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Preamble

As I conclude a significant chapter in my journey to becoming a researcher, I would like to trace back to
the origins. As I was studying in the double bachelors program at Sorbonne Université in mathematics
and computer science, I met Arnaud Dapogny who taught, to my class, computer vision basics. Back
then, I was a beginner in gymnastics and gym workouts in general, and it was quite obvious that Arnaud
was very skilled in the matter. Consequently, I decided to ask him where and when did he use to train
which happened to be at the same place where I used to perform my own training routine. He offered to
train together and from then began our friendship.

The year after, I studied in the master of applied mathematics at Sorbonne and I decided to prepare
myself for a prestigious master of mathematics applied to finance called the master El Karoui. Although
at the time I had my doubts about this decision and was also envisioning to study artificial intelligence.
After a long conversation with Arnaud, he explained to me that in finance, one has to work really hard
but in exchange can make a lot of money while in artificial intelligence one can work less hard and still
make a lot of money. However, as a person of great moral values, that abides by strong principles and
based on this information, I went on to study artificial intelligence in the master MVA.

In the meantime, Arnaud took me in as an intern at Datakalab to study gaze tracking. This was my
first hands-on experience in deep learning research. The interactions were great, and I was given room
to explore and test ideas but still under a close supervision from my supervisors Arnaud and also Kevin
Bailly. This experience ended with a publication at the face and gesture conference (FG 2020). After
this internship and a second one for my end of study, Arnaud and Kevin enrolled me at Datakalab and
crafted a PhD thesis subject for me: deep neural networks acceleration.

This PhD in an industry was my first proper work experience which was greatly facilitated by great
mentors in the persons of Arnaud and Kevin, but also thanks to the kind (and patient) developer Gabriel
Kasser as well as the mindful direction, Lucas and Xavier Fischer. As the months passed, I had the
opportunity to contribute to the academic knowledge regarding deep neural network compression and
was given room for investigating my own intuitions and innovations. From the wise advice of Arnaud
and Kevin, my initial works focused on data-free compression in order to avoid power hungry challenges.
Because of this strategic choice and thanks to some well-timed ideas, I contributed to post-training
quantization and pruning through the publications of several articles in prestigious conferences such as
NeurIPS and ICLR. Furthermore, as Kevin was supervising other PhD candidates, Gauthier Tallec and
Jules Bonnard, working on other deep learning domains, I was exposed to other fields which led to the
application of contributions from the compression domain to affective computing for instance. This work
was significantly facilitated thanks to the work of Gauthier Tallec. Overall, I believe that the numerous
discussions and interactions with my two PhD colleagues had a direct impact on the quality of my
research. On top of which, I received guidance from Matthieu Cord on a regular basis, that enabled me
to better target and track the moves and trends within the deep learning community.

As I grew more confident in my work and skills, Kevin, Arnaud and Matthieu gave me opportunities
to evolve on the other traits of a researcher outside of research in itself. For example, Matthieu brought
me to the French-German meet-up on deep learning that all the large public labs from both countries
attended. This was my first experience in a scientific conference because of Covid. On the other hand,
Kevin allowed me to present the compression stack from Datakalab to our privileged partners. All in all,
from my perspective, the PhD had the right balance between industrial interactions, academic research
and public representation for me to learn and develop the necessary skills to become as accomplished as
possible. However, one element is missing in this picture: teaching. While, I had all the opportunity to
learn research, as a PhD candidate in a private company, I would have missed on teaching. Fortunately,
a former employee, Boris Dorado, who taught mathematics at Central Supelec in the MSTM, offered me
to take his place as he wanted to follow a new academic formation. I gladly took this opportunity and
started teaching on my vacations. Further down the road two other opportunities to teach appeared, one
from Kevin at Sorbonne and one from Arthur Douillard at Epita. Thanks to this experience, I learned
two lessons: first, they were all great teachers that were barely possible to replace and second, teaching
to others is the best way to learn to communicate. This is an opportunity for me to thank all of my
students who for the most part were better students than I was a teacher. As I learned my lesson, it
reminded me of a quote from my favorite teacher in second year, Camille Pouchol, who said something
along the lines "understanding complex concepts or explaining to the many simpler ones, it is not always
trivial to figure which is best". Well, for myself, I would say that, in applied deep learning, one of these
options do not exist. Consequently, I wanted to turn this manuscript in a pedagogical journey through
deep neural network compression for all the AI researchers and deep learning enthusiasts.
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For the remainder of the manuscript, I will present a general overview of the deep compression
domain with high-level explanations of each set of methods such as neural architecture search, pruning
and quantization. I will also embellish this landscape with some technical details and mistakes to avoid
based on my own knowledge of the field. Each of the sections will end with a framed summary of the key
takeaways for a better readability. For each specific subdomain and based on what was introduced, I will
propose a list of key challenges that remain to be addressed: some were solved in this thesis or by other
researchers and some remain open to this day. The second and third chapters will focus on my personal
contributions to the field of pruning and quantization with the technical details, theoretical proofs and
experimental validations. The last chapter will open-up on what appears to me as the key challenges
that have yet to be addressed in deep compression as a whole. I wish you a good time reading my prose.
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Abstract

Deep neural networks have grown to be the most widely adopted models to solve most computer vision and
natural language processing tasks. Since the renewed interest, sparked in 2012, for these architectures,
in machine learning, their size in terms of memory footprint and computational costs have increased
tremendously, which has hindered their deployment. In particular, with the rising interest for generative
AI such as large language models and diffusion models, this phenomenon has recently reached new heights,
as these models can weight several billions of parameters and require multiple high-end GPUs in order to
infer in real-time. In response, the deep learning community has researched for methods to compress and
accelerate these models. These methods are: efficient architecture design, tensor decomposition, pruning
and quantization. In this manuscript, I paint a landscape of the current state-of-the art in deep neural
networks compression and acceleration as well as my contributions to the field. First, I propose a general
introduction to the aforementioned techniques and highlight their shortcomings and current challenges.
Second, I provide a detailed discussion regarding my contributions to the field of deep neural networks
pruning. These contributions led to the publication of three articles: RED, RED++ and SInGE. In
RED and RED++, I introduced a novel way to perform data-free pruning and tensor decomposition
based on redundancy reduction. On the flip side, in SInGE, I proposed a new importance-based criterion
for data-driven pruning. This criterion was inspired by attribution techniques, which consist in ranking
inputs by their relative importance with respect to the final prediction. In SInGE, I adapted one of
the most effective attribution technique to weight importance ranking for pruning. In the third chapter,
I lay out my contributions to the field of deep quantization: SPIQ, PowerQuant, REx, NUPES, and
a best practice paper. Each of these methods address one of the previous limitations of post-training
quantization. In SPIQ, PowerQuant and REx, I provide a solution to the granularity limitations of
quantization, a novel non-uniform format which is particularly effective on transformer architectures
and a technique for quantization decomposition which eliminates the need for unsupported bit-widths,
respectively. In the two remaining articles, I provide significant improvements over existing gradient-
based post-training quantization techniques, bridging the gap between such techniques and non-uniform
quantization. In the last chapter, I propose a set of leads for future work which I believe to be the current,
most important unanswered questions in the field.
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Abstract (fr)

Les réseaux de neurones profonds sont devenus les modèles les plus utilisés, que ce soit en vision par
ordinateur ou en traitement du langage. Depuis le sursaut provoqué par l’utilisation des ordinateurs
modernes, en 2012, la taille de ces modèles n’a fait qu’augmenter, aussi bien en matière de taille mémoire
qu’en matière de coût de calcul. Ce phénomène a grandement limité le déploiement industriel de ces
modèles. Spécifiquement, le cas de l’IA générative, et plus particulièrement des modèles de langue tels
que GPT, a fait atteindre une toute nouvelle dimension à ce problème. En effet, ces réseaux sont
définis par des milliards de paramètres et nécessitent plusieurs GPU en parallèle pour effectuer des
inférences en temps réel. En réponse, la communauté scientifique et les spécialistes de l’apprentissage
profond ont développé des solutions afin de compresser et d’accélérer ces modèles. Ces solutions sont
: l’utilisation d’architecture efficiente par design, la décomposition tensorielle, l’élagage (ou pruning) et
la quantification. Dans ce manuscrit de thèse, je propose de dépeindre une vue d’ensemble du domaine
de la compression des réseaux de neurones artificiels ainsi que de mes contributions. Dans le premier
chapitre, je présente une introduction générale au fonctionnement de chaque méthode de compression
précédemment citée. De plus, j’y ajoute les intuitions relatives à leurs limitations ainsi que des exemples
pratiques, issus des cours que j’ai donnés. Dans le second chapitre, je présente mes contributions au sujet
du pruning. Ces dernières ont mené à la publication de trois articles: RED, RED++ et SInGE. Dans
RED et RED++, j’ai proposé une nouvelle approche pour le pruning et la décomposition tensorielle, sans
données. L’idée centrale était de réduire la redondance au sein des opérations effectuées par le modèle.
Á l’opposé, dans SInGE, j’ai défini un nouveau critère de pruning par importance. Pour ce faire, j’ai
puisé de l’inspiration dans le domaine de l’attribution. En effet, afin d’expliquer les règles de décisions
des réseaux de neurones profonds, les chercheurs et les chercheuses ont introduit des techniques visant à
estimer l’importance relative des entrées du modèle par rapport aux sorties. Dans SInGE, j’ai adapté l’une
de ces méthodes les plus efficaces, au pruning afin d’estimer l’importance des poids et donc des calculs du
modèle. Dans le troisième chapitre, J’aborde mes contributions relatives à la quantification de réseaux
de neurones. Celles-ci ont donné lieu à plusieurs publications dont les principales: SPIQ, PowerQuant,
REx, NUPES et une publication sur les meilleures pratiques à adopter. Dans SPIQ, PowerQuant et REx,
j’adresse des limites spécifiques à la quantification sans données. En particulier, la granularité, dans
SPIQ, la quantification non-uniforme par automorphismes dans PowerQuant et l’utilisation d’une bit-
width spécifique dans REx. Par ailleurs, dans les deux autres articles, je me suis attelé à la quantification
post-training avec optimisation par descente de gradient. N’ayant pas eu le temps de toucher à tous les
aspects de la compression de réseau de neurones, je conclus ce manuscrit par un chapitre sur ce qui me
semble être les enjeux de demain ainsi que des pistes de solutions.

5/125 February 26, 2024



Efficient Neural Networks: Post Training Pruning and Quantization

Contents

1 Landscape of Deep Neural Networks Compression 8
1.1 Introduction to deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 Neural Networks and Matrix-Vector Multiplication . . . . . . . . . . . . . . . . . . 9
1.1.2 Normalization Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.3 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.4 Merging Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.5 Neural Networks and Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Deep Neural Networks Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.1 Edge Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.2 Cloud and Large Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Using the Appropriate Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.1 Neural Architecture Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.2 Few Shot Architecture Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.3 Knowledge Distillation for Deep Compression . . . . . . . . . . . . . . . . . . . . . 20

1.4 Efficient Arithmetic: Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.1 Floating Point Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.2 Fixed Point Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.3 Quantization Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4.4 Quantization Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5 Trimming the Model: Pruning and Tensor Decomposition . . . . . . . . . . . . . . . . . . 27
1.5.1 Pruning and Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.2 Simulated Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5.3 Tensor Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.5.4 Pruning Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Deep Neural Network Pruning 33
2.1 Redundancy-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.1 Theoretical guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Tensor Decomposition and Other forms of Pruning . . . . . . . . . . . . . . . . . . . . . . 39
2.2.1 Depthwise Separable Convolution Tensor Decomposition . . . . . . . . . . . . . . . 39
2.2.2 A new Semi-structured Pruning Approach . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Importance-Based Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.1 Magnitude Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.2 Adapting Attribution techniques to Pruning . . . . . . . . . . . . . . . . . . . . . . 44
2.3.3 Entwining Pruning and Fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.4 Empirical Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 Other Applications Related to Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.1 Robust Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.2 Empirical Robustness Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.3 Layer Relative Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5 Future Challenges for Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.5.1 Hardware Aware Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.5.2 Pruning Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6/125 February 26, 2024



CONTENTS

3 Deep Neural Network Quantization 56
3.1 Data-Free Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1.1 Fundamental Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.2 Quantization Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.1.3 Non-Uniform Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.4 Hardware Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 Gradient-Based Post-Training Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.1 Rounding Up or Down? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.2 GPTQ and Non-Uniform Quantization . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2.3 Best Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3 Quantization-Aware Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3.1 ReActNet and PokeBNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3.2 Leads on Binary Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Insights for Future Work 90
4.1 Our Contributions to Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2 Pruning Matrix Multiplication Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.1 Multiplications Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2.2 Additions Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 GPTQ and Auto-Regressive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4 Working past Group-wise Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5 Modular Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.6 Efficient Training with Adapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Bibliography 96

5 Publications 107
5.1 International Conferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2 International Journals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3 National Conferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.4 Under Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.5 Patents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Appendices 108

A Partial-Transformer Self-Distillation 109

B Quantization Implementations 110

C Redundancy-based pruning theory: RED and RED++ 111
C.1 Detailed proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
C.2 Extra empirical validations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
C.3 Similarity pruning as a birthday problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
C.4 New Pruning Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

D PowerQuant Proofs 118
D.1 Proof of Lemma 3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
D.2 Local Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
D.3 Uniqueness of the Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

E REx Proofs 121
E.1 Exponential Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
E.2 Upper Bound Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
E.3 Sparse Expansion Outperforms Standard Expansion . . . . . . . . . . . . . . . . . . . . . 125

7/125 February 26, 2024



Efficient Neural Networks: Post Training Pruning and Quantization

Chapter 1

Landscape of Deep Neural Networks
Compression

While some predictive tasks know analytical solutions [58], some others do not [220]. Prime examples of
such problems are related, but not limited, to computer vision [48] and natural language processing [192].
Consequently, the search for approximate solutions to these task has grown rapidly, with deep learning
models overtaking the lead since 2012 [120]. Their strong performance sparked a new interest from the
machine learning community, which led to the discovery of several mathematical properties [83, 132, 108].
To many enthusiasts and experts, deep neural networks are a class of over-parameterized functions which
are empirically effective at solving non-convex problems [273]. As a result, most of the scientific literature
focused, and still focuses, on the training phase of deep neural networks and improving the final accuracy
of these models. In such research, deep neural networks are often described as sets of parameterized
functions which are learned from the landscape of a loss function [39] sampled over the distribution of
the available data [54]. However, in the context of industrial applications, the generalization capacities
of these functions (e.g. their accuracy) is no longer the main obstacle to their massive deployment but
rather their computational cost. Consequently, the need for compression techniques has grown to the
point where it is now considered as a proper domain of study in deep learning, called deep compression.
In this introductory chapter, we define neural networks from the perspective of deep compression and
paint a general landscape of the methods for efficient deployment.

1.1 Introduction to deep learning

In most deep learning methods, deep neural networks are viewed as a composition of functions. From the
perspective of deep neural network efficient inference, such model is first defined as a set of computational
blocks. The resulting object will be a directed graph where each node represents a mathematical operation
and each vertex corresponds to an actual composition. In the following sections, we highlight the cost
of the most commonly found computational blocks in modern deep learning models and their impact on
hardware.

Let’s consider a neural network F defined by its layers (or nodes) (fl)l∈J1;LK, some of which comprise a
weight tensor Wl and bias tensor bl. Among the most common neural network architectures, we propose
the following classification of nodes:

• Mat-Vect multiplications: these layers encompass fully-connected layers and convolutional layers.
Such layers take as inputs a tensor X which may have any shape and perform an operation which
is equivalent to a matrix (weights) and vector (inputs) multiplication. For the sake of simplicity,
we will always assume that these operations are equivalent to a naive fully-connected layer [143].

• Normalization layers: batch-normalization [101] and layer normalization [14] layers were introduced
in order to improve the stability of training. The defined operation is a sequence of affine transfor-
mations of the features X which can be generalized as fl : X 7→ γX−µ

σ +β where γ and β are learned
through stochastic gradient descent [181] and µ and σ are approximations of the expectation and
standard deviation of X respectively.

• Activation layers: the previously mentioned layers only perform affine transformations of the data
and as such can learn very few predictive functions [230]. To circumvent this limitation and enable
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CHAPTER 1. LANDSCAPE OF DEEP NEURAL NETWORKS COMPRESSION

VGG

ResNet

ViT

mat-vect activation normalization merge

Figure 1.1: Illustration of characteristic computational sub-graphs from the most commonly used archi-
tectures in computer vision: VGG [191], ResNet [86] and ViT [55]. These architectures illustrate the most
commonly observed computational blocks in the deep learning literature (sequential operations, residual
connections and multi-head self-attention).

deep neural networks to approximate any continuous function on a compact set to any given pre-
cision, we add non-linear transformations to the graph called activation functions. Prime examples
of such functions are the sigmoid [148], softmax [17], ReLU [3] and GELU [159].

• Merge layers: the final set of nodes that we consider are a consequence of the well known skip
connections [86]. When several intermediate outputs are considered, they should be merged using
either concatenation [180], addition [147] or multiplication [222].

For the sake of clarity, we illustrate some well known deep neural architectures in Figure 1.1. Although
the mat-vect operations (fully connected and convolutional layers) are often the first layers that come
to mind when we think about efficient inference, we will highlight the specific costs induced by all node
types in the following sections.

1.1.1 Neural Networks and Matrix-Vector Multiplication

Contrary to matrix-matrix multiplication, there exists only one matrix-vector multiplication algorithm
[202]. In practice, the main algorithmic degree of freedom is the number of operations performed in
parallel, as matrix-vector operations can be heavily parallelized [171]. The most striking example of this
practice is the case of convolutional layers for which Intel (with their inference engine, OpenVino [75])
provides a distinct set of instruction calls for each use-case (different kernel sizes, strides, paddings, ...).
In this thesis, we will not extend too much on inference engines [146] and will remain, as much as possible,
agnostic.

While the deep learning community has not focused on improving matrix-vector algorithms, the
associated layers have been the center of attention when it comes to compression. This is explained by
the fact that these layers contain most of the parameters (normalization and activation nodes may also
use few parameters), and thus most of the memory footprint, of deep neural networks. They are also
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CHAPTER 1. LANDSCAPE OF DEEP NEURAL NETWORKS COMPRESSION

responsible for most of the computations (GFlops1) during the forward pass. As we will detail in section
1.2, the memory footprint of deep neural networks, which comes from the weight values storage, has
become a critical issue that hinders their deployment on edge devices and, sometimes, even on large scale
GPUs. This is often addressed with pruning and quantization which we will introduce in sections 1.5,
1.4 and detail in Chapters 2, 3 respectively.

Although other formats have grown in popularity2, we will systematically assume a baseline 32 bits
encoding of the tensors that are manipulated in memory. This representation usually offers a sufficient
approximation of real numbers. However, many practitioners may forget that this representation can
also lead to numerical errors or approximations with respect to the expected exact result (using values
in R)). Throughout our discussion of compression techniques, we will highlight where such errors may
hinder performance3.

While mat-vect nodes are the most commonly found and are at the core of the expressivity of deep
neural networks, normalization nodes are now ubiquitous in modern architecture.

1.1.2 Normalization Layers

Batch-Normalization Layers: First introduced by Ioffe et al. [101], batch normalization layers (BN)
perform a standardization of the features before scaling and shifting them,

BN : X 7→ γ
X

σ + ϵ
+ β (1.1)

At inference, the key aspect of these layers (especially as compared to layer normalization layers [14])
is the absence of any update of the statistics µ and σ. In the case of batch normalization layers, µ is
updated in order to satisfy E[X − µ] ≈ 0 on the training set and remains static at inference. Similarly,
σ is computed such that V[X/σ] ≈ 1, and stored. Consequently, during inference, the BN layers use the
stored statistics and do not compute them on the fly.

Batch-Normalization Folding: Consequently, a BN layer is, at inference, a sequence of affine trans-
formations and as such can be merged with the subsequent layers that also perform affine transformations.
This merging operation consists in editing the graph in order to use only one affine transformation in
place of two when possible. This process is referred to as layer folding. For the sake of simplicity, let’s
assume that we have a fully-connected layer followed by a BN layer. Then the sequence of operations S
computes

S : X 7→ γ
WX + b− µ

σ
+ β (1.2)

This set of operations is very costly as we have a lot of back and forth between different instructions:
first compute "WX" and add the bias "· + b" then subtract the mean "· − µ"... The folded operation
reads

S = Sfolded : X 7→ (γ
W

σ
)X + (

b− µ

σ
+ β) = WfoldedX + bfolded (1.3)

The folded operation only computes one affine transformation with the new weight values γW
σ and bias

b−µ
σ + β. Although the original sequence and the folded one are mathematically identical, as previously

mentioned, the numerical approximation can induce slight modifications of the predictions. In practice,
the removal of BN layers leads to 20-50% latency reduction, depending on the network and hardware4. In
our work To fold or not to fold [247], we propose an optimal algorithm to determine whether a BN layer
can be folded or not. In general, batch-normalization folding can also be performed on more complex
graphs where a BN layer is folded in several layers, as detailed in our work [247].

1GFlops: the number of floating point operations (measured in 109 operations). GFlops and the number of parameters
removed are the two main metrics for pruning. Similarly, BOPs (number of bit-wise operations) are gaining traction in
the quantization community. However, as we will discuss, these metrics offer interesting but limited insight on the actual
performance of a model at inference time.

2While 32 bits remain the default representation, the rise of large language models [262] has pushed the community
toward the adoption of 16 bits (fp16) representation for the most recent research.

3Numerical errors are important to account for, in critical systems such as airplanes landing assistance. In section 1.1.2,
we will discuss a compression method that does not modify the predictive function from the mathematical perspective but
may lead to marginal changes in practice due to numerical approximations.

4If you want to give it a try, please follow this small practical session on your device. batch-normalization
folding is one of the few compression steps that can be fairly simply implemented for immediate acceleration.
https://gitlab.com/ey_datakalab/advancedmachinelearning_compression
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CHAPTER 1. LANDSCAPE OF DEEP NEURAL NETWORKS COMPRESSION

This step is crucial to any effective neural network compression technique, but it suffers from several
limitations. First, some architectures [55] do no use BN layers, but rather layer normalization (LN)
layers.

Layer-Normalization Layers: These layers perform essentially the same operation but with two
distinctions. On the one hand, LN layers are usually performed on a different axis of the considered
tensor. We do not detail this aspect of LN layers as this does not impact the inference. On the other
hand, LN layers, contrary to BN layers, always compute the mean and standard deviation on the fly, for
each example separately rather than storing it during training, as illustrated in Fig 1.2. Consequently,
the operations performed by these nodes cannot be fully folded.

To fold a LN layer, we will explicit how to compute the WX+b−E[WX−b] at once. To do so, we recall
that E[WX+b] = WE[X]+b. In other words, we search for a transformation T of X such that WE[X]+b =
T (X). However, the expectation of an affine transformation is the affine transformation of the expectation.
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Figure 1.2: We illustrate the call to the normal-
ization layers parameters.

Consequently, we get

T (X) =

W ×

1− 1
#X . . . 1

#X
...

. . .
...

1
#X . . . 1− 1

#X


X + b

(1.4)
where #X denotes the dimension of X. As a result, we
have folded the centering operation. Unfortunately, the
reduction step cannot be folded in an affine transforma-
tion, as it is quadratic with respect to the inputs. Thus,
LN layers cannot be further folded.

A second limitation to normalization layers folding is
the fact that we lose the information about the statis-
tics learned during training. These statistics can be
very helpful for many other compression techniques5
[157, 240, 243]. In short, some compression techniques
require knowing the support of intermediate features
in order to map these values to a compressed space
[99]. Their data-free counterparts leverage the training
statistics in order to keep a control over the ranges of the
intermediate feature values [157]. Some other methods
propose to generate synthetic training examples from
the weight values of a pre-trained model by optimiz-
ing a white noise input [240]. To do so, they regularize
the generation process by constraining the intermediate
statistics to match the ones extracted during training
[243].

A third limitation of BN folding is the low impact of the memory footprint. As previously mentioned,
most of the parameters of a model correspond to the mat-vect nodes (fully-connected and convolutional
layers) and are responsible for most of the model footprint. Consequently, the removal of BN layers only
lead to a marginal reduction of the total number of parameters.

In summary, while BN folding is a very effective acceleration technique with strong mathematical
properties (preservation of the predictive function), it is limited both in its application (architecture)
and practical results (low number of parameters removed).

Furthermore, there are instances where BN folding cannot be performed: mainly in the presence of a
non-affine operation, i.e. an activation layer.

1.1.3 Activation Functions
Similarly to mat-vect nodes, activation functions have been a key component to the good performance of
deep neural networks since their introduction [123]. From the perspective of compression, the baseline and

5The usage of the train statistics is very important in quantization, but we keep this conversation for the section 1.4.
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best suited activation function is the rectified linear unit (ReLU) [3], defined as ReLU(X) = max(X, 0).
Its strengths are two-fold: First, ReLU is almost cost-free in terms of computations. In order to compute
it we only have to check the value of a single bit. Following the convention6 on floating point values, if
the sign bit is 0 then we shall return X and 0 otherwise. Furthermore, the sign bit is always located on
the most significant bit (easier access). In other words, ReLU is as costly as a binary operation7. Second,
ReLU is piece-wise linear, which means that for all λ ∈ R+ we have ReLU(λX) = λReLU(X). This
property has been leveraged in many compression techniques [157]. In short, if we need to scale down or
up the activations or weights of a node, we can fold this operation in any subsequent affine node as long
as we have a ReLU activations. This is a weak form of compliance with operation folding.

Unfortunately for us, the deep learning community is progressively abandoning the ReLU in favor of
other activation functions8 such as ReLU6, Hardswish [94], GELU [159] and SiLU [56]. While it appears
that these new transformations offer better performance when used in the context of stochastic gradient
descent based optimization [181], they significantly hinder most compression techniques.

Fortunately, based on their analytical definitions, we can assert their similarity with the ReLU acti-
vation function.

GELU : X 7→ X

2

(
1 + tanh

[√
2

π
(X + 0.044715X3)

])
SiLU : X 7→ X

1 + e−X
= Xσ(X) (1.5)

where σ is the sigmoid function9. In section 1.3, we will detail a compression technique which enables
the replacement of non-ReLU activations with the inference-friendly ReLU.

While the activation functions introduce some computational overhead, they do not affect the memory
footprint of the neural network at inference, up to the instructions related to their executions, which is
negligible. On the contrary, the remaining nodes: feature merging nodes are often overlooked when it
comes to deep acceleration.

1.1.4 Merging Nodes
Even the simplest feature merging nodes, such as the concatenation and addition nodes, introduce a
significant overhead. This overhead does not result from their specific computations, but rather from the
need to store more intermediate features simultaneously. In order to explain this phenomenon, we need
to highlight a key difference between inference and training: the absence of the backward propagation.
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Figure 1.3: Illustration of the memory footprint at each in-
ference stage, with purple boxes for the weights and green
boxes for the features.

Because we do not perform backward propa-
gation at test time, we do not need to store
all the intermediate features exploited in the
chain rule. As a result, for a sequence of
nodes without intermediate connections (also
called skip connections [86]), we only need to
store the current features that we are ma-
nipulating. These scenarii are illustrated in
Fig 1.3. However, when we observe merging
nodes (and thus skip connections), we need to
keep the two (or more) intermediate feature
tensors in order to perform the forward pass.
This phenomenon can be memory costly for
some computer vision models, which use high
resolution images [31]. Unfortunately, there
is only one solution to tackle this problem:
using a different model.

A more complex and costly merging
mechanism is the matrix multiplication of in-
termediate feature tensors. A prime example

6This is not systematically the case in computer science. However, it is the case for all deep learning libraries (TensorFlow,
Keras, PyTorch, ONNX, JAX,...)

7As we will see, to this day, binarization of the computations is the highest compression rate that can be achieved for
deep neural networks inference.

8In section 1.1.5, we provide a detailed description of the most commonly used models and benchmarks for deep neural
network compression and specify the activation functions in each architecture

9Throughout the thesis, we will try our best to simplify the notations. Here the σ refers to the sigmoid while, previously,
σ referred to the standard deviation. In the other sections and unless stated otherwise, σ will, by default, refer to the
standard deviation.
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of such merging is the attention module from the trending transformer architecture [55]. While the mat-
vect multiplication algorithm is unique (up to the parallelization), the matrix multiplication algorithms
are numerous and well studied [202]. The choice of such algorithm is closely related to the hardware sup-
port. As such, it is common practice to leave such optimization to the inference engine10. On the other
hand, there exists some techniques specific to the acceleration of this mechanism: tensor decomposition
and clustering, which we discuss in section 1.5. In short, these techniques either reduce the size of the
matrices or approximate the operation using a sub-sample of the intermediate computations.

In order to introduce the different methods for deep neural networks acceleration and compression,
we introduce once and for all the models and benchmarks that we will use in our experiments. These
models are the starting point from which we try to achieve faster and less costly inference.

1.1.5 Neural Networks and Datasets

In order to clarify the discussion regarding models and datasets, we classify them in three categories: the
debugging examples, the realistic industrial use-cases and the large generative models.

The first category, debugging examples are also referred to as toy examples. We choose to call them
debugging examples as they should be considered as good illustrations to showcase whether a compression
method implementation runs or not, and nothing more. We observed this issue repeatedly during the
thesis, and this has been reported on many occasions in different surveys of the field [131, 70, 36]. For
example, a compression method that work very well on a small network trained on MNIST [49] can very
well be ineffective when applied to a large model on ImageNet [47]. As a result, these benchmarks should
not be considered for future evaluations of deep neural network compression. Nonetheless, we will use
them in our study, as they are often the only available point of comparison to some older methods. For
our debugging examples, we consider all networks trained on MNIST, a set of 60,000 28 × 28 grayscale
images for 10-classes classification with a test set comprising 10,000 images. We also consider models
trained on Cifar1011 [114], a set of 50,000 32×32 RGB images for 10-classes classification, with a test set
comprising 10,000 images. The considered models are almost systematically from the ResNet [86] and
Wide-ResNet [257] families, which are known for their introduction of the skip connection and narrower
architectures respectively. During this thesis, we also worked on MobileNet v2 [183] trained for Cifar10.
However, contrary to the ResNet models, the MobileNets do not have a specific architecture adapted
to Cifar10 which makes them significantly over-parameterized. For all of these models, we list their
characteristics with respect to inference in Table 1.1.

The second category, industrial use-cases, could be summarized as ImageNet [47] models and BERT
[52]. Indeed, when it comes to computer vision applications, ImageNet has become the reference bench-
mark for real-world scenarii. Although many compression techniques also evaluate their performance on
other tasks such as object detection on VOC [60] or COCO [134] as well as image segmentation on VOC
[60], CityScapes [44] or ADE20K [269], we observe that, in practice, the performance of a compression
method, on these benchmarks, can be deduced from the performance on ImageNet. This empirical phe-
nomenon can be attributed to several elements. First, the ImageNet classification task has a complexity
(prediction over a 1000 classes) similar to the dense (or semi-dense) predictions from the aforementioned
datasets. Second, it is known to improve performance for these tasks as it is often leveraged as a pre-
training task.

In summary, if a compression method works on ImageNet, it will most likely work on almost every
other similarly sized applications such as VOC, COCO, CityScapes, ADE20K...

However, evaluating on ImageNet should no longer be considered sufficient. While a similar architec-
ture (or backbone) will behave similarly with respect to compression, this property does not hold across
architectures. In practice, It appears that the community struggles to depart itself from ResNet12 and
move on to the EfficientNet [210] and transformer families such as ViT [55], DeiT [216] and CaiT [217].
Consequently, we will evaluate the compression techniques on both older architectures (e.g. ResNet) and

10Although DeepMind designed a neural search for even better matrix multiplication algorithm [62] and did improve the
state-of-the-art. Such work is rather a testament to the strength of deep learning methods than an actual compression
technique.

11We did not work on Cifar100, but this dataset also falls in the category of debugging datasets. While not so many
researchers have the resources to train on larger scaled dataset, we would recommend these researchers to work on less
training intensive fields (post-training compression) rather than relying on empirical results that may not translate in
actual deployment use-cases.

12Some methods still evaluate on VGG. However, this benchmark is progressively disappearing and ResNet should follow.
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Table 1.1: Summary of the inference ralted attributes of the most commonly used deep architectures in
compression benchmarks. The characteristics were obtained using the torchsummary [219] and deepspeed
[149] libraries.

Architecture #params Flops (106) MACs (106) RAM (Mb) Activations Year
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es

ResNet 8 78,186 26.25 12.97 0.30 ReLU 2016
ResNet 20 269,722 81.67 40.55 1.03 ReLU 2016
ResNet 56 853,018 252.57 125.49 3.25 ReLU 2016
ResNet 110 1,727,926 508.93 252.89 6.59 ReLU 2016
ResNet 164 2,602,906 765.28 380.29 9.93 ReLU 2016

Wide ResNet 28-10 36,489,290 11,913.28 5,951.12 139.20 ReLU 2017
Wide ResNet 40-4 8,955,050 2,829.95 1,411.83 34.16 ReLU 2017

MobileNet v2 3,504,872 15.06 7.39 13.37 ReLU6 2018

in
du

st
ri
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ap

pl
ic

at
io

ns

ResNet 18 11,689,512 3,636.25 1,814.07 44.59 ReLU 2016
ResNet 34 21,797,672 7,339.39 3,663.76 83.15 ReLU 2016
ResNet 50 25,557,032 8,211.11 4,089.18 97.49 ReLU 2016
VGG16 138,357,544 30,973.78 15,470.26 527.79 ReLU 2014

MobileNet v2 3,504,872 614.97 300.77 13.37 ReLU6 2018
MobileNet v3 5,483,032 444.94 216.59 20.92 Hardswish 2020

EfficientNet B0 5,288,548 793.64 385.81 20.17 SiLU 2019
EfficientNet B7 66,347,960 10,472.72 5,169.87 253.10 SiLU 2019

ViT b16 86,567,656 33,723.33 16,848.50 330.23 GELU 2021
ViT h14 632,045,800 323,918.10 161,884.38 2,411.06 GELU 2021
DeiT S 86,390,784 35,336.53 17,655.87 329.55 GELU 2021

CaiT XXS24 11,956,264 4,351.81 2,169.28 45.61 GELU 2021
BERT 109,482,240 96,724.84 48,318.97 417.64 GELU 2019

la
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to
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eg
re

ss
iv

e
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od
el

s OPT 7B 6,658,473,984 28,392,045.13 14,192,983.28 25,400.06 ReLU 2022
OPT 13B 12,853,473,280 13,417,330.83 6,707,711.43 49,032.11 ReLU 2022
OPT 30B 29,974,540,288 31,159,501.14 15,578,149.72 114,343.80 ReLU 2022

Dolly v2 3B 2,775,086,080 2,806,570.07 1,402,801.73 10,586.11 GELU 2023
Dolly v2 7B 6,856,056,832 6,973,753.57 3,486,265.18 26,153.78 GELU 2023
LLaMA 7B 6,738,415,616 6,930,503,49 3,465,026,47 25,705.01 SiLU 2023
LLaMA 13B 13,015,864,320 13,427,749.65 6,713,522.18 49,651.58 SiLU 2023
LLaMA 33B 32,528,943,616 33,641,743.96 16,820,185.11 124,088.07 SiLU 2023
LLaMA 65B 65,285,660,672 67,534,959.02 33,766,353.14 249,045.03 SiLU 2023

Stable Diffusion 865,910,724 3,044,273.45 1,520,971.94 26,153.78 SiLU 2023

newer ones (e.g. EfficientNet). Similarly to the previous category, we summarize the properties of these
models in Table 1.1.

The third category, the large generative models, comes from the recently introduced large language
models (LLMs) [262] and diffusion models [179]. Their difference from the previously mentioned models
comes from their sheer size. While the causal aspect of these models does affect some compression methods
(discussed in detail in section 4.3), the main issue comes from the fact that training such models is not an
option for almost every researcher and even loading such models can become a challenge past 30 billion
parameters. As a result, these models have renewed the interest for data-free compression. A second,
significant, aspect of these models is the presence of outlying values among weight and intermediate
features [50]. This is an important challenge and, as such, it will be a recurrent point of discussion in
the quantization chapter (see sections 3.1.3 and 3.1.4). As examples of such models, we will consider
the OPT [262], Dolly v2 [46] and LLaMA [218] families of LLMs as well as the stable diffusion models
[179]. We report their attributes in Table 1.1. In order to measure the performance of these models,
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we considered the common sense reasoning13 benchmarks from EleutherAI [68] for LLMs and the CLIP
score [89] for the diffusion model.

From this landscape of the current state of deep learning through the lens of deep neural network accel-
eration and compression, we propose to motivate the subject from both an economical and environmental
perspective.

1.2 Deep Neural Networks Deployment

In deep neural networks deployment, we usually consider two main setups: edge devices and cloud
computing. From the inference perspective, using a set of small devices or a centralized server for
inference leads to distinct constraints and goals, which we discuss in the following sections.

1.2.1 Edge Devices

Edge devices are usually the first use-case that comes to mind for deep neural network compression. In
other contexts, an edge device is defined as any device that provides an entry point to a network provider
(e.g. routers). However, in our case, an edge device will be any low power computing device. Examples
range from most microcontroller units to smartphones. Working on edge devices introduces a specific set
of constraints.

First, depending on the application, if a user interacts directly with the device, then the most likely
criterion for acceleration would be latency, which corresponds to the response time for a single prediction.
In order to measure the latency properly, it is important to account for several aspects of inference that
lie outside the scope of deep acceleration:

1. The warm-up: most inference engines and libraries have a warm-up for the first few inferences,
which corresponds to the selection of the algorithms for each computation and the loading of the
neural network. In practice, we usually measure the performance over multiple iterations (about
1000) after a warm-up of a few iterations (about 10).

2. Satellite applications: on complex systems, it is likely that the inference of the deep neural network
is not the unique application running. Thus, the resources are shared which may hinder the per-
formance. In practice, we isolate the neural network inference and perform it alone. However, for
industrial applications, it may be relevant to do in-situ measurements.

In other instances, where a device is not interacting with a user but rather runs constantly, the most
relevant metric for acceleration is throughput. This corresponds to the number of inferences that can be
completed in a given amount of time (usually one second). The main difference with latency is our ability
to adapt the batch-size. To put it in simple words: the latency corresponds to the runtime in batch-size
1 regime, while the throughput is the runtime with the optimal batch-size. While these metrics are
important to keep in mind, they are not commonly measured in academic research for one main reason:
they are too complex to reproduce, thus disable fair comparisons. To put it in a nutshell, unless we
use the exact same device, with exact same software updates and exact same satellite applications, two
identical networks will not share the same latency nor throughput. This is the reason why we report
the number of parameters, memory usage, number of Flops and MACs which all are independent of the
hardware. The Flops are the number of floating point operations performance in a single forward pass,
while the MACs is the number of multiply–accumulate operations which correspond to the addition of
the result of a multiplication of two scalars to an accumulator.

Second, one of the main reasons to opt for the usage of edge devices is the energy consumption
[27, 7, 72, 241]. As illustrated in Figure 1.4, we can see the power consumption of several edge devices in
different execution mode: sleep (red) or peak activity (blue). While, we observe a significant difference
from larger hardware devices, we also note that the peak consumption can be more than 200 times larger
than the sleep mode performance (e.g. on an STM32 device). As a result, there is a significant interest
in limiting the peak consumption of such devices. This is even more important on mobile devices (e.g.
smartphones) where the battery life is of paramount importance in the user experience [160]. According
to Ionascu et al. [102], the battery life is given by battery capacity

averagecurrentconsumption (in Amperes). Consequently,

13There is no consensus on the appropriate evaluation metric for LLMs. A recent work [77] highlighted the limitations of
the current evaluations. These issues are particularly pronounced when fine-tuning is involved, which will not be the case
in our study of LLMs.
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Figure 1.4: We put in perspective the power consumption of several hardware devices: 5 references for edge
devices (five first) and 6 large devices (six last). In red, we report the sleeping mode power consumption
and in blue the peak consumption. We considered two microcontroller units: a 40nm CMOS [72] and
an STM32 [102]. The remaining edge devices are mobile device (smartphones): a Samsung A5 [258]
and an Iphone 5 [151]. With respect to large devices, we report the power consumption of laptops: an
ultra notebook [270] and a laptop [5] with standard capacity. We also report the performance of home
desktops: a low-end [6] and a high-end [6] device. For the largest considered computers, we add the
energy consumption of two server-grade computers: single GPU [105] and multi-GPU [57].

deep neural network compression is of paramount importance in order to preserve the user experience
and limit the impact of related applications on the battery capacity14.

Third, edge devices are often constrained by the necessity to run other computationally intensive
operations. This is mostly the case with mobile devices such as smartphones. As reported in Figure
1.4, the YouTube application on its own draws more power than inferring a small convolutional neural
network. Consequently, we cannot simply bound the size of a deep neural network to exactly fit the
available memory and compute, but rather to fit the available resources when the system operates. An
example of this kind of situation is the image processing occurring with recent smartphones recording
applications [224]. In short, the application performs video encoding and image processing simultaneously.

Finally, edge deployment may add some more constraints, such as ultra low-power consumption.
Some devices for the internet of things (IoT) [84] can only draw a few Watts per month as they are
not wired and changing their battery is very costly. While the previously mentioned devices can have
a few hundred Kb to a few Gb cache, such a tiny device will only have up to a dozen of kilobytes of
memory for compute [35]. With Table 1.1 in mind, such a scenario requires extreme compression levels
for deployment. Another challenging constraint arises from the backward compatibility: for instance with
mobile device, a user will not change their phone as we release a new deep neural network architecture or
compression technique. Consequently, methods should be designed for backward compatibility as much
as possible.

On the other hand, edge devices often allow running applications which are privacy compliant, by
design. As the computations are performed locally, the data is not transferred, which enables to protect
the privacy of the users (e.g. the user identity) and the data which is crucial when dealing with health
data [170].

In summary, edge devices (micro controller units and mobile devices) offer multiple strong benefits:
low power consumption and privacy. However, these advantages come with a series of challenges:
latency (for the user experience), shared resources (for complex software) and backward compati-
bility (the devices are not easily upgradeable).

14From a human health perspective, battery waste have been noted to significantly impact the health of Californian
residents [172].
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While edge devices represent an interesting objective for deep neural network compression and ac-
celeration, they only represent a fraction of the inference workloads. To this day, cloud computing still
encompasses 90% of the inference market, according to Gartner, Inc15. However, this number is predicted
to drop to 25% in the future.

1.2.2 Cloud and Large Devices

Large devices and cloud computing constitute a straightforward environment for deep neural network
deployment after training. The training process is always more computationally intensive than inference
for an equivalent number of predictions. Consequently, hardware designed to support training can also
serve the purpose of inference. In practice, multiple GPUs are required for training, while a single GPU
is often enough for inference.

However, inferring on the could comes with a significant drawback: energy consumption. Masanet et
al. [145] estimate that the current energy consumption from all data centers in the world is equivalent to
half of the total energy produced by nuclear power plants in France or half of that of the US. Furthermore,
projections [11] anticipate that, at the current rate, data-centers (around the world) energy consumption
will be multiplied by 8 times over, before 2030. This problem has reached such a scale that the cost of
running a data center is more correlated to the energy than it is to the hardware price [194]. Consequently,
any sustainable development of deep neural network deployment will rely on either a drop in availability
or heavy compression.

Contrary to edge devices, cloud computing is usually more permissive with respect to latency and
focuses on throughput, as multiple users and tasks can be hosted on a shared device and solved with the
same instance of the deep neural network. Another important distinction is the usage of the available
resources. On edge devices the software may perform other computationally intensive operations, this is
not the case on cloud computing as other operations are negligible as compared to the available compute
and can be off loaded to dedicated and better suited devices. Furthermore, cloud computing is not suited
for privacy rights compliance16, as by definition the data is uploaded to the cloud. On top of this, the
energy cost of streaming data [241] also increases to the total cost of using cloud computing. For example,
uploading data to the cloud requires about 60mW for 2.5Mb of data, while processing this much data
costs about 95mW on some edge devices as shown in Figure 1.4. In other words, in terms of power
consumption alone, sending the data to the cloud and then receiving it back already costs more than
processing it locally with an edge device.

In summary, cloud computing and inference on large devices comes with major drawbacks as com-
pared to edge computing: lack of privacy compliance and major energy consumption (from the
computation and upload of the data). However, these weaknesses are often shadowed by the advan-
tages of cloud computing: straightforward migration from the training phase and easily upgradeable
hardware and models.

To conclude this discussion on deep neural networks deployment in practice, we would like to mention
hybrid solutions. In many instances it is necessary to run some of the compute (too heavy for an edge
device) on the cloud but still perform most operations on the edge [233]. This is the kind of collaborations
that have been proposed by Datakalab for people counting : where the images are processed on the edge
and only aggregated statistics are uploaded to the cloud17.

Stemming from this landscape on deep neural networks deployment, it appears that deep compression
and acceleration is a field of paramount importance which will keep on growing with the challenges to
come. Consequently, in the next sections, we will describe the most commonly used techniques to achieve
more efficient inference. The order in which we will go through corresponds to the order that we would
personally advise any enthusiast and expert to follow in their own journey towards efficient deployment.

15It is quite challenging to obtain open data regarding this subject as companies do not share such in-
formation. Nonetheless, these predictions from Gartner have been trusted by the deployment community.
https://gitlab.com/ey_datakalab/advancedmachinelearning_compression

16This assertion can be mitigated by the work done at ZAMA, as researchers use holomorphic cryptography to protect
the data over which computations are performed. However, their solution adds a massive overhead.

17This was documented by the CNIL (french watchdog for data privacy). Future work were considered to push further
the collaboration between cloud and edge with hybrid inference (first layers on the edge and last layers on the cloud).
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1.3 Using the Appropriate Architecture

In order to achieve efficient inference when tackling a task, it is of paramount importance to start from
an appropriate deep neural network architecture. For instance, based on research in some fields [26] it
appears that models such as VGG16 [190] and ResNet 50 [86] are still commonly leveraged for various
computer vision tasks. However, these models comprise 138 and 25 million parameters, respectively. In
comparison, EfficientNet B0 [210] has 5 million parameters for a similar or even higher accuracy (from
76.15% to 77.40% on ImageNet). In other words, working from EfficientNet B0 over VGG16 or ResNet 50
will lead to 27.6× and 5 × compression head start without any accuracy drop. Another example would
be object detection models, which can either be single stage such as Yolo [213] or two stages such as
Faster RCNN [213]. However, in practice, using a single stage detector usually translates in a significant
latency improvement at virtually no cost in precision. This is mostly due to the focus of the detection
community on the latter. As a result, it is of paramount importance for any resource-limited deep learning
enthusiast to keep in touch with the most recently realized models and their performance18. To facilitate
this preliminary work, the open AI community has done a lot of the heavy lifting, most recently with
HuggingFace [231]. The large number of model zoos (from TensorFlow, Torchvision and HuggingFace)
guarantees free access to most of the state-of-the-art deep neural architectures.

1.3.1 Neural Architecture Search

In order to further improve the efficient inference starting point, we have still several aspects over which
we can work before and during training in order to facilitate the remaining steps specific to inference:
neural architecture search (NAS), using the adequate layers and leveraging specificities from the target
test distribution.

Neural architecture search has gained significant traction over the past few years, leading to the release
of some of the best performing computer vision backbones available to this day, such as
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Figure 1.5: The different NAS categories.

MobileNet v3 [94] and EfficientNet v2 [209]. Although
we will detail many classes of approaches to NAS, we
observe a common general definition of this challenge:
define a set of possible architectures called the search
space, then define a strategy to explore the search space
called the search policy based on a performance metric
(usually the precision of the models). The first class of
NAS methods are evolutionary methods. The princi-
pal, called neuroevolution [21] loops over the following
three steps: generation, fitness, mutation. Assume a
model sampling strategy (generation strategy at time
t), the generated models are evaluated (fitness) using
metrics that can be non-differentiable. This is practical
for multi objective processes (runtime duration can be
an objective). Then, at the next generation time (t+1),
the new models are generated from the previous genera-
tion weighted by their fitness (increase the likelihood of
best performing models) with mutations (to create new
examples). This process is summarized in Figure 1.5.
Most research in the field focus on improving the sam-
pling strategies, fitness evaluation and mutation process
[176, 199, 174, 200].

The second group of NAS methods is based on re-
inforcement learning (RL). Similarly to evolutionary
methods, RL is suitable for searches in a discrete model
space. However, RL-based NAS aims at reducing the
computational cost of evolutionary methods, which tend
to explore the search almost in its entirety [21]. From a
RL perspective, we define an agent called the controller
that predicts new architectures.

18In particular, it is important to keep in mind that academic benchmark do not systemically make use of the most recent
architectures for the sake of comparison which limits their relevance as deployment instructions or recommendations.
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The controller is rewarded based on the validation accuracy of the sampled network, as illustrated in
Figure 1.5. Because the accuracy is deterministic from the neural network architecture, as long as we
set a seed, this corresponds to a one-armed bandit setting19 [232]. Many methods have been proposed in
order to perform sub-architectural selections and reward them [16, 271]. However, despite these efforts,
the remaining cost of RL and evolutionary methods is the necessity to train multiple architectures in
order to evaluate them, which leads to unreasonable costs and hinders the scalability of these methods
to larger models.

The last group of NAS techniques is referred to as super networks or weight sharing. Super networks
were introduced in order to significantly decrease the computational burden from NAS. Formally, a super
network represents the search space, while each subnetwork represents a candidate element from the
search space (see Figure 1.5). Consequently, two distinct subnetworks from the same super network share
a fraction of their pre-trained weights. In return, the fine-tuning of these subnetworks is significantly
less costly. However, a significant limitation to this approach is the cost of training a very large super
network. As a result, some methods, proposed to learn a small scale network and then scale it up in order
to offer a family of architectures from a single NAS [272, 169]. This method was exploited in DARTS
[138] which learns the cell structure before stacking it to obtain the full deep architecture. In order to
further optimize the NAS method, compound scaling [210] was introduced in order to efficiently find the
scaling coefficients for the architecture family. The method simply consists in using a grid search in order
to obtain the scaling factor α from the baseline architecture to its bigger counterpart. This factor is
applied to the depth and width of the architecture in order to scale it up (e.g. if α = 2 then the model
will be twice as deep with layers twice as large). Then, in order to obtain larger members of the family,
the coefficient is simply powered up (an). This method led to the implementation of the EfficientNet
family [210].

In its current form, NAS could strongly benefit from actual inference performance insights. For
instance, let’s consider an EfficientNet architecture. From Table 1.1, it reads that its smallest family
member only requires 5 million parameters and about 8 GFlops to perform one prediction on ImageNet.
While this performance is significantly better than that of ResNet 50, it should be noted that we are
faced here with a false friend: the depthwise convolution. The depthwise convolution [38] consists in a
standard 2d convolution up to the fact that each output channel only depends on one input channel, which
drastically reduces the number of parameters20. However, in practice, while the depthwise convolution
does reduce the memory footprint of a model, it does not usually improve the latency of this model due
to the lack of hardware optimization dedicated to this type of layer. Consequently, such architectural
choices should be avoided. For example, the depthwise convolution or odd number of output neurons21
are false friends in the context of efficient inference. As a result, this PhD work, among others, can
provide insight on how to further improve the performance of current NAS methods.

However, the current costs of performing NAS remains a staggering obstacle for small research struc-
tures. So much so, during this thesis, we did not directly try to improve existing NAS methods. Conse-
quently, we will assume that a baseline architecture is provided for the compression task: e.g. we have to
work with an EfficientNet. Still, before jumping into the most common compression techniques (quan-
tization and pruning), we will discuss how to refine our initial baseline architecture in order to simplify
our future work.

1.3.2 Few Shot Architecture Improvement

The main architectural improvement that we propose consists in replacing ReLU-like activation functions
with a proper ReLU. Prime examples of such activations are the SiLU and GeLU which are growing more
and more common in most recently introduced deep architectures, namely EfficientNets and Transformers.

Some works have been conducted in this direction, which lead to the release of an updated version of
the EfficientNet architecture: EfficientNet-lite [177]. This new family of models is based off the original
EfficientNet architecture, with the SiLU being switched for ReLU activations. The authors retrained the
models from scratch and, although their process is significantly more computationally costly, similarly
to our results, they observed a slight accuracy drop from the activation function change. Consequently,
as long as a small accuracy drop remains within the bound of a satisfactory accuracy for the end usage,
switching to ReLU should be recommended prior to any further deep compression. During this PhD

19The one-armed bandit problem corresponds to a single player (agent) facing N playing machines (environment) and
trying to determine which machine to play in order to maximize his or her gains.

20Let’s consider ni input channels, no output channels and a convolution of kernel size 3×3. The standard 2d convolutional
layer will encompass 9nino weight values, while the depthwise convolution will only require 9no.

21The second part will be extensively discussed when we will tackle pruning in the dedicated chapter 2.
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thesis, we conducted a similar study where we leveraged distillation to remove such activation functions
(see Appendix A).

In the next section, we will introduce the first compression-only method of this manuscript. All the
aforementioned methods are either multipurpose (e.g. NAS which can be performed with only the final
accuracy in mind) or a pre-processing (e.g. switching the activation function). This first compression
technique is based on knowledge distillation [91] and has been a core element of Datakalab’s product
line-up.

1.3.3 Knowledge Distillation for Deep Compression

Knowledge distillation [91] consists in leveraging the features learned by a given model, called the teacher,
and using it to guide a second model, called the student. For example, the previously introduced method
for activation function switch is a form of knowledge distillation where the teacher is the pre-trained
model and student is a copy of the teacher where we made a small architectural change.

With regard to deep compression, knowledge distillation is usually seen as a way to improve the
accuracy of a smaller model. For example, the EfficientNet and MobileNet v3 families were trained using
a noisy student procedure [238]. The procedure is fairly simple. We use a teacher model trained on
labeled images, in order to provide pseudo labels on unlabeled images. Consequently, we can train our
student model (the target model that we will use) on the combination of labeled and pseudo labeled
images. Similarly, other knowledge distillation methods have been proposed in order to offer higher
accuracy for a student model with a lower inference cost, e.g. learning to infer on smaller images [64].
Recently, adapters [93] and LoRa [95] have gained a lot of traction as low-cost distillation methods for
large language models. However, all these methods required full training processes and even the addition
of unlabeled data to datasets that are already large. In order to circumvent this limitation, JITNet [155]
introduced a new paradigm: online model distillation22. Let’s consider a video stream, a teacher model
labels a few images and the student model is fine-tuned on these frames. From a compression perspective,
the resulting task is significantly simpler (less need for generalization capacities) and thus can be tackled
by a smaller neural network. However, it comes with some drawbacks: the teacher inference cost, the
need for training steps and the frame selection.

At Datakalab, Gabriel Kasser, Eden Belouadah and Arnaud Dapogny worked on adapting JITNet to
object detection. They focused on the specific challenges, intrinsic to the method, such as the necessity
to infer the teacher model in order to get the pseudo labels, the necessity to support back-propagation
in order to optimize the student and the frame selection. Their solution involved the efficient design of
a low-cost student model and continual learning tricks in order to avoid unintended overfitting. As a
result, the team was able to achieve on par precision with a Yolo v8 X [213] (68.2M parameters) for car
counting on the highway, using a student comprising only 100K parameters.

The key takeaway from these achievements is the importance to define a precise task to address and
leverage all the available23resources in order to craft a strong compressed baseline from which we
will start our journey in the landscape of deep compression techniques.

In this PhD thesis, we decided to focus on post-training compression and acceleration. This decision
was mostly motivated by the cost of large scale training. Although these costs have gone down and can
usually lead to better compression rates, we managed to narrow the gap between post-training and general
deep compression. Also, with the availability of the IDRIS 24 resources from the French government, we
decided to scale up in model size rather than in terms of optimization computational requirements (batch
size and training duration). This decision is inline with the rise of large language models [262] and
diffusion models [29].

We focused on the two remaining compression techniques: quantization and pruning. Each of which
corresponds to an intuitive way to compute an approximated prediction naively: simpler operations

22or train on the test set :)
23From an industrial perspective, the notion of available resources also includes the licensing. For instance, up until mid

july 2023 the Llama [218] language models from Meta were not licensed for commercial purposes and as a result the best
available cost-free LLM was Dolly v2 [46] from Databricks. However, the Llama licence changed for commercial purposes
which in itself does not affect the model performance but made them available, thus changing the leader-board for private
companies.

24The IDRIS is part of the Genci and provides resources for research in many fields, including AI. We were granted access
to three projects including 50k hours of V100 compute, 20k hours of A100 compute and lastly 200k of A100 compute.
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or fewer operations. In order to sort these methods, we propose to focus on the most effective first:
Quantization.

1.4 Efficient Arithmetic: Quantization

In order to reduce the memory footprint and also accelerate any deep neural network, quantization
replaces complex individual scalar multiplications by simpler ones. From a hardware and software per-
spective, a simpler multiplication is first defined by a lower bit-width [113]. The resulting weight values
and intermediate features, represented on fewer bits, have a smaller footprint and require less individual
bit operations. However, representation format change requires hardware support through proper data
types and instruction sets [221]. For instance, in the most commonly used development language in AI
(python), the only supported bit-widths are 1, 8, 16 and 32 bits. While some languages can handle any
bit precision, hardware-level operations must also support these precision levels in order to leverage them
at inference. For instance, a GPU A100 supports 1, 4, 8, 16 and 32 bits which excludes ternary quanti-
zation (2 bits) [164]. The second compression induced by quantization arises from replacing the native
floating point representation by a fixed point representation [70]. Given a specific device, floating point
operations may be better supported than fixed point operations (e.g. CPUs). However, it is important
to note that while some hardware (e.g. GPUs) will better leverage fixed point operations, it is also the
most appropriate format to support for efficiency [90].

In the following sections, we go through the details of floating point and fixed point explicit quanti-
zation processes.

1.4.1 Floating Point Quantization

In order to detail the explicit implementation of floating point quantization, we need to recall the definition
of this representation format. Let’s consider the default scalar value representation in the deep learning
community: floating point on 32 bits. Generally speaking, a floating point value is defined by three sets
of bits: one first bit to encode the sign, n bits for the significand also known as the mantissa or coefficient,
and m bits for the exponent. Formally, given a real number a, its floating point encoding is given by
its scientific notation, e.g. if a = 398.2 then, we write it a = 3.982 × 102 where the mantissa encodes
3.982 and the exponent will encode 2. As a result, there is a trade-off between the size n of the mantissa
and the size m of the exponent. Intuitively, more bits in the mantissa provides a finer grained grid in
between exponent values, while more bits to the exponent enable to encode smaller and larger values
in magnitude. In the international format (IEEE 754), the mantissa uses n = 8 bits and the exponent
m = 23 bits.

Other format have been introduced and supported in recent years for deep learning libraries (e.g.
TensorFlow and PyTorch). The most notable ones are the half representation (float 16) [185], the bfloat16
[212] and TensorFloat [166]. As a general rule of thumb, these formats can be used for inference from a
model trained in float32 without further work. the most commonly adopted of these new formats is the
half format. In this situation, we use n = 5 mantissa bits and m = 10 bits for the exponent, for a total
of 16 bits. From our experience, its usage does lead to immediate and straightforward benefits: double
the speed and half the memory footprint. It is worth noting that some operations remain on 32 bits,
such as the loss computation and the gradients. However, this format offers limited support for functions
such as the logarithm and exponential due to the low number of bits assigned to the exponent and thus
limited range of values. On the other hand, the bfloat format addresses this limitation with its n = 7
bits for the mantissa and m = 8 bits for the exponent. However, this format offers a low precision given
a fixed exponent, which can be troublesome during the final steps of the training when the learning rate
and weight updates are very small. Consequently, TensorFloat was introduced to address the limitations
from both the float16 and bfloat formats by using n = 10 bits mantissa and m = 8 bits exponent, leading
to a 19 bits total. Because of this odd number of bits, its implementation has been mostly limited to
TPU cores.

Before we move on to further floating point compression, we would like to take the time to highlight
how to implement a training and inference using these simple formats in PyTorch and TensorFlow. The
code blocks 1.1 and 1.2, below, contain all the necessary lines for half precision inference in PyTorch
and TensorFlow, respectively. While both implementations are fairly simple, only the current25 PyTroch
implementation systematically works on Nvidia GPUs.

25We worked with torch 2.0.0 and tensorflow/keras up to 2.12.0.
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Figure 1.6: Low bit floating point quantization of a Gaussian distribution.

import torch

model = ...
model = model.to(torch.half)
model.eval()
with torch.no_grad():

with torch.cuda.amp.autocast():
model(inputs)

Code 1.1: PyTorch-style half-precision imple-
mentation.

import tensorflow as tf
import tensorflow.keras.mixed_precision as mp

mp.set_global_policy("mixed_float16")
model = ...
for weight in model.weights:

weight.dtype = tf.half
model.predict(inputs)

Code 1.2: TensorFlow-style half-precision implementa-
tion.

In order to achieve further compression using floating point operations, other formats have been
introduced using a total of 4 or 8 bits and diverse configurations of mantissa and exponent sizes. Most
work, in the field [118], focus on the assignment of the appropriate split mantissa/exponent to each
tensor. In Figure 1.6, we illustrate the encoding of a Gaussian distribution using floating point values.
We observe that these formats offer piece-wise uniform encoding (contrary to fixed point, which offer
a global uniform encoding). While, these formats offer greater compression rates as compared to the
previous high resolution floating point ones, they also introduce a new challenge: the accumulation. To
highlight this challenge, let’s consider a matrix (our weights) W̃ and a vector X̃ (intermediate input
feature), both quantized to 8 bits floating points. For any output neuron o, we have

(W̃ X̃)o =
∑
i

W̃o,i × X̃i

=
∑
i

mantissa(W̃o,i × X̃i)× exponent(W̃o,i × X̃i).
(1.6)

We can immediately guess that exponent(W̃o,i × X̃i) is most likely to overflow as the number of bits
assigned to the exponent decrease. This is even worse for the mantissa, as the overflow is likely to arise
from individual scalar multiplication as well as from the summation. Consequently, the default approach
to this aspect of quantization consists in accumulating the results on a register using a higher precision
(usually 16 or 32 bits). Consequently, the accumulated output is stored on an accumulator that has to
be converted back to the appropriate low-bit format after the computation has been performed26. As a
result, the usage of smaller quantization formats leads to extra burden: the accumulation and conversion
steps, which in practice translates in a less straightforward estimation of the actual performance speed-up.

26While this thesis is not focused on hardware support and implementation, it is worth noting that, in practice, most
inference engines will fuse the mat-vec nodes with the activation functions in order to perform these with higher precision.
This is important even when considering the ReLU activation. While the mathematical output of the ReLU is bit-precision
invariant, going down from 32 bits to 8 bits for instance and then performing a ReLU results in exactly 7 bits being used to
encode the output. On the other hand, performing the ReLU before the bit reduction leads to an 8 bits output encoding.
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Figure 1.7: Weight density of layers randomly selected from the ResNet family, MobileNet v2, MobileNet
v3, vision transformer (ViT) and EfficientNet B0.

While 32 bits floating point values (fp32 or just fp for full-precision) remains the default format
for scalar values in deep learning, smaller formats such as float16 (half precision) and bfloat16
are growing in popularity based on their lossless mapping, which provides an immediate memory
footprint reduction and speed-up. Stemming on these results, the compression community has been
working on even more compressed formats by assigning the appropriate mantissa/exponent precision
trade-offs for each tensors. However, these extreme low bit formats introduce extra challenges:
overflow are increasingly likely as the bit-width goes down. This is addressed through high precision
accumulation and conversions from high-precision to low-precision.

Floating point quantization has achieved strong results on a wide range of deep learning architectures
and tasks. However, it suffers from two major drawbacks: first, it is computationally less effective
than fixed point quantization [90] and, second, it leads to more accuracy degradation than fixed point
quantization [118]. In the next section, we propose to discuss in detail how to perform fixed point
quantization.

1.4.2 Fixed Point Quantization

Before detailing the quantization process, we need to sort out a confusing term that we have been using:
fixed point quantization. In computer science, a fixed point representation [23] defines a real value a
as a first integer na to be multiplied by an implicit scaling factor that is assumed to be shared across
all numbers encoded in this format. However, in the quantization community, we assume that a fixed
point representation is simply an integer representation. This quantization is often referred to as uniform
quantization27.

In order to obtain integer inputs, we usually do not have to spend too much time nor efforts as images
are natively encoded on 8 bits as integers and tokenized text [107] is represented by 32 or 64 bits integers.
However, these values are usually not encoded with the desired quantization bit-width. In practice, it
is usually a bad idea to decrease the input precision if and only if this precision is already information
optimal. Consequently, most quantization techniques do not further quantize the inputs (often called
activations) of the first layer [113]. Still, if we were to uniformly quantize these activations, the optimal
way to do so consists in performing a bit-shift of B1 − B2 bits where B1 and B2 are the number of bits
of the initial and target representations respectively. Now, let’s consider a mat-vec node and assume
that the inputs of this layer are quantized. This assumption is straightforward for the first layer at least.
For example, the first convolutional layer of a computer vision network that we want to quantize using
4 bits for the weight values and 8 bits for the activations. Such quantization is noted W4/A828. In
practice, most weight values follow a monomodal, almost symmetric distribution that can be modeled
by a Gaussian. In Figure 1.7, we plot the density distribution of randomly selected weight values from

27It is worth noting that non-uniform quantization is not limited to floating point quantization.
28This is the standard notation and may hide further information: even if the first and last layers are not quantized, we

will still note the quantization W4/A8.
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different deep architectures. The crucial attributes of these distributions with regard to the quantization
process are two-fold: first, their support is usually comprised in [−0.5; 0.5] and second, their support
varies a lot from layer to layer and architecture to architecture. As a result, in order to cover the entire
span of values encoded by a 4 bit representation {−8,−7, . . . , 7}, we have to scale the weight values.
Furthermore, we have to use a specific scale suited for each tensor. This second element highlights why
we do not use the implicit scaling from the more general fixed point format. In practice, the baseline
quantization method scales the weight values as a pre-process before inference such that the quantized
counterparts exactly cover the quantization space, up to the smallest negative value. In other words, to
quantize a tensor W on b bits, we apply the transformation

Q : W 7→
⌈

W

scale(W )

⌋
with scale : W 7→ max |W |

2b−1 − 1
. (1.7)

Consequently, the quantized weight values Q(W ) are encoded on b bits and the resulting quantized mat-
vec node computes Q(W )×X where X is assumed to be quantized. However, similarly to floating point
quantization, the product of two low bit representations will systematically overflow [161]. A problem that
is solved using a 32 bits accumulator. On the other hand, contrary to floating point representation, we
want to avoid the usage of 32 bits floating point during inference, as integer-to-integer and float-to-float
conversion can be performed efficiently contrary to cross point conversions. In the context of fixed-point
quantization, the standard for high precision to low precision conversion was introduced in 2018 [103].
Formally, let’s consider the integer accumulator Y = Q(W )X which is stored on 16 or 32 bits. The goal
is to scale it down to b = 8 bits (or any other bit precision) using few operations. First, we scale up Y
in order to ensure that it’s highest value is encoded by a sequence of zeros followed by at least b ones.
Second, we perform a bit-shift, such that the highest output value is a series of zeros with exactly b ones.
The resulting 32 bits integer is then clamped to a b bits integer.

In summary, fixed point quantization offers better accuracy v.s. speed-up trade-offs than floating
point quantization at the expense of a more complex process. Specifically, the accumulator requires
a more sophisticated solution based on scaling and bit-shifts.

In its current form, quantization is difficult to work with, especially in current deep learning frame-
works. In practice, the compression community mostly simulates the quantization process, in order to
leverage existing optimization libraries such as PyTorch and TensorFlow.

1.4.3 Quantization Simulation
In order to simulate the quantization process using only the best supported formats (e.g. float32 and
float16), we assume that we are given a neural architecture with weights and inputs that are not quantized
yet. Let’s consider the input tensor X and weight tensor W such that the initial mat-vec node computes
f : X 7→WX. In order to simulate the quantization, we will need a quantization operator Q which maps
any input tensor to a quantized space represented on b bits, such that Q(X) and Q(W ) are the quantized
inputs and weights respectively. However, contrary to the previously introduced quantization process
(equation 1.7), in order to allow for further transformation of the weight and input values, we introduce
the transformation t. Consequently, when working on quantization simulation, the general definition of
the quantization of a tensor A is given by

Q : A 7→
⌈
t(A)

s(A)

⌋
. (1.8)

As a result, the quantized computation would be fQ : X 7→ QX(X)×QW (W ) where the transformation
t and scaling function s may change for each quantization operator QX and QW . However, this quantized
computation is scaled such that quantized space is fully covered, which does not correspond to the full-
precision range. In simple words, a trained neural network learns relative features in that two neurons
that have a different impact based on their relative magnitude. In the current formulation of fQ, this
characteristic is not captured as two distinct neurons are both mapped to the same quantized space.
In the previous sections, this element was handled by the accumulator and its conversion back to the
appropriate bit-width, i.e. in the scaling of the accumulator. When the quantized inference is simulated,
this is simply obtained with

f ≈ fQ : X 7→ QW (W )×QX(X)× (sX(X)× sW (W )). (1.9)
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This extra operation is called the de-quantization and often noted Q−1, although this operation is not
lossless due to the rounding step. In practice, this is often implemented with a very specific sequence as
illustrated in code 1.3 and 1.4 for PyTorch and TensorFlow respectively.

def forward(
self,
input: torch.Tensor

) -> torch.Tensor:
quantized_input = Q_X(input)
qdq_input = deQ_X(quantized_input)
quantized_weights = Q_W(self.weights)
qdq_weights = deQ_W(quantized_weights)
return torch.nn.functional.linear(

qdq_input,
qdq_weights,
self.bias)

Code 1.3: PyTorch-style quantized simulation im-
plementation.

def call(
self,
input: tf.Tensor

) -> tf.Tensor:
quantized_input = Q_X(input)
qdq_input = deQ_X(quantized_input)
quantized_weights = Q_W(self.weights)
qdq_weights = deQ_W(quantized_weights)
output = tf.linalg.matmul(

qdq_input,
qdq_weights)

return = tf.nn.bias_add(
output,
self.bias)

Code 1.4: TensorFlow-style quantized simulation im-
plementation.

From these two code blocks, we can derive two observations that are of paramount importance. First,
the biases are not quantized. This is due to the fact that they will be added to the accumulator during
the actual inference. Consequently, during the simulation, we do not need to handle the bias bit precision
as it shares the same precision as the accumulator. Second, the simulation of the quantization and de-
quantization Q−1(Q(A)) of a tensor A is performed once before the mat-vec operation. While this process,
in itself, has no impact on the relevance of the simulation when we use the baseline quantization operator
from equation 1.7, it may lead to inconsistencies between real inference and the simulated quantization.
The most important one is the granularity of the quantization.

As we quantize and de-quantize the tensors, we use a scaling operation. However, we did not discuss
the details of this scaling operation with respect to the dimensions of the tensor to scale. In order to
make the appropriate design choice, we need to explicit the constraints: at inference, only the activations
(i.e. the intermediate outputs of each layer) will be scaled during the accumulation type conversion. The
intuition behind this constraint being that we do not want to perform a conversion after each individual
scalar operation. Formally, if we were to use a scaling for each input neuron and a scaling for each output
neuron, then the computations of a fully connected layer would read

W ×X =


∑

i QX(Xi)×QW (W1,i)× (sX(Xi)× sW (W1,i))
...∑

i QX(Xi)×QW (Wno,i)× (sX(Xi)× sW (Wno,i))

 (1.10)

at inference. This implementation would lead to a lot of type conversions (as many as individual scalar
multiplications) which would defeat the purpose of quantization, simply because the scaling factors are
no longer factorized along the summation operation. As a result, for a given mat-vec node of output
shape comprising no neurons (or feature maps), the scaling factors can be of any shape that divides the
output shape. However, due to the limited hardware support for such operations, the scaling factor is
usually limited to either 1 or no (number of output neurons) for the weights and limited to 1 on the
activations29. These two granularities are often referred to as per-tensor (scalar scaling) and per-channel
(scaling vector of size no). In practice, some researchers use a batch-normalization layer in order to
implement the scaling operation in the per-channel setup. Such implementation are particularly effective
for quantization-aware training.

A common mistake in the regular implementation of quantization simulation, is the use of per-channel
quantization for both the weights and the activations. Intuitively, this offers a finer granularity, leading
to higher accuracy than other quantization schemes. However, as we will thoroughly discuss in Section
3.1.2, such implementation does not translate in practice and lead to no speed-ups30.

29During this thesis, we published an article on how to circumvent this limitation while remaining compliant with efficient
inference [256]. We will go into these details in the quantization chapter.

30This mistake has been made, even in highly cited works [18]. Although, the cited paper has many other major
contributions which overshadow this mistake.
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A second design choice that may have a significant impact on the final accuracy of the quantized model
is the order of the operations. Some implementations [127], propose to perform the quantization of the
activations only after the mat-vec operation rather than before. This choice implies that a control over
the simulated precision of the next node rather than the current one. As a result, for deep architectures
using skip connections, when the first layer is not quantized (or quantized to the same precision as the
model input encoding, e.g. 8 bits in computer vision), any results marked as W4/A4 are actually a
mix of W4/A4 and W4/A4/A32 (or W4/A8 in computer vision) which makes them unfair to compare
with simulations quantizing both the inputs and outputs. On the other hand, the proposed quantization
simulation implementation does not suffer from this limitation. However, it does not quantize the model
outputs, which only impacts regression models at a negligible cost.

Similarly, a third design choice is to focus only on mat-vec nodes without paying attention to the
activation and merge nodes. With respect to activation functions, these operations are often fused, by
the inference engine, at inference in order to be performed on the accumulator without loss in precision.
This is quite straightforward for the ReLU activation, which behaves in the same fashion regardless of
the quantization format (floating or fixed point). However, this is not so trivial for other activation
functions such as the SiLU and GELU when they are not replaced. To circumvent this limitation, there
are essentially two approaches. The first one consists in implementing support for such approaches like
I-Bert [109] for a 32 bit integer-based GELU and softmax. The second approach, consists in adapting the
weight values in order to compensate the information loss from the rounding of the activation function
outputs [61, 156]. The optimization process of the weights in itself can either be performed using a small
calibration set (see Section 3.2 in Chapter 3), post training or during training (see Section 3.3 in Chapter
3). On the other hand, merge nodes (such as add or concatenation), at inference, perform a quantization
and de-quantization in order to set the inputs at the same scaling factor. During simulation, this is
handled by the input quantization of the next layer. The only significant change occurs when we observe
many skip-connections interconnected, as in DenseNets [97] or NasNets [272]. However, empirically, we
observe that these nodes can remain not quantized. This does not lead to a significant accuracy drop as
compared to the original accuracy. In summary, it is often sufficient to focus on the quantization of the
mat-vec nodes only.

The fourth (and last) design choice that has been made in the quantization simulation is the rounding
operation, which provides exact integer values at a cost: the resulting network has a zero derivative al-
most everywhere (when the derivative is not zero, it is undefined). Consequently, any stochastic gradient
descent optimization on the quantized network cannot be performed in a straightforward fashion. Many
works have been proposed in order to circumvent this limitation: gradient-based post training quanti-
zation (GPTQ) [156, 127, 228, 139] and quantization-aware training (QAT) [45, 22, 73]. Each of these
subdomains of quantization have been thoroughly studied during this PhD thesis and have a dedicated
section (sec 3.2 and sec 3.3 respectively). In short, GPTQ assumes a pre-trained neural network and opti-
mizes the weight values such that the intermediate features and predictions of the full-precision model are
preserved. This is achieved by using a soft version of the quantization (usually a sigmoid-like function)
and the optimization is performed over a small calibration set (usually 1024 unlabeled data points). On
the other hand, QAT aims at training a quantized neural network directly on the full training set. To
do so, there are two main solutions to the zero derivatives challenge: simply omit the rounding step in
the backward pass (straight-through estimation [22] or STE) or use a soft function to approximate the
rounding step (similar to GPTQ).

In a nutshell, the quantization process is not well suited for the current deep learning libraries, thus
we rather work with a simulated quantization process. While the use of a simulation enables a
simpler compatibility with other deep learning work, it introduces its own set of assumptions and
approximations: we only quantize the activations of each node. If one want to achieve finer simula-
tion, they should also simulate the output quantization and quantize the merging nodes. However,
in practice this is not necessary. The other significant challenge with simulated quantization: the
zero derivatives almost everywhere which sparked research for specific solutions such STE and soft
rounding.

In Appendix B, we propose several implementations of the simulated quantization of floating points,
uniform quantization as well as other quantization schemes. Furthermore, if the reader is interested in
TensorFlow/Keras implementations of the quantization of a convolutional neural network, you can read
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this blog post on the matter on medium31. The reader can also follow the practical session32 that we use
for the advanced machine learning course at Sorbonne.

As we introduced the proper way to simulate quantization, it appeared that there are many remaining
challenges in the domain of quantization that we ought to discuss in order to complete our landscape of
compression techniques. In the following section, we highlight each of these challenges.

1.4.4 Quantization Challenges

As we quantize a deep neural network, several configuration choices can be made. Each of these choices
lead to a different compression v.s. accuracy trade-off. The core challenges of quantization then consist
in combining the strength of the different options. Explicitly, these challenges are:

• The bit-width choice: while hardware devices usually support a restricted number of bit-widths
(1, 4 and 8 for non-FPGAs devices), intermediate representations (e.g. 6 bits) often lead to better
trade-offs33. This challenge can be generalized as the search for the adequate bit-width for each
individual computation. This is often referred to as mixed-precision.

• The quantization format: we saw that quantized space can be uniform (fixed point) or non-
uniform (floating point). However, in the literature, uniformity refers to the mapping Q rather
than the target grid space. In other words, some non-uniform mappings can map to a uniform grid
(e.g. using power functions [255] or log functions [153]). These mappings often offer a tighter fit to
the full-precision distribution at the expense of a more sophisticated inference. We worked a lot on
the limitations of these methods, which we address in the sections 3.1.3 and 3.2.2.

• The granularity: as previously mentioned, quantization can be done per-tensor or per-channel
on the weights and is always performed per-tensor for the activations. During this PhD thesis,
we worked on a solution to achieve per-channel quantization on both the weights and activations
without requiring a re-scaling at each scalar operation (see Section 3.1.2). Other granularities have
also been proposed, such as group-wise quantization for large language models. In section 3.1.3, we
will see the limitations of such granularity and how to avoid its usage.

• The scaling factors: while we proposed an explicit way to compute the scaling factors of the
weights (using the maximum magnitude and the bit-width), we did not detail the procedure for the
activations, which may vary for different inputs. There are many solutions to this problem, which
we will discuss across the quantization chapter.

• The data availability: quantization can be performed either post-training or during training.
These two setups lead to different performance trade-offs: QAT often achieves stronger compres-
sion rates at the expense of the training cost and access to data. In order to decrease the com-
putational cost of the quantization pre-process and have a higher compliance with data privacy,
data-free quantization was proposed. These methods are highly scalable with respect to the model
sizes, but often struggle to achieve high accuracies at low bit-widths. Gradient-based post-training
quantization was introduced as a middle ground and is performed on a subsampled set. During this
thesis, we focused on both data-free and gradient-based post-training techniques, which we present
in detail in the dedicated chapter along-side a smaller discussion in QAT in section 3.3.

This concludes our overview of deep neural network quantization. While these methods can offer signifi-
cant improvements in terms of accuracy v.s. compression trade-offs, they require hardware support. Even
when this support is available, further compression can be achieved using pruning and tensor decompo-
sition, which constitute the last set of compression methods.

1.5 Trimming the Model: Pruning and Tensor Decomposition

While quantization leverages the intuition on faster runtime through simpler operations, pruning and
tensor decomposition leverage the flip side of the coin: restricting the number of operations. In the
following sections, we go through the landscape of pruning, which encompasses sparsity, pruning and

31https://medium.com/@ey_46515/neural-networks-and-edge-devices-34f6958cd54c
32https://gitlab.com/ey_datakalab/advancedmachinelearning_compression
33In REx [246], we figured a way to use hardware-friendly bit-precisions while enabling intermediate representations (e.g.

the same expressivity as 6 bits).

27/125 February 26, 2024

https://medium.com/@ey_46515/neural-networks-and-edge-devices-34f6958cd54c
https://gitlab.com/ey_datakalab/advancedmachinelearning_compression


CHAPTER 1. LANDSCAPE OF DEEP NEURAL NETWORKS COMPRESSION

tensor decomposition. The first distinction that we emphasize on is the distinction between pruning and
sparsity.

1.5.1 Pruning and Sparsity

Pruning is generally defined as any technique that aims at removing operations from the computational
graph of a deep neural network [124]. As such, pruning, similarly to quantization, can have different levels
of granularity. Namely, the most commonly considered granularities are structured [12], semi-structured
[92] and unstructured pruning [124].

Structured pruning has been extensively studied and is defined as any pruning that removes whole
computational blocks, e.g. neurons and feature maps. In terms of tensors, for a given mat-vec node with
weight tensor W this is equivalent to removing rows or columns in the case of fully-connected layers (W
is a matrix) or removing output or input channels in the case of convolutional layers. In the current state
of pruning, this is the most constrained setup and also the simplest to leverage as no work is required
post-pruning. As compared to quantization and other pruning setups, the most important benefit from
structure pruning is the absence of any requirement for a specific hardware support.

Unstructured pruning, or sparsity34, has been the most studied pruning method and is also the most
intuitive to work on: simply set some weight values to 0. The intuition is based on sparse matrix
operations efficiency. There are three main sparse matrix multiplication configurations: sparse-dense
algorithms [188], sparse-sparse [198] and dense-sparse ones [81]. Because, we only sparsify the weight
values W in the product WX, we focus on sparse-dense algorithms. The intuition behind this is the
difficulty to statically sparsify them. In other words, we do not want our sparsity mask to change for
each input (dynamic) but rather we would like a fixed mask (static) for inference speed-ups which would
be too detrimental for the accuracy. The core challenge of sparse matrix multiplication is the irregular
data access. These accesses induce a lot of overhead on modern hardware which are designed for heavy
parallelized computations rather than efficient memory access. Consequently, sparse inference leverages
shared memory access reuse and efficient encoding. In the remainder of this work, we will leave this
work to the inference engine. However, the reader should keep in mind that unstructured pruning is not
straightforward to leverage and, generally, does not lead to linear speed-ups. As a general rule of thumb,
90% sparsity (i.e. 90% parameters set to 0) often leads to similar speed-ups as 50% structured pruning.

Lastly, semi-structured pruning has been introduced in [63] as a middle ground between structured
and unstructured pruning. Let’s consider a weight matrix W , a semi-structured pruning with format
N:M aims at removing N scalar weight values in a subset of a row of W that comprises M values. the
most commonly studied format being the 2 : 4 pruning rate, which corresponds to the removal of 50% of
the weight values. This format, like sparsity, requires storing the indices of the values to compute, which
introduces memory overhead as compared to structured pruning. On the other hand, unlike sparsity, it
offers better inference speed-ups on modern devices.

Generally speaking, the core challenge of pruning consists in the identification of the weight values
that shall be removed. This is often addressed by either removing the least important weight values
according to some criterion (magnitude-based pruning) or by removing redundant computations accord-
ing to some similarity measure (redundancy-based pruning). Similarly to quantization, these criteria can
be implemented either in a data-free manner, using a small calibration set or involving a full training.
However, contrary to quantization, pruning is significantly less effective when performed outside of train-
ing. In other words, removing operations costs more than simplifying the operations, hence the need for
re-training or fine-tuning post-pruning35. We distinguish essentially three approaches to pruning with
fine-tuning:

• Iterative magnitude pruning: popularized in the lottery ticket article [65] in 2018, the core idea
of iterative magnitude pruning (IMP) consists in training a neural network, select the least impor-
tant neurons, deduce a trimmed down architecture, reset the weights using the same initialization
sampling rule and repeat the process until convergence. In practice, the convergence is a pre-defined
number of iterations, but could as well be defined a total number of parameters removed from the
initial architecture. This pruning paradigm is computationally intensive as it requires multiple

34The terms of sparsity and pruning are often inter-changed, although they do not refer to the same concepts: pruning
is more general and sparsity refers specifically to the unstructured pruning. In other contexts, sparsity can refer to the
number of weights pruned regardless of the structure.

35It is quite a debate in the pruning community: how to perform fine-tuning for a fair comparison as it commonly accepted
that most of the heavy lifting comes from this step [119], i.e. if the reader was to choose between a good pruning criterion
and a good fine-tuning method, the reader should pick the fine-tuning method.
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training phases. In the literature, we observed two major trends towards improving IMP: first,
improve the weight selection [126]. Second, reducing the training cost through a more suited sparse
optimization [59].

• Pruning at initialization: going further in the direction of the training cost reduction, pruning
at initialization consists in considering an initialized model and derive the least important weight
values immediately before sparse training. The core challenge being the selection among untrained
values which are not encoding for any semantic representations yet. Still, empirical results show
that the architecture of neural network itself is enough to sort which neuron to prune thanks to the
symmetry i.e. because before training pruning the neuron 1 or neuron 17 of a layer is equivalent to
pruning neuron 2 and 23 of the same layer, the only goal is to identify how to prune the layer level
rather than the neuron identity. There is no consensus yet in the community with regard to pruning
at initialization: can we really obtain the same accuracy by training from scratch the same model as
we get from post-training pruning36? (yes [226] or no [67]). In the current state, the answer would
be: available PAI methods still underperform as compared to other pruning techniques.

• Post-training pruning: based on the massive amount of available pre-trained neural networks,
the standard approach to pruning consists in two steps: first, given an already trained DNN, identify
the neurons to remove. Second, apply a fine-tuning step to the trimmed down model. Consequently,
the community has followed two paths for post-training pruning improvement: either improve the
fine-tuning step or the neuron selection. However, this trend has introduced a challenge: how to
compare pruning methods? This question is non-trivial due to the overwhelming number of fine-
tuning approaches [119]. This limits the conclusions that can be drawn from the pruning literature
to this combination of pruning criterion and fine-tuning outperforms this other combination, which
hinders the understanding of deep architecture critical operations as pruning criterion are not so
often studied by themselves.

Nonetheless, pruning techniques have offered a wide range of importance measurement techniques each
applied to different pruning protocol leading to significant inference speed-ups and industrial projects
with [116] paving the way. However, similarly to quantization, in order to comply with deep learning
libraries such as PyTorch and TensorFlow, researchers and enthusiasts often simulate pruning. In the
following section, we present the best practices for pruning simulation.

1.5.2 Simulated Pruning

Contrary to quantization, it may appear counterintuitive to simulate pruning rather than simply using
it. While this intuition is correct at inference for structured pruning, this is false for any other situation.
First, during any training, it is important to note that current deep learning frameworks are based on a
computational graph. In a nutshell, the main programming language (often python) interprets the code
and translates it into a computational graph. There exists essentially two approaches: static and dynamic
computational graph. The first one defines the graph and then runs data through it, e.g. in TensorFlow.
The second one„ dynamic computational graph defines the graph has it is run, e.g. in PyTorch. In either
case, a change in the computational graph induces significant overhead, which explains why we would
rather define a graph that can simulate any pruning over a frequent graph edition (this is also important
for the aforementioned super networks in NAS). On the other hand, outside of training, sparsity, or
unstructured pruning, is challenging to leverage and as such is only simulated in order to estimate the
resulting accuracy.

We distinguish two main ways of simulating pruning: masking and zero hard-coding. Masking consists
in apply a binary mask M to a given weight tensor W . The core advantage of this formulation is the
simplicity to perform a soft masking that can be learned. During training, the masking is implemented
as, σ(M) ×W where σ is the sigmoid activation function. During the simulated inference, we compute
⌈σ(M)⌋ ×W . On the flip side, zero hard-coding consists in directly replacing weight values with zeros.
The limitation with this approach arises from the optimization process, which is additive i.e.weight values
are updated with W ←W + δ. Consequently, we need to enforce the zero values to the gradients update
or reset these values after every optimization step. While this introduces a computational overhead, it
is more memory efficient, as we do not need to store the masking tensor. Masking and zero hard-coding
are both valid simulation choices, and there is no specific conceptual pitfall to either one.

36It is worth noting here, that post-training literally means after the training and contrary to its usage in quantization,
does not suggest a less costly process over a small set.
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However, in some cases, they do share a common issue regarding the relevance of the simulation
with respect to actual inference performance. In order to highlight this error, let’s consider a popular
architecture design: the skip connection. Let W1 and W2 be two weight tensors such that there exists an
intermediate feature Y computed from intermediate inputs X1 and X2 as Y = W1X1 +W2X2. Without
loss of generality and for the sake of clarity, we will use the masking notation. Then, their pruned
counterpart would read as Ỹ = σ(M1)W1X1 + σ(M2)W2X2. While this implementation will run in any
deep learning library and does not represent any problem in sparse setups, it shows its flaws with the
structured pruning. In structured pruning, we want to actually remove output neurons from the layers
and in our example, we want to remove neurons in W1X1 and W2X2. However, let’s assume that we
removed the first neuron in W1X1 but not in W2X2. As a result, the first neuron of Ỹ will be equal to
the first output neuron of W2X2 and thus cannot be actually pruned. To support such situations, one
has to pad the outputs, which can be quite costly as the padding is not performed on contiguous values
in memory as we only pad the pruned neurons. In order to avoid this pitfall, it is best practice to prune
the two mat-vec nodes as if it was one node, as follows Ỹ = σ(Mshared)W1X1 + σ(Mshared)W2X2.

In summary, we have two main simulation options: masking and zero hard-coding. Each offer
advantages: masking for latency and zero hard-coding for memory footprint. Overall, pruning is
quite straightforward to simulate as long as we are meticulous with skip connections and ensure
that a pruned neuron will actually be pruned at inference.

Due to its simplicity, pruning has been the favored but not only child in the DNN compression commu-
nity. The other set of compression techniques that can effectively remove parameters and computations
is called tensor decomposition. In the following section, we propose to present an overview of this last
set of compression techniques.

1.5.3 Tensor Decomposition

Contrary to pruning, Tensor decomposition does not aim at removing operations directly, but rather
propose to re-formulate these operations in a more parameter efficient fashion (which may result in
indirect speed-ups). Historically, the first tensor decomposition method was the generalization of singular
value decomposition [165, 1] (SVD) to high dimensional tensors. In practice, all the intuitions from
the study of matrices hold for deep learning tensors. Consequently, for the sake of simplicity, we will
assume that the considered tensors are matrices. Let’s consider a weight tensor W , its corresponding
singular value decomposition is a (U,D, V ) triplet such that D is a diagonal tensor and for any X,
we have UDVX = WX. In this formulation, if W is a matrix of size n × m, then (U, V,D) defines
n× n+m×m+min(m,n) > n×m. The parameter reduction occurs when the rank r of the diagonal
matrix D is small enough, then the tensor decomposition becomes WX = (U

√
D) × (

√
(D)V )X and

requires r× (n+m) parameters. Consequently, the criterion for the SVD usage is: r < nm
n+m . In practice,

this condition is not often verified. However, forcing the removal of some eigenvalues, i.e. artificially
lowering r, offers a strong baseline for fine-tuning and often leads to good compression rates [15, 237, 266].
Intuitively, this bears similarities with DNN pruning as we remove expressivity from the network: in
pruning we remove neurons, in tensor decomposition we remove singular values which correspond to a
linear combination of neurons.

Other, more sophisticated, tensor decomposition have been proposed as extensions of the low rank
SVD approximation. The first example of such decomposition is the Canonical polyadic decomposition
CANDECOMP/PARAFAC, also known as the CP-decomposition [214]. The key idea is to approximate
a k-dimensional tensor W as an outer-product (noted ⊗) of one dimensional factors w1, ..., wk, such
that W ≈ w1 ⊗ · · · ⊗ wk. The resulting inference is computed as W (x1, ..., xk) ≈ w1x1 · · ·wkxk. The
resulting layer comprises n1 + · · · + nk parameters instead of n1 × · · · × nk. However, in practice, such
compression is too brutal and leads to significant accuracy drops. Several methods have been proposed
in order to find the appropriate initialization of W in a sum of r CP-decomposition [122, 13], i.e.W ≈∑r

i=1 wi,1 ⊗ · · · ⊗wi,k and W (x1, ..., xk) ≈
∑r

i=1 wi,1x1 × · · · ×wi,kxk. The second example is the tucker
decomposition, which formulates the 3-dimensional tensor W of size n1×n2×n3 using one 3-dimensional
tensor w0 with fewer parameters d1× d2× d3 with three 2-dimensional tensors wi of size ni× di. The re-
composition uses the mode product, which is slightly different from the outer product that is used in the
CP-decomposition. Mode product computes all the combinations possible from the CP-decomposition,
in other words, instead of doing

∑r
i=1 wi,1x1 × · · · × w3,kx3, we do

∑r1
i1=1

∑r2
i2=1

∑r3
i1=3 w1i1x1 × · · · ×

w3i3x3. This tensor decomposition is also very effective in terms of memory (as effective as the CP
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decomposition) but computationally more costly. Nonetheless, it appears that tucker decomposition
offer the best performance trade-offs in practice as compared to CP-decomposition. Unfortunately, these
tensor decomposition techniques have not been thoroughly tested on modern architectures and struggle
to spark a new research interest.

On the other hand, simpler and more benchmarked decomposition have emerged in the past five
years: separable layers. Separable layers include mixer layers (from the MLP-mixer architecture [215])
and depthwise separable convolutions [38]. For the sake of simplicity we will focus on the latter as
the former is derived from it. Let’s consider a convolutional layer f with a 3 × 3 kernel. The weight
values W perform two operations simultaneously: mix the spatial information (non-scalar kernel size) and
mix semantic information (summation over the input channels). Then, depthwise separable layers split
these operations in a sequence: a first layer (depthwise convolution) takes each input map individual and
applies a single 3×3 kernel which mix the spatial information. Then a second layer performs the semantic
mixing using a standard 1× 1 convolution, often called a pointwise convolution. The resulting two layers
perform the two operations with ni(no + 9) parameters instead of 9nino. In practice, such layers have
been leveraged in efficient architectures such as the EfficientNets [210] and MobileNets [183, 94]. On
the other hand, from a pre-trained convolutional model, the conversion from standard convolutions to
such separable layers requires an approximation. The core idea [252] consists in extracting a basis from
the 3 × 3 kernels and use this basis as weights for the depthwise layer. Then, the representation of the
original weights in said basis defines the new pointwise values. While this can work well on some deep
neural networks, its impact is limited to older architectures such as ResNet 50 that do not already use
depthwise convolutions or self-attention modules.

In a nutshell, tensor decomposition can be summarized in four main techniques: the old-fashioned
SVD which offers the best performance on modern architectures, the CP-decomposition and tucker
decomposition which leverage outer products, and separable layers that are best suited for architec-
ture design rather than post-training compression.

As we just saw, while tensor decomposition has shown little benefits on modern architectures to
the exception to the old-fashioned SVD [237] which leads us to say that this field has been abandoned
by the community either due to the low maximum reward or the difficulty to propose new methods.
Consequently, in the following section, we propose to wrap up our study of trimming methods on a
discussion on the most promising challenges that are introduced by pruning.

1.5.4 Pruning Challenges

Based on the definition of the current pruning techniques, several challenges remain open. Some of
these challenges have been addressed by the compression community, some have been moved up toward
resolution during this thesis, and some remain open. In our opinion, these challenges are:

• The choice between redundancy v.s. importance pruning: These two paradigms rely on two or-
thogonal assumptions. Importance-based pruning assumes that deep neural networks learn essential
operations and less relevant ones. On the flip side, redundancy-based pruning assumes that despite
the efforts to break symmetry at initialization, deep neural networks learn redundant operations.
During this thesis, we worked quite extensively on this dichotomy. In short, importance-based prun-
ing usually vastly outperforms redundancy-based pruning. We will discuss this result throughout
the next chapter.

• The limitations of the evaluation metrics: we mentioned two major metrics for the inference
practical speed: latency and throughput. On the one hand, these metrics are not suited for simple
and fair comparison, as previously discussed. On the other hand, the metrics used in pruning,
namely the number of parameters and number of flops removed, do not correlate well with the actual
speed-up (although they do correlate well with the memory footprint reduction and power savings
in the case of structured pruning). To mitigate this limitation, some works propose alternatives to
the standard pruning metrics that offer better indicators [187]. In the last year of this PhD, we
supervised a brilliant intern that worked on improving such methods (we will discuss his findings
in section 2.5).

• The relevance of pruning criteria: Pruning criteria aim at sorting out the weights and neurons by
their importance with respect to the predictive function. In practice, it is fairly simple to find the
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very least and very most important neurons of a layer, e.g. on ImageNet, it would be the 20-25%
least and most important neurons. In other words, the search for the extreme neurons is a simple
one. The challenge arises from ranking the remaining weights which have a medium importance.
This is one of the aspects over which we worked the most and achieved significant improvements
[254] (more details in section 2.3).

• The pruning budget: assuming a given pruning paradigm and pruning criterion, the remaining
practical question is: how many neurons should we try to remove? We rather ask this way rather
than what accuracy should we aim for, as it is simpler to anticipate the size of a model than its
accuracy. Let’s assume that we need to remove 40% of the parameters of the model in order to fit
in memory on a device. How many neurons should we remove in each layer? To the best of our
knowledge, there is no consensus on that matter. Two major trends are observed: first, using a
heuristic in order to split the pruning goal, second, using the pruning criterion applied to a layer as a
relative estimation of the layer overall contribution. In this thesis, we showed that both approaches
are inadequate, and we will share a better solution in section 2.4.

• Alternative granularity levels: While unstructured and structured pruning remain the two most
studied format, semi-structured pruning has recently gained a lot of traction. In its current form, it
is best suited for GPUs. Other formats adapted to other hardware and/or inference algorithms could
offer better trade-offs in terms of inference speed-ups v.s. to accuracy. In section 2.2, we present a
semi-structured format that we introduced during this thesis, which suits memory efficient devices
such as FPGAs.

This concludes our landscape of deep compression techniques. We went through the first and foremost
step: select the appropriate architecture which offers the best initial trade-off in terms of accuracy
v.s. speed. Second, the most promising compression specific technique: quantization. Third and last, we
presented all the commonly studied trimming techniques: tensor decomposition and pruning. During
this thesis, we worked on all three aspects of quantization (data-free, gptq and qat) as well as several
aspects of pruning and tensor decomposition. For the remainder of the manuscript, we propose to start
the presentation of our contributions by pruning. This schedule also matches our research schedule for
the last three years.
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Chapter 2

Deep Neural Network Pruning

At the beginning of this PhD thesis, we worked on data-free pruning and tensor decomposition. The
motivation for this approach was to avoid expensive training procedures and compliance with data privacy
rights (GDPR). To achieve such constrained compression we designed a method combining weight hashing,
redundancy based pruning and tensor decomposition. This led to the publication of two articles RED
[252] and an extension RED++ [253]. In order to further push the achievable compression rate, we, later,
worked on data-driven pruning and in particular on importance criterion which led to the publication
of SInGE [254]. Finally, we adapted the proposed pruning techniques to solve other problems than
compression, such as robust inference [251] and fighting overfitting [208].

Generally speaking, there are two major categories of pruning techniques: redundancy-based and
importance-based. The latter assumes that some weights of the trained neural network do not contribute
much to the decision-making process and as such can be removed. On the flip side, the former methods
assume that neural networks learn redundant features, which can be merged with little loss of information.
During this thesis, we contributed to both fields. In the first section of this chapter, we propose to start
as this PhD started, on redundancy based pruning.

2.1 Redundancy-based Approaches

Let’s consider a mat-vec node f with weight tensor W and bias tensor b such that f computes f : X 7→
WX + b. Each output neuron ni, out of n neurons, is defined by the scalar product ⟨Wi, X⟩ + bi. The
goal in redundancy-based pruning is to identify and remove redundant neurons.

Neuron Similarity Consequently, we define a distance between two neurons ni and nj , e.g. the
distance between (Wi, bi) and (Wj , bj). However, the contribution of the biases bi and bj is complex to
estimate with respect to the contribution of the weight tensors Wi and Wj . We will show why this is a
constraint that we cannot relax.

Let’s consider an activation function σ which could be any popular activation function such as the
ReLU, SiLU, GELU, sigmoid or softmax. The property at hand in this situation is the non-linearity:
σ(x+y) ̸= σ(x)+σ(y). Consequently, we get that σ(⟨Wi, X⟩+bi) ̸= σ(⟨Wi, X⟩)+σ(bi) which induces that
a similarity between the weight values Wi ∼ Wj does not necessarily lead to a similarity of the output
neurons ni and nj post activation function. In other words, if the biases are too distinct, we cannot
approximate the neurons ni and nj using only one neuron. This is why, theoretically, our criterion ought
to account for the bias values. Fortunately, in practice the bias values of similar weight values are also
similar in value, which simplifies the definition of the distance between two neurons. The choice of such
distance is at the core of redundancy-based pruning methods [195, 110, 252, 253]. Before dissecting the
state-of-the-art redundancy based pruning techniques, including the ones that we proposed during this
thesis, let’s detail how the architecture is actually edited with such methods.

Redundancy Elimination Assume that neurons ni and nj are considered similar according to a given
similarity criterion. The pruning process is called neuron merging and consists in defining a new neuron
n′
i of weight values W ′

i and bias b′i. The new neuron is supposed to provide a good approximation of the
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Figure 2.1: Neuron merging in the case of a fully-connected layer with weights W̃ 1. Similar colors indicate
equal weight values, e.g. W0,0 = W1,0. The pruned network weights W̄ are obtained by merging the first
2 neurons of layer l and simply summing the corresponding weights in layer l + 1.

two neurons ni and nj . The new layer f∗ computes

f∗ : X 7→
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If we now remove the jth row in the new weight tensor W ′ and bias vector b′, the pruned function f̄
will output the exact same total information as f∗ using n− 1 neurons instead of n. Then the core idea
consists in update the subsequent mat-vec nodes directly connected to f such that g ◦ f̄ = g ◦ f∗:
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(2.2)

Put in simpler words, as we compute twice the input neuron of the subsequent layer, this is equivalent
to the summation of the subsequent weight values along the input dimensions2. For the sake of clarity,
the process is illustrated in Figure 2.1. The only question that remains now is: how to properly measure
neuron similarity?

Similarity Criterion In the literature [195, 110], the baseline approach consists in simply performing
an l2 distance measurement between neurons and merging together the pairs that fall under a certain

1This notation comes from RED where the weights are slightly changed before pruning, hence the new notation. This
change comes from weight hashing, which we discuss in the next paragraphs.

2In the equation, we represented the input dimension using the transpose notation in order to make it fit on a single
line.

34/125 February 26, 2024



CHAPTER 2. DEEP NEURAL NETWORK PRUNING

threshold. The merged neuron value is then computed as the barycenter of the clustered neurons. In-
tuitively, we could directly use clustering techniques such as k-means if and only if we knew in advance
the number k of neurons to keep. More generally speaking, other clustering techniques do not have an
automated hyperparameter selection dedicated to deep neural network compression. In practice, in the
data-free setup, we cannot empirically set these parameters. Consequently, we designed a method which
bounds the accuracy degradation from the neural network pruning automatically.

Weight hashing In RED [252], we proposed a novel way to cluster weight values. The core idea is to
restrict the number of distinct weight values within each layer independently. Intuitively, the semantic
output of each neuron of a given layer are inter-dependent. In other words, the magnitude of a neuron ni

is relevant only with respect to the magnitude of the other neurons of the same layer. On top of this, we
work in a data-free setup. Based on these constraints, the problem consists in the design of an effective
hashing function. Such functions map a continuous set of values to a discrete one [4]. The core challenge
consists in creating as many identical neurons as possible without degrading the predictive function. To
do so, we designed the hashing function from the weight density distribution. Consequently, the first step
consists in extracting the density distribution f of the weight tensor W of a layer f . This can be achieved
using a kernel density estimation method to a sampled distribution. In our case, the sampled data are
the weight scalar values and the kernel K is Gaussian. Consequently, we get an explicit formulation for
the estimated density f̃:

f̃ : ω 7→ 1

#W∆

∑
w∈W

K

(
ω − w

∆

)
(2.3)

where #W refers to the number of scalar weight values in the tensor W and ∆ is the bandwidth of the
Gaussian kernel, which remains to be defined. Thus, the only remaining element to determine in order
to have a data-free weight hashing function is the bandwidth ∆. In RED [252], we proposed to use the
median of the differences between consecutive weight values. Formally, let’s consider the scalar weight
values w1, . . . , w#W ordered such that ∀i < j wi < wj . The differences di of consecutive weight values
are defined as di = wi+i − wi. Then the bandwidth ∆ is set to the median value of the differences (di).

From the given estimated density function f, we extract the local extrema. Intuitively, we want to keep
the most meaningful values, which we approximate with the likeliest values in the weight distribution.

weight distribution

mi

Mi

Figure 2.2: Weight kernel density estimation of a
layer of a ResNet 50 trained on ImageNet. On the
right side, we zoom in and highlight the local min-
imum (vertical green lines) and the local maxima
(blue dots). Every value between two consecutive
vertical green lines is set to the corresponding blue
dot.

Let’s note the ordered local minima mk and max-
ima Mk. The likeliest values Mk will define the
new pool of scalar weight values, while the local
minima will define a partition of the real numbers
for our hashing function h. Formally, we define h
as

h : ω 7→
∑
k

Mk1{ω∈[mk;mk+1[} (2.4)

The partition and values selected by the hashing
function are illustrated in Figure 2.2 for a layer of
a ResNet 50 trained on ImageNet. The resulting
hashing method is adaptive to the weight distribu-
tion and does not require hyperparameter tuning.
While this hashing method plays the role of intro-
ducing strict redundancies among weight values, it
also diminishes the number of distinct weight val-
ues. The hashed neural network can be stored on

the device using less disk space with the Huffman coding [100]).

Weight Merging in RED In RED, we proposed to merge the identical neurons post-hashing. This
protocol offers better performance than direct neuron merging based on the Euclidean distance, as we
will show in the experiments section. However, this method offers limited flexibility, as for a given neural
network the hashing function is unique and so is the pruned model. We proposed a soft relaxation of the
merging criterion. We introduced a per layer parameter αl to merge the αl% closest hashed neurons that
shall be merged.

After the publication of [252], we figured another improvement over the standard redundancy-based
data-free pruning: the angular distance. Instead of merging neurons based on the Euclidean distance,
we can merge them based on their angular distance. If two neurons are collinear and similarly oriented
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(i.e.positive angle) then they can be merged if and only if the deep neural network uses ReLU activation
function. Formally, if we have a strict collinearity between neuron ni and nj then λWi = Wj and λbi = bj
then for λ > 0:

σ(⟨Wi;X⟩+ bi) + σ(⟨λWi;X⟩+ λbi) = (1 + λ)σ(⟨Wi;X⟩+ bi). (2.5)

This is a usage example of the previously mentioned weak form of compliance with operation folding of
the ReLU activation function (see section 1.1.3). Consequently, we can merge neurons that have a low
angular distance, which offers even greater compression performance than that of RED.

In summary, redundancy-based pruning is based on two components: neuron merging and a similar-
ity measure. In this thesis, our contributions were published in [252] and consist in the introduction
of a novel weight hashing to improve the similarity measurements. Following this work, we also
proposed a better similar measurement for ReLU networks based on the angular distance rather
than the euclidean distance.

In the journal extension [253], we theorized an upper-bound over the prediction errors introduced by
the hashing mechanism. This offers strong theoretical grounding to the method and further motivates
its use. In the following section, we propose to dive into this result.

2.1.1 Theoretical guarantees

For the sake of simplicity, let’s first, consider a single fully-connected layer f with weight tensor W ∈
Rn1×n0 . We will extend our results to a full ReLU-based neural network afterward. The goal of the
upper bound is to bound the average error on intermediate features of a single layer. We note the hashed
weight values W̃ using the aforementioned method. Then, we can bound the absolute error between
each individual scalar weight values as |w − w̃| ≤ mink{mk > w} −maxk{mk < w} based on the local
minima (mk). Consequently, based on the distribution Pw of the weight values W , we get the following
upper-bound Upart on the expected absolute scalar error:

E∥x∥≤1[|wx− w̃x|] ≤
∑
k

(mk+1 −mk)

∫ mk+1

mk

Pwdw = Upart (2.6)

This results gives us a first bound from the partitioning that is performed during hashing. In order to
get a finer grained upper bound, we leverage properties of the density estimation process itself. The final
upper-bound U will then be a combination of these two upper-bounds. Because we are using a kernel
density estimation based on a Gaussian kernel, in a given interval [mk;mk+1], the density if monomodal.
Consequently, we can use the fact that for any monomodal distribution, the average absolute distance of
a random sample to the distribution mean is σk

√
2/π. Thus, the triangular inequality gives:

E∥x∥≤1 [|wx− w̃x|] ≈
∫
|w − w̃|xw(w)dx ≤ max

k
σi

(√
2

π
+
√
3

)
≤ ∆√

2π

(√
2

π
+
√
3

)
= Umonomodal

(2.7)
Explicitly, we now have the two upper-bounds Upart and Umonomodal which enable us to define our upper-
bound U as

E∥x∥≤1 [|wx− w̃x|] ≤ U = min

{
∆√
2π

(√
2

π
+
√
3

)
,
∑
k

(mk+1 −mk)

∫ mk+1

mk

Pwdw

}
(2.8)

The challenge that remains is to generalize this upper-bound to a full network.
To do so, we exploit several properties. First, as we study the behavior of the average error, we use

the Central Limit Theorem which gives us the multiplicative term 1√
sin

, where sin is the input size, to
generalize the scalar error |wx− w̃x| to the neuron error. Second, assuming a ReLU activation function
also enables us to erase about a half of the values from the equation as they would be zeroed out (this is
empirically observed on modern ReLU architecture). Fortunately, we can leverage batch normalization
layers in order to obtain a finer grained estimation of the average number of values that will be zeroed
out by the ReLU function. Let β and γ be the expected layer mean output and standard deviation
output respectively, then we can add a multiplicative term 1

2

(
1− erf

(
−β

γ
√
2

))
where erf is the Gauss
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Table 2.1: Evaluation of our adaptive hashing in term of % removed weight values (% reduction) and
test accuracy drop compared with a uniform baseline.

Cifar10
Architecture ResNet W. ResNet MobileNet v2 EfficientNet

Model 20 56 164 28-10 40-4 0.35 1 1.4 B0 B4 B7

% Reduction
uniform 98.0 98.4 98.9 99.7 99.8 98.4 98.6 99.0 98.5 98.9 99.2

adaptive 98.9 99.0 99.1 99.9 99.9 96.7 99.4 99.6 99.4 99.7 99.9

% Accuracy drop
uniform 0.58 0.45 0.89 0.72 0.68 0.00 0.00 0.00 0.00 0.01 0.00

adaptive 0.07 -0.03 0.01 -0.02 0.00 0.00 -0.01 -0.04 -0.02 0.00 0.00

ImageNet
Architecture ResNet MobileNet v2 EfficientNet

Model 50 101 152 0.35 1 1.4 B0 B4 B7

% Reduction
uniform 99.6 99.5 99.5 21.2 24.7 22.0 98.5 98.9 99.2

adaptive 99.9 99.9 99.9 22.0 61.3 97.4 72.3 87.8 97.8

% Accuracy drop
uniform 0.00 0.01 0.00 3.96 5.79 8.19 3.36 3.85 3.30

adaptive 0.00 0.00 0.00 0.25 0.60 0.10 0.44 0.00 0.01

error function, erf : z 7→ 2√
π

∫ z

0
e−t2dt. Third, we use the error propagation properties of piece-wise affine

compositions. Therefore, we get the following global upper bound in the whole network

U =

L∏
l=1

min
{

∆l√
2π

(√
2
π +
√
3
)
,
∑

k((mk+1)l − (mk)l)
∫ (mk+1)l
(mk)l

Pwdw
}

2
√sinl

(
1− erf

(
−βl

γl
√
2

))
+ βl

− L∏
l=1

βl.

(2.9)
Intuitively, we can observe that as ∆ converges to zero, so does the upper-bound. For instance, we get
the expected result when no hashing (∆ = 0) is performed U = 0. Consequently, we have defined a
global upper-bound U on the expected error from the hashed deep neural network as an operator. In
other words, we have

E∥X∥≤1[∥f̃(X)− f(X)∥] ≤ U (2.10)

More details can be found in the [253] paper and in appendix C of this manuscript. Having theoret-
ical results offers further confidence in the method. In what follows, we present a thorough empirical
evaluation.

2.1.2 Experimental Results
Hashing Evaluation In Table 2.1, we report our evaluation of the proposed hashing in its ability
to reduce the number of distinct weight values while maintaining the accuracy. The baseline approach
corresponds to a uniform quantization in 8 bits, which corresponds to 256 distinct values3. The first
observation is rather straightforward, as RED systematically better preserves the accuracy of the original
model on both Cifar10 and ImageNet. Furthermore, in most occurrences, the proposed hashing mech-
anism also offers a higher reduction of the number of parameters, which means that it better performs
in every aspect. however, in instances where the reduction is lower for the hashing, e.g. EfficientNet on
ImageNet, the baseline candidate only achieves higher compression by significantly degrading the accu-
racy of the model. In Table 2.2, we propose a second comparison of the hashing method with respect to
another clustering technique: k-means, on ResNet 56 trained for Cifar10. Similarly, we observe that the
proposed hashing method outperforms the pre-existing methods. This empirical result was expected by
the definition of the hashing method, as well as the theoretical guarantees that we just discussed.

In order to validate the theory, we propose to measure the logits of the deep neural network at hand
and its hashed counterpart. The measure of EX [∥f̃ − f∥] comes from the train and test sets of each
task. In Table 2.3, we report our empirical study of the provided upper-bound U . While we can observe
a good tightness (the lower the value the better) in most cases, there are instances where the method

3This baseline was considered as it is the go-to method in compression [131].
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Table 2.2: Hashing performance on ResNet 56 on Cifar10 as compared to k-means approach. We highlight
in bold the best trade-off in compression and accuracy.

method - hashing k-means
k - - 128 196 224 256 384 512

accuracy 93.46 93.41 90.97 91.41 93.10 93.28 93.35 93.46
compression 0% 99.0% 99.3 98.8 98.6 98.4% 98.1 95.3

Table 2.3: Empirical evaluation of the expected error from hashing. The tightness of this value is verified
by comparing it to the empirical measure EX [∥f̃ − f∥].

Cifar10
Architecture ResNet W. ResNet MobileNet v2 EfficientNet

Model 20 56 164 28-10 40-4 0.35 1 1.4 B0 B4 B7

U 3.1 1.7 3.1 3.5 3.0 3.2 4.0 2.4 4.9 6.7 2.8
Tightness to EX [∥f̃ − f∥] 7% 54% 13% 64% 79% 22% 65% 28% 57% 65% 17%

ImageNet
Architecture ResNet MobileNet v2 EfficientNet

Model 50 101 152 0.35 1 1.4 B0 B4 B7

U 0.01 0.01 0.01 0.04 0.08 0.03 0.01 0.01 0.01
Tightness to EX [∥f̃ − f∥] 6% 1% 1% 37% 27% 28% 11% 3% 9%

struggles. From our intuition, as this problem is mostly specific to Cifar10 (and slightly for MobileNet on
ImageNet), this can be attributed to the low amount of data for the upper-bound empirical estimation.
All in all, we can conclude that the upper-bound that was proposed does provide a good estimation of
the actual average error introduced through the hashing process. Furthermore, a second observation can
be made: the upper-bound U has a significantly smaller value than the norm of the logits E[∥f∥] by a
significant margin. This fact and the over-confidence of modern deep neural networks explain the good
accuracy preservation of the hashing method. In simpler words, DNNs are over-confident, i.e. their logits
have a well determined maximum, plus the logits have a larger norm than the introduced error which
suggests that on average, said error is unlikely to change the argmax of the logits and as such is unlikely
to change the prediction.

Merging Evaluation In Figure 2.3, we propose an evaluation of the influence of the relaxation α
parameter. These results show that the larger the models the more extra pruning can be performed
without damaging the accuracy. However, as mentioned in the previous chapter, such evaluations should
not serve as proof due to the lack of transfer to other datasets such as ImageNet. Fortunately, in this
specific case, we actually observe a common trend in every field of deep compression: the more parameters
we have for a given accuracy on a specific task, the easier the model is to compress. Aside from this
observation, our Cifar evaluation only serves the purpose of comparison with older data-free pruning
techniques.
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Figure 2.3: Accuracy drop (%, red) and compression (in term of % removed parameters, blue) vs. values
of α for ResNet 20, 56, 110 and 164 on CIFAR-10. We can remove high number of similar neurons without
impacting the accuracy, particularly for deeper networks.
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Figure 2.4: Comparison between RED and state-of-the-art methods on Cifar-10, in terms of % accuracy
(measured as a percentage of the base model accuracy, the higher, the better) and % remaining parameters
(the lower, the better). Each method is classified either as data-free (red) or data-driven (blue) and
structured (triangle) or unstructured (rectangle). For each network, RED performs significantly better
than other data-free methods, and often as well as data-driven or unstructured methods.

In Figure 2.4, we propose a comparison of the state-of-the-art pruning techniques on Cifar10 from
2020 and earlier4. While the proposed RED technique performs data-free structured pruning, we also
considered unstructured (squares) as well as data-driven (blue) pruning. Our results simply highlight
the ability of RED to find better accuracy v.s. compression trade-offs. However, these results should be
mitigated on two aspects. First, RED does not generalize well to more challenging tasks. Second, these
results were obtained using tensor decomposition on top of the redundancy-based pruning.

In the following section, we will discuss the last part of [252]: tensor decomposition as well as the
last aspect of [253]: semi-structured redundancy-based pruning, which will enable good performance on
ImageNet.

2.2 Tensor Decomposition and Other forms of Pruning

When this PhD started, the transformer architecture was not as trending as it may be now in computer
vision. The community was focused on the ResNet, MobileNet and EfficientNet architectures. The ResNet
50 was the favored backbone for all applications such as object detection or image segmentation. However,
EfficientNet and MobileNet sets of deep neural networks offered higher accuracies using significantly fewer
parameters. The key to this achievement was two-fold. First, as demonstrated in [229], the use of modern
training techniques such as newer optimizers, larger batch-sizes and noisy students. Second, the use of
depthwise separable convolution. Consequently, in our first line of research, we tried to decompose the
ResNet layers to mimic the depthwise separable convolution layer.

2.2.1 Depthwise Separable Convolution Tensor Decomposition

Let’s consider a trained convolutional layer f with hashed weights W ∈ Rno×ni×s1×s2 using convolution
kernels of size s1 × s2. Our goal is to find a new set of weights Wd and Wp to encode the depthwise and
pointwise convolutions respectively, such that W ≈WpWd with Wd ∈ Rni×s1×s2 and Wp ∈ Rno×ni .

In [252], we propose a new way to view the depthwise separable convolution layer. We see the depth-
wise layer weights as a spatial basis. Intuitively, a standard convolutional layer mixes the information
both spatially and semantically (channels). In the case of the depthwise separable layer, the depthwise
layer performs the spatial mixing. Furthermore, if we were to re-construct a convolutional layer from the
sequence of depthwise and a pointwise layer then we would get no × ni 2D spatial kernels, which would
simply be the depthwise kernels weighted by the pointwise scalar kernels. In other words, the depthwise
kernels constitute a basis to the re-constructed convolutional layer. In turn, the pointwise layer weights
can be seen as the representation of the layer in the space defined by the aforementioned basis. Conse-
quently, the proposed process for the decomposition consists in taking the opposite approach. First, we
extract a spatial basis Wd of the convolutional weight tensor W . Then, we define z representation Wp

for each output channel in that basis. This process is illustrated in Figure 2.5. The first step consists
in grouping the weight values W by input channel i ∈ {1, ..., ni}. From the redundancies introduced by
hashing, we can expect that there exist a few tensors Bj,i such that, for any original weight value Wo,i

corresponding to the input channel i there exists a linear combination of Bj,i that gives Wo,i =
∑

j λjBj,i.
Then, the weight values of the depthwise layer in the depthwise separable decomposition are directly given
by the basis Bi,j and the pointwise layer weights are given by the values of λ.

4The reasons for this are two-fold. First, RED was conducted in 2020. Second, data-free pruning has seen many iterations
since then.
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Figure 2.5: illustration of the decomposition process

Note that this decomposition is exact, i.e.W = WpWd. However, while the hashing process does
enable a significant compression and introduces many redundancies, it very unlikely that the obtained
basis will fit in Wd ∈ Rni×s1×s2 . Formally, for a given input channel i, we will not have a basis of dimension
1 but rather of dimension ri. For this reason, we call this process an uneven depthwise separable tensor
decomposition, as the resulting depthwise layer will have an uneven number of 2D kernels per input
channel. Thus, the resulting layer will be of the following size: s1 × s2 × (

∑
i ri) for the depthwise part

and no × (
∑

i ri) for the pointwise. This leads to the following criterion: the process is relevant if and
only if : ∑

i

ri <
s1 × s2× ni × no

s1 × s2 + no
. (2.11)

In table 2.4, we report the ablation study of the impact of the proposed tensor decomposition on
several Cifar10 neural networks. All the models in the table achieve at least 99% of the original model
accuracy. Furthermore, we include the previously mentioned pruning technique (merge) for the sake of
comparison, in its strict (α = 0) and relaxed (α = α∗) forms, where α∗ is tuned to achieve the highest
pruning rate without degrading the accuracy. We can draw several observations:

• From the difference between column 2 and 3, we see that without hashing the depthwise decompo-
sition does not offer any benefits, which is expected as exact redundancies have not been introduced
yet. The only pruning performed comes from the relaxed version of the aforementioned redundancy-
based structured pruning.

• From column 3 to 4, we see that the hashing on its own introduces enough redundancies for the
strict merging to outperform the relaxed merging without hashing.

• From the difference between column 5 and 6 (the two last columns) we can see that the proposed
tensor decomposition offers a significant added value as compared to the redundancy-based struc-
tured pruning.

• From the difference between the ResNet and Wide ResNet families, we can observe that larger
networks with a higher number of output channels require a larger basis for the decomposition,
i.e.
∑

i ri is higher on Wide ResNets than on ResNets. This translates to a lower added value in
the last column on the Wide ResNets.

In summary, the proposed tensor decomposition does offer a non-negligible added value when fo-
cusing on already small networks for toy applications such as Cifar10. However, from our gained
experience in the field, we must insist on two major limitations. First, this property fails to enable
state-of-the-art compression on real world applications. Second, this is limited to ResNet-like archi-
tectures.

Stemming from these observations, all the works that followed during this thesis were designed with
the goal of being applicable to any architecture and especially at any scale. In particular, in order to
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Table 2.4: Ablation results in terms of % removed parameters compared to the base model.

Hashing ✗ ✗ ✗ ✓ ✓ ✓
Merge α = 0 α = α∗ α = α∗ α = 0 α = α∗ α = α∗

Depthwise Separation ✗ ✗ ✓ ✗ ✗ ✓

ResNet 20 0.00 18.58 18.58 25.18 41.03 65.05
ResNet 56 0.00 61.19 61.19 58.45 77.68 84.52
ResNet 110 0.00 75.29 75.29 62.41 84.43 89.64
ResNet 164 0.00 78.61 78.61 62.73 88.87 91.06

Wide ResNet 16-8 0.00 31.08 31.08 19.67 38.67 51.92
Wide ResNet 22-2 0.00 51.17 51.17 13.27 63.67 64.98
Wide ResNet 28-2 0.00 49.19 49.19 11.46 61.20 64.19
Wide ResNet 28-4 0.00 41.79 41.79 20.99 51.99 56.07
Wide ResNet 28-8 0.00 33.58 33.58 19.78 41.78 52.87
Wide ResNet 28-10 0.00 47.25 47.25 25.59 58.79 60.80
Wide ResNet 40-4 0.00 49.67 49.67 43.37 61.80 70.35

address both of these limitations in the case of data-free pruning, we introduced split: a semi-structured,
redundancy-based pruning technique.

2.2.2 A new Semi-structured Pruning Approach

Let’s consider any mat-vec layer f with weights W ∈ Rno×ni×s where s is equal to 1 for a fully-connected
layer and equal to s1×s2 for a convolutional layer. Our goal is to replace computations by memory calls.
To do so, we propose to perform the merging step per input channels on top of the previously introduced
output channel merging. Formally, the original merging required that two output neurons ni and ni′

should be identical. In other words, Wi,j = Wi′,j , for all values of j. In the proposed SPLIT method, we
relax this constraint such that there exists j ∈ {1, ..., ni} with Wi,j = Wi′,j . Intuitively, this is equivalent
to a sparser version of the previously proposed redundancy-based pruning. This relaxing will offer higher
pruning rates, as this method is a special case of the original merging method. However, this increased
compression rate comes at a price. In order to highlight this price, we need to explain how to actually
infer using the proposed method, like we did with structured approach.

With the structured approach, after the identification of the neurons to merge, we had to update
the subsequent layers and edit the computational graph which gave us a method that is straightfor-
ward to leverage: the model is simply smaller after pruning. This is not true with the SPLIT method.
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Figure 2.6: illustration of the splitting
method. Step 1: identify redundant op-
erations. Step 2: keep only the necessary
compute. Step 3: duplicate results at in-
ference.

Formally, let W̄ be a ragged tensor containing only the unique
2D kernels (or scalar values) from the convolutional (or full-
connected) layer hashed weight tensor W . We can recon-
struct the hashed weight values W from the pruning ten-
sor W̄ with a tensor of indices I such that for any i, j we
have Wi,j = W̄Ii,j . This pruning is very similar to the semi-
structured pruning proposed in [203] in that semi-structured
pruning requires indices to be stored in order to represent the
partial structure of the tensor. The proposed split pruning
process is illustrated, for the sake of clarity, in Figure 2.6.
In short, the proposed method can be summarized as replac-
ing redundant computations by memory calls. In practice,
this is challenging to implement on most hardware devices as
the available kernels5 would rather leverage parallelization
and fewer memory calls than selective compute with multi-
ple memory calls. However, this should be mitigated by two
elements: first, as previously mentioned, such implementations are indeed efficient on common hardware
as demonstrated by Nvidia and second, some devices like FPGAs can be specifically designed for efficient
memory calls.

5Here, we are talking about inference kernels which usually are lines of code in c++ with explicit calls to instruction
sets specific to the hardware.
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Table 2.5: Ablation study of the structured and semi-structured redundancy-based pruning on ConvNets
for image classification. We report the percentage of removed parameters.

Hashing ✗ ✗ ✓ ✓ ✓ ✓
acc
dropmerge (α value) 0 α∗ 0 α∗ 0 α∗

split ✓ ✓ ✗ ✗ ✓ ✓

Cifar10
ResNet 20 0.00 18.58 25.18 41.03 65.26 67.48 0.07
ResNet 56 0.00 61.19 58.45 77.68 85.89 88.81 -0.03
ResNet 110 0.00 75.29 62.41 84.43 88.31 91.82 0.10
ResNet 164 0.00 78.61 62.73 88.87 90.87 94.49 0.01

Wide ResNet 28-10 0.00 47.25 25.59 58.79 77.49 80.13 -0.02
Wide ResNet 40-4 0.00 49.67 43.37 61.80 65.97 68.59 0.00

MobileNet V2 (0.35) 0.00 4.99 0.00 6.47 53.65 55.48 0.00
MobileNet V2 (1) 0.00 4.21 0.00 5.46 69.17 71.52 -0.01

MobileNet V2 (1.4) 0.00 2.43 0.00 3.16 77.92 80.57 -0.04
EfficientNetB0 0.00 2.02 1.44 2.62 61.79 64.62 -0.02
EfficientNetB4 0.00 3.81 1.04 4.93 73.42 76.34 0.00
EfficientNetB7 0.00 2.13 0.72 2.76 80.23 83.42 0.00

ImageNet
ResNet 50 0.00 0.09 0.09 0.29 43.95 44.25 0.00
ResNet 101 0.00 0.75 0.58 0.75 44.12 44.51 0.00
ResNet 152 0.00 0.58 0.58 0.58 43.64 43.68 0.00

MobileNet V2 (0.35) 0.00 2.75 0.00 2.75 14.13 14.88 0.25
MobileNet V2 (1) 0.00 1.95 0.01 1.95 46.00 46.97 0.60

MobileNet V2 (1.4) 0.00 2.16 0.02 2.18 83.73 85.42 0.10
EfficientNetB0 0.00 1.68 1.23 1.91 53.52 54.43 0.44
EfficientNetB4 0.00 2.43 0.98 2.76 72.26 74.58 0.00
EfficientNetB7 0.00 2.23 2.54 2.54 87.50 89.21 0.01

Table 2.6: Hashing and split performance on Transformer architectures trained for ImageNet. We report
the percentage of removed distinct values through hashing (hashing ratio), the resulting accuracy drop
and the percentage of weights removed with split (pruning ratio).

model |W | hashing ratio acc drop pruning ratio

DeiT T 5.7M 96.016% 0.000 70.32%
DeiT S 22M 97.994% 0.100 84.93%
DeiT 87M 98.527% 0.000 93.20%

CaiT XS24 26.7M 98.028% 0.000 81.85%
CaiT S24 47M 98.992% 0.030 86.27%
CaiT M36 271M 99.443% 0.100 91.80%
LeViT 128S 7.9M 97.604% 0.000 76.91%
LeViT 256 19M 97.133% 0.000 85.93%
LeViT 384 39M 97.214% 0.000 90.55%

In order to evaluate the proposed method as compared to the structured counterpart, we report our
results in Table 2.5. As we consider convolutional neural network, we only prune convolutional layers.
We can make several observations:

• From columns 1 and 2, we see that without hashing, no pruning can be performed. Similarly to
the tensor decomposition and structured pruning, this result is expected as prior to the hashing
step, no strict redundancies have been introduced. On the flip side, some relaxed redundancies can
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already be eliminated.

• From columns 3, 4 and 5, our results show that SPLIT vastly outperforms the structured pruning
method in its two forms. This result is even more blatant on ImageNet, where the structured
approach fails to prune over 3% of the deep neural networks.

• From columns 5 and 6, we can see that the merging relaxation offers little benefit over all and most
of the heavy lifting is done by split, especially on ImageNet which was our initial target.

• From the comparison between different architectures, we observe that SPLIT performs well regard-
less of the model. While it may seem like this is not the case on the smallest MobileNet v2, it
should be noted that we did not prune the last fully-connected layer which represents 60% of the
parameters and as such, we pruned 15% of the 40% prunable values.

While split does address the limitation of RED in achieving great compression performance on both
Cifar10 and ImageNet with ConvNet, in a simple data-free configuration, such architectures are getting
less attractive with the rise of Transformers.

In Table 2.6, we report the performance of both the hashing method and the split pruning rates. In
short, we observe the stability of the hashing method which achieves high reduction rate: at least 96%
of the unique weight values are hashed leading to at least 25 times less distinct values. This hashing
protocol induces negligible accuracy drops, which completes our study of the hashing method: it works
on all the commonly used architectures for challenging tasks such as ImageNet. Stemming from this good
performance, the split method achieves its highest pruning rates yet.

In conclusion, the performance of the proposed split does alleviate the limitations of RED at the
expense of more challenging implementation for current hardware. This can also be studied from a
theoretical perspective as a birthday problem (see Appendix C.3). However, there is so much that can
be achieved in pruning for deep learning without data. In the following section, we will present our
contributions regarding importance-based, or magnitude-based pruning, with re-training.

2.3 Importance-Based Pruning

The aforementioned redundancy-based pruning methods assume that the deep neural networks learn re-
dundant operations, which is equivalent to deny the effectiveness of the initialization schemes in their
ability to break symmetry. Formally, a well known property of deep neural networks optimized with
stochastic gradient descent: if two neurons of a given layer are identical at one point, then they will
remain identical through the remainder of the optimization process. This property is called symmetry.
In practice, initialization schemes [71, 85] are specifically designed to avoid symmetry. From our previ-
ous results on ImageNet, it appears that these methods do work, as the redundancy-based structured
pruning fails to achieve significant pruning ratios on such networks. Consequently, we advise focusing
on importance-based pruning in order to achieve significant pruning, especially if structured pruning is
considered.

2.3.1 Magnitude Criterion

The category of pruning techniques that we are considering are often referred to as either importance-
based or magnitude-based. Before delving into the technical details, we would like to explain these
two terms. In the case of redundancy-based pruning, we want to remove identical operations, as the
redundancies serve no semantic purpose and induce a computational burden. On the other hand, here, our
goal consists in the removal of the least necessary operations regardless of similarity to other operations.
For example, let’s consider a feature extractor for cats and dogs classification. The semantic extracted
features are: the size of the animal, the presence of fur on the face and the number of legs. All of
these features are distinct (no redundancies) but the last one is clearly irrelevant and should be pruned.
Consequently, the advantage of this approach to pruning is that we have fewer constraints on candidate
neurons for removal, as we do not need redundancies. The second appellation of magnitude-based comes
from the naive approach, which simply consists in measure the magnitude (norm) of the weights as a
proxy for importance.

In order to obtain the importance ranking of the neurons, a simple approach would simply consist
in considering a labeled validation set D and evaluate the accuracy of all the possible combinations of
pruned neurons. In other words, this method simply consists in testing every possible sub-combination
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of neurons and keep the best trade-off in terms of accuracy v.s. compression. However, this approach
has a major drawback: scalability. In fact, to consider a neural network with N neurons, then we have
to evaluate 2N architectures. With the size N of current neural networks and the trend for ever larger
models, such an approach would hold no chance of scaling to larger models. Consequently, every pruning
method requires the design of an efficient proxy for the importance ranking of neurons.

In order to tackle this problem, we assume that we have access to a trained neural network F with
weight tensors (Wl)l∈{1,...,L} and a validation set D comprising a few unlabeled examples (in practice, we
use 64 examples).

The baseline approach for importance-based pruning is the magnitude criterion CLp . This criterion
stems on the following intuition: if a weight value is larger than the corresponding output features will, on
average, be larger. Thus, they will be more important in the decision-making of the predictive function.
Furthermore, learned features are rankable, e.g. in classification, the outputs are sorted by magnitude.
Formally, we define the magnitude criterion CLp as follows,

CLp : (Wn, F,D) 7→ ∥Wn∥p, (2.12)

where Wn are the weights corresponding to the output neuron n. This criterion has several advantages.
First, it does not require any data to be computed, which makes it fast and simple to compute. In practice,
when using this criterion, most of the computations are dedicated to fine-tuning the pruned model, in
order to recover from the accuracy drop induced by pruning. Second, this pruning criterion does not
require the computation of gradients which enables its computation for non-differentiable functions, e.g.
integer quantized models. However, despite these advantages, we would not recommend the use of this
criterion. Indeed, its limitations are numerous, with the most important one being: this criterion is
blind to the previous and following computations. For instance, if the output of a neuron with large
weight values is fed to low value input weights in the following layers, then their magnitude would cancel
out. In other words, the magnitude criterion offers a measure that is local layer-wise, which limits its
effectiveness. In order to address this limitation, we propose to draw inspiration from all the work done
in the domain of attribution.

2.3.2 Adapting Attribution techniques to Pruning
In the pursuit of explainability of deep neural network predictive behaviors [239], attribution ranks the in-
puts of a model by their contribution to the final prediction.

Figure 2.7: illustration of the GradCam method on
the image of a beautiful sea otter grooming, through
a ResNet 50 model.

For example, in the case of computer vision on
images (like image classification on ImageNet), an
attribution method would rank the pixels with re-
spect to their contribution to the final logits [186].
This is illustrated in figure 2.7. The most notori-
ous attribution techniques are the GradCam [186]
and integrated gradient [205] methods. The at-
tributions methods are often evaluated using two
metrics: the insertion and deletion scores. In the
deletion score, we remove the least important neu-
rons and measure the impact on the accuracy, the
lower the impact the better. Intuitively, we see the
similarity between pruning and attribution, as in
pruning, we rank weight values while in attribu-
tion we rank inputs, both based on an estimation
of their relative importance with respect to the
outputs. By design, attribution techniques must solve the limitation from the magnitude criterion: the
measurement is local with respect to the layer. Formally, as attribution techniques measure the impor-
tance of the input with respect to the output, they ought to account for the whole predictive function.

The first example of attribution technique that has already been applied to pruning [25] is the gradient
criterion C∇p . Formally, we define this criterion as

C∇p : (Wn, F,D) 7→ ∥∇Wn
F (X ∈ D)∥p , (2.13)

where ∇WnF (X ∈ D) is the gradient of the outputs of F with respect to Wn. This criterion measures
whether slight changes to the weight values lead to marginal or significant modifications in the final
predictions, which addresses the aforementioned limitation of the magnitude criterion on its layer-wise
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layer : l=1 layer : l=25

Figure 2.8: Visualization, for 5 random neurons and two different layers of a ResNet 56 trained on Cifar10,
of the evolution of ∥∇µsWn

F (X ∈ D)∥p (y-axis) as the magnitude ∥µsWn∥p (x-axis) is brought to 0.

locality. However, the gradient criterion C∇p suffers from another limitation: as the gradient offers a
local measurement of slight weight changes in the weight values, this is not sufficient for larger weight
values as during pruning they are not slightly changed, they are zeroed-out.

The first solution to this issue consists in mixing the two criterion into a norm × gradient criterion
CLp×∇p which combines the best of both worlds:

CLp×∇p : (Wn, F,D) 7→ ∥Wn∥p × ∥∇Wn
F (X ∈ D)∥p . (2.14)

While this criterion does address the aforementioned limitation from the gradient criterion in part, the
problem still remains to be solved in the sense that we use a heuristic: the gradients and weights magnitude
contributions are equal. However, to the best of our knowledge, there are no empirical nor theoretical
reasons to do so. What we do know is that ∇Wn

F (X ∈ D) only holds within a neighborhood of Wn
l

current value, and abruptly setting this neuron weights to zero may very well violate this locality principle.
This problem was properly addressed by the integrated gradient attribution method [205]. Its core idea

consists in measuring the importance scores based using a Riemann approximation of the cost function
integral from the current value to a baseline. Formally, given an input X and a baseline B, the integrated
gradients method estimates the cost of going from X all the way to the baseline value B in terms of
the impact on the predictive function. To do so, the method samples values on a segment between X
and B and evaluates a simple pruning criterion at each of these values. However, in the case of inputs
attribution, the choice of the baseline B at zero is a by-product of the deletion evaluation metric. It
consists in removing inputs by setting them to zero. In practice, a missing part of an image could be
anything from a default color, a block pixel or a white noise. On the other hand, in pruning, having
a zero baseline is relevant as the ultimate goal is to remove computations. Consequently, we adapt the
integrated gradient method to pruning and propose the criterion CIGp , formally defined as

CIGp : (Wn, F,D) 7→
S∑

s=0

∥µsWn∥p × ∥∇µsWnF (X ∈ D)∥p (2.15)

where µ ∈]0; 1[ denotes an update rate parameter, that we set to 0.9 on Cifar10 and 0.95 on ImageNet.
As a result, the proposed criterion CIGp , captures the following nuance: some weight values are not
sensitive to slight changes, i.e. small gradients, however as we start decaying their value, they become
more sensitive (i.e. their gradient grows). This is illustrated with an empirical example from ResNet 56
in Figure 2.8. We can see that some neurons (right figure, green neuron) start with high gradient values,
but end up being not costly to prune. In simpler words, some neurons are costly to slightly decay, but
once this is done, going all the way to zero is not semantically expensive. On the other hand, some
neurons (right figure, blue neuron) are not expensive initially, but as we go to zero, their cost increases.
This highlights the importance of such criterion.

In order to further improve the pruning process, we studied the importance of decoupling the pruning
and fine-tuning steps.

2.3.3 Entwining Pruning and Fine-tuning
Let’s consider a ranking of the neurons by importance within a given layer, according to a criterion C.
For each neuron n we have the importance score C(Wn, F,D). Because the model is pre-trained, we have
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Algorithm 1 SInGE Algorithm

Require: neural network F , hyperparameters : O, µ and (ρl)l∈{1,...,L} and dataset D
for l ∈ {1, . . . , L} do

while pruning_rate(Wl) ≤ ρl do ▷ wait until we reach the goal
evaluate M ← CIGp(Wl, F,D) ▷ magnitude estimation
find n = argmin{M} ▷ find the neuron to prune
set Wn

l ← 0 ▷ the pruning is performed here
for o ∈ {1, . . . , O} do

fine-tune the whole network F over a batch from D
end for

end while
end for

to first prune before doing any kind of fine-tuning, which implies that the least important neuron will
necessarily be pruned. Let’s assume that this neuron is neuron n = 1. Then the question at hand is:
should we prune the second least important neuron before or after fine-tuning.

If we entwine the fine-tuning and pruning processes, this leads to an iterative method in which we
prune the least important neuron among remaining neurons and then fine-tune the pruned network. This
method does provide a more relevant importance measurement, as the pth removed neuron is ranked
without the p − 1 least neurons that are known to be less important. However, this approach raises a
question: how does this impact the fine-tuning process? There are two approaches to this issue: instead of
performing S optimization steps after pruning, we either perform S steps between each pruning iteration
or perform S/P steps between each of the P pruning iterations. The first solution introduces a significant
overhead in terms of processing time but offers necessarily higher accuracy for the pruned network as
we are allowed more optimization steps (SP instead of S) and a more relevant ranking. The second
option maintains the processing cost and theoretically offers better trade-offs in terms of compression
v.s. accuracy as compared to the naive approach. Unfortunately, in practice, this second option actually
achieves very similar performance to the first solution. This can be attributed to the fact that the first
optimization are by far the most critical ones. Consequently, with SInGE [254] we both designed a new
pruning criterion and proposed to divide the fine-tuning steps by the number of pruning iterations and
entwine the pruning and fine-tuning phases. This is summarized in the Algorithm 1. The resulting
method bears similarities with attribution methods that were published afterward such as the guided
integrated gradients (GIG) [106] and IDGI [242], in the sense that it does not compute the scores of all
the elements to rank at once, simultaneously. In the following section, we propose to empirically validate
the different aspects of the SInGE method.

2.3.4 Empirical Validation

report In Table 2.7, we provide a comparison of each of the described criterion on Cifar10. For each
method, we simply remove the least important neurons without fine-tuning. We considered three pruning
rates: 75%, 85% and 90%, each representing a different level of difficulty in order to highlight the difference
in performance among the proposed methods. The empirical evidence shows the importance of accounting
for the whole predictive function, as the first criterion to drop in accuracy is the magnitude criterion.
Second, we observe that while the gradient criterion performs decently at a 75% pruning rate, it fails to
keep up above 85% which shows the limitation of the gradient that is addressed by the norm × gradient
and integrated gradient criteria. Furthermore, as a side note, it is worth noting that RED was doing about
75% structured pruning using the redundancy-based approach, without tensor decomposition. Overall,
these results provide a strong incentive to use our adaptation of the integrated gradients criterion for
magnitude-based pruning over the all the aforementioned techniques.

In table 2.8, we evaluate the influence of the fine-tuning process. As expected, the proposed entwined
approach systematically outperforms the standard decoupled solution. This observation is even more
important under the higher pruning rate regime. In other words, the more difficult the pruning goal,
the more important it gets to entwine the pruning and fine-tuning steps. This can be attributed to
two factors: first, as previously mentioned, by performing the fine-tuning after each pruning step, the
following importance measurements become more relevant. Second, as we fine-tune after pruning only
one neuron, the accuracy degradation is limited which leads to a simpler fine-tuning task i.e. it is simpler
to recover from a marginal change in the predictive function. Consequently, we have empirically validated

46/125 February 26, 2024



CHAPTER 2. DEEP NEURAL NETWORK PRUNING

Table 2.7: Pruning and accuracy performance of the different pruning criterion on a ResNet 56 trained
on Cifar10, without fine-tuning. We also report the standard deviation over multiple runs.

Pruning target (% FLOPS / parameters) pruning criterion top-1 accuracy

0.0 / 0.0 baseline 93.46

73.03 / 75.00

magnitude CL1 42.01 ± 0.41
magnitude CL2 42.35 ± 0.38
gradients C∇2 77.68 ± 0.52
magnitude × grad CL2×∇2 92.36 ± 0.17
integrated magnitude × grad CIG2 93.23 ± 0.23

86.46 / 85.00

magnitude CL1 19.14 ± 0.82
magnitude CL2 19.13 ± 0.09
gradients C∇2 28.31 ± 1.75
magnitude × grad CL2×∇2 90.28 ± 0.18
integrated magnitude × grad CIG2 92.80 ± 0.30

88.10 / 90.00

magnitude CL1 10.00 ± 1<
magnitude CL2 10.00 ± 1<
gradients C∇2 10.00 ± 1<
magnitude × grad CL2×∇2 10.00 ± 1<
integrated magnitude × grad CIG2 84.54 ± 0.91

Table 2.8: Comparison between post-pruning and entwined pruning and fine-tuning on a ResNet 56 on
Cifar10.

% Pruning target (% FLOPS / parameters) fine-tuning # steps top-1 accuracy

86.46 / 85.00

post-pruning 1000 92.59
entwined 1000 93.18

post-pruning 2000 92.66
entwined 2000 93.25

post-pruning 5000 93.13
entwined 5000 93.31

88.10 / 90.00

post-pruning 1000 77.2
entwined 1000 85.38

post-pruning 2000 80.89
entwined 2000 87.52

post-pruning 5000 86.39
entwined 5000 90.02

each of the two components that define the SInGE method.
In Table 2.9, we propose to evaluate the proposed method with respect to other structured pruning

techniques on the canonical benchmark: ResNet 50 trained for ImageNet. We consider two pruning rate
setups: high fidelity in terms of accuracy (at least 75% accuracy) and the high compression rates (at
least 50% of the parameters are removed). At first glance, SInGE excels in both setups. In the high
accuracy, SInGE manages to achieve both the highest fidelity and the highest compression rates in terms
of parameters as well as FLOPs removed.

In Table 2.10, we further evaluate SInGE as compared to other existing structured pruning techniques.
We consider a more challenging architecture: MobileNet v2. We considered three setups: 30%, 40% and
50% pruning. It is worth noting that, as we do not prune the last layer, only 64% of the total parameters
have a chance to be pruned. Consequently, our results at 50% pruning are quite remarkable with an
accuracy of 70.01%, i.e.with a 1.79 points accuracy drop. Furthermore, we can see that, contrary to
some other pruning techniques, our implementation of SInGE reduces the number of parameters and
FLOPs in similar proportions, not favoring one over the other.
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Table 2.9: Comparison between existing structured pruning performance on ResNet 50 on ImageNet. In
both the low (< 50% parameters removed) and high (> 50%) pruning regimes, SInGE achieves remarkable
results.

Method % params rm % FLOPS rm accuracy

baseline 0.00 0.00 76.15
Hrank (CVPR 2020) [133] 36.67 43.77 74.98
RED (NeurIPS 2021) [252] 39.6 42.7 76.1
HAP (WACV 2022) [244] 44.59 33.82 75.12

SRR-GR (CVPR 2021) [227] - 45 75.76
SOSP (ICLR 2021) [162] 49 45 75.21

SRR-GR (CVPR 2021) [227] - 55 75.11
SInGE 50.80 ± 0.02 57.35 ± 0.11 76.05 ± 0.07

RED (NeurIPS 2021) [252] 54.7 55.0 71.1
SOSP (ICLR 2021) [162] 54 51 74.4
GDP (ICCV 2021) [80] - 55 73.6

HAP (WACV 2022) [244] 65.26 59.56 74.0
OTO (NeurIPS 2021) [33] 64.1 65.2 73.3
GFP (ICML 2021) [141] - 65.0 73.94

SInGE 63.78 ± 0.01 65.96 ± 0.21 74.7 ± 0.31

Table 2.10: Comparison with existing structured pruning methods on MobileNet V2 backbone for Ima-
geNet.

goal Method % params rm % FLOPS rm accuracy

- baseline 0.00 0.00 71.80

30%

CBS (arxiv 2022) [245] 30.00 - 71.48
Adapt-DCP (TPAMI 2021) [140] 35.01 30.67 71.4
ManiDP-A (CVPR 2021) [211] - 37.2 71.6

SInGE 30.96 31.54 71.67 ± 0.06

40%
CBS (arxiv 2022) [245] 40.00 - 69.37
MDP (CVPR 2020) [78] 43.15 - 69.58

SInGE 40.90 42.30 70.47 ± 0.09

50%

CBS (arxiv 2022) [245] 50.00 - 62.96
Adapt-DCP (TPAMI 2021) - 45.0 64.13
ManiDP-A (CVPR 2021) - 48.8 69.62
Accs (arxiv 2021) [152] 50.00 - 69.76
GFP (ICML 2021) [141] - 50.0 69.16

SInGE 50.13 48.90 70.01 ± 0.22

In Table 2.11, we report our last evaluation of SInGE: unstructured pruning. The proposed method
can be adapted for scalar importance ranking in a straightforward fashion. The only change that is
required is the entwined fine-tuning and pruning. In short, we cannot fine-tune between each scalar
pruning due to their number. Consequently, we apply fine-tuning once every 100 scalar pruning values
and choose this number in order to have the approximately same total number pruning iterations as in
the structured case (and change the value of µ = 0.8). The resulting methods lead to state-of-the-art
performance on ResNet 50.

In summary, importance-based pruning offers greater performance as compared to redundancy-
based pruning. Such pruning benefits from the use of sophisticated importance proxies that we
called pruning criteria from the domain of attribution. Furthermore, the fine-tuning step plays a
central role in the final accuracy and overall performance of the method. This step is better entwined
between the pruning iterations than performed once post-pruning.
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Table 2.11: Comparison with existing unstructured pruning techniques on ResNet 50 on ImageNet.

Method % params rm % FLOPS rm top1 accuracy

DS (NeurIPS 2021) [204] 80.47 72.13 76.15
GMP (arxiv 2019) [67] 80.08 - 76.15
STR (ICML 2020) [117] 79.69 81.17 76.00
RigL (ICML 2020) [59] 80.08 58.92 75.00

SInGE 80.00 82.21 75.12
SInGE 90.00 86.96 73.77

While SInGE offers great performance for a given target global pruning rate, it does suffer from some
limitations. In the following, we propose to address one: how to properly assign a pruning rate to each
layer individually from a global pruning rate.

2.4 Other Applications Related to Pruning

The core idea introduced in this section is to estimate the relative importance of each layer of a deep
neural network with respect to the predictive function outputs. In other words, while the previous
methods aimed at ranking neurons within a layer, we now have to rank layers within the network. A
naive approach to this problem would consist in simply using the neuron-level importance estimation and
reduce it to a scalar in order to get the whole layer importance. However, this approach may not make
sense for several pruning techniques, e.g. the redundancy-based pruning. Consequently, we separate these
two problems. Furthermore, even when a pruning method can be applied to both the neurons and layers
it may only be optimal for one. For example, SInGE is designed for neuron importance estimation and
assumes that the object of study is zeroed-out which is never the case for a whole layer during pruning
which limits the relevance of the neuron pruning criterion as a layer importance estimator.

This problem of layer ranking was first suggested to us at Datakalab, by members of the French
Confiance-AI program, from Valeo. However, the problem was formulated in a significantly different
manner: to achieve robust inference.

2.4.1 Robust Inference
In this specific case, robust inference is defined as robust to hardware failures. The prime example of
hardware failures to detect is the bit-flip. A bit-flip is an occurrence of a random memory bit being
modified (from 0 to 1 or 1 to 0). This kind of robustness is of paramount importance for critical
applications [206, 76]. Such hardware failures can even be deliberately provoked as system attacks in
order to lead to incorrect predictions and give rise to system failures. Such failures can be catastrophic
for some critical systems. For instance, some methods [135] have demonstrated that it was possible to
induce a bit flip every 350ms on a data stream of 500Mbit/s. Another example is the DDR2 memory
sticks that, according to hardware manufacturers would suffer from an average of 22696 errors occur every
year.

The standard approach [137] to tackle the detection of hardware failures and discard the corresponding
computations requires running the inference twice and check that the outputs are strictly identical,
confirming that no bit flip occurred.

In order to address the challenge of robust inference, we propose to narrow the duplicated operations
to the most important layers. This circles back to the initial problem at hand which can also be applied
to neural network pruning. Let’s define the candidate importance layer-wise criteria. The first set of
candidates are zero and first order metrics which were previously6 introduced alongside SInGE.

Zero and First Order Criteria

Weights (magnitude criterion): the data-free, zero order estimation simply measures the weight
norms. In our previous study, we considered the l1 and l2 norm. However, from our empirical search,

6For the sake of section independence, we re-define all the criteria here.
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in the context of layer-wise evaluation, it appears the infinite norm ∥ · ∥∞ offers a systematically better
estimation. The resulting criterion, denoted W , offers the advantage of being fairly simple but does not
account for inter-layer relationships.

W : (f,X )→ (∥w1∥∞, ..., ∥wL∥∞) (2.16)

Gradients: the gradient criterion has already been introduced and is actually a direct adaptation of
the GradCam [186] attribution technique which computed the gradients of function F w.r.t. each pixel
of the image or feature map. We adapted this criterion to compute the infinite norm of the gradients of
F w.r.t. each weight instead:

∇ : (f,X )→
(∥∥∥∥EX

[
∂f

∂w1

]∥∥∥∥
∞

, ...,

∥∥∥∥EX

[
∂f

∂wL

]∥∥∥∥
∞

)
(2.17)

Weight × gradients: In order to circumvent the intuitive limitations of the previous gradient methods,
their combination has been studied [189, 34] and usually leads to a slight improvement in practice for
attribution:

W×∇ : (f,X )→
(∥∥∥∥EX

[
wl ×

∂f

∂wl

]∥∥∥∥
∞

)
l∈{1,...,L}

(2.18)

Higher Order Criterion

GradCam++: based on GradCam, several iterations of the method have been proposed and Grad-
Cam++ [30] appears to be the most popular one. It uses third order derivatives and can also be adapted
to weight values as follows:

GCam++ : (f,X )→


∥∥∥∥∥∥∥EX


(

∂f
∂wl

)2
2
(

∂f
∂wl

)2
+ wl

(
∂f
∂wl

)3

∥∥∥∥∥∥∥
∞


l∈{1,...,L}

(2.19)

Integrated Gradients Criteria

Integrated gradients (IG): similarly to neuron importance estimation, the integrated gradient attri-
bution technique can be adapted to layer-wise importance:

IG : (f,X )→

∥∥∥∥∥∥EX

 ∑
λ∈[0;1]

∂f

∂λwl

∥∥∥∥∥∥
∞


l∈{1,...,L}

(2.20)

Guided integrated gradients (GIG) similarly to the other famous attribution technique GradCam,
the integrated gradients have been widely studied, and several iterations have been proposed. A first
example is GIG [106] which consists in decaying, for each integrated gradient iteration, only the least
important values, as defined by their gradient magnitudes || ∂f

∂λwl
||.

Important direction guided integrated gradients (IDGI) [242] is the latest improvement over
the IG method, as this thesis concludes. Its core idea consists in using the direction of the gradients,
weighted by the difference between the outputs at each integrated gradients iteration.

Statistical Criteria

The aforementioned approaches are deterministic with respect to the weight values. However, we know
that the loss landscape of deep neural networks can be very chaotic and despite all best efforts, trained
neural network never actually converge to zero gradients on challenging tasks. Consequently, statistical
criteria evaluate noised weight values rather than the original weights.

SmoothGrad [193] criterion simply evaluate the expected gradients with respect to the weights per-
turbed by a Gaussian white noise:

Smooth∇ : (f,X )→
(∥∥∥∥EXtest,N

[
∂f

∂wl +N

]∥∥∥∥
∞

)
l∈{1,...,L}

(2.21)
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VarGrad [2] leverages the intuition that the more sensitive the weight values and their corresponding
gradient, the higher the variance of said gradients with respect to a small additive noise:

Var∇ : (f,X )→
(∥∥∥∥VXtest,N

[
∂f

∂wl +N

]∥∥∥∥
∞

)
l∈{1,...,L}

(2.22)

Black Box Criterion

All the aforementioned methods assume that the neural network behaves as a white box, as we can use
the chain rule in order to compute the gradients and higher order derivative analytically. On the other
hand, black box approaches in attribution assume that no intermediate operations are known. In practice,
such methods iteratively measured the sensitivity of the predictive function to partially modified inputs.
These methods can be seen as resolving an inverse problem and have in part struggled to keep the interest
of the AI community [37].

HSIC [163] was introduced at NeurIPS 20227 and is a recent attempt at designing faster black-box
attribution methods which narrow the gap in performance with white box methods. The core idea
consists in modelling the dependencies between images regions or patches and variations of the predictive
function:

HSIC : (f,X )→ (EX [hsic(w1)] , ...,EX [hsic(wL)]) (2.23)

2.4.2 Empirical Robustness Evaluation

We propose to evaluate the capacity of the proposed criteria to rank layers properly. To do so, we built
a toy dataset for which we could define a ground truth for the layer rankings.

Ranking Dataset

In order to have a tractable problem in layer ranking, we need our models to achieve a high accuracy
with a low number of layers. To do so, we considered MOON dataset for binary classification [168]. For
the sake of diversity and to represent as many real world case scenarii, the dataset of models and layer
rankings should contain different architecture archetypes:

• The vanilla architecture: a sequential neural network comprising fully-connected layers and ReLU
activations in the same fashion as the VGG [190] architecture.

• The skip connection architecture: a refinement of the vanilla architecture, which takes inspiration
from the ResNet family [86].

• The stochastic depth architecture: which leverages skip connections [98] and is likely to influence
the role of each layers as it forces the first layers to extract refined semantics earlier in the network.

• The transformer architecture: based on the trending transformer block, comprising a multi-head
self-attention module followed by a feed forward network.

For each of these possible architectures, the number of layers (or blocks) was randomly sampled, uniformly
between 2 and 6. The layer widths uniformly range from 8 to 128 output neurons. We trained each
network using the ADAM optimizer with learning rate 0.01 for 6 epochs, which led every network to
approximately 100% test accuracy.

In order to obtain the ground truth regarding the layers’ importance rankings, we apply different
types of noise perturbations to the weights and activations to measure the impact on the accuracy. For
each noise distribution, we varied the signal-to-noise ratio in order to evaluate the behavior of the model
w.r.t. more or less difficult settings.

• Multiplicative impulse (pepper), denoted U : we randomly prune some weights and activations
under a uniform prior. This corresponds to unstructured and structured pruning at the weight and
activation levels, respectively.

7Paul Novello and Thomas Fel, the authors of HSIC, presented their work at NeurIPS and NeurIPS in Paris, they were
great. We met and had a nice conversation about the interactions between explainable AI and compression. It had some
perks to participate in the organization of NeurIPS in Paris !
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Table 2.12: For each family of architectures (Vanilla, skip, skip+SD and transfo) and distribution prior
(U , Gaussian N and D, applied to weights (W) or activations (act)), we report the proportion of correct
rankings of each criterion (with l∞ as the reduction method). The scores are averaged over 1000 sampled
architectures per row.

Archi Noise W ∇ W×∇ GCam++ IG GIG IDGI Smooth∇ Var∇ Hsic
Vanilla U on W 25 76 76 76 59 49 71 71 28 38
Vanilla N on W 42 68 68 68 59 56 66 66 36 47
Vanilla D on W 32 60 60 33 41 60 48 60 43 60
Vanilla U on act 82 82 82 33 67 78 78 53 29 77
Vanilla N on act 82 82 82 33 67 78 78 53 29 63
Vanilla D on act 82 82 82 33 67 77 77 55 28 49
skip U on W 46 47 43 64 44 43 47 52 77 28
skip N on W 23 31 32 71 27 33 28 28 39 34
skip D on W 30 30 32 72 28 31 27 31 47 16

skip+SD U on W 42 42 42 25 41 42 42 17 10 22
skip+SD N on W 21 24 24 53 23 23 22 22 32 40
skip+SD D on W 20 21 17 47 19 19 20 20 29 12
transfo U on W 0 0 0 22 0 0 0 6 12 0
transfo N on W 1 1 1 10 0 1 1 18 12 7
transfo D on W 0 0 0 7 0 0 0 5 14 0

avg 35 43 43 43 36 39 40 37 31 33

• Additive Gaussian noise N (0, σ), with σ ∈]0,max(w ∈Wl)] applied to either weights or activations.
This setting simulates a quantization or hashing process as a small, additive perturbation.

• Additive impulse or Dirac D noise, where a large perturbation (between 0 and max(w ∈ Wl)) is
applied to a proportion between 0 and 100% of uniformly drawn random weights or activations.
This simulates a random bit flip.

The ground truth is then derived from the accuracy degradation induced by these perturbations. The
whole dataset is available on GitHub8.

Ranking Evaluation

In Table 2.12, we report the performance of the proposed criterion on our toy dataset. We can make several
observations. First, it appears that on average, the GradCam++ and simple first order criteria (gradients
and weights × gradients) offer the highest performance across the board. However, a second observation
gives us that the GradCam++ actually performs best on more complex architectures with perturbations
on the weight values, while the first order methods particularly shine on the vanilla architecture with
noise applied to the activations. However, the GradCam++ results on such architectures, in particular
on the transformer architecture, are not satisfactory. This leads us to the conclusion that the first order
methods are the most likely to achieve the best performance in general.

ImageNet Evaluation

In order to evaluate the proposed criteria with respect to bit-flip detection, we simulate actual bit-flips
and measure the induced accuracy degradation. We made the code for evaluation available on GitHub9.
The metric is as follows: we monitor the l most important layers according to a criterion, we apply
random bit-flips to the others and measure the accuracy. We go from all layers but one, i.e. l = L− 1, all
the way down to l = 0. In Figure 2.9, we report the evolution of the accuracy of a ResNet 50 trained on
ImageNet. Similarly to what precedes, we observe the good performance of the W ×∇ and GradCam++
criteria. However, in this case, other criteria such as ∇ under perform. This observation can be explained
by the fact that gradients only measure local changes and specifically target the weights. Consequently,
they are unlikely to account for perturbations to both weights and activations. Meanwhile, the bit-flips

8https://github.com/publicanonymoussubmission/LayersRanking
9https://github.com/publicanonymoussubmission/bitswapdetection
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Figure 2.9: Evolution of the accuracy of a ResNet 50 trained on ImageNet as we progressively left
important layers unchecked for random bit-swaps. All curves trend downwards as less bit-swap are
detected, hence increasing the damage to the predictive function. The higher the accuracy, the better.

are randomly applied to both weights and activations and can induce huge changes that break this locality
principle. Nonetheless, our results demonstrate that it is possible to preserve the accuracy without more
than 1% accuracy loss at a fraction of the cost of running the model twice. As a result, we only need to
monitor 17 layers out of 52 which significantly reduces the redundancy overhead.

Stemming from these results, we deduce that the proposed criteria are indeed well suited for layer
ranking, which leads to their evaluation for pruning.

2.4.3 Layer Relative Importance

Given a global target pruning rate γ for trained neural network F , of weights (Wl)l∈{1,...,L}. In other
words, our goal consists in removing γ

∑
l #(Wl) parameters where #Wl denotes the number of scalar

weight values in weight tensor Wl. We propose to leverage the proposed criteria C to assign per-layer
pruning rate goals γl and then use pruning criteria to identify the γl proportion of neurons to remove.
Formally, we define the γl as:

γl = α ∗ γ ∗ C(F,D,Wl) (2.24)

with α a normalizing constant such that γ
∑

l #wl =
∑

l γl#wl.
Based on the number of possible combinations of layer-wise and neuron-wise criteria, we performed the

evaluation on the TinyML perf challenge [42] which consists in the compression of a pre-trained ResNet-8,
on Cifar10. Our global goal consists in removing γ = 20% for structured pruning without fine-tuning. In
Table 2.13, we report the accuracies of the pruned models using all the criteria previously introduced for
inter-layer relevance (rows) v.s. intra-layer importance (columns). Our first observation is the overall wide
discrepancy in among the averaged accuracies from the columns (last row) as well as among rows (last
column). This suggests that, while some methods are effective at neuron ranking, they may not be suited
for layer ranking. Unfortunately, the community has been focusing on intra-layer neuron pruning and
may have overlooked the inter-layer relevance and budgetization which plays a significant role. Second,
we observe that ∇ and V ar∇ performs the best overall for layer-wise relevance in that context. In
particular, for layer-wise importance ranking the ∇ criterion combined with IDGI (closest to the SInGE
criterion) for neuron pruning offers the best performance overall, with close results from GradCam++,
Smooth∇ and V ar∇ with integrated gradient based (IG, GIG, IDGI) neuron selection criteria, further
confirming our results with SInGE [254]. In practice, we would recommend the ∇ for layer ranking due
to its simplicity and lesser processing cost.
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Table 2.13: Results (%acc) obtained for TinyML perf challenge ResNet-8 on Cifar-10 with various inter-
layer (rows) and intra-layer (columns) relevance criteria. Accuracies are reported for a global pruning
rate of γ = 20% of a ResNet-8 trained on Cifar-10 averaged over 10 runs and without post-pruning
fine-tuning.

W ∇ W ×∇ GCam++ IG GIG IDGI Smooth∇ Var∇ Hsic avg
W 31 63 18 41 75 75 73 32 21 32 46
∇ 31 71 79 67 80 80 82 55 13 74 63

W ×∇ 31 41 47 32 75 75 75 37 37 50 50
GCam++ 31 27 82 70 80 80 80 12 52 22 54

IG 31 32 64 23 73 75 75 37 65 39 51
GIG 31 32 66 59 75 73 76 32 47 38 53
IDGI 23 21 55 64 76 73 76 28 50 59 53

Smooth∇ 31 17 69 33 50 80 80 62 47 65 53
Var∇ 31 77 75 75 80 80 80 63 28 19 61
Hsic 31 36 57 44 73 75 75 11 26 39 47
avg 30 42 61 51 74 77 77 33 43 44

In summary, inspired from the challenge of robustness to hardware failures, layer-wise importance
ranking can lead to significant performance improvements for pruning techniques. However, the
existing methods fail to work o, the more challenging transformer architectures, leaving plenty of
room for future research.

During this thesis, we had the opportunity to contribute to the domain of deep neural network pruning
both redundancy and importance based, providing new pruning criterion, pruning budgetizations and
even a new pruning granularity. However, in its current state, pruning still remains less effective than
quantization. In the next section, we propose a list of challenges which currently hinder the performance
of pruning and are, at least in part, responsible for the limited impact of pruning.

2.5 Future Challenges for Pruning

2.5.1 Hardware Aware Pruning
As previously discussed, the reason why most compression methods are compared with respect to metrics
such as the number of parameters or FLOPs removed instead of actual latency and throughput is for
the sake of fair comparison, both latency and throughput are sensitive to every aspect of the hardware
device: inference engine version, the OS, the GPU, CPU, motherboard, RAM and so on. However, the
pruning methods may have converged to local minimum where pruning more parameters does improve
the memory footprint but does not necessarily lead to improved latency. In [187], the authors proposed
a solution to this, specific to their hardware. The idea consists in maximizing the importance estimated
by a pruning criterion with a computational cost constraint from empirical measurements of latency.

At Datakalab, one of our intern engineers has implemented their own approach which showed that
removing fewer neurons can actually lead to better performance in terms of latency. However, it appears
that this aspect of pruning is still overlooked in the community and a lot of work should be done in
order to allow for both relevant evaluation (with respect to actual performance) and still allow for fair
comparisons. In our opinion, the release of well grounded, empirically-based, latency estimators could
alleviate this limitation. Such evaluators could come in the form of look-up tables, which, for a given
architecture, output the corresponding latency on a set of hardware. Such work would require a wide
range of hardware in order to offer diversity of end applications and the evaluation of various architectures.

2.5.2 Pruning Granularity
A second key component of pruning which would strongly benefit from a more thorough look into is
the pruning granularity. The two most studied pruning granularities are structured and unstructured
pruning. The former is the most straightforward to leverage but is too constrained for high pruning
rates. The latter is usually very challenging to leverage. To offer other trade-offs in terms of compression
and accuracy, researchers have introduced semi-structured formats. However, these granularities almost
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systematically fall in-between the structured and unstructured pruning, without actually revisiting the
pruning field. In this discussion, we would like to suggest the study of a completely different approach to
deep neural network inference pruning, focused on latency. Instead of pruning neurons or weight values,
we would prune computations. Intuitively, for a given matrix multiplication algorithm, pruning is an
indirect way to omit steps of the original algorithm. In the new paradigm, we would directly prune steps
of said algorithm. A more thorough discussion is provided in Appendix C.4.

These are, to me, the most important aspects over which pruning would benefit from further im-
provements. Still, pruning in its current form is usually less effective than quantization as a compression
technique. During this PhD, we work extensively on the latter, and this constitutes the second track of
our contributions to the compression community.
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Chapter 3

Deep Neural Network Quantization

In chapter 2, we introduced the main dichotomy around the pruning paradigms: redundancy-based
v.s. importance-based. Regarding quantization, we propose to follow a dichotomy regarding data usage.
Following this axis, quantization is often divided in three sub-categories: data-free, gradient-based post-
training quantization (GPTQ) and quantization-aware training (QAT).

Data-free quantization was first introduced at ICCV 2019 [157]. Stemming from the ever-growing
range of pre-trained neural networks available off the shelf, the authors proposed a whole process which
does not require any data to quantize such deep neural networks i.e. to map high precision floating point
representations to low precision fixed point representations. The core challenge initially consists in figuring
a solution for the activation quantization which requires a scaling adapted to their support. However,
in a data-free setup, the estimation of their support requires workarounds, which we will thoroughly
discuss in the upcoming dedicated section. Such quantization approaches bare numerous advantages.
First, their only requirement being a pre-trained neural network, they are not computationally intensive
and scale efficiently to any model size. For instance, on the largest LLMs we worked with, almost all
data-free quantization techniques took under 10 seconds to operate. Second, they are, by design, privacy
compliant. This has been of paramount importance at Datakalab in our discussions with the French
watchdog for privacy rights and technologies (CNIL). During this PhD thesis, we mostly contributed to
data-free quantization, leading to three publications, each of which address a shortcoming of the first
iterations of data-free quantization techniques.

A set of quantization techniques fall in between data-free and GPTQ: data-generative quantization
[243, 129]. Such techniques generate synthetic data from a pre-trained neural network. The core idea is
fairly simple: assume an input white noise X, then optimize X such that the prediction of the trained
neural network over X corresponds to a fictitious label. For instance, for a neural network trained
on ImageNet, we would optimize X such that the output gives a specific class, e.g. an otter. The
different iterations over this generic principle provided several regularization terms based on input-specific
heuristics. The quantization part of these methods is generally limited to already existing data-driven
technique. While the whole process does not actually involve real data, we do not classify these methods
as data-free, as they involve a very computationally expensive data-generation. However, we do not
classify them as GPTQ either as they do not require real data and as such they are privacy compliant
by design. During this thesis, we did not work on these methods, but still considered these for the sake
of performance comparison.

Gradient-based post-training quantization or GPTQ, was initially proposed as an intermediate quanti-
zation configuration between data-free quantization and QAT. However, as the community and literature
grew, it became clear that GPTQ is an entire field of quantization. In its most general formulation [156],
the idea consists in leveraging a calibration set, which corresponds to a fraction of the training data, in
order to optimize the quantized weight values such that they preserve the original predictive function.
During this PhD thesis, we also worked quite extensively on this subject and made a few contributions,
to which we dedicate an entire section of this chapter.

Quantization-aware training (QAT), was the original quantization approach to deep neural network
acceleration. The most significant breakthroughs were two-fold. First, the introduction of the straight-
through estimation [22] (STE) addressed a problem that remains to be the center of attention with regard
to quantization and optimization: the derivative of the rounding operation. As discussed in the first
chapter, the quantization process involves a rounding step, which has a zero derivative. Thus, it requires
a workaround in order to actually optimize with stochastic gradient descent. The STE simply consists
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in omitting the rounding operation in the backward pass, which is equivalent to redefining the gradient
operator of the rounding transformation to be the identity. The second breakthrough was published by
Courbariaux et al. [45] with the introduction of the first binary neural networks. To this day and to
the best of our knowledge, this remains the most impressive feat in the compression community as the
quantization to xnor operations leads to a division by 32 of the memory footprint and multiplies by 58 the
inference speed [173] without hindering the generalization abilities of the resulting trained neural network.
However, such quantization methods are computationally intensive during training. Consequently, it is
only late in this PhD that we had the opportunity to work on them. Still, we propose to wrap this
chapter on a discussion on the current state of QAT and future work, which, to me, may pave the way
towards the deployment of generative AI on edge devices.

3.1 Data-Free Quantization

Following the proposed general outline, we will start with our contributions to data-free quantization.
In order to get a full grasp on the work that was done, we will start with a detailed description of the
starting point of all modern data-free quantization methods.

3.1.1 Fundamental Work
Let F be a trained neural network comprising L layers (fl)l∈{1,...,L} with some of them using weight
tensors Wl and bias tensors bl. In order to quantize any weight tensor W , we require a scaling function
s, an optional transformation of the weight tensor t and a rounding step such that the general definition
of a quantization operator is

Q : W 7→
⌈
t(W )

s(W )

⌋
. (3.1)

In the early iterations of post-training quantization, both a data-free and GPTQ context, the transfor-
mation t is simply the identity operation. On the other hand, the weight scaling function has to satisfy
that, for a target b bit-width, the quantized weight values cover the full range J−(2b−1 − 1); 2b−1 − 1K.
We have full access to the weight values, contrary to intermediate features. This enables us to define a
proper weight scaling function. As a result, the general definition of the scaling function is, to the best
of our knowledge, systematically:

s : W 7→ maxw∈W {|t(w)|}
2b−1 − 1

. (3.2)

As a result, we can generalize this quantization process to both weights and activations for a given layer
f with weights W and input intermediate feature, the resulting quantized layer fQ reads

f ≈ fQ : X 7→ Q−1
x (Qx(X))×Q−1

w (Qw(W )) + b (3.3)

where Q−1 refers to the de-quantization operation defined as Q−1 : A 7→ s(A)A. While the weight
quantization process can be explicitly defined from the trained weights only, we face the first challenge
of data-free quantization: the input quantization. Formally, we need to figure a way to derive the scaling
function for activation quantization. The solution to this challenge was one of the two main contributions
of the fundamental work in data-free quantization: DFQ [157].

Scales from Batch-Normalization Layers

Let’s consider a sequence of two layers f1 and f2 such that the forward pass reads f2 ◦ f1 where f1 is a
batch-normalization layer and f2 a fully-connected layer. Then, by definition of the batch normalization
layer, we have access to statistics on the intermediate features of f2 ◦ f1. Let’s note X the input tensor,
Y the output f1(X), then we derive the statistics from the batch-normalization layer f1 parameters µ,
σ, γ and β:

E[X] = µ

V[X] = σ2

E[Y ] = β

V[Y ] = γ2

(3.4)

Consequently, once the batch-normalization layer f1 is folded in the fully-connected layer f2 to get the
fused fully-connected layer f , we can deduce the input range as [µ − λσ;µ + λσ] with λ ∈ R+. In the
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original article, the authors recommended a default value λ = 6 (keep over 99.99% of the values from the
distribution) in order to achieve the best performance in int8 quantization. As a result, the quantized
layer reads

fQ : X 7→ max{µ− 6σ, µ+ 6σ}
2b−1 − 1

clip2b−1−1
−(2b−1−1)

⌈
X

max{µ−6σ,µ+6σ}
2b−1−1

⌋
×maxw∈W {|t(w)|}

2b−1 − 1

⌈
W

maxw∈W {|t(w)|}
2b−1−1

⌋
+b,

(3.5)
where clip2b−1−1

−(2b−1−1) is a clipping function that enforces the J−(2b−1 − 1); 2b−1 − 1K support. The per-
neuron ranges µ− λσ and µ+ λσ are reduced (using the maximum) to a single scalar value in order to
perform per-tensor quantization. Consequently, we can quantize weights and activations, which leaves
the biases represented in high precision. However, the quantization process is lossy and may induce a
bias. The second main contribution of the original DFQ paper was a solution to this problem: the bias
correction.

Bias Correction

Let’s define the bias introduced by quantization as a shift in the expected per-neuron output post quan-
tization. Formally, for a given input distribution X , then the bias shift reads

E[f(X ]− E[fQ(X ]. (3.6)

Intuitively, a bias shift will lead to a shift in the intermediate features range support which, in turn, will
affect the quantization ranges. Formally, if the activations shift from their training ranges, the scaling
function will lead to the clipping of the intermediate activations. Consequently, we have to ensure that
we do not allow for a bias shift induced by the quantization process. In other words, we need to find an
update b̃ to the bias tensor b such that

E[f(X ]− E[fQ(X ]− b̃ = 0. (3.7)

In order to compute the expectations E[f(X ] and E[fQ(X ], we use the linearity of the expectation with
E[X ] = µ. Then the bias correction can be analytically derived using

b̃ = Wµ−Q−1
w (Qw(W ))µ. (3.8)

Thus, applying bias correction consists in setting the bias of the quantized layer as b + b̃. Stemming
from this strong data-free quantization baseline, the authors of [157] proposed to perform per-tensor
quantization on both weight values and activations. Such a quantization scheme would apply the same
scaling factor to all output dimensions of the weight tensor, and as such would be very sensitive to
the inter-channels discrepancies. To circumvent this limitation, the authors of [157] propose to perform
cross-layer equalization.

Cross-Layer Equalization

The core idea of cross-layer equalization is to leverage the property of the ReLU activation: λReLU(x) =
ReLU(λx) for λ ∈ R+. This property holds for every piece-wise affine activation function. However, in
practice, only the ReLU satisfies this property, among commonly used activation functions.

Stemming from this observation, the cross layer equalization method consists in computing a set of
per-channel scalings Sl such that, for all layers, we update the current weight tensor Wl ← SlWlS

−1
l+1.

As a result, over several iterations of this process, the weight values converge to a less unbalanced set of
tensors. However, according to the qualitative analysis provided in DFQ, it appears that, on top of being
bounded to ReLU networks, the cross layer equalization never fully converges. This can be attributed
to the difficulty of enforcing a cross-neuron balance post-training. Consequently, we proposed to take
the opposite approach in SPIQ [256]: instead of trying to enable per-tensor quantization over the whole
network, SPIQ unlocks per-channel quantization for both weights and activations.

3.1.2 Quantization Granularity
The definition of the activation scaling s(X) from equation 3.5 induces a dimensionality constraint. We
need to apply s(X) to both X, which has ni channels, and Qx(X)Qx(W ) which has no channels, i.e. if
s(X) is a vector then the dimension of s(X) is constrained to be either nl−1, nl or 1. In order to be
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Figure 3.1: Illustration of the accuracy drop attributable to the input and activation quantization. We
perform input quantization as defined in [157] as well as SPIQ (ours) but keep the DFQ quantized
weight values, i.e.per-tensor weight quantization is applied. The results show that input quantization
is paramount to the network accuracy preservation, most notably on already compact designs (e.g. Mo-
bileNet and EfficientNet). On all tested configurations, SPIQ significantly improves over DFQ [157].

Table 3.1: Comparison of the inference time on the ImageNet validation set for different architectures,
quantized with the static (same runtime as SPIQ) and the dynamic methods. We report the boost
induced by using the proposed static method.

Method ResNet MobNet V2 DenseNet EffNet B0
dynamic 79s 50s 93s 59s
SPIQ 63s 41s 77s 51s
boost 20.2% 18.0% 17.2% 13.6%

applied to both X and Qx(X)Qx(W ), it should either be a scalar or of size nl−1 and nl simultaneously.
Consequently, s(X) is bounded to be a single, scalar value.

As previously mentioned, the input scaling factor s(X) is derived from the batch normalization layer.
Such approach offers a static input scaling factor, i.e. the scaling terms are set once and for all. How-
ever, this approach leads to significant accuracy degradation, especially when considering low bit-widths
as shown in Figure 3.1. In order to alleviate this accuracy degradation, some researchers have intro-
duced dynamic quantization, which is adaptive to the current individual input. The goal is to compute
s(X)dynamic ∈ R based on the inferred input X at the cost of overhead computations at inference. Con-
sequently,

s(X)dynamic =
maxx∈X{|x|}

2b−1 − 1
(3.9)

The computation of the maximum is performed at each inference, which adds a significant computational
overhead as shown in Table 3.1. However, with respect to the resulting accuracy, the dynamic scaling
factor is necessarily tighter to the original distribution, by definition.

Nevertheless, with SPIQ, we propose a solution to achieve both an even tighter fit than the dynamic
approach, on average, and preserve the inference properties of static input quantization. We define the
scaling vector s(X)spiq ∈ Rni using the batch normalization layers. Formally, instead of reducing the
scaling vector max{µ−6σ,µ+6σ}

2b−1−1
, we simply keep it as is. Thus, we get a scaling vector instead of a scalar

one: s(X)spiq ∈ Rni . However, we are no longer able to perform the de-quantization as described in
equation 3.5 because of dimensionality constraints. In other words, while the scaling vector s(X)spiq

can be applied to X, it does not match the dimensions of the tensor product output Qx(X)Qw(W ). To
tackle this limitation, we propose to decompose the quantization in two steps. Intuitively, we propose to
fold the input de-quantization operation within the weight values, which would not only perform their
learned transformation but also de-quantize the input tensors. In practice, this bears similarities with
the aforementioned cross-layer equalization process where the scaling factor S is given by the activation
ranges and where we keep a per-channel quantization inference. Formally, first, we update the weight
tensors Wl such that they apply both the inverse of the rescaling s(X)spiq to the inputs X and the
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Figure 3.2: Influence of hyperparameter λ on top1 accuracy for weights quantized in int8 using the naive
per-channel quantization and inputs quantized either in int8 or int4 for input quantization, on ResNet
50, MobileNet V2, DenseNet 121 and EfficientNet B0 for classification on ImageNet.

operation originally defined by Wl. Then we note,

W spiq
l = diag(s(X)spiq)×Wl (3.10)

where diag is the transformation of a vector in a diagonal matrix. Second, we scale the new value W spiq
l

as a single weight tensor. Consequently, equation 3.5 becomes:

fq
l : Il 7→ s(Wl

spiq)⊙

(⌊
W spiq

l

s(W spiq
l )

⌉
×
⌊

X

s(X)spiq

⌉)
(3.11)

The resulting method offers a solution to the full per-channel quantization of both weights and acti-
vations for any weight quantization operator. In the following section, we evaluate the proposed SPIQ
method as compared to per-tensor static and dynamic quantization alternatives, as well as to other
data-free state-of-the-art quantization techniques.

Empirical Validation

In Figure 3.2, we provide an empirical validation of the selection of the λ parameter from the definition
of input support derived from statistics in batch-normalization layers. Based on our results on ImageNet,
we observe that the selection of the lambda parameter is very sensitive to the target bit-width. In higher
precision, such as in 8 bits activation quantization, λ = 9 is optimal across the studied architecture. In
particular, we can observe that the DenseNet architecture faces a decrease in accuracy as λ grows past
the value of 8. On the flip side, when working with low precision bit-widths, it appears that lower values
of λ enable higher accuracies. As we work in a data-free and low-bit setup, we recommend the use of
λ = 4 for the highest average performance across deep neural networks. Stemming from these guidelines,
we evaluate the proposed input quantization schemes.

In Figure 3.3, we evaluate the three approaches: per-tensor static, per-tensor dynamic and per-channel
static input quantization, on several architectures trained on ImageNet. We observe that the proposed
SPIQ approach offers better trade-offs than both per-tensor approaches. In particular, on the ResNet,
DenseNet and EfficientNet families, it appears that SPIQ systematically outperforms the other methods
by a significant margin, especially on the more challenging, low bit-widths. On the other hand, on the
MobileNet v2 family, it seems that the dynamic quantization achieves a slightly higher accuracy at the
expense of inference speed. These results rise to a question: why don’t we propose to perform dynamic
per-channel quantization to further improve accuracy? The answer is the lack of feasibility. In short, in
order to perform dynamic per-channel quantization, we would have to re-quantize the weight tensors at
each inference pass which would slow down the inference to the point where the quantized model would
be slower than the original model, which would defeat the initial purpose of quantization. Consequently,
we can assert that, overall, the proposed SPIQ method offers the best trade-offs in terms of accuracy
v.s. latency for input quantization.
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Figure 3.3: Comparison between SPIQ v.s. static and dynamic inputs quantization. The weight quanti-
zation is fixed to 8 bits, and we vary the input bit range from int2 (ternary quantization) to int8. We
report the top1 accuracy on ImageNet for ResNet 50, MobileNet V2, EfficientNet B0 and DenseNet 121.

Comparison to State-of-the-Art Data-free Quantization

In order to achieve state-of-the-art performance in uniform data-free quantization, we propose to combine
SQuant [43] with SPIQ. SQuant focuses on weight quantization by minimizing the signed quantization
error instead of the absolute quantization error1. In Table 3.2, we provide a thorough comparison between
data-free and data-generative quantization methods on the canonical benchmark: ResNet 50 trained on
ImageNet. We draw several observations:

• in W8/A8, it appears that most data-free quantization technique achieve near full-precision per-
formance. For instance, [43] achieves 76.04 accuracy, which corresponds to a 0.11 accuracy drop.
Still, SPIQ enables [43] to fully recover and achieve the exact full-precision accuracy. This suggests
that the main degradation was induced by the intermediate features quantization (fig 3.1).

• in W6/A8, all data-free quantization methods start to suffer a more significant accuracy degradation.
Meanwhile, SPIQ improves the performance of [43] and limits the accuracy drop to merely 0.01
points.

• in W4/A8, SPIQ increases the accuracy of [43] by 1.10 points, almost reaching 70% accuracy.

It is worth noting that we report 8 bits activation, while in the original articles of SQuant [43] and SPIQ
[256] such quantization would have been noted as 4 bits. This is a consequence of the mistake that
we highlighted in the first chapter (section 1.4.3 at page 24), where the activation quantization is not
properly enforced on all layers. As a result, the experiments were conducted in a kind of mixed-precision
setup where some layers are quantized in W4/A4 and some are quantized in W4/A8. In order to further
highlight this error (especially as compared to works where we corrected this mistake), we propose to
note it as 8 bits activation quantization. Still, our conclusion holds as: SPIQ enables higher accuracy on
the ResNet family without having a massive impact on the latency.

In table 3.3, we extend this evaluation to more deep neural network architectures. Our first observation
is that SPIQ shows some significant accuracy improvements on MobileNet v2, DenseNet and EfficientNet.
This result, on its own, motivates the use of the proposed method. For instance, on MobileNet in W6/A8,
the proposed SPIQ achieves 7.86 accuracy improvement. On EfficientNet, in W6/A8, we see an 20.16
increase in accuracy. This phenomenon can be explained by several factors. First, the EfficientNet
architecture leverages the squeeze and excite computational block which leads to significant discrepancies
across channels, to which SPIQ offers robustness for the quantization process. Regarding the MobileNet
architecture, the explanation is empirical: stemming from the observations made in DFQ, it appears that
these compact deep neural networks are particularly prone to significant per-channel discrepancies. As
a result, the proposed SPIQ methods is of great relevance for the most challenging architectures from a
quantization viewpoint. Furthermore, as stated in chapter 1, these results on ImageNet are expected to
hold true for other computer vision tasks.

In Table 3.4 and 3.5, we propose to empirically confirm this assertion in the case of SPIQ on both report
image segmentation on CityScapes [44] and object detection on VOC [60], respectively. As announced,
we observe the same behavior as on ImageNet, with SPIQ significantly improving over both the original
SQuant (with per-tensor static quantization) and also over the dynamic input quantization. Furthermore,

1Intuitively, if we had a vector
(
0.8 0.8 0.7

)
its quantized counterpart would be

(
1 1 1

)
with the signed quanti-

zation errors
(
+0.2 +0.2 +0.3

)
. However, with SQuant, we get

(
1 1 0

)
and get a total signed error of −0.3 instead

of the initial 0.7.
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Table 3.2: Comparison between state-of-the-art, data-free, post training quantization techniques with
ResNet 50 on ImageNet. We distinguish methods requiring data generation or not (No DG). In SPIQ
the weight quantization method is SQuant [43].

Method No DG W-bit A-bit Accuracy

R
es

N
et

50

Baseline - 32 32 76.15
DFQ [157] ✓ 8 8 75.45
ZeroQ [28] ✗ 8 8 75.89
DSG [264] ✗ 8 8 75.87

GDFQ [240] ✗ 8 8 75.71
SQuant [43] ✓ 8 8 76.04
SPIQ [256] ✓ 8 8 76.15
DFQ [157] ✓ 6 8 71.36
ZeroQ [28] ✗ 6 8 72.93
DSG [264] ✗ 6 8 74.07

GDFQ [240] ✗ 6 8 74.59
SQuant [43] ✓ 6 8 75.95
SPIQ [256] ✓ 6 8 76.14
DFQ [157] ✓ 4 8 0.10
ZeroQ [28] ✗ 4 8 7.75
DSG [264] ✗ 4 8 23.10

GDFQ [240] ✗ 4 8 55.65
SQuant [43] ✓ 4 8 68.60
SPIQ [256] ✓ 4 8 69.70

it appears that these two benchmarks are actually less challenging than ImageNet, as we achieve near full-
precision accuracy at lower bit-widths. This further highlights the importance of per-channel quantization
for data-free methods in order to preserve the information carried over by the intermediate features of
deep neural networks.

In Figure 3.4, we conclude the study of the SPIQ method with a qualitative analysis of the resulting
intermediate activations. In short, we observe an enhanced information preservation through both SPIQ
and dynamic quantization. This is visually blatant with deeper layers (right side of the figure) where the
per-tensor static approach contains blank (full black) feature maps.

In summary, the granularity of the activation quantization has a massive impact on the accuracy of
the quantized neural networks. In particular, we showed that compact architectures are significantly
more sensitive to this aspect of quantization. The proposed SPIQ method offers the performance of
per-channel quantization of both weights and activations without hindering the inference speed by
folding the activation de-quantization in the quantized weights.

As a result, we designed a novel state-of-the-art data-free, uniform quantization method. It offers a
tighter fit to the original distribution. However, these distributions are often non-uniform. Consequently,
uniform quantization can only achieve so much. In order to address this limitation, non-uniform quan-
tization proposes different approaches to quantization. During this thesis, we contributed to this side of
the field with PowerQuant [255].

3.1.3 Non-Uniform Quantization

Let F be a trained deep neural network. Considering the aforementioned quantization techniques, the
quantized counterpart to F would still perform matrix multiplications, simply using more efficient data
representations. On the contrary, in prior works on non-uniform quantization [18, 99, 104, 234, 260,
153, 268], the full precision tensors were mapped to a quantized space using non-uniform transforma-
tions, which led to a change in the nature of the mathematical operation to perform at inference. A
prime example of such quantization scheme is the logarithmic quantization [263] which uses the log func-
tion to quantize the weights and converts the quantized weights to encode bit shifts instead of scalar
multiplications.

In order to alleviate the need for the support of new instruction sets, we searched for a non-uniform
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Table 3.3: Comparison between state-of-the-art data-free, post training quantization techniques with
MobileNet V2, DenseNet 121 and EfficientNet B0 on ImageNet. We focused on data-free post training
quantization methods that don’t involve back-propagation (no BP).

Method No BP W-bit A-bit Accuracy

M
ob

ile
N

et
V

2

Baseline - 32 32 71.80
DFQ [157] ✓ 8 8 70.92
SQuant [43] ✓ 8 8 71.68
SPIQ [256] ✓ 8 8 71.79
DFQ [157] ✓ 6 8 45.84
SQuant [43] ✓ 6 8 55.38
SPIQ [256] ✓ 6 8 63.24
DFQ [157] ✓ 4 8 0.10
SQuant [43] ✓ 4 8 0.21
SPIQ [256] ✓ 4 8 1.28

D
en

se
N

et
12

1

Baseline - 32 32 75.00
DFQ [157] ✓ 8 8 74.75
OCS [267] ✓ 8 8 74.10

SQuant [43] ✓ 8 8 74.70
SPIQ [256] ✓ 8 8 75.00
DFQ [157] ✓ 6 8 73.47
OCS [267] ✓ 6 8 65.80

SQuant [43] ✓ 6 8 73.62
SPIQ [256] ✓ 6 8 74.54
DFQ [157] ✓ 4 8 0.10
OCS [267] ✓ 4 8 0.10

SQuant [43] ✓ 4 8 47.14
SPIQ [256] ✓ 4 8 51.83

E
ffi

ci
en

tN
et

B
0

Baseline - 32 32 77.10
DFQ [157] ✓ 8 8 46.43
SQuant [43] ✓ 8 8 76.93
SPIQ [256] ✓ 8 8 77.02
DFQ [157] ✓ 6 8 20.29
SQuant [43] ✓ 6 8 54.51
SPIQ [256] ✓ 6 8 74.67
DFQ [157] ✓ 4 8 0.11
SQuant [43] ✓ 4 8 0.12
SPIQ [256] ✓ 4 8 0.62

Table 3.4: Performance (mIoU) on semantic segmentation on CityScapes dataset.

method W4/A8 W6/A8 W8/A8 -

D
ee

pL
ab

V
3+

baseline - - - 70.71
DFQ + static 6.51 45.71 70.11 -

DFQ + dynamic 7.51 66.65 70.22 -
SQuant + static 7.69 66.77 70.21 -

SQuant + dynamic 28.87 66.98 70.42 -
SPIQ 36.14 68.69 70.66 -

quantization method that would map scalar multiplications to scalar multiplications and proposed a
novel data-free quantization operator dubbed PowerQuant [255]. Formally, stemming on the previously
introduced definition of a quantization operator Q in equation 3.1, we are actually searching for a trans-
formation t ∈ T such that,

∀t ∈ T , ∀x, y ∈ R∗
+, (t(x)× t(y)) = t(x× y) (3.12)

In other words, we are searching for a quantization operator from the set of automorphisms of the
group (R∗

+,×). Formally, such automorphisms are the power functions x 7→ xa.
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Table 3.5: Performance (mAP) on object detection on Pascal VOC 2012 dataset with SSD MobileNet.

method W4/A8 W6/A8 W8/A8 -

SS
D

M
ob

ile
N

et baseline - - - 68.56
DFQ + static 3.94 53.52 67.91 -

DFQ + dynamic 15.95 62.31 67.52 -
SQuant + static 14.98 61.29 68.43 -

SQuant + dynamic 35.47 66.72 68.56 -
SPIQ 37.88 68.01 68.56 -

Resnet 50 Layer #2 Resnet 50 Layer #37
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Figure 3.4: Illustration of different feature map channels of a quantized (static, dynamic and SPIQ)
ResNet 50.

Lemma 3.1.1. The set of continuous automorphisms of (R∗
+,×) is defined by the set of power

functions Q = {Q : x 7→ xa|a ∈ R}.

We provide proof in Appendix D.1. Consequently, the set Q of candidate quantization operators derived
from these power functions is formally defined as

Q =

{
Qa : W 7→

⌈
(2b−1 − 1)

sign(W )× |W |a

max |W |a

⌋ ∣∣∣a ∈ R
}
. (3.13)

Intuitively, we introduce the absolute value for the weight tensors and their sign in order to generalize
the power functions to the entire real numbers set. In Figure 3.5, we illustrate the influence of the power
exponent parameter a on the quantization process and quantized space:

• For larger values of a > 1, the power quantization will assign more precision (lower quantization
error) to the tails of the support of the tensor. Intuitively, this comes from the fact that the step
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Figure 3.5: Influence of the power parameter a on the quantized distribution for weights distributed
following a Gaussian prior. In such a case, the reconstruction error is typically minimized for a < 1.

size, in the quantized space, will increase as values get near zero and decrease when values get
larger.

• For a = 1, the power quantization corresponds to the standard uniform quantization operator.

• For a < 1, the power quantization will achieve a higher precision in the center of the tensor
distribution and induce larger quantization errors on the tails.

In order to assign the proper power exponent a to the deep neural network we are quantizing in a
data-free fashion, we propose to minimize the average quantization error over the weight values. Formally,
we define this error ϵ as

ϵ(F, a) =

L∑
l=1

∥∥Wl −Q−1
a (Qa(Wl))

∥∥
p
. (3.14)

where ∥ · ∥p denotes the Lp vector norm (in practice p = 2 and the de-quantization operator Q−1
a is

defined as:
Q−1

a (W ) = sign(W )×
∣∣∣∣W × max |W |

2b−1 − 1

∣∣∣∣ 1a (3.15)

This optimization problem bares strong mathematical properties which enable us to solve it using the
Nelder–Mead method [158]. Such solvers work on problems for which derivatives may not be known or,
in our case, are almost-surely zero (due to the rounding operation). In practice, more recent solvers are
not required in order to reach the optimal solution.

Lemma 3.1.2. The minimization problem ϵ(F, a) with respect to a is locally convex and has a
unique global solution.

We provide proof of the two elements of this lemma in Appendices D.2 and D.3. The question
that these properties raise is: is the quantization error correlated enough with respect to the actual
accuracy of the quantized model? If the answer is yes, then we would have a well-defined optimization
problem. Furthermore, this problem would have theoretical guarantees to achieve higher accuracies
than the standard uniform quantization. We introduced the resulting method, which searches for the
appropriate power function to define the quantization operator, under the name: PowerQuant [255].

Empirical Validation

In Figure 3.6, we draw the graph of the accuracies and quantization error ϵ with respect to the value of
a for ResNet 50 and DenseNet 121 both trained for ImageNet. Our observations are three-fold:

• We observe a strong anti-correlation between the accuracy and quantization error, which indicates
that it defines an appropriate optimization proxy. This answers the previous question.

• We empirically confirm the theoretical results, which read: the optimization problem (red curve) is
locally convex around the solution and the solution is unique2.

2On a personal note, it is always a pleasure to find a convex problem in deep learning
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Figure 3.6: Accuracy/reconstruction error relationship for ResNet and DenseNet quantized in W4/A4.

• We also observe that the optimal power exponent a∗ has a value near 0.5 which corresponds to
the use of square root (Q) and square (Q−1) power functions, which are simpler to implement and
optimize for. Consequently, we will use this default value for our comparison to the state-of-the-
art later on. Furthermore, this result provides a novel insight on deep neural network compres-
sion. In unstructured pruning in particular, we often assume that many low values can be pruned
(magnitude-based). However, our results with PowerQuant and the near optimal low value of a
suggest that putting more emphasis on low values is of paramount importance in quantization.

In order to complete our study, we propose a comparison between PowerQuant and the other most
commonly used non-uniform, fixed point, quantization scheme: the log quantization. In Table 3.6, we
report our results on both ResNet 50 and DenseNet 121. It appears that PowerQuant systematically
outperforms the latter which is expected as the uniform quantization is an element of the quantization
operator search space (a = 1). Furthermore, as compared to log quantization, PowerQuant not only
achieves higher accuracy, it does so by a massive margin. For example, on DenseNet, PowerQuant adds
62.76 points over log quantization in W4/A8. A second key takeaway is the limitation of the quantization
error as an indicator for the quantized model accuracy. Across bit-width, we can see that the lower the
bit-width the larger the quantization error (which is intuitive), however, for similar accuracies, we can
observe huge discrepancies in terms of errors. For example, on DenseNet quantized in W4/A8, the log and
uniform quantization share a similar quantization error with an almost 50 points difference in accuracy.
This limitation will be a key element to our extension of PowerQuant, called NUPES which we discuss
in the GPTQ section (3.2).

In order to evaluate the proposed PowerQuant method, we conducted several experiments on a wide
range of convolutional neural networks and vision transformers. Furthermore, as we will showcase, Pow-
erQuant is effective enough to tackle the compression of all of these networks and even that of large
language models.

Comparison to State-of-the-art Quantization Methods

In Table 3.7, we draw comparison between PowerQuant and SOTA data free compression techniques, on
the canonical benchmark ResNet 50 trained on ImageNet. Similarly to SPIQ, we see that the PowerQuant
method reaches the full-precision accuracy in W8/A8 quantization. We can explain this observation by
the fact that the power quantization is applied to both the activation and weight tensors. This enables for
a better preservation of the information carried over through the forward pass, like in SPIQ. Regarding
low bit-width quantization (W4/A8), PowerQuant further improves the performance over SQuant, also
outperforming SPIQ.

As can be empirically observed on the ResNet family of architectures, the activation and weight
tensor distributions follow a bell-shaped curve, which is better captured by the PowerQuant method.
However, these distributions are not peaky enough for PowerQuant to particularly shine. In order to
further highlight the strength of the proposed method, we evaluated it on vision transformers.

In Table 3.8, we provide a thorough comparison of PowerQuant as compared to other data-free
quantization techniques and PSAQ [130], which was designed specifically for transformers quantization.
It appears that transformers are significantly different to quantize as compared to ConvNets. For instance,
DFQ [157] which was the least effective method on ResNets, EfficientNets and DenseNets as compared
to SQuant, is outperforming both SQuant and PSAQ. On the other hand, we observe the generalization
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Table 3.6: Comparison between logarithmic, uniform and the proposed quantization scheme on ResNet
50 trained for ImageNet classification task. We report both the top1 accuracy and the reconstruction
error (equation 3.14) for different quantization configuration (weights noted W and activations noted A).

Architecture Method W-bit A-bit a∗ Accuracy Reconstruction Error

ResNet 50

Baseline 32 32 - 76.15 -
uniform 8 8 1 76.15 1.1 ×10−4

logarithmic 8 8 - 76.12 2.0 ×10−4

PowerQuant 8 8 0.55 76.15 1.0 ×10−4

uniform 6 8 1 75.07 8.0 ×10−4

logarithmic 6 8 - 75.37 4.6 ×10−4

power (ours) 6 8 0.55 75.95 4.3 ×10−4

uniform 4 8 1 54.68 3.5 ×10−3

logarithmic 4 8 - 57.07 2.1 ×10−3

PowerQuant 4 8 0.55 70.53 1.9 ×10−3

DenseNet 121

Baseline 32 32 - 75.00 -
uniform 8 8 1 75.00 2.8 ×10−4

logarithmic 8 8 - 74.91 2.5 ×10−4

PowerQuant 8 8 0.60 75.00 2.2 ×10−4

uniform 6 8 1 74.47 1.1 ×10−3

logarithmic 6 8 - 72.71 1.0 ×10−3

power (ours) 6 8 0.55 74.84 0.7 ×10−3

uniform 4 8 1 54.83 4.7 ×10−3

logarithmic 4 8 - 5.28 4.8 ×10−3

PowerQuant 4 8 0.55 68.04 3.1 ×10−3

Table 3.7: Comparison between state-of-the-art post training quantization techniques on ResNet 50 on
ImageNet. We distinguish methods relying on data (synthetic or real) or not. In addition to being fully
data-free, our approach significantly outperforms existing methods.

Architecture Method Data W-bit A-bit Accuracy gap

ResNet 50

Baseline - 32 32 76.15 -
DFQ [157] No 8 8 75.45 -0.70
ZeroQ [28] Synthetic 8 8 75.89 -0.26
DSG [264] Synthetic 8 8 75.87 -0.28

GDFQ [240] Synthetic 8 8 75.71 -0.44
SQuant [43] No 8 8 76.04 -0.11

PowerQuant [255] No 8 8 76.15 0.00
DFQ [157] No 4 8 0.10 -76.05
ZeroQ [28] Synthetic 4 8 7.75 -68.40
DSG [264] Synthetic 4 8 23.10 -53.05

GDFQ [240] Synthetic 4 8 55.65 -20.50
SQuant [43] No 4 8 68.60 -7.55

PowerQuant [255] No 4 8 70.29 -5.62

capacity of the proposed PowerQuant which achieves remarkable results on all the tested transformer
architectures. In particular, on ViT, we can see that not only PowerQuant outperforms other methods,
but it does so in a setup involving a much smaller bit-width.

The rise of large language models has brought a new challenge for data-free quantization and a renewed
interest for these methods which scale well with the model size. The difficulty to quantize such models
comes from the presence of outliers: values that are significantly further from the distribution mean in
terms of standard deviations [50]. When performing previously introduced state-of-the-art quantization
schemes such as DFQ [157] or SQuant [43], the quantization process simply rounds to zero almost every
value because of the scaling factor. Formally, the scaling factor is derived from the tensor support, which
is stretched out by the outliers. This is particularly true for weight tensors. However, this stretch leads
to all the remaining values behind concentrated around zero and erased by the rounding step. This
phenomenon is illustrated in Figure 3.7. We observe that LLMs have outliers that are over 17 standard
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Table 3.8: Comparison of data-free quantization methods on ViT and DeiT trained on ImageNet.

model method W / A accuracy

ViT

baseline -/- 78.05%
DFQ (ICCV 2019) 8/8 70.33%

SQuant (ICLR 2022) 8/8 68.85%
PSAQ (arxiv 2022) 8/8 37.36%

PowerQuant 8/8 77.46%
DFQ (ICCV 2019) 4/8 66.63%

SQuant (ICLR 2022) 4/8 64.62%
PSAQ (arxiv 2022) 4/8 25.34%

PowerQuant 4/8 75.24%
(a) Evaluation for ViT Base

model method W / A accuracy

DeiT T

baseline -/- 72.21%
DFQ (ICCV 2019) 8/8 71.32%

SQuant (ICLR 2022) 8/8 71.11%
PSAQ (arxiv 2022) 8/8 71.56%

PowerQuant 8/8 72.23%
DFQ (ICCV 2019) 4/8 67.71%

SQuant (ICLR 2022) 4/8 67.58%
PSAQ (arxiv 2022) 4/8 65.57%

PowerQuant 4/8 69.77%
(b) Evaluation for DeiT Tiny

model method W / A accuracy

DeiT S

baseline -/- 79.85%
DFQ (ICCV 2019) 8/8 78.76%

SQuant (ICLR 2022) 8/8 78.94%
PSAQ (arxiv 2022) 8/8 76.92%

PowerQuant 8/8 79.33%
DFQ (ICCV 2019) 4/8 76.75%

SQuant (ICLR 2022) 4/8 76.61%
PSAQ (arxiv 2022) 4/8 73.23%

PowerQuant 4/8 78.16%
(c) Evaluation for DeiT Small

model method W / A accuracy

DeiT B

baseline -/- 81.85%
DFQ (ICCV 2019) 8/8 80.72%

SQuant (ICLR 2022) 8/8 80.60%
PSAQ (arxiv 2022) 8/8 79.10%

PowerQuant 8/8 81.26%
DFQ (ICCV 2019) 4/8 79.41%

SQuant (ICLR 2022) 4/8 79.21%
PSAQ (arxiv 2022) 4/8 77.05%

PowerQuant 4/8 80.67%
(d) Evaluation for DeiT Base

Table 3.9: Evaluation on data-free quantization methods on large language models in W4/A16 quantiza-
tion for common sense reasoning tasks.

model method OBQA ARC-E ARC-C WinoGrande HellaSwag PIQA BoolQ Average

Dolly v2 3B

- 27.600 61.742 34.044 59.274 49.861 73.885 58.315 52.103
DFQ 26.000 55.808 27.730 57.616 43.567 71.273 53.456 47.921

SQuant 26.200 55.934 28.328 57.301 43.587 71.491 53.700 48.077
PQ 27.200 61.880 33.253 58.950 48.560 73.905 57.609 51.622

Dolly v2 7B

- 30.600 64.141 37.713 61.010 52.778 74.755 64.862 55.123
DFQ 23.600 53.956 33.020 54.775 44.633 69.260 64.801 49.149

SQuant 24.200 54.167 33.106 54.854 44.573 69.260 64.801 49.280
PQ 30.400 62.386 35.214 60.537 52.542 74.776 65.034 54.413

OPT 13B

- 27.000 61.953 33.020 65.746 52.390 76.714 64.954 54.540
DFQ 25.400 59.975 29.836 63.062 49.044 75.734 49.786 50.405

SQuant 25.547 60.145 29.911 63.097 49.032 75.734 49.786 50.465
PQ 27.000 61.816 32.741 64.088 51.115 76.354 67.217 54.333

OPT 30B

- 30.600 64.941 34.471 68.272 54.272 77.911 70.061 57.218
DFQ 27.400 56.860 30.119 63.931 50.119 75.680 67.339 53.064

SQuant 27.400 57.077 30.231 63.967 50.140 75.676 67.339 53.119
PQ 30.500 63.552 34.276 67.930 53.625 78.183 69.966 56.862

deviations away from the mean (more than the number of values that can represented by an int4) while
ResNet architectures are bounded by 8 standard deviations. As a result, a quantization method suited
for large language models quantization should account for this phenomenon. As our results will showcase,
this is the case with PowerQuant.

In order to evaluate quantization models, we measure the zero-shot performance on common sense
reasoning datasets: BoolQ [40], PIQA [24], HellaSwag [259], WinoGrande [182], ARC easy and challenge
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Figure 3.7: Distribution of outlier weight values defined by their distance to the mean value in terms of
standard deviations for a ResNet 18 and OPT model. This highlights the specific challenge introduced
by LLMs in terms of quantization ranges.

Table 3.10: Evaluation of the proposed method with group-wise quantization on LLMs in W3/A16 and
grouping of size 128. We report the average score on common sense reasoning tasks like in Table 3.9.

LLM DFQ OPTQ SmoothQuant PowerQ + Group-Wise
OPT 13B 35.210 54.01 53.66 54.472
OPT 30B 32.184 54.132 53.758 56.377

[41] and OpenBookQA [150]. In Table 3.9, we report the performance of data-free quantization techniques
for 4 bits quantization of the weight values. These results showcase the ability of PowerQuant to almost
perfectly preserve the full-precision accuracy of LLMs in 4 bits, which corresponds to a memory footprint
divided by 4 as compared to fp16. In other words, for an OPT 30B model, we go from the requirement of
a high grade a100 GPU with 80G of VRAM to load and run the model, down to only needing a consumer
grade GPU such as an RTX 3090 with 24G of VRAM to infer the quantized model.

Most recent works [51, 66, 236] that tackle weight quantization of LLMs, all leverage a new quantiza-
tion granularity, dubbed group-wise quantization, introduced in nuQmm [167]. Its core idea of group-wise
quantization consists in using a finer-grained scaling mechanism than per-channel quantization. Formally,
instead of using a vector to scale the weight tensor, we use a tiled matrix of scaling factors. If we note W
the weight tensor and Wi,j:j+128 the weight values defining neuron i computations with the j to j + 128
inputs. Then, per-channel quantization would use a single scaling factor si for all values of j, i.e. Wi

si
.

On the other hand, group-wise quantization uses a scaling si,j specific to a group (often of size 128),
such that we get Wi,j:j+128

si,j
. However, this approach only works as we only quantize the weight values.

Consequently, we hypothesize that may turn in a problem for the quantization community3 as any work
relying on group-wise quantization can never be leveraged for full LLMs quantization. Still, we provide
an evaluation, in Table 3.10, of the data-free methods in combination with group-wise quantization for
the sake of comparison. All in all, PowerQuant significantly outperforms the more recently introduced
quantization techniques in the challenging W3/A16 setup.

In summary, PowerQuant leverages power functions which corresponds to the automorphisms of
(R∗

+,×). The optimization of the power exponent with respect to the quantization error induced is
a locally convex problem with a unique solution which empirically lies near the value of 0.5 enabling
for an effective approximation using simpler power functions: the square and square root functions.
During this PhD thesis, this method has been the one achieving the most impressive results and
never failed to work on any usecase it was tested on.

Nevertheless, while PowerQuant has shown strong results on a wide range of applications and archi-
tectures, it could benefit from further improvements as it suffers from several limitations.

3more on that in chapter 4.
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PowerQuant Limitations

The first limitation of PowerQuant is the optimization of the power exponent a. From our experimen-
tation, while the optimization of a common value for the whole network leads to higher accuracy, it
appears that optimizing an exponent per layer only decreases the quantization error without increasing
the accuracy (quite to the contrary). The second limitation of the PowerQuant method is that, like all
non-uniform quantization methods, it is not straightforwardly compatible with gradient-based post train-
ing quantization optimization (as we will discuss in section 3.2.2). This limitation hinders the performance
of PowerQuant on smaller networks such as ResNets and ViTs as compared to GPTQ methods.

We address all the aforementioned limitations in our extension work called NUPES and make Pow-
erQuant compatible with the GPTQ framework, while solving the problem of the per-layer optimization
of the power exponent in the meantime.

However, before jumping into GPTQ methods, we propose to address a common pitfall shared by
all data-free quantization schemes: hardware bit-width support. In short, we have seen that data-free
quantization is very effective at 6 and 8 bits weight quantization, yet struggles when considering 4-bits
quantization. However, most hardware devices only support 4 and 8 bit formats. Consequently, data-free
methods are bound to either degrading the accuracy too much or only use 8 bits quantization. In our
work REx [246], we propose a solution to this issue which enables the use of data-free quantization to
their fullest while remaining compliant with the hardware bit-widths support.

3.1.4 Hardware Limitations
Let’s consider a trained neural network F with L layers with weight tensors (Wl)l∈{1,...,L}. Given a
well-supported target bit-width b, e.g. b = 4, our goal is to design a quantization process that enables
high fidelity to the original predictive function. Stemming from previous work on quantization such as
DFQ [157], SQuant [43] or our contributions SPIQ [256] and PowerQuant [255], let’s assume that we have
implemented a quantization operator Q. As previously mentioned (eq 3.14), the quantization error on
the weight values is defined by W −Q−1(Q(W )). In order to leverage the quantization operator without
increasing the bit-width, we proposed to exploit residual expansions (REx) [246] of the quantization
errors.

Residual Expansion

Let’s note R1 = Q−1(Q(W )) the first order residual. We define the second order term R2 of the residual
expansion from the quantization error such that:

R2 = Q−1(Q(W −R1)). (3.16)

As a result, the residuals are computed recursively from the previous lower order residual terms. However,
for inference, we leverage the following property: R1X +R2X ≈ WX, i.e. the operations are performed
in parallel which enables for efficient inference. Consequently, we can generalize the residual expansion
process to any expansion order K, leading to the following:

RK = Q−1

(
Q

(
W −

K−1∑
k=1

Rk

))
(3.17)

In turn, we get an expanded layer with K times the weight tensors quantized to b bits, as illustrated in
Figure 3.8 (a) in the case K = 4. Intuitively, similarly to other expansions, the proposed REx methods
provides an increasingly accurate approximation of the weight tensors such that

∑K
k=1 R

k converges
exponentially fast to W , with respect to K. Formally, we get the following lemma on the expansion
convergence:

Lemma 3.1.3. Let f be a layer with weights W ∈ Rn with a symmetric distribution. We denote
R(k) the kth quantized weight from the corresponding residual error. Then the error between the
rescaled W (K) = Q−1(R(K)) and original weights W decreases exponentially, i.e.:∣∣∣∣∣w −

K∑
k=1

w(k)

∣∣∣∣∣ ≤
(

1

2b−1 − 1

)K−1
(sR(K))i

2
(3.18)

where w and w(k) denote the elements of W and W (k) and (sR(k))i denotes the row-wise rescaling
factor at order k corresponding to w, as defined in equation 3.1.
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Figure 3.8: Illustration of the proposed method for a two-layers neural network. (a) residual expansion
at order 4: the intensity of the color map indicates the magnitude of the residual error. (b) group-sparse
expansion for orders k ≥ 1 (γ = 50% sparsity).

Stemming on this result, we expect the quantization error to decrease in such a fast pace, which should
induce an increase of the fidelity of the expanded quantized neural network to the original predictive
function. This property is non-negligible in the data-free setup, where we cannot evaluate the model on a
validation set in order to measure the accuracy degradation. Nonetheless, we can derive an upper bound
from lemma 3.1.3, on the maximum error ϵmax introduced by the residual expansion on the predictions
as

ϵmax ≤ U =

L∏
l=1

(
l∑

i=1

(
1

2b−1 − 1

)K−1
s(Ri)

2
+ 1

)
− 1 (3.19)

where s(Ri) is the scaling factor from equation 3.1 applied to each residue (see Appendix E.2 for the
detailed derivations from the REx article). These theoretical results suggest that, in practice, a network
can be quantized with high fidelity with only a few expansion orders. In terms of hardware support, this
implies that for a limited number of bit-widths support, REx offers multiple trade-offs with a protocol
that remains agnostic to the quantization operator. Furthermore, this method can be generalized to
activation tensors.

Input Expansion

The weight tensor quantization with the aforementioned expansion method leads to the exhibition of new
trade-offs in terms of accuracy v.s. speed. However, in order to further decrease the memory footprint,
we can apply the same process to the activations. Let’s consider an intermediate input feature tensor X,
then using the generic quantization notation, we get I1 = Q−1(Q(X)) and the generalized to any order
K expansion

I(K) = Q−1

(
Q

(
X −

K−1∑
k=1

Q−1(I(k))

))
(3.20)

Now, we get two sets of K expansion orders, one for the weights and one for the activations. As a
result, if we were to compute all the possible combinations, the resulting inference would suffer from a
massive overhead. Consequently, we only perform the combinations such that k1+k2 < K where k1 gives
the activation and k2 the weight expansion order respectively, the reminder of the computations being
negligible by virtue of the exponential convergence (lemma 3.18).

f : X 7→
k1+k2≤K+1∑

k1,k2∈{1,...,K}2

R(k2) ⊗ I(k1) (3.21)

where ⊗ is the base operation of the layer, e.g. a convolution for a convolutional layer or a matrix
multiplication for a fully-connected layer. However, with formulations from equations (3.17) and (3.20),
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the overhead computations induced by the expansion is non-negligible. In the following section, we
provide a solution to tackle this issue.

Sparse Expansion

The expansion definition in equation 3.17 does not account for the interneuron discrepancies. To circum-
vent this limitation, we propose to reduce the overhead cost by only expanding a fraction of the weight
values. This sparse expansion can be either structured (i.e. it consists of removing output channels or
neurons) or unstructured. For the sake of clarity, aside from LLMs, the sparsity will always be struc-
tured. The remaining task consists in identifying the most important neurons. However, in a data-free
compression setup, we do not have access to activations or gradients. Thus, we measure the relative
importance of a neuron in a layer simply by the magnitude, similarly to pruning [154]. The resulting
sparse expanded layer is illustrated in Figure 3.8 (b). Formally, given a target budget γ (in %) of allowed
overhead computations, we only expand the γ

K−1% most important weight values with the K − 1 term
comes from the fact that we always fully expand the first order.(

R(k)
γ

)
i
= (R(k))i · 1(k)γ (3.22)

where 1(k)γ indicates the indices of the most important neurons.
Similarly to the standard residual expansion, the sparse expansion offers strong theoretical guarantees

with respect to the convergence and bounded quantization error (see Appendix E.1). Furthermore, in
the sparse expansion, because the residual terms are computed recursively, the method can re-consider
neurons that were previously considered unimportant. Consequently, the sparse expansion lowers the
upper bound on the maximum quantization error with respect to the overhead computations. In other
words, assuming that we properly identify the most important neurons, the sparse expansion will system-
atically outperform the standard residual expansion. In practice, this has always been the case through
our experiments. Formally,

Lemma 3.1.4. Let f be a layer of real-valued weights W with a symmetric distribution. Then, for
K ′ < K two integers, we have:

Err

R(1) +

K′∑
k=2

R(k)
γ1

 ≥ Err

(
R(1) +

K∑
k=2

R(k)
γ2

)
(3.23)

where Err is the quantization error (i.e. the absolute difference between the quantized and original
weights, as in Equation 3.18) and K ′ × γ1 = K × γ2 = β.

Proof of this result can be found in Appendix E.3. As a result, this provides an insight on how to
efficiently set the parameters K and γ. Theoretically, the lower γ (and proportionally increased K) the
better. Fortunately, in practice, the performance converges fast with respect to the sparsification. As a
result, we can suggest that in 4 bits quantization, one should use γ ∈ [25%; 50%], meaning, we should
keep 25% to 50% of each residue with K = 2. The method for computing the weights of the expanded
model is summarized in Algorithm 2.

As a result, the expanded model can achieve better trade-offs in terms of accuracy v.s. number bit
operations (BOPS), using only the well-supported bit-widths for the target hardware device. Furthermore,
it is worth recalling that all the overhead operations are performed in parallel which further reduce their
cost in practice, allowing for higher accuracies than previous methods at equivalent memory and runtime
costs, as we will showcase in the upcoming experiments.

Comparison to State-of-the-art

In Table 3.11, we report our results on convolutional neural networks trained on ImageNet. As sug-
gested by our results, the sparse expansion provided by REx enables to find significantly better accuracy
v.s. compression trade-offs. For instance, on ResNet 50, we achieve a higher accuracy than other data-
free quantization using only 4 and 8 bits formats which are two of the three supported bit-widths for
modern GPUs (the remainder being 1 bit quantization). Furthermore, it is worth noting that while SPIQ
leveraged a sophisticated quantization method, SQuant, in order to achieve state-of-the-art performance.
In our results, we showcase REx leveraging the naive quantization and still outperforming SPIQ. As a
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Algorithm 2 Expansion Algorithm
Require: trained DNN f with L layers, hyperparameters : K and γ, operator Q

initialize γl and initialize f (K) as a clone of f with K per-layer kernels
for l ∈ {1, . . . , L} do

W ← base kernel of layer l in f
Wacc ← 0 accumulated quantization error
for k ∈ {1, . . . ,K} do

R
(k)

γl ← Q(W −Wacc)1
(k)
γ ▷ equation 3.22

set kth kernel of layer l of f (K) with R
(k)

γl

Wacc ←Wacc +Q−1(R
(k)

γl )
end for

end for
return f (K)

Table 3.11: Comparison at equal BOPs with existing methods in W6/A6 and REx with W4/A6 +50%
of one 4 bit residue.

DNN method year bits Accuracy

ResNet 50

full-precision 76.15
DFQ [157] ICCV’19 W6/A8 71.36
ZeroQ [28] CVPR’20 W6/A8 72.93
DSG [264] CVPR’21 W6/A8 74.07

GDFQ [240] ECCV’20 W6/A8 74.59
SQuant [43] ICLR’22 W6/A8 75.95
SPIQ [256] WACV’23 W6/A8 75.98

REx - 150% × W4/A8 76.01

MobNet v2

full-precision 71.80
DFQ [157] ICCV’19 W6/A8 45.84
SQuant [43] ICLR’22 W6/A8 61.87
SPIQ [256] WACV’23 W6/A8 63.24

REx - 150% × W4/A8 64.20

EffNet B0

full-precision 77.10
DFQ [157] ICCV’19 W6/A8 43.08
SPIQ [256] ICLR’22 W6/A8 54.51

REx - 150% × W4/A8 57.63

Table 3.12: Bert [52] quantized in W4/A8, on the GLUE tasks. We provide the original performance
from the article (original) of BERT on GLUE as well as our reproduced results (reproduced). REx is
applied to the weights with 3 bits + 33% sparse expansion.

task original reproduced
CoLA 49.23 47.90
SST-2 91.97 92.32
MRPC 89.47/85.29 89.32/85.41
STS-B 83.95/83.70 84.01/83.87
QQP 88.40/84.31 90.77/84.65
MNLI 80.61/81.08 80.54/80.71
QNLI 87.46 91.47
RTE 61.73 61.82

WNLI 45.07 43.76

uniform [113] log [153] SQuant [43] SPIQ [256] REx
45.60 45.67 46.88 46.23 47.02
91.81 91.53 91.09 91.01 91.88

88.24/84.49 86.54/82.69 88.78/85.24 88.78/85.06 88.71/85.12
83.89/83.85 84.01/83.81 83.80/83.65 83.49/83.47 83.92/83.85
89.56/83.65 90.30/84.04 90.34/84.32 90.30/84.21 90.50/84.35
78.96/79.13 78.96/79.71 78.35/79.56 78.52/79.86 79.03/79.96

89.36 89.52 90.08 89.64 90.08
60.96 60.46 60.21 60.21 61.20
39.06 42.19 42.56 42.12 42.63

result, we observe that, on MobileNet v2, REx improves over the DFQ starting point by 18.36 points.
Consequently, we can assert that REx works properly on convolutional neural networks. Similarly to
PowerQuant, we value the ability of REx to enable significant performance improvements on a wide
variety of architectures and tasks. To show this ability, we evaluated REx on transformer architectures.

In Table 3.12, we provide a comparison of the sparse expansion method using 3 bits plus a 33%
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Table 3.13: Average GLUE performance of data-free quantization methods.

Uniform SQuant SPIQ REx
74.16 ± 0.08 74.68 ± 0.19 74.48 ± 0.35 75.00 ± 0.16

Table 3.14: Evaluation on Common sense reasoning benchmarks for OPT-13B [262] LLM quantized
in W4/A16. For each quantization operator DFQ [157], SQuant [43] and PowerQuant [255], we share
performance with and without REx (noted with check marks). We also provide the original full-precision
(FP) performance.

FP DFQ [157] SQuant [43] PowerQuant [255]
Use REx - ✗ ✓ ✗ ✓ ✗ ✓
HellaSwag 52.43 49.25 50.14 49.23 50.21 51.29 50.98

OpenBookQA 27.20 25.80 25.40 25.40 26.20 25.80 27.80
ARC-E 61.91 59.93 61.91 59.97 61.95 60.82 60.52
ARC-C 32.94 30.2 32.42 30.12 32.34 31.57 32.94

Winogrande 65.04 64.56 64.72 64.48 64.88 64.88 65.04
PiQA 76.88 75.84 76.17 75.84 76.30 75.90 76.93
BoolQ 65.90 54.71 65.54 54.28 65.38 70.43 69.45

Average Score 54.61 51.47 53.76 51.33 53.91 54.38 54.81

Table 3.15: We report the different trade-offs achieved with REx expanding over different proposed
quantization operators in W4/A8 as compared to their performance in W8/A8, on a MobileNet V2.

method W4/A8 W4+ 25%/A8 W4+ 50%/A8 W4+ 75%/A8 W6/A8 W8/A8
naive [113] 0.1 53.11 64.20 71.61 51.47 70.92
SQuant [43] 4.23 58.64 67.43 71.74 60.19 71.68
SPIQ [256] 5.81 59.37 68.82 71.79 63.24 71.79
BrecQ [128] 50.130 61.30 69.80 71.77 68.71 71.75

AdaRound [156] 65.31 70.94 71.28 71.76 70.45 71.76

sparse expansion in order to provide a fair comparison, i.e. at equal Binary Operations (BOPS), with
other methods quantized in 4 bits. At first glance, it appears that REx significantly improves over
previous techniques. However, in order to evaluate the BERT architecture [52], we consider the glue set
of tasks [225] which induces variance in the results. In Table 3.13, we provide the average scores with their
corresponding standard deviation. These results suggest that our previous observation bared significance.
This motivates the assertion that REx generalizes to multiple architectures and tasks. However, in order
to fully leverage the strengths of REx on large language models, we proposed to adapt the method to
specifically target one of the core challenges of LLMs quantization, namely the presence of outlying weight
values.

In Table 3.14, we provide the evaluation of REx in combination with other data-free quantization
approaches on LLMs evaluated with common sense reasoning tasks. As showcased, REx systematically
improves the performance of these methods by a significant margin, to the point where PowerQuant
+ REx even outperform the original model. To achieve these results with a negligible overhead, we
use REx to only quantize outliers in a sparse (unstructured pruning) manner with a binary encoding.
Formally, we identify the outliers as any weight scalar value that is at least 6 standard deviations away
from the average within a weight tensor. We quantize these outliers in a binary sparse tensor. We recall
that binary values are {−1, 1} enabling support for both positive and negative outliers. The resulting
expansion is not only binary but over 99.8% sparse, which leads to a marginal overhead that translates
in less than 0.26% latency overhead. All in all, these results highlight the ability of REx to help improve
the performance of quantization methods on LLMs. Furthermore, they provide first results in the ability
of REx to work with other quantization operators.

In Table 3.15, we provide thorough evaluation of the proposed REx method with other quantization
operators, including data-driven ones. We can observe that regardless of the quantization operator,
the REx sparse expansion enables to achieve significantly higher accuracy in W4/A8 with up to 50%
int4 added weight values than in direct 6 bits quantization. Similarly, using only 75% extra 4 bits
operations, we can outperform the 8 bit quantization which concludes our demonstration of the generalized
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performance of REx.

In summary, the proposed sparse expansion is designed to enable any quantization method to achieve
better trade-offs in terms of accuracy v.s. compression rate on any deep neural network architecture
trained for any task.

On this note, we end our study of data-free quantization. In order to achieve higher accuracies at
lower bit-widths, we worked on GPTQ, at the expense of the privacy by design and extreme scalability
of data-free quantization. During this PhD thesis, we were able to achieve several improvements over
existing GPTQ methods, which we shall highlight in the following section.

3.2 Gradient-Based Post-Training Quantization

Following the general outline, GPTQ methods offer an intermediate setup between data-free quantization
and quantization-aware training, both in terms of compression v.s. accuracy trade-offs and in terms of
processing cost. Similarly to the previous section, we will start by a description of AdaRound [156], the
fundamental work in GPTQ.

3.2.1 Rounding Up or Down?

Let’s consider a trained neural network F comprising a sequence of layers (fl)l∈J1;LK such that for any l

all the input layers to fl are among the fl′ with l′ < l, i.e. the layers are ordered. Each layer is assumed
to already be quantized with their corresponding input scales set. The goal of GPTQ methods in general
is to leverage a small, unlabeled calibration set which is empirically set to 1024 data points.

To do so, AdaRound [156] performs the optimization layer per layer in a sequence. Intuitively, the
goal is to set differentiable objectives with unlabeled data. This is achieved by exploiting the fact that
the full-precision model provides a ground truth for each individual layer. In other words, for any layer
f , we optimize the quantized layer fQ such that its output features match the output features of f . In
practice, we extract the full-precision input features X and their counterparts XQ from the quantized
model, using the calibration set D using the previous layers in F . Then we extract a ground truth Y
from f and optimize the weight values using stochastic gradient descent with batches of size 32 and the
Adam optimizer (with default hyperparameters). The optimization goal L is then a simple Euclidean
distance on the features:

L = ∥fQ(XQ)− f(X)∥ = ∥fQ(XQ)− Y ∥ . (3.24)

In order to focus the optimization on relevant values, [156] includes the activation functions in the layers
to optimize. Formally, if the mat-vec operation in f is followed by an activation act, then the layer reads
f : X 7→ act(WX+b) and the quantized counterpart gives fQ : XQ 7→ act(Q−1(Q(W ))Q−1(Q(XQ))+b).
Intuitively, for a ReLU deep neural network, some features will be zeroed out by the ReLU anyway, thus
we should not waste any effort (and gradients) trying to match such features and rather focus on the
information that will be carried over.

By design, this process is supposed to be sequential. Intuitively, we want the input features X over
which we perform the optimization to represent data that would actually be processed at inference. In
other words, we do not want to optimize for examples that are sure not to occur in practice, similarly
that we did not want to preserve information that would not be carried by over anyway. For this reason,
we need to first optimize the layers from 1 to l− 1 before tackling the lth. Similarly, we want to quantize
the input features during the optimization in order to get the following optimization goal:

L =
∥∥act(Q−1(Q(W ))Q−1(Q(XQ)) + b)− f(X)

∥∥ . (3.25)

While all the aforementioned constraints make the optimization more challenging, especially as the
process goes on and reaches deeper layers, the calibration set is so small that overfitting is bound to
happen. In order to alleviate this shortcoming, AdaRound does not fully optimize the weight tensor, but
rather learns whether to round up or down the weight values. Formally, let’s consider a layer f with
weight tensor W , then we infer the quantized counterpart as

fQ : XQ 7→ act
(
s(W )s(X)× t−1

(⌈
t(W )

s(W )
+ ϵ

⌋)
× t−1

(⌈
t(XQ)

s(XQ)

⌋)
+ b

)
(3.26)
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Table 3.16: Evaluation, in W4/A8, of PowerQuant (PQ) with AdaRound (AdaR) in a naïve combination.

ResNet 50 RetinaNet ViT
PQ 74.892 21.562 80.354

AdaR 75.322 27.258 79.590
PQ + AdaR 72.384 20.346 77.214

where ϵ is the tensor that encodes whether we should round up or down each scalar value of W inde-
pendently. At the beginning of the optimization process of 10,000 steps, we set the value of ϵ such that
s(W )× t−1

(
t(W )
s(W ) + ϵ

)
= W , i.e.we initialize ϵ such that, up to the rounding operation, the quantization

process does not alter the value of W . As the optimization goes through, the epsilon value will encode
whether we should ceil or floor the weight tensor. After the completion of the 10,000 steps, we update
the weight values to their quantized counterparts: W ← s(W )× t−1

(
t(W )
s(W ) + ϵ

)
. In order to ensure that

the values of ϵ tensor are bounded to [0; 1], Nagel et al. , applied a variant σ̃ of the sigmoid function σ
that reads

σ̃ : a 7→ clip1
0 (1.2× σ(a)− 0.1) (3.27)

Furthermore, they added a regularization term to the loss function in order to push ϵ to the boundaries
of its support, i.e. to force σ̃(ϵ) to be either 0 or 1. Consequently, the final optimization goal is

L =

∥∥∥∥act
(
s(W )s(X)× t−1

(⌈
t(W )

s(W )
+ ϵ

⌋)
× t−1

(⌈
t(XQ)

s(XQ)

⌋)
+ b

)
− f(X)

∥∥∥∥+ 1− |2× σ̃(ϵ)− 1|β

(3.28)
where the β parameter influences the convergence pace of the rounding regularization term. For high
values of β, a huge loss is put on ϵ values that are far from 0 and 1. The scheduler for β will be discussed
in detail in the following sections.

In summary, the grounding for all GPTQ methods, called AdaRound, proposed to optimize the
weight values in a self-distillation, sequential process which minimizes the distance between the
intermediate features of the original and quantized models. To do so, we optimize during 10,000
stochastic gradient optimization steps over 1024 data points a variable ϵ which encode whether we
should up or down the current weight tensor.

Our first contribution to the field of gradient-based post-training quantization was to bridge the gap
between it and non-uniform quantization. At first, this work was done in NUPES [250], the journal
extension of PowerQuant [255] and later on, we demonstrated the generalization to all non-uniform
quantization methods in [249].

3.2.2 GPTQ and Non-Uniform Quantization

In [250], we proposed to address the two main shortcomings of the aforementioned PowerQuant data-
free quantization operator: the optimization of the weight values and the optimization of the exponent
parameter per-layer independently. First, let’s detail how we integrate power quantization within the
GPTQ framework.

Gradient Based Optimization of the Power Quantized Weights

In Table 3.16, we provide performance results from a straightforward combination of power quantization
with AdaRound. We observe a significant accuracy drop. This phenomenon can be intuitively explained
by the distortion of the quantized space from non-uniform operators. For instance, the power quantized
space assigns a small step size to all values near 0 which limits the impact from the optimization of the
ϵ tensor. As a result, ϵ can only induce marginal corrections. On the other hand, values that lay further
away from 0 are stretched away and as such a change in the rounding operation would lead to a massive
change in the predictive function which leads to instability in the GPTQ process.

In order to alleviate this limitation, we proposed to leverage the differentiable soft quantization (DSQ)
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[73] activation function. This function emulates the rounding operation in a differentiable fashion,

dsq(ϵ) =
tanh

(
β ×

(
ϵ− 1

2 − ⌊ϵ⌋
))

2tanh
(

β
2

) + ⌊ϵ⌋+ 1

2
(3.29)

where the hyperparameter β plays a role similar to the one introduced in AdaRound in equation 3.28. Intu-
itively, the β parameter encodes the steepness of the DSQ function.

Figure 3.9: Illustration of the graph of the DSQ func-
tion for different values of the steepness hyperparam-
eter β.

For high values of β, we get a very steep function,
which increases the cost for gradient-based opti-
mization to change the value by more than ±1.
This phenomenon is illustrated in Figure 3.9. This
leads to a change in the objective function, as the
quantization itself performs the regularization:

L = ∥f(X,W )− fl (XQ,dsq(W ))∥22 . (3.30)

The new objective function bares several advan-
tages over the previous one. First, as we only need
to compute one term, the runtime is slightly di-
minished. Furthermore, as we only use W and no
longer need the ϵ tensor, the resulting optimiza-
tion has a significantly lower memory footprint.
This reduction is particularly important on trans-
former architectures, for which the weight tensors
typically represent most of the memory usage as
compared to the activations and intermediate fea-
tures. Ultimately, the new optimization problem
enables values to be shifted by more than one while

maintaining a strong constraint in order to avoid overfitting.
As a result, this aspect of NUPES [250] addresses the first limitation of PowerQuant: we can learn

weight values in a GPTQ manner. Furthermore, NUPES also allows learning the power exponent param-
eter, a which we propose to describe now.

Gradient based Optimization of the Power Exponent

In [255], we optimized a single power exponent a using the quantization error as an objective. The
optimization, through gradient descent, of a per-layer power exponent parameter requires the computation
of the following derivative

∂Xa

∂a
= Xalog(X). (3.31)

However, this operation introduces three numerical challenges:

• The power quantization transformation is applied to the weights and to their scale which means
that the power operation is performed both at the numerator t and denominator s in equation 3.5.
However, the scaling s can be analytically derived from the full-precision weights support and as
such shall not be optimized through stochastic gradient descent. Consequently, in NUPES, we only
account for the derivatives from the numerator in the backward propagation and derive the new
scaling value (update scale) from the updated value of a.

• The naive implement of the gradient ∇aX
a is not numerically stable. We identified two major

pitfalls that cause this problem: strict zeros and values near zero of X. For strict zero values,
the logarithm is not properly defined, which prevents the computation of ∇aX

a. In practice, this
happens almost systematically for all networks, a naive example would be the intermediate features
of a ReLU network. Regarding values near zero, the logarithm would compute an infinite value,
due to the limitations of the floating point representation. In order to address both of these issues
at once, we propose to clip the values of X (num. stability) to be at least 10−6 in magnitude.

• For a given layer, the gradient update comes from two transformations: the quantization of the
weights and the quantization of the inputs. Before adding the two contributions, we propose to
balance them out by averaging them along all the dimensions. This process introduces robustness to
the batch-size and balances the contributions with respect to the weights and the inputs (balanced
grads).
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Algorithm 3 Learn the exponent parameter a

Require: a layer fl with weights Wl ∈ RN×M and inputs X ∈ RB×N

scalex ← s(sign(X)× |X|a) ▷ update scale (no ∇)
scalew ← s(sign(Wl)× |Wl|a) ▷ update scale (no ∇)

Forward Pass
X ←

⌊
sign(X)×|X|a

scalex

⌉
Wl ←

⌊
sign(Wl)×|Wl|a

scalew

⌉
Y ← fl(X,Wl)

Backward Pass
Xclipped ← clip(|X|, 10−6,∞) ▷ num stability
Wclipped ← clip(|W |, 10−6,∞) ▷ num stability
∇from inputs ←

Xa
clippedlog(Xclipped)

B×N

∇from weights ←
Wa

clippedlog(Wclipped)

N×M
∇a ← ∇from inputs +∇from weights ▷ balanced grads

Table 3.17: Evaluation of the different β schedulers for W4/A4 quantization. We also provide the
performance of the PowerQuant method as a reference (ref).

model AdaRound Const2 Const10 Const20 Power1 Power3 PowerQuant
ResNet 18 17.366 19.840 54.500 64.528 14.600 29.134 56.386
ResNet 34 26.934 38.940 59.402 68.236 31.708 31.150 62.904
ResNet 50 6.254 14.578 56.320 68.758 8.276 8.408 62.142
ResNet 101 4.842 9.980 53.328 71.736 22.622 23.054 64.562
RetinaNet 23.118 21.472 23.652 32.692 19.486 19.392 3.618
ViT b16 55.454 58.258 59.004 79.578 59.026 57.788 74.134
ViT l16 11.144 23.624 32.750 34.544 14.072 6.842 33.310
ViT h14 53.219 32.362 84.796 87.190 36.490 36.364 85.906

This protocol is summarized in Algorithm 3. However, it is worth noting that NUPES is also compatible
with quantization-aware training [268]. All in all, NUPES solves the two main limitations of PowerQuant
as we will showcase empirically in the upcoming sections.

Empirical Validation

As previously discussed, NUPES changes the exact role of the β parameter. In order to set it properly,
we tested several scheduling strategies i.e. how to vary the value of the parameter β with respect to
the current optimization step s. The first candidate is the scheduling applied in AdaRound [156] to
control their approach to the β parameter, which has been leveraged in numerous subsequent works
[128, 228, 139]. On top of this, we proposed our own candidates. Formally, they are defined as

AdaRound(s) = 20 + −18
2

(
1 + cos

(
s
Sπ
))

,

Constc(s) = c,

Powerc(s) = 20
(
s
S

)c
.

(3.32)

These schedulers are illustrated in Figure 3.10. In order to empirically validate the best suited scheduler,
we evaluated them on several deep neural network architectures, as reported in Table 3.17. We clearly
observe that the constant strategy vastly outperforms the other candidates in every task (classification
and object detection) as well as architectures (convolutional neural networks and transformers). This
suggests that, although it is important to allow the weights more flexibility as compared to AdaRound
approach (recall Table 3.16), the weights should remain highly constrained throughout the optimization
protocol. Stemming on this result and from now on, the NUPES method will be assumed to be performed
with a constant steepness parameter β = 20. All in all, the NUPES GPTQ method requires less memory
footprint and is more robust to hyperparameter tuning.
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Figure 3.10: Graph plots of the β schedulers with respect to the number of optimization steps.

Table 3.18: Evaluation of the impact of learning the exponent (and not the weights) in W4/A4 quanti-
zation. We provide the full-precision original performance (accuracy or MAP) of the pre-trained model.

model num. stability balanced grads update scale Accuracy

ResNet50
(76.15)

✗ ✗ ✗ -
✓ ✗ ✗ 46,552
✓ ✓ ✗ 58.950
✓ ✗ ✓ 61.997
✓ ✓ ✓ 62.468

RetinaNet
(37.294)

✗ ✗ ✗ -
✓ ✗ ✗ 4.084
✓ ✓ ✗ 4.128
✓ ✗ ✓ 19.838
✓ ✓ ✓ 22.424

ViT b16
(78.05)

✗ ✗ ✗ -
✓ ✗ ✗ 39.282
✓ ✓ ✗ 62.142
✓ ✗ ✓ 73,794
✓ ✓ ✓ 74.552

In Table 3.18, we evaluate the ability of NUPES to learn the power exponent parameter through
stochastic gradient descent, for each layer independently and actually improve the accuracy of the quan-
tized model. We considered the challenging int4 quantization configuration (W4/A4) and initialize the
power values at 0.5. Our observations are two-fold. First, the absence of numerical stability safety nets
simply prevents the learning process to ever complete (noted as "-"). More precisely, for ReLU net-
works, the process stops after the first optimization step of the second layer. For non-ReLU the process
can complete about 4 optimization steps after introducing its first computational error. Second, across
all tasks and architectures, balancing the contributions of the weights and activations, combined with
the analytical scale update, systematically improve the final accuracy. The most impressive result are
achieved on RetinaNet for object detection.

Overall, our empirical validation confirms the ability of NUPES to tackle PowerQuant limitations
regarding weight and power exponent optimization. However, these result raise a question: how does
NUPES compare with other GPTQ methods?
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Table 3.19: Comparison to state-of-the-art GPTQ techniques. We report the W4/A4 quantized accuracies
across convolutional neural networks and transformers. The first set of quantization methods are data-free
while the second and third sets leverage a calibration set.

method ResNet 18 ResNet 50 MobNet v2 EffNet B0 RetinaNet ViT b16 ViT h14
full-precision 69.674 76.150 72.074 77.618 37.294 80.978 88.434

DFQ 29.602 28.548 0.232 0.112 0.256 3.354 0.176
SQuant 48.126 52.042 0.398 0.104 0.191 3.280 0.100
SPIQ 50.257 52.752 0.572 3.623 0.382 4.007 0.514

PowerQuant 56.386 62.142 0.348 3.618 2.241 74.134 85.906

AdaRound 60.258 61.656 8.840 0.102 21.392 29.906 23.070
BrecQ 28.650 63.782 38.230 0.110 18.922 22.228 25.686
QDrop 63.448 65.766 40.984 0.100 20.812 - -

PDQuant 63.471 66.440 41.464 0.100 21.562 - -

NUPES (learn a) 57.524 62.468 5.902 15.241 22.424 74.552 86.600
NUPES (learn W ) 64.528 68.758 42.239 18.132 32.692 79.578 87.190

NUPES (learn W & a) 65.876 70.684 42.386 45.902 33.078 80.100 87.204

Comparison to State-of-the-art Quantization Methods

In Table 3.19, we report an extensive evaluation of post-training W4/A4 quantization techniques with
proper implementation (as discussed in Chapter 1). We considered convolutional neural networks within
the ResNet, MobileNet and EfficientNet families trained on ImageNet as well as RetinaNet for object
detection on COCO [134]. We also included the smallest and largest ViT transformer architectures.
We chose int4 quantization as this extreme setup highlights the performance and limits of the studied
methods. Among data-free quantization techniques, even SQuant [43] and SPIQ [256] struggle to of-
fer decent accuracy on the easier deep neural networks to quantize such as ResNet 50. On the other
hand, PowerQuant offers a strong performance stepping stone for NUPES, especially on transformer
architectures.

Among GPTQ methods, NUPES achieves state-of-the-art performance on all benchmarked neural
network using weight optimization only. The most impressive results are obtained on RetinaNet and
EfficientNet B0 where NUPES improves the precision of the model by 11.130 and 14.514 points, respec-
tively. Furthermore, on ResNet architectures, PowerQuant already achieves results close to AdaRound
and BrecQ [128], which enables NUPES to outperform both methods by a significant margin. On the
other hand, the more recent extensions of AdaRound in QDrop [228] and PD-Quant [139] offer strong
improvements on MobileNet architectures but are less effective on other architectures. The fact the gap
is narrower here, can be explained by several elements: first, we applied the same optimization as in
AdaRound with 10,000 optimization steps while BrecQ, QDrop and PD-Quant leveraged 20,000 steps,
which hinders the scaling of these methods to larger models. Second, PD-Quant and QDrop leverage
optimization tricks that require to run the entire model while optimizing each individual layer, which we
also did not opt for easier scalability. Still, NUPES manages to outperform both QDrop and PD-Quant
on every benchmark.

In particular, on transformer architectures, it appears that PowerQuant and NUPES both vastly
outperform every other method, which reflects the much peaker distributions that characterize their
weights and intermediate features. Furthermore, NUPES enables us to achieve near full-precision accuracy
quantized in W4/A4 quantization. Consequently, these results show the strength of NUPES as a GPTQ
technique.

However, NUPES is non-uniform, which makes it more complex to leverage than uniform quantization.
During this thesis, we also worked on improving gradient-based post-training uniform quantization by
studying each of the implicit assumptions of AdaRound. In the following section, we propose to discuss
this work [249] in more details.
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3.2.3 Best Practices
In the description of the AdaRound process, we made several assumptions that were well motivated.
Prime examples of such priors were the sequential approach and the use of the full-precision model as
a teacher. On the other hand, some priors were empirically validated in the initial article, such as the
calibration set size and the optimization batch-size.

The following iterations over AdaRound [156] such as BrecQ [128], QDrop [228] and PD-Quant [139],
questioned some other implicit assumptions. For instance, BrecQ investigated the choice of working at the
layer level. Their findings confirmed that better accuracies were achieved using sub-parts of the network
as compared to using the whole network. However, they also showed that using computational blocks such
as residual blocks in ResNets or transformer blocks in transformers led to higher performance. In [228],
the authors studied the importance of always quantizing the input features of the optimization block and
figured that randomly drop the quantization of the features held a slight accuracy improvement. Ulti-
mately, in [139], the authors leveraged extra loss terms including guidance from the batch-normalization
(to enforce the preservation of the learned first and second order statistics) with further guidance from
the final layers, i.e. optimize each block with its own similarity objective plus the similarity objectives
with respect to the final outputs of the model.

While these studies helped to clarify the influence and role of some implicit priors in AdaRound, there
remains numerous unanswered questions. In the following sections, we will present all the priors that we
tested, starting with the ones that did not lead to any significant performance improvement4.

Properly set Priors for GPTQ

The first set of priors that we are questioning are: the relevance of focusing on optimizing all the weight
values in the weight tensor W for a given layer, the choice of the optimizing the bias term, the use of
feature augmentation and the definition of the similarity objective.

In order to evaluate every prior, we propose a systematic evaluation with AdaRound and BrecQ on
ResNet 50, MobileNet v2 and ViT. Intuitively, we propose to focus on learning to round up or down the
most ambiguous weight values with respect to the quantization process. Stemming on the definition of
AdaRound, we initialize the ϵ tensor using

ϵ = σ̃−1

(
t

(
W

s(W )

)
− t(W )

s(W )

)
(3.33)

Weight ambiguity: From this definition, we can define the ambiguity of a scalar weight value by the
distance of ϵ to 0.5. In Table 3.20, we provide the empirical results from focusing on the most ambiguous
weight values. The provided results were obtained after tuning the proportion of weight values to study.
However, whether we should focus especially on the most ambiguous or least ambiguous values would
lead to a performance degradation. Intuitively, this highlights the fact that optimization, in the GPTQ
context, leverages every ϵ values regardless of its initialization. However, it is worth clarifying that
initializing ϵ randomly leads to a systematic 0.1 accuracy for all networks and methods. In other words,
the initialization is important but is not a good indicator of whether the optimization will change the
rounding operation or not.

Weight magnitude: In Table 3.21, we proposed to focus on the values ϵ based on the weight scalars
magnitude. Intuitively, our previous work showed that focusing the quantization efforts on values based
on their magnitude led to significant accuracy improvements NUPES [250] and PowerQuant [255]). Based
on our empirical evidence, it appears that the latter does not hold. Formally, only optimizing low values
to preserve the semantic like in AdaRound does not lead to an improved accuracy, to the contrary.

Biases: Following the previous priors evaluation, we studied the optimization of the bias tensor during
the GPTQ process. In Table 3.22, we proposed to constrain the bias values in optimization with respect
to their magnitude. This holds similarity with the constraint imposed on the weight values with σ̃(ϵ)
being contrived to [0; 1] (from equations 3.27 and 3.28). Through our experiments, it appeared that
regardless of the constraint set on the biases, it always leads to an accuracy degradation as compared to
not optimizing the bias. This can be attributed to the fact that bias are prone to overfitting, especially
on a small calibration set.

4It is not common to publish or comment on research that "does not work" but we believe that these elements could
help future researcher not focus on leads that are unlikely to be successful.
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Table 3.20: Performance of GPTQ methods with respect to their focus on weights based on the ambiguity
notion. We either optimize the 0.5% least ambiguous (non-ambiguous column) or the 0.5% most ambigu-
ous (ambiguous column) weight values. We use W4/A4 for ResNet 50 and ViT while we use W4/A8 for
MobileNet v2.

AdaRound
Architecture non-ambiguous ambiguous baseline
ResNet 50 61.002 60.452 61.318

MobileNet v2 64.547 64.712 65.314
ViT b16 31.103 31.045 31.256

BrecQ
Architecture non-ambiguous ambiguous baseline
ResNet 50 62.972 62.808 63.644

MobileNet v2 49.761 50.002 50.130
ViT b16 57.904 56.180 57.952

Table 3.21: Performance of GPTQ methods with respect to the focus on weights by their magnitude. We
either optimize the 10% smallest values (low values) or the 10% highest values (high values). We use the
same quantization as in Table 3.20.

AdaRound
Architecture low values high values baseline
ResNet 50 60.402 59.481 61.318

MobileNet v2 64.836 64.119 65.314
ViT b16 30.614 30.166 31.256

BrecQ
Architecture low values high values baseline
ResNet 50 63.216 62.515 63.644

MobileNet v2 50.077 49.653 50.130
ViT b16 57.090 56.991 57.952

Table 3.22: Performance of GPTQ methods with different constraint on the optimization of the biases.
For a constraint α = 1, we do not update the biases which corresponds to the baseline methods.

AdaRound
Architecture α = 0 α = 0.33 α = 0.66 α = 1

ResNet 50 61.318 30.423 0.100 0.100
MobileNet v2 65.314 11.612 0.100 0.100

ViT b16 31.256 9.742 0.100 0.100
BrecQ

Architecture α = 0 α = 0.33 α = 0.66 α = 1

ResNet 50 63.849 26.836 0.100 0.100
MobileNet v2 50.130 5.010 0.100 0.100

ViT b16 57.952 7.930 0.100 0.100

Data augmentation: In order to reduce the risk of overfitting, a standard approach in deep learning
consists in using data augmentation. In the case of GPTQ optimization, we propose to perform feature
augmentation [223] including the most commonly used ones: dropout [197], mixup [261], cutout [53] and
noise [69]. In Table 3.23, we show that while some augmentation techniques sometimes slightly improve
the final accuracy, this result is not stable across different architectures, especially transformers.

Similarity loss: Ultimately, we wanted to assert whether the proposed definition of the similarity
between intermediate features using the Euclidean norm was best. As a comparison, we considered the
l1 loss, which puts less emphasis on extreme values. Similarly, we also considered two other distribution
similarity metrics, e.g. the cosine and the Kullback-Leibler divergence (KL) [115]. From our empirical
results, in Table 3.24, it appears that optimizing over l1 objective enables to find different trade-offs
in terms of performance v.s. architecture, the Euclidean norm remains the best default solution in the
general case.

While these aspects of the GPTQ methods do not appear to bear interesting results, they enable us to
confirm some intuitions, e.g. the biases are too prone to overfitting, and also refute some wrong intuitions,
e.g. the initialization is not a good indicator of the importance a weight will play in the optimization.
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Table 3.23: Performance of GPTQ methods in combination with intermediate features augmentation. We
use the same quantization as in Table 3.20. We highlight in bold the results that show an improvement
over the baseline without augmentations.

AdaRound
Architecture + Dropout + Mix-up + Cut-out + Noise
ResNet 50 61.632 60.336 61.306 55.316

MobileNet v2 65.178 65.788 65.864 62.506
ViT b16 29.780 30.422 29.874 31.364

BrecQ
Architecture + Dropout + Mix-up + Cut-out + Noise
ResNet 50 63.689 62.396 63.843 57.870

MobileNet v2 50.321 50.151 51.052 46.974
ViT b16 56.331 57.453 56.161 57.944

Table 3.24: Influence of the similarity goal in GPTQ methods. We use the same quantization as in Table
3.20. We highlight in bold the results that show an improvement over the baseline l2.

AdaRound
Architecture l1 cosine KL l2

ResNet 50 42.716 16.398 59.738 61.318
MobileNet v2 65.630 0.100 0.100 65.314

ViT b16 34.460 0.100 38.714 31.256

BrecQ
Architecture l1 cosine KL l2

ResNet 50 46.586 25.864 60.818 63.644
MobileNet v2 49.932 0.100 0.100 50.130

ViT b16 57.400 0.100 60.524 57.952

Table 3.25: Evaluation of the proposed mixed-precision method.

AdaRound BrecQ
Architecture fixed mixed fixed mixed
ResNet 50 61.318 64.675 63.849 66.181

MobileNet v2 65.314 67.402 50.130 56.756
ViT b16 31.256 35.179 57.952 59.000

Still, the study of these priors did not lead to any significant improvements. In the following section, we
propose two aspects from which systematic improvement can be derived for all GPTQ methods.

Priors to Improve GPTQ

Mixed-precision: In order to improve GPTQ performance, we want to assign the appropriate precision
to each operation, i.e. assign the appropriate bit-width to each output neuron. To do so, we proposed a
novel approach to mixed-precision with GPTQ methods, stemming on our previous work on importance
estimation from attribution techniques. For a given output neuron n of a layer f , we measure their
accumulated gradients gn with respect to the model outputs. We use the gn as an estimation for the
sensitivity of the predictive function to the given neuron. In order to assign the appropriate bit-width to
each neuron, we compute the mean µ and standard deviation σ among gradients gn. The final bit-widths
bn of each neuron n is given by the target average number of bits b and the distance to the mean µ
in terms of standard deviations, i.e. bn = b +

⌊
gn−µ

σ

⌉
where ⌊·⌉ rounds towards zero (e.g. ⌊0.9⌉ = 0,

⌊−0.9⌉ = 0 or ⌊2.1⌉ = 2). As showcased in Table 3.25, the proposed mixed-precision scheme improves
the performance of both AdaRound and BrecQ on all the tested architectures, by a significant margin.

Optimizer: On the other hand, a second prior which can be improved over is the optimizer choice. In
Table 3.26, we report the performance of several of the most commonly used optimizers. Empirically, us-
ing AdaMax [111] allows to systematically improve the baseline Adam optimizer. AdaMax leverages the
infinite norm of the gradients rather their Euclidean norm to normalize the update steps. We argue that
the AdaMax process is best suited for noisy and slightly unstable optimization processes such as quanti-
zation. While this result holds true for uniform, we need a method to apply GPTQ to all non-uniform
quantization as illustrated in Figure 3.11. This issue was addressed in NUPES for power quantization. In
Table 3.27, we provide empirical evidence to the ability of the proposed to generalize to other non-uniform
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Table 3.26: Performance of GPTQ methods with different gradient-based optimizers (we recall that the
default option is Adam). For all the considered setups, we use the default parameters in order to avoid
hyper-tuning and unfair comparisons. We use the same quantization as in Table 3.20. We highlight in
bold the results that show an improvement over the baseline.

AdaRound
Architecture SGD Nesterov Adam AdamW Adamax AdaGrad AdaDelta RMSProp
ResNet 50 60.616 60.384 61.318 61.434 62.830 62.102 49.984 61.924

MobileNet v2 38.430 31.962 65.314 65.374 65.824 14.232 1.304 66.236
ViT b16 8.326 8.530 31.256 30.462 39.234 9.916 4.654 30.328

BrecQ
Architecture SGD Nesterov Adam AdamW Adamax AdaGrad AdaDelta RMSProp
ResNet 50 62.653 62.428 63.644 63.849 65.374 64.677 53.293 63.625

MobileNet v2 22.807 17.014 50.130 50.279 50.616 0.100 0.100 50.184
ViT b16 34.849 35.516 57.952 56.804 59.325 36.627 31.517 56.274

Figure 3.11: Illustration of the quantization in 4 bits of the positive part of a Gaussian distribution
in uniform, logarithm, floating point and power quantization (from left to right, top to down). This
highlights the balance between precision for very low bit values and larger values that is achieved with
PowerQuant versus other quantization formats.

quantization. Furthermore, we even show that it can be applied to uniform quantization as well for the
memory footprint benefits.

As a result, through our study of the gradient-based post-training quantization process, we highlighted
elements over which improvements could be achieved, such as the optimizer choice and mixed-precision.
In Table 3.28, we provide a summary of the performance benefits that are achieved through these best
practices. These results should motivate further investigation in those directions. Finally, we wanted to
test a more industrial oriented aspect of GPTQ: the choice of the calibration set.

GPTQ robustness

In academic evaluation, the calibration set is assumed to be randomly sampled from the training set.
As such, it is in-distribution with respect to the trained neural network. However, in practice, we may
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Table 3.27: Adaptation of GPTQ methods to non-uniform quantization such as logarithmic quantization
(log) low-bit floating point representation (4 bits float) and power quantization [255]. We propose to also
apply the adaptation to uniform quantization as well for its memory footprint benefits. We use the same
quantization setup as in Table 3.20.

AdaRound NUPES
Architecture uniform log float power uniform log float power
ResNet 50 61.318 0.304 45.758 0.100 61.396 60.688 60.170 68.546

MobileNet v2 65.314 0.100 22.134 0.100 64.790 64.866 65.028 66.014
ViT b16 31.256 0.138 6.056 0.100 33.018 35.364 32.082 79.578

Table 3.28: Summary of the added value from the best practices we propose.

AdaRound BrecQ NUPES
Architecture standard best standard best standard best
ResNet 50 61.31 65.10 (+3.78) 63.64 66.25 (+2.60) 68.54 70.29 (+1.75)

MobileNet v2 65.31 68.38 (+3.06) 50.13 56.75 (+6.62) 66.01 67.34 (+1.33)
ViT b16 31.25 38.07 (+6.81) 57.95 59.89 (+1.94) 79.57 80.20 (+0.62)

Table 3.29: We measure the impact of the data "quality". We consider training on a subset of the test
set of ImageNet (ImNet val), the standard train set (ImNet train), some adversarial [87] and out-of-
distribution [196] sets for ImageNet models. Finally, we considered two extreme scenarios: MNIST [49]
(rescaled to 224× 224) and white noises. We use the same quantization as in Table 3.20.

AdaRound
Architecture ImNet (val) ImNet (train) ImNet (adv) ImNet (ood) Mnist White Noise
ResNet 50 62.908 61.318 64.174 66.030 18.118 6.944

MobileNet v2 66.428 65.314 67.068 67.084 37.494 33.466
ViT b16 33.258 31.256 27.262 26.740 12.762 29.974

BrecQ
Architecture ImNet (val) ImNet (train) ImNet (adv) ImNet (ood) Mnist White Noise
ResNet 50 64.996 63.644 66.644 68.476 20.939 8.987

MobileNet v2 51.200 50.130 51.888 51.940 22.071 18.071
ViT b16 60.006 57.952 54.249 53.047 39.308 56.391

have to compress a model which was trained on proprietary data. In order to avoid privacy concerns, we
wanted to know the importance of using in-distribution data as compared to out-of-distribution data. In
Table 3.29, we evaluated AdaRound and BrecQ using several examples of out-of-distribution datasets.
Empirical evidence suggests that up to the use of extreme examples, such as MNIST and white noise, the
data distribution is not crucial. This has significant implications for industrial applications, as it suggests
that using default out-of-distribution data does not hinder GPTQ methods. Furthermore, it is known
that GPTQ methods outperform data-generative methods. Furthermore, if freely available data leads to
both higher accuracy and lower process costs, then this results significantly hinders the motivation to
study and leverage data-generative quantization.

Stemming on all the aforementioned results, we provide a set of best practices for post-training
quantization regardless of the granularity, data availability and support for non-uniform quantiza-
tion.

While both data-free quantization and GPTQ are convenient in terms of scalability, processing costs
and achieve strong compression trade-offs in terms of accuracy v.s. speed, higher compression rates can
be achieved through quantization-aware training at the expense of higher training costs.
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3.3 Quantization-Aware Training

While data-free quantization and gradient-based post training quantization offer scalable and relatively
low cost compression methods, they are unable to achieve decent accuracies in the highest compression
format: binary quantization. This is performed through quantization-aware training and results in most
computations being represented using only two values: ±1. In the following section, we will detail the
current state-of-the-art QAT methods: ReActNet [142] and PokeBNN [265].

3.3.1 ReActNet and PokeBNN
The general challenge of quantization-aware training is the rounding operation, which introduces zero
gradients almost everywhere and is undefined elsewhere. As discussed in the first chapter, the most
common solution to gradient-based optimization of rounded values, in deep quantization is the straight-
through estimator (STE) which simply omits the rounding step during the back-propagation.

In recent research on binary neural networks (BNNs), various elements have been introduced in order
to narrow the gap between binary and full-precision models. The first set of techniques revolve around
the introduction of non-binary operations: the idea is to use as many binary operations as possible
while allowing for a few well selected operations to take place in higher precision in order to preserve the
accuracy. Formally, in ReActNet [142], the authors proposed to add an identity shortcut to the MobileNet
v1 blocks in order to carry over higher precision features. This technique, on its own, improved the
accuracy by over 10 points on ImageNet as compared to previous work on BNNs. Similarly, in PokeBNN
[265], the BNN benefits from 4 bits squeeze-and-excite (SE) modules [96] which helps select the relevant
features for a given input and are computationally cheap by design. The use of SE modules has been
tested in other works on BNNs [144] but with less success. In PokeBNN, the authors copy the architecture
of a MobileNet v3, a well known compact neural network. As a result, current BNNs do not implement
every operation using the binary format, but rather add workarounds using higher precision.

Furthermore, a common trademark of recent BNNs is the use of zero padding for convolutional layers.
As a result, these layers are not proper binary layers but rather ternary, as binarization only uses {−1, 1}
values. In the community and the literature, we do not have a specific term to refer to these methods.
For clarity, it would perhaps be preferable to say: binary quantization for tensors properly quantized
to {−1, 1} values, padded binary tensors for works in ReActNet and PokeBNN and ternary tensors for
other tensors quantized to {−1, 0, 1} values. The difference between the two last is the constraint on
the positions of the zeros, which is non-existent for standard ternary quantization. This issue has been
studied in [79] and is addressed by using an alternate padding of {−1, 1}. However, in practice, almost
no BNN works actually evaluate their method with this padding technique.

While padding has a non-negligible impact on the input distribution, in the context of binary quantiza-
tion, it is far less significant than the distribution of the features themselves. Formally, binary quantization
is implemented via the sign function which maps R∗ to {−1, 1} with the acceptance that a strict zero is so
rare that most implementations do not account for it (this is debatable but widely adopted). This makes
BNN incompatible with the ReLU activation function. Furthermore, during back-propagation, every
value outputted by the activation function that are binarized will have the same gradients magnitude. In
order to alleviate these shortcomings, ReActNet and PokeBNN introduce their own activation functions:
RPReLU and DPReLU respectively:

RPReLU : x 7→

{
x− γ + ζ if x > γ

β(x− γ) + ζ

DPReLU : x 7→

{
α(x− γ) + ζ if x > γ

β(x− γ) + ζ

(3.34)

where γ, ζ, α and β are learned, real valued, parameters. We uniformized the notations from PokeBNN
and ReActNet in order to highlight the fact that the DPReLU from PokeBNN has more flexibility and
can encode the RPReLU from ReActNet. These activation functions enable a finer control over the
optimization process. In PokeBNN, the authors add a gradient clipping in [−3; 3], to further stabilize the
training process.

Overall, BNNs are trained using large batch-sizes (512 and 2048 as compared to 128 for the full-
precision model) over more epochs (512 and 750 as compared to 200). Regarding the optimization
process, there is one remaining key specificity of BNNs: the loss function. In order to benefit from the
soft labels learned by a full-precision model, modern BNNs are trained using the Kullback-Leibler [115]
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divergence from a pre-trained ResNet or MobileNet v3. Consequently, the whole training process requires
the full pre-training of floating point model and uses knowledge distillation. It is followed by a longer
and computationally more intensive training of the final BNN.

In summary, the current iterations of BNNs use higher precision shortcuts in order to preserve the
model performance and a non-binary padding. These models are trained using knowledge distillation
over a computationally intensive training process.

However, the most important pitfall for these methods is their specificity to convolutional archi-
tectures. While some research are conducted for binary transformers, these are usually limited to the
straightforward adaptation of previous research and do not leverage transformer-specific operations. In
the following section, we outline the leads that we would follow for transformer binarization.

3.3.2 Leads on Binary Transformers
In the early months of this PhD thesis, we wondered what was the root cause of the difficulty from bina-
rization. Our insight was that BNNs struggle to assign a distinct importance to their inputs. Formally,
let F b be a BNN such that

F (b) = f
(b)
L ◦ · · · ◦ f (b)

1 (3.35)

with
∀l ∈ J1;LK, f

(b)
l : x 7→ σ(W

(b)
l x+ b

(b)
l ) (3.36)

where σ is the sign function, W (b)
l ∈ {−1, 1}nl×nl−1 the kernel matrix and b

(b)
l ∈ {−1, 1}nl . For each

layer, we can immediately assert that the output dimension of the layer l is lower than nl−1

f
(b)
l : {−1, 1}nl−1 → E

(b)
l ⊂ {−1, 1}nl (3.37)

Figure 3.12: In this figure, we illustrate how
all the vertices of the cubes aren’t enough to
map all the vertices of the tesseract. This cor-
responds to f

(b)
l : {−1, 1}3 → E

(b)
l ⊂ {−1, 1}4.

Because W
(b)
l ·+b

(b)
l is an affine function, we get up to

|{−1, 1}nl−1 | = 2nl−1 different outputs. σ is surjective,
thus |E(b)

l | ≤ 2nl−1 i.e. E
(b)
l ∼ {−1, 1}ñl with ñl ≤

nl−1. Therefore, recursively, we can state that for any
l we have dim(E

(b)
l ) ≤ n0. This result is only due to

the nature of the inputs and the basic properties of the
layers. This is illustrated in fig 3.12 for the case nl−1 = 3
and nl = 4, this figure shows that points of the tesseract
won’t have a pre-image.

Note that if you consider an input space such as Rn0 ,
simply transforming it into {−1, 1}n0 may be problem-
atic, as we just saw. A simple and often used way to
tackle this burdensome limitation consists in using a

binarized encoding of the inputs and thus transforming the input space into {−1, 1}32n0 .
Let’s note W (b) a binary kernel and X(b) all the possible concatenated inputs in {−1, 1}n. All the

possible outputs are noted Y (b) and as previously shown Y (b) ∈ {−1, 1}m×2n is composed of up to
{−1, 1}n different vectors. In the case n = 2, we have,

σ(A(b) ×X(b)) = σ(Y (b)) =


1 1 −1 1
1 −1 1 1
1 1 1 −1
−1 1 1 1

 (3.38)

Let’s consider the set Yn ⊂ Z of all possible scalar products of vectors in {−1, 1}n. If we consider
two vectors x(1), x(2) ∈ {−1, 1}n, then for any k ∈ J1;nK we have x

(1)
k x

(2)
k ∈ {−1, 1} thus, the value of

⟨x(1), x(2)⟩ is defined by the number ñ of k ∈ J1;nK such that x
(1)
k x

(2)
k = 1. Then we

⟨x(1), x(2)⟩ = 2ñ− n (3.39)

From this equation, we can deduce that

Yn =

{
2Z ∩ J−n;nK if n ∈ 2N
(2Z+ 1) ∩ J−n;nK if n ∈ (2N+ 1)

(3.40)
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Figure 3.14: In this figure, we show some values of the angular distance θ for Binary and Ternary
representations between a vertex of Knl and its immediate neighbors.

Either way, we have |Yn| = n+ 1. The output Y lives in Ẽ(b) ⊂ Ym×2n

n , with |Ẽ(b)| ≤ |{−1, 1}n|. Then
σ(Y ) ∈ E(b) ⊂ |{−1, 1}m|, with |E(b)| ≤ |{−1, 1}n|. In fact, we can define a binary kernel such that
|E(b)| = |{−1, 1}n| simply by taking m = 2n and A(b) = (X(b))

T
. Thus, the kernel doesn’t limit the

representative power of a BNN more than the inputs.
In a BNN, each neuron is given the same absolute importance. We can see y = f

(b)
1 (x) as a concate-

nation of functions learned (i.e. neurons). Now let’s assume that we don’t have duplicates, i.e. all the
rows of W (b) are different. Then each different information computed will impact the prediction similarly.
This may be wanted with an adequate number of parameters. However, in practice this is not predictable
for a given architecture yet.

Figure 3.13: In this figure, we show how identi-
cal neurons allow stacking identical predictions
in order to simulate an integer scaling.

To tackle this problem, we can now allow for the
presence of duplicates. Duplicates allow us to simulate
a scaling parameter λ

σ(W (b)x) = λ⊙ σ(W̃ (b)x) (3.41)

where W̃ (b) doesn’t contain duplicates and λ ∈ Yd1
×

· · · × Ydm is the scaling vector, with dk the number of
duplicates of neuron k of W̃ (b). This is illustrated in fig
3.13. Note that this also allows the network to cancel a
neuron’s activation.

Each layer f
(b)
l : {−1; 1}nl−1 → {−1; 1}nl of a BNN

is a function that selects positive and negative data for
each coordinate to place it on a vertex of the hyper-cube [−1; 1]nl . Let’s note Knl the set {−1; 1}nl in
Rnl . Then we have

∀x, ∥fl(x)∥22 =
√
nl, i.e. Knl ⊂

√
nhSnl (3.42)

where Snl is the unit sphere in Rnl . Also, the minimal geometrical angle θ between two elements of Knl

can be computed as

θ = arccos

(
ni − 2

nl

)
(3.43)

This result comes from the fact that, for any pair, x ̸= y ∈ Knl the maximum of their scalar product is
reached when x and y are equal on nl − 1 coordinates and different on the last. In this case, the value of
their scalar product is nl−2. Some values of θ, for different values of nl, are shown in Fig 3.14. As we can
observe, binary quantization induces a significantly higher angular error than ternary quantization. In
order to get similar performance as a ternary layer with 128 neurons, a binary layer requires 512 neurons.
This highlights the difficulty of disentangling features for BNNs.

Now let’s compute the maximum angular error θ̄ between any element s of Snl and its closest element
ks in Knl . Let’s first note that the angle between ks and s is equal to the angle between ks and the
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projection ks of s on the cube [−1; 1]nl . Then the solution for the maximum is reached when ks is the
projection of barycenter of a face of [−1; 1]nl on Snl−1 , whose faces are all identical, up to a rotation.
Therefore, the maximum is reached for (ks)i = (ks)i on nl − 2 coordinates and (ks)j = 0 on the others:
thus, we have θ̄ = θ. A simple calculus can show that in the case of Ternary Neural Networks (TNN) we
have a maximum angular error θT of

θT =
1

2
arccos

(
nl − 2

nl

)
(3.44)

Novel Approach to Binary Quantization

As suggested, it is of paramount importance to share higher precision data and, in particular, tensors
with at least zero as an extra value. Consequently, our conclusions are two-fold:

• First, we would reduce the number of output neurons of each layer by a factor k and implement a
multiplicative variable ω independently for each neuron which would be quantized to an unsigned
two bits value to encode the number of duplications of the corresponding neuron (as in fig 3.13).
Then, after training, I would duplicate the neurons accordingly in order to retrieve a proper BNN.

• Second, we would add zeros to the neural network computations in a constrained manner through
the positional encoding in order to mitigate the angular error from binary quantization.

• Third, we would investigate an efficient way to perform the attention over binarized tensors: use
binary values vectors to encode a rotation and use a scalar to encode the magnitude using a higher
precision. This is equivalent to a decomposition of the attention mechanism in polar coordinates.

These are our first insights towards future work in deep acceleration and compression. However, there
remains a wide range of such applications that can be further improved. In the following chapter, we
propose a set of research leads which are, in our perspective, of particular interest of the compression
community.
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Chapter 4

Insights for Future Work

In this final chapter of this thesis, we propose a summary of the work accomplished during this thesis,
as well as five leads on future deep compression related research. The outline for this chapter reads as
follows:

1. We summarize the contributions of this thesis to the field of deep neural network compression.

2. We propose a new perspective for deep neural networks pruning, which changes the notion of
granularity and may pave the way towards new techniques for low power devices.

3. We highlight the most significant pitfall of current gradient-based post training quantization tech-
niques regarding the trending generative AI models.

4. We conclude on what we consider to be a future shortcoming in deep quantization: group-wise
quantization.

5. We provide a theoretical discussion around the reasons why modular arithmetic is often overlooked
in the quantization literature.

6. We discuss a new approach to efficient training based on the trending adapters.

4.1 Our Contributions to Compression

As previously detailed, we contributed to several aspects of deep neural network compression. In summary,
we tackled both data-free and data-driven pruning, as well as post-training quantization. Through our
study of pruning, we compared redundancy-based [252, 253] and importance-based [254] approaches,
which led to several publications (see Appendix 5 for a list of the publications). On the flip side, regarding
quantization, we first introduced an optimal solution to a crucial step: batch-normalization folding [247].
Then, we tackled three major challenges of data-free quantization: granularity [256], uniformity [255] and
hardware support [246]. Following these findings, we investigated GPTQ methods and bridged the gap
with non-uniform quantization [250, 249].

On top of our work on compression, we studied how to adapt our methods to other applications, such
as robust inference [251] and fighting overfitting [208].

In summary, during this PhD thesis, we discovered, studied and contributed to the field of deep
neural networks acceleration and compression. In this manuscript, we presented a general landscape
of the domain based on our accumulated knowledge and also detailed our own contributions. We
hope you had enjoyed reading this manuscript as much as we enjoyed learning research under the
mentorship of Arnaud Dapogny and Kevin Bailly.

Still, there are many remaining challenges in deep compression. Some of which are of particular
interest to us. Consequently, in the remainder of this manuscript, we share our insights on how to
address them.
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4.2 Pruning Matrix Multiplication Algorithms

This subject has been introduced at the end of chapter 2 (page 54). On larger devices, such as GPUs, it
is almost systematically more efficient to perform multiple operations in parallel on contiguous memory
segments rather than computing a sequence of fewer operations. On the other hand, on very low power,
edge devices, fewer operations often leads to a lower power consumption. In particular, in the context
of matrix multiplications, algorithm optimization consists in the search of a set of operations requiring
fewer multiplications in order to achieve the exact same result. The prime example of such algorithm is
the Strassen algorithm. We recall the naive and Strassen matrix multiplication algorithms:

Strassen A×B =

(
M1 +M4 −M5 +M7 M3 +M5

M2 +M4 M1 −M2 +M3 +M6

)
naive A×B =

(
A1,1B1,1 +A1,2B2,1 A1,1B1,2 +A1,2B2,2

A2,1B1,1 +A2,2B2,1 A2,1B1,2 +A2,2B2,2

) , (4.1)

where the Mi are individual multiplications as previously defined. While the Strassen algorithm requires
fewer multiplications (7 instead of 8) it requires more additions (18 instead of 4). This overhead of
addition can be reduced by using the Winograd form [112] which reads

A×B =

(
A1,1B1,1 +A1,2B2,1 N3 +N2 + (A1,1 +A1,2 −A2,1 −A2,2)B2,2

N3 +N1 + (B1,2 +B2,1 −B1,1 −B2,2)A2,2 N1 +N2 +N3

)
(4.2)

where N1 = (A2,1−A1,1)(B1,2−B2,2), N2 = (A2,1+A2,2)(B1,2−B1,1) and N3 = A1,1B1,1+(A2,1+A2,2−
A1,1)(B1,1 + B2,2 − B1,2). In this form, the Strassen algorithm requires 15 additions instead of 18 and
still uses only 7 multiplications. Further iterations over the Strassen algorithm have been introduced. In
short, these methods leverage the laser method [201] which is a refinement of the Schönhage’s asymptotic
sum inequality [184] in order to reduce the bound ω on the complexity. Schönhage’s asymptotic sum
inequality generalizes the runtime bounds to tensor multiplications

L∑
i=1

Vol(⟨n,m, p⟩)ω/3 ≤ R

(
L⊕

i=1

⟨n,m, p⟩)

)
, (4.3)

where Vol(⟨n,m, p⟩) = nmp with ⟨n,m, p⟩ a tensor (algebraic tensor) which encodes the multiplication
of a n×m matrix by a m× p one, and R, the border rank, is the smallest r such that there is a sequence
of tensors of rank at most r converging to tensor T . An example of the application of this inequality is
the case ⟨4, 1, 4⟩ ⊕ ⟨1, 9, 1⟩ which gives:

16ω/3 + 9ω/3 ≤ 17. (4.4)

From this, Schönhage derived the bound ω < 2.55. This gives the existence of a matrix multiplication
algorithm with a runtime O(n2.55). The most known matrix multiplication algorithm derived from
the laser method is the Coppersmith-Winograd algorithm [10] which has been the most theoretically
efficient one for over 20 years, with a complexity of O(n2.38). It has been proven [9] that such approach
cannot get faster than O(n2.3725) with the current state-of-the-art [8] begin O(n2.37286). However, these
algorithms are referred to as galactic algorithms [121], meaning that the size required for them to reach
their asymptotic behavior is too high to be worth implementing [136].

Stemming on these efficient algorithms, we propose to implement them such that previous importance-
based pruning criteria can be leveraged in order to derive new inference algorithms. For example, let’s
consider the Winograd form of the Strassen algorithm: in such a case, we can either try to further reduce
the number of multiplications or the number of additions by drawing inspiration from the previously
introduced pruning techniques.

4.2.1 Multiplications Removal

The core idea consists in measuring the magnitude of an importance indicator (e.g. the gradients) with
respect to a component of the matrix multiplication algorithm. Formally, let’s consider two distinct layers
f1 and f2 with weights and inputs (W1, X1) and (W2, X2) respectively. Then, their respective inference
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under the Winograd algorithm would read

W1 ×X1 =

(
W11,1X11,1 +W11,2X12,1 N13 +N12 + (W11,1 +W11,2 −W12,1 −W12,2)X12,2

N13 +N11 + (X11,2 +X12,1 −X11,1 −X12,2)W12,2 N11 +N12 +N13

)
W2 ×X2 =

(
W21,1X21,1 +W21,2X22,1 N23 +N22 + (W21,1 +W21,2 −W22,1 −W22,2)X22,2

N23 +N21 + (X21,2 +X22,1 −X21,1 −X22,2)W22,2 N21 +N22 +N23

).

(4.5)
In order to use one formulation for both pruning during training and pruning post-training, let’s introduce
a set of variables (λk)k∈{1,...,7} ∈ [0; 1] and transformations (tk)k∈{1,...,7} such that we infer using



(
t1(Wi1,1)Xi1,1 + t2(Wi1,2)Xi2,1 Ni3 +Ni2 + t3(Wi1,1 +Wi1,2 −Wi2,1 −Wi2,2)Xi2,2

Ni3 +Ni1 + (Xi1,2 +Xi2,1 −Xi1,1 −Xi2,2)t4(Wi2,2) Ni1 +Ni2 +Ni3

)

Ni1 = t5(Wi2,1 −Wi1,1)(Xi1,2 −Xi2,2)

Ni2 = t6(Wi2,1 +Wi2,2)(Xi1,2 −Xi1,1)

Ni3 = Wi1,1Xi1,1 + t7(Wi2,1 +Wi2,2 −Wi1,1)(Xi1,1 +Xi2,2 −Xi1,2)

tk(W ) = λkW + (1− λk)

.

(4.6)
Intuitively, the idea is that for any λk equal to 0 means that we do not use the weight values and thus
do not perform the multiplication. On the other hand, for λk equal to 1, we keep the original inference
computations. Thus, we solved two problems at once. First, with this formulation, we can optimize
the inference algorithm during training using learnable variables (λk)k∈{1,...,7}. Second, the variables are
shared across layers by design, i.e. there are only 7 extra scalar variables for the entire network. This
enables the use of a single inference algorithm, which reduces the implementation complexity. Further
study could be conducted on the cost of using different inference algorithms for different part of the
network (different computational blocks) or even different stages, like in the case of diffusion models. A
similar process can be implemented for the additions.

4.2.2 Additions Removal
In the case of additions, we have to be wary of the fact that, to avoid memory overhead, weight additions
are not computed in advance. Consequently, one cannot overlook terms such as the Ni1 in equation 4.5.
As a result, Consequently, we will introduce 32 extra variables (γk)k∈{1,...,32} ∈ [0; 1] such that



(
γ1Wi1,1Xi1,1 + γ2Wi1,2Xi2,1 γ3Ni3 + γ4Ni2 + (γ5Wi1,1 + γ6Wi1,2 − γ7Wi2,1 − γ8Wi2,2)Xi2,2

γ9Ni3 + γ10Ni1 + (γ11Xi1,2 + γ12Xi2,1 − γ13Xi1,1 − γ14Xi2,2)Wi2,2 γ15Ni1 + γ16Ni2 + γ17Ni3

)

Ni1 = (γ18Wi2,1 − γ19Wi1,1)(γ20Xi1,2 − γ21Xi2,2)

Ni2 = (γ22Wi2,1 + γ23Wi2,2)(γ24Xi1,2 − γ25Xi1,1)

Ni3 = γ26Wi1,1Xi1,1 + (γ27Wi2,1 + γ28Wi2,2 − γ29Wi1,1)(γ30Xi1,1 + γ31Xi2,2 − γ32Xi1,2)

.

(4.7)
As a result, this formulation can learn to remove additions. For example, having γ18 and γ19 both set
to zero, would remove the need for computing Ni1. On the other hand, in the previous implementation,
having λ5 = 0 would lead to removing the multiplication in Ni1 by only computing Xi1,2 − Xi2,2.
Consequently, we think it is worth considering the option of adding extra variables to the addition
removal formulation to enable a similar behavior as in the multiplication formulation.

While we believe this to be a very relevant path forward with respect to deep neural network pruning,
we observed that quantization generally outperforms pruning, with binary quantization being the peak
compression rate that has been achieved. However, we still struggle to efficiently quantize autoregressive
models. In the following section, we propose a path towards solving this issue.

4.3 GPTQ and Auto-Regressive Models

As discussed in the previous chapter, gradient-based post-training quantization performs a weight op-
timization, block per block, sequentially from the first layer to the last layer. Intuitively, as the first
layers are optimized, the current layer is processed with input features that correspond to the behavior
that would actually be produced at inference. In other words, the current GPTQ methods rely on the
following assumptions: the deep neural network to quantize F is a directed acyclic graph [125] (DAGs).
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For example, all the standard convolutional neural networks and transformers for image classification
and object detection are DAGs. However, most of the trending generative AI models do not behave
like DAGs at inference. For instance, a diffusion model will iterate several times over the same input,
progressively denoising it. Similarly, large language models are decoding tokens one by one and thus
cycle multiple times over the same input as they complete a sentence. As a result, these models infringe
the basic assumptions of GPTQ methods.

In practice, this does not prevent GPTQ methods from outperforming most data-free techniques,
which implies that this does not lead to a catastrophic performance degradation. Still, we think that
significant improvements could be achieved for GPTQ methods on generative AI. In order to design a
non-DAG friendly GPTQ method, let’s consider the use-case of a diffusion model F which takes as inputs
a noisy image It and a time-step t. The current approach to perform a GPTQ method such as AdaRound
would be to randomly sample time-steps for the current layer inputs. However, as diffusion models are
not DAGs, the optimized weight values would be optimized for inputs that will be modified by the next
layers optimization. In order to alleviate this problem, we would propose to optimize one variable ϵt
per time-step independently. Formally, for a unique, fixed time-step, a diffusion model is indeed a DAG,
which implies that GPTQ methods can be performed straightforwardly. This would result in a set of
(ϵt)t∈J1;T K. A first solution would be to simply change these binary values given the current time-step.
However, this approach would introduce an inference overhead. To avoid this shortcoming, an interesting
solution would be to use the (ϵt)t∈J1;T K and average them over the time-steps in order to get a new
initialization before performing the final pass of the GPTQ method using all time-steps. Intuitively, we
use each time-step to vote for a starting point.

While this subject tackles an explicit problem of current quantization methods on trending neural
architectures, it does not address all challenges. In particular, the aforementioned outliers are currently
handled with group-wise quantization for large language models. In the following section, we will detail
the pitfall of this approach and suggestions for future workarounds.

4.4 Working past Group-wise Quantization

Figure 4.1: Outliers stretch the distribution out
and lead to zero quantization of most of the
weight values.

As discussed in Chapter 3, large language models and
more generally, generative AI models learn weight dis-
tributions which include outliers. Formally, an outlier
is defined as any scalar value within a tensor that is
at least 6 standard deviations away from the mean. In
the specific context of quantization, the presence of out-
liers stretches out the support of the tensor to quantize,
which leads to lower values being quantized to zero. The
phenomenon is illustrated in Figure 4.1 in the context
of uniform quantization using 5 values in the quantized
space. In particular, in the provided example, we can
see that the almost all values are quantized over two
bins: zero and the outlier. In other words, while our
representation format can encode 5 distinct values only
2 are leveraged which is a waste and often leads to a
catastrophic performance drop. In order to alleviate this limitation, many solutions have introduced,
including some discussed in the previous sections, such as PowerQuant [255] and REx [246]. However,
one appears to me as a future limitation: group-wise quantization [167].

Group-wise quantization consists in a new granularity for deep quantization. This matter has been
detailed in section 3.1.2 where we introduced the dimensionality constraint before addressing it with
SPIQ [256]. In short, the dimensionality constraint states that only the weight values or the inputs can
be quantized per-channel at once in order to preserve the inference speed-ups. In the case of group-wise
quantization, the weights are quantized in a finer-grain than per-channel:

tensor-wise (WX)j = λ
∑

i Wi,jXi

channel-wise (WX)j = λj

∑
i Wi,jXi

group-wise (WX)j =
∑

i λj,ki
Wi,jXi

(4.8)

where the ki cluster subsequent input features (in practice groups of size 128 are the standard) W are
quantized weights and inputs X are not. The reason why inputs are not quantized is the fact that the
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summation can not be performed at once as we have a different scaling term for different terms of the
sum, i.e. scalings must be performed before reduction. As a result, every method that leverages group-
wise quantization is bound to be limited to the compression of the memory footprint of the weights and
not their latency. While memory footprint is a significant challenge on its own, latency should not be
overlooked.

In order to address this issue, we would investigate the possibility to carry both weight and input
outliers in binary sparse tensors, similarly as in REx. In a nutshell, in REX for LLMs, we implemented
a binary sparse residue to specifically encode weight tensors. From these weight tensors, outlier features
may arise, and we propose to catch these specific candidate outliers and also store them in residues in order
to leverage efficient residual expansions of the features rather than weight only group-wise quantization.
This may unlock higher compression rates. However, it would not solve the general major limitation of
quantization: the inability of the compression community to tackle proper modular arithmetic. In the
following section, we share our insights regarding this aspect of deep quantization.

4.5 Modular Arithmetic

To the best of our knowledge, the first and only significant contribution to the goal of proper modular
arithmetic in deep quantization is WrapNet [161]. Formally, given a layer f with weight tensor W and
input features X, its goal is to achieve a satisfactory accuracy for the whole network F quantized in b
bits with

f : X 7→ mod2b
[
(W ×X) + (2b−1 − 1)

]
− (2b−1 − 1) (4.9)

assuming that the weights and inputs are already quantized. The core challenge at hand is the bit-width
b. In WrapNet, the authors do not actually achieve modular arithmetic as intended here: the use of a
specific quantization bit-width for the weights and activations and another bit-width for the accumulation
(corresponding to the modulo of the last equation). Ideally, one would like to use one bit-width b which
would lead to simpler arithmetic from a hardware perspective and no need for multiple format support.
However, in practice, the reason why this was not done in WrapNet was to limit the occurrences of
overflows, i.e. the proposed method can support few overflows but not systematic overflows which would
occur if we had one unique bit-width. Formally, using the previous notations for quantization, a binary
neural network would be noted W1/A1. If we add the accumulator bit-width, it would read W1/A1/A1.
The WrapNet method supports W2/A2/A8. However, our goal would be W4/A4/A4 or any Wb/Ab/Ab.

During, this thesis, we reproduced this method and tested with the desired Wb/Ab/Ab to no result.
Our insight is the following: the difficulty arises from the fact that the work space is no longer ordered1.
Intuitively, all current training techniques, that we are aware of, leverage an ordered space. For instance,
classification requires a definition of the likeliest class, i.e.we need to rank logits, and thus we need an
order over the logit space. However, modular spaces are not ordered.

A naive and straightforward solution to this issue would be to simply use a clipping operation rather
than the modulo in order to always remain on the same format. However, this is even worse, as the output
of a layer would depend on the order of the inputs. Formally, let’s consider the following quantized scalar
product on 4 bits (quantized space is J−8; 7K): 4× 4− 1× 2 + 1× 1 = 6 ̸= 7 = −1× 2 + 1× 1 + 4× 4 in
the case of clipping. Furthermore, this loss of the invariance to neuron order breaks the symmetry, which
is a core property that is often considered to be central to the good performance of deep neural network.

In order to train a modular quantized model with a bit-width b, We would introduce a pseudo
ordering and investigate the adoption of the spiking mechanism to the optimization process. Regarding,
the pseudo ordering, We would use the distance to 2b−1 − 0.5 (the edge of the support). The modular
space can be seen as a discreet circle over which we rotate. The ranking is thus defined as the distance
to a reference point selected such that by default each prediction are even spread around the reference
point. Intuitively, this is similar to the standard initialization of any classification neural network, as the
initialization method leads to an average prediction around the center of the support. Second, regarding
the optimization, let’s consider a shallow network F such that

F : X 7→W2ReLU(W1 ×X) (4.10)

For the sake of simplicity, we will assume that X ∈ R2 and F (X) ∈ R for a binary classification. We
propose to run all the derivations of the back-propagation of F , for a label Y ∗ = (0, 1). By definition, the

1We need to add a reference to the order matters paper [207] from a colleague, although it is completely unrelated, as a
joke
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output Y = F (X) lies in J−8; 7K. In order to have the maximum value at 7.5 (or −7.5), a naive approach
would be to have the loss

L = L

(
|Y + 0.5|

7.5
, Y ∗

)
, (4.11)

where L is any regular loss function such as the l1 or the cross-entropy [74]. As a result, this loss is
computed in R (using high precision floating point values), this is not an issue as our goal here is not to
tackle efficient training with low bit optimization [82, 178, 235]. Assuming, a binary cross entropy as our
loss, the gradient term becomes

∂L
∂Ŷ

=
∂ − Y ∗ log(Ŷ )− (1− Y ∗) log(1− Ŷ )

∂Ŷ
=
−Y ∗

Ŷ
− 1− Y ∗

1− Ŷ
, (4.12)

with Ŷ = |Y+0.5|
7.5 . We derive the gradient term with respect to the output Y ,

∂L
∂Y

= −sign(Y + 0.5)×
(

Y ∗

|Y + 0.5|
+

1− Y ∗

7.5− |Y + 0.5|

)
. (4.13)

Then the standard gradient update of W2 is proportional to sign(Y+0.5)×
(

Y ∗

|Y+0.5| +
1−Y ∗

7.5−|Y+0.5|

)
ReLU(W1×

X). However, the dynamic of the input features ReLU(W1×X) may drastically change after the update
of W1 because of a possible overflow. In order to alleviate this shortcoming, we would investigate the
spike mechanism for the optimizer. Our inspiration is as follows: spike neural networks propagate the
information if and only if enough energy is given. In the context of modulo quantized networks optimiza-
tion, we would define the energy as inversely proportional to the quotient from the modulo operation.
Intuitively, if a feature was not derived from overflows, its optimization is straightforward (high energy)
and to the contrary, if a feature was obtained from numerous overflows (low energy) its optimization is
sensitive. Multiple questions remain open: should we carry the energy over the layer? while the energy
is defined, how should we derive the actual weight update?

Regarding the first question, the intuition is that carrying the energy from earlier layers in the forward
pass would decrease the energy of the last layers and thus put more emphasis on the optimization of the
first layers. This property is the opposite of the current optimizer methods, which tend to over-train
the last layers (vanishing gradients [19]). Regarding the second question, we would perform an integer
update in order to keep weight values as integers throughout the process and reduce the memory footprint.
Consequently, the update would be the sign function of the accumulated average gradients at the moment
of the spike in the optimizer.

Our intuition is that the modulo quantized model training will have difficulty disentangling the inter-
mediate features. The implementation of regularization terms might be necessary. This research topic is
exploratory and significantly differs from the current literature. A second subject that is not well studied
is efficient training, which we propose to discuss in the following section.

4.6 Efficient Training with Adapters

To the best of our knowledge, the only work on efficient training is Net2Net [32]. In order to reduce the
training duration and cost, the authors propose to use a narrower initial network that they progressively
grow during the training process. Consequently, the first epochs are less costly in terms of memory and
duration as compared to a standard training of the fully grown model.

Efficient training was initial a part of this PhD thesis, but we did not have the time to contribute to
it. Still, we propose a lead towards lower training costs. To do so, we draw inspiration from adapters
[175]: set the model architecture and train it from scratch only using adapters. The great benefit of
adapters for fine-tuning is their relative low memory footprint as compared to the full model. However,
it is unlikely that the same performance could be reached using a small adapter as compared to the full
network. Consequently, we suggest drawing inspiration from Net2Net and use different adapters sizes as
the training goes. As a result, the LoRa [95] method is best suited for this task as it can be folded, which
means that there is no overhead from changing the adapter size during training.

All these leads may be of significant impact in the future, and we hope they spark enough interest in
the reader to investigate them.
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Chapter 5

Publications

In this chapter, we provide a snapshot of each article that we published during this thesis. The articles
are sorted by publication type.

5.1 International Conferences

RED: Looking for redundancies for data-free structured compression of deep neural net-
works [252] RED was the first research work that we conducted during this PhD thesis. The core
idea is a data-free compression technique relying on three steps: weight hashing, neuron merging and
depthwise separation decomposition. we were published at NeurIPS 2021 which unfortunately was fully
virtual. We presented it at NeurIPS in Paris instead. We would like to thank Pierre Marion and the
Sorbonne center for artificial intelligence (SCAI) for organizing this event.

To fold or not to fold: a necessary and sufficient condition on batch-normalization layers
folding [247] This article was published at IJCAI 2022 and simply solves batch-normalization folding
optimally with a necessary and sufficient condition for folding. IJCAI was the first conference that we
attended.

Singe: Sparsity via integrated gradients estimation of neuron relevance [254] SInGE was
motivated by two elements: first, we observed that gradient-based pruning was not very effective and
figured an intuition as to why. Second, Jules Bonnard (a colleague PhD student from Sorbonne) was
working with attribution techniques which alleviated the shortcomings of gradient-based importance
estimation for the inputs. As a result, SInGE bridges the gap between attribution and pruning. It was
published at NeurIPS 2022 which was by far my favorite conference to attend.

SPIQ: Data-free per-channel static input quantization [256] SPIQ was specifically designed
after PowerQuant as we discovered an implementation mistake which was related to the dimensionality
constraint that we study in SPIQ. The paper was published at WACV 2023.

PowerQuant: Automorphism search for non-uniform quantization [255] The PowerQuant
method started from the disappointment of the difficulty from leveraging non-uniform quantization.
Consequently, we wanted to use a method that maps multiplications to multiplications. The resulting
method happened to be my best quantization technique in terms of accuracy with respect to the bit-width,
but did not happen to be easier to leverage. PowerQuant was published at ICLR 2023

Designing strong baselines for ternary neural network quantization through support and
mass equalization [248] This work was a part of the original REx article and specifically improves
residual expansions for ternary quantization. It was published at ICIP 2023.

Fighting over-fitting with quantization for learning deep neural networks on noisy labels
[208] This research was conducted with the help of Gauthier Tallec. The question that is studied was:
are compression techniques good regularizers to fight overfitting and noisy labels? Gauthier helped me
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with benchmarking this on affective computing tasks, which are known to be prone to overfitting. In
short, yes. The full study was published at ICIP 2023

REx: Data-Free Residual Quantization Error Expansion [246] REx was the second work a
conducted during this PhD thesis and has been quite challenging to publish. After several rejections, we
decided to simplify the method and only keep the residual expansion and its sparse counterpart in this
paper. This work was published at NeurIPS 2023.

5.2 International Journals

Red++: Data-free pruning of deep neural networks via input splitting and output merging
[253] In RED++, we provided a thorough theoretical evaluation of the method introduced in RED and
proposed a method to leverage memory access rather than compute. This extension was published in
TPAMI.

5.3 National Conferences

Red++: Data-free pruning of deep neural networks via input splitting and output merging
[253] re-publication at RFIAP.

5.4 Under Review

SAfER: Layer-Level Sensitivity Assessment for Efficient and Robust Neural Network Infer-
ence [251] In SAfER, we wanted to address two problems at once: robust inference and layer ranking.
The core idea was proposed by Valeo in the Confiance AI group: identify layers that are least important
for efficient and robust inference in the context of critical systems.

NUPES: Non-Uniform Post-Training Quantization via Power Exponent Search [250] In
NUPES, we extended our work from PowerQuant to GPTQ methods and LLMs.

Gradient-Based Post-Training Quantization: Challenging the Status Quo [249] In this work,
we wanted to find for future leads on post-training quantization. The core idea was to test as many implicit
assumptions from AdaRound [156] as possible.

NETWORK MEMORY FOOTPRINT COMPRESSION THROUGH JOINTLY LEARN-
ABLE CODEBOOKS AND MAPPINGS In this work, we propose a novel approach to weight
hashing.

5.5 Patents

WO/2023/083808QUANTIFICATION DE RÉSEAU NEURONAL

WO/2023/012316 - SUPPRESSION D’OPÉRATION POUR LA RÉDUCTION DE CAL-
CUL INFORMATIQUE D’UNE INFÉRENCE DE RÉSEAU NEURONAL
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Table A.1: We report the accuracy obtained from switching the original GELU activation for a ReLU
activation function. The naive switch consists in simply replacing the GELU for a ReLU without further
work.

baseline accuracy naive relu switch optimized relu switch
81.820 68.753 80.950

Appendix A

Partial-Transformer Self-Distillation

In order to replace non-ReLU activation functions in a pre-trained model, we propose to perform block-
wise self-distillation. Let’s consider a transformer F comprising B transformer blocks (Tb)b∈J1;BK. We
recall that a transformer block computes a layer normalization of the inputs, followed by a multi-head
self-attention and a feed forward network. The corresponding graph is illustrated in Figure 1.1, where the
second red block corresponds to the GELU or SiLU activation function1. Then, our goal is to replace this
layer by a ReLU in every block. However doing so in a naive fashion leads to a non-negligible accuracy
drop. Consequently, our method aims at recovering from this drop.

We draw inspiration from AdaRound2 [156]. Let’s consider a subset from the training set of 1024
data points (images in the case of ImageNet). If we note T̃ the architecture that uses ReLU, then our
goal is to find new weight values W̃ such that

E
[
∥T̃ (X)− T (X)∥

]
≈ 0. (A.1)

In other words, we want to minimize the distance between the two models. We perform the optimization
block per block in sequence from the first block to the last one. Let’s consider Y and Ỹ the intermediate
features of T and T̃ respectively, obtained from the already optimized first b blocks. As we focus on the
b+ 1 block, we want to minimize the euclidean norm of the error on the intermediate features∥∥∥Tb+1(Y )− T̃b1(Ỹ )

∥∥∥
2
. (A.2)

The intuition behind this sequential optimization is that we fine-tune the current block based on the
intermediate features that would actually be used at inference. In practice, the optimization is per-
formed using AdaMax [111] with default parameters and an initial learning of 10−4 for 1500 optimization
steps and a batch size of 32 examples. In order to operate a smooth transition from the GELU to the
ReLU activation, we performed a convex combination of the two activations during the optimization.
The scheduling of this combination was linear from full GELU (initially) to a full ReLU (end of the
optimization), with a warm up of a 100 steps. Our results are reported in Table A.1

We observe that a simple change of activation function (naive relu switch) without any form of fine-
tuning leads to a catastrophic accuracy loss of 12.227 points. This result is reassuring as it entails that
the GELU plays a significant role in the definition of the learned predictive function. On the other hand,
we observe that the proposed optimization process manages to efficiently switch the GELU for a ReLU
at a marginal accuracy cost of 0.446 points.

Replacing the activation function can lead to significant accuracy benefits when performed in combi-
nation with other compression techniques, especially quantization. to complete

1The first red block corresponds to a softmax.
2We do not detail the specificities of AdaRound here, as it will be our main focus for section 3.2 in the Quantization

chapter.
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Appendix B

Quantization Implementations
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Appendix C

Redundancy-based pruning theory:
RED and RED++

The content of these appendix was extracted from the RED [252] and RED++ [253] articles.

C.1 Detailed proofs

For simplicity, we propose to first study the case of a simple perceptron f with weights W ∈ Rn0×n1

before extending the result to the whole network. We introduce the pseudo distance between the original
weight values and their hashed version |w − w̃| (note that this is a difference between scalars). We have
the following upper bound:

|w − w̃| ≤ min
m∈M+

{m > w} − max
m∈M+

{m < w} (C.1)

This follows from the fact that hashing is based on a partition of the support of W , i.e. for all consecutive
pairs mi,mi+1 ∈M+, ∀w ∈ [mi;mi+1], w̃ ∈ {mi,mi+1}. We can deduce an upper bound on the expected
value of |w − w̃|

E[|w − w̃|] ≤
∑

mi,mi+1∈M+∪{m−
1 ,m−

|M−|
}

(mi+1 −mi)

∫ mi+1

mi

Pwdw (C.2)

where dw is the density of W and m−
1 ,m

−
|M−| are the minimum and maximum of M− respectively where

Pw is the density of the weights.
We derive another upper bound using two properties of the density estimation. First, on each

[m−
i ,m

−
i+1] d

l is monomodal. Second, its variance can be estimated. We have:

E [|w − w̃|] =
∫ Wmax

Wmin

|w − w̃|Pwdw (C.3)

where Wmin and Wmax are the minimum and maximum of W . This expression can be split in a sum
over the partition:

E [|w − w̃|] =
|M+|∑
i=1

∫ m−
i+1

m−
i

∣∣w −m+
i

∣∣Pwdw (C.4)

where the m+
i and m−

i are the ordered elements of M+ and M−. We know from [20], that the mean and
mode of a unimodal distribution lie within

√
3 standard deviations of each other. Because of the kernel

used in KDE, we have a sum of Gaussians, thus we can use the fact that the average absolute distance
of a random sample to the distribution mean is σ

√
2/π. The triangular inequality thus brings:

E [|w − w̃|] ≈
∫
|w − w̃|d(w)dw ≤ max

i∈J1;|M+|K
σi

(√
2

π
+
√
3

)
(C.5)
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where σi is the standard deviation of d restricted to [(M−)i; (M
−)i+1]. We compute σi using equation

2.3.

σ2
i =

∫ (M−)i+1

(M−)i

1

ni∆

ni∑
n=1

K

(
w − wn

∆

)
w2dw − Ed[X]2 (C.6)

Because K is a Gaussian kernel we can deduce the value of σi and update the formula for E [|w − w̃|] the
upper bound.

E [|w − w̃|] ≤ ∆√
2π

(√
2

π
+
√
3

)
(C.7)

Now we have two upper bounds for E. First A, from equation C.2, based on the pseudo distance and
the hashing properties. Second B, from equation C.7, based on KDE properties. We can combine these
bounds to obtain:

E [|w − w̃|] ≤ min{A,B} = u (C.8)

u is our per-weight upper bound on the error. In practice both A and B are relevant and used situationally.
This result can be extended to DNN with multiple layers.

Multi-layer Preservation Through Hashing

In order to generalize the previous upper bound to a feed forward CNN with L layers, we first compute the
upper bound for a layer f l. The upper bound ul measures the error on each weight values. The weights
are used in scalar products with nl−1 × wl × hl × nl elements. The average error behaves following the
Central Limit Theorem. We detail the computation of equations C.15 and C.22. A convolution is defined
by the following operation

Outputi,j,l =
∑

δi,δj,k

Inputi+δi,j+δj,kWi+δi,j+δj,k,l (C.9)

This gives us nl−1wlhl multiplications per output. For each of these operations we have the upper bound
ul. Therefore, the errors are sampled in [−ul;ul]. The Central limit theorem gives us that the average
error converges to a standard Gaussian distribution N (0, 1) and we get that

E[∥f̃ l − f l∥] ≤ ul√
nl−1wlhl

(C.10)

assuming no activation function on layer l. Now let’s assume we have L = 2, i.e. the DNN f : x 7→
f2(f1(x)) follows

EX [∥f̃ − f∥] = EX [∥f̃2(f̃1(X))− f2(f1(X))∥] (C.11)

where X is the random variable defined by the inputs. Because f is piece-wise affine, we can assert that

EX [∥f̃ − f∥] ≃EX [∥f̃2(f1(X)) + f̃2(∥f̃1(X)− f1(x)∥)
− f2(f1(X))∥]

(C.12)

Now using the triangular inequality, we get

EX [∥f̃ − f∥] ≃ Ef1(X)[∥f̃2 − f2∥+E∥f̃1(X)−f1(x)∥[f̃
2] (C.13)

We deduce
EX [∥f̃ − f∥] ≤ µ1

E[∥f̃2 − f2∥] + µ2
E[∥f̃1 − f1∥] (C.14)

and it follows equation C.22.
This adds a multiplicative term 1√

nl−1wlhl
to the expected error per layer. Furthermore, we need

to take into account the activation function. Assuming a ReLU activation function, statistically, the
average proportion of negative inputs is given by the CDF of a Gaussian distribution of parameters µl

and σl. These statistics are obtained from the batch normalization layers. This adds a multiplicative
term 1

2

(
1− erf

(
−µl

σl
√
2

))
where erf is the Gauss error function, erf : z 7→ 2√

π

∫ z

0
e−t2dt. Therefore we get

E[∥f̃ l − f l∥] ≤ ul√
nl−1wlhl

1

2

(
1− erf

(
−µl

σl
√
2

))
(C.15)
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where ul is the layer-wise upper bound described in equation C.8 . We extend this result recursively
across all layers. We detail the computation of equations C.15 and C.22. A convolution is defined by the
following operation

Outputi,j,l =
∑

δi,δj,k

Inputi+δi,j+δj,kWi+δi,j+δj,k,l (C.16)

This gives us nl−1wlhl multiplications per output. For each of these operations we have the upper bound
ul. Therefore, the errors are sampled in [−ul;ul]. The Central limit theorem gives us that the average
error converges to a standard Gaussian distribution N (0, 1) and we get that

E[∥f̃ l − f l∥] ≤ ul√
nl−1wlhl

(C.17)

assuming no activation function on layer l. Now let’s assume we have L = 2, i.e. the DNN f : x 7→
f2(f1(x)) follows

EX [∥f̃ − f∥] = EX [∥f̃2(f̃1(X))− f2(f1(X))∥] (C.18)

where X is the random variable defined by the inputs. Because f is piece-wise affine, we can assert that

EX [∥f̃ − f∥] ≃EX [∥f̃2(f1(X)) + f̃2(∥f̃1(X)− f1(x)∥)
− f2(f1(X))∥]

(C.19)

Now using the triangular inequality, we get

EX [∥f̃ − f∥] ≃ Ef1(X)[∥f̃2 − f2∥+E∥f̃1(X)−f1(x)∥[f̃
2] (C.20)

We deduce
EX [∥f̃ − f∥] ≤ µ1

E[∥f̃2 − f2∥] + µ2
E[∥f̃1 − f1∥] (C.21)

and it follows equation C.22.

U =

L∏
l=1

(
ul√

nl−1wlhl

1

2

(
1− erf

(
−µl

σl
√
2

)))
+ µl −

L∏
l=1

µl (C.22)

The value of each ul is a linear function of the bandwidth ∆l. Therefore U is also a linear function of
∆l which is very low in practice (see section 2.1): thus the reason why, in practice, the hashing error
is very low. In Section C.1, we assumed ReLU activation functions. In this appendix, we extend the
theoretical upper bound to SiLU activation function (EfficientNets) and GeLU activation function (image
transformers) defined as: {

SiLU : x 7→ xσ(x)

GeLU : x 7→ x
2

(
1 + erf

(
x√
2

)) (C.23)

where σ(x) = 1
1+e−x is the sigmoid function and erf is the Gauss error function defined as

erf : z 7→ 2√
π

∫ z

0

e−t2dt (C.24)

In the definition of the proposed upper-bound U on the error introduced by hashing, the impact of the
activation function ReLU corresponds to the term 1

2

(
1− erf

(
−µl

σl
√
2

))
in the equation

UReLU =

L∏
l=1

(
ul√

nl−1wlhl

1

2

(
1− erf

(
−µl

σl
√
2

)))
+ µl −

L∏
l=1

µl (C.25)

Intuitively, this term accounts only for positive outputs as the negative outputs are zeroed-out and don’t
introduce an error. However, this is slightly different in the case of GeLU or SiLU activation functions.
We note Posl the term 1

2

(
1− erf

(
−µl

σl
√
2

))
which accounts for positive outputs of layer l. For both GeLU

and SiLU, the error on such outputs remain bounded by ul√
nl−1wlhl

. Consequently, we only focus on
the negative terms in both cases. For negative terms, in both cases (GeLU and SiLU), the error is
bounded by a constant strictly lower than 1. We note these constants CSiLU = minSiLU ≈ 0.27846 and

113/125 February 26, 2024



APPENDIX C. REDUNDANCY-BASED PRUNING THEORY: RED AND RED++

CGeLU minGeLU ≈ 0.169971. This is a direct consequence of their respective definitions. Consequently,
the upper bound becomes:

USiLU =
∏L

l=1

(
ul√

nl−1wlhl
(Posl + (1− Posl)CSiLU)

)
+ µl

−
∏L

l=1 µ
l

UGeLU =
∏L

l=1

(
ul√

nl−1wlhl
(Posl + (1− Posl)CGeLU)

)
+ µl

−
∏L

l=1 µ
l

(C.26)

In practice, on EfficientNets, the value of Posl ranges from 0.730 to 0.979. Consequently, the term
(1−Posl)CSiLU is bounded by 0.075 and is at least one order of magnitude below the original term Posl.
We deduce that the upper bound USiLU observe similar behavior as UReLU.

With regards to transformers, we observe equivalent values for Posl and a lower constant CGeLU which
leads to the same conclusion: the upper bound UGeLU observe similar behavior as UReLU. To assess this
theoretical study, we still need to empirically validate the hashing protocol. In the following section, we
show that the upper bound U provides practical data-free guarantees on the accuracy preservation.

Data-Free Criterion on the Hashing Error

We propose a simple criterion based on the upper bound U and a data-free estimation of the norm of
the logits. Assuming that we have the value of the expected logits norm EX [∥f∥], we derive the following
criterion to decipher whether the hashing is detrimental to the network accuracy:

1. if U
EX [∥f∥] << 1 then the modifications from hashing won’t have a significant impact on the logits.

Therefore their order is likely unchanged.

2. if U
EX [∥f∥] ≃ 1 then the modifications from hashing may have a significant impact on the predictions.

As U is an upper bound we can’t conclude yet.

To make this evaluation data-free, we propose a data-free estimator of the expected norm of the logits,
referred to as E[norm]. To do this, we use the values of the weights of the batch normalization layers [101]
as an estimate of the expected value of the shallowest layer and then use the last kernel with the linearity
of the expectation to compute E[norm]. Explicitly, assume the shallowest layer fL with parameters WL

and bL has a batch-normalization layer for input with parameters µ, σ, β, γ such that BN(x) = γ x−µ
σ +β,

then our estimate E[norm] is defined as

E[norm] = WLact(β) + bL (C.27)

where act is the activation function. Because we use EX [∥f∥] as the denominator, we need the estimate
to be as close as possible while satisfying E[norm] ≤ EX [∥f∥] (which is validated empirically) in order not
to have an over-confident criterion. In practice, we also use the variance estimate to obtain a confidence
interval.

C.2 Extra empirical validations
parameter α strategy

C.3 Similarity pruning as a birthday problem

In this section, we conduct a probabilistic study of the relationship between reducing the number of unique
weight values and the resulting pruning ratio in DNNs. This can be cast as a case of the generalized
Birthday Problem. We assume that each weight is sampled independently from a unique distribution.
First, assuming the least favorable prior (uniform) on this distribution, we want to compute the expected
pruning factor from the merging step as well as the splitting step noted Em and Es respectively.

Lemma C.3.1. Under the uniform prior, for any layer with weights W l ∈ Rw×h×nl−1×nl

and hashed
weights W̃ l we have

Es > Em (C.28)
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Figure C.1: Given a layer l with weights W l ∈ R3×3×32×128 sampled uniformly, we apply hashing such
that we keep M+

l values. We plot the evolution of Em (blue) and Es (orange) for different values of M+
l

using equations C.31 and C.32.

Proof. First we recall the probability PK
n (k) to get k distinct values from K possible ones with a sampling

size n. The probability that each of n samples belongs to those k values is (k/K)n. However, this also
includes cases where some of the k numbers were not chosen. The inclusion-exclusion rule says that the

probability of drawing all of those k values is (−1)i
(
k
i

)(
k−i
K

)n
. As a consequence, we have:

PK
n (k) =

(
K
k

) k∑
i=0

(−1)i
(
k
i

)(
k − i

K

)n

(C.29)

from this expression we can compute Em and replace K = whnl−1M+
l and n = nl. This result is obtained

by developing the standard definition of the expected value of a discreet variable. For E = Em or Es we
have:

E =

K∑
k=0

kPK
n (k) = K

(
1−

(
1− 1

K

)n)
(C.30)

it follows that the expected pruning ratio of the merging step is:

Em = 1−
whnl−1M+

l

(
1−

(
1− 1

whnl−1M+
l

)nl)
nl

(C.31)

We illustrate in Fig C.1 the variation of Em as a function of the proportion of the unique values among
hashed weights over the original number of distinct weights, i.e. M+

l /(whnl−1nl) for different values of
nl−1. These results suggest that the larger the input dimension nl−1 the lower the number of redundancies.
The value of Es can be computed similarly with different values of K and n. We obtain

Es = 1−
whM+

l

(
1−

(
1− 1

whM+
l

)nl)
nl

(C.32)
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Similarly to Em, we illustrate Es in Fig C.1.

To extend the previous result we need a preliminary result which extends the birthday problem to non-
uniform sampling. In this section we note E = J1;mK the sampling space, (Xj)iJ1;nK the i.i.d. variables
sampled from law L which satisfy

∀i ∈ E, pi = PL(Xj = i) > 0 (C.33)

We introduce (Yi)i∈E the number of samples Xj = i, i.e. Yi =
∑n

j=1 1Xj=i. In our case, we compute the
expected value of the number V of distinct values in the sample, i.e.

V =

m∑
i=1

1Yi>0 = m−
m∑
i=1

1Yi=0 (C.34)

We consider i a value belonging to a subset K ⊂ E. We note Bi the event where the value i is not
sampled: PL

( ⋂
i∈K

Bi

)
=
(
1−

∑
i∈K pi

)n
EL[V ] =

∑m
v=1 v

∑
K∈Am

m−v

(
1−

∑
i∈K pi

)n (C.35)

where Am
m−v is the set of arrangements of E.

Lemma C.3.2. Under the priors Lm on x = (x1, . . . , xnl−1) ∈ M l
+
w×h×nl−1

and Ls on xj ∈ M l
+
w×h,

for any layer with hashed weights W̃ l ∈ Rw×h×nl−1×nl

, such that nl = nl−1:

Es > Em (C.36)

Proof. The expected pruning factor for the splitting step is higher than for the merging step if and only if
ELs [V ] < ELm [V ], with V defined in equation C.34, that is to say that the expected number of remaining
neurons is lower under the prior Ls. Let’s develop ELm [V ], following eq C.35 we simply replace the
notations with m = nl and the pi = PLm . Thus we get

ELm [V ] =

mm∑
v=1

v
∑

K∈Amm
mm−v

(
1−

∑
i∈K

PLm(X = (x1, ..., xnl−1)

)nl

(C.37)

where mm = |M+
l |whnl−1. In the case of Ls, like in the case of Lm we have nl samples, thus we replace

n = nl and pi = PLs to obtain

ELs [V ] =

ms∑
v=1

v
∑

K∈Ams
ms−v

(
1−

∑
i∈K

PLs(X = xi)

)nl

(C.38)

where ms = |M+
l |wh. However by equation C.33, it follows that

PLm(X = x) =

nl−1∏
j=1

PLs(Xj = xj) > 0 (C.39)

and PLm(x) < PLs(x′) when x′ is a coordinate of x. In consequence, if we compare equation C.37 and
C.38, we have a larger sum of larger terms. Therefore, we get the desired result.

We propose in Fig C.2 an extension of this result for different configurations of nl−1 and nl. We tested
the Gaussian, exponential and uniform priors, in the case of 3× 3 convolutional layer with weights W ∈
R3×3×nl−1×nl

and M+ = 100. We vary the input dimension nin linearly from 2 to 128 with nlnl−1 = 642

and plot Em and Es for each prior. In particular, as stated in lemma C.3.2, with nl = nl−1 = 64, we have
Es > Em for all priors. We also observe that splitting performs better for larger input dimensions while
merging is better for smaller ones, showing the complementarity between the two. The uniform prior
is the least favorable while the exponential is the most favorable. However a limit to the theory is the
i.i.d. hypothesis which is probably not satisfied in practice. We however show through the experiments
that, despite discrepancies between theoretical and empirical data, the trends introduced in this sections
remains true.

116/125 February 26, 2024



APPENDIX C. REDUNDANCY-BASED PRUNING THEORY: RED AND RED++

Figure C.2: Given a layer l with weights W l ∈ R3×3×nl−1×nl

we fix the value of the product nl−1×nl = 642

and we plot the empirical values of the pruning ratios Em (nuances of blue) and Es (nuances of orange)
for different values of nl−1 the input dimension. The considered priors are the discreet Gaussian, the
exponential and uniform distribution. We observe the complementarity of merging and splitting.

C.4 New Pruning Paradigm

For the sake of clarity, let’s consider a specific example: the Strassen matrix multiplication algorithm
[202]. In short, let’s consider two matrices A and B then the algorithm reads

A×B =

(
A1,1 A1,2

A2,1 A2,2

)
×
(
B1,1 B1,2

B2,1 B2,2

)
, (C.40)

can be computed using intermediate results defined as

M1 = (A1,1 +A2,2)(B1,1 +B2,2)

M2 = (A2,1 +A2,2)B1,1

M3 = A1,1(B1,2 −B2,2)

M4 = A2,2(B2,1 −B1,1)

M5 = (A1,1 +A1,2)B2,2

M6 = (A2,1 −A1,1)(B1,1 +B1,2)

M7 = (A1,2 −A2,2)(B2,1 +B2,2)

. (C.41)

The resulting intermediate operations only use 7 instead of 8 multiplications as compared to the naive
algorithm. Stemming on these intermediate computations, we derive the multiplied matrix with

A×B =

(
M1 +M4 −M5 +M7 M3 +M5

M2 +M4 M1 −M2 +M3 +M6

)
. (C.42)

Then, the new pruning granularity that we would advise to investigate is the matrix inference algorithm
pruning. In other words, do not compute some of the intermediate Mk multiplications. This kind
of pruning could be specific to a layer, block of layers or even an entire neural network. While such
pruning would not address the memory footprint challenges, it would offer an explicit inference-specific
improvement.
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Appendix D

PowerQuant Proofs

The content of this appendix was extracted from the REx [246] and PowerQuant [255] articles.

D.1 Proof of Lemma 3.1.1

In this section, we provide a simple proof for lemma 3.1.1 as well as a discussion on the continuity
hypothesis.

Proof. We have that ∀x ∈ R+, Q(x)×Q(0) = Q(0) and ∀x ∈ R+, Q(x)×Q(1) = Q(x) which induces that
Q is either the constant 1 or Q(0) = 0 and Q(1) = 1. Because Q is an automorphism, we can eliminate
the first option. Now, we will demonstrate that Q is necessarily a power function. Let n be an integer,
then

Q(xn) = Q(x)×Q(xn−1) = Q(x)2 ×Q(xn−2) = · · · = Q(x)n. (D.1)

Similarly, for fractions, we get Q(x
1
n ) × · · · × Q(x

1
n ) = Q(x) ⇔ Q(x

1
n ) = Q(x)

1
n . Assuming Q is

continuous, we deduce that for any rational a ∈ R, we have

Q(xa) = Q(x)a (D.2)

In order to verify that the solution is limited to power functions, we use a reductio ad absurdum. Assume
Q is not a power function. Therefore, there exists (x, y) ∈ R2

+ and a ∈ R such that Q(x) ̸= xa and
Q(y) = ya. By definition of the logarithm, there exists b such that xb = y. We get the following
contradiction, from (D.2), {

Q(xba) = Q(ya) = ya

Q(xba) = Q(xab) = Q(xa)
b ̸=

(
xab = ya

) (D.3)

Consequently, the suited functions Q are limited to power functions i.e. Q = {Q : x 7→ xa|a ∈ R}.

We would also like to put the emphasis on the fact that there are other Automorphisms of (R,×).
However, the construction of such automorphisms require the axiom of choice [88]. Such automorphisms
are not applicable in our case which is why the key constraint is being an automorphism rather than the
continuous property.

D.2 Local Convexity

We prove that the minimization problem defined in equation 3.14 is locally convex around the solution
a∗. Formally we prove that

x 7→
∥∥x−Q−1

a (Qa(x))
∥∥
p

(D.4)

is locally convex around a∗ defined as argmina
∥∥x−Q−1

a (Qa(x))
∥∥
p
.

Lemma D.2.1. The minimization problem defined as

argmin
a

{∥∥x−Q−1
a (Qa(x))

∥∥
p

}
(D.5)

is locally convex around any solution a∗.
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Proof. We recall that ∂xa

∂a = xa log(x). The function
∥∥x−Q−1

a (Qa(x))
∥∥ is differentiable. We assume

x ∈ R, then we can simplify the sign functions (assume x positive without loss of generality) and note
y = max |x|, then

∂Q−1
a (Qa(x))

∂a
=

∂
∣∣∣⌊(2b−1 − 1)x

a

ya

⌋
ya

2b−1−1

∣∣∣ 1a
∂a

. (D.6)

This simplifies to

∂Q−1
a (Qa(x))

∂a
= y

∂

(
⌊B( x

y )
a⌋

B

) 1
a

∂a
, (D.7)

with B = 2b−1 − 1. By using the standard differentiation rules, we know that the rounding operator has
a zero derivative a.e.. Consequently we get,

∂Q−1
a (Qa(x))

∂a
= −a2y


⌊
B
(

x
y

)a⌋
B


1
a

log


⌊
B
(

x
y

)a⌋
B

 . (D.8)

Now we can compute the second derivative of Q−1
a (Qa(x)),

∂2Q−1
a (Qa(x))

∂a2
= a4y


⌊
B
(

x
y

)a⌋
B


1
a

log2


⌊
B
(

x
y

)a⌋
B

 . (D.9)

From this expression, we derive the second derivative, using the property (f ◦g)′′ = f ′′◦g×g′2+f ′◦g×g′′

and the derivatives | · |
1
p
′
= x|x|

1
p
−2

p and | · |
1
p
′′
= 1−p

p2

|x|
1
p

x2 , then for any xi ∈ x

∂2
∣∣xi −Q−1

a (Qa(xi))
∣∣

∂a2
=

1− p

p2
|xi −Q−1

a (Qa(xi)|
1
p

(xi −Q−1
a (Qa(xi))2

(
∂Q−1

a (Qa(x))

∂a

)2

+
(xi −Q−1

a (Qa(xi))|xi −Q−1
a (Qa(xi)|

1
p−2

p

∂2Q−1
a (Qa(x))

∂a2

(D.10)

We now note the first term in the previous addition T1 = 1−p
p2

|xi−Q−1
a (Qa(xi)|

1
p

(xi−Q−1
a (Qa(xi))2

(
∂Q−1

a (Qa(x))
∂a

)2
and the

second term as a product of T2 =
(xi−Q−1

a (Qa(xi))|xi−Q−1
a (Qa(xi)|

1
p
−2

p times T3 =
∂2Q−1

a (Qa(x))
∂a2 . We know

that T1 > 0 and T3 > 0, consequently, and T2 is continuous in a. At a∗ the terms with |xi−Q−1
a (Qa(xi)) |

are negligible in comparison with ∂2Q−1
a (Qa(x))
∂a2 and

(
∂Q−1

a (Qa(x))
∂a

)2
. Consequently, there exists an open

set around a∗ where T1 > |T2|T3, and
∂2|xi−Q−1

a (Qa(xi))|
∂a2 > 0. This concludes the proof.

D.3 Uniqueness of the Solution

In this section we provide the elements of proof on the uniqueness of the solution of the minimization of
the quantization reconstruction error.

Lemma D.3.1. The minimization problem over x ∈ RN defined as

argmin
a

{∥∥x−Q−1
a (Qa(x))

∥∥
p

}
(D.11)

has almost surely a unique global minimum a∗.

Proof. We assume that x can not be exactly quantized, i.e. mina

{∥∥x−Q−1
a (Qa(x))

∥∥
p

}
> 0 which

is true almost everywhere. We use a reductio ad absurdum and assume that there exist two optimal
solutions a1 and a2 to the optimization problem. We expand the expression

∥∥x−Q−1
a (Qa(x))

∥∥
p

and get

∥∥x−Q−1
a (Qa(x))

∥∥
p
=

∥∥∥∥∥x−
∣∣∣∣⌊(2b−1 − 1)

sign(x)× |x|a

max |x|a

⌋
max |x|a

2b−1 − 1

∣∣∣∣ 1a sign(x)

∥∥∥∥∥ .p (D.12)
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We note the rounding term Ra and get

∥∥x−Q−1
a (Qa(x))

∥∥
p
=

∥∥∥∥∥x−
∣∣∣∣Ra

max |x|a

2b−1 − 1

∣∣∣∣ 1a sign(x)

∥∥∥∥∥
p

. (D.13)

Assume Ra1
= Ra2

= R, the minimization problem argmina

∥∥∥∥x− ∣∣∣Rmax |x|a
2b−1−1

∣∣∣ 1a sign(x)
∥∥∥∥
p

is convex and

has a unique solution, thus a1 = a2. Now assume Ra1 ̸= Ra2 .
Let’s denote D(R) the domain of power values a over which we have

⌊
(2b−1 − 1) sign(x)×|x|a

max |x|a

⌋
= R. If

there is a value a outside of D(Ra1)∪D(Ra2) such that R′ has each of its coordinate strictly between the
coordinates of Ra1 and Ra2 , then, without loss of generality, assume that at least half of the coordinates
of Ra1

are further away from the corresponding coordinates of x than one quantization step. This implies
that there exists a value a′ in D(R′) such that

∥∥x−Q−1
a′ (Qa′(x))

∥∥
p
<
∥∥x−Q−1

a1
(Qa1

(x))
∥∥
p
. which goes

against our hypothesis. Thus, there are up to N possible values for R that minimize the problem which
happens iff x satisfies at least one coordinate can be either ceiled or floored by the rounding. The set
defined by this condition has a zero measure.
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Appendix E

REx Proofs

E.1 Exponential Convergence

The exponential convergence can be proved for the two methods: expansion and sparse expansion. We first
prove it for the expansion on sequential models, then generalize the result to more diverse architectures.
Before detailing the proof of lemma 3.1.3, we empirically motivate the assumption of symmetry over the
weight values distribution. In Figure E.1, we plot the distributions of the weights of several layers of
a ResNet 50 trained on ImageNet. The assumption is often satisfied in practice. Furthermore, in any
instances where it would not be satisfied, it can be enforced using asymmetric quantization.

Lemma E.1.1. Let f be a layer with weights W ∈ Rn with a symmetric distribution. We denote
R(k) the kth quantized weight from the corresponding residual error. Then the error between the rescaled
W (K) = Q−1(R(K)) and original weights W decreases exponentially, i.e.:∣∣∣∣∣w −

K∑
k=1

w(k)

∣∣∣∣∣ ≤
(

1

2b−1 − 1

)K−1
(sR(K))i

2
(E.1)

where w and w(k) denote the elements of W and W (k) and (sR(k))i denotes the row-wise rescaling factor
at order k corresponding to w, as defined in equation 3.1.

We work on expanded layers which compute

f (K) : x 7→ σ

(
K∑

k=1

R(k)Q(x)sR(k)sx + b

)
(E.2)

Proof. Assume K = 1, then W (1) is the result of the composition of inverse quantization operator and
quantization operator, i.e. W (1) = sW

⌊
W
sW

⌉
. By definition of the rounding operator we know that

|⌊a⌉ − a| ≤ 0.5. Thus we have |w − w(1)| ≤ sW /2. Now in the case k = 2, we have by definition of the
quantization of the residual error and the property of the rounding operator∣∣∣∣⌊w − w(1)

sR(2)

⌉
− w − w(1)

sR(2)

∣∣∣∣ ≤ 1

2
(E.3)

where sR(2) is the rescaling factor in the second order residual R2 computed from w−w(1). The quantized
weights are thus given by: ∣∣∣∣∣w −

2∑
i=1

w(i)

∣∣∣∣∣ ≤ sR(2)

2
(E.4)

Because the weight distribution is symmetric we know that for any k, sR(K) =
max{w−

∑K−1
k=1 w(k)}

2b−1−1
or any

other definition of the delta in the full-precision space. Also, by definition we have max{w−
∑K−1

k=1 w(k)} ≤
sR(K) . Thus: ∣∣∣∣∣w −

K∑
k=1

w(k)

∣∣∣∣∣ ≤
(

1

2b−1 − 1

)
sR(K)

2
(E.5)

We conclude by using a trivial induction proof.
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50

40

30

20

10

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

Figure E.1: Distribution of the scalar weight values of different layers of a ResNet 50 trained on ImageNet.
We observe that every distribution is symmetric around 0.

As an immediate consequence we have the following corollary which justifies the expansion appellation:

Corollary E.1.2. Let f be a layer of real-valued weights W with a symmetric distribution and R(k) the
kth quantized weight from the corresponding residual error. Then,

E

[∥∥∥∥∥f −
K∑

k=1

f (k)

∥∥∥∥∥
]
≥ E

[∥∥∥∥∥f −
K+1∑
k=1

f (k)

∥∥∥∥∥
]

(E.6)

and f =
∑∞

k=1 f
(k).

The first inequality results from detailing the induction in the previous proof. Instead of an upper
bound on the error over all the scalar values we consider each error and show using the same properties
that they go down after each step. f =

∑∞
k=1 f

(k) is a direct consequence of equation 3.18.

Sparse Expansion Let N
(k)
i denotes the L1 norm of an output channel i of the k-th order residue

R(k). The sparse residue is defined as: (
R(k)

γ

)
i
= (R(k))i · 1(k)γ (E.7)

where · is the element-wise multiplication, 1(k)γ = 1{N(k)
i ≥τ

(k)
γ } and τ

(k)
γ is a threshold defined as the γ

percentile of N (k). In other words, we remove a proportion γ of channels from residue R(k) that are
the least important, as indicated by their norm N (k). Note however that these pruned channels can be
encoded in subsequent residuals, i.e. R(k′), with k′ > k. The result from Lemma 3.1.3 becomes:

Lemma E.1.3. Let f be a layer of real-valued weights W with a symmetric distribution. Then we have∣∣∣∣∣w −
(

K−1∑
k=1

w(k) +Q−1
(
R(K)

γ

))∣∣∣∣∣
≤

∥∥∥N (K) · 1(K)
γ

∥∥∥
∞

(sR(k))i

(2b−1 − 1)
K
2

(E.8)

where ∥∥∞ is the infinite norm operator with the convention that ∥0∥∞ = 1 and (sR(k))i denotes the
row-wise rescaling factor at order K corresponding to w.

Proof. From equation 3.18, we have:∣∣∣∣∣w −
(

K−1∑
k=1

w(k) +Q−1
(
R

(K)
1

))∣∣∣∣∣ ≤ (sR(K))i
2

(
1

2b−1 − 1

)K

(E.9)
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Figure E.2: Comparison of the average norm of the quantization error for each layers of a ResNet 50
trained on ImageNet. We observe the exponential convergence stated in lemma 3.1.3 and E.1.3.

which corresponds to the case where γl = 1. If γl < 1, we have two possibilities for w. First, the
coordinate in N (K) associated to is greater than τ

(K)

γl then we fall in the case where R
(K)
γ = R(K) and as

such we have the result from equation 3.18 which is stronger than equation E.8. Second, the coordinate
in N (K) associated to is lower than τ

(K)

γl . Then we have that the difference between the baseline weight
w and the slim expansion is bounded by the expansion of lower order and the maximum of the norm
N (K) which leads to the result in equation E.8.

Empirical validation: In lemma 3.1.3 and E.1.3 we stated the exponential convergence to 0 of the
approximation error on the weight values. In order to empirically confirm this theoretical result, we
quantize a ResNet 50 trained on ImageNet in ternary values for different orders K. As can be seen in
Figure E.2, the average error per layer, exponentially converges to 0 which matches our expectations.
The figure also confirms the empirical result on the strategies for γ. The higher errors are located on the
last layers, thus these layers require more attention.

E.2 Upper Bound Error

Theorem E.2.1. Let F be a trained L layers sequential DNN. We note σl the largest singular value of
Wl −

∑
k R

(k), i.e. the spectral norm of Wl −
∑

k R
(k). Then we have

max
∥X∥=1

∥F (X)− F (X)(K)∥∞ ≤ Ures

Ures =

L∏
l=1

(
l∑

i=1

σiu
(K)
i + 1

)
− 1

(E.10)

where u
(K)
l =

(
1

2b−1−1

)K−1 (sR(K))i
2 from equation 3.18.

Proof. Let’s consider L = 2, and F : X 7→ Bσ(Ax). For any X in the domain of F such that ∥X∥ = 1,
we have

∥F (X)∥2 ≤ σB + σA + σBσA (E.11)
where σB is the largest singular value of B and σA is the largest singular value of A. Following the
definition of the 2-norm and ∞-norm, we get that

σA−A(K) ≤ σAu
(K)
A (E.12)

where σA−A(K) is the largest singular value of the residual error of order K, A−A(K) and u
(K)
A is derived

from equation 3.18. Consequently, we get

∥F (X)− F (K)(X)∥2 ≤ σBu
(K)
B + σAu

(K)
A + σBu

(K)
B σAu

(K)
A (E.13)
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Sparse Expansion

Theorem E.2.2. Let F be a trained L layers sequential DNN. We note σl the largest singular value of
Wl −

∑
k R

(k), i.e. the spectral norm of Wl −
∑

k R
(k). Then we have

max
∥X∥=1

∥F (X)− F (X)(K)∥∞ ≤ Usparse

Usparse =

L∏
l=1

(
l∑

i=1

σiu
(K)
i + 1

)
− 1

(E.14)

where u
(K)
l =

∥N(K)·1(K)
γ ∥∞(sR(k))i

(2b−1−1)K2
from equation E.8.

This results is directly derived from Theorem E.2.1. This result can be extended to more sophis-
ticated architectures. To do so we simply need to address specific attributes such as skip connections,
concatenations and other activation functions.

Skip Connections and Concatenations In the case of skip connections, the graph is split from a
starting layer l1 and split in at least two branches that are added after layer l2 and l3. Assuming we can
compute the upper bound for each branch (sub-networks) we simply add these sub-errors. In the case of
U-nets, where skip connections contain skip connections, we simply perform this process recursively.

A similar approach can be applied to address concatenations. However in this case we keep the largest
value instead of adding them.

Self-Attention and Cross-Attention blocks In order to generalize to attention modules, we need
to generalize our formula to a product of layers. Let’s consider the weight tensors of the keys Wkeys and
queries Wqueries. Then the attention scores are computed as follows

Att(X) = (Wkeys ×X)
T × (Wqueries ×X) (E.15)

We want to bound the quantization error on the attention mechanism. However, the process involves the
magnitude of the inputs X as we highlight

ErrorAtt(X) =

∥∥∥∥∥∥(Wkeys ×X)
T×(Wqueries ×X)−

((∑
k

R
(k)
keys

)
×X

)T

×

((∑
k

R
(k)
queries

)
×X

)∥∥∥∥∥∥ (E.16)

If we note σk and σq the spectral norms of the residual errors of the keys and queries respectively, then
we can simplify the previous formulation

ErrorAtt(X) =
∥∥∥(σk ×X)

T
(Wqueries ×X) + (Wkeys ×X)

T
(σq ×X) + (σk ×X)

T
(σq ×X)

∥∥∥ (E.17)

In order to measure this influence on the softmax in the worst case scenario, we can simply compare the
σk and σq to the smallest singular values of Wqueries and Wkeys. If we note αk and αq the largest singular
values of Wkeys and Wqueries respectively, then we get

ErrorAtt(X)
∣∣∣
∥X∥≤1

≤ σkαq + σqαk + σkσq (E.18)

If we note ϵ = σkαq + σqαk + σkσq this upper bound, then the error on the softmax scores becomes

ErrorSoftmax(X)
∣∣∣
∥X∥≤1

≤ 1− e−2ϵ (E.19)

Other Activation Functions Although ReLU activations are predominant in modern DNNs, there are
still many other widely used activation functions such as SiLU, GeLU or even sigmoid. SiLU and GeLU
are bounded by the ReLU on the positive side which is where the highest errors occur. Consequently, the
upperbound is invariant to GeLU and SiLU activation functions (although under more assumptions on
the support, the upper bound could be tightened for ReLU and should be modified for GeLU and SiLU).
On the other hand, for sigmoid activations or similar activations (e.g. tanh), the upper bound becomes
an upper bound on X in the domain of F instead of X on the unit circle.
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E.3 Sparse Expansion Outperforms Standard Expansion

Lemma E.3.1. Let f be a layer of real-valued weights W with a symmetric distribution. Then, for
K ′ < K two integers, we have:

Err

R(1) +

K′∑
k=2

R(k)
γ1

 ≥ Err

(
R(1) +

K∑
k=2

R(k)
γ2

)
(E.20)

where Err is the quantization error (i.e. the absolute difference between the quantized and original weights,
as in Equation 3.18) and K ′ × γ1 = K × γ2 = β.

Proof. Let’s assume the layers outputs two channels. Then, we have γ1 = 1 and γ2 = 0.5. We simply need
to prove the result for k1 = 2 and k2 = 1 as the result will extend naturally from this case. The idea of
the proof consists in showing that using lower β values enables more possibilities of expansions which may
lead to better performance. Let’s note (W )1 and (W )2 the weights corresponding to the computation of
the first and second output channels respectively. Using γ1 = 1, the second order expansion correspond to
either quantizing (W )1 or (W )2. Assume (W )1 is chosen for R(2)

γ1 . Then, R(3)
γ1 will either quantize the error

from (W )2 or further quantizes the error from R
(2)
γ1 . In the first case we end up with R(1) +

∑k1

i=2 R
(i)
γ1 =

R(1) +
∑k2

n=2 R
(i)
γ2 . Otherwise, Err

(
R(1) +

∑k1

i=2 R
(i)
γ1

)
> Err

(
R(1) +

∑k2

i=2 R
(i)
γ2

)
.

125/125 February 26, 2024


	Landscape of Deep Neural Networks Compression
	Introduction to deep learning
	Neural Networks and Matrix-Vector Multiplication
	Normalization Layers
	Activation Functions
	Merging Nodes
	Neural Networks and Datasets

	Deep Neural Networks Deployment
	Edge Devices
	Cloud and Large Devices

	Using the Appropriate Architecture
	Neural Architecture Search
	Few Shot Architecture Improvement
	Knowledge Distillation for Deep Compression

	Efficient Arithmetic: Quantization
	Floating Point Quantization
	Fixed Point Quantization
	Quantization Simulation
	Quantization Challenges

	Trimming the Model: Pruning and Tensor Decomposition
	Pruning and Sparsity
	Simulated Pruning
	Tensor Decomposition
	Pruning Challenges


	Deep Neural Network Pruning
	Redundancy-based Approaches
	Theoretical guarantees
	Experimental Results

	Tensor Decomposition and Other forms of Pruning
	Depthwise Separable Convolution Tensor Decomposition
	A new Semi-structured Pruning Approach

	Importance-Based Pruning
	Magnitude Criterion
	Adapting Attribution techniques to Pruning
	Entwining Pruning and Fine-tuning
	Empirical Validation

	Other Applications Related to Pruning
	Robust Inference
	Empirical Robustness Evaluation
	Layer Relative Importance

	Future Challenges for Pruning
	Hardware Aware Pruning
	Pruning Granularity


	Deep Neural Network Quantization
	Data-Free Quantization
	Fundamental Work
	Quantization Granularity
	Non-Uniform Quantization
	Hardware Limitations

	Gradient-Based Post-Training Quantization
	Rounding Up or Down?
	GPTQ and Non-Uniform Quantization
	Best Practices

	Quantization-Aware Training
	ReActNet and PokeBNN
	Leads on Binary Transformers


	Insights for Future Work
	Our Contributions to Compression
	Pruning Matrix Multiplication Algorithms
	Multiplications Removal
	Additions Removal

	GPTQ and Auto-Regressive Models
	Working past Group-wise Quantization
	Modular Arithmetic
	Efficient Training with Adapters

	Bibliography
	Publications
	International Conferences
	International Journals
	National Conferences
	Under Review
	Patents

	Appendices
	Partial-Transformer Self-Distillation
	Quantization Implementations
	Redundancy-based pruning theory: RED and RED++
	Detailed proofs
	Extra empirical validations
	Similarity pruning as a birthday problem
	New Pruning Paradigm

	PowerQuant Proofs
	Proof of Lemma 3.1.1
	Local Convexity
	Uniqueness of the Solution

	REx Proofs
	Exponential Convergence
	Upper Bound Error
	Sparse Expansion Outperforms Standard Expansion


