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Résumé substantiel en francais:

Un systeme informatique critique de sécurité désigne un ensemble de composants logiciels et
matériels pouvant causer de graves dommages matériels, environnementaux ou humains. Dt a leur
dangerosité, ce type de systeme nécessite 'implémentation de mesures de sécurité aussi bien au niveau
logiciel que matériel pendant leur spécification, leur développement, leur compilation et leur exécution,
les rendant ainsi complexes. Ces mesures de sécurité qui varient d'un systeme a un autre conduisent
trés souvent a des dégradations de performances, en particulier 'augmentation des temps d’exécution
des systemes concernés.

Le travail de recherche décrit dans ce document se situe dans le contexte du systeme CBTC
(Communication-Based Train Control) de Siemens Mobility France, un systéme de controle de train
certifié EN-50128 et SIL-4 (le plus haut niveau de stireté) et utilisé dans le développement de nombreux
systemes de pilote automatique a travers le monde, en particulier sur les lignes 1, 4 et 14 du métro
parisien. La chaine de développement de ce type de systéme s’appuie sur deux technologies essentielles:

* La méthode B, qui permet de rédiger des spécifications formelles de programmes et d’obtenir, dans
notre contexte, du code source VCP Ada (un sous-ensemble d’Ada) qui respecte ces spécifications,

* La technique du processeur codé dont I'implémentation logicielle et matérielle permet de détecter
les erreurs de calculs et les incohérences dans le flot d’exécution entre le code source VCP Ada et le
programme exécutable.

Si cette chaine de développement fournit des garanties depuis la spécification a I'exécution, le
mécanisme de détection d’erreur cause des ralentissements que les compilateurs optimisants habituels
ne peuvent outrepasser.

Dans ce contexte, le but de cette thése est de trouver des solutions pour réduire le temps d’exécution
des systemes CBTC tout en conservant les garanties de sécurité déja acquises.

La réponse apportée par cette these est une optimisation formellement vérifiée du code source.
Une premiére contribution est un compilateur VCP Ada vers VCP Ada, qui optimise le code source tout
en préservant la sémantique des programmes. Ce compilateur a été implémenté avec I'assistant de
preuve Coq et fournit des preuves en Coq qui garantissent I’équivalence en termes d’exécution entre
le programme original et le programme optimisé. Ce compilateur tient aussi compte des complexités
liées aux mesures de sécurité matérielle qui sont potentiellement incompatibles avec I'utilisation des
compilateurs formellement vérifiés existants. Par ailleurs, le choix de I'application des optimisations
sur le code source présente des avantages méthodologiques par rapport aux optimisations utilisant
de nombreux langages intermédiaires, car ils permettent de simplifier et de réduire I'effort de preuve
nécessaire.

Si CompCert et d’autres travaux de recherche fournissent des techniques qui nous ont servi de
base dans le développement de ce compilateur, il faut reconnaitre que la vérification formelle des
analyseurs lexicaux, un des premiers composants logiciels dans le processus de compilation, n'a jusqu’a
présent, pas recu beaucoup l'attention de la part des chercheurs. Afin de ne pas créer un maillon
faible dans le compilateur que nous avons développé durant cette these, notre deuxiéme contribution a
consisté au développement de CoqLex, le premier générateur d’analyseur lexical formellement vérifié
en Coq, basé sur une modification d'une implémentation existante en Coq des expressions régulieres
via les dérivés de Brzozowski. Cette contribution apporte aussi un générateur d’analyseur lexical qui
produit le code Coq d'un analyseur lexical a partir d'une description dont la syntaxe est proche de celle
de Ocamllex, un générateur d’analyseur lexical non vérifié pour Ocaml.

La théorie et les outils développés ont été utilisés pour optimiser les programmes VCP Ada des
systemes CBTC, composés de milliers de fichiers sources, avec des résultats prometteurs.

Institut Polytechnique de Paris
91120 Palaiseau, France
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Chapter 1

Introduction

A safety-critical system is a system whose failure could result in dramatic consequences such as loss
of life, significant property damage, or damage to the environment [ ]. Usually found in
application areas such as medical devices, weapons, nuclear systems, and transportation systems,
those kinds of systems are subject to national/international regulations and standards [

, , 1. Those standards require safety guarantees like the
absence of bugs, leading system providers to find solutions to implement trustworthy software and prove
their correctness. Building software that meet the specification required by such standards requires the
use of particular techniques in their specification, architecture, verification, and process.

However, on the one hand, those techniques turn out to slow down the execution speed of critical
software, and on the other hand, most standards impose restrictions making those kinds of software
non-trivial to optimize. For instance, because they demand traceability between source code and binary
code, they forbid performing non-local code transformation and hence forbid the use of common
optimization techniques at the compiler level.

Techniques to overcome the antagonism between safety guarantees and execution time performance
vary from one system to another, because there is no standard way to develop such a system —the
architecture of each critical system is unique. This research aims to present new optimization techniques
that would meet the applicable standards, as identified and applied to a real and functioning critical
system, the autopilot for driverless trains of Siemens Mobility France. The research also led us to
contribute to the strengthening of a weak chain in current formally proven compilation toolchains, the
lexical analysis.

1-I Background and context

The European standard EN 50128 [ ] “Railway applications — Communication,
signalling and processing systems — Software for railway control and protection systems” specifies
procedures and technical requirements for the development of programmable electronic systems which
are used in railway system development for the control and protection applications. It requires that all
systems with safety implications that contain software should be assigned a Software Integrity Level
(SIL), ranging from a value of 0 (the lowest accepted safety level) to 4 (the highest one) [

l.

Siemens Mobility France is the World’s foremost supplier of computer systems (hardware and soft-
ware) that serve for automatic control and operation of metro trains and in particular driver-less trains.
The systems it develops are SIL4 certified —the probability of failure of such systems is lower than 1078
per hour. Building a SIL4 software requires providing the guarantee this software executes as expected.
To achieve this goal, Siemens researchers and engineers used a set of techniques and processes: the
B-method [ ] to build source code equipped with formal proofs of its correctness, the Vital
Coded Processor technique [ | that ensures that the compiled code runs safely on the

7



CHAPTER 1. INTRODUCTION

computer platform without any safety requirement on the CPU, and the DigiSafe® XME architecture
[ | that protects from compiler and processor errors.

Developed by J.R. Abrial, the B-method refers to a development process and associated tools that
make it possible to implement and prove the correctness of safety-critical programs. In this process,
developers must first specify the behaviour of the safety-critical program to be implemented using the
B specification language. Then, using the B implementation language and a semi-automatic theorem
prover, the developers must write an implementation of this specification and prove its correctness.
These proofs are checked by the B proof assistant and, if accepted, the implementation is translated into
Ada source code that can be used for functional testing.

At Siemens, this method was first used to write and prove the absence of bug in the source code of the
auto pilot of Paris Line 14. However, this method does not protect from compiler and processor errors
and hence lead to the Vital Coded Processor technique and the associated DigiSafe® XME architecture.

The Vital Coded Processor technique is a technique allowing to detect incoherences between the
intended behaviour of the source code and the execution behaviour of binaries produced from the
code source. It uses a probabilistic approach, associated with a compilation and execution architecture
allowing to ensure the coherence between the executed program and the input source code. This
technique is proven to have a failure rate (probability of not detecting incoherences) of less than
3.15 x 10715 per hour. Associated with the B-method and the DigiSafe® architecture, the Vital Coded
Processor technique allows to ensure coherence between program specifications and execution but
turns out to slow down the execution time of the software implemented using them. The aim of this
research is to find and implement techniques to overcome the antagonism between safety guarantees
and execution time performance of safety-critical software generated using this method, such that are
generic enough to be transposable in other contexts as well.

1-II The research problem and objectives

To achieve the requirements of the EN 50128 certification, Siemens Mobility developed a development
process that ensures coherence between the formal specification and its execution. However, this
development process leads to programs whose worst-case execution time can easily reach an upper
bound of, say, 200 milliseconds. This value can be interpreted as the reaction time of the autopilot
software in a driverless train system and has a great impact on the quality of service of the whole system.
The higher it is, the longer it takes for the autopilot program to make a decision.

Optimizing the execution time of programs is important for software providers and their clients,
particularly in railway systems. Numerous studies have investigated program optimization techniques,
from those applicable at the source code level | ] to those applicable at the
level of compilation [ |. Using programming language processing tools and methods, those
studies provide solutions and techniques that reduce the execution time of compiled programs. But,
most of those studies focus on performance and do not provide safety or correctness guarantees. This
makes those techniques not usable in safety-critical software without further work on correctness, if at
all possible.

Exceptions like the CompCert project [ ], a formally verified optimizing compiler,
overcome the antagonism between safety guarantees for programs and optimizing their execution
time. Thanks to their formal proofs, these compilers are guaranteed not to introduce any difference in
behaviour (except for speed-up) between optimized binaries and non-optimized ones. However, it is
not clear whether one could readily use the CompCert compiler for an existing industrial control system
like those implemented using the DigiSafe® development method.

In particular, the research would have to address the following questions:

1. Can the source code obtained from the B-method be transformed into a code compilable by
CompCert? In fact, while the current method extracts VCP Ada, a subset of Ada [ ] code
from the B-method, CompCert processes languages such as C [ ] and Cminor.
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2. Can the CompCert compilers emit code that can execute on the DigiSafe® platform? For instance,
the DigiSafe® platform requires a binary to be equipped with a special trace to be executed on a
co-processor, at the same time as the main program executing on the main processor.

3. Can the use of the CompCert compiler reduce the execution time in spite of the limitations on
performance posed by the DigiSafe® platform?

4. Isitpossible to weave CompCert into the DigiSafe® XME architecture and to produce a qualification
argument for the whole compilation chain?

There are studies that present solutions to make CompCert compile and optimize code from other
languages. Projects such as MLCompCert | ], a verified compiler for MiniML, and Vélus
[ 1, a verified compiler for Lustre [ ] lead to formally verified compilers that
are obtained by writing a bridge between MiniML or Lustre and Cminor.

Except solutions that suggest the use of CompCert, are there other approaches? How do those
approaches ensure their correctness? How efficient are they? How much will they affect the current
development process?

In Source code optimization techniques for data flow dominated embedded software [

1, Heiko Falk and Peter Marwedel have shown that source code optimizations have an
equivalent impact on execution time as compiler optimizations. They also proposed efficient optimiza-
tions and techniques to implement them. However, they do not provide proof of their correctness.

The aim of this research is to reduce the execution time of the software implemented using the
DigiSafe® development process, while, in parallel preserving their safety guarantees. To do that, we will
evaluate 2 possibilities to modify this process:

1. Replace the current compiler with a formally verified optimizing one such as CompCert.
2. Implement a formally verified tool to perform optimizations on source code.

This study will contribute to the body of knowledge on formal methods, compilation, and source
optimization techniques. It will also tackle some of the challenges of current industrial systems, much
wider than only the railway sector.

1-IIT Structure of this document

Chapter 2 of this document will present the background and the state of the art for this research. It will
present the B-method, Vital Coded Processor, DigiSafe® development process and its implementation.
It will also give an overview on compiler architecture, certified compilers such as CompCert, and on the
Coq proof assistant that is used to prove the correctness of CompCert.

Chapter 3 presents the Siemens development process, the process used to generate the programs this
thesis aims to optimize. Regarding that process, Chapter 4 will explore the optimization possibilities,
explain why VCP Ada (a subset of Ada) source code optimization appears to be the best optimization
option and how we will implement and formally verify a VCP Ada to VCP Ada compiler that will perform
those optimizations. This implementation led us to identify a gap in the compilation toolchain of
certified compilers such as CompCert, at the level of lexer generation. Consequently, we implemented
Coqglex [ ], a formally proven meta-tool used to generate lexers, which will be
presented in Chapter 5, the Chapter that is in charge of producing a front-end (the first component of
the compiler) equipped with formal proofs of its correctness.

Chapter 6 presents the formal semantics of VCP Ada and the semantic preservation definition that
is used to prove the correctness of the middle-end described in Chapter 7. We describe the back-end
of the VCP Ada to VCP Ada compiler we implement in Chapter 8, evaluate the performances of its
optimizations and discuss future works in Chapter 9.
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Chapter 2

Background and state of the art

This chapter introduces the basic knowledge of published technologies and concepts used in this
research. The first section introduces the Coq proof assistant, a platform for the formalization of
mathematics and the development of programs. The second one presents the B method, a formal
method used to implement and reason about programs. The third one details the theoretical concepts
of the Vital Coded Processor (VCP) technique, a system to protect software execution against hardware
and compilation errors, and the last part presents compiler design concepts.

2-1 Coq proof assistant

Proof assistants are software that provide a formal language to write mathematical definitions, prove
theorems, and sometimes, as in the case of Coq, write executable algorithms. Throughout the years,
they have shown their ability to prove the correctness of important and complex pieces of software like
the complete toolchain of the DeepSpec project [ ]. During this thesis, we implemented and
used tools developed using this platform, and used Coq to prove our own optimizations correct. We will
present here the features of the Coq syntax that are necessary for being able to read the Coq source code
extracts given in the thesis.

2-I.A Basic terms

In Coq, objects have names and types. The Coq documentation defines 4 categories of types:

Set intends to be the type of small sets. It includes data types such as booleans (true, false) and
naturals (0,1...), but also products, subsets, and function types over these data types.

Prop intends to be the type of logical propositions. If M is a logical proposition then it denotes the
class of terms representing proofs of M. An object m belonging to M witnesses the fact that M is
provable. An object of type Prop is called a proposition.

SProp (strict propositions) is an experimental construction that is similar to Prop but whose propo-
sitions are known to have irrelevant proofs [ l.

Type is the type of all types, in particular the types constructible from the above-mentioned types.

For our work, we only used Prop and Set. Let us illustrate those concepts using examples: Symbol 1
defines a constant value of type nat, a predefined type for natural numbers whose type is Set. The
binary function leb (less-or-equal comparison) has type nat -> nat -> bool (ornat -> (nat ->
bool)).

When leb is applied to a nat term t (using the notation leb t), the result type is a function of type nat
-> bool. This is called partial application.

11
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Let us present the Coq syntax for logical propositions:

Math syntax T 1 2P| PAQ PvQ |P=>Q | PeQ |x=y| x#£Yy Vx,P dx, P
Coqsyntax | True | False | ~P [P /N Q[P \/ Q| P->Q |P<>Q | x=y | x<>y | forall x, P | exists x, P

Example. We can then state the following propositions:
e Vx,0<x:forall x, leb 0 x = true.

e Vx,x<0=>x=0:forall x, leb x O = true ->x = 0.

To prove properties, Coq suggests the use of tactics to do backward reasoning. At the beginning of
the proof, the proposition to prove is the current goal. Then, the developer has to enter tactics that will
transform the current goal into a set of sub-goals to be proven. The proof is finished when there are no
remaining sub-goals. Propositions can be declared using the following syntax:

Theorem name : prop.

where name is the name of the property (object) and prop is the statement of the property. Theorem
can be replaced by Lemma, Goal, Fact, Remark, Corollary, Proposition, or Property.
Objects can be given a name by using the following syntax:

Definition name args : type .= term.

This command checks that the type of term is type and then binds name to the object ter m. When
term is omitted, type is required and Coq enters proof mode. This can be used to define a term
incrementally. type can be omitted when term is set. args parameter is used to set parameters. In that
case, this command defines a function.

Examples:.
Definition zero := 0. (*binding the name zero to wvalue 0%)
Definition id (n: nat) : mat := n. (*definition of tdentity function for natural numbers*)

The keyword Definition can be replaced by Example.

Coq provides a command allowing to define records as in many programming languages. The syntax for
this command can be described as follows:

Record name :Set := constructor_name/{ field_name, : type,; ... }.

This command defines a record type whose name is name, a constructor named constructor_name
for this record type whose fields are field_name, ... Fields can be any term: propositions, functions or
simpler type such as nat. Record can be replaced by Structure. The definition of a record can be done
using the following syntax:

{| field_name, := value;... |}

or
constructor_name valuel vee

The projection can be done using the following syntax:

variable_name. (field_name)

Example: This example defines the type of rational numbers and defines the rational 1/2.
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Record Rat : Set := mkRat
{ sign : bool
top : nat
bottom : nat
Rat_bottom_cond : O <> bottom
Rat_irred_cond :
forall x y z:nat, (x * y) = top /\ (x * z) = bottom -> x = 1

Theorem two_is_not_zero : 0 <> 2.
Admitted.

Theorem one_two_irred : forall x y z:nat, x * y = 1 /N x *z=2->x=1.
Admitted.

Definition half := mkRat true 1 2 one_is_not_zero one_two_irred.

2-1.B Inductive declarations

Inductive definitions are one of the main ingredients of the Coq language. They allow describing
different notions such as data types, logical connectives, primitive relations, and to perform proofs on
them using the principle of mathematical induction.

2-1.B.1 Inductive data types

Coq allows us to declare a data type by specifying a set of constructors. A constructor can be seen as
a function that when applied to all its arguments returns an object of the type we are defining. After
reading the definition, Coq makes sure that the definition is well-founded. The syntax to declare an
inductively defined type is:

Inductive name: sort:=cy:Cil...|cy: Cy.

where nameis the name of the type to be defined; sortis one of Set or Type (or even Prop); c; are the
names of the constructors and C; is the type of the constructor c;. To make recursive constructors, C;
can describe a function that takes arguments of type name. After validating an inductive definition, Coq
system generates primitive objects and theorems expressing that name is the smallest set containing
the terms built only with the constructors given in its definition.

Example: The data type of natural numbers and natural number list can be defined inductively as
follows:

Inductive nat : Set :=
0 : nat
| S : nat -> nat.

Inductive natList : Set :=
LEmpty : natList
| LCat : nat -> natList.

Coq also allows to implement parametric (or polymorphic) inductive data types.
Example: The polymorphic list data type is defined inductively as follows:

Inductive list (A : Type) : Type :=
[ nil : list A
| cons : A -> list A -> list A.

13
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2-1.B.2 Definitions by pattern-matching

The Pattern-Matching operator allows building a case analysis over the various constructors of a term
that belongs to some inductive type. To do that, we can use the following Coq syntax:

match rermwith |c; args,=>resulny...|c, args,=>result, end.
Coq allows to define a new term using other terms or by case analysis.
Example: This example uses the case analysis on nat to return true if and only if the input nat is equal to
zero

Definition iszero n :=
match n with

| 0 => true
| S x => false
end.

2-1.B.3 Fixpoint definitions

To define recursive functions, Coq allows to do structural recursion by fixpoint definition. Structural
recursion means that each recursive call is performed on a structurally smaller argument. The syntax for
fixpoints is:

Fixpoint name (x, : type,) ...(xp, : type,) {struct x;}:type:= term.

The variable x; following the struct keyword is the recursive argument. Its type fype; must be an
instance of an inductive type. The type of nameis forall (xi:1ype,)...(xp: type,), type.

Examples: Let us see a fixpoint definition for leb

Fixpoint leb (n: nat) (m: nat) := match n with
| 0 => true
| S x =>
(match m with
| 0 => false
| Sy =>1lebxy
end)
end.

This example defines the operator < by case analysis on n and on m.

2-1.B.4 Inductive relations

Inductive definitions can be used to define relations. This definition is specified by a set of properties
similar to inference rules. The syntax of such a definition is:

Inductive name : arity:= ¢, : Cy|...|c, : Cy.

where nameis the name of the relation to be defined, arityits type (for instance nat->nat->Prop
for a binary relation over natural numbers) and, as for data types, c¢; and C; are the names and types of
constructors respectively.

Example: Let us define the order relation over natural numbers verifying the following rules:

Vn:nat,0<n Vnm:nat,n=m= (Sn)<(Sm)
This definition can be represented as the following set of inference rules:
nsm
O=sn  (snm=(m

In Coq, this can be defined as follows:
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Inductive LE : nat -> nat -> Prop :=
| LE.O : forall n : nat , LEO n
| LE.S : forallnm : nat , LEnm ->LE (Sn) (Sm).

This declaration introduces identifiers LE, LE_0, and LE_S, each having the type specified in the declara-
tion and can be used as axioms for other proofs.

2-1.C Program specification and implementation with Coq

In Coq, an object of type A -> B is a total function, that is, for all given values of type A, the evaluation
must always terminate and give a value of type B. To implement partial functions, there are other
possibilities.

2-1.C.1 Use of option type as a validation result for preconditions

The option type is defined as follows:

Inductive option (A:Type) : Type :=
| Some : A -> option A
| None : option A.

They are used as containers to represent the presence (Some) or the absence (None) of value. The main
drawback of this method is that the type of the function becomes A -> option B. So, the use of this
function always implies a case analysis.

2-1.C.2 Use of logic constructions to define preconditions

Coq allows to mix freely types and properties so, the users can define preconditions using properties.
For instance, let us take a function A -> B to which the developers want to add preconditions. To do so,
they can define the function domain, dom, using an inductive relation (for example). They can then
redefine their function to add this domain. The type of that function becomes:

Vx:A domx— B

Each call to f arequires a proof p of dom a and will be represented as: f a p. We can partially hide
the proof in a subset type: f:{x: Aldom x} — B.

2-1.C.3 Define functions as relations

In that case, a function f of type A -> B is rewritten by a relation F that has the type A -> B -> Prop.
Then we have to prove the functionality of F: YVa b ¢, F ab AF a c = b = c. This relation means that for
all input, there is at most one output. Each time we want to mention f(x), we will have to introduce a
variable y and a hypothesis F x y.

2-1.D Extraction and programs

Extraction is an important Coq feature. It enables developers to write a functional program inside Coq
and translate it into an OCaml, Haskell, or Scheme source code that can be compiled and executed. The
main motivation for this extraction mechanism is to produce certified programs: each property proved
in Coq will still be valid after extraction. Using this feature, the developers can write their program
differently: Usually, the developers detect errors during testing and may miss some of them. With Coq,
the developers can use case analysis to have a global view of all the possible executions of the functions
they write and prove the correctness of those functions in all of those cases.
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2-I1 B-method

Developed by Jean-Raymond Abrial, B is a formal method for specifying, designing, and coding software
systems. It uses concepts of first-order logic, set theory, and integer arithmetic and has earned the
trust of its users with its commercially available tools support for specification, design, proof, and
code generation. The term B-method refers to the software development method based on B whose
theoretical basis is the use of Hoare triples | ]. Programs are described using the B notation,
which is suitable for specification and classic imperative constructs for software programming. In this
document, we are presenting Classical B, the first version of the B-method as described in the B-Book
[ ]. It is important to mention that there exists an event-based version of the B-method called
Event-B [ |, used for event driven reactive systems. In this section, we will present the basic
concepts of the B method and its impact on industry.

2-II.A Main concepts

The B-method structuring mechanisms are based on 3 main concepts: machine, refinement, and
implementation.

Machine refers to an abstract state machine whose state is represented by a set of variables and
transitions are represented by a set of operations with preconditions. Its state constraints are
described by invariants — conditions that must always be verified.

Arefinement is a module that refines a machine or another refinement. In refinements, the devel-
oper can add preconditions to specify implementation choices. Each refinement must also prove
its coherence with the machine or refinement it is refining. The proof obligations are generated by
a validation system and the proof can be done using an automatic proof assistant.

Implementation is the most concrete level of specification. It is written using a subset of the B
notation called B0, which consists of more concrete constructs that are similar to those available
in most programming languages, making the implementation suitable for a translation to a
programming language.

Those concepts and associated proofs allow to:
e provide clear structured technical and system specifications
* provide guarantees that those specifications are coherent and unambiguous
 provide guarantees that the final software is fault-free

Let us see an example. In this example, we want to implement a simple drink dispenser. This drink
dispenser has 2 operations:

* give: to serve a drink and make sure to update the availability of drinks.
e refill: to add drinks to the dispenser when it is empty.

The machine can be described as follows:

MACHINE
DrinkDispenser
ABSTRACT_VARIABLES
empty
INVARIANT
empty : BOOL
INITIALISATION
empty := FALSE
OPERATIONS
give =
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PRE
empty = FALSE
THEN
CHOICE
skip
OR
empty := TRUE
END
END ;

refill =
PRE
empty = TRUE
THEN
empty := FALSE
END
END

In this machine, the developer made the choice to use one boolean variable. Skip refers to the
absence of action. So we can see that when the dispenser gives a drink, the value TRUE can be assigned
to empty (when the dispenser gives its last drink). To be refilled the dispenser has to be empty — the
precondition of this function is that empty must be equal to true. We can also notice that the invariant is
the type of empty remains bool.

The next step is to propose a refinement of the dispenser. In this refinement, we suggest setting a
capacity for the dispenser and a variable that holds the number of drinks remaining in the dispenser.

REFINEMENT
DrinkDispenser_r
REFINES
DrinkDispenser
VARIABLES
supply
INVARIANT
supply : 0..10 &
((empty = TRUE) <=> (supply = 0))
INITIALISATION
ANY
nn
WHERE
nn : 1..10
THEN
supply := nn
END
OPERATIONS
give =
PRE
supply > O
THEN
supply := supply - 1
END ;

refill =
PRE
supply = 0
THEN
supply := 10
END

END

This listing shows us that the capacity of the dispenser is 10. Variable supply stores the number of
drinks available in the dispenser. So, its value has to be between 0 and 10. There is a relation between
empty and the supply. Those two conditions are the invariant of this refinement. We can then see that
preconditions are adapted using the supply variable. Now we can provide an implementation of this
drink dispenser.
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IMPLEMENTATION
DrinkDispenser_i
REFINES
DrinkDispenser_r
CONCRETE_VARIABLES
conc_supply
INVARIANT
conc_supply : 0..10 &
conc_supply = supply
INITIALISATION
conc_supply := 10
OPERATIONS
give =
BEGIN
conc_supply := conc_supply - 1
END ;

refill =
BEGIN
conc_supply := 10
END
END

2-II.LB Consistency and refinement proofs

The correctness of this method relies on the verification of the following properties. For every machine,
consistency proof consists in proving that:

¢ there exist function parameters that meet the preconditions on the operations of the abstract
machine.

¢ there exist values that meet the invariant of the state machine.

¢ each operation called under its precondition preserves the invariant.

A refinement is a way to rewrite abstract machines using more concrete (opposite of abstract) data
structures. For every refinement, the coherence proof consists in proving that for any operation:

¢ the preconditions of the refined model are compatible with those described by the model it refines.

* the changes made by the operation are compatible with the invariants and the operation descrip-
tion (post-conditions)

2-I1.C B-method as a software development process

The B-method allows to implement software by starting with an abstract machine specification, followed
by incremental refinements until it reaches an implementation. At the implementation level, only
imperative-like constructs may be used. Such an implementation is then translated into source code
in a common programming language using code generation tools. The B development process can be
summarized by the following graphic.
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Preliminary design
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Figure 2.1 - B-method software design
Source: https://lwww.atelierb.eu/en/presentation-of-the-b-method

2-IL.D Tool Support

The B-method is supported by tools that contribute to making the specification and verification of the
models easier. The most popular ones are Atelier B | ], ProB [ ]

Atelier B Implemented by ClearSy [ ], Atelier B is a commercially available tool that allows
an industrial use of the B-method. It has many helpful components such as:

¢ an editor for the specification of modules using the B notation

e automatic generation of proof obligations

e automatic provers for the proof obligations

e an interactive prover for proofs that cannot be performed automatically
* an assistant to help during the refinement process

The tool also assists developers during project management, distributed development, and docu-
mentation. AtelierB has an educational free version for Windows, Linux, and OS X. Also, some of its
components are open source.

ProB refers to an animator and model checker for the B-Method. The tool allows to check models
automatically for inconsistencies such as invariant violations, deadlocks, and others. It also provides
graphic visualizations for the models, has constraint-solving capabilities, and also has testing capabilities.
It is free, open-source, and has versions for Windows, Linux, and OS X.

2-1I1 Vital Coded Processor

The B-method allows to ensure that pieces of source code conform to their specification. But a correct
source code can execute with errors. In fact, compilers and processors are subject to faults |

, ]. For this reason, Siemens Mobility France created and developed the
Vital Coded Processor (VCP) | ] technique. This error detection system uses a probabilistic
approach to detect certain inconsistencies between software source code and its execution. To do that,
this technique suggests to associate variables, operations, and the memory state to pre-determinable
values (values that can be computed at compile-time) that are called signatures. During the execution
of such programs, those signatures are then re-computed and compared to the values computed at
compile-time. If the values computed during the execution are different from those computed at
compile-time, then it means that something went wrong. This section presents the main concepts of
this technique.
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2-III.A Variable coding
Variable values of variables are divided into 2 parts:
the functional part that forms the usual part of the data.
the control part that is made up of the arithmetic sum of three terms:

* r¢(x): Let A be alarge prime number chosen randomly called the code key, x, the functional
value of the variable, k, an arbitrary number such as 2k > A, we define re(x) as 2k x mod A.

* B,: Also called the static signature, this value depends on the operands and the operator used
during the last assignment of the variable x.

* D: adynamic signature, common to all data, which guarantees the freshness of the data in
cyclic programs. This value is incremented by a constant value on every application cycle as
well as on each iteration in the internal loops. It ensures that the previous value of a variable
cannot be used after an update.

Variable values can be represented in form of a pair (x, —r(x) + By + D) where x is the functional
part and —ri(x) + By + D is the control part.
Notes:

¢ in the following sections, Xy and X¢ will refer respectively to the functional part and the control
part of variable X.

e the term vital variables will be used to designate variables that are associated with signatures.

2-1II.B Operation Coding

Let X and Y vital variables and op a binary operation, for example, addition or multiplication. The
result of X op Y can be given by the following formulas:

(XF op YF»Gop(X; Y))

Gop(X,Y) = (—1r(Xg op Y§) + Fop(Bx, By) + D) modulo A

The static signature of the result is then equal to F,, (Bx, By).
For every operation op, F,, is implemented to allow the detection of operands and operation errors.

Example: Let us suppose that one wants to compute ‘X op Y*. The expected result is
(XF op Yp,—11(XF op YF) + Fop(Bx, By) + D).

Detecting operand errors: If the operand T is used instead of Y, the computed result would be
(Xr op Tr,—rx(XF op Tr) + Fop(Bx, Br) + D), which is different from the expected result because
static signatures are unique for each variable (Bt # By).

Detecting operator errors: If the operation op’ is used instead of op, the result would be

(Xp op' Yp,—1(Xp op' Yp) + Fop (Bx, By) + D), which is different from the expected result. An
error will be detected if Fy,,(Bx, By) # Fop (Bx, By).

In both of the above error cases, the resulting signature is incorrect as the expected static signature
would be different from the one that is expected.
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2-III.C Securing the execution flow

Execution errors are detected by an internal coded data called a "tracer" and noted as S. It is dependent
on all of the operations performed since the application was initialized. It does not have a functional
part. Starting with a randomly chosen value S°, its evolution can be expressed by the following formula:

S" = q(B,+ 8™

where a is a constant and B; is the static signature of the result of the last executed operation. As B,
is pre-determinable (t), S is also pre-determinable. During the execution, the tracer is computed and
compared to the pre-computed one. If the results diverge, it means that an error is detected. In that case,
the tracer is said to be "out-of-code”. This variable helps to make sure that the sequence is respected
and that no permutation is done.

2-1II.C.1 Branching

When a conditional branching function is used, the tracer signature must ensure that the taken branch is
the right one. But, this signature must, on one hand, be pre-determinable and on the other hand depend
on the functional value of the condition as the tracer signatures and the updated variables change
differently, depending on which branch is followed (as the operations are branch-dependent). Let us
consider an if-then-else branch. To guarantee these two points, the following processing is performed:

 For any branch, the evolution of static signatures is precomputed.

* The value of the tracer is different for each branch. For example, in an if-else branch, its value is
calculated taking into account a value that is equal to 1 (when the branch condition is evaluated to
true) in the then-branch and equal to 0 in the else-branch: If X is the branch condition, the tracer
value becomes ™! = a(r;(X) + Bx + S”) where X is 1 (true) or 0 (false).

* At the end of the branch, the signature of the tracer and all the modified variables are incremented
by constants depending on the branch they come from — This operation is called compensations
and is executed by convergence instruction. Those pre-computed constants, stored in a data
structure called compensation table, are unique for every converge instruction and are necessary to
make sure that the signatures and the tracer will remain pre-determinable after the branch.

Example: Let us consider the following code

X :=E op F;

if C then

X :=Xop G
else

X:=XopH
end if;
converge;

The signature of X changes in the following way:

line number | signature of X when then branch is taken || signature of X when else branch is taken
1 l?xq 13Xj
2 Bx, Bx,
4 Bxs
6 Bx,
8 Bxy=BXx3+comp;rye BX4=Bxy+compraise

After the converge instruction, the signature of X is Bx,, regardless of the taken branch, that is pre-
determinable.
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2-III.C.2 Loops

For repetitive structures (loops), the number of iterations performed must be correct. Furthermore, the
tracer signatures and the signatures of the variables updated in the loop must be independent of the
number of iterations performed. If signatures were dependent on the number of iterations, signatures
would not be pre-determinable and the system would not be able to validate the results. To ensure that,
a technique, similar to the one used for if-else instruction is applied: compensation. Before entering in a
while instruction, the signature of the tracer and the signature of each variable that can be modified in
the loop is modified. At the end of each iteration, the signature of each of those variables is modified so
that those signatures remain pre-determinable regardless of the number of iterations.

2-III.D Error detection

The VCP technique does not of course allow pre-determining calculation results, but it pre-determines a
coding that detects when an error occurs. Error detection consists in comparing the static signatures
and the value of the tracer to their pre-computed values at each operation. This allows to detect operand,
operator, and sequence errors. When correctly implemented, the probability of failing to detect errors is
lower than 1/A (where A is the large prime chosen randomly that we mentioned in the variable coding
section). This result comes from the fact that the signatures of variables are considered to be randomly
distributed and their values are between 0 and A — 1. Failing to detect an error means that the signature
of the variable implicated in that error is correct (the probability of this event is 1/ A). The details of the
Siemens VCP implementation can be seen in Chapter 3.

2-IV Compilers

Compilers are computer programs that translate a program description written in one programming
language (the source language) into a description written in a (different or not) programming language
(target language). Those descriptions are notations used to give instructions to a computer. In this
section, we simplify and present the basic notions found in Compiler design [

.

2-IVA Compiler architecture

Compilers are generally divided into 3 parts. The first one is the front-end. It is in charge of reading the
source code (from a file) and transforming it into a computer object usually called parse tree or abstract
syntax tree (AST). The second one is the middle-end, which modifies and/or transforms the AST into an
Intermediary Representation (IR) suitable for the back-end, the third part of compiler architecture that
is in charge of translating the input IR into the target file, written in the target language.

2-IV.AA.1 Compiler front-end

The front-end is the first stage of the compilation. It is traditionally made of 2 tools:

Alexer: It is in charge of the lexical analysis which is the first phase of a compiler. This task consists
in the transformation of the sequences of characters of a source code into a sequence of tokens
(strings associated with meaning). It also removes any extra space or comment written in the
source code. It can also detect invalid or forbidden sequences of characters. The implementation
of lexers is usually generated by lexer generators like lex/flex [ | and ocamllex
[ ]. This generation is done from a specification that can be described as regular
expressions (to recognize a sequence of characters) associated with semantic actions (to return
the token that would correspond to the recognized sequence of characters). We give more details
about those notions in Chapter 4.
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A parser: Itisin charge of syntax analysis which is the second phase of a compiler. Its role is to check
the validity of the order of tokens sequence and so determine if a source code respects the syntax
of alanguage. Parsers are usually generated using parser generators like yacc | I,
ocamlyacc [ ] and menhir [ ]. The description of the generation
is done in form of context-free grammar [ ] whose productions are
associated with object constructors. This organization allows to build an object representing the
whole code by using the successive constructors from the derivation tree which is usually called
abstract syntax tree (AST).

In the front-end, one can also perform semantic analysis such as type checking, reserved identifier
miss-use, multiple declarations or non-declaration of a variable, by writing and calling functions that
analyse the AST.

2-IVAA.2 Compiler middle-end

Also known as optimizer, the middle-end refers to all the steps performed between the front-end and
the code generation. It is the stage where program analysis and optimizations are performed. Those
analyses and optimizations rely on the semantics of the input programming language that allow for
understanding and reasoning about how programs behave (more details about formal semantics can be
found in the formal semantics section). Analyses are usually functions that scan an AST object to detect
errors and collect information (Example: data-flow analysis [ ]). Optimizations can be defined
using functions that take an AST as input and return an AST (Example: loop transformations [

1). At the end of the middle-end phase, the program is represented in a form called intermediary
representation (IR). That representation serves to simplify the manipulation of programs during their
optimization.

2-IV.AA.3 Back-end design

The back-end is in charge of the target code generation. It is usually implemented by functions that
take an IR as input. This phase can include target code optimizations. Those optimizations are called
machine-dependent optimizations. A prominent example is peephole optimizations | 1,
which rewrites short sequences of assembler instructions into more efficient instructions.

2-IV.B Describing the behavior of programs by formal semantics

The purpose of formal semantics is to provide a description of program behaviour. In this section, we
will give an overview of the types of formal semantics used for imperative programming languages, as
presented in ”Sémantiques formelles” | l.

2-IV.B.1 Operational semantics

Operational semantics is based on a formalized abstract machine. It describes the meaning of a pro-
gramming language by specifying the effect of its execution on this abstract machine. This description is
done by formalizing the transition rules between the abstract machine states. Depending on the level of
detail in which transitions are described, there are 2 kinds of operational semantics:

* big-step or natural semantics

e small-step or reduction semantics
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Let us illustrate big-step semantics using inference rules.

Expression evaluation:
oke — 1 okFe— vy eval bin (op, vy, 12) =V

okFeoper—v

oFe—uv; evalun(opv)=v

okFope—v

Instruction evaluation:
okFe—v

obskip=0 51 g:=e=gla— ]

okii=>o0; o1Fix=>0)

oty ia=>0

ot cond— true okij=>0’ ot cond— false oFiy=>0'

o+ if (cond) then i; else i» => ¢’ o+ if (cond) then ij else i» = ¢’

ot cond—true okFi=0 o' Fwhile (cond)i=o" o+ cond— false

o Fwhile (cond) i = o” ot while (cond) i = o

Listing 1 — Big-step semantics inference rules. In this notation, o & e — v means that the value of the expression e in
machine state o is v. 0 & i = o' means that the execution of the instruction i in machine state o transforms it into o’.
ola— v] refers to a machine state similar to o except that the evaluation of a give v. eval_bin and eval_un are functions
that compute the result of binary and unary operations

Let us illustrate small-step semantics using inference rules.

Expression evaluation:
(e1,0) —1 e}, 0) (e2,0) =1 (e},0)

(e1 op es,0) —1 (€] op ex,0) (V1 0pes,0)—1(V) 0pe),0)

eval_bin (op,v;,v2) =v eval_un (op,v)=v

(v1 0p 12,0) —1{V,0) (Op V1,0)—1{V,0)
Instruction evaluation:

(e,0) =+ (V,0) : : (i,0) =1 (', a")
(a:=e,0) > (skip,ala— v]) SKIP;LOY =100 o oy o

(skip,0) = (skip,0)

{cond,o) — . {e,0) {cond, o) — .« {e,0)
(if (cond) then i else iy, 0) = (if (e) then i} else iy,0) <(while (cond) i,o) = (while (e) i,0)

(if (true) then i) else iy, 0) = (i1,0) (if (false)then i else iz, 0) = (i2,0)

(while (true) i,0) =] (i;while (cond) i,0) <(while (false) i,0) = (skip,0)

Listing 2 — Small-step semantics inference rules. In this notation, {e,a) —, {v,0') means that the simplification (or
reduction) of the expression e in machine state o leads to expression or value v and machine state o' in n steps. (i,o) =
(i', 0"y means that the evaluation of the instruction i in machine state o leads to the instruction i’ and machinec’ inn
steps. =, and — . means a finite number of repetitions of an operation.

The main difference between those 2 types is the level of detail in the description. Big step semantics is

simpler to understand. There is a proven equivalence between big-step and small-step semantics (for
programs that terminates).
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2-IV.B.2 Axiomatic semantics

This type of semantics uses sets of logic assertions to describe the behaviour of programs. The evaluation
of instructions affects this set by adding or removing properties. It is an approach suited for writing
proofs on programs. This model does not focus on a precise view of the memory state but only on
properties that can be used for program verification. Let us have an example.

{P}skiplP} {(Pla:=elPra=e}
{PHi{R}  {R}i2{Q}
{P}iy; i2Q}
P=P {P}i{Q} Q'=Q
{P}i{Q}
P=cond=true ({P}ij{Q} P=cond= false {P}i2{Q}
{P}if (cond) then iy else i{Q} {P}if (cond) then i, else i»{Q}
P=cond=true {P}i{R} {Rlwhile (cond) i{Q} P> cond=true {P}i{P} P=cond= false
{Plwhile (cond) i{Q} {Plwhile (cond) i{false} {P}while (cond) i{P}

Listing 3 — Axiomatic semantics inference rules. In this notation {P} denotes a conjunction of assertions. {P}i{Q} denotes
that if P is valid (conjunction is evaluated to true) set of properties, the execution of the instruction i will lead to a set of
properties Q that is valid. {f al se} means inconsistency — for non terminating programs.

2-IV.B.3 Denotational semantics

Denotational semantics is a technique for defining the meaning of programming languages provided
with a mathematical foundation by Dana Scott | ]. At one time called "mathematical seman-
tics," it uses the more abstract mathematical concepts of complete partial orders, continuous functions
and least fixed points. Let us give an example. For that we need to consider 2 functions:

A Expression — Environment — Value function called ¢ (and noted ¢[[e]]lo ) and a Instruction —
Environment — Environment function called A (and noted A[[i]]o). Let us show some rules for this
semantics.

Expression evaluation:
for every literal value v and environment o,¢[[v]lo = v

Yo op e, Ellello =eval_un(op,¢llello)
Yo op ey ez, ¢lle1 op ex]lo = eval_bin(op,¢lle1llo,¢llez]lo)

Instruction evaluation:
Allskipll=id=0c—o0

Alliv; 2]l = Allin]l o Allz2]]

Alli1llo ifélcllo is equal to true

A[[if h ] 1 >l =0 —
[3f (c) then i else L] =0 {A[[ig]]O’ if[[cllo isequal to false

Allwhile (¢) do ill=fixh

where

ht=1if c then (i; t) else skip and fixh=h (fixh)

Listing 4 — Denotational semantics rules. In this notation, ¢ denotes the evaluation of an expression and A refers to the
evaluation of an instruction. fix is the smallest solution of the fixed point equation [ ]
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2-IV.C Formally verified compilers

As software, compilers are computer programs that translate computer code written in one programming
language (the source language) into another language such as binary code (ex: gcc [

1) or other higher level languages (ex: JPT | ). This translation can create
bugs. This reason led researchers to work on the formal verification of compilers.

Compcert [ | is a formally verified optimizing compiler for a large subset of the
ISO C 1999 language, called CompCert C. Formally verified means that this software provides a formal
proof of its correctness by using a tool such as a proof assistant. The backend of Compcert targets
the PowerPC [ ] architecture, a common chip for embedded software, ARM |

1, RISC-V [ ] and x86 [ ] (32 and 64 bits) architectures. Its intended use
is the compilation of life-critical and mission-critical software written in C and meeting high levels of
assurance. Compcert is proven to be exempt from miscompilation issues, that is, the executable code it
produces is proved to behave exactly as specified using formal semantics to describe the behaviour of all
the 9 intermediary languages it manipulates. The architecture of CompCert can be described as follows:

type checking
pull side effects out of expressions

Clight

type elimination; simplification of control

C source
C#minor
external preprocessor
stack allocation
Preprocessed C
Cminor
lexing and parsing (*)
instruction selection, if-conversion
Parse tree
CminorSel
typing and elaboration
construction of a CFG
CompCert CAST

function inlining

y tail call optimization

y constant propagation

* common subexpression elimination
y dead code elimination

y live range splitting

register allocation, spilling, reloading

Asm AST

printing

Asm text

linearization of the CFG
Obiject file

external linker layout of the stack frame

validation by the Valex tool

i
|
|
i
|
|
|
|
|
| external assembler
|
|
|
|
|
i
|
|
|

Executable

generation of Asm code

Not verified yet Formally verified
(*) the parser is formally verified

Figure 2.2 — General structure of the CompCert C compiler
Source: https://compcert.org/man/manual001.html

Regarding this figure, the CompCert compiler can be decomposed into the following phases:
1. Preprocessing: file inclusion, macro expansion, conditional compilation, etc. Currently performed
by invoking an external C preprocessor (not part of the CompCert distribution), which produces

preprocessed C source code.
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2. lexing and parsing: The lexer is not yet verified but the parsing is formally verified using menhir

[ ]

3. type-checking, elaboration, and construction of a CompCert C abstract syntax tree (AST): In this
phase, some simplifications to the original C parse tree are performed to better fit the CompCert C
language and other mere cleanups such as collapsing multiple declarations of the same variable.

4. Verified compilation proper: From the CompCert C AST, the compiler produces an Asm code, going
through 8 intermediate languages and 15 compilation passes. Asm is a language of abstract syntax
for assembly language. The 8 intermediate languages bridge the semantic gap between C and
assembly, progressively exposing an increasingly machine-like view of the program.

5. Production of textual assembly code, followed by assembling and linking. The last 2 parts are made
by external tools (not part of CompCert distribution). Thus, we have no formal guarantees yet, but
the Valex tool, available from AbsInt, provides additional assurance via a posteriori validation of
the executable produced by those external assembler and linker.

One reason why all the phases of CompCert are not formalized and proved correct is that some of
these phases (ex: preprocessing) lack a mathematical specification, making it impossible to state, let
alone prove, a correctness theorem about them. Another reason is that the CompCert effort is focused
on optimizations, which are all part of the verified phase 4.

All intermediate languages are given formal semantics, and each of the transformation passes is proven
to preserve semantics.

The semantic preservation theorem: For all source programs S and compiler-generated code E if
the compiler, applied to the source S, produces the code F without reporting a compile-time error,
then the observable behaviour of F is one of the possible observable behaviours of S.

In CompCert, this theorem has been proved, with the help of the Coq proof assistant, taking S to be
abstract syntax trees for the CompCert C language (after preprocessing, parsing, type-checking and
elaboration), and F to be abstract syntax trees for the assembly-level Asm language (before assembling
and linking).

Elccc -00 Ml CompCert goe -01 geo -03

Execution time
&

fily

qs0rt

fft

shal

aes
almahench
lists
binarytrees
fannkuch
knuclentide
mandelbrot
nhody
nsleve
nsievehits
spectral
vimach
bisect
chomp
perlin
arcode

Lz

l#55
raytracer

Figure 2.3 - Performance of CompCert-generated code relative to GCC 4.1.2-generated code on a Power7 processor. Shorter
is better. The baseline, in blue, is GCC without optimizations. CompCert is in red.
Source: https:/lcompcert.org/man/manual001.html
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Figure 2.3 shows that the code generated by CompCert runs at least twice as fast as the code generated
by GCC without optimizations (gcc -00), and approximately 10% slower than GCC 4 at optimization
level 1 (gcc -0O1), 15% and 20% slower at optimization level 3 (gcc -03). Those results come from a
homemade benchmark mix shown in this figure and executed on a Power7 processor.

There exist other formally verified compilers such as CakeML [ 1, MLCompCert
[ 1, a verified compiler for MiniML, and Vélus | |, a verified compiler for Lustre
[ ]. The last 2 examples are implemented by replacing the CompCert front-end with

suitable front-ends for their languages.
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Chapter 3

Material and method: the DigiSafe®
safety-critical software development process

The challenge of developing safety-critical railway functions in software was met early on with specific
technologies. Opened to the public in 1998, Meteor | | is a driverless system and
the first application of the DigiSafe® software development process. This process ensures that the
executable program will run as defined in its specifications. This assurance is based on the error
detection system described in Section 2-III. The origin of those errors can be in the source code, the
compilers or the processors. The DigiSafe® software development process uses the B-method to build
program specifications and generate source code that meets those specifications, and the Vital Coded
Processor (VCP) technique associated with the DigiSafe® hardware architecture to detect inconsistencies
between the generated source code and the behaviour of the program.

During this thesis, the term safety-critical software will refer to software implemented using the
DigiSafe® software development process. In this chapter, we present a version of the implementation of
this technique as done by Siemens Mobility. It poses the basis of the technical concepts that had to be
taken into account for this research work.

3-1 Implementing vital coded processor

The previous chapter presented the Vital Coded Processor theory, a technique to detect inconsistencies
between source code and program behaviour. During the implementation of this technique, Siemens
engineers wanted to propose transparent management of signatures, meaning that the developer should
not manipulate directly the signature values. To do that, the developers implemented an Ada library
(VCP-lib) that implements the necessary functions for handling vital variables (signatures), then, to
ensure that those functions are used correctly, to forbid the definition and the use of features that
are incompatible with the VCP technique, the developers defined a new language: the Vital Coded
Processor Ada (VCP Ada), that is a subset of Ada [ ]. In this section, we will present more
implementation details. We restricted those details to the required elements needed to understand our
research work.

3-I.A VCPLib

VCP Lib is an Ada file that defines the constructs necessary for making the management of the signatures
of variables transparent. This section can be read in parallel with or after Section 2-1I1.
This library defines 8 basic types:

e FINT: that refers to non-vital 32-bit integers.
* TABLE: an alias for FINT.
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e FBOOL: that refers to non-vital booleans coded in 8-bits.

SINT: that refers to vital integers. This data type can be defined using a record containing two fields:
the functional value (FINT) of the variable and its control part (see Section 2-III.A on page 20).

SBOOL: that refers to vital booleans.

SINT_ARRAY_1: that refers to a 1D-array of SINT equipped with a control part.

SINT_ARRAY_2: that refers to a 2D-array of SINT equipped with a control part.

SBOOL_ARRAY_1: that refers to a 1D-array of SBOOL equipped with a control part.
e SBOOL_ARRAY_2: that refers to a 2D-array of SBOOL equipped with a control part.

Non-vital types are aliases for Ada data-types. For example, FINT is an alias for Integer. The values of
those variables (non-vital values) are not associated with signatures. By convention, non-vital variables
are constant and pre-determinable. This means that the values of such variables can be computed
at compile-time. Vital types are defined as records that have 2 fields: a data field that contains the
functional value of the variable and a sig field that contains the signature (control part) of the variable.
In the current version, the k value (see Section 2-11I.A on page 20) is equal to 48, that is, signature fields
are encoded on 48-bits.

Example: A possible definition for SBOOL can be written as follows

type Sig is mod A; -- 4 is a large prime number lower than 2**48
type SBOOL is record

data : Boolean;

sig: Sig;
end record;

In the current implementation, signatures are computed and stored on the Vital Co-processor, a pro-
cessor that is different from the one that computes the functional values of variables. As a consequence,
the sig field contains the address of the signature value in the Vital Co-processor.

Operations on vital variables have to be controlled because their signatures must be correctly set.
For that reason, VCP Lib overloads usual operators such as addition, provides procedures to initialize
variables and interacts with arrays and hardware. The most important functions and procedures defined
in this library are:

e assign: is used to assign the value of a variable to another (signature changes).

* begin_loop: is used to perform compensations (see the next paragraph or Section 2-1II1.C) for
while instructions. It takes an integer as parameter. This integer is the pre-determinable and
unique identifier of the conditional branch in the whole program.

* converge: is used to perform compensations for if/else and case instructions. It takes an integer
as parameter. This integer is the pre-determinable and unique identifier of the conditional branch
in the whole program.

e diff: is used to test non-equality for vital variables. It also intervenes in compensations.
* div2: is used for right shifting a vital variable.
e is_valid: returns true if and only if there is no problem found in the Vital Co-processor.

* hard_input_valid: returns true if and only if the last reading on hardware is returned a valid
result.
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e end_iteration: is used to report the end of a while loop iteration to the Vital Co-processor.

* end_branch: is used to report the end of an if/else or case branch to the Vital Co-processor. This
procedure takes the identifier of that branch (an integer) as parameter.

* equal: is used to test equality for vital variables. This function returns a boolean: true for equality
and false for non-equality.

e failure_alarm: is used to put the system in a safe state (a fail-safe mechanism). In operation, this
causes an emergency brake of the train.

e init: initializes a vital variable with or without a value. When the variable is an array, every item of
the array is initialized with the parameter value.

e read: is used to access a vital array.

e read_hard_input: is used to read data from an input device.

* write: is used to modify an item in a vital array.

e write_hard_output: is used to write data on an output device.

VCP Lib also overwrites the usual Ada boolean and arithmetic operators to allow their use with vital
variables and values.

For a reminder, compensations are performed as follows:

1. The tracer is updated regarding the result of the branch (or loop) condition (computed using VCP
Lib functions such as diff, equal).

2. According to the branch taken or the number of iterations in the loop, compensations have to be
performed.

This is the reason why, VCP lib defines functions and operators, to notify the selected branch
(end_branch) or the number of iterations (end_iteration) and to execute the updates of signatures
(converge for if-case instructions, begin_loop for loops). More precisely :

e end_branch: All sub-branches of a conditional branch are enumerated (a different positive number
for each branch of a given if/ case instruction). The end_branch function is in charge of stating the
branch taken in order to use the correct constants for convergence. This function call must be the
last instruction of any branch instructions. In while loop cases, ends of iterations are notified by
the end_iteration instruction. end_iteration does not take parameters and triggers signature
modifications (see Section 2-11I.C.2).

e converge: A function that is in charge of performing convergence. All the compensations tables
of the program are generated by the Signature Predetermination Tool (SPT), described in Section
3-1.C.1, and identified by a unique integer that is associated with a specific if/case instruction.
This integer is called table number and must be a pre-determinable constant as parameter. The
converge function takes this number as input and performs the convergence. This function call
must be the next instruction executed after end_branch instruction. begin_loop is very similar to
converge except that this instruction comes before the loop instruction.

* the use of continue or break instruction is forbidden. In fact, those instructions can impact the
execution flow. Their use could cause an error in the value of the tracer. Their semantics can be
simulated using if-else branches and additional variables.

* the use of exceptions is forbidden because of their impact on the execution flow. VCP Lib provides a
procedure called failure_alarm to raise an uncatchable exception in a vital context. This means
that this instruction will make sure that the whole system will enter a safety mode. For example, for
train autopilot software, this means emergency brake associated with notifications.
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The error detection, tracer and dynamic signature management are automatically performed by the
Vital Co-processor and triggered by the VCP Lib functions. To make sure that the VCP Lib procedures
are correctly used, to prevent the use of forbidden features (use of exceptions, break and continue
instructions) and contribute to make signature management more transparent, Siemens researchers
suggested creating a programming language VCP Ada that is a subset of Ada.

3-1.B VCP Ada

This section describes the syntax of VCP Ada, a subset of Ada95 that contributes to increase the trans-
parency of VCP signature details for programmers. This description will be done using a variant of
Backus-Naur Form (BNF) | .

3-1.B.1 Notation description

The notation we are going to use to describe our language (context-free grammar [ 1) can be
summarized as follows:

* <elem> refers to a non-terminal symbol whose name is elem and can be interpreted as a syntactic
category.

e <elem>::= symbs indicates that symbs is the definition of elem.

* Quoted symbols are terminal. So, any character, including one used in our description notation,
can be defined as a terminal symbol of the language being defined.

{elem} indicates a finite repetition (0 to n) of the symbol elem.

[elem] indicates that elem is optional (0 to 1 repetition).

elem,; | elem, indicates alternative between elem; and elem,

elem; elem; indicates concatenation of elem, followed by elem;,

/*comments*/ indicates comments

3-1.B.2 Accepted identifiers and literals

Identifiers indicate the name of variables, functions and libraries. As in Ada, identifiers are case-
insensitive. There are forbidden keywords that must be recognized and rejected by VCP Ada: abort
accept all declare delay do entry exception exit function generic goto new raise return reverse select
separate task terminate. This forbids the declaration and the raise of exceptions, the use of break
instruction (exit statement), multi-threading and other features of Ada that can be incompatible with
this VCP implementation.

Accepted literals are booleans and integers. The real numbers and characters are not implemented in
VCP Ada and consequently, their use is forbidden. This is due to the fact that the VCP technique imple-
mented in the Siemens development process is not designed to support real/floating point numbers
because it is based on modular arithmetic.

3-1.B.3 Syntax description

3-1.B.3.1 Item names and expressions
Names are used to designate variables, functions or packages but also elements inside record variables
or packages (to access package variables or functions).

<name> = <identifier> {‘.¢ <identifier>}
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In VCP Ada, there are 2 types of variables: vital ones, and non-vital ones. Non-vital variables are variables
whose value must be pre-determinable — their values are concrete numbers that can be evaluated at
compile-time.

Function and procedure expression parameters can be vital or non-vital values. Their syntax is defined
as follows:

<expression> = <relation> {‘and‘ <relation>}

| <relation> {‘or¢ <relation>}

| <relation> {‘xor‘¢ <relation>}
<relation> = <simple-ex> [<compare-op> <simple-ex>]

<compare-op> €=¢

¢ /=t

(<(

(<=(

(>(

(>=(

[‘-¢] <term> {<add-or-minus> <term>}
<factor> {<other-binary-op> <factor>}
<primary> [‘**‘ <primary>]

‘not‘ <primary>

‘abs‘ <primary>

<integer>

<boolean>

<name>

‘(¢ <expression> ¢)°

(*(

(/(

‘mod ‘¢

‘rem®

(+(

¢ ¢

<simple-ex>
<term>
<factor>

<primary>

<other-binary-op>

<add-or-minus>

Examples:
The following function calls are valid:

* proc(5);
e proc( froid and ensoleille or chaud );
e proc(a**(b**c) );
The following procedure calls that are valid in Ada are not accepted:
e proc(f(3));
¢ proc(-4.0+j);

The first instruction is not valid because of the use of a function call as a procedure argument. The
second one is invalid because of the use of real number literal (4.0).

A function expression parameter must either be pre-determinable (for non-vital values) or composed
solely of a variable name (for vital values). To make sure that assignments and condition functions from
VCP Lib are correctly used, VCP Ada defines the following objects:
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<lit-or-var>

<vital-var>
<vital-logicop>

<vital-compareop>

<cond-exp>

<assign-exp>

<while-cond>

<if-cond>

<integer>
<boolean>
<name>
<name>
‘and*
(Or(

(<{

(gt

(>(

¢
‘not¢ <vital-var>

<vital-var> <vital-compareop> <lit-or-var>
<vital-var> <vital-logicop> <vital-var>
‘equal® ‘(¢ <vital-var>‘,‘ <lit-or-var> )¢
‘diff¢ (¢ <vital-var>‘,‘ <lit-or-var> )¢
¢-¢ <vital-var>
<vital-var> ‘+°¢
<vital-var> ‘x*°¢

<vital-var> ‘-°¢

<lit-or-var> ‘-°¢
<cond-exp>
‘div2¢ ‘(¢ <vital-var>‘,‘ <expression> )¢
‘assign‘ ‘(¢ <lit-or-var> )¢

‘read® ‘(¢ <vital-var>‘,‘ <vital-var> [¢,
‘w¢ ‘(¢ <vital-var> ‘)¢

w ‘(¢ <cond-exp> ‘)¢

<cond-exp>

‘¢ (¢ <vital-var> ‘)¢
‘hard_input_valid®

‘is_valid‘

<lit-or-var>
<lit-or-var>
<lit-or-var>

<vital-var>

[4

(4

()(

<name>]

<vital-var> refers to aname that binds a vital variable (see Section 3-1.A for more details). <assign-exp>
refers to assignment expression. <while-cond> and <if-cond> refer to the while and if instruction
conditions. Generally, a vital expression must contain at least the name of a vital variable. <div2> refers
to right-shift, <read> is used to get an item from a vital array, hard_input_valid and is_valid are
functions that allow to check if the last interaction with hardware went correctly. All the operators and
functions used in this description are defined or overloaded in VCP Lib.
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3-1.B.3.2 Procedure call and instructions

Procedure calls and instructions are defined as follows:
<proc-call> <user-proc>
<vcp-proc>
<name> [¢(‘<params>‘)°‘ ]

<user-proc>

<params> = <param> {‘, ‘<param> }
<param> ‘= <expression>
| <string>

‘begin_loop‘ ‘(‘<expression>‘)°‘

‘converge‘ ‘(‘<expression>‘)*

‘init¢ ‘(‘<vital-var> [, ‘<expression>] ‘)¢

‘failuref

‘end_iteration

‘end_branch® ‘(‘<expression>‘)°¢

‘write‘ ‘(¢ <vital-var>‘, ‘<name>°‘, ‘<name>‘,¢ [, ‘<name>] ¢)°¢

‘write_hard_output® ‘(¢ <vital-var>‘,‘ <name>‘,‘ <expression>‘,‘ <expression>‘)°¢
‘read_hard_input® (‘¢ <vital-var>‘, ‘<name>‘,‘ <expression>‘,‘ <expression> ¢)°¢

‘nullf 4;1

<vital-var> ‘:=¢ <assign-exp> ‘;

‘if¢ <if-cond> ‘then‘ <insts> {<else-if>} ‘else‘ <insts> ‘end‘ ‘if¢ ¢;°¢

‘case‘ ‘c‘ ‘(‘<vital-var>‘)‘ {<case-v>} ‘when‘ ‘others‘ ‘=>¢ <insts> ‘end‘ ‘case‘ ¢;°¢
‘while <while-cond> ‘loop‘ <insts> ‘end‘ ‘loop‘ ¢;°¢
<proc-call> ;¢

‘elsif¢ <if-cond> ‘then‘ <insts>

‘when‘ <simple-ex> ‘=>‘ <insts>

<inst> {<inst>}

<vcp-proc>

<inst>
<

<else-if>
<case-v>
<insts>

The write procedure is used to modify an item of 1D and 2D arrays. write_hard_output and
read_hard_input are used to make interactions with other devices. The init procedure is used to
initialize vital variables. The failure procedure is used to signal a problem: in that case, the system
must enter safe mode. More technical details about their semantics can be found in Chapter 5. All
the functions defined by the <vcp-proc> non-terminal symbol such as end_branch or converge are
procedures defined in VCP lib. Strings are only usable as function parameters.

In if-else, the else part is mandatory. Similarly, the default part is mandatory for case instruction. By
convention, the values of <case-v> (the value after when keyword) cover all the possible values of the
case parameter (the variable used c function call after case keyword). As a consequence, the default
branch must never be taken during the program execution. If this branch is taken, then it means an error
is detected. In that branch, the developer can manually report an error by calling the failure procedure.
If no error is reported, then the program enters safety mode and reports an out-of-code error at the end
of the default branch.

As already mentioned in Section 3-1.A, there are additional rules about end_branch and converge
procedure calls:

* end_branch must be the last instruction of each of the branches of an if/case instruction. This
procedure takes an argument that is the identifier of the branch in the instruction. This argument’s
value must be pre-determinable and start from 0 for the first branch to n-1 for the last branch. The
end_iteration procedure must be the last instruction of a while instruction.

* converge must be the first instruction executed after a call to an end_branch instruction. This
procedure also takes an argument that is the identifier of the conditional branch instruction (if-else,
case) in the whole program. This identifier must be unique. begin_loop is similar to converge but
it must be the last instruction before a while instruction. Arguments used in converge and begin_-
loop must be pre-determinable and unique. This uniqueness allows to identify the compensation
table to use.
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Example:

if t(a) then

a := assign(b);
end_branch(0);
else

begin_loop(0);
while w( ¢c.d < b ) loop
proc(c.d);
c.d :=c.d + 1;
end_iteration;
end loop;
a := assign(d);
end_branch(1);
end if;
converge (1)

b := assign(e);

Remarks:

if t(a) then
a := assign(b);
else
while w( ¢.d < b ) loop
proc(c.d);
c.d :=c.d + 1;
end loop;
a := assign(d);
end if;

b := assign(e);

Figure 3.1 — Accepted vs. rejected code

* The restriction about the uniqueness is also valid for function calls. For example, if a function
contains a converge instruction with a constant parameter like converge (10), a call to this func-
tion must not appear in two different lines of code. In fact, during the execution this would cause
the use of the same compensation table for two different positions, causing an error in signature

management.

* From the point of view of a compiler, instructions are seen as sequences of procedure calls that
are either defined in VCP Lib or defined by developers. As most of those procedures are written
in different files, most compilers are not good at optimizing such programs because they do not
implement the semantics of VCP Lib procedures and their optimization phase comes after the
linking phase, the phase that allows to have access to the definition of those procedures.

3-1.B.3.3 Variables and procedures
In VCP Ada, only constant variables must be defined at declaration. Only records and subtypes can be
declared by the user. Type and variable declarations can be described as follows:

<id>
<var-decl>

<const-decl>
<non-const-decl>
<record-decl>
<rec-comp>
<subtype-decl>
<type-designator>

<identifier>

<const-decl>

<non-const-decl>

<name> ‘:¢ ‘constant‘ <name> ‘:=° <expression> ¢;
<name> ‘:¢ <type-designator> ¢;°¢

‘type¢ <id> ‘is‘ ‘record‘ <rec-comp> ‘end‘ ‘record‘ ¢;°¢
<id> ‘:¢ <name> ¢;°¢ {<id> ‘:¢ <name> ‘;‘}

‘subtype‘ <id> ‘is‘ <type-designator> ;¢

<name>

<name> ‘(¢ <expression> ‘)¢

<name> ‘(¢ <expression> ¢,°¢

[4

1D array

<expression> ¢)°¢ 2D array

In VCP Ada, users can only define procedures (subprograms without return values). To modify values
in procedures, developers can use parameter modes as defined in Ada. renames keyword is used only to
rename procedures. The syntax used to declare and define procedures is defined as follows:
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<proc-renm>
<arg-desc>

<args-desc>
<proc-decl>

‘procedure‘ <id> [‘(‘<args-desc>‘)‘] ‘renames‘ <name> ;¢
<id> ‘:‘ [mode] <name>
<arg-desc> {¢,¢ <arg-desc>}

‘procedure‘ <id> [‘(‘<args-desc>¢)‘] ¢;°¢

<proc-def> ‘procedure‘ <id> [‘(‘<args-desc>‘)‘] ‘is‘ {<var-decl>} ‘begin‘ <insts> ‘end‘ <id> ‘;°¢
<mode> ‘in®

‘in¢ ‘out

‘out’

3-1.B.4 Compilation unit
The syntax of a VCP Ada file is defined as follows:

{<with-statement>} <unit> AST
‘with¢ <id> {¢,¢ <id>}‘;°

<proc-def> entrypoint
‘package‘ <id> ‘is¢ {<decl-d>} ‘end‘ <id> ;¢ header
‘package‘ ‘body‘ <id> ‘is¢ { <b-1> } { <b-2> } ‘end‘ <id> ‘;‘ implementation
<var-decl>

<proc-decl>

<record-decl>

<subtype-decl>

<proc-renm>

<var-decl>

<record-decl>

<subtype-decl>

<proc-decl>

<proc-renm>

<proc-def>

<comp>
<with-statement>
<unit>

<decl-d>

<b-1>

<b-2>

3-1.C Compiling and executing VCP Ada

This section defines the DigiSafe® XME advanced vital computer, a set of software and hardware that
implements the VCP technique.

3-1.C.1 Compilation

The last section defined the syntax of VCP Ada using a context free grammar. However, this grammar
was not sufficient to control all the rules of the VCP Ada language. For example, this grammar does not
control if a variable is pre-determinable or not or if there exist different calls to the converge procedure
with the same parameter (see Section 3-1.A). Performing such verifications is under the responsibility of
the Signature Predetermination Tool (SPT). In addition to that, the SPT is in charge of computing and
storing the compensation and all the other necessary data to perform the error detection handled of the
VCP technique in a file called a trace.

After the SPT processing, the VCP Ada code is compiled by an Ada compiler, GNAT |
], to produce an object file that the linker will associate with the trace to build an executable.
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Figure 3.2 - VCP Compilation

3-1.C.2 Execution

The execution of VCP Ada safety-critical software is done using 2 processors: a standard processor that
is in charge of computing the functional values of variables and a calculation co-processor (the vital
co-processor) that handles the computation of control parts. In addition to that, there is a dynamic
controller that is in charge of result checks. During the program execution, the standard processor and
the vital co-processor send a trace of their execution (instruction code, parameter addresses, calculation
results and signature) to a dynamic controller that performs the runtime signature checks (comparing
the received results to the expected one, computed by the SPT) and raises out-of-code error.

This compilation and execution organisation makes the production system non-dependent on
compiler and linker errors.

3-1.C.3 Safety guarantees and Certification

Those tools and architecture allow the detection of various kinds of errors: incorrect execution flows
(incorrectly incremented program counter, error of not entering a branch/loop or exiting it prematurely,
error of (not) calling a function), incorrect arithmetical or logical calculations (incorrect operand,
incorrect operator), error of functional and signature values being corrupted in RAM. During the
program execution, the system relies on the vital co-processor to compute signatures and on a dynamic
controller that will compare them to those computed offline by the SPT. It also relies on the VCP Ada
language to restrict program instructions to arithmetical and logical calculation, branch, loop and
function call instructions.

The absence of detection means that the computed signatures are equal to those computed by the
SPT and that the program instructions have been executed in the right order. It also means that the right
calculation instruction is sent to the processor. All this ensures that the result is very probably correct.

Siemens researchers have proven that the probability P, of not detecting an error is linked to the
size of the coding k (as A, the large prime chosen randomly is lower than 25): P, = 1/2% = 1/248 =
3.55 x 1071°. The combination of the failure rate of each piece of equipment leads to a probability of
failure lower than 10~° per hour for the whole system. This safety level achievement is better than the
target of 1078 dangerous failures per hour, the level required for SIL4 systems.

The latest version of the DigiSafe® XME advanced vital computer is SIL4 certified by TUV |

|, independent service companies from Germany and Austria that test, inspect and certify technical
systems, facilities and objects of all kinds in order to minimize hazards and prevent damage.

The validation approach for DigiSafe® XME advanced vital computer is a different one from conven-
tional approaches, as safety is independent of the hardware used (microprocessor, memories, trans-
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mission media, bus...), of the computer system platform (real-time monitor), the production system
(compiler, link editor). The DigiSafe® XME computer is validated by simply analyzing its specifications
and the VHDL implementation of the co-processor and dynamic controller tasks. As vital processing
functions are isolated in specific hardware (dynamic controller, coprocessor), computer validation is
restricted to the analysis of this equipment.

3-II Filling the gaps in the development process

The previous section details the implementation of the VCP technique. This technique allows to
detect incoherences between the VCP Ada source code and its execution. However, the VCP technique
cannot detect design errors caused by the source code. This is the reason that motivated the use of
the B-method | ]. As a reminder, the B method allows to write and verify (by
using a proof assistant) formal specifications of programs and then, by successive verified refinements,
provide verified implementations of those programs. This implementation is proven to conform to the
initial specification and is written in BO notation, a notation that is close to usual imperative language
notations.
At this point, the mentioned technologies ensure:

* the coherence of a specification and between a specification and its implementation written in BO
¢ the coherence between VCP Ada code and its execution

The remaining problem is to ensure the correctness of the transformation from B0 code to VCP Ada
code. To overcome this problem, Siemens engineers applied the double system principle also called
N version programming or design diversity: 2 BO-to-VCP Ada translators have been developed fully
redundantly (teams, design and programming language were different) on a common specification.

Here are some details of the specification of those translators:
e For any B implementation file, generated 2 Ada files:

Adaheader (.ads): that contains variables, constants and procedure declarations
Ada implementation (.adb): that contains variables and procedure definitions

¢ Constant variables are defined in the Ada header.
* Non-constant variables are vital variables.

* Operations in BO are transformed into procedures with similar parameter types and modes — in
(passing by copy) for operation input or in out (passing by reference) for operation output.

e Instruction such as end_branch, end_iteration, converge and begin_loop are added automat-
ically (during the BO-to-VCP Ada translation) to respect the VCP Ada syntax.
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With this double system, the whole development process can be described as follows:
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Figure 3.3 - DigiSafe® Development process

As the 2 translators are supposed to generate similar codes, they are interchangeable. If one of them
produces a different piece of code, the trace generated by the SPT and the execution values will be
different and lead to an out-of-code error. This development and execution process allows to produce
SIL4 software.

3-II1 Conclusion

This chapter described the Siemens development process allowing to produce the programs that this
thesis aims to optimize. Regarding that process, there can be various possibilities to use for such
optimizations. The next chapter focuses on the study of those possibilities and justifies the solution we
chose.
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Chapter 4

Exploring the optimization possibilities

In the previous chapter, we presented a detailed definition of the safety-critical programs we will study
and their development process. As a reminder, this development process starts with specifications —
B-machines - of the program to implement. Those abstract specifications are successively refined into
more concrete descriptions of the program called B-implementations. Those refinements are proven to
be correct regarding the initial specifications thanks to formal proofs. The program is then translated
into VCP Ada, a subset of Ada, that implements the vital coded processor principles. This code is then
verified and compiled into executables. Optimizations can be accomplished at different levels (source
code, intermediate representation) and by different parties (developer, compiler, optimizer). In this
chapter, we will present the main levels, types and scopes of optimizations, and justify why optimizing
VCP Ada code is the best optimization option.

4-1 Levels of optimization

In this section, we reuse the abstraction levels identified by Falk and Marwedel [

| and their conclusion that massive improvements are achievable when considering a very high
level of abstraction for the application of optimization techniques. It describes 4 abstraction levels of
code optimization (from high to low):

1. Description or design optimization: At this level, optimizations are focused on design choices. The
design may be optimized to make better use of the available resources, given goals, constraints,
and expected use/load. The choices made in this part of the development have the most significant
impacts on the final system performance. The research(ers) showed that optimizations at this level
could lead to executing up to 20 times faster. This kind of optimization is done by the system or
software top-level architect designer.

2. Algorithm and data type selection: For a given design, there may exist many algorithms and data
structures that allow to implement a system that executes. Choosing a more efficient algorithm
could reduce considerably the execution time.Those choices are made by the developer.

3. Source code optimization: Beyond general algorithms and their implementation, concrete source
code level choices can make a significant difference. For example, on early C compilers, while(1)
was slower than for(;;) for an unconditional loop, because while(1) evaluated 1 and then had a
conditional jump which tested if it was true, while for (;;) had an unconditional jump. Some
optimizations (such as this one) can nowadays be performed by optimizing compilers.

4. Compiler optimization: This kind of optimization refers to those integrated into today’s state-of-the-
art compilers. The usual ones are function inlining, tail call optimization, register allocation, dead
code and common sub-expression elimination. These optimizations can be divided into processor-
specific and processor-independent techniques as explained in more detail in the following section.
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As found by the authors, or just following common sense, performing optimizations at higher levels
allows to have greater impacts on the final performances. In the next section, we will present the main
constraints from the point of view of this study and determine the levels of optimization that can be
performed.

4-11 Presenting the possibilities

The scope of this research is to optimize programs generated using the DigiSafe® development process.
Those programs can be executed on different hardware and implement different algorithms and are
used for widely different purposes. For instance, some programs are used for the way-side equipment or
the landing doors, while others are used to control the speed onboard the train. The techniques used to
perform optimizations at design or algorithm level can differ a lot from one program to another and
requires human actions. To perform optimizations automatically (without requiring human action) and
to find techniques that can be used to optimize the various programs implemented using the DigiSafe®
development process, we will work on lower levels (level 3 and 4) and suggest a modification of the
development process.

However, the DigiSafe® development process is certified SIL4, that is it ensures that hazardous events
are made "impossible”. As a reminder, this toolchain can be divided into 6 types regarding their features
(from higher to lower level):

e B-method components: that verify the consistency of B elements (machines, refinements, imple-
mentations and proofs),

* B0 to VCP Ada translators: that aim to convert B implementations into VCP Ada code,

* Signature Predetermination tool: that reads VCP Ada code to extract and generate compensation
tables and signatures necessary for VCP computations and store them in object code,

e GNAT compiler: that compiles VCP Ada code into object code,
e linker: that transforms all the generated object codes into an executable file.

Modifying this development process could create a vulnerability in the generated software. This
means that any change must be proposed with correctness proof ensuring that the change will not create
a safety issue. For that reason, optimization is restricted to the addition or replacement of components
by formally verified optimizing software in the current toolchain.

Replacing the SPT will not have any impact on the execution time as this tool just computes expected
signatures offline. Replacing the 2 translators with a unique formally verified optimizing translator
requires modifying the technical specifications of BO to VCP Ada translation and solving problems that
are similar to solutions based on B implementation optimization and those based on VCP Ada source
code optimization. Generally, we found out that it was simpler, regarding the proof and testing efforts,
to focus our attention on optimizers whose input language is identical to their output language.

In the following subsections, we will explore the optimization possibilities.

4-II.A Optimizing programs by changing B models

As areminder, B codes are divided into 3 categories: B machines, B refinements, and B implementations.
To those types of files, we can also add B proofs which are the formal proofs of machine-refinement,
refinement-refinement, and refinement-implementation consistency. Optimizing B code would come
with the following questions:

1. When optimizing B machines, how can we prove that 2 machines, the non-optimized one and the
optimized one, are equivalent?
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2. When optimizing B refinements and implementations, how can we automatically generate consis-
tency proofs for the optimized B-refinements? Can software modify the consistency proofs of the
non-optimized refinements to obtain consistency proofs for the optimized ones?

3. How difficult would it be for developers to maintain those proof reparations or generation tools?

During our exploration, we noticed that the equivalence between B machines can be implemented
and proven by applying the technique used in the CompCert project: describing formal semantics and
using it to prove semantic equivalence (see chapter 2 for more details). The main problem is that a
change in a machine can invalidate the current proofs, refinements and implementation. So, trying this
solution requires propagating the changes performed in the machines or refinements to all the objects
(refinements, implementations and proofs) that depend on them. Modifications in implementation
files imply a modification of their consistency proofs. Works related to proof repair | ,

| have been done in formal proof assistants such as Coq, but nothing has been done for B
models.

4-11.B VCP Ada code optimization

As areminder, VCP Adais a subset of Ada that is designed by Siemens engineers for Vital Coded Processor
programming. It is the second language used in the DigiSafe® development process and the one that is
compiled to generate an executable. Consequently, this code has a direct impact on the execution time.
Optimizing VCP Ada code would come with the following questions:

1. Are there effective optimizations — not already performed by the compiler?
2. How can we prove the correctness of those optimizations?

In a nutshell, performing formally verified optimizations of VCP Ada code refers to building a formally
verified VCP Adato VCP Ada compiler. The CompCert experience provides materials for this kind of
work. The main problem would be to find effective optimizations, as the B-to-Ada transcoder and the
compiler are already designed to perform some.

4-11.C Compiler optimization

Compiler optimization consists in changing the optimization flags in the current compiler or using a
more efficient one. The main problem is that VCP Ada is implemented to make vital coded computation
transparent for the developer. This has an impact on the source code where most instructions are
external function calls. So, except optimizations that are relative to constant values such as constant
propagation and constant expression simplification, the compiler has not enough visibility to make
efficient optimizations. In addition, some optimizations such as those that change the order of instruc-
tions can cause inconsistencies between the behaviour of the compiled program and the signatures
generated by the SPT.

However, it is possible to replace GNAT with CompCert. To do that, we can write a VCP Ada front-end

for CompCert. Similar projects such as MLCompCert [ 1, a verified compiler for MiniML
have been implemented. The sparkformal project [ ] on the formal verification of Ada
and Spark [ ] provides a formally verified semantics that allows reading the abstract syntax

tree produced by the GNAT compiler frontend and checking that the equivalent generated abstract
syntax tree (AST) in Coq was well-formed and had the desired run-time checks. Building a formally
verified function that transforms this Coq AST into data structures that CompCert can process would
lead to a formally verified compiler that can be used to replace GNAT.

Furthermore, the current development process does not require a verified compiler that protects
from compiler errors. However, a formally verified compiler ensures that no error due to miscompilation
will be detected.
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4-11.D Comparing the different possibilities

According to the levels of optimization description, higher optimization levels have more impact on
the execution time of executable programs. So, by order of impact on the execution time, B model
modifications come first, then VCP Ada optimization and finally compiler optimization. However, only
B implementations have a direct impact on the execution time — these codes are the ones translated to
VCP Ada - but their modification still requires proof repairs. VCP Ada presents similar opportunities
except that it allows more manipulations relative to VCP Lib function semantics.

In addition, performing optimizations on VCP Ada source code provides other advantages:

» files can be treated stand-alone: Ada code is modular, separated into semantically significant units.
Consequently, we do not have to propagate optimizations to other files.

e correctness proofs have to be done only for the optimizers.

e semantics preservation relies on unique formal semantics instead of using one semantics for the
source and another semantics for the target language (and for all the intermediate languages). For
instance, the Compcert project implemented 8 formal semantics for each of the 10 intermediary
languages it manipulates.

* the impact of an optimization can be easily evaluated: benchmark on a source code where opti-
mizations are made by hand

e optimizations are human-readable and human-understandable

Compiler optimizations appear to be less efficient that source code optimization regarding its compi-
lation level and the visibility limit due to VCP Lib implementation. So, VCP Ada source code optimization
appears to be more strategic because of its abstraction level and its implementation difficulty.

4-1I1 Conclusion

This chapter studied the optimization possibilities regarding the Siemens development process. It also
showed that VCP Ada source code optimization appears to be the most strategic option for programs
implemented using that Siemens development process. As this optimization must conserve the safety
guarantees that the Siemens development process provides, we decided to implement a VCP Ada to VCP
Ada formally verified compiler. According to the research on compiler design |

], this implementation implies:

1. Alexer implementation to generate a token stream from the input source code

2. A parser implementation to generate an abstract syntax tree (AST) of the source code
3. Optimizers to perform changes on the AST

4. A pretty printer to transform the AST into VCP Ada source file

There exist techniques and tools to formally verify the parser and optimizers. At the beginning of our
research, no tool was implemented to verify lexers. In the next chapter, we will present our approach
to secure lexers and how to combine them with formally verified parsers to build verified front-ends.
Chapter 6 presents the formal semantics of VCP Ada and the semantic preservation definition that is
used to prove the correctness of the middle-end described in Chapter 7. The pretty printer is presented
in Chapter 8.
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Chapter 5

Securing the front-end

A compiler consists of a sequence of phases going from lexical analysis to code generation. Its formal
verification includes the formal verification of every component of the tool-chain. This chapter focuses
on the front-end that is made up of 2 tools: a lexer and a parser. This chapter first presents our
contribution to lexer formal verification and how we combined it with menbhir, a verified parser generator
[ ], to build a verified compiler front-end.

5-1 Generating formally verified lexers

Lexing is one of the first components in compilers and other language processing tools. Combined with
parsers, lexers whose goal is to perform lexical analysis, help to transform input texts into structured
data, usually abstract syntax trees. The theoretical foundations of lexing are quite mature today and
there exist sophisticated tools, libraries and generators to help in implementing efficient lexers.

The issue this section focuses on is the correctness of lexical analysis: how can we prove that lexer
behavior meets its specifications? How can we have a formal guarantee that a lexer generator generates
a lexer that respects the input specification?

This section aims to contribute to the end-to-end verification of compilers by presenting an evolu-
tion of the implementation of a realistic formally verified lexer generator called CoqLex [

1. This lexer generator, based on an existing Coq implementation of Brzozowski derivatives
[ ], is intended to be user-friendly with usage similar to ocamllex [ 1.

5-1.A Background

Lexical analysis, lexing, or tokenization is the process of converting a sequence of characters into a
sequence of tokens (strings with an assigned and thus identified meaning). A program that performs
lexical analysis may be termed a lexer, tokenizer, or scanner, although scanner is also a term for the first
stage of a lexer. This tokenizer is usually the first tool of compiler tool-chains and combined with parsers,
it helps to analyze the syntax of programming languages, web pages, and so forth. Most generators such
as lex/flex [ ] and ocamllex produce lexers from a specification essentially comprised
of lexical rules that are sets of regular expressions | , ] also called
regexp or regex with associated semantic actions.

In this section, we define and formalize regexps made from Brzozowski derivatives, lexical rules and
their interpretation.

5-1.A.1 Regular expression

Regular expressions [ , | (shortened as regex or regexp) refer to
search patterns that can recognize a set of string characters called a language. They appeared with

45



CHAPTER 5. SECURING THE FRONT-END

the formalization of the description of a regular language [ | and are used to provide lexer
specifications.

Given an alphabet (set of symbols or characters) X, the symbol € that refers to the empty string,
the operator + that refers to string concatenation, the notation s” (with n € N) that refers to the
concatenation of n copies of the string s and the notation L(r) that refers to the language described by
the regexp r, we can provide an inductive definition of regexp constructions as described in figure 5.1.

Using all the notations above, we say that a regular expression r matches a string s if s € L(r). Similarly,
when s ¢ L(r) we say that r does not match s.

regex:=
Sy The empty regexp
L@)=0
ler The empty string regexp
L(er) = {e}
| [[al] The one-symbol regexp (a € X)
L([[a])) = {a}

| e + e, The alternative
L(e1 +e3) = L(e1) U L(er)
|e1-e;  The concatenation
L(e1 - e2) = {p1+ p2lp1 € L(e1) A p2 € L(ez)}
The Kleene star
Le*) =UpenL(e)"

Figure 5.1 — Definition of regular expressions associated with the language they describe. Variables e e, and e, are regular
expressions. The symbol {a} denotes the set containing a unique string that is made up of a unique symbol which is a. The
symbol ¢ denotes the empty set and the operation U denotes the set union.

5-1.A.2 Thelongest match and the priority principle

In most lexer generators, lexers are specified using a set of rules. Each rule is composed of two elements:

aregex and a semantic action. During lexical analysis, the specified lexer has to choose the semantic

action to perform. This choice (the election) is made using the longest match and the priority rules.
The longest match principle uses the concepts of string prefix and score.

prefix: A string p is said to be a prefix of a string s if and only if there exists a string s’ such that
s = p+ s'. For example ¢ is a prefix of any string.

score: Given a regexp r, a string s and a natural number n, we say that the score of r on s
is n (we note S(r, s) = n) if and only if the length of longest prefix of s that r can match is
n. For example, the score of [[a]] * in ‘aabaaaa‘ is 2 as the longest prefix of ‘aabaaaa‘ that
[[all * can match is ‘aa‘ whose length is 2. The score of [[a]] * in ‘cba‘ is 0 because [[a]] * can
match €, which is a prefix whose length is 0. There exist cases where there is no score (e.g:
S([lall, ‘bac)). In that case, we note S(r, §) = —oc0.

In a nutshell, the longest match principle says that, given an ordered list of lexical rules /, and a string
s, the semantic action to perform is the one associated with the regex that has the highest score on s.
There exist situations where more than one lexical rule can have the highest score. In this case, the
priority rule applies. This rule says that in those cases, the semantic action to perform is the one that
comes firstin [, between those that have the highest score. There exist cases where there is no score
for the input string (e.g when no prefix of the input string can be matched by the regexps of the lexer
specification rules). In those cases, the lexical analysis cannot analyse the input text.

Ocamllex also provides the shortest match principle that is the opposite of the longest match rule:
this principle selects the semantic action that is associated with the first regex that matches the shortest
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prefix of the input string. Ocamllex also defines a special rule called the EOF rule that is elected regardless
of the election principle (longest or shortest match) when the input text is empty.
Coqlex provides constructions for the EOF rule, the longest and shortest match principle.

5-1.B Representing a lexer in Coq

From a functional point of view, lexers are in charge of producing tokens (a user-defined type that we
will note T) from a text (string). A natural type would be

lexer(T) := string -> list T

Instead of processing a list of tokens, most parsers like ocamlyacc [ ] process tokens one by
one, and call lexers. A function that performs one step of lexical analysis (lexing) consumes a string and
returns a token and the remaining string. The type of such a function is

lex1(T) := string -> T * string

Lexing can fail for various reasons. In case of failure, lexers should provide useful error messages. For
that reason, we defined a position data type and an error data type to encapsulate the lexing result. A
function that performs one step of lexing becomes a function that takes an input string, a start position
and in case of success, returns a token, the remaining string and the end position. Consequently, the
type of one step of lexing becomes

lex1(T) := string ->
position ->
Result(T * string * position)

In addition to returning a token, users commonly write lexers that manipulate some internal state. A
typical use case would be the lexing of nested structures such as OCaml comments.! So, one step of
lexing becomes a function that takes a string, a position, a storage (a user-defined type that we will note
S) and returns a lexing result associated with a storage.

lex1(T, S):= string ->
position ->
S ->
Result(T * string * position) * S

Most lexer generators generate lexers using a set of lexical rules that are regular expressions [

] associated with semantic actions that are in charge of producing the lexing
result The semantic action that will produce the returned lexing result is the first one associated with
the regexp that matches the longest prefix of the input string (the lexeme): this is the longest match and
the priority rules. Semantic actions have access to the lexing buffer (lexbuf), a data structure containing
the lexeme, the start position (the position of the first letter of the lexeme), the end position (the position
of the letter after the last letter of the lexeme) and the remaining string (the input string without the
lexeme). The semantic action also specifies how the internal state of the lexer (at type S) should be
updated. So, a natural type for semantic actions would be:

action(T, S):= 1lexbuf ->
S ->
Result(T * string * position) * S

Those semantic actions can perform various operations, including recursive calls to the lexer that calls
them. This could then lead to an infinite loop.? As Coq forbids the implementation of functions that

1The OCaml grammar accepts nested, well-bracketed comments (+ ... (+ ... %) .. %), and the OCaml lexer maintains a stack to correctly process them
as a single token.
2Section 5-1.E1 provides a typical OCamllex example of a lexer that can loop due to recursive calls.
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loop [ ], Coglex had to find a solution to deal with those kinds of situations. We explored
two possibilities:

1. Making restrictions on semantic actions that ensure terminations. For example, we could require
that each semantic action discards at least one character from the input string.

2. Using the fuel technique: this technique consists in ensuring the termination of lexers using a
natural number (nat) that decreases at every recursive call.

Requiring that each semantic action discards at least one input character is too strict in practice.
Studying lexers in the wild, we have found many cases of lexers designed to “skip” an optional part of the
input, that accept the empty string if nothing needs to be skipped. For example, the lexer of the OCaml
compiler contains the following lexer:

rule skip_hash_bang = parse
| "#r [ "\n'l* '\n' { new_line lexbuf }
| " { OO } (* accepts the empty string *)

We thus chose to express general, potentially non-terminating lexers using fuel. Consequently, the type
of one step of lexing becomes

lex1(T, S):= nat ->
string ->
position ->
S ->
Result(T * string * position) * S

To make it simple to call a lexer from a semantic action, we replace the separate arguments string and
position by the more informative 1exbuf type already used by semantic actions.

lex1(T, S):= nat ->
action(T,S)
action(T, S):= 1lexbuf ->
S ->

Result (T * lexbuf) * S

5-1.C Cogqlex in practice

Coglex comes with a Coq library that allows to write lexers using sets of lexical rules. It also provides a
text processor that will convert a markup language (.vl syntax), that is similar to the OCamllex [

| specification language (.mll syntax), into its equivalent Coq code (.v file). Figure 5.2 presents the
.vl version of the mini-cal (a micro language for arithmetic expressions : numbers, idents, + * - / and
parentheses) lexer. This .vl definition has four parts:

1. The header section: The header section is arbitrary Coq text enclosed in curly braces. If present, the
header text is copied as it is at the beginning of the output file. Typically, the header section contains
the Coq Require Import directives, possibly some auxiliary functions and token definitions used
for lexer definitions.

2. The regexp definition section: This section allows to give names to frequently-occurring regular
expressions. This is done using the syntax let ident = re to associate the name ident to the
regexp re. The syntax of regexp is defined in Figure 5.3.
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3. The lexer definition section: This section allows to define lexers using sets of rules. A rule is
defined using the syntax | p {a} (the ‘| symbol is not mandatory for the first rule) to associate
the pattern p to the Coq text representing a semantic action a. This pattern is either a regexp or a
string -> bool function (defined using the syntax $ () where f is the Coq code of this function).
Typically, this kind of pattern is used to detect situations in which the lexing must stop (e.g when
the input string is empty). When the pattern is a regexp, the semantic rule is said to be regexp based.
Otherwise, the semantic rule is said to be function based (example: eof).

4. The trailer section: This section is similar to the header section, except that its text is copied as it is
at the end of the output file. Typically, this section contains Coq extraction directives.

(* header section *)
{
Require Import TokenDefinition.

}

(* regexp definitions *)
let ident = ['a'-'z']+
let numb = ['0'-'9']+

(* lezer definitions*)
rule minlexer = parse

| '\n' { sequence [new_line; minlexer] }
| ident {ret_1 ID}

numb { ret_1 Number }
'+'" { ret PLUS }

ret MINUS }

ret TIMES }

ret LPAREN }
ret RPAREN }
ret Eof }

_ { raise_l "unknown token :"}

Iy
I(l
I)l
eof

(* trailer section *)

{3

Figure 5.2 — mini-cal.vl file
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c Character constant

| ”string”  String constant

|_ Char wildcard

| [s152...5,]  Union of character sets

| [As182...sp]  Union of negation of character sets

| reilre; Alternative
|rey re Concatenation
|rei—reo Difference
| rex Kleene star
| re+ Strict repetition
| re? Option
su=
¢’ Character constant
I’c1”-’co”  Character range

Figure 5.3 — Syntax of Coqlex regexps

Remarks:

* A vl file allows to define multiple lexers. Those lexers are gathered in groups (made of mutually
recursive lexers) using the keyword and. To define non-mutually recursive lexers, the user must
use the keyword then instead.

e The command %polymorphic_storage in Figure 5.2 specifies that the storage type of minlexer is
parametric. Developers can replace that command by %fix_storage_type s ; to set the storage
type to s. Similarly, developers can use the command %polymorphic_token or %fix_token_type
t ; to specify the token type of minlexer. When not specified, Coqlex lets the Coq system infer
the types of tokens and storage.

* Coqlex generator users do not need to worry about the management of fuel when writing .vl files.

* For each lexer defined in the .vl file, the Coglex generator produces a lexer function with same
name.

Using the code in Figure 5.2, the Coqlex generator outputs the Coq code in Figure 5.4. Typically, the
generator translates the regexp written in .vl syntax into the Coqlex regexp data type. The generated
lexing function also calls Coglex functions such as generalizing_elector, longest_match_elector
and exec_sem_action. It also recurses over the fuel explicitly; we could instead generate a call to a
fixpoint combinator, but this would be difficult to scale to mutually-recursive lexers.

Similarly to OCamllex, Coglex also allows to choose the semantic action by matching the shortest

prefix. In that case, the function longest_match_elector is replaced by the function
shortest_match_elector.
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Require Import TokenDefinition.
Definition ident := Cat ((CharRange "a"/char "z"/char ))
(Star ((CharRange "a"Ychar "z"/char ))).

Definition numb := Cat ((CharRange "0"/char "9"/char ))
(Star ((CharRange "O"%char "9"Ychar ))).

Fixpoint minlexer {Storage: Set} fuel lexbuf storage
{struct fuel} := match fuel with
| 0 => (AnalysisNoFuel lexbuf, storage)
| S n=> (match generalizing_elector
(Action := semantic_action (Storage := Storage))
LexerDefinition.longest_match_elector (
[(Char "010"/ichar , sequence [new_line; (minlexer n)]);
(ident, ret_1 ID);
(numb, ret_1 Number );
(Char "+"Y%char , ret PLUS );
(Char "-"%char , ret MINUS );
(Char "*"%char , ret TIMES );
(Char "("%char , ret LPAREN );
(Char ")"Y%char , ret RPAREN );
(RValues.regex_any, raise_l "unknown token : ")],
[(CoqlexUtils.EOF, ret Eof )]) (remaining_ str lexbuf) with
| Some elt => exec_sem_action elt lexbuf storage
| None => (AnalysisFailedEmptyToken lexbuf, storage)
end)
end.

Figure 5.4 — mini-cal.v

5-1.D Cogqlex generator specification

Given an ordered list of regexp-based rules /,, an ordered list of function based rules /¢, and a matching
policy e, the generated Coq code implements a lexer — a function that takes a fuel ¢, lexbuf b, a storage

s and returns a lexing result — that works as follows:

1. If ny is equal to 0, then the result is an error. This error is a direct consequence of the fuel technique.

2. Otherwise, from the input string, [, [ and e, the lexer chooses a rule whose semantic action will

be in charge of returning the lexing result.

(a) if the selected rule is a function-based one, made up with a function f associated with a
semantic action a, then there is no consumption. Consequently, the lexing result is the result

of a called with b and s.

(b) if the selected rule is a regexp-based rule ¢ — made up with a regexp r associated with a
semantic action a — and if the length of the prefix matched by r using the policy e is a natural
number 7, then the lexing result is the result of a applied with the updated lexbuf b,, and the

input storage s. The updated lexbuf is defined as follows:

¢ the lexeme of b, is the n first characters of the input string.
e the remaining string of b,, is the input string without the lexeme.

* the end position of b,is the end position of b where the column number is incremented by

n.
the start position of b, is the end position of b.

51



CHAPTER 5. SECURING THE FRONT-END

(c) if no rule is selected, the lexer must return an error meaning that the input string contains
elements that cannot be analysed by the lexer.

Except for the use of fuel, the functioning of the generated lexer defined above is standard (similar to the
functioning of the lexers generated using the usual lexer generators such as OCamllex).

A .vl file provides the description of lexers using lexical rules. That description is processed by the
Coqlex lexer generator whose architecture is detailed in Figure 5.5. It has three components:

1. The lexer, that is in charge of generating a set of tokens from the text of the .vl file, is written in Coq
using the Coqlex library and is formally verified.

2. The parser, that is in charge of generating an abstract representation from the set of token produced
by the lexer, is implemented using menbhir [ | with -coq switch to generate
verified parsers.

3. The code printer, that is in charge of generating the .v file from the abstract representation produced
by the parser, is written in OCaml and is not formally verified.

The code printer does not include formal semantics equivalence between the representation of the .vl
code and the generated .v code. This means that, a priori, a critical user should review the generated
.v code. This does not take great efforts because the transformation does not include a complex
compilation process: the .vl and .v files have similar structures and are human readable.

a N p—
R - R

lexer specification Verified lexar Verified parser Code printer Directory containing:
(vl file) (Written in Coq) (generated with Menhir) (Written in Ocaml)

» Lexerwritten in Coq
» Helpers for compilation,

Coglex generator extraction and
\ benchmarking

Figure 5.5 — General structure of the Coglex lexer generator.

Comparing to other existing approaches, Verbatim++ [ | does not provide such
generation tool, and OCamllex generates an OCaml code in which the patterns of the lexical rules are
compiled into a non deterministic automaton [ ] represented by a compact

table of transitions, making the generated code non human readable.

In our case, the regexps, rule selection and associated policies used in the generated file are imple-
mented and proved correct in Coq. Consequently, the attention of the critical user who wants to check
the generated .v file must be focused on the following elements:

* The translation of regexps: The user must be assured of the correspondence between the regexps
written in the input .vl files and those generated in the output.v files. This requires reading and
understanding the regexps constructors that will be defined in Section 5-1.E.

e The matching policy: The user has to make sure that matching policy corresponds to the one that
is described in the .vl file. The keyword parse must correspond to longest_match_elector and
shortest must correspond to shortest_match_elector.

* For every lexer, the user must be assured that the right regexps are associated with the right
semantic actions and in the same order. In the Coq code, a difference is made between lexical rules
made up with regexps associated with semantic actions (regexp-based rules) and those made up
with string -> bool functions associated with semantic actions (function-based rules).

52



CHAPTER 5. SECURING THE FRONT-END

nullable O, =false

nullable €, =true

nullable [[a]] =false

nullable (e; +e2) =nullable e; vnullable e;
nullable (e;-e2) =nullable e; Anullable e
nullable e* =true

Figure 5.6 — Definition of the nul lable function. The variable a stands for a symbol and variables e, e, and e, for regular
expressions.

In a nutshell, a potential user has to (i) review the Coq implementation and verification of regexps,
the rule selection together with the associated policies and helpers, that are written and proved in Coq,
once; and (ii) either review the code printer of the Coqlex generator once, or review the elements listed
above at every generation.

5-1.LE Cogqlex implementation details

Most lexer generators such as OCamllex speed up lexical analysis by compiling lexical rules into finite
automata during lexer generation. In Coqglex, lexical rules are interpreted on the fly, using Brzozowski
derivatives | ] for regexps and simple functions for matching policies.

5-1.LE.1 Brzozowski derivatives for regexps matching

Coqlex uses regexp constructions and matching algorithms based on the concept of Brzozowski deriva-
tives. This concept introduces two functions: the nullable function and the derivative of a regexp.
The nullable function takes a regexp r and returns the boolean true if r matches e (the empty
string) and false otherwise. Its inductive definition is given in Figure 5.6.
Using the notation az to denote the string built from the symbol a as first element and the string
z, the derivative of a regular expression r by a symbol a is the regexp r/a that denotes the language
{z|laz € L(r)}. Its inductive definition is given in Figure 5.7.

Irlc =0,
e lc =0,
cifa=c
[all/c = .
&, otherwise
(e1+ex)lc=(e;/c)+ (ex/c)

(e1/c-ex) +ex/cifnullable e; = true
(er-ex)/c = .

(e1/c- ey) otherwise
e*lc =(elc)-e*

Figure 5.7 — Definition of the derivative of a regexp. The variables a and c stand for symbols and variables e, e, and e, for
regular expressions.

rle =r
rlaz = (rla)|z

Figure 5.8 - Extension of the derivative of a regexp to strings. Variablesr, €, a and z denote, respectively, a regex, the empty
string, a symbol and a string. The operator | refers to the derivative operation described in Figure 5.7. The notation az
denotes the string composed of the symbol a as first element and the string z.
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Brzozowski [ | extended the derivative operation to strings (denoted by ||) as de-
scribed in Figure 5.8, and showed that for every regular expression r and every string s

S€L(r) < nullable (r|s)=true

Coglex uses an existing Coq implementation of Brzozowski derivatives for regexp matching. That im-
plementation provides a Coq proof showing that this Brzozowski derivative implementation is a Kleene
algebra [ , ] and defines an equivalence relation (=) for regexps whose
formal definition is ey = e; <= L(ep) = L(ey). It also provides additional regex constructors such as the
conjunction and negation constructors that are not used in the regexp constructors that are provided by
the Coqlex generator (see Figure 5.3). On the other hand, some of the constructions of regexps presented
in Figure 5.3 are missing. For this reason, we modified the existing Coq implementation [

] of Brzozowski derivatives as follows:

1. We removed the conjunction and negation regexp constructors
2. We added four regexp constructors:

* the char wildcard: The notation w, denotes a regexp that matches any 1-length-string. This
regexp is defined by the following two properties: nullable w, = false and for all symbol
¢, wy/c=e€. Then, we proved that for all strings s, we have s € L(w,) if and only if s consists of a
single character.

* the character set: The notation X}’ (where / and u are symbols) denotes a regexp whose
language is L(Z}) = {c|l < cAc < uAc € A} (where < is areflexive, anti-symmetric and transitive
order relation on symbols). This constructor is defined using the following two properties:
nullable X/ = false and forall symbolc

e/ifl<scnhnc=<u
le=1" .
J, otherwise

We proved that if (I < ), then £} = &, and that for every string s, s € L(Z}) if and only if s
consists of only one symbol c such that /< cAc<u.

* the negation of character set: The notation Z_}‘ (where [ and u are symbols) denotes a regexp
whose language is L(Z_il) = {c|7(l = cAc =< u) AceA}. This constructor is defined using the
following two properties: nullable Z_f = false and for all symbol ¢

Xt/ c= .
1 &, otherwise

— {erif—'(lsw\csu)
We proved that if =(/ < u), then Z_lu = w, and that for every string s, s € L(Z_f) if and only if s
consists of only one symbol ¢ such that 7(I < cAc<u).

* the difference: The notation e; — e, (where e; and e, are regexps) denotes a regexp whose
language is L(e; — e2) = {s|s € L(e1) A s € L(e»)}. This construction is defined using the following
two properties: nullable e} —e; = (nullable e;) A-(nullable ep) and for all symbol
c, (e1—ex)/c=e/c—ey/c. We proved that for all strings s, we have s€ L(e; —e;) < s¢€
L(el) ANSE L(eg).

These constructors have also been added for performance reasons. In fact, the regexp Z¢"*™ could be
written as [[c,]] + [[cp+1]] + ... + [[ch+m]]. However, using the first representation (Zg;’*’"), the derivation
function will perform 2 comparisons, while the second one will perform m + 1 comparisons (see
Figure 5.7).
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5-1.E.2 Matching policies

Coqlex defines two types of rules: the function based and the regexp based ones. During the lexical
analysis, the generated lexer has to select a rule. This selection starts by the choice of a function based
rule (noted Ef). This function based rule selection, whose formal definition is given in Figure 5.9,
consists of finding the first rule that is made of a function whose application with the input string returns
true.

E¢(ll,8)=1
f s=true [ s=1false
Ef((fy@):t,9)=(f,a) Ep((f,a):t,8)=Ef(t,s)

Figure 5.9 — The formal description of the selection of a function based-rule. This description uses the list notation: []
denotes the empty list and h :: t denotes a list whose first element is h and whose tail is t. The symbol L means that no rule
is selected.

If no such function based rule is found, then lexer has to choose a regexp based rule.

Most lexers perform regexp based rule election using a longest match selection policy based on the
longest match and priority rules. That selection policy allows to select the first lexical rule whose regexp
matches the longest prefix of the input string.

The longest match (and priority) rule of Coqlex starts by the implementation of /-score that is the
function in charge of computing the score for the longest match rule. The inductive definition of that
function noted S; is given in Figure 5.10.

nullable r = true nullable r = false

Si(r,e) =0 S(r€) = —oc0
S/(rla,z)=n Sj(r/a,z)=—o0 nullable r = true
S/(r,az)=n+1 S(r,az) =0

Si(r/a,z) =—oco nullable r = false

Si(r,az) = —oc0

Figure 5.10 — The formal description of 1-score computation.

To prove the correctness of S;, we used the Coq substring function of Coq string module [ ]
to define the prefix. This function takes two natural numbers n m and a string s and returns the substring
of length m of s that starts at position n denoted by 67 (s). Here, the position of the first character is 0. If
n is greater than the length |s| of s then e is returned. If m > (|s|—n), then §]*(s) = 6 ',fl_" (s). Consequently,
if m < s, then 6" (s) is the prefix of length m of s. For all strings s and regexps r, we provided Coq proofs
of the following theorems:

1. if there exists a natural number 7 such that S;(r, s) = n, then n < |s|. This helps to make sure that n
can be used with 6 to extract the prefix of length n.

2. if there exists a natural number n such that §,(r, s) = n, then 63 € L(r). This means that the input
regexp matches the prefix of length n of s.

3. if there exists a natural number n such that S$;(r,s) = n, then for all m such that n < m < |s|,
64" (s) € L(r). This means that I-score is maximal. Therefore, there exists no prefix of length higher
than n that r can match.

4. Si(r, s) = —ooif and only if for all natural number m, 5(’)"(3) ¢ L(r).
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Properties 1, 2 and 3 show that S; is correct. This means that if a score is returned, this score is the
length of the longest prefix of the input string that the input regexp can match. Property 4 shows the
completeness and the soundness of S;. This means that if no score is found, then there is no score, and
if there exists a score, S; will return it.

Using S;, the longest match policy (noted E;) consists in choosing the regexp based rule whose
regexp has the highest /-score. The Coqglex formal definition of that policy is defined in Figure 5.11.

S Si(r,8) = —o0
EWS=L E(ra:ts=Ets

Si(r,s)=n  E|(t,s)=(r;, ar, ny) n>n

E|((r,a)::t,s) = (ry, ag, ny)

Si(r,s)=n  E|(t,s)=1
E|((r,a):t,8)=(r,a,n)

Si(r,s)=n  Ei(t,s)=(ry,a;,n;) ne<n
E|((r,a):t,8)=(r,a,n)

Figure 5.11 — The formal description of the longest match selection policy. The symbol 1. means that no rule is selected.

To prove the correctness of E;, we proved with Coq that for every string s and list /, of regexp based
rules:

1. if E;(l;,s) = L then for every regexp r and semantic action a such that (r,a) € [, S;(r, s) = —oco

2. if there exists a regexp r, a semantic action a and a natural number 7 such that E; (I, s) = (r,a, n)
then for every regexp r’, semantic action @’ and natural number »n’ such that (r’,a’) € I, and
S;(r',s)y=n',n'<n

3. for every regexps r and r’, semantic actions a and a’ and natural number n, if E;(I,, s) = (r, a, n)
and S;(r',s) = nthen E;((r',d") :: 1,,8) = (r',a’, n)

Besides the longest match policy, Coglex defines the shortest match policy that allows to select the
first regexp based rules whose regexp matches the shortest prefix of the input string. The implementation
technique of the shortest match policy is similar to the longest match policy. This implementation starts
by the definition of the s-score (noted: S;) that allows to compute the length of the shortest prefix that a
regexp can match. The formal definition of s-score is described in Figure 5.12.

nullable r = true nullable r = false
Ss(r,8)=0 S(r,€) =00

Ss(r/a,z)=n nullable r = false

Ss(r,az)=n+1

Ss(r/a,z) =oco nullable r = false

Ss(r,az) =00
Figure 5.12 — The formal description of s-score computation.

Similarly to the S;, we proved the correctness and completeness of S through Coq proofs of the
following theorems:
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1. if there exists a natural number n such that S¢(r, s) = n, then n < |s|. This helps to make sure that n
can be used with 6 to extract the prefix of length n.

2. if there exists a natural number n such that S(r, s) = n, then g € L(r). This means that the input
regexp matches the prefix of length 7 of s.

3. if there exists a natural number 7 such that S(r, s) = n, then for all m such that m < n, §§"(s) ¢ L(r).
This means that s-score is minimal. Therefore, there exists no prefix of length lower than n that r
can match.

4. S;(r,s) = oo if and only if for all natural number m, 6" (s) ¢ L(r).

Using S, the shortest match policy consists into choosing the regexp based rule whose regexp has
the lowest s-score. The Coqlex formal definition that policy is defined in Figure 5.13.

o Ss(r,8) =00
Es([l,s)=1 E;((r,a)::t,s)=E(t,s)

Ss(r,s)=n  Es(t,s) = (rs, ag, ny) n;<n

Es((r,a) :: t,8) = (1, ag, ny)

Ss(r,s)=n E(t,s) =1
Es((r,a)::t,8) =(r,a,n)

Ss(r,8)=n  Eit,s)=(ryann) ny;=zn

Ei((r,a):: t,s) =(r,a,n)

Figure 5.13 — The formal description of the shortest match selection policy.

5-1.E.3 Coglex rule selection

Using Ef, E; and Ej, the formal definition of the rule selection E can be defined as follows:

E¢(lr,s)ifEf(lr,s) # L
E(E I, lp,9) =4 1 —
(L 1p,9) {E’(lr, s) otherwise
where E' is either E; or E;. In the Coq code presented in Figure 5.4, E is represented by
generalizing_elector, E; is represented by longest_match_elector. The implementation of E; in
the Coqlex library is represented by shortest_match_elector.

5-1.LE.4 Optimization

The naive implementation suggested by the formal definition of S; and E; has a time complexity that is
at least quadratic in the size of the input string. In fact, the implementation of /-score requires reading all
the characters of the input string for every regexp based lexical rule and thus for every token. However,
this is not necessary in some cases (e.g for all string s with $;(&, §) = —00).

To increase the performance of S;, S, E; and E;, we implemented a regexp simplification function
which is based on the following properties:

The alternative: r + @, =rand @, +r=r

The concatenation: r- &, =0, J, - r=&,, r-e,=r,r*-r*=r*ande,-r=r
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The Kleene star: @7 =¢,, (r*)* =r" and €} =€,
The difference: r— 9, =rand g, -r=9,

These simplifications aim to detect when a given regexp is equivalent to a regexp whose score is trivial
(e.g I, or €,). We proved these properties in Coq and then used the smart constructor technique
[ ] to write an optimized version of the regexp derivative function. That function works
similarly to the original one, except that it returns a simplified version of the derivative. Then, we also
rewrote the s-score and 1-score functions to use the optimized version of the regexp derivative function
and return the result for trivial cases. For example, we proved that for every r and s,

Ss(r*,s) =Ss(er, s) =Sie,$) =0

Ss(@r,s):w gl(@r,S):—OO

We proved that the optimized s-score and 1-score are equal to the original ones. We propagated
this optimization to Ej, E; and obtained performance in linear time in the size of the input string (see
Section 5-1.F below).

5-1.F Evaluation

We are now going to compare Coglex with OCamllex, the OCaml standard lexer generator, and Verba-
tim++, the only other well-documented and complete research work on lexer verification that we are
aware of.

First, we noticed three conceptual differences between Verbatim++, Coglex and OCamllex:

1. Verbatim++ uses the notion of label, a data-type returned after the election. Semantic actions are
functions that take that label and lexeme to return a token. Therefore, semantic actions do not
have access to the remaining string and thus, cannot perform recursive calls. A consequence of
this is that Verbatim++ lexers cannot ignore parts of the input string (such as comments and extra
spaces).

2. Verbatim++ lexers do not propose error handling features while Coglex and OCamllex have one.

3. In Coqlex, regexps are interpreted on the fly while Verbatim++ and OCamllex compile them into
finite automata [ | for fast regexps matching. In Verbatim++, this regexp
compilation is made at every lexical analysis while in OCamllex, this compilation is made once and
its result stored in the form of a compacted table that is read during lexical analysis.

Second, we evaluated the execution time of the generated lexical analysers in two phases. For the
first phase, we evaluated their performance on the Verbatim++ JSON benchmark.

We started with analysing a JSON lexer implemented by the Verbatim++ developers using Verbatim++
Coq source code, then we used Coglex and OCamllex generators to generate lexers with similar specifi-
cations. We compared the time performance and noticed a huge difference between the OCamllex and
Coqlex generated lexers and the Verbatim++ lexer as presented in Figure 5.14.
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Verbatim++ | Coqglex OCamllex
Tokens per sec. 1.5x10% 2.2x 107 2.8x 107
Time to process 50ko. 30s 2s 1.8x1073s

Figure 5.14 - Comparison of execution time in seconds for Coglex, OCamllex and Verbatim++ lexers on Verbatim++ JSON
benchmark. The benchmark file contains 56154 characters and its lexical analysis should return 17424 tokens.

The analysis of this Figure shows linear performance for all three lexers. Generally, lexers imple-
mented using Verbatim++ components are around 15 times slower than those generated using Coqlex
and OCamllex. A similar study with XML files showed equivalent results.

For the second phase of the evaluation of the execution time, we evaluated the performance of
Coglex and OCamllex generated lexers by implementing the lexer of 2 languages: JSON [

, ] and the first version of MiniML [ 1, a toy subset of OCaml. We could
not perform an evaluation of those languages with Verbatim++ because their definitions imply recursive
calls, a feature that is not handled by Verbatim++. The results of those evaluations are presented in
Figure 5.15.

Coglex | OCamllex
Time to process 1.6Mo MiniML | 0.45s 0.04s
Time to process 1.6Mo JSON 1.5s 0.03s

Figure 5.15 - Comparison of execution time in seconds for Coqglex and OCamllex lexers on Miniml and JSON benchmark.
The Miniml benchmark file contains 1599999 characters (for 28800 tokens) and the JSON benchmark file contains 1620948
characters (for 160489 tokens).

Generally, Coqlex executes faster when the ratio number-of-characters/number-of-tokens is higher.
In fact, in our measurements, Coqlex has better performance for the MiniML analysis where the number
of characters per token is =55.55 (see Figure 5.15). For a similar number of characters, this performance
is three times slower for the JSON benchmark where the number of characters per token is five times
lower (=10.10).

We can observe that OCamllex generated lexers execute faster than Coqglex ones. However, Coqglex
generated lexer performance is surprisingly good and does not pose limitations to its usefulness in real-
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world settings. In fact, Coglex has been used to generate the lexer for the VCP Ada to VCP Ada optimizing
compiler described in this thesis. This compiler is used in an industrial setting to process thousands of
source code files with not a too noticeable difference with respect to OCamllex — the compiler with a
verified front-end (lexer and parser) executes 5 times slower than the one with a non-verified front-end.
Furthermore, the use of the Coqlex generator, whose lexer is implemented using the components of the
Coqlex library, does not show noticeable slowness.

Inregard to regexp specification, Coqglex allows to generate richer regular expressions than Verbatim++
and OCamllex. In fact, OCamllex allows to perform the regexp minus-operation only for charsets, while
Coqlex allows to perform this operation on general regexps. In addition, Coqlex also allows to define
function based rules other than end-of-file. Verbatim++ does not allow such operations. However,
OCamllex allows to bind substrings matched by a regexp to identifiers, but neither Coqglex or Verbatim++
have this feature.

In regard to the syntax of the .vl files, the Coqlex generator is built to process a language that is very
close to OCamllex. This means that there are only few differences between .vl files and their equivalent
.mll files. For example, Figures 5.16 presents the OCamllex equivalent of the Coqlex lexer presented in
Figure 5.2.

(* header section *)
{

open Lexing

open TokenDefinition.

}

(* regexp definitions *)
let ident = ['a'-'z']+
let numb = ['0'-'9']+

(* lexer definitions*)
rule minlexer = parse
| '\n' { new_line lexbuf; minlexer lexbuf }
| ident {ID (Lexing.lexeme lexbuf)}
numb { Number (Lexing.lexeme lexbuf)}
'+' { PLUS }
MINUS }
TIMES }
LPAREN }
RPAREN }
Eof }
ailwith ("unknown token : " ~ (Lexing.lexeme lexbuf))}

|

|

| -
| I*l
[
[ "
| eof
|

A

Fh A A Am A A e

(* trailer section *)

{

Figure 5.16 — mini-cal.mll file

5-1.LE1 Looping lexers

Another advantage of Coqlex is that it provides protections against infinite loops. Let us consider
the Coqlex lexer specified in Figures 5.17 and the OCamllex lexer specified in 5.18. Regarding those
specifications, the lexers are supposed to work as follows:

e If the remaining string is € then that lexer returns the natural number ‘1‘ as token.

* Else if the longest prefix of the input string in 1exbuf matches [[b]]-[[a]l* - [[b]] then that lexer returns
the natural number ‘0‘ as token

e Else if it matches [[a]]* it performs a recursive call on the remaining string of lexbuf (updated
after the election). This is a common technique used to ignore elements such as comments during
lexical analysis.
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When such lexer is called with a string s that starts with a character that is different from ‘a‘ and ‘b,
the election chooses the semantic action that is associated with the regex [[a]]* with a score of 0. This
means that the lexeme is € and the remaining string is s. As the semantic action associated with this
regexp is a recursive call, it leads to an infinite loop. The lexer generated by OCamllex from the code in
Figure 5.18 loops when the input string is ‘c‘, whereas the lexer generated by Coqlex from the code in
Figure 5.17 returns an error. Verbatim++ does not handle this kind of problem because semantic actions
do not allow recursive calls.

rule my_lexer = parse
| 'p' 'a'x 'b' { ret 0 }
| 'a's { my_lexer }
| EOF { ret 1}
%polymorphic_storage

Figure 5.17 — The Coqlex example of a lexer whose execution can loop

rule my_lexer = parse

b 'a'x b {0}
| ra'x { my_lexer lexbuf }
| EOF {1}

Figure 5.18 — The OCamllex example of a lexer whose execution can loop

Furthermore, the simplicity of the Coqglex implementation allows to write proofs on Coqlex lexers.
F