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Introduction

The Standard Model of particle physics provides a very precise and successful description of
interactions within matter at the smallest accessible scale.Developed along the second half
of the twentieth century, it was met with many experimental successes, the latest being the
discovery of the Higgs boson in 2012 [1, 2]. However, built around only three out of the
four fundamental interactions of Nature, it leaves aside gravity which is better described
by the macroscopic scale theory of general relativity. Not withstanding all its past and
continued confirmations by experimental measurements, the Standard Model cannot have
the final say on physics laws and would be better described as an effective theory, only
valid at the "low" energies presently accessible to human experiments. More philosophical
considerations around the strange mass hierarchy of particles,the still large number of free
parameters and the fine-tuning of one of them, the Higgs mass, all back up the search for
beyond the Standard Model theories. As yet, tentative theories developed to solve these
problems have failed to provide any experimental evidence. Similarly, cosmological open
questions such as dark matter or dark energy cannot be answered by the present Standard
Model and have lead so far to unsuccessful searches.

Another way to approach the problem is through precision measurements. Without
experimental evidence, from a particle physics point of view, of deviations from the Standard
Model predictions, there is still no clear indication as to where new physics could lie. The
goal of precision measurements is to provide such information. The recent measurement
by the CDF Collaboration of the W± boson mass in significant tension with the Standard
Model prediction [3] is an example of what precision measurement can achieve. Precision
measurements targeting very rare processes is another handle to discovering potential new
physics. The triple and quartic gauge couplings in the electroweak sector provide such
rare processes that have yet to be fully tested against Standard Model predictions. Such
processes are nowadays studied mainly with the Large Hadron Collider (LHC) operated at
CERN providing proton–proton collisions at very high energy with an unprecedented rate.
The ATLAS experiment, a detector sat at an interaction point of the LHC, allows a variety
of measurements on particles produced at its collision point.

In this thesis, the focus will be on collisions producing W± and Z bosons simultaneously,
studied with the ATLAS detector. This W±Z production is a diboson process, that is a
process involving the simultaneous production of two electroweak gauge bosons. Diboson
processes became promising channels to probe the Standard Model, as they allow studying
the electroweak triple and quartic gauge couplings. They remain nevertheless challenging
experimental targets due to their low cross section which translates in low event yields
among all the proton–proton collisions. As can be seen in Fig. 1, the total production
cross section of various diboson processes WW , ZZ, WZ are of the order of the Higgs
boson total production cross section. In addition to the high centre-of-mass energy of the
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Figure 1 Summary of several Standard Model total and fiducial production cross-section
measurements from Run 2 data, corrected for branching fractions, compared to the corresponding
theoretical expectations. From Ref. [4].

collision needed to produce both bosons, the collection of very large datasets is therefore
required. Among these diboson processes, the W±Z production, detected by its leptonic
decay, constitutes an experimental compromise between a high cross section and a clean
signature in the detector.

Moreover, the vector bosons of the electroweak sector have an interesting property which
sets them apart from the other gauge bosons of the Standard Model: they are massive.
This mass is incorporated in the Standard Model by the mechanism of Brout-Englert-Higgs
which also postulates the existence of the Higgs boson. On the other hand, this mass allows
them to have a third degree of freedom for their polarisation, associated to a longitudinal
polarisation on top of the two original transverse ones. It is therefore of interest to study
diboson processes through the prism of their polarisation to get a more detailed test of the
Standard Model.

The polarisation of the W± boson was first studied at LEP, the predecessor of the LHC,
in e+e− collisions producing a W±W∓ pair. The single W± boson polarisation fractions
were measured by the OPAL, L3, and DELPHI collaborations [5–7]. It was also measured
in ep collisions by the H1 collaboration [8]. In hadronic collisions, it was measured by the
CDF and DØ collaborations [9–11] in pp̄ at the Tevatron, in the decay of the top quark. In
pp collisions at the LHC, the ATLAS and CMS collaborations measured it in single boson
production [12, 13]. The Z boson polarisation was also measured in single boson production
by CDF, ATLAS and CMS [14–16]. As a next step for hadronic colliders, the polarisation
of single bosons independently of each other was studied in diboson processes. It was
performed for the first time in W±Z production by the ATLAS Collaboration [17], followed
by the CMS Collaboration [18]. Regarding joint-polarisation of a diboson system, the first
measurements also date back from LEP. The correlations between polarisations of both W±
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boson in W±W∓ production was studied by L3 [19] while DELPHI and OPAL attempted
to measure the joint-polarisation fractions [20, 21]. The DELPHI measurement provided
observations of the composite transverse-transverse and mixed joint-polarisation states but
failed to have enough precision to observe the longitudinal-longitudinal joint-polarisation
state. The OPAL measurement had a similarly low precision on the longitudinal-longitudinal
joint-polarisation fractions. The analysis presented in this thesis, studying W±Z production
with leptonic decay, provides the first measurement of joint-polarisation fractions in hadronic
collisions and the first observation ever of a longitudinal-longitudinal joint-polarisation state
in a diboson process.

However, the amount of inelastic proton–proton collisions produced at the ATLAS
interaction point exceeds by nine orders of magnitude the production of the most frequent
processes of interest for physicists, as visible in Fig. 1. The selection of physically interesting
events such as diboson processes needs therefore an automatised trigger system. In prepara-
tion for the Run 3 of the LHC that started in 2022, the ATLAS detector underwent several
upgrades among which the replacement of its calorimeter trigger system. It allowed the
increase of the granularity of calorimeter inputs considered at the trigger level improving
the trigger performances. This will also allow maintaining the same acceptance rate in
degraded conditions due to increased pile-up, as is expected for future runs of the LHC.
The complete redesign of the trigger electronic chain required for this new Digital Trigger
is presented in this thesis.

Chapter 1 will first present theoretical grounds for the study of the polarisation of
vector bosons in proton–proton collisions. Chapter 2 will then describe the LHC and the
ATLAS detector which provide the experimental data for the works developed in this thesis.
Chapter 3 will focus more specifically on the calorimeter trigger chain and the upgrade it
underwent before Run 3. This will allow me in Chapter 4 to describe specifically my personal
contribution to this upgrade. Going back to physics analysis, the theoretical description of
the studied W±Z production, particularly in term of polarisation, is presented in Chapter 5.
The selection and reconstruction in data of the inclusive W±Z production, along with its
associated background estimation, is described in Chapter 6. Finally, Chapter 7 will provide
a complete description of the measurement of joint-polarisation fractions in the inclusive
W±Z selected events, along with single boson polarisation fractions as an extension of
Ref. [17] on a larger dataset.

Summary of my personal contributions

As a PhD student, I was confronted to the two main aspects of the work of an experimental
particle physicist: detector development and physics data analysis. On the hardware side, I
contributed among a wide team of engineers and physicists to the already well advanced
project of the liquid Argon calorimeter Phase 1 upgrade, in what started as my ATLAS
author qualification task. On the physics analysis I joined a team of ATLAS physicists
working on the W±Z diboson process, spearheaded by my supervisor Emmanuel Sauvan.
My work aiming at joint-polarisation fraction measurement was performed within this
team. Additionally, it builds on earlier developments with the inclusive study of the W±Z
production [22] and the subsequent measurement of single boson polarisation [17] with a
fraction of the dataset used here. This latter work was mainly performed by my supervisor’s
previous PhD student Angela Burger, whose thesis I used as a reference [23].
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For the sake of clarity, the experimental and theoretical contexts of the two main
subjects treated in this thesis are presented. With increasing precision and complexity,
their description aims at making understandable the new developments I produced. In
order to clarify for the reader what is of my own work, the list below ordered by chapter
summarises my personal contributions:

Chapter 4: This chapter represents the hardware half of my thesis work. The first
section describes in detail the main components of what I was responsible for – the
configuration of the energy computation in the new Digital Trigger of ATLAS – and
how I implemented it. The second section describes the various tests I conducted for
the commissioning of this configuration and the energy computation functionality
itself, making it ready for data-taking.

Chapter 5: Here, my main contribution lies in Section 5.4. I implemented techniques to
extract polarisation fraction from an inclusive Monte Carlo sample. I compared them
and used them for various purposes, most prominently to motivate the choice of the
frame in which the measurement of polarisation fractions is performed.

Chapter 6: Minor personal contributions in this chapter include the study of the back-
ground related to migrating γ∗ and the choice of the method for the pν

z reconstruction,
more detailed in Appendix C.

Chapter 7: This last chapter represents the bulk of my personal work on the analysis side
of this thesis.

Section 7.1: I implemented the parametrisation of the fit as described in this section.
Section 7.2: While I did not develop the classification DNN described in this section,

I did perform the study justifying its choice as discriminating variable.
Section 7.3: I extended the analytical reweighting method described in this section

to adapt it to joint-polarisation measurement. I extensively explored its implicit
assumptions to understand its limitations.

Section 7.4: I did not develop myself the alternative methods described in this
section to obtain polarisation template sets.

Sections 7.5, 7.6 and 7.7: These last sections are all of my own work.
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Chapter 1

Theoretical aspects

This thesis will focus on the study of the polarisation of the W± and Z vector bosons.
These are fundamental particles of the Standard Model of particle physics which provides
a description of three of Nature’s four fundamental interactions: electromagnetism, the
weak interaction and the strong interaction, leaving aside gravity best described by general
relativity. These interactions are modelled by gauge theories each associated to a gauge
boson as the interaction mediator. The W± and Z vector bosons are gauge bosons of
the electroweak theory, itself unifying the electromagnetism and the weak interaction.
Differently from other bosons in the Standard Model, they were found to have a mass. To
accommodate this particularity without spoiling the founding principles of the Standard
Model, the Brout Englert Higgs (BEH) mechanism [24, 25] proposes the spontaneous
symmetry breaking mechanism of a scalar field which results in masses for the W+, W− and
Z bosons vector bosons along with a new scalar boson. This Higgs boson finally observed
in 2012 provides experimental backing for this mechanism. On the other hand, this mass
allows these vector bosons to have three degrees of freedom for their polarisation vector,
when massless gluons and photons can only have transverse polarisation modes. As a
result, the additional longitudinal polarisation state is a quite unique feature of W± and Z
vector bosons which is ultimately linked to the BEH mechanism. They provide therefore
an interesting probe to test this mechanism and look for new physics.

The theoretical grounds for the study of the polarisation of vector bosons at a hadron
collider will be described in this chapter. In Section 1.1, the basic principles of quantum
field theory and the components of the Standard Model will be described. Then, going into
more details, the unified electroweak theory and the BEH mechanism will be presented. A
more general purpose description of the Standard Model and the underlying quantum field
theory can be found in Ref. [26]. Next, in Section 1.2, polarisation in the context of massive
vector bosons and the specificities of the longitudinal polarisation will be described. Finally,
how these aspects of the Standard Model can be modelled in proton–proton collisions will
be explained in Section 1.3.

1



1.1. The electroweak theory in the Standard Model Chapter 1: Theoretical aspects

1.1 The electroweak theory in the Standard Model

1.1.1 Lagrangian and symmetries

The goal of fundamental physics is to develop a quantitative description of Nature’s
phenomena with the simplest components and principles. One such principle is the least
action principle which in classical physics states that the dynamics of a physical system
will tend to minimise its action S defined as

S =
∫ tf

ti

L(x, ẋ; t)dt , (1.1)

where x and ẋ denote the three components of position and speed as functions of time t.
These functions are the degrees of freedom that are adjusted by the minimisation of S.
The physics of the phenomena is thus completely described in the Lagrangian L. This
formulation of a physical phenomena in terms of a Lagrangian and other so-called variational
principles is in fact a universal and very fruitful approach.

This idea survived the various revolutions in physics at the turn of the twentieth century,
namely quantum mechanics and special relativity, at the expense of some generalisation.
From special relativity, this principle was modified to treat time and position on an equal
footing, with xµ the contravariant coordinates of the four-vector position of an event in
space-time. Combined with quantum mechanics, the physical objects considered are now
quantum fields; classical particles as the electron are now seen as localised excitations of
such fields. The action is thus redefined as a function of the density of Lagrangian L, that
will for simplicity be called Lagrangian from now on:

S[ϕ] =
∫

L (ϕ, ∂µϕ;x) d4x , (1.2)

with ϕ the fields of the considered quantum field theory. In quantum field theories, the
action appears in more complicated formulas, but the principle of encapsulating the rules
of the physical theory in the Lagrangian L persists.

In particle physics, an important application of the theory is the computation of
interaction rate of different processes. The starting point is to consider an initial state
i and a final state f composed of some combinations of the various fields of the theory.
The computation of the probability of the transition i → f is 〈i|f〉 = 〈i|S|i〉 involving the
S-matrix

S = T exp
(
i
∫

Lint (ϕin, ∂µϕin;x) d4x
)
. (1.3)

Here, Lint is the interaction Lagrangian applied on the free fields of the initial state
ϕin, and T is the time order operator. This exponential can be developed in a Taylor
expansion, leading to a formula in powers of the interaction Lagrangian. From there,
complex calculations involving the Lehmann-Symanzik-Zimmermann reduction formula [27]
allow the computation of a given transition probability at a given order in the Taylor
expansion. If the coupling constant of the interaction Lagrangian Lint is small, the higher
orders of the Taylor expansion, which effectively are in powers of this coupling constant, can
be neglected. This gives rise to a perturbative approach of the theory, with the lowest order
for a given process being called the Leading Order (LO). A much simpler way of computing
these transition probabilities is through Feynman diagrams that represent in a graphical
way allowed interactions between the fields in the initial and final states at a given order in
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the perturbative theory. Such diagrams are drawn following so called Feynman rules that
are directly derived from the structure of the Lagrangian. They allow the computation of
matrix elements Mfi of the S-matrix which are a key part in the computation of processes
cross sections.

The problem is now to develop a Lagrangian for the interactions of the most fundamental
particles of the universe. A central idea in classical physics is the conservation of certain
quantities, the most prominent example of which being the conservation of the energy
elevated as the first principle of thermodynamics. In fact, this idea is directly linked to the
idea of symmetries of the Lagrangian by the Noether’s theorem: any continuous symmetry
of the Lagrangian implies the conservation of an associated quantity and conversely any
conservation law is a sign of an underlying symmetry. The interplay between experimental
and theoretical physics along the twentieth century allowed the development of the Standard
Model of particle physics. On one side, experiments discovered particles and conservation
laws, sometimes broken. On the other side, theoretical developments tried to accommodate
these in Lagrangians built around symmetry groups, in turn postulating the existence of
new particles. One such particle, the Higgs boson, was postulated in 1964 [24, 25] and only
discovered in 2012 at the Large Hadron Collider [1, 2].

1.1.2 The Standard Model Lagrangian

Particles in the Standard Model belong to two distinct groups, bosons or fermions, as a
consequence of the Pauli exclusion principle in quantum mechanics. Bosons act as mediators
for fundamental interactions which are the electromagnetic interaction, the weak interaction
and the strong interaction – the gravitational interaction is beyond the scope of the Standard
Model. On the other hand, fermions act as the matter content to which these interactions
apply. From the relativistic equation

E2 − ~p2 = m2 , (1.4)

linking the energy E and momentum ~p of a free matter particle of mass m, a first order
differential equation, the Dirac equation, was derived to describe relativistic matter particles
in the quantum field formalism. These particles are described by Dirac spinors ψ which
obey the free Dirac Lagrangian

LD = ψ̄
(
i/∂ −m

)
ψ , (1.5)

with /∂ = γµ∂µ , γµ the Dirac matrices, and ψ̄ = γ0ψ† the adjoint of the field ψ. There are
four independent solutions to the Dirac equations, that can be grouped in two categories:
particles described by the spinor u and anti-particles described by the spinor v, which are
charge conjugate of the particles. Each spinor still lives in a two-dimensional space that can
be projected on two chirality eigenstates called left and right. This mathematical feature is
exactly equivalent in the massless case to the two helicity states ±1/2, with helicity the
projection of the spin 1/2 of the fermion on the momentum ~p.

Within the Standard Model, each of the three fundamental interactions considered is
associated to a symmetry group, itself linked to a conserved quantum number through the
Noether’s theorem:

• The strong interaction arises from the SU(3) symmetry group and is associated
to the colour charge among red, green and blue, for coloured particles, and white
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for colour neutral particles. The theory built around this SU(3) group is called
Quantum Chromodynamics (QCD). It postulates that only particles living in the
singlet representation of SU(3), that is white particles, can exist freely. This colour
confinement principle means that colour charged particles can only exist in bound
states.

• The weak interaction arises from the SU(2) symmetry group and is associated to the
weak isospin I. It has the particularity of being null for all fermions of right chirality,
meaning the weak interaction only applies to fermions of left chirality.

• The electromagnetic interaction arises from the U(1) symmetry group, and is associated
to the electric charge Q. In the original formulation, the conserved quantity is the
hypercharge Y , and the electromagnetic interaction arises as an unbroken symmetry
with Q = I3 + Y/2 after the electroweak spontaneous symmetry breaking described
in Section 1.1.3.

Different types of fermions are associated to different quantum numbers of these three
symmetry groups. Only sensitive to the weak interaction are the neutrinos of left chirality.
Then, charged leptons interact weakly and electromagnetically. The lightest and most
common of them is the electron. Together with the neutrinos, they are called leptons. Then
come the quarks, sensitive to all fundamental interactions including the strong interaction,
and as such components of atomic nuclei. The first generation of fermions is represented
in Tab. 1.1 with their associated quantum numbers. With increased masses, this first
generation is repeated with the same quantum numbers in a second and third generation,
giving all the fermions of the Standard Model as visible in the left part of Fig. 1.1. The
corresponding anti-particles are obtained by inverting all quantum numbers.

Table 1.1 Quantum numbers of fermions of the first generation. The L or R index indicates
the Left or Right chirality of the fermion. The electric charge Q is linked to the third component
of the weak isospin I3 and the hypercharge Y by Q = I3 + Y/2. The colour charge can be red
r, green g or blue b for particles sensitive to the strong interaction and is labelled colourless for
particle that are colour neutral.

Weak Isospin I3 Hypercharge Y Electric Charge Q Colour charge
electron e−

L -1/2 -1 -1 colourless
electron e−

R 0 -2 -1 colourless
electronic neutrino νe L +1/2 -1 0 colourless
electronic neutrino νe R 0 0 0 colourless
quark up uL +1/2 +1/3 +2/3 r,g,b
quark up uR 0 +4/3 +2/3 r,g,b
quark down dL -1/2 -1/3 -1/3 r,g,b
quark down dR 0 -2/3 -1/3 r,g,b

To summarise, the Standard Model Lagrangian is made invariant under the symmetry
groups SU(3)C × SU(2)L × U(1)Y . For each added symmetry, the fermion Lagrangian of
Eq. (1.5) is made invariant under said symmetry by replacing the derivative ∂µ by the
covariant derivative Dµ

∂µ → Dµ = ∂µ − igAa
µt

a , (1.6)

with Aa
µ the vectorial fields of the gauge bosons associated to the interaction, ta the

generators of the Lie algebra of the symmetry group considered and g the coupling constant
of the interaction with the fermion. To complete the Standard Model Lagrangian, a
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Figure 1.1 The Standard Model particles.

Lagrangian for the newly introduced bosons, called Yang-Mills Lagrangian, is added:

LY M = 1
4F

a
µνF

a µν , (1.7)

with Fµν the field strength associated to the gauge bosons A by

Fµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ] , (1.8)

with [., .] the commutator. Nevertheless, this Lagrangian cannot accommodate massive
particles without breaking one symmetry. Experimentally, this is in particular a problem
for the W± and Z bosons associated to the weak interaction, as we know they have a mass
responsible for their finite decay time. This is solved with a mechanism of spontaneous
symmetry breaking of the electroweak sector SU(2)L × U(1)Y as detailed in Section 1.1.3.
This mechanism uses the spontaneous symmetry breaking of the potential of an additional
scalar field φ to give a mass to three of the four gauge bosons of SU(2)L×U(1)Y . This creates
a new massive scalar boson, the Higgs boson, and leaves U(1)EM as an emergent unbroken
symmetry associated to the electromagnetism. Consequently, after spontaneous symmetry
breaking, the Standard Model Lagrangian is invariant only under SU(3)C × U(1)EM . For
SU(3)C , there are 8 generators yielding eight gauge bosons called gluons. For the broken
SU(2)L, the 3 generators are associated to the three massive gauge bosons of the weak
interaction, namely W+, W− and Z. Finally, the boson associated to the U(1)EM symmetry
is the photon γ. These bosons are represented on the right part of Fig. 1.1.

To complete the Standard Model Lagrangian, a Lagrangian Lφ must be added for the
additional scalar field φ. This field is also used to give mass to every fermions through
Yukawa couplings, bringing a final addition LY uk. to the Standard Model Lagrangian. In
total, the Standard Model Lagrangian before spontaneous symmetry breaking is

LSM = LY M + LD + Lφ + LY uk. . (1.9)
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1.1.3 The Electroweak Theory

Weak interactions are described by the SU(2)L group and, leptons and quarks of left
chirality can be arranged in isospin doublets as follow:(

νe
e−

)
L

,

(
νµ
µ−

)
L

,

(
ντ
τ−

)
L

, (1.10)(
u
d ′

)
L

,

(
c
s ′

)
L

,

(
t
b ′

)
L

, (1.11)

where d ′, s ′, and b ′ are flavour eigenstates related to the mass eigenstates d, s, b by the
Cabibbo-Kobayashi-Maskawa (CKM) matrix. Right-handed components stay as singletons
under the SU(2)L symmetry.

The electroweak theory unifies the weak interaction with the electromagnetic interaction
of group U(1)EM by considering the new group of symmetry SU(2)L × U(1)Y with Y the
hypercharge. This group has four gauge bosons W 1

µ , W 2
µ , W 3

µ from SU(2)L and Bµ from
U(1)Y . The generators of the Lie algebra of SU(2)L are the Pauli matrices labelled τa,
multiplied by 1/2. This yields the covariant derivative

Dµ = ∂µ − ig
τa

2 W
a
µ − ig′Y

2 Bµ , (1.12)

where g and g′ are respectively the coupling constants of SU(2)L and U(1)Y .

As such, the four gauge bosons are massless as any mass term in the Lagrangian
would break the gauge symmetry. A mechanism is introduced to spontaneously break the
symmetries of the group so that after symmetry breaking, mass terms appear for the three
bosons of the weak interaction. The simplest of such mechanisms was proposed by Brout,
Englert and Higgs in 1964 [24, 25]. It is based on adding a scalar field φ represented by the
isospin doublet

φ =
(
φ+

φ0

)
= 1√

2

(
φ1 + i φ2
φ3 + i φ4

)
, (1.13)

associated to the potential V

V (φ) = µ2|φ†φ| + λ|φ†φ|2, µ2 < 0, λ > 0 . (1.14)

Using the covariant derivative Dµ of Eq. (1.12), the Lagrangian of this scalar field φ is thus

Lφ = (Dµφ)†(Dµφ) − V (φ) . (1.15)

The potential V has non trivial minima degenerated on the hypersphere of radius
|φ†φ| = v2/2 = −µ2/(2λ). Analogously in 2 dimensions, the potential would have the shape
of the base of a wine bottle (see Fig. 1.2) and the minima are on a circle. The spontaneous
symmetry breaking emerges from the choice of one realisation of this minimum on the
hypersphere to become the vacuum ground state. This state is chosen arbitrarily, at the
expense of a SO(4) rotation, to be

φ0 =
(

0
v√
2

)
. (1.16)

6



Chapter 1: Theoretical aspects 1.1. The electroweak theory in the Standard Model

φ1 φ2

V (φ)

Figure 1.2 The wine bottle base shape of a potential V (φ) = µ2|φ|2 + λ|φ|4 for the field
φ = φ1 + iφ2 with µ2 < 0 and λ > 0.

The symmetry SU(2) × U(1)Y is thus broken, leaving only the unbroken symmetry
U(1)EM . From the Nambu-Goldstone theorem, this creates three massless bosons w1, w2, w3
that emerge from the unitary parametrisation of φ around the ground state:

φ = e
i
v

∑
a

τa

2 wa
(

0
v+h√

2

)
, (1.17)

where the τa/2 are the generators of the broken symmetry SU(2), and h is the surviving
scalar field that will be identified to be the Higgs boson. A gauge transformation

Ω = e
−i
v

∑
a

τa

2 wa

(1.18)

of SU(2) will transform the Lφ constituents in

φ → φ′ = Ωφ =
(

0
v+h√

2

)
, (1.19)

τaW a
µ → τaW a ′

µ = Ω τaW a
µ Ω† + i

g
Ω∂µΩ† = Ω τa

(
W a

µ − 1
gv
∂µw

a

)
Ω† , (1.20)

Y Bµ → Y B′
µ = Ω Y Bµ Ω† = Y Bµ . (1.21)

Through this gauge transformation the goldstone bosons can be made to disappear
from Lφ. For the potential V (φ) it is straight forward. In the kinetic term derivative
(Dµφ)†(Dµφ), they get absorbed in a mass term for the bosons transformed under this
symmetry. Or more precisely, linear combinations of the W a ′ and B yield the mass
eigenstates W+, W− and Z bosons.

W±
µ = 1√

2

(
(W 1

µ − 1
gv
∂µw

1) ± i(W 2
µ − 1

gv
∂µw

2)
)
, (1.22)

Zµ = cw

(
W 3

µ − 1
gv
∂µw

3
)

− swBµ with cw = g√
g2 + g′2 et sw = g′

√
g2 + g′2 . (1.23)

A fourth bosons is created by these linear combination, that will not be associated to any
mass term: the photon, gauge boson of the residual U(1)EM symmetry

Aµ = swW
3
µ + cwBµ . (1.24)
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Consequently, this mechanism, by giving a mass to the W± and Z bosons, provides
them also with an additional degree of freedom carried by the absorbed Goldstone boson.
This will be linked to an additional degree of freedom in the polarisation. Also, this unifying
mechanism implies that electromagnetism and the weak interaction are no longer separated
interactions and photons and Z bosons are fundamentally mixed.

Finally a complete description of the electroweak sector of the Standard Model Lag-
rangian can be made. The weak interaction, from a development of the interaction terms
in the covariant derivative of LD in Eq. (1.5), uses the massive gauge bosons through the
charged current Lagrangian LCC for the W± and the neutral current Lagrangian LNC

for the Z. For the leptonic isospin doublets formed of the charged lepton field ` and the
neutrino field ν, these are

LCC = g√
2
W+

µ
¯̀γµ 1 − γ5

2 ν` + g√
2
W−

µ ν̄`γ
µ 1 − γ5

2 ` , (1.25)

LNC = g√
2 cos θw

Zµ
¯̀γµ(cv − caγ5)`+ g√

2 cos θw

Zµν̄γ
µ(cv − caγ5)ν , (1.26)

with (1 − γ5)/2 acting as a projector on the left chirality state. The mixed nature of the Z
appears with the cv and ca parameters that drive vectorial and axial vectorial couplings.
From Eq. (1.23), a vectorial part from B is added to the pure left chirality part, giving

cv = I3 − 2Q sin2(θw) , (1.27)
ca = I3 , (1.28)

with θw the weak mixing angle appearing from the identification of the parameters cw and
sw of (1.23) to a sine and a cosine. The interactions between the electroweak gauge bosons
arise from the Yang-Mills Lagrangian

LY M = −1
4W

µν
i W i

µν − 1
4B

µνBµν , (1.29)

with Bµν = ∂µBν − ∂νBµ , (1.30)
and W i

µν = ∂µW
i
ν − ∂νW

i
µ + g (Wµ ∧Wν)i . (1.31)

The supplementary term for the W a
µν arises from the non abelian nature of the SU(2)L

group. Multiplied by itself, this term will yield quartic gauge couplings, and multiplied by a
partial derivative term, it yields a triple gauge coupling. Going to mass eigenstates, almost
every possible coupling with W± boson, Z boson and photon respecting charge conservation
are allowed, as exemplified in Fig. 1.3. A consequence of the orthogonality of the Z boson
and the photon is that couplings with only Z bosons and photons are forbidden.

Z/γ

W+

W−

, W+

W+

Z/γ

,

Z/γ

W+W+

Z/γ

Figure 1.3 Examples of triple and quartic gauge couplings.
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1.2 The polarisation of massive vector bosons

1.2.1 Specificities of the longitudinal polarisation

The W± and Z bosons have three degrees of freedom: two from the original massless bosons
of the unbroken SU(2)L, and one from the absorbed Goldstone boson. These appear for the
massive W± and Z bosons as three different polarisations. Let us consider a vector boson
Bµ with momentum four-vector kµ. Vector bosons being spin 1 particles, three possible
spin quantum states exist, each associated to a polarisation vector εµ. The boson field can
then be decomposed in plane harmonic waves as

Bµ = εµe±ik·x . (1.32)

The study of the Lagrangian of a free massive spin 1 boson implies

∂µB
µ = 0 ⇔ εµkµ = 0 , (1.33)

without any gauge choice. For the photon, such relationship comes at the expense of a
gauge choice which in turn destroys one polarisation mode. But for massive gauge bosons,
the three polarisations will survive, as hinted by the new degree of freedom gained absorbing
a Goldstone boson; the original four dimensions of space-time are reduced to three by
Eq. (1.33).

Choosing a frame, such that the four-momentum is expressed kµ = (E, 0, 0, kz), the two
transverse polarisation vector can be parametrised as

εµ
± = 1√

2
(0, 1,±i, 0) , (1.34)

which correspond to circular polarisations, left for εµ
−, and right for εµ

+. It can be shown that
they correspond to states of spin along the z-axis Sz = ±1. In the following, the positive
(resp. negative) helicity state will be called right polarisation (resp. left polarisation).
The third polarisation mode, which is going to be longitudinal, is orthogonal to the two
transversal polarisations, and to kµ because of Eq. (1.33). It can thus be written

εµ
0 = 1√

E2 − k2
z

(kz, 0, 0, E) = 1
m

(kz, 0, 0, E) , (1.35)

where the fore-factor using the mass m of the boson comes from the covariant normalisation
εµεµ = −1 of the space-like polarisation vectors. It clearly appears from this formula that
such polarisation cannot exist for a massless boson.

A fundamental difference arises between longitudinal and transversal polarisations:
only the longitudinal polarisation has a dependence with the energy. Consequently, in
a Feynman diagram calculation, every longitudinal polarisation increases by a power of
one the dependence in the energy of the corresponding matrix element M. This has
consequences on the cross section computation that transverse polarisation do not have.
At the high energy limit, the mass becomes negligible and kz ≈ E � m such that the
longitudinal polarisation becomes proportional to the four-momentum

εµ
0 ≈ 1

m
kµ . (1.36)
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As a result, from Eq. (1.22) and (1.23), at high energy the longitudinal polarisation
corresponds exactly to the ∂µw term, that is the Goldstone boson.

This relates to the Goldstone Equivalence Theorem [28]: a Feynman diagram com-
putation at high energy, that is replacing every longitudinal polarisation vector by the
four-momentum as shown in Eq. (1.36), is equal to the computation of the same diagram
replacing every longitudinal vector boson by a Goldstone boson. At high energy, the
longitudinal polarisation can thus allow probing the BEH mechanism. This is an alternat-
ive to probing the Higgs field properties as done in more direct Higgs boson production
measurements.

The theoretically distinct nature of the longitudinal polarisation implies that any
longitudinal polarisation vector in a matrix element amplitude computation scales with the
energy. This effects has striking consequences in the context of vector boson scattering. In
such processes, two vector bosons scatter with a quartic gauge coupling. If all bosons in
the initial and final states are polarised longitudinally, this results in an amplitude that
scales as a power of four of the energy. Such processes have a cross section blowing up at
high energy, breaking unitarity. This effect is partly mitigated taking into account, in the
amplitude computation, processes involving two triple gauge couplings with an intermediate
gauge boson propagator. However, unitarity is only restored considering also processes
where the intermediate propagator is a Higgs boson. Any deviation from the Standard
Model Higgs boson would therefore spoil the precise cancellations at work in this process.
This shows how longitudinal polarisation allows probing processes very sensitive to new
physics.

However, vector boson scatterings are very rare processes. The cross section of such
process started to be measured only very recently, with the first measurement being
performed in W±Z production in 2018 [29]. In more accessible cases, it was shown that in
diboson inclusive processes with both bosons polarised longitudinally, an amplitude zero
effect appears in the angular distribution of both bosons [30]. From an Effective Field
Theory point of view, considering polarisation can make visible the impact of interferences
of the Standard Model with new physics [31].

1.2.2 The Frame Choice

It should be noted that polarisation is not an intrinsic property of the vector bosons. For
example, the longitudinal polarisation is defined as the polarisation along the direction of
the boson. Nevertheless, the idea of the direction of a particle is not Lorentz invariant:
any boost in another direction than that of the particle in the original frame will change
this direction, meaning that the angle between this direction and the boost direction will
change. Only a boost in the direction of the particle will preserve this direction.

This can easily be seen, using the same coordinate system as for the polarisation vectors
of Eq. (1.34) and (1.35), by defining the projectors PT on transversal polarisation, and PL

on longitudinal polarisation:

P µ
T ν =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , P µ
L ν =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 . (1.37)
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Then, with a boost along the particle direction, here Oz,

Λ µ
z ν(β) =


γ 0 0 γβ
0 1 0 0
0 0 1 0
γβ 0 0 γ

 , (1.38)

one gets

[Λz(β), PL]µν = 0 . (1.39)

Whereas along an other direction in the transverse plane, for example Ox,

Λ µ
x ν(β) =


γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

 , (1.40)

one gets

[Λx(β), PL]µν = γβ


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 . (1.41)

Consequently, the choice of the frame is crucial in any polarisation study. In fact, the
choice of the vector boson direction axis, traditionally the z-axis, is what matters. Then,
any boost along this axis, for example to go into the boson rest frame, will not change the
picture in term of polarisations. In the rest frame of the boson, the polarisation vectors of
Eq. (1.34) and (1.35) become

εµ
+ = 1√

2
(0, 1,+i, 0) , εµ

− = 1√
2

(0, 1,−i, 0) , εµ
0 = (0, 0, 0, 1) . (1.42)

1.2.3 Spin density matrix

In fact, the polarisation of a vector boson is a frame-dependent intermediary step in
calculations. In normal experimental settings, the polarisation state of the colliding
particles is not completely known and a statistical description is needed. The most general
way of looking at polarisation is through the spin density operator. More details on this
section can be found in [32]. In the specific case of an object of spin S in a pure quantum
state |ψ〉, the spin density operator is

ρ̂ = |ψ〉〈ψ| . (1.43)

Generically, the density operator allows defining quantum states of which not all quantum
numbers are defined as an incoherent sum on pure quantum states. With a basis of the
Hilbert space of spin (|S,m〉)−S<m<S, the spin density operator ρ̂ will correspond to the
incoherent sum

ρ̂ =
m=+S∑
m=−S

Πm|S,m〉〈S,m| , (1.44)
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with 0 < Πm < 1 the probability of the system to be found in the state |S,m〉. It thus
clearly appears that ρ̂ is an Hermitian positive semi-definite operator represented by a
spin density matrix ρ of dimension 2S + 1. It follows from the normalisation principle of
quantum mechanics that

Tr (ρ) =
m=+S∑
m=−S

Πm = 1 . (1.45)

Consequently, the spin density matrix is diagonalisable with all eigenvalues positive and with
a sum of one. Consequently, the spin density operator described in Eq. (1.43) corresponds
to a particular case where one eigenvalue is one and all others are zero. The spin density
operator formalism thus generalises the particular case of pure quantum states. In this
formalism, the expected value 〈a〉 of a physical observable Â is given by

〈a〉 = Tr (Aρ) . (1.46)

Considering the vectorial spin observable Ŝ =
(
Ŝx, Ŝy, Ŝz

)
, this allows defining the mean

polarisation vector
~P = Tr (Sρ) . (1.47)

In classical quantum mechanics, this characterises the spin states of a particle or set
of particles. However, relativistically, this picture with spin has to be slightly modified
to take into account the additional space time symmetry originating from pure Lorentz
boosts. The solution is to consider helicity states of the particles, defined as the projection
of the spin along the momentum of the particles S · p/||p||. Considering the rest frame of a
massive particle – which is the case here – the non-relativistic spin description is still valid.
It will correspond to the helicity states description provided that the z-axis of the chosen
frame is along the momentum of the particle in the observation frame. This choice is called
the Helicity frame. Of course, what is the observation frame is dependent on what is being
studied experimentally, as will be further discussed in Section 5.4.2.

In the case of a vector boson, the associated spin density matrix can be decomposed in
the helicity frame basis of Eq. (1.42) with longitudinal polarisation, noted 0, left polarisation
noted L and right polarisation noted R. Studying multiple events where such vector boson
is produced, the spin density matrix can be – at least partially – extracted. Thus, the
diagonal elements will be called the polarisation fractions and the off-diagonal elements will
correspond to interference terms between the pure polarisation states. And from Eq. (1.45)
follows the normalisation relation on all three polarisation fractions

f0 + fL + fR = 1 . (1.48)

Considering a diboson event, the same formalism can be used, only this time, the spin
density matrix will be of dimension nine to represent the system of the two bosons. Similarly
as in single boson study, the diagonal elements will be joint-polarisation fractions. For
simplicity, the left and right polarised bosons are considered together as in a transverse
polarisation state noted T. This reduces the nine diagonal elements to four joint-polarisation
fractions defined as

f00 = ρ00,00 , (1.49)
f0T = ρ0L,0L + ρ0R,0R , (1.50)
fT0 = ρL0,L0 + ρR0,R0 , (1.51)
fTT = ρLL,LL + ρLR,LR + ρRL,RL + ρRR,RR , (1.52)
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and the normalisation relationship ensues as before

f00 + f0T + fT0 + fTT = 1 . (1.53)

In any case, the polarisation fractions or joint-polarisation fractions are only coefficients
of the spin density matrix of the vector boson. They have meaning only with the associated
basis and corresponding frame chosen for the representation of the matrix.

1.3 Proton–proton collisions at the LHC

The Standard Model processes are studied by a variety of experimental setup. The most
versatile one is the use of high energy particle collisions. Fixed target experiments were the
first experimental setup used to produce these. Later, particle colliders were considered,
allowing to reach higher centre-of-mass energies. In such experiments, two particles are
accelerated at high energies and then made to collide together. The high energy interaction
can lead to a variety of processes later studied by a detector positioned around the collision
point. Historically, the simplest form of such collisions involved electrons and positrons in
leptonic colliders. Hadronic colliders, smashing together protons or alternatively protons
and anti-protons, make it possible to reach higher collision energy. However, using a
composite particle such as the proton introduces complexities that will detailed here.

1.3.1 Parton distribution functions

Because of the confinement of the colour charge at low energy, a consequence of Quantum
Chromodynamics (QCD), quarks and gluons, together called partons, cannot exist isolated;
they always assemble to form colour neutral object called hadrons. Protons are hadrons
classically described as composed of two up quarks and one down quark. Nevertheless, the
picture is actually more complex as small and short lived energy fluctuations can create
within the proton virtual pions, that is pairs of quark-antiquarks. As opposed to the uud
valence quarks of the protons, these are called sea quarks. All these quarks are coupled in
low energy QCD interaction by gluons which as such are also components of the proton.

In QCD, the strong coupling constant αs decreases when the energy scale considered
increases. This leads to an asymptotic freedom of partons which allows considering protons
colliding at high energy as an incoherent sum of partons each carrying a fraction of its
momentum. This is described by Parton Distribution Functions (PDF) that can be noted

fq/p

(
xq, Q

2
)
.

They are the probability density function associated to a parton q holding a fraction xq of
the momentum of the hadron. These PDF are determined for a given hadron, here denoted
by the index p for protons, and for a specific parton, be it a quark, anti-quark or a gluon,
here denoted by the index q. Finally, the PDFs are determined at a certain probing energy
scale Q2. They are obtained experimentally with lepton-proton collider at a given probing
energy and can be converted to another energy scale from theoretical considerations.

13
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Because of sea quarks, the normalisation of the PDF of a given parton type is not
constant, but by definition of the valence quark, in a proton the following relations hold:∫ 1

0
dx
(
fu/p(x) − fū/p(x)

)
= 2 , (1.54)∫ 1

0
dx
(
fd/p(x) − fd̄/p(x)

)
= 1 . (1.55)

Also, the total momentum of the proton is recovered summing incoherently all the partons
meaning that ∫ 1

0
dx
∑

q

x fq/p(x) = 1 . (1.56)

This gives information on the repartition of the momentum of the proton among different
partons. At low energy, most of the momentum is carried by the valence quarks u and d.
Nevertheless, at higher energy, gluons take more importance as illustrated in Fig. 1.4 for
the CT10 PDF set1 . The valence quark are still found on average with around a third of
the momentum of the proton as the simple uud picture would suggest. Yet at high energy,
overall, gluons represents the highest share of the proton momentum. On the other hand,
the anti-quarks of the sea always represent a small share of the momentum and hold on
average less than 10 % of the momentum.
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Figure 1.4 Parton distribution functions of the proton from the CT10 PDF set [33] at an energy
scale of 2 GeV (a) and 85 GeV (b). From Ref. [33].

1.3.2 Deep inelastic scattering in proton–proton collisions

In pp collisions, deep inelastic scattering happens when partons within the proton interact
directly. Other processes can be elastic scattering – when both protons are left intact and
only deviated after the collision – and diffractive collisions – when one are both protons are
excited leading to some activity after the collision. Processes studied at hadronic colliders
usually originate from deep inelastic scattering.

The description of such processes mixes different energy scale. Their perturbative
description rests on the Taylor expansion of Eq. (1.3). The various terms of the Taylor
expansion are in powers of the coupling constant of the interaction Lagrangian. The QCD

1The CT10 PDF set is the main set used in the Powheg Monte Carlo generation described ahead.
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coupling constant αs is typically close to 0.1, and evolves with the energy scale. At high
energy, the hard scattering process between the partons can be treated with perturbative
QCD calculation. Nevertheless, this usually can only be done up to Next to Leading Order
(NLO) because of the complexity of the calculation and cutting the Taylor expansion at a
fixed-order leaves some quantities to be divergent. This is treated with a renormalisation
procedure that relies on a chosen energy scale µR, typically chosen to be the energy scale of
the interaction studied. The renormalisation will absorb divergences in physical parameters
like the value of a coupling, and the dependence on µR of the computed quantity will vanish
as more and more orders are taken into account.

This treats well the problem of Ultra-Violet divergences that arise from the fixed-
order computation in perturbative theory. In QCD, new difficulties arise from Infra-Red
divergences, linked to the high value of the coupling constant at low energy and the invalidity
of the perturbative treatment. Another energy scale is used to treat these divergences
called the factorisation scale µF . Below this scale, in the soft QCD regime, the perturbative
description is replaced by other descriptions depending on the context. In the initial state of
the collision, PDFs as described in Section 1.3.1, are used to model the soft QCD processes
taking place within the proton.

A pp collision is thus described with a combination of PDF to model the initial state and
perturbative theory cross section calculation to model the hard scattering of two partons in
the collision. This is represented by the factorisation formula [34]

σpp→X(s) =
∑

a,b∈{q,g}

∫ 1

0
dxa

∫ 1

0
dxbfa/p

(
xa, µ

2
F

)
fb/p

(
xb, µ

2
F

)
σab→X

(
xaxbs, µ

2
R, µ

2
F

)
(1.57)

with σpp→X(s) the total cross section of the production of X in pp collisions at centre-of-
mass energy

√
s; σab→X (xaxbs, µ

2
R, µ

2
F ) the computed cross-section of the parton–parton

interaction between parton a and b producing X, with xa and xb the fraction of momentum
carried by the partons and thus xaxbs the energy of the cross-section calculation; fa/p, fb/p

the PDFs of the partons in proton. Typically, the scales µR and µF are chosen equal.

1.3.3 Modelling of inclusive pp collisions

The cross section σpp→X computed with Eq. (1.57) corresponds to the inclusive production
of X in pp collisions. It however does not specify anything on X subsequent evolution and
possible particles produced alongside. The cross sections of the parton processes σab→X

are typically computed with Monte Carlo generators. The resulting final state particles
are said to be at Born or parton level, and their subsequent evolution through soft physics
processes before detection has to be modelled [34].

Born leptons, through final state radiations, will radiate photons and be reconstructed
in a cluster by the detector. This final object, is called a dressed lepton. This evolution is
even more striking for final state quarks and gluons. They will first evolve through parton
showers, with multiple gluon radiations and quark pair productions. When the energy of
the showering partons becomes small enough, the QCD colour confinement starts to form
colour neutral particles in a process called hadronisation. The formed hadrons, e.g. pions,
kaons, B-mesons, are usually unstable and will decay in other hadrons. This complex final
state is said to be at the particle level. The complex structure of these parton showers are
grouped in cones named jets. These jets are the experimental object considered by the
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particle detector around the collision point. Additionally, beyond the main process, the
other partons in the initial protons can create secondary parton interactions. Along with
the beam remnants after the collision, these constitute underlying events. All these soft
physics processes around a pp collision are summarised in Fig. 1.5.

Figure 1.5 Sketch of all the different processes in a pp collision as modeled by a Monte Carlo
generator. The incoming protons are represented by green blobs in the horizontal direction. The
blue lines represent the interacting partons and their initial state radiations. The red blob in
the centre represents the hard scattering between two partons. The subsequent parton shower is
represented in the tree like structure in red. The following hadronisation is represented in light
green, with each small dark green blob denoting a decaying hadron. The radiated photons are
represented by yellow lines. A secondary parton interaction is represented in the purple blob. The
beam remnants are the light blue blobs. From Ref. [34].

The hard scattering is modelled through a Monte Carlo computation of the matrix
elements of the considered process. Monte Carlo generators such as MadGraph [35] or
Powheg [36] can usually perform this computation at LO or NLO. Nevertheless, the
soft physics processes described earlier are usually not modelled by the main Monte Carlo
generator and require a dedicated program abusively called parton shower generator, such
as Pythia [37]. From the parton level they will generate parton showers, with each parton
having a probability to split in two, be it from gluon radiation or quark pair production.
This showering process makes up for higher order QCD left out from the main diagram
computation, and are branched on each final state parton. Then, dedicated algorithms
of matching and merging are responsible for avoiding double counting with the higher
orders computed in the hard scattering matrix elements. This makes it possible to interface
the parton shower generator to a main generator [38, 39]. The hadronisation cannot be
computed directly and is thus modelled by algorithms based on the string model or the
cluster model. The parton shower generator Pythia uses the string model. Another Monte
Carlo generator is Sherpa [40]. It internally does everything from the hard scattering matrix
element computation to the soft physics, and relies on the cluster model for hadronisation.

16



Chapter 2

The LHC and the ATLAS detector

The European Organisation for Nuclear Research (CERN) was established in 1954 as a
peaceful international organisation promoting fundamental Physics research in second world
war devastated Europe. Situated at the French-Swiss border, close to Geneva, the CERN
developed, among other experiments, a succession of particle accelerators reaching ever
increasing collision energies. After the Synchrocyclotron (1957), the Proton-Synchrotron
(1959), and the Super-Proton-Synchrotron (1979), a circular tunnel of 26.7 km was dug for
the Large Electron Positron (LEP) collider that started operations in 1989. Finally, this
tunnel was reused to give way to the Large Hadron Collider (LHC) [41] in 2008, currently
the most powerful particle accelerator in the world, with a design centre-of-mass energy
of 14 TeV. The design, operations and future prospects of this particle collider will be
described in Section 2.1. The LHC hosts four experiments: ATLAS, ALICE, CMS and
LHCb. The work presented in this thesis was performed within the ATLAS Collaboration.
The ATLAS experiment [42] will be described in Section 2.2, sub-detector by sub-detector
with a focus on the Liquid Argon calorimeters.

2.1 The Large Hadron Collider

2.1.1 Luminosity

A particle collider is characterised by its centre-of-mass energy
√
s, which determines

the type of physics processes allowed, and its luminosity which describes the amount of
collisions taking place at the interaction point. For a given physical process created in
particle collisions, the production rate dN/dt at centre-of-mass energy

√
s is

dN

dt

(√
s
)

= L · σ
(√

s
)
. (2.1)

This is the product of the cross section σ, holding all the underlying physics of this process
and directly dependent on the energy, and a parameter depending only on the proton beam
characteristics, called the instantaneous luminosity L.

Along with a design centre-of-mass energy in its collision of
√
s = 14 TeV, the LHC is

also characterised by a high nominal instantaneous luminosity of 1 × 1034 cm−2 s−1. For
comparison, this is two orders of magnitude above the peak instantaneous luminosity of
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the Large Electron Positron collider [43] or the Tevatron, an older pp̄ collider located at
Fermilab [44]. The instantaneous luminosity at the LHC characterises the proton beams,
aggregating the beams parameters in the following way,

L = N2
b · nb · frev

4πσxσy

F , (2.2)

where
• Nb is the number of protons per bunch. The nominal value at the LHC is 1.15 × 1011.

• nb is the number of bunches per beam. The nominal value at the LHC is 2760.

• frev is the revolution frequency of the LHC, of 11.245 kHz. This parameter is directly
linked to the time taken by particles to travel along the length of the LHC ring at
the speed of light.

• σx and σy are the transverse dimension of the beam at the interaction point. They
are of the order of 10 ţm.

• F is a geometric reduction factor, between 0.3 and 1, originating from the crossing
angle at the interaction point.

This can be rewritten

L = N2
b · nb · frevγ

4πεnβ∗ F , (2.3)

with γ the relativistic gamma factor, and introducing parameters governing the shape of
the beam which are

• the normalised emittance εn, which holds information on the proton density in the
beam. It should be the lowest possible; its nominal value at the LHC is 3.75 ţm.

• the beta function β∗ at the interaction point. The β function is the envelop of the
beam, and the squeezing at interaction point should make it the lowest possible. Its
nominal value, dependent on the interaction point considered, is 55 cm for the ATLAS
and CMS detectors.

Since the cross section of a physics process is constant in time, one can integrate Eq. (2.1)
over the running period of the collider to obtain the so-called integrated luminosity L, as
the factor to a cross section to get the event yield of a process.

2.1.2 The LHC machine and operation

The LHC was installed in the pre-existing tunnel of the Large Electron Positron collider,
26.7 km long, 3.8 m wide and situated approximately 100 m under the surface. Differently
from its predecessor, the particles collided are of the same sign, and as a result they rotate
in two separate opposite direction beams curved by oppositely-poled magnets. Because of a
lack of space in the tunnel, both beams are in the same yoke visible in Fig. 2.1(a), with two
oppositely poled magnets of around 8 T made of Niobium-Titanium superconducting coils
cooled below 2 K in superfluid helium.

Beside the circular parts of the tunnel, there are eight straight sections of a few hundred
meter in each of the eight octants of the ring as visible in Fig. 2.1(b). Four such sections
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host an interaction point with one of the experiment of the LHC: ATLAS in octant 1,
ALICE in octant 2, CMS in octant 5 and LHCb in octant 8. ATLAS and CMS are general
purpose detectors collecting high luminosity data from proton–proton collisions. ALICE
is specialised in heavy ion collisions, happening in special runs of the LHC. LHCb is an
asymmetrical detector operating at reduced luminosity and specialised in b-physics and CP
violation measurements. The beam is accelerated by radio-frequency cavities of 400 MHz
located in octant 4. Finally, a beam dump is installed in octant 6, and octant 3 and 7 host
magnets responsible for the cleaning and re-collimating of the beam.

(a) (b)

Figure 2.1 (a) A dipole magnet in the LHC tunnel. The two beam pipes are made visible by
the 3D cut inside the magnet yoke.
(b) Schematic layout of the LHC and its four experiments ATLAS, ALICE, CMS and LHCb.
Figure from Ref. [41].

The magnets of the LHC are unable to cover the full range needed to curve protons
from their original energy up to the final LHC beam energy. As a result, the filling of the
LHC ring with a proton beam is not done at once. Most CERN previous accelerators are
used in a chain shown in Fig. 2.2 to fill the LHC with a proton beam at the design energy.
First, the dihydrogen H2 of the source is ionised to obtain protons H+, and brought to
50 MeV in the linear accelerator LINAC21. Then the Proton-Synchrotron (PS) together
with its four Boosters (PSB) are responsible to bring this proton beam to 26 GeV. Then,
the Super-Proton-Synchrotron (SPS) brings it to 450 GeV. Finally this proton beam is split
in two and injected in the LHC to create the two opposite direction proton beams.

In all this process, the protons are organised in bunches. The protons arriving from the
LINAC are accelerated and grouped by the four PSB in bunches of around 1011 protons
every 25 ns, that is at a frequency of 40 MHz [41]. Considering that each bunch travels at
a speed very close to the speed of light, and the fact that the LHC ring is 26.7 km long,
theoretically there are slots for 3560 bunches in the LHC. Nevertheless, the design number
of bunches in the LHC ring is of 2760, as stated in Ref. [41]. The first reason for this is a
time gap needed by the beam dump. The kicker magnet deviating the beam to the beam
dump takes a few microseconds to ramp-up, a time during which there should not be any
proton passing through. Another reason is the LHC filling scheme which can be changed
and is responsible for variations in the number of bunches over the years.

1LINAC2 was replaced by LINAC4 as a result of the LHC Injector Upgrade that took place during Long
Shutdown 2. LINAC4 accelerates H− at 160 MeV [45].
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Figure 2.2 The CERN accelerator complex [46].

Not all the proton bunches of the final beam can be sent at once in the LHC. In each of
the accelerators of the chain from LINAC2 to the LHC, only a certain number of bunches at
speed close to the speed of light can fit given the length of the ring and their time spacing
of 25 ns. As a result, once the bunches in one intermediary accelerator have reached the
expected energy, they are sent to the next accelerator and stored in loop until this next
accelerator is filled. Then this next accelerator starts accelerating all these bunches to
the designed energy and the process is repeated (Fig. 2.3). This results in a structure of
bunches organised in trains. In the nominal design, the PS injects trains of 72 bunches to
the SPS which in turns injects such trains grouped by four in the LHC.

Figure 2.3 Filling and acceleration scheme of the LHC, from the Proton-Synchrotron Boosters
(PSB) through the Proton-Synchrotron (PS) and the Super-Proton-Synchrotron (SPS) before
sending to the LHC. From Ref. [47].

Once the two proton beams of the LHC have reached their final intensity, the LHC
accelerates them to their final energy. The whole process, with some additional time for
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squeezing and adjusting the beams, takes approximately two hours. Then the two stable
beams obtained are used in collisions at the interaction points of the LHC. The beams
intensity then goes down as the protons are destroyed in the collisions. This lasts for around
twelve hours until the moment when it is more effective luminosity-wise to dump everything
and wait for the injection of a new beam.

This LHC cycle is associated in a detector like ATLAS to a continuous period of data
taking called a run. Events recorded in ATLAS are uniquely defined by their run number,
which never resets, and their event number which resets at each run. Yet, along the run, the
beam intensity is bound to decrease, and though playing on the beam crossing parameters
(called Luminosity levelling) can maintain the instantaneous luminosity approximately
constant, its exact value along the run has to be measured and recorded. Consequently, a
run is subdivided in Luminosity blocks which correspond to a subset of events associated
to a known instantaneous luminosity. These Luminosity blocks correspond to around one
minute of data taking, that is a few hundred thousands of events.

2.1.3 The LHC timeline

The LHC was first started in 2008. A failure in a dipole magnet forced the LHC to stop and
resume in 2010 for Run-1 at a reduced centre-of-mass energy –

√
s = 7 TeV in 2010-2011,

8 TeV in 2012 – and a reduced instantaneous luminosity. After Long Shutdown 1 (LS1) used
for consolidation of dipole magnets, the LHC restarted for Run 2 reaching

√
s = 13 TeV,

close to the design beam energy, and reaching for the first time its nominal luminosity in
2016. Run 2 ended in 2018 with the luminosity reaching the double of its nominal value.
Along Run 2, from 2015 to 2018, the data taking in the ATLAS detector provided, as shown
in Fig. 2.4, an integrated luminosity of L = 139 fb−1 of data considered good for physics
analysis. This luminosity is estimated experimentally with the LUCID-2 detector [48]
located on both sides of the ATLAS detector around the beam pipe. This measurement
is calibrated with a relative uncertainty of 1.7 % [49]. This is the dataset that will be
considered in this thesis.
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Figure 2.4 Cumulative luminosity versus time delivered to ATLAS (green), recorded by ATLAS
(yellow), and certified to be good quality data (blue), during stable beams for pp collisions at
13 TeV centre-of-mass energy in 2015-2018. From Ref. [50].
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2.1.3.1 Pile-up in the Run 2 data

Collisions in a hadron collider usually do not happen one by one. For one collision of
interest, a number of additional collisions happening in its vicinity and within a short time
interval create what is called in-time pile-up. Such pile-up can originate from interactions of
proton with residual gas in the beam pipe or with a LHC collimator. But the main source
of pile-up originates from additional hard scattered proton–proton collisions, as a direct
effect of the luminosity. At bunch-crossings, happening every 25 ns, bunches of around 1011

protons from each beam interact. This usually gives rise to more than one proton–proton
collision. The mean number of interaction per bunch-crossing is defined as

µ = L · σinelastic

nb · frev

, (2.4)

where L is the instantaneous luminosity, σinelastic the proton–proton inelastic scattering
cross section, taken to be 80 mb at 13 TeV, nb the number of bunches and frev the LHC
revolution frequency. Out-of time pile-up on the other hand arises from the time response
of the detector to an interaction with particles that can last during several bunch crossings.
As a result, with more in-time pile-up comes more out-of-time pile-up.
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Figure 2.5 Shown is the luminosity-weighted distribution of the mean number of interactions
per crossing µ for pp collision data at 13 TeV centre-of-mass energy, for the full Run 2 data taking
period (blue) and per year: 2015 (yellow), 2016 (orange), 2017 (violet) and 2018 (green). The
overall mean number of collisions 〈µ〉 is given per period in the legend. From Ref. [50].

The evolution of this µ is visible on Fig. 2.5 along the four years of Run 2. After 2015,
a year dedicated to machine operations for the restart of the LHC, the nominal setup was
reached in 2016: with L = 1034 cm−2 s−1 and 2760 bunches, µ is around 25. Yet, it was
found possible to decrease the β∗ parameter from 55 cm to 30 cm in 2017 and up to 25 cm
in 2018, because of better performances than expected from the triplet magnets responsible
for the focusing of the beam. Together with an optimised formation of bunch from the PSB
to the PS, emittance was also reduced, allowing the luminosity to reach the double of its
nominal value. As a result, µ reached almost the double of its nominal value during 2017.
Increased use of luminosity levelling at the interaction points allowed reducing it to more
manageable values in 2018, around 30–40. This resulted in higher than expected integrated
luminosity, with a record of L = 65.1 fb−1 in 2018.
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An increased luminosity allows the detectors to gather evermore data and study rarer
events. But high pile-up is the price to pay, significantly interfering with the reconstruction
of events in the detectors. Another consequence of high luminosity is the degradation of
the components of the detectors because of high levels of radiations. Both effects require
the detectors to go through upgrades to cope with an increasing luminosity.

2.1.3.2 Future runs of the LHC
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Figure 2.6 LHC baseline plan for the next decade and beyond showing the collision energy
(upper line) and instantaneous luminosity (lower line). Plan as taken from Ref. [51] last updated
in February 2022.

As is visible in Fig. 2.6, the LHC is forecast to enter a High-Luminosity phase (HL-LHC)
in 2029 with the instantaneous luminosity reaching five times its nominal value2, with hopes
of pushing it up to 7.5 × 1034 cm−2 s−1. In the following twelve years or so of HL-LHC,
the data collected could reach from 3000 fb−1 up to 4000 fb−1, around ten times what will
have been collected previously. In order to reach such high luminosity, on one hand the
injection system will be upgraded to increase the beam intensity [45], and on the other
hand various systems of the LHC will have to be adapted to cope with this more intense
beam [52] (focusing triplet magnets at the interaction region, cryogenics, beam dump,
etc.). The four LHC experiments will also need to adapt to the increased pile-up ensuing
from such high luminosity, with a µ as high as 200. Additionally, many LHC systems and
sub-detectors of the LHC experiments that suffered from high radiations along the LHC
runs need replacements.

2The value of the instantaneous luminosity is given with levelling at the interaction point. Otherwise, at
the start of the run, it could be much higher.
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The upgrades needed for HL-LHC make use of two Long Shutdowns to be installed.
From 2019 to 2021, Long Shutdown 2 (LS2)3 allowed the installation of the LHC Injector
Upgrade and the Phase 1 upgrades of the ATLAS and CMS detectors. Long-Shutdown 3
(LS3) will in turn allow the installation of HL-LHC new equipments and the Phase 2
upgrades of ATLAS and CMS.

In between, Run 3 will make use of the results from the LHC Injector Upgrade [45]
together with the improvement that allowed doubling the luminosity in the previous run.
The goal is to use this Run as a full scale demonstrator of some features of High Luminosity
LHC. One such consequence is an increased brightness of the beam with a number of proton
per bunch that should reach 1.8 × 1011 [53]. Improvements from the Phase 1 upgrade
of the ATLAS experiment could as a result be used already in Run 3 to cope with a µ
that could reach 80. On the energy side, because of some failures in dipole magnets, the
nominal energy is still out of reach; the centre-of-mass energy for this run was decided to
be 13.6 TeV [54]. The value of the different beam parameters through Run 2 and forecasted
for Run 3 are summarised in Table 2.1.

Table 2.1 Parameters of the proton beam at the LHC and ensuing luminosity and pile-up. First
column give LHC design values. The second column gives the parameter for Run 2 on average
(or maximum if stated). The third column gives prospect values for the Run 3. Values are from
Ref. [55], except Run 3 beam energy from final decision value [54].

Design Run 2 Run 3
Beam energy [TeV] 7.0 6.5 6.8
Protons per bunch (at start of run), ×1011 1.15 1.2 1.2→1.8
Number of bunches 2800 2500 2800
Normalised Emittance [ţm] 3.75 2.2 2.5
Minimum β∗ [cm] 55 30 → 25 25
Peak Luminosity, [1034 cm−2 s−1] 1.0 2.0 2.0
Peak Pile-up 25 60 55
Total integrated luminosity (LHC delivered) [fb−1] - 156 350

2.2 The ATLAS experiment

The ATLAS experiment is a general-purpose experiment. It aims at collecting as much
information as possible from the particles produced by the high energy inelastic proton–
proton collisions provided by the LHC at interaction point 1. Such informations are the
energy, momentum, and charge of leptons, photons and hadronic jets. The nature of the
particle is also determined combining informations from various sub-detectors. Particles
that leave the experiment undetected, such as neutrino or exotic invisible particles, can also
be reconstructed using the conservation of momenta in the plane transverse to the beam
axis. All these informations allow reconstructing the physics process that took place at the
collision and study fundamental phenomena.

3LS2 was extended by one year to cope with the delay induced in the upgrades mainly by the Covid-19
pandemic. Run 3 was also extended by 18 months with an extended year-end technical stop (EYETS) at
the end of 2023.
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(a) (b)

Figure 2.7 The ATLAS detector (a) and the magnet system (b). Taken from Ref. [42].

The ATLAS detector can be roughly described as a 7000 t cylinder 25 m high, 44 m long
and located 80 m underground along the beam axis, with the collisions taking place at the
centre of the structure. The goal is to cover as much of the solid angle around the collision
point as possible. Consequently, ATLAS can be sub-divided in a barrel oriented along the
beam axis and two symmetrical end-caps closing the barrel on each side.

Inside the barrel, closest to the beam axis is the Inner Detector (see Section 2.2.2)
responsible for detecting the tracks of charged particles, based on two technologies: pixel
and micro-strip semiconductors, and Transition Radiation Trackers (TRT). A thin super-
conducting solenoid surrounding it is responsible for the creation of an axial 2 T magnetic
field inside the Inner Detector to curve the tracks and extract their momentum. Then, an
electromagnetic calorimeter based on Liquid Argon (LAr) technology is responsible for the
measurement of the energy of electrons and photons (see Section 2.2.3.1), stopping them in
the process. Heavier particles are stopped in the following layer, a hadronic calorimeter. In
the end-caps, it is based on LAr technology; in the barrel it is based on scintillating Tiles
(see Section 2.2.3.2). Finally, to detect the tracks of muons, the last charged particle able to
cross all the calorimeters, Muon Chambers (see Section 2.2.4) surround the whole. To curve
the muons tracks, the chambers are bathed in a toroidal 0.5–1.0 T magnetic field around
the calorimeters barrel, generated by three eightfold magnets, one large in the barrel and
two smaller ones in each end-caps. These give its name to the detector ATLAS, A Toroidal
LHC ApparatuS.

The general structure of the ATLAS detector is illustrated in Fig. 2.7(a) along with its
magnet system in Fig. 2.7(b). Most of the information in the following sections are taken
from Ref. [42].

2.2.1 ATLAS coordinates

In order to locate its different components, an ATLAS coordinate system is defined in
Fig. 2.8(a). The origin of this coordinate system is the interaction point. The x-axis points
from the collision point to the centre of the LHC ring and the y-axis points upward. This
results in a Cartesian right-handed coordinate system with the z-axis along the beam, in
the counter-clockwise direction as seen from above. The positive z side of ATLAS is labelled
side A; the negative z side is labelled side C. Spherical coordinates are used around the
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Figure 2.8 (a) The ATLAS coordinate system. (b) Correspondence between the pseudo-rapidity
η and the angle θ.

collision point, with φ the azimuthal angle around the z-axis and θ the angle with the
z-axis. The φ angle fits well with the barrel geometry of the detector while the θ angle
gives an idea of how transverse or forward/backward a particle is.

An object in the detector, a particle or group of particles, can be characterised by its
energy E and its momentum ~p. These physical quantities are linked in the four-vector
p = (E, ~p) which is normalised to the invariant mass squared m2

inv of the object with the
relation

p · p = E2 − ~p 2 = m2
inv .

The transverse momentum pT corresponds to the component of the momentum in the
(x, y) plane, pT =

√
p2

x + p2
y. The longitudinal momentum is thus pz. With this, we can

define the rapidity

y = ln
(
E + pz

E − pz

)
.

This quantity has the property of being an additive quantity under a boost along the z-axis.
Differences of rapidity are thus Lorentz invariant quantities under such boosts.

In the context of high energy collisions at the LHC, most particles can be considered
light, with masses orders of magnitude below their typical energy of a few GeV. In the
limit of minv << E, the rapidity becomes equivalent to a pseudo-rapidity η defined as

η = − ln
(

tan θ2

)
.

In practice, this quantity is used instead of the polar angle θ. As a result, a position in the
barrel can be described in the (η, φ) plane. The correspondence between the pseudo-rapidity
η and the angle θ is visible in Fig. 2.8(b). It follows that distances between objects in this
plane, used to define their isolation, can be expressed as ∆R =

√
∆η2 + ∆φ2.

Finally, the transverse energy ET defined as the energy in the transverse plane can be
expressed as ET =

√
m2 + p2

T. This can be rewritten ET = E/cosh(y), becoming in the low
mass approximation,

ET = E/cosh(η) . (2.5)
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2.2.2 The Inner Detector

Figure 2.9 The Inner Detector. From Ref. [42].

With nominal luminosity of the LHC, it is expected that approximately 1000 particles
will emerge from the multiple collisions happening at each bunch crossing. Closest to the
beam pipe, these particles cross first the Inner Detector described in Fig. 2.9. It is immersed
in a 2 T magnetic field parallel to the beam axis created by the solenoid surrounding
it. This magnetic field curves the track of particles with radius inversely proportional
to their transverse momentum pT. Consequently, the Inner detector has two main goals:
it must distinguish the tracks closer to the beam pipe in order to reconstruct all the
different primary and secondary vertices, and it must reconstruct tracks with a good enough
resolution to be able to extract the curvature radius and thus measure the pT. The Inner
Detector is a cylinder, 7 m long and with a radius of approximately 1 m allowing it to cover
a pseudo-rapidity range of |η| < 2.5. It is made of three sub-modules with, from the beam
pipe outward, the Pixel detector, the Semi-Conductor Tracker (SCT) and the Transition
Radiation Tracker (TRT).

The first two modules, made of silicon pixels and strips, are based on the semi-conductor
detector technology. When a particle crosses a semi-conductor detector, it excites electrons
within, creating electron-holes pairs. These mobile carriers travel in the junction electric field
generating an electric current recorded in a readout channel. The high geometrical precision
and low energy needed to create a hit in such detectors allow good vertex reconstruction, at
the expense of a lower number of hits. The Pixel detector allows good geometrical resolution
for vertex reconstruction, being segmented in R, φ and z. It comprises in the centre barrel
region three layers arranged in concentric cylinders, and as end-caps three disks on each
side. During Long Shutdown 1, a fourth layer named Insertable B-layer, closer to the beam
pipe, was added in order to improve vertex reconstruction and specifically b-jets secondary
vertex reconstruction. With this layer added, Pixels cover radii from 33.25 mm to 122.5 mm
with 80.4 million readout channel. Then silicon micro-strips arranged in four cylindrical
layers in barrel and nine disks per end-cap from SCT cover up to radii around 600 mm with
6.3 million readout channels.

Further away from the beam pipe is the TRT based on a different technology. Straw
tubes with a wire at the centre are filled with a gas that will ionise at the passage of a
particle. A field is maintained between the wire and the walls of the tube to collect the
signal and record a hit. Such tubes arranged longitudinally in the barrel and radially in the
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end-caps, provide R − φ and φ − z information respectively, and cover the outer part of
the Inner Detector for a pseudo-rapidity range of |η| < 2. Though less precise than silicon
detectors, they provide a much bigger number of hits, typically 30 per track, and up to 36,
with 351 000 readout channels.

The combination of Pixels and SCT with TRT allows good pattern recognition and
precise pT measurement. The nominal resolution for pT is

σpT/pT = 0.05 %pT[GeV] ⊕ 1 % , (2.6)

with ⊕ denoting addition in quadrature. However, degradation from high radiations and
the expected high increase of tracks at HL-LHC will make it obsolete. It will be replaced by
the Internal Tracker (ITk), an ATLAS Phase 2 upgrade, with planned installation during
Long Shutdown 3 before the start of HL-LHC.

2.2.3 Calorimeters

Figure 2.10 Calorimeters in ATLAS. From Ref. [42].

Right after the Inner Detector, calorimeters are responsible for the measurement of
the energy of all particles emerging from the collisions, with the exception of muons and
neutrinos. This is achieved using highly absorbent material to stop them and make them
deposit their energy in an active material. Alternating layers of absorbent and active
material create calorimeter cells each measuring a part of the energy deposited by the
original particle. These sampling calorimeters allow extracting topological information on
the energy deposit of particles, at the expense of a lower resolution. Typically, there are
two types of calorimeters: electromagnetic calorimeters able with good energy resolution to
stop light particles4, that is electrons and photons, and hadronic calorimeters stopping all
other particles, mainly hadrons from jets. There are five different calorimeter systems in
ATLAS, as shown in Fig. 2.10: two are electromagnetic calorimeters, and three are hadronic
calorimeters.

2.2.3.1 Liquid Argon electromagnetic calorimeters

When entering the electromagnetic calorimeter, electrons and photons develop an electro-
magnetic shower. Electrons and positrons loose energy mainly through bremsstrahlung,

4Developing electromagnetic showers, for example from a pion decay, can also be stopped in the
electromagnetic calorimeter.
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that is radiating a photon γ, as long as their energy is above a critical energy Ec. Below
this energy, the radiation rate becomes lower than the ionisation rate and the shower
stops developing. On the other hand, photons will interact with matter in pair production,
γ → e−e+ producing electrons e− and positrons e+ as long as their energy is above the
mass energy of the electron-positron pair. These two processes can be seen as happening
alternatively, the energy of the initial particle being split in all the branches of the daughter
particles, as is visible in the very simplified sketch of Fig. 2.11(a). The typical length for
such electromagnetic showers is called the radiation length X0 and depends on the material
used as absorber. When the daughter particles have energies below the critical energy,
they start mainly depositing their energy through ionisation. In ATLAS electromagnetic
calorimeters, the development of the shower happens in the lead plates, while the ionisation
happens in the liquid Argon (LAr) in between. The ionisation creates free electrons that
drift toward the readout electrode in the middle of the liquid Argon, as represented in
Fig. 2.11(b). This creates an electric signal that is extracted from the electrode and treated
in LAr electronics to compute the energy deposited (see Section 3.1).

(a) (b)

Figure 2.11 (a) Sketch of an electromagnetic shower. (b) Internal structure of the LAr
Electromagnetic Barrel accordion shape with alternate layers of active material (liquid Argon, in
blue), absorber (lead plates, in grey) and readout electrode (copper, in pink). From Ref. [56].

The electromagnetic calorimeter is split in the Electro-Magnetic Barrel (EMB), covering
pseudo-rapidity range |η| < 1.475 in the barrel, and the Electro-Magnetic End-Caps
(EMEC), covering pseudo-rapidity range 1.375 < |η| < 3.2 with wheels in each end-cap.
Layers of the lead absorber alternate with layers of the liquid Argon active material in
an accordion geometry in the barrel and end-caps. Such a geometry allows a complete φ
coverage without any cracks. In the barrel, the accordion waves are axial and run along φ
around the barrel. In the end-caps, the wave run along the axial z in planes that radiate
from the beam axis. The barrel is at least 22X0 thick (at η = 0) and the end-caps at
least 24X0 thick. Considering lead as absorber and a 100 GeV electron, the maximum of
the shower will happen at approximately 10X0, with an additional 16X0 to contain 95 %
of the shower. The LAr electromagnetic calorimeter does thus a good job at containing
electromagnetic showers in the relevant energy range.

Each calorimeter is split in cells with a high granularity, in the (η, φ) plane and in
depth. In the barrel, there are three layers in depth: front, middle and back. They are
preceded by the presampler, a layer of cells with only the active material. It is designed to
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take into account electromagnetic showers that could have started developing in the dead
material between the interaction point and the calorimeter. A precise representation of LAr
cells in all depths of the barrel is shown in Fig. 2.12. Having such a sampling calorimeter
degrades slightly the resolution on energy, as the energy deposited in between cells has to
be estimated. However, it provides a handle to study electromagnetic showers topologies.
Proper understanding of the development of electromagnetic showers allows then the precise
calibration of the deposited energy and estimation of the nature of the initial particle, using
shower shape variables. Such variables based on combinations of energy deposit in cells
of the shower, include Rη and wη,2, estimating the transversal spread of the shower in the
middle layer of the calorimeter, and f3 estimating the relative contribution of the back layer
in the longitudinal development of the shower. The complete description of these shower
shape variables can be found in Ref. [57] along with an assessment of their separation power
between different physics signatures.

The nominal resolution for the energy E in the electromagnetic calorimeter is

σE/E = 10 %/
√
E[GeV] ⊕ 0.7 % . (2.7)

The pseudo-rapidity range for the high granularity of the electromagnetic calorimeter
matches also that of the Inner Detector allowing for very good combined reconstruction
of electrons. Combining Eq. (2.6) and (2.7), this complementarity appears, with the
calorimeter more precise at high energy, and the tracker better at low energy.

Figure 2.12 Sketch of LAr cells in the barrel. The innermost layer PS denotes the presampler
used to correct for energy loss before the calorimeter. Then layer 1 (front), layer 2 (middle) and
layer 3 (back) are visible in a ∆η × ∆φ = 0.1 × 0.1 module called Trigger Tower. From Ref. [58].
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2.2.3.2 Hadronic calorimeters

After the electromagnetic calorimeters, hadronic calorimeters are responsible for stopping
much heavier particles, such as protons and neutrons. The shower of such particles in
the calorimeter are much messier, involving a variety of nuclear reactions. These systems
responsible for jet energy measurement are as a result less precise. The nominal resolution
for the energy E in ATLAS hadronic calorimeters is

σE/E = 50 %/
√
E[GeV] ⊕ 3 % . (2.8)

Nevertheless, beside the energy measurement, they are thick enough to contain hadronic
shower particles and prevent them to enter the muon detectors surrounding the whole. This
combined with a high pseudo-rapidity range, allows for missing transverse energy Emiss

T
computation, used for neutrino reconstruction or in exotic particle searches.

In ATLAS, the hadronic calorimeter comprises the Tile calorimeter, the Hadronic
End-Caps (HEC) and the Forward Calorimeter (FCal). The first relies on scintillating
tiles as active material, with steel plates as absorbent. It is located in the barrel and in
two extensions of the barrel in the end-caps, covering respectively pseudo-rapidity ranges
|η| < 1.0 and 0.8 < |η| < 1.7. The HEC and FCal on the other hand use liquid Argon
as active material as in the electromagnetic calorimeter, but with a different geometry.
The HEC uses copper as absorbent and covers pseudo-rapidity range 1.5 < |η| < 3.2. The
FCal located in the end-caps extends the pseudo rapidity range covered by calorimeters,
covering 3.1 < |η| < 4.9. It is split in each end-caps in three layers: the first using copper
as absorbent material aims at electromagnetic measurement, the two latter use the denser
tungsten and aim at hadronic jet measurements.

2.2.4 The Muon System

Figure 2.13 Muon detectors in ATLAS. Taken from Ref. [42].

The Muon System constitutes the outermost part of ATLAS, and aims at providing
measurements on muons, the last detectable particles left after crossing the other inner
sub-detectors. It comprises four different sub-detectors described in Fig. 2.13: Monitored
Drift Tubes (MDT) and Cathode Strip Chambers (CSC) used for precision tracking, and
Resistive Plate Chambers (RPC) and Thin Gap Chambers (TGC) used for triggering and
complementary to the first two. All these detectors are based on similar principles, with
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a gaseous chamber that will ionise at the passing of a particle; the ionisation electron
then drift to the cathode creating an electric signal. The bending of the muon tracks is
performed by toroid magnets in the barrel and the end-caps (Fig. 2.7(b)). This bending
happens mostly in the plane containing the beam axis at constant φ, in a non trivial way
as the intensity of the magnetic field is not constant, specifically in the transition region
between barrel and end-caps toroids.

The MDT, the main component of the Muon System, is made of Ar/CO2 filled tubes
with a wire at the centre collecting the ionisation electron. This gives the coordinate of
a hit in the bending plane (η, z) with a precision of 35 ţm. It is located in three layers
around the barrel at 5 m, 7.5 m and 10 m from the beam axis and in four wheels in each
end-caps at |z| ≈ 7.4 m, 10.8 m, 14 m and 21.5 m; this shows the Muon System is the main
driver for the ATLAS detector gigantic dimensions. This covers a pseudo-rapidity range
of |η| < 2.7. Nevertheless, the innermost wheel in the end-caps has to cope with more
demanding conditions, being in the forward region (2.0 < |η| < 2.7) were most produced
particles are found, and relatively close to the interaction point. There, the MDT is replaced
by the CSC, which instead of tubes has chambers filled with multiple wires and a cathode
segmented in strips. They have a higher rate capability and are able to get a rough estimate
of the position in the non-bending plane, giving access to the φ coordinate.

The trigger chambers RPC and TGC, the first one in the barrel, the second one in
the end-caps, serve three purposes. First, with an excellent intrinsic time resolution below
5 ns, they can provide bunch crossing identification. They also provide very fast estimation
of the crossing of certain muon pT thresholds. This is used in the Level-1 trigger (see
Section 2.2.5). Finally, they provide a measurement of the φ coordinate to complement the
MDT precision measurement. This is achieved, for RPC with resistive plates as electrodes
kept very close to each other, 2 mm apart. The high electric field in between provides an
avalanche of electrons at each ionisation ensuring good time resolution, at the expense
of a geometrically less precise measurement. The TGC relies on similar principles, only
replacing the anode by multiple wires.

In the end, the Muon System in ATLAS allows precision measurement of muons tracks
in all three coordinates, allowing a stand-alone pT resolution of 10 % for a 1 TeV muon. Due
to the intense radiation degradations and the expected even more challenging luminosity
condition, the innermost wheel in each the end-cap was replaced as a Phase 1 upgrade by
the New Small Wheels.

2.2.5 The trigger system

The high luminosity of collisions in the ATLAS detector entails a high number of events to
be recorded. This represents an amount of data impossible to manage. Only considering the
182 468 cells of LAr calorimeters, and encoding the output of their corresponding readout
channel on 12 bits at the 40 MHz frequency of bunch crossings, almost 100 Terabits are
produced per second. On the other hand, looking back at Fig. 1, it appears that the
cross section for pp inelastic scattering at

√
s = 13 TeV is approximately seven orders of

magnitude higher than that of most common electroweak processes, and nine orders of
magnitude higher than that of the W±Z pair production process studied here. As a result,
only very few events among all those produced are interesting for the physics program
of the ATLAS experiment, and this allows dumping all the others, reducing greatly the
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problem of the data storage. The selection of physically interesting events is done by a
variety of systems called Triggers.

The trigger in ATLAS is separated in two levels: a Level 1 (L1) trigger responsible
for reducing the event rate from 40 MHz to 100 kHz, and a High Level Trigger (HLT)
reducing it further to 1 kHz [59]. The L1 trigger uses custom electronics to perform fast
computations on information from specific ATLAS sub-detectors. For muons, the RPC and
TGC described in Section 2.2.4 are used to trigger on high pT. In the calorimeter, a reduced
granularity is used grouping cells in modules typically of ∆η× ∆φ = 0.1 × 0.1 called Trigger
Tower, as visible in Fig. 2.12, allowing for the selection of high energy clusters as signs of
electrons, photons, tau, jets, and Emiss

T . With these information combined, the L1 trigger
determines if a L1 accept should be delivered or not. This decision should occur within
2.2 ţs after the considered bunch crossing, to avoid an overflow of the buffer where standard
readout data is stored meanwhile. After a L1 accept, the data from the main readout is
sent to the HLT along with the L1 trigger data. The HLT uses a computer farm to perform
higher level algorithms on data and reduce the event rate to 1 kHz. Differently to the L1
trigger limited by the speed at which data can be written on disk, the HLT is actually
limited by the amount of offline computing resources, such as disk storage space, available.
Ultimately, the HLT output rate, already five times higher than first expected, cannot be
increased for lack of computing resources, and can only be reduced at the expense of physics
performances.

With the planned increase in luminosity and the ensuing increase in pile-up, the L1 accept
and HLT rate would increase dramatically. To keep the same rates without increasing energy
or pT thresholds at the expense of physics performance, both triggers have to improve their
rejection rate. This is done in the ATLAS Phase 1 upgrade mainly by improving the L1
Calorimeter trigger (L1Calo) and crucially its input data as will be described in Chapter 3.
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Chapter 3

Phase 1 upgrade of the Liquid Argon
calorimeter

The primary motivation of the ATLAS Phase 1 upgrade is to improve the Level-1 trigger
and maintain similar acceptance rates in degraded conditions due to a higher pile-up. On
the calorimeter side, the driving idea is to improve the input data in the trigger processor by
replacing the coarse grouping of cells in Trigger Towers by a finer grouping in Super Cells.
This increased granularity visible in Fig. 3.1, improves the energy resolution measured and
allows the use of shower shape variables at the trigger level. For further improvement, the
signal coming from the detector cells is digitised in a new trigger processing chain called
Digital Trigger. The ensuing improvement in L1 trigger efficiency and background rejection
should allow it to keep the same rate at 100 kHz with similar low pT thresholds, around
25 GeV, for a luminosity at L = 3 × 1034 cm−2 s−1 and average number of interactions per
bunch crossing at 〈µ〉 = 80 [57].

(a) (b)

Figure 3.1 An electron with ET = 70 GeV as seen by the Level-1 Calorimeter electronics with
inputs from Trigger Tower (a) and from SuperCells (b). From Ref. [57].

However, replacing Trigger Towers by Super Cells will increase roughly by one order of
magnitude the amount of cells to be managed by the trigger electronics. This requires a wide
upgrade of the LAr calorimeter electronics from the front-end to back-end, incorporating
the Digital Trigger electronics. The LAr electronics is responsible for the computation of
all energies recorded in all LAr cells at every bunch crossing, with as input the analogical
ionisation signal of each cell. After a description of LAr electronics and the energy
computation process in Section 3.1, based on Ref. [57, 58], the components of the Phase 1
upgrade new Digital Trigger will be described in Section 3.2.
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3.1 Energy computation in LAr electronics

3.1.1 Overview of the LAr electronics

The pulses from the 182 468 cells of all the LAr calorimeter sub-detectors EMB, EMEC,
HEC and FCal are treated in a readout electronics described in Fig. 3.2. This architecture
can be split in front-end and back-end parts that have different locations. The front-end
is located on detector, in 58 Front-End Crates right outside the LAr cryostat, in the gap
between the barrel and end-caps, and on the outer face of the end-caps. This electronics
has limited access and must be radiation tolerant. The back-end electronics is housed in
the USA15 counting room, off detector but still in the ATLAS cavern.

Figure 3.2 Schematic block diagram of the original LAr readout electronics. The ionisation
signal proceeds from the cryostat to the on-detector Front-End Crate and finally to the back-end
electronics in the USA15 counting room. This diagram is valid for EMB and EMEC calorimeters,
slight changes would be needed for HEC and FCal. From Ref. [57].

A Front-End Crate (FEC) houses around 20 boards of four main different types: Front-
End Boards (FEB), Tower Builder Boards (TBB), Calibration boards and Controller boards.
The majority of boards in Front-End Crates are FEBs, responsible for the amplification,
shaping and buffering of the analog signal of 128 LAr cells from a specific transversal layer
of the calorimeter. Upon a L1 accept, the signal is then digitised and sent to the back-end.
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A component of the FEBs, the Layer Sum Board (LSB) sums the analog signal in one
layer as an input for the TBB. It in turn sums the analog signal from different layers to
form Trigger Tower signals. The Calibration board delivers pulses similar to the ionisation
signal in order to calibrate the readout-electronics. Finally, the Controller board receives
and distributes the LHC 40 MHz clock and other configuration or control signals. For
completeness, some FEC host Monitoring boards that are used to read out various monitors
such as temperature or mechanical constraints.

The back-end houses mainly Read Out Drivers (ROD) in VME crates1. The RODs
are mainly for the computation of energy from the stream of signal samples released from
the front-end and corresponding to a L1 accept (see Section 3.1.2). There are also various
boards used for communication with the VME crates (labelled CPU board) or Front-End
Crates (labelled SPAC master board), and Trigger Busy Modules responsible for Trigger,
Timing and Control (TTC) signals (such as the LHC clock) in their own VME crate. The
L1Calo trigger system receives analog signals from the TBB and equivalent signals from the
Tiles calorimeter to make the L1 accept decision. The L1Calo system achieves this through
several computations: the pulse is sampled at 40 MHz, the bunch crossing is identified using
the pulse shape and the transverse energy is computed using a look-up table.

3.1.2 Energy computation with Optimal Filtering Coefficients

Figure 3.3 Signal shape from the ionisation pulse (triangle) and after the shaping in the
Front-End Board (curve with dots). The time scale origin is the bunch crossing when the energy
was deposited. The dots represent the successive bunch crossings. The vertical axis represents the
normalised amplitude of the signal. From Ref. [58].

The ionisation signal coming from the LAr cells is typically a triangle, as shown in
Fig. 3.3, decreasing steadily during 400 ns in the EMB2. However, with a bunch crossing
every 25 ns, this long tail is a problem. It creates what is called out-of-time pile-up, meaning

1The Versa Module Eurocard (VME) crate is a type of modular crate electronics. It is a box open at its
front end, and with the back end containing power and data connectors. Rails on the side allow various
electronic modules to be inserted.

2The drift time varies with η in the EMEC.
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the calorimeters still record energy deposited from previous bunch-crossing in addition to
other in-time pile-up events happening at the same bunch crossing. One has to imagine
the electrical signal as the superposition of such triangles distributed randomly depending
on if a particle deposited energy at a specific bunch crossing or not. With tails lasting
almost 20 bunch crossings, a lot of out-of-time pile-up is created. To reduce this, the signal
goes through a shaper becoming more peaked right after the energy deposit and diving
to negative values subsequently in order to have a net null area, as visible in Fig. 3.3. A
consequence of this bipolar shape is that the average output value of a cell is zero, effectively
subtracting the out-of-time pile-up baseline. This is only valid for long bunch trains as the
pile-up contribution is then on average constant; around bunch trains start or end some
corrections are required. The shaping characteristic time is chosen as an optimum between
pile-up noise minimisation and electronic noise minimisation [58]. This shaped signal is
then sampled at the bunch crossing frequency by an Analog-to-Digital Converter (ADC) in
12 bits values called ADC counts. This sampling however degrades slightly the cancellation
of the out-of-time pile-up by the bipolar shape.

The signal after going through the shaper is characterised by three important parameters:
its pedestal, its amplitude and its time delay. The pedestal corresponds to an overall offset
of the signal allowing for the negative part in the tail used to cancel out-of-time pile-up.
The amplitude of the signal – minus the pedestal – is proportional to the amount of energy
deposited. The time delay corresponds to the time between the recorded peak and the
correct associated bunch crossing. This delay arises mainly from the shaping as a systematic
effect of around 50 ns, the shaping time. For better precision, the phase τ is defined as the
instant when the peak is found within the 25 ns of a bunch crossing.

Upon a L1 accept, five samples are sent to the RODs where the energy deposited E and
the phase τ are computed using a method from signal processing theory named optimal
filtering [60]. The normalised bipolar shape of the signal is known and labelled g(t). With
a time origin at the assumed crossing time, the signal S(t) can be parametrised with the
amplitude A and the phase τ , as

S(t) = A g (t− τ) .

The signal is sampled at every bunch crossing ti in ADC counts Si, that is only positive
values. The bipolar shape and its negative value tail is recovered by subtracting the pedestal
p, and S(t) should be replaced by Si − p. With a first order Taylor expansion around τ = 0,
noting gi and g′

i the values of g(ti) and its first derivative g′(ti) at the sampling time ti, the
signal samples become

Si − p = A gi − Aτ g′
i + ni ,

the additional term ni being a random noise term. From there, two random variables u
and v are defined,

u =
N∑
i

ai (Si − p) ,

v =
N∑
i

bi (Si − p) .
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With N an arbitrary number of samples, the sets (ai)0<i<N and (bi)0<i<N are coefficients to
be determined with a constrained minimisation. The following requirements are imposed,

〈u〉 = A =
N∑
i

aiA gi − aiAτ g
′
i ,

〈v〉 = Aτ =
N∑
i

biA gi − biAτ g
′
i ,

the noise term average 〈ni〉 = 0 disappearing. This yields the constraint terms

N∑
i

ai gi = 1 ,
N∑
i

ai g
′
i = 0 , (3.1)

N∑
i

bi gi = 0 ,
N∑
i

bi g
′
i = −1 , (3.2)

for the minimisation of the variances

Var(u) =
N∑
i

N∑
j

aiajRij , (3.3)

Var(v) =
N∑
i

N∑
j

bibjRij , (3.4)

with Rij = 〈ninj〉 the noise autocorrelation function at time tj − ti. From there, with
Lagrange multipliers, it is possible to extract the two unique sets (ai)0<i<N and (bi)0<i<N

of Optimal Filtering Coefficients (OFC) [60]. In the end, the amplitude in ADC counts A
and the phase τ are expressed with OFCs as

A =
Nsamples∑

i

ai (Si − p) , (3.5)

τ = 1
A

Nsamples∑
i

bi (Si − p) . (3.6)

In physics runs since Run 2, for each triggered event, four ADC count samples are sent
to the RODs. In this case, four OFCs ai and bi are needed and in Eq. (3.5) and (3.6),
Nsamples = 4.

3.1.3 Calibration coefficients

In the LAr readout electronics, the amplitude of the signal is proportional to the energy
deposited in the calorimeter cell. This proportionality factor is a combination of different
effects [61] and as such the energy can be expressed as

E = FDAC→ţA · FţA→MeV ·
(
Mphys

Mcal

)−1
· CHV ·

Nramps∑
m

Rm (AADC)m . (3.7)

From right to left,
• AADC is the signal amplitude in ADC count as computed with OFCs as in Eq. (3.5).
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• Rm are the coefficients of a polynomial of degree Nramps in powers of AADC at the
degree m. This polynomial fits the conversion from unit current (DAC) to ADC
counts accounting for possible non-linearities. In the RODs, a simple linear fit is used.

• CHV is a correction factor applied when the high voltage is not nominal. This
correction originates from the η dependence of the high-voltage needed in the cells of
the EMEC which is not fully achieved for practical reasons, or more generally because
of occasional leakage current. Its estimation is described in Ref. [62].

• Mphys/Mcal is a correction factor used to take into account the difference between the
pulse height in calibration runs and in physics runs.

• FţA→MeV = (I/E · fsampling)−1 is a conversion factor from the current in ţA to the
energy deposited in the active and passive part of the calorimeter cell. It depends
on the energy to current ratio I/E coming from the characteristics of the copper
electrode and the ionisation potential of liquid Argon, and of the sampling fraction
fsampling linking the total energy deposited to the energy deposited in the liquid Argon
active phase. Both are estimated from test beam data for LAr cells [61].

• FDAC→ţA is a conversion factor from the current in DAC units to ţA. It is defined by
the calibration board specificities, and the cell motherboard injection resistor.

Some so-called calibration coefficients need regular updating for all LAr cells. These
coefficients are the pedestal p, the OFCs ai and bi, the ramp coefficients Rm and the
Mphys/Mcal coefficient. Three types of calibration runs are used to obtain them:

Pedestal run: In such runs, no calibration pulse is sent to the calorimeter cells. For each
cell, typically Nev ≈ 1000 events are recorded with typically Nsamples ≈ 7 samples
for each. With no signal injected, the distribution of the Nevents ×Nsamples samples
is used as visible in Fig. 3.4. The mean will give the pedestal p and the standard
deviation will give the noise σ. This noise is fully incoherent, coherent noise sources
having been identified and corrected in the past [63]. From there, the normalised
noise autocorrelation matrix is computed as Rij/σ

2 = 〈(si − p) × (sj − p)〉/σ2, with
〈.〉 noting the average on Nev events. This will be used for the OFC computation in
the minimisation of Eq. (3.3)–(3.2).

Figure 3.4 Pedestal distribution in ADC count for one LAr cell over 2000 events with 6 samples
recorded. From Ref. [61].
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Delay runs: These runs aim at obtaining the shape of the signal of known amplitude
after amplification and shaping. A fixed amplitude pulse is sent to LAr cells and
32 samples are recorded. This is reproduced 24 times with a time delay of 1.04 ns
in order to cover the time difference of 25 ns between two bunch crossing. All the
recorded samples are reordered in time, thus reconstructing the calibration signal
pulse with a 1.04 ns sampling time. Then the pedestal p is subtracted in order to
recover an estimate of the normalised shape g(t) of the signal. The cells are pulsed
in various patterns in order to mitigate cross-talks3. The obtained shape gcal(t) is
visible for one cell in Fig. 3.5(a).
The noise autocorrelation matrix Rij – obtained in pedestal runs – and the normalised
shape of the calibration pulse gcal(t) are the elements of Eq. (3.1)–(3.4) needed to
extract the OFC sets for amplitude and phase calculation of a given LAr cell4. Yet,
the calibration pulse is only an approximation of the triangular physics pulse using
exponentials. With differences in the injection point of the current and parasitic
inductances in the calibration cables this creates shape differences with the physical
ionisation signal. Electrical models simulating the detector and the electronics chain
are used to deconvolve these differences and obtain the ionisation pulse shape gphys(t).
This reshaping modifies the amplitude of the signal as visible in Fig. 3.5(b). A
factor Mphys/Mcal is used to account for this change in amplitude, and propagated to
Eq. (3.7). As a result, for each cell, two sets of OFCs can be extracted: calibration
OFCs use the shape gcal(t) and physics OFCs use the derived shape gphys(t). The
latter will be used by the RODs in physics run.

(a) (b)

Figure 3.5 (a) Pulse shape from a LAr front layer cell reconstructed in delay runs with (black)
and without (red) cross-talk correction. (b) Comparison of normalised calibration pulse shape
(black) and derived normalised physics pulse shape (red) for one middle layer EMB LAr cell. Both
from Ref. [63].

Ramp runs: In ramp runs, calibration pulse with currents DAC values spanning the full
range allowed, from 0 to 65 500, are sent to the cells. For each DAC value, 200 events
are recorded with five samples sent to the RODs. There, the peak amplitude in
ADC counts AADC is reconstructed with optimal filtering using the calibration OFCs.

3These cross-talks arise from leakage of the calibration pulse current in neighbouring cells. This is
responsible for about 8 % loss in the injected current.

4The derivative of the shape g′(t) is numerically computed from the normalised shape g(t).
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Finally, the peak amplitudes are fitted by a linear relation DAC = R0 +R1 AADC . The
R0 ramp coefficient is only used for EMB cells to keep non-linearities low enough [63].
Consequently, in Eq. (3.7), Nramps = 1, and most of the time only the R1 value is
non zero. This value is obtained with a ratio as displayed in Fig. 3.6 for LAr cells in
various layers.

Figure 3.6 Slope term R1 (labelled G1 in the figure) obtained from ramp runs for front, middle
and back layers of 128 EMB LAr cells of a FEB. From Ref. [63].

3.2 The Digital Trigger upgrade

3.2.1 Expected improvements

The Phase 1 upgrade for the LAr calorimeters consists mostly in the replacement of the
Trigger Tower based trigger system as described in Section 3.1.1, by a new Digital Trigger.
Its main feature is the use of a higher granularity at the trigger level with Super Cells. A
Trigger Tower in the barrel is, as shown in Fig. 3.7, replaced by 10 Super Cells. In other
regions of the LAr calorimeters, the improvement in the geometry can be different (for
example, in the HEC and FCal, the Super Cells correspond exactly to the Trigger Towers),
but globally, the 5248 Trigger Towers are replaced by 34 048 Super Cells. At each bunch
crossing, the energy of each Super Cell is computed by the Digital Trigger readout electronics
with an improved precision thanks to the higher granularity and smaller quantisation scale of
the digitised signal. Crucially, for Super Cells, the transverse granularity of the calorimeter
is recovered, allowing for the observation of the electromagnetic shower development along
the calorimeter’s depth. The legacy trigger system only used a threshold on the deposited
energy. Thanks to Super Cells, the use of shower shape variables at the L1 trigger level
with improved filtering algorithms allows for a better background rejection.

Simulations using LAr cells results to recompute the Super Cells output were performed
to assess the expected improvement in Ref. [57]. The increased precision is visible in
Fig. 3.8(a) for electrons energy computation: both the energy resolution and the bias are
greatly reduced using Super Cells. This should translate in an improved efficiency of the
trigger: signal events with an ET just above the trigger threshold, and thus that should be
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Figure 3.7 Representation in the (η, φ) plane and in the four transversal layers of an EMB
Trigger Tower (left) and the 10 Super Cells within (right). From Ref. [57].

selected, have a higher chance of having a reconstructed ET effectively above this threshold.
This translates in a sharper trigger efficiency turn-on curve as exemplified in Fig. 3.8(b) in
the case of jets. Moreover, the use of shower shape variables in addition to the ET threshold
allows for a greater background rejection: for a given efficiency the L1 trigger acceptance
rate is lowered. In Fig. 3.9, triggering for electrons, this improvement happens for ET
thresholds up to 50 GeV. Similarly, for a given rate of electron trigger around 20 kHz5, the
threshold can be lowered by a few GeV.

(a) (b)

Figure 3.8 (a) Energy resolution on electrons from Z → ee computed with Trigger Towers
(labelled Level-1, in red) and with Super Cells (in blue) as simulated with Run 3 pile-up conditions
〈µ〉 = 80. (b) Trigger efficiency turn-on curve as a function of the highest pT offline jet for 〈µ〉 = 80
in simulated QCD dijet events. For jets within |η| < 2.5, the performance of the default sliding
window algorithm (black points) is compared to that of the sliding window algorithm based on
Super Cells (red points). Both from Ref. [57].

However, these improvements come with many challenges. First, the performance
requirements are high: the energy computation precision should be below 250 MeV and

5The 100 kHz L1 trigger bandwidth is split for triggering on different physics objects: electrons &
photons, muons, τ , jets & Emiss

T .

43



3.2. The Digital Trigger upgrade Chapter 3: LAr Phase 1 upgrade

stay unbiased even under high pile-up conditions. Additionally, while in the main readout,
the RODs compute the cell energies at the L1 accept rate – up to 100 kHz – the Digital
Trigger electronic chain must compute the Super Cells transverse energies ET and signal
phase τ at the bunch crossing rate of 40 MHz. Yet, the granularity of Super Cells is not
as reduced as that of Trigger Towers implying that a massive amount of data has to be
managed at a very high rate. Consequently, a complete overhaul of the electronic chain is
required. This in part is only possible thanks to progresses in electronic components since
the 1990’s when the original LAr readout electronics was first designed.

Figure 3.9 L1 trigger rate for a 95 % electron efficiency as a function of the ET threshold as in
Run 2 (blue) and with Run 3 conditions (green and black) but with different requirements on the
shower shape variables Rη, wη,2 and f3 (see Section 2.2.3). From Ref. [57].

3.2.2 Digital Trigger electronic components

All the elements affected by the Phase 1 upgrade of the LAr electronics are visible in
Fig. 3.10 with red arrows or a red outline. Starting in the FEB, a new LSB will send
Super Cell analog signal to the new Digital Trigger electronic chain. In the front-end, the
LAr Trigger Digitiser Boards (LTDB) are responsible of the sampling and digitisation of the
analog signal at the bunch crossing frequency. It is also responsible for the reconstruction of
Trigger Tower analog signals that are then sent to the TBBs. This allows maintaining the
legacy trigger chain functional for at least the initial phase of the Run 3. Then, the digitised
samples are sent through 77 m optical links to the back-end crates in the USA15 counting
room. There, the LAr Digital Processing System (LDPS) is responsible for the computation
of the transverse energy ET and the signal phase τ . The LDPS then sends ET for each cell
at its associated bunch crossing to the three new Feature EXtractors (FEX) in L1Calo,
targeting electromagnetic (eFEX), jet (jFEX) and global (gFEX) features. During all this
process, the individual LAr cells signals are stored in buffers of the FEBs for a maximum of
2200 ns. From the pp collision time to the reception of ET in the FEXs, the latency budget
of the Digital Trigger chain is of 1275 ns. Effectively, only 1095 ns are needed, corresponding
to 43.8 bunch crossings [64].
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Figure 3.10 Schematic block diagram of the LAr electronics after the Phase 1 upgrade. The
first line of blocks corresponds to the standard readout electronic chain. The second line of blocks
corresponds to the legacy trigger system based on Trigger Towers. Finally, the last line of blocks
corresponds to the new Digital Trigger electronics. Elements affected by the Phase 1 upgrade are
marked by red outlines and arrows. From Ref. [57].

On the detector side, the upgrade required to open the FECs and empty them of all
their boards. This allowed to completely change their baseplane which is responsible for
the various connections and the powering of the boards in the FEC. Room was made to
accommodate 124 LTDBs in 114 FECs with a new baseplane. This new baseplane allows
the new connections of the LTDB to the TBB, providing the legacy trigger system with
Trigger Tower signals, and the connection of the new LSB to the LTDB. The LSB being a
mezzanine board mounted on the FEBs, its replacement required to bring all FEBs to a
surface laboratory. The new LSB now sums the analog signal of cells to form Super Cells.
This can be done directly as opposed to Trigger Towers because Super Cells geometry aligns
with FEBs management of LAr cells in only one given calorimeter layer.

Each LTDB processes in parallel the signals from 320 Super Cells (channels) with 80
Analog-to-Digital Converter chips, each processing 4 channels. Each channel signal is
sampled at 40 MHz and digitised to 12 bits values called ADC counts. As a result, at every
bunch crossing for each channel, it outputs one ADC count of the original signal among the
212 = 4096 available values. Typically, the pedestal is around 1000 ADC counts, leaving
a range around 3000 counts for the energy resolution. These values are then prepared
for transmission on 5.12 Gb/s optical fibers, with eight channels per fiber. In total, up to
40 optical fibers transmit to the LDPS at 40 MHz the serialised ADC counts from eight
channels each.

The LDPS comprises 30 LAr Digital Processing Boards (LDPB) installed in three crates
of the USA15 counting room as visible in Fig. 3.11(a). It should manage in total close to
30 Tb/s as compared to around 2 Tb/s with the legacy Trigger Tower. This requires the use
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(a) (b)

Figure 3.11 (a) Picture of the Digital Trigger rack in the USA15 counting room. In the left
rack are the Run Control, Detector Control System, Local Monitoring and FELIX systems. The
three ATCA crates are visible on the right rack.
(b) Data paths of the Digital Trigger. From Ref. [57].

of ATCA (Advanced Telecommunications Computing Architecture) crates superior to the
VME crates in cooling, power or bandwidth. Each LDPB is a LAr Carrier (LArC) blade
hosting mezzanine cards called LAr Trigger prOcessing MEzzanine (LATOME). There are
up to four LATOMEs per LArC for a total of 116 LATOMEs. As an intermediary with the
ATCA shelf manager, an Intelligent Platform Management Controller (IPMC) is plugged on
each LArC. Each LATOME has mainly one FPGA (Firmware Programmable Gate Array)
and a Modular Management Chip (MMC) managing the onboard sensors (temperature,
voltage, etc.) and the connection to the IPMC.

The various Digital Trigger data paths around the LDPS are illustrated in Fig. 3.11(b).
With the main readout paths (red arrows) the LDPBs receive ADC counts from the LTDBs
and send ET to the FEXs at 40 MHz. Monitoring paths sending ET and the corresponding
four ADC counts for offline energy recomputation are split between a global path to the
main data acquisition system for every L1 accept trough the FELIX system6(yellow arrow)
and a more flexible local monitoring path (blue arrow). The TTC information and its
various counters used for synchronisation are sent to the LDPBs through the FELIX system
(green arrows). In addition to these five main data paths, the Detector and Control System,
connected through the IPMC and ATCA shelf manager to the LDPB, monitors the hardware
and ensures safety mechanism in case of failure. Finally, the Partition Master computer
manages the configuration and operation of all LTDBs and LDPBs.

6The Front-End LInk eXchange is a detector agnostic readout architecture providing access to the
Trigger and Data Acquisition system to front-end ATLAS subsystems.
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3.2.3 The LATOME board

(a) (b)

Figure 3.12 Picture of a LATOME board equipped with optical fibers and a copper heatsink
(a), and picture of a LAr Carrier equipped with four LATOME boards (b).

The bulk of the processing of Super Cells raw data happens in the LATOME, visible
in Fig. 3.12, for a very challenging total latency of 415 ns. This latency, still a third of
the total latency of the Digital Trigger electronics, allows for the delivery of transverse
energy and associated bunch crossing identifier (BCID) for up to 320 Super Cells at 40 MHz
to the FEXs. It manages up to 48 optical fibers at 5.12 Gb/s of input data (blue front
connectors on the picture) and outputs to the FEX in 48 optical fibers at 11.2 Gb/s (black
front connector on the picture). The LArC hosting the LATOMEs manages the monitoring
and TTC paths as well as the powering of all LATOMEs.

Figure 3.13 Block diagram of the LATOME Firmware. The pale brown frame represents the
interface with the hardware. The inner pale blue boxes are functional blocks of the firmware.
From Ref. [64].

The firmware of the LATOME, the low level software responsible for the realisation of
its assigned tasks, is embedded in its FPGA. The Low Level Interface (LLI) controls the
hardware components of the LATOME. In particular, it is responsible for the interface with
the various data paths described in Fig. 3.11(b) and the FPGA core layers. The main data
path illustrated in Fig. 3.13 is split in a few blocks:

• The input ADC counts from the LTDB first go through the Input Stage block.
There, the data from all input optical fibers is de-serialised. Additionally, the data
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coming from the on-detector FECs 77 m away have some fiber dependent time delays.
This blocks realigns all the data of the same Bunch Crossing Identifier (BCID).

• In the Configurable Remapping block, the data from different Super Cells is
rearranged in order to group Super Cells from a same Trigger Tower together, as
Trigger Tower output is needed by some FEXs. Also, the 48 parallel input streams
are rearranged into 62 input streams. As a result, each stream goes from managing 8
Super Cells per 25 ns to only 6, lowering the electronic clock from 8×40 = 320 MHz to
6 × 40 = 240 MHz. This allows to ease the computation of ET and BCID assignment
in the User Code block that follows.

• The User Code computes the transverse energy ET and pulse phase τ at every
bunch crossing using Optimal filtering in the same fashion as in Section 3.1.2. For a
given BCID, if the phase is short enough, a pulse is believed to have been detected
and the computed ET is sent forward to the following block; else no energy deposit is
considered and 0 is sent. This block will be described more in depth in Section 4.1.

• The Output Summing block sums the ET in different (η, φ) regions depending on
the granularity required by the FEXs. The eFEX, targeting electromagnetic objects,
keeps the Super Cell granularity, and no extra summing is needed. Nevertheless, the
jFEX, targeting jets and Emiss

T , and the gFEX, targeting large jets and ΣET, need
respectively the data to be summed on ∆η × ∆φ = 0.1 × 0.1 (Trigger Tower) and
∆η × ∆φ = 0.2 × 0.2. The data can thus be duplicated depending on the different
FEX receivers and the output data flow rate increases. In total, slightly more than
40 Tb/s are sent to the FEX systems.
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From calibration to computation

I joined the LAr Phase 1 upgrade group of LAPP in 2019 as part of my ATLAS author
qualification task. Within the LAr Phase 1 upgrade, LAPP was primarily responsible for
the production and qualification of all the LATOME boards1, hence the Savoyard cheese
name they received. When I started working on the Phase 1 upgrade, the production of
LATOME boards was almost complete and efforts were put into the validation of their
integration on the LArC. In parallel, developments of their firmware were ongoing to make
all the required functionalities fit on the finite amount of logic elements available on the
FPGA within the specified latency. Finally, developments on the software side aimed at
being able to configure and monitor the LATOMEs using the LAr Online interface. This
interface manages data acquisition in LAr and is used by shifters in the ATLAS Control
Room during LHC operations. I worked specifically on the configuration of the User Code
block of the LATOME firmware, and later in the commissioning of the functionalities it
introduced.

I will present first in detail the User Code block and the problematic of its configuration
before each run in Section 4.1. The User Code requires for its various tasks a set of
coefficients taken externally from a database. At each configuration, they are loaded in
their reserved registers in the LATOME’s FPGA. These coefficients and their use in the
User Code will first be described in Section 4.1.1. The database side holding originally the
coefficients is described in Section 4.1.2. From the database, they are made ready for the
loading in the LATOME (Section 4.1.3) and filled in the appropriate register (Section 4.1.4).

Then, in Section 4.2, the commissioning of the User Code will be described. As first
tests, the proper loading of the User Code registers was checked (Section 4.2.1). Then
more advanced tests allowed to check the computation performed in the User Code and
compare it to offline reconstruction (Section 4.2.2). This allowed to improve alternatively
the code or the documentation to obtain in the end, a User Code fully validated. In
addition to this validation, the degradation entailed by the finite numerical precision of
the LATOME computation was assessed and shown to be negligible compared to the total
energy resolution of the Digital Trigger (Section 4.2.3).

1The LAPP was in addition responsible for the IPMC board and its interface with the MMC and the
ATCA Shelf Manager.
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4.1 User Code coefficients

4.1.1 User Code operation

The User Code completes the main task of the LATOME: computing ET from ADC counts.
It has a complex architecture split in various blocks represented in Fig. 4.1. First, a
Pedestal correction block removes an offset from the incoming ADC counts to recover
a sampling of the original bipolar pulse shape. First, the Super Cell specific pedestal
is subtracted from the input ADC counts. However, the negative tail of the LAr pulse
shape (Fig. 3.3) is not able to properly cancel in-time pile-up at the beginning of a bunch
train in an LHC run. Consequently, an additional BCID-dependent Baseline Correction is
subtracted from the ADC counts. This correction depending on the LHC bunch scheme,
it is directly calculated on the LATOME for each Super Cell at each of the 3564 bunch
crossings of an LHC cycle. The ADC counts, corrected by the Super Cell pedestal, are
averaged for the given bunch crossing on 1024 cycles. Because the luminosity decreases
along an LHC run, this correction is updated every 10 s. This block outputs at every bunch
crossing m the sampled signal minus the fixed Super Cell pedestal and its BCID dependent
correction Sm − pm.

Figure 4.1 Block diagram of the User Code. From Ref. [64].

Then two FIR Filters (Finite Impulse Response) are responsible for the calculation of
respectively ET and ξ = ET · τ , using OFCs as described in Section 3.1.2. For every bunch
crossing m, ET and ξ are computed using the ADC count received and the three following
ones:

ET(m) =
4∑

i=0
ai (Sm+i − pm+i) , (4.1)

ξ(m) = ET(m) · τ(m) =
4∑

i=0
bi (Sm+i − pm+i) , (4.2)

with ai and bi the two sets of OFCs. The amplitude – which is directly ET – and the
phase τ , the parameters of the pulse as in Fig. 4.2(a), are computed continuously for every
BCID, using the ADC counts from the three following BCIDs. This introduces a minimal
latency of three bunch crossings. An FPGA manipulates numbers in binary form. As a
result additions, subtractions and bit shifts are straight forward to implement but high
speed multiplications require a special block called a DSP. Clever arrangement of these
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(a) (b)

Figure 4.2 (a) Parameters of a pulse in a LATOME. (b) ξ = ET ·τ as a function of ET measured
in calibration runs with injected pulses of known ET and bunch crossing. For various injected
ET, the computed point obtained with the correct set of four ADC count, starting at BCID m, is
displayed in black. The same computation is performed starting with BCID m+ 1 (green), m− 1
(red) and m− 2 (blue). Points obtained with the same injected ET are linked by grey lines. The
selection criterion is represented by the green area. The orange hatched regions represent the
saturation regions. From Ref. [64].

DSP blocks allow to parallelise computation for a limited additional latency of 0.5 bunch
crossing.

For a given Super Cell, one ET and ξ is computed at every BCID, independently of
whether there was a pulse in the Super Cell or not. The BCID Selection block compares
the ET and ξ results from the two filters to determine if the phase τ is small enough to be
associated to a pulse happening at the considered BCID, as in the situation of Fig. 4.2(a).
This is indirectly assessed by comparing ET and ξ. A pair of ET and BCID is considered
correct if 

8ET < ξ < −8ET if −1 < ET ≤ 0 GeV ,
−8ET < ξ < 8ET if 0 < ET ≤ 10 GeV ,
−8ET < ξ < 16ET if ET > 10 GeV .

(4.3)

Among the 25 ns between two BCIDs, a window of ±8 ns is thus used. For high energy
particles, this window is extended asymmetrically up to 16 ns to avoid a wrong BCID
assignment of hypothetical long-lived particles. Finally, conditions for negative energy
events are used to take into account resolution effects. The comparisons make use of powers
of two easily implemented with bit shifts in the FPGA. At BCID m, if this criterion is
failed, the User Code will output ET = 0; else the computed ET is sent.

Finally, this selection can be biased by saturation effects: large energy deposits can lead
to saturated pulses in the front-end electronics, leading to shorter rise time of the pulse
and ultimately a wrong ET and BCID assignment. A Saturation Detection block is
used to detect such events. Pulses with known ET and BCID are injected in calibration
runs to a Super Cell and the computed ET and ξ are plotted in Fig. 4.2(b). This is done
using four ADC counts starting from the correct BCID m, but also at m− 1, m− 2 and
m+ 1. The green triangular area corresponds to the selection condition of Eq. (4.3). The
phase of such calibration pulses is always the same and thus, the relation between ET and
ξ should be linear, with the slope τ negative for BCID m+ 1, and increasingly positive for
BCID m− 1 and m− 2. This linear behaviour is observed in Fig. 4.2(b) up to high energies

51



4.1. User Code coefficients Chapter 4: From calibration to computation

when saturation starts appearing. Then, the shorter rise time of saturated pulses makes
all the curves go down. Two orange hatched regions on this ET against ξ plot are used to
detect saturated pulses, the upper rectangle detecting saturated pulses with computations
at BCID m− 1, the lower one with computations at the correct BCID m. These rectangles
correspond to the conditions

ET(m− 1) < Ethreshold, bcid−1
T and ξmin, bcid−1 < ξ(m− 1) < ξmax, bcid−1, (4.4)

ET(m) < Ethreshold
T and ξmin < ξ(m) < ξmax, (4.5)

where the six saturation detection parameters Ethreshold, bcid−1
T , ξmin, bcid−1, ξmax, bcid−1,

Ethreshold
T , ξmin, ξmax, are introduced. These parameters are determined for each Super Cell.

Upon fulfilling one or both of these conditions, the pulse is considered saturated and the
selection block decision is not considered anymore. If both conditions of Eq. (4.4)–(4.5)
are passed, the pulse is still considered to have valid timing and Ethreshold

T is sent; else the
output at the considered BCID is 0. For completeness, three auxiliary modules in Fig. 4.1
(yellow blocks) compute monitoring data, but are not part of the main data flow.

4.1.2 The COOL database

Three out of four blocks of the User Code use configurable parameters: four OFCs and
one pedestal for each FIR Filter, and six parameters for saturation detection. These
parameters are each loaded in a register of the FPGA during the configuration of the
LATOME. For each Super Cell, a total of 16 parameters have to be loaded. Each LATOME
managing up to 320 Super Cells, up to 5120 registers must be filled by parameters from the
correct corresponding Super Cell. These constitute non-event data that can be stored by
ATLAS computing tools in two types of databases: configuration databases and condition
databases.

In the TDAQ environment of the LAr Digital Trigger, the configuration database used,
based on the OKS (Object Kernel Support) object manager [65, 66], stores software and
hardware configuration data e.g. which LATOME is on which LArC, what version of the
firmware is used, etc. Nevertheless, the User Code parameters are characterised by a limited
validity in time. For instance, the OFCs and pedestals come from calibration runs and,
during stable running conditions, they are updated approximately once per month. Only
the most recent set of parameters is loaded in the registers of the LATOMEs during the
configuration before each run. Yet, it must be possible to recover the complete configuration
in use at any time in the past. This should allow in particular offline reconstruction of each
step of the Digital Trigger computation for any specific event. To meet this requirement, the
User Code parameters are stored in a database, called condition database, that organises
data objects by Interval of Validity (IoV). In ATLAS, the condition databases are based on
COOL [67, 68], a product developed by the LHC Computing Grid team.

In the COOL database, the data is stored in folders themself part of a structure of folders.
Within each folder, data object of the same type are stored, each with a corresponding IoV.
The User Code parameters for all Super Cells are stored in new dedicated folders within
data object of the BLOB (Binary Large OBject) type. A BLOB is a raw data structure
arranging the binary encoding of the values for each Super Cell one after the other. Custom
code from ATLAS computing framework is responsible for the decoding of these vectors.
When accessing the database, a validity key combining the run number and the luminosity
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block allows to extract all the BLOBs corresponding to the requested time. COOL is only
responsible for the management of IoVs, and as such, condition databases can use different
underlying database technologies. The main ATLAS COOL database, based on Oracle DB,
contained among others calibration coefficients for LAr cells. New folders for the Super Cell
parameters in the User Code folders were added as a result of the Phase 1 upgrade. For
tests, it was possible to create more flexible dummy COOL databases on a SQLite back-end.

In the main readout, the energy is obtained from the ADC counts with Eq. (3.7). The
Digital Trigger outputs transverse energy instead of energy, thus a factor 1/cosh(η) from
Eq. (2.5), must be applied to make the conversion. Additionally, the DSP in the User Code
outputs the energy as a signed integer with a precision associated to its least significant
bit of 12.5 MeV. This implies that an additional coefficient LSB = 12.5 should divide the
energy from Eq. (3.7) that is otherwise expressed in MeV. Finally, similarly to the general
case in the main readout, only the coefficient R1 survives as the ramp run is a linear fit
and R0 is not used. Consequently, Eq. (3.7) must be modified to

ET = FDAC→ţA ·FţA→MeV ·
(
Mphys

Mcal

)−1
·CHV ·R1 · 1

LSB · 1
cosh(η) ·

3∑
i=0

ai (ADCi − p) . (4.6)

The computation of ξ uses exactly the same formula, only replacing the ai by bi. The LSB
coefficient is not modified, meaning the precision on ET within the product ξ = ET · τ is
kept the same.

To allow the complete offline reconstruction of the LATOME output, factors FDAC→ţA,
FţA→MeV, Mphys/Mcal, CHV, R1 and LSB are stored as floats in the COOL database each in a
dedicated folder. The factor 1/cosh(η) is directly applied to the OFCs ai in the calibration
runs output. These modified ai are all stored in one BLOB of floats, along with the similarly
modified bi BLOB, inside the OFC folder of the COOL database. The pedestal p is also
stored in a BLOB of floats inside its own COOL folder. Finally, the six saturation detection
parameters of Eq. (4.4)–(4.5) are stored in COOL, directly as integers ready to be used in
the User Code.

4.1.3 Coefficients in LATOME registers

Nevertheless, the LATOME only uses pedestals and OFCs, as in Eq. (4.1)–(4.2). As a
result, all the coefficients from Eq. (4.6) are taken from the database and multiplied by
each OFC to create LATOME-ready OFCs ãi:

ãi = f · ai with f = FDAC→ţA ·FţA→MeV ·
(
Mphys

Mcal

)−1
·CHV ·R1 · 1

LSB · 1
cosh(η) . (4.7)

The same factor is applied to the bi. The pedestals p are left unaffected.

A last step is to convert these pedestals and modified OFCs in float to signed integers
with hard points fitting in the 18 bits2 available in their register. Rounding, signs and hard
points have direct consequences on the implementation of this conversion. For a signed
integer of N bits, the range covered is [−2N−1; 2N−1 − 1]. For positive integers k in this

2The original 14 bits size was found during commissioning to be too small for the range covered by the
OFCs.
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range, it is represented in binary as 0b0kN−1...k2k1k0 where 0b is a prefix to indicate a
binary representation and each ki is 1 or 0 from the following decomposition of k:

k = kN−1 · 2N−1 + ...+ k2 · 22 + k1 · 21 + k0 · 20. (4.8)

As such, only half of the allowed range, from 0 to 2N−1 − 1, is used and the number could
also fit in N − 1 bits. The positive integers from 2N−1 = 0b10...000 to the maximum value
on N bits 2N − 1 = 0b11...111 are used to represent negative integers, going backward
from the maximum value to the middle value. For example, −1 will be represented by
the positive integer 2N − 1 = 0b11...111 and the minimum value −2N−1 is represented by
0b10...000. In general, a negative integer k will be represented by the positive integer k̃
such that

k̃ = 2N − k. (4.9)

Consequently, the most significant bit – the most to the left – is 0 for positive integers and
1 for negative integers. This bit is called a sign bit. Finally, the hard point is a way to
introduce a representation of decimals in binary. For example, a hard point set to 3 bits
amounts to using the integer k to represent the number with a decimal part k̂ = k/23

transforming Eq. (4.8) in

k̂ = kN−1 · 2N−1−3 + ...+ k2 · 2−1 + k1 · 2−2 + k0 · 2−3. (4.10)

As a result, the three least significant bits – the most at the right – represent decimals,
from left to right 0.5, 0.25 and 0.125.

This representation of signed numbers with a decimal part is visible in Fig. 4.3 for
numbers used in computations of the Pedestal Correction block of the User Code. The
ADC count arriving in the User Code are 12 bits positive integers. The pedestal that is
subtracted is a positive 14 bits integer with a hard point set to 3 bits for precise subtraction.
The Baseline Correction can be negative and has the same precision as the pedestal: it
is thus stored on 9 bits, with 1 sign bits and 3 decimal bits. As a result, the so-called
Pure ADC count that will be used in the FIR Filter blocks has 16 bits with 1 sign bit and
3 decimal bits.

Figure 4.3 Binary representation of numbers used in the Pedestal Correction block of the User
Code. Each coloured square represents a slot for one bit.

The OFCs ai are stored in 18 bits registers as signed integers with a hard point set at
5 bits. They thus cover the range [−4096; 4095] with a precision of 1/25 = 0.03125. To
convert them from their float value, they are first multiplied by 25 and then rounded to
accommodate the hard point in the integer representation. Then as a check, the absolute
value is taken and it is checked if it fits on the 17 bits available. If so, this 17 bits positive
integers is given back its original sign and transformed in a 18 bits signed integer with
Eq. (4.9). A similar procedure is applied to the OFCs bi but with a hard point set at 3 bits,
because the bi being typically larger, more of the 18 bits are used for the range at the
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expense of the decimal precision. The pedestals also have this same treatment, with hard
point set at 3 bits as already described in Fig. 4.3.

In the DSPs of the FIR Filters, the OFCs are multiplied by the Pure ADCs. For ET
computation, that is a 18 bits number with 1 sign bit, 12 integer bits and 5 decimal bits
multiplying a 16 bits number with 1 sign bit, 12 integer bits and 3 decimal bits. The result
will thus be a 33 bits number, with 1 sign bit, 12+12 = 24 integer bits and 5+3 = 8 decimal
bits. The DSP anyway outputs the result of multiplications on 44 bits signed integers.
The 8 decimal bits are dropped as an irrelevant precision, leaving a signed integer with
its least significant bit corresponding to a precision of 12.5 MeV as fixed in Section 4.1.2.
To lower the amount of data in the output, only the 17 lower bits are kept, giving an
ET encoded on a 18 bits signed integer. The corresponding allowed range of energy is
thus of ±217 · 12.5MeV = ±1.64 TeV, which is enough for most events. In case of overflow
(underflow), the maximum (minimum) value in the range is sent.

From the selection criterion in Eq. (4.3), the phase τ should range from −8 to 16. This
requires a 5 bits signed integer. To keep the same ET range and precision requires a 17 bits
integers. The FIR filter output for ξ is thus encoded on a 22 bits signed integer. Similarly
as for ET computation, the 3 + 3 = 6 decimal bits of the DSP output are dropped and then,
the 21 lower bits are kept with in addition the sign bit. All the ranges of the DSP output
kept depending on the computation are summarised in Fig. 4.4.

Figure 4.4 Binary representation of the DSP outputs and bit selection. Each square represents
a slot for one bit.

4.1.4 Filling registers

The LATOME configuration in the LAr Online framework makes use mainly of two software
packages named LDPB and OnlineLatomeDB. At the start of the configuration of LATOMEs,
the package OnlineLatomeDB is in charge of retrieving all the needed coefficients from the
COOL database, using a validity key created combining the current run number and first
luminosity block. In particular, the OFCs and pedestals go through the treatment described
in Section 4.1.3 to obtain coefficients ready to be loaded in the LATOMEs’ registers. All
these coefficients are stored for all Super Cells in an OnlineLatomeDB API3 that will be
accessed at the configuration of each LATOME. This configuration is managed by the
LDPB package LATOME by LATOME. At the time of the configuration of the User Code,
the API holding all the coefficients is accessed. Then, the code is responsible to find the
coefficients corresponding to the registers present in the LATOME being configured.

3An Application Programming Interface (API) is a type of software interface that acts as a connection
between pieces of softwares, as opposed to a user interface that would connect a software to a user.
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As was described in Section 3.2.3, the data from the different Super Cells arrives in the
User Code arranged in 62 streams of 6 Super Cells. A Super Cell is uniquely identified
by its stream number and place in that stream; to this are associated the 16 registers of
User Code coefficients to be filled. Mapping files within the firmware release provide the
Offline ID of a Super Cell, given its stream and position in the stream. The Offline ID is a
number that uniquely identifies a physical Super Cell within the detector. A Super Cell
can also be identified by an Online ID, which is linked to its cabling in the LAr electronics.
The LATOME firmware uses Offline ID as the geometrical information is more important,
as exemplified by the Configurable Remapping block. The Online ID on the other hand is
used to organise the coefficients in the COOL database as most of them arise from calibration
runs within the LAr electronics. Both IDs are different and the one to one correspondence
could change during the many years of operation of the Digital Trigger, during Run 3 and
HL-LHC. For book-keeping reasons, a folder in the COOL database allows the conversion
from Offline to Online ID.

To summarise, the Offline ID taken from the LATOME firmware is first converted
to the Online ID using the COOL database conversion folder that was dumped in the
OnlineLatomeDB API. This Online ID is then used as a key to obtain the 16 parameters of
the Super Cell considered. These coefficients are then written to the corresponding registers
of the FPGA.

4.2 Commissioning

4.2.1 Register Loading commissioning

In projects of such complexity, it is important to thoroughly assess the proper implementation
of each functionality, separately first, and in increasingly aggregated form later, in what
is called commissioning. In this spirit, the structure detailed in Section 4.1 was slightly
modified to test each step separately. First, custom COOL databases on a SQLite back-end
allowed testing specifically the loading of the different registers of a Super Cell, holding
coefficients as integers directly in the LATOME register format. A first such database had,
for every Super Cell, the same set of dummy values of User Code coefficients. It allowed to
check that every coefficient was indeed loaded in the registers of each connected Super Cell.

A second test COOL database had its OFCs chosen to check the computation was going
as expected in the LATOME firmware. With pedestals chosen to be zero, and OFCs of
both FIR Filters to be ai = bi = (1; 0; 0; 0) for every Super Cell. Having the exact same
set of OFCs for the ET and ξ calculation ensures that the computed ET and ξ will be the
same, and that the selection criterion from Eq. (4.3) will always be passed. From Eq. (4.1)
the ET output should be exactly the ADC sent at the BCID considered. Conversely,
choosing ai = bi = (0; 0; 0; 1), the ET output is the ADC three bunch crossing later. These
configurations and similar ones were tested in special runs in which the ADC counts sent to
each channel were set at each bunch crossing to the associated BCID, allowing to explicitly
check the expected ADC is indeed selected by the filters. Playing with these different
databases allowed checking the expected database was indeed filled in the registers. This
allowed also checking the OFCs were filled in the right order.
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4.2.2 Energy offline re-computation

The energy computation formula being validated, the next step was to check with real OFCs
coming from calibration. They would thus all be different for each Super Cell. Additionally,
the conversion from floats to signed integers of Section 4.1.3 had to be implemented and
could thus be checked. Comparing the LATOME output to an offline computation allowed
indirectly to check that all the coefficients were filled in the correct register and in the correct
format. The initial 14 bits reserved for the OFCs registers proved not to be enough and
were extended to 18 bits. The final structure of the COOL database coming from calibration
was devised and the configuration of the LATOME was operated as in Section 4.1.1, with
in addition the Baseline Correction, Saturation and Selection blocks disabled. Pulses were
sent on every Super Cell at a given BCID m and 20 samples were recorded from BCID
m − 2 to m + 18. The ET output of the LATOME was also recorded for BCID m − 1,
m and m + 1. Ten such events were recorded for every Super Cell. Using the recorded
samples, it was possible to reproduce offline the computation in the LATOME as described
by the firmware documentation. After adjustments, this offline computation was shown to
agree perfectly with the recorded ET, as visible in Fig. 4.5(a). The difference between the
LATOME and the offline re-computed energy is shown to be exactly 0 for all Super Cells,
in all events, and for all three energies recorded per event. This validates the FIR filter for
ET computation in the User Code and thus the proper loading of all associated pedestals
and OFCs of all Super Cells.
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Figure 4.5 (a) Histogram of the difference between ELATOME the ET output of the LATOME and
ERecomputed from the offline computation. The bins width is 1 MeV, well below the computational
resolution at 12.5 MeV, and the bins height is in log scale. (b) Histogram of the distribution of
the energies from the LATOME at BCID m− 1, m and m+ 1. The bins width is 1 GeV, and the
bins height is in log scale.

The LATOME output energy distribution is shown in Fig. 4.5(b). The overflow bin
is clearly visible at 1638.4 GeV. It is also visible that some energies computed by the
LATOME are negative. This is because the Selection block is disabled, and as a result the
FIR Filter result for computations started well before or after the actual peak can yield
unphysical results. No underflow bin at −1638.4 GeV is visible not because the case does
not happen, but rather because in this case, the LATOME outputs 0, which is an abnormal
behaviour found in this study.

The same study enabling the Selection block was performed pulsing similarly all Su-
per Cells and recording ten events. However, here the LATOME ET output is after the
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selection block and will thus be 0 if the selection criterion is not passed. In case of overflow
(underflow) of the computed ξ, the maximum (minimum) value on the 22 bits available is
kept. Interestingly, this means that in this case, the selection criterion will never pass, as

ξ22bits max = 221 − 1 > 16 × (217 − 1) = 16E18bits max
T ,

ξ22bits min = −221 < −8 × 217 = 8E18bits min
T .

Again, the offline computation, including the selection criterion, agrees perfectly with the
LATOME output for all Super Cells, in all events, and for all three energies recorded per
event, as visible in Fig. 4.6(a). The selected energy distribution is shown in Fig. 4.6(b).
The calibration pulse is supposed to have been sent at BCID m which is reflected in the
figure as most of the energies kept are indeed kept at BCID m. The energy at BCID m− 1
or BCID m+ 1 is sometimes selected as the OFCs used in this study do not have perfect
timing adjustment. The overflow bin is clearly visible, as well as the bin at 0 that now
contains all the rejected energies.
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Figure 4.6 (a) Histogram of the difference between ELATOME the ET output of the LATOME
after selection block and ERecomputed from the offline computation. The bins width is 1 MeV, well
below the computational resolution at 12.5 MeV, and the bins height is in log scale. (b) Histogram
of the distribution of the energies from the LATOME after selection, at BCID m− 1, m and m+ 1
with m = 0, the BCID at which the calibration pulse is supposed to happen. The bins width is
1 GeV, and the bins height is in log scale.

4.2.3 Performances of the ET computation

A similar offline computation of the energy can be done using this time the full float
precision of the OFCs. The direct comparison of the full float precision energy to the
LATOME output gives the energy resolution. Representing the difference between both
results, a distribution centred on zero is obtained, with standard deviation of 100 MeV, and
large tails, as visible in Fig. 4.7(a). This is approximately the precision of the fourth least
significant bit of the LATOME output – the least significant bit representing 12.5 MeV.
This numerical precision choice in the LATOME output is thus very conservative. Still,
this resolution is small compared to the typical values of the energy computed. Besides,
the energy resolution, defined as the relative difference of the LATOME output with the
full float precision energy obtained offline, is found to be very small as visible in Fig. 4.7(b).
The obtained distribution is centred on zero and very peaked, with a standard deviation at
the per mil level.
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Figure 4.7 (a) Histogram of the difference between ELATOME the ET output of the LATOME
and ERecomputed from the offline computation with the full float precision for the OFCs. The bins
width is 1 MeV, well below the computational resolution at 12.5 MeV. (b) Histogram of the energy
resolution of ELATOME the ET output of the LATOME compared to ERecomputed from the offline
computation with the full float precision for the OFCs.

Figure 4.8 Measured ET in Super Cells from all layers
of the LAr EMB and EMEC computed offline, compared to
the summed ET from their constituent LAr cells obtained
through the main readout path. The data are from a single
event of a beam splash run. The red line of equation y = x
marks the agreement of both values. From Ref. [69].

The ET computed on the
LATOME for the Super Cells
can be compared to the energy
obtained with the LAr cell geo-
metrical resolution in the main
readout. Of course the coarser
granularity of the Super Cells
creates a disagreement. Data
recorded during October 2021
Pilot Beam run, preliminary
to Run 3, allows assessing this
agreement. In Fig. 4.8, the ET
of Super Cells recorded with the
main readout LAr cells granu-
larity is compared to the ET re-
constructed in the Super Cell.
This reconstruction is made off-
line with preliminary calibration
coefficients of the correspond-
ing Super Cells as the full chain
of the Digital Trigger was not
ready at the time. Both readouts – LAr cells and Super Cells– are well correlated as the
excellent agreement along the y = x line shows. The disagreement along this line yields
a resolution of the order of one GeV. This resolution, an effect of the coarser geometrical
granularity of Super Cells, is one order of magnitude above the resolution observed from
the finite precision of OFCs in the LATOMEs computation. The precision chosen for the
OFCs in the LATOME firmware thus creates no significant degradation of the performance
of the Digital Trigger.
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Chapter 5

Theoretical modelling of W±Z
production

Using the wealth of data collected by the ATLAS detector during the Run 2 of the LHC,
it is possible to study a variety of phenomena. In this thesis, we focus more specifically
on diboson processes, of which the ultimate goal is to measure the joint-polarisation state
fractions. However, the W± and Z bosons are detected only by their decay products in the
detector. The choice is made to study among WW , W±Z and ZZ processes, the W±Z
production with leptonic decay as an experimental compromise

In diboson processes, each boson can decay in quarks or leptons. On the one hand, each
final state quark will give a jet in the detector. On the other hand, among leptons, muons
and electrons will be precisely measured with their tracks and calorimeter deposit. The τ
leptons will decay shortly after the primary vertex and are more complicated to reconstruct.
Therefore, the leptonic decay, not considering the τ , will give the cleanest signature in the
detector. In leptonic decay, the ZZ production has a clean four-lepton signature, associated
to very low background. Nevertheless, the cross section of this process is the lowest of all
diboson processes. The WW production has the highest cross section, but each W± boson
will decay in one lepton and one neutrino that will only be detected in ATLAS indirectly by
Emiss

T . In WW production, the reconstruction of two neutrinos degrades the experimental
signature which is spoiled by many two-lepton backgrounds. As a result, W±Z production
constitutes a good experimental compromise, with an expected intermediate event yield
and a rather clean three-lepton signature associated to low background. The experimental
signature considered in this thesis is thus

pp → `ν`′ ¯̀′ +X , (5.1)

with each lepton ` being either an electron or a muon. With no further requirements,
the inclusive selection will have in in addition jets and photon from initial and final state
radiations represented by the "X".

This chapter will focus on the theoretical descriptions behind this experimental signature.
How polarisation emerges in such events and the ensuing theoretical predictions for single
boson polarisation fractions and joint-polarisation fractions, defined in Section 1.2, will
be particularly detailed. First, in Section 5.1, fixed-order theoretical calculations will
provide a more quantitative theoretical prediction for the inclusive cross section along with
the definition of the fiducial phase space in which the measurement is performed. Then,
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in Section 5.2, the study of the topology of W±Z events will allow the identification of
variables sensitive to polarisation. Angular momentum conservation considerations will
justify this connection. Finally, direct polarised fixed-ordered theoretical calculations will
provide predictions for joint-polarisation fractions. However, such theoretical calculations
do not allow the full simulation of the W±Z inclusive or polarised production used to
tune the analysis and compare to data. This is made possible with Monte Carlo samples
described in Section 5.3. Finally, in Section 5.4, theoretical predictions on polarisation
fractions are extracted from an inclusive Monte Carlo sample using the aforementioned
angular momentum conservation considerations. The main use of this is to get an idea of
what to expect from the theory concerning the polarisation of the bosons, their correlations
between each other, their dependence with kinematic variables, etc. I particularly worked
on this analytical description of polarisation and the extraction of polarisation fractions.

5.1 Inclusive theoretical calculation

As a first step, the theoretical description of the inclusive W±Z production is described in
this section. This will allow discussing the inclusive production cross section prediction and
describing the fiducial phase space in which the measurement is performed.

5.1.1 Inclusive W±Z production

The three lepton signature of the W±Z inclusive process can be split in four configurations,
depending on the flavour of the bosons decay: eee, µee, eµµ, µµµ. At the typical energy
scale of diboson production, the mass of the lepton is negligible such that theoretical
predictions will not distinguish between eee and µµµ production on the one hand, and
µee and eµµ on the other hand. The main difference between single flavour and double
flavour configurations arises from the additional diagrams created by exchanging the roles
of identical final state leptons. Nevertheless, these supplementary diagrams only change
the theoretical prediction at the per mil level. This effect will therefore be neglected in the
following and the cross sections for all leptonic flavour combinations will be assumed to be
all equal and generically labelled σpp→`±ν`′ ¯̀′ . For simplicity, one double flavour configuration
will be considered,

pp → e+νe µ
+µ− + X. (5.2)

There are ten Feynman diagrams associated to such process at the leading order in perturb-
ation theory. To easily visualise this, let us consider the s-channel diagram of qq′ → e+νe

with a W+ boson as propagator:

W+

q

q′

e+

νe

.

Starting with this diagram, a Z boson can radiate from one of the five branches. This
creates five diagrams for the considered final state (5.2), to which four diagrams can be
added by replacing the Z boson by a photon γ – the neutrino cannot radiate a photon for
lack of electrical charge:
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Z/γ

W+

q

q′ e+

νe

µ+

µ−

,

W+

Z
q

q′

e+

νe

µ+

µ−
,

W+

Z

q

q′

e+

νe

µ+

µ−

,
(5.3)

W+
Z/γ

q

q′

νe µ+

µ−

e+

,

W+
Z

q

q′

e+ µ+

µ−

νe .
(5.4)

The three first of these diagrams (5.3) are the only ones such that the W+ boson and the
Z boson can simultaneously be on-shell. These resonant diagrams are the main diagrams
in the cross section computation. Within the Double Pole Approximation (DPA), only the
three resonant diagrams are considered. Finally, a last non resonant diagram without any
Z boson exists:

νµ

W+

W+

q

q′
e+

νe

µ+
µ+

. (5.5)

With these ten diagrams – or three within the DPA – the LO amplitude of the pro-
cess (5.2) can be obtained. Every diagram corresponds to a term Mi and the total amplitude
is the module of the sum of all these terms

A = |
∑

i

Mi|2 .

Because of the electroweak unification, every weak coupling is ultimately proportional to
the square root of the fine structure constant αew, and thus the amplitude taking the square
of all this will scale as one αew per electroweak coupling. The same can be said of the
strong coupling constant αs. At LO, the amplitude is thus of the order O(α4

ewα
0
s ). The

computation of the amplitude at Next to Leading Order (NLO) is obtained by adding higher
order diagrams. There are the NLO QCD terms of the order O(α4

ewα
1
s ), and the NLO

EW terms of the order O(α5
ewα

0
s ). Both contributions are computed similarly, with the

difference that NLO EW corrections use much more diagrams than NLO QCD corrections,
as the latter ones can only add QCD couplings on the initial state two quark branches.
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Besides, the NLO EW corrections are expected to be small comparatively to NLO QCD
corrections because αs is higher than αew at the energy scale of the process [70] :

αs(m2
Z) = 0.11800 ± 0.0010 , (5.6)

αew(m2
Z) = 0.0078154 ± 0.0000005 . (5.7)

Therefore, the NLO QCD corrections must be computed in priority, while the NLO EW can
be computed later for additional precision, and still then considering only the three DPA
diagrams. Two types of NLO corrections can be added for a given diagram: virtual and
real corrections. The virtual corrections arise from the addition of a loop to diagrams. Yet,
considering loop diagrams would add two coupling constants, so that the virtual correction
terms are only the interference terms of a loop diagram with a tree-level diagram. For
example in NLO QCD such term can be

Z

W+

q

q′
e+

νe

µ+

µ−


×


Z

W+

q

q′ e+

νe

µ+

µ−



∗

.

The real corrections amount to the radiation of a gluon or photon from a branch of the
diagram, corresponding mostly to initial or final state radiations. In NLO QCD, such terms
can be

Z

W+
q

q′

e+

νe

µ+

µ−

g

.

This diagram computation gives rise to UV and IR divergences. These are treated as
described in Section 1.3 with renormalisation scale µR, and factorisation scale µF , typically
chosen as µR = µF = (MW + MZ)/2. Finally the computed parton level cross section is
incorporated with PDFs in the factorisation formula of Eq. (1.57). One last ingredient
when targeting W±Z production is to define a mass window for the Z boson, effectively
reducing the phase space of the final state particles. The electroweak (EW) mixing of the
Z boson and the photon, as in Eq. (1.23-1.24), imply that they can never be meaningfully
separated. However, without a mass window, non-resonant contributions from low energy
photons would significantly change the cross section of the process because W production
with a virtual photon γ∗ is dominant at low mZ , the invariant mass of the two decay leptons
reconstructed as the mass of the Z boson. Since the first ATLAS Z boson production
measurement [71], and still for the present study on W±Z production, the total phase space
is defined with the mass window

66 GeV < mZ < 116 GeV . (5.8)

The cross section of inclusive W±Z production was computed in Ref. [72] in the total
phase space defined by Eq. (5.8), at centre-of-mass energy of Run 2

√
s = 13 TeV at
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LO (5.9), NLO QCD+EW (5.10) and at NNLO QCD + NLO EW (5.11), using the
automated MATRIX framework:

σTot,th LO
pp→W ±Z = 24.79+4.2 %

−5.2 % pb , (5.9)
σTot,th NLO

pp→W ±Z = 44.67+4.9 %
−3.9 % pb , (5.10)

σTot,th NNLO
pp→W ±Z = 49.62+2.2 %

−2.0 % pb . (5.11)

The relative uncertainty quoted come from the 7-point scale variation, that is varying
independently µR and µF at half or double of their nominal value with the constraint
0.5 ≤ µR/µF ≤ 2. The importance of considering higher order is clear as NLO corrections
increase by 80 % the cross section. Yet, in most process, NLO corrections are sufficient for
an accurate estimation. It is not the case for W±Z production as NNLO corrections still
increase the NLO prediction by 11 %, more than the scale uncertainty quoted. This shows
the importance of considering higher order corrections when studying W±Z production.

5.1.2 Fiducial phase space predictions

Theoretical predictions in the total phase space, defined with only the cut of Eq. (5.8),
take into account all events of a specific process produced. While describing the theory
in the most general way, such predictions are usually not very practical: detectors limited
geometrical acceptance means that they will never be able to catch every events produced.
For example, from ATLAS sub-detector descriptions (Section 2.2), obtaining the tracks
of a particle in the Inner Detector with |η| > 2.5 is simply impossible. More generally, as
described ahead in Section 6.1, specific event selection requirements imply that only events
in a certain fraction of the total phase space can be reconstructed. A fiducial phase space
is thus defined to represent the region in which a particle can and should be reconstructed.
The fiducial cuts defined in Table 5.1 reflect the selection criteria of Table 6.3. This phase
space is associated to an acceptance of around 40 %, meaning that the rest of the generated
W±Z events produced do not fall within the fiducial phase space for geometrical reasons.
Generator level events in the fiducial phase space are used as the reference, i.e. what would
be observed if the detector was perfect. Of course this is not the case and effects of the
reconstruction in the detector will alter this picture, mainly reducing the number of events
selected.

Table 5.1 Definitions of the total phase space and the fiducial phase space used for the study of
W±Z production. The cone ∆R is defined in Section 2.2.1.

Variable Total Phase Space Fiducial Phase Space
Lepton |η| — < 2.5
pT of `Z , pT of `W [GeV] — > 15, > 20
MZ range [GeV] 66 − 116 |MZ −MPDG

Z | < 10
mW

T [GeV] — > 30
∆R(`−

Z , `
+
Z), ∆R(`Z , `W ) — > 0.2, > 0.3

Theoretical predictions in the fiducial phase space can be more directly compared to an
experimental measurement as the only differences lie in the imperfect reconstruction in the
detector. Comparing a measurement to the total phase space theoretical predictions is a
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more far fetched extrapolation. Uncertainties on this extrapolation can only be assessed
through Monte Carlo generation thus introducing a strong dependence on the theory.
Calculations for the cross section in inclusive W±Z production with leptonic decay in the
fiducial phase space defined in Table 5.1 at NNLO QCD was performed with MATRIX [73]
yielding the cross section in Eq. (5.12). This cross section concerns only one leptonic decay
channel; assuming leptonic universality the cross section in all leptonic decay channels as
defined in Eq. (5.1) is four time bigger. The cross sections splitting by the charge of the W±

boson is presented for W+Z and W−Z production in respectively Eq. (5.13) and Eq. (5.14):

σFid.,th NNLO
W ±Z→`±ν`′ ¯̀′ = 64.01+2.3 %

−2.1 % fb, (5.12)
σFid.,th NNLO

W +Z→`+ν`′ ¯̀′ = 37.80+2.2 %
−2.0 % fb, (5.13)

σFid.,th NNLO
W −Z→`−ν`′ ¯̀′ = 26.22+2.3 %

−2.1 % fb. (5.14)

It is visible that W−Z production has a lower cross section than W+Z production. This
is because W+Z events originate from ud̄ quark interactions while W−Z events originate
from ūd quark interactions. The anti-quarks are found as sea quarks in the proton and thus
have similar PDF. However, the u valence quark has a PDF normalisation roughly twice
higher than that of the d valence quark, meaning it is roughly involved in twice as much pp
collisions.

5.2 Polarisation impact on angular variables

Practically, polarisation manifests itself in the angular topology of physics processes. This
is ultimately linked to angular momentum conservation in the studied physics process.
Studying the topology of W±Z events, it is thus possible to identify angular variables
sensitive to polarisation. The frame dependence of polarisation arises then from the fact
that these angular variables can only be defined with respect to a given frame. A more
general approach with the spin-density matrix will provide a more quantitative description
of the link between polarisation and these angular variables. Finally, a direct calculation of
polarised cross sections will provide a description of joint-polarisation fractions which are
otherwise more complicated to describe with the spin-density matrix.

5.2.1 Angular observables

There are two types of variables to describe a W±Z event: bosonic variables and fermionic
variables.

• Bosonic variables characterise the bosons and the process that produced them e.g.
the pT or the pseudo-rapidity |η| of each boson. The choice of the frame in which
they are evaluated will be discussed later.

• Fermionic variables are related to the decay leptons of each boson. To avoid mixing
with bosonic variables, they are evaluated in the rest frame of the decaying boson.

Fermionic variables are mostly independent of bosonic variables, being ultimately only
correlated to intrinsic properties of the boson which are its mass and its polarisation. The
geometrical decay of a vector boson, labelled V for generality, in its rest frame and the
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f

f̄ ′

θ∗ z

(a)

k

p1

p2

V

f

f̄ ′

(b)

Figure 5.1 Decay of a vector boson V in its rest frame (a), and the Feynman diagram associated
to this process (b).

associated Feynman diagram are represented in Fig 5.1. The z-axis is chosen arbitrarily
and for now does not play any role. The variables describing the leptons are their mass
(and thus the flavour at which V decayed) and their four-vector p1 and p2 which are in the
boson rest frame

p1 = (E∗
1 , p

∗ sin θ∗, 0, p∗ cos θ∗) , p2 = (E∗
2 ,−p∗ sin θ∗, 0,−p∗ cos θ∗) ,

with E∗ and p∗ the energy and momentum of the decay lepton in the boson rest frame and
θ∗ the polar angle with respect to a chosen z-axis. The energy momentum conservation
implies that E∗ and p∗ are completely constrained by the masses of the leptons and the
boson. Neglecting the relatively low mass of the leptons, E∗ and p∗ are in fact equal to
mV /2, half the mass of the boson. There are thus only two interesting fermionic degrees of
freedom,

• their flavour which manifest itself only in the negligible mass of the fermions.

• the cos θ∗
` which traduces the anisotropy of the decay.

The observable cos θ∗
` ultimately has a distribution that is only linked to the polarisation

of the decaying boson. In W±Z events, this creates two polarisation observables cos θ∗
`W

and cos θ∗
`Z each evaluated in the rest frame of respectively the W± boson and the Z boson.

These variables are defined as the cosine of the decay angle θ∗ of the negatively charged
lepton produced in the decay of the W± or Z boson, as visible in Fig. 5.1(a), except for the
W+ boson where only the positively charged lepton is observed and thus used. To unify
the treatment of W+ and W− bosons, the variable qW · cos θ∗

`W is considered, multiplying
cos θ∗

`W by qW the charge of the W± boson.

However, in Fig. 5.1(a), the choice of the z-axis is not determined beforehand. This
is directly linked to the fact that the polarisation of a boson is not a Lorentz invariant
quantity and thus, all variables used later on will be defined in a specific reference frame.
Two main frames can be chosen, of which schematic representations are given in Fig. 5.2.
Following are the descriptions of the two main frames and how cos θ∗

` is computed in each
case.
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Helicity frame: This frame uses the direction of the boson in the laboratory frame
(Fig. 5.2(a)) to define the z-axis in the boson rest frame. To compute it, first
the Lorentz vectors of the boson and the decay leptons are reconstructed with the
kinematic variables of the decay leptons found in the detector, that is in the laboratory
frame. Then, the Lorentz vectors of the decay leptons are boosted in the rest frame
of the boson. One lepton Lorentz vector is chosen following the prescription above,
and the cosine of its angle with the boson’s Lorentz vector is cos θ∗

` .

Modified Helicity frame: This frame uses the direction of the boson in the W±Z rest
frame (Fig. 5.2(b)) to define the z-axis in the boson rest frame. As a result the
Lorentz vector of the boson and the leptons reconstructed from detector information
in the laboratory frame are first boosted in this W±Z rest frame. The leptons Lorentz
vectors are then boosted a second time from this frame to the boson rest frame.
Again, the cosine of the angle between the chosen lepton Lorentz vector and the boson
Lorentz vector is cos θ∗

` .

q̄ qLaboratory
Frame

Z

z′

W

z
`

ν

θ∗`W

W rest frame

¯̀

`

θ∗`Z
Z rest frame

(a)

q̄ q

WZ rest frame

W

Z

θV

z

ν

`

θ∗`W

W rest frame

¯̀

`

θ∗`Z
Z rest frame

(b)

Figure 5.2 Definition of cos θ∗
` in the Helicity frame (a) and in the Modified Helicity frame (b).

In a similar reasoning as for the decay of a single boson, one can consider the W± and
Z bosons as decay products of the two-parton system in the pp collision. In the rest frame
of such collision, which is symmetrically the W±Z rest frame, a polar angle θV can be
defined as visible in Fig. 5.2(b). This observable would be linked to the global spin of the
two-parton system and ultimately the joint-polarisation of the two produced bosons. Taking
into account reasons of symmetry, the variable considered for this purpose is | cos θV |. It
however can only be defined in the Modified Helicity frame.

In this study, the Modified Helicity frame will be used. This choice will be discussed
in Section 5.4.2. At generator level, the Born kinematics of generated leptons is used (see
Section 1.3.3), and the assignment of these leptons to the generated mother boson is done
using the built-in algorithm of the Monte Carlo generator. The generator-level neutrino
coming from the W± boson decay is used. This allows reconstructing at particle level in the
total phase space all the kinematic variables of the W and Z bosons and the polarisation
observables cos θ∗

`W , cos θ∗
`Z and | cos θV |.
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Yet, the computation of this angle is complicated in data by the impossibility to measure
the longitudinal momentum pν

z of the neutrino four-vector at the reconstructed level. This
affects strongly the reconstruction of cos θ∗

`W , and in the Modified Helicity frame, cos θ∗
`Z

as well, because of the boost in the W±Z rest frame. Different methods to reconstruct
from data this pν

z , and with it the four-vector of the W± boson, are described ahead in
Section 6.2. Still, this will imply a worse resolution on cos θ∗

`W than on cos θ∗
`Z .

5.2.2 Spin Density Matrix

Using general considerations on spin conservation [74], the differential cross-sections along
some angular variables can be described only from the helicity information of the initial and
final states considered, independently of the process taking place. For the initial state, the
spin configuration is best defined by the spin density matrix ρ described in Section 1.2. For
now, the spin density matrix of a single vector boson V will be considered. With Ref. [75,
76], this is used to derive the angular dependence of the decay of one vector boson V .

The boson V has spin 1 and thus its spin density matrix ρ is a 3 × 3 matrix Hermitian
positive semi-definite with trace equal to one. There are thus eight free real parameters
in ρ. Such a matrix can be decomposed in the sum of irreducible order two tensors [32]
classified by their rank1. The order zero tensor is proportional to the identity and being
the only one not traceless, it is normalised by 1/3 to give a unit trace to ρ. Then, there are
three order one tensors which are proportional to the spin operator in all three directions,
and five order two tensors built from the spin operators.

ρ = 1
31 + 1

2

1∑
k=−1

〈Sk〉Sk +
2∑

k=−2
〈Tk〉Tk , (5.15)

with S±1 = 1√
2 (Sx ± iSy) and S0 = Sz, yielding in the dimension three fundamental

representation, using the spin quantum state basis, {|j = 1,m = +1〉, |j = 1,m = 0〉,
|j = 1,m = −1〉} with m the eigenvalue of Sz,

S0 =

1 0 0
0 0 0
0 0 −1

 , S+ =

0 1 0
0 0 1
0 0 0

 , S− =

0 0 0
1 0 0
0 1 0

 , (5.16)

and the five rank two irreducible tensors Tk built from the Sk:

T±2 = S2
±1 , T±1 = ∓1√

2
[S±1S0 + S0S±1] ,

T0 = 1√
6
[
2S2

0 − S+1S−1 − S+1S−1
]
.

In this parametrisation, the components of the mean polarisation vector ~P are the mean
values of the spin operators 〈Sk〉, and the mean values 〈Tk〉 are the alignment components.
In order to obtain physical observables, these tensors are rearranged in order to obtain

1The rank of an order two tensor is the dimension of the largest non-zero determinant that can be made
with its rows or columns.
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Hermitian operators. These are the cartesian components of the spin Sx, Sy and Sz and
the Hermitian operators,

A1 = 1
2 (T+1 − T−1) , A2 = 1

2i (T+1 + T−1) ,

B1 = 1
2 (T+2 + T−2) , B2 = 1

2i (T+2 − T−2) ,

and T0 which was initially Hermitian. Consequently, in the basis of (5.16), the spin density
matrix is parametrised as:

ρ =



1
3 + 〈Sz〉

2 + 1√
6

〈T0〉
〈Sx〉

2 −〈A1〉−i
( 〈Sy〉

2 −〈A2〉
)

√
2

〈B1〉 − i〈B2〉

〈Sx〉
2 −〈A1〉+i

( 〈Sy〉
2 −〈A2〉

)
√

2
1
3 − 2√

6
〈T0〉

〈Sx〉
2 +〈A1〉−i

( 〈Sy〉
2 +〈A2〉

)
√

2

〈B1〉 + i〈B2〉
〈Sx〉

2 +〈A1〉+i
( 〈Sy〉

2 +〈A2〉
)

√
2

1
3 − 〈Sz〉

2 + 1√
6

〈T0〉

 . (5.17)

From this representation, the usual polarisation fractions are related to the spin observ-
able along the z-axis and the alignment observable T0 by

fL − fR = −〈Sz〉 , (5.18)

f0 = 1
3 − 2√

6
〈T0〉 . (5.19)

Then, in the formalism of Ref. [74] the matrix element of the decay of a vector boson in the
quantum state |1,m〉 in two leptons with helicity λ1, λ2 is

Mm,λ1,λ2 = aλ1,λ2D
1
m,λ1−λ2 (φ∗, θ∗, 0) , (5.20)

with θ∗ the decay angle defined in Fig. 5.1(a) and analogously φ∗ the azimuthal angle defined
with respect to an arbitrarily chosen x-axis. The parameter aλ1λ2 is a constant with respect
to the angular parameters. This will allow to derive the differential cross section of the vector
boson decay with respect to θ∗ and φ∗. This angular information is held by the Wigner
D-functions which are the 2j + 1 unitary representations of rotations characterised by the
three Euler angles α, β and γ. It can be decomposed as Dj

m′m(α, β, γ) = e−iαme−iγmdj
m′m(β)

with the Wigner d-matrix being real.

The decay leptons have such a low mass compared to the typical energy of the decay
that they will be considered massless, allowing to consider the conservation of helicity.
The initial helicity in the decay is 0, the boson being in its rest frame, and thus only two
possibilities arise: (λ1, λ2) = (±1

2 ,∓
1
2). Writing λ = λ1 − λ2 the only possibility is λ = ±1.

The transition probability from the mixed state described by the spin density matrix ρ to
the two leptons decaying with angles θ∗ and φ∗ is

dΓ
dcos θ∗dφ∗ ∝

∑
λ=±1

∑
m,m′

ρmm′Mm +λ
2

−λ
2

M∗
m′ +λ

2
−λ
2
, (5.21)

dΓ
dcos θ∗dφ∗ ∝

∑
λ=±1

∑
m,m′

ρmm′|a+λ
2

−λ
2

|2ei(m−m′)φ∗
d1

mλ(θ∗)d1
m′λ(θ∗) . (5.22)

The a constant can be factorised noticing that in the massless lepton approximation,
the helicity corresponds to the chirality of the lepton and thus

a+1
2

−1
2

a−1
2

+1
2

= g2
R

g2
L

, (5.23)
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with gR and gL being the coupling constant of the vector boson to respectively the right and
left chirality of the leptons. For a W± boson, coupling exclusively to left-handed particles,
gR is zero and gL is one, meaning only the configuration with a left-handed fermion is
allowed. However since the angle θ∗ is redefined for W+ boson to be with respect to the
anti-fermion of the decay, the only λ allowed changes with the charge, being +1 for W+

boson and −1 for W− boson. Using the explicit functions d1
mm′(θ∗) and the spin density

matrix ρ of Eq. (5.17), one gets for the W± boson:

dσW ±→ν`±

dcos θ∗dφ∗ ∝ 1
2π

3
8

[
1 + cos2 θ∗ ± 2〈Sz〉 cos θ∗ + 2

(
1
6 − 1√

6
〈T0〉

)(
1 − 3 cos2 θ∗

)
±2〈Sx〉 cosφ∗ sin θ∗ ± 2〈Sy〉 sinφ∗ sin θ∗ − 2〈A1〉 cosφ∗ sin 2θ∗

−2〈A2〉 sinφ∗ sin 2θ∗ + 2〈B1〉 cos 2φ∗ sin2 θ∗ + 2〈B2〉 sin 2φ∗ sin2 θ∗
]
.

(5.24)

For the Z boson, the formula is slightly more complex as both λ values exist. However,
one a constant can be factorised and the importance of each helicity configuration term is
weighted by g2

R/(g2
R + g2

L) for λ = +1 and g2
L/(g2

R + g2
L) for λ = −1. The terms of d1

mλ(θ∗)
left unchanged by a change of λ will not have any fore-factor while those with a sign change
will have a fore-factor (g2

R − g2
L)/(g2

R + g2
L). This factor will in the following be labelled Cw,

and can be expressed in term of the cv and ca as

Cw = 2cacv

c2
a + c2

v

= 1/2 − 2 sin2(θw)
1/4 + (−1/2 + 2 sin2(θw))2 ≈ 0.15 . (5.25)

This Cw factor only appears in front of terms proportional to the spin expected value for
all space directions:

dσZ→`+`−

dcos θ∗dφ∗ ∝ 1
2π

3
8

[
1 + cos2 θ∗ − 2Cw〈Sz〉 cos θ∗ + 2

(
1
6 − 1√

6
〈T0〉

)(
1 − 3 cos2 θ∗

)
−2Cw〈Sx〉 cosφ∗ sin θ∗ − 2Cw〈Sy〉 sinφ∗ sin θ∗ − 2〈A1〉 cosφ∗ sin 2θ∗

−2〈A2〉 sinφ∗ sin 2θ∗ + 2〈B1〉 cos 2φ∗ sin2 θ∗ + 2〈B2〉 sin 2φ∗ sin2 θ∗
]
.

(5.26)

These full differential cross sections hold all the information on the spin density matrix
parametrisation. This is greatly simplified by integrating over φ∗ yielding

dσZ→`+`−

dcos θ∗ ∝ 3
8
[
1 + cos2 θ∗ + 2Cw(fL − fR) cos θ∗ + f0

(
1 − 3 cos2 θ∗

) ]
. (5.27)

Similar formulas are found for W+ boson (resp. W− boson) replacing Cw by −1 (resp. +1).
Also, rearranging the formula, terms corresponding to the three polarisation fractions can
be made to appear. Using qW · cos θ∗

`W , one single formula appears for the W± boson:
dσW ±→ν`±

dcos θ∗
`W

∝
3
8

[
fR
(

1 + qW · cos θ∗
`W

)2 + fL
(

1 − qW · cos θ∗
`W

)2 + 2f0

(
1 −
(

qW · cos θ∗
`W

)2
)]

, (5.28)

dσZ→`+`−

dcos θ∗
`Z

∝
3
8

[
fR(1 + cos2 θ∗

`Z − 2Cw cos θ∗
`Z ) + fL(1 + cos2 θ∗

`Z + 2Cw cos θ∗
`Z ) + 2f0

(
1 − cos2 θ∗

`Z

) ]
. (5.29)

It is interesting to note here that each term corresponds exactly to the direct differential
cross section computation of a boson with a given polarisation presented in Appendix A.
Effectively, these formulas thus amount to the incoherent sum of all three pure polarisation
states, weighted by an associated polarisation fraction.
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5.2.3 Fixed-order joint-polarisation calculation

The angular description of W±Z events does not give any numerical prediction on what the
polarisation fractions should be. Moreover, a similar description with spin-density matrix of
the W±Z system and its joint-polarisation fractions is not available, being mathematically
much more complex. These fractions can nevertheless be directly obtained from theoretical
calculations based on Feynman diagrams at a fixed-order in perturbative QCD. Interpreting
Eq. (5.28) and (5.29), the polarisation fractions can be seen as the ratio of each polarised
cross section on the total inclusive cross section.

The W±Z production cross section from a pure polarisation configuration is computed
with diagrams in the same fashion as in Section 5.1.1, only this time using bosons with a
specific polarisation. As described in Section 1.2, these are really pseudo cross sections, the
concept of polarisation being frame dependent. However, the ratio to the inclusive cross
section will provide the polarisation fractions and joint-polarisation fractions in the frame
used for the calculation. In the following, the frame used will be the W±Z centre-of-mass
frame, associated to the modified helicity frame for single boson polarisation.

Such calculation was performed at NLO in QCD for W±Z production in Ref. [77] follow-
ing a method developed first for WW production [78] and using the MoCaNLO program.
The main challenge when computing polarised cross section is the proper definition of what
is a polarised signal. While it is well defined for on-shell particles, for the unstable W± and
Z bosons there is some ambiguity.

First, it only makes sense to talk of polarised W± and Z bosons if the corresponding
Feynman diagram involves simultaneously two intermediate vector bosons, each separately
decaying to leptons. In Section 5.1.1, only the doubly resonant diagrams (5.3) with a Z
boson can be considered for this purpose. The other diagrams (5.4) and (5.5) are considered
as non-resonant background in this study. Of course restricting to the doubly resonant
diagrams does not solve completely the issue as the W± and Z bosons should be also
on-shell. Within the Double Pole Approximation (DPA), in addition to considering only the
doubly resonant diagrams, the W± and Z bosons are considered on-shell in the numerators
of the amplitude while recovering off-shell effects in the Breit-Wigner denominator of the
propagator. As such, diagram amplitudes singling out one boson V of mass MV and width
ΓV with momentum k and decaying in two leptons of momentum l and k− l takes the form

ADPA = Pµ(k) −gµν

k2 −M2
V + iΓVMV

Dν(l, k − l) , (5.30)

with Pµ and Dν subamplitudes respectively for the production of the boson V and its decay
in leptons. Using the identity

gµν =
 ∑

λ=0,±
εµ ∗

λ (k)εν
λ(k)

− kµkν

M2
V

, (5.31)

the frame dependent polarisation vectors εµ
λ defined in Section 1.2 can be made to appear.

The amplitude can thus be rewritten

ADPA =

∑
λ=0,±

Pµ(k)εµ ∗
λ (k)εν

λ(k)Dν(l, k − l)

k2 −M2
V + iΓVMV

=
∑

λ=0,±
Aλ , (5.32)
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the contraction of the momentum kν with the massless lepton decay tensor Dν vanishing2.
As a result, polarised amplitudes Aλ can be defined. This, sketched for a single boson
polarisation, is easily generalised to pure joint-polarisation amplitudes.

To obtain polarised cross sections, the square of the amplitude must be used, which will
of course not be the sum of the squares of the polarised amplitudes as interference terms
will arise:

|ADPA|2 =
∑

λ=0,±
|Aλ|2 +

∑
λ,λ′=0,±

AλAλ′ . (5.33)

In the total phase space, the interference terms should vanish in a similar way as how in
Eq. (5.28) and (5.29) integrating on the φ∗ azimuthal angle brings equations that amount
to the sum of polarised cross sections.

In Ref. [77], theorists Ansgar Denner and Giovanni Pelliccioli computed polarised cross
section as the square of polarised amplitudes along with the inclusive DPA cross section
and the full inclusive cross section. The ratio of the polarised cross section to the DPA
inclusive cross section provides an NLO QCD prediction of the polarisation fraction, while
the difference between the sum of the polarised cross section and the inclusive cross section
allows the estimation of the interference contribution. These were all computed in the
fiducial phase space defined in Table 5.1, in the centre-of-mass frame of the W±Z system.
Overall, the effect of NLO corrections is found to be important, increasing the polarised
cross sections by factors from +31 % to +168 %. This affects joint-polarisation fractions,
with f00 and fTT decreasing respectively by 30 % and 10 % while the mixed states fractions
f0T and fT0 increase by 50 %. The non-resonant W±Z events amount to 1.8 % at NLO.
The interference contribution in the total phase space represents 0.6 % of the events, and
will be neglected in the following. The non-resonant W±Z events amount to 1.8 % at NLO.

In a similar way, NLO EW effects where taken into account in Ref. [79]. The addition
of this correction to the NLO QCD prediction, however, only lowers the inclusive cross
section by 2.3 %. For the polarised cross sections, the effect is roughly of the same order in
all pure joint-polarisation, with at most a decrease by 3.3 %. Consequently, the effect on
joint-polarisation fractions is negligible.

5.3 Monte Carlo generation of W±Z events

Direct theoretical computations as done in [72, 73] for inclusive production with the
automated MATRIX framework, or in [77, 79] for the polarised case with the MoCaNLO
framework, allow to obtain total W±Z cross sections and differential cross sections as a
function of some chosen variable. However, they only provide theoretical predictions at
the parton level and thus miss soft physics effects from parton showers and hadronisation
described in Section 1.3.3. Even more problematic, they do not hold information on the
correlation between all the physics variables, making it impossible to assess the effect of
a cut on one variable on the distribution of another. This issue can only be cured by a
complete kinematical description, event by event, of the physics process. Therefore, samples
of simulated events are needed to tune a physics analysis e.g. to test the effect of cuts on
certain variables in the definition of the selection.

2From Dirac equation for a massless spinor, γν∂
νψ = 0 .
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5.3.1 Inclusive Monte Carlo samples

Samples of simulated events can be produced by Monte Carlo generators. As described in
Section 1.3.3, the hard scattering matrix element computation is usually interfaced with
a parton shower generator, allowing the simulation of events at the particle level. These
events, to which the mZ cut of Eq. (5.8) is applied, provide the Monte Carlo theoretical
predictions in the total phase space. Similarly, generated events passing the fiducial phase
space cuts of Table 5.1 provide the Monte Carlo prediction in the fiducial phase space. In
parallel, all the generated events are passed through the ATLAS detector simulation [80]
based on GEANT4 [81] to simulate the expected signature in the detector. Then, the same
event reconstruction procedure as defined for data (described ahead in Chapter 6) is used
to obtain detector-level Monte Carlo events that are fully comparable to data.

For the purpose of this analysis, samples from several Monte Carlo generators are
used. The main generator, deemed to be representing best the data in W±Z inclusive
production, is generated with Powheg-Box v2 [36, 82] at NLO in QCD, including the non-
resonant diagrams of Section 5.1.1, the Z/γ∗ interference, and the decay in τ subsequently
decaying to electrons or muons, thus faking the experimental signature. It is interfaced to
Pythia 8.210 [37–39] for parton shower, hadronisation and underlying events simulation.
To match the MATRIX NNLO QCD cross-section prediction, this Powheg+Pythia
sample is rescaled by an overall scale factor of 1.18 in the fiducial phase space.

Two alternative samples were generated at NLO in QCD. First, the Monte Carlo
generator MadGraph5_aMC@NLO [35] computes all the matrix elements associated
with the experimental signature (5.1) at NLO in QCD with up to two jets. It does not
include the Z/γ∗ interference and the non-resonant background. It is merged with parton
shower with Pythia 8.210 [37] using the FxFx scheme [83] and will be referred in the
following as MadGraph@NLO. Finally, to provide an alternative to Pythia for parton
showers, an additional sample from the general purpose Sherpa 2.2.2 [40] Monte Carlo
generator is created. Matrix elements for the signature (5.1) with up to one jets at NLO in
QCD and with up to three jets at LO are computed with respectively OpenLoops [84] and
Comix [85]. They are then merged with the internal Sherpa parton shower [86] following
the MEPS@NLO prescription [87].

5.3.2 Polarised Monte Carlo samples

Recent developments in Monte Carlo generation now allow the production of polarised
samples. It is possible with the recent version 2.7.3 of MadGraph5_aMC@NLO [88]
to generate polarised W± and Z bosons with their leptonic decay, with nevertheless a few
limitations. Mainly, the polarised generation is only available at LO. This is a serious
limitation, as NLO effect were shown in Section 5.1.1 to be very important in the inclusive
W±Z production. The generation is performed in two steps. First the production of
polarised W± and Z bosons is generated. Then, the electronic or muonic decay of these
bosons is generated in the Narrow Width Approximation (NWA3) but preserving off-shell
effects and spin-correlations using the MadSpin method [89]. However, only the decay of

3The NWA assumes intermediate particles are on-shell, and their subsequent decay is added in the
computation simply as their branching ratio to the required final state. This spoils off-shell effects and spin
correlations.
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longitudinal 0 or transverse T bosons can be generated. As a result, these polarised samples
cannot be used to measure fL or fR in single boson polarisation measurement. To emulate
real corrections from NLO in QCD, polarised W±Z events are generated in association with
zero and one jet. These are merged with parton shower from Pythia 8.244 with the CKKW-L
scheme [90, 91]. As a result, NLO virtual corrections, non-resonant contributions and Z/γ∗
interferences are not modelled by this MadGraph0,1j@LO generation procedure.

Nonetheless, it was used to generate samples of W±Z events up to detector level for a
given joint-polarisation state. Four pure joint-polarisation samples W0Z0, W0ZT, WTZ0,
WTZT are generated with this MadGraph0,1j@LO procedure and then merged two by two
to create single boson polarised samples W0,WT, Z0, ZT. The polarised samples obtained
this way will in the following be collectively labelled MGgen samples. The summation of all
polarised MadGraph0,1j@LO samples provides an inclusive sample which is found to be
in reasonable agreement with the NLO inclusive Powheg+Pythia sample as can be seen
in the distributions of polarisation sensitive variables in Fig. 5.3.
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Figure 5.3 Comparison between distributions of qW · cos θ∗
`W (a), cos θ∗

`Z (b) and | cos θV | (c) of
inclusive Monte Carlo samples MadGraph0,1j@LO and Powheg+Pythia at detector level for
W±Z events.

5.4 Polarisation in inclusive Monte Carlo

It is possible to extract polarisation fractions directly from polarised theoretical calculations
and simulations. However, these methods rely on strong theory approximations such as the
DPA or the NWA. A more general method is to use the differential distributions of Eq. (5.28)
and (5.29) that solely originates from angular momentum conservation considerations as
detailed in Section 5.2.2. This will provide an insight on the behaviour of polarisation
fractions depending on the frame, justifying the choice of the Modified Helicity frame.
It is then possible to generalise these single boson polarisation formulas to extract joint-
polarisation fractions as well.

5.4.1 Single boson polarisation fractions

At truth level in the total phase space, Eq. (5.28) and (5.29) describe the distribution of the
variables qW · cos θ∗

`W and cos θ∗
`Z respectively, in the inclusive NLO in QCD Powheg+Py-
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thia Monte Carlo sample. Being directly linked to angular momentum conservation, these
formulas are valid at all orders in perturbation theory and can only be spoiled by:

• final state radiations.

• boson exchanges from initial to final states or between the W± boson and Z boson
decay leptons.

The first effect is eliminated by considering the Born decay leptons in Powheg+Pythia.
The second effect was considered in [15] to be extremely negligible. Consequently, the three
polarisation fractions of the W± boson (resp. Z boson) can be extracted through a fit of the
qW · cos θ∗

`W (resp. cos θ∗
`Z , both indistinctly labeled cos θ∗

` ) distribution of generated Monte
Carlo events by the analytical formula of Eq. (5.28) (resp. Eq. (5.29)). This is a fit with
three parameters, each being a polarisation fraction. The fitting function is globally scaled
by the integral of the cos θ∗

` distribution. With such parametrisation, the normalisation
relation of the fractions (1.48) is not guaranteed. The fitting function can be rewritten to
have this relation built in, with this time only two parameters:

1
σ

dσ

dcos θ∗
`

= 3
8

[
1 + cos2 θ∗

` + A4 cos θ∗
` + A0

1
2
(
1 − 3 cos2 θ∗

`

)]
, (5.34)

where A0 = 2f0 , A4 =
{

∓2 (fL − fR) for W±

2Cw (fL − fR) for Z . (5.35)

The fit using this theoretical function is thus a fit with two parameters which is expected
to give slightly reduced uncertainties with respect to the fit with three parameters, while
enforcing the normalisation relation (1.48). The result of these two analytical fits is shown
in Fig. 5.4.

Finally, a last method to extract these fractions is the moments method [15]. One can
rewrite the formula (5.34) this way:

1
σ

dσ

dcos θ∗
`

= 3
8

[4
3 +

(
A0 − 2

3

) 1
2
(
1 − 3 cos2 θ∗

`

)
+ A4 cos θ∗

`

]
. (5.36)

By defining the scalar product

〈f, g〉 =
∫
Ω

f · g dΩ ,

with Ω = {cos θ∗
` ∈ [−1; 1]}, then the following set of functions

m(cos θ∗
` ) :

{
1 , 1

2
(
1 − 3 cos2 θ∗

`

)
, cos θ∗

`

}
, (5.37)

is orthogonal for this scalar product. Rewriting functions of this set {mi}i∈{0,1,2} the
distribution becomes

1
σ

dσ

dcos θ∗
`

= 3
8

2∑
i=0

αimi . (5.38)

By defining the moment of a function m(cos θ∗
` ) the following way:

〈m〉 =
∫ dσ

dcos θ∗
`
m(cos θ∗

` ) dcos θ∗
`∫ dσ

dcos θ∗
`
dcos θ∗

`

, (5.39)
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Figure 5.4 Polarisation fractions of W± boson (left) and Z boson (right) in W+Z (top)
and W−Z (bottom) events, extracted from the cos θ∗

` distributions in the total phase space of
the inclusive Powheg+Pythia Monte Carlo sample through analytical fits with three or two
parameters.

replacing with (5.38) and adding orthogonality, one gets:

〈mi0〉 =

2∑
i=0

αi〈mi,mi0〉
2∑

i=0
αi〈mi, 1〉

, (5.40)

= αi0‖mi0‖2

α0‖1‖2 , (5.41)

= 3
8αi0‖mi0‖2 because ‖1‖2 = 2 and α0 = 4

3 . (5.42)

Thus, computing the norm of each mi and replacing the αi by the expressions of
Eq. (5.36) gives

〈1
2(1 − 3 cos2 θ∗

` )〉 = 3
20

(
A0 − 2

3

)
,

〈cos θ∗
` 〉 = 1

4A4 .
(5.43)

allowing to extract the parameters A0 and A4 linked to the kinematics of the decay of
the boson, and with this its polarisation. Extracting fractions from the two A0 and A4
parameters implies that they will follow the normalisation relation (1.48) as well.
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The fit with three-parameter, the fit with two-parameter and the moments method were
compared and found to provide very comparable results, as detailed in Appendix B. Still,
the three-parameter fit was found to extract fractions with uncertainties slightly larger.
In the following, the moments method is chosen to extract the polarisation fractions of a
single boson. In Table 5.2, the total phase space fractions are represented. It shows that
the statistical uncertainties from the extraction of fractions are reasonable, at the percent
level. A difference in theory from the sign of the W± boson is visible. It is very small
when considering f0, but for fL and fR, there is an inversion of the roles when inverting the
charge. Additionally, fL − fR is also different, being smaller in W+Z events.

Table 5.2 Single boson polarisation fractions at particle level in the total phase space extracted
from Powheg+Pythia, distinguishing events with aW+ and events with aW−. The uncertainties
are statistical only, arising from the moments method used to obtain the fractions.

W± boson polarisation
in W+Z in W−Z

f0 0.1821 ± 0.0009 0.1901 ± 0.0011
fL 0.5006 ± 0.0006 0.3652 ± 0.0007
fR 0.3172 ± 0.0005 0.4447 ± 0.0008

Z boson polarisation
in W+Z in W−Z

f0 0.1807 ± 0.0009 0.1822 ± 0.0012
fL 0.3612 ± 0.0017 0.5053 ± 0.0022
fR 0.4580 ± 0.0018 0.3125 ± 0.0022

5.4.2 Polarisation correlations and reference frame

As was described in Fig. 5.2, two different frames exist to define the cos θ∗
` variable. This

choice of frame for cos θ∗
` is really the choice of the frame in which the single boson

polarisation fractions are measured later on in the analysis. The main difference between
the Helicity frame and the Modified Helicity frame is the direction of the z-axis used to
define the direction of the vector boson, and thus the resulting longitudinal polarisation.
For a single boson polarisation analysis, any frame would work, as long as the analysis
consistently uses everywhere the same frame.

Nevertheless, to talk meaningfully of joint-polarisations, a common frame for the diboson
system is needed, when there are actually two Helicity frames, one per boson. Analogously
to the single boson case, the diboson system rest frame allows assimilating helicity states
to spin quantum states making more visible angular effects originating from the spin. The
Modified Helicity frames originate from this diboson rest frame used for joint-polarisation
measurement and provide a common z-axis for both boson along their momentum. It will
thus allow comparing joint-polarisation and single boson polarisations and evaluate the
correlations between polarisations.

To test this idea, it is possible to represent the evolution of the polarisation fractions of
one boson with respect to the cos θ∗

` of the other boson. This is obtained extracting the
polarisation fractions of one boson with the moments method (Section 5.4.1) in bins of
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the cos θ∗
` of the other boson. The underlying idea is that the boson of which the cos θ∗

` is
used will have a favoured polarisation depending on the value of cos θ∗

` , as can be seen on
Fig. 5.4. For example, a W+ boson will be mainly polarised Right for cos θ∗

`W close to +1,
Left for cos θ∗

`W close to −1, and with a significant amount of longitudinal polarisation for
cos θ∗

`W around 0. Then representing the polarisation fractions of the Z boson along cos θ∗
`W

will give a first idea of how correlations work.
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Figure 5.5 Polarisation fractions of W± boson (left) and Z boson (right) in W+Z events in
bins of the cos θ∗

` of the other boson (cos θ∗
`Z left, cos θ∗

`W right) extracted from Powheg+Pythia
at the particle level in the total phase space. The top plot have the cos θ∗

` defined in the Modified
Helicity frame (ModHE), the bottom plot have the cos θ∗

` defined in the Helicity frame (HE).

The two frames show very different behaviour as visible in Fig. 5.5 for W+Z events
(similar results are obtained with W−Z events). In the Modified Helicity frame, the
longitudinal fraction and the transverse fractions are almost completely decoupled and the
Left and Right fractions have crossed behaviours. For example in Fig. 5.5(b), for a W+

boson mostly Left (cos θ∗
`W around -1), the Z boson is mostly Left, while for a W+ mostly

Right (cos θ∗
`W around 1), the Z boson is mostly Right. This indicates strong correlations

between the transverse polarisations. This behaviour is easy to understand from helicity
conservation4. A less obvious result is the visible decoupling of the longitudinal polarisation
from the transverse polarisations: the longitudinal polarisation fraction of the two bosons
are much less correlated. This decoupling is still there though less visible in Fig. 5.5(a) as

4Note that the z-axis used for the W± boson polarisation has opposite direction compared to the z-axis
used for the Z boson polarisation.
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the cos θ∗
`Z is less discriminating between the Left and Right polarisations. However, for

the Helicity frame, the fractions are mixed and the crossed behaviour is now split between
the longitudinal and one transverse polarisation. Using the Helicity frame reshuffles the
polarisations of the bosons, making less clear the different correlations that appear in the
Modified Helicity frame. In the end, the Modified Helicity frame is the most interesting
frame as correlations of single boson polarisations appear clearly.

For joint-polarisation study, the W± and Z bosons must be described in their rest
frame. This is for example what is done in the MadGraph0,1j@LO polarised Monte Carlo
generation detailed in Section 5.3.2. Using such Monte Carlo sample also for single boson
polarisation forces to use the Modified Helicity frame.

5.4.3 Diboson joint-polarisation fractions

To extract the joint-polarisation fractions, a first idea is to simply multiply single boson
polarisation fractions. However, this can only be done under the assumption that the
polarisation of both boson are independent. With three polarisations for each boson, one
gets thus nine joint-polarisation fractions. As a first step and for simplicity, this number
is reduced to four by merging Left and Right polarisations in what will be called the
Transverse polarisation labeled T. The joint-polarisation fractions f00, f0T, fT0 and fTT are
expressed as functions of the longitudinal polarisation of both the W± and the Z bosons
under the independence assumption:

f00 = fW
0 fZ

0 , (5.44)
f0T = fW

0

(
1 − fZ

0

)
, (5.45)

fT0 =
(
1 − fW

0

)
fZ

0 , (5.46)

fTT =
(
1 − fW

0

) (
1 − fZ

0

)
. (5.47)

Yet, mere considerations of angular momentum conservation indicate that the polar-
isations of both bosons are probably not independent. For example, Fig. 5.5 shows an
indirect effect of such correlations, as the polarisation of one given boson is influenced by
the kinematic variable value of the other boson. Extracting joint-polarisation fractions
under the independence assumption is expected to give a wrong result. As a result, a 2D
fit of the 2D histogram of (cos θ∗

`W ,cos θ∗
`Z ) was developed. For this, Eq. (5.28) and (5.29)

are multiplied to get the 2D fitting function of Eq. (5.48).
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(5.48)
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In this equation, there would be 3 × 3 = 9 fractions and one normalisation parameter, the
overall cross section σ. This normalisation factor could have been taken from the integral of
the 2D histogram as was done in single boson polarisation, but the fit is found to perform
much better without this assumption. Additionally with the normalisation relationship of
the fractions, the sum of the fractions should be equal to 1, bringing the equation back to
9 free floating parameters by redefining one fraction as 1 minus all the others. Here, the
chosen redefined fraction is f00.

This method of considering the product of angular variables to extract diboson po-
larisation was also used for the WW channel at LEP [21]. It provides at once all the
joint-polarisation fractions, retaining thus the information on polarisation correlations. All
joint-polarisation fractions are extracted from the inclusive Powheg+Pythia Monte Carlo
in the total phase space this way and, through additions, brought back to the four f00, f0T,
fT0 and fTT fractions. In Fig. 5.6, we can see that the fitted 2D function reproduces well
the initial 2D histogram. Fractions extracted with this method are shown in Table 5.3.
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Figure 5.6 Result of the 2 dimension fit of an inclusive Powheg+Pythia sample in the
total phase space. Left are the original 2D histogram of (cos θ∗

`W ,cos θ∗
`Z ), right are the fitted 2D

functions. On top are W+Z events, bottom are W−Z events. The z-axis represented with a color
palette corresponds to the number of events.
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5.4.4 Link between joint and single boson polarisation

Finally, it is possible to modify the formulas of Eq. (5.44)–(5.47) to make the dependence
between each boson polarisation appear. According to NLO calculations in [77], the
interferences between polarisations are negligible as they only amount to 0.6 % of the events.
Consequently as a first approximation, the spin density matrix of the diboson system can
be considered diagonal, and joint-polarisation fractions are really the probability to find
the system in a given joint-polarisation state. Basic properties of a probability yield

P (W0) = P (W0 ∩ (Z0 ∪ ZT )) = P (W0 ∩ Z0) + P (W0 ∩ ZT ) , (5.49)

which becomes for fractions

fW
0 = f00 + f0T , (5.50)
fZ

0 = f00 + fT0 . (5.51)

In the end by getting f00 from a 2D fit and fW
0 and fZ

0 from a 1D fit, one gets the
remaining joint-polarisation fractions with

f0T = fW
0 − f00, (5.52)

fT0 = fZ
0 − f00, (5.53)

fTT = 1 + f00 − fW
0 − fZ

0 . (5.54)

In Table 5.3, the four joint-polarisation fractions extracted from Monte Carlo events in
the total phase space are presented using three different methods:

• Using the independence assumption from Eq. (5.44)–(5.47), single boson polarisation
fractions extracted with a 1D fit provide joint-polarisation fractions.

• Joint-polarisation fractions are directly extracted with the 2D fit using the analytical
formula (5.48).

• Using the reparametrisation from Eq. (5.52)–(5.54) to the (f00, f
W
0 , fZ

0 ) basis, single
boson polarisation fractions extracted with a 1D fit are combined with the f00 joint-
polarisation fraction extracted with the 2D fit to provide joint-polarisation fractions.

From the independence assumption to the 2D fit, it appears that the results are very
close, but still slightly different. The difference is well above the uncertainties, implying
that the 2D fit does capture some correlation in the polarisation of the two bosons that the
independence assumption would miss.

From the 2D fit to the (f00, f
W
0 , fZ

0 ) basis, as expected, there are almost no differences
in f0T, fT0 and fTT, showing that the 1D and 2D fits are consistent at particle level in
the total phase space. This conversely implies that extracting the f0 fraction of a boson
directly with a 1D fit or indirectly with a 2D fit gives coherent results.

In fact, it is possible to go further and extract a parameter directly linked to the
dependence of the longitudinal polarisation of both bosons. Such parameter, called Rc, is
defined using Bayes formula as

Rc = f00

fW
0 fZ

0
= f

W |Z0
0
fW

0
= f

Z|W0
0
fZ

0
, (5.55)
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Table 5.3 Joint-polarisation fractions at particle level in the total phase space obtained by three
methods from the Powheg+Pythia sample. The first column shows the results obtained under
the independence assumption, that is by multiplying single boson polarisation fractions. The
second column shows the result with the 2D fit. Finally, the third column shows the results using
f00 from the 2D fit and single boson polarisation fractions fW

0 , fZ
0 combined to get f0T, fT0 and

fTT (note that the first line is by design exactly the same from the second to the third column).
The uncertainties are statistical only, arising from the fits.

W+Z

Method Independence 2D fit (f00, f
W
0 , fZ

0 ) basis
f00 0.0329 ± 0.0002 0.0485 ± 0.0014 0.0485 ± 0.0014
f0T 0.1492 ± 0.0008 0.1333 ± 0.0016 0.1336 ± 0.0017
fT0 0.1478 ± 0.0008 0.1320 ± 0.0016 0.1322 ± 0.0017
fTT 0.6700 ± 0.0011 0.6862 ± 0.0016 0.6856 ± 0.0019

W−Z

Method Independence 2D fit (f00, f
W
0 , fZ

0 ) basis
f00 0.0346 ± 0.0003 0.0485 ± 0.0018 0.0485 ± 0.0018
f0T 0.1555 ± 0.0010 0.1411 ± 0.0020 0.1416 ± 0.0022
fT0 0.1476 ± 0.0010 0.1334 ± 0.0020 0.1337 ± 0.0022
fTT 0.6623 ± 0.0013 0.6770 ± 0.0022 0.6762 ± 0.0024

where fW |Z0
0 (resp. fW |Z0

0 ) is the fraction of W boson (resp. Z boson) polarised longitudinally
if the Z boson (resp. W boson) polarisation is already selected longitudinal. It thus
represents a test of the independence of the polarisation fraction of both bosons. In case
of independence, Rc is expected to be one. The four original joint-polarisation fractions
transform with this new set of parameters as

f00 = Rcf
W
0 fZ

0 (5.56)
f0T = fW

0

(
1 −Rcf

Z
0

)
, (5.57)

fT0 =
(
1 −Rcf

W
0

)
fZ

0 , (5.58)

fTT =
(
1 − fW

0

) (
1 − fZ

0

)
+ (Rc − 1) fW

0 fZ
0 . (5.59)

The link of Rc with the independence hypothesis is clear comparing with the joint-
polarisation fractions under the independence hypothesis in Eq. (5.44)–(5.47).
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Chapter 6

Inclusive W±Z production

The data collected during the Run 2 of the LHC by the ATLAS detector amounts to
139 fb−1 of integrated luminosity. This represents roughly 1016 inelastic pp collisions1. From
Fig. 1, the inclusive cross section for W±Z production in all decay channels is roughly two
milliards lower. More precisely, considering the total phase space cross section for W±Z
production in Eq. (5.11), approximately 7 000 000 events with simultaneously a W± boson
and a Z boson were produced over the course of Run 2. Out of these, we only consider in
this analysis events were both bosons decayed in leptons of the first or second generation.
With roughly 21 % of W± bosons and 7 % of Z boson decaying this way [70], we expect
only a bit more than 1 % of W±Z inclusive production in our decay channel, for a total of
98 000 events.

This dramatic decrease in the number of available events only reflects the choice to study
the W±Z diboson process with a clean signature in the detector. As a result, selecting these
rare events within the gigantic amount of pp collisions recorded during Run 2 is a crucial
step. Furthermore, it is important to define a signal region with a limited number of events
from background processes among selected events to be able to isolate the W±Z production
process. This means the efficiency of the selection has to be balanced by its purity. The
reconstruction and selection of W±Z events described in Section 6.1 manages to optimise
this. For further polarisation studies, the reconstruction of the full topology of these events
is needed. This includes the neutrino originating from the W± boson, which does not
leave any direct footprint in the ATLAS detector. Methods to completely reconstruct
this final particle are detailed in Section 6.2. Finally, it is impossible to completely avoid
background contamination in the selected events. Accounting for all background processes
and developing methods to properly estimate their contributions in the signal region, as
detailed in Section 6.3, will allow isolating the contribution from W±Z signal events.

The selection criteria will define a fiducial phase space were the measurement is performed,
as already described in Table 5.1. The fiducial cross section of Eq. (5.12) predicts 36 000
W±Z events in our fiducial phase space. Then, the actual performance of the ATLAS
detector for the event reconstruction will further decrease the number of available events.
Nonetheless, the signal over background ratio of this very rare process is still good, as
shown in Section 6.4. This will then allow studying fainter signals, such as the fraction of
such events for different polarisation configurations.

1The proton–proton inelastic collision cross section is of 80 mb.
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6.1 W±Z events reconstruction and selection

6.1.1 Particles reconstruction with the ATLAS detector

The ATLAS detector extensively described in Section 2.2 is composed of many sub-detectors
each targeting certain aspects of the footprint of collisions in ATLAS. Each collision that
passed the two levels of trigger is recorded as an event and goes through reconstruction
on the LHC Computing Grid. Combining information from various sub-detectors allows
reconstructing physics object candidates. These physics objects are used to characterise
the hard scattering physics process happening in the main pp collision. The reconstruction
of such objects combining sub-detectors informations is designed centrally in ATLAS by
dedicated combined detector performance (CP) groups. The CP groups develop in Athena,
the ATLAS reconstruction and analysis software suite [92]. They provide algorithmic tools
to define identification quality criteria and final calibration of the particles, along with the
estimation of the associated systematic uncertainties. In the context of W±Z production,
as described by Eq. (5.1), physics objects of interest are primarily electrons and muons.
The neutrino goes undetected in the detector, but can be partially reconstructed using
missing transverse energy Emiss

T . The computation of Emiss
T requires to keep track of every

transverse energy produced in the collision. This is eased reconstructing jets inclusively
produced in W±Z production (see Section 1.3.3). Electrons, muons, jets and Emiss

T are
reconstructed and calibrated following the prescriptions from their dedicated CP group:

Electrons [93, 94]: Electrons are reconstructed on one side from the identification of
electromagnetic clusters in the LAr electromagnetic calorimeter (Section 2.2.3.1),
and in parallel by the reconstruction of tracks in the Inner Detector (Section 2.2.2).
Tracks and clusters are matched to create an electron candidate. At this stage, the
reconstructed candidates contain a sizeable amount of particles wrongly identified
as electrons e.g. a light jet or a photon converting to an electron-positron pair by
interacting with the material in the tracker.

On top of the reconstruction, a multivariate discriminant combining information
from different sub-detectors is created to assess the quality of the identification of
the electron candidate. From this discriminant, four working points of increasing
background rejection levels are designed, called Loose, Medium and Tight. Candidates
selected at a certain level of purity are strictly contained in the looser selection criteria.
This entails a decreasing efficiency of the selection for working points of increasing
tightness.

Furthermore, electrons can be produced inside a jet. These are non-prompt electrons,
that is not produced in the primary vertex, but rather produced as secondary particles.
The selection of prompt electrons requires the use of isolation criteria assessing the
activity in the vicinity of the electron candidate. The isolation can be evaluated
from the calorimeter perspective using an isolation cone ∆R = 0.2 as defined in
Section 2.2.1, or from the track perspective, using this time a pT-dependent cone
with maximum size ∆R = 0.2 as well. As for identification, isolation working points
are defined, either targeting a fixed isolation efficiency uniform η wise but with ET
dependence (Gradient) or using fixed requirements on the isolation variables from
track and calorimeter (Loose, Tight) or calorimeter only (HighPtCaloOnly).
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Muons [95]: Muons are primarily reconstructed using hits in the Muon System (Sec-
tion 2.2.4). The muon candidates are then matched to charged particles reconstructed
in the Inner Detector, yielding combined muon candidates. Other muon candidates
can be reconstructed matching an Inner Detector track to an isolated segment in the
Muon System, or conversely extrapolating a muon candidate of the Muon System not
matched by any track in the Inner Detector. Finally, some muon candidates can be
reconstructed matching an Inner Detector track to minimum ionising particle energy
deposits in the calorimeter. Identification working points are defined similarly as
for the electrons. Isolation variables are also defined to reject non-prompt muons
using isolation cone of ∆R = 0.2 in calorimeter and pT-dependent cone of up to
∆R = 0.3 in Inner Detector tracks2. Many different working points are defined, either
using cuts on track isolation variable only (HighPtTrackOnly, TightTrackOnly),
cuts on both track and calorimeter variables (Loose, Tight) and cuts on particle flow
variables which are a weighted sum of track and calorimeter variables (PflowLoose,
PflowTight).

Jets [96]: Jet reconstruction is primarily based on the anti-kt algorithm [97] which builds
jets from reconstructed objects four-vectors. It uses as parameter the typical radius
of the jet, usually set at R = 0.4 but tunable for different analysis needs. The
input four-vectors can be reconstructed from energy deposit topological clusters
in the calorimeters, creating EMTopo jets, or with the more advanced particle flow
algorithm [98] that combines track and calorimeter information, creating PFlow jets.
Because of the composite nature of jets, problematics of background contamination are
treated by carefully calibrating the jet energy scale (JES). This is done applying pile-
up corrections and taking into account inefficiencies of the sub-detectors. Additionally,
the jet energy resolution (JER) is determined. To further reject pile-up contributions,
Jet Vertex Tagger (JVT) algorithms [99] are used in order to keep only jets that
match the primary vertex.

Emiss
T [100] The missing transverse momentum, traditionally labelled Emiss

T , is obtained
from the transverse momentum imbalance. The partons colliding in the hard scattering
process have negligible initial transverse momentum. Therefore, from momentum
conservation, a missing transverse momentum vector can be reconstructed

~Emiss
T = −

 ∑
i∈{hard objects}

~pT,i +
∑

j∈{soft objects}
~pT,j

 , (6.1)

with the hard objects being any other objects among leptons or jets reconstructed, and
soft objects being any tracks originating from the primary vertex and not matched to
any hard objects.

6.1.2 W±Z event selection

Events from inclusive W±Z production are reconstructed from Run 2 data that passed
quality criteria, recorded from 2015 to 2018. These events labelled Good for Physics in
Fig. 2.4, correspond to 139 fb−1 of integrated luminosity. The selection starts among events

2In the inner detector, fixed radius ∆R = 0.2 can also be used. In that case, the isolation working point
variant is tagged by the suffix _FixedRad.
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recorded by at least one of five single lepton (electron or muon) triggers. The triggering
lepton is required to have pT > 27 GeV, one GeV above the trigger threshold3, to ensure
being on the plateau of the trigger efficiency turn-on curve (such curves are illustrated
by Fig. 3.8(b)). Events that are incomplete, corresponding to corrupted data from one
of the sub-detectors or contain a fake jet from non-collision background4, are discarded.
Furthermore, events are required to have a primary vertex with at least two tracks.

Events with three leptons corresponding to a Z boson and a W± boson are selected.
For this purpose, three levels of lepton selection criteria of increasing tightness are defined:
baseline, Z-lepton and W -lepton. To each level corresponds specific criteria depending on
the lepton flavour. They are summarised in Table 6.1 for muons and Table 6.2 for electrons.

• For all levels, the leptons should be associated to the primary vertex of the collision
with criteria on the impact parameters of their track d0 and z0. The tracks transverse
impact parameter must have a significance |d0/σ(d0)| better than 3.0 for muons, 5.0
for electrons. The longitudinal impact parameter z0, defined as the distance on the
beam axis between the primary vertex and the projection of d0, is required to satisfy
|z0 · sin θ| < 0.5 mm.

• A cut on |η| allows to control the sub-detector regions used for the reconstruction. For
muons, the |η| cut goes from the acceptance of the Muons System for baseline leptons
down to the acceptance of the Inner Detector for Z and W -leptons. For electrons, the
acceptance of the Inner Detector and the precision region of the LAr electromagnetic
calorimeter is selected for all levels, excluding the crack region between barrel and
end-caps only for Z and W -leptons.

• Fake leptons usually have lower pT than prompt signal leptons. Cuts on pT, higher
for selections of increasing tightness, allow rejecting these fakes.

• Identification and Isolation working points, as defined in Section 6.1.1 are selected for
each case. For the baseline electrons, the working points Loose+BLayer makes use of
the Insertable B-Layer.

• Different physics object are reconstructed in parallel from the same tracks or energy
deposit. An overlap removal procedure allows to correct this and avoid double
counting:

– Muons, being detected with the Muon System, can only overlap with a jet that
would have emitted a non-prompt muon. The µ–jets overlap procedure first
removes jets with less than three tracks and within ∆R < 0.2 of a muon, then
removes muons found within ∆R < 0.4 of a jets with at least three tracks.

– Two electron candidates can be reconstructed sharing a track. The e–e overlap
procedure removes the sub-leading pT electron in this case.

– An electron and a muon can be reconstructed sharing a track. In this case, the
e–µ overlap procedure removes the electron.

3For data from the year 2015, it is pT > 25 GeV, because a lower trigger threshold was allowed by lower
pile-up conditions.

4Non-collision backgrounds can originate from cosmic rays or a proton escaping the beam before the
interaction point.
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– Electrons can overlap with jets for the same reason as muons. The e–jets overlap
procedure first removes jets within ∆R < 0.3 of an electron, then removes
electrons found within ∆R < 0.4 of a jet that survived the previous step.

– Due to photon conversion, some calorimeter clusters can be assigned to an
electron or a photon. An ambiguity resolution procedure [94] manages to decide
between both most of the time, but some candidate remain ambiguous in which
case they can be considered as electron or photon depending on what is selected.
The e–γ overlap removal removes any electron of ambiguous nature.

Table 6.1 Muon candidate selection criteria for the three levels of selection.

Baseline selection Z-lepton selection W -lepton selection

Vertex Association |d0/σ(d0)| < 3 (for |η| < 2.5 only)
|∆z0 sin θ| < 0.5 mm (for |η| < 2.5 only)

|η| cut |η| < 2.7 |η| < 2.5 |η| < 2.5

pT cut pT > 5 GeV pT > 15 GeV pT > 20 GeV

Identification Loose Medium Tight

Isolation PflowLoose_FixedRad PflowLoose_FixedRad PflowTight_FixedRad

Overlap Removal - µ–jet µ–jet

Table 6.2 Electron candidate selection criteria for the three levels of selection.

Baseline selection Z-lepton selection W -lepton selection

Vertex Association |d0/σ(d0)| < 5
|∆z0 sin θ| < 0.5 mm

|η| cut |η| < 2.5∗ |η| < 2.5∗ |η| < 2.5∗

Exclude 1.37 < |ηcluster| < 1.52 Exclude 1.37 < |ηcluster| < 1.52

pT cut pT > 5 GeV pT > 15 GeV pT > 20 GeV

Identification Loose+Blayer Medium Tight

Isolation Loose HighPtCalo Tight

Overlap Removal e–e , e–µ e–e , e–µ e–e , e–µ
e–jets e–jets , e–γ

∗ In the calorimeter, |ηcluster| < 2.47

The baseline selection is rather loose in order to select leptons with high efficiency. As it
will be described in Section 6.3, the main background to W±Z production comes from ZZ
events decaying to four leptons. The baseline selection is thus optimised to detect a fourth
lepton, providing a veto against ZZ. Then, with a tighter selection, exactly three Z-leptons
are requested. Among these, two Z-leptons oppositely charged and of same flavour are
required to reconstruct a Z boson. This pair is required to have an invariant mass m``

within a ±10 GeV window around the resonant mass of the Z boson MZ = 91.1876 GeV [70].
In case several combinations of leptons could match this requirement, as can happen in
the eee or µµµ decay channel, the pair with m`` closest to MZ is selected. The remaining
Z-lepton is then required to pass the W -lepton selection criteria. Finally, to associate
this W -lepton to an actual W± boson, a cut on the transverse mass of the W± boson
mW

T > 30 GeV should be passed. This transverse mass is a variable designed to account for

89



6.2. Kinematic reconstruction of W±Z events Chapter 6: Inclusive W±Z production

the fact that in the reconstruction of a W± boson, only the transverse momentum of the
decay neutrino is known by means of Emiss

T . It is defined using the pT of the W -lepton and
Emiss

T as

mW
T =

√
2p`

TE
miss
T (1 − cos ∆φ) , (6.2)

with ∆φ the azimuthal angle difference in the transverse plane between the W -lepton and
the missing transverse momentum. In order to compute the Emiss

T , jets are reconstructed
before hand as PFlow jets. Only jets with |η| < 4.5 and pT > 25 GeV are considered. Pile-up
jets are removed using the jet vertex tagger (JVT) algorithm. All these inclusive event
selection criteria are summarised in Table 6.3.

Table 6.3 Overview of the inclusive event selection.

Trigger At least one of five single lepton triggers fired
Leading lepton pT plead

T > 27 GeV
Event cleaning Reject corrupted or incomplete events and events with non-collision background jets
Primary vertex Hard scattering vertex with at least two tracks

ZZ veto Strictly less than 4 baseline leptons
N leptons Exactly 3 leptons passing the Z-lepton selection
Z leptons 2 same flavor oppositely charged leptons passing the Z-lepton selection

Mass window |m`` −MZ | < 10 GeV
W lepton Remaining lepton passes the W -lepton selection

W transverse mass mW
T > 30 GeV

6.2 Kinematic reconstruction of W±Z events

In the event selected in data, the four-momentum of the decay leptons can be reconstructed
in the laboratory frame. The hard-scattering neutrino is deemed to be the main contributor
to missing transverse momentum and so, pν

T is assumed to be equal to Emiss
T . Nevertheless,

the conservation of the momentum does not allow to reconstruct its longitudinal momentum
pν

z , as the incoming parton longitudinal momentum is only known statistically through the
PDF. Knowing the full kinematic information on all decay leptons would make it possible
to completely reconstruct the four-momentum of the W± and Z bosons allowing to study
specifically their kinematic variables. Besides, this would allow boosting all the particles
four-momenta from the laboratory frame to the rest frame of one boson or of the W±Z
system. This will be very useful for polarisation studies as described in Chapter 7.

6.2.1 Analytical pνz reconstruction

As a first idea the W± boson pole mass MW can be used as a constraint. The W± boson
four-momentum PW , which is also the sum of the four-momenta of the W -lepton P`W and
the neutrino Pν , is normalised by MW . This yields an equation of which ultimately, the
only unknown is pν

z :

P2
W = M2

W = (P`W + Pν)2 . (6.3)
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Neglecting the mass of the leptons, and expressing Eq. (6.3), as a function of energies E,
transverse momenta pT and longitudinal momenta pz, it transforms as

M2
W

2 = E`Eν − p`
T · pν

T − p`
zp

ν
z (6.4)

⇔
(
ξ − p`

zp
ν
z

)2
= E`2

Eν2 = E`2 (
pν

T
2 + pν

z
2
)

with ξ = M2
W

2 + p`
T · pν

T . (6.5)

Simplifying and solving the previous equation brings:

pν
z = p`

zξ ±
√

∆
p`

T
2 , (6.6)

where:
∆ = p`

z

2
ξ2 − p`

T

2 [
E`2

pν
T

2 − ξ2
]
. (6.7)

If the discriminant ∆ is positive, there are two real solutions to this equation and a
procedure must be determined to choose the retained pν

z . In the cases where ∆ is negative,
no real solution exist, only a complex one. This corresponds to events with an off-shell W±

boson, having a transverse mass larger than the pole mass MW = 80.385 GeV [70]. The
fraction of such events is about 33 %. Several procedures for both cases are described in
Ref. [101]. Here, the following procedure is chosen:

• ∆ > 0: Take the smallest solution in absolute value.
• ∆ < 0: Take the real part of the complex solution.
This analytical method for pν

z reconstruction is characterised by a rather poor resolution
for various reasons. First, pT and Emiss

T can be subject to misreconstruction. Moreover,
other particles can contribute to Emiss

T beside the hard-scattering neutrino, rendering the
approximation pν

T ≈ Emiss
T less valid. Finally, off-shell W± bosons and the procedure for

the choice of a pν
z solution bring further misreconstructions. The previous single boson

polarisation measurement [17] used this analytical method for pν
z reconstruction.

6.2.2 DNN-based pνz reconstruction

Another idea is to use a Deep Neural Network (DNN) fed with various kinematic vari-
able of a W±Z event to estimate pν

z . Such DNN was developed to estimate pν
z using

Tensorflow v1.3 [102] with Keras v2.2.4-tf [103] back-end. The DNN was trained on the
Powheg+Pythia Monte Carlo sample (see Section 5.3.1) to reconstruct pν

z using as
inputs:

• pT of the W -lepton.
• pz of the W -lepton.
• the Emiss

T component along the direction of the W -lepton.
• the Emiss

T component perpendicular to the direction of the W -lepton.
• the pν

z reconstructed with the analytical method described above.
Such input selection encodes the φ-rotational symmetry in the detector, leading to a
reduction of the number of inputs (five instead of six), a faster training and therefore an
overall better performance.
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The architecture of the DNN is designed to take into account the W± boson mass
constraint. This mass mW is reconstructed with no trainable parameter directly from the
input variables and the pν

z obtained. Then, the loss function used to train the DNN is the
sum of the mean squared errors on the neutrino momentum components and the mean
squared error on mW . The target to compute these errors are taken from the true value in
the Monte Carlo, including for mW , making the DNN aware of the natural width of the
W± boson. This is an advantage compared to the analytical reconstruction method which
only knows of the pole mass MW .
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Figure 6.1 Error on pν
z (a) and the associated resolution (b), as reconstructed by the regression

DNN (blue) and analytical method (orange). In the legend, µ notes the mean value and RMS
(Root Mean Square) is the standard deviation.
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Figure 6.2 Resolution of mW as reconstructed
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method (orange). In the legend, µ notes the
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The analytical and DNN-based meth-
ods applied on the Powheg+Pythia
Monte Carlo sample are compared look-
ing at the error and resolution on pν

z in
Fig. 6.1. The DNN regression method is
able to give a reasonable estimate of pν

z

for events on which the analytical method
fails and provides a 10% decrease of the
pν

z error standard deviation thanks to an
improved resolution at high pν

z . Addition-
ally, the regression method improves the
mW resolution from the value of 41 % ob-
tained with the analytical method to 31 %,
as visible in Fig. 6.2. Both methods show
no bias.

The polarisation measurement de-
scribed in Chapter 7 was performed at the
reconstructed level on signal only Monte
Carlo samples using both methods. As

detailed in Appendix C, the central values for the polarisation fractions measured are found
to be very similar, but the associated uncertainty is reduced with the DNN-based method.
In the following, the baseline pν

z reconstruction will use this DNN.
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6.3 Background estimation

The experimental signature of W±Z production in Eq. (5.1) is not unique to this process
and some background processes can mimic it. These backgrounds exist in two categories:
reducible and irreducible backgrounds. Reducible background processes have a different
experimental signature, that is strictly less than three real leptons, but still pass the selection
criteria due to fake leptons being reconstructed in the detector. They are reducible in the
sense that improvement on the detector understanding or selection criteria can be used to
reduce them. Irreducible background processes on the other hand generate three or more
leptons. Because of the limited acceptance of the detector, even with perfect reconstruction,
some leptons can always be missed. In this sense, these background processes, even with a
final state containing more than three charged leptons, can never be fully reduced, hence
their name.

6.3.1 Irreducible background estimation

The main irreducible background comes from ZZ production with one lepton escaping
detection. This background is reduced by the ZZ veto criteria rejecting events with more
than three leptons from the loose baseline lepton selection as described in Section 6.1.2.
Though greatly reduced, it still constitutes the main background of this analysis. Another
important background comes from tt̄ + V , the production of a top anti-top quark pair
along with one electroweak boson V among W± and Z bosons. Subdominant backgrounds
come from tZ, the production of a top quark with a Z boson, and from V V V , the triple
electroweak boson production. Finally, WZjj−EW, the W±Z production in vector boson
scattering is treated as a background as well, mainly because this process is not taken into
account in our signal sample for polarisation studies. These backgrounds are estimated
through Monte Carlo simulations of which the validity is checked.

The ZZ process is simulated by Sherpa at NLO QCD with up to one additional QCD
jet, and at LO with two or three QCD jets. The electroweak vector boson scattering
ZZjj−EW process is also simulated by Sherpa at LO and added to this ZZ background.
A ZZ control region is created with the same selection as the signal region (Table 6.3) only
inverting the ZZ veto criteria: four or more baseline leptons are required. The control
distributions of mW

T in this ZZ control region is shown in Fig. 6.3(a). In this case, a fake
W± boson candidate is reconstructed from one of the ZZ decay leptons. In this region, the
reducible backgrounds are estimated as well with Monte Carlo samples: tt̄ and Z+jets with
Powheg+Pythia, Zγ and Wγ with Sherpa. The ZZ events represent 88 % of all events
in this region and there is agreement of the sum of all Monte Carlo with data within 10 %.
As will be described in Section 7.6.3, this control region is incorporated in the polarisation
measurement fit, providing an adjustment of the normalisation of this ZZ background.

The tt̄ + V background is simulated by merging MadGraph samples of tt̄W and
tt̄Z processes simulated at NLO in QCD and interfaced to Pythia. The validity of this
simulation is estimated in a validation region defined adding to the signal region selection
of Table 6.3 the requirement of two jets originating from a b-quark5. As in the ZZ control

5The b-quark in B-hadrons does not decay instantaneously and thus b-jets will appear to be created from
a secondary vertex a few centimeters away from the primary vertex. This feature is used by algorithms to
tag such b-jets.
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region, reducible backgrounds are estimated by Monte Carlo samples. In this validation
region, the tt̄ + V background represents 83 % of all events according to Monte Carlo
predictions. After an overall rescale of the tt̄+ V background by 1.4, the MC sample sum
is found to agree with data. A 15 % overall uncertainty is considered for the total yield of
this rescaled sample. This uncertainty allows covering data to Monte Carlo disagreements.
This is visible in Fig. 6.3(b) presenting the control distributions of mW

T , reconstructed from
a possibly fake W± boson candidate, in this tt̄+ V validation region.
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Figure 6.3 Control distribution of mW
T in the ZZ control region (a) and in the tt̄+V validation

region (b). The composition of both regions are estimated by Monte Carlo scaled to the expected
luminosity in Run 2. The dashed red band incorporates a 1.7 % systematic uncertainty on the
luminosity [49] and an overall normalisation uncertainty of 10 % for the ZZ sample in (a) and
15 % for the rescaled tt̄+ V sample in (b).

The tZ irreducible background is estimated with MadGraph +Pythia and associated
to an overall uncertainty of 15 % [104]. The triboson V V V background is simulated with
Sherpa and associated to an overall conservative uncertainty of 30 %. The WZjj−EW
background is simulated by MadGraph+Pythia at LO and associated to an overall
uncertainty of 25 %. Also, events from off-shell photons passing the total phase space
selection from Eq. (5.8) are treated as signal events. Such events outside of the mZ mass
window can still migrate to the fiducial phase space during reconstruction and thus constitute
background. This migrating γ∗ background is estimated using the truth information from
the Powheg+Pythia inclusive W±Z signal sample and associated to a conservative overall
uncertainty of 20 %. Finally, some W±Z production channel are treated as background
as well. These can be from one of the electroweak bosons decaying to a τ lepton, which
can in turn decay into an electron or a muon. This background is estimated also with the
Powheg+Pythia signal sample truth information removing the cut on the decay lepton
flavour. The magnitude of this background is directly linked to the cross section of the
W±Z production and is therefore subject to a special treatment that will be described in
Section 7.1.3.
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6.3.2 Reducible background estimation

Reducible backgrounds originate primarily from top quark pair tt̄ (with each top quark
decaying through a W± boson to a b-quark jet and a lepton), Zγ, Wγ and Z+jets processes,
the jets or photon produced along creating a fake third lepton in the detector. Other
reducible backgrounds are arising from Wt and WW processes. Interactions of real leptons
in the detector can be simulated, allowing to determine its reconstruction efficiency using
a Monte Carlo simulation. The remaining biases in the simulation are then corrected by
calibrating the simulation on data using well known physics processes. However, estimating
the probability to reconstruct a fake lepton is badly simulated. Thus, data driven methods
are needed to estimate reducible backgrounds from misidentified leptons. In this analysis, a
method called the Matrix Method [17, 105, 106] is used.

6.3.2.1 Principle of the Matrix Method

Signal events are characterised by three lepton candidates. In the following they are ordered
in subscripts: first the W± boson decay lepton, second the Z boson decay lepton of leading
pT and third the Z boson decay lepton of sub-leading pT. The starting point of the Matrix
Method is to consider each lepton candidate as created either by:

• a real lepton (R): any lepton produced by the decay of a W± or a Z boson.

• a fake lepton (F ): leptons within a hadronic jet, light jets or leptons from photon
conversion faking a lepton in the detector.

Of course, the true nature of a candidate is inaccessible from the experimental side. A
selection of so-called Matrix Method leptons is defined in Table 6.4. On the one hand,
this selection is a bit tighter than the baseline lepton selection for pT cut, |η| region and
identification working point. On the other hand, no isolation criteria or overlap removal
is considered to enrich the selection in fake leptons. It should be noted as well that the
W -lepton or Z-lepton criteria are strictly contained within this Matrix Method selection.
As such, leptons are classified in two selection levels:

• Tight leptons (T ): signal leptons selected as W -lepton for the first one, Z-leptons for
the second and third, as described in Tables 6.2 and 6.1.

• Loose leptons (L): leptons passing the Matrix Method selection summarised in
Table 6.4 and failing the tight selection.

Eight disjoint regions of three lepton events are created with corresponding yields NT T T ,
NT T L, NT LT , NLT T , NT LL, NLT L, NLLT , and NLLL. On an event-by-event basis, the
selection criteria for electron or muon is used for both L and T selections.

Similarly, events can be split in eight truth categories depending on the true nature
of the lepton candidate: NRRR events correspond to W±Z signal events or irreducible
backgrounds as described in Section 6.3.1, NF RR events have the W -lepton from fake origin
but real Z-leptons, and so on. To relate selection categories and truth categories two
probabilities are defined:

• e = P (T |R) the probability for a real lepton to pass the tight selection, also known
as the efficiency of the selection.

• f = P (T |F ) the probability for a fake lepton to pass the tight selection.
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Table 6.4 Selection of Matrix Method leptons. These are fundamental requirements on all
leptons considered in the Matrix Method. Loose leptons pass this selection but fail the signal
requirements, tight leptons pass in addition the signal lepton selection cuts.

Electrons Muons
|d0/σ(d0)| < 5 |d0/σ(d0)| < 3

|∆z0 sin θ| < 0.5 mm |∆z0 sin θ| < 0.5 mm
|η| < 2.47 |η| < 2.7

Exclude 1.37 < |η| < 1.52 -
pT > 15 GeV pT > 15 GeV

Loose Identification Medium Identification

The complementary probability 1 − e (resp. 1 − f) is noted ē (resp. f̄). These probabilities
depend on the lepton type and thus will be tagged in the following with an index associated
to the position of the lepton in the order defined above. The category with three fake
leptons is expected to have a negligible yield NF F F , and is not considered in the following.
Symmetrically, the LLL selection category is not used. Selection categories and truth
categories are thus related by the 7 × 7 matrix

NT T T

NT T L

NT LT

NLT T

NT LL

NLT L

NLLT

 =


e1e2e3 e1e2f3 e1f2e3 f1e2e3 e1f2f3 f1e2f3 f1f2e3
e1e2ē3 e1e2f̄3 e1f2ē3 f1e2ē3 e1f2f̄3 f1e2f̄3 f1f2ē3
e1ē2e3 e1ē2f3 e1f̄2e3 f1ē2e3 e1f̄2f3 f1ē2f3 f1f̄2e3
ē1e2e3 ē1e2f3 ē1f2e3 f̄1e2e3 ē1f2f3 f̄1e2f3 f̄1f2e3
e1ē2ē3 e1ē2f̄3 e1f̄2ē3 f1ē2ē3 e1f̄2f̄3 f1ē2f̄3 f1f̄2ē3
ē1e2ē3 ē1e2f̄3 ē1f2ē3 f̄1e2ē3 ē1f2f̄3 f̄1e2f̄3 f̄1f2ē3
ē1ē2e3 ē1ē2f3 ē1f̄2e3 f̄1ē2e3 ē1f̄2f3 f̄1ē2f3 f̄1f̄2e3




NRRR

NRRF

NRF R

NF RR

NRF F

NF RF

NF F R

 . (6.8)

This is a system of seven equations with seven unknowns as the truth categories yields.
The goal is to estimate events in the TTT category that are not from real leptons

Nfakes = NT T T − e1e2e3NRRR . (6.9)

The system can be solved for this Nfakes, applying to the first equation of the system a
linear combination of the others and rearranging the terms:

Nfakes = [NT T L − e1e2ē3NRRR] f3

f̄3
+ [NT LT − e1ē2e3NRRR] f2

f̄2
+ [NLT T − ē1e2e3NRRR] f1

f̄1

−[NT LL − e1ē2ē3NRRR] f2

f̄2

f3

f̄3
− [NLT L − ē1e2ē3NRRR] f1

f̄1

f3

f̄3
− [NLLT − ē1ē2e3NRRR] f1

f̄1

f2

f̄2
+ O

(
f3
)

.

(6.10)

A term like e1e2ē3NRRR corresponds in fact to events with real leptons in the TTL loose
selection category. Thus NT LL − e1ē2ē3NRRR = N red.

T LL is the number of events from fake
lepton origin in the TTL category. All other similar terms can be rewritten the same way.
Additionally, the factors with index 2 and 3 both correspond to Z-lepton and should be
the same as they correspond to the same selection criteria, while index 1 corresponds to
W -leptons. Fake Factors are defined as

FW = f1

f̄1
, (6.11)

FZ = f2

f̄2
= f3

f̄3
, (6.12)

and thus Eq. (6.10) can be rewritten:

Nfake = N red.
T T LFZ +N red.

T LTFZ +N red.
LT TFW −N red.

T LLFZFZ −N red.
LT LFWFZ −N red.

LLTFWFZ . (6.13)

The yields in the loose selection categories are easily accessible in data. Consequently, the
last ingredient left to determine are the Fake Factors.
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6.3.2.2 Estimation of the Fake Factors

The Fake Factors are estimated in control regions orthogonal to the signal region and
designed to select one fake lepton. The probability f is then the fraction of these events
that pass the tight selection and the fake factor is simply the ratio of event passing the
tight selection to events failing it.

Three control regions are designed each targeting one type of reducible background: the
Z+jets region, the tt̄ region and the V + γ region. First, all signal region selection criteria
of Table 6.3 are followed, up to the ZZ veto criteria which is replaced by the requirement
for at least three Matrix Method leptons. A Z-lepton pair is selected with certain criteria
on charge, flavour and invariant mass and the third lepton `F selected is the highest pT
Matrix Method lepton. The control regions are designed so that `F is from fake origin. The
selection criteria for each control region are summarised in Table 6.5. These control regions
are orthogonal to the signal region thanks to the reversed mW

T cut or the charge and flavour
selection of the leptons. They are also disjoint between each other.

Z+jets V + γ tt̄

e+e−, µ+µ− Z-lepton µ+µ− Z-lepton e+µ− , e−µ+ Z-lepton

`F is a e `F is a µ
mW

T < 30 GeV mW
T < 30 GeV

85 GeV < m`Z`Z
< 106 GeV 76 GeV < m`Z`Z

< 106 GeV
Emiss

T < 30 GeV -

`F is a e
mW

T < 30 GeV
55 GeV < m`Z`Z

< 85 GeV
Emiss

T < 30 GeV
m3` < 105 GeV

`F is same flavour
same charge of an `Z

`Z opposite flavour
opposite charge of `F passes

W -lepton selection

Table 6.5 Selection criteria in the three control regions used for Fake Factor estimation. For
each, a pair `Z`Z of Z-leptons is selected and a third `F lepton candidate from fake origin is
selected.

To account for the pT dependence of Fake Factors, each control region is additionally
split in four bins of pT of the fake lepton candidate. In each control region and in each pT
bin, the irreducible background is subtracted and a tight selection is applied, for W -lepton
or Z-lepton, for muons or electrons. In each case, the proportion of fake leptons passing the
tight selection allows to compute the Fake Factor. For example in Fig. 6.4, Fake Factors
are estimated in data and Monte Carlo in the Z+jets control region. Furthermore, an |η|
dependence of the Fake Factors is also observed, as shown in Fig. 6.5. A parabolic fit of
this dependence is used to correct event-by-event the Fake Factors.

Each control region emphasises a certain type of fake origin between photon conversion
(PC), light-flavour jets (LF) and non-prompt lepton in heavy-flavour jets (HF). The
proportion f control region

fake origin of each fake origin in each control region can be determined by
Monte Carlo simulation. The control region specific Fake Factors can be transformed in
fake origin specific Fake Factors by inverting the matrix

F
Z+jets
V

F tt̄
V

F V +γ
V

 =

f
Z+jets
HF fZ+jets

LF fZ+jets
PC

f tt̄
HF f tt̄

LF f tt̄
PC

fV +γ
HF fV +γ

LF fV +γ
PC


F

HF
V

F LF
V

FPC
V

 , (6.14)

with V ∈ {W,Z}. This procedure has to be performed for W -leptons and Z-leptons, per
lepton flavour and per pT bin to provide fake origin Fake Factors in all cases.
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Figure 6.4 Fake Factor results in the Z+jets control region as a function of pT for fake electrons
(top) and fake muons (bottom) passing the Z-lepton (left) or W -lepton (right) selection. The
results or represented for data (black dots) and Monte Carlo (red histogram). Uncertainties
contain statistical uncertainties and systematic uncertainties originating from the subtraction of
the irreducible background events from the control region.
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Figure 6.5 Fit of a parabolic function to the weighted mean (black dot) of normalised Fake
Factors in bins of |η| from the different control regions and for W -leptons and Z-leptons. Electrons
and muons are treated separately and displayed on the left and right, respectively. For the
representation, x-values of Fake Factors from different control regions (coloured dots) are displaced
inside the bin. The shaded band around the fit result displays its 68 % confidence interval. Total
uncertainties are displayed.
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6.3.2.3 The Matrix Method background estimation

Finally, to apply Eq. (6.13), the fake origin proportion has to be estimated in all loose
signal regions in a pT dependent way. Then, for each event of each loose category, a Fake
Factor from one fake origin is chosen randomly, reflecting the fake origin composition of
this loose signal region. To summarise, in addition to a given fake origin, the chosen Fake
Factor must also correspond to

• the lepton selection criteria failed (FW or FZ),

• the loose lepton candidate flavour (electron or muon),

• the loose lepton candidate pT bin,

• and be corrected for the loose lepton candidate |η| with the fitted parabolic function.

In the estimation of the misidentified leptons background with Eq. (6.13), uncertainties
can affect the Fake Factors estimations or the N red.

XXX reducible loose signal region yields.
The limited data in the loose signal regions translates in a statistical uncertainty on the
estimated background. Then, systematic uncertainties are estimated, originating from:

• uncertainties on the estimation of the real leptons events (e.g. ZZ and WZ events)
subtracted from the control regions. Their final contribution is labelled in the final fit
IrrSub.

• statistical uncertainties in the control region samples affecting the determination of
the fake factors FV . They are labelled in the final fit FFstat.

• an uncertainty in the FV (|η|) parabolic correction labelled in the final fit EtaCorr.

• an uncertainty in the flavour composition of the loose signal regions labelled in the
final fit FlavorComp.

• an uncertainty in the flavour Fake Factors due to uncertainty in the flavour composition
of control regions labelled in the final fit FFFlavorComp .

Finally, the Matrix method can be compared to an independent alternative method,
called MC scale factor method, where Monte Carlo samples for Z+jets, Zγ and tt̄ back-
grounds are rescaled to data. The misidentified lepton background from the Matrix Method
is compared to the sum of these rescaled Monte Carlo samples in bins of the variables mW

T
and mZ in Fig. 6.6. The Matrix Method estimate is represented with its total uncertainty,
including the systematic effect described above. The MC scale factor method estimate is
found to agree with the Matrix Method estimate within its total uncertainty across all bins
of both variables. The Matrix Method is therefore validated and will be used as baseline to
estimate the background from misidentified leptons.
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Figure 6.6 Comparisons between distributions of the reducible background estimated by the
MC scale factor method and by the Matrix Method, for the mW

T (a) and mZ (a) observables.
Uncertainties are statistical only for the MC scale factor estimate, and from statistical and
systematic origin for the Matrix Method estimate.

6.4 W±Z signal yield results

The selection on data presented in Section 6.1 and the estimation of signal and backgrounds
presented in sections 5.3.1 and 6.3 respectively make it now possible to check the agreement
of data to predictions. A cross section measurement was performed in Ref. [17] with a
subset of the LHC Run 2 data, so no major discrepancies are expected; this is really a way
to check the validity of the predictions.

In Table 6.6 the total event yields in both data and Monte Carlo are given for W±Z
events per leptonic decay channel and in total. The uncertainties are only statistical. The
row labelled WZ corresponds to the Powheg+Pythia prediction scaled to the NNLO
prediction of [73] (see Section 5.3.1 for details) and including W±Z leptonic decays to
electrons and muons, and the background from the decay to τ -leptons reconstructed as an
electron or a muon. All reducible backgrounds are estimated with the Matrix Method and
collectively labeled Misidentified leptons. The last two rows show a correct agreement of
data to prediction within 5 % across all leptonic decay channels. The signal to background
ratio is for all decay channel of 4.14. The same conclusion holds separating events by the
charge of the W± boson, with a signal to background ratio of 4.64 and 3.55 for W+Z and
W−Z events respectively.

Looking at event yields in bins of a kinematic variable produces a control distribution
of this variable. This is done for the Z boson pT, reconstructed from the four-momentum
of the reconstructed decay Z-lepton pair, in Fig. 6.7(a). Similarly, this is done for the W±

boson pT in Fig. 6.7(b), with the extra step of reconstructing the pν
z with the DNN-based

method presented in Section 6.2. Systematic uncertainties are from overall uncertainties
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Channel eee eµµ µee µµµ All
Data 3955 5895 4600 7486 21936
Total Expected 3843.8 ± 10.7 5618.0 ± 11.8 4693.1 ± 11.0 7310.1 ± 12.9 21464.9 ± 23.3
W±Z 2991.0 ± 8.2 4431.3 ± 10.0 3874.5 ± 9.3 5993.6 ± 11.6 17290.4 ± 19.7
Total Bkg. 852.7 ± 7.0 1186.7 ± 6.4 818.6 ± 5.9 1316.5 ± 5.7 4174.6 ± 12.5
ZZ 274.1 ± 1.8 409.3 ± 2.2 277.4 ± 1.7 444.2 ± 2.3 1405.0 ± 4.0
Misid. leptons 289.3 ± 6.6 367.2 ± 5.8 182.9 ± 5.5 342.3 ± 4.9 1181.7 ± 11.5
tt̄+ V 160.7 ± 1.1 224.9 ± 1.3 196.9 ± 1.2 288.2 ± 1.5 870.7 ± 2.6
tZ 69.2 ± 0.4 100.7 ± 0.4 86.1 ± 0.4 131.7 ± 0.5 387.7 ± 0.9
W±Zjj 51.0 ± 0.3 72.5 ± 0.4 64.8 ± 0.3 95.4 ± 0.4 283.6 ± 0.7
V V V 8.3 ± 0.1 12.2 ± 0.2 10.5 ± 0.2 14.8 ± 0.2 45.7 ± 0.3
(Data-MC)/MC [%] 2.89 4.93 −1.98 2.41 2.19
S/B 3.51 3.73 4.73 4.55 4.14

Table 6.6 Summary of observed and expected yields for W±Z in each leptonic decay channel
of the analysis and for the sum of all channels. Only statistical uncertainties on the observed
number of events and Monte Carlo samples are included. The ZZ contribution includes both
ZZ inclusive and ZZjj−EW processes. The row labelled “S/B” corresponds to the signal over
background ratio, as calculated using the expected number of events.

on irreducible background predictions (see Section 6.3.1) and systematic uncertainties of
the Matrix Method for the misidentified lepton background (see Section 6.3.2). A good
agreement between data and prediction is observed in the shapes of the distributions, as
well as in the expected number of events.
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Figure 6.7 Control distributions of the W± boson pT (b) and of the Z boson pT (a). All Monte
Carlo expectations are scaled to the integrated luminosity of the data using the predicted Monte
Carlo cross sections of each sample. The dashed red band represents the quadrature sum of all
systematic uncertainties on the total Monte Carlo expectation (see text for details) and a 1.7 %
systematic uncertainty on the luminosity [49].
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Chapter 7

Polarisation measurement

From Run 2 data, W±Z events were selected and reconstructed as described in Chapter 6.
In Section 6.4, the signal and background processes are found to be modelled correctly
enough, as seen in the control distributions of Fig. 6.7 or the event yields in Table 6.6. It is
now possible to target the final goal of the analysis described in this thesis: the study in
data of polarisation in W±Z production. As detailed in Chapter 5, the parameters that
will be measured, and of which theoretical predictions are available, are the single boson
polarisation fractions and the joint-polarisation fractions. The latter two represent the
primary goal as they have never been measured in diboson processes.

The main challenge is to measure the longitudinal-longitudinal 00 joint-polarisation
fractions of W±Z bosons f00, as this configuration is deemed to represent the smallest
contribution in the inclusive W±Z events. Besides, f00 is of particular theoretical interest
as many beyond the Standard Model effects can manifest themself in the 00 configuration.
Another challenge will be to distinguish between the f0T and the fT0 fractions, the first index
corresponding to the W± boson polarisation, the second index to the Z boson polarisation.

In addition, the single boson polarisation fractions f0, fL and fR will be measured on
the full Run 2 data. This will improve the previous measurement [17] that used only a
partial dataset recorded during the first two years of Run 2 with 36 fb−1 of integrated
luminosity. More interestingly, it is possible from the joint-polarisation fractions to extract
the single boson polarisation fractions allowing to test the consistency of both measurements.
Furthermore, the correlation of the fractions between both bosons can be studied.

The polarisation and joint-polarisation fractions will be extracted from data through a
binned maximum-likelihood template fit, described in Section 7.1. As a result, template
distributions of a discriminating variable for all single boson polarisation or joint-polarisation
states are needed at the detector level.

The template fit requires a good discriminating variable at the detector level. For
joint-polarisation states, the angular variables mentioned in Chapter 5 are found to provide
a moderate discriminating power. Therefore, a composite variable is designed in Section 7.2
using machine learning techniques to obtain an optimised discriminating variable.

The other critical point for the template fit is the accuracy of the detector level templates
used. As presented in Section 5.1, direct theoretical calculations show the importance
of having polarisation predictions at least at NLO in QCD. A first idea is to use the
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theoretical description in term of differential cross section described in Section 5.2 to
obtain an analytical reweighting procedure. This method that I developed and adapted to
joint-polarisation states, transforms inclusive Monte Carlo samples in samples for a given
polarisation state, as described in Section 7.3. Using an inclusive Monte Carlo sample
at NLO in QCD would therefore provide NLO accurate reconstructed level polarisation
templates.

Other methods were developed using as starting point the polarised Monte Carlo
generation MadGraph0,1j@LO described in Section 5.3.2. The polarised samples MGgen
obtained this way are nevertheless not fully NLO accurate. Various methods described in
Section 7.4 use the polarisation information of MGgen to generate NLO accurate polarised
samples.

The choice of polarisation templates NLO in QCD accurate is a crucial step to avoid a
biased measurement, as described in Section 7.5. In a study performed on NLO in QCD
inclusive pseudo-datasets, one set of polarisation templates was found to be the least biased.

To finalise the template fit, uncertainties from various origins had to be implemented, as
described in Section 7.6. In particular, modelling uncertainties associated to the generation
and choice of NLO accurate polarisation templates constitute the main uncertainty and
were the object of special care.

Finally, the result of the various template fits performed is presented in Section 7.7.
The joint-polarisation fractions measured values in W±Z events, along with the separated
W+Z and W−Z events, are presented. As side measurements, single boson polarisation
fractions and the inclusive cross section of the W±Z production is obtained with improved
uncertainty compared to Ref. [17]. The consistency of all fits is also checked and the impact
of correlations between bosons polarisation is highlighted.

7.1 Binned Likelihood template fit

The stated goal of the measurement is to extract joint-polarisation and single boson
polarisation fractions from data through a binned likelihood template fit [107]. In previous
sections, two very distinct things have been studied. On the one hand, careful selection of
events on Run 2 data provides a dataset designed to optimise the signal over background
ratio. On the other hand, the signal and backgrounds are modelled from theoretical
predictions. The template fit brings both together to measure polarisation fractions from
data.

7.1.1 Principle of binned likelihood fit

In a simplified physics analysis with a designed measurement region, S signal and B
background events are simulated, to be compared to the N data events obtained. Of
course, it is impossible to know the exact repartition of the data events among signal and
backgrounds. Besides, the N data events are subject to statistical fluctuations. In the
context of particle physics at the LHC, as exemplified by Fig. 1, the physically interesting
events represent at most one in ten millions of inelastic pp collisions. The selected data
events thus qualify as very rare events and are modelled by a Poisson law. Consequently,
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the level of agreement between data and the simulated theoretical prediction is assessed by
the Poisson probability

P (N |S +B) = (S +B)N

N ! e−(S+B) . (7.1)

Then, a parameter of interest µ can be introduced to rescale the signal prediction, making
the new theoretical prediction µS + B. The initial value of µ is one, but it is allowed to
change to improve the agreement with data. Shifting the focus from the obtained data to
the parameter µ, one can define the likelihood function for the N observed data events

L(µ;N) = P (N |µS +B) . (7.2)

The idea of the fit is to find the value µ̂ that maximises this likelihood. However, in
statistics, a value alone is worthless without an associated uncertainty. To obtain this, the
probability distribution of the likelihood is necessary. In fact, a test statistic t(µ) can be
designed as:

t(µ;N) = −2 log
(
L(µ;N)
L(µ̂;N)

)
. (7.3)

By definition of µ̂, t(µ;N) is a positive function of µ that reaches zero only at µ = µ̂. One
could still by brute force estimate the distribution of this statistic with toy simulations.
More interestingly, from Wilks approximation [107], this statistic follows asymptotically in
N a χ2 distribution with one degree of freedom. From there, the value of the test statistic
tµ0 for a chosen µ0 becomes an estimate of how likely we were to observe N data events
under the hypothesis µ = µ0, with of course the hypothesis maximising the likelihood of
the data being µ = µ̂. More quantitatively, the p-value can be defined as

p =
∫ +∞

tµ0

χ2 (t) dt , (7.4)

integrating on the tail of the χ2 distribution with one degree of freedom.

In a frequentist approach, no statement is ever made on the plausibility of an hypothesis
against others. The likelihood of data under different hypothesis is what is studied using
p-values, with the prescription that hypothesis with an associated p-value too low will be
rejected. The threshold at which an hypothesis is rejected is an arbitrary value highly
dependent on the scientific field. In particle physics, this threshold is traditionally set at a p-
value of 2.87 × 10−7. Below, it is possible to reject a null hypothesis, typically a background
only hypothesis, and claim a discovery. This value corresponds to the probability of a
gaussian random variable to be found at least five standard deviations σ above its mean.
Symmetrically, a p-value can always be converted in this intuitive representation in term of
number of standard deviations, called significance. Thus, a discovery requires a significance
above 5σ.

The simple description above, with one bin of N events described by one signal S and
backgrounds B must be generalised to the actual template fit performed to extract polar-
isation and joint-polarisation fractions. For simplicity, the joint-polarisation measurement
will be described here. First, there are in fact several signals each associated to a pure
joint-polarisation state S00, S0T, ST0 and STT, associated to their respective normalisation
parameter µ. A single bin is not enough to evaluate simultaneously all four µ, as an infinite
number of configurations for the µ values would allow fitting the N data events. This
degeneracy is lifted using the histogram of a discriminating variable. The data yield in
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each bin b becomes nb, and the signals and backgrounds are replaced by histograms Sb

and Bb. The signal histograms are polarisation templates supposed to represent the event
distribution of the discriminating variable for a given pure polarisation state. The likelihood
becomes therefore

L(µ00, µ0T, µT0, µTT) =
∑

b

P
(
nb|µ00S

00
b + µ0TS

0T
b + µT0S

T0
b + µTTS

TT
b +Bb

)
. (7.5)

It should be noted that the four µ are fully correlated across all bins of the histogram.
A good discriminating variable, able to properly distinguish the four signal polarisation
template, will therefore allow the extraction of the four µ simultaneously.

For now, no systematic uncertainty is considered; their treatment will be introduced
in Section 7.6. The likelihood is thus solely a function of four parameters of interests.
The template fit will maximise this likelihood yielding the maximum likelihood estimates
µ̂00, µ̂0T, µ̂T0 and µ̂TT. The test statistic adapted from Eq. (7.3) is thus a four parameter
function that will asymptotically follow a χ2 distribution with four degrees of freedom.

It is however possible to reduce the dimensionality of the likelihood by defining the profiled
likelihood as L

(
µ, ˆ̂θ(µ)

)
, where the ˆ̂θ(µ0) are the profiled values of the other parameters

of the likelihood, that is their maximum likelihood estimate under the hypothesis that the
non-profiled parameter µ = µ0. The profiled likelihood is thus a single parameter function.
The profiled likelihood ratio defined in analogy with Eq. (7.3) will then asymptotically
follow a χ2 distribution with one degree of freedom.

7.1.2 Parametrisation of the template fit

The binned likelihood template fit makes use of pure polarisation templates of a given
discriminating variable. These templates are used to fit the event distribution in data
of the discriminating variable. This is practically implemented using the HistFactory
package [108] based on the RooFit statistical tools framework [109]. However, the simple
description with four signals and their associated normalisation factor µ misses the specificity
of polarisation fractions: their normalisation relation (1.48) and (1.53) for single boson
polarisation and joint-polarisation respectively.

Therefore, the fit is parameterised such that the polarisation fractions can be extracted
directly from the fit result taking into account this normalisation. For this, the simultaneous
normalisation of all the templates will be absorbed by one parameter of interest, Nfit

tot
representing the total number of W±Z signal events. In parallel, the polarisation fractions,
taking into account the normalisation relationship, will be affected by shape effects to adjust
the proportion of each template. In single boson polarisation measurements, these fractions
of interest are f0, and the left and right polarisation difference fL − fR. The link between
the parameters of interest and the normalisation factor µi with i ∈ {0, R, L} is:

µ0 = f0 ×Nfit
tot

NMC
Template 0

, (7.6)

µL = 1 − f0 + (fL − fR)
2 × Nfit

tot
NMC

Template L

, (7.7)

µR = 1 − f0 − (fL − fR)
2 × Nfit

tot
NMC

Template R

, (7.8)
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where NMC
Template i, i ∈ {0, R, L}, is the integral over the Monte Carlo polarisation template

at detector level.

The templates generated by Monte Carlo at particle level undergo several distortions
when brought to detector level:

• Some events of the total phase space do not pass the fiducial cuts leading to a first
distortion of the template. This acceptance is assessed for all templates by so-called
A-factors.

• Some events in the fiducial phase space are not reconstructed because the detector is
not perfectly efficient. Also, some events from outside the fiducial phase space can
migrate into the measurement phase space. This overall effect called the efficiency of
the detector is assessed by so-called C-factors.

• The template shape can be distorted due to migrations among the bins in the
measurement phase space.

Shape effects on the template caused by event migration among the bins in the meas-
urement phase space and from outside the fiducial phase space are taken into account by
passing the templates with generated events in the total phase space through the detector
simulation and by reconstructing them in the same way as the data. All shape distortions
should therefore be propagated to the template if the modelling of the detector response
is correct. This has been checked by independent measurements done by the ATLAS
combined detector performance (CP) groups. Scale and correction factors make sure that
the simulation describes the data well.

The template fit uses templates at detector level, as they must be comparable to the
Run 2 data. Using Eq. (7.6)–(7.8) with the NTemplate i of the detector-level templates will
then give the fractions at detector level. This is not very interesting as the values would
depend heavily on the reconstruction done in the ATLAS detector. The goal is thus to
measure the boson polarisation at particle level in the fiducial phase space.

The µi found (and thus the fractions associated) are brought to particle level in the
fiducial phase space with the efficiency C-factor of the corresponding template

Ci =
Nfiducial

Template i

Ndetector
Template i

. (7.9)

This, as can be seen in Eq. (7.6)–(7.8), amounts to using for NTemplate i the value at particle
level in the fiducial phase space of the Monte Carlo sample. The Nfit

tot found will thus also
correspond to the yield at particle level in the fiducial phase space, labelled more simply
Ntot in the following. Similarly, the fractions f0 and fL − fR will be obtained directly at
particle level in the fiducial phase space. Besides, for tests or theoretical predictions, the
same template fit can be performed on pseudo data of Monte Carlo origin. This allows
fitting with templates already at particle level in the fiducial phase space, or even in the
total phase space. In any case, the described parametrisation will still yield parameters of
interest at particle level in the fiducial phase space, allowing for comparisons. In the end,
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the parametrisation of Eq. (7.6)–(7.8) is in its final form:

µ0 = f0 ×Ntot

NMC,fiducial
Template 0

, (7.10)

µL = 1 − f0 + (fL − fR)
2 × Ntot

NMC,fiducial
Template L

, (7.11)

µR = 1 − f0 − (fL − fR)
2 × Ntot

NMC,fiducial
Template R

. (7.12)

Similarly, the joint-polarisation fractions f00, f0T, fT0 and fTT can be made the para-
meters of interest of the fit. With the normalisation relationship, the set of parameters of
interest is (f00, f0T, fTT, Ntot) with Ntot the total number of signal events. The fit scales the
four input templates for polarisation configurations by the normalisation factors µi with
i ∈ {00, 0T, T0, TT} linked to the parameters of interest by:

µ00 = f00 ×Ntot

NMC,fiducial
Template 00

, (7.13)

µ0T = f0T ×Ntot

NMC,fiducial
Template 0T

, (7.14)

µT 0 = (1 − f00 − f0T − fTT) ×Ntot

NMC,fiducial
Template T 0

, (7.15)

µT T = fTT ×Ntot

NMC,fiducial
Template T T

. (7.16)

where NMC,fiducial
Template i , i ∈ {00, 0T, T0, TT}, is the integral over the Monte Carlo template at

particle level in the fiducial phase space.

Using the relationships described in Section 5.4.4, one can also use the set of parameters
of interest (Rc, f

W
0 , fZ

0 , Ntot). Then, Eq. (7.13)–(7.16) are adapted using Eq. (5.52)–(5.54).
This change of parameters of interest of the fit does not affect its the behaviour. It is
mostly a matter of internal calculation within the fitting framework to keep track of
correlations between all parameters of the fit. This in particular means that the set of
parameters of interest can be changed around the normalisation relationship, such as with
(f00, f0T, fT0, Ntot) to isolate fT0. A fraction obtained with two different sets of parameters
of interest is found in both cases at exactly the same value, within numerical precision of
the computer, well below the statistical uncertainty from the fit.

7.1.3 Backgrounds in the parametrisation of the fit

At detector level, some W±Z events decaying to τ are reconstructed as signal, the τ
subsequently decaying in an electron or a muon. The shape of this background is estimated
from Monte Carlo as described in Section 6.3.1. However, its magnitude is directly linked
to the cross section of W±Z, and thus it must be linked to the parameter of interest of the
fit Ntot. To establish this link, the fraction of τ event in reconstructed data fτ is estimated
from Monte Carlo

fτ = NMC
τ

NMC
τ +NMC

tot
(7.17)
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where NMC
τ is the number of event in the τ background Monte Carlo sample and NMC

tot is
the number of events in all signal polarised templates. As a result the normalisation factor
µτ of this background is

µτ = Nfit
τ

NMC
τ

= Nfit
tot × ffit

τ

1 − ffit
τ

× 1
NMC

τ

.

Finally, under the assumption that the fraction of τ is well described by the Monte Carlo
and not affected by the fit, and adding a C-factor to account for the fact that the fitted
Ntot is at particle level in the fiducial phase space, the normalisation factor µτ becomes
background:

µτ = Ntot × Ctot × fτ

1 − fτ

× 1
NMC

τ

, (7.18)

where Ctot is the global C-factor on the sum of the polarised templates making up the
signal. In the template fit, the background from τ production will thus be rescaled by
this normalisation factor µτ which is directly linked to the parameter of interest of the fit
Ntot. The uncertainty on this τ background originates from the fraction fτ . In order to
quantify this uncertainty, an overall normalisation uncertainty of 10 % on this background
is implemented in the fit.

7.2 Finding a discriminating variable

To be able to extract simultaneously all parameters of interest in a template fit, a variable
giving very different shapes for the polarisation templates is needed. From theoretical
considerations developed in Chapter 5, some angular variables characterising the topology
of W±Z events can be used for that purpose. However, for joint-polarisation templates, an
aggregated variable created using Deep Neural Networks is needed.

7.2.1 Angular variables

In single boson polarisation measurements, it was shown in Section 5.2 that the distribution
of qW · cos θ∗

`W or cos θ∗
`Z have very distinct shapes in pure polarisation states. They will be

used as discriminating variables to extract respectively the polarisation of the W± boson
and the Z boson in a template fit. The shapes of the polarisation templates at particle
level in the total phase space for these variables is simply given by the analytical functions
summed in Eq. (5.28) and (5.29). They are visible in Fig. 5.4 fitting the inclusive cos θ∗

`

distribution. Using an analytical reweighting detailed ahead in Section 7.3, it is then
possible to transfer these polarisation templates to detector level. As visible in Fig. 7.1,
these variables keep their discriminating power at detector level, even though it is smeared
by the reconstruction. The shapes suggest that the left and right polarisation will be better
discriminated in the W± boson than in the Z boson. This is an impact of the parameter
Cw defined in (5.25), originating from the electroweak mixing.

To extract joint-polarisation states however, there is no such clear choice from a
theoretical point of view. The | cos θV | was suspected in analogy with cos θ∗

`W or cos θ∗
`Z

to have a discriminating shape for different joint-polarisation states. Thanks to a partial
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Figure 7.1 All three single boson polarisation templates at detector level for W± boson using
qW · cos θ∗

`W (left) and for Z boson using cos θ∗
`Z (right) in W±Z events. These templates were all

rescaled to the same surface area.

amplitude zero effect [30], this variable has a very distinctive shape for the 00 joint-
polarisation. This is verified using the polarised MGgen Monte Carlo samples defined in
Section 5.3.2. The distribution of events for | cos θV | presented in Fig. 7.2, both at particle
level in the total phase space and at detector level, allow assessing its discriminating
power by eye and see how reconstruction effects degrade it. The distinct shape of the
00 joint-polarisation template is clearly visible in Fig. 7.2(a) and reconstruction effect in
Fig. 7.2(b) do not seem to modify much the discrimination of the 00 joint-polarisation
against the others. However, already at particle level, the variable | cos θV | almost does
not discriminate between 0T, T0 and TT. To be able to extract all four joint-polarisation
fractions, something more discriminant is needed.
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Figure 7.2 All four MGgen joint-polarisation templates for W±Z events with | cos θV | as discrim-
inating variable are represented at particle level in the total phase space (a) and at reconstructed
level (b). These templates were all rescaled to the same surface area.
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7.2.2 The classification Deep Neural Network

A multiclass Deep Neural Network (DNN) was developed to discriminate among different
polarisation states using Tensorflow v1.3 [102] with Keras v2.2.4-tf [103] back-end. The
DNN was trained on the four pure joint-polarisation samples from MadGraph0,1j@LO
generation (MGgen samples) at detector level. The input variables are listed in Table 7.1
ranked by their contribution to the discriminative power of the DNN. The main variable is
|yZ − y`W |, the difference in rapidity between the Z boson and the decay lepton from the
W± boson. It is a proxy for the | cos θV | variable relying on readily accessible information
with minimal reconstruction. The second variable is pW Z

T , directly linked to additional
jets from initial state radiations in NLO QCD real corrections. The differences in φ angle
of the decay leptons, an incomplete angular description of the boson decay, are found to
provide also a good improvement of the DNN. Finally, the pT of all leptons and Emiss

T are
used, completing the kinematic description of the events. The choice was made to avoid
the use of the neutrino longitudinal momentum pν

z to be independent of the choice and the
performance of its reconstruction. Overall, the input variables are low level variables to
provide a DNN with low theory dependence of which the detector level distribution in data
can then be unfolded to particle level.

Table 7.1 DNN input variables ranked by their importance. It is defined by the drop in area
under the ROC curve when they are the only one removed from the input list, one at a time.

|yZ − y`W | 0.080
pW Z

T 0.024
p`W

T 0.012
∆φ(`W , `ν) 0.005
∆φ(`Z

1 , `
Z
2 ) 0.005

Emiss
T 0.003
p

`Z
2

T 0.003
p

`Z
1

T 0.002

The classification DNN score pDNN
00 can be interpreted for each event as its probability to

originate from a 00 joint-polarisation state. The 00 joint-polarisation is the most challenging
to observe as from Table 5.3 it is expected to represent roughly 5 % of all W±Z events
at particle level. Thus, pDNN

00 can be used as a discriminating variable. Nevertheless, the
main challenge with such DNN score is to be able to separate the mixed (0T, T0) and TT
joint-polarisation states that otherwise would both peak at zero. The best method was
found to be to modify the target of the classification DNN during the training: instead of
having each specialised joint-polarisation DNN score get a probability 1 for its associated
joint-polarisation state and 0 for the three others, the mixed joint-polarisations also gets
0.5 probability in the pDNN

00 score. That way, 00 peaks at 1, TT peaks at 0 and the mixed
modes 0T and T0 peak at 0.5 in the pDNN

00 distribution.

The DNN score pDNN
00 distribution at detector level for 00, TT and the mixed joint-

polarisations is represented in Fig. 7.3. It is obtained from two disjoint sub-samples and a
Kolmogorov-Smirnov test is performed between both sample distributions for each joint-
polarisation state. The relatively low values of the Kolmogorov-Smirnov test results imply
no sign of over-training. The performance of the DNN is evaluated through the integral of
the receiver operating characteristic (ROC) curve, showing the background rejection as a
function of the signal acceptance. The higher the area under the ROC curve is, the better
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Figure 7.3 DNN score pDNN
00 distributions from a cross-training procedure on a training and

an evaluation MadGraph0,1j@LO sample. Distributions computed on the evaluation (training)
samples are represented with crosses (hatch filling). The results of the Kolmogorov-Smirnov test
between the pDNN

00 distribution from the training and evaluation samples is presented in the legend
for 00, TT and mixed joint-polarisations.

the discriminative power. This curve quantitatively shows that the DNN score pDNN
00 does

discriminate very well the 00 joint-polarisation against all others, but that there is only a
moderate discrimination between the mixed joint-polarisation states and TT.

Finally, while the classification DNN is trained at detector level, it is possible to obtain
its distribution at particle level by using event-by-event the particle level values of the
input variables. Passing through the same DNN architecture, these allow reconstructing
a particle level DNN score identified as the particle level value associated to the detector
level DNN score pDNN

00 .

7.2.3 Improving mixed states discrimination

0 | cos θ∗`W |1

| cos θ∗`Z |
1

0.5

0.5

Category 1
00

Category 2

T0

Category 3

0T

Category 4

TT

Figure 7.4 Scheme of cat-
egories as function of cos θ∗

`W

and cos θ∗
`Z .

The pDNN
00 score performs better than | cos θV | as it allows

separating 00, TT and mixed joint-polarisation states. By
design, it nevertheless does not provide a good discriminat-
ing power between the mixed states. In such configurations,
one boson is longitudinal while the other is not, yielding
usually very different values for cos θ∗

`W and cos θ∗
`Z , the lon-

gitudinal boson having cos θ∗
` close to zero, and conversely

the transversal boson having cos θ∗
` close to one in absolute

value. These variables not being used as inputs of the classi-
fication DNN, they can be combined with pDNN

00 to improve
the separation between the mixed states.

Events are separated in four categories according to
their cos θ∗

`W and cos θ∗
`Z values, according to the scheme

represented in Fig. 7.4. Each event category is therefore
dominated by 00, T0, 0T and TT joint-polarisation states, respectively. The pDNN

00 score is
evaluated separately for events in the four categories and a one-dimensional distribution
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with twenty bins, that is five bins per category, is constructed, as presented in Fig. 7.5(a).
This distribution will later be referred to as the 4-category pDNN

00 .

However, it should be noted that because the input variables to the classification
DNN are not strictly independent of cos θ∗

`W and cos θ∗
`Z , the variable pDNN

00 , let alone the
4-category pDNN

00 , cannot be used in an analytical reweighting as justified in Section 7.3.1. It
is nonetheless possible to reweight | cos θV | in the four aforementioned categories to obtain
something able to discriminate between all joint-polarisation states. This is done in the same
fashion as for the 4-category pDNN

00 creating a new variable labelled the 4-category | cos θV |
with the distribution of Fig 7.5(b).
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Figure 7.5 All four MGgen joint-polarisation templates for W±Z events with the 4-
category pDNN

00 (a) and the 4-category | cos θV | (b) as discriminating variable are represented
at detector level. These templates were all rescaled to the same surface area.

7.2.4 Choice of a discriminating variable

For joint-polarisation measurement, four discriminating variables have been identified,
| cos θV |, pDNN

00 and their version in cos θ∗
` categories, the 4-category | cos θV | and the 4-

category pDNN
00 . By eye, the pDNN

00 DNN score provides a better discriminating power and the
splitting in cos θ∗

` categories in all cases improves the separation of all joint-polarisation states.
For a more quantitative estimation of the discriminating power of each variable, a simple
binned maximum-likelihood template fit is performed using the inclusive Powheg+Pythia
sample as pseudo-dataset. To clearly distinguish the impact of changing the discriminating
variable, no backgrounds1 or systematic uncertainties is considered in this simple template
fit. The template fit is performed at detector level with MGgen polarised samples. The
templates and the pseudo-dataset are uncorrelated as they come from completely different
Monte Carlo generations. What matters in this test is the change in the parameters of
interest extracted values and uncertainties when the discriminating variable is changed.

First, it appears that using | cos θV | or pDNN
00 , without the categories, the fit is not able

to discriminate the mixed polarisation modes 0T and T0. As a result, the fit parameter of
interest f0T reaches its limit, set at 0 as should be for a fraction, and the fit does not converge.

1Backgrounds from τ decays and migrating γ∗ are present in the inclusive Powheg+Pythia sample
and are therefore considered in this fit.
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Using the 4-category | cos θV |, or the 4-category pDNN
00 , the fit is able to converge and the

four parameters of interest extracted from these fits are shown in Table 7.2. Concerning
the central value, it first should be noted that both variables give very similar result. This
tends to validate the fact that the pDNN

00 does not hold any bias linked to the use of machine
learning techniques, since it is consistent with a regular variable as | cos θV |. Concerning
the uncertainties, another remarkable property is that they are similar for Ntot, as a sign of
the decoupling between the overall normalisation and the polarisation content. However,
looking at the fractions, the improved discriminating power of the 4-category pDNN

00 yields
much smaller uncertainties. Looking at the inverse of the relative uncertainty x/δx – a
proxy for the significance – the 4-category | cos θV | cannot reach the 5σ threshold for f00
and f0T. This is before adding to the fit backgrounds and systematic uncertainty that
will further degrade this significance. On the other hand, the lowest significance with the
4-category pDNN

00 is for f00 at around 7σ, leaving good hopes that the 5σ threshold can be
reached in the final fit for all joint-polarisation fractions.

Central Value x Uncertainty δx x/δx

Fitting the 4-category | cos θV | distribution
Ntot 35400 300 120
f00 0 .039 0 .013 2.9
f0T 0 .179 0 .032 5.6
fTT 0 .655 0 .033 20

Fitting the 4-category pDNN
00 distribution

Ntot 35330 300 120
f00 0 .041 0 .006 6.7
f0T 0 .226 0 .020 12
fTT 0 .567 0 .024 23

Table 7.2 Results of the fit for the parameters of interest Ntot, f00, f0T and fTT, fitting
the distribution of the 4-category | cos θV | (top) and of the 4-category pDNN

00 (bottom) from the
inclusive Powheg+Pythia sample in W±Z events at detector level.

In the end, using a classification DNN is more than an improvement compared to using
a regular variable as | cos θV |; it is a crucial component of the analysis in order to reach
the 5σ significance for the measured four joint-polarisation fractions. In the following,
the 4-category pDNN

00 will be chosen as the discriminating variable for the joint-polarisation
fraction measurement. In some cases, for clarity, the pDNN

00 distribution will be shown.

7.3 Templates from analytical reweighting

The diboson W±Z production process has been shown to be very sensitive to higher order
corrections in perturbative QCD, as demonstrated by fixed-order theoretical calculations of
the inclusive cross section in Section 5.1.1 or the joint-polarisation fractions in Section 5.2.3.
In addition to having a good discriminating variable, it is thus important that the polarisation
templates be NLO accurate in QCD. Not taking such effects into account can lead to distorted
shapes for the polarisation templates leading to a biased measurement of fractions. The
polarised samples MGgen obtained with the MadGraph0,1j@LO polarised generation are
thus not enough, as they do not take fully into account NLO in QCD corrections.
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From the analytical fit formulas of Section 5.4, an analytical reweighting at particle level
of an inclusive Monte Carlo sample allows in principle the production of polarised sample.
Using this method with a inclusive Monte Carlo generated at NLO in QCD will thus provide
NLO accurate polarisation templates. Prior to version 2.7.3 of MadGraph5_aMC@NLO,
it was impossible to generate directly polarised samples. This method was the only way
to produce polarisation templates, as for example in Ref. [17]. It is in fact still the only
method to provide templates for left or right polarisation of a vector boson, MadGraph
being unable to generate the decay of the W± and Z bosons in these cases.

In this section, the founding principles and limitations of this analytical reweighting
method are described. Its implementation in the case of single boson polarisation templates
is then described and its principle is validated. Finally, its adaptation to joint-polarisation
templates is discussed.

7.3.1 Single boson polarisation reweighting

Starting from an inclusive sample of W±Z events, it was shown in Section 5.4 that its
built-in polarisation content can be estimated at particle level in the total phase space.
Nevertheless, in data, acceptance cuts and inefficiencies of the detector do not allow to use
the same techniques. The idea would be to generate sub-samples of pure polarisation states
from inclusive Monte Carlo samples. This can be done reweighting the inclusive sample,
event by event, by some probability that this event would be in a given polarisation state.
Each event k can be described as the realisation ~vk of a vector of random variables ~V all
independent following the law of

~V = (V0,V1, ...,VN) ,

where the Vi are all the individual – and not necessarily continuous – variables describing
the event. As a result, the marginal probability density functions of those Vi are estimated
by their distribution histograms.

The goal will be to estimate the law of the vector ~V in polarised cases from the estimation
that we have of it in the inclusive case. This law lives in a N -dimensional space with some
continuous dimensions, so the probability of a specific realisation of ~V to be “closer” than
some infinitesimal distance ε in this space to a given ~v will be written P

(
~V (~v)

)
.

The polarisation of a specific boson V is defined as a random discrete variable H. The
distribution of ~V when the polarisation of the boson V is h0 amounts to computing for
all ~v the probability P

(
~V (~v) ∩ H = h0

)
. Using conditional probabilities, this yields the

fundamental relation

P
(
~V (~v) ∩ H = h0

)
= P

(
H = h0|~V (~v)

)
P
(
~V (~v)

)
. (7.19)

The reweighting procedure amounts to applying to each event ~v the corresponding
weight P

(
H = h0|~V (~v)

)
in order to go from the law of ~V in the inclusive case to the

polarised case. This weight is the probability for an event to originate from a boson of
polarisation h0 knowing its kinematic variables ~v.
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7.3.1.1 Polarising the distribution of one variable

For simplicity let us look at the case of only one variable V1. Going back to the N -
dimensional case of ~V is quite straight forward. The polarised distribution of V1 can be
obtained from Eq. (7.19) knowing P (H = h0|V1 (v1)). This weight can in fact be estimated
using a variable V0 independent of V1 and for which its distribution in the polarised cases
is known from theory. Such variable is qW · cos θ∗

`W for W± bosons and cos θ∗
`Z for Z bosons.

For a generic V boson, it will be noted V0 and the conditional probability P(V0 (v0) |H = h)
in all cases can be extracted from Eq. (5.28) and (5.29) as the various terms in cos θ∗

` scaled
by polarisation fractions:

For W± bosons (v0 = qW · cos θ∗
`W ):


P(V0 (v0) |H = 0) = 3

4 (1 − v2
0)

P(V0 (v0) |H = L) = 3
8 (1 − v0)2

P(V0 (v0) |H = R) = 3
8 (1 + v0)2

, (7.20)

For Z bosons (v0 = cos θ∗
`Z ):


P(V0 (v0) |H = 0) = 3

4 (1 − v2
0)

P(V0 (v0) |H = L) = 3
8 (1 + v2

0 + 2Cwv0)
P(V0 (v0) |H = R) = 3

8 (1 + v2
0 − 2Cwv0)

. (7.21)

It is worth noting that the cos θ∗
` variable characterises the decay of the boson V in its

rest frame and is thus independent of all other bosonic variables, e.g. the pT or |η| of V .
Of course, the polarisation can affect the distribution of bosonic variables meaning V0 is
not strictly independent of other variables. Nevertheless, the conditional law of V0 with
the polarisation holds all the information and adding any other bosonic variable in the
conditional part will not change this conditional law.

From there, the factor P (H = h0|V1 (v1)) needed to reweight the distribution of the
variable V1 in the polarisation h0 can be obtained looking at the conditional distribution
of V0 with V1:

P (V0 (v0) |V1(v1)) =
∑

h=0,L,R

P (H = h|V1(v1))P (V0 (v0) |H = h ∩ V1(v1)) . (7.22)

Crucially, V1 must be a bosonic variable, independent of the leptonic decay. This allows to
consider that V0 only depends on H hence the simplification

P (V0 (v0) |V1(v1)) =
∑

h=0,L,R

P (H = h|V1(v1))P (V0 (v0) |H = h) . (7.23)

The left part can be estimated by plotting the inclusive distribution of V0 in bins of v1.
Then, Eq. (7.23) is analogous to the differential cross section of Eq. (5.28) and (5.29), with
the addition of cuts defining bins of v1. That way, the requested weight P (H = h|V1(v1))
can be identified as fh(v1) the polarisation fraction in that v1 bin. It can thus be extracted
from techniques described in Section 5.4 and then used to polarise the distribution of V1.

P (V1 (v1) ∩ H = h) = fh(v1)P (V1 (v1)) . (7.24)

7.3.1.2 Polarising the distribution of multiple variables

The same procedure can be extended to any amount of conditional variables using in
Eq. (7.24) the fraction fh(v1, v2, ..., vN ) as long as neither v0 nor a leptonic variable directly
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dependent on v0 is used. Of course, the more conditional variables are added, the less
events will be found in the multi-dimensional bin of all these variables, and the less accurate
the extracted fraction from the distribution of V0 will be. On the other hand, a variable
that is not in the conditional part of the polarisation fraction is not guaranteed to have its
distribution properly reweighted to the polarised distribution. Then, one may ask what
is the result of this reweighting on the distribution of such a variable. The distribution
obtained for variable V2 with the reweighting of only V1 to polarisation h is called F h(v2).
Then, summing on all values of v1 (practically all the bins of v1), it can be expressed as

F h(v2) =
∑
v1

fh(v1)P (V2(v2) ∩ V1(v1)) (7.25)

=
∑
v1

P (V1(v1) ∩ H = h)P (V2(v2)|V1(v1)) . (7.26)

It is clear from this expression that the difference of F h(v2) with the true distribution
will come from the dependence of V2 with V1. Let us consider first the case of V2 and V1
independent. Then,

F h(v2) =
∑
v1

P (V1(v1) ∩ H = h)P (V2(v2)) (7.27)

= P (H = h)P (V2(v2)) , (7.28)

with P (H = h) actually being the total phase space fraction for polarisation h. Thus, the
distribution is only affected by an overall factor. In this case, the analytical reweighting
fails maximally for V2. Now, if V2 is completely dependent of V1, meaning that there is a
function g such that V2 = g(V1), then

F h(v2) =
∑
v1

P (V1(v1) ∩ H = h)1v2=g(v1) (7.29)

= P (V2(v2) ∩ H = h) . (7.30)

This time, the obtained distribution is exactly the polarised one that would have come from
reweighting conditionally to V2. The same conclusion holds replacing V1 by an arbitrary
number of variables. As a result, reweighting conditionally to a basis of independent
variables would be enough to generate the distribution of any variable for a given polarisation.
Typically, this can be done with one or two conditional variables only, for lack of statistical
power in the inclusive Monte Carlo sample.

Even though the variable V0 cannot be used as a conditional variable of the reweighting,
its distribution can be polarised for free using the theoretical knowledge on its polarised
distribution. Using Bayes theorem,

P (H = h0|V0 (v0)) = P (H = h0)P (V0 (v0) |H = h0)∑
h=0,L,R

P (H = h)P (V0 (v0) |H = h) . (7.31)

Here, the denominator is actually, depending on the case, exactly the differential cross
section of Eq. (5.28) or (5.29). It acts as a flattener of the V0 distribution. Then the
numerator reshapes it along the requested polarisation. Replacing P (H = h) = fh by the
polarisation fraction in bins of conditional variables fh(v1, v2, ..., vN), provides the weight
P (H = h0|V0 (v0) ,V1 (v1) ...) that will polarise the distribution of all the variables in its
conditional part.
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7.3.1.3 Practical implementation

Practically, each event of the Monte Carlo sample is attributed a polarising weight. To
compute this weight, the polarisation fraction in the bin associated to the values of the
conditional variables for this event are chosen. Then these fractions are used in Eq. (7.31)
and the P (V0 (v0) |H = h) are taken depending on the boson from Eq. (7.20) or (7.21),
using for qW · cos θ∗

`W or cos θ∗
`Z the values in the considered event. For example, the weight

to get a W+ boson with longitudinal polarisation, considering only one conditional variable
v1 is

w
W +

0
(cos θ∗

`W , v1) =
f0(v1) 3

4

(
1 − cos2 θ∗

`W

)
f0(v1) 3

4

(
1 − cos2 θ∗

`W

)
+ fL(v1) 3

8

(
1 − cos θ∗

`W

)2 + fR(v1) 3
8

(
1 + cos θ∗

`W

)2 . (7.32)

For the Z boson, a technical complication arises. The functions of cos θ∗
`Z in the

numerator and denominator of the polarising weight will contain the Cw parameter which is
directly linked to the weak mixing angle sin2(θw), a fundamental parameter of the Standard
Model. This parameter will enter the analysis in two places:

• In the extraction of the polarisation fractions from the Monte Carlo inclusive distri-
bution.

• In the data or pseudo-data used in the final fit, internally driving the shape of the
fitted distribution.

The first point concerns the denominator of the polarising weight. To properly extract
the polarisation information built in the inclusive Monte Carlo prediction, the same sin2(θw)
value as used internally by the Monte Carlo generator must be used in the fitting function.
Similarly, the denominator acting as a flattener of the cos θ∗

`Z distribution, the internal Cw
value is also used there. The second point concerns the numerator which drives the shape of
the cos θ∗

`Z distribution. In the final fit, the normalisation of the polarised distributions of
cos θ∗

`Z is adjusted in order to fit the cos θ∗
`Z distribution in data. The sum of the polarised

cos θ∗
`Z distributions will properly reproduce the shape of the fitted data if the Cw value

used in the Left and Right polarised distributions matches the Cw value of what is being
fitted. For test fits with pseudo-data, the Cw value used for the generated Monte Carlo
events of that pseudo-dataset must be used. For the final fit on data however, an effective
Cw must be used, derived from the effective value of sin2(θw) as reported in Ref. [70].

7.3.2 Choice of conditional variables

The goal of the analytical reweighting is to generate polarised samples, of which one
discriminating variable will be used as a template. Naively, correctly modifying the
distribution of the discriminating variable should be enough for this purpose. Conveniently,
for single boson polarisation this discriminating variable is cos θ∗

` which by construction of
the method is always correctly reweighted. Nevertheless, the Monte Carlo events go in the
analysis chain through a detector simulation to obtain their detector-level equivalent. In
this process, it keeps its polarising weight acquired from particle level information, but the
variables describing it are modified. This results in reconstructed distributions of variables
distorted by acceptance cuts and reconstruction inefficiencies.
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Consequently, the discriminating variable distribution at reconstructed level relies on
other variables. This is especially the case for cos θ∗

`W where the pν
z reconstruction relies on

many variables and is in turn necessary to determine the detector level value of cos θ∗
`W .

As a result, it is important to identify which variables have a strong dependence with the
polarisation to determine if they need to be added as conditional variables. The analytical
reweighting will then generate a correctly modified distribution of these conditional variables
if the polarisation fractions are extracted in bins of this variable.
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Figure 7.6 Evolution of the three polarisation fractions f0, fL and fR of a W+ boson with
respect to different kinematic variables, extracted from Powheg+Pythia in the total phase
space with the moments method.

Similarly to what was done in Section 5.4.2, it is possible to plot the evolutions of all
polarisation fractions as a function of any variable eligible to be a conditional variable
(necessarily bosonic variables as explained in Section 7.3.1). In Fig. 7.6 this is done with
inclusive W+Z particle-level events in the total phase space generated by Powheg+Pythia.
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The evolution of all three polarisation fractions of the W± boson is presented, but similar
effects are observed on the fractions of the Z boson or with W−Z events.

From Fig. 7.6(a) and 7.6(b), it is visible that as expected, the fractions depend on the
transverse momentum and rapidity of the considered boson. Additionally , it appears that
the pT plays a bigger role in the evolution of f0 while the fL and fR have a dependency
mainly with the rapidity |η|. Looking at Fig. 7.6(c), the dependence with the pT of the
second boson, here the Z boson, is visible. This is a sign that the polarisation fractions of
the two bosons are not independent: at high pZ

T, fW
0 is enhanced. Also, the rapidity of the

second boson has opposite trends of fL and fR as the considered boson (Fig. 7.6(d)).

Moreover, it is also possible to identify how cuts on a given variable affect the polarisation
content of the sample at particle level in order to define a phase space enhanced for a
particular polarisation. Adding a cut to select pZ

T > 200 GeV changes completely the picture
of the evolution of f0 with pW

T as can be seen in Fig. 7.6(e). Suddenly, low pW
T favours f0.

This can be explained by looking at Fig. 7.6(f) showing that the longitudinal polarisation
is favoured by unbalanced pT between the W± and Z bosons. This is ultimately linked
to NLO effects, as an additional jet seems to add flexibility to the angular momentum
conservation allowing for more longitudinal bosons.

The number of conditional variables used in the reweighting cannot be too high as
we need to divide the phase space in bins of each of these variables simultaneously. The
number of events available in each bin is therefore reduced according to the number of
variables. To generate samples with a single boson polarised, only two conditional variables
are considered: pT and |η| of the polarised boson. That way, the kinematic variables of the
leptons produced by the decay, being determined by cos θ∗

` , pT and |η|, will be correctly
modified. And as a result, cuts on these variables will not degrade the quality of the
polarised templates.

Yet as this section shows, correlations between the polarisation of the bosons imply that
kinematic variables of the other boson will also be affected. Cuts there will in turn degrade
the polarised template, as these variables would not be correctly reweighted. Thus, a study
on the validity of the reweighting at the reconstructed level must be performed.

7.3.3 Validation of the analytical reweighting

Three polarised samples are generated for each boson from the inclusive Powheg+Pythia
sample, using cos θ∗

` as the discriminating variable and (pT,|η|) as the conditional variables.
In principle, the set of events at reconstructed level is the same in all three polarised samples,
only their polarising weights are different. From Eq. (7.31), it is clear that the sum of the
three polarising weights for a same event will give exactly one. Consequently, summing the
distribution of any variable from all three polarised samples produces exactly the inclusive
Powheg+Pythia distribution.

To check the overall validity of the method, each polarisation template should originate
from a different subset of the inclusive sample. This way the event-by-event automatic sum
to one disappears and it is the overall shape of the templates whose sum should give back
the inclusive sample, within statistical fluctuations. For this, polarised samples 0, L, R are
obtained reweighting the inclusive Powheg+Pythia sample corresponding respectively
to run periods 2015-2016, 2017 and 2018, subdivisions of Run 2. These are effectively three
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independent subsets of events. The sum of these polarised samples is then compared to the
full Run 2 inclusive sample. To match the full Run 2 inclusive sample overall normalisation,
the templates are rescaled using a template fit. The interesting part in this test is not
the post-fit values of the fractions, but simply the capability of the polarised templates to
recover together the shape of the inclusive distribution. The rescaled polarised templates
are summed and compared to the inclusive sample, with the supplementary technicality
that backgrounds from τ decay and γ∗ migration described in Section 6.3.1 are present in
the Powheg+Pythia sample and must be subtracted.
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Figure 7.7 Independent closure test at reconstructed level for the W± boson (a) and the Z
boson (b). The polarisation templates were generated with the reweighting each of a different
subset of the Powheg+Pythia sample. The τ decay and migrating γ∗ background contributions
in the inclusive sample have their templates included but left unaffected by the template fit.

The result in Fig. 7.7 shows that bin-by-bin, the non-closure is always well bellow the
range of statistical fluctuations represented by the orange hatches in the ratio panel. As a
result the closure test is passed and the concept of the reweighting method is validated in
single boson polarisation.

7.3.4 Reweighting for joint-polarisation

So far, the reweighting formula of Eq. (7.19) allows reweighting a variable distribution to
represent a state with a single polarised boson. It must be adapted to represent states with
both boson polarised, the so-called joint-polarisation states. This is naturally done by

P
(
~V(~v) ∩ HW = h ∩ HZ = h′

)
= P

(
HW = h ∩ HZ = h′ | ~V(~v)

)
P
(
~V(~v)

)
. (7.33)

Here, the P
(
HW = h ∩ HZ = h′ | ~V (~v)

)
can be noted fhW ∩hZ (~v) the joint-polarisation

fraction conditionally to all the variables of the events being ~v. In practice, only one variable
v1 is used. These fractions are extracted with a 2D fit as described in Section 5.4.3, but in
bins of the conditional variable v1. In the case of joint-polarisation, the variables qW ·cos θ∗

`W

or cos θ∗
`Z cannot be used as discriminating variables as they only affect the polarisation
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of one boson. The variable v1 must be sensitive to both boson polarisation and therefore,
as hinted in Section 5.2.1, | cos θV | is chosen. To improve the behaviour of the reweighted
sample at detector level, cos θ∗

`W and cos θ∗
`Z are also modified, since it can be done for free

in the same fashion as in Eq. (7.31).

As was done in Section 7.3.2, the joint-polarisation fractions evolution with | cos θV |
is represented in Fig. 7.8 separately for W+Z and W−Z events. From there, f00 shows a
very distinctive evolution compared to fTT. The mixed fractions f0T and fT0 on the other
hand stay roughly constant along | cos θV |. This demonstrates that | cos θV | is still a good
discriminating variable at NLO in QCD for the 00 and TT joint-polarisation state, but still
lacks discriminative power to disentangle the mixed polarisation states.
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Figure 7.8 Joint-polarisation fractions of an inclusive Powheg+Pythia sample at particle
level in the total phase space in bins of | cos θV | in W+Z events (a) and in W−Z events (b).

However, as found in Section 7.2, the | cos θV | and even the 4-category | cos θV | variables
do not provide sufficient discriminative power to ensure enough precision in the measurement
of all the joint-polarisation fractions. The discriminating variable chosen, however, is based
on a classification DNN using as input fermionic variables that are not independent of
cos θ∗

`W or cos θ∗
`Z . As a result, the 4-category pDNN

00 cannot be reweighted with this method.
The analytical reweighting will therefore be used in the following to generate the single
boson polarisation templates. Using the 4-category | cos θV | variable, joint-polarisation
templates can also be produced at the particle level in the fiducial phase space. In this case,
the discriminating power is enough to extract from the inclusive Powheg+Pythia sample
joint-polarisation fractions predictions in the fiducial phase space. Collectively, all the
polarisation templates obtained with this method applied to the inclusive Powheg+Pythia
sample will be labelled PHPrw. Similarly, if the reweighting is applied to the inclusive
MadGraph0,1j@LO sample, they will be labelled MGrw.

7.4 Templates from polarised Monte Carlo generation

The analytical reweighting described in Section 7.3 cannot produce joint-polarisation
templates based on the 4-category pDNN

00 as discriminating variable. Consequently, two
approaches making use of the LO polarised MGgen samples were developed to produce NLO
accurate polarisation templates. The simplest one is to use some kind of reweighting of the
polarisation templates from MGgen samples to bring them to NLO accuracy. This can be
done using the fixed order polarised theoretical calculation at NLO in QCD described in
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Section 5.2.3. For the same purpose, a method involving Deep Neural Networks trained to
learn the difference between LO and NLO samples can be used. Symmetrically, this new
method can polarise an NLO inclusive sample to obtain NLO accurate polarisation templates.
It uses DNNs trained to learn the differences between the different joint-polarisation states
using the MGgen samples. All these methods will provide ultimately four different sets of
polarisation templates.

7.4.1 Reweighting polarised LO Monte Carlo samples to NLO
predictions

Differently from the MadGraph0,1j@LO generation, calculations using MoCaNLO only
give cross sections in predefined phase spaces. It is possible to go beyond the overall fraction
prediction by computing differential cross sections, bin-by-bin of a given variable, but the
full kinematic description of W±Z events as obtained in Monte Carlo generation is out of
reach. However, computing NLO theoretical differential cross sections for key variables can
be a way to assess the effect of each correction on its distribution, and ultimately correct
distributions from Monte Carlo samples. The theoretical prediction for the distribution of
the DNN score pDNN

00 , presented in Section 7.2 and specifically designed for this analysis,
was estimated as well by Ansgar Denner and Giovanni Pelliccioli the authors of Ref. [77]
in collaboration with my analysis team. The differential cross sections for | cos θV | and
pDNN

00 are given in Fig. 7.9. Looking at the grey, pink and black line, the non-resonant
background and interference contributions look negligible. It is also visible in the ratio
from LO to NLO panel of | cos θV | that in the low | cos θV | region where the discrimination
between TT and 00 joint-polarisation is the best, very strong NLO contribution affect
the TT joint-polarisation spoiling the discrimination. It should thus be expected that

(a) (b)

Figure 7.9 Particle-level in the fiducial phase space distribution of | cos θV | (a) and pDNN
00 (b)

in pp → e+νeµ
+µ− events. From top down: NLO QCD differential cross-sections, NLO QCD

normalised distribution shapes (integral equal to 1), K-factors (NLO QCD/ LO).
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| cos θV | would loose its discriminative power from higher order in QCD corrections. On
the other hand the high pDNN

00 region critical for the discrimination of 00 against other
joint-polarisations is not subject to strong NLO corrections. From there, it is possible to
account for the missing virtual NLO corrections in the pDNN

00 distribution obtained from
MadGraph0,1j@LO generation.

Nevertheless, distributions from MoCaNLO are computed at fixed-order in QCD at
parton level, as opposed to Monte Carlo generations that include real corrections in parton
showers and soft physics effects. As a result, the particle level distributions in MGgen samples
are not fully comparable to the parton level distributions computed with MoCaNLO.
In order to reweight the reference MGgen distributions for a given polarisation, labeled
MadGraphref,pol., the following K-factor evaluated in each bin can be used:

KMG p.s. =
MoCaNLOparton

pol.

MadGraphparton
ref,pol.

=
MoCaNLOparton

pol.

MadGraphparticle
ref,pol.

·
MadGraphparticle

ref,pol.

MadGraphparton
ref,pol.

. (7.34)

This factor reweights the MGgen samples prediction at parton level to the parton level
MoCaNLO prediction, which is similar to reweighting directly the particle level MGgen
predictions and correcting by a parton shower factor extracted directly from the MGgen
samples.

This K-factor can be modified by replacing the parton shower term, extracted solely
from MadGraph, by a parton shower term making use of the Powheg+Pythia sample:

KPHP p.s. =
MoCaNLOparton

pol.

MadGraphparticle
ref,pol.

· Powheg+Pythiaparticle
incl.

MoCaNLOparton
incl.

. (7.35)

This time the parton shower correcting factor compares the Powheg+Pythia inclusive
prediction to the MoCaNLO inclusive prediction. This factor made visible in Fig. 7.10, is
sizeable.

Figure 7.10 Comparison of Powheg+Pythia and MoCaNLO predictions in the fiducial
phase space at particle and parton level respectively, for the pDNN

00 distribution.

Using the factor KPHP p.s. assumes similar parton shower corrections for all pure joint-
polarisation states. On the other hand, the factor KMG p.s. uses parton estimated from a

124



Chapter 7: Polarisation measurement 7.4. Templates from polarised MC generation

LO sample corrected for real corrections, while the factor KPHP p.s. uses directly parton
showers from NLO samples. Though in both cases the parton shower is generated by
Pythia, its merging with the original Monte Carlo generation is here not the same. For
now, both methods are considered to provide polarised NLO accurate templates of pDNN

00 .
The polarised samples obtained reweighting with the factor KMG p.s. will in the following be
collectively labelled MoCmps samples. On the other hand, those obtained reweighting with
the factor KPHP p.s. will in the following be collectively labelled MoCpps samples.

7.4.2 Reweighting with a DNN

A completely different method based on reweighting with a DNN score was developed to
obtain NLO accurate templates. This will amount to a multidimensional reweighting.

7.4.2.1 Principle

Let us consider two samples SA and SB each associated to the distinct distributions pA(x)
and pB(x) for a same variable, where x is a vector of observables fully describing a generated
event. To morph the distribution of SA into the distribution of SB, event by event, the
weight pB(x)/pA(x) must be used. As described in [110], such weight can be approximated
using a classification DNN trained to classify events between SA, with target one, and SB,
with target zero. Then, for an event x with the score DNN(x), the approximation

w(x) = DNN(x)
1 − DNN(x) ≈ pB(x)

pA(x) , (7.36)

provides the needed weight. This approximation will be tested in the following.

Figure 7.11 Sketch of the DNN-based reweighting of an inclusive NLO sample to a polarised
NLO sample for the 00 joint-polarisation state. In blue are the samples used as input, and in
green is the newly obtained sample. The DNN represented in red, applying to each event x the
weight w(x) = DNN(x)/ (1 − DNN(x)), classifies event between the 00 joint-polarisation with
target 1 and the inclusive sample with target 0.

In the case of joint-polarisation templates, the distribution of the discriminating variable
pDNN

00 is available at LO polarised from MGgen samples and at NLO from the inclusive
Powheg+Pythia sample. The goal would be to obtain it at NLO polarised, either
reweighting the LO polarised distribution to morph them from LO to NLO, or reweighting
the NLO inclusive distribution to morph it into all four joint-polarisation distributions.
The latter method is sketched in Fig. 7.11 for the 00 joint-polarisation state.
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However, this method relies on the assumption that the polarisation information in the
shape of the pDNN

00 distribution is independent of the generation order in QCD. In other
words, the pDNN

00 distribution phh′
NLO(x) of events x for joint-polarisation hh′ at NLO QCD

can be factorised as:

phh′

NLO(x) ∝ pLO(x) × fhh′(x) × gLO→NLO(x) , (7.37)

with pLO the inclusive distribution at LO, fhh′ a polarising factor and gLO→NLO a po-
larisation independent factor bringing the LO distribution to NLO QCD. Under such
assumption, the polarised MGgen samples provide the distribution pLO(x) × fhh′(x) while
the Powheg+Pythia sample provides the distribution pLO(x) × gLO→NLO(x).

Consequently, the DNN reweighting to obtain NLO polarised templates relies on the
assumptions of Eq. (7.36) and (7.37). Validating these two DNN reweighting assumptions
is necessary to ensure that this reweighting really provides a reliable improvement of the
polarised MGgen samples.

7.4.2.2 Validation of the DNN output to weight approximation

The approximation of Eq. (7.36), that a distribution can be reweighted with a DNN score,
is tested in two ways. First, five reweighting DNNs are trained.

• Four DNNs, labelled DNNhh′ are trained on the four polarised MGgen samples to
classify each between one pure joint-polarisation state hh′ and the inclusive Mad-
Graph0,1j@LO sample, obtained from the sum of the polarised MGgen samples.
Under both DNN reweighting assumptions, the DNNhh′ will provide a weight which
should approximate the fhh′ of Eq. (7.37).

• One DNN labelled DNNLO→NLO is trained on the inclusive MadGraph0,1j@LO
sample and the Powheg+Pythia sample to classify events between LO and NLO.
Under both DNN reweighting assumptions, the DNNhh′ will provide a weight which
should approximate the gLO→NLO of Eq. (7.37).

All DNNs needed for the reweighting and its validation were trained using Tensorflow
v1.3 [102] with Keras v2.2.4-tf [103] back-end. The training was performed in the total phase
space with particle-level samples MGgen and Powheg+Pythia. The latter is split in two
(training/evaluation samples for DNNLO→NLO) to avoid biases in the cross-checks. Similarly,
each MGgen polarised sample is split in four: the first half is split in training and evaluation
samples for the DNNhh′ , the second half is summed to get an inclusive MadGraph0,1j@LO
split again in training (for DNNLO→NLO) and evaluation samples (input to the DNNhh′).
This way, each event is only used once in all the validation procedure.

All reweighting DNNs share the same architecture, loss function, and training hyper-
parameters as the classification DNN defined in Section 7.2. They also share the same input
variables which are the inputs used for the classification DNN listed in Table 7.1 extended
by four variables. These additional variables hold information about neutrino longitudinal
momentum and variables sensitive to NLO effects: the invariant mass of the W±Z system
mW Z , | cos θV |, cos θ∗

`W , and cos
(
θ∗

`Z
ss

)
, defined as cos θ∗

`Z , only considering the decay angle
with the lepton of same sign as the W± boson charged decay lepton instead of always the
negatively charged one.
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(a) (b)

Figure 7.12 Distributions of pDNN
00 in the fiducial phase space in W±Z events. All distribu-

tions were rescaled to the same surface area. In (a), the MGgen distributions in solid lines are
compared one to one to the reweighted inclusive MadGraph0,1j@LO distributions in dashed
lines for all four joint-polarisation states. In (b), the Powheg+Pythia distribution in black is
compared to the reweighted inclusive MadGraph0,1j@LO distribution in blue and the original
MadGraph0,1j@LO distribution in red. In both cases, the bottom panels provide ratios between
the compared distributions.

The first test assesses the validity of the weight approximation for the output of the
DNNhh′ . The summed MadGraph0,1j@LO samples form an inclusive LO sample. This
sample is applied the reweighting from DNNhh′ to obtain a hh′ joint-polarisation state
sample. This is repeated for all joint-polarisation states creating four reweighted polarised
samples. They are then compared one to one to the original MGgen polarised samples.
In Fig. 7.12(a), the two distributions of pDNN

00 are found to agree within 10 % for all
joint-polarisation states, except for low yield bins where the ratio gets large more easily.
Considering that the initial inclusive sample is the same for all joint-polarisation reweighted
samples this result is already a good performance. The weights obtained from these DNNhh′

are thus found to approximate correctly fhh′ .

Symmetrically, the sum of polarised MadGraph0,1j@LO samples is reweighted by
DNNLO→NLO to obtain an inclusive NLO sample. This sample can then be compared to
the Powheg+Pythia sample. In Fig. 7.12(b) the two distributions of pDNN

00 are found to
agree within a few percents. As visible with the representation of the original LO inclusive
MadGraph0,1j@LO distribution, the reweighting does make up for the original 10 % to
15 % difference with the NLO Powheg+Pythia. The weight obtained from DNNLO→NLO

is thus found to approximate correctly gLO→NLO.
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7.4.2.3 Validation of the factorisation assumption

The factorisation assumption in Eq. (7.37) can be assessed with a large cross-check using
all five reweighting DNNs. Using the reweighting from the DNNhh′ on the NLO inclusive
Powheg+Pythia sample should create four polarised samples at NLO with the application
of the fhh′ factor to the distributions. The polarised samples obtained this way will in the
following be collectively labelled PHPdnn samples. Alternatively, using the reweighting from
DNNLO→NLO on the four polarised LO MadGraph0,1j@LO samples should create four
polarised samples at NLO with the application of the gLO→NLO factor to the distributions.
The polarised samples obtained this way will in the following be collectively labelled MGdnn
samples.

Comparing the PHPdnn and MGdnn samples provides a test of the factorisation assumption.
In Fig. 7.13(a), the two distributions of pDNN

00 are found to agree within 10 % for all joint-
polarisation states, except for low yield bins where the ratio gets large more easily. This
moderate difference has to be compared to the difference between the NLO PHPdnn polarised
samples and the LO MGgen polarised samples visible in Fig. 7.13(b). The differences there
reach 20 % and is almost never below 10 % for the 00 joint-polarisation. As a result, the
factorisation assumption is considered to be verified.

(a) (b)

Figure 7.13 Distributions of pDNN
00 in the fiducial phase space in W±Z events. All distributions

were rescaled to the same surface area. In (a), the MGdnn distributions in solid line are compared
one to one to the PHPdnn distributions in dashed lines for all four joint-polarisation states. In
(a), the MGgen distributions in solid line are compared one to one to the PHPdnn distributions in
dashed lines for all four joint-polarisation states. In both cases, the bottom panels provide ratios
between the compared distributions.

Consequently, the idea of a DNN-based reweighting is validated. It is found to provide
two comparable ways to obtain polarised samples at NLO. Additionally, the difference
between LO and NLO polarised samples is found to be sizeable, justifying the necessity of
such reweighting.
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7.5 Need for NLO accurate templates

In the previous sections, many different methods to obtain NLO accurate templates were
described and one must be chosen for the final template fit on Run 2 data. To assess
their performances, each set of templates is used to fit an NLO inclusive sample at the
detector level. The result is compared to the Monte Carlo particle-level expectation. A set
of polarisation templates truly NLO accurate should then show no bias.

7.5.1 Summary of polarisation templates sets

Several ways to produce joint-polarisation templates at detector level of the 4-category pDNN
00

have been presented. The following two methods can already be discarded as fatally flawed
in the context of joint-polarisation states:

• The direct Monte Carlo generation with MadGraph0,1j@LO described in Sec-
tion 5.3.2 produces four joint-polarisation templates labelled MGgen. They are gen-
erated at LO, but the merging with an additional jet allows to emulate real NLO
corrections. They are nevertheless far from being NLO accurate.

• The analytical reweighting described in Section 7.3 performs well in generating
polarisation templates for the discriminating variables qW · cos θ∗

`W or cos θ∗
`Z . This

allows for single boson polarisation measurement. However, this method cannot use
the classification DNN score pDNN

00 because it uses leptonic variables as input. This
reweighting is applied to the inclusive Powheg+Pythia sample to get templates
labelled PHPrw with as discriminating variable the 4-category | cos θV |. As shown in
Section 7.2, this variable is not discriminative enough to allow for the measurement
of joint-polarisation fractions.

Theoretical calculations at parton level described in Section 5.2.3 provide the NLO
prediction for the distribution of pDNN

00 . These theoretical distributions can be used to obtain
K-factors to bring the MGgen distribution of pDNN

00 to NLO as described in Section 7.4.1.
These calculations being at parton level, a procedure has to be defined to get to particle-level
NLO samples. Two ways to do this were presented:

• Using factor KMG p.s. of Eq. (7.34) to reweight the pDNN
00 distribution from polarised

MGgen samples – that is using some kind of MadGraph parton shower effect –
provides templates labelled MoCmps.

• Using factor KPHP p.s. of Eq. (7.35) to reweight the pDNN
00 distribution from polarised

MGgen samples – that is using some kind of Powheg+Pythia parton shower –
provides templates labelled MoCpps.

A method of reweighting using a classification DNN score is described in Section 7.4.2.
This can be used either to reweight a polarised sample from LO to NLO, or to reweight an
inclusive NLO sample in order to polarise it. These produces two sets of templates:

• A DNN is trained to discriminate one polarisation state against their inclusive sum,
using in the training the polarised MGgen samples. This is repeated for each of the
four polarisation states creating four polarising DNNs. Each is used to reweight the
inclusive NLO Powheg+Pythia sample to obtain the four polarisation templates
labelled PHPdnn.
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• A DNN is trained to classify between LO and NLO inclusive samples, using in
the training the inclusive NLO Powheg+Pythia sample and the inclusive Mad-
Graph0,1j@LO sample. It is used to reweight distributions from LO to NLO. Applied
on the polarised MGgen samples, polarisation templates labelled MGdnn are obtained.

These six different ways of generating polarised templates are summarised in Table 7.3.
They are all shown in Fig. 7.14 for the distribution of pDNN

00 at detector level in all polarisation
states. The templates MGgen being at LO, they will only be used as point of comparison
to assess the change in templates emulating NLO in QCD. Strong deviations from it are
visible, of up to 25 % depending on the alternative template. Deviations among the other
templates are also clearly visible, indicating that they do not all emulate correctly NLO
corrections. The set of templates PHPrw are unable to get a polarised distribution of the
pDNN

00 as is clear on the figure. These templates will still be used to get the expected value
of polarisation fractions at particle level from the inclusive Powheg+Pythia sample as is
described in the next section.

Table 7.3 The six different ways to obtain polarisation templates. The original Monte Carlo
sample designates the sample used as input of the method, either to polarise it or bring it to NLO
accuracy.

Name Original Monte Carlo sample Method used LO/NLO
MGgen Polarised MadGraph0,1j@LO Polarised Monte Carlo generation (Section 5.3.2) LO
PHPrw Powheg+Pythia Analytical reweighting (Section 7.3) NLO

MoCmps Polarised MadGraph0,1j@LO Reweighting to NLO QCD calculation
using KMG p.s. (Section 7.4.1) NLO

MoCpps Polarised MadGraph0,1j@LO Reweighting to NLO QCD calculation
using KPHP p.s. (Section 7.4.1) NLO

MGdnn Polarised MadGraph0,1j@LO DNN reweighting LO→NLO (Section 7.4.2)
Trained on: MadGraph0,1j@LO and Powheg+Pythia NLO

PHPdnn Powheg+Pythia Polarising DNN reweighting (Section 7.4.2)
Trained on: Polarised MadGraph0,1j@LO NLO

7.5.2 Particle level expectation for fractions

To select the most accurate set of polarisation templates, a bias study is performed. This
requires to have an idea of what are the expected values for the fractions extracted from
inclusive Monte Carlo samples.

Polarisation fractions were extracted from the inclusive Powheg+Pythia sample at
particle level in the total phase space thanks to analytical fits or the moments method
described in Section 5.4. However, the Monte Carlo expectations for fractions obtained in
Tables 5.2 and 5.3 are not comparable to the measured fractions which are obtained at the
particle level in the fiducial phase space. To extract the particle-level expectation in this
phase space, such analytical methods do not work, the fiducial cuts distorting the shape of
the qW · cos θ∗

`W and cos θ∗
`Z variables.

Therefore, a template fit is used, just as described in Section 7.1, but using polarised
templates at particle level in the fiducial phase space. Additionally, being at particle level,
no backgrounds or systematic uncertainties appear. The PHPrw set of templates obtained
from the analytical reweighting of the inclusive Powheg+Pythia sample is used for
this fit. For single boson polarisation, qW · cos θ∗

`W and cos θ∗
`Z are used as discriminating
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Figure 7.14 Distributions at detector level of pDNN
00 for the six sets of polarisation templates at

hand MGgen, PHPrw, MGdnn, PHPdnn, MoCmps and MoCpps, for W±Z events and for polarisations
00 (a), 0T (b), T0 (c) and TT (d). These templates were all rescaled to the same surface area.

variables respectively for the W± boson and the Z boson. For joint-polarisation, the 4-
category | cos θV | is used as discriminating variable. Simultaneously, the Powheg+Pythia
sample is the pseudo-dataset fitted. This template fit is therefore what is called an Asimov
fit, since it was shown that one expects perfect closure in this case in Section 7.3.3. The
pre-fit proportions of the polarised template would give the same fractions as the fit, but
using the fit framework also provides the associated uncertainty from statistical origin. This
allows considering the results of such fit of the inclusive Powheg+Pythia sample as close
as possible to the true polarisation fractions content in the fiducial phase space that are
built in the Powheg+Pythia Monte Carlo generation. The values extracted this way for
the joint-polarisation fractions are used as the reference in the bias study performed in the
next section, and visible in Fig. 7.15.
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7.5.3 Bias study on all sets of polarisation templates

Among the five possible ways to generate polarisation templates of the discriminating
variable 4-category pDNN

00 described in Section 7.5.1, that is MGgen, MGdnn, PHPdnn, MoCmps
and MoCpps, one is chosen to perform the final template fit while the others will be used to
assess modelling uncertainties, as described ahead in Section 7.6.2. All the following fits will
be signal only without any systematic uncertainty implemented, to isolate the differences
between the five methods.

To find how well the sets of templates reach NLO accuracy, they are all made to fit the
inclusive Powheg+Pythia sample at detector level. The reference truth value is obtained
as described in Section 7.5.2. The results are presented in Fig. 7.15. Here, the fits are
performed in W±Z events, but also on the two subsets defined by the charge of the W±

boson, W+Z and W−Z events.

 Z±W  Z+W  Z-W

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

00f  from MGgen on Powheg+Pythia00f

 from MGdnn on Powheg+Pythia00f

 from PHPdnn on Powheg+Pythia00f

 from MoCmps on Powheg+Pythia00f

 from MoCpps on Powheg+Pythia00f

 from Truth00f

 Z±W  Z+W  Z-W
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

 R
at

io
 r

ec
/tr

ut
h 

(a) f00

 Z±W  Z+W  Z-W

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0Tf  from MGgen on Powheg+Pythia0Tf

 from MGdnn on Powheg+Pythia0Tf

 from PHPdnn on Powheg+Pythia0Tf

 from MoCmps on Powheg+Pythia0Tf

 from MoCpps on Powheg+Pythia0Tf

 from Truth0Tf

 Z±W  Z+W  Z-W
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

 R
at

io
 r

ec
/tr

ut
h 

(b) f0T

 Z±W  Z+W  Z-W

0

0.2

0.4

0.6

0.8

1

1.2

1.4T
T

f  from MGgen on Powheg+PythiaTTf

 from MGdnn on Powheg+PythiaTTf

 from PHPdnn on Powheg+PythiaTTf

 from MoCmps on Powheg+PythiaTTf

 from MoCpps on Powheg+PythiaTTf

 from TruthTTf

 Z±W  Z+W  Z-W
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

 R
at

io
 r

ec
/tr

ut
h 

(c) fTT

Figure 7.15 Results of signal only fits of Powheg+Pythia at detector level for the parameters
of interest f00 (a), f0T (b) and fTT (c) for all five templates MGgen, MGdnn, PHPdnn, MoCmps and
MoCpps in all charge configurations. Uncertainties are from statistical origin only.

Some bias clearly appears in these results for all templates. The true value should be
in 68 % of cases within the uncertainty bar (i.e. one sigma interval) of the fit result, so
perfect closure is not expected. It is visible that MGgen has a big bias that some kind of
reweighting to the NLO corrects. The template PHPdnn is found to have the smallest bias by
far. Templates originating from MadGraph all have a significant bias as well, the various
corrections to NLO helping to reduce it. Among them, MoCpps performs better for f00
while MoCmps is better in f0T and fTT, but the bias is always much bigger than for PHPdnn.
To validate this, the same test is performed but fitting this time the MadGraph@NLO
inclusive sample described in Section 5.3.1. The reference values are kept the same as the
one extracted from Powheg+Pythia, as no major differences in polarisation content
are found between the two NLO inclusive samples. Again, as visible in Fig. 7.16, PHPdnn
clearly is the least biased sample. This indicates that this property is not originating from
some link between the derivation of PHPdnn templates and the Powheg+Pythia sample.
Consequently, PHPdnn is chosen as the baseline set of polarisation templates for the final fit.

The MGgen templates are not NLO accurate. They cannot be used to extract polarisation
fractions, as NLO effects (among which virtual corrections) on the shape of polarisation
templates are not negligible and need to be taken into account to avoid biases. From this
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Figure 7.16 Results of signal only fits of MadGraph@NLO at detector level for the parameters
of interest f00 (a), f0T (b) and fTT (c) for all five templates MGgen, MGdnn, PHPdnn, MoCmps and
MoCpps in all charge configurations. Uncertainties are from statistical origin only.

study, the reweighting to NLO of a single variable at generated level, as done in the MoCpps
and MoCmps sets of templates, is found to be less efficient than the more general DNN
reweighting which acts as some sort of multi-dimensional reweighting.

For single boson polarisation templates, only the PHPrw set is available to extract f0,
fL and fR, and is expected to be NLO accurate. Still, similar bias study are performed
comparing its performance to the MGrw templates obtained by reweighting the inclusive
MadGraph0,1j@LO sample with the analytical reweighting. A sizeable bias of at most
more than one standard deviation is found for the values of the parameters of interest f0
and fL − fR extracted using the MGrw templates. On the other hand, the PHPrw templates
extract fractions with almost no bias, even when fitting the alternative inclusive NLO
sample MadGraph@NLO. This shows that some NLO accuracy is transmitted from the
original inclusive Monte Carlo sample to the polarisation templates through the analytical
reweighting.

7.6 Uncertainties

With the 4-category pDNN
00 as discriminating variable and the set of polarisation templates

PHPdnn identified as NLO accurate, everything is ready to perform the template fit. This
fit should incorporate systematic uncertainties from backgrounds, particle reconstructions,
Parton Distribution Functions (PDF) or the QCD renormalisation scale µR and factorisation
scale µF used in the Monte Carlo generation. The main uncertainty in this analysis will
arise from modelling uncertainties, estimating the remaining inaccuracies in the shape of
the polarisation templates.

7.6.1 The treatment of systematic uncertainties

Systematic uncertainties are taken into account in a binned maximum-likelihood template
fit using nuisance parameters αNP. Considering a systematic uncertainty applying to
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backgrounds, for example an overall normalisation uncertainty as in Section 6.3.1, the
associated nuisance parameter is incorporated in the likelihood in two places:

L(µ;N) = P (N |µS + f(αNP)B) G(αNP) , (7.38)

where f(αNP) is the response function and G(αNP) is the constraint term. The response
function encodes how the nuisance parameter acts on the background or signal model.
The constraint term reflects additional knowledge available on this nuisance parameter.
Typically, the nuisance parameter is a random variable centred on zero, with a standard
deviation of one and the constraint term acts as its probability density function.

In this analysis, the response function of systematic uncertainties are implemented in
two ways:

Overall normalisation uncertainties : Typically of x% on a background, they are
modeled with a response function f(αNP) = (1 + αNP × x/100) applied across all bins
on the background template.

Shape uncertainties : the nuisance parameters has a response function based on Up and
Down variations. By a procedure depending on the underlying physical systematic
uncertainty, bin by bin, the template for a background or signal is modified by the
nuisance parameter. The obtained modified shapes for the nuisance parameter, up
or down by one standard deviation, creates histograms for Up and Down variations.
With a variety of possible procedures, the template is morphed continuously from the
Down variation to the Up variation through the nominal histogram. If the Up and
Down variations are normalised to the nominal template normalisation, the effect of
the uncertainty is purely on shape. Otherwise, it can also have a normalisation effect.

In HistFactory, by default, all the constraint terms are standardised gaussian distributions
and the morphing is based on a piecewise linear interpolation between the three known
histograms [108].

Then, from a statistical point of view, the nuisance parameter is treated as any other
variable of the likelihood. As a result, just like parameters of interests, after the fit (post-fit
as opposed to pre-fit, before the fit), its value can deviate from zero if it is found to help
maximise the likelihood. In this case, the nuisance parameter is said to be pulled. The
uncertainty on this parameter can also be extracted similarly as for a parameter of interest.
If the uncertainty is below one, the parameter is said to be over-constrained by the fit.
This means that the fit allowed to improve the understanding of the value of the nuisance
parameter. Depending on the nature of the underlying systematic uncertainty, pulls or
over-constraints can be legitimate or indicate a mismodelling or a wrong parametrisation of
the fit.

7.6.2 Modelling uncertainties

7.6.2.1 Principle of modelling uncertainty

Modelling uncertainties for polarisation templates are extracted using alternative template
sets. A procedure to be detailed further will use these alternative templates to produce two
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variation templates labelled Up and Down. Yet, these labels are somewhat arbitrary and
do not imply anything about the position of these variations compared to the nominal one.
One can represent in the most formal way these variations for a bin i and a polarisation h,
by

Uh
i = T h

i + ∆h
i , (7.39)

Dh
i = T h

i − ∆h
i , (7.40)

where U (resp. D) is the Up (resp. Down) variation and T is the nominal template. The
deviation ∆ is chosen the same for both variations for reasons of symmetry. The procedure
to extract the ∆ should be such that bin-to-bin correlations are kept, and as a consequence
this ∆ can be positive or negative.

In the case of single boson polarisation templates, an additional property arises from
the way the polarisation templates are generated. They are obtained from the analytical
reweighting and therefore all sum up to the inclusive distribution as demonstrated in
Section 7.3.3. This happens because the weights used to polarise all sum up to one by
construction. This means that their sum should give back the inclusive distribution (σi)1≤i≤n

and Ntot is extracted independently of the fractions. As a result, one desirable property
for modelling variations is that they would respect this. This is achieved in two ways.
First, a single nuisance parameter is associated to all polarisation templates to parametrise
their joint modelling uncertainty (and not one per template). Secondly, the normalisation
relationship

∀i,
∑

h

T h
i = σi ,

is enforced on the variations, yielding the following property of ∆:

Property 1 (Reweighting normalisation)

∀i,
∑

h

(
T h

i + ∆h
i

)
= σi ⇔ ∀i,

∑
h

∆h
i = 0 .

Finally, the templates will be fitted and their overall integral will change. The modelling
uncertainty accounts for our imperfect knowledge of the shape of the polarisation templates,
but not for overall scale uncertainties. At the generated level in the fiducial phase space,
where the fraction and overall normalisation Ntot are extracted, the variation templates
should have the same integral as the nominal one. Then, at the detector level some overall
normalisation differences can arise from different reconstruction efficiency in bins of the
template distribution. As a result, it is desirable that the Up and Down variations have the
same integral as the nominal template at particle level in the fiducial phase space. This
entails, for the variation ∆ the property:

Property 2 (Shape-only variation)

∀h,
∑

i

Uh,Fid
i =

∑
i

T h,Fid
i ⇔

∑
i

∆h,Fid
i = 0 .
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7.6.2.2 The reweighting uncertainty

For the single boson polarisation measurement, we have at hand three different sets of
templates: PHPrw, MGrw and MGgen. The main one, used in the template fit is PHPrw. The
two others will be used to extract a modelling uncertainty assessing how the analytical
reweighting procedure degrades a polarisation template. To simplify the notations, bin i of
a template of polarisation h is noted P h

i if it comes from the PHPrw set, Gh
i if it comes from

the MGgen set and Rh
i if it comes from the MGrw set.

The templates MGrw come from the reweighting of the sum of the MGgen samples and
consequently, any differences with the MGgen templates is directly a sign of mismodelling
by the analytical reweighting. The MGgen sample only exist for the longitudinal 0 and
transverse T polarisations for both boson, so the comparison can only be done for these
two polarisation templates. It is worth noticing that the normalisation relationship of the
analytical reweighting translates in the following formula:

∀i, R0
i −G0

i = −
(
RT

i −GT
i

)
. (7.41)

To have the generated true template to be within the uncertainty bands of the reweighted
template:

∀h,∀i, Rh
i + ∆h

i ≥ Gh
i ≥ Rh

i − ∆h
i .

Choosing one of the cases of equality brings

∀h,∀i, ∆h MG
i = Gh

i −Rh
i ,

and of course with Eq. (7.41) ensues ∀i, ∆0 MG
i = −∆T MG

i .

This difference is used to create a modelling uncertainty for the longitudinal polarisation
template by rescaling it to the fiducial cross section σFid of the PHPrw template. For the
left-handed L and right-handed R polarisation templates, the same difference ∆0 is used
with appropriate factors to enforce Property 1 of reweighting normalisation. This gives

∀i,


∆0

i = (G0
i −R0

i ) σFid
P 0

σFid
R0

∆L
i = −1

2∆0
i

∆R
i = −1

2∆0
i

, (7.42)

where σFid
P 0 (resp. σFid

R0 ) is the fiducial cross section of the PHPrw (resp. MGrw) template.

This modelling uncertainty enforces by default Property 1 of reweighting normalisation.
Additionally, it still works in the case of MadGraph as again ∆T

i = −∆0
i . Additionally,

though the templates MGgen and MGrw do not have exactly the same normalisation, they
are very close. As such, Property 2 of shape only variation is not verified, but the impact
on the overall normalisation will be very small. This difference can be considered as
an additional degradation of the analytical reweighting method which is covered by the
modelling uncertainty.

The resulting Up and Down variations for this modelling uncertainty are represented
for the polarisation templates of the W± boson in Fig. 7.17 for the distributions used as
inputs to the template fits. The opposite directions of one variation from the 0 template to
the L and R template, a sign of Property 1, is clearly visible.
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(a) W0 (b) WL (c) WR

Figure 7.17 Modelling uncertainty Up and Down variations on the distributions of qW · cos θ∗
`W

in W± template 0 (a) template L (b) and template R (c). The bottom panels provide ratios of
the variations to the nominal distribution.

For joint-polarisation templates, a similar systematic uncertainty is developed to account
for uncertainties from the DNN reweighting. As described in Section 7.4.2, the principle of
this method is validated by the closure of Fig 7.12(a). This closure compares the MGgen
samples to their sum reweighted by the DNN in the same fashion as PHPdnn. This is exactly
equivalent to the comparison between the MGgen and MGrw templates described above.

A similar modelling uncertainty is thus implemented using the small non-closure of
figure 7.12(a). Property 1 of reweighting normalisation, can be relaxed here as the four
polarisation templates arise from four different MadGraph generations. Thus changes
in the shape of one template has no reason to affect the shapes of the others. Noting for
polarisation h, Gh the MGgen template, Rh the template obtained by re-polarising with the
DNN reweighting the inclusive MadGraph0,1j@LO sample from the sum of the MGgen
templates, and P h the PHPdnn template, the variations ∆i for bin i are

∀i, ∀h ∈ {00, 0T, T0, TT} , ∆h
i =

(
Gh

i −Rh
i

) σFid
P h

σFid
Rh

. (7.43)

There, σFid
P h (resp. σFid

Rh ) is the fiducial cross section of the PHPdnn (resp. the Mad-
Graph0,1j@LO re-polarised by the DNN template). They are used to rescale the non-
closure to the fiducial cross section of PHPdnn and thus extract a variation used for the
uncertainty.

This provides a modelling uncertainty targeting the remaining non-closure of the DNN-
based reweighting. This uncertainty of the method is associated to a single nuisance
parameter just as in the single boson polarisation case , labelled α_theo_ModSys_DNNrw .
This one nuisance parameter is correlated to all polarisations as it is an uncertainty on the
DNN reweighting method, which uses DNNs with the same structure, with the same input
variables and trained on different combinations of the same four MGgen polarised samples.

7.6.2.3 Alternative polarisation templates uncertainty

In joint-polarisation measurement many sets of templates were developed. As detailed
in Section 7.5, templates from PHPdnn are chosen as baseline for the final template fit.
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However, as visible in Fig. 7.15 the choice of a set of template can have big repercussions
on the measured value of the joint-polarisation fraction. An uncertainty associated to this
choice of template set is derived considering one alternative set.

The initial variation ∆ is taken to be the difference between the nominal PHPdnn sample
and the second least biased one. This is the template MoCpps for f00, and MoCmps for f0T
and fTT as can be seen in Fig. 7.15 and 7.16. These two other templates have additionally
the advantage of originating from a method that is completely independent of the one used
for PHPdnn. The choice between MoCmps and MoCpps amounts to choosing between a low
bias on f00 and a low bias on the two other fractions. Due to the large correlations between
the fractions, MoCmps is chosen.

To enforce Property 2, the template MoCmps is first rescaled to the PHPdnn particle-
level in the fiducial phase space cross section. This yields for a template of polarisation
h ∈ {00, 0T, T0, TT} the difference ∆h

i in bin i,

∆h
i = MoCmpsh

i

σFid
PHPdnnh

σFid
MoCmpsh

− PHPdnnh
i , (7.44)

with σFid the cross section of the templates at the particle level in the fiducial phase space.

With such an implementation, the Up variation, that is "nominal+∆" corresponds
to a rescaled version of the MoCmps template while the nominal variation is the PHPdnn
template. There is no physical meaning in having a Down variation, "nominal-∆", as this
does not correspond to an alternative polarisation template. The Down variation is thus
chosen equal to the nominal. These are associated to one nuisance parameter labelled
α_theo_ModSys_MoCmps . It parametrises the global choice between the two main template
sets, hence why the same one parameter is applied to all polarisations at once. Because of
how its response function is implemented, it might get pulled from 0 to around 1, implying
a more "MoCmps shape" than expected, but should not be pulled much more outside [0, 1]
as this would lead the fit to use shapes that are too far from an actual template and thus
have no physical meaning. The specificities of this modelling uncertainty imply that the
default gaussian constraint used for other systematics cannot be used here. The constraint
term of this uncertainty is designed to be flat between 0 and 1, reflecting indifference
between PHPdnn and MoCmps, and should avoid pulling much further than 1. This modelling
uncertainty ultimately is not allowed to give shapes other than PHPdnn, MoCmps or in
between. A fitting constraint term is implemented thanks to a double Fermi distribution

fDouble Fermi(x) = 1
1 + exp

(
−x−0.5

0.1

) × 1
1 + exp

(
x−1.5

0.1

) . (7.45)

The parameters of the probability distribution are chosen to have a flat curve between 0
and 1, and steep dives from 1 to 2 and symmetrically from 0 to -1. This distribution is
visible in Fig. 7.18.

For single boson polarisation templates, a similar uncertainty is derived from an al-
ternative set of polarisation template: the inclusive NLO Sherpa sample described in
Section 5.3 is reweighted with the analytical reweighting to provide a set of polarisation
templates labelled SHrw. An important feature of the Sherpa sample is that it relies on its
own parton shower algorithm, as opposed to the MadGraph or Powheg samples that
are all interfaced with Pythia for this purpose. Comparing the baseline PHPrw templates
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Figure 7.18 The double Fermi probability density function used as constraint term in the fit.

to the alternative SHrw templates provides a conservative uncertainty covering for parton
shower uncertainties.

For each polarisation, the template SHrw is rescaled to the same integral as the nominal
PHPrw. Then the difference ∆i is extracted in each bin i. The obtained histogram of ∆ is
then smoothed. Then, the statistical fluctuations on ∆ are removed in each bin i using the
following procedure

∀i, ∆′

i =
{

0 if|∆i| < |Stati|
sign(∆i) (|∆i| − |Stati|) else (7.46)

where Stati is the statistical uncertainty on ∆i propagated from the uncorrelated statistical
uncertainties of PHPrw and SHrw in bin i. The modified ∆′ difference is then used to get
Up and Down variations.

7.6.3 Other systematic uncertainties

In the final fit, in addition to all the polarisation templates, the contribution from irreducible
backgrounds as described in Section 6.3.1 along with the Matrix Method estimate for all
reducible backgrounds, described in Section 6.3.2 are considered in the signal region. In
addition to the modelling uncertainties described in Section 7.6.2 that are specific to this
polarisation measurement, various other more usual systematic uncertainties are considered.

Systematic uncertainties originating from physics object reconstruction and calibration
in the detector are propagated to the shape of the final fit templates. They arise from
dedicated algorithms developed by the combined detector performance groups of ATLAS:

• The uncertainties due to electrons and muons reconstruction, identification, isolation
requirements and trigger efficiencies as well as in the lepton momentum scale and
resolution are assessed using tag-and-probe methods in Z → `` events [94, 95, 111].
For the measurements of fractions in the W± charge-dependent subsets of W+Z and
W−Z events, an uncertainty arising from the charge misidentification of electrons is
also considered.
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• The uncertainties on the jet energy scale and resolution are based on their respective
measurements in data [112].

• The uncertainties on Emiss
T are estimated by propagating the uncertainties on the

transverse momenta of reconstructed objects and by applying momentum scale and
resolution uncertainties to the track-based soft term [100].

• A variation in the pile-up reweighting of Monte Carlo samples is included under the
name PRW_DATASF to cover the uncertainty on the ratio between the predicted and
measured inelastic cross-Section [113].

They are implemented as shape uncertainties on the polarisation templates and main
backgrounds ZZ and tt̄ + V , but can have an effect on normalisation e.g. for lepton
isolation efficiency uncertainty. The associated nuisance parameters have names of the form
α_obj_* and are labelled physics object systematic uncertainties.

Theory systematic uncertainties from the Parton Distributions Functions (PDF) and
the QCD renormalisation scale µR and factorisation scale µF impact the shape of the signal
and background templates in the signal region. The QCD scale and PDF uncertainties are
implemented as shape uncertainties on the signal polarisation templates.

• The QCD scale uncertainty is evaluated with the 7-point scale variation that is varying
independently µR and µF at half or double of their nominal value, with the constraint
0.5 ≤ µR/µF ≤ 2, in the Powheg+Pythia sample. The extreme variations among
the seven are taken as Up and Down variations.

• The uncertainties due to the PDF and the αs value used in the PDF determination
are evaluated using the PDF4LHC prescription [114].

Here, the Up and Down variations are rescaled to the generator level in the fiducial
phase space normalisation of the nominal template to only take into account effects in the
reconstruction efficiency and in the shape of distributions, without acceptance effects. The
associated nuisance parameters have names of the form α_theo_* and are labelled theory
systematic uncertainties, together with the modelling uncertainties.

Shape and normalisation uncertainties on the ZZ background process, the dominant
background in the signal, are implemented in the fit with theory systematics from QCD
scale and PDF obtained exactly as for the signal, barring the normalisation at generator
level in the fiducial phase space step. A ZZ control region is added in the final fit to
constrain the nuisance parameters associated to each of these uncertainties in both regions.
This control region, as already described in Section 6.3.1, is obtained by inverting the
fourth lepton veto in Table 6.3. The total number of events in this control region is fitted
simultaneously with the signal region in the final fit. The yields in this region are estimated
with the same background samples as in the signal region. The W±Z signal events, here
treated as an additional background with an overall uncertainty of 5 %, is estimated by the
Powheg+Pythia sample. The rescaling of the Monte Carlo samples to the data yield in
this region will constrain and possibly pull the nuisance parameters associated to the theory
uncertainties of the ZZ background process. The associated nuisance parameters have
names of the form α_theo_ZZ_* and are grouped with theory systematic uncertainties.

Irreducible background processes implemented are the ZZ background, the tt̄ + V
background, the τ decay background, and grouped in the Others category, the tZ, V V V ,
WZjj−EW and migrating γ∗ subdominant background processes. Barring the ZZ back-
ground process, each is associated with an overall normalisation uncertainty devised in
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Section 6.3.1. The τ decay background is treated as described in Section 7.1.3. The associ-
ated nuisance parameters have names of the form α_norm_* and are labelled normalisation
systematic uncertainties.

The reducible backgrounds originating from fake leptons is estimated with the matrix
method of Section 6.3.1 fit under the label Misid. leptons. Different systematic uncertainties,
described in Section 6.3.2.3, are implemented in the fit as shape uncertainties. The
associated nuisance parameters have names of the form α_norm_MM_* and are grouped with
normalisation systematic uncertainties.

The 1.7 % relative uncertainty on the luminosity [49] is implemented as an overall
normalisation uncertainty applied to all non fitted Monte Carlo samples barring the ZZ
sample whose normalisation is already constrained by the ZZ control region. It is associated
to a nuisance parameter Lumi grouped with the normalisation systematic uncertainties.

7.6.4 Behaviour of the systematic uncertainties in the fit

Pulls of nuisance parameters and correlations between fit parameters provide information
about the stability of the fit. The mismodelling of a distribution or a fit template can
be absorbed by a parameter of interest or a nuisance parameter. In that case, the fit
result of the parameters of interest could be biased. This would manifest itself in a strong
correlation between parameters and pulls which deviate from zero. Over-constrained
nuisance parameters can be a sign of mismodelling for certain uncertainties: it indicates
that the associated uncertainty is better constrained by the fit than by the dedicated
procedure from which it was derived. This can happen for theory or modelling uncertainties,
defined somewhat loosely for lack of a better procedure. However, this should not happen
for physics object uncertainties estimated by the work of combined detector performance
group.

A template fit is performed to extract joint-polarisation fractions, replacing the data
by a pseudo-dataset from the inclusive Powheg+Pythia Monte Carlo sample in W±Z
events selection. The goal is to check the correct behaviour of all systematic uncertainties
implemented. A single boson polarisation template fit behaves similarly regarding the
uncertainties. The pulls and constraints of all systematic uncertainties are represented in
the pull plots of Fig. 7.19, classed by their type. This serves also as a complete list of all
systematic uncertainties considered in the fit.

No significantly pulled or over constrained systematic is found within physics object uncer-
tainties and normalisation uncertainties. However, two theory uncertainties from Fig. 7.19(c)
stand out. On one side, the QCD scale uncertainty on the ZZ background template is
over-constrained. This is expected as it is exactly the purpose of the ZZ control region to
constrain the theory systematics of the ZZ background. Then comes the alternative set of
polarisation templates uncertainty whose nuisance parameter α_theo_ModSys_MoCmps is
very constrained. This is an indication that this two points uncertainty is too conservative,
the pseudo-dataset used having already shown a preference for PHPdnn over MoCmps as
was shown in Section 7.5. Besides, using a single nuisance parameter for all polarisation
templates, a reflection of the normalisation relationship between fractions, forces the para-
metrisation of the uncertainty to be unidimensional, contributing to the constraining of
this uncertainty.
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Figure 7.19 Pull plots for the three types of systematic uncertainties in a template fit of
Powheg+Pythia pseudo-dataset, in W±Z events selection: physics object (a), normalisation
(b) and theory (c).
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The correlation matrix between all the fit parameters is represented in Fig. 7.20 for
parameters that have at least some sizeable correlations with others. The luminosity,
pile-up and background uncertainties are strongly correlated with Ntot and almost not to
the fractions, in a show of the decorrelation between the fractions and overall normalisation
in the template fit. On the other hand, the polarisation fractions are mainly correlated
to the modelling uncertainties, showing the importance of studies on the choice of the set
of polarisation template of Section 7.5. Finally, some correlations are observed between
the nuisance parameters of the ZZ theory uncertainties. These correlations of around -0.3
between the ZZ QCD scale and the ZZ PDF uncertainties is directly linked to the ZZ
control region: there being only one bin, for the total number of events, a small degeneracy
between these nuisance parameters appears. This explains also the correlation of ZZ QCD
scale with the tt̄+ V background normalisation, the second background in magnitude in
the ZZ control region. Other correlations between nuisance parameters are negligible.

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

N
to

t

_n
or

m
_M

M
_s

ys
F

F
F

la
vo

rC
om

p
α

_n
or

m
_M

M
_s

ys
F

F
st

at
α

_n
or

m
_t

tV
α

_o
bj

_E
L_

E
F

F
_I

D
_T

O
T

A
L_

1N
P

C
O

R
_P

LU
S

_U
N

C
O

R
α

_o
bj

_M
U

O
N

_E
F

F
_I

S
O

_S
Y

S
α

_o
bj

_P
R

W
_D

A
T

A
S

F
α

_t
he

o_
M

od
S

ys
_D

N
N

rw
P

ol
a

α

_t
he

o_
M

od
S

ys
_M

oC
m

ps
α

_t
he

o_
Q

C
D

sc
al

e
α _t

he
o_

Z
Z

_P
D

F
a_

s
α

_t
he

o_
Z

Z
_P

D
F

re
p

α _t
he

o_
Z

Z
_Q

C
D

sc
al

e
α

f0
0

f0
T

fT
T

Ntot

_norm_MM_sysFFFlavorCompα

_norm_MM_sysFFstatα

_norm_ttVα

_obj_EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCORα

_obj_MUON_EFF_ISO_SYSα

_obj_PRW_DATASFα

_theo_ModSys_DNNrwPolaα

_theo_ModSys_MoCmpsα

_theo_QCDscaleα

_theo_ZZ_PDFa_sα

_theo_ZZ_PDFrepα

_theo_ZZ_QCDscaleα

f00

f0T

fTT

Figure 7.20 Correlation matrix between all fit parameters in a template fit of Powheg+Pythia
pseudo-dataset, in W±Z events selection. Only parameters that have at least one correlation
coefficient above 0.2 are kept.
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7.7 Fit results

7.7.1 Joint-polarisation fraction results

The measurement of joint-polarisation fractions is performed with a binned maximum-
likelihood template fit on the Run 2 dataset in the W±Z events selection, but also separating
by the charge of the W± boson in the W+Z and W−Z events selection. The pre-fit and
post-fit distribution of the 4-category pDNN

00 in the W±Z events selection are shown in
Fig. 7.21. The corresponding post-fit yields in the signal region and the ZZ control region
are detailed in Table 7.4. The rescaling of the ZZ background contribution is clearly
visible, along with the associated constraining of its contribution uncertainty. The strong
correlations between the four signal polarisation templates, fitted simultaneously, creates
increased uncertainties on their individual post-fit yields.
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Figure 7.21 Post-fit distribution of the 4-category pDNN
00 in the W±Z events selection at detector

level. In the top panel, respective contributions of the W±Z joint-polarisation templates 00, 0T,
T0 and TT and backgrounds are stacked on top of each other in the same order as in the legend.
The uncertainty band around the expectation includes all systematic uncertainties as obtained
from the fit. The ratio of data to prediction is represented in the bottom panel.

The measured values of f00, f0T, fT0 and fTT are presented in Table 7.5 along with
theoretical predictions. The fit only extracts three fractions at a time, the fourth being
constrained by the normalisation uncertainty. Practically, reparametrising the fit allows
directly extracting the fourth fraction with its uncertainty. The Powheg+Pythia theor-
etical predictions are extracted through a fit at particle level in the fiducial phase space as
explained in Section 7.5.2, with the addition of theory uncertainties from PDF and QCD
scales. The NLO QCD predictions arise from Ref. [77], with the quoted uncertainty from
QCD scale uncertainty obtained with a 7-point scale variation.
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Table 7.4 Expected and observed number of events in the W±Z signal region (left) and in the
ZZ control region (right). Numbers are presented before and after a fit to the 4-category pDNN

00
distribution in the W±Z events selection. The pre-fit uncertainties quoted are from statistical
and systematic origin but do not take into account correlations between parameters of the fit.
The post-fit uncertainties quoted are from statistical and systematic origin and take into account
the correlations between the various parameters of the fit. These correlations explain the larger
post-fit uncertainties compared to pre-fit ones for W±Z signal templates.

Signal Region
Pre-fit Post-fit

WZ in τ 620 ± 60 630 ± 60
ZZ 1420 ± 120 1630 ± 50
tt̄+ V 870 ± 130 830 ± 120
Misid. leptons 1170 ± 230 1010 ± 220
Others 800 ± 90 790 ± 90
W0Z0 920 ± 40 1190 ± 160
W0ZT 2670 ± 50 1900 ± 500
WTZ0 2670 ± 60 3100 ± 400
WTZT 10200 ± 230 10900 ± 600
Total MC 21400 ± 600 21950 ± 170
Data — 21936

ZZ Control Region
Pre-fit Post-fit

WZ unpol. 35 .6 ± 1 .9 35 .9 ± 1 .9
ZZ 2030 ± 150 2290 ± 50
tt̄+ V 153 ± 23 144 ± 22
Z+jets 8 .5 ± 3 .4 8 .7 ± 3 .4
Others 38 ± 8 39 ± 8
Total MC 2260 ± 160 2510 ± 50
Data — 2554

Table 7.5 Measured joint-polarisation fractions f00, f0T, fT0 and fTT in the fiducial phase space,
for W±Z, W+Z and W−Z events. The total uncertainties in the measurements are reported.
The measurements are compared with predictions from Powheg+Pythia and from NLO QCD
fixed-order calculations [77]. The uncertainties on the Powheg+Pythia predictions include
statistical, PDF and QCD scale uncertainties; the uncertainties in the NLO QCD fixed-order
predictions include QCD scale uncertainties.

Data Powheg+Pythia NLO QCD
W±Z

f00 0 .067 ± 0 .010 0 .0590 ± 0 .0009 0. 058 ± 0. 002
f0T 0 .110 ± 0 .029 0 .1515 ± 0 .0017 0. 159 ± 0. 003
fT0 0 .179 ± 0 .023 0 .1465 ± 0 .0017 0. 149 ± 0. 003
fTT 0 .644 ± 0 .032 0 .6431 ± 0 .0021 0. 628 ± 0. 004

W+Z

f00 0 .072 ± 0 .016 0 .0583 ± 0 .0012 0. 057 ± 0. 002
f0T 0 .119 ± 0 .034 0 .1484 ± 0 .0022 0. 155 ± 0. 003
fT0 0 .152 ± 0 .033 0 .1461 ± 0 .0022 0. 147 ± 0. 003
fTT 0 .66 ± 0 .04 0 .6472 ± 0 .0026 0. 635 ± 0. 004

W−Z

f00 0 .063 ± 0 .016 0 .0600 ± 0 .0014 0. 059 ± 0. 002
f0T 0 .11 ± 0 .04 0 .1560 ± 0 .0027 0. 166 ± 0. 003
fT0 0 .21 ± 0 .04 0 .1470 ± 0 .0027 0. 152 ± 0. 003
fTT 0 .62 ± 0 .05 0 .6370 ± 0 .0033 0. 618 ± 0. 004
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The overall uncertainty on the polarisation fractions can be broken down depending on
the origin of the uncertainty as in Table 7.6. Statistical and modelling uncertainties have
similar contributions to the precision of the measurements. Other important uncertainties
come from the QCD scale uncertainties and jets reconstruction and calibration uncertainties.
All these are ultimately linked to higher order in QCD corrections, affecting the shape of
the polarisation templates.

Table 7.6 Summary of the absolute uncertainties in the joint-polarisation fractions f00, f0T,
fT0, and fTT measured in W±Z events.

f00 f0T fT0 fTT

e energy scale and id. efficiency 0 .00018 0 .0009 0 .0012 0 .0019
µ energy scale and id. efficiency 0 .0004 0 .0004 0 .0004 0 .0008
Emiss

T and jets 0 .0017 0 .0021 0 .0020 0 .0023
Pile-up 0 .00031 0 .00027 0 .0007 0 .0010
Misidentified lepton background 0 .0012 0 .0026 0 .0013 0 .0016
ZZ background 0 .0005 0 .00028 0 .0005 0 .0004
Other backgrounds 0 .0016 0 .0025 0 .0021 0 .0025
Parton Distribution Function 0 .00025 0 .0029 0 .00014 0 .0028
QCD scale 0 .00010 0 .014 0 .0014 0 .012
Modelling 0 .005 0 .007 0 .005 0 .008
Total systematic uncertainty 0 .006 0 .017 0 .006 0 .016
Luminosity 0 .00019 0 .0004 0 .0004 0 .00034
Statistical uncertainty 0 .007 0 .016 0 .019 0 .019
Total 0 .010 0 .029 0 .023 0 .032

The binned likelihood is profiled as described in Section 7.1.1 in order to depend on only
one fraction at a time. Using the likelihood ratio of Eq. (7.3) provides the uncertainty on
each fractions. In particular, evaluating this ratio under the hypothesis that the fraction is
zero, meaning that no event for the joint-polarisation state considered is observed, provides
the significance of each extracted fractions. The expected significance obtained from a
fit on Powheg+Pythia pseudo-dataset can be compared to the observed significance
in data. In W±Z events, the presence of a pair of W and Z bosons with a simultaneous
longitudinal polarisation (f00) is observed with a significance of 7.1σ, compared to 6.2σ
expected. The other joint-polarisation fractions f0T, fT0 and fTT are also measured with
observed (expected) significances of 3.4σ (5.4σ), 7.1σ (6.6σ) and 11σ (9.7σ), respectively.
In conclusion, all joint-polarisation states are observed, the 0T state being simply the
complementary of the three others observed with a significance above 5σ.

Profiling the likelihood keeping two parameters of interest not-profiled provides a two
parameter function. The likelihood ratio of Eq. (7.3) provides a test statistic following a χ2

distribution with two degrees of freedom. Finding the values where this two dimension test
statistic is at the 1σ and 2σ significance threshold provides the contour to respectively the
68 % and 95.5 % confidence level regions. This is done for all the fractions two by two in
W±Z events in Fig. 7.22. The corresponding results in W+Z and W−Z events are shown
in Appendix D. The separation by the W± boson charge yields similar results only with
bigger regions due to the reduced number of events in these subsets. A better than 2σ
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agreement of the measured joint-polarisation fractions with the predictions at NLO QCD
from Ref. [77] and from Powheg+Pythia is observed.
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Figure 7.22 Measured joint-polarisation fractions f00, f0T, fT0 and fTT of the W± and Z
bosons in W±Z events, compared to NLO QCD fixed-order predictions [77] (orange triangle)
and to Monte Carlo predictions from Powheg+Pythia (red triangle). The effect of PDF and
QCD scale uncertainties on the Powheg+Pythia and NLO QCD fixed-order predictions are of
the same size as the respective markers. The solid and dashed ellipses around the data points
correspond to one and two standard deviations, respectively.

7.7.2 Single boson polarisation results and independence

Similarly, the single boson polarisation fractions are extracted for the W± boson and the Z
boson separately with a template fit on Run 2 data in W±Z events, but also separating by
the charge of the W± boson in W+Z and W−Z events. This measurements supersedes the
previous similar measurement on the partial Run 2 dataset of Ref. [17]. The values of the
fractions extracted in this previous analysis are not comparable to the present measurement
because of an inconsistency in the definition of the cos θ∗

` variables that was corrected in
the present measurement. This change in the definition of the cos θ∗

` is further explained in
Appendix E. For the W± boson polarisation fractions, the post-fit distribution of qW ·cos θ∗

`W

in the W±Z events selection is shown in Fig. 7.23(a). For the Z boson polarisation fractions,
the post-fit distribution of cos θ∗

`Z in the W±Z events selection is shown in Fig. 7.23(b).
The post-fit yields are comparable to those obtained in Table 7.4.
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Figure 7.23 Post-fit distribution of qW · cos θ∗
`W (a) and cos θ∗

`Z (b) in the W±Z events selection
at detector level. In the top panel, respective contributions of the W±Z single polarisation
templates 0, L and R of the W± boson or the Z boson and backgrounds are stacked on top of
each other in the same order as in the legend. The uncertainty band around the expectation
includes all systematic uncertainties as obtained from the fit. The ratio of data to prediction is
represented in the bottom panel.

The measured values of f0 and fL − fR are presented in Table 7.7 along with theoretical
predictions from Powheg+Pythia. The NLO QCD calculation of Ref. [77] only provides
a prediction on f0. Good agreement is observed, always within 1σ for f0 and within 1.5σ
for fL − fR, except in W−Z where a small tension at 2.3σ is observed. The breakdown
of the uncertainty depending on the origin is presented in Table 7.8. For f0 of the W±

boson, the modelling uncertainty is of the same order as the statistical uncertainty. All
other parameters are statistically dominated.

Table 7.7 Single boson polarisation fractions f0 and fL − fR of the W± boson and Z boson
measured in the fiducial phase space, for W±Z, W+Z and W−Z events. The total uncertainties
in the measurements are reported. The measurements are compared with predictions from
Powheg+Pythia and for f0, from NLO QCD fixed-order calculations [77]. The uncertainties
on the Powheg+Pythia predictions include statistical, PDF and QCD scale uncertainties; the
uncertainties in the NLO QCD fixed-order predictions include QCD scale uncertainties.

f0 fL − fR
Data Powheg+Pythia NLO QCD Data Powheg+Pythia

W in W+Z 0 .23 ± 0 .05 0 .2044 ± 0 .0024 0. 211 ± 0. 002 0 .071 ± 0 .023 0 .0990 ± 0 .0015
W in W−Z 0 .19 ± 0 .05 0 .217 ± 0 .004 0. 225 ± 0. 001 0 .026 ± 0 .027 -0 .0491 ± 0 .0020
W in W±Z 0 .21 ± 0 .04 0 .2094 ± 0 .0016 0. 217 ± 0. 001 0 .059 ± 0 .016 0 .0390 ± 0 .0011
Z in W+Z 0 .223 ± 0 .025 0 .1971 ± 0 .0019 0. 206 ± 0. 002 -0 .20 ± 0 .10 -0 .217 ± 0 .006
Z in W−Z 0 .241 ± 0 .029 0 .2065 ± 0 .0023 0. 211 ± 0. 001 0 .10 ± 0 .13 0 .092 ± 0 .007
Z in W±Z 0 .231 ± 0 .019 0 .2009 ± 0 .0014 0. 208 ± 0. 001 -0 .10 ± 0 .08 -0 .092 ± 0 .005

Finally, the 1σ and 2σ contours for the pair of parameters (f0,fL − fR) are presented
for the W± boson and Z boson in Fig. 7.24, showing agreement of the measured f0 and
fL − fR with Powheg+Pythia predictions. The corresponding results in W+Z and W−Z
events are shown in Appendix D.
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Table 7.8 Summary of the absolute uncertainties in the polarisation fractions f0 and fL − fR
measured in W±Z events for W± and Z bosons.

W± in W±Z Z in W±Z
f0 fL − fR f0 fL − fR

e energy scale and id. efficiency 0 .0029 0 .00030 0 .0027 0 .0007
µ energy scale and id. efficiency 0 .004 0 .0018 0 .0015 0 .0005
Emiss

T and jets 0 .004 0 .0011 0 .0006 0 .0028
Pile-up 0 .0028 0 .0015 0 .0024 0 .0029
Misidentified lepton background 0 .007 0 .00032 0 .0033 0 .0011
ZZ background 0 .0015 0 .00025 0 .0012 0 .0023
Other backgrounds 0 .0020 0 .0005 0 .0013 0 .0012

Parton Distribution Function 0 .0011 0 .0011 0 .00011 0 .0005
QCD scale 0 .012 0 .0025 0 .0004 0 .005
Modelling 0 .025 0 .0012 0 .004 0 .018

Total systematic uncertainty 0 .030 0 .004 0 .007 0 .019
Luminosity 0 .0005 0 .00004 0 .00012 0 .00018
Statistical uncertainty 0 .028 0 .015 0 .018 0 .08

Total 0 .04 0 .016 0 .019 0 .08
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Figure 7.24 Single boson polarisation fractions f0 and fL − fR measured for the W± boson (a)
and Z boson (b) inW±Z events, compared with predictions from Powheg+Pythia with sin2 θw =
0.23152 (red triangle). The effect of PDF and QCD scale uncertainties on the Powheg+Pythia
predictions are of the same size as the triangle marker. The solid and dashed ellipses around the
data points correspond to one and two standard deviations, respectively.

Finally, the W±Z production cross section can be extracted dividing the Ntot parameter,
extracted in the fits simultaneously with the fractions, by the luminosity and four, the
number of leptonic decay channels considered in the measurement. The smallest uncertainty
on this parameter is obtained with the fit of the qW · cos θ∗

`W distribution. The observed
cross sections, inclusively and splitting by the charge of the W± boson, are presented in
Eq. (7.47)–(7.49). With respect to the MATRIX predictions of Ref. [73] summarised in
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Eq. (5.12)–(5.14), very good agreement is observed and with similar precision:

σFid.
W ±Z→`±ν`′ ¯̀′ = 64.6 ± 0.5 (stat.) ± 1.8 (syst.) ± 1.1 (lumi.) fb , (7.47)
σFid.

W +Z→`+ν`′ ¯̀′ = 38.2 ± 0.4 (stat.) ± 0.9 (syst.) ± 0.6 (lumi.) fb , (7.48)
σFid.

W −Z→`−ν`′ ¯̀′ = 26.2 ± 0.3 (stat.) ± 0.8 (syst.) ± 0.4 (lumi.) fb . (7.49)

These inclusive cross sections were also measured in Ref. [17] and agreed with the
MATRIX prediction as well, but with a precision roughly twice that of the theory. However,
these cross sections were extracted using dressed leptons and compared to a MATRIX
prediction rescaled to be at the dressed level as well. They are thus not fully comparable to
the present measurement performed with Born leptons.

7.7.3 Test of the independence of the fractions

The link between joint-polarisation and single boson polarisation was tested in Section 5.4.4
at particle level in the total phase space. It is possible to test it at detector level as a check
of the consistency of the joint-polarisation fit and the single boson polarisation fits. Using
Eq. (5.56)–(5.59) to reparametrise the joint-polarisation fit to the 4-category pDNN

00 variable,
fractions fW

0 , fZ
0 and the parameter Rc defined in Eq. (5.55) are extracted.

The obtained fW
0 and fZ

0 are compared to the single boson polarisation fit in Fig. 7.25
for W±Z events. Results for W+Z and W−Z events are presented in Appendix D. Overall,
good consistency between the fits is observed, as the single boson polarisation measurement
is always well within the 68 % confidence level region. For reference, the Powheg+Pythia
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Figure 7.25 Measured polarisation fractions fW
0 and fZ

0 in W±Z events. The black point is the
simultaneously measured values from the template fit on the 4-category DNN score distribution.
The orange square with uncertainty bars is the measured value from two single boson polarisation
template fits to qW ·cos θ∗

`W and cos θ∗
`Z distributions. The red triangle is the theoretical predictions

at NLO in QCD and LO for the electroweak interaction from Powheg+Pythia. The solid and
dashed ellipses around the data points correspond to one and two standard deviations to the joint
measurement of fW

0 and fZ
0 , respectively.
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prediction is also plotted and shown to be yet closer to the single boson polarisation
measurement. This reflects the greater complexity of the simultaneous joint-polarisation
measurement and limits of the assumption that interferences can be ignored.

The parameter Rc = f00/(fW
0 fZ

0 ) is expected to be exactly one if the single boson
polarisations are independent. A value of Rc = 1.3 is predicted in W±Z events by NLO
QCD fixed-order calculations [77], indicating the presence of correlation between polarisation
states of the bosons. It is measured in W±Z events to be Rc = 1.54 ± 0.35 in the fit to the
4-category pDNN

00 . The observed significance with respect to the independence hypothesis, i.e.
Rc = 1, is 1.6σ in W±Z events. The profiled likelihood for Rc is represented in Fig. 7.26.
This absence of independence shows the importance of extracting joint-polarisation fractions
directly, instead of simply multiplying single boson polarisation fractions.
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Figure 7.26 Curve of the test statistic −2 log (Likelihood Ratio) along the ratio Rc in W±Z
events. The likelihood ratio is profiled for all systematic uncertainties. Its width at the 1σ
horizontal line gives the total statistical and systematic asymmetrical uncertainty on Rc. The
blue dashed curve represent the expected result, from an Asimov fit at reconstructed level. The
red curve represents the result on Run 2 data. The vertical line at 1 corresponds to the absence of
spin correlation hypothesis.
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Appendix A

Direct computation of polarised boson
decay

In this appendix, the explicit calculation of the Feynamn diagram of a vector boson decay
is presented. The vector boson, a W± or Z boson decays in two leptons:

k
p1

p2

V

f

f̄ ′

Figure A.1 Feynman diagram of the decay of a vector boson with momentum k and polarisation
vector εµ in a fermion of momentum p1 and an anti-fermion of momentum p2.

The rest frame of the decaying boson is considered for this calculation. The z-axis
definition has no impact in this calculation, so the result will be valid in both the Helicity
frame and the Modified Helicity frame described in Section 5.2.1. Therefore, the polarisation
four-vector are given by Eq. (1.42). For simplicity, the x-axis and y-axis are chosen so that
the leptons decay in the xOz plane. Then, their four-momenta are:

pµ
1 = (E∗

1 , p
∗ sin θ∗

` , 0, p∗ cos θ∗
` ) , pµ

2 = (E∗
2 ,−p∗ sin θ∗

` , 0,−p∗ cos θ∗
` ) ,

with the E and p∗ being respectively the energy and the norm of the momentum in the rest
frame of the decaying boson. The angle θ∗

` is the decay angle of the fermion with respect to
the z-axis.

The interaction between the vector boson V and the leptons is described by the charged
current Lagrangian LCC for the W± boson, and the neutral current Lagrangian LNC for
the Z boson, as defined in Eq. (1.25) and (1.26). Both cases are considered using the
parametrisation γµ(cv − caγ5) where for the W± boson, cv = ca = 1/2. Finally, in the
following, the mass of leptons is neglected, being several orders of magnitude below the
typical energy of the decay at the mass of the W± or Z boson. It ensues the simplification
E1 = E2 = p∗ = mV /2, with mV the mass of the decaying boson. The matrix element
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computation for a vector boson V with polarisation h gives:

iMh ∝ εµ
h ūs(p1) γµ(cv − caγ5) vs′(p2)

|Mh|2 ∝
∑
s,s′

εµ
h ūs(p1) γµ(cv − caγ5) vs′(p2) ε∗ ν

h v̄s′(p2) γν(cv − caγ5) us(p1)

|Mh|2 ∝ εµ
hε

∗ ν
h Tr

[
(/p1 +m1) γµ(cv − caγ5) (/p2 +m2) γν(cv − caγ5)

]
.

Neglecting the mass of fermions, developing and using γ5 properties,

|Mh|2 ∝ εµ
hε

∗ ν
h

[
(c2

v + c2
a)Tr

(
/p1γµ/p2γν

)
− 2cvcaTr

(
/p1γµ/p2γνγ5

)]
|Mh|2 ∝ (c2

v + c2
a)εµ

hε
∗ ν
h 4pα

1p
β
2 (gαµgβν + gανgβµ − gαβgµν) − 2cvcaε

µ
hε

∗ ν
h pα

1p
β
2 4iεµανβ

|Mh|2 ∝ 4(c2
v + c2

a) ((εh · p1)(ε∗
h · p2) + (εh · p2)(ε∗

h · p1) − (εh · ε∗
h)(p2 · p1)) − 8icvcaε

µ
hε

∗ ν
h pα

1p
β
2 εµανβ .

With the explicit polarisation and momenta four-vectors, we get

(ε0 · p1)(ε∗
0 · p2) + (ε0 · p2)(ε∗

0 · p1) − (ε0 · ε∗
0)(p2 · p1) = −2p∗2 cos2 θ∗

` + 2p∗2

(ε± · p1)(ε∗
± · p2) + (ε± · p2)(ε∗

± · p1) − (ε± · ε∗
±)(p2 · p1) = −p∗2 sin2 θ∗

` + 2p∗2

= p∗2(1 + cos2 θ∗
` ) ,

and

iεµ
0ε

∗ ν
0 pα

1p
β
2 εµανβ = 0

iεµ
±ε

∗ ν
± pα

1p
β
2 εµανβ = i

2
[
ε1α2β(∓i)pα

1p
β
2 + ε2α1β(±i)pα

1p
β
2

]
= i

2
[
−(∓i)(p0

1p
3
2 − p3

1p
0
2) + (±i)(p0

1p
3
2 − p3

1p
0
2)
]

= i

2
(
∓4ip∗2 cos θ∗

`

)
= ±2p∗2 cos θ∗

` .

It then follows that

|M0|2 ∝ 4(c2
v + c2

a)2p∗2
(
1 − cos2 θ∗

`

)
,

|M±|2 ∝ 4(c2
v + c2

a)p∗2
(

1 + cos2 θ∗
` ∓ 2 2cvca

c2
v + c2

a

cos θ∗
`

)
.

Integrating on θ∗
` between zero and π yields the same result for all polarisation states.

In other words, the total cross section is independent of the polarisation, and can be used
to normalise the differential cross section associated to cos θ∗

` . With the Cw defined in
Eq. (5.25), it becomes:

1
σ

dσ0

dcos θ∗
`

= 3
4
(
1 − cos2 θ∗

`

)
,

1
σ

dσ±

dcos θ∗
`

= 3
8
(
1 + cos2 θ∗

` ∓ 2Cw cos θ∗
`

)
.

For the W± boson, Cw is precisely one whereas for the Z boson, it is a function of
sin2(θw). This formula can be adapted to the W+ case noting that there, the change of
definition for θ∗

` makes every cos θ∗
` pick up a minus sign. Thus, the three terms of Eq. (5.28)

and (5.29) are found back through this direct calculation.
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Appendix B

Comparison of extraction methods for
single boson polarisation fractions

The three methods developed to extract single boson polarisation fractions described in
Section 5.4.1 are the fit with three parameters (FIT3), the fit with two parameters (FIT2)
and the moments method (MOM).

These three methods were compared by applying them on particle-level distributions
of events from the Powheg+Pythia Monte Carlo sample in the total phase space and
separating W+Z events and W−Z events. As explained in Section 7.3.2, these fractions
are needed in bins of the pT and |η| of the studied boson. It is in this more stringent
context with reduced statistics compared to the full phase space, that the comparisons
are performed. In Fig. B.2, the relative difference on fractions of the W+ boson, obtained
with different methods, is shown to be very small, below or of the order of the statistical
uncertainties, as can be checked on Fig. B.1 which gives results using the moments method
for reference. In Fig. B.3, the relative difference between the statistical uncertainties on the
fractions obtained with two different methods is plotted. For f0 in all cases, the difference
is negligible, of the order of 1 %. However, for fL and fR, there is a consistent difference
of around 10 % across the 2D plot when comparing the fit with three parameters to the
others. The fit with two parameters and the moments method stay comparable. In the end
these differences – concerning only the uncertainty, not the central value – are considered
negligible. Similar results are found for W− boson and Z boson in W+Z and W−Z events.

The moments method is chosen to extract the polarisation fractions of a single bo-
son as it provides more flexibility than the fits. The previous single boson polarisation
measurement [17] used the fit with three parameters.
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(b) ∆f0

0 100 200 300 400 500 600
 [GeV]

T
p

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

|y
|

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2
7

0.3
4

0.3
7

0.3
7

0.3
7

0.3
7

0.3
9

0.4
2

0.2
9

0.3
6

0.3
8

0.3
8

0.3
7

0.3
8

0.4
1

0.4
6

0.3
2

0.3
9

0.4
0

0.4
0

0.4
0

0.3
9

0.4
3

0.5
0

0.3
8

0.4
4

0.4
4

0.4
3

0.4
3

0.4
5

0.4
8

0.5
7

0.4
4

0.5
1

0.5
1

0.5
0

0.4
8

0.5
0

0.5
6

0.6
5

0.6
2

0.7
2

0.6
9

0.6
5

0.6
3

0.6
3

0.6
6

0.7
1

Wp_MOM_fL

(c) fL

0 100 200 300 400 500 600

 [GeV]
T

p
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

|y
|

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.0
2

0.0
1

0.0
1

0.0
1

0.0
1

0.0
1

0.0
1

0.0
2

0.0
1

0.0
1

0.0
1

0.0
1

0.0
1

0.0
1

0.0
1

0.0
2

0.0
1

0.0
1

0.0
1

0.0
1

0.0
1

0.0
1

0.0
1

0.0
2

0.0
1

0.0
1

0.0
1

0.0
1

0.0
1

0.0
1

0.0
1

0.0
2

0.0
1

0.0
1

0.0
1

0.0
1

0.0
1

0.0
1

0.0
1

0.0
2

0.0
1

0.0
0

0.0
0

0.0
1

0.0
1

0.0
1

0.0
1

0.0
3

Wp_MOM_fL_RelERR

(d) ∆fL
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(f) ∆fR

Figure B.1 W+ boson polarisation fractions at particle level in the total phase space, extracted
from Powheg+Pythia with the moments method. The fractions, from top to bottom f0, fL, fR,
are shown in the left column in bins of pT and |y| of the W+ boson, along with their associated
statistical uncertainties in the right column.
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Appendix B: Comparison of extraction methods for single boson polarisation fractions
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Figure B.2 Relative difference on fractions obtained by two different methods, extracted from
Powheg+Pythia in the total phase space, in bins of pT and |y|, for the W+ boson. From left to
right are shown f0, fL and fR.
(a)–(c) Comparing moments method to the fit with three parameters.
(d)–(f) Comparing the fit with two and three parameters.
(g)–(i) Comparing moments method to the fit with two parameters.
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Appendix B: Comparison of extraction methods for single boson polarisation fractions
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Figure B.3 Relative statistical uncertainty difference on fractions obtained by two different
methods, extracted from Powheg+Pythia in the total phase space, in bins of pT and |y|, for
the W+ boson. From left to right are shown f0, fL and fR.
(a)–(c) Comparing moments method to the fit with three parameters.
(d)–(f) Comparing the fit with two and three parameters.
(g)–(i) Comparing moments method to the fit with two parameters.
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Appendix C

Choice of the pνz reconstruction
method

The study detailed in this appendix compares fractions extracted from a template fit using
the analytical pν

z reconstruction and the DNN-based pν
z reconstruction. Both methods are

detailed in Section 6.2. The comparison is only performed for single boson polarisation
fractions, as a similar result is expected for joint-polarisation fractions. The sets of
polarisation templates MGgen, MGrw and PHPrw are all generated in two versions, one with
the analytical pν

z reconstruction, and one with the DNN-based pν
z reconstruction. The shapes

of the templates are affected by the change of neutrino reconstruction. This obviously
affects more the W templates, but the Z templates are also slightly affected because cos θ∗

`Z

is modified by the boost in the WZ rest frame. These differences can be seen in Fig. C.1.
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Figure C.1 Comparisons of qW · cos θ∗
`W (a) and cos θ∗

`Z (b) distributions at detector level using
analytical and DNN-based reconstruction of pν

z in W±Z events, for longitudinal PHPrw polarisation
templates.

Fits are performed for the MGrw and PHPrw polarisation template sets in both configura-
tions as shown in Fig. C.2 and C.3. The template sets fit at detector level the inclusive
Monte Carlo sample they come from, that is the inclusive MadGraph0,1j@LO sample for
MGrw and the inclusive Powheg+Pythia sample for PHPrw. Such fits are Asimov fits as
Section 7.3.3 showed that the sum of analytically reweighted templates gives back exactly
the original inclusive template. This time, the fits are performed with both signal and
backgrounds templates as the addition of backgrounds processes might affect how templates
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Appendix C: Choice of the pν
z reconstruction method

with different shapes fit the pseudo-data. All the systematic uncertainties are included
as well, and especially the modelling uncertainty. Here, the reference represented by a
line is the analytical pν

z reconstruction result and the points represent the DNN-based pν
z

reconstruction result, for each set of templates and each boson. The central values of the
parameters of interest stay within statistical uncertainties at the same value as is visible
in Fig. C.2. However, the uncertainty is found to be slightly lower using the DNN-based
pν

z reconstruction as shown in Fig. C.3. In the end, the difference between the two pν
z

reconstruction methods is very small. But the DNN-based one being found to be slightly
better, it is the one that will be used as baseline.
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Figure C.2 Central value of parameters of interest from an Asimov fit of signal and backgrounds.
f0 (a) and fL − fR (b) central values are shown using analytical (red dotted line) and DNN-based
(points) pν

z reconstruction, for templates MGrw and PHPrw and for W± and Z boson in all charge
configurations. The bottom plot shows the ratio between the uncertainty values for both methods
of pν

z reconstruction.
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Figure C.3 Relative uncertainties on parameters of interest from an Asimov fit of signal and
backgrounds. f0 (a) and fL − fR (b) uncertainties are shown using analytical (red dotted line) and
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in all charge configurations. The bottom plot shows the ratio between the uncertainty values for
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Appendix D

Polarisation with W± charge
separation

In this appendix are presented the results of Section 7.7 separating by the W± boson charge
between W+Z events and W−Z events. The main impact is in increased uncertainties as
expected from the reduced statistical power of these subsets of events. Overall, no major
difference is visible from the inclusive W±Z events regarding joint-polarisation fractions.

In single boson polarisation fractions, differences are mainly visible looking at the two
transverse polarisation fractions fL and fR. The small tension at 2.3σ on fL − fR in W−Z
events appears clearly in Fig. D.6.

The consistency check between single boson fraction measurement and joint-polarisation
fraction measurement yields similar results. Finally, the Rc parameter profiled likelihood is
simply wider in these subsets. In W−Z events, the independence assumption is still within
1σ of the measured value.
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D.1 In W+Z events
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Figure D.1 Measured joint-polarisation fractions f00, f0T, fT0 and fTT of the W± and Z bosons
in W+Z events, compared to NLO QCD fixed-order predictions [77] (orange triangle) and to
Monte Carlo predictions from Powheg+Pythia (red triangle). The effect of PDF and QCD scale
uncertainties on the Powheg+Pythia and NLO QCD fixed-order predictions are of the same
size as the respective markers. The solid and dashed ellipses around the data points correspond to
one and two standard deviations, respectively.
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Figure D.2 Single boson polarisation fractions f0 and fL−fR measured for the W+ boson (a) and
Z boson (b) in W+Z events, compared with predictions from Powheg+Pythia with sin2 θw =
0.23152 (red triangle). The effect of PDF and QCD scale uncertainties on the Powheg+Pythia
predictions are of the same size as the triangle marker. The solid and dashed ellipses around the
data points correspond to one and two standard deviations, respectively.
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Figure D.3 Measured polarisation fractions fW
0 and fZ

0 in W+Z events. The black point is the
simultaneously measured values from the template fit on the 4-category DNN score distribution.
The orange square with uncertainty bars is the measured value from two single boson polarisation
template fits to qW ·cos θ∗

`W and cos θ∗
`Z distributions. The red triangle is the theoretical predictions

at NLO in QCD and LO for the electroweak interaction from Powheg+Pythia. The solid and
dashed ellipses around the data points correspond to one and two standard deviations to the joint
measurement of fW

0 and fZ
0 , respectively.
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Figure D.4 Curve of the test statistic −2 log (Likelihood Ratio) along the ratio Rc in W+Z
events. The likelihood ratio is profiled for all systematic uncertainties. Its width at the 1σ
horizontal line gives the total statistical and systematic asymmetrical uncertainty on Rc. The
blue dashed curve represent the expected result, from an Asimov fit at reconstructed level. The
red curve represents the result on Run-2 data. The vertical line at 1 corresponds to the absence of
spin correlation hypothesis.
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D.2 In W−Z events
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Figure D.5 Measured joint-polarisation fractions f00, f0T, fT0 and fTT of the W− and Z bosons
in W−Z events, compared to NLO QCD fixed-order predictions [77] (orange triangle) and to
Monte Carlo predictions from Powheg+Pythia (red triangle). The effect of PDF and QCD scale
uncertainties on the Powheg+Pythia and NLO QCD fixed-order predictions are of the same
size as the respective markers. The solid and dashed ellipses around the data points correspond to
one and two standard deviations, respectively.
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Figure D.6 Single boson polarisation fractions f0 and fL−fR measured for the W− boson (a) and
Z boson (b) in W−Z events, compared with predictions from Powheg+Pythia with sin2 θw =
0.23152 (red triangle). The effect of PDF and QCD scale uncertainties on the Powheg+Pythia
predictions are of the same size as the triangle marker. The solid and dashed ellipses around the
data points correspond to one and two standard deviations, respectively.
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Figure D.7 Measured polarisation fractions fW
0 and fZ

0 in W−Z events. The black point is the
simultaneously measured values from the template fit on the 4-category DNN score distribution.
The orange square with uncertainty bars is the measured value from two single boson polarisation
template fits to qW ·cos θ∗

`W and cos θ∗
`Z distributions. The red triangle is the theoretical predictions

at NLO in QCD and LO for the electroweak interaction from Powheg+Pythia. The solid and
dashed ellipses around the data points correspond to one and two standard deviations to the joint
measurement of fW

0 and fZ
0 , respectively.
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Figure D.8 Curve of the test statistic −2 log (Likelihood Ratio) along the ratio Rc in W−Z
events. The likelihood ratio is profiled for all systematic uncertainties. Its width at the horizontal
1σ line gives the total statistical and systematic asymmetrical uncertainty on Rc. The blue dashed
curve represent the expected result, from an Asimov fit at reconstructed level. The red curve
represents the result on Run-2 data. The vertical line at 1 corresponds to the absence of spin
correlation hypothesis.

167



D.2. In W−Z events Appendix D: Polarisation with W± charge separation

168



Appendix E

Definition of cos θ∗
` in the previous

single boson polarisation fraction
measurement

In the previous measurement of single boson polarisation fractions of Ref. [17], the cos θ∗
`

definition was ill-defined. To compute it for a boson V , one needs a four-vector of the
boson V and a four-vector of the associated decay lepton. The cos θ∗

` will be obtained from
the scalar product of both vectors. Experimentally, one starts with kinematic variables in
the laboratory frame Rlab. In the Modified Helicity frame, the boson four-vector is obtained
by boosting its four-vector from the laboratory frame to the W±Z rest frame RW Z . On
the other hand, the decay lepton four-vector must be boosted in the V boson rest frame
RV and there are two ways to do that :

Previous measurement [17]: Take the four-vector of the boson in the laboratory frame
Rlab and boost it directly in the V rest frame RV with the Lorentz transform
ΛRlab→R′

V
.

Present measurement: Take the four-vector of the boson in the laboratory frame Rlab

and boost it first in the W±Z rest frame RW Z with ΛRlab→RW Z
, and then boost it

again in the V rest frame RV with ΛRW Z→RV
.

It is well known that the composition of non-collinear boosts do not necessarily give
a new boost: an additional rotation will appear. Here, to transform the four-vector of
the lepton from the previous analysis way to the current way, one must use the transition
matrix

RR′
V →RV

= ΛRW Z→RV
ΛRlab→RW Z

Λ−1
Rlab→RV

, (E.1)
which is a rotation. The problem with the previous way of computing cos θ∗

` is that the
lepton four-vector used had its coordinates in R′

V with its axes not aligned to the axes of
RW Z . As a result the angle between the lepton direction and the V boson direction was
systematically off by an additional rotation angle. Additionally, this rotation angle changes
event by event, as it depends on the direction of the boost ΛRW Z→RV

given by the angle θV

defined in figure 5.2(b).
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` in the previous analysis

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

cos θ
∗

ℓ
W

0

500

1000

1500

2000

2500

E
ve

nt
s/

0.
05

Corrected cos θ
∗

ℓ
W

Previous cos θ
∗

ℓ
W

 Z events+W

(a) W+

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

cos θ
∗

ℓ
W

0

200

400

600

800

1000

1200

1400

1600

E
ve

nt
s/

0.
05

Corrected cos θ
∗

ℓ
W

Previous cos θ
∗

ℓ
W

 Z events
­

W

(b) W−

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

cos θ
∗

ℓ
Z

0

500

1000

1500

2000

2500

E
ve

nt
s/

0.
05

Corrected cos θ
∗

ℓ
Z

Previous cos θ
∗

ℓ
Z

 Z events+W

(c) Z in W+Z

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

cos θ
∗

ℓ
Z

0

200

400

600

800

1000

1200

1400

E
ve

nt
s/

0.
05

Corrected cos θ
∗

ℓ
Z

Previous cos θ
∗

ℓ
Z

 Z events
­

W

(d) Z in W−Z

Figure E.1 Comparing previous to current cos θ∗
` definition at particle level in the total phase

space for all bosons in all charge configurations, using the inclusive Powheg+Pythia sample.

Yet, even though the previous cos θ∗
` was wrong, the difference with the correct cos θ∗

`

used here is in the end rather small, as can be seen in Fig. E.1. This small difference still
has an impact on the values of the fractions at truth level in the total phase space as can
be seen in Table E.1. Of course, the uncertainties are not affected as this correction only
amounts to a small change in the shape of the fitted distribution.

In W+Z events
W+ boson polarisation Z boson polarisation

Corrected cos θ∗
`W Previous cos θ∗

`W Corrected cos θ∗
`Z Previous cos θ∗

`Z

f0 0.1821 ± 0.0009 0.2151 ± 0.0009 0.1807 ± 0.0009 0.2100 ± 0.0009
fL 0.5006 ± 0.0006 0.4687 ± 0.0006 0.3612 ± 0.0017 0.3314 ± 0.0017
fR 0.3172 ± 0.0005 0.3162 ± 0.0005 0.4580 ± 0.0018 0.4585 ± 0.0017

In W−Z events
W− boson polarisation Z boson polarisation

Corrected cos θ∗
`W Previous cos θ∗

`W Corrected cos θ∗
`Z Previous cos θ∗

`Z

f0 0.1901 ± 0.0011 0.2218 ± 0.0012 0.1822 ± 0.0012 0.2086 ± 0.0012
fL 0.3652 ± 0.0007 0.3404 ± 0.0007 0.5053 ± 0.0022 0.4774 ± 0.0022
fR 0.4447 ± 0.0008 0.4378 ± 0.0008 0.3125 ± 0.0022 0.3139 ± 0.0022

Table E.1 Fraction results at particle level in the total phase space with previous and current
corrected cos θ∗

` extracted from the inclusive Powheg+Pythia sample.
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Conclusion

Within the scope of this thesis, the joint-polarisation fractions in a diboson process are
measured for the first time. It constitutes the first ever observation of two bosons produced
simultaneously in a longitudinal polarisation state. This thesis also details my personal
contribution to the upgrade of the ATLAS detector before the start of the Run 3 of the
LHC.

The trigger system of the liquid Argon-based calorimeters of ATLAS was improved to
prepare for higher pile-up conditions in Run 3 and particularly for the High-Luminosity
LHC runs that will follow. The trigger-level information from the calorimeter cells was
increased in spatial granularity by a factor ten, from Trigger Towers to Super Cells. This
required a complete overhaul of the trigger electronic chain to cope with a largely increased
amount of data to manage within the strict latency criteria required by the trigger system.
In particular, I contributed to configuration software of the LATOME boards responsible for
the energy deposit computation. I developed the proper loading of calibration coefficients
in registers of the LATOME, used by the User Code block to compute energies. I then
participated to the commissioning of this User Code block.

On the analysis side, the measurement of vector boson polarisation states in W±Z
production was detailed. This measurement used the full Run 2 dataset collected by the
ATLAS detector at the LHC, in pp collisions at a centre-of-mass energy of 13 TeV between
2015 and 2018, corresponding to an integrated luminosity of 139 fb−1. Among the collected
data, events corresponding to a W±Z production were selected, using the leptonic decay
mode. The corresponding experimental signature in the detector is

pp → `ν`′ ¯̀′ +X ,

with each lepton ` being either an electron or a muon. A fiducial phase space closely
matching the event selection was defined. All measurements were then performed in this
phase space.

The theoretical description of polarisation implies a strong dependence on the frame
chosen for the measurements. In order to meaningfully measure joint-polarisation fractions
simultaneously with single boson polarisation fractions, the centre-of-mass frame of the W±Z
system is chosen, leading to the Modified Helicity frame used for single boson polarisation
measurements.

The polarisation fractions were measured through binned maximum-likelihood template
fits. As a first step, a discriminating variable was needed to extract simultaneously all
polarisation fractions. For single boson polarisation, simple analytical variables can be
used, namely qW · cos θ∗

`W for the W± boson polarisation measurement, and cos θ∗
`Z for the

Z boson polarisation measurement. However, for joint-polarisation fractions, an aggregated
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variable using a Deep Neural Network (DNN) output had to be used to obtain enough
sensitivity in the measurement. Combined with the cos θ∗

`W and cos θ∗
`Z variables, this

4-category pDNN
00 DNN output allowed for the separation between longitudinal-longitudinal

00, longitudinal-transverse 0T, transverse-longitudinal T0 and transverse-transverse TT
joint-polarisation states.

The next challenge was to develop templates of pure polarisation states for the dis-
criminating variable. In single boson polarisation measurement, an analytical reweighting
method provides such template with NLO in QCD accuracy for the three polarisation states
longitudinal 0, left L and right R. However, this method cannot be used with the aggreg-
ated 4-category pDNN

00 variable. Other ideas implied the use of LO Monte Carlo polarised
generation. These samples were brought to NLO in QCD accuracy using a reweighting to
fixed-order polarised calculation at NLO in QCD. Another idea made use of classification
DNNs to provide a multi-dimensional reweighting bringing the polarised samples to NLO
in QCD accuracy, or symmetrically, polarising an inclusive NLO in QCD accurate sample.
This latter method was found to provide templates with the least bias on NLO in QCD
pseudo-datasets.

The binned maximum-likelihood template fit provided the first ever observation of pair-
produced vector bosons simultaneously polarised longitudinally, with observed and expected
significance of 7.1σ and 6.2σ respectively. In the fiducial phase space of this analysis, for
W±Z production, the fraction of longitudinal-longitudinal joint-polarisation is measured
to be f00 = 0.067 ± 0.010. Other joint-polarisation measured are f0T = 0.110 ± 0.029,
fT0 = 0.179 ± 0.023 and fTT = 0.644 ± 0.032. The same measurement was also performed
separating by the charge of the W± boson, in W+Z and W−Z events. No major differences
were observed with the inclusive W±Z results. All measured values are found to be
consistent with Standard Model predictions within two standard deviations.

Single boson polarisation fractions was measured in W±Z production as well, extending
the previous measurement of Ref. [17] to the full Run 2 dataset. The measured f0 and
fL − fR are found to agree with the Standard Model prediction. Moreover, their measure-
ment is consistent with the joint-polarisation fractions measured, neglecting the effect of
interferences which are expected from calculations to be well below the precision of the
present measurements.

Finally, it was checked that the polarisation fractions of the two bosons cannot be
considered to be independent of each other. The joint-polarisation fraction f00 was found to
be more than 50 % higher than the multiplication of single boson f0 polarisation fractions.
This demonstrates the need for a direct measurement of joint-polarisation fractions, rejecting
the independence assumption at more than 1σ.

This measurement was approved by the ATLAS Collaboration and published in Ref. [115].
It constitutes a pioneering work for further joint-polarisation studies. Other diboson
processes could be studied, or alternatively, the measurement could be performed in a more
restricted phase space where new physics might manifest itself more clearly. The ultimate
goal, for now inaccessible for lack of statistical power, would be the observation of the very
delicate process of vector boson scattering with both bosons polarised longitudinally.
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Résumé

Dans le cadre du Modèle Standard de la physique des particules, le mécanisme de brisure spontanée de
symétrie électrofaible est responsable de l’apparition d’un état de polarisation longitudinale dans les bosons
vecteurs massifs W± et Z. L’étude des états de co-polarisation dans les processus dibosons, correspondant
à la production de paire de deux de ces bosons vecteurs, constitue un test précis du Modèle Standard car
elle permet de sonder indirectement ce mécanisme de brisure de symétrie. Cette thèse étudie le processus

diboson W±Z en utilisant les données enregistrées par le détecteur ATLAS pendant le Run 2 du LHC,
correspondant à une luminosité intégrée de 139 fb−1 de collisions proton–proton à une énergie de centre de

masse de 13 TeV. Le détecteur ATLAS s’appuie sur un système de déclenchement pour gérer la grande
quantité de données produites au LHC et être capable de conserver les événements rares tels que ceux

provenant des processus dibosons. La mise à niveau de ce système de déclenchement en vue du Run 3 du
LHC est également présentée dans cette thèse, en se concentrant sur le nouveau ńăDigital Triggerăż des
calorimètres à argon liquide. Dans le jeu de données du Run 2, les événements de production inclusive
W±Z avec désintégration leptonique des deux bosons de jauge en électrons ou muons sont sélectionnés.

Dans ces événements, les quatre fractions de co-polarisation, en considérant les états de polarisation
longitudinale ou transversale pour chaque boson, sont extraites à l’aide de techniques dajustements de

modèles à maximum de vraisemblance. Les fractions de polarisation n’étant pas des quantités invariantes
de Lorentz, elles sont obtenues dans le référentiel du centre de masse W±Z. Un soin particulier est apporté
au choix d’une variable discriminante pour l’ajustement des modèles et au développement de modèles de

polarisation corrects, en s’appuyant notamment sur des techniques avancées de réseaux de neurones
profonds. La production simultanée de paires de bosons vecteurs polarisés longitudinalement est mesurée
pour la première fois avec une significance de 7,1 écarts-types. Les fractions de co-polarisation mesurées et

intégrées sur la région fiducielle sont f00 = 0.067 ± 0.010, f0T = 0.110 ± 0.029, fT0 = 0.179 ± 0.023 et
fTT = 0.644 ± 0.032, en accord avec les prédictions du Modèle Standard les plus précises disponibles. Les

fractions de polarisation individuelles des bosons W± et Z sont également mesurées séparément et
s’avèrent cohérentes avec les fractions de co-polarisation dans la limite des corrélations attendues. Les
fractions de polarisation et co-polarisation des bosons sont également mesurées séparément dans les

événements W+Z et W−Z.

Abstract

Within the Standard Model of particle physics, the electroweak spontaneous symmetry breaking
mechanism is responsible for the appearance of a longitudinal polarisation state in the massive W± and Z

vector bosons. The study of joint-polarisation states in diboson processes, corresponding to the pair
production of two such vector bosons, constitutes a detailed test of the Standard Model as it allows to

probe indirectly this symmetry breaking mechanism. This thesis studies the W±Z diboson process using
the data recorded by the ATLAS detector during Run 2 of the LHC, corresponding to an integrated
luminosity of 139 fb−1 of proton–proton collisions at a centre-of-mass energy of 13 TeV. The ATLAS

detector relies on a trigger system to manage the large amount of data produced at the LHC and be able
to keep rare events such as those from diboson processes. The upgrade of this trigger system in preparation
for the Run 3 of the LHC is also presented in this thesis, focusing on the new Digital Trigger of the Liquid
Argon calorimeters. In the Run 2 dataset, events of W±Z inclusive production with leptonic decay of the
two gauge bosons into electrons or muons are selected. In such events, the four joint-polarisation fractions,
considering longitudinal or transverse polarisation states for each boson, are extracted through a binned
maximum-likelihood template fits. Polarisation fractions not being Lorentz invariant quantities, they are
obtained in the W±Z centre-of-mass frame. Special care is taken in the choice of a discriminating variable

for the template fit and the development of accurate polarisation templates, relying in particular on
advanced Deep Neural Networks techniques. The simultaneous pair-production of longitudinally polarised
vector bosons is measured for the first time with a significance of 7.1 standard deviations. The measured
joint-polarisation fractions integrated over the fiducial region are f00 = 0.067 ± 0.010, f0T = 0.110 ± 0.029,
fT0 = 0.179 ± 0.023 and fTT = 0.644 ± 0.032, in agreement with the next-to-leading-order Standard Model
predictions. Single boson polarisation fractions of the W± and Z bosons are also measured and found to
be consistent with joint-polarisation fractions within the expected amount of correlations. Both the joint

and single boson polarisation fractions are also measured separately in W+Z and W−Z events.
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