
HAL Id: tel-04495150
https://theses.hal.science/tel-04495150

Submitted on 8 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Processor and memory co-scheduling of embedded
real-time applications on multicore platforms

Ikram Senoussaoui

To cite this version:
Ikram Senoussaoui. Processor and memory co-scheduling of embedded real-time applications on mul-
ticore platforms. Embedded Systems. Université de Lille; Université d’Oran 1 Ahmed Ben Bella,
2023. English. �NNT : �. �tel-04495150�

https://theses.hal.science/tel-04495150
https://hal.archives-ouvertes.fr

UNIVERSITY OF LILLE
UNIVERSITY OF ORAN1

A thesis submitted in fulfillment of the requirements for
the degree of Doctor of Philosophy

Discipline: Computer Science

Ikram SENOUSSAOUI

Processor and memory co-scheduling of
embedded real-time applications on multicore

platforms
Co-ordonnancement processeur et mémoire des applications temps-réel sur les

plateformes multicœurs

Under the direction of: Pr. LIPARI Giuseppe
Pr. BENHAOUA Mohammed Kamel

December 14, 2023

Maryline CHETTO Full Professor, LS2N, University of Nantes, France Referee
Hadda CHERROUN Full Professor, LIM, University of Laghouat, Algeria Referee
Sidi Mohammed BENSLIMANE Full Professor, LabRI, ESI-SBA, Algeria Examiner
Emmanuel GROLLEAU Full Professor, LIAS, ISAE-ENSMA Poitiers, France Examiner
Bilel DERBEL Full Professor, CRIStAL, University of Lille, France President
Houssam-Eddine ZAHAF Associate Professor, LS2N, University of Nantes, France Supervisor
Mohammed Kamel BENHAOUA Full Professor, LAPECI, University of Mascara, Algeria Director
Giuseppe LIPARI Full Professor, CRIStAL, University of Lille, France Director

Résumé

La demande en puissance de calcul dans les systèmes embarqués temps-réel a
considérablement augmenté ces dernières années. Les plateformes multicœurs
qui sont généralement équipés d’un sous-système de mémoire partagé par tous
les cœurs ont répondu dans une certaine mesure à ce besoin croissant en capacité
de calcul. Cependant, dans les systèmes temps-réel, l’utilisation simultanée du
sous-système de mémoire peut induire à des interférences mémoire significatives.
Ces dernières peuvent rendre les pires temps d’exécution des tâches (WCET)
très pessimistes et conduire à une sous-utilisation du système.

Cette thèse se concentre sur la réduction des interférences résultantes des
conflits liés aux ressources partagées (par exemple les mémoires cache, les
bus de communication et la mémoire principale) dans les systèmes multicœurs
grâce au co-ordonnancement des calculs et des transferts de donnée des ap-
plications temps-réel. À cette fin, nous utilisons des modèles de tâches exis-
tants tels que le modèle DFPP (Deferred Fixed Preemption Point), le modèle
PREM (PRedictable-Exécution-Model) et le modèle AER (Acquisition-Execution-
Restitution model). Nous proposons un nouveau modèle de tâche réaliste et
plusieurs algorithmes de co-ordonnancement et de partitionnement des tâches
temps-réel. Nous montrons que de tels ordonnanceurs peuvent améliorer jusqu’à
50% le taux d’ordonnançabilité par rapport aux ordonnanceurs équivalents
générés avec les méthodes de l’état de l’art. De plus, nous démontrons expéri-
mentalement l’applicabilité de nos méthodologies sur la famille de processeurs
multicœurs Infineon AURIX TC-397 en utilisant différents benchmarks.

i

Abstract

The demand for computational power in real-time embedded systems has in-
creased significantly in recent years. Multicore platforms which are generally
equipped with a single memory subsystem shared by all cores, have satisfied this
increasing need for computation capability to some extent. However, in real-time
systems, simultaneous use of the memory subsystem may result in significant
memory interference. Such memory interference owing to resource contention
may lead to very pessimistic worst-case execution time bounds (WCETs) and
lead to under-utilization of the system.

This thesis focuses on reducing interference resulting from shared resource
contention (e.g., caches, buses and main memory) on multicore systems through
processor and memory co-scheduling for real-time applications. To this end,
we use existing task models such as DFPP (Deferred Fixed Preemption Point)
model, PREM (Predictable-Execution-Model) and AER (Acquisition-Execution-
Restitution) model. We also propose a new realistic task model and several
algorithms for task set allocation and for processor and memory co-scheduling.
We show that our proposed methodologies can improve schedulability by up
to 50% compared to equivalent schedules generated with the state-of-the-art
methods. Furthermore, we experimentally demonstrate the applicability of our
methodologies on the Infineon AURIX TC-397 multicore family of processors
using different benchmarks.

ii

Acknowledgements

I have always enjoyed reading the acknowledgments for dissertation manuscripts.
This time, it’s my turn to indulge.

Four years might seem like a short time in the grand scheme of things, but it
certainly doesn’t feel like it when your life is constantly changing, for worse or
for better, and they definitely felt way longer to me during this experience as
a Ph.D. From moving to another country to being stuck at home during the
pandemic, there have been many ups and downs in this journey, so much so that
the version of me a few years back feels almost like a stranger now. Despite all
the struggles and hardships encountered along the way, I honestly think this has
been a positive experience for me, with many teachable moments and growing
ventures.

I would like to express my first thanks to my supervisors, who gave me this
opportunity and mentored me through-out this experience. A big thank to Prof.
Mohammed Kamel BENHAOUA for his help, advices, support and above all
his trust and understanding. I express my gratitude to Prof. Giuseppe LIPARI,
he has been a seemingly inexhaustible source of wisdom in all the subjects
we worked on. I appreciated his scientific rigor and his human qualities. His
immense knowledge and plentiful experience have encouraged me in all the time
of my academic research and daily life. Special thanks to Dr. Houssam-eddine
ZAHAF who participated in the direction of the thesis and had a significant
impact on the choices made during these years. He has been always available
for suggestions and discussions. Thank you for being a friend and a big brother
to me. Many thanks to (Dr, Senior Scientist) Richard OLEJNIK, who directed
me during my first year of the thesis in France.

I would thank also the members of my jury. Firstly, Prof. Maryline CHETTO
and Prof. Hadda CHERROUN for accepting and putting time even in their very
full agenda, to read and evaluate my work. I thank also Prof. Sidi Mohammed
BENSLIMANE, Prof. Emmanuel GROLLEAU and Prof. Bilel DERBEL to
be members of my jury and accept to examine the research presented in this
dissertation.

A big thank goes to everyone who worked at the LAPECI and CRIStAL
laboratories during these years, especially to the members of the SYCOMORES
team (Lille), who became like a second family to me, and to the ORTESE team

iii

iv

(Oran1). Each contributed to making this experience more enjoyable, sharing
the hardships and the joys of this work. We are a relatively small group, but
there would be too many people to name all of them here. Still, some people
deserve special thanks for how they helped me get through these past few
years. People like Julien FORJET, his reviewing was precious. I appreciated his
support and encouragement. Also, I would like to express my gratitude to all
Ph.D students, former Ph.D students and post-docs I met during these years.

I also want to thank all of my friends outside the workplace for all the fun we
had together throughout these years.

First and foremost, I would like to thank and express my gratitude to my dear
parents, my brother Yacine and my sisters Manel and Bouchra, for their tireless
support during these four years of my Ph.D and my whole life, and for the
unconditional love they have shown me, which prevented me from giving up.

Contents

Abstract ii

Introduction 2

I Motivation, Background and Related work 5

1 Multiprocessors and Parallel Systems 6
1.1 Introduction . 7
1.2 Uniprocessor vs multiprocessor systems 7
1.3 Classification of multiprocessor systems 8

1.3.1 Based on their structure 8
1.3.2 Based on their architecture and microarchitecture 8
1.3.3 Based on their memory architecture 9

1.4 Scratchpad vs cache memories in multicore platforms 10
1.5 Programming parallel architecture 11

1.5.1 POSIX Threads . 11
1.5.2 OpenMP framework . 12

1.6 Conclusion . 13

2 Real-time Systems 14
2.1 Introduction . 15
2.2 Task models . 15

2.2.1 Liu and Layland model . 16
2.2.2 PREM and AER models 17
2.2.3 Directed Acyclic Graph (DAG) 18

2.3 Priority assignment for scheduling 19
2.3.1 Scheduling characteristics 19

2.4 Time- vs event-triggered real-time scheduling 20
2.5 Preemptive vs non-preemptive scheduling 21
2.6 Earliest Deadline First (EDF) . 21

2.6.1 Preemptive real-time scheduling 21
2.6.2 Non-preemptive real-time scheduling 23

2.7 Preemptive multiprocessor real-time scheduling 24
2.8 Conclusion . 25

v

vi

3 Processor and Memory Co-scheduling in Multicore Systems 26
3.1 Introduction . 27
3.2 Cache related delays in multicore systems 27
3.3 Shared resources contention: main memory and buses 29
3.4 Related work . 30
3.5 Conclusion . 34

II Contributions 35

4 Allocation of Real-time Tasks Onto Identical Core Platforms
Under Deferred Fixed Preemption-point Model 36
4.1 Introduction . 37
4.2 System model . 37

4.2.1 Task model . 37
4.2.2 Architecture model . 38

4.3 Limited Preemption analysis for single-processor 39
4.3.1 Maximum non-preemptive execution-time 39
4.3.2 Selection of effective preemption points 40

4.4 Task allocation . 40
4.4.1 Enumerating algorithm . 41
4.4.2 Branch and Bound . 42
4.4.3 Computational complexity 46
4.4.4 Allocation heuristics . 47

4.5 Results and discussions . 48
4.5.1 Task generation . 48
4.5.2 Simulation results and discussions 48

4.6 Conclusion . 52

5 Contention-free Scheduling of PREM Tasks on Partitioned Mul-
ticore Platforms 53
5.1 Introduction . 54
5.2 System model . 54

5.2.1 Architecture model . 54
5.2.2 Task model . 55

5.3 Offset based processor and memory co-scheduling 55
5.3.1 Task-level offsets : sufficient condition 56
5.3.2 Integer-Linear-Programming based offset assignment . . . 57

5.4 Deadline based processor and memory co-scheduling 60
5.5 Results and discussions . 61

5.5.1 Task set generation . 62
5.5.2 Results of synthetic task set experiments 62

5.6 Conclusion . 64

vii

6 Memory-processor Co-scheduling AECR-DAG Real-time Tasks
on Partitioned Multicore Platforms with Scratchpads 65
6.1 Introduction . 66
6.2 System model . 66

6.2.1 Architecture model . 66
6.2.2 Task model . 66

6.3 DAG tasks allocation and transformation 69
6.3.1 Decision variables and objective function 71

6.4 Deadline based DAG memory-processor co-scheduling 73
6.4.1 Fair and proportional deadline assignment 74
6.4.2 GA-based intermediate deadline assignment 75
6.4.3 Evaluation Strategy . 79
6.4.4 Creating the next generation 84

6.5 Results and discussions . 85
6.5.1 Task generation . 86
6.5.2 Simulation results and discussions 87

6.6 Conclusion . 92

7 Conclusion and perspectives 93
7.1 Conclusion . 94
7.2 Limitations and perspectives . 94

List of Figures

1.1 Shared memory model. 9
1.2 Distributed memory model. 9
1.3 Hybrid memory model. 10
1.4 Example of Fork-Join Model . 13

2.1 Periodic constrained-deadline task parameters. 17
2.2 DAG task example . 18
2.3 Partitioned scheduling vs global scheduling. 25

4.1 Example of task parameters . 38
4.2 Example of branch and bound . 46
4.3 Schedulability for optimal solutions against BF, WF and FF . . . 49
4.4 The analysis time as a function of number of task 50
4.5 Schedulability at different taskset size. 50
4.6 Performance of BF, WF and FF using sorted tasks by density . . 51
4.7 Performance of BF, WF and FF using sorted tasks by laxity . . . 51

5.1 Multicore target platform. 54
5.2 Example of task parameters. 56
5.3 Schedulability of ILP vs heuristics approaches 62
5.4 Heuristics algorithms performances 63

6.1 Multicore architecture featuring 4 cores, and its interconnection
buses. 67

6.2 DAG task example, computation subtasks are mapped on a dual-
core platform. 68

6.3 DAG task transformation. 71
6.4 Example of offset and local deadline. 74
6.5 Example of an individual. 77
6.6 Schedulability rate for large DAG: Umax = 0.7 vs Umax = 0.85 . . . 88
6.7 Schedulability rate for long DAG: Umax = 0.7 vs Umax = 0.85 . . . 88
6.8 Schedulability rate for large DAGs: small vs large population . . . 89
6.9 Schedulability rate for long DAGs: small vs large population . . . 89
6.10 GA-ILP’s performances VS (GA-WF and GA-BF) algorithms . . 90
6.11 GA-ILP’s performances VS (FAIR and PROP) algorithms 91
6.12 GA-ILP’s performances VS the literature 92

viii

List of Tables

4.1 Task parameters . 46

6.1 Example of Individual . 78
6.2 Swapping local deadlines after a crossover point 85

ix

List of Acronyms

AD Autonomous driving. 15

AECR Acquisition Execution Communication Restitution Model. 4

AECR-DAG Acquisition Execution Communication Restitution Model-DAG.
24, 69, 79, 87, 92

AER Acquisition Execution Restitution Model. 3, 17, 29, 34, 66

BB Branch and Bound. 40

BF Best-Fit. 25, 47–49

COTS Commercial off-the-shelf software. 29

CRPD cache-related preemption delays. 3, 28, 31

DAG Directed Acyclic Graph. 4, 17, 33, 66

dbf Demand bound function. 22

DFPP Deferred Fixed Preemption Point. 3

DLA Deep learning accelerators. 9

DM Deadline Monotonic. 19

DPM deferred preemption model. 30

DSP Digital signal processors. 9

EDF Earliest Deadline First. 19, 21, 22, 39, 40, 54, 59, 60, 64, 73, 82, 84

ET Event-triggered. 20

FCFS First-Come First-Served. 33

FF First-Fit. 47–49

FIFO First-In-First-Out. 29

FPP Fixed Preemption Points. 28

x

1

LLF Least Laxity First. 19

LPM Limited Preemptive Models. 28

NFP Floating Non-Preemptive Regions. 28

PREM PRedictable Execution Model. 3, 17, 29, 32, 54, 64

PT Preemption Thresholds. 28

PTS Preemption Thresholds Scheduling. 31

RM Rate Monotonic. 19

SMP Homogeneous or Symmetric Multiprocessors. 8

SPM Scratchpad memory. 11

TDMA Time Division Multiple Access. 32

TT Time-triggered. 19, 20

WCET Worst-case execution time estimation. 2, 10, 29

WF Worst-Fit. 25, 47, 48

Introduction

Context and motivation
Real-time systems are computing systems that must react with predictable time
behavior to events in the environment. As a consequence, their correct behavior
depends not only on the logical correctness of the computations but also on the
time at which the results are produced [132]. Nowadays, real-time computing
plays a crucial role in our society, as more and more complex systems rely, in part
or completely, on computer control. Automotive applications, robotics, medical
systems and flight control systems are examples of applications that require real-
time computing.

Worst-case execution time estimation (WCET) is the key element of timing
analysis of real-time systems. The WCET is defined as the maximum length of
time that a task may take to completely execute on a given hardware platform.
For single-core platforms, the WCET estimate is based on the time spent by the
longest execution path of the process.

The demand for computational power in real-time embedded systems has
increased significantly, making multicore and heterogeneous systems attractive
in the real-time domain. Multicore platforms can provide significantly more
processing power than traditional single-core platforms, however, due to the un-
derlying complexity and interference in accessing shared resources, schedulability
and predictability should not be guaranteed.

In multicore settings, where different applications running concurrently on
different cores compete for the access to shared memories, the combination of
interference for accessing a shared memory (i.e. the main memory) and local
cache related delays can be large and highly variable depending on the platform
architecture and the number of parallel access requests. These runtime-related
delays inflate significantly the WCETs of tasks especially when preemption is
enabled.

Shared memory interference represents a big challenge for the predictability
of real-time embedded systems. In general, it is difficult to accurately compute
the worst-case interference profile, which likely leads to include scenarios that
might never occur, therefore over-estimating the worst-case interference.

In cache-based preemptive real-time systems, the preempted and the pre-
empting tasks may interfere on the cache memory. This interference leads to
cache misses in the preempted task which result in additional delays [64]. In
fact, when a preemption occurs, the analysis must account for the time needed
to reload cache blocks that have been evicted by preempting tasks. These delays

2

3

are known as cache-related preemption delays (CRPD). CRPD may be large in
fully preemptive systems as a given task can be preempted by any other higher
priority task. Non-preemptive systems, on the other hand, may suffer from long
blocking times: when a low priority task starts its execution, higher priority tasks
are blocked waiting for the low priority task to finish, causing priority inversion.

We believe that reducing the impact of memory interference on WCET esti-
mation can improve application performance in multi-core architectures. Models
such as the Deferred Fixed Preemption Point (DFPP), the Predictable Execution
Model (PREM) and the Acquisition-Execution-Restitution (AER) model can help
us in improving predictability in these systems.

In this thesis, we tackle the problem of reducing/avoinding shared memory
contention for real-time task sets expressed with different predictable models
on several types of multicore architectures (i.e. cache-based architectures and
scratchpad-based architectures). The next section briefly describes our contri-
butions and the organization of the subsequent chapters of this document.

Contributions
Our contributions consist in proposing efficient scheduling approaches for dif-
ferent predictable task models on multicore architectures. The outline of this
manuscript and the main contributions are summarized in this section.

The thesis is divided into seven chapters.
In Chapter 1 & 2 we introduce real-time systems, multicore and parallel

systems. In Chapter 3, we describe the memory interference problem in multicore
architectures and we place the problem in the state of the art.

In Chapter 4, we explore techniques to allocate a set of real-time task onto
an identical multicore platform with caches so to reduce the preemption costs.
To this end, we present optimal algorithms and heuristics to solve this problem.
This chapter present i) an exact allocation algorithm for a set of real-time tasks
presenting fixed-preemption points onto an identical core platform, (ii) several
techniques to reduce the time and space complexity of computing the exact
solution as well as (iii) efficient allocation heuristics; and finally (iv) an exhaustive
evaluation of the proposed approaches using a large set of synthetic experiments.
In the model we use in this chapter, each fixed-preemption point is characterized
by an architecture related cost, it is defined as the cumulative execution overhead
due to the combination of processor components effects such as the cache-related
effect, which results in very high costs due to the unpredictability of caches. We
adopt in Chapter 5 the Predictable Execution Model (PREM) in order to achieve
a higher degree of predictability.

In Chapter 5, we tackle the problem of contention in multicore architecture
with scratchpad memories. The goal is to avoid shared memory contention for
a set of tasks modeled using PREM. In this chapter, we explore and compare
different designs for scheduling memory phases: a time-triggered-based approach
and an on-line scheduling approach for memory phases. We show that obtaining
an optimal solution of this problem is very time consuming even for small task set
size. We propose heuristics that allows to find a feasible solution in a reasonable

4

time. We compare the proposed approaches against the state of the art using a
set of synthetic experiments in terms of schedulability and analysis time and we
show that our techniques improve up to 50% the schedulability. The different
approaches are implemented on an Infineon AURIX TC397 multicore microcon-
troller and validated using a set of tasks extracted from well-known benchmarks
from the literature.

In the sixth chapter, we proposed a new model named Acquisition-Execution-
Communication-Restitution-DAG (AECR). An AECR-DAG application is a Di-
rected Acyclic Graph (DAG) of communicating subtasks respecting AER model.
We use a genetic algorithm to derive scheduling parameters for a set of AECR-
DAG tasks. Subtasks are partitioned onto the multicore platform while their
memory requests and relative communications are scheduled onto the shared
buses, in order to prevent interference and ensure predictability. We propose an
ILP formulation to solve the mapping problem. Specifically, all subtasks and
communications are assigned appropriate intermediate offsets and deadlines to
guarantee that they comply with the system’s timing constraints.

In all the proposed approaches of the two precedent chapters (5 & 6), we con-
sider a multicore platform with scratchpads and preemptive partitioned schedul-
ing at the core level for computations phases.

We conclude with an overview of our findings, their impact, and future di-
rections in the thesis conclusion (Chapter 7).

Part I

Motivation, Background and
Related work

5

Chapter 1

Multiprocessors and Parallel
Systems

Contents
1.1 Introduction . 7

1.2 Uniprocessor vs multiprocessor systems 7

1.3 Classification of multiprocessor systems 8

1.3.1 Based on their structure 8

1.3.2 Based on their architecture and microarchitecture . . . 8

1.3.3 Based on their memory architecture 9

1.4 Scratchpad vs cache memories in multicore platforms 10

1.5 Programming parallel architecture 11

1.5.1 POSIX Threads . 11

1.5.2 OpenMP framework 12

1.6 Conclusion . 13

6

7

1.1 Introduction
The concept of algorithms and modern computers is defined by Alan Turing [138]
who presented the Turing Machine. He proved that mathematical computations
can be performed by machines if they are represented by an algorithm. Turing
machines are considered as the central concept of modern computers. Modern
computer systems are built on ICs (Integrated Circuits (1958-1971)). Depending
on the number of available processing units, modern computer systems can be
classified as uniprocessor and multiprocessor systems.

1.2 Uniprocessor vs multiprocessor systems
A uniprocessor platform is a computer system with a single Central Processing
Unit (CPU). This unit performs all computations sequentially, with just one task
executing at any given time instance. As a result of the hardware constraint,
no true (physical) parallelism is accomplished on such systems; yet, multitasking
can be supported in such systems. Multitasking means that more than one task
can be executed on the processor on a time-sharing basis.

In 1965, Moore’s observation [137] states that the number of transistors in
an IC doubles each two years, hence the performance of chips doubles as well.
We can see that the evolution of Intel processors roughly parallels Moore’s law.
The number of transistors incorporated in their CPUs has increased dramati-
cally over the years. According to Moore’s law, processor performance advances
exponentially over time as the number of transistors in integrated circuits dou-
bles, increasing clock speed and allowing computers to accomplish tasks quicker.
Since clock rates of processors are not going faster in the same previous rate, plat-
form performance is improved by duplicating the number of CPUs, therefore, the
multicore/multiprocessor solution was presented.

Multiprocessor systems are those that include more than one processing unit,
allowing computations to be done in parallel. Until recently, uniprocessor sys-
tems predominated over multiprocessor systems in industrial execution plat-
forms. It’s either because system designers were afraid of the risk that came
with modifying their previous reliable uniprocessor designs, or because unipro-
cessor performance was sufficient for most embedded system applications.

However, as the demand for processing power and effectiveness for massive
computations and applications grows, a move from uniprocessor to multiproces-
sor systems is on the horizon. For example, in 2011, the percentage of uniproces-
sor applications was greater than 30% of total industrial applications. However,
this ratio is likely to fall to 15% in the next few years as multiprocessor platforms
gain popularity [34].

Multiprocessor systems offer software-level parallelism, hence, concurrent
tasks and processes can execute simultaneously on different processing units.

8

1.3 Classification of multiprocessor systems
Multiprocessor are differentiated and classified according to different criteria. In
this section, we present the most important classes.

1.3.1 Based on their structure

Multiprocessing systems can be classified based on their structure as follows:

• Multiprocessor system. As stated before, it consists of more than one pro-
cessing unit. Applications can choose to benefit from the performance im-
provement provided by this architecture. Otherwise said, sequential appli-
cations can opt to execute sequentially on such systems without modifying
their programming techniques. Parallelism can be achieved by splitting
processes/threads of an application among several processors in the sys-
tem, thereby increasing execution speed. Processors can also share system
memory through a communication bus (see the classification according the
memory architecture 1.3.3).

• Multicore system. A system’s core is made up of more than one logical
unit. These units (often 2 to 8 cores) have their own individual memory
cache or scratchpad as well as another level of cache memory shared by
the processor’s cores (LLC for Last Level memory Cache). Application
programming distinguishes multiprocessor from multicore systems. An ap-
plication has to change its sequential architecture in order to scale up its
performance while executing on multicore systems. The abovementioned
systems are usually found in general-purpose devices. Examples are Intel,
ARM and AMD processors;

• Many-core system. This system, which typically refers to extremely large
multicore platforms, has the same technical architecture as multicore sys-
tems. The number of cores ranges from dozens to hundreds per single
processor. These systems implement parallel architecture, hence, software
has to be adapted to such systems in order to get advantage of hardware
capabilities. For example, the TILE-GX 3 72-core processor from Tilera
(2009).

1.3.2 Based on their architecture and microarchitecture

Based on the type of processors, multicores (multiprocessor) systems can be
divided into categories as follows:

• Homogeneous or Symmetric Multiprocessors (SMP). The system’s proces-
sors are all of the same type (multiple central processing units CPUs or
multiple graphics processing units (GPUs)). They have typically identical
architectures, instruction sets, and the execution rate of tasks is the same
on all of them;

9

• Uniform Processors. In these systems, each processor has a speed or com-
putational capacity that determines the rate at which a task is executed;

• Heterogeneous Processors. They incorporate multiple processing units of
different types, each optimized for specific tasks in a single system. These
systems can include a mix of CPUs, GPUs, deep learning accelerators
(DLAs), digital signal processors (DSPs), and other specialized processors.
Hence, the execution rate of a task is determined by the type of processor
and the task itself.

1.3.3 Based on their memory architecture

According to memory architecture, multiprocessor systems can be divided into
categories as follows:

• Shared memory. A multicore (multiprocessor) with shared memory pro-
vides a single memory that is shared by all processors. Any processor
can physically access data at any location in memory (see Figure 1.1). In
all the contributions of this work, we used a shared memeory multicore
architecture.

CPU CPU CPU CPU

Main memory

Figure 1.1: Shared memory model.

• Distributed memory. In a multicore (multiprocessor) with distributed
memory, each processor has its own private memory. Processings can only
operate on local data and must communicate with one or more remote
processors, if remote data is needed (see Figure 1.2).

Memory

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Network

Figure 1.2: Distributed memory model.

10

• Hybrid memory. In a multiprocessor with hybrid memory, the distributed
and shared memory models are combined. Each unit is a shared memory
system (there are two or more cores sharing the same memory resources).
Then, shared memories are connected through networks, forming a dis-
tributive system. Today, the fastest computers in the world employ both
shared and distributed memory architectures (see Figure 1.3).

Memory

CPUCPU

Memory

CPUCPU

Memory

CPUCPU

Memory

CPUCPU

Network

Figure 1.3: Hybrid memory model.

1.4 Scratchpad vs cache memories in multicore
platforms

The increasing performance gap between the processor and the off-chip memory
has made it important to use on-chip memory in real-time embedded systems.
CPU caches in a modern multi-core platform typically consist of two or three
cache memory levels between the core and the main memory. Usually, each core
has a private smaller Level 1 (L1) cache memory. All cores share a larger Level
2 (L2) and/or a Level 3 (L3) cache memory. Caches have been extensively used
to bridge that gap.

Data transfers between main memoty and caches are managed by hardware,
in a transparent manner to the programmer and compiler. Unfortunately, caches
are source of predictability problems in hard real-time systems. The cache re-
placement strategy might introduce unpredictability of the cache behavior. In-
struction prefetching, out-of-order execution, and control speculation introduce
interferences between processor components, e.g. caches, pipelines and prefetch
queues.

A lot of progress has been achieved in the last ten years to statically predict
worst-case execution times (WCETs) of tasks on architectures with caches [100,
108, 113, 120]. However, cache-aware WCET analysis techniques are not always
applicable due to the lack of documentation of hardware manuals concerning the
cache replacement policies.Moreover, caches are sources of timing anomalies in
dynamically scheduled processors [112] (a cache miss may in some cases result in
a shorter execution time than a hit). In such situations, cache locking and cache
partitioning techniques are of interest [89].

11

Scratchpad memory (SPM) is a popular choice in real-time embedded sys-
tems. It is a small software-managed on-chip static RAM that has been widely
accepted as an alternative to cache memory, as it offers better timing predictabil-
ity compared to caches. The scratchpad memory is mapped into the address
space of the processor, and is accessed whenever the address of a memory ac-
cess falls within a predefined range. Contrary to caches, the compiler and/or
the programmer explicitly controls the allocation of instructions and data to the
scratchpad memory. This operating principle makes the latency of each memory
access, and thus program execution time, more predictable. Significant effort has
been invested in developing efficient static and dynamic allocation techniques for
scratchpad memories [75, 76, 101, 105].

Many of the modern multicore platforms offer scratchpad memories, for ex-
ample: NXP S32, Renesas R-car, STM Stellar, and Aurix Infineon platform
series.

1.5 Programming parallel architecture
We define parallel applications as those applications that perform their compu-
tations simultaneously on multiple processors. Parallelism is important in order
to get advantage of hardware advancement of processor architecture such as
multiprocessor. It is crucial to remember that adding more processing units to
execution platforms to increase performance is worthless if the designed software
is incompatible with the hardware. Software parallelism is classified into the
following classes:

• Inter-task parallelism: in which tasks execute in parallel. An example of
such parallelism is a set of tasks which executes on multiple processors.

• Intra-task parallelism: or the inter-subtask parallelism, here a parallel task
consists of subtasks which execute in parallel.

• Intra-subtask parallelism: a subtask of a parallel task consists of a set of
threads running in parallel. In this case, a subtask requires more than one
processor to execute.

A thread is an execution portion of a parallel task (or a subtask). Task’s
threads are usually all activated at the same time and have to terminate their ex-
ecution at the same time. There are multiple programming languages and frame-
works that allow the code to be executed in parallel on different threads. Two
frameworks are available to the C programming language that we will present in
this manuscript: POSIX Threads(Pthreads) and OpenMP.

1.5.1 POSIX Threads

POSIX Threads is a common threading model when working in C or C++,
usually referred to as Pthread, it is a standardized model to work with threads.
POSIX Threads can be use to parallelism task of a program in order to increase

12

the execution speed. The POSIX standard states that threads must share a
number of informations, for example the threads must share:

• Process ID

• Parent Process ID

• User and group IDs

• Open FD’s (File Descriptors)

POSIX Threads offers a header file and a library that must be included at
compilation time and a set of functions to create, manipulate, synchronise and
kill threads in a program. The starting point for threads in a Pthreads program
is the pthreads_create function, this function takes a pointer to a function that
is the starting point for the new thread. Then, the pthread_exit function is used
to kill the thread. In the main thread, the pthread_join function is used to wait
for the executing threads [3]. There are several other Pthread procedures for
example those used for synchronization (with locks and barriers) and Mutexes.

1.5.2 OpenMP framework

OpenMP [42] is a parallel programming model for shared-memory multiprocessor
systems developed in 1990 by SGI.The goal of OpenMP is to provide a standard
and portable API for writing shared-memory parallel programs. OpenMP works
in conjunction with either standard Fortran or C/C++. It is comprised of a set
of compiler directives used in the source code. These directives are instructional
notes to any compiler supporting OpenMP. They take the form of source code
comments (in Fortran) or #pragmas (in C/C++). Collectively, these directives
and library routines are formally described by the application programming in-
terface (API) now known as OpenMP.

OpenMP is designed to support incremental parallelization, or the ability to
parallelize an application a little at a time at a rate where the developer feels
additional effort is worthwhile [104].

To create the threads when an parallel directive is encountered, OpenMP
uses the Fork-Join model. Figure 1.4 shows an example of a Fork-Join model.
When a executing thread encounters a parallel construct it will create a team
of threads(fork) and become the master thread of the team. Then the team
executes the code assigned to it and before the initial or master thread continue
to execute the code after the parallel construct all the threads in the team are
terminated(join).

13

e1
1 e1

2 e1
3 e1

4 e1
5

e2
2

e3
2

e2
4

e3
4

Parallel region 2Parallel region 1

Figure 1.4: Example of Fork-Join Model

The first sequential execution in Figure 1.4 is e1
1 called the source thread.

Three parallels threads e1
2, e2

2 and e3
2 gathered in “parallel region 1” are forked

from e1
1. The second sequential execution is e1

3 and it joints the three threads
forked by e1

1, it forks at its turn three parallel threads e1
4, e2

4 and e3
4 gathered in

“parallel region 2”. The last sequential task joins the threads created by e1
3 and

continue till the task ends.
Compared to using pthreads and working with mutex and condition variables,

OpenMP is much easier to use because the compiler takes care of transforming
the sequential code into parallel code according to the directives [33, 65].

1.6 Conclusion
In this chapter, we presented an overview of multicore architectures, the different
types of memory used in these architectures and reviewed two parallel program-
ming languages. These are notions on which our work will be based. We will
consider a set of tasks with timing constraints to be partitioned on a multicore
platform with the goal of reducing/avoiding shared resources contention. Before
that, we will give a quick overview on real-time systems in the next chapter.

Chapter 2

Real-time Systems

Contents
2.1 Introduction . 15

2.2 Task models . 15

2.2.1 Liu and Layland model 16

2.2.2 PREM and AER models 17

2.2.3 Directed Acyclic Graph (DAG) 18

2.3 Priority assignment for scheduling 19

2.3.1 Scheduling characteristics 19

2.4 Time- vs event-triggered real-time scheduling 20

2.5 Preemptive vs non-preemptive scheduling 21

2.6 Earliest Deadline First (EDF) 21

2.6.1 Preemptive real-time scheduling 21

2.6.2 Non-preemptive real-time scheduling 23

2.7 Preemptive multiprocessor real-time scheduling . . . 24

2.8 Conclusion . 25

14

15

2.1 Introduction
Real-time systems are computing systems that must react within precise time
constraints to events in the environment. As a consequence, the correct behavior
of these systems depends not only on the value of the computation but also on
the time at which the results are produced [57].

A real-time system interacts with its environment through the use of sensors
and/or actuators. Given the dynamic nature of the environment, the system’s
response to a change in the environment cannot be postponed indefinitely. The
state of the system at any point in time must be correct in relation to the state
of the environment. Any state of the system that causes an accident in the en-
vironment or in the system itself, such as the destruction of system components,
is regarded as a failure. The cost of failure classifies these systems into 3 classes:

• Hard real-time systems: are systems in which a failure to meet even a single
deadline may lead to complete or appalling system failure. This is partic-
ularly true for the autonomous driving (AD) systems, which incorporate
complex functions along with strong safety requirements. Its software func-
tions must coexist and share resources with other software vehicle functions
without sacrificing real-time safety requirements;

• Soft real-time systems: are systems in which one or more failures to meet
the deadline are not considered complete system failure, but that perfor-
mance is considered to be degraded. Web browsing is an example of soft
real-time system;

• Firm real-time systems: are not hard-real time systems, but results de-
livered after a deadline that has been violated, are ignored. Video con-
ferencing and satellite based tracking are good examples of firm real-time
system.

2.2 Task models
Real-time systems applications generally consist of a set of concurrent function-
alities called tasks with timing-related properties. A task is a thread, i.e. a
sequential piece of code executing on a multi-threading operating system. The
pseudo-code of a typical real-time task in a POSIX-like environment is shown
in Listing 2.1. A task can be activated several times during the system life.
Each activation is called a “job” or “instance”. In this thesis, we consider a set of
real-time tasks T , each task τi is described as a infinite succession of jobs. We
denote jli the lth job of task τi. Each job jli is characterized by three parameters
(ali, d

l
i, c

l
i). ali represents the job arrival time, it corresponds to the time instance

when the job jli becomes ready to start its execution. dli is the job absolute
deadline, and cli represents the execution time of jli.

According to the recurrence problem, we can distinguish three types of real-
time tasks:

16

• Periodic task: two consecutive releases (jobs) of the same task are separated
by a fixed inter-arrival time;

• Sporadic task: two consecutive releases (jobs) of the same task are sepa-
rated by a minimum inter-arrival time;

• Aperiodic task: There is no correlation between the activation of two suc-
cessive instances of an aperiodic task.

void∗ task ()
{

// I n i t i a l i z a t i o n
while (true) {

// ta s k code

wait_for_next_activat ion () ;
}

}

Listing 2.1: Example of real-time task code

2.2.1 Liu and Layland model

The classic model by Liu and Layland [135] modeled a real-time task by τi =
(Ci,Di,Ti):

• Ci: is the worst-case execution time of the task, it is equal to:

Ci = max
∀l

(cli) (2.1)

It represents the maximum elapsed time between the processor acquisition
and the task completion without considering any interruption. Several
techniques are proposed in the literature to upper-bound and estimate this
value, a good overview can be found in [109].

• Di: is the task’s relative deadline, it represents the time within the task
have to end it’s execution (i.e. the lenght of any interval [ali, d

l
i]);

• Ti: is the task period, it represents the minimum inter-arrival time between
two jobs if we consider sporadic real-time tasks.

If Di is equal to the task period Ti then, the deadline is said to be im-
plicit. If Di is less than or equal to the task period Ti, then the deadline is
constrained(2.1).

It is important to distinguish between two classes of periodic task sets, re-
garding the activation time of the 1st instance of tasks (called the offset φτi):
synchronous and asynchronous task sets. Synchronous task sets are those in
which all offsets are equal, for example φτ0 = φτ1 · · ·φτn = 0. Asynchronous task
sets in contrast are those where the offsets of two distinct tasks might be not

17

equal [111]. In this context, if the offsets of the jobs of a single task are equal,
then we say that the offset is static. On the other hand, if at least one job off-
set of the task is different from the offset of the other jobs, then the offsets are
dynamic.

Tasks may be characterized by other derived parameters. First, the task
utilization, given by ui = Ci/Ti, which indicates the extent to which a task utilizes
the computing resources. Thus, the total utilization is given by UT =

∑
τi∈T ui.

The maximum possible utilization for a single computing unit is assumed to
be equal to 1. Second, the worst-case response time Ri which is defined as the
longest time from a job arriving to its completion. Finaly, the hyperperiod H
which is defined as the least common multiple of all task periods.

All the task parameters cited above are graphically represented in Figure 2.1.

Ti
Di

Ci

φτi d1
i a2

i

Figure 2.1: Periodic constrained-deadline task parameters.

If jobs of different tasks can execute in any order, they are said to be indepen-
dent. Dependencies between tasks can be classified into: control dependencies
(mutual exclusion and precedence constraints) or data dependency. When job jli
can start the execution only after another job jkh finishes its execution in a task
model, then such constraint is called precedence constraint. These precedences
can be modeled using a precedence graph. The latter, is a directed acyclic graph
which represents the precedence constraints among a set of jobs. In real-time
systems, jobs communicate via shared ressources, hence, data of one job depends
on the results produced by others.

Several models that embody these dependencies were proposed in the liter-
ature. In this thesis we focus in particular on phased models (i.e. PREM and
AER) and the common model of parallelism which is the Directed-Acyclic-Graph
(DAG) model.

2.2.2 PREM and AER models

Under PREM model [61], the task code is divided into a set of scheduling in-
tervals executed sequentially at run-time: compatible intervals and predictable
intervals. Predictable intervals are divided into two phases: (i) a non-preemptive
memory phase and a computation phase. In the memory phase, the core/proces-
sor accesses to the main memory to perform data fetches and replacements [50,
61]. At the end of the memory phase, all required data is available in the core
local memory. Therefore, during the computation phase, the task can perform
computations without any need to access to the main memory. Instead, OS
activity is confined to compatible intervals.

18

v1

v2 v3

v4 v5

v6

Figure 2.2: DAG task example

The AER model [39] is an extension of the PREM model. Under this model,
tasks are divided into three distinct phases, namely: acquisition (A) and resti-
tution (R) which are memory phases and a pure computation(E) phase.

These models where data transfers and computations are separated allow to
both mitigate delays related to shared access to the main memory and make them
easier to analyze. Since the memory and the computation phases are decoupled,
it is possible to exploit parallelism. In fact, the computation phases of different
tasks can execute in parallel with any other phase of any other task. These
models ere used in Chapter 5 & 6.

2.2.3 Directed Acyclic Graph (DAG)

A task τi in task set T is represented by a tuple (Gi,Di,Ti), where Gi is a Directed
Acyclic Graph (DAG) that describes the internal structure of τi, Di is its end-
to-end relative deadline, and Ti is its period. A DAG is acyclic, i.e. there is no
closed cycle between vertices of the graph, it can be periodic or sporadic.

Task τi consists of a set of subtasks (execution portions) under precedence
constraints that determine their execution flow. Each subtask is characterized
by a specific WCET and disposes a set of predecessors and a set of successors.
Each DAG may have one or more than one source subtask and one or more than
one sink subtask. A source subtask has no predecessor and it is activated by the
activation of its DAG. A sink subtask is an ending subtask in the DAG and has
no successors. An example of a DAG task is given in Figure 2.2 which shows the
structure of the DAG model.

This model is used in Chapter 6 of this thesis along with the AER model to
build our new task model named AECR−DAG.

19

2.3 Priority assignment for scheduling
In real-time systems, we assume that real-time tasks are arbitrated using a sched-
uler in order to be execute on computing resources such as unicore or multicore
CPUs. Similar to general-purpose operating systems such as Linux, real-time
operating systems also associate a notion of priority to tasks to determine the
order in which they should be scheduled. We can define a scheduler as the al-
gorithm which determine which of the task jobs is run on the core(s) at each
moment of time.

According to the nature of priority assignment, three broad categories of
real-time scheduling are identified: (i) fixed-task priority scheduling, (ii) fixed-
job priority scheduling and (iii) dynamic-job priority scheduling. Under fixed-
task priority scheduling, the priority of the task and all its jobs does not change
during the whole system life; The algorithms Rate Monotonic (RM, Liu and Lay-
land, [135]) and Deadline Monotonic (DM, Leung and Whitehead, [133]) belong
to this first class. Under fixed-job priority scheduling, the priority of the task
is allowed to change but not the priority of jobs. More specifically, a job has a
fixed priority during its execution, but jobs of the same task may have different
priorities. Earliest Deadline First (EDF, Liu and Layland, [135]) represents per-
fectly this class of scheduling algorithm. In the last class of scheduling algorithm,
the priority of a job can changes at each moment of time during the execution.
Least Laxity First (LLF Dertouzos, [134]) is the perfect example of dynamic-job
priority scheduling algorithm.

The various scheduling algorithms cited above are online. They will schedule
the tasks during the execution of the system. There exist also off-line schedulers,
that will determine which task have to be executed based on an offline sched-
ule. An example of an offline scheduler is the time-triggered (TT) discussed in
Section 2.4.

2.3.1 Scheduling characteristics

Before diving into details, it is necessary to give more definitions [28].

Preemption

Preemption is the act of temporarily interrupting an executing job and invoke a
scheduler to determine which process should execute next. Therefore, allowing
higher priority jobs to acquire the preemptible resource. The interrupted job
resumes its execution at some later time point.

Schedulability

A task is referred to as schedulable according to a given scheduling algorithm
if its worst-case response time under that scheduling algorithm is less than or
equal to its deadline. Similarly, a task set is referred to as schedulable according
to a given scheduling algorithm if all of its tasks are schedulable.

20

Feasibility

A task set is said to be feasible with respect to a given system if there exists
some scheduling algorithm that can schedule all possible sequences of jobs that
may be generated by the task set on that system without missing any deadlines.

Optimality

A scheduling algorithm is referred as optimal if it can schedule all the task sets
that can be scheduled by any other algorithm.

Sufficient tests

A schedulability test is said to be sufficient, with respect to a scheduling algo-
rithm and a system, if all of the task sets that are deemed schedulable according
to the test are in fact schedulable.

Necessary tests

Similarly, a schedulability test is said to be necessary if all of the task sets that
are deemed un-schedulable according to the test are in fact unschedulable.

Exact tests

Finally, a schedulability test is termed as exact, if it is both sufficient and nec-
essary.

Predictability

predictability represents an important property in real-time systems where task
execution times are variable up to some worst-case value.

A scheduling algorithm is said to be predictable if the response times of
jobs cannot be increased by decreasing their execution times, with all other
parameters remaining constant.

2.4 Time- vs event-triggered real-time scheduling
Time- and event-triggered are the two major approaches for designing and
scheduling real-time systems. In time-triggered (TT) systems, a pre-elaborated,
offline static plan dictates the exact points in time when each task must execute
and for how long it is allowed to execute. In event-triggered (ET) systems on the
other hand, tasks are released for execution as a consequence of events, whose
times of occurrence are not necessarily known in advance [17]. These events may
indeed be related with time, such as the recurrent expiration of a timer cycle,
but they can also be asynchronous, such as entering a particular system state,
or receiving particular sensor or user inputs. At runtime, the scheduler makes
online decisions about which task to execute, typically based on the priorities
assigned to tasks whose activation events have occurred and need be handled.

21

More extensive comparisons between time- and event-triggered systems are given
in [95, 97].

2.5 Preemptive vs non-preemptive scheduling
Preemption is a key factor in real-time scheduling algorithms, since it allows the
operating system to immediately allocate the processor/core to incoming tasks
that have higher priority to complete [77]. Task priorities are determined by the
scheduling algorithm used. For instance, under dynamic priority scheduling such
as EDF, higher priority task corresponds to higher urgency due to its earlier
deadline.

Through fully preemptive scheduling, the scheduler can suspend a running
task on a processor/core at any time. The context of the preempted task is
saved, and be replaced with the one of the higher priority task. Whenever a
preemption occurs, diffrent sources of overhead must be considered. We will go
into more detail regarding these overheads in the next chapter.

In the contrast, a task can not be interrupted in the non-preemptive schedul-
ing. Once the task starts its execution, it executes until completion, even when
higher priority tasks arrive, which will allow for more predictable execution be-
havior. However, the system utilization may be degraded since additional block-
ing delays must to be considered in this case. This is a popular problem in the
non-preemptive scheduling called the priority inversion. The priority inversion
problem occurs when a higher priority task cannot execute (remains blocked)
waiting for a low priority task to complete its execution.

Indeed, when the preemption cost is neglected in the analysis, fully pre-
emptive scheduling is more efficient in terms of processor utilization than non-
preemptive scheduling.

2.6 Earliest Deadline First (EDF)
In this document, we limit ourselves to fixed-job priority scheduling.

As mentioned previously, Earliest Deadline First (EDF) is a fixed-job priority
scheduler. It assigns the higher priority to the job having the smallest value of
absolute deadline. EDF’s scheduling analysis changes depending on whether
it is preemptive or non-preemptive scheduling. In this chapter, the scheduling
analyses for EDF are presented for systems with and without preemptions.

2.6.1 Preemptive real-time scheduling

Synchronous tasks

EDF is an optimal scheduling algorithm on preemptive uniprocessor, that is, if
there exists an real-time scheduler for a set of tasks, EDF can also schedule these
tasks while respecting their timing constraints. The schedulability analysis of
a preemptive system using EDF algorithm is based on the use of the processor
demand bound analysis proposed by Baruah et al. [130].

22

We start from the concept of demand function. The demand function (df) for
a given task set T is the amount of time demanded by the tasks in an interval
[t1, t2) that the core/processor must execute. The demand function is defined as:

df(t1, t2) =

|T |∑
i=1

∆i(t1, t2) ·Ci (2.2)

where:

∆i(t1, t2) =

(⌊
t2 − φi − Di

Ti

⌋
−
⌈
t1 − φi
Ti

⌉
+ 1

)
0

(2.3)

is the number of jobs of task τi with release time greater than or equal to t1 and
deadline less then or equal to t2 [130].

Considering a fully preemptive single core/processor scheduler, a necessary
and sufficient condition for a set of tasks to be schedulable by EDF consists in
checking that the demand never exceeds the length of the interval.

Lemma 1 (Baruah et al. [130]). The taskset T is feasible on a single core/pro-
cessor (UT ≤ 1) if and only if:

∀0 ≤ t1 < t2 ≤ 2H + φmax, df(t1, t2) ≤ t2 − t1 (2.4)

where φmax is the largest offset.

The worst case demand is found for intervals starting at 0. Thereby, we can
define the demand bound function (dbf. For a set of synchronous periodic tasks
and of a set of sporadic tasks T = {τ1, · · · , τn}, the demand bound function
dbf(T , t) corresponds to the maximum cumulative worst-case execution time of
all jobs having their arrival time and absolute deadline within any interval of
time of length t. It can be computed as follow:

dbf(t) =

|T |∑
i=1

dbfi(t) (2.5)

Where dbfi(t) is the demand bound function of a task τi in the interval of
time of length t computed as follow:

dbfi(t) = df(0, t) (2.6)

An exact schedulability test for a set of synchronous tasks was proposed by
Baruah et al. [130]: if for each interval of length t, the demand bound of the task
set is less than t, then the system is schedulable.

Theorem 1 Given a set of tasks T . T is schedulable on a single core if and
only if:

• UT ≤ 1 and,

• ∀t ≤ L∗, dbf(t) ≤ t

where L∗ is an estimated upper bound on the first idle time.

We can continue testing until H, instead of ending at L∗.

23

Asynchronous tasks

The previous theorem 1 of Baruah et al. [130] does not hold in the case of
asynchronous task sets. It still gives a sufficient condition, in the sense that
if the hypothesis holds for the corresponding synchronous task set, than the
original asynchronous task set is feasible. However the condition is no longer
necessary. Authors in [96] proposed an approximate schedulability test with
pseudo-polynomial complexity for asynchronous task sets:

∀t ≤ L∗, dbf(t) = max
∀τi∈T

ß∑
τj∈T

Çú
t− φj,i − dj

Ti

ü
+ 1

å
0

·Cj
™

(2.7)

where φj,i = (φj−φi) mod Ti. To understand Equation (6.15), consider that
all the other tasks in T are activated with an offset relative to the arrival of τi.
Therefore, we need to align the offset of one task to the beginning of an interval
of length t and compute the workload generated in the interval. We do this for
every task, and then we take the maximum. The resulting dbf is an upper bound
to the actual dbf in that interval.

2.6.2 Non-preemptive real-time scheduling

Synchronous tasks

Jeffay et al. [124] proposed a schedulability test for non-preemptive systems.
This test is valid only for systems with tasks that have implicit deadlines. For
a task set T where tasks are sorted in non-decreasing order by period (i.e., for
any pair of tasks τi, τj, if i > j, then Ti ≥ Tj). If T is schedulable then:

1) ∑
τi∈T

Ci
Ti
≤ 1; (2.8)

2)

∀i, 1 < i ≤ |T |; ∀t,T1 < t < Ti : Ci +
i−1∑
j=1

õ
t− 1

Tj

û
·Cj ≤ t (2.9)

In the first condition, we verify that the processor’s global utilization does
not exceed its computing capacity; Then, the second condition ensures that task
blocking does not compromise adherence to time constraints.

For tasks with constrained deadline, the demand bound function can be ex-
pressed as follow [92]:

dbf(t) =

|T |∑
i=1

dbfi(t) + B (t) (2.10)

where:
B (t) = max{Cj | Dj > t }. (2.11)

is the blocking time due to non-preemptive scheduling.

24

Asynchronous tasks

Schedulability analysis of tasks with offsets has been studied in [96]. Authors
proposed a theorem which deals with blocking time due to mutually exclusive
resources:

Theorem 2 Given an asynchronous task set T . The tasks are schedulable if the
cumulative utilisation is less than 1 (UT ≤ 1) and,

∀t < L∗,
∑
τi∈T

dbfi(t) + B (t) ≤ t (2.12)

This theorem will be extended in Chapter 6 to the AECR-DAG task sets.
Further considerations had to be taken into account for a multiprocessor

settings [1, 103, 131]. As our focus is on working with modern cyber-physical
systems, which typically involve multicore CPUs, in the next section, we provide
background for multiprocessor scheduling on real-time systems.

2.7 Preemptive multiprocessor real-time schedul-
ing

The problem of scheduling real-time applications on multiprocessor systems is
more complicated and challenging than real-time scheduling on uniprocessor sys-
tems. It is because there are more decisions to be taken in the case of multipro-
cessor scheduling and more issues to be considered.

On a multiprocessor, which we deal with throughout this thesis, real-time
scheduling can be further classified into two categories: (i) Global and (ii) Par-
titioned (Semi-Partitioned and Federated scheduling are not considered in this
work).

• Under global scheduling, tasks may migrate across processors.Two diffrent
migration types are found:

– Job level migration: a job can start its execution on a processor and
be interrupted to continue its execution in an other processor.

– Task level migration: a job is executed on only one processor/core,
but jobs of the same task may be executed on different processors.

• Under partitioned scheduling, tasks are pinned to specific processor/core
and may not migrate even if other cores are idle. Mostly, partitioning
algorithms passes through three steps: (i) sorting tasks according to some
criteria (for example sorting by deadline); (ii) Assign tasks to a processor;
(iii) and the use of uniprocessor scheduling algorithms on each processor
to schedule the processor’s tasks after each task-to-processor assignment.

25

To make the difference between the two categories, we present in the following
an illustration example of a platform with 4 cores (Figure 2.3). In Figure 2.3a
representing the partitioned scheduling, each core has its own ready-queue. In
the other hand, in Figure 2.3b representing the global scheduling, all cores have
the same ready-queue and the m-highest priority jobs are run at the same time
on m-processors.

Core 1

Core 2

Core 3

Core 4

τ1τ5

τ3

τ2 τ4

(a) Partitioned Scheduling.

Core 1

Core 2

Core 3

Core 4

τ1 τ5 τ3 τ2 τ4

(b) Global Scheduling.

Figure 2.3: Partitioned scheduling vs global scheduling.

While it may seem intuitive to always prefer global scheduling due to higher
utilization benefits, previous works have shown that partitioned scheduling is
much easier to analyze and can be used for most practical cases instead because it
effectively boils down to the uniprocessor case for each core, allowing a large body
of existing analyses to be applicable [25]. On the contrary, while global scheduling
offers fast average-case response times, it is relatively harder to analyze and
has high overheads in practice [67, 81]. The worst-case performance remains
comparable to partitioned scheduling, which makes it less gainful for real-time
systems. As a result, we focus on partitioned fixed-job priority task scheduling
in our work.

An important consideration under partitioned scheduling is the manner in
which tasks are partitioned across multiple computing resources. As this is
proved to be a NP-hard problem, existing real-time literature suggests the use of
heuristics such as Best-fit (BF and Worst-fit (WF) [1, 103] to allocate tasks on
processor cores. In this thesis, we propose several exact methods for real-time
task partitioning on a multicore platform.

2.8 Conclusion
In this chapter, we presented an overview of real-time systems and scheduling
theory for uniprocessor and multiprocessor systems. We assume that all ingre-
dients are ready to enter into our problem analysis. In the next chapter, we will
discuss in details the runtime overheads in multicore architecture.

Chapter 3

Processor and Memory
Co-scheduling in Multicore Systems

Contents
3.1 Introduction . 27

3.2 Cache related delays in multicore systems 27

3.3 Shared resources contention: main memory and buses 29

3.4 Related work . 30

3.5 Conclusion . 34

26

27

3.1 Introduction
Real-time operating systems were initially designed for single-core platforms,
where the use of real-time scheduling policies, efficient inter-process communica-
tion, and prioritized interrupt handling is enough to ensure temporal predictabil-
ity. Support for multicore platforms was later introduced without a substantial
change in design, resulting in a new set of challenges. For example, in an auto-
motive environment, new safety functionalities like “automatic emergency break-
ing” and “night view assist” must read and fuse data from sensors, process video
streams, and rise warnings when an obstacle is detected on the road all under
real-time constraints [32, 60]. All these functionalities demand large compu-
tational power which can be ensured by multicore platforms. As mentioned,
multicore processors generally feature shared resources including main memory,
buses, caches, and input/output (I/O) peripherals. This has a great impact on
the predictability of real-time systems which is critical for correctly estimating
the worst-case execution time of tasks. In fact, a fundamental assumption com-
mon to all schedulability analysis techniques found in the literature is that an
upper bound on the worst-case execution time of each task is given prior the
analysis.

Several sources for temporal unpredictability could be noticed, a deep study of
the sources is proposed in [43]. According to [43], these sources can be categorized
into: primary sources including caches, main memory, and memory controller;
and secondary sources including hardware-prefetching, power saving strategies
and system management interrupts. These sources of temporal unpredictability
increases considerably WCET estimates.

3.2 Cache related delays in multicore systems
The first main factor of temporal unpredictability in a multicore processor that
we consider in this work is the cache memory hierarchy[51, 73, 85].

In fully preemptive systems, preemption can introduce a significant runtime
overhead and may cause high fluctuations in task execution times. In fact, in
such systems, preemption is allowed at any time during task execution. It is
not possible to control the number of preemption points thus, degrading system
predictability. In particular, at least four different types of costs need to be taken
into account at each preemption [47]:

• Scheduling cost. It is the time taken by the scheduling algorithm to suspend
the running task, insert it into the ready queue, switch the context, and
dispatch the new incoming task;

• Pipeline cost. It accounts for the time taken to flush the processor pipeline
when the task is interrupted and the time taken to refill the pipeline when
the task is resumed;

• Bus-related cost. It is the extra bus interference for accessing the RAM
due to the additional cache misses caused by preemption;

28

• Cache-related cost (CRPD). It is the time taken to reload the cache lines
evicted by the preempting task.

It has been shown in [82] that, in some cases, the cumulative preemption
overhead may increase a task’s execution time up to 33%.

Since preemption destroys program locality, WCET estimates of preemptive
tasks are computed by assuming worst-case cache related delays, given by the
extra operations needed for refilling the cache lines evicted by the preempting
task. In small embedded systems, such an extra cost results in longer and more
variable response times that can also significantly affect the overall energy con-
sumption [56].

Limiting preemptions is often possible without jeopardizing schedulability.
In this context, the Limited Preemptive Models (LPM) has emerged in order to
increase the predictablity and reduce the overall preemption overhead of such sys-
tems, and, consequently, to increase their schedulability [47]. There are different
mechanisms for limiting preemption, among which we cite [63]:

• Fixed Preemption Points (FPP). Each task, under this model, is divided
into a number of non-preemptive blocs separated by predefined preemption
points inserted in the task code. If a higher priority task arrives between
two preemption points of the running task, preemption is deferred until the
next preemption point.

• Floating Non-Preemptive Regions (NFP). This approach consists in con-
sidering for each task τi a number of NPRs each with a maximum length,
whose location is unknown. In this model, NPRs can be considered to be
floating in the task code.

• Preemption Thresholds (PT). The concept of preemption thresholds, first
proposed by [114] under fixed priority systems, is the basis of this approach.
Using this method, a task is able to disable preemption up to a specified
priority called preemption threshold. Each task is assigned a regular prior-
ity and a preemption threshold, and the preemption is allowed only when
the priority of the arriving task is higher than the threshold of the running
task. This work has been later improved by [102].

It is important to note that, in the FPP model, the length of the final non-
preemptive block plays a crucial role in reducing the task response time. A large
final non-preemptive block allows reduce in the interference the task may suffer
from higher priority tasks. However, the length of the final non-preemptive block
cannot be arbitrarily large to limit the blocking time imposed to higher priority
tasks [54]. In the floating NPR model, instead, the exact location of each non
preemptive region is not known a priori, so that a task could be preempted even
by an arbitrarily small amount of time before the end of the execution, increasing
the resulting response time. From a practical point of view, using fixed preemp-
tion points allows achieving higher predictability. In fact, by properly selecting
the preemption points in the code, it is possible to reduce cache misses and con-
text switch costs, therefore improving the estimation of preemption overheads

29

and worst-case execution times [63, 88]. For this reason, we will use the FPP
model in Chapter 5 in order to reduce the preemption overhead.

3.3 Shared resources contention: main memory
and buses

The second main factor of temporal unpredictability in a multicore processor
that we consider in this work is contentions in particular those related to the
main memory and the communication buses.

Currently, most COTS architectures feature a single port main memory that
is shared for among all cores and I/O peripherals. The active components in these
architectures (e.g. cores) can independently initiate access to shared resources,
which cause contentions. In particular, contention for access to main memory can
significantly delay data fetch, increasing the real-time task’s worst case execution
time (WCET) [74]. These shared resources are managed exclusively in hardware
and they treat requests coming from different tasks running on different cores as
if they were all requests from one single source (core) [51].

Two approaches are popular: (i) estimating the worst-case interference pro-
files and deriving safe execution time bounds; (ii) avoiding interference at the
system design level. In the first approach, the hardware platform and the task
execution must be modeled accurately: the memory access profiles of all tasks
are extracted and combined with each other to estimate the worst-case profile.
In general, it is difficult to precisely compute the worst-case interference pro-
file, which likely leads to include scenarios that might never occur, therefore
over-estimating the worst-case interference cost. The second approach tends to
prevent interference by enforcing time isolation (e.g. time partitioning schemes
like MemGuard [36]).

An intermediate approach is to use appropriate application models such as
the Acquisition-Execution-Restitution model (AER) [39], or the PRedictable Ex-
ecution Model (PREM) [61]. In the latter, a task is modeled by two distinct
phases: a memory phase and computation phase. In the memory phase, data is
exchanged between main memory and local memory. This includes write-back of
the computed data from the local memory to main memory of the previous job,
and fetching new data for the activated job from the main memory to the local
memory. In a computation phase, loaded data is processed and all access to the
main memory is forbidden.

Finding the proper way of scheduling memory phases is not straightforward.
One difficulty is the lack of hardware support for real-time scheduling on the bus.
Typical bus controllers available on commercial platforms support very simple
policies like First-In-First-Out (FIFO) or slot-based time-triggered scheduling.
FIFO safe-response time bounds are known to be very large, whereas fixed slots
are not flexible enough to efficiently support the variety of application require-
ments. The problem is even more complex, as the respect of timing constraints
requires to tightly co-schedule and analyze the memory phases and the compu-
tation phases.

30

3.4 Related work
In this section, we briefly present the main algorithms and results regarding real-
time runtime overhead-free scheduling in multicore systems which are found in
the state-of-the-art. This chapter is divided into two sections. The first Sec-
tion 3.4 concentrates on preemption overheads on multicore systems and we
review the main task models and scheduling algorithms proposed to reduce pre-
emption overheads. Section 3.4 describes the contention problem and its effect
on the WCET estimation. Then, we present the different task models proposed
in the litterature to solve the problem of contention in particular those related
the communication bus and main memory.

Preemption overheads in multicore systems

Many authors [31, 38, 55, 59, 78, 86, 94, 123] have focused on reducing the
cost of preemptions in the real-time systems scheduling theory and practice from
different perspectives. A good survey overviewing limited preemption models
can be found in [48].

In Chapter 4, we focus on the deferred preemption model (DPM). In such
model, a task is divided into a set of non-preemptive chunks separated by
preemption-points. At runtime, preemption can only happen at the boundaries
of non-preemptive chunks: if a higher priority task arrives while a lower prior-
ity task is executing, the preemption is delayed until the next preemption point.
DPM increases predictibility and reduces preemption overhead compared to fully
preemptive systems, and reduces blocking time compared to non-preemptive
scheduling. Two models of preemption handling have been proposed: the float-
ing preemption point model, and the fixed preemption point model. In the first
model, a preemption point can be inserted at any place of the task code, whereas
in the second model the preemption points are fixed prior to analysis.

DPM has been first introduced in [123]. Baruah [94] proposed techniques to
compute the maximum length of any interval of time where a given task can ex-
ecute non-preemptively without violating the schedulability for EDF under the
floating preemption points model. The same bounds for fixed priority scheduling
has been proposed in [80]. Response time analysis has been improved in [78] by
considering special cases where the last non-preemptive chunk can delay the ex-
ecution of higher priority tasks. Authors in [68] proposed schedulability analysis
for both fixed priority and EDF.

In [68], authors tackled the problem of finding the best possible placement of
preemption points, they assumed an identical preemption cost for all preemption
points. Davis and Bertogna [49] introduced an optimal algorithm for fixed prior-
ity scheduling with deferred preemption. Authors in [63] propose schedulability
analysis for the fixed preemption model under fixed priority scheduling by con-
sidering preemption points with different costs. The latter has been extended in
[55] for EDF and using an optimal algorithm to select preemption points while
respecting all timing constraints.

Another alternative, called hybrid preemption model, has been presented

31

in [114], based on the Preemption Thresholds Scheduling (PTS) approach in
which a task can disable preemption up to a specified priority level(preemption
threshold). Each task is assigned a preemption threshold and regular priority
also, and it is allowed to preempt only when its priority is higher than the
threshold of the preempted task. An exact schedulability analysis for FP with
preemption thresholds has been presented in [72].

In order to compute the Cache Related Preemption Delay (CRPD), we need
to consider different factors: (i) the preemption point PP in the code of the
preempted task where the preemption occurs, (ii) the cache blocks used until PP
and that may be reused by the preempted task after preemption, and finally, (iii)
the evicting cache blocks of the preempting task [52]. Therefore, the CRPD is
bounded by (R × BRT) where R is an upper bound on the number of reloaded
cache blocks and BRT is a cache block reload time.

Among the cache-aware schedulability analyses, Altmeyer et al [45] proposed
ECB/UCB-Union Multiset approaches. These approaches account for a more
precise number of nested preemptions that can occur during a resource access,
comparing to the first exact analyses: ECB/UCB-Union appraoches [91], [52]
which consider that the CRPD can be computed by intersecting the useful cache
blocks and evicting cache blocks.

Minimizing cache overhead using limited optimal preemption point placement
algorithm using dynamic programming is presented in [30]. The authors have
proposed a novel method to calculate the CRPD taking into account the selected
preemption points resulting in greater accuracy. Complementary work by Bril et
al [40] recently integrated CRPD costs into fixed priority preemption threshold
schedulability analysis for taskset with arbitrary deadlines. Optimal priority
thresholds are assigned via a CRPD cost minimization.

Both approaches presented in [116, 121] adopt a FP scheduler using deferred
preemptions, with the common goal of reducing the preemption overhead by
properly placing the preemption points, these approaches uses heuristic strategy
for the placement of preemption points.

All researches which are described before consider only single core platforms.
When considering multiprocessor scheduling, the allocation problem must be
taken into account. For example, in global scheduling, a single job may execute
onto more than one core, if it is preempted, leading to higher CRPD.

Authors in [38] studied the schedulability of the DPM under global EDF. In
this work, a pseudo-polynomial time schedulability test has been proposed for
limited-preemption scheduling under global multiprocessor platforms. In [31] au-
thors propose schedulability analysis for Global Fixed Priority Scheduling with
Deferred Preemption for identical cores platforms. They showed that the algo-
rithm introduced in [49] is not optimal in the multiprocessor case.

When considering partitioned scheduling, the schedulability analysis of single
core described above can be used to ensure the respect of real-time constraints
as a single core level. However, the allocation problem is NP-HARD as it is a
particular case of the bin-packing problem. Authors in [31] addressed the alloca-
tion problem for partitioned multiprocessor systems using deferred preemption.
They used the First-Fit (FF) heuristic to allocate tasks to different processors.

32

Their experimental evaluation showed that partitioned scheduling using deferred
preemption provides significantly improved performance over fully preemptive
partitioned scheduling and non-preemptive partitioned scheduling.

Contentions in multicore systems

Contention on memory resources was the subject of many research works [19,
23, 37, 50, 90]. Some of them propose new execution models making use of
pre-fetching techniques [90]. It has been shown in [119] that these techniques
improve the cache/scratchpad locality and reduce in average worst-case execution
times.

Another possibility to minimize contention in the shared memory resources
is to decouple the memory requests from the actual application execution, so
to guarantee that these requests are performed exclusively in isolation. This
can easily be ensured by using a Time Division Multiple Access (TDMA) based
protocol to enforce timing isolation among all the tasks in the system. The AER
model proposed in [39] follows the same approach, with the aim of increasing the
predictability of applications executing on COTS-based platforms.

PREM was introduced in [61] to co-schedule both memory requests from CPU
and I/O with computations on uniprocessor platforms with multi-level caches.
In this model, tasks are modeled in two phases: (i) a memory phase where all
data are transferred from/to the main memory to/from a local memory, and (ii)
a pure execution phase where the loaded data are processed. The model greatly
reduces the variability of memory-contention latency by explicitly controlling
memory accesses during memory phases. In [50], PREM has been extended to
partitioned multicore/processor platforms, where isolation is provided through
a coarse-grained TDM memory schedule. The scheduling policy of each core
favors the priority of its pending memory phases above computation phases in
order to ensure better utilization of the TDMA slots. The AER model is a
generalization of the PREMmodel from [61]. It introduces two main advantages:
(i) contention on memory resources is avoided by requiring memory phases to
execute exclusively, by having only one memory phase (A or R) running at any
time instance. (ii) the task’s parallel execution in each core is allowed since the
memory phases are decoupled from the computation phase.

In [24], Becker et al. presented an approach to time-triggered scheduling for
automotive runnables on a many-core platform. Memory bank privatization is
used to avoid contention between memory accesses from different cores. Each
core has a private memory bank and runnables are assumed to have read-execute-
write phases (AER model). The scheduling algorithm executes each runnable
non-preemptively, and ensures that accesses to the shared memory bank made in
read and write phases do not overlap, thus avoiding contention on the shared bus.
The task allocation problem is formulated as an Integer Linear Programming
(ILP) problem, whose solution is the optimal time-triggered schedule for the
on-core execution as well as for the access to shared memory.

Recent research on memory-centric scheduling is presented in [12]. The au-
thors proposed a fixed-priority memory-centric scheduler for predictable memory

33

management on COTS multiprocessor platforms without the need for any hard-
ware support. The work in [10] focuses on bus contention for the 3-phases task
models and assumes First-Come First-Served (FCFS) bus arbitration. Works
in [10, 12, 24] are the closest to the first part of our work.

Several task models have been proposed to express data dependency within
real-time task, most of them are based on DAGs, e.g.,[20, 26, 29, 46]. Nodes
represent subtasks, and edges define communications and precedence constraints
between nodes. In this manner, a subtask becomes ready for execution as soon as
all its communications and precedence constraints are satisfied. In such model,
memory transfers can take place on two different levels: (i) between cores and
main memory and/or (ii) between cores’ local memories.

Partitioned scheduling is generally more adapted to this type of application
than global scheduling. In fact, in global scheduling tasks may migrate from one
core to another at any time, and this implies large migration overheads, which
are much greater in architectures with scratchpads since both needed data and
code of the subtask have to migrate.

In partitioned scheduling, all subtasks of all DAGs are first allocated on cores,
and then a separate scheduler is used for each core. Therefore, the problem is
transformed into an allocation problem plus a number of separate and indepen-
dent scheduling problems.

A number of partitioning algorithms that map dependent tasks to cores have
been presented in the literature. Most of them are heuristics and operate on a
single DAG task. They allocate each node of a DAG to a processor or a core.
In [7], a partitioning heuristic and graph reduction techniques are proposed for
DAG tasks. They consider identical cores and fixed-priority preemptive sched-
ulers. In this paper, we propose an ILP formulation to compute the DAG task
mapping that minimizes the communication delays and allows us to turn-off
maximum communications.

The authors of [14] have studied the probabilistic response time analysis of
DAG tasks on multicore platforms using partitioned fixed-priority scheduling.
They proposed a priority assignment algorithm at the subtask level to define the
execution order between different nodes from the same graph in order to reduce
the response time of the entire DAG task while considering communication times
for the subtasks scheduled on different cores. Although this work tries to mini-
mize the inter-subtask communications costs, they do not consider scratchpads
nor communication scheduling.

Another effective technique to schedule DAG tasks on multicore platforms
is to assign intermediate deadlines and offsets to subtasks in order to enforce
the precedence constraints. By completing the deadline and offset assignments,
a DAG task is transformed into a set of independent subtasks. Two heuristic
algorithms are popular: Fair distribution and Proportional distribution. These
techniques were used in [11, 15, 20, 44].

34

3.5 Conclusion
In this chapter, we first presented our main problem. We show that it is of a
paramount importance to focus on reducing the runtime overheads, in particu-
lar shared resource contention, in order to increase temporal predictability on
multicore platforms. We give the different sources of temporal unpredictability,
and we detail each of the sources. Secondly, we reviewed the different related
works in the literature. In the rest of this thesis, we will present three main con-
tributions to improving temporal predictability in multicore real-time systems
by mitigating contention on shared resources. We introduce a new task-graph
model based on the AER model and a set of processor-memory co-scheduling
algorithms and their corresponding schedulablity analysis.

Part II

Contributions

35

Chapter 4

Allocation of Real-time Tasks Onto
Identical Core Platforms Under
Deferred Fixed Preemption-point
Model

Contents
4.1 Introduction . 37

4.2 System model . 37

4.2.1 Task model . 37

4.2.2 Architecture model 38

4.3 Limited Preemption analysis for single-processor . . 39

4.3.1 Maximum non-preemptive execution-time 39

4.3.2 Selection of effective preemption points 40

4.4 Task allocation . 40

4.4.1 Enumerating algorithm 41

4.4.2 Branch and Bound . 42

4.4.3 Computational complexity 46

4.4.4 Allocation heuristics 47

4.5 Results and discussions 48

4.5.1 Task generation . 48

4.5.2 Simulation results and discussions 48

4.6 Conclusion . 52

36

37

4.1 Introduction
In this chapter, we adress the problem of allocating a set of real-time tasks on
m-identical cores with the goal of reducing the preemption cost. We use the
deffered fixed preemption point model to represent each task. This model allows
for more predictability and help us to reduce shared memory contention. In the
first part of this chapter, we present the task and the architecture models, then
we present the different approaches proposed for task allocation. We propose
enumerative and branch-and-bound optimal algorithms, along with techniques
to reduce their computation time. Further, we propose a set of heuristics to solve
the same problem.

4.2 System model

4.2.1 Task model

Let T = {τ1, τ2, · · · , τn} be a set of n tasks. Each task τi is a (infinite) sequence
of jobs. Each task τi is characterized by (Γi,Λi,Di,Ti) where :

• Γi = {γ1
i , . . . , γ

npi+1
i }: is the basic block list. A basic block γji ∈ Γi is

a sequential non-preemptive chunk of code of task τi. That is, once a
basic block starts executing, it can not be preempted by any other higher
priority task. Each block γji is characterized by its worst-case execution
time denoted by C(γji). There are npi + 1 basic blocks in a task, where npi
is the number of preemption points.

• Λi = {λ1, ..., λnpi}: is the list of preemption points. Preemption point
λ ∈ Λi is the boundary between blocks γλi and γλ+1

i . C(τi, λ) is the cost
that must be taken into account when preempting task τi between basic
blocks γλi and γλ+1

i .

• Di: is the task’s relative deadline.

• Ti: is the task period. We consider sporadic tasks.

In this part, we consider constrained deadlines, that is Di ≤ Ti. Tasks are
considered to be independent.

The goal here is to select a subset of Λi, denoted by Λi = {λ1

i , . . . , λ
s

i}, for
every task τi, such that preemption is allowed only at preemption points in Λi,
while meeting all deadlines and minimizing preemption costs. Preemption points
in Λi are called effective-preemption points.

Let s = |Λi| be the number of selected preemption points. The task is then
divided into a set of s + 1 non-preemptive regions NPR1

i , . . . ,NPR
s+1
i . A non-

preemptive region is the union of consecutive non-preemptive blocks between
which no preemption point has been selected. They can be expressed as follows:

38

∀k = 1, . . . , s NPRki =

λ
k+1
i⋃

j=λ
k
i

γji and NPRs+1
i =

npi+1⋃
j=λ

k
i

γji (4.1)

Clearly, for any λ 6∈ Λi, C(τi, λ) = 0. We define the worst-case execution time
of a non-preemptive region to the sum of the execution times of its blocks, plus
the preemption cost of a preemption before:

C(NPRki) =

λ
k+1
i∑

j=λ
k
i

C(γji) + C(τi, λ
k−1

i) (4.2)

(without loss of generality we assume that the cost of C(τi, λ
0

i) is equal to 0).
Therefore, the total execution time of task τi, including the cost of preemp-

tion, can expressed as:

C(τi,Λi) =

npi+1∑
j=1

C(γii) +
∑
λ∈Λτi

C(τi, λ) (4.3)

We define by NPRmax
i the non-preemptive region of τi having the largest

execution time and we determine the task utilization as a function of the selected
preemption points as follows:

ui(Λi) =
C(τi,Λi)

Ti
(4.4)

γ11 γ21 γ31

C(γ11)

C(NPR2
1)

λ
2 1

λ
3 1

C(τ1,Λi = {λ2
1, λ

3
1})

Figure 4.1: Example of parameters for a task with 3 basic blocks and 2 effective-
preemption points.

Example 1 Figure 4.1 illustrates an example of a task with 3 basic blocks and
2 preemption points. We assume that all preemption points are effective. On the
figure, we show the blocks, the non-preemptive regions and the execution times.

4.2.2 Architecture model

In this contribution, we consider a platform composed of m identical cores with
partitioned scheduling. Tasks are allocated (partitioned) to the available cores

39

before execution. As mentioned previously, compared to global scheduling, parti-
tioned scheduling reduces the overhead due to task migrations. It also simplifies
the analysis, because it transforms the scheduling problem on m-identical core
platform to an allocation problem andm independent single-processor scheduling
problems, for which well-known efficient preemption-point selection techniques
exist.

4.3 Limited Preemption analysis for single-
processor

In this section, we review existing techniques to select preemption points, as well
as schedulability analysis for a set of deferred preemption real-time tasks on a
single core platform. The schedulability analysis is done in two steps: (i) first,
it computes the maximum feasible non-preemptive execution time, (ii) then it
selects preemption points using the algorithm proposed in [55].

4.3.1 Maximum non-preemptive execution-time

Algorithm 1 computing the length of the non-preemptive region
Require: T : Task set
1: deadlines = compute_and_sort_absolute_deadlines(T)
2: slack = deadlines[0]− dbf(T , deadlines[0])
3: for (∀d ∈ deadlines− {deadlines[0]}) do
4: check_feasibility(d,H)
5: slack = min(slack, d− dbf(T , d))
6: if (slack < 0) then
7: return false
8: end if
9: if (d = Dj, for some task τj ∈ T) then
10: Q(τj) = slack
11: end if
12: end for
13: return true;

Let Q(τi) be the largest non-preemptive interval for task τi. It represents the
maximum time that task τi may execute non-preemptively without violating any
timing constraint. Baruah et al. in [94] have proposed techniques to calculate
Q(τi) for EDF, similarly in [80] for fixed priority. The algorithm to compute
Q(τi) for EDF is reported in Algorithm 1.

The algorithm starts by listing all deadlines in the interval [0,H] (line 1).
Then computes the slack as the maximum difference between each deadline and
the demand bound function, until the relative deadline of each task. If the slack
is negative (Line 6) for some deadline, then the taskset is not schedulable under
EDF.

40

4.3.2 Selection of effective preemption points

At this level, we assume that Q(τi) has been already computed, and the goal of
this second step is to select effective preemption-points. Bertogna et al.

Theorem 3 (Bertogna et al. [55]) A task set T is schedulable if:

∀τi ∈ T , C(NPRmax
i) ≤ Q(τi) (4.5)

[55] proposed a sufficient schedulability test (Theorem 3): a task set is schedu-
lable if the execution time of any non-preemptive region is less than the maximum
non-preemptive interval.

Several solutions may verify Condition (4.5). Bertogna’s algorithm based on
dynamic programming selects a set of effective preemption-points with the goal
of optimally reducing the overall preemption overhead [55].

1. We noticed that the optimality of preemption points selection algorithm
[55] leads to a lower preemption cost for a more relaxed non-preemptive
interval. This property is used to prove Theorem 5 in Section 4.4.

Note that Condition (4.5) is necessary and sufficient under EDF [55].

4.4 Task allocation
In this section, we present how tasks can be allocated to cores to reduce the
overall preemption costs. Let T be a set of n tasks to allocate on m identical
cores. In the rest of this section, we will first present two exact algorithms:
(i) an enumerating algorithm able to eliminate branches and solutions either for
schedulability or optimality concerns and (ii) an exact algorithm based on Branch
and Bound (BB). Further, we present a set of heuristics to solve the allocation
problem.

Our allocation algorithms (exact and heuristic) use a list of not yet-allocated
task ordered according to a given criterion. The algorithm selects a task and a
core, and attempts to allocate the selected task to the selected core. According
to the state of the not yet-allocated task list, the current solution can either be
called an allocation or a branch.

Definition 1 Let T be a set of n tasks to be allocated onto m identical cores.
Assignement S : T → P ∪ {na} is a mapping function defined by:

S(τi) =

ß
p ifτi is allocated to core p ∈ P
na otherwise

(4.6)

S(·) is called an allocation, if: ∀τi ∈ T ,S(τi) 6= na, otherwise, it is called a
branch.

We define Alloc : T → {S1(·) . . .Sx(·)}, as the set of x possible allocations,
where x is a finite number of allocations.

41

Definition 2 Let Sk(·) be an allocation (resp. a branch). We denote by
cost(Sk(·)) the preemption cost of allocation (resp. branch) Sk(·). It can be
computed as follows:

cost(Sk(·)) =
m∑
j=1

∑
τi∈Tj

∑
λ
l
i∈Λi

C(λ
l

i)

Ti
(4.7)

4.4.1 Enumerating algorithm

The exact enumerating algorithm explores the space solution by solution. It is
able to either cut a branch or to eliminate an allocation and preserve the optimal
solution. An overview of our enumerating procedure is disclosed in Algorithm 2.

Algorithm 2 generate_evaluate_solutions(T ,P ,Scurr)
1: if (T = ∅) then
2: if (cost(Scurr) < cost(Sbest)) then
3: Sbest = Scurr
4: return
5: end if
6: end if
7: τi = select the shortest relative deadline task from T
8: for (p ∈ P) do
9: allocate τi to p for the current allocation Scurr
10: if (schedulable(Scurr, τi, p)) then
11: Snew = Scurr
12: generate_evaluate_solutions(T \ τi,P ,Snew)
13: end if
14: end for

The algorithm generates all allocations recursively, it takes as input the set of
all tasks in T sorted by relative deadlines in increasing order, the set of cores P
and the current branch/allocation, and it returns the solution with the minimum
preemption cost Sbest. In the beginning, it selects a task and a core and it tries
to allocate the selected task to the selected core (Line 9). Therefore, it tests the
schedulability (Line 10) for the concerned core, using Algorithm 3. Further, the
algorithm removes the studied task from T , and executes the recursive call (Line
12) for the new branch/allocation Snew. If this test fails then, the branch/allo-
cation is aborted. Once T is empty, the algorithm saves the best solution and
continues to evaluate the next one. The algorithms repeats the latter operations
for every task on all cores.

Algorithm schedulable (Algorithm 3), which tests the schedulability of the
selected core p, uses properties of algorithm 1 and Property 1. It takes as input
the selected task, the concerned core p and the task set already allocated to p.
First, it tests the schedulability using a fast necessary utilisation based-test (Line
1). If the test is successful, then it computes the maximum of the non-preemptive
interval of tasks already allocated to p using Algorithm 1 (Line 2). The latter

42

checks the schedulability until the hyper-period using dbf-based test (lines 5-8
in Algorithm 1). When schedulability test of algorithm 1 is performed then,
our algorithm selects the effective preemption points by invoking the algorithm
presented in [55] to determine the non-preemptive regions only for the studied
task τi (Line 4). If condition (4.5) is respected during all the effective preemption
points selection process, then, the algorithm updates the total execution time of
the task τi, including the cost of preemption (Lines 6 and 7). If these tests fail,
then the algorithm aborts on fail.

Therefore, when adding a new task to the current branch, the already com-
puted maximum non-preemptive region and the selected points for the already
allocated tasks do not need to be recomputed.

Algorithm 3 schedulable(Scurr, τi, p)

1: if (fast_utilization_test(p)) then
2: res_Q = compute_max_length_NPR(Scurr) using Algo 1
3: if (res_Q) then
4: res_npr = compute_NPR(τi,Q(τi)) using Algo in [55]
5: if (res_npr) then
6: update_C(τi)
7: update_total_cost(p)
8: return true
9: end if
10: end if
11: end if
12: return false

Optimality of the enumeration algorithm

To prove the optimality of the enumeration algorithm, we prove Theorem 4
below.

Theorem 4 The enumeration algorithm explores all schedulable allocations and
selects the optimal one.

Proof 1 The proof derives from the recursive structure of the algorithm. For
every task, all possible cores are tried (Line 8), and the algorithm invokes itself
every time with a smaller set T (Line 12). Moreover, all schedulable solutions
are explored at (Line 1), thus the best solution is selected.

4.4.2 Branch and Bound

In this section, we present a recursive algorithm based on branch and bound
(Algorithm 4), and prove its correctness.

The algorithm uses a set of non allocated tasks T in the current branch/allo-
cation Scurr and a list L of not-yet-finished branches. At each iteration, it selects
a branch and tries to allocate the shortest relative deadline task in T (selected

43

in Line 8) to every core in the platform. Thus, it creates m new branches at each
iteration.

For each new branch, the schedulability is tested : (i) without a complete
evaluation of the branch (allocation) using Theorem 5 and Lemma 2 detailed
below (Line 10); (ii) If not possible, the maximum non-preemptive region length
is evaluated and the effective-preemption points are selected only for the selected
task (Line 11) using dbf-based test according to Algorithm 3. If these tests fail,
then the branch is discarded. In the opposite case, the branch is added to the list
of not-yet-finished branches L (Line 12). Once, the non-yet-allocated task list
T for the current branch is empty, the algorithm compares the allocation to the
best known solution. If it improves it, the solution is saved and the lower-bound
is updated (Lines 3-5). The latter is used to eliminate all branches having a
preemption cost greater than the new lower-bound (Line 17).

While the not-yet-finished branches L is not empty, the algorithm selects
a new branch to be explored in the next iteration (Line 21) according to two
alternative criteria:

• the branch having the least preemption cost is selected first (depth-first);.

• the branch having the least number of tasks in its non-yet-allocated list, is
selected first (breadth-first).

In the rest of this section, we will show how schedulability can be tested with-
out a complete evaluation (i.e. without invoking the preemption-points selection
process).

Definition 3 Let Si(·) and Sj(·) be two distinct allocations, (resp. branches)
(i 6= j).

We define the relation order > as follows:

Si(·) > Sj(·) =⇒ cost(Si(·)) < cost(Sj(·)) (4.8)

Relation > orders allocations (resp. branches) according to their preemption
costs. Note that in the case of equal costs, we can not judge if Si(·) is better
than Sj(·).

Definition 4 Let S1(·) and S2(·) be two distinct allocations. We denote by τi
a task in allocation S1(·), and by τ ′i the same task in allocation S2(·).

We define the relation order � as follows :

S1(·)� S2(·) =⇒ ∀i,Q(τi) ≥ Q(τ ′i) (4.9)

The relation order � allows to define a dominance relation between two
allocations by calculating only maximum non-preemptive regions lengths Q(τi),
rather than a complete selection of preemption points.

Theorem 5 Let S1(·) and S2(·) be two distinct allocations. S1(·) �
S2(·) =⇒ S1(·) > S2(·)

44

Algorithm 4 branch_and_bound(Scurr, bound)

Require: global variables: L = ∅, Sbest
1: T = set of non allocated tasks in Scurr
2: if (T == ∅) then
3: if (cost(Scurr) < bound) then
4: Sbest = Scurr
5: bound = cost(Scurr)
6: end if
7: else
8: τ = select the shortest relative deadline task from T
9: for (∀p ∈ P) do
10: if (not_dominated(Scurr, Sbest)) then
11: if schedulable(Scurr, τ, p) then
12: L = L ∪ {Scurr[τ allocated on p]}
13: end if
14: end if
15: end for
16: end if
17: L = eliminate_branches(L, bound)
18: if (L == ∅) then
19: return Sbest;
20: end if
21: S = select_the_minimum_branch(L)
22: branch_and_bound(S, bound);

Proof 2 The proof is derived from Property 1 and Definitions 3, 4. Let consider
Q(·) be the maximum non-preemptive region for a given task on allocation
S1(·) and Q(·)′ be the maximum non-preemptive region for the same task on
allocation S2(·). We assume Q(·) > Q(·)′. From Property 1, it follows that the
preemption cost in allocation S1(·) is less than the preemption cost in allocation
S2(·). According to Definition 3 S1(·) > S2(·), proving the theorem.

According to Theorem 5, it is not necessary to compute the preemption points
to test domination between two allocations. In fact, we can avoid computing the
preemption points for the dominated solution, further reducing the execution
time of the algorithm.

Lemma 2 Let consider n tasks to allocate to m processors, with: n > m
Any feasible solution S(·), having at least one free processor (without any

task), is dominated.

Proof 3 The proof is straightforward from Theorem 5. In fact, having a free pro-
cessor implies that for any non-empty processor, a task can be selected and real-
located to the free processor, thus producing a higher maximum-non-preemptive
region length. Therefore, the new solution dominates the one with an empty
processor according to Theorem 5.

45

According to this lemma, it is not necessary to evaluate the allocations having
at least an empty processor: the algorithm needs not to compute the maximum
non-preemptive region length as it will not lead to optimal solution.

The theorems and lemmas described in this section are used to eliminate
allocations at (Lines: 10 and 17) in Algorithm 4.

Branch and Bound optimality proof

First, we prove that all branches generated by the branch and bound algo-
rithm having a preemption cost greater than the lower bound are dominated by
the best known solution. Further, we demonstrate that our algorithm preserves
the optimal solution at each branch level.

Lemma 3 Let S(·) be a branch in the set of not-yet-finished branches L, and
let cost(S(·)) > bound. Then all solutions belonging to the branch S(·) have
larger cost than the currect bound.

Proof 4 When new branches are explored, tasks can only be added to cores.
Since tasks are sorted by deadlines in non-decreasing order, the preemption cost
can only increase. Thus, the branch S(·) having a preemption cost greater than
the lower bound, can not lead to a better solution than the best-known.

Let us demonstrate now that all branches discarded using our algorithm are
not optimal.

Theorem 6 Function eliminate_branch never eliminates the optimal solution.

Proof 5 From the previous lemma, eliminate_branch eliminates all solutions
with cost greater than the lower bound, and since we have already found a
solution Sbest whose cost is equal to the lower bound, then it follows that elimi-
nate_branch cannot eliminate the optimal solution.

To better clarify how the proposed branch and bound algorithm works, we
propose an example in the following section.

Example 2 Let T be the task set to be allocated onto 2 cores. Tasks charac-
teristics are described in Table 4.1. In Figure 4.2, we report a sub-tree of the
branches eveluated by our branch and bound algorithm. Each node in the figure
describes a branch. It contains the branch identifier, its cost and the already
allocated tasks for the two cores.

Before starting, the algorithm sorts the tasks by increasing relative deadline.
It then starts by selecting the first task τ4, because it has the least deadline 1277.
Thus two branches are created (2 and 3 in Figure 4.2), each of cost equal to 0.
For the 2nd iteration, task τ1 is selected. As branch 2 and branch 3 have the
same cost (equal to 0), we select arbitrarily branch 2. Task τ1 can be either
allocated along with τ4 onto the same core as shown in branch 5. It can also
be allocated to the other empty core. In both branches, the preemption cost
is equal to 0, therefore we select branch 5 as it leaves an empty core, therefore

46

task Di Ti Γi Λi

τ1 1413 1500 {212,171,344,66,249} { 0,46,78,14,47 }
τ2 5673 6000 {17,54,490,101,418,74} {0,14,94,21,74,13}
τ3 1498 1500 {146,347,136,37,121} {0,90,32,7,19}
τ4 1277 1500 {17,31,43,3,24,6} { 0,6,8,0,3,0 }

Table 4.1: Task parameters

giving us more chances to lead to an optimal solution. The next task to allocate
is task τ3. The algorithm has the two possibilities: (i) allocate τ3 together with
τ4 and τ1 on the same core or (ii) allocate τ3 alone on the empty core. In the first
solution, schedulability fails, therefore without further exploring, the branch it
is eliminated. In the second, the schedulability cost is equal to 0 as the task is
allocated on an empty core. Further, the algorithm selects branch 7. The next
task to evaluate is task τ2. It can be either allocated with τ4 and τ1 on the same
core, having a preemption cost of 0.008 (Allocation 9) or with τ3 onto its core,
having a preemption cost of 0.0058 (Allocation 8). The not yet allocated task
list is now empty, therefore the bound is updated to 0.0058 and the allocation
is saved as the best known. All branches having preemption costs greater than
0.0058 are eliminated.

∅ ∅

1(cost = 0)

τ4 ∅

2 (cost = 0)

∅ τ4

3 (cost = 0)

τ4 τ1

4 (cost = 0)

τ4, τ1 ∅

5(cost = 0)

τ4, τ1, τ3 ∅

6(cost = 0)

τ4, τ1 τ3

7(cost = 0)

τ4, τ1, τ2 τ3

9(cost = 0.008)

τ4, τ1 τ3, τ2

8(cost = 0.0058)

Figure 4.2: Example of branch and bound

4.4.3 Computational complexity

Regarding to runtime complexity, the proposed exact algorithms evaluate the
maximum non-preemptive region length and selects the preemption points for

47

the selected task at every tree level except the root, yielding to a time complexity
of O(n !×m) in the worst case. However, the runtime of the branch-and-bound
algorithm in the average case is likely less.

4.4.4 Allocation heuristics

Task allocation problem is known to be NP-hard in the strong sense. Thus, even
with the proposed optimizations and dynamic programming, the complexity of
finding an optimal solution is high. Therefore, we use classical bin packing
heuristics as an alternative allocation.

Algorithm 5 Heuristics(T , p, alloc[FF,BF,WF],ORDER)

1: sort_tasks(ORDER)
2: for (∀τ ∈ T) do
3: allocated = false
4: sort processors for BF and WF
5: for (∀p ∈ P) do
6: Scurr = select tasks on p ∪ {τ}
7: if (total_schedulable(Scurr, τ, p)) then
8: allocated = true
9: allocate task into core p
10: break;
11: end if
12: end for
13: if (allocated = false) then
14: No task allocation is found
15: end if
16: end for
17: Return tasks allocation

In practice, First-Fit (FF), Best-Fit (BF) and Worst-Fit (WF) operate in a
similar fashion. First, tasks are sorted before the allocation according to their
deadline, density, or laxity (Line 1). Then, the algorithm selects the tasks on
the top of the order relation. Unlike the algorithm FF, BF and WF sort the
cores by capacity. For BF the cores are sorted in a decreasing order of their
utilizations, whereas in the case of WF, they are sorted in increasing order of
utilization. The heuristic tries to allocate the selected tasks to the first proces-
sor. If the allocation fails (for schedulability), the next processor is investigated.
When all processors are investigated and none of the allocations have been found
feasible, the heuristics aborts on fail. The algorithm 5 describes FF, BF and WF
heuristics. The schedulability is checked at the same time when calculating
maximum-non-preemptive region length and when selecting preemption points
using Algorithm "total_schedulable".

When tasks are sorted according to their deadline, at each allocation, to-
tal_schedulable algorithm is similar to Algorithm 3, as it is not necessary to
recompute the maximum-non-preemptive region length and preemption points

48

for already allocated tasks, However, total_schedulable algorithm recomputes
it for all other sorting mechanisms as they do not ensure that only tasks with
shorter deadlines have been allocated before.

4.5 Results and discussions
In this section, we evaluate the performance of our schedulability analysis and
allocation strategies. We compare our optimal algorithms against classical allo-
cation heuristics: First Fit (FF), Best Fit (BF) and Worst Fit (WF).

Due to the complexity of computing the exact solution, and for sake of fast
evaluation, we consider a hardware platform compound of 3 identical processing
units, and a large set of synthetic task sets, each comprising 24 tasks.

4.5.1 Task generation

We apply our heuristics on a large number of randomly generated synthetic task
sets.

The task set generation process takes as input n (the number of tasks) and
UT (the target total utilization). First, we start by generating the utilization
of the n tasks by using the UUniFast-Discard [71] algorithm. Further, for every
utilization ui, we generate randomly the number of basic blocks k between 8 and
15. We generate block utilization by generating randomly k utilizations using
UUniFast algorithm with total utilization equal to the task utilization.

To avoid intractable hyper-periods, the period of every task is generated
randomly according to values taken from a list where the minimum is 120 and
the maximum is 120, 000 by step of 500.

Further, we inflate each block utilization by the task period to generate the
block execution time. Then, we generate the block preemption cost by generating
a random value P between 0.1 and 0.2. P is the percentage of the block utilization
that represents the block preemption cost. The first block preemption cost is
equal to 0. The task deadline is generated randomly between [0.75 ·Ti,Ti].

4.5.2 Simulation results and discussions

We varied the baseline utilization from 0.25 to 3.75 with a step of 0.25. In all the
graphs presented in this section, each point is the average value of 100 executions.
We reports the results of the schedulability and the timing complexity of optimal
solutions and heuristics.

In Figure 4.3 we report the results of the schedulability of the optimal alloca-
tion algorithms (OPT) against the best fit (BF-DD), worst fit (WF-DD) and first
fit (FF-DD) algorithms as a function of total utilization. For all the algorithms,
the input tasks are sorted according to their relative deadlines in non-decreasing
order. At low total utilization values, all algorithms are able to schedule all
task sets. It is clear that any version of the optimal algorithm dominates the
heuristics. As utilization increases, FF-DD and BF-DD algorithms outperform

49

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Total Utilization index

Sc
he
du

la
bi
lit
y
ra
te OPT

WF-DD
BF-DD
FF-DD

Figure 4.3: Schedulability for optimal solutions against BF, WF and FF

the WF-DD algorithm, the latter schedulability falls drastically as utilization
increases.

In fact, the allocation process depends on the already allocated tasks. As in
WF the tasks are allocated according to the worst-case utilization, tight deadline
tasks may be allocated along with large deadline tasks. Therefore, the latter do
not have enough slack to be executed non-preemptively, causing schedulability
failure. In contrast, when using BF or FF algorithms, tight deadlines tasks are
allocated together, allowing to have the same tight slacks, but as deadlines are
closer, their execution requirements are closer (deadlines are generated as 0.75 of
the task period, based on which task execution time is generated). Although we
have only three cores, the optimal algorithm is able to achieve high schedulability
rates even greater than the maximum number of cores.

To explain this fact, we remark that the preemption cost is inflated from
the task execution time. Therefore the maximum schedulable utilization, when
selecting all preemption points is equal to the number of cores, however when not
selecting all preemption points, the actual utilization is less than the maximum
theoretical generated utilization, which is used in the plots.

We show in Figure 4.4 a comparison between optimal solutions and heuristics
as a function of the required time to complete the analysis. The required time for
analysis using the enumerative algorithm is very large compared to those of the
others algorithms. The optimal branch-and-bound algorithms require more time
than heuristics, as expected. In fact, at any scenario, the enumerative algorithm
will explore all the design space, thus it is very time-consuming, however the
two branch-and-bound implementations may cut a branch without evaluation,
therefore they are faster. The heuristic algorithms explore only a subset of the
design space, and hence are the fastest. Algorithm OPT-P1 denotes the branch-
and-bound algorithm where the next explored branch is the branch having the
least cost, while in OPT-P2 the branch having the least size of the not-yet allo-
cated tasks is selected first. Algorithm OPT-P1 has a lower average complexity
compared to OPT-P2. In fact, OPT-P2 tries to find a low bound faster than
OPT-P1, therefore has a better capacity to cut branches.

As the enumerative algorithm has a very high average complexity, the number
of tasks in this setup has been limited to 8 tasks and the number of processors

50

2 3 4 5 6 7 8
0

0.5

1

1.5

· 105

Number of task

A
na

ly
si
s
T
im

e
(m

s) OPT-P1
OPT-P2
Enum
BFDD
WFDD
FFDD

Figure 4.4: The analysis time as a function of number of task

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Number of tasks

sc
he
du

la
bi
lit
y
ra
te OPT

BF-DD
WF-DD
FF-DD

Figure 4.5: Schedulability at different taskset size.

to 3 to be able to achieve a large number of simulations.
In Figure 4.5, we evaluate the impact of the task set size on the effectiveness

of the analysis to determine the task set schedulability. In this setup, the task
set utilization was fixed at UT = 3, and the evaluated task set size ranges from
4 to 24. We notice that the schedulability rates is higher for task set with large
number of tasks. In fact, tasks present more effective-preemption points in large
task set, therefore the total preemption cost of each task increase allowing the
execution time to be reduced, hence, schedulability increase as shown in Figure
4.5.

In Figure 4.6 and Figure 4.7 we focus on the impact of the sorting algorithms
on FF, BF and WF heuristics.

Figure 4.6 reports schedulability as a function of total utilization when input
tasks are sorted in increasing (respectively descreasing) order of task density.
Please, notice that sorting tasks in decreasing order of density allows to achieve
higher schedulability rates compared to the increasing density order. In fact,
when using increasing order, FF and BF tend to allocate the small tasks, having
a small density on the same core, and the more heavy tasks to be allocated in a
small number of cores, thus reducing schedulability. WF presents the opposite
behavior, but it also leaves the heaviest tasks to be allocated at the end, thus

51

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Total Utilization index

sc
he
du

la
bi
lit
y
ra
te

BF-DN-I
WF-DN-I
FF-DN-I
BF-DN-D
WF-DN-D
FF-DN-D

Figure 4.6: Performance of BF, WF and FF using sorted tasks by density

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Total Utilization index

Sc
he
du

la
bi
lit
y
ra
te

WF-L-I
BF-L-I
FF-L-I
WF-L-D
BF-L-D
FF-L-D

Figure 4.7: Performance of BF, WF and FF using sorted tasks by laxity

52

leading to schedulability failure. When ordering by decreasing order, BF, WF
and FF performances have similar behavior as they start by allocating heavy
tasks first, and further smaller tasks are inserted on the cores where they can be
schedulable.

Figure 4.7 reports schedulability as a function of total utilization when input
tasks are sorted in increasing (respectively descreasing) order of task laxity.

When ordering by increasing order, FF and BF are equal, the same perfor-
mance behavior is noticed for BF and WF when tasks are sorted by decreasing
order of laxity. Noticed that sorting tasks by laxity allows to have slightly better
performances compared to density sorting.

4.6 Conclusion
In this chapter, we presented allocation algorithms for real-time tasks with fixed
preemption points on an identical core platform. We have proposed two optimal
algorithms and a set of heuristics to effectively achieve allocation while meeting
all deadlines and minimizing the preemption costs. The task model used here
as well as the processor and cache memory co-scheduling allow for improved
predictability since the preemption occurs on predefined preemption points, thus
reducing shared memory contention. The branch-and-bound implementations
have shown a good compromise between computational time and the quality of
the produced solution. We have presented the performances of the proposed
approaches using a large set of synthetic experiments

Chapter 5

Contention-free Scheduling of
PREM Tasks on Partitioned
Multicore Platforms

Contents
5.1 Introduction . 54

5.2 System model . 54

5.2.1 Architecture model . 54

5.2.2 Task model . 55

5.3 Offset based processor and memory co-scheduling . . 55

5.3.1 Task-level offsets : sufficient condition 56

5.3.2 Integer-Linear-Programming based offset assignment . 57

5.4 Deadline based processor and memory co-scheduling 60

5.5 Results and discussions 61

5.5.1 Task set generation . 62

5.5.2 Results of synthetic task set experiments 62

5.6 Conclusion . 64

53

54

5.1 Introduction
In this chapter, we aim at avoiding contention for a set of tasks modeled using the
Predictable Execution Model (PREM), i.e. each task execution is divided into a
memory phase and a computation phase, on a hardware multicore architecture
where each core has its private scratchpad memory and all cores share the main
memory. We consider non-preemptive scheduling for memory phases, whereas
computation phases are scheduled using partitioned preemptive EDF. We present
in this chapter, three novel approaches to avoid contention in memory phases:
(i) a task-level time-triggered approach, (ii) job-level time-triggered approach,
and (iii) on-line scheduling approach. We compare the proposed approaches
against the state of the art using a set of synthetic experiments in terms of
schedulability and analysis time. The different approaches were implemented on
an Infineon AURIX TC397 multicore microcontroller and validated using a set
of tasks extracted from well-known benchmarks from the literature.

5.2 System model

5.2.1 Architecture model

In this chapter, we consider a multicore platform composed ofm cores. Each core
has a single local scratchpad memory. Memory copy operations between main
and scratchpad memories are performed via a shared bus. The tasks explicitly
trigger memory copies between main and scratchpad memories before starting the
computation. In many cases, this separation of code between memory phase and
computation phase can be performed automatically, for example when compiling
code from high-level programming languages like Prelude [16], or by modifying
existing compilers [18]. We assume that the separation between the two phases
has been done either manually by the programmer, or by an appropriate code
generation tool.

Core 1 Core 2 Core 3 Core 4

Spm1 Spm2 Spm3 Spm4

Shared bus

Main memory

Figure 5.1: Multicore target platform.

55

Figure 5.1 depicts a multicore platform with 4 cores. Each core is directly
connected to its own scratchpad memory and to the main memory. We assume
that all memory (main memory and local scratchpads) is directly accessible to
all cores via different address spaces. An example of such architecture is the
Infineon Aurix TC397 [2].

5.2.2 Task model

Let T = {τ1, τ2, · · · , τn} be a set of n periodic tasks. Each task τi has two phases:
(i) a memory phase in which all data required (resp. produced) by τi is loaded
(resp. stored) in memory, and (ii) a computation phase where preloaded data is
processed, without any access to the main memory. The computation phase is
not allowed to start before the completion of the memory phase. Therefore, task
τi is characterized by the tuple τi = (Mi, Ci,Di,Ti), where:

• Mi is the task worst-case memory access time. It represents an upper bound
to the time during which the task τi perform data transfers from/to memory
and/or I/O devices. Once this phase starts, it cannot be preempted.

• Ci is the task worst-case computation time. In contrast to the memory
phase, the computation phase can be preempted.

• Di is the task’s relative deadline.

• Ti is the task period. We consider strictly periodic tasks.

We denote by umi = Mi

Ti
(resp. uci = Ci

Ti
) the memory phase (resp. computation

phase) utilization. Therefore, the task utilization is given by Ui = umi + uci and

the total utilization of task set T is computed as UT =
n∑
i

Ui.

Each task τi generates an infinite sequence of jobs, however the pattern re-
peats every H intervals. Therefore, we are interested in the set of released jobs

Ji between time instance 0 and H, i.e. Ji = {j0
i , j

1
i , · · · , j

H
Ti
i }. Each job jli

is released exactly at time instant ali = l ·Ti and must complete no later than
dli = ali + Di.

5.3 Offset based processor and memory co-
scheduling

In this chapter, we tackle the bus contention problem by avoiding conflicting bus
access altogether. In this first part, we assign offsets to memory phases so that
they do not overlap at runtime, while all deadlines are met.

The task model with offsets is exemplified in Figure 5.2. We denote by φMh

the memory offset of job jh. By design, memory phases will never compete
with each other on the bus, therefore every memory phase starts its execution
exactly at φMh

time instant from its activation ah. The computation phase of
job jh becomes ready to execute exactly at time φCh = ah + φMh

+ Mh, called

56

computation offset, regardless of the actual transfer time of the memory phase.
In other words, the computation phases are activated by a timer programmed
to fire an interrupt at φCh . In this way, we can schedule computation phases on
the different cores separately from the memory phase, using classical single core
scheduler and classical single core analysis in the presence of offsets to assess
schedulability.

Dh
Th

Mh Ch

ah φMh
φCh dh

Figure 5.2: Example of task parameters.

In this chapter, we consider two types of memory phases offsets : task-level
and job-level offsets. In the first, all jobs of the same task have the same offset,
while in the second approach, different job of the same task might have different
offsets.

5.3.1 Task-level offsets : sufficient condition

In the following, we present a technique to assign a fixed offset to the memory
phase of a task, so that all jobs of the tasks will have the same offset, and all
deadlines are met.

Theorem 7 (Jan Korst et al [126]) Let τ1 and τ2 be two periodic tasks. τ1

and τ2 can be scheduled on the same core, without any overlap if and only if :

gcd(T1,T2) ≥ C1 + C2 (5.1)

Where gcd is the greatest common divisor of T1 and T2 .

The schedulability test of Theorem 7 allows to execute two tasks without any
overlap. It is extended in to support tasks with offsets in [126] as follows :

Lemma 4 Let τ1, τ2 be two periodic tasks having offsets φτ1 and φτ2 respectively,
τ1 and τ2 can be scheduled on the same core, without any overlap if and only if:

C1 ≤ (φτ2 − φτ1) mod gcd(T1,T2) ≤ gcd(T1,T2)− C2 (5.2)

We use Lemma 4 to compute the offsets of the different memory phases.

Lemma 5 A set of periodic memory phases M = {M1,M2, · · · ,Mn} can be
scheduled without any overlap if:

gcd(T1,T2, · · · ,Tn) ≥
n∑
i=1

Mi (5.3)

57

Proof 6 Since the minimum time distance between any activation time of any
task τi and the successive activation time of another task τj is a multiple of
the gcd of the task periods, then, if gcd(T1,T2, · · · ,Tn) ≥

∑n
i=1 Mi all memory

phases can be executed in interval of τi and τj, which proves the sufficiency of 5.3.

Theorem 8 Let T be a set of n periodic tasks and letM = {M1,M2, · · · ,Mn}
their memory phases. The time distance between any activation time of a mem-
ory phase Mi and its release time (the start time of M1 = 0) so that any two
memory phases do not overlap can be computed as follows:

φMj ∈

j−1∑
i=1

Mi, g −
n∑

i=j+1

Mi

 (5.4)

Where g = gcd(T1,T2, · · ·Tn).

Proof 7 From Lemma 8, it is sufficient that the sum of all memory phases to
be less or equal to the gcd, so to schedule memory phases without overlapping.
Therefore, it is sufficient to find any distribution of the bus-time equal to the
gcd of task periods. By choosing the offsets (tasks are in any arbitrary order):
φMj

=
∑j−1

i=1 Mi and φM1 = 0 we can garantee the non overlapping of all memory
phases, having Equation (5.4).

According to Theorem 8, to compute the task-level offsets, it suffices to com-
pute the sum of the length of all memory phases. If it does not exceed the gcd
of the periods of all tasks, then the offsets can be easily assigned. In this part,
we order tasks in a non-decreasing order of relative deadline, therefore they get
the smallest memory phase offset, to maximize the slack time to computation
phases. Of course, this may be very pessimistic, and many schedulable tasks
sets cannot be assigned task-level offsets in this way. A better solution will be
proposed in the following.

5.3.2 Integer-Linear-Programming based offset assign-
ment

In this section, we present a modular ILP design that is able to compute both
task-level and job-level offsets.

The ILP must verify the following properties : (i) a schedule is found for
all memory phases (prop1), (ii) two memory phases do not overlap on the bus
(prop2), (iii) each memory phase receives sufficient bus-time to complete (prop3),
and (iv) the schedulability of the different computation phases is granted (prop4).

Property (prop1): task-level and job-level offsets

The output of our ILP is the set of all memory phases offsets, or fail if no solution
can be found. Our ILP is optimal, therefore if a solution exist, it will not fail.
We define decision variable φMj

as the offset of the memory phase for job j. Our
ILP builds

∑
τi∈T

H
Ti

decision variable of type φMj
, representing offsets of all jobs,

verifying therefore Property prop1.

58

Our ILP is able to build both task-level and job-level offsets by manipulating
offsets decision variables as follows:

1. Task-level offsets. To enforce the ILP to select task-level offset, we set
the offset decision variable of all jobs of the same task to be equal, as in
Equation (5.5). One may even replace all appearances of φMj

, for every job
of task τ by a single decision variable φτ , avoiding therefore to generate
a variable per job per task. For sake of simplicity, and without loss of
optimality for task-level offsets, we consider the first option, that is:

∀i ∈ n,∀j ∈ [1 · · · H
Ti

], φMj+1
− φMj

= 0 (5.5)

2. Job-level offsets. To enforce the ILP to select job-level offset, we relax
the constraints of Equation (5.5), therefore the ILP is free to select different
offsets for different jobs of the same task.

Properties (prop2) and (prop3): Non-overlapping and sufficiency con-
straints

We introduce new constraints to verify Property prop2. The memory phase of job
j starts at φMj

and completes exactly at φMj
+Mj. During this interval, we must

ensure that memory phase of any other job h cannot start or complete within
[aj + φMj

, aj + φMj
+ Mj). Therefore, job h memory interval either completes

before aj + φMj
(case 1), or starts later to aj + φMj

+ Mj (case 2). Therefore,
for every couple of jobs of different tasks, we introduce 2 new binary decision
variables xjh, and yjh verifying which case the ILP solver has selected, as defined
in Equations (5.6), (5.7).

xjh=

ß
1 , if ah + φMh

+Mh ≤ aj + φMj

0 , otherwise
(5.6)

or
yjh=

ß
1 , if aj + φMj

+Mj ≤ ah + φMh

0 , otherwise
(5.7)

Due to the mutual exclusion of both cases, the above constraints are not linear.
Equation (5.8) shows linearization of these constraints:

(aj + φMj
)− (ah + φMh

+Mh)−R ·xjh ≤ 0

(aj + φMj
)− (ah + φMh

+Mh) +R · (1− xjh) ≥ 0

(ah + φMh
)− (aj + φMj

+Mj)−R · yjh ≤ 0

(ah + φMh
)− (aj + φMj

+Mj) +R · (1− yjh) ≥ 0

xjh + yjh = 1

where R is a large positive integer.

(5.8)

These constraints do not only allow to verify Property prop2, but as well Property
prop3. It enforces all memory phases other than the one of job j to start no earlier
to the completion of the memory phase of j.

59

Property (prop4) (Feasibility constraints)

We guarantee the respect of timing constraints for the EDF scheduling on every
core, by incorporating the offsets induced by the memory phases to the classical
processor demand schedulability analysis within our ILP. The exact condition for
a set of jobs to be scheduled by EDF within the interval I = [t1, t2] is that the
cumulative computation time of all jobs with release time greater than or equal
to t1 and deadline less than or equal to t2 not exceed the length of the interval
|I|.

In order to avoid checking the schedulability for all values of t1 and t2 with a
high complexity, we check only the intervals where the demand function might
change. That is, we verify all intervals where t1 is selected in the set of compu-
tation release offsets i.e. t1 ∈ {∀j, aj + φMj

+ Mj} and t2 is selected from the
set of absolute deadlines i.e. t2 ∈ {∀j, dj}. We denote t1 as t(j) (referring to
the start time of computation phase of job j) and t2 as d(h) (referring to the
absolute deadline of job h).

Therefore, for every couple of t(j) and d(h) and for every job l, we introduce
the decision variable zl,j,h that expresses if job l is released and has its absolute
deadline in the interval [t(j), d(h)]. As we consider partitioned scheduling, j and
l must be allocated to the same core without loss of optimality:

zl,j,h=

ß
1, if t(j) ≤ al + φMl

+Ml and d(h) ≥ dl
0, otherwise (5.9)

As before, we linearize the evaluation of zl,j,h, and replace t(j) by its value as
follows:

(al + φMl
+Ml)− t(j)−R · zl,j,h ≤ 0

(al + φMl
+Ml)− t(j) +R · (1− zl,j,h) ≥ 0

(5.10)

The feasibility can be tested for all the intervals by computing the cumulative
execution time for every couple of t(j) and d(h) using the following constraints:

∀t(j) ∈ {∀j,aj + φMj
+Mj}

∀d(h) ∈ ∀h, dh∑
l

Cl · zl,j,h ≤ (d(h)− t(j)). (5.11)

Jobs are sorted by deadlines, so that every job is considered in only a single
couple, reducing the number of the constraints without loss of optimality.

Objective function. A realisable solution allows to respect all the con-
straints defined in our ILP. Therefore, it is not mandatory to our ILP to define
an objective function as any realisable solution can be accepted from real-time
perspective. Therefore, our objective function can be set to 0, so that solvers
will stop at the first solution respecting all constraints making the ILP faster.
We can as well set the objective function to minimize as much as possible the
memory phases offsets, as follows:

Minimize
∑

i∈n,j∈Ji

φMj
(5.12)

60

Once the ILP has been formulated, it is submitted to the CPLEX ILP-solver
([4]).

5.4 Deadline based processor and memory co-
scheduling

The ILP-based approaches proposed in the previous section find the optimal
solution when a feasible one exists. Unfortunately, they suffer from high compu-
tational complexity. For this reason, we followed a different approach to manage
contention on the memory bus. The basic idea is to have a centralized yet parti-
tioned scheduler, located on one of the cores, which performs the data transfers
from/to local scratchpads according to an on-line scheduling algorithm. We con-
sider data transfers as non-preemptive tasks, each one with a period and an
intermediate deadline, to be scheduled on the single resource “bus” by a non-
preemptive on-line scheduler (EDF). These assigned intermediate deadlines δi
are used as offsets for scheduling computation phases on the cores.

The main difference with the ILP-based scheduling of memory phases is that
the ILP assigns “slots” to memory phases, each slot is an interval of size equal
to the length of the data transfer, while the deadline-based approach assigns
interval which may be larger than the length of the data transfer, and memory
phases are scheduled as non-preemptive tasks with an on-line single core policy.
The system is correct, if all memory phases respect their intermediate deadline,
and that the computation phase respect the task deadline with the intermediate
deadline of memory phase as an offset.

For every phase, the intermediate deadline δi must be greater than the mem-
ory phase duration Mi, considered as a lower bound, and no greater to Di − Ci,
considered as an upper bound. Setting the intermediate deadline to the lower
bound will enforce every memory phase to start its execution at its arrival, oth-
erwise it misses its deadlines. Setting the deadline to the upper bound Di − Ci
will enforce the computation phase to start its execution at its activation. The
problem is to find a compromise between the slack time assigned to both memory
and computation phase for every task.

Algorithm 6 implements a binary search technique to assign the intermediate
deadlines to the memory phases. Therefore, lower bound lbi and upper bounds
ubi are computed for every task (Line 2). Then, the algorithm sets the inter-
mediate deadlines to the middle between lbi and ubi (Lines 4-8). Further, the
non-preemptive schedulability test for EDF is applied [124], to assess the feasi-
bility on the bus (Line 9). If the set of memory phases is schedulable on the
bus using the computed intermediate deadlines, schedulability is checked on all
cores, using Pellizzoni and Lipari [96] approximate test with pseudo-polynomial
complexity (Line 11). In the case of success, Algorithm 6 exists on SUCCESS.
If the schedulability on cores fails, it modifies only the intermediate deadlines of
the tasks that are allocated on the cores that were deemed not schedulable by
assigning shorter deadlines to the memory phases (moving the upper bounds to
the computed intermediate deadlines - Line 14). Further, we iterate until the

61

system is schedulable on both bus and cores. If the schedulability fails on the
bus, the intermediate deadlines are increased by setting the lower bounds to the
intemediate deadlines (Line 17). When the upper bounds and the lower bounds
are equal, the binary search fails to find a feasible schedule for both bus and
cores and Algorithm 6 exits on FAIL.

Algorithm 6 Binary search guided by core schedulability
1: Input T : set of tasks
2: ∀τi ∈ T : lbi ←Mi; ubi ← Di − Ci;
3: repeat
4: S ← ∅ . The set of memory phases
5: for τi ∈ T do
6: δi ← ubi+lbi

2
. Computes the intermediate deadlines

7: add (Mi, δi) to S
8: end for
9: if dbf_analysis_np(S) then
10: ∀τi ∈ T : φCi ← δi
11: if dbf_offset_analysis(T) then
12: return S . Returns feasible solution
13: else
14: ∀τi ∈ UnSchedulable : ubi ← δi
15: end if
16: else
17: ∀τi ∈ T : lbi ← δi
18: end if
19: until ∀τi ∈ T : ubi = lbi
20: return FAIL

5.5 Results and discussions
In this section, we present the performances of the proposed approaches with
respect to the state of the art. First, we conducted experiments with randomly
generated workloads to evaluate the proposed approaches using different task
partitioning heuristic. We study the impact of the task memory stall (Mi

Ci+Mi
)

and the workload size on schedulability and the required time to complete the
analysis. We compared the proposed approaches with a similar analysis from
the state-of-the-art [10]. Finally, we evaluate the practicality of the proposed
approaches and the overall system performances with a set of real benchmarks
running on the Infineon Aurix TC397 microcontroller: MIbench 1 , FFTbench 2

and Mälardalen 3. .
1https://github.com/embecosm/mibench
2https://github.com/ZiCog/fftbench
3https://github.com/TRDDC-TUM/wcet-benchmarks

https://github.com/embecosm/mibench
https://github.com/ZiCog/fftbench
https://github.com/TRDDC-TUM/wcet-benchmarks

62

5.5.1 Task set generation

The synthetic task set generation takes as input n the number of tasks and the
target total utilization UT . It starts by generating the utilizations of the n tasks
by using UUniFast-Discard [71] algorithm. We varied the baseline utilization
from 0.4 to P (number of available cores) with a step of 0.2. For every uti-
lization Ui, the algorithm generates the memory phase utilization umi using a
random stall value. The random value is either selected in lev1 = [0.10, 0.20] or
in lev2 = [0.20, 0.30] according to the selected scenario. The generated utiliza-
tion comprises computation and memory phases, therefore the total computation
utilization on the cores is smaller than UT . For each scenario, we generate 100
task sets per utilization and per memory stall. We generate 10 tasks per task
set for the offset-based approaches. As their complexity is high, they are evalu-
ated under limited settings. For heuristic approaches, we generate 32 tasks per
taskset. To avoid intractable hyper-periods, the period of every task is selected
randomly from the list of periods : {80,100,200,240,400,600,800,1200}. When
memory phase utilization is very low, periods are multiplied by 10, so that every
task have at least Mi greater or equal to 1. The task deadline is set to 70% of
the task’s period.

5.5.2 Results of synthetic task set experiments

In this section, we evaluate the performance of three offset based methods against
our heuristic (Algorithm 6): the task-level offset (Theorem 8) denoted as SO; the
ILP-based task-level offset denoted as ILP-SO, and the job-level offset denoted as
ILP-JO. The tasks are allocated on 4 cores by either Worst-fit (WF) or Best-fit
(BF). Therefore, each algorithm is labeled by a combination of these techniques.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Total Utilization index

Sc
he
du

la
bi
lit
y
ra
tio

WF-ILP-JO
WF-ILP-SO
WF-SO
WF-BS

(a) stall ∈ [0.10, 0.20]

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Total Utilization index

Sc
he
du

la
bi
lit
y
ra
tio

WF-ILP-JO
WF-ILP-SO
WF-SO
WF-BS

(b) stall ∈ [0.20, 0.30]

Figure 5.3: Schedulability of ILP vs heuristics approaches

In Figure 5.3, we report the schedulability ratio as a function of total utiliza-
tion for the two classes of memory stalls. Consistently with previous results in
the literature, WF outperforms BF in all simulated scenario, therefore, we only

63

report the results for WF for clarity of presentation. At low total utilization val-
ues, all algorithms easily schedule all tasks sets. As the utilization increases, the
ILP-based offset assignment algorithms outperform the task-level offset assign-
ment algorithm. We remark that, given a task allocation, ILP for job-level offset
is a relaxed version of the ILP at task-level, therefore, it naturally outperforms
the latter. The schedulability falls sharply for WF-SO algorithm because Con-
dition 5.3 becomes quickly not satisfied for large memory phases. Please notice,
that our intermediate deadlines approach performances are still very acceptable
regarding the ILP-based approaches in terms of schedulability, even with their
hugely shorted analysis time compared to ILP approaches. Indeed, each simula-
tion using ILP takes around 3 hours to complete on a 40-cores Intel(R) Xeon(R)
CPU E5-2630 v4 at 2.20GHz, with 130 GB of RAM using CPLEX ILP solver.
In the other hand, the analysis time of WF-ILP-SO is acceptable (i.e. a few sec-
onds). The difference between the ILP and our heuristic is even reduced when
the stall is larger. Naturally, the schedulability of task-level offset based sufficient
test falls sharply as total utilization (i.e. memory phases length increase).

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Total Utilization index

Sc
he
du

la
bi
lit
y
ra
tio

WF-BS-0.1
BF-BS-0.1
WF-BS-0.2
WF-FP-0.1
WF-FP-0.2

(a) Schedulability rates

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

5 · 10−2

0.1

0.15

0.2

0.25

Total Utilization index

R
un

tim
e
(s
ec
) WF-BS

WF-FP

(b) Required analysis time

Figure 5.4: Heuristics algorithms performances

Our heuristic (Algorithm 6) is compared to related work on large settings com-
posed of 32 tasks. The results in terms of schedulability and required analy-
sis time are reported in Figure 5.4. We simulated two different memory stalls
[0.1−0.2) (denoted as 0.1) and stall [0.2−0.3) (denoted as 0.2). We compare our
heuristics against the response time analysis for FIFO-bus scheduler and fixed
priority core scheduler found in [10], (denoted as FP in the algorithm label).
As the utilization increases, the WF algorithms present better performances in
terms of schedulability than BF algorithms, for [10] and our approaches. There-
fore, we kept only the best results of BF algorithm, which is using our heuristic
(BS) at stall [0.1 − 0.2). Our heuristic algorithms perform much better than
the approach analyzed in [10], especially when workload is high. Our algorithm
has pseudo-polynomial complexity, however, their run-time is acceptable even
for large task sets as shown in Figure 5.4b. Please observe that the memory stall
has an impact on schedulability as it drops sharply, when the latter increases.

64

5.6 Conclusion
In this chapter, we proposed several techniques for contention avoidance on a mul-
ticore platform. We used the well-known PREM task model for its predictabil-
ity. In the first part of this chapter, we presented two time-triggered-based
approaches for memory requests scheduling. Then, we proposed a binary search
guided by core schedulability approach as an alternative to the first approach,
where memory requests were scheduled using the EDF scheduler. Our experi-
ments show a significant improvement in the system performances compared to
state-of-the-art. We demonstrate the applicability of our techniques with an im-
plementation on a real hardware platform and on realistic benchmarks. In the
next chapter, we extend our objective to task-graph task sets.

Chapter 6

Memory-processor Co-scheduling
AECR-DAG Real-time Tasks on
Partitioned Multicore Platforms
with Scratchpads

Contents
6.1 Introduction . 66

6.2 System model . 66

6.2.1 Architecture model . 66

6.2.2 Task model . 66

6.3 DAG tasks allocation and transformation 69

6.3.1 Decision variables and objective function 71

6.4 Deadline based DAG memory-processor co-scheduling 73

6.4.1 Fair and proportional deadline assignment 74

6.4.2 GA-based intermediate deadline assignment 75

6.4.3 Evaluation Strategy 79

6.4.4 Creating the next generation 84

6.5 Results and discussions 85

6.5.1 Task generation . 86

6.5.2 Simulation results and discussions 87

6.6 Conclusion . 92

65

66

6.1 Introduction
In this chapter, we aim to improve the usability of scratchpad memories and
exploit their predictability to hide access latency to shared resources. We use a
genetic algorithm to derive bus scheduling parameters for a set of directed acyclic
task-graphs (DAGs). We extend the DAG task model to include the communica-
tions following the Acquisition-Execution-Restitution (AER) model. We use this
model in the second part of the chapter where we first partition subtasks onto
the multicore platform while scheduling their memory requests and relative com-
munications onto the shared buses, in order to prevent interference and ensure
predictability. Specifically, all subtasks and communications are assigned appro-
priate intermediate offsets and deadlines to guarantee that they comply with the
system’s timing constraints. Here we focus on architectures featuring inter-core
memory transfers dedicated buses such as the Infineon Aurix TC397 microcon-
troller [2]. Therefore, the same architecture of the previous chapter is used in this
part with a small consideration: rather than using only one communication bus,
we use an inter-core communication bus to perform the data transfers between
scratchpad memories and a second bus to perform data transfers between cores
and the main memory.

6.2 System model

6.2.1 Architecture model

We consider a multicore platform A composed ofm cores, i.e., A = {p1, · · · , pm}.
Each core pi has its own local scratchpad memory, onto which data and instruc-
tions are stored. All cores share a single main memory. Two types of memory
copy operations are possible: (i) between scratchpad memories of different cores
and (ii) between the main memory and a core’s scratchpad memory. The two
types of memory operations are performed by different buses: one bus, denoted as
S2SB, interconnects all the scratchpad memories; a second separate bus, denoted
as M2SB, interconnects the main memory and the scratchpads. The topology
of our architectural model is illustrated in Figure 6.1. From a software point of
view, we assume that all memories (main memory and local scratchpad memo-
ries) are directly accessible to all cores via different address spaces. The Infineon
Aurix TC397 [2] is an example of a real architecture that can be modeled as
described above.

Memory copy operations are explicitly triggered by the software, therefore it is
easier to schedule them. The proposed model allows us to reduce the complexity
of the schedulability analysis by separating the memory operations between local
and global memories.

6.2.2 Task model

We consider a task set T = {τ1, . . . , τn} consisting of n sporadic tasks. Each task
τi ∈ T is represented by a tuple (Gi,Di,Ti), where Gi is a Directed Acyclic Graph

67

Core 1 Core 2 Core 3 Core 4

Spm1 Spm2 Spm3 Spm4

S2SB

M2SB

Main memory

Figure 6.1: Multicore architecture featuring 4 cores, and its interconnection
buses.

(DAG) that describes the internal structure of τi, Di is its end-to-end relative
deadline, and Ti is its period. We consider a constrained deadline task set, that
is Di ≤ Ti for all tasks.

Each task-graph Gi is defined by (Vi, ξi), where Vi is a set of ni subtasks, and
ξi is the set of precedence constraints between them. A subtask vi,j ∈ Vi can be
one of four types (see Figure 6.2):

• an acquisition subtask, denoted as vAi,j;

• a restitution subtask denoted as vRi,j;

• a communication subtask denoted as vmi,j;

• a computation subtask denoted as vei,j.

The upper index is omitted when referring to a subtask without any consideration
of its type.

Edge e(vi,j, vi,k) ∈ ξi represents the precedence constraint between subtasks
vi,j and vi,k, i.e., vi,k can not released before vi,j has completed its execution.
Thus, vi,k is an immediate successor of vi,j, and vi,j is an immediate predecessor
of vi,k.

We denote by i_succ(vi,j) the set of all immediate successors of vi,j (i.e.,
i_succ(vi,j) = vi,k | (vi,j, vi,k) ∈ ξi); we denote by succ(vi,j) the set of subtasks
reachable from vi,j. In the same way, we denote by i_pred(vi,j) the set of all
immediate predecessors of vi,j (i.e., i_pred(vi,j) = vi,k | (vi,k, vi,j) ∈ ξi.

A communication subtask is a memory copy operation that takes place be-
tween the scratchpad memories of the cores where its immediate predecessor
and its immediate successor are allocated. Therefore, it has only one immediate
successor and one immediate predecessor.

An acquisition subtask represents a memory copy operation from the main
memory to one or more of the local scratchpads. Without loss of generality, in
this paper we consider that a task-graph has only one acquisition subtask with
no predecessors, and it is therefore the source node of the graph.

68

vAi,0

vei,1 vei,2

vmi,3 vmi,4

vmi,7

vei,12

vei,5 vei,6

vmi,8 vmi,9

vei,10 vei,11

vRi,13

Figure 6.2: DAG task example, computation subtasks are mapped on a dual-core
platform.

A restitution subtask represents a memory copy operation from one or more
of the local scratchpads to the main memory. Without loss of generality, in this
paper we consider that a task-graph has only one restitution subtask with no
successors, and it is therefore the sink node of the graph.

A computation subtask represents code executing on one of the cores. While
executing, the computation subtask can only access data and code on the cor-
responding local scratchpad memory. The immediate successors and immediate
predecessors of a computation subtask are memory operations (either commu-
nication subtasks or acquisition or restitution subtasks). More generally, we
consider that two subtasks of the same type cannot be immediate successors to
each other.

Later on, after we allocate computation subtasks to cores, we will simplify
the graph and allow two computation subtasks allocated on the same core to be
directly linked by an edge without any communication needed between them.

A sequence of vertexes consisting of one computation subtask followed by
a communication subtask followed by another computation subtask is called a
triplet. We denote the triplet of subtasks vi,j, vi,k, vi,h as î : jkh.

Each subtask is characterized by its worst-case execution time, denoted by
Cvei,j for computation subtasks. When a subtask is an acquisition CvAi (resp.
restitution CvRi), its worst-case execution time represents an upper bound on
the time required for the task to perform data transfers from (resp. to) the
main memory and the scratchpad memories of the cores where its immediate
successors (resp. predecessors) are allocated. If an acquisition (resp. restitution)
has multiple successors (resp. predecessors), multiple memory copy operations
may be performed by the subtask.

If a subtask is of the communication type, its worst-case execution time Cvmi,j
represents an upper bound on the time required to perform data transfers be-

69

tween the scratchpad memories of the cores where its immediate predecessor and
immediate successor are allocated.

Once a memory copy subtask starts its execution, it cannot be preempted.
In contrast to memory copy subtasks, computation subtasks can be preempted,
and they are partitioned among the platform cores.

We consider just one acquisition subtask (restitution subtask) in our model,
in order to simplify the deadline assignment phase. If there are several data
transfers for acquisition or for restitution, then we assume that these transfers
are carried out sequentially (merged into one node A or R).

We define πki as the kth path of task τi, where πki = 〈vi,j, vi,j+1, · · · , vi,|πki |〉.
The first subtask in a path represents the acquisition phase, while the last one
represents the restitution phase. The set of all paths of task τi is denoted as Πi.

We define πki as the kth path of task τi. πki is a sequence of vertexes, πki =
〈vi,j, vi,j+1, · · · , vi,|πki |〉 such that, ∀j ∈ [0, |πki |), e(vi,j, vi,j+1) ∈ ξi. The first
subtask in a path represents the acquisition phase, while the last one represents
the restitution phase. The set of all paths of task τi is denoted as Πi. Figure 6.2
depicts a task-graph with three paths.

We define task utilization as the occupancy ratio of the task on all the shared
resources (cores and communication buses). It is computed as follows:

u(τi) =
1

Ti
· (CvAi

+ CvRi
+
∑
vmi,j∈Vi

Cvmi,j
+
∑
vei,j∈Vi

Cvei,j
) (6.1)

The total Umax utilization of the task set is computed as follows:

Umax =
∑
τi∈T

u(τi) (6.2)

We denote by VMi the set of all communication subtasks of task τi, and by
VCi the set of all computation subtasks of task τi. When we describe a behavior
that relates to a single task, its index might be removed to avoid overcharging
the symbols.

6.3 DAG tasks allocation and transformation
In this section, we consider the problem of partitioning a set of AECR-DAG tasks
on an identical core platform. Our approach consists of two distinct stages: the
allocation stage and the schedulability analysis stage.

Computation subtasks are allocated to the different cores; inter-core com-
munications are scheduled on the intercommunication bus; and acquisition and
restitution phases are scheduled on the memory bus. The subtask-to-core allo-
cation process has a significant impact on inter-core communications. Commu-
nicating subtasks that are allocated on the same core will not generate traffic
on the shared inter-core communication bus, while those allocated onto differ-
ent cores may generate traffic that may jeopardize the schedulability. Rather
than using classical bin packing heuristics that optimize core utilization, such as

70

Best-Fit (BF) that maximizes utilization per core or Worst-Fit (WF) that favors
load balancing, we use Integer Linear Programming (ILP) for the subtask-to-
core allocation. The goal of the ILP is to reduce the workload on the inter-core
communication bus by favoring the allocation of communicating subtasks to the
same core when possible or desirable.

Definition 5 (null communication) A communication subtask vmi,j is called
a null-communication subtask when its only immediate predecessor subtask and
its only immediate successor subtask are allocated to the same core p.

A null-communication subtask does not generate traffic on the shared inter-
core bus, therefore, its worst-case execution time can be set to 0, and hence it
can be eliminated from the graph.

Definition 6 A reduced task, denoted as τi of task τi is a DAG where all the
null-communication subtasks are removed.

Let vmi,k be a null-communication subtask, and let î : jkh be the triplet of
subtasks consisting of the immediate predecessor of vmi,k namely vmi,j and its im-
mediate successor, namely vmi,h. Then in the reduced task τi, vmi,k /∈ Vi, edges
e(vi,j, vi,k) /∈ ξi and e(vi,k, vi,h) /∈ ξi, and there exist an edge e(vi,j, vi,h) ∈ ξi,
where Vi and ξi are respectively the nodes set and edges set of τi.

Therefore, in the reduced task we allow a computational subtask to be an
immediate successor of another.

To produce a reduced task, we need only to replace all triplets containing a
null-communication subtask with a simple edge between the two computation
subtasks of the triplet.

We denote by cost(τ) the ratio of the communication workload that the
reduced task τ will require on the share inter-core bus. It can be computed as
follows:

cost(τ) =
∑

v∈VM (τ)

C(v)

T(τ)
(6.3)

Example 3 In this example, subtasks are colored according to core where they
are allocated (Figure 6.3). Therefore, we have four null-communication triplets:
V1
τ (p1) = {ve5, ve10}, V2

τ (p1) = {ve11}, V3
τ (p1) = {ve2, ve12} and V4

τ (p2) = {ve1, ve6}, as
indicated by the red boxes in the left-hand side graph.
In the right-hand side graph, the memory subtasks of the different null-
communication triplets have been dropped as their execution time is set to 0,
resulting in a reduced task denoted as τ . In this example, the execution time of
vm8 is set to 0 for V1

τ (p1), and the execution time of vm7 is set to 0 for V3
τ (p1) and

also the execution time of vm4 is set to 0 for V4
τ (p2).

Our ILP formulation has the objective to reduce the total communication cost
over all tasks. In the remainder of this section, we detail the ILP formulation to
optimally reduce the DAG tasks.

71

vAi,0

vei,1 vei,2

vmi,3 vmi,4

vmi,7

vei,12

vei,5 vei,6

vmi,8 vmi,9

vei,10 vei,11

vRi,13

V1
τi

(p1) V2
τi

(p1) V3
τi

(p1)

V4
τi

(p2)
vAi,0

vei,1 vei,2

vmi,3

vei,12

=⇒ vei,5 vei,6

vmi,9

vei,10 vei,11

vRi,13

Figure 6.3: DAG task transformation.

6.3.1 Decision variables and objective function

Let apj be a binary decision variable to express that computation subtask vi,j is
allocated to core p1, i.e:

apj =

®
1, if vi,j is mapped to core p

0, otherwise
(6.4)

Let us consider the triplet î : jkh. If vij and vih are allocated to the same
core, the execution time of subtask vik is set to zero as it does not generate
traffic on the communication bus. Therefore, for each triplet î : jkh, we define
the decision variable cost(î : jkh) as follows:

cost(î : jkh) =

®
0, if ∀p, apj = aph
C(vik), otherwise

(6.5)

The objective function consists in minimizing the total communication cost of
all tasks by summing over all triplets î : jkh

Minimize
∑
τi∈T

∑
î:jkh∈∆i

cost(î : jkh) (6.6)

We will illustrate further in this section the different techniques to linearize these
constraints.
Constraints. First, we describe the evaluation of the cost variables. The condi-
tional construct and the different inequalities involved in computing the variable
cost require linearization.

For every triplet î : jkh and for every core p, we introduce two artificial
binary decision variables: x(î : jkh, p) and y(î : jkh, p). These variables indicate

1Please notice that this decision variable is generated only for the computation subtasks

72

whether subtasks vij and vih are allocated to the same core, and are defined as
follows:

x(î : jkh, p) =

®
1 if apj > aph
0, otherwise

(6.7)

y(î : jkh, p) =

®
1 if apj < aph
0, otherwise

(6.8)

If x or y are equal to 1, then the subtasks are not allocated to the same core.
If both x and y are equal to 0, then the subtasks are allocated to the same core.
x and y cannot both be equal to 1 at the same time, therefore we compute the
cost as follows:

cost(î : jkh) = C(vk) ·
∑
p∈A

(x(î : jkh, p) + y(î : jkh, p)) (6.9)

Once again, the conditional construct to compute x(î : jkh, p) requires lin-
earization. First, we express the inequality in Equation (6.7) as follows:

apj − a
p
h − 1 ≥ 0

Let M be a very large constant. We linearize Equation (6.7) as follows:

apj − a
p
h − 1 +M −M ·x(î : jkh, p) ≥ 0

apj − a
p
h − 1−M ·x(î : jkh, p)) < 0

Similarly, we linearize Equation (6.8) as follows :

aph − a
p
j − 1 +M −M · y(î : jkh, p) ≥ 0

aph − a
p
j − 1−M · y(î : jkh, p)) < 0

In order to ensure that a subtask is allocated to one and only one core, we
generate the following constraints:

∀τ ∈ T ,∀v ∈ V(τ) :
∑
p∈A

apv = 1 (6.10)

We can enforce the utilization per core to not exceed a given bound Umax

using the following constraints:

∀p ∈ A,
∑
τ

∑
v∈VC(τ)

apv ·
C(v)

Tτ
≤ Umax (6.11)

In the following listing, we report our complete ILP formulation.

73

Minimize
∑
τi∈T

∑
î:jkh∈∆i

cost(î : jkh)

under the constraints:

∀τ ∈ T ,∀î : jkh ∈ ∆i :

cost(î : jkh) = C(vk) ·
∑
p∈A

(x(î : jkh, p) + y(î : jkh, p))

∀τ ∈ T ,∀î : jkh ∈ ∆i :

apj − a
p
h − 1 +M −M ·x(î : jkh, p) ≥ 0

apj − a
p
h − 1−M ·x(î : jkh, p)) < 0

aph − a
p
j − 1 +M −M · y(î : jkh, p) ≥ 0

aph − a
p
j − 1−M · y(î : jkh, p)) < 0

∀τ ∈ T ,∀v ∈ V(τ) :
∑
p∈A

api = 1

∀p ∈ A,
∑
τ

∑
v∈V(τ)

apv ·
C(v)

Tτ
≤ Umax

Finally, the ILP is submitted to the CPLEX ILP-solver [4]. When subtask-
to-core mapping is computed, reduced tasks are derived by removing the null-
communication subtasks.

6.4 Deadline based DAG memory-processor co-
scheduling

The second stage of our approach is memory and processor co-scheduling. This
work considers partitioned scheduling, where subtasks are assigned to different
cores and scheduled using a fully preemptive EDF scheduler per core. Acqui-
sition and restitution subtasks are scheduled non-preemptively on the memory-
to-scratchpad bus (M2SB), while communication subtasks are scheduled on the
inter-core bus (S2SB). Scheduling on the system’s buses is achieved using a non-
preemptive EDF scheduler. To simplify dealing with precedence constraints, we
impose intermediate offsets and deadlines on each subtask. In this way, prece-
dence constraints are automatically respected if each subtask is activated after
its offset and completes no later than its assigned deadline.

Several techniques have been proposed in the real-time systems literature
to assign intermediate deadlines, such as fair and proportional deadline assign-
ments. However, these techniques have been designed for the scheduling of com-
putation tasks only and are not tuned to handle delays that may occur due to
contention on the shared communication buses. In this section, we present our
approach to assign intermediate deadlines to both memory and computation sub-

74

Ti
Di

Ci

φτi d1
i a2

i

Figure 6.4: Example of offset and local deadline.

tasks, in order to respect the system’s timing constraints and take into account
the co-scheduling of both types of subtasks.

In the following, every subtask will be additionally characterised by its in-
termediate deadline dv and offset φv. The offset of a subtask is the distance
between the activation of the task-graph and the activation of the subtask. The
intermediate deadline of a subtask represents its relative deadline with respect
to its offset. We define the subtask local deadline dlv as the sum of its interme-
diate deadline and its offset. Figure 6.4 illustrates the relationship between the
activation, end-to-end deadline, intermediate deadline, offset, and local deadline
of a subtask.

In this context, the activation time of the acquisition subtask corresponds to
the activation of the task itself. The local deadline of a subtask represents the
interval between the task-graph activation and the subtask’s absolute deadline.

One strategy to solve the problem of assigning intermediate deadlines is to ex-
haustively search among all possible intermediate deadline combinations. While
this method provides an optimal solution, it suffers from a high computational
complexity. In our previous work on the scheduling of PREM tasks [9], we pro-
posed a binary search-based method to compute and assign intermediate dead-
lines to memory phases, where each task consists only of a memory subtask and a
computation subtask. However, it is not straightforward to extend this approach
to DAG tasks, as the approach proposed in [9] already has a high complexity
for a simpler problem. Therefore, in this section, we propose to use a genetic
algorithm (GA) to explore the assignments of intermediate deadlines to subtasks.
We will describe our approach in the rest of this section.

6.4.1 Fair and proportional deadline assignment

First, we review the fair and proportional deadline assignment techniques. The
idea is to divide the slack time along a path πki in the graph between all the
subtasks of the path. We consider paths in decreasing order of their cumulative
execution time, therefore, we start with the critical, i.e. having the largest
cumulative execution time.

We first define the slack function Sl(πki ,Di) along path πki of τi as:

Sl(πki ,Di) = Di −
∑
v∈πki

Cv (6.12)

• Fair distribution: distribute slack as the ratio of the original slack by
the number of subtasks along the path:

75

calculate_share(vi,j, π
k
i) =

Sl(πki ,Di)

|πki |
(6.13)

• Proportional distribution: distribute slack according to the contribu-
tion of the subtask execution time in the path:

calcule_share(vi,j, π
k
i) =

Cvi,j
C(πki)

· Sl(πki ,Di) (6.14)

where C(πki) represents the total cumulative execution time of the subtasks
in πki .

Once the relative deadlines of the subtasks along the critical path have been
assigned, we select the next path in order of decreasing cumulative execution
time, and assign the deadlines to the remaining subtask by appropriately sub-
tracting the already assigned deadlines. The complete procedure is not reported
here and can be found in [41].

6.4.2 GA-based intermediate deadline assignment

In this paper, we use a genetic algorithm to assign intermediate deadlines to
memory and computation subtasks for a set of reduced tasks T . In a genetic
algorithm, a population of candidate solutions (called individuals) is evolved
towards better solutions. The goal is to move from unschedulable solutions to at
least one schedulable solution.

Each candidate solution has a set of chromosomes, which in our case is the
task set with intermediate deadlines assigned, that can be mutated and crossed
over. The evolution process starts from multiple solutions, called the initial
population, each having intermediate deadlines generated randomly.

The iterative process then evaluates the fitness function for every individ-
ual in the population. In each generation, a portion of the existing population
is selected to reproduce and create a new generation through three operations:
selection, crossover, and mutation. The new generation of candidate solutions is
then used as input for the next iteration. The algorithm terminates when a max-
imum number of generations has been produced or a schedulable intermediate
deadline assignement task set is found.

In the following, we describe the general structure of the genetic algorithm,
the representation of a solution, the generation of the initial population, the
fitness function, the selection, the crossover, and the mutation operations.

Algorithm 7 presents our approach for assigning intermediate deadlines. The
algorithm starts by generating the initial population (Line 4). It goes through
several iterations until a schedulable task set is found, namely: (i) population
evaluation (Line 6), (ii) selection (Line 8), (iii) crossover (Line 9), and (iv) mu-
tation (Line 10). If the algorithm finds a feasible schedule, it terminates with
SUCCESS, otherwise, if a maximum number of iterations is reached, it aborts
with FAIL.

76

Algorithm 7 GA intermediate deadlines assignment
1: function DeadlinesGA(T , psize) . The DAG task set, population size
2: found = false
3: Pl ← ∅ . The initial population
4: ip_generation(T , psize) . The initial population generation
5: while (not (found)) do
6: found = ga_evaluation(Pl,A)
7: if (not found) then
8: selection(Pl)
9: crossover(Pl, ηcr)
10: mutation(Pl, ηmu)
11: else
12: return SUCCESS . If schedulable at all levels
13: end if
14: end while
15: return FAIL
16: end function

Individual representation

Each individual in the genetic algorithm consists of a set of subtasks, each with
an intermediate deadline assigned. In this work, we represent an individual as an
ordered list of pairs, where each pair consists of a subtask and its corresponding
local deadline. In our approach, we only consider subtasks that are part of
reduced tasks while constructing the ordered list of subtask-deadline pairs for an
individual.

Definition 7 Individual An individual is denoted as

ind =(〈v1,1, dl1,1〉, 〈v1,2, dl1,2〉, · · · ,
〈v1,n1 , dl1,n1〉, 〈v2,1, dl2,1〉, · · · ,
〈vm,nm , dlm,nm〉)

where:

• Subtasks of the same task are a sub-sequence of ind

• Subtasks of the same task are ordered in a topological order;

• dli,j represents the local deadline of subtask vi,j;

• All individuals present the same subtasks order.

Example 4 In Figure 6.5, we present a task set composed of two tasks, τ1 and
τ2. The former has an end-to-end deadline of 50, while the latter has an end-to-
end deadline of 80. Each task is comprised of seven subtasks. Table 6.1 shows
the representation of an individual in our genetic algorithm.

The subtasks in an individual are sorted according to their topological order.
For example, subtask ve1,3 appears earlier in the individual than ve1,4, vm1,5, and
ve1,6, while ve1,6 appears earlier than vR1,7. It should be noted that we consider
local deadlines, and the restitution subtask’s local deadline is always equal to
the task’s end-to-end deadline.

77

v1

v3 v2

v4 m5

v6

v7

τ1

v1

v2 v3

m4

v5 v6

v7

τ2

Figure 6.5: Example of an individual.

Initial population generation

The first step of a genetic algorithm is the generation of an initial population.
It has been recognized that if the initial population provided to the genetic
algorithm is of “high quality”, the algorithm is more likely to find a sub-optimal
solution [87, 98, 110]. Algorithm 8 summarizes the different steps of our initial
population generation process.

Algorithm 8 Initial population generation
1: function ip_generation(T , psize)
2: Pl ← ∅ . The initial population
3: assigned = true

4: while |Pl| < psize do . psize is the maximum number of generations
5: S ← ∅ . An individual
6: for τi ∈ T do
7: assigned = inter_dline(τi) . Assign τi intermediate
8: . deadlines
9: if !assigned then
10: break
11: end if
12: add τi intermediate deadlines to S
13: end for
14: if assigned then . If all subtasks have assigned a deadline
15: if S /∈ Pl then
16: add S to Pl

17: end if
18: end if
19: end while
20: return Pl

21: end function

For each task τi ∈ T , the algorithm invokes the inter_dline function (Line
7) to assign intermediate deadlines to subtasks. Within this function, all task
paths are sorted by non-increasing cumulative execution time. For each path,

78

v dlv

vA1,1 10
ve1,3 40
ve1,2 25
vm1,5 35
ve1,4 40
ve1,6 40
vR1,7 50
vA2,1 20
ve2,2 30
ve2,3 45
vm2,4 50
ve2,5 70
ve2,6 70
vR2,7 80

Table 6.1: Example of Individual

the random_dlines function (Algorithm 9) is invoked in its turn to distribute
randomly the slack among all subtasks on that path. The inter_dline function
aborts on FAIL if slack sharing fails on at least one path, otherwise, it ends on
SUCCESS. If the intermediate deadline assignment succeeds for all tasks in T ,
the under generation individual denoted as S is inserted into the population.

The share of each subtask that has not yet been assigned a deadline on a
given path is computed in Algorithm 9. We denote the set of subtasks that have
not yet been assigned a deadline by Tnd. The intermediate deadline assignment
is divided into two parts.

In Part 1, Algorithm 9 computes the intermediate deadlines of subtasks that
have an offset and where at least one of their immediate successors has been
assigned an offset (line 3). If multiple immediate successors are found with dif-
ferent offsets, the algorithm computes the non-null minimum offset. Intermediate
deadlines for these subtasks are assigned using Algorithm 10. The intermediate
deadline of each subtask is computed as the difference between its offset and
the minimum offset of its immediate successor. Each time a deadline is assigned
to a subtask, Algorithm 10 modifies: (i) its local deadline, (ii) the offsets of its
immediate successors, (iii) and removes it from Tnd (lines 9-11).

Algorithm 9 computes the intermediate deadlines for the rest of the subtasks
in Tnd in Part 2. It computes the slack time on the analyzed path, generates
a set of random values whose sum is equal to 1 (line 6) and uses each value
to compute the intermediate deadline of a subtask as the sum of Sl · U[v] and
the subtask worst-case execution time (line 9). The offset of each subtask is
computed as the maximum local deadline of its immediate predecessors (except
the offset of the acquisition subtask, which is always equal to 0).

Definition 8 (Valid assignment) An intermediate deadline assignment Ω(τi)
of a task-graph τi is valid if:

79

Algorithm 9 Compute the intermediate deadlines on a path
1: function inter_dlines(πk

i)
2: Tnd ← compute_contributors(πk

i)
3: if !non_zero_offset_subtasks_dlines(Tnd, πk

i) then
4: return FAIL
5: end if
6: Sl← compute_slack(πk

i) . Compute the slack in path πk
i

7: if Sl < 0 then
8: return FAIL
9: end if
10: U← random_rates()
11: for v ∈ πk

i do
12: if v ∈ Tnd then . v has no deadline
13: dline = Cv + (Sl · U[v])
14: dv ← dline

15: dlv ← φv + dline

16: update_isucc_offset(v) . update v’s immediate
17: . successors offset
18: remove(v, Tnd)
19: end if
20: end for
21: return SUCCESS
22: end function

1. the intermediate deadline of each subtask is greater than or equal to its
worst-case execution time:
∀v ∈ Vi, dv ≥ Cv ;

2. and the local deadline of the restitution subtask is less than or equal to the
end-to-end deadline of τi : dlvR ≤ Di.

Lemma 6 Consider an AECR-DAG task (resp. AECR-reduced DAG task)
τi. The intermediate deadline assignment Ω(τi) computed by function ran-
dom_dlines is valid.

Proof 8 The deadline of a subtask is computed either in Part 1 or in Part 2 of
Algorithm 9. In the first part, the deadline of the subtask is assigned only if it is
greater than or equal to its worst-case execution time, otherwise, it is computed
in the second part of the algorithm as Cv + (Sl · U[v]), ensuring Condition 1 of
Definition 8. Moreover, the sum of the rates U generated in part 2 of Algorithm
9 is equal to 1; rates are by definition positive values. The slack in its turn,
is positive, otherwise, the schedulability fails. The offset of each subtask is
computed as the maximum among all predecessors offset, therefore, the local
deadline of the restitution subtask cannot be greater than the task end-to-end
deadline, confirming Condition 2 of Definition 8.

6.4.3 Evaluation Strategy

The most important step of a genetic algorithm is the evaluation of the pop-
ulation. In this section, we assume that all computation subtasks have been

80

Algorithm 10 Non zero offset subtasks deadline assignment
1: function non_zero_offset_subtask_dlines(&Tnd, pi)
2: for v ∈ pi do
3: if v ∈ Tnd then . The subtask deadline is not yet computed
4: min = min_offset(i_succ(v)) . get the minimum non-null
5: . offset of the immediate successors of v
6: if φv > 0 and min > 0 then
7: dline = min− φv
8: if dline ≥ Cv then
9: dv ← dline

10: dlv ← φv + dline

11: update_isucc_offset(v) . update v’s immediate
12: . successors offset
13: remove(v, Tnd)
14: else
15: return FAIL
16: end if
17: end if
18: end if
19: end for
20: return SUCCESS
21: end function

allocated (partitioned) on the platform’s cores and that subtasks have already
been assigned offsets and intermediate deadlines. We apply the processor de-
mand criterion [129] to evaluate each individual in the population. Algorithm 11
summarizes and clarifies our evaluation strategy.

The algorithm takes as input the generated population and an empty set
S. Each individual ψi in the input population needs to be awarded a score to
indicate how close it is to meet the overall schedulability. This score is called the
fitness score and it is calculated by the fitness function (lines 3-4), which will be
detailed later in Section 6.4.3.

Algorithm 11 Population evaluation
1: function population_evaluation(Pl,S) . The population
2: for s ∈ Pl do
3: score<A,S2SB,M2SB> = dbf_dag_analysis(s,A)
4: if (score<A,S2SB,M2SB> == 0) then
5: return s . A solution is found
6: else
7: f_score = α1 · score(A) + α2 · score(S2SB) + α3 · score(M2SB)
8: s.set_score(f_score) . Set the score of s
9: S ← s . Add s to S
10: end if
11: end for
12: return
13: end function

81

Schedulability of task-graphs

In this paper, we consider a system of sporadic task graphs T . When an in-
stance of a task is activated, its subtasks are activated with an offset relative to
the activation of the task-graph. To analyse the schedulability of the system, we
proceed by analysing the schedulability on each processor and on the two com-
munication buses. If all subtasks respect their deadlines, then the entire system
is schedulable.

Definition 9 We denote by Λp(T) the subset of subtasks of T allocated on
core p. By extension, ΛS2SB(T) is the set of all communication subtasks, and
ΛM2SB(T) is the set of memory subtasks.

To analyse the schedulabity on each processor and on each bus, we use the
Demand Bound Criterion(dbf) [129]. The original demand bound analysis of
[129] only considers sporadic tasks. Instead, subtasks belonging to the same task-
graph have offsets with respect to each other. Therefore, we use the approximated
method of [96] to compute the dbf of a task-graph on a given core.

The dbf at L on core p ∈ A of a task-graph can be computed as follows [96]:

dbf(τi, L, p) = max
∀vi,j∈Λp (T)

ß ∑
vi,k∈Λp (T)

Çú
L− φk,j − dvi,k

Ti

ü
+ 1

å
0

·Cvi,k

™
(6.15)

where φk,j = (φvi,k − φvi,j) mod Ti. To understand Equation (6.15), consider
that the subtasks of a task τi are activated with an offset relative to the arrival
of the first subtask. Therefore, we need to align the offset of one subtask to the
beginning of an interval of length L and compute the workload generated in the
interval. We do this for every subtask, and then we take the maximum. The
resulting dbf is an upper bound to the actual dbf in that interval.

Theorem 9 Given a set of subtasks allocated on core p, the subtasks are schedu-
lable if their cumulative utilisation is less than 1, and

∀L ≤ L∗
∑
τi∈T

dbf(τi, L, p) ≤ L (6.16)

where L∗ is the first idle time on core p.

Proof 9 The proof descends directly from the proof of Theorem 2 in [96]: it
suffices to notice that subtasks belonging to different task graphs have no offset
relationship between each other, while subtasks beloning to the same task-graph
are subject to offsets.

Let now consider the schedulability on the buses. In our model, a task-
graph may contain memory nodes that represent either the A/R phases or the
communication phases, and these nodes are executed non-preemptively: e.g.
once a communication subtask starts, it completes the memory transfer without
being interrupted by other communication subtasks. Therefore, we have to take

82

into account a blocking time in the schedulability analysis. This can be done by
extending Theorem 6 in [96], which deals with blocking time due to mutually
exclusive resources.

Theorem 10 Given a set of memory subtasks to be scheduled on bus, the sub-
tasks are schedulable if their cumulative utilisation is less than 1, and:

∀L < L∗
∑
τi∈T

dbf(τi, L, bus) + B (τi, L, bus) ≤ L (6.17)

where:

B (τi, L, bus) = max{Cvj,k | ∀j 6= i, vj,k ∈ Λbus(T) ∧ dvi,j > L }. (6.18)

is the blocking time due to non-preemptive scheduling.

Proof 10 Since subtasks executed completely inside any interval of length L
can be blocked only once by subtasks that started before the beginning of the
interval and have deadlines after the end of the interval, the maximum blocking
time can not be longer than the maximum worst-case execution time among all
subtasks having a deadline greater than L.
Now, by contradiction. Let v be the first subtask to miss a deadline at time
t2 and let t1 < t2 be the last instant before t2 when there is an idle time or
a subtasks with absolute deadline at or before t2 is executed. Then, from the
properties of EDF it follows that :

• in interval [t1, t2] there is no idle time;

• at most one subtask with deadline greater than t2 can execute (the blocking
subtask)

• the rest of the interval is executed by subtasks with arrivals no earlier than
t1 and deadline no later than t2.

Since a subtask has missed its deadline, then the cumulative demand in [t1, t2],
including the blocking subtask, has exceeded the length of the interval L =
(t2 − t1) and this in contradiction with the hypothesis.

Theorem 11 Given a task set T , and a platform A, where all subtasks have
been assigned to cores, and where:

• the computation subtasks are scheduled on their assigned cores by preemp-
tive EDF;

• the communication subtasks are scheduled by non-preemtpive EDF on the
S2SB ;

• the memory subtasks are scheduled by non-preemptive EDF on the M2SB;

83

the task set is schedulable (i.e. every instance of every task-graph completes before
its end-to-end deadline) if:

∀p ∈ A,∀L ≤ L∗,
∑

τi∈Λp (T)

dbf(τi, L, p) ≤ L (6.19)

and

∀L ≤ L∗,
∑

τi∈ΛS2SB(T)

dbf(τi, L, S2SB) + B (τi, L, S2SB) ≤ L (6.20)

and

∀L ≤ L∗,
∑

τi∈ΛM2SB(T)

dbf(τi, L,M2SB) + B (τi, L,M2SB) ≤ L (6.21)

Proof 11 1) For each core p ∈ A, and from Theorem 9, the first condition of
the dbf ensures that each computation subtask allocated on p is schedulable (i.e.
every instance completes before its intermediate deadline); 2) For both S2SB and
M2SB buses, and according to Theorem 10, the second and the third conditions
ensure that each memory operation completes before its intermediate deadline.

Therefore: a) the precedence constraints are respected, b) the local deadline
of the restitution subtask of every task-graph is less than or equal to its end-to-
end deadline. Hence, the system is schedulable.

Fitness function

The fitness score is an indicator of how “fit” a candidate solution is to meet the
overall schedulability condition. The fitness function takes as input an individual
candidate solution to our problem and specifies how far away this individual is
from satisfying the schedulability condition.

We define score(r), with r ∈ R, as the schedulability score of the cores, the
inter-core bus (S2SB) and the memory-to-scratchpad bus (M2SB), respectively
(line 3).

Definition 10 (Fitness score) A schedulability score is computed for each re-
source r ∈ R as follow:

∀r ∈ R, score(r) = max
0<L≤L∗

(
dbf(L, r)− L

L
, 0

)
(6.22)

where R = A∪
{
S2SB

}
∪
{
M2SB

}
, and dbf(L, r) is the left-hand side expression

of equations (6.19), (6.20) and (6.21), respectively.
The fitness score of a solution is the weighted sum of the three schedulability

scores:

f_score = α1score(A) + α2score(S2SB) (6.23)
+ α3score(M2SB)

84

and

score(A) =

∑
∀p∈A

score(p)

|A|
Where α1 + α2 + α3 = 1.

When the set of subtasks allocated on a given core p ∈ A is schedulable
by using preemptive EDF, then the score on p is equal to 0. Similarly, the
score on both buses is equal to 0 if the memory subtasks are schedulable by
non-preemptive EDF. The blocking time on the platform’s cores is set to 0.

Algorithm 11 weights the fitness score for each non-schedulable individual.
During our experimentation, it has been noticed that setting the fitness scores to
give more importance to the schedulability on the inter-core bus (S2SB) yields
better results, as they can vary greatly between individuals. In the experimental
settings, we set α1, α2, α3 to 0.2, 0.6 and 0.2 respectively. The algorithm adds
non-schedulable individuals to S and proceeds to the selection step (lines 7-10).

6.4.4 Creating the next generation

Selection

Before applying the genetic operators (crossover and mutation), the selection
phase must be applied. Different approaches can be used to select the best indi-
viduals. A good comparative review of selection techniques in genetic algorithms
can be found in [35]. We use rank selection in this work. One of the advantages of
rank selection is its ability to maintain genetic diversity. Therefore, we order in-
dividuals by non-increasing order of their fitness score computed in Algorithm 11.
Then, we select the 50% best individuals and replace the remaining 50% with
new individuals created by applying the genetic operators.

Mutation and crossover

The mutation and crossover operations are applied to the best-selected individ-
uals. The crossover creates new individuals and tries to improve the scheduling
objective by exchanging partial information contained in two randomly selected
individuals (parents). In our case, each child’s individual Ψi receives local dead-
lines from the parents.

Several variants of the crossover are popular [106, 107, 127]. The original
approach of the crossover operator is called one-point crossover: one crossover
point on the two parent individuals is selected, and all local deadlines beyond that
point are swapped between the two parents. This approach can be generalized
to a multi-point operator, where the number of points is chosen randomly. It
can be further generalised by copying local deadlines from the first parent with
a probability p and from the second parent with a probability 1 − p. The case
p = 0.5 is called uniform crossover.

In this work, we use the one-point crossover operator. When two individuals
are chosen for crossover, a crossover point is randomely selected at the same
position for both individuals. This point divides each individual into two distinct

85

τi v dv

vA1,0 2
v1,1 4
v1,2 4

τ1 v1,3 1
v1,4 1
v1,5 5
vR1,6 2
vA2,0 2
v2,1 1
v2,2 1

τ2 v2,3 5
v2,4 4
v2,5 4
vR2,6 2

−→
←−

τi v dv

vA1,0 2
v1,1 4
v1,2 2

τ1 v1,3 2
v1,4 2
v1,5 4
vR1,6 3
vA2,0 2
v2,1 2
v2,2 1

τ2 v2,3 4
v2,4 4
v2,5 4
vR2,6 2

=⇒

τi v dv

vA1,0 2
v1,1 4
v1,2 4

τ1 v1,3 1
v1,4 1
v1,5 5
vR1,6 2
vA2,0 2
v2,1 2
v2,2 1

τ2 v2,3 4
v2,4 4
v2,5 4
vR2,6 2

τi v dv

vA1,0 2
v1,1 4
v1,2 2

τ1 v1,3 2
v1,4 2
v1,5 4
vR1,6 3
vA2,0 2
v2,1 1
v2,2 1

τ2 v2,3 5
v2,4 4
v2,5 4
vR2,6 2

ψ1 ψ2 ψ3 ψ4

Table 6.2: Swapping local deadlines after a crossover point (ψ3 and ψ4 are new
individuals)

parts: a head and a tail. The head of the first individual is combined with the
tail of the second individual, and a similar operation is performed for the second
individual. This process results in the creation of two new individuals (see Table
6.2).

The mutation operator is used to introduce genetic diversity in the popula-
tion. With this operator, either we randomly change the value of a gene or we
swap the positions of two of them. For instance, [107] uses swap, insertion, and
inversion mutations. In this work, we randomly select an individual ψ, a DAG
task τi and a subtask v. The local deadline for v is randomly modified, creating
a new child individual. The new deadline is selected randomly in the interval
I = [b_inf, b_sup] where b_inf = φv + C(v) and b_sup is the subtask local
deadline. We then derive the new intermediate deadline of v, and we adjust the
offset of its immediate successors.

The mutation and crossover rates, ηmu and ηcr respectively, are used to com-
pute the number of individuals to generate to replace those eliminated by the
selection operation.

6.5 Results and discussions
In this section, we will evaluate the performance of the proposed approaches
in comparison to related work. Our contributions include allocation, deadlines
assignment, and offsets assignment. First, we will assess the performance of
our allocation strategy compared to bin-packing allocation heuristics such as
Best Fit (BF) and Worst Fit (WF). Additionally, we will compare our deadline

86

assignment techniques to classical deadline assignment heuristics, specifically fair
and proportional approaches.

To evaluate the performance of these techniques, we measured the schedula-
bility rate and the runtime on two different platforms. The first platform features
4 identical cores, while the second platform features 6 identical cores.

6.5.1 Task generation

Experiments have been conducted on a large number of randomly generated
synthetic task sets. The task generation process takes as input the number of
tasks n, the target baseline utilization of the task set, and graph generation
parameters.

First, the algorithm generates n task utilization using the UUnifast algo-
rithm [71] such that their total sum is equal to the target baseline utilization.
For each task, we randomly select a period from a predefined list of periods:
{15000, 12000, 20000, 24000, 30000, 10000, 40000, 60000}. This allows us to con-
trol the schedulability analysis complexity and avoid intractable hyper-periods.
The task deadline is set equal to 0.8 ·T.

Next, we compute the utilization for acquisition and restitution subtasks by
inflating the task utilization by the stallA/R parameter, which is set to 0.05
for each, that is tasks will spend 5% of their worst-case execution time (WCET)
receiving and sending data from/to the main memory. We then use the UUnifast-
discard algorithm again to distribute the remaining task utilization among the
subtasks of the considered task. We set the number of computation subtasks to
8. The execution time of each subtask is computed by multiplying the subtask
utilization by the task period. Furthermore, we generate precedence constraints
between the different subtasks using the layer-by-layer method [70]. It is known
that the bahavior of the classical deadline assignment depends on the graph
structure. Therefore, we generate large-DAG or long-DAG. For large DAGs, we
randomly select the number of subtasks per layer between 3 and 5. For long
DAG tasks, the number of subtasks per layer is either 2 or 3. We consider a
probability γ = 0.22 to create a precedence constraint between two subtasks
from different layers. Precedence between subtasks belonging to non-consecutive
layers is allowed. We guarantee that the task is weakly connected to ensure the
absence of isolated subtasks.

Communication subtasks are automatically inserted between every two de-
pendent computation subtasks. The execution time of a communication subtask
stallm is set equal to 0.2 of the execution time of its immediate predecessor.
This value is subtracted from the predecessor’s execution time to maintain the
baseline utilization for the task graph unchanged.

COTS platforms with scratchpads are typically microcontrollers with limited
computing capacity. Therefore, they are not able to handle highly complex soft-
ware composed of hundreds of subtasks, compared to more powerful processors.
Consequently, we believe that a setting with hendreds, and thousands of sub-
tasks can not be representative to the applications that can be supported by

2We used the same value as in the literature [7].

87

scratchpad-based platforms.

6.5.2 Simulation results and discussions

We conducted experiments where we varied the baseline utilization from 0 to the
number of cores by a step of 0.4. For each utilization value, we generated 100
task sets, with each task set containing 8 AECR-DAG tasks. We set the upper
bounds for core utilization as Umax = 0.85 or Umax = 0.7.

For the genetic algorithm, we explored two types of scenarios: a small popu-
lation class with 50 individuals and a large population class with 150 individuals.
The genetic algorithm stops after either 50 generations for small populations or
100 generations for the large population class.

The experiments were conducted on a 12th Gen Intel(R) Core(TM) i7-1255U
processor with 16 GB of RAM. We used CPLEX as the ILP solver for our ex-
periments.

Comparison of allocation approaches

First, we conducted a study to analyze the impact of subtask-to-core alloca-
tion on the elimination of unnecessary communications. We compared our pro-
posed approach against two well-known allocation heuristics: Worst-Fit (WF)
and Best-Fit (BF). The experiments were conducted on a platform with 4 identi-
cal cores, using the same settings for the genetic algorithm (mutation probability
ηmu and crossover probability ηcr set to 0.5). The experiments were performed
for both small and large populations, as well as for long and large DAGs. Each
combination is labeled as ILP, BF, or WF, representing the ILP, Best-Fit, or
Worst-Fit allocation strategy, with GA denoting the genetic algorithm. A num-
ber represents an upper bound of the processor workload (0.7 and 0.85), and
optionally, S or L denotes the small or the large population class.

In Figure 6.6, we present the results for the schedulability rate of the large
graph DAG as a function of the target baseline utilization. We are specifically
interested in examining the impact of the processor workload upper bound on
the schedulability ratio.

ILP-based allocation outperforms all other approaches with the same param-
eters, as it effectively eliminates unnecessary communications compared to the
BF and WF approaches. The WF approach itself dominates the BF approach, as
the BF approach tends to allocate a maximum number of subtasks on the same
core, resulting in a highly loaded core compared to the other approaches. This
jeopardizes schedulability, making it weaker compared to the other approaches.

When the processor workload upper bound is set to 0.7, all the allocation
strategies outperform the same strategy with the upper bound set to 0.85. This
unloads the different cores, providing more laxity to find feasible definitions of the
intermediate deadlines. However, the total workload to schedule decreases to 2.8,
which is 0.7 multiplied by the number of cores. This reduction is still reasonable
since allowing more workload (0.85) per core does not improve schedulability at
high workloads.

88

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

The target baseline utilisation

Sc
he
du

la
bi
lit
y
ra
ti
o

ILP-GA-0.85
WF-GA-0.85
BF-GA-0.85
ILP-GA-0.7
WF-GA-0.7
BF-GA-0.7

Figure 6.6: Schedulability rate for large DAG on Small poplation: Umax = 0.7 vs
Umax = 0.85

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

The target baseline utilisation

Sc
he
du

la
bi
lit
y
ra
ti
o

Witness
ILP-GA-0.85
WF-GA-0.85
BF-GA-0.85
ILP-GA-0.7
WF-GA-0.7
BF-GA-0.7

Figure 6.7: Schedulability rate for long DAG on Small poplation: Umax = 0.7 vs
Umax = 0.85

Figure 6.7 presents the same experiments as Figure 6.6, but for long DAGs.
To provide an indication, we include the best results from the previous figure
in gray3. All allocation strategies perform similarly to those in the previous
figure. However, the schedulability has slightly decreased. This reduction can be
attributed to the presence of long graphs, which offer less flexibility in allocating
intermediate deadlines. Although long graphs leverage parallel execution, they
significantly impact the schedulability of individual tasks.

In Figure 6.8, we examine the impact of increasing the population size on
schedulability as a function of the total workload. We compare different ap-
proaches with a workload threshold set to 0.7 for all cases. As expected, a
larger population size (150 individuals) improves schedulability compared to an
equivalent approach with a smaller population size (50 individuals). Even the
WF-based allocation with a large population outperforms the ILP-based allo-
cation with a smaller population (compared to the previous experimentations).
This is due to the fact that a larger population allows for more diversification,

3It should be noted that the previous experiment was conducted on a different task set, so
the comparison is made for the sake of indication rather than direct comparability

89

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

The target baseline utilisation

Sc
he
du

la
bi
lit
y
ra
ti
o

ILP-GA-0.7-L
WF-GA-0.7-L
BF-GA-0.7-L
ILP-GA-0.7-S
WF-GA-0.7-S
BF-GA-0.7-S

Figure 6.8: Schedulability for large DAGs at Umax = 0.7: small vs large popula-
tion

and iterating for 150 generations instead of 50 generations allows for more in-
tensive search. However, the Best-Fit approach still exhibits poor performance
because it overly constrains certain cores compared to others.

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

The target baseline utilisation

Sc
he
du

la
bi
lit
y
ra
ti
o

ILP-GA-0.7-L
WF-GA-0.7-L
BF-GA-0.7-L
ILP-GA-0.7-S
WF-GA-0.7-S
BF-GA-0.7-S

Figure 6.9: Schedulability rate for long DAGs: Umax = 0.7 small vs large popu-
lation

In Figure 6.9, we present the results of the same experiments as Figure 6.8,
but specifically for long DAGs. The results are comparable to the previous
figure, with some notable differences. The ILP approach still outperforms theWF
approach, even with a smaller population size. This is explained by the nature of
long DAGs in our task set generation algorithm, where we have no more than two
subtasks per layer, therefore, the slack time distributed over the different subtasks
is smaller compared to large DAGs. In such a highly constrained system, the
impact of diversified and intensive search for intermediate deadlines is minimal
compared the subtask-to-core allocation, which has a more significant impact in
determining schedulability. Therefore, based on the configuration of our tasks,
it may be more important to prioritize intensive intermediate deadline search for
large DAGs or focus on employing more intensive allocation strategies for long
DAGs, to allow the deadline assignment techniques to be more efficient.

In Figure 6.10, we provide the time required to perform the allocation and

90

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

500

1,000

1,500

The target baseline utilisation

R
un

ti
m
e
(s
ec
)

(a) Runtime for large-DAGs on small
population(Umax = 0.85, 50 generations)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1,000

2,000

3,000

The target baseline utilisation

R
un

ti
m
e
(s
ec
)

ILP-GA
WF-GA
BF-GA

(b) Runtime for large-DAGs on large pop-
ulation (Umax = 0.7, 100 generations)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1,000

2,000

3,000

4,000

5,000

The target baseline utilisation

R
un

ti
m
e
(s
ec
)

(c) Runtime for long-DAGs on small popu-
lation (Umax = 0.85, 50 generations)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1,000

2,000

3,000

4,000

5,000

The target baseline utilisation

R
un

ti
m
e
(s
ec
)

(d) Runtime for long-DAGs on large
population(Umax = 0.7, 100 generations)

Figure 6.10: ILP’s performances VS (WF and BF) algorithms when using GA
for deadline assignment

schedulability analysis for the previous experiments as a function of total uti-
lization. We have limited the total utilization to 2, as having a smaller number
of schedulable task sets beyond this limit does not allow drawing statistically
significant and meaningful conclusions. Notably, the average time required to
assess schedulability for large graphs (the two figures on the left-hand side) is
generally shorter than that for the analysis of long DAGs (please note that the
scales of the figures are different). On average, the BF heuristic takes more
time because schedulability testing fails more frequently compared to the other
approaches. Therefore, the analysis continues until the maximum number of it-
erations is reached, unlike the other approaches, which may terminate earlier if a
schedulable solution is found in intermediate generations. Similarly, the ILP ap-
proach, which exhibits the best schedulability rates, completes its analysis faster
than all the other approaches. Here, the required time to achieve a good alloca-
tion through the ILP is recovered by the effiency of the corresponding deadline
assignment process.

91

Comparaison of Deadline Assignement Approches

In this section, we evaluate the performance of our genetic algorithm-based dead-
line assignment approach (Algorithm 7) against two deadline assignment meth-
ods: the fair deadline assignment heuristic denoted as FAIR and the proportional
deadline assignment heuristic denoted as PROP. The tasks in this experience are
allocated using the proposed ILP formulation, since it demonstrates the best
performances. Each algorithm is, therefore, labeled by a combination of these
techniques. The workload upper bound is set to Umax = 0.7. We compare the
schedulability and the required analysis time for these approaches.

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

The target baseline utilisation

Sc
he
du

la
bi
lit
y
ra
ti
o

GA-ILP
PROP-ILP
FAIR-ILP

(a) Schedulability for large-DAGs

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

The target baseline utilisation

Sc
he
du

la
bi
lit
y
ra
ti
o

GA-ILP
PROP-ILP
FAIR-ILP

(b) Schedulability for long-DAGs

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

100

200

300

400

500

The target baseline utilisation

R
un

ti
m
e
(s
ec
) GA-ILP

PROP-ILP
FAIR-ILP

(c) Runtime for large-DAGs

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

500

1,000

1,500

2,000

The target baseline utilisation

R
un

ti
m
e
(s
ec
) GA-ILP

PROP-ILP
FAIR-ILP

(d) Runtime for long-DAGs

Figure 6.11: GA’s performances VS (FAIR and PROP) when using ILP for task
allocation on large population (Umax = 0.7)

In Figures (6.11a and 6.11b), we present the schedulability ratios of different
deadline assignment techniques, namely GA, FAIR, and PROP, as a function of
total utilization for large and long DAGs, respectively. Our genetic algorithm-
based assignment technique significantly outperforms PROP and FAIR in both
cases. The proportional approach assigns slack proportionally to the subtask
execution time, which means that subtasks with longer execution times are more
likely to receive additional slack compared to the FAIR approaches. As a result,
these subtasks have more flexibility in terms of being scheduled without missing
their deadlines. It is worth to notice that our approach is sensitive to the DAG
topology, meaning that the structure and connections within the DAG can have
an impact on the algorithm’s performance, similarly to the related work.

92

Our approach improves the schedulability performance at an acceptable cost
on the required time to achieve the analysis, i.e., t requires more time to complete
the analysis compared to the PROP and FAIR approaches (Figures 6.11c and
6.11d), which have negligible execution times in comparison to ours.

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

The target baseline utilisation

Sc
he
du

la
bi
lit
y
ra
ti
o

GA-ILP
PROP-WF
FAIR-WF

(a) Schedulability (Scenario 1)

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

The target baseline utilisation

Sc
he
du

la
bi
lit
y
ra
ti
o

GA-ILP
PROP-WF
FAIR-WF

(b) Schedulability (Scenario 2)

Figure 6.12: Compare GA’s performances when using ILP for large-DAG tasks
allocation with the literature (large population for GA, Umax = 0.7)

In Figures (6.12a and 6.12b), we compare our genetic algorithm with ILP-
based allocation against the PROP and FAIR approaches using WF for subtask-
to-core allocation, as a function of total utilization. In the left-hand side figure,
we generate 10 DAGs, each consisting of 8 computational tasks, while in the right-
hand side figure, we generate 3 DAGs, each consisting of 25 subtasks. The results
indicate that our proposed approach consistently outperforms the approaches
found in the literature. Our algorithm demonstrates that its performance is not
dependent on the number of DAGs or the number of subtasks.

6.6 Conclusion
In this chapter, we presented an extension of our contribution presented in the
previous chapter. The aim is to avoid contention for DAG tasks. In order to
achieve this goal, we extended the DAG task model to include memory trans-
fers, and we named it AECR-DAG. This model was used along with scratchpad
memories. We proposed an ILP-based allocation strategy for AECR-DAG task
sets allocation and a genetic algorithm-based technique for task scheduling pa-
rameter determination. We presented our experiments, which show a significant
improvement in the system’s performance compared to the state-of-the-art.

Chapter 7

Conclusion and perspectives

93

94

7.1 Conclusion
In multicore architectures, resources such as main memory or communication
buses are shared and competed for among all CPU cores and I/O peripherals.
Because of this memory bottleneck, contentions for access to main memory can
significantly delay data fetch in architectures with caches, whenever a task suffers
a cache miss. This effect greatly increases the task’s worst-case execution time.
Since more resources can simultaneously compete for access to main memory
in a multicore architecture, execution time of memory intensive tasks can grow
linearly with the number of cores in the system; in the worst case [74]. The
use of task models proposed recently in the literature such as PREM or AER
models where the task code is divided into (one or two) non-preemptive memory
phases and a pure computation phase allow to reduce cache related delays since
no preemption is allowed at memory phases level, however, it does not reduce
memory contentions, in particular those related to the communication bus and
main memory.

In this thesis, we had chosen to focus on the shared memory interference re-
duction through processor and memory co-scheduling for real-time applications.
Firstly, we co-scheduled a set of real-time tasks on a multicore platform with
shared cache memories, where the tasks were modeled using one of the limited
preemption models, which is the DFPP model. To reach a higher level of pre-
dictability, phased task models (PREM and AER) were used in Chapter 5 and
Chapter 6, where we addressed the problem on a multicore platform with scratch-
pads as an alternative to cache memories, as they (i.e., scratchpads) offer better
timing predictability compared to caches. We co-scheduled memory phases in
order to avoid contention. In Chapter 5, we explored and compared different
designs for scheduling memory phases: a time-triggered memory scheduling ap-
proach and an on-line scheduling approach for memory phases of PREM task
sets. We extended our scheduling to directed acyclic task-graphs respecting the
AER model in Chapter 6. We proposed the AECR-DAG task model consisting of
dependent subtasks and their respective communications, and we used a genetic
algorithm to derive bus scheduling parameters for task sets.

The results obtained by testing a very large set of experiments have shown
that our scheduling approaches are effective and improve up to 50% the schedu-
lability compared to equivalent schedules generated with the state-of-the-art
methods. We experimentally demonstrated the applicability of our methodol-
ogy proposed in Chapter 5 on the Infineon AURIX TC-397 multicore family of
processors using different benchmarks.

7.2 Limitations and perspectives

Global scheduling

All the contributions reported in this thesis consider only partitioned scheduling
for which well-known analysis exist in the literature. We plan to extend our
analysis to global scheduling.

95

Heterogenous architectures

The interest in autonomous vehicles is growing constantly. Given the high com-
putational requirements of these systems, they rely on integrated heterogeneous
multicore. However, their real-time requirements constitute an obstacle. In gen-
eral, they couple the general purpose processors and different accelerators such as
GPUs. Typically, they rely on a shared-memory organization, where the afore-
mentioned compute units are interconnected through a shared bus to the main
memory. As the number of compute engines grows, the main memory is subject
to increasing contention.

For integrated devices, it has been shown in [22] that the GPU is highly
susceptible to memory interference from the CPU. These memory interferences
are significant even into a single GPU in particular into cache-based GPUs,
where on-chip L2 cache memory is often shared across all the multiple Streaming
Multiprocessors (SMs) composing the GPU, and hence, being susceptible to data
evictions. In scratchpad-based GPUs, each SM has its own private scratchpad
memory, which can be used by thread blocks that are launched in it. The number
of thread blocks that are actually launched in an SM depends on the amount of
scratchpad memory available in the SM.

It is clear that the SM-related interference needs to be mitigated in order
to improve system’s schedulability. We are convinced that the use of scratch-
pad memories in such systems combined with phased models to enforce a co-
scheduling mechanism can help us to reduce memory interferences.

To get the PREM version, we can use warp specialization [53], presented
in [21], since it provides a way to separate GPU programs into memory and
computation phases. How to realize PREM on CPU is presented in [61]. In this
context, we plan to extend our scheduling techniques, which are promising to
significantly improve schedulability.

Personal publications

[1] I. Senoussaoui, G. Lipari, H.-E. Zahaf, and M. K. Benhaoua. “Memory-
processor co-scheduling of AECR-DAG real-time tasks on partitioned
multicore platforms with scratchpads”. In: under final revision to Journal
Of System Architecture. 2023, pp. 11–15.

[2] I. Senoussaoui, M. K. Benhaoua, H.-E. Zahaf, and G. Lipari. “Toward
memory-centric scheduling for PREM task on multicore platforms, when
processor assignments are specified”. In: 2022 3rd International Confer-
ence on Embedded & Distributed Systems (EDiS). IEEE. 2022, pp. 11–
15.

[3] I. Senoussaoui, H.-E. Zahaf, G. Lipari, and K. M. Benhaoua. “Contention-
free scheduling of PREM tasks on partitioned multicore platforms”. In:
2022 IEEE 27th International Conference on Emerging Technologies and
Factory Automation (ETFA). IEEE. 2022, pp. 1–8.

[4] I. Senoussaoui, H.-E. Zahaf, M. K. Benhaoua, G. Lipari, and R. Olejnik.
“Allocation of real-time tasks onto identical core platforms under deferred
fixed preemption-point model”. In: Proceedings of the 28th International
Conference on Real-Time Networks and Systems. 2020, pp. 34–43.

96

Bibliography

[1] J. el Goossens, U. L. de Bruxelles, S. Baruah, and S. Funk. “Real-time
Scheduling on Multiprocessors”. In: ().

[2] A. IT. “AURIX 32-bit microcontrollers for automotive and industrial ap-
plications”. In: Infineon Technologies AG 1 ().

[3] A. Kernel-to-userspace. “Linux kernel”. In: ().

[4] C. U. Manual. “Ibm Cplex Optimization studio”. In: Version 12 ().

[5] I. Senoussaoui, G. Lipari, H.-E. Zahaf, and M. K. Benhaoua. “Memory-
processor co-scheduling of AECR-DAG real-time tasks on partitioned
multicore platforms with scratchpads”. In: under final revision to Journal
Of System Architecture. 2023, pp. 11–15.

[6] T. Thilakasiri and M. Becker. “Methods to Realize Preemption in Phased
Execution Models”. In: ACM Trans. Embed. Comput. Syst. 22.5s (Sept.
2023). doi: 10.1145/3609132.

[7] S. Ben-Amor and L. Cucu-Grosjean. “Graph reductions and partitioning
heuristics for multicore DAG scheduling”. In: Journal of Systems Archi-
tecture 124 (2022), p. 102359.

[8] I. Senoussaoui, M. K. Benhaoua, H.-E. Zahaf, and G. Lipari. “Toward
memory-centric scheduling for PREM task on multicore platforms, when
processor assignments are specified”. In: 2022 3rd International Confer-
ence on Embedded & Distributed Systems (EDiS). IEEE. 2022, pp. 11–
15.

[9] I. Senoussaoui, H.-E. Zahaf, G. Lipari, and K. M. Benhaoua. “Contention-
free scheduling of PREM tasks on partitioned multicore platforms”. In:
2022 IEEE 27th International Conference on Emerging Technologies and
Factory Automation (ETFA). IEEE. 2022, pp. 1–8.

[10] J. Arora, C. Maia, S. Aftab Rashid, G. Nelissen, and E. Tovar. “Bus-
Contention Aware Schedulability Analysis for the 3-Phase Task Model
with Partitioned Scheduling”. In: 29th International Conference on Real-
Time Networks and Systems. 2021, pp. 123–133.

[11] Z. Houssam-Eddine, N. Capodieci, R. Cavicchioli, G. Lipari, and M.
Bertogna. “The HPC-DAG task model for heterogeneous real-time sys-
tems”. In: IEEE Transactions on Computers 70.10 (2020), pp. 1747–1761.

97

https://doi.org/10.1145/3609132

98

[12] G. Schwäricke, T. Kloda, G. Gracioli, M. Bertogna, and M. Caccamo.
“Fixed-priority memory-centric scheduler for COTS-based multiproces-
sors”. In: 32nd Euromicro Conference on Real-Time Systems (ECRTS
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2020.

[13] I. Senoussaoui, H.-E. Zahaf, M. K. Benhaoua, G. Lipari, and R. Olejnik.
“Allocation of real-time tasks onto identical core platforms under deferred
fixed preemption-point model”. In: Proceedings of the 28th International
Conference on Real-Time Networks and Systems. 2020, pp. 34–43.

[14] B.-A. Slim, C.-G. Liliana, M. Mezouak, and Y. Sorel. “Probabilistic
Schedulability Analysis for Real-time Tasks with Precedence Constraints
on Partitioned Multi-core”. In: 2020 IEEE 23rd International Symposium
on Real-Time Distributed Computing (ISORC). IEEE. 2020, pp. 142–143.

[15] H.-E. Zahaf, G. Lipari, S. Niar, et al. “Preemption-Aware Allocation,
Deadline Assignment for Conditional DAGs on Partitioned EDF”. In:
2020 IEEE 26th International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA). IEEE. 2020, pp. 1–10.

[16] F. Fort and J. Forget. “Code generation for multi-phase tasks on a multi-
core distributed memory platform”. In: 2019 IEEE 25th International
Conference on Embedded and Real-Time Computing Systems and Appli-
cations (RTCSA). IEEE. 2019, pp. 1–6.

[17] J. Real, S. Sáez, and A. Crespo. “A hierarchical architecture for time- and
event-triggered real-time systems”. In: Journal of Systems Architecture
101 (2019), p. 101652. doi: https://doi.org/10.1016/j.sysarc.
2019.101652.

[18] M. R. Soliman and R. Pellizzoni. “Prem-based optimal task segmentation
under fixed priority scheduling”. In: 31st Euromicro Conference on Real-
Time Systems (ECRTS 2019). 2019.

[19] R. Tabish, R. Mancuso, S. Wasly, R. Pellizzoni, and M. Caccamo. “A
real-time scratchpad-centric OS with predictable inter/intra-core commu-
nication for multi-core embedded systems”. In: Real-Time Systems 55.4
(2019), pp. 850–888.

[20] H.-E. Zahaf, N. Capodieci, R. Cavicchioli, M. Bertogna, and G. Li-
pari. “A C-DAG task model for scheduling complex real-time tasks
on heterogeneous platforms: preemption matters”. In: arXiv preprint
arXiv:1901.02450 (2019).

[21] B. Forsberg, A. Marongiu, and L. Benini. “GPUguard: Towards support-
ing a predictable execution model for heterogeneous SoC”. In: Design, Au-
tomation and Test in Europe Conference and Exhibition (DATE), 2017.
2017, pp. 318–321. doi: 10.23919/DATE.2017.7927008.

[22] B. Forsberg, D. Palossi, A. Marongiu, and L. Benini. “Gpu-accelerated
real-time path planning and the predictable execution model”. In: Procedia
Computer Science 108 (2017), pp. 2428–2432.

https://doi.org/https://doi.org/10.1016/j.sysarc.2019.101652
https://doi.org/https://doi.org/10.1016/j.sysarc.2019.101652
https://doi.org/10.23919/DATE.2017.7927008

99

[23] C. Maia, G. Nelissen, L. Nogueira, L. M. Pinho, and D. G. Pérez. “Schedu-
lability analysis for global fixed-priority scheduling of the 3-phase task
model”. In: 2017 IEEE 23rd International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA). IEEE. 2017,
pp. 1–10.

[24] M. Becker, D. Dasari, B. Nicolic, B. Akesson, V. Nélis, and T. Nolte.
“Contention-free execution of automotive applications on a clustered
many-core platform”. In: 2016 28th Euromicro Conference on Real-Time
Systems (ECRTS). IEEE. 2016, pp. 14–24.

[25] B. B. Brandenburg and M. Gül. “Global scheduling not required: Simple,
near-optimal multiprocessor real-time scheduling with semi-partitioned
reservations”. In: 2016 IEEE Real-Time Systems Symposium (RTSS).
IEEE. 2016, pp. 99–110.

[26] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and G.
Buttazzo. “Schedulability analysis of conditional parallel task graphs in
multicore systems”. In: IEEE Transactions on Computers 66.2 (2016),
pp. 339–353.

[27] H. Swahn. Pthreads and OpenMP: A performance and productivity study.
2016.

[28] H. E. Zahaf. “Energy efficient scheduling of parallel real-time tasks on het-
erogeneous multicore systems”. PhD thesis. Université de Lille 1, Sciences
et Technologies, 2016.

[29] H.-E. Zahaf, A. E. H. Benyamina, G. Lipari, R. Olejnik, and P. Boulet.
“Modeling parallel real-time tasks with di-graphs”. In: Proceedings of the
24th International Conference on Real-Time Networks and Systems. 2016,
pp. 339–348.

[30] J. Cavicchio, C. Tessler, and N. Fisher. “Minimizing cache overhead via
loaded cache blocks and preemption placement”. In: 2015 27th Euromicro
Conference on Real-Time Systems. IEEE. 2015, pp. 163–173.

[31] R. I. Davis, A. Burns, J. Marinho, V. Nelis, S. M. Petters, and M.
Bertogna. “Global and Partitioned Multiprocessor Fixed Priority Schedul-
ing with Deferred Preemption”. In: ACM Trans. Embed. Comput. Syst.
14.3 (Apr. 2015), 47:1–47:28. doi: 10.1145/2739954.

[32] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and R. Pelliz-
zoni. “A survey on cache management mechanisms for real-time embedded
systems”. In: ACM Computing Surveys (CSUR) 48.2 (2015), pp. 1–36.

[33] S. J. Kang, S. Y. Lee, and K. M. Lee. “Performance comparison of
OpenMP, MPI, and MapReduce in practical problems”. In: Advances in
Multimedia 2015 (2015), pp. 7–7.

[34] M. Qamhieh. “Scheduling of parallel real-time DAG tasks on multiproces-
sor systems”. PhD thesis. Paris Est, 2015.

https://doi.org/10.1145/2739954

100

[35] A. Shukla, H. M. Pandey, and D. Mehrotra. “Comparative review of selec-
tion techniques in genetic algorithm”. In: 2015 International Conference
on Futuristic Trends on Computational Analysis and Knowledge Man-
agement (ABLAZE). 2015, pp. 515–519. doi: 10.1109/ABLAZE.2015.
7154916.

[36] H. Yun, G. Yao, et al. “Memory bandwidth management for efficient per-
formance isolation in multi-core platforms”. In: IEEE Transactions on
Computers 65.2 (2015), pp. 562–576.

[37] A. Alhammad and R. Pellizzoni. “Time-predictable execution of multi-
threaded applications on multicore systems”. In: 2014 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE. 2014, pp. 1–6.

[38] B. Chattopadhyay and S. Baruah. “Limited-preemption scheduling on
multiprocessors”. In: Proceedings of the 22nd International Conference on
Real-Time Networks and Systems. ACM. 2014, p. 225.

[39] G. Durrieu, M. Faugère, S. Girbal, D. G. Pérez, C. Pagetti, and W.
Puffitsch. “Predictable flight management system implementation on a
multicore processor”. In: Embedded Real Time Software (ERTS’14). 2014.

[40] “Integrating Cache-Related Pre-emption Delays into Analysis of Fixed
Priority Scheduling with Pre-emption Thresholds”. English. In: Proceed-
ings Real-Time Systems Symposium (RTSS 2014). IEEE, Dec. 2014,
pp. 161–172. doi: 10.1109/RTSS.2014.25.

[41] Y. Wu, Z. Gao, and G. Dai. “Deadline and activation time assignment
for partitioned real-time application on multiprocessor reservations”. In:
Journal of Systems Architecture 60.3 (2014), pp. 247–257.

[42] O. Board. “OpenMP application program interface version 4.0
http://www. openmp. org/mpdocuments”. In: OpenMP4. 0.0. pdf (2013).

[43] D. Dasari, B. Akesson, V. Nelis, M. A. Awan, and S. M. Petters. “Identify-
ing the sources of unpredictability in COTS-based multicore systems”. In:
2013 8th IEEE international symposium on industrial embedded systems
(SIES). IEEE. 2013, pp. 39–48.

[44] M. Qamhieh, F. Fauberteau, L. George, and S. Midonnet. “Global EDF
scheduling of directed acyclic graphs on multiprocessor systems”. In: Pro-
ceedings of the 21st International conference on Real-Time Networks and
Systems. 2013, pp. 287–296.

[45] S. Altmeyer, R. I. Davis, and C. Maiza. “Improved cache related pre-
emption delay aware response time analysis for fixed priority pre-emptive
systems”. In: Real-Time Systems 48.5 (2012), pp. 499–526.

[46] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and A.
Wiese. “A generalized parallel task model for recurrent real-time pro-
cesses”. In: 2012 IEEE 33rd Real-Time Systems Symposium. IEEE. 2012,
pp. 63–72.

https://doi.org/10.1109/ABLAZE.2015.7154916
https://doi.org/10.1109/ABLAZE.2015.7154916
https://doi.org/10.1109/RTSS.2014.25

101

[47] G. C. Buttazzo, M. Bertogna, and G. Yao. “Limited preemptive schedul-
ing for real-time systems. a survey”. In: IEEE transactions on Industrial
Informatics 9.1 (2012), pp. 3–15.

[48] G. C. Buttazzo, M. Bertogna, and G. Yao. “Limited preemptive schedul-
ing for real-time systems. a survey”. In: IEEE Transactions on Industrial
Informatics 9.1 (2012), pp. 3–15.

[49] R. I. Davis and M. Bertogna. “Optimal fixed priority scheduling with de-
ferred pre-emption”. In: 2012 IEEE 33rd Real-Time Systems Symposium.
IEEE. 2012, pp. 39–50.

[50] G. Yao, R. Pellizzoni, S. Bak, E. Betti, and M. Caccamo. “Memory-centric
scheduling for multicore hard real-time systems”. In: Real-Time Systems
48.6 (2012), pp. 681–715.

[51] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto. “Sur-
vey of scheduling techniques for addressing shared resources in multicore
processors”. In: ACM Computing Surveys (CSUR) 45.1 (2012), pp. 1–28.

[52] S. Altmeyer and C. M. Burguière. “Cache-related preemption delay via
useful cache blocks: Survey and redefinition”. In: Journal of Systems Ar-
chitecture 57.7 (2011), pp. 707–719.

[53] M. Bauer, H. Cook, and B. Khailany. “CudaDMA: Optimizing GPUMem-
ory Bandwidth via Warp Specialization”. In: Proceedings of 2011 Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis. SC ’11. Seattle, Washington: Association for Computing
Machinery, 2011. doi: 10.1145/2063384.2063400.

[54] M. Bertogna, G. Buttazzo, and G. Yao. “Improving feasibility of fixed
priority tasks using non-preemptive regions”. In: 2011 IEEE 32nd Real-
Time Systems Symposium. IEEE. 2011, pp. 251–260.

[55] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. Buttazo. “Op-
timal selection of preemption points to minimize preemption overhead”.
In: 23rd Euromicro Conference on Real-Time Systems. 2011, pp. 217–227.

[56] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. Buttazzo. “Op-
timal selection of preemption points to minimize preemption overhead”.
In: 2011 23rd Euromicro Conference on Real-Time Systems. IEEE. 2011,
pp. 217–227.

[57] G. Buttazzo. “A General View”. In: vol. 24. Sept. 2011, pp. 1–22. doi:
10.1007/978-1-4614-0676-1_1.

[58] R. I. Davis and A. Burns. “A survey of hard real-time scheduling for
multiprocessor systems”. In: ACM computing surveys (CSUR) 43.4 (2011),
pp. 1–44.

[59] R. I. Davis and A. Burns. “A survey of hard real-time scheduling for
multiprocessor systems”. In: ACM computing surveys (CSUR) 43.4 (2011),
p. 35.

https://doi.org/10.1145/2063384.2063400
https://doi.org/10.1007/978-1-4614-0676-1_1

102

[60] S. Mohan, M. Caccamo, L. Sha, R. Pellizzoni, G. Arundale, R. Kegley, et
al. “Using multicore architectures in cyber-physical systems”. In: Work-
shop on Developing Dependable and Secure Automotive Cyber-Physical
Systems from Components. 2011, p. 86.

[61] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, et al.
“A predictable execution model for COTS-based embedded systems”. In:
2011 17th IEEE Real-Time and Embedded Technology and Applications
Symposium. IEEE. 2011, pp. 269–279.

[62] G. Yao, G. Buttazzo, and M. Bertogna. “Feasibility analysis under fixed
priority scheduling with limited preemptions”. In: Real-Time Systems 47.3
(2011), pp. 198–223.

[63] G. Yao, G. Buttazzo, and M. Bertogna. “Feasibility analysis under fixed
priority scheduling with limited preemptions”. In: Real-Time Systems 47.3
(2011), pp. 198–223.

[64] S. Altmeyer, C. Maiza, and J. Reineke. “Resilience analysis: tightening
the CRPD bound for set-associative caches”. In: ACM sigplan notices
45.4 (2010), pp. 153–162.

[65] B. Barney et al. “Introduction to parallel computing”. In: Lawrence Liv-
ermore National Laboratory 6.13 (2010), p. 10.

[66] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller. “Im-
proved multiprocessor global schedulability analysis”. In: Real-Time Sys-
tems 46.1 (2010), pp. 3–24.

[67] A. Bastoni, B. B. Brandenburg, and J. H. Anderson. “An empirical com-
parison of global, partitioned, and clustered multiprocessor EDF sched-
ulers”. In: 2010 31st IEEE Real-Time Systems Symposium. IEEE. 2010,
pp. 14–24.

[68] M. Bertogna, G. Buttazzo, M. Marinoni, G. Yao, F. Esposito, and M.
Caccamo. “Preemption points placement for sporadic task sets”. In: 2010
22nd Euromicro Conference on Real-Time Systems. IEEE. 2010, pp. 251–
260.

[69] S. Blagodurov, S. Zhuravlev, and A. Fedorova. “Contention-aware schedul-
ing on multicore systems”. In: ACM Transactions on Computer Systems
(TOCS) 28.4 (2010), pp. 1–45.

[70] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vincent, and
F. Wagner. “Random graph generation for scheduling simulations”. In:
3rd International ICST Conference on Simulation Tools and Techniques
(SIMUTools 2010). ICST. 2010, p. 10.

[71] P. Emberson, R. Stafford, and R. I. Davis. “Techniques for the synthesis
of multiprocessor tasksets”. In: WATERS. 2010.

[72] U. Keskin, R. J. Bril, and J. J. Lukkien. “Exact response-time analysis for
fixed-priority preemption-threshold scheduling”. In: 2010 IEEE 15th Con-
ference on Emerging Technologies & Factory Automation (ETFA 2010).
IEEE. 2010, pp. 1–4.

103

[73] S. P. Muralidhara, M. Kandemir, and P. Raghavan. “Intra-application
cache partitioning”. In: 2010 IEEE International Symposium on Parallel
& Distributed Processing (IPDPS). IEEE. 2010, pp. 1–12.

[74] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele.
“Worst case delay analysis for memory interference in multicore systems”.
In: 2010 Design, Automation & Test in Europe Conference & Exhibition
(DATE 2010). IEEE. 2010, pp. 741–746.

[75] V. Suhendra, A. Roychoudhury, and T. Mitra. “Scratchpad allocation for
concurrent embedded software”. In: ACM Transactions on Programming
Languages and Systems (TOPLAS) 32.4 (2010), pp. 1–47.

[76] Y. Yang, M. Wang, H. Yan, Z. Shao, and M. Guo. “Dynamic scratch-
pad memory management with data pipelining for embedded systems”.
In: Concurrency and Computation: Practice and Experience 22.13 (2010),
pp. 1874–1892.

[77] G. Yao, G. Buttazzo, and M. Bertogna. “Comparative evaluation of lim-
ited preemptive methods”. In: 2010 IEEE 15th Conference on Emerging
Technologies and Factory Automation (ETFA 2010). 2010, pp. 1–8. doi:
10.1109/ETFA.2010.5641199.

[78] R. J. Bril, J. J. Lukkien, and W. F. Verhaegh. “Worst-case response time
analysis of real-time tasks under fixed-priority scheduling with deferred
preemption”. In: Real-Time Systems 42.1-3 (2009), pp. 63–119.

[79] M. Lv, N. Guan, Y. Zhang, Q. Deng, G. Yu, and J. Zhang. “A Survey of
WCET Analysis of Real-Time Operating Systems”. In: 2009 International
Conference on Embedded Software and Systems. 2009, pp. 65–72. doi:
10.1109/ICESS.2009.24.

[80] G. Yao, G. Buttazo, and B. Marko. “Bounding the maximum length of
non-preemptive regions under Fixed priority”. In: 2009 15th IEEE Inter-
nationnal Conference on Embedded and Real-Time Computing Systems
and Applications. IEEE. 2009, pp. 351–360.

[81] B. B. Brandenburg, J. M. Calandrino, and J. H. Anderson. “On the scal-
ability of real-time scheduling algorithms on multicore platforms: A case
study”. In: 2008 Real-Time Systems Symposium. IEEE. 2008, pp. 157–
169.

[82] B. D. Bui, M. Caccamo, L. Sha, and J. Martinez. “Impact of cache par-
titioning on multi-tasking real time embedded systems”. In: 2008 14th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications. IEEE. 2008, pp. 101–110.

[83] R. Pellizzoni, B. D. Bui, M. Caccamo, and L. Sha. “Coscheduling of cpu
and i/o transactions in cots-based embedded systems”. In: 2008 Real-Time
Systems Symposium. IEEE. 2008, pp. 221–231.

https://doi.org/10.1109/ETFA.2010.5641199
https://doi.org/10.1109/ICESS.2009.24

104

[84] L. Sha, S. Gopalakrishnan, X. Liu, and Q. Wang. “Cyber-physical sys-
tems: A new frontier”. In: 2008 IEEE international conference on sensor
networks, ubiquitous, and trustworthy computing (sutc 2008). IEEE. 2008,
pp. 1–9.

[85] V. Suhendra and T. Mitra. “Exploring locking & partitioning for pre-
dictable shared caches on multi-cores”. In: Proceedings of the 45th annual
Design Automation Conference. 2008, pp. 300–303.

[86] M. Bertogna and M. Cirinei. “Response-time analysis for globally sched-
uled symmetric multiprocessor platforms”. In: 28th IEEE International
Real-Time Systems Symposium (RTSS 2007). IEEE. 2007, pp. 149–160.

[87] P. A. Diaz-Gomez and D. F. Hougen. “Initial population for genetic algo-
rithms: A metric approach.” In: Gem. Citeseer. 2007, pp. 43–49.

[88] G. Gebhard and S. Altmeyer. “Optimal task placement to improve cache
performance”. In: Proceedings of the 7th ACM & IEEE international con-
ference on Embedded software. 2007, pp. 259–268.

[89] I. Puaut and C. Pais. “Scratchpad memories vs locked caches in hard real-
time systems: a quantitative comparison”. In: 2007 Design, Automation
& Test in Europe Conference & Exhibition. IEEE. 2007, pp. 1–6.

[90] J. Rosen, A. Andrei, P. Eles, and Z. Peng. “Bus access optimization for
predictable implementation of real-time applications on multiprocessor
systems-on-chip”. In: 28th IEEE International Real-Time Systems Sym-
posium (RTSS 2007). IEEE. 2007, pp. 49–60.

[91] Y. Tan and V. Mooney. “Timing analysis for preemptive multitasking
real-time systems with caches”. In: ACM Transactions on Embedded Com-
puting Systems (TECS) 6.1 (2007), 7–es.

[92] S. K. Baruah. “Resource sharing in EDF-scheduled systems: A closer
look”. In: 2006 27th IEEE International Real-Time Systems Symposium
(RTSS’06). IEEE. 2006, pp. 379–387.

[93] C. Berg. “PLRU cache domino effects”. In: 6th International Workshop
on Worst-Case Execution Time Analysis (WCET’06). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik. 2006.

[94] S. Baruah. “The limited-preemption uniprocessor scheduling of sporadic
task systems”. In: 17th Euromicro Conference on Real-Time Systems
(ECRTS’05). IEEE. 2005, pp. 137–144.

[95] H. Kopetz. “Event-triggered versus time-triggered real-time systems”.
In: Operating Systems of the 90s and Beyond: International Workshop
Dagstuhl Castle, Germany, July 8–12 1991 Proceedings. Springer. 2005,
pp. 86–101.

[96] R. Pellizzoni and G. Lipari. “Feasibility analysis of real-time periodic tasks
with offsets”. In: Real-Time Systems 30.1-2 (2005), pp. 105–128.

[97] A. Albert et al. “Comparison of event-triggered and time-triggered con-
cepts with regard to distributed control systems”. In: Embedded world
2004 (2004), pp. 235–252.

105

[98] E. K. Burke, S. Gustafson, and G. Kendall. “Diversity in genetic program-
ming: An analysis of measures and correlation with fitness”. In: IEEE
Transactions on Evolutionary Computation 8.1 (2004), pp. 47–62.

[99] S. K. Baruah. “Dynamic-and static-priority scheduling of recurring real-
time tasks”. In: Real-Time Systems 24 (2003), pp. 93–128.

[100] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm. “The influ-
ence of processor architecture on the design and the results of WCET
tools”. In: Proceedings of the IEEE 91.7 (2003), pp. 1038–1054.

[101] S. Udayakumaran and R. Barua. “Compiler-decided dynamic memory al-
location for scratch-pad based embedded systems”. In: Proceedings of the
2003 international conference on Compilers, architecture and synthesis
for embedded systems. 2003, pp. 276–286.

[102] J. Regehr. “Scheduling tasks with mixed preemption relations for robust-
ness to timing faults”. In: 23rd IEEE Real-Time Systems Symposium,
2002. RTSS 2002. IEEE. 2002, pp. 315–326.

[103] B. Andersson, S. Baruah, and J. Jonsson. “Static-priority scheduling on
multiprocessors”. In: Proceedings 22nd IEEE Real-Time Systems Sympo-
sium (RTSS 2001)(Cat. No. 01PR1420). IEEE. 2001, pp. 193–202.

[104] R. Chandra. Parallel programming in OpenMP. Morgan kaufmann, 2001.

[105] M. Kandemir, J. Ramanujam, J. Irwin, N. Vijaykrishnan, I. Kadayif, and
A. Parikh. “Dynamic management of scratch-pad memory space”. In: Pro-
ceedings of the 38th annual Design Automation Conference. 2001, pp. 690–
695.

[106] L. Wang and D.-Z. Zheng. “An effective hybrid optimization strategy for
job-shop scheduling problems”. In: Computers & Operations Research 28.6
(2001), pp. 585–596.

[107] D. Koonce and S.-C. Tsai. “Using data mining to find patterns in genetic
algorithm solutions to a job shop schedule”. In: Computers & Industrial
Engineering 38.3 (2000), pp. 361–374.

[108] F. Mueller. “Timing analysis for instruction caches”. In: Real-time systems
18 (2000), pp. 217–247.

[109] P. Puschner and A. Burns. “Guest editorial: A review of worst-case
execution-time analysis”. In: Real-Time Systems 18.2-3 (2000), pp. 115–
128.

[110] E. Zitzler, K. Deb, and L. Thiele. “Comparison of multiobjective evolu-
tionary algorithms: Empirical results”. In: Evolutionary computation 8.2
(2000), pp. 173–195.

[111] J. Goossens and R. Devillers. General response time computation for hard
real-time asynchronous periodic task sets using static schedulers. Tech.
rep. Technical Report 401, Universit e Libre de Bruxelles, Belgium, 1999.

106

[112] T. Lundqvist and P. Stenstrom. “Timing anomalies in dynamically sched-
uled microprocessors”. In: Proceedings 20th IEEE Real-Time Systems
Symposium (Cat. No. 99CB37054). IEEE. 1999, pp. 12–21.

[113] T. Lundqvist and P. Stenström. “An integrated path and timing analysis
method based on cycle-level symbolic execution”. In: Real-Time Systems
17 (1999), pp. 183–207.

[114] Y. Wang and M. Saksena. “Scheduling fixed-priority tasks with pre-
emption threshold”. In: Proceedings Sixth International Conference on
Real-Time Computing Systems and Applications. RTCSA’99 (Cat. No.
PR00306). IEEE. 1999, pp. 328–335.

[115] S. K. Baruah. “Feasibility analysis of recurring branching tasks”. In: Pro-
ceeding. 10th EUROMICRO Workshop on Real-Time Systems (Cat. No.
98EX168). IEEE. 1998, pp. 138–145.

[116] S. Lee, C.-G. Lee, M. Lee, S. L. Min, and C. S. Kim. “Limited preemptible
scheduling to embrace cache memory in real-time systems”. In: Languages,
Compilers, and Tools for Embedded Systems. Springer. 1998, pp. 51–64.

[117] A. K. Mok and D. Chen. “A multiframe model for real-time tasks”. In:
IEEE transactions on Software Engineering 23.10 (1997), pp. 635–645.

[118] L. George, N. Rivierre, and M. Spuri. “Preemptive and non-preemptive
real-time uniprocessor scheduling”. PhD thesis. Inria, 1996.

[119] J. A. Hoogeveen, J. K. Lenstra, and B. Veltman. “Preemptive scheduling
in a two-stage multiprocessor flow shop is NP-hard”. In: European Journal
of Operational Research 89.1 (1996), pp. 172–175.

[120] Y.-T. Li, S. Malik, and A. Wolfe. “Cache modeling for real-time software:
Beyond direct mapped instruction caches”. In: 17th IEEE Real-Time Sys-
tems Symposium. IEEE. 1996, pp. 254–263.

[121] J. Simonson and J. H. Patel. “Use of preferred preemption points in
cache-based real-time systems”. In: Proceedings of 1995 IEEE Interna-
tional Computer Performance and Dependability Symposium. IEEE. 1995,
pp. 316–325.

[122] J. A. Stankovic, M. Spuri, M. Di Natale, and G. C. Buttazzo. “Implica-
tions of classical scheduling results for real-time systems”. In: Computer
28.6 (1995), pp. 16–25.

[123] A. Burns. Preemptive priority based scheduling: An appropriate engineer-
ing approach. University of York, Department of Computer Science, 1993.

[124] K. Jeffay, D. F. Stanat, and C. U. Martel. “On non-preemptive scheduling
of periodic and sporadic tasks”. In: IEEE real-time systems symposium.
US: IEEE. 1991, pp. 129–139.

[125] K. Jeffay, D. F. Stanat, and C. U. Martel. “On non-preemptive scheduling
of period and sporadic tasks”. In: [1991] Proceedings Twelfth Real-Time
Systems Symposium (1991), pp. 129–139.

107

[126] J. Korst, E. Aarts, J. K. Lenstra, and J. Wessels. “Periodic multiprocessor
scheduling”. In: PARLE’91 Parallel Architectures and Languages Europe.
Springer. 1991, pp. 166–178.

[127] T. Starkweather, S. McDaniel, K. E. Mathias, L. D. Whitley, and C.
Whitley. “A Comparison of Genetic Sequencing Operators.” In: ICGA.
1991, pp. 69–76.

[128] T. P. Baker. “A stack-based resource allocation policy for realtime pro-
cesses”. In: [1990] Proceedings 11th Real-Time Systems Symposium. IEEE.
1990, pp. 191–200.

[129] S. K. Baruah, A. K. Mok, and L. E. Rosier. “Preemptively scheduling
hard-real-time sporadic tasks on one processor”. In: [1990] Proceedings
11th Real-Time Systems Symposium. IEEE. 1990, pp. 182–190.

[130] S. K. Baruah, L. E. Rosier, and R. R. Howell. “Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one
processor”. In: Real-time systems 2.4 (1990), pp. 301–324.

[131] K. Ramamritham, J. A. Stankovic, and P.-F. Shiah. “Efficient scheduling
algorithms for real-time multiprocessor systems”. In: IEEE Transactions
on Parallel and Distributed systems 1.2 (1990), pp. 184–194.

[132] S. Biyabani, J. Stankovic, and K. Ramamritham. “The integration of
deadline and criticalness in hard real-time scheduling”. In: Proceedings.
Real-Time Systems Symposium. 1988, pp. 152–160. doi: 10.1109/REAL.
1988.51111.

[133] J. Y.-T. Leung and J. Whitehead. “On the complexity of fixed-priority
scheduling of periodic, real-time tasks”. In: Performance evaluation 2.4
(1982), pp. 237–250.

[134] M. L. Dertouzos. “Control Robotics: The Procedural Control of Phys-
ical Processes”. In: Information Processing, Proceedings of the 6th IFIP
Congress 1974, Stockholm, Sweden, August 5-10, 1974. Ed. by J. L. Rosen-
feld. North-Holland, 1974, pp. 807–813.

[135] C. L. Liu and J. W. Layland. “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment”. In: Journal of the ACM (JACM)
20.1 (1973), pp. 46–61.

[136] G. M. Amdahl. “Validity of the single processor approach to achieving
large scale computing capabilities”. In: Proceedings of the April 18-20,
1967, spring joint computer conference. 1967, pp. 483–485.

[137] G. E. Moore. “Gramming more components onto integrated circuits”. In:
Electronics 38 (1965), p. 8.

[138] A. M. Turing et al. “On computable numbers, with an application to the
Entscheidungsproblem”. In: J. of Math 58.345-363 (1936), p. 5.

https://doi.org/10.1109/REAL.1988.51111
https://doi.org/10.1109/REAL.1988.51111

	Abstract
	Introduction
	I Motivation, Background and Related work
	Multiprocessors and Parallel Systems
	Introduction
	Uniprocessor vs multiprocessor systems
	Classification of multiprocessor systems
	Based on their structure
	Based on their architecture and microarchitecture
	Based on their memory architecture

	Scratchpad vs cache memories in multicore platforms
	Programming parallel architecture
	POSIX Threads
	OpenMP framework

	Conclusion

	Real-time Systems
	Introduction
	Task models
	Liu and Layland model
	PREM and AER models
	Directed Acyclic Graph (DAG)

	Priority assignment for scheduling
	Scheduling characteristics

	Time- vs event-triggered real-time scheduling
	Preemptive vs non-preemptive scheduling
	Earliest Deadline First (EDF)
	Preemptive real-time scheduling
	Non-preemptive real-time scheduling

	Preemptive multiprocessor real-time scheduling
	Conclusion

	Processor and Memory Co-scheduling in Multicore Systems
	Introduction
	Cache related delays in multicore systems
	Shared resources contention: main memory and buses
	Related work
	Conclusion

	II Contributions
	Allocation of Real-time Tasks Onto Identical Core Platforms Under Deferred Fixed Preemption-point Model
	Introduction
	System model
	Task model
	Architecture model

	Limited Preemption analysis for single-processor
	Maximum non-preemptive execution-time
	Selection of effective preemption points

	Task allocation
	Enumerating algorithm
	Branch and Bound
	Computational complexity
	Allocation heuristics

	Results and discussions
	Task generation
	Simulation results and discussions

	Conclusion

	Contention-free Scheduling of PREM Tasks on Partitioned Multicore Platforms
	Introduction
	System model
	Architecture model
	Task model

	Offset based processor and memory co-scheduling
	Task-level offsets : sufficient condition
	Integer-Linear-Programming based offset assignment

	Deadline based processor and memory co-scheduling
	Results and discussions
	Task set generation
	Results of synthetic task set experiments

	Conclusion

	Memory-processor Co-scheduling AECR-DAG Real-time Tasks on Partitioned Multicore Platforms with Scratchpads
	Introduction
	System model
	Architecture model
	Task model

	DAG tasks allocation and transformation
	Decision variables and objective function

	Deadline based DAG memory-processor co-scheduling
	Fair and proportional deadline assignment
	GA-based intermediate deadline assignment
	Evaluation Strategy
	Creating the next generation

	Results and discussions
	Task generation
	Simulation results and discussions

	Conclusion

	Conclusion and perspectives
	Conclusion
	Limitations and perspectives

