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1 – Introduction

1.1 Significance of phonon anharmonicity in solids

Great effort is devoted to the study of thermal properties of materials with interesting ap-
plications in thermoelectricity, superconductivity, astrophysics, geoscience, electronics, and
the aerospace industry. Theoretical models and computer simulation become useful in this
regard, either to complement experimental efforts, where an experiment is possible, or to
provide predictive insight where it is not. Density functional theory (DFT) [14] is one of the
most powerful predictive methods used in exploring many properties of materials. It is based
on quantum-mechanical laws, with the only required input information being the chemical
composition and physical constants. However, DFT is a ground-state theory and therefore
characterizes materials at 0 K and the effect of temperature on ionic motion is neglected.

Lattice Dynamics theory developed by Born and Huang [15] describes the effects of
temperature in solids in terms of atomic vibrations within the crystal lattice. Thus, when
combined with ab initio calculation like DFT, ab-initio lattice dynamics can be used as a
powerful tool for a fundamental understanding of vibrational, thermodynamic, and transport
properties of materials, without any empirical parameter [16].

The relationship between electronic and lattice-dynamical properties of materials within
the DFT framework took off in the 1970s and has emerged as an important cornerstone of
condensed matter physics to this day. Perhaps the first application of DFT to obtain phonon
spectra and force constants (FCs) was by Walden and Martin in the late 70s, the so-called
frozen phonon method [17]. Density functional perturbation theory (DFPT) is an alternative
efficient technique for computing FCs by diagonalizing the dynamical matrix at an arbitrary
reciprocal space point [18].

The simplest lattice model for computing phonon is the harmonic approximation (HA),
in which the potential energy is expanded in Taylor series up to second order in powers
of atomic displacements about their equilibrium positions. Thermal properties are derived
from a system of non-interacting phonons, whose frequencies are independent of temper-
ature.However, the small displacement assumption becomes invalid at high temperatures,
especially near a phase transition, or even at low temperatures if the energy profile is shal-
low, or if the quantum nature of nuclei cannot be disregarded, which warrants the need
for anharmonic methods. Furthermore, the perturbative treatment of anharmonicity can
be problematic in the presence of imaginary phonons, i.e. harmonic approximation has no
suitable ground state upon which a perturbative expansion can be built. Quasiharmonic
approximation (QHA) is the simplest extension, where several harmonic calculation are per-
formed as a function of an external parameter (i.e. volume) and the vibrational energy at

1



2 Chapter 1. Introduction

finite temperature taken into account [19, 20].

Although non-perturbative anharmonic lattice models, particularly the self-consistent
phonon (SCP) theory, have been developed as early as the 1950s by Born and Hooton [21, 22]
and others [23, 24], these models have originally been applied to rare gases, like Ne, with
simple interaction potentials based on ad hoc parameters, thereby limiting their application
and predictive power. Over the last two decades, there has been increasing interest in anhar-
monic methods based on density functional theory (DFT). These anharmonic approaches are
non-perturbative and seek to build an effective potential at the temperature at which the po-
tential energy surface (PES) is probed. While these methods are diverse in their formulation
and implementation, they mainly differ on (i) the method of computing the forces acting on
ions or force constants, and (ii) how the potential energy landscape of the nuclear dynamics
is sampled. Ab initio molecular dynamics (AIMD) simulations sample the potential en-
ergy surface including full anharmonicity. In the latter framework, dynamical and transport
properties can be computed as time averages over trajectories using either normal-mode
analysis (NMA) [25, 26] or velocity autocorrelation function (VACF) method. NMA and
VACF have the advantage that both renormalized phonon frequencies and phonon lifetime
are obtained from AIMD non-perturbatively and without explicitly computing higher-order
force constants. The main disadvantage of these methods is the long simulated time required
to reach ergodicity and/or targeted frequency resolution. In the case particle exchange is
relevant, an additional drawback is the lack of well-defined quantum statistics. Nevertheless,
the efficiency of VACF can be substantially improved by projecting the atomic velocities (or
displacements) of atoms in a supercell on harmonic phonons modes from DFT in a commen-
surate unit cell [27, 28]. Note that the displacement of the atoms associated with a mode
only depend on symmetry.

The early contribution in the family of self-consistent phonon (SCP) methods was the
self-consistent ab initio lattice dynamics (SCAILD) by Souvatzis et al. [29], which is based
on thermal mean square displacements of atoms in a supercell. Roekeghem et al. [30, 31]
extended SCAILD to QSCAILD, which uses a quantum mean square thermal displacement
matrix. The temperature-dependent effective potential (TDEP) approach involves fitting
force constants to ab initio DFT forces sampled along MD trajectories [32, 33] or stochasti-
cally [34]. Other SCP-based methods include SCPH proposed by Tadano et al. [10], where
anharmonic frequencies are computed from the pole of the Green’s function and higher order
effective force constants from “compressive sensing” [35]. The vibrational self-consistent-
field (VSCF) method that expand the Born-Oppenheimer PES using harmonic phonon ba-
sis [36]. Anharmonicity using special displacement method (A-SDM) [37]. The stochastic
self-consistent harmonic approximation (SSCHA) [38] minimizes the free energy of a sys-
tem within a harmonic density matrix ansatz, rigorously capturing both nuclear quantum
effects (NQE) and anharmonicity. Anharmonic effects can also be sampled using a classical
Langevin dynamics based on the algorithm by Bussi and Parrinello [39] and a recent path
integral LD (PILD) scheme using classical and quantum correlators [6, 40]. In PILD, includ-
ing NQE implies a significant expense due to the requirement to simulate many replicas of
the system in parallel. Details of these methods are in the original articles of the authors
and also in recent reviews by Esfarjani et al. [41], and Hong et al. [42].
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1.2 Objectives and scope
The aim of the thesis is to develop an anharmonic non-perturbative method that works
beyond the limits of the standard quasiharmonic approximation, where perturbation theory
breaks down, and apply the method to study properties of technologically relevant materials
where proper understanding and description of anharmonic effects at low, intermediate or
high temperature is significant.

1.3 Organization of thesis
In Chapter 2, the theoretical framework based on first-principles density functional theory
is derived from a detailed discussion of the electronic structure theory and the approxima-
tions necessary for obtaining the ground state properties of a crystalline solid. In Chapter
3, methods of simulating the dynamics of the nuclei at finite temperature are discussed,
including molecular dynamics, Langevin dynamics, and lattice dynamics within harmonic
approximation and beyond, as well as the algorithms employed in our calculation. For the
last part of Chapter 3, Section 3.3.4 presents advanced methods developed over the years for
studying anharmonic phonons, discussing their strengths and limitations.

An efficient method of computing anharmonic effects is developed and implemented
in Chapter 4, which is based on the temperature-dependent effective potential (TDEP)
technique proposed by Esfarjani et al. [32] and Hellman et al. [33]. Unlike TDEP, the
temperature-dependent phonon (TDPH) method [43] uses the symmetry of the crystal to
reduce the reciprocal-space q-point sampling of phonons to its irreducible wedge and then,
for each q-point to reduce the dynamical matrix D(q), to its irreducible representations, ex-
pressed as a basis of symmetric hermitian dynamical matrices. In Section 4.7, we performed
extensive convergence tests using different thermodynamic ensembles (MD-NVE, MD-NVT,
and LD). We showed how energy autocorrelation could be used to determine an appropri-
ate sampling interval (decorrelation time) and demonstrated the robustness of the TDPH
method against randomization of the initial guess of force constants.

In Chapter 5-7, the TDPH technique is applied to study anharmonic effects in techno-
logically relevant materials, and where available, the results are compared to experimental
measurements or other anharmonic phonon methods. Chapter 5 focuses on temperature-
evolution of phonons and anharmonic correction to quasiharmonic free energy in fcc Al.
Chapter 6 shows how the TDPH method gives renormalized phonons in entropy-stabilized
high-temperature group IV bcc metals, with Zr as representative. Chapter 7 investigates
phonon anharmonicity in SrTiO3, a representative ABO3 perovskite with an interesting
phase diagram and many technological applications. In Section 7.3.4, we applied the Curie-
Wess law to predict the cubic to tetragonal transition temperature, Tc, via linear fit to
the temperature dependence of the soft antiferrodistortive mode. In Section 7.3.5, we built
perturbation on the TDPH potential to compute phonon lifetimes and linewidths from the
three-phonon scattering process and the lattice thermal conductivity of cubic SrTiO3 using
the Boltzmann transport equation (BTE) within the single-mode relaxation approximation.

Finally, Chapter 8 provides a summary of our main results, and proposes potential av-
enues for future research direction.
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2.1 The many-body problem
Consider a quantum solid system containing N electrons and M nuclei interacting with each
other. One can characterize such a system by solving for stationary states of the time-
independent many-body Schrödinger equation:

Ĥ|Ψ⟩ = E|Ψ⟩. (2.1)

|Ψ⟩ and E are the eigenfunctions and the eigenvalues of the hamiltonian operator, Ĥ, de-
scribing the kinetic energies (T) and the Coulomb interactions (V) between electrons and
nuclei:

Ĥ = T̂n + T̂e + V̂n−n + V̂e−e + V̂e−n

= −
N∑
i

∇i
2

2 −
M∑
I

∇I
2

2MI
+ 1

2

N∑
i ̸=j

1
|ri − rj |

+ 1
2

M∑
I ̸=J

ZIZJ

|RI − RJ |
−

∑
i,I

ZI

|ri − RI |
(2.2)

where in Eq. 2.2 above, we adopted atomic units i.e. 1
4πϵ = e = ℏ = me = 1. The indices i,j

and I,J run from 1 to N (electrons) and 1 to M (nuclei). R (r) represent the position vector
of nuclei (electrons) and ZI is atomic number of atom I.

The solution of Eq. 2.2 with the lowest energy, Ψ0, corresponds to the ground state of the
system, from which all equilibrium properties can be derived. However, solving this equation
is impossible analytically (beyond diatomic He) and therefore one resort to approximations
in an effort to simplify the problem.

2.2 Born-Oppenheimer approximation

Since electrons move much faster than nuclei owing to their small masses ( MI ≈ 103 me) it
is reasonable to decouple the motions of the electrons and the nuclei. This idea was first used
by Marx Born and Robert Oppenhiemer in 1927 [44], it is known as the Born-Oppenheimer
or adiabatic approximation.

Thus, instead of treating the nuclei and electrons on equal quantum mechanical footing,
one can solve the electronic problem assuming the nuclei to be clamped (fixed): the many-
body problem is reduced to solving the electronic problem in their ground state for a given

5
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nuclear configuration.
Ψ(r,R) =

∑
i

ψi(R)Φi(r,R) (2.3)

which give raise to decoupled SE for electrons and nuclei:[
T̂n + V̂ion−ion + Ei(R)

]
ψi(R) = Enψi(R) (2.4)

[
T̂e + V̂e−e + V̂e−n

]
Φi(r,R) = Ei(R)Φi(r,R) (2.5)

where Φi(r,R) are the electronic states of the electrons at a given fixed nuclear configura-
tions. The nuclei evolve in the BO energy surface which is the sum of the electronic ground
state "total energy" at a particular nuclear coordinate and the nuclear-nuclear interaction :
EBO(R) = Vn−n + E(R). By fixing R, V̂n−n can be regarded as a shift on the electronic
energy. Thus:

ĤBO = Ĥe(r,R) + V̂n−n (2.6)

where Ĥe is given by Equation 2.5 above.

2.3 Density functional theory

Density functional theory (DFT) is an approximation method for solving many body Schrödinger
equation where the Hamiltonian is expressed in terms of groundstate electron density, in-
stead of wave function. DFT was originally initiated by Thomas [45] and Fermi [46] in 1927,
where they expressed the kinetic energy as a functional of the electron density but neglected
the exchange and correlation energy. Dirac [47] in 1930 extended the Thomas-Fermi theory
by including the local exchange term. It was also reported that Kato in 1957 rigorously
proved mathematically, that all parameters defining the Hamiltonian of a system can be ex-
pressed in terms of electron density. But it was W. Kohn and P. Hohenberg that developed
the version of what is today known as density functional theory in two theorems. Later in
1965, Walter Kohn and his post-doc student L. J. Sham made DFT a practical tool based on
the Kohn-sham equations. It is important to note that in DFT any property of a system is
defined by the groundstate density n0(r). Today, many properties of atoms and molecules in
condensed matter can be quantitatively calculated with remarkable accuracy. What made
DFT particularly popular is the balance it provide between computational cost and accuracy.

2.3.1 Kohn-Hohenberg theorems

In 1964, Walter Kohn and P. Hohenberg made a remarkable contribution, in the form of two
theorems, that revolutionize our understanding of condensed matter systems.

• Thorem 1: For a system of interacting particles, the ground state electronic density
n0(r), uniquely determine the external potential of the system Vext(r), to within a
cosnstant.

• Thorem 2: A functional of the energy E[n(r)] can be defined in terms of the density
n(r) of the system. The ground state density n(r) that minimizes the functional E[n(r)]
is the exact ground state density n0(r).
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Based on these two theorems, the energy can be expressed as a functional of wavefunction
using Eq. 2.5

E[n] = ⟨Φ[n]T̂eΦ[n]⟩ + ⟨Φ[n]V̂e−eΦ[n]⟩ + ⟨Φ[n]V̂extΦ[n]⟩

= T [n] + Ve−e[n] +
∫
Vext(r)nrdr

= F [n] +
∫
Vext(r)nrdr

(2.7)

where we replaced Ve−ion with Vext, and defined the universal functional as F [n] = T [n] +
Ve−e[n]. So far, we have not exactly stated how to get the density from the wave function,
and the universal functional, E[n], which is dependent on the electronic density n(r), has no
known form. The Kohn Sham equations handle these two problems.

2.3.2 Kohn-Sham equation
The main idea behind of Kohn-Sham equation is to replace the exact system of many-
interacting electrons with an auxiliary system of non-interacting electrons in an effective
potential VKS , by assuming that the exact and the auxiliary system of non-interacting elec-
trons have the same ground state. The KS equation can be expressed as:[

−1
2∇i

2 + VKS(r)
]
ϕi(r) = εiϕi(r) . (2.8)

It is clear that Eq. 2.8 is another rendition of Eq. 2.5 with many-electron wavefunction
replaced by single-particle orbitals ϕi, i = 1, 2, ..N , and density

n(r) =
∑

i

|ϕi|2 (2.9)

It follows that solving the non-interacting system gives the ground state density, which can
subsequently be utilized to solve the exact problem. Next, we rewrite the functional defined
in Eq. 2.7

E[n(r)] = T0[n(r)] + EH [n(r)] + EXC [n(r)] + Vext[n(r)]
(2.10)

where T0[n(r)] is the non-interacting kinetic energy o the auxiliary system, EH [n(r)] is the
Hartree energy due to classical Coulombic interaction of electron density

EH [n(r)] =
∫
n(r)n(r′)
|r − r′|

drdr′

and EXC [n(r)] is the exchange-correlation energy added in order to make Equ. 2.10 formally
exact. The effective or auxiliary potential of Equ. 2.8 can be found by minimizing Equ.
2.10 with respect to the Kohn-Sham states ϕi given an appropriate form of the exchange-
correlation [48]:

T0[n(r)]
δϕ∗

i

+
[EH [n(r)]

δn(r) + EXC [n(r)]
δn(r) + Vext[n(r)]

δn(r)
] δn(r)
δϕ∗

i

, (2.11)

subject to:
⟨ϕi|ϕj⟩ = δij , and
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δT0[n(r)]
δϕ∗

i

= 1
2∇2

iϕi

δn(r)
δϕ∗

i

= ϕi

yields the expression for the Kohn-Sham potential

VKS(r) = Vext(r) + VH(r) + VXC(r) (2.12)

Initial
guess n(r)

Calculate
VKS [n(r)]

Solve
HΦ(r) = EΦ(r)

Calculate n(r) =∑
i |Φ(r)|2

Self-consistency ?

Stop

Yes

No

Figure 2.1: The Kohn-Sham self-consistency cycle in DFT calculation, like the Hartree-
Fock approach, minimizes the system’s electronic Hamiltonian. It starts with an estimate of
electronic charge density and ends when the self-consistency requirement is satisfied (n(r) =
n∗(r)) within the pre-determined threshold.
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2.3.3 Exchange-correlation functionals

No meaningful progress can be made with KS equation without the knowledge of the ex-
change correlation energy, EXC , which accounts for all the corrections to the other exact
terms in Equ. 2.10. The exact form of EXC is not known, and therefore must be approx-
imated in order to use DFT as a complete theory. Ironically, the fact that EXC can be
approximated is largely responsible for the success of DFT, but the approximation itself
poses limitations.

The two most widely used approximations to EXC are Local density approximation
(LDA) [49, 50] and Generalized gradient approximation (GGA) [51, 52].

Local density approximation

LDA assumes that the exchange-correlation energy at a point is equal to the exchange-
correlation of a uniform electron gas (jellium) with the same density

ELDA
XC (n(r)) ≈

∫
dr n(r) ϵXC [n(r)] , (2.13)

where the quantity ϵXC [n(r)] is the exchange-correlation energy per electron and can be
obtained from highly accurate Monte Carlo methods, with the most popular methods being
that of Ceperley and Alder [53] and Perdew and Zunger [50].

Generalized gradient approximation

As the name implies, the generalized gradient approximation (GGA) assumes that the
exchange-correlation functional cab be replaced by the local density and its gradient

EGGA
XC (n(r)) ≈

∫
drn(r)ϵXC [n(r)]FXC [n(r,∇n(r))] , (2.14)

where FXC is the enhancement factor, which can be obtained with different schemes leading
to different flavors of GGA. The most widely used GGA exchange-correlation functionals,
and the ones used in this work, are PBE [54] and PBEsol [55].

Both LDA and GGA functionals have been found to be successful in predicting material
properties, but have not been without limitations. For instance, LDA have been known to
overestimate binding energy, leading to short bond lengths and compressed lattice parameters
while GGA have the opposite effect. Also, both LDA and GGA underestimate the band gap
of semiconductors especially in strongly correlated materials with partially occupied d and
f orbitals that are localized.

The most common corrective methods to overcome these challenges include Hubbard-
modeled corrections on DFT (DFT+U or historically LDA+U) [56, 57], dynamical mean
field theory (DMFT) [58, 59] and other many-body techniques. DFT+U is particularly
appealing because of its simplicity and direct access to the energy derivatives (forces and
stress), and comparable computational cost to standard DFT [60]. Although it can obtained
self-consistently [61, 60], the Hubbard U parameter is often chosen semi-empirically to match
some experimental quantity, i.e. the electronic band gap, thus limiting the predictive power
of DFT+U.
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2.3.4 Plane-wave basis set
In order to solve the KS equations, an appropriate basis set to describe electronic wave-
functions must be chosen. A popular choice in the quantum chemistry community are the
Gaussian basis functions, which are centered at the atomic positions. Plane wave basis set,
which are periodic and delocalized in space, are commonly used in the solid-state physics
community. The latter is employed in all DFT calculations performed in this thesis using
the Quantum Espresso software. The underlying periodicity of the crystals implies that the
KS orbitals can expressed, based on Bloch theorem

ψik(r) = eik·ruik(r) (2.15)

where uik(r) has the periodicity of the cell, and it is given as:

uik(r) = 1√
Ω

∑
n

cin(k)eiGn·r. (2.16)

Ω is the unit cell volume, Gn is the reciprocal lattice vector of the crystal, k is the wave
vector, i is the electronic band index, and cin are expansion coefficients. In practice, the
number of plane waves in the expansion of 2.15 at a given k-point is determined by the
cutoff off of the plane wave kinetic energy (Ecut), that satisfies

1
2 |G + k|2 < Ecut (2.17)

2.3.5 Pseudopotential
Most physical properties of depends on outermost valence electrons of atoms and the core-
electrons are environment-independent. The valence electrons wavefunctions oscillate rapidly
within the core region, due to orthonalty with the wavefunctions of the core electrons. The
pseudopotential theory attempts to replace the nuclear potential with an altered potential
that provides smooth wavefunctions at the nuclear core while matching the original wave-
functions beyond a given radius.
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3.1 Molecular Dynamics

Classical molecular dynamics integrate Newton’s equation of motion (EOM) for an ensem-
ble of point-like particles representing atoms in real materials. Once initial conditions are
defined, such as the positions and velocities of particles, and a physical model that describes
the interatomic interactions, the motion of atoms as a function of time is used to generate
trajectory. Constraints, such as temperature (thermostats) or pressure (barostats), define
how the phase space is sampled and, consequently, the macroscopic properties that can be
extracted from the trajectory[62]. In contrast to the Phonon gas model, MD offers a more
practical way to study the effects of temperature. Normal mode analysis (NMA) can be used
to calculate the phonon density of states as a Fourier transform of the velocity autocorrela-
tion, and the Green-Kubo theory can be employed to compute the thermal conductivity from
the autocorrelation of the heat flux [63, 26]. However, the predictive power and transferabil-
ity of interatomic potentials is constrained by the fact that they are either basic analytical
functions, fitted to experiment, or parametrized using ab initio calculations[64]. Quantum
or ab initio MD is a major advancement that follows Car and Parinello’s unification of MD
and DFT [65].

In molecular dynamics the simulation the aim is typically to explore the phase space
(p, r) exhaustively so that the time average ⟨.⟩t approximately represented the ensemble
average ⟨.⟩(p,r), for an observable A(p, r), i.e.

⟨A⟩ = lim
t→∞

∫ t

0
A(t′)dt′ ≈ 1

Nsteps

Nsteps∑
i=1

A(p(ti), r(ti)) . (3.1)

I.e. an integral over the thermodynamic ensemble, which we cannot compute, is replaced
with an integral over time. Ab initio MD implies solving the static electronic structure
problem and simultaneously propagating the nuclei classically, according to the equations of
motion {

ṗi(t) = fi = −∇iV (r)
ṙi(t) = pi(t)

mi

. (3.2)

The potential energy V (r) depends, either parametrically or from the explicit ab initio
solution of the electronic problem, on atomic positions {ri}N

i=1. The right-hand side of
Equation 3.2 gives the forces fi acting on each atom i ∈ {1, 2, ...N}, from static electronic
structure problem on clamped nuclei. Thus, only electrons coupled with classical nuclei are
subjected to quantum mechanical treatment.

11
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3.1.1 Thermostats

The simplest microcanonical approach to AIMD keeps the total internal energy (E), the
number of particle (N) and the volume (V) constant and does not try to control the other
thermodynmic observables, for this reason it is often referred as NVE. It is easy to implement
and bias-free, but has the main drawback that the instantaneous temperature can fluctuate
wildly, and the average one can only be enforce approximately from initial conditions. For
this reason, a canonical (NVT, because T is controlled) approach can be preferable [62,
66, 67, 68, 69, 70]. In velocity rescaling method, the desired temperature is enforced by
multiplying the atomic velocities with a factor α, defined as the ratio of target T ′ to the
instantaneous temperature T , α =

√
T ′/T =

√
K ′/K, where K is the kinetic energy. The

most widely used velocity re-scaling thermostat is Berendsen thermostat [66]. Although
simple, very fast, and easy to implement, it leads to wrong distribution of temperature and
hence do not sample the desired canonical ensemble.

Anderson thermostat [67] on the other hand, replace the atomic velocity of an atom by
that of a particle randomly drawn from a Maxwell-Boltzmann distribution at a desired tem-
perature, for every nth time-step. Although stochastic in nature, the Anderson thermostat
is too sensitive to n, and gives no conserved quantity.

In the case of Nose-Hoover thermostat [68] [69], an extended Hamiltonian is employed
where a fictitious oscillator, which damps the momenta of atoms, is added to the original
system. While this thermostat gives conserved quantities, the system may remain a region
of the phase space, leading to ergodicity problems. Adding additional fictitious oscillators
gives more ergodic canonical sampling with Nose-Hoover chains thermostats.

An advance concept that combines fast velocity rescaling and stochastic thermostats was
developed, called stochastic-velocity rescaling (SVR) also known as Bussi-Donadio-Parrinello
thermostats [70], named after the authors. The temperature follows a stochastic differential
equation that conserve the pseudo-Hamiltonian of the system:

dK

K ′ =
[
1 − K(t)

K ′

]∆t
τ︸ ︷︷ ︸

Rescaling

− 2

√
K(t)
K ′Nτ

dW (t)︸ ︷︷ ︸
Stochastic

. (3.3)

The characteristic time of the thermostat, τ = nraise × ∆t, is a multiple of the time-step,
and is the same as in Berendsen method. dW (t) is Wiener noise termed "white noise" that
represents the stochastic force term, similar to the one seen in Langevin or Brownian dynam-
ics. In the absence of the stochastic term, i.e. W (t) = 0, Equ. 3.3 reduces to the standard
Berendsen thermostat, and in the limit τ → 0, the stochastic velocity re-scaling is enforced,
yielding quick thermalization. We adopted SVR thermostat in our calculation and compare
its performance (average temperature, equilibration time, and autocorrelation of the total
energy)

3.2 Langevin Dynamics

Langevin dynamics (LD) is a stochastic method of describing the Brownian motion of par-
ticles in a solvent. Since heavy particles move much more slowly than the smaller solvent
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particles, the degrees of freedom of the solvent can then be replaced by a frictional force that
opposes the velocity of the heavy particles, and an additional stochastic term due to frequent
collisions with (smaller) particles of the solvent, to ensure Brownian motion is ensued even
in the absence of external force [62] [71]. In our case, we are want to use Langevin dynamics
to model motion of atoms in an extended solid system at fixed temperature, within the DFT
framework, i.e. as a thermostat in AIMD. The Langevin equation is expressed as follows:

ṗi(t) = − γpi(t)︸ ︷︷ ︸
damping

+ fi(r(t))︸ ︷︷ ︸
Hellmann-Feymann

+
√

2mikBTηi(t)︸ ︷︷ ︸
stochastic

ṙi(t) = pi(t)
mi

. (3.4)

In Equ. 3.4, γ, f(q(t)) and η(t), are respectively, the Langevin friction, the deterministic
force, and the stochastic force represented by the white-noise. Following the fluctuation-
dissipation theorem (FDT) [63], the dissipative Langevin damping γ is compensated by
fluctuations induced by the stochastic forces η(t) via temperature dependence, such that

⟨η(t)η(t′)⟩ = δ(t− t′)α(τ) with α = 2kBTγ. (3.5)

The equations of motion in Equation 3.4 can be expressed in terms of the probability density
P (Γ, t) that evolves according to the Fokker-Planck equation [72] which reads as

∂P (Γ, t)
∂t

= iLF PP (Γ, t), (3.6)

where iLF P = iLp + iLq + iLγ is the Fokker-Planck Liouvillian, evolving the momenta, the
coordinates and defining the thermostat, respectively.

3.2.1 Bussi-Parinello algorithm
Langevin equation can be integrated in a number ways [62]. In our case, we adopted the
recent implementation of the Bussi-Parrinello [39] algorithm by Moressi et al, [6]. The
Fokker-Planck plank equation derived from Eq. 3.4, allows Trotter-splitting of a propagator
into multiple subspaces

e−∆tL ≈ e−(∆t/2)Lγe−∆tLpre−(∆t/2)Lγ

≈ e−(∆t/2)Lγe−(∆t/2)Lpe−∆tLre−(∆t/2)Lpe−(∆t/2)Lγ
(3.7)

where e−(∆t/2)Lγ is a step in momenta subspace that provides ergodicity and is propagated
analytically, while e−∆tLpr is a step in the mixed momenta-coordinates subspace propagated
similar to velocity-Verlet algorithm. The Bussi-Parrinello algorithm consists of the followinng
steps:

p(t+) = c1p(t) + c2R(t) (3.8a)

r(t+ ∆t) = r(t) + p(t+)
m

∆t+ f(r(t))
m

∆t2
2 (3.8b)

f(t+ ∆t) = −∇V (t+ ∆t) (3.8c)

p(t− + ∆t) = p(t+) + f(r(t)) + f(r(t+ ∆t))
2 ∆t (3.8d)

p(t+ + ∆t) = c1p(t− + ∆t) + c2R
′(t+ ∆t) (3.8e)
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Here, Eqs. 3.8a and 3.8e are thermostating steps where damping and random forces appear,
while Eqs .3.8b and 3.8d are velocity-Varlet steps. R, R′ are Gaussian numbers and c1, c2 are
coefficients related to the damping γ and inverse temperature β according to c1 = e−γ(∆t/2)

and c2 =
√

(1 − c2
1)m

β .
LD has been used to describe the thermodynamical behavior of more diverse systems [39]

[73] [6]. In the absence of damping (γ = 0), LD reduces to NVE, and in the absence of de-
terministic Born-Oppenheimer forces it reduces to Brownian motion. In the intermediate
range its behavior depends on the ratio of γ and the time step (∆t), with a large range of
acceptable good values which can be determined by testing and computing the correlation
time of V , on a case by case basis. In Chapter X, this method is employed to sample uncor-
related AIMD snapshots. The small correlation time and fast equilibration of this approach
over MD considerably decrease computing time and allow efficient canonical sampling of the
Born-Oppenheimer PES.

3.3 Lattice Dynamics
We presented the Born-Oppenheimer approximation in Section 2.2, which separates the
electronic and nuclear degrees of freedom for a many-body Schrodinger equation, yielding
the equation for electrons at fixed nuclear coordinates. However, because of translational
invariance in a crystal, the collective motions of nuclei are the natural framework to de-
scribe the vibration associated This type of motion constitutes Lattice dynamics, a theory
developed in the 1930s, but especially by Born and Huang in their 1954 book [15], which
provides fundamental formulations and properties of dynamical matrices. Lattice dynamics
is responsible for many properties of materials, including thermal expansion, resistivity, su-
perconductivity, optical properties, Infrared, Raman, Neutron diffraction spectra, and so on
[16]. The connection between lattice dynamics and electronic structure was made in 1969
by De Cicco et al. [74] and in 1970 by Pick et al [75]. Since then, remarkable progress has
been made. Due to advances in algorithms and progress in computing power, nowadays,
it is possible to compute the vibrational properties of materials with remarkable accuracy.
In this Sections we introduce Harmonic approximation, its quasi-harmonic extension, and
phonon anharmonicity from the perturbation theory and beyond. The expressions presented
here will be used throughout the thesis.

3.3.1 Harmonic approximation
The simplest model that describes lattice dynamical properties in solids is the harmonic
approximation. The hamiltonian function that describes the motion of the nuclei depends
on the shape of the BO potential energy, which can be very complex. However, as long as
the range of vibration of the nuclei remains small w.r.t their interatomic distance, we can
try to expand the BO energy U as a Taylor series around the equilibrium in terms of the
nuclei displacements u from their equilibrium positions, as:

U = U0 +
∑
i,α

∂U

∂uα
i

uα
i + 1

2!
∑

ij,αβ

∂2U

∂uα
i ∂u

β
j

uα
i u

β
j + 1

3!
∑

ijk,αβγ

∂3U

∂uα
i ∂u

β
j u

γ
k

uα
i u

β
j u

γ
k + ..., (3.9)

where the composite index a = (i, α) indicate both atomic (ijk) and Cartesian (α, β, γ)
indices. U0 is constant and the first-derivative give vanishing forces at equilibrium. The
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second (third) derivative of the potential energy with respect to the displacements give the
second-order (third-order) interatomic force constants (IFCs):

Φαβ
ij = ∂2U

∂uα
i ∂u

β
j

, Φαβγ
ijk = ∂2U

∂uα
i ∂u

β
j ∂u

γ
k

, ... (3.10)

The harmonic approximation consists in neglecting the third and higher-order terms so that
the BO potential in Eq. 3.9 around the equilibrium is reduced to its second order:

U ≈ 1
2

∑
ij,αβ

Φαβ
ij u

α
i u

β
j . (3.11)

The classical equation of motion for the atoms in the harmonic potential is given as:

Miüα
i = − ∂U

∂uα
i

= −
∑
jβ

Φαβ
ij u

β
j . (3.12)

In crystalline solid materials, one can define the position of an atom i, in a unit cell l,
occupying the lattice site n, as Ri = rl + rn + uln = rln + uln. Assuming that all atomic
displacements are coherently connected by a plane wave with wave vector, q and angular
frequency, ω, then the displacement is given as

uln = 1
N

∑
qs

Aqse
i(q·rln−ωqst) (3.13)

Aqs is the normal-mode coordinate and εqs is the polarization vector. Therefore, the equa-
tions of motion for atoms in Eq. 3.12 are then transformed into a set of decoupled algebraic
equations, ∑

jβ

Dαβ
ij (q) = ω2

qsu
α
ln (3.14)

where
Dαβ

ij (q) = 1√
MiMj

∑
R

Φαβ
ij e

−iq·R (3.15)

We can invoke second quantization and express the atomic displacements and momenta
in terms of phonon creation â†

qs and annihilation âqs operators (see Appendix A), in terms
of which the harmonic Hamiltonian becomes

Ĥ =
∑
qs

ĥqs =
∑
qs

ℏωqs(â†
qsâqs + 1

2)

=
∑
qs

ℏωqs(nqs + 1
2)

(3.16)

The energy of a quantum harmonic oscillator is given by E = ℏωqs(nqs + 1
2) where ℏωqs/2

is the zero-point energy of the atoms as they move around their equilibrium points, in
the absence of thermal excitation. Thermodynamic properties can be determined from the
partition function of N atoms, ZN = ∏N

i Zi, where for each oscillator,

Z = e−βℏωqs

1 − e−βℏωqs
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3.3.2 Quasi-Harmonic approximation

In the harmonic approximation (HA), the vibrational contribution to the internal energy of
a crystal does not depend on volume because the vibrational frequencies are independent of
interatomic distances. The HA also has a number of limitations, including the fact that it
predicts no thermal expansion, an infinite thermal conductivity, due to absence of phonon-
phonon interactions, and that vibrational spectra, and related properties, are independent
of temperature. Furthermore, the heat capacities at constant pressure (CP ) and volume
(CV ) would be identical, and neither the force-constants nor the elastic constants would
change with temperature or pressure. The description of the anharmonic effect and its
role in static and dynamic properties of materials would require computing phonon-phonon
interaction coefficients for all modes in the BZ, which is a daunting task. Quasiharmonic
approximation (QHA) is the simplest method of computing free energy without the need for
explicit computation of anharmonic interaction coefficients [76], [19], [20]. Helmholtz free
energy (F (X,T )) is the fundamental quantity from which all thermal properties are derived.
Within the adiabatic approximation, F (X,T ) can be expressed as:

F (X,T ) = E0(X) + Fvib = E0(X) + Evib(X,T ) − TS (3.17)

where E0 is the static total energy from first principles DFT in our case, Svib is the vibrational
entropy from the lattice vibration (non-vibrational entropy such as electronic, magnetic, and
configurational, depend on the system and require careful treatment) and X is a global
constraints that the vibrational frequencies can depend on, e.g., volume, internal distortion,
external field, etc. In the case X = V , then F (V, T ) is given as:

F (V, T ) = E0(V ) + kBT
∑
q,s

ln
[
2 sinh (ℏωq,s(V )

2kBT
)
]
. (3.18)

ωq,s(V ) is the phonon frequency from harmonic approximation at a given volume V , and q, s
represent the phonon wave vector and branch, respectively. kB and ℏ are Boltzmann’s and
Planck’s constants, respectively. Computing F (V, T ) at different volumes and then fitting the
calculated value to the equation of state (EOS) gives finite temperature properties. Standard
thermodynamic relations [76] are then employed to get the entropy Svib and pressure P :

P = −∂F (V, T )
∂V

, S = −∂F (V, T )
∂T

(3.19)

These thermodynamic quantities (E, T, V, S and P ) are then used to obtain Gibbs Free
energy:

G = E − TS + PV = F + PV (3.20)

At finite temperature, these quantities have contribution due to both zero-point and thermal
excitation. For instance, the QHA pressure is given as

P = − ∂F (V, T )
∂V

= ∂E0(V )
∂V

+ 1
V

∑
q,s

ℏωq,sγq,s

[
1
2 + 1

e
ℏωq,s
kBT − 1

] (3.21)
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where
γq,s = − V

ωq,s

∂ωq,s

∂V

are called the Grüneisen parameters of the mode (q, s). The thermal expansion coefficient
βT is given as:

βT = 1
V

∂V

∂T
= 1
V

(∂P/∂T )
(∂P/∂V )

= 1
B

∂P

∂T

= 1
B

∑
q,s

ℏωq,sγq,sn
′
q,s,

(3.22)

where B is the bulk modulus of the crystal and n′
q,s is the derivative of the Bose-Einstein

occupation number.

QHA, in the framework of DFT, with harmonic phonons computed either from finite dif-
ference in supercell or linear response (DFPT), results in a powerful simulation method that
has been shown to be successful over a wide range of temperatures and different classes of
materials [19, 20] The early applications of QHA with ab initio phonons addressed the neg-
ative thermal expansion of tetrahedrally coordinated elemental and binary semiconductors
[77], [78], [79]. Subsequently, QHA has been applied to study metals, surfaces, and minerals.
It is possible to predict many materials’ pressure-temperature phase diagrams (P-T phase
diagrams), and compare to experiments [20].

The QHA method can be reliably accurate, particularly in cases where DFPT can be
used to calculate phonon frequencies on a finer grid. However, its validity can be questioned
if the anharmonic effect is strong. QHA requires dynamic stability and, therefore, cannot
describe phase transition in cases involving imaginary frequencies. Furthermore, the QHA
has to be used for temperatures lower than the melting point. Self-consistent quasiharmonic
approximation (SC-QHA)[80, 81] is a new improvement on QHA that reduces the number
of volumes needed to only three.

3.3.3 Anharmonicity from perturbation theory

The phonon quasiparticle picture allows one to add higher-order terms in the expansion of
the BO energy given by Eq. 3.9. Thus, the Hamiltonian in operator formalism up to fourth
order can be expressed as:

Ĥ = Ĥ2 + Ĥ3 + Ĥ4 (3.23)

where the constant energy is neglected and

Ĥ2 =
∑

λ

ℏωλ(â†
λâλ + 1

2),

Ĥ3 = C3
∑

λλ′λ′′

Φλλ′λ′′ (âλ + â†
−λ)(âλ′ + â†

−λ′)(âλ′′ + â†
−λ′′ ),

Ĥ4 = C3
∑

λλ′λ′′ λ′′′

Φλλ′λ′′ λ′′′ (âλ + â†
−λ)(âλ′ + â†

−λ′)(âλ′′ + â†
−λ′′ )(âλ′′′ + â†

−λ′′′ ),

(3.24)
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where we used condensed index λ = (qs). Ĥ3 is the lowest order anharmonic perturbation,
and correspond to the three-phonon interaction (two phonons coalescing into a third or one
phonon splitting into two). Similarly, Ĥ4 represent a four-phonon processes. Φλλ′λ′′ and
Φλλ′λ′′ λ′′′ are the three and four phonon matrix elements obtainable from real-space three-
and four-body force constants, respectively.

Φλλ′λ′′ =
∑
ijk

∑
αβγ

εα,i
λ εβ,j

λ′ ε
γ,k

λ′′√
MiMjMk

√
ωλωλ′ωλ′′

Φαβγ
ijk e

i(q·ri+q′·rj+q′′ ·rk) (3.25)

Φλλ′λ′′ λ′′′ =
∑
ijkl

∑
αβγδ

εα,i
λ εβ,j

λ′ ε
γ,k

λ′′ ε
δ,l

λ′′′√
MiMjMkMl

√
ωλωλ′ωλ′′ωλ′′′

Φαβγδ
ijkl e

i(q·ri+q′·rj+q′′ ·rk+q′′′ ·rl) (3.26)

In many-body perturbation theory, the complex frequency-dependent phonon self-energy
[82] is expressed as the sum of the real and imaginary part

Σλ = ∆qs + iΓqs

∆qs = ∆3
qs + ∆4

qs

(3.27)

where ∆qs is the anharmonic shift in the phonon frequencies, with contribution from three-
and four-phonon processes, while Γqs is the imaginary part of the self-energy that correspond
to broadening, inversely related to the phonon lifetime, Γqs = 1

τqs
, and computed using

Fermi’s golden rule [83, 84]

Γqs = π

ℏ2Nq

∑
λ′λ′′

F (ωλ, ωλ′ , ωλ′′ )|Φλλ′λ′′ |2 (3.28)

where

F (ωλ, ωλ′ , ωλ′′ ) = (1 + nλ′ + nλ′′ )δ(ωλ − ωλ′ − ωλ′′) + 2(nλ′ − nλ′′ )δ(ωλ + ωλ′ − ωλ′′)

Nq is the total number of q-points sampled in the 1BZ of the phonon (qs), δ(y) is the Dirac
delta function, and nλ is the phonon Bose-Einstein occupation number. However, nλ can
differ from the equilibrium phonon distribution in an iterative solution but serve as an initial
guess. In cases where comparison needs to be made with classical MD, nλ is set to follow
the classical distribution nλ = kBT/ℏω.

Anharmonic lattice dynamics using the three-phonon scattering developed in the 1960s
by Maradudin et al. [83] finds application in the first principles method following the devel-
opment of DFPT and the "2n+1" theorem [85]. It states that the derivative of the wavefunc-
tion and charge density to order n gives the derivative of the total energy to order "2n+1".
This development paved the way for the prediction of three-phonon scattering coefficients
and linewidth for Insulators and semiconductors for the zone-center (Γ-point) phonons and
later for metals [86], which can be compared directly to Raman and Infrared measurements.
Subsequent development allows the computation of three-phonon scattering coefficients at
arbitrary q-points, applicable to metals and insulators of any geometry [84], as well as other
techniques based on finite difference in supercells [87, 88].

Once anharmonic scattering coefficients and the harmonic phonon spectra are obtained
from FCs, the thermal conductivity can be readily computed. In 1929, Peierls [89] developed
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the first microscopic description of the thermal conductivity in insulators by "heat carrying
particles", known as the Boltzmann transport equation (BTE), which was later solved by
Omini and Sparavigna iteratively [90]. In the single mode approximation (SMA) [91], which
is the most widely used method, the thermal conductivity tensor along Cartesian direction
α, in the presence of thermal gradient along β direction, is given by

καβ = ℏ2

N0ΩkBT 2

∑
j

vα,λvβ,λω
2
λnλ(nλ + 1)τλ, (3.29)

where N0 is the total number of q-points that sample the Brillouin zone, λ is the index for
both phonon wave vector q and the branch s, Ω is volume of the unit cell, vα,λ = ∇qωqs

is the phonon group velocity, nλ is the Bose-Einstein distribution function, and τλ is the
phonon lifetime obtainable from Eq. 3.28.

In real materials, however, phonon transport is impeded not only by three-phonon in-
teraction in bulk but also by multiple scattering mechanisms. These include higher-order
scattering (four-phonon), phonon-isotope scattering, phonon-boundary scattering, phonon-
impurity, electron-phonon scattering, etc. Matthiessen’s general rule [92] gives the total
scattering rates as a sum, assuming all scattering events are independent, as

1
τ

= 1
τ3ph

+ 1
τ4ph

+ 1
τe−ph

+ 1
τph−iso

+ 1
τph−boundary

+ ... (3.30)

In recent years, it has been shown that four-phonon scattering plays an important role
in forecasting the lattice thermal conductivity of materials. For instance, including it can
result in a decrease of up to 60% percent in the κl of BAs [93].

Anharmonic Lattice dynamics using the BTE approach (ALD-BTE) is a powerful method
of choice that is gaining increasing popularity due to the development of new theoretical
techniques and implementation in freely accessible codes. These enable parameter-free ab
initio characterization of materials ranging from 3D, to 2D and 1D nanostructures as well
as intercalated and other complex materials [94, 95]. Popular examples include codes such
as D3Q+thermal2 [84], Phono3py [88], ShengBTE [87], ALAMODE [96], etc.

3.3.4 Anharmonicity beyond perturbation theory
So far, we have introduced phonons as independent harmonic oscillators (harmonic approxi-
mation), with temperature dependence only via volume (quasiharmonic approximation), and
weakly interact with each other, where the temperature only changes their population via
the occupation number nλ (perturbation theory). These formulations described the standard
phonon quasiparticle picture of solid materials.

However, these formulations cannot describe materials stabilized by temperature or in
the vicinity of phase transition. The harmonic approximation breaks down, and the small
displacement assumption in the perturbation theory, which allows Taylor expansion, becomes
invalid. We refer to these materials as strongly anharmonic. As early as the 1950s, Born
and Hooton [21, 22], and later others [23, 24], recognized this issue, and their subsequent
work led to the development of a theory, the self-consistent phonon theory, which has since
been successfully adopted for the description of strongly anharmonic materials [41]. In the
last two decades, there has been increasing interest in non-perturbative anharmonic methods
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[27, 29, 32, 33, 35, 38, 6, 96], each with its unique formulation in how anharmonic effects are
reintroduced, and we shall discuss some of them that are based on density functional theory.
Consequently, we will move the discussion of the temperature-dependent effective potential
approach (TDEP) to Chapter 4 prior to our TDPH method.

3.3.4.1 Velocity autocorrelation function (VACF) method

Ab initio molecular dynamics (AIMD) simulations sample the potential energy surface, in-
cluding full anharmonicity. Normal-mode analysis (NMA) [25, 26] approaches have been
used to calculate dynamic and transport properties as time averages over trajectories. NMA
benefits from not having to compute higher-order force constants directly, helpful in treat-
ing large systems, and their use of AIMD to derive renormalized phonon frequencies and
lifetimes, allowing renormalized frequencies and phonon lifetime to be obtained from non-
perturbatively. The fundamental drawback of these approaches is the extended time needed
in simulation to achieve ergodicity and/or the desired frequency resolution and the absence
of nuclear quantum effects. However, since harmonic phonons from finite difference or lin-
ear response methods in DFT have zero-point energy, a quantum effect, but lack explicit
temperature dependence, which can be accounted for in AIMD, the combination of the two
methods complements each other.

The first contribution in this direction was by de Koker [27], using the power spectrum
of the velocity autocorrelation to obtain phonon frequencies and linewidths and a fit to
exponentially decaying function to extract lifetime from the power spectrum. The predicted
lattice conductivity for MgO periclase agrees with the experiment. However, there are several
phonon modes in materials with large unit cells having comparable frequencies. The difficulty
arises when the spectra of these modes overlap.

Renata and coworkers [28] proposed that solving this problem requires determining the
power spectra of all 3N possible modes, each with its unique wave vector q and polarization
branch s. Also, harmonic phonon spectra computed in a unit cell are projected to the atomic
velocities from AIMD in a supercell. Within this formalism, the VACF is given by

⟨Vq(0) · Vq(t)⟩ = lim
τ→∞

1
τ

∫ τ

0
Vq(t′)Vq(t′ + t)dt (3.31)

where the q-mode mass-weighed projected velocity Vq(t) is given by

Vq(t) =
N∑
i

√
mivi(t)eiqR · êq

mi, vi and ri (i=1,2,..N) are mass, velocity and equilibrium coordinate atoms in an N-atom
supercell computed from AIMD. The symbol, q represent both normal mode and the s = 3n
phonon branches i.e. q = (q, s).

The VACF is also phenomelogically described by an exponentially decaying cosine func-
tion

⟨Vq(0)Vq(t)⟩ = Aqcos(ω̃qt)e−Γqt (3.32)

ω̃q and Aq represent renormalized phonon frequencies and oscillation amplitude, respectively.
In this case, finite temperature phonon shift is ∆q = ω̃q − ωq.
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The phonon lifetime, τq is inversely proportional to the linewidth Γq

τq = 1
2Γq

(3.33)

In VACF method, anharmonic properties can computed non-perturbatively, similar to the
many-body formalism where strong anharmonic phonon-phonon interaction causes phonon-
quasiparticles to acquire self-energy (frequency shift and linewidth): Σqs = ∆qsωqs + iΓqs.
The VACF has been implemented (phq code) and successfully applied to study lattice ther-
mal conductivity in MgO periclase [27], phonon shift in Si and MgSiO3 [28], anharmonic
thermodynamics in CaSiO3 [97], giant anharmonicity in thermoelectric PbTe [98], phase-
transition in SnSe [99], among others.

3.3.4.2 Force-force correlators method

Here we shall describe the classical correlators, to limit our discussion within the frame-
work of DFT since quantum correlators require path-integral molecular dynamics simulation
(PIMD). For the classical correlators consider an N-partcle Hamiltonian given by positions
(x) and momenta (p) vectors that defines the kinetic K and potential V energy of the
particles as

H(x,p) =
3N∑
i=1

[ p2
i

2mi
+miω

2
i (xi − xj)2

]
= K + V (3.34)

Eq. 3.34 is the classical limit of the path-integral Hamiltonian for 3NP-distinguishable par-
ticles with P=1 [6]. At a given temperature one can define a the force-constant matrix or
the effective Hessian [100] [101], as

Πij =
〈 ∂2V

∂xi, ∂xj

〉
(3.35)

where the brackets represent averages computed in canonical ensemble. i, j = 1, 2, ...3N
Cartesian coordinates. The matrix Πij , can go into the standard eigenvalue problem

Πij ẽj,k = ω2
kẽi,k, (3.36)

where the ωk is the kth frequency of the mode with eigenvector ẽi,k. At statistical equilibrium,
their is an exact relationship between force fluctuation and the potential that can be leveraged
to obtain atomic forces [101], [100]:

〈
FiFj

〉
=

∫
dN p e−βK

∫
dN x ∂V

∂xi

∂V

∂xj

e−βV

Z

= 1
β

Πij

(3.37)

where Fi represent the ith component of the force acting on atom 1, β = 1/kT−1, and
Z is the configuration partition function. Eq. 3.37 can also be obtained from the velocity
autocorrelation [101], and can be generalized to third-order term [100]. Importantly, the
equation is exact and independent of the form of the potential. An additional or alternative
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way of computing the force-constant matrix in Eq. 3.35 is the displacement-displacement
correlators: 〈

δxiδxj
〉

≈
∫
dN p e−βK

∫
dN x δxiδxj

e− β
2 δxT ·Π·δx

Z

≈ β[Π−1]ij
(3.38)

where δx = x − x is the displacement from the equilibrium positions extracted from the
trajectory.

The force-force <ff> and displacement-displacement <xx> correlators have been tested
extensively on toy models, with simple potentials, and also on a number of real system
including diamond and high-pressure atomic hydrogen I41/amd [6], accurately predicting
the anharmonic Raman shift in agreement with the expensive Quantum Monte-Carlo result
[102]. The correlators method have also been implemented in Quantum espresso, using
PIOUD algorithm for both classical and quantum (PIMD) correlators [6]. We compared this
method to our own in subsequent Chapters.

3.3.4.3 Self-consistent phonon methods

Self-consistent phonon approximation is the most popular theory of obtaining renormalized
phonons, and it has many variants. In its original formulation, the true Gibbs-free energy F
satisfies Gibbs-Bogoliubov principle

F ≤ FH + ⟨V (R) − VH(R)⟩H (3.39)

where FH is a trial free energy, VH(R) is the trial harmonic potential.
The earliest contribution in the family of SCP-based methods is the self-consistent ab

initio lattice-dynamical method (SCAILD) by Souvatzis et al. [29]. Atomic forces FR are
computed for atoms in a supercell and used to calculate initial trial phonon dispersion. The
eigenmodes are then used to displace atoms with an amplitude A, at the target temperature,
T. Atomic forces are computed, Fourier transformed Fq, and then used to generate new
phonon frequencies ωqs with eigen mode εqs. Atoms are then moved with displacements
UR. The set of self-consistent equations are:

Aqs = ±
√

−ℏ(2nqs + 1)/2Mωqs (3.40)

UR = 1√
M

∑
qs

Aqsεqse
iq·R (3.41)

FR = −
∑
R′

Φ(R−R′)UR′ (3.42)

Fq = −
∑

s

Mω2
qsAqsεqs (3.43)

ωqs =
[

− 1
M

εqsFq
Aqs

]1/2
(3.44)

SCAILD have been successfully applied predict phonon spectra of high temperature BCC
phases of Zr, Ti, and Hf [29], and their free energy [103]. Roekeghem et al. extended the
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method to QSCAILD [31] by using quantum covariance of atomic displacement in canonical
sampling [30], similar to SSCHA, and generalizing to third-order force constants.
In the stochastic self-consistent harmonic approximation (SSCHA) [38], the free energy is
minimized variationally with respect to the the trial force constants Φ(q), and centroids R,
where

VH(R) = 1
2

∑
q

∑
ss′,αβ

uα∗
s (q)Φαβ

ss′u
β
s′(q) (3.45)

SSCHA has been employed to study anharmonicity due to both thermal and nuclear quantum
effects in several materials, including superconducting hydrides, transitional metal dichalco-
genides, ferroelectric and charge density wave transition (CDW), and high-pressure phases
of hydrogen [38, 104]. The success of SCCHA can be attributed to its rigorous theoretical
formulation, and its limitation is the large number of canonical configurations required for
self-consistency.

In the SCPH method of Tadano et al. [10], the lowest even-order term (i.e. the quartic)
is considered in solving the self-consistent equations:

Ω2
q = ω2

q + 2ΩqI
a
q (3.46)

Ia
q = 1

2
∑
q1

ℏΦ(q,−q; q1; −q1)
4ΩqΩq1

[1 + 2n(Ωq1)] (3.47)

where Φ(q,−q; q1; −q1) is the fourth-order force-constants in q-space and n(Ω) is the phonon
Bose-Einstein distribution function. SCPH employed sparse representation-based compres-
sive sensing with the least absolute shrinkage and selection operator (LASSO) or elastic-net
technique to enhance computational speed in extracting higher-order force constants.
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4 – Temperature-dependent phonon
method (TDPH)

Part of this Chapter appeared in the Journal article: Garba, I. B., Morresi, T., Bouillaguet,
C., Casula, M., & Paulatto, L. Journal of Physics: Condensed Matter (2023).

It is clear that true vibrational properties of a system cannot be obtained from the har-
monic approximation since we neglect higher order terms in the expansion of Eq. 3.9 that give
rise to anharmonic effects. Anharmonic effects play important role in properties of materials
with weak bonding, light elements, close to phase transition or at higher temperature. Any
or a combination of these effects manifest in materials leading to large vibrational amplitude
that render the harmonic approximation invalid, preventing also perturbative methods. In
this case, anharmonic (and non-perturbative) methods becomes important. The tempera-
ture dependent effective potential method (TDEP) is a method of computing anharmonic
properties of materials non-perturbatively from force constants by fitting ab initio MD forces
[32, 33]. In this section, we describe in details our implementation of the TDEP technique in
reciprocal-space and give results for convergence tests. Real-space TDEP approaches have
been implemented in a variety of codes, including the popularTDEP [33], ABINIT (A-TDEP)
[105] and ALAMDODE (TEP) [96]. To the best of our knowledge, our reciprocal-space technique
is the first contribution in this regard.

4.1 Temperature-dependent effective potential (TDEP)

Temperature-dependent effective potential (TDEP) is a method of computing finite-temperature
force constants (FCs) from a sampling of ab initio forces. This method was first proposed
by Esfarjani and Stokes [32], where the FCs (harmonic, cubic, and quartic) of Si were ex-
tracted from ab initio MD force-displacement data. Hellman and coworkers [33] introduced
a similar procedure, but starting instead with zero-temperature harmonic FCs to obtain the
best effective FCs at a given temperature by a least-square fit to ab initio MD forces at that
temperature.

The TDEP method was tested on entropy-stabilized bcc phases of Zr and Li by Hellman
et al. [33], and then later extended to treat anharmonic free energy correction in 4He [106]
and cubic FCs in Si and FeSi [107]. The TDEP formalism starts with a model Hamiltonian

H = U0 +
∑

i

p2
i

2mi
+ 1

2
∑
ijαβ

ϕαβ
ij u

α
i u

β
j , (4.1)
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where U0 is the ground state energy, and u and p denote displacement and momentum,
respectively, of atom i (j) in Cartesian direction α (β). Based on the Hamiltonian above,
one can define a harmonic approximation of the force FH = −∇V as

FH ≡ Fα
i = −

∑
jβ

ϕαβ
ij u

β
j . (4.2)

The model Hamiltonian in Equation 4.1 is then fitted to a Born-Oppenheimer energy surface,
sampled at finite temperature, by minimizing the residual mean squared difference between
FH and the ab initio (Hellman-Feynman) force, FAI , at each time step t:

χ2 = 1
Nstep

Nstep∑
t=1

|FAI
t − FH

t |2

= 1
Nstep

Nstep∑
t=1

|FAI
t − ΘU|2.

(4.3)

The least-square determination of FH is then provided by the pseudoinverse solution that
gives the lowest residual force:

Θ = U†FAI =


u1

:

uN


† 

FAI
1

:

FAI
N

 .

The fitted FCs, Θ = ϕαβ
ij (T ) can then be used to compute temperature-dependent properties.

Due to the computational cost of AIMD, stochastically initialized temperature-dependent
effective potential (s-TDEP) [34] was proposed in which atoms in a supercell are displaced
with a stochastic thermal displacement [108, 38] to allow sampling the canonical ensemble.
While s-TDEP enables the inclusion of both anharmonic and quantum effects in a similar
fashion to SSCHA [38], its stochastic nature results in phase space that is not necessarily
consistent with the requested temperature. In this work, we adopted the Langevin dynamics
based on the algorithm by Bussi and Parrinello [39, 6], where instead of using an acceptance
probability, as in Monte Carlo algorithms, the additional knowledge of deterministic forces
is used to construct a chain of dynamic steps that allows for optimized sampling efficiency.

In the case of polar materials, the long-range contribution to FCs due to dipole-dipole
interactions, ΦLR

ij , are computed using ab initio Born effective charges Z∗, and dielectric
constant ϵ∞ from density functional perturbation theory (DFPT). Long-range effects are
impossible to compute unless one uses a very large supercell. However, it is possible to
separate forces into short- and long-range contributions FAI = FSR +FLR, and then fit only
the rapidly decaying short-range forces FSR. Detail explanation will be provided in Section
4.4.

4.2 Our implementation of reciprocal-space TDEP

The temperature-dependent phonon (TDPH) method is a reciprocal space implementation
of the TDEP technique described in Section 4.1. Our method is similar to the TDEP
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technique described above. However, instead of fitting the FCs directly to ab initio forces,
we decompose the dynamical matrices D(q) on symmetrized basis Bi(q) at each q-point [83].
This procedure is inspired to the one used in SSCHA[38] and ensures that an irreducible set
of parameters is employed to describe the full phonon dispersion. These minimum phonon
parameters (MPP) can be used to recompose the FCs and thus be fitted to the ab initio
forces.

We will see in Sec. 4.3 how the basis Bi(q) is built. Here, we detail the fitting procedure,
which can be summarized in the following steps:

1. Compute harmonic phonons on a q-grid and decompose the dynamical matrices D(q)
on symmetrized basis Bi(q) at each q-point

D(q) =
NB∑

i

ci(q)Bi(q) ,

ci(q) = ⟨D(q)|Bi(q)⟩ = Tr[D(q)BBi(q)] .

2. Read N configurations of AIMD force-displacement data in a supercell ({FAI
i ,ui}i=1,...,N ),

and compute harmonic forces FH
i,α = −

∑
jβ ϕ

αβ
ij uβ

j . The supercell size must be com-
mensurate with the phonon q-grid.

3. If polar material, remove the long-range forces FLR (due to dipole-dipole interaction)
from the AIMD forces before fit. FLR = −

∑
uc

∑
jβ ϕ

αβ(LR)
ij uβ

j . ϕαβ(LR)
ij is the long-

range contribution to FCs due to dipole-dipole interaction defined based on Born ef-
fective charges Z∗ and dielectric constants ϵ∞ using DFPT (see Sec. 4.4).

4. Minimize the residual force by LMDIF (Modified Levenberg-Marquardt) method

χ2 = min
{ 1
N

N∑
i=1

|FAI
i − FH

i |2
}

.

5. Reconstruct the dynamical matrices from the minimal parameters ci(q).

The procedure outlined above may be applied generally to energy, where harmonic energy,
EH , will replace FH in steps 2 and 4 and is defined as EH = ∑

ij,αβ ϕ
αβ(LR)
ij uα

i uβ
j . In Ap-

pendix B, we conducted calculations, and the results for a few test instances were compared.
However, it is more efficient to use atomic forces-displacement data since it considerably
reduces the number of calculations required to achieve convergence.
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Figure 4.1: A flowchart describing the TDPH procedure is outlined in Section 4.2 using χ2

as a convergence criteria. The default minimization convergence threshold is 10-12, but can
be made stricter.

4.3 Symmetric basis for dynamical matrices

The phonon dispersion over a grid of n × n × n q-points is described by a 3Nat × 3Nat

Hermitian dynamical matrix at each q-point in the grid. In order to reduce the dimension
of this space from n3 ×N2

at down to something more manageable, we can use symmetries in
two ways. First, we can reduce the grid of q-point to its irreducible wedge, i.e. from every
set of q-points which are linked by a symmetry operation of the crystal, namely a "star of
q-points", we only take one. Second, we observe that at each q-point the dynamical matrix
is fully determined by the subset of symmetry operations that leave the q-point unchanged,
minus a reciprocal space vector [109].

For every q-point in the irreducible wedge, we apply a symmetrization and orthogonal-
ization procedure that from a trial Hermitian matrix of dimensions N2

at, with no specific
symmetry, returns a minimal orthonormal basis which has the correct symmetry. The sym-
metrization and orthogonalization algorithm proceeds as follows:

1. Start with an initial guess of Hermitian matrices of dimension (3Nat)2 for each point in
the irreducible list. Possible choices are, random matrices, matrices with a single non-
zero element, or matrices constructed from the eigenvectors of the zero-temperature
DFPT calculation.



4.4 Dealing with polar materials 29

2. The elements of this trial basis are symmetrized, according to the symmetry of the
q-point. If any element is zero, they are discarded, the others are normalized.

3. Reduce the basis with the Gram-Schmidt algorithm, because the initial basis is over-
complete; if a zero-norm element appear during the procedure it has to be discarded.

Finally, what will be left is a set of symmetry-compatible matrices 1,2,...,NB(q) ∀ q, such that
any dynamical matrix from a simulation of a real crystal at each q-point can be decomposed
in the following way:

D(q) =
NB(q)∑

i=1
⟨D(q) | Bi(q)⟩ Bi(q) ∀ q ∈ 1BZ. (4.4)

Bi(q) are the symmetrized basis, defined as the minimal phonon parameters. NB(q) is also
the number of irreducible representation in the point group of q. The total number of such
parameters is given by

NB =
∑

q
NB(q) (4.5)

In practice, NB is significantly smaller than (3Nat)2 and can be as small as 4 for highly
symmetric crystals such as fcc Al on 2 × 2 × 2 q-grid. Table 4.1 below gives the phonon
parameters of different materials. The number of phonon parameters NB, depends on the
symmetry of the crystal structure and the size of the phonon q-grid (which determine the
size of the supercell in real space). For instance, NB of orthorhombic MgSiO3 is 19 times
bigger than that of cubic MgO, although the latter have 1.6 times more atoms than the
former.

Table 4.1: Size dependence of phonon parameters for a 5,000 MD snapshots. Space group
(SG), supercell size, number of atoms in supercell (Nat), minimal phonon parameters (NB),
ab initio forces for Nsteps (FAI), and TDPHtime CPU time (Machine specification: Personal
computer with 2.20GHz (x12) Intel Core i7-8750H ).

System SG Supercell Nat NB FAI TDPHtime(s)
Al Fm3m 225 (2 × 2 × 2) 8 4 2.00 ×105 3
CsI Pm3m 221 (2 × 2 × 2) 16 13 1.20 ×105 9
Zr Im3m 229 (4 × 4 × 4 64 17 9.60 ×105 3
SrTiO3 Pm3m 221 (2 × 2 × 2) 40 49 6.00 ×105 42
MgO Fm3m 225 (4 × 4 × 4) 128 51 1.92 ×106 98
MgSiO3 Pbnm 62 (2 × 1 × 2) 80 994 1.20 ×106 28152
CeMoN3 R3c 161 (2 × 2 × 2) 80 2720 1.20 ×106 –

4.4 Dealing with polar materials

In polar materials, the long-range nature of the Coulomb forces is responsible of a macro-
scopic electric field for longitudinal optical phonons (LO), giving rise to the LO-TO splitting
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as q → 0 [18]. Thus, in polar crystals, the force constants can be separated into an expo-
nentially decaying short-range part ΦSR, and a long-range dipole-dipole term ΦLR [15, 110]
that decays polynomially (∼ d−3, where d is the interatomic distance):

Φαβ
ij = ΦSR + ΦLR. (4.6)

The long-range FCs are given by the general form in terms of the Born effective charge tensor
Z∗

i of the i-th atoms in a unit cell and the macroscopic dielectric tensor ϵ∞ which can be
routinely computed within DFPT [18, 111, 112]

ΦLR ≡ ϕ
αβ(LR)
ij = 4πe2

Ω
(q · Z∗

i )α(q · Z∗
j )β

q · ϵ∞ · q (4.7)

Although the description of the ΦLR in terms of the dipole-dipole term yields accurate
results in the majority of materials, it has been demonstrated that generalizing to higher
order multipolar terms is required in some cases [113]. From Equation 4.6, the atomic forces
can also be separated into short-and long-range terms

FAI = FSR + FLR

= −
∑
jβ

Φαβ,SR
ij uβ

j −
∑
jβ

Φαβ,LR
ij uβ

j
(4.8)

Following Ref. [114, 115], the short-range FCs, ΦSR, are fitted to the short-range forces
FSR only (see Figure 4.2 for comparison to DFPT and TDPH in handling with polar and
non polar crystals ). The effective charges Z∗ and dielectric constants ϵinf are computed in
a unit cell, therefore, FLR is summed over all the unit cells in the supercells

FLR = −
∑
uc

∑
jβ

Φαβ,LR
ij uβ

j (4.9)

Long-range effects on FCs require a very large supercell, which is not feasible in practice. We
tested fitting the effective charges (the long-range forces) and observed weak temperature
dependence. This is expected since any change in Z∗ would require a considerable change in
the electronic structure (which can be treated at the QHA level), but the temperature does
not significantly affect the electronic occupations. Note that Eq. 4.7 is in reciprocal space,
in order to bring it to real space we compute it for q = 0 in the supercell dual to the q-grid.
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Figure 4.2: Comparison of DFPT and TDPH for polar and non-polar crystals

4.5 Features of TDPH

The initial guess for FCs could come from DFPT or frozen phonons in a supercell. In the
case of DFPT, this implies, among other factors, handling polar materials in one integrated
way without the need for a separate or complementary calculation of the long-range dipole-
dipole term. For this reason, no arbitrary real-space cutoff has to be imposed to keep the
calculation fast. We have verified that after starting with initial symmetric random phonon
parameters the fitting procedure converged to the correct result in all of our test cases. In
principle, it is possible to start with no initial guess at all (other than the crystal geometry).

As we have described in Sec. 4.3, the dynamical matrices are decomposed on a set of
symmetrized minimal basis at each q-point in the 1BZ, whose linear coefficients are the
parameters that are minimized during the fitting. Thus, this reciprocal-space approach is
highly efficient and ensures very fast convergence.

Effective charges can be considered fixed or minimized. We verified that finite tempera-
ture effects on the effective charges beyond the QHA level are vanishingly small.

TDPH, as part of the D3Q [84] code, is fully integrated into the Quantum Espresso (QE)
package [116, 117], which computes both FCs and MD configurations. This unique synergy,
as well as faster convergence, makes it easier and more efficient to compute anharmonic
properties. To decorrelate more quickly the sampled configurations, TDPH can be integrated
with both classical and quantum Langevin dynamics, the latter implemented via the PIOUD
engine [73] (also based on QE) which is currently still in closed development.
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4.6 Numerical minimization
As we have seen in Table 4.1, the number of phonon parameters can be of the order of 1000 for
relatively large systems, which may require a few thousand MD steps for the TDPH procedure
to accurately converge. The Levenberg-Marquardt[118, 119] minimization algorithm needs
to solve linear least squares problems repeatedly. More precisely, this means finding a vector
x that minimizes ∥Ax − b∥, where A is a rectangular matrix of dimension Np (number of
parameters) times Ndata = 3 × Nat × Nsteps (number of Cartesian direction, atoms in the
supercell, and of steps, respectively). The latter can be of the order of one million. Solving
linear least square problems is done by computing a QR factorization of the matrix — this is
the most computationally expensive step. This takes hours using the naive serial algorithm
implemented in MINPACK [45]. For this reason, we parallelized the existing sequential
MINPACK package from 1980. The main modification consists in using ScaLAPACK [46]
to compute QR factorizations. The implementation we used, minimizes the Ndata residual
forces simultaneously, using their gradient from numerical differentiation. The algorithm is
very robust and can converge, even from randomly initialized FCs, in a few (typically less
than 10) iterations.

4.7 Convergence Tests
The decay time of autocorrelation is the most important parameter in determining the
efficiency of a dynamic algorithm to provide thermodynamic sampling. For instance, if the
MD steps remain correlated for a long time, then more steps need to be sampled and this will
eventually skyrocket the computational cost. Weakly correlated configurations, on the other
hand, imply that less computing time will be sufficient to sample the PES by keeping the
same target accuracy. Finite-size effects, MD integrators, and thermostats are other factors
worth observing. Therefore, we perform the following convergence tests:

• Study the performance of TDPH (i.e. convergence of phonon frequencies, χ2,for a
given set of minimal phonon parameters NB) with sampling time

τsampling = n_skip × dt , (4.10)

where dt is the AIMD time step and n_skip is the sampling interval.

• Compare the TDPH results for different supercell sizes.

• Study the dependence of the sampling efficiency on τsampling in MD versus LD, and the
optimal τsampling to achieve reasonable convergence for properties of interest in both
cases.

• Universality of FCs fitted over different dynamics methods.

Note that from a numerical point of view, what matters is to have n_skip as small as
possible, i.e. to use the computed DFT data efficiently. This can be achieved by increasing
the time step, but if it is too large, other properties of the simulation will suffer: the simu-
lation temperature may go out of control, or a bias could be introduced. We will see these
points in detail as we study specific cases.
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4.7.1 Convergence of phonons with AIMD sampling

Taking a simple example as a benchmark, we examine the phonon frequency convergence by
sampling 200 MD snapshots over different simulations lengths (corresponding to five different
sampling times: τsampling = 0.1, 0.2, 0.5, 1.0 ps) at 300K. Details of calculations are provided
in Appendix A. As shown in Figure 4.3, the phonon spectra converged at τsampling = 0.2ps
for a 2 × 2 × 2 fcc Al supercell.
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Figure 4.3: Convergence of phonon spectra with respect to the AIMD correlation time. The
full phonon dispersion is given in panel (a) and zoomed-out around X in panel (b)

As a way to check how TDPH improves the description of atomic forces, we compare
the ab initio and harmonic forces before and after fitting the configurations along the MD
trajectory. In Figure 4.4, this exercise is done for 400 AIMD snapshots. Before the fit, the
harmonic forces deviate from the ab initio ones represented by the dashed circles. After
fitting, the TDPH forces become closer to the ab initio determination. Figure 4.4 gives the
same result at 775K. We observe that the ab initio and model forces are closer at a lower
temperature (300K), Figure 4.4(a), than at a higher temperature (775 K), Figure 4.4(b).
The residual spread around the ab initio reference (red line in Fig. 4.4) gives an idea of the
system anharmonicity.
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Figure 4.4: Comparison of the modulus of AIMD force and model (harmonic and TDPH)
forces at 300 K (panel (a)) and at 775 K (panel (b))

.

We also examine the robustness of phonon convergence with respect to arbitrary initial
conditions, by analyzing different randomly initialized MD runs. Two configurations (system
I and II) were initialized with different random atomic velocities, and the TDPH phonons
were compared. The result is shown in Figure 4.5, where a nice agreement is found between
the two calculations.
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Figure 4.5: Comparison of phonons dispersions from two randomly-initialized MD simula-
tions and DFPT for a 3 × 3 × 3 Al supercell.

4.7.2 Phonon parameters versus supercell Size

We test the TDPH performance with different supercells to examine the dependence of the
number of phonon parameters NB on the supercell size. Different supercells were considered
using the same temperature, i.e. T = 300K, and same correlation time, namely τsampling =
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0.2ps. The result for fcc Al is given in Table 4.2. Also shown in Figure 4.6, is the dependence
of NB on the number of atoms corresponding to different supercell sizes. Note that larger
supercells do not necessarily require longer simulations time, since the ratio NFAI

/NB, where
NFAI

is the number of force components in the supercell, does not change significantly, thanks
to the full exploitation of symmetry relations in TDPH.

Table 4.2: Phonon parameters versus supercell size in Al.
Supercell Nat NB NFAI

NFAI
/NB

2 × 2 × 2 8 4 24 6
3 × 3 × 3 27 7 81 11.6
4 × 4 × 4 64 17 192 11.3
6 × 6 × 6 216 45 684 14.4
8 × 8 × 8 512 94 1536 16.3
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Figure 4.6: Dependence of the number of phonon parameters NB, on the number of atoms
Nat, for Al as reported in Table 4.2 .

4.7.3 Convergence of phonon parameters with PES sampling

As described in Section 3, two schemes were employed to sample the PES in the NVT en-
semble, namely MD and LD. For MD, a stochastic velocity rescaling (SVR) thermostat was
used, since it has been shown to have no effects on dynamical and transport properties [70]
(see Appendix A for computational details).

The second method is the classical Langevin dynamics (LD), which integrates the equa-
tions of motion with deterministic (in our case DFT-based) and stochastic forces at a given
temperature, stabilized by an appropriate friction, determined though the FDT. It is based
on Bussi and Parrinello algorithm [39, 6] using a Trotter factorization of the Liouvillian
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operator, as already described in Section 3 and Ref. [73]. Within this formalism, fully anhar-
monic quantum dynamics can be investigated. By replacing LD with PILD, it is possible to
take into account both temperature and nuclear quantum effects (NQE), as recently demon-
strated in diamond and high-pressure atomic phase of hydrogen [6]. For our purpose, only
thermal effects are considered and the classical LD algorithm is used, since NQE are less
significant at higher temperature in the systems studied here. As shown in Figure 4.7(a),
for weakly anharmonic materials like fcc Al, both MD and LD give reasonably converged
phonons with fewer (i.e. ∼ 100) snapshots and no interval between subsequent steps (i.e.
using τsampling = 1). In the case of cubic SrTiO3, a strongly anharmonic perovskite, each
dynamic simulation gives converged phonons only when an appropriate sampling time is
used. We choose this sampling time to be the autocorrelation time C(t, t′) of the ab initio
energy (see Appendix C). Using a large time step can considerably reduce C(t, t′) (and hence
computation time) at the expense of large temperature fluctuations, but this impact is more
pronounced in MD. In the case of LD, FDT guarantees that temperature and friction are
coupled, keeping the temperature near to its intended value.

For a material with dynamical instability, finite-temperature sampling of the PES with
NVE will directly descend to the minima and hence give fast convergence of those parameters
that correspond to soft phonons. However, sampling the PES using NVT (LD or MD with
SVR thermostat) will allow the system to explore the phase space more exhaustively before
descending into the minima. They are therefore more ergodic than NVE. In both cases,
the effective harmonic Hamiltonian is constructed to give converged phonon parameters and
phonon dispersion representative of the sampling temperature. Figure 4.7(b) displays the
comparison of phonon dispersions yielded by the three different methods.
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Figure 4.7: Temperature-dependent phonon dispersion at 300K for fcc Al (panel (a)) and
cubic SrTiO3 (panel (b)) using LD (red line), MD-NVT (blue-dotted line) and MD-NVE
(dark-green dotted line).
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Figure 4.8: Convergence of the first four phonon parameters in SrTiO3 with TDPH mini-
mization steps. All methods are in a reasonable agreement after a 2ps long simulation, with
LD yielding the smoothest convergence as a function of the number of AIMD snapshots.

4.7.4 Universality of the FCs in different dynamics
Another factor to take into account is the absence of sampling bias and the ergodicity of
the dynamics trajectory i.e. the property of the trajectory to sample the phase space in
a way that is consistent with the thermodynamic average. To ascertain this property, we
cross-tested FCs from the different dynamics methods (LD, MD- NVT, MD-NVE). To do
so, on the one hand we define χ2

fit of the FCs as the value of χ2 obtained at the end of
the minimization (step 5 in the procedure we detailed at the beginning of Sec. 4). On the
other hand, we define χ2

test as the χ2 value obtained by applying the FC obtained on a given
trajectory to a different trajectory, without further minimization. If there is no sampling
bias, χ2

fit and χ2
test should be very close.

Our assumption is that a good quality trajectory produces universal TDPH FCs, which
would work equally well on any other trajectory, i.e. χ2

fit from a good trajectory should not
be significantly smaller than that obtained by applying the final FCs to a different trajectory.

Conversely, the fact that the χ2 obtained from a trajectory is too small, does not imply
that the trajectory is good. In the best case it indicates that the system is weakly anharmonic,
while in the worst case it suggests that the sampling has a bias. This last point is particularly
important: a biased trajectory, which does not explore the entire phase space, may have a
smaller χ2, as the phonon parameters that describe the unexplored degrees of freedom will
be unconstrained.

Figure 4.9 gives a measure of the universality of FCs in SrTiO3 extracted with the
TDPH method from different dynamics: LD, MD-NVT, MD-NVE. In each case, the tested
chi-square (χ2

test) is rescaled by the baseline (χ2
fit). For a sufficiently large number of steps,

all three methods seem to give comparable results. We remark however that a tiny difference



38 Chapter 4. Temperature-dependent phonon method (TDPH)

remains between LD and NVT, which may indicate an equally tiny bias in the exploration
of the phase space. On the other hand, there is a larger discrepancy between the uncon-
trolled NVE and the two other methods. The fact that the NVE χ2 is higher (panel d of
Figure 4.9) indicates that it explores a less harmonic region of the phase space.This seems
in contradiction with the NVE property of exploring the PES minima more frequently than
the other dynamics. In fact, we have verified that, for this specific test, the average tem-
perature of the NVE simulation drifts from the initial one and settles around 315 K. This
is because, in a microcanonical ensemble, the total energy drifts due to error accumulation
from the MD integrator, which tends to increase with simulation length [120]. This discrep-
ancy can be particularly problematic when studying the temperature evolution of a system,
or when volume expansion is taken into account non-self consistently (i.e. from the equa-
tion of state), which is the most common approach. Nevertheless, the temperature drift of
NVE can be mitigated by using the average temperature instead of the target one, or by
repeating the simulation until the correct temperature is achieved, but this is expensive and
labor-intensive. Therefore, it turns out that using a stochastic thermostat can achieve a
good result in a much simpler and efficient way.

We can conclude that all methods produce universal FCs, but NVT and LD are more
accurate and consistent to each other, as the real trajectory temperature is consistent with
the desired one (299 K for LD and 298 K for NVT). The χ2 of the NVE simulation remains
consistently higher, which is related to the fact that, for this specific test, the effective
temperature reached in NVE was larger, leading to the exploration of a more anharmonic
region.
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Figure 4.9: Measure of the universality of FCs extracted via TDPH from different dynamics.
Horizontal lines are obtained by the baseline dynamics that generates the ensemble against
which each set of FCs is tested. Red, blue and green lines indicate FCs fitted on LD, MD-
NVT, and MD-NVE trajectories, respectively.
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In order to speed up phase-space sampling and convergence of phonon parameters, espe-
cially in the case of crystals with low symmetry, the TDPH method can benefit from AIMD
with machine learning force interatomic potentials (MLIP). Generally, MLIP are based on
descriptors or features that represent the local atomic environment and a regression model
(e.g. from artificial neural networks, kernel-based methods, or linear regression). In this
context, our method is a kind of machine learning “linear regression” technique, where the
“descriptors” for the atomic forces are defined by the effective harmonic force constants with
the symmetrized phonon parameters serving as the “fitting coefficients”, in contrast to hy-
perparameters in the other mentioned methods. The initial application of TDEP method as
established by Esfarjani was indeed to be used as a force field [121].

4.7.5 Randomization of phonon parameters

The decomposition of the dynamical matrices on symmetrized phonon basis described in
Section 4.1 gives yet another opportunity to examine TDPH’s dependence on the values of
the phonon coefficient. The choice of the basis coefficients, for example, is not unique, and
the initial estimate of the force constant may differ from the harmonic one. As a result, we
add or remove to each coefficient, a randomization parameter ζ, such that Eq. 4.4 becomes

D(q) =
NB∑

j

cr
j(q)Bj(q)

cr
j(q) = 2 bj(q)(rand − 0.5)

(4.11)

where

bj(q) =
2 ∑NB

j |cj(q)|
NB|ζ|

and rand is a random number generator between 0 and 1.
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In Figure 4.10, we show the convergence of χ2 for different randomization parameters
with TDPH minimization steps. At the 5th iteration, the randomized curves converged to
the case initialized with harmonic FCs. In order to generate randomized FCs matrices, initial
guess of harmonic FCs (T= 0 K) from DFPT are decomposed on cj and then recomposed on
cr

j , without minimization. The phonon dispersion corresponding to these randomized FCs
are presented in Figure 4.11.
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Figure 4.11: Phonon dispersion of Al using different initial values of randomization of the
phonon parameters before fit: left (-0.2), right (+0.5). Black curves indicate harmonic
phonons, while red dotted lines indicate TDPH phonons at 300K.

We observed that the TDPH algorithm always converges to the same final phonon pa-
rameters irrespective of the choice of the initial randomization, with the only cost being
additional computing time ( 10% in the case of Al). This is particularly useful when com-
paring FCs from various methods using the same sampling of the PES (e.g. Section 4.7.3)
or when the initial guess of the FCs is unknown a priori (e.g., with a machine learning force
field). In the latter case, finding the right balance between underfitting and overfitting while
training a machine learning model to make predictions constitute a difficult task. In the first
principles characterization of material properties, one can finetune the model’s predictions
to be physically meaningful by incorporating physical intuition, often through descriptors,
into the machine learning algorithms. This ensures that the model is not overfitting to the
training data and can generalize to new parts of the chemical space. In the TDPH method,
once the crystal symmetry is defined, the phonon parameters provide a sufficient description
of the dynamical matrices, and TDPH can converge these parameters to their final values
(even when initially randomized) by fitting to ab initio forces. The randomization of phonon
parameters may indicate how far the initial atomic forces are from their optimal values.
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4.8 Comparison of TDPH to other anharmonic methods

4.8.1 Computational details
Here we compare TDPH with other anharmonic phonon renormalization methods (PRM):
the velocity autocorrelation function (VACF) method of Zhang-Sun-Wentzcovitch, [28, 122],
and the self-consistent phonon (SCPH) method of Tadano-Tsuneyuki [96]. DFT calculations
were performed using generalized gradient approximation (GGA) with the Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional and Vanderbilt ultrasoft pseudopotentials
for the interaction between valence and ionic core. Plane-wave basis were used to expand the
Kohn-Sham electronic wavefunction limited with a cutoff energy of 30 Ry and Monkhorst-
Pack k-points grid the depends on the size of the supercell (8×8×8 for 8 atoms supercell in
TDPH and VACF and 4×4×4 for 32 atoms supercell in SCPH calculations.) Both TDPH and
VACF results were obtained from the same trajectory generated using AIMD and stochastic
velocity rescaling thermostat [70] at 775 K and 1 fs time step. Also, both TDPH (Ther-
mal2+D3Q code [84]) and VACF (phq code [122]) are fully implemented in the Quantum
espresso package.

There are multiple stages to the SCPH technique in the ALAMODE code, starting with
creating training data and ending with solving the SCP equation for phonons. Using the same
parameters as in TDPH and VACF above, AIMD is run for the 2×2×2 supercell (32 atoms)
of the conventional fcc Al unit cell. A total of 100 independent AIMD configurations were
extracted from the last 3000 steps of the 3,700 and then each atom is displaced randomly by
1 A in all directions. Finally, single point DFT calculation is performed on the 100 displaced
configurations and used as a training set to extract force constants using the Elastic-net
[10][123] technique based on the optimization equation

Φenet = 1
2Nc

||FDF T − AΦ||22 + ab||Φ||1 + 1
2a(1 − b)||Φ||22 (4.12)

where a and b are hyperparameters obtained from cross-validation.

4.8.2 Results
In Figure 4.12, we report the phonon spectra of Al computed with TDPH, VACF, and SCPH
methods along the high-symmetry direction within the first Brillouin zone (1BZ). In all three
methods, effective harmonic force constant matrices (and dynamical matrices) are built by
explicitly accounting for temperature dependence and subsequently diagonalized to obtain
phonon spectra and other vibrational and thermodynamic properties. The TDPH and VACF
methods yield renormalized phonons at a temperature of 775 K in close agreement because
both methods use the same trajectory or sampling of the PES. Specifically, TDPH fits force-
constants force contents to ab initio force-displacement data, while VACF relies on atomic
displacement/velocity projected to harmonic polarization vectors. Noticeable deviation of
the SCPH results in phonon dispersion observed along X-W, which is attributable to a dif-
ferent sampling of the PES and the renormalization of phonons by 4th-order force constants
in the SCPH technique. In Figure 4.13 , the DOS of SCPH is rescaled by a factor of 0.5 to
account for the bigger supercell (32-atom supercell in SCPH compared to 16-atom supercell
in TDPH and VACF). Except for the small broadening of the peak between 200 cm−1 and
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250 cm−1 in SCPH, all three approaches provide comparable density of states (DOS) with
identical peak positions. Generally, all three methods give similar results that agree with
each other.
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Figure 4.12: Anharmonic phonon spectra of fcc Al at 775 K using three different phonon
renormalization methods. Dispersion curves computed from TDPH, VACF, and SCPH are
depicted by red dashed lines, green dashed lines, and blue solid lines, respectively.
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Figure 4.13: Phonon dispersion curve of fcc Al at 775 K using TDPH (red), VACF (green)
and SCPH (blue). Although the SCPH result is rescaled by a factor 0.5, the three methods
give DOS with qualitatively similar trend.
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4.8.3 Performance
We compare the performance of three anharmonic phonon method codes using fcc Al as
an example: SCPH in the ALAMODE code , VACF in the phq code, and TDPH in the
D3Q + thermal2 code. The TDPH method is considerably more efficient than the other
two. Table 4.3 shows that the minimization time for VACF and SCPH are two orders of
magnitude longer than that for TDPH. The SCPH time includes 4-fold cross-validation for
the elastic net, optimization of force constants, and the solution of the self-consistent equa-
tion for phonons. Pre- and post-processing time in all three cases is excluded. However,
The most computationally expensive part of all the three methods is the time to sample the
DFT potential energy surface (5th column of Table 4.3). SCPH has the advantage that the
finite temperature phonons can be obtained at all temperatures once the training data is
generated.

Table 4.3: Comparison of the performance of TDPH, VACF, and SCPH methods in fcc Al.
tDFT−PES is the total time to generate trajectory or sample the potential energy surface in
hours, and tmethod is the time required to obtain renormalized phonons at 775 K.

Method # of atoms in
supercell tDFT−PES (h) tmethod (s)

TDPH 8 117 3
VACF 8 117 112
SCPH 32 3008 394

4.8.4 Conclusion
We have compared the results and performance of 3 different anharmonic phonon methods
codes using fcc Aluminum as a test case. The results for the phonon dispersion and density
of states obtained using the SCPH implemented in ALAMODE code, the VACF method imple-
mented in the phq code, and our new TDPH method implemented the D3Q + thermal2 code
of Quantum espresso , are in close agreement with each other. We find that TDPH out-
perform the other two methods, but the most resource consuming aspect remains sampling
the PES.

4.9 Summary

The temperature-dependent phonon (TDPH) method builds effective harmonic potential
that accounts for anharmonicity non-perturbatively. It relies on decomposing dynamical ma-
trices into a symmetrized basis at each q-point in reciprocal space, ensuring an irreducible
set of phonon parameters is used to represent the phonon dispersion. The trial harmonic
force constants are fitted via harmonic forces to ab initio force-displacement data in a super-
cell, obtained from molecular or Langevin dynamics, where the residual force is minimized
using the Modified Levenberg-Marquardt method. Convergence tests evaluate the efficiency
of TDPH by studying phonon frequencies, comparing results for different supercell sizes,
and examining the dependence of sampling efficiency on different ensembles. TDPH scales
favorably with large supercells of highly symmetric materials and converges despite different
initial randomization of phonon parameters. Compared to other anharmonic methods, in
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Section 4.8, TDPH outperforms VACF and SCPH. Overall, TDPH demonstrates robust-
ness, efficiency, and universality across different dynamical methods, making it a promising
approach for understanding anharmonic properties in materials. The chapters that follow
will focus on application of the TDPH method to materials that exhibit weak and strong
anharmonicity.



5 – Anharmonic correction to QHA
phonons in Al

5.1 Introduction

Although fcc Aluminum exhibits weak anharmonicity, it is desirable to understand the degree
to which quasiharmonicity and intrinsic anharmonicity affects phonon frequencies. Within
the harmonic approximation, the effect of temperature is absent and phonons have infinite
lifetimes. Quasiharmonic approximation (QHA) introduces temperature dependence via
volume (thermal expansion) which tends to shift phonons as temperature is increased. QHA
is the most popular ab initio method of computing thermodynamic properties of materials
[20]. Due to its simple structure and large number of experimental and theoretical studies
of its properties, fcc Aluminum is used to demonstrate the effectiveness of computational
techniques [3, 124, 125, 126]. In many materials, including Aluminum, phonons become
softer at higher temperature as observed in several experimental and theoretical studies [3].
To what degree do the anharmonic phonon frequencies change from their harmonic and
quasiharmonic values at higher temperature? To answer this we apply both QHA and
TDPH method to Aluminum and compare the results to experiment.

5.2 Computational details

DFT calculations were performed with ultrasoft pseudopotentials [127] and generalized gra-
dient approximation (GGA) with Perdew, Burke and Ernzerhof (PBE) exchange-correlation
energy [128], implemented in Quantum espressopackage [116, 129]. The plane wave cutoff
energy for Al is 30 Ry and Monkhorst-Pack [130] k-points grid of 8 × 8 × 8. A cold smear-
ing [131] width of 0.05 Ry was used. Harmonic FCs were computed using DFPT [18] on
a 2 × 2 × 2 q-grid. Ab initio MD simulations were performed using NVT ensemble with
supercell size commensurate with the phonon grid (i.e. 2 × 2 × 2 q containing 8 atoms).
Temperature is controlled with stochastic velocity rescaling method [70] and a time step of
1 fs. We tested the variation of phonons with larger time step up to 100 fs, and the effects
on TDPH phonons is not significant.

For the QHA calculations, 9 lattice volumes were chosen with five different volumes
corresponding to the temperatures of 273 K, 293 K, 571 K, 752 K and 903 K, obtained
from the experimental data of Ref. [2] (See Table 5.1 and Fig. 5.4). QHA calculation and
post-processing are performed with the Quantum espresso anharmonic code [84]

45
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5.3 Results and discussion

5.3.1 Evolution of phonons with temperature

The phonon dispersions calculated at 298 K using QHA and TDPH agree fairly well with
each other, as shown in Fig. 5.2. The small difference indicates that thermal expansion
is the dominant effect over anharmonicity at that temperature (see Appendix B). This is
expected, given that 298 K is lower than the Debye temperature of aluminum of 433K (i.e
≈ 0.6θD) and the atomic vibrations from equilibrium can be represented fairly well with
harmonic potential. However, at 752K (≈ 1.8θD), there is clear separation of QHA from the
anharmonic shift. Essentially, QHA phonons are softer, and TDPH gives a better prediction
that lies between the harmonic and QHA results. We note here that the TDPH result
contains both quasiharmonic and anharmonic corrections:

ωtdph(V, T ) = ωhar(V ) + ∆ωqha(V (T )) + ∆ωanh(V, T ). (5.1)
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Figure 5.1: Phonon dispersion of Al computed using the TDPH method at 300K, plotted
with measured values from inelastic neutron scattering experiment (steel blue circles) at 80
and 300 K [1].
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(a) (b)

Figure 5.2: Harmonic (HARM), quasiharmonic (QHA) and anharmonic (TDPH) phonon
dispersion of Al at (a) 298 K (b) 775 K . The TDPH result is obtained by fitting the QHA
force constants to finite temperature ab initio MD forces.

Figure 5.3: A two-dimensional projection of the trajectory of a typical atomic displacement
in a 2 × 2 × 2 supercell of fcc Al during AIMD at 298 K and 775 K.
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Figure 5.4: The TDPH method gives the temperature dependence of phonons in Al, consid-
ering both anharmonic and quasiharmonic effects (using experimental lattice constants from
Ref. [2] (a) phonon dispersion (b) Evolution of phonons at finite temperature, X(0.5, 0.0,
0.5).

5.3.2 Anharmonic correction to QHA free energy

We compute the effect of anharmonicity on the thermal expansion of Al by computing the
free energy using quasiharmonic approximation (QHA) and temperature dependent phonon
method (TDPH). The TDPH free energy is essentially the QHA free energy with renormal-
ized phonons from TDPH (see Figure 5.5). The procedure involves TDPH calculation at
each temperature to build effective force constants that depend explicitly on temperature,
using QHA force constants as the initial guess. The free energy in QHA is given by

F (V, T ) = E0 + kBT
∑
q,s

ln
(
2 sinh(ℏωq,s(V )

2kBT
)
)
, (5.2)

where E0 is the static DFT energy, ωq,s is the harmonic frequency, T is temperature and
kB is the Boltzmann constant.

This approach has a difficulty because the volume-temperature equation of state used
(VT-EOS) for the TDPH simulation may not be equal to the final one. This problem could
be solved self-consistently, but we observe that a single-shot correction, starting from the
standard QHA VT-EOS can produce a significant correction while remaining fully ab initio.

In Figure 5.7 at low temperature (100 K and 300 K), the lattice volume corresponding to
the minima of the free energy changes slightly, an indication of weak anharmonicity. At 700
K, the TDPH correction to the QHA equilibrium volume is more significant, indicating the
importance of including anharmonic effects at higher temperature. Following the flowchart of
Figure 5.5, which involves minimizing the quasiharmonic free energy to find the volume at a
given temperature but with TDPH force constant instead of QHA force constants, provides a
systemic and efficient way of accounting for intrinsic anharmonicity non-self-consistently. We
report in Figure ?? that using this procedure, we observe lattice volume that agrees closely
with experimental measurements above 500 K, where anharmonic effects become prominent
beyond the Debye temperature, and the TDPH results start to deviate from the QHA.
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Figure 5.5: The free energy of crystals calculated using two different approaches. On the
left, standard QHA approach is employed, while on the right, the TDPH method is used,
which explicitly takes into account the temperature dependence of phonons at each QHA
volume.
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Figure 5.7: The free energy of Al per unit cell vs. lattice volume computed using quasihar-
monic approximation (QHA) and temperature-dependent phonon method (TDPH).
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Table 5.1: Comparison of the temperature dependence of lattice constant in Al using QHA,
TDPH and experimental results from Ref. [2]. aT DP H is obtained from the minimum of the
QHA free energy with renormalized phonons from TDPH.
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T(K) aEXP aQHA aT DP H

298.15 4.04962 4.07282 4.06131
481.15 4.06801 4.09353 4.07637
571.15 4.07788 4.10484 4.08338
752.15 4.09991 4.12999 4.09839
903.15 4.12039 4.15388 4.11210

5.4 Conclusion
The vibrational and thermal properties of fcc Aluminum have been calculated from first
principles using the TDPH method, beyond the typical QHA used in lattice dynamics.
Applying TDPH to QHA FCs leads to a blue shift of the phonon spectra (Figure 5.2),
a consequence of intrinsic anharmonicity. We also computed the effect of anharmonicity on
the free energy of Al and found a considerable divergence from QHA at higher temperature
(Figure 5.7).
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6 – High-temperature BCC phase of
Zirconium

6.1 Introduction

Ti, Zr, and Hf have hexagonal closed-packed (hcp) crystal structure at ambient conditions
which transform to body-centered cubic (bcc) structure at 1155 K, 1136 K, and 2030 K,
respectively [132]. Ab initio calculation of their phonon spectra in bcc structure shows
dynamical instability within (quasi)harmonic approximation [132]. When compressed at
room temperature, hcp Zr (α-phase) transformed to hexagonal (ω-phase) at 17 GPa and
subsequently to bcc (β-phase) above 35 GPa. However, there is a temperature-induced
α → β phase transition around 1136 K at 0 GPa [133]. The high-temperature β-Zr is
entropically stabilized and therefore strongly anharmonic. Here, we will test the validity of
TDPH by examining the role of anharmonicity in stabilizing the experimentally observed
high temperature bcc phase of Zr. Two methods of computing renormalized phonons will
be employed, namely TDPH method of Section 4.1, and force-force autocorrelation method
introduced by Moressi et al. [6]

6.2 Computational details

DFT calculations were performed with ultrasoft pseudopotentials [127] and generalized gra-
dient approximation (GGA) with Perdew, Burke and Ernzerhof (PBE) exchange-correlation
energy [128], implemented in Quantum espressopackage [116, 129]. The plane wave cutoff
energy for Zr is 100 Ry and Monkhorst-Pack [130] k-points grid of 8 × 8 × 8. A cold smear-
ing [131] width of 0.05 Ry was used. Harmonic FCs were computed using DFPT [18] on a
2 × 2 × 2 q-grid. Both Ab initio MD and LD simulations were performed using NVT ensem-
ble with supercell size commensurate with the phonon grid. Temperature is controlled with
stochastic velocity rescaling method [70] in MD and a time step of 1 fs for both dynamics.

We tested the variation of phonons with larger with different values of Langevin damping
(0.5γ, 2γ, and 2γ ), and selected the optimal one.

For the calculation of FCs with <ff>[6] correlators, we used 6,000 configurations, ne-
glecting the first 1000 snapshots as equilibration steps and binning the last snapshots into
5.

Post-processings are performed with homemade codes, scripts, and the Quantum espresso an-
harmonic code [84]
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Figure 6.1: (Left)Primitive unit cell of Zr. (Right Conventional unit cell of Zr.)

6.3 Results and discussion

6.3.1 Temperature-dependent phonon spectra

Figure 6.2 shows the harmonic phonons in BBC Zr, indicating dynamical instability due to
imaginary frequencies. As shown in Figure 6.4, we obtain stable phonons for the BCC phase
of Zr at temperatures much below the experimentally measured transition temperature of
1136 K [132]. This results from the fact that TDPH phonons are always positive definite,
regardless of the temperature. In this regard, TDPH is similar SCPH method [96]. Accu-
rate prediction of transition temperature would require higher-order components in the BO
surface expansion, omitted in the TDPH.
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Figure 6.2: Harmonic phonon dispersion and density of states of bcc Zr, with soft modes at
ω- and Γ-points computed using DFPT at the GGA-PBE level.
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Figure 6.6: TDPH method applied to dynamically unstable bcc phase of Zr at 1200K, using
initial force constants from DFPT (blue dash lines) and force-force correlators (green dashed
lines) from Ref. [6]. Orange dashed lines represent harmonic phonons from DFPT.

Figure 6.6 shows how the TDPH works with two different initial guesses of the FCs:
DFPT (blue-dashed lines) and the force-force correlator method of Ref. [6] (green-dashed
lines) represented as TDPH I and TDPH II, respectively. A comparison of phonons using
TDPH vs force-force correlators method for Al and SrTiO3 is given in Appendix C. Irre-
spective of the initial guess of the FCs, the TDPH method always gives converged results,
consistent with the temperature at which the PES is sampled.

6.4 Conclusion
We have shown that the BCC structure of Zr dynamically stabilizes at high temperatures
through the temperature-dependent phonon method. At temperatures above absolute zero,
the atoms in a real system do not occupy perfect lattice positions, which profoundly im-
pacts the material’s properties and contributes significantly to stabilizing high temperature
phases. This also suggests that the dynamical stability of a lattice cannot be reliably deter-
mined using force constants at T = 0 K from DFT calculations for some systems. We have
also demonstrated that the TDPH method can give converge phonons at finite temperature
regardless of the initial guess of the force constants.



7 – Phonon Anharmonicity in SrTiO3

Part of this Chapter appeared in the Journal article: Garba, I. B., Morresi, T., Bouillaguet,
C., Casula, M., & Paulatto, L. Journal of Physics: Condensed Matter (2023).

7.1 Introduction

Transition metal oxides are materials with distinctive properties with a wide range of appli-
cations. Among them, SrtTiO3 has been the subject of intensive research as a prototypical
ABO3 oxide perovskite material with an interesting phase diagram and also as a host of
the two-dimensional electron gas in SrTiO3/LaAlO3 interface [134], whose origin has not
been fully resolved. Greater knowledge of the lattice dynamics of SrtTiO3 can offer valuable
insight. At room temperature, SrTiO3 has a cubic structure (space group: Pm3m No. 221),
which transforms to low symmetry tetragonal phase (space group: I4/mcm No. 140), below
Tc = 105 K [135]. Most perovskite materials have structures that do not conform to the
high symmetry cubic aristotype. They often form distorted low symmetric structures at
low temperatures, which tranform to the ideal cubic phase upon heating (or compression).
Displacement of atoms or groups of atoms in the perovskite structure dictates the type of
distortion [136]. Polar displacement of an A or B cation, for example, is often related to zone
center instabilty, which results in ferroelectricity, whereas tilting of the BO6-octahedral tilt
is typically related to zone-boundary instabilty, which results in transformation to tetragonal
structure. Ab initio lattice dynamics can provide atomic insight into these transformations.

SrTiO3 is used as a model for testing of new theoretical techniques [10, 137, 138, 12,
139, 13, 140]. First-principles method based on conventional harmonic and quasiharmonic
approximation shows that SrTiO3 is dynamically unstable, with soft modes at Γ, R and M-
points (see Figure 7.4). The antiferrodistortive (AFD) R-mode is associated with symmetry
lowering cubic-to-tetragonal structural phase transition, while the Γ-mode is ferroelectric
(FE). The FE transition can be modulated by strain and substitutions doping [141].

Studies of the AFD mode began in the 60s with seminal work of Unoki and Sakudo
[142] that relate the TiO6 octahedral rotation to R-mode softening. Early reports on the
dynamical properties of SrtTiO3 conducted in the 1990s provided rather conflicting reports
on the dynamical instability in the BZ. Sai and Vanderbilt [143] applied the frozen phonon
method using LDA, showing the AFD mode’s hardening and the FE mode’s softening with
temperature. Wahl et al. [138] applied the same frozen-phonon method with GGA and HSE
functional and showed imaginary frequencies at the Γ-point and real frequencies with LDA.

Subsequent results by LaSota et al. [144] using DFPT with linear augmented plane wave
(LAPW) and LDA showed imaginary soft modes at the M-, R, and Γ-points in the BZ.
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Evarestov et al. [145] demonstrated the functional dependency of the AFD mode adopting
PBE, hybrid PBE0, and B3PW with various basis sets (PW and LCAO). These investi-
gations, however, did not consider detailed microscopic descriptions of anharmonic effects
on the FE and AFD modes beyond (quasi) harmonic approximation. Also, perturbative
anharmonic method cannot be applied due to presence of imaginary modes in the BZ of the
SrTiO3.

Previous studies indicated that anharmonic effects renormalize phonons and predict the
cubic-tetragonal Tc [10], enhance accurate prediction of carrier mobility [114], thermal con-
ductivity [140] and band-gap dependence on temperature [13].

Here, we applied the TDPH method to compute renormalized phonons and lattice ther-
mal conductivity in SrTiO3.

7.2 Computational Details

DFT calculations were performed using the Quantum espresso package [146, 117], employ-
ing optimized norm-conserving Vanderbilt pseudopotentials (NCPP) [128, 147] and ultrasoft
pseudopotentials (USPP) [127]. Electronic exchange and correlation are approximated with
PBEsol [148] in SrTiO3. A cut-off energy of 100 Ry and 75 Ry were used for the NCPP
and USPP, respectively, with a 4 × 4 × 4 Monkhorst-Pack [130] k-point grid for Brillouin
zone integration. For supercell calculations, k-point grids were down-scaled proportionally.
Additional calculations of structural, electronic and phonon properties were performed using
LDA [50], for comparison. The harmonic phonon spectra and FCs were computed using
DFPT [18], including long-range contributions to the dynamical matrices for polar SrTiO3.
In all cases, phonon q-grid were commensurate with supercell size, and strict convergence
was employed for phonon self-consistency (10−16Ry).

The 2nd-order FCs computed on 2×2×2 q-grid were interpolated on 4×4×4 grid for the
computation of lattice thermal conductivity. acoustic sum rule is applied for both 2nd-order
and 3rd-order FCs. The phonon linewidth and lattice thermal conductivity were computed
on a 20×20×20 q-mesh using Anharmonic code of Quantum espresso [84, 149]. The lattice
thermal conductivity of SrTiO3 was computed using Boltzmann transport equation (BTE)
within the Single-mode relaxation time (SMA) approximation along Cartesian direction α
as

κα
l = ℏ2

N0ΩκBT 2

∑
γ

ν2
α,γω

2
γn(n+ 1)τγ (7.1)

where ℏ, N0,Ω, κB, T, n represent Planck constant, total number of q-mesh points, unit
cell volume, Boltzmann constant, temperature, and Bose-Einstein phonon population. The
phonon energy ωγ , and group velocity να,γ are computed from renormalized 2nd-order FCs
using TDPH method.

We perform BOMD as implemented in Quantum espresso [146, 117] using the same
calculation parameters as above. We used a 2 × 2 × 2 supercell containing 40 atoms, com-
mensurate with the phonon q-grid, while k-point grids were down-scaled proportionally.
Temperature is controlled by stochastic velocity rescaling (svr) method [70] to ensure effi-
cient canonical sampling using 1 fs time step. The length of the simulation and number of
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MD snapshots were tested and optimal values were used. After equilibration, 500 snapshots
sampled over 20,000 steps (equivalent to 20 ps) were sufficient to obtain converged results.

7.3 Results and Discussion

7.3.1 Structural and electronic properties

SrTiO3 in cubic structure is a represntative of the ABO3 perovskite structure swith space
group Pm3m symmetry, No. 221. In this structure, Sr cation occupy Wyckoff site 1a(1/2,
1/2, 1/2), Ti cation at 1b(0, 0, 0), and the O anion at 3d(1/2, 0, 0). The optimized PBEsol
lattice parameter is 3.899 Å, which is 1.6% smaller than the experimental value of 3.905 [13]
at room temperature. As can be seen in Table 7.1, additional LDA and more accurate HSE
results are also provided for comparison. Dynamical properties of perovskite are extremely
sensitive to structural parameters, which in turn depends choice of the functional. As ex-
pected, our LDA and GGA results underestimate the band gap compared to HSE report
from Verdi et al. [12]. The FE and AFD instability are present in LDA, PBE and HSE
calculations as and do not differ significantly. Thus, using cheaper functional like PBEsol in-
stead of more expensive HSE will be sufficient for accurate estimate of dynamical properties
properties.

Figure 7.1: (Left) Illustration of a typical ABO3 perovskite with SrTiO3 as an exmaple.
(Right) Supercell (2x2x2) with corner connected BO6 octahedra.

Table 7.1: Lattice parameter, band gap, FE and AFD frequencies in the cubic phase of
SrTiO3. For comparison, results from previous calculations [11, 12] and experiments [7, 13]
are provided
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LDA PBEsol HSE Exp.
a (Å) 3.891 3.889 3.8931 [12] 3.905 [13]
Eg (eV ) 1.827 1.829 3.01 [11] 3.160 [13]
ωFE (cm−1) 147i 145i 127i 91 [7]
ωAFD (cm−1) 90i 97i 68i 52 [7]

7.3.2 Potential energy surface

Figure 7.2: Off-centering displacement of Ti atom in the cubic phase of SrTiO3.
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7.3.3 Dynamical stability of high temperature cubic phase

In Figure 7.5, we show the dynamic stabilization of the cubic phase, as indicated by renormal-
ized positive frequencies relative to imaginary modes obtained from harmonic approximation
using DFPT. The temperature-dependence of the phonon dispersion and density of states
(DOS) in cubic SrTiO3 is shown in Figure 7.6, indicating phonon hardening with increasing
temperature from 200 K to 800 K. This effect has also been observed in previous experimental
and theoretical studies [139].
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Figure 7.4: Phonon dispersion of cubic phase of SrTiO3 from harmonic approximation using
DFPT. Unstable imaginary modes at Γ-point indicate ferroelectric instability, and R-point
correspond to antiferrodistortive mode. Imaginary modes present using PBEsol at M-point
disappear in the case LDA, highlighting the significance of the choice of DFT functional.

7.3.4 Cubic to tetragonal phase transition

The temperature dependence of the squared frequency of the R-mode mode has been used
to predict the cubic-to-tetragonal phase transition in SrTiO3 by extrapolating the temper-
ature of the R-mode. Figure 7.7 compares TDPH results to experimental measurements
and other theoretical methods. Our transition temperature of 75 K (Figure 7.7) is closer
to the experimental value of 105 K than SCPH (220 K) [10] and QSCAILD (200 K) [31]
methods. A recent attempt to circumvent the functional dependence of the FE and AFD in-
stabilities in SrTiO3 employed the SSCHA method and machine learning force field trained
on random-phase approximation (RPA), obtaining a transition temperature of 172 K via
Curie-Weiss fit of the AFD mode [12]. The difference could be due to the functional used,
as the lattice dynamical properties of ferroelectric materials are particularly sensitive to the
DFT functionals. In the specific case of SrTiO3, we prefer to use PBEsol because it is known
to be reliable for predicting crystal geometry and dynamics, at reasonable computational
cost [55]. But In general, a functional which is better at predicting some properties (e.g.
electronic band gap) may be less accurate for others (e.g. lattice parameters). Also, for
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some advanced functionals (metaGGA, hybrid), ab-initio forces can be difficult to converge
or very expensive. A detailed discussion on functional dependence of soft modes in SrTiO3
is provided in Ref. [12] and [138]

Figure 7.5: Phonon dispersion and DOS of cubic phase of SrTiO3. The dotted orange lines
show the results based on the DFPT, and the solid lines represent the finite-temperature
phonons obtained with the TDPH scheme at 300 K, consistent with experimental INS results
of Ref. A [7] and Ref. B [8].
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Figure 7.6: Temperature-dependence of phonon dispersion and DOS of cubic SrTiO3 using
TDPH method and a zoomed-in region around R-point.
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Figure 7.7: Temperature-dependence of the squared frequency of the soft R-mode, compared
with experimental and QSCAILD results.

Figure 7.8: Convergence of selected phonon parameters for the AFD R-mode in SrTiO3,
(i.e. at qR = (0.5 0.5 0.5)). There are nine phonon parameters but only two (R8 and R9)
differ significantly with respect to their initial values.

7.3.5 Lattice thermal conductivity

Temperature normalization of phonons can play a significant role in ab initio prediction
of thermal transport, particularly in strongly anharmonic materials but also in materials
that are often regarded as weakly anharmonic, like Al [43] and Si [150]. The force con-
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stants (second- and third-order) are often obtained by zero-temperature DFT calculations
in supercells [151] or via linear response and the 2n+1 theorem [18, 85, 84]. The effect of
temperature is accounted for through the Bose-Einstein distributions of the phonons inher-
ent in the phonon-phonon scattering rates and the mode-specific heat. Explicit temperature
dependence of phonons and force constants is not considered. The temperature dependence
of phonons and force constants can now be explicitly determined by more advanced anhar-
monic phonon techniques. These phonon renormalization approaches allow for the use of
Boltzmann transport equation (BTE) to be extended to materials that would not normally
be accessible by DFT, such as cubic SrTiO3.

We compute the lattice thermal conductivity of SrTiO3 based on the Boltzmann transport
equation (BTE) of phonons in the single mode approximation (SMA) using renormalized 2nd-
order FCs from TDPH, and compared to results from SCP theory [10] and experiment [9].
The effect of four-phonon scattering, which has been recently reported to suppress thermal
conductivity in SrTiO3 by 15 − 20% beyond 200 K [152], is not taken into account in our
theoretical prediction. Nevertheless, using TDPH-based finite temperature FCs provides a
reasonable estimate of thermal conductivity in SrTiO3, which is impossible with harmonic
FCs, as shown in Fig. 7.12.
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Figure 7.9: Calculated phonon dispersion of SrTiO3. Each of the 15 branches has a width
proportional to the anharmonic broadening at 300 K, magnified by a factor of 3 for clarity.



7.3 Results and Discussion 67

10-2

10-1

100

101

102

103

104

	0 	200 	400 	600 	800

τ-
1 	
(p
s)

Frequency	(cm-1)

TA1
TA2
LA		

Optical

Figure 7.10: Phonon lifetime for the acoustic and optical modes.

	4

	8

	12

	16

	20

	300 	400 	500 	600 	700 	800 	900 	1000

κ	
(W

/m
K)

Temperature	(K)

2x2x2	q-grid
4x4x4	q-grid

Figure 7.11: Convergence of Lattice thermal conductivity with q-grid .



68 Chapter 7. Phonon Anharmonicity in SrTiO3

	4

	8

	12

	16

	20

	300 	400 	500 	600 	700 	800 	900 	1000

κ	
(W

/m
K)

Temperature	(K)

This	work:	DFT	volume
This	work:	Exp.	volume
SCPH,	Tadano	et	al.,	2015
Popuri	et	al.,	2014

Figure 7.12: Lattice thermal conductivity of cubic SrTiO3 computed from BTE using
temperature-dependent 2nd-order FCs and 3rd-order from perturbation theory and (2n+ 1)
theorem (See text for details). Red triangles are experimental data from Popuri et al., [9] and
dark-green rectangles are from SCP theory[10]. Blue circles indicate results at equilibrium
DFT volume while black pentagon is at experimental volume.

7.4 Conclusion
We have performed TDPH calculations to investigate the anharmonic lattice dynamics and
provides microscopic insight into the thermal transport and phase transition in SrTiO3.
Anharmonic phonon renormalization stabilized the cubic phase at finite temperature, repro-
ducing the experimental phonon dispersion [7], [8]. The softening of the squared R-mode
(the antiferrodistortive mode) with temperature from 200 K to 800 K agrees qualitatively
with experimental results of Cowley et al. [110] and Otnes et al. [135] and previous theoret-
ical calculation of Ref. [31]. Our predicted transition temperature using the Curie-Weiss fit
is 75 K, compared to the experimental value of 105 K. We also determined phonon lifetimes
and linewidths from the three-phonon scattering process by building perturbation on top of
the TDPH potential, enabling computing the lattice thermal conductivity of SrTiO3 using
the Boltzmann transport equation (BTE) within the single-mode relaxation approximation,
in good agreement with experiment. We highlight that utilizing finer q-grid for the 2nd-
order and 3rd-order FCs can increase agreement with experiment (see Figure 7.11), albeit
such calculations beyond 4×4 grid were not done due to computational constraints. Overall,
our findings underscore the significance of anharmonic phonon renormalization in predicting
lattice dynamical and phonon transport properties in SrTiO3.
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8.1 Conclusion

The aim of this thesis is to provide insight into the lattice dynamics of nuclei in materials
and how that affects other properties. We develop a non-perturbative anharmonic method
beyond the standard quasiharmonic approximation using a hybrid technique that combines
density functional perturbation theory and ab initio molecular dynamics simulations. The
work presented here includes both method development and application to different class of
materials, with a particular focus on the effect of intrinsic anharmonicity on the structural,
vibrational, and thermal transport properties of materials.

In Chapter 4, we introduce a reciprocal-space alternative to the temperature-dependent
effective potential method (TDEP). Our methodology allows efficient computation of anhar-
monic effects induced by temperature while retaining the phonon quasiparticle description
of phonons. The simplified temperature-dependent phonon (TDPH) method is a significant
step forward over previous work. The TDEP method was used in its original formulation
to extract an effective force constants matrix that best represents the ab initio molecular
dynamics atomic forces via fitting [32, 33]. Here we use the symmetry of the crystal to re-
duce the reciprocal-space q-point sampling of phonons to its irreducible wedge and, then, for
each q-point to reduce the dynamical matrix to its irreducible representations, expressed as
a basis of symmetric hermitian dynamical matrices. The irreducible basis coefficients, which
we call phonon parameters, are then fitted to ab initio forces. Our implementation has been
tested on top of different dynamical sampling methods: uncontrolled NVE ab initio molec-
ular dynamics, NVT with a stochastic SVR thermostat, and Langevin Dynamics. We have
shown that all three methods can produce universally valid temperature-dependent force
constants. NVE is more efficient, but with the strong caveat that it is susceptible to a large
error from temperature drift. On the other hand, by using the energy auto-correlation time
to determine a suitable sampling interval between AIMD steps, the two controlled dynamic
methods, i.e., NVT and LD, are similar in efficiency, with the choice of the time step and
thermostat parameters playing a crucial role in deciding if one can outperform the other. In
our test case, LD yielded the smoothest convergence for the phonon parameters as a function
of the number of dynamics steps used for fitting. We have shown that the TDPH method
always converges to the same final phonon parameters irrespective of the initial choice of
force constants, including randomization of phonon parameters, with negligible computing
time.

We demonstrated this technique by computing anharmonic effects in the case of Alu-
minum, high-temperature BCC phase of Zr, and cubic SrTiO3. These materials have anhar-
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monicity that ranges from weak to strong, and therefore provide good test cases to validate
the accuracy of the TDPH method, especially in the cases where QHA and perturbative
anharmonic methods become invalid.

In Chapter 5, we applied the TDPH method to study anharmonic effects on phonon
spectra in Al at fixed volume (corresponding to static DFT minimum) and at temperature
dependent volume, extracted from QHA approximation and experiment. We observe an
anharmonic correction on the vibrational free energy using TDPH force constants in QHA
free energy minimization. In Chapter 6, using Zr as an example of BCC metal stabilized
by temperature due to vibrational entropy, we demonstrated how temperature-dependent
phonon free energy stabilizes the beta phase. Similar to the SCPH method, TDPH gives
positive-definite phonons, regardless of the temperature.

Lastly, in Chapter 7, we study phonon anharmonicity in SrTiO3, a prototypical ABO3
perovskite, with an interesting phase diagram and various technological applications. TDPH
method gives renormalized phonons in the cubic phase which match previous literature and
experiemntal data. The temperature dependence of the soft antiferrodistortive mode is used
to estimate the cubic to the tetragonal transition temperature, Tc, via Curie-Weiss fit, in
close agreement with the experiment. We also determined phonon lifetimes and linewidths
from the three-phonon scattering process using standard zero-temperature anharmonic force
constants on top of the TDPH effective potential, enabling computation of the lattice thermal
conductivity of cubic SrTiO3 using the Boltzmann transport equation (BTE) within the
single-mode relaxation approximation, in good agreement with experiment. Overall, our
findings underscore the significance of anharmonic phonon renormalization in predicting
lattice dynamical and phonon transport properties of materials.

8.2 Future direction

The main feature of the methodology developed in the thesis is that it is application agnostic,
which makes it appealing to a wide range of problems in condensed matter and computational
materials science, where temperature effects are non-negligible. Although the calculations
reported are performed using density functional theory in the generalized gradient approx-
imation, the method can be used in tandem with hybrid functional, higher-level electronic
structure methods, path-integral molecular dynamics, or even Quantum Monte Carlo simu-
lation, where an accurate description of electronic correlation and nuclear quantum effects
is desirable, such as superconducting metallic hydrides or high-pressure hydrogen phases.

Extending the TDPH method to 3rd and 4th-order terms of the potential energy Taylor
expansion will be significant in future work. While the current study gives effective harmonic
potential with renormalization that shifts phonon frequency, effective 3rd-order force con-
stants will account for linewidth broadening with explicit temperature dependence, which
can result in an accurate prediction of thermal transport properties. [107, 153].

In our preliminary analysis, the TDPH method, when applied to long-range force con-
stants by decomposing the Born effective charges on the symmetrized basis, shows a rather
weak temperature dependence in the case of MgO. For this specific case, the temperature
dependence of the effective charges could require a considerable change in the electronic struc-
ture. Future directions will include testing materials with large temperature-dependence on
effective charges or a rigorous approach to perform a multipolar expansion [113] beyond
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Gonze’s scheme.
Most ab initio structure search algorithms [154, 155] are performed at zero temperature,

neglecting structures at the saddle points of the Born Oppenheimer energy surface that may
be stabilized by temperature. The minimal input required for TDPH makes it suitable for
integration into these algorithms, especially in computational high-throughput screening.
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A – Appendix

A.1 Phonons and autocorrelation in the different dynamic simula-
tions

We compare the phonon dispersion in SrTiO3 using three different methods of sampling
the PES: LD, MD-NVT and MD-NVE. In each case, the 1,000 configurations are sam-
pled using τsampling = C(t, t′), where C(t, t′) is the autocorrelation function computed using
Wiener–Khinchin theorem

C(t, t′) =
∫ ∞

−∞
|E|2e−2πivtdv, (A.1)

where E is the instantaneous energy from ab initio simulation. Large deviation of the average
temperature of MD-NVE from the target (T = 300 K) in Table A.1 is due to the absence of
thermostat, and the small autocorrelation time comes from fast descend of NVE to minima
(see text).

Table A.1: Autocorrelation time and average Temperature
LD MD-NVT MD-NVE

Tavr(K) 299 298 315
C(t,t’) 30 12 8
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Figure A.1: Comparison of the autocorrelation function of the ab initio energy from the
three different dynamic simulations in cubic SrTiO3.
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Figure A.2: Comparison of phonon dispersion from the three different dynamic simulations
in cubic SrTiO3.

A.2 Phonons from LD: damping and time step

In the absence of damping (γ = 0), the Langevin dynamics described by Eq. 3.4 reduces to
NVE, and in the absence of deterministic Born-Oppenheimer forces it reduces to Brownian
motion. In the intermediate range its behavior depends on the ratio of γ and the time step
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(∆t), with a large range of acceptable good values which can be determined by testing and
computing the correlation time of V , on a case by case basis. Different time steps were
used to compute the phonons SrTiO33 at finite temperatures. We rationalized the results in
terms of temperature fluctuation from its target value and autocorrelation time of the energy.
The phonon dispersions are displayed in A.3, using four different LD simulation time steps
(∆t = 1, 2.5 5, 10 fs). Among the four, ∆t= 10 fs appears to stand out due to its ability
to provide rapid exploration of phase space but at the expense of resolving the smallest
(fastest) vibrational mode. Table A.2 also shows that ∆t= 10 fs have the largest deviation
to the target temperature, 300 K, when compared to the other 3. Figure A.4 illustrates the
autocorrelation time of V vs. the time step, with values of 2.5 and 5.0 fs being optimal from
a computational standpoint. However, when comparing LD to other dynamic simulations
or ensembles (e.g., MD-NVT or MD-NVE), all parameters are set to be the same, in which
case ∆t = 1 fs is used.
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Figure A.3: Comparison of TDPH dispersion of SrTiO33 from LD with four different time
steps: 10 fs (blue), 5 fs (red), 2.5 fs (dark-green), and 1 fs (golden).

Table A.2: Autocorrelation time and average Temperature using different LD time step
∆t (fs) C(t’,t) χ2 T (K)
1.0 30 0.0068527681 299.00
2.5 16 0.0063913829 299.56
5.0 5 0.0064582700 299.03
10.0 3 0.0075531266 298.84

A.3 Fitting with Energy vs Forces
In Section 4.2 we described the TDPH fitting steps using atomic forces where we defined the
harmonic forces using harmonic force constants and atomic displacements as

FH
i,α = −

∑
jβ

ϕαβ
ij uβ

j (A.2)
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We can define the harmonic energy, EH , in similar fashion as

EH =
∑

ij,αβ

ϕαβ
ij u

α
i u

β
j . (A.3)

It is important to keep in mind that whereas FH can be specified for each degree of freedom,
EH can only be obtained for a configuration. Therefore, it is more efficient to use FH since it
considerably reduces the number of calculations required to achieve convergence. We tested
the TDPH method on FCC Al at 300K with these two methods and compared the results.
In Figure A.7, the phonon dispersion and DOS are presented. The results for TDPH energy
and forces extracted at 300 K are closer to each other than to harmonic approximation at 0
K using DFPT.
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A.4 TDPH input description

TDPH is part of the D3Q+thermal2 anharmonic code of Quantum espresso. It reads a set
of initial dynamical matrices for a given system and optimizes the harmonic force constants
over a series of images that can be the output of a molecular dynamics calculation performed
with Quantum espresso, or a Langevin Dynamics calculation from PIOUD code. The code
will expect that the size of the supercell of the dynamics simulation is the same as that of
the force constants. All pre-and post-processing, including re-centering force-constants, is
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performed with the help of tools in D3Q+thermal2.
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Table A.3: TDPH input description

Input Description

ai

CHARACTER, "md" or "pioud": "md" if the sampling comes from ab
initio molecular dynamics using the standard Quantum espresso dy-
namics engine (i.e. using calculation=’md’ in the pw.x input) or "ld"
for Langevin dynamics based on the Bussi and Parrinello’s algorithm
engine.

fmd
CHARACTER, "md.out": File from standard Quantum espresso dy-
namics engine.

ftau,
fforce,
ftoten

CHARACTER, default "positions.dat" "forces.dat",
"sigma.dat": Output files from LD containing atomic positions
in Angstrom, atomic forces in Hartree per Angstrom, and potential
energy Hartree atomic units.

file_mat2
CHARACTER, default "mat2R": File containing initial force constants.
Must be periodic(i.e. generated with nf = 0 using d3_q2r.x).

nfirst,
nskip, nmax

INTEGER, default 1, 100, 5000: When reading MD or LD trajec-
tory files, read one every nskip steps starting from nfirst until nmax
configurations are read (i.e. from nfirst to nfirst+nskip×(nmax−1)).

fit_type CHARACTER, forces: The fitting method described in the text.

minimization

CHARACTER, ph, ph+zstar or global: These choices define the
which TDPH minimization method to employ. ph will minimize short-
range FCs and add long-range FCs if present (as they are). ph+zstar
decompose both short and long-range FCs, minimize and subsequently
recompose the TDPH FCs. global is experimental.

e0 REAL: Equilibrium total energy from DFT before AIMD steps.

thr
REAL, DEFAULT=1.d-12: file from Quantum espresso containing ini-
tial atomic coordinates and

randomization REAL: Adds or subtracts random numbers to initial phonon parameters.
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Sujet : Caractérisation ab initio des materiaux anharmoniques

Résumé : La prédiction précise des propriétés thermodynamiques et de transport des matéri-
aux à partir des premiers principes nécessite une compréhension de l’anharmonicité résultant de
l’interaction phonon-phonon. L’approximation quasiharmonique standard néglige la dépendance
explicite de la température des phonons et est invalide à haute température, en particulier près
d’une transition de phase, ou même à basse température si le profil d’énergie est peu profond ou
si la nature quantique des noyaux ne peut être ignorée, ce qui justifie la nécessité de méthodes
anharmoniques. De plus, le traitement perturbatif de l’anharmonicité peut être problématique
en présence de phonons imaginaires, sans état fondamental approprié sur lequel une expansion
perturbative peut être construite. Nous présentons une méthode de calcul des phonons anhar-
moniques dans laquelle la seule hypothèse semble être la forme des matrices dynamiques. À partir
d’une géométrie cristalline donnée et d’une grille de q-points dans la zone irréductible de Bril-
louin, nous définissons une matrice dynamique d’essai à l’aide d’une base orthonormée symétrisée
dont les valeurs peuvent être générées aléatoirement. Les matrices dynamiques d’essai sont op-
timisées en s’adaptant à la dynamique moléculaire ab-initio standard échantillonnée des forces
et à la dynamique de Langevin, sur la base de la méthode du potentiel effectif dépendant de la
température. A titre d’exemple, nous l’appliquons pour étudier la renormalisation anharmonique
des phonons dans des matériaux faiblement et fortement anharmoniques, reproduisant l’effet de
la température sur les fréquences des phonons, la stabilisation des phases à haute température
dans les métaux et la transition de phase en ferroélectrique, en bon accord avec l’expérience.

Mots clés : l’anharmonicité, lattice dynamics, phonons, ab initio, transition de phase, modéli-
sation des matériaux

Subject : Ab initio Characterization of Anharmonic Materials

Abstract: Accurate prediction of thermodynamic and transport properties of materials from
first principles requires an understanding of anharmonicity resulting from phonon-phonon in-
teraction. The standard quasiharmonic approximation neglect explicit temperature dependence
of phonons and is invalid at high temperature, especially near a phase transition, or even at
low temperatures if the energy profile is shallow or if the quantum nature of nuclei cannot be
disregarded, which warrants the need for anharmonic methods. Furthermore, the perturbative
treatment of anharmonicity can be problematic in the presence of imaginary phonons, with no
suitable ground state upon which a perturbative expansion can be built. We present a method of
computing anharmonic phonons in which the only assumption appears to be the form of the dy-
namical matrices. Starting from a given crystal geometry and a grid of q-points in the irreducible
Brillouin zone, we define a trial dynamical matrix using an orthonormal symmetrized basis whose
values can be randomly generated. The trial dynamical matrices are optimized by fitting to forces
sampled from standard ab initio molecular dynamics and with Langevin dynamics, based on the
temperature-dependent effective potential method. By way of example, we apply it to study
anharmonic phonon renormalization in weakly and strongly anharmonic materials, reproducing
the temperature effect on phonon frequencies, stabilization of high-temperature phases in metals,
and phase transition in ferroelectrics, in good agreement with the experiment.

Keywords : Lattice dynamics, phonons, anharmonicity, phase transition, ab initio, materials
modelling
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