier

The picture described here is an alternative definition of the thermoelectric power that
provides a good hand-wavy description of its origin3.

A thermal gradient added to a conductor induces a desequilibrium in the system. As
a response, the flow of electrons tends to re-establish the equilibrium. The thermoelectric
power therefore measures the available entropy of the system without thermal gradient,

3This section is inspired by the book Fundamentals of Thermoelectricity by K. Behnia [6].
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Chapter 1. Theoretical background

or rather the correction to heat propagation provided by the electric field countering the
heat flow.

Callen interprets the Seebeck effect as the ratio of entropy flow to particle flow in the
absence of a thermal gradient [7]. Since the heat flow does not require particle flow, the
Seebeck coefficient quantifies the amount of entropy which particles can carry with no help
from the thermal gradient. Since the carrier particles can be of either sign, the response
can be dominated by either occupied electronic states or unoccupied ones, meaning a
coefficient that can be negative or positive, respectively. This is due to the difference in
carrier density, velocity and/or mean-free path above and below the Fermi level.

Additionally, other effects can give rise to entropy flow and thus contribute to the ther-
moelectric power. For example, spin entropy of delocalized electrons has been observed
to lead to a Seebeck response in magnetic conductors [13].

1.2 Quantum oscillations

Quantum oscillations measurements are a powerful way to determine the Fermi surface of
a metal. They were first measured in electrical conductivity, the Shubnikov-de Haas (SdH)
effect, and shortly after in magnetization, the de Haas-van Alphen (dHvA) effect, in Bi in
1930 [14, 15, 16]. The theory for magnetization was described by Lifshitz and Kosevich
(LK) in 1956 [17]. All quantities related to the density of states can show quantum oscil-
lations [18]. This is the case of resistivity, magnetization, but also sound attenuation and
magnetostriction. In this section we will explain the underlying mechanisms of quantum
oscillations, the LK theory and its limitations in the case of oscillations in thermoelectric
power. In keeping with the rest of the manuscript, in this section the magnetic field will
be expressed as H in units of teslas for simplification.

1.2.1 Cyclotron orbit and Landau quantization

From a classical point of view, the application of a magnetic field H to a metal affects
the motion of the charge carriers due to the Lorentz force F. This Lorentz force is
perpendicular to the direction of the carrier velocity:

F = ev ×H (1.21)

with e the charge of the electron and v its velocity. For a strong magnetic field, the
trajectory of the carriers in the plane orthogonal to the field direction will become circular
with an angular frequency ωc = eH/m, m being the carrier mass. This is called the
cyclotron orbit.

As this subject is very well explained by Shoenberg [18], we will only give a brief
overview. The quantum oscillations originate from the Landau quantization of the cy-
clotron orbits. The latter are quantized in k space, and electrons are confined into cylin-
drical constant-energy surfaces called Landau tubes, represented schematically in figure
1.1. For a magnetic field applied to a free electron gas along the z direction, the energy
associated with the tube n is:

En =

(
n+

1

2

)
ℏωc +

ℏ2k2
z

2m
(1.22)
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1.2. Quantum oscillations

Figure 1.1: Schematic representation of the Landau tubes, i.e. the quantization of the
electronic levels under a magnetic field H ∥ z, for a spherical Fermi surface.

The energy spacing between two Landau tubes n and n + 1 is then ℏωc and increases
with magnetic field strength. As electrons cannot exist above the Fermi level at T = 0 K,
when a tube crosses the Fermi level the electrons drop to the next tube. This gives rise
to oscillations in the DOS at the Fermi level as a function of the inverse magnetic field.
If we tune the magnetic field H and measure a physical property as a function of 1/H we
shall observe oscillations with the periodicity:

∆

(
1

H

)
=

2πe

ℏS
(1.23)

This periodicity depends on the area S of the electron/hole pocket. Multiple periods, or
frequencies, thus mean different orbits or different pockets, allowing to determine both
the number and the sizes of the pockets in a metal.

1.2.2 The Lifshitz-Kosevich theory

The theory proposed by Lifshitz and Kosevich (1956) [17] describes oscillations in mag-
netization that are periodic in 1/H as follows:

M̃ =
∑
p

∑
i

1

p3/2
Aisin

(
2πpFi

H
+ ϕ

)
(1.24a)

with Ai ∝ H1/2

∣∣∣∣∂2Si

∂k2

∣∣∣∣−1/2

RTRDRS (1.24b)
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Chapter 1. Theoretical background

The oscillatory part of the magnetization is thus a sum over each pocket i of the am-
plitude Ai with frequency Fi. p is the harmonic number and ∂2Si

∂k2
is the curvature of

the Fermi surface pocket considered. The damping factors RT , RD and RS, respectively
the temperature damping, Dingle damping and spin-splitting, will be presented in detail
subsequently.

Fermi surface curvature

The factor ∂2Si

∂k2
corresponds to the curvature of the Fermi surface pocket. It is independent

of the temperature and the magnetic field and is related to the way Landau tubes cross
the Fermi surface. For a high curvature, the depopulation of the crossing Landau tube
is almost continuous and the DOS at the Fermi energy will be almost constant, giving
a small oscillation amplitude. On the other hand, for a low curvature such as a 2D
cylindrical FS, the depopulation is abrupt and the oscillations will be large.

Spin-splitting factor

RS is the spin-splitting damping factor. It is due to the Zeeman effect lifting the spin
degeneracy of the bands under the applied magnetic field [18]. For the case of a linear
Zeeman effect, the Zeeman energy is given by:

EZ = ±gµBH (1.25)

with µB the Bohr magneton and g the g-factor for the conduction electrons. A spin lying
parallel (antiparallel) to the magnetic field H yields a plus (minus) sign. This energy shift
induces a change in the size of the Fermi surface and its cross-section, thus modifying the
frequency of the corresponding oscillations:

F (H) = F (H = 0) +
m∗

ℏe
EZ (1.26)

The Zeeman effect thus induces a splitting of a Fermi surface into two non-degenerate
surfaces. The frequency measured in quantum oscillations is the back-projection at zero
field of the actual frequency of the band [18] and not the actual frequency. A linear
Zeeman effect will shift both frequencies by the same absolute amount, thus recovering
the same frequency in the back-projection. With the assumption of equal amplitudes for
the frequencies F↑ and F↓, this leads to a shift of phase ϕS between the oscillations from
the two split Fermi surfaces, with the interference reducing the amplitude by RS, given
as:

RS = cos(ϕS) = cos
(
πpgm∗

m0

)
(1.27)

where g = 2 for free electrons. The value of g can be modified by spin-orbit interaction
and can be calculated if the effective mass m∗ is known. As RS does not depend on either
T or H, it is most often not taken into account. This RS damping factor is valid for the
case of a linear Zeeman splitting, illustrated in figure 1.2 (left). On the other hand, a
non-linear field dependence of the Zeeman effect will affect the frequency observation as:

Fobs,↓↑(H) = Ftrue,↓↑(H)−H
∂Ftrue,↓↑

∂H
(1.28)

18



1.2. Quantum oscillations

F↑

F↓

Fobs

H0 H

F

F↑

F↓

Fobs↑

Fobs↓

H0 H

F

Figure 1.2: Schematic illustration of the Zeeman effect in a linear (left) and sub-linear
case (right). Fobs↑↓ are the observed frequencies while F↑↓ are the true frequencies.

The tangential back-projection at zero field thus produces two distinguishable observed
frequencies, as illustrated in figure 1.2 (right). The difference between the up and down
frequencies increases with the magnetic field, and the relative positions of F↑ and F↓
depend on whether the Zeeman effect is sub-linear (F↑ > F↓) or super-linear (F↑ < F↓).

Temperature damping factor

RT is the temperature damping factor. As the temperature increases, the energy levels
of the carriers are broadened due to the Fermi-Dirac distribution. The Fermi surface is
then less well defined and Landau levels are broadened, which leads to a damping of the
amplitude of the oscillations. For the case of the dHvA effect it is given as:

RT (T ) = A
αpm∗T/Heff

sinh(αpm∗T/Heff)
(1.29)

with α = 2π2kBm0/eℏ ≈ 14.69 T/K. m∗ is the effective cyclotron mass for the branch
considered. For a magnetic field range of oscillations taken between Hmin and Hmax, Heff

is given by 1
Heff

= 1
2

[
1

Hmin
+ 1

Hmax

]
. For the calculation of RT , the effective field should

remain constant over the whole range of temperature. From the RT factor, one can
calculate the effective mass by plotting the temperature dependence of the Fast Fourier
Transform amplitude Ai for a given frequency Fi and fitting it with the formula above.
The maximum amplitude is at T = 0 K. Another common way is to use the so-called
mass plot. Rewriting the hyperbolic sine as sinh(x) = 1

2
(exp(x)−exp(−x)), the mass plot

is:
ln
[
Ai(T )

T
(1− exp(−2αpm∗T/Heff))

]
= −αpm∗

Heff
T (1.30)

plotted as a function of T with Ai the oscillation amplitude for branch i. The effective
mass m∗ is then obtained self-consistently from the slope of the linear plot. The precision
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Chapter 1. Theoretical background

of the effective mass determination naturally comes from the number of temperatures
studied, which means one should measure quantum oscillations over a wide temperature
range. For heavy effective masses, the slope of RT (T ) is steep, and the corresponding
frequency will be observed at very low temperatures only. As the mass decreases, the
temperature range at which it will be observed increases.

Dingle damping factor

Impurity scattering and other effects reduce the lifetime τ of the quasiparticles [19]. It
was shown by Dingle (1952) [20] that this can be taken into account as an additional
temperature TD, in kelvins, causing a broadening of the Fermi level with a Fermi-Dirac
distribution fFD(T + TD). The Dingle temperature is then given by:

TD =
ℏ

2πkBτ
(1.31)

This additional temperature reduces the amplitude of the oscillations with an exponential
factor, the Dingle damping factor RD given by:

RD = exp
(
−αpm∗TD

H

)
(1.32)

with m∗ the effective mass obtained from the temperature damping factor, and TD the
Dingle temperature. As RD only depends on H, it can be calculated through the magnetic-
field dependence of the amplitude of the oscillations. Here, H is the variable effective
field Heff corresponding to variable FFT windows of the oscillatory signal. For a given
temperature T0 and oscillation i, the field dependence of equation 1.24 is:

Ai(H,T0) ∝ H
1
2RT (H,T0)RD(H) (1.33a)

RD(H) = Ai(H,T0)H
− 1

2
1

RT (H,T0)
(1.33b)

where RT (H,T0) should be taken as equation 1.29 with fixed temperature and variable
field. In a similar way to the mass plot, the Dingle plot is obtained from equations 1.32
and 1.33, as:

ln
[
Ai(H)H

1
2 sinh

(
αpm∗T0

H

)]
= −αpm∗TD

H
(1.34)

When plotted against 1/H, the Dingle temperature TD is given by the slope of the linear
plot.
TD is an effective temperature from which one can calculate the scattering lifetime τ as
per equation 1.31. With the Fermi velocity vF = ℏkF

m∗ , the scattering lifetime is linked to
the mean-free path l by:

l = vF τ (1.35)

The Fermi wave-vector kF is determined from the Onsager relation F = ℏ
2πe

S with S =
πk2

F for a spherical Fermi surface. Equation 1.35 thus becomes:

l =
ℏ2kF

2πkBm∗TD

=
ℏ2
√
2eF

2πm∗kBTD

(1.36)

with F and m∗ taken for the considered peak.
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1.2. Quantum oscillations

Oscillations in resistivity (Shubnikov-de Haas)

Oscillations in the resistivity (or conductivity) were the first quantum oscillations dis-
covered, in 1930 by Shubnikov and de Haas in Bi, a few months before the de Haas-
van Alphen experiment [14]. The theory, on the other hand, was understood after the
Lifshitz-Kosevich theory. The difficulty in understanding the SdH oscillations comes from
the many scattering mechanisms that have to be considered for the electrical resistivity.
Pippard (1965) [21] simplified the understanding of the effect by taking the scattering
probability as proportional to the number of states into which the electrons can be scat-
tered [22]. This probability determines the relaxation time τ and the resistivity, and
oscillates with g(ϵ) the DOS. For the first harmonic and a single band with frequency F
considered, we then have:

σ̃

σ
∝
(
H

F

) 1
2

RDRTRS
g̃(ϵ)

g(ϵ)
(1.37)

with σ̃ and g̃(ϵ) the oscillatory parts of the conductivity and the DOS, respectively. The
oscillatory behavior of the resistivity ρ is thus the same as for the magnetization M̃ :

ρ̃ =
∑
p

∑
i

1

p3/2
Aisin

(
2πpFi

H
+ ϕ

)
(1.38a)

with Ai ∝ H1/2

∣∣∣∣∂2Si

∂k2

∣∣∣∣−1/2

RTRDRS (1.38b)

All the damping terms RD, RT and RS are the same as for the dHvA measurements.4
Microscopic properties of the system like the effective mass m∗, the Dingle temperature
TD, scattering lifetime τ and mean-free path l are recovered from a similar analysis of the
temperature and field-dependence of the oscillatory amplitude as for magnetization.

1.2.3 Quantum oscillations in thermoelectric power

Oscillations in the thermoelectric power have first been observed by Young and Fletcher
in Sn, Zn and Al in 1973, 1981 and 1983 [24, 25, 26]. As presented in section 1.1, unlike
resistivity or magnetization, the Seebeck coefficient is not directly proportional to the
DOS, instead being proportional to its logarithmic derivative. As such, it comes natu-
rally that S would be more sensitive to oscillations in the DOS, making them substantially
larger than in some other probes. However, it also implies that the LK theory previously
presented would not accurately describe oscillations in the thermoelectric power.
A simple hand-wavy argument to showcase this inaccuracy comes from the low tem-
perature behavior of the Seebeck effect. Viewing the Seebeck coefficient as a measure of
entropy per charge carrier [7], at zero temperature there is no entropy left and the Seebeck
and its oscillatory part go to zero. The oscillatory amplitude then possesses a maximum
at finite temperature. This is contradictory to the LK theory for which the amplitude of
the oscillations is maximum at T = 0 K. A common way to circumvent this contradiction
is to instead use the LK theory to analyze S/T , ensuring a temperature dependence of
oscillatory amplitude with a 0 K maximum. However, this approach is not ideal as it is

4This is true as well for the Hn prefactor that depends on the probe used (n = 1
2 for ρ, M , S; n = 3

2
for torque magnetometry, ...) [18, 23].
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not supported by theory and a proper approach is required.
Additional ways of analyzing thermoelectric power oscillations have been proposed by
Trodahl [27] and Kirichenko [28], but they fail to account for the finite-temperature max-
imum of the amplitude. The most convincing theory that we will be using is the one
established by Pantsulaya and Varlamov (PV) in 1989 [29].

Pantsulaya-Varlamov theory

The thermoelectric power contains information on both thermodynamic and transport
properties of a system. As such the interpretation of the TEP is rather difficult. It is
related to the electronic entropy per charge carrier, a thermodynamic property, but also
to the scattering time, a transport property. Both of these can contribute to quantum
oscillations under magnetic field.
Much like the case of resistivity, the oscillatory signal of the TEP is described from the
analysis of the scattering of carriers, by Pippard’s argument. The scattering probability
is proportional to the number of states in which electrons can be scattered and so to the
DOS at the Fermi level. From this, we can establish an oscillatory behavior similar to
those seen previously in equations 1.24a and 1.38a. For a frequency Fi with harmonic p
of the Fermi surface i, the corresponding amplitude Ai is given by:

Ai ∝ H1/2

∣∣∣∣∂2Si

∂k2

∣∣∣∣−1/2

R′
TRDRS (1.39)

All the factors are the same as presented for the LK theory previously. From the en-
ergy dependence of the electrons relaxation, Young, Fletcher (based on a thermodynamic
approach) [30] and later independently Pantsulaya and Varlamov (based on a kinetic ap-
proach), calculated the temperature damping factor R′

T of the TEP as being the derivative
of the factor RT for the Lifshitz-Kosevich theory.

LK: RT (X) = A0
X

sinh(X)
(1.40a)

PV: R′
T (X) = A′

0

∂RT (X)

∂X
=

Xcoth(X)− 1

sinh(X)
(1.40b)

where A0 and A′
0 are amplitude factors independent of X. X = αpm∗T/H, and α =

2π2kBm0/eℏ ≈ 14.69 T/K, as defined previously. The maximum amplitude of the TEP
quantum oscillations as a function of temperature corresponds to X = 1.62, or:

Tmax =
0.11Heff

pm∗ (1.41)

The temperature dependence follows the expected behavior of the TEP in the zero-
temperature limit, as R′

T (T → 0K) → 0, complying with the vanishing entropy.
Following the same principles as the LK theory presented previously, the temperature de-
pendence analysis of the oscillations of the TEP recovers the effective mass. The complex
expression for RT ′ does not, however, allow the mass plot to be traced linearly. Instead
the effective mass is recovered from a self-consistent fit of expression 1.40b. Additionally,
the temperature maximum yields the effective mass as per equation 1.41.
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1.3. Skyrmions and magnetic orders

Dingle temperature

The Dingle temperature is not a systematically calculated property, and the Seebeck effect
is a rather rarely used probe. As mentioned previously, the common (but incorrect) way
to analyze oscillations in the Seebeck coefficient is to divide S by T , recovering a signal
shape similar to what the LK theory predicts. The rare analysis of TD from the TEP
in the literature thus naturally seemed incorrect. By using the PV framework, we can
consider a new approach to the field-dependence of the quantum oscillation amplitudes.
From equations 1.32 and 1.33b, the Dingle damping factor for peak i at T = T0 becomes:

RD(H) = Ai(H,T0)H
− 1

2A′
0

sinh(αpm
∗T0

H
)

αpm∗T0

H
coth(αpm∗T0

H
)− 1

= exp
(
−αpm∗TD

H

)
(1.42)

H here is given by 1
H

= 1
2

[
1

Hmin
+ 1

Hmax

]
, for successive field windows [Hmin, Hmax] such

that 1
Hmin

− 1
Hmax

remains constant, i.e. each field window is of similar 1/H size. The
amplitude A′

0 and the effective mass m∗ are the values recovered from the self-consistent
temperature dependence fit over the whole field range. We postulate for practicality
that m∗ is field independent and these values are constants, although for each H value
RPV

T (H,T0) should be recalculated.
The modified Dingle-plot is then a linear plot of the logarithm of expression 1.42 as a
function of 1/H, and the Dingle temperature TD is given by the slope −αpm∗TD.
With equations 1.31 and 1.36, we recover the scattering lifetime τ and mean-free path l
for the considered frequency.

The results of the field-dependence of the TEP quantum oscillations using the PV frame-
work are shown in section 4.3 for EuPtSi. We have compared our TEP analysis with
resistivity data, both probes yielding matching results.

1.3 Skyrmions and magnetic orders

This section presents various magnetic orders as they are found in the compound studied
in this work, EuPtSi. This also serves as an introduction to the complex spin textures
comprising skyrmions, their formation, characterization and potential applications. MnSi,
as the prototypical skyrmion compound, will be briefly presented.

1.3.1 Magnetic orders

Para-, Ferro-, Antiferro- magnetism

A ferromagnet (FM) is a material in which a spontaneous magnetization exists even in
the absence of an applied magnetic field. All its magnetic moments are collinear, i.e. they
lie along a single unique direction (assuming a single-domain material). Such material is
characterized by its ordering temperature, the Curie temperature TC . Below TC , the mag-
netization is Ms(T < TC) > 0, the spontaneous magnetization. In turn, Ms(T > TC) = 0,
which defines the paramagnetic (PM) state where the moments are randomly oriented.
In contrast, an antiferromagnet (AFM) is defined as having a zero net magnetization

23
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below its ordering temperature, the Néel temperature TN . It is the superposition of two
ferromagnetic sublattices with moments anti-parallel to one another. In the simplest one-
dimensional view, neighboring magnetic moments are opposite to each other.

In the PM state, the magnetic susceptibility χ = M/H can be fitted to a Curie-Weiss
dependence:

χ =
1

T − θ
(1.43)

where θ is the Weiss temperature, whose sign indicates the ground-state ordering of the
studied material. For a FM, θ > 0 and we expect θ = TC . For an AFM, θ < 0 and
θ = −TN . θ = 0 corresponds to a PM material. It is important to note that the Weiss
temperature is often very different from TC or −TN , as the calculation above is a rough
approximation. We will not go into the details here as they can be found in the literature,
for example [31].

Other orders that minimize the energy of a system can also appear, due to multiple
complex origins. One such state is the helical ordering under zero field.

Helical and conical orders

Helimagnetism is a form of magnetic ordering where moments of neighboring magnetic
sites arrange themselves in a spiral or helical pattern. The helical state is characterized
by a magnetization:

m(r) = n1cos(qh.r) + n2sin(qh.r) (1.44)

in real space with unit vectors (n1,n2,n3) [31, 32]. m is the reduced magnetization vector
m = M/|MS| and n1,2 are unit vectors of the plane perpendicular to the helix pitch
along n3. The helix is formed along the propagation vector qh in reciprocal space, with
moments in a plane perpendicular to the direction of qh. The real-space wavelength λ of
the helix, or its modulation period, is λ = 2π/|qh|. Integrating equation 1.44 over the
volume of the material (with dimensions d ≫ λ) yields a total magnetization M = 0, so
helimagnetism can be seen as a form of antiferromagnetism. The helical magnetic ordering
is illustrated in figure 1.3. In the illustration, the helix has a period of 8 moments. For a
long helix period, neighboring moments are almost collinear, leading to ferromagnetic-like
fluctuations. For a period corresponding to two (respectively one) atomic distance, the
AFM (resp. FM) order is recovered. The conical state is similar to the helical state under
magnetic field H and is described by the magnetization m(r) = m1 ·n1+m2 ·n2+m3 ·n3

with:

m1 = cos ϕ (1.45a)
m2 = sin ϕ cos(qH · r) (1.45b)
m3 = sin ϕ sin(qH · r) (1.45c)

with ϕ the conical angle between the field direction and the direction of the moments.
The angle ϕ relates to cos ϕ ∼ (H/Ms)qHD [32] with D the Dzyaloshinskii-Moriya term
(introduced in the following section). As the amplitude of the field increases, the moments
reorient along the field direction, as illustrated in figure 1.3. The propagation vector of
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1.3. Skyrmions and magnetic orders

Figure 1.3: Schematic illustration of the helical and conical orders, with moments rep-
resented as colored arrows. The vertical axis represents the magnitude of the magnetic
field. At zero field in the helical state, the moments are perpendicular to the pitch of
the helix. Under field, in the conical state, the pitch is aligned along the field H⃗. As H
increases, the moments progressively align along H⃗.

the helix usually lies in the direction of the field H, in this case along n1. This is the case
in the prototypical compound MnSi presented in section 1.3.3. In EuPtSi however, the
pitch of the helix reorients progressively along the field as well, as the crossover between
the helical and the conical order is smooth.

The lack of inversion symmetry in the crystal structure leads to the existence of the
helical and the conical ordering from a combination of symmetric and antisymmetric
exchange interactions [33]. The former favors collinear spins while the latter favors per-
pendicular spin alignment.

Symmetric exchange interaction

The symmetric exchange interaction originates from the Coulomb repulsion of electrons
of neighboring atoms. It is spin-dependent due to the Pauli exclusion principle. For
neighboring moments Si and Sj, the Hamiltonian is given by:

Hex = −
∑
ij

JijSi · Sj (1.46)

with Jij the exchange integral between atoms i and j. Its sign yields the magnetic ordering.
For J > 0, the system favors a FM state with parallel spins. Alternatively, for J < 0 the
AFM state with antiparallel spins is favored.

Dzyaloshinskii-Moriya interaction

The DM interaction is an antisymmetric exchange interaction first proposed by Dzyaloshin-
skii (1958) [34] to explain the weak spontaneous magnetization observed in some AFM
materials. Moriya (1960) [35] calculated this exchange by taking the spin-orbit coupling
into account in crystals without inversion symmetry. The DM interaction is described by
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the following Hamiltonian:
HDM =

∑
ij

Dij · Si × Sj (1.47)

where Si, Sj are neighboring spins and the vector Dij reflects the symmetry of the local
environment of the magnetic atoms. The DM interaction requires the absence of inversion
symmetry, for example in the bulk compounds of the space group P213 (e.g. MnSi
[36], FeGe [37], Cu2OSeO3 [38], EuPtSi [39],...), or in specific multilayered compounds.
The orbit of an electron depends on the spin direction, and electrons on sites without
inversion symmetry minimize the crystal-field energy through the DM interaction by
forming a noncollinear spin structure [33]. The energy is minimized when Si and Sj

are perpendicular to each other and their cross product Si × Sj lies parallel to Dij.
Inversely, for parallel Si and Sj, HDM = 0. It thus favors a rotation of the magnetization
around a line of magnetic atoms. With a strong ferromagnetic exchange interaction, the
generated state is a long-wavelength helical order. The neighboring spins are then slightly
noncollinear. Helimagnetic ordering with a short modulation period can arise when AFM
exchange interactions are dominant. The chirality of the helix is given by the sign of Dij

and is determined by the eniantomorph (right- or left-handedness) of the chiral crystal
[40, 41].

1.3.2 Skyrmions

Skyrmions5 are magnetic textures characterized by a vortex-like spin swirling. Extensive
reviews on the subject can be found in the literature [41, 42, 43] and we will only give a
basic introduction here.

In a 2D plane, a skyrmion is represented by a magnetic domain enclosed in a chiral

Figure 1.4: Artistic representations of 2D skyrmions of the Bloch (a) and Néel (b) types.
Pictured at the bottom is a radial cut for both cases. Illustration from [44].

domain wall. In the center of the skyrmion, the magnetization points one direction while
at its edge it points to the opposite direction. The magnetization undergoes a continuous
rotation in one dimension when moving from the center to the periphery. Much like

5Strictly speaking, the concept proposed by Skyrme in 1962 [2] applies to any particle characterized
by a topological integer that cannot be changed due to continuous deformations of a vector field, i.e.
topologically protected. In this work we will only refer to the magnetic skyrmions.
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domain walls, two types of skyrmions can be found, pictured in figure 1.4 from [44], the
Bloch type (a) and the Néel type (b). In the former, the magnetization rotates along a
radial axis and in the latter along a tangential axis. For each case, the bottom of the
figure shows a cut across the skyrmion.

Skyrmions are characterized by their winding number W = 1. W counts the angle of
rotation the magnetization does around the core, i.e. for a skyrmion the magnetization
undergoes a complete rotation. Other spin textures have different winding number, for
example W = ±1/2 for merons in which the moments are in-plane at the edge of the
particle and out of plane at the center. For antiskyrmions which are similar to skyrmions
but with alternating Bloch and Néel rotations, W = −1 [41]. The winding number, or
topological charge, cannot be changed by continuous deformations and the skyrmion is
thus a topologically protected texture, the stability of which yields interesting properties,
especially for applications (see section 1.3.4). In bulk compounds, skyrmions are of the
Bloch type due to chiral symmetry. Néel type skyrmions can be formed in heterostruc-
tured synthetic materials with interfacial DM interaction.

Figure 1.5: Schematic illustration of a triple-q Bloch-type skyrmion lattice, with skyrmion
cores located at the crossing of the single-q helixes. The magnetic field H is out of plane.
Adapted from [45].

Skyrmions are often found in a form of crystalline lattice, such as the triangular lat-
tice in real space [41]. The system is then described in terms of the spin density wave
picture by considering a triple-q state, schematically illustrated in figure 1.5, from [45].
The reduced magnetization m(r) is expressed as:

m(r) ≈ muniform +
3∑
i

mqi(r+∆ri) (1.48)

with mqi the helical magnetization from equation 1.44 for each single q helical structure
i. muniform is the uniform magnetization induced by the Zeeman effect, and ∆r is the
phase shift between each helix. In this picture, the skyrmion is a superposition of three
helical structures of periodicity λ ≈ λhelical forming an angle of 120° with one another in
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the 2D plane perpendicular to the applied field. Singling out one helix from this state
recovers the skyrmion cross section at the bottom of figure 1.4 (a). It is to be noted
that the skyrmion lattice is formed in a 2D plane. Through translation symmetry, in the
third dimension (along the field direction) the skyrmion lattice can be seen as a lattice of
cylinders or vortex-like structures.
The triple-q structure of the magnetic skyrmion is experimentally observed in magnetic
scattering experiments (small angle neutron scattering (SANS) and X-rays) with a char-
acteristic hexagonal pattern in reciprocal space with a norm |q|, shown in the following
section for MnSi in figure 1.7.

Additionally, the existence of a skyrmion lattice can be inferred from topological Hall
effect (THE) measurements. Due to the spin-polarization along the magnetic texture, the
conduction electrons acquire a Berry phase, which affects transport in the same way as
an external magnetic field. The THE contribution is then akin to the transverse motion
of the deflected electrons from the fictitious Lorentz force due to this emergent magnetic
field [32]. Because the core polarization of the skyrmions opposes the applied magnetic
field, the THE contribution is of opposite sign of the ordinary Hall effect. The topological
Hall effect is described in more detail in section 3.2.3 along with our measurements of
the Hall resistivity in EuPtSi. Additional ways of characterizing skyrmions are Lorentz
transmission electron microscopy (LTEM) and magnetic force microscopy (MFM) [32].

1.3.3 The prototypical skyrmion compound MnSi

MnSi is a B20 compound with the P213 cubic structure. The P213 space group is non-
centrosymmetric and chiral. It is presented for EuPtSi in section 3.1.1. As discussed
previously, the lack of inversion symmetry allows the DM interaction. A competition be-
tween the latter and FM exchange interaction causes the system to order helimagnetically
below the transition temperature TN = 29 K. The helimagnetic ground state of MnSi with
a periodicity λ = 175 Å in real space was observed in 1976 [46] and was understood as due
to the competition of three hierarchical energy scales. The strongest is the FM exchange
interaction, then the DM interaction. Finally weak crystal field effects pin the wave vec-
tors along the body diagonal H ∥ [111] of the cubic unit cell with the lattice parameter
a = 4.55 Å. Upon the application of a magnetic field H > 0.1 T at low temperature
in any direction, the system goes from a helical to a conical order. Additionally, right
below the transition temperature TN = 29 K, the so-called A-phase appears inside the
conical phase. It is enclosed in the H −T phase diagram between H = 0.1 and 0.2 T and
spans almost 2 K, as shown in figure 1.6 (left). Moreover the A-phase appears for all field
directions, indicating that the phase diagram of MnSi shows only a small anisotropy.

SANS experiments from Lebech et al. [48], performed with a field perpendicular to the
neutron momentum transfer, showed the disappearance of the magnetic intensity upon
entering the A-phase. In 2009, SANS measurements by Muhlbauer et al. [1] showed that
in the A-phase, the scattering pattern appears in the direction of the field. The six-fold
geometry in the pattern is independent of the crystal orientation and due to the triple-q
structure of the triangular skyrmion lattice. An example of the six-fold intensity pattern
from SANS measurements [1] in the A-phase at T = 26.45 K and B = 0.164 T is shown in
figure 1.7. The right panel exhibits measurements of the topological Hall effect in MnSi by
Neubauer et al. [49]. The ordinary and anomalous parts of the Hall effect were subtracted,
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1.3. Skyrmions and magnetic orders

Figure 1.6: Left: magnetic phase diagram of MnSi at ambient pressure with the various
phases colored for clarity, from [1]. Right: P − T phase diagram of MnSi with the grey
shaded area above PC corresponding to the non-Fermi liquid regime. The TC transition
changes from second-order to weakly first order at P ∗. The spheres show directions of
strong elastic neutron intensity in reciprocal space at ambient pressure (left) and under
high pressure below the crossover temperature T0 (right), from [47].

and the THE is shaded, reaching up to ∆ρH ≈ 5 nΩ·cm. This small Hall contribution
is due to the large size of the skyrmions of 180 Å in diameter whose core magnetization
opposes the applied magnetic field and produces an emergent field proportional to the
skyrmion density. This field is H = 13.15 T in MnSi. By comparison, the emergent field
in EuPtSi with the small skyrmions of 18 Å is H = 1105 T. The calculations are detailed
in section 3.2.3.

Additionally, a non-Fermi liquid (NFL) phase appears above the critical pressure [50,
51]. With applied pressure, the ordering temperature decreases and reaches 0 for P >
14.6 kbar. The pressure-temperature phase diagram of MnSi [47] is shown in the right
panel of figure 1.6. Strikingly, resistivity measurements show a clear ρ(T ) = ρ0 + AT 3/2

dependence in a temperature range of about three orders of magnitude (from 10 mK to
6 K) above the critical pressure PC , over a large pressure range. This contrasts with
the Fermi liquid T 2 behavior usually found in metals. The origin of the NFL behavior
is not yet definitely understood, and is subject to discussion. A connection between the
NFL state and the skyrmion lattice has been supported through topological Hall effect
measurements in the NFL state [52, 53]. The observation of a THE signal in the NFL
regime suggests a breakdown of Fermi liquid theory from non-trivial topological spin
correlations [54].

The discovery of the SkL state in MnSi due to the non-centrosymmetric crystal struc-
ture prompted the investigation of other compounds with the P213 space group as po-
tential skyrmion hosts. The existence of skyrmion lattices was confirmed for compounds
such as FeGe through X-ray scattering measurements [37], Cu2OSeO3 through SANS
experiments [38], and EuPtSi through THE measurements[3].

29



Chapter 1. Theoretical background

Figure 1.7: Left: six-fold intensity pattern from SANS measurement in the A-phase of
MnSi, with T = 26.45 K and B = 0.164 T, from [1]. Right: Hall effect in MnSi with the
ordinary and anomalous contributions removed, yielding the THE contribution shaded in
grey. Curves are shifted vertically for clarity, from [49].

1.3.4 Skyrmions, not only interesting for fundamental research...

This thesis work only covers experimental observations of skyrmion lattices in EuPtSi
bulk crystals. As such it does not aim to pursue applications. However, it is important
to mention the possible applications that skyrmions may have, and skyrmion-based tech-
nologies, even if they are beyond the scope of this work. For more information, the reader
is invited to look at the reviews by Fert et al. [55], Kaviraj et al. [42] and Everschor-Sitte
et al. [56], which inspired this section.

Due to their potential small size in the nanometer range and their behavior as parti-
cles, skyrmions naturally are good candidates for information storage. For this, instead of
lattices in bulk crystals, realizations of individual skyrmions in thin films or multi-layered
heterostructures are preferred. The presence of an interface in this case is crucial in inver-
sion symmetry breaking, to establish the DM interaction. Skyrmions have been stabilized
as individual particles at room temperature in perpendicularly magnetized multi-layers,
such as Ir/Co/Pt thin films, using fabrication technologies commonly used for spintronic
devices [55, 57]. In these systems, individual skyrmions have been obtained with diameters
down to 30 nm, which is close to what is required for applied memory devices (<10 nm)
[58].

A current induced motion of an individual skyrmion can be achieved at low energy
costs, due to the spin-transfer torque exerted by spin-polarized currents [59, 60]. It is the
so-called skyrmion Hall effect, with a co-existence of longitudinal and transverse motion.
Repulsive interaction from the edges of racetrack-like devices can limit the transverse mo-
tion, and the skyrmion can then be moved with velocities up to the 100 m/s range, with
a rather low excitation current density of around 1010 − 1011 A/m2, which is two orders
of magnitude smaller than the current density in common racetrack memories [42].

Considering the seminal observation of magnetic skyrmions in bulk crystals in 2009, the
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intense research efforts have provided a new array of potential applications, such as mem-
ories, logic devices and radiofrequency devices, to this relatively new object. It is however
important to consider that many questions still remain unanswered and both fundamen-
tal and applied research are still needed before skyrmion devices can be used in everyday
technologies.
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Chapter 2

Experimental methods

All measurements presented in this thesis were made at very low temperatures, between
50 mK and 10 K, and high magnetic fields, up to 16 T. This chapter will present some
experimental works regarding cryogenics as well as the methods used for the various
measurements of the following chapters.

Chapter contents
2.1 Low temperatures and improvements on the performance of the cryostat 33

2.2 Resistivity and Hall effect measurement . . . . . . . . . . . . . . . . . 36

2.3 Magnetization measurements with a Faraday balance . . . . . . . . . 37

2.4 Thermoelectric coefficients measurement . . . . . . . . . . . . . . . . . 38

2.4.1 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.2 Measurement protocol . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Quantum oscillation analysis . . . . . . . . . . . . . . . . . . . . . . . 41

2.1 Low temperatures and improvements on the per-
formance of the cryostat

A large majority of the low-temperature measurements were obtained in the Pheliqs lab-
oratory of the CEA using a homemade 3He/4He dilution refrigerator cryostat whose cold
stages are pictured in figure 2.1. The cryostat is inserted in an Oxford Instruments
Nb3Sn superconducting coil cooled at liquid He temperature 4.2 K with a bore diameter
of ∅ = 40 mm, reaching up to 16 T in an area of approximately one cubic centimeter.
The superconducting coil has a field-compensated zone at the mixing chamber of the
cryostat. The principle of the dilution refrigerator being very well described in the liter-
ature [61, 62], it will not be presented here. It is, however, to be noted that a series of
careful improvements has enhanced the cooling power of the dilution fridge, decreasing its
base temperature from 100 mK on the mixing-chamber stage to 46 mK, measured with a
calibrated Germanium thermometer.

The first major improvement consisted in the preparation of the right ratio of the
3He/4He mixture. The analysis of the 3He proportion in the mixture was made with a
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spectrometer and was found to be around 25%, which is higher than usually recommended
[62]. By preparing a mixture consisting of 20% 3He and 80% 4He within the necessary
volume, the mixing chamber reached temperatures below 100 mK and in a more stable
manner as the cooling power was enhanced.

Figure 2.1: Picture of the cold stages of the 3He/4He dilution fridge used for most of the
measurements in this work. The fiberglass pillars are 11 cm long for scale.

A second improvement on the performance of the dilution fridge was achieved by re-
placing the three pillars between the still stage and the mixing chamber stage, shown
in figure 2.1. This change was made when the previous 10 cm long Vespel pillars broke.
Fiberglass pillars have a lower thermal conductivity, around 10−4 Wm−1K−1, compared to
10−3 Wm−1K−1 at 1 K for Vespel [63], which helps lowering the thermal coupling between
the two stages of the fridge. The new pillars were designed to be 11 cm long with the fas-
tening bolts and nuts, which pulls on the continuous heat exchanger enough to lessen the
contact points between the spirals without compromising its function. The pillars were
put in place while the alignment of the cold stages was monitored with a laser to ensure
the position of the samples in the area of maximum field. The continuous exchanger was
then held in place with Kevlar wires in various points to avoid further unwanted heat
leaks.

Finally, another major improvement to the performance of the dilution fridge was the
careful rewiring of the lower stages. All the wires between the still and the mixing cham-
ber stages were replaced with 80 µm diameter NbTi wires in Cu matrix. These wires
are superconducting for temperatures below 10 K and allow low resistivity measurements
while lowering the thermal conductivity between the stages of the fridge. As all the su-
perconducting wires are located in the area of compensated field, their critical field of
approximately 10 T is never reached even during 16 T measurements.

Through the series of improvements presented above, the base temperature of the mix-
ing chamber of the dilution refrigerator has been successfully lowered from around 100 mK
to 46 mK. During measurements, with the thermal charge originating from the various
thermometers, heaters and probe wiring on the sample-holder, the lowest stable sample
temperature achieved is 50 mK for resistivity measurements and 85 mK for thermoelectric
power measurements, as the latter involves partial heating of the sample.

The cold finger ensuring the thermal link between the mixing chamber stage of the
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cryostat and the sample-holder is a massive copper rod that screws in both sides. It allows
a good thermal coupling between the two. However, during measurements in the dilution
regime, the effective regulation temperature of the sample-holder cannot exceed 800 mK,
as the mixing chamber is thus heated above 700 mK, above the 3He/4He phase separation,
and the mixture cannot condensate inside. To avoid this problem a second cold finger
shown in figure 2.2 has been designed. A fiberglass rod with a brass strip running along

Figure 2.2: Cold fingers ensuring the thermal link between the cold stages of the cryostat
and the sample-holder. Top: copper rod. Bottom: fiberglass with a brass strip along
its length, held in place by copper pieces, allowing the sample-holder to reach T = 6 K
without leaving the dilution regime. Both heat sinks are wrapped in Teflon tape to protect
the wires from the sharp edges.

its length limits the coupling between the sample-holder and the cryostat. The brass strip
of cross section 10 mm × 1 mm is locked in place by copper pieces that connect the rod
to each side. This setup works well for resistivity measurements and allows continuous
measurements with a regulation between 75 mK and 6 K, without leaving the dilution
regime and keeping the mixing chamber below the He phase separation temperature.
Because of the small amount of power needed to regulate the temperature, this heat sink
cold finger can be used only in resistivity measurements. The thermal gradient constantly
needed to measure thermoelectric coefficients heats the sample-holder more than the mix-
ing chamber can absorb, and the lowest effective temperature achievable with such a setup
reaches around 500 mK.

The two sample-holders that were used in this work are presented in figure 2.3. The
holder on the left is used for resistivity and Hall effect measurements and consists of a
copper plate on top of a parallelepipedic copper mass. The samples are placed at the cen-
ter on top of the plate. The sample-holder on the right is used for thermoelectric power
measurements. The massive cylindrical silver block is prolonged by a silver pillar on which
the samples are placed. The various elements of the thermoelectric power sample-holder
will be described below. Both sample-holders are temperature-regulated by a RuO2 ther-
mometer of R300K = 1 kΩ calibrated between 40 mK and 7 K and a resistive heater, both
glued with General Electric varnish to the mass of the sample-holder. 50 µm diameter
copper wires connect the sample-holder to the cryostat along the cold finger heat sink.
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Figure 2.3: Sample holders used in low-temperature and high magnetic field measurements
for resistivity (left) and thermoelectric power (right).

2.2 Resistivity and Hall effect measurement

Figure 2.4: Left: schematic representation of the electrical contacts on the sample for
resistivity and Hall effect measurements. Right: picture of a EuPtSi sample (H ∥ [111]
sample # 2) from above with resistivity and Hall effect contacts. For both figures, the
magnetic field is applied normal to the flat face of the sample.

We measured the resistivity using the common AC four-point probe method, schemat-
ically represented in the left panel of figure 2.4 and pictured in the right panel for a sample
of EuPtSi H ∥ [111], with four gold wires of 15 µm diameter spot-welded to the sample.
Two additional wires in the transverse configuration are used for Hall effect measurements.
The sample is glued on top of an insulating square of paper to the copper sample holder
with General Electric varnish. This allows a good thermal coupling of the sample to the
cold finger of the fridge without grounding it.
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The AC current is applied by a SR830 lock-in amplifier delivering a 1 V voltage through a
10 kΩ resistance (i.e. a current of 100 µA) at a frequency of 17.530 Hz. The measurement
voltage Vxx is amplified by a factor 100 with a room-temperature transformer and read
on the same lock-in amplifier.
For Hall effect measurements, a similar method is used with the addition of a second trans-
former and lock-in amplifier synchronized with the first to measure the voltage across the
two additional transverse contacts. The transverse voltage is measured for positive and
negative magnetic fields of same amplitude and sweep rate. The addition of the two sig-
nals (symmetric part) recovers the longitudinal resistivity in case of misalignment, and
the subtraction (antisymmetric) is the Hall voltage. The longitudinal and transverse
resistivity are then obtained by

ρxx = α
Vxx

Ixx

ρxy = αH

V +
yy − V −

yy

2Ixx

with α = wt
l

and αH = t being the geometrical factors of the sample for longitudinal and
transverse measurements, with w the width, t the thickness and l the length of the sample
respectively.

2.3 Magnetization measurements with a Faraday bal-
ance

Some magnetization measurements presented in this work were obtained with a Faraday
balance setup in the LNCMI laboratory. A precise review of the principles of the Faraday
balance can be found in ref. [64] and will not be explained in detail here. The setup
is cooled in a Variable Temperature Insert (VTI) reaching temperatures between 1.3 K
and 6 K by controlling the liquid He flow and the evaporating pressure inside the VTI.
The VTI is itself inserted into a superconducting coil reaching fields up to 16 T. Low
pressure (≈ 1 mbar) exchange gas around the sample chamber ensures the temperature
stabilization between the latter and the VTI. In the chamber, the sample is fixed with
vacuum grease onto a floating metallic platform. The platform is attached with four
meander-like arms, allowing elastic vertical displacement along the z direction, as shown
in the right panel of figure 2.5. Changes of magnetization are recovered through the
capacitive coupling of the platform with the fixed holder. A Ni permanent magnet with
a conical shape induces a field gradient in the area where the platform and the sample
sit. The samples measured are small enough to consider the field gradient homogeneous
in the sample. This measurement system is valid only for Happ ≳1 T corresponding to
the saturation of the gradient-inducing magnet.
A schematics for the measurement setup is presented in figure 2.5, taken from [64]. Under
a magnetic field gradient dHz

dz
, the sample will feel a force and move vertically due to its

magnetization Mz, thus changing the value of the measured capacitor C within the linear
regime (∆C << C ) as per

∆z ≈ ∆C ∝ Fz ∝ Mz
dHz

dz
(2.1)
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Figure 2.5: Left: principle of the measurement setup. The magnetic force F ∥ H the
applied field. The meander-like contacts are represented as springs S. The permanent Ni
magnet inside the fixed plate is not shown here. From [64]. Right: picture of the platform
with the EuPtSi sample for H ∥ [110] at the center.

with ∆z the displacement and Fz the force on the sample along the z direction. The
capacitance is measured with a high precision Andeen-Hagerling capacitance bridge with
a resolution of a few pF. Depending on the magnitude of the expected magnetization,
the platform chosen is more or less rigid. For EuPtSi, as is presented in the following
chapters, reaching a high value of M ≈ 7 µB/f.u. at saturation, the force experienced
by the sample in the field is large, causing a large vertical displacement. As such, the
platforms used are quite rigid in this case.
It is important to note that this realization of a Faraday balance is also sensitive to torque
effects, i.e. a non-vertical movement of the sample will also change the measured capaci-
tance. Hence, for a given compound, only the easy magnetization axis can be accurately
measured, which is the H ∥ [110] direction for EuPtSi. For other field orientations, the
measured ∆C will be the resulting effect of a convolution of both ∆Mz and torque effects.

Because the value of the capacitance depends on the sample, the platform used, the
rigidity and composition of the latter, the absolute value of the magnetization is hard to
determine and a specific calibration is needed. Where applicable, in this work, we have
determined the value by comparing the Faraday balance data with commercial SQUID de-
vice measurements, in the saturation region of our signal. On the other hand, for quantum
oscillation measurements of the dHvA (de Haas-van Alphen) effect, only relative changes
of the magnetization signal hold information, and the absolute value is not needed.

2.4 Thermoelectric coefficients measurement

2.4.1 Measurement setup

The Seebeck coefficient S, the Nernst coefficient N , and the thermal conductivity κ are
measured simultaneously using the "one heater - two thermometers" technique, with the
setup shown schematically in figure 2.6. One end of the sample is glued with conductive
silver paste to the heat sink, while the rest of the sample is free and surrounded by vacuum.
The longitudinal thermal gradient is established by a heater connected to the side of the
sample opposite the heat sink cold finger.
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Figure 2.6: Schematic representation of the thermoelectric coefficients measurement setup
(left). Close-up from above on the sample contacts with the thermal gradient applied
between the heater side in vacuum and the silver heat sink (right). Temperature and
longitudinal voltage Vxx are taken from the same contacts on the sample.

The thermometers used to measure the temperature gradient are commercial RuO2

chips with a room-temperature value of R300K = 1 kΩ, and R4K ≈ 3.5 kΩ. A silver
strip pasted to the RuO2 is used for thermalization between the thermometer and 15 µm
gold wires spot-welded to the sample. Both thermometers have been calibrated between
75 mK and 6.5 K, and show a negligible magnetoresistance of the order of 1 % at 16
T. The temperature measurements are acquired through a MMR3 device, which allows
measurements of three resistors in parallel, with low readout current (< 10−7 A) to avoid
heating the thermometers in vacuum. The heater used is a commercial RuO2 chip with
R300K = 3 kΩ. An electrical current of the order of a few micro amperes at low tem-
perature is applied to the heater, generating heat through the Joule effect. A gold wire
spot-welded to the sample and silver-pasted to the heater allows the heat flow.

With the setup described above, it is necessary for the heater and the thermometers to
be well decoupled from the copper block sample holder, to ensure that most of the power
from the heater goes to and through the sample and that the thermometers accurately re-
cover the sample temperature. To avoid a heat leak between them and the sample holder,
the electrical wiring is made through 30 µm diameter manganin wires about 30 cm long
that are coiled around capton tubes. These wires have very low thermal conductivity at
low temperature (≈ 10−1 WK−1m−1 at 1 K compared to ≈ 102 WK−1m−1 for copper) and
have a typical overall electrical resistance R = 250 Ω. Similar wires are used to recover
the Seebeck and Nernst voltages.

At low temperatures, the thermal gradient induced in the sample is of the order of
3 % of the regulation temperature (∆T/T ≈ 3 %). This gradient has to be small to
avoid non-linearity in the response of the system. The order of magnitude of the Seebeck
coefficient in metals is about 1 µV/K. With T = 100 mK and ∆T = 3 mK, this leads to
a Seebeck voltage of the order of 3 nV. To avoid noise and parasitic signal coming from
multiple welds at various temperatures, the copper wires used to measure the thermoelec-
tric coefficients are direct between the 1K pot stage and the analog DC nanovoltmeters.
The nanovoltmeters work on battery in order to avoid noise due to the power grid. The
ends of the copper wires are pressed into the Cu knobs inputs of the nanovoltmeters to
get an electrical contact without welds. The analog nanovoltmeter signal is then read and
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acquired through Keithley voltmeters. This method allows us to have a noise level below
0.5 nV in our signal.

Thermal conductivity κ measurements are performed at the same time and using
the same setup as thermoelectric measurements. In addition to the two thermometers
mentioned above, a multimeter measures the voltage VH across the heater used to induce
the thermal gradient. By multiplying the voltage and the heating current IH , the heating
power is recovered. Using Fourier’s law of heat conduction, κ (in WK−1m−1) is

κ = α′ P

∆T
= α′ IH × VH

∆T
(2.2)

with α′ = 1
α

the geometrical factor, α = ωt
e

the same factor as for resistivity measurements.

2.4.2 Measurement protocol

Thermoelectric coefficient measurements (Seebeck, Nernst and thermal conductivity) need
to be performed in a specific protocol depending on whether the variable parameter is the
magnetic field or the temperature. By inducing a temperature gradient in the sample, it
makes measuring a reference temperature of the sample quite tricky, which is why it is
important to measure all the thermometers before and after turning the heater on. All
the data obtained for field sweeps thermoelectric measurements are made according to
the following steps:

1. Zero field and regulation tem-
perature without gradient

2. Zero field with gradient

3. Continuous field sweep with
the applied gradient

4. Fixed target field and gradient
after the sweep

5. Fixed target field and regula-
tion temperature without gradi-
ent

Figure 2.7: Schematic representation of the mea-
surement protocol for the thermoelectric power.

A schematic typical field sweep measurement of the thermoelectric power is presented
in figure 2.7 where the numbers correspond to the steps described previously. Vxx is the
raw longitudinal voltage signal measured with the nanovoltmeters, as the difference be-
tween the potentials of the cold and the hot contact. During field sweeps measurements, a
voltage Vemf proportional to dH/dt appears due to the electromotive force by the sweeping
magnetic field. The amplitude of this voltage is constant for a fixed sweep rate and is re-
moved by comparing the signal before and after the beginning of the sweep. To obtain the

40



2.5. Quantum oscillation analysis

Seebeck coefficient, a value of thermoelectric voltage without applied current (dotted line
in figure 2.7) is subtracted from the signal. This value can be seen as a linear background
signal V ∆T=0

0 that, once removed, allows us to recover a value of S = 0 µV/K without
gradient. To ensure this background value is linear at all fields, measurements in field
steps are also regularly performed with fixed temperature. For various magnetic fields
along the range of interest, mean values of the thermoelectric signal and thermometers
are taken with and without gradient.
Following this protocol, the Seebeck signal S during field sweeps is recovered:

Vsignal(H) = Vxx(H)− V ∆T=0
0 (H)− Vemf

(
dH

dt

)
S(H) = −

V ∆T ̸=0
signal (H)

∆T
=

VTcold − VThot

Thot − Tcold

with the minus sign due to measuring in opposite convention from the resistivity.
For measurements with temperature as the variable parameter and a fixed magnetic field,
temperature sweeps are not possible since the thermal gradient needs to change for each
temperature. Instead, the measurements are done in steps along the temperature range of
interest. For each reference temperature without gradient, a heating current is estimated
to keep a constant ratio ∆T/T ≈ 3%. The temperature of the thermometers and the
thermoelectric voltage are measured with and without the applied gradient. Once stabi-
lized, the mean values are taken as one data point at temperature Tmid = (Thot +Tcold)/2.

As thermal conductivity measurements are performed at the same time as thermo-
electric power measurements, the protocol is the same.

Nernst coefficient measurements are performed with the same protocol as for the See-
beck coefficient. As it is the transverse coefficient, much like the Hall effect with regard to
resistivity, the Nernst voltage is obtained by subtracting positive and negative magnetic
fields measurements of identical amplitude and sweep rate. The positive and negative
fields are interpolated for similar absolute value.

2.5 Quantum oscillation analysis

The Fermi surface of a metal holds a lot of information regarding the properties of the
material and the charge carriers. There are only a few ways to directly measure the
Fermi surface, for example through ARPES measurements [65]. The mapping of the
Fermi surface can also be done by determining the period of quantum oscillations under
a sweeping magnetic field, if the sample quality allows it. As was described in chapter
1.2, various measurement quantities exhibit quantum oscillations at low temperature and
high magnetic field. In this work, such oscillations have been observed in resistivity,
magnetization and thermoelectric coefficient measurements. In order to be accurately
compared and studied, it is important to follow a similar protocol for each analysis. All
the data treatment was performed using Python codes that have been developed for the
purpose of this work.
To analyze the quantum oscillations, a Fast Fourier Transform (FFT) routine is used.
The FFT is performed on a field window [Hmin, Hmax] that is the same for all data of a
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particular sample. The effective magnetic field Heff for the window is given by

Heff =

[
1

2
(

1

Hmin
+

1

Hmax
)

]−1

(2.3)

On this field window, the signal is interpolated in units of 1/H to recover the periodicity
of the oscillations. The FFT calculation will yield frequencies in units of magnetic field,
in tesla. A polynomial background whose order is determined by the shape of the signal
is subtracted from the data to filter out low frequencies and a Hanning window is applied
to the oscillatory signal to reduce the white noise background in the frequency spectrum
[66]. Figure 2.8 shows the data treatment applied to a raw signal until the calculation
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Figure 2.8: Left: Measured signal with quantum oscillations (blue), fitted with a polyno-
mial function (red). Center: Oscillatory part of the signal taken between 7 and 15 T with
the polynomial background removed, as a function of 1/H. Right: FFT spectra obtained
with a Hanning window (blue) and without (green).

of the FFT. Each frequency observed in the FFT spectrum corresponds to the extremal
cross-section of a carrier pocket of the Fermi surface or an harmonic of the fundamental
frequency. A study of the angular dependence of the amplitudes yields information about
the Fermi surface topology but has not been done for this work. Studies of the field depen-
dence of the amplitude allows to recover the Dingle temperature which gives information
on the mean-free path of the carriers. The temperature dependence of the amplitude of
each frequency is analyzed to recover the effective mass of the charge carriers. We can
note that the absolute value of the peak amplitudes does not hold interesting information,
only the relative amplitude for various temperatures is relevant. For Shubnikov-de Haas
(SdH) and de Haas-van Alphen (dHvA) oscillations, respectively in resistivity and mag-
netization, the amplitude of each frequency with respect to temperature will be maximum
at low temperatures. The curve_fit python package is used to compute the parameters
of the Lifshitz-Kosevich (LK) formula and yield the effective mass m∗ in units of m0 the
free electron mass. For oscillations in thermoelectric power, however, the amplitudes will
reach a non-zero temperature maximum and the Pantsulaya-Varlamov (PV) formula is
used, as was described in section 1.2.3.

Additionally, the effective mass can be recovered from the temperature maximum of
the amplitudes Tmax = 0.11Heff

pm∗ . As the position of the peak depends inversely on the effec-
tive mass, high effective masses will shift the position of the peak to lower temperatures
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Figure 2.9: Schematic view of the Lifshitz-Kosevich (red) and the Pantsulaya-Varlamov
(blue) formulas used to fit the temperature dependence of the amplitudes of each frequency
peak of the FFT spectrum. The maximum Tmax of the PV fit is indicated by a star.

and the slope will be sharper. A schematic example of the LK and the PV fits is provided
in figure 2.9 for the same effective carrier mass. The maximum of the PV fit is indicated
by a star.
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Chapter 3

Study of the skyrmion lattice phases of
EuPtSi

In this chapter, we present the thermodynamic and transport measurement of the
various magnetic phases of EuPtSi at low temperature and under magnetic field. We
will focus on the skyrmion lattice (SkL) phases present at low field (H<5 T). Quantum
oscillations experiments performed above 5 T will be presented in the next chapter. The
three main orientations of EuPtSi, namely H ∥ [110], H ∥ [111] and H ∥ [100] have been
studied using resistivity, Hall effect, thermal conductivity and thermoelectric power. In
the H ∥ [110] direction, the compound remains in the conical state at all fields below the
field-polarized transition. For H ∥ [111], the so-called A-phase is observed. In the
H ∥ [100] direction, two distinct phases A’ and B, exist. While these phases are closed in
the H − T phase diagram, by performing field-cooled experiments they can be observed
as metastable states down to temperatures much lower than expected.
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Chapter 3. Study of the skyrmion lattice phases of EuPtSi

3.1 Introduction to EuPtSi

3.1.1 State of the art

In 2009, the skyrmion lattice was evidenced in MnSi [49]. The realization of this exotic
magnetic texture initiated the search of other skyrmion-hosting compounds, especially in
non-centrosymmetric compounds of the space group P213, the same as MnSi. One such
compound is EuPtSi, whose skyrmion lattice was found by Kakihana et al. in 2018 [3]
with the evidence of an anomalous behavior in the Hall resistivity. This makes EuPtSi
the first 4f rare-earth based example in which a skyrmion lattice has been detected. In
this section, EuPtSi is introduced along with the main results found in the literature.

Rare-earth systems and Eu-based compounds

Rare-earth based metallic compounds possess various interesting properties pertaining to
the field of strongly correlated electron physics [31, 39]. These physical properties are
due to the electronic configuration for lanthanides, 4d104fn5s25p65d16s2 (with a Kr core)
and n = 0− 14. The 4f electrons with a local moment give rise to magnetism. As there
is no overlap of wave functions between the 4f electrons, a direct magnetic interaction
does not occur. Instead, the magnetic order is driven by indirect interactions mediated by
the spins of conduction electrons, the so-called Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction. In turn, the Kondo interaction causes a coupling of the localized spin of the
magnetic impurity and the spin of the conduction electron, leading to a screening of the
magnetic moment and thus the suppression of the magnetic ordering. The competition

Figure 3.1: (a) Doniach phase diagram showing the suppression of the magnetic ordering
temperature Tord with pressure P . Below Tord (shaded in pink) is the magnetic ordered
region. TK and TRKKY are the Kondo and the Ruderman-Kittel-Kasuya-Yosida tempera-
tures, respectively. PC is the critical pressure corresponding to the quantum critical point
(QCP). Above PC is the quantum critical region (shaded). (b) P −T phase diagram rep-
resenting the valence transition in Eu compounds. TV is the first-order valence transition
temperature and PV is the pressure at which the first-order valence transition appears.
From [39].
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between the RRKY interaction and the Kondo interaction at low temperature is repre-
sented by the Doniach phase diagram in figure 3.1 (a) (from [39]) as a function of pressure
P or |Jex|D(ϵF ) with the magnetic exchange interaction Jex between the 4f and the con-
duction electrons, and D(ϵF ) the electronic density of states at the Fermi energy. The
RRKY interaction dominates at low pressure (or small |Jex|D(ϵF )), whereas the Kondo
interaction dominates at higher pressure (or large |Jex|D(ϵF )) and the ordering tempera-
ture Tord is suppressed, leading to a quantum critical point (QCP) at the pressure PC . In
the quantum critical region, heavy-fermion states appear at low temperature where novel
states such as unconventional superconductivity have been observed, for example in some
Ce compounds [67].
For most rare-earth atoms, the 4f electrons are in a trivalent state. For compounds based
on Ce and Yb at opposite ends of the 4f rare-earths group, the hybridization between
the 4f states and the conduction electrons is not negligible. These systems are proto-
type systems to be well described by the Doniach phase diagram presented above. Some
rare-earths such as Eu, Sm, Tm and Yb, however, can be in a divalent state in com-
pounds. Most Eu-based compounds are found in the divalent 4f 7 state corresponding
to the half-filled 4f shell, and we have L = 0 and S = J = 7/2 with L, S and J the
orbital, spin and total angular momentum respectively. A valence instability between
the divalent Eu2+ and the trivalent Eu3+ (4f 6, non-magnetic, with S = L = 3, J = 0),
due to the small energy difference between the two states [68], often leads to a first-order
valence transition under pressure. This is illustrated in figure 3.1 (b) from [39], with TV

the first-order valence transition temperature and PV the pressure at which the first-order
valence transition appears. The pressure-temperature phase diagrams of several Eu com-
pounds have been studied by Onuki et al. [39]. Only a few Eu-based compounds show
Doniach-like phase diagrams where the magnetic ordering can be suppressed continuously
with pressure. EuPtSi, the compound studied here at ambient pressure, is divalent and
is far from any magnetic or valence instability.

Crystal structure

EuPtSi is a cubic chiral compound of the Ullmannite-type (NiSbS-type) with the space
group P213 (No. 198), T 4, crystallographic point group 23 (Schoenflies symmetry group
T ). Of the five cubic crystallographic point groups, this group has the lowest symmetry.
As all cubic systems, it possesses four three-fold rotation axes along body diagonals ([111]),
but four-fold rotation axes are absent along the main axes ([100]). This point group instead
has two-fold rotational symmetry along its main axes. As such, EuPtSi lacks spatial
inversion symmetry and mirror symmetry. This allows chirality of the crystal structure.
A schematic representation of the point group from ref. [10] is shown in the left panel
of figure 3.2, with the triangles on the sides of the cube representing the symmetries and
the chirality.
EuPtSi has an equiatomic composition (1:1:1 stoechiometry) with 4 of each atom per unit
cell. The unit cell parameters with atomic sites positions and nearest neighbors distances
for each atom is reported in table 3.1, partially adapted from [69]. Within the cubic cell
with lattice parameter a = 6.4336 Å, four Eu atoms form a tetrahedron. Each Eu atom is
shared by three equilateral triangles with sides of 3.9404 Å, in three dimensions, forming
the so-called trillium lattice. The trillium lattice is similar to the network of Mn atoms in
MnSi. The structure of EuPtSi is illustrated in the central panel of figure 3.2 from [69],
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Chapter 3. Study of the skyrmion lattice phases of EuPtSi

Figure 3.2: Left: crystallographic point group 23 (T ). Painted triangles represent the
chirality of the cubic system and its symmetries, from [10]. Center: cubic unit cell of
EuPtSi with the trillium lattice colored. Eu atoms are purple, Pt atoms in green and Si
atoms in blue. Right: corner-sharing of the trillium lattice, showing only the Eu atoms.
Threefold symmetry axes are indicated. Center and right figures are from [69].

and the right panel depicts the corner-sharing equilateral triangles forming the trillium
lattice. The threefold symmetry axes are indicated by arrows. This complicated structure
is the cause of chirality in EuPtSi.

Atom Wyckoff site x 1st neighbors (Å) 2nd neighbors (Å)

Eu 4a(x, x, x) 0.36989 3.94044 5.94919
Pt 4a(x, x, x) 0.08627 4.00133 6.56370
Si 4a(x, x, x) 0.6614 3.99250 5.54322

Table 3.1: Atomic positions and nearest neighbors distances in EuPtSi, with lattice pa-
rameter a = 6.4336 Å, adapted from [69].

The Ullmannite-type compounds have garnered a lot of interest for the theoretical aspect
of frustrated magnetism [70, 71, 72]. EuPtSi was thus studied for this prospect, and was
found to have a lot of similarities with MnSi with the cubic B20 crystal structure and the
same space group as EuPtSi. MnSi is presented in section 1.3.3.

Magnetic fluctuations in the PM domain

When EuPtSi was first synthesized in 1990 by Adroja et al. [73], the metallic compound
was found to be paramagnetic down to nearly 4 K. From 151Eu Mössbauer studies on
polycrystal samples, the authors observed an onset of magnetic ordering at 4.2 K. Like
MnSi, EuPtSi orders in a helical structure at low temperature. Because helimagnets have
no total magnetic moment, it can be seen as a form of antiferromagnetism, which was the
conclusion of the works by Franco et al. who measured a Néel temperature TN = 4.1 K
through specific heat and magnetic susceptibility measurements [74]. This ordering tem-
perature is quite low compared to previously known Eu-compounds with magnetic order-
ing temperatures ranging from 10 to 100 K [75, 76, 77, 78]. The low-temperature magnetic
ordering is a common feature of geometrically frustrated magnetic systems, for example
the triangle lattice, honeycomb lattice, Kagomé lattice, and in the case of EuPtSi the
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trillium lattice [72, 70].
The first order nature of the transition is evidenced by the sharp specific heat peak,

Figure 3.3: Left: temperature dependence of the specific heat for H ∥ [111] with the
TN transition for various magnetic fields in the inset. From [79]. Right: temperature
dependence of the magnetic susceptibility for the main three crystallographic direction,
emphasizing the PM/helimagnetic transition at TN=4.05 K. From [4].

and steep drops of resistivity and susceptibility, as shown in figure 3.3, from [79] and [4].
Additionally, hysteretic features are observed in the temperature dependence of thermal
expansion. The broadening of the magnetic ordering transition with increasing magnetic
field could be due to a change from field-induced first order to second order. Calculations
of magnetocaloric entropy (MCE) scaling by Mishra et al. [80] indicate the possibility of
a tricritical point at HTCP

app = 2.75 T and T TCP = 3.2 K for the [111] direction, above
which the TN/HC transition becomes second order. This result has been supported by
magnetization measurements from Sakakibara et al. [81].
In EuPtSi, the magnetization goes to 0 at zero field, which is a feature of AFM ordering.
However, as seen in figure 3.4 from [39] the susceptibility follows a Curie-Weiss law at high
temperature (> 50 K), with a Weiss temperature θ ≈ 7− 11 K indicating predominantly
FM correlations in the PM regime. As such, there are competing FM and AFM exchange
interactions. Close to TN , χ(T ) data show a slow decrease upon warming, with a much
weaker Curie-Weiss behavior.
A critical slowing down of the magnetic fluctuations has been evidenced by muon spin
relaxation and nuclear magnetic resonance (NMR) by Higa et al. [82]. At zero field, the
fluctuations may be ferromagnetic-like, but the Weiss temperature θ ≈ 4 K measured by
the Knight shift in NMR changes sign to negative at about 1.2 T, indicating antiferro-
magnetic fluctuations.
The magnetic entropy at TN is only about half the Rln8 expected for the 7/2 spin of Eu2+.
Extending far above TN , the tail in the specific heat remains large and evidences that a
substantial amount of entropy is carried by the magnetic fluctuations in this region, as
shown by NMR. These strong magnetic fluctuations originate from the Dzyaloshinskii-
Moriya (DM) interaction due to the absence of inversion symmetry in the crystal structure
of EuPtSi, as described in section 1.3. Despite the absence of orbital moments in EuPtSi,
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Figure 3.4: Susceptibility and inverse susceptibility for H ∥ [111] as a function of tempera-
ture between 300 K and 2 K, from [39], emphasizing the low-temperature of the magnetic
ordering and the positive Weiss temperature, leading to a FM-like coupling.

a DM interaction is still present because the Pt 5d states, which are subject to strong
spin-orbit interaction, play a significant role in the RKKY exchange between Eu moments
[35, 83]. The DM interaction is the source of the helimagnetism of EuPtSi.

Helimagnetic ground state and conical order

The multi-domain helical ordering ground state of EuPtSi is evidenced by single crystal
neutron diffraction from Kaneko et al. [83] and resonant X-ray scattering from Tabata
et al. [84]. Magnetic reflections at zero field and low temperature are described by the
q-vectors q0 = (±δ1,±δ2,±δ3) with δ1 = 0, δ2 = 0.2 and δ3 = 0.3, as well as the cyclical
permutations of q0. Permutations of a vector (δ3, δ2, δ1) have not been observed, emphasiz-
ing the symmetry of the crystal structure with a single-handedness chirality. Additionally,
a first order commensurate-incommensurate ’lock-in’ transition is observed in single crys-
tal neutron diffraction at T ∗

N ≈ 2.5 K, with δ1 ≈ 0.04 above T ∗
N in the incommensurate

region and δ1 = 0 below T ∗
N [83]. However, this ’lock-in’ transition relates to a very small

change in entropy, hence this transition has not been detected in bulk or transport mea-
surements.
From the q-vectors, the periodicity of the helix, or characteristic length in real-space can
be calculated with ξ = 2π/|q| where |q| = 0.36(2π/a) and a = 6.4336 Å the cubic lattice
parameter. The obtained value is ξ =18 Å, which is ten times smaller than the helical
periodicity of MnSi, at 180 Å. This small value corresponds to only seven Eu2+ spins form-
ing a period of an helix, schematically, indicating the strong coupling of the helical state
to the underlying crystal lattice. The short period explains the strong AFM behavior of
EuPtSi compared to the nearly FM behavior of MnSi in which neighboring moments are
nearly collinear.

As is usual for compounds with a helimagnetic ground state, under an applied mag-
netic field, the magnetic ordering of EuPtSi may change to a conical order. Additionally,
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Figure 3.5: Field dependence of the resonant X-ray scattering (a) integrated intensity of
the magnetic peaks of the q vectors (±δ1,±δ2,±δ3), (b) the components δ1, δ2 and δ3.
The measurements are made at 2.2 K with H ∥ [1̄1̄1̄] between 0 and 1 T, from [84].

the multi-domain single-q structure turns to a single-domain single-q [84]. Under field,
only the domains with the smallest angle between the helix pitch and the magnetic field
direction are favored, thus only the helical vector qH close to ±H remains. This is shown
in figure 3.5 with the field dependence of the integrated intensities of the propagation
vectors for H ∥ [1̄1̄1̄] below 1 T, measured at 2 K. From the left panel, one can see that
above 0.2 T, only three of the six q-vectors q = (±δ1,±δ2,±δ3) are populated, and only
one remains above 0.4 T.
The transition between the multi-domain and the single-domain regimes coincides with
the helical-to-conical crossover in EuPtSi, at the transition hereafter referred to as HD.
In the conical region, the helix described by qH , which was affixed to the lattice due to
crystal symmetries, becomes unpinned and is expected to progressively align along the
field direction. This is different from MnSi in which the helix pitch reorientation along the
field direction in the conical order occurs swiftly. The right panel of figure 3.5 shows the
field dependence of the components δi of the q-vectors. In the conical order, as the field
increases, δ1 increases and qH tends to align along H ∥ [1̄1̄1̄]. For EuPtSi, HD is around
0.1 T near TN and slightly increases for lower temperatures, reaching close to 0.5 T at
0.1 K. In the following results, we will assign the magnetic ordered phase for fields higher
than the helical region as conical, for simplicity.

In addition to the reorientation of the helix along the field, for increasing field strength,
the DM interaction is suppressed and the magnetic moments align along the magnetic
field as well, as described in section 1.3.1, until the transition HC to the paramagnetic
state. The HC transition for EuPtSi happens at around 2.5 T at low temperatures.

Skyrmion lattice A-phase

Like MnSi, for the H ∥ [111] direction EuPtSi exhibits a skyrmion lattice phase located
at the border of the PM region, enclosed in the conical phase between the fields HA1

and HA2. It was dubbed the A-phase with reminiscence to MnSi by Kakihana et al. who
observed it in magnetization M , resistivity ρ and Hall effect ρH measurements. The latter
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Figure 3.6: Left: Hall resistivity (red) and magnetoresistance (blue) for H ∥ [111] at
T=2 K, with current J ∥ [112̄] from [3]. Right: schematic representation of the triple-q
ordering perpendicular to the field H, from [39]. A single-q helix is shown in red for
clarity.

two are shown in the left panel of figure 3.6, from [3]. In the Hall effect, the anomalous
peak structure of the A-phase is not accurately described by the usual ρH = R0H+RSM
relation, with the first term being the ordinary term and the second the so-called anoma-
lous term proportional to the magnetization. As such the topological Hall effect was
proposed to describe the A-phase, in a fashion similar to MnSi. In MnSi the A-phase
exists between 0.1 and 0.2 T and extends over a temperature range of 1 K, between 28
and 29 K, see figure 3.7 (right). In contrast, the H − T phase diagram of EuPtSi for the
H ∥ [111] direction extends over a much larger range, both in field and in temperature,
with evidences of the A-phase as low as 0.45 K, between 0.75 and 1.4 T. The EuPtSi and
MnSi phase diagrams are shown in figure 3.7, from [4] and [49].

The A-phase in EuPtSi is described by the triple-q order with q1 = (−0.29, 0.09, 0.20),
q2 = (−0.20, 0.29,−0.09) and q3 = (0.09, 0.20,−0.29), schematically represented on the
right panel of 3.6, from [39]. The results are confirmed from both neutron and resonant
X-ray scattering [83, 84]. The triple-q structure forms a hexagonal lattice of skyrmions in
the plane orthogonal to the magnetic field direction, with a modulation period of 17.8 Å in
agreement with the helical q-vector periodicity.

Anisotropic phase diagram

An additional difference between MnSi and EuPtSi comes from the anisotropy of the
H − T phase diagram. In MnSi, the A-phase SkL is found to exist in the whole field
region whereas for EuPtSi the magnetic phase diagram is highly anisotropic. For the
H ∥ [111] direction which lies along the body diagonal of the cubic structure, the A-
phase has already been presented, see figure 3.7 (left). For the hard-magnetization axis
H ∥ [100], on the other hand, two different phases dubbed A’ and B are observed with
very close resemblance to the A-phase. The phase diagram for the H ∥ [100] direction
is shown in figure 3.8, from [4]. For the easy-magnetization axis H ∥ [110], however, the
system remains in the helical/conical state below TN .
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Figure 3.7: Left: H − T phase diagram for EuPtSi H ∥ [111] from magnetization mea-
surements. TCP indicates the tricritical point. The conical ordering lies below HC and in
the unshaded region around the colored A-phase. From [4]. Right: H − T phase diagram
for MnSi from [49].

Figure 3.8: H − T phase diagram for the H ∥[100] direction obtained by magnetization
measurements, with the colored A’- and B-phases. TCP indicates the tricritical point.
From [4].
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Figure 3.9: Angular dependence of the A and B phases for magnetic fields rotated as per
the schematics, [001]→[110] (left) and [001]→[1̄10] (right). From [5].

The anisotropy of the H − T phase diagram of EuPtSi has been confirmed through
resistivity [85] and ac susceptibility [5] (shown in figure 3.9 at 1.12 K) measurements. The
A-phase is found to exist in a 20° range around the [1̄11] direction, whereas a rotation
from the [111] to the [001] direction shows the presence of the A-phase for all angles. As
such, no phase line has been observed between the A-phase and the A’ phase for H ∥ [001]
as of yet. The B-phase is only observed for a few degrees along H ∥ [001]. The magnetic
phase diagram for this direction is shown in figure 3.8, from [4]. The angular dependence
of the H − T phase diagram will be presented in more detail along with our own results
in section 3.2.1.

This strong anisotropy contrasts heavily with MnSi and might be due to the small
skyrmion size, hence a strong coupling of the SkL with the crystal lattice. The Eu atoms
forming an individual skyrmion are arranged in a complicated structure, which might
not correspond to a lower energy state than the conical ordering for some directions, like
H ∥ [110] [39]. By contrast, in MnSi with the very large skyrmions, the crystal lattice is
considered continuous, and any direction can be considered for the formation of the SkL.
The q-vectors of the zero-field helical order are threefold symmetric around the [111] axis
and twofold symmetric around [100]. The vector (0.2,-0.3,0) and its cyclical permutation
are nearly perpendicular to [111] and very close to the triple-q vectors of the A-phase.
As such, the SkL phase is easily formed for this direction. For the [100] axis, four q
vectors are perpendicular to the field direction, which could explain the formation of the
A’- and B-phases. The [110] direction is, however, far from the symmetry axis, leading to
no SkL phase. Due to the RKKY magnetic interaction, the anisotropy in EuPtSi is also
determined by the anisotropy of the Fermi surface, which will be detailed in chapter 4.

Motivation for this thesis

The work presented in this thesis aims to deepen the understanding of EuPtSi through
precise low temperature measurements as functions of T , H and angle of the resistivity,
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Hall effect, as well as thermoelectric power and thermal conductivity. By using a dilution
refrigerator and a low-noise measurement setup, we have investigated the three main axes
[110], [111] and [100], shedding new light on the anomalous behavior of the A, A’ and
B phases. The resistivity measurements allow us to probe the various phases at low-
temperature (down to 90 mK). The Hall resistivity measurements confirm the topological
Hall effect in the three skyrmion or skyrmion-related phases. Finally the thermoelectric
power and thermal conductivity measurements, which have never been performed in this
system, evidence the presence of new energy scales at high field in addition to the low
field (H < HC) features.

3.1.2 Sample characterization

All the samples used in this work were provided by the laboratory of Y. Ōnuki (University
of the Ryukyus, Okinawa, Japan) and were cut by D. Aoki (Tohoku University, Oarai,
Japan). The single crystals were grown by the Bridgman method using Mo crucibles as
described in ref. [3, 79]. The starting compound PtSi is arc-melted, and Eu and crashed
pieces of PtSi with 1.2:1 composition are sealed in Mo-crucibles. This mixture is then
heated up to 1480°C in Ar gas atmosphere before slow cooling to room temperature.

The samples are thin slabs with rectangular shapes. For most of this work (with the
exception of the angular dependent measurements), the field is oriented orthogonal to the
large flat face. The electrical current (for resistivity and Hall effect measurements) or
temperature gradient (for thermal conductivity and thermoelectric coefficients measure-
ments) are applied along the length of the sample, i.e. perpendicular to the magnetic
field. A schematics is shown in chapter 2, and a picture of a sample contacted for resistiv-
ity measurements can be found in figure 2.4. We have measured the electrical resistivity
between 300 K and 2 K in a Physical Property Measurement System (PPMS). These mea-
surements are completed by data obtained in a dilution refrigerator down to 50-90 mK to
recover the residual resistivity ratio RRR=ρ300K

ρ0
with ρ0 being the resistivity extrapolated

to zero kelvin. The zero-field cooling measurements of ρ(T ) for three samples are shown
in figure 3.10. The samples are named after the direction orthogonal to the large flat face
i.e. the orientation of the applied magnetic field. The inset shows a close-up of the low
temperature (< 5.5 K) zero-field cooling for the H ∥ [111] sample #2, obtained in the
dilution refrigerator setup down to 90 mK.

The samples are presented in table 3.2 with the corresponding crystal orientations,
current direction, RRR and demagnetizing coefficient (detailed in the next section). For
some samples, the RRR has not been determined. This can happen when a sample breaks
for example. The RRR is an indication of sample quality for a metal, with a high RRR
indicating a high quality or purity. This can be seen in chapter 4 as only the sample with
the best RRR ([100] #2) features quantum oscillations in the resistivity (Shubnikov-de
Haas effect). Unless specified otherwise, the experimental results presented hereafter are
obtained with samples [110]#1, [111]#2 and [100]#2.
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H ∥ Sample J ∥ RRR N

[110] # 1 [100] - 0.787
[111] # 1 [1̄01] - 0.812
[111] # 2 [1̄1̄2] 24 0.920
[100] # 1 [011] - 0.817
[100] # 2 [011] 32 0.851
[100] # 3 [001] 12 0.797

Table 3.2: Samples of EuPtSi, labeled
after the field direction. Columns are:
direction of the current J , residual re-
sistivity ratio RRR and demagnetizing
coefficient N .

0 100 200 300
T (K)

0

10

20

30

40

50

ρ
(µ

Ω
·cm

) 0 5

2.5

5.0

[111] # 2

[100] # 3

[100] # 1

Figure 3.10: ρ(T ) measurements between
300 K and 2 K for three samples, under
zero-field cooled conditions in the PPMS.
Inset: ρ(T ) between 5.5 K and 90 mK for
the [111] #2 sample in a dilution setup.

3.1.3 Demagnetizing field correction

EuPtSi orders helimagnetically below TN = 4.05 K. For T<TN , under applied magnetic
field Happ, the magnetization M increases near-linearly until HC where it saturates. The
increase of M(H) corresponds to the canting of the spins under applied magnetic field. The
spins are fully oriented along the field direction at HC , entering the field-polarized para-
magnetic state. The magnetization measurements at various temperatures for H ∥ [100]
are shown in the left panel figure 3.11. At T = 2 K, HC,app = 3.2 T and M saturates at
a value of Msat ≈ 7 µB/Eu. As temperature increases, the saturation transition becomes
less sharp. The measurements were performed in a SQUID device (MPMS by Quantum
Design) and are limited to Happ = 5 T and T > 2 K. It is to be noted that from these
measurements, the A- and B-phases are difficult to determine. To ensure that the satura-
tion is reached, we have performed magnetization measurements up to 16 T in a Faraday
balance system, as described in section 2.3. For the Faraday balance, torque effects also
induce a displacement of the platform and so the samples should only be measured along
their easy magnetization axis to avoid any confusion. The right panel of figure 3.11 thus
corresponds to the [110] direction. It is to be noted that above 4-5 T, the field dependence
of the magnetization has been reported to be isotropic [4]. The saturation value Msat is
thus the same for all orientations. Msat is represented as a dotted line in the right panel
of the figure. We can note that for all temperatures, 90% of the saturation magnetization
is reached at 7 T. Because the value Msat =7 µB/f.u. is large, the effective magnetic field
H differs from the applied magnetic field Happ by a demagnetizing factor, taking into
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Figure 3.11: Left: M(H) between 2 and 6 K for an applied field Happ up to 5 T along
the [100] direction, measured in a SQUID device. Right: M(H) measured with a Faraday
balance up to Happ = 16 T along the [110] direction. The dotted line indicates the
saturation magnetization Msat.

account the internal field. The effective field1 is given by

H = Happ −NM (3.1)

with N the demagnetizing coefficient. This coefficient depends only on the geometry
or shape of the sample. For an infinitely large thin film in the xy-plane with H⃗ ∥ z⃗,
Nz = 1, Nx = Ny = 0. For a sphere N = 1

3
. For a parallelepipedic sample, a formula for

approximating the demagnetizing coefficient is

N ≈ 4ab

4ab+ 3c(a+ b)
(3.2)

with sample dimensions 2a × 2b × 2c for Happ ∥ c, supposing a uniform field inside the
sample [86]. For the samples used in this work, this gives values of N between 0.8 and
0.9 for each sample described in section 3.1.2. By comparing the low-temperature phase
diagram obtained for a given direction with the literature, we have empirically determined
the N coefficient value of a few samples, which are in good agreement with the values
obtained with equation 3.2. From equation 3.1 using the magnetization measurements
previously shown, we can re-normalize the magnetic field. The temperature variation of
M has been shown to have very little impact on the correction, and we have used the 2 K
SQUID curve, extrapolated up to 16 T along the Faraday balance measurements.

The correction is shown in figure 3.12 as a function of the applied magnetic field for
different values of the demagnetizing coefficient N . Happ corresponds to the uncorrected
field, i.e. N=0, a linear dependence with a slope of 1. The corrected field H re-normalized
by the magnetization separates from the uncorrected one linearly until ≈ 3.2 T where

1Strictly speaking, the magnetic flux density in tesla is B = µ0(Happ +(1−N)M) = µ0(H +M), and
the magnetic field strength H is in amperes per meter. For the sake of convenience, we will be ignoring
the vacuum permeability µ0 = 4π × 10−7 Tm/A, therefore referring to H from eq. 3.1 in tesla.
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Figure 3.12: Comparison between the applied field Happ and the corrected field H for
different values of the demagnetizing coefficient N up to 16 T.

the magnetization saturates. At ≈ 3.2 T, the correction represents ≈ 30% of the field
amplitude, making the correction non-negligible. For fields corresponding to a mostly
saturated magnetization, i.e. H > 4 T, the correction is constant. With the experimental
setup used most in this work with an applied field up to 16 T and N ≈ 0.9 for all samples,
the effective field is thus limited to around 15 T. The rest of this work will subsequently
refer to the corrected magnetic field as H in teslas.

3.2 Field-dependent measurements on EuPtSi

In this section, we will discuss the field-dependent measurements. The angular dependence
of the magnetic phase diagram at 1.75 K in resistivity ρ is first presented, before the results
for the three main directions using ρ, the Seebeck coefficient S, the Nernst coefficient N ,
the thermal conductivity κ and the Hall resistivity ρH between 0.1 and 6 K, for fields up
to 15 T.

3.2.1 Angular dependence of EuPtSi

Unlike MnSi and other B20 compounds, the H − T phase diagram of EuPtSi is strongly
anisotropic, as discussed in section 3.1.1. For MnSi, the skyrmion lattice A-phase exists
in the middle of the conical order below TN irrespectively of the magnetic field orienta-
tion only in a small temperature range of about 1 K below TC . In contrast, for EuPtSi
the A-phase exists only around [111], [1̄11] and equivalent directions. The [100] direction
presents two different phases A’ and B. The [110] direction does not show such phases at
low temperatures. To clarify the angular dependence of EuPtSi, we have measured the
field-dependence of the resistivity ρ for two samples in a PPMS with a rotation setup.
Given the symmetries of the crystal structure, it is important to note that the direc-
tions [100], [010] and [001] are equivalent, as they are produced by three-fold rotational
symmetries along the body diagonals. The lack of four-fold symmetry along the main
crystallographic axes, however, forces a distinction between the body diagonals. The di-
rections [111], [1̄1̄1] and [1̄11̄], for example, are equivalent, but are not equivalent to [1̄11],
[111̄] and [11̄1]. Similarly, [110] is equivalent to [1̄1̄0] and not to [11̄0]. This is a direct
consequence of the low symmetry of the crystal structure. With these equivalences in
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mind, the angular measurements subsequently presented have been labeled accordingly
and in a manner convenient for visual representation. It is important to note that from
resistivity measurements, directions such as [111] and [1̄11], that are not equivalent, are
not discernible without the angular dependence.

The angular dependence of ρ(H) at 1.75 K is shown in figure 3.13 (a), for applied fields up
to 5 T. All data shown here are for continuous increasing positive field sweeps. Between
each measurement at 1.75 K, we have heated the sample to 5 K, above TN , to ensure the
zero-field cooling condition was maintained for the whole process. The measurements are
made with the sample [111]#2, with 0 degrees corresponding to H ∥ [111]. The current
is applied along the [1̄1̄2] direction, corresponding to the length of the sample. The axis
of rotation is the [1̄10] direction. The rotation sequence is schematically represented in
figure (b) by a dashed blue arrow a○, along with the main crystallographic directions.
Figure 3.13 (c) shows the angular phase diagram taken from the measurements in (a).
For all angles, at zero field, the system is in the helical state until the transition HD that
occurs around 0.1 T for all angles. Between HD and HC , the system is supposedly in
the conical order with the single domain single-q. Above HC , the moments are mostly
oriented along the applied magnetic field direction and the system is in a field-polarized
paramagnetic state.
The A-phase visibly exists from ≈ -3° to ≈ 15° around the H ∥ [111] direction. In the
A-phase, the resistivity is strongly enhanced from the additional scattering due to the
skyrmion lattice. We have determined the best alignment of the sample with θ = 0°
corresponding to the highest value of the transition HC , but a misalignment of a few de-
grees can not be excluded as only a one-axis rotator is used. Because the demagnetizing
field correction depends on the sample geometry, which itself depends on the angle of the
sample, we show the resistivity as a function of the applied (uncorrected) field.
As EuPtSi has a cubic structure, body diagonals on opposite sides of a face are equivalent
and separated by 109.4°, which explains the presence of the A-phase at 95° and higher.
For these large angles, the field is applied mostly along the current direction and the
skyrmion lattice phase corresponds to a decrease in resistivity, which is coherent with the
measurements from Takeuchi et al. [85]. This is explained by the relative angle between
the q-vectors of the ordered phases and the current direction. Since the population of
the different domains of the q-vectors changes along the field direction above HD, the
variation of angle between the field and the current changes the sign of the resistivity
signal in the ordered phases [87].
For angles between 45° and 58°, ρ(H) shows the opening of two phases. For 45 < θ < 50°,
the two phases are positive bumps in resistivity. For 50 < θ < 58° the lower-field phase
turns negative, and the higher-field phase disappears at θ > 58°. These two phases are
the A’- and B-phase around the H ∥ [001] direction.
So far, we have only discussed figure 3.13 (a) and (c) with respect to the main crystal-
lographic directions. As is evident from the colored arrows and dots, transitions corre-
sponding to the A-phase have actually been observed for the entire continuous range of
angles. For all the angles that have not been mentioned above, however, the transitions
are very small and not visible without zooming. The isotropic A-phase shows up as a
rounded bump with an amplitude reaching values as small as 0.01 µΩ·cm above the coni-
cal signal background for θ = 32°. This value is only about 3 times bigger than the noise
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Figure 3.13: (a): ρ(θ) for applied fields up to 5 T between H ∥ [111] (θ = 0°) and H ∥ [1̄1̄2]
(θ = 90°). Data are shifted vertically proportionally to the angle by -0.2 µΩ·cm. Colored
triangles indicate the respective transitions from which the angular phase diagram in (c)
is determined, with HD (brown), HA1 (blue), HA2 (red), HB (pink) and HC (green) in
order of increasing field. (b): simplified cubic cell indicating the principal direction. The
blue arrow is the rotation a○ performed in (a). Red arrows are the directions evidenced
in (a). The orange arrow is the rotation sequence b○ from figure 3.14. (c): angular phase
diagram from the ρ(θ) measurements. Colored transition fields correspond to the arrows
in (a). Color strength of the transition markers correlate to the size of the anomaly in
the ρ data.
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level of the measurement setup. For comparison, at the θ = 4° direction, the amplitude
of the A-phase is 1.2 µΩ·cm. A comparison between the θ = 4° data (with the largest
anomaly between HA1 and HA2) and the θ = 32° data (with the smallest anomaly) is
shown in appendix A. The transition fields are thus indicated in figures (a) and (c) with
the color strength of the arrows/dots reflecting the height of the transitions. For this
specific rotation, the A-phase and the A’-phase are therefore connected and exist in a
wide angle range as no phase line has been observed between these two phases.

The second angular dependence, performed on the sample with the large flat face corre-
sponding to the [100] direction #2, is presented in figure 3.14 with the same protocol as
the previous measurement. Because the [100] and the [001] are equivalent, for the purpose
of this section the directions have been labeled following the schematics 3.13(b), in which
this rotation is b○ in orange, with the rotation axis being [110] which is also the direction
of the current. The current is thus always applied perpendicular to the field. For this
rotation [001] → [1̄10], the H ∥ [1̄11] direction corresponds to an angle θ = 54.7°. The
A-phase is only observed for 40 < θ < 70° and is not connected to the A’-phase found
for θ < 10°. The B-phase is observed only within a 5° angular range of the H ∥ [001]
direction.
Due to the particular symmetries and chirality of the crystal structure of EuPtSi, the
A- and A’-phases appear to be continuously connected for certain axes, and different for
others. Future microscopic experiments have to determine the magnetic structure. In the
rest of this work, as we study the low-temperature transport properties of EuPtSi with
fixed angle, the denomination A-phase will be used for the [111] direction, and A’-phase
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for the [100] direction where the B-phase also exists.

3.2.2 Results for H ∥ [110]

We have seen in the previous section that the A-phase and the A’- and B-phases lie in
the H ∥ [111] and H ∥ [100] directions respectively. The H ∥ [110] direction, on the other
hand, does not present similar features. As such, while the H ∥ [110] direction might not
be as exciting as the other two, it presents the opportunity to study the system in the
helical/conical order. By comparing the [110] direction with the others, it can be used as
a sort of background to understand how the exotic magnetic orders impact the system.
With this idea in mind, we have studied the H ∥ [110] direction of EuPtSi with an array
of different probes at various temperatures and under magnetic field.

Resistivity measurements

0 1 2 3 4
H (T)

1.0

1.5

2.0

2.5

3.0

3.5

ρ
(µ

Ω
·cm

)

0.1 K

1 K

2 K

3 K

4 K

5 K

H ‖ [110]
J ‖ [100]

HC

HD

0 5 10 15
H (T)

1

2

3

4

ρ
(µ

Ω
·cm

)

H2 fit
H ‖ [110]
J ‖ [100]

0.1 K

1.0 K

2.0 K

3.0 K

4.0 K

5.0 K

Figure 3.15: Resistivity as a function of magnetic field for temperatures between 0.1 and
5 K up to 4 T (left) and 15 T (right). Transitions HD (brown) and HC (green) are
indicated as arrows on the left graph. The black dotted curve on the right is a ρ ∝ H2

fit on the 1 K data and the blue squares indicate the minimum of the curves due to the
cross-over.

The field dependence of the resistivity for EuPtSi H ∥ [110] is presented in figure
3.15 for temperatures between 0.1 and 5 K, H < 4 T (left graph) and H < 15 T (right
graph). The measurement is performed with current I = 0.5 mA with J ∥ [100]. Above
TN = 4.05 K in the paramagnetic state, the magnetoresistance is negative up to 4 T.
Below TN the system is in the helical order at zero field. Under applied field, a transition
HD from the multi-domain helical state into the single-domain conical state is observed
around 0.1 T as a step with a slight decrease in resistivity. In the conical state, ρ(H)
remains almost constant or increases slightly at low temperature until the transition HC

between the conical order and the paramagnetic state occurs. HC appears as an abrupt
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shoulder-like change of slope that goes to lower fields as the temperature is increased.
Finally, HC reaches 0 T for TN = 4.1 K.
From sweeps in the low-field region, we can see that the magnetic field reduces ρ. The
magnetoresistance is negative in the low-field region below H = 3 T at 2 K and below
4 T at 5 K. This is a strong contrast from the conventional magnetoresistance expected
in compensated metals [88]. Only above H = 3 − 5 T the magnetoresistance increases
quadratically with magnetic field, recovering the usual behavior of a compensated metal
with only closed orbits. In this high-field region, shown in the right panel of figure
3.15, the resistivity increases in H2 for all temperatures, reaching a similar value close to
4.5 µΩ·cm at 15 T. This is also true for the H ∥ [111] and [100] directions presented in
the next sections. The full curves at all temperatures measured are available in appendix
A.

Close to the ordering transition field at low temperatures, the field suppresses the
magnetic fluctuations, reducing ρ in that region. As T and H increase, the transition
between the suppressed ρ regime and the quadratic increase regime gets a broad crossover,
as shown from the magnetization measurements in section 3.1.3. The cross-over between
the two regimes is indicated by a blue square. The criterion chosen is the minimum of
the ρ(H) data in this region. At higher temperatures (T > 5 K, not shown here), the
negative magnetoresistance behavior decreases as the system is progressively further away
from the ordering temperature. A similar behavior of magneto-resistance suppression at
low field has been observed in MnSi [89] and comes from magnetic fluctuations dominating
the resistivity close to the transition, which in MnSi is in the vicinity of TN = 29 K. In
the conical state, as the applied field increases, the progressive canting of the moments
towards a ferromagnetic-like ordering leads to a reduction in spin fluctuations scattering
the conduction electrons. The suppression of the spin-fluctuations has been evidenced by
NMR measurements under magnetic field [82]. At higher fields, the cyclotron motion of
the conduction electrons causes the enhancement of scattering proportional to H2, and
the temperature variation of ρ becomes very small while the Eu 4f electrons are fully
localized.
Figure 3.16 shows the temperature dependence ρ(T ) for fields between 0 and 3 T (left

panel) at low temperature, and for fields up to 15 T (right panel). Dots in the left panel
indicate points taken for decreasing temperatures and lines for increasing temperatures.
No hysteretic behavior is observed between the two. Increasing T -steps only are shown in
the right panel. The transition TN (corresponding to HC for ρ(H)) is seen as an abrupt
decrease below 4.05 K. The strong slope below TN is a feature of the first-order nature
of the transition. The hysteresis of the transition at zero field is not observed here but is
clearly visible in specific heat measurements [79]. The transition temperature decreases
under field and is not visible above 2.6 T. In the helical state below 3.5 K at zero field, the
resistivity scales as ρ(T ) ∝ T 1.65. A similar power law T n with 1.65 < n < 1.91 is observed
for all fields in the conical order (H < HC ≈ 2.6 T), n increasing with increasing field.
This is emphasized in figure 3.17 where ρ(T 2) is shown with the same data as the previous
figure. All curves are shifted with ρ(T = 0.1 K) = 0. This contrasts from the typical n = 2
metallic ground-state behavior. This anomalous behavior is reminiscent of the non-Fermi
liquid (NFL) phase in MnSi in which ρ scales as T 3/2 above its critical pressure [50, 51].
The reason for this unconventional behavior is not yet well understood and does not follow
the expected behavior of a FM or AFM metal with dominant electron-magnon scattering.

63



Chapter 3. Study of the skyrmion lattice phases of EuPtSi

0 2 4
T (K)

1.0

1.5

2.0

2.5

3.0

3.5

ρ
(µ

Ω
·cm

)

H ‖ [110]

0.0 T

0.7 T

1.4 T

2.1 T

3.0 T

TC

0 2 4 6
T (K)

1

2

3

4

ρ
(µ

Ω
·cm

)

0.00 T
0.72 T
1.09 T
1.43 T

2.14 T

3.01 T
6.98 T

10.9 T

15.0 T

H ‖ [110]
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Figure 3.17: Temperature dependence of the resistivity as a function of T 2 for fields up
to 15 T in the H ∥ [110] direction, between 0.1 and 5.5 K. Curves are shifted vertically
with ρ(T = 0.1 K) = 0. Note the crossings of the 6.98, 10.9 and 15 T curves.
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For MnSi, the NFL phase is observed for pressures P > 14.6 kbar. For this pressure, the
long-range magnetic ordering is suppressed with TN reaching 0 K, and the NFL behavior
has been measured between 30 mK and 6 K [54, 53]. Observations of the topological Hall
effect in MnSi under pressure supports a connection between the skyrmion lattice and the
NFL state. In EuPtSi, as the field increases and the spin fluctuation scattering diminishes,
ρ(T ) becomes flatter in the low temperature region (< 2 K), eventually becoming mostly
constant for H > 4 T. For higher fields and temperatures, as shown on the right panel of
figure 3.16 and figure 3.17, ρ(T ) decreases. The temperature dependence at high magnetic
fields clearly indicates that it is dominated by the cyclotron motion of the electrons, as
ρ(T ) decreases with increasing temperature and a H2 field dependence is observed, as
described previously.
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Figure 3.18: Field dependence of the Seebeck coefficient S (left) and the thermal conduc-
tivity κ (right) for various temperatures. The transition HC is indicated by green arrows
and HD by brown triangles. The positions of local minima (maxima) in S are represented
by blue (red) arrows. Maxima in κ are in blue.

Seebeck and thermal conductivity measurements

Figure 3.18 (left) shows the field dependence of the Seebeck coefficient up to 15 T. The
transition HC is clearly visible in the thermoelectric power. Interestingly, we can observe
the presence of a local minimum at 3.5 T for T = 1.25 K, increasing in temperature until
5.25 K where it is located at H = 13 T. In a similar fashion, a local maximum grows from
HC = 1.7 T at 3.5 K and remains almost constant for higher temperatures. Additionally,
for fields H > 7 T, quantum oscillations are visible. These will be treated in chapter 4
and will not be investigated here.
The right panel of figure 3.18 shows the thermal conductivity κ under magnetic field. In
the conical state, κ(H) remains mostly constant and above HC one observes an increase
that is enhanced with temperature. The thermal conductivity can usually be understood
as the sum of the phonon component κp, the electronic component κe, and the magnetic
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component κm [90, 91]:
κ = κp + κe + κm (3.3)

In the ferromagnetic-like FP-PM state above HC with all the moments oriented along the
field, the magnetic component does not contribute to κ. The electronic component κe can
be found from the Wiedemann-Franz (WF) law:

κeρ = L0T (3.4)

with L0 =2.44×10−8 W·Ω·K−2 the Lorentz number. Figure 3.19 shows the validation of
the WF law, with κρ/TL0 as a function of temperature at various fields extrapolating
to 1 in the low-temperature limit. From the WF plot, we can see that at 15 T only the
electronic component of κ plays a part with an almost linear temperature dependence.
At lower fields, on the other hand, κp and κm should be taken into account. As the WF
law holds in this system, the feature of the crossover between the PM and the FP-PM
regime in the resistivity should also appear in the thermal conductivity. The maximum
in κ is denoted by blue arrows in the right panel of figure 3.18.
From an experimental point of view, the thermal conductivity κ = α P

∆T
is a measurement

of the heating power P needed to induce a gradient ∆T across the sample, normalized
by the geometric factor α. We can note that the maxima are mainly due to minima in
the thermal gradient. As κ is measured at the same time and with the same setup as the
thermoelectric power Seebeck coefficient S = ∆V

∆T
, with a constant heater power during

the field sweep, it is natural that the extrema in κ are found in S as well. Indeed, as can
be seen by the blue circles and crosses in the right panel of figure 3.20, the local minima in
S and the local maxima in κ coincide. The Seebeck voltage ∆V also features both minima
and maxima, proving that these anomalies are not due to inaccuracies in the temperature
measurement setup, and that the high-field feature is related to the crossover between the
PM and the FP-PM regime.
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the Seebeck data, while the blue one corresponds to minima and maxima in S and κ,
respectively. The black square is the tricritical point determined in [81].

From the measurements presented above, we can determine the H − T phase diagram,
shown in figure 3.20 on the left. Full circles indicate transitions from the ρ(H) mea-
surements and open circles from ρ(T ). The helical order lies below the HD transition
line. Between HD and HC is the conical order and above is the field-polarized, or field-
induced ferromagnetic state, unshaded. We can note that the works of Sakakibara et al.
have evidenced the presence of a tricritical point (TCP) in EuPtSi [81]. This shows in
dM/dT measurements as the change from a symmetric peak to an asymmetric one at
TTCP = 3.87 K and HTCP = 0.88 T, broadening with field. The right panel of figure 3.20
shows the same phase diagram as on the left with full dots, extended to 6 K and 13 T. As
the HC transition is observed for the same fields for all probes, only the resistivity data is
shown for this transition for the sake of visual clarity. The red (blue) circles correspond
to the local maxima (minima) observed in the S(H) data, while blue crosses correspond
to maxima in κ(H). The blue squares are minima in ρ(H). The blue line rising from
the HC transitions at low temperature seems to agree with the reorientation of the mag-
netic moments under applied magnetic field. Above the blue line, the system lies in the
field-polarized state. The variations between the different probes may be attributed to
the criterion chosen, and emphasize the width of the crossover. On the other hand, the
line of red dots from maxima in the S(H) signal might be the indication of a short range
magnetic order in the paramagnetic state. It might be related to the tricritical point found
in ref. [81], marked on figure 3.20 (right) with a black square, although the maxima in
S(H) join HC at 1.7 T and 3.5 K, which is at a significantly higher field.

67



Chapter 3. Study of the skyrmion lattice phases of EuPtSi

From the study of the low temperature phase diagram for the H ∥ [110], we have confirmed
that no SkL phase exists for this direction. For ρ, S and κ the conical order yields a flat
or linear field dependence, and the three probes are in good agreement for the HD and HC

transitions. The absence of the A-, A’- and B-phases allows us to recover a ’background’
signal to understand the other directions better. Additionally, S also features anomalies
at higher temperature, which might be related to new energy scales of the system.

3.2.3 Results for H ∥ [111]

We now turn our focus to the H ∥ [111] direction of EuPtSi, with the A-phase reminiscent
of the one in MnSi. Since its discovery, the A-phase has been confirmed to be a SkL
phase with triple-q ordering and q1 = (−0.29, 0.09, 0.20), q2 = (−0.20, 0.29,−0.09) and
q3 = (0.09, 0.20,−0.29) [3, 83]. The skyrmions form a triangular lattice in real-space with
the characteristic length 18 Å in the plane perpendicular to the magnetic field. While
this A-phase is well documented in the literature, the resistivity measurements shown in
this section allow us to draw a more precise magnetic phase diagram. Other probes will
be presented, such as the Hall resistivity with the topological Hall effect (THE) arising
from the skyrmion lattice, and thermoelectric measurements.

Resistivity measurements
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Figure 3.21: Field variation of ρ at various temperatures above 0.175 K, for increasing
magnetic field sweeps between 0 T and 4.5 T along the [111] direction. The 0.175 K curve
is shifted vertically by -0.5 µΩ·cm for clarity. Transitions are indicated by colored arrows
on the 1 K data.

Figure 3.21 shows ρ(H) of EuPtSi in the [111] direction for a wide range of temper-
atures between 0.175 K and 6 K, with a current J ∥ [1̄ 1̄2] of 0.5 mA. Four transitions
can be observed and tracked along the temperature range. The first transition HD occurs
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around 0.25 T as a downwards step and corresponds to the transition from the multi-
domain helical state to the single-domain conical state. At low temperatures T < 1 K,
HD increases, reaching 0.5 T at 0.175 K. For these temperatures, the anomaly is really
small in the ρ(H) data and the transition field is recovered from the derivative of the
signal, indicating that it is not a well defined transition but a crossover [84]. The A-phase
appears as a large bump between the transitions HA1 at 0.8 T and HA2 at 1.3 T. The
amplitude of ρ(H) in the A-phase reaches close to 2 µΩ·cm at 1 K. In turn the A-phase is
not observed for temperatures below 0.45 K. At temperatures approaching TN ≈ 4.05 K,
HA2 decreases closer to HA1 = 0.8 T . As the anomaly corresponding to HC grows, the
signal from the A-phase diminishes and the transition fields are recovered from the deriva-
tive of ρ(H). Above 3.75 K, the A-phase transitions become indistinguishable from HC ,
the transition from the conical state to the paramagnetic state, as HC drops to 0 T at
T = TN .
In the A-phase, the enhancement of the resistivity is due to additional scattering of the
carriers on the skyrmion lattice. The skyrmions act as scattering centers for the conduc-
tion electrons, due to a local emergent magnetic field. It is speculated from measurements
in MnSi that the ρ response in the A-phase is naturally the superposition of the signal
due to the SkL order and the signal from the conical order background [92]. Ignoring
the presence of the A-phase, the resistivity for the H ∥ [111] direction is very similar
to the H ∥ [110] direction previously observed. We can note a slight difference in the
slope of ρ(H) in the conical order, from a flat field-dependence for the [110] direction to a
small increase of the order of 0.25 µΩ·cm/T for the present direction at all temperatures.
This slope may be related to the depopulation of the multiple domains comprising the
helical ordering, as only the domains with q close to the field direction remain in the
single-domain conical order. The q-vectors in the helical state are closer to the H ∥ [110]
direction than the H ∥ [111] direction, with q = (0.2, 0.3, 0). The reorientation of the
single-domain single-q conical order along the field would correlate with the slight in-
crease in ρ(H). Even with this small slope it is reasonable to assume that the conical
background can be fitted linearly, hence the large signal in the A-phase being solely due
to the SkL.
For fields HC < H < 4 T, the resistivity is reduced with increasing field, with the detailed
explanation already given for the previous direction. For fields H > 4 T (additional curves
can be found in appendix A), ρ(H) ∝ H2 and the curves become mostly indistinguishable
above 7 T for all temperatures as previously described for H ∥ [110], with the cyclotron
motion of the electrons increasing the scattering. No oscillations of the Shubnikov-de
Haas effect were observed in the resistivity, even at 15 T.
The data from figure 3.21 have all been acquired for increasing field sweeps, at a rate
of 0.1 T/min. The sweep rate has been confirmed not to have a strong influence on the
data. On the other hand the field sweep direction matters, as hysteretic features of the
transitions can be observed, evidencing their first-order nature, as shown in figure 3.22.
Colored open triangles correspond to the HA1 and HA2 transitions for the H-down sweep
at 0.6 K. The hysteresis of the HC transition (not shown here) has not been observed for
any temperature, suggesting a second-order of the transition. However, as was described
for the previous orientation, resistivity measurements have not been able to confirm the
order of the HC transition. The hysteresis of the HD transition, on the other hand, is
shown for the 1 K data. During decreasing field sweeps, the transition HD is not observed
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Figure 3.22: Comparison between increasing (full lines) and decreasing (dashed lines)
ρ(H) field sweeps for T = 2, 1, 0.6 and 0.5 K. The hysteretic features of the transitions
HA1 and HA2 are shown for the T = 0.6 K data with open triangles. The hysteretic HD

transition is shown on the 1 K data. The T = 0.5 K data was shifted by −0.2 µΩ·cm for
clarity, and the 2 K data by −0.5 µΩ·cm.

below 1 K as the system remains in the conical order. A similar observation has been
made in magnetization measurements [4]. The helical order is recovered at H = 0 and
HD is observed again if a decreasing field sweep is subsequently followed by an increasing
field sweep. The transitions delimiting the A-phase, namely HA1 and HA2, are shifted to
lower fields when the latter is decreased. Above T = 1 K, the increasing and decreasing
field sweeps yield similar results. The hysteresis of the A-phase only opens for lower tem-
peratures until the A-phase disappears around T = 0.45 K.
From the ρ(H) measurements presented above, we can determine the H − T phase dia-

gram of EuPtSi for the H ∥ [111] direction in figure 3.23. The colored markers correspond
to the transitions indicated in figure 3.21. Full squares are data taken from increasing
field sweep measurements and full circles are from increasing temperature sweeps in the
regions where the transition lines become vertical. Open triangles denote the decreasing
field sweeps. The measurements of ρ(T ) used here will be shown at a later point in section
3.3 where we evidence measurements of a metastable A-phase under field-cooling. The
A-phase is enclosed in the H−T phase diagram and spans a large temperature range from
0.45 K to 4 K. For the whole temperature range, the transitions HA1 and HA2 almost do
not evolve with field. Below 1 K however, the two transition lines follow the field sweep
direction as the phase closes upwards for increasing fields and downwards for decreasing
fields. The HD transition from the helical to the conical order also increases below 1 K
for measurements with increasing magnetic field, reaching ≈ 0.5 T at 0.2 K.

The phase diagram is naturally very reminiscent of MnSi, but let us highlight a sig-
nificant difference in the normalized range of the A-phase between the two compounds.
In MnSi it spans about 1 K at 29 K (≈ 3%) whereas in EuPtSi it spans 3.65 K at 4 K
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(≈ 91%). Furthermore, reaching such low temperatures, it has potential to provide good
insights on the physical properties of a SkL close to its ground state. Additionally, the
A-phase of EuPtSi exists for a field range of ≈ 0.5− 0.75 T, compared to less than 0.1 T
for MnSi.

Thermoelectric coefficients and thermal conductivity measurements

As shown in figure 3.24, the field dependencies of S, κ, N and ρ, from top to bottom,
all show clear evidence of the A-phase. The comparison is made for a temperature close
to 1.75 K (1.68 K for S, κ, N measured simultaneously and 1.75 K for ρ). The four
measurements were made in similar conditions on sample #1 with increasing sweeps at
0.1 T/min. The four transitions at low field are indicated with vertical dotted lines. The
slight discrepancies may come from a possible misalignment of a few degrees between the
ρ and the S setup. The HD transition between the helical and the conical orders is not
observed in thermoelectric measurements for this direction.
For fields H < 0.2 T, the superconducting magnet and flux jumps induce random noise on
the signal, both in the thermoelectric voltage and the temperature gradient. The S(H)
signal corresponding to the A-phase is similar to that of the resistivity as it is a well
defined enhancement of the Seebeck coefficient amplitude, reaching up to 0.25 µV/K at
2 K. The same is true for the Nernst signal, albeit with a lower and more noisy signal.
Inversely, the thermal conductivity κ in the A-phase decreases by up to 1.75 WK−1m−1.
The magnetic skyrmion lattice ordering thus induces additional scattering which limits
both electrical and thermal transport.
S(H) measurements at low temperatures (T < 1 K) are contaminated by the presence

of a large background signal that increases as temperature lowers, making it very hard
to extract the intrinsic behavior. This is developed in more detail in appendix A. The
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Right: H − T phase diagram from ρ (full dots) extended to 6 K and 12 T, with extrema
from κ (crosses), N (stars), S (circles) and ρ (squares). The black square is the tricritical
point determined in [81]. Bottom: N/H field dependence between 1.9 and 3.2 K up to
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2.33 K.
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data shown in figure 3.25 from H-sweeps for sample #2 is thus limited to 1 K. For lower
temperatures, instead of continuous field sweeps, we have performed step-by-step mea-
surements, reducing the noise level and the background by increasing the averaging time.
Hence we successfully followed the A-phase features down to 0.45 K. Similarly to the
H ∥ [110] direction, the S(H) behavior exhibits clear maxima (red arrows) and minima
(blue arrows) increasing both in field and in temperature. The maxima grow from the
HC anomaly (green arrows) at 2.5 K above which the two become distinguishable. Inter-
estingly, as was discussed for the previous orientation, these energy scales are observed
both in the ∆V and the ∆T part of the Seebeck coefficient. The thermal conductivity κ,
on the other hand, shows a local maxima that is only due to variations in ∆T , see the
blue arrows in figure 3.26 (top left). Contrarily to the H ∥ [110] direction, the maxima in
κ(H) and the minima in S(H) do not coincide as T or H increase. The same is true for
the Nernst signal N(H), presenting a minimum, as seen in the inset of the bottom panel
of figure 3.26. It is more meaningful, however, to consider the coefficient N/H. Much like
for the Hall effect (described in the next section), at high fields H > HC where the mag-
netization is mostly saturated, the Nernst coefficient has a linear-in-H component [6, 93].
From the N/H field-dependence the minimum falls along the S data. Their agreement is
very good, especially considering that they come from two different samples.
All probes exhibit an anomaly rising from HC at the same point of 0.6 K and 2.9 T but
follow different critical lines, as shown in figure 3.26 (top right panel). Their crossing point
is similar to the H ∥ [110] direction one, and is in agreement with the cross-over from the
PM to the FP-PM regime that is clearly observed in ρ(H) (blue squares). On the other
hand, the maximum in S (red) appears at 1.8 K and 2.2 T, which is much higher than
was the case for H ∥ [110], and crosses the κ maximum line at 6 K and the ρ minimum
line at 4 K. The existence of a tricritical point was determined from magnetization in ref.
[81] at HTCP = 1.1 and TTCP = 3.86 K, as shown in the top right panel of the figure 3.26
by a black square. The TCP thus exists at much lower field and higher temperature than
the starting point of the S(H) maxima critical line. The energy scales observed in the
Seebeck coefficient are therefore assumed to not be connected to the existence of a TCP.

Topological Hall effect in the A-phase

In general, the Hall effect is understood as being the sum of two components, the ordinary
Hall effect (OHE) and the anomalous Hall effect (AHE). It empirically follows the relation

ρH = R0H +RSM (3.5)

with the first term being the OHE with R0 the ordinary Hall coefficient2, and the second
term the AHE with RS a scaling factor. The OHE is dependent on the carrier density
n = (R0e)

−1 and scales linearly with the magnetic field [94]. The origin of the AHE, on
the other hand, is still a source of controversy and has been for decades [95]. From a sim-
ple approach, two different left-right asymmetric scattering processes that scale with the
magnetization M are usually considered. The first is the incoherent skew scattering, for
which we expect RS ∼ ρ the longitudinal resistivity [96, 97]. The second is the coherent
skew scattering, for which RS ∝ ρ2 [98].

2Maintaining the convention applied to the rest of this work, the vacuum permeability µ0 is ignored
to have H in teslas.
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A third component, the so-called topological Hall effect (THE) can be observed for
skyrmion compounds and can be used as a tool to study the phase relationship of the
helices forming the triple-q ordering and the topological properties of the SkL, such as the
chirality and the winding number [99, 100]. The THE arises from the Berry phase acquired
by conduction electrons along the spin-polarization of the magnetic texture [49, 101, 102].
The Berry phase affects charge transport in a similar way as an external emergent mag-
netic flux does, and the THE corresponds to the transverse motion of conduction electrons
by this emergent field, akin to a Lorentz force. EuPtSi provides the rare occasion to ob-
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Figure 3.27: Hall resistivity for H ∥ [111] for temperatures between 0.3 and 2 K. Colored
arrows indicate the HA1, HA2 and HC anomalies on the 2 K curve.

serve all three types of Hall components simultaneously in the same system [3]. We have
performed Hall resistivity measurements for H ∥ [111] and J ∥ [1̄1̄2] of 0.5 mA according
to the protocol described in chapter 2. Field sweeps have been performed for both positive
and negative field direction at the same sweeping rate of 0.1 T/min. The sweeps are per-
formed subsequently without changing the temperature regulation. The Hall resistivity
signal is then obtained by taking the antisymmetric combination of the two measured sig-
nals ρxy(H > 0) and ρxy(H < 0). The field dependence of the Hall resistivity is presented
in figure 3.27 for various temperatures. The anomalies corresponding to HA1, HA2 and
HC are annotated for the T = 2 K data with colors as per the H − T phase diagram
(see figure 3.23). The HD transition at low field is not observed due to flux jumps in the
superconducting magnet which are prominent in decreasing fields below ≈ 1 T. On the
other hand, the A-phase is clearly evidenced by an additional contribution to the Hall
effect forming a peak structure between HA1 and HA2. The sign of the A-phase signal is
opposite the sign of the global Hall signal, yielding a positive contribution in an otherwise
negative signal due to electrons dominating the transport.

Figure 3.28 (left) shows the three components to the Hall effect fitted to the T = 1 K
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Figure 3.28: Left: the three contributions to the Hall effect represented simultaneously on
the 1 K data. The THE in the A-phase is the colored orange region. Right: fittings of the
1 K data with three different AHE models ρH ∝ ρnM , with ρ the longitudinal resistivity,
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data. The Anomalous Hall Effect (AHE) is described by a ρxy ∝ M law, with a negative
sign to concord with the negative Hall effect. Following magnetization, the AHE is mostly
linear at low fields until saturation, as shown by the red dashed line. M(H > HC) is sat-
urated for all temperatures, thus the AHE being constant. For increasing temperatures,
the saturation transition HC is broadened and the saturated AHE is observed at higher
fields. The Ordinary Hall Effect (OHE) which is described by a ρH ∝ H behavior is visible
for fields H > HC ≈ 2.5 T at low temperature (H > 5 T at 2 K). The OHE dominates
at high fields and gives rise to a linear signal, as shown by the black dashed line. Due to
the AHE previously described, the OHE does not reach zero at zero field. By fitting the
high-field data between 6 and 15 T with a first order polynomial ax+ b, we obtain a value
|R0| = 0.051 µΩ·cm/T. In a very simplified approach, as only one charge carrier is taken
into account, the corresponding carrier concentration is n = (|R0|e)−1 = 1.23×1022 cm−3,
which is within the expected range for a metal. Attempts to fit the AHE term with ρ2M
and ρM dependencies due to side-jump and skew scattering respectively, shown in figure
3.28 (right), have been unsuccessful to describe the peak structure of the A-phase, much
like the works by Kakihana et al. [3]. The magnetization data are from SQUID device
measurements, as presented in section 3.1.3, and corresponds to the H ∥ [100] direction.
It is important to note that no strong anomalies are observed in our M(H) data, giving
a linear fit (dashed red curve) between HA1 and HA2. Besides the A-, A’- and B-phases,
the magnetization is mainly isotropic for a given temperature. Data from the literature,
in agreement with our own, indicates that the features of the SkL phases are rather small
and would explain neither the shape not the magnitude of the ρH feature. Hence we can
use our H ∥ [100] M(H) measurements to approximate the AHE term in the fittings.
For the ρ2M and ρM fits (dashed green and pink respectively), ρ is the resistivity mea-
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3.2. Field-dependent measurements on EuPtSi

surement already presented. For both cases, the fitting of the A-phase gives a negative
additional contribution instead of a positive one.
The A-phase contribution is thus not due to the AHE and is the expression of a third
Hall effect contribution, the so-called Topological Hall Effect (THE).
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Figure 3.29: Topological Hall resistivity, i.e. Hall resistivity with OHE and AHE contri-
butions removed, centered on the A-phase. Curves are shifted vertically for clarity.

In figure 3.29, we have fitted the Hall resistivity linearly between 0.5 T and 2 T in the
conical phase, thus removing the OHE and the AHE contribution. The data shown are
shifted vertically. In this view the only remaining contribution is the THE due to the
skyrmion lattice in the A-phase, which reaches a maximum of ∆ρH = 0.1 µΩ·cm at 0.6 K,
taken between the maximum and the mean values at the transitions. The disappearance
of the anomaly below 0.5 K is in good agreement with the phase diagram previously
measured. Along their motion, conduction electrons are affected by an emergent mag-
netic field based on the skyrmions of the A-phase. Considering the spin polarization of
the electrons to follow the spin texture adiabatically, the additional THE signal can be
expressed as

∆ρTHE
H ≈ PR0Heff (3.6)

with R0 the ordinary Hall constant previously measured, P the local spin polarization of
the conduction electrons and Heff the emergent magnetic field [49, 102]. P comes from
the Berry phase collected by the carriers, it is maximum P = 1 for a fully polarized
system and minimum P = 0 for vanishing polarization for which there is no THE. In
between the two cases, the polarization is given by P = µspo/µsat the ratio of the ordered
magnetic moment µspo in the A-phase and the saturated magnetic moment µsat. The
former is taken from a zero-field linear extrapolation of the magnetization measurements
by Sakakibara et al. [4] and we use the value µspo = 0.7 µB. The saturated magnetic
moment is the free Eu moment µsat = 7 µB, yielding P = 0.1. The emergent field is
Heff = −Φ0Φ with Φ0 = h/e the flux quantum for a single electron and Φ is given by
the skyrmion density. For an hexagonal skyrmion lattice, the reciprocal and real-space
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Chapter 3. Study of the skyrmion lattice phases of EuPtSi

lattice vectors have lengths 2π/λS and λS/sin(2π/3) respectively, with λS = 18 Å the
wavelength or periodicity of the helical state near TN [103]. The size of the unit cell of
the skyrmion lattice is thus λ2

S/sin(2π/3). The obtained emergent magnetic field is

Heff = −h

e

(√
3

2λ2
S

)
≈ −1105 T (3.7)

with the negative sign indicating that Heff opposes the applied magnetic field. By com-
parison, the emergent field from the skyrmion lattice in MnSi is evaluated at -13.15 T.
The difference of two orders of magnitude is explained by the small size of the skyrmions
in EuPtSi, an order smaller than in MnSi.
From equation 3.6, with |R0| = 0.051 µΩ·cm and the values of P and Heff given above, we
obtain a theoretical estimate of a THE in EuPtSi with a magnitude ∆ρTHE

H = 0.56 µΩ·cm.
Compared to the measured value of 0.1 µΩ·cm, the theoretical value is in reasonable agree-
ment, and both are much larger compared to MnSi with ∆ρTHE

H = 4 nΩ·cm [49]. The
large THE in EuPtSi is thus related to the small size of the skyrmions, which produce a
very large local effective field opposing the applied field. The motion of the conduction
electrons is affected, leading to a contribution to the Hall effect opposite the ordinary
contribution.

3.2.4 Results for H ∥ [100]

The H ∥ [100] direction of EuPtSi presents two distinct magnetic phases next to one
another in the conical order of the H − T phase diagram. From the angular dependence
of the resistivity presented in section 3.2.1, we have seen that the B-phase exists only
close to the main crystallographic axes [100], [010] and [001]. The A’-phase, in turn, can
be followed along the body diagonal of the cubic structure and links to the A-phase seen
for the H ∥ [111] direction. A rotation along the other body diagonal, however, shows
a distinction between the A’-phase and the A-phase for H ∥ [1̄11]. From experimental
observations, the A’- and B-phases look similar in nature to the A-phase, however the
detailed magnetic structure has yet to be reported for these phases. Because the structures
are next to each other in the H − T phase diagram, the possibilities of phase-mixing
between a SkL and a conical phase, or two SkLs with differing parameters, exist.

Resistivity measurements

The field-dependence of the resistivity is shown in figure 3.30 (left) for fields below 3.5 T
and temperatures ranging between 0.1 K and 4 K. The right panel shows the same mea-
surements with additional temperatures between 0.1 and 6 K, up to 15 T. The resistivity
at high field follows the same H2 dependence as for the other orientations, highlighted by
the dotted black line in the right panel of the figure, and will not be detailed further here.
The similarity with the H ∥ [111] direction is evident for the anomalies corresponding to
the transitions HD and HC , respectively from the helical to the conical state and from the
conical to the PM state. We can note that the HD transition corresponds to an increase in
ρ whereas it was a decrease for the other orientations. For this field and current orienta-
tions, the magnetic fluctuations increase the scattering in the conical state with respect to
the helical state. In the conical state, ρ(H) increases almost linearly with H, similarly to
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Figure 3.30: Left: ρ(H) for H ∥ [100] between 0 and 3.5 T. Colored arrows denote
the anomalies corresponding to transitions HD, HA1, HA2, HB and HC in the order of
increasing field. Right: ρ(H) up to 15 T for temperatures between 0.1 and 6 K with the
ρ ∝ H2 fit in dotted line. The inset shows a close-up between 0 and 3 T.
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Figure 3.31: ρ(H) for H ∥ [100] for T ≤ 0.3 K, in the conical order between 0.7 T and 2 T.
The triangles indicate the anomalies HA1 (blue), HA2 (red), HB (pink). HA1 disappears
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Below 0.225 K, a previously unreported anomaly is observed around 1.15 T, indicated by
green triangles.

79



Chapter 3. Study of the skyrmion lattice phases of EuPtSi

the other direction [111] and [110]. Between HA1 ≈ 0.9 T and HA2 ≈ 1.5 T, the A’-phase
is formed and ρ(H) is enhanced by up to 2 µΩ·cm at 2 K. The HA2 transition between the
two phases is a downwards step, as the B-phase is less resistive. HB ≈ 1.75 T is the upper
field limit to the B-phase. Contrarily to the [111] direction where the A-phase disappears
below 450 mK, for H ∥ [100], both phases exist at lower temperatures, down to 250 mK.
At T = 0.3 K, both phases reach around the same value of resistivity ρ = 4.3 µΩ·cm.
Below 0.3 K, the A’-phase reaches lower values than the B-phase, as the A-phase visibly
closes at higher temperature than the B-phase.

With the low noise level of our measurement setup, we have evidenced anomalies linked
to the SkL phases down to our lowest available temperatures, around 100 mK, as shown
in figure 3.31. Below 0.3 K, the resistivity in the A’- and B-phases rapidly diminish with
temperature. The transition HA1 from the conical order to the A’-phase increases as the
temperature decreases, reaching ≈ 1.2 T at 0.225 K where the A’-phase disappears. The
HA2 transition, however, decreases rapidly below 0.22 K, reaching a wide minimum of
ρ at 1.32 T for T ≤ 0.2 K. On the other hand, the transition HB between the B-phase
and the conical order is unchanged and clearly visible at all temperatures. The presence
of HA2 and HB at all temperatures seems to indicate that the B-phase persists at much
lower temperature than the A’-phase.
At T = 0.1 K the B-phase bump has a height of only ≈ 0.1 µΩ·cm, or 5 % of the maxi-
mum value at 2 K. The width of the B-phase, on the other hand is greatly increased, as
can be seen in the low temperature phase diagram of figure 3.33. The large shift of HA2

upon closing of the A’-phase may be an indication of a mixing of the two phases at higher
temperature. For temperatures above 0.225 K, the B-phase signature in the resistivity
may be partially hidden by the large signal from the A’-phase.
Additionally, for temperatures below 0.225 K, ρ(H) decreases with a slight change of slope
around 1.15 T, indicated by green triangles in figure 3.31. This previously unreported
anomaly can be tracked from the closing of the A’-phase but does not line-up with the
HA1 critical line. Our precise low temperature measurements of the resistivity thus seem
to indicate that interesting spin textures still exist in the field range of the SkL phases at
very low temperature.
Comparing the results of increasing and decreasing field sweeps as per figure 3.32, we can
evidence the first-order nature of the transitions HA1, HA2 and HB. The hysteresis is only
visible for temperatures below 1 K, as was the case for the [111] direction. Interestingly,
for increasing field sweeps the width of the A-phase decreases with temperature, whereas
for decreasing field sweeps, the width becomes larger as HA1 lowers from 1 T to 0.6 T.
The opposite is observed for the B-phase, closing with decreasing fields as HB lowers to
1.5 T at 0.2 K.
The hysteresis of the various transitions are shown in the H − T phase diagram in fig-
ure 3.33, with full squares (open triangles) for increasing (decreasing) fields. Dots in the
phase diagram are the corresponding anomalies observed in ρ(T ) measurements presented
in section 3.3.3. As there are essentially two phase diagrams due to the hysteresis, on
the low temperature diagram on the right, the two are superimposed with colored areas
for the increasing fields and hatched regions for the decreasing fields. The HD transi-
tion hysteresis is not observed below 0.5 K as it reaches fields below 0.1 T for which the
superconducting magnet induces noise on the signal. The additional anomaly found at
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fields for H ∥ [100]. Colored arrows indicate transitions HA1, HA2, HB and HC for the
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low temperature (see figure 3.31) is evidenced on the phase-diagram close-up as green
squares around 1.1 T. It follows from the HA1 transition after the A-phase closes below
0.225 K and is seen in increasing field sweeps only. It might be too small to be measured
in decreasing fields, or disappear altogether in a similar way to the B-phase. As for the
nature of the anomaly, resistivity measurements do not allow to draw more conclusions.
The observation of the anomaly is reproducible and it is observed even more clearly from
the field dependence of the metastable SkL phases presented in the next section.
Future ρ(H) measurements with an experimental setup allowing lower temperatures would
help clarify the results presented here, in combination with probes that can discern the
precise magnetic structures in the various regions of the phase diagram.

Topological Hall effect in the A’ and B phases

We have performed Hall resistivity measurements for the H ∥ [100] direction following
the same protocol as in section 3.2.3 for the previous orientation. A field sweep rate of
0.1 T/min was used for both positive and negative field sweeps at fixed temperature. The
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Figure 3.34: Hall resistivity for H ∥ [100] for temperatures between 0.45 and 1.2 K, for
applied fields between 0 and 5 T. Colored triangles indicate the HA1, HA2, HB and HC

anomalies on the 1.2 K data.

field dependence of the Hall resistivity is shown in figure 3.34 between 0 and 5 T of applied
(uncorrected) magnetic field, for temperatures between 0.45 and 1.2 K. The anomalies
corresponding to the transitions HA1, HA2, HB and HC are indicated by colored triangles
on the 1.2 K data. The A’-phase between HA1 and HA2 is evidenced by a large positive
contribution. The B-phase between HA2 and HB also yields a positive contribution to
ρH , smaller in amplitude than the A’-phase. As was the case for the H ∥ [111] direction,
the Ordinary Hall Effect (OHE) can be fitted from measurements above 5 T (not shown
here) in which the Anomalous Hall Effect (AHE) is constant, as the magnetization reaches
saturation. Magnetization measurements as shown in section 3.1.3 are unable to explain
the magnitude or the sign of the anomalies due to the presence of the A’ and B phases.
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As such, the anomalies are likely to be due to the Topological Hall Effect (THE). The
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Figure 3.35: Topological Hall resistivity, i.e. Hall resistivity with OHE and AHE contri-
butions removed, centered on the A’ and B phases. Colored triangles indicate the HA1,
HA2 and HB transitions in order on increasing field. Curves are shifted vertically for
clarity.

isolated THE is presented in figure 3.35 after fitting the Hall resistivity data linearly
between 0.5 and 3 T. The transitions HA1, HA2 and HB in order of increasing field are
indicated by colored triangles on the 0.7 K data. The data are shifted vertically for
clarity. The A’-phase yields an amplitude maximum of ∆ρH = 0.1 µΩ·cm at 0.7 K and
the B-phase an amplitude maximum of ∆ρH = 0.07 µΩ·cm at 0.8 K. For the H ∥ [100]
direction, scattering experiments have yet to reveal the structure of the A’ and B phases,
whether they are SkL, multi-q structures, etc. As such, the amplitude of the effective
emergent magnetic field produced by the magnetic structure and opposing the applied
field cannot be estimated as per equation 3.7. A theoretical estimate of the THE with
which to compare our measurements is thus not obtainable yet. Nevertheless, this new
observation of the THE for both magnetic phases of the H ∥ [100] direction still points
to evident similarities between the A’ and B phases and the confirmed skyrmion lattice
A-phase for H ∥ [111]. Future scattering experiments would allow a more precise study
of these skyrmion-related phases.

Thermoelectric measurements

For this field direction, continuous S(H) measurements evidence clear quantum oscilla-
tions due to the high residual-resistivity-ratio of the sample RRR = 32, as shown in
figure 3.36 (a). However, at low temperature T < 1.3 K, the Seebeck signal is difficult to
measure in continuous field sweeps due to the rise of a large background signal which we
could not identify. This background does not occur in field step measurements (blue dots
in the figure), which correspond to the real Seebeck signal. Additional data in continuous
field sweeps is presented in appendix A. The anomalies corresponding to the A’- and B-
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Figure 3.36: (a), (b): comparison between S(H) measurements with continuous H-sweeps
(red) and H-steps (blue) at 1.42 K, between 0 and 15 T (a) and between 0 and 2.5 T
(b). Arrows in (b) correspond to the transitions HD, HA1, HA2, HB and HC in order
of increasing field. (c): Seebeck signal measured by H-steps for temperatures between
0.4 and 3.8 K over the whole field range (the data points are linked for clarity). Arrows
indicate the extrema reported in (d). (d): extended phase diagram with the extrema
from S(H), κ(H) and ρ(H) (circles, crosses and squares, respectively). The black square
indicates the position of a tricritical point from ref. [81].

84



3.2. Field-dependent measurements on EuPtSi

phase are easily evidenced (3.36 (b)) and match very well the ρ(H) measurements. Both
phases yield large positive contributions with sharp transitions. Much like in resistivity,
the A’-phase is larger than the B-phase in the Seebeck coefficient, reaching 0.14 µV/K at
its largest for T = 1.4 K, compared to 0.7 µV/K for the B-phase.
We also report the presence of high-field energy scales coherent with the previous two
orientations. The minimum in the Seebeck signal extends linearly with T and H from
the conical to FP-PM transition at around 2.8 T and 0.5 K, and has been followed up to
10 T at 5 K. The thermal conductivity also presents a maximum related to the same en-
ergy scales (not shown here), with the extrema in both probes presented in the extended
H − T phase diagram 3.36 (d) with the minima in resistivity measurements. These field
and temperature scales clearly mark the crossover to the fully polarized paramagnetic
state.
The local maxima in the S(H) data, on the other hand, have only been observed for two
temperatures for this orientation, and are denoted by red circles in the figure 3.36 (d).
Interestingly, contrarily to the previous orientations (see figures 3.20 (right) for H ∥ [110]
and 3.26 (top right) for H ∥ [111]), in the H ∥ [100] direction the maximum in S(H) seems
to form a critical line coinciding well with the tricritical point determined by Sakakibara
et al. in [4]. For this orientation magnetization measurements in the literature yield
HTCP = 1.35 T and TTCP = 3.2 K, indicated by a black square in the figure. Further
studies with more data would help clarify the relation between the TCP and the Seebeck
coefficient anomalies. The clear quantum oscillations visible in figure 3.36 (a) are analyzed
in detail in the next chapter.

For the field direction H ∥ [100] of EuPtSi, the previously established phase diagram
shows magnetic phases down to 0.1 K. The Seebeck coefficient measurements, however,
could only be performed above 0.4 K, even with H-steps. Nevertheless, the Seebeck effect
has proven to be a powerful probe picking up on magnetic transitions due to the formation
of skyrmion lattices, large quantum oscillations invisible in resistivity, and indications of
the spin polarization of the FP-PM state.
In this section, we have seen the field dependence of the ordered phases of EuPtSi below
the Néel temperature for the three main crystal orientations. We have recovered the H−T
phase diagram and shown the hysteretic features of the A-, A’- and B-phases. We have
also measured the topological Hall effect in the A, A’ and B phases, and evidenced the
cross-over between the PM and the FP-PM regimes from various transport probes. From
precise low-temperature resistivity measurements, we have also evidenced the existence of
the B-phase down to 0.1 K and a possible indication of a mixing of the A’- and B-phases.
We also report the presence of a new anomaly rising at around 1.1 T below 0.25 K for
the H ∥ [100] direction. This anomaly is only observed for H ∥ [100] and can be assumed
to be connected to the existence of both the A’- and B-phases as it is not observed for
H ∥ [111].
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3.3 Metastable skyrmion lattice phases under field cool-
ing

We will now study the temperature dependence of the transport properties of EuPtSi.
For the sake of clarity, anomalies in the temperature dependence corresponding to tran-
sitions from the H − T phase diagram will be named as per their field equivalent, for
example TA1 ≡ HA1. As the H ∥ [110] direction has no skyrmion lattice (SkL) phase,
ρ(T ) measurements have already been presented in section 3.2.2 and no anomalous mag-
netic structures or hysteretic behaviors were observed between increasing and decreasing
temperature sweeps. For the directions H ∥ [111] and H ∥ [100], on the other hand,
decreasing temperature sweeps yield different results in the transport properties whether
the magnetic field is applied first (i.e. field-cooling conditions) or not (zero-field cooling).
With specific cooling conditions depending on the magnetic history, SkL phases can be
created in temperature ranges different from those seen thus far. The resulting phases are
then called metastable phases and the metastability evidences the topological robustness
of the skyrmion lattices [104].
The metastable behavior of SkL phases in EuPtSi and in MnSi from the literature is
first presented, followed by our own results for the H ∥ [111] and H ∥ [100] directions,
extending the respective phase diagrams down to the lowest temperatures available in our
measurements.

3.3.1 State of the art

Figure 3.37: Left: M(T ) measurements of EuPtSi from [4]. H0 is the magnetic field
applied at 60 mK before the T -sweeps, and H is the renormalized field due to the demag-
netizing correction, respectively. The arrows indicate the direction of the temperature
sweeps, and the red dot is the end of the sweep in the metastable A-phase. Right: H −T
phase diagram of MnSi from field-cooling Small-Angle Neutron Scattering (SANS) mea-
surements, from [105].

The difference in the behavior of the magnetization between increasing and decreasing
temperature sweeps below 1 K for H ∥ [111] in EuPtSi has been highlighted by Sakakibara
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et al. Their results are shown in figure 3.37 (left), from [4]. A magnetic field of 0.86 T
is applied at 60 mK after zero-field cooling (ZFC). Upon heating, the transition from the
conical state to the A-phase occurs at around 0.5 K (the first step in figure 3.37 possibly
corresponds to a q domain reorientation), with a value of M = 2.6 µB/Eu at 1 K.

Upon field cooling (FC), the magnetization retains a value close to that in the A-
phase, without showing any form of transition back to the conical order even at 60 mK.
This suggests the metastable behavior of the SkL phase. Subsequent field sweeps at low
temperature (not shown here) indicate a tilted plateau structure similar to the A-phase
signature, and discontinuous jumps back to the conical order for fields corresponding to
the extrapolated values of the critical lines of the transitions HA1 and HA2 in the H − T
phase diagram. This metastable A-phase has been confirmed to be stable for at least
104 s at low temperature. Similar observations are reported in the same article for the
A’-phase for H ∥ [100].
A metastable SkL is also observed in MnSi [105, 106], however rapid quenching at 700 K/s
was needed, whereas even slow FC in EuPtSi results in the metastable SkL state. The
H − T phase diagram of MnSi obtained with FC is reported in figure 3.37 (right), from
[105].
Many other systems exhibit metastable SkL phases. In EuPtSi, the SkL phases are formed
at unusually low temperatures in the normal state. As such, the possibility of obtaining
a metastable skyrmion lattice state at low temperature provides a rare opportunity to
study the ground-state properties of such phase. At the time of writing this thesis, the
magnetization measurements from Sakakibara et al. are the only reported observations of
this behavior in EuPtSi, and only cover the A- and A’-phases, respectively for the [111]
and the [100] directions. There have been no report of similar results from transport
probes, and no observation of the metastable B-phase.

3.3.2 Metastable A-phase for H ∥ [111]

Measurements of ρ(T ) are presented in figure 3.38 for various fixed magnetic fields ap-
plied along the [111] direction. For each measurement, the magnetic field is applied at
low temperature after ZFC, therefore keeping the system in the helical/conical state. The
data were then acquired by sweeping the temperature continuously from 0.25 K to 6 K,
and then back to 0.25 K. For a visual aid, the temperature sweeps are reported on the
phase diagram in figure 3.39 as horizontal lines with colors corresponding to figure 3.38.
T sweeps at zero field recover the behavior similar to the H ∥ [110] direction, with the
step-like transition at TN = 4.05 K, indicating the ordering of the spins and therefore
the reduction of magnetic scattering of the conduction electrons. The transition corre-
sponding to HC for field sweeps decreases with field and fits very well the critical line in
the phase diagram. A non-Fermi liquid (NFL) behavior is observed in the conical state,
with ρ(T ) ∝ T n with n = 1.55 at zero field and n ̸= 2 in the conical state, similarly to
the H ∥ [110] direction. The analysis of the NFL behavior is shown in more detail in
appendix A, as this section focuses on fields corresponding to the A-phase, HA1 ≈ 0.8 T
< H < HA2 ≈ 1.3 T.
Increasing temperature ρ(T ) shows the sharp transition from the conical state to the A-
phase at 0.45 K for H = 1.21 T. The conical state is recovered at higher temperature,
before the pronounced transition from the conical to the field-polarized paramagnetic state
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at around 4 K. The amplitude of ρ in the A-phase is in agreement with the field-dependent
measurements. In equilibrium conditions, the SkL phase is stabilized by thermal fluctu-
ations at finite temperature [1]. This temperature of 0.45 K is very low compared to
TN = 4.05 K, around 10 %, which implies that the free energy of the A-phase is only
slightly different from that of the conical state [4].

During field cooling (indicated by the black arrow), no transition is observed below
1 K, indicating that the A-phase is stable down to lowest temperatures. This implies
that the super-cooled metastable SkL state persists down to temperatures much lower
than expected, down to the lowest temperatures available in our setup. In the metastable
A-phase, ρ decreases with a ρ(T ) ∝ T 1.3±0.1 dependence, from the value at 1.3 K. The ex-
istence of this metastable phase means that the free energy difference between the conical
and the SkL state is rather small. When thermal agitation is sufficiently low, the system
remains in the SkL state instead of transitioning back to the conical state, emphasizing
the stability of the SkL state in the super-cooled regime.
After attaining the metastable SkL state, a field sweep as shown in the inset of figure 3.38
at T = 0.22 K shows the A-phase for a large field range, between 0.6 and 1.55 T. The
HA1 and HA2 transitions from the metastable state correspond to their respective critical
lines at lower temperatures, as indicated by open squares on the phase diagram fig. 3.39.
The metastable A-phase is thus strongly irreversible against a field sweep. Subsequent
field sweeps cannot recover the metastable state and the FC protocol has to be repeated
in this case.
To make sure the various magnetic states below TN had no part in the metastable behav-
ior of the A-phase, we have performed field coolings down from the paramagnetic state
well above 4 K. This metastable A-phase state can be obtained under field-cooling inde-
pendently of the magnetic history and whether the system is first heated at zero field or
under field. The resistivity value obtained after field-cooling is the same for decreasing
temperature sweep rates of 1 K/h and 3600 K/h, from T > 4 K and 1 < T < 4 K. We
have also confirmed the stability of this metastable state with respect to time, with no
change in ρ for at least up to 72 hours (not shown here). It shows that the super-cooled
A-phase has an extremely slow dynamic.
Measurements of the temperature dependence of the Hall effect are presented in figure

3.40, with the black arrow indicating the decreasing sweep direction. The T sweep rate
is the same and the field is first applied at low temperature, similarly to the longitudinal
resistivity protocol described above. In agreement with the longitudinal resistivity data,
the metastable A-phase is kept at low temperature with the hysteresis opening at around
1.2 K at 1.21 T. The high temperature of the hysteresis opening might be due to slight
differences in the positive and negative sweeps, shifting the sweep-up and -down curves.

Using a protocol similar to the ρ measurements previously described, we have mea-
sured the temperature dependence of S and κ for the [111] direction, shown in figure
3.41, left and right, respectively. Continuous temperature variation between 0.25 K and
6 K is not possible with our setup for these probes, and the measurements were made
in two sets, above and below 1 K. This does not matter as we have seen with ρ that
the metastable A-phase does not depend on whether the field is applied at low T or not.
Seebeck coefficient measurements follow an almost flat temperature dependence in the
A-phase close to 0 µV/K. The TC ≡ HC anomaly is a very small bump at all fields.
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In the conical and PM orders, the temperature dependence of the Seebeck coefficient
is indistinguishable. To measure the Seebeck coefficient at such low temperatures, we
have reduced the temperature gradient, which also reduced the voltage signal drastically,
yielding very noisy S(T ) measurements below 1 K. As such we have not observed the
metastable A-phase with this probe. Thermal conductivity measurements, on the other
hand, exhibit a clear distinction between increasing and decreasing temperature behavior.
This is shown in the inset of figure 3.41 (right). The transition from the conical state to
the A-phase around 0.4 K manifests by a decrease in κ, indicated by blue triangles in the
figure. An increase of similar size is measured at higher T , when recovering the conical
state (red triangles), i.e. crossing the HA2 transition line. The HC transition (green tri-
angles) follows a change of slope as κ increases rapidly with T in the paramagnetic state.
Under field cooling, κ decreases with the same slope as in the A-phase with no evidence
of a transition back to the conical state, again implying the super-cooled metastable state.

As a recap, we have successfully observed the metastable behavior of the SkL A-phase
for EuPtSi H ∥ [111] using both a transport probe (ρ) and a thermodynamic probe (κ).
The agreement with the magnetization measurements in the literature is very convinc-
ing [4]. To ensure the lack of influence of the magnetic history on our results, we have
performed field-cooling down from the paramagnetic state and under various conditions.
The metastable state is robust in time and exists as a continuation of the H − T phase
diagram down to 90 mK instead of 450 mK expected from the field dependence.

3.3.3 Metastable A’- and B-phases for H ∥ [100]

For the magnetic field applied parallel to the [100] direction, the A’ and B skyrmion lattice
phases exist down to 250 mK, as already discussed in section 3.2.4. From the field depen-
dence described previously, we actually have found anomalies in the resistivity down to
lower temperatures. From the temperature dependence of ρ, using the same protocol as
for the [111] direction, we will see that our results point to the existence of an additional
magnetic phase or the coexistence of both A’ and B phases.

The temperature dependence ρ(T ) for H ∥ [100] is presented in figure 3.42 for increasing
(full lines) and decreasing (dashed lines) temperature sweeps between 0.1 and 4.1 K for
different fields. Colored triangles indicate the different transitions observed in the H − T
phase diagram shown in figure 3.33: HA1 in blue, HA2 in red, HB in pink and HC in
green. For each measurement, the field is first applied at 0.1 K with a slow sweep rate
of 0.05 T/min to avoid heating due to eddy currents. The data shown were acquired in
two segments 0.1 < T < 0.85 K and 0.8 < T < 4.2 K, at 1 and 3 K/h, respectively. The
power-law dependence of ρ(T ) in the conical state and the step-like increase at TC at low
fields are similar to the previous field directions (not shown here).
At H = 0.88 T, close to the border between the A’-phase and the conical state, a very
small increase in ρ(T ) occurs at T ≈ 0.5 K, indicating a transition from the conical state
to the A’-phase. At this field, the transition HA1 is almost horizontal on the phase dia-
gram (as seen schematically in the inset of figure 3.42), and the distinction between the
A’-phase and the conical order is hard to define above 1 K. The sharp step-like transition
at 3.7 K into the PM state, however is clear. On cooling, a small hysteresis opens around
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HB in pink and HC in green). The inset represents the T -sweeps at different magnetic
fields schematically on the phase diagram.

0.75 K, indicating that the A’-phase can be super-cooled.
At H = 1.18 T, the system enters the A’-phase at 0.25 K upon heating with a very sharp
transition. At 2.7 K, a dip in the resistivity indicates the crossing of the HA2 transition
from the A’- to the B-phase. In this temperature range, however, both SkL phases have
very small resistivity signatures, as already seen in figure 3.30. The transition into the
PM regime is observed as a change of slope at TC = 3.4 K. On cooling at 1.18 T, the
temperature hysteresis opens at 0.45 K, with no observation of the transition from the
A’-phase back to the conical order. Instead, the resistivity forms a slanted plateau indi-
cating the metastable A’-phase.
At H = 1.38 T, the system enters the A’-phase on heating at 0.25 K. At this field, the
crossing between the A’- and the B-phase (HA2 transition line) occurs at 1.2 K with
ρ(T ) showing a dip in amplitude. No hysteresis is observed between the two phases upon
heating and cooling. With further heating, the system then remains in the B-phase until
TC = 3.3 K where ρ decreases in the B→PM transition. At this field, cooling shows a
temperature hysteresis opening at 0.65 K as the system stays in a metastable SkL state
with ρ(0.1 K) = 5.35 µΩ·cm.
At H = 1.57 T, the system remains in the B-phase upon heating from 0.25 K to 2.7 K.
The conical state is recovered between the transition HB (pink triangle) at 2.7 K and
the transition TC = 3 K. The transitions in this temperature range are broad, as the
transition lines are almost horizontal on the phase diagram (schematically recalled in the
inset of figure 3.42). Cooling at H = 1.57 T shows a hysteresis opening around 0.85 K,
highlighting the metastable B-phase in a similar fashion as the A’ metastable phase de-
scribed previously.
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3.3. Metastable skyrmion lattice phases under field cooling

At H = 2.06 T, the system stays in the conical ordering until the transition HC into the
PM regime at 1.9 K. No hysteretic behavior is observed between heating and cooling at
this field.
From the temperature sweeps, one can recover the various phases of the H−T phase dia-
gram in good agreement with the ρ(H) measurements. Because the A’- and B-phases lie
horizontally on the phase diagram, the transitions are broad but nonetheless visible. Both
phases indicate a clear temperature hysteresis in ρ(T ) at lower temperatures (T < 1 K),
which is highlighted in figure 3.43.
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Figure 3.43: ρ(T ) measurements for H ∥ [100], between 0.1 K and 0.85 K. Increasing T
is plotted in full lines and decreasing fields in dashed lines. Stars indicate the end of the
T -sweeps in the metastable A’-phase at 1.18 T (red) and metastable B-phase at 1.57 T
(blue).

The distinction between the two SkL phases in ρ(T ) lies in the width of the low-temperature
transition during the heating process. As seen in figure 3.43, for the A’-phase at H =
1.18 T, the transition at ≈ 0.25 K is narrow, with a width of ∆T = 0.15 K, from 3.7 to
5.8 µΩ·cm. The transition into the B-phase also starting at ≈ 0.25 K for H = 1.57 T is
much wider with ∆T > 0.5 K and only reaches 4.8 µΩ·cm at 0.85 K. Upon field-cooling,
the system remains in a metastable state with a resistivity slightly decreasing from the
height of the transition, reaching 5.7 µΩ·cm for the super-cooled A’-phase (H = 1.18 T),
and 4.5 µΩ·cm for the super-cooled B-phase (H = 1.57 T). The stars indicate the end of
the temperature sweeps.

After field-cooling the system as described previously, we have performed slow field
sweeps from the metastable states at around 0.11 K. The following example details the
complete measurement protocol:

• Zero field cooling down to T = 0.11 K.
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• H-sweep from 0 T to 1.18 T at 0.05 T/min, T = 0.11 K.
• T -sweep from 0.11 K to 0.85 K at 1 K/h, H = 1.18 T (solid red curve of figure

3.43).
• T -sweep from 0.85 K to 0.11 K at 1 K/h, H = 1.18 T (dashed red curve of figure

3.43), ending at the red star in the metastable A’-phase.
• H-sweep from 1.18 T to 0.5 T or from 1.18 T to 2 T at 0.05 T/min, represented

in figure 3.44 (left) starting from the red star, with the field direction indicated by
arrows. Other starting points (stars) are naturally obtained using a similar protocol
with a different field.

The results are shown in figure 3.44 with the starting points of the H-sweeps indicated
by stars and black arrows denoting the field sweep direction.
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Figure 3.44: Field dependence of ρ from the metastable A’- and B-phases induced by field
cooling, for temperatures close to 0.11 K. The two graphs correspond to two different
measurements in similar conditions with the same sample. Black stars indicate the starting
point of the H-sweeps (1.45 T on the left panel, 1.1, 1.35 and 1.6 T on the right panel),
and the direction of the sweep is given by the black arrows. The red and blue stars at 1.18
and 1.57 T on the left panel are reported from figure 3.43. Anomalies in the metastable
H-sweeps are labeled with numbers from 1 to 5.

We have performed two series of measurements. The experimental setup was heated
back to room-temperature between the two. Both coolings were operated successively
under identical conditions with the same sample and same contacts, at different times.
Let us start with the first cooling, on the left panel of figure 3.44. The red and blue stars
correspond to the T sweeps shown in figure 3.43, at 1.18 and 1.57 T respectively.
From preparing the system in the metastable A’-phase at 1.18 T at 0.11 K, a subse-
quent decreasing field sweep shows a tilted plateau ending with a sharp transition at
H1 = 0.65 T (blue triangle). This anomaly corresponds to the edge of the critical line
of HA1 for decreasing fields and indicates the system leaving the super-cooled phase and
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3.3. Metastable skyrmion lattice phases under field cooling

recovering the conical order. Starting at the same point but with an increasing sweep
yields two consecutive anomalies. At H3 = 1.5 T (red triangle) the resistivity decreases
from the metastable A’-phase to the metastable B-phase. One can note the similarity in
ρ(H) behavior with H-sweeps in the SkL phases at equilibrium at higher temperature in
section 3.2.4. A second transition at H2 = 1.8 T (pink triangle) shows the B→conical
transition, in agreement with the HB transition line from the phase diagram.
After preparing the system in between the metastable A’- and B-phases at 1.45 T (black
star), increasing field sweeps also show the H2 anomaly at 1.8 T. Decreasing field sweeps
show two anomalies at H4 = 1 T and H1 = 0.65 T (light blue circles and dark blue
triangles, respectively). These two anomalies are also observed in decreasing field sweeps
from the metastable B-phase (starting at the blue star at 1.57 T).
The fields corresponding to the previously mentioned anomalies H1−4 are reported as
half-filled circles on the low-temperature phase diagram in figure 3.45, with the num-
bering as a visual aid. The bottom panel of figure 3.45 shows the same phase diagram
as the top panel, split between anomalies observed in increasing field sweeps (left) and
decreasing field sweeps (right), for visual clarity. Anomalies denoted H1, H2 and H3 in
the metastable region all fit very well to the low-temperature continuation of the critical
lines in the equilibrium phase diagram. As such, we have H1 ≡ HA1 for decreasing fields,
H2 ≡ HB for increasing fields, and H3 ≡ HA2 between A’ and B for increasing fields. The
presence of H3 around 1.5 T instead of 1.35 T may be an indication of the metastable
A’-phase partially drowning the signal of the metastable B-phase, as we observed in ρ(H)
measurements (see figure 3.31).
The downwards step in ρ(H) at H4 in figure 3.44 could be attributed to the transition
B→A’ between the two metastable phases, however the anomaly occurs at lower fields
than expected. In fact, one would expect the transition B→A’ around 1.35 T as a contin-
uation of HA2 measured in decreasing fields. Instead, H4 occurs very close to the newly
found anomaly around 1.1 T from ρ(H) measurements (see figure 3.31), depicted as green
squares in the low temperature phase diagram.
From this first cooling measurement, we can conclude that despite the system having re-
mained in only one phase during the metastable state preparation, one can also detect the
other metastable phase. The amplitude of the resistivity in the FC induced metastable
phases is much higher than otherwise observed during field sweeps after ZFC, proving
their metastability. Both the A’-phase and the B phase are thus very stable with respect
to temperature fluctuations. With respect to field, on the other hand, the super-cooled
phases both disappear once the critical fields are reached (H1 for decreasing sweeps and
H2 for increasing ones), and subsequent field variations cannot recover the metastable
phases. Only the field cooling process allows the creation of such metastable phases.

In order to further study the anomaly H4, we have then performed a second measurement
using the same protocol, the results of which are on the right graph of figure 3.44. Placing
the system in the metastable A’-phase at 1.1 T, we recover the same behavior as for the
first cooling, with the transitions H1 ≡ HA1 for a decreasing field sweep, H3 ≡ HA2 and
H2 ≡ HB for an increasing field sweep.
A decreasing sweep starting at 1.35 T in the metastable A’-phase, however, shows addi-
tional anomalies at H5 = 1.3 T (purple diamond) as a small increase and at H4 = 1 T
(blue diamond) as a downwards step in the metastable A’-phase. With the system pre-
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Figure 3.45: Top: low temperature H − T phase diagram for EuPtSi H ∥ [100] from H-
sweeps measurements, from figure 3.33. Full squares (open triangles) are transitions from
increasing (decreasing) H-sweeps in the ’normal’ state, and the shaded (hatched) areas
are the A’- and B-phases. Green squares at 1.1 T correspond to the additional anomaly
from low temperature H-sweeps (see figure 3.31). Full circles are transitions from ρ(T )
measurements. Anomalies in the H-sweeps from the metastable states are represented
with half-filled circles (1st cooling) and diamonds (2nd cooling), with the same numbering
as in figure 3.44. Bottom: same phase diagram as the top panel, between 0 and 0.6 K,
split between the anomalies observed in increasing field sweeps (left) and decreasing field
sweeps (right) both in the ’normal’ and the metastable state.
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pared in the metastable B-phase at 1.6 T, a decreasing field sweep indicates a clear bump
between H5 = 1.35 T and H4 = 1 T, and a sharp transition from the metastable phase
to the conical state at H1 = 0.75 T (blue triangle). It is to be noted that small field fluc-
tuations from the superconducting magnet are enough to destroy the fragile metastable
states, sometimes causing the H1 anomaly to be observed at slightly higher fields than
0.65 T, highlighting the strong field-irreversibility of the super-cooled phases.
The transitions H1, H2 and H3 are in agreement with the previous cooling. The bump
between H4 and H5, on the other hand, lies in the phase diagram between the decreas-
ing HA2 transition line and the green line from the newly found anomaly. Because the
amplitude of the resistivity is similar before and after the bump, one could imagine the co-
existence of two different magnetic phases. Both anomalies H4 and H5 being observed in a
decreasing field sweep starting from the A’ metastable phase may indicate that the ampli-
tude of the A’-phase could have drowned the H5 anomaly in the first cooling measurement.

The two different data sets performed under the same conditions yield different results.
As of the time of writing, we have not been able to explain these discrepancies. How-
ever, the two measurements do coincide with the H − T phase diagram. In keeping with
the H ∥ [111] direction results for the metastable A-phase, the various anomalies in the
metastable states for H ∥ [100] lie in the continuation of critical lines at lower tempera-
ture. Despite the resistivity not allowing much insight in the microscopic nature of the
different phases, our measurements suggest the existence of an additional low-temperature
phase that is visible in the metastable state and otherwise hidden by the amplitude of ρ
in the equilibrium state. The low-temperature H − T phase diagram of EuPtSi for this
field direction yields four different results whether the variables (H and T ) are swept up
or down, in combination of one another. Unfortunately, so far there have been no reports
of neutron or X-ray scattering experiments that would clarify the magnetic orders in the
A’- and B-phases.

3.4 Conclusion

In this chapter, we have studied the transport properties of the recently discovered
skyrmion host EuPtSi in its ordered magnetic phases below TN , namely the helical, coni-
cal and skyrmion-related phases, as well as in the paramagnetic and field-polarized states.
For the H ∥ [110] direction for which no skyrmion lattice phase has been reported, we have
measured an anomalous temperature dependence of the resistivity ρ(T ) ∝ T n with n < 2
in the conical phase below the HC transition. We have also evidenced the presence of ad-
ditional energy scales in the paramagnetic state through Seebeck coefficient and thermal
conductivity measurements. These energy scales might be related to the field polarization
of the magnetic moments and to the presence of a tricritical point in the HC transition.

For the H ∥ [111] direction, we have measured the anomalous scattering induced by
the skyrmion A-phase with ρ, S, N , κ and ρH . In the Hall resistivity in particular we have
confirmed the signature of the topological Hall effect due to the emergent field induced
by the triple-q skyrmion lattice.

From resistivity measurements in the H ∥ [100] direction with the two skyrmion-
related phases A’ and B, we have prolonged the phase diagram with evidence of the
B-phase persisting down to 0.1 K. We have highlighted the presence of a new anomaly at
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low temperatures, which might be related to the mixing of various ordered phases. Our
temperature-dependent measurements in the A’ and B phases show the low-temperature
metastable behavior of both phases and indicate a shared formation mechanism as both
metastable states can be induced from the preparation of the system in either one of
them. The field dependence of ρ in the metastable phases confirms our observations of
an additional structure at low temperature.
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Chapter 4

Quantum oscillations in the
thermoelectric power of EuPtSi

In the previous chapter, we have studied the low-field magnetic phases of EuPtSi below
the conical/paramagnetic transition. We will now study the Fermi surface of EuPtSi
with quantum oscillations measurements in the thermoelectric power. As a transport
probe with a high sensitivity to changes in the density of states, the thermoelectric
power is a very powerful tool to detect quantum oscillations. We have thus observed the
various Fermi surface pockets of the system and recovered effective cyclotron masses for
each pocket for the three main orientations. We have also investigated the
field-dependence of the quantum oscillation amplitude. We will introduce a new analysis
framework allowing us to recover parameters such as the Dingle temperature and the
mean-free path from the observation of quantum oscillations in the thermoelectric
power.
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Chapter 4. Quantum oscillations in the thermoelectric power of EuPtSi

4.1 State of the art - Fermi surface of EuPtSi

As EuPtSi has already been presented in the beginning of chapter 3, in this section we will
ignore the low-field (H < 5 T) properties of the compound and focus instead on the Fermi
surface properties. Indeed quantum oscillations are observed in high magnetic field sweeps
(H > 5 T in EuPtSi), meaning the compound remains in the field-polarized paramagnetic
state for these measurements. Most of the information on the Fermi surface of EuPtSi
found in the literature comes from Kakihana et al. [5]. In their work, they measured
quantum oscillations in the ac-susceptibility, the so-called de Haas-van Alphen (dHvA)
effect, while rotating the sample to cover the angular dependence of the dHvA frequencies.
The sample used for dHvA measurements in that work has a residual resistivity ratio
RRR = 30.
The typical Fast Fourier Transform (FFT) spectrum of EuPtSi for the H ∥ [100] direction,
from [5], is shown in figure 4.1 for a field window of 8-13.5 T. As revealed by the angular

Figure 4.1: FFT spectrum for EuPtSi H ∥ [100], with labels corresponding to theoretical
calculations performed on SrPtSi. From [5].

dependence of the dHvA frequencies shown in figure 4.2, all the Fermi surfaces are closed
in the whole-field region. The quantum oscillation frequencies are related to the extremal
cross sections SF of the corresponding Fermi surfaces via the Onsager relation

F =
ℏ
2πe

SF (4.1)

with ℏ the reduced Planck constant and e the electron charge. A flat angular dependence
such as for the ϵ and δ branches means the Fermi surface is spherical. The higher frequency
branches, corresponding to the main Fermi surfaces (of larger cross-sections) such as β
and α are corrugated nearly-spherical Fermi surfaces.

As shown in the right of figure 4.2 (a)-(b) from ref. [5], theoretical calculations are
in good agreement with the experimental dHvA results, albeit with systematically over-
estimated frequencies. These calculations were performed on the reference compound
SrPtSi, which unlike EuPtSi is a non-4f compound, with the lattice parameter for the
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4.1. State of the art - Fermi surface of EuPtSi

cubic structure assumed to be the same a = 6.4336 Å.
The theoretical calculations place the α and α′ branches at the Γ point of the cubic

Brillouin zone and the other branches at the R point. The α and α′ branches corre-
spond to the electron bands 121 and 122 respectively and the others are hole bands. The
theoretical Fermi surfaces are shown in figure 4.2 (c), from ref. [5].

The volumes of electron and hole Fermi surfaces are equal because EuPtSi is a com-
pensated metal with four formula units in the unit cell. The ′ notation for the frequencies
means the Fermi surfaces would become degenerate for a centrosymmetric crystal struc-
ture. The splitting of, for example α and α′, occurs because of the cubic chiral nature of
the crystal. The splitting of Fermi surfaces due to non-centrosymmetry will be developed
further ahead.

Figure 4.2: Angular dependence of dHvA frequencies from (a) experimental measurements
and (b) theoretical calculations performed on SrPtSi. (c) Theoretical Fermi surfaces of
EuPtSi and corresponding carrier bands for H ∥ [100]. Colored contours represent the
extremal cross-sections from the angular dependence. From [5].
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Chapter 4. Quantum oscillations in the thermoelectric power of EuPtSi

The angle-dependence of the frequencies of the dHvA FFT spectrum recovers the
shape of the various Fermi surfaces, while the temperature dependence of the oscillations
amplitude allows calculations of the effective mass of the carriers for each frequency. For
the Lifshitz-Kosevich framework, the amplitude of the oscillations in susceptibility is given
by

Ai ∝ H1/2

∣∣∣∣∂2Si

∂k2

∣∣∣∣−1/2

RDRTRS (4.2)

with Ai being the amplitude of the dHvA oscillations for branch i, RT the thermal damping
factor, RD the Dingle reduction factor and RS the spin damping factor. The various terms
have been defined in section 1.2. The factor corresponding to the curvature of the Fermi
pocket ∂2Si

∂k2
does not depend on either the magnetic field or the temperature, and does

not affect the following analysis. The cyclotron mass m∗
i , or effective mass, defined as

m∗ = (ℏ2/2π)
dS

dϵ
(4.3)

is then obtained self-consistently by the mass plot, the plot of the natural logarithm of
the thermal damping factor RT . The masses from the dHvA measurements are in good
agreement with the theoretical calculations, both will be presented along with the results
of this work in the following sections for the main three orientations of EuPtSi.

Another information inferred from quantum oscillations measurements is the Landau
level broadening corresponding to the lifetime broadening which can be calculated with
the Dingle reduction factor RD from the field-dependence of the oscillations. The Dingle
temperature TD can be obtained with a similar protocol as the cyclotron mass using the
so-called Dingle plot. This analysis has not been reported for EuPtSi in the literature.

From the cyclotron masses, however, the splitting energy for two branches has been
deduced, both experimentally and theoretically. The splitting energy of the Fermi surface
is due to the antisymmetric spin-orbit interaction. A non-uniform lattice potential from
the crystal structure induces an effective magnetic field and the splitting can be regarded
as the Zeeman energy that arises from the interaction between this effective magnetic field
and the spin of the conduction electron under zero magnetic field [107, 108]. The splitting
energy of the two dHvA branches α and α′ is calculated by combining the equations 4.3
and 4.1. For a small splitting energy of the conduction electrons, dS

dϵ
becomes ∆S

∆ϵ
and

equation 4.1 becomes

∆F = (ℏ/2πe)∆S (4.4)

which leads to the splitting energy

∆ϵ =
ℏe
m∗ |F+ − F−| (4.5)

where F± are the frequencies in teslas of the two branches. m∗
c is taken as the mean value

between the masses of the two split branches. These branches that are found theoretically
with frequencies Fα = 3.611 kT and Fα′ = 2.820 kT, have a splitting energy ∆ϵthr = 1410 K
for m∗

c = 0.752 m0. For dHvA measurements, a value ∆ϵdHvA = 1200 K is found [5].
This value of the splitting energy is quite large, due to the spin-orbit coupling of the

Pt 5d electrons. These mainly contribute to conduction electrons. This antisymmetric
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4.2. Temperature dependence of the quantum oscillations

spin-orbit interaction contribution to the splitting of Fermi surfaces is due to the non-
centrosymmetric crystal structure. For centrosymmetric compounds such as EuCd11 and
EuGa4 with tetragonal structures [109, 110], the spin-orbit coupling of the Cd and Ga
electrons is smaller, hence a smaller splitting energy of 470 and 560 K, respectively.

The analysis of the Fermi surface of EuPtSi has so far only been performed experimen-
tally with the ac-susceptibility. No reports of oscillations in resistivity, the Shubnikov-de
Haas (SdH) effect, or other probes have been presented. As such we have performed
thermoelectric power measurements. The temperature-dependence aims to confirm the
validity of the results while the field-dependence recovers information not yet measured
about the Fermi surface of EuPtSi such as the scattering lifetime and mean-free path of
the carriers.

4.2 Temperature dependence of the quantum oscilla-
tions

Quantum oscillations have only been reported through the dHvA experiment in EuPtSi.
The thermoelectric power, being proportional to the derivative of the density of states is
a very powerful probe in this case. It is interesting to note that both the longitudinal and
the transverse thermoelectric signals exhibit clear quantum oscillations. Both probes can
be used to recover the effective mass of the charge carriers. The comparison between the
Nernst and the Seebeck coefficient is first presented. We will then discuss the tempera-
ture dependence of the amplitude of the oscillations and the analysis of the carrier masses
for each observed Fermi surface. The results in thermoelectric power measurements will
be presented for the three main directions of EuPtSi, with the H ∥ [111] direction first,
followed by the [110] and the [100] directions. Our attempt to measure the dHvA effect
for the [110] direction will also be presented. Finally we will review the recently measured
oscillations of the Shubnikov-de Haas effect for the H ∥ [100] direction.
The measurements presented in this chapter have been performed with the setup de-
scribed in chapter 2, with a 3He/4He dilution fridge insert in a superconducting coil. The
thermoelectric power measurements were made using nanovoltmeters for the voltage and
a MMR3 device for the thermometer readout. The temperature range available is 0.1 K
to 6 K, for applied magnetic fields up to Happ = 16 T. Because of the non-negligible
demagnetizing coefficient, as described in section 3.1.3 of the previous chapter, the effec-
tive magnetic field reaches up to H = 15 T. The field is swept continuously at a rate of
0.1 T/min. The rate of the field sweep has been confirmed not to have an influence on the
quality of the signal. The samples used in this chapter are the same as for the previous
chapter 3.

4.2.1 Effective mass analysis for the H ∥ [111] direction

Due to the nature of thermoelectric measurements, the range of temperature available
is limited. The thermal gradient applied to the sample makes the average temperature
Tmid rise. This effect is further enhanced by the high thermal conductivity of EuPtSi
of the order of 1 WK−1m−1 at zero field and 1 K. In order to reach a thermal gradient
∆T/T ≈ 3%, the heating current needed is rather high. As such, for this orientation,
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Figure 4.3: Left: Nernst coefficient up to 15 T for H ∥ [111]. Right: oscillatory part of
the Nernst coefficient, in units of 1/H for a field window of 6 to 15 T. Oscillatory signals
are shifted vertically for clarity.

the lowest mean temperature Tmid = (Thot + Tcold)/2 for which thermal stability has been
achieved over the whole field range is 0.55 K. On the other hand, as described in section
1.2.3, unlike most other quantum oscillation probes, the maximum of the amplitude of
the oscillations is not at 0 K as S goes to zero but is achieved for a finite value. This
behavior is fitted by the Pantsulaya-Varlamov formula (see section 1.2.3). The transverse
thermoelectric coefficient, or Nernst signal for EuPtSi H ∥ [111] for temperatures between
1.67 K and 3.17 K is shown in figure 4.3, on the left. The presence of quantum oscillations
in the Nernst coefficient becomes evident above 6 T for the whole range of temperatures
depicted.
On the right of figure 4.3 is the oscillatory part of the Nernst signal between 6 and 15 T
after subtracting a polynomial fit to this field window. The oscillatory signal is plotted
as a function of the inverse of the magnetic field 1/H. The Nernst signal is very small,
with an amplitude range of only 1.4 µV/K. With the polynomial background removed,
the amplitude of the oscillations reaches only 100 nV/K from peak to peak. By looking at
the oscillatory part of the Nernst coefficient over the temperature range, it becomes clear
that there are more than one frequency in the signal. The main frequency with the larger
period in units of 1/H becomes larger in amplitude as the temperature increases. This
is indicative of a Fermi surface with a low effective mass, as the Pantsulaya-Varlamov
formula will reach its maximum for a high temperature Tmax = 0.11Heff

m∗ , with Heff the
mean effective field for the FFT. Superimposed on this main frequency, below 0.08 T−1 a
higher frequency becomes apparent. Interestingly, a higher frequency also appears above
0.14 T−1 where the main frequency is not large enough to eclipse the other frequencies.

The field-dependence of the Seebeck coefficient for EuPtSi H ∥ [111] up to 15 T is pre-
sented in the figure 4.4. Below 4 T are the features of the magnetic phases of EuPtSi
described in chapter 3. We can note that quantum oscillations occur above around 5 T
for all the temperatures depicted. The right figure shows the oscillatory signal in units
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Figure 4.4: Left: field dependence of the Seebeck coefficient between 0 and 15 T for H ∥
[111]. Right: Oscillatory part of the Seebeck taken between 8 and 15 T in units of 1/H.
Oscillatory signals are shifted vertically for clarity.

of 1/H, corresponding to a raw signal between 8 and 15 T for the same temperatures as
the figure on the left. A polynomial background of order 3 has been subtracted from the
Seebeck signal to isolate its oscillatory part. Similarly to the transverse signal presented
previously, the longitudinal thermoelectric coefficient exhibits clear quantum oscillations,
reaching a peak-to-peak amplitude of 350 nV/K for an overall signal between -1.5 and
0.5 µV/K. Much like for the Nernst coefficient, the oscillations in the Seebeck coefficient
show the influence of a main frequency with a large amplitude reaching its maximum
at higher temperatures. An additional higher frequency becomes clear for high fields,
or below 0.9 T−1. So far, both the longitudinal and the transverse thermoelectric coef-
ficients clearly show quantum oscillations in the system. Both transport probes can be
used to study the Fermi surface of EuPtSi. Having isolated the oscillatory part of their re-
spective signals, we can calculate the Fast Fourier Transform for both and compare them.

Figure 4.5 shows a comparison between the FFT spectra obtained for the Seebeck and
the Nernst coefficients for T = 1.91 K. The FFT is calculated in a field range [8-15] T for
H ∥ [111]. The frequencies are given in teslas. Because the amplitude of the Nernst signal
is much smaller than the Seebeck, in order to compare their respective FFT, both spectra
have been normalized according to the amplitude of the largest peak corresponding to the
ϵ pocket with Fϵ = 336 T, labeled as per the literature. We can note that both the lon-
gitudinal and the transverse thermoelectric coefficients recover the frequencies expected
for the [111] direction of EuPtSi as per dHvA measurements. The width and the relative
amplitude of the peaks for both probes are of a similar order, however, they tend to be
slightly lower with the Nernst measurements, as evidenced with the Fδ = 615 T peak
whose amplitude reaches only 80 % of the Seebeck amplitude. The signal-to-noise ratio of
the Nernst FFT spectrum is slightly lower, which means that the higher frequencies with
lower amplitude are easier to observe in the Seebeck signal. This is important since higher
frequency pockets correspond to higher effective mass carriers in EuPtSi, and the temper-
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Figure 4.5: Fast-Fourier Transform (FFT) of the Seebeck (blue) and Nernst (red) signals
of EuPtSi H ∥ [111] calculated on a [8-15] T field window for T = 1.91 K, shown between
0 T and 2000 T. Both FFT are normalized according to the Fϵ = 336 T peak maximum
amplitude.

ature dependence of these amplitudes will drop at a faster rate, making their observation
more difficult. Additionally, measuring the Nernst coefficient with our measurement setup
means sweeping the magnetic field both in the positive and the negative direction, while
keeping the temperature constant. As such, both the quantum oscillations analysis and
the practical measurement process indicate that the Seebeck is a more favorable probe for
this system. These results are consistent over the whole temperature range evaluated. In
the work presented ahead, the emphasis will thus be put on the oscillations in the Seebeck.

As can be seen in figure 4.4, the quantum oscillations start for fields as low as 5 T for
the temperature range studied. However the oscillations have a very low amplitude at first
and increase with the magnetic field. In order to obtain the best precision on the FFT
calculations, it is important to choose the right field window in which the FFT is applied.
Figure 4.6 shows a close-up of the ϵ peak at Fϵ = 336 T of the FFT spectrum obtained for
different field windows on the same Seebeck field sweep measurement at T = 1.91 K. For
clarity, each curve has been shifted horizontally by an arbitrary value, as the frequency
shifts slightly between different field windows due to the non-linear Zeeman effect. This
aspect is given more attention in section 4.3 and will not be described here.
By comparing the [6-12] T and the [6-15] T results, it becomes clear that a higher upper
bound will give better results. This is to be expected as the number of oscillations increase
and the amplitude gets larger with the applied magnetic field, and is consistent with our
observation of the field dependence of the Seebeck coefficient. Next we can focus on the
lower bound of the field window, and note that limiting the field window widens the peak,
thus losing some frequency resolution. On the other hand, the height of the peak reaches
a maximum for a FFT calculated on a [8-15] T window, corresponding to an effective
field Heff = [1

2
( 1
Hmin

+ 1
Hmax

)]−1 = 10.43 T. This field window of maximum amplitude is
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the same even for high frequency pockets with small amplitudes. As a good compromise
between frequency resolution and amplitude height, the [8-15] T window will subsequently
be used in the rest of the analysis of the temperature dependence of quantum oscillations
in EuPtSi for the direction H ∥ [111].

Figure 4.7 shows the temperature dependence of the amplitude (in arbitrary units)
of the oscillations in Seebeck for H ∥ [111]. As previously described, the field window
used is [8-15] T. The FFT spectrum is recalled in the top left corner and each subsequent
graph corresponds to one of the labeled peaks (noted in the top left corner of each graph).
The red circles are the maximum amplitude of the peak taken from the spectrum of cor-
responding temperature, and the blue lines are the Pantsulaya-Varlamov fitting curves
from which the effective mass is calculated:

RT |PV = A

αpm∗T
Heff

coth(αpm
∗T

Heff
)− 1

sinh(αm∗T
Heff

)
(4.6)

The temperature damping factor fitting function recalled in equation 4.6 from [29] is com-
puted along the peak amplitudes for the range of temperature 0.55 K to 6 K. It returns two
parameters, A and m∗ respectively the amplitude and the effective mass of the PV fitting
function. For most peaks the amplitude corresponds very well to the experimental data.
Only the Fγ′ = 1.276 kT does not quite match the shape of the data points, especially at
low temperatures. From the temperature of maximum amplitude Tmax ≈ 2 K for this fre-
quency, a mass of 0.6 m0 is found. As the frequency of each peak increases, Tmax decreases,
from 3.5 K for Fϵ to 1.4 K for Fα, as the effective cyclotron masses of the carriers increase.

The effective masses for each corresponding peak are reported in table 4.1, along
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the free electron mass.

EuPtSi H ∥ [111]
This work dHvA from [5] SrPtSi theoretical calculations

Branch F (kT) m∗
c (m0) F (kT) m∗

c (m0) Branch F (kT) m∗
c (m0)

α 3.099 0.80 3.29 1.03 α 3.847 0.743
α′ 2.492 0.78 2.65 0.99 α′ 3.293 0.777

β′
1,2 2.793 0.797

β1,2 1.81 β1,2 2.313 0.700
γ′
1,2 1.276 0.60 1.30 γ′

1,2 1.850 0.588
γ 1.09 γ 1.454 0.484

δ′1,2(δ) 0.615 0.37 0.63 0.36 δ′1,2 0.960 0.323
δ 0.777 0.281

ϵ(ϵ′) 0.336 0.33 0.35 0.27 ϵ′ 0.586 0.229
ϵ 0.555 0.221

Table 4.1: Effective carrier masses m∗
c and the corresponding frequencies F for EuPtSi

H ∥ [111]. The results of dHvA experiments by Kakihana are recalled, as well as the
theoretical masses calculated for the non-4f reference compound SrPtSi [5].
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with the masses measured with the dHvA effect from the literature and the theoretical
ones calculated for the non-4f reference compound SrPtSi [5]. Frequencies labeled with
indexes 1, 2, for example δ′1,2 correspond to different extremal cross sections of the same
carrier pocket, δ′. The results of our Seebeck coefficient measurements are in good agree-
ment with the dHvA experiments from the literature. The frequencies are clearly assigned
and the effective mass calculations are of the same order. The theoretical calculations
done on SrPtSi overestimate the frequencies measured experimentally. For higher frequen-
cies, namely the α and α′ branches, masses extracted from thermoelectric measurements
seem to be in better agreement with the theory than the dHvA measurements, whereas
the lower frequency results tend to deviate a bit more. The γ′

1,2 branch at 1.276 kT
has been successfully observed for both probes, and the mass found in our calculations
is in good agreement with the theory. The dHvA experiments have also identified two
additional frequencies that have not been observed in this work, namely Fγ = 1.09 kT
and Fβ1,2 = 1.81 kT. For these frequencies, the carrier effective mass has not been mea-
sured experimentally yet. The splitting energy ∆ϵ is calculated by taking the difference
in frequency and the mean of the two measured effective masses as per equation 4.5.
For the α and α′ Fermi surfaces, we experimentally obtain ∆ϵexp = 1030 K, which is
of the same order as the theoretical calculation of ∆ϵth = 980 K with masses 0.743 m0

and 0.777 m0, and the dHvA results of ∆ϵdHvA = 900 K with masses 0.99 m0 and 1.03 m0.

The analysis of quantum oscillations in the Seebeck coefficient provides a good trans-
port counterpart to the ac-susceptibility measurements. The frequency results especially
confirm the Fermi surface pockets observed using the dHvA effect, and the effective mass
calculations are also in good agreement. Some pockets have not been observed by either
this work or the dHvA experiment, which might be due to the sample lacking quality.
This aspect is emphasized clearly in the next section for the H ∥ [110] direction.

4.2.2 Results for H ∥ [110]
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Figure 4.8: Left: field dependence of the Seebeck coefficient for EuPtSi H ∥ [110] for
T = 2.28 K. Inset: oscillatory part of the Seebeck taken between 9 and 15 T. Right: FFT
spectra of the oscillations in the Seebeck H ∥ [110] for temperatures between 1.25 and
5.73 K, for a field window [9-15] T.
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By using the same method as for the H ∥ [111] direction, we now study the oscillations
in thermoelectric power for the H ∥ [110] direction of EuPtSi. It is to be noted that
the RRR for the sample with orientation H ∥ [110] used in this section has not been
successfully determined. The field-dependence of the Seebeck coefficient is shown in the
left of figure 4.8 for T = 2.28 K, for a magnetic field up to 15 T. The sharp slope change
at 2.5 T corresponds to the transition from the conical ordered state to the field-polarized
paramagnetic state, as described in section 3.2.2. Likely due to the quality of the sample,
measurements at low temperatures T < 1 K are very noisy and, while they visibly featured
quantum oscillations, the background noise rendered the FFT analysis untreatable. As
such, the field sweeps were performed for temperatures between 1 K and 6 K which is
the upper limit of our measurement setup. For the whole temperature range measured,
oscillations start to be stronger than the noise level at around 7 T, however, by studying
various field-windows for the analysis of the quantum oscillations as was done in figure 4.6
for the H ∥ [111] direction, better results were achieved for a [9-15] T range, corresponding
to an effective field Heff = 11.25 T. The oscillatory part of the signal after subtracting a
polynomial background is shown in the inset of figure 4.8 in units of 1/T. Corresponding
FFT spectra for this field window are shown in the same figure on the right-hand side
graph for six different temperatures between 1.25 K and 5.73 K. Only two frequencies
appear in the FFT spectrum, independently of the temperature and the field range. The
corresponding Fermi surface branches are ϵ and δ at Fϵ = 291 T and Fδ = 517 T. Since the
Fermi surface of EuPtSi is almost isotropic it is presumable to find similar frequencies as
in the H ∥ [111] direction, the lack of peaks at higher frequencies can thus be attributed
to the low quality of the sample. This is further indicated by the high noise level of the
FFT reaching almost 50 % of the amplitude of the peaks at low temperature. By focusing
on the ϵ peak of the FFT spectrum, we can see that the amplitude of the peak increases
with T in the whole temperature range measured. The δ peak on the other hand reaches
a maximum amplitude around 4 K. The analysis of the temperature dependence of the
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Figure 4.9: Temperature dependence of the amplitude of quantum oscillations and effec-
tive masses m∗ for EuPtSi H ∥ [110] obtained with a PV fitting function. The left graph
corresponds to the ϵ branch and the right to the δ branch. Frequencies are expressed in
kT and masses in units of m0 the free electron mass.

amplitude of the quantum oscillations is shown in figure 4.9 for the two peaks described
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4.2. Temperature dependence of the quantum oscillations

above. According to the PV fitting function (in blue) the maximum amplitude of the
ϵ peak on the left is barely reached at Tmax = 6.1 K. A high temperature correlates
to a small effective mass m∗ = 0.20 m0. For the δ peak, we obtain m∗ = 0.30 m0 for
Tmax = 4.05 K. We compare the effective masses from our Seebeck measurements to the
dHvA results found in the literature [5] in table 4.2.

EuPtSi H ∥ [110]
This work dHvA from [5] SrPtSi theoretical calculations

Branch F (kT) m∗
c (m0) F (kT) m∗

c (m0) Branch F (kT) m∗
c (m0)

α 3.60 0.7 α 4.250 0.888
α′ 2.70 0.99 α′ 3.489 0.931
β′
1,2 2.23 β′

1,2 3.000 0.810
β1,2 1.82 0.90 β1,2 2.327 0.727
γ′
1,2 1.30 0.84 γ′

1,2 1.813 0.583
γ1,2 1.03 0.63 γ1,2 1.360 0.401

δ′1,2(δ) 0.517 0.30 0.61 0.44 δ′1,2 1.032 0.360
δ 0.832 0.357

ϵ(ϵ′) 0.291 0.20 0.33 0.34 ϵ′ 0.589 0.227
ϵ 0.555 0.211

Table 4.2: Effective carrier masses m∗
c and the corresponding frequencies F for EuPtSi

H ∥ [110]. The results of dHvA experiments by Kakihana are recalled, as well as the
theoretical masses calculated for the non-4f reference compound SrPtSi [5].

It is clear from the dHvA results that higher frequencies are expected to be observed,
but as both the Seebeck effect and the observation of quantum oscillations are highly de-
pendent on the sample quality, this is not surprising that we could not detect them. Based
on the only two frequencies observed in this work for the H ∥ [110] direction, it is difficult
to conclude on the agreement of our results with the literature ones. Measurements on a
higher RRR sample would allow clearer results. Compared to the H ∥ [111] direction, the
Fermi surface pocket frequencies seem to be shifted to lower values. The effective masses
extracted from our measurements are in good agreement with the theoretical calculations,
and are within a 1.5 factor of dHvA results. The limitations of our experimental setup do
not allow measurements at temperatures higher than ≈ 6 K, which would help to locate
the maximum amplitude of the ϵ peak with higher precision. However, based on the dHvA
results, an effective mass of 0.34 m0 and the effective field Heff = 11.25 T used in our FFT
measurements would result in a maximum amplitude at Tmax = 3.64 K, which does not fit
our data points. Similarly, for the δ pocket, the maximum amplitude with m∗ = 0.44 m0

corresponds to Tmax = 2.8 K, which is close to 1 K lower from what our measurements
suggest. In turn, our measurements of the effective masses correspond within 20 % to the
theoretical calculations done on the reference compound SrPtSi [5].

4.2.3 dHvA experiment for H ∥ [110]

Using the Faraday balance setup described in section 2.3, we have measured the dHvA
effect for the H ∥ [110] direction. As it is the easy magnetization axis, it is the only
direction we can measure with this setup since torque effects should be avoided as they
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Chapter 4. Quantum oscillations in the thermoelectric power of EuPtSi

cannot be separated from the longitudinal displacement. The field dependence of M is
presented in figure 4.10 (left) for 6 temperatures between 1.3 K and 4.2 K. The inset
shows the oscillatory part of the signal between 8 and 15 T plotted in units of 1/T. The
oscillatory part is fitted between 11 and 15 T and the background is removed. Figure
4.10 (right) shows the FFT signal calculated for a [11-15] T field-window for the same
data-set. At various points in the M(H) signal, jumps in the measurement can be seen,
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Figure 4.10: Left: field dependence of the magnetization M for EuPtSi H ∥ [110] at
various temperature. Inset: oscillatory part of M with a background removed between
11 and 15 T, shifted vertically. Right: FFT spectra from the M(H) measurements for a
[11-15] T field-window.

for example at 0.078 T for the 1.72 K data. The reason for these jumps is experimental
but difficult to be identified in detail. While they seemingly do not affect the frequencies
of the signal in the FFT calculation, the discontinuities at the jumps increase the noise
level. This is evidenced at T = 1.72 K with a FFT background noise reaching ≈ 40% of
the ϵ peak signal at Fϵ = 310 T. Similarly the δ peak at Fδ = 556 T is affected by the
background noise. This makes the amplitude analysis and thus recovering the effective
mass impossible for this data-set. Additionally, a low-frequency (F ≈ 50 − 100 T) peak
is observed due to the background subtraction of the M(H) signal. The higher-frequency
peaks F > 1000 T have not been observed for these measurements. Nevertheless, the two
frequencies measured are in good agreement with the results presented in table 4.2.
The crystal used for the M(H) measurement is the same as for the Seebeck measurements.
The RRR for this crystal is unknown but from the results previously mentioned this is
not the best quality crystal, which explains the lack of resolution of the FFT signal, and
the absence of peaks above 1000 T.

4.2.4 Results for H ∥ [100]

Using the same protocol as for the previous two orientations, we have measured quantum
oscillations in the thermoelectric power for the H ∥ [100] direction of EuPtSi. The Seebeck
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4.2. Temperature dependence of the quantum oscillations

coefficient field dependence is shown in the left of figure 4.11 for T = 1.61 K for a magnetic
field up to 15 T. Compared to the other orientations, the signal is very evident with a
noise level of the order of 2 nV/K for oscillations reaching a peak-to-peak amplitude of
20 nV/K at 15 T. This can be attributed to the quality of the sample with RRR = 32. The
optimal field-window for analyzing the quantum oscillations is [8-15] T. The oscillations
start around 7 T for all temperatures. The oscillatory part of the Seebeck coefficient is
plotted in the left inset of figure 4.11 as a function of 1/H. By calculating the FFT of
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Figure 4.11: Left: Seebeck field dependence for T = 1.61 K for the H ∥ [100] direction.
Inset: Oscillatory part of the Seebeck taken between 8 and 15 T as a function of 1/H.
Right: FFT spectra of the Seebeck H ∥ [100] signal for temperatures between 0.94 and
6.69 K. The peaks are labeled as per ref. [5]. Inset: close-up between 1000 and 1800 T
for the T = 2.40 K spectrum.

the Seebeck coefficient for a [8-15] T field window for all temperatures, we obtain the
spectra shown in the right figure 4.11. For all considered frequencies, the peaks are rather
well defined, showcasing the quality of the signal for this sample. The smearing of the
peaks located between 1200 and 1600 T (right inset of figure 4.11) is due to the closeness
of the frequencies and the lack of frequency resolution of the FFT calculations. For the
temperatures displayed, we can note that as the peak frequencies increase, the maximum
amplitude shifts to lower temperatures, indicating increasing effective masses. From the
comparison with the dHvA measurements in table 4.3, with the exception of γ′

1, each
peak is clearly identified and is within the expected values. Each Fermi surface branch
has been fitted with the Pantsulaya-Varlamov formula, and the temperature dependence
of the oscillations for every peak is shown in figure 4.12. Despite the very small amplitude
of the peaks γ′

2, β′
2, α′ and α, the fitting of the data points with the PV formula indicates

clear maxima from which the effective masses can be calculated. As was observed for
H ∥ [111], the values of effective mass deduced from the Seebeck coefficient are found
between the dHvA values and the theoretical values calculated for SrPtSi. Similarly to
the H ∥ [111] direction, the splitting energy ∆ϵ can be calculated for the branches α
and α′, giving ∆ϵexp = 1320 K. This value is located between the dHvA experiment
∆ϵdHvA = 1200 K, and the theoretical calculation ∆ϵthr = 1410 K.
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Figure 4.12: Temperature dependence of the amplitude of quantum oscillations and ef-
fective masses m∗ for EuPtSi H ∥ [100]. Each graph corresponds to a different branch
indicated in the top right corner. Blue curves correspond to PV fits calculated on the red
data points. Frequencies are expressed in kT and masses in units of m0 the free electron
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EuPtSi H ∥ [100]
This work dHvA from [5] SrPtSi theoretical calculations

Branch F (kT) m∗
c (m0) F (kT) m∗

c (m0) Branch F (kT) m∗
c (m0)

α 3.114 0.88 3.09 0.96 α 3.611 0.771
α′ 2.296 0.79 2.25 0.88 α′ 2.820 0.733
β′
2 1.717 0.64 1.68 0.81 β′

2 2.319 0.626
β′
1(β1) 1.331 0.56 1.35 0.70 β′

1(β1) 1.896 0.521
β2 1.290 0.56 1.26 0.65 β2 1.752 0.506
γ′
2 1.200 0.59 1.17 0.60 γ′

2 1.544 0.45
γ′
1(γ) 1.09 0.64 γ′

1(γ) 1.423 0.422
δ′2 0.924 0.317

δ′1(δ) 0.574 0.35 0.61 0.44 δ′1(δ) 0.826 0.269
ϵ(ϵ′) 0.346 0.34 0.33 0.34 ϵ′ 0.610 0.253

Table 4.3: Effective carrier masses m∗
c and the corresponding frequencies F for EuPtSi

H ∥ [100]. The results of dHvA experiments by Kakihana are recalled, as well as the
theoretical masses calculated for the non-4f reference compound SrPtSi [5].
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4.3. Field dependence of the quantum oscillations

4.2.5 Oscillations in resistivity

For some reason, unknown at the time, the quantum oscillations in EuPtSi that are eas-
ily measured using the dHvA experiments were not observed at all in transport probes.
This is what prompted us to measure the Seebeck coefficient of the system as explained
previously. Besides the higher sensitivity to changes of the density of states of the ther-
moelectric power, the fact that resistivity measurements, the so-called Shubnikov-de Haas
(SdH) effect did not show quantum oscillations remained a mystery. It is, however, known
that the SdH effect is difficult to observe in metals with large carrier concentration [22].
The sample with RRR = ρ300K

ρ0.2K
= 32 with the large face along the H ∥ [100] direction

eventually produced quantum oscillations, solving this mystery. The (simple) explanation
actually is the quality of the samples measured [18].

The field dependence of the longitudinal resistivity for various temperatures between
1 and 4 K is shown in the top left of figure 4.13. All data are fitted with a second order
polynomial background calculated for the 4.5 K curve (shown in inset), subtracted for
clarity. The uncorrected curves can be found in appendix A. Because of the very small
amplitude of the oscillations, they are nearly impossible to spot with the naked eye on
the ρ(H) data without background subtraction. The FFT calculations are performed for
a [10-14.8] T window and the spectrum is shown in the top right of figure 4.13. Only the
first two branches with Fϵ = 0.355 kT and Fδ = 0.586 kT are observed. Merging peaks
between 1.3 and 1.5 kT that would correspond to the γ and β branches are visible but
cannot be further used to deduce the cyclotron masses. The frequencies of the first two
peaks are in good agreement with the dHvA experiments as well as the Seebeck measure-
ments.
The Lifshitz-Kosevich formula corresponding to the temperature damping factor RT used
both in dHvA and SdH effects is:

RT |LK = A
αpm∗T/Heff

sinh(αpm∗T/Heff)
(4.7)

Using this formula to fit the amplitudes in the bottom of figure 4.13 yields masses
m∗ = 0.35 m0 for the ϵ peak and 0.37 m0 for the δ peak. This corresponds to the
Seebeck measurements of 0.34 m0 and 0.35 m0, respectively, and is in better agreement
than the dHvA results reported in table 4.3 from Kakihana et al. [5].

Because of the lack of resolution of the oscillations in the resistivity measurements com-
pared to the thermoelectric power, they have not been pursued further. A better sample
of RRR > 32 would allow for more qualitative measurements. The observation of the
ϵ branch in resistivity data can however be used as a benchmark to validate the Dingle
temperature measurements from the field-dependence analysis of the oscillations in the
thermoelectric power, presented in the following section.

4.3 Field dependence of the quantum oscillations

The systematic study of the temperature dependence of the amplitude of quantum os-
cillations in the Seebeck coefficient has allowed us to observe Fermi surface pockets of
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Figure 4.13: Top left: Oscillations in the field dependence of the resistivity for H ∥ [100],
with a H2 background removed. Inset: H2 polynomial background fitted between 8 and
15 T. Top right: FFT spectra obtained from the resistivity signal for a [10-14.8] T window,
for H ∥ [100], for temperatures between 0.5 and 4.5 K. Bottom: temperature dependence
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EuPtSi and recover appropriate values of the carrier effective masses. We have provided
an alternative to the susceptibility in the form of a transport probe sensitive enough to
pick up quantum oscillations. As such, we have shown the relevancy of the thermoelectric
power in this system and the validity of the Pantsulaya-Varlamov formula for this probe.
Using the Pantsulaya-Varlamov framework, we will now study the field dependence of
the quantum oscillation amplitudes to recover the Dingle damping factor RD, the Dingle
temperature TD, the scattering lifetime τ and the mean-free-path l of the charge carriers
for EuPtSi, comparing it with the well-established framework for the analysis of SdH
experiments.

4.3.1 Dingle temperature calculations

With the calculated effective masses, we can now turn our focus to the field-dependence of
the oscillations, and the calculation of the Dingle temperature TD using the Pantsulaya-
Varlamov theory. The Dingle temperature calculations will be presented for the H ∥ [100]
direction.

From the FFT spectra obtained previously, we can see that the oscillation signal in Eu-
PtSi is made of a complex mixing of various frequencies. Because the peaks of the FFT
are close both in frequency and in amplitude, analyzing the field dependence of the oscil-
lations is not as straight-forward as the temperature dependence. To accurately compare
FFT amplitudes over varied field ranges, it is important to maintain a comparable pa-
rameter, i.e. the number of oscillations per studied field windows. As the oscillations are
periodic in 1/H, taking a window of fixed length in inverse of the field suffices. For the
ϵ branch, we have isolated the corresponding oscillations to fix the window as a number
of periods. To do so we separated the FFT signal for a given temperature into a sum of
the various frequency peaks by successively removing the amplitude of the other peaks.
We then performed an inverse Fourier transform (iFFT), therefore obtaining a sinusoidal
oscillatory signal for the ϵ branch.

The sine wave for the ϵ branch with a frequency of 346 T is shown in figure 4.14
(left). For comparison, the sine wave is superimposed on the Seebeck oscillatory signal
for T = 2.25 K. Analysis over a various number of periods nosc have provided better results
for nosc = 8, i.e. for 9 consecutive sine peaks. Over a 8-15 T range, the 13 field windows
each containing 8 consecutive periods, are plotted in color, with the cross corresponding
to the effective field value Heff for each window. We can then calculate the FFT of the
Seebeck signal for each field window. The resulting FFT for six field windows is shown in
the right panel of figure 4.14. The first window [8.07-9.85] T corresponds to Heff = 8.91 T,
and so on until [11.3-15] T for Heff = 12.78 T. The shift in frequency with respect to Heff is
due to a non-linear Zeeman effect and will not be considered here. Instead, the frequency
used for the following calculations is the one from the FFT spectrum over the entire field
range as calculated for the temperature dependence of the oscillations.

The field dependence of the ϵ branch has also been calculated from the resistivity data.
Because of the limited field window on which the oscillations are visible, the number of
effective fields Heff for this probe is reduced to only eight values between 10 and 14.8 T.
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Taking the maximum amplitude of the peak for various effective fields, we can now re-
cover the Dingle temperature TD from which we obtain the scattering lifetime τ and the
mean-free path l.

As discussed in section 1.2.3, the amplitude Aρ(T,H) of quantum oscillations in resis-
tivity for a given frequency is:

Aρ(T,H) ∝ RT (T )RD(H) (4.8)

The temperature dependence of the oscillations provides the thermal damping factor RT ,
and the Dingle damping factor RD is given by:

RD = exp
(−αpm∗TD

H

)
=

Aρ(H)

H
1
2RT

(4.9)

In the Lifshitz-Kosevich theory framework, with the temperature damping factor re-
called in equation 4.7, the Dingle temperature is obtained by the slope −αm∗TD of the
so-called Dingle plot, ln[A0H

− 1
2 sinh(αpm∗T/H)] as a function of 1/H. For the resistivity

measurements, the SdH effect which is accurately described using the LK theory frame-
work [22], this is straightforward.
As we have seen previously, however, the LK theory falls short when it comes to analyz-
ing the quantum oscillations for thermoelectric power, and instead the PV formula fits
the experimental data much better. With RT the Pantsulaya-Varlamov formula, from
equations 4.6 and 4.9, the Dingle plot becomes:

ln

[
A0H

−1
2

sinh(αpm
∗T

H
)

αpm∗T
H

coth(αpm∗T
H

)− 1

]
= −αpm∗TD

H
+ Cst (4.10)
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where T is the temperature of the data, m∗ is the effective mass obtained from the tem-
perature dependence analysis and A0 is the amplitude of the peak for the Heff considered.
p is the harmonic number of the peak, which is 1 in the case of the ϵ branch. The accord-
ingly modified Dingle plot is shown in figure 4.15. The resistivity measurements are fitted
with the temperature damping factor RT from the LK framework. A comparison of the
LK and PV frameworks is performed for the Seebeck measurements. The plots shown are
made on T = 1 K data.

The Dingle plots produce a linear fit ax+ b. The ordinates b do not yield information
and have been voided for all three fits for visual clarity. Instead the information is deduced
from the slope a = −αpm∗TD. For ρ with the LK theory framework, we obtain a =
−49.68. For a mass m∗ = 0.35 m0, this yields TD = 9.58 K. The thermoelectric power
analysis performed with the PV framework gives a = −35.03, and TD = 6.99 K. The two
values are of similar order. Because of the difference in quality of the signal, the accuracy
of the results is difficult to evaluate. Nevertheless the comparison of the LK theory and the
PV theory experimentally validate the use of the latter to analyze quantum oscillations.
For comparison, the LK theory applied to the Seebeck effect yields TD = 4.50 K, which
is less than half the value expected from the resistivity calculations.
This analysis of the Dingle damping factor for the ϵ branch has been performed for various
temperatures, the results of which are presented in the following section, as well as the
analysis of the other Fermi surface pockets.
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4.3.2 Scattering lifetime and mean free path calculations

The Dingle temperature TD can be seen as an additional temperature encompassing the
broadening of the Fermi level caused by impurity scattering or other effects reducing the
lifetime of the carriers. From the Dingle temperature we obtain the scattering lifetime τ ,
assuming it does not depend on energy, with the relation:

τ =
ℏ

2πkBTD

(4.11)

The scattering lifetime is linked to the mean free path l by:

l = vF τ (4.12)

with vF = ℏkF
m∗ the Fermi velocity. The Fermi wave-vector kF is determined from the

Onsager relation F = ℏ
2πe

S with S = πk2
F for a spherical Fermi surface. This relation is

valid for EuPtSi since all the Fermi surfaces are spherical (or nearly so). Equation 4.12
thus becomes

l =
ℏ2
√
2eF

2πm∗kBTD

(4.13)

F and m∗ taken for the considered peak.

The results for the ϵ branch are presented in table 4.4 for resistivity and thermoelectric
power for four temperatures, T ≈ 1 K, 2.25 K, 3.50 K and 4.1 K. From the temperature
dependence of figure 4.12 for the thermoelectric power, these temperatures correspond to
respectively a minimal amplitude, approaching the peak at Tmax = 3.4 K, at the peak,
and after the peak. In turn, the resistivity amplitude decreases continuously with tem-
perature, as featured in figure 4.13. For all four temperatures, the values of TD, τ and l

ρ H ∥ [100], ϵ branch
T (K) TD (K) τ (10−13 s) l (Å)

1.00 9.58 1.27 432
2.25 9.03 1.35 458
3.50 8.18 1.49 507
4.10 7.69 1.58 539

TEP H ∥ [100], ϵ branch
T (K) TD (K) τ (10−13 s) l (Å)

0.93 6.99 1.74 605
2.25 6.15 1.98 688
3.44 5.00 2.43 846
4.17 4.20 2.89 1007

Table 4.4: TD, τ and l results from the field dependence of quantum oscillations for the ϵ
branch H ∥ [100] at various temperatures, for resistivity (left) and thermoelectric power
(right), using the LK and PV frameworks respectively.

are of similar order and similar temperature behavior for both the LK framework Dingle
damping analysis and the PV framework one. As the results strongly depend on the pre-
vious calculations of the temperature dependence, the deviation between the two probes
can originate from variations of the effective mass, the frequency and the temperature
damping factor RT fitting function. Due to its very small signal, the resistivity is not the
best suited probe to compare the Seebeck to, dHvA data would allow for a more accurate
comparison.
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4.3. Field dependence of the quantum oscillations

The uncertainties on the results may also explain the temperature variations of our re-
sults. From a classical point of view, it comes naturally that the mean-free path should
decrease with increasing temperature, as thermal agitation increases the rate of scatter-
ing. As carriers perform their cyclotron motion under applied magnetic field, a large
mean-free path means the amplitude of the associated oscillation is also large. At low
temperatures, the amplitude is mostly due to impurity scattering, which leads to high
quality samples having better oscillatory signals, and the mean-free path should not vary
too much [10]. As such, the values of l recovered from our measurements can indicate
the order of magnitude (l ≈ 500 Å for ϵ) but the precise value should be determined by
other means.
A similar analysis of the ϵ branch for the H ∥ [111] direction yields similar results, albeit
slightly higher, of 1000 < l < 1300 Å for 3.3 < TD < 4.2 K for temperatures between
1 and 3 K. Due to its small oscillatory amplitude, the H ∥ [110] direction has not been
successfully analyzed.
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Figure 4.16: Dingle plot from See-
beck measurements with RT ≡PV
at T = 2.25 K for 5 Fermi surfaces.

S H ∥ [100], T = 2.25 K
Branch F (kT) TD (K) τ (10−13 s) l (Å)

ϵ 0.346 6.15 1.98 688
δ 0.571 7.79 1.56 676
β′
1 1.337 11.27 1.08 390

α′ 2.280 4.78 2.54 858
α 3.119 4.23 2.87 1016

Table 4.5: TD, τ and l results for 5 Fermi surfaces
of EuPtSi from Seebeck measurements H ∥ [100]
at T = 2.25 K. The results are calculated from
the slope of the linear fits from figure 4.16

The same analysis method of the Dingle damping factor, yielding information on the
scattering time and mean-free path, can be performed for the other Fermi surfaces of
EuPtSi on the H ∥ [100] sample. However, as the resistivity oscillations are very small,
only the ϵ branch analysis has been successful and thus cannot be compared with the
Seebeck coefficient.
For the thermoelectric power with a better signal, the Dingle plot with the PV framework
is shown in figure 4.16 for T = 2.25 K, with FFT windows of 0.028 T−1, corresponding to
10 oscillations of Fϵ. As quantum oscillations are all periodic in 1/H, this window was used
for all frequencies considered. The results of the scattering lifetime and mean-free path
for all five branches are summarized in table 4.5. The five branches considered correspond
to the first-harmonic frequencies Fϵ = 0.346 kT, Fδ = 0.571 kT, Fβ′

1
= 1.337 kT, Fα′ =

2.280 kT and Fα = 3.119 kT. The frequency values are taken from the FFT analysis over
the whole [8-15] T field range.

121



Chapter 4. Quantum oscillations in the thermoelectric power of EuPtSi

0 500 1000 1500 2000 2500 3000 3500
F (T)

0

5

10

15

20

25

30

35

A
m

p
lit

u
d

e
(a

.u
.)

EuPtSi H ‖ [100]
T=0.93 Kε

δ

2ε γ′2

β′1

β′2
α′ α

Heff (T)

12.34

11.96

11.59

11.23

10.90

10.58

10.29

10.01

9.743

9.498

9.270

9.063

Figure 4.17: FFT calculations on the Seebeck H ∥ [100] for windows of 1/Heff = 0.028 T−1

over a field range of [8-15] T, at T = 0.93 K. Curves are shifted vertically for clarity.

From the Dingle plot, we can conclude that the analysis works well for the ϵ and δ
Fermi surface pockets. The amplitude of the other branches could only be analyzed for
higher fields or low 1/H windows, as various processes affect the field dependence of the
oscillations. The full FFT spectra for all the effective fields Heff is shown in figure 4.17
for T = 0.93 K. For all values of Heff, the ϵ and δ branches are well defined, and their
amplitude varies linearly with Heff.
For the β′

1 branch, the peak is well defined only for the highest fields as other frequencies
like γ′

2 and β′
2 mix in the signal for Heff < 11 T. For lower effective fields, the various

frequencies produce a singular peak with varying amplitude.
The α′ and α peak amplitudes first decrease along Heff before increasing again. This non-
linearity can be seen in the Dingle plot where the α branch points cannot be fitted with an
ax+b dependence in 1/Heff. Additionally, the frequencies for these two pockets are shifted
non-linearly to lower values as Heff decreases, with ∆Fα ≈ 130 T between the highest and
lowest Heff. The frequency shift is not taken into account in the Dingle temperature
calculations, as it is most likely due to a non-linear Zeeman effect, as described in section
1.2.2. The additional frequency observed at around F = 2750 T is an harmonic with
F =

Fα′+Fα

2
. As such, the values presented in table 4.5 are less accurate for the branches

of higher frequencies. A similar observation has been made for the H ∥ [111] direction,
with only the ϵ, α′ and α branches yielding results. For this direction we obtain values of
lϵ = 1040 Å, lα′ = 870 Å and lα = 860 Å at T = 1 K, with linear amplitudes only for the
first few higher Heff values.

4.4 Conclusion

Quantum oscillations are a very powerful probe for characterizing the Fermi surfaces. For
EuPtSi, we have successfully compared dHvA results from the literature with thermo-
electric power measurements. We have performed the temperature-dependent analysis
for each observable Fermi surface branches and recovered the effective carrier masses us-
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4.4. Conclusion

ing the Pantsulaya-Varlamov theory framework, yielding consistent results. We have also
made field-dependent calculations, developing a new way of recovering the Dingle temper-
ature, scattering lifetime and mean-free path using thermoelectric power measurements.
We have compared these results with resistivity measurements and confirmed that sample
quality was the reason for other works not observing the SdH effect in this system.
The angular dependence of the oscillations recovers the topology of the Fermi surface but
has not been further explored in this work as the literature already provides an exhaustive
analysis both experimentally and theoretically. A further analysis of the spin damping
factor and the non-linearity of the Zeeman effect can provide better insight into the carrier
properties of EuPtSi for higher frequency Fermi surfaces.
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Conclusion

Since the evidence of a realization of magnetic skyrmions in MnSi in 2009, other com-
pounds have been investigated as potential skyrmion hosts, one such compound being
EuPtSi with the A-phase SkL for the [111] direction confirmed in 2018. In this work,
EuPtSi has been investigated for the main three direction, [110], [111] and [110], using
transport measurements at low temperatures (down to 90 mK) and high magnetic field
(up to 16 T).

We have established the magnetic phase diagram for the three directions, confirming
the presence of the A phase for H ∥ [111] and the A’ and B phases for H ∥ [100].
The skyrmion lattice A-phase enhances the conduction electron scattering, giving rise
to an additional contribution to the resistivity. The emergent field induced by the spin
texture of the A-phase causes the so-called topological Hall effect whose large amplitude
relates to the very small size of the skyrmions at 18Å. With field cooling, a temperature
hysteresis of the A-phase opens and the phase can be maintained at very low temperatures,
emphasizing the low thermal fluctuations needed to stabilize the skyrmion lattice. The
metastable A-phase is strongly irreversible with field.

Our measurements in the H ∥ [100] direction show a strong resemblance between the
A’ and B phases with the previously described A-phase. It appears that the signature
of the A, A’ and B phases are very similar in the different transport probes we have
used, underlying the fact that microscopically these phases seem to be very similar, all
three yielding a topological Hall effect contribution. Nevertheless, the question whether
or not the A’ and B phases are skyrmion lattice phases is still open. Neutron scattering
experiments will help answer it. Precise low-temperature resistivity measurements evi-
dence the presence of anomalies linked to the magnetic textures down to 100 mK, which
could point to a mixing of magnetic phases. Upon field-cooling, we show that both phases
can be extended in metastable states. In that particular state, both phases are created
simultaneously from the same mechanism, evidencing the relation between the two. More
interestingly, a previously unreported additional structure can be seen in the metastable
region.

Despite the low-temperature limitations of the thermoelectric power, the latter proves
to be a powerful probe in EuPtSi. The magnetic phases have been clearly observed
and are consistent with other probes. Additionally, the Seebeck coefficient evidences two
energy scales in the paramagnetic and field-polarized paramagnetic states.

At higher fields, we have performed quantum oscillations measurements with the ther-
moelectric power and measured the various Fermi surface pockets. For each one, the
effective cyclotron mass was extracted from the temperature dependence of the oscilla-
tions amplitude using the Pantsulaya-Varlamov theory, with results in agreement with the
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Chapter 4. Quantum oscillations in the thermoelectric power of EuPtSi

dHvA measurements in the literature. We have also analyzed the field dependence of the
oscillations and, in doing so, developed a new framework for the calculation of the Dingle
temperature using the thermoelectric power. The scattering lifetime and mean-free path
of the carriers was calculated, and we evidenced a non-linear Zeeman effect for the higher
frequency pockets.

EuPtSi is an exciting metallic system that has yet to be completely understood. Further
measurements of its magnetic properties at low-temperature could lead to new insights
into ground-state skyrmion physics.
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Appendix A

Additional data measured on EuPtSi

To avoid redundancy and to not overcrowd this manuscript, not all the data measured
on EuPtSi have been presented thus far. This appendix shows more exhaustive mea-
surements of the resistivity from the angular dependence and for the H ∥ [110] and the
H ∥ [111] directions, as well as low-temperature measurements of the field-dependence of
the Seebeck coefficient.

A.1 Additional resistivity measurements
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Figure A.1: Resistivity measurements at T = 1.75 K as a function of the applied (uncor-
rected) field, for two angles θ = 32° (left) and θ = 4° (right). θ is the angle of the magnetic
field direction with respect to the H ∥ [111] direction (see figure 3.13). Colored triangles
indicate the various anomalies. On the left panel, a linear fit in the conical region between
0.5 and 2.7 T has been removed for clarity, with the full signal and the linear fit shown
in the inset.

Figure A.1 shows a close-up of two curves from the angular dependence of the resis-
tivity (see figure 3.13), at T = 1.75 K between 0 and 5 T of applied (uncorrected) field
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Chapter A. Additional data measured on EuPtSi

with θ denoting the angle of the field direction with the H ∥ [111] direction, in a rotation
from H ∥ [111] (θ = 0°) to H ∥ [1̄1̄1] (θ = 109.4°). The left panel, with θ = 32° shows
the ρ(H) data with a linear fit removed in the conical order between 0.5 and 2.7 T, for
clarity. The inset shows the full signal and the linear fit. This direction corresponds to
the smallest height of the anomaly between HA1 and HA2. By comparison, the right panel
shows the θ = 4° curve, with the A-phase at the maximum height for this temperature.
Figure A.2 shows ρ(H) data for H ∥ [110] between 0 and 12 T for temperatures between
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Figure A.2: ρ(H) for H ∥ [110] for temperatures between 0.1 and 5.5 K (indicated by the
black arrow), up to 12 T. The black dotted line indicates the H2 fit on the 0.1 K data.

0.1 and 5.5 K. The dotted line corresponds to a ρ ∝ H2 fit calculated on the 0.2 K data
between 7 and 15 T.
Figure A.3 (left) shows ρ(H) data for H ∥ [111] between 0 and 15 T for temperatures be-
tween 0.2 and 6 K, with the inset showing a low-field close-up for five temperatures across
the whole range. The data in the left panel are smoothed with a Savitzky-Golay filter
to reduce excess noise. The right panel shows similar measurements between 0 and 8 T
performed on the same sample. The difference between the two data-sets comes from the
drastic improvement on the dilution refrigerator measurement setup described in chapter
2. The base temperature has been improved from 0.2 to 0.1 T, and the noise level was
reduced by a factor 10. Besides these differences, the two sets are in good agreement.
As such, ρ(H) measurements from the second set were only made up to 8 T for most
temperatures.
Figure A.4 (left) shows the temperature dependence of the resistivity between 0.1 and
5.5 K for fields H ∥ [111] between 0 and 15 T. Fields corresponding to the A-phase
(0.8<H<1.3 T) are not shown here. In the helical state H < HD = 0.25 T, ρ(T ) follows a
power law ρ(T ) ∝ T n with n = 1.55. In the conical state, n = 1.75 at 1.4 T and increases
to close to n = 2 with higher H. However, as the field is increased, the temperature
range at which the conical state is observed diminishes and the power-law fittings become
unprecise above 2 T. The right panel shows the same data plotted as a function of T 2,
emphasizing the n ̸= 2 non-Fermi liquid behavior in the conical state. A T 2 dependence is
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Figure A.3: ρ(H) for H ∥ [111] from two different measurements before (left) and after
(right) improving the low-temperature setup. The data is shown between 0.2 and 6 K, up
to 15 T on the left and between 0.1 and 6 K up to 8 T on the right. The inset on the left
panel is a close-up between 0 and 4 T for five temperatures, emphasizing the presence of
the A-phase. Note that the data on the left have been smoothed to reduce the noise level
while the data on the right have not been modified.
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Chapter A. Additional data measured on EuPtSi

recovered around 9 T, which corresponds to the recovery of the H2 behavior in the ρ(H)
data as well.

A.2 Low-temperature Seebeck measurements

A large part of the interesting behavior of EuPtSi is found at low temperature. In order
to measure the thermoelectric power, a thermal gradient is needed, which can impede
the performance of the measurement setup at low temperatures. This section illustrates
the difficulty of measuring the Seebeck coefficient in continuous field sweeps, and the
reason H-steps were preferred in some of the results from chapter 3. From the S(H)
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Figure A.5: S(H) for H ∥ [111] at T =0.5, 0.7 and 0.9 T from field sweeps (dotted) and
H-steps (linked circles).

measurements at low temperatures (T < 1 K) we have observed the presence of a large
background signal that increases as temperature lowers, as shown in figure A.5 for the
H ∥ [111] direction. The continuous field sweeps are represented in dotted lines. This
background signal affects the voltage measurements and is present even without applied
thermal gradient, for the three field directions studied. Reaching more than ten times
the signal amplitude, this makes the observation of Seebeck features at low temperature
much harder in continuous measurements.
While the presence of the A-phase can be traced as low as 0.5 K even with the background
signal, the noise level drastically increases for this range. Inducing a significant tempera-
ture gradient (∆T/T ≈ 3%) heats the sample as a whole despite the heat sink provided
by the mixing chamber of the dilution refrigerator setup. Reducing the gradient allows
lower temperatures but also significantly lowers the signal level. The signal-to-noise ratio
reaches close to 1 below T = 0.6 K.
To attenuate the effect of the background signal and the increase in noise level, we pre-
ferred field-steps measurements (linked circles in the figure). For each discrete field values,
the Seebeck coefficient is calculated with an appropriate thermal gradient. By increas-
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A.2. Low-temperature Seebeck measurements

ing the averaging time, the noise level can be reduced. Since the Seebeck is calculated
separately for each field value, the background signal is removed. In turn the discrete
field values loses precision to determine the exact transition fields, as well as quantum
oscillations. H-steps measurements have been shown to fit the continuous field sweeps
very well for T > 1 K, validating the use of this method.
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Figure A.6: S(H) for H ∥ [100] between 0.3 and 15 T, for temperatures between 0.66 and
3.91 K, made in continuous field sweeps.

Figure A.6 shows S(H) data for the H ∥ [100] direction in continuous field sweeps between
0.3 and 15 T, for temperatures between 0.66 and 3.91 K. For T < 1.42 K, one can see the
influence of the background signal previously described with the rise of a large positive
contribution, compared to the H-steps measurements shown in figure 3.36 from section
3.2.4. We can note the increasing noise level as well. Nevertheless, the A’- and B-phases
are clearly visible at low-field. At high-field, the quantum oscillations are visible for all
temperatures.
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Appendix B

Quantum oscillations in MoTe2

MoTe2 is one of the compounds other than EuPtSi that I have studied during this PhD
thesis. In this section, the measurements of quantum oscillations in the thermoelectric
power, resistivity and magnetization will be presented. The theory and principles of
quantum oscillations, especially in the thermoelectric power, have already been developed
in section 1.2, and chapter 4 shows the results for EuPtSi. As such, this section will only
cover the results for MoTe2.

Why MoTe2 ?

Conventionally, band theory classifies materials as insulators, semiconductors or metals
based on the presence (or not) and the size of an energy gap between the conduction band
and the valence band [10]. Semimetals are characterized by a weak overlap in energy be-
tween the valence band and the conduction band at particular points of the Brillouin zone,
the most prominent example being graphene (2D) [111]. The 3D equivalent of graphene
is the topological semimetal, grouping Dirac semimetals (Cd3As2, Na3Bi...) and Weyl
semimetals (TaAs, NbAs ...) [112]. The particular points of the Brillouin zone, for which
the conduction and valence bands are touching, are called Weyl nodes (or Dirac points).
Near these points, the energy dispersion as a function of the electronic wave vector k
is linear in the three directions of space forming Dirac cones. The rich physics of these
materials comes from the presence of these Weyl nodes around which the electron wave
function will acquire a topological phase or Berry phase (Weyl fermions). Topological
aspects are eagerly looked for because they produce new phenomena such as topological
surface states. They are also expected be used for future applications in spintronic and
quantum transport [113, 114].

MoTe2 has been predicted to be a type-II Weyl semimetal [115, 116], with Weyl points
touching at the boundary between electron and hole pockets in the Fermi surface. Angle-
resolved photoemission spectroscopy (ARPES) measurements have observed Weyl points
and Fermi arcs in MoTe2, in agreement with the prediction of density functional theory
(DFT) [117, 118, 119]. From the DFT calculations, large hole pockets are predicted but
had not been observed in quantum oscillations measurements. The works of Hu et al.
[120] show the appearance of new frequencies in the Shubnikov-de Haas (SdH) Fast Fourier
Transform (FFT) spectrum. The spectrum is shown in figure B.1 taken from [120]. The
first peaks are α and β with frequencies Fα = 226 T and Fβ = 263 T, corresponding to
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Figure B.1: Shubnikov-de Haas FFT spectra for temperatures between 30 mK and 3.5 K,
calculated between 8 and 13 T. The lower inset shows a close-up of the spectra between
0.85 and 1.65 kT for temperatures between 30 and 800 mK, with a FFT calculated between
9 and 13 T. The upper inset shows the amplitude of the 1513 T peak as a function of
temperature. From [120].

the electron pockets. These peaks are well documented in the literature [121, 114, 122].
Other frequencies observed are Fγ = 484 T, Fδ = 758 T, and F2β = 518 T, the latter
being the second harmonic of the β peak with F2β ≈ 2× Fβ.
The works of Hu et al. also report the observation of two higher frequencies, 988 T and
1513 T, shown in the inset of the figure. These frequencies will be referred to as F1 and
F2 in this work. From the frequencies alone, it can be noted that F1 is close to 2× Fγ or
Fγ+F2β. F2 is close to 2×Fδ. However, the effective masses calculated are m1 = 1.50 m0,
and m2 = 2.77 m0, which seem to exclude the possibility of the frequencies being har-
monics, with mγ = 1.37 m0 and mδ = 1.99 m0, significantly more than half the masses
of the higher frequencies [123]. As such, these newly observed frequencies are candidates
for being the hole pockets theoretically expected.

dHvA and SdH experiments

Using the Faraday balance setup described in section 2.3, we have performed a de Haas-
van Alphen-type experiment. The field dependence of the magnetization signal M is
shown on the left panel of figure B.2 for three temperatures, 1.37 K, 2.6 K and 4.07 K
between 0 and 16 T. Quantum oscillations are clearly visible above 6 T. We have also
performed the SdH experiment down to 0.11 K, and ρ(H) for five temperatures between
0.2 and 2 K is shown in the right panel of figure B.2. The resulting FFT spectra for both
probes are shown in figure B.3, with the peaks labeled as per [120]. The window used
for the FFT calculation is [6-16] T for the magnetization and [10-16] T for the resistivity,
which were determined to be the best windows, respectively, using the same protocol as
described in chapter 4 for EuPtSi.
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Figure B.2: Left: field dependence of the magnetization signal (in arbitrary units) between
0 and 16 T for three temperatures between 1.37 and 4.07 K. Right: field dependence of
the resistivity between 0 and 16 T for temperatures between 0.2 and 2 K.
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From the dHvA spectrum, we can see the first peak corresponding to both α and β
around 250 T, with both frequencies too close to be distinguished. This is true for all the
FFT field windows studied. Another peak at around 500 T can be observed at 1.37 K,
corresponding to γ. By comparison with the SdH FFT spectrum, one can see the higher
frequency peaks appear at lower temperature. In the SdH spectrum, α and β are resolved.
γ is clearly observed, as well as δ. We also observe the newly reported frequencies at 970 T
and 1490 T respectively. The two frequencies however, only appear for T < 0.5 K, and
thus only visible for the 0.11 K data in the figure.
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Figure B.4: Amplitude of the SdH peaks as a function of temperature (squares) fitted
with the Lifshitz-Kosevich formula (green), for branches Fα = 0.226 kT, Fβ = 0.268 kT,
Fγ+2β = 0.484 kT and Fδ = 0.746 kT. The amplitudes are normalized with respect to the
maximum amplitude of the fit. The fitted values of the effective masses are indicated.

Despite being observed in the FFT spectrum, the F1 = 970 T and F2 = 1490 T peaks have
not yielded successful effective mass calculations due to the small amplitude and the low
temperatures. The amplitude of the other peaks, on the other hand, have been fitted with
the Lifshitz-Kosevich formula to recover the effective masses. The resulting temperature
dependencies are shown in figure B.4. Each plot corresponds to a frequency, the LK
formula fit is the green curve and the squares are the peak amplitudes. The amplitudes
have been renormalized by the maximum amplitude of the fit in the low-temperature
limit.
The recovered effective masses are in good agreement with the works of Hu et al. for the α
and β peaks. Our calculations yield masses 0.75 m0 and 0.85 m0 respectively, compared to
0.69 m0 and 0.82 m0, from [123]. The γ peak at F = 484 T however yields m∗ = 1.84 m0

which is much larger than 1.37 m0 in the literature. Even by considering the influence of
the 2β harmonic mixed with γ, the mass for the 2β peak was estimated at 1.65 m0, which
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is also smaller than our measurements suggest. The same observation is made for the δ
peak with Fδ = 746 T in our measurement. The corresponding mass is 2.93 m0 compared
to 1.99 m0 in the literature.
Because our measurements of the dHvA and the SdH quantum oscillations were limited
by the low temperatures for the higher frequency peaks, we now turn to oscillations in the
thermoelectric power. For a given frequency, the maximum amplitude is not at 0 K and
instead for a temperature Tmax = 0.11Heff

pm∗ . Heff is the effective field and p is the harmonic
of the frequency.

Thermoelectric power quantum oscillations measurements
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Figure B.5: Left: field dependence of the thermoelectric power up to 16 T for temperatures
between 0.17 and 4.25 K. Right: resulting FFT spectrum calculated between 6 and 16 T
with labeled peaks. The inset shows a close-up between 800 and 1600 T with the newly
observed frequencies F1 = 970 T and F2 = 1490 T.

The Seebeck coefficient field-dependence for MoTe2 is shown in the left panel of fig-
ure B.5 between 0 and 16 T for temperatures between 0.17 and 4.25 K. For the whole
temperature range, quantum oscillations are clearly observed with a very large amplitude
reaching almost 10 µV/K, or ten times the background signal, at 16 T and 1.15 K. The
corresponding FFT spectrum calculated for a [6-16] T field window is shown on the right
panel, with peaks labeled as per [120]. The inset is a close-up between 800 and 1600 T to
show the higher frequencies. We can note, however that the α and β peaks are unresolved
and instead a single peak is observed at F = 252 T. Using the Pantsulaya-Varlamov for-
mula (see section 1.2.3), we have analyzed the temperature dependence of the amplitude
of the quantum oscillations in the thermoelectric power. The results for each peak are
represented in figure B.6. The PV fits (blue curves) are renormalized with respect to the
maximum amplitude at Tmax. The data points are in red.
For the α and β mixed peak at F = 252 T, the corresponding effective mass is 0.80 m0,
which lies between the 0.75 m0 and 0.85 m0 values for α and β in SdH. The γ peak at
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Figure B.6: Amplitude of the FFT peaks from quantum oscillations in the thermoelectric
power as a function of temperature (circles) fitted with the Pantsulaya-Varlamov formula
(blue), for all the observed branches. The amplitudes are normalized with respect to the
maximum amplitude of the fit. The fitted values of the effective masses are indicated.
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F = 484 T yields an effective mass of 1.26 m0, significantly less than the SdH result of
1.84 m0, and in better agreement with 1.37 m0 from [123]. The peak at F = 513 T cor-
responding to 2× β yields m∗ = 1.41 m0 with p = 1, i.e. for a first harmonic calculation.
Taking p = 2 recovers m∗ = 0.75 m0 for the β peak.
At F = 746 T for the δ peak, we have m∗ = 2.04 m0, corresponding very well with the
1.99 m0 from the literature. Comparing the thermoelectric power results with those from
our SdH experiment, we can note that the thermoelectric power yields results very close
to the literature whereas our SdH experiment overestimates the masses considerably as
the frequency is increased. For the available peaks in every probe, the results are reported
in table B.1.

TEP, this work SdH, this work SdH from [120]
Branch F (T) m∗

c (m0) Branch F (T) m∗
c (m0) Branch F (T) m∗

c (m0)
α + β 252 0.80 α 226 0.75 α 226 0.69

β 268 0.85 β 263 0.82
γ 484 1.26 γ + 2β 484 1.84 γ 484 1.37
2β 513 1.41 2β 518 1.65
δ 746 2.04 δ 746 2.93 δ 758 1.99
F1 970 2.61 F1 988 1.50
F2 1490 3.85 F2 1513 2.77

Table B.1: Effective carrier masses m∗
c and the corresponding frequencies F for MoTe2,

from thermoelectric power and Shubnikov-de Haas results from this work, and SdH results
from [120, 123]. A + sign indicates two branches unresolved into a single peak.

For the peaks with frequencies F < 900 T, the results so far seem to confirm what is
found in the literature. The newly observed peaks at higher frequencies, however, differ
in the results. For the F1 = 970 T peak, the PV fit yields a mass m∗ = 2.61 m0. For
the F2 = 1490 T peak, the effective mass is 3.85 m0. These values are significantly higher
than 1.50 m0 and 2.77 m0 from the literature. Taken as second harmonics, i.e. dividing
the masses and the frequencies by 2, the results are very close to the γ and δ peaks. From
our results, the possibility of the newly observed frequencies being harmonics instead of
the hole pockets predicted by DFT calculations can not be excluded.
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Appendix C

Résumés en français

C.1 Résumé de la thèse

Dans cette thèse, j’ai étudié les propriétés de transport électrique et thermique du com-
posé non centro-symétrique EuPtSi, à basse température et fort champ magnétique.
La première partie des résultats porte sur l’étude à bas champ (H < 5 T) des phases mag-
nétiques observées dans EuPtSi en dessous de la température de Néel TN = 4.1 K, pour
les trois directions principales: H ∥ [110], H ∥ [111] et H ∥ [100]. Grâce à la dépendance
angulaire de la résistivité sous champ, j’ai confirmé la présence de phases exotiques: la
phase A skyrmionique pour H ∥ [111], et les phases A’ et B supposées skyrmioniques pour
H ∥ [100]. En étudiant ces phases à l’aide de différentes sondes de transport, j’ai établi
le diagramme de phase magnétique avec précision. J’ai aussi mis en évidence la présence
à basse températures de nouvelles anomalies liées aux phases skyrmioniques. Les résul-
tats de mesures dépendantes en température pour les directions H ∥ [111] et H ∥ [100]
mettent en évidence le caractère métastable des phases A, A’ et B en refroidissant sous
champ. En préparant le système dans l’état métastable A’ ou B, les variations en champ
de la résistivité montrent que les deux phases sont créées simultanément par le même
processus. Grâce aux résultats en température, j’ai également montré la présence d’un
comportement différent d’un liquide de Fermi dans l’état conique de EuPtSi.
La deuxième partie de mes résultats se concentre sur la surface de Fermi de EuPtSi, étudiée
grâce aux oscillations quantiques dans le pouvoir thermoélectrique, pour des champs in-
tenses (H > 6 T). La dépendance en température de l’amplitude des oscillations permet
d’obtenir des valeurs de masses effectives de porteurs de charge en accord avec la littéra-
ture pour chaque orbite de la surface de Fermi. En étudiant la dépendance en champ des
oscillations quantiques, j’ai obtenu la température de Dingle et le libre-parcours moyen des
porteurs en utilisant une nouvelle méthode d’analyse propre au pouvoir thermoélectrique.

C.2 Introduction en français

En 2009, la découverte d’un réseau de skyrmions magnétiques (SkL) dans la phase A de
MnSi a prouvé l’existence d’un objet prédit il y a plus de 40 ans. Un skyrmion magné-
tique est une pseudo-particule qui est protégée topologiquement et qui permet un large
panel d’applications technologiques potentielles. Grâce à leur petite taille, des mémoires
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magnétiques à haute densité d’information peuvent être imaginées, et des skyrmions in-
dividuels peuvent être déplacés avec un faible courant d’excitation, c’est à dire une faible
consommation énergétique. Les skyrmions sont donc intensément étudiés pour leurs po-
tentielles applications et leurs propriétés fondamentales, pour beaucoup étant encore des
questions ouvertes.

Bien qu’il existe maintenant des skyrmions dans des systèmes possédant une symétrie
d’inversion, il a premièrement été pensé qu’un ingrédient majeur de la formation de
skyrmions vient du manque de symétrie d’inversion de la structure cristalline. Depuis
la découverte de la SkL dans MnSi, d’autres composés du groupe d’espace P213 ont été
étudiés comme candidats pour des phases skyrmioniques. L’un d’eux est EuPtSi. EuPtSi
a un ordre magnétique hélical en dessous de la faible température de Néel TN = 4.1 K,
et présente un diagramme de phase sous champ avec différents ordres magnétiques. La
phase A pour un champ appliqué H ∥ [111] a été confirmé comme étant une SkL en 2018,
une première pour un composé 4f [3]. De plus, le vecteur d’ordre hélical est très court,
avec une période de 18 Å, et donc est très fortement ancré au réseau cristallin. Sous
champ magnétique, cela produit une forte anisotropie du diagramme de phase. La phase
A a été observée autour de la direction H ∥ [111] alors que la direction H ∥ [110] ne
présente aucune phase exotique. La direction H ∥ [100], par contre, présente deux phase
différentes appelées A’ et B, qui pourraient être des SkL. Une faible excitation thermique
est nécessaire pour induire la phase A. Cela nous permet de l’observer pour des tempéra-
tures aussi basses que 450 mK, ce qui nous donne l’opportunité rare d’étudier les réseaux
de skyrmions proches de leur état fondamental [4]. Les phases A’ et B, cependant, existent
pour un très faible gamme angulaire et jusqu’à 250 mK [5]. Leur étude est compliquée
d’un point de vue expérimental et leur mécanisme de formation ainsi que leur structure
n’ont pas encore été confirmés. De plus, il a récemment été montré qu’il est possible
de stabiliser les phases skyrmioniques dans un état métastable à des températures plus
faibles en refroidissant le système sous champ [4].
Le diagramme de phase température-champ magnétique de EuPtSi est étudié par le biais
de mesures de transport électrique et thermique à basses températures et fort champ pour
les trois directions principales. Nous avons comparé les anomalies correspondant aux SkL
en résistivité longitudinale et transverse avec nos mesures de pouvoir thermoélectrique. Le
pouvoir thermoélectrique présente des résultats prometteurs, aussi bien dans les mesures
liées aux ordres magnétiques et pour l’analyse de la surface de Fermi de EuPtSi grâce aux
oscillations quantiques.

Cette thèse est divisée en quatre chapitres. Le premier correspond aux concepts de
théorie nécessaires pour comprendre les travaux expérimentaux des chapitres suivants.
Le pouvoir thermoélectrique et la théorie sous-jacente sont présentés, en se concentrant
principalement sur sa sensibilité aux changements de la densité d’état électronique et
aux propriétés de la surface de Fermi. Le principe des oscillations quantiques est en-
suite présenté d’après la théorie Lifshitz-Kosevich pour l’aimantation et la résistivité, et
d’après la théorie Pantsulaya-Varlamov pour le pouvoir thermoélectrique. Enfin, nous in-
troduisons différents ordres magnétiques, le concept de skyrmions et le composé prototype
MnSi. Le second chapitre décrit les méthodes expérimentales utilisées pour les mesures
de transport des chapitres suivants. Dans le troisième chapitre, nous introduisons EuPtSi
en détail et nous présentons les résultats de mesures de transport électrique et thermique
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obtenus. Les mesures en fonction du champ magnétique sont premièrement décrites pour
les trois directions principales, H ∥ [110], H ∥ [111] et H ∥ [100], en s’intéressant par-
ticulièrement aux phases SkL A, A’ et B. Une deuxième partie du chapitre décrit les
mesures en fonction de la température et l’étude du comportement métastable des phases
SkL jusqu’à 100 mK. Le quatrième et dernier chapitre présente les mesures d’oscillations
quantiques dans EuPtSi, principalement dans le pouvoir thermoélectrique.
Durant ces trois années de thèse d’autres composés ont été étudiés, comme MoTe2 dont
les résultats principaux sont présentés brièvement dans l’annexe B.

C.3 Résumé de chaque chapitre

Chapitre 1 - Elements de théorie

Dans ce chapitre, des éléments théoriques sont rappelés pour aider à la compréhension
des chapitres suivants. Premièrement, le concept de thermoélectricité est développé afin
d’introduire le coefficient Seebeck, ou pouvoir thermoélectrique, ainsi que le coefficient
Nernst, son pendant transverse. Les relations liant le Seebeck à la densité d’état électron-
ique g, au temps caractéristique de diffusion τ et à la géométrie de la surface de Fermi sont
explicitées. Dans une seconde partie, la notion d’oscillations quantiques est introduite,
et la théorie sous-jacente est rappelée dans le cas de l’aimantation (effet de Haas-van
Alphen), la résistivité (effet Shubnikov-de Haas), ainsi que le pouvoir thermoélectrique.
Les deux premiers sont analysés dans le cadre de la théorie Lifshitz-Kosevich, permet-
tant de calculer la masse effective des porteurs d’après la dépendance en température
de l’amplitude des oscillations. Pour le coefficient Seebeck, cependant, ce cadre ne peut
être utilisé, et la théorie de Pantsulaya-Varlamov (PV) est utilisée. L’utilisation de la
théorie PV est également développée pour l’analyse de la dépendance en champ magné-
tique des oscillations, remontant ainsi à la détermination de la température de Dingle TD

et au libre-parcours moyen l. La troisième partie introduit les ordres magnétiques qui
sont rencontrés dans le composé phare de cette thèse, EuPtSi. Les ordres hélicaux et
conicaux sont décrits, ainsi que le concept de skyrmion magnétique. Un bref état de l’art
de MnSi est établi en tant que composé prototype d’un système skyrmionique. Enfin, les
applications potentielles des skyrmions dans l’industrie sont brièvement présentées.

Chapitre 2 - Méthodes expérimentales

Ce second chapitre porte sur les méthodes expérimentales utilisées dans cette thèse. Un
premier point décrit le réfrigérateur à dilution sur lequel la majorité des mesures ont été
effectuées ainsi que les améliorations faites pour descendre de 100 mK jusqu’à 50 mK sur
les étages froids. Les méthodes de mesures de la résistivité longitudinale et transverse
(effet Hall) sont présentées, suivi du principe de fonctionnement de la balance de Faraday
pour l’aimantation. Le pouvoir thermoélectrique est ensuite abordé avec une description
du montage expérimental et du protocole de mesure spécifique à cette sonde. Enfin, le
protocole de traitement et d’analyse des oscillations quantiques est décrit.
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Chapitre 3 - Etudes des phases skyrmioniques de EuPtSi

Le troisième chapitre présente le composé EuPtSi et les mesures bas champ (H < 5 T)
de transport pour caractériser les ordres magnétiques. La dépendance angulaire de la
résistivité sous champ est présentée, confirmant la présence de la phase A pour la direction
H ∥ [111], et des phases A’ et B dans un petit angle autour de la direction H ∥ [100]. Ces
directions, ainsi que H ∥ [110], sont ensuite étudiées, premièrement en fonction du champ
magnétique puis de la température. Les mesures de la résistivité selon H ∥ [110] nous
permettent d’établir le signal de l’ordre conique sans la présence de phases skyrmioniques.
Nous observons également le comportement différent d’un liquide de Fermi dans la phase
conique pour les trois directions principales. Le diagramme de phase H − T est établi
précisément pour chaque direction à partir de la résistivité, du pouvoir thermoélectrique et
de la conductivité thermique. Pour la direction H ∥ [111], nous avons observé la signature
de l’effet Hall topologique dans la phase A, dont la forte amplitude est liée à la petite
taille des skyrmions, induisant un fort champ effectif opposé au champ appliqué. Pour la
direction H ∥ [100], les phases A’ et B sont observées jusqu’à basse température où une
nouvelle anomalie est présente pour T < 0.25 K. Cette dernière est possiblement liée à une
nouvelle phase magnétique ou bien une combinaison des autres phases. Les mesures de
transport en fonction de la température présentent une forte hystérèse entre le chauffage
et le refroidissement sous champ. Cela met en évidence le caractère métastable des phases
A, A’ et B que l’on peut alors observer jusqu’à 100 mK. Pour la direction H ∥ [100], nous
avons montré que des variations du champ magnétique permettent de passer d’une phase
métastable à l’autre, indiquant ainsi que leur mécanisme de formation est similaire et
simultané. Une anomalie additionnelle est aussi observée, liée aux résultats en fonction
du champ.

Chapitre 4 - Oscillations quantiques dans le pouvoir thermoélec-
trique de EuPtSi

Ce dernier chapitre présentes les mesures d’oscillations quantiques sur le composé EuPtSi.
Les oscillations quantiques sont un moyen direct d’observer la surface de Fermi d’un com-
posé métallique et leur analyse permet de remonter à un certain nombre de propriétés des
porteurs de charge. Dans la littérature, seules les mesures de l’effet de Haas-van Alphen
(dHvA) par Kakihana et al. [5] ont été rapportées. Nos mesures d’oscillations quan-
tiques dans le pouvoir thermoélectrique sous fort champ magnétique (H entre 5 et 15 T)
sont présentées pour les trois orientations principales d’EuPtSi, les directions H ∥ [110],
[111] et [100]. L’amplitude des oscillations est analysée d’après la théorie de Pantsulaya-
Varlamov (PV) en fonction de la température, et les masses effectives de porteurs cor-
respondantes sont en accord avec les mesures de dHvA. Nous présentons également nos
mesures d’oscillations quantiques en aimantation et en résistivité. En utilisant la théorie
PV, nous avons également étudié la dépendance en champ de l’amplitude des oscillations
du pouvoir thermoélectrique. Cette méthode d’analyse nouvelle nous permet de remonter
à la température de Dingle et au libre-parcours moyen des porteurs. Une comparaison
entre les mesures du coefficient Seebeck et de la résistivité confirme nos résultats et valide
l’approche utilisée.
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C.4 Conclusion en français

Depuis l’observation d’un réseau de skyrmions dans MnSi en 2009, de nombreux composés
ont également montré la présence de skyrmions. Un de ces composés est EuPtSi, dont la
phase A dans la direction H ∥ [111] a été confirmée comme étant skyrmionique en 2018.
Dans cette thèse, EuPtSi a été étudié selon ses trois directions principales: [110], [111] et
[100], via des mesures de transport à basse température (jusqu’à 90 mK) et fort champ
magnétique (jusqu’à 16 T). Nous avons établi le diagramme de phase magnétique pour
les trois direction, confirmant la présence de la phase A pour H ∥ [111], et les phases
A’ et B pour H ∥ [100]. La phase A correspond à une augmentation de la diffusion des
électrons de conduction, donnant lieu à une contribution anormale de la résistivité. Le
champ magnétique effectif induit par la texture de spin de la phase A donne lieu à l’effet
Hall topologique dont l’amplitude importante reflète le petit diamètre des skyrmions de
18 Å. En refroidissant le système sous champ appliqué, une hystérèse en température
s’ouvre dans la phase A et cette dernière peut être maintenue à très basses tempéra-
tures, prouvant les faibles fluctuations thermiques nécessaires pour stabiliser le réseau de
skyrmions. La phase A métastable est très irréversible vis à vis des fluctuations de champ
magnétique. Nos mesures pour la direction H ∥ [100] montrent une forte ressemblance
entre les phases A’ et B et la phase A décrite précédemment. Des mesures précises à
basse température, jusqu’à 100 mK, de la résistivité montrent la présence d’anomalies
liées aux phases magnétiques, potentiellement attribuées à un état mixte d’ordres mag-
nétiques. Par refroidissement sous champ, nous avons montré que les deux phases A’ et
B peuvent apparaître sous forme métastable. Dans cet état, les deux phases sont créées
simultanément via le même mécanisme. Une structure additionnelle est observée dans
l’état métastable.

Malgré les limites en température du pouvoir thermoélectrique, ce dernier s’est révélé
être une sonde très puissante pour EuPtSi. Les phases magnétiques sont clairement ob-
servées et en accord avec les autres sondes. Les mesures du coefficient Seebeck mettent
en évidence la présence de deux échelles d’énergies nouvelles dans l’état paramagnétique
et l’état polarisé. Sous fort champ, nous avons mesuré les oscillations quantiques dans
le pouvoir thermoélectrique et retrouvé les orbites de la surface de Fermi. Pour chaque
orbite, la masse effective des porteurs a été déduite de la dépendance en température
de l’amplitude des oscillations en utilisant la théorie Pantsulaya-Varlamov. Les résultats
sont en bon accord avec les mesures d’aimantation de la littérature. Nous avons analysé
la dépendance en champ des oscillations, et développé pour cela un nouveau cadre de cal-
cul de la température de Dingle par les mesures de pouvoir thermoélectrique. Le temps
caractéristique de diffusion et le libre-parcours moyen des porteurs a été calculé, et nous
avons mis en évidence la présence d’un effet Zeeman non linéaire pour les orbites à haute
fréquence.

EuPtSi est un système métallique complexe qui n’a pas encore révélé tous ses mystères.
Les mesures de ses propriétés magnétiques à basses températures pourraient mener à une
nouvelle compréhension de la physique des skyrmions proche de l’état fondamental.
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