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Résumé : Cette thèse vise à améliorer les algo-
rithmes de démélange de spectres gamma afin de
pouvoir accélérer la détection d’anomalie et l’esti-
mation des contributions des radionucléides conte-
nus dans les filtres aérosols analysés par l’Institut
de Radioprotection et de Sûreté Nucléaire. Pour
ce faire nous avons développé un algorithme de
démélange de spectre qui analyse conjointement
plusieurs mesures successives d’un même échan-
tillon. Cet algorithme a ensuite été amélioré afin
de pouvoir mener l’analyse en temps réel pendant
que la mesure du spectre gamma est réalisée. Di-
vers outils ont dû être développés en même temps
que cet algorithme pour permettre d’estimer préci-

sément les activités des radionucléides, notamment
la calibration des signatures spectrales utilisées lors
du démélange.

Les résultats de ces études sont présentés dans
la thèse à la fois sur des spectres simulés et sur des
spectres réels issus des analyses de routine du labo-
ratoire. La détection d’une contamination de 123I
à 2 Bq dans un échantillon au bout de 2 minutes
de mesure illustre bien l’accélération permise par
les développements de cette thèse. En effet, cette
détection n’aurait pas été possible avec les outils
utilisés en routine.

Title : Temporal spectral unmixing for rapid detection of radiological events by gamma ray spectrometry

Keywords : Signal processing, gamma-ray spectrometry, full-spectrum analysis, joint analysis, online
analysis, calibration

Abstract : The aim of this thesis is to improve
spectral unmixing algorithms in gamma ray spec-
trometry in order to speed up anomaly detection
and the estimation of radionuclide contributions in
aerosol filter samples analyzed by the French Ins-
titute of Radiation Protection and Nuclear Safety.
To this end, we have developed an unmixing algo-
rithm that performs joint analysis of several suc-
cessive measurements of the same sample. This
algorithm has been improved to enable online ana-
lysis while the gamma-ray spectrum measurement
is measured. Various tools had to be developed at
the same time as this algorithm to enable radio-

nuclide activities to be estimated accurately, in-
cluding calibration of the spectral signatures used
during the unmixing process.

The results of these studies are presented in
the thesis both on simulated spectra and on real
spectra from the laboratory’s routine analyses. The
detection of a contamination of 123I at 2 Bq in
a sample after 2 minutes of measurement illus-
trates the acceleration made possible by the de-
velopments made during this thesis. Indeed, this
detection would not have been possible with the
tools used routinely.
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Résumé en français

Cette thèse présente le démélange spectral temporel appliqué à des spectres
gamma. La spectrométrie gamma est une technique d’identification et de quan-
tification des radionucléides contenus dans une source radioactive. L’Institut
de Radioprotection et de Sûreté Nucléaire, dans sa mission de surveillance de
l’environnement radiologique français, se sert de cette technique pour informer
la population en cas d’incident ou d’accidents ou pour assurer la mesure en
routine des radionucléides présents dans l’environnement. Le but de cette thèse
est de rendre plus rapide l’estimation des activités dans un échantillon, notam-
ment en améliorant les outils de démélange spectral développés dans une thèse
précédemment encadrée au laboratoire. Ces développements rendront possible
l’analyse conjointe de mesures successives de filtres aérosols.

Dans le chapitre 1, le contexte et l’état de l’art de la spectrométrie gamma
sont présentés. Ce chapitre commence par un bref rappel des bases de la ra-
dioactivité nécessaires pour comprendre le fonctionnement de la spectrométrie
gamma. Nous détaillons ensuite les mesures telles qu’elles sont faites au Labo-
ratoire de Métrologie de la Radioactivité dans l’Environnement où ma thèse
s’est déroulée. Ce laboratoire a développé de nombreuses techniques pour amé-
liorer la mesure de spectres gamma. Une description des différentes méthodes
d’analyse de spectre est faite dans l’état de l’art détaillé des trois principales
méthodes utilisées aujourd’hui : l’une basée sur les pics, la seconde basée sur
l’ensemble du spectre et la dernière utilisant les algorithmes de machine lear-
ning. Une comparaison des avantages et limites de chacune d’elles est présentée.

Dans le chapitre 2, l’analyse temporelle de spectres gamma permettant de
réaliser l’analyse conjointe de mesures successives d’un même échantillon est
présentée. Le modèle mathématique utilisé y est présenté en détail. De plus,
deux modèles décrivant les chaînes de décroissances sont comparés pour com-
prendre les liens entre les activités de radionucléides en filiation. En effet, ces
corrélations sont importantes dans l’analyse de spectres aérosols qui présentent
2 chaînes de décroissances, dues aux descendants particulaires du radon actifs
dans les filtres. Les outils algorithmiques présentés sont ensuite testés sur des
simulations réalistes et sur une vraie mesure d’un filtre aérosol. Les résultats
montrent les performances de ces nouveaux outils et notamment la réduction
du délai avant une première estimation des activités après que l’échantillon a
été prélevé avec une première estimation des activités après seulement 30 min
de mesure. La détection, à un niveau trace, du 137Cs est possible après 1 jour
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et demi de mesure permettant de réduire le temps de mesure total et de détec-
ter des anomalies précocement durant la mesure d’un échantillon. Ce premier
algorithme d’analyse conjointe de spectres gamma est utilisé sur 11 mesures
successives d’un même échantillon comme preuve de concept sans se focaliser
sur le temps de calcul necéssaire pour réaliser le démélange.

Dans le chapitre 3 de cette thèse sont présentés les développements réalisés
afin de rendre possible l’analyse en ligne d’un spectre gamma. La segmenta-
tion de la mesure peut donc être choisie aussi fine que l’on souhaite, afin de
réaliser une analyse des activités de l’échantillon au cours de la mesure. Cette
segmentation impose des contraintes de rapidité quant au calcul des activités
et de nouveaux outils tels que l’utilisation d’un buffer de mesures réduisant la
taille des matrices impliquées dans le démélange spectral ont été développés.
De plus, une régularisation se basant sur les estimations déjà faites et un arrêt
de la mise à jour de certaines activités après que la contribution des radionu-
cléides qui leurs sont liés dans le spectre aient disparues sont présentés afin
de réduire le nombre d’itérations nécessaire pour arriver à une nouvelle esti-
mation des activités. L’optimisation de ces nouveaux outils est détaillée et les
résultats de l’analyse en ligne sont montrés à nouveau sur des simulations et
sur une vraie mesure de filtre aérosol. L’analyse du spectre de la mesure d’un
filtre d’aérosols ayant réellement été prélevé montrera la présence d’123I après
seulement 2 minutes de mesures à un niveau d’activité de 2.5 Bq, montrant
bien les performances de l’algorithme présenté.

Finalement, le chapitre 4 présente la calibration des spectres gamma et des
signatures spectrales utilisée pour réaliser le démélange. En effet, la solution
parfaite pour obtenir ces dernières serait d’avoir accès à des sources pour l’en-
semble des radionucléides que l’on souhaite étudier. Cependant l’accès à ces
sources est impossible pour de nombreuses applications, en particulier pour les
filtres aérosols où certains radionucléides ont une demi-vie très courte rendant
l’utilisation de sources impossibles. Nous avons donc recours à des simulations
pour produire les signatures spectrales utilisées dans cette thèse. La calibration
de ces simulations et du détecteur est nécessaire afin d’obtenir un ajustement
correct des signatures spectrales au spectre mesuré. La calibration que nous
proposons est présentée en détail et comparée à la calibration telle que réalisée
dans les travaux précédents. La nouvelle calibration se base sur les énergies
caractéristiques des pics présents dans le spectre observé et sur une interpola-
tion par spline pour réaliser la calibration en énergie permettant de réduire les
écarts en énergie présents en utilisant un modèle linéaire durant cette calibra-
tion. Dans un second temps, la calibration en résolution est détaillée, utilisant
une convolution par un noyau Gaussien afin de répliquer l’élargissement Gaus-
sien des pics présents dans la mesure.
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Summary

This thesis work focuses on the temporal unmixing of gamma-ray spec-
tra. The gamma-ray spectrometry is a technique used in the identification and
quantification of the radionuclides contained in a sample or source. The French
Institute for Radiation Protection and Nuclear Safety (IRSN) in its mission of
monitoring the French environment, uses this technique as it allows to inform
the population in case of incidents or accidents or to perform the surveillance of
the radiological environment. The aim of this thesis is to make the estimation
of the activity in a sample faster by upgrading the algorithm tools already de-
veloped in a previous thesis, in order to perform a joint analysis of consecutive
spectra obtained by the measurement of aerosol filter samples.

This thesis will thus present in chapter 1 the context and state of the art in
gamma-ray spectrometry. In this chapter we will begin by some notions of ra-
dioactivity physics needed to understand gamma-ray spectrometry and detail
the laboratory measurement as the Environment Radiation Metrology labora-
tory (LMRE) where my thesis has taken place. This laboratory has already
developed a lot of tools to perform better gamma-ray spectrometry. A descrip-
tion of the analysis of a gamma-ray spectrum is presented and a detailed state
of the art is given to understand the evolution and limitation of the 3 main ana-
lysis techniques for gamma-ray spectrum, namely, peak-based, full-spectrum
analysis and finally machine learning techniques used in this field.

In chapter 2 we present the temporal spectral analysis allowing to per-
form the joint analysis of consecutive measurements of the same sample. The
mathematical model used to perform the joint analysis will be detailed. Two
models will be investigate considering the Bateman model usage for decay
series of radionuclides allowing to model the link between the activity of a pa-
rent and daughter radionuclide during their decay. This is particularly useful
in the framework of the analysis of aerosol filter sample as 2 decay chains are
present in the radon progeny and thus appear in the spectrum. The algorith-
mic tools to perform the gamma-ray spectrum analysis are also presented and
the performance are assessed on simulated data and on a real aerosol filter
sample analysis. The results show the performance and reduced time between
the sampling and the analysis with first estimations of the activity after 30 min
of measurement. The detection of the trace level 137Cs is achieved after a day
and a half possibly allowing to reduce the measurement time and perform ano-
maly detection early on during the measurement process. This first algorithm
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to perform the joint analysis of gamma-ray spectra is used on 11 time segment
allowing us to produce a proof of concept application without focusing on the
computation issues of a data-heavy segmentation of the measurement.

In chapter 3, we present the development made to allow to further decom-
pose the measurement and perform quasi online estimation of the activity. In
other words, the segmentation of the measurement can be chosen by the end
user leading to any number of segments and imposing a rapid estimation of
the activities during the measurement process. New tools are used such as the
a buffer of spectra rather than the entire spectra collection allowing to reduce
the size of the matrices involved in the unmixing algorithm presented in chap-
ter 2. A regularization of the consecutive estimations is also proposed to allow
to compute consecutive activity estimation in a timely fashion and reduce the
number of iterations of the unmixing procedure. Finally, the update of the
rapidly decaying radionuclide is stop early in the unmixing as soon as their
contribution vanish from the spectrum allowing to further reducing the com-
putation time of the unmixing procedure. The optimization of these new tools
is detailed on simulation analysis and the performance of the new unmixing
algorithm is presented on both simulation and real aerosol filter analysis. The
results on the real aerosol filter sample shows the detection and quantification
of 123I after only 2 minutes of measurement with as low as 2.5 Bq of acti-
vity showing the capability of the presented algorithm in a case of low level
contamination allowing to get a result in a timely fashion.

Finally, the chapter 4, focuses on the calibration of the spectral signatures
used in the full-spectrum analysis. In fact, while the perfect solutions to get
spectral signatures would be to have access to sources for each radionuclide
that we could observe, is is usually not possible. For this reason we have to rely
on simulated spectral signatures. The calibration of these simulations and the
calibration of the detector have to be performed in order to get a good precision
of the gamma-ray spectral unmixing. The calibration will be presented in detail
and compared to the routine calibration of the detector in peak-based analysis
and the previous calibration performed in the previous thesis work. The new
calibration uses the information of the nominal energy of the gamma-ray peaks
in order to perform the energy calibration of the spectrum. This calibration is
done using spline interpolation rather than linear models in order to solve the
shifting issues of the latter model. In a second time, the resolution calibration
is performed with a non-stationary kernel convolution that mimic the Gaussian
energy broadening of the observed spectrum in order to get a better agreement
between the observed measurement and the spectral signatures.
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In this chapter the context of my thesis work is explained, along with the
physical knowledge useful to understand the gamma-ray spectrometry and the
key principles used in this thesis work. In the first section 1.1 the basics on
radioactivity are reminded, following are the specificities of the laboratory and
the specification of the samples we analyse. Finally, the basics in gamma-ray
spectrometry will be shown in section 1.3 and a review of the state of the art
in the domain of spectral analysis will be made.

1.1 . General reminders of radioactivity

Radioactivity is a naturally occurring process. It is the decay of an out
of equilibrium nucleus due to an excess of neutrons and/or protons to a more
stable nucleus. In fact, a nucleus is composed of protons and neutrons, an excess
of one of them causes an unstable state usually restored by disintegration and
a change of the nucleus.

The atom is composed of the nucleus and its electron shell. The number
of electrons, negatively charged, in the electron shell is equal to the number
of protons, positively charged, so that the atom is electrically neutral. The
number of protons of the nucleus is then defining the chemical element. The
periodic table of elements (annex 5) presents the list of all the elements with
the corresponding symbol M and number of protons Z.

The nucleus of an atom is characterized by its number of protons and
neutrons. It is conventionally specified as A

ZM , where A is called the mass
number and is equal to the sum of the number of protons and neutrons. Two
atoms of the same chemical element (ie same number of protons) may differ in
their number of neutrons, they are called "isotopes". For instance, the carbon
stable isotope is 12

6 C, an isotope of carbon is 14
6 C due to the two added neutrons.

This isotope is not stable and will tend to disintegrate into a more stable
element, it is thus called "radioisotope". In this case the nucleus will change
to regain a stable state, this is called a disintegration.

The decay from an unstable nucleus to a stable one can be of multiple
forms :

— α decay : the nucleus emits a nucleus of 4
2He, called "alpha-particle",

in the decay process we then have :

A
ZX −→A−4

Z−2 Y +4
2 He

— β− decay : the nucleus emits an electron

A
ZX −→A

Z+1 Y + e− + νe
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Figure 1.1 – The decay scheme of 212
82 Pb to 208

82 Pb

— β+ decay : the nucleus emits a positron

A
ZX −→A

Z−1 Y + e+ + νe

— Electron capture : the nucleus captures an electron

A
ZX + e− −→A

Z−1 Y + νe

These different forms of radiation from a parent to a daughter nucleus
give place to the decay scheme of a radionuclide. Indeed, in order to decay to a
stable element, a radionuclide can follow different paths, each with a different
probability of occurrence. For example, in figure 1.1 we can see that 212

82 Pb
first decays into 212

83 Bi by β− radiation and then can take two different paths,
the first with 36% of chance is to decay into 208

81 Tl by α radiation and then to
decay into 208

82 Pb via β− radiation. The other path is for 212
83 Bi to decay by β−

radiation to 212
84 Po and then decay to 208

82 Pb via α radiation. The consecutive
disintegrations are due to the fact that after each decay the nucleus is not yet
in a stable state but needs some other disintegration in order to reach a stable
element (in this case 208

82 Pb).

While some decays produce a daughter nucleus at its fundamental energy
level, some decays lead to an excited level. The de-excitation of the nucleus
is done by gamma-ray emission, pair creation or conversion electron emission.
The first is the emission of a high energy photon generated by the de-excitation
of the nucleus, the second is a rare process that consists in the emission of
a electron-positron pair, finally the internal conversion is a process where the
energy available is transferred to an electron of the atom, which is then ejected.
The rearrangement of the electrons surrounding the nucleus, leading to the
shift from one of the surrounding electronic orbits to another, leads to the
emission of an X-ray, which energy is the difference between the two electron
energy levels. The difference between X-rays and gamma-rays is the origin of
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the photon, if it comes from the nucleus it is a gamma-ray (usually at high
energy >100keV) and if it comes from the rearrangement of the electron shell
then it is an X-ray (usually at lower energies, <100keV). The energy of X-rays
and γ photons are given in keV (1eV = 1.602176634.10−19J) following the law :

E = hν (1.1)

Where E is the energy of the photon, h (≈ 6.63× 10−34J.s) is the Planck
constant and ν is the frequency (in s−1) of the photon.

The de-excitation of a daughter nucleus after a disintegration follows a
precise scheme representing the successive steps that lead to the de-excited
state. An example of such a disintegration scheme is presented in figure 1.2.
The disintegration scheme of each radionuclide can be found in the Evaluated
and Compiled Nuclear Structure Data (ENSDF, [1]) or Lara-web data base
([2]).

In the decay scheme of the 60
27Co we can see that the β− disintegration

leaves a 60
28Ni nucleus in an excited state with 2505.748 keV to dissipate. This

can be done via 2 intermediate states at 2158.61 keV and 1332.508 keV. The
transition between the states leads to the emission of a gamma-ray which
energy is the difference between the two energies. These transitions are not
equally probable, the chance of each path is precised on top of the arrows in
the figure. For example the emission of a gamma-ray of 2505.748 keV has a
probability of 2.10−6%, while the transition by the 1332.508 keV state is more
likely, with the emission of a gamma-ray of 2505.748 - 1332.508 = 1173.228
keV with a 99.85% probability of emission, and a second gamma-ray is then
emitted with the energy 1332.508 - 0 = 1332.508 keV with a 99.98 percent
of emission probability. These gamma-rays emitted at known energy will then
allow the analysis of the gamma-ray spectra as will be detailed in the next
section.

Each radioisotope has a characteristic half-life noted T1/2, it is the duration
after which half of an initial quantity of such a radionuclide will have decayed.
In other term an initial quantity N(0) of radioisotope of half-life T1/2 will decay
following the formula :

N(t) = N(0)e−λt

where λ = ln(2)
T1/2

is called the decay constant of a radionuclide and t is the time.
For example we can see in figure 1.1 that 208

81 Tl has a half-life of 3.10 min while
212
55 Pb has a half-life of 10.64 hours.
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Figure 1.2 – The decay scheme of the 60Co to 60Ni, presenting the various steps of
the de-excitation of the atom, from the Lara-web site.

In figure 1.3 we can see the exponential decay of a quantity N of radio-
nuclide which half life would be 1 hour. At t = T1/2 the number of unstable
nuclides has been divided by 2, after two hours it has been divided by 4 and so
on. The activity A(t) in Bq is the number of radionuclides at time t multiplied
by the decay rate λ of this radionuclide. We thus have :

A(t) = λN(t)

= −dN(t)

dt

(1.2)

The activity corresponds to the opposite of the derivative of the number
of radionuclide with respect to time.

1.2 . Radioactivity measurements and laboratory specifici-
ties

1.2.1 . Radioactivity sources
As previously stated, the environment is naturally radioactive and, in most

cases, not dangerous for health or the environment. But, if the natural radio-
activity levels are low on earth, the artificial levels due to the human activity
can be high and have an impact on health or environment. Moreover, some
naturally occurring phenomena may lead to the accumulation of a radioactive
element and have an impact on the population’s health. The monitoring of
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Figure 1.3 – The decay of a quantity N of a radionuclide which half-life is 1h.

the radioactivity is thus required to ensure that the quantity of radioactivity
affecting the population is under control.

The naturally occurring radioactivity is dominated by the telluric and cos-
mogenic phenomena. In fact, some radioactive elements are naturally present
on earth, mostly dominated by the decay products of 232Th, 235U and 238U.
Notably, the Radon (Rn) is a radioactive gas that has a radioisotope in each of
the three decay series mentioned above. The 222Rn is present in large quanti-
ties in the atmosphere and is known to be a cause of cancer in the population.
Some other radionuclides are naturally present like 40K present in the soil at
a lower activity. On the other hand, the cosmogenic radioactivity is due to
the interaction of cosmic flux with the atmosphere. This phenomenon leads,
for instance, to the creation of 3H, 7Be, or 22Na. These naturally occurring
phenomena are mostly constant and constitute the radiological background.

The artificial radioactivity is the one that is produced by the human ac-
tivities, it is also called "anthropogenic" radioactivity. It is dominated by the
global fallout due to the atmospheric nuclear weapon tests beginning in 1951
and ending in 1963 and the nuclear accidents of Chernobyl and Fukushima in
1986 and 2011. The effect of these events can be seen in figure 1.4 that depicts
the evolution of one of their radioactive product (137Cs). Secondly, we have the
authorized radioactive releases of nuclear facilities (e.g. 58Co, 60Co, 110mAg, ...)
at low levels. Finally we could find traces of incident or accident releases at
trace levels in case of a low magnitude incident or a higher magnitude but
farther accident.
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Figure 1.4 – The time series of the 137Cs concentration in the air from the analysis
of the aerosol filter samples.

1.2.2 . Radioactivity measurement
The measurement of the radioactivity allows to monitor the level of ex-

position of the population to the radioactivity. It can be done using different
techniques such as alpha-spectrometry, liquid scintillation, mass spectrometry
or gamma-spectrometry. Depending on the nature of sample, the application
cases or the radioactive elements we focus on, some techniques are better suited
than others.

The technique I focused on during my PhD is gamma-ray spectrometry.
It allows the identification and quantification of the radionuclides contained in
a sample provided that they emit a gamma-ray when they decay. It is a non
destructive technique (no alteration of the sample or chemistry are required),
with multiple applications from environment monitoring to the astronomical
measurement. It revolves on a detector material’s (eg NaI(Tl) or Ge) interac-
tion with the high energy photon emitted by the sample or source (radioactive
sample, observation of the gamma-ray emission of an object to understand its
composition, ...).

In fact, a detector material under a high tension will react to incoming
gamma-ray by generating an electrical pulse which amplitude is correlated to
the deposited energy in the material (see [3] for details). The counting of the
events that occur in the detector allows to create a histogram of the deposited
energy in the detector, this is called a gamma-ray spectrum. Depending on the
material of the detector the shape of the spectrum may vary. However, the
analysis of gamma-ray spectra is based on the known energy of the gamma-
rays emitted during a disintegration, the position and height of the peaks in a
spectrum thus allow to determine the radionuclides present in the sample and
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Figure 1.5 – The gamma-ray spectrum of a radioactive source measured with a
NaI(Tl) and a Ge detector.

their activity. Some examples of gamma-ray spectra obtained by measuring a
source containing various radionuclides are shown in figure 1.5. We can see that
for a same sample the measured gamma-ray spectrum is different. This is due
to the detection efficiency of the detector (the faculty of absorption of all the
photons emitted by the source) and its resolution (width of the peaks in the
spectrum). On the one hand, the resolution of the Ge detector gives place to
distinct peaks whereas some overlaps can be observed on the NaI(Tl) detector.
This phenomenon can be observed for the two peaks around 1000 keV, in the
blue spectrum of figure 1.5, that are overlapping in the orange spectrum. On
the other hand, due to the large volume of a NaI(Tl) detector and its higher
intrinsic detection efficiency it is usually more efficient than a Ge detector.

In my thesis work I worked on Ge detectors to detect traces of radioactivity
in the environment. The next section details the measurement as it is performed
in the laboratory and the specificities that allows us to detect radioactivity at
very low level.

1.2.3 . Environment Radioactivity Metrology Laboratory
The French Institute for Radiation Protection and Nuclear Safety (Insti-

tut de Radioprotection et de Sûreté Nucléaire, IRSN) is mandated to moni-
tor the radioactive level in France and ensure that the nuclear facilities and
installations respect the authorization in term of their releases of radioactive
substances. As part of this mission the Environment Radioactivity Metrology
Laboratory (LMRE) 1 is in charge of the analysis of various samples coming

1. https://en.irsn.fr/EN/Research/Scientific-tools/
experimental-facilities-means/LMRE-Facility/Pages/default.aspx
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from the French environment.

The missions of this laboratory are :

— The environment monitoring : watching at the level of radioactivity
in multiple places all over the French territory and assess that the
observed activities are consistent with the historical data or the au-
thorisations of nuclear facilities or installations.

— The anomaly detection and characterisation : in case of incident or ac-
cident, our laboratory is able to detect the activity augmentation and
the radionuclides that are in the environment. The characterization of
such events comes with the determination of the radionuclide (such as
131I that is particularly dangerous for humans) and the quantification
of the contamination (activity, duration of the anomaly, ...).

— The study of the radioactivity transfers in the environment, in different
matrices (soil, water, air, ...) and the mechanisms behind. For example,
the characterization of the ratio between 135Cs and 137Cs is informa-
tive of the event that has originated the deposition of Cs (cf : Anaëlle
Magré’s Thesis [4]), the information of multiple aerosol samplers can
be used to locate the origin of an incident with atmospheric dispersion
models.

As the levels of radioactivity in France are decreasing, the activity esti-
mation becomes more and more challenging. For this reason, the LMRE has
developed throughout the years new techniques and analytical tools to allow
the measurement of ever reducing radioactivity levels. Firstly, the LMRE is a
unique installation in France due to the underground shielded room reducing
the background radioactivity as low as possible and allowing to focus on the
sample we observe, even at low levels of radioactivity. In fact, the measure-
ment room is located under a 3m slab of borrated concrete allowing to reduce
the cosmic ray induced background. Moreover, the room is shielded with a 10
cm lead wall covered by copper and each detector has his own lead shielding
to prevent the telluric noise and the other samples interference. The ambient
conditions have also been optimized to achieve the best performances. The air
of the counting rooms is renewed ( 1000 m3/h) and the fresh air taken on the
laboratory roof is filtered by high efficiency filters to catch the radon’s particle
progeny. The nitrogen flushing of the detector allows to reduce and stabilize
the residual radon contribution to the spectra. Moreover the air is also dried to
prevent the resolution degradation of the Ge detectors caused by humidity. Se-
condly, the measurement techniques have been improved with the development
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Figure 1.6 – The framework for the aerosol filter sample analysis as performed in
the LMRE.

of better detector. For instance, the laboratory developed the Leda detector
with 2 Ge crystal detectors and a surrounding NaI(Tl) detector in order to
perform gamma-gamma coincidence measurement (cf Hugues Paradis’ s thesis
work [5]).

My thesis focuses on aerosol filter samples by gamma-ray spectrometry,
they are particularly useful for the environment monitoring and in case of
emergency. In fact, these samples are a rapid and reliable source of information
of the possible incidents or accidents occurring near a sampling station for low
magnitude incident or farther for high magnitude accident, allowing to detect
and identify a radioactive contamination. The activity estimation of aerosol
filter sample is difficult due to the complexity of the spectrum composed by
numerous radionuclides and the various levels of activity observed (from few
mBq to hundreds of Bq).

The measurement process for the aerosol filter samples has been optimized
in the LMRE to allow to measure the activity at trace level. The aerosol filter
sampling is performed with a high volume sampling station (300 - 700 m3/h) to
increase the radioactivity amount to measure, and the filters are put into small
standard cylindrical geometry (10 mL) before the measurement is performed
to optimize the efficiency of the measurement. Moreover, in order to analyse
the low levels of artificial activity such as the one of 137Cs, a decay period
of 4 to 7 days is observed before the measurement is done to allow radon
progeny to decay and their contribution to vanish from the spectrum. Finally,
the measurement is processed on HPGe detectors in the shielded room of the
laboratory further reducing the background of the measurement. The steps of
this framework are presented in figure 1.6.
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Figure 1.7 – On the left we have 4 measurements of gamma-ray spectra of the same 3
radionuclides (54Mn, 210Pb, 137Cs) with varying levels of 54Mn activity. On the right
is a zoom on the full energy peak of 54Mn.

After the optimization of the signal over noise ratio to the limit, new ana-
lysis tools have been developed allowing to perform gamma-ray spectrometry
with low levels of activity (cf Jiaxin Xu’s thesis [6]). The main issue remaining
after these improvements is the rapid detection of an event which is impos-
sible in the actual analysis framework due to the decay period and the long
measurement time. In this work we will show how to improve the spectrum
analysis in order to reduce the time between the sampling and the analysis of
the gamma-ray spectrum.

In the next section I detail the gamma-ray spectrum analysis as it is per-
formed in the laboratory and the new techniques developed in the recent years.

1.3 . Gamma-ray spectrometry

The analysis of gamma-ray spectra is a technique for the identification and
quantification of the radionuclides contained in a sample. In fact, a gamma-ray
spectrum as the ones in figure 1.7 is the histogram of the energies deposited by
the gamma-rays that interact with the detector material. Each energy chan-
nel’s content can be decomposed into the contributions of each radionuclides
composing the spectrum.

The analysis of such spectra is twofold. Firstly, by looking at the energy
of the peaks contained in the gamma-ray spectra we have information on the
radionuclides composing it, in fact, each radionuclide emits gamma-ray at a
specific energy according to its decay scheme (as previously seen in section 1.2),
for example 137Cs emitting at 661.7 keV. Secondly, by looking at the intensity
of each peak which is proportional to the activity of the emitting radionuclide
we can determine their quantity. This is illustrated in figure 1.7 which presents
4 gamma-ray spectra obtained by measuring 4 liquid sources spiked with 210Pb,
137Cs and 54Mn. On the one hand the 4 spectra are composed of the same 3
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radionuclides which can be identified by the 3 peaks present in each spectra
at 46.5, 661.7 and 834.8 keV respectively. On the second hand, the difference
between the 4 gamma-ray spectra as can be viewed on the right is the height
of the 54Mn peak varying according to its activity in the measured sample.

A gamma-ray spectrum can thus be decomposed in the different contribu-
tions of each radionuclides. As can be seen in figure 1.8 presenting the simulated
spectra of 3 different radionuclides, each radionuclide has an individual cha-
racteristic spectral signature. The combination of them will form the observed
spectrum. To this linear combination is added the background spectrum, it is
the ambient noise around the detector, in other term it is the spectrum one
would observe without any sample in the detector. It is composed of the ra-
dioactivity surrounding the detector, mainly from the building materials and
from the shielding, and the intrinsic radioactivity of the detector itself due the
natural radioactivity of its components. It is very low in our laboratory thanks
to the underground shielded room where the gamma-ray detectors are all the
implemented means described in section 1.2.3.

As can be seen in figure 1.8, the spectral signatures can be quite simple as
for the 40K or complex in case of multiple gamma-ray creation as for the 208Tl
or 214Bi. These spectral signatures can be decomposed in different characteris-
tic elements :

— Full energy peak : it is the peak related to the events when the photon
deposes its whole energy. This peak is at the characteristic energy of
the gamma-ray emitted after the decay of the radionuclide (eg 1460.82
keV for 40K). The gamma-rays energy can be found in the decay scheme
of each radionuclide as shown earlier in figure 1.2 for 60Co.

— Compton continuum : this plateau is due to a partial energy deposit of
the photons in the material of the detector when a Compton scattering
occurs. The characteristic shape of this continuum can be seen in the
signature of 40K, in figure 1.8. The steps in the shape of the conti-
nuum appear at known energies, based on the model of the Compton
scattering and multiple other physical phenomena. The energy of the
steps are characteristic of the energy of the photon and thus of the
radionuclide that has emitted it.

— Annihilation peak at 511 keV which is due to the annihilation of the
positron of a β+ decay or the annihilation of the positron emitted du-
ring a pair creation with an electron of the environment of the sample.
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Figure 1.8 – The spectral signatures of 3 radionuclides contained in aerosol filter
samples. These are simulations of the spectra obtained on a Ge detector for one di-
sintegration of the observed radionuclide.
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— Escape peaks at the characteristic energy of a gamma-ray less 511 or
1022 keV, due to the creation of an electron/positron pair mentioned
above . This type of interaction between photons and the Germanium
crystal can occur if the photon energy is higher than 1022 keV (i.e.
twice the mass energy of the electron). It is followed by the annihila-
tion of the positron, giving rise to 2 photons of 511 keV, which can
escape the crystal without interaction if this annihilation occurs near
its edge. In this case 2 peaks at the characteristic peak less 511 keV
and less 1022 keV appear in the spectrum as observed in the signature
of 40K.

— Low-energy X-ray peaks : These are photons due to the reorganisation
of the electron shell following some radionuclide decays or de-excitation
or some photon interactions with matter. The energy of the emitted
X-rays are characteristic of the atoms.

— A possible sum peak : In the case of rapid consecutive emission of 2
gamma-rays, there is a possibility for the detector to detect both at
the same time giving place to a sum peak at the sum of both energies.
For example as seen in the 208Tl spectral signature at 1093.9 keV. In
fact, it is rather unlikely (0.44% of apparition probability) to see a
gamma-ray emitted at this energy but, due to the rapid consecutive
emission of a 510.7 and a 583.2 keV gamma-rays, a peak is present at
the sum energy 1093.9 keV in the spectral signature resulting of the
summing effect.

The estimation of the activity of a radionuclide is allowed by quantifying
the contribution of its spectral signature in the spectrum as explained in details
in the next section.

1.4 . State of the art of gamma-ray spectrum analysis

The gamma-ray spectrum analysis allows to identify and quantify the ra-
dionuclides that compose the measured spectrum. This identification is per-
formed thanks to the characteristic energy of the gamma-rays emitted by each
radionuclide composing the sample. The quantification is done thanks to the
proportionality between the activity of a given radionuclide and the contribu-
tion of the spectral signature in the spectrum, the more active an element is in
the sample, the higher will be its contribution in the spectrum. The gamma-ray
spectrum analysis can be performed using various data present in the spectrum.
In this section we will describe the main ways to analyse such spectra.
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1.4.1 . Peak-based analysis
The first technique that I will explain to analyse gamma-ray spectra is the

peak-based method. It is the most used technique and softwares are available
to perform this analysis (eg Genie 2000 from Canberra [7]). The principle is to
seek the peaks present in the spectrum, this gives the radionuclides contained
in the sample by comparing the observed energies to the characteristic energy
of the gamma-ray emitted during a disintegration. For each radionuclide, the
activity is then computed via the following equation :

A =
n

ϵIt
(1.3)

Where :
— A, in Bq is the activity of the radionuclide of interest.

— n, is the net number of counts in the region of interest around the
characteristic energy : its determination is detailed later.

— ϵ, is the detection efficiency at the characteristic energy, it is the ratio
of detected events over the number of emitted photons. Its determina-
tion is mostly empirical.

— t, in second is the duration of the measurement. The radionuclide is
considered active throughout the entire measurement.

— I is the intensity of emission of the gamma-ray, it can be found in the
de-excitation scheme as previously seen in figure 1.2, it is the percen-
tage of apparition of a given gamma-ray for a disintegration.

The determination of the number of counts n is performed as follows (see
figure 1.9). Let e be the characteristic energy of a given radionuclide, the Region
Of Interest (ROI) [e±δ] around this energy is computed to encapsulate the peak
and a part of the local background. The background continuum is computed
as the mean of the counts on the left and right regions of the ROI (orange in
the figure). This background is then subtracted from the number of counts in
the peak region to obtain the ’net number of counts’ n (blue in the figure).
The ROI is usually determined as a function of the width of the observed peak,
usually the full width at half maximum (FWHM) value is used. For example,
the peak region can be [e± 2FWHM ] and the full ROI be [e± 4FWHM ] as
in the example of figure 1.9.

This method is easy to understand but some issues may arise. First, the
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Figure 1.9 – The net number of count is computed by subtracting the background to
the number of count in the region of interest around the characteristic energy.

correct statistics of the spectrum is not taken in account, indeed the computa-
tion of the activity using the net number of counts does not use the knowledge
of the Poisson statistic of the gamma-ray spectrum. Moreover, in case of mul-
tiple peaks in the same area the computation of the net number of counts can
be challenging and the deconvolution of the mixed signals may be difficult to
achieve if the only information used is the ROI. Finally, in case of low statistics
(peak that is at the level of the background) the determination of the net count
using this method is not possible, the contribution of some radionuclides can
thus be underestimated or missed in the spectrum.

Some authors have generalized the peak-based analysis (see [8]) to account
for the exact Poisson statistics of the data. It is interesting to point out that
this study demonstrates the need to account for the exact statistics of the
measurement. Nevertheless, these methods do not account for the whole infor-
mation carried by the full spectrum since they rely on region of interest at the
vicinity of related peaks. Moreover, the overlapping of the peaks in the ROI is
still an issue with this technique, the analysis of complex spectra such as the
one we want to analyse in my thesis work is not doable this way. The fact that
a radionuclide is supposed active during the whole measurement time is also
an issue for some applications such as aerosol filter analysis where the activity
of the radon progeny vanish as the decay proceeds. Indeed, in the presence
of short-lived radionuclide the background composition of a peak may evolve
during the measurement and is more complex than the approximation used in
the peak-based analysis.
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1.4.2 . Full-spectrum analysis
A second way to analyse gamma-ray spectra is to consider them as a sum

of the contribution of all the radionuclides composing the sample. Indeed, as
mentioned earlier, a gamma-ray interacting with the detector not only contri-
butes to the full energy peak region but to the whole spectrum leading to
a characteristic spectral signature. The full-spectrum analysis uses the entire
spectral signature of the radionuclides to determine the presence and activities
of the radionuclides.

To perform such analysis the mathematical model used to describe a
gamma-ray spectrum y on C channels, with N active radionuclides is :

∀c = 1, · · · , C; xc =
N∑
n=1

ϕncwn + δbc, (1.4)

yc ∼ Poisson(xc) (1.5)

where ϕn = [ϕn1 · · · , ϕnc] stands for the spectral signature of the n-th ra-
dionuclide and bc for the background per second in channel c, δ is the measure-
ment time in second. The numbers of disintegrations during the measurement
time, {wn}n=1,··· ,N , are estimated from the analysis of a single spectrum of
a long measurement. The problem of estimating the activity thus resumes to
solving an inverse problem as we know the spectral signatures, the background
spectrum and the observed spectrum. This will be detailed in chapter 2.

Some author as, in [9] or [10], have proposed other methods for the de-
composition of the spectral contributions using stripping methods or singular
value decomposition. The presented results are ways to estimate the solution
of the inverse problem without actively trying to solve it and without using the
whole information contained in the spectral signature. In this thesis work, we
focus on the unmixing using the spectral signatures knowledge and thus seek
to solve the presented inverse problem.

Further accounting for the full-spectrum information in gamma-ray spec-
trum analysis has been advocated in [11]. In this article, the authors demons-
trate that, compared to the standard peak-based analysis, using the full spec-
trum improves the sensitivity and reduces the time of measurement. However,
these investigations make use of a re-weighted least squares method, which is
not fully adapted to account for the Poisson statistics of the data.

Activity estimation problem in gamma-ray spectrometry has been also stu-
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died in [12], considering activity estimation as a sparse regression problem. In
this article, the authors propose to estimate the number of individual electri-
cal pulses and their arrival times. Using the full-spectrum information allows
reducing the measurement time and gaining in sensibility as proven in [11]. In
[13] a new method based on the full spectrum analysis is proposed to deal with
complex spectra containing a lot of radionuclides. Following these works the
method has been improved to include a model selection via a sparse algorithm
that allows to choose in a list of possible radionuclides the ones that contribute
to the observed spectrum (see [14], [15], [15]). In [16] a new method is propo-
sed to estimate the activities as the measurement is processed by adapting
the gamma-ray spectrum model to temporal analysis allowing to get a quicker
estimation of the activity of the radionuclide composing the spectrum.

1.4.3 . Machine learning in gamma-ray spectrometry
In the last years, new developments were made in the field of gamma-ray

spectrometry using Artificial Intelligence tools such as Convolutional Neural
Networks ([17], [18]) or Generative Adversarial Networks ([19]). In these articles
the focus is on the creation of a learning set of data via simulation and the
performance assessment on detection of radionuclides in different conditions
(presence of shielding, in a complex or laboratory controlled environment).
These new methods are easy to compute once the training is done, leading
to online applications that are fast without more development. On the other
hand, these algorithms are very sensitive to variations from the learning data
sets to real measurements, for example if the presence of a shielding affects
the observed spectra or for low statistics such as low activity or short measu-
rements.

The inherent problem for these methods is the need for a creation of a
database of example spectra. Indeed the only way to build such a database
is through Monte-Carlo simulations based on spectral signatures (simulated
or measured on standard sources). This process is long and can lead to a few
endpoints, eg the great divergence in the case of spectral signature variability or
deterioration of the signatures with a shielding or a background noise causing
a bad signal/noise ratio. Moreover these approaches are, for the time being,
agnostic to the physics behind the observed data. Indeed, in one hand we have
the peak-based and full-spectrum analysis that are building on the physical
model of a gamma-ray spectrum to estimate the contributions of the various
radionuclides, whereas, on the other hand, AI-driven analysis build upon the
correlations in the database of examples without any a priori information on
the physical processes that take place to generate the spectrum. For example,
if a decay chain is present in the spectrum, the correlation between the two
is not taken into account except if one has simulated the decay chain in the
learning data-base.
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1.5 . Conclusion

In a nutshell, the analysis of gamma-ray spectra revolves on the physical
information such as the spectral signatures or the energy of the peaks present
in the spectrum and the characteristic energy of the radionuclides to identify
and quantify the radionuclides contained in a sample. The following table (1.1)
sums up the pros and cons of each methods :

At the beginning of my thesis a small experiment was carried to compare
the performances of both the spectral unmixing and the peak-based approach
using Genie 2000. The experiment is based on the spectra shown in figure 1.7
with 2 radionuclides (namely 210Pb and 137Cs) at a stable level and fewer and
fewer 54Mn levels of activity. The detailed results are published in [20] and are
reported in annex C.3.1. In a nutshell, the full-spectrum analysis performed
better for the really low level of activity and performed as well as the routine
analysis using Genie 2000 for the high level of activity. In the context of trace
level measurement such as the one performed in the LMRE for the aerosol
filter samples the spectral unmixing is thus allowing to decrease the limit of
the achievable detection.

On the other hand, the process to allow us to get such simple spectra (only
3 radionuclides and no overlap or low statistics in the peaks) is long, after a
week long measurement a decay period has to be observed followed by a 4 days
measurement leading to a first activity estimation a week after the sampling
at best. The main objective of my thesis is to lower this time between the
sampling and the correct estimation of the activity in the sample. This will
require to analyse complex spectra before the radon progeny can decrease and
to develop new tools to analyse the spectrum as it is measured. These new
tools will be presented in the next two chapters 2 and 3.

Moreover, as seen in this introduction, the full-spectrum analysis relies on
precise spectral signature simulations to process with the activity estimation.
The precise calibration of the spectral signature will be presented in chapter 4
to present the calibration pipeline I developed during my thesis.
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2 - Temporal spectral unmixing
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2.1 . Introduction

As seen in chapter 1 gamma-ray spectrometry is one of the major tech-
niques used to measure the activity concentrations of radionuclides in envi-
ronmental samples. The main challenges of gamma-ray spectra analysis lies
in : i) the rapid detection and identification of the radionuclides which can be
detected from the sample and ii) the accurate estimation of the radionuclides’
activities. This is a particularly complex challenge when the statistics of the
counting rate is low. This has attracted a lot of attention in the field of rapid
detection and rapid characterization of sources under emergency conditions.

In this chapter, we present the results of a new approach for the estima-
tion of the activity of radionuclides from multiple gamma-ray spectra. Firstly,
it builds upon the joint analysis of gamma-ray spectra measured in consecu-
tive time intervals. This allows to account for the radionuclides’ activity decay,
which bears information to better distinguish between them. Secondly, we in-
troduce a novel spectral unmixing algorithm to tackle multi-temporal measu-
rements and which is based on a recently introduced method ([14]). In contrast
to standard methods that perform on single measurements, we propose to in-
vestigate two distinct models for the time dependency of the radionuclides’
activity : i) the first one assumes that all the radionuclides are in equilibrium,
and ii) the second one allows accounting for the presence of radionuclides that
are not in equilibrium. In the latter, the method allows taking into considera-
tion the correlation between parent and daughter radionuclides activities, as
described in [21]. These models are detailed in Section 2.2.1. Section 2.3 de-
tails the proposed multi-measurements spectral unmixing method. In Section
2.4, the proposed method is applied to simulated spectra, to assess the accu-
racy of the proposed models and algorithms. Next, experimental results on real
spectra are presented in Section 2.5. We particularly show that accounting for
time-dependency in multiple gamma-ray spectra allows for a faster detection
of the radionuclides present in the data while preserving a good accuracy of
the estimation of their activities.

2.1.1 . The challenge of the rapid analysis of aerosol filter
samples

As seen in chapter 1 the aerosol filter sample analysis is a long process.
Firstly, the sampling process, on a high volume air sampler takes a week after
which time the sample is weighted and pressed into a standard 10 mL cylin-
drical geometry. A decay period is then observed, varying from 4 to 7 days, in
order for the radon progeny to decay. The effect of this decay period on the
spectrum can be observed in figure 2.1, in fact the spectrum after the decay
period presents only a reduced number of peaks when compared to the spec-
trum measured right after the sampling process. After which the measurement
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is processed during 2 to 4 days and up to a week in order to get more statistics
and a better estimation of the remaining radionuclides and to provide reliable
information for the low level of activity we search in the sample (eg 137Cs to
the mBq level). The whole process is long and the first estimation of the ac-
tivity of the sample are only given at the end of the measurement, in case of
contamination or incident the time between the end of the sampling and the
estimation of the activities has to be shorten.

Figure 2.1 – Examples of gamma-ray spectra of two measurements of an aerosol
filter : half-an-hour long measurement performed half an hour after sampling (on the
top), and a 3 days and 17h long measurement performed 4 days after sampling (on
the bottom).

The problems carried with the radon progeny are twofold. On the one hand,
the multiplicity of the radionuclides (212Pb, 212Bi, 208Tl, 214Pb and 214Bi) add
complexity to the spectrum. Indeed, the signatures of these radionuclides are
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complex and pollute the spectrum with numerous peaks that a peak based
analysis will struggle with. Moreover, the activity of the radon progeny are large
compared to the activity of the radionuclides of interest that the laboratory
wants to estimate, namely 7Be, 22Na, 40K, 137Cs and 210Pb (cf table 2.1 for an
example of the activities we usually observe in aerosol filter samples) further
hampering the activity estimation of the low level of activity. On the second
hand, the half-life of these radionuclides is short (from 20 min to 10.6 hours),
however the analysis based on a single measurement is based on the hypothesis
that a radionuclide has been active during the whole measurement in order
to provide an activity estimation. This second problem is alleviate with the
decay period only leaving the long-lived radionuclides in the spectrum but it
is problematic in case of rapid measurement of the aerosol filter after it has
been sampled.

Radionuclide Half life Activity (Bq)
7Be 53.22 days 420
22Na 2.60 years 0.10
40K 1.265 109 years 1.9

137Cs 30.05 years 0.020
208Tl 3.06 minutes 219
210Pb 22.3 years 27
212Bi 60.54 minutes 635
212Pb 10.64 hours 481
214Bi 19.9 minutes 2164
214Pb 26.8 minutes 861
228Ac 14.02 109 years (period of 232Th) 0.075

Table 2.1 – List of radionuclides typically observed in an aerosol filter sample with
their half-life and an example of measured activity. These activities will be used in the
simulations of Section 2.4.

In the next section I will present the new framework we propose to resolve
these problems and proceed with the measurement without observing a decay
period. The successive measurement of the aerosol filter sample allowing to
perform the analysis of the spectra containing the radon progeny and still
correctly quantify the activity of all the radionuclides contained in the sample.

2.2 . Modelling multi-measurements gamma-ray spectrome-
try data

The traditional measurement process consists in acquiring a single spec-
trum which is obtained as an integrated spectrum during a certain amount
of time. This largely hampers the ability to rapidly detect artificial radionu-
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clides which could trace for incidents or accidents. The aim of this chapter is
to present a temporal model that copes with these short-lived radionuclides
and is able to detect the low-level radionuclides earlier than the usual week of
measurement.

In fact, making use of the time decay of the radionuclides should provide
extra information to better discriminate between the radionuclides to be iden-
tified. Therefore, we propose a different strategy where the measurements are
acquired on multiple, shorter time intervals. This leads to multiple snapshots
of the same sample taken in different consecutive time intervals. This further
allows taking advantage of the time dependency between these multiple mea-
surements to perform a joint analysis on a sample measured multiple times.

More formally, the variation in time of each of the radionuclides can be
described by the following physical time decay model :

An(t) = An(0)e
−λn.t, (2.1)

where An(t) is the the number of nuclei of the n-th radionuclide at time
t, An(0) the number of nuclei at the beginning of the measurement and λn
the decay constant of the radionuclide. Let’s define by wsn the total number of
disintegration of the n-th radionuclide during the s-th segment (s = 1, ..., S)
between time ts−1 and ts as follows :

wsn =

∫ ts

ts−1

λnAn(0)e
−λntdt (2.2)

= an(0)ψsn (2.3)

where an(0) = λnAn(0) is the activity of the n-th radionuclide at t = 0

and ψsn is defined as :

ψsn =

∫ ts

ts−1

e−λntdt (2.4)

In the next, and for simplicity, the activity an(0) of each radionuclide will
be denoted by an, which will be the quantity of interest to be estimated from
the measurements.
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A gamma-ray spectrum measured between time ts−1 and ts is then defined
as the linear combination of each of the N radionuclides spectral signatures
ϕn (i .e. the detector’s response in energy for a single radionuclide, see [14]).
A signature for a radionuclide is obtained by normalizing the spectrum by
the measurement time and the activity of the source. A background term b is
added (of dimension 1×C, C being the number of channels of the spectrum).

The spectrum for the s-th segment and energy channel c is then described
as follows :

∀s = 1, · · · , S; ∀c = 1, · · · , C :

xsc =
N∑
n=1

anψsnϕnc + bsc
(2.5)

where bsc = (ts − ts−1)bc

Finally, the spectrum is subject to Poisson noise due to the counting pro-
cess of the detection. Defining ysc as the measured spectrum in the s-th time
segment and c-th energy channel, the final model is :

∀s = 1, · · · , S;∀c = 1, · · · , C :

ysc ∼ Poisson
( N∑
n=1

anψsnϕnc + bsc

) (2.6)

where the measured spectrum is a random realization following a Poisson dis-
tribution with mean xsc.

Without loss of generality, these models will be illustrated with a sequence
of gamma-ray spectra, for which both simulations and real measurements are
available. These data originate from an aerosol filter sample which has been
measured with a High Purity Germanium (HPGe) detector. They are composed
of 11 measurements covering a total time of almost 8 days (670 800s). As
displayed in Figure 2.2, time intervals of various lengths have been chosen.
The starting point has been taken 30 minutes after the end of the sampling
process, this is due to the sample preparation process. More details about the
detector setup is given in 2.5.1. The detailed table of the length of every time
segment is presented in table 2.2. The segmentation has been done so that the
first 7 spectra contain approximately the same number of counts (≈1 000 000),
the last 5 segments have been chosen so that we can start and stop each time
segment during a standard work day while still having a high number of counts
(>1 000 000 each) even with the complete decay of the radon progeny.
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Figure 2.2 – Temporal scheme of measurement used in this paper.

Segment Start time Duration
1 30min 1 800s (30min)
2 1h 1 800s (30min)
3 1h30 1 800s (30min)
4 2h 3 600s (1h)
5 3h 3 600s (1h)
6 4h 5 400s (1h30)
7 5h30 10 800s (3h)
8 8h30 54 000s (15h)
9 23h30 28 000s (∼7h45)
10 ∼1 day 7h15 240 000s (∼2 days 19h)
11 ∼4 days 2h 320 000s (∼3 days 17h)

Table 2.2 – Temporal scheme of the measurements used throughout this paper.
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2.2.1 . Modelling the decay series
Accounting for temporal information in spectral unmixing first requires

designing dedicated models to describe multi-temporal gamma-ray spectra. To
that purpose, we hereafter focus on various models for multi-temporal gamma-
ray spectra, with increasing complexity.

In fact, in aerosol filter samples one of the issues that arise when the
measurement is processed early after the sampling is the radon progeny pollu-
ting the measured gamma-ray spectrum. In order to properly model the time
correlations between consecutive gamma-ray spectra we have to get a proper
understanding of the activity of the radioactive series of radionuclides. More
precisely, when radionuclides are in the same radioactive sequence and the
half-life of the parent radionuclide is longer than the half-life of the daughter
radionuclide, the parent’s activity affects the daughter’s. In fact, any radionu-
clide sequence is described by Bateman’s equation which relates the number of
nuclei of a daughter radionuclide in terms of its decay constant λd, its original
quantity at t = 0, Ad(0), its parent decay constant λp and original quantity
Ap(0), and the branching ratio r for the parent radionuclide to disintegrate
into the daughter radionuclide (see [21] for more details) :

Ad(t) = Ad(0)e
−λdt + r

λp
λd − λp

Ap(0)
(
e−λpt − e−λdt

)
(2.7)

As an illustration, let us consider the 214Pb - 214Bi chain :

214Pb(27min) −→214 Bi(20min)

In this case, the half-life of the parent radionuclide is of the same order of ma-
gnitude as the daughter’s half-life : Tparent ≈ Tdaughter. For this disintegration
chain, the correlation between the activity of the parent and daughter radio-
nuclide can be described with Bateman’s equation and the activity of 214Pb
will participate in the activity of 214Bi (in this decay series the branching ratio
is 1).

As a second example, let us consider the radioactive series composed of
212Pb, 212Bi and 208Tl, which can be described as follows :

212Pb(10.6h) −→212 Bi(61min) −→208 T l(3min)

In this chain, each radionuclide disintegrates in a descendant with a much
shorter period. In this case we observe that the descendants 208Tl and 212Bi are
decreasing with the period of their parent 212Pb. It is a state that is known as
equilibrium. This phenomenon occurs when the disintegration of the daughter
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cannot be faster than its creation. Usually it is accompanied by a constant ratio
of activity between the parent and the daughter (the ratio is Ad(t)

Ap(t)
= r λd

λd−λp ).
In our study we observe that each radionuclide of the decay series have the
decay constant of 212Pb but the ratio is not achieved, in the paper we will call
this state ’equilibrium’.

In the next sections, we describe the different multi-temporal models, fol-
lowing the Bateman’s equation or considering the decay series at equilibrium.

Model for multi-temporal gamma-ray spectra in equilibrium
The first model to be considered is dedicated to the decay series which are

at equilibrium. In each decay series the half-life of the daughter radionuclides
are considered to be equal to the half-life of the parent. This model is des-
cribed as in Equation 2.5, and is composed of different quantities, which are
summarized below :

— an : the activities an(0) for each of the N radionuclides (a vector of
size N)

— ϕnc : the spectral signature of the n-th radionuclide in the c-th energy
channel.

— ψsn : the temporal signatures of the n-th radionuclide in the s-th time
segment, described in Equation 2.4.

— bsc is the background in the c-th energy channel. It originates from
cosmological or telluric gamma activity. It is assumed to be constant
during the acquisition time so that the background for a given time
interval is defined as (ts− ts−1)bc. The background measurement is the
spectrum which is obtained by leaving the detector empty during the
acquisition process.

Throughout this article, the spectral signatures {ϕnc}n,c are assumed to
be known as it represents the energy signature of the radionuclide. It can be
derived from measurements of a standard source containing a single radionu-
clide. However, this can only apply to radionuclides for which a standard source
can be made. This is not the case for some of the radionuclides that can be
identified in aerosol samples. For that purpose, we rather compute the spectral
signatures from simulations (see 2.5.1).
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Model for multi-temporal gamma-ray spectra with Bateman’s
equation

In the previous section, the temporal signatures do not model for possible
out of equilibrium radionuclides. To further deal with the radionuclides which
are not in equilibrium, it is necessary to introduce an extra term : ψBs , modelling
the interaction between the daughter and its parent radionuclide, such as with
the 214Pb/214Bi family. This extra factor takes into account the activity of the
parent radionuclide but will have an impact on the daughter’s activity. This is
described by Bateman’s equation 2.7. To get this equation in term of activity
we apply multiply by λd :

ad(t) = ad(0)e
−λdt + rap(0)

λd
λd − λp

(
e−λpt − e−λdt

)
(2.8)

which models for the relationship between the parent and daughter radio-
nuclides. The expression of the extra term ψBs is then defined as follows :

ψBs =
λd

λd − λp

∫ ts

ts−1

(
e−λpt − e−λdt

)
dt (2.9)

Without loss of generality, the model in Equation 2.5 for a disintegration
family of two radionuclides, a parent and its daughter, reads as :

∀s = 1, · · · , S; ∀c = 1, · · · , C :

xsc =
N∑
n=1

anψsnϕnc + apψ
(B)
s ϕdc + bsc

(2.10)

Where ap is the activity of the parent radionuclide, ψ(B)
s is the Bateman

term as defined in equation 2.9 and ϕdc is the spectral signature of the daughter
radionuclide. The second term in equation 2.10 is added for each decay family
which is out of equilibrium and needs the Bateman equation to be properly
modelized.

All the models are compared in figure 2.3 in the case of 1000 nucleus of
214Bi and 1000 nucleus of 214Pb at t = 0. In blue, we consider the case where
the parent and daughter are at equilibrium, the decay rate of the parent 214Pb
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Figure 2.3 – The comparison of the number of nucleus of the daughter radionuclide
between the models presented in this section for 1000 nucleus of 214Bi and 214Pb.

has thus been adopted by the daughter radionuclide resulting in a 20 min half-
life. In orange, we consider the simple decay of 214Bi with its own half-life of 27
min. Finally in green we consider the Bateman equation in which 214Bi decay
with its own period and an added component coming from the decay of the
parent 214Pb is observed.

In the next section, we will investigate how these models can be used to
design spectral unmixing algorithms that are specifically tailored to analyse
multi-temporal measurements.

2.3 . Spectral unmixing algorithms for multi-temporal mea-
surements

2.3.1 . Statistical modeling
In this section, we introduce a new spectral unmixing algorithm to analyse

multi-temporal measurement in gamma-ray spectrometry. For that purpose,
we first need to define an estimator for the mixing weights of the mixture
model that describes gamma-ray spectra. Let us recall that, for each channel
c = 1, ..., C and time segment s = 1, ..., S, the general expression for the
mixture model is of the form :

∀s = 1, · · · , S; ∀c = 1, · · · , C;

xsc =
N∑
n=1

anψs,nϕnc + bsc
(2.11)
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This expression gives the average number of counts per energy channel and
time interval. The actual measurement follows a Poisson distribution, which
can be formalized as follows :

∀s = 1, · · · , S; ∀c = 1, · · · , C;
ysc ∼ Poisson(xsc)

∼ xyscsc e−xsc

ysc!

(2.12)

Since the channels and time segment are statistically independent, the
likelihood with respect to the complete multi-temporal measurements is given
by :

P({ysc}s,c|{xsc}s,c) =
S∏
s=1

C∏
c=1

xyscsc e(−xsc)

ysc!
(2.13)

It is then customary to take the log to simplify the expression by defining
the negative log likelihood :

L({ysc}s,c|{xsc}s,c) =
∑
s,c

xsc − ysc log(xsc) + log(ysc!) (2.14)

Since the model only depends on the unknown activities {an}n, and follo-
wing [14], we take the negative log likelihood and add an extra constraint to
enforce the non-negativity of the activities :

{ân}n = argmaxa≥0L({ysc}s,c|{an}n) (2.15)

= argmaxa≥0

∑
s,c

xsc − ysc log(xsc) (2.16)

where log(ysc!) is omitted since it is constant and each term xsc is a function
of the activities {an}n according to models 2.5 or 2.10.

The problem in Equation 2.15 does not admit a closed-form expression
and must be evaluated using a minimisation algorithm. The main challenge
is that the presence of the non-negativity constraint makes this problem non-
differentiable. A traditional gradient descent algorithm cannot be adopted.
Fortunately, different types of algorithms can be used, such as primal-dual
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algorithms (see [22, 14]) or the multiplicative update algorithm (see [23]).
Primal-dual algorithms offer a highly flexible framework at the cost of the
need for tuning extra hyperparameters (see [14] for more details). For its sim-
plicity, we rather focus on extending the multiplicative update algorithms to
multi-temporal measurements.

2.3.2 . The multiplicative update algorithm and its extension
to multi-temporal data

In this section, we introduce a spectral unmixing algorithm, based on the
multiplicative update algorithm, which is tailored to the three following mo-
dels :

— Model "without time" : Segment by segment analysis, no time correla-
tion, we analyse the whole spectrum and estimate the activity in each
temporal segment using the algorithm developed in [14].

— Model "equilibrium hypothesis" : we benefit from temporal informa-
tion with the joint analysis of the multi-temporal measurements. This
amounts to use the temporal signatures to model for the time depen-
dencies. In this model, every disintegration family is assumed to be at
equilibrium.

— "Bateman" model : This model makes use of Bateman’s equation to
model for the temporal dependencies between radionuclides that are
not in equilibrium.

In each model the algorithm is based on the non-negative matrix factori-
zation ([23]). The difference lies in the update of the activities. We will now
present the most complex case of "Bateman" model as the others deduct di-
rectly from this one.

The multiplicative update algorithm first builds upon a gradient-based
minimisation scheme. The derivative of the negative log likelihood with respect
to each parameter an is given by :

∂xsc
∂an

= ψsnϕnc + ϕncψ
(B)
sn (2.17)

If the n-th radionuclide is not in a radioactive series, then ψ
(B)
sn = 0 and

the second term disappears. This then builds down to :
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∂L({ysc}s,c|{xsc}s,c)
∂an

=
∑
s,c

(
ψsnϕnc −

ψsnϕncysc
xsc

)
(2.18)

Following [23], the update rule of the multiplicative update algorithm can
be obtained by zeroing the derivative of the negative-log-likelihood with res-
pect to each parameter. The main difference between all the mixture models
lies in the structure of the temporal signatures, which embeds the temporal
information and is dependent on the temporal scheme of the measurements.
The update rule for each model is defined as follows for each step k of the
algorithm :

— Model "without time" : each time segment is processed independently,
the activities of the sought-after radionuclides are then dependent on
the time segment s, which yields multiple estimations of the activities
{asn}s,n. The resulting update rule then reads :

a(k+1)
sn = a(k)sn

∑M
c=1 ϕncysc/xsc∑M

c=1 ϕnc
, (2.19)

where xsc =
∑N

n=1 ϕnca
(k)
sn + bsc. This is similar to the update rule of

the algorithm proposed in [13].

— Model "equilibrium hypothesis" : does include the temporal signatures,
but sets the Bateman’s term at 0 :

a(k+1)
n = a(k)n

∑
s,c ψsnϕncysc/xsc∑S
s=1 ψsn

∑M
c=1 ϕnc

(2.20)

where xsc =
∑

n ψsnϕnca
(k)
n + bsc. The activities are estimated consi-

dering that every decay series are at equilibrium.

— "Bateman" model : This model includes Bateman’s equation for de-
cay series which are not in equilibrium (i.e. for instance 214Pb/ 214Bi
parent/daughter chain). The multiplicative update rule is then defined
as follows :

a(k+1)
p = a(k)p

∑
s,c

(
ψs,pϕp,c + ψ

(B)
s,d ϕd,c

)
ysc/xsc∑S

s=1 ψs,p
∑M

c=1 ϕp,c +
∑S

s=1 ψ
(B)
s,d

∑M
c=1 ϕd,c

(2.21)

where ap (resp. ψp,c and ϕp,c) stands for the parent activity (resp. its
temporal and spectral signatures), ψ(B)

s,d stands for the corresponding
Bateman temporal signature and ϕd,c is the associated daughter spec-
tral signature. The current estimate of the mixture model is given by
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xsc =
∑

n ψsnϕnca
(k)
n + bsc + a

(k)
p ψ

(B)
s,d ϕd,c + bsc. The activities of the

radionuclides that are in equilibrium are updated as in Model "Equi-
librium hypothesis".

These update rules are performed sequentially until convergence is reached.
The stopping criteria we impose to our algorithm is to stop when the relative
variation of a(k), which is defined by :

∑
n(a

(k+1)
n − a(k)n )2∑
n a

(k)
n

2 ≤ ϵ (2.22)

is smaller than value ϵ = 10−6. The maximum number of iterations is fixed
to K = 2000 iterations.

2.4 . Numerical experiments with simulated data

2.4.1 . Description of the simulations
In order to simulate a spectrum similar to the one we obtain in the en-

vironmental monitoring, we use the previous models and simulate the most
common radionuclides in the samples we usually gather. The radionuclide dic-
tionary will then be : 7Be, 22Na, 40K, 137Cs, 210Pb, 228Ac, 212Pb, 212Bi, 208Tl,
214Pb and 214Bi. As previously seen (Section 2.2.1), the 212Pb, 212Bi, 208Tl
series is considered at equilibrium. Bateman’s equation is used to model the
activities of 214Pb and 214Bi. These simulations will be used to illustrate the
differences between the unmixing algorithms and the importance of the theo-
retical knowledge carried out by the choice of the temporal models.

In order to simulate gamma-ray spectra, we make use of the mathematical
model described in equation 2.10, and precisely described as follows :

xsc =
∑
n

anψsnϕnc + a214Pbψ
(B)
s ϕ214Bi,c + bsc (2.23)

where,
— the term ϕnc stands for the spectral signatures of the n-th radionuclide

in the channel c, which are computed thanks to MCNP-CP simulations
(see [24]). This software allows simulating the response of the HPGe
detector used for measurements, as if standard sources were used for
each radionuclide. We refer the reader to 2.5.1 for more details about
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the simulations.

— The activities {an}n of the radionuclides are chosen to be close to a
real aerosol sample. The levels are presented in Table 2.1.

— the temporal signatures {ψsn}s,n are computed according Equation 2.4.
The duration of the time intervals are presented in Table 2.2.

— The term ψ
(B)
s corresponds to the the Bateman term as defined in

Equation 2.9.

— The background bsc is a real measurement, realized with the empty
HPGe detector used in the laboratory over a long time (typically one
week). It is customary to take such a spectrum as background for the
analysis that we carry in the laboratory. The background spectrum is
then reduced to the background per second (by dividing by the coun-
ting time) and multiplied by the counting time of the segments we are
using.

As it can be seen in top-left panel of Figure 2.4, the simulated radionuclides
have different behaviours through time. Three categories can be distinguished.
The first one corresponds to the long-lived radionuclides :7Be, 22Na, 40K, 137Cs,
210Pb, 228Ac. The activities of these radionuclides are mostly constant over
time since their half-lives are much greater than a week. The activities of these
long-lived radionuclides vary quite significantly from few mBq for 137Cs to 420
Bq for 7Be allowing us to compare the performances of the models at low and
higher activities. The second category is composed of the 212Pb, 212Bi, 208Tl
decay chain which is considered at equilibrium. The daughter radionuclides of
this series have short half-lives (3 minutes up to an hour). Finally, the third
one is related to the 214Pb and 214Bi decay chain that decreases quickly. It
is well described by Bateman’s equation. It is expected that the impact of
the model will be very important on the estimation of their activities. Monte-
Carlo simulations of gamma-ray spectra are then obtained by drawing Poisson
realizations.

2.4.2 . Comparisons between the different models
In this section, we aim at evaluating the impact of the temporal models

on the estimation of the activities. Figure 2.4 shows the estimated activities in
Bq for each time segment and each model, which allows drawing the following
conclusions :

— The model "without time" (b in Figure 2.4) provides accurate activity
estimations for the long-lived radionuclides within the last 3 intervals,
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(a) Simulated activities

(b) Model "without time" (c) Model "Equilibrium hypothesis"

(d) "Bateman" model

Figure 2.4 – Simulated and estimated number of counts per second for the different
models and time intervals.

53



where the short-lived radionuclides have vanished. In contrast, it is not
able to correctly retrieve the activities of the short-lived radionuclides
after the third or fourth intervals, when their activities have very low le-
vels. It is important to point out that the estimated activities may vary
significantly in time, since no information about the time dependencies
of the activities is used in the unmixing procedure. For example, the
activity of 214Bi (light green in Figure 2.4) is estimated correctly in
the first 6 or 7 intervals but is completely wrong in the last ones since
the radionuclide have almost completely disintegrated.

— The two models "Equilibrium hypothesis" and "Bateman", which ac-
count for time dependencies (c and d in Figure 2.4), yield similar un-
mixing results. Both give activities’ estimates which are close to the
ground truth activities.

In order to precisely assess the differences between the unmixing algorithms
based on the two temporal models, we propose evaluating experimentally the
estimator bias and variance of each method. For that purpose, we applied the
unmixing algorithms to 1000 Monte-Carlo simulations of the same mixture.

Figure 2.5 shows the distribution of the estimated activities for all the
1000 Monte-Carlo simulations, for both Model "Equilibrium hypothesis" (in
blue) and "Bateman" model (in orange). These distributions are displayed for
4 different radionuclides. For short-lived radionuclides (c and d in Figure 2.5),
Model "Equilibrium hypothesis" yields a clear bias, while "Bateman" model
provides an unbiased solution. This is especially true for 214Bi. This discrepancy
is clearly related to the ability of the "Bateman" model to take into account
the correlation in time of the activities of this radionuclide. More interestingly,
for long-lived radionuclides, such as 7Be and 137Cs (a and b in Figure 2.5),
the "Bateman" model provides numerically unbiased solutions while Model
"Equilibrium hypothesis" yields a slight but statistically significant deviation
from the ground truth values. Since these radionuclides have longer half-lives,
we would have expected no impact of the choice of a given time models on the
estimated activities. This reveals that i) both models "Equilibrium hypothesis"
and "Bateman" use information in all time segments to estimate the activities,
and ii) correctly modelling the activity in time of short-lived radionuclides also
impacts the activity estimation for radionuclides with longer lives iii) we note
that the estimation is not biased if the correct model is taken.

2.4.3 . The role played by temporal information
In this section, we focus on the role played by the temporal information and

its impact on activity estimation. For that purpose, we specifically emphasize
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(a) 7Be (b) 137Cs

(c) 214Bi (d) 214Pb

Figure 2.5 – Estimated activities by both Model "Equilibrium hypothesis" and "Ba-
teman" for different radionuclides. These graphs are obtained after 1000 Monte-Carlo
simulation.
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(a) 7Be (b) 137Cs, zoom on the last time
segments

(c) 214Bi (d) 214Pb

Figure 2.6 – Results of the "Bateman" model on 1000 Monte-Carlo simulations. For
137Cs the decision threshold is presented in dotted blue line.

on the "Bateman" model, which provides a precise description of the time
dependencies of the radionuclides’ activities. In the following experiment, we
propose evaluating the precision of the estimated activities when an increasing
number of time intervals are used in the unmixing process. To do so, we start
by using only the first interval (i.e. which is similar to take the Model "without
time" only for this single interval), then the first two segments, up to all the
11 available time segments. This procedure is also meaningful in the context
of crisis, as it allows evaluating how well the radionuclides’ activities can be
estimated from few and early measurements.
The results are obtained from 1000 Monte-Carlo simulation.

Figure 2.6 shows the estimated activities of the four radionuclides 7Be (a),
137Cs (b), 214Bi (c) and 214Pb (d). It is interesting to notice that the evolution
of the estimated activity of the radionuclides is quite different depending on
whether it is a short or long-lived radionuclide.
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In case of short-lived radionuclides, such as 214Bi and 214Pb, the relevant in-
formation for spectral unmixing is mainly contained in the very first intervals.
It entails that the estimated activities of 214Bi and the 214Pb quickly reach a
final state. This is also the case for 208Tl, 212Bi and 212Pb, the half lives of
which do not exceed 10 hours.
For long-lived radionuclides, the results are slightly different and depends on
the activity level. It also depends on how much the presence of short-lived ra-
dionuclides impacts the precision of their activity estimation. For instance, 7Be
has a rather high activity and seems less impacted by the presence of short-
lived radionuclides. Consequently, its activity is very well estimated already
from interval 1 only. In this case, the joint analysis of consecutive time inter-
vals mainly helps improving the uncertainty of the estimation : it naturally
decreases as the number of time segments used for the estimation increases.
The case of 137Cs is different since its level is lower (i.e. 3 orders of magnitude
below the level of 7Be), which makes its activity estimation more sensitive to
the presence of short-lived radionuclides. As a consequence, its activity esti-
mation is significantly biased when few time intervals are used. The use of
an increasing number of time intervals helps enhancing both the precision
of the estimation and its uncertainty. The estimation of 137Cs is below the
decision threshold while the activity of the short-lived radionuclides are pre-
dominant but becomes significant at t = 1 day 7h15. It is a significant impro-
vement with respect to previous work ([14]), where detection can be claimed
at t = 4 days 2h as depicted in red on the zoomed plot of Figure 2.6.

In the cases of 7Be and 137Cs, it is important to note that the uncertainties
decrease with the number of intervals used. Indeed, for these long-lived radio-
nuclides the longer the time segment is and the later it begins, the easier it is
to determine their activities. As a result, the statistical uncertainty shown in
Figure 2.6 decreases for 7Be and 137Cs. On the other hand, the uncertainty for
short-lived radionuclide like 214Pb and 214Bi is stable from the first segments
to the last ones, as their contribution disappears from the spectra after 8 hours
of measurement.

2.5 . Application to experimental aerosol measurements

In this section, we analyse a real aerosol sample measurement. This sample
is composed of the exact same 11 time intervals we described in Table 2.2 and
illustrated in Figure 2.1. To that purpose, we apply the proposed unmixing
algorithm with the "Bateman" model, being the most realistic when out-of-
equilibrium decay series are likely to be present. The experimental protocol
is exactly the same as the one used in the simulations. The instrumentation
and the radionuclides’ signatures are also the same as in the simulations, as
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described in 2.5.1. The background used in the analysis has been measured with
the same detector a few weeks after the measurement of the sample, which is
the standard laboratory routine.

2.5.1 . Description of the experimental setup
The experimental set-up consists of a gamma-ray spectrometer with a

BEGe 5030 (Broad Energy Germanium, MIRION-Canberra) detector (crystal
dimensions : ∅ = 80mm, h = 30mm) and a DSA-1000 (MIRION-Canberra)
multi-channel analyzer based upon digital signal processing using 16384 chan-
nels for energies ranging from 20keV to 1700keV. The system has a relative
efficiency of 61% and a resolution of 0.54 keV, 1.2keV and 1.7keV at 46keV,
622keV and 1460keV, respectively. The detector is surrounded by a 5cm thick
lead shield, and equipped by an anti-cosmic set-up consisting in 5 scintillating
plastic plates (5 cm thick). Furthermore, the whole system is installed in a
shallow shielded room made of 10 cm lead bricks and internally lined by 5 mm
oxygen-free copper, in the second basement of the laboratory, under 3 m bo-
rated concrete slab. Finally, the inner measurement chamber is flushed by the
gaseous nitrogen escaping from the liquid nitrogen dewar to reduce and sta-
bilize the radon induced background. The sampled aerosol filters are pressed
into pellets packaged in 10mL cylindrical counting geometries (dimensions :
∅ = 52mm, h = 4.7mm) and measured directly on the detector endcap.

The modeling process of the measurement configuration (detector/counting
geometry) as well as the simulations performed to obtain the spectral signa-
tures used by the spectra unmixing algorithms have been thoroughly described
in [20]. We have also used the new calibration tools presented in chapter 4 to
fit to the observed spectrum better.

The background spectrum used in the unmixing is considered as constant
and perfectly known, and has been experimentally obtained by a background
measurement for 560 000s using the same detector as the aerosol measurement.

2.5.2 . Multi-temporal spectral unmixing of an aerosol mea-
surement

In this section, the analysis we performed is exactly the same as in the
simulations. Consequently, Figure 2.7 depicts the evolution of the estimated
activities across the different time intervals for 7Be, 137Cs, 214Bi and 214Pb.
In this Figure, the orange shaded area stands for the statistical uncertainty,
which originates from the Poisson statistics of the measurements (every un-
certainties are taken at 2σ). It is similar to the uncertainty featured in Figure
2.6. In the previous section (2.4) this uncertainty was computed thanks to
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(a) 7Be (b) 137Cs

(c) 214Bi (d) 214Pb

Figure 2.7 – Evolution of the estimation of 4 radionuclides’ activity. For 137Cs, the
decision threshold is indicated in dotted blue line.
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Monte-Carlo simulations, this cannot be done on real measurements as the
true value of the activities are unknown. The computation of the statistical
variability of the estimator is done following the work of [15], which resorts to
the inverse of the Fisher’s information matrix of the estimator. If we focus on
the estimation of 7Be and 137Cs, the statistical uncertainties for simulations
and the real data are similar (±10Bq for 7Be and ±0.1Bq for 137Cs in the first
segment and decreasing as more times segments are added to the estimation)
in both figures. For 214Pb and 214Bi the statistical uncertainty is small and
stable from the first time segment to the last as the activity of these short-
lived radionuclides is estimated in the first segments and not affected by the
last (the activity of 214Bi, for example, is divided by 512 after only 3 hours of
measurement as its half life is 20 minutes). In conclusion we can state that the
statistical uncertainties behave similar to the ones measured in the simulations.

Following [20], the other sources of uncertainty come from the slight varia-
tion of the geometry of the sample, its placement on the endcap of the detector,
the calibration of the detector. It is represented by the blue shaded area.
A first observation is that the estimated activities, in all time intervals, are
compatible with the last estimate within the total uncertainty budget. Ho-
wever, the case of 137Cs is more peculiar as the estimated activity is about
0.6mBq in the first time intervals, which is about 6 times higher than in the
simulations. Furthermore, in these time intervals the estimated activities are
not compatible with the final estimate, and also way beyond the detection
threshold. This suggests that the estimated activity for 137Cs is significantly
biased, at least for the first day of measurements.
As this phenomenon is not observed in the simulations, it is very likely that
this originates from a deviation between the observed data and the model that
describes these data. This points to the accuracy of the simulated spectral si-
gnatures Φ and the background ; both may deviate from the actual spectral
signatures and background. Indeed, in contrast to the other radionuclides dis-
played in Figure 2.7, 137Cs has a low level, and is likely to be more impacted
by variabilities of the spectral signatures and the background signature.

2.5.3 . Investigating the impact of the background level
In this section, we propose a simple experiment to highlight the impact of

the background level on the estimated activities. For that purpose, rather than
fixing the level of the background, it is estimated during the unmixing process.
The background is then described, as any radionuclide, with a spectral signa-
ture that is added to the library of spectral signatures. A temporal signature
is considered, based on the durations of the time intervals. The "Bateman"
model now reads as :
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(a) 137Cs (b) Zoom on the last segments

Figure 2.8 – Results for 137Cs with the background treated as a signature (and zoom
on the last 4 time segments). The total uncertainty and decision threshold are depicted
in light colour and dotted line, respectively. The black dashed line is the last estimation
by the "Bateman" model.

∀s = 1, · · · , S;∀c = 1, · · · , c;

xsc =
∑
n+1

anψsnϕnc + a214Pbψ
(B)
s ϕ214Bi,c

(2.24)

Where ϕn+1 is the normalized background spectrum (i.e. corresponding
to a 1 second measurement), ψs,n+1 is equal to the duration of the s-th time
interval and an+1 is the level of the background. This model is called "Free-
background". In the unmixing process, the update rules are similar to the ones
detailed in Section 2.3.

Figure 2.8 shows the evolution in time of the estimated 137Cs activity for
both the standard "Bateman" model and the "Free-background", where the
background is estimated. This experiment shows that the bias observed in
the first time intervals is significantly reduced. The estimated activities during
the three first hours of measurements are now consistent (with respect to the
uncertainties) with the final estimated activity. While being reduced, the dis-
crepancy between the final estimate and the ones between 3 hours and 1 day
becomes prominent as the statistical uncertainty decreases with time.
The estimated activity of the background is largely superior to 1 on the first 4
segments (estimated to 30 on the 1st-segment-only estimation and decreasing
towards 1 between the 1st and the 8th segment).
This first highlights that letting free the background allows capturing some
deviation between the data and the original, that could either come from some
mis-modelling of the background or the radionuclides’ spectral signatures. A
simple correction based on the background level is not enough, which sug-
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gests that the shape of the spectral signatures should be estimated during the
unmixing process.

2.6 . Conclusion

In this chapter, we introduced the full spectrum analysis on multiple spec-
tra which allows accounting for the temporal information of the activity decay
in time within the unmixing procedure. For that purpose, we introduce mo-
dels which are composed of a spectral dictionary and a temporal dictionary.
The former contains information about the detectors’ response in energy with
respect to each radionuclide. The latter is composed of the time decay of each
of the radionuclide in the time intervals of the measurements. Two distinct
models have been considered : the first one assumes that all the radionuclides
are in equilibrium, while the second one allows taking care of parent/daughter
dependencies as described by Bateman’s equation. We further extended the
multiplicative update algorithm to minimise the likelihood of the activities un-
der non-negativity constraints. The proposed algorithms and models have been
evaluated and validated on simulations of aerosol samples. These results show
that such a method should theoretically yield earlier results for the detection
of 137Cs, about one day and a half after sampling, while previous methods re-
quired about four days ([14]). The proposed methods have been applied to real
measurements of multi-temporal aerosol samples. Though these experiments
show the applicability of multi-temporal unmixing for fast activity estimation,
the detection and quantification of low-level radionuclides requires understan-
ding the role played by the uncertainty with respect to the background and
the radionuclides’ spectral signatures.

In the next chapter we will see how to adapt this new measurement scheme
and the proposed unmixing algorithm to an online estimation of the activities.
In fact, thanks to another acquisition electronic it is possible to get the spec-
trum as it is measured in an online fashion. The refinement of the activity
estimation to be able to analyse these spectra as fast as they are measured is
a challenge but will provide even faster results than the one presented in this
chapter.
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3 - Online spectral unmixing of gamma-ray
spectra
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3.1 . Introduction

In this chapter I present the generalisation of the joint analysis on conse-
cutive measurements of an aerosol filter sample so that an online activity esti-
mation can be performed. The model is mostly the same as the one presented
in the previous chapter but multiple problems occur when the number of time
segments grows. This chapter is, in essence, what I presented at the ICRM (In-
ternation Conference on Radionuclide Metrology and its applications) confe-
rence in Bucharest in 2023. The algorithm we used in the previous chapter is
updated so that the computaion time is greatly reduced and we can perform
an estimation as the measurement is performed.

In this chapter we propose a new algorithm that allows online estimation
of the activities as the measurement of aerosol filter samples is done. Thus
drastically reducing the time to correctly estimate the activity of the radio-
nuclides composing the spectrum (1 min to detect a few Bq of activity). This
new analysis is based on the full spectrum unmixing and the multiplicative
update algorithm showed in [16] with a few tweaks allowing to deal with large
matrices of data.

Based on the previous work the aim is to generalize the algorithm to any
number of time segments and to get an estimation of the activities in the
sample as soon as possible during the measurement process. To achieve this,
we seek to reduce the size of the data matrices involved in the unmixing process
and to reduce the number of iterations needed to converge.

The improvement to the algorithm will be presented on simulations and on
a real aerosol filter sample measured in our laboratory. The detection of a few
Bq of 123I in a filter sampled for 1 week and an air volume of 90 000 m3 after
only a minute of measurement is achieved thus proving the performances of the
unmixing in the case of fast detection. For 137Cs, which is hard to detect as its
activity is at the level of the decision threshold in the French environment, the
detection is achieved after one day and 12 hours, which is almost four times
faster than previous results based on full spectrum analysis [14].

3.1.1 . Challenge of the online analysis of gamma-ray spectra
In the context of radiological surveillance and radioecology studies, the

analysis by gamma-ray spectrometry of aerosol filter samples allows to detect
radionuclides at very low level (lower than 1µBq/m3 in the air ie less than 1 Bq
per sample) that are present in the environment among large concentrations of
natural radionuclides. The rapid analysis of a gamma-ray spectrum as it is pro-
duced is a challenge in gamma-ray spectrometry as the measurement process
can be quite long (varying from 1 to 4 days). In fact, if one wants to analyse
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Figure 3.1 – The spectrum obtained at the beginning of the measurement (first 20
minutes after the aerosol filter has been sampled and put into standard geometry) and
the end of the week of measurement (last 4 hours).

the spectrum in the minutes after the aerosol filter is sampled the gamma ray
spectrum is dominated by the radon progenies that are short-lived radionu-
clides. The routine method to analyse gamma ray spectrum, which generally
relies on peak-based analysis, struggles to cope with the complexity of such
spectra. For a precise analysis of low-level radionuclides, activity estimation is
generally performed at least one day after the filter has been sampled. This
is illustrated in figure 3.1, the blue signal is the spectrum of an aerosol filter
sample time-integrated over the first 20 minutes after it has been sampled, it
presents a lot of peaks, mainly due to radon progeny. The orange spectrum is
the one of the same sample for a 4 hours long measurement after a week of
decay.

This highlights that postponing the measurement long after the filter is
sampled allows for a more accurate analysis of low-level long-lived radionu-
clides. However, estimating the activity of the radionuclides composing the
spectrum as soon as possible is key in the context of radiation protection and
emergency preparedness, and we will illustrate later in this article that the
observed delay before measuring the samples and getting the first activity es-
timations can be problematic in case of air contamination.

Getting an activity estimation of the radionuclides composing the spec-
trum as soon as possible is key in the context of radioprotection and emergency
preparedness and we will show that the observed delay before measuring the
samples and getting the first activity estimations can be problematic in case
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of contamination.

As for the precedent chapter, we will focus on aerosol filter measurement
as it is done in our laboratory and produces gamma ray spectra that contains
a high complexity due to the radon progeny. The surveillance of the radionu-
clides levels in the environment is carried out by the IRSN (French Institute
for Radiation Protection) and the analysis of the aerosol filter sample is part
of the emergency preparedness and routine survey of the European nuclear
environment.

3.1.2 . Recall of the model for temporal analysis of gamma-ray
spectra

As stated in the introduction, a gamma ray spectrum is an histogram
of the deposited photons in C channels representing the different energies.
Following [13], it can be modelled as the linear combination of radionuclides
spectral signatures. The content of each of the C channels of the spectrum can
be written :

∀c = 1, · · · , C; xc =

N∑
n=1

ϕncwn + δbc, (3.1)

yc ∼ Poisson(xc) (3.2)

The signal xc is the model spectrum without the Poisson noise coming from
the counting process of the detection. y is the measurement, ϕ is the matrix
that contains the N signatures of each radionuclides in column. The vector
wn is composed of the weights of each of the radionuclides. The scalar δ is
the duration of the measurement in seconds and b is the background spectrum
per second , it is the spectrum obtained for a 1-second measurement on an
empty detector, obtained by normalizing a weak long measurement. As we
focus on laboratory measurements the background is considered stable through
the entire measurement (see 1.2.3 for details on the experimental setup that
provides the background stability). The mixing weights, wn, are proportional
to the activity of the radionuclides in the sample. In fact, the mixing weights
can be split in two factors following the radioactive decay formula :

∀n = 1, ·, N ;wn = an(0)ψn (3.3)

ψn =

∫ t1

t0

e−λntdt (3.4)

(3.5)
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wn is the accumulated number of disintegrations obtained for a measure-
ment from t0 to t1. an(0) is the activity of the n-th radionuclide at t = 0, in the
following, it will be noted an, it is the quantity of interest we want to estimate.
λn is the decay constant of the n-th radionuclide.

Following [16] the temporal model to explain the gamma-ray spectra ob-
tained on consecutive time segments is the following :

X = Φ(Ψdiag(a)) +B

Y ∼ Poisson(X)
(3.6)

With :

— diag(a) being the matrix containing all the activities (a1, ..., aN ) of each
radionuclides at time t = 0 on its diagonal and 0 outside of its diagonal.

— X a C × S matrix, it is the base gamma ray spectrum without the
Poisson noise, where S is the number of time segments considered.

— Φ a C × N matrix composed of the spectral signatures of the radio-
nuclides composing the spectrum. A spectral signature is the gamma
ray spectrum obtained with the measurement of an activity of 1 Bq for
1 s. It is the response of the detector with respect to the emission of
a given radionuclide. These signatures can be obtained from the mea-
surement of single radionuclide sources. However, these sources being
hardly available for some radionuclides, they are generally derived from
simulations. In this article, they have been simulated with MCNP-CP
(see [24]), the details of the detector and the simulations can be found
in 3.3.1.

— Ψ aN×S matrix containing the temporal information. It is the integral
of the radioactive decay model of the n-th radionuclide over each time
segment :

ψn,s =

∫ ts

ts−1
e−λntdt

— B is a C × S matrix representing the background spectrum of the de-
tector. This matrix can be decomposed into : B = δ.b where δ is the
vector of the segment duration in second and b is the normalized back-
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ground spectrum of the detector we use.

— Y is the Poisson-noised version of X, the Poisson noise comes from the
counting process of the gamma-ray measurement.

In the last chapter 2, we introduced a time-dependent model for the full
spectrum analysis of gamma ray spectra with a corresponding algorithmic
scheme. We showed that accounting for the time dependency of consecutive
measurement of the same aerosol filter sample fasten the estimation time, with
reducing uncertainties as the data are collected in time. This was achieved
by including the radioactive decay model in the spectral unmixing procedure.
This way, activity estimation can be performed from multiple time measure-
ments at once. Moreover, we showed that finely describing the decay chains
could help in the estimation of low level radionuclides that would otherwise
be slightly biased. In fact as we are dealing with the radon progeny before its
decay we have to take into account multiple decay chains namely 214Pb/214Bi
and 212Pb/212Bi/208Tl. In this article both chains are considered at equilibrium
and each daughter radionuclides adopts the period of its parent.

The mathematical model presented in equation 3.6 allows to tackle the
activity estimation of the radionuclides as an inverse problem that can be
solved using the multiplicative update algorithm (see [23]).

While satisfactory on a small number of time segments (e.g. 11 consecutive
measurements used in [16]), applying this algorithm to a very large number
of segments in an online estimation scheme is problematic as the data to be
processed increase with time, and spectral unmixing has to be performed each
time a new measurement is collected. A dedicated algorithm is needed to per-
form spectral unmixing using temporal correlations on a fine time sampling of
the measurement.

3.1.3 . Full spectrum analysis with time dependence
To account for the time decay of the radionuclides to perform time-dependent

processing, a new algorithm has been introduced in [16], it is an extension of
the full-spectrum analysis method proposed in [13]. This algorithm is based
on a multiplicative update scheme so that, at each iteration k to k + 1, the
activities of the radionuclides are updated simultaneously as follows :

a(k+1)
sn = a(k)sn

∑C
c=1 ϕncysc/xsc∑M

c=1 ϕnc
, (3.7)
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Where Ys = (ys1, ..., ysC) is the observed spectrum during the s-th segment
and Xs = (xs1, ..., xsC) is the theoretical model as viewed in equation 3.6. The
multiplicative update is performed until convergence, which we define as :

∑
n(a

(k+1)
n − a(k)n )2∑
n a

(k)
n

2 ≤ ϵdiff (3.8)

ϵdiff is usually taken small (10−6 in this paper).

This update allows us to minimise the following loss function in term of
the activities :

L({ysc}s,c|{an}n) =
∑
s,c

xsc − ysc log(xsc) + log(ysc!) (3.9)

xs,c =
N∑
n=1

ϕc,nψn,san + δsb (3.10)

The algorithm thus aims at reducing the difference between the theoretical
spectrum (Xs) and the observed one (Ys) in terms of the Kullback-Leibler
divergence.

The main aspects that we will focus on to reduce the computation time
are : (i) reduce the number of iterations while keeping a correct estimation of
the activities and (ii) reduce the size of the matrix involved in the update so
that the computation can be done even with a really fine time segmentation
and a huge data matrix.

3.1.4 . Reducing the size of the data matrix involved at each
iteration

The main limitation of the time-dependent algorithm introduced in [16]
is that, for s time segments, the size of the data matrix to be analysed is
equal to s×C. For a typical aerosol sample with about 16000 energy channels,
jointly analysing a 100 time segments requires performing spectral unmixing
on matrix with more than a million entries. This first requires a significantly
important computational cost, and for a large number of time segments, an
increasingly large matrix to be stored. In the context, both the data matrix X
and temporal model matrix Ψ grow in size.

In order to make online time-dependent spectral unmixing tractable, the
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proposed approach consists in lowering the size to the matrix to be handled
each time a new time segment needs to be processed. For that purpose, we
chose to set a maximum size to the matrix and to process the data as a buffer
of fixed size r. More precisely, the data matrix describing the observed spectra
is :

 | | ... |
x1 x2 ... xs
| | ... |


The buffer we propose to use instead is : | | ... |∑s−r+1

k=1 xk xs−r+2 ... xs
| | ... |


If we were to build a small size buffer from few past time segments, the resulting
procedure would suffer from two main drawbacks :

— It would only account for the time decay of the radionuclides on a short
duration, which would limit the efficiency of the unmixing process.

— For short-lived, the activity estimation procedure would become uns-
table as their activity would quickly vanish.

To mitigate these two pitfalls, we add to the buffer the sum of the past mea-
surements from time segment 1 to s − r + 1. Formally, it will be stored in
the first column of the buffer. This procedure allows limiting the instability of
the activity estimation of the short-lived radionuclides. This is illustrated in
figure 3.2 : if only the segments xs−r+1 to xs are used the activity estimation
explodes due to the vanishing activity of the short-lived radionuclides.

3.1.5 . Regularising the activity estimation in time
As we pointed out in the previous paragraph, performing spectral unmixing

on a small size buffer allows avoiding manipulating large data matrices but at
the cost of reducing the time interval on which time decay is exploited. From
a statistical viewpoint, processing numerous short-duration time segment also
entails that spectral unmixing will have to capture time-dependency from few
time segments with potentially a low number of counts. This could also result
in an unstable estimation of the activity in time.

To limit this source of instability, we propose to regularise the estimation
of the radionuclides in time by imposing a time-dependent regularisation : loss
function is altered so that the estimation of the activity for time segment s
does not deviate too much from the last estimation produced at time s− 1. In
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Figure 3.2 – The activity estimation of 208Tl with respect to the measurement time,
which half life is 10.6h (because it is considered at equilibrium with 212Pb)

details, we add an extra term that limits some distance between the sought-
after activity at time s and its previous value at time s− 1. This results in the
following loss function :

L({ysc}s,c|{an}n) =
∑
s,c

xsc − ysc log(xsc) + log(ysc!) + β dist(as−1, a) (3.11)

The distance dist is chosen as the Kullback-Leibler divergence between the
estimated spectrum at time s − 1 and the estimated spectrum at time s this
leads to :

dist(as−1, a) =
∑
s,c

xsc − xs−1,c log(xsc) + log(xs−1c!)

where xs−1,c =
∑N

n=1 ϕnψn,sas−1,n + δsb is the estimated spectrum using the
(s− 1)-th estimation of the activities.

As a consequence, this choice allows for a simple multiplicative update
step that is similar to the one we implemented in the original time-dependent
spectral unmixing algorithm.

The factor β is a regularisation parameter that controls the trade-off bet-

71



ween the new information carried by the measurement at time s and the past
value at time s − 1. In fact, if we set β = 0, the weight given to the past
estimation is zero and the update is the same as in [16]. This would lead to a
less stable estimation of the radionuclides activity. If, on the other hand, β is
too large, the estimation will remain almost stationary from one time step to
another. This will affect the quality of the activity estimation since the esti-
mation will poorly benefit from the long measurement process and will focus
only on the first time segment. This would result in a very slow and biased
estimation procedure.

The value of β needs to be optimised to get a good compromise between
the speed of the algorithm to the correct activity and the stability of the
estimation scheme in time. This will be detailed in section 3.2.
In order to make explicit the resulting multiplicative update scheme with the
new regularised loss, we need to compute its derivative with respect to each
an is :

∂L({ysc}s,c|{an}n)
∂an

=
∑
s,c

(
ψsnϕnc −

ψsnϕncysc
xsc

)
+ (3.12)

β
∑
s,c

(
ψsnϕnc −

ψsnϕncx(s−1)c

xsc

)
(3.13)

where x(s−1)c = ψsnϕnca(s−1)n+bsc. To obtain the update rule we have to zero
the derivative of this function with respect to each parameter as in [23]. As
the chosen quasi-distance is the Kullbach-Leibler divergence we can see that
the structure of both terms in equation 3.13 are similar, leading to a compact
update step that reads as :

a(k+1)
n = a(k)n

∑
s,c ψnsϕcn.(ycs + βx

(s−1)
cs )/xsc

(1 + β)
∑

s,c ψnsϕcn
(3.14)

This new update step allows keeping the last activity estimation as a good
starting point for the computation of the new one and forces the algorithm to
converge quicker to a new estimation.

3.1.6 . Updating only the radionuclides that are still active in
the incoming data

A last source of instability could originate from the estimation of the short-
lived radionuclides, when their activity becomes very low. In this case, keeping
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updating their activity is very likely to yield noise overfitting. To mitigate this
effect, we propose adopting an early stopping procedure for short half-lives.

In fact, on a week-long measurement with some radionuclides that have
short half-lives (eg. 214Pb with a half-life of 26.8 min), their contribution to the
spectrum tends quickly to 0. Adding new time measurements does not bring
more information to update their activity. Moreover, updating their activity
will tend to fit noise rather than actual physical contributions. Hence, we pro-
posed adding a stopping rule to estimation procedure of the radionuclides’s
activity for which we know that there are no counts in the incoming spectrum.

This stopping rule is defined as follows : if the expected contribution of a
radionuclide is less than a fixed number of counts (ϵcounts), then the estima-
tion is not updated. The expected number of counts is obtained through the
following formula for any radionuclide n and any time segment s :

countn,s = ||ϕn||1.ψn,s.max(an,s−1, 1) (3.15)

This way of computing the expected number of counts ensures that the
radionuclides that have a very small activity (eg. 137Cs) are still being updated
even if the number of counts that are due to them is low while leaving the short-
lived radionuclides out of the new estimation. Indeed, the contribution of these
radionuclides can be small but they are still valuable, and we want to estimate
correctly their activities. Moreover, we will see in the next section (3.2) that
the estimation of the radionuclides that have a low activity can be null if we
analyse only the first time segments and increase as time goes, and more data
are acquired.

This criterion allows us to focus only on the radionuclides that contribute
to the new measured spectrum while keeping the estimation fixed for the ra-
dionuclides that do not contribute any more. This combined, with the stopping
criterion of the algorithm (see 3.8), contributes to keep the number of itera-
tions as low as possible as the number of coordinates of the activity estimation
that are updated is low and thus the difference between the estimation at time
s− 1 and time s is null for some of them.

The different new tools that we developed are summarized in the following
algorithm (1). If the buffer are used the matrices Ψ, Y and B are changed to
the corresponding reduced matrices.
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Algorithm 1 The proposed unmixing algorithm
Require: Y = (y1, ..., ys), Φ = (ϕ1, ..., ϕN), Ψ =
(ψ1, ..., ψs), as−1, ϵcount, ϵdiff, B = (δ1b, ..., δsb), β, K
E = ∅
xs−1 ← Φ(Ψdiag(as−1)) +B
Diff← ϵtol + 1
â = as−1

a = as−1

for i = 1, ..., N do
count← ||ϕi||1ψismax(ai,s−1, 1)
if count ≥ ϵcount then
E ← E ∪ {i}

end if
end for
k = 0
while Diff ≥ ϵdiff and k ≤ K do
k = k + 1
xs ← Φ(Ψdiag(a)) +B
for i in E do
âi ← ai

∑
s,c ψnsϕcn.(ycs+βx

s−1
cs )/xsc

(1+β)
∑

s,c ψnsϕcn

end for
Diff←

∑N
n=1(ân−an)2∑N

n=1 an
2

for i in E do
ai ← âi

end for
end while
return a

3.2 . Numerical evaluation of the online spectral unmixing
algorithm

In this section, we focus on evaluating the performances of the proposed
online spectral unmixing algorithm on simulated data. We first start with the
optimisation of the value of the regularisation parameter β, which plays a key
role to balance between estimation bias, speed and stability.

Indeed, as we can see in table 3.1, we simulate spectra with very close
activities to the one we observe on real aerosol filter samples. This way we can
assess the performances of the unmixing algorithm on realistic simulations.
The activity of the different radionuclides varies from really low levels (few
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mBq) to high activity (hundreds of Bq) as shown in table 3.1.

Radionuclide Half-life Simulated Estimated activity Estimated activity
(subgroup) activity after 1 min after a week

(Bq) (Bq) (Bq)
7Be (i) 53.22 d 150 159 ± 29 157 ± 16

22Na (ii) 2.60 y 0.02 0.49 ± 0.79 0.0284 ± 0.0033
40K (ii) 1.265 109 y 0.5 13 ± 10 0.511 ± 0.079
123I (iii) 13.22 h 2 2.13 ± 0.71 2.48 ± 0.27
137Cs (ii) 30.05 y 0.01 0.61 ± 0.66 0.0213 ± 0.0033
208Tl (iii) 3.06 min 100 107 ± 14 107 ± 11
210Pb (i) 22.3 y 30 30.0 ± 9.9 30.9 ± 3.2
212Bi (iii) 60.54 min 300 339 ± 56 323 ± 33
212Pb (iii) 10.64 h 200 237 ± 28 241 ± 24
214Bi (iii) 19.9 min 300 328 ± 39 395 ± 42
214Pb (iii) 26.8 min 100 114 ± 15 124 ± 14
228Ac (ii) 14.02 109 y 0.1 5.6 ± 2.6 0.132 ± 0.017

Table 3.1 – The 12 simulated radionuclides, their subgroup, half-life and simulated
activity. The estimated activities after 1 min and a week are presented for the real
aerosol filter measurement with associated uncertainties (at k=2).

Thanks to the gamma-ray spectrum mathematical model (equation 3.6)
we can simulate any mixture of signatures and apply a random Poisson noise
to create realistic simulations of gamma-ray spectrum on which we apply our
algorithm. The size of the buffer is fixed to 5 so that the computations are quick
to perform and we can simulate a great number of Monte-Carlo repetitions for
each experiments. An energy and efficiency calibration step are done to better
simulate the detectors response to each of the radionuclide of interest (details
on the detector can be found in 3.3.1 or [25]).

3.2.1 . Optimisation of the regularisation parameter β
In section 2.2.1, we highlighted that β is important to stabilise the activity

estimation procedure in time as it controls how much the estimated activity
at time s can deviate from its previous estimate.

The impact of β is twofold : i) a large value will tend to slow down the
estimation in time and bias the estimates by giving too much weight to past
time segments, and ii) a small value will tend to favor newest measurements
in the activity update step leading to potential instability.

The optimization of the value of β also allows us to assess the convergence
and performances of the algorithm as a function of β. To choose an efficient
trade-off for β, we performed simulations and found a good compromise bet-
ween the correct estimation of the activities and a rapid convergence of the
algorithm at each time step.
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Figure 3.3 – The median of the activity estimation of 7Be with respect to the value
of beta on 1000 Monte-Carlo simulations.

First, we can see in figure 3.3 the effect of the value of β on the estimation.
As the value of β grows, so does the bias between the simulated activity and
the estimation provided by the algorithm. Indeed, a large value of β implies
that the update step only focuses on reducing the distance between the past
estimation and the new one, the new estimation will then be equal or near
the previous one. This is bad as the new information carried by the spectrum
entering the analysis are not taken into account in the new estimation of the
activities. As it can be observed in figure 3.3 the larger β is the larger the bias
is at the end of the week-long measurement. For small values of β the effect
is only to smooth the consecutive estimations, indeed the memory kept in the
estimation leads the estimation at time s to be close to the new one at time
s+ 1 while still allowing to converge to the correct estimation.

After this first test we can focus on small values of β, the results of this
second study are presented in figure 3.4. In this figure we can see that the bias
of estimation does not vary a lot from one value of β to another as long as β
is reasonably low (ie : β ≤ 2). This allows to focus only on the computation
time required to converge, indeed we want to find the smallest value of β that
allows to reduce the computation time. The computation time will be seen as
the number of iterations the algorithm needs at each time steps to converge
(we recall that the stopping criteria is the distance between two consecutive
iterations of the algorithm as viewed in 3.8).

Figure 3.5 displays the evolution of the computation time with respect
to the value of β. One can observe that when the value of β increases, the
computation time reduces. Indeed, the loss function requires the algorithm to
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Figure 3.4 – The bias on the activity estimation with respect to the value of β. We
focus on small values of this parameter. The results are based on 1000 Monte-Carlo
simulations.

Figure 3.5 – The mean number of iteration needed to converge (over the week of
measurement) with respect to the value of β.
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remain near the estimation of the previous time segments and reduces the
searching range to a vicinity of this past estimation. The higher the value
of β the smaller the vicinity, thus reducing the number of iterations of each
time step. The results of figure show that a good compromise between the
convergence and the computation time is β = 2. In fact, increasing the value
of β does not reduce the computation time as much after β = 2. On the other
hand, we have seen that allowing β to be high can create a significant bias on
the estimation.

3.2.2 . Performances of the unmixing algorithm
In this section, we further explore the simulations with β = 2 and the

results of the estimation on high and low activities. The results of this section
show the performances of the proposed online spectral unmixing algorithm to
estimate the activity of 12 simulated radionuclides.

The radionuclides we simulate, and their activities are presented in table
3.1. We can split these radionuclides in three groups for analysis purposes : (i)
the high activities with long half-life, (ii) low activity and long half-life, (iii)
short half-life radionuclides. We focus on an example of each group (i) and (ii)
and on two examples for group (iii) as it contains high and low activities. The
results of our algorithm on simulations are shown in figure 3.6.

For the first group, an example of which is the 7Be, the activity estimation
is not difficult, the activity is high and the long period ensures a stable presence
of the signature of these radionuclides in the spectrum. The correct estimation
is achieved after only 2 minutes of measurement and can probably be even
quicker (for computation time of the simulation we did not test the algorithm
to a much finer segmentation than 2 minutes). The estimation of the activity
of the second group, such as 137Cs, is much harder, in fact we observe activities
that are close to the detection limit, the contribution of the radionuclides of
this group to the spectrum is thus close to zero. The estimation can be null
in the first segments and be achieved only after a short measurement time is
observed. This is the case for 137Cs, for which the detection limit is achieved
only after 37h of measurement due to its really low simulated activity (0.01
Bq). For the radionuclides such as 123I or 214Bi, belonging to the third group,
we note that the activity estimation is stable through time and is correct after
only a few minutes. This shows the performances of the temporal unmixing to
perform even for low level (1Bq of activity) radionuclides with short half-life (eg
13.22h in the case of 123I). The stable performances for these short half-lived
radionuclides are allowed thanks to the type of buffer that we adopted, that
keeps track of the past time segments as previously seen in section 3.1.4. The
other radionuclides’ estimation behave the same as these examples depending
on their activities and half-life.
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Figure 3.6 – Results on simulations of the unmixing algorithm. The error bars are
the 10% and 90% quantiles of the estimations based on 1000 Monte-Carlo simulations.
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Concerning the uncertainties, it is important to note that the main factor
that impacts them is the half life of the radionuclides. In fact, if the period
is short then the radionuclides contribution to the new time segments tends
to 0, the uncertainty regarding its activity does not vary after this effect.
On the other hands, for long-lived radionuclides the uncertainties decrease as
long as the measurement is done and more and more statistics are taken into
account. The uncertainties presented in this section only concern the statistical
variability as the only random factor is the Poisson noise of the simulated
spectra. The metrological uncertainties (around 10% of the estimated activity)
must be added to this in order to get the total uncertainty we show on the
laboratory results. This will be further explored in the next section where we
will analyse the results of the algorithm on real aerosol filter samples and real
detector from our laboratory.

3.3 . Results on real aerosol filter sample

In this section, we show the results of the unmixing on real aerosol filter
sample. We show that it performs very well on this sample, allowing to de-
tect a few Bq of 123I with a correct uncertainty after only a few minutes of
measurement. After the spectral signatures have been calibrated in energy and
resolution to fit the observed spectrum we can estimate the activities of the 12
radionuclides of interest. The number of channels of the spectra is C = 27 000

going from 30 keV to 2 730 keV.

3.3.1 . Experimental setup
The HPGe detector used in this paper is a Broad Energy Germanium

detector (BEGe5030, Mirion-Canberra). Its resolution is 0.5 keV at 59 keV, 1.2
keV at 662 keV and 1.8 keV at 1332 keV. Its relative efficiency is 51%. This
setup is used to measure aerosol filter collected by a high volume air sampler
(700-900 m3/h). The 45 x 45 cm2 filters are compressed into standard 10 mL
cylindrical geometries. The detector is placed in the shallow shielded room
in the second basement of the laboratory under 3 meters of borated concrete
to reduce the cosmic ray induced background. This 20m2 room is made of
10cm thick lead bricks internally covered by 5mm copper - so that the telluric
radioactive background is reduced by 2 orders of magnitude. The detector is
connected to a digital electronics (Pixie-4, XIA) allowing us to proceed the data
in list mode. This acquisition mode provides a list of all the detected events
with time stamps and channel allowing us to separate the whole acquisition
into time segments of the duration we chose.

The background spectrum is considered to be constant throughout the
measurement. It is measured with the empty detector during a week and stan-
dardized to a second by dividing the intensity of each channel by the duration
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Figure 3.7 – The results of the activity estimation on real aerosol filter samples for
7Be, 137Cs, 214Pb and 123I. The statistical uncertainties are computed following [20]
and the metrological uncertainties represent 10% of the estimated activities.

of the measurement. The background measurement has been measured a few
weeks before the aerosol filter measurement so that it is very close to the real
background during the sample measurement.

3.3.2 . Results
The results of the algorithm are presented in figure 3.7. This figure presents

the activity estimation of the same radionuclides we showed in the simulations
as they are representative of each group of radionuclides of interest. These
estimations are obtained using every new elements we presented in the past
section. We have adopted a buffer of size 5 thus reducing the size of the matrix.
We have chosen β = 2 as seen in section 3.2 so that we reduce the number
of iterations while keeping a correct activity estimation. Finally we chose to
stop the update of the radionuclide if their expected number of counts was
lower than 10 in the whole spectrum. The total number of segments is 355, we
chose to have a duration of 2 minutes for the first segment and to keep the
same number of counts for every time segment (each time segment thus having
∼ 26000 counts).

As we can see in figure 3.7 the estimation of every radionuclide is quick.
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Figure 3.8 – The cumulative spectrum of the peak region of the 123I, we can see that
the peak growing as the measurement proceeds. We can note that the first estimations
are based on a really low number of counts showing the performances of the unmixing.

Indeed except for 137Cs the estimation is stable after only 20-30 minutes of
measurement. The new algorithm allows us to estimate the activities as soon
as possible and to cope with a large number of spectra, which was impossible
with the first version of the data processing. This allows to detect 123I as
soon as 2 minutes after the measurement started. This radionuclide is not
usually observed in the environment and shows the interest of our method for
the early detection of contamination. Indeed if the routine methods was used,
observing a decay period before the measurement starts and only estimate the
activities after the week-long measurement the contamination by 123I would
have been missed or given very late. These results show the performances of
our new algorithm as it is able to detect contamination out of a very complex
spectrum in a very short time and with an algorithm that is fast to compute and
reliable. Figure 3.8 presents the peak of interest of 123I at the beginning of the
measurement, showing how minute it is in the first segments. The algorithm is
still able to detect the radionuclide and to estimate its activity correctly. Figure
3.9 shows the number of counts observed in the peak of 123I. This further shows
that the identification of this radionuclide would have been impossible if we
had observed the 4 days of decay before the measurement. Indeed the 123I
would have totally decayed before we could have observed it in the spectrum.

The estimation of 137Cs is the hardest of the 12 radionuclides we are fo-
cusing on in this paper, as it is at very low level (only a few mBq) it is the
only one where the estimated activity is of the same order of magnitude as the
decision threshold. We saw in the simulations that the correct estimation can
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Figure 3.9 – Net number of counts per second in the I123 region and the theoretical
decreasing (with a period of 13.2h) assessing the presence of the radionuclide.

be late if the level is too low (0.01 Bq in the simulation). In the aerosol filter
sample we analysed it seems that the activity of 137Cs is high enough so that
the detection is achieved after 20 minutes. But we can see a bias between the
estimation on the first few time segments (0.4-0.6 Bq) and the final estimation
(0.02 Bq). The estimation of radionuclides that are at the level of the deci-
sion threshold is always problematic and the results must be given within the
correct uncertainties.

The statistical uncertainties are computed via the Fisher information as
advocated in [20]. The metrological uncertainties are composed of a few dif-
ferent factors summing to about 10% of the estimated activity as in chapter 2
the factors are the slight variation of the geometry and density of the sample,
its placement on the endcap of the detector and the efficiency calibration of
the detector. To obtain the decision threshold for a radionuclide we compute
simulations with its simulated activity equal to 0 and take the quantile of the
activity estimation corresponding to the α risk that we want (here α = 5% is
taken).

3.4 . Conclusion and perspectives

In this paper, we introduce an online spectral unmixing algorithm which
allows achieving radionuclide activity estimation from temporal gamma spec-
troscopy measurements. Following [16]. accounting for time information in the
unmixing procedure provides early estimation of the radionuclides composing
the spectra earlier in the measurement process at the cost of large uncertainties
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at the beginning of the measurement reducing as the measurement processes.
Time segmentation allows taking into account the time correlation in the un-
mixing algorithm and thus reduce the uncertainties and allows to deal with
short-lived radionuclides such as the radon progeny. However, processing mea-
surements with increasingly shorter time segments entails cumbersome compu-
tation issues if the algorithm is not adapted to a large number of time segments.
To alleviate this bottleneck, the solutions we propose allows to reduce the num-
ber of iteration of the algorithm we presented in [16] and allows adapting the
loss function so that the activity estimation at time s − 1 is used at time s
as a guideline so that the new estimation is not too far from the precedent
one. The results on real aerosol filter samples show that contaminations with a
few Bq of 123I can be correctly estimated after a few minutes of measurement.
This could not have been achieved in the routine measurement scheme where
a decay period of 2-4 days is observed so that the radon progeny decay and
the spectrum simplifies.
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4 - Calibration for gamma-ray spectra analy-
sis
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In this part of the thesis I present the calibration tools used for the analysis
of measured gamma-ray spectra. In fact, as seen in the introduction chapter
1, in the routine gamma-ray spectra peak-based analysis, a local calibration
is processed during the peak fitting of each individual detected peak. The
only calibration needed in order to use the peak-based analysis is the energy
calibration allowing to know the position of a peak in the spectrum. This is done
once and for all with a pre-calibration using a multi-gamma source that allows
to locate known peaks in the spectra giving an energy calibration that can
be later used for other measurements. Since the peak-based analysis processes
each peak present in the spectrum locally it does not require the same precision
in the calibration as we do for full-spectrum analysis. For this kind of analysis,
the energy calibration must be performed, not only in the region of interest
around the peaks, but on the entire spectrum and Compton continuum so
that the spectral signatures match the entire spectrum. Moreover, the spectral
signatures simulation has to be precisely tuned to reproduce the detector’s
response to the photons emitted by the sample. These simulations mainly rely
on the efficiency and resolution calibrations that will be presented.

In the first section I present the different kinds of calibrations for gamma-
ray spectrum analysis, namely energy, resolution and efficiency calibrations. In
the second section of this chapter I present the calibration that are usually done
in order to perform peak-based and full-spectrum analysis. We point at some
issues regarding the latter and in a last section I will present a new framework
for the simulation of the spectral signatures and the calibration of gamma-ray
spectrum for full spectrum analysis that allows to reduce the discrepancies
observed in the second section.

4.1 . Instrument and simulation calibration for gamma-ray
spectrum analysis

A gamma-ray spectrum is an histogram of the counting of the amplitudes
of the electrical voltage pulses produced by the detector when the photons
interact with the germanium crystal. Analog or digital pulse processing elec-
tronics classify these pulses in channels (16 384 or even 65 536) which can be
related to the energy deposited by the photons after an energy calibration step
since the pulse height is proportional to the deposited energy. As a result, the
outcome of the detector consists in a simple vector of the counts collected in
each channel.

The calibration of a spectrum is needed in order to analyse the composing
elements of the spectrum and quantify the active radionuclides that a sample
contains. The calibration is three-fold : the energy calibration of the output
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of the detector, the resolution calibration of the spectral signatures and the
efficiency calibration of the MCNP-CP model of the detector.

4.1.1 . Energy calibration
The energy calibration is basically the fitting between the channels of the

detector output and the energy of the spectra. It focuses on matching the peaks
x-positions observed in the measured spectrum and the nominal energies of the
associated photons. This calibration allows to match the peaks present in the
spectrum with the corresponding radionuclide. In the context of peak-based
analysis, only the peaks has to be correctly calibrated in energy, whereas in
the full-spectrum analysis, the entire spectrum (peak and Compton continuum)
needs to be calibrated. The detector output is the only element that needs to
be calibrated in energy since the spectral signatures are simulated with the
nominal energy as the output x-positions.

This task relies on the knowledge of the nominal energies of the gamma-
ray spectrum and the correct fitting of a few peaks in order to get the fitting
function between the channel number and the energy, we will denote this fitting
function :

E = f(c) (4.1)

Where E is the energy at channel c, f is thus the function that links the
channel number and the correct energy in keV. A typical gamma ray spectrum,
measured in the laboratory, ranges from 20-30 keV to 1.7-2.7 MeV, the number
of channels varies from one electronic to another from 16 384 to 65 536.

As can be seen in the first plot of figure 4.1 the raw spectrum is presented
in term of channels that has to be matched with the correct energy. The aim of
the energy calibration is to find the best matching between the energy and the
channel number. The function that links the two will be based on the analysis
of a standard source in which we know the energy of the peaks.

Once the x-position of the peaks in the observed spectrum has been found
the function f that links the channel number to the energy can be fitted. As
can be seen in the second plot of figure 4.1 the entire energy range is used
for this calibration and it is important during this process to have access to
information of the total spectrum in order to calibrate the spectrum at low
and high energy. The fine tuning of the energy is complex as the energy bin of
the observed spectrum is not regular throughout the entire spectrum, this will
be seen in detail in the next section.
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Figure 4.1 – On the top, the raw spectrum out of the detector. On the bottom the
model built on the empirical position of the peaks and their known energy.
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The problems that can arise from a bad energy calibration are two-fold.
Firstly, it can lead to non identifications in the context of the peak based
analysis of a gamma-ray spectrum : if a peak is not correctly matched in
energy the radionuclide generating the peak cannot be identified. In the case of
a simple gamma-ray emitting radionuclide (such as 7Be of 137Cs) only one peak
is present in the spectrum their identification thus being particularly sensible
to the correct energy calibration. If these peaks are not correctly matched in
energy this will lead either to a false identification if another radionuclide emits
a photon at close energy, or if the peak cannot be linked to any radionuclide
in the library of possible emitters, it is listed as "unidentified peak" and the
emitting radionuclide is missed.

Secondly, in the case of the full-spectrum analysis the identification and
quantification depends on the correct modeling of the spectral signatures, if
there are some mismatch between the observed spectrum and the spectral
signatures this will lead to some leakage in the activity estimation. The entire
energy range has to be correctly matched in this latter case as the Compton
continuum is also used in the full-spectrum analysis.

4.1.2 . Resolution calibration
The resolution calibration focuses on the peaks’ width of the spectral signa-

ture simulations. In fact, the resolution is related to the variance of the number
of charge carriers produced in the detector and to the preamplifier noise that
sum up, leading to a Gaussian broadening of the peaks around the characteris-
tic energy. The simulated spectral signatures are generated with perfect Dirac
distribution at the standard characteristic energy, the resolution calibration is
performed so that the simulations reproduce the correct Gaussian broadening.

Formally, this broadening can be viewed as a Gaussian distribution of the
counts around the characteristic energy of the emitted photon. The standard
deviation of the Gaussian broadening depends on the energy (e, in keV), the
greater the standard energy the larger the broadening. The resolution calibra-
tion is the fitting of the function σ(E) that allows to pass from the energy to
the broadening observed in the spectrum.

The peak width is used to process the net count in the region of inter-
est around a peak in the peak-based analysis and thus get the activity of
each radionuclide. In this framework, if this calibration is not done properly
the identification of the region of interest around each peak will be hampered
which can lead to a bad estimation of the activity of the sample. In the context
of full-spectrum analysis the calibration must be performed so that the simu-
lation of the spectral signatures are done with the correct Gaussian energy
broadening. In fact, precisely matching the the measured spectrum leads to a
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Figure 4.2 – The spectral signature of 7Be before and after the resolution calibration.

better estimation of the activities and, once again, prevent leakage phenomena
during the unmixing.

The Full Width at Half Maximum is usually the value used in gamma-
ray spectrometry to deal with the resolution calibration. In the next section I
will rather refer to the σ value of a Gaussian peak as it is directly present in
the function that we fit inside the peak-fitting algorithm that I will present in
section 4.3.3. The two values are virtually the same as the function that links
one to the other is :

FWMH = 2
√

2ln(2)σ ≈ 2.355σ (4.2)

4.1.3 . Efficiency calibration
Finally, the efficiency calibration is the computation of the ratio of gamma-

ray photons that interact with the detector over the entire number of emitted
ones. The efficiency is mainly affected by the geometry of the detector and
the sample. To achieve a correct matching of the observed efficiency and the
simulated one the calibration needs to be performed and the model of the
detector has to be tweaked accordingly. It is important, in order to quantify
precisely the activity of a radionuclide present in a sample, to have a good
efficiency calibration.

More precisely, the spectral signatures are the standard detected energy
of a gamma-ray in the detector material. The efficiency can be seen as the
number of photons that have been detected during a measurement for a given
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number of emitted ones in the sample. The efficiency for an energy E reads
as :

ε(E) =
n(E)

A I(E) t
(4.3)

where,
— n(E) is the net count at the energy E (in keV).

— A is the activity (in becquerel, Bq) of the radionuclide of interest (the
one that emits photons at the energy E, the activity is considered to
be constant throughout the measurement).

— I(E) is the intensity of emission of the photon at energy E, it is a
probability of emission, during a given disintegration for a photon to
be produced I(E) percent (for example the intensity of the gamma-ray
of 137Cs at 661.7 keV is 84.99%).

— t (in seconds, s) is the measurement duration.

The efficiency is the ratio of emitted photons that have been counted by
the detector during the measurement process over the entire number of emitted
photons. This ratio has to be empirically observed at various energies using a
standard source.

The main factors that have an impact on the efficiency are the dimensions
of the Ge crystal of the detector and particularly the width of the dead layer,
the geometry of the sample and its position on the detector. The MCNP-CP
models of the detectors are built to be close to the empirical efficiency obser-
ved with the standard source. An example of model is shown in figure 4.3 in
which we can see the dead layer, it is the top part of the Ge crystal that is
not active and does not participate to the observed spectrum. The efficiency
calibration is done in stages, first the model of the detector is done with the
technical specifications of the manufacturer of the detector in terms of ma-
terials and dimensions. Then a multi-gamma standard source measurement
allows to compared the measured spectrum to the theoretical spectrum obtai-
ned with MCNP-CP, in shape and intensity. This measurement allows also to
determine experimental detection efficiency for various energies, and the simu-
lation’s efficiencies are then tweaked to the experimental ones by modifying
some elements of the MCNP-CP model so that the simulations closely match
the measured spectrum.
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Figure 4.3 – The basic model of a detector that has been optimized to produce the
same efficiency as the empirical one.

The efficiency for the two detectors used during my PhD has been compu-
ted with a standard source and the simulation process using MCNP-CP allows
to take the correct efficiency into account. This calibration leads to a maximum
error between the simulated and observed efficiency of ±5%.

4.2 . State of the art for the calibrations

In this section, I present the routine calibrations performed in the context
of peak-based analysis and the first elements of calibration developed by Jiaxin
Xu in her thesis work regarding the full spectrum-analysis.

4.2.1 . Peak-based analysis
In the context of a peak-based analysis the only required calibrations are

the energy and efficiency. In fact, the basic for this analysis is to focus on
specific peaks of known energy in order to quantify the radionuclides. The
resolution is not relevant as it is computed each time a peak is fitted during
the analysis of a spectrum.

To achieve this analysis, a pre-calibration is done once and for all on each
detector. This pre-calibration allows to locate, more or less precisely, the peaks
in the spectrum and to match the channel number and the energy. The function
f that links the energy and the channels is usually a linear model between the
nominal energy of the peaks and the channel number at which they appear in
the spectrum. This calibration is done with a multi-gamma source of known
activity and composition. The radionuclides of the source are chosen so that
the peaks that are in the spectrum are scattered in the whole energy range
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Figure 4.4 – Spectrum of an hour of measurement of the gamma-ray source used to
calibrate our detector.

(an example of the composition of a multi-gamma source is found in table
4.1 and the associated gamma-ray spectrum can be found in figure 4.4). Once
the peaks are correctly identified a peak-search algorithm can be used to find
the channel number of each one in the measured spectrum. This algorithm
performs in three steps : (i) it locates the peak precisely by finding µ, the x-
position of the peak, in order to match it with a radionuclide, (ii) it separates
the peak from the background by fitting a linear by part background, (iii) it
computes the number of counts in the peak during the Gaussian peak-fitting
algorithm by finding the amplitude A and width σ of the Gaussian-type peak.

A peak matching algorithm will be detailed in the next section (algorithm
3) in which our method for the Gaussian fitting of the peaks is explained. The
gamma-ray analysis software do not provide the in depth explanation for the
peak fitting algorithm. Problems may arise in the case of a low activity, for
which the peak present in the spectrum will not provide a shape sufficiently
well defined to perform the peak-fitting. Another problem may occur in case of
overlapping peaks, this issue is alleviate by using a multi-gamma source which
radionuclides has been chosen to have different peak region.

The energy matching is done with a linear model of order 3, based on the
P peaks of the multi-gamma source of known nominal energy ek. The function
that links energy to the channel number via a polynomial of order 3 reads as :

E = f(c) = r1c
3 + r2c

2 + r3c+ r4 (4.4)
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Peak of interest (keV) Radionuclide
46.5 Pb-210
59.54 Am-241
88.03 Cd-109
112.06 Co-57
165.86 Ce-139
320.08 Cr-51
391.7 Sn-113
514 Sr-85

661.66 Ce-137
834.84 Mn-54
1115.54 Zn-65
1173.23 Co-60
1332.49 Co-60
898.04 Y-88
1836.05 Y-88
2505.69 Co-60
2734.07 Y-88

Table 4.1 – Composition of the multi-gamma source used in the laboratory.

The 4 parameters r1, r2, r3 and r4 are optimized via least squares minimi-
zation. The cost function is then :

L(r1, ..., r4) =
P∑
k=1

(
Ek − f(ck)

)2
(4.5)

This leads to the energy calibration of the spectrum. This calibration is
performed on every detector in the laboratory and the parameters r1, r2, r3 and
r4 are entered in the gamma-ray analysis software, it then uses the mapping in
energy to locate the peaks in new measured spectrum and perform the peak-
based analysis. The efficiency is then used to correctly quantify each detected
radionuclide in the measured spectra.

As stated earlier, the efficiency calibration is done empirically. The effi-
ciency is observed with a multi-gamma source of known activity, once the peak
have been found in the spectrum, the efficiency is computed via the equation
4.3. In fact observing the spectra allows to determine the net count in a peak,
the activity is known in the multi-gamma source, and the intensity of emission
of a gamma photon can be computed and can be found in nuclear databases
such as Laraweb ([2]). Once the efficiency is observed we build a MCNP-CP
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model of the detector to match the observed efficiencies. The model is then
used to simulate the response of the detector to radionuclides that are not in
the multi-gamma source allowing to get the efficiency of the detector for each
radionuclide we could need, over a wide energy range.

Once the efficiency and energy calibration are done, the peak-based ana-
lysis can be processed. This analysis only works locally around each peak, The
computation of te width of each peak is performed locally and the resolution
calibration does not need to be performed in this analysis framework. Moreo-
ver, if the energy calibration is not precise over the entire spectrum it won’t
affect the performance or correct identification of the radionuclides that are
present in a given spectrum. In case of overlapping peaks a peak separation
algorithm will be used in order to estimate the energy of the peaks and the
area of each one.

4.2.2 . First model for full-spectrum calibration
In the framework of the full-spectrum analysis, the entire spectrum needs

to be calibrated in energy, resolution and efficiency in order for the simulated
spectral signatures to be used in the unmixing. In fact if a spectral signature is
shifted or different when compared to the real spectrum some leakage or bad
estimation may occur during the analysis. In the following sections I explain
in details the different calibrations to build spectral signatures that matches
the observed spectra and to calibrate a gamma-ray spectrum to perform full
spectrum-analysis. As previously seen for the peak-based analysis, the cali-
bration can be performed by using a multi-gamma source. However, with the
need of a perfect matching between the spectral signatures and the observed
spectrum, we will see that a fine energy calibration is needed in this frame-
work, while the efficiency and resolution calibration can be carried out with
the single multi-gamma source study.

Multi-gamma source analysis for efficiency and resolution cali-
bration

The simulation of the spectral signature is performed with MCNP-CP. As
previously seen, these simulations need the perfect modeling of a detector in
order to precisely match the empirical efficiency over the entire energy range
of the spectrum and for every radionuclide of interest.

In a first time, the analysis of a multi-gamma source is used to process
the efficiency calibration that is used to tweak the simulation model of the
detector to match the empirical efficiency as for the peak-based analysis. The
results of this study is shown in figure 4.5, as can be seen the ratio between
the empirical efficiency and the simulated efficiency is near 1 and inside a 5%
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Figure 4.5 – The ratio between the simulated and empirical efficiency resulting of
the study of a multi-gamma source.

error interval for each of the observed peaks.

In a second time, the Gaussian broadening effect of the resolution cali-
bration can also be done in the simulation process. In fact, the model of the
Gaussian broadening is empirically known, its equation reads as :

σ(E) = p1 + p2
√
E + p3E2 (4.6)

This equation is the one used in the GEB function of MCNP-CP so that
we can compare to the standard simulation process (see annex C and [24] for
details).

In [26] the advised function to be fitted is the following :

σ(E) =
√
p1 + p2E + p3E2 (4.7)

The two formula being near from one another and no difference between
the two being observed on the energy range we are working on, we will focus
on the first one (equation 4.6).

To achieve the resolution calibration, the width of the gamma-ray peaks
present in the spectrum are computed on source spectrum and a model for
the resolution with respect to the energy is fitted. The model is fitted by
mean square minimisation to the empirical value as can be seen in figure 4.6.
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Figure 4.6 – The equation 4.6 fitted with the empirical values gathered in a spectrum
of a multi gamma-source.

These parameters are optimised by minimizing the standard error between
the function at the empirical points and the model. The function we want to
minimise thus reads as :

L(p1, p2, p3) =
P∑
k=1

(
σobsk − σ(p1, p2, p3, Ek)

)2
(4.8)

where,
— P is the number of peaks in the spectrum of the multi-gamma source.

— σobsk is the empirical standard deviation of the observed Gaussian peak.

— Ek is the nominal energy of the gamma-ray peaks.

The peak width is computed with the peak-search algorithm that will be
detailed in the next section.

Once the parameters p1, p2, p3 are found we can use them to simulate the
spectral signatures via MCNP-CP. In fact, during the simulation process of
the spectral signatures it is possible to specify the broadening effect of the
peak throughout the spectrum via the specific function called GEB (Gaussian
Energy Broadening. More details are given in the annex C. The spectral si-
gnatures are then simulated with a correct efficiency and a broadening that is
comparable to the one in the observed multi-gamma source.

97



The resolution and calibration is supposed stable through time and the
calibration made on a source is supposed to give sufficient information on the
efficiency of the detector to be able to build a MCNP-CP model that yields
correct spectral signatures for each radionuclide we want to simulate. As will
be seen in the next section the resolution calibration can be refined to produce
a better agreement between the simulation and an observed spectrum.

Energy calibration of an observed spectrum

The energy calibration for the full-spectrum analysis is complex as the
spectral signatures usage is sensible to any shift in energy. In fact, contrary
to the peak based analysis, the full-spectrum analysis builds on the entire
spectrum, Compton continua and full absorption peaks, to perform an analysis.
The energy calibration thus needs to be extremely precise at the energy peaks
and globally correct throughout the entire spectrum. Finally, the energy bin of
the spectral signatures and the energy bin of the observed spectrum needs to
be harmonized in order to perform the unmixing algorithm using full-spectrum
analysis.

For the basic matching of the channels to the energy the first approxima-
tion presented in the peak-based analysis is used. This leads to a pre-calibration
that can be used to locate the peaks in any sample measurement. The fine tu-
ning of the energy calibration as proposed by Jiaxin Xu in her thesis ([6]) an
in her article ([20]) proceeds as follows : (i) a first rebinning of the spectral
signatures is processed in order to match the energy bin of the pre-calibration
obtained on a multi-gamma source, followed by (ii) a first unmixing process
to produce an estimation of the activity and a selection of the active radio-
nuclides contained in the measured spectrum. After this first unmixing, (iii) a
peak-search algorithm is performed on the peaks that are present in the sam-
ple’s spectrum. The energy and channel number thus found are used to fit a
better model function between the energy and the channel number. Finally,
(iv) the spectral signatures are once again rebinned to match the new mo-
del. These rebinned spectral signatures are then used to unmix the measured
spectrum leading to a better estimation of the activities.

The rebinning of the spectral signatures is processed in two stages. A first
step is needed to produce a fine mesh size for the spectral signature after
which the rebinning algorithm (2) is used to distribute the counts into the new
bins. The interpolation into a fine bin is performed via interpolation of the
spectral signatures and normalisation so as to keep the efficiency correct. The
interpolation algorithm thus reads as :

In this algorithm, xnew[left] and xnew[right] are respectively the closest
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Algorithm 2 The linear interpolation algorithm allowing to evaluate
the spectral signature at a new bin.
Entries :

— x original energy bin
— y original channel content
— xnew : the new energy bin at which we want to interpolate y

ynew ← zeros(len(xnew))
for i = 1, ..., len(xnew) do

left← max(k s.t. xnew[k] < x[k])
right← left + 1

λ← right−x[i]

right−left
ynew ← λ ∗ y[right] + (1− λ) ∗ y[left]

end for
ynew ← ynew/sum(ynew) ∗ sum(y)

Return :
— ynew the new channel content at the energy bin xnew

interpolation points to which we need to put a point. Finally the last step of
the algorithm is used to normalise the spectrum and conserve the efficiency
calibration valid after the rebinning.

After the spectral signatures have been rebinned to a finer mesh size they
are aligned to the observed spectra by using the position of the main peaks
of the measurement. This is done by sing a peak search algorithm on a few
peaks in the measured spectrum and by allowing a new linear model to fit the
empirical energies to the energies of the spectral signatures (as the spectral
signatures are simulations, the peaks they contain are at nominal energy).

This second energy calibration uses the gamma-ray peaks of the measured
spectrum rather than the ones of a multi-gamma source (for example 208Tl
peaks that are present in most of the aerosol filter sample measured in the
laboratory but cannot be put into a source due to its short half-life). The aim
of this process is thus to build an energy calibration that better fits the actual
energy bins of the observed spectrum. Once the model is fitted the spectral
signatures are rebinned once more to fit the new energy calibration.

Issues with these calibrations

Both techniques shown above, lead to some issues, mainly, the existence of
some discrepancies between the spectral signatures and the observed spectrum
as can be viewed in figure 4.7. The two main issues are the shift between the
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nominal energy of the peak and the position of the peak in the spectrum,
this comes from the energy calibration. Secondly, the slight difference in width
between the spectral signature and the observed spectrum showing problems
on the resolution calibration. The shape of the residuals between the observed
spectra and the spectral signatures also enlightens these issues, the peak of
the residuals being slightly off from the nominal energy of the peak and the
positive/negative alternation being the result of the width difference. These
discrepancies lead to some problems in the unmixing procedure as the model
tries to match some spectral signatures that are not close enough to the actual
spectra leading to leakage phenomena in the activity estimation.

The origin of these issues is the energy calibration being performed via a
linear model. In fact, some residuals are observed after the model fitting that
lead to some energy shifts between the spectral signatures ant the observed
spectrum. Even if the linear model reduces the residuals in the most efficient
way, the residuals are still showing after the recalibration processed. We want
to fit a model that precisely matches the anchor points of the model to a
nominal energy. In the next section, we will use spline interpolations to fix this
issue and have a perfect alignment of the peaks in the spectral signatures and
the observed spectrum.

Moreover, the problems on resolution are due to the rebinning process
being performed on the broadened spectral signatures. In fact, the spectral
signatures are simulated once and for all and then rebinned and interpolated
to fit the energy model. This leads to some small distortion of the Gaussian
energy broadening that has been specified during the creation of the spectral
signatures as can be seen in figure 4.7. A solution will be to perform the
Gaussian broadening after the rebinning so that there is no deformation of the
peaks during the rebinning process.

Finally, it is important to note that the global process of calibration is long.
In fact, if one wants to change a parameter on the resolution of the spectral
signature the whole simulation process has to be done using MCNP-CP, as
the broadening is done during the simulation process. The same can be said
for the energy calibration, as this process involve a fine mesh rebinning and
some peak search in the spectrum. In the next section we will use a kernel
smoothing procedure described to apply the broadening at the end of the
calibration procedure and we will reduce the time to perform the spectral
signatures rebinning.
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Figure 4.7 – On top, the resulting energy shift on the peak of the 7Be of less than 0.1
keV and the slight resolution problems after calibration. On the bottom, the residuals
between both spectra.
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Figure 4.8 – The residues of the linear model used to fit the energy.

4.3 . Improvements in energy and resolution calibration

In the full-spectrum analysis framework, it appeared necessary to make
the calibration more precise in order to perform spectral unmixing in the most
efficient way possible. As previously seen, the calibration of the spectral signa-
tures in energy, resolution and efficiency are important in order to get a proper
estimation of the activities of the radionuclides present in a sample. Moreover,
the usage of the Léda detector for which no pre-calibration were available and a
larger energy range than the usual detector used in the laboratory is achieved,
pushed us to develop a new calibration process.

However, the efficiency can only be optimized with standard sources, for
the application to aerosol filter sample activity estimation it is not possible
to get standard sources for the radionuclides of interest (radon progeny with
a short half-life, overlapping peaks, ...). Moreover the efficiency calibration
performed with the multi-gamma source leads to satisfactory precision (5%
of maximum discrepancy between empirical and simulated efficiencies). As a
result, we will focus only on the energy calibration along with the resolution ca-
libration leaving the efficiency (and thus the MCNP-CP model of the detector)
as it was after the analysis of the multi-gamma source.

The new calibration I developed for energy and resolution works as fol-
lows : (i) first the simulation of the spectral signatures is done with an infinite
resolution (without GEB) and a fine energy bin. As a result, the peaks in the
spectral signatures are perfect Dirac at the nominal energies and the rebinning
is allowed without relying on a high resolution interpolation. (ii) Secondly, a
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peak detection in the observed spectrum is performed on a family of gamma-
ray peaks of known nominal energy. This peak detection allows to gather the
channel number of each peak and perform a pre calibration in energy. (iii) A se-
cond peak search analysis is performed this time on a big number of peaks, this
allows to get the position and the peak width of a large number of gamma-ray
peaks in the entire spectrum energy range. (iv) A spline regression to match the
channel number and the energy is then performed to get a perfect alignment
of the peaks to the nominal energy in the observed spectrum. The observed
spectrum is then rebinned to obtain a regular bin in energy following the fitted
spline interpolation. (v) The spectral signatures are also rebinned to match the
bin of the observed spectrum.

After the energy calibration the resolution calibration is performed with
the peak width information gathered by the second peak search algorithm
performed on a large number of peaks. The model of the Gaussian broadening
with respect to the energy is then applied to the spectral signatures using a
convolution of the spectral signatures with a non stationary Gaussian kernel
in order to finely match the observed resolution in the measured spectrum.

4.3.1 . Detailed peak fitting procedure
The proposed energy and resolution calibrations only builds on the know-

ledge of the radionuclides composing the spectrum and no pre-calibration with
multi-gamma source. In fact, during my PhD the only measurements I analy-
sed were aerosol filter samples dominated by radon progeny. I thus have access
to the spectral signatures and nominal energies of a lot of gamma-ray peaks
throughout the spectrum as can be seen in the table 4.2. This information will
be sufficient to process the calibration that will be presented in this chapter.

As stated above, the MCNP-CP simulations are performed with a model
that correctly matches the efficiency of our detector. The simulations are pro-
cessed without Gaussian energy broadening and on a fine energy bin (compared
to the observed spectra). We thus have simulated spectral signatures at a fine
bin size and infinite resolution (Dirac form peaks) the bins are evenly spaced
every 0.1 keV from 10 keV to 3 000 keV.

The observed spectrum is produced in term of channels (from 16 384 to ∼
60 000 channels) and we want to match these channels to the correct energy
via the determination of f , a function, linking E the energy in keV and c the
channel number, such that :

E = f(c) (4.9)
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The first step is to find a few peaks as anchor points for a pre-calibration of
the energy. To achieve that, we have selected 3 peaks that are easy to find and
use a peak-fitting algorithm to get the position (channel number) of the peaks.
The 3 peaks we are using for the pre-calibration are at 46 keV (210Pb), 477
keV (7Be) and 2614 keV (208Tl) as they cover the entire range of the spectrum.
Moreover, no other peaks are present in their vicinity, allowing to identify them
easily.

The peak-fitting algorithm proceeds as follows :

Algorithm 3 The algorithm performing the peak fitting on a given
region of interest.
Entries :

— x : the energy bin of the spectrum
— y : the channel content of the spectrum
— [low, top] : the region of interest where we want to fit a peak

m← mean(y[low :top])
µ← (low+top)/2
A← max(y[low :top])
σ ← 1

µ, σ,A,m← argminµ,σ,A,m
∑top

k=low

(
y[k]−G(µ, σ,A,m, x[k])

)2

Return :
— µ : the Gaussian peak centre
— σ : the Gaussian peak peak width
— A : the amplitude of the peak
— m : the background considered as a constant

The aim of the algorithm is to fit a function G depending on multiple
parameters in the [low, top] region of interest. G can take different forms, the
simplest consists in a constant backgroundm and a Gaussian peak of amplitude
A, mean µ and standard deviation σ giving the following function :

G(µ, σ,A,m, x) = m+A
1√
2πσ

exp
(−(x− µ)2

2σ2

)
(4.10)

The optimization is carried out using scipy solver ‘curvefit‘.

The results of this peak-fitting algorithm is shown in figure 4.9.

The model we chose is a standard Gaussian peak and the background is
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Figure 4.9 – The result of the peak fitting as presented in the algorithm 3

supposed constant but more complex shapes could have been used. In fact
following the Laboratoire National Henri Becquerel ([27]), the Gaussian peak
is a good approximation of the peak’s shape in a gamma-ray spectrum. If a
more precise model has to be applied, an exponential tail can be added to the
left or the right side of the peak the formula for this exponential tail is :

T (x,A, T, τ) =
AT

2
exp

(
(x− µ)τ + σ2τ2

2

)
erfc

( 1√
2
(
x− µ
σ

+ στ)
)

(4.11)

where erfc is the complementary error function defined as :

erfc(x) =
2√
π

∫ +∞

x
exp(−t2)dt (4.12)

As can be seen in figure 4.10 no improvement in the fit of the Gaussian
peaks with the exponential tailing is observed adding the cost of 2 more para-
meters to be estimate and a complex model to be fit. The basic Gaussian peak
model is thus chosen as it is sufficient to estimate the value of µ and σ for the
peak of interest of our dictionary.

On the other hand, still following the recommendation of Laboratoire Na-
tional Henri Becquerel ([27]) a linear by part background that better estimates
the background contribution can be used. The algorithm stays the same but fits
a constant background on the left and right parts of the peak region contrary
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Figure 4.10 – The comparison between the peak fitting algorithm performed with the
simple Gaussian peak and the Tailed version.

to 3 that fits a constant background. The result of this fit is shown in figure
4.11 and a better agreement is produced between the fitted model and the
observed spectrum while keeping a simple model.

As a conclusion, the peak-fitting algorithm that will be used get the infor-
mation on the position µ and the width σ of the peak of the spectrum. The
model we fit on the data is the following :

G(µ, σ,A, 0, x) +B(l, r, x)

where :

B(l, r, x) =


l if x < µ− 3σ,

l × µ+3σ−x
6σ + r × x−µ−3σ

6σ , if x ∈ [µ± 3σ]

r otherwise

(4.13)

This model simply states that inside the area of the peak (µ ± 3σ) the
background is the linear interpolation between the left and right vicinity (as
can be seen in figure 4.11) and outside of this peak region the background is
constant with value l on the left region and r on the right region.

The result of this algorithm are the parameters µ, σ, A, l and r. While
remaining easy to process, this model allows a better fit of the peaks that are
present in the spectrum.
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Figure 4.11 – The comparison between the constant and the linear by part back-
ground.

4.3.2 . Energy calibration process
With the peak-fitting algorithm we can get the x-position of the 3 peaks

(46keV 210Pb, 477keV 7Be and 2614keV 208Tl) that we want to perform a
pre-calibration. This calibration uses simple linear function :

E(c) = Ac+B (4.14)

Where E(c) is the pre-calibrated energy of the c-th channel. This pre-
calibration allows to perform the peak-fitting of all the peak dictionary au-
tomatically without having to get a region of interest for each peak. In fact
after this pre-calibration the region of interest can be specified within the al-
gorithm as [(Ek ± δ − b)/a]. The interval is not precisely the peak region but
it is sufficient to perform the peak fitting automatically.

Once this pre-calibration is achieved the precise energy calibration begins.
The peak-fitting algorithm is used once again on the full peak-dictionary. This
time 35 peaks are found and the channel number of the centre of each one is
found. The peak dictionary I use is presented in table 4.2. These are the peaks
that are easy to identify in the aerosol filter sample I worked on.

With the information of µ and σ obtained for each one of these peaks, a
spline interpolation is performed in order to get the function f that links the
channel number and the energy. The function f is chosen to be a cubic spline
function based on the 35 anchor points. The spline interpolations have the ad-
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Energy Radionuclide Intensity (%)
27.4726 I-123 45.98
39.858 Bi-211 1.07
46.539 Pb210 4.252
74.8157 Pb-211 10.07
77.1088 Pb-211 16.9
87.347 Pb-211 5.77
89.8087 Bi-211 0.0223
115.183 Pb-211 0.624
158.97 I-113 83.25
238.632 Pb-211 43.6
277.37 Tl-208 6.6
300.089 Pb-211 3.18
351.932 Pb-214 35.6
452.98 Bi-211 0.34

477.6035 Be-7 10.44
583.187 Tl-208 85.0
727.33 Bi-211 6.65
763.2 Na-22-511 NA
785.37 Bi-211 1.11
860.53 Tl-208 11.4
893.408 Bi-211 0.38
911.196 Ac-228 26.2
934.061 Bi-214 3.1
952.2 Bi-214 0.0059

1078.63 Bi-211 0.55
1093.9 Tl-208 0.44

1174.537 Na-22 99.94
1460.822 K-40 10.55
1511.7 Bi-211 0.29

1592.511 Tl-208-1022 NA
1620.738 Bi-211 1.51
1729.595 Bi-214 2.844
1805.96 Bi-211 0.11
2103.511 Tl-208 - 511 NA
2614.511 Tl-208 99.755

Table 4.2 – Radionuclides and peaks (energy and intensity) used for the energy and
resolution calibration.
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vantage to pass by all the anchor points used for the interpolation thus leading
to a 0 residual in the peak x-positions. More information on the definition of
spline can be found in the annex A.

An issue arises from the use of the spline interpolation, in fact, it is only
well defined inside the range of interpolation (ie the lowest and highest anchor
points). The extrapolations of the spline function outside of the anchor points
region does not provide stability and thus cannot be used. But, this problem
is alleviated by cutting the lowest and highest energy of the spectrum. In fact,
it is usual to cut low energy under 30 keV so that the electronic noise that can
arise at low energy is not kept in the spectrum. For high energy, 1700 keV and
higher, the gamma-ray peaks are more and more scattered and the majority
of the information is contained under the 1700 keV threshold, for the majority
of the detectors used in the laboratory the working range of energy is chosen
to be 30-1700 keV. In my work the lowest energy peak is a 27.5 keV and the
highest is at 2614 keV, the cut has been chosen at 30 and 2300 keV so that we
only focus on the interior of the interpolation range and do not lose to much
information that the cut parts of the measured may contain.

Once the interpolation is done the peaks perfectly match the simulations
in term of energy/position of the peaks a rebinning process is then performed
so that each channel of energy of the measured spectrum has the same energy
width as the spectral signatures. The re-binning algorithm proceeds as follows :

The algorithm simply performs a binomial randomization of the contents
of any channel of the observed spectrum to the new bin. This randomization
depends on the proximity of the old bin to the nearest new ones. This re-
binning has no impact on the spectrum other than to get an even binning
throughout the spectrum and potentially reduce the dimension of the spectrum
by reducing the number of bins of the new spectrum. The rebinning process
conserves the integer nature of the content of each channel, indeed the Poisson
noise originating from the counting process is conserved by performing the
rebinning this way. It would not have been the case with a typical repartition
of the count by interpolation.

Another possibility to perform the rebinning while not impacting the mea-
sured spectrum would be to perform the rebinning on the spectral signatures
rather than the observed spectrum. This would change the even binning of the
spectral signatures to follow the uneven energy bin of the observed spectrum
and require more computation later during the resolution calibration.

It is important to note that the algorithm sums every counts that are
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Algorithm 4 The algorithm performs a rebinning by finding the nearest
bins in the new abscissa vector and split the content of the channel to
each one with a random binomial value.
Entries :

— x : the initial bin in energy
— y : the initial channel content
— xnew : the new energy bin at which we want to interpolate the

spectrum

for i = 1, ..., length(x) do
l← max(xnew s.t. xnew <= x[i])
r ← min(xnew s.t. xnew >= x[i])

p← x[i]−l
r−l

counts← Binom(y[i], p)
ynew[where(xnew = l)]← ynew[where(xnew = l)] + count
ynew[where(xnew = r)]← ynew[where(xnew = r)]− count+ y[i]

end for

Return :
— ynew : the new channel contents

lower than the lowest new bin to the lowest new bin. The same is performed
for the higher bins. This can lead to some issues in the extreme bins of the new
spectrum ynew that is processed. But as stated above, the spline interpolation
in itself needs to cut the extreme parts of the spectrum because it is well
defined only inside the anchor points range. The problem is then alleviated by
first rebinning from 29 keV to 2600 keV at the same bin width as the spectral
signatures (0.1 keV/channel) and then cut to the chosen energy range 30-2300
keV.

The calibration in terms of energy is done at this point, the spectral signa-
tures and observed spectrum being aligned in energy and on the same energy
bin. In the next section we focus on the resolution calibration of the spectral
signatures. The same rebinning process is applied to the background measu-
rement in order to get the same energy calibration and the same binning for
this spectrum that will be used during the unmixing.

4.3.3 . Resolution calibration
For the resolution calibration we use the information gathered during the

finding of the 35 gamma-ray peaks of the energy calibration. In fact thanks
to the peak-search algorithm we have access to the energy broadening of the
peaks on the complete energy range via the σ value gathered for each peak.
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Figure 4.12 – The empirical values of σ found via the peak-finding algorithm and
the model of σ(e) fitted via least square.

With this information we fit the polynomial function previously introduced :

σ(E) = p1 + p2
√
E + p3E2 (4.15)

by least square regression. The empirical values and the fitted function can
be seen in figure 4.12. The model, while remaining mostly empirical as stated in
[26] fits correctly the empirical points. One does now apply the proper Gaussian
energy broadening to the spectral signatures that are for the time being, at
infinite resolution, presenting Dirac peaks.

Once the fit has been performed and we have the proper Gaussian energy
broadening with respect to the energy we must apply the broadening to the
spectral signatures. This can be done by the convolution of the spectral signa-
tures with Gaussian kernels of correct width σ(E).

The kernel used is a Gaussian kernel defined as :

G(σ(e), x) =
1√

2πσ(e)
exp

(−(x− e)2
2σ2(e)

)
(4.16)

This kernel is convoluted with the spectral signatures that are simulated
with infinite resolution (Dirac peaks at nominal energy) so that we reproduce
the Gaussian broadening effect of the detector. An example of the effect of
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Figure 4.13 – Some examples of the Gaussian kernels with the resolution calibration
used with the Léda detector at various energies.

this convolution can be seen in figure 4.2, which shows the application of the
Gaussian broadening on a spectral signature focusing on the full-energy peak
region. The shape of the Gaussian kernel can be seen in figure 4.13. In this
figure we can see that the broadening is not the same at low and high energy.
In fact, the Gaussian broadening depending on the energy of the gamma-ray,
the higher the energy, the larger the broadening will be.

This convolution can be performed by matrix multiplication in the frame-
work of discrete vectors of data leading to the following operation :

Φcalib = KΦ (4.17)

Where K is the matrix containing the Gaussian kernel. It is a matrix of
dimension C × C. Each column of the matrix is built as follows :

∀c = 1, ..., C and ∀i = 1, ..., C

K[c, i] = exp
(−(E[c]− E[i])2

2σ(E[i])2

)
/
√
2πσ(E[i])2

(4.18)

Because of the size of the matrices involved in the matrix multiplication the
convolution is a time consuming process, hence a development has been done
in order to speed up the process. A sparse approach has been used to create the
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Figure 4.14 – Scheme of the structure of the matrix K containing the Gaussian
kernels defined around diagonal of the matrix.

kernel matrix that uses only a few entries to get the proper broadening effect.
This development is based on the light tailed property of the Gaussian kernel,
in fact the Gaussian distribution is mainly distributed around the mean, after
3σ the contribution of the kernel can be considered as being negligible. The
matrix K can thus be redefined only around its diagonal as :

∀c = 1, ..., C and ∀i = 1, ..., C

K[c, i] = exp
(−(E[c]− E[i])2

2σ(E[i])2

)
/
√
2πσ(E[i])2χ(E[i], E[c])

(4.19)

where χ is the characteristic function that reads as :

χ(E[i], E[c]) =

{
1 if |E[i]− E[c]| < 3σ(E[i]),

0 else
(4.20)

This definition of K, provides us the sparse matrix without losing infor-
mation as the tails are near to the value 0 in a Gaussian distribution. The
structure of this matrix is summarized in the scheme 4.14.

The Gaussian energy broadening is applied on the spectral signatures gi-
ving the proper resolution calibration as can be seen in the following figure
4.15. The green spectrum is correctly calibrated both in energy (the peaks
in the observed spectrum and the peaks in the signatures are perfectly ali-
gned) and in resolution (the peak width is correctly reproduced in the spectral
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signatures).

It is important to note that the kernel is applied on the entire spectral
signature and not only on the peaks, as a result we observe a slight smoothing
of the continuum. Apart from the peaks, the rest of the signature is mainly
composed of the nearly constant parts, they are not heavily impacted by the
convolution.

4.4 . Conclusion

In figure 4.16 we can see the better resolution and energy calibration of the
process as it is presented in this thesis. In fact looking at the old calibration
we observe a slight shift in energy at the peak energy (it can be seen on the
comparison between the observed and reconstructed spectra or by looking at
the asymmetry of the residuals). Moreover the resolution calibration is off
due to the distortion produced by the calibration after the simulation of the
resolution. On the other hand, with the calibration procedure as presented in
this thesis there is no shift and the resolution calibration is good, in fact the
reduced residuals show that the only remaining issue is located in the peak
height. This is due either to a bad efficiency calibration or an under estimation
of the radionuclide causing the gamma-ray peak. The presented peak is one of
the 212Pb’s, as no standard source can be obtained for this radionuclide due
to its short half-life (3.085 min) we can only rely on the efficiency calibration
around its peak performed with the multi-gamma source.

I have presented the way we improved on the energy calibration and on
the resolution calibration during my PhD, the scheme of the entire calibration
process as it is presented in my thesis can be seen in figure 4.17. Some issues
left by the previous tools of the calibration, namely, the energy shifts due to
the energy calibration performed via a linear model and the resolution calibra-
tion improvements via the Gaussian broadening performed after the spectral
signature simulation to properly fit the measured spectrum have been fixed or
improved upon. The remaining issue in the framework of online gamma-ray
spectrometry is the fact that the spectrum is not available at the beginning
of the measurement. In fact, during my work I worked on the observed spec-
trum in order to improve the calibration considering that I have access to the
final measured spectrum. In the laboratory setting the information is gathered
during the week long measurement and the calibration needs to be performed
beforehand or during the actual measurement.

During an internship directed in the laboratory some developments were
achieved to perform online calibration. I will present these first results in the
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Figure 4.15 – Three examples of the resolution calibration processed on the spectral
signature compared to the observed spectrum at various energies.
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Figure 4.16 – Comparison between the results of the calibration as performed by
Jiaxin Xu and the calibration presented in this work. On top we see the observed and
estimated spectrum using the old method, in the middle is the results of the procedure
presented in this section. On the bottom is a comparison of the residuals of both
methods.
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next chapter 5. On the other hand, the calibration performed as I described
previously can be used as a precalibration for other measurements and still
provide improvements on the previous tools. Moreover, the tools I presented
thus far were done on complex spectra that presents a lot of gamma-ray peaks
allowing the energy and resolution calibration even if the measurement is not
finished.
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Figure 4.17
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5 - Conclusion and perspectives
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5.1 . Conclusion

In this thesis work, I introduced and studied new tools to perform gamma-
ray spectrometry that account from time dependencies from consecutive mea-
surements of the same sample. The aim of the present study was to achieve
the rapid detection of possible contamination in the sample or the trace level
radionuclides contained in the aerosol filters. This task is difficult due to a
high complexity of the spectra contaminated by the radon progeny after the
sampling process. Building on the decomposition of an observed gamma-ray
spectrum into characteristic spectral signatures, the known physical model of
the radioactive decay and the decay chains that can arise in the observed spec-
tra, the proposed methods lead to the estimation of the activities contained
in a sample in a timely fashion. The time information carried by consecutive
measurements of the sample allows to improve the accurary of the unmixing
process, as we showed in chapter 2 and 3. While focusing on aerosol filter
sample measured on HPGe detectors, the same framework can be applied to
other measurements on different detectors.

In chapter 1, we introduced a new framework for temporal spectral un-
mixing. We presented an unmixing algorithm that allow the joint analysis of
consecutive measurement. In fact, analysing consecutive spectra allows to use
temporal correlation to cope with complex spectra containing high level of
activity from the radon progeny without hampering too much the estimation
of the radionuclides of interest. We have shown that using the joint analysis
allows to provide earlier results than the independent analysis of each spectra,
reducing the uncertainties and the bias of the estimation of the activities as
the measurement proceeds. The proposed method has been evaluated on both
simulated data and real aerosol measurement providing a first estimation of
the trace levels of 137Cs after only 1 day and a half of measurement without
observing a decay period.

In chapter 3, an extension of the temporal spectral unmixing algorithm
has been introduced so as to estimate the activities in the sample in an quasi-
online fashion providing first estimations after 1 minute of measurement. To
that purpose, the unmixing algorithm has been optimized and tuned to speed
up the computation of the activities in the sample. It has been evaluated on
both simulations and real aerosol filter sample measurement. The size of the
data that needs to be processed in an online framework being problematic, we
opted for a buffer approach allowing to keep the matrix’s size under control
as well as keeping the memory of the past segment in the analysis of the new
time segment. The number of iterations of the algorithm has also been reduced
thanks to the regularisation we developed, allowing to take the past estimation
into account to proceed to a new one, and to the sparse update of the activities
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only taking into account the radionuclides that are still active in an incoming
time segment to proceed with the activity estimation. Thanks to this new
algorithm we detected a contamination of 123I after 1 minute of measurement
at the activity of 2 Bq in a spectrum dominated by the radon progeny. This
would not have been possible if the usual decay period of 2 to 4 days had
been observed before proceeding with the measurement as the half-life of this
radionuclide is about 11 h.

Finally, new tools for the proper calibration of the spectral signatures have
been presented in chapter 4, allowing to reduce the discrepancies between the
simulated spectral signatures and the observed spectra, further allowing the
rapid and precise unmixing of gamma-ray spectra. This new calibration pro-
cess allows to precisely match the energy of the peaks between the simulated
spectral signatures and the observed spectra thanks to a spline interpolation
of the energy calibration function. Moreover, the resolution calibration is not
impacted by the energy calibration thanks to a Gaussian broadening that is
performed after the energy calibration so that no distortion are done in the
latter process. The results of this new framework were compared to the pas-
sed calibration in order to show the fidelity of the spectral signatures to the
observed spectrum.

The proposed temporal analysis framework can be applied to routine mea-
surement in order to reduce the time needed to perform an activity estimation
from a week to a few days or to perform analysis automatically with new sam-
pling station such as the Cinderella automatic air sampling station from Selya.
This automatic sampling station performs a day of sampling followed by a day
of decay and a day of measurement with a HPGe detector. The joint analysis
of the consecutive samples may be performed with the online algorithm pre-
sented in this thesis to further automatize the process from the sampling to
the analyse.

5.2 . Perspectives

5.2.1 . Performing the estimation while the sampling proceeds
While this thesis work only focuses on laboratory measurement, once the

aerosol filter has been sampled, we could extend the analysis to the aerosol
filter during the sapling process. In fact as can be seen in [28] the model of the
deposition of the radionuclides on the aerosol filter can be used along with the
known radioactive decay model to be able to cope with a measurement of the
activity during the sampling process.

On the other hand this would require to handle a measurement in the
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sampler which will be accompanied by an augmentation of the background
(no more shielded room or borated concrete slab to protect the detector from
cosmological or telluric noise). Moreover, the radon has a day/night cycle and
is subject to weather phenomena such as the rain. Finally, the fact that the
measurement is carried outside means that the detector won’t be as stable as
in the controlled environment of the laboratory, this means that the calibration
of the detector may be needed to be carried during the measurement as the
temperature and other factors may change slightly the calibration.

5.2.2 . Online calibration
A seen in chapter 4, the precise calibration of the detector and the spectral

signatures is a problem that we face in the case of spectral unmixing because
we are using spectral signatures to estimate the activities in the measured
sample. In order to correctly calibrate the energy and resolution for the analysis
we are using the spectrum measurement of the sample. In the online analysis
framework, this information is not available, the estimation being performed
as the measurement proceeds. New developments of online calibration would
thus be needed in order to perform the joint estimation of the activities and
correct calibration parameters. During an internship, which I co-supervised,
we have explored preliminary solutions to this problem.

In order to perform the online calibration we first need to plant the ma-
thematical framework for the optimization of the parameters of each element
of calibration. Namely, we will try to fit the model for the energy with respect
to the channel number as a linear model, rather than a spline interpolation, so
that the model only depends on the parameters r1, r2, r3 and r4. The energy
function f is then :

E = f(c) = r1c
3 + r2c

2 + r3c+ r4 (5.1)

These 4 parameters will be the first element of the online calibration no-
ted R = (r1, r2, r3, r4). It is important to note that contrary to the method
proposed in this thesis work, the spectrum won’t be changed in the online me-
thod of calibration, only the spectral signatures will be processed, to fit the
spectrum. Even if the peaks in the measured spectrum are not at the exact
nominal energy, the signatures will be shifted to fit the spectrum.

The second calibration we parameterise is the resolution, as previously
seen the function we need to optimize is the Gaussian broadening width, σ(E)

with respect to the channel number (or the energy). The function reads as :
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σ(E) = p1 +
√
p2E + p3E2 (5.2)

This second set of parameters will be noted P = (p1, p2, p3).

The optimization of the efficiency is not possible as it requires the MCNP-
CP modelling and simulation to be optimized. Moreover, it requires the exact
activity of the source which is not available in routine measurements as it is
the value we want to estimate. The efficiency calibration will thus not be part
of the online calibration we will present.

As a result we have 2 sets of parameters, R,P to be optimized, each leading
to the calibration of the spectral signatures. Finally a way of determining the
correct parametrization is needed, the likelihood is chosen as the model of a
gamma-ray spectrum is well known reading as :

X = Φ(Ψ.a) + δ.b

Y ∼ Poisson(X)
(5.3)

The estimated spectrum depending on the different sets of parameters and
the activity estimation thus reads as :

X̂(R,P, â) = Φ(R,P )(Ψ.â) + δ.b (5.4)

Where Ψ is the matrix that contains the spectral signatures after the re-
binning in energy depending on R and the broadening has been done according
to the parameters P . The likelihood depending on every set of parameters thus
reads as :

L(Y |R,P, â) =
C,T∑

c=1,t=1

X̂c,s(R,P, â)− Yc,slog(X̂c,s(R,P, â)) (5.5)

The optimization of each parameters will be performed in stages with a
Block Coordinate Descent algorithm, following the scheme detailed in 5.1.

The idea is to perform each calibration/optimization of a set of parameters
with the others being fixed, at each optimization the Ψ is updated accordingly,
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Figure 5.1 – The scheme of the Block coordinate descent algorithm. Each step consi-
ders that the two other set of parameters are stable and to perform its optimisation.

in the case of the efficiency, the correct matrix is selected, in the case of the
resolution, the correct broadening is applied and finally for the energy calibra-
tion, the correct rebinning is processed. Once the calibration has been set, the
unmixing algorithm estimates the activities and the cycle of optimization can
begin again until convergence is achieved.

The problem we face in this framework are notably the computation time,
in fact, each step of the optimisation for the parameters R and P require to
compute the spectral signatures after calibration which is a long process. Mo-
reover, some biases were still observed on the final results of both calibrations
while still leading to correct results for the activity in the sample. Finally, each
optimisation is a non-convex problem, the task is thus difficult. Indeed if we
only want to carry the optimisation of the activity estimation we are requiring
a lot of computation and complex algorithm. The optimisation of the two other
sets of parameters would need some refinement to be able to optimize them
properly.

5.2.3 . Spectral variability
Another way one could upgrade the full-spectrum analysis is by modeling

the spectral variability of the signatures used in the unmixing process. In fact as
can be viewed in chapter 4, we need to precisely match the spectral signatures
to the spectrum in order to perform precise estimation of the activities in the
sample. If a model for the variability of the spectral signatures was available
this would allow more flexibility in the process and lead to an acceleration of the
calibration. This would be another solution for the online calibration presented
above. In fact, if one has access to a "basic" spectral signature database and a
model of the spectral variability, the calibration can be processed using machine
learning algorithm or the model of the variability.
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5.2.4 . Online uncertainties
Finally, as can be seen in the annex B, the uncertainty quantification and

the detection limits for the online analysis is a difficult task for which we still
lack computationally efficient methods. For the time being, only Monte-Carlo
simulations allow to tackle the uncertainty computation in case of low acti-
vity in the early estimation framework. In fact, due to the noise and relative
contribution of the low activity radionuclides to the spectrum the Fisher’s
approximation with a Gaussian does not provide satisfactory results. The on-
line quantification of the uncertainties and decision threshold is still an open
problem.
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In this appendix we will presents the definition of spline interpolation. The
splines has been used in the calibration section (4) to interpolate the energy
function linking the channel number and the energy in a spectrum. In the first
section we will give the definition and an example of the spline interpolation, in
the second section we will detail the cubic splines and the interesting properties
they have leading to the choice of this interpolation for energy calibration.

This annex is based on the book and course of Alfio Quarteroni [29] for
more details see page 347 to 353.

A.1 . Definition

Splines are a way of interpolating a function using a basis of polynomials.
Let x0 < x1 < ... < xn be distinct nodes on an interval [a, b], x0 = a and
xn = b. The function sk(x) defined on the interval [a, b] is called a spline of
order k if, on the interval [xj , xj+1] : sk ∈ Pk ∀j = 0, 1, ..., n and sk ∈ Ck−1[a, b].

where Pk is the space of the polynomials of order k and Ck−1[a, b] is the
set of the k − 1 times continuous function defined on the interval [a, b]. In
other words, a function sk(x) is called a spline of order k if, on each interval
between to nodes [xj , xj+1], the function is a polynomial of order k and the
k − 1 derivatives of the function are continuous in each of this nodes (the
k − 1-continuity inside each interval between two nodes being given by the
polynomial nature of the function).

For example let us build the spline interpolation of order 1 for the function
f(x) = cos(x) on the interval [0, 2π]. Given n − 1 distinct nodes inside the
interval [0, 2π] and the value of f on the total nodes : 0 = x0 < x1 < ... <

xn−1 < xn = 2π (for this example I chose 10 uniformly distributed values
on the interval). We want to build a C0 function based on straight lines (ie
polynomials of order 1) between each interpolation nodes. This is exactly the
definition of the spline interpolation of order 1 as shown in figure A.1.

This basic example shows two properties of the spline interpolation, on the
one hand, in each of the interpolation nodes, the interpolation function sk(x)

is equal to the approximated function f(x). On the other hand, the spline is
smooth and we will see in the next section in details what we mean by smooth.

If the definition of spline of order 1 is trivial, the definition in case of greater
order of k is more complex. In fact, if we count the number of degrees of freedom
of our interpolation, on the one hand, we have a polynomial of order k on each
of the n interval giving (k+1)n degrees of freedom (k+1 parameters for each

130



Figure A.1 – The spline interpolation of order 1 and 3 for the function cos(x).

polynomials, which are defined on the n intervals [xj , xj+1]). On the other
hand, the continuity condition gives some constraints at each nodes being :

∀ l = 0, 1, ..., k and ∀ j = 0, 1, ..., n :

limx→xjs
(l)
k,j(x) = limx→xjs

(l)
k,j+1(x)

(A.1)

where sk,j(x) is the polynomial defined on the interval [xj , xj+1] and the
superscript (l) is the l-th derivative of the function. These constraints are
imposing (n−1)k conditions on the coefficients. Leading to (k+1)n−k(n−1) =
k + n degrees of freedom based on the given n+ 1 interpolation nodes.

Conditions are thus usually added to the actual definition. These condi-
tions reads as :

s
(l)
k (a) = s

(l)
k (b), ∀ l = 0, 1, ..., k − 1 (A.2)

which is know as the periodic constraint and :

s
(l+j)
k (a) = s

(l+j)
k (b) = 0 ∀j = 0, 1, ..., l − 2 and some l > 2 (A.3)

which essentially means that the last l − 1 derivatives of the spline in-
terpolation have to be null at the extreme points (giving some control of the
explosion outside the interpolation interval).
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In the next section I will detail the cubic spline properties and application
to the energy calibration interpolation.

A.2 . Cubic splines and its properties

Let us focus on the cubic spline application, in this section, s(x) will de-
note a spline interpolation of the function f(x), based on the given of f(a) =
f(x0), f(x1), ..., f(xn) = f(b), at each nodes a = x0 < x1 < ... < xn = b.
First, let us observe that for each interval [xj−1, xj ], the spline interpolation
s(x) second derivative is linear :

s(2)(x) = s(2)(xj−1)
xj − x

xj − xj−1
+ s(2)(xj)

x− xj−1

xj − xj−1

on the interval [xj−1, xj ]

(A.4)

Integrating this two times gives :

s(x) = s(2)(xj)
(xj − x)3

6(xj − xj−1)
+ s(2)(xj−1)

(x− x3j−1)

6(xj − xj−1)
+ cj−1(x− xj−1) + dj−1

on the interval [xj−1, xj ]

(A.5)

Where cj−1 and dj−1 are imposed by the conditions at xj−1 and xj :
s(xj−1) = f(xj−1) and s(xj) = f(xj). The parameters are then :

∀j = 1, 2, ..., n− 1

cj−1 = f(xi−1)− s(2)(xj−1)
xj − xj−1

6

dj−1 =
f(xi)− f(xi−1)

xj − xj−1
− xj − xj−1

6
(s(2)(xj)− s(2)(xj−1))

(A.6)

Let us now use the continuity of the simple derivative of s(x) at the node
xj , we have :
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lim
x→x−j

s(1)(x) =
xj − xj−1

6
s(2)(xj−1) +

xj − xj−1

3
s(2)(xj) +

f(xj)− f(xj−1)

xj − xj−1

=
xj+1 − xj

6
s(2)(xj) +

xj+1 − xj
3

s(2)(xj+1) +
f(xj+1)− f(xj)

xj+1 − xj
= lim

x→x+j

s(1)(x)

(A.7)

Which leads to the following system :

∀j = 1, 2, ..., n− 1

µjs
(2)(xj−1) + 2s(2)(xj) + λjs

(2)(xj+1) = νj

where :

µj =
xj+1 − xj
xj+1 − xj−1

λj =
xj − xj−1

xj+1 − xj−1

νj =
6

xj+1 − xj−1

(f(xj+1 − f(xj))
xj+1 − xj

− f(xj)− f(xj−1)

xj − xj−1

)
(A.8)

This system is still ill-posed as only n−1 conditions are imposed over n+1

parameters. The usual choice is to impose either ν0 = νn = 0 leading to the
"natural" spline (s(2)(a) = s(2)(b) = 0), or to impose ν0 = ν1 and νn−1 = νn
leading to a smoother spline.

The natural spline has the following properties, if f ∈ C2[a, b] then :

∫ b

a
[s(2)(x)]2dx ≤

∫ b

a
[f (2)(x)]2dx (A.9)

with equality if and only if f(x) = s(x). This essentially means that the
spline interpolation is smoother than the function we try to interpolate, in the
application of the energy function with respect to the channel number this
is a great property to have as we want a smooth interpolation and make the
hypothesis that the function of energy calibration is itself reasonably smooth.
We can see in figure A.1 that cubic spline are smooth interpolations and that
the approximation s is really close to the function we try to reproduce based
on the nodes’ information.
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In this annex I will present the way the confidence intervals and decision
limits are computed in my thesis work. In fact, the mathematical model we
use to represent a spectrum allows us to compute the characteristic limits with
Monte-Carlo simulation but this kind of computations are long and in a fra-
mework of online estimation of the activity it impossible to do the simulations
in a time effective manner. The Fisher information matrix wil thus be used to
approximate the repartition of the estimator we give to the estimation with
a Gaussian distribution. I will present the base work on which the new tools
to estimate the uncertainties in a joint analysis framework in a second sec-
tion. Finally we will see the limits of this approximation when we get to the
online estimation and a low number of count in the spectrum to estimate a
radionuclide. In this final section we will try to estimate the uncertainties via
a truncated Gaussian and compare the analytical results to simulations.

B.1 . Definitions

The first definition we need to understand when we talk about confidence
interval and detection limits are the statistical errors that one can make during
a estimation process or when making a decision based on statistics. In the
statistical framework we try to make a decision between two hypothesis, H0

and H1. In this work the two hypothesis are as follows :

— H0 : The radionuclide is not in the sample (its activity is null), this is
called the "null hypothesis".

— H1 : the radionuclide is in the sample (its activity is > 0), called the
"alternate hypothesis"

The statistical framework allows to decide which hypothesis is more likely
given the observed data, in our case, is it more likely that the radionuclide is
present in the spectrum or not. The two errors thus consist in the following
bad decisions :

— Consider that a radionuclide is present when it is not (ie wrongly rejec-
ting H0), this is the type 1 error and we fix the maximum probability of
this error α when we create a statistical test discriminating H0 and H1.

— Consider that a radionuclide is not in the mixture while it is (ie wron-
gly rejecting H1), called the type 2 error its probability is β and needs
to be the lowest possible given the α-probability of type 1 error.
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In fact, the two types of error are bound to one another. Minimising α

is allowing β to grow and the converse is also true. If we look at a test that
always rejects H0 or a test we have the following :

P(reject H0|H0 is true) = α (B.1)

This is equal to 0 in the case of a test that always rejects H0, maximising
α. On the other hand we have :

P(reject H1|H1 is true) = β (B.2)

One can see that, with any other test, even one that is completely random
and have no correlation with the observe data, if sometimes the null hypothesis
is rejected then β will be smaller than the value of β in this extreme case. The
same applies to the converse test that always rejects H0, maximising β lowers
the value of α.

It is for this reason that the statistical framework orders the two types of
error with respect to the gravity of the consequence of the error. In our case
the type 1 error, missing a radionuclide in a sample, can lead to cancer in the
population or an accident or incident that is not detected, this is the type of
error we want to minimise first. If we now focus on the type 2 error, detecting
a radionuclide while it is not present, can lead to a false alarm, it will enhance
the surveillance and we will carry other tests to determine if the radionuclide
can have an impact or not. In the worst case we will alert on a problem that
does not exists, by following the safety principle this error can be minimised
in a second time.

Following the extreme example that I have shown above the statistical
framework proceeds by fixing a α probability of type 1 error and then optimise
the test to reduce the β probability of type 2 error. The ISO norm 11929 ([30])
gives the ISO framework for the determination of the confidence intervals and
detection limits in the case ionizing radiation measurement. This text gives
the definition of Decision Threshold (DT) and Detection Limit (DL). We will
see that these definition are linked to the type 1 and type 2 error that we
introduced earlier.

The Detection threshold is defined as the limit DT above which should be
the estimation of the activity in order to consider that a radionuclide is present
in a sample. Noting â the estimation of the activity, we thus have :
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P(â ≥ DT |a = 0) = P(reject H0|H0 is true)

= α
(B.3)

The Detection Limit is defined as the type 2 error limit. It is the smallest
observable activity a = DL such that the test with a given DT would reject the
hypothesis of the presence of a radionuclide in the spectrum. In other terms
we have :

P(â ≤ DT |a = DL) = P(reject H1|H1 is true)

= β
(B.4)

This notion of detection limit is not used in this thesis preferring the
decision threshold as the lowest observable activity given a measurement.

Finally a confidence interval for a given probability p, is an interval sur-
rounding the estimation â, based on the statistic distribution of the value we
want to measure. In other terms it reads as :

P(a ∈ [low, top]|â) = p (B.5)

as will be seen in the next section, we will often consider the activity
estimation for a given radionuclide to follow a Gaussian distribution centered
around the estimation â with a certain variance σ2 that we have to determine.
The confidence interval will then be taken as â± kσ. It is usual to take k = 2

leading to p = 09545 in the previous equation.

B.2 . Monte-Carlo simulation for confidence intervals

The mathematical model of a gamma-ray spectrum we use that allows us
to perform the spectral unmixing may be used to simulate any mixture of ra-
dionuclide at any activity we want. This allowed us to assess the performance
of the temporal spectral unmixing via Monte-Carlo simulation and in this sec-
tion we will show how the same simulation framework can be used to determine
the confidence interval and decision threshold of the activity estimation. Let
us first recall the mathematical model of a gamma-ray spectrum :
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x =
N∑
n=1

ϕnψnan + δb

y = Poisson(x)

(B.6)

where ψn and δ would be defined as in chapter 2 for a given measurement
from t0 to t1. We thus consider a mixture of N radionuclide and we want to
compute a confidence interval of the estimated activities a1, ..., aN and the
decision threshold for each radionuclide.

B.2.1 . Confidence interval computation
For the computation of the confidence interval around the estimated ac-

tivity an of a given radionuclide we will perform Monte-Carlo simulations of
the estimated mixtures. The simulation will build a model spectrum x̂ with
the estimated activity estimation â1, ..., âN and the Poisson noise will be ap-
plied to this base spectrum in order to simulate random spectra mimicking the
observed one. This leads to :

x̂ =
N∑
n=1

ϕnψnân + δb (B.7)

The Poisson noise allows us to access to multiple repetition of the same
base spectrum with different noise. Performing the spectral unmixing on these
repetition will give us the statistical noise of the estimation, in other terms, the
response of the estimator of the activity subject to a statistical Poisson noise
on the spectrum. This allows to get the statistical uncertainty shown in chapter
2 and 3. In figure B.1 are the result of the Monte-Carlo simulation process for 2
radionuclides, the 7Be and the 137Cs. We can see that both activity estimation
at low and high level, follow a Gaussian distribution. Allowing us to get the
variance of the estimator and estimate the proper 2σ confidence interval.

To this statistical uncertainty is added some other sources of uncertainties
that we cannot simulate or are more complex to estimate properly. This un-
certainty can be expressed in term of percentage of the estimated activity by
the following equation :

ustat = 2σ/â (B.8)

Throughout this thesis we have called these sources of uncertainties the
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Figure B.1 – The result of 1000 Monte-Carlo simulations for the estimation of 7Be
and the selected quantiles for the 95% confidence interval.

metrological uncertainty. The components of these uncertainties are as follows :

— the use of simulated spectral signatures rather than sources
— the position of the sample on the detector
— the detector’s variation
— the sample’s variation

These sources of variability are considered to be equal to 10% of the activity
in term of uncertainties. The total uncertainty on the activity estimation will
then be :

utot =
√
ustat + umetro (B.9)

B.2.2 . Decision threshold computation
The computation of the decision threshold in the Monte Carlo framework is

similar to the computation of the confidence interval. In fact the mathematical
definition of DT as seen in the previous section (B.3) leads us to compute the
same simulations as for the confidence interval but considering that the n-th
radionuclide’s activity is equal to 0.

The estimation of the activity on these simulations will give us a represen-
tation of the estimator in the case of an absent radionuclide which is exactly
what we defined in the definition according to the ISO norm 11929.
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Figure B.2 – The simulation of the estimation of 137Cs on 1000 repetitions where
the simulated activity of this radionuclide is null. The log-scale is used because a lot
of estimations are at 0. The decision threshold is the empirical 95%-quantile.

Suppose we want to quantify the DT for the k-th radionuclide. We will
thus consider Monte-Carlo simulation of the form :

x̂k =
N∑
n=1

ϕnψnân + δb− ϕkψkâk

=
∑
n̸=k

ϕnψnân + δb

(B.10)

The spectrum considering that the contribution of the k-th radionuclide
is null. The Poisson noise is applied to give us the Monte-Carlo repetition
and allowing us to have the decision threshold as the 1 − α quantile of the
repetitions.

The major issue with the Monte-Carlo simulation to obtain the confidence
interval and the decision threshold is the time consuming computation. In
fact, in order to get proper statistical significance we want to carry a lot of
simulations (1000 simulations were performed throughout this work) and the
unmixing of each of the simulated spectrum takes time. In the case of the
confidence interval the simulations are carried for the determination of the
interval of every radionuclide but in the case of the decision threshold we have
to repeat the simulations for each radionuclides for which we want to have a
value. In this thesis the only radionuclide which activity is near the decision
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threshold is the 137Cs and thus is the only one for which the simulations have
been performed.

In the next section we will present another way to perform the computation
of the confidence interval using the Fisher information matrix.

B.3 . Uncertainty quantification with the Fisher information
matrix

Rather than relying on heavy computation for the determination of the
confidence interval we can rely on the Fisher information. In fact following
Fisher ([31]) we have the following property : the distribution of the maximum
likelihood estimator can be approximated by a Gaussian distribution

N (θ, I(θ)−1) (B.11)

where θ is the parameter we want to estimate and I(θ) is the Fisher infor-
mation. The Fisher information is defined as :

I(θ) = Eθ
[∂2log(f(x|θ))

∂2θ

]
(B.12)

With f(x|θ) being the distribution of the observed values x1, x2, ... with
the parameter θ. The θ value can be evaluated using its estimator’s value θ̂.

In the spectral unmixing framework θ the parameter of the distribution
of the observed values x1, x2, ..., are the activities a1, a2, ..., aN of the N ra-
dionuclides composing the observed spectrum, the distribution of the observed
values is :

y = Poisson(Φ(Ψ.a) + δb) (B.13)

Considering that the probability for a random value X following a Poisson
distribution of parameter λ is :

Pλ(X = x) =
e−λλx

!x
(B.14)
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the content of each channel of a spectrum being considered independent
from one another we have, noting y = y1, ..., yC the observed spectrum, x =

x1, ..., xC the random representing the content of each channel and x̂ = x̂1, ..., x̂C
the estimated spectrum :

P(x = y) = ΠCc=1Px̂c(xc = yc)

= ΠCc=1

e−x̂c x̂ycc
!yc

(B.15)

Taking the derivative of the log of this expression with respect to each
a1, ..., an leads to :

∀k = 1, ..., N

−∂2log(P(x = y))

∂a2k
=

C∑
c=1

−yc(ϕkψk)
2

x̂2c

(B.16)

The Fisher information being the opposite of this expression. Following
the approximation given earlier (equation B.11) we have a way to efficiently
compute the statistical confidence interval of the activity estimation in the
framework of the spectral unmixing.

In [20] Jiaxin Xu has shown comparison between the Fisher approximation
and Mote-Carlo results proving the validity of this approximation for large
activities or after a long time has passed and the radon progeny have decayed.
In figure B.3 is an example showing the pertinence of this approximation. As
can be seen the Monte-Carlo and Fisher approximation lead to some confidence
intervals that are comparable. In the results of simulation and real aerosol
filter samples analysis of the chapter 2 and 3 we have further improved the
comparison with the added temporal component. In the following section we
will demonstrate how to adapt the Fisher approximation to the joint analysis
of consecutive measurement.

It is important to note that for the computation of the decision threshold
the approximation using Fisher is not viable, in fact, we have a truncated
estimator of the activity in the extreme regime of a null activity. In other
words, the fact that our estimator of the activity is always positive leads to
a non-Gaussian behavior of the estimator when the estimated activity is low.
This will be further demonstrated in the following section wherein the temporal
estimation leads to some extreme behaviors of the estimator.
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Figure B.3 – The result of the estimation of 7Be of 1000 Monte-Carlo simulations
and the corresponding Fisher Gaussian approximation. The confidence interval using
both the Monte-Carlo and Fisher methods are shown.

B.4 . Confidence interval and decision threshold in the joint
estimation framework

In this section I will present how to build the confidence interval in the
temporal frameworks of the chapter 2 and 3 from the Fisher information pro-
cedure presented above. But in a first time I will present the Monte-Carlo
simulation process one would have to do if we were to construct the confidence
interval this way. In the final section we will look at the decision threshold
and compare the results of Fisher and simulation in extreme cases to show the
limits of the Fisher approximation in the case of temporal unmixing.

B.4.1 . Monte-Carlo simulations
In the temporal analysis framework presented in this thesis, the same pro-

cedure of Monte-Carlo simulation can be applied to build the confidence inter-
val. The only difference lies in the fact that, rather than considering a single
spectrum, we simulate collections of consecutive spectra.

During the simulation process we will thus mimic the consecutive spectrum
acquisition by simulating the S time segments independently and perform the
unmixing beginning with the first segment alone, then the first 2 segments
and so on. This leads to multiple repetition of the joint analysis of consecutive
measurement of a sample.

The same applies to the online framework, by using the buffer presented in
3 we are able to perform the simulations with reasonably small matrices even if
the time steps are small. The main issue of the Monte-Carlo simulation being
the computation time. In fact, the adding of the temporal dimension to the
simulation leads to a multiplication of the computation time by the number of
time steps we take. Even with the buffer and algorithmic optimization added
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in chapter 3 the computation time is a major issue for the computation of the
confidence interval and the decision threshold.

B.4.2 . Fisher’s approximation in the temporal framework
To cope with the temporal segmentation and the increasing of the number

of simulations needed in the Monte-Carlo framework, the Fisher approximation
has been extended to the joint analysis of multiple consecutive gamma-ray
spectra. In fact by looking at the equation B.15 we can see that we can apply
the same equation with multiple gamma-ray spectra that depend on the same
activities a1, ..., aN . The following derivations are the same leading to the new
Fisher information :

∀k = 1, ..., N

−∂2log(P(x1, ..., xS = y1, ..., ys))

∂a2k
=

C∑
c=1

S∑
s=1

−ycs(ϕkψks)
2

x̂2cs

(B.17)

where x1, ..., xS are the consecutive spectra model, y1, ..., yS are the obser-
ved realisations and x̂1, ..., x̂S are the estimated spectra using the estimation
of the activity.

The same applies to the online buffer presented in chapter 3. In fact,
replacing S in the above equation with r the size of the buffer, and using
the Ψ buffer instead of the Ψ matrix used previously leads to the correct
Fisher’s information and approximation of the variance of the estimation of
the activities.

But some issues arise when we deal with low activity for which a low
number of counts is present in the measured spectrum (eg 137Cs for a 2 minute
measurement). In fact the estimation is so low that the approximation using a
Gaussian distribution is no more valid as can be seen in figure B.4. In fact, the
approximation using Fisher’s information to compute the standard deviation
of the estimator cannot cope with such low activity in a framework where little
to no information are present in the spectra. In fact, the low activity of 127Cs,
when compared to the high background and other radionuclides contribution,
hampers the estimation of its activity as seen in chapter 2 and 3.

As a result, the only solution leading to some correct estimation of the
uncertainties and decision threshold, in the case low level of activity is the
Monte-Carlo simulation method. The only issue being the computation time
required in order to get enough statistics to give a correct result. In the online
framework it is mandatory to get quicker ways of estimating the uncertainties.

145



Figure B.4 – Comparison between the Fisher approximation and the 1000 Monte-
Carlo simulation for 137Cs decision threshold and uncertainty estimation. The simu-
lated activity of 137Cs is 0.002 Bq.

Some work were done to estimate the distribution of the Monte-Carlo si-
mulations using a truncated Gaussian distribution. The results can be seen
in figure B.5 and shows that a truncated Gaussian may lead to some correct
estimation of the uncertainties and decision threchold given the concordance
between the estimated distribution and the Monte-Carlo simulation distribu-
tion. Further investigation need to be performed in order to give a heuristic or
synthetic model to the mean and variance of this truncated Gaussian Model.

B.5 . Conclusion

The rapid estimation of the uncertainties and decision threshold is a diffi-
cult problem. For the time being, the only reliable way to compute these two
quantities is to perform Monte-Carlo simulations which is a long and compu-
tationally heavy process. This is not compatible with the Online framework
developed in this thesis.

Some new ways to compute these quantities can rely on Truncated Gaus-
sian distributions to estimate the theoretical distribution of the Monte-Carlo
simulations. These estimation yet need further investigation to give satisfactory
results.
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Figure B.5 – The estimation of the distribution of the estimator using a truncated
Gaussian. The 1000 Monte-Carlo simulation shows the estimation with a simulated
activity of 0.002 Bq of 137Cs.
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C - MCNP-CP simulation
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C.1 . Description of MCNP

The simulations of the spectral signatures used throughout the thesis is
done via the Monte Carlo N-Particules transport code (MCNP). This program
allows to simulate the trajectory of a particle (in our case photons) in the
mater. More precisely the interaction between the particle and the mater of
the simulated model can be precisely followed. These codes were developed by
the Los Alamos National laboratory.

The record of the path and interaction can be generated for various confi-
gurations and various outputs, the one that interests us the most is the tally
F8 that represents the spectrum of the simulated particle in a specified ma-
terial (in our case the Ge detector). This tally is essentially the normalized
histogram of energy deposited in the detector for a given simulated particle.
The simulation process is very precise and in case of physical phenomena te
effects will be simulated as well. For example, in case of pair production of
electrons the simulated spectrum will contain the 511 keV peak along with the
peak at the nominal energy E and the peak at E-511 keV.

A extension to this program is the MCNP-CP codes (Correlated Particles)
that allows to generate an atom rather than a particle. This allows to get the
entire disintegration scheme with respect to the Evaluated Nuclear Structure
Data File (ENSDF). For example for the simulation of 208Tl, rather than si-
mulating every photon according to its nominal energy, we only simulate the
disintegration of a 208Tl atom and get the proper spectral signature of the
disintegration as a result. The ENSDF encapsulate the disintegration scheme,
emission intensity, energy and joint emission for the radionuclides that we ob-
serve in the sample of the laboratory.

As viewed in 4 the model of the detectors of the laboratory are done
in two steps. Firstly, we create the model of the detector according to the
manufacturer standards as a base for the model. Secondly, thanks to a multi-
gamma source, we tweak the model of the detector to get the correct efficiency
calibration at each peak of the standard source spectrum. The model is then
used to simulate the spectral signatures that I used in my thesis work.

In a first time the Gaussian Energy Broadening were computed via the
analysis of the same multi-gamma source spectrum and given to the simu-
lation code to generate the broadening. After the development of our own
algorithm to perform the broadening we used the MCNP-CP codes with 0
GEB specification.

The generated spectrum is really close to the output of the detector at
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the only detail that the energy bin is very regular in the simulation. In fact
we have to rebin the spectrum or the simulated spectral signature to get the
proper binning (see 4 for more information).

In the next section I will detail an input file for the simulation and detail
the important parameters for the study presented in this thesis. In a second
section, I will present the comparison between simulation and source measure-
ment to see the effect of the different parameters and assess the performances
of the simulations to reproduce the correct spectral signatures.

C.2 . Example and important parameters for our study

The input file for MCNP-CP for one of our detector proceeds as follows :
— The construction of the model based on simple geometric objects (mostly

planes, and cylinders), precising the composition of each elements.

— The physical data, mainly the mode of simulation P, E or PE (for
photo, electron or both). Finally a list of flags for various options in
the IMP line, such as the decay gamma-ray emission, the beta-particle
emission, the gamma-gamma angular correlation, ...

— The definition of the emitting source and the emitted photon or pho-
tons, in fact as stated already, MCNP-CP allows to simulate not only
photons of a given energy but a particle, and its entire disintegration
scheme. The emission is defined in the SDEF line with the particle’s
ZAM number (Z = atomic number on 3 digits, A mass number on 3 di-
gits as well and finally the isometry M as a flag 0 or 1), followed by the
emitting cell and the distribution of the position of the disintegrations
within the given cell (in our case we simulate a uniform distribution
inside the aerosol filter sample). The only parameter used in my thesis
is the GLECS for which we will detail the effect with the example.

— The definition the GEB parameters (a, b and c of the Gaussian broade-
ning in term of FWHM as seen in section 4), if the spectral signatures
are to be simulated as perfect Dirac we set the parameters of the GEB
at 0.

— The definition of the output we need and the cell in which we want the
output to be followed, for our example we look at the spectrum in the
Ge crystal (F8 in the cell defined as the Ge crystal).

— The definition of the materials used in the model (Ge for the crystal,
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Figure C.1 – On top, the model of the detector used in chapter 2.

copper shielding, lead, ..

— Finally, the NPS input is the number of particles that are simulated,
the more the longer the simulation will be but the better the results
will be as for any Monte-Carlo simulation.

In the example input we see the different elements mentioned (C.2). Once
the input file is properly defined a Python code can be used to generate batches
of simulations for different radionuclides only changing the ZAM number in the
input file. The model of the detector we use is shown in figure C.1 along with
the realisation of the trajectory of a few particles.

C.3 . Comparison between the simulations and a source mea-
surement

The different options of the physical specifications has been explored du-
ring my thesis. Mainly the GEB option, this parameter is linked to the resolu-
tion of the spectrum and the calibration of this parameter is no more performed
during the simulation process as seen in chapter 4. As can be seen in figure C.3
this parameter mainly affects the peaks by applying a Gaussian broadening. If
no GEB parameters are specified or if the 3 parameters are set to 0, then the
simulated spectrum will have infinite resolution, the peaks will be simulated
as Dirac peaks at the nominal energies (orange and blue in the pictures).

The second parameter that will impact the spectral signature simulation
is the GLECS (GEANT Low-Energy Compton Scattering) parameter. This
will mainly impact the compton edges of the spectrum as can be seen in the
last picture of figure C.3 in blue. The activation of the GLECS effect in the
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Figure C.2 – An example of MCNP-CP input, the principal parameters on which
we focused in the thesis are in color.
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simulation leads to a more realistic simulation of the spectra in fact as can be
seen in the measurement of the 137Cs source in figure C.4 the Compton edges
are not sharp as in the orange and green simulations but more alike the blue
simulation.

As a result in this thesis and thank to the new resolution calibration the
spectral signatures are simulated with infinite resolution and the GLECS op-
tion activated (as the blue simulation in figure C.3).
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Figure C.3 – The spectral signature of 137Cs with varying entry parameters, zoom
on the low energies, the full absorption peak and the compton continuum features.
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Figure C.4 – On top, the measurement of a standard source of 137Cs compared to
the simulation on the bottom.
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C.3.1 . Detailed comparison between Genie 2000 and Full
spectrum analysis

In this thesis, we showed the results of the spectral unmixing alone. In this
annex we show a study performed at the beginning of my thesis and published
in [20] that compares the results of the peak-based analysis using Genie 2000
[7] software and the results by spectral unmixing. In this study we have the
perfect setting to compare the performance of both methods as standard source
are available for the 3 radionuclides that are present in the sample we analyse.

In this study, we analyse four synthetic standard sources with known ac-
tivity concentrations of three radionuclides : 210Pb, 137Cs and 54Mn. To keep
the problem somewhat similar to the aerosol filter spectra analysis, 210Pb has
an activity level that is customarily observed in aerosol filters (around 100
Bq), while 137Cs and 54Mn have been chosen as substitutes for 7Be and 137Cs
with similar energy ranges (662 keV for 477 keV, and 835 keV for 662 keV,
respectively) and activity levels. The 137Cs activity level is thus around 1000
Bq. The activity of 54Mn varies in the four sources from 18 mBq to 4.9 Bq. It
is important to note that even the lowest activity in our samples is ten times
over the activity we usually have in the environment for 137Cs. Unfortunately
it was not possible to have sources with certified activities of 54Mn around few
mBq, which would correspond to the lowest level of 137Cs in aerosol filters.
The spectra of the four mixing sources measured with the studied HPGe are
shown in figure ?? with a zoom on the energy range around the characteristic
peak of 54Mn. This highlights that this radionuclide is hardly visible for the
lowest activity concentration.

We used both Genie 2000 and the spectral unmixing algorithm to analyse
the measurement spectra of the four mixing sources. The results are reported
in Table C.1 with activities (in Bq) and associated uncertainties (in Bq and for
k = 2) for the 3 radionuclides in the 4 mixing sources : reference values, values
estimated by Genie 2000 and values estimated by the spectral unmixing.

It is important to note that :

— The estimation made with Genie 2000 and spectral unmixing are simi-
lar for high activity radionuclides, as testified by the results obtained
for 137Cs and 210Pb (Fig.C.5) and the mixtures 3 and 4 (denoted mix
3 and 4 in the figures) that have the highest levels of 54Mn (Fig.C.6).

— As shown on Fig. C.5 the spectral unmixing estimation is more accurate
and more precise than Genie 2000 estimation for 210Pb with estimated
value more accurate (ratio close to 1) and uncertainties smaller due to
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Figure C.5 – Ratios between the estimated activities and the reference valuers with
uncertainties (k=2). Results are presented for both analysis methods (spectral un-
mixing on left and Genie 2000 on right) for both radionuclides present at highest
levels : 137Cs (top) and and 210Pb (bottom) at 1000 Bq and 100 Bq respectively.

the fact that the information of the full spectrum is used in activity
estimation procedure.

— Activity estimation at low level is more challenging ; however, the spec-
tral unmixing have better performances than Genie 2000 in this case.
Indeed 54Mn is detected even at the lowest level (18 mBq) and the
estimation for the second lowest level (49 mBq) is better than the one
made with Genie 2000 (see Fig.C.6).

— The activity of 54Mn is estimated properly by the spectral unmixing
for the first mixture (in which the activity of 54Mn is 17.96±0.76 mBq)
while it is not detected by Genie 2000, which classifies this radionuclide
as having activity under the detection limit (38 mBq).(see Fig.C.6).

— At low level activity (like the one of 54Mn in mixtures 1 and 2 the
information contained in the peaks is not sufficient to estimate the ac-
tivity of the radionuclides properly. Full spectrum analysis is therefore
an appealing solution to this problem in this regime.(see Fig.C.6).
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Figure C.6 – Results of spectral unmixing (bottom-left) and Genie 2000 (bottom-
right) on the different sources for 54Mn with varying activities (top-left). Results for
the first source with very low activity (18mBq) are compared on the top-right figure
with the reference value, the value estimated by spectral unmixing and the detection
limit (38 mBq) calculated by Genie 2000 following the ISO 11929 standard (α = β =
0.025), in red.
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Mix. Radionucl. Reference Genie 2000 Spectral unmixing
Cs-137 1026 ± 39 1022 ± 73 1017 ± 61

1 Pb-210 95.9 ± 3.4 101 ± 15 95.8 ± 5.8
Mn-54 0.01796 ± 0.00076 < 0.038 (DL) 0.02172 ± 0.0071
Cs-137 1014 ± 39 1013 ± 72 1008 ± 60

2 Pb-210 101.1 ± 3.5 105 ± 15 100.0 ± 6.1
Mn-54 0.0493 ± 0.0021 0.037 ± 0.018 0.060 ± 0.011
Cs-137 993 ± 38 985 ± 70 981 ± 59

3 Pb-210 94.4 ± 3.3 102 ± 15 95.3 ± 5.8
Mn-54 0.485 ± 0.020 0.476 ± 0.069 0.520 ± 0.041
Cs-137 1030 ± 39 1024 ± 73 1019 ± 61

4 Pb-210 99.8 ± 3.5 105 ± 15 100.5 ± 6.1
Mn-54 4.92 ± 0.17 5.08 ± 0.51 5.08 ± 0.31

Table C.1 – Activities and associated uncertainties (k=2) in Bq : certified values
of the standard sources (Reference), estimated values by peak based analysis (Genie
2000) and spectral unmixing algorithm. DL refers to the detection limit calculated by
Genie 2000 following the ISO 11929 standard (α = β = 0.025).
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