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Chapter 1
Introduction

This chapter provides an introduction to the physical problem addressed in this
thesis and the associated issues.

The first section focuses on the general industrial issue that led to the thesis’s open
questions. It includes a description of a steam generator and the vibrational risks
encountered, as well as the industrial tools used to apprehend and predict these
phenomena.

The second section deals with the experimental study of flows similar to those in
steam generators. The first part presents the current understanding of flow regimes
and their interaction with a cylinder in academic cases. The second part explores
the understanding of flows in industrial configurations.

The third section addresses numerical physical modeling for the description of flows
in steam generators. The first part provides a brief overview of models one can
found in the literature and their limitations regarding our study, while the second
part presents the model developed at CEA and its limitations.

The final section outlines the challenges in reproducing multiphase flows for fluid-
structure interaction. It raises questions about modeling and introduces essential
modeling components for accurately replicating these flows.

Summary
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Chapter 1 – Introduction

General introduction

The flows studied in this thesis lie at the intersection of two major fields within fluid mechanics:
multiphase and turbulence. Multiphase focuses on the interaction between two phases, often a
liquid and a gas or a gas and solid particles, while turbulence aims to study the dynamics of a
fluid when its velocity is high enough to exhibit a wide range of fluid scales. When considered
separately, both of these areas present numerous open questions and are characterized by high
complexity.

The interaction between multiphase flows and turbulence, especially in the presence of walls,
remains far from being a fully understood domain. Indeed, there exists a wide collection of
complex dynamic and thermodynamic phenomena that can lead to the development or disap-
pearance and movement of drops, bubbles, or spray. These flows are encountered both in nature,
through phenomena like particle dispersion in the atmosphere or bubbles in ocean currents, and
in industrial applications such as steam production for energy generation or combustion in rocket
engines.
Thus, understanding and modeling turbulent multiphase flows present a significant challenge
due to the variability and complexity of the encountered structures. It becomes necessary to
take into account property discontinuities between the fluids, interactions between the phases,
the forces acting between these phases and their topology, among other factors. This complexity
then translates into the systems of equations to be solved, which are often non-linear and involve
numerous equations in order to predict their behavior accurately.

The wonder of fluid mechanics lies precisely in these recurring phenomena in nature and
industry, which seem so simple to us because they are easily observable but are incredibly chal-
lenging to describe using our mathematical tools. An essential part of understanding flows thus
involves finding similarities between phenomena that may be closely related, but on a slightly
different system or on a reduced scale. In this chapter, we will attempt to present an easily
observable phenomenon that we try to replicate using similarities or reduced scales in an effort
to better understand it. Ultimately, this will help us understand the challenges associated with
its modeling.

1.1 The primary circuit failure accident in steam generators

1.1.1 Flow induced vibrations in steam generators

Pressurized Water Reactors (PWRs) are a type of nuclear power plant that uses water as coolant
and neutron moderator. They are composed of a primary circuit, a secondary circuit, and a
cooling circuit as presented in Figure 1.1.

The primary circuit is a closed system that operates water under high pressure (about 155
bar) to transfer heat generated by the nuclear reaction in the reactor to the secondary circuit.
The water in the primary circuit is heated to a temperature of around 300 °C and high pressure
to keep it in a liquid state. This closed circuit also acts as a barrier to prevent the spread of
radioactive materials. The secondary circuit uses a Steam Generator (SG) to recover heat from
the primary circuit and turn it into steam, which is then used to drive a turbine to generate
electricity. The steam is produced at a pressure of 50-80 bar. After passing through the turbine,
the steam is condensed in the cooling circuit using water from a cold source, such as a river or
the ocean. This water is either returned to the source at a slightly higher temperature or cooled
in an air cooler and re-injected into the cooling circuit. PWRs typically have two to four SGs
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Figure 1.1: Main components of the primary and secondary circuits of a nuclear reactor. In red
the primary circuit, in orange the secondary circuit and in blue the cooling circuit. The steam
generator is translated by Générateur de vapeur (GV). From Georges Goué/Médiathèque IRSN
via IRSN website.

(GV in Figure 1.1), which are large, circular chambers containing thousands of tubes (inverted
U-shaped tubes called tubular beams) that carry water from the primary circuit. These tubes
are about 20 mm in diameter and 10m high, and are held in place by spacer plates and anti-
vibration bars , as presented in Figure 1.2. The curved portion of the tubes, located at the top
of the SG, has a maximum radius of curvature of 1.5 m. As the water passes through the tubes
and spacer plates, it gradually turns into steam as presented in Figure 1.2.

A monitoring system is in place to detect any leaks between the primary and secondary cir-
cuits through the tubes. This helps prevent contamination of the secondary circuit and prevents
SG tube rupture accidents. In the event of an accident, the difference in pressure between the
primary and secondary circuits can cause a spill of contaminated water and steam, which can
escape as steam. To prevent further damage, it is important to isolate the SG from the rest of
the system.

The phenomenon of rupture is caused by the repeated vibrations and stresses on the struc-
tures over large cycles due to the two-phase flow. These types of accidents are rare, can have
various causes, and are generally not dangerous. They tend to occur in the top cross-flow part
of the SG, where the tubes are horizontal and the void fraction (the proportion of the volume
occupied by the vapor) is high. However, they can still require an extended shutdown of the
SG to repair it. For example, in 1991, a leakage accident at the Mihama Power Plant in Japan
led to a shutdown of the SG for two years. The accident was caused by misaligned vibration
bars. To prevent such accidents, SG tubes are regularly inspected during scheduled shutdowns
to check for wear and damage. If the condition of the materials is not sufficient, the SG may
need to be replaced through a series of heavy operations. According to the French Institute
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Figure 1.2: Scheme of a steam generator. From US Nuclear Regulatory Commision (NRC)
website.

of Radiation Protection and Nuclear Safety (IRSN), 18 replacements were carried out between
1990 and 2010, or about one per year. In 2008, the Fessenheim Reactor No. 2 in Alsace, France
experienced a leak from the primary circuit to the secondary circuit. This led to a shutdown
of the reactor. The leak was caused by a crack at the beginning of the SG U-tube curvature,
which was determined to be the result of fatigue due to excessive vibration. This vibration was
traced back to the non-uniform installation of the anti-vibration bars during the construction of
the Fessenheim reactor in 1978. It is then critical to understand what kind of phenomenon can
lead to such excessive vibrations leading to the rupture of the tubes. Some clues can be found
studying single phase flows.

Another configuration where this phenomenon could occur is the design of new modular
architectures. These more compact designs have the potential to lead to the exploration of
novel configurations, such as IRIS (International Reactor Innovative and Secure)[7] presented
in Figure 1.3 or the one proposed in Korea presented in Figure 1.4, which feature a helical
arrangement of tubes of the primary circuit in the SG. Tubes can be installed in triangular
and square configurations or any combination of the previous configuration. This design are
intended to enhance heat transfer between the primary and secondary circuits. Six to eight of
these SGs can be installed between the core support body and the reactor pressure vessel.

1.1.2 Modeling the vibrations of tubes in steam generators

The U-bend tubes at the top of the SG are subjected to an upward flow of steam and water
with a high void fraction. These tubes are exposed to random forces caused by turbulence
and intermittent impacts from bubbles or gas pockets. There are two types of fluid-structure
interactions that can occur in this situation:

m When the forces acting on the tubes are not coupled to the motion of the tube. The
problem can be separated into a fluid mechanical problem and a structural problem. In
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Figure 1.3: Internals of the International Reactor Innovative and Secure (IRIS). From [7].

Figure 1.4: Scheme of a modular Korean reactor(a) showing the helical coiled steam generator
tubing(b) and the sectional tube array (c) from [66].

two-phase flow, this interaction can be caused by turbulence and the intermittent presence
of bubbles or gas pockets. Random excitations due to turbulence are called Turbulence
Induced Vibrations.

m When the forces acting on the tubes are coupled to the tube motion. This can be seen
as the fluid adapting its motion to the motion of the tubes. This phenomenon can lead
to instabilities. Because of the strong amplitudes at stack, the coupling between the fluid
and the structure can be dangerous as presented in Figure 1.5.
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Figure 1.5: Examples of damage of tube arrays from SG due to fluidelastic instability. From
[93].

The modeling of the mechanical loading exerted by the flow on a flexible tube is predicated
on the hypothesis that the fluid force can be separated into two distinct phenomena : a random
excitation and a coupling phenomenon. The random excitation is modeled as a fluid force
FRandom independent of the tube motion. It is related to the turbulent fluctuations generated
by the flow through the bundle. The increase of flow velocity leads to a linear growth of the
vibratory amplitude of the structure. The coupling phenomenon is modeled as a fluid force
Fcoupling that depends on the modal displacement x, velocity ẋ and acceleration ẍ, as follows :

Fcoupling(ẍ, ẋ, x, t) = −Mf ẍ(t)︸ ︷︷ ︸
Inertia

− Cf ẋ(t)︸ ︷︷ ︸
Damping

− Kfx(t)︸ ︷︷ ︸
Stiffness

, (1.1)

withMf , Cf and Kf respectively the added mass, damping and rigidity coefficients that depend
on the flow velocity.

The modal displacement x is then assumed to satisfy the following equation of motion :

Msẍ(t)︸ ︷︷ ︸
Inertia

+ Csẋ(t)︸ ︷︷ ︸
Damping

+ Ksx(t)︸ ︷︷ ︸
Stiffness

= Fcoupling(ẍ, ẋ, x, t)︸ ︷︷ ︸
Coupling force

+ FRandom︸ ︷︷ ︸
Random excitation

, (1.2)

with Ms, Cs and Ks respectively the mass, damping and rigidity coefficients in vacuum.

As depicted in Figure 1.6, for a critical flow velocity Vc, the total damping Cf +Cs of the sys-
tem becomes zero, resulting in a fluid-elastic instability that manifests as an exponential growth
of the vibration amplitude. This velocity can be studied through the reduced velocity Vr, a
dimensionless number that represents the ratio between the flow velocity and a characteristic
vibration velocity of the tube. It is defined as Vr = U

f0D
, where U is the flow velocity, D is the

diameter of the tube, and f0 is a characteristic vibration frequency. It can also be seen as the
ratio between the inertia associated with the flow and the flexibility of the tube.

Fluid-elastic instability can lead to wear and even rapid rupture of SG tubes. However, this
instability does not allow us to predict the phenomenon of tube fatigue that emerges over much
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Figure 1.6: Idealized response according to the reduced velocity of a structure in cross-flow.
Adapted from [93].

longer periods of time. To do this, the computation of the general system response with all
the terms by time integration is necessary. The complexity arises from the random nature of
the excitation caused by flow fluctuations, which makes it challenging to analyze the system’s
temporal behavior directly.
A deterministic signal is characterized by its amplitude and frequency, following a known math-
ematical law with respect to time. The knowledge of this law enables a definite and unique
determination of the signal at any given time. In contrast, a random signal can result in various
outcomes within a given time interval, and it can only be described using mean values derived
from probability density functions. Since these functions are often unknown in practice, statis-
tical analyses rely on sets of means. However, for a stationary random signal, a powerful tool
known as spectral analysis can be applied. Spectral analysis allows the identification of the
frequency content existing in the signal. It involves a study into Fourier’s space. This allows
the signal to be analyzed in terms of energy distribution across different frequency bands. This
analysis of a signal’s frequency content is referred to as its spectrum. In the context of studying
forces, we focus on the Power Spectral Density (PSD, see section 2.4.1), which quantifies the
variance of power within the examined physical process and is expressed in units of N2/Hz.
Figure 1.7 is an example of a force spectrum applied to a cylinder in a tubular beam.
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Figure 1.7: Example of power spectral density (left) of the drag force signal (right) exerted on
a tube of a tubular beam.

Two-phase flows are notably different from single-phase flows due to the diverse hydrody-
namic regimes they create. The combination of physical properties from the different fluids
and flow characteristics within the two-phase fluid can result in various spatial distributions
between phases, corresponding to different flow regimes. To conduct a precise analysis of FSI
in two-phase flow, it becomes crucial to take into account these distinct flow regimes.

1.2 Understanding phenomena in steam generators through ex-
periments

1.2.1 Topology of two-phase flows in experiments

In order to understand the physical processes that can happen in a SG, it is important to identify
the topology of the flow, called flow regime. A flow regime is a specific pattern of fluid behavior
within a two-phase flow system, characterized by the distribution and properties of the phases.
These regimes can be classified into three main categories:

m Separated flows are characterized by isolated phases, such as film flow on a plate, annular
flow in a pipe, jet flow, or stratified flow.

m Dispersed flows operate with numerous individual bubbles of various types, such as bubbly
flow with small, spherical or distorted bubbles.

m Transitional (or intermittent) flows can be depicted as the transition between separated and
dispersed flows, and can include slug flow with merging bubbles to form large cylindrical
gas regions, cap-bubbly flow with cap-shaped bubbles, or churn-bubbly flow with erratic
shape bubbles.

It is important to note that two-phase flow behavior is highly dependent on system geometry,
bubble topology, bubble distribution, and flow conditions, making it difficult to create a univer-
sal map of flow regimes. However, this classification system provides a general understanding of
the different types of flow patterns that can occur in two-phase systems.
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Figure 1.8: Images observed in a vertical 25.4 mm diameter pipe for different regimes. From
left to right bubbly (dispersed), cap-bubbly (transitional), slug (transitional), churn-turbulent
(transitional) and annular flows (separated). From [85].

In a SG various flow regimes occur, ranging from bubbly flow (dispersed) in the lower por-
tion to separated flow in the upper portion, with intermittent regimes (such as cap and slug
flow) in the middle. To study those regimes crossing the tubular beam of the SG, experimental
platforms of tube bundles were developed. K.Mao and T.Hibiki [79] proposed a flow regime map
for cross-flow tube bundles based on 8 experimental studies found in the literature, gathering
parallel triangular, normal square and normal triangular configurations with various gaps and
tube diameters. Figure 1.9 presents [79]’s map. The classification is based on the 5 following
categories, as presented in Figure 1.8: bubbly flow, cap bubbly flow, churn flow and annular flow.

The bubbly flow is characterized by a continuous liquid phase with dispersed small gas bub-
bles (smaller than the tube spacing). It is observed for low superficial gas velocities (flow rate of
gas over cross-sectional area, often denoted as jg) but a wide range of superficial liquid velocities
(flow rate of liquid over cross-sectional area, often denoted as jl). The finely dispersed bubbly
flow is characterized by a highly turbulent flow with small bubbles prevented from coalescing
and large ones breaking-up. It is observed for high superficial liquid velocities and intermediate
superficial gas velocities.

The cap bubbly flow is a bubbly flow with cap bubbles that can be larger than the tube
spacing. It is observed for intermediate superficial gas velocities and low/intermediate super-
ficial liquid velocities. Actually, the rise of gas flow rate impulses the coalescence of smaller
bubbles whereas moderate liquid flow rate doesn’t induce high intensity turbulence that could
break large bubbles.

The churn flow is characterized by a chaotic mixture of liquid and gas driven by gravitational
effects. It is observed for intermediate superficial velocities of both gas and liquid. It can be
noticed that downward movements can happen for short periods.
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The annular flow is characterized by continuous gas with liquid droplets in the core of the
tube bundle and continuous liquid films over walls and tubes. It is observed for reduced liquid
superficial velocities and high gas superficial velocities.

Figure 1.9: Comparison of [79] flow regime map with the data of [136].

Figure 1.10: Regime flow map of DIVA experiment (left), described in the following section.
The superfacial velocities are based on the gap between the tubes as for [79]. The categories are
based on void fraction α PDF observations, as presented next to the map (right).

The DIVA experiment, carried out at CEA, involves a tube bundle configuration similar
to those found in steam generators. Its primary purpose is to investigate vibrations occurring
in square-pitch bundles. The experimental setup is composed of an upward channel with a
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rectangular cross-section measuring 0.18 m × 0.3 m, hosting a square tube bundle of 5 × 3
rigid tubes, with a pitch ratio of 1.5. This setup allows for experimentation with various flow
scenarios, including water flow, air flow, or air-water flow. The following section will provide a full
description of the experimental configuration and its relevance to the study of vibrations in steam
generators. Figure 1.10 is the flow regime map of DIVA experiment. The void fraction PDF of
each flow operating conditions allowed to distinguish the experimental tests into 4 categories :
bubbly (dispersed), slug (transitional), churn (transitional) and annular (separated).
Figure 1.9 shows the map proposed by [79] by comparison with the experiment made by [136],
with 5×10 normal square configuration with a tube diameter of D = 2 cm and a gap of 1.5D. It
highlights the good agreement between the DIVA, [136] and [79] configurations. The comparison
between the map and experimental data reveals a good agreement between the two and DIVA,
indicating the reliability of the proposed maps. Although, the flow regimes are similar, [79]
gives a more detailed map and identifies the so-called slug category from DIVA as a cap-bubbly
regime. The DIVA experiment lacks visual data for the different flow regimes. To address
this limitation, [136] provides visualizations of some regimes, as shown in Figure 1.11. These
visualizations offer valuable insights into the characteristics of different flow regimes within the
tube bundle configuration. At the left a bubbly flow around the tubes is presented. It highlights
the presence of some bubble clusters and few 3D effects (along the tube). At the center a churn
flow is presented. It highlights the heterogeneity of the flow, 3D effects and the presence of
gas pockets. At the right an annular flow is presented. It highlights liquid ligaments, some 3D
effects and mostly separated phases interactions.

Figure 1.11: Cross-flow patterns for (a) bubbly, (b) intermittent and (c) annular regimes from
R.Ulbrich and D.Mewes [136].

Such maps are useful to understand the different topologies but give no information on local
phenomena arising from those regimes. Then experimental studies of the interaction between
cylinders and the different regimes are important. The study of single-phase flow around a cylin-
der is a well-established area of research. For example, in single-phase flow, different patterns
was observed according to the Reynolds number Re = ρUD

µ , with ρ the density, U the velocity,
D the diameter of the tube and µ the dynamic viscosity :

m When Re < 5, viscosity is dominant so that the flow is laminar. Trajectories follow the
curvature of the cylinder.
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m When 5 < Re < 49, viscosity is less dominant but the flow is still laminar. A detachment
point can be observed but the vorticies behind the cylinder are stable.

m When 49 < Re < 300, the so-called Von Karman vortex appears. It creates alternate
vorticies behind the cylinder with the characteristic frequency of the configuration.

m When 300 < Re < 105, the flow transitions to turbulence in the wake but the boundary
layer is still laminar.

m When 105 < Re < 4.106, the boundary layer over the cylinder transitions to turbulence.

m When Re > 4× 106, the flow is completely turbulent.

The instability of Von Karman (VK) is manifested by an alternating swirling detachment
that induces fluctuating stress. The vortex is a phenomenon where the speed of the fluid is
higher and the pressure lower than in the main flow. Thus, at the back of a cylinder this area
is characterized by the presence of a depression area. In order to understand this phenomenon,
we can define the number of Strouhal St which links the upstream speed U , the diameter of the
cylinder D and the flow frequency ff of the instability, by:

St = ffD

U
. (1.3)

In single phase, for Re between 102 and 106 we can observe a characteristic StV K of the
order of 0.2 with a quasi-random distribution of standard deviation of the order of 10%.
Regarding two-phase flow around a single cylinder, Inoue and al.[44] described the behavior of
an upward uniform bubbly air-water flow around a cylinder for void fractions between 0 and
0.24 and Re between 104 and 105. He listed some important observations. The area near the
separation point produces high local void fraction 3 to 4 times the homogeneous volume fraction.
A high void fraction area is situated behind the cylinder. As the liquid velocity increases, its
void fraction peak increases and its position come closer to the cylinder. A liquid layer where
bubbles can hardly penetrate can be produced in the front and in the rear of the cylinder due to
the static pressure gradient. Its thickness respectively increases and decreases in the front and
in the rear with increasing flow velocity. This phenomenon is visible on Figure 1.12. Compared
to single phase flow, the width and the length of the wake are smaller due to the buoyancy force
on bubbles and higher turbulent intensity.

1.2.2 Two-phase flows in industrial configurations

Most of the literature dealing with upward two-phase flows giving interesting local data involve
flows going through tube bundles or spacer grid [146, 147, 31, 137, 70]. Regarding two-phase
flow across horizontal in-line tube bundles, the local data available is still limited [144]. Iwaki
[46] performed bubbly flows around an upward tube bundle at low void fraction. He observed
that for liquid superficial velocities under 0.1 m/s bubbles stay between the tubes whereas when
the liquid superficial velocities is over 0.1 m/s, bubbles are driven into the wake behind the
tubes.
Murakawa [89] experimental setup operated with the bubbly, transitional (called transition)
and separated (called intermittent) flow regimes for square (called in-line) and triangular (called
staggered) configurations as presented in Figures 1.13 and 1.14. In this study, we focus on
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Figure 1.12: Photographs of a cylinder wake for several flow conditions from [44].

only triangular configuration observations of bubbly, intermittent, and separated flows. For
bubbly flow, numerous bubbles were observed passing between the tubes, with some bubbles
also observed behind the tubes, as noted by Iwaki [46]. This resulted in a higher void fraction
in the upstream region compared to behind the tubes. In the case of intermittent flow, the
void fraction was found to be almost uniformly distributed throughout the tube bundle. For
separated flow, large gas structures were observed passing intermittently, accompanied by reverse
flow in the near-wall region. Large bubbles were observed to occupy the horizontal maximum
and vertical minimum gaps, leading to a lower void fraction in the horizontal minimum gap.

However, experimental data for all the regimes is still lacking. Indeed, to fully understand
these mechanisms under the other regimes, experimental studies using specialized instrumenta-
tion for water-steam flow are necessary. Moreover, this instrumentation is not yet fully oper-
ational, and constructing a water-steam experimental facility is cost-prohibitive. As a result,
research and development efforts in this area currently rely on tests using simulating fluids (such
as water-freon and water-air) or analytical experiments.

In order to better understand and quantify the vibratory phenomena of SG tubes, experi-
mental work has been carried out for about forty years at CEA, on a reduced scale. In order to
limit the cost of installations and for safety reasons, these studies are carried out with simulating
fluids, in this case water and air instead of water and steam. The DIVA experimental setup
hosted at CEA, presented in Figure 1.15, is dedicated to the study of vibrations in square-pitch
bundle. It thus reproduces on a reduced scale the FSI in the SG which currently equip the 32
nuclear reactors of 900 MWe and the 20 reactors of 1300 MWe of France. The loop is equipped
with a pump able to deliver 5 to 300 L/s of water and an air compressor able to deliver up to
3000 m3/h at an absolute pressure of 8 bar. The loop can thus operate in water flow, air flow
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Figure 1.13: Instantaneous visualizations of the flow in the tube bundles for jg = 0.12 m/s (left)
and jg = 0.86 m/s (right), as superficial gas velocities and jl = 0.2 m/s (both), as superficial
liquid velocities. The upstream flow originates from the bottom side. From [89].

Figure 1.14: Experimental two-dimensional averaged void fraction distributions for jl = 0.2 m/s,
as liquid superficial velocity. The upstream flow originates from the left-hand side. From [89].

or air-water flow. It allows reproducing regimes similar to the ones encountered in the SG. The
experimental setup is composed of an upward channel of 0.18 m × 0.3 m rectangular section
in which can be set a square tube bundle made of 5 × 3 rigid tubes, with a pitch ratio 1.5, as
presented in [95] and in Figure 1.15. A central flexible tube can be set but will not be discussed
in this manuscript.
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Figure 1.15: Photos of the DIVA experiment.

The Power Spectral Density (PSD) of the fluid force (drag and lift directions) acting on the
central tube is calculated by measuring the random excitation for various volume flow rates of
air and water. Specifications and verifications for single phase flows were performed in Piteau
and al. [95]. It aims to understand and take into account the fluctuations of the two-phase flow
for the fluid-elastic interaction. However, due to the complexity of the phenomenon (such as
bubble swarms, the emergence and the transition of several bubbly turbulent regimes, etc.), it
is not always possible experimentally to access to all flow conditions and information because of
limited instrumentation. Then in order to get additional local information, the idea is to get a
numerical twin. Indeed, numerical simulation can play a fundamental role, as it allows access to
all quantities of interest and information that are not accessible or observable experimentally.

In order to simulate any configuration similar to a SG, a quasi-steady general numerical
model must be built. Such a model is said "All-regimes". It describes flow configurations where
multiple dispersed and continuous regions can be met. It can be seen as a smooth transitional
flow between the different flow topologies previously introduced.

1.3 Advanced numerical models for two-phase flows

1.3.1 Literature overview

In order to reproduce two-phase flows it exists several methods that are suitable for specific ap-
plications [148, 32, 150, 85]. Then a compromise between precision and prediction must be done.
A more precise description is given in the appendix. To summarize, direct approaches like DNS
and LBM can only be used for precise small portion of industrial configurations because of their
computational cost and the need of further development. Statistical approaches are accessible
in industrial codes and their computational cost is relevant for our applications. Statistical ap-
proaches to fluid flow can be divided into two aspects: the statistical behavior within each phase,
known as Reynolds Averaged Navier-Stokes (RANS), and the statistical presence of interfaces.
The first aspect involves decomposing any quantity into a mean field and a fluctuating field. The
mean field is calculated, while the fluctuations are modeled. Unsteady methods called URANS

30



Chapter 1 – Introduction

were developed to capture timescales separated from turbulence, but they violate the principle
of ergodicity, which states that ensemble averages and time averages are the same. From a
mathematical perspective, the filtered equations of Large Eddy Simulations (LES) and URANS
equations are identical, with the only difference being the closure models. The second aspect
arises from the averaged equations, as the mean quantities eliminate the interfaces. Additional
equations are needed to account for the presence of interfaces. The popular approach is called
Euler-Euler because it treats both phases as coexisting fluids, both as the "stage" fluid, and
their mixture is characterized by a void fraction. This approach is much less computationally
demanding and allows for the simulation of real industrial geometries.

Figure 1.16: Comparison between Front-Tracking, Euler-Lagrange and Euler-Euler methods
from [63].

Numerical models that can simulate the complexity of two-phase flows in a SG are called "all
regimes" and only few approaches have been proposed in the literature (see [102] and section
2.2.2). The Eulerian-Eulerian approach suggests solving both phases, with mass, momentum
and energy equations. These equations are coupled by the volume fraction of the phase and
the interfacial exchange terms for all three equations. The fundamental concept behind all-
regimes models is to define appropriate interfacial exchange terms for each regime topology.
These models combine a formulation able to define interfacial terms for dispersed bubbly regime
with another formulation that defines them for continuous flows. Consequently, these methods
do not explicitly track or reconstruct the geometry of the liquid/gas interfaces, as Level-Set,
Phase Fields, or Volume Of Fluid method would typically do [135]. All-regimes models primar-
ily focus on solving the dynamics for average quantities across the phases. As a result, they are
particularly well-suited for scenarios involving multiple and complex bubble/droplet topologies.
The changes among different "all-regimes" models primarily lie in how the intermediate regimes
between the two extremes (bubbly and continuous) are solved.
The initial approach taken to address this challenge involved flow regime-dependent correla-
tions and regime transition criteria based on experimental data [54], as demonstrated in [113].
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However, as highlighted in [57], this approach fails at reproducing the dynamics of developing
flows, transition regimes, and inlet effects. Moreover, correlations based on experimental data
inherently suffer from a considerable margin of errors, limitations in operational conditions and
geometries, and can introduce artificial discontinuities and numerical instability. To overcome
these limitations, the first family of models introduced algebraic blending techniques for inter-
mediate regimes. One inherent weakness of the blending approach is its inability to accurately
define the gradual transitions between different two-phase regimes.[102, 29, 142]. According to
Frederix et al. [27], the success of the transitions in GEMMA approach [102] is dependent on
capturing the dynamics on the computational grid. Indeed, most algebraic models suffer from
implicit transitions that only take into account the void fraction dependency, disregarding other
important factors.

The second family, known as the "multi-field" method, divides the gas field into N subfields
based on the size distribution of the gas bubbles being computed [60, 43, 80]. For each gas field,
an additional set of conservative equations needs to be solved. While this leads to a significant
increase in the number of interfacial terms that need to be modeled, it allows for a more accurate
treatment of different flow regimes. The "multi-field" family of models has gained popularity
due to its ability to handle dynamics associated with bubbles of different shapes and bubble
interactions. Many models in the literature, such as GENTOP [43] or HD-LIS [82], are based
on combinations of the inhomogeneous MUlti-SIze Group (I-MUSIG) method [58] and a contin-
uous gas field with an interface segregation method. One notable weakness of these models is
their high dependence on the computational grid, primarily caused by the transition condition
between the dispersed and continuous gas fields. The accuracy and performance of these models
are significantly influenced by the way the transition is handled on the grid. It prevents to have
a convincing grid convergence for mesh sensitivity study, as illustrated in 1.17. Furthermore, it
prevents correct validation of some mesh progression strategies like in boundary layers or around
complex geometries. It makes the models not suitable for specific turbulent models.
The model handled in this thesis belongs to the same family of models lastly discussed but

introduces a different approach. It relies on differential equations for the interfacial area con-
centration (IATE) [55] for two groups of bubbles, along with an interface detection method. A
detailed description of this model is presented in the following section.

1.3.2 The Two-phase RegIme Transition model

The TRITON (Two-phase RegIme TransitiON) model , developed by Kuidjo [60], combines a
two-group IATE with an interface detection method developed by Coste [16]. In this approach,
each of the two gas groups has separate momentum equations, and only the mean level of
each group is computed. The transition between the dispersed and continuous gas fields is
then determined based on the prediction of local void fraction and its gradient, enabling the
identification of gas pockets. One notable advantage of this model is that it is not grid-dependent
in its formulation, making it well-suited for mesh progression strategies such as those used in
boundary layers. By dividing the gas into two distinct fields, we are able to effectively model
separately and take into account with their unique characteristics and behavior the following
regimes topologies :

m Dispersed bubbly flows with one distribution of small bubbles.

m Transitional flows such as cap and churn flows, thanks to a hybrid large bubble dispersed-
continuous field.
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Figure 1.17: Void fraction αcg prediction contour of the continuous gas field from Four-Field-LIS
with finer mesh from left to right. From [27].
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Figure 1.18: Principle of the "all-regimes" model developped at CEA. Small bubbles, Con-
tinuous gas and large bubbles, Liquid.
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m Separated flows, thanks to the hybrid field using the continuous part.

By solving the IATE, there is no need for an algebraic blending function to define the
interfacial transfer terms for the intermittent regimes, as the IATE 2-Groups model [121] already
incorporates them. However, it is essential to establish the conditions that enable two transitions.

From bubbly to intermittent: It is ensured as critical diameter Dc between the two dis-
tribution of bubbles, based on the Laplace length scale proposed by Ishii and Zuber [84] as
:

Dc = 4
√

σ

g∆ρ, (1.4)

where σ is the surface tension, g is the gravitational acceleration and ∆ρ is the difference be-
tween the liquid and gas densities.
Wang and Sun tested a two-group IATE model in 3D configurations on a wide range of con-
ditions for bubbly flows, in [140], and for cap-bubbly flows, in [141], in channel geometry and
obtained good results.

From intermittent to separated: the LIM is an interface-holding method that identifies re-
gions where the gas must be computed as a continuous phase based on a criterion defined by the
volume fraction gradient[16, 17, 18]. Unlike interface tracking methods [8] (VOF [39] etc.), the
LIM does not reproduce the interface but only identifies cells where interfacial forces (specific to
this regime) are applied. It is based on a three cells recognition, activated with criteria based on
the void fraction gradient that clearly identifies the liquid continuous side, the gas continuous
side and an intermediate interface cell as presented in Figure 1.19.

Figure 1.19: Graphical concept of the LIM method from [16].

However, the model was designed mathematically for channel flows and was validated on
few test cases. In order to reproduce the FSI problem, these types of models must undergo a
double validation necessary on the one hand to estimate the ability of the model to reproduce
the hydrodynamics of the flow and the interactions between bubbles and on the other hand
to estimate the ability of the model to reproduce the good fluctuations on tubes. Indeed, to
reproduce the flows occurring in DIVA it is necessary to understand and validate the different
modeling bricks but also for the interaction aspect with the structure and the turbulence. In
particular, it is necessary to further investigate in order to correctly couple the TRITON model
with the modeling of the fluctuations.

34



Chapter 1 – Introduction

1.4 The challenge of two-phase fluid-stucture interaction simu-
lations

The experimental setup known as DIVA, hosted at CEA, is dedicated to replicating and studying
the fluctuations experienced by tubes in steam generators. Its primary objective is to develop
models that can effectively prevent tube ruptures. However, due to the intricate nature of
two-phase flow and the limited availability of instrumentation, it is necessary to incorporate
additional local information through numerical simulations. Although several numerical ap-
proaches have been proposed in the literature, their validation, particularly under conditions
of high void fraction, is not yet convincing. One promising model, called TRITON, is based
on experimental observations and aims to simulate various flow regimes encountered in a steam
generator. However, further validation and modeling are essential to accurately reproduce the
fluctuations observed in two-phase flow.
The primary objectives of this study are to address the following questions: How can we replicate
DIVA, and to what extent? What insights can we gain from simulations to enhance our under-
standing of DIVA? What kind of modeling is necessary to reproduce two-phase fluid-structure
interaction? How can we effectively manage areas with a high void fraction?
By answering these questions, this work aims to contribute to the advancement of understanding
and modeling of FSI in the context of two-phase flow, particularly in scenarios similar to the
DIVA experimental setup.

Figure 1.20 provides an overview of the key decomposition of the DIVA experiment. In
this thesis, we investigate a fluid-structure interaction problem, which involves the interaction
between a two-phase fluid and a structure. However, for the purpose of this research, our focus
will be only on the fluid aspect with fixed tubes. Prior to simulating the movements of the
structure, it is crucial to validate the behavior of the fluid and the forces exerted on the tube.
This will be achieved by reproducing the force spectra, ensuring accurate representation and
understanding of the fluid dynamics. We simulate, via the NEPTUNE_CFD code, the different
flow regimes that can be observed in the DIVA analytical setup. In particular, we want to
reproduce the mechanical loading on the tubes in order to analyse and understand the observed
vibratory phenomena.
Bestion demonstrates in [3] that developing an "all-regimes" fluid model for DIVA confronts
several challenges, even from a theoretical perspective. These challenges arise from the need
for accurate modeling of various physical processes within the averaged equations of the two-
phase flow, as depicted in Figure 1.20. The behavior of bubbles dispersion, large interfaces,
and turbulence play crucial roles in the model. To address these processes, the TRITON model
incorporates coupling forces and IATE for the dispersed aspect, a turbulence model, and the
LIM transition for the large interfaces. Extensive work has been carried out to select and adapt
the different components of the model. Initially developed for channel flow, only a limited
literature addresses the particular challenges and modifications required to accurately replicate
the dynamic behavior of a two-phase averaged flow around tubes.
The interdependencies among the various building blocks of the model is one key problem.

The accuracy of each fundamental aspect’s prediction is essential because the computations of
these aspects rely on the predictions of each other, as depicted on Figure 1.21. Therefore, any
shortcomings in predicting one fundamental aspect can have a prejudicial effect on the overall
predictive capability of the model.

Best practices for two-phase flow modeling in nuclear reactor thermal hydraulics are out-
lined in [2]. These practices involve identifying important flow processes, such as regime type,
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Figure 1.20: Illustration of the numerical modeling for DIVA. Images from Europlexus website,
[93] and [3].
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Figure 1.21: Illustration of the different numerical modelings of TRITON and their interactions.
Images from [3].

space and time resolutions, physical processes, and relevant non-dimensional numbers. Mod-
eling choices should be made and justified especially for the interface treatment. Closure laws
should be selected, justifying the modeling of interfacial transfers, turbulence. Coherence and
consistency of choices should be verified and compared with literature and experimental data for
simple cases. The model should be validated using more complex experimental data or down-
scaling comparisons. Finally, uncertainties in predictions should be evaluated, but will not be
discussed in this thesis.

This work is divided into 4 parts. The first part (Chapter 2) focuses on describing the
modeling used and the state of the art to justify our approach and starting points. The second
part (Chapter 3) aims to identify the influence of some parts of the model and their issues,
and propose solutions to improve it. The third part (Chapter 4) deals with the simulation of
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averaged two-phase flows in the presence of a single cylinder, including experimental comparisons
to understand the model’s sensitivity and behavior. This part aims to identify the strengths,
challenges, and possible improvements. The final part (Chapter 5) focuses on simulating DIVA
experiments (tube bundle), attempting to establish links between our numerical model and the
experiment to understand the physical insights achievable with our model.
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Chapter 2
Two-phase averaged modeling for flows in
tubular geometries

This chapter is a state-of-the-art review and a description of two-phase averaged
modeling for the reproduction of fluid-structure interaction in a channel with a tube
bundle.

The first section outlines the general principles of two-phase averaged modeling.
The initial part introduces various tools and approaches available for replicating
experimental flows. The second part outlines what the averaged modeling should
be able to reproduce regarding experimental data and justifies the use of our model.

The second section focuses on interfacial stress modeling in the literature and for our
model. The first part describes interfacial force models for dispersed and continuous
phases. The next part introduces the concept of interfacial area equations required
for forces modeling, especially the Interfacial Area Transport Equation (IATE) 2
group model used in this thesis. The last part briefly showcases, in a non-exhaustive
way, various source terms available in the literature and those used in this thesis.

The third part offers a description of turbulence modeling in single-phase and
two-phase cases. The first part provides a simple introduction to single-phase
turbulence modeling to better understand the subsequently modeled terms. The
following part introduces the Elliptic Blending – Reynolds Stress Model and justifies
its use. The last part details current approaches to modeling pseudo-turbulence in
the liquid phase, associated with the transit of bubbles.

The final part presents two-phase simulations with a single cylinder before modifying
the model. The first part introduces the geometry, mesh, and post-processing aspects
relevant to reproducing force spectra. The next part addresses the issues related to
the modeling in the presence of an obstacle, along with the results obtained using a
simpler model to apprehend and address specific problems arising from the presence
of the cylinder.

Summary
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2.1 The two-phase averaged Navier-Stokes equations

2.1.1 Averaging the Navier-Stokes equations

The simulation of an adiabatic system of incompressible water-air requires the computation of
the instantaneous local Navier-Stokes equations in each phase k. The conservation equations
for mass in each phase is given by :

∇.(ρkvk)︸ ︷︷ ︸
Transport

= Γk︸︷︷︸
Source

, (2.1)

with t the time, ρk the density of phase k, vk the velocity of phase k and Γk a mass source term
of phase k. The conservation equation for momentum in each phase is :

∂

∂t
ρkvk +∇.(ρkvkvk)︸ ︷︷ ︸

Transport

= −∇Pk︸ ︷︷ ︸
Pressure

+ ∇ · τ
k︸ ︷︷ ︸

Diffusion

+ ρkg︸︷︷︸
Gravity

, (2.2)

with Pk the pressure, τ
k
the viscous stress tensor and g gravity.

Equations 2.1 and 2.2 are defined within each phase, but it is necessary to introduce jump
conditions on either side of the interface, which is the boundary between the two phases (see [85]
for more details). From the balance equations, boundary and jump conditions, and constitutive
laws, emerge dimensionless numbers that are crucial scaling parameters. These dimensionless
numbers play a significant role in establishing the similarity between simulations and exper-
iments. However, fixing these scaling parameters in two-phase flow rises a challenge due to
the inherent complexity of the system. Nonetheless, they are still used to account for specific
effects within the equations. In fact, in certain configurations, scaling effects can be notably
significant, emphasizing the need to extrapolate using physical similarities. Furthermore, the
use of dimensionless parameters enables a deeper understanding of flow regimes, structures,
and mechanisms. Considering an isothermal incompressible gas-liquid channel flow allows us to
define several essential dimensionless numbers, presented in Table 2.1, based on the following
independent physical quantities :

m The velocities of the liquid Ul and gas phases Ug.

m The dynamic viscosities of the liquid µl and gas phases µg.

m The densities of the liquid ρl and gas phases ρg.

m The characteristic lengths for the liquid Dl and gas phases Dg. They are commonly chosen
as the hydraulic diameter for the liquid phase and the bubble diameter for bubbly flow.

m The surface tension σ.

m The gravitational acceleration g.

The similarity between simulations also relies on operating conditions known as inlet condi-
tions for the simulation. It leans on key dimensional and non dimensional parameters that are
in Table 2.2. They are characterized by the mass flow rates ṁ of the liquid ṁl and the gas ṁg,
volumetric flow rates Q̇ of the liquid Q̇l and the gas Q̇g, the cross-sectional area As occupied by
the liquid and the gas and the velocities of the liquid vl and the gas vg.
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Number Expression Ratio of over

Reynolds Rek = ρkUkDk
µk

Inertia Viscosity

Modified Froude Frk = ρkU
2
k

∆ρgDk Kinetic energy Gravity

Weber Wek = ρkU
2
kDk
σ Inertia Suface tension

Eötvös Eok = ∆ρgD2
k

σ Buoyancy Surface tension

Table 2.1: Table of significant dimensionless numbers.

Operating parameter Symbol Expression

Quality xQ
ṁg
ṁ = ṁg

ṁg+ṁl

Volumetric quality βQ
Q̇g
Q̇

= Q̇g
Q̇g+Q̇l

Superficial velocity of phase k jk
Q̇k
As

Void fraction of phase k αk
jk
vk

Table 2.2: Table of significant operating inlet numbers.

In the case of a system like DIVA, simulating thousands of deformable bubbles of different
sizes and shapes while tracking their interface through the bundle of tubes with very fine mesh to
capture the fluctuations would be necessary. However, due to the computational power required,
it is unrealistic to be able to compute the spectra of forces exerted on tubes with our current
means. Then, it becomes necessary to consider a statistical flow to reproduce the water-air flow
at a low cost. To ease the understanding of the averaging principles, the formalism of Ishii and
Hibiki [85] is adopted. The general form of the Navier-Stokes equations can then be written, as
follows, to describe how a specific quantity, denoted as φk changes:

∂

∂t
ρkφk +∇.(ρkφkvk)︸ ︷︷ ︸

Transport

= −∇ · J︸ ︷︷ ︸
Diffusion

+ ρksk︸ ︷︷ ︸
Source

. (2.3)

Table 2.3 provides the corresponding quantities for the mass (equation 2.1) and momentum
conservation (equation 2.2).

The averaged Navier-Stokes equations predict the average behavior of fluid motion and prop-
erties by filtering out local instant fluctuations. However, precise modeling of all microscopic
scales is still necessary for an accurate reproduction of the averaged flow. To handle multiple
phases within the averaged framework, it becomes essential to introduce a variable that defines
the phase mixture. Let χphasek be a tracer of phase k, which defines whether or not we are in
this phase. It takes the value 1 if we are in the phase, 0 otherwise. The void fraction of phase
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Quantity φk J sk

Mass 1 0 Γk
Momentum vk T

k
= PkI− τ

k
g

Table 2.3: Table of the conserved quantities in balance equations.

k, denoted as αk, in a volume VΩk within a reference frame (X,t), is defined as follows:

αk = 1
VΩ

∫
VΩ
χphasek (X, t)dVΩ = VΩk

VΩ
. (2.4)

As depicted in Figure 2.1, the void fraction primarily captures smooth periodic macroscopic
phenomena. However, it can also account for interacting phenomena and disequilibrium. For
instance, to accurately depict the overall spreading phenomenon resulting from dynamic be-
havior, it becomes essential to consider the wake’s disequilibrium behind the tube, depicted in
red. Similarly, we can draw parallels to Monet’s painting approach. By observing and gathering
information daily, he performs an ensemble average to convey the comprehensive impression of
the phenomenon he wishes to represent. Given his continuous observations, he captures the
fluctuating behavior and its macroscopic consequences, such as the breaking waves influenced
by their interactions with the sand.

Direct measure

Ensemble average

Signal

t

Signal

t

Figure 2.1: Link between the instantaneous presence of the tracker and its void fraction. Com-
parison between direct measure and ensemble averaged for a two-phase flow crossing a tube [44]
and for Etretat cliffs between a photo and Monet painting.

The volume averaged method introduces two different mean quantities for a property φ: the
mean of a field k in the volume φ̄k and the mean of a field in its proper volume φk. With the
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void fraction αk of the field k in a volume VΩk in a reference frame (X,t), they are defined by :

φ̄k = 1
VΩ

∫
VΩ
φk(X, t)dVΩ, (2.5)

φk = 1
VΩk

∫
VΩk

φk(X, t)dVΩ = φ̄k
αk
. (2.6)

To ensure accuracy, the mean values must satisfy a fundamental assumption of regularity, which
ensures that the average of a mean value remains consistent with the mean value itself. In order
to account for the zero mean value of the fluctuation φ′, another commonly used approach is
the Favre averaging. The Favre average of the quantity φ for the field k is defined as φ̃k = ρφk

ρ̄ ,
where the overline represents the averaging operation.

A new fundamental relation arises by summing the differential equations of each phase to
get the differential equations for the mixture. Assuming that the subscript "m" denotes the
quantity for the mixture, the relation can be expressed as follows:∑

k

ρkφkvk =
∑
k

αk(ρkφkvk + ρ′kφkvk) =
∑
k

αk(ρkφ̃kṽk + ρkφ
′
kv′k)

= ρmφmvm︸ ︷︷ ︸
Mean transport

+
∑
k

αkρkφ̃k(vk − vm)︸ ︷︷ ︸
Phase transport

+
∑
k

αkρkφ
′
kv′k︸ ︷︷ ︸

Turbulent and interfacial transport

. (2.7)

This relation provides the basis for separating the mixture and individual phases into distinct
sets of equations. Two approaches stem from this separation: simulating only the mixture while
modeling phase phenomena, known as the drift-flux model, or simulating the behavior of each
phase while incorporating turbulent and interfacial phenomena, known as the two-fluid model.
According to Ishii et al. [85], the last approach offers several advantages, including the ability
to simulate segregated dynamics and non-equilibrium interactions between phases.

The difficulties in the averaged modeling are mainly found in the momentum conservation
equation since the mass conservation equation is almost unchanged. The momentum balance
equation of the two-fluid model can be expressed as follows:

∂

∂t
αkρkṽk +∇.(αkρkṽkṽk)︸ ︷︷ ︸

Transport

= −∇.(αk(T k + T T
k

))︸ ︷︷ ︸
Stress and turbulence

+ αkρkg̃︸ ︷︷ ︸
Gravity

+ Ik︸︷︷︸
Interfacial transfer

, (2.8)

with Ik interfacial transfer for the phase k, T
k
the stress tensor and T T

k
the turbulent stress and

g gravity.
The interfacial transfer in the momentum balance equation can be expressed as follows:

Ik = − 1
∆t

∑
j

1
vni

(ρknk(vk − vi)vk − T knk))

= − 1
∆t

∑
j

1
vni

(ρknk(vk − vi)vk − (T
k
− T interface

k
)nk)) + 1

∆t
∑
j

1
vni

T interface
k

nk,
(2.9)

with vni the interfacial normal velocity, nk the interfacial normal vector, vi the interfacial ve-
locity and T interface interfacial stress tensor.
A new variable, called interfacial area concentration, can be introduced to simplify the formu-
lation: aij = 1

∆tvni j , with ∆t a time interval. We can also notice that 1
∆t
∑
j

1
vni

nk = −∇α. By
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decomposing the stress into pressure and shear-stress components, subscripted i at the interface,
and incorporating the mass loss rate ṁ, we obtain the following expression :

Ik = Γkṽki︸ ︷︷ ︸
Mass transfer

+
∑
j

aij(Pki − Pk)nk︸ ︷︷ ︸
Interfacial pressure imbalance

+
∑
j

aij(τk − τki)nk︸ ︷︷ ︸
Interfacial shear−stress imbalance

+ Pki∇αk︸ ︷︷ ︸
Interfacial pressure dispersion

− τ
ki
∇αk︸ ︷︷ ︸

Interfacial shear−stress dispersion

,

(2.10)

with quantities denoted with an i as quantities at the interface and Γk the mass transfer term.
In order to accurately determine the mean values of the variables of interest, a common and
simple assumption is to consider that all interfacial quantities are equal to the corresponding
average quantities. However, this approach overlooks significant factors such as the interfacial
pressure imbalance that contributes to drag and lift caused by the presence of bubbles, as well
as the interfacial shear stress that influences skin drag.

In order to obtain the mean values of variables of interest, we have the classical field equa-
tions of mass and momentum for each field. The system must be closed by adding models for:

m Turbulent stress T T
k
, described in section 2.3,

m Interfacial transfers of mass Γk, described in section 2.2,

m Interfacial transfers of momentum Ik, described in section 2.2.

Before modeling exchanges between phases, it is necessary to fix the number of phases to
be modeled, which then imposes the number of equations. Modeling the dynamics of two-phase
flows presents significant challenges due to the diverse range of scenarios encountered, including
steady and transient behaviors, as well as losses in homogeneity and thermal effects. To ad-
dress these complexities, researchers have proposed various modeling approaches. One notable
approach is the four-fields model, initially introduced by Lahey and Drew [61]. The four-fields
model partitions the flow into distinct regions, each associated with specific characteristics.
These regions include the liquid phase, bubbly phase, droplet phase, and gas phase. Within this
model, a continuous liquid field (lc) is managed to represent the presence of liquid, a continuous
gas field (gc) captures the behavior of large gas pockets, a dispersed gas field (gd) models the
dispersed bubbles, and a dispersed liquid field (ld) represents the behavior of liquid droplets (as
illustrated in Figure 2.2).
While the four-fields model offers a comprehensive approach to capture the complex dynamics
of two-phase flows, it can be computationally intensive. This model requires the solution of
twelve balance equations, accounting for mass, momentum, and energy conservation. Addition-
ally, closure models are needed to describe the interfacial transfers and interactions between the
different fields. Implementing the four-fields model accurately demands careful consideration
of the closure models and numerical techniques to ensure reliable predictions of the system be-
havior. To reduce the number of equations, Morel [86] proposed two degenerate four-fields to
two-fields models that combines the Two-fluid and Drift-flux approaches. The first proposition
involves using two dispersed fields of bubbles carried by liquid (bm) and droplets carried by gas
(dm), and then drifting the mixture made by the dispersed field.
Another proposition is to use two separated fields for gas (g) and liquid (l), with each field being
a hybrid of dispersed and continuous phases.
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Figure 2.2: Principle of a four-field model handling any kind of topology of interest. From [61].
The subscripts v and l refer respectivly to vapor and liquid whereas d and c denote respectivly
the dispersed and the continuous phases.

The benefit is the reduction of the number of closure models to 6 balance equations. However,
these approaches have limitations, such as the inability to handle non-equilibrium physical phe-
nomena.
The most preferred approach at present is to use a Two-fluid model and to neglect the droplets.
This approach uses a continuous liquid field (l) and a hybrid continuous-dispersed gas field (g),
which eliminates the need for a dispersed liquid model and reduces the number of closure models
and balance equations. However, the challenge is to find a way to transition between dispersed
and continuous phases in any topology. To address this challenge, some models deviate from
the two-field model and use a three-field model with a continuous liquid field (lc), a dispersed
gas field (gd), and a continuous gas field (gc). This approach can handle gas in any topology
but still requires some model to transition between dispersed and continuous phases.
The model used in this work is based on the last approach, where continuous gas regions arise
from large bubbles. The model uses a three-field model with a dispersed gas field for small bub-
bles (g1), a hybrid dispersed-continuous gas field (g2) to handle large bubbles and gas pockets,
and a liquid continuous field (l). A summary of the various approaches is presented in Table 2.4

This model aims to capture the fundamental topological interfaces observed in experimental
studies. Therefore, it is imperative to precisely model different aspects of the system, such as
interfacial stress and turbulent stress. The upcoming section focuses on experimental obser-
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Model Field 1 Field 2 Field 3 Field 4

Four Fields αgd αgc αld αlc

Hybrid Drift αbm = αgd + αlc αdm = αld + αgc

Hybrid Two-fluid αg = αgd + αgc αl = αld + αlc

TRITON αg1 = αgd1 αg2 = αgd2 + αgc αlc

Table 2.4: Table of the different approaches for "all-regimes" modelling.

vations to fully comprehend their complexity. By studying experimental data, we can better
understand and account for the dynamics associated with those terms and justify the number
of phases computed in this work.

2.1.2 A bridge between experiments and equations

In the context of a liquid-gas system, such as in a gas-liquid flow, the interface behavior can be
considered dispersed due to the presence of numerous relatively small bubbles. However, the
local distribution of these bubbles can exhibit variations in shape and size. While providing a
precise classification of interface characteristics can be challenging, it is possible to categorize
them into five general categories, offering a broad understanding of their properties and behavior
:

m The spherical bubbles that stands for small spherical bubbles.

m The distorted bubbles that stands for almost spherical bubbles (ellipsoidal). They source
from little distortion of spherical bubbles.

m The cap bubbles that stands for cap shaped bubbles. They source from very distorted
bubbles.

m The Taylor bubbles are bullet shaped large bubbles. Their development is conditional on
the presence of walls.

m The churn-turbulent bubbles are very deformed bubbles because of high intensity turbu-
lence. They can not be characterized by a specific shape because of their erratic interfacial
topology.

By increasing their inner volume, bubbles modify their interface and allow local deformations,
crossing the different types of bubbles. This deformability can be characterized by the Eötvös
number Eo. The larger Eo is, the more the bubble is deformed. Furthermore, two bubbles can
merge or one can be divided into 2, it is the coalescence/break-up mechanism. This mechanism
is sourced by random collision, wake entrainment or turbulent impact. Then, it becomes more
difficult to link their diameter with their interfacial surface with a simple expression. However,
thanks to their topology, it is possible to characterised them by equivalent spherical bubble
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diameter that represents a spherical bubble of equivalent volume. As for the volume, an equiva-
lent surface can be defined to represent the surface of the interface. While the minimum bubble
diameter depends on injection conditions and turbulent intensity, the different categories can be
segregated by maximum size/shape. To this end, Ishii and Zuber [84] proposed some bubbles
size limit:

m For the distorted bubbles, the upper diameter limit Dld before becoming cap-shaped:
Dld = 4

√
σ
g∆ρ , with ∆ρ = ρl − ρg. In normal conditions, Dld = 11 mm. It corresponds to

Eo = 15.77.

m For the cap bubbles, the diameter upper limitDlc is: Dlc = 40
√

σ
g∆ρ . In normal conditions,

Dlc = 11 cm. It corresponds to Eo = 1.57× 103.

Figure 2.3: Shapes diagram and photos of different bubbles. (a) homogenous bubble column,(b)
bubble plume,(c) airlift reactor,(d) single needle experiment. From T. Ziegenhein and D. Lucas
[155].

The maximum stable Taylor bubble diameter imposes an upper limit on the bubble sizes. Con-
figurations that have a diameter D∗H = DH√

σ
g∆ρ

> 40 are considered "large" because no Taylor
bubble can exist. This limit segregates "small" configurations" from "large" one. In large diam-
eter configurations, small and large bubbles can coexist easily and create stronger turbulence.
This turbulence enhances the mixture diffusion [122], can reduce the wall-peak [152], increase
the bubble breakup. Furthermore, according to Smith and al. [121] the injection conditions can
have strong effects on the flow pattern by creating already deformed bubbles at the inlet.
According to Shen and al.[115], in "large" diameter pipes a core-peak phase distribution pattern
exits in most flow regimes and can be linked to the presence of large and deformed bubbles. On
another hand, wall-peak distribution is met only for undisturbed bubbly flow or mostly one-
dimensional flows. Indeed, the lift force acts on bubbles that moves in a shear flow with radial
velocity gradient at low gas superficial velocity, creating a wall-peak. Furthermore, in upward
flows, the average bubble size along the vertical axe increases due to the change of regime. Ac-
cording to Shawkat and al.[110], in large diameter pipes, the average liquid velocity profile is
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more uniform than in single phase flow for wall-peak void fraction configurations whereas higher
average velocities can be met in core-peak void fraction configuration. Furthermore, in [111],
Shawkat and al. stand that the distribution of turbulence in bubbly flows is similar to that in
single-phase flow but with a more uniform distribution in the core region, clue of a decrease
of the turbulent diffusion in this region. However, in the near wall region, the intensity was
found to be much higher than in single-phase. It is also essential to notice that a turbulence
suppression process was observed for void fraction less than 5% and for liquid velocities above
1 m/s in the core.

In experimental studies the access to local information is limited. With the development of
special probes configurations local flow characterization is increasingly accessible and compar-
isons with numerical simulation are becoming possible. Indeed for example with the four-sensor
optical probe, that consists of one front optical sensor and three rear optical sensors allows
getting good local information of the interfacial concentration. However, data is still very local.
The probes can give the information of the presence of the bubbles, their time residence, their
chord or their velocity.
The figures 2.4 and 2.5 are probe visualizations for different flow regimes in downward flow.

Figure 2.4: Visualization of probe signals for bubbly and cap bubbly regimes from [50].

Figure 2.5: Visualization of probe signals for bubbly and cap bubbly regimes from [50].
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It highlights noticeable differences between bubbles according to their shape or even for gas
pockets. Those differences must be included in the model in order to capture "all-regimes" flow.
Indeed, depending on the topology of the flow it can be homogeneous, heterogeneous, intermit-
tent, quasi-static. However, the statistical approach erases the interfacial information so that
the model by itself needs to include sources able to reproduce those very different configurations.
The figure 2.6 shows the different time signals of the void fraction for different regimes. It

Figure 2.6: Differences between temporal signals according to the flow regime from Shlegel and
al. [105].

highlights that in order to get a complete description of cap-bubbly and churn turbulent flows,
intermittency must be reproduced by the model. Then unsteadiness from quasi-periodic phenom-
ena must be taken into account. In particular, Churn-turbulent flows depends on unsteadiness
and turbulence. Then unsteady average equations are necessary to capture this regime.

Figure 2.7: Bubble size distribution for liquid injection jl = 0.765 m/s and different gas injections
in a square channel of side 66 mm. Subfigures: (I) bubble size distribution with bin width of 2
mm for the bubbly and cap-bubly regimes, (II) bubble size distribution zoom with bin width of
0.1 mm for the bubbly regime, (III) bubble size distribution zoom with bin width of 0.1 mm or
the cap-bubbly regime. From [153].
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The figure 2.7 shows the statistical distribution of the bubble equivalent diameters in a square
channel of side 66 mm for liquid injection jl = 0.765 m/s and different gas injections from [153].
The first subfigure illustrates the distribution of the different flow conditions with a 2 mm bin
for the bubbly and cap-bubbly regimes. The two other subfigures illustrate a zoom of the first
subfigure respectively for the cap-bubbly and bubbly regimes. The bottom subfigure shows that
in bubbly flows, any bubble is smaller than 10 mm, agreeing with the bubble limit of distorted
bubbles and displays only one peak. In the top subfigure showing the cap-bubbly flows, the
distribution displays two peaks, one around 3 mm and another one around 4− 8 cm whereas in
between few bubbles are detected. It highlights a transition region between two distinct "groups"
of bubbles. The small bubbles group and the large bubbles group. Furthermore, for this regime
the small bubbles’ distribution is wider than for the bubbly regime. It is due to the interactions
between the two groups of bubbles. Then the model needs to capture the behavior of the two
"groups" of bubbles and their interactions.

We have just presented the general averaged two-phase modeling for steam generator-type
flows, highlighting the presence of two groups of bubbles and a field designed to replicate erratic,
unsteady structures. However, the method of averages needs the inclusion of closure models to
faithfully reproduce the encountered structures. To achieve this, two major families of closures
must be studied: turbulent stresses (T T

k
) and interfacial models (Γk and Ik). The following two

sections deals with these two aspects.

2.2 Modeling of the interfacial transfers

2.2.1 Interfacial momentum transfers

As a reminder, the TRITON (Two-phase RegIme TransitiON) model handles two gas groups
with separate momentum equations, and only the mean level of each group is computed. The
transition between the dispersed and continuous gas fields is then determined based on the pre-
diction of local void fraction and its gradient, enabling the identification of gas pockets thanks
to the LIM. We finally get three fields as presented in Figure 1.18 :

m One dispersed field of small bubbles - less than 10.8 mm.

m One hybrid field of bigger dispersed bubble - more than 10.8 mm - and continuous field.

m One continuous liquid field.

Indeed, the dispersed approach proved to be inadequate when dealing with irregular interfaces.
Interfaces that are significantly large and cannot be considered similar to a bubble present
challenges for dispersed methods, and relying on averaging alone is insufficient to address them.
To accurately capture the behavior of these interfaces and accurately simulate their interactions
with the liquid field, a new method that incorporates an additional skin drag force is necessary.
Various methods are based on a shared principle: initially, an interface detection method is
managed to identify the location of the interface. This can be achieved through techniques such
as Volume of Fluid (VoF [39]) methods, the use of blending functions, or other defined criteria.
The LIM (Large Interface Model) method [16, 17, 18], for example, is based on detecting volume
fraction gradients. In some cases, the interface detection method is coupled with an interface
sharpening technique involving interface compression or blending functions. Subsequently, a
specific drag model is handled, and some methods even incorporate surface tension effects.
These approaches aim to enhance the accuracy of simulations by considering the characteristics
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of the interface and its dynamic behavior. Regarding the LIM method, the idea is to model the
skin drag ILIM in the normal direction n to the large interface using the classical drag force FD
and in the tangential direction t using a friction model F f that is specific to large interfaces.
The underlying hypothesis is that the interface behaves like a moving wall.

ILIM = FDn + F ft, (2.11)

F f = ρgU
∗2
g ai,LIM , (2.12)

with U∗2g the friction velocity computed thanks to suitable large-interface friction laws and ai,LIM
an evaluation of the interfacial area concentration.

ai,LIM =
∑
i=1,3∇iαgiVi∑
i=1,3 αgiVi

, (2.13)

with Vi the volume of the cells used in the LIM.

As previously mentioned, the expression for the averaged interfacial momentum transfers,
excluding mass transfers, can be expressed as follows :

Ik =
∑
j

aij(Pki − Pk)nk︸ ︷︷ ︸
Interfacial pressure imbalance

+
∑
j

aij(τk − τki)nk︸ ︷︷ ︸
Interfacial shear−stress imbalance

+ Pki∇αk︸ ︷︷ ︸
Interfacial pressure dispersion

− τ
ki
∇αk︸ ︷︷ ︸

Interfacial shear−stress dispersion

.

(2.14)

Regarding the dispersed forces, the expression for the averaged interfacial momentum transfers
depends on the hydrodynamical models, denoted as Mk. :

Ik =
∑
j

aijMk

︸ ︷︷ ︸
Hydrodynamical forces

+ Mk∇αk︸ ︷︷ ︸
Interfacial dispersion force

. (2.15)

Two types of hydrodynamical forces F are classically used : the steady forces like the Drag and
the Lift and the transient forces like the Added mass forces. The interfacial dispersion forces
can be seen as transient forces because it tries to reproduce the spread by fluctuations of the
steady forces. As suggested in [85], the simplest way to model the momentum transfer between
the gas and the liquid Il→g is to express them as a linear combination of several forces F kl→g.
The momentum transfers are then proportional to the void fraction αg and the representative
volume of the bubble Vg :

Il→g =
∑
k

Fk
l→g =

∑
k

αg
Vg

(Mk
g). (2.16)

Drag force

The standard drag force FDl→g accounts for the form drag and the viscous friction. The model
developed by Ishii and Zuber [84] was determined with single bubble flow of different shapes and
has a strong effect on terminal velocities. However, the model doesn’t seem to capture transient
bubble deformation, contamination or swarm effect. This term stands for the force that goes
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against the movement of bubbles in the flow direction. It is expressed as :

FD
l−>g = −1

8aiρlCD(Ug −Ul)|Ug − Ul|, (2.17)

with ai = 6αg
Dsm

the interfacial area concentration of the gas, Dsm the Sauter mean diameter and
CD the drag coefficient. This drag coefficient depends on the type of bubble. For ellipsoidal
bubbles the coefficient is CD = min(CDellipse, CDcap) with :

CDellipse = 2
3Dsm

√
g|ρg − ρl|

σ

(1 + 17.67(1− αg)9/7

18.67(1− αg)3/2

)2
. (2.18)

For cap and churn bubbles, the drag coefficient is calculated as follows:

CDcap = 8
3(1− αg)2. (2.19)

Figure 2.8 illustrates the behavior of the two previous drag coefficients, for an ellipsoidal bubble
of 4 mm and a cap bubble.
The previous correlations are correct in turbulent regions where Reb > 1000, then in viscous
regions another correlation must be used. For low velocity area like behind cylinders and in the
near-wall region, another drag coefficient can be used:

CDlow = 24
Reb

(1 + 0.15Re0.687
b ). (2.20)
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Figure 2.8: Drag coefficient according to the value of α.

Other models were proposed to take into account the shear induced[68], the bubble defor-
mation [99] or even swarm effects [76]. However, those models still need validation over a wide
variety of configurations and the contribution of these complex models compared to simpler ones
is necessary to demonstrate their usefulness.
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Added mass force

The added mass force FAMl→g accounts for the apparent mass from relative acceleration. This
transient force is often used to stabilize the simulation but is based on a real physical process.
The model used was developed by Zuber [90]. However, it doesn’t take into account effect of
the bubble size. This term stands for the inertia of the liquid due to the bubble acceleration. It
is expressed as:

FAM
l−>g = −CAMαg

1 + 2αg
1− αg

ρl

(
DUg

Dt
− DUl

Dt

)
, (2.21)

with CAM the added mass coefficient often taken as equal to 0.5.

Lift force

The lift force FLl→g accounts for the relative velocity in the normal direction, developed by Au-
ton [134] with the correlation of Tomiyama [133]. Actually, the lift force is very sensitive about
bubble size and can even change of sign. The Tomiyama correlation well capture the sign change
for air-water flows at ambient conditions (around 5.8mm) and so seems to be the best to use.
However, the model doesn’t seem to capture turbulence interaction, swarm effect or near-wall
interaction. This term stands for the force that goes against the movement of bubble normal to
the flow direction. An overview of different models for the lift coefficient is proposed in [36]. It
is expressed as :

FL
l−>g = −CLαgρl(Ug −Ul)× (∇×Ul), (2.22)

with CL the lift coefficient. In case of potential flow, this coefficient is equal to 1/2 (Auton,
1987). It has been empirically modeled by Tomiyama et al. (2002) as follow :

CL =

 min(0.288tanh(0.121Re), 0.00105Eo3
H − 0.0159Eo2

H − 0.0204EoH + 0.474) if EoH < 4,
0.00105Eo3

H − 0.0159Eo2
H − 0.0204EoH + 0.474 if 4 ≤ EoH ≤ 10,

−0.27 if 10 < EoH ,
(2.23)

with EoH = g(ρg−ρl)D2
H

σ , DH = Db(1 + 0.163Eo0.757)1/3, Eo = g(ρg−ρl)D2
b

σ and Db the bubble
diameter.
Figure 2.9 illustrates the behavior of the lift coefficient according to the value of the diameter
for a velocity of 0.332 m/s.
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Figure 2.9: Lift coefficient according to the value of the diameter for a velocity of 0.332 m/s.

The strength of this model is that it distinguishes the transversal behavior of small and large
bubbles. It is then adapted for the all-regimes used for the two groups. Other models were
proposed to take into account the low velocities [67, 36] and wall effects [68]. However, as for
the Drag force their usefulness need to be demonstrated in a wide variety of configurations.
Hayashi and al. [33] proposed an interesting new correlation for the lift coefficient, gathering
several previous works and that can reproduce the negative lift. The first assumption is based
on the calculation of Legendre standing that the lift depends on a pure lift contribution and a
drag contribution that allows the total lift to be negative :

CL = CSL − f(χ,Reb,M)CD. (2.24)

Then CSL is the euclidian norm between the low Reynolds contribution CSLL and the high
Reynolds contribution CSHL .

CSLL = 6
π

2.255
√
SrReb(1 + 0.2RebSr )3/2

, (2.25)

CSHL = 1
2

1 + 16
Reb

1 + 29
Reb

, (2.26)

with Reb = UrDsm
νl

and Sr = ωDsm
Ur .

Then there is a distinction between the viscous µ − regime and the surface tension- inertial
σ− i regime. Regarding the µ− regime, the correlation depends on the aspect ratio χ and the
Morton number M = µ4

L∆ρg
ρLσ3 . Its expression is :

CL = CSL −
g(M)(χ− 1)h(M)

Reb
C∗D, (2.27)

with g(M) = 500exp(−6M0.0735), h(M) = 3.46exp(−5.M0.191) and C∗D = 16
Re(1+0.25χ1.9Re0.32

b .
Regarding the σ − i regime, the correlation depends on the Eotvos Eo and on the aspect ratio
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χ. Its expression is :
CL = CSL − 0.048ωmax

Eo + 4
Eo + 16χ2−1

χ8/3

CD, (2.28)

with the maximum vorticity ωmax = 2χ5/3(χ2−1)3/2

χ2cos(χ−1)−
√

(χ2−1)
.

In order to avoid discontinuities, a fast increase of the lift and to get a criteria for the transition
between the σ − i regime and the µ− regime, we use:

χ = min(χr, χe), (2.29)

χr = 1 + 9
64We+ 0.04We2

√
3.7−We

, (2.30)

χe = 1 + 0.62We0.376. (2.31)

Then, the transition happens when We = ρLU
2
rDsm
σ ≈ 3.121.

Turbulent dispersion force

The turbulent dispersion force F Tl→g tries to model the transport of the dispersed phase by
large fluid turbulent eddies. Several original models were proposed. For example, on one hand,
the complex model proposed by Simonin et al. [118] is based on Tchen‘s theory of two-phase
dispersed turbulence. On the other hand, Lopez [73] proposed a diffusive model with a simple
diffusive constant. Another interesting model was proposed by Burns[5] is based on the Favre
average of the drag force. The Generalized Turbulent Dispersion developed by J.Laviéville and
al. [64] is used because it gathers multiple already working dispersion models and so seems to
be more general. It depends on local variables that reduces the diffusion in the near wall-region.
However, this model is not widespread so that it still lacks of diversity in validation. It is
expressed as :

FT
l−>g = −GTDρl

2
3kl

∂

∂xi
αg. (2.32)

GTD =(fDτ tlg − 1) b+ ηr
1 + ηr

+ CAM
b2 + ηr
1 + ηr

, (2.33)

ηr =
τ tlg
τFlg

, b = ρl + ρlCAM
ρg + ρlCAM

, τ tlg = 3
2Cµ

kl
εl

(1 + β1
V 2
r

kl
)−1/2, (2.34)

τFlg = 1
fD

(ρg
ρl

+ CAM ), fD = 3
4
CD
Dsm

ρlUr, (2.35)

β1 = (1
2 + 3

4C0) = 2.07, C0 = 2.1. (2.36)

β1 represents the ratio between the Lagrangian time and the Eulerian integral time scales. C0
is called Kolmogorov constant.
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Wall lubrication force

The wall lubrication force FWL
l→g accounts for the redistribution of the velocity in the near-wall

regions that the lift force can not take into account. Most of the models are based on the
lubrication theory. The model developed by Tomiyama [131] is used because it is the most used
and validated one. However, this model needs the information of the hydraulic diameter. To
avoid this problem a new formulation was proposed to make it cancel at a distance Db and
inspired by the wall lubrication of Lubchenko and al. This term stands for the force that repel
bubble from the wall. It is expressed as follows :

FWL
l−>g = CWρl|Ug − Ul|2nw, (2.37)

CW = C∗W
Db

2

(
1
y2
w

− 1
(Dh − yw)2

)
, (2.38)

C∗W =


0.47 if EoH < 1,
e−0.933Eo+0.179 if 1 ≤ EoH < 5,
0.00599Eo− 0.187 if 5 ≤ EoH ≤ 33,
0.179 if 33 ≤ EoH .

(2.39)

Figure 2.10 illustrates the lubrication coefficient according to the value of the diameter.
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Figure 2.10: Lubrication coefficient according to the value of the diameter.

The problem with this force is that it depends on the hydraulic diameter. In case of infinite
hydraulic diameter compared to the bubble size, this force still has effect on long range. Simula-
tions showed that it is necessary to have a repelling force near the stagnation point of a cylinder
to prevent gas stagnation and numerical problem. Then the aim of this force is just to prevent
this phenomenon. It is then modified as follows by replacing the hydraulic diameter by twice
the mean Sauter diameter and to calibrate the force to match the infinite hydraulic diameter
strength at a radius of the wall :

CW = αg
Db

2 C∗W
1− y∗w
y∗2w

if yw < Db, 0 if not. (2.40)
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The strength of this formulation is that it allows getting a liquid lubrication on few cells in
the near wall region and doesn’t always induce a wall peak. A force that try to reproduce the
bouncing due to the presence of the wall, called Bubble-Wall Collision Force, was proposed by
Chuang and Hibiki [11]. However, it depends on a pre-factor that still needs validation over a
wide range of configurations.
Another wall lubrication force popular FRp accounts for the bubble void fraction gradient within
a bubble. It was proposed by Lubchenko and al. [71]. It was derived for the regularization of
the turbulent dispersion force in the near-wall region. The result was compared against Liu and
Bankoff database. It allows imposing a parabolic void fraction profile in the near wall region. It
is expressed as follows with the use of the generalized turbulent dispersion :

FWR
l−>g = 2

3GTDρlkl
ai
6

1− 2y∗w
y∗w − y∗2w

if y∗w < 0.5, 0 if not. (2.41)

The main problem with this force is that it is a static force that is not really suitable for flows
around cylinder. Indeed, this force is not able to repulse the dispersion toward the stagnation
point. In case of low flow rate, the pressure do not repulse the bubbles, this force neither and
so allow non-physical local stagnant high void fraction in few cells around the stagnation point.

An essential aspect of modeling the coupling forces between the liquid and gas phases is ac-
curately predicting the interfacial area concentration. Indeed some forces are proportional to the
interfacial area concentration ai (Fk

l→g ∝ ai) or to an equivalent diameter Dsm (Fk
l→g ∝ Dsm).

To tackle this challenge, it is beneficial to introduce a new equation that governs the transport
of the interfacial area concentration. With this additional equation, it becomes possible to ex-
plicitly account for the transport of interfacial area concentration to get Ik and the mechanisms
of bubbles coalescence and break-up to get Γk.

2.2.2 Obtaining the Interfacial Area Transport Equation

The two-fluid model, due to averaging, can’t accurately represent the volume and presence of
interfaces. To address this limitation, an alternative approach is adopted, assuming that the
two fluids can be segregated into distinct roles: a continuous stage fluid and a dispersed local
actor fluid that can dynamically influence the stage fluid. In this context, the dispersed fluid
is represented as a population of bubbles with varying diameters, which serves as a topological
characteristic for the stage fluid. The dispersed fluid is characterized by two interconnected
attributes: a distribution of bubble diameters and the concentration of interfaces.
We can define the Sauter-Mean Diameter of the distribution fd of sizes D as :

Dsm =
∫
fdD

3dD∫
fdD2dD

, (2.42)

the area concentration per unit of volume Ai so that in dispersed bubbly hypothesis Ai = πD2,
the interfacial area concentration ai =

∫
fdAidV and the void fraction α. The relation between

those variables is :

Dsm =
∫
fdD

3dD∫
fdD2dD

= 6
∫
fdV dV∫
fdAidV

= 6α
ai
. (2.43)

Then two approaches are commonly used to compute the interfacial area concentration. The
first naive method, often called monodispersed, is to use flow regime dependent correlations and
regime transition criteria based on experimental data[113]. However, this approach can not re-
produce the dynamics of developing flows [57], transition regimes and inlet effects. Furthermore,
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by nature, experimental data correlations can suffer of high percentage of errors, are limited in
operational conditions and geometries and cause artificial discontinuities and numerical insta-
bility [35].
The second approach, often called polydispersed, is based on a differential equation for the in-
terfacial area concentration that can reproduce dynamic phenomena, eliminate discontinuities
and allow modeling of bubble mechanism. The distribution of diameters and of interfacial pres-
ence can be modelled by a Boltzmann transport equation of the distribution called population
balance equation.
Then, two approaches can be used to solve the problem of linked diameter/interfacial concen-
tration : the Method of Momentums (MoM) [150] or size-group methods [58] .
The MoM is the most mathematically elegant method. With this method the distribution fd
is discretized into classes. We can then solve the Boltzmann equation for each class and then
compute the moment associated (surface, diameter) for the equations. However, the different
moments are convected by the same velocity whereas it has no physical meaning.
While the idea of the MoM is to transport a discrete distribution of pics, the idea behind the
size-group methods is to fix the groups so that the distribution stays continuous but to transport
only the mean level. Then the distribution is discretised into fixed classes so that we can define
the fraction αi and its corresponding level of each class. The difference with the MoM is that
each class has its proper velocity. Because experimental data shows differences in velocity for
specific bubbles classes, the size-group method is used. Two separated size-group methods was
proposed. One based on having an arbitrary number of groups to reproduce a distribution, re-
ferred as MUSIG of i-MUSIG [139, 20, 69] and the other reproducing the distribution thanks to
the Mean Sauter diameter referred as IATE. The generalized Interfacial Area Transport Equa-
tion (IATE) developed by Kocamustafaogullari and Ishii [55, 56] is obtained by multiplying the
number density transport equation by the particle surface area Ai, integrating over the range of
possible volumes and simplifying the terms to get a simple differential equation for the IAC (cf.
[85]). The general expression for adiabatic flows with ψinternalj a source term and ψintergroupj an
intergroup term is then :

∂aik
∂t

+∇.(Ukaik)︸ ︷︷ ︸
Transport

= 2
3
aik
αk

Dαk
Dt︸ ︷︷ ︸

V olume change

+
∑
j

ψintergroupkj︸ ︷︷ ︸
Intergroup sources

+
∑
j

ψinternalkj︸ ︷︷ ︸
Internal sources

. (2.44)

A particular case of the solution can be obtained if we consider two groups of bubbles. For
example, experimentally a limit can be observed between quasi-spherical and distorted bubbles.
Then we can separate the distribution of those groups into 2 distinct distributions.
From the Boltzman transport equation of the distribution function fd(Xd, ξd, t), with external
parameters Xd, internal variables χd and Sd source term:

∂fd
∂t

+∇(fd
dXd

dt
) + ∂

∂ξd
(fd

dξd
dt

) = S(Xd, ξd, t). (2.45)

Then we multiply the surface area of the particle Ai, intergrate over the volume of all particles
between V min and V max. Then by switching integrals and derivative in the left hand of the
equation we get for the group k of velocity U :∫ V max

V min
(∂fd
∂t

+∇(fd
dXd

dt
) + ∂

∂ξd
(f dξd

dt
))Aidξd = ∂aik

∂t
+∇(aikUk) +

∫ V max

V min

∂

∂ξd
(fd

dξd
dt

)Aidξd.
(2.46)
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In order to simplify the formulation, we can assume that the time rate of change in the relative
particle volume is independent of its volume, then :∫ V max

V min

∂

∂ξd
(fd

dξd
dt

)Aidξd = 1
V

dV

dt

∫ V max

V min

∂fdξd
∂ξd

Aidξd = 1
V

dV

dt
(fdmaxAmaxVmax − fdminAminVmin

−
∫ V max

V min
fdV dAi).

(2.47)
By assuming the distribution large enough we can neglect the min contribution for the first
group and the max contribution for the second group. The term 1

V
dV
dt is simply the dilatation

of volume and can be express thanks to the mass conservation in isothermal configurations by :

1
V

dV

dt
= 1
α

Dα

Dt
. (2.48)

By reminding that ai =
∫
fAidV , V = πD3

6 and Ai = πD2 then :∫
fdV dAi =

∫
fdAi

D

6 dAi =
∫
fdAi

D

6
4
D
dV = 2

3ai. (2.49)

Then [52] proposed to model the intermediate (up range for the first group and down range of
the second group) range between the two groups as:

AicfdcVc = χdai1(Dsmc

Dsm1
)2. (2.50)

Finally, for the first group we get

∂ai1
∂t

+∇(ai1Ug1)︸ ︷︷ ︸
Transport

= 2
3
ai1
αg1

Dαg1
Dt︸ ︷︷ ︸

V olume change

−χd(
Dsmc

Dsm1
)2 ai1
αg1

Dαg1
Dt︸ ︷︷ ︸

Dsmc group shift

+
∑
j

ψintergroup1j︸ ︷︷ ︸
Intergroup sources

+
∑
j

ψinternal1j︸ ︷︷ ︸
Internal sources

.

(2.51)
And for the second group, we get :

∂ai2
∂t

+∇(ai2Ug2)︸ ︷︷ ︸
Transport

= 2
3
ai2
αg2

Dαg2
Dt︸ ︷︷ ︸

V olume change

+χd(
Dsmc

Dsm1
)2 ai1
αg1

Dαg1
Dt︸ ︷︷ ︸

Dsmc group shift

+
∑
j

ψintergroup2j︸ ︷︷ ︸
Intergroup sources

+
∑
j

ψinternal2j︸ ︷︷ ︸
Internal sources

.

(2.52)
The intergroup mass transfer is obtained by a similar way with intergroup mass source terms
ηinter but by modeling the transfer of volume in the intermediate range as χdai1(DsmcDsm1

)3 :

Γg1−g2 = ρg(
∑
j

ηinterj︸ ︷︷ ︸
Intergroup sources

+χd(
Dsmc

Dsm1
)3 ai1
αg1

Dαg1
Dt︸ ︷︷ ︸

Dsmc group shift

). (2.53)

χd is equal to 1 for a uniform distribution profile. Indeed, because there is no prior determi-
nation of the form of the solution of the distribution, the easiest from to consider is a uniform
distribution. However, the intermediate sliding between the distribution is not the dominant
term. Then the complexity is assumed to arise from source terms. Although a modified form
of this term was proposed in [11], it is not suitable for implementation in our model due to the
constraint 1− χd(DsmcDsm1

)3 > 0 incompatible with χd = 1.
An accurate state of the art of the progress of the IATE model for one-group [143, 34, 52, 103,
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92, 112] and for the two-group model [35, 28, 123, 125, 48, 37] among the last decades was
proposed by Kim et al.[53]. We notice that formulations based on the Drift-flux approach was
proposed for the one-group[129] and the two-groups [4] models.
During the averaging process proposed in [51] , two new terms emerged from the instantaneous
equation: a diffusion term and a lift term. For example, the diffusion term can be implemented
as :

K
√
u′2Dsm∇ai = K

√
2k
3 Dsm∇ai, (2.54)

with K a constant equal to 1/3.
However, it is essential to note that these terms have not yet been fully validated in various
configurations [97], leading to the decision not to include them initially in the analysis.

An significant part of those models is the sources terms. The principle to get them is to
first model the interactions based on simple assumptions and mechanistic phenomena [124, 42,
120, 88, 107, 114, 138]. Then the model constants are calibrated and tested on a large variety
of experiments [45, 91, 23, 21]. The following section is dedicated to those source terms.

2.2.3 Source terms

Source terms are essential to reproduce bubble mechanism. All source term models are based
on five categories of mechanism: the Random Collisions (RC), the Wake Entrainment (WE),
the Turbulent Impacts (TI), the Shearing-off (SO) and the Surface Instability (SI). The RC is a
bubble coalescence phenomenon where 2 bubbles collide and merge because of a turbulent eddy
of comparable size. The WE happens when one smaller bubble is in the wake of a bigger one,
accelerates and collides it. The TI is due to turbulent eddies that break-up bubbles. The SO is
a break-up phenomenon that source from the shearing-off of cap bubbles. The SI is due to the
break-up of large bubbles due to their surface instability.
The number of processes and the dimensionless coefficient can strongly differ from one model to
another. This work focuses on 5 models that are commonly used or available in CFD codes:

m The Sun and al. model [124] was developed for a 2 group configuration with a 200 × 10
mm2 confined rectangular channel data [126]. The effect of the wall is then very signifi-
cant. It was performed for liquid superficial velocity between 0, 32 and 2, 84 m/s and gas
velocity between 0, 39 and 2, 01 m/s. It deals with cap-bubbly and churn-turbulent flows.

m The Smith and al. [120] model was developed for a 2 group configuration with 0.102
mm and 0, 152 mm diameter pipes. It deals with bubbly, cap-bubbly and churn-turbulent
flows[121] (see also [28, 22]).

m The Schlegel and al. model [107] was developed for a 2 group configuration with large
diameter channels [106]. It deals with bubbly and cap-bubbly flows. Several constitutive
relations and correlations were used to tune this model.

m The Kuidjo model [83] was developed for a 2 group configuration to compute real fluid dy-
namics in channel flows. It uses Smith model with Sun model’s dimensionless coefficients
(see appendices A.2).
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m The Ruyer-Seiler model [100] is a MoM model for 1 group configurations. It uses a
quadratic law for the distribution, inspired by experimental data.

The source terms used in this thesis are Kuidjo’s terms. An example of dynamics is presented
in the following figure 2.11.

Figure 2.11: Representation of 2 group bubble mechanism.

The primary mechanism for coalescence is random collisions between bubbles caused by tur-
bulent eddies. Binary collisions are modeled to simplify the expression for the source terms.
The model is based on turbulent variables and activation-like models.
The second major mechanism is the entrainment of bubbles in the wake of preceding bubbles.
The acceleration due to the wake may lead to collisions. The model is based on relative velocities
and probability of meeting.
As a mirror mechanism to random collision coalescence, the primary mechanism for break-up is
turbulent impacts due to turbulent eddies. The eddies that can lead to break-up are assumed to
have a comparable size to the bubble. Larger eddies can carry smaller bubbles without causing
break-up, and smaller eddies do not carry enough energy to induce break-up. The models are
based on turbulent variables and efficiency models that depend on the critical Weber number
to determine their stability with respect to break-up.
Another break-up mechanism is the shearing-off of Group 1 bubbles at the base of large cap
bubbles. In highly viscous flows, cap bubbles can get thinner around their base, giving birth
to small bubbles being sheared off. The model is based on the balance between surface tension
and interfacial shear force. It includes surface tension variables and efficiency based on Weber
numbers.
The last break-up mechanism modeled is surface instability. When coalescence leads to a bubble
larger than the maximum stable bubble limit, the induced bubble is unstable and disintegrates.

The accurate prediction of turbulent quantities is crucial for determining both the forces and
source terms of the IATE. Consequently, it becomes necessary to handle an appropriate modeling
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approach for the turbulent stresses. This modeling is discussed in detail in the following section.

2.3 Modeling of the turbulent stress

2.3.1 Fundamentals of single-phase turbulence models

The turbulent stress term is derived from the process of averaging the momentum equation of
the Navier-Stokes equations. While the turbulence tends to expand the range of length scale,
the averaged approach tends to erase the smallest scales. The Reynolds Averaged Navier-Stokes
(RANS) simulates only the macroscopic scale and models the other scales. It is the cheapest
approach in terms of computational power, but it needs a high proportion of model to get com-
plex behaviors.
For simplicity, we will focus on a single-phase, incompressible problem without any external
sources. The momentum equation for this example can be expressed as follows:

∂vi
∂t

+ vi
∂vi
∂xk︸ ︷︷ ︸

Advection

= −1
ρ

∂P

∂xi︸ ︷︷ ︸
Pressure

+ ν
∂2vi

∂xk∂xk︸ ︷︷ ︸
V iscosity

. (2.55)

In order to apprehend the averaging, we stand that the quantities vi and P can be decomposed
into a mean value Ui, P̄ and a fluctuation ui, p value so that vi = Ui + ui.
By applying the mean to the previous equation we get :

∂Ui
∂t

+ Ui
∂Ui
∂xk︸ ︷︷ ︸

Advection

+ ∂uiuk
∂xk︸ ︷︷ ︸

Turbulent stress

= −1
ρ

∂P̄

∂xi︸ ︷︷ ︸
Pressure

+ ν
∂2Ui
∂xk∂xk︸ ︷︷ ︸
V iscosity

. (2.56)

The operating average filter preserves the fundamental structure of the instantaneous equation,
with one notable exception: the emergence of the turbulent stress term, also called Reynolds
stress, represented as uiuj . This term captures the effects of turbulent fluctuations that occur
within the flow. Thus, it becomes crucial to compute this term to properly account for these
fluctuations.
If we subtract the previous equation to the first one, we can get the equation Eqi of the fluc-
tuating velocity ui. The Reynolds stress equation can be obtained by performing the operation
ujEqi + uiEqj :

∂uiuj
∂t

+ Ui
∂uiuj
∂xk︸ ︷︷ ︸

Advection

+ uiuk
∂Ūj
∂xk

+ ujuk
∂Ui
∂xk︸ ︷︷ ︸

Exchange mean−fluctuations

+ ∂uiujuk
∂xk︸ ︷︷ ︸

Triple correlation transport

= 1
ρ
p(∂ui
∂xj

+ ∂uj
∂xi

)︸ ︷︷ ︸
Pressure redistribution

− 1
ρ

∂

∂xk
(uipδjk + ujpδik)︸ ︷︷ ︸

Pressure diffusion

− 2ν ∂ui
∂xk

∂uj
∂xk︸ ︷︷ ︸

Pseudo−dissipation

+ ν
∂2uiuj
∂xk∂xk︸ ︷︷ ︸

Molecular dissipation

.

(2.57)
This expression is an analytical equation for the Reynolds stress. However, 4 non-linear terms
need models because they cannot be computed because they are not directly depending on the
Reynolds stress or the mean flow. We then have 6 equations with 34 new unknowns. In order
to get rid of some terms, one idea is to consider the turbulent kinetic energy k = 1

2uiui. The
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equation then becomes :

∂k

∂t
+ Ui

∂k

∂xk︸ ︷︷ ︸
Advection

+ uiuk
∂Ui
∂xk︸ ︷︷ ︸

Exchange mean−fluctuations

+
∂ 1

2uiuiuk
∂xk︸ ︷︷ ︸

Triple correlation transport

= − 1
ρ

∂

∂xk
ukp︸ ︷︷ ︸

Pressure diffusion

− ν ∂ui
∂xk

∂ui
∂xk︸ ︷︷ ︸

Dissipation

+ ν
∂2k

∂xk∂xk︸ ︷︷ ︸
Molecular dissipation

.

(2.58)

Three fundamental quantities can be notified from those equations and are presented in table
2.5. In this example, the instantaneous pressure also depends on the mean flow and the fluctua-

Quantity Symbol Expression

Turbulent kinetic energy k 1
2uiui

Dissipation ε ν ∂ui∂xk
∂ui
∂xk

Anisotropy bij
uiuj
2k − 1/3δij

Table 2.5: Table of the fundamental turbulent quantities.

tions. The Poisson equation gives the instantaneous value for the pressure. With incompressible
hypothesis and without external forces, the equation is as follows:

1
ρ

∂2P

∂xi∂xi
= − ∂vi

∂xj

∂vj
∂xi

= −SijSji︸ ︷︷ ︸
Pure deformation sink term

+ Ω2

2︸︷︷︸
Rotation source term

, (2.59)

with Sij = 1
2(∂vj∂xi

+ ∂vi
∂xj

) and Ω = ∇× v

By applying the mean to the previous equation we get :

1
ρ

∂2P̄

∂xi∂xi
= −S̄ijS̄ji + Ω̄2

2︸ ︷︷ ︸
Mean contribution

−s̄ij s̄ji + ω̄2

2︸ ︷︷ ︸
Fluctuating contribution

, (2.60)

with sij the pure deformation from the fluctuating velocity and ωij the rotational of the fluctu-
ating velocity.

As for the velocity, the operating average filter preserves the fundamental structure of the
instantaneous equation, with one notable exception: the emergence of the fluctuating pressure.
Then by subtracting this equation to the instantaneous Poisson equation, we get :

1
ρ

∂2p

∂xi∂xi
= −2∂

2uiUj
∂xi∂xj︸ ︷︷ ︸

Slow linear term

− ∂2(uiuj − uiuj)
∂xi∂xj︸ ︷︷ ︸

Fast quadratic term

. (2.61)
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The equation reveals a fundamental propriety: both the mean and fluctuating pressures depend
on the velocity field’s values at any given point and time. It emphasizes the relevance of inves-
tigating pressure effects to fully capture the proprieties of turbulence.

For industrial purposes 2 type of models are commonly used based on the previous equations.
The first type is the first-order models, which aim to estimate turbulence by computing the
equations for the scalars k and ε. They are often referred as the k − ε models and follow a
classical formulation, with N a model :

∂k

∂t
+ Ui

∂k

∂xi
= NDiffusion +NProduction −NDissipation + ν

∂2k

∂xk∂xk
. (2.62)

To close the problem the idea is to use a propriety of turbulence : creating strong inertial
flows. From this observation, an isotropic homogeneous turbulence could be seen as a strong
diffusive phenomenon with a viscosity νt. The so-called Boussinesq relation that rely on this
hypothesis gives then :

Rij = −2νtSij + 2
3kδij , (2.63)

with Sij = 1
2(∂Ui∂xj

+ ∂Uj
∂xi

) and k = 1
2uiui.

The turbulent viscosity is then evaluated by :

νt = Cµ
k2

ε
, (2.64)

with Cµ a constant often taken as equal to 0.09.
The classical formulation of the k − ε model available in industrial codes is given in the appen-
dices A.1.

The advantage of this model is its reduced reliance on differential equations compared to
second-order models, resulting in lower CPU costs. It offers ease of computation and excellent
stability. It accurately predicts shear stress in free sheared flows and free flows with strong
turbulence, addressing well-documented errors. However, due to its linear behavior, this model
cannot effectively capture the interaction between a wake and a mix layer, flows with pronounced
curvature, and boundary layers. Additionally, a significant drawback of this model is the inher-
ent positivity of the production term, leading to the well-known issue of overestimating turbulent
kinetic energy in boundary layers prior to a stagnation point.

The second type of model is known as the second-order model or Reynolds Stress Model
(RSM). These models directly incorporate equations for the Reynolds tensor and the dissipation
rate. One key advantage of the RSM is its ability to accurately capture nonlinear phenomena
and avoid stagnation point anomalies, thanks to an analytical production term. This term plays
a crucial role in various turbulent phenomena. For instance, in turbulent flows around a cylinder,
it induces the redistribution of velocities from turbulence to the mean flow. However, the RSM
has some limitations compared to the linear model. It is numerically less robust, meaning it may
encounter stability issues during computations. Calibration of the RSM is also more challenging
due to its nonlinear behavior, requiring more intricate adjustments and fine-tuning. The general
equation of the model is given by : :

∂

∂t
Rij + Uk

∂Rij
∂xk

= −Rik
∂Uj
∂xk
−Rjk

∂Ui
∂xk

+NPressure redistribution

−NDissipation + ν
∂2Rij
∂xk∂xk

−NTriple correlation transport.

(2.65)
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In the simulation of turbulent flows, the near-wall region is a crucial area that raises chal-
lenges for modeling. In this region, turbulence is weaker compared to viscosity, involving stan-
dard turbulent models failure. To address this issue, two approaches are commonly used: near-
wall laws and near-wall damping effects.
The first approach involves implementing a law that describes the behavior of velocity in the
near-wall region. It assumes the presence of a viscous boundary layer with a thickness denoted
as δ for the dimensionless distance to the wall, y+ = y

δ . Typically, it is recommended to ensure
that the first cell size in the near-wall region satisfies the condition of 30 < y+ < 100, as the
model cannot be directly integrated all the way to the wall. These models are typically referred
to as High-Reynolds models. However, a significant challenge associated with this approach is
the constraint it imposes on the fluid’s behavior near the wall, and the question of its universality
for all flow configurations is still a topic of debate.
The second solution involves introducing a damping function or a new term that becomes active
near the wall to dampen the turbulence in that region. This approach allows achieving y+ ≈ 1,
enabling the models to be integrated closer to the wall. Models that can be integrated all the
way to the wall are typically referred to as Low-Reynolds models.
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Figure 2.12: Visualization of RANS and URANS treatments from DNS.

When considering the equations of turbulence, a crucial aspect to address is the treatment
of temporal changes. The operation of averaging raises a question about the interpretation
of temporal changes when the fluctuations are subjected to averaging. This particular aspect
of turbulence modeling is commonly referred to as Unsteady Reynolds-Averaged Navier-Stokes
(URANS) models, and it remains a subject of ongoing debate and discussion within the scientific
community. This approach tries to solve the instantaneous averaged Navier-Stokes equations.
The idea is that the statistical treatment could separate scales of low frequencies and macroscopic
effects from real turbulence. In turbulent flows, it is essential to acknowledge the possibility of
disequilibrium and interactions with other phases that exist outside the traditional range of fre-
quencies associated with real turbulence. This consideration becomes relevant when attempting
to reproduce low-frequency phenomena, as depicted in Figure 2.12. Consequently, the ergodic-
ity hypothesis, which states that ensemble average and temporal average are equal, is no longer
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valid when computing URANS models at any given time. To address this issue, averaging over
time is required to restore the validity of the ergodicity hypothesis. By averaging the results
obtained from URANS simulations over a longer time period, a more representative and consis-
tent estimation of the flow behavior can be achieved.
URANS can be interpreted as the application of an implicit filter, able to separate real ran-
dom fluctuations from coherent structures. The main problem comes with the use of first order
models. Indeed, they are based on equilibrium hypothesis and calibrated for stationary flows.
Coherent structures can be broken by the fixed equilibrium. Furthermore, those models tend to
overestimate the turbulent viscosity, blurring unsteadiness. Several solutions are possible: try-
ing to artificially reduce the turbulent viscosity (OES, that takes Cµ = 0.02), to use non-linear
models that can take into account non-equilibrium (thanks to the production term) or even to
use hybrid RANS/LES approaches.

Based on those general concepts of turbulence, we can describe the model chosen for this
work : the EBRSM [77]. A description of this model proposed on the following section.

2.3.2 The Elliptic Blending - Reynolds Stress Model

One fundamental phenomena that must be modeled is the dissipation ε. However, the equation
of ε that can be derived from its analytical formula is way too complex and the physical inter-
pretation of all the terms is difficult. Furthermore, no term is experimentally accessible only
numerical simulation can access it. For example, in the k−ε model [47] the dissipation equation
is a standard equation with source, sink terms and a diffusion term. The other noticeable ex-
ample is the SSG [9] that try to model the influence of the anisotropy. Indeed, their work try to
use a linear algebraic equation from the degeneration of the transport of the pseudo-dissipation
in case of energetic equilibrium and 2D homogeneous velocity gradient. This way they get a
non-linear relation with the mean velocity gradient. So that it can reproduce global shear phe-
nomenon but not real anisotropy.
The main model of the dissipation used in this thesis is :

Dε

Dt
= C ′ε1P

T︸ ︷︷ ︸
Production term

− Cε2ε

T︸ ︷︷ ︸
Destruction term

+ ∂

∂xl
(Cs
σε
RlmT

∂ε

∂xm
)︸ ︷︷ ︸

Diffusion term

+ ν
∂2ε

∂xk∂xk︸ ︷︷ ︸
V iscous term

, (2.66)

with C ′ε1 = Cε1(1 + A1(1 − β3)Pε ), A1 = 0.065, Cε1 = 1.44, Cε2 = 1.85, Cs = 0.22, σε =
1.22, T = max(kε , 6(νε ) 1

2 ) and P = 1
2 trace(Pij) and β the blending variable from the elliptic

blending (cf next part).

Unlike dissipation, the triple correlation is experimentally accessible by measuring the fluc-
tuating velocity. Its weight is significant when the turbulence is intensifying the mix. It is the
reason why gradient models are likely to use to capture the phenomenon. The main difficulty
is to preserve the tensor’s symmetry. Few errors come from the model of this term, but few
amelioration can be made when it is the case. The most popular model -used for the EBRSM -
was proposed in [19] :

uiujuk = −Cs
k

ε
ukul

∂uiuj
∂xl

, (2.67)

with Cs ≈ 0.22.
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The equation of the Reynolds stress model used in the EBRSM is :

∂

∂t
Rij + Uk

∂Rij
∂xk︸ ︷︷ ︸

Advection

= −Rik
∂Uj
∂xk
−Rjk

∂Ui
∂xk︸ ︷︷ ︸

Production

+ (1− β3)φwij + β3φhij︸ ︷︷ ︸
Redistribution by pressure

− (1− β3)Rijε
k

+ 2
3β

3εδij︸ ︷︷ ︸
Dissipation

+ ν
∂2Rij
∂xk∂xk︸ ︷︷ ︸
V iscosity

+ ∂

∂xl
(Cs
σk
RlmT

∂Rij
∂xm

)︸ ︷︷ ︸
Triple correlation Transport

,

(2.68)

with φhij is the model from SSG (cf appendices A.1), φwij is the asymptotic model described
hereafter in the next part, σk = 1.0.

The SSG model is widely used to address fluctuating pressure redistribution in turbulence.
It originated from theoretical research on the pressure-strain correlation term φij , accounting for
turbulence redistribution due to pressure fluctuations. This term incorporates crucial directional
information for the Reynolds stress tensor’s off-diagonal components. The model’s development
involved invariant theory, asymptotic analysis, and calibration to establish desirable behavior
based on the anisotropy tensor. By introducing additional macroscopic variables, it enables sim-
ulation of anisotropy and ensures realistic Reynolds stress tensor predictions. The SSG model
effectively predicts various phenomena like secondary flows and blockage effects. However, it
exhibits discrepancies in certain cases, such as non-physical phenomena near walls, leading to
its denoted term φhij .
Durbin [25] identified that the near-wall issues associated with second-order turbulence models
are due to the assumptions of locality and quasi-homogeneity. Near the wall, non-viscous and
non-local phenomena, such as the "wall echo" effect and the blocking effect, significantly affect
the flow. To address this, Durbin proposed introducing non-locality artificially by assuming an
exponential decrease in correlations between points. This modification aims to capture the influ-
ence of significant small-scale fluctuations on the flow. By incorporating this non-local behavior,
Durbin aims to improve the accuracy of turbulence models near the wall and better account for
the complexities of near-wall flows. This hypothesis then leads to the elliptic relaxation equation
:

φij︸︷︷︸
Redistribution by pressure

−L2∇2φij︸ ︷︷ ︸
Blending

= φhij︸︷︷︸
Quasi−homogeneous model

, (2.69)

with φh a quasi-homogeneous valid model and L representing a correlation length.
In the near-wall region, certain terms such as viscous diffusion, dissipation ε, and velocity-
pressure gradient correlation φ play dominant roles. However, these terms require further mod-
eling for accurate representation. Regarding the velocity-pressure gradient correlation, Manceau
[78] proposed to establish a transition between an asymptotically valid model, denoted as φw,
based on invariant theory, and a quasi-homogeneous valid model, denoted as φh, which incorpo-
rates an algebraic expression and a one-component differential equation inspired by the elliptic
relaxation from R. Manceau’s thesis. This transition is designed to ensure the appropriate be-
havior of the velocity-pressure gradient correlation. To address the issue of singularity at the
wall and improve the behavior of dissipation ε, a new equation was proposed. The objective
was to significantly reduce the number of additional equations, enhance numerical stability, and
maintain the desirable properties of the elliptic relaxation approach. Subsequently, the EBRSM
(Elliptic Blending Reynolds Stress Model) [77] was further developed based on theoretical argu-
ments from invariant theory and extensive comparison with DNS data. The near-wall behavior
is then computed as:
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φij = (1− β3)φwij + β3φhij

εij = (1− β3)Rij
ε

k
+ 2

3β
3εδij

β − L2∇2β = 1,

(2.70)

with the dissipation tensor ε, L = 0.133max(k3/2

ε , 80ν3/4

ε1/4
), φwij = −5 εk (Riknjnk + Rjknink −

1
2Rklnknl(ninj + δij)) and n is the wall normal.
The wall boundary conditions are then : Ui = 0, Rij = 0 and β = 0. One of the strength of this
model is also to constrain the behavior of the dissipation to the wall to get the right behavior :
ε = 2ν lim

y→0
k
y2 .

The choice of EBRSM is motivated by its demonstrated performance in handling complex
flow configurations and accurately predicting near-wall phenomena. Indeed, traditional models
like the SSG model are insufficient in reproducing the dynamics near the wall, often resulting
in non-physical velocities in that region [30]. This limitation is commonly observed in High-
Reynolds models.
In single-phase flows, the EBRSM model has been demonstrated to perform well for bundle ge-
ometries, as shown by Benhamadouche et al. [1]. This model effectively captures the near-wall
behavior, pressure losses, mean velocity, and velocity fluctuations (r.m.s. levels). The study
also highlighted the limitations of other Reynolds-Averaged Navier-Stokes (RANS) models in
developing unsteadiness, which was attributed to an overestimation of diffusion in the wake
region. In comparison, the EBRSM model exhibited promising results, with some configura-
tions showing comparable performance to Large Eddy Simulation (LES). This suggests that
the EBRSM has potential for studying fluid-structure interaction, making it a valuable tool in
such analyses. The validation of the EBRSM in two-phase flows was carried out by Colombo
et al. [15] against various air-water flows using both a monodispersed model and a pseudo-
turbulence model. The validation database included upward and downward pipe flows, large
diameter pipes, and square duct flows with void fractions up to 0.15%. The results demon-
strated a good agreement between the EBRSM predictions and experimental data. Notably,
the accuracy of near-wall pressure gradients obtained using elliptic blending eliminated the need
for wall-lubrication techniques. However, the observations regarding wall-lubrication should be
further examined in the context of polydispersion and tubes to confirm their applicability in a
broader range of configurations.

The EBRSM is a single phase turbulent model. However, in a two-phase flow, the inter-
mittence of bubbles in the liquid phase induces fluctuations that are not reproduced in the
single-phase turbulent model. The next section is then about the model of two-phase turbulence
induced by bubbles.

2.3.3 Two-phase pseudo-turbulence

Although there is no universally optimal approach for every single-phase configuration, extensive
research conducted over the years has yielded well-known models that are recognized for their
strengths and weaknesses, along with established best practices for their application. However,
when it comes to two-phase flows, the situation is more complex. Purely two-phase turbulence
models have been found to perform poorly in terms of validation and have even generated sig-
nificant controversy. In reality, due to the difference in density between gas and water, the
turbulence induced by the presence of gas is typically insignificant in the majority of industrial
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test cases. Consequently, it is often disregarded. However, the fluctuations caused by the bub-
bles in the liquid phase cannot be overlooked or neglected. These fluctuations play a crucial role
in the behavior of two-phase flows and require careful consideration in modeling and analysis.
For example, in a single phase channel flow the intensity is often between 5% and 8%. However,
in two-phase flows the intensity can be much higher [154, 116]. Indeed for void fraction between
0 and 0.2 (i.e. bubbly flows), the intensity can go from 5% to around 10%. For transitional flows
of void fraction between 0.2 and 0.3, the intensity can go from 10% to 17%. For intermittent
flows of void fraction between 0.3 and 0.6, the intensity at the center is around 17% and near
the wall can go from 20% to more than 60% du to the high intermittency of churn bubbles. An
interesting experimental description of what are the agitation, mixing, and transfers induced by
bubbles was proposed by Risso [98] and is suggested for deeper understanding of the phenomena.
According to Lucas and al. [72], the effects of bubble induced turbulence has nothing to do with
real turbulence. The fluctuations induced by bubble wakes and relative velocity can not be
related to turbulence. It is why it is often called pseudo-turbulence. Actually, the "additional"
level of energy due to these phenomena is supposed to be taken into account by the hydrody-
namic forces previously introduced. However, it is interesting to mention that it exists some
work about models for Bubble Induced Turbulence (BIT) combined with Shear Induced Tur-
bulence (SIT). It supposes that the total turbulent shear stress is the superposition of classical
turbulent shear-stress and bubble induced turbulence. The phenomena that are supposed to be
simulated had been identified by Lance and al [62]:

m The turbulent kinetic energy increase due to the relative motion of liquid and gas

m The shear induced turbulence due to the wake of the bubbles

m The turbulence damping due to the deformation of bubbles

For example with a k − ε model the total turbulent kinetic energy is the sum of the classical
one and kBI = 1

2αCVMU
2
r - with CVM a dimensionless coefficient and Ur the relative veloc-

ity between the phases. A work of comparison had been made by Rzehak and Krepper [101]
about BIT. A scale up attempt from DNS results had also been done by Du Cluzeau [12] for
a decomposition of BIT into Wake Induced Fluctuations (WIF) and Wake Induced Turbulence
(WIT) in order to justify the use of this approach. While the WIF takes into account "laminar"
fluctuating effects due to a relative velocity change around a bubble, the WIT try to take into
account the fluctuating effects due to the wake of bubbles. However, those approaches still lack
of diverse cases of validation and adapted/established near-wall methods for two-phase near-wall
regions. Furthermore, a criticism can be made about the "laminar" part that is diagonal, only
adding energy in the flow but introducing no redistribution by the fluctuation. Then the frontier
between this part and the drag force seems to blur. Nonetheless, several attempts of combining
turbulence and pseudo-turbulence were proposed for multiple test cases [15, 13, 14, 74, 75] among
the last years. However, the pure contribution of pseudo-turbulence is not clearly demonstrated.

The model used in this work was developed by [81] and is called the Large Inclusions model
(LI). It adds a production term linked to the bubble drag in the Reynolds tensor equation and
a source term in the dissipation’s equation as given hereafter :

In Rij equation : 2
3FDUr(brij + δij), (2.71)
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In ε equation : FDUr

τb

min(α, 0.5)
α

, (2.72)

with FD the drag force, CD the drag coefficient, brij = UriUrj
2kB − 1

3δij , kB = U2
r

2 and τb =

max
((

D2
sm
ε

) 1
3
, k

1.83ε

)
.

The main advantage of this model is that it follows the streamwise direction and so needs no
rotation step. It is noticeable that it is still proportional to the drag force and the drift velocity.

2.4 Simulations before modifications

In the literature, various configurations of channel flows have been investigated using the models
previously introduced [24, 26, 59, 145, 140, 87, 41, 96, 149, 141, 40, 10, 11, 38]. Notably,
in the context of vertical upward two-phase flows, an insightful review of CFD models and
corresponding experiments was conducted in [10]. In order to apprehend briefly the singular
effect of the interfacial transport, the BIT, the turbulence and the presence of an obstacle, we
propose in Table 2.6 some of the most recent significant CFD studies conducted for bubbly flows.

Reference Configuration Interfacial transport Turbulence BIT

Colombo et al. [15] Channel flows Constant diameter EBRSM yes

Tas-Koehler et al. [127] Pipe flow with obstacle MUSIG SST yes

Liao et al. [151] Pipe flow Constant diameter SST yes

Sharma et al. [109, 108] Pipe flow IATE-2grps k − ε yes

Wang et al. [141] Pipe flow IATE-2grps k − ε no

Table 2.6: Table of significant CFD work on upward two-phase channel flows.

Despite the extensive research in the field of upward two-phase flow, the literature reveals a
notable absence of significant CFD studies using an ’all regimes’ model or even models handling
IATE or MUSIG for flows around a cylinder. Some applications of two-phase models around
obstacles are available in [142] but lacks of experimental confrontation. This lack of relevant
investigations highlights a crucial research gap, indicating the need for further exploration and
application of such advanced CFD approaches in the context of two-phase flow phenomena
around cylinders.

2.4.1 Description of the experiment and numerical model

A platform hosted at CEA is dedicated to the study of two-phase flows around a unique cylinder.
The loop pump is able to deliver 5 to 300 L/s of water and an air compressor able to deliver up
to 3000 m3/h at an absolute pressure of 8 bar. The loop can thus function in water flow, air flow
or water-to-air flow. It allows reproducing regimes similar to the ones encountered in the SG
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and DIVA. The experimental setup is composed of an upward channel of 0.18×0.3 m2 rectangu-
lar section in which can be set an horizontal tube of diameter 0.03 m as presented in Figure 2.13.

The Power Spectral Density (PSD) of the fluid force (drag and lift directions) acting on the
tube is measured for various volume flow rates of air and water. The nature of the forces exerted
on the tube can be identified by the balance equations and summing for any phase and over
the cylinder surface. Then, according to the equations, the force F is due to the distribution of
pressure P around the tube of oriented surface ds, to the distribution of the viscous stress τ , as
follows:

F = −
∮
S
P ds +

∮
S
τ ds. (2.73)

Regarding the spectral analysis, because the simulation and the experiment signals are tem-
porally discrete a special treatment must be used. A random signal can yield different results
depending on the analysis intervals. In order to characterize the random force signal, it is es-
sential to get the frequency range occupied by the signal. To understand the force spectra, we
need to remind the definition of the cross-correlation s2s2 between two signals, denoted as s1
and s2, of delay τ , over time T :

s2s2(τ) = lim
T→+∞

1
T

∫ τ

0
s1(t)s2(t− τ)dt (2.74)

Then, the cross-spectrum is the Fourier transform of the cross-correlation with f the frequency
:

< s1, s2 > (f) =
∫ ∞
−∞

s1s2(τ)e−i2πfτdτ (2.75)

The auto-spectrum < s, s > is also known as the Power Spectral Density (PSD) of the signal s.
It allows us to measure the distribution of power along the frequency axis.
To ensure meaningful data comparison, it is essential that the simulated signal and the ex-
perimental signal share identical temporal discretization, along with consistent post-processing
methods. This is crucial because spectral analysis is highly sensitive to both the temporal time
step and signal post-processing techniques.

One crucial aspect of the simulation involves creating a mesh that is specifically designed to
address the problem. This is particularly crucial in the case of Neptune_CFD, which specifically
uses hexahedral meshes for stability reasons and to accurately model systems that are sensitive
to volume distortion. SALOME [128], an open-source software that provides a generic pre- and
post-processing platform for numerical simulation, was used to generate the different meshes.
To achieve this, it is recommended to handle a mesh strategy that incorporates the following
features presented in Figure 2.13. The mesh should incorporate a boundary layer that expands
rapidly. This expansion is limited in space to ensure accurate representation of the boundary
layer phenomenon. The boundary layer region of the cylinder needs to be refined extensively.
This is because the boundary layer plays a significant role in generating the mixing layer and Von
Karman instabilities, which are important phenomena to capture accurately in the simulation.
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g

Figure 2.13: Scheme (left) and mesh strategy (right) of the single tube configuration.
Scheme legend (Left) : � Inlet �Outlet � Wall.
Mesh strategy legend (Right): � Boundary layer (1D expansion), � Junction (expansion 1D),
� Boundary layer junction, � Curvature junction, � Squared.

The simulation involves solving a system of 22 scalar ordinary differential equations with
non-linear source terms. Those equations are distributed across the different phases as pre-
sented in table 2.7.

Phase Conservation of Unknown Number of scalars
Liquid Mass αl 1
Liquid Momentum Ul 3
Liquid Reynold stress Rij 6
Liquid Dissipation ε 1
Liquid Blending β 1

1st gas group Mass αg1 1
1st gas group Momentum Ug1 3
1st gas group Interfacial area concentration ai1 1
2nd gas group Mass αg2 1
2nd gas group Momentum Ug2 3
2nd gas group Interfacial area concentration ai2 1

Total 22

Table 2.7: Table of the system of differential equations.

As a reminder, the equations governing the motion between the phases are those of mass
conservation :

∂ (αg1ρg)
∂t

+∇ · (αg1ρgUg1) = −Γg1→g2, (2.76)

∂ (αg2ρg)
∂t

+∇ · (αg2ρgUg2) = Γg1→g2, (2.77)
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∂ (αlρl)
∂t

+∇ · (αlρlUl) = 0, (2.78)

and the equations for the conservation of momentum :

∂

∂t
(αg1ρgUg1) +∇ · (αg1ρgUg1Ug1) = −∇(αg1P ) +∇ ·

(
αg2τ g1

)
+ αg1ρgg + Fl→g1, (2.79)

∂

∂t
(αg2ρgUg2) +∇ · (αg2ρgUg2Ug2) = −∇(αg2P ) +∇ ·

(
αg2τ g2

)
+ αg2ρgg + Fl→g2, (2.80)

∂

∂t
(αlρlUl) +∇ · (αlρlUlUl) = −∇(αlP ) +∇ ·

[
αl
(
τl + τT

)]
+ αlρlg−Fl→g1 −Fl→g2, (2.81)

with τT the turbulent stress tensor.

In this section, we aim to highlight the challenges encountered in modeling a case involving
a single cylinder, which is representative of the difficulties associated with the presence of an
obstacle. Our goal is to demonstrate the results of a two-phase model without modifications,
as it existed prior to the start of this thesis. Despite the model’s validation in various channel
configurations, we wish to emphasize that the presence of the obstacle introduces a unique flow
topology, thus questioning the accuracy of its reproduction in this context compared to the
validation in a channel. We also aim to demonstrate that the need to use slightly different
models helps to identify problems within the models more easily, particularly within TRITON.

2.4.2 Results and analysis

In order to apprehend and understand the TRITON model, we chose to study a bubbly flow
test case. The operating conditions are defined by a liquid superficial velocity jl = 0, 25 m/s
and a gas superficial velocity jg = 0.082 m/s. The flow is then characterized by a void fraction
αg = 0.247 and a liquid Reynolds Rel = 7500. A mesh convergence study was performed on
several meshes and a satisfying convergence was obtained with a general mesh size of 0.066
mm and a first wall cell satisfying y+ ≈ 0, 8. The forces selected for this study are unchanged
Ishii’s Drag, Tomiyama’s lift, Zuber’s added mass, Lavieville’s dispersion and Tomiyama’s wall
lubrication. The EBRSM is used without adding bubbles induced turbulence.

By computing the previous system of equations with TRITON model, some quantities ex-
hibited divergence, while others displayed non-physical behavior, such as an excessive increase
in velocity near the cylinder. Upon analyzing the calculations, the source of the problem seemed
not to lie in numerical aspects but rather in the modeling itself.
Close to the cylinder, numerous areas exhibit a void fraction that is on average 2 to 4 times
higher than in the upstream region. This phenomenon is a direct result of the interaction and
modeling between the fluid and the structure. These specific regions can be characterized as
dynamic, primarily because the behavior of the bubbles in those areas is spatially uncorrelated
from the bubbles present in the main flow, as depicted in Figure 2.14.

73



Chapter 2 – Two-phase averaged modeling for flows in tubular geometries

Figure 2.14: Extract of a video of bubble trapping in a cylinder wake from the
Heat Transfer and Multiphase Flow Lab of Penn State University. Accesible at
https://www.raulab.psu.edu/cylinder-wake-modification-in-bubbly-flow/.

Indeed comparing with Figure 2.14, it becomes obvious that the presence of the cylinder in
the flow induces a slowdown of the bubbles upstream, as compared to the bubbles within the
main flow. This behavior subsequently leads to an increase in the averaged local void fraction
as modeled in the simulation. Additionally, the wake region created by the cylinder induces a
bubble trapping region, causing them to remain in that area for an extended period, resulting
in a significantly higher void fraction. These areas of high void fraction, as observed in the sim-
ulation, have a physical basis directly attributed to the presence of the cylinder. Importantly,
such areas do not occur in channel flows, highlighting the incompatibility of the basic model
developed for channels in capturing this phenomenon. Therefore, modifications of the model are
necessary, particularly to account for these high void fraction regions.

In order to gain a partial understanding of the root causes of these issues, another model
already available in NEPTUNE_CFD was examined. In this case, the forces and turbulence
model were retained, but the transitional aspect was removed, and the IATE equation was
replaced. Consequently, only one group remained, connected to a transport equation developed
by Ruyer-Seiler. Multiple simulations were conducted by varying injection diameters to further
explore this case.
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Figure 2.15: Time-averaged void fraction color map from the simulation of two-phase flow around
a cylinder with Ruyer-Seiler for Dsm1 = 6 mm.

Figure 2.15 illustrates the color map of the time-averaged void fraction of group 1 obtained
from the numerical simulation, with an injected diameter of 6 mm. Notably, a homogeneous
region can be observed in the upstream region, away from the cylinder, with a void fraction
approximately around 0.12. Close to the cylinder, several areas exhibit an averaged void frac-
tion that is 4 times higher than the upstream void fraction, as observed in [44] and previously
illustrated.
It should be noted that qualitative information alone is insufficient to accurately determine the
fidelity of the model and comprehend its successes or limitations. Therefore, it becomes impera-
tive to investigate the spectrum of forces exerted on the cylinder to gain a deeper understanding
of the phenomena and assess the model’s performance at a more detailed level.

Figure 2.16 depicts the power spectral densities (PSD) of drag and lift exerted on the cylinder
for various injection diameters (1 mm, 4.5 mm, and 6 mm), which are compared with experi-
mental data. Both 1 mm and 4.5 mm depict almost no noticeable fluctuation for the drag and
the lift until 2 Hz, then some harmonics seem to be captured with a negative slop lower than in
the experimental graphs. For the 6 mm case, the lift and the drag depict an almost flat curve
with one fluctuation around 3.4 Hz for the lift and some fluctuations close to the experimental
ones for the drag. The results show significant disparities in the drag and lift behaviors as a
function of the injection diameter. The drag spectra obtained for injection diameters of 1 mm
and 4.5 mm exhibit more significant deviations from the experimental results, displaying only
a characteristic frequency at St = 0.18 and its corresponding echoes. In contrast, the drag
spectrum for the 6 mm diameter closely resembles the experimental graph. This discrepancy
can be attributed to the excessive coalescence observed in the first two cases compared to the 6
mm case. For instance, in the 4.5 mm case, the predicted average diameter at the rear reaches
approximately 6.5 mm, representing an increase of over 40%, while for the 6 mm case, it is only
11%. This overestimated coalescence leads to pronounced variations in the drag model for the
bubbles, which subsequently amplifies a specific frequency observed in the lift graph. While
there is optimism regarding the model’s ability to reproduce the fluctuations for the drag, none
of the considered injection diameters successfully capture the experimental fluctuations observed
for the lift. Only the fluctuation of the wake can be observed. In one case, the bubbles belonging
to the first group experience shearing forces from the liquid close to the wall. In the other case,
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the bubbles cluster slightly further away from the cylinder before being sheared. This difference
in behavior arises from the interplay between the low pressure caused by bubble clustering and
the low pressure resulting from the Von Kármán alley. When the pressure behind the cylinder
exceeds the pressure resulting from bubble clustering, the clusters of bubbles move away from
the cylinder wall.
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Figure 2.16: PSD of the drag and lift exerted on tube from simulation and experimental data.
The simulations are performed with different inlet 1st group diameters.

Due to the poor performance of the Ruyer-Seiler model in reproducing the observed fluctu-
ations and TRITON to reproduce a flow with an obstacle, it becomes necessary to introduce
modifications in order to improve the spectrum and the simulations. Modifications are neces-
sary to achieve a more precise representation of the force spectrum and of the flow. To pursue
further improvements, the next section of the study focuses on investigating enhancements in
a less complex configuration: channel flows. As key parts of the model, the IATE, the turbu-
lence coupling, the dispersion and the transition must be studied to prevent the emergence of
problems and quantify the performances of the model.
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Chapter 3
New modeling and modifications based on
channel flow investigations

This chapter aims to address the modeling challenges proposed in this thesis as-
sociated with the presence of the cylinder and the uncertainties related to turbulence.

The first part discusses the use of turbulence models in channels by comparing
two-phase turbulent simulations with experimental data. The initial section focuses
on turbulence in a narrow rectangular channel, while the second part examines
turbulence in a large square channel.

The second part deals with the modifications introduced in the model to correct
problems related to high void fraction due to the presence of the cylinder or due to
the regime (high proportion of group 2). This part is divided into four sections. The
first one suggests modifications to the modeling of the forces, particularly regarding
turbulent dispersion forces. The second part proposes adjustments to some source
terms to mitigate local issues in predicting interfacial area. The third part proposes
modifications to the pseudo-turbulence model to align it with existing literature.
The final part deals with modeling the dynamics of large bubble group 2 and gas
pockets. It presents various approaches used to address the simulation challenges
associated with this group.

Summary
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3.1 On the coupling with a turbulence model

3.1.1 A paradigm shift

The original concept of the model proposed in [60] is to provide a criterion for the maximum
void fraction αgmax, a maximum diameter 10Dsmc and another one based on the mesh size ∆x
for transitioning from the dispersed to the continuous model. The last criterion is widely used in
literature, although its sophistication may vary. Figure 3.1 illustrates the difference in paradigm
between all-regimes models from the literature and our model. Indeed, in models found in the
literature, the confusion between dispersed modeling (the area concentration per unit of volume
Ai = πD2, see equation 2.43) and dispersed vision regarding a mesh of sensors introduces the
reconstruction of interfaces when they are larger than the numerical grid size [102]. The use
of smoothing techniques between models becomes necessary when transitioning from dispersed
modeling to continuous interface reconstruction. In our approach, modeling is grounded in
physical considerations. Initially, we assume that the coalescence of small bubbles from Group
1 gives rise to bubbles in Group 2. Subsequently, deformed bubbles from Group 2 can emerge
as large gas pockets and extensive interfaces. This perspective arises from the natural growth
of interfaces, shifting from one category and thus, one modeling approach (Group 1 to Group
2) and finally to a continuous field. This transition occurs when the equivalent diameter be-
comes too large, creating a large interface, or when the void fraction becomes too high, as large
bubbles have a shape that limits their arrangement, leading to the presence of an annular regime.

"Dispersed in mesh" :
Known diameter = Dispersed

"Continuous in mesh" : 
Known diameter = Reconstruction

All-regimes in literature

All-regimes in this thesis

Group 1 dispersion :

No limitation on dispersed hypothesis
Group 2 dispersion emerging from group 1:

Limited in diameter and void fraction

On void fraction

On diameter 
Large interface

Maximum

Criterion

Large interface

Figure 3.1: All-regimes model paradigm comparison between all-regimes in the literature and
our modeling.

Furthermore, this latter criterion should be avoided, especially when investigating complex
flow phenomena around a cylinder.
First, if we were able to create a homogeneous mesh, this criterion imposes limitations on pos-
sible injection velocities. For instance, in the case of a roughly converged mesh in RANS, the
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near-wall first cell size ∆x0 should be such that ∆x0 ≈ 60νl
0.05Ul for High-Re turbulence models,

with Ul the mean liquid velocity and νl the liquid kinematic viscosity. Kuidjo’s criterion states
that the mesh step ∆x is so that 4∆x ≥ Dsm, which implies that for bubbles of the order of
a millimeter, we have Ul < 800νl

0.05Dsm ≈ 1.2 m/s. For a Low-Re mesh configuration like that
of EBRSM, this translates to Ul <

8νl
0.05Dsm ≈ 0.16 m/s. However, in the case of the DIVA

configuration (tube bundle), the presence of tubes increases the flow gap velocity by a factor of
three, due to the pitch ratio, resulting in allowable injection velocities of 0.4 m/s and 0.053 m/s,
respectively. It would mean that the LIM is activated everywhere. This makes the EBRSM
incompatible with this criterion for a homogeneous mesh if we want to test the IATE even for
low void fractions.
Secondly, the presence of the bundle makes it nearly impossible to use a perfectly homoge-
neous mesh, as the curvature of the tubes demands cells of varying sizes. This is particularly
obvious given that NEPTUNE _CFD uses hexahedral meshes. Consequently, the dispersed-to-
continuous transitions could potentially become non-physical due to mesh-induced effects. This
make the physical interpretation of the model difficult.
Thirdly, the first criterion based on a maximum void fraction relies on predicting the void
fraction, which depends on mesh accuracy. Hence, there is a risk of missing out on physical
phenomena if the mesh is too coarse.
Lastly, this criterion makes the interpretation of simulations, particularly in terms of simulation
error - a critical factor in the nuclear field - almost impossible. Actually, the physical inter-
pretation of a simulation relies on distinguishing between discretization error from the mesh
and the intrinsic error of the model itself. However, if the criterion depends on the mesh, then
the intrinsic error of the model also becomes mesh-dependent. As a reminder, the mesh is a
spatial discretization that aims to approximate our continuous differential equations; it is tied
to mathematical concepts, it is not a grid of sensors. Consequently, without a tool to estimate
cross-correlated error, we are unable to conclude whether the error arises from the approxima-
tion of our balance equations or from the balance equations themselves, thus, implicating an
error in the modeling. Similarly, even after optimizing parameters and mesh based on numerous
experimental comparisons, if the model is used in a scenario lacking experimental comparison,
the results remain subject to no physical interpretation. This makes the model non-predictive.

To conclude, the TRITON model no longer handle the criterion based on mesh size but
focuses only on the void fraction criterion. Section 3.2.4 of this chapter is actually dedicated
to understanding the origin of this criterion and attributing it a physically interpretable value.
This chapter is dedicated to understanding, adapting, and validating the modeling by focusing
on addressing potential challenges arising from turbulence and the modeling of both gas groups.

An area of potential concern lies in the interaction between the two-phase model and single-
phase turbulence. Consequently, our initial focus is directed towards investigating and under-
standing this coupling phenomenon, specifically for two distinct configurations. We aim to assess
the sensitivity of the two-phase modeling approach through the use of three distinct turbulence
models: k − ε, SSG, and EBRSM . Additionally, we seek to evaluate the contribution of the
bubble induced turbulence model (denoted as LI) in enhancing predictive accuracy. Our focus is
centered on air-water flows in vertical channels. Rather than primarily focusing on fine-tuning
model parameters to achieve optimal predictions, our study lies in investigating the development
of a well-established quasi-steady solution within an elongated channel. To ease this analysis,
we undertake numerical simulations and compare their outcomes with experimental data from
two sources: [126], which is a rectangular section channel (see Figure 3.2), and [122], which
deals with a square section channel (see to Figure 3.5). The simulations are performed in three
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dimensions using the NEPTUNE_CFD software, including gravity.

3.1.2 Air-water flow in a rectangular section channel

The experimental setup, detailed in [126], encompasses a vertical channel with a height of 2.95
m and a rectangular cross-section measuring 200 × 10 mm2, as visually represented in Figure
3.2. In this setup, the test case is characterized by superficial velocities of jl = 0.63 m/s for
the liquid phase and jg = 0.42 m/s for the gas phase. Various local parameters, including the
void fraction (αg1), gas velocity (magnitude of Ug1), interfacial area concentration (aig1), and
Sauter mean diameter (Dsm1), are measured. These measurements are conducted using probes
positioned on a quarter cross-section. For clarity, Figure 3.2 provides insight into the specific
(x, y) coordinates of the probes. The y-averaged values are subsequently calculated through
summations across the data collected from these probes.
For numerical simulations, specific boundary conditions are applied at the inlet. Notably, the
void fractions are set to αg1 = 0.344 and αg2 = 0.077. Additionally, axial velocities are specified
as Ul = 1.25 m/s for the liquid phase, and Ug1 = Ug2 = 1.389 m/s for both gas phases. Further-
more, Sauter mean diameters are initialized at Dsm1 = 3 mm for the first group and Dsm2 = 17
mm for the second group.
To perform these simulations, a mesh comprising 440,000 individual elements is used. This
mesh was determined through a comprehensive mesh sensitivity analysis that encompassed dif-
ferent meshes, including 80,000, 440,000, and 1,170,000 cells. The results of this analysis conclu-
sively indicated that numerical predictions of αg1 converged effectively with the mesh containing
440,000 cells.

Figure 3.3a illustrates the evolution of
〈
aig1

〉
, which represents the time-averaged and y-

averaged interfacial area concentration of the first gas group, at a specific height of z = 2.7
m. The plot is presented in terms of the dimensionless distance x/w. Notably, all turbulence
models successfully capture the experimentally observed variations in

〈
aig1

〉
. The behavior of〈

aig1
〉
demonstrates a distinct pattern: it initially rises in the near-wall region (x/w → 0),

reaches a peak close to x/w ≈ Dsm1/w, and subsequently decreases to nearly constant values
as x/w → 0.5 (which corresponds to the center of the channel). Comparing the numerical
predictions with experimental data, the k−ε turbulence model exhibits the least deviation, with
discrepancies amounting to a maximum of approximately 13%. On the other hand, the EBRSM
turbulence model shows the highest level of deviation. This can be attributed to the gradual
dissipation of turbulent kinetic energy in the EBRSM model, leading to the breakup of bubbles
and subsequent reduction in their diameters. This phenomenon is addressed more effectively
by the SSG and k − ε turbulence models, which maintain higher turbulence intensity along the
channel and consequently experience minimal bubble breakup. Particularly noteworthy is the
performance of the EBRSM+LI turbulence model, which successfully mitigates this challenge
by preserving elevated turbulence intensity throughout the channel.

Figure 3.3b presents the evolution of 〈αg1〉, which represents the time-averaged and y-
averaged void fraction of the first gas group, as a function of the dimensionless distance x/w at a
specific height z = 2.7 m. All turbulence models correctly replicate the experimentally observed
variations in 〈αg1〉. The behavior of 〈αg1〉 follows a distinct pattern: it initially increases in the
near-wall region (x/w → Dsm1/w), attains a peak in proximity to x/w ≈ 0, and subsequently
stabilizes at nearly constant values as x/w → 0.5 (which corresponds to the center of the chan-
nel). Comparing the numerical predictions with experimental data, the k − ε turbulence model
demonstrates the least deviation, with discrepancies reaching a maximum of approximately 6%.
In contrast, the EBRSM+LI turbulence model exhibits the highest deviation. This can be at-
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Figure 3.2: Scheme of the experimental setup of [126].

tributed to the EBRSM+LI model’s robust generation of turbulent kinetic energy, resulting in
notable liquid velocities and restricted void fraction drift. However, the void fraction prediction
is influenced by the drag model, which does not encompass turbulence effects. To mitigate
this limitation, potential corrections based on factors like turbulent intensity or adjusted inlet
velocities could be implemented. It is notable that the current shortage of experimental data in
the near-wall region limits precise determination of the maximum value and location of 〈αg1〉 in
terms of x/w.

Figure 3.4 depicts the evolution of 〈|vg1 |〉, which represents the time-averaged and y-averaged
magnitude of gas velocity for the first gas group. This evolution is plotted against the dimen-
sionless distance x/w at a specific height of z = 2.7 m. All turbulence models effectively capture
the experimentally observed variations in 〈|vg1 |〉. Specifically, 〈|vg1 |〉 exhibits a rapid increase
within the near-wall region (x/w → Dsm1/w) and subsequently saturates as it approaches the
central region (x/w → 0.5). Despite the qualitative agreement for the variations, notable de-
viations arise between numerical predictions and experimental measurements, particularly in
the near-wall region. The EBRSM+LI model demonstrates a deviation of approximately 14%,
while the EBRSM model exhibits a larger deviation of around 25%. It is notable that both the
EBRSM+LI and EBRSM models are the only ones capable of predicting low values of 〈|vg1 |〉 as
x/w → 0 due to the absence of wall laws in their formulation.

In this section, we conducted a comprehensive comparison between numerical predictions
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Figure 3.3: First gas group time-averaged and y-averaged quantities (z = 2.7 m) vs. dimension-
less distance x/w with w = 200 mm. Lines are numerical predictions from simulations carried
out with different turbulence models. Points are experimental results extracted from [126].

and experimental measurements conducted by [126]. Our analysis encompassed various turbu-
lence models, revealing that these models yield similar outcomes. However, determining the
optimal model for simulating air-water flows in vertical rectangular channels remains inconclu-
sive. We established that all turbulence models successfully capture the variations of

〈
aig1

〉
,

〈αg1〉, and 〈|vg1 |〉 along a specific direction (x/w) within a designated cross-section (z = 2.7 m).
The deviations between numerical predictions and experimental measurements remain within
satisfactory limits, particularly beyond the region near to the channel walls. In the subsequent
section, our assessment extends to the evaluation of turbulence models within the context of a
square section channel configuration.
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Figure 3.4: Magnitude of gas velocity of first gas group, 〈|vg1 |〉 (time-averaged, y-averaged,
z = 2.7 m) vs. dimensionless distance x/w with w = 200 mm. Lines are numerical predictions
from simulations carried out with different turbulence models. Points are experimental results
extracted from [126].

3.1.3 Air-water flow in a square section channel

The experimental configuration detailed in [122] involves a vertical channel with a height of
2.95 m and a square cross-section measuring 136× 136 mm2, as depicted in Figure 3.5. In this
setup, the test case is characterized by superficial velocities of jl = 0.50 m/s for the liquid phase
and jg = 0.09 m/s for the gas phase. Various local parameters, including the void fraction
(αg1), gas velocity (magnitude of Ug1), interfacial area concentration (aig1), and Sauter mean
diameter (Dsm1), are measured. Probes are positioned along three lines within a quarter cross-
section, as illustrated in Figure 3.5. It is crucial to note that the experimental study does not
provide a localized estimation of experimental error. Consequently, global errors are utilized in
the subsequent presentation of results to approximate the experimental error. Furthermore, the
experiment conducted by [122] provides a mean to evaluate the turbulent kinetic energy (k),
enabling the validation of the turbulence modelling.
Regrading the numerical simulations, specific boundary conditions are imposed at the inlet. For
void fractions, these conditions are set as αg1 = 0.152 and αg2 = 0.00. Axial velocities are
prescribed as vl = 0.59 m/s for the liquid phase, and vg1 = vg2 = 0.59 m/s for both gas phases.
Additionally, Sauter mean diameters are initialized at Dsm1 = 4 mm for the first group and
Dsm2 = 11 mm for the second group.
To perform these simulations, a mesh comprising 676,000 individual elements is used. This
mesh was determined through a comprehensive mesh sensitivity analysis that encompassed dif-
ferent meshes, including 130,000, 676,000, and 3,256,000 cells. The results of this analysis
conclusively indicated that numerical predictions of αg1 converged effectively with the mesh
containing 676,000 cells.

Figure 3.6 presents the evolution along the diagonal line of 〈αg1〉 (time-averaged void fraction
of the first gas group) and 〈vl〉 (time-averaged axial liquid velocity) as a function of the dimen-
sionless distance x/w at a specific height of z = 2.2 m. All turbulence models accurately repro-
duce the observed variations. Specifically, 〈αg1〉 increases within the near-wall region (x/c→ 1),
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Figure 3.5: Scheme of the experimental setup of [122].

reaches a peak close to x/c ≈ 1−Dsm1/c, and subsequently stabilizes as x/c→ 0 (center of the
channel). The oscillatory behavior observed in most models, excluding EBRSM+LI, arises from
weak turbulent dispersion and pronounced deviating phenomena near the wall region. Where
the models differ significantly is in the prediction of the void fraction peak within the near-wall
region. The SSG model exhibits the largest disparity, with the peak positioned approximately
60% further from the wall. Consequently, the void fraction prediction for the probe closest to
the wall is over 10 times smaller than the experimental data. This discrepancy can be attributed
to the SSG model’s tendency to predict increased turbulent energy in the near-wall region (as
observed in Figure 3.9), leading to greater bubble growth and an additional peak closer to the
wall. On the contrary, the EBRSM+LI model displays the smallest overall deviation, with a
maximum local error of 16%. This model’s performance is notable for its improved prediction
accuracy in capturing the void fraction peak, further enhancing its reliability in this context.
For 〈vl〉, all models consistently fall within the range of error bars. However, it is the EBRSM+LI
model that accurately reproduces the observed variations of 〈vl〉 in the experimental data. This
includes the pattern where 〈vl〉 increases as x/c → 1 within the near-wall region and subse-
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quently decreases as x/c → 0 toward the center of the channel. In contrast, among the other
models, the k−ε model predicts an increment of 〈vl〉 as x/c→ 1, followed by a tendency toward
a near-constant value as x/c → 0 exhibiting a non-physical wall acceleration. The EBRSM
model displays an opposite trend in the center of the channel (x/c → 0), while correctly pre-
dicting the behavior in the near-wall region (x/c→ 1). The SSG model, due to the position of
the void fraction peak, depicts a notable decrease in axial velocity within the near-wall region
(x/c→ 1), leveling off to an almost constant value as x/c→ 0. In terms of overall performance,
the EBRSM+LI model emerges as the most accurate and consistent, boasting the smallest over-
all discrepancy in comparison to the experimental data.

Figure 3.7 illustrates the evolution along the bisector line of 〈αg1〉 (time-averaged void frac-
tion of the first gas group) and 〈vl〉 (time-averaged axial liquid velocity) as functions of the
dimensionless distance x/w at a specific height of z = 2.2 m. Focusing on 〈αg1〉, all turbulence
models, excluding the k − ε model, faithfully reproduce the observed variations. This includes
the behavior where 〈αg1〉 increases within the near-wall region (x/c → 1), reaches a peak near
x/c ≈ 1−Dsm1/c, and subsequently stabilizes toward an almost constant value as x/c → 0
(center of the channel). Among the models, the EBRSM turbulence model exhibits the largest
deviation, reaching approximately 23%. This discrepancy is most prominent in the misplaced
void fraction wall peak, as observed in the diagonal line assessment. It is notable that the SSG
model also displays a similar issue of a misplaced void fraction wall peak in the bisector line
assessment.
Regarding 〈vl〉, all models consistently fall within the range of error bars. However, only the
SSG and EBRSM models accurately reproduce the observed variations of the experimental data.
This variation displays an increase in 〈vl〉 within the near-wall region (x/c→ 1), followed by an
almost constant value as x/c → 0, corresponding to the center of the channel. In contrast, the
k− ε model predicts an increase in 〈vl〉 as x/c→ 1, and approaches an almost constant value as
x/c→ 0, a behavior that seems to hide the specific wall law used. This discrepancy stems from
the non-physical wall acceleration attributed to the intricate interplay between gas forces and
wall laws, which strongly interact with the liquid field within the initial cells. The EBRSM+LI
model accurately reproduces the behavior observed for 〈vl〉: an increase within the near-wall
region (x/c → 1) followed by a decrease as x/c → 0 toward the center of the channel. This
robust consistency further underscores the reliability of the EBRSM+LI model in capturing the
flow dynamics.

Figure 3.8 shows the near-wall line evolution of 〈αg1〉 (time-averaged void fraction of the
first gas group) and 〈vl〉 (time-averaged axial liquid velocity) as functions of the dimensionless
distance x/w at a specific height of z = 2.2 m. For 〈αg1〉, all turbulence models accurately
reproduce the observed variations. As previously discussed, 〈αg1〉 exhibits an increase within
the near-wall region (x/c → 1), peaks near x/c ≈ 1−Dsm1/c, and subsequently stabilizes
toward an almost constant value as x/c → 0 (center of the channel). However, a constant
discrepancy emerges for all models around the center of the channel (x/c → 0), with the SSG
model demonstrating the highest deviation of approximately 30%. This emphasizes the potential
for enhancement and modelling in accurately capturing near-wall behaviors. The conclusions
drawn from the diagonal and bisector line analyses hold parallels within this near-wall line
assessment, further affirming the trends observed in various regions of the channel.

Figure 3.9 illustrates the bisector line evolution of the fluctuating kinetic energy k across
the dimensionless distance x/w at a specific height of z = 2.2 m. This selection of the bisec-
tor line is deliberate, as the isotropic assumption used to derive these experimental values is
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(a) Void fraction 〈αg1〉.
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Figure 3.6: Diagonal line evolution of time-averaged quantities of the first gas group vs. dimen-
sionless distance x/c with c = 68 mm, at height z = 2.2 m. Lines are numerical predictions
from simulations carried out with different turbulence models. Points are experimental results
extracted from [122].

notably accurate within this region of geometric symmetry. Among the models, it is only the
EBRSM+LI model that accurately captures the variations of k as observed in the experimental
data. Specifically, k increases within the near-wall region (x/c → 1), reaches a maximum, and
then gradually decreases as x/c → 0 toward the center of the channel. Conversely, all other
models predict an initial increase of k in the near-wall region (x/c→ 1), followed by a peak near
x/c ≈ 1−Dsm1/c, a rapid decline, and finally a slow increase toward a nearly constant value
as x/c→ 0 at the center of the channel. Notably, a substantial gap in fluctuating energy exists
between the experimental data and the predictions of the classical EBRSM, k − ε, and SSG
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(b) Axial liquid velocity 〈vl〉.

Figure 3.7: Bissector line evolution of time-averaged quantities of the first gas group vs. dimen-
sionless distance x/c with c = 68 mm, at height z = 2.2 m. Lines are numerical predictions
from simulations carried out with different turbulence models. Points are experimental results
extracted from [122].

models, which amounts to approximately 60%, 70%, and 70%, respectively, at the center of the
channel. The disparities among the latter three models are primarily localized in the near-wall
region, where a significant increase coincides with the position of the void fraction wall peak.
The capability of the EBRSM+LI model to reproduce both the turbulence trend and intensity
is attributed to the use of BIT. Unlike the other models, which only account for single-phase
turbulent kinetic energy, the EBRSM+LI model introduces fluctuations owing to drag forces.
It is crucial to highlight that the pure turbulent intensity remains relatively low, indicative of a
process of turbulence reduction due to the localized reduction in the volumetric presence of the
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(b) Axial liquid velocity 〈vl〉.

Figure 3.8: Near wall line evolution of time-averaged quantities of the first gas group vs. di-
mensionless distance x/c with c = 68 mm, at height z = 2.2 m. Lines are numerical predictions
from simulations carried out with different turbulence models. Points are experimental results
extracted from [122].

liquid phase, linked to the presence of bubbles. Although a noticeable deviation in fluctuating
energy intensity exists between the experimental data and the EBRSM+LI model’s prediction,
it still leads to a favorable prediction and trend for the liquid velocity, further underlining the
model’s competence in capturing the complex flow dynamics.

Consequently, the comprehensive prediction of the EBRSM+LI model emerges as notably
interesting. This model demonstrates a reduced level of deviation and successfully captures the
correct trends for variables such as void fraction, liquid velocity, and turbulent kinetic energy.
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Figure 3.9: Comparison of the diagonal predictions of the fluctuating kinetic energy among the
different models at height of 2.2 m.

Despite these strengths, it is crucial to note that when compared to the experimental data, both
the void fraction and liquid velocity exhibit a trend to be under-predicted by the EBRSM+LI
model.
The combination of TRITON modeling and turbulence appears to yield profiles with similar
trends to the experimental data for the EBRSM and EBRSM+LI models in terms of velocity
and near-wall void fraction, although the void fraction is generally underestimated compared
to the experimental results. This observation may be attributed to a potential problem with
the drag force in the simulation. Another explanation could also stem from the experimen-
tal measurements. In fact, it appears that the experimenter measured a local void fraction of
< αg >= 0.139 at the center and considered this value as a measurement for the entire cross-
section. If we use the calculation from the next section, < Ur >=< Ub > (1− < αg >)1/2, we
obtain < Ur >≈ 0.213 m/s, which corresponds to a gas velocity of Ug ≈ 0.803 m/s, and thus,
a local void fraction of αg ≈ 0.11. This result aligns with the simulation by measuring at the
center of the channel. Now, if we perform a reverse calculation to obtain the experimental values
measured at the center, we can use the following equations:

< Ug >≈< Ul > + < Ub > (1− < αg >)1/2, (3.1)

< αg >= jg
< Ug >

. (3.2)

Then, we get :
jg ≈< αg > (< Ul > + < Ub > (1− < αg >)1/2). (3.3)

The experimental measurements yield < Ul >≈ 0.68 m/s and < αg >= 0.139. The exper-
imentalist then calculated jg =< αg >< Ul >≈ 0.09 m/s using local measurements. However,
according to the calculation, we obtain jg = 0.124 m/s, which is greater than 0.09 m/s, resulting
in a cross-sectionnal void fraction of < αg >= 0.182. This value is more consistent with a central
void fraction of 0.139 and a wall void fraction of 0.2. To accurately compute this case, the fol-
lowing injection parameters should be used: jg = 0.124 m/s, jl = 0.556 m/s, and < αg >= 0.182.
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Beyond confirming the coupling between turbulence and TRITON, it appears that a different
modeling approach is still required to account for effects specific to the presence of the obstacle.
Particularly, there are issues related to modeling small bubbles, including concerns about forces,
source terms, and turbulence. The next section, therefore, addresses the challenges encountered
in TRITON modeling from the perspective of the dispersed bubbles groups.

3.2 On the modeling of the two groups of bubbles

An aspect that need careful consideration is the modeling of the bubbles under conditions of
high void fraction. As illustrated in the previous section, there exists a possibility that the issue
might be attributed to the models of hydrodynamical forces, of the source terms within the
IATE, or of the bubble induced turbulence. As a mean to address this potential concern, we
suggest conducting an investigation into all these aforementioned models. Indeed, most models
have been developed and validated for moderate void fractions. Thus, non-physical divergence
issues due to high void fractions have not been addressed in the literature.

3.2.1 Modifying and adapting forces

The hydrodynamical closure models are fundamental components of the momentum equation,
crucial for accurately predicting the velocities of both gas and liquid phases and their respective
void fractions. Despite numerous studies available in the literature, most of these models have
been validated primarily for scenarios involving low to moderate void fractions and are not al-
ways coupled with turbulence. When attempting to apply these closure models to more complex
configurations, their performance becomes uncertain. The lack of a widely accepted universal
combination of forces adds difficulties. Incorporating additional complexity into a specific model
can introduce numerical issues when combined with other models. Thus, the issue of divergence
and poor performance can partially be attributed to the dispersed forces. Notably, these hy-
drodynamical closure models have not been adequately validated for flows around a cylinder,
indicating a significant gap in their applicability when dealing with such geometries.
As a reminder, the interfacial momentum exchange term is modeled by hydrodynamical forces
as follow :

Il−>g = FD
l−>g︸ ︷︷ ︸
Drag

+ FL
l−>g︸ ︷︷ ︸
Lift

+ FAM
l−>g︸ ︷︷ ︸

Added mass

+ FWL
l−>g︸ ︷︷ ︸

Wall Lubrication

+ FT
l−>g︸ ︷︷ ︸

Turbulent dispersion

. (3.4)

The primary challenge in simulating flow around a cylinder lies in accurately predicting a
high void fraction near the cylinder. To address this issue, it becomes crucial to investigate
forces that non-linearly depend on the void fraction. Such forces include the drag force FD

l−>g,
added mass force FAM

l−>g, and turbulent dispersion FT
l−>g.

Drag force

The first force to investigate is the drag force FD
l−>g. Consider an upward adiabatic free bubbly

flow - only 1st group bubbles - in a rectangular channel, without wall, we neglect the turbulence,
the bubbles interactions and the viscous shear. In this scenario, we can assume a homogeneous
dispersed flow with bubbles. Assuming that the flow is statistically steady, it becomes obvious
that only the drag force significantly influences the flow dynamics. Other forces can be disre-
garded due to the idealized conditions. From equation 2.79, we derive the following 1D balance
equation in the direction of the relative velocity, denoted as Ur, with respect to the gas phase,
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with P the pressure field :

αg∇P = FDl−>g − αgρgg. (3.5)

Similarly, we also derive from equation 2.81 the following 1D balance equation for the relative
velocity, with respect to the liquid phase, by neglecting liquid velocity changes :

(1− αg)∇P = −FDl−>g − (1− αg)ρlg. (3.6)

By considering the equations for the relative velocity in both the gas and liquid phases, and
taking into account that the pressure is uniform and equal for both fields, we deduce from
equations 3.5 and 3.6 the following:

∇P = −((1− αg)ρl + αgρg)g. (3.7)

By considering the classical drag force, equation 3.5 can be rewritten as :

3
4αgρl

CD
Dsm

U2
r = αg∆ρg(1− αg). (3.8)

We finally get :
U2
r = 4

3
Dsm

CDρl
∆ρg(1− αg) = Ub2(1− αg), (3.9)

with Ub2 = 4
3
Dsm
CDρl

∆ρg and CD the drag coefficient. For example, with CD = 2
3
Dsm
La , Ub ≈ 0.230

m/s.
However, with CD =min(CDellipse, CDcap) (see equations 2.18 and 2.19), whatever the diameter,
when the void fraction tends to 1 the CDcap model is selected. With the previous equation, we
have :

U2
r = Ub2cap

1
1− αg

, (3.10)

with Ub2cap = Ub2(CD = 8/3).
The analysis reveals that as the void fraction approaches 1, the relative velocity Ur tends towards
infinity. However, the liquid velocity remains continuous and finite, implying that the gas ve-
locity approaches infinity. To maintain model accuracy, physical consistency, and continuity for
the first group of bubbles, the most elegant approach is to introduce a new drag coefficient. This
new coefficient will appropriately modify the drag force model, allowing for better predictions
of the behavior of the gas phase without sacrificing the model’s overall performance :

CDg1 = max(CDlow,min(CDellipse,max(CDcap, CDellipse(αg = 0)))). (3.11)

Added mass force

The next force to be explored is the added mass force FAM
l−>g. This force comes into play in

accelerating bubbly flows as a result of the surrounding fluid’s influence on the acceleration of
bubbles within the flow. The added mass force becomes especially significant in flows around a
cylinder due to the deviation induced around the cylinder. As a reminder, the Zuber’s added
mass coefficient[90] is proportional to 1+2αg

1−αg . It becomes obvious that when αg → 1 this ex-
pression tends toward infinity, which is not physical. To overcome this issue and ensure a valid
model even at high void fractions, a modified version is required. The expression proposed by
Cai and Wallis [6] presents an interesting approach as it provides an averaged model that yields
a finite value when the void fraction approaches 1. Moreover, the model used can be viewed as
a special case of the model used, when the density ratio between the liquid and gas is infinite,
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and the void fraction remains at moderate levels. The expression of the force is then as follows :

FAM
l−>g = −αg

(1 + 2αg)γ + 1− αg
2γ(1− αg) + 2 + αg

ρl

(
DUg

Dt
− DUl

Dt

)
, (3.12)

with γ = 1
2
ρl
ρg
.
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Figure 3.10: Added mass coefficient according to the value of αg with Zuber’s model[90] and
Cai and Wallis’ model [6] for water-air and water-steam cases.

Figure 3.10 compares the evolution of the added mass coefficient according to the value of
αg for with Zuber’s model and Cai and Wallis’ model [6] for water-air and water-steam cases.
For air-water, it highlights the very small difference between the models until αg ≈ 0.8. Then,
while Zuber coefficient tends to infinity, Cai and Wallis’ tends toward γ for any case.

Turbulent dispersion force

The last force to investigate is the turbulent dispersion force FT
l−>g. This force allows redistri-

bution of the void fraction by the flow fluctuations. The original expression of the force suffers
from being overly isotropic, leading to excessive dispersion behind cylinders. This dispersion has
a detrimental effect on dynamical structures, particularly on bubble clusters, which are crucial
for accurately representing real physical processes. By substituting the turbulent kinetic energy
with the Reynolds stress in the force expression, the model promotes non-isotropic dispersion.
To extend this force, we can refer to the work presented in [64]. The expression proposed in [64]
is primarily focused on the drag and added mass forces, with the possibility of easily incorpo-
rating additional terms from their final equation. By disregarding the lift force, if we examine
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the final balance equation as presented in [64], we can express it as follows:

∂

∂t
αgρgUgi + Ugi

∂

∂xj
αgρgUgj︸ ︷︷ ︸

Transport

+ ∂

∂xj
αgρgR

g
ij︸ ︷︷ ︸

Gas turbulence

= −αgρg
∂

∂xi
P︸ ︷︷ ︸

Pressure

−αgρl
Dri

τ tlg︸ ︷︷ ︸
Drift contribution

−αgρlfD(Uri −Dri)︸ ︷︷ ︸
Drag force

−ρlCAM
(
αg

∂

∂t
Uri + ∂

∂xj
αg(Rgij −R

lg
ij)
)

︸ ︷︷ ︸
Added mass force

,

(3.13)
with Rkij is the components of the Reynolds stress tensor in cartesian coordinates of phase k, Rlgij
is the liquid-gas cross-correlation, CAM the added mass coefficient of the distribution of bubbles,
Dr the drift velocity between the phases. It is assumed in [64] that :

Dri = −τ tlg
( 1
αgρg

∂

∂xj
αgρgR

lg
ij −

1
αlρl

∂

∂xj
αlρlR

l
ij

)
. (3.14)

Upon rearranging the terms, while omitting the derivatives of ρg as well as the one of the various
Reynolds stress and cross-correlation tensors, and considering αl = 1− αg, the equation 3.13 is
as follows: :

∂

∂t
αgρgUgi+Ugi

∂

∂xj
αgρgUgj︸ ︷︷ ︸

Transport

= −αgρg
∂

∂xi
P︸ ︷︷ ︸

Pressure

− αgρlf
DUri︸ ︷︷ ︸

Averaged drag force

− ρlCAMαg
∂

∂t
Uri︸ ︷︷ ︸

Averaged added mass force

− ∂

∂xi
αg

(
ρgR

g
ii︸ ︷︷ ︸

Gas turbulence

+ ρl(Rgii −R
lg
ii )CAM︸ ︷︷ ︸

Added mass fluctuations

+ ρl(fDτ tlg − 1)(Rlgii + αg
1− αg

Rlii)︸ ︷︷ ︸
Drag and drift fluctuations

)
.

(3.15)
From [64], we also have :

Rlgii = b+ ηr
1 + ηr

Rlii, (3.16)

Rgii = b2 + ηr
1 + ηr

Rlii, (3.17)

we then get a new formulation for the GTD by using ρlRlii ∂
∂xi
αg as a common factor, so that

FT
l−>g = −GTDρlRlii ∂

∂xi
αg, with previous GTD = (fDτ tlg − 1) b+ηr1+ηr + CAM

b2+ηr
1+ηr from [64] :

GTD = ρg
ρl

b2 + ηr
1 + ηr︸ ︷︷ ︸

Gas turbulence

+ CAM
b2 − b
1 + ηr︸ ︷︷ ︸

Added mass contribution

+
(
fDτ tlg − 1

)(
b+ ηr
1 + ηr

+ αg
1− αg

)
︸ ︷︷ ︸

Drag and drift contribution

. (3.18)

This expression is remarkable because we get a physics based "constant" instead of just an
adjustable constant, but we still have too many variables to understand its behavior easily. The
idea is not to propose new physics but to reorganize the terms in order to study them and suggest
a slightly different approach for some terms. Our idea is to remind that τFlg fD = ρg

ρl
+CAM and
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ηr = τ tlg
τF
lg

, to get the final expression :

GTD = CAM︸ ︷︷ ︸
Added mass

(
b2 − b
1 + ηr︸ ︷︷ ︸

Dragging effect

+ ηr

(
b+ ηr
1 + ηr

+ αg
1− αg

)
︸ ︷︷ ︸

Cross−correlation

)

+ ρg
ρl︸︷︷︸

Mass ratio

(
b2 + ηr
1 + ηr︸ ︷︷ ︸

Dispersed velocity fluctuations

+ ηr

(
b+ ηr
1 + ηr

+ αg
1− αg

)
︸ ︷︷ ︸

Cross−correlation

)

−
(
b+ ηr
1 + ηr

+ αg
1− αg

)
︸ ︷︷ ︸

Cross−correlation destruction

.

(3.19)

Figure 3.11 illustrates the behavior of the GTD according to αg and ηr, assuming that
they are independent variables, regarding a spherical bubble, using Cai and Wallis added mass
force [6]. Notably, the graph exhibits a divergence towards infinity as αg approaches 1. This
divergence arises due to the void fraction becoming excessively high. However, in such scenarios,
the dispersion force should not increase as the spatial fluctuations caused by the liquid turbulence
decrease.
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Figure 3.11: Basic GTD coefficient from equation 3.19 according to the value of ηr and αg,
assuming that they are independent variables, regarding a spherical bubble, using Cai an Wallis
added mass force [6]. The values are clipped between −103 and 103 in order to avoid divergence.

To account for this phenomenon, we can observe that the term b+ηr
1+ηr + αg

1−αg plays a significant
role in predicting GTD behavior. This term in the model reflects the variance of liquid fluctua-
tions encountered along the trajectory of a bubble. It is broken down into two components. The
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first component represents the correlation of liquid fluctuations associated with gas fluctuations,
while the second component represents the correlation arising from the spatial distribution of
gas. To account for areas with high void fractions caused by the spatial decorrelation of the gas
distribution, like around cylinders, there needs to be a limitation on the void fraction related
to this decorrelation. To better grasp this phenomenon, we consider a simplified scenario where
the density ratio is assumed to be infinite, allowing us to use the Zuber model and neglect the
density ratio in b = 1+CAM

CAM
:

GTD = CAM︸ ︷︷ ︸
Added mass

(
b2 − b
1 + ηr︸ ︷︷ ︸

Dragging effect

+ ηr

(
b+ ηr
1 + ηr

+ αg
1− αg

)
︸ ︷︷ ︸

Cross−correlation

)
−

(
b+ ηr
1 + ηr

+ αg
1− αg

)
︸ ︷︷ ︸

Cross−correlation destruction

.

(3.20)
Figure 3.12 illustrates the behavior of the two components of the term with respect to the

void fraction. The first component b+ηr
1+ηr exhibits a decreasing trend as the void fraction increases.

This is because at low void fractions, there is a strong correlation between gas and liquid
fluctuations, primarily influenced by the bubble whose trajectory we are following. However,
as the void fraction rises and more bubbles appear, the correlation between gas and liquid
fluctuations weakens, as the influence of the leading bubble weakens. This behavior is logically
consistent with the physical understanding of the system. Conversely, the second component
αg

1−αg shows an increasing trend with increasing void fraction. When the void fraction is low,
there is limited correlation between fluctuations along the bubble trajectory and the bubbles
away from the trajectory. However, as the void fraction increases, the coherence between these
fluctuations grows rapidly due to the flow’s inherent symmetry. This behavior is also in line
with our understanding. It is crucial to note that this component diverges as the void fraction
approaches 1. This divergence indicates that the model or approach used in the analysis becomes
inadequate near complete gas phase, and additional considerations or modifications may be
necessary to account for such conditions.

Figure 3.13 represents the evolution of the full term as a function of αg for different ηr.
Notably, regardless of the value of ηr, the term tends toward infinity when αg tends toward 1.
This behavior is primarily due to the ratio of the gas fraction to that of the liquid. To better
understand how to address this issue, we can consider two ideal cases.
As a reminder, ηr represents the ratio between the characteristic time of turbulence along the
trajectory of the bubble and the characteristic time of the bubble. The first case is when ηr = 0,
as depicted in Figure 3.13. It means that the turbulence is instantaneous with respect to the
bubble trajectory. In this situation, the bubbles move in a turbulent field that remains undis-
turbed. Consequently, the maximum variance of fluctuations experienced by the distribution of
bubbles is when there is no bubble in the turbulent field, which occurs when αg = 0.
The second case, represented in Figure 3.13, is when ηr → ∞. It means that the bubble path
is instantaneous with respect to the time of turbulent structures. In this scenario, turbulence
completely disperses the bubbles, and the liquid fluctuations encountered along their trajectory
are only due to the fluctuations of the liquid flow. As a result, the correlation tends toward 1,
which again corresponds to the case when αg = 0, i.e., when bubbles are absent. Therefore, in
the general case, the maximum deviation of liquid fluctuations encountered on a bubble trajec-
tory occurs when there is no bubble. In other words, the presence of bubbles does not lead to
an increase in the deviation of liquid fluctuations along their path compared to the fluctuations
generated in the liquid itself (this effect is taken into account in the turbulent time in ηr). The
wake of the bubbles remains a source of fluctuations, but it cannot introduce wider liquid fluc-
tuations than what is already present in the liquid turbulence. This observation gives rise to
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Figure 3.12: Evolution of b+ηr1+ηr and αg
1−αg with the void fraction with ηr seen as a constant (top).

Those two terms represent the gas-liquid and liquid-liquid correlation rates along bubble trajec-
tories, respectively. The diagrams illustrate the interactions between the red swirls, representing
the reference swirl, and distant swirls whose color indicates their correlation level, in the case of
low void fraction (middle) and high void fraction (bottom).

the following equation :
b+ ηr
1 + ηr

+ αg
1− αg

= b(αg = 0) + ηr
1 + ηr

, (3.21)

with b(αg = 0) = 1+ 1
2

1
2

= 3. The solution of this equation gives the dispersion limit αgmax, that
depends on ηr :

αgmax = 5− ηr
2(ηr + 4) . (3.22)

Notably, when ηr = 0, αgmax reaches 5
8 = 0.625. This value is similar to the commonly used

value for a random stack of solid spheres 0.62 and is also consistent with the limits of compact-
ness observed in the bubbly regime. Indeed, the origin of this value is somewhat underdiscussed
from a theoretical point of view in the literature, as it stems from experimental data. [85] offers
an explanation based on the difference between the added mass of a bubble distribution (Zuber
model) and the one derived from a potential calculation (CAM = 5 × 2

3). However, contrary
to what is indicated, the calculation actually yields αg = 17

26 ≈ 0.654. However, this idea has
forged the basis for most of the considerations presented in this thesis regarding the added mass.

The Figure 3.13 also illustrates the minimum value αgmin, solution of b+ αg
1−αg = b(αg = 0),

occurring when αg = 4 − 3
2
√

6 ≈ 0.3257. This value is similar to the one used as limit for the
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Figure 3.13: Evolution of the quantity b+ηr
1+ηr + αg

1−αg according to the void fraction for different
ηr .

bubbly regime. An interesting observation can be made when ηr > 5 : αgmax = 0. In this case,
the turbulence is so strong that void fraction effects are cancelled.
A similar analysis can be performed solving equation 3.21 using Cai and Wallis’ model [6]
(modifying b), with ηr = 0 and γ = 1

2
ρl
ρg
. The solutions, depicted in Figure 3.14, are :

αgmax = 10γ3 − 18γ2 − 3γ − 2
(2γ − 1)2(4γ + 1) , (3.23)

αgmin = 1
8γ4 + 24γ3 − 2γ2 + 6γ − 1

(
32γ4 + 40γ3 + 16γ2 + 10γ + 2−

√
6
√

144γ8 + 336γ7 + 436γ6 + 388γ5 + 232γ4 + 112γ3 + 33γ2 + 9γ
). (3.24)

For air-water flow, αgmax ≈ 0.623 and αgmin ≈ 0.3250. It appears that Zuber model [90] is
satisfying for the modeling of dispersion in the current system.

The dispersion coefficient is ultimately constrained by αgmax from equation 3.22. Figure
3.16 shows the evolution of new GTD concerning αg and ηr with its new expression from 3.19
and 3.22. It highlights that the coefficient’s order of magnitude is now more accurate. However,
in certain areas, GTD could be negative according to this new formulation. A negative GTD
coefficient would imply that the model might require further modifications to account for physical
phenomena or could lead to the formation of bubble clustering. This observation highlights the
potential for enhancing the model to better represent clustering phenomena.

In the general case, when CAM (αg = 0) is unknown we have :

αgmax = 3− CAM (αg = 0)(1 + ηr)
3 + 2CAM (αg = 0)(1 + ηr)

. (3.25)
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Figure 3.14: Evolution of αgmax and αgmin as a function of γ, computed with Cai and Wallis’
model [6] and for ηr = 0.

0 2 4 6 8 10
ηr

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

vo
id

fr
ac

ti
on

α g
m
ax

CAM=0.0
CAM=0.2727
CAM=0.5
CAM=2.0
CAM=3.0
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Figure 3.15 illustrates the evolution of αgmax according to ηr for several value of CAM (αg = 0).
It shows that the value of the added mass has strong effect on the prediction of αgmax. When ηr,
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Figure 3.16: Final GTD coefficient for a spherical bubble according to the value of ηr and αg.

αgmax tends toward 3−CAM (αg=0)
3+2CAM (αg=0) , making αgmax = 0 for any value of ηr for CAM (αg = 0) ≥ 3.

It means either that 3 is a limit for the added mass coefficient or that when CAM (αg = 0) is
more than 3, no void fraction effect should be taken into account.
Finally, we use the expression of GTD from equation 3.19 constrained by αg = min(αg, αgmax),
with αgmax from equation 3.25.

The prediction of forces depends not only on the void fraction but also on the mean Sauter
diameter. Predicting this diameter relies significantly on the prediction of the interfacial area
and, consequently, the IATE. The source terms in the IATE equations are crucial for replicating
bubble mechanisms. However, they are based on considerations regarding forces and the values
of predicted fields, which are then adjusted to experimental values through their evolution in
cross-sections. To use them accurately, particularly for high void fractions, it is necessary to
study them locally. This is the focus of the next section.

3.2.2 Modifying and adapting the source terms

The challenges in TRITON’s interfacial area modeling arise from the need to accurately repre-
sent the complex interactions of coalescence and break-up between bubbles (see section 2.2.3).
Source terms are introduced in the equations that describe these interactions between bubbles.
These source terms are essentially simplified mathematical representations of the underlying
physical mechanisms governing coalescence and break-up. To validate and optimize these mod-
els, researchers typically compute a 1D version of the equations (in the cross-section), which
allows for easier analysis and comparison with experimental data. While the equations them-
selves have been successfully computed in 3D CFD simulations, the models have mostly been
confronted to bubbly flows without obstacle. As a result, there are concerns about the suitabil-
ity and accuracy of some of these models due to their reliance on simplistic assumptions and
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theoretical considerations. The main issue lies in the emergence of regions with a high void
fraction. Those areas are manifesting when obstacles, such as cylinders, are present within the
fluid domain. As a reminder, the source terms are based on the five following categories : RC,
WE, TI, SO and SI (see section 2.2.3).

The first source terms that may cause issues are RC terms. Indeed, almost all models are
proportional to the following three functions h1, h2, h3 (see appendices A.2), with CRC1 = 3.0:

h1(αg1) =
α

8/3
g1

α
1/3
g1max − α

1/3
g1

(
1− exp

(
− CRC1

α
1/3
g1 α

1/3
g1max

α
1/3
g1max − α

1/3
g1

))
, (3.26)

h2(αg1) = α
8/3
g1

(
1− exp

(
− CRC1

α
1/3
g1 α

1/3
g1max

α
1/3
g1max − α

1/3
g1

))
, (3.27)

h3(αg1) = α
5/3
g1

(
1− exp

(
− CRC1

α
1/3
g1 α

1/3
g1max

α
1/3
g1max − α

1/3
g1

))
. (3.28)

Figure 3.17 depicts the evolution of the functions h1, h2, and h3 derived from the IATE
source terms with respect to the void fraction of group 1. Notably, all three functions exhibit
a pronounced discontinuity at αg1max = 0.62 and take large positive values for h1 and large
negative values for h2 and h3 when αg1 > 0.62. This discontinuity is particularly concerning
as it leads to a divergence in coalescence around this void fraction value. Moreover, the plot
reveals that the issue arises at an earlier stage for the function h1 compared to h2 and h3.
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Figure 3.17: Graph of the evolution of different function h1, h2, h3 from IATE source terms
[120] according to the void fraction of the group 1.

The source term from the IATE that carries the most significant weight is φ(1)
RC (see [83])
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because it is proportional to the function h1. This term is defined by :

φ
(1)
RC = −0.17C(1)

RCλ
(1)
RC

ε1/3αg1ai
5/3

α
1/3
gmax(α1/3

gmax − α1/3
g1 )

(
1− exp

(
− CRC1

α
1/3
g1 α

1/3
gmax

α
1/3
gmax − α1/3

g1

))
. (3.29)

Discrepancy issues are addressed when αg approaches αgmax. This can be done by writing
φ

(1)
RC(α) as the product of a term φ0

RC = −0.17C(1)
RCλ

(1)
RCε

1/3( 6
Dsm)5/3 1

α
1/3
gmax

, independent of αg1
and a function depending on αg1 and αgmax. We get :

h1(αg1) = φ
(1)
RC

φ0
RC

=
α

8/3
g1

(α1/3
gmax − α1/3

g1 )

(
1− exp

(
− CRC1

α
1/3
g1 α

1/3
gmax

α
1/3
gmax − α1/3

g1

))
. (3.30)

Figure 3.18 illustrates the graph of function h1 with respect to the void fraction. The observa-

0.0 0.2 0.4 0.6 0.8 1.0
Void fraction of group 1 αg1

10−18

10−14

10−10

10−6

10−2

102

106

1010

1014

1018

Φ
(1

)
R
C

Φ
(1

)
R
C
(α

g1
=

1)

(0.602)(0.509)

(0.325)

Original
New model
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according to the void fraction.

tion made from the graph is that as the void fraction approaches αgmax, there is a divergence of
the source term, leading to an infinite coalescence. The modification is based on two key prin-
ciples: continuity of the source term and independence of random collisions from the presence
of an individual bubble once it becomes uncorrelated from the mean flow. The selected solution
involves saturating the source term, constraining its value to be constant when αg > 0.509. This
means that when the void fraction equals or surpasses 0.509, the source term will be capped at
this threshold, thereby preventing its divergence toward infinity. Notably, the function value of
h1 is ten times higher than the previously established value of 0.325, which was identified as a
cross-sectional limit for bubbly flow. Moreover, both 0.509 and 0.325 are close to the values in
[104], used for predictions in TRACE (Transient Reactor Analysis Code), the american coun-
terpart of the french CATHARE (Code for Analysis of THermalhydraulics during Accident of

101



Chapter 3 – New modeling and modifications based on channel flow investigations

Reactor and safety Evaluation) developed at CEA. Specifically, 0.602 gives a function value of
h1 ten times the one of 0.509. However, upon examining these cases, it becomes obvious that a
void fraction of 0.509 yields the most appropriate coalescence behavior, given that the original
value of 0.602 still induces excessive coalescence phenomena.

Another significant challenge arises from the WE sources (see appendices A.2). These sources
directly depend on the velocity fields of the gas and liquid phases, making them highly sensitive
to changes in velocity, particularly around the cylinder. One challenge stands in the source term
of the bubbles of the first group φ(1)

WE . This term is defined by :

φ
(1)
WE = −0.17C(1)

WEC
1/3
D1 Ura

2
i , (3.31)

with CD1 = 2Dsm
3

√
g∆ρ
σ

(
1+17.67(1−αg)9/7

18.67(1−αg)3/2

)2

. However, Ur also depends on CD, so it is crucial
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Figure 3.19: Graph of the evolution of drag coefficients for so-called bubbly and cap-bubbly
regimes as a function of the void fraction.

to have a good modeling of this term for large void fractions. Figure 3.19 shows the evolution
of CD1 bubbly for different bubble diameters in the order of a millimeter. In particular, when
the void fraction approaches 1, CD1 tends towards infinity. It can therefore no longer be used
in modelling. One way to solve this problem, proposed by Tomiyama [132] is to consider for the
high void fraction CD2 = 8

3(1− αg)2. We then take CD = min(CD1, CD2).
Figure 3.19 also shows the behavior of CD2 cap-bubbly according to the void fraction. Note this
time that CD2 tends to 0 when αg tends to 1. However, Ur is inversely proportional to CD, so if
CD2 tends to 0 then Ur tends to infinity, which is not physically acceptable. To solve this, the
idea is to remember that there is a quasi-static limit for void fraction. There is therefore a limit
for the average bubble drag coefficients compared to that of a single bubble. We therefore choose
for high void fraction, corresponding to a "single" bubble dynamic, to use the drag coefficient of
a single bubble. We thus obtain CD = min(CD1,max(CD2, CD1(αg = 0))). Depending on the
chosen diameter we thus obtain 2 cases :
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m Either the diameter is too large (around 4 mm) and no swarm effect is considered and the
drag coefficient of a single bubble is used.

m Either the diameter is small enough and we obtain 3 velocities : a swarm velocity, a limit
velocity and in between a dynamic (quasi-static) velocity.
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Figure 3.20: Graph of the evolution of the new drag coefficient as a function of the void fraction
for a bubble of 3 mm.

Figure 3.20 shows the evolution of the new drag coefficient as a function of void fraction for a
bubble of 3 mm, corresponding to the 2nd case previously mentioned.

Additionally, within the source terms, there is a modeling that corresponds to the relative
velocity of the bubbles from group 1 within the wake of the bubbles from the second group.
This velocity, denoted as Uw12, depends on the relative velocities of the two groups of bubbles
and the modeling of a wake velocity, denoted as Urw2 = 0.94Ur2C1/3

Dcap:

Uw12 = Urw2 + Ur1 − Ur2. (3.32)

Three source terms are then directly proportional to this velocity. However, it is highly sensitive
to the prediction of the different fields and can lead to a significant mass transfer between gas
fields, resulting in acceleration and possibly even changing the sign of the source term. To
better apprehend the issue, we can use the solution derived in the section (3.2.1) to obtain
Ur1 = Ub(1 − αgtot)1/2 and Ur2 = Ub

√
Dsm2
La

1−αgtot
1−αg2 , with La =

√
σ
g∆ρ and αgtot = αg1 + αg2.

The problem occurs in the near-wall region causing Ur1 to become very small compared to Ur2.
In this situation, Uw12 ∝ 0.94(8

3(1 − αg2)2)1/3 − 1, which becomes negative when αg2 ≈ 0.328
for any value of the mean Sauter diameter. Consequently, the term is null whereas there is no
physical explanation of it.
As previously discussed, using the Ishii drag coefficient [84] leads to its divergence when αg1
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tends toward 1. Therefore, we neglect the effects of void fraction on the calculation of the drag
coefficient for group 1. In the general case with the aforementioned expressions, we obtain the
following h4 function so that Uw12 = Ur1h4 :

h4(αg2) = 1−

√
Dsm2
4La

1− αg2

(
1− 0.94

(8
3(1− αg2)2

)1/3)
. (3.33)

This function, illustrated in Figure 3.21, also changes its sign based on the predicted diameter
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Figure 3.21: Evolution of h4 according to the void fraction of the second group αg2 for several
values of Dsm2.

and so is damped to 0. For instance, considering the critical diameter value yields a maximum
void fraction of approximately 0.65, near the close packing limit of the first group. Indeed, for
Dsm2 = Dcrit the bubbles behavior must be similar to the one of the first group. However, for
Dsm2 = 10Dcrit its value is approximately 0.485, it could correspond to too short wakes from
group 2, compared to group 1 path, that can not entrain the bubbles of the first group until
meeting. Notably, a point of intersection appears for αg2 ≈ 0.328 regardless of the diameter of
group 2. Although, group 2 and group 1 void fraction phenomena are different, those values
appearing in this model seem to be close to group 1 void fraction phenomena. This expression
allows keeping the physics on which this expression is based while avoiding issues of divergence
and rapid changes near the wall. Indeed, the model does not take into account near-wall effects.

Another issue with the source terms of the RC and TI model is related to the use of the
turbulent dissipation ε (see appendices A.2). Even in single-phase flows, this variable is known
for its difficulty in quantification and its varying orders of magnitude, making it less reliable in
source terms. Furthermore, in the EBRSM model, ε can take very large values, especially near
walls. However, in the RC and TI models, ε is used to quantify the turbulent eddies. Moreover,
the dissipation near the wall is not only related to local eddies. Indeed, the EBRSM model tries
to model the real dissipation near the wall that is not only related to eddies. Thus, the dissipation
used in the coalescence/break-up source terms εsource terms must be changed, not to take into
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account the wall effect. If we use the equation 2.70, we have L = 0.133max(k3/2

ε , 80ν3/4

ε1/4
). For

homogeneous isotropic turbulence we have ε = 15ν(∂u′∂x )2 ≈ 15ν
2
3k

L2 . By combining those two
expressions we can express the new εsource terms, as a function of the dissipation computed by
the EBRSM εEBRSM :

εsource terms = min

( 2
315kεEBRSM 1/2

0.1332802ν1/2 , εEBRSM
)
, (3.34)

with k is the turbulent kinetic energy and ν is the kinematic viscosity. By limiting ε in this way,
the model accounts for the isotropic behavior and aligns better with the assumptions made in
the RC modeling approach. This modification helps to improve the accuracy and reliability of
the RC model, especially in regions near walls where non-local effects can significantly impact
the turbulence characteristics.

As previously discussed, it is crucial to accurately predict turbulent quantities such as dissi-
pation and turbulent kinetic energy to compute the source terms, the coupling forces, and even
the mean liquid velocity field. Pseudo-turbulence remains an area with more open questions
than answers, and in the following section, we modestly propose to address some discrepancies
between models for our specific application.

3.2.3 Modifying and adapting two-phase turbulence

While bubble-induced turbulence appears effective in a channel, its application around a cylin-
der gives rise to certain issues. The only available experiment in the literature that investigates
two-phase flow around a cylinder, specifically addressing the fluctuations induced by bubbles,
is [65]. Although this study handle a cylinder diameter of 30 mm, bubble velocities on the
order of 0.3 m/s, and bubble diameters ranging from 3.4 mm to 4 mm – which are compa-
rable to the experiment conducted at CEA – the experiment only covers void fractions below
2%. Consequently, direct comparison is available only with CFD studies in order to account for
bubble-induced fluctuations and its interaction with a cylinder.

The primary problem is an overestimation of dissipation, which leads to the almost complete
dissipation of turbulence. This issue arises from the challenge of selecting an appropriate relax-
ation time for the bubbles. In the basic model, the scale chosen is denoted as τb = (D

2
sm
ε )1/3.

However, in the EBRSM model, as the flow approaches the cylinder, dissipation shows a signif-
icant increase. Consequently, this mechanism causes a sharp reduction in the τb scale. As the
dissipation linked to bubbles is inversely proportional to this characteristic time, it results in a
substantial dissipation source. The dissipation becomes so intense that it effectively eliminates
all turbulent structures. To address this challenge, two solutions can be considered: to reduce
the influence of bubbles near the wall, or/and, to modify the scale of this relaxation process.

Due to the asymptotic behavior of the EBRSM, a solution arises. The EBRSM relies on a re-
laxation equation between two pressure redistribution models: a local and a non-local one. The
transition between these models is identified by the variable β. Bubble fluctuations occur due
to local pressure changes as bubbles pass through. Therefore, the solution involves modulating
the BIT using the same scale β. To switch from the local model to the non-local model, all BIT-
related sources should be multiplied by β3. The second solution involves a simple adjustment
of the timescale τb. In recent literature, two other scales are preferred: Db

Ur
and Db√

k
. The first

scale yields slightly better results in the center of the channels, while the second provides better
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results close to the walls - see [75]. To avoid the characteristic time becoming almost zero, one
can consider the following expression :

τb = max

(
Db

Ur
,
Db√
k

)
. (3.35)

Another aspect of this modeling, which has not been adequately addressed in the literature,
regard the derivation of the coefficients used in the model. Currently, there is no justification
provided for these coefficients. Therefore, it becomes crucial to compare this model, which
depends on the direction of Ur, with existing literature. One straightforward approach is to
compare it with the Colombo model. To derive the Colombo solution, one needs to reorganize
the terms considering a single direction of bubble movement. Upon performing the calculations
in our case, we obtain coefficients of 10/9 in the direction of flow and 4/9 in the transverse
directions. On the other hand, Colombo’s model yields coefficients of 1 in the direction of flow
and 0.5 in the transverse directions. While the values are close, they are different. However,
no justification has been provided for this discrepancy. The proposed idea is to reevaluate the
model using the Colombo coefficients. The recalculated model yields the following results:

In Rij equation : 2
3FDUr

(
3
4brij + δij

)
, (3.36)

In ε equation : FDUr

τ
. (3.37)

Case Unmodified Modified

1 component


10/9 0 0

0 4/9 0

0 0 4/9




1 0 0

0 1/2 0

0 0 1/2



2 components


7/9 0 0

0 7/9 0

0 0 4/9




3/4 0 0

0 3/4 0

0 0 1/2



3 components


2/3 0 0

0 2/3 0

0 0 2/3




2/3 0 0

0 2/3 0

0 0 2/3



Table 3.1: Table of the matrix of the modified and unmodified models in the principal directions
for the cases : 1 component, 2 component isotropic and 3 components isotropic.

It is then interesting to investigate the behavior of the model in three idealized scenarios:
the one-component case, the two-component isotropic case, and the three-component isotropic

106



Chapter 3 – New modeling and modifications based on channel flow investigations

case. The outcomes of this analysis are summarized in Table 3.1. The study reveals that the
energy level of the two models is identical, but there are slight differences in the redistribution
process. Notably, the modified version aligns more closely with the findings reported in the
existing literature.

In this section, we focused on modeling bubbles from Group 1. Despite a fairly extensive
literature on modeling quasi-spherical bubbles, modifications were needed concerning the forces,
IATE source terms, and pseudo-turbulence to properly account for the unique topology of a flow
with obstacles. The other group also exhibited modeling challenges but had relatively limited
literature available. Consequently, we had to take a new perspective and develop a different
model to ease the calculations. The following section specifically deals with the modeling of the
deformed bubble group and provides a comparison with an experimental case.

3.2.4 On the impact of the added mass of the second group

During the case study involving a majority of bubbles from the second group and high void frac-
tions, several significant issues arose. The activation zones of the LIM (interface reconstruction
method) were very wide due to strong void fraction gradients, particularly near the walls and
upstream of the cylinder. Several causes have been identified:

m From group 2 diameter field: unexpected jumps appeared in the field representing the
diameter of the second group of bubbles, leading to significant variations in forces and
resulting in void fraction gradients. This could be indicative of improper formulation or
numerical implementation of equations, or it might be related to an incompatibility with
other fields sharing information.

m From the turbulent dispersion force: the turbulent dispersion force could also play a role
in this problem, especially if the coefficient associated turned out to be negative, which
would be unsuitable in this context.

m From the LIM (interface reconstruction method) activation criterion: another possible
factor is an issue related to the activation criterion of the LIM. This criterion determines
when large interfaces are present and choosing an inappropriate criterion could lead to
excessive activation in inappropriate zones.

The most obvious issue is the presence of a negative dispersion zones. There are two forces that
can be looked at in an attempt to modify the dispersion coefficient: the drag force and the added
mass force. The drag force directly influences the characteristic time of the bubbles, while the
added mass force influences the weight of different mechanisms. The drag force already provides
consistent results in other configurations in the literature and in various simulations carried out.
Therefore, the idea is to focus on the added mass force.
The coefficient CAM = 1

2 is suitable for spherical or almost spherical bubbles. However, the
2nd group of bubbles is made of deformed bubbles that have way more resistance to its motion.
The added mass coefficient is then underestimated and must be computed. However, no general
computation is available for any type of bubble of the second group. Then, we choose the model
used by Shen and Hibiki [113] for the second group. As depicted in Figure 3.22 We consider
a cap bubble, of small axis hw and half of the longer axis aw, with a wake angle θw of 50◦ -
typically the angle found in experiments. Then, its aspect ratio :

µw = hw
2aw

= hw
2aw

= 1
2

1− cos(θw)
sinθw

≈ 0.233. (3.38)
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Figure 3.22: Scheme of a cap bubble

We then have the volume of the cap VΩcap = πa3
wµw(3+4µ2

w)
3 and its surface Scap = 2πa2

w(1+2µ2
w).

We have then :
VΩcap
Scap

= Dsm

6 = awµw
6

3 + 4µ2
w

1 + 2µ2
w

. (3.39)

Then we have Dsm
aw

= µw
3+4µ2

w
1+2µ2

w
. If we use Simcik and et al.[117] formula for the shape factor

fshape :
fshape = VΩcap

VΩbubble
= 1

4sin
3(θw)µw(3 + 4µ2

w) ≈ 0.0842. (3.40)

Then according to the value found by Simcik an al. [117], we have :

CAM = 1.01f−0.416
shape ≈ 2.83, (3.41)

for rigid cap bubbles and :

CAM = 1.13×10−5(180◦−θw)3−3.4×10−3(180◦−θw)2 +0.356(180◦−θw)−11.9 ≈ 1.75, (3.42)

for deformable cap bubbles. We chose to use the last one because the first result is too high.

108



Chapter 3 – New modeling and modifications based on channel flow investigations

0.0 0.2 0.4 0.6 0.8 1.0
Void fraction αg

0.0

0.2

0.4

0.6

0.8

1.0

η r

Final GTD for cap bubbles

−0.22

0.00

0.22

0.44

0.66

0.88

1.10

1.32

1.54

1.76

Figure 3.23: Final GTD coefficient for a cap bubble according to the value of ηr and αg.

The figure B.10 shows the evolution of GTD according αg and ηr with its new expression
for a cap bubble, with CAM = 1.75. It can be noticed the area of negative GTD is way smaller
and that in general the GTD for the cap bubble is close to the one for the spherical bubbles.
For CAM = 1.75 and ηr = 0, αgmax ≈ 0.192 close to the maximum packing limit of αgmax ≈ 0.2
used in [49] for squeezed cap bubbles in order to deduce a flow regime transition criteria for
two-phase flow in vertical annulus. In the case one would like to use 0.2 exactly as cap-bubble
packing limit, the added mass coefficient should be 12

7 ≈ 1.71 and so θw ≈ 50.82◦.

To repair the appearance of diameter jumps due to strong dynamics, it is crucial to have a
repair and smoothing method. Indeed, we strongly constrain the diameter of group 2 to prevent
its field from reaching values outside the permissible range i.e. the range of group 1. The idea
to avoid excessive constraints is to introduce diffusion in the diameter fields. The original idea
from [51] is to add diffusion terms related to the average of the near-interface transport term in
the equation for ai.
In NEPTUNE _CFD, it is not ai that is solved, but rather Xg = ai

ρgαg
. Therefore, we need to

modify this term to adapt to our resolution:

Dai

αg
∇ai = ρgDai

αg
(Xg∇αg + αg∇Xg) = ρgDai(Xg∇ln(αg) +∇Xg). (3.43)

We obtain two terms, one dependent on αg and the other on Xg. The first term presents a
divergence issue when αg = 0 and becomes dependent on the logarithm of the void fraction for
other cases. To address this, we choose to set its diffusion coefficient to 0 and neglect this term
in our equation. Consequently, we obtain a term identical to the one proposed by [51]. However,
this gives rise to the issue of modeling the diffusion term. It is suggested that Dai = KDsm|v′l|,
with K = 1

3 . While this coefficient K is known to match experimental observations for bubbly
cases, it lacks sufficient justification for straightforward application to group 2.
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Therefore, our objective is to understand its likely origin. The diffusion coefficient in the equation
should quantify the bubble’s ability to transfer its energy to fluctuating structures. Thus, a
commonly used scale arises naturally, inspired by [24] for the turbulent diffusion, the time scale
τb for energy transfer from bubbles to the liquid :

τb =
1
2(ρg + CAMρl)αgU2

r
3
4ρlCDU

3
r
αg
Dsm

≈ 2
3
CAMDsm

CDUr
. (3.44)

We now have a velocity scale for energy transfers, CDUr, and a spatial scale of 2
3CAMDsm. If we

revisit the definition of the diffusion coefficient, it can be expressed as the velocity fluctuations
multiplied by the characteristic scale of energy transfers, which yields:

Dai = 2
3CAMDsm|v′l|. (3.45)

We have K = 2
3CAM in this case. For a spherical bubble, CAM = 1

2 , thus yielding K = 1
3 for

spherical bubbles. For bubbles in group 2, we have K = 2
3 × 1.75 ≈ 1.167.

The final issue concerns the criterion of the maximum allowable void fraction to transition
from dispersed to continuous modeling. This criterion is not yet based on any physical phe-
nomenon. Additionally, [60] demonstrated that the results did not provide insight into the true
influence of this parameter, and thus, no criterion exists to optimize it. Therefore, it is necessary
to identify the origin of this limit in order to assign a coherent value to it in the modeling pro-
cess. An aspect that appears to be gaining importance in the case of group 2 is the added mass
effect. To be more precise, the additional mass resulting from the presence of group 2 bubbles
seems to exert significant influence. In fact, [85] suggested an added mass effect in the transition
from dispersed bubbles to slugs and their stability due to strong added mass force. Therefore,
investigating this effect is pertinent since gas pockets are similar to slugs. For this purpose, we
can study an ideal scenario using the LIM perspective (interface reconstruction method). We
suppose a vertical one-dimensional dynamic channel to focus only on these 3 cells, neglecting
wall effects, turbulence and density ratio. We therefore want the transition from LIM in the
interface from a maximum value αgcd to retain the fluid impulse of an idealized gas pocket,
taken from [85]. In other words, we want point out when the dispersed point of view is equal
to a mean cross-sectionnal point of view. This value should depend on the presence of gas both
groups. αgcd will then be the void fraction before the LIM activation. α′g2 gives the void fraction
of the second group in the central cell. αgtot gives the total void fraction of gas in the central
cell. By continuity with the LIM we want continuity of the impulse in the cross-area :

CDispAM

D 1
2U

2
r

Dt︸ ︷︷ ︸
Dispersed bubble perspective

= CIdeal gas pocketAM

D 1
2U

2
b

Dt︸ ︷︷ ︸
Average gas inclusion perspective

. (3.46)

However, at equilibrium U2
r = Ub2(1−αgtot) and by neglecting the time derivative of αg, we get

:
CDispAM (1− αgtot) = CIdeal gas pocketAM . (3.47)

In order to simplify the equation, we use the Zuber model and Ishii model for the added mass,
giving CDispAM = CAM0

1+2αg2cd
1−αg2cd and CIdeal gas pocketAM = 2

3
1

1−α′g2
. We have by conservation of the

gas in the three cells:
α′g2 = 2αg2 + αg1 − 1

1− αg1
. (3.48)
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Classical gradient activation Void fraction limit activation
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Figure 3.24: Scheme of the different activation of the continuous phases from the LIM point of
view.

Figure 3.24 illustrates the two principles of continuous model activation from the perspective
of the LIM. The conventional activation occurs through the void fraction gradient of Group 2.
However, this criterion alone is insufficient to localize the activation zones of the continuous field.
In fact, a maximum void fraction limit is also necessary. We can distinguish between two cases.
The first case involves the emergence of large interfaces due to the average void fraction within
the section. This can be linked to the appearance of annular flow within the section. The second
case involves the appearance of significant interfaces concealed by the presence of Group 1. The
first case is easily interpretable but more challenging to study since it is not directly linked to
any particular phenomenon that could be used to compute the limit. In contrary, the second
case may be associated with dynamics related to added mass. Therefore, this phenomenon
must manifest when the LIM fails to detect the gradient due to it being hidden within the void
fractions. Thus, we must consider that α′g2 = αg2cd. We then have :

αg1 = 1− αg2cd
1 + αg2cd

. (3.49)

This limit will be strongly affected by the value of CAM0. However, it can vary from 0 to 3
depending on the shape of the churn bubble according to the dispersion force. We choose to use
the maximum limit of 3. The equation is then :

31 + 2αg2cd
1− αg2cd

(1− αgtot) = 1
3

1− αg1
1− αgtot

. (3.50)

Then by considering α′g2 = αg2cd not to activate the reconstruction, we have :

1 + 2αg2cd
1− αg2cd

(
1− αg2cd −

1− αg2cd
1 + αg2cd

)2
= 1

9

(
1− 1− αg2cd

1 + αg2cd

)
. (3.51)

This equation has 2 interesting solutions, a maximum αg2cdmax and a minimum αg2cdmin. The
solutions are way too complex to be implemented in a code because it supposes the simplification
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of a complex number but are real numbers. Indeed, their analytical expression are - with i
denoting the complex number so that i2 = −1 :

αg2cdmax = 1
6

(
1 +

3
√
−36 + i

√
13443

32/3 + 17

3

√
3
(
− 36 + i

√
13443

)) ≈ 0.810, (3.52)

αg2cdmin = 1
6 −

(1 + i
√

3) 3
√
−36 + i

√
13443

12× 32/3 − 17(1− i
√

3)

12 3

√
3
(
− 36 + i

√
13443

) ≈ 0.246. (3.53)

This behavior is intriguing because according to Ishii and Hibiki [85] slug bubbles appear with
a void fraction around 0.8. It means that the model can handle the dynamical behavior of a
slug with the LIM model. The second value seems to be difficult to interpret because it can not
be found in the literature. However, an explanation of its origins is given in the chapter on the
DIVA experiment and simulations by looking at data.
The same computation can be done by taking into account the density ratio within the added
mass coefficient (from equation 3.12) and balance equation, so that equation 3.46 becomes :

ρg
ρl

D 1
2U

2
r

Dt
+ CDispAM

D 1
2U

2
r

Dt︸ ︷︷ ︸
Dispersed bubble perspective

= ρg
ρl

D 1
2U

2
b

Dt
+ CIdeal gas pocketAM

D 1
2U

2
b

Dt︸ ︷︷ ︸
Average gas inclusion perspective

. (3.54)

There is no simple general form for the solution. For water-air, we get for the upper limit
αg2cdmax ≈ 0.806 and for the lower limit αg2cdmin ≈ 0.247. It is then a good approximation
to use the previous correlation as it is the result of a simpler equation. However, for a SG
mix γ ≈ 10, the upper limit is αg2cdmax ≈ 0.668 and for the lower limit αg2cdmin ≈ 0.290. It
means that in this case, the upper limit should be modified to take into account the density ratio.
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Figure 3.25: Linear approximation of the void fraction limit of the 2nd group from dispersed to
continuous according to the void fraction of the first group for different γ = 1

2
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γ = 387, Steam-water in SG : γ = 10.

Figure 3.25 shows the difference of a linear approximation of the void fraction limit of the 2nd
group from dispersed to continuous according to the void fraction of the first group for different
γ = 1

2
ρl
ρg
. It highlights that the correlation for air-water (γ = 387) is very close to the one on

infinite density ratio whereas for steam-water in a SG (γ = 10) the correlation is very different
and suppose a different behavior of the model in this area. For our application, αg2cdmax ≈ 0.806
is set to be the next limit for the activation of the continuous model. Furthermore, the linear
approximation of the 2nd group is inserted in the IATE in order to get more balance between
the 2 groups in the source terms so that :

αsource termg1 = min

(
αg1, 0.623

)
, (3.55)

αsource termg2 = min

(
αg2,min

(
0.81,max(−1.181× αg1 + 0.9285, 0.246)

))
. (3.56)

In this chapter, we focused on the foundational modeling used to replicate two-phase flows in the
presence of an obstacle. In the initial part, we highlighted the contribution and significance of
turbulence models in relation to TRITON modeling. Notably, we emphasized their good perfor-
mance in reproducing observed trends in void fraction and averaged liquid velocity, particularly
with the EBRSM and EBRSM+LI models.
The next part dealt with the modification necessary for the modeling. We identified issues aris-
ing from the presence of the obstacle, such as increased void fraction, affecting various aspects
of the modeling. Proposed modifications included adjustments to the drag and added mass
coefficients, the turbulent dispersion force, some source terms in the transport of interfacial
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area concentration, and the modeling of pseudo-turbulence. The last part focused on a distinct
modeling approach for the deformed bubbles in group 2, motivated by poor numerical results.
We presented considerations regarding the added mass coefficient, introducing a significant dif-
ference in dynamics for added mass and turbulent dispersion forces, for the source terms of
interfacial area concentration, and the transition criterion to shift to annular or churn regimes,
where statistical dispersed modeling is no longer able to represent more chaotic interfaces effec-
tively.
Now that modifications have been introduced to address the primary modeling challenges, it is
necessary to return to a configuration with an obstacle to check if the model is able to reproduce
two-phase flows around a cylinder before moving on to the DIVA configuration. This is the
focus of the next chapter.
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Chapter 4
Simulations of two-phase flows around a
cylinder

This chapter focuses on simulations carried out with a single cylinder.

The first part deals with sensitivity of the model via force spectra. Initially, a
section demonstrates the sensitivity of force spectra to the mesh in single-phase
simulations to check the relevance of our approach. The following part studies
the sensitivity of the force spectra to injection conditions in a bubbly test case,
aiming to understand the physical phenomena that can be extracted from the spectra.

The second part investigates experimental results and simulations to understand the
key parameters of the fluid-tube interaction and what physical phenomena can be
extracted from the simulations. The first section briefly presents the experimental
results and highlights the key parameters for the simulations. The following section
presents simulations in the bubbly regime, while the subsequent section covers cap-
bubbly/churn test cases.

Summary
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4.1 Sensitivity of the TRITON model

4.1.1 Numerical tools

NEPTUNE_CFD is a software platform for advanced two-phase flows simulation involving the
CEA, EDF, IRSN and Framatome. The extension used is the two-fluid model [85] with one
unique pressure field for the two-phases. Among else, it can deal with unsteady turbulent bub-
bly flows[119].
The numerical approach is based on a finite-volume co-located cell-centered approach and a
"alpha-pressure-energy cycle" solver at first order in time based on a pressure correction frac-
tional step method with an iterative coupling between energy and mass balance equations that
ensures the conservation of mass and energy. A complete description of NEPTUNE_CFD’s
numerical methods is proposed by E.Kuidjo Kuidjo in [60]. A short version of the algorithm is
proposed after from a step n to the step n+1 with a criterion on the convergence jmax:

m Un+1
k semi-implicit and P explicit to initialize the mass efflux.

m The variables point to the n+1 step.

m Initialization of the criteria j.

m Start of the iteration : update the enthalpy, update the density with state equation, update
the void fraction, pressure correction, mass flux correction from pressure correction, update
of velocities.

m End of cycle if jmax reached or axiom of continuity get minor value otherwise j = j + 1.

An upwind second-order scheme is used for the convective schemes of every variable, except
when the LIM is activated we must use a first order because the higher order can damage the
prediction of the interface.
Inlets are computed with flat profiles of constant speed, volume fraction, turbulent intensity and
Sauter Mean Diameter(Dsm). Outlets are computed with no back-flow conditions and imposed
pressure condition. For 2D calculation, symmetric conditions can be imposed on some bound-
aries. For walls, a weak no-slip condition is imposed to allow the determination of the velocity
gradient with the turbulent variables. The Van Driest analysis is used to obtain the velocity
gradient for the high Reynolds turbulence models :

U+ =
∫ y+

0

2dξ
1 +

√
1 + 4κ2(1− exp(−ξ/A))2ξ2 , (4.1)

with κ = 0.42 and A = 25.6.
For two-phase flows with interface reconstruction, we advise not to use tetrahedral meshes in
general.

The simulations computed in chapters 4 and 5 using the new TRITONmodel handle the mod-
ifications presented in chapter 3. As a reminder for the following sections, the LIM [16, 17, 18]
is an interface reconstruction method, activated when αg2 > 0.81 or Dsm2 > 108 mm,that can
be summarized in three steps:

m Recognition of interface through void fraction prediction and its gradient.
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m Interface reconstruction through void fraction gradient.

m Frictional force applied at the interface.

Post-processing for the spectra requires retrieving pressure and viscous shear information
at each of the calculated time steps. The calculations are performed using an unsteady solver
with adaptive time stepping. However, for the purpose of measuring forces, the experiment is
conducted at a fixed time step of 0.0019531 seconds. The method for obtaining force spectra
requires a constant time step and is sensitive to it. As a result, each of the simulated signals,
which has a time step always smaller than that of the experiment, is re-sampled at the ex-
perimental time step using quadratic interpolation. Additionally, force spectra are sensitive to
the simulation duration and the options used. To address the first issue, the analysis can be
performed over different durations to ensure statistical convergence. Empirically, it is necessary
to have at least 10, 000 experimental time steps and 100 time steps characteristic of the stud-
ied dynamics, excluding the "transient" period. To overcome post-processing issues, the raw
experimental signal undergoes the same post-processing as the simulated signal.

4.1.2 On the mesh sensitivity in single phase flow

The prospects of obtaining meaningful quantitative results regarding the force spectra repro-
duction on the central cylinder of the tube bundle rely on the outcomes presented in [130].
Indeed, simulations employing various URANS approaches and hybrid URANS-LES approaches
were conducted in a single-phase scenario on the DIVA configuration. The results reveal that
the shapes of the power spectral densities from the numerical simulation and the experiment
are quite similar. Although energy levels are occasionally slightly over or underestimated, the
rates of energy decay are of the same order of magnitude. It has also been highlighted that
the predictions from two-dimensional simulations are relatively accurate. However, an essential
aspect we aim to verify in this section is if the meshing strategy is suitable for the numerical
model and to justify the interpretability of graphs concerning 2D mesh convergence, as well as
the contribution of 3D in a single-phase scenario.
This thesis exclusively focuses on pseudo 2D cases (a single cell in the tube direction) with
tubes, rather than encompassing scenarios that take into account 3D effects. First, there exists
no means to ensure the accuracy of the physics in this direction, as there is a lack of experimental
investigation on this aspect for two-phase flows. Secondly, DIVA supposes using wall boundary
conditions on each side of the tube, making it challenging to quantify the actual influence of
these boundaries. Additionally, even when considering a segment of the experiment and im-
posing symmetry conditions, it remains difficult to conclude on the true symmetries of the flow
and assess the impact of symmetry on the 3D structures. Furthermore, the continuous inter-
face reconstruction method (LIM) has undergone limited testing in complex 3D cases involving
tubes, raising doubts about its efficiency in replicating 3D structures along the tube’s direction.
In addition, an assessment of the mesh count necessary for a coarse 3D calculation, conducted
through tests on one-third of the geometry (approximately 3 tube diameters), has underscored
the requirement for a mesh containing at least three billion elements. Consequently, the benefits
of performing 3D simulations in terms of computational time and energy consumption for the
intended application is limited.

We now focus on a channel geometry with a single tube with diameter D of 0.03 m, of depth
10D, length 6D, and height 16D enclosed by walls. In the 2D configuration, there is only one
mesh layer in the depth because NEPTUNE_CFD is a 3D code, whereas the 3D configuration
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covers 7D in the depth. We set a boundary condition at the inlet with a velocity plateau of
Ul = 0.74 m/s, corresponding to a Reynolds number of 22200. We tested six different meshes,
three for the 2D case (20, 000, 70, 000 and 150, 000 cells), and three for the 3D (under-resolved)
case (350, 000, 700, 000 and 1, 400, 000 cells), categorized as Coarse, Medium, and Fine. The com-
plete TRITON model is used with αg1 = 0, αg2 = 0, Dsm1 = 10−6 m, and Dsm2 = 10.8×10−3 m.

Case St Error (%) C ′D Error (%) C ′L Error (%)

Experiment 0.22 − 0.063 − 0.176 96

2D Coarse 0.16 27 0.0066 89 0.0074 89

2D Medium 0.26 18 0.029 54 0.66 89

2D Fine 0.28 27 0.076 21 0.899 420

3D Coarse 0.18 18 0.01 84 0.001 100

3D Medium 0.25 14 0.023 63 0.107 39

3D Fine 0.24 9 0.028 55 0.165 6

Table 4.1: Table of the results of the Strouhal number St and the standard deviation of the drag
C ′D and the lift C ′L forces exerted on the tube from the mesh convergence study of TRITON sim-
ulation in single phase flow. Errors are computed as : Error= Simulated value − Experimental value

Experimental value

Table 4.1 compiles the results of TRITON simulations in single-phase flow for increasingly
finer 2D and 3D meshes regarding the Strouhal number St and the standard deviation of the
drag C ′D and the lift C ′L forces exerted on the tube. Regarding the Strouhal number, all cases
have an error above 9%. None of the simulations yield an exact result, but they provide a good
estimation. This is because the confinement effects can be significant in numerical simulations
compared to experiments, inducing an overestimation of the increase of velocity and so shifting
the frequency. However the error in the frequency is acceptable for all cases. Regarding the
standard deviations of drag C ′D, all cases have an error above 20%, with a minimum for the 2D
fine case. Regarding the standard deviations of lift C ′L, the error is minimum (6%) for the 3D
fine case and maximum (420%) for the 2D fine case. As for the standard deviations, the 2D
simulations seem to perform better for drag, while the 3D simulations tend to underestimate it.
Conversely, the error in the standard deviation of lift C ′L is much better for the 3D case. This
is because obtaining an accurate lift standard deviation is challenging due to the confinement
effect, which is mitigated in 3D. However, obtaining a good standard deviation value for drag
C ′D and lift C ′L forces is not a guarantee of accurately replicating the physical phenomenon. A
straightforward way to verify this is by examining the force spectra to identify the frequency
content of the random forces.
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Figure 4.1: Lift (top) and drag (bottom) forces spectra from the mesh convergence study in 2D
(left) and 3D (right) compared to experimental data (red) according to the frequency. Simulated
with TRITON model.

Figures 4.1 depicts the lift (top) and drag (bottom) force spectra exerted on the cylinder
for both 2D (left) and 3D (right) meshes compared to experimental data (red) according to
the frequency. According to the graphs, the experimental lift spectrum (top) exhibits a sharp
increase between 2.5 Hz and 5.4 Hz, featuring a characteristic peak indicative of Von Karman
alleys (Strouhal number of St = fD

Ul
= 0.22). It then decreases significantly until around 7.4 Hz,

with a slight peak at 16.3 Hz (Strouhal number of 0.66 = 3 ∗ 0.22), followed by a steady decline
up to 40 Hz. Getting St = 0.22 and the third harmonic is a charateristic of the lift spectrum
with Von Karman alleys for single cylinder configuration. On the other hand, the experimental
drag spectrum (bottom), initially remains relatively constant between 2.5 Hz and 10 Hz, with
a peak at 5.2 Hz (St = 0.21). It then maintains near-constant behavior until around 10.9 Hz
(St = 0.44), after it decreases up to 45 Hz. Getting St = 0.22 and the second harmonic is a
carateristic of the drag spectrum with Von Karman alleys for single cylinder configuration.
In the 2D lift graph (top-left), we observe a convergence of spectra with finer mesh resolution.
There is also a frequency shift, as previously noted in the table 4.1. Focusing on the fine mesh,
we notice substantial growth between 2.7 Hz and 6.9 Hz (St = 0.28), followed by a steep decline
until around 200 Hz, after which it decreases with two peaks at 11 Hz (St = 0.44) and 20.9 Hz
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(St = 0.85 ≈ 0.28 ∗ 3). Even though noticeable differences exist compared to the experimental
data, it is interesting to note that we achieve a behavior similar to the experimental results.
Regarding the 3D lift graph (top-right), we can observe a more difficult convergence of spectra
with the mesh resolution. However, there is a less significant frequency shift compared to the
2D case. This phenomenon is likely due to the 3D effects that mitigate accelerations. Focusing
on the fine mesh spectrum, we notice a very strong peak spanning three orders of magnitude,
extending from 2.5 Hz to 14 Hz, with a maximum around 5.9 Hz (St = 0.24). A second peak is
observed around 17 Hz (St = 0.69 ≈ 0.24∗3), with a very steep decline. It becomes obvious that
the 3D behavior is quite different from the experimental behavior. Indeed, turbulence models
like EBRSM are not able to adequately accounting for 3D effects, which is obvious from this
graph. The 2D calculation, despite its sensitivity to confinement accelerations, is more interest-
ing from a physics point of view than the 3D calculation.
In the 2D drag graph (bottom-left), we observe a convergence of spectra with finer mesh reso-
lution. There is also a frequency shift, as previously noted in the table. Focusing on the fine
mesh spectrum, we notice substantial growth between 3.8 Hz and 5.4 Hz, with a maximum at
4.7 Hz (St = 0.19), followed by a steep decline until around 10 Hz, after which it decreases
gradually with a peak at 14 Hz (St = 0.56). Even though noticeable differences exist compared
to the experimental data, it is interesting to note that we achieve a behavior similar to the
experimental results.
Looking at the 3D drag graph, we can also observe a convergence of spectra with the mesh
resolution. However, there is a less significant frequency shift compared to the 2D case. This
phenomenon is likely due to the 3D effects that mitigate accelerations. Focusing on the fine
mesh spectrum, we notice a sharp decline between 2 Hz and 7 Hz, followed by a very strong
peak spanning two orders of magnitude, extending from 8 Hz to 14 Hz, with a maximum around
11.5 Hz (St = 0.47). Afterward, there is a very steep decline. As with lift, it becomes evident
that the 3D behavior of drag is quite different from the experimental behavior.

Although the spectra do not completely overlap, a similar frequency distribution is clearly
discernible. Additionally, despite different standard deviations, the distributions of frequency in
2D and experiments are quite similar. Therefore, the contribution of the 3D simulations appears
to be somewhat redundant. Indeed, reproducing 3D effects like separation is challenging, and
despite an overestimation in the lift standard deviation, the 2D simulations yield interesting
results.
To summarize, TRITON model may not be the best URANS model, however, it still gives
appealing results concerning the force spectra, without adjustable parameters. The next step is
to understand the sensitivity of the spectra to the injection conditions. These conditions tend
to lead to a specific flow topology that subsequently influences the graphs. This is the focus of
the following section.

4.1.3 On the effect of injection conditions on the force spectra

In order to analyze and understand the predictive capabilities of the model, the difficulty of ob-
taining good results and to be able to draw clear conclusions, we are interested in the sensitivity
of the model response to the conditions of operating injection. We are interested in a classic
bubbly test case in single tube configuration. As a reminder, the experimental setup is com-
posed of an upward channel of 0.18×0.3 m2 rectangular section in which can be set a horizontal
tube of diameter 0.03 m. The operating conditions are defined by a liquid superficial velocity
jl = 0.25 m/s and a gas superficial velocity jg = 0.082 m/s. The flow is then characterized by
a void fraction αg = 0.247 and a liquid Reynolds Rel = 7500. A mesh convergence study was
performed on several meshes and a satisfying convergence was obtained with a general mesh size
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of 0.066 mm and a first wall cell satisfying y+ ≈ 0.8.
The investigation focuses on the sensitivity of the injected void fraction for group 1 and mean
Sauter diameter. The sensitivity analysis was performed with injected diameters, but because
it draws the same conclusions we focus only on 2 different ones. Here, we decide to choose
5 cases representative of the sensitivity of the spectra. Consequently, we look at simulations
with αg1 ∈ {0.247, 0.183, 0.072} and first group diameter Dsm1 ∈ {2, 4} mm. The operating
conditions of this study are summarized in Table 4.2.

αg1 Dsm1 (mm) αg2 Dsm2 (mm)

0.247 4 0. 10.8

0.183 4 0.064 10.8

0.072 4 0.175 10.8

0.183 2 0.064 10.8

0.072 2 0.175 10.8

Table 4.2: Table of the conditions of the study of αg1 without BIT.
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Figure 4.2: Lift (top) and drag (bottom) spectra from the sensitivity study of the distribution
of the void fraction between the two groups and change of first group diameter for a liquid
Reynolds number of 7500 and a homogeneous void fraction of 0.247. Simulations with new
TRITON model.

Figures 4.2 shows the lift (top) and drag (bottom) spectra, respectively, from the sensitiv-
ity study of the distribution of the void fraction between the two groups for a liquid Reynolds
number of 7500 and a homogeneous void fraction of 0.247.
According to Figure 4.2, the experimental lift spectrum exhibits a nearly plateau-like behavior
between 1 Hz and 6 Hz, followed by a decrease towards the cutoff frequency. The two spectra
with group 1 void fractions of 0.247 and 0.072 and a first group diameter of 4 mm also exhibit
a plateau-like trend between 1 Hz and 30 Hz, with then a slight decline until the cutoff fre-
quency. However, the spectra corresponding to αg1 = 0.183 sharply increase between 1 Hz and
2.6 Hz before steeply decreasing to 6 Hz, indicating shear close to the cylinder. They continue
to decrease until the cutoff frequency. The case with αg1 = 0.072 and Dsm1 = 2 mm, exhibits
a nearly plateau-like behavior between 1 Hz and 5 Hz with two peaks around 1 Hz and 4.1 Hz,
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it slightly decreases until 6 Hz and is then almost constant until the cutoff frequency. None of
these simulations appear to accurately replicate the experimental lift.
According to Figure 4.2, the experimental drag spectrum exhibits a sharp decrease between 1
Hz and 5 Hz, followed by a slight upward trend just after 10 Hz, before ultimately declining
until the cutoff frequency. The two spectra with Group 1 void fractions of 0.247 and 0.072 and
Dsm1 = 4 mm both display a plateau-like trend between 1 Hz, with a slight decline starting
around 30 Hz until the cutoff frequency. The spectra corresponding to αg1 = 0.183 show a sim-
ilar trend, except for a slight bump around 5 Hz, while the trend of the case with αg1 = 0.072
and Dsm1 = 2 mm has the same trend. None of these simulations appear to accurately replicate
the experimental drag.

Indeed, among all the simulations conducted, none have accurately reproduced the force
spectra, even when modifying furthermore various parts of the all-regime model. From the sim-
ulations presented in the introduction, it becomes obvious that the spectra are highly sensitive
to the flow topology around the cylinder, particularly the shear that affects the position and
shape of the cluster at the rear of the cylinder. Consequently, single-phase turbulence plays a
crucial role in replicating the spectra. However, it is important to note that the proposed model
is far less sensitive to injection conditions than the basic model. Notably, we obtain reasonable
orders of magnitude for the fluctuations. To assess the influence of turbulence, it is possible to
activate pseudo-turbulence (LI) in the case with only one group i.e. αg1 = 0.247. The results of
the fluctuations are summarized in the following table.

Fluctuating force Experimental Without LI With LI

Drag (N) 0.43 0.76 6.27

Lift (N) 0.23 0.27 2.99

Table 4.3: Table of the standard deviations of the lift and drag forces for the experiment, for
the simulations with and without pseudo-turbulence (LI).

Table 4.3 gives the standard deviations of the lift and drag forces for the experiment, for the
simulations with and without pseudo-turbulence (LI). The use of pseudo-turbulence (LI) has
significantly altered the magnitude of fluctuations. It completely changes the flow topology by
introducing turbulent intensity, particularly around the stagnation point. This effect tends to
create very strong turbulence and unsteady void fraction gradients. Therefore, it is advisable
not to use this option, as it appears to be incompatible with the presence of an obstacle. Further
investigations are necessary to account for those effects. Hence, it becomes crucial to understand
what truly influences the experimental and numerical force spectra. To achieve this, the next
section focuses on experimental spectra to identify the influencing parameters of the spectra.
Subsequent studies will examine cases with different flow topologies based on Reynolds number
and flow regime to understand what influences the numerical spectra.

4.2 On the effect of the liquid Reynolds number

In this section, we focus on the study of drag and lift force spectra in a single cylinder. The goal is
to identify the primary factors influencing these force spectra. Initially, we analyze experimental
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results to draw initial conclusions, followed by simulations using the model to verify if similar
observations can be obtained.

4.2.1 In experiments

A study of a single-cylinder cross two-phase flow case can be found in [94]. The study was con-
ducted on the lift force with a diameter of 0.01215 m - as opposed to 0.03 m in this study - and
for homogeneous void fractions ranging from 30% to 95% and liquid Reynolds numbers ranging
from 3.5 × 104 to 2.8 × 106. Their study notably showed that the low-frequency components
increase with void fraction, while the decay slopes decrease more rapidly. It demonstrates that
for local void fractions between 11% and 20%, the spectra increases with void fraction, and
the graphs appear to collapse for local void fractions above 40% - no measurements were taken
between 20% and 40%.

Since the single-tube experiment was conducted before DIVA, we don’t have access to the
method - described in section 5.1.1 - for identifying the flow regime. However, since the single-
tube experiment and DIVA share identical characteristics, comparing the injection maps allows
us to predict a map of regimes for classifying the spectra. The greatest uncertainty arises in the
identification of cap-bubbly regimes compared to churn because they exhibit similar spectra.
However, as annular and bubbly regimes are easily identifiable, we can have greater confidence
in their identification.

Figures 4.3 and 4.4 depict force spectra – drag (bottom) and lift (top) - for liquid Reynolds
numbers of 7500 and 15000 respectively with regime identification from section 5.1.1. Regarding
the lift spectra (top), it is obvious that all the graphs exhibit a decreasing trend between 10
Hz and 200 Hz, which becomes more pronounced after 20 Hz for Rel = 7500. Notably, there
is a clear collapse of curves for cap-bubbly and churn regimes, while bubbly regimes appear to
be more spread out. It is noticeable that the curves mainly align with increasing void fraction,
except for the annular case. This trend can be explained by the quasi-absence of liquid. In this
scenario, predominantly gas-phase behavior is likely observed. Therefore, it appears that the
lift spectra depend on the Reynolds number as well as the flow regime, whether it is bubbly,
cap-bubbly/churn, or annular. The increase in fluctuations with void fraction in the bubbly
regime, followed by its stagnation in the cap-bubbly/churn regime, suggests that the overall
level of fluctuations likely depends primarily on the small bubble dynamics and by changing of
regime on the presence of larger structures. The balance introduced by the presence of larger
structures such as cap bubbles or gas pockets tends to dampen fluctuations until the system
becomes predominantly gaseous. Consequently, achieving accurate results in the bubbly regime
is challenging, as it relies on bubble fluctuation phenomena that are not modeled, unlike in the
cap-bubbly/churn regime where the presence of large structures stabilizes the flow, making it
less sensitive to small bubble fluctuations.
Regarding the drag spectra, there is a consistent decreasing trend starting at around 20 Hz,
with a change in slope occurring around 70 Hz. In contrast to the lift, there is no observable
spectrum collapse at a specific void fraction, but rather an increase in amplitude with increasing
void fraction. Additionally, it appears that the decay slopes also increase with void fraction.
Although the curves between Reynolds numbers are quite similar, it seems that drag is less
sensitive to liquid Reynolds number variations than lift. However, the limited dataset does not
allow for broader conclusions across all Reynolds numbers. Nevertheless, there is a significant
variability in spectrum with respect to void fraction. It will likely be more challenging to
obtain accurate results for drag force spectra as void fraction appears to be the most influential
parameter. However, it is noticeable that the Reynolds number has a more significant impact
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Figure 4.3: Experimental force spectra with a liquid Reynolds Rel = 7500 with increasing void
fraction according to the frequency. Legend : � Bubbly regime, � Cap-bubbly regime, � Churn
regime, � Annular regime. Regime identification from section 5.1.1.

on the bubbly regime than on other regimes. Achieving this variability in our simulations seems
more complex. Therefore, obtaining good results in the cap-bubbly/churn regime might be
easier than in the bubbly regime.
It appears, therefore, that the variability of the graphs depends on the liquid Reynolds number
and the void fraction, particularly in relation to the flow regimes. It appears that the bubbly
regime is more sensitive to the liquid Reynolds number and void fraction than other regimes.
Obtaining accurate results in the bubbly regime might be more challenging. This could be
explained by a greater influence of bubble-related fluctuations in the bubbly case, which are
then mitigated by the presence of large structures within the flow and the lower proportion
of water. To test this hypothesis numerically, the next sections will focus on the bubbly and
cap-bubbly/churn cases.
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Figure 4.4: Experimental force spectra with a liquid Reynolds Rel = 15000 with increasing void
fraction according to the frequency. Legend : � Bubbly regime, � Cap-bubbly regime, � Churn
regime, � Annular regime. Regime identification from section 5.1.1.

4.2.2 Bubbly flows simulations

Comparative data involving a single cylinder is relatively rare. Moreover, merely aligning with
a specific experiment is not sufficient to establish that the model, even if it accurately predicts
all configurations, is able to capture the underlying physics. Particularly, our focus lies in
the qualitative observations given by Inoue et al.[44]. Indeed, a problem arose regarding the
reproduction of single-cylinder bubbly flows. The CEA experiment allows comparison of the
forces spectra experienced by the cylinder, but no local data within the flow is available. In
contrast, [44] provides qualitative and quantitative data on the flow without having the spectra.
However, the experiments conducted at CEA are limited. We have data from experiments
conducted with comparable liquid Reynolds numbers but often very different void fractions.
However, it has been observed that force spectra are primarily sensitive to the liquid Reynolds
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number and less to the void fraction (the overall spectrum shifts slightly upwards with the void
fraction). Therefore, we can still use experimental data on the spectra as a reference to compare,
at a lower cost, the experiments conducted at CEA and those of [44] with our simulations. An
essential aspect of validation is the model’s response to the liquid Reynolds number, aiming
to replicate the various structures observed in the experimental setup. Thus, we intend to
undertake a qualitative comparison between the experimental setup and the simulation results,
subsequently extracting more quantitative insights. The operational conditions for this study
are summarized in the Table 4.4.

Relsimu Relexp jlsimu (m/s) jgsimu (m/s) αgsimu

9940 9000 0.25 0.082 0.247

19880 18000 0.5 0.164 0.247

39760 38000 1. 0.328 0.247

Table 4.4: Table of the conditions of the study of single cylinder configuration in bubbly regime.

As a reminder, Inoue et al.[44] observed that the area near the separation point produces
high local void fraction 3 to 4 times the homogeneous volume fraction. A high void fraction area
is located behind the cylinder. As the liquid velocity increases, its void fraction peak increases
and its position comes closer to the cylinder. A liquid layer where bubbles can hardly penetrate
can be produced in the front and in the rear of the cylinder due to the static pressure gradient.
Its thickness respectively increases and decreases in the front and in the rear with increasing
flow velocity.
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Figure 4.5: Qualitative comparison between simulations (top, instantaneous void fraction), with
D = 30 mm and [44] (bottom), with D = 20 mm, with increasing Reynolds number from left to
right. The conditions are summarized in the Table 4.4.

Figure 4.5 displays images of the flow from Inoue et al.[44] (bottom) and simulation results
of the experiment (top, instantaneous void fraction) with increasing Reynolds number from left
to right. The conditions are summarized in the Table 4.4. Clear observations can be made
from Inoue et al.’s photos. There is a region close to the cylinder where bubbles concentrate,
causing an increase in void fraction. For the lowest Reynolds number (bottom-left), a cluster of
bubbles can be seen at the rear, which is later sheared, and an area where bubbles cannot pass
through. As the liquid velocity increases (bottom-middle), the cluster spreads out, the shearing
occurs farther from the cylinder, and the upstream region near the stagnation point appears to
start pushing the bubbles back. With further increases in velocity (bottom-right), the cluster
continues to spread and is sheared even farther away. The upstream region pushing the bubbles
becomes more evident, while the cluster moves closer to the cylinder.
Now, looking at the simulations, for the lowest Reynolds number (top-left), we see the presence
of a clustered zone being sheared close to the cylinder. A high void fraction zone can also be
observed around the cylinder, associated with lubrication forces and pressure that is not strong
enough to repel the gas phase. As we increase the liquid velocity, we obtain a larger clustered
zone that is sheared farther away from the cylinder. We also notice the disappearance of the high
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void fraction zone close to the wall in favor of the pressure, which begins to dominate and push
the gas phase away. Subsequently, with a further increase in liquid Reynolds number, we ob-
serve the presence of a region where there is no gas upstream of the cylinder due to the pressure
around the stagnation point. There is also the presence of an elongated tail of the cluster, which
is sheared farther away. Thus, we qualitatively obtain zones where the void fraction increases
significantly around the cylinder, clusters whose positions change with velocity upstream and
downstream in a manner consistent with the experiment.
It appears that the liquid Reynolds number is a key parameter influencing the flow topology
around the cylinder in simulations with TRITON. Therefore, one can expect that the position
of the cluster and the distribution of void fraction around the cylinder will have a significant
impact on the prediction of drag and lift forces.
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Figure 4.6: Lift (left) and drag (right) forces spectra of the simulations with injected void
fraction of 0.247 and Reynolds of 9940 (top), 19880 (middle) and 39760 (bottom) compared to
experimental data with same Reynolds, but different injected void fraction. Simulations with
new TRITON model.

Figure 4.6 shows the spectra of drag forces (left) and lift forces (right) for simulations with
Reynolds numbers of 9940 (top), 19880 (middle), and 39760 (bottom), compared to our experi-
mental data with the same Reynolds numbers, but with different injected void fractions.
Looking at the lift graph for the Reynolds number of 9940 (top-left), the experimental spectrum
exhibits a low-amplitude bump between 1 Hz and 3 Hz, followed by a second bump between 3
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Hz and 10 Hz, and then a decrease towards the cutoff frequency. In contrast, the simulation
shows a slight increase between 3 Hz and 5 Hz, followed by a mainly flat response up to the
cutoff frequency, with a small bump between 1.3 Hz and 3.1 Hz. This frequency appears to be
related to the inability of the lubrication force to push back the gas phase due to insufficient
pressure. Examining the corresponding drag spectrum (top-right), the experimental data reveal
a decrease up to 5 Hz, then a relatively constant behavior, with two bumps at 7.6 Hz and 11
Hz, before decreasing again towards 20 Hz. The frequency of 11 Hz could stem from the natural
frequency of the flow ( jl+jgD = 0.332/0.03 ≈ 11 Hz). In contrast, the simulated graph remains
mainly constant up to the cutoff frequency. Consequently, this simulation has not accurately
reproduced the random force spectra. Notably, the presence of this plateau and the absence
of high-frequency decrease seem to originate from the artificially created region near the wall
due to the lubrication force. The modeling of lubrication for a single cylinder appears to be
potentially detrimental, as it can induce a particular flow topology around the cylinder. Thus,
the flow topology near the wall seems to have a significant influence on the prediction of the
spectrum. To get deeper understanding, we can explore spectra at higher Reynolds numbers,
which exhibit very different flow topologies.

Looking at the lift graph for the Reynolds number of 19880 (middle-left), the experimental
spectrum shows a sharp increase between 1 Hz and 2 Hz, followed by a decrease to 7 Hz, and
then a change in slope before gradually decreasing with a constant slope up to the cutoff fre-
quency. Considering the natural frequency of the flow (fflow = jg+jl

D = 22 Hz), it appears that
2 Hz is related to the formation of structures around the cylinder. In contrast, the simulation
exhibits a slight increase between 1 Hz and 2 Hz, followed by a decrease to 7 Hz, and then a
decrease with a significant change in slope. This demonstrates a qualitatively similar behavior
to the experimental data. However, the standard deviation of the lift (area under the curve)
is lower than in the experimental results. Indeed, it was observed experimentally that an in-
crease in void fraction leads to an elevation of the spectra. Thus, its low position indicates an
underestimated value. Turning to the experimental drag spectrum (middle-right), we observe
growth between 1 Hz and 3 Hz, followed by a decrease to 5.2 Hz. Subsequently, it increases
with the presence of two peaks at 8 Hz and 11 Hz before decreasing again towards the cutoff
frequency. Those frequencies are comparable to bubble frequencies, but not to the frequency of
the mean flow itself (fflow). The simulated spectrum exhibits two broad peaks in the range of
1 Hz to 5 Hz, with one peak at 2.1 Hz, due to the structures behind the tube. It then presents
two peaks of comparable amplitudes at 6 Hz and 10 Hz before decreasing towards the cutoff
frequency. Similar to the lift, we qualitatively obtain a similar frequency distribution, but at a
much lower level. This behavior can be attributed to the pressure zone pushing back the gas
phase and the cluster at the rear of the cylinder being too distant. In this case, we would obtain
lower standard deviations that affect the overall spectrum level without significantly altering the
frequency distribution of random forces. To confirm this, we can study the highest Reynolds
number.

If we look at the experimental lift spectrum for the Reynolds number of 30000 (bottom-left),
we observe a plateau until 4 Hz and a peak at 6 Hz (maybe linked to structures behind the
tube), ranging from 3 Hz to 11 Hz, before gradually decreasing with a constant slope up to the
cutoff frequency. In contrast, the simulated spectrum increases between 1 Hz and 2.4 Hz, then
decreases to 10 Hz with a peak at 6 Hz, due to the structures behind the tube, before gradually
decreasing with a constant slope. We can clearly see a similar behavior, but with a spectrum
level that is too low. Similarly, if we look at the experimental drag spectrum (bottom-right),
we observe a mainly flat level between 2 Hz and 20 Hz, with three peaks at 3 Hz, 9 Hz, and 11
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Hz. These last two frequencies are related to bubble frequencies, not to the mean flow (with a
natural frequency of 44 Hz). The simulated graph shows a decreasing trend between 1 Hz and
10 Hz, with peaks at 1.9 Hz and 6 Hz, before gradually decreasing with a constant slope. We
find drag spectra with similarities, but at a much lower level.

As a reminder, increasing the void fraction only raises the overall force spectra. The differ-
ence in void fraction between the experiment and the simulation does not explain the discrepancy
in the spectra or could solve the problem. Therefore, we can conclude that the upstream area
near the cylinder, potentially having a single-phase region, as well as the distance of the clus-
ter from the cylinder, are topological factors of significance in accurately reproducing the force
spectra. It also appears that the frequencies related to bubble passage are not captured. This
is not surprising since their presence is given as an average, and the fluctuations due to their
intermittency are not reproduced in the model. However, these areas are sensitive to:

1. The injection diameter, which identifies if repulsion occurs via lubrication and also con-
strains the velocity field through near-wall drag.

2. The velocity profile, which establishes the balance between the phases and the shearing at
the rear of the cylinder. This velocity is also influenced by the walls that confine the flow.

3. Turbulence, which affects the flow topology around the cylinder as well as fluctuations and
did not yield perfect results in single-phase simulations.

These factors collectively contribute to the complexity of the problem and the challenges in-
volved in accurately simulating the force spectra.
The basic model from NEPTUNE_CFD yielded results that were highly sensitive to inlet condi-
tions, often diverging significantly from experimental data, making it unreliable for predictions.
While our model does not provide perfect results, it is less sensitive to input conditions and
more reliable in reproducing the trends observed in force spectra. However, these spectra tend
to underestimate the overall magnitude compared to experimental data. This aspect is intriguing
considering the various assumptions and models that are not perfect even in academic cases. We
also notice variability in standard deviations and results, which appears to stem from deficiencies
in modeling and/or balancing the regions near the stagnation point and shear. Nevertheless,
the confined nature of the experiment does not make it easy to perfectly replicate experimental
topologies. However, these results offer hope for improving models. Additionally, these criti-
cal areas will be locally constrained by the cylinders in DIVA. This will enable us to identify
whether the issues primarily stem from modeling, as the clusters and upstream and downstream
recirculation lengths will be constrained by the upstream and downstream cylinders, or if they
mainly result from the difficulty in obtaining the correct topologies and distances upstream and
downstream of the cylinder. Another aspect to verify is the improvement of the spectra with
more group 2 bubbles because the experimental spectra seem to show less sensitivity to the
liquid Reynolds number in the cap-bubbly/churn regimes. Therefore, in the next section, we
focus on cap-bubbly/churn simulations.

4.2.3 Cap-bubbly and churn flows simulations

In this section, we focus on examining the influence of the Reynolds number for cap-bubbly and
churn regimes. Indeed, experimental comparisons can be conducted using the gathered data.
We want to verify the experimental observations. We investigate three liquid Reynolds number
cases: 7500, 15000, and 30000 for approximately homogeneous void fractions of about 0.64.
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Table 4.5 summarizes the conditions of the test cases studied.

Rel jl (m/s) jg (m/s) αg

7500 0.25 0.447 0.636

15000 0.5 0.896 0.642

30000 1. 1.83 0.646

Table 4.5: Table of the conditions of the study with single cylinder in cap-bubbly/churn flow
regime.

Table 4.6 provides the results of direct measurements of the Sauter diameter and local void
fraction.

Dmeasured
sm (mm) αmeasuredg

6 0.34

6.3 0.496

4.9 0.574

Table 4.6: Table of the operating conditions of the study with single cylinder in cap-
bubbly/churn flow regime.

Regarding the single-tube experiment, only average local void fraction and the average Sauter
diameter have been measured. These data fall short when dealing with cap, churn, or even
annular flow regimes. In contrast, the DIVA experiment was conducted across a wide range of
velocities and void fractions, featuring a more extensive set of measurement that can help to
establish accurate inlet conditions. Furthermore, DIVA’s experimental setup is identical to the
single tube configuration, providing additional justification for its relevance in determining inlet
conditions. The methodology used to derive these inlet conditions for DIVA is accessible in the
subsequent chapter 5. Analyzing experimental data for conditions similar to the proposed ones
has given data for the inlet conditions. Assuming this similarity, specific inlet conditions were
derived and are presented in Table 4.7.

αcomputedg1 αcomputedg2 Dcomputed
sm1 (mm) Dcomputed

sm2 (mm)

0.279 0.357 3.9 19

0.117 0.525 4.0 21

0.569 0.077 3.1 17

Table 4.7: Table of the operating conditions of the study at the inlet of the domain, in single
cylinder configuration and in cap-bubbly/churn flow regime.
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Figure 4.7: Lift (left) and drag (right) forces spectra of the simulations with injected void fraction
of around 0.64 and liquid Reynolds number of 7500 (top), 15000 (middle) and 30000 (bottom)
compared to experimental data. Simulations with new TRITON model.

Figure 4.7 shows the spectra of drag forces (right) and lift forces (left) for simulations with
liquid Reynolds numbers of 7500 (top), 15000 (middle), and 30000 (bottom), compared to ex-
perimental data.
Looking at the Lift graph for the Reynolds number of 7500 (top-left), the experimental spectrum
exhibits a plateau like behavior between 0.2 Hz and 10 Hz with two low-amplitude bumps at 1
Hz and 6 Hz, followed by a decrease towards the cutoff frequency. In contrast, the simulation
shows a slight increase between 1 Hz and 5.1 Hz (due to the injection of group 2 bubbles),
followed by a decrease up to the cutoff frequency, with a small bump at 20 Hz. Examining the
corresponding drag spectrum (top-right), the experimental data reveal an increase between 1
Hz and 4 Hz, followed by a decrease up to the cutoff frequency. This frequency around 4 Hz,
visible for all Reynolds numbers in both simulations and experiments, appears to be character-
istic of this regime and thus indicative of the presence of large gas structures. In contrast, the
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simulated graph increases between 1 Hz and 4 Hz, then decreases to 11 Hz, with a bump at 10
Hz before remaining mainly constant up to the cutoff frequency. Consequently, this simulation
has better reproduced the random force spectra than in bubbly flow. However, the lift standard
deviation seems to be over-predicted. This behavior can be caused by the acceleration due to
the confinement and by the velocity field of group 2 impacting the cylinder. It seems that the
second group has a beneficial effect on the prediction of the force spectra.

Looking at the lift graph for the Reynolds number of 15000 (middle-left), the experimental
spectrum shows a plateau-like behavior between 1 Hz and 4 Hz, followed by a bump at 7 Hz
and then decreases with a constant slope up to the cutoff frequency, with a bump at 18 Hz. In
contrast, the simulation exhibits an increase between 1 Hz and 4 Hz, followed by a decrease to 7
Hz, then has a plateau-like behavior until 11 Hz followed by a decrease at 18 Hz before decreas-
ing with a significant change in slope. This demonstrates a qualitatively similar behavior to the
experimental data. However, the standard deviation of the lift (area under the curve) is higher
than in the experimental results. Regarding the experimental drag spectrum (middle-right), we
observe growth between 1 Hz and 4 Hz, followed by a decrease towards the cutoff frequency. The
simulated spectrum exhibits an increase between 1 Hz and 2 Hz, followed by a first decrease
until 13 Hz before changing of slope with a bump at 19 Hz. Similar to the lift, we do not obtain
a perfect simulated graph, but we qualitatively obtain a similar frequency distribution, but at
a much lower level. This behavior could be attributed to a better reproduction of the topology
around the cylinder. This case has the highest void fraction for group 2 and appears to have
the best results regarding the force spectra, aligning with experimental observations.

If we look at the experimental lift spectrum for the Reynolds number of 30000 (bottom-
left), we observe an increase between 1 Hz and 10 Hz, with a bump at 5 Hz, followed by a
decrease with a constant slope up to the cutoff frequency. In contrast, the simulated spectrum
increases between 1 Hz and 10 Hz, with a bump at 2 Hz, then exhibits a bump at 18 Hz then
has a decreasing trend up to 27 Hz before gradually decreasing with a constant slope. We can
clearly have a different behavior, but not any behavior. It seems that we can get parts of the
distribution. Similarly, if we look at the experimental drag spectrum (bottom-right), we observe
growth between 1 Hz and 5 Hz, followed by a decreasing trend up to the cutoff frequency. The
simulated graph shows a slightly increasing trend between 1 Hz and 10 Hz, with a bump at 2 Hz
before gradually decreasing up to the cutoff frequency. We find drag spectra is far away from
the experimental one. An intriguing observation is that the simulation with a higher proportion
of group 1 bubbles exhibits the most divergent behavior compared to the experimental results.
This suggests that the presence of the second group of bubbles has a significant positive impact
on the accuracy of the simulation and that there is room for improvement for the first group of
bubbles. Since the inlet conditions were extrapolated from the DIVA configuration, it is likely
that they do not correspond accurately to the reality of the single-cylinder setup. Examining
the injection conditions reveals a very low void fraction for group 2. This case is close to a bub-
bly regime, which could explain the simulated drag spectrum. However, we can note that the
simulations yield promising results and are not entirely different from the experimental spectra,
which was not initially expected considering the modeling and the principles of URANS. We also
confirm that this regime yields better results as it is less sensitive to the liquid Reynolds number,
mainly due to the presence of large structures. To attempt to understand the changes in the
topology that lead to better results, we can look at the void fraction distribution within the flow.
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Figure 4.8: Colormap of the averaged void fraction in simulated cap/churn single-tube experi-
ment for Rel = 7500 (left), Rel = 15000 (middle) and Rel = 30000 (right). Simulations with
new TRITON model.

Figure 4.8 depicts the averaged void fraction in a simulated cap/churn single-tube experiment
for three different Reynolds numbers: Rel = 7500 (left), Rel = 15000 (middle), and Rel = 30000
(right). In the case of the lowest Reynolds number (left), we observe detachment at the channel
inlet due to the presence of group 2 bubbles. Additionally, the simulation exhibits a lack of sym-
metry. This asymmetry is partly due to the averaging process, which is conducted over a short
time interval of a few seconds, with a time step of 0.1 seconds. However, this phenomenon is also
indicative of the challenges in the modeling process. Ultimately, the prediction of both groups
of bubbles has limited interaction because it occurs through the liquid phase. Consequently, the
balance between the gas phases can be fragile. This can lead to wall detachments that result in
significant flow asymmetry, destabilizing the flow and causing a deviation in the jet, ultimately
leading to a stable state without intermittency around the cylinder. This issue is particularly
pronounced at low superficial velocities. Therefore, there may be a need for improved modeling
of momentum exchange between the bubbles, especially in cases with low Reynolds numbers, to
further stabilize the jets. This deviation of the jet is a key factor contributing to the increase in
the lift standard deviation.

In the case of the intermediate Reynolds number (middle), we also notice a slight devia-
tion in the jet behind the cylinder. In this scenario, this effect is primarily attributed to the
averaging time step (which differs from the measurement time step around the cylinder) being
somewhat large and the total averaging time (which is not the same as the total simulation
time) possibly being a bit short. However, it is worth noting that the simulation is symmetric
and appears well-balanced. We observe a larger wall gradient compared to the bubbly flow due
to the presence of group 2 bubbles.
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In the case of the highest Reynolds number (right), we also observe a slight asymmetry at the
rear of the cylinder for the same reasons mentioned earlier. However, this time, we see weaker
near-wall gradients because group 2 is significantly less dominant. Consequently, we encounter
a topology closer to that of a purely bubbly flow scenario.

We observe a significant characteristic of this regime: the void fraction is distributed more
isotropic on average than in the bubbly regime. To better understand the mean changes, it is es-
sential to investigate the unsteady fields, which are, however, more challenging to interpret since
one needs to capture the meaning behind this unsteadiness. To help to understand, the void
fraction can be interpreted as the probability of finding gas at a specific point at a given moment.

Figure 4.9: Colormap of typical instantaneous void fraction fields, of group 1 αg1 and group 2
αg2, from simulated cap-bubbly/churn single-tube experiment for Rel = 7500 (left), Rel = 15000
(middle) and Rel = 30000 (right). Simulations with new TRITON model.
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Figure 4.8 illustrates the instantaneous void fraction of group 1 (top) and group 2 (bottom)
in simulated cap-bubbly/churn single-tube experiment for Rel = 7500 (left), Rel = 15000 (mid-
dle) and Rel = 30000 (right). In the case of the lowest Reynolds number (left), we can visually
observe the jet deviation to the left. For group 1 (top-left), we see many dynamic structures
near the wall, primarily due to the presence of group 2 bubbles and the low injection velocity.
This could be attributed to a lack of communication between the two gas fields and/or an over-
prediction on the lift force in the motion equations. Notably, there is no direct influence of the
void fraction on the lift force, and no experiments exist to verify its significance at very high
void fractions. Additionally, we observe the absence of clusters behind the cylinder, but the
presence of a highly sheared dynamic zone, likely responsible for the peak in the lift spectrum.
As for the gas field 2 of bigger bubbles (bottom-left), we notice a narrowing of the jet from
the channel inlet. We also partially observe the activation of the LIM during the jet shearing
after the cylinder, followed by partial dispersion. This indicates a transition from dispersed to
LIM and from LIM to dispersed, which appears to be functioning correctly. There is no cluster
zone observed behind the cylinder because the ’larger bubbles’ are too inert and are sheared
further away than the smaller bubbles. This behavior seems qualitatively reasonable. We also
observe near-wall zones where the LIM is activated, but it doesn’t necessarily yield qualitatively
meaningful results. Indeed, the LIM lacks modeling and validation regarding its interaction
with the wall and some problems of back flow from LIM-outlet interaction can arise. One of the
challenges encountered is that if the LIM is not adequately pushed away from the wall, it can
stagnate in very near-wall cells, hindering proper convergence of the calculations. Therefore, a
more detailed examination of the interaction between the large interface and the wall with the
LIM would be necessary.

When considering the intermediate Reynolds number and the void fraction field of group 1
(middle-top), we observe a topology that is somewhat similar to what is seen in bubbly flow,
with a slight cluster behind the cylinder and a thin single-phase zone upstream of the cylinder.
However, we do notice dynamic zones along the vertical walls, primarily due to the presence
of the group 2 field. If we look at the group 2 field of bigger bubbles (middle-bottom), we see
a region behind the cylinder where there are no bubbles, owing to the high presence of small
bubbles. Nevertheless, there is significant shear around the field of group 1 bubbles. We also
observe that the LIM does not activate around the cylinder, but rather near the vertical walls,
adopting an annular field behavior in this region. This behavior is qualitatively consistent, but
underscores the need for further validation of the LIM when it interacts with the wall. This
topology, with fewer bubbles from the first group, seems to promote a more balanced behavior,
which could explain the better results in the force spectra. It is possible that the drag force
needs improvement to account for more slip, achieving a less precarious balance between the
phases. To explore this, we can examine the test case with a majority of group 1 bubbles and a
higher Reynolds number.

In the case of the higher Reynolds test case, particularly in the group 1 field (top-right), we
observe dynamic zones near the vertical walls due to the presence of group 2 bubbles. Interest-
ingly, there is neither a purely single-phase zone nor a clustering around the cylinder. However,
a single-phase zone is observed at the center of the bubble shear, which appears surprising. This
phenomenon is a result of the narrowing of the sheared zone due to the presence of group 2
bubbles and likely an imbalance between the two phases. Examining the gas field of group 2
bubbles, we notice that these bubbles are not entrained in the wake of the cylinder, creating a
wake constraint that influences the shape of the group 1 field. Activation of the LIM is almost
non-existent because the presence of group 2 is significantly less dominant. Near the wall, we
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observe strong vortices due to lift forces. This raises questions about whether the lift force is
correctly modeled for group 2 bubbles. The distinct topology observed behind the cylinder,
different from other cases, is likely the cause of the poor drag force results. As for lift, the nar-
rowing of the zone due to the presence of group 2 causes acceleration and thus a slightly different
standard deviation compared to the experimental data, which may explain the deviation from
the experimental results.

In summary, the force spectra obtained are consistent with the simulated topology, and we
observe some favorable trends compared to the experimental data. It is worth recalling that
even in bubbly flow, achieving spectra close to experimental results was challenging. However,
it is noteworthy that the presence of group 2 bubbles did not significantly degrade the predictive
capability of the model. It appears that group 2 imposes a favorable topology similar to that
observed in experiments. It seems that it is likely easier to obtain good spectra compared to
experimental data for these regimes. While improvements are required, the results obtained are
not arbitrary; they are rather encouraging. Through this study, we have identified areas for
improvement:

m The lift force appears to have too significant an influence compared to the drag force in the
modeling. It is particularly important to thoroughly investigate the effect of void fraction
on lift. Additionally, it seems that improvements are needed for modeling lift forces for
group 2 bubbles.

m A force or a new drag coefficient that could promote a better balance between the two
groups of bubbles seems necessary when dealing with dynamic zones, especially when the
injection velocity is low or when the presence of group 2 is significantly less dominant.
Indeed, these less responsive bubbles tend to disrupt the dynamics when they are in the
minority or when the flow rate is low.

m An improvement of the lubrication force to better account for near-wall effects, particu-
larly addressing issues related to the stagnation point in dispersed phases.

We have seen that liquid Reynolds number and homogeneous void fraction were the most
influential parameters, giving rise to different flow regimes. It was observed that obtaining force
spectra corresponding to the bubbly regime was the most challenging due to its sensitivity to
liquid fluctuations, the topology around the cylinder, and the acceleration caused by confine-
ment. This was confirmed by comparing experimental and numerical observations. However,
for the DIVA configuration, the cylinders upstream and downstream of the central cylinder are
expected to constrain the flow topology around it, bringing it closer to the experimental setup.
Additionally, velocities at the rear and front of the central cylinder should be more moderate,
reducing the influence of liquid fluctuations and potentially leading to a better reproduction of
the experimental flow. Hence, we are hopeful of achieving relatively good results. Moreover, we
have demonstrated that cap-bubbly/churn regimes are more resilient to liquid fluctuations and
void fraction variations. We aim to obtain qualitatively good results, showcasing the potential
of our modeling approach.
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Chapter 5
Simulations of two-phase flows in a square
tube bundle configuration

This chapter presents the two-phase simulations of a square tube bundle (DIVA)
configuration.

The first part studies the experimental results and analyze them before conducting
several simulations. The initial section focuses on how to estimate the operational
conditions of the experimental loop to correctly simulate with our model. In
particular, a method is discussed for estimating the injection conditions between
the two groups and justifying the model’s relevance concerning the experiment.
The following part deals with the experimental spectra of drag and lift forces for
some experimental tests, aiming to highlight the key parameters for selecting and
justifying the simulations performed.

The second part addresses the DIVA test cases in this thesis. The first section
investigates the effect of the liquid Reynolds number in the bubbly case, while the
second section explores the effect of the Reynolds number in cap-bubbly and churn
cases.

Summary
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5.1 On studying experimental results for simulations

5.1.1 Estimation of the operational conditions for the simulations

As a reminder, the experimental DIVA setup hosted at CEA, as depicted in Figure 1.15, is
dedicated to the study of square-pitch bundle vibrations. The loop is set with a pump able to
deliver water at a flow rate ranging from 5 to 300 L/s and an air compressor able to supply up
to 3000 m3/h at an absolute pressure of 8 bar. This loop can operate with a water flow, an
air flow, or an air-water flow. The experimental configuration is an ascending channel with a
rectangular cross-section measuring 0.18 m × 0.3 m, within which a square tube bundle, made
of rigid tubes with dimensions of 5 × 3, and a pitch ratio of 1.5, can be placed, as presented in
[95] and in Figure 1.15.
Flow measurements at the inlet and outlet of the channel allow for the precise measurement of
the operational air and water flow rates for each of the tests, and consequently, the superficial
velocities of the liquid jl and the gas jg. Measurements of interfacial velocities have also been
conducted to obtain a measurement of the mean Sauter diameter Dsm. Two optical probes
positioned midway between the central tube and the downstream tube, on either side of the
centerline, enable the measurement of the local void fraction αg within the setup. Therefore, for
each of the tests, we have the following information: αg, Dsm, jl, and jg. However, to faithfully
reproduce the operating conditions of DIVA with TRITON, it is necessary to prescribe the fol-
lowing information at the inlet: αg1, αg2, Dsm1, Dsm2, jl, and jg. Hence, we need to find a way
to estimate these quantities in order to initialize simulations.

Group 1 events Group 2 events

Bubbly

Cap

Churn

Annular

Group 1 events Group 2 events

Regime identification Group repartition Estimation

Figure 5.1: Measuring method of αg1 and αg2 from support of void fraction measurement PDF.
Legend : � Bubbly regime, � Cap-bubbly regime, � Churn regime, � Annular regime.

Figure 5.1 illustrates the methods used to identify flow regimes and void fraction distribution
between the two groups of bubbles. The left graph, titled "Regime Identification," shows how
different experimental flow regimes are identified using the Probability Density Function (PDF)
of the local void fraction. The bubbly regime is characterized by a single peak between 0 and
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0.2, while the annular regime is characterized by a single peak between 0.9 and 1. The cap-
bubbly regime is characterized by a peak between 0 and 0.2 extending into higher void fractions,
while the churn regime is characterized by a peak between 0.9 and 1 extending into lower void
fractions. Since regime transitions are not entirely abrupt, some judgment must be exercised in
some cases. However, the regime identification and the next calculation were performed inde-
pendently.
The central graph illustrates the method for assessing the distribution of void fraction between
the two groups of bubbles. The void fraction PDF graphs from all experimental trials exhibit a
dip around αg ≈ 0.6, which consistently falls within a region of decreasing probability density
function for both bubbly and annular regimes. This phenomenon is similar to the distribution
of mean Sauter diameters between the two groups. This observation led to the differentia-
tion of events between the two groups around the calculated value of chapter 3 for water-air,
αg1max ≈ 0.623. Consequently, this method enables the discrimination of two event areas cor-
responding to the two groups of bubbles. We thus estimate the mean local void fractions of
the two bubble groups by measuring the respective area under the curve f from both sides of
αg1max, so that:

αg1 =
∫ αg1max

0 f(αg) dαg∫ 1
0 f(αg) dαg

αg, αg2 =
∫ 1
αg1max

f(αg) dαg∫ 1
0 f(αg) dαg

αg. (5.1)

0.0 0.1 0.2 0.3 0.4
Estimation of group 1 local αg1

0.0

0.2

0.4

0.6

0.8

Es
ti
m
at

io
n
of

gr
ou

p
2
lo
ca

lα
g2

Bubbly
Cap-bubbly
Churn
Annular

Figure 5.2: Graph of the distribution of the local void fraction between the 2 gas groups,
estimated from the support of the local void fraction. Legend : � Bubbly regime, � Cap-
bubbly regime, � Churn regime, � Annular regime.

Figure 5.2 displays the distribution of the local void fraction between the two gas groups
using the previous method. It can be observed that the points corresponding to the bubbly
regime are spread in the region primarily occupied by group 1, and this distribution subse-
quently converges towards the distribution of the cap-bubbly regime. This observation aligns
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with our expectations. The points corresponding to the cap-bubbly regime initially cluster in
an area around αg1 = 0.35 and αg2 = 0.07, then appear to follow a line with a slope of 1.47,
common to the churn regime. The line ends at the annular regime, where only group 2 is present.

This local measurement does not allow for the direct estimation of the void fraction distri-
bution to be injected due to the slip between phases. To achieve this, it is necessary to estimate
the void fraction in the section and then obtain the void fraction to be injected. We can rely on
the characteristics of the two groups. The proportion of the void fraction in group 1 is mainly
due to phase slip, as it composed of many bubbles. To do this, we can first estimate the void
fraction in the section as < αg1 >S by:

< αg1 >S≈
αg1

(
(jl + jg) + Ub

√
1− αgH

)
jg

, (5.2)

with αgH = jg
jg+jl , the homogeneous void fraction.

For group 2, since the bubbles are very large and rather ’lonely,’ they completely pass in front
of the probe. Therefore, the locally measured path time is indeed representative in the section,
and thus:

< αg2 >S= jg2
jl + jg

= jg − jg1
jl + jg

≈ max
(
αgH− < αg1 >S , 0

)
. (5.3)
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Figure 5.3: Graph of the distribution of the cross-sectionnal void fraction between the 2 gas
groups, estimated from the support of the local void fraction. Legend : � Bubbly regime, �
Cap-bubbly regime, � Churn regime, � Annular regime.

Figure 5.3 illustrates the distribution of the void fraction within the section between the two
groups of bubbles. As expected, we observe that the bubbly regime is primarily characterized

142



Chapter 5 – Simulations of two-phase flows in a square tube bundle configuration

by a high proportion of group 1 bubbles in the section. We can observe a cap-churn point
in the middle of bubbly flow regime points, it means that this one may not be well identified
and belongs to bubbly regime or that the computation was not accurate. The cap-bubbly and
churn regimes, on the other hand, are characterized by an increase in the proportion of group
2 compared to group 1, as anticipated. Ultimately, the increase in group 2 tends to reduce
the presence of group 1, leading to an annular regime where only group 2 is represented. This
estimation of the gas distribution within the section naturally includes a significant uncertainty
due to the assumptions made to obtain these results. However, it is also important to note the
presence of computed limitations related to the void fraction, introduced in chapter 3.
The first one is the packing limit for group 1, αg1max = 0.623, used in the estimation. It is
obvious that the bubbles of group 1 do not exceed this limit. However, it may be necessary to
conduct more experiments with higher superficial velocities to approach this limit. We also get
that in the cross-section, the void fraction is rarely above 0.51, value already discussed in chapter
3 and often observed experimentally. The second limit, associated with group 1, αg1min = 0.325,
which corresponds to the minimum of liquid fluctuations observed by the bubbles, aligns well
with the experimental limit for the bubbly regime of group 1, as seen in the literature. The third
limit, related to the second group of bubbles, αg2max = 0.806, corresponding to the limit for the
presence of large structures computed in chapter 3 and supported by the literature, is indeed
respected. More surprisingly, the limit αg2min = 0.247, derived from the same calculation as
αg2max, is difficult to interpret since it does not correspond to anything in the literature, but
seems to be a good estimate of the limit for the churn regime. These observations support the
idea that this estimation in our case is fairly accurate.

However, since we do not know the velocity profile, we are required to inject uniformly with
flat velocity and void fraction profiles at the inlet of the domain of computations. Therefore, it
is necessary to estimate the homogeneous void fraction to be injected into the section. To do
this, we assume that the distribution in the section is identical to what needs to be injected.
Indeed, the average gas velocities of the two groups are often very close, so we can assume that
distribution of the void fractions of the two groups in the section is the one injected due to the
conservation of the flow rates of the two groups. We then have that the void fractions to be
injected, < αinjg1 >S and < αinjg2 >S , respectively for group 1 and group 2, are:

< αinjg1 >S= αg1
αg1 + αg2

αgH , (5.4)

< αinjg2 >S= αgH− < αinjg1 >S . (5.5)
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Figure 5.4: Graph of the distribution of the cross-sectionnal void fraction between the 2 gas
groups to be injected, estimated from the support of the local void fraction. Legend : � Bubbly
regime, � Cap-bubbly regime, � Churn regime, � Annular regime.

Figure 5.4 illustrates the distribution of the void fraction to be injected into the simulations
for the two groups of bubbles. We can clearly see clusters of simulations with homogeneous void
fractions for the bubbly cases, which is consistent with the experimental tests. The distribution
remains identical to the one described earlier, with values shifted due to the slip of gas relative
to the liquid. These values are then used for simulating the flows in DIVA.

However, there is a missing estimation of the diameters of the two groups to inject properly
into the simulations. Measuring Sauter diameters without a distribution is very challenging. By
conserving the total interfacial area ai = 6αg

Dsm
= ai1 + ai2 = 6αg1

Dsm1
+ 6αg2

Dsm2
, we have :

αg
Dsm

= αg1
Dsm1

+ αg2
Dsm2

(5.6)

By reminding the axiom of continuity, αg1 = αg − αg2 we have:

αg2
αg

=
1

Dsm
− 1

Dsm1
1

Dsm2
− 1

Dsm1

. (5.7)

However, we do not have the information of Dsm1. Nevertheless, we can attempt a rough
estimation by assuming that the probe primarily measures the interfacial area of group 1 since
it is an order of magnitude larger in most cases. Since the calculation is based on interfacial
velocities, a first approximation is to assume that the measured diameter is simply the diameter
of the first group Dsm1 visually enlarged by the presence of bubbles from the second group. The
enlargement is due to the time of presence of group 2 tg2 compared to the total gas time tg, as
follows:

Dsm1 = Dsm

1 + tg2
tg

= Dsm

1 + αg2
αg

, (5.8)
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with αg = αg1 + αg2. We then assume that the results are within the interval [Dcrit, 10Dcrit].
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Figure 5.5: Graph of the estimation of the mean Sauter diameters of the 2 gas groups to be
injected, estimated from the support of the local void fraction. Legend : � Bubbly regime, �
Cap-bubbly regime, � Churn regime, � Annular regime.

Figure 5.5 illustrates the estimation of the mean Sauter diameter for the two groups of
bubbles. This method appears to provide consistent values for group 1 and values for the second
group in a limited number of cases. However, it is important to note that this method relies on
highly simplified and debatable assumptions. Fortunately, the prediction of spectra should not
be very sensitive to the value of the diameter if it correctly handles the dynamics, as long as
it remains reasonably physical. Additionally, the interfacial area of group 2 is often too small
to be measured by a single probe, and measuring and characterizing the large interfaces can be
complex. Therefore, we will use these measurements for the cases to be simulated only when it
gives coherent values.

5.1.2 Identification of key parameters for forces spectra

It is essential to identify the key parameters that influence the changes in experimental force
spectra in order to wisely choose some test cases. Figures 5.6 and 5.7 depict the drag and lift
force spectra acting on the central tube of DIVA as a function of the liquid reduced frequency
fr = fD

jl
for liquid Reynolds numbers (based on liquid injection) of 8275 and 45514, for various

injected void fractions.
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Figure 5.6: Experimental lift (top) and drag (bottom) forces spectra for Rel = 8275 with
increasing void fraction according to the liquid reduced frequency fr = fD

jl
. Colors are the one

chosen to represent the different regimes. Legend : � Bubbly regime, � Cap-bubbly regime, �
Churn regime, � Annular regime.

Figure 5.6 encompasses all four identified regimes. The drag spectrum (bottom) consistently
exhibits an increasing trend between fr = 0.1 and fr = 0.5, followed by a decreasing trend
starting at fr = 2. The behavior between fr = 0.5 and fr = 2 depends on the injected void
fraction. The lift spectrum (top) displays a similar behavior. A similar but shifted behavior
in terms of fr is obvious in Figure 5.7. There is a general uplift in the spectra with respect to
the void fraction, with no significant effect from the regimes, except for the annular case in the
lift spectrum. While the drag spectrum appears to be well bounded between purely liquid and
purely gas cases, the lift spectrum seems to be bounded between the purely liquid and churn
regimes. Indeed, the annular regime appears to exhibit a distinct behavior, likely due to the
extremely low presence of liquid. This behavior is also observable in Figure 5.7.
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Figure 5.7: Experimental forces spectra for Rel = 45514 with increasing void fraction according
to the liquid reduced frequency fr = fD

jl
. Colors are the one chosen to represent the different

regimes. Legend : � Bubbly regime, � Cap-bubbly regime, � Churn regime, � Annular regime.

Different behaviors are noticeable among the various Reynolds numbers, but an increase in
the void fraction tends to rise the graphs, enhance the slopes of the decay, and broaden the
frequency peaks. Based on these observations, it appears that the force spectra primarily de-
pend on the liquid Reynolds number and the injection void fraction, and thus, on the parameter
pair (jl, jg) at first order in our simulations. No effect of injected diameter is visible on those
spectra. Unlike the case with a single cylinder, there is no cluster between the spectra of the
cap-bubbly and churn regimes. The « linearity » in the evolution of spectra with void fraction
indicates that the spectra are not very sensitive to bubble diameters within the flow. Based
on observations made in a single cylinder, it can be inferred that this phenomenon arises from
the specific bundle configuration that forces the flow to have a certain topology. The distinctive
behavior of lift spectra in the annular regime suggests that the liquid almost no longer influences
the spectra, but the large structures present in the annular flow are of paramount importance,
especially concerning passages between the cylinders, which impose a certain topology. It ap-
pears, therefore, that it is necessary for the modeling of the continuous gas phase to carefully
consider the interaction with the cylinders to obtain accurate results.
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Figure 5.8: Experimental graph of the force spectra of the drag and lift spectra as a function
of the reduced frequency fr = fD

jl+jg for void fractions ranging from αgH = 0.62 to αgH = 0.93
and Reynolds numbers ranging from 55000 to 75000. Legend : � Bubbly regime, � Cap-bubbly
regime, � Churn regime, � Annular regime.

Figure 5.8 displays the drag and lift spectra as a function of the reduced frequency fr = fD
jl+jg

for void fractions ranging from αgH = 0.62 to αgH = 0.93 and Reynolds numbers ranging from
55, 000 to 75, 000. On the drag spectra (bottom), a similar pattern is observed for every case
with a slope increase between 0.7 and 1 up to approximately fr ≈ 0.2, followed by a slope de-
crease of 1.95 for the churn regime and from fr = 0.6 for the cap-bubbly regime. This behavior
can be explained by the difference in Reynolds number, indeed all cap-bubbly flow regimes are
those with higher Reynolds number. The lift spectra (top) also exhibit a similar pattern with an
increase around fr ≈ 0.5, followed by a slope decrease of 1.2 up to fr ≈ 1.7, and then a change
in slope for the churn regime and a jump followed by a slope change for the cap-bubbly regime,
both with a slope of 1.95. The slightly different behavior of the cap-bubbly regime may also be
explained by difference of the Reynolds numbers. Indeed, according to Figures 5.6 and 5.7 this
effect depends on the Reynolds number. Thus, it appears that Rel and αg are the parameters
of paramount influence for the behavior of the spectra at the first order in this case.
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Figure 5.9: Experimental graph of the force spectra of the drag and lift spectra as a function
of the reduced frequency fr = fD

jl+jg for void fractions ranging from αgH = 0.46 to αgH = 0.89
and Reynolds numbers ranging from 9800 to 11000. Legend : � Bubbly regime, � Cap-bubbly
regime, � Churn regime, � Annular regime.

Figure 5.9 depicts the drag and lift spectra as a function of the reduced frequency fr = fD
jl+jg

for void fractions ranging from αgH = 0.46 to αgH = 0.89 and Reynolds numbers ranging from
9800 to 11000. Similar observations to those made previously for the churn and cap-bubbly cases
are noticeable. In the bubbly regime, the lift spectrum exhibits a similar appearance, whereas
the drag spectrum is rather flat or even decreasing. This behavior appears to be characteristic
of high Reynolds number bubbly flows with void fractions below 0.5− 0.6.
As a reminder, we first concluded on the effect of (jl, jg) at first order. However, we did not know
if it was the effect of liquid Reynolds (with jl) and void fraction (with jg

jl+jg ) or if it was due
to the liquid mean cross-sectionnal velocity (with jg + jl) at first order and regime dependency
at second order. Hence, with the previous observations it becomes obvious that jg + jl and the
flow regime have the most significant influence on the force spectra.

The spectra are sensitive to jg+jl and the flow regime with little influence from the diameter
at the first order. It can be noted that the bubbly and annular regimes exhibit distinct behaviors
concerning drag and lift spectra, respectively. Obtaining accurate drag spectra for bubbly
regimes and high Reynolds numbers seems somewhat more complicated. This can be explained
by the strong depression at the back of the cylinder and lower velocities in these areas compared
to the spaces between the cylinders. Conversely, lift spectra in the annular regime have a unique
behavior, possibly due to the presence of large gas structures between the tubes, where there is
little liquid, and horizontal movements between the cylinders. To verify these hypotheses based
on experimental data and the methods used to calculate inlet conditions, it is necessary to study
numerical simulations.
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5.2 Simulations of the DIVA experiment

5.2.1 Meshing strategy

A particular work had to be carried out on the meshing of the DIVA configuration. Indeed, it is
necessary to mesh the entire configuration with hexahedral elements that are not too deformed.
Furthermore, the boundary layer zone around the cylinders already has particularly compressed
elements, so it is preferable to avoid a non-uniform grid in the tangential direction to the cylin-
der. To achieve this, the strategy is first to constrain the grid to cover 10% of the cylinder’s size,
making it as homogeneous as possible. Then, the idea is to avoid stretching the elements too
much in all directions and too abruptly. The meshing challenge then lay in correctly accounting
for the boundary layer on the flat wall and the one around the cylinder. The goal is to have a
mesh that does not cause abrupt changes due to strong variations in mesh volume, especially
near the wall. Finally, after studying several configurations with bubbly test cases, a meshing
strategy was developed and is presented in Figure 5.10.

Figure 5.10: Mesh building strategy (top) and example of coarse mesh (bottom) for DIVA
simulations.

Figure 5.10 shows an example of a coarse mesh for the DIVA configuration. The strength
of these meshes is that they exhibit few severe distortions near the walls, mesh convergence is
straightforward to interpret because the elements maintain their aspect ratio, and as the mesh
becomes finer, the distortions become less significant for the flow. Regarding mesh convergence,
the model is sensitive to the mesh and typically converges less easily than a mesh for a purely
single-phase flow. For the studied velocities, the maximum boundary layer thicknesses δmax are
compiled in the following table 5.1.
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First case Second case Third case

Bubbly: 2δmax (mm) 0.2 0.07 0.06

Cap/churn : 2δmax (mm) 0.03 0.026 0.024

Table 5.1: Table of the maximum boundary layers δmax for all the DIVA test cases. The first
mesh size must be around 2δmax.

To ease the study of mesh convergence and the design of different meshes, we used the mesh
convergence of the highest Reynolds number from the bubbly case as our reference. Therefore,
we have the Coarse, Medium, and Fine meshes, corresponding to general mesh sizes of 1 mm,
0.6 mm, and 0.1 mm. For the fine mesh of the bubbly case, the near-wall mesh had to be divided
by 2. Convergence is verified for all meshes in comparison to the time-averaged void fraction
profile in the middle between the inlet and the first cylinders. All simulations presented here are
done using the Medium meshes. Thus, the mesh for the bubbly case with the lowest Reynolds
number is finer than necessary, but that of the churn cases is guaranteed to converge for the
large interfaces.

We have verified that the solution was sufficiently converged to obtain interpretable results.
Therefore, our initial focus is on bubbly simulations and their sensitivity to validate experimental
observations.

5.2.2 Bubbly flow simulations

The previous section helped identify the liquid Reynolds number and the void fraction as im-
portant parameters influencing force spectra. Therefore, in this section, we aim to replicate the
Reynolds number effect in bubbly test cases. Indeed, experimental comparisons can be con-
ducted using the collected data and the estimated inlet conditions presented in the previous
section. We investigate three liquid Reynolds number cases: 5516, 8275, and 15171, for approx-
imately homogeneous void fractions of about 0.2. Table 5.2 summarizes the conditions of the
test cases studied.

Rel jl (m/s) jg (m/s) αgH Dmeasured
sm1 (mm)

5516 0.185 0.05 0.213 4.8

8275 0.277 0.067 0.194 4.6

15171 0.509 0.15 0.227 3.3

Table 5.2: Table of the conditions of the study of DIVA simulation in bubbly flow regime.

To understand the challenge of obtaining accurate force spectra and to demonstrate the con-
tribution of our modeling, we first analyze the same model as in the last part of the introduction
: the native NEPTUNE_CFD model with Ruyer-Seiler polydispersion. For this purpose, we
focus on the first case with Rel = 5516.
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Figure 5.11: Colormap of the time-averaged void fraction (right) , turbulent intensity (midlle)
and time-averaged liquid velocity (left) for Rel = 5516 by computing with the model before
modifications and Ruyer-Seiler model.

Figure 5.11 illustrates the temporal averages of liquid velocity (left), turbulent intensity
(middle), and void fraction (right). It quickly becomes visible that the colormap representa-
tions are symmetric, indicating a correct resolution. In the velocity graph (left), there is an
acceleration between the cylinders and the forks at the end of the bundle, which results from
turbulence. This appears consistent with a single-phase perspective. The graph of turbulent
intensity (middle) shows that it increases around the cylinders, with a turbulence intensity of
40%, which is a reasonable order of magnitude compared to single-phase flows in the literature,
although there is no direct comparison available for this two-phase case. Regarding the void
fraction graph (right), there is an increase in void fraction upstream of the cylinders, similar to
the case with a single cylinder. It is also visible that the region corresponding to the cluster
observed in the single-cylinder case is constrained by the downstream cylinder. At the outlet
of the bundle, the void fraction spreads out, with a preferred zone toward the center of the
channel. These observations align with the expected flow topology. However, this is not enough;
it is now essential to analyze the force spectra, which serve as our indicators of fluctuating forces.
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Figure 5.12: Lift (top) and drag (bottom) forces spectra of simulated DIVA for Rel = 5516 with
native NEPTUNE_CFD model compared to experimental data.

Figure 5.12 shows the lift and drag force spectra from DIVA experiment and simulations for a
liquid Reynolds number of 5516, using the native NEPTUNE_CFD model with injected diame-
ters of 6 mm and 4 mm, in comparison with the experimental data. Looking at the experimental
lift spectrum (top), there is a relatively flat distribution between 3 Hz and 10 Hz with two peaks
at 1 Hz and 6 Hz, followed by a decrease with a constant slope up to the cutoff frequency. The
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two simulated lift spectra have a similar trend with a sharp increase with a bump between 1 Hz
and 6 Hz, followed by a decrease up to 20 Hz and a change in slope, continuing to decrease at a
constant rate. Thus, they deviate significantly from the experimental lift behavior. Regarding
the drag spectrum, the experimental data shows a decrease between 1 Hz and 6 Hz, followed
by an increase up to 16 Hz with two peaks at 8 Hz and 16 Hz, then gradually decreasing to 40
Hz before reaching the cutoff frequency. The two simulated drag spectra also exhibit a similar
trend with an increase between 1 Hz and 3 Hz, followed by a plateau up to 7 Hz for Dsm = 6
mm and 9 Hz for Dsm = 4 mm, before rapidly decreasing to the cutoff frequency. Therefore,
these spectra also differ substantially from the experimental ones.
The basic modeling approach does not appear to capture the correct trends of the experimental
force spectra. This is one of the reasons that motivated the use and development of a new model.

Now that we have seen that we can qualitatively obtain good results regarding averaged
quantities, but that the spectra can be quite different from the experimental spectra, we can
return to the study presented in the beginning of the section. This will allow us to quantify the
contribution of our modeling compared to what can be obtained by default. To compare with
the native model, we first analyze the time-averaged void fraction and liquid velocity fields and
see the changes.

Figure 5.13: Colormap of the time-averaged void fraction (left) and time-averaged magnitude
of liquid velocity field (right) for Rel = 5516. Simulation with new TRITON model.

Figure 5.13 shows the colormaps of the time-averaged void fraction (left) and time-averaged
magnitude of liquid velocity field (right) for Rel = 5516. It is immediately noticeable that
both fields are mostly symmetrical. Looking at the time-averaged void fraction field (left), we
can observe nearly the same aspect compared to Figure 5.11 and an increase in void fraction
near the walls. However, we can see that the regions behind the cylinders are more spread out
and less conforming to the cylinder’s shape. There are also remnants of fluctuations related
to turbulence. This effect is mainly due to the anisotropy of the turbulent dispersion force,
resulting in more fluctuations and a different topology. Now, if we look at the liquid velocity
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field (right), we can qualitatively see few differences in velocities compared to the basic model,
except for wider velocity dispersion between the tubes in our model. So, we have qualitatively
similar results, but it appears to take into account more fluctuations. To understand the ef-
fect of these fluctuations, we can analyze the force spectra for different liquid Reynolds numbers.
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Figure 5.14: Lift (left) and drag (right) force spectra of simulated DIVA for Rel = 5516 (top),
Rel = 8275 (middle) and Rel = 15171 (bottom) compared to experimental data. Simulations
with new TRITON model.

As a reminder, we concluded in section 5.1.2 that the forces spectra depend on the average
liquid velocity in the section at first order. Therefore, it is maybe possible to connect the two-
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phase simulations with frequencies already observed in the single-phase DIVA cases. To recall,
single-phase DIVA simulations were presented in [130]. The author demonstrates the presence
of specific reduced inter-tube frequencies f interr = fD

3jl (3 due to restricted area made by the
presence of tube) in the simulated force spectra:

m A frequency corresponding to Von Karman phenomena in the drag spectrum at f interr ≈
0.23.

m A frequency corresponding to confinement between tubes in both spectra at f interr ≈ 0.33.

m A frequency corresponding to mixing phenomena at f interr ≈ 0.75.

Figure 5.14 displays the lift (top) and drag (bottom) spectra of the forces exerted on the
central cylinder by the fluid for Reynolds numbers of 5516 (left), 8275 (middle), and 15171
(right), compared to experimental spectra.
Focusing on the lift spectrum for the Rel = 5516 case (top-left), the experimental data de-
creases between 1 Hz and 10 Hz with three bumps at 1 Hz, 3.1 Hz, and 8 Hz. Since the natural
inter-tube frequency is 23.5 Hz, it appears that these two frequencies (3.1 Hz and 8 Hz) could
correspond to Von Karman and confinement phenomena. It then shows a new bump between 10
Hz and 20 Hz before gradually decreasing towards the cutoff frequency. The frequency around
10 Hz could correspond to fluctuations related to bubbles since it is not visible in the simulated
spectrum. The simulated spectrum exhibits a rather decreasing trend between 1 Hz and 20 Hz
with three bumps at 1 Hz, 3.2 Hz, and 8 Hz. This reinforces the hypothesis of Von Karman and
confinement, as observed in the simulation. It is mainly flat between 10 Hz and 20 Hz before
decreasing towards the cutoff frequency. Therefore, the simulated spectrum closely matches the
experimental one, unlike the results obtained with the native model. We had anticipated this
behavior by observing the experimental results from DIVA and the simulations with a single
cylinder.
To further confirm the validity of the results, it is also important to look at the drag spectrum
(top-right). The experimental spectrum is mainly flat between 1 Hz and 10 Hz, with a bumps
at 6 Hz, followed by a consistent slope before the cutoff frequency. The simulated spectrum also
exhibits a similar flat behavior between 1 Hz and 10 Hz, with two bumps at 6 Hz and 8 Hz.
It then decreases with a constant slope before the cutoff frequency. Thus, there is an overall
similarity between the simulated behavior and the experimental observations. It appears that,
in this case, the modeling has significantly improved the force spectrum acting on the central
cylinder.

If we look at the lift spectrum for the Rel = 8275 case (middle-left), the experimental data
initially decreases between 1 Hz and 8 Hz. It then increases up to 12 Hz before decreasing
towards the cutoff frequency. The simulated spectrum exhibits a decrease between 1 Hz and 8
Hz. Then, two additional bumps can be seen at 10 Hz and 12 Hz before declining towards 20
Hz and decreasing to the cutoff frequency. These frequencies are related to the confinement.
Therefore, the simulated spectrum is similar to the experimental one up to 11 Hz. The lack of
power in these frequencies likely stems from the turbulence model, which may not account for
these scales, or from the URANS aspect, which could admits cutoffs.
To check whether it is indeed a scale cutoff phenomenon and not a modeling deficiency, we can
look at the drag spectrum (middle-right). The experimental spectrum is mainly flat between 1
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Hz and 10 Hz, with a bump between 7 Hz and 8 Hz. It then decreases with a typically constant
slope before the cutoff frequency. The simulated spectrum also displays a relatively flat behavior
between 1 Hz and 10 Hz. It then has a peak at 11 Hz (confinement) before rapidly declining
to 17 Hz and then decreasing to the cutoff frequency. Again, we observe a behavior similar to
the experimental. It seems that, in this case, the modeling is not sufficient to account for fluc-
tuations above 11 Hz to accurately reproduce the lift spectrum or that certain frequencies are
favored over others. To conclude on some issues, we can study the higher Reynolds number case.

If we look at the lift spectrum for the Rel = 15171 case (bottom-left), the experimental data
mainly decreases towards the cutoff frequency. The simulated spectrum shows an overall flat
behavior between 1 Hz and 20 Hz, with two bumps at 4.9 Hz and 14 Hz. It then rapidly declines
to 40 Hz before decreasing to the cutoff frequency. Thus, the simulated spectrum closely matches
the experimental one up to 20 Hz. While the simulated spectrum is qualitatively comparable to
the experimental one, there is a decrease in amplitude towards higher frequencies. This result
suggests that lower frequencies are favored by the modeling. Moreover, in this simulation, the
effects of confinement, horizontal movements, and Von Karman are amplified, tending to reduce
the contribution of smaller scales.
To gain a better understanding of this phenomenon, we can look at the drag spectra (bottom-
right). The experimental spectrum is almost flat between 1 Hz and 10 Hz, with a bump at 4
Hz, then decreases with a typically constant slope up to 40 Hz, followed by a peak at 50 Hz
before the cutoff frequency. The simulated spectrum increases between 1 Hz and 11 Hz and
then decreases up to the cutoff frequency. Except for the peak at 50 Hz, it appears that the
simulated spectrum is fairly accurate. It seems reasonable if it is indeed a mixing phenomenon
related to bubbles. Therefore, we are missing high-frequency phenomena that likely arise from
the modeling, particularly turbulence for the drag.

We observed that in the bubbly regime, similar frequencies to the single-phase case were
found, including confinement and Von Karman effects, but we missed phenomena related to
fluctuations generated by the bubbles. It would be interesting to model them correctly to verify
this. However, we can obtain spectra closer to the experimental one than those in a single
cylinder, as anticipated in Chapter 4. To understand where the attenuation of high frequencies
in lift and drag comes from, we can study the instantaneous void fraction profiles to understand
the differences between Reynolds numbers and the variations in fluctuations.
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Figure 5.15: Colormap of a typical instantaneous void fraction field in simulated DIVA for
Rel = 5516 (left), Rel = 8275 (middle) and Rel = 15171 (right). Simulations with new TRITON
model.

Figure 5.15 shows color maps of the instantaneous void fraction for DIVA bubbly simulations
at Reynolds numbers of 5516 (left), 8275 (middle), and 15171 (right). Looking at the overall ap-
pearance of the simulations, we can observe regions with high void fraction, single-phase regions
where gas has difficulty penetrating, and fluctuations. Focusing on the lowest Reynolds number
(left), we notice areas of high void fraction at the rear of the cylinders, which can be interpreted
as regions where bubbles reside for a longer duration. In this case, the local void fraction is
relatively low, around 11%, which tends to emphasize the void fraction fluctuations, potentially
resulting in less smoothed fluctuations. There are also phenomena of bubbles passing between
rows of tubes and from the rear of one cylinder to another. The fluctuations at the exit of the
bundle are relatively dispersed compared to the regions around the cylinders.

If we look at the intermediate Reynolds number (middle), we notice a less pronounced slip
between phases because the local void fraction is higher due to the higher velocity. This results
in fluctuations that have less impact, especially during the transitions between the cylinders.
We also observe less void fraction at the rear of the cylinders compared to the other Reynolds
number, which can explain the lower high-frequency components in the drag, as they are weaker,
and the lift is smoothed by the smaller void fraction variation. At the exit of the bundle, we
can see more concentrated regions at the rear, indicating turbulent shear and less slip.

If we look at the case of the highest Reynolds number (right), we observe even less slip
between the phases, resulting in a local void fraction close to 20%. This leads to even more
concentrated areas. There is a protective zone around the cylinder due to wall lubrication force
but not causing damage to forces spectra. Additionally, there is a highly spread high void frac-
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tion zone at the rear of the cylinders, which induces strong lift fluctuations during horizontal
void fraction variations, leading to more intense lift peaks. Furthermore, the high void fraction
zones, which do not have fluctuations associated with the gas phase, may explain the lack of
high frequencies, as the fluctuations are smoothed out by the strong presence of gas. At the exit
of the bundle, there is a very strong presence of gas, including a deviation of the jet due to the
horizontal movement of bubbles, causing instability in random directions.

We can conclude that the modeling is relatively accurate in partially reproducing the force
spectra acting on the central tube. Especially compared to the model before modifications, and
with Ruyer-Seiler model, we have significantly improved the simulated spectra. However, there
is room for improvement to better account for certain effects that are either too smoothed out or
overly emphasized in our case. One area for improvement could involve better management of
slip effects, especially when slip is relatively low at high velocities. With more slip, there would
be a greater influence of void fraction fluctuations relative to the local mean field. Furthermore,
a more accurate modeling of bubble-induced turbulence, especially around the cylinders, could
help capture fluctuations related to the gas phase more effectively, like mixing phenomena. As
shown in the previous chapter, the current modeling of bubble-induced turbulence is too in-
tense, creating areas of high fluctuations around the stagnation point and excessive smoothing
in regions where turbulence should be present due to its overly high level.

Since regions with high void fractions tend to smooth out fluctuations, we are interested in
test cases where large bubbles and gas pockets are present. Additionally, due to our limited
estimates of bubble diameters, we can only focus on a limited number of test cases. Therefore,
in the following section, we aim to study the topology created by our second gas field and the
spectra it induces in cap-bubbly and churn flow cases.

5.2.3 Cap-bubbly and churn flow simulations

The previous section helped identify the liquid Reynolds number and the void fraction as im-
portant parameters influencing force spectra. Therefore, in this section, we aim to replicate the
Reynolds number effect in bubbly cases. Indeed, experimental comparisons can be conducted
using the collected data and the estimated inlet conditions presented in the previous section. We
investigate three Reynolds number cases: 2758, 5516, and 8275, for approximately homogeneous
void fractions of around 0.65−0.68. Table 5.3 summarizes the conditions of the test cases studied.

Rel jl (m/s) jg (m/s) αgH

2758 0.0926 0.184 0.665

5516 0.185 0.409 0.688

8275 0.278 0.528 0.655

Table 5.3: Table of the conditions of the study.

Table 5.4 provides the results of direct measurements of the Sauter diameter and local void
fraction, along with an estimation of the local void fraction for Group 1. Table 5.5 presents the
calculated injection conditions using the method outlined in the previous section.
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Dmeasured
sm (mm) αmeasuredg αestimatedg1

6.97 0.345 0.196

7.58 0.463 0.279

7.8 0.538 0.284

Table 5.4: Table of the operating conditions of the study.

αcomputedg1inj αcomputedg2inj Dcomputed
sm1inj (mm) Dcomputed

sm2inj (mm)

0.437 0.228 4.8 39

0.339 0.349 5.4 49

0.25 0.415 5.3 35

Table 5.5: Table of the operating conditions of the study.
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Figure 5.16: Lift (left) and drag (right) force spectra of simulated DIVA for Rel = 2758 (top),
Rel = 5516 (middle) and Rel = 8275 (bottom) compared to experimental data. Simulations
with new TRITON model.

Figure 5.16 shows the spectra of drag forces (bottom) and lift forces (top) for simulations
with Reynolds numbers of 2758 (left), 5516 (middle), and 8275 (right), compared to experimen-
tal data.

Looking at the lift graph for the Reynolds number of 2758 (top-left), the experimental spec-
trum exhibits an almost constant trend between 1 Hz and 8 Hz, followed by a decrease up to
the cutoff frequency. The simulation exhibits a slight increase between 1 Hz and 6 Hz, followed
by a decrease until the cutoff frequency. This demonstrates a qualitatively similar behavior to
the experimental data. Even the standard deviation of the lift (area under the curve) seems well
reproduced.
Regarding the experimental drag spectrum (top-right), we observe an increase between 1 Hz
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and 7 Hz and then a decrease towards the cutoff frequency. The simulated spectrum exhibits
an increase between 1 Hz and 6 Hz, followed by a decrease until the cutoff frequency. Similar to
the lift, we obtain a good simulated graph compared to experimental data. This behavior could
be attributed to a better reproduction of the topology around the cylinder and the presence of
the second group of bubbles.

Looking at the lift graph for the Reynolds number of 5516 (middle-left), the experimental
spectrum shows an increase between 1 Hz and 4 Hz followed by a decreasing trend with a con-
stant slope up to the cutoff frequency. In contrast, the simulated spectrum increases between
1 Hz and 4 Hz, then has a flat trend up to 11 Hz before decreasing. It seems that we can get
parts of the distribution. This is due to too short simulation due to numerical problems.
Similarly, if we look at the experimental drag spectrum (bottom-right), we observe an increase
between 1 Hz and 10 Hz, followed by a decreasing trend up to the cutoff frequency. The sim-
ulated graph shows a slightly increasing trend between 1 Hz and 6 Hz, then decreases up to
the cutoff frequency. This shows that even though we do not have enough simulated time, we
still find a good agreement between the simulation and the experimental behavior, and that our
model works quite well.

If we look at the experimental lift spectrum for the Reynolds number of 8275 (bottom-left),
we observe an increase between 1 Hz and 4 Hz, followed by a decrease towards the cutoff fre-
quency. The simulation shows a slight increase between 1 Hz and 6 Hz, followed by a decrease
up to the cutoff frequency, with a small bump at 20 Hz.
Examining the corresponding drag spectrum (bottom-right), the experimental data reveal an
increase between 1 Hz and 10 Hz, followed by a decrease up to the cutoff frequency. In contrast,
the simulated graph increases between 1 Hz and 8 Hz, then decreases up to the cutoff frequency.
Consequently, this simulation has better reproduced the random force spectra than in the cor-
responding Rel in bubbly flow.

An intriguing observation is that the simulations gave good results with a very rough ap-
proximation of the group 2 diameter and a lot of approximations for the distribution of void
fraction. This suggests that the presence of the second group of bubbles has a significant positive
impact on the accuracy of the simulation. It seems that the simulation is not that sensitive to
the value of Dsm2, a phenomenon suggested on the experimental graphs. It surprisingly appears
that spectra from bundle geometries are easier to get that the one from single tube. Indeed, the
bundle mix well the simulations, the velocities before and behind the tubes are smaller, without
stagnation point, and it seems that it also depends less on the prediction of the turbulent quan-
tities. However, there is room for improvement. To identify the changes that may be necessary
we can look at void fraction predictions.
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Figure 5.17: Colormap of the averaged void fraction in simulated cap/churn DIVA for Rel = 2758
(left), Rel = 5516 (middle) and Rel = 8275 (right). Simulations with new TRITON model.

Figure 5.17 depicts the averaged void fraction in a simulated cap/churn single-tube exper-
iment for three different Reynolds numbers: Rel = 2758 (left), Rel = 5516 (middle), and
Rel = 8275 (right). In the case of the lowest Reynolds number (left), we observe detachment
at the channel inlet due to the presence of group 2 bubbles. We observe a good symmetry of
the computation. The asymmetries are primarily attributed to the averaging time step and the
overall averaging time used to generate this figure. Qualitatively, we observe experimental char-
acteristics of intermittent regimes: the void fraction is distributed very uniformly throughout
the bundle. A detailed analysis of the distribution between the two gas fields will shed light on
this phenomenon. We encounter nearly monophasic regions, largely due to lubrication forces.
However, in this case, it does not seem to degrade the results for the force spectra. Additionally,
unlike in bubbly flow, at the exit of the bundle, there is no longer evidence of intermittent alleys
in the prediction of the averaged void fraction. Turning our attention to the other two cases with
higher liquid Reynolds numbers, but equivalent void fractions, we observe the same phenomena:
a homogeneous distribution of void fraction, detachment at the inlet, and the disappearance of
balanced jet effects at the bundle exit. It seems that the distribution is then not sensitive to the
injected diameter of group 2 and the distribution between the two groups.
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Figure 5.18: Colormap of the typical instantaneous void fraction fields, for group 1 αg1 and
group 2 αg2, from simulated cap/churn DIVA for Rel = 2758 (left), Rel = 5516 (middle) and
Rel = 8275 (right). Simulations with new TRITON model.

Figure 5.18 illustrates the instantaneous void fraction of group 1 (top) and group 2 (bot-
tom) in simulated cap/churn tube bundle experiment DIVA for Rel = 2758 (left), Rel = 5516
(middle) and Rel = 8275 (right). In the case of the lowest liquid Reynolds number (left), when
we look at the group 1 field (top-left), we observe a much larger number of dynamic zones
compared to bubbly flow, primarily due to the presence of group 2 bubbles. We also notice the
absence of alleys at the bundle exit, similar to the average void fraction distribution. In the
group 2 field, we observe that the LIM is rarely activated in the calculation, except at the bundle
exit. We observe a narrowing of the jet at the entrance, similar to bubbly flow, followed by a
concentration of the field towards the center between the cylinders, with a deviation to a hor-
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izontal flow. However, it is challenging to provide qualitative validation for this field in this case.

In the case of intermediate Reynolds numbers (middle) and the group 1 field (top-middle),
we can qualitatively observe behavior similar to that of bubbly regimes. We see zones of strong
presence behind the cylinders, but the exit jets appear to be less prominent. This is likely why
the average void fraction does not capture this effect. Turning to the group 2 bubble field,
we observe a more moderate narrowing of the jet at the entrance and fewer horizontal devia-
tions between the cylinders, likely due to the strong presence of group 1 bubbles in these areas.
Here, we notice the LIM activating between the cylinders, creating jets that are subsequently
dispersed at the bundle exit. It appears that improvements are needed to better account for
interactions between the LIM and the walls in order to accurately represent the jet width. How-
ever, despite vastly different topologies compared to the lowest Reynolds case, we obtain, on
average, the same result for the void fraction, but achieve better results for the force spectra. To
confirm the model’s behavior when there are many group 2 bubbles, we can look at the last case.

Now, turning our attention to the case with the highest Reynolds number (right), especially
in the context of the group 1 field (top-right), we still observe behavior similar to that of bubbly
flow, but with confined jets at the bundle exit. In contrast, when we look at the group 2 bubble
field (bottom-right), we see that the field is well-balanced, primarily because it is the dominant
group. It is worth noting that the LIM predominantly activates between the cylinders and is
subsequently dispersed at the bundle exit. This behavior is qualitatively interesting because it
suggests that outside the bundle, we switch to a less dynamic regime with an average void frac-
tion that does not lead to an annular flow pattern. Thus, it appears that the model is behaving
correctly.

In summary, the force spectra in the lift and drag directions are reasonably well reproduced
compared to experiments, for bubbly and cap/churn flows. Indeed, despite the complexity of
the modeling, the URANS aspect, and the poor results obtained with a single cylinder we
have a model able to reproduce the global trends of forces spectra. Additionally, the averaged
distribution of void fraction aligns with experimental observations. It is obvious that for this
regime, we can achieve very similar averages, but encounter rather different dynamic behaviors
depending on the liquid Reynolds number. Interestingly, the diameter of the group 2 bubbles
appears to have little influence on the response of random forces. It is worth noting that the
presence of the second group of bubbles has improved the force spectra, likely due to a more
even distribution of void fraction in group 1, which is influenced by the presence of group 2.
This underscores the value of our modeling approach in replicating force spectra in two-phase
water-air flows. Nevertheless, there are still areas where improvements are possible:

m Improving validation of the interaction between the LIM and the walls appears necessary
to better account for annular regions between the cylinders.

m Further work is required to identify the appropriate injection parameters for achieving an
annular flow regime, as the experimental data do not provide a clear definition for the
required input conditions.
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Conclusion and perspectives

In this thesis, our focus has been on developing a modeling approach that aligns with exper-
imental data to replicate drag and lift force spectra on the central cylinder of a tube bundle.
Our research encompassed the consistency of turbulence modeling and involved comparisons of
different models in vertical channel configurations. Notably, we highlighted the successful repro-
duction of void fraction and liquid velocity trends, especially near the walls, using the EBRSM
[77] and turbulence induced by bubbles. After observing modeling challenges, particularly for
high void fractions, we tried to modify and adapt source terms in the IATE 2 groups [121] to
enhance simulation stability and coherence while preserving physical consistency. This allowed
for a better consideration of both bubble groups and regions with high void fractions. We also
investigated the coupling forces between gas and liquid fields to address modeling issues associ-
ated with high void fractions. Changes in the drag coefficient and the transition from the Zuber
[90] added mass model to the Cai and Wallis model [6] proved necessary. We proposed a new
coefficient for turbulent dispersion force [64], along with its anisotropy adjustment, to accurately
account for regions with high void fractions. Due to numerical challenges in simulating scenar-
ios with high void fractions and a significant proportion of group 2 bubbles, we introduced an
original modeling approach for group 2 bubbles to address these issues. Specifically, increasing
the added-mass coefficient better accounted for the inertia of deformed bubbles, leading to re-
duced activation of the LIM [16] and enhanced diffusion in the second-group bubble diameter
equation. We also attempted to justify the use of some experimental limits for flow regimes
and bubble group distributions through simple calculations and the consideration of turbulent
dispersion, aiming to support our modeling approach. Theoretical justifications were provided
for limiting void fractions of 0.62, 0.33, and 0.8, commonly found in models based on corre-
lations. Additionally, we initiated changes in the modeling approach to replicate experiments
involving water-steam mixtures, aiming for a better understanding of the differences compared
to the water-air cases.

We subsequently studied a single-tube configuration to assess the relevance of experimen-
tal results and identify key parameters. This investigation revealed that the liquid Reynolds
number and void fraction were the most influential parameters. We then simulated experi-
mental cases using the new model, encompassing bubbly and churn/cap-bubbly regimes, with
liquid Reynolds numbers ranging from 7500 to 30, 000 and void fractions around 0.2 and 0.65.
We encountered challenges with this configuration due to containment effects and the model’s
sensitivity to equilibrium conditions around the cylinder. Nonetheless, our simulations demon-
strated that the model could replicate experimental topologies, though it appeared to lack in
modeling for induced turbulence by group 1 bubbles and exhibited near-wall problems, partic-
ularly around the stagnation point. However, we achieved a more robust modeling approach
for obtaining force spectra, and it was possible to qualitatively obtain good power distributions.
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Nevertheless, obtaining the standard deviation of these forces proved to be more challenging.
Furthermore, our investigations highlighted that churn/cap-bubbly flow cases could yield quan-
titatively better results because group 1 was constrained by group 2. This phenomenon was
particularly pronounced with the significant presence of group 2 and liquid injection velocities
high enough to balance the dynamics between the two groups. In conclusion, we identified po-
tential improvements related to a better consideration of void fraction effects on drag and lift
coupling forces, as well as the embodiment of a new force or coefficient modification to enhance
the dynamic balance between the two gas fields in the model.

Finally, we turned our attention to the simulation of DIVA. We proposed a simplistic method
for identifying flow regimes and void fraction distributions between the two bubble groups to
obtain the distribution of void fractions between the two groups to be injected and, in some
cases, bubble diameters for both groups. Using this method, we successfully replicated the char-
acteristic void fractions associated with different flow regimes. These results were compared to
those calculated in Chapter 3 to validate our approach. Furthermore, our investigation high-
lighted key parameters, particularly the liquid Reynolds number and void fraction, as significant
factors, as discerned from the study of force spectra. It is noteworthy that, in the case of DIVA,
void fraction behavior appears more ’linear’ in spectra compared to the single-cylinder configu-
ration. Additionally, a distinct behavior in the lift spectrum was identified for the annular and
bubbly flow regimes. Subsequently, we conducted simulations in bubbly and churn/cap-bubbly
regimes for injection liquid Reynolds numbers ranging from 2700 to 8200, with void fractions
around 0.2 and 0.66. These simulations demonstrated that achieving quantitatively accurate
spectra is easier with a bundle of tubes than with a single cylinder. This can be attributed to
the containment effects imposed by the cylinders, which result in a more complex topology. The
lower impact of turbulence effects in regions with relatively low velocities, such as the front and
rear of the cylinders, contributes to this improvement. Thus, our modeling approach proved to
be interesting, yielding promising qualitative and quantitative results for force spectra and void
fraction distributions. However, areas for improvement were also identified, particularly con-
cerning the LIM. It is imperative to conduct a more detailed investigation into the interaction
between LIM and the walls to validate its relevance. The model appears to encounter difficulties
in accurately representing the size of the annular regions between the cylinders. This is one of
the reasons why we did not present calculations for purely annular flow. The other reason lies
in the uncertainty surrounding how to inject the bubble field to faithfully reproduce this regime
and the large interfaces it entails. Ultimately, despite the extensive modeling, the URANS as-
pect of the model, we have achieved encouraging and promising results. Nevertheless, there is
a continued need for improvement, particularly in accounting for the interactions between the
liquid and gas phases, with the aim of developing a model able to simulate two-phase flows
involving water and steam.

This thesis has also brought to light suspended issues related to two-phase modeling, as well
as potential challenges in forthcoming comparisons.
First, one could consider the broader development of a lubrication force applicable across all void
fractions and flow topologies. In a general sense, it would be insightful to compare and validate
force modeling for extremely high void fractions, particularly drag and lift forces. Connected
to this issue, a more precise study and comparison involving model bubbles, such as the Taylor
bubble, for interfacial force modeling, would hold significant interest for the overall modeling,
especially the LIM interacting with walls.
In terms of additional modeling, it is of paramount importance to conduct a comprehensive
investigation into the averaged two-phase turbulence, in order to accurately capture the under-
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lying mechanisms. Furthermore, a more in-depth study than the one proposed in this thesis
would be valuable in enhancing our understanding and inclusion of the complete theoretical
mechanisms leading to the transition into a continuous modeling framework.
From the perspective of experimental validation, it remains imperative to both verify and better
modeling at extremely high void fractions, applicable to both channels and bundles. Indeed, the
scarcity of literature on these void fraction levels can be attributed to challenges in instrumen-
tation and the determination of parameters required for accurate simulation of such regimes.
Following an investigation into the square pitch bundle configuration, like DIVA experiment,
there arises an opportunity to study a triangular pitch configuration, which could lead to simi-
lar issues as in the single-cylinder case (especially with the stagnation points). This exploration
holds promise for a more comprehensive understanding of the underlying phenomena. Moreover,
triangular pitch configurations should replace square pitch bundles in future steam generators
(EPR).
Ultimately, it becomes imperative to couple the two-phase model with a method that takes into
account the solid movement, in order to validate the physics in the context of a vibrating tube.
We attempted to numerically compute the mechanical loading exerted by a two-phase flow on a
rigid tube in a square pitch bundle. To compute DIVA, simulations will need to consider tube
vibrations, thus implementing a coupling model between the structure and the fluid, as a com-
plete fluid-structure problem. This expanded approach holds the potential better understand
and model the vibrations of U tubes in steam generators.
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Appendix A
Appendice : Additional modeling

A.1 Additional turbulence models

The k − ε model

The k − ε model [47] is given by the following set of equations :
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The SSG model

The SSG [9] model is given by the following set of equations :
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A.2 Bubble coalescence/break-up source terms

Random collision (RC)

The source/sink terms of Random Collision (RC) are modeled as follows :
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In the above equations, C(1)
RC , C

(12,2)
RC , C(2)

RC are three constant coefficients. CRC1, CRC2 are
coefficients accounting for effective range of influence of turbulent eddies. αg1,max is the dense
packing limit for Group 1 bubbles. Dh is the hydraulic diameter. CRC0 is a constant coefficient.

m C
(1)
RC = 0.005, C(12,2)

RC = 0.005, C(2)
RC = 0.01.

m CRC1 = 3.0, CRC2 = 3.0.

m αg1,max = 0.62.

m CRC0 = 3.0.

Wake entrainment (WE)

The source/sink terms of Wake Entrainment (WE) are modeled as follows :

φ
(1)
WE = −0.17C(1)

WEC
1/3
D1 Ur1a

2
i1, (A.13)

φ
(11,2)
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WE C
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D1 Ur1a

2
i1

(
1− 2

3D
∗
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)
, (A.14)

φ
(12,2)
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WE Uw12ai1ai2, (A.15)

φ
(12,2)
WE,g2 = 0.922C(12,2)

WE Uw12αg1
a2
i2
αg2

, (A.16)

φ
(2)
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i2
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, (A.17)

η
(11,2)
WE,2 = 3.85C(1)

WEC
1/3
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∗
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)
, (A.18)

η
(12,2)
WE,2 = 0.33C(12,2)

WE Uw12αg1ai2. (A.19)
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In the above equation

Urw2 = 0.94Ur2C1/3
D2 ,

Uw12 = Urw2 + Ur1 − Ur2,

D∗c2 = Dc

Dsm2
,

and

CD1 = 2
3Dsm1

√
g∆ρ
σ

(
1 + 17.67[f(αg1)]6/7

18.67f(αg1)

)2

with f(αg1) = (1− αg1)1.5,

CD2 = 8
3(1− αg2)2.

In the above equations C(1)
WE , C

(11,2)
WE , C(12,2)

WE , C(2)
WE are constant coefficients.

m C
(1)
WE = 0.002, C(12,2)

WE = 0.002, C(2)
WE = 0.005.

Turbulent impact (TI)

The source/sink terms of Turbulent Impact (TI) are modeled as follows :

φ
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TI = 0.12C(1)
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η
(2,1)
TI,1 = −η(2,1)

TI,2 , (A.24)

with the following expressions for We1 and We2 :

We1 = 2ρlε2/3(Dsm1)5/3

σ
,

We2 = 2ρlε2/3(Dsm2)5/3

σ
.

C
(1)
TI , C

(2,1)
TI , C(2)

TI are constant coefficients. Wecr1, Wecr2 are critical Weber number for breakup
due to turbulent impact.

m C
(1)
TI = 0.1, C(2,1)

TI = 0.02, C(2)
TI = 0.02.

m Wecr1 = 6.5, Wecr2 = 7.
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Shearing-off (SO)

The source/sink terms of Shearing-off (SO) are modeled as follows :

φ
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CSO is a constant coefficient. Wec,SO is a critical weber number for shearing-off of small bubbles
from large cap bubbles. Wem2, Wec, Dh.

m CSO = 3.8× 10−5, Wec,SO = 4500.

Surface instability (SI)

The source/sink terms of Surface Instability (SI) are modeled as follows :

φ
(2)
SI = 2.616× 10−4C

(2)
RCε

1/3 1
D2
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(
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(A.30)

C
(2)
RC and C(2)

WE are constant coefficients from Random collision and Wake Entrainment source
terms. Dh is the hydraulic diameter.
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Introduction

Les générateurs de vapeur (GV) des centrales nucléaires sont composés de faisceaux de tubes
soumis à des écoulements diphasiques eau-vapeur ascendants, comme illustré sur la Figure B.1.
Les forces exercées par le fluide sur ces tubes peuvent entraîner leur endommagement par

 

Figure B.1: Schéma d’un générateur de vapeur. Extrait du site internet de la US Nuclear
Regulatory Commision (NRC).

usure ou fatigue (section 1.1). Des expériences effectuées en eau-air sur la maquette DIVA [95]
(faisceau réduit de tubes droits, illustré sur la Figure B.2) n’ont pas permis de comprendre
pleinement l’interaction complexe entre un fluide diphasique et le mouvement des tubes (section
1.2).
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Figure B.2: Photographies de la plateforme DIVA.

Ainsi, la simulation numérique permettrait d’accéder à des données et des informations qui
ne sont pas accessibles ou observables expérimentalement (section 1.3). Cependant, la difficulté
de la modélisation diphasique tient dans la multiplicité des topologies d’écoulement, appelées
régimes et illustrés dans la Figure B.3.
L’objectif de cette thèse est de simuler les expériences en faisceau de tubes à pas carré (DIVA),

Figure B.3: Photographies prises dans un tube vertical de dimaètres 25.4 mm pour différents
régimes d’écoulement. De gauche à droite sont représentés les régimes bubbly, cap-bubbly, slug,
churn-turbulent et annulaire. Extrait de [85].

à l’aide du code NEPTUNE_CFD, afin de reproduire le chargement mécanique exercé sur les
tubes (section 1.4), comme illustré sur la Figure B.4.
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Figure B.4: Illustration de la simulation numérique de DIVA pour étudier les vibrations des
tubes de générateurs de vapeur. Images issues du site internet d’Europlexus, de [93] et de [3].

Modélisation moyennée diphasique

La modélisation employée dans cette thèse repose sur un modèle à deux-fluides – trois-champs
(section 2.1), comprenant un champ liquide continu, un champ de gaz dispersé, composé de
bulles peu déformées (plus petites que 10.8 mm), et un champ hybride dispersé-continu pour
tenir compte des bulles très déformées (entre 10.8 mm et 108 mm) et des poches de gaz (section
2.2), comme illustré sur la Figure B.5.
Cette distinction entre deux groupes de bulles et l’utilisation d’une modélisation de reproduction
d’interface se base sur des observations faites dans la littérature, sur la distribution des diamètres,
illustrées sur la Figure B.6, et celles obtenues via les données expérimentales de taux de vide
obtenues avec la maquette DIVA, comme illustrées sur la Figure B.7.
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Small bubbles + Large bubbles 

+ Gas pockets + Liquid 

Small bubbles (Dispersed)

Large bubbles (Dispersed) 

+  Gas pockets (Continuous)

Liquid (Continuous)

Two-fluids - Three fields

Field

Field

Field

Figure B.5: Principe du modèle "Tous-régimes" utilisé dans cette thèse. petites bulles, Gaz
continu et bulles larges, Liquide.

Group 1 events Group 2 events

Bubbly

Cap

Churn

Annular

Group 1 events Group 2 events

Regime identification Group repartition Estimation

Figure B.7: Méthode de mesure de la répartition entre le groupe des petites bulles (groupe 1
de taux de présence αg1) et le groupe des grandes bulles et poches de gaz (groupe 2 de taux de
présence αg2) basée sur le support du taux de présence du gaz par mesure de la PDF. Légende
: � Régime bubbly, � Régime cap-bubbly, � Régime churn, � Régime Annulaire.
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Figure B.6: Répartition des tailles de bulles pour une vitesse superficielle liquide jl = 0.765
m/s et différentes injections de gaz dans un canal carré de côté 66 mm. Sous-figures : (I)
répartition des tailles de bulles avec une largeur de classe de 2 mm pour les régimes de bubbly
et de cap/churn, (II) répartition des tailles de bulles en zoom avec une largeur de classe de 0.1
mm pour le régime de bubbly, (III) répartition des tailles de bulles en zoom avec une largeur de
classe de 0.1 mm pour le régime de cap/churn-bubbly. Extrait de [153].

La simulation repose également sur la modélisation de la turbulence liquide pour correcte-
ment reproduire les efforts au niveau des tubes (section 2.3). Cependant, les modèles diphasiques
de la littérature sont validés sur des configurations sans obstacle. La présence des tubes engendre
une topologie particulière de l’écoulement qui empêche l’utilisation directe du modèle de base
(section 2.4).

Validation et changements dans la modélisation

Une étape d’adaptation et de validation du modèle a donc été nécessaire avant de réaliser les
simulations. En premier lieu, un changement de paradigme a été necessaire. Un critère basé sur
la taille du maillage pour passer du modèle dispersé au modèle continu est couramment utilisé
dans la littérature, bien que sa sophistication puisse varier. Contrairement aux modèles existants
qui introduisent la confusion entre la modélisation dispersée et la vision dispersée à travers un
maillage de capteurs, notre méthode repose sur des considérations physiques, illustrées sur la
Figure B.8. Nous supposons d’abord que la coalescence des petites bulles du Groupe 1 engendre
les bulles du Groupe 2. Ensuite, les bulles déformées du Groupe 2 peuvent se transformer en
grandes poches de gaz et en interfaces étendues. Cette perspective découle de la croissance
naturelle des interfaces, passant d’une catégorie à une autre et finalement à un champ continu.
Cette transition se produit lorsque le diamètre équivalent devient trop grand, créant une grande
interface, ou lorsque la fraction de vide devient trop élevée, limitant l’arrangement des grosses
bulles et conduisant ainsi à la présence d’un régime annulaire.
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"Dispersed in mesh" :
Known diameter = Dispersed

"Continuous in mesh" : 
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All-regimes in literature

All-regimes in this thesis
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Limited in diameter and void fraction
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On diameter 
Large interface

Maximum

Criterion

Large interface

Figure B.8: Comparaison du paradigme des modèles à tous les régimes entre ceux présents dans
la littérature et notre modélisation

Ensuite, une étape de validation et d’étude du couplage diphasique-turbulence liquide sur des
expériences en canaux (étroit et large) a été conduite (section 3.1). Préalablement, nous avons
sélectionné quatre modèles de turbulence fréquemment cités dans la littérature liée à notre sujet
: le modèle k− ε [47], le modèle SSG [9], l’EBRSM [77] et l’EBRSM avec turbulence diphasique
[81]. Cette comparaison avec des données expérimentales nous a permis d’acquérir une meilleure
compréhension de l’interaction entre les modèles de turbulence et le modèle diphasique. L’étude
a révélé le potentiel du modèle EBRSM, que ce soit avec ou sans turbulence diphasique, dans la
reproduction des tendances des profils de taux de vide et de vitesse. Ces résultats ont conduit
à la décision de poursuivre notre travail en se concentrant sur le modèle EBRSM.

Par la suite, un travail de recherche et d’ajustement a été entrepris pour adapter la modélisa-
tion diphasique en tenant compte des taux de vide élevés (section 3.2. Nous avons initialement
étudié les forces d’interaction liquide-gaz, qui présentent des dépendances non linéaires par rap-
port au taux de vide. Le coefficient adimensionnel de traînée diverge avec le taux de vide,
nécessitant ainsi une correction. La force classique de masse ajoutée de [90] montre également
une divergence avec le taux de vide. Nous avons donc opté pour une formulation plus générale,
celle de [6], qui ne diverge pas et dépend du rapport de masse volumique. De plus, nous avons
proposé une nouvelle expression corrigée du coefficient de dispersion turbulente de [64] pour
éviter ces divergences, comme illustré dans la Figure B.9.

Dans le même souci d’amélioration, des corrections ont été apportées aux termes sources de
coalescence et de fragmentation des bulles pour résoudre les problèmes près de la paroi et dans
les zones à fort taux de vide. Parallèlement, des défis ont émergé concernant la dynamique du
Groupe 2. Les simulations ont révélé des problèmes liés à des accélérations élevées, des sauts
dans la prédiction du diamètre et une reproduction inhabituelle des interfaces dans le champ
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(a) Avant modification. Les valeurs sont limitées entre −103 et 103 afin d’éviter toute divergence.
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Figure B.9: Coefficient la dispersion turbulente GTD pour le groupe 1 avant (a) et après (b)
modifications suivant les valeurs de ηr et αg (c.f. equation 3.19).

continu ( parfois similaire à la formation des grains dans les microstructures des métaux). Pour
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résoudre ces problèmes, nous avons proposé d’ajuster le coefficient de masse ajoutée du Groupe
2 en se basant sur des calculs tirés de la littérature, ce qui a permis de modifier le coefficient de
dispersion turbulente, comme illustré dans la Figure 2.
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Figure B.10: Coefficient la dispersion turbulente GTD pour le groupe 2 après modifications
suivant les valeurs de ηr et αg (c.f. equation 3.19)

De plus, l’augmentation du coefficient de masse ajoutée a permis d’augmenter la diffusion
dans l’équation du diamètre pour atténuer les problèmes de sauts. Enfin, nous avons établi
un critère de taux de vide pour activer le champ continu en nous appuyant sur des calculs
analytiques simples basés sur les équations moyennées, assurant ainsi une transition fluide de la
vision dispersée à la vision continue.

Simulations moyennées diphasiques avec un cylindre unique

L’étape suivante a eu pour but de simuler des écoulements diphasiques eau-air autour tube
unique afin de comprendre la réponse du modèle proposé dans cette thèse. En premier lieu, une
étude de sensibilité du modèle diphasique en régime bubbly est proposée afin de comprendre
la physique reproduite dans les simulations à travers les spectres de forces exercées sur le tube
(section 4.1). Cette étape permet notamment d’axer la réflexion sur les aspects numériques de
la modélisation physique. La partie suivante s’intéresse à la comparaison et à la compréhension
des résultats numériques et expérimentaux (section 4.2).
Nous avons constaté que le nombre de Reynolds liquide et le taux de vide homogène étaient
les paramètres les plus influents pour la reproduction des spectres de force numériques. Il a
été observé que l’obtention de spectres de force correspondant au régime à bulles était la plus
difficile en raison de sa sensibilité aux fluctuations du liquide, de la topologie autour du cylindre
et de l’accélération causée par le confinement. Cependant, pour la configuration en faisceau de
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tubes (DIVA), les cylindres en amont et en aval du cylindre central contraignent la topologie de
l’écoulement autour de lui, la rapprochant de l’ expérimentale. De plus, les vitesses à l’arrière et à
l’avant du cylindre central devraient être plus modérées, réduisant l’influence des fluctuations du
liquide et potentiellement conduisant à une meilleure reproduction de l’écoulement expérimental.
Par conséquent, nous avons été optimiste quant à l’obtention de résultats relativement bons
en faisceau de tubes. De plus, nous avons pu montrer que les régimes cap-bulles/churn sont
plus résilients aux fluctuations du liquide et aux variations du taux de vide. Finalement, les
spectres de force obtenus sont cohérents avec la topologie simulée, et nous observons certaines
tendances favorables par rapport aux données expérimentales. Bien que des améliorations soient
nécessaires, les résultats obtenus sont plutôt encourageants.
Au cours de cette étude, nous avons identifié des pistes d’améliorations :

m La force de portance semble avoir une influence trop importante par rapport à la force de
traînée dans la modélisation. Il est particulièrement important d’étudier de manière ap-
profondie l’effet du taux de vide sur la portance. De plus, il semble que des améliorations
soient nécessaires pour modéliser les forces de portance pour les bulles du groupe 2.

m Une force ou un nouveau coefficient de traînée favorisant un meilleur équilibre entre les
deux groupes de bulles semble nécessaire lorsqu’il s’agit de zones dynamiques, en particulier
lorsque la vitesse d’injection est faible ou lorsque la présence du groupe 2 est nettement
moins dominante. En effet, ces bulles plus inertes ont tendance à perturber la dynamique
globale lorsqu’elles sont en minorité ou lorsque le débit est faible.

m Une amélioration de la force de lubrification pour mieux prendre en compte les effets
proche parois, notamment les problèmes de point d’arrêt en dispersé, est nécessaire.

Simulations moyennées diphasiques en faisceau de tubes à pas
carré

Enfin, la dernière partie s’intéresse à la comparaison des résultats expérimentaux et numériques
dans le cas d’un écoulement diphasique eau-air dans un faisceau de tubes à pas carré (DIVA). En
premier lieu, une analyse des résultats expérimentaux a pour but de renseigner nos simulations
sur les conditions opératoires et sur les paramètres clés pour la simulation des spectres de force
et justifier les cas tests dans la suite (section 5.1). Cela a permis de comprendre que les spectres
de forces numériques devraient être sensibles à la vitesse moyenne liquide au premier ordre et
au régime d’écoulement au second ordre, avec peu d’influence des diamètres. Il est à noter que
les régimes bubbly et annulaire présentent des comportements distincts par rapport aux autres
régimes concernant les spectres de traînée et de portance, respectivement, les rendant sûrement
plus difficile à obtenir numériquement.
La dernière partie permet de comparer les résultats expérimentaux aux simulations pour 3 in-
jections liquides différentes, pour les régimes bubbly et cap/churn (section 5.2). Les spectres
de force dans les directions de portance et de traînée sont raisonnablement bien reproduits par
rapport aux expériences, pour les écoulements à bulles, illustrés dans la Figure B.11 et les écoule-
ments cap/churn, illustrés dans la Figure B.12.

En effet, malgré la complexité de la modélisation, l’aspect URANS et les résultats mitigés
obtenus avec un seul cylindre, nous disposons d’un modèle capable de reproduire les tendances
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Figure B.11: Spectres de forces de portance (à gauche) et de traînée (à droite) simulés avec
DIVA pour Rel = 5516 (en haut), Rel = 8275 (au milieu) et Rel = 15171 (en bas) comparés aux
données expérimentales, pour le régime bubbly. Simulations avec le nouveau modèle TRITON.

globales des spectres de forces. Il est intéressant de noter que le diamètre des bulles du groupe
2 semble avoir peu d’influence sur la réponse des forces aléatoires. Il est à noter que la présence
du second groupe de bulles a amélioré les spectres de force, probablement en raison d’une distri-
bution plus uniforme du taux de vide global, qui est influencé par la présence du groupe 2. Cela
souligne la valeur de notre approche de modélisation dans la reproduction des spectres de force
dans les écoulements diphasiques eau-air. Néanmoins, il existe encore des pistes d’améliorations
possibles :

m Améliorer l’interaction entre le LIM et les parois semble nécessaire pour mieux rendre
compte des régions annulaires entre les cylindres.
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Chapter B – Appendice: Résumé substantiel en français
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Figure B.12: Spectres de forces de portance (à gauche) et de traînée (à droite) simulés avec
DIVA pour Rel = 2758 (en haut), Rel = 5516 (au milieu) et Rel = 8275 (en bas) comparés aux
données expérimentales, pour le régime cap-bubbly/churn. Simulations avec le nouveau modèle
TRITON.

m Des travaux supplémentaires sont nécessaires pour identifier les paramètres d’injection ap-
propriés afin d’obtenir un régime d’écoulement annulaire correct.
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Titre : Etudes numériques et expérimentales des écoulements diphasiques en intéraction avec un faisceau
de tubes

Mots clés : écoulement diphasique, approche multi-champ, faisceau de tubes, simulation numérique, cou-
plage de modèles, interaction fluide-structure.

Résumé : Les générateurs de vapeur (GV) des cen-
trales nucléaires sont composés de faisceaux de
tubes soumis à des écoulements diphasiques eau-
vapeur. Les vibrations liées à cette interaction peuvent
induire des dommages (fatigue et usure par frotte-
ment et chocs) pouvant entraîner de graves consé-
quences pour la sûreté nucléaire. Dans le cadre de
la prévention des risques vibratoires des tubes de
GV des études expérimentales sont réalisées à l’aide
de faisceaux analytiques de tubes droits soumis à
un écoulement transverse diphasique. En parallèle,
il est également important de développer un outil
de simulation numérique permettant d’accéder à des
données et des informations difficilement mesurables.
L’objectif de cette thèse est donc de simuler l’inter-
action entre un fluide diphasique et une structure
rigide (tube unique ou faisceau de tubes), à l’aide
du code NEPTUNE_CFD. Ces simulations doivent
permettre de reproduire le chargement mécanique
exercé par le fluide sur les tubes. La modélisation em-
ployée dans cette thèse repose sur un modèle à deux-
fluides - trois-champs, comprenant un champ liquide
continu, un champ de gaz dispersé, composé de

bulles peu déformées, et un champ hybride dispersé-
continu pour tenir compte des bulles très déformées
et des poches de gaz. La première partie de ce tra-
vail s’est concentrée sur la validation du couplage
diphasique-turbulence liquide ainsi que sur la modi-
fication et l’adaptation de la modélisation pour mieux
prendre en compte la présence d’une structure im-
mergée. De nouvelles modélisations pour la force de
dispersion turbulente, les termes sources de coales-
cence et fragmentation, la masse ajoutée et le cri-
tère d’activation du champ continu ont été proposées.
Dans la deuxième partie de ce travail, nous avons si-
mulé l’écoulement diphasique autour d’un tube unique
fixe, afin d’en extraire une physique sous-jacente et
d’identifier ses limites et lacunes. Enfin, dans la der-
nière partie de ce travail, nous avons simulé l’interac-
tion d’un écoulement diphasique avec un faisceau de
tubes rigides. Les résultats numériques ont été com-
parés aux mesures expérimentales. Cette approche
nous a permis de justifier l’intérêt de notre modéli-
sation, de trouver des similitudes entre les résultats
numériques et expérimentaux, tout en proposant des
pistes d’amélioration.
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Abstract : The steam generators (SG) in nuclear po-
wer plants are made up of bundles of tubes subjec-
ted to two-phase water-steam flows. Vibrations re-
lated to this interaction can cause damage (fatigue,
wear due to friction and shocks) that can lead to se-
rious consequences for nuclear safety. In the context
of preventing vibrational risks in SG tubes, experimen-
tal studies are conducted using analytical bundles of
straight tubes subjected to transverse two-phase flow.
In parallel, it is also important to develop a nume-
rical simulation tool to access data and information
that are difficult to measure. The goal of this work
is to simulate the interaction between a two-phase
fluid and a rigid structure (single tube or bundle of
tubes) using the NEPTUNE_CFD code. These simu-
lations aim to reproduce the mechanical loading exer-
ted by the fluid on the tubes. The modeling used in
this work is based on a two-fluid - three-field mo-
del, including a continuous liquid field, a dispersed
gas field made up of slightly deformed bubbles, and a

dispersed-continuous hybrid field to account for highly
deformed bubbles and gas pockets. The first part of
this work focused on the validation of the two-phase
liquid-turbulence coupling as well as the modification
and adaptation of the modeling to better account for
the presence of an immersed structure. New models
for turbulent dispersion force, source terms of coales-
cence and break-up, added mass, and the activation
criterion of the continuous field were proposed. In the
second part of this work, we simulated the two-phase
flow around a fixed single tube to extract underlying
physics, and identify its limitations and shortcomings.
Finally, in the last part of this work, we simulated the
interaction of a two-phase flow with a bundle of ri-
gid tubes. The numerical results were compared to
experimental measurements. This approach allowed
us to justify the relevance of our modeling, find simi-
larities between numerical and experimental results,
while also suggesting areas for improvement.
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