
HAL Id: tel-04496146
https://theses.hal.science/tel-04496146v1

Submitted on 8 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximated Computing-based Methods for Hardware
Resources Reduction Targeting Heterogeneous Systems

Hugo Miomandre

To cite this version:
Hugo Miomandre. Approximated Computing-based Methods for Hardware Resources Reduction Tar-
geting Heterogeneous Systems. Signal and Image processing. INSA de Rennes, 2022. English. �NNT :
2022ISAR0021�. �tel-04496146�

https://theses.hal.science/tel-04496146v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’INSTITUT NATIONAL DES SCIENCES

APPLIQUÉES DE RENNES

COMUE UNIVERSITÉ BRETAGNE LOIRE

ÉCOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Signal, Image, Vision

Par

Hugo MIOMANDRE

Approximated Computing-based Methods for
Memory Resources Reduction Targeting
Heterogeneous Systems
Thèse présentée et soutenue à Rennes, le 05 Décembre 2022
Unité de recherche : IETR
Thèse N° : 22ISAR 35 / D22 - 35

Rapporteurs avant soutenance :

Alberto BOSIO Professeur des Universités, INL, École Centrale Lyon

Christophe JÉGO Professeur des Universités, IMS, Bordeaux INP

Composition du Jury :

Président : Daniel CHILLET Professeur des Universités, IRISA, Enssat
Examinateurs : Francesca PALUMBO Associate Professor, UNISS

Nicolas GAC Maître de Conférence (HdR), L2S, CentraleSupélec
Alberto BOSIO Professeur des Universités, INL, École Centrale Lyon
Christophe JÉGO Professeur des Universités, IMS, Bordeaux INP

Dir. de thèse : Jean-François NEZAN Professeur des Universités, IETR, INSA Rennes
Encadrant : Daniel MÉNARD Professeur des Universités, IETR, INSA Rennes

Table of Contents

Acknowledgements 7

1 Introduction 9
1.1 General Context . 10
1.2 Scope of this Thesis and Contributions . 12
1.3 Outline . 13

I Background 15

2 Approximate Computing 17
2.1 Overview of Approximate Computing Techniques 18

2.1.1 Computation Level . 18
2.1.2 Hardware Level . 20
2.1.3 Data Level . 21

2.1.3.1 Reduction of the number of data 21
2.1.3.2 Relaxed Synchronization 23

2.2 Precision Optimisation . 23
2.2.1 Floating-Point Representation . 24
2.2.2 Fixed-Point Representation . 27
2.2.3 Variation from IEEE-754 Floating-Point Standard 31

3

TABLE OF CONTENTS

3 Programming Models 37
3.1 Task-based Programming Models . 38

3.1.1 Processes . 39
3.1.2 Threads . 40

3.1.2.1 POSIX Threads . 40
3.1.2.2 OpenMP . 41

3.2 Accelerator-based Programming Models . 42
3.2.1 OpenCL/CUDA . 43
3.2.2 OpenACC/OpenMP 4.0 . 44

3.3 Dataflow-based Models of Computation . 45
3.3.1 Process Network . 45
3.3.2 Parallelism with Dataflow Model of Computation 46
3.3.3 Synchronous Dataflow (SDF) . 48
3.3.4 Parameterized and Interfaced Synchronous Dataflow (PiSDF) . . . 49
3.3.5 Existing tools for Dataflow Applications Design 52

4 Applications 55
4.1 2D Wavelet Filter . 56
4.2 SqueezeNet CNN . 58
4.3 Square Kilometre Array Science Data Processor Implementation 59

II Contributions 63

5 Data Representation in Approximate Buffer 65
5.1 The Concept of Approximate Buffer . 66
5.2 Data Truncation . 67
5.3 Fixed-Point Representation . 69
5.4 Custom Floating-Point Representation . 72
5.5 Uniform Quantization . 74
5.6 Experimental Results . 77

5.6.1 2D Wavelet Filter . 77
5.6.2 SqueezeNet Deep Neural Network 80
5.6.3 SDP Evolutionary Pipeline . 81

4

TABLE OF CONTENTS

6 Implementation for Approximate Buffer 85
6.1 Software Implementation for CPU . 86

6.1.1 Data conversion . 87
6.1.2 Insertion/extraction . 88
6.1.3 Experimental Results . 92

6.1.3.1 2D Wavelet Filter . 92
6.1.3.2 SqueezeNet . 93
6.1.3.3 Science Data Processor . 96

6.2 Hardware Implementation for FPGA . 97
6.2.1 Results on FPGA . 101

7 Design Space Exploration for Approximate Buffers 105
7.1 State of the Art on Design Space Exploration for Approximate Computing 106
7.2 Automatic Approximate Buffer Configuration 107

7.2.1 Memory Footprint Minimisation Algorithm 107
7.2.1.1 Min Value Determination 107
7.2.1.2 Iterative Process . 109
7.2.1.3 Bit Scraping . 111

7.2.2 Complexity Analysis . 112
7.2.3 Example . 113

7.3 Experimental Results . 115
7.3.1 2D Wavelet Filter . 115
7.3.2 SqueezeNet CNN . 116
7.3.3 SDP Imaging Pipeline . 117
7.3.4 2D-DWT on FPGA . 118

8 Conclusion 121
8.1 Summary . 121
8.2 Future Works . 123

8.2.1 Impact on Other Parameters . 123
8.2.2 Extension with Additional Features 123
8.2.3 Interactions with Complementary Approaches 124

A French Summary 125
A.1 Introduction . 125

5

TABLE OF CONTENTS

A.1.1 Portée de cette Thèse et Contributions 126
A.1.2 Outline . 127

A.2 État de l’Art . 127
A.2.1 Calcul à-Peu-Près AxC . 127
A.2.2 Modèle de Calculs Flot de Donnée 129

A.3 Concept de Mémoire Tampon à-Peu-Près 130
A.4 Implémentation de Mémoire Tampon à-Peu-Près 131
A.5 Conclusion . 134

List of Figures 137

List of Tables 138

List of Listings 139

Acronyms 140

Glossary 145

Personal Publications 147

Bibliography 149

6

Acknowledgements

I would like to thank my thesis directors, Jean-François Nezan et Daniel Ménard for their
guidance and support during the 3 years of this PhD, my reviewers Alberto Bosio and
Christophe Jégo for taking the time to read this manuscript, and the members of the jury
Daniel Chillet, Francesca Palumbo and Nicolas Gac.

I would also like to thank Karol Desnos and Kevin Martin for the internship oppor-
tunity that ultimately led me down this path.

Moreover, thank to the SARS-CoV-2 which made me waste roughly a year of work
and productivity.

Finally, I would like to thank everyone from the EII department and the VAADER
research team, both for the three years of my engineering degree and for the three years of
my PhD and INSA Rennes, and to the occupants of office 214 for the everyday stupidity.

7

CHAPTER 1

Introduction

Since the last few decades, the volume of processed data has been growing in conjunc-
tion with the increase in computational power of High-Performance Computing (HPC)
systems, as well as the generalization of connected embedded systems in all forms, from
Internet of Things (IoT) devices to smartphones.

Embedded systems are computer systems purposely designed for specific applications,
as stand-alones such as autonomous lawnmower, digital camera or home appliances, or as
part of bigger assemblies such as the multiple subsystems in vehicles.

The increase in computing resources also goes in pair with the augmentation and com-
plexification of memory related systems. Both on personal computers and smartphones,
the amount of available RAM doubles every 2 to 3 years1. In a computer system, memory
is used to store data, to store program instruction, to save temporary values, and for
synchronization.

An infinitely fast processor can only operate as fast as data are transmitted to and from
it. The issue of avoiding this memory wall [WM95; JWN10; Ziv+17] has been known for
at almost 3 decades, leading to the conception of dedicated memory-specific mechanisms.
Consequently, it is evaluated that up to 80% of silicon area can be dedicated to caches,
memories, memory controllers, interconnects for the sole purpose of data transmission

1. Example with smartphones: iPhone 2G (2007): 128MB, iPhone 14 Pro (2022): 6GB, Current
highest-end: 18GB

Chapter 1 – Introduction

inside a chip [DCD97]. Additionally, the transfer of data between memory and Processing
Elements (PEs) can represent up to 62% of the energy consumed by the whole system.

As an example, in Advanced Micro Devices (AMD) Central Processing Units (CPUs)
with the Zen 3 architecture, the 32MB L3 cache alone takes around 52% of a CCD2 silicon
area, but an additional 64MB can be stacked on top of it [Bur+22], for a total of 96MB,
12MB per core. Similarly, in AMD Graphics Processing Units (GPUs) with the RDNA 3
architecture, a fully enabled chip features a 300mm2 main die accompanied by 6 individual
37mm2 16MB Last Level Cache (LLC) dies, resulting in 43% of the silicon area dedicated
solely to LLC.

1.1 General Context

The increased volume of processed data impacts computing systems on every scale, from
edge computing [ZC20] to HPC. It also affects the consumer scale, with use-cases such as
image processing on smartphones [Mor+21], where the amount of data processing have
skyrocketed both in hardware and in software, with the improvement of camera sensors
and screens along with the onboard processing power.

Large Scale Computations

The increase of data processing capabilities enables the computation of complex datasets
for specific purposes [Bra19]. The most common everyday example concerns the collection
and exploitation of user-generated data by companies of the information technology in-
dustry. Often designated with acronyms such as GAFAM3 or FAANG4, these companies
rely on large scale data processing for user profiling and recommendations [AT05].

Other application examples of intense data processing are scientific research projects
such as the Large Hadron Collider (LHC) or the Square Kilometre Array (SKA) radio
telescope.

The LHC is largest and highest-energy particle collider, designed for research in parti-
cle physics, at the European Organization for Nuclear Research (CERN). It consists in a
27 kilometres ring, with detectors specialized for specific phenomena. The LHC contains
about 150 million sensors delivering data 40 million times per second, filtered to a few

2. Core Complex Die, containing up to 8 cores.
3. GAFAM: Google, Apple, Facebook, Amazon, Microsoft.
4. FAANG: Facebook, Amazon, Apple, Netflix, Google.

10

1.1. General Context

thousands collision per seconds, for a yearly production of 88 Petabytes. The power con-
sumption for the LHC alone is about 90 Megawatts, and 200 Megawatts for all of CERN.
The LHCb detector alone, upgraded in 2022, can process around 4 Terabytes per seconds
of raw data, selecting 10 Gigabytes per seconds of interesting collision data.

The SKA radio telescope is an international effort to build the world’s largest radio-
telescope, with a final collecting area of around one square kilometre. The SKA is expected
to start its operations with hundreds of parabolic dishes and tens of thousands antennae
in South Africa and Australia, producing more than 30 terabits per seconds of raw data.

Machine Learning

Machine learning have found applications in various domains, such as image/video pro-
cessing (classification [KSH12], video compression [Tis+20], image upsampling [Bas+21],
autonomous driving [Kir+21; Gri+20]), language processing [OMK18], network intrusion
detection [Sou+22; De +21]...

The gain of popularity around machine learning during the last decade as given birth to
extremely large deep learning models. These models can be composed of tens to hundreds
of billions of parameters and trained on large dataset.

As an example, a few large language processing models can be cited: Generative Pre-
trained Transformer 3 (GPT-3) [Bro+20] with 175 billion parameters trained on a 45
Terabytes dataset, DeepMind Gopher [Rae+21] with 280 billion parameters trained on
MassiveText, a 10.5 Terabytes dataset, Microsoft/Nvidia Megatron-Turing [Smi+22] with
530 billion, or Google PaLM [Cho+22] with 540 billion parameters.

A currently trendy application of machine learning is Text-to-Image generation, with
examples such as: DALL-E [Ram+21] (derived from GPT-3) with 12 billions parameters
trained on a 250 million image-text pairs dataset, Midjourney, Google Imagen [Sah+22]
with 2 billion parameters, Parti [Yu+22] with 20 billion, or Stable Diffusion [Rom+21].

These models require a lot of hardware resources for training and inference, with
the power consumption that goes along with it. Specific optimizations such as memory
optimizations become increasingly necessary to facilitate the deployment and embedding
of these models by reducing the hardware resources requirements as well as the associated
memory consumption.

11

Chapter 1 – Introduction

1.2 Scope of this Thesis and Contributions

Memory-related limitations are a major consideration during design and deployment of
data processing applications on computer systems, either in terms of capacity, energy,
transmission or area.

The Approximate Computing (AxC) paradigm [HO13] has emerged as a way to im-
prove the energy efficiency and/or the performance of computer systems, by trading-off
result accuracy in application where data integrity is not critical, such as dropping a frame
during the encoding or decoding of a video stream. AxC techniques can be segmented in
3 categories, whether they impact the data used during computations, the nature of the
computation itself, or parameters of the hardware. These techniques tend to be difficult to
implement but are susceptible to reduce the strain on the memory systems of a computing
platforms.

Another method to impact the requirement related to memory systems is the use
of specific Models of Computation (MoCs). Describing a data processing application
with specific MoCs can highlight opportunities for memory optimizations. Dataflow-based
MoCs have the particularity of bringing to the forefront the handling of memory, both in
terms of allocation and transit, highlighting opportunities for optimization.

The objective of this thesis is to develop new techniques to enable reductions of memory
footprint requirements of data processing applications using the AxC paradigm alongside
dataflow-based representations.

The main contributions of this thesis are:

1. A study of the impact of bit-width and representation of the storage memory of
applications on the output quality. Data storage is considered using an arbitrary
number of bits, coupled with a customizable data representation to minimize the
loss of quality. This contribution has been published partly in [Mio+20].

2. A method to convert and store in memory of data with an arbitrary bit-width
for CPU-based platforms. This method handles the memory operations to store
unaligned data of unconventional bit-width into concatenated segments. This con-
tribution has been published partly in [Mio+20].

3. A method to efficiently insert and extract data from packet for Field-Programmable
Gate Array (FPGA) storage resources optimization. This method is able, from a
dataflow representation, right after the buffer-sizing process, to find optimal pack-

12

1.3. Outline

ing ratio to reduce the requirement on embedded hardware storage resources. This
contribution has not been published yet.

4. A Design Space Exploration (DSE) method based on AxC to reduce the memory
footprint of an application by reducing the bit-width used for internal data storage.
This method finds an acceptable association between data representation and stor-
age bit-width for a set of memory buffer of an application. The memory footprint is
minimized while respecting a determined quality constraint. This contribution has
been published in [MNM22].

Most of the contributions of this thesis as been integrated into the Parallel and
Real-time Embedded Executives Scheduling Method (PREESM) application development
framework.

1.3 Outline

This thesis is organized in to parts: Part I presents the general context and motivation of
this thesis, and Part II introduces and evaluates the contributions of this thesis.

In Part I, Chapter 2 provides a general overview of AxC techniques and which aspect
of an application they affect. Chapter 3 presents the main programming model paradigms
for parallel computations, along with the concept of dataflow MoC used in this thesis.
Finally, Chapter 4 details the applications used to evaluate the contributions of this thesis.

In Part II, Chapter 5 goes over the general concept and impact on quality of the AxC
contributions of this thesis. Chapter 6 provides guidelines one the implementation of these
contributions. Chapter 7 presents a DSE method for efficient parametrization of the AxC
techniques presented in previous chapters. Finally, Chapter 8 concludes this work and
proposes potential future research paths.

13

Part I

Background

15

CHAPTER 2

Approximate Computing

Introduction

An objective of this thesis is to design techniques based on the Approximate Comput-
ing (AxC) paradigm. For this purpose, this chapter introduces the concept of AxC and
presents a non-exhaustive list of diverse existing AxC techniques. An AxC technique is a
technique which, when applied on a system (hardware and/or software), will lead to the
production of an inaccurate yet usable output. The compensation for this inaccuracy is a
reduced set of resources (processing power, memory footprint, energy consumption, silicon
area, ...) or an increase in performance (higher throughput, lower latency, ...) depending
on the needs and the AxC techniques used [BMS22].

These AxC techniques can be segmented in 3 groups depending on the way they
affect the system. First, Computation Level AxC techniques modifying the nature of the
computations are presented in Section 2.1.1. Then, Hardware Level AxC techniques relying
on specific hardware behaviour or modification are presented in Section 2.1.2. Finally, Data
Level AxC techniques applied on the data themselves are presented in Section 2.1.3.

This thesis will specifically focus on Data Level AxC techniques aiming at reducing
the memory footprint of an application. A wider summary of other AxC techniques is
available in [Bon19; XMK15; Mit16; BMS22].

Chapter 2 – Approximate Computing

Section 2.1 presents a non-exhaustive overview of various AxC techniques while Sec-
tion 2.2 specifically focuses on precision optimization and specific data-types.

2.1 Overview of Approximate Computing Tech-
niques

2.1.1 Computation Level

Computation Level AxC techniques consists in modifying the algorithm itself to reduce
its complexity. The two main methods are Computation Skipping and Computation Ap-
proximation, as shown in Figure 2.1.

Computation
Level

Computation Skipping

Computation Approximation

Incremental Refinement
Loop Perforation

Parameter Modification
Fuzzy Memoization

Early Termination/Iterative Refinement
Block Skipping

Mathematical Approximation

Figure 2.1: Computation-level approximate computing techniques.

Computation Skipping consists in not executing portions of the program to reduce
the computation complexity. Fine-grained Computation Skipping can be done with Loop
Perforation, by executing only a subset of the iterations of a loop [Sid+11; Vas+15], or
by Early Termination, generally by prematurely ending a computation loop of a conver-
gent iterative algorithm such as gradient descent [Meh+09; Zha+14]. A coarser-grained
Computation Skipping is doable with Block Skipping, by not executing entire processing
blocks of a complex application such as a video encoder/decoder [Bon+22].

Computation Approximation consists in replacing a complex computation by a simpler,
faster one, producing close enough results. Two possible methods are Fuzzy Memoization
and Mathematical Approximation. Memoization consists in storing the result of a compu-
tation in a Look-Up Table (LUT) to reuse it the next time the same computation has to
be processed, simply skipping it, working like a cache memory, using input operands as ad-

18

2.1. Overview of Approximate Computing Techniques

dresses [Sur+15]. By itself, Memoization is not an AxC technique, and benefits from using
it could be voided by the size of the LUT stored in memory. Fuzzy Memoization extends
this principle by masking N Least Significant Bit (LSB) from the operands. This results
in group of operands being affected the same LUT address, and thus the same result. The
trade-off between output quality, processing time and the LUT memory footprint can
be tweaked by adjusting the parameter N . Mathematical Approximation techniques are
quite straightforward and are commonly used in embedded systems. It consists in imple-
menting simpler mathematical functions in place of more sophisticated ones, as presented
in [Mul20]. One way of implementing such method is to approximate a sophisticated func-
tion by a group of simpler polynomial functions, which coefficients are stored in a LUT,
the N Most Significant Bit (MSB) of the operand serving as the LUT address.

Another method of mathematical approximation is to simply perform a set of com-
putation producing an accurate enough result compared to its accurate counterpart. An
example of this is the algorithm for the fast inverse square root (Listing 2.1), made pop-
ular for its use in the video game Quake III Arena for computing angles of incidence and
reflection for lighting and shading. It computes an approximation of 1√

x
with unconven-

tional operations, such as shifting a floating-point operand and subtracting to a magic
number (0x5F3759DF).

1 float Q_rsqrt (float number){
2 long i;
3 float x2 , y;
4 const float threehalfs = 1.5F;
5
6 x2 = number * 0.5F;
7 y = number;
8 i = * (long *) &y; // evil floating point

bit level hacking
9 i = 0 x5f3759df - (i >> 1); // what the fuck?

10 y = * (float *) &i;
11 y = y * (threehalfs - (x2 * y * y)); // 1st

iteration
12 // y = y * (threehalfs - (x2 * y * y)); // 2nd

iteration , this can be removed
13
14 return y;
15 }

Listing 2.1: Fast inverse square root algorithm from Quake III Arena, with the original
comments.

19

Chapter 2 – Approximate Computing

This first approximation is refined with a single iteration of the Newton’s method,
bringing down the maximal relative error to 0.175%. This algorithm is however completely
outmatched on x86 architectures, both in terms of accuracy and performance, by the
rsqrtss Streaming SIMD Extension (SIMD) instruction.

These methods can be applied on a wide range of applications, and can be combined
with other types of AxC techniques to target specific use-cases, such as video compression
encoders like the High Efficiency Video Coding (HEVC) standard [NMP16].

2.1.2 Hardware Level

Hardware Level AxC techniques consists in using circuit built with a known inaccuracy
compensated by a lower energy consumption or by a faster output production. Figure 2.2
shows an overview of Hardware Level AxC techniques.

Hardware
Level

Approximate Processing Units

Circuit Parameters Modification

Inexact Adders
Inexact Multipliers

DVFS
Clock Gating

Unreliable Storage

Figure 2.2: Hardware-level approximate computing techniques.

Approximate Processing Units are designed to be faster than their accurate counter-
parts at the price of producing a slightly inaccurate output [Gup+11; Mah+10]. Inexact
Adders can be designed in multiple ways, the majority of which consists in reducing
the length of the critical carry chain path [KGE11]. This can be done by segmenting
the adder, processing the MSB and the LSB with different methods, or with specula-
tive adders, which can speculate the carry from previous adder stages to produce faster
results. Inexact Adders are design to reduce their hardware requirement and associated
power consumption while keeping their error-rate within reasonable margins.

Circuit parameters modification consists in changing parameters such as operating
voltage and frequency of a circuit. A circuit producing accurate results is only guaranteed
to do so if its operating voltage and frequency requirement are satisfied. These require-
ments provided by the manufacturer have a margin to account for manufacturing process

20

2.1. Overview of Approximate Computing Techniques

variability. This means a lower-than-nominal voltage can be applied without necessarily
compromising the output accuracy, resulting in a lower energy consumption, as long as
it stays above the critical voltage. Around/below this critical voltage, the circuit is not
guaranteed to produce inaccurate results, which may be corrected by an error-correcting
circuit. Using a near/sub critical operating voltage can result in important energy sav-
ing as the dynamic power consumption of a circuit is proportional to the square of the
operating voltage. However, reducing the operating voltage leads to an increase in the
delay to produce an output. A similar observation can be made of operating frequency, as
an increased frequency will lower the output delay but at the same time increase power
consumption and critical voltage.

The use of Unreliable Storage consists in storing data in a memory system having a
known tendency to decay. This decay may have different origins. Memory cell identified
as faulty, either from factory or from wear, can be reused [Smo+13] depending on the
kind of fault introduced. Operation parameters of the memory system can be adjusted to
find a compromise between energy consumption, latency and accuracy. These operating
parameters can be the supply voltage [Fru+15] or the refresh rate [Rah+14].

Other strategies aim at reducing the amount of memory required to store data, by
using in-memory compression or by using the same memory space to store similar values.
This latter method is experimented with in [Mig+15], by using the same tag for similar
cache blocks for error-resilient application. This enables substantial reduction in required
storage area, as well as energy consumption.

2.1.3 Data Level

Data-driven AxC techniques benefit from a reduction in either the amount of data to
process, or the actual representation in computer memory. Less data to process means
a faster execution time for an optimized application, and alternative data representation
can lead to faster computations. Different data-driven AxC techniques are presented in
Figure 2.3.

2.1.3.1 Reduction of the number of data

The basic idea associated with the reduction of the number of data is shown in Figure 2.4.
This reduction can be done in the spatial or in the time domain. Both techniques are mas-
sively used by application designers in signal, image or video processing to meet real time

21

Chapter 2 – Approximate Computing

Data Level

Reduction of the number of data

Precision Optimization

Less up-to-date data

Spatial Decimation
Temporal Decimation

Standard / Custom Floating-point
Fixed-point

Relaxed Synchronization

Figure 2.3: Data-level approximate computing techniques.

and complexity constraints. Concerning the time domain, reducing the sampling rate of
a signal to process allows decimating it. The reduction of the sampling rate reduces the
bit rate of the process which impacts the quality of the signal to process. In Figure 2.4b,
data downsampling is done by doing the computations with a sampling frequency lower
than the sampling frequency without data downsampling presented in Figure 2.4a, which
implies that data are present less often. When it comes to the spatial domain, the signal
to process can be downscaled (fitting a signal to a lower resolution) or upscaled (fitting a
signal to a higher resolution). In Figure 2.4c, data downscaling is done by doing the com-
putations on input data of smaller sizes compared with the original input data presented
in Figure 2.4a.

t

(a) Reference data.

t

(b) Downsampled data
t

(c) Downscaled data

Figure 2.4: Reduction of the volume of data to process

In [ACN14], data downsampling is used to reduce of the amount of computations in
the time domain. The proposed AxC method is demonstrated on a timing synchronization
problem for Wideband-Code Division Multiple Access (W-CDMA) systems. The timing
synchronization is originally done with the computation of a matched filter. The input

22

2.2. Precision Optimisation

samples of the matched filter can be decimated by a factor D, consequently reducing by
the same factor the amount of Multiply-accumulate (MAC) operations to perform. This
AxC technique enable a tunable trade-off between the complexity of the algorithm and
the performance, depending on the targeted Signal-to-Noise Ratio (SNR).

This method has the advantage of reducing the computational load as well as enabling
the use of additional techniques, such as a reduction of the sampling rate of the system.

2.1.3.2 Relaxed Synchronization

Another method to reduce the amount of data used by a processing platform is to use
outdated data. Indeed, depending on the application, synchronizations in parallel program
can lead to a significant overhead.

It is shown in [Ren+12] that the K-Means algorithm on an IBM Power 7 can spend as
much as 90% of computation time in synchronization. While synchronizations are manda-
tory in parallel programs for concurrent threads progression as well as shared memory
manipulation, relaxing these constraints can lead to a reduction in computation time and
energy consumption.

Data manipulations within critical sections of a program represent fundamental sources
of serializations and bottlenecks in the way of computation performance and efficiency.
Methods exist to reduce the performance degradation from synchronization. The Specu-
lative Lock Elision (SLE) [RG01] technique consists in executing a critical section with-
out acquiring the corresponding lock. Much like branch prediction mechanisms, miss-
calculations from inter-thread data conflicts are checked and corrected if necessary. The
SLE method potentially enables performance improvement by reducing the amount syn-
chronization and communication. An AxC-based version of SLE, named Approximate
Speculative Lock Elision (ASLE) [KAK18], consists in selectively not performing error
correction despite data conflicts detection. This enables an increase in parallelization ef-
ficiency at the price of a small loss of accuracy.

2.2 Precision Optimisation

AxC techniques revolving around data representation belong into the Data Level category,
and are the focus of this thesis.

Algorithms are usually designed with the intent of producing high-accuracy results,
relying for instance on IEEE-754 Floating-Point (FP) arithmetic and written with a high-

23

Chapter 2 – Approximate Computing

level programming language (C/C++, Matlab, Python, ...). The constraints of implementing
on an actual embedded architecture with limited resources are taken into account at
a latter time. However, these complex and highly accurate reference implementations
are obstacles to their embeddability. Indeed, in the case of a naïve but straight-forward
implementation, the high-precision requested of the results would be achieved at the cost
of high memory storage and processing power needs, as well as a high memory footprint,
and even hardware resources such as a capable Floating-Point Unit (FPU). Not only these
needs can be unsatisfiable on a given embedded platform, but even if they are, they may
be a significant source of latency, violating a potential real-time constraint. Real-time
requirements and power consumption being among the major constraints associated with
the design of embedded systems, there is a need to adapt reference algorithms before
embedding them. Variation in the data representation is one such method to efficiently
trade-off results precision for processing power [BSM17].

2.2.1 Floating-Point Representation

Floating-point arithmetic is commonly used in application development for its ease of use.
It offers both a high dynamic range and a high precision, and any necessary conversion
step is directly handled by the hardware. An overview of software implementation of algo-
rithms using floating-point arithmetic is provided in [Mul+18]. Moreover, floating-point
representation is able to encode both very small and very large values. According to the
IEEE-754 standard for floating-point arithmetic [19], floating-point numbers representa-
tion is composed of four parameters: the sign s, the exponent e, the mantissa m and
the exponent bias b (usually equal to half the amplitude of the exponent minus 1). The
corresponding value is encoded as follows:

x = (−1)s × 2e−b × (mM+1 +
M∑

i=1
mM−i × 2−i) (2.1)

with s the sign bit, m the M+1 -bit wide significand e the E-bit wide exponent, stored as
an integer representing the position of the radix-point, and b the exponent bias equal to
2E−1 − 1. The MSB mM+1 of the significand is implicit, meaning it is not actually stored
in memory. Instead, the value of this implicit lead-bit mM+1 is inferred from the exponent
and is equal to 1 most of the time.

24

2.2. Precision Optimisation

Table 2.1: IEEE-754 floating-point formats and their associated s.e.m.b parameters.

Data-type Sign Exponent Mantissa Exponent Bias Format

IE
EE

-7
54

FP16 1 5 10 15 FlP1.5.10.15
FP32 1 8 23 127 FlP1.8.23.127
FP64 1 11 52 1023 FlP1.11.52.1023
FP128 1 15 112 16383 FlP1.15.112.16383
FP256 1 19 236 262143 FlP1.19.236.262143

The FP format is capable of handling specific situations using the lowest and the
highest binade: a) The lowest binade is used to represent subnormal numbers. When
exponent e = 0, the implicit lead-bit mM+1 becomes 0 to allow the representation of
number below the regular representation space. b) The highest binade is used to represent
±∞ and to represent result of incorrect operation with Not-a-Numbers (NaNs). These
specific cases need to be supported by the FPU to comply with the IEEE-754 standard.

The most commonly used floating-point data-types are the IEEE-754 32-bit Single-
Precision Floating-Point (FP32) format (Figure 2.6a) and the IEEE-754 64-bit Double-
Precision Floating-Point (FP64) format. A FP32 number is represented with M = 23 bits
for the mantissa and E = 8 bits for the exponent, and a FP64 number is represented with
M = 52 bits for the mantissa and E = 11 bits for the exponent. The exponent is stored
with a bias of 2E−1−1, meaning that its value is interpreted as 2e−(2E−1−1) and is actually
stored in memory as e− (2E−1 − 1).

Using the notation FlPs.e.m.b, with s the sign-bit, e the number of exponent bits, m the
number of mantissa bits, and b the exponent bias, the FP32 format can be represented as
FlP1.8.23.127 and the FP64 format as FlP1.11.52.1023.

The IEEE-754 standard also defines the IEEE-754 16-bit Half-Precision Floating-
Point (FP16) format (Figure 2.6b) represented as FlP1.5.10.15 and the IEEE-754 128-bit
Quadruple-Precision Floating-Point (FP128) format represented as FlP1.15.112.16383. The
FP16 format is well suited for applications where higher precision is not essential in the
computation, such as image processing pipelines or machine learning, while the latter is
effectively only used to minimize the overflow and rounding error of FP64 operations.
It also mentions an IEEE-754 256-bit Octuple-Precision Floating-Point (FP256) format
represented as FlP1.19.236.262143. These IEEE-754 formats are summed up in Table 2.1

Figure 2.5 shows the maximal relative error and the range for the three most used FP
data-types for normal numbers in R+. Results for values from R− are symmetric. Values

25

Chapter 2 – Approximate Computing

2−1024 2−896 2−768 2−640 2−512 2−384 2−256 2−128 20 2128 2256 2384 2512 2640 2768 2896 21024
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

Value

M
ax

re
la

tiv
e

er
ro

r
(%

)

FP16
FP32
FP64

Figure 2.5: Relative error of FP data-types compared to real values.

below and above the representation space of a data-type are not shown as they are either
represented as subnormal numbers or flushed to 0, or rounded to ±∞.

Increasing e enable a widening of the representation space toward 0 and ±∞, while
increasing m improve the accuracy of the format. The exponent bias b is constrained to
2E−1 − 1 to keep the representation space centred around 21.

Some FPUs may use extended-precision formats either as an independent format or
as an intermediary to minimize overflow and rounding error on FP operations. The most
common is the 80-bit FlP1.15.63.1023, but a 40-bit FlP1.8.31.1023 also exists. The compliance
to the IEEE-754 standard is hardware-dependant.

While FP arithmetic is usually used both for its ease of use and its accuracy, it has
drawbacks that may need to be accounted for. This may lead to accuracy issues, whose
severity depends on the actual application.

FP computations are not necessarily associative, meaning that a + (b + c) may not
be equal to (a + b) + c. This inaccurate behaviour is especially susceptible to appear in
heavily parallel application using atomic operation where a race condition is bound to
happen, make the computation effectively unreproducible. Moreover, this leads to the
necessity for leniency of an epsilon when checking for equality between two floating-point
numbers [Knu97]. Another cause of non-reproducibility issues may be due to hardware
dependent behaviour such as rounding modes, which may cause inconsistent computation
between hardware architectures[xAn18]. The ability to represent special states such as
NaN and Infinitys can lead to disastrous error propagation if not properly accounted for.

26

2.2. Precision Optimisation

The use of an explicit exponent field allow FP representations to maintain a flat relative
error across the representation space, which implies an increasing absolute error. This
may lead to issues such as losses of significance through catastrophic cancellation [Gol91],
when subtracting nearly equal values obtained with a small imprecision, increasing the
relative error beyond acceptable bound [BOB91].

Using the already available and well-supported FP formats can be enough to sub-
stantially impact performance or resources requirements without the need to implement
specific AxC techniques.

In [Tin+19], the authors show, on the NEMO and ROMS ocean models, that while
a global reduction of variables precision leads to change in results beyond what was
deemed acceptable, it is possible to selectively reduce variables precision without affecting
the results. As scientific models tend to exclusively use FP64 variables, these reductions
consist in using FP32 variables instead when possible, and even in some cases FP16
variables. This process can lead to a diminution of the memory footprint (44.9% decrease
in memory usage with the NEMO model) as well as a potential performance increase,
thanks to modern Central Processing Units (CPUs) vector operation capabilities.

In [Hat+17], the authors demonstrate that in some applications, such as weather
forecasts, results are more impacted by observation noises and models imperfections than
by computational accuracy limitations. Consequently, it is possible to reduce the size of
variables from FP64 down to as low as FP16 variables, without any significant loss in
results accuracy. The additional computing time recovered through the use of narrower
data types can be reinvested into larger data ensembles, leading to an increase in quality
of weather forecasts.

2.2.2 Fixed-Point Representation

The Fixed-Point (FxP) arithmetic enables non-integer computations to be performed on
conventional integer Arithmetic Logic Units (ALUs). This combines the relative versatility
of the floating-point representation with the lightweightness of integer computations. The
FxP representation consists in representing an FP value as an integer.

Implementing an algorithm using floating-point arithmetic is simple and straightfor-
ward, but it has certain requirements. The implementation of an FPU has a significant cost
in terms of area, energy consumption and latency. These costs are evaluated in [Bar17], for
basic operations such as addition and multiplication using MentorGraphics, and shown
in Table 2.2.

27

Chapter 2 – Approximate Computing

Table 2.2: Cost of floating-point addition and multiplication compared to integer [Bar17].

Area (µm2) Total Power (µW) Critical path (ns)
32-bit float ADD 653 0.439 2.42
64-bit float ADD 1453 1.120 4.02
32-bit integer ADD 189 0.037 1.06
64-bit integer ADD 373 0.071 2.10
32-bit float MPY 1543 0.894 2.09
64-bit float MPY 6464 6.560 4.70
32-bit integer MPY 2289 0.065 2.38
64-bit integer MPY 8841 0.184 4.52

Concerning the addition, a floating-point adder requires an area 3.5 to 3.9 times larger
that an integer adder and has a power consumption 12 to 15.7 times higher and the
latency is around 2 times longer. Concerning the multiplication, a floating-point multiplier
requires approximately 30% less area than an integer multiplier, has a similar latency,
but has a power consumption up to 35 times higher. The area used by floating-point
multiplier is lower than its integer counterpart as multiplication on floating-point values
is only done between mantissae, exponent being added together. This is explained by
the process of adding and multiplying floating-point data within an FPU. The process
of adding together two floating-point numbers requires the exponent value of the lower
to be adjusted to the higher one, shifting the mantissa to the left along the way, then
performing the M -bit addition, which is significantly more complex than performing an
integer addition. A floating-point multiplication consists in adding together the exponent
values and multiplying the mantissae, equivalent to an M -bit multiplication and an E-bit
addition.

This gap in energy consumption between integer and FP computations is also verified
in [Hor14] which shows that FPU-based operations can require up to 10 times more
energy compared to integer operations. It also insists on the energy-consuming nature of
the whole memory system, with cache-related energy consumption being 1 to 2 orders of
magnitude higher than operations, and 3 orders of magnitude for DRAM accesses.

An FPU is not mandatory to perform FP computations, and resorting to software
emulation is possible in cases where silicon area is critical, but comes at the cost of a
significant energy and latency penalties, hence the appeal of FxP arithmetic.

28

2.2. Precision Optimisation

A simplified way to apprehend FxP arithmetic is to consider that instead of storing
the position of the radix-point with the exponent field as done in FP representation, it is
implicitly kept track of.

A number x is encoded using FxP arithmetic with three parameters, the sign-bit s,
the number of bits m used to encode the integer part and the number of bits n used
to encode the fractional part. The parameter m usually includes the sign-bit. The sum
s + m + n gives the total width of the data. m represents the distance in number of bits
between the radix-point and the Most Significant Bit (MSB) and n the distance between
the radix-point and the Least Significant Bit (LSB). The parameter n can also be used
as a scaling factor of 2−n. The FxP representation xF xP of the floating-point number x is
obtained with:

xF xP = < xF P × 2n > (2.2)

with <. . . > being the rounding mode. The data is encoded as follow:

xF xP = (−2)m−1 × s +
m−2∑
i=−n

bi × 2i (2.3)

b being the value of each bit. As with regular integers, negative values are represented
with the two’s complement instead of using a dedicated sign-bit.

A common notation for the FxP format associated with a variable is the Q notation
Qm.n, with n the number of bits for the fractional part and m the number of bits for the
integer part. The actual use of this notation may vary from person to person on whether
the sign-bit is included in the parameter m, but is always signed.

Consequently, converting an FxP value to an FP format is simply done with:

xF P = xF xP × 2−n (2.4)

Performing computations on FxP formatted values requires a similar logic as software-
emulated FPU operations: For addition and subtraction, the two operands need to have
the same m parameter. The operand with the lowest m value needs to be shifted right
accordingly. To account for potential overflows, the results may require an additional
integer bit. In cases where the total bit-width of data is constrained, this increase of the
parameter m goes along with a decrease of the parameter n.

For the multiplication of two operands Q1m1.n1 and Q2m2.n2 , the values for Q1 and
Q2 can be multiplied directly, but the result Qr will be formatted as Qr(m1+m2).(n1+n2).

29

Chapter 2 – Approximate Computing

Similarly to additions, parameter m and n need to be adjusted, though multiplication
between integers often imply a type promotion.

The modification of an application’s computation from FP to FxP arithmetic can be a
complicated and time-consuming process. As the exponent is no longer stored explicitly,
every arithmetic operations with two FxP operands Q1 and Q2 producing a result Qr

such as Q1m1.n1 ·Q2m2.n2 = Qrmr.nr is unique for the set of parameter m1, n1, m2, n2, mr

and nr.
FxP arithmetic may be used in specific use-cases where hardware resources and cost

need to be minimized by omitting an FPU, such as decoding audio codec like MP3 or
Ogg Vorbis. Older video game systems such as the Sony PlayStation and the Nintendo
GameCube also relied on FxP arithmetic for their 3D graphics engines. The first gener-
ation of Google Tensor Processing Units (TPUs) was designed to perform 8-bit matrix
multiplication through a 256x256 systolic array.

On the software side, the TeX typesetting software uses a Q16.16 format for its position
calculation and a Q20.12 format for font metrics. The TrueType font format uses Q26.6 for
font hinting. The video game Doom and all its modern ports use a Q16.16 format for all
non-integer computations.

FxP arithmetic may also be used to guaranty bit-accurate results from an algorithm
by avoiding hardware-dependent behaviour of FP calculations such as rounding rules.

It is also usable for data processing application on processors with large Single In-
struction Multiple Data (SIMD) units capable of performing operations on packed integer
data.

Modifying an application to support FxP can be beneficial in terms of performance,
but may also enable energy efficiency improvements.

In [Has+15], the authors detail a memory efficient implementation of a Fast Fourier
Transform (FFT) algorithm onto a manycore architecture, namely the Kalray MPPA-256
Andey, a 256-core processor. This implementation of the FFT algorithm makes use of FxP
arithmetic to allow computation to take place on this memory-constrained architecture,
having only around 1.7 MB of available memory per 16-core clusters. It results in an
implementation 671 times more energy efficient than the x86 reference.

The FxP representation can also serve as a basis for alternative formats. The Logarithmic
Number System (LNS) consists in encoding the logarithm of the data. The conversion
process from the linear domain to the logarithmic domain is performed as LX = logb X,

30

2.2. Precision Optimisation

and the inverse as bLX = X, with LX the logarithm of the data X and b the base. This
exponent LX can be stored and used in computation using FxP Qm.n representation, with
two’s complement. As logb X is only defined for X ∈ R∗

+, an additional sign-bit is required
for case when X < 0. Moreover, a specific status bit is necessary to represent X = 0. An
additional status bit can be added to enable the representation of specific cases such as
±∞ and NaNs. In this case, the data-width is 2 + m + n.

The use of LNS, with the transition from the linear domain to the logarithmic domain,
can be taken advantage of to modify subsequent computations [DD07]. Indeed, logarithmic
identities can be applied to perform the required operation in the logarithmic domain.
Some operations are simplified, such as multiplication, division, exponentiation and nth

root:

LX×Y = LX + LY

LX/Y = LX − LY

LXn = n× LX

L n√
X = 1

n
LX

While some are made more complex:

LX+Y = LX + L(1+ Y
X

)

LX−Y = LX + L(1− Y
X

)

The relevance of LNS depend on the application it is used with. It can for example
be used for efficient Field-Programmable Gate Array (FPGA) implementations of neural
network models, by coupling linear and logarithmic computation paths [CDP22], almost
eliminating linear multiplications. By reducing the bit-width, conversion from one domain
to the other can be implemented with LUTs.

2.2.3 Variation from IEEE-754 Floating-Point Standard

Custom floating-point data-types can be used on specific applications using platforms such
as Application-Specific Integrated Circuits (ASICs) or FPGAs, as these can not abide by
the standards, such as IEEE-754, as opposed to CPUs, Digital Signal Processors (DSPs) of
Graphics Processing Units (GPUs) which are bounded by their internal architectures and

31

Chapter 2 – Approximate Computing

instruction sets. This allows ASICs and FPGAs to implement floating-point arithmetic
using custom length of even custom behaviours.

(a) FP32 (FlP1,8,23,127).

(b) FP16 (FlP1,5,10,15). (c) BF16 (FlP1,8,7,127).

(d) TF32 (FlP1,8,10,127).

(e) DLF (FlP1,6,9,31). (f) E5M2 (FlP1,5,2,15). (g) E4M3 (FlP1,4,3,7).

(h) MSFP12 (FlP1,8,3,127, boundingbox = 16).

Figure 2.6: FP-based format usable as alternatives to IEEE-754 formats, separated into
their sign, exponent and mantissa fields.

The regular FP32 format is widely used both for its ease of use and its wide represen-
tation space (from ≈ 2−126 up to ≈ 2127). However, the width and the relative accuracy
of this representation space may be ostentatious depending on the application. This is
why a flurry of alternative data representations for non-integer numbers have been devel-
oped, some with the appropriate hardware support, to fit the needs of compute-intensive
application not requiring the relatively high accuracy allowed by FP32.

The Brain Floating-Point (BF16) format (Figure 2.6c), also called bfloat16, is a 16-bit
wide format first proposed by Google. It is defined as FlP1,8,7,127. It features the same
range as the standard FP32 format, but with a reduced precision. BF16 are intended
to be used in machine learning algorithms where range is more valuable than precision.

32

2.2. Precision Optimisation

In terms of storage and representation, it is equivalent to the FP32 format with its 16
LSBs truncated. subnormal numbers can either be flushed to zero of properly handled
depending on the implementation. Support for BF16 computation can either be done
through software by truncation or with actual BF16-enabled FPUs. Compared to the
FP16 format, BF16 have a wider representation space and a higher relative error.

The TensorFloat-32 (TF32) format (Figure 2.6d) has been introduced by NVIDIA
in 2020, with hardware support in tensor cores of its GPUs, starting from the Ampere
architecture [Nvi20]. It can be represented as FlP1,8,10,127, and essentially equivalent to
the truncation of FP32 down to its 19 MSBs. Despite its name, the TF32 format uses 19
bits during computation but is still stored as a FP32, on 32 bits. The TF32 format is not
directly usable by the end-user as any other data-type, but rather internally used inside
the GPU for intermediate computations. The TF32 format combines the 8 exponent bits
from the BF16 format with the 10 mantissa bits from the FP16 format. This enables
TF32 to have the range of BF16 with the precision of FP16.

Two variations of an 8-bit FP format (Figures 2.6f and 2.6g) have been introduced by
NVIDIA in 2022 for AI training and inference with tensor cores of its Hopper [Nvi22b]
and Ada Lovelace [Nvi22a] architecture [Mic+22]. The two formats can be defined as
FlP1,5,2,15 and FlP1,4,3,7. As with the TF32 format, these two formats referred by NVIDIA
as FP8E5M2 and FP8E4M3 are not for use by the end-user but for internal computation
within a tensor core. The accumulation result from FP8 matrix multiplication is still
stored with an FP32 or FP16.

The customization can be done on the length of the exponent and the mantissa, as
well as different representation, like Posit arithmetic (also called Type III Unums), which
claim to have a larger dynamic range and a higher accuracy [GY17]. This alternative to
IEEE-754 floating-point arithmetic was shown in [Din+19] to be efficient in areas like
machine learning or graphics rendering, while being worse than floating-point in areas
such as particle physics simulations. This flexibility in the implementation of the floating-
point arithmetic allows finer optimizations and a better compliance with the constraints
previously stated, as well as the possibility to trade between accuracy and performance,
as shown on FPGA in [MS13]. However, a specific study is needed when using a custom
floating-point data-type to ensure the validity of the result in the targeted application.

A method for performing FP computation on FxP processors is the use of Block
Floating-Points (BFPs). The BFP format consists in grouping and storing multiple FP
values without their exponents, and storing a single shared exponent for the whole block.

33

Chapter 2 – Approximate Computing

Microsoft introduced the Microsoft Floating-Point (MSFP) format (Figure 2.6h), a type of
BFP, specifically dedicated for Deep Neural Network (DNN) workloads [Dar+20]. Values
sharing an exponent are grouped in a block called a bounding-box, usually with a size rang-
ing between 16 and 128 elements. The bounding-boxes can use a tile-based partitioning for
efficient data representation. The configuration of the MSFP format is variable depending
on the needs, and is expressed as MSFPN , with N the bit-width (exponent included).
For N ∈ [8, 11], MSFPN is represented as FlP1,5,N,15 and for N ∈ [12, 16], MSFPN is
represented as FlP1,8,N,127. Because the exponent value is shared across all data within a
bounding-box, representing 0, which requires every bit apart from the sign-bit to be at 0,
would lead to the loss of the whole block. Consequently, there is no implicit bit in the
MSFP representation, all mantissa bits are represented explicitly. Computations involv-
ing data within a bounding-box can be performed with FxP operators. Specific hardware
support for MSFP enables a reduction both in terms of area and energy.

In [Agr+19], the authors propose the DLFloat (DLF) format (Figure 2.6e), a 16-bit
floating-point format designed for deep learning applications, composed of a sign bit, 6
exponent bits and 9 mantissa bits, midway between the FP16 and BF16 format. The
article states that deep learning accelerators using FP16 suffer from software overhead,
while those which use BF16 have limited power savings. The proposed DLF format is
simplified compared to the IEEE floating-point specifications to allow simplification of
the FPU logic. The first binade is used to represent normal numbers instead of subnormal
numbers, which are not supported. NaNs and infinity are fused into a single NaN-Infinity
symbol at the top of the last binade, at value 0x7FFF or 0xFFFF, the rest of the last
binade being used for normal numbers. Zero and NaN-Infinity are unsigned, meaning the
sign-bit is ignored when handling these values. Finally, the rounding mode is fixed to
round-nearest-up. Deep Learning network training using the DLF format produces results
close to the FP32 reference.

A comparison between FP32 and FP16, BF16, MSFP8 and Posits for deep leaning
inferences has been done in [Res+20]. The model were stored in memory with different
data-types, but the actual computation were still performed on FP32, with the intent
of reducing the requirement in terms of memory capacity and bandwidth. The FP16
and BF16 formats produce similar results compared to FP32. The MSFP8 format gave
insufficient results, and Posits tended to perform well, with some exceptions.

34

2.2. Precision Optimisation

Table 2.3: Common floating-point formats and derivatives and their associated s.e.m.b
parameters.

Data-type Sign Exponent Mantissa Exponent Bias Format

IE
EE

-7
54

FP16 1 5 10 15 FlP1.5.10.15
FP32 1 8 23 127 FlP1.8.23.127
FP64 1 11 52 1023 FlP1.11.52.1023
FP128 1 15 112 16383 FlP1.15.112.16383
FP256 1 19 236 262143 FlP1.19.236.262143

N
on

IE
EE

-7
54

BF16 1 8 7 127 FlP1.8.7.127
DLF 1 6 9 31 FlP1.6.9.31
MSFPNN∈[8,11] 1 5 N − 6 15 FlP1.5.N−6.15
MSFPNN∈[12,16] 1 8 N − 9 127 FlP1.8.N−6.127
TF32 1 8 10 127 FlP1.8.10.127
FP8E5M2 1 5 2 15 FlP1.5.2.15
FP8E4M3 1 4 3 7 FlP1.4.3.7

2−128 2−96 2−64 2−32 20 232 264 296 2128
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Value

M
ax

re
la

tiv
e

er
ro

r
(%

)

FP8E5M2 FP8E4M3 BF16
DLF TF32 FP16
FP32

Figure 2.7: Relative error of FP-based data-types compared to real values.

Table 2.3 summarises the different FP-based data representation detailed in Section 2.2
along with the corresponding FlPs.e.m.b notation, while Figure 2.7 shows the expected
maximum relative error and range associated with these representations.

These datatypes are primarily designed to optimize computations with reduced re-
quirements regarding results accuracy. Conventional FPUs only requires minor modifica-
tion to support these alternative formats. For example, TF32s and BF16s only consist
in a truncation of FP32 data, as the FP8E5M2 is a truncation of the FP16 format. These
datatypes are not specifically intended to reduce the memory footprint, and as such, are
still dependent of the 2N data sizes and memory alignment.

35

Chapter 2 – Approximate Computing

The MSFP format constitute an exception to these limitations as it is aimed at FPGA
acceleration.

Conclusion

This chapter does a non-exhaustive summary of diverse existing AxC technique, seg-
mented depending on whether they impact the data, the computation, or the hardware.

It appears that very few AxC techniques exist for the purpose of reducing the memory
requirements of data processing application. Techniques that enable memory requirements
reductions seem to do so as a side effect.

The memory system is already a limiting factor for large scale data processing appli-
cation as well as for low-resources embedded systems. Hence the objective of this thesis
to develop AxC-based methods to reduce the memory constraints.

Integration of AxC techniques into data processing application requires a deep-dive
on the specific aspect to optimize, which is usually time-consuming. A possible option to
reduce the AxC implementation delay can be to rely on programming models with native
support for specific AxC techniques or provide a representation inherently well-suited for
AxC implementations.

36

CHAPTER 3

Programming Models

Introduction

The hardware resources reduction methods discussed in this thesis rely on, but are not
exclusive to, Synchronous Dataflow (SDF)-based Models of Computation (MoCs), which
by nature expose the parallelism of applications and impose a clear separation between
computations and data. It is mainly this clear separation that motivates the use of SDF-
based MoCs. Consequently, this chapter also presents other parallel-oriented programming
models, but the contributions of this thesis are not exclusive to parallel applications and
are completely usable in purely sequential contexts.

This chapter presents the parallel programming paradigm usually used to take full
advantage of parallel hardware architectures. One goal of programming models is to ease
the development of parallel application making full use of the available hardware resources
by hiding the complexity behind an abstraction layer.

Various programming models have been developed to target various hardware/soft-
ware architectures. The most commons parallel programming Application Programming
Interfaces (APIs) can be segmented into categories: Task-based programming models and
Accelerator-based programming models, but other models may pose themselves as an
abstraction layer on top of existing ones.

Chapter 3 – Programming Models

Task-based programming models refer here to APIs used to scatter a computational
workload across homogeneous Processing Elements (PEs), usually on a shared memory
architecture. Accelerator-based programming models refer here to APIs used to prepare
and offload a computational workload on a hardware accelerator, optimized for specific
workloads.

This chapter also present a hardware-agnostic paradigm as an additional abstraction
layer, in the form of dataflow graphs.

Graph-based representations are commonly used to describe software architectures
and data structure, or to represent the high-level behaviour of an application. The Unified
Modeling Language (UML) [RJB04] is tailored for high-level specification and conception
of software solutions but is not a programming model. Industrial automatons usually rely
on graph-based model based on Finite-State Machines (FSMs) such as Ladder logic, or
Petri Nets such as Graphcet [13] or Sequential Function Chart (SFC) [13]. These models
are control-flow models [All70] and are out of scope of this thesis.
Commercial graph-based models for systems design and simulation include Matlab
Simulink [Mat97] from Mathworks and LabVIEW [Joh97] from National Instrument.
While these models may partially be assimilated as dataflow models [KKM16], they fea-
ture control-flow elements and are therefore out of scope of this thesis.

In this thesis, we mainly focus on dataflow MoCs, more specifically the SDF MoC and
its derivatives.

First, common task-based programming models are presented in Section 3.1. Then,
common accelerator-based programming models are presented in Section 3.2. Finally,
dataflow-based models of computation are presented in Section 3.3.

3.1 Task-based Programming Models

We call here task-based the explicit coarse-grain division of a computation workload into
a limited set of computation sub-workload. This division of workload can either be done
manually by the programmer of left to the parallel programming API.

A task programming model is applied on top of symmetric multiprocessing archi-
tecture (also called shared-memory multiprocessing) consisting of a pool of independent
homogeneous PEs sharing common resources through an inter-connection layer.

38

3.1. Task-based Programming Models

Task management, including mapping and scheduling, is handled by the Operating
System (OS) but can be strongly hinted by the programmer through the parallel pro-
gramming API, or by the API itself.
1 #define N 1000
2 float a[N], b[N], c[N];
3 void main(int arc , char* argv []){
4 // Lets assume that array a[] and b[] contain data
5 for (int i = 0; i < N; i++){
6 c[i] = a[i] + b[i];
7 }
8 // Lets assume that array c[] is used
9 }

Listing 3.1: Simple example.

Listing 3.1 show a simple example program code adding two arrays a and b into an
array c. This example will be used in the following section to illustrate the use of multi-
threading APIs.

Section 3.1 presents the basics of scattering a computational workload across a globally
homogeneous pool of PEs, with a focus on the CPU-level. This section quickly goes over
the two main APIs used to parallelized a workload. Section 3.2

3.1.1 Processes

A process is an instance of an application being executed. It includes the program code
along with the resources in use. A process is run by an OS and hosts one or more compu-
tation threads. Processes are isolated from one another; their memory space is separated
and this memory-isolation is enforced for the Memory Management Unit (MMU). For
the purpose of multiprocessing application, a parent process can spawn (fork) child pro-
cesses, either to handle orthogonal tasks or to scatter the computational workload. A child
process is created with a copy of its parent process, including program code and memory
space. Memory spaces are usually only symbolically separated and duplicated at fork-
time. Actual memory separation is OS-dependent and usually occur only when modifying
data, with strategies such as copy-on-write [Rod08]. Because of the process isolation,
inter-process synchronizations and communications require specific mechanisms, such as
signals, message passing (Message Passing Interface (MPI)) or explicit shared memory.
The process isolation and the reliance on specific OS mechanisms create a computational
overhead.

39

Chapter 3 – Programming Models

3.1.2 Threads

A thread is a sequence of instruction operated within a process. Multiple threads from a
process can be executed concurrently. Threads within the same process share their mem-
ory, removing the explicit need for OS-dependent mechanisms for synchronization and
communication. The OS usually provides thread-handling functions (creation, termina-
tion, mapping, ...), but scheduling and mapping of threads can be done without relying
on the OS, reducing the computational overhead.

Multi-threaded application development is dependent on both the OS and the pro-
gramming language. Lower-level languages such as C may use an OS-specific implementa-
tion while high-level languages such as Java exposes threading through a language-specific
abstraction layer. Multiple APIs have been proposed to unify multi-threaded application
development with low-level languages, such as PThreads and OpenMP.

3.1.2.1 POSIX Threads

POSIX Threads (PThreads) [18] is an API enabling multi-threading through a stan-
dardized abstraction layer. The PThreads API is widely used, directly on indirectly, for
multi-threaded computations thanks to its native support in most Unix-based OSs or im-
plementation as an abstraction layer on top of an OS specific multi-threading API, such
as pthreads4w1. It provides a set of C constants, functions, and types to handle thread
management (creation, termination, mapping, ...), mutexes, condition variables, and syn-
chronization. Although not strictly part of the same standard, the PThreads API also
interoperates with the POSIX semaphore API.

1 #define N 1000
2 #define NB_THREAD 4
3
4 float a[N], b[N], c[N];
5
6 void* computationTask (void *arg){
7 int index = N/ NB_THREAD * *((int *) arg);
8 for (int i = index; i < index + N/ NB_THREAD ; i++){
9 c[i] = a[i] + b[i];

10 }
11 }
12
13 void main(int arc , char* argv []){
14 pthread_t threads [NUM_THREADS];

1. pthreads4w - https://sourceforge.net/projects/pthreads4w/

40

https://sourceforge.net/projects/pthreads4w/

3.1. Task-based Programming Models

15 int args[NUM_THREADS];
16 // Lets assume that array a[] and b[] contain data
17 for (int i=0; i < NB_THREAD ; i++){
18 args[i] = i;
19 pthread_create (& thread[i], NULL , task , &args[i])
20 }
21
22 for (int i=0; i < NB_THREAD ; i++){
23 pthread_join (& thread[i], NULL)
24 }
25 // Lets assume that array c[] is used
26 }

Listing 3.2: PThreads example.

Listing 3.2 shows the example computational workload parallelized on 4 threads
with PThreads. PThreads-specific functions are called to properly create and terminate
threads, and the workload needs to be packaged in a function.

The PThreads API gives the opportunity to fine-tune the multi-threaded execution
and threads synchronizations, allowing the implementation of both simple and complex
parallel design patterns (divide-and-conquer, master/slave, fork/join, pipelining, map/re-
duce, thread pool, ...). This flexibility comes at the cost of an increased complexity of
application parallelization.

3.1.2.2 OpenMP

OpenMP [CJV07] is a multithreading API using compiler directives in addition to spe-
cific functions and environment variable. Support for OpenMP is mainly determined by
compiler support and is already compatible with compilers from a variety of vendor/-
source. While designed to work on shared memory architecture, OpenMP can be used in
conjunction with inter-node communication API such as MPI to handle the distributed
memory side.

The main advantage of OpenMP is the ability to simply and quickly make sequential
code run with multiple thread, with minor modification to the source code. While OpenMP
provides the tools for specific parallel behaviour, most use-cases can be decently optimized
with as little as a single compiler directive.

41

Chapter 3 – Programming Models

1 #define N 1000
2 #define NB_THREAD 4
3
4 float a[N], b[N], c[N];
5
6 void main(int arc , char* argv []){
7 // Lets assume that arrays a[] and b[] contain data
8 #pragma omp parallel for num_threads (NB_THREAD)
9 for (int i = 0; i < N; i++){

10 c[i] = a[i] + b[i];
11 }
12 // Lets assume that array c[] is used
13 }

Listing 3.3: OpenMP example.

Listing 3.3 shows the example computational workload parallelized on 4 threads with
OpenMP. A single compiler directive is enough to scatter the computation of the for
loop across the 4 threads. While this may not yield the best performance possible, the
simplicity of use of OpenMP makes it at worse a compelling starting point to parallelize
an application.

OpenMP is able to properly handle data sharing, mapping/scheduling, code segmen-
tation, with a limited set of keywords. Fine-tuning is still required to take full advantage
of the hardware architecture.

The actual implementation of OpenMP may rely on PThreads under the hood [AAB18].

3.2 Accelerator-based Programming Models

Programming models focusing on the preparation and offloading of a computation work-
load to a specific hardware resource are referred to as accelerator-based. Hardware accel-
erators can be GPUs, FPGAs, Data Processing Units (DPUs) or any other kind of ASIC.
The use of accelerators usually relies on a host/device role, with the host preparing and
offloading the workload to the device, and retrieving the result at the end.

The use of GPUs as hardware accelerators i.e. for tasks other than graphic compu-
tations, lead to the concept of General-Purpose computing on Graphics Processing Unit
(GPGPU). Multiple APIs have been developed to facilitate the use of accelerators into a
computation workflow, the most commons being OpenCL and CUDA.

42

3.2. Accelerator-based Programming Models

Global Memory Constant Memory

Host Memory Host

Compute Device

Private
Memory 1

Private
Memory M

Compute Unit 1

PE 1 PE M

Local
Memory 1

Global/Constant Memory Cache

Private
Memory 1

Private
Memory M

Compute Unit N

PE 1 PE M

Local
Memory N

Compute Device

Private
Memory 1

Private
Memory M

Compute Unit 1

PE 1 PE M

Local
Memory 1

Global/Constant Memory Cache

Private
Memory 1

Private
Memory M

Compute Unit N

PE 1 PE M

Local
Memory N

Compute Device

Private
Memory 1

Private
Memory M

Compute Unit 1

PE 1 PE M

Local
Memory 1

Global/Constant Memory Cache

Private
Memory 1

Private
Memory M

Compute Unit N

PE 1 PE M

Local
Memory N

(a) OpenCL memory model.

Host

Processing
Element

Compute
Unit

Compute
Device

(b) OpenCL execution model.

Figure 3.1: OpenCL memory and execution models.

3.2.1 OpenCL/CUDA

OpenCL and CUDA are parallel programming APIs to offload the execution of compute
kernels onto hardware accelerators. The CUDA API is a proprietary solution by Nvidia
for use exclusively on its GPUs, while support for OpenCL is dependent on whether a
hardware manufacturer provided an implementation. This section will mainly focus on
OpenCL but the concept and models are still applicable to CUDA. As an open standard,
OpenCL is widely supported on most CPUs (AMD, ARM, Intel), GPUs (AMD, ARM,
Intel, Nvidia, Qualcomm), FPGAs (Altera, Xillinx), as well as on more exotic platforms
such as the Kalray MPPA. The OpenCL framework provides a programming language
based on C/C++ (with specific keywords and functions) and an API enabling the host to
control and execute code on the device.

The OpenCL framework revolves around a platform model and a memory model, as
shown in Figure 3.1.

The platform model (Figure 3.1b) describes a virtual computing architecture where the
host controls one or more compute devices, composed of compute units, containing PEs.
The correspondence between the actual hardware and the platform model is dependent
on the manufacturer implementation, but is usually done in such a way that a SIMD lane
is exploited as a PE. The host interacts with compute devices through a command queue
with commands for kernel execution, memory transaction, and synchronization.

OpenCL also provides an execution model, dividing the workload into work-items,
bundleable into work-groups. A work-group is typically assigned to a compute unit.

43

Chapter 3 – Programming Models

The memory model (Figure 3.1a) describes the four memory regions of a compute
device. Memory regions impact the locality of the data as well as its visibility from PEs.
Data placement in memory regions is determined by the associated C/C++ keyword in
the device code. The global memory (__global) is a region accessible by all PEs from
any devices. The constant memory (__constant) is a read-only region within the global
memory. The local memory (__local) is a region accessible only by work-items from the
same work-group. The private memory (__private) is a region only accessible by its
work-item.

1 __kernel void device_computation (__global float *a,
__global float *b, __global float *c){

2 // Arrays a, b and c have already been allocated and
populated on the device by the host

3 size_t i = get_global_id (0);
4 c[i] = a[i] + b[i];
5 // Array c can be retrieved by the host
6 }

Listing 3.4: OpenCL device example.

Listing 3.4 shows the example computational workload parallelized as an OpenCL
compute kernel. In this example, the for-loop from Listing 3.1 is completely unrolled to
expose the finest granularity possible to take advantage of the massively parallel nature of
GPUs. While in theory OpenCL implementations are generic and done according to ref-
erence models, compute kernels require hardware-specific optimization to achieve optimal
performance, breaking the genericity.

The CUDA API is a proprietary solution but uses an execution model, a platform
model and a memory model similar to that of OpenCL (Figure 3.1). The main difference
between OpenCL kernels and CUDA kernels is the terminology and the corresponding
host code, making CUDA-based application subject to the same kind of constraints and
design decisions than GPU-oriented OpenCL applications. CUDA-based applications tend
to be slightly faster than their OpenCL-based equivalent [Su+12]. The main attractions
of the CUDA API over OpenCL are the CUDA-specific libraries.

3.2.2 OpenACC/OpenMP 4.0

OpenACC is a parallel programming standard which, as OpenMP, uses compiler directive
along specific functions. OpenACC aims to be merged into OpenMP, which has partially

44

3.3. Dataflow-based Models of Computation

been done since OpenMP 4.0. The aim of OpenACC is to provide the ability to offload
a computational workload to an accelerator with minimal source code modification. The
simplicity of use of OpenACC leads to a lack of architecture-specific optimization, leading
to performance gap reaching up to 100x on certain workload compare to an optimized
CUDA implementation [KT21]. The merge of OpenACC into OpenMP makes it, from
version 4.0 upward, a parallel programming model capable of both a task-based and an
accelerator-based approach.

3.3 Dataflow-based Models of Computation

Dataflow models are commonly used to represent data processing applications in an ab-
stract manner, potentially highlighting specific optimization opportunities. These graph-
based representations may also simply be used as they are well-suited for the kind of
processing to perform or for the targeted hardware architecture. Graph-based models
may be used to represent the behaviour of a program, its architecture, data structure,
communication, synchronization mechanisms, etc.

This section will focus on dataflow Models of Computation (MoCs) [Sav97], specifi-
cally on the Synchronous Dataflow (SDF) and Parameterized and Interfaced Synchronous
Dataflow (PiSDF) MoC.

More details on the dataflow MoCs can be found in [Des14].

3.3.1 Process Network

An application defined with the Kahn Process Network (KPN) [Kah74] MoC is composed
of a set of concurrent tasks interconnected by unbounded directed First-In First-Out
queues (Fifos). A Fifo connecting two tasks creates a data dependency. Writing to a
Fifo is non-blocking, but reading from it is blocking. A data-token is indivisible, pro-
duced exactly once and consumed exactly once. The KPN model is independent of the
architecture; it is capable of exploiting parallelism but does not require it. The KPN MoC
is deterministic; the same input will produce the same result.

The Dataflow Process Network (DPN) [LP95] MoC is a specialization of the KPN
MoC. It attempts to provide a formal semantic for dataflow MoCs, defined as follows:

It defines a DPN as a graph composed of vertices, called actors, and edges, called
Fifos. An actor is associated with sets of input and output data ports, a set of firing

45

Chapter 3 – Programming Models

A Actor

FIFO

Data
ports

Initial
tokensx4

(a) DPN Semantics.

A B D

C
x1

x2

x1

(b) DPN graph.

Figure 3.2: DPN semantic and graph example.

rules, and a set of data-token production and consumption rates associated with the
firing rules. An edge is an unbounded directed Fifo transmitting data-tokens from an
actor to the next. It is associated with a source of a producer actor and the sink port of
a consumer actor, and to a number n ∈ N of data-tokens present at initialization.

Figure 3.2 shows the semantic of the DPN MoC (Figure 3.2a) along with an example
graph (Figure 3.2b). This demonstration graph is composed of 4 actors linked together by
5 Fifos. The Fifos between actors A and C and between actors B and D contain 1 initial
data-token each, while the Fifo cycling back on actor C contains 2 initial data-tokens.

3.3.2 Parallelism with Dataflow Model of Computation

Describing a data processing application with a dataflow-based MoCs allows for an expos-
ing of opportunities of parallelism. The dataflow graph of the application can be paral-
lelized in 4 different manners [Zho+13]: task parallelism, data parallelism, pipeline paral-
lelism and parallel actor parallelism. Figure 3.3 shows the Gantt diagrams obtained from
the different way to parallelize the graph from Figure 3.2b, mapped on 2 PEs.

• Task Parallelism: Actors linked by a Fifo have a data dependency, requiring
the producer to be executed before the consumer (unless enough initial data-token
are present in the Fifo). The dependency chain can be extended across the whole
graph to obtain a data-path. Actors belong to parallel data-paths can be executed
in concurrently. On the example graph from Figure 3.2b, 2 dependency chain can be
extracted: A-B-D and A-C-D. Actors B and C can therefore be executed on parallel,
as seen on Figure 3.3a.

46

3.3. Dataflow-based Models of Computation

A B
C

D A B
C

D
+1 +1 +1

+1

Core1

Core2
time

(a) Task Parallelism.

A B C D A B
+1 +1

Core1

Core2
time

D
(b) Data Parallelism.

A B
C
A B

C D
+1 +1

+1+1

Core1

Core2
time

D
A B

+2 +2

C D
-1-1

(c) Pipeline Parallelism.

A
B C D

A
B

+1

+1
Core1

Core2
time

(d) Parallel Actor Parallelism.

Figure 3.3: Exposition of parallelism in dataflow MoCs.

• Data Parallelism: An actor in dataflow graphs is only reliant on the data-tokens
from its input Fifos and does not have a state or context that would make it
dependent of the previous execution. If enough data-tokens are available, an actor
can be fired successively and executed concurrently. On the example graph from
Figure 3.2b, if actors B and C produce enough data-tokens to enable 2 firings of
D, then the 2 instances of D can be executed in parallel, as seen on Figure 3.3b.
If the behaviour of an actor depends on the state of its previous execution, this
dependency is explicitly represented in the dataflow graph by a self-loop Fifo with
a delay, as shown with actor C from Figure 3.2b.

• Pipeline Parallelism: Application pipelining consists in starting a new iteration
of a dataflow graph before the end of the previous one. Pipelining is possible when
a dataflow graph do not have data dependency between its iterations. Pipelining
opportunities can be exposed by separating the dataflow graph into stages with
the addition of delays. On the example graph from Figure 3.2b, actors C and D
have delays on all their input Fifos, allowing their firing without prior execution
of actor A and B, making 2 pipeline stages executable in parallel. Actors A and B of
the current iteration can therefore be executed in parallel with C and D from the
previous iteration, as seen on Figure 3.3c.

• Parallel Actor Parallelism: A parallel actor is an actor that internally make use
of parallelism to make use of multiple PEs. This internal parallelism can either be
directly provided by the host language (Sections 3.1 and 3.2) or with a hierarchical
actor whose behaviour is described as a dataflow graph itself [PBR09; BB01; NL04;

47

Chapter 3 – Programming Models

Des+13]. On the example graph from Figure 3.2b, actor A is assumed to be a parallel
actor executed on 2 PEs, as seen on Figure 3.3d.

3.3.3 Synchronous Dataflow (SDF)

The Synchronous Dataflow (SDF) [LM87] is a specialization of the DPN MoC; data-token
productions and consumptions are fixed scalar values in the SDF graph. The SDF MoC is
defined with the same set of rules as the DPN MoC with additional restrictions: An actor
is associated with a unique firing rule, data-tokens production and consumption rate are
static scalars. The firing of an actor can only occur if the required number of data-tokens
are present in the input Fifos.

A Actor

FIFO

1
Data port
and rate

Initial
tokensx4

(a) SDF Semantics.

A B D

C
x3

x2

x1

3
1 1

2
2
1

2

2

1
3

(b) SDF graph.

Figure 3.4: SDF semantic and graph example.

Figure 3.4 shows the semantic of the SDF MoC (Figure 3.4a) along with an example
graph (Figure 3.4b). A complete execution of an SDF graph requires that every data-
tokens produced during the iteration have been consumed, and the amount of initial
data-token is maintained for the next iteration. With the example graph of Figure 3.4b,
a complete valid iteration requires 1 firing of actor A, 3 firing of actor B, 1 firing of actor
C, and 2 firing of actor D.

The SDF MoC popularity is due to its analysability, predictability and the exposi-
tion of parallelism opportunities, making it suitable for efficient execution on hardware
architecture. As the SDF MoC is fully static and deterministic, it enables specific metric
extraction and optimization, making it well suited for deployment on embedded systems.

The semantic of a dataflow MoC only describes interactions between actors with the
firing rules and ports rates but does not specify the actual internal behaviour of said

48

3.3. Dataflow-based Models of Computation

actors. The nature of the actual computations performed by actors must still be specified
by a host language. Imperative languages such as C or Java, or hardware description
language such as VHSIC Hardware Description Language (VHDL) can be used. Specific
languages have been proposed to describe both the graph and the internal behaviour of
actors, such as the CAL Actor Language (CAL) [EJ03; Bha+11] or ΣC.

3.3.4 Parameterized and Interfaced Synchronous Dataflow
(PiSDF)

The Parameterized and Interfaced Synchronous Dataflow (PiSDF) MoC is a modification
of the SDF MoC by applying the Parameterized and Interfaced dataflow Meta-Model
(PiMM) [Des+13] on top of the SDF semantic.

The PiMM reuses the hierarchical semantic from the Interfaced-Based Synchronous
Dataflow (IBSDF) [PBR09] MoC with the addition of the parameter semantic from the
Parameterized Synchronous Dataflow (PSDF) [BB01] MoC.

The IBSDF semantic enables the description of internal behaviour of an actor with an
inner dataflow graph. This subgraph features input and output data interfaces for data-
token transmission. To maintain the execution properties of the SDF MoC, data interfaces
have a specific behaviour: Data input interfaces behave as broadcast actor, duplicating if
necessary the data-token sent from the upper-level graph. Data output interfaces behave
as round buffers, transmitting only the lasts data-token to the upper-level graph.

The PSDF semantic enables the definition of parameter which can be used in expres-
sion to define data-token rates, instead of static scalars.

Data input
interface

Configuration
input interface

Configuration
output port

Configuration
input port

Configurable
parameter

Locally static
parameter

Parameter
dependency

Data output
interface

Delay and
number of
tokens

FIFO

Configuration
actor

Hierarchical
actor

Actor

PiMM

πSDFIBSDFSDF

A
Port
and rate3

x4

ou
t

in

P

P Ah

Figure 3.5: PiMM semantics.

Figure 3.5 shows a summary of the PiMM semantic.

49

Chapter 3 – Programming Models

A

A

h

P

Actor

P

FIFO

1
Data port
and rate

Initial
tokens

Hierarchical
actor

Locally static
parameter

Parameter
dependency

Configuration
port

Configuration
actor

Configurable
parameter

x4

(a) PiSDF Semantics.

size
Config
Size

FilterRead
Image size4 size

Display
4

nb
SetNB
Slices

size/nb
Kernel

size/nb

(b) PiSDF graph.

Figure 3.6: PiSDF semantic and graph example.

These additions make the PiSDF MoC reconfigurable at runtime. The reconfiguration
is based on dynamic parameters which can change during execution. As the production
and consumption rates of actor can be defined as expression depending on parameters, a
dynamic parameter can change firing condition of actor, and the total number of firing
during an iteration.

Figure 3.6 shows the semantic of the PiSDF MoC (Figure 3.6a) along with an example
graph (Figure 3.6b). The example graph from Figure 3.6b is a dynamic graph. Actors
Config Size and SetNB Slices are configuration actors capable of changing the value of a
configurable parameter at runtime. A PiSDF graph without configuration actor is a static
graph, and is as such eligible to any compile-time optimization applicable to conventional
SDF graphs.

Dynamic graphs require running on top of a runtime manager to handle graph recon-
figuration and on-the-fly optimizations.

Graph parameters can be used to determine various characteristics of an application,
such as data-token production and consumption rates, delay depths, static integers for
actors input, or can even be used to estimate the execution time and energy of an actor.
Consequently, a dataflow graph can only represent a single configuration of the application;
representing multiple configurations with the same base graph would either require the
developer to change parameter values every time, or to create a separate graph for each
configuration.

For this purpose, support for moldable parameters [Hon20] were added to the PiSDF
MoC. Moldable parameters are able to hold multiple alternative expressions, enabling a
single PiSDF graph to represent multiple configurations of the same application.

50

3.3. Dataflow-based Models of Computation

The best configuration depends on multiple criteria: throughput, latency, memory
footprint, energy, or any QoS metric. Finding such a configuration for a graph with multi-
ple moldable parameters with multiple expressions each quickly becomes time-prohibitive
and represent a multi-criteria optimization problem, which can be resolved with an ap-
propriate Design Space Exploration (DSE) algorithm [Hon+22].

Development of applications with the PiSDF MoC can be done with the Parallel and
Real-time Embedded Executives Scheduling Method (PREESM) development framework.

Parallel and Real-time Embedded Executives Scheduling Method (PREESM)

PREESM2 [Pel+14] is an application development framework design to represent data
processing application using the PiSDF MoC. PREESM is capable of generating paral-
lelized C code from a PiSDF graph.

PiSDF
Algorithm

Architecture
Model

Scenario

Actor
C Code

PiSDF
Transfo.

Static
Scheduling

Memory
Optim.

C Code
Generation

Simulation

Multicore
C Code

Platform

PREESM

Figure 3.7: Visualization of the PREESM application development framework
(Source [Heu15]).

The developer builds the PiSDF graph within PREESM and provides actors code, a
model of architecture [Pel+09], and an execution scenario containing mapping constraints
and timing values, as shown in Figure 3.7. From this information, PREESM handles
the mapping and scheduling of actor onto the hardware architecture and memory buffer

2. https://preesm.github.io/

51

https://preesm.github.io/

Chapter 3 – Programming Models

allocations, then generates the corresponding code. Parallel applications generated with
PREESM rely on the PThreads API.

PREESM is able to target off-the-shelf multicore architecture running Windows or a
Linux-based OS, as well as some specific hardware architecture, such as the C6x from
Texas Instrument or the MPPA from Kalray [Has18].

Synchronous Parameterized Interfaced Dataflow Embedded Runtime (SPI-
DER)

The Synchronous Parameterized Interfaced Dataflow Embedded Runtime (SPIDER) [Heu+14]
library is a runtime manager design to execute dynamic PiSDF graphs. The SPIDER run-
time reconfigure the graph when a parameter changes, potentially leading to modification
of actor firing rates. The newly configured graph is then scheduled and mapped for exe-
cution.

SPIDER relies on a master/slave paradigm. For each iteration, the master Global Run-
time (GRT) reconfigures the graph, schedule actors execution, and dispatch the workload
to slaves Local Runtimes (LRTs).

This runtime adaptability enables SPIDER to potentially remove entire data-paths
from a graph. Like PREESM, SPIDER is supported off-the-shelf multicore architecture
running Windows or a Linux-based OS, as well as some specific hardware architecture,
such as the C6x from Texas Instrument or the MPPA from Kalray [Mio+17; Mio+18].

3.3.5 Existing tools for Dataflow Applications Design

Works in this thesis were done around the PiSDF MoC with the PREESM application
development framework, but multiple other dataflow programming tools exist, supporting
one or several dataflow MoCs.

Ptolemy [Buc+01; Eke+03] is a framework for modeling and simulation of appli-
cations with heterogeneous combinations of MoCs. Each level of hierarchy can be de-
scribed according to a different MoC, such as DPN, SDF, or Heterochronous Dataflow
(HDF) [GLL99].

The DSPCAD Lightweight Dataflow Environment (LIDE) [She+11] is a design envi-
ronment for modeling, simulation and implementation of dataflow graphs on DSPs. LIDE
rely on applications described with the Enable-Invoke Dataflow (EIDF) [Pli+08] MoC, a
specialization of the DPN MoC.

52

3.3. Dataflow-based Models of Computation

Higher Order dataflow Coordination Language (HoCL) [Sér20] is a DPN description
language designed for abstract and concise description of graph structures, including hier-
archy and parameters. HoCL is independent of the target dataflow MoC and implementa-
tion, relying on dedicated back-ends. Supported back-ends include DOT for visualization,
SystemC for simulation, PREESM for implementation, as well as Dataflow Interchange
Format (DIF) [Hsu+04] and XDF for interfacing with other tools.

Data Activated 流 (Liu) Graph Engine (DALiuGE) [Wu+17] is a graph execution
framework primarily designed for radio astronomy applications. It originated during pro-
totyping activities of the Square Kilometre Array (SKA) Science Data Processor (SDP)
Consortium, but aims to become a generic tool to target data-intensive application in
general.

Conclusion

This chapter introduces parallel programming models commonly used to take full ad-
vantage of parallel hardware architectures. These programming models are separated de-
pending on whether they are designed to scatter a workload across homogeneous PEs
or to offload the computation to accelerators. Dataflow graphs are then presented as an
abstraction layer usable on top of these programming models.

This thesis mainly focuses on SDF-based MoCs, which by design expose the parallelism
of application and impose a clear distinction between the computation and the data it
is performed on. This separation inherent to SDF-based MoCs also creates opportunities
to develop AxC techniques whose impact can directly be evaluated while designing the
application.

53

CHAPTER 4

Applications

Introduction

Dataflow models are already widely used for modelling of signal processing applications
such as image processing or telecommunications [Pel+12]. Dataflow models are also well
suited for deployment on embedded platforms with specific hardware and software con-
straints [Arr+; Sur+19; SB18; Hol+14].

In the last decade, the domain of machine learning has experienced a huge gain of
popularity, leading to the development of various libraries and frameworks to ease training
of deep learning models. For example, TensorFlow1 is able to express its computation in
the form of a dataflow graph to perform specific optimizations [Won+18].

Specific optimizations enabled by dataflow MoCs can be applied on distributed plat-
form, whether on a smaller scale with clustered architectures [Has+17] or on a larger scale
with High-Performance Computing (HPC) systems. Large scale multi-node architectures
can range from complete processing chains from sensor acquisitions to centralized pro-
cessing in HPC systems, to fine-grained distribution with edge computing [ZC20]. This
creates specific opportunities for optimization of exascale data processing pipelines such as
the SKA project, which has strict restrictions regarding real-time constraints and energy
consumption.

1. https://www.tensorflow.org/

https://www.tensorflow.org/

Chapter 4 – Applications

For example, Dask2 is a Python library for parallel computing, splitting the computa-
tions of large sets of data and dispatching the workloads to distributed compute nodes. For
this purpose, a Directed Acyclic Graph (DAG) is generated at runtime from the provided
Dask collections, with vertices representing units of computations in Python functions,
and edges representing data dependencies between vertices, constituting a dataflow graph.
This runtime generation of the dataflow graph prevents the use of offline optimization. A
similar solution is proposed by Google3 [Aki+15].

The three applications used to demonstrate the memory reduction methods of this
thesis are: 1) A basic image processing application composed of 2D-Discrete Wavelet
Transform (DWT) followed by a 2D-Inverse Discrete Wavelet Transform (IDWT). 2) A
C implementation of the SqueezeNet DNN. 3) An implementation of the SDP Imaging
Pipeline, a compute-intensive process requiring a large amount of data.

The image processing application is a fairly simple wavelet filter, composed of one
level 2D-DWT followed by a 2D-IDWT. Such filters can be used to de-noise 2-dimensional
signals such as images. No actual de-noising is done in this experiment, as the aim is to
evaluate the potential impact on output quality of memory reduction techniques as added
noise.

The SqueezeNet DNN is a small Convolutional Neural Network (CNN) for image
classification. Its main feat compared to other DNN is the small size of its model and its
reduced overall memory footprint.

The SKA SDP Evolutionary Pipeline (SEP) is an implementation of a part of the
SKA data processing pipeline that will eventually be deployed on an HPC architecture,
requiring around 250 petaflops of processing power and generating 600 petabytes of data
per year. The use of memory reduction techniques could have a significant impact, poten-
tially reducing the memory-footprint requirements intra-nodes as well as communication
inter-nodes.

4.1 2D Wavelet Filter

The Wavelet Filter is based on the 2D-Discrete Wavelet Transform (DWT), a transform
commonly used in signal processing and compression. This first use-case is chosen as it
is relative simple, has actual real-world applications, and produces an output with easily

2. https://www.dask.org/
3. https://cloud.google.com/dataflow

56

https://www.dask.org/
https://cloud.google.com/dataflow

4.1. 2D Wavelet Filter

measurable quality. Typical applications of the 2D-DWT in image processing include
denoising [CH98] and image compression format JPEG 2000 [SCE01].

Conv
Row HP

Conv
Row LP

Conv
Col HP

Conv
Col LP

Conv
Col HP

Conv
Col LP

Decim
Col

Decim
Col

Decim
Row

Decim
Row

Decim
Row

Decim
Row

Figure 4.1: 2D-DWT diagram.

Figure 4.1 shows a diagram of the application of a 2D-DWT on an image. The process
consists in applying a horizontal 1D-convolution with both a low-pass filter and a high-pass
filter to obtain 2 intermediary results. Columns are downsampled by 2 before applying
another pass of low-pass and high-pass filters. Lastly, these 4 intermediary results have
their rows downsample by 2. The result is constituted of 4 images; 1 image consisting a
downsizing of the input, and 3 images representing the horizontal, vertical and diagonal
edges (from bottom to top in Figure 4.1).

Conv
Row HP

Conv
Row LP

Conv
Col HP

Conv
Col LP

Conv
Col HP

Conv
Col LP

Decim
Col

Decim
Col

Decim
Row

Decim
Row

Decim
Row

Decim
Row

Up
Row

Up
Row

Up
Row

Up
Row

Conv
Col HP

Conv
Col LP

Conv
Col HP

Conv
Col LP

+

+

Conv
Row HP

Conv
Row LP

Decim
Col

Decim
Col

+

Figure 4.2: 2D-DWT diagram.

The application example chosen in this context consist in applying in succession a 2D-
DWT followed by the corresponding 2D-IDWT, as shown on Figure 4.2. The Decimation
and Upsampling actors shown in Figures 4.1 and 4.2 can be integrated into an adjacent
Convolution actor but are kept separated in figures for illustration purposes.

57

Chapter 4 – Applications

This use-case is tested on a set of video sequences. The quality metric used is the Peak
Signal-to-Noise Ratio (PSNR), comparing the expected output images of the application
with the output images obtained while using AxC techniques presented in latter chapters.

The goal of this example is to show that image processing algorithms can be very
resilient to precision reduction, and not just in terms of subjective perception.

4.2 SqueezeNet CNN

SqueezeNet [Ian+16] is a DNN for computer vision using a CNN architecture designed to
perform image classification by associating for an input image its corresponding class.

CNNs are usually an input layer, multiple hidden layers, and an output layer. The
input and output layers can be viewed as performing pre/postprocessing, feeding the
image to the hidden layers, and formatting the results from hidden layers into a set of
probability for each class. The configuration of hidden layers can vary both in terms of
interconnection, dimensions and number of layers.

SqueezeNet achieves the same level of accuracy as the AlexNet [KSH12] CNN on
the ImageNet [Den+09] dataset with 50x fewer parameters. The ImageNet dataset is
composed of around 1.3 million images spanning across 1000 classes. SqueezeNet has
a model of 1.25 million parameters with a size of around 4.8MB, but specific methods
based on quantization and pruning enable a decrease its size, with a depth of 10 layers.
For comparison, 8 out of the 10 current top performers models on the ImageNet dataset
use more than 1.4 billion parameters.

The purpose of this use-case is to validate the genericity of the methods discussed
further in this thesis. As such, the reference used for SqueezeNet is the default 4.8MB
version of the model. The model is pre-trained and used as-is, it does not undergo any re-
training. The objective is not to improve the classification rate of SqueezeNet, but rather
to obtain the exact same results with a smaller overall memory footprint, as well as to
provide the opportunity to selectively lower the classification accuracy for an additional
reduction of the memory footprint.

The interest of this use case is that it widely differs from regular image processing
application and serves as a representation of the global deep learning trend that has been
growing for the last decade. It also serves to show that neural network are naturally
well-suited for dataflow representation as the separation between data and computation
is already applied with the layer representation.

58

4.3. Square Kilometre Array Science Data Processor Implementation

co
nv

1

co
nv

10

fir
e2

fir
e3

m
ax

po
ol

fir
e4

m
ax

po
ol

fir
e5

fir
e6

fir
e7

fir
e8

fir
e9

m
ax

po
ol

av
gp

oo
l

so
ftm

ax

maltese
dog

killer
whale

labrador
retriever

Figure 4.3: Simplified view of the Squeezenet architecture.

This use-case is tested by comparing the classification results on a set of input images
with an unmodified implementation of SqueezeNet with the classification results obtained
while using AxC techniques presented in latter chapters. The number of misprediction is
used as the quality metric.

4.3 Square Kilometre Array Science Data Processor
Implementation

The Square Kilometre Array (SKA) project is an international effort to build the world’s
largest radio-telescope, with a final collecting area of around one square kilometre. The
SKA telescope does not use a single gigantic receptor but instead relies on interferometry,
where multiple smaller receptors are coupled together in array. Receptors are located in
two separate locations: 131,072 antennae in Australia for the lower frequency range, and
197 parabolic dishes in South Africa for the higher frequency range. These 130 thousands
receptors will produce a combined 28 terabits per second of data, sent to remote Central
Signal Processors (CSPs) producing visibility data and Science Data Processors (SDPs)
creating 3 dimensional images. The two SDPs are expected to have a processing power of
around 135 PFlops each. The annual amount of data to archive is expected to be between
300 and 700 petabytes.

SDP Evolutionary Pipeline

The SDP Imaging Pipeline4 is an implementation of the SKA SDP by the HPC Research
Laboratory at Auckland University of Technology (AUT), for the most compute intensive

4. SEP Pipeline Imaging - GitLab: https://gitlab.com/ska-telescope/sdp/sep_pipeline_
imaging

59

https://gitlab.com/ska-telescope/sdp/sep_pipeline_imaging
https://gitlab.com/ska-telescope/sdp/sep_pipeline_imaging

Chapter 4 – Applications

task. It produces images from visibility data output from the CSP. This implementation
of the SKA SDP has been chosen as our use case. The SDP Imaging Pipeline gener-
ates sky images with an iterative process, refining the image on every major cycle. Each
of these major cycles goes through a deconvolution step, tasks with extracting relevant
"bright" sources during each of its minor cycles. In this use case, the used dataset has
been generated from a Galactic and Extra-galactic All-sky MWA (MWA) observation5 in
order to generate sky images that can be analysed in terms of quality. The used dataset
is generated for a 15 minute observation with a visibility per baseline each 30 seconds for
512 antennas. In comparisons SKA will have hundreds of receivers producing billions of
visibilities per second.

In the context of this thesis, the SDP Imaging Pipeline has been modelized for the first
time as a PiSDF graph using PREESM6. The complexity to represent an algorithm like
the SDP Imaging Pipeline lies in the fact that the algorithm is iterative. Figure 4.4 shows
a simplified representation. The delay between the actors Gains Calib and Gains Apply
is used to represent the major cycles of the SDP Imaging Pipeline and the delay on the
actor Deconvolution is used to represent the minor cycles. The PiSDF graph of the SDP is
made up of 150 actors and 280 Fifo buffers. This graph is then flattened by PREESM in
a Single-rate Directed Acyclic Graph (SrDAG) for the analysis, the mapping-scheduling
and the code generation steps. The SrDAG of the SDP is made up of 4430 actors and
11850 Fifo buffers using the parameters of the GLEAM dataset we used.

Gains Gridding
Apply

DeconvolutionDFTGains
Calib

Output
Image

From
CSP

Figure 4.4: Simplified architecture of the SDP Imaging Pipeline.

The SDP Imaging Pipeline is an iterative process which in each major cycle produces
a dirty image, containing interferometry artefacts, and cleans it with a series of minor
cycles that detect sources and remove them from the image. In this use-case, the first
major cycle is a calibration cycle used to correct antenna gains, followed by imaging

5. MWA - GLEAM-X Survey: https://www.mwatelescope.org/gleam-x
6. PREESM - GitHub: https://github.com/preesm/preesm/

60

https://www.mwatelescope.org/gleam-x
https://github.com/preesm/preesm/

4.3. Square Kilometre Array Science Data Processor Implementation

(a) Calibration Cycle. (b) 1st Imaging Cycle.

(c) 2nd Imaging Cycle. (d) 3rd Imaging Cycle.

Figure 4.5: SDP Evolutionary Pipeline (SEP) dirty images output for 1 calibration and
3 imaging cycles.

cycles to detect fainter and fainter sources. A total of 4 cycles is processed, producing
a residual dirty image each time in which fainter sources can be resolved. The reference
used for output quality measurements are the four dirty images produced by taking the
precise but computationally-expensive direct Fourier Transform.

The output of the SEP for 4 major cycles is shown on Figure 4.5. It is composed of 1
calibration cycle follow by 3 imaging cycles. The calibration cycle is necessary to adjust
antennae gains and does not clean the output, hence the similarity between Figure 4.5a
and Figure 4.5b. Successive imaging cycles on Figures 4.5b to 4.5d enable the detection
of light sources that would otherwise be drowned in background noise.

61

Chapter 4 – Applications

Conclusion

This chapter presents the three applications used to evaluate the efficiency of the proposed
techniques presented in the following chapters. It consists of a generic image processing
application in the form of a 2D-DWT followed by a 2D-IDWT applied on a set of video
sequences, a CNN performing image classification, and an implementation of a signal
processing application for radio-astronomy.

These applications are chosen to be diverse enough to show the genericity of the
presented memory reduction techniques.

62

Part II

Contributions

63

CHAPTER 5

Data Representation in Approximate Buffer

Introduction

Data processing applications are usually designed to perform computation with either
IEEE-754 32-bit Single-Precision Floating-Point (FP32) or IEEE-754 64-bit Double-
Precision Floating-Point (FP64) data. Data-intensive applications then require a memory
system to match the computation capabilities. However, the level of accuracy provided
by this extensive use of FP32 and FP64 formats is susceptible to be disproportionate
compared to the initial data acquisition, or simply beyond the needs of the end-user.
Consequently, alternative data formats (as presented in Section 2.2) have been devel-
oped with the goal of trading-off accuracy for a reduction of the memory footprint and,
depending on hardware support, faster computations.

Memory related systems (caches, controller, interconnects, ...) already account for
around 80% of chip area [Mut+23]. Moreover, data access to registers and caches can
amount for more than 50% of a Central Processing Unit (CPU) energy dissipation, be-
fore taking into account external memory operations [Hor14]. Hence the idea to focus
on storage paradigm designed to reduce the memory requirements of data processing
applications.

This chapter introduces the concept of Approximate Buffer (AxB). It focuses on how
bit-width reduction negatively impact the accuracy, and how data representation can

Chapter 5 – Data Representation in Approximate Buffer

mitigate this loss when using AxBs. Storing data in AxBs with an alternative format,
varying both data-width and representation, can potentially enable a reduction of the
memory footprint required, as well as a reduction of the volume of transfer and the
associated energy.

First, Section 5.1 presents the concept of AxBs. Then, Section 5.2 shows impact for
truncating the Least Significant Bits (LSBs) from regular FP32 data. Next, Section 5.3
shows how the Fixed-Point (FxP) representation can be adapted with specific bit-width.
Section 5.4 presents a format based on the IEEE-754 Floating-Point (FP) rule-set able to
target any bit-width. Section 5.5 explains the uniform quantization concept and how it is
used in a slightly different way than the norm. Finally, Section 5.6 applies the previous
format to the set of test applications detailed in Chapter 4.

These notions of data-width and representation constitute the first half of the AxB
concept. Parts of this contribution have been presented at the International Workshop on
Signal Processing Systems (SiPS) 2020 [Mio+20].

5.1 The Concept of Approximate Buffer

The Approximate Buffer (AxB) concept belongs to the category of Data-Level Approx-
imate Computing (AxC) technique that changes the representation data to reduce the
memory footprint of data processing applications. It belong to the Precision Optimiza-
tion category (Section 2.2) and in our case does not impact the nature of the computation.

The basic idea of AxBs is to store the data associated with data buffers using fewer bits
than the original and no matter the data-type used during computations. As mentioned
in Section 2.2, algorithms are usually designed with FP64 or FP32 arithmetic, as these
data representations enable the use and computation of non-integer numbers. However,
the available dynamic range and precision provided by these data-types can often be
underused. Regardless of how much precision is required for a floating-point variable, it
still occupies the same memory space. The same applies to integer variables, as standard
data-types sizes tend to occupy either 8, 16, 32, 64 or 128 bits in memory.

Depending on the nature of the original data, a number N of bits, either LSB or Most
Significant Bit (MSB), could be scrapped to reduce the size of the data-type associated
to a First-In First-Out queue (Fifo) buffer, and thus of the whole buffer.

The set of data with N bits removed is then concatenated in memory to achieve the
footprint reduction.

66

5.2. Data Truncation

32 32 32 32 32 32 32 32

Original memory footprint

20 20 20 20 20 20 20 20 96

Reduced memory footprint Saved space

Working Size
Storage Size

Figure 5.1: Simplified illustration of AxB, with data converted from 32 down-to 20 bits
concatenated in memory.

Figure 5.1 shows a simplified representation of the AxB concept, with a set of originally
32-bit wide data converted to a 20-bit wide representation, and concatenated in memory.

AxBs are specifically targeted toward memory buffers used to transmit data from a
computation bloc to the next, and is especially well suited to be applied on Fifos from
a dataflow graph. As described in Section 3.3, a dataflow graph representation clearly
separates by design the computation from the data buffers, making the use of a technique
such as AxBs straightforward.

An AxB stores the data using the same storage format and the same bit-width. These
parameters need to enable the representation of every data within the AxB with an high-
enough accuracy level.

As data stored within AxBs are altered by the bit-width reduction, the impact from
using this AxC technique needs to be evaluated. This impact on overall quality, as well
as the accuracy loss mitigations enabled by specific data representations are discussed in
this chapter. Implementation details concerning data conversion and insertion/extraction
from an AxB are explained in Chapter 6.

5.2 Data Truncation

Reducing the bit-width of a data will have varying effect depending on initial representa-
tion (integer or floating-point) and on whether the removal targets MSBs or LSB. With
an (unsigned) integer representation on N bits, removing m MSBs reduces the range of
values representable from 2N down to 2N−m, while removing m LSBs lower the accuracy
by increasing the step-size from 20 to 2m. Consequently, removing MSBs from an integer

67

Chapter 5 – Data Representation in Approximate Buffer

data has no impact on the accuracy as long as the range stays wide enough to represent
all values, after which it becomes unusable. On the other hand, removing LSBs will simply
gradually degrade the data.

With FP-based representation, MSBs encode the sign-bit and the exponent field while
LSBs encode the mantissa. Removing MSBs would almost immediately destroy the data
while removing LSBs will progressively degrade it. As we aim at reducing data-width of
FP value, we focus on LSBs removal.

Using FP32 variables, the actual value is encoded in the 23 LSBs, the rest serving as
a scaling factor, and the sign bit. This means the data-width reduction opportunities are
functionally limited to these 23 bits.

The average relative error compared to real values introduced by the use of data trun-
cation is shown in Figure 5.2. Because the 9 MSBs of the FP32 representation correspond
to the sign bit and the exponent, a total of 11 bits are necessary to encode a real value
with an average error below 10% (1 sign bit, 8 exponent bits and only 2 mantissa bits),
and 16 bits for an average error below 1%.

0 4 8 12 16 20 24 28 32
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Bit-Width

R
el

at
iv

e
Er

ro
r

in
%

Max Error
Mean Error

Figure 5.2: Mean and max relative error introduced by the use of truncation compared
to real values.

This progressive loss of accuracy may be used to tune the memory storage to the data
to store, by reducing the number of bits used to encode the value with a specific level of
accuracy.

Figure 5.3 shows the loss of precision that comes with the data-width reduction with
truncation. In this example, the regular FP32 allows an accurate representation of the
value of the number π up to the 7th decimal place. Using a 23-bit FP32 truncation, π is

68

5.3. Fixed-Point Representation

0 01 0 00 0 00 0 1 0 10 0 10 0 0 0 1 1 1 11 11 0 1 0 1 1
Regular FP32 = 3.14159274101

(a) π encoded on a regular FP32.

0 01 0 00 0 00 0 1 0 10 0 10 0 0 0 1 1 1
23-bit "FP32" = 3.14147949219

(b) π encoded on a truncated 23-bit FP32.

0 1 0 00 0 00 0 1 0 10 0 10
16-bit "FP32" = 3.140625

(c) π encoded on a truncated 16-bit FP32 (equivalent to BF16).

Figure 5.3: Precision loss of π depending on data-width.

only accurate up to the 4th decimal place, and only up to the 3rd decimal place using a 16-
bit FP32 truncation. For reference, an FP64 representation is accurate to the 15th decimal
place, an FP128 to the 34th, and an FP256 is accurate to the 70th, while an accuracy to
the 38th decimal place is enough to measure the circumference of the observable universe
with a precision down to one atom of hydrogen.

Reducing the width of FP32 data for use with an AxB can be done by truncation, but
the impact on the accuracy quickly becomes significant. The reduction of the bit-width by
truncation from 32 bits to 12 bits, a 2.7 bit-width reduction, degrades the relative error
of the FP32 representation from less than 10−5% up to 10%. This accuracy loss can be
mitigated by converting the data to another representation with a bit-width more suited
for values to represent.

5.3 Fixed-Point Representation

The first data conversion considered is the Fixed-Point (FxP) format. As explained in Sec-
tion 2.2, FxP variables are presumed to have their exponent values known at compile time,
meaning the order of magnitude of variables stored in the AxB should be known before-
hand. Multiple data with the same bit-width can have a completely different Qm.n format.
Unfortunately this may not be known in practice. To mitigate this issue, every data stored
within an AxB are encoded with the same Qm.n format. This common format is stored
as metadata for the AxB, alongside the WorkingSize representing the original bit-width

69

Chapter 5 – Data Representation in Approximate Buffer

of the data, and the StorageSize representing the bit-width of data within the AxB. This
allows FP variables to be stored in even fewer bits than the truncation method described
in Section 5.2.

The determination of an appropriate common Qm.n format for the AxB can either be
done offline during the setup of the AxB technique, or live at runtime. If the number of
bits allocated to the integer part is too low, there is a risk of overflow. If it is set too high,
the accuracy will be reduced.

The offline determination can be done with interval arithmetic for relatively simple
application such as image processing algorithms. This method may become complicated
with more complex and compute intensive applications. In such cases, a simpler solution
is to track the ranges of values stored into a buffer during dry runs of the application for
a wide range of inputs.

The online method consists in checking during insertion if the current Qm.n format
of the AxB allows for storing the data without overflow. If not, every data within the
AxB can be reformatted with a new Qm.n format. While this means that the previously
stored data will lose some precision, it enables storing values that would otherwise end
up overflowing.

Additionally, if the content of the AxB is known to be always positive or always
negative, the sign-bit (which is included in m) can be removed and instead kept as an
AxB parameter. Consequently, the FxP format notation can be extended as Qs.m.n, with
n the number of bits for the fractional part, m the number of bit for the integer part
without the sign-bit, and s to represent the sign, with a value of ’+’ or ’-’ if the sign
is fixed, or ’1’ if an actual sign-bit is required. The Qm.n notation is still usable and is
assumed to have a sign-bit included in the parameter m.

The main drawback of this storage method with an FxP representation is that AxBs
containing values across a wide range might have their smallest values stored with a high
relative error or rounded to zero, which might be problematic with some applications.

Figure 5.4 shows the loss of precision that comes with the data-width reduction with
the FxP representation. As in Figure 5.3, π is used a the reference value. The raw integer
value is shown, along with the associated FxP interpretation with the corresponding Qm.n

format. The Qm.n FxP format is set to better encode the value of the number π, with
m = 3 and n = nbBit − m. In this example, the Q3.29 FxP format allows an accurate
representation of π up to the 9th decimal place. Using a Q3.20 FxP representation, π is
still accurate up to the 7th decimal place, the same as the FP32 format, and to the 4th

70

5.3. Fixed-Point Representation

32-bit Q3.29 = 1,686,629,713 → 3.14159265347
1 10 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0

(a) π encoded with Q3.29 format.

20-bit Q3.20 = 3,294,198 → 3.14159202576
1 10 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0

(b) π encoded with Q3.20 format.

16-bit Q3.13 = 25,735 → 3.14147949219
1 10 0 0 1 0 0 1 0 0 0 0 1 1 1

(c) π encoded with Q3.13 format.

Figure 5.4: Precision loss of π depending on data-width with FxP representation.

decimal place using a Q3.13 FxP representation. In this example, the 16 bits Q3.13 FxP
format offer the same level of precision as the 23-bit truncated FP32. These Q3.n formats
can represent values from [−23−1, 23−1 − 2−n].

Precision

As previously indicated, the main drawback of the Qm.n FxP format is its limited range,
roughly spanning from −2m to 2m. The absolute |xreal − xFxP| and relative

∣∣∣∣xreal − xFxP

xreal

∣∣∣∣
error introduced by the use of AxBs with the FxP representation on 23 bits is shown
on Figure 5.5 for various Qm.n formats.

As the step-size is equal to 2−n, values close to the lower bound have a higher relative
error, which in return guaranties a maximum absolute error of 2−n. Out of the whole
[−2m−1, 2m−1 − 2−n] representation space of the Qm.n format, values in the interval]−
2−n, 2−n[shows the worst relative error at 100%, as values in this range are flushed to
zero.

This enables the Qm.n FxP format to have a higher precision than the same-sized FP
format near the upper representable limit and gives a clear 2−n maximum absolute error.

71

Chapter 5 – Data Representation in Approximate Buffer

(a) Absolute error from using AxBs with a
23-bit wide FxP format.

(b) Relative error from using AxBs with a
23-bit wide FxP format.

Figure 5.5: Error from using AxBs with a 23-bit wide FxP format with different Qm.n

parameters.

5.4 Custom Floating-Point Representation

The regular FP32 format is able to, thanks to its exponent field, represent values ranging
from ≈ 2−126 up to ≈ 2127 (excluding subnormal numbers), while keeping a precision
between 6 and 9 significant decimal digits. This uniform precision across this wide range
is possible as the format is equivalent to a juxtaposition of 254 representation spaces,
ranging from 2e to 2(e+1)−q, e being the exponent value and q being the step-size, equal to
2e−23 for FP32. The maximum absolute error is below 2e−23, and the maximum relative
error below 6.10−6%.

The basic implementation of AxBs, using no alternative data representation, truncates
LSBs (as described at the beginning of Section 5.2) from floating-point values, which is
equivalent to increasing the step-size. Alternative representations derived from the ref-
erence FP32 format will be designated as Custom Floatind-Point (cFP) by the notation
cFPs.e.m.b, with s the sign-bit, e the number of exponent bits, m the number of mantissa
bits, and b the exponent bias. Unless specified otherwise, the representation space is cen-
tred around the value 1, with the exponent bias b = 2e−1 − 1. The regular FP32 format
is equivalent to cFP1.8.23.127.

72

5.4. Custom Floating-Point Representation

The cFP implementation featured in AxBs uses the cFPs.e.m.b format to adapt the
internal storage representation of the AxB to the data as well as possible.

As with the use of FxP representation in AxBs described in Section 5.3, using an
appropriate storage format is necessary to ensure a proper representation of values. The
same strategies can be use for offline and online determination of the s, e, m and b

parameters.
However, while the Qm.n format has a single parameter controlling the representation

space (the number of integer bits m), the cFPs.e.m.b format has two. The parameter e

corresponding to the number of bits for the exponent field has a similar effect on the
representation space as the parameter m from the Qm.n format, but the parameter b

corresponding to the exponent bias controls its centre point.
By default, the representation space is centred around 1. If, as an example, the values

within the AxB were to be in the interval [−1, 1], then half of the representation space
corresponding to positive exponent values would be unused. In such case, the exponent
bias b can be decreased to exclude positive exponent values, enabling a reduction of the
exponent field by an additional bit.

To go further, adjusting the exponent bias can also be done to purposely flush to
zero the lowest values. The number of binade available is equal to 2e. If, as an example,
the values to store within the AxB spanned across 20 binades, the safest value for the
number of bits e assigned to the exponent field would be 5, provided 25 = 32 ≥ 20
binades. It would guaranty for every data to be stored without issues, but at the same
time leaving 4 binades unused. The other possibility is to purposely discard the 4 lower
binades (consequently flushed to zero) by allocating e = 4 bits to the exponent field and
adjusting the exponent bias b to match the 16 higher binades. The spare bit can then be
assigned to the mantissa m to improve the storage accuracy of every other values of the
AxB. The impact of this modification is shown in Section 5.6.1.

The absolute and relative error introduced by the use of AxBs with the cFPs.e.m.b cFP
format on 16 bits is shown on Figure 5.6. Note that while the negative part is not shown
on Figure 5.6 because of the logarithmic scale, it exists and is symmetric to the positive
part as the s parameter is equal to 1.

The use of the cFPs.e.m.b format allows a fine-tuning of the representation space of the
AxB. The e parameter controls the width of the representation space, the m parameter
the precision, and the b parameter the centre of the representation space, which by default
is equal to 2e−1 − 1, centred around 1 (on a logarithmic scale).

73

Chapter 5 – Data Representation in Approximate Buffer

(a) Absolute error from using AxBs with
different 16-bit wide cFP formats.

(b) Relative error from using AxBs with
different 16-bit wide cFP formats.

Figure 5.6: Error from using AxBs with a 16-bit wide cFP format with different
cFPs.e.m.b parameters compared to FP32.

The cFP implementation in AxBs does not support some features from the regular
IEEE-754 reference, such as infinity, NaN s and subnormal numbers. Consequently, the
first and last binade are fully used to represent normal numbers. Data above the represen-
tation space of an AxB will be stored with an incorrect exponent value, hence the need to
properly dimension the s.e.m.b. parameter set, while data below the representation space
will be flushed to zero.

5.5 Uniform Quantization

The use of alternative representations with AxBs previously presented in Section 5.3
and Section 5.4 mainly consist in reducing the representation space as much as permitted
(the parameter m for FxP, and e for cFP), and using the remaining bits to increase
precision (n for FxP, and m for cFP). It has the advantage of only requiring to know the
approximate range of data within the AxB, but the new representation space may still
be partly unused. This is because both FxP and cFP representations have their range
determined with a power of 2.

The principle of the uniform quantization is to redefine the usual 2N -based step size
separating consecutive values. For the Qm.n format, the stepSize = 2−n. Note that regular
integer data-types can be expressed as Qm.0, with m equal to 8, 16, 32 or 64. For the

74

5.5. Uniform Quantization

cFPs.e.m.b format, the stepSize = 2E−b×2−m with E the exponent value associated with a
binade. This is also valid for the normal numbers of FP-based data-types from Section 2.2.

With uniform quantization, the step size is dependent on the range of values to encode
and on the number of step permitted by the bit-width nBit, such as stepSize = max−min

2nBit .
The quantized data corresponds to the number of step to add to get back to the original
value, offsetted by offset = −min, essentially consisting in mapping the [0, max − min]
interval to [0, 2nBit].

The regular quantization encoding is done with:

xUQ =<
x + offset
stepSize > (5.1)

with <. . . > a rounding-to-nearest operation, and the quantization decoding with:

x = xUQ × stepSize− offset (5.2)

This method exhibit a similar kind of imprecision as the FxP representation with the
Qm.n format detailed in Section 5.3. The maximal absolute error is constant, and the
maximal relative error increases for smaller values. However, while the FxP format have
its maximal relative error at the smaller side of its representation space, the quantized
representation have its maximal relative error near zero, which is not necessarily part
of the chosen representation interval. This is a consequence to the way the step-size is
defined. With the Qm.n format, the step-size is equal to 2−n, which also corresponds to
the lower bound of the representation space, regardless of the available number of bits.
With uniform quantization, the step-size is adjusted to the representation space as well
as the available number of bits.

Figure 5.7 shows that the quantized format behaves similarly as the FxP representa-
tion, with the maximum absolute value corresponding to the step size and the maximal
relative error reaching 100% in the neighbourhood of 0. However, this high relative error
do not happen if the quantized representation space does not contain 0, and the farther
it is from it. Additionally, the conventional uniform quantization encoding is unlikely to
properly represent the value 0 which is instead decoded as a small but non-zero value.
This may have a significant impact on signal processing application relying on the actual
value 0. Furthermore, the round-to-nearest operation may cause positive values close to
zero to be mapped to the closest step during encoding, which may then be decoded as a
small negative values, propagating an erroneous sign.

75

Chapter 5 – Data Representation in Approximate Buffer

(a) Absolute error from using uniform
quantization on [−1500, 1500] interval.

(b) Relative error from using uniform
quantization on [−1500, 1500] interval.

Figure 5.7: Error from using uniform quantization for different data-width in the
neighbourhood of zero compared to FP32.

The solution chosen for the implementation of quantization in AxBs is to slightly
modify the conventional encoding and decoding method.

The modified quantization encoding is done with:

xUQ =<
x

stepSize + offset > (5.3)

with <. . . > a truncation operation, and the modified quantization decoding with:

x = (xUQ − offset)× stepSize (5.4)

The step size is still defined with stepSize = max−min
2nBit , but the offset now cor-

responds to the number of step to reach the lower bound of the representation space
such as offset = −min

stepSize . This modification guaranties the proper encoding of 0 with
a dedicated step. Additionally, the replacement of the round-to-nearest operation by a
truncation leads to negative values close to 0 to be encoded and decoded as minus 1 step
instead, removing the previously mentioned encoding imprecision causing small values to
be decoded with the opposite sign.

The impact of this modification is shown in Section 5.6.1.

76

5.6. Experimental Results

5.6 Experimental Results

The impact of the data representation explained in this chapter is measured on the ap-
plication set presented in Chapter 4. As detailed in Chapter 5, the aim of this chapter is
to demonstrate how the use of alternative data representation can mitigate the accuracy
loss inferred by data-width reductions.

5.6.1 2D Wavelet Filter

The first use-case is an image processing pipeline consisting of a 2D-Discrete Wavelet
Transform (DWT) followed by an 2D-Inverse Discrete Wavelet Transform (IDWT), as
shown in a simplified way in Figure 5.8. The goal of this example is to show that image
processing algorithms can be very resilient to precision reduction, and not just in terms
of subjective perception.

Conv
Row HP

Conv
Row LP

Conv
Col HP

Conv
Col LP

Conv
Col HP

Conv
Col LP

Decim
Col

Decim
Col

Decim
Row

Decim
Row

Decim
Row

Decim
Row

Up
Row

Up
Row

Up
Row

Up
Row

Conv
Col HP

Conv
Col LP

Conv
Col HP

Conv
Col LP

+

+

Conv
Row HP

Conv
Row LP

Decim
Col

Decim
Col

+

Figure 5.8: Simplified representation of the application. Every Fifo from the first Conv
Row HP and Conv Row LP are AxBs.

This experiment applies the 2D-DWT to a video stream, followed by a 2D-IDWT, on
the luminance component Y of each image of a set of video sequences. Every buffer of
this application is an AxB (aside from buffers holding chrominance components U and V),
using the same bit-width and the same representation, but with a format adapted to their
content, for a total of 15 AxBs.

The quality metric used in this example is the Peak Signal-to-Noise Ratio (PSNR),
comparing the result frame obtained with and without AxBs. The final quality used to
qualify bit-width/representation couples corresponds to the worst PSNR value obtained
on any frame of any video sequence.

The graph on Figure 5.9 shows that the use of alternative representation has clear
benefits over a simple truncation of the base FP32 format.

77

Chapter 5 – Data Representation in Approximate Buffer

1 4 8 12 16 20 24 28 31
0

20

40

60

80

100

Bit-Width

Q
ua

lit
y

(P
SN

R
in

dB
)

Truncation of FP32
FxP
cFP

Quantization Mod

Figure 5.9: Graph of the worst PSNR dependant of the bit-width for various
representations.

The modified quantization representation tops most of the chart. This lead comes with
the constraint of having to specifically tune the proper range for each AxB, instead of
simply relying on 2N -based orders of magnitude.

These results validate the concept of using alternative data representations to miti-
gate the accuracy loss from reducing the bet-width of data, with every tested alternative
representations maintaining a quality above 60dB with a simple generalized use of AxBs
with a width of 14 bits.

1 4 8 12 16 20 24 28 31
0

20

40

60

80

100

Bit-Width

Q
ua

lit
y

(P
SN

R
in

dB
)

Tight exponent cFP
Wide exponent cFP

Figure 5.10: Comparison between tight and wide exponent range.

78

5.6. Experimental Results

The graph on Figure 5.10 illustrates the impact of removing the lower binades, as
mentioned in Section 5.4. Adjusting the exponent bias e and the width of the exponent
field e, lower binades are flushed to zero, saving up an additional bit to allocate to the
mantissa field m. This enables the format with the tighter exponent field to be more
accurate on narrower bit-width. In return, this format with a tighter exponent field is less
accurate than its "wide exponent" counterpart which achieves a better accuracy from 20
bits upward in this example.

On a side note, it can be observed on Figure 5.9 and Figure 5.10 that the best accuracy
is not necessarily achieves with the widest bit-width, as the tight cFP representation
reaches it best quality value with 19 bits.

1 4 8 12 16 20 24 28 31
0

20

40

60

80

100

Bit-Width

Q
ua

lit
y

(P
SN

R
in

dB
)

Quantization with eqs. (5.1) and (5.2)
Quantization with eqs. (5.3) and (5.4)

Figure 5.11: Graph of the worst PSNR dependant of the bit-width with the regular
uniform quantization and to modified quantization.

The graph on Figure 5.11 illustrates the impact modifying the conventional uniform
quantization encoding and decoding methods, as mentioned in Section 5.5. As expected,
the modification provide less accurate results for bigger step sizes (due to the narrower
width), which causes negative values close to zero to be encoded to the lower step instead
of the closest one, although this issue becomes less and less impactful as the number of
steps increases. In return, the accuracy is greatly increased from 11 bits and up, with an
improvement reaching 20 dB. This is thanks to small data no longer being susceptible to
changing their sign when decoded, as well as the value 0 being preserved.

79

Chapter 5 – Data Representation in Approximate Buffer

5.6.2 SqueezeNet Deep Neural Network

The second use-case is the SqueezeNet [Ian+16] Convolutional Neural Network (CNN). It
takes images as input and gives corresponding class. This application is presented in Sec-
tion 4.2. The goal of this example is to show that CNN can be very resilient to precision
reduction, validating the relevance of the AxB concept on this class of application.

The quality metric used in this example is the error rate of TOP-1 classification com-
pared to a regular implementation of the SqueezeNet CNN with a dataset of 300 images.

In this example, the same logic of using the same data representation and bit-width
from Section 5.6.1 is used, but buffers containing the model weights and buffers used
between layers are treated independently.

1 4 8 12 16 20 24 28 31
0

20

40

60

80

100

Bit-Width

Er
ro

r
ra

te
(%

)

Truncation of FP32
FxP
cFP

Quantization Mod

Figure 5.12: Squeezenet prediction error rate using AxBs to store data between layers,
compared to regular SqueezeNet.

The graph on Figure 5.12 shows that reducing the bit-width of interlayer buffers by
truncation down to 20 bits does not introduce any miss-prediction. Using alternative data
representation enable the bit-width to be reduced even further without error, down to 18
bits with the FxP representation, and down to 17 bits with cFP and uniform quantization.

The graph on Figure 5.13 shows that reducing the bit-width of model weights by
truncation down to 20 bits does not introduce any miss-prediction. Using alternative data
representation enable the bit-width to be reduced even further without error, down to 19
bits with the uniform quantization, down to 17 bits with cFP and to 16 bits with FxP.

80

5.6. Experimental Results

1 4 8 12 16 20 24 28 31
0

20

40

60

80

100

Bit-Width

Er
ro

r
ra

te
(%

)
Truncation of FP32

FxP
cFP

Quantization

Figure 5.13: Squeezenet prediction error rate using AxBs to store weights, compared to
regular SqueezeNet.

5.6.3 SDP Evolutionary Pipeline

The last use-case is the Science Data Processor (SDP) Imaging Pipeline1.

Gains Gridding
Apply

DeconvolutionDFTGains
Calib

Output
Image

From
CSP

Figure 5.14: Simplified architecture of the SDP Imaging Pipeline.

Figure 5.14 shows a simplified representation of the application.
The goal is to show that the concept of AxBs can also be applied on specialized signal

processing applications. Results from previous use-case show that the truncation of FP32
is irrelevant.

As this application is complex, a reduced set buffer is considered to study the impact
of alternative representation as a mean to mitigate accuracy loss from bit-width reduction.
The selected buffers for the study are the output buffers of actors shown in Figure 4.4, as

1. SEP Pipeline Imaging - GitLab: https://gitlab.com/ska-telescope/sdp/sep_pipeline_
imaging

81

https://gitlab.com/ska-telescope/sdp/sep_pipeline_imaging
https://gitlab.com/ska-telescope/sdp/sep_pipeline_imaging

Chapter 5 – Data Representation in Approximate Buffer

well as static buffers corresponding to the sky model and the point spread function used
for deconvolution.

For this use-case, the impact of the bit-width and the representation of data is mea-
sured for each buffer independently.

The results of this analysis are shown in Figure 5.15i. Figure 5.15a and Figure 5.15b
correspond to the point spread function and the sky model, Figure 5.15c to the input of
the gridding actor, Figures 5.15d to 5.15g are internal to the gridding actor, Figure 5.15h
to the output of the gridding actor which is also the image output, and Figure 5.15i to
the output of the DFT actor.

Graphs of Figure 5.15 show that every data representation is not fit to every buffer,
and that the behaviour of the output PSNR can vary wildly depending of the data-width
and the data representation used within the AxB. While Figure 5.15c, Figure 5.15g or Fig-
ure 5.15i show that different data representation can have similar results, Figure 5.15d
and Figure 5.15e show that there can be clear incompatibilities depending of the con-
tent of the buffer, even when the AxB is properly dimensioned. Note that the PSNR dip
in Figure 5.15h when using an AxB on 18 bits with FxP representation is an edge case
where an additional erroneous source is detected during the calibration cycle, resulting in
a slightly incorrect antennae gain calibration. This leads to a 65dB final result instead of
the expected 100-ish dB.

10 12 14 16 18 20 22 24 26 28 30 32
40
50
60
70
80
90

100
110
120
130

Data-width

Q
ua

lit
y

(P
SN

R
in

dB
)

FxP
cFP

Quantization

(a) PSF

10 12 14 16 18 20 22 24 26 28 30 32
10
20
30
40
50
60
70
80
90

100
110
120
130

Data-width

FxP
cFP

Quantization

(b) vis_uvw

82

5.6. Experimental Results

10 12 14 16 18 20 22 24 26 28 30 32
50
60
70
80
90

100
110
120
130

Data-width

Q
ua

lit
y

(P
SN

R
in

dB
)

FxP
cFP

Quantization

(c) Gain

10 12 14 16 18 20 22 24 26 28 30 32
20
30
40
50
60
70
80
90

100
110
120
130

Data-width

FxP
cFP

Quantization

(d) Gridding

10 12 14 16 18 20 22 24 26 28 30 32
20
30
40
50
60
70
80
90

100
110
120
130

Data-width

Q
ua

lit
y

(P
SN

R
in

dB
) FxP

cFP
Quantization

(e) FFT C2C

10 12 14 16 18 20 22 24 26 28 30 32
20
30
40
50
60
70
80
90

100
110
120
130

Data-width

FxP
cFP

Quantization

(f) FFT

10 12 14 16 18 20 22 24 26 28 30 32
20
30
40
50
60
70
80
90

100
110
120
130

Data-width

Q
ua

lit
y

(P
SN

R
in

dB
)

FxP
cFP

Quantization

(g) FFT C2R

10 12 14 16 18 20 22 24 26 28 30 32
50
60
70
80
90

100
110
120
130

Data-width

FxP
cFP

Quantization

(h) Conv Correction

83

Chapter 5 – Data Representation in Approximate Buffer

10 12 14 16 18 20 22 24 26 28 30 32
50
60
70
80
90

100
110
120
130

Data-width

Q
ua

lit
y

(P
SN

R
in

dB
)

FxP
cFP

Quantization

(i) DFT

Figure 5.15: PSNR dependant of AxB data-width on individual parts of the SDP chain.

Conclusion

This chapter shows how data processing applications can be resilient to data-width re-
duction, as well as how alternative data representations can be used to further this re-
siliency. Three alternative data representation are presented: the FxP representation, the
cFP representation, and a variation of the uniform quantization encoding. The expected
limitations and accuracy losses are detailed. There is no representation appearing to be
universally better than others in every situation. The AxB concept presented in this chap-
ter is design to target entire data buffer by storing its content with an alternative data
representation using a well-suited format. The following chapter will focus on how the
implementation of the AxB can enable memory footprint reductions.

84

CHAPTER 6

Implementation for Approximate Buffer

Introduction

Chapter 5 showed how the concept of AxB is able to change the storage representation
of data in applications to reduce the number of bits encoding the information, while
maintaining a sufficient output quality. Moreover, as an AxC technique, it offers a tunable
trade-off between quality and data bit-width. However, Chapter 5 does not provide a
reference implementation model enabling the materialization of the memory resources
reductions advertised.

This chapter provides examples of implementations of the AxB concept to reduce
the memory resources requirements of data processing applications depending on the
nature of the target architecture. The main focus is set around CPU-based architectures,
but the concept of AxB can also be exported hardware design and especially to Field-
Programmable Gate Array (FPGA) applications.

Figure 6.1 shows a simplified representation of the data storage in memory with AxBs.
Data tokens on 20 bits are concatenated in memory to effectively reduce the footprint of
the buffer.

One of the objectives of AxBs is to be as least intrusive as possible with few modifi-
cations to the original application. Indeed, while methods such as FxP arithmetic would

Chapter 6 – Implementation for Approximate Buffer

32 32 32 32 32 32 32 32

Original memory footprint

20 20 20 20 20 20 20 20 96

Reduced memory footprint Saved space

Working Size
Storage Size

Figure 6.1: Simplified representation of an AxB, with 20 bits wide data tokens being
concatenated in memory, compared to a bit-width of 32.

require the algorithm to be wildly redesigned, the use of AxBs only require modifications
on how the data is read and written in memory.

The concept of AxBs has initially been developed for data processing applications
described with Synchronous Dataflow (SDF)-based Models of Computation (MoCs) (Sec-
tion 3.3) due to the inherent separation between computations and data transactions, but
is not limited to this programming model. Consequently, support for AxBs has been added
to the Parallel and Real-time Embedded Executives Scheduling Method (PREESM) ap-
plication development framework, for both CPU and FPGA architecture. Support within
PREESM for CPU architectures is limited to shared memory platforms, and as of writing
to single core execution.

Section 6.1 details the implementation logic to enable data to be read from and written
to memory with an arbitrary bit-width in a relatively seamless manner. Section 6.2 shows
how the general concept of AxBs can be used on FPGAs to reduce the use of specific
hardware resources.

6.1 Software Implementation for CPU

To correctly handle data insertions and extractions from an AxB, relevant parameters
concerning the data representation and format within the AxB is kept as metadata. This
metadata is used to keep track of the original bit-width of the data, the storage bit-width,
the size of the buffer in data-tokens, as well as information on the specific format used
for storage. This metadata represents an overhead of around 20 bytes per AxB.

86

6.1. Software Implementation for CPU

In case of a C-like syntax, the data-writing process would be modified from
array[index] = value; to AxB_Write(&axb, index, value);. Data accesses through
AxBs can be made transparent with programming languages allowing for operator over-
loading such as C++, where simply providing an overload for the array subscript operator
of the AxB class is enough. The only other modification required is to provide the com-
putation function with a pointer to the AxB in place of a pointer to the original buffer.

6.1.1 Data conversion

For an efficient use of AxBs, data-tokens can be converted into one of the alternative
representation described in Chapter 5.

The conversion from FP32 to FxP and back is explained by Equations (2.2) and (2.4)
in Section 2.2.2. Similarly, the quantization encoding and decoding is detailed by Equa-
tions (5.3) and (5.4) in Section 5.5. The conversion result needs to be shifted left, as the
insertion process reduces the token width by removing LSBs. Inversely, the token retrieved
by the extraction process needs to be shift right.

The conversion from FP32 to cFP (and back) consists in a bit manipulation to move
and resize the exponent and mantissa field and is therefore more verbose, as shown in List-
ing 6.1.

1 int32_t convertFrom_fp32_to_cFP (AxB* axb , float data){
2 // Convert FP32 data to cFP(s.e.m.b)
3 if (data_in == 0)
4 return 0;
5
6 uint32_t * ptr_fp_bit = (uint32_t *) &data;
7
8 // If sign bit is stored , then fetching it , else leave

sign at 0 to negate impact
9 uint32_t s = 0;

10 if (axb ->s == SIGN_UNDEF)
11 s = * ptr_fp_bit & 0 x80000000 ;
12
13 // Get exponent e, on 8 bits or less
14 uint32_t e = ((* ptr_fp_bit >> 23) & 0xff) - 127;
15
16 // Apply AxB exponent bias b
17 e += axb ->b;
18
19 // Crop exponent e MSB
20 e &= ((1 << (axb ->e)) - 1);

87

Chapter 6 – Implementation for Approximate Buffer

21 // Set exponent e in position
22 e <<= (axb ->m + (axb -> workingW - axb -> storageW));
23
24 // Get mantissa m
25 uint32_t m = * ptr_fp_bit & 0 x007FFFFF ;
26 // Crop mantissa m
27 m >>= (FP32_MANTISSA_SIZE - axb ->m);
28 // Set mantissa position
29 m <<= (axb -> workingW - axb -> storageW);
30
31 // Assemble cFP
32 * ptr_fp_bit = s | e | m;
33
34 return *temp;
35 }

Listing 6.1: Convertion function from FP32 to cFPs.e.m.b.

The different fields are isolated, resized as needed, and assembled into the new format
to be store into the AxB.

Performing computations with data from AxBs may produce results outside the range
used for AxB format determination, especially when using quantization. To solve this
issue, a clamping operation may optionally be performed before conversion.

6.1.2 Insertion/extraction

AxBs store data of arbitrary width, far from the conventional byte-based access schemes
of processor-based systems. Data is then concatenated in memory, allowing the memory
footprint reduction.

7 6 5 4 3 2 1 0 15141312 11 10 9 8 0 22212019181716 7 6 5 4 3 2 1S 7 6 5 4 3 2 1 0 15141312 11 10 9 8 0 22212019181716 7 6 5 4 3 2 1S

Regular FP32

7 6 5 4 3 2 1 0 22S 15141312212019181716 7 6 5 4 3 2 1 0 22S 15141312212019181716 7 6 5 4 3 2 1 0 22S 15141312212019181716 7 6 5S

FP32 on 20 bits One byte in memory

Figure 6.2: Memory representation of 20-bit truncated FP32 data concatenation, along
with regular FP32 storage.

Figure 6.2 shows an example of how 20-bit truncated FP32 data can be concatenated
in memory compared to regular FP32 storage. The top line shows 2 FP32 data stored on
8 bytes, and the bottom line shows 3 20-bit truncated FP32 concatenated with the first

88

6.1. Software Implementation for CPU

4 bits of a 4th one. As it is not possible to perform 20-bit wide memory operations on a
conventional CPU architecture, specific procedures for data insertion and extraction from
an AxB need to be devised.

Insertion Process

The process of writing a data-token into an AxB is not straightforward, as data accesses
to memory do not have a granularity down to a bit, and the width of these accesses is
limited to 2N bytes.

LSBs 0 00

[19..0]i[19..4]i-1

[3
..0

] i-
1

[19..12]i+1 [11..0]i+1

[19..0]i [19..0]i [19..0]i

[3
..0

] i-
1

[19..0]i [19..12]i+1

[3
..0

] i-
1

0 [19..12]i+1

[3
..0

] i-
1

[19..0]i [19..12]i+1

+

A B C

D

E
F

G

31 01112 31 01112 31 0782627

31 0782627

31 0782627

31 0782627

31 07826270 3115 20

Figure 6.3: Step-by-step process for data insertion into an AxB, for a bit-width of 20.

Figure 6.3 shows the process of inserting a data-token into an AxB. This example
considers an insertion of a 20-bit data token. Actual memory accesses are still performed
with a width conventionally supported by CPUs. In this case, memory operations are
performed by 4-byte wide blocks, with a 2-byte alignment. Although misaligned memory
accesses can in theory result in performance penalties, tests showed that performing a sin-
gle blockWidth-wide access on a blockWidth

2 alignment was equivalent, if not slightly better,
to 2 consecutive blockWidth

2 wide accesses with a blockWidth
2 alignment.

Because data-tokens are concatenated into the AxB, a single block of memory (i.e. 4
consecutive bytes) contains bits from multiple data-tokens. When writing a data-token

89

Chapter 6 – Implementation for Approximate Buffer

to memory, it is essential that neighbour bits belonging to adjacent data-tokens stay
unchanged.

To ensure that only bits belonging to the data-token are modified, the insertion process
is decomposed in 7 steps detailed below:

A) The data-token i is provided to the insertion function. The data representation is
irrelevant as the 20 bits of the data-token are treated as a senseless payload.

B) LSBs are removed through bit-masking so that only the 20-bit payload remains.

C) The 20-bit payload is shifted to the position it will hold in the memory block.

D) The block is read from memory.

E) Bits from the block to be replaced by the payload are zeroed through bit-masking.

F) The payload is inserted into the block.

G) The block in written back to memory.

Because of the byte-ordering in memory, little-endian architectures need to perform a
bswap operation on the result of (C) as well as on the bit-mask used in (E).

The non-atomicity of this process, especially because of the block read (D), block
modification (E and F) and block write (G) steps, enables potential race conditions for
multithreaded execution. These race conditions can be prevented by the use of atomic
operations, replacing steps (D) to (G) by an atomic and with the bit-mask to clear the
bits to replace, followed by an atomic or to write the payload. This results in a significant
performance penalty because of the increased number of memory transactions from 2 to
4, as well as latency from lock acquisition for the atomic operations. The other solution
is to accept the possibility race conditions happening (which could even be considered as
an additional AxC technique implementation from Section 2.1.3.2). These race conditions
are likely to happen in case of multithreaded random memory writes, but are virtually a
non-issue when each thread only interacts with a segment of the AxB. When the workload
is parallelized such as each of the Nth threads has only access to an umpteenth of the AxB,
a race condition can only occur if a thread is writing its lasts data-tokens while the next
thread is writing its firsts, which is highly unlikely to happen. Program-code generated
by the PREESM application development framework fit this scenario.

90

6.1. Software Implementation for CPU

Extraction Process

The process of reading a data-token from an AxB is simpler.

[19..0]i[19..4]i-1

[3
..0

] i-
1

[19..12]i+1 [11..0]i+1

[3
..0

] i-
1

[19..0]i [19..12]i+1

00 [19..0]i

0[19..0]i

A

B

C

31 07826270 3115 20

31 0782627

31 0782627

31 01112

Figure 6.4: Step-by-step process for data insertion into an AxB, for a bit-width of 20.

Figure 6.4 shows the process of extracting a data-token from an AxB. This example still
considers the extraction of a 20-bit data-token. Comments regarding memory alignment
made during the explanation of the Insertions Process are still applicable. There is however
no longer any issues regarding modifications of bits belonging to neighbour data-tokens.

The extraction process is decomposed in 3 steps detailed below:

A) The 4-byte wide memory block containing the 20-bit payload is read from memory.

B) Bits from neighbour data-tokens are removed through bit-masking so that only the
20-bit payload remains.

C) The 20-bit payload is shifted left to its final position.

The extracted data-token can then be converted from the storage representation to
the representation used for computations.

As with the insertion process, a bswap operation is required on little-endian architec-
tures at the end on step (A).

91

Chapter 6 – Implementation for Approximate Buffer

The bit-mask operation from step (B) may optionally be skipped, causing MSBs from
the next data-token to be used as LSBs. This causes a slight quality drop with no mea-
surable performance impact. Consequently, the operation from step (B) is kept.

The time to insert and extract data-tokens with AxBs has been measured. This mea-
surement is done with the knowledge that no particular specific and dedicated effort has
been done for optimizations. A read and a write operation in an AxB takes approximately
an additional 2.1ns without alternative data representation. The conversion from FP32
to another representation adds 0.6 to 1.6ns to the write delay, while the conversion from
an alternative representation back to FP32 adds another 0.1 to 2.9ns to a read operation.
These additional delays on data transaction are expected to have more noticeable impact
on data processing applications with a lower arithmetic intensity. Enhancement to the
insertion and extraction processes and data conversions could be performed to reduce the
additional delay, either with specific code optimizations or with hardware implementation,
but these are not covered in this thesis.

6.1.3 Experimental Results

The memory footprint reductions enabled by the use of AxBs are demonstrated on the
application set presented in Chapter 4. The performance hit, in the form of longer ex-
ecution time, is mainly dependent on the number of AxBs used and on the arithmetic
intensity of the application itself.

6.1.3.1 2D Wavelet Filter

The Wavelet Filter is applied on every frame of a set of video sequences. Only the lumi-
nance component Y is processed, chrominance components U and V are left untouched.

Figure 6.5 shows the memory footprint of the 2D wavelet filter with the corresponding
output quality. Every buffer of this application is an AxB (aside from buffers holding
chrominance components U and V), using the same bit-width and the same representation,
but with a format adapted to their content, for a total of 15 AxBs. The configurations
of AxBs used for this plot are the best result from the quality study in Section 5.6.1
(Figure 5.9). The desired output quality can be tuned depending on the memory footprint
constraints, maintaining for example a PSNR above 60dB with a 40% reduction of memory
footprint. The large number of AxBs coupled with the low arithmetic intensity lead to a
particularly high performance penalty of around 56%.

92

6.1. Software Implementation for CPU

35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

20

40

60

80

100

Memory footprint in %

Q
ua

lit
y

(P
SN

R
in

dB
)

Blanket approach

Figure 6.5: Graph of the memory footprint of the 2D wavelet filter with the
corresponding output quality.

6.1.3.2 SqueezeNet

The SqueezeNet CNN has a memory footprint of around 9.2 MB. Results from Sec-
tion 5.6.2 show that using AxBs to store all model weights with the same bit-width and
format enables a preservation of the TOP-1 accuracy, using 16 bits and the FxP repre-
sentation (Figure 5.13), for a memory footprint reduction of 25.5%, from the initial 9.2
MB down to 6.85MB.

By combining this result with the data-width reduction from using AxBs on inter-
layer data (Figure 5.12), the total memory footprint of SqueezeNet could potentially be
reduced to 5.07MB, a 44.9% reduction. This is however not directly possible, as adding
additional AxBs aggravate the propagated error. This would require additional specific
measurements.

A better solution is to reduce the amount of buffer considered for an AxB implemen-
tation. Figure 6.6 shows the memory footprint needed for each part of the SqueezeNet
neural network.

Figure 6.6 shows that while some actors require a significant amount of memory (max-
Pool1, conv1, fire3...), most of them have comparatively small memory requirements (from
fire4 onward). This shows that the highest memory requirement is reached by the max-
Pool1 layer, followed by conv1 and fire3. Using AxBs on input/output buffer of layer from
fire4 onward is therefore useless to achieve a memory footprint reduction. Contrary to
model weights which are kept in memory for the whole duration of the execution, input

93

Chapter 6 – Implementation for Approximate Buffer

con
v1

max
Po

ol1fire
2

fire
3

max
Po

ol3fire
4

fire
5

max
Po

ol5fire
6

fire
7

fire
8

fire
9

con
v1

0

av
gP

oo
l0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.2

M
em

or
y

fo
ot

pr
in

t (
M

B)

Memory footprint corresponding to each SqueezeNet layer

Output
Input
Internal
Model
Misc.

Figure 6.6: Memory footprint corresponding to different parts of the SqueezeNet neural
network.

and output buffers of each layer are allocated during a limited time. This implies that a
broad approach consisting of using the same AxB parameters for every interlayer buffer
is inadequate.

A better solution is to reuse a similar approach as before, but this time specifically
selecting the buffer which are the most susceptible to have an impact on the overall
memory footprint. The interlayer buffers are still sharing the same AxB parameters, but
this time only buffers from conv1 to fire3 are considered.

Table 6.1 shows the memory footprint dependent on both the bit-width and format
used for model weights AxBs as well as by using the same AxB parameters for input and
output AxBs from layer conv1 to layer fire3, with the constraint of producing the same
classification results as the regular version of SqueezeNet.

The lowest memory footprint is achieved by storing the model on 16 bits into an AxB
using the Q2.14 format and the working data on 14 bits in AxBs using the cFP+.5.9.15

94

6.1. Software Implementation for CPU

Model
Data Truncation FxP cFP Quantization

Truncation 20
18 FP18 20

18
Q12.6 20

14
cFP+.5.9.15 19

15 15

FP20 5.77MB FP20 5.77MB FP20 5.30MB FP19 5.42MB

FxP 16
18 FP18 16

18
Q12.6 16

14
cFP+.5.9.15 16

16 16

Q2.14 5.19MB Q2.14 5.19MB Q2.14 4.71MB Q2.14 4.95MB

cFP 17
18 FP18 17

18
Q12.6 17

14
cFP+.5.9.15 17

15 16

cFP1.5.11.24 5.33MB cFP1.5.11.24 5.33MB cFP1.5.11.24 4.86MB cFP1.5.11.24 5.10MB

Quantization 18
16 FP16 19

18
Q12.6 19

14
cFP+.5.9.15 20

15 15

18 5.24MB 19 5.63MB 19 5.15MB 20 5.42MB

Table 6.1: Minimal data-width and memory footprint of SqueezeNet dependant on data
representation, while still reaching 100% accuracy compared to SqueezeNet with FP32.
AxBs are used from the input image up-to fire3 actor, including its output, with the

same configuration.

format (the + indicates that there is no signbit stored, but all values within the AxB are
considered positive when converted out of the AxB).

The best results obtained from this approach allows a reduction of the SqueezeNet
memory footprint to 4.71MB, a 48.8% reduction. The outcome of this approach can be
used as a starting point for a more in-depth tuning of AxB parameter.

Input conv1 maxpool1 fire2 fire3 fire4
Model to conv1 to maxpool1 to fire2 to fire3 to maxpool3 to fire5

OG Size 4.70MB 0.57MB 3.06MB 0.74MB 1.48MB 1.48MB 0.71MB
New Size 2.35MB 0.27MB 1.15MB 0.28MB 0.60MB 0.60MB 0.53MB
Data-width 16 15 12 12 13 13 24
Format Q2.14 Q9.6 cFP+.5.7.15 cFP+.5.7.15 cFP+.5.8.15 cFP+.5.8.15 cFP+.6.18.31

Table 6.2: Minimal data-width and memory footprint of SqueezeNet dependant on data
representation, while still reaching 100% accuracy compared to SqueezeNet with FP32.
AxBs are used from the input image up-to fire3 actor, including its output, as well as

the output of fire4 actor.

Table 6.2 shows the AxB parameters used to reduce the memory footprint of
SqueezeNet down to 4.47MB, for a 51.4% reduction. This result was achieved by tun-
ing the parameters of AxBs by hand, significantly increasing the time required to reach
a better result than the configurations from Table 6.1. The performance penalty in this
application is around 7%.

95

Chapter 6 – Implementation for Approximate Buffer

The memory footprint of SqueezeNet could be reduced even further by separating the
AxB configuration of model weight in 10 individual sets of parameters, but this separa-
tion implies an explosion of the design space. This exploration is not reasonably doable
manually and requires a specific Design Space Exploration (DSE) method, presented
in Chapter 7.

6.1.3.3 Science Data Processor

The impact of each AxB with different data representation, individually applied on dif-
ferent part of the SDP pipeline, is shown on Figure 5.15. This is aimed at showing the
individual impact on the output quality of using AxBs on different part of the pipeline
and can be used as a guide for the implementation of multiple AxBs at once.

20 30 40 50 60 70 80 90 100 110 120 130
105

120

135

150

165

180

195

210

225

Quality (PSNR in dB)

M
em

or
y

fo
ot

pr
in

t
(M

B)

FxP
Mixed

Figure 6.7: Graph of the memory footprint dependant of the output quality.

Figure 6.7 shows memory footprint reduction dependent of the output quality on the
SDP use case (Section 4.3).

The memory footprint of the base version of the SDP is 235 MB.
When using only FxP representation, the memory footprint can be reduced to 222 MB
(-5.5%) with a PSNR of 121dB and down to 170 MB (-27.7%) while keeping a PSNR
value of 70dB. From this point, reducing data precision any further prevents the SDP
Imaging Pipeline from correctly finding the expected number of sky sources, leading to
the generation of erroneous intermediate dirty images, hence the precision dip on the blue
curve.

96

6.2. Hardware Implementation for FPGA

Using multiple data representation at the same time enable a significant improvement
over blue curve, with a memory footprint of 186 MB (-20.85%) for a PSNR of 122dB, and
a footprint of 142 MB (-39.57%) for a PSNR of 78dB.

As the SDP Imaging Pipeline is a complex application, it is not possible to precisely
predict the extent of the quality degradation that comes with the use of Approximate
Buffers. Reducing data-storage accuracy of one buffer can lead to a significant decrease in
the output quality, but applying the reduction to a second one can, in some case, almost
completely negate this degradation. Fine-tuning the data-width in complex applications
can be a lengthy but necessary process. This method leads to an execution time between
0.6 and 4.3% longer in this application, depending of how many buffers are impacted.

Obtaining these results required a hand-made DSE guided by the findings from Fig-
ure 5.14, emphasizing the need for an automated DSE method.

6.2 Hardware Implementation for FPGA

This section is specifically talking about implementation of the AxB concept for SDF-
based applications on Xilinx FPGAs.

In the context of implementation of dataflow applications on an FPGA, every actor is
executed concurrently. In accordance with the SDF MoC, an actor can start its execution
when enough data-tokens are available on its inputs.

On CPU-based implementations of SDF graphs, both input and output Fifos re-
quire to be allocated in their entirety in the form of memory arrays, where data-tokens
are considered available only when the actor finishes its execution. On FPGA-based im-
plementations, data-tokens are produced progressively and can be consumed right-away,
lowering the memory requirements. Consequently, Fifos on FPGAs are not required to
hold the total amount data-tokens produced by an actor execution, but are rather only
required to be deep enough to hold the maximal amount of token that the consumer actor
will be unable to process right away [Vlu+19; Gho+12] (in the context of a throughput
maximization approach).

Fifos on FPGAs can use different kind of hardware resources, such as Flip-Flops
(FFs) or Block RAMs (BRAMs). Fifos required to hold a large-enough amount of data
are implemented with BRAMs. BRAMs are discrete components of an FPGA used to
store data. A BRAM is a dual-port RAM module capable of holding 18k bits (or 36k
depending on configuration) on Xilinx FPGAs. As all other kinds of hardware resources

97

Chapter 6 – Implementation for Approximate Buffer

(Digital Signal Processors (DSPs), FFs, Look-Up Tables (LUTs), . . .), there is a finite
number of BRAMs available within an FPGA. BRAMs are in general used to store a
large amount of data, i.e. more than a kilobit, such as data from peripherals, read-only
data, large LUTs (not to be confused with hardware LUTs), Fifos, etc. BRAMs can also
be used to transfer data between clock domains. The dual-port nature of BRAMs enable
them to simultaneously perform read and write accesses, making them well-suited for
Fifo operations. BRAMs have the particularity of having customizable width and depth.
For example, a BRAM containing 18k bits can be setup with a depth of 1k with 18-bit
wide data, 2k with 9-bit wide data... Multiple BRAMs can be pooled together to increase
the storage capacity.

In this context, the aim of implementing the AxB concept on FPGAs is to reduce the
number of BRAM allocated for Fifos. The details on how many BRAMs are allocated to
a Fifo depending on its depth and on the width in bit of a data-token is not provided by
the manufacturer, but has been reversed-engineered in the High-Level Synthesis (HLS)
compiler Vitis HLS.

The amount of BRAM allocated for a Fifo is given by the equation:

BRAM =
⌈
2⌈log2(depth)⌉ × tokenWidth

BRAM_size

⌉
(6.1)

with depth the maximal amount of data-token the Fifo is expected to hold, tokenWidth
the width in bits of a data-token, and BRAM_size the size in bit of a BRAM.

Figure 6.8 shows the BRAM allocation dependent on the Fifo depth and the token-
width corresponding to Equation (6.1).

This equation indicates that the depth of the Fifo is a major factor of the BRAM
allocation. More specifically, because the depth is rounded up to the next power of 2, an
increase of the Fifo depth by a single token (from depth = 2N to depth = 2N +1) will lead
to doubling the number of BRAMs allocated. Moreover, Equation (6.1) has some specific
unexpected quirks. By default, a BRAM has a size of 18 kilobits (BRAM_size = 18×1024
bits), unless the Fifo depth is superior or equal to 4096, in which case only 16 kilobits
are used per BRAM. Additionally, if data-tokens within a Fifo have certain bit-width,
the amount of BRAM allocated is rounded to the next even number. The bit-width values
concerned by this rounding rule are 13, 21, 22, and 28 and up, but only if the Fifo depth
is in the interval]2048; 4096].

98

6.2. Hardware Implementation for FPGA

Fifo Depth

0
1024

2048
4096

6144
8192

Token
-W

id
th

 (in
 b

its) 0
20

40
60

80
100

120
140

160

B
R

A
M

0

20

40

60

80

100

120

140

Figure 6.8: BRAM allocation dependent on the Fifo depth and the token-width
corresponding to Equation (6.1).

Data-Packing

The concept of AxBs consisting in concatenating data-token of a whole buffer in memory
is only relevant on processor-based architecture, where bits of memory are grouped in
bytes by design. However, the general idea can still be applied on FPGA platforms.

As shown on Equation (6.1), the depth of a Fifo has a huge impact on the BRAM
allocation, as the addressing of the content is bound to the next power of 2. The idea is
to group data-tokens into data-packets. Using a BRAM with a bigger width leads to a
reduction of its depth.

Consequently, by packing P data-token into a data-packet, the corresponding depth is
divided by this factor P . The goal is to find the packing ratio P leading to a packed-depth
as close as possible but still below 2N + 1 threshold. Additionally, using a packed-depth
inferior or equal to 4096 enables the use of the whole 18k bits of a BRAM, instead of 16k
as explained above.

99

Chapter 6 – Implementation for Approximate Buffer

For use of data-packing in an application described with an SDF-based MoC, special
Packing and Unpacking actors can be inserted on each side of the Fifo to pack. With the
packing ratio P , the Packing actor consumes 1 data-token per clock cycle and produces a
data-packet every P th cycle. The Unpacking actor does the opposite, consuming a data-
packet every P th cycle and producing a data-token every cycle.

The addition of these Packing and Unpacking actors on a Fifo creates a delay equiv-
alent to the additional number of clock cycles required to produce the data-packet (by
consuming P data-tokens), and an additional clock cycle to unpack the first data-token.
The added latency is equal to P + 1. Parallel branches may need to account for this ad-
ditional latency by increasing the depth of one of their Fifos by P + 1, with a process
similar to retiming [Liv+07].

To ensure a proper execution of a graph iteration, the packing ratio P needs to be a
divisor of either the production or consumption rate.

The process of deploying a data processing application described with an SDF-based
MoC on FPGA is shown inFigure 6.9.

FPGA
A

B

C

D
E

Figure 6.9: Process for deployment of SDF-based application on FPGA using PREESM
and Vitis HLS.

The deployment from SDF graph to FPGA requires a back and forth between
PREESM and Vitis HLS:

A) The application designer modelizes the graph in PREESM.

B) PREESM generates the HLS code with dummy execution times and Fifo depths.

C) Vitis HLS analyses the HLS code to determine precise actors’ execution times.

D) PREESM uses these precise execution times to determine the appropriate Fifo
depths, with Data-Packing if desired.

100

6.2. Hardware Implementation for FPGA

E) Vitis HLS uses this newly generated HLS code for FPGA deployment.

This data-packing method has been implemented in the PREESM application devel-
opment framework.

6.2.1 Results on FPGA

In this experiment, only the FxP representation is considered, as it is inherently well
suited for FPGAs computations. The application chosen to demonstrate the data packing
method is a 2D-DWT, constituting the first half of the 2D Wavelet Filter application
described in Section 4.1 and is shown on Figure 6.10. The image resolution is 1920x1080.

Conv
Row HP

Conv
Row LP

Conv
Col HP

Conv
Col LP

Conv
Col HP

Conv
Col LP

Decim
Col

Decim
Col

Decim
Row

Decim
Row

Decim
Row

Decim
Row

Figure 6.10: Simplified representation the 2D-DWT application.

This experiment combines the gains from the use of Data-Packing with the AxC
paradigm to give the possibility to trade off output quality for hardware resources reduc-
tions. The approach is the same as in Section 6.1.3.1, with the same bit-width used for
all Fifos used with Data-Packing.

Figure 6.11 shows the amount of BRAMs required for Fifos dependent of the output
quality, with and without Data-Packing. The number of BRAMs used with Data-Packing
is up to 25% smaller.

The use of Data-Packing enables a reduction of the BRAM usage at the cost of a
latency increase along with other types of hardware resources.

Table 6.3 shows the hardware resources usage with and without Data-Packing for
10-bit wide data-tokens for the whole application, Fifos and actors, corresponding to a
PSNR value of 50.81dB on Figure 6.11. The use of Data-Packing enables a global BRAM
utilization reduction of 13.6% at the cost of a small increase in FFs and LUTs usage.

101

Chapter 6 – Implementation for Approximate Buffer

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

Quality (PSNR in dB)

BR
A

M
s

us
ed

fo
r

Fi
fo

s

Without Data-Packing
With Data-Packing

Figure 6.11: Graph of the quantity of BRAMs used for Fifos with the 2D-DWT
dependent on the output quality.

BRAMs DSPs FFs LUTs
Without Data-Packing 132 90 34682 56220
With Data-Packing 114 90 36540 58525
Difference -13.6% 0% +5.1% +3.9%

Table 6.3: FPGA hardware resources usage with and without Data-Packing with 10-bit
wide data-tokens for both Fifos and actors, according to Vitis HLS.

Additionally, as previously stated, the use of Data-Packing adds a latency of P + 1
cycles for each packed Fifos on the critical path, with P the packing ratio. In the example
of Table 6.3, the packing ratio varies between 5 and 8, with a total additional latency on
the critical path of 15 cycles. For comparison, the execution time of the Conv Row HP
actor takes 2,079,917 cycles, making the additional latency from Data-Packing negligible.

Conclusion

This chapter details the implementation of the AxB concept on both hardware and soft-
ware architectures. It shows how AxBs can enable significant memory footprint reductions
while maintaining a high quality with various types of data processing applications. The
benefit of AxBs is demonstrated with memory footprint reductions between 40 and 50%
depending on the application.

102

6.2. Hardware Implementation for FPGA

This chapter also explains how the concept of AxBs can be applied on FPGAs in the
form of Data-Packing. This technique enables a reduction of the BRAMs usage, a hardware
resources dedicated to memory storage, at the cost of a small increase in general purpose
hardware resources usage. Data-Packing also has a negligible impact on latency.

This results emphasize the need for a specific DSE method to automate the configura-
tion of AxBs by minimizing the memory footprint while maintaining a quality constraint,
as doing so manually can take from days to weeks depending on the complexity of the
application.

The techniques presented in this chapter has been integrated into the PREESM ap-
plication development framework.

103

CHAPTER 7

Design Space Exploration for Approximate Buffers

Introduction

Chapter 6 shows that the use of AxBs, a data-driven AxC technique applied on data
buffers of a data processing application, enables a reduction of the memory footprint,
traded-off by a controlled degradation of the overall output quality. AxBs are implemented
in C code, by replacing data accesses from arrays tab[i] by a function call. Representing
data using alternative data representations and an arbitrary bit-width enables AxBs to
concatenate data-tokens in memory while still maintaining an acceptable accuracy. It
enables a memory footprint reduction of around 40% on the application examples with
little to no degradation of the output quality on CPU implementations, as well as a
reduction of up to 25% of the hardware resources for Fifo storage on FPGA.

However, the size of the design space to explore increases exponentially with the ex-
pression NBR , with N the number of bit-width possible (usually 32), B the number of
AxBs, and R the number of alternative data representation to consider. Consequently, the
AxC-oriented AxB Design Space Exploration (DSE) cannot be done exhaustively and is
thus usually performed empirically. The selection of buffers to consider in this approach
may take days, up-to weeks on complex applications.

This chapter presents an automatic and generic DSE method to optimize the bit-
width and format of data for use with AxBs. The proposed DSE method leverages the

Chapter 7 – Design Space Exploration for Approximate Buffers

specific memory allocation of Fifos to find a configuration of AxBs reducing the memory
footprint while maintaining a given quality constraint.

This contribution has been presented at the International Conference on Application-
specific Systems, Architectures and Processors (ASAP) 2022 [MNM22].

7.1 State of the Art on Design Space Exploration for
Approximate Computing

Our contribution is a data-driven AxC technique considering precision optimization. The
goal is to find the binary representation of manipulated data with the smallest number of
bits, while preserving the accuracy of the final result.

DSE methods have been proposed to ease the implementation of AxC-based tech-
niques. A DSE method is proposed in [EWT18] for boolean function approximation
on FPGAs, boasting up-to 20% resource reduction for a maximum error rate of 0.05%.
In [Cas+20], a set of tool is presented to perform a DSE for the implementation of ap-
proximate operators (mainly additions and multiplications). This allows a HLS tool to
properly generate approximate accelerators while maintaining a quality constraint. En-
ergy savings up-to 30% are advertised. A simulation-based DSE is presented in [Pai+20],
for the design of approximate adders within video encoding application. The presented
technique is evaluated on the H.265/HEVC coding standard, showing up-to 45% power
reduction with a minimal quality degradation. In [Bar+21], the automated framework
E-IDEA has been developed to apply AxC techniques on C/C++ applications through
source-to-source conversion. The framework is able to perform the DSE depending on the
criteria to optimize, such as power, area or computation time, with regard to a quality
constraint.

While current DSE methods enable the implementation of AxC-based techniques on
applications, these methods are either architecture-specific or application-specific, but also
does not take into account the memory footprint improvement achievable with AxC. To
the best of our knowledge, there is no automatic and generic DSE algorithm for memory
footprint reduction method based on data precision optimization AxC techniques like
AxBs.

106

7.2. Automatic Approximate Buffer Configuration

7.2 Automatic Approximate Buffer Configuration

7.2.1 Memory Footprint Minimisation Algorithm

This generic DSE algorithm is designed to minimize the memory footprint of an applica-
tion, while maintaining the result above a specified threshold of a desired quality metric.
For this purpose, the DSE algorithm is given a set of buffers for which to find the smallest
bit-width and representation. This generic method relies on the AxB concept presented
in Chapters 5 and 6, allowing data to be represented and stored in memory on an arbitrary
number of bits, without the expected 2n memory alignment requirements.

One of the main feature of our generic method is the distinction between global
buffers and local buffers. Global buffers are buffers which are allocated for the whole
duration (lifespan) of an application iteration, such as the result vector of an iterative
process or a reference set of value that needs to be compared against. Local buffers are
buffers that are not required for the whole duration of the application and whose memory
space can be reused [Des+16], such as buffer storing intermediate results between different
part of the processing pipeline. It is supposed that local buffers with non-overlapping time-
span may share the same memory space.

This clear distinction between global buffers and local buffers gives the possibility
to opportunistically increase the bit-width of local buffers, as long as the total memory
footprint is unchanged, reducing the number of configuration to explore by ignoring obvi-
ous sub-optimal configurations. This operation is later on referred to as buffer inflation.

The proposed algorithm takes as input the quality constraint qconstraint to fulfill, the
list of global buffers nglobal and local buffers nlocal on which to apply the AxB technique
on, the model to measure the memory footprint, and a way to evaluate the output quality
qtest.

A first run of the application is performed to monitor the variation of values to store
within AxBs. This enables the determination of the base storage format to be used for
each representation, and the degradation to apply when reducing the bit-width.

Algorithm 1 shows the global view of our method and its separation into three sub-
sections detailed in Algorithm 2, Algorithm 3 and Algorithm 4.

7.2.1.1 Min Value Determination

The first part (Algorithm 1:1), detailed in Algorithm 2, consists in finding, for each indi-
vidual buffer, the minimal number of bits bbest and the associated data-type which satisfy

107

Chapter 7 – Design Space Exploration for Approximate Buffers

Algorithm 1: Global view of the DSE algorithm.
1 wmin ← minValueDetermination // Algorithm 2
2 qtest ← runWithTestVector(wmin)
3 if qtest < qconstraint then
4 wmin ← Iterative_Process(wmin) // Algorithm 3

5 return bitScraping(wmin) // Algorithm 4

the quality constraint qconstraint, while every other buffer are kept at their original data-
type. The goal of this step is to find an appropriate starting vector wmin. This step is
based on a dichotomy search in order to limit the number of times the application is ex-
ecuted. Each bit-width nbit is tested with each candidate data-type. Intermediary results
are kept aside for latter parts of the DSE, as well as potential future explorations with
different quality constraints, and the best bit-width bbest is added to wmin. This vector
of individual minimums wmin is then tested to check if it satisfies the quality constraint
(Algorithm 1:2-4). If not, the algorithm continues with the second part (Algorithm 1:4)
detailed in Algorithm 3.

Algorithm 2: Min Value Determination.
Input: List of buffer to process
Output: List of minimal sizes

1 foreach j ∈ bufGlob ∪ bufLoc do
2 qtest ←∞
3 nbit ← MAX_NB_BIT
4 bbest ← MAX_NB_BIT
5 for i ← log2(MAX_NB_BIT) - 1 downto 0 do
6 if qtest ≥ qconstraint then
7 nbit ← nbit - 2i

8 else
9 nbit ← nbit + 2i

10 qtest ← findBestType(j, nbit)
11 if (qtest ≥ qconstraint) AND (nbit < bbest) then
12 bbest ← nbit

13 wj
min ← bbest

14 return inflateBufferBitWidth(wmin)

108

7.2. Automatic Approximate Buffer Configuration

7.2.1.2 Iterative Process

The main part of Algorithm 3 is an iterative convergent process. On each step, the
algorithm tries to find an acceptable buffer configuration wtest with a better ratio
qMem = ∆quality

∆memory
(quality variation over footprint increase) until a solution satisfy-

ing the quality constraint is found.
The general idea of this part is to progressively increase the output quality of the appli-

cation by selectively adding bits to data buffers, using the vector of individual minimums
wmin as a starting point.

For this purpose, on every step, a bit-budget wbudget and a woffset are defined to
determine the number of bits to add to data buffers. Global buffers are handled as
independent buffer entities, while local buffers are all considered as a single unique
buffer entity. With nglobal the number of global buffers and nlocal the number of local
buffers, the number of buffer entity to consider for the definition of wbudget and woffset is
nentity = nglobal + min(nlocal, 1). The number of bits to add is defined such as wbudget cor-
responds to the number of buffer entity to receive a single additional bit, and woffset to
the number of bits added to each buffer entity. Consequently, during each step, there are
multiple ways to apply wbudget on the vector of buffer bit-width witer.

When processing a step, the algorithm sets up a list Wtest of all the ways to apply
wbudget and woffset on witer, the base vector for the current iteration. Bit-width vector
of Wtest are inflated, creating potential duplicates to remove. Wtest is then ordered by
increasing memory footprint. Finally, the application is executed with every entry of Wtest.

If no satisfying qMem ratio can be found i.e. a positive value, the bit-budget is in-
creased, until it reaches a value of nglobal + min(nlocal, 1). wbudget then goes back to 1 bit,
and woffset is incremented and applied on every buffer (Algorithm 3:11). While global
buffers are all treated equally, local buffers are handled as a separate group. Indeed, lo-
cal buffers with non-overlapping lifespans are completely independent from one another.
Consequently, as the maximal memory footprint is achieved in a specific section of the
application, local buffers that are not contributing to this maximum can have their bit-
width increased up until the point it either reaches the memory ceiling, or reaches the
number of bits used for the original data (usually 32 or 64 bits). An example is shown in
Section 7.2.3.

To simplify the representation of the method, some of its parts have been offloaded in
the form of functions, detailed hereafter, the first two being user-provided:

109

Chapter 7 – Design Space Exploration for Approximate Buffers

Algorithm 3: Iterative Process.
Input: List of buffer to process
Output: A set of parameter that satisfies qconstraint

1 qiter ← qtest

2 witer ← wmin

3 bestQMem ← 0
4 wbudget ← 0, woffset ← 0, exit ← False
5 while exit = False do

// If no satisfactory step has been found, add an additional bit to the pool
6 if bestQMem ≤ 0 then
7 wbudget++
8 else
9 wbudget ← 1, woffset ← 0

// If an additional bit has been added to every buffer, increase the pool
offset

10 if wbudget > nentity then
11 wbudget ← 1, woffset++

// Provides a list of test vectors ordered by increasing footprint
12 Wtest ← generateVectorList(witer, nglobal, nlocal, wbudget, woffset)
13 foreach wtest in Wtest do
14 qtest ← runWithTestVector(wtest)
15 qMem ← ∆quality ÷ ∆memory

// Check if satisfactory solution
16 if qtest ≥ qconstraint then
17 exit ← True, Break

// Check if satisfactory next step
18 if qMem > bestQMem then
19 bestQMem ← qMem
20 qiter ← qtest

21 witer ← wtest

// If buffers are already at max size, then exit without solution
22 if ∑ wtest = nentity × MAX_NB_BIT then
23 exit ← True, Break

24 return wmin

110

7.2. Automatic Approximate Buffer Configuration

• qualityEvaluation(): Evaluate the quality of the output in comparison to a refer-
ence. The quality metric to use needs to be adapted to the application to optimize
and its type of output, such as PSNR, SSIM, MSE, error rate, etc... This function
is user-provided.

• appFootprint(wtest): Returns the application footprint corresponding to the wtest

parameter set. This function can either be user-provided or performed through an
application development framework such as PREESM.

• findBestType(wtest
j, nbit): If not previously done, runs the application with a single

AxB for buffer wtest
j on nbit, with each available data-type. Returns the best quality

and save the result (and associated type) for future uses. Uses qualityEvaluation.

• inflateBufferBitWidth(wtest): Gradually increases the size of local buffers until it
reaches the memory ceiling of the application. Uses appFootprint.

• runWithTestVector(wtest): Checks the known individual best type for each values
in wtest, running findBestType if required. Then runs the application with the
wtest parameter set. Returns the output quality value. Uses findBestType and
qualityEvaluation.

• generateVectorList(wmin, nglobal, nlocal, wbudget, woffset): Generates a list Wtest of all
the ways to add a bit to wbudget number of buffers with woffset, inflating local buffer
when possible, removing any duplicates, and ordering the list by memory footprint.
Returns Wtest. Uses appFootprint and inflateBufferBitWidth.

The result from this step is a set of bit-width and types to use with AxBs which
satisfies the quality constraint. However, the more the constraint is overshot, the higher
the memory footprint is likely to be. For this purpose, our DSE features a bit scraping
step.

7.2.1.3 Bit Scraping

After the main part is completed (Algorithm 3) and a result satisfying the constraint is
obtained, a last pass is performed. This last step is the bit-scraping step (Algorithm 4).

It consists in trying to remove additional bits from wmin (obtained from Algorithm 3).
The result vector obtained from Algorithm 3 is able to satisfy the quality constraint, but

111

Chapter 7 – Design Space Exploration for Approximate Buffers

Algorithm 4: Bit Scraping.
Input: Vector wmin respecting constraint qconstraint

Output: Optimised buffer, New quality value
1 exit ← False
2 while exit = False do
3 for i = 0 to nbuffer do
4 wtest ← wmin

5 wi
test ← wi

test - 1
6 if appFootprint(wtest) < appFootprint(wmin) then
7 qtest ← runWithTestVector(wtest)
8 if qtest ≥ qconstraint then
9 wmin ← wtest

10 qlast ← qtest

11 exit ← True

12 return wmin, qlast

because of the way Algorithm 3 is designed, this solution may not be optimal depending
on the buffer configuration of the application.

The bit-scraping method consists in iterating on every buffer of wmin trying to succes-
sively remove bits. If the removal allows both a reduction of the memory footprint and
maintaining of the quality constraint, the change is committed, otherwise it is discarded.
If no bits can be removed from buffers, the bit-scraping process is considered completed.

7.2.2 Complexity Analysis

On each step and considering that the best storage format is known for every buffer, the
maximum number of tries to find a suitable result is given by the combination

(
n
k

)
=

n!
k!(n−k)! , with k the bit-budget bbudget and n the total number of buffer (nbuffer = nglobal +
nlocal). However, the presented generic method handles separately global buffers and local
buffers.

While the effect on adding a bit to a global buffer is always measured, increasing
the footprint of a local buffer may allow another local buffer to be inflated without any
impact on the memory footprint. This means that instead of blindly testing the impact
of all the different ways to apply the bit-budget to the buffer (hence the

(
n
k

)
number of

possibilities), when adding a bit to the local buffer pool, all other local buffers are inflated
(as long as the overall memory footprint remains unchanged). As a result, some of the

112

7.2. Automatic Approximate Buffer Configuration

test vectors related to the increase of local buffer size end up being identical, allowing
the rejection of duplicates. The more local buffers there are, and the more they can share
their allocated space, the more duplicates will be rejected.

The main drawback of our method is, as the memory footprint is modified by small
increments, the number of test runs potentially required to find a suitable result. However,
it has an upper bound. The first step (Algorithm 2) is guaranteed to complete in at
most nrun = log2(MAX_NB_BIT) × nbuffer × ntype. The second step (Algorithm 3) has
its maximum number of test runs per iteration bounded by

(
n
k

)
(with k = bbudget and

n = nglobal +nlocal), but as previously explained, the more local buffers there are, the closer
n is to the number of global buffers, such as n = lim

nlocal→∞
nbuffer = nglobal.

It is important to note that the findBestType function saves the information of
which data-type is best suited for each bit-width, and this for every buffer. This means
that after a result has been obtained for a desired quality constraint, the next execution of
the algorithm (possibly with a different quality constraint) will potentially be substantially
faster.

As the AxB concept our method relies on has a small impact on the execution time of
the application, a test run of the application takes a similar amount of time as a regular
run.

7.2.3 Example

An example application is shown on Figure 7.1. For the sake of simplicity, this example
uses a SDF-like representation [LM87]. In this representation, the application is repre-
sented as a dataflow graph. The actual computations take place in graph vertices, called
actors, and data is moved from one actor to the next through the graph edges, which are
memory buffers.

B C
A D

Figure 7.1: Simple application example with 4 actors and 5 buffers.

113

Chapter 7 – Design Space Exploration for Approximate Buffers

This application example is composed of 4 actors (here called A, B, C and D), 2
global buffers (AD1 and AD2) and 3 local buffers (AB, BC, CD). A buffer only needs
to have its dedicated memory allocated from when its data is produced, to when its data
is consumed. When an actor is about to be executed, both its input and output buffers
need to be allocated. Figure 7.2 shows which buffers are allocated at each step of the
application execution. AB and CD share the same memory space.

AD1

AD2

A B C D

AB CD
BC

B
uf

fe
r A

llo
ca

tio
n

Figure 7.2: Graph of buffer allocation requirements dependent of actors execution.

In this example, the largest memory footprint is achieved when executing actors B
and C. The maximum memory footprint is calculated as mem = memAD1 + memAD2 +
max(memAB + memBC, memBC + memCD).

Table 7.1 shows the different possible allocations of wbudget on the example application.
Because there are 2 global buffers and some local buffers, the highest possible value of
wbudget is 3. The addition of another bit to the budget leads to the increase of woffset by 1,
and bringing wbudget back to 1.

woffset = 0 woffset = 1
Bit budget wbudget = 1 wbudget = 2 wbudget = 3 wbudget = 1 wbudget = 2 wbudget = 3

Global AD1 1 0 0 1 1 0 1 2 1 1 2 2 1 2
buffers AD2 0 1 0 1 0 1 1 1 2 1 2 1 2 2
Local buffers 0 0 1 0 1 1 1 1 1 2 1 2 2 2

Table 7.1: Bit budget allocation for the example application in Figure 7.1.

Regarding the number of runs required to complete the algorithm (considering 32-bit
wide data and 3 storage representation formats): the first step (Algorithm 2) is done after

114

7.3. Experimental Results

at most log2(32) × 5 × 3 = 75 while, as buffers AB and CD share the same allocation
space, each iteration of the second step (Algorithm 3) is done in either

(
4
1

)
= 4 or

(
4
2

)
= 6

plus the occasional single-buffer best type evaluation performed by the findBestType
function.

7.3 Experimental Results

The proposed DSE method was tested on the application presented in Chapter 4 to
demonstrate its genericity and to illustrate the possibilities of memory footprint reduction.

7.3.1 2D Wavelet Filter

The DSE method is tested with a quality constraint from 20 to 100dB with 5dB increment.

35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

10

20

30

40

50

60

70

80

90

100

Memory footprint in %

Q
ua

lit
y

(P
SN

R
in

dB
)

DSE results
Blanket approach from Section 6.1.3.1.

Figure 7.3: Graph of the memory footprint dependant of the output quality.

Figure 7.3 shows the results of the DSE method on the 2D Wavelet Filter presented
in Section 4.1, along with the results from the simpler approach from Section 6.1.3.1.
The DSE is able to find a solution satisfying the quality constraint while achieving a
lower memory footprint for constraints below 55dB or higher than 75dB. In the interval
between 55 and 75dB, the blanket approach from Section 6.1.3.1 is better. This inability
to get good results on this interval comes from the Bit Scraping step Algorithm 4. In
this specific application, multiple buffers are responsible at the same time for the highest
memory footprint, making the Bit Scraping unable to reduce the bit-width of concerned

115

Chapter 7 – Design Space Exploration for Approximate Buffers

buffers, as such reduction has no impact on the overall memory footprint. A solution to
this issue would be to give the Bit Scraping step the ability to know which set of buffer
are responsible for this maximal memory footprint, reducing the bit-width of the whole
set instead of one buffer at a time.

Despite this weakness, the proposed DSE is still able to reduce the footprint from 58%
to 52.5% with a PSNR above 50dB on this application.

7.3.2 SqueezeNet CNN

SqueezeNet [Ian+16] is a Deep Neural Network (DNN) for computer vision using a CNN
architecture, presented in Section 4.2. The memory footprint of the reference implemen-
tation is composed of around 4.7MB of model parameters, around 3.8MB of buffers to
store data between layers and around 0.7MB of other memory allocations, for a total of
9.2MB.

The buffers used to test the DSE method are the 10 global buffers holding the model
of the CNN, and the local buffers used between layers, from the input of conv1 to the
output of fire5 (minus the output of maxPool3), for a total of 17 buffers.

conv1 maxPool1 fire2 fire3 maxPool3 fire4 fire5 maxPool5 fire6 fire7 fire8 fire9 conv10 avgPool0

1

2

3

4

5

6

7

8

9

M
em

or
y

fo
ot

pr
in

t (
M

B)

9.17

3.81

2.71

Misc.
Model
Input
Output

Figure 7.4: Memory allocation at different stage of the SqueezeNet CNN with the
reference implementation (left columns) and with our method with a 100% accuracy

(middle columns) and a 90% accuracy (right columns).

Figure 7.4 shows the memory allocation for the SqueezeNet CNN without AxBs (left
columns), with AxBs for a 100% identical TOP-1 accuracy (middle columns), and for a
90% identical TOP-1 accuracy (right columns).

Using the proposed DSE algorithm, the memory footprint of the application can be re-
duced to 3.81MB, a 58.6% reduction, while maintaining the TOP-1 classification accuracy.
This result is obtained by exploring only 300 of the theoretical maximum 3217 ≈ 3.87×1025

116

7.3. Experimental Results

possible configurations. The memory footprint obtained with our method are displayed
on Figure 7.4 (right columns).

Furthermore, as shown on fig. 7.4, lowering the classification accuracy constraint from
the original implementation down to 90% allows a memory footprint reduction to 2.73MB,
a 70.3% reduction. This result is obtained by exploring 724 configurations. Inference time
when using AxBs is around 7% slower. The time for our DSE method to find a solution is
overwhelmingly dominated by the processing time of the application. Considering that a
single execution of the application with the 300 images dataset takes around a minute on
CPU, our DSE method is able to provide a satisfying AxB configuration in approximately
5 hours, depending on the quality constraint.

7.3.3 SDP Imaging Pipeline

The SDP Evolutionary Pipeline (SEP) Imaging Pipeline1 is an implementation of the
Square Kilometre Array (SKA) SDP for its most compute intensive task, presented in Sec-
tion 4.3.

The normal memory footprint is 234.9MB. A quick analysis of the application shows
that it already uses memory footprint reduction techniques, such as in-place computation,
which has to be taken into account to correctly evaluate the memory footprint reduction.

20 30 40 50 60 70 80 90 100 110 120 130 140 150
80

100

120

140

160

180

200

220

Quality (PSNR in dB)

M
em

or
y

fo
ot

pr
in

t
(M

B)

FxP from Figure 6.7
Mixed from Figure 6.7

Proposed DSE

Figure 7.5: Graph of the memory footprint dependant of the output quality.

1. SEP Pipeline Imaging - GitLab: https://gitlab.com/ska-telescope/sdp/sep_pipeline_
imaging

117

https://gitlab.com/ska-telescope/sdp/sep_pipeline_imaging
https://gitlab.com/ska-telescope/sdp/sep_pipeline_imaging

Chapter 7 – Design Space Exploration for Approximate Buffers

Figure 7.5 shows the evolution of the memory footprint of the application dependant of
the output quality, tested with quality constraints from 50dB to 155dB by 5dB increments,
obtained with the presented DSE method.

On this application, using the proposed DSE method with a 105dB constraint yields
an output quality of 106dB with a memory footprint of 141MB, a 39.7% reduction. This
result is obtained by exploring only 7 of the maximum 329 ≈ 3.52 × 1013 possible con-
figurations, with a runtime of around 170 seconds per configuration. The use of AxBs on
this application leads less than 1% longer execution times. Depending on the end-user
requirements, this level of accuracy may be higher than needed, allowing the memory
footprint to be reduced even further.

The proposed DSE method is able to produce a parameter set to properly configure
AxBs on this application in a matter of minutes to hours rather than weeks and providing
at the same time better quality results than the hand-made DSE.

In both this use-case and the previous one, there is no data-type that is exclusively
more accurate regardless the bit-width. Instead, some data-types tend to be better on
certain range of bit-width, hence the need to test multiple different configuration. Fur-
thermore, the DSE algorithm is able to provide the AxB configuration for a given quality
constraint in a matter of minutes to hours.

7.3.4 2D-DWT on FPGA

In the case of an FPGA application, as every actor is executed concurrently, the hardware
resources required for implementing Fifos are always in use, making every buffer a global
buffer. This creates a situation where the DSE method presented in this chapter is not
used in its intended setting. While it is suboptimal, the DSE method is still able to provide
a set of token-width satisfying the quality constraint.

Figure 7.6 shows the amount of BRAM used for Fifo in order to satisfy a given quality
constraint. The DSE method was set up to minimize the amount of BRAM without taking
into account the data-packing technique presented in Section 6.2. The resulting bit-width
are then inputted into PREESM to perform data-packing, and BRAM usage is confirmed
with Vitis HLS.

Aside from the bit-widths configuration obtained from the DSE method with a 56.3dB
quality, the proposed DSE provides results at worst identical to Section 6.2.1.

118

7.3. Experimental Results

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

Quality (PSNR in dB)

BR
A

M
s

us
ed

fo
r

Fi
fo

s
From DSE without packing

From DSE with packing
From Figure 6.11 without packing

From Figure 6.11 with packing

Figure 7.6: Graph of the quantity of BRAMs used with the 2D-DWT dependent on the
output quality.

Conclusion

This chapter presents an automatic and generic DSE method to optimize the bit-width
and format of AxBs, a memory-oriented AxC technique. It only requires to be provided
with initial memory information of the application to optimize as well as the quality
evaluation method, and uses this information to automate the AxC-oriented DSE.

We have shown that the proposed DSE method is capable of finding the required
buffer configuration to reduce the memory footprint of data processing application. The
genericity and efficiency of the proposed DSE method has been shown on the application
set from Chapter 4, a generic image processing application, an off the shelf CNN, and
a specific signal processing application. It shows the possibility to substantially reduce
the memory footprint of applications with little to no significant impact on the output
quality.

An interest of our work is to simplify the implementation of memory oriented AxC
techniques, enabling applications to be deployed on previously unfit architectures, which
usually requires a deep-dive into the inner-working of the targeted application. The preci-
sion optimization of actual computations, actors internal behaviour in case of a dataflow
application, is not in the scope of the proposed method. Existing approaches focusing
on the processing part optimization are complementary and can be combined with our
approach.

119

Chapter 7 – Design Space Exploration for Approximate Buffers

Additionally, the proposed DSE method has been tested on an SDF-based FPGA
application to reduce the hardware resources usage, providing optimal bit-widths for data-
tokens in Fifos. The Data-Packing technique presented in Section 6.2 can then be applied
to further reduce the requirements of hardware resources.

120

CHAPTER 8

Conclusion

8.1 Summary

The memory requirements of digital signal processing and multimedia applications have
grown steadily over the last several decades. From embedded systems to supercomputers,
the design of computing platforms involves a balance between processing elements and
memory capabilities to avoid the memory wall.

The contributions presented in this thesis are mainly aimed at reducing the memory
footprint of data processing applications with the AxC paradigm. These contributions
were developed with the objective of targeting data processing applications described with
an SDF-based MoC, but are not limited to these MoCs and can be applied on any kind of
application with a clear segmentation between data and computations. While the contri-
butions were initially aimed toward CPU-based architectures, the concepts presented can
be adapted to reduce the hardware resources on FPGAs. Most of the contributions of this
thesis have been implemented within the PREESM application development framework.

In Chapter 5, a study is conducted to evaluate the accuracy loss associated with
the reduction of the number of bits used to represent data. The impacts of the use of
multiple alternative data representations are assessed as a way to mitigate the accuracy
loss from bit-width reduction, as well as their limitations. Experimental results showed

opportunities to reduce the bit-width of data in storage up to 50% without compromising
the overall accuracy.

In Chapter 6, a reference implementation is provided to enable data-tokens of Fifo
buffers of unusual bit-width to be stored in memory in a concatenated manner. This
enables a reduction of the memory footprint associated with these Fifos. The concept is
also demonstrated in the context of FPGA applications, enabling a reduction of specific
hardware resources. Experimental results validated to memory footprint reductions, with
an emphasis on the possibility to trade off the accuracy for reduction in hardware resources
requirements.

In Chapter 7, a generic DSE method is proposed to find the appropriate bit-width and
data representation minimizing the memory footprint of an application while satisfying
a given level of accuracy. The proposed DSE method leverages the knowledge of buffers
allocation lifespan in memory to avoid reducing the bit-width when unnecessary. Experi-
mental results showed that the proposed DSE is able to find solutions to efficiently reduce
hardware requirements of data processing applications.

Application
Design

Data
Analysis

Design Space
Exploration

Approximate
Buffer (SW)

Data-Packing
(HW)

Chapter 5

Chapter 7

Chapter 6

Figure 8.1: Summary of the contributions of this thesis.

Figure 8.1 shows a workflow revolving around the contributions of this thesis. The
process starts with the initial reference data processing application designed by the de-

122

veloper, ideally with an SDF-based MoC. The nature of the data store within Fifos is
evaluated to determine the format to use for alternative data representation with any
bit-width (Chapter 5). Then, a DSE is performed to find the appropriate data representa-
tion and bit-width to minimize hardware resources usage while maintaining an accuracy
constraint (Chapter 7). Finally, the application with reduced hardware resources usage
can be executed on its intended architecture, either CPU-based or FPGA-based.

8.2 Future Works

The work of this thesis opens opportunities for future research on the impact of the
presented contributions on other aspects of computing architecture, as well as the eventual
interaction of complementary approaches.

8.2.1 Impact on Other Parameters

This thesis does not evaluate the impact of the presented contributions on other aspects
of a computing architecture. On a CPU-based architecture equipped with caches, concate-
nating data of reduced bit-width in memory implies a similar behaviour in the different
level of caches. A single cache-line will logically hold more data. An interesting future work
would be to study the impact of the techniques presented in this thesis on the behaviour
of the caches.

Additionally, the impact on energy consumption has not been evaluated. As inter-
actions with external memory consumes orders of magnitude more energy than cache
accesses [Hor14], the use of the presented techniques could lead to a reduction of the
energy consumption.

8.2.2 Extension with Additional Features

The techniques presented in this thesis could be extended with additional data repre-
sentation such as Logarithmic Number System (LNS) [DD07] or posits [GY17]. Adding
support for alternative data representation specifically suited for a given application may
enable additional gains in terms of resources reduction. The overhead from the presented
techniques could be potentially reduced or nullified by the use of in-memory computa-
tions [Mut+19].

123

Additionally, while this thesis only considers conventional CPUs and FPGAs, apply-
ing the presented concepts on other kind of hardware architectures such as Graphics
Processing Units (GPUs) and Application-Specific Integrated Circuits (ASICs) may pro-
vide interesting results. One of the main challenges regarding efficient GPU utilization
consist in feeding enough data to Processing Elements (PEs). The concepts presented in
this thesis could potentially be derived to alleviate this obstacle.

8.2.3 Interactions with Complementary Approaches

Finally, a research opportunity succeeding this thesis would be to perform modification to
the computation themselves, such as converting to FxP arithmetic, using the contributions
of this thesis as guidelines. With an FPGA architecture running an HLS application, it
is already possible to bind the data format used for computation to the format used
for storage. This concept could be exported the CPU-based architecture with the use a
source-to-source compiler to perform similar operations. The challenge then concerns the
repartition of the introduced error between computation and memory modification.

Combining all these research opportunities together could potentially enable unprece-
dented results but represent a complex multi-criteria optimization problem.

124

APPENDIXA

French Summary

A.1 Introduction

Depuis les dernières décennies, le volume des données traitées a crû en adéquation avec
l’augmentation de la puissance de calcul des systèmes de Calcul Intensif (HPC), ainsi
qu’avec la généralisation des systèmes embarqués sous toutes leurs formes, allant de l’In-
ternet des Objets (IoT) aux ordiphones.

Les systèmes embarqués sont les systèmes informatiques conçus spécifiquement pour
une application donnée, des équipements indépendants telle qu’une tondeuse à gazon
autonome, un appareil photo numérique ou des appareils électroménagers, ou faisant
partie d’un assemblage tel que les multiples sous-systèmes d’un véhicule.

La croissance des ressources de calculs va de pair avec l’augmentation et la complexi-
fication des systèmes liés à la mémoire. Tant pour les ordinateurs personnels que pour les
ordiphones, la quantité de RAM double tout les 2 à 3 ans.1 Dans un système informatique,
la mémoire est utilisée pour stocker les données, pour stocker les instructions programme,
pour sauvegarder des valeurs temporaires, et pour les mécanismes de synchronisation.

Un processeur infiniment rapide ne peut fonctionner qu’aussi vite que la donnée lui est
transmise. Ce problème nécessitant d’éviter le mur mémoire [WM95 ; JWN10 ; Ziv+17]

1. Exemple avec les ordiphones : iPhone 2G (2007) : 128Mo, iPhone 14 Pro (2022) : 6Go, Plus haut
de gamme actuel : 18Go, mais c’est stupide.

est connue depuis environ 3 décennies, amenant à la conception de mécanismes spécifiques
pour la mémoire. En conséquence, il est évalué que jusqu’à 80% de la surface de silicium
est dédiée aux caches, aux mémoires de stockage, aux contrôleurs mémoires et aux inter-
connections dans le seul but de transmettre la donnée à l’intérieur d’une puce [DCD97]. De
plus, les transferts de données entre la mémoire et les éléments de calculs (PEs) peuvent
représenter jusqu’à 62% de l’énergie consommée par un système de calcul.

Par exemple, dans une unité centrale de traitement (CPU) Advanced Micro Devices
(AMD) de l’architecture Zen 3, le cache L3 de 32Mo occupe à lui seul 52% de la surface de
silicium d’un CCD, et 64Mo additionnel peuvent être empilés par-dessus [Bur+22], pour
un total de 12Mo de cache L3 par cœur.

A.1.1 Portée de cette Thèse et Contributions

Les limitations liées à la mémoire sont une considération majeure durant la conception et
le déploiement d’application de traitement de données sur un système informatique, aussi
bien sur les aspects de capacité, d’énergie, de transmission, et de surface.

Le paradigme de l’Informatique à-Peu-Près (AxC) [HO13] a émergé comme une pos-
sibilité pour améliorer l’efficience énergétique et/ou la performance des systèmes infor-
matiques, sacrifiant la précision des résultats d’une application où l’intégrité des données
n’est pas critique, comme l’abandon d’une image durant l’opération d’encodage ou de
décodage d’un flux vidéo. Les méthodes d’AxC peuvent être séparées en 3 catégories, en
fonctions de si elles impactent les données utilisées durant les calculs, la nature des calculs,
ou les paramètres du matériel. Ces techniques ont tendance à être difficiles à mettre en
œuvre mais sont susceptibles de réduire les contraintes subies par le système de mémoire
d’une plateforme de calcul.

Une autre manière de réduire les besoins liés à la mémoire est l’utilisation de modèles
de calcul MoC spécifiques. Décrire une application de traitement de données avec un
MoC distinct peut permettre la mise en valeur de certaines opportunités d’optimisations
mémoire. Les MoCs basés graphes flot-de-donnée ont la particularité de mettre au premier
plan la gestion de la mémoire, à la fin en terme d’allocations et que de transferts, mettant
en avant les opportunités d’optimisations.

Dans cette thèse, de nouvelles techniques sont développées pour permettre la réduction
des contraintes d’empreintes mémoires d’applications de traitement de données en utilisant
le paradigme d’AxC avec les représentations de graphe flot de données.

Les contributions principales de cette thèse sont :

126

1. Une étude de l’impact des largeurs et représentations des données en mémoire sur
la qualité du résultat d’une application. Le stockage de donnée est simulé avec
un nombre de bit arbitraire, couplé avec une représentation de donnée personnali-
sable pour minimiser la perte de qualité. Cette contribution a été en partie publiée
dans [Mio+20].

2. Une méthode de conversion et de stockage de données à largeur de bit arbitraire
en mémoire pour CPU. Cette méthode gère les opérations mémoire pour stocker
des données non-alignées dans des segments concaténés. Cette contribution a été en
partie publiée dans [Mio+20].

3. Une méthode pour efficacement compacter et extraire des données de paquets pour
optimiser les ressources de stockage mémoire pour Réseaux de Portes Program-
mables In Situ (FPGA). Cette méthode est capable, à partir d’une représentation
flot de donnée, juste après le processus de détermination de taille des mémoires
tampons, de trouver le taux d’empaquetement optimal pour réduire les besoins de
ressource matériel. Cette contribution n’a pas encore été publié.

La plupart des contributions de cette thèse ont été intégrée dans l’environnement de
développement d’application PREESM.

A.1.2 Outline

La Section A.2 présente l’état de l’art sur les méthodes d’AxC et le MoC flot de donnée.
La Section A.3 présente le concept général et l’impact sur la qualité des contributions
basé AxC de cette thèse. La Section A.4 fournit une ligne directrice sur la manière de
mettre en œuvre ces techniques. Enfin, la Section A.5 conclue ces travaux et propose des
perspectives de recherches futures.

A.2 État de l’Art

A.2.1 Calcul à-Peu-Près AxC

L’un des objectifs de cette thèse est de concevoir des techniques basées sur le paradigme
de l’AxC. Une technique d’AxC est une technique qui quand appliquée sur un système
(logiciel ou matériel), entraîne la production de résultats imprécis mais utilisables. La

127

compensation pour ces imprécisions est une réduction des ressources nécessaires (puissance
de calcul, empreinte mémoire, consommation d’énergie, surface de silicium, ...) ou une
augmentation des performances (débit plus élevé, latence plus basse, ...) en fonction des
besoins et du type de technique utilisée [BMS22].

Ces techniques d’AxC peuvent être séparées en 3 groupes en fonction de la manière
dont elles affectent le systèmes. Les techniques de Calculs à-Peu-Près modifient la nature
des calculs effectués sur les données dans le but de réduire la complexité. Les 2 approches
principales du Calcul à-Peu-Près sont le saut de calcul [Sid+11 ; Vas+15 ; Meh+09 ;
Zha+14] et l’approximation de calcul [Sur+15]. Le saut de calcul consiste à ne pas exécuter
certaines parties d’une application pour réduire la complexité, par exemple en terminant
prématurément un processus itératif telle qu’une descente de gradient. L’approximation
de calcul consiste à remplacer un traitement précis et complexe par un traitement moins
précis mais plus simple, comme la substitution d’une fonction mathématique complexe
par un groupe de fonctions polynomiales simples.

Les techniques de Matériel à-Peu-Près s’appuient sur des comportements ou des modi-
fications spécifiques du matériel. Les 3 approches principales du Matériel à-Peu-Près sont
les Unités de Calcul à-Peu-Près [Gup+11 ; Mah+10 ; KGE11], la Modification des Para-
mètres du Circuit et le Stockage Non-Fiable [Smo+13 ; Fru+15 ; Rah+14 ; Mig+15]. Les
Unités de Calcul à-Peu-Près sont conçues pour être plus rapide et/ou moins énergivore que
leurs équivalents précis au prix un résultat légèrement imprécis. Les Modifications des Pa-
ramètres du Circuit consistent à modifier les paramètres tels que la tension d’alimentation
ou la fréquence d’horloge d’un circuit de calcul. Le Stockage Non-Fiable exploite le com-
portement des cellules mémoires défaillantes ou fonctionnant avec des paramètres limites
pour réutiliser des ressources autrement perdues ou réduire la consommation d’énergie.

Les techniques de Données à-Peu-Près se concentrent sur les données à traiter en
elles-mêmes. Les 3 approches principales des Données à-Peu-Près sont la Décimation
de Données [ACN14], l’utilisation de Données Périmées [Ren+12 ; RG01 ; KAK18] et
l’Optimisation de Précision [BSM17 ; Tin+19 ; Hat+17]. La Décimation de Données
consiste à réduire la quantité de données traitées, soit en volume, soit en fréquence. L’uti-
lisation de Données Périmées consiste à utiliser des données potentiellement obsolètes
pour réduire le surcoût en temps et en énergie lié aux synchronisations. L’Optimisation
de Précision repose sur l’utilisation de représentation de données pour réduire la mémoire
utilisée par les données.

128

Cette thèse se concentre spécifiquement sur les techniques de Données à-Peu-Près,
plus particulièrement l’Optimisation de Précision. Des explications plus détaillées sont
disponibles dans [Bon19 ; XMK15 ; Mit16].

A.2.2 Modèle de Calculs Flot de Donnée

Les modèles flot de données sont couramment utilisés pour représenter des applications de
traitement de données sous une forme abstraite, mettant potentiellement en valeur des op-
portunités d’optimisations spécifiques. Ces représentations graphiques peuvent également
être utilisées parce qu’elles sont adaptées pour ce type d’application ou pour l’architecture
matérielle ciblée.

Une application décrite avec le MoC de flot de donnée synchrone (SDF) est composé
d’un set de tâches concurrentes, appelé acteurs, interconnectées par des files premier
entré, premier sorti (Fifo) dirigées et non limitées. Une Fifo connectant deux tâches
crée une dépendance de donnée. L’écriture d’un jeton de donnée dans une Fifo n’est pas
bloquante, mais la lecture d’un jeton de donnée depuis une Fifo, elle, est bloquante. Un
jeton de donnée est indivisible, et n’est produit et consommé qu’une seule fois. Le modèle
SDF est indépendant de l’architecture ; il est capable d’exploiter le parallélisme, mais ne
le requiert pas. De plus, le modèle SDF est déterministe.

Le modèle SDF tire son intérêt de son analysabilité, sa prédictibilité, et de sa capacité
à exposer les opportunités de parallélisme, le rendant adapté pour une exécution efficace
sur une architecture matérielle. Les caractéristiques statique et déterministe du modèle
SDF permet la mise en place d’optimisation spécifique, adapté pour cibler des systèmes
embarqués.

La sémantique d’un MoC flot de donnée ne décrit que les interactions entre les acteurs,
mais ne spécifie pas le comportement interne de ces acteurs. La nature des opérations
réalisées par les acteurs doit être spécifiée par un langage hôte, tel que le C ou le Java, ou
avec un langage de description matériel comme le VHSIC Hardware Description Language
(VHDL), ou avec un langage permettant de d’écrire à la fois le graphe et le comportement
interne des acteurs, tel que le CAL Actor Language (CAL) [EJ03 ; Bha+11].

129

A.3 Concept de Mémoire Tampon à-Peu-Près

Les applications de traitement de données sont généralement conçues pour utiliser des
données avec la norme IEEE-754 de représentation de nombres à virgule flottante simple
précision (FP32) ou double précision (FP64). Les applications de traitements intensifs
nécessitent en conséquence des caractéristiques mémoires en correspondance avec les ca-
pacités de calculs. Cependant, le niveau de précision fourni par l’utilisation des formats
FP32 et FP64 est susceptible d’être disproportionné par rapport à l’acquisition de donnée
initiale, ou simplement au-delà des besoins de l’utilisateur final.

Cette section présente de concept de Mémoire Tampon à-Peu-Près AxB. Elle se
concentre sur la manière dont la réduction de largeur de donnée impact négativement
la précision, et comment cette perte de précision peut être atténuée par l’utilisation de
représentation de donnée alternative.

L’idée de base des AxBs est de stocker la donnée en mémoire en utilisant moins de bits
que la représentation originale, et sans tenir compte de son utilisation durant les calculs.

32 32 32 32 32 32 32 32

Empreinte mémoire initiale

20 20 20 20 20 20 20 20 96

Empreinte mémoire réduite Espace économisé

Largeur de Calcul
Largeur de Stockage

Figure A.1 : Illustration simplifié d’un AxB, avec des données converties de 32 vers 20
bits concaténées en mémoire.

Figure A.1 montre une représentation simplifiée du concept d’AxB, avec un jeu de
données d’une largeur initiales de 32 bits converties vers 20 bits et concaténées en mémoire.

Les AxBs sont spécifiquement conçus pour cibler les mémoires tampon servant à trans-
mettre de la donnée d’un bloc de calcul à un autre, et sont en particulier adaptés pour
être utilisés sur les Fifos d’un graphe flot de donnée.

Par défaut, la réduction de la largeur en bit d’une donnée FP32 par troncature des
Bits de Poids Faible (LSB) a un effet progressif sur la précision.

130

0 4 8 12 16 20 24 28 32
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Largeur en Bit

Er
re

ur
R

el
at

iv
e

en
%

Erreur Maximale
Erreur Relative

Figure A.2 : Erreurs relatives moyennes et maximales introduites par troncature
comparées à des nombres réels.

La Figure A.2 montre les erreurs relatives moyennes et maximales introduites par
troncature de données en FP32 en fonction du nombre de LSBs enlevés. L’erreur relative
initiale d’un FP32 d’environ 5 × 10−6% monte à 1% pour une taille de 16 bits et à 10%
pour une taille de 11 bits.

A.4 Implémentation de Mémoire Tampon à-Peu-
Près

Cette section fournit un exemple pour la mise en place du concept des AxBs pour ré-
duire les besoins en ressources mémoires d’applications de traitement de données sur une
architecture CPU.

Les AxBs stockent les données avec des largeurs de bits arbitraires, loin des schémas
d’accès conventionnels des CPU basés sur des octets.

7 6 5 4 3 2 1 0 15141312 11 10 9 8 0 22212019181716 7 6 5 4 3 2 1S 7 6 5 4 3 2 1 0 15141312 11 10 9 8 0 22212019181716 7 6 5 4 3 2 1S

FP32 normal

7 6 5 4 3 2 1 0 22S 15141312212019181716 7 6 5 4 3 2 1 0 22S 15141312212019181716 7 6 5 4 3 2 1 0 22S 15141312212019181716 7 6 5S

FP32 sur 20 bits Un octet en mémoire

Figure A.3 : Représentation en mémoire de FP32 tronqués sur 20 bits et concaténés,
avec le stockage conventionnel de FP32.

131

La Figure A.3 montre un exemple de la manière dont des FP32 tronqués sur 20 bits
peut être concaténés en mémoire. La ligne du dessus montre 2 FP32 stockés sur 8 octets,
et la ligne du dessous montre 3 données de 20 bits et les 4 premiers bits d’une quatrième,
sur le même segment de 8 octets. Comme il n’est pas possible de faire des opérations
mémoires d’une largeur de 20 bits avec une architecture CPU conventionnelle, des pro-
cédures spécifiques pour l’insertion et l’extraction de donnée dans un AxB doivent être
mise en place.

Procédure d’Insertion

Une opération d’écriture d’une donnée dans un AxB n’est pas directe, car les accès mé-
moires ne peuvent pas se faire avec une granularité au bit, mais sont contraints à des
largeurs de 2N octets.

LSBs 0 00

[19..0]i[19..4]i-1

[3
..0

] i-
1

[19..12]i+1 [11..0]i+1

[19..0]i [19..0]i [19..0]i

[3
..0

] i-
1

[19..0]i [19..12]i+1

[3
..0

] i-
1

0 [19..12]i+1

[3
..0

] i-
1

[19..0]i [19..12]i+1

+

A B C

D

E
F

G

31 01112 31 01112 31 0782627

31 0782627

31 0782627

31 0782627

31 07826270 3115 20

Figure A.4 : Procédure d’insertion d’une donnée dans un AxB étape par étape, pour
une largeur de 20 bits.

La Figure A.4 montre le processus d’insertion d’un jeton de donnée dans un AxB.
En pratique, les accès sont malgré tout fait avec des alignements standards. Dans cet
exemple avec une largeur de bit de 20, les accès sont faits avec une largeur de 4 octets
et un alignement de 2 octets. Comme les jetons de donnée sont concaténés dans un AxB,
un bloc de mémoire (i.e. 4 octets consécutifs) contient des bits appartenant à plusieurs

132

jetons. Il est donc essentiel lors d’une insertion de ne pas modifier les bits appartenant
aux jetons de donnée adjacents.

Pour s’en assurer, le processus d’insertion est décomposé en 7 étapes :

A) Le jeton de donnée i est fourni à la fonction d’insertion.

B) Les LSBs sont retirés par un masque de bits pour ne garder que les 20 bits de charge
utile.

C) Les 20 bits de charge utile sont décalés vers leurs position final dans le bloc mémoire.

D) Le bloc est lu dans la mémoire.

E) Les bits à remplacer par la charge utile dans le bloc sont mis à 0 avec un masque
de bits.

F) La charge utile est insérer dans le bloc.

G) Le bloc est réécris dans la mémoire.

Procédure d’Extraction

Le processus de lecture d’un jeton de donnée depuis un AxB est plus simple.
La Figure A.5 montre le processus d’extraction d’un jeton de donnée d’un AxB. Les

commentaires concernant la largeur et l’alignement des accès sont toujours valables.
Le processus d’extraction est décomposé en 3 étapes :

A) Le bloc mémoire de 4 octets contenant la charge utile de 20 bits est lu.

B) Les bits appartenant aux jeton de donnée adjacents sont retirés avec un masque de
bits pour ne garder que la charge utile de 20 bits.

C) La charge utile est décalée à son emplacement final.

L’implémentation de ces procédures d’utilisation des AxBs permet un réduction de
l’empreinte mémoire d’application de traitement de donnée.

133

[19..0]i[19..4]i-1

[3
..0

] i-
1

[19..12]i+1 [11..0]i+1

[3
..0

] i-
1

[19..0]i [19..12]i+1

00 [19..0]i

0[19..0]i

A

B

C

31 07826270 3115 20

31 0782627

31 0782627

31 01112

Figure A.5 : Procédure d’extraction d’une donnée dans un AxB étape par étape, pour
une largeur de 20 bits.

A.5 Conclusion

Les besoins en mémoire des applications de traitement du signal numérique et multimédia
ont constamment augmenté depuis les dernières décennies. Des systèmes embarqués aux
supercalculateurs, la conception des plateformes de calcul nécessite un équilibre entre la
puissance de calcul et les capacités mémoires pour éviter le mur mémoire.

Les contributions présentées dans cette thèse ont pour but de réduire l’empreinte mé-
moire d’application de traitement de donnée avec le paradigme d’AxC. Ces contributions
ont été développées dans le but de cibler les applications de traitement de donnée décrite
avec un modèle flot de donnée SDF, mais ne s’y limite pas et peut être appliquées à n’im-
porte qu’elle type d’application de traitement de donnée distinguant clairement la donnée
et les calculs. Bien que les contributions soient initialement ciblées vers les architectures
CPU, les concepts présentés sont également applicables à la réduction de ressources maté-
rielles sur FPGA. La plupart des contributions de cette thèse ont été implémentées dans
l’environnement de développement d’application PREESM.

134

List of Figures

2.1 Computation-level approximate computing techniques. 18
2.2 Hardware-level approximate computing techniques. 20
2.3 Data-level approximate computing techniques. 22
2.4 Reduction of the volume of data to process 22
2.5 Relative error of FP data-types compared to real values. 26
2.6 FP-based format usable as alternatives to IEEE-754 formats, separated

into their sign, exponent and mantissa fields. 32
2.7 Relative error of FP-based data-types compared to real values. 35

3.1 OpenCL memory and execution models. 43
3.2 Dataflow Process Network (DPN) semantic and graph example. 46
3.3 Exposition of parallelism in dataflow MoCs. 47
3.4 SDF semantic and graph example. 48
3.5 PiMM semantics. 49
3.6 Parameterized and Interfaced Synchronous Dataflow (PiSDF) semantic and

graph example. 50
3.7 Visualization of the PREESM application development framework (Source [Heu15]). 51

4.1 2D-DWT diagram. 57
4.2 2D-DWT diagram. 57
4.3 Simplified view of the Squeezenet architecture. 59

135

4.4 Simplified architecture of the SDP Imaging Pipeline. 60
4.5 SEP dirty images output for 1 calibration and 3 imaging cycles. 61

5.1 Simplified illustration of AxB, with data converted from 32 down-to 20 bits
concatenated in memory. 67

5.2 Mean and max relative error introduced by the use of truncation compared
to real values. 68

5.3 Precision loss of π depending on data-width. 69
5.4 Precision loss of π depending on data-width with FxP representation. . . . 71
5.5 Error from using AxBs with a 23-bit wide FxP format with different Qm.n

parameters. 72
5.6 Error from using AxBs with a 16-bit wide cFP format with different

cFPs.e.m.b parameters compared to FP32. 74
5.7 Error from using uniform quantization for different data-width in the neigh-

bourhood of zero compared to FP32. 76
5.8 Simplified representation of the application. Every Fifo from the first Conv

Row HP and Conv Row LP are AxBs. 77
5.9 Graph of the worst PSNR dependant of the bit-width for various represen-

tations. 78
5.10 Comparison between tight and wide exponent range. 78
5.11 Graph of the worst PSNR dependant of the bit-width with the regular

uniform quantization and to modified quantization. 79
5.12 Squeezenet prediction error rate using AxBs to store data between layers,

compared to regular SqueezeNet. 80
5.13 Squeezenet prediction error rate using AxBs to store weights, compared to

regular SqueezeNet. 81
5.14 Simplified architecture of the SDP Imaging Pipeline. 81
5.15 PSNR dependant of AxB data-width on individual parts of the SDP chain. 84

6.1 Simplified representation of an AxB, with 20 bits wide data tokens being
concatenated in memory, compared to a bit-width of 32. 86

6.2 Memory representation of 20-bit truncated FP32 data concatenation, along
with regular FP32 storage. 88

6.3 Step-by-step process for data insertion into an AxB, for a bit-width of 20. . 89
6.4 Step-by-step process for data insertion into an AxB, for a bit-width of 20. . 91

136

6.5 Graph of the memory footprint of the 2D wavelet filter with the corre-
sponding output quality. 93

6.6 Memory footprint corresponding to different parts of the SqueezeNet neural
network. 94

6.7 Graph of the memory footprint dependant of the output quality. 96
6.8 BRAM allocation dependent on the Fifo depth and the token-width cor-

responding to Equation (6.1). 99
6.9 Process for deployment of SDF-based application on FPGA using PREESM

and Vitis HLS. 100
6.10 Simplified representation the 2D-DWT application. 101
6.11 Graph of the quantity of BRAMs used for Fifos with the 2D-DWT depen-

dent on the output quality. 102

7.1 Simple application example with 4 actors and 5 buffers. 113
7.2 Graph of buffer allocation requirements dependent of actors execution. . . 114
7.3 Graph of the memory footprint dependant of the output quality. 115
7.4 Memory allocation at different stage of the SqueezeNet CNN with the ref-

erence implementation (left columns) and with our method with a 100%
accuracy (middle columns) and a 90% accuracy (right columns). 116

7.5 Graph of the memory footprint dependant of the output quality. 117
7.6 Graph of the quantity of BRAMs used with the 2D-DWT dependent on

the output quality. 119

8.1 Summary of the contributions of this thesis. 122

A.1 Illustration simplifié d’un AxB, avec des données converties de 32 vers 20
bits concaténées en mémoire. 130

A.2 Erreurs relatives moyennes et maximales introduites par troncature com-
parées à des nombres réels. 131

A.3 Représentation en mémoire de FP32 tronqués sur 20 bits et concaténés,
avec le stockage conventionnel de FP32. 131

A.4 Procédure d’insertion d’une donnée dans un AxB étape par étape, pour
une largeur de 20 bits. 132

A.5 Procédure d’extraction d’une donnée dans un AxB étape par étape, pour
une largeur de 20 bits. 134

137

List of Tables

2.1 IEEE-754 floating-point formats and their associated s.e.m.b parameters. . 25
2.2 Cost of floating-point addition and multiplication compared to inte-

ger [Bar17]. 28
2.3 Common floating-point formats and derivatives and their associated s.e.m.b

parameters. 35

6.1 Minimal data-width and memory footprint of SqueezeNet dependant on
data representation, while still reaching 100% accuracy compared to
SqueezeNet with FP32. AxBs are used from the input image up-to fire3
actor, including its output, with the same configuration. 95

6.2 Minimal data-width and memory footprint of SqueezeNet dependant on
data representation, while still reaching 100% accuracy compared to
SqueezeNet with FP32. AxBs are used from the input image up-to fire3
actor, including its output, as well as the output of fire4 actor. 95

6.3 FPGA hardware resources usage with and without Data-Packing with 10-
bit wide data-tokens for both Fifos and actors, according to Vitis HLS. . . 102

7.1 Bit budget allocation for the example application in Figure 7.1. 114

138

Listings

2.1 Fast inverse square root algorithm from Quake III Arena, with the original
comments. 19

3.1 Simple example. 39
3.2 PThreads example. 40
3.3 OpenMP example. 42
3.4 OpenCL device example. 44
6.1 Convertion function from FP32 to cFPs.e.m.b. 87

139

Acronyms

ALU Arithmetic Logic Unit. 27

AMD Advanced Micro Devices. 10, 126

API Application Programming Interface. 37–44, 52

ASIC Application-Specific Integrated Circuit. 32, 42, 124

ASLE Approximate Speculative Lock Elision. 23

AUT Auckland University of Technology. 60

AxB Approximate Buffer. 65–67, 69–74, 76–78, 80–82, 84–99, 102, 103, 105–107, 111,
113, 116–119, 130–134, 136–138

AxC Approximate Computing. 12, 13, 17–23, 27, 36, 53, 57, 60, 66, 67, 85, 90, 101, 105,
106, 119, 121, 126–128, 134, 148

BF16 Brain Floating-Point. 32–36, 69

BFP Block Floating-Point. 34

BRAM Block RAM. 97–99, 101–103, 118, 119, 137

CAL CAL Actor Language. 49, 129

140

CERN European Organization for Nuclear Research. 10, 11

cFP Custom Floatind-Point. 72–74, 78–84, 87, 88, 136, 139

CNN Convolutional Neural Network. 56, 59, 63, 80, 93, 116, 119, 137

CPU Central Processing Unit. 10, 13, 27, 32, 39, 43, 65, 85, 86, 89, 97, 105, 121, 123,
124, 126, 127, 131, 132, 134, 148

CSP Central Signal Processor. 60

DAG Directed Acyclic Graph. 56

DALiuGE Data Activated 流 (Liu) Graph Engine. 53

DIF Dataflow Interchange Format. 53

DLF DLFloat. 32, 34, 35

DNN Deep Neural Network. 34, 56, 59, 116

DPN Dataflow Process Network. 45, 46, 48, 52, 53, 135

DPU Data Processing Unit. 42

DSE Design Space Exploration. 13, 51, 96, 97, 103, 105–108, 111, 115–120, 122, 123, 148

DSP Digital Signal Processor. 32, 53, 98, 102

DWT Discrete Wavelet Transform. 56–58, 63, 77, 101, 102, 119, 135, 137

EIDF Enable-Invoke Dataflow. 53

Fifo First-In First-Out queue. 45–48, 61, 66, 67, 77, 97–102, 105, 106, 118–120, 122, 123,
129, 130, 136–138

FF Flip-Flop. 97, 98, 101, 102

FFT Fast Fourier Transform. 30

FP IEEE-754 Floating-Point. 24–30, 33–35, 66, 68, 70, 71, 75, 135

FP128 IEEE-754 128-bit Quadruple-Precision Floating-Point. 25, 35, 69

141

FP16 IEEE-754 16-bit Half-Precision Floating-Point. 25–27, 32–36

FP256 IEEE-754 256-bit Octuple-Precision Floating-Point. 25, 35, 69

FP32 IEEE-754 32-bit Single-Precision Floating-Point. 25–27, 32–36, 65, 66, 68–72, 76–
78, 80, 81, 87, 88, 92, 130–132, 136, 137, 139, 145

FP64 IEEE-754 64-bit Double-Precision Floating-Point. 25–27, 35, 65, 66, 69, 130

FPGA Field-Programmable Gate Array. 13, 31, 32, 34, 36, 42, 43, 85, 86, 97–103, 105,
106, 118, 120–124, 127, 134, 137, 138, 148

FPU Floating-Point Unit. 24–30, 33, 34, 36

FSM Finite-State Machine. 38

FxP Fixed-Point. 27, 29–31, 34, 66, 69–75, 78, 80–85, 87, 93, 96, 101, 117, 124, 136

GLEAM Galactic and Extra-galactic All-sky MWA. 61

GPGPU General-Purpose computing on Graphics Processing Unit. 42

GPT-3 Generative Pre-trained Transformer 3. 11

GPU Graphics Processing Unit. 10, 32, 33, 42–44, 124

GRT Global Runtime. 52

HDF Heterochronous Dataflow. 52

HLS High-Level Synthesis. 98, 100–102, 106, 124, 137, 138

HoCL Higher Order dataflow Coordination Language. 53

HPC High-Performance Computing. 9, 10, 55, 56, 60, 125, 148

IBSDF Interfaced-Based Synchronous Dataflow. 49

IDWT Inverse Discrete Wavelet Transform. 56, 57, 63, 77

IoT Internet of Things. 9, 125

KPN Kahn Process Network. 45

142

LHC Large Hadron Collider. 10, 11

LIDE DSPCAD Lightweight Dataflow Environment. 53

LLC Last Level Cache. 10

LNS Logarithmic Number System. 31, 123

LRT Local Runtime. 52

LSB Least Significant Bit. 19, 20, 29, 33, 66–68, 72, 87, 90, 92, 130, 131, 133

LUT Look-Up Table. 18, 19, 31, 98, 101, 102

MAC Multiply-accumulate. 23

MMU Memory Management Unit. 39

MoC Model of Computation. 12, 13, 37, 38, 45–53, 55, 86, 97, 100, 121, 123, 126, 127,
129, 135, 148

MPI Message Passing Interface. 39, 41

MSB Most Significant Bit. 19, 20, 24, 29, 33, 66–68, 92

MSFP Microsoft Floating-Point. 32, 34–36

MWA Murchison Widefield Array. 61, 142

NaN Not-a-Number. 25, 27, 31, 34

OS Operating System. 39, 40, 52

PE Processing Element. 10, 38, 39, 43, 44, 46–48, 53, 124, 126

PiMM Parameterized and Interfaced dataflow Meta-Model. 49, 135

PiSDF Parameterized and Interfaced Synchronous Dataflow. 45, 49–52, 61, 135

PREESM Parallel and Real-time Embedded Executives Scheduling Method. 13, 51–53,
61, 86, 90, 100, 101, 103, 111, 118, 121, 127, 134, 135, 137

143

PSDF Parameterized Synchronous Dataflow. 49

PSNR Peak Signal-to-Noise Ratio. 57, 77–79, 82–84, 92, 96, 97, 101, 102, 115–117, 119,
136

SDF Synchronous Dataflow. 37, 38, 45, 48–50, 52, 53, 86, 97, 100, 113, 120, 121, 123,
129, 134, 135, 137

SDP Science Data Processor. 53, 56, 60, 61, 81, 84, 96, 97, 117, 136

SEP SDP Evolutionary Pipeline. 56, 62, 63, 117, 136

SFC Sequential Function Chart. 38

SIMD Single Instruction Multiple Data. 20, 30, 43, 144

SKA Square Kilometre Array. 10, 11, 53, 56, 60, 61, 117

SLE Speculative Lock Elision. 23

SNR Signal-to-Noise Ratio. 23

SPIDER Synchronous Parameterized Interfaced Dataflow Embedded Runtime. 52

SrDAG Single-rate Directed Acyclic Graph. 61

SSE Streaming SIMD Extension. 20

TF32 TensorFloat-32. 32, 33, 35, 36

TPU Tensor Processing Unit. 30

UML Unified Modeling Language. 38

VHDL VHSIC Hardware Description Language. 49, 129

W-CDMA Wideband-Code Division Multiple Access. 22

144

Glossary

bswap A bswap operation reverses the byte order of a data, effectively converting little-
endian values to big-endian format and vice-versa. 90, 91

binade A binade is the set of numbers in a binary IEEE-754 floating-point format that
all have the same exponent. In other words, a binade is the interval [2E, 2E+1) for
some value of E of the exponent. 25, 34, 73–75, 79

normal number are non-zero numbers that can be represented without a leading 0 in
the significand. For FP32, normal numbers range from 2−126 to 2127 × (2 − 2−23).
26, 74, 75

subnormal number are non-zero numbers that are represented with a leading 0 in the
significand. For FP32, normal numbers range from 2−126×2−23 to 2−126× (1−2−23).
25, 26, 33, 74

145

Personal Publications

[Hon+22] Alexandre Honorat, Thomas Bourgoin, Hugo Miomandre, Karol Desnos,
Daniel Menard, and Jean-François Nezan, “Influence of Dataflow Graph
Moldable Parameters on Optimization Criteria”, in: Design and Architecture
for Signal and Image Processing (DASIP), ed. by Karol Desnos and Sergio
Pertuz, Cham: Springer International Publishing, 2022, pp. 83–95 (cit. on
p. 51).

[Mio+17] Hugo Miomandre, Julien Hascoët, Karol Desnos, Kevin Martin, Benoît
Dupont de Dinechin, and Jean-François Nezan, Demonstrating the SPIDER
Runtime for Reconfigurable Dataflow Graphs Execution onto a DMA-based
Manycore Processor, IEEE International Workshop on Signal Processing Sys-
tems (SiPS), Poster, Oct. 2017, url: https://hal.archives-ouvertes.
fr/hal-01637300 (cit. on p. 52).

[Mio+18] Hugo Miomandre, Julien Hascoët, Karol Desnos, Kevin J. M. Martin, Benoît
Dupont de Dinechin Kalray, and Jean-François Nezan, “Embedded Runtime
for Reconfigurable Dataflow Graphs on Manycore Architectures”, in: Pro-
ceedings of the 9th Workshop and 7th Workshop on Parallel Programming
and RunTime Management Techniques for Manycore Architectures and De-
sign Tools and Architectures for Multicore Embedded Computing Platforms,
PARMA-DITAM ’18, Manchester, United Kingdom: Association for Comput-
ing Machinery, 2018, pp. 51–56, url: https://doi.org/10.1145/3183767.
3183780 (cit. on p. 52).

147

https://hal.archives-ouvertes.fr/hal-01637300
https://hal.archives-ouvertes.fr/hal-01637300
https://doi.org/10.1145/3183767.3183780
https://doi.org/10.1145/3183767.3183780

[Mio+20] Hugo Miomandre, Jean-François Nezan, Daniel Menard, Adam Campbell,
Anthony Griffin, Seth Hall, and Andrew Ensor, “Approximate Buffers for
Reducing Memory Requirements: Case study on SKA”, in: 34th 2020 IEEE
Workshop on Signal Processing Systems (SiPS), vol. 2020-October, IEEE
Workshop on Signal Processing Systems, SiPS: Design and Implementation,
Coimbra, Portugal: Institute of Electrical and Electronics Engineers Inc.,
Oct. 2020, p. 9195262, url: https://hal.archives-ouvertes.fr/hal-
02612369 (cit. on pp. 12, 66, 127).

[MNM22] Hugo Miomandre, Jean-François Nezan, and Daniel Ménard, “Design Space
Exploration for Memory-Oriented Approximate Computing Techniques”, in:
33rd IEEE International Conference on Application-specific Systems, Archi-
tectures and Processors (ASAP), Gothenburg, Sweden: Institute of Electrical
and Electronics Engineers Inc., July 2022 (cit. on pp. 13, 106).

148

https://hal.archives-ouvertes.fr/hal-02612369
https://hal.archives-ouvertes.fr/hal-02612369

Bibliography

[13] Programmable controllers - Part 3: Programming languages, Standard,
Geneva, CH: International Electrotechnical Commission, Feb. 2013 (cit. on
p. 38).

[18] “IEEE Standard for Information Technology–Portable Operating System In-
terface (POSIX(TM)) Base Specifications, Issue 7”, in: IEEE Std 1003.1-2017
(Revision of IEEE Std 1003.1-2008) (2018), pp. 1–3951 (cit. on p. 40).

[19] “IEEE Standard for Floating-Point Arithmetic”, in: IEEE Std 754-2019 (Re-
vision of IEEE 754-2008) (July 2019), pp. 1–84 (cit. on p. 24).

[AAB18] Eduard Ayguadé, Lluc Alvarez, and Fabio Banchelli, “OpenMP: what’s inside
the black box?”, in: 2018 (cit. on p. 42).

[ACN14] Roberto Airoldi, Fabio Campi, and Jari Nurmi, “Approximate computing
for complexity reduction in timing synchronization”, in: EURASIP Journal
on Advances in Signal Processing 2014.1 (Oct. 2014), p. 155, url: https:
//doi.org/10.1186/1687-6180-2014-155 (cit. on pp. 22, 128).

[Agr+19] Ankur Agrawal, Silvia Melitta Mueller, Bruce M. Fleischer, Xiao Sun,
Naigang Wang, Jungwook Choi, and Kailash Gopalakrishnan, “DLFloat: A
16-b Floating Point Format Designed for Deep Learning Training and Infer-
ence”, in: 2019 IEEE 26th Symposium on Computer Arithmetic (ARITH),
June 2019, pp. 92–95 (cit. on p. 34).

149

https://doi.org/10.1186/1687-6180-2014-155
https://doi.org/10.1186/1687-6180-2014-155

[Aki+15] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael
J. Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances
Perry, Eric Schmidt, et al., “The dataflow model: a practical approach to
balancing correctness, latency, and cost in massive-scale, unbounded, out-of-
order data processing”, in: (2015) (cit. on p. 56).

[All70] Frances E. Allen, “Control Flow Analysis”, in: SIGPLAN Not. 5.7 (July
1970), pp. 1–19, url: https://doi.org/10.1145/390013.808479 (cit. on
p. 38).

[Arr+] Florian Arrestier, Karol Desnos, Julien Heulot, Alexandre Honorat, Daniel
Ménard, Antoine Morvan, Jean-François Nezan, Maxime Pelcat, and Claudio
Rubattu, “Generating Energy-optimized Adaptive Software on a Heteroge-
neous MPSoC with PREESM”, in: () (cit. on p. 55).

[AT05] Gediminas Adomavicius and Alexander Tuzhilin, “Toward the next gener-
ation of recommender systems: a survey of the state-of-the-art and possible
extensions”, in: IEEE Transactions on Knowledge and Data Engineering 17.6
(2005), pp. 734–749 (cit. on p. 10).

[Bar+21] Salvatore Barone, Marcello Traiola, Mario Barbareschi, and Alberto Bo-
sio, “Multi-Objective Application-Driven Approximate Design Method”, in:
IEEE Access 9 (2021), pp. 86975–86993 (cit. on p. 106).

[Bar17] Benjamin Barrois, “Methods to evaluate accuracy-energy trade-off in
operator-level approximate computing”, Theses, Université Rennes 1, Dec.
2017, url: https://tel.archives-ouvertes.fr/tel-01665015 (cit. on
pp. 27, 28).

[Bas+21] Syed Muhammad Arsalan Bashir, Yi Wang, Mahrukh Khan, and Yilong
Niu, A Comprehensive Review of Deep Learning-based Single Image Super-
resolution, 2021, url: https://arxiv.org/abs/2102.09351 (cit. on p. 11).

[BB01] Bishnupriya Bhattacharya and Shuvra Shikhar Bhattacharyya, “Parameter-
ized dataflow modeling for DSP systems”, in: IEEE Transactions on Signal
Processing 49.10 (2001), pp. 2408–2421 (cit. on pp. 47, 49).

[Bha+11] Shuvra Shikhar Bhattacharyya, Johan Eker, Jörn W. Janneck, Christophe
Lucarz, Marco Mattavelli, and Mickaël Raulet, “Overview of the MPEG
Reconfigurable Video Coding Framework”, in: Journal of Signal Processing

150

https://doi.org/10.1145/390013.808479
https://tel.archives-ouvertes.fr/tel-01665015
https://arxiv.org/abs/2102.09351

Systems 63.2 (May 2011), pp. 251–263, url: https : / / hal . archives -
ouvertes.fr/hal-00407945 (cit. on pp. 49, 129).

[BMS22] Alberto Bosio, Daniel Ménard, and Olivier Sentieys, Approximate Comput-
ing Techniques: From Component-to Application-Level, Springer Nature, 2022
(cit. on pp. 17, 128).

[BOB91] Michael Blair, Sally Obenski, and Paula Bridickas, Patriot Missile Defense:
Software Problem Led to System Failure at Dhahran, Saudi Arabia, https:
//www.gao.gov/assets/imtec-92-26.pdf, 1991 (cit. on p. 27).

[Bon+22] Justine Bonnot, Alexandre Mercat, Erwan Nogues, and Daniel Ménard, “Ap-
proximate Computing at the Algorithmic Level”, in: Approximate Comput-
ing Techniques: From Component- to Application-Level, ed. by Alberto Bosio,
Daniel Ménard, and Olivier Sentieys, Cham: Springer International Publish-
ing, 2022, pp. 109–142, url: https://doi.org/10.1007/978- 3- 030-
94705-7_5 (cit. on p. 18).

[Bon19] Justine Bonnot, “Analyse d’erreurs pour les systèmes utilisant des calculs
approximés”, Theses, INSA de Rennes, Oct. 2019, url: https : / / tel .
archives-ouvertes.fr/tel-03005325 (cit. on pp. 17, 129).

[Bra19] Henry E Brady, “The challenge of big data and data science”, in: Annual
Review of Political Science 22 (2019), pp. 297–323 (cit. on p. 10).

[Bro+20] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei, “Language Models
are Few-Shot Learners”, in: Advances in Neural Information Processing Sys-
tems, ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H.
Lin, vol. 33, Curran Associates, Inc., 2020, pp. 1877–1901 (cit. on p. 11).

[BSM17] Benjamin Barrois, Olivier Sentieys, and Daniel Ménard, “The Hidden Cost
of Functional Approximation Against Careful Data Sizing – A Case Study”,
in: Design, Automation & Test in Europe Conference & Exhibition (DATE

151

https://hal.archives-ouvertes.fr/hal-00407945
https://hal.archives-ouvertes.fr/hal-00407945
https://www.gao.gov/assets/imtec-92-26.pdf
https://www.gao.gov/assets/imtec-92-26.pdf
https://doi.org/10.1007/978-3-030-94705-7_5
https://doi.org/10.1007/978-3-030-94705-7_5
https://tel.archives-ouvertes.fr/tel-03005325
https://tel.archives-ouvertes.fr/tel-03005325

2017), Lausanne, Switzerland, 2017, url: https://hal.inria.fr/hal-
01423147 (cit. on pp. 24, 128).

[Buc+01] Joseph Buck, Soonhoi Ha, Edward Ashford Lee, and David G. Messerschmitt,
“Ptolemy: A Framework for Simulating and Prototyping Heterogeneous Sys-
tems”, in: Readings in Hardware/Software Co-Design, USA: Kluwer Aca-
demic Publishers, 2001, pp. 527–543 (cit. on p. 52).

[Bur+22] Thomas Burd, Wilson Li, James Pistole, Srividhya Venkataraman, Michael
McCabe, Timothy Johnson, James Vinh, Thomas Yiu, Mark Wasio, Hon-Hin
Wong, Daryl Lieu, Jonathan White, Benjamin Munger, Joshua Lindner, Javin
Olson, Steven Bakke, Jeshuah Sniderman, Carson Henrion, Russell Schreiber,
Eric Busta, Brett Johnson, Tim Jackson, Aron Miller, Ryan Miller, Matthew
Pickett, Aaron Horiuchi, Josef Dvorak, Sabeesh Balagangadharan, Sajeesh
Ammikkallingal, and Pankaj Kumar, “Zen3: The AMD 2nd-Generation 7nm
x86-64 Microprocessor Core”, in: 2022 IEEE International Solid-State Cir-
cuits Conference (ISSCC), vol. 65, 2022, pp. 1–3 (cit. on pp. 10, 126).

[Cas+20] Jorge Castro-Godínez, Julián Mateus-Vargas, Muhammad Shafique, and Jörg
Henkel, “AxHLS: Design Space Exploration and High-Level Synthesis of Ap-
proximate Accelerators using Approximate Functional Units and Analytical
Models”, in: 2020 IEEE/ACM International Conference On Computer Aided
Design (ICCAD), 2020, pp. 1–9 (cit. on p. 106).

[CDP22] Maxime Christ, Florent de Dinechin, and Frédéric Pétrot, “Low-precision
logarithmic arithmetic for neural network accelerators”, in: ASAP 2022 - 33rd
IEEE International Conference on Application-specific Systems, Architectures
and Processors, Gothenburg, Sweden, July 2022, url: https://hal.inria.
fr/hal-03684585 (cit. on p. 31).

[CH98] Chunsheng Cai and Peter de Boves Harrington, “Different Discrete Wavelet
Transforms Applied to Denoising Analytical Data”, in: Journal of Chemi-
cal Information and Computer Sciences 38.6 (1998), pp. 1161–1170, eprint:
https://doi.org/10.1021/ci980210j, url: https://doi.org/10.1021/
ci980210j (cit. on p. 57).

[Cho+22] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gau-
rav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sut-
ton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko,

152

https://hal.inria.fr/hal-01423147
https://hal.inria.fr/hal-01423147
https://hal.inria.fr/hal-03684585
https://hal.inria.fr/hal-03684585
https://doi.org/10.1021/ci980210j
https://doi.org/10.1021/ci980210j
https://doi.org/10.1021/ci980210j

Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope,
James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng
Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk
Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus,
Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark
Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie
Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov,
Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz,
Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel, PaLM: Scaling Language Mod-
eling with Pathways, 2022, url: https://arxiv.org/abs/2204.02311 (cit.
on p. 11).

[CJV07] Barbara Chapman, Gabriele Jost, and Ruud Van Der Pas, Using OpenMP:
portable shared memory parallel programming, MIT press, 2007 (cit. on p. 41).

[Dar+20] Bita Darvish Rouhani, Daniel Lo, Ritchie Zhao, Ming Liu, Jeremy Fowers,
Kalin Ovtcharov, Anna Vinogradsky, Sarah Massengill, Lita Yang, Ray Bit-
tner, Alessandro Forin, Haishan Zhu, Taesik Na, Prerak Patel, Shuai Che,
Lok Chand Koppaka, XIA SONG, Subhojit Som, Kaustav Das, Saurabh T,
Steve Reinhardt, Sitaram Lanka, Eric Chung, and Doug Burger, “Pushing the
Limits of Narrow Precision Inferencing at Cloud Scale with Microsoft Float-
ing Point”, in: Advances in Neural Information Processing Systems, ed. by H.
Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, vol. 33, Cur-
ran Associates, Inc., 2020, pp. 10271–10281, url: https://proceedings.
neurips . cc / paper / 2020 / file / 747e32ab0fea7fbd2ad9ec03daa3f840 -
Paper.pdf (cit. on p. 34).

[DCD97] Eddy De Greef, Francky Catthoor, and Hugo De Man, “Array placement
for storage size reduction in embedded multimedia systems”, in: Proceed-
ings IEEE International Conference on Application-Specific Systems, Archi-
tectures and Processors, 1997, pp. 66–75 (cit. on pp. 10, 126).

[DD07] Florent de Dinechin and Jérémie Detrey, “A Tool for Unbiased Comparison
between Logarithmic and Floating-point Arithmetic”, in: Journal of Signal

153

https://arxiv.org/abs/2204.02311
https://proceedings.neurips.cc/paper/2020/file/747e32ab0fea7fbd2ad9ec03daa3f840-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/747e32ab0fea7fbd2ad9ec03daa3f840-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/747e32ab0fea7fbd2ad9ec03daa3f840-Paper.pdf

Processing Systems 49.1 (2007), pp. 161–175, url: https : / / hal - ens -
lyon.archives-ouvertes.fr/ensl-00542212 (cit. on pp. 31, 123).

[De +21] Gustavo De Carvalho Bertoli, Lourenço Alves Pereira Júnior, Osamu Sao-
tome, Aldri Luiz Dos Santos, Filipe Alves Neto Verri, Cesar Augusto Caval-
heiro Marcondes, Sidnei Barbieri, Moises S. Rodrigues, and José Maria Par-
ente De Oliveira, “An End-to-End Framework for Machine Learning-Based
Network Intrusion Detection System”, in: IEEE Access 9 (2021), pp. 106790–
106805 (cit. on p. 11).

[Den+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei, “Ima-
geNet: A large-scale hierarchical image database”, in: 2009 IEEE Conference
on Computer Vision and Pattern Recognition, 2009, pp. 248–255 (cit. on
p. 58).

[Des+13] Karol Desnos, Maxime Pelcat, Jean-François Nezan, Shuvra Shikhar Bhat-
tacharyya, and Slaheddine Aridhi, “PiMM: Parameterized and Interfaced
Dataflow Meta-Model for MPSoCs Runtime Reconfiguration”, in: Embed-
ded Computer Systems: Architectures, Modeling, and Simulation (SAMOS),
IEEE, 2013, pp. 41–48 (cit. on pp. 48, 49).

[Des+16] Karol Desnos, Maxime Pelcat, Jean-François Nezan, and Slaheddine Aridhi,
“On Memory Reuse Between Inputs and Outputs of Dataflow Actors”, in:
ACM Trans. Embed. Comput. Syst. 15.2 (Feb. 2016), url: https://doi.
org/10.1145/2871744 (cit. on p. 107).

[Des14] Karol Desnos, “Memory Study and Dataflow Representations for Rapid Pro-
totyping of Signal Processing Applications on MPSoCs”, 2014ISAR0004, PhD
thesis, 2014, url: http://www.theses.fr/2014ISAR0004/document (cit. on
p. 45).

[Din+19] Florent de Dinechin, Luc Forget, Jean-Michel Muller, and Yohann Uguen,
“Posits: the good, the bad and the ugly”, working paper or preprint, Mar.
2019, url: https://hal.inria.fr/hal-01959581 (cit. on p. 33).

[EJ03] Johan Eker and Jörn W. Janneck, “CAL language report: Specification of the
CAL actor language”, in: 2003 (cit. on pp. 49, 129).

154

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00542212
https://hal-ens-lyon.archives-ouvertes.fr/ensl-00542212
https://doi.org/10.1145/2871744
https://doi.org/10.1145/2871744
http://www.theses.fr/2014ISAR0004/document
https://hal.inria.fr/hal-01959581

[Eke+03] Johan Eker, Jörn W. Janneck, Edward Ashford Lee, Jie Liu, Xiaojun Liu, J.
Ludvig, S. Neuendorffer, S. Sachs, and Yuhong Xiong, “Taming heterogeneity
- the Ptolemy approach”, in: Proceedings of the IEEE 91.1 (2003), pp. 127–
144 (cit. on p. 52).

[EWT18] Jorge Echavarria, Stefan Wildermann, and Jürgen Teich, “AConFPGA: A
Multiple-Output Boolean Function Approximation DSE Technique Targeting
FPGAs”, in: 2018 International Conference on Field-Programmable Technol-
ogy (FPT), 2018, pp. 326–329 (cit. on p. 106).

[Fru+15] Fabio Frustaci, Mahmood Khayatzadeh, David Blaauw, Dennis Sylvester,
and Massimo Alioto, “SRAM for Error-Tolerant Applications With Dynamic
Energy-Quality Management in 28 nm CMOS”, in: IEEE Journal of Solid-
State Circuits 50.5 (2015), pp. 1310–1323 (cit. on pp. 21, 128).

[Gho+12] Arkadeb Ghosal, Rhishikesh Limaye, Kaushik Ravindran, Stavros Tripakis,
Ankita Prasad, Guoqiang Wang, Trung N. Tran, and Hugo Andrade, “Static
Dataflow with Access Patterns: Semantics and Analysis”, in: Proceedings of
the 49th Annual Design Automation Conference, DAC ’12, San Francisco,
California: Association for Computing Machinery, 2012, pp. 656–663, url:
https://doi.org/10.1145/2228360.2228479 (cit. on p. 97).

[GLL99] Alain Girault, Bilung Lee, and Edward Ashford Lee, “Hierarchical finite
state machines with multiple concurrency models”, in: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 18.6 (1999),
pp. 742–760 (cit. on p. 52).

[Gol91] David Goldberg, “What Every Computer Scientist Should Know about
Floating-Point Arithmetic”, in: ACM Comput. Surv. 23.1 (Mar. 1991), pp. 5–
48, url: https://doi.org/10.1145/103162.103163 (cit. on p. 27).

[Gri+20] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu, “A
survey of deep learning techniques for autonomous driving”, in: Journal of
Field Robotics 37.3 (2020), pp. 362–386 (cit. on p. 11).

[Gup+11] Vaibhav Gupta, Debabrata Mohapatra, Sang Phill Park, Anand Raghu-
nathan, and Kaushik Roy, “IMPACT: IMPrecise adders for low-power ap-
proximate computing”, in: IEEE/ACM International Symposium on Low
Power Electronics and Design, 2011, pp. 409–414 (cit. on pp. 20, 128).

155

https://doi.org/10.1145/2228360.2228479
https://doi.org/10.1145/103162.103163

[GY17] John Leroy Gustafson and Isaac Yonemoto, “Beating Floating Point at Its
Own Game: Posit Arithmetic”, in: Supercomput. Front. Innov.: Int. J. 4.2
(June 2017), pp. 71–86, url: https://doi.org/10.14529/jsfi170206
(cit. on pp. 33, 123).

[Has+15] Julien Hascoët, Jean-Francois Nezan, Andrew Ensor, and Benoît Dupont
de Dinechin, “Implementation of a Fast Fourier transform algorithm onto
a manycore processor”, in: 2015 Conference on Design and Architectures for
Signal and Image Processing (DASIP), ISSN: null, Sept. 2015, pp. 1–7 (cit.
on p. 30).

[Has+17] Julien Hascoët, Karol Desnos, Jean-François Nezan, and Benoît Dupont de
Dinechin, “Hierarchical Dataflow Model for efficient programming of clus-
tered manycore processors”, in: 2017 IEEE 28th International Conference
on Application-specific Systems, Architectures and Processors (ASAP), 2017,
pp. 137–142 (cit. on p. 55).

[Has18] Julien Hascoët, “Contributions to Software Runtime for Clustered Manycores
Applied to Embedded and High-Performance Applications”, Theses, INSA
de Rennes, Dec. 2018, url: https://tel.archives-ouvertes.fr/tel-
02132613 (cit. on p. 52).

[Hat+17] Sam Hatfield, Aneesh Subramanian, Tim Palmer, and Peter Düben, “Improv-
ing Weather Forecast Skill through Reduced-Precision Data Assimilation”,
in: Monthly Weather Review 146.1 (Nov. 2017), pp. 49–62, url: https :
//journals.ametsoc.org/doi/full/10.1175/MWR-D-17-0132.1 (visited
on 10/02/2019) (cit. on pp. 27, 128).

[Heu+14] Julien Heulot, Maxime Pelcat, Karol Desnos, Jean-François Nezan, and
Slaheddine Aridhi, “Spider: A Synchronous Parameterized and Interfaced
Dataflow-based RTOS for multicore DSPS”, in: 2014 6th European Embedded
Design in Education and Research Conference (EDERC), Milan, Italy, Sept.
2014, pp. 167–171 (cit. on p. 52).

[Heu15] Julien Heulot, “Runtime multicore scheduling techniques for dispatching pa-
rameterized signal and vision dataflow applications on heterogeneous MP-
SoCs”, PhD thesis, INSA de Rennes, 2015 (cit. on p. 51).

156

https://doi.org/10.14529/jsfi170206
https://tel.archives-ouvertes.fr/tel-02132613
https://tel.archives-ouvertes.fr/tel-02132613
https://journals.ametsoc.org/doi/full/10.1175/MWR-D-17-0132.1
https://journals.ametsoc.org/doi/full/10.1175/MWR-D-17-0132.1

[HO13] Jie Han and Michael Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design”, in: 2013 18th IEEE European Test
Symposium (ETS), 2013, pp. 1–6 (cit. on pp. 12, 126).

[Hol+14] Simon Holmbacka, Erwan Nogues, Maxime Pelcat, Sébastien Lafond, and
Johan Lilius, “Energy efficiency and performance management of parallel
dataflow applications”, in: Proceedings of the 2014 Conference on Design and
Architectures for Signal and Image Processing, 2014, pp. 1–8 (cit. on p. 55).

[Hon20] Alexandre Honorat, “Modeling, Scheduling, Pipelining and Configuration of
Synchronous Dataflow Graphs with Throughput Constraints”, Theses, INSA
de Rennes, Nov. 2020, url: https://tel.archives-ouvertes.fr/tel-
03337988 (cit. on p. 50).

[Hor14] Mark Horowitz, “1.1 Computing’s energy problem (and what we can do about
it)”, in: 2014 IEEE International Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2014, pp. 10–14 (cit. on pp. 28, 65, 123).

[Hsu+04] Chia-Jui Hsu, Fuat Keceli, Ming-Yung Ko, Shahrooz Shahparnia, and Shuvra
Shikhar Bhattacharyya, “DIF: An Interchange Format for Dataflow-Based
Design Tools”, in: vol. 3133, July 2004, pp. 423–432 (cit. on p. 53).

[Ian+16] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf,
William J. Dally, and Kurt Keutzer, SqueezeNet: AlexNet-level accuracy with
50x fewer parameters and <0.5MB model size, 2016, arXiv: 1602 . 07360
[cs.CV] (cit. on pp. 58, 80, 116).

[Joh97] Gary W. Johnson, LabVIEW Graphical Programming: Practical Applica-
tions in Instrumentation and Control, McGraw-Hill Visual Technology Se-
ries, McGraw-Hill, 1997, url: https : / / books . google . fr / books ? id =
zQNlQgAACAAJ (cit. on p. 38).

[JWN10] Bruce Jacob, David T. Wang, and Spencer W. Ng, Memory systems: cache,
DRAM, disk, Morgan Kaufmann, 2010 (cit. on pp. 9, 125).

[Kah74] Gilles Kahn, “The Semantics of a Simple Language for Parallel Program-
ming”, in: Information Processing, Proceedings of the 6th IFIP Congress
1974, Stockholm, Sweden, August 5-10, 1974, ed. by Jack L. Rosenfeld, North-
Holland, 1974, pp. 471–475 (cit. on p. 45).

157

https://tel.archives-ouvertes.fr/tel-03337988
https://tel.archives-ouvertes.fr/tel-03337988
https://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1602.07360
https://books.google.fr/books?id=zQNlQgAACAAJ
https://books.google.fr/books?id=zQNlQgAACAAJ

[KAK18] S. Karen Khatamifard, Ismail Akturk, and Ulya R. Karpuzcu, “On Approxi-
mate Speculative Lock Elision”, in: IEEE Transactions on Multi-Scale Com-
puting Systems 4.2 (2018), pp. 141–151 (cit. on pp. 23, 128).

[KGE11] Parag Kulkarni, Puneet Gupta, and Milos Ercegovac, “Trading Accuracy for
Power with an Underdesigned Multiplier Architecture”, in: 2011 24th Inter-
natioal Conference on VLSI Design, 2011, pp. 346–351 (cit. on pp. 20, 128).

[Kir+21] B. Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A.
Al Sallab, Senthil Yogamani, and Patrick Pérez, “Deep reinforcement learning
for autonomous driving: A survey”, in: IEEE Transactions on Intelligent
Transportation Systems (2021) (cit. on p. 11).

[KKM16] Enagnon Cedric Klikpo, Jad Khatib, and Alix Munier-Kordon, “Model-
ing Multi-Periodic Simulink Systems by Synchronous Dataflow Graphs”, in:
2016 IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), 2016, pp. 1–10 (cit. on p. 38).

[Knu97] Donald Ervin Knuth, The art of computer programming, vol. 2, Pearson Ed-
ucation, 1997 (cit. on p. 26).

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “ImageNet Clas-
sification with Deep Convolutional Neural Networks”, in: Advances in
Neural Information Processing Systems, ed. by F. Pereira, C.J. Burges,
L. Bottou, and K.Q. Weinberger, vol. 25, Curran Associates, Inc., 2012,
url: https : / / proceedings . neurips . cc / paper / 2012 / file /
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf (cit. on pp. 11, 58).

[KT21] Mikhail Khalilov and Alexey Timoveev, “Performance analysis of CUDA,
OpenACC and OpenMP programming models on TESLA V100 GPU”, in:
Journal of Physics: Conference Series, vol. 1740, 1, IOP Publishing, 2021,
p. 012056 (cit. on p. 45).

[Liv+07] Nikolaos Liveris, C. Lin, J. Wang, Hai Zhou, and Prith Banerjee, “Retiming
for Synchronous Data Flow Graphs”, in: 2007 Asia and South Pacific Design
Automation Conference, 2007, pp. 480–485 (cit. on p. 100).

[LM87] Edward Ashford Lee and David G. Messerschmitt, “Synchronous data flow”,
in: Proceedings of the IEEE 75.9 (Sept. 1987), pp. 1235–1245 (cit. on pp. 48,
113).

158

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[LP95] Edward Ashford Lee and Thomas M. Parks, “Dataflow process networks”,
in: Proceedings of the IEEE 83.5 (1995), pp. 773–801 (cit. on p. 45).

[Mah+10] Hamid Reza Mahdiani, Ali-Akbar Ahmadi, Sied Mehdi Fakhraie, and Caro
Lucas, “Bio-Inspired Imprecise Computational Blocks for Efficient VLSI Im-
plementation of Soft-Computing Applications”, in: IEEE Transactions on
Circuits and Systems I: Regular Papers 57.4 (2010), pp. 850–862 (cit. on
pp. 20, 128).

[Mat97] MathWorks, Inc, SIMULINK Dynamic System Simulation for MATLAB:
Modeling, Simulation, Implementation, SIMULINK Dynamic System Sim-
ulation for MATLAB: Modeling, Simulation, Implementation, MathWorks,
Incorporated, 1997, url: https : / / books . google . fr / books ? id =
HxOWyAEACAAJ (cit. on p. 38).

[Meh+09] Pramod Kumar Meher, Javier Valls, Tso-Bing Juang, K. Sridharan, and
Koushik Maharatna, “50 Years of CORDIC: Algorithms, Architectures, and
Applications”, in: IEEE Transactions on Circuits and Systems I: Regular
Papers 56.9 (2009), pp. 1893–1907 (cit. on pp. 18, 128).

[Mic+22] Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep
Dubey, Richard Grisenthwaite, Sangwon Ha, Alexander Heinecke, Patrick
Judd, John Kamalu, Naveen Mellempudi, Stuart Oberman, Mohammad
Shoeybi, Michael Siu, and Hao Wu, FP8 Formats for Deep Learning, 2022,
url: https://arxiv.org/abs/2209.05433 (cit. on p. 33).

[Mig+15] Joshua San Miguel, Jorge Albericio, Andreas Moshovos, and Natalie En-
right Jerger, “Doppelgänger: A cache for approximate computing”, in: 2015
48th Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), 2015, pp. 50–61 (cit. on pp. 21, 128).

[Mit16] Sparsh Mittal, “A survey of techniques for approximate computing”, in: ACM
Computing Surveys (CSUR) 48.4 (2016), pp. 1–33 (cit. on pp. 17, 129).

[Mor+21] Chamin Morikawa, Michihiro Kobayashi, Masaki Satoh, Yasuhiro Kuroda,
Teppei Inomata, Hitoshi Matsuo, Takeshi Miura, and Masaki Hilaga, “Image
and video processing on mobile devices: a survey”, in: The Visual Computer
37.12 (2021), pp. 2931–2949 (cit. on p. 10).

159

https://books.google.fr/books?id=HxOWyAEACAAJ
https://books.google.fr/books?id=HxOWyAEACAAJ
https://arxiv.org/abs/2209.05433

[MS13] Raj Mishra and Amit Shrivastava, “Implementation of Custom Precision
Floating Point Arithmetic on FPGAs”, in: HCTL Open International Jour-
nal of Technology Innovations and Research (IJTIR) Volume 1, January 2013
(Jan. 2013), pp. 10–26 (cit. on p. 33).

[Mul+18] Jean-Michel Muller, Nicolas Brisebarre, Florent De Dinechin, Claude-Pierre
Jeannerod, Vincent Lefevre, Guillaume Melquiond, Nathalie Revol, Damien
Stehlé, Serge Torres, et al., Handbook of floating-point arithmetic, Springer,
2018 (cit. on p. 24).

[Mul20] Jean-Michel Muller, “Elementary Functions and Approximate Computing”,
in: Proceedings of the IEEE 108.12 (2020), pp. 2136–2149 (cit. on p. 19).

[Mut+19] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata Ausavarung-
nirun, “Processing data where it makes sense: Enabling in-memory com-
putation”, in: Microprocessors and Microsystems 67 (2019), pp. 28–41,
url: https : / / www . sciencedirect . com / science / article / pii /
S0141933118302291 (cit. on p. 123).

[Mut+23] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata Ausavarung-
nirun, “A Modern Primer on Processing in Memory”, in: Emerging Comput-
ing: From Devices to Systems: Looking Beyond Moore and Von Neumann, ed.
by Mohamed M. Sabry Aly and Anupam Chattopadhyay, Singapore: Springer
Nature Singapore, 2023, pp. 171–243, url: https://doi.org/10.1007/978-
981-16-7487-7_7 (cit. on p. 65).

[NL04] Stephen Neuendorffer and Edward Ashford Lee, “Hierarchical reconfigura-
tion of dataflow models”, in: Proceedings. Second ACM and IEEE Inter-
national Conference on Formal Methods and Models for Co-Design, 2004.
MEMOCODE ’04. 2004, pp. 179–188 (cit. on p. 47).

[NMP16] Erwan Nogues, Daniel Menard, and Maxime Pelcat, “Algorithmic-level ap-
proximate computing applied to energy efficient hevc decoding”, in: IEEE
Transactions on Emerging Topics in Computing 7.1 (2016), pp. 5–17 (cit. on
p. 20).

[Nvi20] Nvidia, NVIDIA A100 Tensor Core GPU Architecture Whitepaper, https:
//images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-
ampere-architecture-whitepaper.pdf, 2020 (cit. on p. 33).

160

https://www.sciencedirect.com/science/article/pii/S0141933118302291
https://www.sciencedirect.com/science/article/pii/S0141933118302291
https://doi.org/10.1007/978-981-16-7487-7_7
https://doi.org/10.1007/978-981-16-7487-7_7
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

[Nvi22a] Nvidia, NVIDIA Ada GPU Architecture Whitepaper, https : / / images .
nvidia . com / aem - dam / Solutions / geforce / ada / nvidia - ada - gpu -
architecture.pdf, 2022 (cit. on p. 33).

[Nvi22b] Nvidia, NVIDIA H100 Tensor Core GPU Architecture Whitepaper, https:
//nvdam.widen.net/s/9bz6dw7dqr/gtc22-whitepaper-hopper, 2022 (cit.
on p. 33).

[OMK18] Daniel W. Otter, Julian Richard Medina, and Jugal Kumar Kalita, “A Survey
of the Usages of Deep Learning in Natural Language Processing”, in: CoRR
abs/1807.10854 (2018), arXiv: 1807.10854, url: http://arxiv.org/abs/
1807.10854 (cit. on p. 11).

[Pai+20] Guilherme Paim, Leandro Mateus Giacomini Rocha, Hussam Amrouch, Ed-
uardo Antônio César da Costa, Sergio Bampi, and Jörg Henkel, “A Cross-
Layer Gate-Level-to-Application Co-Simulation for Design Space Exploration
of Approximate Circuits in HEVC Video Encoders”, in: IEEE Transactions
on Circuits and Systems for Video Technology 30.10 (2020), pp. 3814–3828
(cit. on p. 106).

[PBR09] Jonathan Piat, Shuvra Shikhar Bhattacharyya, and Mickaël Raulet,
“Interface-based hierarchy for synchronous data-flow graphs”, in: 2009 IEEE
Workshop on Signal Processing Systems, Tampere, Finland, 2009, pp. 145–
150 (cit. on pp. 47, 49).

[Pel+09] Maxime Pelcat, Jean François Nezan, Jonathan Piat, Jerome Croizer, and
Slaheddine Aridhi, “A System-Level Architecture Model for Rapid Proto-
typing of Heterogeneous Multicore Embedded Systems”, in: Conference on
Design and Architectures for Signal and Image Processing (DASIP) 2009,
nice, France, Sept. 2009, 8 pages, url: https://hal.archives-ouvertes.
fr/hal-00429397 (cit. on p. 51).

[Pel+12] Maxime Pelcat, Slaheddine Aridhi, Jonathan Piat, and Jean François Nezan,
Physical Layer Multi-Core Prototyping: A Dataflow-Based Approach for LTE
eNodeB, Lecture Notes in Electrical Engineering, Springer-Verlag London,
Aug. 2012, p. 224 (cit. on p. 55).

161

https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://nvdam.widen.net/s/9bz6dw7dqr/gtc22-whitepaper-hopper
https://nvdam.widen.net/s/9bz6dw7dqr/gtc22-whitepaper-hopper
https://arxiv.org/abs/1807.10854
http://arxiv.org/abs/1807.10854
http://arxiv.org/abs/1807.10854
https://hal.archives-ouvertes.fr/hal-00429397
https://hal.archives-ouvertes.fr/hal-00429397

[Pel+14] Maxime Pelcat, Karol Desnos, Julien Heulot, Clément Guy, Jean-François
Nezan, and Slaheddine Aridhi, “Preesm: A dataflow-based rapid prototyp-
ing framework for simplifying multicore DSP programming”, in: Education
and Research Conference (EDERC), 2014 6th European Embedded Design in,
Sept. 2014, pp. 36–40 (cit. on p. 51).

[Pli+08] William Plishker, Nimish Sane, Mary Kiemb, Kapil Anand, and Shuvra
Shikhar Bhattacharyya, “Functional DIF for Rapid Prototyping”, in: 2008
The 19th IEEE/IFIP International Symposium on Rapid System Prototyp-
ing, 2008, pp. 17–23 (cit. on p. 52).

[Rae+21] Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoff-
mann, H. Francis Song, John Aslanides, Sarah Henderson, Roman Ring,
Susannah Young, Eliza Rutherford, Tom Hennigan, Jacob Menick, Albin
Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks,
Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth
Dathathri, Saffron Huang, Jonathan Uesato, John Mellor, Irina Higgins, An-
tonia Creswell, Nat McAleese, Amy Wu, Erich Elsen, Siddhant M. Jayaku-
mar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen Simonyan,
Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna
Kuncoro, Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki
Lazaridou, Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, Niko-
lai Grigorev, Doug Fritz, Thibault Sottiaux, Mantas Pajarskas, Toby Pohlen,
Zhitao Gong, Daniel Toyama, Cyprien de Masson d’Autume, Yujia Li, Tay-
fun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las
Casas, Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake
A. Hechtman, Laura Weidinger, Iason Gabriel, William S. Isaac, Edward
Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem
Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu,
and Geoffrey Irving, “Scaling Language Models: Methods, Analysis & In-
sights from Training Gopher”, in: CoRR abs/2112.11446 (2021), arXiv: 2112.
11446, url: https://arxiv.org/abs/2112.11446 (cit. on p. 11).

[Rah+14] Amir Rahmati, Matthew Hicks, Daniel E. Holcomb, and Kevin Fu, “Refresh-
ing thoughts on DRAM: Power saving vs. data integrity”, in: Workshop on

162

https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446

Approximate Computing Across the System Stack (WACAS), vol. 44, 2014
(cit. on pp. 21, 128).

[Ram+21] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec
Radford, Mark Chen, and Ilya Sutskever, Zero-Shot Text-to-Image Genera-
tion, 2021, url: https://arxiv.org/abs/2102.12092 (cit. on p. 11).

[Ren+12] Lakshminarayanan Renganarayana, Vijayalakshmi Srinivasan, Ravi Nair, and
Daniel Prener, “Programming with Relaxed Synchronization”, in: Proceed-
ings of the 2012 ACM Workshop on Relaxing Synchronization for Multicore
and Manycore Scalability, RACES ’12, Tucson, Arizona, USA: Association
for Computing Machinery, 2012, pp. 41–50, url: https://doi.org/10.
1145/2414729.2414737 (cit. on pp. 23, 128).

[Res+20] Diana Resmerita, Rodrigo Cabral Farias, Benoît Dupont de Dinechin, and
Lionel Fillatre, “Benchmarking Alternative Floating-Point Formats for Deep
Learning Inference”, in: COMPAS, Lyon, France, 2020, url: https://hal.
archives-ouvertes.fr/hal-03625485 (cit. on p. 34).

[RG01] Ravi Rajwar and James R. Goodman, “Speculative Lock Elision: Enabling
Highly Concurrent Multithreaded Execution”, in: Proceedings of the 34th
Annual ACM/IEEE International Symposium on Microarchitecture, MICRO
34, Austin, Texas: IEEE Computer Society, 2001, pp. 294–305 (cit. on pp. 23,
128).

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch, Unified Modeling Lan-
guage Reference Manual, The (2nd Edition), Pearson Higher Education, 2004
(cit. on p. 38).

[Rod08] Ohad Rodeh, “B-Trees, Shadowing, and Clones”, in: ACM Trans. Storage 3.4
(Feb. 2008), url: https://doi.org/10.1145/1326542.1326544 (cit. on
p. 39).

[Rom+21] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Björn Ommer, High-Resolution Image Synthesis with Latent Diffusion Mod-
els, 2021, arXiv: 2112.10752 [cs.CV] (cit. on p. 11).

[Sah+22] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily
Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara
Mahdavi, Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J. Fleet,

163

https://arxiv.org/abs/2102.12092
https://doi.org/10.1145/2414729.2414737
https://doi.org/10.1145/2414729.2414737
https://hal.archives-ouvertes.fr/hal-03625485
https://hal.archives-ouvertes.fr/hal-03625485
https://doi.org/10.1145/1326542.1326544
https://arxiv.org/abs/2112.10752

and Mohammad Norouzi, Photorealistic Text-to-Image Diffusion Models with
Deep Language Understanding, 2022, url: https://arxiv.org/abs/2205.
11487 (cit. on p. 11).

[Sav97] John E. Savage, Models of Computation: Exploring the Power of Computing,
1st, USA: Addison-Wesley Longman Publishing Co., Inc., 1997 (cit. on p. 45).

[SB18] Sundararajan Sriram and Shuvra Shikhar Bhattacharyya, Embedded multi-
processors: Scheduling and synchronization, CRC press, 2018 (cit. on p. 55).

[SCE01] Athanassios Skodras, Charilaos A. Christopoulos, and Touradj Ebrahimi,
“The JPEG 2000 still image compression standard”, in: IEEE Signal Pro-
cessing Magazine 18.5 (2001), pp. 36–58 (cit. on p. 57).

[Sér20] Jocelyn Sérot, “HoCL: High Level Specification of Dataflow Graphs”, in:
Proceedings of the 32nd Symposium on Implementation and Application of
Functional Languages, IFL 2020, Canterbury, United Kingdom: Association
for Computing Machinery, 2020, pp. 11–22, url: https://doi.org/10.
1145/3462172.3462185 (cit. on p. 53).

[She+11] Chung-Ching Shen, Lai-Huei Wang, Inkeun Cho, Scott Kim, Stephen
Won, William Plishker, and Shuvra Shikhar Bhattacharyya, The DSPCAD
lightweight dataflow environment: Introduction to LIDE version 0.1, tech.
rep., 2011 (cit. on p. 52).

[Sid+11] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin
Rinard, “Managing Performance vs. Accuracy Trade-Offs with Loop Perfo-
ration”, in: ESEC/FSE ’11, Szeged, Hungary: Association for Computing
Machinery, 2011, pp. 124–134, url: https://doi.org/10.1145/2025113.
2025133 (cit. on pp. 18, 128).

[Smi+22] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley,
Samyam Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye, George
Zerveas, Vijay Korthikanti, Elton Zheng, Rewon Child, Reza Yazdani Am-
inabadi, Julie Bernauer, Xia Song, Mohammad Shoeybi, Yuxiong He, Michael
Houston, Saurabh Tiwary, and Bryan Catanzaro, “Using DeepSpeed and
Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative
Language Model”, in: CoRR abs/2201.11990 (2022), arXiv: 2201 . 11990,
url: https://arxiv.org/abs/2201.11990 (cit. on p. 11).

164

https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/2205.11487
https://doi.org/10.1145/3462172.3462185
https://doi.org/10.1145/3462172.3462185
https://doi.org/10.1145/2025113.2025133
https://doi.org/10.1145/2025113.2025133
https://arxiv.org/abs/2201.11990
https://arxiv.org/abs/2201.11990

[Smo+13] Vadim Smolyakov, Glenn Gulak, Timothy Gallagher, and Curtis Ling, “Fault-
Tolerant Embedded-Memory Strategy for Baseband Signal Processing Sys-
tems”, in: IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems 21.7 (2013), pp. 1299–1307 (cit. on pp. 21, 128).

[Sou+22] Nicolas Sourbier, Karol Desnos, Thomas Guyet, Frederic Majorczyk, Olivier
Gesny, and Maxime Pelcat, “SECURE-GEGELATI Always-On Intrusion
Detection through GEGELATI Lightweight Tangled Program Graphs”, in:
Journal of Signal Processing Systems (2022), pp. 1–18 (cit. on p. 11).

[Su+12] Ching-Lung Su, Po-Yu Chen, Chun-Chieh Lan, Long-Sheng Huang, and Kuo-
Hsuan Wu, “Overview and comparison of OpenCL and CUDA technology for
GPGPU”, in: 2012 IEEE Asia Pacific Conference on Circuits and Systems,
2012, pp. 448–451 (cit. on p. 44).

[Sur+15] Arjun Suresh, Bharath Narasimha Swamy, Erven Rohou, and André Seznec,
“Intercepting Functions for Memoization: A Case Study Using Transcenden-
tal Functions”, in: ACM Transactions on Architecture and Code Optimization
12.2 (July 2015), p. 23, url: https://hal.inria.fr/hal-01178085 (cit. on
pp. 19, 128).

[Sur+19] Leonardo Suriano, Florian Arrestier, Alfonso Rodríguez, Julien Heulot, Karol
Desnos, Maxime Pelcat, and Eduardo de la Torre, “DAMHSE: Programming
heterogeneous MPSoCs with hardware acceleration using dataflow-based de-
sign space exploration and automated rapid prototyping”, in: Microprocessors
and Microsystems 71 (2019), p. 102882, url: https://www.sciencedirect.
com/science/article/pii/S0141933118303107 (cit. on p. 55).

[Tin+19] Oriol Tintó Prims, Mario César Acosta Cobos, Andrew M. Moore, Miguel
Castrillo, Kim Serradell, Ana Cortés, and Francisco J. Doblas-Reyes, “How
to use mixed precision in ocean models: exploring a potential reduction of nu-
merical precision in NEMO 4.0 and ROMS 3.6”, in: Geoscientific Model De-
velopment 12.7 (2019), pp. 3135–3148, url: https://www.geosci-model-
dev.net/12/3135/2019/ (cit. on pp. 27, 128).

[Tis+20] Alexandre Tissier, Wassim Hamidouche, Jarno Vanne, Franck Galpin, and
Daniel Menard, “CNN oriented complexity reduction of VVC intra encoder”,
in: 2020 IEEE International Conference on Image Processing (ICIP), IEEE,
2020, pp. 3139–3143 (cit. on p. 11).

165

https://hal.inria.fr/hal-01178085
https://www.sciencedirect.com/science/article/pii/S0141933118303107
https://www.sciencedirect.com/science/article/pii/S0141933118303107
https://www.geosci-model-dev.net/12/3135/2019/
https://www.geosci-model-dev.net/12/3135/2019/

[Vas+15] Vassilis Vassiliadis, Konstantinos Parasyris, Charalambos Chalios, Christos
D. Antonopoulos, Spyros Lalis, Nikolaos Bellas, Hans Vandierendonck, and
Dimitrios S. Nikolopoulos, “A Programming Model and Runtime System for
Significance-Aware Energy-Efficient Computing”, in: Proceedings of the 20th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP 2015, San Francisco, CA, USA: Association for Computing
Machinery, 2015, pp. 275–276, url: https://doi.org/10.1145/2688500.
2688546 (cit. on pp. 18, 128).

[Vlu+19] Steven van der Vlugt, Hadi Alizadeh Ara, Rob de Jong, Martijn Hendriks,
Ruben Guerra Marin, Marc Geilen, and Dip Goswami, “Modeling and anal-
ysis of FPGA accelerators for real-time streaming video processing in the
healthcare domain”, in: Journal of Signal Processing Systems 91.1 (2019),
pp. 75–91 (cit. on p. 97).

[WM95] William Allan Wulf and Sally A. McKee, “Hitting the memory wall: Implica-
tions of the obvious”, in: ACM SIGARCH computer architecture news 23.1
(1995), pp. 20–24 (cit. on pp. 9, 125).

[Won+18] Kanit Wongsuphasawat, Daniel Smilkov, James Wexler, Jimbo Wilson, Dan-
delion Mané, Doug Fritz, Dilip Krishnan, Fernanda B. Viégas, and Martin
Wattenberg, “Visualizing Dataflow Graphs of Deep Learning Models in Ten-
sorFlow”, in: IEEE Transactions on Visualization and Computer Graphics
24.1 (2018), pp. 1–12 (cit. on p. 55).

[Wu+17] Chen Wu, Rodrigo Tobar, Kevin Vinsen, Andreas Wicenec, Dave Pallot, Bao-
qiang Lao, Ruonan Wang, Tao An, Mark Boulton, Ian Cooper, Richard Dod-
son, Markus Dolensky, Ying Mei, and Feng Wang, DALiuGE: A Graph Exe-
cution Framework for Harnessing the Astronomical Data Deluge, 2017, url:
https://arxiv.org/abs/1702.07617 (cit. on p. 53).

[xAn18] xAndru!, Wii VC Round-to-Zero, https://ukikipedia.net/wiki/Wii_VC_
Round-to-Zero, 2018 (cit. on p. 26).

[XMK15] Qiang Xu, Todd Mytkowicz, and Nam Sung Kim, “Approximate computing:
A survey”, in: IEEE Design & Test 33.1 (2015), pp. 8–22 (cit. on pp. 17,
129).

166

https://doi.org/10.1145/2688500.2688546
https://doi.org/10.1145/2688500.2688546
https://arxiv.org/abs/1702.07617
https://ukikipedia.net/wiki/Wii_VC_Round-to-Zero
https://ukikipedia.net/wiki/Wii_VC_Round-to-Zero

[Yu+22] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid,
Zirui Wang, Vijay Vasudevan, Alexander Ku, Yinfei Yang, Burcu Karagol
Ayan, Ben Hutchinson, Wei Han, Zarana Parekh, Xin Li, Han Zhang, Jason
Baldridge, and Yonghui Wu, Scaling Autoregressive Models for Content-Rich
Text-to-Image Generation, 2022, url: https://arxiv.org/abs/2206.10789
(cit. on p. 11).

[ZC20] Feichi Zhou and Yang Chai, “Near-sensor and in-sensor computing”, in: Na-
ture Electronics 3.11 (2020), pp. 664–671 (cit. on pp. 10, 55).

[Zha+14] Qian Zhang, Feng Yuan, Rong Ye, and Qiang Xu, “ApproxIt: An ap-
proximate computing framework for iterative methods”, in: 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), 2014, pp. 1–6
(cit. on pp. 18, 128).

[Zho+13] Zheng Zhou, Karol Desnos, Maxime Pelcat, Jean-François Nezan, William
Plishker, and Shuvra Shikhar Bhattacharyya, “Scheduling of parallelized syn-
chronous dataflow actors”, in: 2013 International Symposium on System on
Chip (SoC), 2013, pp. 1–10 (cit. on p. 46).

[Ziv+17] Darko Zivanovic, Milan Pavlovic, Milan Radulovic, Hyunsung Shin, Jong-
pil Son, Sally A. Mckee, Paul M. Carpenter, Petar Radojković, and Eduard
Ayguadé, “Main Memory in HPC: Do We Need More or Could We Live with
Less?”, in: ACM Transactions on Architecture and Code Optimization 14.1
(Mar. 2017), url: https://doi.org/10.1145/3023362 (cit. on pp. 9, 125).

167

https://arxiv.org/abs/2206.10789
https://doi.org/10.1145/3023362

Titre : Méthodes de Réduction de Ressources Matérielles Basées Calcul Approximé pour Sys-
tèmes Hétérogènes.

Mot clés : Calcul Approximé, Graphe Flux-de-Données, Exploration d’Espace de Conception,

FPGA

Résumé : Les applications de traitement
du numérique signal et du multimédia traitent
un volume de donnée toujours plus gros. Le
monde numérique est responsable de 4% des
émissions de gaz à effet de serre et 10% de la
consommation d’électricité en 2021. Les mé-
moires occupant jusqu’à 80% de la surface de
silicium des puces, et des mémoires externes
étant souvent nécessaire pour étendre les ca-
pacités de stockage internes, les mémoires
sont responsable d’une majeure partie de la
consommation d’énergie aussi bien pour l’in-
formatique en périphérie de réseau que des
systèmes de calcul haute performance.

Des méthodes basées sur le calcul ap-
proximé ont été développées permettant de
concéder le niveau de qualité final au profit

des ressources matérielles. L’utilisation de mo-
dèles de calcul flux-de-données peut faciliter
la mise en œuvre de ces techniques de calcul
approximé.

Cette thèse présente une méthode de cal-
cul approximé pour réduire les besoins en res-
sources matérielles liés au stockage de don-
nées en mémoire, ainsi qu’un algorithme d’ex-
ploration d’espace de conception pour facili-
ter sa mise en œuvre. La méthode proposée
consiste à empaqueter les données en mé-
moire en utilisant des représentations alterna-
tives, et est utilisable avec des processeurs
conventionnels ainsi qu’avec des FPGA. Ces
contributions ont en partie été implémentées
dans le logiciel open-source PREESM.

Title: Approximated Computing-based Methods for Hardware Resources Reduction Targeting
Heterogeneous Systems.

Keywords: Approximate Computing, Dataflow Graph, Design Space Exploration, FPGA

Abstract: Digital signal processing and mul-
timedia applications have to compute an ever
increasing amount of data. The digital world
accounted for 4% of greenhouse gases and
10% of the electricity consumption in 2021.
As the silicon area occupied by the memory
can be as large as 80% of a chip and external
memories are often required to extend these
internal memories, memories are responsible
for the major part of the power consumption of
both Edge Computing and High-Performance
Computing (HPC) systems.

Methods based on Approximate Comput-
ing (AxC) have been developped by trading-
off output accuracy for reduced resources re-

quirements. The use of Dataflow Models of
Computation (MoCs) can facilitate the imple-
mentation of AxC techniques.

This thesis presents an AxC-based
method for reducing the hardware resources
requirements for data storage in memory, as
well as a Design Space Exploration (DSE) al-
gorithm to facilitate its implementation. The
proposed method consists in packing data
in memory using alternative representations
and is usable on both conventional Central
Processing Units (CPUs) as well as on Field-
Programmable Gate Arrays (FPGAs). These
contributions have in part been implemented
into the open-source PREESM framework.

	Acknowledgements
	1 Introduction
	1.1 General Context
	1.2 Scope of this Thesis and Contributions
	1.3 Outline

	I Background
	2 Approximate Computing
	2.1 Overview of Approximate Computing Techniques
	2.1.1 Computation Level
	2.1.2 Hardware Level
	2.1.3 Data Level
	2.1.3.1 Reduction of the number of data
	2.1.3.2 Relaxed Synchronization

	2.2 Precision Optimisation
	2.2.1 Floating-Point Representation
	2.2.2 Fixed-Point Representation
	2.2.3 Variation from IEEE-754 Floating-Point Standard

	3 Programming Models
	3.1 Task-based Programming Models
	3.1.1 Processes
	3.1.2 Threads
	3.1.2.1 POSIX Threads
	3.1.2.2 OpenMP

	3.2 Accelerator-based Programming Models
	3.2.1 OpenCL/CUDA
	3.2.2 OpenACC/OpenMP 4.0

	3.3 Dataflow-based Models of Computation
	3.3.1 Process Network
	3.3.2 Parallelism with Dataflow Model of Computation
	3.3.3 Synchronous Dataflow (SDF)
	3.3.4 Parameterized and Interfaced Synchronous Dataflow (PiSDF)
	3.3.5 Existing tools for Dataflow Applications Design

	4 Applications
	4.1 2D Wavelet Filter
	4.2 SqueezeNet CNN
	4.3 Square Kilometre Array Science Data Processor Implementation

	II Contributions
	5 Data Representation in Approximate Buffer
	5.1 The Concept of Approximate Buffer
	5.2 Data Truncation
	5.3 Fixed-Point Representation
	5.4 Custom Floating-Point Representation
	5.5 Uniform Quantization
	5.6 Experimental Results
	5.6.1 2D Wavelet Filter
	5.6.2 SqueezeNet Deep Neural Network
	5.6.3 SDP Evolutionary Pipeline

	6 Implementation for Approximate Buffer
	6.1 Software Implementation for CPU
	6.1.1 Data conversion
	6.1.2 Insertion/extraction
	6.1.3 Experimental Results
	6.1.3.1 2D Wavelet Filter
	6.1.3.2 SqueezeNet
	6.1.3.3 Science Data Processor

	6.2 Hardware Implementation for FPGA
	6.2.1 Results on FPGA

	7 Design Space Exploration for Approximate Buffers
	7.1 State of the Art on Design Space Exploration for Approximate Computing
	7.2 Automatic Approximate Buffer Configuration
	7.2.1 Memory Footprint Minimisation Algorithm
	7.2.1.1 Min Value Determination
	7.2.1.2 Iterative Process
	7.2.1.3 Bit Scraping

	7.2.2 Complexity Analysis
	7.2.3 Example

	7.3 Experimental Results
	7.3.1 2D Wavelet Filter
	7.3.2 SqueezeNet CNN
	7.3.3 SDP Imaging Pipeline
	7.3.4 2D-DWT on FPGA

	8 Conclusion
	8.1 Summary
	8.2 Future Works
	8.2.1 Impact on Other Parameters
	8.2.2 Extension with Additional Features
	8.2.3 Interactions with Complementary Approaches

	A French Summary
	A.1 Introduction
	A.1.1 Portée de cette Thèse et Contributions
	A.1.2 Outline

	A.2 État de l'Art
	A.2.1 Calcul à-Peu-Près AxC
	A.2.2 Modèle de Calculs Flot de Donnée

	A.3 Concept de Mémoire Tampon à-Peu-Près
	A.4 Implémentation de Mémoire Tampon à-Peu-Près
	A.5 Conclusion

	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Glossary
	Personal Publications
	Bibliography

