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Last but not least, thank you, Chloé, for your unwavering support over these past two
years. It was precious, notably for the difficult moment like the submissions and the
thesis writing! Thank you for removing (sometimes) my nose from the grindstone to
enjoy life (with you). I really hope to continue horse riding, hiking, traveling, or having
common projects.

– 4 –



The further backward you look, the further forward you can see.

Winston Churchill

Science is a bit like the joke about the drunk who is looking under
a lamppost for a key that he has lost on the other side of the
street, because that’s where the light is. It has no other choice.

Noam Chomsky

– 5 –



Contents

Contents 6

List of Figures 9

List of Theorems 12

List of Notations 15

Preamble 17

List of Publications 25
International Conference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
International Workshop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
National Conference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Research Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

I Background 27

1 An introduction to Statistical Learning Theory 29
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.2 Hypothesis Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.3 Generalization Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.4 Conclusion and Summary . . . . . . . . . . . . . . . . . . . . . . . . 53

2 The PAC-Bayesian Theory and the Majority Vote 55
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.2 PAC-Bayesian Majority Votes . . . . . . . . . . . . . . . . . . . . . . 56
2.3 PAC-Bayesian Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.4 Disintegrated PAC-Bayesian Bounds . . . . . . . . . . . . . . . . . . . 75
2.5 Conclusion and Summary . . . . . . . . . . . . . . . . . . . . . . . . 78

II PAC-Bayesian Majority Vote:
Theory and Self-bounding Algorithms 79

3 PAC-Bayesian Theory for the Robust Majority Vote 81

– 6 –



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.2 Adversarially Robust Majority Vote . . . . . . . . . . . . . . . . . . . 83
3.3 Adversarially Robust PAC-Bayes . . . . . . . . . . . . . . . . . . . . . 87
3.4 Experimental Evaluation on Differentiable Decision Trees . . . . . . . . 95
3.5 Conclusion and Summary . . . . . . . . . . . . . . . . . . . . . . . . 98

4 Self-Bounding Algorithms for the Majority Vote 101
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.3 State of the Art: PAC-Bayesian Bounds for the Majority Vote . . . . . 104
4.4 Contribution: Algorithms based on the PAC-Bayesian C-Bounds . . . . 108
4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.6 Conclusion and Summary . . . . . . . . . . . . . . . . . . . . . . . . 123

5 Toward a Stochastic Majority Vote 125
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.2 The Stochastic Majority Vote . . . . . . . . . . . . . . . . . . . . . . 129
5.3 From a PAC-Bayesian Bound to an Algorithm . . . . . . . . . . . . . 133
5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.5 Conclusion and Summary . . . . . . . . . . . . . . . . . . . . . . . . 141

III Beyond PAC-Bayesian Bounds:
From Disintegration to Novel Bounds 147

6 On the Practical uses of the Disintegrated Bounds 149
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.2 Setting and PAC-Bayesian Bounds . . . . . . . . . . . . . . . . . . . . 151
6.3 Disintegrated PAC-Bayesian Theorems . . . . . . . . . . . . . . . . . 152
6.4 The Disintegration in Action . . . . . . . . . . . . . . . . . . . . . . . 158
6.5 Experiments with Neural Networks . . . . . . . . . . . . . . . . . . . 162
6.6 Perspectives for the Majority Vote . . . . . . . . . . . . . . . . . . . . 171
6.7 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 172

7 Generalization Bounds with Complexity Measures 175
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.3 Integrating Arbitrary Complexities in Generalization Bounds . . . . . . 179
7.4 Using Arbitrary Complexities in Practice . . . . . . . . . . . . . . . . 184
7.5 Comparison with the Generalization Bounds of the Literature . . . . . 192
7.6 Conclusion and Summary . . . . . . . . . . . . . . . . . . . . . . . . 197

– 7 –



IV Conclusion and Perspectives 199

Conclusion and Perspectives 201

V Appendix 205

A Some Mathematical Tools 207
A.1 Jensen’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
A.2 Markov’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 207
A.3 2nd Order Markov’s Inequality . . . . . . . . . . . . . . . . . . . . 208
A.4 Chebyshev-Cantelli Inequality . . . . . . . . . . . . . . . . . . . 209
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List of Notations

General

a A scalar (integer or real)
a A vector
A A matrix
A, a A set
R The set of real numbers
R∗ The set of real numbers excluding 0

R+
∗ The set of positive real numbers excluding 0

N The set of natural numbers
N∗ The set of natural numbers excluding 0

card(·) The cardinal of a set
ai i-th element of the vector a

Statistical Learning Theory

X Set of d-dimensional inputs (⊆ Rd)
Y Set of labels
x A real-valued input x ∈ X

y A label y ∈ Y associated to the input x

D Unknown data distribution on X× Y

Dm Unknown data distribution on the m-samples, i.e., on (X×Y)m

S Learning sample S = {(xi, yi)}mi=1 drawn from Dm

S Uniform distribution on S

T Test set drawn from Dm
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T Uniform distribution on T

H The set of hypotheses
h A hypothesis h ∈ H

`(·, ·) Loss function
R`D′(h) Risk of the hypothesis h ∈ H w.r.t. the loss function `() on D′

RD′(h) Risk of the hypothesis h ∈ H w.r.t. the 0-1 loss on D′

Probability Theory

EX∼X [·] The expectation w.r.t. the random variable X ∼ X
PX∼X [·] The probability w.r.t. the random variable X ∼ X

I [a] Indicator function; returns 1 if a is true and 0 otherwise
M(H) Set of Probability densities w.r.t. the reference measure on H

ρ Posterior distribution ρ ∈ M(H) on H

π Prior distribution π ∈ M∗(H) on H

KL(ρ‖π) Kullback-Leibler (KL) divergence between ρ and π
Dα(ρ‖π) Rényi Divergence between ρ and π
Uni(A) Uniform distribution on A

Dir(α) Dirichlet distribution of parameters α ∈ R+
∗

Majority Vote

MVρ(·) The majority vote classifier
mρ(x, y) Majority vote’s margin for the example (x, y) ∈ X×Y

m̂ρ(x, y) 1
2 -Margin for the example (x, y) ∈ X×Y

sign(a) Sign function; returns +1 if a ≥ 0 and −1 otherwise
rD′(ρ) Gibbs risk on the distribution D′ associated to the majority vote MVρ()
eD′(ρ) Joint Error on the distribution D′ associated to the majority vote MVρ()
dD′(ρ) Disagreement on the distribution D′ associated to the majority vote MVρ()
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Preamble

Introduction
Statistical Machine Learning is a subfield of artificial intelligence at the intersection of
computer science, statistics, and optimization that consists of a set of learning meth-
ods that learn mathematical models3 automatically to solve a task from a statistical
perspective. We refer the reader to the textbook of Russell and Norvig (2020) for
a general introduction to artificial intelligence and to Bishop (2007), Mohri et al.
(2012), or Shalev-Shwartz and Ben-David (2014) for an introduction to ma-
chine learning.

Various tasks can be solved through these methods, such as image recognition, med-
ical diagnosis, fraud detection, recommendation system, etc. These machine learning
methods aim to find a model h belonging to a set H that solves a given task. These
method assume that we have some data, i.e., a set of examples, that are sufficiently
representative of the task. Each example obtained from the task is generally composed
of an input represented by some features and its corresponding output. Different types
of output can be considered: the supervised regression setting uses real-valued out-
put, while the supervised classification setting assumes that the outputs are categories
(a.k.a. classes or labels). This thesis stands in the supervised classification setting.
The supervised classification methods learn a model, called a classifier, that sepa-
rates/classifies the inputs into different categories.4 For instance, in Figure 1, we
illustrate an image classification task: it consists in predicting if an image contains a
horse or a cat. More precisely, the input is an image, and the label is either “cat” (the
red image) or “horse” (the blue image). From the examples in the data, the learned
model h (the black line) separates the red images from the blue images: the classifier
correctly predicts all the images from the learning sample.

One way to assess if a model performs well on the examples is to compute the prob-
ability that the model misclassifies an example in the available data; this quantity is
called the empirical risk. However, the machine learning model may learn by heart the
examples with an empirical risk at nearly 0. In this case, the model may be completely
inefficient on new examples from the task, i.e., unseen data; we say that the model
overfits the data. To characterize if a model performs well on unseen examples from

3The machine learning models are also referred to as hypotheses in statistical learning theory.
4When the outputs are absent from the examples, unsupervised learning methods learn models

that group (i.e. cluster) together similar inputs.
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Learning a model

Figure 1. Illustration of the supervised classification setting in machine learning.
Given some labeled examples (i.e., the image and its associated category), a model
h ∈ H is learned, and then, once learned, it can be used to classify, possibly new
examples. The images in the blue area are classified as “horse” while the white area
corresponds to the images classified as “cat”.

the task, we can define the notion of true risk. This notion is the probability that the
model misclassifies an example from the task (represented by an unknown distribution).
To assess if the empirical risk is representative of the true risk for a given model h, we
are interested in the generalization gap defined as

Generalization Gap(h) =
∣∣∣∣True Risk(h)− Empirical Risk(h)

∣∣∣∣.
The model overfits the data when the generalization gap is high (close to 1 in the worst
case) while the empirical risk is close to 0. On the contrary, when the gap is close
to 0, the empirical risk is a good approximation of the true risk. Hence, to obtain a
model that performs well on a task, the generalization gap must be close to 0 and the
empirical risk close to 0 as well. However, the gap is not computable because of the
true risk since it relies on an unknown quantity: the underlying distribution of the task.
Then, another strategy to assess the quality of the model is to consider computable
upper bounds on the generalization gap called generalization bounds. The form of the
first generalization bound, introduced by Vapnik and Chervonenkis (1968, 1971,
1974), has the following form:

For all model h ∈ H,∣∣∣∣True Risk(h)− Empirical Risk(h)
∣∣∣∣ ≤ Generalization Bound(H).

The generalization bounds are probabilistic, meaning that with high probability (over
the examples sampled from the unknown distribution), the bound holds. They generally
depend on the number of examples and a complexity term. This complexity term
determines the potential of a model to overfit: the higher the complexity, the more
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plausible the model overfits the data. Ideally, the upper bound decreases when the
number of examples increases for a given finite fixed complexity term. After the seminal
work of Vapnik and Chervonenkis (1968, 1971, 1974), generalization bounds have
been extended in several directions (see e.g., McAllester, 1998; Bartlett and
Mendelson, 2002; Bousquet and Elisseeff, 2002). By rearranging the terms,
a bound (that is computable) on the true risk (uncomputable) can be deduced for all
model h ∈ H:

True Risk(h) ≤ Empirical Risk(h) + Generalization Bound(H). (1)

This leads to a central point of this thesis: the possibility to derive algorithms minimiz-
ing a generalization bound, e.g., the right hand size of Equation (1). Algorithms min-
imizing a generalization bound are called self-bounding algorithms (Freund, 1998).
The advantage of minimizing a generalization bound is the capacity to directly control
or have at least an influence on the evolution of the true risk. In particular, as a side
effect, the minimization of the generalization bound allows us to control the overfitting
phenomenon better.

One particular type of generalization bounds in which we are specifically interested
comes from the PAC-Bayesian framework (Shawe-Taylor and Williamson, 1997;
McAllester, 1998). This framework assumes that each model h ∈ H is associated
with a positive weight ρ(h) that forms a probability distribution over H called the
posterior distribution ρ. Based on this assumption, the PAC-Bayesian generalization
bounds allow us to upper-bound the expected generalization gap; the form of the
bounds is defined as

Expectation
h sampled from ρ

∣∣∣∣True Risk(h)− Empirical Risk(h)
∣∣∣∣
 ≤ Generalization Bound(ρ).

This framework allows to upper-bound the risk of a stochastic model which, for each
input x, (i) samples a new model h ∈ H from ρ and (ii) predicts the output of x with
h(x). Actually, the risk of the stochastic model can be linked to the risk of a model
in which we are particularly interested in this thesis: the majority vote; we provide an
overview of such a model in Figure 2. The majority vote has a long history in science:
Condorcet (1785) started to explore mathematically voting systems. Famous ma-
chine learning models can be seen as a majority vote, such as linear classifiers, Support
Vector Machine (Graepel et al., 2005), k-Nearest Neighbors (Bellet et al., 2014),
or neural networks vote (Kawaguchi et al., 2017; Viallard et al., 2019). Some
approaches that learn majority votes belong to the ensemble methods (Dietterich,
2000) aiming to combine supervised classifiers (called voters) to create an accurate
model. For instance, bagging (Breiman, 1996), random forest (Breiman, 2001) and
boosting (Freund and Schapire, 1996) are famous examples of ensemble methods.
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Cat

Cat

Horse

Voter 1

Voter 2

Voter 3

︸
︷︷

︸

Majority vote Cat

Figure 2. Example of the majority vote’s prediction: given an image, each voter
outputs a label (“cat” or “horse”), and the majority vote gathers the results to output
the majority label.

In these methods, the voters’ decisions are combined to obtain a better decision com-
pared to the individual voters’ decisions (which can be weak). An important notion
when combining different classifiers is the notion of diversity (Dietterich, 2000;
Kuncheva, 2014). Indeed, when voters are weak and perform a bit better than ran-
dom as in boosting (Freund and Schapire, 1996), sufficiently diverse voters may
improve the accuracy of the majority vote. We give in Figure 3 an example of the
diversity’s importance. The combination can be done in very different ways depending
on the methods: in bagging (Breiman, 1996) and random forest (Breiman, 2001),
the voters’ predictions are only averaged while boosting (Freund and Schapire,
1996) performs a weighted average. In this thesis, we consider a convex combination
of the voters where each voter h is associated with the weight ρ(h) encoding its im-
portance in the majority vote. More formally, in the binary classification setting, each
model h (i.e., voter) belonging to H predicts either the class −1 or the class +1. A
weighted majority vote over the voters in H applied on a given input x is defined as:

sign
∑
h∈H

ρ(h)h(x)
 ,

where sign [a] = −1 if a < 0 and sign [a] = +1 otherwise.
However, one drawback of the PAC-Bayesian theory is that it is not possible to bound
the generalization gap of only one model h in H. Hopefully, the disintegrated PAC-
Bayesian bounds – introduced by Blanchard and Fleuret (2007) and Catoni
(2007) – overcome this drawback. The bounds have the following form:
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Voter 1 Voter 2 Voter 3

Majority Vote

Figure 3. Example of a majority vote with three voters on the classification horse/cat
classification task presented before. Each of the three voters makes some mistakes in
the data. However, when the majority rule combines the voters, the final vote classifies
all the data correctly. It is mainly because the three voters are diverse: they do not
make the same mistakes, while the combination corrects the individual errors.

With high probability over the model h sampled from the posterior ρ,∣∣∣∣True Risk(h)− Empirical Risk(h)
∣∣∣∣ ≤ Generalization Bound(ρ, h).

They allow us to obtain a bound on the generalization gap for a unique model h
(sampled from the posterior distribution) that holds with high probability and which
will serve as a basis for some contributions of this thesis.

Long Story Short
Motivations of this thesis. As discussed above, generalization bounds can be used
to assess when machine learning models generalize, i.e., when the empirical risk is repre-
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sentative of the true risk. In this context, the PAC-Bayesian theory is adapted to upper-
bound the generalization gap of models based on the majority vote or the stochastic
classifier. However, in the PAC-Bayesian literature, few works propose to minimize a
generalization bound to learn a machine learning model, such as, Masegosa et al.
(2020). In the first series of contributions of this thesis, we develop new self-bounding
algorithms for three settings. Firstly, we develop a new adversarial robustness setting
tailored for the PAC-Bayesian and robustify majority votes after proving generalization
bounds. Secondly, we minimize three particular PAC-Bayesian bounds on the majority
vote’s risk that was considered difficult to optimize (Masegosa et al., 2020). Fi-
nally, we introduce a stochastic version of the majority vote, i.e., where the weights
are assumed to be sampled from a probability distribution. The stochastic majority
vote allows one to derive guarantees on majority-vote-based models. However, upper-
bounding the generalization gap of a single classifier with the PAC-Bayesian theory is
tedious and generally applicable only to certain classifiers such as the majority vote
(see e.g., Langford and Shawe-Taylor, 2002; Germain et al., 2009; Letarte
et al., 2019). In our second series of contributions, we propose to overcome this draw-
back by considering the notion of disintegrated PAC-Bayesian bounds. Such bounds
are able to provide generalization bounds for a single model. By leveraging this frame-
work, we provide new bounds that are easily optimizable and allow us to derive new
self-bounding algorithms. In our last contribution, we make use of this framework to
develop a general way for incorporating arbitrary complexity measures in generalization
bounds.

Outline of this thesis. This thesis is composed of three parts.
Part I is dedicated to the introduction of the field of statistical learning theory and the
PAC-Bayesian theory.

(i) Chapter 1 presents the general setting of this thesis. We introduce the notion
of learning and solving a task with a statistical machine learning algorithm.
Then, we introduce some machine learning models and some methods to learn
them. Afterwards, we recall several classical generalization bounds, notably from
Vapnik and Chervonenkis (1974), that assess the quality of the obtained
model for the chosen task.

(ii) In Chapter 2, we mainly recall some results from the PAC-Bayesian framework.
After a reminder about the majority vote, we recall different PAC-Bayesian
bounds, which will serve as a basis for deriving new results in Part II. We also
remind the first disintegrated PAC-Bayesian bounds, which are useful when we
are interested in one model sampled from the posterior distribution.
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Based on the PAC-Bayesian theory, Part II deals with our first series of contributions
focusing on the derivation of self-bounding algorithms (Freund, 1998) that minimize
PAC-Bayesian bounds to obtain a majority vote with guarantees on the true risk.

(i) Chapter 3 stands in the adversarial robustness setting (Goodfellow et al.,
2015): the goal is to make the majority vote robust to small changes/perturbations
in the input. This setting is in contrast with the classical setting in machine
learning, where no perturbations are applied to the input. To the best of our
knowledge, we are the first to (i) formalize the robustness setting in the PAC-
Bayesian framework and (ii) assess the robustness of the majority vote with this
framework. We also derive a self-bounding algorithm that minimizes our new
generalization bounds.

(ii) In Chapter 4, we come back to the classical supervised classification setting. We
introduce the minimization of PAC-Bayesian bounds on the majority vote risk’s
surrogate called the C-Bound (recalled in Chapter 2). Unlike the algorithms of
the PAC-Bayesian literature, our learning algorithms better consider the voters’
correlations.

(iii) However, the self-bounding algorithms (including ours) do not fully exploit the
diversity of the voters in general. Hence, after introducing the stochastic majority
vote in Chapter 5, we develop a self-bounding learning algorithm to minimize the
risk. It allows us to optimize the expected risk directly without requiring the use
of a surrogate of the majority vote’s risk.

The PAC-Bayesian theory, as considered in Part II, has a major drawback. While
the majority vote’s generalization abilities can be analyzed through the PAC-Bayesian
theory, it becomes more difficult to analyze the generalization of a single voter chosen
randomly according to the weights. Thanks to the disintegrated bounds (recalled
in Chapter 2), we present two contributions in Part III that introduce self-bounding
algorithms to choose a single classifier.

(i) The disintegrated bounds of the literature are difficult to optimize (and to obtain
self-bounding algorithms). Hence, in Chapter 6, we (i) derive new disintegrated
PAC-Bayesian bounds (easier to optimize) and (ii) provide the first empirical
study of self-bounding algorithms using these bounds. We also instantiate the
bounds with neural networks and compare them with the PAC-Bayesian consid-
ered, e.g., by Dziugaite and Roy (2017), Zhou et al. (2019), and Pérez-
Ortiz et al. (2021).

(ii) Chapter 7 offers a new viewpoint on generalization bounds by leveraging the
disintegrated PAC-Bayesian framework. To the best of our knowledge, Chapter 7
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introduces – for the first time – a way to include arbitrary complexity measures
in generalization bounds. This work is another step toward the practical use of
generalization bounds since the users can now include their complexity measures.

Finally, Part IV presents some perspectives and future works. Note that, for the sake of
completeness and clarity, we provide in Appendix all the proofs; we give a hyperlink to
the proof for each theorem, corollary, and proposition. Moreover, in order to reproduce
the experiments and the figures, we provide the different source codes developed in
the context of this thesis at

https://github.com/paulviallard/PhDThesis.

Context of this thesis
This thesis was carried out in the Data Intelligence team of the laboratoire Hubert
Curien: a joint research unit (UMR 5516) affiliated with the French National Center
for Scientific Research (CNRS); the Institut d’Optique Graduate School, and the Uni-
versité Jean Monnet in Saint-Etienne, France. The french ANR (Agence Nationale
de la Recherche) financially supported this thesis through the project APRIORI (A
PAC-Bayesian RepresentatIOn LeaRnIng Perspective) ANR-18-CE23-0015. This
research project was also the subject of a collaboration with Université Laval, Québec
city, Canada.
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Abstract

This chapter provides an overview of statistical learning theory. We introduce
the main concepts and notations used in this thesis focusing on supervised
learning. Moreover, we review the main theoretical frameworks allowing one to
derive some guarantees on the quality of the learning process.
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1.1. Introduction

1.1 Introduction
Statistical learning encompasses a set of statistical methods that aims to automatically
solve a task with the help of a computer from data. For example, the task can consist
in identifying a digit in an image. In practice, the task is represented by a database
(a.k.a. dataset or learning sample) containing a finite number of examples. More
precisely, one example is composed of an input and its corresponding output (a.k.a.
label). For the digit recognition problem, one example is made up of an image (the
input) with its corresponding digit (the output).

To solve the task, we have to design a model that outputs the correct label given the
input. This model is usually a potentially complicated mathematical function. From
a human perspective, designing by hand a mathematical function that solves the task
can be tedious. Instead, in statistical learning, we aim to find automatically such a
function with an algorithm. This algorithm is usually called learning algorithm since
the process of finding a function boils down to learning a function that solves the task.
The setting of statistical learning and the learning process is illustrated in Figure 1.1;
it is defined more formally in the rest of the section.

Learning

Figure 1.1. Rough representation of statistical learning for the digit recognition
task. On the left, each input (the handwritten digits) is represented in 2 dimensions.
On the right, we illustrate the notion of learning, i.e., an algorithm finds a function
(represented by the black line) predicting the digit 0 for the points belonging to the
blue area and the digit 5 for those belonging to the white one. The black line is also
called the decision boundary.

1.1.1 Representation of a Task
This thesis studies the classification problem from a supervised learning perspective.
More formally, we consider a set of d-dimensional inputs X ⊆ Rd and a set of outputs
Y (a.k.a. set of labels). In the binary classification setting, when Y = {−1,+1},
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1.1. Introduction

the input is classified either into the label −1 or +1. In the multi-class classification
setting, when Y = {1, 2, . . . , l}, the input is classified into l ≥ 2 different labels. Given
an input set X and a label set Y, we assume the task to be represented by an unknown
function h∗ : X→ Y. The unknown function h∗ can be stochastic, meaning that h∗(x)
involves randomness, and thus different outputs y ∈ Y are probable for the same input
x ∈ X. Moreover, some inputs x ∈ X are more representative of the task, i.e., some
inputs may be more probable than others. To take this probabilities into account, the
function h∗ is replaced with an unknown distribution D on X×Y; the distribution D
represents the probability to sample a given input x ∈ X and the output of the function
h∗. More precisely, we assume that each couple (x, y) ∈ X×Y (a.k.a. example) is a
realization from this unknown data distribution D on the set X×Y. Even if the distri-
bution D is unknown, we usually assume that we have access to some examples that
we hope to be sufficiently representative and sampled from D. This set of examples is
defined as follows.

Definition 1.1.1 (Learning sample). We define as learning sample (or training
set) a set of m random variables independent and identically distributed (i.i.d.)
following the distribution D. We have

S ,
m⋃
i=1

{
(xi, yi)

}
,
{

(xi, yi)
}m
i=1
⊆ (X× Y)m,

where ∀i ∈ {1, . . . ,m}, (xi, yi)∼D and S =
{

(xi, yi)
}m
i=1
∼ Dm

The notation Dm denotes the distribution of m examples following D:

Dm
(
{(xi, yi)}mi=1

)
= Dm

(
S
)
,

m∏
i=1
D
(
(xi, yi)

)
.

In practice, the set of examples, organized in a dataset, can be created manually by
a human and/or collected automatically by a computer. One famous dataset associ-
ated with the digit recognition task is the MNIST dataset from LeCun et al. (1998).
For instance, the set of inputs X is the set of gray-scale images of size 28×28, and
the set of labels Y = {0, . . . , 9} is the set of possible digits. The learning sample S
is composed of m = 60,000 pairs of images (input) and digit (label). A schematic
representation of this task is presented in Figure 1.2.
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1.1. Introduction

Figure 1.2. Schematic representation of the distribution D for the digit recognition
task. The density of the distribution D is schematized with the contour lines where
the purple resp. green is a low resp. high-density region. The examples (i.e., the
handwritten digits) are sampled in high-density areas. A subset of the learning sample
S ∼ Dm is represented.

Deducing a mathematical model that predicts, for all i ∈ {1, . . . ,m}, the output yi
for the input xi is not necessarily trivial. To overcome this problem, statistical learning
methods are developed to find automatically such a model that aims to solve the task
by predicting the examples (xi, yi) ∈ X× Y correctly.

1.1.2 “Solving” a Task
The model found automatically by the statistical learning method is actually a function
h : X→ Y (called hypothesis in statistical learning theory) that takes an input x ∈ X
and outputs h(x) ∈ Y. This hypothesis h is selected by a learning algorithm among
different candidates in a hypothesis set H potentially infinite. As an illustration, we
recall four types of hypotheses used in practice.

1.1.2.1 Examples of Hypotheses

The four types of hypotheses we recall are the decision stump (Iba and Langley,
1992), the decision tree (Breiman et al., 1984), the linear classifier, and the neural
network. More precisely, these hypotheses are called classifier since they classify an
input x ∈ X, i.e., assign a label to an input.
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Decision Stump The decision stump (Iba and Langley, 1992) is a classifier com-
posed of one decision rule of the form “Is xi ≤ τ?”, where xi is the i-th component
of the vector x and τ ∈ R is a threshold. More precisely, this decision rule (imple-
mented as an if-condition) assigns a label to the input x. For example, we present
in Algorithm 1.1 a decision stump that classifies the input x as +1 when x1 ≤ 0.54
and −1 otherwise. Its graphical representation and the associated decision are given
in Figure 1.3.

Algorithm 1.1 Example of Decision Stump
Given: An input x ∈ Rd

if x1 ≤ 0.54 then
return +1

else
return −1

x1 ≤ 0.54?

+1

Yes

−1

No

0.54
x1

x
2

Figure 1.3. Example of decision stump with the decision rule “Is x1 ≤ 0.54?”. On
the left, the decision of Algorithm 1.1 is shown with its binary tree representation. The
right plot shows the decision boundary (in white and blue) of the given decision stump.
Moreover, the red triangles resp. the blue dots are the examples in the learning sample
S with the label +1 resp. −1.

To classify the input x ∈ X, the decision stump returns a label (by executing its
associated algorithm). This algorithm is composed of only one if-condition that can
be interpreted as a binary tree. This simple classifier can be complexified by adding
more if-conditions to fit the data better. Indeed, a decision tree can be constructed
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by considering nested if-conditions. Hence, the decision stump1 is a particular case of
a decision tree (Breiman et al., 1984).

Decision Trees The decision tree (Breiman et al., 1984) is a classifier that can
be seen as a succession of decision rules to classify the label of the input x ∈ Rd.
Algorithm 1.2 is an example of algorithm associated to the decision tree of Figure 1.4.

Algorithm 1.2 Example of Decision Tree
Given: An input x ∈ Rd

if x1 ≤ 0.59 then
if x2 ≤ 0.63 then

return +1
else

return −1
else

return −1

x1 ≤ 0.59?

x2 ≤ 0.63?

+1

Yes

−1

No

Yes

−1

No

0.59
x1

0.63

x
2

Figure 1.4. Example of decision tree composed of two decision rules “Is x1 ≤ 0.59?”
and “Is x2 ≤ 0.63?”. The binary tree on the left is the graphical representation of the
decision stump. The right plot is the stump’s decision boundary on the 2-dimensional
data in S (with the red triangles and the blue dots).

Numerous algorithms have been developed to infer decision trees (see e.g., Breiman
et al., 1984; Quinlan, 1986, 1993). One of the most popular is the CART al-
gorithm (Breiman et al., 1984): it is, e.g., implemented in the well-known library

1Iba and Langley (1992) introduced the word “stump” for a one-level decision tree.
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scikit-learn (Pedregosa et al., 2011). This algorithm is summarized as follows.
The algorithm tests the decision rules “Is xi ≤ τ?” with different components xi and
thresholds τ . Given a new decision rule, the examples (x, y) ∈ S are split into two
groups: the ones that respect the rules and those that do not. Then, the algorithm
selects the best decision rule according to a criterion and the two new groups. Finally,
this step is repeated recursively to obtain the entire tree. In Part II, we learn a majority
vote classifier which is a convex combination of the outputs of decision trees or decision
stumps.

Linear classifier One of the most simple type of classifiers is the linear classifier.
Given a function σ : R→ R, this type of classifier is defined as

h(x) = σ

(
d∑
i=1

wixi + b

)
,

where w ∈ Rd is the weight vector and b ∈ R is the bias that both need to be learned.
The function σ() is called activation function notably in the context of neural net-
works (that we precise in the following). For instance, the Perceptron (McCulloch
and Pitts, 1943; Rosenblatt, 1958) algorithm returns a linear classifier with the
activation function σ() called threshold function defined as σ(x) = 1 if x ≥ 0 and
σ(x) = 0 otherwise. Moreover, the well-known Support Vector Machine (SVM) algo-
rithm introduced by Boser et al. (1992) and Cortes and Vapnik (1995) learns a
linear classifier with the sign as activation function, i.e., σ(x) = sign(x) = +1 if a ≥ 1
and −1 otherwise. We provide two 2-dimensional cases when the activation function
is the sign function in Figure 1.6.

Neural networks. The Perceptron was abandoned when Minsky and Papert
(1972) show that this model cannot learn simple (boolean) functions like the exclu-
sive or (see Figure 1.5). Hopefully, these restrictions are avoided when generalizing
the Perceptron, and they regain interest in the 80s. Nevertheless, in the 2010s, these
models have become popular when the neural network AlexNet (Krizhevsky et al.,
2012) won the computer vision challenge “ImageNet Large Scale Visual Recognition
Challenge”. The increase in popularity of such models has been helped by the exis-
tence of many programming frameworks such as Torch7 (Collobert et al., 2011),
Tensorflow (Abadi et al., 2015), Theano (Al-Rfou et al., 2016), JAX (Brad-
bury et al., 2018; Frostig et al., 2018), or PyTorch (Paszke et al., 2019). To
learn more details about neural networks, we refer the reader to Goodfellow et al.
(2016) for an extensive introduction. Actually, a neural network can be seen as a suc-
cession of linear classifiers: it is a composition of L linear classifiers h(1)(), . . . ,h(L)()
called layer or module, i.e.,

h = h(L) ◦ · · · ◦ h(2) ◦ h(1),

– 35 –



1.1. Introduction

x1

x
2

Figure 1.5. Plot of the decision boundary of a linear classifier learned on the learning
sample S={([0, 0]>,−1), ([0, 1]>,+1), ([1, 1]>,−1), ([1, 0]>,+1)} that represents the
exclusive or function. As proved by Minsky and Papert (1972), this model cannot
predict correctly all the examples representing such a function.

where f ◦ g is the composition of the function f() with g(). More precisely, given
an activation function σ(i) : Rd(i) → Rd

(i) , the i-th layer h(i) : Rd(i−1) → Rd
(i) of the

network is defined by

h(i)(x) = σ(i) (Wx + b) ,

where the matrix W ∈ Rd
(i)×d(i−1) and the vector b ∈ Rd

(i) are respectively the weights
and the bias parameterizing the classifier that need to be learned. Note that, to respect
the definition of the hypothesis h : Rd → R, we have d(0) = d and d(L) = 1.
An example of neural network is given in Figure 1.7. We see in this example that the
succession of linear classifiers offers better expressiveness, i.e., its decision boundary is
not restricted to lines. Interestingly, these models produce new features of the original
data in each layer. Indeed, in Figure 1.8, the i-th layer transforms all inputs x ∈ X
into h(i)(. . .h(1)(x)) and these new inputs are classified with h(L)(. . .h(i)(x)). Hence,
all these transformations can be interpreted as a new representation of these inputs.
In the following, we denote by w ∈ RD the vector of the network’s weights and biases
concatenated all together; we have thus D weights/bias in the networks. Besides, when
D is large compared to the number of data m, we say in this case that the model is
over-parametrized, and when L is large, we consider that the network is “deep”2. This

2The term deep learning comes from the fact that the number of layers L is large.
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x1

x
2

x1

Figure 1.6. The decision of two linear classifiers when the activation function is the
sign. On the left plot, the weights are w = [3.2,−1.4]> and the bias is b = −1.
On the right plot, the weights are w = [1, 0]> and the bias is b = −0.54; this linear
classifier is equivalent to the decision stump in Figure 1.3.

x1

x
2

Figure 1.7. The decision boundary of a neural network classifier of a with 5 lay-
ers and the dimensions d(1)=d(2)=d(3)=d(4)=2 and d(5)=1. The activation functions
σ(1)(),σ(2)(),σ(3)(),σ(4)() are tanh applied element-wise and σ(5)() is the threshold
function.
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(1) (2) (3) (4)

Figure 1.8. Each plot corresponds to the representation of the i-layer (where i = 1
on the left plot and i = 4 on the right plot). On each plot, the original examples
(x, y) ∈ S (with the red triangles and the blue dots) are transformed and plotted by
the i-th layer (h(1) ◦ · · · ◦ h(i))(x). Moreover, the decision boundary of the classifier
h(i) ◦ · · · ◦ h(L) is given.

model is studied in Part III when the neural network is over-parametrized and “deep”.

1.1.2.2 Loss and Risk

We need to assess to which extent the learned hypothesis h ∈ H predicts correctly an
example. This kind of measure is often called a loss function, defined as follows.

Definition 1.1.2 (Loss function). A loss function is a function ` : H× (X×Y)→
[0, 1] that, given a hypothesis h ∈ H, evaluates the quality of the prediction h(x)
compared to the true label y ∈ Y. The lower the loss, the better the quality of the
hypothesis.

For a classification task, the most natural loss function is the 01-loss defined by

∀h ∈ H, ∀(x, y) ∈ X×Y, `01(h, (x, y)) = I[h(x) 6= y] ,

 1 if h(x) 6= y

0 otherwise
.

The 01-loss returns 1 when the hypothesis h ∈ H misclassifies the example (x, y) ∈
X×Y and 0 otherwise. However, since many learning methods are based on the gradient
∂`
∂h

(h, (x, y)) to choose a hypothesis h that lowers the loss function, the 01-loss `01()
is not practical. Its gradient ∂`01

∂h
(h, (x, y)) = 0 for all examples (x, y) ∈ X× Y, which

does not indicate a descent direction (that lowers the loss). To address this issue, in
practice, one uses relaxation of the 01-loss. In particular, some relaxed losses rely on
a notion of margin: in binary classification the margin is defined as mh(x, y) = yh(x)
for all h : X→ [−1,+1]. When the margin is positive, the hypothesis makes a correct
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prediction. In other words, the margin is defined such that we have `01(h, (x, y)) =
I[h(x) 6= y] = I[mh(x, y) ≤ 0]. Thanks to the margin and Markov’s inequality
(Theorems A.2.1 and A.3.1), one can prove two upper bounds of the 01-loss. These
two upper bounds are defined by

`1st(h, (x, y)) = 1−mh(x, y) (Langford and Shawe-Taylor, 2002),

and `2nd(h, (x, y)) =
[
1−mh(x, y)

]2
(Masegosa et al., 2020).

We plot in Figure 1.9 the 01-loss and the two upper bounds that we use in Chapters 3
and 4 to derive learning algorithms. We introduce these upper bounds with more
details in Chapter 2.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Margin Mh(x, y)
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01-loss `01(h, (x, y)) 1st order loss `1st(h, (x, y)) 2nd order loss `2nd(h, (x, y))

Figure 1.9. Plot of the losses (`01(), `1st(), and `2nd()) where the x-axis represents
the value of the margin mh(x, y) and the y-axis represents the value of the losses
`(h, (x, y)) for a given example (x, y) and hypothesis h.

While the loss `(h, (x, y)) is computed for an example (x, y) and a hypothesis h, we
are usually interested in the loss computed over all the examples (x, y) ∈ S. The value
of the loss averaged over the learning sample S is called empirical risk and represents
to what extent the hypothesis h predicts correctly all the examples (x, y) ∈ S. The
empirical risk is defined as follows.

Definition 1.1.3 (Empirical Risk). For any distribution D on X×Y, for any learning
sample S = {(xi, yi)}mi=1 ∼ Dm, we define the empirical risk as

R`S(h) , E
(x,y)∼S

`(h, (x, y)) = 1
m

m∑
i=1

`(h, (xi, yi)),
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where its associated uniform distribution S on S can be defined as S((xi, yi)) , 1
m

for all i ∈ {1, . . . ,m}. Moreover, we define the empirical risk with the 01-loss by

RS(h) , R`01

S (h) = 1
m

m∑
i=1

I [h(xi) 6= yi] .

Since the distribution D is unknown, the performance of the hypothesis h ∈ H can be
computed by means of the learning sample S (through the empirical risk). However,
we are interested in the performance of h on the task, i.e., over all the examples. The
performance is thus defined through the true risk R`D(h) defined as follows.

Definition 1.1.4 (True Risk). For any distribution D on X×Y, for any loss function
` : H× (X×Y)→ [0, 1], we define the true risk as

R`D(h) , E
(x,y)∼D

`(h, (x, y)).

Moreover, we define the true risk with the 01-loss by

RD(h) , R`01

D (h) = E
(x,y)∼D

I [h(x) 6= y] = P
(x,y)∼D

[h(x) 6= y] .

The true risk can be interpreted as the expected loss over all examples (x, y) ∼ D.
Actually, when the hypothesis h does not depend on S, the true risk of h is the expected
empirical risk. In other words, the empirical risk can be seen as an unbiased estimator
of the true risk, i.e., we have

E
S∼Dm

R`S(h) = E
S∼Dm

1
m

m∑
i=1

`(h, (xi, yi)) = 1
m

m∑
i=1

E
(xi,yi)∼D

`(h, (xi, yi)) = R`D(h).

Besides, selecting a hypothesis with a low true risk boils down to finding a hypothesis
with low empirical risk on average. However, since we only have access to one learning
sample S, the hypothesis selection cannot be performed on the distribution D but
rather on the learning sample S.

1.2 Hypothesis Selection
In order to obtain a hypothesis h ∈ H that solves the task, the hypothesis can be
selected such that the empirical risk R`S(h) is low. We recall two approaches from sta-
tistical learning: Empirical Risk Minimization (ERM) and Structural Risk Minimization
(SRM).
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1.2.1 Empirical Risk Minimization
Given the hypothesis set H, a common approach in statistical learning is to minimize
the empirical risk R`S(h) with respect to the hypothesis h ∈ H. This approach – known
as Empirical Risk Minimization (ERM) – has been pioneered by Vapnik and Cher-
vonenkis (1968, 1971, 1974) in the 70s (see Vapnik (1998) for an introduction).
Formally, given a learning sample S ∼ Dm, we select the hypothesis such that the
empirical risk R`S(h) is minimum; this approach is summarized in Algorithm 1.3.

Algorithm 1.3 Empirical Risk Minimization
Given: Learning sample S, Hypothesis set H, Loss function ` : H× (X×Y)→ [0, 1]

h = argmin
h′∈H

R`S(h′)
return hypothesis h

However, if the empirical risk R`S(h) of a hypothesis h ∈ H is approximately 0, then h
potentially overfits the data; see Figure 1.10. Roughly speaking, in the case of overfit-
ting, we interpret that h ∈ H has learned by heart the examples in the learning sample.
Such a phenomenon can arise when the hypothesis h is complex; the complexity is
manifested differently for each type of hypothesis. To measure such complexity, a
real-valued function can be defined µ : H × (X×Y)m → R. Given a learning sample
S and a complexity function, the hypothesis h ∈ H is considered complex when its
associated complexity measure µ(h,S) is large. In Chapter 7, we derive generalization
bounds that integrate a user-specified complexity function.

1.2.2 Structural Risk Minimization
To avoid overfitting, we can select a hypothesis h with a small complexity measure
µ(h,S). The Structural Risk Minimization approach – introduced by Vapnik and
Chervonenkis (1974) – minimizes a trade-off between the empirical risk R`S(h) and
the complexity measure µ(h,S). The complexity measures µ() used in this approach
is constant over the hypothesis h ∈ H and the learning sample S ∈ (X×Y)m. In other
words, if we denote by abuse of notation µ(H) the complexity measure associated to
the hypothesis set H, we have ∀h ∈ H,∀S ∈ (X × Y)m, µ(h,S) = µ(H). However,
the complexity measure µ(H) may not be representative of overfitting for a single
hypothesis since µ(H) is constant. Hence, the hypothesis set H is structured into
countable and nested hypothesis subsets H1 ⊆ H2 ⊆ · · · ⊆ H. By doing so, the
complexity measure may be increasing when the hypothesis set grows: we can have
µ(Hi) ≤ µ(Hi+1) when Hi ⊆ Hi+1. Then, thanks to these nested complexity measure,
one can find a hypothesis h belonging to a set Hi with i ∈ N∗ that minimizes the
trade-off between the empirical risk R`S(h) and the complexity measure µ(Hi) of the set
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Hi. The minimization of the trade-off performed by the Structural Risk Minimization
approach is summarized in Algorithm 1.4.

Algorithm 1.4 Structural Risk Minimization
Given: Learning sample S, Hypothesis set H

h = argmin
i∈N∗, h′∈Hi

[
R`S(h′) + µ(Hi)

]
return hypothesis h

If the complexity measure µ(H′) of the subset H′ ⊆ H approximates well the difference
R`D(h) − R`S(h), SRM can be used to obtain a hypothesis h ∈ H′ that generalizes
well. In other words, a hypothesis h ∈ H′ that generalizes has a small true risk
R`D(h) and empirical risk R`S(h) This situation is represented in Figure 1.10. In other
words, when h generalizes, the generalization gap3 R`D(h)− R`S(h) is close to 0 (that
is R`D(h) ≈ R`S(h)). However, since the difference R`D(h)−R`S(h) is not computable
because of the true risk R`D(h), we have to bound it.

Underfitting Overfitting Good Generalization

Figure 1.10. Representation of the three situations (one per scatter plot) that can
arise in statistical learning. The left figure corresponds to a hypothesis h that underfits
the data: both the empirical risk RS(h) and the true risk RD(h) are high. In the middle
figure, the hypothesis h overfits the data: the empirical risk RS(h) = 0 but the true
risk RD(h) is high. The left figure represents the perfect case: the difference between
the true risk RD(h) and the empirical risk RS(h) is small as well as RS(h).

3We consider sometimes the generalization gap
∣∣∣R`D(h)− R`S(h)

∣∣∣ instead, but, we are mostly
interested in upper bounding the true risk R`D(h).
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1.3 Generalization Bounds
To upper-bound the generalization gap R`D(h) − R`S(h), we can provide a bound on
the true risk R`D(h) with high probability over the random choice of S ∼ Dm. Such
a bound is a Probably Approximately Correct (PAC) generalization bound (Valiant,
1984) and can be defined as follows.

Definition 1.3.1 (PAC Generalization Bound). For any distribution D on X×Y,
for any data-dependent hypothesis set H = {hS}S∈(X×Y)m where hS is a hypothesis
dependent on the learning sample S ∈ (X×Y)m, a PAC generalization bound is
defined by

P
S∼Dm

[
R`D(hS) ≤ Φ

]
≥ 1− δ.

With high Probability (with probability at least 1−δ), the true risk of the hypothe-
sis hS is Approximately Correct, i.e., upper-bounded by Φ. Based on this definition,
Valiant (1984) has brought a computational framework: the PAC-Learnability.4 A
data-dependent hypothesis set H = {hS}S∈(X×Y)m is PAC-Learnable if this high prob-
ability bound holds when the number of examples m is polynomial in 1/δ and 1/Φ. In
practice, to obtain such an upper bound Φ, we make use of concentration inequalities
(see Boucheron et al. (2013) for an extensive introduction on the subject). These
inequalities allow us to bound an expectation (the true risk in our case) with its em-
pirical counterpart (the empirical risk). Depending on the concentration inequalities,
one can obtain different frameworks, and so, different upper bounds Φ.

1.3.1 Uniform Convergence Bounds
The first framework introduced in the literature to obtain PAC generalization bounds
is referred to as uniform convergence bounds (Vapnik and Chervonenkis, 1968,
1971). Given a hypothesis set H (not necessarily data-dependent), a uniform conver-
gence bound holds for all hypotheses of H. By doing so, the true risk R`D(hS) of a
data-dependent hypothesis hS ∈ H is upper-bounded to obtain a PAC generalization
bound. This type of bounds takes the following form.

Definition 1.3.2 (Uniform Convergence Bound). Let ` : H × (X×Y) → [0, 1] be
a loss function and φ : [0, 1]2→R a generalization gap. A uniform convergence
bound is defined such that if for any distribution D on X × Y, for any hypothesis
4Valiant won the Turing prize in 2010 for the definition of PAC-Learnability.
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set H, there exists a function Φu : (0, 1]→R, such that for any δ ∈ (0, 1] we have

P
S∼Dm

[
sup
h∈H

φ(R`D(h),R`S(h)) ≤ Φu

(
δ
)]
≥ 1− δ, (1.1)

where usually φ(R`D(h),R`S(h)) = R`D(h)− R`S(h).

A uniform convergence bound consists in bounding the supremum of the generalization
gap over the hypotheses h ∈ H with the upper bound Φu

(
δ
)

(with probability at least
1− δ over the learning sample S ∼ Dm). In other words, the inequality boils down to
bound the generalization gap of all hypotheses h ∈ H by an upper bound Φu

(
δ
)

on
the largest generalization gap; the hypothesis associated to the largest generalization
gap is considered as the “worst” hypothesis in H. As we will see in the following,
the upper bound Φu

(
δ
)

depends also on the number of examples m in S; we have
simplified Φu

(
δ
)

for readability. Hence, if limm→+∞Φu(δ) = 0, with probability at
least 1− δ over S ∼ Dm, the empirical risk converges uniformly on H to the true risk
R`D(h). Because of the uniform convergence, as we see in the two examples below, the
upper bound Φu

(
δ
)

depends on a complexity µ(H) that measures, in some sense, the
performance of the worst hypothesis in H.

1.3.1.1 Uniform Convergence Bounds for Finite Hypothesis Sets

The simplest complexity measure appearing in generalization bounds arises when con-
sidering a finite set H of hypotheses. We recall an instantiation of uniform convergence
bounds (Definition 1.3.2) in the following theorem (see, e.g., Mohri et al. (2012) for
more details).

Theorem 1.3.1 (Generalization Bound for Finite H). For any distribution D on
X×Y, for any finite hypothesis set H (card(H) < +∞), for any loss function
` : H× (X×Y)→ [0, 1], for any δ ∈ (0, 1], we have

P
S∼Dm

 sup
h∈H

[
R`D(h)− R`S(h)

]
≤

√
ln card(H) + ln 1

δ

2m︸ ︷︷ ︸
Φu(δ)

 ≥ 1−δ,

where card(H) is the cardinal of the set H. Equivalently, with probability at least
1−δ over S ∼ Dm, we have

∀h ∈ H, R`D(h) ≤ R`S(h) +
√

ln card(H) + ln 1
δ

2m .
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In this case, the complexity measure for a finite hypothesis set is defined by µ(H) =
card(H). According to this complexity measure, the more hypotheses in H, the more
complex the hypothesis set H is. The computation of this complexity can be fast,
making this generalization bound easy to evaluate and to obtain an upper bound on
the generalization gap R`D(h)− R`S(h). However, the bound does not converges when
the cardinality of the set is large, e.g., when card(H) ≥ em for m ∈ N, the upper
bound of Theorem 1.3.1 is

√
1
2 ≤

√
1

2m(ln card(H) + ln 1
δ
). Hence, there is a need

to develop generalization bounds for hypothesis sets H with large card(H) or infinite
hypothesis sets. Indeed, these types of set are usually considered in practice, e.g., the
set of linear classifiers.

1.3.1.2 VC-Dimension-based Generalization Bounds

When the loss is the 01-loss, a bound for infinite hypothesis sets is proposed based
on a complexity measure µ() called the Vapnik-Chervonenkis (VC)-Dimension
(Vapnik and Chervonenkis, 1968, 1971).

Definition 1.3.3 (Vapnik-Chervonenkis (VC) Dimension). Given a hypothesis
set H with hypotheses h : X → {−1,+1} (for binary classification), the VC-
dimension of the set H is defined as

vc(H) , max {m : ∀S ∈ (X×Y)m, ∃h ∈ H s.t. RS(h) = 0} ,

where RS(h) = 1
m

∑m
i=1 I[h(x) 6= y].

Put into words, the VC-Dimension µ(H) = vc(H) of a hypothesis set H is the maximum
number of examples that a hypothesis h from H can perfectly fit in binary classification.
Note that if the hypothesis set H is infinite, its associated VC-dimension vc(H) can
be finite. For example, the VC-Dimension of the d-dimensional linear classifiers is
d + 1 (see Mohri et al. (2012, Example 3.12) for a proof) even if the set of linear
classifiers H is infinite; we illustrate in Figure 1.11 the 2-dimensional case. Thanks
to this complexity measure, we can prove the following generalization bound (Mohri
et al., 2012, Theorem 3.17, Corollaries 3.18 and 3.19).

Theorem 1.3.2 (VC-Dimension-based Generalization Bounds). For any distribu-
tion D on X×Y, for any set H with hypotheses h : X → {−1,+1} and VC-
Dimension vc(H), for any δ ∈ (0, 1], we have

P
S∼Dm

 sup
h∈H

[RD(h)− RS(h)] ≤

√√√√2vc(H)
(
1 + ln m

vc(H)

)
m

+
√

ln 1
δ

2m︸ ︷︷ ︸
Φu(δ)

 ≥ 1−δ.
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(a) (b) (c) (d)

Figure 1.11. Illustration of the VC-dimension for linear classifiers in 2-dimension.
When m=3, a linear classifier can always perfectly fit the data, i.e., RS(h) = 0 (as
shown in the plot (a), (b), and (c)). However, when m=4, the empirical risk RS(h) ≥ 0
for all linear classifiers (as illustrated in the plot (d)). Hence, in this case, the VC-
Dimension is vc(H) = 3.

Equivalently, with probability at least 1−δ over S ∼ Dm, we have

∀h ∈ H, RD(h) ≤ RS(h) +

√√√√2vc(H)
(
1 + ln m

vc(H)

)
m

+
√

ln 1
δ

2m .

Hence, if we know the VC-dimension of the hypothesis set H of interest, the bound
becomes easily computable to obtain an upper bound of the generalization gap. Fur-
thermore, it is possible to prove that the ERM algorithm is consistent (Vapnik, 1998)
thanks to this bound (see Proposition 4.1 Mohri et al., 2012). When ERM is con-
sistent, (a) the empirical risk RS(h) of the classifier h obtained by ERM converges in
probability to infh′∈H RD(h′), and (b) its true risk RS(h) converges in probability to
infh′∈H RD(h′) as well. Nevertheless, one drawback of the VC-Dimension is that it is
only for binary classifiers and the 01-loss; there are several extensions for the multi-
class setting, we introduce one of them: the Rademacher complexity (Bartlett and
Mendelson, 2002).

1.3.1.3 Rademacher-complexity-based Generalization Bounds

The Rademacher complexity (Bartlett and Mendelson, 2002) of a hypothesis
set H can be defined as follows.

Definition 1.3.4 (Rademacher Complexity). Given a hypothesis set H and a loss
function ` : H× (X×Y)→ [0, 1], the Rademacher complexity rad(H) of the set H
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κ1=+1

κ2=+1

κ3=+1

κ1=+1

κ2=−1

κ3=−1

κ1=−1

κ2=+1

κ3=+1

κ1=−1

κ2=−1

κ3=−1

Figure 1.12. Illustration of the Rademacher complexity rad(H) in multi-class clas-
sification with `(h, (x, y)) = I[h(x) 6= y] and m = 3. Given a learning sample
S ∈ (X× Y)2, we show for each (κ1, κ2) ∈ {−1,+1}2 the examples and a classifier h
s.t. R`S(h) = suph∈H 1

m

∑m
i=1 κi`(h, (xi, yi)).

is defined as

rad(H) = E
S∼Dm

E
{κ1,...,κm}∼Km

sup
h∈H

1
m

m∑
i=1

κi`(h, (xi, yi)),

where K is the Rademacher distribution, i.e., K(+1) = K(−1) = 1
2 .

Given a learning sample S ∼ Dm and the Rademacher variables {κ1, . . . , κm} ∼ Km,
the supremum is attained when the loss `(h, (xi, yi)) is maximized (resp. minimized)
when κi=+1 (resp. κi=−1). Then, the Rademacher complexity is the expected supre-
mum over the learning sample and the Rademacher variables. For example, in binary
classification, the Rademacher complexity measures the capacity of the hypotheses in
H to learn examples with random labels. As illustrated in Figure 1.12 when m = 3,
(multi-class) linear classifiers are able to fit any data points with random labels. In
this case, the Rademacher complexity rad(H) = 1, but hopefully when m→ +∞ the
Rademacher complexity of the linear classifiers tends to 0 at a rate of O

(√
1
m

)
(see,

e.g., Kakade et al. (2008), for the binary classification case).
From McDiarmid’s concentration inequality (McDiarmid, 1989), Bartlett and
Mendelson (2002) derived the following generalization bound that depends on the
Rademacher complexity.

Theorem 1.3.3 (Rademacher-complexity-based Generalization Bound). For any
distribution D on X × Y, for any hypothesis set H, for any loss function ` : H ×
(X×Y)→ [0, 1], for any δ ∈ (0, 1], we have

P
S∼Dm

 sup
h∈H

[
R`D(h)− R`S(h)

]
≤ 2rad(H) +

√
ln 1

δ

2m︸ ︷︷ ︸
Φu(δ)

 ≥ 1−δ.
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Equivalently, with probability at least 1−δ over S ∼ Dm, we have

∀h ∈ H, R`D(h) ≤ R`S(h) + 2rad(H) +
√

ln 1
δ

2m .

Put into words, the generalization gap is upper-bounded by the Rademacher complex-
ity of the set H along with a tight term when the number of examples m is large. As
for the VC-Dimension-based bound, if we have an analytic expression of the complexity
(or an upper bound), we can compute the generalization bound for all hypotheses h in
H. Since the bound holds for all h ∈ H (due to suph∈H), it can be seen as a worst-case
analysis. Indeed, the same upper bound (i.e., Φu(δ)) holds for all h ∈ H, includ-
ing the best, but also the worst (with the largest generalization gap R`D(h)−R`S(h)).
This worst-case analysis makes the derivation of non-vacuous bounds hard (i.e., with
Φu(δ)<1). Hence, other generalization bounds have been developed to avoid this
worst-case analysis as we see in the next section.

1.3.2 Algorithmic-dependent Generalization Bounds
Let consider an algorithm that takes a learning sample S ∈ (X × Y)m as input and
outputs the hypothesis hS belonging to the hypothesis set H = {hS}S∈(X×Y)m . Thanks
to this algorithm, one can derive generalization bounds for the hypothesis hS given
S ∼ Dm that has the following form.

Definition 1.3.5 (Algorithmic-dependent Generalization Bound). Let ` : H ×
(X×Y) → [0, 1] be a loss function and φ : [0, 1]2→R a generalization gap. An
algorithmic-dependent generalization bound is defined such that if for any distribu-
tion D on X×Y, there exists a function Φa : (0, 1]→R, such that for any δ ∈ (0, 1]
we have

P
S∼Dm

[
φ(R`D(hS),R`S(hS)) ≤ Φa(δ)

]
≥ 1−δ, (1.2)

where usually φ(R`D(h),R`S(h)) = R`D(h)−R`S(h) and hS is the hypothesis learned
from an algorithm with S ∼ Dm.

According to Definition 1.3.5, one can derive an upper bound Φa(δ) of the general-
ization gap R`D(hS) − R`S(hS) for the algorithmic-dependent hypothesis hS. Actually,
to derive such an upper bound Φa(δ), a property of the considered learning algorithm
must be considered; we recall in the following the algorithmic stability (Bousquet and
Elisseeff, 2002) and the algorithmic robustness of Xu and Mannor (2010, 2012).
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Learning samples S and S′ s.t. ∆(S,S′)=1 / Example (x, y) ∈ X× Y

L
os

s
va

lu
e

≤ βS

`(hS, (x, y)) `(hS′ , (x, y))

Figure 1.13. Schematic representation of the notion of stability βS. The two curves
represents the losses `(hS, (x, y)) and `(hS′ , (x, y)) (the y-axis) for different combina-
tions of examples (x, y) ∈ X×Y and learning samples S and S′ that differs from one
example (the x-axis).

1.3.2.1 Stability-based Generalization Bounds

The first algorithmic property we recall is the uniform stability (Bousquet and Elis-
seeff, 2002) and is defined as follows.

Definition 1.3.6 (Uniform Stability). Given the hypothesis set H = {hS}S∈(X×Y)m

and a loss function ` : H× (X× Y)→ [0, 1], an algorithm is βS-uniformly stable if

sup
S,S′∈(X×Y)m
s.t. ∆(S,S′)=1

sup
(x,y)∈X×Y

∣∣∣∣`(hS, (x, y))− `(hS′ , (x, y))
∣∣∣∣ ≤ βS,

where ∆(S,S′) = ∑m
i=1 I [(xi, yi) 6= (x′i, y′i)] is the Hamming distance between the

learning samples S and S′.

For two learning samples S and S′ that differ from only one example (i.e., that are
very similar), the uniform stability βS measures how much stable the algorithm is
under small changes in the learning sample. To be stable, the difference of losses
between the hypotheses hS and hS′ must be small (and upper bounded by βS) for all
examples (x, y) ∈ X × Y. Typically, βS can be seen as a complexity measure that
depends on the number of examples m. When βS = O( 1√

m
) or βS = O( 1

m
), the

algorithm becomes more stable as the number of examples in S increases. The notion
of algorithmic stability is illustrated and summarized in Figure 1.13. From this notion
of uniform stability and McDiarmid’s inequality (McDiarmid, 1989), the following
generalization bounds can be derived (Bousquet and Elisseeff, 2002).
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Theorem 1.3.4 (Stability-based Bounds). Given the hypothesis set H =
{hS}S∈(X×Y)m , for any distribution D on X × Y, for any loss function ` : H ×
(X×Y)→ [0, 1], for any βS-uniformly stable algorithm, for any δ ∈ (0, 1], we have

P
S∼Dm

R`D(hS)− R`S(hS) ≤ 2βS + (4mβS+1)
√

ln 1
δ

2m

 ≥ 1−δ.

Equivalently, with probability at least 1−δ over S ∼ Dm, we have

R`D(hS) ≤ R`S(hS) + 2βS + (4mβS+1)
√

ln 1
δ

2m .

Note that, for this particular bound, if the algorithm is O(1)-uniformly stable, the above
bound does not converge and is vacuous. In contrast, an O( 1√

m
)-uniformly stable

algorithm gives an O( 1√
m

) convergence rate. Recently, tighter generalization bounds
have been improved: the bound converges with a O( 1

m
)-uniformly stable algorithm

(Feldman and Vondrák, 2018, 2019; Bousquet et al., 2020). As for the uniform-
convergence-based bounds, an analytical expression of the stability βS has to be derived
to compute the bound.

1.3.2.2 Robustness-based Generalization Bounds

Another learning algorithm property used to derive generalization bounds is the algo-
rithmic robustness. This notion can be defined as follows.

Definition 1.3.7 (Robustness). Given the hypothesis set H = {hS}S∈(X×Y)m , a
loss function ` : H × (X × Y) → [0, 1] and N disjoint sets s.t. (X×Y) = ⋃N

i=1 Zi,
the algorithm is ({Zi}Ni=1, βR)-robust5 if

sup
S∈(X×Y)m

sup
i∈{1,...,N}

sup
(x,y),(x′,y′)∈Zi

∣∣∣∣`(hS, (x, y))− `(hS, (x′, y′))
∣∣∣∣ ≤ βR.

For each subset Zi ⊆ X×Y, the difference of losses between two examples (x, y) ∈ Zi
and (x′, y′) ∈ Zi has to be upper-bounded by βR; for pedagogical purposes, we sum-
marize in Figure 1.14 the algorithmic robustness. The following bound can be derived

5In the original definition, the robust parameter βR can depend on the learning sample S ∼ Dm.
However, in the examples of Xu and Mannor (2012) for the classification setting, βR depends only
on the number of examples m.
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Learning samples S / Examples (x, y) and (x′, y′) ∈ Zi

L
os

s
va

lu
e ≤βR

`(hS, (x, y)) `(hS, (x
′, y′))

X×Y

(x, y)
(x′, y′)

Zi

Figure 1.14. Schematic representation of the notion of algorithmic robustness. On
the left plot, an example of partition {Zi}Ni=1 for the set X× Y is shown. Then, for a
given subset Zi, we represent on the right plot the losses `(hS, (x, y)) and `(hS, (x′, y′))
for any learning sample S, and examples (x, y) ∈ Zi and (x′, y′) ∈ Zi.

based on this property and thanks to the Breteganolle-Huber-Carol concentration in-
equality (Vaart and Wellner, 1996, Proposition A.6.6).

Theorem 1.3.5 (Robustness-based Bounds). Given the hypothesis set H =
{hS}S∈(X×Y)m , for any distribution D on X× Y, for any loss function ` : H× (X×
Y)→ [0, 1], for any ({Zi}Ni=1, βR)-robust algorithm, for any δ ∈ (0, 1], we have

P
S∼Dm

R`D(hS) ≤ R`S(hS) + βR +
√

2N ln 2 + 2 ln 1
δ

2m

 ≥ 1− δ.

Equivalently, with probability at least 1− δ over S ∼ Dm, we have

R`D(hS) ≤ R`S(hS) + βR +
√

2N ln 2 + 2 ln 1
δ

2m .

The bound is computable if we have an analytical expression of the algorithmic ro-
bustness parameter βR. Ideally, the robustness parameter βR must depend on m for
the bound to converge. Furthermore, we can remark that there is a trade-off to find
between the number of disjoint subsets N and the robust upper bound βR. Indeed, the
larger N is, the smaller we expect the parameter βR to be. However, if N ≥ m, the
bound cannot be tighter than

√
ln(2), and hence, does not converge towards 0 when

m→ +∞.

The major drawback of the algorithmic-based bounds is that we have to derive the
parameter βS or βR for each algorithm. Hence, such derivation can be tedious, and the
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upper-bound Φa(δ) is constant over the learning sample S ∼ Dm. Another kind of
bounds – called PAC-Bayesian Bounds – does not have such drawbacks and is appealing
because of its facility to derive learning algorithms from it, as we will see in Part II.
An in-depth introduction of these bounds is done in Chapter 2, but we give a quick
overview in the rest of the chapter.

1.3.3 PAC-Bayesian Generalization Bounds
PAC-Bayesian bounds were introduced notably by Shawe-Taylor and Williamson
(1997) and McAllester (1999), but it has been improved since then (Seeger,
2002; Maurer, 2004; Catoni, 2007). The PAC-Bayesian bounds differ significantly
from the ones of Sections 1.3.1 and 1.3.2: they require a probability distribution
(denoted by ρ) on the hypothesis set H. This distribution is used to assign a weight
ρ(h) to each hypothesis h ∈ H. Hopefully, when the hypothesis h generalizes well, its
weight ρ(h) should be high. Thanks to this assumption, we can consider a stochastic
hypothesis: given an input x ∈ X, its output is obtained by (1) sampling a hypothesis
h from ρ, and by (2) computing the prediction h(x). Actually, the PAC-Bayesian
bounds allow us to upper-bound the true risk of stochastic hypotheses which is the
expected true risk of a hypothesis sampled from a distribution ρ. More precisely, the
PAC-Bayesian bounds study the expected generalization gap Eh∼ρ R`D(h)−Eh∼ρ R`S(h).
We present one bound derived by Maurer (2004) in the following theorem.

Theorem 1.3.6 (PAC-Bayesian Bound of Maurer (2004)). For any distribution
D over X×Y, for any hypothesis set H, for any loss function ` : H×(X×Y)→ [0, 1],
for any distribution π on H (defined apriori), for any δ ∈ (0, 1], we have

P
S∼Dm

 For all distributions ρ on H,

Eh∼ρ R`D(h) ≤ Eh∼ρ R`S(h) +
√

1
2m

[
KL(ρ‖π) + ln 2

√
m
δ

]
 ≥ 1− δ,

where the Kullback–Leibler (KL) divergence is defined as KL(ρ‖π) = Eh∼ρ ln ρ(h)
π(h) .

Equivalently, with probability at least 1− δ over S ∼ Dm, we have

∀ distributions ρ on H, E
h∼ρ

R`D(h) ≤ E
h∼ρ

R`S(h) +

√√√√ 1
2m

[
KL(ρ‖π) + ln 2

√
m

δ

]
.

The bound of this theorem depends on the KL divergence between ρ and π, which
measures the complexity of the hypothesis sampled from ρ. Indeed, given a distribution
π selected apriori before having the learning sample S ∼ Dm, the higher KL(ρ‖π),
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the more different the two distributions ρ and π are. Hence, in some sense, the KL
divergence captures how much the distribution ρ depends on the data S.

1.4 Conclusion and Summary
In this chapter, we have seen an introduction to statistical learning. It includes an
overview of algorithms to perform hypothesis selection: Empirical Risk Minimization
and Structural Risk Minimization. Additionally, we recall some generalization bounds
based on the uniform convergence (e.g., with the VC-Dimension or the Rademacher
complexity) or an algorithmic property (e.g., the stability or the robustness) Moreover,
we recall a generalization bound from a key theory in our contributions: the PAC-
Bayesian theory. This is why we recall, with more details, in the next chapter the
PAC-Bayesian theory.
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Abstract

In this chapter, we introduce, with more details, the PAC-Bayes theory that we
outlined in Chapter 1. This theory allows us to upper-bound the risk of the
stochastic classifier which samples, for each input, a hypothesis to predict the
output. Moreover, the risk of the stochastic classifier can be linked to the ma-
jority vote’s risk; we remind in this chapter the majority vote classifier which can
be seen as a weighted combination of hypotheses. However, when we want to
consider only one hypothesis, the disinstegrated PAC-Bayesian theory becomes
more adapted. Indeed, it upper-bounds the true risk of a single hypothesis
associated with a high weight. Such generalization bounds are recalled as well.
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2.1 Introduction
In this chapter, we details one statistical learning theory that is key in this thesis: the
PAC-Bayesian theory. It is introduced by Shawe-Taylor and Williamson (1997)
and McAllester (1998) for which we recall some bounds in Section 2.3. This the-
ory assumes that each hypothesis h ∈ H is associated with a (positive) weight ρ(h)
that forms a probability distribution. Thanks to this assumption, the expected gener-
alization gap is upper-bounded over h ∼ ρ. The expected generalization gap allows to
bound the true risk of the stochastic classifier; for each input x, the model (i) samples
a hypothesis h ∼ ρ and (ii) predicts the label with h(x).

The stochastic classifier is related to a model in which we are particularly interested:
the majority vote (see Section 2.2.2). For instance, majority votes are considered in
boosting (Freund and Schapire, 1996) or bagging (Breiman, 1996). In this con-
text, a hypothesis is called voter, and a weight (modeled by the probability distribution
ρ) is used to define the importance of each voter. Then, the majority vote is defined
as a weighted combination of all the hypotheses from H.

A majority vote might bring no significant improvements when the voters are strong
(i.e., when their individual risks are small). Hence, considering a single hypothesis as-
sociated with a high weight ρ(h) can be a better option. Such a classifier is obtained by
sampling from the probability distribution ρ. After sampling, generalization guarantees
on the classifier can be derived through the disintegrated PAC-Bayesian bounds in-
troduced independently by Blanchard and Fleuret (2007) and Catoni (2007).
This type of bounds is recalled in Section 2.4.

For the sake of completeness, we defer in Appendix B the proofs.

2.2 PAC-Bayesian Majority Votes

2.2.1 Definition
Given a set of hypotheses H, which is called set of voters in this context, the goal of
a majority vote learning algorithm is to find a probability distribution ρ on H. The
distribution ρ defines the weights of the voters, i.e., the importance of each voter in
the majority vote. The majority vote is defined in the following way.

Definition 2.2.1 (Majority Vote). For any hypothesis set H with voters
h : X → [−1,+1], for a distribution ρ on H, the majority vote in the binary
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classification setting (Y = {−1,+1}) is defined as

∀x ∈ X, MVρ(x) , sign
(
E
h∼ρ

h(x)
)
.

In the multi-class setting (Y = {1, 2, . . . , l}), for any hypothesis set H with voters
h : X→ Y, the ρ-weighted majority vote is defined as

∀x ∈ X, MVρ(x) , argmax
y′∈Y

P
h∼ρ

[h(x) = y′] = argmax
y′∈Y

E
h∼ρ

I [h(x) = y′] .

In the binary setting, the majority vote predicts as label the sign associated with the
ρ-weighted average of the voters’ outputs. In the multi-class setting, the majority
vote predicts the label y′ ∈ Y with the highest associated score Ph∼ρ [h(x) = y′].
When the hypothesis set H is composed of voters h : X → {−1,+1} in the binary
setting, the majority vote for the multi-class setting can be seen as a generalization.
Indeed, we have sign (Eh∼ρ h(x)) = +1 if Ph∼ρ [h(x) = +1] ≥ Ph∼ρ [h(x) = −1] and
sign (Eh∼ρ h(x)) = −1 otherwise.

While this definition of the majority vote classifier might appear a bit restrictive, it
encompasses multiple widespread classifiers. For example, the Support Vector Ma-
chine (Cortes and Vapnik, 1995) can be implicitly expressed as a majority vote
where each voter depends on one example (Graepel et al., 2005). The well-known
k-Nearest Neighbors (Cover and Hart, 1967) is a majority vote (Bellet et al.,
2014). Additionally, when the voters depend on the whole learning sample S, neural
networks can be seen as a majority vote (Kawaguchi et al., 2017; Viallard et al.,
2019).

There are many approaches to learn a majority vote classifier based on ensemble meth-
ods. For example, the bagging (Breiman, 1996) method splits the learning sample
and learns one voter with each subset. Then, the majority vote classifier averages the
decision of the voters to take the final decision; random forest (Breiman, 2001) is, for
instance, a particular bagging algorithm for decision trees. Moreover, the weights ρ can
be learned greedily: this is the purpose of boosting algorithms such as Adaboost (Fre-
und and Schapire, 1996). This algorithm has been improved in various directions,
e.g., for the multi-class setting (Schapire and Singer, 1998, 1999, 2000; Zhu
et al., 2009) or the ranking setting with RankBoost (Freund et al., 1998, 2003).
Boosting algorithms have also been generalized for differentiable loss functions in a
method called gradient boosting (Friedman, 2001).
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Given a distribution D′ on X × Y (that encompasses the distributions D and S), the
learner wants to learn MVρ that commits as few errors as possible on D. To reduce
the number of errors of the majority vote MVρ on D′, the learner aims to minimize the
risk RD′(MVρ) under the 01-loss in the following definition.

Definition 2.2.2 (Risk of the Majority Vote). For any distribution D′ on X × Y,
for any hypothesis set H, for any distribution ρ on H, the risk of the majority vote
is defined as

RD′(MVρ) , E
(x,y)∼D′

I [MVρ(x) 6= y] = P
(x,y)∼D′

[MVρ(x) 6= y] .

Specifically, when D′ = D, the risk RD′(MVρ)=RD(MVρ) is the true risk of the majority
vote and when D′ = S the risk RD′(MVρ)=RS(MVρ) is the empirical risk of the majority
vote. In order to gain insight into the majority vote’s decision, the margin captures
how much the classifier makes errors. Indeed, the majority vote’s risk can be expressed
in terms of the margin defined in the following way.

Definition 2.2.3 (Margin of the Majority Vote). For any hypothesis set H, for any
distribution ρ on H, the margin of the majority vote is defined as

mρ(x, y) , P
h∼ρ

[h(x) = y]− max
y′∈Y,y′ 6=y

P
h∼ρ

[h(x) = y′] .

The margin is positive if the score Ph∼ρ [h(x) = y] is higher than the score associated
with the other labels y′ 6= y and is negative otherwise. It captures if an example
(x, y) ∼ D′ is misclassified. Indeed, thanks to the margin, the majority vote’s risk
RD′(MVρ) can be rewritten as follows:

RD′(MVρ) = P
(x,y)∼D′

[
P
h∼ρ

[h(x) = y] ≤ max
y′∈Y,y′ 6=y

P
h∼ρ

[h(x) = y′]
]

= P
(x,y)∼D′

[mρ(x, y) ≤ 0] .

Hence, the risk is the probability that one of the scores is higher than the one of the
correct label. Unfortunately, deriving a learning algorithm to optimize the margin can
be challenging since it is non-convex w.r.t. the posterior ρ because of the max. To
overcome this issue, Laviolette et al. (2017) propose to consider a convex lower
bound of the true margin called 1

2 -margin1.
1We multiply the 1

2 -margin of Laviolette et al. (2017) by two.
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Ph∼ρ [h(x) = 3] = 1 Ph∼ρ [h(x) = 1] = 1

Ph∼ρ [h(x) = 2] = 1

Figure 2.1. Illustration of the majority vote’s margin in the multi-class setting
with 3 classes, i.e., Y = {1, 2, 3}. The triangle represents the ternary plot of the
three scores where each triangle’s vertex is the three possible maximum scores with
Ph∼ρ [h(x) = i] = 1 for all i ∈ Y. The black dot represents the prediction of an
example (x, y) ∈ X × Y by the majority vote: the scores are Ph∼ρ [h(x) = 1] = 0.7
and Ph∼ρ [h(x) = 2] = Ph∼ρ [h(x) = 3] = 0.15. The blue area is where the majority
vote predicts the label y for the input x and where the margin mρ(x, y) is positive.
Whereas the red area represents the predictions where Ph∼ρ [h(x) = 1] ≥ 1

2 (i.e., where
the 1

2 -margin m̂ρ(x, y) is positive).

Definition 2.2.4 (1
2 -Margin of the Majority Vote). For any hypothesis set H, for

any distribution ρ on H, the 1
2 -margin is defined as

m̂ρ(x, y) = 2
[
P
h∼ρ

[h(x) = y]− 1
2

]
.

When the score Ph∼ρ [h(x) = y] exceeds 1
2 , the majority vote surely classifies correctly

the example (x, y) ∼ D′. Hence, the idea of this margin is to compute the difference
between the score and 1

2 : when the margin is positive, the example is correctly clas-
sified. We illustrate the difference between the two margins in Figure 2.1. In binary
classification, the 1

2 -margin boils down to m̂ρ(x, y) = y Eh∼ρ h(x) = Eh∼ρmh(x, y)
(which is the margin introduced in Section 1.1.2.2). From Definition 2.2.4, we can
deduce the following upper bound on the majority vote’s risk, i.e., we have

RD′(MVρ) ≤ P
(x,y)∼D′

[
P
h∼ρ

[h(x) = y] ≤ 1
2

]
= P

(x,y)∼D′
[m̂ρ(x, y) ≤ 0] .
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In general, the majority vote’s risk RD′(MVρ) is not practical in learning algorithms
because the gradient is zero (see Section 1.1.2.2). Hence, in the next section, we
recall different upper bounds on the majority vote’s risk considered as surrogate losses.

2.2.2 Upper Bounds on the Majority Vote’s Risk
We recall three surrogates on the majority vote’s risk introduced in the literature,
namely, the Gibbs Risk (Langford and Shawe-Taylor, 2002; McAllester,
2003), the joint error (Lacasse et al., 2006; Germain et al., 2015; Masegosa
et al., 2020), and the C-Bound (Breiman, 2001; Lacasse et al., 2006; Roy et al.,
2011). We make use of these surrogate in Part II to derive self-bounding learning
algorithms.2 More precisely, in Chapter 3, we leverage the Gibbs risk for the adver-
sarially robust setting and, in Chapter 4, we learn majority vote classifiers through the
C-Bound.

2.2.2.1 The Gibbs Risk

The first surrogate on the risk RD′(MVρ) introduced in the PAC-Bayesian literature
is the Gibbs risk (Langford and Shawe-Taylor, 2002; McAllester, 2003).
This risk gives the average performance of individual voters in the majority vote. It is
defined in the following way.

Definition 2.2.5 (Gibbs Risk). For any distribution D′ on X×Y, for any hypothesis
set H, for any distribution ρ on H, the Gibbs risk is defined as

rD′(ρ) , E
(x,y)∼D′

E
h∼ρ

I [h(x) 6= y] = P
(x,y)∼D′,h∼ρ

[h(x) 6= y] .

Put into words, the Gibbs risk is the ρ-weighted average of the voters’ risk. Moreover,
we can write the Gibbs Risk with respect to the 1

2 -margin. Indeed, we have

rD′(ρ) = 1
2

[
1− E

(x,y)∼D′
m̂ρ(x, y)

]
. (2.1)

Langford and Shawe-Taylor (2002) show that the majority vote’s risk is upper-
bounded by twice the Gibbs risk. The inequality is recalled in the following theorem.

2A self-bounding algorithm, coined by Freund (1998), is a learning algorithm that comes with
a generalization guarantee.
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Theorem 2.2.1 (Risk Upper Bound Based on the Gibbs Risk). For any distribution
D′ on X× Y, for any hypothesis set H, for any distribution ρ on H, we have

RD′(MVρ) ≤ 2 rD′(ρ). (2.2)

Proof. Deferred to Appendix B.1. �

However, in ensemble methods where one wants to combine voters efficiently, the
Gibbs risk appears to be an imprecise surrogate since the combination of voters might
compensate for individual errors. Hence, other surrogates need to be taken into ac-
count.

2.2.2.2 Joint Error

The joint error, introduced by Lacasse et al. (2006), takes better the voters’ corre-
lation into account; this quantity is defined in the following way.

Definition 2.2.6 (Joint Error). For any distribution D′ on X×Y, for any hypothesis
set H, for any distribution ρ on H, the joint error is defined as

eD′(ρ) , E
(x,y)∼D′

E
h∼ρ

E
h′∼ρ

I
[
h(x) 6= y

]
I
[
h′(x) 6= y

]
= P

(x,y)∼D′,h∼ρ,h′∼ρ
[h(x) 6= y, h′(x) 6= y] .

Similarly to Equation (2.1) for the Gibbs risk, we can reinterpret this surrogate with
the 1

2 -margin. Indeed, from Germain et al. (2015), we have

eD′(ρ) = E
(x,y)∼D′

(
P
h∼ρ

[h(x) 6= y]
)2

= E
(x,y)∼D′

(1
2 [1− m̂ρ(x, y)]

)2

= 1
4

(
1− 2 E

h∼ρ
m̂ρ(x, y) + E

h∼ρ
m̂ρ(x, y)2

)
. (2.3)

Recently, Masegosa et al. (2020) proposed to deal directly with the joint error to
bound the majority vote’s risk; Their bound is presented in the following theorem.
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Theorem 2.2.2 (Risk Upper Bound Based on the Joint Error). For any distribution
D′ on X× Y, for any hypothesis set H, for any distribution ρ on H, we have

RD′(MVρ) ≤ 4eD′(ρ). (2.4)

Proof. Deferred to Appendix B.2. �

This inequality captures the fact that the voters need to be sufficiently diverse and
commit errors on different points. However, when the joint error eD′(ρ) exceeds 1

4 , the
bound exceeds 1 and is uninformative. In some cases, these two upper bounds appear to
be less tight than another one: the C-Bound (Breiman, 2001; Lacasse et al., 2006).

2.2.2.3 The C-Bound

The C-Bound3 (Breiman, 2001; Lacasse et al., 2006) is another surrogate (and up-
per bound) of the majority vote’s risk. It is derived from the Chebyshev-Cantelli
Inequality (see Theorem A.4.1). It depends on the Gibbs risk, the joint error, and the
disagreement. This latter is defined in the following way.

Definition 2.2.7 (Disagreement). For any distribution D′ on X × Y, for any hy-
pothesis set H, for any distribution ρ on H, the disagreement is defined as

dD′(ρ) , 2 E
(x,y)∼D′

E
h∼ρ

E
h′∼ρ

I [h(x) 6= y] I [h′(x) = y]

= 2 P
(x,y)∼D′,h∼ρ,h′∼ρ

[h(x) 6= y, h′(x) = y] .

The higher the disagreement, the more the voters do not perform the same prediction
for a given (x, y) ∼ D′. Similarly to the Gibbs risk and the joint error, we can express
the disagreement with the margin. Indeed, we have

dD′(ρ) = 1
2

[
1− E

(x,y)∼D′
m̂ρ(x, y)2

]
. (2.5)

Interestingly, by developing Equation (2.3), we can relate the Gibbs risk and the joint
error to the disagreement with

dD′(ρ) = 2 [rD′(ρ)− eD′(ρ)] . (2.6)
3The term “C-Bound” was introduced in the PAC-Bayesian literature by (Lacasse et al., 2006).
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This inequality tells us two facts: (i) the lower the Gibbs risk, the lower the dis-
agreement, and (ii) the disagreement increases as the joint error decreases. The ex-
pression of the disagreement in binary classification can be simplified (with voters
h : X → {−1,+1}). Indeed, given an example (x, y) ∼ D′ with y ∈ {−1,+1}, we
have

P
h∼ρ,h′∼ρ

[h(x) 6= h′(x)] = P
h∼ρ,h′∼ρ

[h(x) = y, h′(x) 6= y] + P
h∼ρ,h′∼ρ

[h(x) 6= y, h′(x)=y]

= 2 P
h∼ρ,h′∼ρ

[h(x) 6= y, h′(x) = y] ,

which gives dD′(ρ) = P(x,y)∼D′,h∼ρ,h′∼ρ [h(x) 6= h′(x)].
Thanks to this quantity, we are now able to recall the C-Bound. Note that it was first
introduced by Lacasse et al. (2006) for the PAC-Bayesian majority vote in binary
classification. The generalization to the multi-class setting has been introduced by
Laviolette et al. (2017, Theorem 2 and Corollary 1); we recall the C-Bound in the
following theorem.

Theorem 2.2.3 (The C-Bound). For any distribution D′ on X × Y, for any hy-
pothesis set H, for any distribution ρ on H, if

E
(x,y)∼D′

m̂ρ(x, y) > 0 ⇐⇒ rD′(ρ) < 1
2 ⇐⇒ 2eD′(ρ) + dD′(ρ) < 1,

we have

RD′(MVρ) ≤ 1−

(
E(x,y)∼D′ [m̂ρ(x, y)]

)2

E(x,y)∼D′ (m̂ρ(x, y))2 (2.7)

= 1− (1− 2rD′(ρ))2

1− 2dD′(ρ) (2.8)

= 1−

(
1− [2eD′(ρ) + dD′(ρ)]

)2

1− 2dD′(ρ) (2.9)

= CD′(ρ).

Proof. Deferred to Appendix B.3. �

This surrogate is expressed as a trade-off between the first and the second statisti-
cal moment of the 1

2 -margin m̂ρ(x, y) (Equation (2.7)). Based on Equations (2.1)
and (2.5), the trade-off can be expressed through the the disagreement and the Gibbs
risk (see Equation (2.8)). Moreover, from Equation (2.6), we can also see the C-Bound
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as a trade-off between the joint error and the disagreement in Equation (2.9).

The three surrogates of Theorems 2.2.1 to 2.2.3 can be easily compared. For instance,
when rD′(ρ) ≤ dD′(ρ), the C-Bound CD′(ρ) (Equation (2.7)) is tighter than 2rD′(ρ)
(Equation (2.2)) and 4eD′(ρ) (Equation (2.4)). Hence, when the disagreement in-
creases, the C-Bound appears to be a good trade-off between the Gibbs risk and the
disagreement. More precisely, the main interest of the C-bound compared to Equa-
tion (2.4) is that when eD′(ρ) is close to 1

4 , the C-Bound can be close to 0 depending
on the value of the disagreement dD′(ρ): the C-bound is then more precise. Moreover,
it is important to notice that the C-Bound is tighter than 4eD′(ρ) for all cases. We
summarize the relationships between the different surrogates in the next theorem and
illustrate it in Figure 2.2; this relation is notably given by Germain et al. (2015) and
Masegosa et al. (2020).

Theorem 2.2.4 (Relationship between Theorems 2.2.1 to 2.2.3). For any distri-
bution D on X×Y, for any voters set H, for any distribution ρ on H, if rD′(ρ) < 1

2
(i.e., E(x,y)∼D′ m̂ρ(x, y) > 0), we have

(i) RD′(MVρ) ≤ CD′(ρ) ≤ 4eD′(ρ) ≤ 2rD′(ρ), if rD′(ρ) ≤ dD′(ρ),

(ii) RD′(MVρ) ≤ 2rD′(ρ) ≤ CD′(ρ) ≤ 4eD′(ρ), otherwise.

Proof. Deferred to Appendix B.4. �

Since the distribution D is unknown, the true risk of the majority vote RD(MVρ) is not
computable. Hence, one can minimize the empirical risk of the majority vote RS(MVρ)
through the Empirical Risk Minimization approach (see Algorithm 1.3). However, this
minimization does not necessarily lead to a low true risk RD(MVρ) since overfitting
can occur (see Section 1.2). To tackle this issue, one solution is to deal with the
minimization of a generalization bound to get a self-bounding algorithm (Freund,
1998), i.e., the minimization of the risk with generalization guarantees. We will see in
the next section PAC-Bayesian generalization bounds that further allow us to upper-
bound the true risk RD(MVρ) in Part II.

2.3 PAC-Bayesian Bounds
The PAC-Bayesian theory4, introduced by Shawe-Taylor and Williamson (1997)
and McAllester (1999), aims to provide PAC generalization bounds for Bayesian-
like algorithms. Such Bayesian algorithms assume a probability distribution defined

4See (Guedj, 2019; Alquier, 2021) for recent on the PAC-Bayesian theory.
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Figure 2.2. Plots (from left to right) of the different C-Bounds in Equations (2.7)
to (2.9). For each plot, the darker area represents the cases where 2rD′(ρ) is tighter
than the C-Bound CD′(ρ). The dashed line represents the cases where 4eD′(ρ) matches
the C-Bound CD′(ρ).

apriori on the hypothesis set H, and thanks to Bayes’ theorem, obtain an a posteriori
probability distribution on H thanks to the learning sample; see Bishop (2007) for
more details on this Bayesian inference procedure. Contrary to the classical Bayesian
inference where the posterior distribution is proportional to the product of the prior
distribution and the likelihood of the data, in PAC-Bayesian theory, an arbitrary prior
distribution can be considered. Actually, the term “Bayesian” in the PAC-Bayesian
theory comes from the fact that we usually upper-bound the expected generalization
gap

∣∣∣Eh∼ρS R`D(h)− Eh∼ρS R`S(h)
∣∣∣ where h ∈ H is sampled from a data-dependent dis-

tribution ρS called posterior. This theory has been extended to various settings such as
transductive learning (Derbeko et al., 2004; Bégin et al., 2014), regression (Ger-
main et al., 2016; Shalaeva et al., 2020), structured prediction (Laviolette et
al., 2017), domain adaptation (Germain et al., 2020), or randomized learning (Lon-
don, 2017).

In order to define a PAC-Bayesian bound more formally, we denote by ρS (or ρ) the
posterior distribution on H and π the prior distribution. Each probability distribution
ρ is defined through its probability density function h 7→ ρ(h) with respect to a refer-
ence measure5 on H; we denote by M(H) the set of probability density function on H.
Hence, the distribution ρS ∈ M(H) is the Radon–Nikodym derivative of a probability
measure w.r.t. the reference measure. We also denote by M∗(H) ⊆ M(H) the set of
strictly positive probability densities on H. Moreover, for convenience, we assume that
the support of the posterior ρS is in the support of π, i.e., if π(h) = 0 then ρS(h) = 0

5For instance, if H = Rd, then the reference measure is the Lebesgue one.
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(the absolute continuity); hence π ∈ M∗(H).

With the setting in place, we can now define the general form of a PAC-Bayesian bound
in the following.

Definition 2.3.1 (PAC-Bayesian Generalization Bound). Let ` : H × (X×Y) →
[0, 1] be a loss function and φ : [0, 1]2→R a generalization gap. A PAC-Bayesian
bound is defined such that if for any distribution D on X × Y, for any hypothesis
set H, for any prior distribution π ∈ M∗(H) on H, there exists a function Φ :
M(H)×M∗(H)×(0, 1]→R, such that for any δ ∈ (0, 1] we have

P
S∼Dm

[
φ(Eh∼ρS R`D(h),Eh∼ρS R`S(h)) ≤ Φ

(
ρS, π, δ

)]
≥ 1− δ,

where e.g. φ(Eh∼ρS R`D(h),Eh∼ρS R`S(h)) =
∣∣∣Eh∼ρS R`D(h)− Eh∼ρS R`S(h)

∣∣∣.
Definition 2.3.1 is a general definition in the sense that the expected generalization
gap

∣∣∣Eh∼ρS R`D(h)− Eh∼ρS R`S(h)
∣∣∣ is not the only usable deviation between the true

risk Eh∼ρS R`D(h) and the empirical risk Eh∼ρS R`S(h). For example, one can con-
sider the one-sided difference Eh∼ρS R`D(h) − Eh∼ρS R`S(h) or the squared difference[
Eh∼ρS R`D(h)− Eh∼ρS R`S(h)

]2
. As we will see in this chapter, several gaps φ() have

been considered in the literature. These gaps are upper-bounded with probability at
least 1−δ with a function Φ() that depends on δ and two probability distributions on
H. Usually, the lower the parameter δ ∈ (0, 1], the higher the upper bound Φ(), i.e.,
the function Φ() is decreasing w.r.t. δ. Moreover, this upper bound Φ() depends on a
data-dependent posterior distribution ρS ∈ M(H) and a prior distribution π ∈ M∗(H).
The prior distribution is data-free and can incorporate prior knowledge, e.g., coming
from an expert knowledge or an additional learning sample (Parrado-Hernández
et al., 2012; Dziugaite et al., 2021). In the rest of the section, we present different
instantiations of Definition 2.3.1, making an overview of the PAC-Bayesian bounds in
the literature.

2.3.1 General PAC-Bayesian Bound of Germain et al. (2009)
There are different kinds of bounds in the PAC-Bayesian literature (e.g., Seeger,
2002; McAllester, 2003; Catoni, 2007). Several existing bounds can be proved
from a general theorem by Germain et al. (2009); it is recalled in the following
theorem.
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Theorem 2.3.1 (General PAC-Bayesian Bound of Germain et al. (2009)). For
any distributionD on X×Y, for any hypothesis set H, for any distribution π ∈ M∗(H)
on H, for any measurable function ϕ : H× (X× Y)m → R, we have

P
S∼Dm

[
∀ρ ∈ M(H), E

h∼ρ
ϕ(h,S) ≤ KL(ρ‖π) + ln

(1
δ

E
S′∼Dm

E
h′∼π

eϕ(h′,S′)
)]
≥ 1−δ,

where KL(ρ‖π)= E
h∼ρ

lnρ(h)
π(h) is the Kullback-Leibler (KL) divergence between the

distributions ρ and π.

Proof. Deferred to Appendix B.6. �

Note that this bound holds for all posterior distributions ρ ∈ M(H), which includes
notably the prior distribution π, or any data-dependent posterior ρS. Furthermore, this
bound is penalized by the KL divergence6 between ρ and π. The closer the posterior ρ is
to the prior π, the smaller the divergence and the bound. Moreover, the bound holds for
a function ϕ : H×(X×Y)m → R that further captures a deviation between the true risk
R`D(h) and the empirical risk R`S(h). For example, with ϕ(h,S) = mφ(R`D(h),R`S(h))
where φ() is convex, we are able to retrieve Definition 2.3.1. By setting this function
φ() accordingly, one can retrieve some classical bounds that have been previously
introduced in the literature (Seeger, 2002; McAllester, 2003; Catoni, 2007)
as we show further.

2.3.1.1 McAllester-like bound

First of all, we can retrieve Theorem 1.3.6 presented in Chapter 1 which is a tighter
version of the bound derived by McAllester (2003, Theorem 1). Indeed, by setting
ϕ(h,S) = 2m

[
R`D(h)− R`S(h)

]2
in Theorem 2.3.1, one can deduce the following

result.

Theorem 2.3.2 (PAC-Bayesian Bound of McAllester (2003)). For any distri-
bution D on X × Y, for any hypothesis H, for any prior π ∈ M∗(H), for any loss
` : H×(X× Y)m → [0, 1], for any δ ∈ (0, 1], we have

P
S∼Dm

∀ρ ∈ M(H),
∣∣∣∣ E
h∼ρ

R`D(h)− E
h∼ρ

R`S(h)
∣∣∣∣ ≤

√
1

2m
[
KL(ρ‖π)+ ln 2

√
m
δ

] ≥ 1−δ.

(2.10)

6The principal properties of the KL divergence are given in Appendix B.5
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Proof. Deferred to Appendix B.7. �

According to Theorem 2.3.2, the gap |Eh∼ρ R`D(h)−Eh∼ρ R`S(h)| tends to zero when
the number of examples increase. Hence, the more examples we have, the closer the
expected empirical risk Eh∼ρ R`S(h) is from expected true empirical risk Eh∼ρ R`D(h) for
all ρ ∈ M(H). Actually, bounding this gap gives an upper bound on the expected true
risk. Indeed, with probability at least 1−δ over the random choice of S∼Dm, we have

∀ρ ∈ M(H), E
h∼ρ

R`D(h) ≤ E
h∼ρ

R`S(h) +
√

1
2m

[
KL(ρ‖π)+ ln 2

√
m
δ

]
(2.11)

and E
h∼ρ

R`D(h) ≥ E
h∼ρ

R`S(h)−
√

1
2m

[
KL(ρ‖π)+ ln 2

√
m
δ

]
(2.12)

Put into words, the expected true risk Eh∼ρ R`D(h) can be lower and upper bounded
by the expected empirical risk Eh∼ρ R`S(h) and the bound

√
1

2m [KL(ρ‖π)+ ln 2
√
m
δ

].
When our objective is to obtain a low expected true risk Eh∼ρ R`D(h), one can obtain
a distribution ρ ∈ M(H) minimizing the bound with the minimization problem

min
ρ∈M(H)

 E
h∼ρ

R`S(h) +
√

1
2m

[
KL(ρ‖π)+ ln 2

√
m
δ

] .
Since the bound holds for all ρ ∈ M(H) (with high probability), it also holds for the
optimal solution. The contributions in Part II rely on such a minimization problem to
obtain models with a certified expected test risk. Nevertheless, as we will see further,
the bound of Theorem 2.3.2 is not the tightest.

2.3.1.2 Catoni-like bound

Catoni (2007, Theorem 1.2.1) proposed a bound that can be tighter than the one of
Theorem 2.3.2 by considering a parameter c > 0. His proposed bound can be retrieved
from Theorem 2.3.1 by defining ϕ(h,S) = mφ(R`D(h),R`S(h)) where the deviation is
φ(R`D(h),R`S(h)) = − ln

(
1− (1−e−c) R`D(h)

)
− cR`S(h). We state the bound in the

following theorem.

Theorem 2.3.3 (PAC-Bayesian Bound of Catoni (2007)). For any distribution
D on X × Y, for any hypothesis H, for any prior π ∈ M∗(H), for any loss ` :
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H×(X× Y)m → [0, 1], for any c > 0, for any δ ∈ (0, 1], we have

P
S∼Dm

∀ρ ∈ M(H),− ln
(

1−
[
1−e−c

]
E
h∼ρ

R`D(h)
)
− c E

h∼ρ
R`S(h)

≤ 1
m

[
KL(ρ‖π)+ ln 1

δ

]  ≥ 1− δ. (2.13)

Proof. Deferred to Appendix B.8. �

The result is difficult to interpret because of the gap − ln
(
1− [1−e−c]Eh∼ρ R`D(h)

)
−

cEh∼ρ R`S(h) is not easy to analyze. However, rewriting it as an upper bound of the
expected true risk Eh∼ρ R`D(h) makes its interpretation easier. Indeed, with probability
at least 1− δ over the random choice of S ∼ Dm, we have

∀ρ ∈ M(H), E
h∼ρ

R`D(h) ≤ 1
1−e−c

1− exp
−c E

h∼ρ
R`S(h)− 1

m

[
KL(ρ‖π)+ ln 1

δ

].
Put into words, the expected true risk Eh∼ρ R`D(h) is upper-bounded by a trade-off,
controlled by the parameter c, between the expected empirical risk Eh∼ρ R`S(h) and the
term 1

m

[
KL(ρ‖π)+ ln 1

δ

]
. This is in contrast with Equations (2.10) to (2.12) since

this bound depends on a parameter c > 0, which allows one to tune the tightness of
the bound.
In practice, it is hard to set the parameter c since the bound holds with high probability
on S ∼ Dm for all parameters c > 0. Hence, it is not possible to condition c on
S ∼ Dm. To tackle this issue, one usually applies a union bound to get a bound
holding for any c belonging to a countable set. Hopefully, as shown further, one can
derive a bound that avoids this parameter and is potentially tighter.

2.3.1.3 Seeger-like bound

One of the tightest PAC-Bayesian bound (that avoids the parameter c) is the one
proven by Seeger (2002). This bound depends on the KL divergence between two
Bernoulli distributions. This function is defined in the following way.

Definition 2.3.2 (KL Divergence Between Two Bernoulli Distributions). For any
distribution q ∈ [0, 1] and p ∈ [0, 1], the small kl is defined as

kl(q‖p) , KL(B(q)‖B(p)) = q ln q
p

+ (1−q) ln 1−q
1−p,
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where B(q) and B(p) are two Bernoulli distributions with bias q and p.

The first PAC-Bayesian theorem based on the divergence kl() was proved by Seeger
(2002). Few years later, by setting ϕ(h,S) = m kl(R`S(h)‖R`D(h)), Germain et al.
(2009) retrieved an improved PAC-Bayesian generalization bound proved by Maurer
(2004). Maurer’s bound and stated in the following theorem.

Theorem 2.3.4 (PAC-Bayesian Bound of Seeger (2002)). For any distribution
D on X × Y, for any hypothesis H, for any prior π ∈ M∗(H), for any loss ` :
H×(X× Y)m → [0, 1], for any δ ∈ (0, 1], we have

P
S∼Dm

[
∀ρ ∈ M(H), kl

(
E
h∼ρ

R`D(h)
∥∥∥∥ E
h∼ρ

R`S(h)
)
≤ 1
m

[
KL(ρ‖π)+ ln 2

√
m
δ

]]
≥ 1−δ.

(2.14)

Proof. Deferred to Appendix B.9. �

The bound of Theorem 2.3.4 consists in upper-bounding a deviation between Eh∼ρ R`D(h)
and Eh∼ρ R`S(h). This deviation is hard to interpret. Thanks to the Pinsker’s in-
equality (Theorem B.5.1), i.e., ∀(p, q) ∈ [0, 1]2, 2(q − p)2 ≤ kl(q‖p), it can be shown
that the bound of Theorem 2.3.2 is tighter than the one of Theorem 2.3.4. Inter-
estingly, Germain et al. (2009, Proposition 2.1) and Lacasse (2010, Proposition
6.2.2) related the bound of Catoni (Theorem 2.3.3) and Theorem 2.3.4 with the
equality

max
c>0

{
− ln

(
1−

[
1−e−c

]
p
)
−cq

}
= kl(q‖p).

Put into words, given p ∈ (0, 1] and q ∈ [0, 1], the kl(q‖p) matches the function
− ln(1− [1−e−c]p)−cq with the optimal parameter c ≥ 0. Expressed as it is, Equa-
tion (2.14) does not permit to upper or lower bound the expected true risk R`D(h)
contrary to Theorems 2.3.2 and 2.3.3. In order to rewrite Equation (2.14) (of Theo-
rem 2.3.4), we define the inverting functions of kl() in the following way.

Definition 2.3.3 (Inverting Functions of kl()). Given τ ≥ 0, for any q ∈ [0, 1],
the inverting functions of the kl() are defined as

kl(q|τ),max
{
p ∈ (0, 1)

∣∣∣∣ kl(q‖p) ≤ τ
}
,

and kl(q|τ),min
{
p∈(0,1)

∣∣∣∣ kl(q‖p) ≤ τ
}
.
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Figure 2.3. Illustration of the inverting functions of kl() for q = R`S(h) s.t. R`S(h) ∈
{0.0, 0.2} in two different plots. We plot the curve of the function kl(R`S(h)‖·), the
bound value τ = 0.1 and the two inverting functions kl(R`S(h)|τ) and kl(R`S(h)|τ)
(abbreviated kl and kl). The dot (resp. the square) corresponds to the solution of the
minimization (resp. maximization) problem associated with kl (resp. kl).

The function kl() (resp. kl()) denotes the maximum (resp. minimum) value p ∈ (0, 1)
such that the inequality kl(q‖p) ≤ τ holds. Figure 2.3 gives a graphical illustration
of these inverting functions. The values associated with the inverting functions kl()
and kl() can be approximated and easily computed from Pinsker’s inequality (The-
orem B.5.1). Indeed, we have

kl(q|τ) ≤ q +
√

1
2τ and q −

√
1
2τ ≤ kl(q|τ). (2.15)

We present in Figure 2.4 an illustration of the tightness of this approximation.
To calculate kl() and kl() exactly, two optimization problems need to be solved; Reeb
et al. (2018) proposed an algorithm based on the bisection method. We recall its
pseudo-code in Algorithm 2.1. The principle of this algorithm is to iteratively refine
the interval [pmin, pmax] to which the bias p ∈ (0, 1] belongs. When the equality
kl(q‖p) = τ is attained or when the interval [pmin, pmax] is small enough, the bias p is
found.
Moreover, Reeb et al. (2018) found the expression of the derivatives with respect to
q and τ , allowing them to derive bound minimization algorithms based on gradient
descent; these derivatives are defined by

∂k(q|ψ)
∂q

=
ln 1−q

1−k(q|ψ) − ln q
k(q|ψ)

1−q
1−k(q|ψ) −

q
k(q|ψ)

, and ∂k(q|ψ)
∂ψ

= 1
1−q

1−k(q|ψ) −
q

k(q|ψ)
, (2.16)
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Figure 2.4. Illustration of the tightness of kl() and kl(). The line represents the
functions kl(·|τ) and kl(·|τ) for different values of τ ∈ {0.001, 0.1, 0.3, 0.5, 0.9}. On
the left plot, we represent the function kl(·|τ) while the right plot represents the
function kl(·|τ). In the left (resp. right) plot, the lower (resp. higher) the inverting
function, the smaller (resp. larger) the value of τ . Moreover, for each inverting
function, we plot with the dotted lines its approximation through Pinsker’s inequality.

Algorithm 2.1 Compute kl(q|τ) resp. kl(q|τ) through the bisection method
Given: Bias q ∈ [0, 1] (the empirical risk), the bound value τ ≥ 0
Hyperparameters: tolerance ε, maximal number of iterations Tmax
pmax←1 and pmin←q (resp. pmax←q and pmin←0)
for t← 1 to Tmax do

p = 1
2 [pmin+pmax]

if kl(q‖p) = τ or (pmin−pmax) < ε then return p
if kl(q‖p) > τ then pmax = p (resp. pmin = p)
if kl(q‖p) < τ then pmin = p (resp. pmax = p)

return p

where k() is either kl() or kl().
Thanks to Definition 2.3.3, we can rewrite the bound of Theorem 2.3.4 to upper-bound
the expected true risk Eh∼ρ R`D(h). With probability at least 1 − δ over the random
choice of S ∼ Dm, we have for all ρ ∈ M(H)

E
h∼ρ

R`D(h) ≤ kl
(
E
h∼ρ

R`S(h)
∣∣∣∣ 1
m

[
KL(ρ‖π)+ ln 2

√
m
δ

])
(2.17)

and E
h∼ρ

R`D(h) ≥ kl
(
E
h∼ρ

R`S(h)
∣∣∣∣ 1
m

[
KL(ρ‖π)+ ln 2

√
m
δ

])
. (2.18)

Thanks to the approximation in Equation (2.15), one can prove that the bound of
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Theorem 2.3.4 is tighter than the one of Theorem 2.3.2. More precisely, if we ap-
ply Equation (2.15) to Equations (2.17) and (2.18), we retrieve Equations (2.11)
and (2.12).

2.3.2 General PAC-Bayesian Bound of Bégin et al. (2016)
As shown previously, the KL divergence between the posterior distribution ρ and the
prior distribution π is ubiquitous in PAC-Bayesian bounds. By considering this diver-
gence, as illustrated in Theorem 2.3.1, the term ES′∼Dm Eh′∼π exp [ϕ(h′,S′)] appears
inevitably. Indeed, the KL divergence KL(ρ‖π) between ρ and π can be expressed
as a difference between two terms: Eh∼ρ ϕ(h,S) and Eh∼π exp [ϕ(h,S)] thanks to
Donsker and Varadhan (1976). This representation is actually used to obtain
a change of measure inequality which quantifies how much two expectations (com-
ing from two densities ρ and π) differ. This change of measure inequality and the
expression of the KL divergence are in the following.

Proposition 2.3.1 (Donsker-Varadhan Variational Representation). For any
hypothesis set H, for any distribution π ∈ M∗(H) on H, for any measurable function
ϕ : H× (X× Y)m → R s.t. Eh′∼π eϕ(h′,S) < +∞ for all S ∈ (X× Y)m, we have

∀S ∈ (X× Y)m, ∀ρ ∈ M(H), E
h∼ρ

ϕ(h,S)− ln
(
E
h∼π

eϕ(h,S)
)
≤ KL(ρ‖π)

⇐⇒ E
h∼ρ

ϕ(h,S) ≤ KL(ρ‖π) + ln
(
E
h∼π

eϕ(h,S)
)
.

When the distribution ρ is defined as ρ(h) = π(h) eϕ(h,S)

Eh′∼π eϕ(h′,S) , we have

∀S ∈ (X× Y)m, E
h∼ρ

ϕ(h,S)− ln
(
E
h∼π

eϕ(h,S)
)

= KL(ρ‖π),

⇐⇒ E
h∼ρ

ϕ(h,S) = KL(ρ‖π) + ln
(
E
h∼π

eϕ(h,S)
)
.

Proof. Deferred to Appendix B.10. �

As we can remark, this inequality resembles to the general bound of Germain et al.
(2009) (in Theorem 2.3.1). Hence, the change of measure inequality appears indirectly
in the PAC-Bayesian bounds making the constant term ES′∼Dm Eh′∼π eϕ(h′,S′) arising
in the bound. Other divergences can be considered to obtain different constant terms
(that are further upper-bounded). For example, Ohnishi and Honorio (2021) prove
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other change of measure inequalities for several divergences. Prior to this work, Bégin
et al. (2016) derive a new general PAC-Bayesian bound with the Rényi divergence
defined as Dλ(ρ‖π) = 1

λ−1 ln
(
Eh∼π

[
ρ(h)
π(h)

]λ)
for any λ > 1. Their bound is recalled

in the following theorem.

Theorem 2.3.5 (General PAC-Bayesian Bound of Bégin et al. (2016)). For any
distribution D on X×Y, for any hypothesis set H, for any distribution π ∈ M∗(H)
on H, for any measurable function ϕ : H× (X×Y)m → R+

∗ , for any λ > 1, for any
δ ∈ (0, 1], we have

P
S∼Dm

∀ρ ∈ M(H), λ

λ−1 ln
[
E
h∼ρ

ϕ(h,S)
]

≤ Dλ(ρ‖π) + ln
[1
δ

E
S′∼Dm

E
h′∼π

ϕ(h′,S′)
λ
λ−1

]  ≥ 1−δ.

Proof. Deferred to Appendix B.11. �

Unlike Theorem 2.3.1, the function (h,S) 7→ λ
λ−1 ln [Eh∼ρ ϕ(h,S)] represents the gen-

eralization gap and is upper-bounded by the Rényi divergence Dλ(ρ‖π) and a constant
term ln[1

δ
ES′∼Dm Eh′∼π ϕ(h′,S′)

λ
λ−1 ]. At first sight, Theorem 2.3.5 seems very differ-

ent from Theorem 2.3.1, however, they are actually related. Indeed, if we replace
ϕ(h,S) by exp(λ−1

λ
ϕ(h,S)) and we apply Jensen’s inequality (Theorem A.1.1) on

the left-hand side, we obtain with probability at least 1−δ over the random choice of
S∼Dm

∀ρ ∈ M(H), E
h∼ρ

ϕ(h,S) ≤ Dλ(ρ‖π) + ln
[1
δ

E
S′∼Dm

E
h′∼π

eϕ(h′,S′)
]
.

This bound is slightly looser than the one of Theorem 2.3.1: for any λ > 1 and for any
distributions ρ and π, we have KL(ρ‖π) ≤ Dλ(ρ‖π) and limλ→1+ Dλ(ρ‖π) = KL(ρ‖π)
(Erven and Harremoës, 2014). As for the general bound in Theorem 2.3.1, set-
ting the function ϕ() and upper-bounding the term ES∼Dm Eh∼π ϕ(h,S)

λ
λ−1 gives a

computable bound. Namely, Theorem 2.3.5 allows one to obtain a McAllester,
Catoni or a Seeger-like PAC-Bayesian bound based on the Rényi divergence. For
the sake of completeness, we show in Appendix B.12 the proof of the three types of
bounds based on Theorem 2.3.5. Compared to Theorems 2.3.2 to 2.3.4, only the KL
divergence is replaced by the looser Rényi divergence.
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Generally speaking, all the PAC-Bayesian bounds share a common property: they bound
the expectation of ϕ() w.r.t. the posterior ρ. However, it might be relevant to upper-
bound ϕ() for a unique hypothesis h ∼ ρ: this is the purpose of the disintegrated
bounds.

2.4 Disintegrated PAC-Bayesian Bounds
Deriving PAC-Bayesian guarantees for a unique hypothesis is tedious. Indeed, the
PAC-Bayesian theory is tailored for bounding the expected true risk. Hence, additional
derivations are needed to derive a PAC-Bayesian guarantee for a unique hypothesis.
See Langford and Shawe-Taylor (2002), Langford (2005), and Germain
et al. (2009) for some examples. To avoid this issue and to get a bound for a single
hypothesis, another possible solution is to sample the hypothesis h ∈ H from the
posterior distribution ρS ∈ M(H). By doing so, the gap

∣∣∣R`D(h)− R`S(h)
∣∣∣ can be

upper-bounded with a generalization bound. This bound is defined in the following
way.

Definition 2.4.1 (Disintegrated PAC-Bayesian Generalization Bound). Let ` :
H × (X×Y) → [0, 1] be a loss function and φ : [0, 1]2→[0, 1] a generaliza-
tion gap. A disintegrated PAC-Bayesian bound is defined such that if for any
distribution D on X × Y, for any hypothesis set H, for any prior distribution
π ∈ M∗(H), for any algorithm A : (X×Y)m×M∗(H)→M(H), there exists a function
Φ : M(H)×M∗(H)×(0, 1]→R such that for any δ ∈ (0, 1] we have

P
S∼Dm,h∼ρS

[
φ(R`D(h),R`S(h)) ≤ Φ

(
ρS, π, δ

)]
≥ 1− δ,

where ρS , A(S, π) is output by the deterministic algorithm A and φ() is, for
example, φ(R`D(h),R`S(h)) =

∣∣∣R`D(h)− R`S(h)
∣∣∣.

Compared to the PAC-Bayesian bounds (see Definition 2.3.1), the expectation Eh∼ρS [·]
is moved outside the indicator function: this is the disintegration. Moreover, unlike the
PAC-Bayesian bounds, the posterior ρS is obtained from an algorithm that depends
on the prior π ∈ M∗(H) and the learning sample S. This type of bounds has been
introduced in two concurrent works, i.e., Catoni (2007, Theorem 1.2.7) and Blan-
chard and Fleuret (2007). Moreover, there exists a general disintegrated bound
as for the PAC-Bayesian bounds. We now present these three bounds by starting with
the most general one.
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2.4.1 General Disintegrated Bound of Rivasplata et al. (2020)
A general disintegrated PAC-Bayesian bound has been actually proposed very recently
by Rivasplata et al. (2020, Theorem 1-(i)). This bound is presented below.

Theorem 2.4.1 (General Disintegrated Bound of Rivasplata et al. (2020)). For
any distribution D on X × Y, for any hypothesis set H, for any prior distribution
π ∈ M∗(H), for any measurable function ϕ : H× (X×Y)m → R, for any δ ∈ (0, 1],
for any algorithm A : (X×Y)m×M∗(H)→M(H), we have

P
S∼Dm,h∼ρS

ϕ(h,S) ≤ ln
[
ρS(h)
π(h)

]
+ln

[1
δ

E
S′∼Dm

E
h′∼π

exp (ϕ(h′,S′))
]

︸ ︷︷ ︸
Φ(ρS,π,δ)

 ≥ 1−δ,

where ρS , A(S, π) is output by the deterministic algorithm A.

Proof. Deferred to Appendix B.13. �

Compared to the classical PAC-Bayesian bounds, this bound holds with high probability
over the random choice of the learning sample S ∼ Dm and the hypothesis h ∼ ρS.
Moreover, instead of depending on the KL divergence, the bound depends on the
disintegrated KL divergence7 ln ρS(h)

π(h) . This term is the log ratio of the density of the
prior π(h) and the posterior distribution ρS(h) for the sampled hypothesis h ∼ ρS.
Intuitively, the closer the posterior density ρS(h) to the prior density π(h) for h ∼ ρS,
the lower the disintegrated KL. As for Germain et al. (2009)’s general bound, we need
to define ϕ() and upper-bound the term ES′∼Dm Eh′∼π exp (ϕ(h′,S′)) to obtain a bound
that can be computed. Similarly to Theorems 2.3.1 and 2.3.5, this disintegrated bound
generalizes other bounds such as the one derived by Catoni (2007, Theorem 1.2.7).

2.4.2 Disintegrated Bound of Catoni (2007)
The bound of Catoni (2007, Theorem 1.2.7), which is one of the first disintegrated
bound in the literature, is recalled in the following theorem.

Theorem 2.4.2 (Disintegrated Bound of Catoni (2007)). For any distribution
D on X × Y, for any hypothesis H, for any prior π ∈ M∗(H), for any loss ` :

7The disintegration of the KL divergence has a slightly different meaning than the disintegration
of the PAC-Bayesian bound: in the former case, the integration/expectation “is removed” from the
divergence.
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H×(X × Y)m → [0, 1], for any c > 0, for any δ ∈ (0, 1], for any algorithm
A : (X×Y)m×M∗(H)→M(H), we have

P
S∼Dm,h∼ρS

∀ρ ∈ M(H),− ln
(

1−
[
1−e−c

]
E
h∼ρ

R`D(h)
)
− c E

h∼ρ
R`S(h)

≤ 1
m

[
ln ρS(h)

π(h) + ln 1
δ

]  ≥ 1− δ,

where ρS , A(S, π) is output by the deterministic algorithm A.

Proof. Deferred to Appendix B.14. �

After sampling the learning sample S ∼ Dm and the hypothesis h ∼ ρS, the obtained
guarantee is similar to the one of Theorem 2.3.3: only the KL divergence is replaced by
its disintegrated counterpart. Similar to the non-disintegrated PAC-Bayesian bound,
other deviations between the true risk R`D(h) and the empirical risk R`S(ρ) can be
considered. For instance, Blanchard and Fleuret (2007) proposed a bound on
kl(R`S(h)‖R`D(h)).

2.4.3 Disintegrated Bound of Blanchard and Fleuret (2007)
The bound of Blanchard and Fleuret (2007) is based on another proof technique
called Occam’s hammer. For instance, they prove a Seeger (2002)-like disintegrated
PAC-Bayesian bound from this framework; it is recalled in the following theorem.

Theorem 2.4.3 (Disintegrated Bound of Blanchard and Fleuret (2007)).
For any distribution D on X × Y, for any hypothesis set H, for any distribution
π ∈ M∗(H), for any loss ` : H× (X×Y)→ {0, 1}, for any k > 1, for any δ ∈ (0, 1],
for any algorithm A : (X×Y)m×M∗(H)→M(H), we have

P
S∼Dm,h∼ρS

[
kl+(R`S(h)‖R`D(h)) ≤ 1

m

[
ln k + 1

δ
+
(

1 + 1
k

)
ln+

ρS(h)
π(h)

]]
≥ 1− δ,

where ρS , A(S, π) is output by the deterministic algorithm A, the ln+(x) =
max(ln(x), 0) and kl+(R`S(h)‖R`D(h)) = kl(R`S(h)‖R`D(h)) if R`S(h) < R`D(h) and
0 otherwise.
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Proof. Deferred to Appendix B.15. �

Similarly to Catoni (2007), this bound is parametrized: the tightness depends on the
parameter k > 1. However, the optimal parameter depends on the log ratio ln+

ρS(h)
π(h)

and cannot be set in advance since we don’t know the sampled S ∼ Dm.

2.5 Conclusion and Summary
This chapter introduces generalization bounds from the PAC-Bayesian literature. These
bounds allow deriving theoretical guarantees for some machine learning models, e.g.,
the majority vote. They are further useful to derive practical learning algorithms guar-
anteeing that the model is not too sensitive to overfitting; see Part II. Indeed, in
Chapter 3, we derive a new self-bounding learning algorithm that minimizes a PAC-
Bayesian generalization bound for the adversarially robust setting. Roughly speaking,
we derive surrogates similar to Equation (2.2) to obtain guarantees and derive learning
algorithms that “robustify” the majority vote. Then, Chapter 4 introduces our contri-
butions to minimizing of the PAC-Bayesian C-Bound, which aims to minimize the true
risk of the majority vote. Lastly in Part II, we introduce the stochastic majority vote
(where the distribution ρ follows a Dirichlet distribution) in Chapter 5. This majority
vote allows using easily a PAC-Bayesian bound on the expected true risk to learn such
a classifier.

However, the main drawback of the PAC-Bayesian generalization bounds is that we
bound Eh∼ρ ϕ(h,S) instead of ϕ(h,S). In contrast, the disintegrated bounds allow
us to bound the term ϕ(h,S), which makes more sense if we want to deal with a
unique hypothesis h ∼ ρ. Part III shows the potential of such bounds for the analysis
of the generalization of over-parametrized models. Indeed, Chapter 6 shows the first
application of such bounds in practice, notably with over-parametrized models; this
also leads to the derivation of new disintegrated bounds that are more appealing to
optimization. Lastly, Chapter 7 introduces new perspectives based on these bounds
since we can derive generalization bounds that do not depend on classical complexity
measures such as the VC-Dimension or the Rademacher complexity (see Section 1.3).
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Part II

PAC-Bayesian Majority Vote:
Theory and Self-bounding Algorithms





3PAC-Bayesian Theory for
the Robust Majority Vote

This chapter is based on the following paper

Paul Viallard, Guillaume Vidot, Amaury Habrard, and Emilie Mor-
vant. A PAC-Bayes Analysis of Adversarial Robustness. Advances in Neural Informa-
tion Processing Systems (NeurIPS). (2021b)
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Abstract

In this chapter, we derive the first general PAC-Bayesian generalization bounds
for adversarial robustness, that estimate, how much the majority vote will be
robust to imperceptible perturbations in the input. Instead of deriving a worst-
case analysis of the risk of the majority vote over all the possible perturbations,
we leverage the PAC-Bayesian framework recalled in Chapter 2 to bound the
averaged risk on the perturbations. Our theoretically founded analysis has the
advantage to provide general bounds (i) that are valid for any kind of adversarial
attacks, (ii) that are tight, (iii) that can be directly minimized in a self-bounding
algorithm to obtain a robust majority vote. We empirically show this robustness
on different attacks.
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3.1 Introduction
In this chapter, we first formalize in Section 3.2 the notion of majority vote for the ad-
versarial robustness setting. To do so, we adapt the majority vote (recalled in Chapter 2
for supervised learning) by assuming that the inputs can be slightly modified/perturbed
to fool the prediction of the majority vote, often in a malicious way; this setting is called
adversarial robustness. The existence of such modified inputs, known as adversarial
examples (Biggio et al., 2013; Szegedy et al., 2014) and illustrated in Figure 3.1.

Prediction: “Cat” Perturbation

+ =

Prediction: “Horse”
(Adversarial example)

Figure 3.1. On the left, the original image is predicted correctly by the classifier as
“cat”. The middle image corresponds to a perturbation/noise added to this original
image. On the right, by applying the perturbation on the original image, the result is
an image that looks identical to the original to the human eye, however, the prediction
changes radically. This result image with the imperceptible perturbation is called an
adversarial example.

The models (i.e., the majority vote in our case) must be robust to these small inputs’
perturbations to better guarantees the user safety. Indeed, when machine learning
models are applied to real problems, such as autonomous vehicles, the perturbations
must not compromise the safety of the users. The perturbed examples is obtained
from an adversarial attack that fools the considered model while the adversarial de-
fense techniques enhance the adversarial robustness to make the attacks useless (see
e.g., Goodfellow et al., 2015; Papernot et al., 2016; Carlini and Wagner,
2017; Kurakin et al., 2017; Zantedeschi et al., 2017; Madry et al., 2018). How-
ever, the majority votes and many other models lack guarantees on the robustness.
To tackle this issue, we propose to formulate the adversarial robustness through the
lens of the PAC-Bayesian theory recalled in Chapter 2; we call here our setting the
adversarially robust PAC-Bayes.

The idea consists in considering an averaged adversarial robustness risk corresponding
to the probability that the model misclassifies a perturbed example (this can be inter-
preted as an averaged risk over the perturbations). We also define an averaged-max
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adversarial risk as the probability that there exists at least one perturbation that leads
to a misclassification. These definitions, based on averaged quantities, have the advan-
tage (i) of being suitable for the PAC-Bayesian framework and majority vote classifiers,
and (ii) of being related to the classical adversarial robustness risk. Then, for each
of our adversarial risks, we derive a PAC-Bayesian generalization bound that is valid
to any kind of attack. From an algorithmic point of view, these bounds are directly
minimizable to learn a majority vote robust in average to attacks. Since we directly
minimize a generalization bound, our algorithms stand in the class of self-bounding
algorithms (Freund, 1998). We empirically illustrate that our framework is able
to provide generalization guarantees with non-vacuous bounds for the adversarial risk
while ensuring efficient protection to adversarial attacks.

Note that all the proofs of this chapter are deferred in Appendix C.

3.2 Adversarially Robust Majority Vote
3.2.1 Setting
We mainly adopt the setting of Chapter 2. We tackle binary classification tasks with
the input space X=Rd and the output/label space Y = {−1,+1}. We assume that D
is a fixed but unknown distribution on X×Y. An example is denoted by (x, y) ∈ X×Y.
Let S={(xi, yi)}mi=1 be the learning sample of m examples i.i.d. sampled from D; We
denote the distribution of such m-sample by Dm. Let H be a set of real-valued voters
from X to [−1,+1]. Assuming the voters set H and a learning sample S, our goal is
to learn a well-performing ρ-weighted majority vote defined in Definition 2.2.1 by

∀x ∈ X, MVρ(x) = sign
[
E
h∼ρ

h(x)
]
.

One wants to find a ρ-weighted majority vote that minimizes the true risk RD(MVρ)
on D defined in Definition 2.2.2 as

RD(MVρ) , E
(x,y)∼D

I [MVρ(x) 6= y] .

However, in real-life applications, an imperceptible perturbation of the input can have
a bad influence on the classification performance on unseen data (Szegedy et al.,
2014): the usual generalization guarantees do not stand anymore. Such an impercep-
tible perturbation can be modeled by a (relatively small) additive noise ε applied an
input x leading to a perturbed input x + ε. Let b> 0 and ‖·‖ be an arbitrary norm,
the set of possible noises B is defined by1

B=
{
ε ∈ Rd

∣∣∣ ‖ε‖ ≤ b
}
.

1The most used norms in the set of possible noises are the `1, `2 and `∞-norms.
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The learner aims now to find an adversarial robust classifier that is robust in average
to all noises in B over (x, y) ∼ D. More formally, one wants to minimize the true
adversarial risk AD(MVρ) defined in the following definition.

Definition 3.2.1 (True/Empirical Adversarial Risk). For any distribution D on
X× Y, for any distribution ρ on H, the true adversarial risk is defined as

AD(MVρ) = E
(x,y)∼D

max
ε∈B

I [MVρ(x+ε) 6= y] .

Since D is unknown, AD(MVρ) cannot be directly computed, then one usually deals
with the empirical adversarial risk defined as

AS(MVρ) = 1
m

m∑
i=1

max
ε∈B

I [MVρ(xi+ε) 6= yi] .

In this chapter, our objective is to try to make the majority vote classifier MVρ robust
to adversarial attacks that aim at finding an adversarial example x + ε∗(x,y) to fool
MVρ() for given example (x, y), where ε∗(x,y) is defined as

ε∗(x,y) ∈ argmax
ε∈B

I [MVρ(x+ε) 6= y] . (3.1)

In consequence, adversarial defense mechanisms often rely on the adversarial attacks
by replacing the original examples (x, y) with the adversarial ones (x + ε∗(x, y), y)
during the learning phase; this procedure is called adversarial training. Even if there
are other defenses, as we will see later, adversarial training appears to be one of the
most efficient defense mechanisms (Ren et al., 2020). Optimizing Equation (3.1) is
however intractable due to the non-convexity of MVρ induced by the sign function.
The adversarial attacks of the existing frameworks in the literature (that we discuss in
Section 3.2.2) aim at finding the optimal perturbation ε∗(x,y), but, in practice, one
considers an approximation of this perturbation.

3.2.2 Related Works
Adversarial Attacks/Defenses. Numerous methods2 exist to solve— or approx-
imate —the optimization of Equation (3.1). Among them, the Fast Gradient Sign
Method (fgsm) of Goodfellow et al. (2015) is an attack consisting in generat-
ing a noise ε in the direction of the gradient of the loss function with respect to the
input x. Kurakin et al. (2017) introduced ifgsm, an iterative version of fgsm: at

2The reader can refer to Ren et al. (2020) for a survey on adversarial attacks and defenses.
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each iteration, one repeats fgsm and adds to x a noise, that is the sign of the gradient
of the loss with respect to x. Following the same principle as ifgsm, Madry et al.
(2018) proposed a method based on Projected Gradient Descent (pgd) that includes
a random initialization of x before the optimization. Another technique known as the
Carlini and Wagner Attack (Carlini and Wagner, 2017) aims at finding adversarial
examples x + ε∗(x,y) that are as close as possible to the original x, i.e., they want an
attack being the most imperceptible as possible. However, producing such impercepti-
ble perturbation leads to a high-running time in practice. Contrary to the most popular
techniques that look for a model with a low adversarial robust risk, our work stands
in another line of research where the idea is to relax this worst-case risk measure by
considering an averaged adversarial robust risk over the noises instead of a max-based
formulation (see, e.g., Zantedeschi et al., 2017; Hendrycks and Dietterich,
2019). Our averaged formulation is introduced in the Section 3.2.

Generalization Bounds for Adversarial Robustness. Recently, few generalization
bounds for adversarial robustness have been introduced (e.g., Khim and Loh, 2018;
Cohen et al., 2019; Montasser et al., 2019; Pinot et al., 2019; Salman et al.,
2019; Yin et al., 2019; Montasser et al., 2020; Pinot et al., 2022). Khim and
Loh, and Yin et al.’s results are Rademacher complexity-based bounds. The former
makes use of a surrogate of the adversarial risk; the latter provides bounds in the specific
case of neural networks and linear classifiers and involves an unavoidable polynomial
dependence on the dimension of the input. Montasser et al. study robust PAC-
learning for PAC-learnable classes with finite VC-dimension for unweighted majority
votes that have been “robustified” with a boosting algorithm. However, their algorithm
requires to consider all possible adversarial perturbations for each example, which is
intractable in practice, and their bound also suffers from a large constant as indicated at
the end of the Montasser et al. (Theorem 3.1 2019)’s proof. Cohen et al. provide
bounds that estimate what is the minimum noise to get an adversarial example (in the
case of perturbations expressed as Gaussian noise) while our results give the probability
of being fooled by an adversarial example. Salman et al. leverage Cohen et al.’s
method and adversarial training in order to get tighter bounds. Moreover, Farnia
et al. present margin-based bounds on the adversarial robust risk for specific neural
networks and attacks (such as fgsm or pgd). While they made use of a classical
PAC-Bayes bound, their result is not a PAC-Bayesian analysis and stands in the family
of uniform-convergence bounds (see Nagarajan and Kolter, 2019b, Ap. J for
details). In this thesis, we provide PAC-Bayesian bounds for general models expressed
as majority votes, their bounds are thus not directly comparable to ours.
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3.2.3 PAC-Bayesian Adversarial Risks
Instead of looking for the noise from Equation (3.1) that maximizes the chance of
fooling the algorithm, we propose to model the perturbation according to an example-
dependent distribution. This example-dependent distribution is further used to define
our new risks. First let us define B(x,y) a distribution, on the set of possible noises B,
that is dependent on an example (x, y) ∈ X×Y. Then, we denote as E the distribution
on (X×Y)×B defined as

E((x, y), ε) = D(x, y) · B(x,y)(ε),

which further permits to generate perturbed examples. For a given example (xi, yi)∼D,
we consider a set of n perturbations sampled from B(xi,yi) denoted by �i={εij}nj=1.
Then we consider as a learning set the m×n-sample Ŝ = {((xi, yi),�i)}mi=1 ∈ (X×Y×Bn)m.
In other words, each ((xi, yi),�i) ∈ Ŝ is sampled from a distribution that we denote
by En such that

En((xi, yi),�i) = D(xi, yi)·
n∏
j=1
B(xi,yi)(εij).

Furthermore, we denote as (En)m the empirical distribution on the perturbed learning
sample consisted of m examples and n perturbations for each example. Then, inspired
by the works of Zantedeschi et al. (2017) and Hendrycks and Dietterich
(2019), we define our robustness averaged adversarial risk as follows.

Definition 3.2.2 (Averaged Adversarial Risk). For any distribution E on (X×Y)×B,
for any distribution ρ on H, the averaged adversarial risk of MVρ is defined as

RE(MVρ) = P
((x,y),ε)∼E

(MVρ(x + ε) 6= y)

= E
((x,y),ε)∼E

I [MVρ(x + ε) 6= y] .

The empirical averaged adversarial risk is computed on a m×n-sample Ŝ =
{((xi, yi),�i)}mi=1 is

RŜ(MVρ) = 1
mn

m∑
i=1

n∑
j=1

I
[
MVρ(xi + εij) 6= yi

]
.

As we will show in Proposition 3.3.1, the risk RE(MVρ) is considered optimistic regard-
ing ε∗(x,y) of Equation (3.1). Indeed, instead of taking the ε maximizing the loss,
the ε is drawn from a distribution. Hence, it can lead to a non-informative risk if
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the ε are not informative enough to fool the classifier. To overcome this, we propose
an extension that we refer as averaged-max adversarial risk. Note that we abuse the
notation of the adversarial true risk defined in Definition 3.2.1.

Definition 3.2.3 (Averaged-Max Adversarial Risk). For any distribution E on
(X×Y)×B, for any distribution ρ on H, the averaged-max adversarial risk of MVρ
is defined as

AEn(MVρ) = P
((x,y),�)∼En

(
∃ ε ∈ �,MVρ(x + ε) 6= y

)
.

The empirical averaged-max adversarial risk computed on a m×n-sample Ŝ =
{((xi, yi),�i)}mi=1 is

AŜ(MVρ) = 1
m

m∑
i=1

max
ε∈�i

I [MVρ(xi + ε) 6= yi] .

For an example (x, y)∼D, instead of checking if one perturbed example x+ε is adver-
sarial, we sample n perturbed examples x+ε1, . . . ,x+εn and we check if at least one
example is adversarial.

3.3 Adversarially Robust PAC-Bayes
We show in Section 3.3.1 the relations between the different risks. Section 3.3.2
introduces the PAC-Bayesian bounds to assess the robustness of the majority vote.

3.3.1 Relations Between the Adversarial Risks
Proposition 3.3.1 below shows the intrinsic relationships between the classical adver-
sarial risk AD(MVρ) and our two relaxations RE(MVρ) and AEn(MVρ). In particular,
Proposition 3.3.1 shows that the larger number of perturbed examples n, the higher is
the chance to get an adversarial example and then to be close to the adversarial risk
AD(MVρ).

Proposition 3.3.1 (Relations Between the Averaged Adversarial Risks). For any
distribution E on (X×Y)×B, for any distribution ρ on H, for any (n, n′) ∈ N2, with
1 ≤ n′ ≤ n, we have

RE(MVρ) ≤ AEn′ (MVρ) ≤ AEn(MVρ) ≤ AD(MVρ). (3.2)
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Proof. Deferred to Appendix C.1. �

The left-hand side of Equation (3.2) confirms that the averaged adversarial risk RE(MVρ)
is optimistic regarding the classical AD(MVρ). Proposition 3.3.2 estimates how close
RE(MVρ) can be to AD(MVρ).

Proposition 3.3.2 (Classical and Averaged Adversarial Risks). For any distribution
E on (X× Y)× B, for any distribution ρ on H, we have

AD(MVρ)− TV(γ‖Γ) ≤ RE(MVρ),

where Γ and γ are distributions on X×Y and TV(γ‖Γ) = E(x′,y′)∼Γ
1
2

∣∣∣ γ(x′,y′)
Γ(x′,y′)−1

∣∣∣ ,
is the Total Variation (TV) distance between γ and Γ.
The density Γ(x′, y′) corresponds to the probability of drawing a perturbed example
(x′, y′) = (x+ε, y) with ((x, y), ε)∼E , i.e., we have

Γ(x′, y′) = Pr
((x,y),ε)∼E

[x+ε = x′, y = y′] .

The density γ(x′, y′) is the probability to draw an adversarial example (x′, y′) =
(x+ε∗(x,y), y) with (x, y)∼D, i.e., we have

γ(x′, y′) = Pr
(x,y)∼D

[x+ε∗(x, y) = x′, y = y′] .

Proof. Deferred to Appendix C.2. �

Note that ε∗(x,y) depends on ρ, hence γ depends on ρ. From Proposition 3.3.2 and
the distributions Γ and γ, the risks AD(MVρ) and RE(MVρ) can be rewritten as

RE(MVρ) = Pr
(x′,y′)∼Γ

[MVρ(x′) 6= y′] ,

and AD(MVρ) = Pr
(x′,y′)∼γ

[MVρ(x′) 6= y′] .

Finally, Propositions 3.3.1 and 3.3.2 relate the adversarial risk RE(MVρ) to the “stan-
dard” adversarial risk AD(MVρ). Indeed, from the two propositions we obtain

AD(MVρ)− TV(γ‖Γ) ≤ RE(MVρ) ≤ AEn(MVρ) ≤ AD(MVρ). (3.3)

Hence, the smaller the TV distance TV(γ‖Γ), the closer the averaged adversarial
risk RE(MVρ) is from AD(MVρ) and the more probable an example ((x, y), ε) sampled
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from E would be adversarial, i.e., when our “averaged” adversarial example looks
like a “specific” adversarial example. Moreover, Equation (3.3) justifies that the PAC-
Bayesian point of view makes sense for adversarial learning with theoretical guarantees:
the PAC-Bayesian guarantees we derive in the next section for our adversarial risks
implies guarantees on the adversarial risk AD(MVρ).

3.3.2 PAC-Bayesian Bounds on the Adversarially Robust
Majority Vote

To derive PAC-Bayesian generalization bounds on the risk RE(MVρ), respectively on
AEn(MVρ), we consider one of the classical surrogates, i.e., the Gibbs risk (Defini-
tion 2.2.5), defined below in Equation (3.4), respectively Equation (3.5).

Definition 3.3.1 (Surrogates on the Averaged Adversarial Risks). For any distri-
bution E on (X×Y)× �, for any hypothesis set H, for any ρ on H,

rE(ρ) = E
((x,y),ε)∼E

1
2

[
1− E

h∼ρ
yh(x+ε)

]
, (3.4)

and aEn(ρ) = E
((x,y),�)∼En

1
2

[
1−min

ε∈�

(
y E
h∼ρ

h(x+ε)
)]
. (3.5)

Put into words, these surrogates are expressed as the expectation over ρ of the individ-
ual risks of the voters involved in H. From an algorithmic perspective, rE(ρ) and aEn(ρ)
have the advantages (i) of being differentiable contrary to RE(MVρ) and AEn(MVρ),
and (ii) to upper-bound to RE(MVρ) and AEn(MVρ) as follows.

Theorem 3.3.1 (Upper Bounds on the Surrogates). For any distributions E on
(X×Y)×B and ρ on H, for any n>1, we have

RE(MVρ) ≤ 2rE(ρ), and AEn(MVρ) ≤ 2aEn(ρ).

Proof. Deferred to Appendix C.3. �

This theorem implies that a generalization bound on rE(ρ), resp aEn(ρ) leads to a gen-
eralization bound on RE(MVρ), resp., AEn(MVρ). Theorem 3.3.2 resp. Theorem 3.3.3
below presents our PAC-Bayesian generalization bounds for rE(ρ) resp. aEn(ρ).
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Theorem 3.3.2 (PAC-Bayesian Bound on rE(ρ)). For any distribution E on
(X×Y)×B, for any set of voters H, for any prior π ∈ M ∗ (H) on H, for any
n ∈ N∗, with probability at least 1−δ over Ŝ ∼ (En)m, for all posteriors ρ ∈ M(H)
on H, we have

kl(rŜ(ρ)‖rE(ρ)) ≤ 1
m

[
KL(ρ‖π) + ln m+ 1

δ

]
, (3.6)

and rE(ρ) ≤ rŜ(ρ) +
√

1
2m

[
KL(ρ‖π) + ln m+ 1

δ

]
, (3.7)

where rŜ(ρ) = 1
mn

m∑
i=1

n∑
j=1

1
2

[
1−yi E

h∼ρ
h(xi+εij)

]
.

Proof. Deferred to Appendix C.4. �

It is important to mention that the empirical counterpart of rE(ρ) is computed on Ŝ
which is composed of non identically independently distributed samples, meaning that
a “classical” proof technique is not applicable. The trick here is to make use of a result
of Ralaivola et al. (2010) that provides a chromatic PAC-Bayesian bound, i.e., a
bound which supports non-independent data. Surprisingly, this theorem states bounds
that do not depend on the number of perturbed examples n but only on the number of
original examples m. The reason is that the n perturbed examples are inter-dependent
(see the proof in Appendix). Note that Equation (3.6) is expressed as a Seeger
(2002)’s bound and is tighter but less interpretable than Equation (3.7) expressed as
a McAllester (1998)’s bound; these bounds involve the usual trade-off between
the empirical risk rŜ(ρ) and KL(ρ‖π).
We now state a generalization bound for aEn(ρ). Since this value involves a minimum
term, we cannot use the same trick as for Theorem 3.3.2. To bypass this issue, we use
the TV distance between two “artificial” distributions on �i. Given ((xi, yi),�i) ∈ Ŝ,
let Θi be an arbitrary distribution on �i, and given h ∈ H, let θhi be a Dirac distribution
on �i such that θhi (ε)=1 if ε= argmaxε∈�i

1
2

[
1−yih(xi+ε)

]
(i.e., if ε is maximizing the

linear loss), and 0 otherwise.

Theorem 3.3.3 (PAC-Bayesian Bound on aEn(ρ)). For any distribution E on
(X×Y)×B, for any set of voters H, for any prior π ∈ M∗(H) on H, for any n ∈ N∗,
with probability at least 1−δ over Ŝ ∼ (En)m, for all posteriors ρ ∈ M(H) on H, for
all i ∈ {1, . . . ,m}, for all distributions Θi on �i independent from a voter h ∈ H,
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we have

aEn(ρ) ≤ 1
m

E
h∼ρ

m∑
i=1

max
ε∈�i

1
2 (1−yih(xi+ε)) +

√
1

2m
[
KL(ρ‖π) + ln 2

√
m
δ

]
(3.8)

≤ aŜ(ρ) + 1
m

m∑
i=1

E
h∼ρ

TV(θhi ‖Θi) +
√

1
2m

[
KL(ρ‖π) + ln 2

√
m
δ

]
, (3.9)

where the empirical risk aŜ(ρ) = 1
m

∑m
i=1

1
2

[
1−minε∈�i

(
yi Eh∼ρ h(xi+ε)

)]
, and

the TV distance TV(θ‖Θ) = Eε∼Θ
1
2

∣∣∣[ θ(ε)Θ(ε)

]
−1
∣∣∣.

Proof. Deferred to Appendix C.5. �

To minimize the true averaged-max risk aEn(ρ) from Equation (3.8), we have to min-
imize a trade-off between KL(ρ‖π) (i.e., how much the posterior weights are close to
the prior ones) and the empirical risk 1

m
Eh∼ρ

∑m
i=1 maxε∈�i 1

2 (1−yih(xi+ε)). How-
ever, to compute the empirical risk, the loss for each voter and each perturbation has
to be calculated and can be time-consuming. With Equation (3.9), we propose an
alternative, which can be efficiently optimized using 1

m

∑m
i=1 Eh∼ρ TV(θhi ‖Θi) and the

empirical averaged-max risk aŜ(ρ). Intuitively, Equation (3.9) can be seen as a trade-
off between the empirical risk, which reflects the robustness of the majority vote, and
two penalization terms: the KL term and the TV term. The KL-divergence KL(ρ‖π)
controls how much the posterior ρ can differ from the prior ones π. While the TV
term Eh TV(θhi ‖Θi) controls the diversity of the voters, i.e., the ability of the voters to
be fooled on the same adversarial example. From an algorithmic view, an interesting
behavior is that the bound of Equation (3.9) stands for all distributions Θi on �i. This
suggests that given (xi, yi), we want to find Θi minimizing Eh∼ρ TV(θhi ‖Θi). Ideally,
this term tends to 0 when Θi is close3 to θhi and all voters have their loss maximized
by the same perturbation ε ∈ �i.

To learn a well-performing majority vote, one solution is to minimize the right-hand
side of the bounds, meaning that we would like to find a good trade-off between
a low empirical risk rŜ(ρ) or aŜ(ρ) and a low divergence between the prior weights
and the learned posterior ones KL(ρ‖π). However, the bounds of Equation (3.8) and
Equation (3.6) are, in their form, not appealing for optimization. Firstly, Equation (3.6)
is not directly optimizable since we upper-bound the kl() function between the empirical

3Since θhi is a Dirac distribution, we have Eh TV(θhi ‖Θi)= 1
2

[
1−Eh Θi(ε∗h)+ Eh

∑
ε 6=ε∗

h
Θi(ε)

]
,

with ε∗h = argmaxε∈�i

1
2
[
1−yih(xi+ε)

]
.

– 91 –



3.3. Adversarially Robust PAC-Bayes

and true risk. To obtain an optimizable bound, we can use the kl() function introduced
in Definition 2.3.3. Secondly, from an algorithmic perspective, the prior π is fixed and
cannot depend on the learning sample S. To overcome this issue, we propose to use
the union bound by considering T priors that can be selected a posteriori with S; the
two new bounds are presented in the following corollaries.

Corollary 3.3.1 (PAC-Bayesian Bound on rE(ρ)). For any distribution E on
(X×Y)×B, for any set of voters H, for any T ∈ N∗, for any priors’ set
{π1, . . . , πT} ∈ M∗(H)T , for any n ∈ N∗, with probability at least 1−δ over Ŝ ∼
(En)m, for all posteriors ρ ∈ M(H) on H, for any π ∈ {π1, . . . , πT} ∈ M∗(H)T we
have

rE(ρ) ≤ kl
(
rŜ(ρ)

∣∣∣∣∣ 1
m

[
KL(ρ‖π)+ ln T (m+1)

δ

])
. (3.10)

Proof. Deferred to Appendix C.6. �

Corollary 3.3.2 (PAC-Bayesian Bound on aEn(ρ)). For any distribution E on
(X×Y)×B, for any set of voters H, for any prior π on H, for any n ∈ N∗, with
probability at least 1−δ over Ŝ ∼ (En)m, for all posteriors ρ ∈ M(H) on H, for all
i ∈ {1, . . . ,m}, for all distributions Θi on �i independent from a voter h ∈ H, we
have

aEn(ρ) ≤ aŜ(ρ)+ 1
m

m∑
i=1

E
h∼ρ

TV(θhi ‖Θi) +
√

1
2m
[
KL(ρ‖π)+ ln 2T

√
m

δ

]
. (3.11)

Proof. Deferred to Appendix C.6. �

Thanks to Corollaries 3.3.1 and 3.3.2, we now derive an algorithm that minimizes such
bounds.

3.3.3 From the Bounds to an Algorithm
We are now able to derive a learning algorithm that minimizes either the bound in
Equation (3.10) or Equation (3.11): it is a self-bounding algorithm (Freund, 1998).
We consider a finite set of voters H that are differentiable and where each h ∈ H is
parametrized by a weight vector wh. Inspired by Masegosa et al., 2020, the vot-
ers of H and the data-dependent prior distribution π is learned from a first learning
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set S′ (independent from S); this is a common approach in PAC-Bayes (Parrado-
Hernández et al., 2012; Lever et al., 2013; Dziugaite and Roy, 2018; Dz-
iugaite et al., 2021). Then, the posterior distribution is learned from the second
learning set S by minimizing the bounds of Corollaries 3.3.1 and 3.3.2. Concretely, we
minimize an objective function that is approximated with a mini-batch U ⊆ S. The
objective function to optimize Equation (3.10) resp. Equation (3.11) is defined as

GU(ρ) = kl
(
rU(ρ)

∣∣∣∣∣ 1
m

[
KL(ρ‖π)+ ln T (m+1)

δ

])
,

resp. GU(ρ) = aU(ρ) +
√

1
2m

[
KL(ρ‖π) + ln 2T

√
m

δ

]
.

The TV distance does not appear in the objective function, since we make the choice
to set n=1, i.e., we sample one noise per example. Indeed, when n=1, the value of
the TV distance is 0. Note that, if we had n > 1 we would have to minimize it.
We propose now an adversarial training algorithm which is based on a two-step learning
procedure presented in Algorithm 3.1. The first step of the algorithm aims at building
the set of voters H and the associated prior π, the second is dedicated to the learning
of the majority vote parameter ρ by minimizing the objective function associated to
our bound. These steps are presented below.

Attacking the examples. The attacks in Algorithm 3.1 differ from the attack that
generates the perturbed set Ŝ (to compute the bound). Indeed, at each iteration (in
both steps), we attack an example with the current model while Ŝ is generated with
the prior majority vote MVπ (the output of Step 1).
Step 1. Starting from an initial prior π0 (e.g., the uniform distribution) and an initial
set of voters H0, where each voter h is parametrized by a weight vector wh

0 , the ob-
jective of this step is to construct the hypothesis set H and the prior distribution π to
give as input to Step 2 for minimizing the bound. To do so, at each epoch t of Step
1, we learn from S′ an “intermediate” prior πt on an “intermediate” hypothesis set Ht
consisting of voters h parametrized by the weights wh

t ; note that the optimization is
done with respect to wt={wh

t }h∈Ht . At each iteration of the optimizer, for each (x, y)
of the current mini-batch U, we attack the majority vote MVπt to obtain a perturbed
example x + ε. Then, we perform a forward pass in the majority vote with the per-
turbed examples and update the weights wt and the prior πt according to the linear
loss. To sum up, at the end of Step 1, the prior π and the hypothesis set H constructed
for Step 2 are the ones associated to the best epoch t∗ ∈ {1, . . . , T ′} that permits to
minimize rSt(MVπt), where St is the perturbed set obtained by attacking the majority
vote MVπt with the examples of S. Our selection of the prior π with S may seem like
“cheating”, but this remains a valid strategy since Equations (3.10) and (3.11) hold
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for all prior π ∈ {π1, . . . , πT}.

Step 2. Starting from the prior π on H and the learning set S, we perform the same
process as in Step 1 except that the considered objective function corresponds to the
desired bound to optimize (denoted G()). Note that the “intermediate” priors do not
depend on S, since they are learned from S′: the bounds are then valid.

Algorithm 3.1 Average Adversarial Training with Guarantee
Given: disjoint learning samples S and S′, initial prior π0 on H0 (with w0),

the objective function G()
Hyperparameters: number of epochs T, T ′, the attack function

Step 1 – Prior and Voters’ Set Construction

for t← 1 to T ′ do
πt←πt−1 and Ht ← Ht−1 (wt ← wt−1)
for all mini-batch U ⊆ S′ do

U← Attack MVπt with the examples (x, y) in the mini-batch U
Update πt with ∇πtrU(πt)
Update wt with ∇wtrU(πt)

St ← Attack MVπt with the examples of S
(π,H)← (πt∗ ,Ht∗) with t∗ ← argmint′∈{1,...,t} rSt′ (πt′)

Step 2 – Bound Minimization

ρ0 ← π
for t← 1 to T do

ρt ← ρt−1
for all mini-batch U ⊆ S do

U← Attack MVπ with the examples (x, y) in the mini-batch U
Update ρt with ∇ρtGU(ρt)

St ← Attack MVπ with the examples of S
ρ← ρt∗ with t∗ ← argmint′∈{1,...,t}GSt′ (ρt′)
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3.4 Experimental Evaluation on Differentiable
Decision Trees

3.4.1 Experiments
In this section, we empirically illustrate that our PAC-Bayesian framework for adver-
sarial robustness is able to provide generalization guarantees with non-vacuous bounds
for the adversarial risk.

Setting. We stand in a white-box setting meaning that the attacker knows the voters
set H, the prior distribution π, and the posterior one ρ. The set of voters is composed
of 25 differentiable decision trees (Kontschieder et al., 2016); see Appendix C.7
for more details. We empirically study two attacks with the `2-norm and `∞-norm: the
Projected Gradient Descent (pgd, Madry et al. (2018)) and the iterative version of
fgsm (ifgsm, Kurakin et al. (2017)). We fix the number of iterations at k=20 and
the step size at b

k
for pgd and ifgsm (where b=1 for `2-norm and b=0.1 for `∞-norm).

One specificity of our setting is that we deal with the perturbation distribution B(x,y).
However, in order to obtain valid bounds, B(x,y) must be defined a priori. Since the
prior π is defined a priori as well, B(x,y) can depend on π. Hence, B(x,y) boils down
to generating a perturbed example (x+ε, y) by attacking the prior majority vote MVπ.
Based on this fact, we propose pgdU and ifgsmU, two variants of pgd and ifgsm.
To attack an example with pgdU or ifgsmU we proceed with the following steps.

(i) We attack the prior majority vote MVπ with the attack pgd or ifgsm: we will
obtain a first perturbation ε′;

(ii) We sample n uniform noises ζ1, . . . , ζn between −10−2 and +10−2;

(iii) We set the i-th perturbation as εi = ε′ + ζi.

Note that, for pgdU and ifgsmU, after one attack we end up with n=100 perturbed
examples. For Algorithm 3.1, when these attacks are used as a defense mechanism, we
set n=1. This makes sound since our adversarial training is iterative, we do not need to
sample numerous perturbations for each example: we sample a new perturbation each
time the example is forwarded through the decision trees. We additionally consider
a naive defense referred to as unif that only adds a noise uniformly such that the
`p-norm of the added noise is lower than b.
We study the following scenarios of defense/attack: they correspond to all the pairs
(Defense,Attack) belonging to the set {—,unif,pgd, ifgsm}×{—,pgd, ifgsm} for
the baseline, and {—,unif,pgdU, ifgsmU}×{—,pgdU, ifgsmU}, where “—” means
that we do not defend, i.e., the attack returns the original example (note that pgdU
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and ifgsmU when “Attack without u” refers to pgd and ifgsm for computing the
classical adversarial risk).

Datasets and algorithm description. We perform our experiment on six binary
classification tasks from MNIST (LeCun et al., 1998) (1vs7, 4vs9, 5vs6) and Fashion
MNIST (Xiao et al., 2017) (Coat vs Shirt, Sandal vs Ankle Boot, Top vs Pullover).
We decompose the learning set into two disjoint subsets S′ of around 7, 000 examples
(to learn the prior and the voters) and S of exactly 5, 000 examples (to learn the
posterior). We keep as test set T the original test set that contains around 2, 000
examples. Moreover, we need a perturbed test set, denoted by T̂, to compute our
averaged(-max) adversarial risks. Depending on the scenario, T̂ is constructed from
T by attacking the prior model MVπ with pgdU or ifgsmU with n=100. We run
our Algorithm 3.1 for Equation (3.6) (Theorem 3.3.2), respectively Equation (3.9)
(Theorem 3.3.3), and we compute our risk RT̂ (MVρ), respectively AT̂ (MVρ), the bound
value and the usual adversarial risk associated to the model learned AT (MVρ). Note
that, during the evaluation of the bounds, we have to compute our relaxed adversarial
risks RŜ(MVρ) and AŜ(MVρ) on S. For Step 1, the initial prior P0 is fixed to the
uniform distribution, the initial set of voters H0 is constructed with weights initialized
with Xavier Initializer (Glorot and Bengio, 2010) and bias initialized at 0. During
Step 2, to optimize the bound, we fix the confidence parameter δ=0.05, and we consider
two settings for H: the set H as it is output by Step 1, and the set Hsign = {h′(·) =
sign(h(·)) |h ∈ H} for which the theoretical results are still valid. Note that for all
attacks on the majority votes with Hsign, in order to be differentiable with respect to
the input, we remove the sign() function on the voters’ outputs during the attacks.
For the two steps, we use Adam optimizer (Kingma and Ba, 2015) for T=T ′=20
epochs with a learning rate at 10−2 and a batch size at 64.

Analysis of the results. For the sake of readability, we exhibit the detailed results for
one task (MNIST:1vs7) and all the pairs (Defense,Attack) with `2-norm in Table 3.1,
and we report in Figure 3.2 the influence of the TV term in the bound of Theorem 3.3.3
(Equation (3.9)). The detailed results on the other tasks are reported in Appendix C.8.
We provide in Figure 3.3 an overview of the results we obtained on all the tasks for
the pairs (Defense,Attack) where “Defense=Attack” and with Hsign.
First of all, from Table 3.1 the bounds of Theorem 3.3.2 are tighter than the ones of
Theorem 3.3.3: this is an expected result since we showed that the averaged-max adver-
sarial risk AEn(MVρ) is more pessimistic than its averaged counterpart RE(MVρ). Note
that the bound values of Equation (3.8) are tighter than the ones of Equation (3.9).
This is expected since Equation (3.8) is a lower bound on Equation (3.9).
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Table 3.1. Test risks and bounds for MNIST:1vs7 with n=100 perturbations for all
pairs (Defense,Attack) with the two voters’ set H and Hsign. The results in bold
correspond to the best values between results for H and Hsign. To quantify the gap
between our risks and the classical definition we put in italic the risk of our models
against the classical attacks: we replace pgdU and ifgsmU by pgd or ifgsm (i.e., we
did not sample from the uniform distribution). Since Eq. (3.9) upper-bounds Eq. (3.8)
thanks to the TV term, we compute the two bound values of Theorem 3.3.3.

`2-norm Algo. 3.1 with Eq. (3.6) Algo. 3.1 with Eq. (3.9)

b = 1 Attack without u Attack without u

AT (MVρ) RT̂(MVρ) Th. 3.3.2 AT (MVρ) AT̂(MVρ) Th. 3.3.3 - Eq. (3.9) Th. 3.3.3 - Eq. (3.8)

Defense Attack Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H

— — .005 .005 .005 .005 .017 .019 .005 .005 .005 .005 .099 0.100 .099 .100
— pgdU .245 .255 .263 .276 .577 .448 .315 .313 .325 .326 .801 1.667 .684 .515

— ifgsmU .084 .086 .066 .080 .170 .185 .117 .113 .106 .110 .356 1.431 .286 .251

unif — .005 .005 .005 .005 .018 .019 .005 .005 .005 .005 .099 0.100 .099 .100
unif pgdU .151 .146 .151 .158 .355 .292 .183 .178 .190 .189 .531 1.620 .454 .355

unif ifgsmU .063 .061 .031 .035 .088 .114 .071 .070 .056 .054 .248 1.405 .200 .186

pgdU — .006 .007 .006 .007 .023 .024 .006 .007 .006 .007 .102 0.103 .102 .103
pgdU pgdU .028 .030 .021 .025 .065 .064 .028 .029 .025 .028 .143 1.389 .137 .136

pgdU ifgsmU .021 .022 .013 .016 .043 .045 .022 .022 .018 .019 .125 1.362 .121 .119

ifgsmU — .006 .007 .006 .007 .019 .021 .006 .007 .006 .007 .100 0.102 .100 .102
ifgsmU pgdU .040 .041 .033 .035 .086 .094 .040 .039 .040 .038 .184 1.368 .166 .163

ifgsmU ifgsmU .021 .022 .013 .014 .039 .049 .021 .022 .018 .021 .131 1.329 .122 .123

Second, the bounds with Hsign are all informative (lower than 1) and give insightful
guarantees for our models. For Theorem 3.3.3 (Equation (3.9)) with H, while the risks
are comparable to the risks obtained with Hsign, the bound values are greater than 1,
meaning that we have no more guarantee on the model learned. As we can observe in
Figure 3.2, this is due to the TV term involved in the bound. Considering Hsign when
optimizing A() helps to control the TV term. Even if the bounds are non-vacuous for
Theorem 3.3.2 with H, the best models with the best guarantees are obtained with
Hsign. This is confirmed by the columns AT (MVρ) that are always worse than RT̂ (MVρ)
and mostly worse than AT̂ (MVρ) with Hsign. The performance obtained with Hsign can
be explained by the fact that the sign “saturates” the output of the voters which makes
the majority vote more robust to noises. Thus, we focus the rest of the analysis on
results obtained with Hsign.
Third, we observe that the naive defense unif is able to improve the risks RT̂ (MVρ)
and AT̂ (MVρ), but the improvement with the defenses based on pgdU and ifgsmU
is much more significant specifically against a pgdU attack (up to 13 times better).
We observe the same phenomenon for both bounds (Theorems 3.3.2 and 3.3.3). This
is an interesting fact because this behavior confirms that we are able to learn models
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Figure 3.2. Visualization of the impact of the TV term in Equation (3.9). The
top, respectively the bottom, bar plot show the bounds for the set of voters Hsign,
respectively H. We plot the bounds for all the scenarios of Table 3.1 that use the TV
distance, i.e., all except the pairs (·, —). In orange we represent the value of the TV
term while in blue we represent all the remaining terms of the bound.

that are robust against the attacks tested with theoretical guarantees.
Lastly, from Figure 3.3 and Table 3.1, it is important to notice that the gap between
the classical risk and our relaxed risks is small, meaning that our relaxation are not too
optimistic. Despite the pessimism of the classical risk AT (MVρ), it remains consistent
with our bounds, i.e., it is lower than the bounds. In other words, in addition to giving
upper bounds for our risks RT̂ (MVρ) and AT̂ (MVρ), our bounds give non-vacuous
guarantees on the classical risks AT (MVρ).

3.5 Conclusion and Summary
To the best of our knowledge, our work is the first one that studies adversarial ro-
bustness through the PAC-Bayesian theory for the ρ-weighted majority vote. We have
started by formalizing a new adversarial robustness setting (for binary classification)
with our new averaged risks. This formulation allowed us to derive PAC-Bayesian gen-
eralization bounds on the majority vote’s adversarial risk. We illustrated the usefulness
of this setting on the training of (differentiable) decision trees. The main objective
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Figure 3.3. Visualization of the risk and bound values for “Defense=Attack” when the
set of voters is Hsign. Results obtained with the pgdU, respectively ifgsmU, defense
are represented by a star F, respectively a circle  (reminder: AT (MVρ) is computed
with a pgd, respectively ifgsm, attack). The dashed line corresponds to bisecting line
y=x. For RT̂ (MVρ) and AT̂ (MVρ), the closer the datasets are to the bisecting line, the
more accurate our relaxed risk is compared to the classical adversarial risk AT (MVρ).
For the bounds, the closer the datasets are to the bisecting line, the tighter the bound.
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of this work was to provide some theoretical guarantees for adversarial training. Our
aim was not to improve directly the performance of the state of the art which would
require a dedicated work.

One of the limitation of this work is that this PAC-Bayesian analysis holds for a ma-
jority vote only. One perspective is then to extend this work for other classifiers
such as neural networks. To do so, we can leverage the disintegrated PAC-Bayesian
generalization bounds (introduced in Section 2.4) to bound the adversarial risk of
a single classifier belonging to H and sampled from ρ. Another perspective of this
work is to continue analyzing the adversarial true risk of the majority vote. In-
deed, the C-Bound (Lacasse et al., 2006) or the joint error (Masegosa et al.,
2020) (introduced in Section 2.2.2) adapted to our averaged risks might be a bet-
ter choice to obtain a self-bounding algorithm since the it is more precise than twice
the Gibbs risk (see Theorem 2.2.4). Moreover, thanks to the 1

2 -margin of Lavio-
lette et al. (2017) (recalled in Definition 2.2.4), the multi-class case can be consid-
ered.

In the next chapters, we consider the classical supervised setting, i.e., where no inputs’
perturbations are added. For instance, Chapters 4 and 5 focus on deriving new learning
algorithms for the majority vote in the classical supervised setting. More precisely, we
derive, in Chapter 4, the first self-bounding algorithms based on the minimization of
the PAC-Bayesian C-Bound (i.e. PAC-Bayesian bounds on the C-Bound). Chapter 5
presents a algorithm to minimize the risk of a PAC-Bayesian stochastic majority vote
(where the distribution ρ are sampled from another distribution).
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This chapter is based on the following paper

Paul Viallard, Pascal Germain, Amaury Habrard, and Emilie Mor-
vant. Self-bounding Majority Vote Learning Algorithms by the Direct Minimization
of a Tight PAC-Bayesian C-Bound. Machine Learning and Knowledge Discovery in
Databases (ECML PKDD). (2021a)
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Abstract

As we have seen in Chapter 2, the C-Bound is an insightful upper bound on the
risk of a majority vote classifier. Learning algorithms in the literature minimize
the empirical version of the C-Bound, instead of explicit PAC-Bayesian general-
ization bounds. In this chapter, we derive self-bounding majority vote learning
algorithms to directly optimize PAC-Bayesian guarantees on the C-Bound. Our
algorithms based on gradient descent are scalable and lead to accurate predictors
paired with non-vacuous guarantees.
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4.1 Introduction
In this chapter, we introduce new learning algorithms for the majority vote in the con-
text of supervised classification. The goal of this algorithm is to minimize the true risk
of the majority vote. To do so, one way to minimize such a risk is to minimize the em-
pirical C-Bound (Breiman, 2001; Lacasse et al., 2006) introduced in Section 2.2.2
and estimated on the learning sample S. This bound has the advantage of involving
the performance of the individual voters and the diversity in the voters’ set. Indeed,
these elements are important when one learns a combination (Dietterich, 2000;
Kuncheva, 2014). A good majority vote is made up of voters that are “sufficiently
diverse”.

Previous algorithms have been developed to minimize the empirical C-Bound such as
MinCq (Roy et al., 2011), P-MinCq (Bellet et al., 2014), CqBoost (Roy et al.,
2016), or CB-Boost (Bauvin et al., 2020). Roy et al. (2011) first proposed MinCq
which consist in minimizing a quadratic problem to learn a majority vote. MinCq consid-
ers a specific voters’ set to regularize the minimization process; the algorithm P-MinCq
generalizes MinCq by allowing prior distributions different from the uniform one. One
drawback of MinCq and P-MinCq is that the optimization problem is not scalable to
large datasets. Lately, Bauvin et al. (2020) proposed CB-Boost that minimizes in
a boosting-based procedure with the advantage to be more scalable while obtaining
sparser majority vote. However, since both MinCq and CB-Boost minimize the em-
pirical C-Bound, the PAC-Bayesian generalization bound associated with their learned
majority vote predictors can be vacuous. Note that CB-Boost has been proposed to
improve another algorithm called CqBoost (Roy et al., 2016). Despite being empir-
ically efficient and justified by theoretical analyses based on the C-Bound, all these
methods minimize the empirical C-Bound and not directly a PAC-Bayesian generaliza-
tion bound on the C-Bound. This can lead to vacuous generalization bound values
and, thus, to poor risk certificates. When it comes to deriving a learning algorithm
that directly minimizes a PAC-Bayesian bound, it is mentioned in the literature that
optimizing a PAC-Bayesian bound on the C-bound is not trivial (Lorenzen et al.,
2019; Masegosa et al., 2020). This underlines the need for other majority vote learn-
ing algorithms based on the C-Bound, which motivates our contributions of Section 4.4.

We cover in this chapter three different PAC-Bayesian viewpoints on generalization
bounds for the C-Bound (Seeger, 2002; McAllester, 2003; Lacasse et al.,
2006). We derive three algorithms from these three views to optimize generalization
bounds on the C-Bound. By doing so, we achieve self-bounding algorithms (Freund,
1998): the predictor returned by the learner comes with a statistically valid risk upper
bound. Importantly, our algorithms rely on fast gradient descent procedures. As far
as we know, this is the first work that proposes both efficient algorithms for C-Bound
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optimization and non-trivial risk-bound values.

We provide all the proofs in Appendix D for completeness.

4.2 Setting
We stand in supervised classification by following Chapter 2. In this context, let X ⊆ Rd

be a d-dimensional input space, and Y the label space defined by Y = {−1,+1} (in
binary classification) or Y = {1, 2, . . . , l} (in multi-class classification). We assume an
unknown data distribution D on X×Y and a learning sample S={(xi, yi)}mi=1 where
each example (xi, yi) is drawn i.i.d. from D; we denote by S ∼ Dm the random draw
of such a sample. Given H a hypothesis set constituted by voters h : X→Y, and S,
the learner aims to find a weighted combination of the voters from H; a distribution
models the weights on H. To learn such a combination in the PAC-Bayesian framework,
we assume a prior distribution π ∈ M∗(H) on H, and—after the observation of S—
we learn a posterior distribution ρ ∈ M(H) on H. More precisely, we aim to learn a
well-performing classifier that is expressed as a ρ-weighted majority vote MVρ defined
as

∀x ∈ X, MVρ(x) , argmax
y′∈Y

P
h∼ρ

[h(x) = y′] = argmax
y′∈Y

E
h∼ρ

I [h(x) = y′] .

We thus want to learn MVρ that commits as few errors as possible on unseen data
from D, i.e., that leads to a low true risk RD(MVρ) under the 01-loss defined as

RD(MVρ) , E
(x,y)∼D

I [MVρ(x) 6= y] = P
(x,y)∼D

[MVρ(x) 6= y] .

Since the majority vote’s risk is not appealing for optimization (because its gradient
is zero everywhere), some surrogates have been introduced (see Section 2.2.2). For
instance, the Gibbs risk (Definition 2.2.5) is the average risk of the voters and is defined
by

rD(ρ) , E
(x,y)∼D

E
h∼ρ

I [h(x) 6= y] = P
(x,y)∼D,h∼ρ

[h(x) 6= y] .

Unlike the Gibbs risk, the disagreement (Definition 2.2.7) defined as
dD(ρ) , 2 · E

(x,y)∼D
E
h∼ρ

E
h′∼ρ

I [h(x) 6= y] I [h′(x) = y] ,

takes the diversity of the voters into account. Moreover, the joint error (Defini-
tion 2.2.6) can be seen as a trade-off between these two quantities. It is defined as

eD(ρ) , E
(x,y)∼D

E
h∼ρ

E
h′∼ρ

I
[
h(x) 6= y

]
I
[
h′(x) 6= y

]
= rD(ρ)− 1

2dD(ρ).
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By combining these surrogates, one can prove an upper-bound on the majority vote
true risk called the C-Bound (Theorem 2.2.3) and defined as

RD(MVρ) ≤ 1− (1− 2rD(ρ))2

1− 2dD(ρ)

= 1−

(
1− [2eD(ρ) + dD(ρ)]

)2

1− 2dD(ρ) .

However, these surrogates and the C-Bound are not computable because the distribu-
tion D is considered unknown. Hence, we need to use PAC-Bayesian generalization
bounds in order to upper-bound the majority vote’s true risk with a C-Bound based
on the empirical counterparts of these surrogates. Combined with the C-Bound, the
PAC-Bayesian theory offers a natural way to analyze the risk of the majority vote. The
principal PAC-Bayesian bounds for the majority vote are recalled in the next section.

4.3 State of the Art: PAC-Bayesian Bounds for the
Majority Vote

This section recalls different PAC-Bayesian bounds upper-bounding the majority vote’s
true risk. In particular, we remind two PAC-Bayesian bounds used based on two
surrogates from Section 2.2.2: Gibbs risk rD(ρ) and the joint error eD(ρ). Additionally,
we recall three PAC-Bayesian bound on the C-Bound, that we call PAC-Bayesian C-
Bound, which is key in our contribution of this chapter. Note that the PAC-Bayesian
C-Bounds were initially developed for the binary setting but the extension for the
multi-class is direct with the 1

2 -margin of Laviolette et al. (2017).

4.3.1 PAC-Bayesian Bound on the Gibbs Risk
One PAC-Bayesian bound, originally derived by Germain et al. (2015), is based on
the Gibbs risk rD(ρ). It is recalled in the following theorem.

Theorem 4.3.1 (PAC-Bayesian Bound Based on the Gibbs Risk). For any distribu-
tion D on X×Y, for any hypothesis set H, for any distribution π ∈ M∗(H), for any
δ ∈ (0, 1], with probability at least 1−δ over the random choice of S ∼ Dm we have

∀ρ ∈ M(H), rD(ρ) ≤ kl
(
rS(ρ)

∣∣∣∣∣ 1
m

[
KL(ρ‖π) + ln 2

√
m

δ

])
,

and ∀ρ ∈ M(H), RD(MVρ) ≤ 2
[
kl
(
rS(ρ)

∣∣∣∣∣ 1
m

[
KL(ρ‖π) + ln 2

√
m

δ

])]
, (4.1)
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where kl(q|τ) , max
{
p ∈ (0, 1)

∣∣∣∣ kl(q‖p) ≤ τ
}

(see Section 2.3.1.3).

Proof. Deferred to Appendix D.1. �

However, since the Gibbs risk does not consider the voters’ correlation, the majority
votes obtained by minimizing this bound do not perform well in practice. Hence, other
PAC-Bayesian bounds have therefore been derived to address this issue.

4.3.2 PAC-Bayesian Bound on the Joint Error
Another PAC-Bayesian bound based on the joint error eD(ρ) can be derived (Germain
et al., 2015, Theorem 25). Compared to Theorem 4.3.1, the bound of Theorem 4.3.2
takes better into account the voters’ diversity (see Section 2.2.2).

Theorem 4.3.2 (PAC-Bayesian Bound Based on the Joint Error). For any distribu-
tion D on X×Y, for any hypothesis set H, for any distribution π ∈ M∗(H), for any
δ ∈ (0, 1], with probability at least 1−δ over the random choice of S ∼ Dm we have

∀ρ ∈ M(H), eD(ρ) ≤ kl
(
eS(ρ)

∣∣∣∣∣ 1
m

[
2 KL(ρ‖π) + ln 2

√
m

δ

])
,

and ∀ρ ∈ M(H), RD(MVρ) ≤ 4
[
kl
(
eS(ρ)

∣∣∣∣∣ 1
m

[
2 KL(ρ‖π) + ln 2

√
m

δ

])]
.

Proof. Deferred to Appendix D.2. �

Note that a looser bound based on the kl() relaxation of Thiemann et al. (2017) is
presented by Masegosa et al. (2020). However, from Theorem 2.2.4, we know that
there is a tighter bound on the majority vote’s risk: the C-Bound (Breiman, 2001;
Lacasse et al., 2006).

4.3.3 PAC-Bayesian C-Bound of Roy et al.
PAC-Bayesian bounds can be used jointly with the C-Bound to obtain a computable
bound on the majority vote’s true risk; we call such a bound a PAC-Bayesian C-
Bound. The most intuitive and interpretable PAC-Bayesian C-Bound has been derived
by Roy et al. (2016) and Laviolette et al. (2017). The first proof of this PAC-
Bayesian bound has been developed by (Roy et al., 2016) in the binary setting; it has
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been extended to the multi-class setting by Laviolette et al. (2017, Theorem 3).
It consists in upper-bounding separately the Gibbs risk rD(ρ) and the disagreement
dD(ρ) with the McAllester’s PAC-Bayesian bound (Theorem 2.3.2). This intuitive
PAC-Bayesian bound is recalled in the following theorem.

Theorem 4.3.3 (PAC-Bayesian C-Bound of Roy et al. (2016)). For any distribu-
tion D on X×Y, for any hypothesis set H, for any distribution π ∈ M∗(H), for any
δ ∈ (0, 1], with probability at least 1 − δ over the random choice of S ∼ Dm we
have for all ρ ∈ M(H)

RD(MVρ) ≤ 1−

(
1− 2 min

[
1
2 , rS(ρ)+

√
1

2m

[
KL(ρ‖π)+ ln 4

√
m
δ

]])2

1− 2 max
[
0, dS(ρ)−

√
1

2m

[
2 KL(ρ‖π)+ ln 4

√
m
δ

]]
︸ ︷︷ ︸

, CM
S(ρ)

. (4.2)

Proof. Deferred to Appendix D.3. �

While there is no algorithm that directly minimizes Theorem 4.3.3, this kind of inter-
pretable bound can be seen as a justification of the optimization of rS(ρ) and dS(ρ) in
the empirical C-Bound such as for MinCq (Roy et al., 2011) or CB-Boost (Bauvin
et al., 2020). In Section 4.4.1, we derive the first algorithm to directly minimize it.
However, this PAC-Bayesian C-Bound can have a severe disadvantage with a small m
and a Gibbs risk close to 1

2 : even for a KL(ρ‖π) close to 0, the value of the PAC-
Bayesian C-Bound will be close to 1. To overcome this drawback, one solution is
to follow another tighter PAC-Bayesian bound, the one proposed by Seeger (2002)
(Theorem 2.3.4). Actually, we further recall two bounds based on this approach: the
first one in Theorem 4.3.4 involves the Gibbs risk rS(ρ) and the disagreement dS(ρ)
(as Theorem 4.3.3) and the second one in Theorem 4.3.5 involves the joint error eS(ρ)
and the disagreement dS(ρ).

4.3.4 PAC-Bayesian C-Bound of Germain et al.
The PAC-Bayesian generalization bounds based on the Seeger’s approach are known
to produce tighter bounds. As for Theorem 4.3.3, the result below bounds indepen-
dently the Gibbs risk rD(ρ) and the disagreement dD(ρ); see the PAC-Bound 1 of
Germain et al. (2015). Note that Germain et al. (2015) proved the bound for the
binary setting but the multi-class setting is also handled. It is recalled in the following
theorem.
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Theorem 4.3.4 (PAC-Bayesian C-Bound of Germain et al. (2015)). For any
distribution D on X× Y, for any hypothesis set H, for any distribution π ∈ M∗(H),
for any δ ∈ (0, 1], with probability at least 1−δ over the random choice of S ∼ Dm
we have for all ρ ∈ M(H)

RD(MVρ) ≤ 1−

1−2 min
[

1
2 , kl

(
rS(ρ)

∣∣∣ 1
m

[
KL(ρ‖π)+ ln 4

√
m
δ

]) ]2

1−2 max
0, kl

(
dS(ρ)

∣∣∣ 1
m

[
2 KL(ρ‖π)+ ln 4

√
m
δ

]) 
︸ ︷︷ ︸

, CS
S(ρ)

. (4.3)

Proof. Deferred to Appendix D.4. �

Note that this PAC-Bayesian C-Bound is tighter than Equation (4.2) because the
Seeger’s PAC-Bayesian bound is tighter than the one of McAllester’s one (see
Section 2.3). However, one drawback of this PAC-Bayesian C-Bound is that the Gibbs
risk rD(ρ) and the disagreement dD(ρ) are upper-bounded independently.

4.3.5 PAC-Bayesian C-Bound of Lacasse et al.
Lacasse et al. (2006) proposed to bound simultaneously the joint error eD(ρ) and the
disagreement dD(ρ). Here, to compute the bound, we need to find the worst C-Bound
value that can be obtained with a couple of joint error and disagreement denoted by
(e, d) belonging to the set AS(ρ) that is defined by

AS(ρ) =

(e, d)
∣∣∣∣ kl (eS(ρ), dS(ρ)‖e, d) ≤ 1

m

[
2 KL(ρ‖π) + ln 2

√
m+m
δ

]
,

d ≤ 2
√
e−2e , 2e+d < 1

,
where kl(q1,q2‖p1,p2) = q1 ln q1

p1
+ q2 ln q2

p2
+ (1−q1−q2) ln 1−q1−q2

1−p1−p2
.

Based on AS(ρ), Lacasse et al. (2006) derive the following PAC-Bayesian C-Bound.

Theorem 4.3.5 (PAC-Bayesian C-Bound of Lacasse et al. (2006)). For any
distribution D on X× Y, for any hypothesis set H, for any distribution π ∈ M∗(H),
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for any δ ∈ (0, 1], with probability at least 1−δ over the random choice of S ∼ Dm
we have for all ρ ∈ M(H)

RD(MVρ) ≤ sup
(e,d)∈AS(ρ)

[
1− (1− (2e+ d))2

1− 2d

]
,

where AS(ρ) =

(e, d)
∣∣∣∣ kl (eS(ρ), dS(ρ)‖e, d) ≤ 1

m

[
2 KL(ρ‖π) + ln 2

√
m+m
δ

]
,

d ≤ 2
√
e−2e , 2e+d < 1

.

Proof. Deferred to Appendix D.5. �

This PAC-Bayesian C-Bound can be more challenging to compute: it requires to solve
a (convex) optimization problem to obtain a bound value.

4.4 Contribution: Algorithms based on the
PAC-Bayesian C-Bounds

In this section, we present three self-bounding algorithms minimizing directly the PAC-
Bayesian C-Bounds introduced previously.

4.4.1 Algorithm based on Equation (4.2)

Algorithm 4.1 Minimization of Equation (4.2) by Stochastic Gradient Descent
Given: learning sample S, prior distribution π ∈ M∗(H), the objective function
GM
S(ρ)

Hyperparameters: number of iterations T
ρ← π
for t← 1 to T do

for all mini-batches U ⊆ S do
ρ← Update ρ with GM

U(ρ) by gradient descent1

return ρ

1The update of ρ can be done with a vanilla gradient descent or with the update of another
algorithm like Adam (Kingma and Ba, 2015) or COCOB (Orabona and Tommasi, 2017).
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We derive in Algorithm 4.1 a method to directly minimize the PAC-Bayesian C-Bound of
Theorem 4.3.3 by stochastic gradient descent. An important aspect of the optimization
is that if rS(ρ)+

√
1

2m [KL(ρ‖π)+ ln 4
√
m
δ

] ≥ 1
2 , the gradient of the numerator in CM

S(ρ) with
respect to ρ is 0 which makes the optimization impossible. Hence, we aim to minimize
the following constraint optimization problem:

min
ρ∈M(H)

1−

(
1− 2 min

[
1
2 , rS(ρ)+

√
1

2m

[
KL(ρ‖π)+ ln 4

√
m
δ

]])2

1− 2 max
[
0, dS(ρ)−

√
1

2m

[
2 KL(ρ‖π)+ ln 4

√
m
δ

]]
︸ ︷︷ ︸

, CM
S(ρ)

s.t rS(ρ)+
√

1
2m

[
KL(ρ‖π)+ ln 4

√
m
δ

]
≤ 1

2 .

From this formulation, we deduce a non-constrained optimization problem:

min
ρ∈M(H)

CM
S(ρ) + B

rS(ρ)+

√√√√ 1
2m

[
KL(ρ‖π)+ ln 4

√
m

δ

]
−1

2

 ,
where B() is the barrier function defined as B(a)=0 if a≤0 and B(a)=+∞ otherwise.
Due to the nature of B(), this problem is not suitable for optimization: the objective
function will be infinite when a> 0. To tackle this drawback, we replace B() by the
approximation introduced by Kervadec et al. (2019) called the log-barrier extension
and defined as

Bλ(a) =


− 1
λ

ln(−a), if a ≤ − 1
λ2 ,

λa− 1
λ

ln( 1
λ2 )+ 1

λ
, otherwise.

The parameter λ ∈ R+
∗ parameterized the log-barrier extension Bλ(). The function

Bλ() tends to B() when λ tends to +∞; we plot in Figure 4.1 these two functions.
Compared to the standard log-barrier2, the function Bλ() is differentiable even when
the constraint is not satisfied, i.e., when a > 0. Thanks to Bλ(), we can take the con-
straint rS(ρ)+

√
1

2m [KL(ρ‖π)+ ln 4
√
m
δ

] ≤ 1
2 into account. Moreover, when the number of

examples m is large, we estimate the PAC-Bayesian C-Bound CM
S(ρ) and the Gibbs risk

rS(ρ) with a mini-batch U ⊆ S. Concretely, our objective function that is minimized
by stochastic gradient descent with Algorithm 4.1 is the following:

GM
U(ρ) = CM

U(ρ) + Bλ

rU(ρ)+

√√√√ 1
2m

[
KL(ρ‖π)+ ln 4

√
m

δ

]
−1

2

 .
2The reader can refer to Boyd and Vandenberghe (2004) for an introduction of standard

log-barrier and interior-point methods.
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Figure 4.1. Plot of the barrier function B() (with the dotted line) and the log-
barrier extension Bλ() (plain lines). We plot the function with three parameters:
λ ∈ {10, 20, 100}. The higher the parameter λ, the closer the function Bλ() to the
barrier function B(). Thus, the blue, gray and orange curves are respectively with the
parameter λ = 10, λ = 20 and λ = 100.

For a given λ, the optimizer will find a solution with a good trade-off between minimiz-
ing CM

U(ρ) and the log-barrier extension function Bλ(). As shown in the experiments,
minimizing the McAllester-based bound does not lead to the tightest bound. In-
deed, such a bound is looser than Seeger-based bounds and leads to a looser PAC-
Bayesian C-Bound.

4.4.2 Algorithm based on Equation (4.3)

In order to obtain better generalization guarantees, we should optimize the Seeger-
based C-bound of Theorem 4.3.4. Hence to minimize such a PAC-Bayesian C-Bound,
we seek to minimize the following optimization problem:

min
ρ∈M(H)

1−

(
1−2 min

[
1
2 , kl

(
rS(ρ)

∣∣∣ 1
m

[
KL(ρ‖π)+ ln 4

√
m
δ

])])2

1−2 max
[
0, kl

(
dS(ρ)

∣∣∣ 1
m

[
2 KL(ρ‖π)+ ln 4

√
m
δ

])]
︸ ︷︷ ︸

, CS
S(ρ)

s.t kl
(
rS(ρ)

∣∣∣ 1
m

[
KL(ρ‖π)+ ln 4

√
m
δ

])
≤ 1

2 .
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For the same reasons as for deriving Algorithm 4.1, we propose to solve by stochastic
gradient descent with a mini-batch U ⊆ S:

GS
U(ρ) = CS

U(ρ) + Bλ

[
kl
(
rU(ρ)

∣∣∣ 1
m

[
KL(ρ‖π)+ ln 4

√
m
δ

])
− 1

2

]
.

The main challenge in optimizing it is to evaluate kl or kl and to compute their
derivatives. The evaluation of kl or kl is done by Algorithm 2.1 proposed by Reeb
et al. (2018). This method consists in refining iteratively an interval [pmin, pmax] with
p ∈ [pmin, pmax] such that kl(q‖p)=ψ. Moreover, to compute the derivatives with re-
spect to the posterior ρ, we use the chain rule for differentiation with a deep learning
framework (such as PyTorch (Paszke et al., 2019)) and the derivatives in Equa-
tion (2.16). The global algorithm is summarized in Algorithm 4.2.

4.4.3 Algorithm based on Theorem 4.3.5
Theorem 4.3.5 jointly upper-bounds the joint error eD(ρ) and the disagreement dD(ρ);
But as pointed out in Section 4.3.5 its optimization can be hard. To ease its ma-
nipulation, we derive below a C-Bound resulting of a reformulation of the constraints
involved in the set AS(ρ).

Algorithm 4.2 Minimization of Equation (4.3) by Stochastic Gradient Descent
Given: learning sample S, prior distribution π ∈ M∗(H), the objective function
GS
S(ρ)

Hyperparameters: number of iterations T
ρ← π
for t← 1 to T do

for all mini-batches U ⊆ S do
Compute GS

U(ρ) using Algorithm 2.1
ρ← Update ρ with GS

U(ρ) by gradient descent
return ρ

Theorem 4.4.1 (Reformulation of Lacasse et al.’s PAC-Bayesian C-Bound).
For any distribution D on X × Y, for any hypothesis set H, for any distribution
π ∈ M∗(H), for any δ ∈ (0, 1], with probability at least 1 − δ over the random
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choice of S ∼ Dm we have for all ρ ∈ M(H)

RD(MVρ) ≤ sup
(e,d)∈A′S(ρ)

[
1− (1− (2e+ d))2

1− 2d

]
, (4.4)

A′S(ρ) =

(e, d)
∣∣∣∣ kl (eS(ρ), dS(ρ)‖e, d) ≤ 1

m

[
2 KL(ρ‖π) + ln 2

√
m+m
δ

]
,

d ≤ 2
√

min
(
e, 1

4

)
−2e, d < 1

2

.

Proof. Deferred to Appendix D.6. �

Theorem 4.4.1 suggests then the following constrained optimization problem:

min
ρ∈M(H)

 sup
(e,d)∈

[
0,12
]2
1−

[
1−(2e+d)

]2
1−2d

 s.t. (e, d)∈A′S(ρ)

 s.t. 2eS(ρ)+dS(ρ)≤1,

Actually, we can rewrite this constrained optimization problem into an unconstrained
one using the barrier function. We obtain

min
ρ∈M(H)

 max
(e,d)∈

[
0,12
]2
CL(e, d)− B

[
d−2

√
min

(
e, 1

4

)
−2e

]
− B

[
d−1

2

]

− B
[
kl (eS(ρ), dS(ρ)‖e, d)− 1

m

[
2 KL(ρ‖π) + ln 2

√
m+m
δ

]]
+ B

[
2eS(ρ)+dS(ρ)−1

], (4.5)

where CL(e, d) = 1 − (1−(2e+d))2

1−2d if d< 1
2 , and CL(e, d) = 1 otherwise. However, this

problem cannot be optimized directly by stochastic gradient descent. In this case, we
have a min-max optimization problem, i.e., for each descent step we need to find the
couple (e, d) that maximizes the CL(e, d) given the three constraints that define A′S(ρ)
before updating the posterior distribution ρ.
First, to derive our optimization procedure, we focus on the inner maximization problem
when eS(ρ) and dS(ρ) are fixed in order to find the optimal (e, d). However, the
function CL(e, d) we aim at maximizing is not concave for all (e, d) ∈ R2, implying
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Algorithm 4.3 Minimization of Equation (4.4) by Stochastic Gradient Descent
Given: learning sample S, prior π ∈ M∗(H), the objective function Ge∗,d∗

S (ρ)
Hyperparameters: number of iterations T
ρ← π
for t← 1 to T do

for all mini-batches U ⊆ S do
(e∗, d∗)←maximize-e-d(eU(ρ), dU(ρ))
ρ← Update ρ with Ge∗,d∗

U (ρ) by gradient descent
return ρ

Given: learning sample S, joint error eS(ρ), disagreement dS(ρ)
Hyperparameters: tolerance ε
function maximize-e-d(eS(ρ), dS(ρ))

αmin = 0 and αmax = 1
while αmax − αmin > ε do

α = 1
2(αmin + αmax)

(e, d)← Solve Equation (4.6)
if CL(e, d) ≥ 1−α then αmax ← α else αmin ← α

return (e, d)

that the implementation of its maximization can be hard3. Fortunately, CL(e, d) is
quasi-concave (Germain et al., 2015) for (e, d) ∈ [0, 1] × [0, 1

2 ]. Then by definition
of quasi-concavity, we have:

∀α ∈ [0, 1],

(e, d)

∣∣∣∣∣∣∣ 1−
[
1− (2e+ d)

]2
1− 2d ≥ 1− α


⇐⇒ ∀α ∈ [0, 1],

{
(e, d)

∣∣∣∣∣ α(1−2d)−
[
1−(2e+d)

]2
≥ 0

}
.

Hence, for any fixed α ∈ [0, 1] we can look for (e, d) that maximizes CL(e, d) and
respects the constraints involved in A′S(ρ). This is equivalent to solving the following

3For example, when using CVXPY (Diamond and Boyd, 2016), that uses Disciplined Convex
Programming (DCP (Grant et al., 2006)), the maximization of a non-concave function is not
possible.
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problem for a given α ∈ [0, 1]:

max
(e,d)∈[0, 1

2 ]2
α(1−2d)−

[
1−(2e+d)

]2
(4.6)

s.t. d ≤ 2
√

min
(
e, 1

4

)
−2e

and kl
(
eS(ρ), dS(ρ)‖e, d

)
≤ 1
m

[
2 KL(ρ‖π) + ln 2

√
m+m
δ

]
.

In fact, we aim at finding α ∈ [0, 1] such that the maximization of Equation (4.6)
leads to 1−α equals to the largest value of CL(e, d) under the constraints. To do
so, we make use of the “Bisection method for quasi-convex optimization” (Boyd and
Vandenberghe, 2004) that is summarized in maximize-e-d in Algorithm 4.3. We
denote by (e∗, d∗) the solution of Equation (4.6). Note that, in practice, the joint error
and the disagreement is approximated through the mini-batch U ⊆ S. It remains then
to solve the outer minimization problem that becomes:

min
ρ∈M(H)

 B [2eS(ρ)+dS(ρ)−1]

− B
[
kl (eS(ρ), dS(ρ)‖e∗, d∗)− 1

m

[
2 KL(ρ‖π) + ln 2

√
m+m
δ

]] .
To obtain a objective function that is suitable for stochastic gradient descent, we bring
two modifications to the outer minimization problem: (i) we replace B() by the log-
barrier extension Bλ() and (ii) we approximate the disagreement and the joint error
with a mini-batch U ⊆ S. Hence, we obtain the following objective function:

Ge∗,d∗

U (ρ) = Bλ [2eU(ρ)+dU(ρ)−1]

− Bλ

[
kl (eU(ρ), dU(ρ)‖e∗, d∗)− 1

m

[
2 KL(ρ‖π) + ln 2

√
m+m
δ

]]
.

The global method is summarized in Algorithm 4.3. As a side note, we mention that
the classic Danskin Theorem (Danskin, 1966) used in min-max optimization theory
is not applicable in our case since our objective function is not differentiable for all
(e, d) ∈ [0, 1

2 ]2. We discuss this point in Appendix D.8.

4.5 Experiments
4.5.1 Setting
Our experiments have a two-fold objective: (i) assessing the guarantees given by the
associated PAC-Bayesian bounds, and (ii) comparing the performance of the different
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Figure 4.2. Plot of a comparison between the test risks RT (MVρ) and the general-
ization bounds in the binary setting when the voters are decision stumps. For each
algorithm, we represent the mean of the test risks in the orange bars and the bounds’
mean in the blue bars. Additionally, the black lines are the standard deviations.
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Figure 4.3. Plot of a comparison between the test risks RT (MVρ) and the general-
ization bounds in the binary setting when the voters are decision stumps. For each
algorithm, we represent the mean of the test risks in the orange bars and the bounds’
mean in the blue bars. Additionally, the black lines are the standard deviations.
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Figure 4.4. Plot of a comparison between the test risks RT (MVρ) and the gener-
alization bounds in the binary setting when the voters are decision trees. For each
algorithm, we represent the mean of the test risks in the orange bars and the bounds’
mean in the blue bars. Additionally, the black lines are the standard deviations.
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Figure 4.5. Plot of a comparison between the test risks RT (MVρ) and the gener-
alization bounds in the binary setting when the voters are decision trees. For each
algorithm, we represent the mean of the test risks in the orange bars and the bounds’
mean in the blue bars. Additionally, the black lines are the standard deviations.
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Figure 4.6. Plot of a comparison between the test risks RT (MVρ) and the general-
ization bounds in the multi-class setting when the voters are decision trees. For each
algorithm, we represent the mean of the test risks in the orange bars and the bounds’
mean in the blue bars. Additionally, the black lines are the standard deviations.
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Figure 4.7. Plot of a comparison between the test risks RT (MVρ) and the general-
ization bounds in the multi-class setting when the voters are decision trees. For each
algorithm, we represent the mean of the test risks in the orange bars and the bounds’
mean in the blue bars. Additionally, the black lines are the standard deviations.
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C-bound-based algorithms in terms of risk optimization. We introduce the setting in
the following and we report in Figures 4.2 to 4.7 the mean/standard deviation of the
risks on the test set T and the bound values (with δ = 0.05) for 10 runs; see also
Appendix D.10.1 for more details. The setting of the experiments is as follows.

Dataset. We consider several binary and multi-class datasets like FashionMNIST
(Xiao et al., 2017), MNIST (LeCun et al., 1998) and some coming from the UCI
repository (Dua and Graff, 2017). For each different run, we keep the same number
of examples in the test or the train set as in the original split. When there is no original
split, we use 50% of data in the training set S and 50% in the test set (except for
Sensorless where we have 15% in the test set because the original set is large).

Voters. In the binary setting, we consider either a set H of decision trees or decision
stumps that is complemented: if h ∈ H then there is h′ ∈ H s.t. h′(x) = −h(x) for
all x ∈ X. Concerning the multi-class setting, we only consider decision trees. Indeed,
having decision stumps would have resulted in too many voters. Following Masegosa
et al. (2020), the prior distribution π ∈ M∗(H) is set as the uniform distribution. For
the decision stumps, following Roy et al. (2011) and Bauvin et al. (2020), we use 10
decision stumps per feature. For the decision trees, we follow a general setting similar
to the one of (Masegosa et al., 2020). Moreover, 100 trees are learned with 50% of
the training data (the remaining part serves to learn the posterior ρ). More precisely,
for each tree

√
d features of the d-dimensional input space are selected, and the trees

are learned by using the Gini criterion until the leaves are pure.

Algorithms’ parameters. To update of the posterior ρ in Algorithms 4.1 to 4.3 is
done through the COCOB-Backprop optimizer (Orabona and Tommasi, 2017) (its
parameter remains the default one). In the binary setting, we optimize for T = 2, 000
iterations (by batch gradient descent), and in the multi-class setting, we set 20 epochs
with a batch size of 64. Lastly, we consider the parameter λ=100 for log-barrier
extension Bλ().

Comparisons. We compare the three algorithms proposed in this chapter to the
following state-of-the-art PAC-Bayesian methods for majority vote learning.

• We compare with the algorithm proposed by Masegosa et al. (2020) that
optimizes a PAC-Bayesian bound on RD(MVρ) ≤ 4eD(ρ) (Theorem 2.2.2); see
Theorem 9 and Appendix G of (Masegosa et al., 2020) for a description of
this algorithm that we denote by Masegosa. For Masegosa et al.’s algorithm,
we kept the original parameters.
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• Our algorithm to optimize the PAC-Bayesian bound on RD(MVρ) ≤ 2rD(ρ)
(Theorem 2.2.1) recalled in Theorem 4.3.1 and derived by (Germain et al.,
2015, PAC-Bound 0). Even though (Germain et al., 2015) does not optimize
the bound, we denote this algorithm by Germain. The algorithm is similar to Al-
gorithm 4.2, but without the numerator of the C-Bound (i.e., the disagreement);
more details are given in Appendix D.9.

• In the binary setting only, we compare with MinCq (Roy et al., 2011) and
CB-Boost (Bauvin et al., 2020) that are based on the minimization of the em-
pirical C-Bound CS(ρ). Indeed, these algorithms are developed for this setting
only. For comparison purposes and since MinCq and CB-Boost do not explicitly
minimize a PAC-Bayesian bound, we report the bound values of Theorem 4.4.1
instantiated with the models learned; Moreover, for MinCq, we select the mar-
gin parameter among 20 values uniformly spaced between [0, 1

2 ] by 3-fold cross
validation. For CB-Boost, which is based on a Boosting approach, we fix the
maximal number of boosting iterations to 200.

4.5.2 Analysis of the Results
When comparing only the PAC-Bayesian C-Bounds, we observe in Figures 4.2 to 4.7
that Algorithm 4.1 provides the worst bound. Algorithm 4.3 provides usually tighter
bounds than Algorithms 4.1 and 4.2 except for Harberman and USVotes. We believe
that Algorithm 4.3 provides lower bounds than Algorithm 4.2 because the Lacasse
et al.’s approach bounds simultaneously the joint error and the disagreement. Al-
gorithm 4.3 appears then to be the best algorithm among our three self-bounding
algorithms that minimize a PAC-Bayesian C-Bound. Moreover, Algorithm 4.3 gives
usually the lowest true risks or it is comparable to the two other algorithms.

Compared to the baselines, Germain gives usually the lowest bounds among all the
algorithms, but at the price of a large test risk. This clearly illustrates the limitation of
considering only the Gibbs risk as an estimator of the majority vote risk: as discussed
in Section 2.2.2, the Gibbs risk is an unfair estimator since an increase in the diversity
between the voters can have a negative impact on the Gibbs risk.
Second, compared to Masegosa et al.’s approach, the results are comparable. This
behavior was expected since minimizing the bound of Masegosa et al. (2020) or
the PAC-Bayesian C-Bound boils down to minimize a trade-off between the risk and
the disagreement. Third, in the binary setting, compared to empirical C-bound mini-
mization algorithms, we see that Algorithm 4.3 outputs better results than CB-Boost
and MinCq for which the difference is significative, and the bounds are close to 1
(i.e., non-informative). Optimizing the risk bounds tends to provide better guarantees
that justify that optimizing the empirical C-bound is often too optimistic (as done in
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CB-Boost or MinCq); we provide in Appendix D.10.3 an illustration of the different
solutions obtained from the algorithms.

Overall, from these experiments, our Algorithm 4.3 is the one that provides the best
trade-off between having good performances in terms of risk optimization and ensuring
good theoretical guarantees with informative bounds. Moreover, in Appendix D.10.2
we show that Algorithm 4.3 has a higher computation time than the others algo-
rithms. This makes Algorithm 4.2 a good trade-off between ensuring good theoretical
guarantees and having a low computation time.

4.6 Conclusion and Summary
This chapter presents learning algorithms that minimize the majority vote’s risk with
PAC-Bayesian generalization bounds based on the C-Bound. More precisely, we pro-
pose solving three optimization problems, each derived from an existing PAC-Bayesian
bound. Our methods belong to the class of self-bounding learning algorithms (Fre-
und, 1998): the learned predictor comes with a tight and statistically valid risk upper
bound. Our experimental evaluation has confirmed the quality of the learned predictor
and the tightness of the bounds with respect to state-of-the-art methods minimizing
the C-Bound.

As we said before, no algorithm minimizes the empirical C-Bound in the multi-class
setting. One of the reasons is that it is not easy to find a convex program like for MinCq
or P-MinCq algorithm. Hopefully, thanks to the deep learning framework, minimizing
the C-Bound is possible even without convexity through a stochastic gradient descent
algorithm (as we show in Chapter 5 in the binary setting). Hence, in the future, we
plan to explore more the minimization of the C-Bound.

However, one drawback of the PAC-Bayesian C-Bounds and the other ones of the lit-
erature is that the majority vote true risk is not directly minimized: we need surrogates
such as the Gibbs risk, the disagreement, or the joint error. Indeed, the C-Bound is
already an upper bound on the true risk, which makes the PAC-Bayesian C-Bound
even looser, thus, these generalization bounds cannot be tight. To avoid this issue, we
bound the expected true risk of the majority vote. This is done in the next chapter:
we (i) introduce the stochastic majority vote that samples a distribution ρ for each
prediction, and we (ii) provide guarantee on the true risk for this classifier. As we
will see, our obtained (PAC-Bayesian) guarantee is differentiable, and we can derive
self-bounding learning to learn such a classifier.
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Majority Vote

This chapter is based on the following paper

Valentina Zantedeschi, Paul Viallard, Emilie Morvant, Rémi Emonet,
Amaury Habrard, Pascal Germain, and Benjamin Guedj. Learning Stochas-
tic Majority Votes by Minimizing a PAC-Bayes Generalization Bound. Advances in
Neural Information Processing Systems (NeurIPS). (2021)
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Abstract

We study a stochastic counterpart of the majority vote classifier called the
stochastic majority vote, and study its generalization properties. Unlike Chap-
ter 4, the posterior distribution associated with the majority vote is sampled
from another probability distribution. While the stochastic majority vote holds
for arbitrary distributions, we instantiate it with Dirichlet distributions: this
allows to derive a closed-form and differentiable expression for the expected
risk. Then, we derive self-bounding algorithms for stochastic majority vote,
that benefit from tight generalization bounds when compared to self-bounding
algorithms studied in Chapter 4.
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5.1 Introduction
In Chapter 4, we considered some self-bounding algorithms (Freund, 1998) that
minimize a PAC-Bayesian bound on the majority vote true risk. Each PAC-Bayesian
bound depends on a surrogate on the majority vote risk (see Section 2.2.2). Given any
distribution ρ on an hypothesis set H, we have seen three surrogates of the majority
vote’s risk in Chapter 2:

(i) Twice the Gibbs Risk rS(ρ) = E(x,y)∼S Eh∼ρ I [h(x) 6= y] (Theorem 2.2.1),

(ii) 4 times the joint error eS(ρ) = E(x,y)∼S Eh∼ρ Eh′∼ρ I [h(x) 6= y] I [h′(x) 6= y]
(Theorem 2.2.2),

(iii) The C-Bound CS(ρ) = 1− (1−2rS(ρ))2

1−2dS(ρ) , where dS(ρ) is the disagreement defined
as dS(ρ) = 2E(x,y)∼S Eh∼ρ Eh′∼ρ I [h(x) 6= y] I [h′(x) = y] (Theorem 2.2.3).

Figure 5.1 illustrates the models obtained by the minimization of the empirical risk with
respect to the three surrogates recalled above on a simple dataset (here, moons): only
the empirical C-Bound fully leverage the diversity of the voters to obtain RS(MVρ) = 0.

0.32

Minimization of 2rS(ρ)

0.29

Minimization of 4eS(ρ)

0.03

Minimization of CS(ρ)

Figure 5.1. Plot of the majority vote’s decision boundary obtained by minimizing
the upper bounds on the majority vote’s empirical risk with the surrogates recalled in
Theorems 2.2.1 to 2.2.3 for moons dataset with a learning sample size m = 1, 000.
For each plot, we print the surrogate value in the bottom left corner.

As highlighted in Figure 5.1, the first two surrogates (Theorems 2.2.1 and 2.2.2) are
not efficient to minimize the empirical majority vote’s risk. In contrast, since the em-
pirical C-Bound CS(ρ) (Theorem 2.2.3) is a tighter upper bound on the majority vote’s
empirical risk (Theorem 2.2.4), the minimization of the empirical risk through the C-
Bound is more accurate. Another precise surrogate on the majority vote’s empirical
risk is based on the randomized majority vote. This model, introduced by Lacasse
et al. (2010), consists in defining a majority vote

MVσ(x) , argmax
y′∈Y

E
h∼σ

I [h(x) = y′] ,

– 126 –



5.1. Introduction

where σ is constructed as follows: N voters H′ = {h1, . . . , hN} are sampled from ρ and
a uniform posterior distribution σ is defined such that σ(h) = 1

N
for all h ∈ H′. Follow-

ing Lacasse et al. (2010), the randomized majority vote’s empirical risk is defined as

P
(x,y)∼S,MVσ∼ρN

[MVσ(x) 6= y]

≤ E
(x,y)∼S

 N∑
j=dN2 e

(
N

j

) [1
2 (1− m̂ρ(x, y))

]j [
1− 1

2 (1− m̂ρ(x, y))
](N−j)


, bNS (ρ),

where m̂ρ(x, y) is the 1
2 -margin defined in Definition 2.2.4. Given an example (x, y) ∼

S, the sum corresponds to the probability that at least N
2 voters make an error over

N voters sampled from ρ. In fact, it is the complementary cumulative distribution
function of the binomial distribution with parameter 1

2(1 − m̂ρ(x, y)) and dN2 e trials.
Hence, bNS (ρ) is the expected complementary cumulative distribution function on the
learning sample S. Moreover, the randomized majority vote can be linked to the clas-
sical majority vote MVρ: the term bNS (ρ) is another surrogate on the majority vote
empirical risks (Lacasse et al., 2010). Indeed, we have

RS(MVρ) ≤ 2bNS (ρ). (5.1)

Note that we provide a proof of this bound in Appendix E.1. Hopefully, the higher
N , the better bNS (ρ) approximates the majority vote’s empirical risk risk. As for the
other surrogates (i.e., the Gibbs risk, the joint error, and the C-Bound), when one
wants to upper-bound the majority vote’s true risk, PAC-Bayesian bounds are used. In
the rest of the chapter, we denote by Lacasse our algorithm that minimizes a PAC-
Bayesian bound depending on bNS (ρ) (see Appendix E.1). However, when the true
risk is minimized through self-bounding algorithms, it gives even worse results on the
moons dataset. This is illustrated on Figure 5.2 that plots the different self-bounding
procedures.
As we can remark, except for the one labelled Lacasse and our new Algorithm 5.3,
the minimization of the PAC-Bayesian bounds does not fully leverage the voters’ cor-
relations to obtain a (i) tight generalization bound and (ii) a small empirical risk. This
is mainly due to the fact that they do not minimize directly the majority vote’s risk
(but surrogates instead). In contrast, as illustrated by Lacasse (2010)’s result, the
randomized majority vote offers a way to obtain a tight generalization guarantee with
a small empirical risk RS(MVρ). However, the considered majority vote in Lacasse
et al. (2010)’s approach is not the original majority vote MVρ, but a rather restricted
form.
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0.44

Germain

0.47

Masegosa

0.57

Algorithm 4.2

0.23

Lacasse

0.08

Algorithm 5.3

Figure 5.2. Plot of the majority vote’s decision boundary obtained by executing
the self-bounding algorithms for moons dataset with m = 1, 000 (and N = 100 for
Lacasse). We represent in the bottom left of the plots, the value of each bound
minimized with Algorithm 4.2, Algorithm 5.3 (and Algorithm 5.2), Germain (Algo-
rithm D.1), Masegosa (Masegosa et al., 2020, Appendix G), and Lacasse (Algo-
rithm E.1).

Hence, in this chapter, we introduce the stochastic majority vote that overcomes the
drawbacks of the literature’s methods: we provide tight generalization bounds on the
classical majority vote MVρ. The stochastic majority vote is defined as follows: for
each input x, a majority vote MVρ is obtained by sampling the weights from another
probability distribution.

This new majority vote is presented in more details in Section 5.2; its definition is given
in Section 5.2.1. Moreover, we show in Section 5.2.2 how to approximate the risk and
in Section 5.2.3 the exact computation. Along with the risk computation, we derive
in Sections 5.3.1 and 5.3.2 two PAC-Bayesian bounds essential to derive self-bounding
algorithms in Section 5.3.3. Section 5.4 provides a study of these algorithms. The
proofs are deferred in Appendix E.
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5.2 The Stochastic Majority Vote

5.2.1 Definitions
For the stochastic majority vote, we consider that its weights ρ ∈ M(H) are sampled
from a distribution P called hyper-posterior1; we say that P is a hyper-posterior on
H. By considering hyper-posteriors, the majority votes become stochastic, i.e., for
each input x ∈ X the weights ρ are sampled from the hyper-posterior P to obtain the
prediction MVρ(x). The main advantage of considering a stochastic majority vote is
that it allows to derive and to optimize PAC-Bayesian generalization bounds directly.
The true risk and empirical risk of the proposed stochastic weighted majority vote take
into account the risks of MVρ where ρ is sampled from the hyper-posterior P; the risk
is defined in the following definition.

Definition 5.2.1 (Risks of the stochastic majority vote). For any distribution D
on X×Y, for any for any voters’ set H, for any hyper-posterior distribution P on H,
the stochastic risks are defined as

E
ρ∼P

RD(MVρ) = E
ρ∼P

E
(x,y)∼D

I [mρ(x, y) ≤ 0] ,

and E
ρ∼P

RS(MVρ) = E
ρ∼P

1
m

m∑
i=1

I [mρ(xi, yi) ≤ 0] .

We use the 1
2 -margin of Laviolette et al. (2017) to upper-bound the risk of the

stochastic majority vote. Indeed, we have

E
ρ∼P

RD(MVρ) ≤ E
ρ∼P

E
(x,y)∼D

I [m̂ρ(x, y) ≤ 0] = E
(x,y)∼D

sP(x, y), (5.2)

and E
ρ∼P

RS(MVρ) ≤ E
ρ∼P

1
m

m∑
i=1

I [m̂ρ(xi, yi) ≤ 0] = 1
m

m∑
i=1

sP(xi, yi). (5.3)

where sP(x, y) , Eρ∼P I [m̂ρ(x, y) ≤ 0] is the stochastic risk. Note first that the
inequality is attained in the binary setting (see Section 2.2.2). Additionally, the advan-
tage of sP(x, y) is that we are able to derive a closed form solution in Section 5.2.3.
Actually, we introduce two ways to compute this risk: we can either (i) approximate it
(e.g., through Monte Carlo methods) or (ii) compute its closed form. In both cases,
assumptions have to be made on the distribution P. When the distribution ρ is dis-
crete, it lies in the (card(H)−1) dimensional probability simplex: �(card(H)−1). Hence,

1The hyper-posteriors have been first used in the PAC-Bayesian theory by Pentina and Lam-
pert (2014) in the context of Life-long learning problem in order to be able to consider different
majority votes adapted to the different specific tasks seen during training.
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ρ(h1)=1 ρ(h2)=1

ρ(h3)=1

(a) α = [1, 1, 1]>
ρ(h1)=1 ρ(h2)=1

ρ(h3)=1

(b) α = [2, 2, 2]>
ρ(h1)=1 ρ(h2)=1

ρ(h3)=1

(c) α = [10, 10, 10]>

ρ(h1)=1 ρ(h2)=1

ρ(h3)=1

(d) α = [5, 1, 4]>
ρ(h1)=1 ρ(h2)=1

ρ(h3)=1

(e) α = [10, 2, 8]>
ρ(h1)=1 ρ(h2)=1

ρ(h3)=1

(f) α = [25, 5, 20]>

Figure 5.3. The figure shows the probability density function for different value of pa-
rameters α. More precisely, the “triangle” correspond to the 2-dimensional probability
simplex �2 where its extremities correspond to the extreme probability distributions.
Hence, a point in the simplex is a linear combination of these extreme probability
distributions.

a natural choice for the hyper-posterior is the Dirichlet distribution; its probability
density function is defined as follows.

Definition 5.2.2 (Dirichlet Distribution). Let n = card(H) be the cardinality of
a finite hypothesis set H. Given the concentration parameters α ∈ (R+

∗ )n, the
Dirichlet Distribution Dir(α) is defined as

ρ ∼ P ⇐⇒ (ρ(h1), . . . , ρ(hn)) ∼ Dir(α),

where P(ρ) , 1
Z(α)

n∏
j=1

[
ρ(hj)

]αj−1
∝

n∏
j=1

[
ρ(hj)

]αj−1
.

We provide in Figure 5.3 some examples of Dirichlet distributions. Notice that by taking
α as the vector of all ones, the distribution corresponds to a uniform distribution over
the simplex �(card(H)−1).
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Under Dirichlet assumptions on the hyper-posterior distribution P, we propose in the
next section an algorithm to approximate the stochastic risk sP(x, y). This algorithm
is actually part of our self-bounding algorithm in Section 5.3.3.

5.2.2 Approximation of the Stochastic Risk
We now propose a Monte Carlo (MC) algorithm to compute sP(x, y) that is suited
to speed up the optimization. For this optimization algorithm, we need to introduce
a surrogate of the true risk to update α by gradient descent as the gradients of the
01-loss are always zero. We make use of a tempered sigmoid loss sigc(x) = 1

1+exp(−cx)
with slope parameter c ∈ R+. Because of the surrogate, this optimization algorithm
solves a relaxation of the original problem and not its exact form (Nesterov, 2005).
The MC-based optimization algorithm is described in Algorithm 5.1.

Algorithm 5.1 Approximating the Stochastic Risk
Given: Dirichlet distribution P = Dir(α), learning sample S
Hyperparameters: number of draws K
Draw a sample {ρk}Kk=1 ∼ PK = Dir(α)K
for all example (xi, yi) ∈ S do

sP(xi, yi) ≈
1
K

K∑
k=1

sigc [−m̂ρk(xi, yi)]

return 1
m

∑m
i=1 sP(xi, yi)

This algorithm first samples K majority votes and computes an approximation of the
stochastic risk sP(xi, yi) for each example (xi, yi) ∈ S by an average. A drawback
of Algorithm 5.1 is that it requires to sample K majority votes and predict all the
examples in the learning sample S. Hence, to overcome this issue, we derive a closed-
form solution of the stochastic risk sP(x, y) in the next section.

5.2.3 Computing Exactly the Stochastic Risk
Under Dirichlet assumptions, a closed-form solution can be derived for the expected
risk. The following lemma introduces this solution.

Lemma 5.2.1 (Computation of the Stochastic Risk). For a given (x, y) ∈ X×Y,
let

F(x, y) = {j : hj(x) 6= y} and T(x, y) = {j : hj(x) = y}
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be respectively the set of indices of the voters that misclassify (x, y) and the set
of indices of the voters that correctly classify (x, y). Then, the stochastic risk
sP(x, y) can be rewritten as

sP(x, y) = E
ρ∼P

I [m̂ρ(x, y) ≤ 0] = I0.5

 ∑
j∈T(x,y)

αj,
∑

j∈F(x,y)
αj

 ,
with I0.5() the regularized incomplete beta function evaluated at 0.5. It is defined as

I0.5(a, b) , B0.5(a, b)
B1(a, b) , where Bt(a, b) ,

∫ t

0
xa−1(1− x)b−1dx

is the incomplete beta function.

Proof. Deferred to Appendix E.3. �

Lemma 5.2.1 tells us that the stochastic risk given an example (x, y) can be computed
with a closed-form solution. In consequence, thanks to Lemma 5.2.1, we compute an
upper-bound on the risk of the stochastic majority vote based on the stochastic risk.
Indeed, we deduce the following corollary.

Corollary 5.2.1 (Closed-form Solution of the Stochastic Risks). For any distribu-
tion D on X×Y, for any learning sample S ∼ Dm, for any finite hypothesis set H,
for any distribution P = Dir(α) with α ∈ (R+

∗ )card(H), we have

E
ρ∼P

RD(MVρ) ≤ E
(x,y)∼D

sP(x, y) = E
(x,y)∼D

I0.5

 ∑
j∈T(x,y)

αj,
∑

j∈F(x,y)
αj

 ,
and E

ρ∼P
RS(MVρ) ≤

1
m

m∑
i=1

sP(xi, yi) = 1
m

m∑
i=1

I0.5

 ∑
j∈T(xi,yi)

αj,
∑

j∈F(xi,yi)
αj

 .

Proof. Deferred to Appendix E.4. �

From Corollary 5.2.1, we propose to compute directly the empirical stochastic risk.
This is in contrast with Algorithm 5.1 that approximates the stochastic risk by Monte
Carlo sampling. The computation is summarized in Algorithm 5.2. Note that we
provide in 5.4.1 an empirical study showing in which regimes each algorithm is more
efficient.
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Algorithm 5.2 Computing Exactly the Stochastic Majority Vote’s Risk
Given: Dirichlet distribution P = Dir(α), learning sample S
for all example (xi, yi) ∈ S do

sP(xi, yi) = I0.5

 ∑
j∈T(xi,yi)

αj,
∑

j∈F(xi,yi)
αj


return 1

m

∑m
i=1 sP(xi, yi)

Thanks to Algorithm 5.1 and Algorithm 5.2, we are now able to compute the compute
the empirical stochastic risk. This is a key step to derive our self-bounding algorithm in
Section 5.3.3 for the stochastic majority vote. Indeed, the PAC-Bayesian generalization
bound that we derive in the next section requires the computation of the stochastic
risk in order to be minimized.

5.3 From a PAC-Bayesian Bound to an Algorithm

We now derive PAC-Bayesian generalization bounds for our proposed stochastic ma-
jority vote. To do so, we upper-bound the true stochastic risk with a Seeger-like
PAC-Bayesian bound. More precisely, we propose in Section 5.3.1 a PAC-Bayesian
bound for a stochastic majority vote with voters that do not depend on the learning
sample S and in Section 5.3.2 we derive a PAC-Bayesian for data-dependent voters.

5.3.1 A PAC-Bayesian Bound for Stochastic Majority Votes

Before presenting our PAC-Bayesian bound for the stochastic majority vote, we consider
that we have an apriori on the majority vote weights ρ ∈ M(H), i.e., we assume a hyper-
prior distribution Π over the voters’ set H. By doing so, we are able to derive a bound
that depends on the KL divergence KL(P‖Π) between the hyper-prior Π and the
hyper-posterior P. Our bound is presented in the following theorem.

Theorem 5.3.1 (PAC-Bayesian Bound for Stochastic Majority Votes). For any
distribution D on X×Y, for any finite hypothesis set H, for any distribution Π =
Dir(β) with β ∈ (R+

∗ )card(H), for any δ ∈ (0, 1], with probability at least 1− δ over
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0 1 2 3 4 5
α

−10

−5

0

ln(Γ(α)) ψ(α)

Figure 5.4. Plot of the Digamma function ψ(·) in the plain blue curve and its
derivative ln(Γ(·)) (i.e., the logarithm of the Gamma function Γ(·)) in the dotted
orange curve.

the random choice of S ∼ Dm, we have for all hyper-posterior P on H

E
ρ∼P

RD(MVρ) ≤ E
(x,y)∼D

sP(x, y) ≤ kl
 1
m

m∑
i=1

sP(xi, yi)

∣∣∣∣∣∣ KL(P‖Π)+ ln 2
√
m
δ

m

 ,

with KL(P‖Π) =
card(H)∑
j=1

ln[Γ (βj)]− ln
Γ
card(H)∑

j=1
βj

−card(H)∑
j=1

ln[Γ (αj)]

+ ln
Γ
card(H)∑

j=1
αj

+
card(H)∑
j=1

(αj−βj)
ψ(αj)−ψ

card(H)∑
j=1

αj

,
where Γ(α) =

∫∞
0 xα−1e−xdx is the Gamma function and the Digamma function

Ψ(α) is defined as the derivative of ln [Γ(α)]; these two functions are plotted in
Figure 5.4.

Proof. Deferred to Appendix E.5. �

Note, while the bound shown in this theorem is based on Seeger’s form, our contribu-
tion does not restrict the choice of generalization bounds. Indeed, one can derive other
versions of the bound based on McAllester or Catoni’s approach. As we will see
in Section 5.3.3, we make use of Theorem 5.3.1 to derive a new learning algorithm for
the stochastic majority vote.
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As we have seen previously (notably in Section 2.3), the higher the KL divergence
KL (P‖Π), the more different the two distributions P and Π are. In this context, an
increase of the Dirichlet parameters α can result in the increase of the KL divergence
and a concentration of the Dirichlet distribution (see Figure 5.3). Indeed, when the
parameters α increase, the stochastic majority vote risks tends to the risk of the ma-
jority vote with weight αi

‖α‖1
for the voter i. However, at the same time, the parameters

increasing, favour a large KL divergence: the bound is a trade-off between the risk’s
concentration and the KL divergence. For now, Theorem 5.3.1 has a major drawback:
it assumes that the voters are not dependent on the learning sample S. Hence, to
overcome this issue, we derive in Section 5.3.2 a PAC-Bayesian bound that allows us
to have data-dependent voters.

5.3.2 A PAC-Bayesian Bound for Data-dependent Voters
Importantly, Theorem 5.3.1 holds when the hyper-prior Π and the set of voters H
are defined apriori, i.e., they are independent from the data S ∼ Dm. However,
it is known that considering a data-dependent prior can lead to tighter PAC-Bayes
bounds (Parrado-Hernández et al., 2012; Dziugaite et al., 2021). Following
recent works on PAC-Bayesian bounds with data-dependent priors (Thiemann et al.,
2017; Mhammedi et al., 2019), we derive a generalization bound that allows us to
learn the voters from an additional set. More precisely, we consider two independent
training sets S1 and S2 and we learn a set of voters on each training set (determining
the set of voters H1 and H2). We refer to the hyper-prior distribution over H1 resp. over
H2 as Π1 resp. Π2. In the same way, we can then define a hyper-posterior distribution
per voters’ set: P1 and P2. The following theorem shows that we can bound the risk of
two combined stochastic majority votes, as long as their empirical risks are evaluated
on the data split that was not used for learning their respective voters.

Theorem 5.3.2 (PAC-Bayesian bound with data-dependent voters). Let Π1 and
P1 be the hyper-prior and hyper-posterior distributions on H1 defined with S1, and
Π2 and P2 the prior and posterior distributions on H2 defined with S2. For any
λ ∈ [0, 1] and δ ∈ (0, 1] with probability at least 1−δ over samples S1 ∼ Dm1 and
S2 ∼ Dm2 , we have

λ E
ρ∼P1

RD(MVρ) + (1−λ) E
ρ′∼P2

RD(MVρ′) ≤ E
(x,y)∼D

[λsP1(x, y)+(1−λ)sP2(x, y)] ≤

kl
 E

(x,y)∼S1

sP1(x, y)
1
λ

+ E
(x,y)∼S2

sP2(x, y)
1

1−λ

∣∣∣∣∣∣ KL(P1‖Π1)+ ln 4
√
m
δ

m
λ

+
KL(P2‖Π2)+ ln 4

√
m′

δ
m′

1−λ

.
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Proof. Deferred to Appendix E.6. �

Following Mhammedi et al. (2019) we set λ = 0.5 and we applied a 50%/50% split
in the training data. In the case when the number of data points is odd, we evaluate
the bound with m2 = card(S2)− 1 that still gives a correct bound (but simplifies the
expression of the bound). In this case the bound is given in the following corollary.

Corollary 5.3.1 (PAC-Bayesian bound with data-dependent voters). Let Π1 and
P1 be the hyper-prior and hyper-posterior distributions on H1, and Π2 and P2 the
prior and posterior distributions on H2. For any δ ∈ (0, 1) with probability at least
1−δ over samples S1 ∼ Dm1 and S2 ∼ Dm2 , we have

1
2

[
E

ρ∼P1
RD(MVρ) + E

ρ′∼P2
RD(MVρ′)

]
≤ E

(x,y)∼D

1
2 [sP1(x, y)+sP2(x, y)] ≤

kl
1

2

(
E

(x,y)∼S1
sP1(x, y)+ E

(x,y)∼S2
sP2(x, y)

) ∣∣∣∣∣∣ KL(P1‖Π1)+ KL(P2‖Π2)+2 ln 4
√
m
δ

m

,
where m = 2bm1+m2

2 c and b·c is the floor function.

As for Theorem 5.3.1, the true risk of two combined stochastic majority votes is upper-
bounded by a PAC-Bayesian bound that depends on two terms. Indeed, it depends
on the empirical risk of the two stochastic majority votes and two KL divergences
between the hyper-priors and the hyper-posteriors. This bound is evaluated in practice
(in Section 5.4) when considering the data-dependent voters.

5.3.3 Learning Algorithms for the Stochastic Majority Vote
As in Chapters 3 and 4, we derive a self-bounding algorithm (Freund, 1998) from
Theorem 5.3.1 and Corollary 5.3.1. We based the derivation such an algorithm on
the stochastic gradient descent. To do so, we consider mini-batches U ⊆ S to opti-
mize the generalization bounds. More precisely, the considered objective function for
Theorem 5.3.1 is

GU(P) , kl
 E

(x,y)∼U
sP(x, y)

∣∣∣∣∣∣ KL(P‖Π)+ ln 2
√
m
δ

m

 , (5.4)

which is the upper bound applied on the mini-batch U. To optimize such an objective
function, we apply Algorithm 5.3 in conjunction with Algorithm 5.1 when we approxi-
mate the empirical stochastic risks or Algorithm 5.2 when we compute the risk exactly;
the algorithm is summarized in the following algorithm.
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Algorithm 5.3 Minimization of Theorem 5.3.1’s Bound
Given: learning sample S, hyper-prior distribution Π on H
Hyperparameters: number of iterations T
P← Π
for t← 1 to T do

for all mini-batches U ⊆ S do
Compute the empirical stochastic risk E(x,y)∼U sP(x, y)
with Algorithm 5.1 or Algorithm 5.2
P← Update P with GU(P) by gradient descent

return P

For each iteration we compute the empirical risk on the mini-batch U. To do so,
the risk is either approximated with Algorithm 5.1 or computed exactly with Algo-
rithm 5.2. Then, we compute the objective function and update the hyper-posterior
P with a gradient descent algorithm. For the data-dependent voters version, similarly
as Corollary 5.3.1 which relies on the presence of two learning samples S1 and S2, the
objective function is defined as

GU1,U2(P) , kl
1

2

 E
(x,y)∼U1

sP1(x, y)+ E
(x,y)∼U2

sP2(x, y)


∣∣∣∣∣∣ KL(P1‖Π1)+ KL(P2‖Π2)+2 ln 4
√
m
δ

m

. (5.5)

This objective function estimated through a mini-batch U1 from S1 and U2 from S2.
Similarly as Equation (5.4), the objective function in Equation (5.5) estimates the
upper-bound of Theorem 5.3.2. The algorithm considered to minimize such a bound
is described in Algorithm 5.3.

Algorithm 5.4 Minimization of Corollary 5.3.1’s Bound
Given: learning samples S1 and S2, hyper-priors Π1 on H1 and Π2 on H2
Hyperparameters: number of iterations T
(P1,P2)← (Π1,Π2)
for t← 1 to T do

for all mini-batches U1 ⊆ S1 and U2 ⊆ S2 do
Compute the empirical stochastic risks E(x,y)∼U1 sP1(x, y) and
E(x,y)∼U2 sP2(x, y) with Algorithm 5.1 or Algorithm 5.2
(P1,P2)← Update P1 and P2 with GU1,U2(P) by gradient descent

return (P1,P2)
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For each iteration of the algorithm, the two stochastic risks are computed with Algo-
rithm 5.1 or Algorithm 5.2. Then, thanks to these two values, we can compute the
objective function GU1,U2(P) (Equation (5.5)). Finally, the hyper-posteriors P1 and P2
are updated through a gradient descent step.

Computing the derivatives. When the risk is computed from Algorithm 5.1, the
sum is differentiable. However, since the risk is obtained by a Monte Carlo sampling,
we use the implicit reparameterization trick (Figurnov et al., 2018; Jankowiak
and Obermeyer, 2018) to obtain the derivatives; it is directly implemented in the au-
tomatic differentiation framework such as PyTorch (Paszke et al., 2019). Moreover,
when the closed form solution (derived in Corollary 5.2.1) risk is computed through Al-
gorithm 5.2, the risk depends on the function I0.5() which is differentiable as well (see
Boik and Robinson-Cox, 1999).

In the following section, we evaluate Algorithms 5.3 and 5.4 and compared them with
the algorithms of Chapter 4.

5.4 Experiments
In this section, we compare the generalization bounds and the test risks obtained with
our algorithms and the ones in Chapter 4. We show that our algorithms allow us to
derive generalization bounds that are tight and non-vacuous (i.e., smaller than 1) with
decision stumps and decision trees.

We consider as baselines the following PAC-Bayesian self-bounding algorithms:

(i) The algorithm Germain that minimizes the PAC-Bayesian of Germain et al.
(2015, PAC-Bound 0) on 2rD(ρ) (Theorem 2.2.1),

(ii) The algorithm Masegosa of Masegosa et al. (2020) minimizing a PAC-Bayesian
bound on 4eD(ρ) (Theorem 2.2.2),

(iii) Algorithm 4.2 minimizing the PAC-Bayesian C-Bound based on Seeger’s ap-
proach (Theorem 4.3.4),

(iv) Lacasse (Lacasse et al., 2010) minimizes Equation (5.1) for a majority vote
that samples N voters from ρ.

The parameters of the baseline are the same as in Section 4.5. For Lacasse the
number of voters drawn is set to N=100. As in Chapter 4 the generalization bounds
are evaluated with δ = 0.05 and the sigmoid’s slope parameter c is set to 100 for
Algorithm 5.2. Moreover, the values are averaged over 10 runs.
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5.4.1 Comparison Between the Computations of the Risk
For this set of experiments, we optimize Theorem 5.3.1 with Algorithm 5.3, for
T = 2, 000 iterations with COCOB-Backprop optimizer (Orabona and Tommasi,
2017). We study the performance of our method on the binary classification moons
dataset, with 2 features, 2 classes and N (0, 0.05) Gaussian noise, for which we draw
m points for training, and card(T) = 2, 000 points for testing.

Figure 5.5 reports a comparison of Algorithms 5.1 and 5.2 in terms of test risk
Eρ∼P RT (MVρ), PAC-Bayesian generalization bound and training time when the num-
ber of decision stumps increases (with m = 2, 000). We observe that the test risks and
bound values can degrade for higher values of decision stumps for all methods. This is
due to the KL divergence increasing with the number of voters card(H), as highlighted
in Appendix E.7, becoming a too strong regularization during training and making the
bound looser. Moreover, when the number of decision stumps increases, Algorithm 5.2
can be quicker than Algorithm 5.1 especially when the Monte Carlo draws K is high
compared to m.
We report in Figure 5.6 the evolution of the test risk Eρ∼P RT (MVρ), PAC-Bayesian
bounds and training time when m increases. When m is large enough, Algorithm 5.1
achieves comparable test risk and bound values compared to Algorithm 5.2 even for
K = 1. Increasing the number of Monte Carlo draws K unsurprisingly allows to
recover Algorithm 5.2’s performance, and at lower computational cost for reasonable
values of m and K.

5.4.2 Performance of Algorithms 5.3 and 5.4
We now compare Algorithms 5.3 and 5.4 on different datasets namely FashionMNIST (Xiao
et al., 2017), MNIST (LeCun et al., 1998) and datasets coming from the UCI repos-
itory (Dua and Graff, 2017); the processing of the dataset is the same as in Sec-
tion 4.5. More precisely, the same number of examples is kept in the test or the train
set as in the original split. When no original split was proposed, we use 50% of data in
the training set S and 50% in the test set (except for Sensorless where we have 15% in
the test set). When making use of data-independent voters, we chose decision stumps
as voters; When making use of data-dependent voters, we build decision trees as set
of voters without bounding their maximal depth (unless stated otherwise). The voters
are exactly the same as in Chapter 4.
We train the stochastic majority vote models by Stochastic Gradient Descent (SGD)
using COCOB-Backprop (Orabona and Tommasi, 2017) with batch size equal to
64. We fix the number of epochs to 20 and for Algorithm 5.1 we fix K = 10 to
increase randomness.

– 139 –



5.4. Experiments

40 60 80 100 120
Number of Decision Stumps per Feature

0.000

0.025

0.050

0.075

0.100

S
to

ch
as

ti
c

R
is

k
E

(x
,y

)∼
S
s P

(x
,y

)
Exact MC – 1 MC – 10 MC – 100

40 60 80 100 120
Number of Decision Stumps per Feature

0.000

0.025

0.050

0.075

0.100

S
to

ch
as

ti
c

R
is

k
E

(x
,y

)∼
T
s P

(x
,y

)

40 60 80 100 120
Number of Decision Stumps per Feature

0.1

0.2

0.3

B
ou

nd
V

al
ue

40 60 80 100 120
Number of Decision Stumps per Feature

0

2000

4000

6000

8000

T
im

e
(i

n
s)

Figure 5.5. Plot of the average performance on 10 runs of Algorithm 5.1 (with
K ∈ {1, 10, 100}) and Algorithm 5.2 as a function of the number of decision stumps
per feature with learning sample size m = 2000.

We report the stochastic test risks E(x,y)∼T sP(x, y) for our algorithms, the test risk
RT (MVρ) for the others and the generalization bounds in Figures 5.7 to 5.10 (additional
results are reported in Appendix E.7). More precisely, we compare the different self-
bounding algorithms with Algorithm 5.3 on binary datasets in Figures 5.7 and 5.8, and
on multi-class datasets with data-dependent voters and Algorithm 5.4 in Figures 5.9
and 5.10. First, we remark that Algorithms 5.3 and 5.4 have similar performance in
terms of stochastic test risks and bound values. Moreover, note that we notice that
the bounds obtained from Algorithms 5.3 and 5.4 are consistently non vacuous and
tighter than those obtained with the other algorithms. While the risks between the
methods are not comparable we remark that the stochastic test risk E(x,y)∼T sP(x, y)
has similar values than the test risks RT (MVρ). It means that our algorithms obtain
similar test risk RT (MVρ) in expectation (where ρ ∼ P). We believe that it is due
to the fact that the stochastic risks depend on the 1

2 -margin of Laviolette et al.
(2017). Indeed, even if our learning algorithms optimizes the 01-loss, it does not fully
distinguish examples that are classified correctly or not.
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Figure 5.6. Plot of the average performance on 10 runs of Algorithm 5.1 (with
K ∈ {1, 10, 100}) and Algorithm 5.2 as a function of the learning sample size m with
32 decision stump per feature.

5.5 Conclusion and Summary
In this chapter, we have studied a new type of majority vote: the stochastic majority
vote. For each input x ∈ X, it samples a majority vote MVρ from a probability dis-
tribution called hyper-posterior P and output MVρ(x). When the hyper-posterior is
a Dirichlet distribution, the stochastic risk can be either approximated or computed
exactly. This allows us to derive a self-bounding algorithm for the stochastic majority
vote. The experiments show that our learning algorithm provides a tight PAC-Bayesian
generalization bound along with a small empirical risk.

One of the perspectives of this work is to consider the risk of the stochastic majority
vote by doing without the 1

2 -margin of Laviolette et al. (2017). However, we may
not find the closed-form solution of the stochastic majority vote’s risk, in this context.
In other words, the risk might be only approximated by Monte Carlo sampling. To
avoid such a drawback we can make use of a different type of bounds: the disinte-
grated PAC-Bayesian bounds. Indeed, in Part III, we study the disintegrated bounds in
more details. As recalled in Chapter 2, these bounds have been introduced by Blan-
chard and Fleuret (2007) and Catoni (2007) and have been rediscovered lately
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Figure 5.7. Comparison in terms of test risks, stochastic test risks and bound values.
We report in the dotted orange error bars, the means and standard deviations of the test
risks and stochastic risks. Moreover, the hatched blue error bars represent the mean
and the standard deviations of the PAC-Bayesian bounds. The values are average over
10 different runs.
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Figure 5.8. Comparison in terms of test risks, stochastic test risks and bound values.
We report in the dotted orange error bars, the means and standard deviations of the test
risks and stochastic risks. Moreover, the hatched blue error bars represent the mean
and the standard deviations of the PAC-Bayesian bounds. The values are average over
10 different runs.
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Figure 5.9. Comparison in terms of test risks, stochastic test risks and bound values.
We report in the dotted orange error bars, the means and standard deviations of the test
risks and stochastic risks. Moreover, the hatched blue error bars represent the mean
and the standard deviations of the PAC-Bayesian bounds. The values are average over
10 different runs.
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Figure 5.10. Comparison in terms of test risks, stochastic test risks and bound
values. We report in the dotted orange error bars, the means and standard deviations
of the test risks and stochastic risks. Moreover, the hatched blue error bars represent
the mean and the standard deviations of the PAC-Bayesian bounds. The values are
average over 10 different runs.
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by Rivasplata et al. (2020). They allow us to derive a bound for a single voter or
hypothesis from the hypothesis set H. Chapter 6 introduces new disintegrated bounds
based on the Rényi divergence (that can be used for the stochastic majority vote) and
Chapter 7 presents generalization bounds that are not restrained to the KL divergence
or the Rényi one but can depend on a complexity term defined by the users.
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Part III

Beyond PAC-Bayesian Bounds:
From Disintegration to Novel Bounds





6On the Practical uses of the
Disintegrated Bounds

This chapter is based on the following paper

Paul Viallard, Pascal Germain, Amaury Habrard, and Emilie Mor-
vant. A General Framework for the Disintegration of PAC-Bayesian Bounds. Sub-
mitted to Machine Learning Journal. (2022b)
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Abstract

PAC-Bayesian bounds are known to be tight and informative when studying the
generalization ability of stochastic classifiers (see e.g., Chapter 5). However,
they require a loose and costly derandomization step when applied to some
families of deterministic models such as neural networks. As an alternative to
this step, we introduce new PAC-Bayesian generalization bounds that have the
originality to provide disintegrated bounds, i.e., they give guarantees over one
single hypothesis instead of the usual averaged analysis. Our bounds are easily
optimizable and can be used to design self-bounding algorithms. We illustrate
this behavior on neural networks and show a significant practical improvement
over the state-of-the-art framework.
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6.1 Introduction
The PAC-Bayesian theory is a powerful framework for upper-bounding the true risk
of stochastic models such as the stochastic majority vote (considered in Chapter 5).
Remember that, in general, the stochastic model samples an hypothesis from the pos-
terior distribution and predicts a label with the sampled hypothesis. However, the
vast majority of machine learning methods nevertheless need guarantees on determin-
istic models (i.e. that are not stochastic). In this case, a derandomization step of
the bound is required to get a bound on the deterministic model’s risk. In general,
the derandomization step consists in obtaining a bound on the risk of a deterministic
model from a bound originally valid for stochastic models. Different forms of deran-
domization have been introduced in the literature for specific settings. Among them,
Langford and Shawe-Taylor (2002) proposed a derandomization for Gaussian
posteriors over linear classifiers: thanks to the Gaussian symmetry, a bound on the
risk of the maximum a posteriori (deterministic) classifier is obtainable from the bound
on the average risk of the stochastic classifier. Also relying on Gaussian posteriors,
Letarte et al. (2019) derived a PAC-Bayesian bound for a very specific determin-
istic network architecture using sign functions as activations; this approach has been
further extended by Biggs and Guedj (2021, 2022). Another line of works de-
randomizes neural networks (Neyshabur et al., 2018; Nagarajan and Kolter,
2019b). While technically different, it starts from PAC-Bayesian guarantees on the
stochastic classifier and uses an “output perturbation” bound to convert a guarantee
from a random classifier to the mean classifier. The relative diversity and specificity of
these works highlight nevertheless the lack of a general framework for the derandom-
ization of classic PAC-Bayesian bounds.

This chapter focuses on another kind of derandomization through the disintegration
of the PAC-Bayesian bound, proposed by Catoni (2007, Th.1.2.7) and Blanchard
and Fleuret (2007); see Section 2.4. Despite their interest in derandomizing PAC-
Bayesian bounds, these kinds of bounds have only received little study in the literature
and have never been used in practice. Driven by machine learning practical pur-
poses, our objective is thus twofold. We derive new tight and usable disintegrated
PAC-Bayesian bounds (i) that directly derandomize any classifiers without any other
additional step and with almost no impact on the guarantee, and (ii) that can be easily
optimized to learn classifiers with strong guarantees. To achieve this objective, our
contribution consists in providing a new general disintegration framework based on the
Rényi divergence (in Theorem 6.3.1), allowing us to meet the practical goal of effi-
cient learning. From a theoretical standpoint, due to the Rényi divergence term, our
bound is expected to be looser than the one of Rivasplata et al. (2020, Th.1(i)) in
which the divergence term is “disintegrated” but depends on the sampled hypothesis
only. However, as we show in our experimental evaluation on neural networks, their
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“disintegrated” term is, in practice, subject to high variance, making their bound harder
to optimize. This variance arises because the sampled hypothesis does not influence
our Rényi divergence term. Our bound has then the main advantage of leading to a
more stable learning algorithm with better empirical results. In addition, we derive in
Appendix F.9 new theoretical results based on the mutual information, giving different
insights into disintegration procedures.

The rest of the chapter is organized as follows. Section 6.2 recalled the notations we
follow. In Section 6.3, we derive our main contribution relying on disintegrated PAC-
Bayesian bounds. Then, we illustrate the practical usefulness of this disintegration
on deterministic neural networks in Section 6.5. Before concluding in Section 6.7,
we discuss in Appendix F.9 another point of view of the disintegrated through an
information-theoretic bound. For readability, we deferred the proofs of our theoretical
results to Appendix F.

6.2 Setting and PAC-Bayesian Bounds

In this chapter, we consider supervised classification tasks as described in Chapter 2
with X the input space, Y the label set, and D an unknown data distribution on X×Y.
We consider a hypothesis set H of functions h : X → Y. The learner aims to find
h ∈ H that assigns a label y to an input x as accurately as possible. Given an example
(x, y) and a hypothesis h, we assess the quality of the prediction of h with a loss
function ` : H × (X×Y)→[0, 1] evaluating to which extent the prediction is accurate.
The learner wants to find the hypothesis h from H that minimizes the true risk R`D(h).
However, we cannot compute R`D(h) = E(x,y)∼D `(h, (x, y)) since the distribution D
is unknown. We only have access to a learning sample S = {(xi, yi)}mi=1 with the
empirical risk defined as R`S(h) = 1

m

∑m
i=1 `(h, (xi, yi)).

We now recall Bégin et al. (2016)’s general bound at the heart of our contribu-
tion (and introduced in Section 2.3). This bound depends on the Rényi divergence
between ρ and π defined as Dλ(ρ‖π) , 1

λ−1 ln
[

E
h∼π

[
ρ(h)
π(h)

]λ]
with parameter λ > 1.

Theorem 2.3.5 (General PAC-Bayesian Bound of Bégin et al. (2016)). For any
distribution D on X×Y, for any hypothesis set H, for any distribution π ∈ M∗(H)
on H, for any measurable function ϕ : H× (X×Y)m → R+

∗ , for any λ > 1, for any
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δ ∈ (0, 1], we have

P
S∼Dm

∀ρ ∈ M(H), λ

λ−1 ln
[
E
h∼ρ

ϕ(h,S)
]

≤ Dλ(ρ‖π) + ln
[1
δ

E
S′∼Dm

E
h′∼π

ϕ(h′,S′)
λ
λ−1

]  ≥ 1−δ.

A key notion here is that the PAC-Bayesian bounds apply on the expectation over the
risk of the individual classifiers in H; this randomization is the risk of the stochastic
classifier. A key issue for usual machine learning tasks is then the derandomization of
the PAC-Bayesian bounds to obtain a guarantee for a deterministic classifier instead
of a stochastic one (by removing the expectation on H). In some cases, this deran-
domization results from the structure of the hypotheses, such as for stochastic linear
classifiers that can be directly expressed as one deterministic linear classifier (Germain
et al., 2009). However, in other cases, the derandomization is much more complex
and specific to the class of hypotheses, such as for neural networks (e.g., Neyshabur
et al. (2018), Nagarajan and Kolter (2019a, Ap. J), Biggs and Guedj (2022)).

The next section states our main contribution to this chapter: a general derandom-
ization framework based on the Rényi divergence for disintegrating PAC-Bayesian
bounds into a bound for a single hypothesis from H.

6.3 Disintegrated PAC-Bayesian Theorems

6.3.1 Form of a Disintegrated PAC-Bayesian Bound
We recall now the main form of a disintegrated PAC-Bayesian bound used in this
chapter.

Definition 2.4.1 (Disintegrated PAC-Bayesian Generalization Bound). Let ` :
H × (X×Y) → [0, 1] be a loss function and φ : [0, 1]2→[0, 1] a generaliza-
tion gap. A disintegrated PAC-Bayesian bound is defined such that if for any
distribution D on X × Y, for any hypothesis set H, for any prior distribution
π ∈ M∗(H), for any algorithm A : (X×Y)m×M∗(H)→M(H), there exists a function
Φ : M(H)×M∗(H)×(0, 1]→R such that for any δ ∈ (0, 1] we have

P
S∼Dm,h∼ρS

[
φ(R`D(h),R`S(h)) ≤ Φ

(
ρS, π, δ

)]
≥ 1− δ,
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where ρS , A(S, π) is output by the deterministic algorithm A and φ() is, for
example, φ(R`D(h),R`S(h)) =

∣∣∣R`D(h)− R`S(h)
∣∣∣.

More precisely, the posterior ρS , A(S, π) is defined through a given determinis-
tic algorithm A : (X×Y)m×M∗(H) → M(H) chosen apriori. The algorithm (i) takes
a learning sample S ∈ (X×Y)m and a prior distribution π ∈ M∗(H) as inputs, and
(ii) outputs a data-dependent distribution ρS , A(S, π). Concretely, this kind of gen-
eralization bound allows one to derandomize the usual PAC-Bayes bounds as follows.
Instead of considering a bound holding for all the posterior distributions on H as usually
done in PAC-Bayes (the “∀ρ ” in Theorem 2.3.5), we consider only the posterior dis-
tribution ρS obtained through a deterministic algorithm A taking the learning sample
S and the prior π as inputs. Then, the above bound holds for a unique hypothesis
h∼ρS instead of the stochastic classifier: the individual risks are no longer averaged
with respect to ρS; this is the PAC-Bayesian bound disintegration. The dependence
in probability on ρS means that the bound is valid with probability at least 1−δ over
the random choice of the learning sample S∼Dm and the hypothesis h∼ρS. Under
this principle, we introduce in Theorems 6.3.1 and 6.3.2 below two new general dis-
integrated PAC-Bayesian bounds. A key asset of our results is that the bounds are
instantiable to specific settings as for the “classical” PAC-Bayesian bounds (e.g., with
i.i.d./non-i.i.d. data, unbounded losses, etc.). By instantiating such a bound, we
obtain an easily optimizable bound, leading to a self-bounding algorithm (Freund,
1998) with theoretical guarantees. As an illustration of the usefulness of our results,
we provide, in Section 6.4, such an instantiation for neural networks.

6.3.2 Disintegrated Bounds with the Rényi Divergence
6.3.2.1 Our Main Contribution: a General Disintegrated Bound

In the same spirit as Theorem 2.3.5 our main result stated in Theorem 6.3.1 is a general
bound involving the Rényi divergence Dλ(ρS‖π) of order λ>1.

Theorem 6.3.1 (General Disintegrated PAC-Bayes Bound). For any distribution
D on X×Y, for any hypothesis set H, for any prior distribution π ∈ M∗(H), for any
measurable function ϕ :H×(X×Y)m→R∗+, for any λ>1, for any δ ∈ (0, 1], for any
algorithm A : (X×Y)m×M∗(H)→M(H), we have

P
S∼Dm,h∼ρS

 λ

λ−1 ln (ϕ(h,S))

≤ 2λ−1
λ−1 ln 2

δ
+ Dλ(ρS‖π)+ ln

[
E

S′∼Dm
E

h′∼π

(
ϕ(h′,S′)

λ
λ−1
)]≥1−δ,
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where ρS , A(S, π) is output by the deterministic algorithm A.

Proof sketch (see Appendix F.1 for details). Recall that ρS is obtained with the
algorithm A(S, π). Applying Markov’s inequality (Theorem A.2.1) on ϕ(h,S)
with the random variable h and using Hölder’s inequality (Theorem A.5.1) to
introduce Dλ(ρS‖π), we have, with probability at least 1− δ

2 on S∼Dm and h∼ρS,

λ

λ−1 ln [ϕ(h,S)] ≤ λ

λ−1 ln
[2
δ

E
h′∼ρS

ϕ(h′,S)
]

≤ Dλ(ρS‖π) + λ

λ−1 ln 2
δ

+ ln
[
E

h′∼π

(
ϕ(h′,S)

λ
λ−1
)]
.

By applying again Markov’s inequality (Theorem A.2.1) on ϕ(h,S) with the
random variable S, we have, with probability at least 1− δ

2 on S∼Dm and h∼ρS,

ln
[
E

h′∼π

(
ϕ(h′,S)

λ
λ−1
)]
≤ ln

[2
δ

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)

λ
λ−1
)]
.

Lastly, we combine the two bounds with a union bound argument. �

As for the general classical PAC-Bayesian bounds (Theorem 2.3.5), the above theorem
can be seen as the starting point of the derivation of generalization bounds depending
on the choice of the function ϕ, as done in Corollary 6.4.1 in Section 6.4.1; this
property makes it the main result of this chapter. In its proof, Hölder’s inequality
(Theorem A.5.1) is used differently than in the classic PAC-Bayes bound’s proofs.
Indeed, in the proof of Bégin et al. (2016, Th. 8), the change of measure based on
Hölder’s inequality is key for deriving a bound that holds for all posteriors ρ with high
probability, while our bound holds for a unique posterior ρS dependent on the sample S
and the prior π. In fact, we use Hölder’s inequality to introduce a prior π independent
from S: a crucial point for our bound instantiated in Corollary 6.4.1. Compared to
Theorem 2.3.5, our bound requires an additional term ln 2+ λ

λ−1 ln 2
δ
. However, by

setting ϕ(h,S) = m kl(R`S(h)‖R`D(h)) and λ=2, the term ln 8
δ2 is multiplied by 1

m
,

which turns out to be a reasonable cost to “derandomize” a bound into a disintegrated
one. For instance, if m = 5, 000 (a reasonable sample size) and δ = 0.05, we have
1
m

ln 8
δ2 ≈ 0.002.

We instantiate below Theorem 6.3.1 for λ→1+ and λ→+∞ showing that the bound
converges when λ→1+ and λ→+∞.
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Corollary 6.3.1 (Extreme Cases of Theorem 6.3.1). Under the assumptions of
Theorem 6.3.1, when λ→1+, we have

P
S∼Dm,h∼ρS

 lnϕ(h,S) ≤ ln 2
δ

+ ln
[

esssup
S′∈(X×Y),h′∈H

ϕ(h′,S′)
]≥1−δ,

when λ→+∞, we have

P
S∼Dm,h∼ρS

 lnϕ(h,S) ≤ ln esssup
h′∈H

ρS(h′)
π(h′) + ln

[ 4
δ2 E

S′∼Dm
E

h′∼π
ϕ(h′,S′)

]≥1−δ,

where esssup is the essential supremum defined as the supremum on a set with
non-zero probability measures, i.e.,

esssup
S′∈(X×Y),h′∈H

ϕ(h′,S′) = inf
{
τ ∈ R, P

S∼Dm,h∼ρS

[
ϕ(h,S) > τ

]
= 0

}
,

and esssup
h′∈H

ρS(h′)
π(h′) = inf

{
τ ∈ R, P

h∼ρS

[
ρS(h)
π(h) > τ

]
= 0

}
.

Proof. Deferred to Appendix F.2. �

This corollary illustrates that the parameter λ controls the trade-off between the
Rényi divergence Dλ(ρS‖π) and ln

[
ES′∼Dm Eh′∼π ϕ(h′,S′)

λ
λ−1
]
. Indeed, when λ→1+,

the Rényi divergence vanishes (Dλ(ρS‖π)→0) while the other term converges to-
ward ln

[
esssupS′∈(X×Y),h′∈H ϕ(h′,S′)

]
, roughly speaking the maximal value possible

for the second term. On the other hand, when λ→+∞, the Rényi divergence in-
creases and converges toward ln esssuph′∈H

ρS(h′)
π(h′) and the other term decreases toward

ln[ES′∼Dm Eh′∼π ϕ(h′,S′)].

6.3.2.2 Comparison with the Bound of Rivasplata et al. (2020)

For the sake of comparison, we recall in Theorem 2.4.1 the bound proposed by Rivas-
plata et al. (2020, Th.1(i)), that is more general than the bounds of Blanchard
and Fleuret (2007) and Catoni (2007, Th.1.2.7).

Theorem 2.4.1 (General Disintegrated Bound of Rivasplata et al. (2020)). For
any distribution D on X × Y, for any hypothesis set H, for any prior distribution
π ∈ M∗(H), for any measurable function ϕ : H× (X×Y)m → R, for any δ ∈ (0, 1],
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for any algorithm A : (X×Y)m×M∗(H)→M(H), we have

P
S∼Dm,h∼ρS

ϕ(h,S) ≤ ln
[
ρS(h)
π(h)

]
+ln

[1
δ

E
S′∼Dm

E
h′∼π

exp (ϕ(h′,S′))
]

︸ ︷︷ ︸
Φ(ρS,π,δ)

 ≥ 1−δ,

where ρS , A(S, π) is output by the deterministic algorithm A.

Note that the bound can be rewritten with the logarithm, i.e., we have

P
S∼Dm,h∼ρS

 ln (ϕ(h,S)) ≤ ln
[
ρS(h)
π(h)

]
+ln

[1
δ

E
S′∼Dm

E
h′∼π

ϕ(h′,S′)
]  ≥ 1−δ.

The term lnρS(h)
π(h) (also involved in Blanchard and Fleuret (2007) and Catoni

(2007)) can be seen as a “disintegrated1 KL divergence” depending only on the sampled
h∼ρS. In contrast, our bound involves the Rényi divergence Dλ(ρS‖π) between the
prior π and the posterior ρS, meaning our bound involves only one term that depends
on the sample hypothesis (the risk): the divergence value is the same whatever the
hypothesis. Our bound is expected to be looser because of the Rényi divergence (see
Erven and Harremoës, 2014) and the dependence in δ (which is worse than in
Theorem 2.4.1). Nevertheless, our divergence term is the main advantage of our bound.
Indeed, as confirmed by our experiments (Section 6.5), our bound with Dλ(ρS‖π)
makes the learning procedure (in our self-bounding algorithm) more stable and efficient
compared to the optimization of Theorem 2.4.1’s bound with ln ρS(h)

π(h) that is subject
to high variance.

6.3.2.3 A Parameterizable General Disintegrated Bound

In the PAC-Bayesian literature, parameterized bounds have been introduced (e.g.,
Catoni (2007) and Thiemann et al. (2017)) to control the trade-off between the
empirical risk and the divergence along with the additional term. For the sake of
completeness, we now provide a parameterized version of our bound, enlarging its
practical scope. We follow a similar approach to introduce a version of a disintegrated
Rényi divergence-based bound that has the advantage of being parameterizable.

Theorem 6.3.2 (Parametrizable Disintegrated PAC-Bayes Bound). For any distri-
bution D on X×Y, for any hypothesis set H, for any prior distribution π ∈ M∗(H),
1We say that the KL divergence is “disintegrated” since the log term is not averaged in contrast

to the KL divergence.
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for any measurable function ϕ :H×(X×Y)m→R∗+, for any δ ∈ (0, 1], for any algo-
rithm A : (X×Y)m×M∗(H)→M(H), we have

P
S∼Dm,
h∼ρS

∀λ>0, ln (ϕ(h,S))≤ ln
[
λ

2 e
D2(ρS‖π)+ 8

2λδ3 E
S′∼Dm

E
h′∼π

[
ϕ(h′,S′)2

]] ≥ 1−δ,

where ρS,A(S, π) is output by the deterministic algorithm A.

Proof. Deferred to Appendix F.3. �

Note that eD2(ρS‖π) is closely related to the χ2-distance. Indeed we have: χ2(ρS‖π) ,
Eh∼π

[
ρS(h)
π(h)

]2
−1 = eD2(ρS‖π)−1. An asset of Theorem 6.3.2 is the parameter λ

controlling the trade-off between the exponentiated Rényi divergence eD2(ρS‖π) and
1
δ3ES′∼DmEh′∼πϕ(h′,S′)2. Our bound is valid for all λ>0, thus, from a practical view,
we can learn/tune the parameter λ to minimize the bound and control the possible
numerical instability due to eD2(ρS‖π). Indeed, if D2(ρS‖π) is large, the numerical com-
putation can lead to an infinite value due to finite precision arithmetic. It is important
to notice that, like other parameterized bounds (e.g., Thiemann et al., 2017), there
exists a closed-form solution of the optimal parameter λ (for a fixed π and ρS); the
solution is derived in Proposition 6.3.1 and shows that the optimal bound of Theo-
rem 6.3.2 corresponds to the bound of Theorem 6.3.1.

Proposition 6.3.1 (Optimal Bound of Theorem 6.3.2). For any distribution D
on X×Y, for any hypothesis set H, for any prior distribution π on H, for any
δ∈(0, 1], for any measurable function ϕ :H×(X×Y)m→R∗+, for any algorithm A :
(X×Y)m×M∗(H)→M(H), let

λ∗= argmin
λ>0

ln

λ2 eD2(ρS‖π)+
E

S′∼Dm
E

h′∼π

[
8ϕ(h′,S′)2

]
2λδ3

,

then, we have

Theorem 6.3.2︷ ︸︸ ︷
2 ln

[
λ∗

2 eD2(ρS‖π)+ E
S′∼Dm

E
h′∼π

(
8ϕ(h′,S′)2

2λ∗δ3

)]

= D2(ρS‖π) + ln
[

E
S′∼Dm

E
h′∼π

(
8ϕ(h′,S′)2

δ3

)]
︸ ︷︷ ︸

Theorem 6.3.1 with λ = 2.

,
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where λ∗ =

√√√√ES′∼Dm Eh′∼π [8ϕ(h′,S′)2]
δ3 exp(D2(ρS‖π)) .

Put into words: the optimal λ∗ gives the same bound for Theorem 6.3.1 and
Theorem 6.3.2.

Proof. Deferred to Appendix F.4. �

6.4 The Disintegration in Action
So far, we have introduced theoretical results to derandomize PAC-Bayesian bounds
through a disintegration approach. Indeed, the disintegration allows us to obtain a
bound for a unique model sampled from ρS instead of having a bound on the av-
eraged risk. This section proposes to illustrate the instantiation and usefulness of
Theorem 6.3.1 on neural networks compared to the classical PAC-Bayesian bounds.

6.4.1 Specialization to Neural Network Classifiers
We aim to learn the weights of the Neural Networks (NN) leading to the lowest true
risk RD(h) = E(x,y)∼D I [h(x) 6= y]. In other words, we consider that the hypothe-
sis set H is a set of neural networks with different weights for a given architecture.
Practitioners usually proceed by epochs and obtain one “intermediate” NN after each
epoch. Then, they select the “intermediate” NN associated with the lowest validation
risk. We propose translating this practice into our PAC-Bayesian setting by consider-
ing one prior per epoch. Given T epochs, we hence have T priors P={πt}Tt=1, where
∀t∈{1, . . . , T}, πt = N (vt, σ2ID) is a Gaussian distribution centered at vt (the weight
vector associated with the t-th “intermediate” NN) with a covariance matrix of σ2ID
(where ID is the D×D-dimensional identity matrix). Assuming the T priors are learned
from a set Sprior such that Sprior

⋂
S=∅, then Corollaries 6.4.1 and 6.4.2 will guide us to

learn a posterior ρS=N (w, σ2ID) from the prior π ∈ P minimizing the empirical risk
on S (we give more details on the procedure after the forthcoming corollaries). Note
that considering Gaussian distributions has the advantage of simplifying the expression
of the KL divergence and thus is commonly used in the PAC-Bayesian literature for
neural networks (e.g., Dziugaite and Roy, 2017; Letarte et al., 2019; Zhou
et al., 2019).2

2This has been first studied in the context of linear classifiers (e.g., Ambroladze et al., 2006;
Germain et al., 2009, 2020). However, in this context the symmetry of the Gaussian distribution
also ease the derandomization.

– 158 –



6.4. The Disintegration in Action

Corollary 6.4.1 below instantiates Theorem 6.3.1 to this neural networks setting. Then,
for the sake of comparison, Corollary 6.4.2 instantiates other disintegrated bounds
from the literature; more precisely, Equation (6.1) corresponds to Rivasplata et al.
(2020)’s bound of Theorem 2.4.1, Equation (6.2) to Blanchard and Fleuret
(2007)’s one, and Equation (6.3) to Catoni (2007)’s one.

Corollary 6.4.1 (Instantiation of Theorem 6.3.1 for Neural Networks). For any
distribution D on X×Y, for any set P = {π1, . . . , πT} of T priors on H where
πt = N (vt, σ2ID), for any algorithm A : (X×Y)m × M∗(H)→M(H), for any loss
` :H×(X×Y)→[0, 1], for any δ∈(0, 1], we have

P
S∼Dm,h∼ρS

∀πt ∈ P, kl(R`S(h)‖R`D(h)) ≤ 1
m

[
‖w−vt‖2

2
σ2 + ln 16T

√
m

δ3

] ≥ 1−δ,

where kl(a‖b) = a ln a
b

+ (1−a) ln 1−a
1−b , ρS = N (w, σ2ID), and the hypothesis

h ∼ ρS is parameterized by w+ε.

Proof. Deferred to Appendix F.5. �

Corollary 6.4.2 (Instantiation of Known Bounds for Neural Networks). For any
distribution D on X×Y, for any set P = {π1, . . . , πT} of T priors on H where
πt = N (vt, σ2ID), for any algorithm A : (X×Y)m × M∗(H)→M(H), for any loss
` : H×(X×Y)→{0, 1}, for any δ∈(0, 1], with probability at least 1−δ over the
learning sample S∼Dm and the hypothesis h∼ρS parameterized by w+ε, we have
∀πt ∈ P

kl(R`S(h)‖R`D(h))≤ 1
m

‖w+ε−vt‖2
2−‖ε‖2

2
2σ2 + ln2T

√
m

δ

, (6.1)

∀b∈b, kl+(R`S(h)‖R`D(h))≤ 1
m

b+1
b

[
‖w+ε−vt‖2

2−‖ε‖2
2

2σ2

]
+
+ ln(b+1)T card(b)

δ

,
(6.2)

∀c∈c, R`D(h)≤
1− exp

(
−cR`S(h)− 1

m

[
‖w+ε−vt‖2

2−‖ε‖2
2

2σ2 + lnT card(c)
δ

])
1−e−c ,

(6.3)

with [x]+= max(x, 0), and kl+(R`S(h)‖R`D(h))= kl(R`S(h)‖R`D(h)) if R`S(h)<R`D(h)
and 0 otherwise. Moreover, ε∼N (0, σ2ID) is a Gaussian noise such that w+ε are
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the weights of h∼ρS with ρS=N (w, σ2ID), and c, b are two sets of hyperparam-
eters fixed a priori.

Proof. Deferred to Appendix F.6. �

Since we aim to minimize the true risk RD(h), i.e., we consider in practice the 01-
loss `(h, (x, y)) = I [h(x) 6= y]. As the parameter λ of the Theorem 6.3.2, c ∈ c
is a hyperparameter that controls a trade-off between the empirical risk R`S(h) and
1
m

[‖w+ε−vt‖2
2−‖ε‖

2
2

2σ2 + lnT card(c)
δ

]
. Besides, the parameter b ∈ b controls the tightness

of the bound. These parameters can generally be tuned to minimize the bound of
Equation (6.2) and Equation (6.3); however, there is no closed-form solution for the
expression of the minimum of these equations. Consequently, our experimental protocol
requires minimizing the bounds by gradient descent for each b ∈ b or c ∈ c to learn
the distribution ρS leading to the lowest bound value. To obtain a tight bound,
the divergence between one prior πt ∈ P and ρS must be low, i.e., ‖w−vt‖2

2 (or
‖w+ε−vt‖2

2−‖ε‖2
2) has to be small. One solution is to split the learning sample into

2 non-overlapping subsets Sprior and S, where Sprior is used to learn the prior, while S
is used both to learn the posterior and compute the bound. Hence, if we “pre-learn”
a good enough prior πt∈P from Sprior, then we can expect to have a low ‖w−vt‖2.

Training Method
The original training set is split in two distinct subsets: Sprior and S (respectively of
size mprior and m, that can be different).
The training has two phases.
1) The prior distribution π is “pre-learned” with Sprior and selected by early stopping,
with S as validation set, using the algorithm Aprior (an arbitrary learning algorithm).
2) Given S and π, we learn the posterior ρS with the algorithm A (defined a priori).

At first sight, the selection of the prior weights with S by early stopping may appear to
be “cheating”. However, this procedure can be seen as: (i) first constructing P from
the T “intermediate” NNs learned after each epoch from Sprior, then (ii) optimizing
the bound with the prior that leads to the best risk on S. This gives a statistically valid
result: since Corollary 6.4.1 is valid for every πt ∈P, we can select the one we want,
in particular the one minimizing R`S(h) for a sampled h ∼ πt. This heuristic makes
sense: it allows us to detect if a prior is concentrated around hypotheses that potentially
overfit the learning sample Sprior. Usually, practitioners consider this “best” prior as the
final NN. In our case, the advantage is that we refine this “best” prior with S to learn
the posterior ρS. Note that Pérez-Ortiz et al. (2021) have already introduced tight
generalization bounds with data-dependent priors for—non-derandomized—stochastic
NNs. Nevertheless, our training method to learn the prior differs greatly since (i) we
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learn T NNs (i.e., T priors) instead of only one, (ii) we fix the variance of the Gaussian in
the posterior ρS. To the best of our knowledge, our training method for the prior is new.

6.4.2 A Note About Stochastic Neural Networks
Due to its stochastic nature, PAC-Bayesian theory has been explored to study stochas-
tic NNs (e.g., Dziugaite and Roy (2017, 2018), Zhou et al. (2019), and Pérez-
Ortiz et al. (2021)). In Corollary 6.4.3 below, we instantiate the bound of The-
orem 2.3.1 for stochastic NNs to empirically compare the stochastic and the deter-
ministic NNs associated with the same prior and posterior distributions. We recall
that, in this chapter, a deterministic NN is a single h sampled from the posterior
distribution ρS=N (w, σ2ID) output by the algorithm A. Hence, for each example,
the prediction is performed by the same deterministic NN: the one parameterized by
the weights w + ε ∈ RD. Conversely, the stochastic NN associated with a posterior
distribution ρ=N (w, σ2ID) predicts the label of a given example by (i) first sampling
h according to ρ, and (ii) then returning the label predicted by h. Thus, the risk of the
stochastic NN is the expected risk value Eh∼ρ R`D(h), where the expectation is taken
over all h sampled from ρ. We compute the empirical risk of the stochastic NN from
a Monte Carlo approximation: (i) we sample K weight vectors, and (ii) we average the
risk over the K associated NNs; we denote by ρK the distribution of such K-sample.
In this context, we obtain the following PAC-Bayesian bound.

Corollary 6.4.3 (PAC-Bayesian Bound for Stochastic Neural Networks). For any
distribution D on X×Y, for any set P = {π1, . . . , πT} of T priors on H where πt =
N (vt, σ2ID), for any loss ` :H×(X×Y)→{0, 1}, for any δ∈(0, 1], with probability
at least 1−δ over S∼Dm and {h1, . . . , hK}∼ρK , we have simultaneously ∀πt∈P,

kl
(
E
h∼ρ

R`S(h)‖ E
h∼ρ

R`D(h)
)
≤ 1
m

[
‖w−vt‖2

2
2σ2 + ln4T

√
m

δ

]
, (6.4)

and kl
(

1
K

K∑
i=1

RS(hi)‖ E
h∼ρ

R`S(h)
)
≤ 1
n

ln 4
δ
, (6.5)

where ρ = N (w, σ2ID) and the hypothesis h sampled from ρ is parameterized by
w + ε with ε ∼ N (0, σ2ID).

Proof. Deferred to Appendix F.7. �

This result shows two features that allow considering it as an adapted baseline for a fair
comparison between disintegrated and classical PAC-Bayesian bounds, thus between
deterministic and stochastic NNs. Firstly, it involves the same terms as Corollary 6.4.1.
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Secondly, it is close to the bound of Pérez-Ortiz et al. (2021, Sec. 6.2), since (i) we
adapt the KL divergence to our setting (i.e., KL(ρ‖π)= 1

2σ2‖w−vt‖2
2), (ii) the bound

holds for T priors thanks to a union bound argument.

6.5 Experiments with Neural Networks
In this section, we do not seek state-of-the-art performance; in fact, we have a three-
fold objective: (i) we check if 50%/50% is a good choice for splitting the original
train set into (Sprior,S) (which is the most common split in the PAC-Bayesian litera-
ture (Germain et al., 2009; Pérez-Ortiz et al., 2021)); (ii) we highlight that our
disintegrated bound associated with the deterministic NN is tighter than the random-
ized bound associated with the stochastic NN (Corollary 6.4.3); (iii) we show that our
disintegrated bound (Corollary 6.4.1) is tighter and more stable than the ones based on
Rivasplata et al. (2020), Blanchard and Fleuret (2007) and Catoni (2007)
(Corollary 6.4.2).

6.5.1 Training Method
We follow our Training Method (Section 6.4.1) in which we integrate the direct min-
imization of all the bounds. We refer as ours the training method based on the
minimization of our bound in Corollary 6.4.1, as rivasplata the one based on Equa-
tion (6.1), as blanchard the one based on Equation (6.2), and as catoni the one
based on Equation (6.3). stochastic denotes the PAC-Bayesian bound with the prior
and posterior distributions obtained from ours. To optimize the bound with gradient
descent, we replace the non-differentiable 0-1 loss I [h(x) 6= y] with a surrogate: the
bounded cross-entropy loss (Dziugaite and Roy, 2018). We made this replacement
since cross-entropy minimization works well in practice for neural networks (Good-
fellow et al., 2016) and because this loss is bounded between 0 and 1, which is
required for the kl() function. The cross-entropy is defined in a multi-class setting
with y ∈ Y by `(h, (x, y)) = − 1

Z
ln
[
e−Z + (1− 2e−Z)h[y]

]
∈ [0, 1] where h[y] is the

y-th output of the NN; we set Z=4, the default parameter of Dziugaite and Roy
(2018). That being said, to learn a good enough prior π∈P and the posterior ρS, we
run our Training Method with two stochastic gradient descent-based algorithms Aprior
and A. Note that the randomness in the stochastic gradient descent algorithm is fixed
to have deterministic algorithms. In phase 1) algorithm Aprior learns from Sprior the T
priors π1, . . . , πT ∈P (i.e., during T epochs) by minimizing the bounded cross-entropy
loss. In other words, at the end of the epoch t, the weights wt of the classifier are
used to define the prior πt = N (wt, σ

2ID). Then, the best prior π∈P is selected by
early stopping on S. In phase 2), given S and π, algorithm A integrates the direct
optimization of the bounds with the bounded cross-entropy loss.
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6.5.2 Optimization3 Procedure in Algorithms A and Aprior

Let ω be the mean vector of a Gaussian distribution used as NN weights that we are
optimizing. In algorithms A and Aprior, we use the Adam optimizer (Kingma and
Ba, 2015), and we sample a noise ε∼N (0, σ2ID) at each iteration of the optimizer.
Then, we forward the examples of the mini-batch in the NN parameterized by the
weights ω+ε, and we update ω according to the bounded cross-entropy loss. Note
that during phase 1), at the end of each epoch t, πt=N (ω, σ2ID)=N (vt, σ2ID) and
finally at the end of phase 2) we have ρS=N (ω, σ2ID)=N (w, σ2ID).

6.5.3 Experimental Setting
6.5.3.1 Datasets

We perform our experimental study on three datasets: MNIST (LeCun et al., 1998),
Fashion-MNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky, 2009). We divide
each original train set into two independent subsets Sprior of size mprior and S of size
m with varying split ratios defined as mprior

m+mprior
∈ {0, .1, .2, .3, .4, .5, .6, .7, .8, .9}. The

test sets denoted by T remain the original ones.

6.5.3.2 Models

For the (Fashion-)MNIST datasets, we train a variant of the All Convolutional Net-
work (Springenberg et al., 2015). The model is a 3-hidden layers convolutional
network with 96 channels. We use 5× 5 convolutions with a padding of size 1 and a
stride of size 1 everywhere except on the second convolution where we use a stride of
size 2. We adopt the Leaky ReLU activation functions after each convolution. Lastly,
we use a global average pooling of size 8×8 to obtain the desired output size. Further-
more, the weights are initialized with Xavier Normal initializer (Glorot and Bengio,
2010) while each bias of size l is initialized uniformly between−1/

√
l and 1/

√
l. For the

CIFAR-10 dataset, we train a ResNet-20 network, i.e., a ResNet network from He et al.
(2016) with 20 layers. The weights are initialized with Kaiming Normal initializer (He
et al., 2015) and each bias of size l is initialized uniformly between −1/

√
l and 1/

√
l.

6.5.3.3 Optimization

For the (Fashion-)MNIST datasets, we learn the parameters of our prior distributions
π1, . . . , πT by using Adam optimizer for T = 10 epochs with a learning rate of η = 10−3

and a batch size of 32 (the other parameters of Adam are left by default). Moreover,
the posterior distribution’s parameters are learned for one epoch with the same batch
size and optimizer (except that the learning rate is either η = 10−4 or η = 10−6). For

3The details of the optimization and the evaluation of the bounds are described in Appendix.
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the CIFAR-10 dataset, the parameters of the priors π1, . . . , πT are learned for T = 100
epochs and the posterior distribution ρS for 10 epochs with a batch size of 32 by using
Adam optimizer as well. Additionally, the learning rate to learn the prior for CIFAR-10
is η = 10−2.

6.5.3.4 Bounds

We report the bounds’ values with the 0-1 loss `(h, (x, y)) = I [h(x) 6= y]. More-
over, for blanchard’s bounds, we define the set of hyperparameters b in the fol-
lowing way: b={b∈N | b=

√
x, (x+1) ≤ 2

√
m}, i.e., such that blanchard’s bounds

can be tighter than rivasplata’s ones. We fixed the set of hyperparameters for
catoni as c=

{
10k|k∈{−3,−2, . . . ,+3}

}
. We consider different values for the vari-

ance σ2∈{10−3, 10−4, 10−5, 10−6} associated with the disintegrated KL divergence
ln ρS(h)

π(h) equals to ln ρS(h)
π(h) = 1

2σ2 (‖w+ε−vt‖2
2−‖ε‖2

2), the “normal” Rényi divergence
D2(ρ‖π) = 1

σ2‖w−vt‖2
2 and the KL divergence KL(ρ‖π) = 1

2σ2‖w−vt‖2
2. For all

the figures, the values are averaged over 400 deterministic NNs sampled from ρS
(the standard deviation is small and presented in the Appendix). We additionally
report as stochastic (Corollary 6.4.3) the randomized bound value and KL diver-
gence KL(ρ‖π) associated with the model learned by ours, meaning that K=400 and
that the test risk reported for ours also corresponds to the risk of the stochastic NN
approximated with these 400 NNs.

6.5.4 Results
6.5.4.1 Analysis of the Influence of the Split Ratio Between Sprior and S

Figures 6.1 and 6.2 study the evolution of the bound values after optimizing the bounds
with our Training Method for different parameters. Specifically, the split ratio of the
original train set varies from 0.1 to 0.9 (0.1 means that mprior = 0.1(m+mprior)), for
four variances values σ2 and the two learning rates (η = 10−6 and η = 10−4). For the
sake of readability, we present detailed results when the split ratio is 0 in Table F.1.
We first remark that the behavior is different for the two learning rates. On the one
hand, for η = 10−6, the mean bound values are close to each other, which is not
surprising since the disintegrated KL divergences and the Rényi divergences are close
to zero (see Table F.2 to Table F.10). Moreover, for MNIST and Fashion-MNIST,
there is a trade-off between learning a good prior with Sprior and minimizing a gener-
alization bound with S. In this case, the split ratio 0.5 appears to be a good choice
to obtain a tight (disintegrated) PAC-Bayesian bound. This ratio is widely used in the
PAC-Bayesian literature (see, e.g., in the context of linear classifiers (Germain et al.,
2009), majority votes (Zantedeschi et al., 2021), and neural networks (Letarte
et al., 2019; Pérez-Ortiz et al., 2021)). On the other hand, when η = 10−4, the
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Figure 6.1. Evolution of the bound values in terms of the split ratio. The x-axis
represents the different split ratios, and the y-axis represents the bound values obtained
after their optimization using our Training Method. Each row corresponds to a given
variance σ2, and each column corresponds to a dataset (MNIST, Fashion-MNIST, or
CIFAR-10). In this figure, we consider a learning rate of η = 10−6.

mean bound values tend to increase when the split ratio increases as well for the bounds
introduced in the literature (i.e., for blanchard, catoni, and rivasplata), while the
mean bound values of our bound remain low. Indeed, m decreases as long as the split
ratio increases, which has the effect of increasing the bound value drastically when
the disintegrated KL divergence is high. We further explain why the disintegrated KL
divergence can become high for the disintegrated bounds of the literature. To do so,
we now restrict our study to a split ratio of 0.5 in order to (i) compare the tightness
of the bounds, (ii) understand why the disintegrated bounds of the literature diverge.
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Figure 6.2. Evolution of the bound values in terms of the split ratio. The x-axis
represents the different split ratios, and the y-axis represents the bound values obtained
after their optimization using our Training Method. Each row corresponds to a given
variance σ2, and each column corresponds to a dataset (MNIST, Fashion-MNIST, or
CIFAR-10). In this figure, we consider a learning rate of η = 10−4.

6.5.4.2 Comparison Between Disintegrated and “Classic” Bounds

We first compare the “classic” PAC-Bayesian bound (Corollary 6.4.3) and our disinte-
grated PAC-Bayesian bound (Corollary 6.4.1). To do so, we fix the variance σ2=10−3

(along with the split ratio equals 0.5). We report in Figure 6.3, the mean bound
values associated with ours (i.e., the Training Method that minimizes our bound)
and stochastic (we recall that stochastic is the PAC-Bayesian bound of Corol-
lary 6.4.3 on the model learned by ours). Actually, ours leads to more precise bounds
than the randomized stochastic even if the two empirical risks are the same and
the KL divergence is smaller than the Rényi one. This imprecision is due to the
non-avoidable sampling according to ρ done in the randomized PAC-Bayesian bound
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Figure 6.3. The figure illustrates the values of the PAC-Bayes bound (Corollary 6.4.3)
and the values of the disintegrated bound (Corollary 6.4.1) where the learning rate is
η = 10−4 or η = 10−6 and the split ratio is 0.5. The y-axis shows the values of the
bounds (the hatched bar for ours (Corollary 6.4.1) and the white bar for stochastic
(Corollary 6.4.3)) and the test risks RT (h) (grey shaded bar). We also report the values
of the empirical risk R`S(h), the Rényi divergence (associated with ours’ bound), and
the KL divergence (associated with stochastic’s bound).

of Corollary 6.4.3 (the higher K, the tighter the bound). Thus, using a disintegrated
PAC-Bayesian bound avoids sampling many NNs to obtain a low risk. This confirms
that our framework makes sense for practical purposes and has a great advantage in
terms of time complexity when computing the bounds.
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Figure 6.4. This figure shows the value of the disintegrated bounds (the colored bars)
and the test risks (the hatched bars) for Corollary 6.4.1 (“ours”) and Corollary 6.4.2
(“catoni”, “rivasplata” and “blanchard”) in two different settings, i.e., with a
learning rate of η = 10−6 and η = 10−4 and with split ratio of 0.5. We also plot
the value of the bounds (the dashed lines) and the test risks (the dotted lines) before
executing Step 2) of our Training Method. The y-axis shows the values of the bounds
and the test risks RT (h). The empirical risk RS(h) is presented above each bar.
Moreover, the second value represents the mean value of the divergence (the standard
deviations are also given for the disintegrated bounds of the literature).

6.5.4.3 Analysis of the Tightness of the Disintegrated Bounds

We now compare the tightness of the different disintegrated PAC-Bayesian bounds
(i.e., our bound and the ones in the literature). We study, as before, the case
where the split ratio is 0.5 and the variance σ2 = 10−3. We report in Figure 6.4
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for ours, rivasplata, blanchard and catoni, the mean bounds values; the mean
test risk RT (h) before (i.e., with the prior π) and after applying Step 2) (i.e., with
the posterior ρS). Moreover, we report above the bars the mean train risks R`S(h)
and the mean/standard deviation divergence values obtained after Step 2), i.e., the
Rényi divergence D2(ρS‖π)= 1

σ2‖w−vt‖2
2 for ours and the disintegrated KL diver-

gence ln ρS(h)
π(h) = 1

2σ2 [‖w+ε−vt‖2
2−‖ε‖2

2] for the others. First of all, we can remark that
we observe two different behaviors for η = 10−4 and η = 10−6. For η = 10−6, the
bound values are close to each other, as well as the empirical risks and the divergences
(which are close to 0). In Figure 6.4, we observe that the bound values and the test
risks are close to the one associated with the prior distribution because the divergence is
close to 0. This is probably due to the fact that the learning rate is too small, implying
that the bounds are not optimized. With a higher learning rate of η = 10−4, we observe
that our bound remains tight while the disintegrated bounds of the literature are looser.
Hopefully, our bound is improved after performing Step 2) of our Training Method.
However, for the bounds of the literature, the value of the disintegrated KL divergence
is large, making the bounds looser after executing Step 2). We now investigate the
reasons for the divergence of the bounds by looking at the influence of the variance σ2.

6.5.4.4 Analysis of the Influence of the Variance σ2

Given a split ratio of 0.5 and η ∈ {10−6, 10−4}, we report in Figure 6.5 the evolution
of the bound values associated with ours, rivasplata, blanchard, and catoni
when the variance varies from 10−6 to 10−3. First of all, an important point is that
ours behaves differently than rivasplata, blanchard, and catoni. Indeed, for both
learning rates, when σ2 decreases, the value of our bound remains low, while the others
increase drastically due to the explosion of the disintegrated KL divergence term (see
Table F.6 in Appendix for more details). Concretely, the disintegrated KL divergence
in Corollary 6.4.2 involves the noise ε through 1

2σ2‖w+ε−vt‖2
2−‖ε‖2

2 compared to our
divergence which is 1

σ2‖w−vt‖2
2 (without noise). Then, the sampled noise during the

optimization procedure ε influences the disintegrated KL divergence, making it prone
to high variations during training (depending thus on σ2). To illustrate the difference
during the optimization, we focus on the objective function (detailed in Appendix) of
Corollary 6.4.1 and Corollary 6.4.2 (Equation (6.1)). Roughly speaking, the divergence
in Corollary 6.4.1 does not depend on the sampled hypothesis h (with weights ω+ ε),
while the divergence of Equation (6.1) does. In consequence, the derivatives are less
dependent on h for Corollary 6 than for Equation (6.1). To be convinced of this, we
propose to study the gradient with respect to the current mean vector ω. On the one
hand, the gradient ∂R`S(h)

∂ω
of the risk w.r.t. ω is the same for both bounds (with the

loss of Dziugaite and Roy (2018)); hence, the phenomenon cannot come from this
derivative. On the other hand, the gradients of the divergence in Equation (6.1) and
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Figure 6.5. We plot the evolution of the mean bound values (the plain lines) in terms
of the variance σ2 after optimizing the bounds with our Training Method. Moreover,
we plot the mean bound values (the dashed lines) obtained before executing Step 2)
of our Training Method. The variance is represented on the x-axis, while the bound
values are represented on the y-axis. Furthermore, each row corresponds to a given
learning rate (η = 10−6 or η = 10−4), and each column corresponds to a dataset
(either MNIST, FashionMNIST, or CIFAR-10). The split ratio considered is 0.5.

Corollary 6.4.1 are respectively

∂

∂ω

[
1
m

(
‖ω+ε−vt‖2

2−‖ε‖2
2

2σ2

)]
= ∂

∂ω

[ 1
m2σ2‖ω+ε−vt‖2

2

]
= 1
mσ2 (ω+ε−vt) = ♦,

and ∂

∂ω

[
1
m

(
‖ω−vt‖2

2
σ2

)]
= ∂

∂ω

[ 1
mσ2‖ω−vt‖2

2

]
= 2
mσ2 (ω−vt) = ♥.

From the two derivatives, we deduce that ♦ = 1
2♥+ 1

mσ2ε. Hence, each gradient step
involves a noise in the gradient of the disintegrated KL divergence 1

mσ2ε ∼ N (0, 1
m

ID),
which is high for a small m. This randomness causes the disintegrated KL divergence

1
2σ2‖ω+ε−vt‖2

2−‖ε‖2
2 to be larger when σ2 decreases since (i) the divergence is di-

vided by 2mσ2 and (ii) the deviation between ω and vt increases. In conclusion, this
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makes the objective function (i.e., the bound) subjects to high variations during the
optimization, implying higher final bound values. Thus, the Rényi divergence has a
valuable asset over the disintegrated KL divergence since it does not depend on the
sampled noise ε.

6.5.4.5 Take Home Message from the Experiments

To summarize, our experiments show that our disintegrated bound is, in practice,
tighter than the ones in the literature. This tightness allows us to precisely bound
the true risk RD(h) (or the test risk RT (h)); thus, the model selection from the
disintegrated bound is effective. Moreover, we show that our bound is more easily
optimizable than the others. This is mainly due to the disintegrated KL divergence,
which depends on the sampled hypothesis h with weights ω+ε. Indeed, the gradients
of the disintegrated KL divergence with respect to ω include the noise ε, making the
gradient inaccurate (especially with a “high” learning rate and small variance σ2).

6.6 Perspectives for the Majority Vote
Before concluding, we discuss some perspectives for the stochastic majority vote in-
troduced in Chapter 5. Recall that the stochastic majority vote has its weights ρ
sampled from the Dirichlet distribution P defined as P(ρ) , 1

Z(α)
∏card(H)
j=1 ρ(hj)αj−1

(also called hyper-posterior). One drawback of the PAC-Bayesian approach for the
stochastic majority vote in Chapter 5 is that we are not considering only one ma-
jority vote (with weights sampled from the hyper-posterior P). Moreover, based on
the margin theory (initiated by Schapire et al., 1998) and our work in Chapter 5,
Biggs et al. (2020) derived PAC-Bayesian bound for the expected majority vote. This
latter work illustrates that a special care is unfortunately needed to obtain a bound
for a unique majority vote through the PAC-Bayesian theory. Hopefully, thanks to the
disintegrated PAC-Bayesian framework, we can bound the true risk of a single majority
vote classifier. As an illustration we derive two bounds for such a classifier based on
Rivasplata et al. (2020)’s bound (Theorem 2.4.1) and based on Theorem 6.3.1.

Corollary 6.6.1 (Instantiation of Theorem 2.4.1 to Stochastic Majority Votes).
For any distribution D on X×Y, for any finite set of voters H, for any hyper-prior
distribution Π = Dir(β) on H with β ∈ (R+

∗ )card(H), for any loss ` : H× (X×Y)→
[0, 1], for any δ ∈ (0, 1], for any algorithm A that outputs a hyper-posterior given
a learning sample and a hyper-prior, with probability at least 1−δ over the learning
sample S∼Dm and the posterior distribution ρ∼PS = Dir(α) with α ∈ (R+

∗ )card(H)
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we have

kl(R`S(MVρ)‖R`D(MVρ)) ≤
1
m

ln Z(β)
Z(α) +

card(H)∑
j=1

(αj − βj) ln(ρ(hj)) + ln 2
√
m

δ

 ,
where PS,A(S,Π) is output by the deterministic algorithm A.

Proof. Deferred to Appendix F.13 �

Corollary 6.6.2 (Instantiation of Theorem 6.3.1 to Stochastic Majority Votes).
For any distribution D on X×Y, for any finite set of voters H, for any hyper-prior
distribution Π = Dir(β) on H with β ∈ (R+

∗ )card(H), for any loss ` : H× (X×Y)→
[0, 1], for any λ > 1, for any δ ∈ (0, 1], for any algorithm A that outputs a hyper-
posterior given a learning sample and a hyper-prior, with probability at least 1−δ
over the learning sample S∼Dm and the posterior distribution ρ∼PS = Dir(α)
with α ∈ (R+

∗ )card(H) we have

kl(R`S(MVρ)‖R`D(MVρ)) ≤
1
m

2λ−1
λ−1 ln 2

δ
+ ln Z(β)

Z(α)

+ 1
λ−1 ln Z(λα+(1−λ)β)

Z(α) + ln(2
√
m)
,

where PS,A(S,Π) is output by the deterministic algorithm A.

Proof. Deferred to Appendix F.14 �

These two bounds offer great perspectives to upper-bound the true risk of the majority
vote. First, as we can remark, the two theorems holds for all (bounded) losses `()
including the 01-loss. Hence, the true risk RD(MVρ) can be upper-bounded directly
without using the 1

2 -margin of Laviolette et al. (2017) as in Chapter 5. While our
bounds require to sample a single majority vote from P, they might be tighter since
it does not rely on margin bound (as Biggs et al., 2020) and directly deal with the
01-loss.

6.7 Summary and Conclusion
We provide a new and general disintegrated PAC-Bayesian bound (Theorem 6.3.1) in
the family of disintegrated PAC-Bayesian bounds (Definition 2.4.1), i.e., when the de-
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randomization step consists in (i) learning a posterior distribution ρS on the classifiers
set (given an algorithm, a learning sample S and a prior distribution π) and (ii) sam-
pling a hypothesis h from this posterior ρS. While our bound can be looser than the
ones of Blanchard and Fleuret (2007), Catoni (2007), and Rivasplata et al.
(2020), it provides nice opportunities for learning deterministic classifiers. Indeed, our
bound can be used not only to study the theoretical guarantees of deterministic clas-
sifiers but also to derive self-bounding algorithms (based on the bound optimization)
that are more stable and efficient than the ones we obtain from the bounds of the
literature. Concretely, the bounds of Blanchard and Fleuret (2007), Catoni
(2007), and Rivasplata et al. (2020) depend on two terms related to the classifier
drawn: the risk and the “disintegrated KL divergence”, while in our bound the (Rényi)
divergence term depends on the hypothesis set, implying that the divergence remains
the same whatever which classifier is drawn. In this sense, our bound is more stable
as the learning algorithm seeking to minimize the bound allows, in practice, to choose
a better hypothesis than with the bounds of Blanchard and Fleuret (2007),
Catoni (2007), and Rivasplata et al. (2020). We have illustrated the interest of
our bound on neural networks and provides perspectives on the the stochastic majority
vote classifier introduced in Chapter 5.

One future research direction related to this work is to develop new proof techniques to
convert generalization bounds holding in expectation (see e.g., Xu and Raginsky,
2017) to high-probability bounds. To do so, one can apply Markov’s Inequality
(Theorem A.2.1) and the Donsker-Varadhan Variational Representation of the
KL divergence to obtain a high-probability bound with the bound in expectation as
upper-bound. This work might be significant since the dependence in δ is, for now,
only polynomial, while a logarithmic dependence is preferable. However, the limitation
would be that the bound in expectation must consider a specific distribution (related
to the Donsker-Varadhan Variational Representation).

In the next chapter, we leverage the disintegrated KL divergence and the bound of
Rivasplata et al. (2020) to obtain generalization bounds with an arbitrary complexity
measure. Hence, given a complexity measure defined by the user, we are able to give
a generalization bound that holds with high probability over the learning sample and a
hypothesis sampled from a complexity-measure-dependent distribution. Moreover, the
bound with arbitrary complexity measures encompasses the generalization bounds of
the literature and is recalled in Chapter 1.
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7Generalization Bounds with
Complexity Measures

This chapter is based on the following paper
Paul Viallard, Rémi Emonet, Amaury Habrard, Emilie Morvant, and
Valentina Zantedeschi. Generalization Bounds with Arbitrary Complexity Mea-
sures. Submitted to ICLR 2023. (2022a)
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Abstract
In statistical learning theory, generalization bounds usually involve a complexity
measure that is constrained by the considered theoretical framework limiting the
scope of such analysis. Among the measured mentioned in this thesis (Chap-
ter 1) we can cite for example the VC-dimension, the stability constant of the
uniform stability framework or the KL divergence used in the PAC-Bayesian
framework studied in Part II. Recently, the empirical study of Jiang et al.
(2019), made in the context of neural networks learning, has shown that (i) com-
mon complexity measures (such as the VC-dimension) do not necessarily corre-
late with the generalization gap, and that (ii) there exist arbitrary complexity
measures that are better correlated with the generalization gap, but come with-
out generalization guarantees. In this chapter, we propose to address the second
point by presenting a general framework allowing one to derive some general-
ization bounds able to take into account a general complexity measures.
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7.1 Introduction
As shown in Chapter 1 and notably in Section 1.3, statistical learning theory offers var-
ious theoretical frameworks to assess generalization by studying whether the empirical
risk is representative of the true risk thanks to an upper bounding strategy of the gener-
alization gap. While the generalization gap represents a deviation between the true risk
and the empirical risk, an upper bound on this generalization gap is generally a function
of mainly two quantities: (i) the size of the training sample and (ii) a complexity mea-
sure that captures how much the model overfits the data. There are some well-known
complexity measures in the literature such as the VC-Dimension (Definition 1.3.3) or
the Rademacher complexity (Definition 1.3.4) that quantify how much a hypothesis
from the hypothesis set can overfit the data. Following a different framework, instead
of considering the whole hypothesis set, algorithmic-dependent complexity measures
propose to quantify how much the hypothesis obtained by a learning algorithm overfit
the data: the uniform stability (Definition 1.3.6) or the robustness (Definition 1.3.7)
parameters are two examples.

In order to study generalization capabilities, a recent line of works, mainly in the context
of neural networks learning, is dedicated to the empirical study of different complexity
measures to find those that correlate the most with the generalization gap (Jiang
et al., 2019; Dziugaite et al., 2020; Jiang et al., 2021). For example, given an
arbitrary complexity measure, Jiang et al. estimate empirically the generalization gap
and the complexity measure for over-parametrized models. They are able to rank the
measure and the gap to obtain the Kendall’s rank coefficient (Kendall, 1938) to
evaluate how a measure reflects the generalization for a particular model. However,
this correlation coefficient were criticized by Dziugaite et al. (2020) because they
found that if the measures empirically correlate well on average, they are not robust
to changes of the fixed parameters (such as the depth or the width of the model).

On the one hand, while these results are extremely important to understand general-
ization, notably for over-parametrized models, they remain incomplete since they are
only empirical. On the other hand, as we can see in Section 1.3, the bounds in the
literature are restrictive because the practitioner cannot integrate in a bound its own
complexity measure. In other words, to the best our knowledge, there is no generaliza-
tion bound involving arbitrary complexity measures that are found to be good proxies
for the generalization gap. In this chapter, we aim to provide generalization bounds
with arbitrary complexity measures that the practitioner can define. We believe that
this direction is of important interest in advancing the understanding of generalization,
as the generalization gap can be provably upper-bounded with a term that depends on
a user-specified complexity measure. To get such generalization bounds, we leverage
a disintegrated PAC-Bayesian bound (Theorem 2.4.1). Such a bound further allows

– 176 –



7.2. Preliminaries

to derive theoretical guarantees for arbitrary complexity measures that depend on the
sampled model, and on the learning sample, which is uncommon in statistical learning
theory. Hence, our novel results provide theoretical foundation to the many regular-
ization used in practice to perform model selection (e.g., L2 regularization).

The rest of the chapter is organized as follows. In Section 7.2, we provide some
preliminaries dedicated to this chapter. Then, we present the main contribution in
Sections 7.3 and 7.5 before concluding in Section 7.6. As usual in this thesis, in order
to improve the readability of the chapter, the proofs are deferred in Appendix G.

7.2 Preliminaries
We provide in this section some quick recaps on notions that have been introduced pre-
viously in this thesis to make the reading easier. We first remind some elements about
supervised learning and the generalization gap. Then, we review quickly the disinte-
grated generalization bounds from which the contribution of this chapter are developed.

7.2.1 Setting
We follow the setting of Chapter 2 and Section 2.4 where we consider the supervised
classification setting. We recall that X denotes the input space and Y the label space.
Moreover, we consider that an example (x, y) ∈ X×Y is sampled from an unknown
data distribution D on X×Y. A learning sample S={(xi, yi)}mi=1 contains m examples
drawn i.i.d. from D; we denote the distribution of such an m-sample by Dm. Let H
be a potentially infinite set of hypotheses h : X→Y that associate a label belonging to
Y given an input from X.

Given a learning sample S, we aim to find h∈H that minimizes the so-called true risk
RD(h)=P(x,y)∼D [h(x) 6= y]. In practice, as the data distribution D is unknown, we
estimate the true risk with its empirical counterpart, i.e., the empirical risk RS(h) =
1
m

∑m
i=1I [h(xi) 6= yi]. We hereafter denote the generalization gap by φ : [0, 1]2 → R,

which is usually defined by φ(RD(h),RS(h)) = |RD(h)−RS(h)| that quantify how much
the empirical risk is representative of the true risk. Since the generalization bound is not
computable, a complexity measure can be used to capture the overfitting phenomenon.

To incorporate arbitrary complexities in the bounds, we leverage the disintegrated
PAC-Bayesian bounds framework (recalled in Section 2.4), i.e., we upper-bound the
generalization gap for a hypothesis h sampled from ρS ∈ M(H) with a function that
depends on an arbitrary measure of complexity. To do so, we need to consider an
apriori belief on the hypotheses in H that is modeled by a prior distribution π ∈ M∗(H).
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Hence, we aim to learn, from S and π, a posterior distribution ρS to assign higher
probability to the best hypotheses in H; the hypothesis h is then sampled from ρS to
obtain the guarantee with an arbitrary complexity measure.

7.2.2 Reminder on Disintegrated PAC-Bayesian Bounds
The disintegrated PAC-Bayesian bound (recalled in Section 2.4) has been introduced by
Catoni (2007, Th 1.2.7) and Blanchard and Fleuret (2007, Prop 3.1). To the
best of our knowledge, despite their interest, they have been little used in the literature
and have only recently received renewed interest for deriving tight bounds in practice
(see Chapter 6). Such bounds take the following form (introduced in Chapter 2).

Definition 2.4.1 (Disintegrated PAC-Bayesian Generalization Bound). Let ` :
H × (X×Y) → [0, 1] be a loss function and φ : [0, 1]2→[0, 1] a generaliza-
tion gap. A disintegrated PAC-Bayesian bound is defined such that if for any
distribution D on X × Y, for any hypothesis set H, for any prior distribution
π ∈ M∗(H), for any algorithm A : (X×Y)m×M∗(H)→M(H), there exists a function
Φ : M(H)×M∗(H)×(0, 1]→R such that for any δ ∈ (0, 1] we have

P
S∼Dm,h∼ρS

[
φ(R`D(h),R`S(h)) ≤ Φ

(
ρS, π, δ

)]
≥ 1− δ,

where ρS , A(S, π) is output by the deterministic algorithm A and φ() is, for
example, φ(R`D(h),R`S(h)) =

∣∣∣R`D(h)− R`S(h)
∣∣∣.

Put into words, given a training set S sampled from Dm, we can learn the distribution
ρS from S, and then sample the hypothesis h from ρS to get a bound with high
probability (at least 1 − δ) over the random choice of S and h. In this chapter, we
mainly focus on Rivasplata et al. (2020)’s bound recalled below.

Theorem 2.4.1 (General Disintegrated Bound of Rivasplata et al. (2020)). For
any distribution D on X × Y, for any hypothesis set H, for any prior distribution
π ∈ M∗(H), for any measurable function ϕ : H× (X×Y)m → R, for any δ ∈ (0, 1],
for any algorithm A : (X×Y)m×M∗(H)→M(H), we have

P
S∼Dm,h∼ρS

ϕ(h,S) ≤ ln
[
ρS(h)
π(h)

]
+ln

[1
δ

E
S′∼Dm

E
h′∼π

exp (ϕ(h′,S′))
]

︸ ︷︷ ︸
Φ(ρS,π,δ)

 ≥ 1−δ,

where ρS , A(S, π) is output by the deterministic algorithm A.
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In this case, the function ϕ(h,S)=mφ(RD(h),RS(h)) is a deviation between the
true risk RD(h) and the empirical risk RS(h). Moreover, the function Φ(ρS, π, δ)
is constituted by 2 terms: (i) the disintegrated KL divergence ln ρS(h)

π(h) defining how
much the prior and posterior distributions deviate for a single h, and (ii) the term
ln
[

1
δ
ES′∼Dm Eh′∼π exp (ϕ(h′,S′))

]
is constant w.r.t. h∈H and S∈(X×Y)m and usually

upper-bounded to instantiate the bound. In the following we refer to the whole right-
hand side of the bound, Φ(), as the complexity measure. This is in slight contrast with
the standard definition of complexity, where the term (ii) (related to δ and the sample
size m) is not included. This additional term is, in fact, constant w.r.t. the hypothesis
h∼ρS and the learning sample S∼Dm.

In the bound of Theorem 2.4.1, the complexity term Φ() depends on the disinte-
grated KL divergence and suffers from some drawbacks. Indeed, the complexity term
is imposed by the framework and it can be subject to high variance in practice (see
Chapter 6). However, it is important to notice that this disintegrated KL divergence
has a clear advantage: it only depends on the hypothesis h and S, instead of the
whole hypothesis class (as it is often the case, e.g., when using the KL divergence in
PAC-Bayesian bounds, or the VC-dimension). This might implies a better correlation
between the generalization gap and some complexity measures. In the next section, we
leverage this disintegrated KL divergence to derive our main contribution: a general
bound that involves arbitrary complexity measures.

7.3 Integrating Arbitrary Complexities in
Generalization Bounds

We first begin with a short presentation of our result to give some preliminary intu-
itions and to introduce the notion of Gibbs distribution which is a key element of our
contribution. We then provide formally our theoretical result in Section 7.3.3.

7.3.1 An Introduction to our Results
Let Φµ(h,S, δ) be a real-valued function dependent on an additional function µ :
H×(X×Y)m→R that takes a hypothesis h, a learning sample S, and the parameter δ
as arguments. This function µ() parametrizes the complexity measure based on the
data sample S and the model h, and thus allows us to introduce arbitrary complexity
measures in the bound; we further denote the function µ() as parametric function. As
an example, when H is a set of hypotheses hw parameterized by some weights w∈Rd,
we can fix µ(hw,S)=‖w‖, for some norm ‖ · ‖. This means that µ(hw,S) can be
set to the regularization term of the chosen objective function, so that the complexity,
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hence the bound, will depend on it. This is not really new since for example uniform
stability bounds allow one to consider such norms (see e.g., Kakade et al., 2008).
Here we want to illustrate that we simply incorporate some norms of parameters but
as the reader may guess our framework allows one ton consider a broader family of
complexity measures as we will see later. Given such a parametric function µ(), the
bound we derive in Theorem 7.3.1 takes the following form.

Definition 7.3.1 (Generalization Bound with Complexity Measures). Let φ :
[0, 1]2→R be the generalization gap, µ :H×(X×Y)m→R be a parametric function.
A generalization bound with arbitrary complexity measures is defined such that if
for any distribution D on X×Y, for any hypothesis set H, there exists a real-valued
function Φµ :H×(X×Y)m×(0, 1]→R such that for any δ∈(0, 1], we have

P
S∼Dm, h∼ρS

[
φ(RD(h),RS(h)) ≤ Φµ(h,S, δ)

]
≥ 1−δ. (7.1)

The main trick to obtain such a result is via a posterior distribution ρS: we incorporate
the function µ() by fixing the distribution ρS as a Gibbs distribution defined by

ρS(h) ∝ exp [−αRS(h)− µ(h,S)] , where α ∈ R+. (7.2)

This Gibbs distribution ρS is interesting from an optimization point of view: a hy-
pothesis h is more likely to be sampled from it when the objective function h 7→
RS(h)+ 1

α
µ(h,S) is low for a given S. For example, when µ(h,S) = 0, a hypothesis h

is more likely to be sampled when its empirical risk RS(h) is low. Conversely, when µ()
is non-constant, the function serves as a “regularizing term”, so that a hypothesis is
more likely to be sampled when the trade-off RS(h) + 1

α
µ(h,S) is low. In both cases,

the higher α, the more the density of ρS is concentrated around those hypotheses
that minimize the empirical risk. Moreover, it seems that Equation (7.2) is restric-
tive but it can actually represent any probability density functions. Indeed, let ρ′S be
a probability distribution on H, e.g., a Gaussian or a Laplace distribution, by setting
µ(h,S) = −αRS(h)− ln ρ′S(h) we can retrieve the distribution ρ′S. Actually, the Gibbs
distribution is well-known and studied in learning theory as discussed in the next section.

7.3.2 About the Gibbs Distribution
In this section, we would like to highlight two main lines of works that are related to
our setting: (i) the usage of the Gibbs distribution in the “classical” PAC-Bayesian
theory and (ii) the link between this distribution and optimization.
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Gibbs distribution in the PAC-Bayesian theory. The Gibbs distribution has started
to be studied in the PAC-Bayesian theory by Catoni (2004, 2007). Moreover,
Alquier et al. (2016, Theorem 4.2 and 4.3) developed PAC-Bayesian generaliza-
tion bounds with the Gibbs distribution considered in Equation (7.2) with µ(h,S) = 0
as posterior. However, their theorems analyze the expected true risk Eh∼ρS RD(h) while
we are interested in a single hypothesis h sampled from ρS. Moreover, their bounds
involve the non-computable and hypothesis-set-dependent KL divergence between the
Gibbs distribution and a prior distribution. Hence, the computation of the KL diver-
gence must be upper-bounded to allow one to instantiate this bound in practice. As we
will see further, the bounds of Theorem 7.3.1 and Corollary 7.3.1 do not have this issue
since they only require to know the expression of the density (up to the normalization
constant) for h ∼ ρS and h′ ∼ π.

Relationship between optimization and the Gibbs distribution. Given an ob-
jective function f : RD → R, the Stochastic Gradient Langevin Dynamics (SGLD)
algorithm (Welling and Teh, 2011) learns some parameter w ∈ RD by running
several iterations of the form

wt ←− wt−1 − η∇f(w) +
√

2η
α
εt, where εt ∼ N (0, ID), (7.3)

where wt is the weight vector learned at the iteration t ∈ N, the parameter η is the
learning rate and α is the concentration parameter of the Gibbs distribution. This
algorithm has an interesting feature: when the learning rate η tends to zero, the SGLD
algorithm becomes a continuous-time process, called Langevin diffusion, defined as
the following stochastic differential equation in Equation (7.4). Indeed, Equation (7.3)
can be seen as the Euler-Maruyama discretization (see e.g., Raginsky et al.,
2017) of Equation (7.4) defined for t ≥ 0 as

dw(t) = −∇f(w(t))dt+
√

2αB(t), (7.4)

where B(t) is the Brownian motion in RD. Under some mild assumptions on the func-
tion f , Chiang et al. (1987) show that the invariant distribution of the Langevin
diffusion is the Gibbs distribution proportional to exp(−αf(w)).

7.3.3 Our Main Results: Generalization Bound with
Complexity Measures

Thanks to the definition of ρS, we now state our main result which consists in providing
a bound on the generalization gap involving our parametric measure µ with respect to
a posterior ρS(h) ∝ exp [−αRS(h)− µ(h,S)].
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Theorem 7.3.1 (Generalization Bound with Complexity Measures). Let φ :
[0, 1]2→R be the generalization gap. For any D on X × Y, for any H, for any
distribution π ∈ M∗(H) on H, for any µ :H×(X×Y)m→R, for any δ∈(0, 1], we have

P
S∼Dm, h′∼π, h∼ρS

φ(RD(h),RS(h)) ≤
[
αRS(h′) + µ(h′,S)

]
−
[
αRS(h) + µ(h,S)

]

+ ln π(h′)
π(h) + ln

( 4
δ2 E

S′∼Dm
E
h′∼π

exp [φ(RD(h′),RS′(h′))]
) ≥ 1−δ.

Proof. Deferred to Appendix G.1. �

This theorem is general since it depends only on the functions φ() and µ() that must
be fixed by the practitioner. Given φ() and µ(), we can note an element that can
be surprising at the first reading: it appears indeed possible to sample hypotheses
with a bad objective RS(h)+ 1

α
µ(h,S) value and to obtain a tight generalization

bound. However, by definition the Gibbs distribution ρS, such a sampled hypoth-
esis h ∼ ρS is less probable since the density is higher when the objective is low.
On the other hand, it is highly probable to sample a hypothesis h from ρS with a
good objective RS(h)+ 1

α
µ(h,S) value. Concerning the tightness of the bound, it may

appear loose. However to get a bound that converges when m increases, it is suffi-
cient to fix φ() as a function of m such as φ(RD(h),RS(h))=2m[RD(h)−RS(h)]2 or
φ(RD(h),RS(h))=m kl[RS(h)‖RD(h)]. Then, the tightness of the bound depends on
the generalization gap φ(), the parametric function µ() and α. The remaining chal-
lenge is to upper-bound ES′∼Dm Eh′∼π exp[φ(RD(h′),RS′(h′))] and Eh′∼π ln π(h′)

π(h) to get
a practical bound. As an illustration we provide in the next corollary an instantiation of
Theorem 7.3.1 with the generalization gap φ(RD(h),RS(h))=2m[RD(h)−RS(h)]2 and
φ(RD(h),RS(h))=m kl[RS(h)‖RD(h)] when π is a uniform distribution on a bounded
hypothesis set H.

Corollary 7.3.1 (Practical Generalization Bound with Complexity Measures). For
any distribution D on X× Y, for any bounded hypothesis set H, given the uniform
prior distribution π on H, for any µ : H×(X×Y)m→R, for any δ ∈ (0, 1], with
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probability at least 1− δ over S ∼ Dm, h′ ∼ π, h ∼ ρS we have

kl [RS(h)‖RD(h)] ≤ 1
m

[[
αRS(h′) + µ(h′,S)

]
−
[
αRS(h) + µ(h,S)

]
+ 8
√
m

δ2

]
+
,

(7.5)∣∣∣∣RD(h)−RS(h)
∣∣∣∣ ≤

√√√√ 1
2m

[[
αRS(h′) + µ(h′,S)

]
−
[
αRS(h) + µ(h,S)

]
+ 8
√
m

δ2

]
+
,

(7.6)

where [a]+ = max(0, a), and ρS is the Gibbs distribution defined by Equation (7.2).

Proof. Deferred to Appendix G.2. �

Interestingly, Corollary 7.3.1 gives a bound on |RD(h)−RS(h)| and kl [RS(h)‖RD(h)]
where all terms except RD(h) are computable. To compute Equations (7.5) and (7.6)
we can rearrange the terms to obtain a generalization bound on the true risk RD(h).
Indeed, we have respectively

RD(h) ≤ kl
(

RS(h)
∣∣∣∣∣ 1
m

[
[αRS(h′) + µ(h′,S)]− [αRS(h) + µ(h,S)] + 8

√
m

δ2

]
+

)
,

(7.7)

and RD(h) ≤ RS(h) +

√√√√ 1
2m

[
[αRS(h′) + µ(h′,S)]− [αRS(h) + µ(h,S)] + 8

√
m

δ2

]
+
,

(7.8)

where kl(q|τ)= max
{
p ∈ (0, 1)

∣∣∣∣ kl(q‖p) ≤ τ
}

(see Definition 2.3.3). These
bounds are used in Section 7.4 to illustrate the generalization guarantees with dif-
ferent values of the parametric function µ() and α. Moreover, as illustrated in
the experiments, Equation (7.7) is a tighter bound on the true risk RD(h) than
Equation (7.8): we can prove it formally with Pinsker’s inequality (see all Equa-
tion (2.15)).

Nevertheless, the complexity measures Φµ(h,S, δ) of Equations (7.5) and (7.6) enjoys
asymptotic convergence for m→+∞. However, as mentioned previously, the com-
plexity also depends on α and µ(): the convergence rate can then be degraded by
[αRS(h′)+µ(h′,S)]− [αRS(h)+µ(h,S)] which may be potentially large. For exam-
ple, for all (h,S) ∈ H×(X×Y)m, if the empirical risk RS(h′) is large (which is often
the case when h′ is sampled from a uniform prior on H), α=m, and µ(h,S)=0, then
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the complexity measure, simplified into Φµ(h,S, δ) =
[
[RS(h′)−RS(h)] + 1

m
ln2
√
m
δ

]
+

for φ(RD(h),RS(h)) = kl[RS(h)‖RD(h)], will be large. We thus have to set α and
µ() such that (i) ρS allows to sample a hypothesis h associated with a low objec-
tive function h 7→ RS(h)+ 1

α
µ(h,S) and (ii) the complexity measure Φµ(h,S, δ) is

tight, resulting in a meaningful bound. For example, with α=
√
m and µ(h,S)=0,

the distribution ρS will be less concentrated around the minimizers of the empirical
risk, but the complexity measure will be tighter compared to the previous example:[

1√
m

[RS(h′)−RS(h)] + 1
m

ln 2
√
m
δ

]
+

.

The tightness of the bounds can be potentially improved since we choose a uniform
distribution for the prior π. To obtain better bounds, data-dependent priors have been
heavily used in the PAC-Bayesian literature (see e.g., Parrado-Hernández et al.,
2012; Dziugaite et al., 2021; Pérez-Ortiz et al., 2021). However, we think that
the uniform distribution helps to better understand the generalization phenomenon.
Indeed, the hypothesis h sampled from the uniform distribution π has a high chance
of underfitting. Hence, if the hypothesis h ∼ ρS has its associated bound value that is
tight, we can easily interpret this hypothesis generalizes well. On the other hand, if a
generalization bound with a data-dependent prior π is tight, it means that a posterior
ρS (not very far from the prior) allows us to generalize well. In this case, we do not
know if the generalization capability is essentially due to the choice of a good prior π
or if it comes mainly from the learned posterior ρS.

7.4 Using Arbitrary Complexities in Practice
The bound of Corollary 7.3.1 is not directly usable in its current form: the remaining
challenge is to sample h from the Gibbs distribution ρS defined in Equation (7.2); we
address the sampling issue in Section 7.4.1. Then, we make use of the proposed solution
to assess our bound in practice. Section 7.4.2.1 introduces our experimental setting
and Section 7.4.2.2 gives an overview of the tightness of the bound. Additionally, we
give an overview of the influence of α and the number of parameters in Sections 7.4.2.3
and 7.4.2.4.

7.4.1 Sampling from the Gibbs Distribution
Sampling from the Gibbs distribution of Equation (7.2) is a hard task: naively, it
requires to evaluate the function h 7→ −αRS(h)−µ(h,S) for all h ∈H, which is in-
tractable when H is infinite or even large. We tackle this issue for over-parameterized
models, which we later consider in Section 7.4.2.1 in an empirical study of our bound.
Let us consider a set H of hypotheses hw parameterized by w∈RD, and a tractable
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Algorithm 7.1 Stochastic MALA
1: Input: Learning set S, weights w, function µ(), loss function `()
2: Hyperparameters: Number of iterations T , learning rate η, parameter α
3: for t← 1 . . . T do
4: U← Sample (without replacement) a mini-batch from S
5: w′ ← Sample from the distribution Pw

U

6: τ ← min
(

1, ρU(w′)Pw′
U (w)

ρU(w)Pw
U (w′)

)
7: u← Sample from the distribution Uni(0, 1)
8: if u ≤ τ then
9: w← w′

10: return w

distribution denoted Pw
U (e.g., a Gaussian distribution) such that its density approx-

imates the density of ρS. In this setting, to learn such an auxiliary distribution, we
propose in Algorithm 7.1 a stochastic version of the Metropolis Adjusted Langevin
Algorithm (MALA, Besag (1994))1. Its objective is to generate samples from ρS by
iteratively refining the auxiliary distribution, that we define as

Pw
U = N

(
w−η∇

[
R`U(w)+ 1

α
µ(w,U)

]
, 2η

α
I
)
, (7.9)

where R`U(w) = E(x,y)∼U `(hw, (x, y)) is the empirical risk on the mini-batch U ⊆ S,
and ` : H× (X×Y)→ [0, 1] is a loss function. Concretely, we initialize the parameters
w of the model as the output of an optimization algorithm (Vanilla SGD in our case).
Then, we refine them as follows: at each iteration, given the current weights w and a
mini-batch U ⊆ S (Line 4), we sample a candidate vector w′ (Line 5) according to the
distribution Pw

U ; then (Line 6 to 9) we decide to reject or accept the new candidate to
become our current weights w, depending on its ratio τ= min

(
1, ρU(w′)Pw′

U (w)
ρU(w)Pw

U (w′)

)
being

larger than a control value u sampled from the uniform distribution on [0, 1]. Under the
mild assumption that ρS is absolute continuous w.r.t. Pw

S (see Chib and Greenberg,
1995, for details), when the number of iterations tends to infinity and when U=S, the
returned w is sampled according to ρS (Smith and Roberts, 1993). Note that this
assumption requires that the tractable distribution Pw

S has a strictly positive density
when the density of ρS is strictly positive as well (see Chib and Greenberg, 1995).

1See Chib and Greenberg (1995) for an introduction on Metropolis-Hastings Algo on which
MALA is based.

– 185 –



7.4. Using Arbitrary Complexities in Practice

7.4.2 Experiments

7.4.2.1 Experimental Setting

In this section, we investigate the tightness of our bound of Equations (7.7) and (7.8)
on the MNIST (LeCun et al., 1998) and FashionMNIST (Xiao et al., 2017) datasets.
We keep the original learning set as S and the original test set T to estimate the true
risk, that we refer to as test risk RT (h).

Model. We use a “Convolutional Network in Network” (Lin et al., 2013) similarly to
Jiang et al. (2019) and Dziugaite et al. (2020) , that consists of several modules of
3 convolutional layers each followed by a leaky ReLU activation function (its negative
slope is set to 10−2). The depth of the network L is the number of convolutional layers,
and the width H is the number of channels of each convolution. In addition, for each
layer i, we denote its weights by wi. More precisely, the modules of this model can
be described as follows. A module takes two parameters as argument: the number of
input channels Hin and the number of output channels Hout and applies consecutively
three convolutional layers (each followed by a leaky ReLU activation function). The
first layer is composed of a 3×3 kernel (where the stride resp. padding is set to 2 resp.
1) with Hin channels as input and Hout as output. The two other layers have a 1×1
kernel with Hout channels as input and output. Then, the network is constructed as
follows: (a) we have a module where Hout = H and Hin is the number of channels in
the input (b) we have (L/3) − 1 modules with Hin = Hout = H and (c) we have a
convolutional layer with a 1×1 kernel with card(Y) channels as output followed by a
leaky ReLU activation and an average pooling layer. In the experiments, we consider
L∈{9, 12, 15} and H∈{128, 256}. Furthermore, we initialize the network with the
weights w0∈R obtained the uniform Kaiming He initializer (He et al., 2015). The set
H corresponds to the hypotheses hw that can be obtained from this initialization (and
we clamp the weights during the optimization in the initialization’s interval).

Arbitrary complexity measures. We study different complexity measures parametrized
by different functions µ() from Jiang et al. (2019, Sec. C)2. Indeed, we consider the

2Note we consider a subset of the functions studied by Jiang et al.: we select those that are
optimizable.
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6 following parametric functions µ():

Dist Fro(hw) =
L∑
i=1
‖wi−w0

i ‖2, and Dist l2(hw) = ‖w−w0‖2,

and Param Norm(hw) =
L∑
i=1
‖wi‖2

2, and Path Norm(hw)=
card(Y)∑
i=1

hw2(1)[i],

and Sum Fro(hw) = L

(
L∏
i=1
‖wi‖2

2

)1
L

, and Zero(hw) = 0.

We define the considered measures with α taken among 5 values uniformly spaced
between [

√
m,m]. Note that we analyze other parametric functions that depends on

the learning sample S. However, since the results are similar, we decided to defer the
results in Appendix G.

Bound optimization. To compute our bound in Equations (7.7) and (7.8), we aim
to minimize the objective function w 7→ R`U(w)+ 1

α
µ(w,U), via Algorithm 7.1. We

set the loss function to the bounded cross entropy from Dziugaite and Roy (2018):
`(h, (x, y))=− 1

4 ln(e−4+(1−2e−4)h[y]), where h[y] is the probability assigned to label
y by h. The advantage of Dziugaite and Roy (2018)’s cross-entropy is that it lies in
`(h, (x, y)) ∈ [0, 1], whereas the classical cross-entropy is unbounded. Indeed, taking
into account the classical cross-entropy when optimizing the objective function would
lead to focus too much on the risk minimization, while we want to take into account
1
α
µ(w,U). We initialize the weights w∈RD to the solution found by optimizing the

objective function with a Vanilla SGD (with 10 epochs, a learning rate of 10−1, and
a batch size of 64). Given these initial parameters w, we execute Algorithm 7.1 for 1
epoch with a mini-batch of size 64, where η=10−4.

7.4.2.2 Tightness of the Bounds

For each parametric function µ(), we report in Figures 7.1 and 7.2, the test risks
RT (h) and the values of the tightest bound (w.r.t. α) associated to Equations (7.7)
and (7.8) for different parameters (depth L, width H). First of all, we can remark
that certain empirical risks are high. This is due to the sampling of the hypothesis h
from the distribution ρS: the hypothesis does not necessarily minimizes the objective
function h 7→ RS(h)+ 1

α
µ(h,S). We can nevertheless observe that the bounds’ values

are higher when the empirical risk RT (h) is low. This can be explained by the fact that
[αRS(h′) + µ(h′,S)] − [αRS(h) + µ(h,S)] is large in this case. When the empirical
risks are a bit higher, the bounds become tighter for certain parametric function such
as Dist l2, Sum Fro. This confirms that there is an interest to use a parametric
function that captures information on the model during the training phase.
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Figure 7.1. Scatter plot given a parametric function µ(h,S), where each segment
represents a neural network hw learned with a given α, width H and depth L. For each
segment, there is a corresponding orange square and a blue circle. The orange squares
corresponds to the empirical risk RS(h) (x-axis) and test risk RT (h) (y-axis). The blue
circle resp. the black triangle represents Equation (7.7) resp. Equation (7.8) in the
x-axis and the test risk RT (h) in the y-axis. The dashed line is the identity function.
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Figure 7.2. Scatter plot given a parametric function µ(h,S), where each segment
represents a neural network hw learned with a given α, width H and depth L. For each
segment, there is a corresponding orange square and a blue circle. The orange squares
corresponds to the empirical risk RS(h) (x-axis) and test risk RT (h) (y-axis). The blue
circle resp. the black triangle represents Equation (7.7) resp. Equation (7.8) in the
x-axis and the test risk RT (h) in the y-axis. The dashed line is the identity function.
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Figure 7.3. Influence of the parameter α (in the x-axis) for three parametric
functions: Zero, Param Norm, and Path Norm for MNIST and FashionMNIST.
The bound values are represented in blue and the test risk in red. The two (solid)
lines are the mean values computed on the depths and widths; the shadows are the
standard deviation. The dashed lines are the minimum and the maximum values.
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Figure 7.4. Influence of the depth and the width (in the x-axis as “depth/width”)
for three parametric functions: Zero, Param Norm, and Path Norm for MNIST
and FashionMNIST. The (solid) lines are the mean values computed on the different
values of α; the shadows are the standard deviation. The dashed lines are the
minimum and the maximum values.
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7.4.2.3 Influence of the Parameter α

We analyze the influence of the parameter α in Equation (7.7). To do so, we plot
an overview of the evolution for the bounds and the test risks RT (h); the details are
reported in Appendix G. For each parameter α, we plot in Figure 7.3 the mean, the
standard deviation, the minimum and the maximum for the different parameters (depth
and width). In general, the bound increases when the α tends to m but the test risks
RT (h) are less prone to variations. Indeed, the higher the parameter α, the more
concentrated around the minimizers the hypothesis will be sampled. On the contrary,
for a small α (e.g., α =

√
m), the Gibbs distribution defined in Equation (7.2) is less

concentrated making the test risks potentially high with a tighter generalization bound.

7.4.2.4 Influence of the Depth/Width

In Figure 7.4, we show an overview of the evolution of Equation (7.7) with respect
to the depth and the width. More precisely, we report the mean, the standard devi-
ation, the minimum and the maximum values for three parametric functions (Zero,
Param Norm, and Path Norm).
Interestingly, the evolution of the bounds highly depends on the chosen parametric
function µ(). For instance, the bound increases with Path Norm when the depth and
the width increase. This is in contrast with Param Norm that decreases when the
number of parameters increases. This shows the interest of our framework: considering
a user-specified complexity measure Φµ() can help to understand the generalization of
over-parameterized models (that are sampled from ρS).

7.5 Comparison with the Generalization Bounds of
the Literature

In this section, we theoretically compare generalization bounds with arbitrary com-
plexity measures compared to literature’s bounds. We prove that our bound general-
izes the uniform-convergence and the algorithmic-dependent bounds. Additionally, we
show that the algorithmic-dependent bounds can be tighter than uniform-convergence
bounds. To do so, we propose in Propositions 7.5.1 to 7.5.3 a reinterpretation of the
high probability bounds in terms of sets. Additionally, we prove in Corollaries 7.5.1
and 7.5.2 two special cases of our bound in Theorem 7.3.1 that generalizes the two
types of bounds.
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7.5.1 Bounds with Arbitrary Complexity Measures
In order to compare our framework with the uniform-convergence and the algorithmic-
dependent bounds, we translate Definition 7.3.1 into the following set-theoretic result.

Proposition 7.5.1 (Set-theoretic view of Definition 7.3.1). Let φ : [0, 1]2→R
be a generalization gap and assume that there exists a function Φµ :
H×(X×Y)m×(0, 1] → R fulfilling Definition 7.3.1. Under these conditions,
with Zd=

{
(h,S) ∈ H×(X×Y)m : φ(RD(h),RS(h)) ≤ Φµ(h,S, δ)

}
, and

PS∼Dm,h∼ρS [(h,S) ∈ Zd] ≥ 1−δ, we have

Equation (7.1) ⇐⇒ ∀(h,S) ∈ Zd, φ(RD(h),RS(h)) ≤ Φµ(h,S, δ)

⇐⇒ sup(h,S)∈Zd

{
φ(RD(h),RS(h))− Φµ(h,S, δ)

}
≤ 0.

Proof. Deferred to Appendix G.3. �

For a given confidence δ, with probability at least 1−δ, the bound is then valid for
all (h,S) belonging to a (reduced) set Zd⊆H×(X×Y)m. In other words, the bound
always holds for a given hypothesis and learning sample (h,S) ∈ Zd, and its value
depends on these h and S. The generality of our framework can thus generalize both
uniform convergence and algorithmic dependent bounds as we see in the rest of this
section.

7.5.2 Uniform Convergence Bounds
Uniform-convergence-based bounds were the first type of generalization bounds to be
introduced, notably in Vapnik and Chervonenkis (1971) using the VC-dimension
as complexity. Other bounds were later developed based on the Gaussian/Rademacher
complexity (Bartlett and Mendelson, 2002) instead. We recall the definition of
this type of bounds encountered in Chapter 1.

Definition 1.3.2 (Uniform Convergence Bound). Let ` : H × (X×Y) → [0, 1] be
a loss function and φ : [0, 1]2→R a generalization gap. A uniform convergence
bound is defined such that if for any distribution D on X × Y, for any hypothesis
set H, there exists a function Φu : (0, 1]→R, such that for any δ ∈ (0, 1] we have

P
S∼Dm

[
sup
h∈H

φ(R`D(h),R`S(h)) ≤ Φu

(
δ
)]
≥ 1− δ, (1.1)

where usually φ(R`D(h),R`S(h)) = R`D(h)− R`S(h).
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Remember that this definition encompasses different complexity measures, such as
Φu(δ)=rad(H)+

√
1

2m ln 1
δ

in Theorem 1.3.3, or Φu(δ)=
√

1
m

2vc(H) ln em
vc(H)+

√
1

2m ln 1
δ

described in Theorem 1.3.2. For ease of comparison, we refine and reinterpret this
type of bounds in a set-theoretic manner as follows. This result has been originally
remarked by Nagarajan and Kolter (2019b) (but not proved).

Proposition 7.5.2 (Set-theoretic View of Uniform Convergence Bounds). Let φ :
[0, 1]2→R be a generalization gap and assume that there exists a function Φu :
(0, 1] → R fulfilling Definition 1.3.2. Under these conditions, with Zu =

{
S ∈

(X×Y)m :∀h ∈ H, φ(RD(h),RS(h)) ≤ Φu(δ)
}

, and PS∼Dm [S∈Zu]≥1−δ, we have

Equation (1.1) ⇐⇒ ∀S ∈ Zu, ∀h∈H, φ(RD(h),RS(h)) ≤ Φu(δ)
⇐⇒ sup

S∈Zu

sup
h∈H

{
φ(RD(h),RS(h))

}
≤Φu(δ).

Proof. Deferred to Appendix G.4. �

Proposition 7.5.2 is, in fact, a reinterpretation of PAC generalization bounds by identi-
fying the subset Zu⊆(X×Y)m for which the upper bound Φu(δ) is valid. This highlights
their worst-case nature: given a confidence δ, the generalization gap φ(RD(h),RS(h))
is upper-bounded by a complexity measure Φu(δ) for all (h,S) ∈ H×Zu. To get a
bound holding with probability at least 1−δ, since the complexity Φu(δ) does not
depend on h or S, the complexity has to upper-bound the worst hypothesis h ∈ H
and the worst learning sample S∈Zu. As a consequence, Φu(δ) is lower-bounded by
supS∈Zu

suph∈H φ(RD(h),RS(h)). As we have seen in Proposition 7.5.1, our bound
is more permissive than the uniform convergence bounds since the upper bound can
depend on the learning sample S and the hypothesis h. Hence, this dependence on
S and h allows us to retrieve the uniform convergence bounds with our framework.
Indeed, from Theorem 7.3.1, we can obtain the following generalization bound.

Corollary 7.5.1 (Uniform Convergence Bound from Theorem 7.3.1). Let φ :
[0, 1]2→R be the generalization gap and assume that there exists a func-
tion Φu : (0, 1] → R fulfilling Definition 1.3.2 such that Φu(δ) ≥
ln
[

4
δ2 ES′∼Dm Eh′∼π exp (φ(RD(h′),RS′(h′)))

]
. For any D on X × Y, for any hy-

pothesis set H, for any δ ∈ (0, 1], we have

P
S∼Dm,h∼ρS

φ(RD(h),RS(h)) ≤ Φu(δ)
 ≥ 1− δ.
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Proof. Deferred to Appendix G.5. �

Note that, to prove Corollary 7.5.1, we require an additional assumption: a lower-bound
on Φu(δ). When the generalization gap is φ(RD(h),RS(h))=2m[RD(h)−RS(h)]2 or
φ(RD(h),RS(h))= kl[RS(h)‖RD(h)], the lower bound is ln 8

√
m

δ2 (see Corollary 7.3.1)
which is low enough to be a worst-case upper-bound. To sum up, our framework
is general enough to retrieve classical uniform convergence bounds (under the mild
assumption) such that the ones based on the Rademacher complexity (Definition 1.3.4)
or the VC-Dimension (Definition 1.3.3). In practice, the sampling involved in the bound
of Corollary 7.5.1 is not necessary: the bound holds for all hypothesis h ∈ H with high
probability. More precisely, for Φu(h,S, δ) = Φu(δ), the set Zu in Proposition 7.5.2
can be seen as a subset of Zd since{

S ∈ (X×Y)m
∣∣∣∣ ∀h ∈ H, (S, h) ∈ Zd

}
= Zu.

Hence, for a well-behaved learning sample S, i.e., for S ∈ Zu, we have that

E
h∈ρS

I
[
φ(RD(h),RS(h)) ≤ Φu(δ)

]
= I

[
sup
h∈H

φ(RD(h),RS(h)) ≤ Φu(δ)
]

= 1,

which gives a valid bound for all h ∈ H without sampling. This generality of this
framework does not apply uniquely to these type of bounds. We can obtain a result
similar for the algorithmic-dependent bounds that can be tighter than the uniform-
convergence-based bounds.

7.5.3 Algorithmic-Dependent Bounds
The upper bound Φu(δ) can generally be improved by considering algorithmic-dependent
bounds (Bousquet and Elisseeff, 2002; Xu and Mannor, 2012). In this case,
only the output hS of a learning algorithm given S is studied: we only bound the
generalization gap φ(RD(hS),RS(hS)) specific to hS (here, H={hS}S∈(X×Y)m). The
definition of such bounds encountered in Chapter 1 is recalled in the following.

Definition 1.3.5 (Algorithmic-dependent Generalization Bound). Let ` : H ×
(X×Y) → [0, 1] be a loss function and φ : [0, 1]2→R a generalization gap. An
algorithmic-dependent generalization bound is defined such that if for any distribu-
tion D on X×Y, there exists a function Φa : (0, 1]→R, such that for any δ ∈ (0, 1]
we have

P
S∼Dm

[
φ(R`D(hS),R`S(hS)) ≤ Φa(δ)

]
≥ 1−δ, (1.2)
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where usually φ(R`D(h),R`S(h)) = R`D(h)−R`S(h) and hS is the hypothesis learned
from an algorithm with S ∼ Dm.

Similarly to the uniform convergence bounds, these bounds can be reformulated through
a similar set-theoretic lens stated in the following proposition.

Proposition 7.5.3 (Set-theoretic View of Algorithmic Dependent Bounds). Let
φ : [0, 1]2→R be a generalization gap and assume that there exists a function
Φa : (0, 1]→ R fulfilling Definition 1.3.5. Under these conditions, with Za =

{
S ∈

(X×Y)m :φ(RD(hS),RS(hS)) ≤ Φa(δ)
}

and PS∼Dm [S ∈ Za] ≥ 1−δ, we have

Equation (1.2) ⇐⇒ ∀S ∈ Za, φ(RD(hS),RS(hS)) ≤ Φa(δ)
⇐⇒ supS∈Za

φ(RD(hS),RS(hS)) ≤ Φa(δ).

Proof. Deferred to Appendix G.6. �

Since the upper bound Φa(δ) is at least supS∈Za
φ(RD(hS),RS(hS)), this result has

the potential to lead to tighter guarantees than the uniform convergence ones. For
example, when H= {hS}S∈(X×Y)m is an algorithmic-dependent hypothesis set and Za⊆
Zu. The complexity measure Φa(δ) can potentially be smaller than Φu(δ) since we
have the inequality

sup
S∈Za

φ(RD(hS),RS(hS)) ≤ sup
S∈Zu

φ(RD(hS),RS(hS))

≤ sup
S∈Zu

sup
h∈H

φ(RD(h),RS(h))

≤ Φu(δ).

Even though these type of bounds can be tighter, it is still not as permissive as
our framework. Indeed, the upper bound Φa(δ) is a constant w.r.t. the hypothesis
and the learning sample (like the uniform convergence bounds). Hence, since our
bound can depend on the learning sample S and the hypthesis h, we retrieve the
algorithmic-dependent bounds illustrating the generality of our framework (similarly to
Corollary 7.5.1). The result is in the following corollary.

Corollary 7.5.2 (Algorithmic-dependent Bound from Theorem 7.3.1). Let φ :
[0, 1]2→R be the generalization gap and assume that there exists a func-
tion Φa : (0, 1] → R fulfilling Definition 1.3.5 such that Φa(δ) ≥
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ln
[

4
δ2 ES′∼Dm Eh′∼π exp (φ(RD(h′),RS′(h′)))

]
. For any D on X × Y, for any hy-

pothesis set H, for any δ ∈ (0, 1], we have

P
S∼Dm,h∼ρS

φ(RD(h),RS(h)) ≤ Φa(δ)
 ≥ 1− δ.

Proof. Deferred to Appendix G.7. �

Compared to the bounds of Definition 1.3.5, Corollary 7.5.2 still involves the expec-
tation over the hypotheses. Hopefully, the bound holds with high probability for the
data-dependent hypothesis hS (see Proposition 7.5.3). Hence, when using Corol-
lary 7.5.2’s bound the sampling is not necessary since we can consider the bound only
for the hypothesis of interest, i.e., hS for all S ∈ Za which holds with high probability.
In other words, when Φµ(h,S, δ) = Φa(δ), the set Za in Proposition 7.5.3 can be seen
as a subset of Zd since {

S ∈ (X×Y)m
∣∣∣∣ (S, hS) ∈ Zd

}
= Za.

In summary, the framework proposed in this chapter is powerful enough to cover
uniform-convergence-based bound and algorithm-dependent bounds with the integra-
tion of a complexity measure. To the best of our knowledge, this has not been identified
before and we think this is something novel.

7.6 Conclusion and Summary
In this chapter, we provide a novel generalization bound that involves arbitrary com-
plexity measures, unlike classical learning theory frameworks (for which the complexity
is imposed by the framework itself). These measures incorporate a data and model
dependent function, that allow us to generalize the previous framework introduced in
the literature (see Section 1.3). Importantly, to the best of our knowledge, our frame-
work provides for the first time theoretical guarantees for the many arbitrary complexity
measures used in practice in machine learning, e.g., for regularization purposes.

The limitation of this work is clearly that the hypothesis is obtained from a distribu-
tion difficult to use, namely the Gibbs distribution. Indeed, one sampling from the
Gibbs distribution is performed by an algorithm such as Algorithm 7.1. Hopefully,
the generality of this framework allows to avoid the sampling if we consider uniform-
convergence-type bounds as in Corollary 7.5.1. We can easily imagine continuing in
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this research direction. For instance, we can try to get rid of the supremum w.r.t. to
the hypothesis set H in the Rademacher complexity (Definition 1.3.4) since it it hard
to compute.
We hope that our results foster research in the topic and the development of new
complexity measures for specific neural network architectures and for specific learning
tasks. Indeed, we believe that this work paves the way to new research directions that
tries to bridge the statistical learning theory and the practice. Indeed, finding a good
complexity measures becomes a practical matter since any complexity measure can be
integrated in our framework.

In general, this thesis explores the disintegrated bounds in order to explain better the
generalization of over-parameterized models that is largely misunderstood. We believe
that this type of bounds is not the only promising type of bounds that can explain
the generalization phenomenon. In Part IV, we give an idea of research direction to
explore other type of generalization bounds.
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Conclusion and Perspectives

Conclusion
This thesis mainly derives self-bounding algorithms that learn a model minimizing a
(disintegrated) PAC-Bayesian generalization bound. This type of algorithm has re-
ceived little attention in the machine learning literature and we propose some contri-
butions in various contexts.

Indeed, Part II is dedicated to deriving self-bounding algorithms in the context of
majority vote classifiers. In Chapters 3 and 4, we derived self-bounding algorithms for
the majority vote classifier in two different settings: the adversarial robustness and
the classical supervised setting. More precisely, Chapter 3’s self-bounding algorithms
robustify the majority votes against small perturbations. While Chapter 4 minimizes the
majority vote’s true risk through the PAC-Bayesian C-Bounds considered as challenging
to optimize (Lorenzen et al., 2019; Masegosa et al., 2020). However, as shown in
Chapter 5, the majority vote’s self-bounding algorithms considered, e.g., in Chapter 4,
do not minimize tight generalization bounds on the true risk, even for simple tasks.
Hence, to overcome this drawback, Chapter 5 introduces the stochastic majority vote,
which samples a majority vote for each prediction. Considering such a majority vote
allows us to obtain tight generalization bounds. Additionally, we derive a self-bounding
algorithm that directly minimizes the risk of the stochastic majority vote in this context.
However, the risk of a stochastic model is the expected risk of the hypotheses, which
requires certain assumptions to be computed while we may be only interested in assess-
ing the behavior of only one hypothesis in some situations. Hence, to overcome this
drawback, we consider in Part III the disintegrated PAC-Bayesian bounds. Chapter 6
provides new bounds based on the Rényi divergence that are more easily optimizable
(for self-bounding algorithms) than the ones of the literature (i.e., Blanchard and
Fleuret, 2007; Catoni, 2007; Rivasplata et al., 2020). Even though Rivas-
plata et al. (2020)’s bound is not easily optimizable, it is a starting point to derive
new generalizations bounds. Indeed, in the last contribution (Chapter 7), we leverage
Rivasplata et al. (2020)’s disintegrated framework to derive generalization bounds
with arbitrary complexity measures. Such work is fundamental in statistical learning
theory: to the best of our knowledge, we are the first to provide generalization bounds
that integrate complexity measures that can be defined by the user. This work allows
the machine learning community to consider new generalization bounds by defining a
new complexity measure. Hence, new works can focus on developing new complexity
measures to understand better the generalization phenomenon.
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Perspectives
We present several perspectives following the contributions of this thesis.

Perspectives on the Adversarial Robustness Setting
As recalled in Chapter 3, in the adversarial robustness setting, we aim to make the
model robust to small perturbations in the input. Indeed, we must ensure that the
model does not radically change its prediction for a slight change in the input. To do
so, we consider that the model’s output must not change in a ball of a given radius.
This new constraint on the input actually creates a new unknown data distribution
that is close, in some sense, to the original unknown data distribution.

On the other hand, the transfer learning/domain adaptation3 consider two unknown
data distributions: a source (i.e., the original) and a target (i.e., a new) distribution.
In this setting, the model learned to solve a task (represented by the source distribu-
tion) is adapted to solve a new task (represented by the target distribution). In some
transfer learning scenarios, we assume that we have access to the labels and the inputs
obtained from the target distribution, while in unsupervised domain adaptation, only
the inputs are considered. In these two settings, the true risk on the target distribution
can be upper-bounded with a generalization bound (see e.g., Ben-David et al., 2010;
Galanti et al., 2016; McNamara and Balcan, 2017; Germain et al., 2020).

Besides, it is known that domain adaptation and adversarial robustness are related:
unlabeled examples (considered in domain adaptation) can be used to improve the
adversarial robustness (Alayrac et al., 2019; Carmon et al., 2019; Deng et al.,
2021). As a perspective, we propose to investigate the link between these two settings
from a theoretical viewpoint. First, we could explore the connection between the orig-
inal distribution and the new data distribution induced by the adversarial robustness
that can be respectively seen as a source and a target distribution in transfer learn-
ing. Then, this connection may help to leverage transfer learning/domain adaptation
generalization bounds to obtain guarantees for the adversarial robustness setting. The
new guarantees might serve to get self-bounding algorithms that (i) detect out-of-
distribution examples4 and (ii) robustify machine learning models.

Extending the Majority Vote
In Part II, we consider that the set of voters in the PAC-Bayesian majority vote is
fixed. Hence, only the weights of the majority vote are adapted to fit the examples.

3We refer the reader to Redko et al. (2019, 2020) for an introduction on domain adaption.
4The examples that are not probable in a given distribution are called out-of-distribution examples.
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Alternatively, in the (Gradient) Boosting framework (Freund and Schapire, 1996;
Friedman, 2001), the voters are greedily learned one by one. Moreover, in bag-
ging (Breiman, 1996) and random forest (Breiman, 2001), no weights are learned
while the models are learned separately. For the Support Vector Machine (Graepel
et al., 2005) that can be interpreted as a majority vote, the voters are fixed before learn-
ing the weights by choosing a kernel. As we can remark in these approaches, the voters
and the weights are not learned together. This appears as a limitation since learning
the weights and the voters in an end-to-end way can offer a better accurate majority
vote. Hence, one bottleneck has to be overcome: deriving differentiable voters such as
differentiable decision stumps. By doing so, we may improve the voters’ diversity while
limiting the voters’ complexity. Moreover, the disintegrated PAC-Bayesian framework
(developed, e.g., in Part III) may be leveraged to derive generalization guarantees for
majority votes that depend on the full learning sample. Again, new generalization
bounds can be further used to derive self-bounding algorithms.

Self-bounding and Optimization Algorithms
The optimization algorithms are key to obtain a good classifier in self-bounding algo-
rithms. Specifically in Chapters 4 and 5, we use an optimization algorithm that tune
automatically the learning rate, namely COCOB (Orabona and Tommasi, 2017).
This approach, belonging to the parameter-free algorithms5, is interesting in machine
because it has a clear advantage: there is no need to tune the learning rate. Hence,
the parameter-free algorithms could facilitate the use of machine learning approaches
for practitioners. However, we believe that more hyper-parameters can be tuned au-
tomatically in parameter-free optimization algorithms such as the batch size, which
offers interesting research perspectives.
One idea to derive new parameter-free algorithms is to take inspiration from the fed-
erated learning setting.6 It considers different clients that learn collaboratively in a
machine learning model; each client has its own learning sample and does not neces-
sarily share it. For instance, to learn the model, each client has its own local model
and runs an optimization algorithm, to obtain new weights. The new weights of each
local model are aggregated to obtain a global model finally, without exchanging the
data; see, e.g., the FedAvg algorithm (see McMahan et al., 2017). A modification
must be made to FedAvg to obtain a parameter-free algorithm since each client runs an
algorithm with different values of hyper-parameters. The aggregation of the weights
can take different forms, such as a convex combination. With this latter type of aggre-
gation, the PAC-Bayesian theory might be helpful to obtain convergence guarantees.

5We refer the reader to the ICML 2020 tutorial on Parameter-free online optimization for more
details on the parameter-free algorithms.

6Federated learning is a sub-field of machine learning; see Kairouz et al. (2021) for a survey.
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Towards a New Type of Generalization Bounds
The PAC-Bayesian theory considers that the data and the models are respectively
sampled from two probability distributions: the unknown distribution and the posterior
distribution. While it can be convenient to derive generalization guarantees on a single
model sampled from the posterior distribution, we are usually interested in a model
that is not necessarily sampled.
Instead of considering the posterior distribution on the models, one could consider a
distribution on the label set conditioned on the input. If this distribution is somehow
learned from the learning sample, it can be seen as a machine learning model. Thanks
to this distribution, we could derive generalization bounds on the expected loss when
the labels are sampled from the new data-dependent distribution (associated with a
classifier). We can for example hope to obtain a bound dependent on the mutual infor-
mation between the predictions and the labels. Roughly speaking, mutual information
measures how much information on the labels is contained in the predictions. Hence, it
can be seen as a complexity measure of the data-dependent distribution (representing
the classifier). For instance, this quantity has been considered in the information bot-
tleneck framework of Tishby et al. (2000). Besides, the training of neural networks
has been studied through this framework (see Shwartz-Ziv and Tishby, 2017)
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Part V

Appendix





ASome Mathematical Tools

A.1 Jensen’s Inequality

Theorem A.1.1 (Jensen’s Inequality). Let X ∈ X a random variable following a
probability distribution X with f : X→ R a measurable convex function, we have

f
(

E
X∼X

[X]
)
≤ E

X∼X

[
f (X)

]
.

Proof. Since f() is a convex function, the following inequality holds, i.e., we have

∀X ′ ∈ X, a
(
X ′ − E

X∼X
[X]

)
≤ f(X ′)− f

(
E

X∼X
[X]

)
,

where a is the tangent’s slope. By taking the expectation to both sides of the
inequality, we have

a
(

E
X∼X

[X]− E
X∼X

[X]
)

︸ ︷︷ ︸
= 0

≤ E
X∼X

[f(X)]− f
(

E
X∼X

[X]
)
.

Hence, by rearranging the terms, we prove the claimed result. �

A.2 Markov’s Inequality

Theorem A.2.1 (Markov’s Inequality). Let X ∈ X a non-negative random vari-
able following a probability distribution X and τ > 0, we have

P
X∼X

[X ≥ τ ] ≤ EX∼X [X]
τ

.
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Proof. First of all, remark that we have the following inequality for any X ∈ X

τ I[X ≥ τ ] ≤ X I[X ≥ τ ] ≤ X. (A.1)

Indeed, on the one hand, if X < τ , I[X ≥ τ ] = 0, the inequality holds trivially.
On the other hand, if X ≥ τ , I[X ≥ τ ] = 1 and the inequality becomes τ ≤ X,
which is true. By taking the expectation of Equation (A.1), we have

E
X∼X

[
τ I[X ≥ τ ]

]
≤ E

X∼X

[
X
]
.

From the fact that the expectation of a constant is the constant and by definition
of the probability, we have

τ P
X∼X

[X ≥ τ ] ≤ E
X∼X

[
X
]
⇐⇒ P

X∼X
[X ≥ τ ] ≤ EX∼X [X]

τ
,

which is the desired result. �

A.3 2nd Order Markov’s Inequality

Theorem A.3.1 (2nd Order Markov’s Inequality). Let X a non-negative random
variable following a probability distribution X and τ > 0, we have

P
X∼X

[X ≥ τ ] ≤ EX∼X [X2]
τ 2 .

Proof. We apply Markov’s inequality (Theorem A.2.1) to have

P
X∼X

[
X2 ≥ τ 2

]
≤ EX∼X [X2]

τ 2 .

Moreover, since I [X ≥ τ ] = I [X2 ≥ τ 2], we have

P
X∼X

[X ≥ τ ] = P
X∼X

[
X2 ≥ τ 2

]
,

which proves the desired result. �
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A.4 Chebyshev-Cantelli Inequality

Theorem A.4.1 (Chebyshev-Cantelli Inequality). Let X a random variable
following a probability distribution X and τ > 0, we have

P
X∼X

[
X − E

X′∼X
X ′ ≥ τ

]
≤ VX′∼X X ′

VX′∼X X ′ + τ 2 .

Proof. First of all, remark that we have

P
X∼X

[
X − E

X′∼X
X ′ ≥ τ

]
= P

X∼X

[
X − E

X′∼X
X ′ + VX′∼X X ′

τ
≥ τ + VX′∼X X ′

τ

]

≤ P
X∼X

[X − E
X′∼X

X ′ + VX′∼X X ′

τ

]2

≥
[
τ + VX′∼X X ′

τ

]2
 ,

(A.2)

where VX∼X X is the variance of the random variable X ∼ X . From Equa-
tion (A.2) and Markov’s Inequality (Theorem A.2.1), we can deduce that

P
X∼X

[
X − E

X′∼X
X ′ ≥ τ

]
≤

EX∼X
[
X − EX′∼X X ′ + VX′∼X X

′

τ

]2
[
τ + VX′∼X X

′

τ

]2
= VX′∼X X ′

VX′∼X X ′ + τ 2 .

�

A.5 Hölder’s Inequality
In order to prove Hölder’s inequality, we first prove the following lemma.

Lemma A.5.1 (Young’s Inequality). For any α > 1 and β > 1 such that 1
α

+ 1
β

=
1, for any a ≥ 0 and b ≥ 0, we have

ab ≤ aα

α
+ bβ

β
.
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Proof. We first develop ln [ab] and we apply Jensen’s inequality (Theorem A.1.1)
since the logarithm is concave and 1

α
+ 1

β
= 1. Indeed, we have

ln [ab] = ln a+ ln b = α

α
ln a+ β

β
ln b = ln aα

α
+ ln bβ

β
≤ ln

[
aα

α
+ bβ

β

]
.

Then, we take the exponential to both sides of the inequality and we are done. �

We are now ready to prove Hölder’s inequality.

Theorem A.5.1 (Hölder’s Inequality). For any measurable function f() and g(),
for any α > 1 and β > 1 such that 1

α
+ 1

β
= 1, we have

E
X∼X
|f(X)g(X)| ≤

[
E

X∼X
|f(X)|α

] 1
α
[

E
X∼X
|g(X)|β

] 1
β

.

Proof. For convenience of notation, let ‖f‖α = [EX∼X |f(X)|α]
1
α and ‖g‖β =[

EX∼X |g(X)|β
] 1
β . If ‖f‖α = 0 or ‖g‖β = 0, then EX∼X |f(X)g(X)| = 0, hence,

the inequality holds in this case. Then for ‖f‖α > 0 and ‖g‖β > 0, we upper-
bound the term |f(X)g(X)|

‖f‖α‖g‖β
with Young’s inequality (Lemma A.5.1), i.e., we have

|f(X)g(X)|
‖f‖α‖g‖β

≤ |f(X)|α

α‖f‖αα
+ |f(X)|β

β‖f‖ββ
.

By taking the expectation w.r.t. X ∼ X , we have

EX∼X |f(X)g(X)|
‖f‖α‖g‖β

≤ EX∼X |f(X)|α

α‖f‖αα
+ EX∼X |f(X)|β

β‖f‖ββ

= ‖f‖αα
α‖f‖αα

+
‖f‖ββ
β‖f‖ββ

= 1
α

+ 1
β

= 1.
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This concludes the proof since

EX∼X |f(X)g(X)|
‖f‖α‖g‖β

≤ 1 ⇐⇒ E
X∼X
|f(X)g(X)| ≤ ‖f‖α‖g‖β.

�
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BAppendix of Chapter 2

B.1 Proof of Theorem 2.2.1

Theorem 2.2.1 (Risk Upper Bound Based on the Gibbs Risk). For any distribution
D′ on X× Y, for any hypothesis set H, for any distribution ρ on H, we have

RD′(MVρ) ≤ 2 rD′(ρ). (2.2)

Proof. The proof is given by Germain et al. (2015). First of all, remark that

I [MVρ(x) 6= y] ≤ I [m̂ρ(x, y) ≤ 0] .

Hence, by taking the expectation, we have

RD′(MVρ) ≤ P
(x,y)∼D′

[m̂ρ(x, y) ≤ 0] .

From Markov’s inequality (Theorem A.2.1), we have

P
(x,y)∼D′

[m̂ρ(x, y) ≤ 0] = P
(x,y)∼D′

[1− m̂ρ(x, y) ≥ 1]

= P
(x,y)∼D′

[
1− 2

[
P
h∼ρ

[h(x) = y]− 1
2

]
≥ 1

]
= P

(x,y)∼D′

[
1−

[
P
h∼ρ

[h(x) = y]
]
≥ 1

2

]
≤ 2 E

(x,y)∼D′

[
1− P

h∼ρ
[h(x) = y]

]
= 2rD′(ρ).

�

B.2 Proof of Theorem 2.2.2
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Theorem 2.2.2 (Risk Upper Bound Based on the Joint Error). For any distribution
D′ on X× Y, for any hypothesis set H, for any distribution ρ on H, we have

RD′(MVρ) ≤ 4eD′(ρ). (2.4)

Proof. The proof is given by Masegosa et al. (2020). First of all, remark that

I [MVρ(x) 6= y] ≤ I [m̂ρ(x, y) ≤ 0] .

Hence, by taking the expectation, we have

RD′(MVρ) ≤ P
(x,y)∼D′

[m̂ρ(x, y) ≤ 0] .

From Markov’s inequality (Theorem A.3.1), we have

P
(x,y)∼D′

[m̂ρ(x, y) ≤ 0] = P
(x,y)∼D′

[1− m̂ρ(x, y) ≥ 0]

= P
(x,y)∼D′

[
1− 2

[
P
h∼ρ

[h(x) = y]− 1
2

]
≥ 1

]
= P

(x,y)∼D′

[
1−

[
P
h∼ρ

[h(x) = y]
]
≥ 1

2

]
≤ 4 E

(x,y)∼D′

(
1− P

h∼ρ
[h(x) = y]

)2

= 4eD′(ρ).

�

B.3 Proof of Theorem 2.2.3

Theorem 2.2.3 (The C-Bound). For any distribution D′ on X × Y, for any hy-
pothesis set H, for any distribution ρ on H, if

E
(x,y)∼D′

m̂ρ(x, y) > 0 ⇐⇒ rD′(ρ) < 1
2 ⇐⇒ 2eD′(ρ) + dD′(ρ) < 1,
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we have

RD′(MVρ) ≤ 1−

(
E(x,y)∼D′ [m̂ρ(x, y)]

)2

E(x,y)∼D′ (m̂ρ(x, y))2 (2.7)

= 1− (1− 2rD′(ρ))2

1− 2dD′(ρ) (2.8)

= 1−

(
1− [2eD′(ρ) + dD′(ρ)]

)2

1− 2dD′(ρ) (2.9)

= CD′(ρ).

Proof. To prove Equation (2.7), we start from the definition of RD′(MVρ) to have

RD′(MVρ) ≤ P
(x,y)∼D′

(m̂ρ(x, y) ≤ 0)

= P
(x,y)∼D′

(
−m̂ρ(x, y) + E

(x,y)∼D′
m̂ρ(x, y) ≥ E

(x,y)∼D′
m̂ρ(x, y)

)

≤
V(x,y)∼D′(m̂ρ(x, y))

V(x,y)∼D′(m̂ρ(x, y)) +
(
E(x,y)∼D′ m̂ρ(x, y)

)2

=
E(x,y)∼D′ m̂ρ(x, y)2 −

(
E(x,y)∼D′ m̂ρ(x, y)

)2

E(x,y)∼D′ m̂ρ(x, y)2 −
(
E(x,y)∼D′ m̂ρ(x, y)

)2
+
(
E(x,y)∼D′ m̂ρ(x, y)

)2

=
E(x,y)∼D′ m̂ρ(x, y)2 −

(
E(x,y)∼D′ m̂ρ(x, y)

)2

E(x,y)∼D′ m̂ρ(x, y)2

= 1−

(
E(x,y)∼D′ m̂ρ(x, y)

)2

E(x,y)∼D′ m̂ρ(x, y)2 ,

where the second inequality comes from Chebyshev-Cantelli’s inequality (The-
orem A.4.1) and VA∼A(A) is the variance of the random variable A ∼ A. Equa-
tion (2.9) is obtained by rewriting Equation (2.7) with Equations (2.1) and (2.5).
Indeed, we have

E
(x,y)∼D′

m̂ρ(x, y) = 1− 2rD′(ρ) and E
(x,y)∼D′

m̂ρ(x, y)2 = 1− 2dD′(ρ),

which gives Equation (2.8).
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Moreover, thanks to Equation (2.6), we can rewrite the Gibbs risk as

rD′(ρ) =
[
eD′(ρ) + 1

2dD
′(ρ)

]
,

which allows us to obtain Equation (2.9) by rewriting Equation (2.8). �

B.4 Proof of Theorem 2.2.4

Theorem 2.2.4 (Relationship between Theorems 2.2.1 to 2.2.3). For any distri-
bution D on X×Y, for any voters set H, for any distribution ρ on H, if rD′(ρ) < 1

2
(i.e., E(x,y)∼D′ m̂ρ(x, y) > 0), we have

(i) RD′(MVρ) ≤ CD′(ρ) ≤ 4eD′(ρ) ≤ 2rD′(ρ), if rD′(ρ) ≤ dD′(ρ),

(ii) RD′(MVρ) ≤ 2rD′(ρ) ≤ CD′(ρ) ≤ 4eD′(ρ), otherwise.

Proof. We first prove that CD′(ρ) ≤ 2rD′(ρ) is equivalent to E(x,y)∼D′ m̂ρ(x, y) ≥
E(x,y)∼D′ [m̂ρ(x, y)]2, i.e., we have

CD′(ρ) ≤ 2rD′(ρ)

⇐⇒ 1−

(
E(x,y)∼D′ m̂ρ(x, y)

)2

E(x,y)∼D′ (m̂ρ(x, y))2 ≤ 1− E
(x,y)∼D′

m̂ρ(x, y)

⇐⇒

(
E(x,y)∼D′ m̂ρ(x, y)

)2

E(x,y)∼D′ (m̂ρ(x, y))2 ≥ E
(x,y)∼D′

m̂ρ(x, y)

⇐⇒
(

E
(x,y)∼D′

m̂ρ(x, y)
)2

≥
(

E
(x,y)∼D′

m̂ρ(x, y)
)(

E
(x,y)∼D′

(m̂ρ(x, y))2
)

⇐⇒ E
(x,y)∼D′

m̂ρ(x, y) ≥ E
(x,y)∼D′

[m̂ρ(x, y)]2 .

Then, we prove that 4eD′(ρ) ≤ 2rD′(ρ) is equivalent to E(x,y)∼D′ m̂ρ(x, y) ≥
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E(x,y)∼D′ [m̂ρ(x, y)]2, i.e., we have

4eD′(ρ) ≤ 2rD′(ρ)
⇐⇒ 1− 2 E

(x,y)∼D′
m̂ρ(x, y) + E

(x,y)∼D′
(m̂ρ(x, y))2 ≤ 1− E

(x,y)∼D′
m̂ρ(x, y)

⇐⇒ 2 E
(x,y)∼D′

m̂ρ(x, y)− E
(x,y)∼D′

(m̂ρ(x, y))2 ≥ E
(x,y)∼D′

m̂ρ(x, y)

⇐⇒ E
(x,y)∼D′

m̂ρ(x, y) ≥ E
(x,y)∼D′

[m̂ρ(x, y)]2 .

Additionally, we prove that CD′(ρ) ≤ 4eD′(ρ), i.e., we have

CD′(ρ) ≤ 4eD′(ρ)

⇐⇒ 1−

(
E(x,y)∼D′ m̂ρ(x, y)

)2

E(x,y)∼D′ (m̂ρ(x, y))2 ≤ 1− 2 E
(x,y)∼D′

m̂ρ(x, y) + E
(x,y)∼D′

(m̂ρ(x, y))2

⇐⇒

(
E(x,y)∼D′ m̂ρ(x, y)

)2

E(x,y)∼D′ (m̂ρ(x, y))2 ≥ 2 E
(x,y)∼D′

m̂ρ(x, y)− E
(x,y)∼D′

(m̂ρ(x, y))2

⇐⇒
(

E
(x,y)∼D′

m̂ρ(x, y)− E
(x,y)∼D′

(m̂ρ(x, y))2
)2

≥ 0.

Finally, by merging the three equivalence, we obtain the claimed result. �

B.5 About the KL Divergence
B.5.1 Basic Properties
The KL divergence has the following properties:

(1) It is positive, i.e., we have KL(ρ‖π) ≥ 0 for all ρ ∈ M(H) and π ∈ M∗(H).

(2) We have KL(π‖π) = 0 for all π ∈ M(H).

(3) In general, it is not symmetric: KL(ρ‖π) 6= KL(π‖ρ) for all ρ, π ∈ M(H).

Proof. We prove the points (1), (2) and (3) separately.
Concerning (1). Since − ln() is convex, we have from Jensen’s inequality (The-
orem A.1.1)

KL(ρ‖π) = E
h∼ρ

ln ρ(h)
π(h) = E

h∼ρ

[
− ln π(h)

ρ(h)

]
≥ − ln

[
E
h∼ρ

π(h)
ρ(h)

]
= 0.
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Concerning (2). The property follows directly by developing the KL divergence,
i.e., we have

KL(π‖π) = E
h∼π

ln π(h)
π(h) = E

h∼π
ln(1) = 0.

Concerning (3). For example, we have KL(B(0.1)‖B(0.5)) 6= KL(B(0.5)‖B(0.1)),
where B(p) is a Bernoulli distribution with bias p. �

Moreover, since we have (from l’Hôpital’s rule) limx→0+ x ln x = 0, we adopt several
conventions. Indeed, we consider that (i) ρ(h) ln ρ(h)

π(h) = 0 whenever ρ(h) = 0 and
π(h) ≥ 0 and (ii) if π(h) = 0 and ρ(h) > 0, ρ(h) ln ρ(h)

π(h) = +∞ (which implies that
KL(ρ‖π) = +∞).

B.5.2 Joint Convexity
The following proposition shows that the KL divergence is jointly convex.

Proposition B.5.1. For any pairs (ρ1, ρ2) ∈ M(H)2 and (π1, π2) ∈ M∗(H)2 of
distributions, we have for all λ ∈ [0, 1]

KL(λρ1 + (1−λ)ρ2‖λπ1 + (1−λ)π2) ≤ λKL(ρ1‖π1) + (1−λ) KL(ρ2‖π2).

In order to provide a proof for Proposition B.5.1. We need the log-sum inequality; a
proof (based on Cover and Thomas (2006, Theorem 2.7.1)) is given bellow.

Lemma B.5.1 (Log-sum inequality). For any strictly positive reals p1, . . . , pn ≥ 0
and q1, . . . , qn ≥ 0, we have[

n∑
i=1

qi

]
ln
∑n
i=1 qi∑n
i=1 pi

≤
n∑
i=1

qi ln
qi
pi
.

Proof. First of all, note that f(x) = x ln x is convex w.r.t. x ∈ R+
∗ since ∂f

∂x
(x) = 1

x
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for all x ∈ R+
∗ . Then, from Jensen’s inequality (Theorem A.1.1) we have

f

(
n∑
i=1

pi
‖p‖1

qi
pi

)
≤

n∑
i=1

pi
‖p‖1

f

(
qi
pi

)

⇐⇒ ‖p‖1f

(
n∑
i=1

pi
‖p‖1

qi
pi

)
≤ ‖p‖1

n∑
i=1

pi
‖p‖1

f

(
qi
pi

)
,

where ‖p‖1 = ∑n
i=1 pi. Then, we can develop right-hand side of the inequality,

i.e., we have

‖p‖1f

(
n∑
i=1

pi
‖p‖1

qi
pi

)
= ‖p‖1f

(
‖q‖1

‖p‖1

)
= ‖q‖1 ln ‖q‖1

‖p‖1
=
[
n∑
i=1

qi

]
ln
∑n
i=1 qi∑n
i=1 pi

,

where ‖q‖1 = ∑n
i=1 qi. Similarly for the left-hand side, we have

‖p‖1

n∑
i=1

pi
‖p‖1

f

(
qi
pi

)
=

n∑
i=1

pif

(
qi
pi

)
=

n∑
i=1

qi ln
qi
pi
.

�

We are now able to prove Proposition B.5.1 based on the proof of Cover and
Thomas (2006, Theorem 2.7.2).

Proof of Proposition B.5.1. From the log-sum inequality (Lemma B.5.1) with q1 =
λρ1(h), q2 = (1− λ)ρ2(h), p1 = λπ1(h), p2 = (1− λ)π2(h), we have

[λρ1(h) + (1−λ)ρ2(h)] ln
[
λρ1(h) + (1−λ)ρ2(h)
λπ1(h) + (1−λ)π2(h)

]

≤ λρ1(h) ln ρ1(h)
π1(h) + (1− λ)ρ2(h) ln ρ2(h)

π2(h) .

Hence, by integrating over all h, gives us the desired result. �

B.5.3 Pinsker’s Inequality
We present a special case of Pinsker’s inequality when we deal with two Bernoulli
distributions. The presented proof is due to Wu (2020) (see also Canonne (2022)).

Theorem B.5.1 (Pinsker’s inequality). For any p ∈ [0, 1] and q ∈ [0, 1], we have
2(q − p)2 ≤ kl(q‖p),

where kl(q‖p) , q ln q
p

+ (1− q) ln 1−q
1−p .
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Proof. For any p ∈ {0, 1} and q ∈ {0, 1}, we can easily verify that the inequality
holds. Then, with p ∈ (0, 1) and q ∈ (0, 1), we have from the fundamental
theorem of calculus

kl(q‖p) = f(q)− f(p) =
∫ p

q

∂f

∂x
(x)dx,

where f(x) = q ln x+ (1− q) ln(1− x). Hence, we have
∫ p

q

∂f

∂x
(x)dx =

∫ p

q

(q − x)
(1− x)xdx ≤ 4

∫ p

q
(q − x)dx = 41

2(q − p)2 = 2(q − p)2.

�

B.6 Proof of Theorem 2.3.1

Theorem 2.3.1 (General PAC-Bayesian Bound of Germain et al. (2009)). For
any distributionD on X×Y, for any hypothesis set H, for any distribution π ∈ M∗(H)
on H, for any measurable function ϕ : H× (X× Y)m → R, we have

P
S∼Dm

[
∀ρ ∈ M(H), E

h∼ρ
ϕ(h,S) ≤ KL(ρ‖π) + ln

(1
δ

E
S′∼Dm

E
h′∼π

eϕ(h′,S′)
)]
≥ 1−δ,

where KL(ρ‖π)= E
h∼ρ

lnρ(h)
π(h) is the Kullback-Leibler (KL) divergence between the

distributions ρ and π.

Proof. We start by developing Eh∼ρ ϕ(h,S), i.e., we obtain

E
h∼ρ

ϕ(h,S) = E
h∼ρ

ln [exp(ϕ(h,S))]

= E
h∼ρ

ln
[
ρ(h)
π(h)

π(h)
ρ(h) exp(ϕ(h,S))

]

= E
h∼ρ

ln ρ(h)
π(h) + E

h′∼ρ
ln
[
π(h′)
ρ(h′) exp(ϕ(h′,S))

]

= KL(ρ‖π) + E
h′∼ρ

ln
[
π(h′)
ρ(h′) exp(ϕ(h′,S))

]
.
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Since ln is concave, we can apply Jensen’s inequality (Theorem A.1.1) on the
right-most term to obtain

E
h∼ρ

ln ρ(h)
π(h) + E

h′∼ρ
ln
[
π(h′)
ρ(h′) exp(ϕ(h′,S))

]
≤ E

h′∼ρ
ln
[
π(h′)
ρ(h′) exp(ϕ(h′,S))

]

= ln
[
E

h′∼π
exp(ϕ(h′,S))

]
.

Hence, we can deduce the following inequality:

E
h∼ρ

ϕ(h,S) ≤ KL(ρ‖π) + ln
[
E

h′∼π
exp(ϕ(h′,S))

]
. (B.1)

Since the exponential function exp(a) is positive for all a ∈ R, thus, the term
Eh′∼π exp(ϕ(h′,S)) is positive for all S ∈ (X × Y)m as well. We can apply
Markov’s inequality (Theorem A.2.1) to have

P
S∼Dm

[
E

h′∼π
exp(ϕ(h′,S)) ≤ 1

δ
E

S′∼Dm
E

h′∼π
exp(ϕ(h′,S′))

]
≥ 1− δ

⇐⇒ P
S∼Dm

[
ln
(

E
h′∼π

exp(ϕ(h′,S))
)
≤ ln

(1
δ

E
S′∼Dm

E
h′∼π

exp(ϕ(h′,S′))
)]
≥ 1− δ

⇐⇒ P
S∼Dm

∀ρ ∈ M(H), KL(ρ‖π) + ln
(

E
h′∼π

exp(ϕ(h′,S))
)

≤ KL(ρ‖π) + ln
(1
δ

E
S′∼Dm

E
h′∼π

exp(ϕ(h′,S′))
) ≥ 1− δ

(B.2)

By combining Equations (B.1) and (B.2), we can deduce the claimed result. �

B.7 Proof of Theorem 2.3.2

Theorem 2.3.2 (PAC-Bayesian Bound of McAllester (2003)). For any distri-
bution D on X × Y, for any hypothesis H, for any prior π ∈ M∗(H), for any loss
` : H×(X× Y)m → [0, 1], for any δ ∈ (0, 1], we have

P
S∼Dm

∀ρ ∈ M(H),
∣∣∣∣ E
h∼ρ

R`D(h)− E
h∼ρ

R`S(h)
∣∣∣∣ ≤

√
1

2m
[
KL(ρ‖π)+ ln 2

√
m
δ

] ≥ 1−δ.

(2.10)
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Proof. It is a direct consequence of Pinsker’s inequality (Theorem B.5.1), i.e.,
we have

2
(
E
h∼ρ

R`D(h)− E
h∼ρ

R`S(h)
)2
≤ kl

(
E
h∼ρ

R`D(h)‖ E
h∼ρ

R`S(h)
)
,

and from Theorem 2.3.4 by rearranging the terms. �

B.8 Proof of Theorem 2.3.3

Theorem 2.3.3 (PAC-Bayesian Bound of Catoni (2007)). For any distribution
D on X × Y, for any hypothesis H, for any prior π ∈ M∗(H), for any loss ` :
H×(X× Y)m → [0, 1], for any c > 0, for any δ ∈ (0, 1], we have

P
S∼Dm

∀ρ ∈ M(H),− ln
(

1−
[
1−e−c

]
E
h∼ρ

R`D(h)
)
− c E

h∼ρ
R`S(h)

≤ 1
m

[
KL(ρ‖π)+ ln 1

δ

]  ≥ 1− δ. (2.13)

Proof. We apply Theorem 2.3.1 with ϕ(h,S) = m
[
F (R`D(h))− cR`S(h)

]
, where

F (R`D(h)) , − ln
(
1− R`D(h)[1− e−c]

)
. We have

P
S∼Dm

∀ρ ∈ M(H), E
h∼ρ

[
F (R`D(h))− cR`S(h)

]

≤ 1
m

[
KL(ρ‖π)+ ln

(1
δ

E
S′∼Dm

E
h′∼π

em[F (R`D(h′))−cR`S′ (h
′)]
)]  ≥ 1−δ.

Since the distribution π on H does not depend on the S′ ∼ Dm, we can exchange
the two expectations (with Fubini’s theorem), i.e., we have

E
S′∼Dm

E
h′∼π

em[F (R`D(h′))−cR`S′ (h
′)] = E

h′∼π
E

S′∼Dm
em[F (R`D(h′))−cR`S′ (h

′)].
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Then, from Lemma B.16.2, we have

E
S∼Dm

em[F (R`D(h))−cR`S(h)] ≤ 1 =⇒ ln
(1
δ

E
h′∼π

E
S′∼Dm

em[F (R`D(h′))−cR`S′ (h
′)]
)
≤ ln 1

δ
.

The function F (x) is convex, since its second derivative is ∂2F
∂x2 (x)= (ec−1)2

(x−ec(x−1))2≥0.
In this case, easily conclude that F (p) − cq is jointly convex in q and p. Hence,
from Jensen’s inequality (Theorem A.1.1) we have for all ρ ∈ M(H)

F
(
E
h∼ρ

R`D(h)
)
− c

[
E
h∼ρ

R`S(h)
]
≤ E

h∼ρ

[
F (R`D(h))− cR`S(h)

]
.

Hence, this gives the bound

P
S∼Dm

∀ρ ∈ M(H), F
(
E
h∼ρ

R`D(h)
)
− c

[
E
h∼ρ

R`S(h)
]

≤ 1
m

[
KL(ρ‖π)+ ln 1

δ

]  ≥ 1−δ,

and by rearranging the terms we obtain the desired result. �

B.9 Proof of Theorem 2.3.4

Theorem 2.3.4 (PAC-Bayesian Bound of Seeger (2002)). For any distribution
D on X × Y, for any hypothesis H, for any prior π ∈ M∗(H), for any loss ` :
H×(X× Y)m → [0, 1], for any δ ∈ (0, 1], we have

P
S∼Dm

[
∀ρ ∈ M(H), kl

(
E
h∼ρ

R`D(h)
∥∥∥∥ E
h∼ρ

R`S(h)
)
≤ 1
m

[
KL(ρ‖π)+ ln 2

√
m
δ

]]
≥ 1−δ.

(2.14)

Proof. We can apply Theorem 2.3.1 with ϕ(h,S) = m kl
(
Eh∼ρ R`D(h)‖Eh∼ρ R`S(h)

)
,
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i.e., we have

P
S∼Dm

∀ρ ∈ M(H), E
h∼ρ

kl
(

R`D(h)‖R`S(h)
)

≤ 1
m

[
KL(ρ‖π)+ ln

(1
δ

E
S′∼Dm

E
h′∼π

em kl(R`D(h′)‖R`S′ (h
′))
)]  ≥ 1−δ.

Since the distribution π on H does not depend on the S′ ∼ Dm, we can exchange
the two expectations (with Fubini’s theorem), i.e., we have

E
S′∼Dm

E
h′∼π

em kl(R`D(h′)‖R`S′ (h
′)) = E

h′∼π
E

S′∼Dm
em kl(R`D(h′)‖R`S′ (h

′)).

Then, from Lemma B.16.1, we have

E
S′∼Dm

em kl(R`D(h′)‖R`S′ (h
′)) ≤ 2

√
m

=⇒ ln
(1
δ

E
h′∼π

E
S′∼Dm

em kl(R`D(h′)‖R`S′ (h
′))
)
≤ ln 2

√
m

δ
.

Finally, thanks to the joint convexity of the KL divergence (Proposition B.5.1),
kl(q‖p) is jointly convex in q and p. Hence, we have from Jensen’s inequality
(Theorem A.1.1), for all ρ ∈ M(H)

kl
(
E
h∼ρ

R`D(h)‖ E
h∼ρ

R`S(h)
)
≤ E

h∼ρ
kl
(

R`D(h)‖R`S(h)
)
.

�

B.10 Proof of Proposition 2.3.1

Proposition 2.3.1 (Donsker-Varadhan Variational Representation). For any
hypothesis set H, for any distribution π ∈ M∗(H) on H, for any measurable function
ϕ : H× (X× Y)m → R s.t. Eh′∼π eϕ(h′,S) < +∞ for all S ∈ (X× Y)m, we have

∀S ∈ (X× Y)m, ∀ρ ∈ M(H), E
h∼ρ

ϕ(h,S)− ln
(
E
h∼π

eϕ(h,S)
)
≤ KL(ρ‖π)

⇐⇒ E
h∼ρ

ϕ(h,S) ≤ KL(ρ‖π) + ln
(
E
h∼π

eϕ(h,S)
)
.
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When the distribution ρ is defined as ρ(h) = π(h) eϕ(h,S)

Eh′∼π eϕ(h′,S) , we have

∀S ∈ (X× Y)m, E
h∼ρ

ϕ(h,S)− ln
(
E
h∼π

eϕ(h,S)
)

= KL(ρ‖π),

⇐⇒ E
h∼ρ

ϕ(h,S) = KL(ρ‖π) + ln
(
E
h∼π

eϕ(h,S)
)
.

Proof. Let ρ′(h) = π(h) eϕ(h,S)

Eh′∼π e
ϕ(h′,S) , then, we develop the term KL(ρ‖ρ′). We

have

KL(ρ‖ρ′) = E
h∼ρ

ln
(
ρ(h)
ρ′(h)

)

= E
h∼ρ

ln
(

ρ(h)
π(h)eϕ(h,S) E

h∼ρ
eϕ(h,S)

)

= E
h∼ρ

ln
(
ρ(h)
π(h)

)
− E

h∼π
ϕ(h,S) + ln

(
E
h∼π

eϕ(h,S)
)
.

Hence, by setting ρ = ρ′, we have KL(ρ‖ρ′) = 0 which leads to the desired result
by rearranging the terms. �

B.11 Proof of Theorem 2.3.5

Theorem 2.3.5 (General PAC-Bayesian Bound of Bégin et al. (2016)). For any
distribution D on X×Y, for any hypothesis set H, for any distribution π ∈ M∗(H)
on H, for any measurable function ϕ : H× (X×Y)m → R+

∗ , for any λ > 1, for any
δ ∈ (0, 1], we have

P
S∼Dm

∀ρ ∈ M(H), λ

λ−1 ln
[
E
h∼ρ

ϕ(h,S)
]

≤ Dλ(ρ‖π) + ln
[1
δ

E
S′∼Dm

E
h′∼π

ϕ(h′,S′)
λ
λ−1

]  ≥ 1−δ.
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Proof. We start by developing λ
λ−1 ln [Eh∼ρ ϕ(h,S)], i.e., we have for all ρ ∈ M(H)

λ
λ−1 ln

[
E
h∼ρ

ϕ(h,S)
]

= λ
λ−1 ln

[
E
h∼ρ

ρ(h)
π(h)

π(h)
ρ(h)ϕ(h,S)

]
= λ

λ−1 ln
[
E
h∼π

ρ(h)
π(h)ϕ(h,S)

]
.

(B.3)

We apply Hölder’s inequality (Theorem A.5.1) to have

E
h∼π

ρ(h)
π(h)ϕ(h,S) ≤

 E
h∼π

[
ρ(h)
π(h)

]λ 1
λ [

E
h∼π

ϕ(h,S)
λ
λ−1

]λ−1
λ

.

By taking the logarithm (since both sides are positive) and multiplying by λ
λ−1

both sides of the inequality, we have

λ

λ−1 ln
(

E
h∼π

ρ(h)
π(h)ϕ(h,S)

)
≤ 1
λ−1 ln

 E
h∼π

[
ρ(h)
π(h)

]λ+ ln
(

E
h′∼π

ϕ(h′,S)
λ
λ−1

)

= Dλ(ρ‖π) + ln
(

E
h′∼π

ϕ(h′,S)
λ
λ−1

)
. (B.4)

Since the function ϕ : H×(X×Y)m → R+
∗ is positive and λ

λ−1 > 0, we can deduce
that Eh′∼π ϕ(h′,S)

λ
λ−1 > 0 for all S ∈ (X× Y)m. Then, we can apply Markov’s

inequality (Theorem A.2.1), we have

P
S∼Dm

[
E

h′∼π
ϕ(h′,S)

λ
λ−1 ≤ 1

δ
E

S′∼Dm
E

h′∼π
ϕ(h′,S′)

λ
λ−1

]
≥ 1− δ

⇐⇒ P
S∼Dm

[
ln
(

E
h′∼π

ϕ(h′,S)
λ
λ−1

)
≤ ln

(1
δ

E
S′∼Dm

E
h′∼π

ϕ(h′,S′)
λ
λ−1

)]
≥ 1− δ

⇐⇒ P
S∼Dm

∀ρ ∈ M(H), Dλ(ρ‖π) + ln
(

E
h′∼π′

ϕ(h′,S)
λ
λ−1

)

≤ Dλ(ρ‖π) + ln
(1
δ

E
S′∼Dm

E
h′∼π

ϕ(h′,S′)
λ
λ−1

) ≥ 1− δ

(B.5)

By combining Equations (B.3) to (B.5), we can deduce the claimed result. �
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B.12. About the Bounds Derived From Theorem 2.3.5

B.12 About the Bounds Derived From
Theorem 2.3.5

In this section, we provide a Seeger, McAllester and Catoni-like PAC-Bayesian
generalization bound.

B.12.1 McAllester-like Bound
Based on Corollary B.12.2, we can obtain the following McAllester-like bound.

Corollary B.12.1. For any distribution D on X× Y, for any hypothesis H, for any
prior distribution π ∈ M∗(H), for any loss ` : H×(X× Y)m → [0, 1], for any λ > 1,
for any δ ∈ (0, 1], we have

P
S∼Dm

∀ρ ∈ M(H),
∣∣∣∣ E
h∼ρ

R`D(h)− E
h∼ρ

R`S(h)
∣∣∣∣ ≤

√
1

2m
[
Dλ(ρ‖π)+ ln 2

√
m
δ

] ≥ 1−δ.

Proof. It is a direct consequence of Pinsker’s inequality (Theorem B.5.1), i.e.,
we have

2
(
E
h∼ρ

R`D(h)− E
h∼ρ

R`S(h)
)2
≤ kl

(
E
h∼ρ

R`D(h)‖ E
h∼ρ

R`S(h)
)
,

and from Corollary B.12.2 by rearranging the terms. �

B.12.2 Seeger-like Bound
The Seeger-like obtained from Theorem 2.3.5 is the following.

Corollary B.12.2. For any distribution D on X× Y, for any hypothesis H, for any
prior distribution π ∈ M∗(H), for any loss ` : H×(X× Y)m → [0, 1], for any λ > 1,
for any δ ∈ (0, 1], we have

P
S∼Dm

[
∀ρ ∈ M(H), kl

(
E
h∼ρ

R`D(h)‖ E
h∼ρ

R`S(h)
)
≤ 1
m

[
Dλ(ρ‖π)+ ln 2

√
m
δ

]]
≥ 1−δ.
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Proof. We apply Theorem 2.3.5 with ϕ(h,S) = λ−1
λ
m kl

[
Eh∼ρ R`D(h)‖Eh∼ρ R`S(h)

]
,

i.e., we have

P
S∼Dm

∀ρ ∈ M(H), λ

λ−1 ln
[
E
h∼ρ

em
λ−1
λ

kl(R`D(h)‖R`S(h))
]

≤ Dλ(ρ‖π)+ ln
(1
δ

E
S′∼Dm

E
h′∼π

em kl(R`D(h′)‖R`S′ (h
′))
) ≥ 1−δ.

Since the distribution π on H does not depend on the S′ ∼ Dm, we can exchange
the two expectations (with Fubini’s theorem), i.e., we have

E
S′∼Dm

E
h′∼π

em kl(R`D(h′)‖R`S′ (h
′)) = E

h′∼π
E

S′∼Dm
em kl(R`D(h′)‖R`S′ (h

′)).

Then, from Lemma B.16.1, we have

E
S∼Dm

em kl(R`D(h)‖R`S(h)) ≤ 2
√
m

=⇒ ln
(1
δ

E
h′∼π

E
S′∼Dm

em kl(R`D(h′)‖R`S′ (h
′))
)
≤ ln 2

√
m

δ
.

Thanks to the joint convexity of the KL divergence (Proposition B.5.1), the func-
tion q, p 7→ exp

(
λ−1
λ
m kl(q‖p)

)
is jointly convex in q and p by composition (see,

e.g., Boyd and Vandenberghe (2004)). Hence, we have from Jensen’s in-
equality (Theorem A.1.1), for all ρ ∈ M(H)

em
λ−1
λ

kl(Eh∼ρ R`D(h)‖Eh∼ρ R`S(h)) ≤ E
h∼ρ

em
λ−1
λ

kl(R`D(h)‖R`S(h))

⇐⇒ m kl
[
E
h∼ρ

R`D(h)‖ E
h∼ρ

R`S(h)
]
≤ λ

λ−1 ln
(
E
h∼ρ

em
λ−1
λ

kl(R`D(h)‖R`S(h))
)
.

Finally, by rearranging the terms, we have the stated result. �

B.12.3 Catoni-like Bound
The derivation of a Catoni (2007)-like generalization bound based on Theorem 2.3.5
is the following.

Corollary B.12.3. For any distribution D on X× Y, for any hypothesis H, for any
prior distribution π ∈ M∗(H), for any loss ` : H×(X× Y)m → [0, 1], for any c > 0,
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for any λ > 1, for any δ ∈ (0, 1], we have

P
S∼Dm

∀ρ ∈ M(H),− ln
(

1−
[
1−e−c

]
E
h∼ρ

R`D(h)
)
− c E

h∼ρ
R`S(h)

≤ 1
m

[
Dλ(ρ‖π)+ ln 1

δ

]  ≥ 1− δ.

Proof. We apply Theorem 2.3.5 with ϕ(h,S) = mλ−1
λ

[
F (R`D(h))− cR`S(h)

]
,

where F (R`D(h)) , − ln
(
1− R`D(h)[1− e−c]

)
. We have

P
S∼Dm

∀ρ ∈ M(H), λ

λ−1 ln
[
E
h∼ρ

em
λ−1
λ
F (R`D(h))−cR`S(h)

]

≤ Dλ(ρ‖π)+ ln
(1
δ

E
S′∼Dm

E
h′∼π

em[F (R`D(h′))−cR`S′ (h
′)]
) ≥ 1−δ.

Since the distribution π on H does not depend on the S′ ∼ Dm, we can exchange
the two expectations (with Fubini’s theorem), i.e., we have

E
S′∼Dm

E
h′∼π

em[F (R`D(h′))−cR`S′ (h
′)] = E

h′∼π
E

S′∼Dm
em[F (R`D(h′))−cR`S′ (h

′)].

Then, from Lemma B.16.2, we have

E
S∼Dm

em[F (R`D(h))−cR`S(h)] ≤ 1 =⇒ ln
(1
δ

E
h′∼π

E
S′∼Dm

em[F (R`D(h′))−cR`S′ (h
′)]
)
≤ ln 1

δ
.

The function F (x) is convex, since its second derivative is ∂2F
∂x2 (x)= (ec−1)2

(x−ec(x−1))2≥0.
Hence, we conclude that F (p) − cq is jointly convex in q and p. Moreover, we
can deduce that the function q, p 7→ exp

(
mλ−1

λ

[
F (R`D(h))− cR`S(h)

])
is jointly

convex in q and p by composition (see, e.g., Boyd and Vandenberghe (2004)).
Hence, from Jensen’s inequality (Theorem A.1.1) we have for all ρ ∈ M(H)

em
λ−1
λ [F (Eh∼ρ R`D(h))−cEh∼ρ R`S(h)] ≤ E

h∼ρ
em

λ−1
λ [F (R`D(h))−cR`S(h)]

⇐⇒ m
[
F
(
E
h∼ρ

R`D(h)
)
− c E

h∼ρ
R`S(h)

]
≤ λ

λ−1 ln
(
E
h∼ρ

em
λ−1
λ [F (R`D(h))−cR`S(h)]

)
.
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Finally, by rearranging the terms, we have the stated result. �

B.13 Proof of Theorem 2.4.1

Theorem 2.4.1 (General Disintegrated Bound of Rivasplata et al. (2020)). For
any distribution D on X × Y, for any hypothesis set H, for any prior distribution
π ∈ M∗(H), for any measurable function ϕ : H× (X×Y)m → R, for any δ ∈ (0, 1],
for any algorithm A : (X×Y)m×M∗(H)→M(H), we have

P
S∼Dm,h∼ρS

ϕ(h,S) ≤ ln
[
ρS(h)
π(h)

]
+ln

[1
δ

E
S′∼Dm

E
h′∼π

exp (ϕ(h′,S′))
]

︸ ︷︷ ︸
Φ(ρS,π,δ)

 ≥ 1−δ,

where ρS , A(S, π) is output by the deterministic algorithm A.

Proof. Note that exp
[
ϕ(h,S)− ln ρS(h)

π(h)

]
is a non-negative random variable. Thus,

we can apply Markov’s inequality (Theorem A.2.1) to obtain

P
S∼Dm,h∼ρS

 exp
(
ϕ(h,S)− ln ρS(h)

π(h)

)

≤ 1
δ

E
S′∼Dm

E
h′∼ρS

exp
(
ϕ(h′,S′)− ln ρS

′(h′)
π(h′)

) ≥ 1− δ.

Hence, by rearranging the terms, we have

P
S∼Dm,h∼ρS

exp
(
ϕ(h,S)− ln ρS(h)

π(h)

)
≤ 1
δ

E
S′∼Dm

E
h′∼ρS

π(h′)
ρS′(h′)

eϕ(h′,S′)

≥1−δ

⇐⇒ P
S∼Dm,h∼ρS

exp
(
ϕ(h,S)− ln ρS(h)

π(h)

)
≤ 1
δ

E
S′∼Dm

E
h′∼π

eϕ(h′,S′)

 ≥ 1−δ.

Since both sides of the inequality are strictly positive, we can apply the logarithm,
i.e., we have

P
S∼Dm,h∼ρS

[
ϕ(h,S) ≤ ln ρS(h)

π(h) + ln
(1
δ

E
S′∼Dm

E
h′∼π

eϕ(h′,S′)
)]
≥ 1− δ,

which is the desired result. �
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B.14 Proof of Theorem 2.4.2

Theorem 2.4.2 (Disintegrated Bound of Catoni (2007)). For any distribution
D on X × Y, for any hypothesis H, for any prior π ∈ M∗(H), for any loss ` :
H×(X × Y)m → [0, 1], for any c > 0, for any δ ∈ (0, 1], for any algorithm
A : (X×Y)m×M∗(H)→M(H), we have

P
S∼Dm,h∼ρS

∀ρ ∈ M(H),− ln
(

1−
[
1−e−c

]
E
h∼ρ

R`D(h)
)
− c E

h∼ρ
R`S(h)

≤ 1
m

[
ln ρS(h)

π(h) + ln 1
δ

]  ≥ 1− δ,

where ρS , A(S, π) is output by the deterministic algorithm A.

Proof. We apply Theorem 2.4.1 with ϕ(h,S) = m
[
F (R`D(h))− cR`S(h)

]
, where

F (R`D(h)) , − ln
(
1− R`D(h)[1− e−c]

)
. We have

P
S∼Dm

∀ρ ∈ M(H), E
h∼ρ

[
F (R`D(h))− cR`S(h)

]

≤ 1
m

[
ln ρS(h)

π(h) + ln
(1
δ

E
S′∼Dm

E
h′∼π

em[F (R`D(h′))−cR`S′ (h
′)]
)]  ≥ 1−δ.

Since the distribution π on H does not depend on the S′ ∼ Dm, we can exchange
the two expectations (with Fubini’s theorem), i.e., we have

E
S′∼Dm

E
h′∼π

em[F (R`D(h′))−cR`S′ (h
′)] = E

h′∼π
E

S′∼Dm
em[F (R`D(h′))−cR`S′ (h

′)].

Then, from Lemma B.16.2, we have

E
S∼Dm

em[F (R`D(h))−cR`S(h)] ≤ 1 =⇒ ln
(1
δ

E
h′∼π

E
S′∼Dm

em[F (R`D(h′))−cR`S′ (h
′)]
)
≤ ln 1

δ
.

The function F (x) is convex, since its second derivative is ∂2F
∂x2 (x)= (ec−1)2

(x−ec(x−1))2≥0.
In this case, easily conclude that F (p) − cq is jointly convex in q and p. Hence,

– 231 –



B.15. Proof of Theorem 2.4.3

from Jensen’s inequality (Theorem A.1.1) we have for all ρ ∈ M(H)

F
(
E
h∼ρ

R`D(h)
)
− c

[
E
h∼ρ

R`S(h)
]
≤ E

h∼ρ

[
F (R`D(h))− cR`S(h)

]
.

Hence, this gives the bound

P
S∼Dm

∀ρ ∈ M(H), F
(
E
h∼ρ

R`D(h)
)
− c

[
E
h∼ρ

R`S(h)
]

≤ 1
m

[
ln ρS(h)

π(h) + ln 1
δ

]  ≥ 1−δ,

and by rearranging the terms we obtain the desired result. �

B.15 Proof of Theorem 2.4.3
The proof of Theorem 2.4.3 relies on another theorem from Blanchard and Fleuret
(2007, Theorem 2.4) called Occam’s Hammer.

Lemma B.15.1 (Occam’s Hammer). Given a measurable function measurable
function ϕ : H× (X× Y)m → R, assume that for any distribution D on X× Y, for
any hypothesis set H, for any distribution π ∈ M∗(H) on H, for any δ ∈ (0, 1], we
have

P
S∼Dm,h∼π

[ϕ(h,S) ≥ Φ(δ)] ≤ δ,

where Φ : (0, 1]→ R is a decreasing function.
It implies that for any distribution D on X × Y, for any hypothesis set H, for any
distribution π on H, for any δ ∈ (0, 1], we have

P
S∼Dm,h∼ρS

[
ϕ(h,S) ≥ Φ′

(
δf
(
Θ(h)−1

))]
≤ δ,

where Θ(h) , ρS(h)
π(h) and Φ′(δ) , Φ

(
max

(
δ, 1

))
and f : R+ → R+

∗ a measurable
increasing function s.t. ∫

y>0
y−2f (y) dy ≤ 1.
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Proof. The proof consists in upper-bounding the probability

P
S∼Dm,h∼ρS

[
ϕ(h,S) ≥

(
δf
(
Θ(h)−1

))]
.

We rewrite this term as

P
S∼Dm,h∼ρS

[
ϕ(h,S) ≥ Φ′

(
δf
(
Θ(h)−1

))]
= E

S∼Dm
E

h∼ρS

I
[
ϕ(h,S) ≥ Φ′

(
δf
(
Θ(h)−1

))]
= E

S∼Dm
E

h∼ρS

ρS(h)
π(h)

π(h)
ρS(h) I

[
ϕ(h,S) ≥ Φ′

(
δf
(
Θ(h)−1

) )]

= E
S∼Dm

E
h∼π

ρS(h)
π(h) I

[
ϕ(h,S) ≥ Φ′

(
δf
(
Θ(h)−1

))]
= E

S∼Dm
E
h∼π

Θ(h) I
[
ϕ(h,S) ≥ Φ′

(
δf
(
Θ(h)−1

) )]
.

We can actually express the term Θ(h) in a form of integral. Indeed, we have

Θ(h) =
∫ +∞

Θ(h)−1
y−2dy =

∫
y>0

y−2 I
[
y ≥ Θ(h)−1

]
dy.

Then, thanks to Fubini’s theorem, we can rewrite the probability as

E
S∼Dm

E
h∼π

Θ(h) I
[
ϕ(h,S) ≥ Φ′

(
δf
(
Θ(h)−1

))]
= E

S∼Dm
E
h∼π

[∫
y>0

y−2 I
[
y ≥ Θ(h)−1

]
dy
]

I
[
ϕ(h,S) ≥ Φ′

(
δf
(
Θ(h)−1

))]
=
∫
y>0

y−2 E
S∼Dm

E
h∼π

I
[
y ≥ Θ(h)−1

]
I
[
ϕ(h,S) ≥ Φ′

(
δf
(
Θ(h)−1

))]
dy.

Since f() is increasing, i.e., for all y > 0 s.t. Θ(h)−1 < y, we have f(Θ(h)−1) ≤
f(y). Moreover, since Φ() is decreasing, we have Φ′(f(y)) ≤ Φ′(f(Θ(h)−1)).
This implies that

I
[
y ≥ Θ(h)−1

]
I
[
ϕ(h,S) ≥ Φ′

(
δf
(
Θ(h)−1

))]
≤ I [ϕ(h,S) ≥ Φ′ (δf (y))] .
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Based on this inequality, we have∫
y>0

y−2 E
S∼Dm

E
h∼π

I
[
y ≥ Θ(h)−1

]
I
[
ϕ(h,S) ≥ Φ′

(
δf
(
Θ(h)−1

))]
dy

≤
∫
y>0

y−2 E
S∼Dm

E
h∼π

I [ϕ(h,S) ≥ Φ′ (δf (y))] dy

=
∫
y>0

y−2 P
S∼Dm,h∼π

[ϕ(h,S) ≥ Φ′ (δf (y))] dy.

By assumption, we have ∫y>0 y
−2f (y) dy ≤ 1 and PS∼Dm,h∼π [ϕ(h,S)≥Φ(δ)] ≤ δ,

which leads to∫
y>0

y−2 P
S∼Dm,h∼π

[ϕ(h,S) ≥ Φ′ (δf (y))] dy ≤
∫
y>0

y−2δf (y) dy ≤ δ.

�

This theorem is further used in addition to the two following lemmas. We first one
known as Chernoff’s bound is originally due to Chernoff (1952) but the proof is
from Langford (2005, Lemma 3.6).

Lemma B.15.2 (Chernoff’s bound). For any

P
X∼B(p)m

[
m∑
i=1

Xi ≤ k

]
≤ e−m kl+( k

m
‖p),

where kl+
(
k
m
‖p
)

= kl( k
m
‖p) if k

m
< p and 0 otherwise.

Proof. First remark that we have

P
X∼B(p)m

[
m∑
i=1

Xi ≤ k

]
= P

X∼B(p)m

[
e−mλ

1
m

∑m

i=1 Xi ≥ e−mλ
k
m

]
.

Then, from Markov’s inequality (Theorem A.2.1), we have

P
X∼B(p)m

[
e−mλ

1
m

∑m

i=1 Xi ≥ e−mλ
k
m

]
≤

EX∼B(p)m e
−λ
∑m

i=1 Xi

e−λk
.

Then, using the fact that X1, . . . , Xm are i.i.d. and from the expression of the
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moment generating function of the Bernoulli distribution B(p), we have

EX∼B(p)m e
−λ
∑m

i=1 Xi

e−λk
= eλk

[
E

X∼B(p)
e−λX

]m
= eλk

[
peλ + (1−p)

]m
.

Actually, we can find the optimal value λ∗, which is

λ∗ = ln
[
p

(
1− k

m

)]
− ln

[
k

m
(1− p)

]
,

for all p > k
m

. Finally, setting λ = λ∗, we obtain

eλk
[
peλ + (1−p)

]m
= e−m kl+( k

m
‖p).

�

Chernoff’s bound is actually used to prove the test set bound of Langford (2005,
Theorem 3.3 and Corollary 3.7). We prove, with more details, his theorem in the
following lemma.

Lemma B.15.3. For any distribution D on X × Y, for any hypothesis set H, for
any hypothesis h ∈ H, for any loss ` : H × (X × Y) → {0, 1}, for any δ ∈ (0, 1],
we have

P
S∼Dm

[
kl+(R`S(h)‖R`D(h)) ≥

ln 1
δ

m

]
≤ δ.

Proof. Step 1. First of all, we prove that

P
Y1,...,Ym∼B(p)m

[
P

X1,...,Xm∼B(p)m

[
m∑
i=1

Xi ≤
m∑
i=1

Yi

]
≤ δ

]
≤ δ. (B.6)

To do so, let k∗ = max
{
k ∈ {0, . . . ,m}

∣∣∣ PX1,...,Xm∼B(p)m [∑m
i=1Xi ≤ k] ≤ δ

}
.

Then, we have

P
Y1,...,Ym∼B(p)m

[
P

X1,...,Xm∼B(p)m

[
m∑
i=1

Xi ≤
m∑
i=1

Yi

]
≤ δ

]

= E
Y1,...,Ym∼B(p)m

I
[

P
X1,...,Xm∼B(p)m

[
m∑
i=1

Xi ≤
m∑
i=1

Yi

]
≤ δ

]
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=
m∑
k=0

P
X1,...,Xm∼B(p)m

[
m∑
i=1

Xi = k

]
· I
[

P
X1,...,Xm∼B(p)m

[
m∑
i=1

Xi ≤
m∑
i=1

Yi

]
≤ δ

]

=
k∗∑
k=0

P
X1,...,Xm∼B(p)m

[
m∑
i=1

Xi = k

]

= P
X1,...,Xm∼B(p)m

[
m∑
i=1

Xi ≤ k∗
]

≤ δ.

Step 2. From Equation (B.6), we can deduce that

P
R`S(h)∼B(R`D(h))m

[
P

X∼B(R`D(h))m

[
1
m

m∑
i=1

Xi ≤ R`S(h)
]
≤ δ

]
≤ δ,

where R`S(h) ∼ B(R`D(h))m is a slight abuse of notations since mR`S(h) is the sum
of the successes. From Chernoff’s inequality (Lemma B.15.2), we can deduce that

P
S∼Dm

[
exp

(
−m kl+

[
R`S(h)‖R`D(h)

])
≤ δ

]
≤ δ.

Finally, by rearranging the terms, we obtain the desired result. �

Finally, we are able to prove Lemma B.15.1 using Lemmas B.15.1 and B.15.2.

Theorem 2.4.3 (Disintegrated Bound of Blanchard and Fleuret (2007)).
For any distribution D on X × Y, for any hypothesis set H, for any distribution
π ∈ M∗(H), for any loss ` : H× (X×Y)→ {0, 1}, for any k > 1, for any δ ∈ (0, 1],
for any algorithm A : (X×Y)m×M∗(H)→M(H), we have

P
S∼Dm,h∼ρS

[
kl+(R`S(h)‖R`D(h)) ≤ 1

m

[
ln k + 1

δ
+
(

1 + 1
k

)
ln+

ρS(h)
π(h)

]]
≥ 1− δ,

where ρS , A(S, π) is output by the deterministic algorithm A, the ln+(x) =
max(ln(x), 0) and kl+(R`S(h)‖R`D(h)) = kl(R`S(h)‖R`D(h)) if R`S(h) < R`D(h) and
0 otherwise.

Proof. The proof consist of applying Occam’s Hammer (Lemma B.15.1). To do
so, given k > 1, let f : R+ → R+

∗ the function defined as

f(y) , 1
k+1 min

(
y1+ 1

k , 1
)
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Indeed, f() is increasing and we have∫
y>0

y−2f (y) dy =
∫ 1

0
y−2f (y) dy +

∫ +∞

1
y−2f (y) dy

= 1
k + 1

[∫ 1

0
y−2 · y1+ 1

kdy +
∫ +∞

1
y−2dy

]
= 1
k + 1

[∫ 1

0
y−2 · y1+ 1

kdy + 1
]

= 1
k + 1

[∫ 1

0
y

1
k
−1dy + 1

]
= 1
k + 1

[
k ·
[
1 1
k − 0 1

k

]
+ 1

]
= 1.

Moreover, note that with Lemma B.15.3, we have ϕ(h,S) = kl+(R`S(h)‖R`D(h))
and Φ(δ) = ln 1

δ

m
. Hence, we apply Occam’s Hammer (Lemma B.15.1) to obtain

P
S∼Dm,h∼ρS

[
ϕ(h,S) ≤ Φ′

(
δf
(
Θ(h)−1

))]
≥ 1− δ,

To obtain the final bound, we upper-bound the term Φ′(δf(Θ(h)−1)), i.e., we have

Φ′(δf(Θ(h)−1)) = − 1
m

ln
(
min(δf(Θ(h)−1), 1)

)
= 1
m

max
(

ln
(

1
δf(Θ(h)−1)

)
, 0
)

≤ 1
m

ln 1
δ

+ 1
m

max
(
− ln

(
f(Θ(h)−1)

)
, 0
)

= 1
m

ln 1
δ

+ 1
m

max
(
− ln

( 1
k + 1 min(Θ(h)−(1+ 1

k
), 1)

)
, 0
)

≤ 1
m

ln k + 1
δ

+ 1
m

max
(
− ln

(
min(Θ(h)−(1+ 1

k
), 1)

)
, 0
)

= 1
m

ln k + 1
δ

+ 1
m

ln+
(
Θ(h)1+ 1

k

)
= 1
m

[
ln k + 1

δ
+
(

1 + 1
k

)
ln+

ρS(h)
π(h)

]
.

�
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B.16 Proof of Lemmas B.16.1 and B.16.2
In this section, we prove the lemmas necessary to prove Theorems 2.3.3, 2.3.4 and 2.4.2
and Corollary B.12.2. The proof of Lemma B.16.1 is due to Maurer (2004) and
Lemma B.16.2 was proven by Germain et al. (2009).

Lemma B.16.1. For any distribution D on X × Y, for any hypothesis set H, for
any loss ` : H× (X× Y)→ [0, 1], we have

∀h ∈ H, E
S∼Dm

exp
[
m kl(R`S(h)‖R`D(h))

]
≤ 2
√
m.

Lemma B.16.2. For any distribution D on X × Y, for any hypothesis set H, for
any loss ` : H× (X× Y)→ [0, 1], we have

∀h ∈ H, E
S∼Dm

exp
[
m
[
F (R`D(h))− cR`S(h)

]]
≤ 1,

where F (R`D(h)) , − ln
(
1− R`D(h)

[
1− e−c

])
.

However, before giving the proofs, we need to prove two lemmas.

Lemma B.16.3. For any m ∈ N∗, any point x ∈ [0, 1]m can be written as a
convex combination of the extremes points η ∈ {0, 1}m, i.e., we have

∀x ∈ [0, 1]m, x =
∑

η∈{0,1}m

 ∏
i∈{1,...,m}
s.t. ηi=0

(1− xi)
∏

i∈{1,...,m}
s.t. ηi=1

xi

η,

where ∑η∈{0,1}m

[∏
i∈{1,...,m}
s.t. ηi=0

(1− xi)
∏
i∈{1,...,m}
s.t. ηi=1

xi

]
= 1.

Proof. We prove this fact by induction.
For m = 1, we can easily prove the claim, i.e., we have

∀x ∈ [0, 1], x = x1 · 1 + (1− x1) · 0, and (x1) + (1− x1) = 1.

For m > 1, we assume that the claim is true for a particular m (from our induction
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hypothesis) and we prove the equality for m+ 1.

∀x ∈ [0, 1]m+1,
∑

η∈{0,1}m+1

 ∏
i∈{1,...,m+1}

s.t. ηi=0

(1−xi)
∏

i∈{1,...,m+1}
s.t. ηi=1

xi

η,

=
∑

η∈{0,1}m+1

 ∏
i∈{1,...,m+1}

s.t. ηi=0

(1−xi)
∏

i∈{1,...,m+1}
s.t. ηi=1

xi

 [η1, . . . , ηm+1]>

=
∑

η∈{0,1}m

 ∏
i∈{1,...,m}
s.t. ηi=0

(1−xi)
∏

i∈{1,...,m}
s.t. ηi=1

xi

xm+1 [η1, . . . , 1]>

+
∑

η∈{0,1}m

 ∏
i∈{1,...,m}
s.t. ηi=0

(1−xi)
∏

i∈{1,...,m}
s.t. ηi=1

xi

 (1−xm+1) [η1, . . . , 0]> .

For any x ∈ [0, 1]m+1, its m+1-th component is ∑
η∈{0,1}m

 ∏
i∈{1,...,m}
s.t. ηi=0

(1−xi)
∏

i∈{1,...,m}
s.t. ηi=1

xi




︸ ︷︷ ︸
=1 by the induction hypothesis

(xm+1 · 1 + (1−xm+1) · 0) = xm+1.

Moreover, from the 1-st to the m-th component , we have

∑
η∈{0,1}m

 ∏
i∈{1,...,m}
s.t. ηi=0

(1−xi)
∏

i∈{1,...,m}
s.t. ηi=1

xi

xm+1 · η

+
∑

η∈{0,1}m

 ∏
i∈{1,...,m}
s.t. ηi=0

(1−xi)
∏

i∈{1,...,m}
s.t. ηi=1

xi

 (1−xm+1) · η

=
∑

η∈{0,1}m

 ∏
i∈{1,...,m}
s.t. ηi=0

(1−xi)
∏

i∈{1,...,m}
s.t. ηi=1

xi

 [xm+1 + (1−xm+1)] · η
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=
∑

η∈{0,1}m

 ∏
i∈{1,...,m}
s.t. ηi=0

(1−xi)
∏

i∈{1,...,m}
s.t. ηi=1

xi

 · η
= [x1, . . . , xm]>,

where the last equality holds by the induction hypothesis. Finally, we prove that
it sums to ∑η∈{0,1}m

[∏
i∈{1,...,m}
s.t. ηi=0

(1− xi)
∏
i∈{1,...,m}
s.t. ηi=1

xi

]
= 1, i.e., we have

∀x ∈ [0, 1]m+1,
∑

η∈{0,1}m+1

 ∏
i∈{1,...,m+1}

s.t. ηi=0

(1−xi)
∏

i∈{1,...,m+1}
s.t. ηi=1

xi



=
∑

η∈{0,1}m

 ∏
i∈{1,...,m}
s.t. ηi=0

(1−xi)
∏

i∈{1,...,m}
s.t. ηi=1

xi

xm+1

+
∑

η∈{0,1}m

 ∏
i∈{1,...,m}
s.t. ηi=0

(1−xi)
∏

i∈{1,...,m}
s.t. ηi=1

xi

 (1− xm+1)

= 1,

by the induction hypothesis. �

The second lemma that we have to prove is the following.

Lemma B.16.4. Let X ∼ X be a random variable such that X ∈ [0, 1] and X ′

be a random variable following a Bernoulli distribution of parameter EX∼X [X], i.e.,
X ′ ∼ B(EX∼X [X]). We define as X ∼ Xm (resp. X′ ∼ B(EX∼X [X])m) the m
independent copies of X ∼ X (resp. X ′ ∼ B(EX∼X [X])).
If f : [0, 1]m → R is a convex function and permutation symmetric, we have

EX∼Xm [F (X)] ≤ EX′∼B(EX∼X [X])m [F (X′)].
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Proof. From Lemma B.16.3, we have

x =
∑

η∈{0,1}m

 ∏
i∈{1,...,m}

ηi=0

(1− xi)
∏

i∈{1,...,m}
ηi=1

xi

η. (B.7)

Hence from Equation (B.7) and from Jensen’s inequality (Theorem A.1.1), we
have

F (x) = f

 ∑
η∈{0,1}m

 ∏
i∈{1,...,m}

ηi=0

(1− xi)
∏

i∈{1,...,m}
ηi=1

xi

η


≤
∑

η∈{0,1}m

 ∏
i∈{1,...,m}

ηi=0

(1− xi)
∏

i∈{1,...,m}
ηi=1

xi

F (η).

Taking the expectation gives us

E
X∼Xm

F (X) ≤ E
X∼Xm

 ∑
η∈{0,1}m

 ∏
i∈{1,...,m}

ηi=0

(1−Xi)
∏

i∈{1,...,m}
ηi=1

Xi

F (η)



=
∑

η∈{0,1}m

 ∏
i∈{1,...,m}

ηi=0

(
1− E

Xi∼X
[Xi]

) ∏
i∈{1,...,m}

ηi=1

E
Xi∼X

[Xi]

F (η)

=
∑

η∈{0,1}m

[(
1− E

X∼X
[X]

)card({i : ηi=0}) (
E

X∼X
[X]

)card({i : ηi=1})
]
F (η)

=
m∑
k=0

(
m

k

)(
1− E

X∼X
[X]

)m−k (
E

X∼X
[X]

)k
F (1, . . . , 1︸ ︷︷ ︸

k times

, 0, . . . , 0︸ ︷︷ ︸
m−k times

)

= E
X′∼B(EX∼X [X])m

F (X′).

�

We are now ready to prove Lemma B.16.1.
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Proof of Lemma B.16.1. Since the KL divergence is jointly convex so is the func-
tion exp

[
m kl(·‖R`D(h))

]
(see, e.g., Boyd and Vandenberghe (2004, Sec-

tion 3.2.4)). Then, we can apply Lemma B.16.4 to have

E
S∼Dm

exp
[
m kl(R`S(h)‖R`D(h))

]
≤ E

X∼B(R`D(h))m
exp

[
m kl

(
1
m

m∑
i=1

Xi‖R`D(h)
)]

= E
X∼B(R`D(h))m

[ 1
m

∑m
i=1Xi

R`D(h)

]∑m

i=1 Xi
[

1− 1
m

∑m
i=1Xi

1− R`D(h)

]m−∑m

i=1 Xi

=
m∑
k=0

P
X∼B(R`D(h))m

[
m∑
i=1

Xi = k

] [
k
m

R`D(h)

]k [ 1− k
m

1− R`D(h)

]m−k

=
m∑
k=0

(
m

k

)(
1− R`D(h)

)m−k (
R`D(h)

)k [ k
m

R`D(h)

]k [ 1− k
m

1− R`D(h)

]m−k

=
m∑
k=0

(
m

k

)[
k

m

]k [
1− k

m

]m−k
.

Finally, Maurer (2004) proves that ∑m
k=0

(
m
k

) [
k
m

]k [
1− k

m

]m−k
≤ 2
√
m for

m ≥ 8 and Germain et al. (2015) verify computationally that the inequality
holds also for m ∈ {1, . . . , 7}. �

We can prove Lemma B.16.2.

Proof of Lemma B.16.2. We have

E
S∼Dm

exp
(
m
[
F (R`D(h))− cR`S(h)

])
≤ E

X∼B(R`D(h))m
exp

(
mF (R`D(h))− c

(
m∑
i=1

Xi

))
(B.8)

=
m∑
k=0

P
X∼B(R`D(h))m

[
m∑
i=1

Xi = k

]
exp

(
mF (R`D(h))− ck

)

=
m∑
k=0

(
m

k

)
R`D(h)k(1− R`D(h))m−k exp

(
mF (R`D(h))− ck

)

= emF (R`D(h))
m∑
k=0

(
m

k

)
(R`D(h)e−c)k(1− R`D(h))m−k

= emF (R`D(h))
(
1− R`D(h)

[
1− e−c

])m
(B.9)
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=
(
1− R`D(h)

[
1− e−c

])−m (
1− R`D(h)

[
1− e−c

])m
(B.10)

= 1,

where we apply Lemma B.16.4 to obtain Equation (B.8), with the Binomial the-
orem we have Equation (B.9), and we deduce Equation (B.10) by definition of
F (R`D(h)). �

– 243 –





CAppendix of Chapter 3

C.1 Proof of Proposition 3.3.1

Proposition 3.3.1 (Relations Between the Averaged Adversarial Risks). For any
distribution E on (X×Y)×B, for any distribution ρ on H, for any (n, n′) ∈ N2, with
1 ≤ n′ ≤ n, we have

RE(MVρ) ≤ AEn′ (MVρ) ≤ AEn(MVρ) ≤ AD(MVρ). (3.2)

Proof. First, we prove AE1(MVρ)=RE(MVρ). We have

AE1(MVρ) = 1− P
((x,y),�)∼E1

(∀ε ∈ �,MVρ(x + ε) = y)

= 1− P
((x,y),�)∼E1

(∀ε ∈ {ε1},MVρ(x + ε) = y)

= 1− P
((x,y),�)∼E1

(MVρ(x + ε1) = y) = RE(MVρ).

Then, we prove the inequality AEn′ (MVρ) ≤ AEn(MVρ) from the fact that the
indicator function I [·] is upper-bounded by 1. Indeed, from Definition 3.2.3 we have

1− AEn(MVρ) = E
(x,y)∼D

E
�∼Bn(x,y)

I [∀ε ∈ �,MVρ(x + ε) = y]

= E
(x,y)∼D

[
n∏
i=1

E
εi∼B(x,y)

I [MVρ(x + εi) = y]
]

≤ E
(x,y)∼D

 n′∏
i=1

E
εi∼B(x,y)

I [MVρ(x + εi) = y]


= E
(x,y)∼D

E
�′∼Bn′(x,y)

I [∀ε ∈ �′,MVρ(x + ε) = y]

= 1− AEn′ (MVρ).

Lastly, to prove the right-most inequality, we have to use the fact that the expec-
tation over the set B is bounded by the maximum over the set B. We have

AEn(MVρ) = E
(x,y)∼D

E
ε1∼B(x,y)

. . . E
εn∼B(x,y)

I [∃ε∈{ε1, . . . , εn},MVρ(x + ε) 6= y]
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≤ E
(x,y)∼D

max
ε1∈B

. . .max
εn∈B

I [∃ε ∈ {ε1, . . . ,εn},MVρ(x + ε) 6= y]

= E
(x,y)∼D

max
ε1∈B

. . . max
εn−1∈B

I [∃ε ∈ {ε1, . . . , ε∗},MVρ(x + ε) 6= y]

= E
(x,y)∼D

I [MVρ(x + ε∗) 6= y]

= E
(x,y)∼D

max
ε∈B

I [MVρ(x + ε) 6= y] = AD(MVρ).

Merging the three equations proves the claim. �

C.2 Proof of Proposition 3.3.2
In this section, we provide the proof of Proposition 3.3.2 that relies on Lemmas C.2.1
and C.2.2 which are also described and proved. Lemma C.2.1 shows that RE(MVρ)
equals RΓ(MVρ).

Lemma C.2.1. For any distribution E on (X×Y)×B and its associated distribution
Γ, for any posterior ρ on H, we have

RE(MVρ) = Pr
(x+ε,y)∼Γ

[MVρ(x + ε)6=y] = RΓ(MVρ).

Proof. Starting from the averaged risk RE(MVρ) = E((x,y),ε)∼E I [MVρ(x + ε)6=y],
we have

RE(MVρ) = E
(x′+ε′,y′)∼Γ

1
Γ(x′+ε′,y′)

[
Pr

((x,y),ε)∼E
[MVρ(x + ε)6=y,x′+ε′=x + ε, y′=y]

]

= E
(x′+ε′,y′)∼Γ

1
Γ(x′+ε′,y′)

[
E

((x,y),ε)∼E
I[MVρ(x + ε) 6=y] I[x′+ε′=x + ε, y′=y]

]
.

In other words, the double expectation only rearranges the terms of the orig-
inal expectation: given an example (x′+ε′,y′), we gather probabilities such that
MVρ(x+ε) 6=y with (x+ε,y)=(x′+ε′,y′) in the inner expectation, while integrating
over all couple (x′+ε′, y′) ∈ X×Y in the outer expectation. Then, from the fact
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that when x′+ε′=x + ε and y′=y, I[MVρ(x + ε)6=y] = I[MVρ(x′+ε′)6=y′], we have

RE(MVρ) = E
(x′+ε′,y′)∼Γ

1
Γ(x′+ε′,y′)

[
E

((x,y),ε)∼E
I[MVρ(x′+ε′)6=y′]I[x′+ε′=x + ε, y′=y]

]

= E
(x′+ε′,y′)∼Γ

1
Γ(x′+ε′,y′)

[
I[MVρ(x′+ε′)6=y′] E

((x,y),ε)∼E
I[x′+ε′=x + ε, y′=y]

]
.

Finally, by definition of Γ(x′+ε′,y′), we can deduce that

RE(MVρ) = E
(x′+ε′,y′)∼Γ

1
Γ(x′+ε′,y′) [I[MVρ(x′+ε′) 6=y′] Γ(x′+ε′,y′)]

= E
(x′+ε′,y′)∼Γ

I[MVρ(x′+ε′)6=y′] = RΓ(MVρ).

�

Similarly, Lemma C.2.2 shows that AD(MVρ) is equivalent to Rγ(MVρ).

Lemma C.2.2. For any distribution D on X× Y and its associated distribution γ,
for any posterior ρ on H, we have

AD(MVρ) = Pr
(x+ε,y)∼γ

[MVρ(x + ε) 6=y] = Rγ(MVρ).

Proof. The proof is similar to the one of Lemma C.2.1. Indeed, starting from the
definition of AD(MVρ) = E(x,y)∼D I[MVρ(x + ε∗(x,y)) 6= y], we have

AD(MVρ)

= E
(x′+ε′,y′)∼γ

1
γ(x′+ε′,y′)

[
E

(x,y)∼D
I [MVρ(x+ε∗(x,y)) 6= y]I[x′+ε′=x+ε∗(x,y), y′=y]

]

= E
(x′+ε′,y′)∼γ

1
γ(x′+ε′,y′)

[
E

(x,y)∼D
I [MVρ(x′+ε′) 6= y′]I[x′+ε′=x+ε∗(x,y), y′=y]

]
.

Finally, by definition of γ(x′+ε′, y′), we can deduce that

AD(MVρ)= E
(x′+ε′,y′)∼γ

1
γ(x′+ε′,y′) [I [MVρ(x′+ε′) 6= y′] γ(x′+ε′,y′)]

= E
(x′+ε′,y′)∼γ

I [MVρ(x′+ε′)6=y′]= Rγ(MVρ).

�

We can now prove Proposition 3.3.2.
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Proposition 3.3.2 (Classical and Averaged Adversarial Risks). For any distribution
E on (X× Y)× B, for any distribution ρ on H, we have

AD(MVρ)− TV(γ‖Γ) ≤ RE(MVρ),

where Γ and γ are distributions on X×Y and TV(γ‖Γ) = E(x′,y′)∼Γ
1
2

∣∣∣ γ(x′,y′)
Γ(x′,y′)−1

∣∣∣ ,
is the Total Variation (TV) distance between γ and Γ.
The density Γ(x′, y′) corresponds to the probability of drawing a perturbed example
(x′, y′) = (x+ε, y) with ((x, y), ε)∼E , i.e., we have

Γ(x′, y′) = Pr
((x,y),ε)∼E

[x+ε = x′, y = y′] .

The density γ(x′, y′) is the probability to draw an adversarial example (x′, y′) =
(x+ε∗(x,y), y) with (x, y)∼D, i.e., we have

γ(x′, y′) = Pr
(x,y)∼D

[x+ε∗(x, y) = x′, y = y′] .

Proof. From Lemmas C.2.1 and C.2.2, we have

RE(MVρ) = RΓ(MVρ), and AD(MVρ) = Rγ(MVρ).

Then, we apply Lemma 4 of Ohnishi and Honorio (2021), we have

Rγ(MVρ) ≤ TV(γ‖Γ) + RΓ(MVρ) ⇐⇒ AD(MVρ) ≤ TV(γ‖Γ) + RE(MVρ).

�

C.3 Proof of Theorem 3.3.1

Theorem 3.3.1 (Upper Bounds on the Surrogates). For any distributions E on
(X×Y)×B and ρ on H, for any n>1, we have

RE(MVρ) ≤ 2rE(ρ), and AEn(MVρ) ≤ 2aEn(ρ).

Proof. By the definition of the majority vote and from Markov’s inequality (The-
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orem A.2.1), we have

1
2RE(MVρ) = 1

2 P
((x,y),ε)∼E

(
y E
h∼ρ

h(x + ε) ≤ 0
)

= 1
2 P

((x,y),ε)∼E

(
1− y E

h∼ρ
h(x + ε) ≥ 1

)
≤ E

((x,y),ε)∼E

1
2

[
1− y E

h∼ρ
h(x + ε)

]
= rE(ρ).

Similarly we have

1
2AEn(MVρ) = 1

2 P
((x,y),�)∼En

(
∃ε ∈ �, y E

h∼ρ
h(x + ε) ≤ 0

)
= 1

2 P
((x,y),�)∼En

(
min
ε∈�

(
y E
h∼ρ

h(x + ε)
)
≤ 0

)
= 1

2 P
((x,y),ε)∼E

(
1−min

ε∈�

(
y E
h∼ρ

h(x + ε)
)
≥ 1

)
≤ E

((x,y),ε)∼E

1
2

[
1−min

ε∈�

(
y E
h∼ρ

h(x + ε)
)]

= aEn(ρ).

�

C.4 Proof of Theorem 3.3.2

Theorem 3.3.2 (PAC-Bayesian Bound on rE(ρ)). For any distribution E on
(X×Y)×B, for any set of voters H, for any prior π ∈ M ∗ (H) on H, for any
n ∈ N∗, with probability at least 1−δ over Ŝ ∼ (En)m, for all posteriors ρ ∈ M(H)
on H, we have

kl(rŜ(ρ)‖rE(ρ)) ≤ 1
m

[
KL(ρ‖π) + ln m+ 1

δ

]
, (3.6)

and rE(ρ) ≤ rŜ(ρ) +
√

1
2m

[
KL(ρ‖π) + ln m+ 1

δ

]
, (3.7)

where rŜ(ρ) = 1
mn

m∑
i=1

n∑
j=1

1
2

[
1−yi E

h∼ρ
h(xi+εij)

]
.
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Proof. Let G=(V,E) be the graph representing the dependencies between the
random variables where (i) the set of vertices is V=Ŝ, (ii) the set of edges E is
defined such that (((x, y), ε), ((x′, y′), ε′)) /∈ E ⇔ x 6= x′. Then, applying Theo-
rem 8 of Ralaivola et al. (2010) with our notations gives

kl(rŜ(ρ)‖rE(ρ)) ≤ χ(G)
mn

KL(ρ‖π) + ln mn+ χ(G)
δχ(G)

,
where χ(G) is the fractional chromatic number of G. From a property of Schein-
erman and Ullman (2011), we have

c(G) ≤ χ(G) ≤ ∆(G) + 1,

where c(G) is the order of the largest clique in G and ∆(G) is the maximum degree
of a vertex in G. By construction of G, c(G)=n and ∆(G)=n−1. Thus, χ(G)=n
and rearranging the terms proves Equation (3.6). Finally, by applying Pinsker’s
inequality (i.e., |a−b|≤

√
1
2 kl(a‖b)), we obtain Equation (3.7). �

C.5 Proof of Theorem 3.3.3

Theorem 3.3.3 (PAC-Bayesian Bound on aEn(ρ)). For any distribution E on
(X×Y)×B, for any set of voters H, for any prior π ∈ M∗(H) on H, for any n ∈ N∗,
with probability at least 1−δ over Ŝ ∼ (En)m, for all posteriors ρ ∈ M(H) on H, for
all i ∈ {1, . . . ,m}, for all distributions Θi on �i independent from a voter h ∈ H,
we have

aEn(ρ) ≤ 1
m

E
h∼ρ

m∑
i=1

max
ε∈�i

1
2 (1−yih(xi+ε)) +

√
1

2m
[
KL(ρ‖π) + ln 2

√
m
δ

]
(3.8)

≤ aŜ(ρ) + 1
m

m∑
i=1

E
h∼ρ

TV(θhi ‖Θi) +
√

1
2m

[
KL(ρ‖π) + ln 2

√
m
δ

]
, (3.9)

where the empirical risk aŜ(ρ) = 1
m

∑m
i=1

1
2

[
1−minε∈�i

(
yi Eh∼ρ h(xi+ε)

)]
, and

the TV distance TV(θ‖Θ) = Eε∼Θ
1
2

∣∣∣[ θ(ε)Θ(ε)

]
−1
∣∣∣.

Proof. Let Lh,(x,y),ε=1
2

[
1−yh(x + ε)

]
for the sake of readability. Given h ∈ H,

the losses maxε∈�1Lh,(x1,y1),ε, . . . maxε∈�1Lh,(xm,ym),ε are i.i.d.. Hence, we can
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apply Theorem 20 of Germain et al. (2015) and Pinsker’s inequality, i.e., the
inequality |q−p|≤

√
1
2 kl(q‖p) (Theorem B.5.1) to obtain

E
h∼ρ

E
(x,y),�)∼En

max
ε∈�

Lh,(x,y),ε ≤ E
h∼ρ

1
m

m∑
i=1

max
ε∈�i

Lh,(xi,yi),ε +

√√√√KL(ρ‖π) + ln 2
√
m
δ

2m .

Then, we lower-bound the left-hand side of the inequality with aEn(ρ), we have

aEn(ρ) ≤ E
h∼ρ

E
((x,y),�)∼En

max
ε∈�

Lh,(x,y),ε.

Finally, from the definition of θhi , and from Lemma 4 of Ohnishi and Honorio
(2021), we have

E
h∼ρ

1
m

m∑
i=1

max
ε∈�i

Lh,(xi,yi),ε = E
h∼ρ

1
m

m∑
i=1

E
ε∼θhi

Lh,(xi,yi),ε

≤ E
h∼ρ

1
m

m∑
i=1

TV(θhi ‖Θi) + E
h∼ρ

1
m

m∑
i=1

E
ε∼Θi

Lh,(xi,yi),ε

= E
h∼ρ

1
m

m∑
i=1

TV(θhi ‖Θi) + 1
m

m∑
i=1

E
ε∼Θi

E
h∼ρ

Lh,(xi,yi),ε

≤ E
h∼ρ

1
m

m∑
i=1

TV(θhi ‖Θi) + aŜ(ρ).

�

C.6 Proof of Corollaries 3.3.1 and 3.3.2
We start to prove Corollary 3.3.1.

Corollary 3.3.1 (PAC-Bayesian Bound on rE(ρ)). For any distribution E on
(X×Y)×B, for any set of voters H, for any T ∈ N∗, for any priors’ set
{π1, . . . , πT} ∈ M∗(H)T , for any n ∈ N∗, with probability at least 1−δ over Ŝ ∼
(En)m, for all posteriors ρ ∈ M(H) on H, for any π ∈ {π1, . . . , πT} ∈ M∗(H)T we
have

rE(ρ) ≤ kl
(
rŜ(ρ)

∣∣∣∣∣ 1
m

[
KL(ρ‖π)+ ln T (m+1)

δ

])
. (3.10)
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Proof. Let E1, . . . , ET be T distributions defined as E1 = D(x, y)B1
(x,y)(ε), . . . ,

ET = D(x, y)BT(x,y)(ε) on (X×Y)×B where each distribution Bt(x,y) depends on the
example (x, y) and possibly on the fixed prior πt. Then, for all distributions Et, we
can derive a bound on the risk rEt(ρ) which holds with probability at least 1− δ

T
,

we have

Pr
Ŝt∼(Ent )m

[
∀ρ, kl(rŜt(ρ)‖rEt(ρ))≤ 1

m

[
KL(ρ‖πt)+ ln T (m+1)

δ

]]
≥1− δ

T
.

Then, from a union bound argument, we have

Pr
Ŝ1∼(En1 )m,...,ŜT∼(EnT )m

∀ρ, kl(rŜ1
(ρ)‖rE1(ρ))≤ 1

m

[
KL(ρ‖πt)+ ln T (m+1)

δ

]
,

. . . , and kl(rŜT (ρ)‖rET (ρ))≤ 1
m

[
KL(ρ‖πT )+ ln T (m+1)

δ

] ≥1−δ.

Hence, we have

kl
(
rŜ(ρ)‖rE(ρ)

)
≤ 1
m

[
KL(ρ‖π)+ ln T (m+1)

δ

]
,

where B(x,y) can be dependent on the selected prior π. From Definition 2.3.3, we
can obtain the claimed result. �

We can prove Corollary 3.3.2 similarly to Corollary 3.3.1.

Corollary 3.3.2 (PAC-Bayesian Bound on aEn(ρ)). For any distribution E on
(X×Y)×B, for any set of voters H, for any prior π on H, for any n ∈ N∗, with
probability at least 1−δ over Ŝ ∼ (En)m, for all posteriors ρ ∈ M(H) on H, for all
i ∈ {1, . . . ,m}, for all distributions Θi on �i independent from a voter h ∈ H, we
have

aEn(ρ) ≤ aŜ(ρ)+ 1
m

m∑
i=1

E
h∼ρ

TV(θhi ‖Θi) +
√

1
2m
[
KL(ρ‖π)+ ln 2T

√
m

δ

]
. (3.11)

Proof. From a union bound argument, we obtain the claimed result. �
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C.7 About the (Differentiable) Decision Trees
In this section, we introduce the differentiable decision trees, i.e., the voters of our
majority vote. Note that we adapt the model of Kontschieder et al. (2016) in
order to fit with our framework: a voter must output a real between −1 and +1. An
example of such a tree is represented in Figure C.1.

p0

p1 p2

s3 s4 s5 s6

Figure C.1. Representation of a (differentiable) decision tree of depth l = 2; The
root is the node 0 and the leafs are 4; 5; 6 and 7. The probability pi(x) (respectively
1−pi(x)) to go left (respectively right) at the node i is represented by pi (we omitted
the dependence on x for simplicity). Similarly, the predicted label (a “score” between
−1 and +1) at the leaf i is represented by si.

This differentiable decision tree is stochastic by nature: at each node i of the tree, we
continue recursively to the left sub-tree with a probability of pi(x) and to the right
sub-tree with a probability of 1−pi(x); When we attain a leaf j, the tree predicts
the label sj. Precisely, the probability pi(x) is constructed by (i) selecting randomly
50% of the input features x and applying a random mask Mi ∈ Rd on x (where the
k-th entry of the mask is 1 if the k-th feature is selected and 0 otherwise), by (ii)
multiplying this quantity by a learned weight vector vi ∈ Rd, and by (iii) applying a
sigmoid function to output a probability. Indeed, we have

pi(x) = σ
(
〈vi,Mi�x〉

)
,

where σ(a) = [1 + e−a]−1 is the sigmoid function; 〈a, b〉 is the dot product between
the vector a and b and a� b is the elementwise product between the vector a and b.
Moreover, si is obtained by learning a parameter ui ∈ R and applying a tanh function,
i.e., we have

si = tanh
(
ui

)
.
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Finally, instead of having a stochastic voter, h will output the expected label predicted
by the tree (see Kontschieder et al. (2016) for more details). It can be computed
by h(x) = f(x, 0, 0) with

f(x, i, l′) =

 si if l′ = l

pi(x)f(x, 2i+1, l′+1) + (1− pi(x))f(x, 2i+2, l′+1) otherwise
.

C.8 Additional Experimental Results
In this section, we present the detailed results for the 6 tasks (3 on MNIST and 3
on Fashion MNIST) on which we perform experiments that show the test risks and
the bounds for the different scenarios of (Defense, Attack). We train all the models
using the same parameters as described in Section 3.4.1. Table C.1 and Appendix C.8
complement Table 3.1 to present the results for all the tasks when using the `2-norm
with b = 1 (the maximum noise allowed by the norm). Then, we run again the same
experiment but we use the `∞-norm with b = 0.1 and exhibit the results in Appendix C.8
and Table C.6. For the experiments on the 5 other tasks using the `2-norm, we have
a similar behavior than MNIST:1vs7. Indeed, using the attacks pgdU and ifgsmU as
defense mechanism allows to obtain better risks and also tighter bounds compared to
the bounds obtained with a defense based on unif (which is a naive defense). For
the experiments on the 6 tasks using the `∞-norm, the trend is the same as with the
`2-norm, i.e., the appropriate defense leads to better risks and bounds.
We also run experiments that do not rely on the PAC-Bayesian framework. In other
words, we train the models following only Step 1 of our adversarial training procedure
(i.e., Algorithm 3.1) using classical attacks (pgd or ifgsm): we refer to this experiment
as a baseline. In our cases, it means learning a majority vote MVπ′ that follows a
distribution π′. As a reminder, the studied scenarios for the baseline are all the pairs
(Defense,Attack) belonging to the set {—,unif,pgd, ifgsm}×{—,pgd, ifgsm}.
We report the results in Table C.8 and Table C.9. With this experiment, we are now
able to compare our defense based on pgdU or ifgsmU and a classical defense based
on pgd and ifgsm. Hence, considering the test risks AT (MVρ) (columns “Attack
without u” of Tables 3.1 to C.6) and AT (MVπ′) (in Tables C.8 and C.9) , we observe
similar results between the baseline and our framework.
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Table C.1. Test risks and bounds for 2 tasks of MNIST with n=100 perturbations for
all pairs (Defense,Attack) with the two voters’ set H and Hsign. The results in bold
correspond to the best values between results for H and Hsign. To quantify the gap
between our risks and the classical definition we put in italic the risk of our models
against the classical attacks: we replace pgdU and ifgsmU by pgd or ifgsm (i.e., we
did not sample from the uniform distribution). Since Eq. (3.9) upperbounds Eq. (3.8)
thanks to the TV term, we compute the two bound values of Theorem 3.3.3.

`2-norm Algo. 3.1 with Eq. (3.6) Algo. 3.1 with Eq. (3.9)

b = 1 Attack without u Attack without u

AT (MVρ) RT̂(MVρ) Th. 3.3.2 AT (MVρ) AT̂(MVρ) Th. 3.3.3 - Eq. (3.9) Th. 3.3.3 - Eq. (3.8)

Defense Attack Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H

— — .015 .015 .015 .015 0.060 .067 .015 .015 .015 .015 0.129 0.135 0.129 .135
— pgdU .632 .628 .520 .526 1.059 .847 .672 .641 .683 .684 1.718 2.405 1.392 .962

— ifgsmU .447 .443 .157 .166 0.387 .572 .461 .451 .337 .345 1.137 2.090 0.776 .669

unif — .024 .024 .024 .024 0.073 .083 .024 .024 .024 .024 0.140 0.148 0.140 .148
unif pgdU .646 .619 .486 .500 1.016 .809 .649 .626 .648 .650 1.646 2.417 1.338 .915

unif ifgsmU .442 .442 .128 .139 0.316 .528 .442 .442 .281 .293 0.907 2.118 0.633 .617

pgdU — .024 .025 .024 .025 0.094 .101 .024 .025 .024 .025 0.158 0.163 0.158 .163
pgdU pgdU .148 .135 .111 .103 0.360 .355 .146 .136 .129 .120 0.442 2.062 0.414 .403

pgdU ifgsmU .104 .103 .072 .072 0.277 .277 .102 .102 .090 .084 0.358 1.954 0.335 .328

ifgsmU — .027 .025 .027 .025 0.080 .091 .027 .025 .027 .025 0.146 0.154 0.146 .154
ifgsmU pgdU .188 .178 .111 .119 0.383 .405 .190 .178 .126 .134 0.501 2.063 0.454 .454
ifgsmU ifgsmU .126 .115 .076 .070 0.248 .290 .127 .115 .091 .085 0.371 1.918 0.329 .342

(a) MNIST 4vs9

`2-norm Algo. 3.1 with Eq. (3.6) Algo. 3.1 with Eq. (3.9)

b = 1 Attack without u Attack without u

AT (MVρ) RT̂(MVρ) Th. 3.3.2 AT (MVρ) AT̂(MVρ) Th. 3.3.3 - Eq. (3.9) Th. 3.3.3 - Eq. (3.8)

Defense Attack Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H

— — .015 .015 .015 .015 .043 .045 .015 .015 .015 .015 .117 0.118 .117 .118
— pgdU .279 .271 .232 .234 .600 .453 .284 .274 .284 .284 .829 1.929 .724 .524

— ifgsmU .143 .137 .089 .090 .204 .227 .144 .139 .125 .127 .422 1.662 .337 .293

unif — .017 .017 .017 .017 .054 .055 .017 .017 .017 .017 .124 0.125 .124 .125
unif pgdU .219 .201 .172 .177 .433 .350 .219 .209 .217 .218 .671 1.810 .565 .419

unif ifgsmU .122 .122 .052 .055 .119 .181 .122 .123 .077 .082 .307 1.554 .242 .248

pgdU — .013 .015 .013 .015 .061 .061 .013 .015 .013 .015 .131 0.130 .131 .130

pgdU pgdU .057 .057 .045 .041 .157 .160 .057 .057 .055 .045 .227 1.536 .218 .218
pgdU ifgsmU .043 .043 .027 .031 .114 .119 .042 .043 .037 .035 .187 1.433 .179 .181
ifgsmU — .014 .012 .014 .012 .057 .057 .014 .013 .014 .013 .128 0.127 .128 .127

ifgsmU pgdU .077 .072 .054 .043 .170 .174 .076 .075 .055 .052 .252 1.510 .233 .236
ifgsmU ifgsmU .055 .048 .034 .030 .105 .121 .052 .051 .039 .032 .191 1.379 .177 .185

(b) MNIST 5vs6
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Table C.2. Test risks and bounds for 3 tasks Fashion MNIST with n=100 perturba-
tions for all pairs (Defense,Attack) with the two voters’ set H and Hsign. The results
in bold correspond to the best values between results for H and Hsign. To quantify the
gap between our risks and the classical definition we put in italic the risk of our models
against the classical attacks: we replace pgdU and ifgsmU by pgd or ifgsm (i.e., we
did not sample from the uniform distribution). Since Eq. (3.9) upperbounds Eq. (3.8)
thanks to the TV term, we compute the two bound values of Theorem 3.3.3.

`2-norm Algo. 3.1 with Eq. (3.6) Algo. 3.1 with Eq. (3.9)

b = 1 Attack without u Attack without u

AT (MVρ) RT̂(MVρ) Th. 3.3.2 AT (MVρ) AT̂(MVρ) Th. 3.3.3 - Eq. (3.9) Th. 3.3.3 - Eq. (3.8)

Defense Attack Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H

— — .021 .020 .021 .020 0.060 0.070 .019 .019 .019 .019 0.130 0.139 0.130 0.139
— pgdU .695 .650 .494 .568 1.042 1.090 .677 .686 .588 .674 1.326 2.307 1.152 1.082

— ifgsmU .451 .451 .269 .328 0.585 0.731 .405 .438 .295 .381 0.878 1.971 0.730 0.746
unif — .071 .071 .071 .071 0.185 0.191 .071 .071 .071 .071 0.236 0.241 0.236 0.241
unif pgdU .423 .477 .418 .425 0.957 0.755 .486 .486 .513 .513 1.372 2.173 1.151 0.869

unif ifgsmU .326 .331 .105 .105 0.273 0.422 .333 .331 .144 .142 0.496 1.642 0.397 0.504

pgdU — .034 .032 .034 .032 0.094 0.114 .034 .032 .034 .032 0.158 0.174 0.158 0.174
pgdU pgdU .103 .115 .086 .091 0.227 0.289 .102 .115 .096 .101 0.299 1.985 0.283 0.338
pgdU ifgsmU .092 .099 .073 .076 0.195 0.248 .092 .099 .082 .082 0.266 1.914 0.253 0.299
ifgsmU — .028 .030 .028 .030 0.091 0.105 .027 .030 .027 .030 0.155 0.166 0.155 0.166
ifgsmU pgdU .115 .114 .085 .085 0.254 0.287 .112 .114 .096 .101 0.331 2.026 0.313 0.337
ifgsmU ifgsmU .095 .097 .067 .068 0.206 0.232 .093 .097 .080 .081 0.282 1.927 0.266 0.285

(a) Fashion MNIST Sandall vs Ankle Boot

`2-norm Algo. 3.1 with Eq. (3.6) Algo. 3.1 with Eq. (3.9)

b = 1 Attack without u Attack without u

AT (MVρ) RT̂(MVρ) Th. 3.3.2 AT (MVρ) AT̂(MVρ) Th. 3.3.3 - Eq. (3.9) Th. 3.3.3 - Eq. (3.8)

Defense Attack Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H

— — .038 .037 .038 .037 .088 .091 .038 .037 .038 .037 .153 0.155 .153 .155
— pgdU .292 .248 .233 .112 .452 .363 .289 .272 .287 .246 .578 1.314 .525 .479

— ifgsmU .194 .154 .132 .075 .300 .262 .193 .181 .176 .148 .423 1.103 .376 .359

unif — .039 .039 .039 .039 .091 .093 .041 .039 .041 .039 .155 0.157 .155 .157
unif pgdU .240 .220 .099 .117 .346 .332 .250 .231 .250 .245 .553 1.228 .490 .443

unif ifgsmU .177 .171 .070 .078 .228 .247 .197 .185 .186 .164 .445 1.046 .371 .346

pgdU — .045 .044 .045 .044 .108 .105 .046 .045 .046 .045 .172 0.167 .172 .167

pgdU pgdU .108 .100 .077 .082 .203 .211 .104 .100 .081 .087 .279 1.118 .269 .264

pgdU ifgsmU .094 .086 .071 .069 .184 .186 .090 .086 .076 .073 .257 1.015 .248 .241

ifgsmU — .041 .043 .041 .043 .094 .101 .039 .042 .039 .042 .158 0.163 .158 .163
ifgsmU pgdU .106 .114 .078 .092 .220 .226 .109 .113 .084 .095 .293 1.052 .279 .275

ifgsmU ifgsmU .082 .087 .065 .072 .171 .176 .082 .089 .068 .078 .247 0.927 .234 .232

(b) Fashion MNIST Top vs Pullover
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`2-norm Algo. 3.1 with Eq. (3.6) Algo. 3.1 with Eq. (3.9)

b = 1 Attack without u Attack without u

AT (MVρ) RT̂(MVρ) Th. 3.3.2 AT (MVρ) AT̂(MVρ) Th. 3.3.3 - Eq. (3.9) Th. 3.3.3 - Eq. (3.8)

Defense Attack Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H

— — .122 .122 .122 .122 0.276 0.286 .122 .122 .122 .122 0.318 0.328 0.318 0.328
— pgdU .744 .738 .674 .689 1.386 1.066 .745 .740 .767 .768 1.773 2.386 1.576 1.180

— ifgsmU .652 .646 .454 .474 0.947 0.887 .659 .648 .618 .632 1.597 2.214 1.276 0.992

unif — .204 .204 .204 .204 0.444 0.444 .204 .204 .204 .204 0.475 0.476 0.475 0.476
unif pgdU .750 .714 .682 .671 1.350 1.069 .750 .719 .752 .749 1.732 2.063 1.524 1.189

unif ifgsmU .605 .575 .423 .431 0.871 0.866 .605 .578 .530 .526 1.304 1.860 1.091 0.956

pgdU — .168 .165 .168 .165 0.423 0.428 .167 .165 .167 .165 0.463 0.461 0.463 0.460

pgdU pgdU .389 .402 .306 .369 0.768 0.719 .390 .402 .319 .403 0.847 2.354 0.810 0.755

pgdU ifgsmU .361 .368 .298 .324 0.693 0.672 .362 .368 .320 .361 0.799 2.258 0.754 0.707

ifgsmU — .150 .163 .150 .163 0.424 0.428 .149 .163 .149 .163 0.458 0.461 0.458 0.461
ifgsmU pgdU .391 .428 .347 .292 0.778 0.757 .390 .426 .371 .298 0.856 2.327 0.820 0.791

ifgsmU ifgsmU .356 .382 .291 .273 0.685 0.689 .354 .382 .331 .278 0.772 2.218 0.734 0.723

(a) Fashion MNIST Coat vs Shirt
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Table C.4. Test risks and bounds for 3 tasks of MNIST with n=100 perturbations for
all pairs (Defense,Attack) with the two voters’ set H and Hsign. The results in bold
correspond to the best values between results for H and Hsign. To quantify the gap
between our risks and the classical definition we put in italic the risk of our models
against the classical attacks: we replace pgdU and ifgsmU by pgd or ifgsm (i.e., we
did not sample from the uniform distribution). Since Eq. (3.9) upperbounds Eq. (3.8)
thanks to the TV term, we compute the two bound values of Theorem 3.3.3.

`∞-norm Algo. 3.1 with Eq. (3.6) Algo. 3.1 with Eq. (3.9)

b = 0.1 Attack without u Attack without u

AT (MVρ) RT̂(MVρ) Th. 3.3.2 AT (MVρ) AT̂(MVρ) Th. 3.3.3 - Eq. (3.9) Th. 3.3.3 - Eq. (3.8)

Defense Attack Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H

— — .005 .005 .005 .005 .017 .019 .005 .005 .005 .005 0.099 0.100 .099 .100
— pgdU .454 .454 .375 .384 .770 .638 .492 .484 .480 .476 1.127 2.031 .946 .716

— ifgsmU .428 .423 .350 .361 .727 .610 .474 .465 .448 .443 1.061 2.008 .886 .686

unif — .004 .004 .004 .004 .018 .019 .004 .004 .004 .004 0.099 0.100 .099 .100
unif pgdU .487 .491 .369 .392 .779 .667 .512 .507 .484 .487 1.179 2.083 .972 .739

unif ifgsmU .436 .442 .325 .337 .664 .598 .466 .459 .417 .417 1.023 1.959 .841 .671

pgdU — .006 .006 .006 .006 .024 .024 .005 .006 .005 .006 0.103 0.103 .103 .103
pgdU pgdU .018 .020 .013 .016 .046 .050 .018 .020 .015 .020 0.127 1.461 .122 .123
pgdU ifgsmU .020 .021 .012 .016 .048 .054 .019 .021 .015 .020 0.130 1.455 .125 .127
ifgsmU — .006 .007 .006 .007 .023 .024 .006 .007 .006 .007 0.102 0.103 .102 .103
ifgsmU pgdU .018 .019 .016 .016 .046 .051 .018 .019 .018 .019 0.126 1.489 .122 .124
ifgsmU ifgsmU .020 .020 .015 .016 .050 .055 .020 .020 .020 .019 0.131 1.481 .126 .127

(a) MNIST 1 vs 7

`∞-norm Algo. 3.1 with Eq. (3.6) Algo. 3.1 with Eq. (3.9)

b = 0.1 Attack without u Attack without u

AT (MVρ) RT̂(MVρ) Th. 3.3.2 AT (MVρ) AT̂(MVρ) Th. 3.3.3 - Eq. (3.9) Th. 3.3.3 - Eq. (3.8)

Defense Attack Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H

— — .015 .015 .015 .015 0.060 0.067 .015 .015 .015 .015 0.129 0.135 0.129 0.135
— pgdU .929 .930 .651 .662 1.367 1.125 .920 .925 .874 .880 2.213 2.661 1.792 1.266

— ifgsmU .935 .935 .601 .609 1.243 1.088 .926 .928 .800 .806 2.047 2.615 1.649 1.224

unif — .017 .017 .017 .017 0.062 0.072 .017 .017 .017 .017 0.131 0.139 0.131 0.139
unif pgdU .895 .895 .615 .623 1.302 1.078 .884 .888 .815 .818 2.035 2.722 1.670 1.208

unif ifgsmU .898 .898 .516 .528 1.112 1.027 .884 .890 .697 .706 1.875 2.658 1.497 1.153

pgdU — .039 .037 .039 .037 0.093 0.094 .039 .037 .039 .037 0.156 0.157 0.156 0.157
pgdU pgdU .108 .109 .090 .090 0.200 0.209 .108 .109 .110 .112 0.337 1.874 0.290 0.271

pgdU ifgsmU .121 .124 .101 .103 0.229 0.235 .121 .124 .126 .125 0.378 1.890 0.326 0.297

ifgsmU — .046 .044 .046 .044 0.102 0.119 .046 .044 .046 .044 0.164 0.178 0.164 0.178
ifgsmU pgdU .105 .093 .091 .078 0.203 0.214 .105 .093 .108 .089 0.321 1.810 0.286 0.269

ifgsmU ifgsmU .119 .095 .102 .080 0.220 0.229 .119 .095 .122 .090 0.357 1.821 0.309 0.283

(b) MNIST 4 vs 9
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`∞-norm Algo. 3.1 with Eq. (3.6) Algo. 3.1 with Eq. (3.9)

b = 0.1 Attack without u Attack without u

AT (MVρ) RT̂(MVρ) Th. 3.3.2 AT (MVρ) AT̂(MVρ) Th. 3.3.3 - Eq. (3.9) Th. 3.3.3 - Eq. (3.8)

Defense Attack Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H

— — .015 .015 .015 .015 .043 .045 .015 .015 .015 .015 0.117 0.118 0.117 .118
— pgdU .500 .499 .387 .390 .923 .744 .502 .500 .474 .475 1.361 2.275 1.146 .830

— ifgsmU .519 .505 .395 .398 .915 .762 .514 .516 .481 .481 1.335 2.283 1.129 .847

unif — .015 .015 .015 .015 .052 .053 .015 .015 .015 .015 0.123 0.124 0.123 .124
unif pgdU .529 .544 .388 .393 .925 .761 .517 .532 .481 .482 1.342 2.349 1.137 .848

unif ifgsmU .536 .544 .372 .379 .881 .774 .523 .544 .451 .456 1.268 2.348 1.077 .857

pgdU — .015 .014 .015 .014 .060 .064 .015 .014 .015 .014 0.130 0.133 0.130 .133
pgdU pgdU .055 .058 .037 .039 .131 .143 .056 .057 .046 .046 0.219 1.619 0.202 .204
pgdU ifgsmU .061 .065 .040 .043 .146 .154 .059 .062 .050 .046 0.232 1.626 0.216 .214

ifgsmU — .019 .014 .019 .014 .069 .064 .018 .014 .018 .014 0.136 0.132 0.136 .132

ifgsmU pgdU .061 .061 .040 .050 .143 .142 .061 .061 .045 .061 0.218 1.694 0.208 .205

ifgsmU ifgsmU .066 .069 .044 .054 .154 .152 .065 .069 .048 .068 0.228 1.708 0.216 .214

(a) MNIST 5 vs 6
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Table C.6. Test risks and bounds for 3 tasks of Fashion MNIST with n=100 pertur-
bations for all pairs (Defense,Attack) with the two voters’ set H and Hsign. The results
in bold correspond to the best values between results for H and Hsign. To quantify the
gap between our risks and the classical definition we put in italic the risk of our models
against the classical attacks: we replace pgdU and ifgsmU by pgd or ifgsm (i.e., we
did not sample from the uniform distribution). Since Eq. (3.9) upperbounds Eq. (3.8)
thanks to the TV term, we compute the two bound values of Theorem 3.3.3.

`∞-norm Algo. 3.1 with Eq. (3.6) Algo. 3.1 with Eq. (3.9)

b = 0.1 Attack without u Attack without u

AT (MVρ) RT̂(MVρ) Th. 3.3.2 AT (MVρ) AT̂(MVρ) Th. 3.3.3 - Eq. (3.9) Th. 3.3.3 - Eq. (3.8)

Defense Attack Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H

— — .021 .020 .021 .020 0.060 0.070 .019 .019 .019 .019 0.130 0.139 0.130 0.139
— pgdU .951 .944 .606 .719 1.275 1.333 .935 .920 .762 .864 1.617 2.503 1.421 1.317

— ifgsmU .957 .947 .588 .718 1.231 1.336 .950 .950 .734 .851 1.587 2.495 1.395 1.316

unif — .076 .077 .076 .077 0.178 0.184 .076 .077 .076 .077 0.230 0.235 0.230 0.235
unif pgdU .964 .961 .714 .719 1.496 1.265 .966 .963 .853 .859 2.098 2.417 1.785 1.416

unif ifgsmU .978 .976 .627 .632 1.306 1.259 .979 .979 .758 .762 1.914 2.422 1.597 1.396

pgdU — .041 .040 .041 .040 0.114 0.111 .041 .040 .041 .040 0.173 0.171 0.173 0.171

pgdU pgdU .098 .097 .089 .086 0.207 0.210 .099 .097 .101 .100 0.306 1.826 0.281 0.267

pgdU ifgsmU .113 .112 .105 .101 0.244 0.246 .115 .112 .120 .113 0.353 1.853 0.321 0.302

ifgsmU — .045 .047 .045 .047 0.131 0.137 .045 .047 .045 .047 0.188 0.194 0.188 0.194
ifgsmU pgdU .100 .102 .089 .085 0.203 0.232 .100 .102 .102 .102 0.298 1.645 0.274 0.287
ifgsmU ifgsmU .112 .116 .099 .096 0.232 0.260 .112 .116 .114 .112 0.328 1.687 0.301 0.313

(a) Fashion MNIST Sandall vs Ankle Boot

`∞-norm Algo. 3.1 with Eq. (3.6) Algo. 3.1 with Eq. (3.9)

b = 0.1 Attack without u Attack without u

AT (MVρ) RT̂(MVρ) Th. 3.3.2 AT (MVρ) AT̂(MVρ) Th. 3.3.3 - Eq. (3.9) Th. 3.3.3 - Eq. (3.8)

Defense Attack Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H

— — .038 .037 .038 .037 .088 .091 .038 .037 .038 .037 0.153 0.155 0.153 .155
— pgdU .596 .515 .477 .218 .844 .662 .590 .576 .570 .502 1.049 1.924 0.948 .857

— ifgsmU .723 .623 .573 .257 .971 .751 .716 .695 .678 .598 1.189 2.031 1.080 .980

unif — .032 .032 .032 .032 .083 .085 .032 .033 .032 .033 0.149 0.151 0.149 .151
unif pgdU .438 .439 .356 .245 .813 .563 .435 .435 .423 .312 1.082 1.867 0.959 .688

unif ifgsmU .546 .547 .453 .325 .974 .690 .544 .547 .530 .409 1.266 2.009 1.128 .823

pgdU — .048 .053 .048 .053 .115 .130 .048 .053 .048 .053 0.177 0.188 0.177 .188
pgdU pgdU .102 .116 .089 .099 .205 .223 .102 .116 .096 .115 0.282 1.323 0.266 .278
pgdU ifgsmU .120 .135 .102 .115 .237 .255 .120 .135 .109 .133 0.318 1.380 0.299 .309
ifgsmU — .051 .045 .051 .045 .120 .115 .051 .045 .051 .045 0.179 0.175 0.179 .175

ifgsmU pgdU .106 .094 .091 .085 .211 .193 .106 .094 .102 .097 0.292 1.488 0.273 .252

ifgsmU ifgsmU .120 .111 .101 .102 .239 .218 .119 .111 .113 .113 0.322 1.546 0.299 .277

(b) Fashion MNIST Top vs Pullover
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C.8. Additional Experimental Results

`∞-norm Algo. 3.1 with Eq. (3.6) Algo. 3.1 with Eq. (3.9)

b = 0.1 Attack without u Attack without u

AT (MVρ) RT̂(MVρ) Th. 3.3.2 AT (MVρ) AT̂(MVρ) Th. 3.3.3 - Eq. (3.9) Th. 3.3.3 - Eq. (3.8)

Defense Attack Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H Hsign H

— — .122 .122 .122 .122 0.276 0.286 .122 .122 .122 .122 0.318 0.328 0.318 0.328
— pgdU .884 .887 .781 .795 1.579 1.268 .882 .886 .864 .872 2.020 2.640 1.803 1.390

— ifgsmU .901 .902 .756 .774 1.558 1.272 .901 .902 .865 .876 2.032 2.651 1.795 1.393

unif — .166 .166 .166 .166 0.352 0.357 .166 .166 .166 .166 0.389 0.394 0.389 0.394
unif pgdU .911 .914 .796 .798 1.402 1.326 .913 .914 .896 .888 1.934 2.325 1.713 1.447

unif ifgsmU .935 .937 .787 .798 1.392 1.350 .934 .936 .887 .882 1.905 2.378 1.693 1.469

pgdU — .163 .162 .163 .162 0.386 0.395 .163 .162 .163 .162 0.419 0.430 0.419 0.430
pgdU pgdU .394 .396 .359 .329 0.764 0.673 .394 .396 .403 .394 0.954 2.321 0.865 0.726

pgdU ifgsmU .475 .480 .442 .410 0.910 0.769 .477 .480 .487 .472 1.121 2.411 1.020 0.826

ifgsmU — .167 .168 .167 .168 0.411 0.395 .167 .168 .167 .168 0.445 0.429 0.445 0.429

ifgsmU pgdU .396 .373 .359 .293 0.772 0.641 .396 .373 .405 .328 0.970 2.368 0.877 0.692

ifgsmU ifgsmU .465 .428 .424 .334 0.891 0.705 .465 .429 .470 .372 1.090 2.425 0.995 0.758

(a) Fashion MNIST Coat vs Shirt
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C.8. Additional Experimental Results

Table C.8. Test risks for 6 tasks of MNIST and Fashion MNIST datasets for all pairs
(Defense,Attack) with the two voters’ set H and Hsign using `2-norm. The results
of these tables are computed considering defenses of the literature, i.e., adversarial
training using pgd or ifgsm. We also add an adversarial training using unif for the
completeness of comparison between this baseline defense and our algorithm. The
results in bold correspond to the best values between results for H and Hsign.

`2-norm, b = 1 AT (MVπ′)

Defense Attack Hsign H

— — .005 .005
— pgd .326 .327
— ifgsm .122 .121

unif — .005 .005
unif pgd .191 .190

unif ifgsm .071 .072

pgd — .007 .007
pgd pgd .027 .026

pgd ifgsm .022 .021

ifgsm — .005 .006
ifgsm pgd .041 .035

ifgsm ifgsm .021 .021

(a) MNIST 1 vs 7

`2-norm, b = 1 AT (MVπ′)

Defense Attack Hsign H

— — .015 .015
— pgd .692 .692
— ifgsm .464 .462

unif — .024 .024
unif pgd .653 .653
unif ifgsm .441 .438

pgd — .024 .027
pgd pgd .136 .138
pgd ifgsm .097 .102
ifgsm — .022 .027
ifgsm pgd .166 .186
ifgsm ifgsm .113 .124

(b) MNIST 4 vs 9

`2-norm, b = 1 AT (MVπ′)

Defense Attack Hsign H

— — .015 .015
— pgd .283 .283
— ifgsm .144 .144
unif — .017 .017
unif pgd .220 .219

unif ifgsm .122 .122

pgd — .014 .013

pgd pgd .056 .055

pgd ifgsm .045 .041

ifgsm — .013 .014
ifgsm pgd .077 .070

ifgsm ifgsm .053 .047

(c) MNIST 5 vs 6

`2-norm, b = 1 AT (MVπ′)

Defense Attack Hsign H

— — .019 .019
— pgd .709 .708

— ifgsm .426 .414

unif — .071 .072
unif pgd .531 .531
unif ifgsm .331 .329

pgd — .034 .036
pgd pgd .107 .103

pgd ifgsm .091 .087

ifgsm — .031 .029

ifgsm pgd .125 .108

ifgsm ifgsm .104 .090

(d) Fashion MNIST
Sandall vs Ankle Boot

`2-norm, b = 1 AT (MVπ′)

Defense Attack Hsign H

— — .038 .038
— pgd .286 .285

— ifgsm .188 .186

unif — .041 .039

unif pgd .249 .248

unif ifgsm .197 .192

pgd — .043 .045
pgd pgd .102 .117
pgd ifgsm .090 .094
ifgsm — .038 .040
ifgsm pgd .120 .106

ifgsm ifgsm .092 .080

(e) Fashion MNIST
Top vs Pullover

`2-norm, b = 1 AT (MVπ′)

Defense Attack Hsign H

— — .122 .122
— pgd .768 .767

— ifgsm .683 .680

unif — .204 .204
unif pgd .753 .754
unif ifgsm .607 .606

pgd — .182 .178

pgd pgd .453 .412

pgd ifgsm .408 .379

ifgsm — .148 .146

ifgsm pgd .405 .411
ifgsm ifgsm .369 .364

(f) Fashion MNIST
Coat vs Shirt
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C.8. Additional Experimental Results

Table C.9. Test risks for 6 tasks of MNIST and Fashion MNIST datasets for all pairs
(Defense,Attack) with the two voters’ set H and Hsign using `∞-norm. The results
of these tables are computed considering defenses of the literature, i.e., adversarial
training using pgd or ifgsm. We also add an adversarial training using unif for the
completeness of comparison between this baseline defense and our algorithm. The
results in bold correspond to the best values between results for H and Hsign.

`∞-norm, b = 0.1 AT (MVπ′)

Defense Attack Hsign H

— — .005 .005
— pgd .499 .498

— ifgsm .479 .480
unif — .004 .004
unif pgd .516 .515

unif ifgsm .467 .467

pgd — .006 .007
pgd pgd .019 .019
pgd ifgsm .021 .021
ifgsm — .007 .007
ifgsm pgd .017 .018
ifgsm ifgsm .019 .020

(a) MNIST 1 vs 7

`∞-norm, b = 0.1 AT (MVπ′)

Defense Attack Hsign H

— — .015 .015
— pgd .921 .921
— ifgsm .923 .923
unif — .017 .017
unif pgd .877 .876

unif ifgsm .877 .877

pgd — .041 .040

pgd pgd .108 .109
pgd ifgsm .122 .123
ifgsm — .057 .044

ifgsm pgd .109 .101

ifgsm ifgsm .119 .108

(b) MNIST 4 vs 9

`∞-norm, b = 0.1 AT (MVπ′)

Defense Attack Hsign H

— — .015 .015
— pgd .498 .498
— ifgsm .511 .510

unif — .015 .015
unif pgd .512 .511

unif ifgsm .511 .511

pgd — .014 .014
pgd pgd .065 .058

pgd ifgsm .068 .065

ifgsm — .018 .017

ifgsm pgd .061 .063
ifgsm ifgsm .069 .071

(c) MNIST 5 vs 6

`∞-norm, b = 0.1 AT (MVπ′)

Defense Attack Hsign H

— — .019 .019
— pgd .938 .938
— ifgsm .948 .949
unif — .076 .077
unif pgd .970 .969

unif ifgsm .981 .981

pgd — .041 .040

pgd pgd .098 .097

pgd ifgsm .115 .111

ifgsm — .112 .047

ifgsm pgd .045 .100
ifgsm ifgsm .101 .114

(d) Fashion MNIST
Sandall vs Ankell Boot

`∞-norm, b = 0.1 AT (MVπ′)

Defense Attack Hsign H

— — .038 .038
— pgd .574 .577
— ifgsm .700 .696

unif — .032 .033
unif pgd .428 .435
unif ifgsm .540 .550

pgd — .047 .049
pgd pgd .101 .097

pgd ifgsm .118 .112

ifgsm — .049 .048

ifgsm pgd .100 .090

ifgsm ifgsm .112 .108

(e) Fashion MNIST
Top vs Pullover

`∞-norm, b = 0.1 AT (MVπ′)

Defense Attack Hsign H

— — .122 .122
— pgd .879 .879
— ifgsm .898 .898
unif — .166 .166
unif pgd .913 .911

unif ifgsm .934 .933

pgd — .164 .167
pgd pgd .398 .395

pgd ifgsm .479 .481
ifgsm — .163 .169
ifgsm pgd .356 .391
ifgsm ifgsm .422 .461

(f) Fashion MNIST
Coat vs Shirt
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DAppendix of Chapter 4

D.1 Proof of Theorem 4.3.1

Theorem 4.3.1 (PAC-Bayesian Bound Based on the Gibbs Risk). For any distribu-
tion D on X×Y, for any hypothesis set H, for any distribution π ∈ M∗(H), for any
δ ∈ (0, 1], with probability at least 1−δ over the random choice of S ∼ Dm we have

∀ρ ∈ M(H), rD(ρ) ≤ kl
(
rS(ρ)

∣∣∣∣∣ 1
m

[
KL(ρ‖π) + ln 2

√
m

δ

])
,

and ∀ρ ∈ M(H), RD(MVρ) ≤ 2
[
kl
(
rS(ρ)

∣∣∣∣∣ 1
m

[
KL(ρ‖π) + ln 2

√
m

δ

])]
, (4.1)

where kl(q|τ) , max
{
p ∈ (0, 1)

∣∣∣∣ kl(q‖p) ≤ τ
}

(see Section 2.3.1.3).

Proof. We can apply Theorem 2.3.4 with the loss `(h, (x, y)) = I [h(x) 6= y] to
obtain

∀ρ ∈ M(H), rD(ρ) ≤ kl
(
rS(ρ)

∣∣∣∣∣ 1
m

[
KL(ρ‖π) + ln 2

√
m

δ

])
.

Then, from Theorem 2.2.1, we obtain

∀ρ ∈ M(H), RD(MVρ) ≤ 2
[
kl
(
rS(ρ)

∣∣∣∣∣ 1
m

[
KL(ρ‖π) + ln 2

√
m

δ

])]
.

�

D.2 Proof of Theorem 4.3.2

Theorem 4.3.2 (PAC-Bayesian Bound Based on the Joint Error). For any distribu-
tion D on X×Y, for any hypothesis set H, for any distribution π ∈ M∗(H), for any
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D.3. Proof of Theorem 4.3.3

δ ∈ (0, 1], with probability at least 1−δ over the random choice of S ∼ Dm we have

∀ρ ∈ M(H), eD(ρ) ≤ kl
(
eS(ρ)

∣∣∣∣∣ 1
m

[
2 KL(ρ‖π) + ln 2

√
m

δ

])
,

and ∀ρ ∈ M(H), RD(MVρ) ≤ 4
[
kl
(
eS(ρ)

∣∣∣∣∣ 1
m

[
2 KL(ρ‖π) + ln 2

√
m

δ

])]
.

Proof. We consider the hypothesis set H2 = H×H with the distributions ρ2 (resp.
π2) defined as ρ2((h, h′)) = ρ(h)ρ(h′) (resp. π2((h, h′)) = π(h)π(h′)) on H2. We
can apply Theorem 2.3.4 with the loss `((h, h′), (x, y)) = I [h(x) 6= y] I [h′(x) 6= y]
to obtain

∀ρ ∈ M(H), eD(ρ) ≤ kl
(
eS(ρ)

∣∣∣∣∣ 1
m

[
KL(ρ2‖π2) + ln 2

√
m

δ

])
.

Then, from Theorem 2.2.2 and Lemma D.7.1, we obtain

∀ρ ∈ M(H), RD(MVρ) ≤ 4
[
kl
(
eS(ρ)

∣∣∣∣∣ 1
m

[
2 KL(ρ‖π) + ln 2

√
m

δ

])]
.

�

D.3 Proof of Theorem 4.3.3

Theorem 4.3.3 (PAC-Bayesian C-Bound of Roy et al. (2016)). For any distribu-
tion D on X×Y, for any hypothesis set H, for any distribution π ∈ M∗(H), for any
δ ∈ (0, 1], with probability at least 1 − δ over the random choice of S ∼ Dm we
have for all ρ ∈ M(H)

RD(MVρ) ≤ 1−

(
1− 2 min

[
1
2 , rS(ρ)+

√
1

2m

[
KL(ρ‖π)+ ln 4

√
m
δ

]])2

1− 2 max
[
0, dS(ρ)−

√
1

2m

[
2 KL(ρ‖π)+ ln 4

√
m
δ

]]
︸ ︷︷ ︸

, CM
S(ρ)

. (4.2)
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D.4. Proof of Theorem 4.3.4

Proof. First, remark that from Theorem 2.2.3, we have (even for rD(ρ) ≥ 1
2)

RD(MVρ) ≤ 1−

(
1−2 min

[
1
2 , rD(ρ)

])2

1−2 max [0, dD(ρ)] .

We upper-bound rD(ρ) by applying Theorem 2.3.2 with δ
2 and the loss `(h, (x, y)) =

I [h(x) 6= y], to obtain

∀ρ ∈ M(H), rD(ρ) ≤ rS(ρ)+
√

1
2m

[
KL(ρ‖π)+ ln 4

√
m
δ

]
.

To lower-bound dD(ρ), we have to consider the hypothesis set H2 = H×H with the
distributions ρ2 (resp. π2) defined as ρ2((h, h′)) = ρ(h)ρ(h′) (resp. π2((h, h′)) =
π(h)π(h′)) on H2. Then, we obtain the lower-bound by applying Theorem 2.3.4
with δ

2 and the loss `((h, h′), (x, y)) = 2 I [h(x) 6= y] I [h′(x) = y]. We have

∀ρ ∈ M(H), dD(ρ) ≥ dS(ρ)−
√

1
2m

[
2 KL(ρ‖π)+ ln 4

√
m
δ

]
,

where KL(ρ2‖π2) = 2 KL(ρ‖π) from Lemma D.7.1. �

D.4 Proof of Theorem 4.3.4

Theorem 4.3.4 (PAC-Bayesian C-Bound of Germain et al. (2015)). For any
distribution D on X× Y, for any hypothesis set H, for any distribution π ∈ M∗(H),
for any δ ∈ (0, 1], with probability at least 1−δ over the random choice of S ∼ Dm
we have for all ρ ∈ M(H)

RD(MVρ) ≤ 1−

1−2 min
[

1
2 , kl

(
rS(ρ)

∣∣∣ 1
m

[
KL(ρ‖π)+ ln 4

√
m
δ

]) ]2

1−2 max
0, kl

(
dS(ρ)

∣∣∣ 1
m

[
2 KL(ρ‖π)+ ln 4

√
m
δ

]) 
︸ ︷︷ ︸

, CS
S(ρ)

. (4.3)
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D.5. Proof of Theorem 4.3.5

Proof. First, remark that from Theorem 2.2.3, we have (even for rD(ρ) ≥ 1
2)

RD(MVρ) ≤ 1−

(
1−2 min

[
1
2 , rD(ρ)

])2

1−2 max [0, dD(ρ)] .

We upper-bound rD(ρ) by applying Theorem 2.3.4 with δ
2 and the loss `(h, (x, y)) =

I [h(x) 6= y], to obtain

∀ρ ∈ M(H), rD(ρ) ≤ kl
(
rS(ρ)

∣∣∣∣∣ 1
m

[
KL(ρ‖π) + ln 4

√
m

δ

])
.

To lower-bound dD(ρ), we have to consider the hypothesis set H2 = H×H with the
distributions ρ2 (resp. π2) defined as ρ2((h, h′)) = ρ(h)ρ(h′) (resp. π2((h, h′)) =
π(h)π(h′)) on H2. Then, we obtain the lower-bound by applying Theorem 2.3.4
with δ

2 and the loss `((h, h′), (x, y)) = 2 I [h(x) 6= y] I [h′(x) = y]. We have

∀ρ ∈ M(H), dD(ρ) ≥ kl
(
dS(ρ)

∣∣∣∣∣ 1
m

[
KL(ρ2‖π2) + ln 4

√
m

δ

])
,

where KL(ρ2‖π2) = 2 KL(ρ‖π) from Lemma D.7.1. �

D.5 Proof of Theorem 4.3.5

Theorem 4.3.5 (PAC-Bayesian C-Bound of Lacasse et al. (2006)). For any
distribution D on X× Y, for any hypothesis set H, for any distribution π ∈ M∗(H),
for any δ ∈ (0, 1], with probability at least 1−δ over the random choice of S ∼ Dm
we have for all ρ ∈ M(H)

RD(MVρ) ≤ sup
(e,d)∈AS(ρ)

[
1− (1− (2e+ d))2

1− 2d

]
,

where AS(ρ) =

(e, d)
∣∣∣∣ kl (eS(ρ), dS(ρ)‖e, d) ≤ 1

m

[
2 KL(ρ‖π) + ln 2

√
m+m
δ

]
,

d ≤ 2
√
e−2e , 2e+d < 1

.
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D.5. Proof of Theorem 4.3.5

Proof. First of all, we need to prove the following PAC-Bayesian bound:

kl (eS(ρ), dS(ρ)‖eD(ρ), dD(ρ)) ≤ 1
m

[
2 KL(ρ‖π) + ln 2

√
m+m
δ

]
. (D.1)

We apply Theorem 2.3.1 with ϕ(h,S) = m kl
(

R`S(h),R`′S (h)‖R`D(h),R`′D(h)
)

to
obtain with probability at least 1− δ

E
h∼ρ

kl
(

R`S(h),R`′S (h)‖R`D(h),R`′D(h)
)

≤ 1
m

[
KL(ρ‖π) + ln

(1
δ

E
S′∼Dm

E
h′∼π

em kl(R`S(h),R`
′
S (h)‖R`D(h),R`

′
D(h))

)]
, (D.2)

where `′ : H × (X×Y) → [0, 1] and ` : H × (X×Y) → [0, 1]. Moreover, Younsi
(2012) and Younsi and Lacasse (2020) proves that

E
S∼Dm

exp
[
m kl(R`S(h),R`′S (h)‖R`D(h),R`′D(h))

]
≤ 2
√
m+m.

Hence, we have

E
S′∼Dm

E
h′∼π

em kl(R`S(h),R`
′
S (h)‖R`D(h),R`

′
D(h)) = E

h′∼π
E

S′∼Dm
em kl(R`S(h),R`

′
S (h)‖R`D(h),R`

′
D(h))

≤ 2
√
m+m. (D.3)

Moreover, from Jensen’s inequality (Theorem A.1.1), we have

kl
(
E
h∼ρ

R`S(h), E
h∼ρ

R`′S (h)‖ E
h∼ρ

R`D(h), E
h∼ρ

R`′D(h)
)

≤ E
h∼ρ

kl
(

R`S(h),R`′S (h)‖R`D(h),R`′D(h)
)
. (D.4)

By combining Equations (D.2) to (D.4), we obtain Equation (D.1). Lastly the
PAC-Bayesian bound in AS(ρ) is obtained by instantiating Equation (D.1) (and
applying Lemma D.7.1) with

`((h, h′), (x, y)) = I [h(x) 6= y] I [h′(x) 6= y] ,
and `′((h, h′), (x, y)) = 2 I [h(x) 6= y] I [h′(x) = y] ,

and the distributions ρ2 and π2 on H2.

Remark that the constraints involves in the set AS(ρ) do not remove the possible
couple of joint error and disagreement. Indeed, since a variance is not negative,
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D.6. Proof of Theorem 4.4.1

we have

E
(x,y)∼D′

(m̂ρ(x, y))2 ≥
(

E
(x,y)∼D′

[m̂ρ(x, y)]
)2

⇐⇒ dD′(ρ) ≤ 2rD′(ρ)(1− rD′(ρ))

⇐⇒ dD′(ρ) ≤ 2
[√

eD′(ρ)− eD′(ρ)
]
.

Moreover, from Theorem 2.2.3, we know that 2eD′(ρ)+dD′(ρ) < 1.

We can now prove that, under the constraints involved in AS(ρ), we still have a
valid bound on RD(MVρ). To do so, we consider two cases.
Case 1: If for all (e, d) ∈ AS(ρ) we have 2e+d < 1.
In this case (eD(ρ), dD(ρ)) ∈ AS(ρ) and 2eD(ρ)+dD(ρ) < 1, thus, Theorem 2.2.3
holds with probability at least 1 − δ. In other words, we have RD(MVρ) ≤ 1 −
[1−(2eD(ρ)+dD(ρ))]2

1−2dD(ρ) ≤ sup(e,d)∈A′S(ρ) C
L(e, d) with probability at least 1− δ.

Case 2: If there exists (e, d) ∈ AS(ρ) such that 2e+d=1.
We have sup(e,d)∈A′S(ρ) C

L(e, d) = 1 that is a valid bound on RD(MVρ). �

D.6 Proof of Theorem 4.4.1

Theorem 4.4.1 (Reformulation of Lacasse et al.’s PAC-Bayesian C-Bound).
For any distribution D on X × Y, for any hypothesis set H, for any distribution
π ∈ M∗(H), for any δ ∈ (0, 1], with probability at least 1 − δ over the random
choice of S ∼ Dm we have for all ρ ∈ M(H)

RD(MVρ) ≤ sup
(e,d)∈A′S(ρ)

[
1− (1− (2e+ d))2

1− 2d

]
, (4.4)

A′S(ρ) =

(e, d)
∣∣∣∣ kl (eS(ρ), dS(ρ)‖e, d) ≤ 1

m

[
2 KL(ρ‖π) + ln 2

√
m+m
δ

]
,

d ≤ 2
√

min
(
e, 1

4

)
−2e, d < 1

2

.

Proof. Beforehand, we explain how we fixed the constraints involved in A′S(ρ).
Compared to AS(ρ), we add another constraint : d < 1

2 . Hence, we have the
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D.7. Proof of Lemma D.7.1

constraints d ≤ 2
√
e−2e, d ≤ 1−2e, and d < 1

2 . We remark that when e ≤ 1
4 ,

we have 2
√
e−2e ≤ 1−2e. Then, we merge d ≤ 2

√
e−2e and d ≤ 1−2e into

d≤2
√

min
(
e, 1

4

)
−2e. Indeed, we have

d ≤ 2
√

min(e, 1
4)−2e ⇐⇒


d ≤ 2

√
e− 2e if e ≤ 1

4 ,

d < 1−2e if e ≥ 1
4 .

We prove now that under the constraints involved in A′S(ρ), we still have a valid
bound on RD(MVρ). To do so, we consider two cases.
Case 1: If for all (e, d) ∈ A′S(ρ) we have 2e+d < 1.
In this case (eD(ρ), dD(ρ)) ∈ A′S(ρ) and 2eD(ρ)+dD(ρ) < 1, thus, Theorem 2.2.3
holds with probability at least 1 − δ. In other words, we have RD(MVρ) ≤ 1 −
[1−(2eD(ρ)+dD(ρ))]2

1−2dD(ρ) ≤ sup(e,d)∈A′S(ρ) C
L(e, d) with probability at least 1− δ.

Case 2: If there exists (e, d) ∈ A′S(ρ) such that 2e+d=1.
We have sup(e,d)∈A′S(ρ) C

L(e, d) = 1 that is a valid bound on RD(MVρ). �

D.7 Proof of Lemma D.7.1

Lemma D.7.1. Let the distribution ρ2 and π2 on H2 = H× H defined as

ρ2((h, h′)) = ρ(h)ρ(h′) and π2((h, h′)) = π(h)π(h′).

The KL divergence between ρ2 and π2 can be expressed w.r.t. ρ and π. We have

KL(ρ2‖π2) = 2 KL(ρ‖π).

Proof. We develop the term KL(ρ2‖π2), i.e., we have

KL(ρ2‖π2) = E
(h,h′)∼ρ2

ln ρ
2((h, h′))
π2((h, h′))

= E
h∼ρ

E
h′∼ρ

ln ρ(h)ρ(h′)
π(h)π(h′)

= E
h∼ρ

ln ρ(h)
π(h) + E

h′∼ρ
ln ρ(h′)
π(h′)

= 2 KL(ρ‖π).
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�

D.8 About Danskin’s Theorem
As mentioned in the context of the justification of the function maximize-e-d in Algo-
rithm 4.3, we now discuss the possible application of Danskin’s Theorem (Danskin,
1966, Section I). The statement of the theorem is as follows.

Theorem D.8.1 (Danskin’s Theorem). Let A ⊂ Ra be a compact set and φ :
Rb × A → R s.t. for all a ∈ A, we have that φ is continuously differentiable, then
Φ(x) = maxa∈A φ(x, a) is directionally differentiable with directional derivatives

Φ′(x,d) = max
a∈A∗
〈d,∇xφ(x, a)〉 ,

where A∗ = {a∗ | φ(x, a∗) = maxa∈A φ(x, a)} and 〈·, ·〉 is the dot product.

To optimize a problem minx∈Rb Φ(x) with Φ(x) = maxa∈A φ(x, a), this theorem tells
us that under several assumptions, if we know a maximizer a ∈ A, then, we have an
analytical expression of the directional derivatives of Φ(x). Thus, from this theorem,
we also know a gradient to minimize the problem minx∈Rb Φ(x); this is expressed in
the following corollary.

Corollary D.8.1 (Madry et al., 2018). Assuming that the conditions of Theo-
rem D.8.1 are fulfilled and let a∗ ∈ A∗ be a maximizer of φ. If d = ∇xφ(x, a∗)
with |d|22 > 0 then −d is a descent direction for Φ(x), i.e., Φ′(x,d) > 0.

Proof. By definition of the directional derivative Φ′(x,d), we have:

Φ′(x,d) = max
a∈A∗
〈d,∇xφ(x, a)〉

= max
a∈A∗
〈∇xφ(x, a∗),∇xφ(x, a)〉 ≥ |∇xφ(x, a∗)|22 > 0.

�

Then, for each iteration of the min/max problem optimization, we can (i) optimize
the inner maximization problem, (ii) fix the maximizer a∗ ∈ A and apply a gradient
descent step with the derivative ∇xφ(x, a∗). However, as we mentioned, the assump-
tions are not fulfilled in our case to apply Theorem D.8.1 since our inner objective in
Equation (4.5) or its approximation is not differentiable everywhere in the compact set
[0, 1

2 ]2. However, we never encounter problematic cases and this strategy is thus valid
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for optimizing our proposed approximation. In practice, we have found that it is indeed
an efficient and sound strategy.

D.9 Optimizing the Bound of Theorem 4.3.1
To minimize the bound of Theorem 4.3.1, the objective function is defined as

GR
U(ρ) = 2

[
kl
(
rU(ρ)

∣∣∣∣∣ 1
m

[
KL(ρ‖π) + ln 2

√
m

δ

])]
.

We derive an algorithm (denoted as Germain in the setting description of the ex-
periments of Section 4.5) similar to Algorithm 4.2. The algorithm is described in
Algorithm D.1 below.

Algorithm D.1 Minimization of Equation (4.1) by Stochastic Gradient Descent
Given: learning sample S, prior distribution π on H, the objective function GR

U(ρ)
Hyperparameters: number of iterations T
ρ← π
for t← 1 to T do

for all mini-batches U ⊆ S do
ρ← Update ρ with GR

U(ρ) by gradient descent

D.10 Additional Experiments
D.10.1 Details for Figures 4.2 to 4.7
We provide in Tables D.1 to D.3 the details of the results in Figures 4.2 to 4.7.

D.10.2 Experiments on the Computation Time
Figure D.1 introduces a comparison of the computation time for the different algo-
rithms. We consider the moons binary dataset and perform, in fact, two experiments
on majority votes with decision stumps.

(i) We fix 128 stumps per feature and vary the number m ∈ {100, 500, 1000, 5000}
of examples in the dataset.

(ii) We fix the number of examples m = 5000 and vary the number of stumps per
feature in {32, 64, 128}.
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Figure D.1. In the top plot represents the evolution of the computation time (in
second) with respect to the number of examples m in moons dataset. The bottom
plot is the evolution of the computation time in function of the number of decision
stumps per feature. For each curve, we plot the mean computation time (the plain
line) and the standard deviation (the shadow) over 10 runs.
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D.10.3 Details on the Empirical Joint Error and Disagreement
We report in Figures D.2 to D.7, the empirical joint error and disagreement obtained
on the different datasets. These figures illustrate that the solutions found by Algo-
rithm 4.3, Masegosa and CB-Boost are similar while MinCq and Germain provide
usually very different solutions.
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Figure D.2. Representation of all the possible values of the empirical C-Bound CS(ρ)
in function of the disagreement dS(ρ) (y-axis) and joint error eS(ρ) (x-axis). We report
the values obtained with the decision stumps in the binary setting by Algorithm 4.3
(�), Masegosa (N), Germain (F), CB-Boost (•), and MinCq (×). The disagreement
and the joint are averaged over the 10 runs.
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Figure D.3. Representation of all the possible values of the empirical C-Bound CS(ρ)
in function of the disagreement dS(ρ) (y-axis) and joint error eS(ρ) (x-axis). We report
the values obtained with the decision stumps in the binary setting by Algorithm 4.3
(�), Masegosa (N), Germain (F), CB-Boost (•), and MinCq (×). The disagreement
and the joint are averaged over the 10 runs.

– 276 –



D.10. Additional Experiments

0.0 0.2 0.4
0.0

0.1

0.2

0.3

0.4

0.5
Credit

0.00

0.15

0.30

0.45

0.60

0.75

0.90

C
-B

ou
nd

C
S(
ρ
)

0.0 0.2 0.4
0.0

0.1

0.2

0.3

0.4

0.5
Heart

0.0 0.2 0.4
0.0

0.1

0.2

0.3

0.4

0.5
USVotes

0.0 0.2 0.4
0.0

0.1

0.2

0.3

0.4

0.5
WDBC

Figure D.4. Representation of all the possible values of the empirical C-Bound CS(ρ)
in function of the disagreement dS(ρ) (y-axis) and joint error eS(ρ) (x-axis). We report
the values obtained with the decision trees in the binary setting by Algorithm 4.3 (�),
Masegosa (N), Germain (F), CB-Boost (•), and MinCq (×). The disagreement and
the joint are averaged over the 10 runs.
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Figure D.5. Representation of all the possible values of the empirical C-Bound CS(ρ)
in function of the disagreement dS(ρ) (y-axis) and joint error eS(ρ) (x-axis). We report
the values obtained with the decision trees in the binary setting by Algorithm 4.3 (�),
Masegosa (N), Germain (F), CB-Boost (•), and MinCq (×). The disagreement and
the joint are averaged over the 10 runs.
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Figure D.6. Representation of all the possible values of the empirical C-Bound CS(ρ)
in function of the disagreement dS(ρ) (y-axis) and joint error eS(ρ) (x-axis). We report
the values obtained with the decision trees in the multi-class setting by Algorithm 4.3
(�), Masegosa (N), Germain (F). The disagreement and the joint are averaged over
the 10 runs.
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Figure D.7. Representation of all the possible values of the empirical C-Bound CS(ρ)
in function of the disagreement dS(ρ) (y-axis) and joint error eS(ρ) (x-axis). We report
the values obtained with the decision trees in the multi-class setting by Algorithm 4.3
(�), Masegosa (N), Germain (F). The disagreement and the joint are averaged over
the 10 runs.
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Table D.1. Comparison of the true risks RT (MVρ) and bound values obtained for each algorithm over 10 runs when the
voters are decision stumps in the binary setting. More precisely, we report the mean ± the standard deviation. “Bound”
is the mean value of the bound that is optimized, excepted for MinCq and CB-Boost for which we report the bound
obtained with Theorem 4.4.1 instantiated with the majority vote learned. Results in bold are the couple (RT (MVρ),
Bound) associated to the lowest risk value. Italic and underlined results are the couple (RT (MVρ), Bound) associated
respectively to the lowest bound value and the second lowest bound values.

Algorithm 4.1 Algorithm 4.2 Algorithm 4.3 Masegosa

RT (MVρ) Bound RT (MVρ) Bound RT (MVρ) Bound RT (MVρ) Bound

Credit .141 ± .014 .772 ± .026 .141 ± .014 .718 ± .036 .141 ± .014 .748 ± .037 .141 ± .014 .784 ± .047
Heart .252 ± .034 .970 ± .011 .252 ± .034 .960 ± .013 .161 ± .028 .937 ± .017 .163 ± .025 1.041 ± .034
USVotes .043 ± .007 .657 ± .016 .043 ± .007 .494 ± .034 .042 ± .008 .529 ± .029 .042 ± .008 .520 ± .030

WDBC .101 ± .030 .722 ± .016 .115 ± .031 .675 ± .050 .069 ± .014 .578 ± .024 .060 ± .010 .533 ± .021
TicTacToe .296 ± .011 .969 ± .008 .296 ± .011 .967 ± .009 .303 ± .015 .958 ± .009 .272 ± .024 1.021 ± .016
SVMGuide .085 ± .007 .463 ± .028 .085 ± .007 .385 ± .025 .081 ± .014 .325 ± .011 .076 ± .012 .313 ± .011
Haberman .266 ± .025 .975 ± .012 .263 ± .025 .968 ± .015 .262 ± .024 .988 ± .020 .260 ± .019 1.207 ± .050

Germain CB-Boost MinCq

RT (MVρ) Bound RT (MVρ) Bound RT (MVρ) Bound

Credit .141 ± .014 .462 ± .033 .140 ± .015 .917 ± .049 .141 ± .020 1.000 ± .000
Heart .257 ± .026 .796 ± .036 .191 ± .016 .996 ± .007 .185 ± .017 1.000 ± .000
USVotes .068 ± .040 .351 ± .108 .043 ± .007 .683 ± .038 .048 ± .009 1.000 ± .000
WDBC .105 ± .023 .412 ± .032 .044 ± .008 .687 ± .044 .044 ± .013 1.000 ± .000
TicTacToe .296 ± .011 .812 ± .023 .202 ± .020 1.000 ± .000 .020 ± .003 1.000 ± .000

SVMGuide .102 ± .035 .256 ± .086 .068 ± .012 .334 ± .012 .048 ± .002 1.000 ± .000

Haberman .265 ± .026 .811 ± .046 .274 ± .029 .988 ± .011 .261 ± .016 1.000 ± .000
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Table D.2. Comparison of the true risks RT (MVρ) and bound values obtained for each algorithm over 10 runs when the
voters are decision trees in the binary setting. More precisely, we report the mean ± the standard deviation. “Bound”
is the mean value of the bound that is optimized, excepted for MinCq and CB-Boost for which we report the bound
obtained with Theorem 4.4.1 instantiated with the majority vote learned. Results in bold are the couple (RT (MVρ),
Bound) associated to the lowest risk value. Italic and underlined results are the couple (RT (MVρ), Bound) associated
respectively to the lowest bound value and the second lowest bound values.

Algorithm 4.1 Algorithm 4.2 Algorithm 4.3 Masegosa

RT (MVρ) Bound RT (MVρ) Bound RT (MVρ) Bound RT (MVρ) Bound

Credit .156 ± .018 .861 ± .034 .154 ± .021 .807 ± .048 .142 ± .015 .744 ± .057 .138 ± .015 .775 ± .081

Heart .230 ± .027 .984 ± .011 .228 ± .025 .976 ± .018 .210 ± .026 .956 ± .025 .213 ± .026 1.161 ± .076
USVotes .053 ± .011 .738 ± .031 .057 ± .012 .571 ± .067 .046 ± .014 .523 ± .059 .051 ± .023 .513 ± .069
WDBC .054 ± .010 .705 ± .022 .061 ± .010 .554 ± .041 .045 ± .007 .485 ± .042 .049 ± .011 .471 ± .050
TicTacToe .056 ± .010 .776 ± .025 .078 ± .023 .685 ± .047 .048 ± .013 .530 ± .052 .050 ± .010 .493 ± .054
SVMGuide .033 ± .002 .340 ± .011 .033 ± .001 .213 ± .012 .032 ± .002 .177 ± .012 .032 ± .002 .165 ± .012

Haberman .307 ± .031 .998 ± .004 .307 ± .030 .997 ± .006 .295 ± .025 .997 ± .006 .294 ± .018 1.586 ± .113

Germain CB-Boost MinCq

RT (MVρ) Bound RT (MVρ) Bound RT (MVρ) Bound

Credit .167 ± .023 .564 ± .059 .147 ± .017 .772 ± .054 .140 ± .021 .981 ± .025
Heart .234 ± .022 .840 ± .059 .222 ± .026 .972 ± .019 .222 ± .029 1.000 ± .000
USVotes .056 ± .012 .334 ± .050 .048 ± .019 .578 ± .050 .053 ± .010 .989 ± .032
WDBC .063 ± .010 .324 ± .033 .044 ± .012 .525 ± .042 .054 ± .013 .984 ± .041
TicTacToe .127 ± .025 .457 ± .047 .049 ± .014 .545 ± .052 .049 ± .013 .901 ± .080
SVMGuide .038 ± .005 .123 ± .008 .033 ± .002 .183 ± .012 .033 ± .002 .660 ± .185
Haberman .306 ± .030 .970 ± .058 .295 ± .024 .999 ± .002 .296 ± .016 1.000 ± .000
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Table D.3. Comparison of the true risks RT (MVρ) and bound values obtained for each algorithm over 10 runs when the
voters are decision trees in the multi-class setting. More precisely, we report the mean ± the standard deviation. Results
in bold are the couple (RT (MVρ), Bound) associated to the lowest risk value. Italic and underlined results are the couple
(RT (MVρ), Bound) associated respectively to the lowest bound value and the second lowest bound values.

Algorithm 4.1 Algorithm 4.2 Algorithm 4.3
RT (MVρ) Bound RT (MVρ) Bound RT (MVρ) Bound

MNIST .034 ± .002 .387 ± .003 .034 ± .002 .371 ± .003 .034 ± .002 .340 ± .004

FashionMNIST .121 ± .004 .554 ± .003 .121 ± .004 .544 ± .003 .121 ± .004 .523 ± .003
Pendigits .015 ± .007 .283 ± .007 .015 ± .007 .197 ± .009 .015 ± .007 .137 ± .009

Protein .467 ± .060 1.000 ± .000 .462 ± .057 1.000 ± .000 .419 ± .038 1.000 ± .000

Shuttle .000 ± .000 .061 ± .001 .000 ± .000 .006 ± .001 .000 ± .000 .005 ± .000

Sensorless .002 ± .001 .097 ± .001 .002 ± .000 .040 ± .001 .001 ± .000 .022 ± .001

Glass .328 ± .058 1.000 ± .000 .327 ± .058 1.000 ± .000 .328 ± .060 1.000 ± .000

Masegosa Germain

RT (MVρ) Bound RT (MVρ) Bound

MNIST .095 ± .037 .451 ± .062 .180 ± .005 .382 ± .003
FashionMNIST .195 ± .022 .672 ± .070 .231 ± .004 .479 ± .002

Pendigits .027 ± .017 .168 ± .030 .064 ± .022 .163 ± .010
Protein .460 ± .025 1.503 ± .047 .529 ± .003 1.098 ± .006
Shuttle .000 ± .000 .005 ± .001 .001 ± .000 .003 ± .001

Sensorless .002 ± .001 .025 ± .001 .015 ± .001 .040 ± .002
Glass .324 ± .056 1.978 ± .140 .327 ± .058 1.263 ± .081
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EAppendix of Chapter 5

E.1 About Equation (5.1)
For the sake of completeness, we prove the bound RD′(MVρ) ≤ 2bND′(ρ) in the following
lemma.

Lemma E.1.1. For any distribution D′ on X×Y, for any hypothesis set H, for any
distribution ρ on H, for any N ∈ N∗, we have

RD′(MVρ) ≤ 2bND′(ρ)

= 2 E
(x,y)∼D′

 N∑
j=dN2 e

(
N

j

)[1
2 (1−m̂ρ(x, y))

]j[
1−1

2 (1−m̂ρ(x, y))
](N−j)

 .

Proof. The proof is based on Lacasse et al. (2010). Note that for a given example
(x, y) ∼ D′ s.t. m̂ρ(x, y) = 0, we have

N∑
j=dN2 e

(
N

j

) [1
2 (1− m̂ρ(x, y))

]j [
1− 1

2 (1− m̂ρ(x, y))
](N−j)

︸ ︷︷ ︸
,♥Nρ (x,y)

≥ 1
2 .

Moreover, ♥Nρ (x, y) is monotonically decreasing in m̂ρ(x, y). From these two
properties, we have for a given example (x, y) ∼ D′ s.t. m̂ρ(x, y) ≤ 0

I [m̂ρ(x, y) ≤ 0]︸ ︷︷ ︸
=1

≤ 2♥Nρ (x, y),

and for a given example (x, y) ∼ D′ s.t. m̂ρ(x, y) > 0

I [m̂ρ(x, y) ≤ 0]︸ ︷︷ ︸
=0

≤ 2♥Nρ (x, y).
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Hence, we can deduce that

RD′(MVρ) ≤ E
(x,y)∼D′

I [m̂ρ(x, y) ≤ 0] ≤ 2 E
(x,y)∼D′

♥Nρ (x, y) = 2bND′(ρ).

�

Based on Lemma E.1.1, we are now able to prove a PAC-Bayesian bound on the
majority vote’s true risk based on the surrogate bND′(ρ). Note that Lacasse et al.
(2010) prove a Catoni-like bound while our work is based on a Seeger-like one.
Our bound avoids using a parameter c ≥ 0 required in Catoni’s bound. We derive
the bound in the following theorem.

Theorem E.1.1. For any distribution D on X × Y, for any hypothesis set H, for
any distribution π ∈ M∗(H), for any δ ∈ (0, 1], with probability at least 1− δ over
the random choice of S ∼ Dm we have

∀ρ ∈ M(H), RD(MVρ) ≤ 2
[
kl
(
bNS (ρ)

∣∣∣∣∣ 1
m

[
N KL(ρ‖π) + ln 2

√
m

δ

])]
. (E.1)

Proof. First, note that we have by definition

bND (ρ) = P
MVσ∼ρN

[m̂σ(x, y) ≤ 0] .

We apply Theorem 2.3.4 with the loss `(h, (x, y)) = I [m̂σ(x, y) ≤ 0], the posterior
distribution ρN and the prior distribution πN to have

∀ρ ∈ M(H), bND (ρ) ≤ kl
(
bNS (ρ)

∣∣∣∣∣ 1
m

[
KL(ρN‖πN) + ln 2

√
m

δ

])
,

where KL(ρN‖πN) = N KL(ρ‖π). Then, from Lemma E.1.1, we obtain

∀ρ ∈ M(H), RD(MVρ) ≤ 2
[
kl
(
bNS (ρ)

∣∣∣∣∣ 1
m

[
N KL(ρ‖π) + ln 2

√
m

δ

])]
.

�

From Theorem E.1.1, we can deduce a self-bounding algorithm denoted as Lacasse
to minimize the majority vote’s true risk. The objective function is defined as

GL
U(ρ) = 2

[
kl
(
bNU (ρ)

∣∣∣∣∣ 1
m

[
N KL(ρ‖π) + ln 2

√
m

δ

])]
,
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where bNS (ρ) is approximated through a mini-batch U ⊆ S (and bNU (ρ) is computed
instead). The algorithm denoted as Lacasse is described in Algorithm E.1 below.

Algorithm E.1 Minimization of Equation (E.1) by Stochastic Gradient Descent
Given: learning sample S, prior distribution π on H, the objective function GL

U(ρ)
Hyperparameters: number of iterations T
ρ← π
for t← 1 to T do

for all mini-batches U ⊆ S do
ρ← Update ρ with GL

U(ρ) by gradient descent

E.2 Aggregation Property of the Dirichlet
Distributions

Lemma E.2.1. Let ρ ∼ Dir(α) with α ∈ (R+
∗ )K and K = card(H). Then, the

random variable associated to the random variable ρ where we sum the entries i and
j follows a Dirichlet distribution with parameters α′ = [α1, . . . , αi+αj, . . . , αK ]> ∈
(R+
∗ )K−1, i.e., we have(

ρ(h1), . . . , ρ(hi) + ρ(hj), . . . , ρ(hK)
)
∼ Dir(α′).

Proof. Without loss of generality let i = 1 and j = 2, then, first remark that we
have ∫ ρ(h1)+ρ(h2)

0
[x]α1−1 [ρ(h1)+ρ(h2)−x]α2−1 dx

=
∫ 1

0
[(ρ(h1)+ρ(h2))x′]α1−1 [(ρ(h1)+ρ(h2))(1−x′)]α2−1 (ρ(h1)+ρ(h2))dx′

= [ρ(h1)+ρ(h2)]α1+α2−1
∫ 1

0
[x′]α1−1 [1−x′]α2−1

dx′

∝ [ρ(h1)+ρ(h2)]α1+α2−1 . (E.2)

Then, from Equation (E.2), the probability density function of
(
ρ(h1), . . . , ρ(hi)+
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ρ(hj), . . . , ρ(hK)
)

can be rewritten (up to the normalization constant) as
(∫ ρ(h1)+ρ(h2)

0
[x]α1−1 [ρ(h1)+ρ(h2)−x]α2−1 dx

)(
K∏
i=3

[ρ(hi)]αi−1
)

∝ [ρ(h1)+ρ(h2)]α1+α2−1
K∏
i=3

[ρ(hi)]αi−1 ,

which proves the desired result. �

E.3 Proof of Lemma 5.2.1

Lemma 5.2.1 (Computation of the Stochastic Risk). For a given (x, y) ∈ X×Y,
let

F(x, y) = {j : hj(x) 6= y} and T(x, y) = {j : hj(x) = y}

be respectively the set of indices of the voters that misclassify (x, y) and the set
of indices of the voters that correctly classify (x, y). Then, the stochastic risk
sP(x, y) can be rewritten as

sP(x, y) = E
ρ∼P

I [m̂ρ(x, y) ≤ 0] = I0.5

 ∑
j∈T(x,y)

αj,
∑

j∈F(x,y)
αj

 ,
with I0.5() the regularized incomplete beta function evaluated at 0.5. It is defined as

I0.5(a, b) , B0.5(a, b)
B1(a, b) , where Bt(a, b) ,

∫ t

0
xa−1(1− x)b−1dx

is the incomplete beta function.

Proof. Given an example (x, y) ∈ X × Y, by definition of the set F(x, y) and
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T(x, y), we have

P
h∼ρ

[h(x) 6= y] =
n∑
j=1

ρ(hj) I [hj(x) 6= y]

=
∑

j∈F(x,y)
ρ(hj),

and P
h∼ρ

[h(x) = y] =
n∑
j=1

ρ(hj) I [hj(x) = y]

=
∑

j∈T(x,y)
ρ(hj).

Moreover, by definition of the Dirichlet distribution (Definition 5.2.2), we have

ρ ∼ P ⇐⇒ (ρ(h1), . . . , ρ(hn)) ∼ Dir(α).

Then, we use the aggregation property of the Dirichlet distributions (Lemma E.2.1)
to obtain  ∑

j∈T(x,y)
ρ(hj),

∑
j∈F(x,y)

ρ(hj)
 ∼ Dir

 ∑
j∈T(x,y)

αj,
∑

j∈F(x,y)
αj


⇐⇒

(
P
h∼ρ

[h(x) = y] , P
h∼ρ

[h(x) 6= y]
)
∼ Dir

 ∑
j∈T(x,y)

αj,
∑

j∈F(x,y)
αj

 .
Thus, (Ph∼ρ [h(x) = y] ,Ph∼ρ [h(x) 6= y]) follows a bivariate Dirichlet distribution
a.k.a. Beta distribution. We have

P
h∼ρ

[h(x) = y] ∼ Beta
 ∑
j∈T(x,y)

αj,
∑

j∈F(x,y)
αj

 .
Finally, notice that the expected error is related to the cumulative probability
function of the random variable Ph∼ρ [h(x) = y] which is the regularized incomplete
beta function Ip : R+

∗ × R+
∗ → [0, 1]:

P
[
P
h∼ρ

[h(x) = y] ≤ 0.5
]

= I0.5

 ∑
j∈T(x,y)

αj,
∑

j∈F(x,y)
αj

 .
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Then, we have

sP(x, y) = P
ρ∼P

I [m̂ρ(x, y) ≤ 0]

= P
[
P
h∼ρ

[h(x) = y] ≤ 0.5
]

= I0.5

 ∑
j∈T(x,y)

αj,
∑

j∈F(x,y)
αj

 .
�

E.4 Proof of Corollary 5.2.1

Corollary 5.2.1 (Closed-form Solution of the Stochastic Risks). For any distribu-
tion D on X×Y, for any learning sample S ∼ Dm, for any finite hypothesis set H,
for any distribution P = Dir(α) with α ∈ (R+

∗ )card(H), we have

E
ρ∼P

RD(MVρ) ≤ E
(x,y)∼D

sP(x, y) = E
(x,y)∼D

I0.5

 ∑
j∈T(x,y)

αj,
∑

j∈F(x,y)
αj

 ,
and E

ρ∼P
RS(MVρ) ≤

1
m

m∑
i=1

sP(xi, yi) = 1
m

m∑
i=1

I0.5

 ∑
j∈T(xi,yi)

αj,
∑

j∈F(xi,yi)
αj

 .

Proof. From Equation (5.2) and Lemma 5.2.1, we have

E
ρ∼P

RD(MVρ) ≤ E
(x,y)∼D

sP(x, y)

= E
(x,y)∼D

I0.5

 ∑
j∈T(x,y)

αj,
∑

j∈F(x,y)
αj

 .
Similarly, from Equation (5.3) and Lemma 5.2.1, we have

E
ρ∼P

RS(MVρ) ≤
1
m

m∑
i=1

sP(xi, yi)

= 1
m

m∑
i=1

I0.5

 ∑
j∈T(x,y)

αj,
∑

j∈F(x,y)
αj

 .
�
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E.5 Proof of Theorem 5.3.1

Theorem 5.3.1 (PAC-Bayesian Bound for Stochastic Majority Votes). For any
distribution D on X×Y, for any finite hypothesis set H, for any distribution Π =
Dir(β) with β ∈ (R+

∗ )card(H), for any δ ∈ (0, 1], with probability at least 1− δ over
the random choice of S ∼ Dm, we have for all hyper-posterior P on H

E
ρ∼P

RD(MVρ) ≤ E
(x,y)∼D

sP(x, y) ≤ kl
 1
m

m∑
i=1

sP(xi, yi)

∣∣∣∣∣∣ KL(P‖Π)+ ln 2
√
m
δ

m

 ,

with KL(P‖Π) =
card(H)∑
j=1

ln[Γ (βj)]− ln
Γ
card(H)∑

j=1
βj

−card(H)∑
j=1

ln[Γ (αj)]

+ ln
Γ
card(H)∑

j=1
αj

+
card(H)∑
j=1

(αj−βj)
ψ(αj)−ψ

card(H)∑
j=1

αj

,
where Γ(α) =

∫∞
0 xα−1e−xdx is the Gamma function and the Digamma function

Ψ(α) is defined as the derivative of ln [Γ(α)]; these two functions are plotted in
Figure 5.4.

Proof. This is a direct application of Theorem 2.3.4 (and Definition 2.3.3). Indeed,
we apply Theorem 2.3.4 with the loss ` : M(H) × (X × Y) → [0, 1] defined by
`(ρ, (x, y)) = I [m̂ρ(x, y) ≤ 0].

– 291 –



E.6. Proof of Theorem 5.3.2

Moreover, the closed-form solution of the KL divergence is

KL(Π‖P) = E
ρ∼P

ln
(

P(ρ)
Π(ρ)

)

= E
ρ∼Dir(α)

ln
Z(β)
Z(α)

∏card(H)
j=1 [ρ(hj)]αj−1∏card(H)
j=1 [ρ(hj)]βj−1


= E

ρ∼Dir(α)

lnZ(β)− lnZ(α) + ln
card(H)∏

j=1
[ρ(hj)]αj−βj


= E

ρ∼Dir(α)

lnZ(β)− lnZ(α) +
card(H)∑
j=1

(αj − βj) ln [ρ(hj)]


= lnZ(β)− lnZ(α) +
card(H)∑
j=1

(αj−βj) E
ρ∼Dir(α)

ln [ρ(hj)]

=
card(H)∑
j=1

ln[Γ (βj)]− ln
Γ
card(H)∑

j=1
βj


−

card(H)∑
j=1

ln[Γ (αj)] + ln
Γ
card(H)∑

j=1
αj


+

card(H)∑
j=1

(αj − βj)
ψ(αj)− ψ

card(H)∑
j=1

αj

 .
The last equality follows by definition of Dirichlet’s geometric mean

E
ρ∼P

ln [ρ(hj)] = ψ(αj)− ψ
card(H)∑

j=1
αj

 .
and the normalization constant

ln (Z(α)) =
card(H)∑
j=1

ln[Γ (αj)]− ln
Γ
card(H)∑

j=1
αj

 .
�

E.6 Proof of Theorem 5.3.2
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Theorem 5.3.2 (PAC-Bayesian bound with data-dependent voters). Let Π1 and
P1 be the hyper-prior and hyper-posterior distributions on H1 defined with S1, and
Π2 and P2 the prior and posterior distributions on H2 defined with S2. For any
λ ∈ [0, 1] and δ ∈ (0, 1] with probability at least 1−δ over samples S1 ∼ Dm1 and
S2 ∼ Dm2 , we have

λ E
ρ∼P1

RD(MVρ) + (1−λ) E
ρ′∼P2

RD(MVρ′) ≤ E
(x,y)∼D

[λsP1(x, y)+(1−λ)sP2(x, y)] ≤

kl
 E

(x,y)∼S1

sP1(x, y)
1
λ

+ E
(x,y)∼S2

sP2(x, y)
1

1−λ

∣∣∣∣∣∣ KL(P1‖Π1)+ ln 4
√
m
δ

m
λ

+
KL(P2‖Π2)+ ln 4

√
m′

δ
m′

1−λ

.

Proof. From the joint convexity of kl(), we have for any λ ∈ [0, 1]

kl
[

E
(x,y)∼S

sP(x, y)
1
λ

+ E
(x,y)∼S′

sP′(x, y)
1

1−λ

∣∣∣∣∣ E
(x,y)∼D

sP(x, y)
1
λ

+ E
(x,y)∼D

sP′(x, y)
1

1−λ

]

≤λ kl
[

E
(x,y)∼S

sP(x, y)‖ E
(x,y)∼D

sP(x, y)
]

+(1−λ) kl
[

E
(x,y)∼S′

sP′(x, y)‖ E
(x,y)∼D

sP′(x, y)
]
.

For all hyper-prior Π on H, we have with probability at least 1− δ
2 on the random

choice S ∼ Dm for all hyper-posterior P on H

kl
[

E
(x,y)∼S

sP(x, y)‖ E
(x,y)∼D

sP(x, y)
]
≤

KL(P,Π) + ln 4
√
m
δ

m

⇐⇒ ∀λ ∈ [0, 1], λ kl
[

E
(x,y)∼S

sP(x, y)‖ E
(x,y)∼D

sP(x, y)
]
≤ λ

KL(P,Π) + ln 4
√
m
δ

m
.

(E.3)

Similarly, for all hyper-prior Π′ on H′, we have with probability at least 1 − δ
2 on

the random choice S′ ∼ Dm for all hyper-posterior P′ on H

kl
[

E
(x,y)∼S′

sP′(x, y)‖ E
(x,y)∼D

sP′(x, y)
]
≤

KL(P′,Π′) + ln 4
√
m
δ

m
⇐⇒

∀λ∈[0,1], (1−λ) kl
[

E
(x,y)∼S′

sP′(x, y)‖ E
(x,y)∼D

sP′(x, y)
]
≤(1−λ)

KL(P′,Π′) + ln 4
√
m′

δ

m′
.

(E.4)
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Combining Equation (E.3) and Equation (E.4) using the union bound, we obtain
the desired result with 1− δ probability. �

E.7 Additional Results
E.7.1 Choice of the prior
In the other experiments, we fixed the hyper-prior distribution Π (parameterized by
β) to the uniform, i.e. ∀j ∈ {1, . . . , card(H)}, βj = 1. This choice was to make
the comparison with the baselines as fair as possible, as their prior was also fixed
to the uniform. However, we can bias the sparsity of the posterior, or conversely
its concentration, by choosing a different value for the prior distribution parameters.
In some cases, tuning the prior parameters allows to obtain better performance, as
reported in Figures E.1 to E.4. As in Section 5.4, the hypothesis sets H1 resp. H2 are
composed of 50 decision trees learned with S1 resp. S2 with no limit on the depth. In
general, these results suggest that the choice of prior distribution has a high impact
on the learned model’s performance and tuning its concentration parameters would be
a viable option for improving the results.

E.7.2 Impact of voter strength
We report a study on the impact of voter strength on the learned models. More
precisely, we provide results for additional datasets as well as the study of the expected
strength of a voter as a function of the tree maximal depth. The hypothesis sets
H1 resp. H2 are composed of 50 decision trees learned with S1 resp. S2; the prior’s
parameters are set to βj = 1 for all j ∈ {1, . . . , card(H)}. The maximal depth is a
values belonging to the set {1, 2, 4, 8, 16}, i.e., the maximal depth varies from 1 to
16. We report in Figures E.5 to E.8 the stochastic test risks E(x,y)∼T sP(x, y) or the
test risk RT (MVρ), their corresponding empirical risks and the bound values. We can
see that limiting the maximal depth is an effective way for controlling the strength of
the voters. Indeed, the general trend tells us that increasing the strength of the voters
generally yields more powerful ensembles for all methods: the risks and the bounds are
decreasing or stay constant when the tree maximal depth is increasing.
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Figure E.1. Plot of the impact of the prior β on the performance of the stochastic
majority vote. More precisely, the x-axis represents the value of all the parameters βj
with j ∈ {1, . . . , card(H)} and the y-axis are the values of the test risks, the empirical
risks or the bound values. The mean (plain lines) and the standard deviations (shadows)
are obtained for all values on 10 runs.
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Figure E.2. Plot of the impact of the prior β on the performance of the stochastic
majority vote. More precisely, the x-axis represents the value of all the parameters βj
with j ∈ {1, . . . , card(H)} and the y-axis are the values of the test risks, the empirical
risks or the bound values. The mean (plain lines) and the standard deviations (shadows)
are obtained for all values on 10 runs.
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Figure E.3. Plot of the impact of the prior β on the performance of the stochastic
majority vote. More precisely, the x-axis represents the value of all the parameters βj
with j ∈ {1, . . . , card(H)} and the y-axis are the values of the test risks, the empirical
risks or the bound values. The mean (plain lines) and the standard deviations (shadows)
are obtained for all values on 10 runs.
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Figure E.4. Plot of the impact of the prior β on the performance of the stochastic
majority vote. More precisely, the x-axis represents the value of all the parameters βj
with j ∈ {1, . . . , card(H)} and the y-axis are the values of the test risks, the empirical
risks or the bound values. The mean (plain lines) and the standard deviations (shadows)
are obtained for all values on 10 runs.
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Figure E.5. Plot of the impact of tree maximal depth on the performance of the
stochastic majority vote. More precisely, the x-axis represents the value of the tree
maximal depth and the y-axis are the values of the test risks, the empirical risks or
the bound values. The mean (plain lines) and the standard deviations (shadows) are
obtained for all values on 10 runs.
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Figure E.6. Plot of the impact of tree maximal depth on the performance of the
stochastic majority vote. More precisely, the x-axis represents the value of the tree
maximal depth and the y-axis are the values of the test risks, the empirical risks or
the bound values. The mean (plain lines) and the standard deviations (shadows) are
obtained for all values on 10 runs.

– 300 –



E.7. Additional Results

5 10 15

Tree Maximal Depth

0.2

0.4

0.6

0.8

T
es

t
R

is
k

5 10 15

Tree Maximal Depth

0.2

0.4

0.6

0.8

E
m

p
ir

ic
al

R
is

k

FashionMNIST

Germain Masegosa Lacasse Algorithm 4.2 Algorithm 5.4

5 10 15

Tree Maximal Depth

0.2

0.4

0.6

0.8

1.0

B
ou

n
d

V
al

u
e

5 10 15

Tree Maximal Depth

0.0

0.2

0.4

0.6

0.8

T
es

t
R

is
k

5 10 15

Tree Maximal Depth

0.0

0.2

0.4

0.6

0.8

E
m

p
ir

ic
al

R
is

k

Pendigits

5 10 15

Tree Maximal Depth

0.00

0.25

0.50

0.75

1.00

B
ou

n
d

V
al

u
e

5 10 15

Tree Maximal Depth

0.35

0.40

0.45

0.50

T
es

t
R

is
k

5 10 15

Tree Maximal Depth

0.35

0.40

0.45

0.50

E
m

p
ir

ic
al

R
is

k

Protein

5 10 15

Tree Maximal Depth

0.6

0.8

1.0

B
ou

n
d

V
al

u
e

5 10 15

Tree Maximal Depth

0.00

0.05

0.10

0.15

T
es

t
R

is
k

5 10 15

Tree Maximal Depth

0.00

0.05

0.10

0.15

E
m

p
ir

ic
al

R
is

k

Shuttle

5 10 15

Tree Maximal Depth

0.0

0.2

0.4

B
ou

n
d

V
al

u
e

Figure E.7. Plot of the impact of tree maximal depth on the performance of the
stochastic majority vote. More precisely, the x-axis represents the value of the tree
maximal depth and the y-axis are the values of the test risks, the empirical risks or
the bound values. The mean (plain lines) and the standard deviations (shadows) are
obtained for all values on 10 runs.
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Figure E.8. Plot of the impact of tree maximal depth on the performance of the
stochastic majority vote. More precisely, the x-axis represents the value of the tree
maximal depth and the y-axis are the values of the test risks, the empirical risks or
the bound values. The mean (plain lines) and the standard deviations (shadows) are
obtained for all values on 10 runs.
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FAppendix of Chapter 6

F.1 Proof of Theorem 6.3.1

Theorem 6.3.1 (General Disintegrated PAC-Bayes Bound). For any distribution
D on X×Y, for any hypothesis set H, for any prior distribution π ∈ M∗(H), for any
measurable function ϕ :H×(X×Y)m→R∗+, for any λ>1, for any δ ∈ (0, 1], for any
algorithm A : (X×Y)m×M∗(H)→M(H), we have

P
S∼Dm,h∼ρS

 λ

λ−1 ln (ϕ(h,S))

≤ 2λ−1
λ−1 ln 2

δ
+ Dλ(ρS‖π)+ ln

[
E

S′∼Dm
E

h′∼π

(
ϕ(h′,S′)

λ
λ−1
)]≥1−δ,

where ρS , A(S, π) is output by the deterministic algorithm A.

Proof. For any sample S ∈ (X×Y)m, prior π ∈ M∗(H) and deterministic algorithm
A fixed apriori, let ρS = A(S, π) the distribution obtained from the algorithm A.
Note that ϕ(h,S) is a strictly-positive random variable. Hence, from Markov’s
inequality (Theorem A.2.1), we have

P
h∼ρS

[
ϕ(h,S) ≤ 2

δ
E

h′∼ρS

ϕ(h′,S)
]
≥ 1− δ

2

⇐⇒ E
h∼ρS

I
[
ϕ(h,S) ≤ 2

δ
E

h′∼ρS

ϕ(h′,S)
]
≥ 1− δ

2 .

Taking the expectation over S ∼ Dm to both sides of the inequality gives

E
S∼Dm

E
h∼ρS

I
[
ϕ(h,S) ≤ 2

δ
E

h′∼ρS

ϕ(h′,S)
]
≥ 1− δ

2

⇐⇒ P
S∼Dm,h∼ρS

[
ϕ(h,S) ≤ 2

δ
E

h′∼ρS

ϕ(h′,S)
]
≥ 1− δ

2 .

Since both sides of the inequality are strictly positive, we can take the logarithm
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and multiply by λ
λ−1 > 0 to obtain

P
S∼Dm,h∼ρS

[
λ

λ− 1 ln (ϕ(h,S)) ≤ λ

λ− 1 ln
(2
δ

E
h′∼ρS

ϕ(h′,S)
)]
≥ 1− δ

2 .

We develop the right-hand side of the inequality and take the expectation of the
hypothesis over the prior distribution π. We have for all prior π ∈ M∗(H),

λ

λ− 1 ln
(2
δ

E
h′∼ρS

ϕ(h′,S)
)

= λ

λ− 1 ln
(

2
δ

E
h′∼ρS

ρS(h′)π(h′)
π(h′)ρS(h′)ϕ(h′,S)

)

= λ

λ− 1 ln
(

2
δ

E
h′∼π

ρS(h′)
π(h′) ϕ(h′,S)

)
,

Remark that 1
r

+ 1
s

= 1 with r = λ and s = λ
λ−1 . Hence, we can apply Hölder’s

inequality (Theorem A.5.1):

E
h′∼π

ρS(h′)
π(h′) ϕ(h′,S) ≤

 E
h′∼π

ρS(h′)
π(h′)

λ


1
λ [

E
h′∼π

(
ϕ(h′,S)

λ
λ−1
)]λ−1

λ

.

Then, since both sides of the inequality are strictly positive, we take the logarithm;
add ln(2

δ
) and multiply by λ

λ−1 > 0 to both sides of the inequality, to obtain

λ

λ−1 ln
(

2
δ

E
h′∼π

ρS(h′)
π(h′) ϕ(h′,S)

)

≤ λ

λ−1 ln

2
δ

 E
h′∼π


ρS(h′)
π(h′)

λ



1
λ [

E
h′∼π

(
ϕ(h′,S)

λ
λ−1
)]λ−1

λ


= 1
λ−1 ln

 E
h′∼π


ρS(h′)
π(h′)

λ

+ λ

λ−1 ln 2
δ

+ ln
(

E
h′∼π

(
ϕ(h′,S)

λ
λ−1
))

= Dλ(ρS‖π) + λ

λ−1 ln 2
δ

+ ln
(

E
h′∼π

(
ϕ(h′,S)

λ
λ−1
))
.

From this inequality, we can deduce that

P
S∼Dm,h∼ρS

[
∀π ∈ M∗(H), λ

λ− 1 ln (ϕ(h,S)) ≤ Dλ(ρS‖π)

+ λ

λ−1 ln 2
δ

+ ln
(

E
h′∼π

(
ϕ(h′,S)

λ
λ−1
)) ]
≥ 1− δ

2 . (F.1)
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Given a prior π ∈ M∗(H), note that Eh′∼π ϕ(h′,S)
λ
λ−1 is a strictly positive random

variable. Hence, we apply Markov’s inequality (Theorem A.2.1) to have

P
S∼Dm

[
E

h′∼π

(
ϕ(h′,S)

λ
λ−1
)
≤ 2
δ

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)

λ
λ−1
)]
≥ 1− δ

2 .

Since the inequality does not depend on the random variable h ∼ ρS, we have

P
S∼Dm

[
E

h′∼π

(
ϕ(h′,S)

λ
λ−1
)
≤ 2
δ

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)

λ
λ−1
)]

= E
S∼Dm

I
[
E

h′∼π

(
ϕ(h′,S)

λ
λ−1
)
≤ 2
δ

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)

λ
λ−1
)]

= E
S∼Dm

E
h∼ρS

I
[
E

h′∼π

(
ϕ(h′,S)

λ
λ−1
)
≤ 2
δ

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)

λ
λ−1
)]

= P
S∼Dm,h∼ρS

[
E

h′∼π

(
ϕ(h′,S)

λ
λ−1
)
≤ 2
δ

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)

λ
λ−1
)]
.

Since both sides of the inequality are strictly positive, we take the logarithm to
both sides of the inequality, and we add λ

λ−1 ln 2
δ

to have

P
S∼Dm,h∼ρS

[
E

h′∼π

(
ϕ(h′,S)

λ
λ−1
)
≤ 2
δ

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)

λ
λ−1
)]
≥ 1− δ

2 ⇐⇒

P
S∼Dm,h∼ρS

 λ

λ−1 ln 2
δ

+ ln
(

E
h′∼π

(
ϕ(h′,S)

λ
λ−1
))
≤ 2λ− 1

λ−1 ln 2
δ

+ ln
(

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)

λ
λ−1
)) ≥ 1− δ

2 . (F.2)

Combining Equations (F.1) and (F.2) with a union bound gives us the desired
result. �

F.2 Proof of Corollary 6.3.1

Corollary 6.3.1 (Extreme Cases of Theorem 6.3.1). Under the assumptions of
Theorem 6.3.1, when λ→1+, we have

P
S∼Dm,h∼ρS

 lnϕ(h,S) ≤ ln 2
δ

+ ln
[

esssup
S′∈(X×Y),h′∈H

ϕ(h′,S′)
]≥1−δ,

– 305 –



F.2. Proof of Corollary 6.3.1

when λ→+∞, we have

P
S∼Dm,h∼ρS

 lnϕ(h,S) ≤ ln esssup
h′∈H

ρS(h′)
π(h′) + ln

[ 4
δ2 E

S′∼Dm
E

h′∼π
ϕ(h′,S′)

]≥1−δ,

where esssup is the essential supremum defined as the supremum on a set with
non-zero probability measures, i.e.,

esssup
S′∈(X×Y),h′∈H

ϕ(h′,S′) = inf
{
τ ∈ R, P

S∼Dm,h∼ρS

[
ϕ(h,S) > τ

]
= 0

}
,

and esssup
h′∈H

ρS(h′)
π(h′) = inf

{
τ ∈ R, P

h∼ρS

[
ρS(h)
π(h) > τ

]
= 0

}
.

Proof. Starting from Theorem 6.3.1 and rearranging, we have

P
S∼Dm,h∼ρS

ln (ϕ(h,S)) ≤ 2λ−1
λ

ln 2
δ

+ λ−1
λ

Dλ(ρS‖π)

+ ln
([

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)

λ
λ−1
)]λ−1

λ

)≥1−δ.

Then, we will prove the case when λ→ 1 and λ→ +∞ separately.

When λ→ 1. We have limλ→1+
2λ−1
λ

ln2
δ
= ln 2

δ
and limλ→1+

λ−1
λ

Dλ(ρS‖π)=0.
Furthermore, note that

‖ϕ‖ λ
λ−1

=
[

E
S′∼Dm

E
h′∼π

(
|ϕ(h′,S′)|

λ
λ−1
)]λ−1

λ

=
[

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)

λ
λ−1
)]λ−1

λ

is the L λ
λ−1 -norm of the function ϕ : H× (X×Y)m → R∗+, where limλ→1 ‖ϕ‖ λ

λ−1
=

limλ′→+∞ ‖ϕ‖λ′ (since we have limλ→1+
λ
λ−1 = (limλ→1 λ)(limλ→1

1
λ−1) = +∞).

Then, it is well known that

‖ϕ‖∞ = lim
λ′→+∞

‖ϕ‖λ′ = esssup
S′∈(X×Y),h′∈H

ϕ(h′,S′).
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Hence, we have

lim
λ→1

ln
([

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)

λ
λ−1
)]λ−1

λ

)

= ln
(

lim
λ→1

[
E

S′∼Dm
E

h′∼π

(
ϕ(h′,S′)

λ
λ−1
)]λ−1

λ

)

= ln
(

lim
λ→1
‖ϕ‖ λ

λ−1

)
= ln

(
lim

λ′→+∞
‖ϕ‖λ′

)
= ln (‖ϕ‖∞) = ln

(
esssup

S′∈(X×Y),h′∈H
ϕ(h′,S′)

)
.

Finally, we can deduce that

lim
λ→1

[
2λ−1
λ

ln 2
δ

+ λ−1
λ

Dλ(ρS‖π)+ ln
([

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)

λ
λ−1
)]λ−1

λ

)]

= ln 2
δ

+ ln
[

esssup
S′∈(X×Y),h′∈H

ϕ(h′,S′)
]
.

When λ→ +∞. First, we have limλ→+∞
2λ−1
λ

ln 2
δ

= ln 2
δ

[
2− limλ→+∞

1
λ

]
=

2 ln 2
δ

= ln 4
δ2 and limλ→+∞ ‖ϕ‖ λ

λ−1
= limλ′→1 ‖ϕ‖λ′ = ‖ϕ‖1 (since limλ→+∞

λ
λ−1 =

limλ→+∞
1

1− 1
λ

= 1). Hence, we have

lim
λ→+∞

ln
([

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)

λ
λ−1
)]λ−1

λ

)

= ln
(

lim
λ→+∞

[
E

S′∼Dm
E

h′∼π

(
ϕ(h′,S′)

λ
λ−1
)]λ−1

λ

)

= ln
(

lim
λ→+∞

‖ϕ‖ λ
λ−1

)
= ln

(
lim
λ′→1
‖ϕ‖λ′

)
= ln (‖ϕ‖1) = ln

(
E

S′∼Dm
E

h′∼π
ϕ(h′,S′)

)
.
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Moreover, by rearranging the terms in λ−1
λ

Dλ(ρS‖π), we have

λ−1
λ

Dλ(ρS‖π) = 1
λ

ln
 E
h∼π

[ρS(h)
π(h)

]λ = ln


 E
h∼π

[ρS(h)
π(h)

]λ 1
λ


= ln

([
E
h∼π

(
γ(h)λ

)] 1
λ

)
= ln(‖γ‖λ) ,

where ‖γ‖λ is the Lλ-norm of the function γ defined as γ(h) = ρS(h)
π(h) . We have

lim
λ→+∞

λ−1
λ

Dλ(ρS‖π) = lim
λ→+∞

ln(‖γ‖λ) = ln
(

lim
λ→+∞

‖γ‖λ
)

= ln (‖γ‖∞) = ln
(

esssup
h∈H

γ(h)
)

= ln
(

esssup
h∈H

ρS(h)
π(h)

)
.

Finally, we can deduce that

lim
λ→+∞

[
2λ−1
λ

ln 2
δ

+ λ−1
λ

Dλ(ρS‖π)+ ln
([

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)

λ
λ−1
)]λ−1

λ

)]

= ln esssup
h′∈H

ρS(h′)
π(h′) + ln

[ 4
δ2 E

S′∼Dm
E

h′∼π
ϕ(h′,S′)

]
.

�

F.3 Proof of Theorem 6.3.2
For the sake of completeness, we first prove an upper bound on

√
ab (see, e.g., Thie-

mann et al., 2017).

Lemma F.3.1. For any a > 0, b > 0, we have
√

a
b

= argmin
λ>0

(
a

λ
+ λb

)
, and 2

√
ab = min

λ>0

(
a

λ
+ λb

)
,

and ∀λ > 0,
√
ab ≤ 1

2

(
a

λ
+ λb

)
.
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Proof. Let f(λ) =
(
a
λ

+ λb
)

. The first derivative of f w.r.t. λ is

∂f

∂λ
(λ) =

(
b− a

λ2

)
.

Moreover, from the derivative we can deduce that we have ∂f
∂λ

(λ) < 0 ⇐⇒ λ ∈
(0,
√

a
b
), and ∂f

∂λ
(λ) > 0 ⇐⇒ λ >

√
a
b

and ∂f
∂λ

(λ) = 0 ⇐⇒ λ =
√

a
b
. It implies

that the function is strictly decreasing on λ ∈ (0,
√

a
b
), strictly increasing for

λ >
√

a
b

and admit a unique minimum at λ∗ =
√

a
b
. Additionally, f(λ∗) = 2

√
ab

which proves the claim. �

We can now prove Theorem 6.3.2 with Lemma F.3.1.

Theorem 6.3.2 (Parametrizable Disintegrated PAC-Bayes Bound). For any distri-
bution D on X×Y, for any hypothesis set H, for any prior distribution π ∈ M∗(H),
for any measurable function ϕ :H×(X×Y)m→R∗+, for any δ ∈ (0, 1], for any algo-
rithm A : (X×Y)m×M∗(H)→M(H), we have

P
S∼Dm,
h∼ρS

∀λ>0, ln (ϕ(h,S))≤ ln
[
λ

2 e
D2(ρS‖π)+ 8

2λδ3 E
S′∼Dm

E
h′∼π

[
ϕ(h′,S′)2

]] ≥ 1−δ,

where ρS,A(S, π) is output by the deterministic algorithm A.

Proof. The proof is similar to the one of Theorem 6.3.1. Since ϕ(h,S) is a strictly
positive random variable, from Markov’s inequality (Theorem A.2.1), we have

P
h∼ρS

[
ϕ(h,S) ≤ 2

δ
E

h′∼ρS

ϕ(h′,S)
]
≥ 1− δ

2

⇐⇒ E
h∼ρS

I
[
ϕ(h,S) ≤ 2

δ
E

h′∼ρS

ϕ(h′,S)
]
≥ 1− δ

2 .

Taking the expectation over S ∼ Dm to both sides of the inequality gives

E
S∼Dm

E
h∼ρS

I
[
ϕ(h,S) ≤ 2

δ
E

h′∼ρS

ϕ(h′,S)
]
≥ 1− δ

2

⇐⇒ P
S∼Dm,h∼ρS

[
ϕ(h,S) ≤ 2

δ
E

h′∼ρS

ϕ(h′,S)
]
≥ 1− δ

2 .
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Using Lemma F.3.1 with a = 4
δ2ϕ(h′,S)2 and b = ρS(h′)2

π(h′)2 , we have for all prior
π∈M∗(H)

∀λ>0, 2
δ

E
h′∼ρS

ϕ(h′,S) = E
h′∼π

√√√√ρS(h′)2

π(h′)2
4
δ2ϕ(h′,S)2

≤ 1
2

λ E
h′∼π

(
ρS(h′)
π(h′)

)2

+ 4
λδ2 E

h′∼π

(
ϕ(h′,S)2

).
Then, since both sides of the inequality are strictly positive, we take the logarithm
to obtain

∀λ>0, ln
(2
δ

E
h′∼ρS

ϕ(h′,S)
)
≤ ln

1
2

λ E
h′∼π

(
ρS(h′)
π(h′)

)2

+ 4
λδ2 E

h′∼π

(
ϕ(h′,S)2

)
= ln

(1
2

[
λ exp(D2(ρS‖π))+ 4

λδ2 E
h′∼π

(
ϕ(h′,S)2

)])
.

Hence, we can deduce that

P
S∼Dm,h∼ρS

∀π∈M∗(H), ∀λ > 0, ln (ϕ(h,S))

≤ ln
(1

2

[
λeD2(ρS‖π) + 4

λδ2 E
h′∼π

(
ϕ(h′,S)2

)])  ≥ 1− δ
2 .

(F.3)

Given a prior π ∈ M∗(H), note that Eh′∼π ϕ(h′,S)2 is a strictly-positive random
variable. Hence, we apply Markov’s inequality (Theorem A.2.1):

P
S∼Dm

[
E

h′∼π
ϕ(h′,S)2 ≤ 2

δ
E

S′∼Dm
E

h′∼π
ϕ(h′,S′)2

]
≥ 1− δ

2 .

Since the inequality does not depend on the random variable h ∼ ρS, we have

P
S∼Dm

[
E

h′∼π

(
ϕ(h′,S)2

)
≤ 2
δ

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)2

)]
= P

S∼Dm,h∼ρS

[
E

h′∼π

(
ϕ(h′,S)2

)
≤ 2
δ

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)2

)]
.

Additionally, note that multiplying by 4
2λδ2 > 0, adding λ

2 exp(D2(ρS‖π)), and
taking the logarithm to both sides of the inequality results in the same indicator
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function. Indeed,

I
[
E

h′∼π

(
ϕ(h′,S)2

)
≤ 2
δ

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)2

)]
= I

[
∀λ > 0, 4

2λδ2 E
h′∼π

(
ϕ(h′,S)2

)
≤ 8

2λδ3 E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)2

)]

= I
∀λ > 0, ln

(
λ
2 exp(D2(ρS‖π))+ 4

2λδ2 E
h′∼π

(
ϕ(h′,S)2

))

≤ ln
(
λ
2 exp(D2(ρS‖π))+ 8

2λδ3 E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)2

)).
Hence, we can deduce that

P
S∼Dm,h∼ρS

∀λ>0, ln
(1

2

[
λ exp(D2(ρS‖π))+ 4

λδ2 E
h′∼π

(
ϕ(h′,S)2

)])

≤ ln
(1

2

[
λ exp(D2(ρS‖π))+ 8

λδ3 E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)2

)])  ≥ 1− δ
2 . (F.4)

Combining Equations (F.3) and (F.4) with a union bound gives us the desired
result. �

F.4 Proof of Proposition 6.3.1

Proposition 6.3.1 (Optimal Bound of Theorem 6.3.2). For any distribution D
on X×Y, for any hypothesis set H, for any prior distribution π on H, for any
δ∈(0, 1], for any measurable function ϕ :H×(X×Y)m→R∗+, for any algorithm A :
(X×Y)m×M∗(H)→M(H), let

λ∗= argmin
λ>0

ln

λ2 eD2(ρS‖π)+
E

S′∼Dm
E

h′∼π

[
8ϕ(h′,S′)2

]
2λδ3

,

then, we have

Theorem 6.3.2︷ ︸︸ ︷
2 ln

[
λ∗

2 eD2(ρS‖π)+ E
S′∼Dm

E
h′∼π

(
8ϕ(h′,S′)2

2λ∗δ3

)]

= D2(ρS‖π) + ln
[

E
S′∼Dm

E
h′∼π

(
8ϕ(h′,S′)2

δ3

)]
︸ ︷︷ ︸

Theorem 6.3.1 with λ = 2.

,
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where λ∗ =

√√√√ES′∼Dm Eh′∼π [8ϕ(h′,S′)2]
δ3 exp(D2(ρS‖π)) .

Put into words: the optimal λ∗ gives the same bound for Theorem 6.3.1 and
Theorem 6.3.2.

Proof. We consider the right-hand side of the inequality of Theorem 6.3.2 (which
is strictly positive): we have

ln
[
λ

2 e
D2(ρS‖π)+ 8

2λδ3 E
S′∼Dm

E
h′∼π

[
ϕ(h′,S′)2

]]
. (F.5)

Since ln is a strictly increasing function, we have

min
λ>0

{
ln
[
λ

2 e
D2(ρS‖π)+ 8

2λδ3 E
S′∼Dm

E
h′∼π

[
ϕ(h′,S′)2

]]}

= ln
[
min
λ>0

{
λ

2 e
D2(ρS‖π)+ 8

2λδ3 E
S′∼Dm

E
h′∼π

[
ϕ(h′,S′)2

]}]
.

Then, we apply Lemma F.3.1 by taking a = 8
2δ3 ES′∼Dm Eh′∼π [ϕ(h′,S′)2] and b =

1
2e

D2(ρS‖π) to obtain λ∗ =
√

a
b

=
√

ES′∼Dm Eh′∼π [8ϕ(h′,S′)2]
δ3 exp(D2(ρS‖π)) . Finally, by substituting

λ∗ into Equation (F.5), we obtain

ln
[
λ∗

2 e
D2(ρS‖π)+ 8

2λ∗δ3 E
S′∼Dm

E
h′∼π

[
ϕ(h′,S′)2

]]

=1
2

(
D2(ρS‖π) + ln

[
E

S′∼Dm
E

h′∼π

(
8ϕ(h′,S′)2

δ3

)])
,

which is the desired result. �

F.5 Proof of Corollary 6.4.1
We introduce Theorem F.5.1 which takes into account a set of priors P while Theo-
rem 6.3.1 handles a unique prior π.

Theorem F.5.1. For any distribution D on X×Y, for any hypothesis set H, for
any priors set P={πt}Tt=1 of T prior π ∈ M∗(H), for any measurable function
ϕ : H×(X×Y)m→R∗+, for any λ > 1, for any δ ∈ (0, 1], for any algorithm A :
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(X×Y)m×M∗(H)→M(H), we have

P
S∼Dm,h∼ρS

∀πt ∈ P,
λ

λ−1 ln (ϕ(h,S)) ≤ Dλ(ρS‖π)+ λ

λ−1 ln 2
δ

+ ln2T
δ

+ ln
(

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)

λ
λ−1
)) ≥ 1−δ,

where ρS,A(S, π) is output by the deterministic algorithm A.

Proof. The proof is mainly the same as Theorem 6.3.1. Indeed, we first derive the
same equation as Equation (F.1), we have

P
S∼Dm,h∼ρS

[
∀π∈M∗(H), λ

λ−1 ln(ϕ(h,S)) ≤ Dλ(ρS‖π)

+ λ

λ−1 ln 2
δ

+ ln
(

E
h′∼π

(
ϕ(h′,S)

λ
λ−1
)) ]
≥ 1− δ

2 .

Then, we apply Markov’s inequality (as in Theorem 6.3.1) T times with the T
priors πt belonging to P, however, we set the confidence to δ

2T instead of δ
2 , we

have

P
S∼Dm,h∼ρS

 ln
(

E
h′∼πt

[
ϕ(h′,S)

λ
λ−1
])

≤ ln2T
δ

+ ln
(

E
S′∼Dm

E
h′∼πt

[
ϕ(h′,S′)

λ
λ−1
])  ≥ 1− δ

2T .

Finally, combining the T + 1 bounds with a union bound gives us the desired
result. �

We now prove Corollary 6.4.1 from Theorem F.5.1.

Corollary 6.4.1 (Instantiation of Theorem 6.3.1 for Neural Networks). For any
distribution D on X×Y, for any set P = {π1, . . . , πT} of T priors on H where
πt = N (vt, σ2ID), for any algorithm A : (X×Y)m × M∗(H)→M(H), for any loss
` :H×(X×Y)→[0, 1], for any δ∈(0, 1], we have

P
S∼Dm,h∼ρS

∀πt ∈ P, kl(R`S(h)‖R`D(h)) ≤ 1
m

[
‖w−vt‖2

2
σ2 + ln 16T

√
m

δ3

] ≥ 1−δ,
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where kl(a‖b) = a ln a
b

+ (1−a) ln 1−a
1−b , ρS = N (w, σ2ID), and the hypothesis

h ∼ ρS is parameterized by w+ε.

Proof. We instantiate Theorem F.5.1 with ϕ(h,S) = exp
[
λ−1
λ
m kl(R`S(h)‖R`D(h))

]
and λ = 2. We have with probability at least 1− δ over S ∼ Dm and h ∼ ρS, for
all prior πt∈P

kl(R`S(h)‖R`D(h))≤ 1
m

[
D2(ρS‖πt) + ln

(8T
δ3 E

S′∼Dm
E

h′∼πt
em kl(R`S′ (h

′)‖R`D(h′))
)]
.

From Maurer (2004) we upper-bound ES′∼Dm Eh′∼πt e
m kl(R`S′ (h

′)‖R`D(h′)) by 2
√
m

for each prior πt (Lemma B.16.1). Hence, we have, for all prior πt∈P

kl(R`S(h)‖R`D(h))≤ 1
m

[
D2(ρS‖πt) + ln

(
16T
√
m

δ3

)]
.

Additionally, the Rényi divergence D2(ρS‖πt) between two multivariate Gaussians
ρS=N (w, σ2ID) and πt=N (vt, σ2ID) is well known: its closed-form solution is
D2(ρS‖πt)=‖w−vt‖2

2
σ2 (see, for example, (Gil et al., 2013)). �

F.6 Proof of Corollary 6.4.2
We first prove the following lemma in order to prove Corollary 6.4.2.

Lemma F.6.1. If ρS = N (w, σ2ID) and π = N (v, σ2ID), we have

ln ρS(h)
π(h) = 1

2σ2

[
‖w+ε− v‖2

2 − ‖ε‖2
2

]
,

where ε∼N (0, σ2ID) is a Gaussian noise such that w+ε are the weights of h∼ρS
with ρS=N (w, σ2ID).

Proof. The probability density functions of ρS and π for h ∼ ρS (with the weights
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w+ε) can be rewritten as

ρS(h) =
[

1
σ
√

2π

]D
exp

(
− 1

2σ2‖w+ε−w‖2
2

)
=
[

1
σ
√

2π

]D
exp

(
− 1

2σ2‖ε‖
2
2

)

and π(h) =
[

1
σ
√

2π

]D
exp

(
− 1

2σ2‖w+ε− v‖2
2

)
.

We can derive a closed-form expression of ln
[
ρS(h)
π(h)

]
. Indeed, we have

ln
[
ρS(h)
π(h)

]
= ln [ρS(h)]− ln [π(h)]

= ln
[ 1

σ
√

2π

]D
exp

(
− 1

2σ2‖ε‖
2
2

)
− ln

[ 1
σ
√

2π

]D
exp

(
− 1

2σ2‖w+ε− v‖2
2

)
= − 1

2σ2‖ε‖
2
2 + 1

2σ2‖w+ε− v‖2
2 = 1

2σ2

[
‖w+ε− v‖2

2 − ‖ε‖2
2

]
.

�

We can now prove Corollary 6.4.2.

Corollary 6.4.2 (Instantiation of Known Bounds for Neural Networks). For any
distribution D on X×Y, for any set P = {π1, . . . , πT} of T priors on H where
πt = N (vt, σ2ID), for any algorithm A : (X×Y)m × M∗(H)→M(H), for any loss
` : H×(X×Y)→{0, 1}, for any δ∈(0, 1], with probability at least 1−δ over the
learning sample S∼Dm and the hypothesis h∼ρS parameterized by w+ε, we have
∀πt ∈ P

kl(R`S(h)‖R`D(h))≤ 1
m

‖w+ε−vt‖2
2−‖ε‖2

2
2σ2 + ln2T

√
m

δ

, (6.1)

∀b∈b, kl+(R`S(h)‖R`D(h))≤ 1
m

b+1
b

[
‖w+ε−vt‖2

2−‖ε‖2
2

2σ2

]
+
+ ln(b+1)T card(b)

δ

,
(6.2)

∀c∈c, R`D(h)≤
1− exp

(
−cR`S(h)− 1

m

[
‖w+ε−vt‖2

2−‖ε‖2
2

2σ2 + lnT card(c)
δ

])
1−e−c ,

(6.3)
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with [x]+= max(x, 0), and kl+(R`S(h)‖R`D(h))= kl(R`S(h)‖R`D(h)) if R`S(h)<R`D(h)
and 0 otherwise. Moreover, ε∼N (0, σ2ID) is a Gaussian noise such that w+ε are
the weights of h∼ρS with ρS=N (w, σ2ID), and c, b are two sets of hyperparam-
eters fixed a priori.

Proof. We will prove the three bounds separately.

Equation (6.1). We instantiate Theorem 1(i) of Rivasplata et al. (2020)
(proved in Theorem 2.4.1) with ϕ(h,S) = exp

[
m kl(R`S(h)‖R`D(h))

]
, however, we

apply the theorem T times for each prior πt ∈ P (with a confidence δ
T

instead of
δ). Hence, for each prior πt ∈ P, we have with probability at least 1− δ

T
over the

random choice of S ∼ Dm and h ∼ ρS

kl(R`S(h)‖R`D(h)) ≤ 1
m

[
ln
[
ρS(h)
πt(h)

]
+ ln

(
T

δ
E

S′∼Dm
E

h′∼π
em kl(R`S′ (h

′)‖R`D(h′))
)]
.

From Maurer (2004), we upper-bound ES′∼Dm Eh′∼πt e
m kl(R`S′ (h

′)‖R`D(h′)) by 2
√
m

(Lemma B.16.1) and using Lemma F.6.1 we rewrite the disintegrated KL diver-
gence. Finally, a union bound argument gives us the claim.

Equation (6.2). We apply T card(b) times Proposition 3.1 of Blanchard and
Fleuret (2007) (proved in Theorem 2.4.3) with a confidence δ

T card(b) instead of
δ. For each prior πt ∈ P and hyperparameters b ∈ b, we have with probability at
least 1− δ

T card(b) over the random choice of S ∼ Dm and h ∼ ρS

kl(R`S(h)‖R`D(h)) ≤ 1
m

[
b+1
b

[
lnρS(h)
πt(h)

]
+
+ ln

(
T card(b)(b+1)

δ

)]
.

From Lemma F.6.1 and a union bound argument, we obtain the claim.

Equation (6.3). We apply T card(c) times Theorem 1.2.7 of Catoni (2007)
(proved in Theorem 2.4.2) with a confidence δ

T card(c) instead of δ. For each prior
πt ∈ P and hyperparameter c ∈ c, we have with probability at least 1 − δ

T card(c)
over the random choice of S ∼ Dm and h ∼ ρS

R`D(h)≤ 1
1−e−c

[
1− exp

(
−cR`S(h)− 1

m

[
ln
[
ρS(h)
πt(h)

]
+ lnT card(c)

δ

])]
.

From Lemma F.6.1 and a union bound argument, we obtain the claim. �
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F.7 Proof of Corollary 6.4.3

Corollary 6.4.3 (PAC-Bayesian Bound for Stochastic Neural Networks). For any
distribution D on X×Y, for any set P = {π1, . . . , πT} of T priors on H where πt =
N (vt, σ2ID), for any loss ` :H×(X×Y)→{0, 1}, for any δ∈(0, 1], with probability
at least 1−δ over S∼Dm and {h1, . . . , hK}∼ρK , we have simultaneously ∀πt∈P,

kl
(
E
h∼ρ

R`S(h)‖ E
h∼ρ

R`D(h)
)
≤ 1
m

[
‖w−vt‖2

2
2σ2 + ln4T

√
m

δ

]
, (6.4)

and kl
(

1
K

K∑
i=1

RS(hi)‖ E
h∼ρ

R`S(h)
)
≤ 1
n

ln 4
δ
, (6.5)

where ρ = N (w, σ2ID) and the hypothesis h sampled from ρ is parameterized by
w + ε with ε ∼ N (0, σ2ID).

Proof. We instantiate Theorem 2.3.4 and apply Jensen’s inequality (Theorem A.1.1)
on the left-hand side of the inequation for each prior πt=N (vt, σ2ID) with the
posterior ρ=N (w, σ2ID) with a confidence δ

2T instead of δ. Indeed, for each
prior πt, with probability at least 1− δ

2T over the random choice of S ∼ Dm,
we have for all posterior ρ on H,

kl
(
E
h∼ρ

R`S(h)‖ E
h∼ρ

R`D(h)
)
≤ 1
m

[
KL(ρ‖πt)+ ln 4T

√
m

δ

]
.

Note that the closed-form solution of the KL divergence between the Gaussian
distributions ρ and πt is well known, we have KL(ρ‖πt)=‖w−vt‖2

2
2σ2 . Then, by ap-

plying a union bound argument over the T bounds obtained with the T priors πt,
we have with probability at least 1− δ

2 over the random choice of S ∼ Dm, for all
prior πt ∈ P, for all posterior ρ

kl
(
E
h∼ρ

R`S(h)‖ E
h∼ρ

R`D(h)
)
≤ 1
m

[‖w−vt‖2
2

2σ2 + ln 4T
√
m

δ

]
. (Equation (6.4))

Additionally, we obtained Equation (6.5) by a direct application the Theorem 2.2
of Dziugaite and Roy (2017) (with confidence δ

2 instead of δ). Finally, from a
union bound of the two bounds in Equations (6.4) and (6.5) gives the result. �
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F.8 Evaluation and Minimization of the Bounds of
Corollaries 6.4.1 to 6.4.3

We optimize and evaluate the bounds of the corollaries (except Equation (6.3)) thanks
to the inverting functions of kl() defined in Definition 2.3.3. Indeed, for the different
corollaries, the PAC-Bayesian generalization bounds become

R`D(h) ≤ kl
(

R`S(h)
∣∣∣∣∣ 1
m

[
‖w−vt‖2

2
σ2 + ln 16T

√
m

δ3

])
︸ ︷︷ ︸

Corollary 6.4.1

,

R`D(h) ≤ kl
(

R`S(h)
∣∣∣∣∣ 1
m

[
‖w+ε−vt‖2

2−‖ε‖2
2

2σ2 + ln2T
√
m

δ

])
︸ ︷︷ ︸

Equation (6.1)

,

R`D(h) ≤ kl
(

R`S(h)
∣∣∣∣∣ 1
m

[
b+1
b

[
‖w+ε−vt‖2

2−‖ε‖2
2

2σ2

]
+
+ ln (b+1)T card(b)

δ

])
︸ ︷︷ ︸

Equation (6.2)

,

and E
h∼ρ

R`D(h) ≤ kl
(
♠
∣∣∣∣∣ 1
m

[
‖w−vt‖2

2
2σ2 + ln 4T

√
m

δ

])
︸ ︷︷ ︸

Corollary 6.4.3

,

where ♠ = kl
(

1
K

K∑
i=1

RS(hi)
∣∣∣∣∣ 1
K

ln 4
δ

)
.

Based on these bounds, we can deduce some objective functions that is approximated
on a mini-batch U ⊆ S. Indeed, at each iteration in phase 2), after sampling the noise
ε, the algorithm updates the weights ω (i.e., the hypothesis h) by optimizing

kl
(

R`U(h)
∣∣∣∣∣ 1
m

[
‖ω−vt‖2

2
σ2 + ln 16T

√
m

δ3

])
︸ ︷︷ ︸

Objective function for Corollary 6.4.1

,

kl
(

R`U(h)
∣∣∣∣∣ 1
m

[
‖ω+ε−vt‖2

2−‖ε‖2
2

2σ2 + ln 2T
√
m

δ

])
︸ ︷︷ ︸

Objective function for Equation (6.1)

,

kl
(

R`U(h)
∣∣∣∣∣ 1
m

[
b+1
b

[
‖ω+ε−vt‖2

2−‖ε‖2
2

2σ2

]
+
+ ln (b+1)T card(b)

δ

])
︸ ︷︷ ︸

Objective function for Equation (6.2)

,

where the loss `() is the bounded cross-entropy loss of Dziugaite and Roy (2018),
i.e., `(h, (x, y)) = − 1

Z
ln
[
e−Z + (1− 2e−Z)h[y]

]
.
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Concerning the optimization of the hyperparameters c ∈ c and b ∈ b for Equa-
tions (6.2) and (6.3), we (i) initialize b ∈ b or c ∈ c with the one that performs best on
the first mini-batch and (ii) optimize by gradient descent the hyperparameter. To evalu-
ate Equations (6.2) and (6.3), we take b ∈ b and c ∈ c that leads to the tightest bound.

F.9 Disintegrated Information-theoretic Bounds
We discuss in this section another interpretation of the disintegration procedure through
Theorems F.9.1 and F.9.2 below. Actually, the Rényi divergence between π and ρ is
sensitive to the choice of the learning sample S: when the posterior ρ learned from S
differs greatly from the prior π the divergence is high. To avoid such a behavior, we
consider mutual information which is a measure of dependence between the random
variables S∈(X×Y)m and h∈H. More formally, the mutual information is defined as

MI(h;S) = min
π∈M∗(H)

E
S∼Dm

KL(ρS‖π).

From this quantity, we can derive the generalization bound introduced in the following
theorem.

Theorem F.9.1. For any distribution D on X×Y, for any hypothesis set H, for
any measurable function ϕ : H × (X×Y)m → [1,+∞[, for any δ ∈ (0, 1], for any
deterministic algorithm A : (X×Y)m × M∗(H)→M(H), we have

P
S∼Dm,h∼ρS

[
lnϕ(h,S) ≤ 1

δ

[
MI(h;S) + ln

(
E

S∼Dm
E

h∼π∗
ϕ(h,S)

)]]
≥ 1− δ,

where π∗ is defined such that π∗(h) = ES∼Dm ρS′(h).

Proof. Deferred to Appendix F.11. �

As for the disintegrated bounds introduced in Section 6.3, the bound on lnϕ(h,S)
depends on mainly two terms: a term (i.e., MI(h;S)) that measures the dependence
of h ∈ H on the learning sample S and ln (ES∼Dm Eh∼π∗ ϕ(h,S)) that must be upper-
bounded to obtain a computable bound. However, the bound has a polynomial de-
pendence of δ, i.e., we have 1

δ
instead of ln 1

δ
. To improve such dependence, we

consider Sibson’s mutual information (Verdú, 2015). It involves an expectation over
the learning samples of a given size m and is defined for a given λ>1 by

MIλ(h;S) , min
π∈M∗(H)

1
λ−1ln

 E
S∼Dm

E
h∼π

[
ρS(h)
π(h)

]λ .
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The higher MIλ(h;S), the higher the correlation is, meaning that the sampling of h
is highly dependent on the choice of S. This measure has two interesting properties:
it generalizes the mutual information (Verdú, 2015), and it can be related to the
Rényi divergence. Indeed, let ρ(h,S)=ρS(h)Dm(S), resp. π(h,S)=π(h)Dm(S), be
the probability of sampling both S∼Dm and h∼ρS, resp. S∼Dm and h∼π. Then we
can write:

MIλ(h;S) = min
π∈M∗(H)

1
λ−1ln

 E
S∼Dm

E
h∼π

[
ρS(h)Dm(S)
π(h)Dm(S)

]λ
= min
π∈M∗(H)

Dλ(ρ‖π). (F.6)

From Verdú (2015) the optimal prior π∗ minimizing Equation (F.6) is a distribution-
dependent prior:

π∗(h) =

[
ES′∼Dm ρS′(h)λ

] 1
λ

Eh′∼π 1
π(h′) [ES′∼Dm ρS′(h′)λ]

1
λ

.

This leads to an Information-Theoretic generalization bound.

Theorem F.9.2 (Disintegrated Information-Theoretic Bound). For any distri-
bution D on X×Y, for any hypothesis set H, for any measurable function
ϕ : H×(X×Y)m→R∗+, for any λ>1, for any δ ∈ (0, 1], for any algorithm A :
(X×Y)m × M∗(H)→M(H), we have

P
S∼Dm,
h∼ρS

(
λ

λ−1ln(ϕ(h,S)) ≤ MIλ(h′;S′)+ln
[

1
δ

λ
λ−1

E
S′∼Dm

E
h′∼π∗

[
ϕ(h′,S′)

λ
λ−1
]])
≥ 1−δ.

Proof. Deferred to Appendix F.11. �

We can remark that Theorem F.9.2 is tighter than Theorem F.9.1. For example, when
we instantiate Theorem F.9.1 with ϕ(h,S) = exp

[
m kl(R`S(h)‖R`D(h))

]
, the bound

will be multiplied by 1
δm

, while the bound of Theorem F.9.2 is only multiplied by 1
m

(but we add the term 1
m

ln 1
δ

to the bound which is small even for small m).
For the sake of comparison, we introduce the following corollary of Theorem F.9.2.
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Corollary F.9.1. Under the assumptions of Theorem F.9.2, when λ→1+, with
probability at least 1−δ we have

lnϕ(h,S) ≤ ln 1
δ

+ ln
[

esssup
S′∈(X×Y),h′∈H

ϕ(h′,S′)
]
.

When λ→+∞, with probability at least 1−δ we have

lnϕ(h,S)≤ ln
(

esssup
S∈S,h∈H

ρS(h)
π∗(h)

)
+ ln

[1
δ

E
S′∼Dm

E
h′∼π

ϕ(h′,S′)
]
.

As for Theorem 6.3.1, this corollary illustrate a trade-off introduced by λ between the
Sibson’s mutual information MIλ(h′;S′) and the term ln

(
ES′∼Dm Eh′∼π

(
ϕ(h′,S′)

λ
λ−1
))

.

Furthermore, Esposito et al. (2020, Cor.4) introduced a bound involving Sibson’s
mutual information. Their bound holds with probability at least 1−δ over S ∼ Dm
and h ∼ ρS:

2(R`S(h)−R`D(h))2 ≤ 1
m

[
MIλ(h′;S′) + ln 2

δ
λ
λ−1

]
. (F.7)

Hence, we compare Equation (F.7) with the equations of the following corollary.

Corollary F.9.2. For any distribution D on X×Y, for any hypothesis set H, for
any λ>1, for any δ ∈ (0, 1], for any algorithm A : (X×Y)m × M∗(H)→M(H), with
probability at least 1−δ over S ∼ Dm and h ∼ ρS, we have

kl(R`S(h)‖R`D(h))≤ 1
m

[
MIλ(h′;S′)+ln 2

√
m

δ
λ
λ−1

]
(F.8)

and 2(R`S(h)−R`D(h))2≤ 1
m

[
MIλ(h′;S′)+ln 2

√
m

δ
λ
λ−1

]
. (F.9)

Proof. First of all, we instantiate Theorem F.9.2 with the function ϕ(h,S) =
exp

[
λ−1
λ
m kl(R`S(h)‖R`D(h))

]
, we have (by rearranging the terms)

kl(R`S(h)‖R`D(h))≤ 1
m

[
MIλ(h′;S′)+ln

(
1

δ
λ
λ−1

E
S′∼Dm

E
h′∼π

em kl(R`S′ (h
′)‖R`D(h′))

)]
.

Then, from Maurer (2004), we upper-bound ES′∼Dm Eh′∼π em kl(R`S′ (h
′)‖R`D(h′))

by 2
√
m (Lemma B.16.1) to obtain Equation (F.8). Finally, to obtain Equa-

– 321 –



F.10. Proof of Theorem F.9.1

tion (F.9), we apply Pinsker’s inequality (Theorem B.5.1), i.e., we have the
inequality 2(R`S(h)−R`D(h))2 ≤ kl(R`S(h)‖R`D(h)) on Equation (F.8). �

Equation (F.9) is slightly looser than Equation (F.7) since it involves an extra term
of 1

m
ln
√
m. However, Equation (F.8) is tighter than Equation (F.7) when we have

kl(R`S(h)‖R`D(h))−2(R`S(h)−R`D(h))2 ≥ 1
m

ln
√
m (which becomes more frequent as

m grows). Moreover, from a theoretical view, Theorem F.9.2 brings a different philos-
ophy than the disintegrated PAC-Bayes bounds. Indeed, in Theorems 6.3.1 and 6.3.2,
given S, the Rényi divergence Dλ(ρS‖π) suggests that the learned posterior ρS should
be close enough to the prior π to get a low bound. While in Theorem F.9.2, the Sib-
son’s mutual information MIλ(h′;S′) suggests that the random variable h has to be not
too much correlated to S. However, the bound of Theorem F.9.2 is not computable
in practice due notably to the sample expectation over the unknown distribution D in
MIλ(). An exciting line of future works could be to study how we can make use of
Theorem F.9.2 in practice.

F.10 Proof of Theorem F.9.1
In order to prove Theorem F.9.1, we need to prove Lemma F.10.1.

Lemma F.10.1. For any distribution D on X×Y, for any hypothesis set H, for
any measurable function ϕ : H × (X×Y)m → [1,+∞[, for any δ ∈ (0, 1], for any
deterministic algorithm A : (X×Y)m × M∗(H)→M(H), we have

P
S∼Dm,h∼ρS

∀π∈M∗(H), lnϕ(h,S) ≤ 1
δ

[
E

S∼Dm
KL(ρS‖π)

+ ln
(

E
S∼Dm

E
h∼π

ϕ(h,S)
) ] ≥ 1− δ.
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Proof. By developing ES∼Dm Eh∼ρS lnϕ(h,S), we have for all prior π ∈ M∗(H)

E
S∼Dm

E
h∼ρS

lnϕ(h,S) = E
S∼Dm

E
h∼ρS

ln
[
ρS(h)π(h)
π(h)ρS(h)ϕ(h,S)

]

= E
S∼Dm

E
h∼ρS

ln
[
ρS(h)
π(h)

]
+ E

S∼Dm
E

h∼ρS

ln
[
π(h)
ρS(h)ϕ(h,S)

]

= E
S∼Dm

KL(ρS‖π) + E
S∼Dm

E
h∼ρS

ln
[
π(h)
ρS(h)ϕ(h,S)

]
.

From Jensen’s inequality (Theorem A.1.1), we have for all prior π ∈ M∗(H)

E
S∼Dm

KL(ρS‖π) + E
S∼Dm

E
h∼ρS

ln
[
π(h)
ρS(h)ϕ(h,S)

]

≤ E
S∼Dm

KL(ρS‖π) + ln
[

E
S∼Dm

E
h∼ρS

π(h)
ρS(h)ϕ(h,S)

]

= E
S∼Dm

KL(ρS‖π) + ln
[

E
S∼Dm

E
h∼π

ϕ(h,S)
]
. (F.10)

Since we assume in this case that ϕ(h,S) ≥ 1 for all h ∈ H and S ∈ (X×Y)m,
we have lnϕ(h,S) ≥ 0; we can apply Markov’s inequality (Theorem A.2.1) to
obtain

P
S∼Dm,h∼ρS

[
lnϕ(h,S) ≤ 1

δ
E

S′∼Dm
E

h′∼ρS

lnϕ(h,S)
]
≥ 1− δ. (F.11)

Then, from Equations (F.10) and (F.11), we can deduce the stated result. �

We are now ready to prove Theorem F.9.1.

Theorem F.9.1. For any distribution D on X×Y, for any hypothesis set H, for
any measurable function ϕ : H × (X×Y)m → [1,+∞[, for any δ ∈ (0, 1], for any
deterministic algorithm A : (X×Y)m × M∗(H)→M(H), we have

P
S∼Dm,h∼ρS

[
lnϕ(h,S) ≤ 1

δ

[
MI(h;S) + ln

(
E

S∼Dm
E

h∼π∗
ϕ(h,S)

)]]
≥ 1− δ,

where π∗ is defined such that π∗(h) = ES∼Dm ρS′(h).

Proof. Note that the mutual information is MI(h;S)= minπ∈M∗(H) ES∼Dm KL(ρS‖π).
Hence, to prove Theorem F.9.1, we have to instantiate Lemma F.10.1 with the
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optimal prior, i.e., the prior π which minimizes ES∼Dm KL(ρS‖π). The optimal
prior is well-known (see, e.g., Catoni, 2007; Lever et al., 2013): for the sake
of completeness, we derive it. First, we have

E
S∼Dm

KL(ρS‖π) = E
S∼Dm

E
h∼ρS

ln ρS(h)
π(h)

= E
S∼Dm

E
h∼ρS

ln
[
ρS(h)[ES′∼Dm ρS′(h)]
π(h)[ES′∼Dm ρS′(h)]

]

= E
S∼Dm

E
h∼ρS

ln
[

ρS(h)
ES′∼Dm ρS′(h)

]
+ E

h∼ρS

ln
[
ES′∼Dm ρS′(h)

π(h)

]
.

Hence,

argmin
π∈M∗(H)

E
S∼Dm

KL(ρS‖π) = argmin
π∈M∗(H)

 E
S∼Dm

E
h∼ρS

ln
[

ρS(h)
ES′∼Dm ρS′(h)

]

+ E
h∼ρS

ln
[
ES′∼Dm ρS′(h)

π(h)

] 
= argmin

π∈M∗(H)

[
E

h∼ρS

ln
[
ES′∼Dm ρS′(h)

π(h)

]]
= π∗,

where π∗(h) = ES′∼Dm ρS′(h). Note that π∗ is defined from the data distribution
D, hence, π∗ is a valid prior when instantiating Lemma F.10.1 with π∗. Then, we
have with probability at least 1−δ over S ∼ Dm and h ∼ ρS

lnϕ(h,S) ≤ 1
δ

[
E

S∼Dm
KL(ρS‖π∗) + ln

(
E

S∼Dm
E

h∼π∗
ϕ(h,S)

)]
= 1
δ

[
MI(h;S) + ln

(
E

S∼Dm
E

h∼π∗
ϕ(h,S)

)]
.

�

F.11 Proof of Theorem F.9.2
We first introduce Lemma F.11.1 in order to prove Theorem F.9.2.

Lemma F.11.1. For any distribution D on X×Y, for any hypothesis set H, for any
prior distribution π on H, for any measurable function ϕ : H×(X×Y)m, for any λ >
1, for any δ ∈ (0, 1], for any deterministic algorithm A : (X×Y)m×M∗(H)→M(H),
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we have

P
S∼Dm,h∼ρS

∀π∈M∗(H), λ

λ−1ln(ϕ(h,S)) ≤ Dλ(ρ‖π)

+ ln
(

1

δ
λ
λ−1

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)

λ
λ−1
))≥ 1−δ.

where ρ(h,S)=ρS(h)Dm(S); π(h,S)=π(h)Dm(S).

Proof. Note that ϕ(h,S) is a non-negative random variable. From Markov’s
inequality (Theorem A.2.1), we have

P
S∼Dm,h∼ρS

[
ϕ(h,S) ≤ 1

δ
E

S′∼Dm
E

h′∼ρS

ϕ(h′,S′)
]
≥ 1− δ.

Then, since both sides of the inequality are strictly positive, we take the logarithm
to both sides of the equality and multiply by λ

λ−1 > 0 to obtain

P
S∼Dm,h∼ρS

[
λ

λ− 1 ln (ϕ(h,S)) ≤ λ

λ−1 ln
(

1
δ

E
S′∼Dm

E
h′∼ρS′

ϕ(h′,S′)
)]
≥ 1− δ.

We develop the right-hand side of the inequality in the indicator function and make
the expectation of the hypothesis over the distribution π appear. We have for all
priors π∈M∗(H),

λ

λ−1 ln
(

1
δ

E
S′∼Dm

E
h′∼ρS′

ϕ(h′,S′)
)

= λ

λ−1 ln
(

1
δ

E
S′∼Dm

E
h′∼ρS′

ρS′(h′)
π(h′)

π(h′)
ρS′(h′)

ϕ(h′,S′)
)

= λ

λ−1 ln
(

1
δ

E
S′∼Dm

E
h′∼π

ρS′(h′)
π(h′) ϕ(h′,S′)

)
.

Then, since 1
r

+ 1
s

= 1 where r=λ and s= λ
λ−1 . Hence, Hölder’s inequality

(Theorem A.5.1) gives

E
S′∼Dm

E
h′∼ρS′

ϕ(h′,S′)≤

 E
S′∼Dm

E
h′∼π


ρS′(h′)
π(h′)

λ



1
λ[

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)

λ
λ−1
)]λ−1

λ

.
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Since both sides of the inequality are positive, we take the logarithm. Moreover,
we add ln(1

δ
), and we multiply by λ

λ−1 > 0 to both sides of the inequality. We
have

λ

λ−1 ln
(

1
δ

E
S′∼Dm

E
h′∼ρS′

ϕ(h′,S′)
)

≤ λ

λ−1 ln

1
δ

 E
S′∼Dm

E
h′∼π


ρS′(h′)
π(h′)

λ



1
λ [

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)

λ
λ−1
)]λ−1

λ


= 1
λ−1 ln

 E
S′∼Dm

E
h′∼π


ρS′(h′)
π(h′)

λ

+ ln

(
1

δ
λ
λ−1

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)

λ
λ−1
))
.

Hence, we can deduce that

P
S∼Dm,h∼ρS

∀π∈M∗(H), λ

λ−1ln(ϕ(h,S)) ≤ 1
λ−1ln

 E
S′∼Dm

E
h′∼π


ρS′(h′)
π(h′)

λ



+ ln
(

1

δ
λ
λ−1

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)

λ
λ−1
)) ≥ 1−δ,

where by definition we have Dλ(ρ‖π) = 1
λ−1 ln

(
ES′∼Dm Eh′∼π

([
ρS′ (h′)
π(h′)

]λ))
. �

From Lemma F.11.1, we prove Theorem F.9.2.

Theorem F.9.2 (Disintegrated Information-Theoretic Bound). For any distri-
bution D on X×Y, for any hypothesis set H, for any measurable function
ϕ : H×(X×Y)m→R∗+, for any λ>1, for any δ ∈ (0, 1], for any algorithm A :
(X×Y)m × M∗(H)→M(H), we have

P
S∼Dm,
h∼ρS

(
λ

λ−1ln(ϕ(h,S)) ≤ MIλ(h′;S′)+ln
[

1
δ

λ
λ−1

E
S′∼Dm

E
h′∼π∗

[
ϕ(h′,S′)

λ
λ−1
]])
≥ 1−δ.

Proof. Sibson’s mutual information is MIλ(h;S) = minπ∈M∗(H) Dλ(ρ‖π). Hence,
in order to prove Theorem F.9.2, we have to instantiate Lemma F.11.1 with the
optimal prior, i.e., the prior π which minimizes Dλ(ρ‖π). Actually, this optimal
prior has a closed-form solution (Verdú, 2015). For the sake of completeness,
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we derive it. First, we have

Dλ(ρ‖π)

= 1
λ−1ln

 E
S∼Dm

E
h∼π

[ρS(h)
π(h)

]λ
= 1
λ−1ln

(
E
h∼π

[
E

S∼Dm

(
ρS(h)λ

)] (
π(h)−λ

))

= 1
λ−1ln

 E
h∼π

[
E

S∼Dm

(
ρS(h)λ

)] (
π(h)−λ

)Eh′∼π
1

π(h′) [ES′∼Dm(ρS′ (h′)λ)]
1
λ

Eh′∼π
1

π(h′) [ES′∼Dm(ρS′ (h′)λ)]
1
λ

λ


= λ

λ−1ln
(

E
h′∼π

1
π(h′)

[
E

S′∼Dm

(
ρS′(h′)λ

)]1
λ

)

+ 1
λ−1ln

 E
h∼π

1
π(h)λ

 [ES∼Dm(ρS(h)λ)]
1
λ

Eh′∼π
1

π(h′) [ES′∼Dm(ρS′ (h′)λ)]
1
λ

λ


= λ

λ−1 ln
(

E
h′∼π

1
π(h′)

[
E

S′∼Dm

(
ρS′(h′)λ

)] 1
λ

)
+ Dλ(π∗‖π),

where π∗(h) =
 [ES∼Dm(ρS(h)λ)]

1
λ

Eh′∼π
1

π(h′) [ES′∼Dm(ρS′ (h′)λ)]
1
λ

.

From these equalities and using the fact that Dλ(π∗‖π) is minimal (i.e., equal to
zero) when π∗ = π, we can deduce that

argmin
π∈M∗(H)

Dλ(ρ‖π)

= argmin
π∈M∗(H)

[
λ

λ−1 ln
(

E
h′∼π

1
π(h′)

[
E

S′∼Dm

(
ρS′(h′)λ

)] 1
λ

)
+ Dλ(π∗‖π)

]
= argmin

π∈M∗(H)
Dλ(π∗‖π)=π∗.

Note that π∗ is defined from the data distribution D, hence, π∗ is a valid prior
when instantiating Lemma F.11.1 with π∗. Then, we have with probability at least
1−δ over S ∼ Dm and h ∼ ρS

λ

λ−1ln(ϕ(h,S)) ≤ Dλ(ρ‖π∗) + ln
(

1

δ
λ
λ−1

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)

λ
λ−1
))

= MIλ(h′;S′) + ln
(

1

δ
λ
λ−1

E
S′∼Dm

E
h′∼π

(
ϕ(h′,S′)

λ
λ−1
))
.
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where π∗(h,S) = π∗(h)Dm(S). �

F.12 Proof of Corollary F.9.1

Corollary F.9.1. Under the assumptions of Theorem F.9.2, when λ→1+, with
probability at least 1−δ we have

lnϕ(h,S) ≤ ln 1
δ

+ ln
[

esssup
S′∈(X×Y),h′∈H

ϕ(h′,S′)
]
.

When λ→+∞, with probability at least 1−δ we have

lnϕ(h,S)≤ ln
(

esssup
S∈S,h∈H

ρS(h)
π∗(h)

)
+ ln

[1
δ

E
S′∼Dm

E
h′∼π

ϕ(h′,S′)
]
.

Proof. The proof is similar to Corollary 6.3.1. Starting from Theorem F.9.2 and
rearranging, we have

P
S∼Dm
h∼ρS

ln(ϕ(h,S)) ≤ λ−1
λ

MIλ(h′;S′)

+ ln 1
δ

+ ln
([

E
S′∼Dm

E
h′∼π∗

(
ϕ(h′,S′)

λ
λ−1
)]λ−1

λ

) ≥ 1−δ,

Then, we will prove separately the case when λ→ 1 and λ→ +∞.

When λ→ 1. We have limλ→1+
λ−1
λ

MIλ(h′;S′) = 0. Furthermore, note that

‖ϕ‖ λ
λ−1

=
[

E
S′∼Dm

E
h′∼π∗

(
|ϕ(h′,S′)|

λ
λ−1
)]λ−1

λ

=
[

E
S′∼Dm

E
h′∼π∗

(
ϕ(h′,S′)

λ
λ−1
)]λ−1

λ

is the L λ
λ−1 -norm of the function ϕ : H× (X×Y)m → R∗+, where limλ→1 ‖ϕ‖ λ

λ−1
=

limλ′→+∞ ‖ϕ‖λ′ (since we have limλ→1+
λ
λ−1 = (limλ→1 λ)(limλ→1

1
λ−1) = +∞).

Then, it is well known that

‖ϕ‖∞ = lim
λ′→+∞

‖ϕ‖λ′ = esssup
S′∈(X×Y),h′∈H

ϕ(h′,S′).
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Hence, we have

lim
λ→1

ln
([

E
S′∼Dm

E
h′∼π∗

(
ϕ(h′,S′)

λ
λ−1
)]λ−1

λ

)

= ln
(

lim
λ→1

[
E

S′∼Dm
E

h′∼π∗

(
ϕ(h′,S′)

λ
λ−1
)]λ−1

λ

)

= ln
(

lim
λ→1
‖ϕ‖ λ

λ−1

)
= ln

(
lim

λ′→+∞
‖ϕ‖λ′

)
= ln (‖ϕ‖∞) = ln

(
esssup

S′∈(X×Y),h′∈H
ϕ(h′,S′)

)
.

Finally, we can deduce that

lim
λ→1

[
λ−1
λ

MIλ(h′;S′) + ln 1
δ

+ ln
([

E
S′∼Dm

E
h′∼π∗

(
ϕ(h′,S′)

λ
λ−1
)]λ−1

λ

)]

= ln 1
δ

+ ln
[

esssup
S′∈(X×Y),h′∈H

ϕ(h′,S′)
]
.

When λ→ +∞. First, we have limλ→+∞ ‖ϕ‖ λ
λ−1

= limλ′→1 ‖ϕ‖λ′ = ‖ϕ‖1

Hence, we have

lim
λ→+∞

ln
([

E
S′∼Dm

E
h′∼π∗

(
ϕ(h′,S′)

λ
λ−1
)]λ−1

λ

)

= ln
(

lim
λ→+∞

[
E

S′∼Dm
E

h′∼π∗

(
ϕ(h′,S′)

λ
λ−1
)]λ−1

λ

)

= ln
(

lim
λ→+∞

‖ϕ‖ λ
λ−1

)
= ln

(
lim
λ′→1
‖ϕ‖λ′

)
= ln (‖ϕ‖1) = ln

(
E

S′∼Dm
E

h′∼π∗
ϕ(h′,S′)

)
.
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Moreover, by rearranging the terms in λ−1
λ

MIλ(h′;S′), we have

λ−1
λ

MIλ(h′;S′) = 1
λ

ln
 E
S∼Dm

E
h∼π∗

[ρS(h)
π∗(h)

]λ
= ln


 E
S∼Dm

E
h∼π∗

[ρS(h)
π∗(h)

]λ 1
λ


= ln

([
E

h∼π∗

(
γ(h)λ

)] 1
λ

)
= ln(‖γ‖λ) ,

where ‖γ‖λ is the Lλ-norm of the function γ defined as γ(h) = ρS(h)
π∗(h) . We have

lim
λ→+∞

λ−1
λ

MIλ(h′;S′) = lim
λ→+∞

ln(‖γ‖λ) = ln
(

lim
λ→+∞

‖γ‖λ
)

= ln (‖γ‖∞) = ln
(

esssup
S∈S,h∈H

γ(h)
)

= ln
(

esssup
S∈S,h∈H

ρS(h)
π∗(h)

)
.

Finally, we can deduce that

lim
λ→1

[
λ−1
λ

MIλ(h′;S′) + ln 1
δ

+ ln
([

E
S′∼Dm

E
h′∼π∗

(
ϕ(h′,S′)

λ
λ−1
)]λ−1

λ

)]

= ln
(

esssup
S∈S,h∈H

ρS(h)
π∗(h)

)
+ ln

[1
δ

E
S′∼Dm

E
h′∼π

ϕ(h′,S′)
]
.

�

F.13 Proof of Corollary 6.6.1

Corollary 6.6.1 (Instantiation of Theorem 2.4.1 to Stochastic Majority Votes).
For any distribution D on X×Y, for any finite set of voters H, for any hyper-prior
distribution Π = Dir(β) on H with β ∈ (R+

∗ )card(H), for any loss ` : H× (X×Y)→
[0, 1], for any δ ∈ (0, 1], for any algorithm A that outputs a hyper-posterior given
a learning sample and a hyper-prior, with probability at least 1−δ over the learning
sample S∼Dm and the posterior distribution ρ∼PS = Dir(α) with α ∈ (R+

∗ )card(H)

we have

kl(R`S(MVρ)‖R`D(MVρ)) ≤
1
m

ln Z(β)
Z(α) +

card(H)∑
j=1

(αj − βj) ln(ρ(hj)) + ln 2
√
m

δ

 ,
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where PS,A(S,Π) is output by the deterministic algorithm A.

Proof. We apply Theorem 2.4.1 with φ(ρ,S) = m kl(R`S(MVρ)‖R`D(MVρ)) to ob-
tain with probability at least 1−δ over the learning sample S ∼ Dm and the
posterior distribution ρ ∼ P, we have

kl(R`S(MVρ)‖R`D(MVρ))≤
1
m

[
ln P(ρ)

Π(ρ)+ ln
[1
δ

E
ρ′∼Π

em kl(R`S(MVρ′ )‖R`D(MVρ′ ))
]]
. (F.12)

Moreover, the closed form solution of the disintegrated KL divergence ln P(ρ)
Π(ρ) is

ln P(ρ)
Π(ρ) = ln(P(ρ))− ln(Π(ρ))

= ln
 1
Z(α)

card(H)∏
j=1

[
ρ(hj)

]αj−1
− ln

 1
Z(β)

card(H)∏
j=1

[
ρ(hj)

]βj−1


= ln Z(β)
Z(α) +

card(H)∑
j=1

(αj − 1) ln(ρ(hj))−
card(H)∑
j=1

(βj − 1) ln(ρ(hj))

= ln Z(β)
Z(α) +

card(H)∑
j=1

(αj − βj) ln(ρ(hj)). (F.13)

Additionally, from Lemma B.16.1, we have

E
ρ′∼Π

em kl(R`S(MVρ′ )‖R`D(MVρ′ )) ≤ 2
√
m. (F.14)

Lastly, by merging Equations (F.12) to (F.14) we obtain the claim. �

F.14 Proof of Corollary 6.6.2

Corollary 6.6.2 (Instantiation of Theorem 6.3.1 to Stochastic Majority Votes).
For any distribution D on X×Y, for any finite set of voters H, for any hyper-prior
distribution Π = Dir(β) on H with β ∈ (R+

∗ )card(H), for any loss ` : H× (X×Y)→
[0, 1], for any λ > 1, for any δ ∈ (0, 1], for any algorithm A that outputs a hyper-
posterior given a learning sample and a hyper-prior, with probability at least 1−δ
over the learning sample S∼Dm and the posterior distribution ρ∼PS = Dir(α)
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with α ∈ (R+
∗ )card(H) we have

kl(R`S(MVρ)‖R`D(MVρ)) ≤
1
m

2λ−1
λ−1 ln 2

δ
+ ln Z(β)

Z(α)

+ 1
λ−1 ln Z(λα+(1−λ)β)

Z(α) + ln(2
√
m)
,

where PS,A(S,Π) is output by the deterministic algorithm A.

Proof. We apply Theorem 6.3.1 with φ(ρ,S) = exp
[
λ−1
λ
m kl(R`S(MVρ)‖R`D(MVρ))

]
to obtain with probability at least 1−δ over the learning sample S ∼ Dm and the
posterior distribution ρ ∼ P, we have

kl(R`S(MVρ)‖R`D(MVρ)) ≤
1
m

2λ−1
λ−1 ln 2

δ
+ Dλ(P‖Π)

+ ln
(

E
ρ′∼Π

em kl(R`S(MVρ′ )‖R`D(MVρ′ ))
). (F.15)

Moreover, the closed form solution of the Rényi divergence Dλ(P‖Π) (Gil et al.,
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2013) is given by

Dλ(P‖Π) = 1
λ−1 ln

(∫
M(H)

P(ρ)λΠ(ρ)1−λdξ(ρ)
)

= 1
λ−1 ln

∫
M(H)

1
Z(α)λ

card(H)∏
j=1

(ρ(hj))λ(αj−1)

1
Z(β)1−λ

card(H)∏
j=1

(ρ(hj))(1−λ)(βj−1)dξ(ρ)


= 1
λ−1 ln

(
Z(β)λ−1

Z(α)λ

)

+ 1
λ−1 ln

∫
M(H)

card(H)∏
i=1

(ρ(hj))λαj+(1−λ)βj−1dξ(ρ)


= 1
λ−1 ln

(
Z(β)λ−1

Z(α)λ

)
+ lnZ(λα+(1−λ)β)

= 1
λ−1 ln

(
Z(β)λ−1

Z(α)λ−1+1

)
+ lnZ(λα+(1−λ)β)

= ln Z(β)
Z(α) + 1

λ−1 ln Z(λα+(1−λ)β)
Z(α) , (F.16)

where ξ is the reference measure on M(H). Additionally, from Lemma B.16.1, we
have

E
ρ′∼Π

em kl(R`S(MVρ′ )‖R`D(MVρ′ )) ≤ 2
√
m. (F.17)

Lastly, by merging Equations (F.15) to (F.17) we obtain the claim. �

F.15 Details of the Results
Table F.2 to Table F.10 report empirical results for split ratios going from 0.0 to 0.9.
Table F.11 to Table F.13 report the performances of the prior before applying Step 2).

For the split 0.0, since Step 1) is skipped, the prior distribution π is only initialized as
introduced in Section 6.5.3.2. Note that in this case, T = 1 since we have only one
prior. To do the same number of epochs compared to the other splits, we perform 11
epochs (instead of 1) for MNIST and Fashion-MNIST and 110 epochs (instead of 10)
for CIFAR-10 during Step 2). The other parameters are not changed.
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Table F.1. Comparison of ours, rivasplata, blanchard and catoni based on the disintegrated bounds, and
stochastic based on the randomized bounds learned with two learning rates η ∈{10−4, 10−6} and different variances
σ2∈{10−3, 10−4, 10−5, 10−6}. We report the test risk (RT (h)), the bound value (Bnd), the empirical risk (RS(h)), and
the divergence (Div) associated with each bound (the Rényi divergence for ours, the KL divergence for stochastic,
and the disintegrated KL divergence for rivasplata, blanchard and catoni). More precisely, we report the mean ±
the standard deviation for 400 neural networks sampled from ρS for ours, rivasplata, blanchard, and catoni. We
consider, in this figure, that the split ratio is 0.0.

σ2 = 10−6 σ2 = 10−5 σ2 = 10−4 σ2 = 10−3

η = 10−6 RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div

M
N

IS
T

ours .901 ± .002 .908 ± .002 .901 ± .002 .005 .897 ± .013 .904 ± .012 .897 ± .012 .009 .898 ± .017 .905 ± .016 .898 ± .016 .027 .902 ± .015 .908 ± .014 .901 ± .015 .671
blanchard .901 ± .002 .926 ± .002 .901 ± .002 122.846 ± 15.952 .897 ± .013 .912 ± .012 .897 ± .013 39.350 ± 8.999 .898 ± .017 .907 ± .016 .898 ± .017 13.023 ± 4.818 .901 ± .015 .907 ± .014 .901 ± .014 3.041 ± 2.459

catoni .901 ± .002 .926 ± .003 .901 ± .002 121.860 ± 15.930 .897 ± .013 .909 ± .012 .897 ± .013 38.552 ± 8.872 .898 ± .017 .905 ± .016 .898 ± .017 12.474 ± 4.774 .901 ± .014 .906 ± .013 .901 ± .014 3.088 ± 2.379
rivasplata .901 ± .002 .920 ± .002 .901 ± .002 123.301 ± 15.941 .896 ± .014 .908 ± .012 .896 ± .013 39.195 ± 8.959 .897 ± .017 .905 ± .016 .897 ± .017 12.827 ± 4.858 .902 ± .015 .907 ± .014 .901 ± .015 3.232 ± 2.454
stochastic — .944 — .002 — .941 — .004 — .941 — .014 — .944 — .336

Fa
sh

io
n

ours .970 ± .028 .972 ± .025 .970 ± .027 .016 .944 ± .038 .949 ± .035 .944 ± .037 .046 .910 ± .027 .917 ± .026 .910 ± .027 .140 .901 ± .026 .909 ± .025 .901 ± .026 1.255
blanchard .970 ± .029 .978 ± .019 .970 ± .028 122.508 ± 16.085 .942 ± .038 .952 ± .032 .943 ± .038 39.957 ± 8.610 .910 ± .031 .919 ± .029 .910 ± .031 12.649 ± 4.846 .899 ± .028 .905 ± .027 .899 ± .028 3.206 ± 2.566

catoni .970 ± .028 .983 ± .017 .970 ± .027 122.364 ± 15.860 .945 ± .038 .954 ± .036 .945 ± .037 38.555 ± 8.873 .912 ± .032 .919 ± .031 .912 ± .032 12.167 ± 4.762 .899 ± .027 .905 ± .026 .899 ± .027 3.122 ± 2.392
rivasplata .970 ± .028 .977 ± .021 .971 ± .027 123.328 ± 15.929 .943 ± .038 .950 ± .033 .943 ± .038 39.300 ± 8.991 .908 ± .031 .916 ± .029 .908 ± .031 12.627 ± 4.890 .899 ± .028 .905 ± .027 .899 ± .028 3.591 ± 2.610
stochastic — .990 — .008 — .975 — .023 — .950 — .070 — .944 — .627

CI
FA

R-
10

ours .899 ± .000 .907 ± .000 .899 ± .000 3.113 .896 ± .002 .914 ± .002 .894 ± .002 107.797 .826 ± .011 .885 ± .009 .825 ± .010 76.475 .786 ± .019 .851 ± .015 .788 ± .018 714.351
blanchard .899 ± .000 .940 ± .001 .898 ± .000 314.983 ± 26.377 .888 ± .004 .927 ± .002 .885 ± .003 28.250 ± 25.255 .823 ± .010 .885 ± .008 .822 ± .010 422.401 ± 29.323 .798 ± .019 .856 ± .015 .799 ± .018 292.706 ± 25.318

catoni .899 ± .000 .941 ± .000 .898 ± .000 285.415 ± 25.085 .894 ± .002 .930 ± .004 .892 ± .002 169.713 ± 19.543 .857 ± .010 .915 ± .009 .856 ± .010 273.554 ± 23.212 .815 ± .019 .864 ± .017 .816 ± .018 209.069 ± 21.230
rivasplata .899 ± .001 .930 ± .001 .898 ± .000 362.070 ± 28.420 .864 ± .004 .933 ± .002 .862 ± .004 1568.007 ± 55.492 .748 ± .010 .837 ± .007 .750 ± .009 1219.178 ± 49.610 .769 ± .018 .828 ± .015 .771 ± .017 526.068 ± 33.837
stochastic — .942 — 1.557 — .945 — 53.898 — .914 — 38.237 — .884 — 357.175

σ2 = 10−6 σ2 = 10−5 σ2 = 10−4 σ2 = 10−3

η = 10−4 RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div

M
N

IS
T

ours .901 ± .002 .909 ± .002 .901 ± .002 3.767 .896 ± .014 .904 ± .013 .896 ± .014 .835 .898 ± .016 .905 ± .015 .898 ± .016 1.062 .901 ± .015 .909 ± .014 .901 ± .015 6.022
blanchard .900 ± .003 .990 ± .000 .900 ± .003 12004.196 ± 152.632 .894 ± .017 .986 ± .006 .894 ± .016 3837.785 ± 93.560 .888 ± .021 .957 ± .013 .888 ± .020 1221.198 ± 49.920 .898 ± .015 .939 ± .012 .897 ± .015 391.343 ± 28.182

catoni .900 ± .003 .997 ± .002 .900 ± .003 5694.194 ± 102.906 .889 ± .020 .967 ± .012 .889 ± .019 3331.617 ± 78.945 .879 ± .025 .941 ± .016 .880 ± .025 1481.726 ± 53.973 .888 ± .023 .937 ± .015 .888 ± .023 567.893 ± 33.441
rivasplata .900 ± .004 .990 ± .000 .900 ± .003 1199.818 ± 152.557 .892 ± .017 .970 ± .009 .892 ± .016 3846.699 ± 84.643 .886 ± .020 .940 ± .015 .886 ± .020 1224.463 ± 49.970 .897 ± .018 .928 ± .015 .897 ± .018 393.757 ± 29.158
stochastic — .944 — 1.884 — .940 — .417 — .941 — .531 — .944 — 3.011

Fa
sh

io
n

ours .977 ± .024 .979 ± .021 .977 ± .023 3.926 .947 ± .038 .951 ± .035 .947 ± .038 1.623 .907 ± .030 .914 ± .029 .907 ± .030 2.947 .900 ± .026 .910 ± .025 .900 ± .026 15.978
blanchard .984 ± .015 .990 ± .000 .984 ± .015 12019.121 ± 166.251 .912 ± .029 .988 ± .004 .911 ± .029 3846.861 ± 84.568 .883 ± .029 .953 ± .019 .883 ± .029 1232.645 ± 5.285 .403 ± .041 .648 ± .038 .399 ± .041 3853.231 ± 87.867

catoni .983 ± .018 1.000 ± .000 .983 ± .017 5654.642 ± 114.040 .903 ± .021 .985 ± .012 .902 ± .021 4354.538 ± 94.427 .751 ± .033 .867 ± .023 .750 ± .033 2702.652 ± 76.863 .504 ± .041 .673 ± .037 .502 ± .041 3172.609 ± 78.698
rivasplata .983 ± .016 .990 ± .000 .983 ± .016 11976.720 ± 165.964 .905 ± .023 .975 ± .007 .905 ± .023 3855.872 ± 84.676 .855 ± .035 .916 ± .027 .855 ± .035 125.110 ± 51.837 .365 ± .032 .559 ± .032 .359 ± .033 4823.725 ± 103.813
stochastic — .990 — 1.963 — .977 — .812 — .948 — 1.473 — .944 — 7.989

CI
FA

R-
10

ours .899 ± .000 .915 ± .000 .899 ± .000 63.416 .890 ± .003 .932 ± .003 .886 ± .003 68.353 .786 ± .011 .888 ± .008 .787 ± .010 2072.610 .769 ± .017 .859 ± .013 .770 ± .017 1406.824
blanchard .869 ± .002 .990 ± .000 .866 ± .001 27237.938 ± 251.770 .813 ± .004 .990 ± .000 .812 ± .003 12052.733 ± 159.732 .697 ± .011 .920 ± .005 .700 ± .009 5137.799 ± 103.680 .674 ± .020 .861 ± .014 .675 ± .020 2814.450 ± 76.004

catoni .928 ± .001 1.000 ± .000 .925 ± .001 2145276.795 ± 2095.160 .821 ± .002 1.000 ± .000 .821 ± .002 375019.277 ± 896.780 .689 ± .011 .870 ± .007 .692 ± .010 5292.535 ± 106.380 .629 ± .019 .805 ± .015 .628 ± .019 4159.131 ± 96.763
rivasplata .867 ± .002 .990 ± .000 .864 ± .001 35956.152 ± 268.304 .812 ± .004 .976 ± .001 .811 ± .003 12135.134 ± 157.621 .698 ± .010 .874 ± .006 .701 ± .009 5191.665 ± 102.712 .677 ± .020 .819 ± .015 .678 ± .019 2839.514 ± 81.432
stochastic — .947 — 31.708 — .954 — 34.176 — .908 — 1036.305 — .886 — 703.412
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Table F.2. Comparison of ours, rivasplata, blanchard and catoni based on the disintegrated bounds, and
stochastic based on the randomized bounds learned with two learning rates η ∈{10−4, 10−6} and different variances
σ2∈{10−3, 10−4, 10−5, 10−6}. We report the test risk (RT (h)), the bound value (Bnd), the empirical risk (RS(h)), and
the divergence (Div) associated with each bound (the Rényi divergence for ours, the KL divergence for stochastic,
and the disintegrated KL divergence for rivasplata, blanchard and catoni). More precisely, we report the mean ±
the standard deviation for 400 neural networks sampled from ρS for ours, rivasplata, blanchard, and catoni. We
consider, in this table, that the split ratio is 0.1.

σ2 = 10−6 σ2 = 10−5 σ2 = 10−4 σ2 = 10−3

η = 10−6 RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div

M
N

IS
T

ours .035 ± .000 .044 ± .000 .039 ± .000 .622 .024 ± .000 .034 ± .000 .029 ± .000 2.122 .029 ± .002 .040 ± .002 .034 ± .002 12.754 .034 ± .004 .044 ± .004 .038 ± .004 7.303
blanchard .034 ± .000 .058 ± .002 .038 ± .000 99.876 ± 14.858 .024 ± .000 .038 ± .001 .030 ± .000 21.775 ± 6.848 .034 ± .002 .043 ± .002 .038 ± .002 3.949 ± 2.877 .039 ± .005 .047 ± .005 .043 ± .005 .590 ± 1.085

catoni .035 ± .000 .064 ± .001 .039 ± .000 119.663 ± 15.854 .024 ± .000 .038 ± .001 .030 ± .000 26.277 ± 7.490 .033 ± .002 .041 ± .002 .037 ± .002 4.067 ± 2.882 .038 ± .005 .045 ± .005 .042 ± .004 .759 ± 1.217
rivasplata .034 ± .000 .052 ± .001 .038 ± .000 104.880 ± 15.268 .024 ± .000 .036 ± .001 .029 ± .000 23.007 ± 7.187 .033 ± .002 .042 ± .002 .037 ± .002 4.116 ± 2.845 .038 ± .005 .046 ± .004 .042 ± .004 .775 ± 1.231
stochastic — .080 — .311 — .067 — 1.061 — .074 — 6.377 — .079 — 3.651

Fa
sh

io
n

ours .166 ± .001 .169 ± .000 .159 ± .000 .580 .157 ± .001 .160 ± .001 .150 ± .001 2.128 .160 ± .002 .161 ± .003 .151 ± .002 3.503 .176 ± .006 .179 ± .006 .168 ± .005 1.268
blanchard .165 ± .001 .192 ± .002 .159 ± .000 96.822 ± 14.116 .157 ± .001 .166 ± .002 .150 ± .001 21.592 ± 6.681 .163 ± .003 .162 ± .003 .153 ± .003 3.846 ± 2.660 .178 ± .005 .178 ± .005 .170 ± .005 .463 ± .954

catoni .165 ± .001 .190 ± .003 .159 ± .000 119.927 ± 15.938 .157 ± .001 .163 ± .002 .150 ± .001 26.363 ± 7.355 .162 ± .003 .161 ± .003 .152 ± .003 4.152 ± 2.945 .177 ± .006 .178 ± .006 .169 ± .006 .548 ± 1.032
rivasplata .165 ± .001 .183 ± .002 .158 ± .000 101.954 ± 14.463 .157 ± .001 .163 ± .002 .150 ± .001 23.098 ± 6.977 .162 ± .003 .161 ± .003 .153 ± .003 3.852 ± 2.798 .177 ± .006 .177 ± .006 .169 ± .006 .516 ± .985
stochastic — .227 — .290 — .216 — 1.064 — .218 — 1.751 — .237 — .634

CI
FA

R-
10

ours .479 ± .000 .487 ± .000 .472 ± .000 .052 .479 ± .000 .493 ± .000 .477 ± .000 .065 .458 ± .001 .479 ± .000 .463 ± .000 .299 .480 ± .002 .495 ± .001 .480 ± .001 .793
blanchard .479 ± .000 .550 ± .003 .472 ± .000 27.644 ± 22.868 .479 ± .000 .522 ± .003 .477 ± .000 85.476 ± 12.781 .458 ± .001 .489 ± .003 .463 ± .000 24.608 ± 7.136 .481 ± .002 .495 ± .002 .480 ± .001 5.093 ± 3.299

catoni .479 ± .000 .546 ± .005 .472 ± .000 269.855 ± 22.883 .479 ± .000 .511 ± .003 .477 ± .000 85.113 ± 12.806 .458 ± .001 .483 ± .002 .463 ± .000 25.453 ± 7.155 .480 ± .002 .495 ± .001 .480 ± .001 5.468 ± 3.315
rivasplata .479 ± .000 .528 ± .002 .472 ± .000 27.588 ± 22.859 .479 ± .000 .511 ± .002 .477 ± .000 85.745 ± 13.357 .458 ± .001 .484 ± .002 .463 ± .001 25.051 ± 7.005 .481 ± .002 .494 ± .001 .480 ± .001 5.155 ± 3.260
stochastic — .558 — .026 — .564 — .032 — .550 — .150 — .566 — .397

σ2 = 10−6 σ2 = 10−5 σ2 = 10−4 σ2 = 10−3

η = 10−4 RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div

M
N

IS
T

ours .035 ± .000 .048 ± .000 .039 ± .000 35.348 .024 ± .000 .037 ± .001 .029 ± .000 3.753 .022 ± .001 .042 ± .001 .027 ± .001 153.773 .025 ± .002 .041 ± .002 .029 ± .002 97.840
blanchard .032 ± .000 .442 ± .003 .036 ± .000 1181.482 ± 14.449 .022 ± .000 .206 ± .003 .027 ± .000 3851.110 ± 84.274 .019 ± .001 .102 ± .002 .023 ± .001 1306.371 ± 51.396 .024 ± .002 .065 ± .003 .027 ± .002 411.772 ± 29.458

catoni .035 ± .000 .362 ± .003 .039 ± .000 11925.734 ± 145.511 .024 ± .000 .152 ± .002 .029 ± .000 3841.248 ± 84.033 .027 ± .002 .084 ± .002 .032 ± .001 1235.287 ± 49.454 .027 ± .002 .059 ± .003 .030 ± .002 403.300 ± 28.587
rivasplata .030 ± .000 .289 ± .002 .034 ± .000 12022.576 ± 151.157 .021 ± .000 .134 ± .002 .026 ± .000 3912.803 ± 85.146 .018 ± .000 .072 ± .001 .022 ± .000 1348.169 ± 53.400 .023 ± .002 .051 ± .002 .026 ± .001 424.971 ± 29.301
stochastic — .084 — 17.674 — .069 — 15.376 — .072 — 76.887 — .072 — 48.920

Fa
sh

io
n

ours .166 ± .001 .172 ± .000 .159 ± .000 13.084 .157 ± .001 .163 ± .001 .150 ± .001 16.513 .159 ± .002 .164 ± .002 .149 ± .002 2.344 .176 ± .005 .181 ± .005 .168 ± .005 11.331
blanchard .160 ± .001 .588 ± .003 .153 ± .000 1089.829 ± 137.125 .150 ± .001 .379 ± .003 .141 ± .001 3744.491 ± 83.656 .155 ± .002 .271 ± .003 .145 ± .002 1221.062 ± 49.548 .173 ± .005 .233 ± .006 .165 ± .004 369.721 ± 27.211

catoni .165 ± .001 .500 ± .003 .159 ± .000 11954.591 ± 141.463 .156 ± .001 .311 ± .002 .148 ± .001 3826.848 ± 86.111 .158 ± .002 .248 ± .003 .148 ± .002 1226.282 ± 5.332 .174 ± .005 .252 ± .006 .166 ± .004 393.542 ± 27.890
rivasplata .158 ± .001 .459 ± .002 .151 ± .000 11541.128 ± 14.706 .149 ± .001 .302 ± .002 .140 ± .001 3878.145 ± 85.782 .154 ± .002 .230 ± .002 .144 ± .001 1244.035 ± 49.268 .172 ± .005 .212 ± .005 .164 ± .004 378.990 ± 27.559
stochastic — .229 — 6.542 — .219 — 8.257 — .219 — 1.172 — .239 — 5.666

CI
FA

R-
10

ours .479 ± .000 .489 ± .000 .472 ± .000 4.882 .479 ± .000 .496 ± .000 .477 ± .000 9.273 .458 ± .001 .480 ± .000 .463 ± .000 4.988 .480 ± .002 .497 ± .001 .479 ± .001 8.681
blanchard .479 ± .000 .957 ± .001 .471 ± .000 22201.935 ± 218.369 .479 ± .000 .854 ± .002 .477 ± .000 8777.551 ± 125.716 .457 ± .001 .699 ± .003 .461 ± .000 2758.075 ± 77.155 .474 ± .001 .613 ± .003 .472 ± .001 903.948 ± 4.742

catoni .479 ± .000 .995 ± .000 .471 ± .000 26347.736 ± 225.908 .479 ± .000 .771 ± .002 .477 ± .000 8566.272 ± 124.834 .455 ± .001 .650 ± .002 .459 ± .000 3117.566 ± 75.178 .468 ± .001 .621 ± .001 .466 ± .001 1481.520 ± 52.533
rivasplata .479 ± .000 .915 ± .001 .471 ± .000 29489.241 ± 241.010 .479 ± .000 .765 ± .002 .477 ± .000 867.264 ± 126.038 .456 ± .001 .633 ± .002 .460 ± .000 2776.052 ± 72.901 .472 ± .001 .572 ± .002 .470 ± .001 937.091 ± 42.116
stochastic — .559 — 2.441 — .566 — 4.637 — .551 — 2.494 — .567 — 4.340
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Table F.3. Comparison of ours, rivasplata, blanchard and catoni based on the disintegrated bounds, and
stochastic based on the randomized bounds learned with two learning rates η ∈{10−4, 10−6} and different variances
σ2∈{10−3, 10−4, 10−5, 10−6}. We report the test risk (RT (h)), the bound value (Bnd), the empirical risk (RS(h)), and
the divergence (Div) associated with each bound (the Rényi divergence for ours, the KL divergence for stochastic,
and the disintegrated KL divergence for rivasplata, blanchard and catoni). More precisely, we report the mean ±
the standard deviation for 400 neural networks sampled from ρS for ours, rivasplata, blanchard, and catoni. We
consider, in this table, that the split ratio is 0.2.

σ2 = 10−6 σ2 = 10−5 σ2 = 10−4 σ2 = 10−3

η = 10−6 RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div

M
N

IS
T

ours .016 ± .000 .023 ± .000 .019 ± .000 .336 .015 ± .000 .023 ± .000 .019 ± .000 .748 .014 ± .001 .020 ± .001 .016 ± .000 2.096 .019 ± .002 .024 ± .002 .020 ± .002 2.244
blanchard .016 ± .000 .034 ± .001 .019 ± .000 97.590 ± 14.260 .015 ± .000 .026 ± .001 .019 ± .000 21.153 ± 6.514 .015 ± .001 .020 ± .001 .016 ± .001 3.362 ± 2.569 .020 ± .002 .024 ± .002 .021 ± .002 .371 ± .875

catoni .016 ± .000 .034 ± .001 .019 ± .000 116.744 ± 15.447 .015 ± .000 .027 ± .002 .019 ± .000 24.135 ± 7.075 .015 ± .001 .020 ± .001 .016 ± .001 3.352 ± 2.667 .020 ± .002 .024 ± .002 .021 ± .002 .410 ± .890
rivasplata .016 ± .000 .030 ± .001 .019 ± .000 101.334 ± 14.728 .015 ± .000 .024 ± .001 .019 ± .000 21.663 ± 6.603 .015 ± .001 .020 ± .001 .016 ± .001 3.409 ± 2.666 .020 ± .002 .024 ± .002 .021 ± .002 .446 ± .927
stochastic — .052 — .168 — .051 — .374 — .047 — 1.048 — .053 — 1.122

Fa
sh

io
n

ours .165 ± .002 .169 ± .001 .157 ± .001 4.811 .148 ± .003 .155 ± .002 .143 ± .002 1.856 .145 ± .005 .153 ± .006 .139 ± .005 15.453 .160 ± .005 .166 ± .005 .155 ± .005 1.633
blanchard .163 ± .002 .190 ± .003 .155 ± .001 96.264 ± 14.472 .152 ± .003 .163 ± .003 .147 ± .003 21.099 ± 6.507 .155 ± .007 .160 ± .007 .151 ± .007 3.929 ± 2.841 .163 ± .006 .165 ± .006 .158 ± .006 .340 ± .885

catoni .163 ± .002 .190 ± .004 .156 ± .001 121.542 ± 16.499 .150 ± .002 .158 ± .003 .144 ± .002 27.241 ± 7.318 .151 ± .006 .155 ± .006 .146 ± .006 5.120 ± 3.150 .162 ± .005 .165 ± .005 .157 ± .005 .444 ± .968
rivasplata .161 ± .001 .180 ± .002 .153 ± .001 106.403 ± 14.044 .150 ± .002 .158 ± .003 .145 ± .003 23.134 ± 7.064 .153 ± .006 .157 ± .006 .148 ± .007 4.439 ± 2.924 .162 ± .006 .165 ± .005 .157 ± .005 .417 ± .928
stochastic — .226 — 2.405 — .210 — 5.428 — .207 — 7.727 — .223 — .816

CI
FA

R-
10

ours .390 ± .000 .407 ± .000 .391 ± .000 .040 .404 ± .000 .414 ± .000 .398 ± .000 .070 .396 ± .001 .411 ± .000 .395 ± .000 .155 .416 ± .002 .432 ± .001 .415 ± .001 .970
blanchard .390 ± .000 .473 ± .004 .391 ± .000 271.616 ± 23.555 .404 ± .000 .445 ± .003 .398 ± .000 84.868 ± 13.050 .396 ± .001 .422 ± .003 .395 ± .000 23.962 ± 7.208 .416 ± .002 .432 ± .002 .416 ± .001 4.496 ± 3.018

catoni .390 ± .000 .473 ± .006 .391 ± .000 27.502 ± 23.371 .404 ± .000 .434 ± .003 .398 ± .000 84.848 ± 12.992 .396 ± .001 .415 ± .002 .395 ± .000 24.505 ± 6.942 .416 ± .002 .431 ± .001 .415 ± .001 4.859 ± 3.176
rivasplata .390 ± .000 .450 ± .002 .391 ± .000 271.700 ± 23.586 .403 ± .000 .433 ± .002 .398 ± .000 85.027 ± 13.047 .396 ± .001 .416 ± .002 .395 ± .000 23.955 ± 7.093 .416 ± .002 .431 ± .002 .416 ± .001 4.610 ± 3.084
stochastic — .477 — .020 — .485 — .035 — .482 — .077 — .503 — .485

σ2 = 10−6 σ2 = 10−5 σ2 = 10−4 σ2 = 10−3

η = 10−4 RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div

M
N

IS
T

ours .016 ± .000 .025 ± .000 .019 ± .000 14.490 .015 ± .000 .024 ± .000 .019 ± .000 8.583 .014 ± .000 .021 ± .001 .016 ± .000 13.055 .016 ± .001 .023 ± .001 .017 ± .001 25.556
blanchard .016 ± .000 .430 ± .004 .018 ± .000 11405.062 ± 153.554 .014 ± .000 .200 ± .003 .018 ± .000 3799.912 ± 89.585 .013 ± .000 .086 ± .002 .014 ± .000 1187.859 ± 48.700 .015 ± .001 .049 ± .002 .016 ± .001 38.983 ± 27.857

catoni .016 ± .000 .355 ± .002 .019 ± .000 11954.106 ± 15.709 .015 ± .000 .149 ± .003 .019 ± .000 3828.342 ± 83.937 .014 ± .001 .064 ± .002 .016 ± .001 1218.708 ± 48.514 .017 ± .001 .041 ± .002 .018 ± .001 389.726 ± 29.076
rivasplata .015 ± .000 .272 ± .002 .018 ± .000 1173.953 ± 149.364 .013 ± .000 .122 ± .002 .017 ± .000 3691.345 ± 82.512 .012 ± .000 .056 ± .001 .013 ± .000 1206.615 ± 5.381 .015 ± .001 .037 ± .001 .015 ± .001 391.881 ± 28.344
stochastic — .053 — 7.245 — .052 — 4.292 — .048 — 6.528 — .051 — 12.778

Fa
sh

io
n

ours .165 ± .002 .172 ± .001 .157 ± .001 23.705 .141 ± .002 .156 ± .002 .137 ± .002 52.736 .131 ± .003 .147 ± .003 .126 ± .003 7.515 .156 ± .004 .165 ± .004 .151 ± .003 16.954
blanchard .136 ± .001 .598 ± .003 .130 ± .001 11334.327 ± 145.083 .125 ± .001 .379 ± .003 .121 ± .001 3998.068 ± 88.992 .124 ± .001 .247 ± .003 .117 ± .001 126.184 ± 48.814 .152 ± .003 .216 ± .004 .147 ± .003 364.531 ± 28.029

catoni .162 ± .001 .525 ± .004 .154 ± .001 11965.668 ± 152.681 .141 ± .002 .309 ± .003 .137 ± .002 384.802 ± 84.123 .132 ± .003 .224 ± .004 .127 ± .002 1239.918 ± 49.594 .155 ± .004 .232 ± .005 .150 ± .004 394.607 ± 28.146
rivasplata .131 ± .001 .455 ± .002 .127 ± .001 1193.209 ± 155.390 .123 ± .001 .290 ± .002 .119 ± .001 4005.169 ± 89.793 .123 ± .001 .204 ± .002 .116 ± .001 1294.726 ± 49.874 .152 ± .004 .195 ± .004 .146 ± .003 378.905 ± 27.422
stochastic — .228 — 11.853 — .209 — 26.368 — .198 — 35.258 — .221 — 8.477

CI
FA

R-
10

ours .390 ± .000 .411 ± .000 .391 ± .000 13.286 .404 ± .000 .415 ± .000 .398 ± .000 3.305 .396 ± .001 .412 ± .000 .395 ± .000 3.136 .415 ± .001 .433 ± .001 .415 ± .001 6.064
blanchard .389 ± .000 .990 ± .000 .391 ± .000 75424.764 ± 397.521 .403 ± .000 .820 ± .002 .397 ± .000 8815.324 ± 126.764 .395 ± .001 .651 ± .003 .394 ± .000 2738.066 ± 75.053 .408 ± .001 .557 ± .003 .405 ± .001 918.500 ± 42.347

catoni .390 ± .000 .990 ± .000 .391 ± .000 26434.787 ± 228.500 .403 ± .000 .726 ± .003 .397 ± .000 8651.380 ± 126.473 .394 ± .001 .620 ± .002 .393 ± .000 4178.302 ± 9.315 .401 ± .001 .556 ± .001 .396 ± .001 1462.235 ± 55.526
rivasplata .389 ± .000 .902 ± .001 .391 ± .000 31497.669 ± 249.683 .403 ± .000 .715 ± .002 .397 ± .000 8707.893 ± 133.239 .394 ± .001 .578 ± .003 .393 ± .000 2741.257 ± 74.942 .405 ± .001 .512 ± .002 .402 ± .001 967.818 ± 43.629
stochastic — .480 — 6.643 — .486 — 1.653 — .483 — 1.568 — .503 — 3.032
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Table F.4. Comparison of ours, rivasplata, blanchard and catoni based on the disintegrated bounds, and
stochastic based on the randomized bounds learned with two learning rates η ∈{10−4, 10−6} and different variances
σ2∈{10−3, 10−4, 10−5, 10−6}. We report the test risk (RT (h)), the bound value (Bnd), the empirical risk (RS(h)), and
the divergence (Div) associated with each bound (the Rényi divergence for ours, the KL divergence for stochastic,
and the disintegrated KL divergence for rivasplata, blanchard and catoni). More precisely, we report the mean ±
the standard deviation for 400 neural networks sampled from ρS for ours, rivasplata, blanchard, and catoni. We
consider, in this table, that the split ratio is 0.3.

σ2 = 10−6 σ2 = 10−5 σ2 = 10−4 σ2 = 10−3

η = 10−6 RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div

M
N

IS
T

ours .012 ± .000 .017 ± .000 .013 ± .000 .181 .009 ± .000 .015 ± .000 .011 ± .000 .155 .012 ± .000 .020 ± .000 .016 ± .000 1.655 .013 ± .001 .019 ± .001 .015 ± .001 .615
blanchard .012 ± .000 .027 ± .001 .013 ± .000 93.915 ± 14.109 .012 ± .000 .021 ± .001 .014 ± .000 19.292 ± 6.037 .012 ± .000 .020 ± .001 .016 ± .000 3.023 ± 2.430 .014 ± .001 .018 ± .001 .015 ± .001 .368 ± .831

catoni .012 ± .000 .025 ± .001 .013 ± .000 113.574 ± 15.436 .012 ± .000 .023 ± .002 .014 ± .000 22.347 ± 6.877 .012 ± .000 .020 ± .001 .016 ± .000 2.918 ± 2.341 .013 ± .001 .018 ± .001 .015 ± .001 .336 ± .807
rivasplata .012 ± .000 .023 ± .001 .013 ± .000 96.392 ± 14.300 .012 ± .000 .020 ± .001 .014 ± .000 19.905 ± 6.254 .012 ± .000 .020 ± .001 .016 ± .000 2.931 ± 2.446 .013 ± .001 .018 ± .001 .015 ± .001 .355 ± .813
stochastic — .042 — .091 — .039 — .077 — .047 — .827 — .045 — .308

Fa
sh

io
n

ours .126 ± .000 .134 ± .000 .124 ± .000 .328 .126 ± .001 .130 ± .001 .119 ± .001 1.692 .122 ± .002 .126 ± .002 .115 ± .002 4.617 .139 ± .005 .145 ± .005 .133 ± .005 2.425
blanchard .126 ± .000 .157 ± .003 .124 ± .000 88.034 ± 13.485 .126 ± .001 .136 ± .002 .120 ± .001 18.852 ± 6.115 .124 ± .002 .127 ± .002 .118 ± .002 3.014 ± 2.395 .142 ± .006 .144 ± .006 .137 ± .006 .370 ± .819

catoni .126 ± .000 .159 ± .004 .124 ± .000 114.259 ± 15.300 .126 ± .001 .133 ± .002 .120 ± .001 22.607 ± 6.871 .124 ± .002 .126 ± .002 .118 ± .002 3.100 ± 2.513 .141 ± .006 .144 ± .006 .136 ± .006 .390 ± .898
rivasplata .126 ± .000 .148 ± .002 .124 ± .000 93.107 ± 13.630 .126 ± .001 .133 ± .002 .120 ± .001 19.724 ± 6.320 .124 ± .002 .126 ± .002 .118 ± .002 2.980 ± 2.451 .142 ± .006 .144 ± .006 .136 ± .006 .371 ± .869
stochastic — .187 — .164 — .182 — .846 — .178 — 2.309 — .199 — 1.212

CI
FA

R-
10

ours .369 ± .000 .375 ± .000 .358 ± .000 .028 .351 ± .000 .368 ± .000 .352 ± .000 .041 .359 ± .001 .377 ± .000 .360 ± .000 .183 .419 ± .001 .433 ± .001 .416 ± .001 .759
blanchard .369 ± .000 .446 ± .004 .358 ± .000 269.789 ± 22.724 .351 ± .000 .401 ± .004 .352 ± .000 84.113 ± 12.530 .359 ± .001 .388 ± .003 .360 ± .000 22.878 ± 6.728 .419 ± .001 .432 ± .003 .416 ± .001 4.089 ± 2.818

catoni .369 ± .000 .450 ± .007 .358 ± .000 269.843 ± 24.225 .351 ± .000 .390 ± .004 .352 ± .000 84.500 ± 12.608 .359 ± .001 .381 ± .002 .360 ± .000 23.567 ± 7.181 .419 ± .001 .432 ± .001 .416 ± .001 4.285 ± 2.942
rivasplata .369 ± .000 .421 ± .003 .358 ± .000 27.224 ± 24.187 .351 ± .000 .388 ± .002 .352 ± .000 84.250 ± 13.274 .359 ± .001 .382 ± .002 .360 ± .000 23.053 ± 6.724 .419 ± .001 .431 ± .002 .416 ± .001 4.141 ± 2.985
stochastic — .445 — .014 — .438 — .020 — .447 — .092 — .504 — .380

σ2 = 10−6 σ2 = 10−5 σ2 = 10−4 σ2 = 10−3

η = 10−4 RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div

M
N

IS
T

ours .012 ± .000 .019 ± .000 .013 ± .000 24.837 .012 ± .000 .020 ± .000 .014 ± .000 12.358 .012 ± .000 .021 ± .000 .015 ± .000 13.908 .013 ± .001 .019 ± .001 .014 ± .001 16.179
blanchard .012 ± .000 .467 ± .004 .013 ± .000 11819.223 ± 154.992 .011 ± .000 .211 ± .003 .014 ± .000 3808.981 ± 86.014 .010 ± .000 .094 ± .003 .014 ± .000 121.397 ± 51.944 .012 ± .001 .046 ± .002 .013 ± .001 372.832 ± 26.602

catoni .012 ± .000 .339 ± .002 .013 ± .000 1196.394 ± 15.704 .012 ± .000 .159 ± .003 .014 ± .000 3838.459 ± 88.155 .012 ± .000 .070 ± .002 .016 ± .000 1218.505 ± 51.783 .013 ± .001 .037 ± .001 .014 ± .001 386.824 ± 28.233
rivasplata .012 ± .000 .289 ± .003 .013 ± .000 1191.037 ± 152.759 .011 ± .000 .128 ± .002 .014 ± .000 3768.785 ± 9.947 .010 ± .000 .061 ± .001 .013 ± .000 1231.638 ± 49.362 .011 ± .001 .033 ± .001 .012 ± .000 382.225 ± 28.481
stochastic — .044 — 12.418 — .046 — 6.179 — .047 — 6.954 — .045 — 8.089

Fa
sh

io
n

ours .126 ± .000 .137 ± .000 .124 ± .000 12.401 .125 ± .001 .132 ± .001 .119 ± .001 14.631 .120 ± .002 .128 ± .002 .113 ± .001 26.499 .133 ± .003 .143 ± .003 .127 ± .003 23.702
blanchard .123 ± .000 .602 ± .003 .121 ± .000 10558.872 ± 139.107 .119 ± .001 .383 ± .004 .112 ± .001 3893.091 ± 86.176 .113 ± .001 .239 ± .003 .106 ± .001 1204.211 ± 5.815 .132 ± .003 .195 ± .004 .125 ± .003 362.146 ± 27.801

catoni .126 ± .000 .531 ± .004 .124 ± .000 11966.223 ± 148.195 .125 ± .001 .299 ± .003 .118 ± .001 3829.806 ± 85.864 .119 ± .002 .209 ± .002 .113 ± .001 1225.310 ± 48.090 .134 ± .004 .202 ± .005 .127 ± .003 395.243 ± 29.182
rivasplata .123 ± .000 .458 ± .003 .120 ± .000 11209.156 ± 143.319 .118 ± .001 .287 ± .002 .111 ± .001 3815.804 ± 85.091 .112 ± .001 .196 ± .002 .105 ± .001 126.956 ± 49.255 .130 ± .003 .173 ± .004 .124 ± .003 376.904 ± 27.549
stochastic — .189 — 6.200 — .184 — 7.316 — .179 — 13.250 — .195 — 11.851

CI
FA

R-
10

ours .369 ± .000 .379 ± .000 .358 ± .000 11.657 .351 ± .000 .369 ± .000 .352 ± .000 2.267 .359 ± .001 .378 ± .000 .360 ± .000 2.616 .418 ± .001 .434 ± .001 .415 ± .001 5.675
blanchard .369 ± .000 .990 ± .000 .358 ± .000 40152.974 ± 291.721 .351 ± .000 .809 ± .003 .351 ± .000 8753.816 ± 136.801 .358 ± .001 .635 ± .004 .359 ± .000 2728.436 ± 73.835 .412 ± .001 .568 ± .004 .407 ± .001 91.026 ± 44.096

catoni .369 ± .000 .986 ± .000 .358 ± .000 24477.984 ± 223.367 .351 ± .000 .708 ± .003 .351 ± .000 8463.452 ± 135.001 .357 ± .001 .578 ± .002 .357 ± .000 3401.221 ± 84.878 .405 ± .001 .561 ± .002 .399 ± .001 1354.100 ± 51.315
rivasplata .369 ± .000 .868 ± .001 .358 ± .000 24424.968 ± 223.601 .351 ± .000 .694 ± .002 .351 ± .000 8665.339 ± 136.361 .358 ± .001 .555 ± .003 .358 ± .000 274.651 ± 74.784 .409 ± .001 .521 ± .003 .403 ± .001 955.211 ± 44.609
stochastic — .448 — 5.829 — .439 — 1.134 — .448 — 1.308 — .504 — 2.838
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Table F.5. Comparison of ours, rivasplata, blanchard and catoni based on the disintegrated bounds, and
stochastic based on the randomized bounds learned with two learning rates η ∈{10−4, 10−6} and different variances
σ2∈{10−3, 10−4, 10−5, 10−6}. We report the test risk (RT (h)), the bound value (Bnd), the empirical risk (RS(h)), and
the divergence (Div) associated with each bound (the Rényi divergence for ours, the KL divergence for stochastic,
and the disintegrated KL divergence for rivasplata, blanchard and catoni). More precisely, we report the mean ±
the standard deviation for 400 neural networks sampled from ρS for ours, rivasplata, blanchard, and catoni. We
consider, in this table, that the split ratio is 0.4.

σ2 = 10−6 σ2 = 10−5 σ2 = 10−4 σ2 = 10−3

η = 10−6 RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div

M
N

IS
T

ours .010 ± .000 .017 ± .000 .013 ± .000 .194 .012 ± .000 .018 ± .000 .014 ± .000 .138 .009 ± .000 .015 ± .000 .011 ± .000 .235 .014 ± .001 .020 ± .001 .015 ± .001 1.111
blanchard .010 ± .000 .028 ± .001 .013 ± .000 88.323 ± 13.740 .012 ± .000 .021 ± .001 .014 ± .000 16.792 ± 5.702 .009 ± .000 .014 ± .001 .011 ± .000 2.449 ± 2.313 .014 ± .001 .019 ± .001 .016 ± .001 .244 ± .765

catoni .010 ± .000 .026 ± .001 .013 ± .000 109.202 ± 15.634 .012 ± .000 .023 ± .002 .014 ± .000 19.918 ± 6.526 .009 ± .000 .015 ± .001 .011 ± .000 2.486 ± 2.362 .014 ± .001 .019 ± .001 .016 ± .001 .298 ± .762
rivasplata .010 ± .000 .024 ± .001 .013 ± .000 91.872 ± 14.470 .012 ± .000 .019 ± .001 .014 ± .000 17.002 ± 5.882 .009 ± .000 .014 ± .000 .011 ± .000 2.529 ± 2.251 .014 ± .001 .019 ± .001 .016 ± .001 .308 ± .778
stochastic — .043 — .097 — .044 — .069 — .039 — .117 — .047 — .555

Fa
sh

io
n

ours .118 ± .001 .123 ± .000 .112 ± .000 .269 .113 ± .001 .118 ± .001 .107 ± .001 .743 .117 ± .002 .121 ± .002 .110 ± .002 2.600 .131 ± .004 .138 ± .004 .126 ± .004 1.229
blanchard .118 ± .001 .145 ± .003 .112 ± .000 82.403 ± 13.230 .113 ± .001 .123 ± .002 .107 ± .001 16.836 ± 5.583 .119 ± .002 .121 ± .003 .112 ± .003 2.641 ± 2.369 .133 ± .004 .136 ± .004 .128 ± .004 .297 ± .731

catoni .118 ± .001 .151 ± .004 .112 ± .000 109.988 ± 15.347 .113 ± .001 .120 ± .002 .107 ± .001 19.889 ± 6.689 .118 ± .002 .120 ± .003 .112 ± .003 2.615 ± 2.234 .132 ± .004 .136 ± .004 .128 ± .004 .300 ± .811
rivasplata .118 ± .001 .137 ± .002 .112 ± .000 87.804 ± 13.640 .113 ± .001 .120 ± .002 .107 ± .001 17.491 ± 6.144 .118 ± .002 .121 ± .003 .112 ± .003 2.549 ± 2.175 .133 ± .005 .137 ± .004 .128 ± .004 .322 ± .794
stochastic — .174 — .135 — .168 — .372 — .172 — 1.300 — .191 — .615

CI
FA

R-
10

ours .334 ± .000 .346 ± .000 .328 ± .000 .025 .322 ± .000 .331 ± .000 .313 ± .000 .050 .323 ± .001 .334 ± .000 .316 ± .000 .160 .333 ± .001 .341 ± .001 .323 ± .001 .461
blanchard .334 ± .000 .421 ± .004 .328 ± .000 269.875 ± 23.982 .322 ± .000 .364 ± .004 .313 ± .000 83.082 ± 13.029 .323 ± .001 .345 ± .004 .316 ± .000 21.614 ± 6.670 .333 ± .001 .340 ± .002 .323 ± .001 3.630 ± 2.750

catoni .334 ± .000 .433 ± .008 .328 ± .000 27.270 ± 24.201 .322 ± .000 .355 ± .005 .313 ± .000 84.148 ± 13.578 .323 ± .001 .338 ± .002 .316 ± .000 22.547 ± 6.801 .333 ± .001 .338 ± .001 .323 ± .001 3.831 ± 2.801
rivasplata .334 ± .000 .394 ± .003 .328 ± .000 27.133 ± 24.109 .322 ± .000 .351 ± .003 .313 ± .000 83.438 ± 13.033 .323 ± .001 .339 ± .002 .316 ± .000 21.688 ± 6.718 .333 ± .001 .339 ± .002 .323 ± .001 3.667 ± 2.757
stochastic — .414 — .013 — .399 — .025 — .403 — .080 — .409 — .230

σ2 = 10−6 σ2 = 10−5 σ2 = 10−4 σ2 = 10−3

η = 10−4 RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div

M
N

IS
T

ours .010 ± .000 .019 ± .000 .013 ± .000 23.992 .012 ± .000 .019 ± .000 .014 ± .000 7.767 .009 ± .000 .015 ± .000 .011 ± .000 3.165 .012 ± .001 .019 ± .001 .013 ± .001 18.413
blanchard .010 ± .000 .500 ± .004 .013 ± .000 1123.328 ± 151.115 .012 ± .000 .236 ± .004 .014 ± .000 381.840 ± 94.218 .009 ± .000 .096 ± .003 .011 ± .000 1184.214 ± 47.208 .011 ± .001 .048 ± .002 .012 ± .001 363.194 ± 26.547

catoni .010 ± .000 .369 ± .003 .013 ± .000 1191.598 ± 154.180 .012 ± .000 .180 ± .003 .014 ± .000 3826.581 ± 85.362 .009 ± .000 .070 ± .002 .011 ± .000 1217.723 ± 49.984 .012 ± .001 .039 ± .002 .014 ± .001 384.476 ± 29.126
rivasplata .010 ± .000 .316 ± .003 .013 ± .000 11557.703 ± 151.498 .012 ± .000 .142 ± .002 .014 ± .000 3751.391 ± 84.542 .009 ± .000 .061 ± .002 .011 ± .000 1172.156 ± 46.933 .010 ± .001 .035 ± .001 .012 ± .001 373.003 ± 27.844
stochastic — .045 — 11.996 — .045 — 3.884 — .040 — 1.583 — .045 — 9.207

Fa
sh

io
n

ours .118 ± .000 .127 ± .000 .112 ± .000 17.987 .113 ± .001 .119 ± .001 .107 ± .001 6.361 .114 ± .002 .123 ± .002 .107 ± .002 22.582 .125 ± .003 .137 ± .003 .122 ± .003 16.872
blanchard .115 ± .001 .659 ± .004 .110 ± .000 11835.780 ± 161.816 .110 ± .001 .395 ± .004 .104 ± .000 3828.562 ± 94.279 .108 ± .001 .244 ± .004 .102 ± .001 1185.882 ± 5.575 .123 ± .003 .192 ± .004 .119 ± .002 346.265 ± 27.827

catoni .118 ± .001 .566 ± .004 .112 ± .000 11921.114 ± 153.739 .113 ± .001 .304 ± .003 .107 ± .000 3822.647 ± 85.225 .114 ± .002 .208 ± .003 .107 ± .002 1217.879 ± 52.353 .125 ± .003 .196 ± .004 .121 ± .002 388.473 ± 29.475
rivasplata .114 ± .000 .476 ± .003 .109 ± .000 11206.239 ± 149.549 .110 ± .001 .292 ± .003 .103 ± .000 3745.930 ± 84.367 .106 ± .001 .197 ± .003 .101 ± .001 1229.005 ± 51.052 .122 ± .003 .170 ± .004 .118 ± .003 361.652 ± 28.452
stochastic — .177 — 8.994 — .169 — 3.180 — .172 — 11.291 — .189 — 8.436

CI
FA

R-
10

ours .334 ± .000 .350 ± .000 .328 ± .000 12.067 .322 ± .000 .332 ± .000 .313 ± .000 4.172 .323 ± .001 .336 ± .000 .316 ± .000 3.382 .332 ± .001 .343 ± .001 .322 ± .001 6.855
blanchard .334 ± .000 .977 ± .001 .328 ± .000 28565.558 ± 245.568 .322 ± .000 .803 ± .003 .313 ± .000 8479.553 ± 126.804 .321 ± .001 .614 ± .004 .315 ± .000 2727.786 ± 7.572 .327 ± .001 .487 ± .004 .317 ± .001 887.578 ± 42.449

catoni .334 ± .000 .983 ± .000 .328 ± .000 24136.528 ± 211.963 .322 ± .000 .694 ± .004 .313 ± .000 7928.671 ± 122.159 .320 ± .001 .515 ± .002 .314 ± .000 237.703 ± 65.952 .323 ± .001 .468 ± .002 .312 ± .001 1157.073 ± 47.283
rivasplata .334 ± .000 .922 ± .001 .328 ± .000 33282.032 ± 246.654 .322 ± .000 .680 ± .003 .312 ± .000 8493.458 ± 128.894 .320 ± .001 .527 ± .003 .314 ± .000 2739.108 ± 7.556 .325 ± .001 .436 ± .003 .314 ± .001 91.066 ± 43.389
stochastic — .417 — 6.033 — .400 — 2.086 — .403 — 1.691 — .410 — 3.427
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Table F.6. Comparison of ours, rivasplata, blanchard and catoni based on the disintegrated bounds, and
stochastic based on the randomized bounds learned with two learning rates η ∈{10−4, 10−6} and different variances
σ2∈{10−3, 10−4, 10−5, 10−6}. We report the test risk (RT (h)), the bound value (Bnd), the empirical risk (RS(h)), and
the divergence (Div) associated with each bound (the Rényi divergence for ours, the KL divergence for stochastic,
and the disintegrated KL divergence for rivasplata, blanchard and catoni). More precisely, we report the mean ±
the standard deviation for 400 neural networks sampled from ρS for ours, rivasplata, blanchard, and catoni. We
consider, in this table, that the split ratio is 0.5.

σ2 = 10−6 σ2 = 10−5 σ2 = 10−4 σ2 = 10−3

η = 10−6 RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div

M
N

IS
T

ours .008 ± .000 .015 ± .000 .010 ± .000 .084 .006 ± .000 .012 ± .000 .009 ± .000 .053 .008 ± .000 .014 ± .000 .010 ± .000 .179 .014 ± .001 .019 ± .001 .014 ± .001 .576
blanchard .008 ± .000 .025 ± .001 .010 ± .000 81.167 ± 12.801 .006 ± .000 .014 ± .001 .009 ± .000 15.518 ± 5.438 .009 ± .000 .014 ± .001 .010 ± .000 2.140 ± 2.072 .015 ± .001 .018 ± .001 .015 ± .001 .284 ± .649

catoni .008 ± .000 .022 ± .001 .010 ± .000 104.063 ± 14.662 .006 ± .000 .015 ± .000 .009 ± .000 17.676 ± 5.963 .008 ± .000 .014 ± .001 .010 ± .000 2.152 ± 2.085 .015 ± .001 .018 ± .001 .015 ± .001 .252 ± .680
rivasplata .008 ± .000 .021 ± .001 .010 ± .000 84.581 ± 13.035 .006 ± .000 .013 ± .001 .009 ± .000 15.545 ± 5.594 .008 ± .000 .014 ± .000 .010 ± .000 2.185 ± 1.992 .015 ± .001 .018 ± .001 .015 ± .001 .276 ± .693
stochastic — .039 — .042 — .035 — .026 — .038 — .090 — .045 — .288

Fa
sh

io
n

ours .106 ± .000 .113 ± .000 .101 ± .000 .133 .104 ± .001 .110 ± .000 .099 ± .000 .327 .108 ± .002 .112 ± .001 .101 ± .001 .903 .120 ± .004 .127 ± .003 .115 ± .003 .868
blanchard .106 ± .000 .136 ± .003 .101 ± .000 77.573 ± 12.564 .104 ± .001 .115 ± .003 .099 ± .000 15.278 ± 5.599 .109 ± .002 .111 ± .002 .102 ± .001 2.153 ± 2.081 .122 ± .004 .126 ± .004 .117 ± .004 .248 ± .715

catoni .106 ± .000 .145 ± .005 .101 ± .000 104.356 ± 14.712 .104 ± .001 .112 ± .002 .099 ± .000 17.566 ± 5.996 .109 ± .002 .110 ± .001 .102 ± .001 2.217 ± 2.084 .122 ± .004 .125 ± .004 .117 ± .004 .262 ± .699
rivasplata .106 ± .000 .127 ± .002 .101 ± .000 82.150 ± 12.955 .104 ± .001 .112 ± .001 .099 ± .000 15.509 ± 5.629 .109 ± .002 .111 ± .001 .102 ± .001 2.178 ± 2.060 .122 ± .004 .126 ± .004 .117 ± .004 .264 ± .704
stochastic — .162 — .066 — .159 — .164 — .162 — .451 — .179 — .434

CI
FA

R-
10

ours .312 ± .000 .323 ± .000 .304 ± .000 .027 .281 ± .000 .304 ± .000 .285 ± .000 .035 .298 ± .001 .310 ± .000 .291 ± .000 .101 .315 ± .001 .329 ± .001 .309 ± .001 .368
blanchard .312 ± .000 .405 ± .004 .304 ± .000 268.149 ± 22.835 .281 ± .000 .339 ± .004 .285 ± .000 8.690 ± 12.628 .298 ± .001 .320 ± .004 .291 ± .000 19.648 ± 6.249 .315 ± .001 .327 ± .003 .310 ± .001 3.213 ± 2.590

catoni .312 ± .000 .428 ± .009 .304 ± .000 269.415 ± 22.884 .281 ± .000 .333 ± .005 .285 ± .000 83.414 ± 13.018 .298 ± .001 .314 ± .003 .291 ± .000 2.711 ± 6.481 .315 ± .001 .326 ± .001 .310 ± .001 3.273 ± 2.597
rivasplata .312 ± .000 .375 ± .003 .304 ± .000 268.589 ± 22.845 .281 ± .000 .325 ± .003 .285 ± .000 81.532 ± 12.712 .298 ± .001 .315 ± .002 .291 ± .000 19.813 ± 6.288 .315 ± .001 .327 ± .002 .310 ± .001 3.233 ± 2.599
stochastic — .391 — .013 — .370 — .017 — .377 — .050 — .397 — .184

σ2 = 10−6 σ2 = 10−5 σ2 = 10−4 σ2 = 10−3

η = 10−4 RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div

M
N

IS
T

ours .008 ± .000 .017 ± .000 .010 ± .000 29.993 .006 ± .000 .013 ± .000 .009 ± .000 3.162 .008 ± .000 .015 ± .000 .010 ± .000 1.418 .013 ± .001 .019 ± .001 .013 ± .001 12.231
blanchard .008 ± .000 .574 ± .005 .010 ± .000 11894.556 ± 155.958 .006 ± .000 .256 ± .004 .009 ± .000 3826.515 ± 86.973 .008 ± .000 .108 ± .003 .010 ± .000 1184.777 ± 48.158 .010 ± .001 .052 ± .002 .011 ± .000 36.865 ± 28.054

catoni .008 ± .000 .396 ± .003 .010 ± .000 11986.455 ± 15.722 .006 ± .000 .192 ± .002 .009 ± .000 3824.971 ± 85.072 .008 ± .000 .079 ± .002 .010 ± .000 1213.611 ± 48.751 .013 ± .001 .042 ± .002 .014 ± .001 384.275 ± 28.556
rivasplata .008 ± .000 .362 ± .003 .010 ± .000 11905.971 ± 15.609 .006 ± .000 .148 ± .003 .009 ± .000 377.259 ± 84.127 .008 ± .000 .067 ± .002 .010 ± .000 118.841 ± 5.043 .010 ± .001 .036 ± .001 .011 ± .000 369.675 ± 27.947
stochastic — .041 — 14.996 — .035 — 1.581 — .039 — .709 — .045 — 6.116

Fa
sh

io
n

ours .106 ± .000 .114 ± .000 .101 ± .000 6.310 .103 ± .001 .113 ± .000 .099 ± .000 9.312 .106 ± .002 .115 ± .001 .100 ± .001 14.924 .115 ± .003 .126 ± .003 .110 ± .002 18.364
blanchard .105 ± .000 .674 ± .004 .101 ± .000 10795.464 ± 143.426 .102 ± .000 .412 ± .004 .098 ± .000 3685.940 ± 82.481 .103 ± .001 .253 ± .004 .097 ± .001 1178.401 ± 48.359 .113 ± .002 .186 ± .004 .108 ± .002 338.697 ± 27.104

catoni .106 ± .000 .623 ± .005 .101 ± .000 11971.564 ± 15.589 .104 ± .001 .321 ± .004 .099 ± .000 3825.370 ± 87.728 .107 ± .002 .208 ± .003 .100 ± .001 1214.976 ± 48.846 .116 ± .003 .184 ± .004 .111 ± .003 388.197 ± 27.580
rivasplata .105 ± .000 .503 ± .003 .100 ± .000 11139.304 ± 15.540 .102 ± .000 .307 ± .003 .097 ± .000 381.075 ± 87.924 .102 ± .001 .201 ± .003 .096 ± .001 1201.832 ± 48.877 .112 ± .002 .161 ± .003 .107 ± .002 349.146 ± 27.482
stochastic — .163 — 3.155 — .161 — 4.656 — .163 — 7.462 — .176 — 9.182

CI
FA

R-
10

ours .312 ± .000 .328 ± .000 .304 ± .000 12.006 .281 ± .000 .304 ± .000 .285 ± .000 1.802 .297 ± .001 .311 ± .000 .291 ± .000 2.056 .314 ± .001 .330 ± .001 .309 ± .001 4.782
blanchard .312 ± .000 .990 ± .000 .304 ± .000 48007.471 ± 31.730 .280 ± .000 .825 ± .003 .284 ± .000 8824.774 ± 134.331 .296 ± .001 .617 ± .004 .290 ± .000 2723.775 ± 66.832 .309 ± .001 .490 ± .004 .303 ± .001 888.277 ± 41.530

catoni .312 ± .000 .980 ± .000 .304 ± .000 21278.808 ± 207.839 .280 ± .000 .681 ± .004 .284 ± .000 6951.932 ± 118.540 .296 ± .001 .496 ± .003 .290 ± .000 2145.470 ± 6.045 .305 ± .001 .457 ± .002 .299 ± .001 103.494 ± 47.021
rivasplata .312 ± .000 .964 ± .001 .304 ± .000 42834.626 ± 284.116 .280 ± .000 .690 ± .003 .284 ± .000 8675.531 ± 136.658 .296 ± .001 .521 ± .003 .290 ± .000 2718.415 ± 66.664 .307 ± .001 .434 ± .003 .301 ± .001 921.068 ± 42.158
stochastic — .394 — 6.003 — .371 — .901 — .378 — 1.028 — .397 — 2.391
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Table F.7. Comparison of ours, rivasplata, blanchard and catoni based on the disintegrated bounds, and
stochastic based on the randomized bounds learned with two learning rates η ∈{10−4, 10−6} and different variances
σ2∈{10−3, 10−4, 10−5, 10−6}. We report the test risk (RT (h)), the bound value (Bnd), the empirical risk (RS(h)), and
the divergence (Div) associated with each bound (the Rényi divergence for ours, the KL divergence for stochastic,
and the disintegrated KL divergence for rivasplata, blanchard and catoni). More precisely, we report the mean ±
the standard deviation for 400 neural networks sampled from ρS for ours, rivasplata, blanchard, and catoni. We
consider, in this table, that the split ratio is 0.6.

σ2 = 10−6 σ2 = 10−5 σ2 = 10−4 σ2 = 10−3

η = 10−6 RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div

M
N

IS
T

ours .008 ± .000 .014 ± .000 .010 ± .000 .040 .007 ± .000 .014 ± .000 .009 ± .000 .068 .008 ± .000 .013 ± .000 .009 ± .000 .092 .008 ± .000 .014 ± .001 .009 ± .000 .128
blanchard .008 ± .000 .026 ± .002 .010 ± .000 75.043 ± 11.586 .007 ± .000 .016 ± .001 .009 ± .000 13.220 ± 4.956 .008 ± .000 .012 ± .001 .009 ± .000 1.774 ± 1.772 .008 ± .000 .012 ± .001 .009 ± .000 .190 ± .594

catoni .008 ± .000 .022 ± .001 .010 ± .000 96.561 ± 13.980 .007 ± .000 .016 ± .000 .009 ± .000 15.107 ± 5.370 .008 ± .000 .013 ± .001 .009 ± .000 1.835 ± 1.837 .008 ± .000 .013 ± .000 .009 ± .000 .219 ± .619
rivasplata .008 ± .000 .021 ± .001 .010 ± .000 76.898 ± 12.301 .007 ± .000 .014 ± .001 .009 ± .000 13.370 ± 4.931 .008 ± .000 .013 ± .000 .009 ± .000 1.695 ± 1.741 .008 ± .000 .013 ± .001 .009 ± .000 .183 ± .580
stochastic — .038 — .020 — .037 — .034 — .037 — .046 — .037 — .064

Fa
sh

io
n

ours .109 ± .000 .115 ± .000 .102 ± .000 .128 .114 ± .001 .117 ± .001 .104 ± .001 .436 .101 ± .001 .108 ± .001 .096 ± .001 .452 .110 ± .003 .116 ± .003 .103 ± .003 .438
blanchard .109 ± .000 .139 ± .003 .102 ± .000 7.878 ± 11.599 .114 ± .001 .121 ± .003 .104 ± .001 13.041 ± 5.012 .102 ± .001 .106 ± .002 .096 ± .001 1.840 ± 1.864 .111 ± .003 .113 ± .003 .104 ± .002 .184 ± .600

catoni .109 ± .000 .152 ± .006 .102 ± .000 96.732 ± 13.464 .114 ± .001 .119 ± .002 .104 ± .001 15.103 ± 5.363 .102 ± .001 .105 ± .001 .096 ± .001 1.825 ± 1.886 .111 ± .003 .112 ± .003 .104 ± .003 .224 ± .610
rivasplata .109 ± .000 .129 ± .002 .102 ± .000 75.029 ± 11.918 .114 ± .001 .118 ± .002 .104 ± .001 13.495 ± 5.112 .102 ± .001 .106 ± .001 .096 ± .001 1.798 ± 1.859 .111 ± .003 .114 ± .003 .104 ± .002 .219 ± .610
stochastic — .164 — .064 — .167 — .218 — .157 — .226 — .165 — .219

CI
FA

R-
10

ours .277 ± .000 .297 ± .000 .276 ± .000 .021 .288 ± .000 .307 ± .000 .286 ± .000 .027 .273 ± .001 .284 ± .000 .263 ± .000 .079 .281 ± .001 .302 ± .001 .281 ± .001 .227
blanchard .277 ± .000 .386 ± .005 .276 ± .000 262.952 ± 24.385 .288 ± .000 .346 ± .005 .286 ± .000 76.609 ± 12.923 .273 ± .001 .293 ± .004 .263 ± .000 17.724 ± 6.241 .281 ± .001 .299 ± .002 .281 ± .001 2.580 ± 2.299

catoni .277 ± .000 .398 ± .001 .276 ± .000 268.083 ± 24.567 .288 ± .000 .343 ± .007 .286 ± .000 82.887 ± 13.493 .273 ± .001 .287 ± .003 .263 ± .000 18.978 ± 6.437 .281 ± .001 .297 ± .001 .281 ± .001 2.661 ± 2.317
rivasplata .277 ± .000 .354 ± .004 .276 ± .000 263.581 ± 24.435 .288 ± .000 .330 ± .003 .286 ± .000 77.488 ± 12.464 .273 ± .001 .288 ± .002 .263 ± .000 17.704 ± 5.927 .281 ± .001 .299 ± .002 .281 ± .001 2.619 ± 2.297
stochastic — .363 — .010 — .374 — .014 — .349 — .040 — .368 — .113

σ2 = 10−6 σ2 = 10−5 σ2 = 10−4 σ2 = 10−3

η = 10−4 RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div

M
N

IS
T

ours .008 ± .000 .016 ± .000 .010 ± .000 9.520 .007 ± .000 .014 ± .000 .009 ± .000 3.594 .008 ± .000 .014 ± .000 .009 ± .000 1.877 .008 ± .000 .014 ± .001 .009 ± .000 6.589
blanchard .008 ± .000 .657 ± .005 .010 ± .000 1209.158 ± 157.539 .007 ± .000 .304 ± .005 .009 ± .000 3795.285 ± 88.141 .008 ± .000 .124 ± .004 .009 ± .000 1183.704 ± 5.113 .007 ± .000 .052 ± .002 .009 ± .000 347.860 ± 25.275

catoni .008 ± .000 .452 ± .004 .010 ± .000 12032.708 ± 157.184 .007 ± .000 .225 ± .003 .009 ± .000 3834.246 ± 89.809 .008 ± .000 .093 ± .003 .009 ± .000 1225.575 ± 51.027 .007 ± .000 .039 ± .002 .008 ± .000 39.374 ± 26.987
rivasplata .008 ± .000 .423 ± .004 .010 ± .000 11943.688 ± 156.365 .007 ± .000 .179 ± .003 .009 ± .000 3787.407 ± 87.968 .008 ± .000 .075 ± .002 .009 ± .000 1173.457 ± 49.846 .007 ± .000 .035 ± .002 .008 ± .000 348.717 ± 26.495
stochastic — .039 — 4.760 — .038 — 1.797 — .037 — .938 — .038 — 3.294

Fa
sh

io
n

ours .109 ± .000 .119 ± .000 .102 ± .000 16.776 .114 ± .001 .119 ± .001 .104 ± .001 7.869 .101 ± .001 .111 ± .001 .095 ± .001 14.224 .109 ± .002 .116 ± .002 .101 ± .002 9.187
blanchard .108 ± .000 .743 ± .004 .101 ± .000 11048.501 ± 146.969 .112 ± .001 .468 ± .005 .101 ± .001 3798.865 ± 87.270 .099 ± .001 .268 ± .005 .093 ± .001 1144.740 ± 49.199 .106 ± .002 .183 ± .004 .099 ± .002 328.466 ± 24.435

catoni .109 ± .000 .712 ± .005 .102 ± .000 1191.096 ± 15.212 .114 ± .001 .367 ± .005 .104 ± .001 3831.104 ± 88.371 .101 ± .001 .216 ± .003 .095 ± .001 1221.392 ± 5.970 .108 ± .002 .175 ± .003 .101 ± .002 386.528 ± 26.498
rivasplata .108 ± .000 .557 ± .003 .101 ± .000 11148.085 ± 145.818 .111 ± .001 .340 ± .003 .100 ± .001 3757.976 ± 83.965 .098 ± .001 .209 ± .003 .092 ± .001 1176.081 ± 49.829 .106 ± .002 .156 ± .003 .098 ± .002 34.716 ± 24.874
stochastic — .168 — 8.388 — .168 — 3.935 — .159 — 7.112 — .165 — 4.594

CI
FA

R-
10

ours .277 ± .000 .301 ± .000 .276 ± .000 8.466 .288 ± .000 .308 ± .000 .286 ± .000 2.415 .273 ± .001 .285 ± .000 .263 ± .000 2.256 .280 ± .001 .303 ± .001 .280 ± .001 2.747
blanchard .277 ± .000 .990 ± .000 .276 ± .000 58878.209 ± 356.845 .288 ± .000 .868 ± .003 .286 ± .000 8858.838 ± 134.545 .272 ± .001 .625 ± .005 .262 ± .000 2709.659 ± 76.197 .278 ± .001 .480 ± .005 .277 ± .001 86.940 ± 43.864

catoni .277 ± .000 .974 ± .000 .276 ± .000 17581.286 ± 185.476 .288 ± .000 .662 ± .005 .286 ± .000 5118.582 ± 105.636 .272 ± .001 .456 ± .003 .262 ± .000 1548.107 ± 58.565 .277 ± .001 .426 ± .002 .274 ± .001 783.103 ± 41.593
rivasplata .277 ± .000 .990 ± .000 .276 ± .000 82459.214 ± 398.763 .288 ± .000 .733 ± .003 .286 ± .000 8674.850 ± 13.468 .272 ± .001 .518 ± .004 .262 ± .000 2709.173 ± 77.205 .277 ± .001 .418 ± .004 .275 ± .001 874.307 ± 44.089
stochastic — .366 — 4.233 — .374 — 1.207 — .350 — 1.128 — .369 — 1.374
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Table F.8. Comparison of ours, rivasplata, blanchard and catoni based on the disintegrated bounds, and
stochastic based on the randomized bounds learned with two learning rates η ∈{10−4, 10−6} and different variances
σ2∈{10−3, 10−4, 10−5, 10−6}. We report the test risk (RT (h)), the bound value (Bnd), the empirical risk (RS(h)), and
the divergence (Div) associated with each bound (the Rényi divergence for ours, the KL divergence for stochastic,
and the disintegrated KL divergence for rivasplata, blanchard and catoni). More precisely, we report the mean ±
the standard deviation for 400 neural networks sampled from ρS for ours, rivasplata, blanchard, and catoni. We
consider, in this table, that the split ratio is 0.7.

σ2 = 10−6 σ2 = 10−5 σ2 = 10−4 σ2 = 10−3

η = 10−6 RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div

M
N

IS
T

ours .011 ± .000 .019 ± .000 .013 ± .000 .047 .010 ± .000 .018 ± .000 .012 ± .000 .125 .010 ± .000 .017 ± .000 .012 ± .000 .116 .010 ± .001 .018 ± .001 .012 ± .001 .132
blanchard .011 ± .000 .032 ± .002 .013 ± .000 65.017 ± 11.099 .010 ± .000 .019 ± .001 .012 ± .000 1.819 ± 4.995 .010 ± .000 .016 ± .001 .012 ± .000 1.551 ± 1.635 .010 ± .001 .016 ± .001 .012 ± .001 .115 ± .560

catoni .011 ± .000 .028 ± .001 .013 ± .000 84.529 ± 13.023 .010 ± .000 .021 ± .000 .012 ± .000 11.910 ± 5.053 .010 ± .000 .017 ± .001 .012 ± .000 1.228 ± 1.637 .010 ± .001 .017 ± .001 .012 ± .001 .173 ± .512
rivasplata .011 ± .000 .026 ± .001 .013 ± .000 68.055 ± 11.606 .010 ± .000 .018 ± .001 .012 ± .000 1.637 ± 4.962 .010 ± .000 .016 ± .000 .012 ± .000 1.408 ± 1.639 .010 ± .001 .016 ± .001 .012 ± .001 .160 ± .529
stochastic — .044 — .023 — .043 — .062 — .042 — .058 — .043 — .066

Fa
sh

io
n

ours .099 ± .000 .112 ± .000 .098 ± .000 .067 .107 ± .001 .115 ± .001 .100 ± .001 .542 .098 ± .002 .107 ± .001 .093 ± .001 .353 .108 ± .003 .117 ± .002 .102 ± .002 .312
blanchard .099 ± .000 .138 ± .004 .098 ± .000 61.733 ± 1.862 .107 ± .001 .119 ± .003 .101 ± .001 1.651 ± 4.230 .099 ± .001 .104 ± .002 .094 ± .001 1.342 ± 1.664 .108 ± .003 .113 ± .003 .103 ± .002 .143 ± .534

catoni .099 ± .000 .155 ± .007 .098 ± .000 83.929 ± 12.212 .107 ± .001 .116 ± .003 .101 ± .001 11.543 ± 4.870 .099 ± .002 .103 ± .002 .094 ± .001 1.437 ± 1.594 .108 ± .003 .112 ± .003 .103 ± .002 .153 ± .545
rivasplata .099 ± .000 .128 ± .002 .098 ± .000 65.737 ± 11.733 .107 ± .001 .116 ± .002 .101 ± .001 1.958 ± 4.794 .099 ± .002 .105 ± .002 .094 ± .001 1.491 ± 1.618 .108 ± .003 .114 ± .003 .103 ± .002 .155 ± .546
stochastic — .161 — .034 — .164 — .271 — .155 — .177 — .166 — .156

CI
FA

R-
10

ours .277 ± .000 .296 ± .000 .272 ± .000 .016 .266 ± .000 .281 ± .000 .257 ± .000 .022 .253 ± .001 .272 ± .000 .248 ± .000 .069 .236 ± .001 .258 ± .001 .235 ± .001 .118
blanchard .277 ± .000 .399 ± .006 .272 ± .000 257.371 ± 23.327 .266 ± .000 .322 ± .005 .257 ± .000 7.190 ± 11.685 .253 ± .001 .281 ± .005 .248 ± .000 15.214 ± 5.838 .236 ± .001 .255 ± .002 .235 ± .001 2.223 ± 2.016

catoni .277 ± .000 .399 ± .002 .272 ± .000 269.048 ± 23.489 .266 ± .000 .328 ± .009 .257 ± .000 81.217 ± 13.476 .253 ± .001 .275 ± .004 .248 ± .000 16.576 ± 6.087 .236 ± .001 .253 ± .002 .235 ± .001 2.248 ± 2.082
rivasplata .277 ± .000 .362 ± .004 .272 ± .000 258.993 ± 23.725 .266 ± .000 .305 ± .004 .257 ± .000 72.737 ± 12.750 .253 ± .001 .275 ± .003 .248 ± .000 15.342 ± 5.948 .236 ± .001 .255 ± .002 .235 ± .001 2.220 ± 2.180
stochastic — .362 — .008 — .345 — .011 — .336 — .034 — .322 — .059

σ2 = 10−6 σ2 = 10−5 σ2 = 10−4 σ2 = 10−3

η = 10−4 RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div

M
N

IS
T

ours .011 ± .000 .025 ± .000 .013 ± .000 45.094 .010 ± .000 .019 ± .000 .012 ± .000 7.479 .010 ± .000 .018 ± .000 .012 ± .000 5.269 .010 ± .000 .018 ± .001 .011 ± .001 6.510
blanchard .011 ± .000 .737 ± .004 .013 ± .000 11285.050 ± 147.363 .010 ± .000 .381 ± .006 .012 ± .000 3785.071 ± 85.889 .010 ± .000 .160 ± .005 .011 ± .000 1181.043 ± 46.219 .009 ± .000 .067 ± .003 .011 ± .001 34.267 ± 26.244

catoni .011 ± .000 .547 ± .004 .013 ± .000 11965.668 ± 153.481 .010 ± .000 .283 ± .004 .012 ± .000 3811.642 ± 88.111 .010 ± .000 .120 ± .004 .011 ± .000 1212.373 ± 48.835 .009 ± .000 .050 ± .002 .010 ± .000 383.387 ± 27.059
rivasplata .011 ± .000 .509 ± .004 .013 ± .000 11555.623 ± 15.287 .010 ± .000 .226 ± .004 .012 ± .000 3695.054 ± 9.289 .009 ± .000 .096 ± .003 .011 ± .000 1171.892 ± 47.812 .009 ± .000 .044 ± .002 .010 ± .000 343.025 ± 25.804
stochastic — .050 — 22.547 — .044 — 3.740 — .043 — 2.634 — .043 — 3.255

Fa
sh

io
n

ours .099 ± .000 .116 ± .000 .098 ± .000 11.922 .107 ± .001 .117 ± .001 .101 ± .001 6.556 .097 ± .001 .109 ± .001 .092 ± .001 9.235 .105 ± .002 .118 ± .002 .100 ± .002 1.362
blanchard .098 ± .000 .795 ± .004 .098 ± .000 10179.790 ± 138.889 .101 ± .001 .524 ± .006 .096 ± .001 3752.748 ± 9.952 .095 ± .001 .291 ± .005 .090 ± .001 1091.018 ± 47.577 .104 ± .002 .195 ± .005 .098 ± .002 309.857 ± 24.422

catoni .099 ± .000 .808 ± .002 .098 ± .000 11999.071 ± 158.418 .107 ± .001 .425 ± .006 .100 ± .001 3817.800 ± 91.674 .098 ± .001 .235 ± .004 .093 ± .001 1216.042 ± 5.641 .106 ± .002 .182 ± .004 .101 ± .002 376.493 ± 27.018
rivasplata .098 ± .000 .619 ± .004 .097 ± .000 10768.160 ± 146.634 .099 ± .001 .369 ± .004 .094 ± .001 3565.270 ± 88.164 .094 ± .001 .224 ± .004 .089 ± .001 1137.876 ± 48.421 .103 ± .002 .164 ± .003 .097 ± .002 318.512 ± 24.741
stochastic — .164 — 5.961 — .166 — 3.278 — .156 — 4.618 — .166 — 5.181

CI
FA

R-
10

ours .277 ± .000 .303 ± .000 .272 ± .000 12.803 .266 ± .000 .282 ± .000 .257 ± .000 2.312 .253 ± .001 .272 ± .000 .248 ± .000 1.641 .236 ± .001 .259 ± .001 .235 ± .001 1.929
blanchard .277 ± .000 .990 ± .000 .272 ± .000 2577.092 ± 236.075 .266 ± .000 .901 ± .003 .257 ± .000 8788.732 ± 134.680 .253 ± .001 .662 ± .005 .247 ± .000 2683.054 ± 73.139 .235 ± .001 .464 ± .006 .233 ± .001 85.586 ± 41.917

catoni .277 ± .000 1.000 ± .000 .272 ± .000 177807.417 ± 546.892 .266 ± .000 .601 ± .005 .257 ± .000 331.757 ± 83.561 .253 ± .001 .416 ± .003 .247 ± .000 85.973 ± 4.961 .234 ± .001 .369 ± .003 .233 ± .001 485.863 ± 31.335
rivasplata .277 ± .000 .990 ± .000 .272 ± .000 48522.489 ± 309.735 .266 ± .000 .762 ± .003 .257 ± .000 850.968 ± 131.507 .252 ± .001 .542 ± .004 .247 ± .000 2696.074 ± 73.062 .234 ± .001 .393 ± .004 .232 ± .001 858.936 ± 41.972
stochastic — .366 — 6.401 — .346 — 1.156 — .336 — .821 — .322 — .965
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Table F.9. Comparison of ours, rivasplata, blanchard and catoni based on the disintegrated bounds, and
stochastic based on the randomized bounds learned with two learning rates η ∈{10−4, 10−6} and different variances
σ2∈{10−3, 10−4, 10−5, 10−6}. We report the test risk (RT (h)), the bound value (Bnd), the empirical risk (RS(h)), and
the divergence (Div) associated with each bound (the Rényi divergence for ours, the KL divergence for stochastic,
and the disintegrated KL divergence for rivasplata, blanchard and catoni). More precisely, we report the mean ±
the standard deviation for 400 neural networks sampled from ρS for ours, rivasplata, blanchard, and catoni. We
consider, in this table, that the split ratio is 0.8.

σ2 = 10−6 σ2 = 10−5 σ2 = 10−4 σ2 = 10−3

η = 10−6 RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div

M
N

IS
T

ours .011 ± .000 .020 ± .000 .013 ± .000 .064 .008 ± .000 .017 ± .000 .010 ± .000 .050 .011 ± .000 .018 ± .000 .011 ± .000 .112 .010 ± .001 .016 ± .001 .009 ± .001 .073
blanchard .011 ± .000 .034 ± .003 .013 ± .000 49.248 ± 1.541 .008 ± .000 .018 ± .001 .010 ± .000 8.031 ± 3.654 .011 ± .000 .016 ± .001 .011 ± .000 .810 ± 1.248 .010 ± .001 .014 ± .001 .010 ± .001 .102 ± .448

catoni .011 ± .000 .030 ± .002 .013 ± .000 66.244 ± 11.961 .008 ± .000 .018 ± .001 .010 ± .000 8.685 ± 3.987 .011 ± .000 .019 ± .001 .011 ± .000 1.011 ± 1.283 .010 ± .001 .016 ± .001 .010 ± .001 .131 ± .422
rivasplata .011 ± .000 .028 ± .002 .013 ± .000 5.344 ± 1.600 .008 ± .000 .017 ± .001 .010 ± .000 7.757 ± 4.187 .011 ± .000 .017 ± .001 .011 ± .000 .861 ± 1.361 .010 ± .001 .014 ± .001 .010 ± .001 .090 ± .460
stochastic — .046 — .032 — .041 — .025 — .043 — .056 — .040 — .037

Fa
sh

io
n

ours .103 ± .000 .117 ± .000 .099 ± .000 .068 .098 ± .001 .114 ± .001 .096 ± .001 .178 .104 ± .001 .117 ± .002 .099 ± .002 .587 .107 ± .004 .119 ± .004 .101 ± .003 .328
blanchard .103 ± .000 .144 ± .004 .099 ± .000 5.069 ± 9.537 .098 ± .001 .116 ± .003 .096 ± .001 8.105 ± 3.874 .104 ± .001 .113 ± .002 .100 ± .002 .990 ± 1.435 .109 ± .004 .114 ± .004 .102 ± .004 .102 ± .444

catoni .103 ± .000 .168 ± .009 .099 ± .000 66.761 ± 1.939 .098 ± .001 .115 ± .004 .096 ± .001 8.698 ± 3.974 .104 ± .001 .112 ± .002 .100 ± .002 .934 ± 1.413 .109 ± .004 .113 ± .004 .102 ± .004 .100 ± .457
rivasplata .103 ± .000 .132 ± .003 .099 ± .000 52.096 ± 1.745 .098 ± .001 .113 ± .002 .096 ± .001 7.820 ± 4.154 .104 ± .001 .114 ± .002 .100 ± .002 .939 ± 1.417 .108 ± .004 .115 ± .004 .102 ± .004 .100 ± .464
stochastic — .165 — .034 — .162 — .089 — .166 — .294 — .168 — .164

CI
FA

R-
10

ours .249 ± .000 .265 ± .000 .237 ± .000 .014 .247 ± .000 .271 ± .000 .243 ± .000 .018 .259 ± .001 .281 ± .001 .252 ± .001 .055 .249 ± .001 .274 ± .001 .245 ± .001 .072
blanchard .249 ± .000 .384 ± .007 .237 ± .000 24.108 ± 22.114 .247 ± .000 .316 ± .006 .243 ± .000 59.096 ± 1.459 .259 ± .001 .289 ± .006 .252 ± .001 11.804 ± 5.001 .249 ± .001 .269 ± .003 .245 ± .001 1.578 ± 1.705

catoni .249 ± .000 .368 ± .003 .237 ± .000 27.284 ± 23.618 .247 ± .000 .337 ± .012 .243 ± .000 73.833 ± 11.692 .259 ± .001 .285 ± .005 .252 ± .001 12.808 ± 5.089 .249 ± .001 .266 ± .002 .245 ± .001 1.635 ± 1.773
rivasplata .249 ± .000 .341 ± .005 .237 ± .000 244.258 ± 22.339 .247 ± .000 .298 ± .004 .243 ± .000 61.907 ± 11.135 .259 ± .001 .283 ± .003 .252 ± .001 11.818 ± 4.923 .249 ± .001 .269 ± .002 .245 ± .001 1.629 ± 1.763
stochastic — .328 — .007 — .334 — .009 — .344 — .028 — .337 — .036

σ2 = 10−6 σ2 = 10−5 σ2 = 10−4 σ2 = 10−3

η = 10−4 RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div

M
N

IS
T

ours .011 ± .000 .030 ± .000 .013 ± .000 53.875 .008 ± .000 .018 ± .000 .010 ± .000 4.369 .011 ± .000 .019 ± .000 .011 ± .000 5.063 .009 ± .001 .016 ± .001 .009 ± .001 4.854
blanchard .011 ± .000 .828 ± .004 .013 ± .000 10014.066 ± 14.769 .008 ± .000 .491 ± .007 .010 ± .000 3707.758 ± 86.461 .011 ± .000 .211 ± .007 .011 ± .000 1151.660 ± 47.238 .009 ± .001 .076 ± .005 .009 ± .001 303.402 ± 25.072

catoni .011 ± .000 .684 ± .004 .013 ± .000 12238.359 ± 158.595 .008 ± .000 .343 ± .005 .010 ± .000 3834.114 ± 88.516 .011 ± .000 .168 ± .006 .011 ± .000 121.777 ± 48.460 .009 ± .001 .060 ± .003 .008 ± .001 356.740 ± 25.649
rivasplata .011 ± .000 .662 ± .005 .013 ± .000 1207.265 ± 161.842 .008 ± .000 .305 ± .005 .010 ± .000 3785.930 ± 87.976 .011 ± .000 .125 ± .004 .010 ± .000 1141.437 ± 46.910 .009 ± .001 .048 ± .002 .008 ± .000 305.573 ± 23.629
stochastic — .055 — 26.937 — .042 — 2.185 — .044 — 2.532 — .040 — 2.427

Fa
sh

io
n

ours .102 ± .000 .121 ± .000 .099 ± .000 1.120 .098 ± .001 .115 ± .001 .096 ± .001 3.956 .102 ± .001 .118 ± .002 .098 ± .001 7.830 .103 ± .003 .118 ± .003 .097 ± .002 8.797
blanchard .101 ± .000 .990 ± .000 .098 ± .000 27936.970 ± 235.840 .096 ± .001 .585 ± .007 .094 ± .001 321.105 ± 81.006 .098 ± .001 .348 ± .007 .094 ± .001 1045.641 ± 44.087 .101 ± .002 .208 ± .006 .095 ± .002 273.641 ± 24.046

catoni .103 ± .000 .865 ± .002 .099 ± .000 12143.837 ± 161.857 .098 ± .001 .536 ± .008 .096 ± .001 3802.871 ± 87.750 .103 ± .001 .286 ± .006 .098 ± .001 1202.907 ± 47.928 .105 ± .003 .191 ± .005 .098 ± .003 354.246 ± 25.507
rivasplata .102 ± .000 .746 ± .004 .098 ± .000 11305.448 ± 149.693 .096 ± .001 .438 ± .005 .093 ± .001 3458.977 ± 83.715 .097 ± .001 .264 ± .004 .093 ± .001 1101.567 ± 44.816 .099 ± .002 .172 ± .004 .094 ± .002 285.588 ± 24.451
stochastic — .168 — 5.060 — .163 — 1.978 — .166 — 3.915 — .166 — 4.399

CI
FA

R-
10

ours .249 ± .000 .274 ± .000 .237 ± .000 14.083 .247 ± .000 .273 ± .000 .243 ± .000 1.770 .259 ± .001 .282 ± .001 .252 ± .001 1.098 .248 ± .001 .275 ± .001 .245 ± .001 1.461
blanchard .249 ± .000 .990 ± .000 .237 ± .000 26575.507 ± 218.278 .247 ± .000 .925 ± .002 .243 ± .000 7135.143 ± 117.030 .259 ± .001 .739 ± .006 .251 ± .001 2581.211 ± 74.799 .247 ± .001 .526 ± .007 .243 ± .001 831.790 ± 4.592

catoni .249 ± .000 1.000 ± .000 .237 ± .000 154168.585 ± 539.590 .247 ± .000 .677 ± .008 .243 ± .000 3148.174 ± 83.069 .259 ± .001 .549 ± .006 .252 ± .001 1735.530 ± 57.888 .248 ± .001 .425 ± .005 .244 ± .001 675.780 ± 38.306
rivasplata .249 ± .000 .990 ± .000 .237 ± .000 35062.089 ± 246.257 .247 ± .000 .824 ± .003 .243 ± .000 8092.236 ± 125.162 .259 ± .001 .610 ± .005 .251 ± .001 2652.857 ± 75.369 .247 ± .001 .441 ± .005 .242 ± .001 84.056 ± 4.952
stochastic — .334 — 7.041 — .335 — .885 — .345 — .549 — .337 — .731
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Table F.10. Comparison of ours, rivasplata, blanchard and catoni based on the disintegrated bounds, and
stochastic based on the randomized bounds learned with two learning rates η ∈{10−4, 10−6} and different variances
σ2∈{10−3, 10−4, 10−5, 10−6}. We report the test risk (RT (h)), the bound value (Bnd), the empirical risk (RS(h)), and
the divergence (Div) associated with each bound (the Rényi divergence for ours, the KL divergence for stochastic,
and the disintegrated KL divergence for rivasplata, blanchard and catoni). More precisely, we report the mean ±
the standard deviation for 400 neural networks sampled from ρS for ours, rivasplata, blanchard, and catoni. We
consider, in this table, that the split ratio is 0.9.

σ2 = 10−6 σ2 = 10−5 σ2 = 10−4 σ2 = 10−3

η = 10−6 RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div

M
N

IS
T

ours .008 ± .000 .018 ± .000 .008 ± .000 .029 .011 ± .000 .020 ± .000 .010 ± .000 .052 .009 ± .000 .018 ± .001 .009 ± .000 .059 .008 ± .000 .019 ± .001 .009 ± .001 .023
blanchard .008 ± .000 .033 ± .004 .009 ± .000 35.446 ± 8.610 .011 ± .000 .020 ± .002 .010 ± .000 4.933 ± 2.958 .009 ± .000 .015 ± .001 .009 ± .000 .490 ± .960 .008 ± .001 .016 ± .001 .009 ± .001 .059 ± .299

catoni .008 ± .000 .026 ± .002 .009 ± .000 41.267 ± 9.234 .011 ± .000 .019 ± .001 .010 ± .000 4.564 ± 3.263 .009 ± .000 .016 ± .001 .009 ± .000 .581 ± .989 .008 ± .001 .017 ± .001 .009 ± .001 .078 ± .320
rivasplata .008 ± .000 .025 ± .002 .009 ± .000 35.856 ± 8.648 .011 ± .000 .019 ± .001 .010 ± .000 4.620 ± 2.983 .009 ± .000 .015 ± .001 .009 ± .000 .448 ± 1.045 .008 ± .000 .016 ± .001 .009 ± .001 .041 ± .330
stochastic — .041 — .014 — .045 — .026 — .042 — .030 — .043 — .012

Fa
sh

io
n

ours .094 ± .000 .113 ± .000 .089 ± .000 .029 .091 ± .001 .119 ± .001 .095 ± .001 .107 .092 ± .002 .113 ± .001 .089 ± .001 .097 .103 ± .003 .124 ± .003 .099 ± .003 .045
blanchard .094 ± .000 .140 ± .006 .089 ± .000 32.563 ± 8.007 .091 ± .001 .119 ± .004 .095 ± .001 4.567 ± 2.912 .092 ± .002 .106 ± .002 .089 ± .001 .468 ± 1.101 .104 ± .003 .116 ± .003 .099 ± .003 .063 ± .300

catoni .094 ± .000 .146 ± .002 .089 ± .000 4.355 ± 9.121 .091 ± .001 .120 ± .005 .095 ± .001 4.895 ± 3.064 .092 ± .002 .106 ± .002 .089 ± .001 .473 ± 1.052 .103 ± .003 .117 ± .003 .099 ± .003 .079 ± .319
rivasplata .094 ± .000 .127 ± .004 .089 ± .000 33.175 ± 8.710 .091 ± .001 .117 ± .002 .095 ± .001 4.774 ± 3.003 .092 ± .002 .107 ± .002 .089 ± .001 .479 ± .924 .103 ± .003 .118 ± .003 .099 ± .002 .045 ± .330
stochastic — .159 — .015 — .166 — .053 — .159 — .048 — .172 — .023

CI
FA

R-
10

ours .231 ± .000 .268 ± .000 .228 ± .000 .011 .235 ± .000 .267 ± .000 .227 ± .000 .009 .218 ± .001 .253 ± .001 .214 ± .001 .024 .231 ± .001 .264 ± .002 .224 ± .002 .036
blanchard .231 ± .000 .418 ± .010 .228 ± .000 193.922 ± 19.216 .235 ± .000 .312 ± .009 .227 ± .000 39.705 ± 8.929 .218 ± .000 .256 ± .007 .214 ± .001 6.919 ± 3.722 .231 ± .001 .255 ± .003 .224 ± .002 .878 ± 1.248

catoni .231 ± .000 .388 ± .005 .228 ± .000 255.538 ± 22.306 .235 ± .000 .337 ± .003 .227 ± .000 53.736 ± 1.302 .218 ± .000 .257 ± .007 .214 ± .001 7.060 ± 3.626 .231 ± .001 .255 ± .003 .224 ± .002 .857 ± 1.264
rivasplata .231 ± .000 .364 ± .007 .228 ± .000 202.026 ± 19.688 .235 ± .000 .293 ± .006 .227 ± .000 42.458 ± 9.250 .218 ± .001 .251 ± .004 .214 ± .001 6.780 ± 3.575 .231 ± .001 .256 ± .002 .224 ± .002 .854 ± 1.275
stochastic — .328 — .005 — .327 — .005 — .312 — .012 — .324 — .018

σ2 = 10−6 σ2 = 10−5 σ2 = 10−4 σ2 = 10−3

η = 10−4 RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div RT (h) Bnd RS(h) Div

M
N

IS
T

ours .008 ± .000 .018 ± .000 .009 ± .000 2.107 .011 ± .000 .021 ± .000 .010 ± .000 1.329 .008 ± .000 .019 ± .001 .008 ± .000 3.598 .008 ± .001 .020 ± .001 .009 ± .001 4.216
blanchard .008 ± .000 .982 ± .001 .008 ± .000 11722.999 ± 157.452 .011 ± .000 .706 ± .008 .010 ± .000 3475.807 ± 77.708 .008 ± .000 .331 ± .011 .008 ± .000 1076.767 ± 46.059 .008 ± .000 .108 ± .008 .009 ± .001 242.819 ± 23.775

catoni .008 ± .000 1.000 ± .000 .008 ± .000 60838.120 ± 346.289 .011 ± .000 .515 ± .007 .010 ± .000 3728.586 ± 86.803 .008 ± .000 .243 ± .007 .008 ± .000 1166.491 ± 48.086 .008 ± .000 .087 ± .006 .009 ± .001 277.823 ± 25.431
rivasplata .008 ± .000 .879 ± .003 .008 ± .000 12257.175 ± 152.738 .010 ± .000 .481 ± .007 .010 ± .000 3602.529 ± 78.717 .008 ± .000 .201 ± .007 .008 ± .000 1126.882 ± 47.430 .008 ± .001 .067 ± .004 .009 ± .001 242.366 ± 22.337
stochastic — .042 — 1.053 — .045 — .664 — .042 — 1.799 — .043 — 2.108

Fa
sh

io
n

ours .094 ± .000 .115 ± .000 .089 ± .000 2.501 .091 ± .001 .121 ± .001 .095 ± .001 2.925 .092 ± .002 .114 ± .001 .088 ± .001 3.069 .102 ± .002 .125 ± .003 .098 ± .002 3.159
blanchard .094 ± .000 .990 ± .000 .089 ± .000 19455.864 ± 19.460 .089 ± .001 .792 ± .007 .093 ± .001 3402.546 ± 86.590 .090 ± .001 .461 ± .010 .087 ± .001 1002.861 ± 44.393 .102 ± .002 .244 ± .009 .098 ± .002 206.177 ± 2.051

catoni .094 ± .000 1.000 ± .000 .089 ± .000 60888.029 ± 346.501 .091 ± .001 .813 ± .012 .095 ± .001 3756.375 ± 9.419 .092 ± .002 .390 ± .010 .089 ± .001 1161.884 ± 52.073 .103 ± .003 .215 ± .007 .099 ± .002 277.284 ± 25.479
rivasplata .094 ± .000 .990 ± .000 .089 ± .000 27137.315 ± 227.934 .088 ± .001 .597 ± .007 .093 ± .001 3371.321 ± 86.352 .090 ± .001 .331 ± .007 .086 ± .001 1003.481 ± 48.362 .101 ± .002 .195 ± .006 .097 ± .002 207.442 ± 21.896
stochastic — .160 — 1.250 — .167 — 1.463 — .160 — 1.535 — .172 — 1.579

CI
FA

R-
10

ours .231 ± .000 .279 ± .000 .228 ± .000 12.925 .235 ± .000 .268 ± .000 .227 ± .000 1.371 .218 ± .001 .254 ± .001 .214 ± .001 .715 .231 ± .001 .264 ± .002 .224 ± .002 1.019
blanchard .231 ± .000 .990 ± .000 .228 ± .000 26032.808 ± 222.475 .235 ± .000 .986 ± .001 .227 ± .000 6875.633 ± 112.137 .217 ± .000 .831 ± .006 .214 ± .001 2292.053 ± 68.347 .230 ± .001 .606 ± .010 .222 ± .001 76.644 ± 39.246

catoni .231 ± .000 1.000 ± .000 .228 ± .000 17684.651 ± 576.711 .235 ± .000 .980 ± .000 .227 ± .000 8265.727 ± 123.941 .218 ± .000 .834 ± .011 .214 ± .001 2664.069 ± 73.915 .231 ± .001 .517 ± .009 .224 ± .002 85.593 ± 41.022
rivasplata .231 ± .000 .988 ± .001 .228 ± .000 14284.846 ± 169.166 .235 ± .000 .919 ± .002 .227 ± .000 7121.350 ± 114.645 .217 ± .000 .699 ± .006 .213 ± .001 2502.412 ± 68.728 .229 ± .001 .494 ± .007 .221 ± .001 776.237 ± 39.540
stochastic — .335 — 6.462 — .328 — .685 — .313 — .358 — .324 — .510
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Table F.11. Comparison of the bound values before performing Step 2) of our Training Method for ours, rivasplata,
blanchard and catoni. More precisely, for each split and each variance σ2∈{10−3, 10−4, 10−5, 10−6}, we report the
mean ± the standard deviation (for 400 neural networks sampled from π) of the test risk (RT (h)), the empirical risk
(RS(h)), and the value of the bounds of Corollaries 6.4.1 and 6.4.2. We consider in this table that the dataset is MNIST.

Split RT (h) RS(h) Cor. 6.4.1 Eq. (6.1) Eq. (6.2) Eq. (6.3)

σ
2

=
10
−

6

.0 .901 ± .002 .901 ± .002 .908 ± .002 .906 ± .002 .905 ± .002 .906 ± .002

.1 .035 ± .000 .039 ± .000 .045 ± .000 .043 ± .000 .043 ± .000 .042 ± .000

.2 .016 ± .000 .019 ± .000 .023 ± .000 .022 ± .000 .022 ± .000 .022 ± .000

.3 .012 ± .000 .013 ± .000 .017 ± .000 .016 ± .000 .015 ± .000 .015 ± .000

.4 .010 ± .000 .013 ± .000 .017 ± .000 .016 ± .000 .016 ± .000 .016 ± .000

.5 .008 ± .000 .010 ± .000 .015 ± .000 .013 ± .000 .013 ± .000 .014 ± .000

.6 .008 ± .000 .010 ± .000 .014 ± .000 .013 ± .000 .013 ± .000 .014 ± .000

.7 .011 ± .000 .013 ± .000 .019 ± .000 .017 ± .000 .017 ± .000 .018 ± .000

.8 .011 ± .000 .013 ± .000 .020 ± .000 .018 ± .000 .018 ± .000 .020 ± .000

.9 .008 ± .000 .009 ± .000 .018 ± .000 .015 ± .000 .014 ± .000 .015 ± .000

σ
2

=
10
−

5

.0 .897 ± .013 .897 ± .012 .904 ± .012 .902 ± .012 .902 ± .012 .903 ± .012

.1 .024 ± .000 .030 ± .001 .035 ± .001 .034 ± .001 .033 ± .001 .033 ± .001

.2 .015 ± .000 .019 ± .000 .023 ± .000 .022 ± .000 .021 ± .000 .021 ± .000

.3 .009 ± .000 .011 ± .000 .015 ± .000 .014 ± .000 .013 ± .000 .013 ± .000

.4 .012 ± .000 .014 ± .000 .018 ± .000 .017 ± .000 .017 ± .000 .017 ± .000

.5 .006 ± .000 .009 ± .000 .012 ± .000 .011 ± .000 .011 ± .000 .012 ± .000

.6 .007 ± .000 .009 ± .000 .014 ± .000 .013 ± .000 .012 ± .000 .013 ± .000

.7 .010 ± .000 .012 ± .000 .018 ± .000 .016 ± .000 .016 ± .000 .017 ± .000

.8 .008 ± .000 .010 ± .000 .017 ± .000 .015 ± .000 .014 ± .000 .017 ± .000

.9 .011 ± .000 .010 ± .000 .020 ± .000 .017 ± .000 .017 ± .000 .018 ± .000

Split RT (h) RS(h) Cor. 6.4.1 Eq. (6.1) Eq. (6.2) Eq. (6.3)

σ
2

=
10
−

4

.0 .898 ± .017 .898 ± .017 .905 ± .016 .903 ± .016 .902 ± .016 .903 ± .016

.1 .035 ± .003 .039 ± .002 .045 ± .002 .044 ± .002 .043 ± .002 .043 ± .002

.2 .015 ± .001 .016 ± .001 .020 ± .001 .019 ± .001 .019 ± .001 .019 ± .001

.3 .012 ± .000 .016 ± .000 .020 ± .001 .019 ± .001 .019 ± .001 .019 ± .001

.4 .009 ± .000 .011 ± .000 .015 ± .000 .014 ± .000 .014 ± .000 .014 ± .000

.5 .008 ± .000 .010 ± .000 .015 ± .000 .013 ± .000 .013 ± .000 .014 ± .000

.6 .008 ± .000 .009 ± .000 .013 ± .000 .012 ± .000 .012 ± .000 .013 ± .000

.7 .010 ± .000 .012 ± .000 .017 ± .000 .016 ± .000 .015 ± .000 .016 ± .000

.8 .011 ± .000 .011 ± .000 .018 ± .000 .016 ± .000 .016 ± .000 .018 ± .000

.9 .009 ± .000 .009 ± .000 .018 ± .001 .015 ± .001 .015 ± .001 .016 ± .001

σ
2

=
10
−

3

.0 .903 ± .014 .902 ± .014 .909 ± .013 .907 ± .013 .907 ± .013 .907 ± .013

.1 .041 ± .005 .045 ± .005 .050 ± .005 .049 ± .005 .048 ± .005 .048 ± .005

.2 .020 ± .002 .022 ± .002 .026 ± .002 .025 ± .002 .025 ± .002 .024 ± .002

.3 .014 ± .001 .015 ± .001 .019 ± .001 .018 ± .001 .018 ± .001 .018 ± .001

.4 .015 ± .001 .016 ± .001 .021 ± .001 .020 ± .001 .019 ± .001 .019 ± .001

.5 .015 ± .001 .015 ± .001 .020 ± .001 .019 ± .001 .018 ± .001 .018 ± .001

.6 .008 ± .000 .010 ± .000 .014 ± .001 .013 ± .001 .012 ± .000 .013 ± .000

.7 .010 ± .001 .012 ± .001 .018 ± .001 .016 ± .001 .016 ± .001 .017 ± .001

.8 .010 ± .001 .010 ± .001 .016 ± .001 .014 ± .001 .014 ± .001 .016 ± .001

.9 .008 ± .000 .009 ± .001 .019 ± .001 .016 ± .001 .015 ± .001 .017 ± .001
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Table F.12. Comparison of the bound values before performing Step 2) of our Training Method for ours, rivasplata,
blanchard and catoni. More precisely, for each split and each variance σ2∈{10−3, 10−4, 10−5, 10−6}, we report the mean
± the standard deviation (for 400 neural networks sampled from π) of the test risk (RT (h)), the empirical risk (RS(h)),
and the value of the bounds of Corollaries 6.4.1 and 6.4.2. We consider in this table that the dataset is Fashion-MNIST.

Split RT (h) RS(h) Cor. 6.4.1 Eq. (6.1) Eq. (6.2) Eq. (6.3)

σ
2

=
10
−

6

.0 .970 ± .028 .970 ± .027 .972 ± .025 .971 ± .025 .971 ± .026 .972 ± .026

.1 .166 ± .001 .159 ± .000 .169 ± .000 .167 ± .000 .166 ± .000 .167 ± .000

.2 .168 ± .002 .160 ± .001 .170 ± .001 .168 ± .001 .167 ± .001 .168 ± .001

.3 .126 ± .000 .124 ± .000 .134 ± .000 .132 ± .000 .131 ± .000 .131 ± .000

.4 .118 ± .001 .112 ± .000 .123 ± .000 .120 ± .000 .119 ± .000 .119 ± .000

.5 .106 ± .000 .101 ± .000 .113 ± .000 .110 ± .000 .109 ± .000 .109 ± .000

.6 .109 ± .000 .102 ± .000 .115 ± .000 .112 ± .000 .110 ± .000 .110 ± .000

.7 .099 ± .000 .098 ± .000 .112 ± .000 .109 ± .000 .108 ± .000 .107 ± .000

.8 .103 ± .000 .099 ± .000 .117 ± .000 .112 ± .000 .111 ± .000 .110 ± .000

.9 .094 ± .000 .089 ± .000 .113 ± .000 .107 ± .000 .105 ± .000 .106 ± .000

σ
2

=
10
−

5

.0 .945 ± .038 .945 ± .037 .949 ± .035 .948 ± .035 .948 ± .036 .948 ± .036

.1 .158 ± .001 .151 ± .001 .161 ± .001 .159 ± .001 .158 ± .001 .159 ± .001

.2 .157 ± .003 .151 ± .003 .162 ± .003 .159 ± .003 .158 ± .003 .159 ± .003

.3 .126 ± .001 .121 ± .001 .131 ± .001 .128 ± .001 .127 ± .001 .128 ± .001

.4 .114 ± .001 .107 ± .001 .118 ± .001 .115 ± .001 .114 ± .001 .114 ± .001

.5 .104 ± .001 .099 ± .000 .110 ± .000 .108 ± .000 .107 ± .000 .106 ± .000

.6 .115 ± .001 .104 ± .001 .117 ± .001 .114 ± .001 .113 ± .001 .112 ± .001

.7 .107 ± .001 .101 ± .001 .115 ± .001 .111 ± .001 .110 ± .001 .109 ± .001

.8 .098 ± .001 .096 ± .001 .114 ± .001 .109 ± .001 .108 ± .001 .107 ± .001

.9 .091 ± .001 .095 ± .001 .119 ± .001 .113 ± .001 .111 ± .001 .112 ± .001

Split RT (h) RS(h) Cor. 6.4.1 Eq. (6.1) Eq. (6.2) Eq. (6.3)

σ
2

=
10
−

4

.0 .912 ± .027 .912 ± .027 .918 ± .026 .916 ± .027 .916 ± .027 .916 ± .026

.1 .164 ± .003 .154 ± .003 .164 ± .003 .162 ± .003 .161 ± .003 .162 ± .004

.2 .164 ± .009 .160 ± .009 .170 ± .010 .168 ± .010 .167 ± .010 .168 ± .010

.3 .125 ± .002 .119 ± .002 .129 ± .002 .126 ± .002 .126 ± .002 .126 ± .002

.4 .119 ± .003 .113 ± .003 .124 ± .003 .121 ± .003 .120 ± .003 .120 ± .003

.5 .109 ± .002 .102 ± .001 .113 ± .001 .110 ± .001 .109 ± .001 .109 ± .001

.6 .102 ± .001 .096 ± .001 .109 ± .001 .105 ± .001 .105 ± .001 .104 ± .001

.7 .099 ± .002 .094 ± .001 .108 ± .001 .104 ± .001 .103 ± .001 .102 ± .001

.8 .104 ± .001 .100 ± .002 .118 ± .002 .113 ± .002 .112 ± .002 .111 ± .002

.9 .092 ± .002 .089 ± .001 .113 ± .001 .107 ± .001 .105 ± .001 .106 ± .001

σ
2

=
10
−

3

.0 .899 ± .026 .899 ± .027 .906 ± .026 .904 ± .026 .904 ± .026 .905 ± .025

.1 .178 ± .006 .170 ± .006 .181 ± .006 .178 ± .006 .177 ± .006 .179 ± .006

.2 .164 ± .006 .159 ± .006 .169 ± .006 .167 ± .006 .166 ± .006 .167 ± .006

.3 .143 ± .007 .138 ± .007 .148 ± .007 .146 ± .007 .145 ± .007 .145 ± .007

.4 .133 ± .005 .129 ± .005 .140 ± .005 .137 ± .005 .137 ± .005 .137 ± .005

.5 .122 ± .004 .117 ± .004 .129 ± .004 .126 ± .004 .125 ± .004 .125 ± .004

.6 .111 ± .003 .104 ± .003 .117 ± .003 .114 ± .003 .113 ± .003 .112 ± .003

.7 .109 ± .003 .103 ± .003 .118 ± .003 .114 ± .003 .113 ± .003 .112 ± .003

.8 .108 ± .004 .102 ± .004 .120 ± .004 .115 ± .004 .114 ± .004 .113 ± .004

.9 .103 ± .003 .099 ± .002 .124 ± .003 .118 ± .003 .116 ± .003 .116 ± .003
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F.15.
Detailsofthe

Results

Table F.13. Comparison of the bound values before performing Step 2) of our Training Method for ours, rivasplata,
blanchard and catoni. More precisely, for each split and each variance σ2∈{10−3, 10−4, 10−5, 10−6}, we report the mean
± the standard deviation (for 400 neural networks sampled from π) of the test risk (RT (h)), the empirical risk (RS(h)),
and the value of the bounds of Corollaries 6.4.1 and 6.4.2. We consider in this table that the dataset is CIFAR-10.

Split RT (h) RS(h) Cor. 6.4.1 Eq. (6.1) Eq. (6.2) Eq. (6.3)

σ
2

=
10
−

6

.0 .899 ± .000 .899 ± .000 .906 ± .000 .904 ± .000 .903 ± .000 .904 ± .000

.1 .476 ± .000 .470 ± .000 .486 ± .000 .482 ± .000 .481 ± .000 .485 ± .000

.2 .390 ± .000 .389 ± .000 .406 ± .000 .402 ± .000 .401 ± .000 .404 ± .000

.3 .370 ± .000 .358 ± .000 .374 ± .000 .371 ± .000 .370 ± .000 .372 ± .000

.4 .334 ± .000 .328 ± .000 .346 ± .000 .342 ± .000 .341 ± .000 .342 ± .000

.5 .307 ± .000 .302 ± .000 .321 ± .000 .317 ± .000 .316 ± .000 .317 ± .000

.6 .274 ± .000 .276 ± .000 .297 ± .000 .293 ± .000 .291 ± .000 .291 ± .000

.7 .275 ± .000 .272 ± .000 .296 ± .000 .290 ± .000 .289 ± .000 .288 ± .000

.8 .249 ± .000 .237 ± .000 .265 ± .000 .259 ± .000 .257 ± .000 .256 ± .000

.9 .227 ± .000 .230 ± .000 .269 ± .000 .260 ± .000 .258 ± .000 .258 ± .000

σ
2

=
10
−

5

.0 .899 ± .001 .899 ± .000 .906 ± .000 .904 ± .000 .904 ± .000 .904 ± .000

.1 .476 ± .000 .478 ± .000 .494 ± .000 .490 ± .000 .489 ± .000 .493 ± .000

.2 .403 ± .000 .398 ± .000 .414 ± .000 .410 ± .000 .409 ± .000 .412 ± .000

.3 .349 ± .000 .350 ± .000 .367 ± .000 .363 ± .000 .362 ± .000 .364 ± .000

.4 .322 ± .000 .313 ± .000 .330 ± .000 .327 ± .000 .326 ± .000 .327 ± .000

.5 .281 ± .000 .283 ± .000 .302 ± .000 .298 ± .000 .297 ± .000 .297 ± .000

.6 .290 ± .000 .286 ± .000 .307 ± .000 .303 ± .000 .301 ± .000 .301 ± .000

.7 .266 ± .000 .257 ± .000 .281 ± .000 .276 ± .000 .274 ± .000 .274 ± .000

.8 .247 ± .000 .243 ± .000 .271 ± .000 .265 ± .000 .263 ± .000 .262 ± .000

.9 .236 ± .000 .227 ± .000 .266 ± .000 .257 ± .000 .255 ± .000 .255 ± .000

Split RT (h) RS(h) Cor. 6.4.1 Eq. (6.1) Eq. (6.2) Eq. (6.3)

σ
2

=
10
−

4

.0 .900 ± .004 .900 ± .003 .907 ± .003 .905 ± .003 .905 ± .003 .905 ± .003

.1 .458 ± .001 .464 ± .001 .479 ± .001 .476 ± .001 .475 ± .001 .478 ± .001

.2 .395 ± .001 .396 ± .000 .412 ± .000 .409 ± .000 .408 ± .000 .411 ± .000

.3 .361 ± .001 .361 ± .000 .378 ± .000 .375 ± .000 .373 ± .000 .376 ± .000

.4 .323 ± .001 .316 ± .000 .334 ± .000 .330 ± .000 .329 ± .000 .331 ± .000

.5 .296 ± .001 .291 ± .000 .310 ± .000 .306 ± .000 .304 ± .000 .305 ± .000

.6 .271 ± .001 .263 ± .000 .284 ± .000 .279 ± .000 .278 ± .000 .278 ± .000

.7 .253 ± .001 .246 ± .000 .270 ± .000 .265 ± .000 .263 ± .000 .262 ± .000

.8 .259 ± .001 .252 ± .001 .281 ± .001 .275 ± .001 .273 ± .001 .272 ± .001

.9 .217 ± .000 .216 ± .001 .255 ± .001 .246 ± .001 .243 ± .001 .244 ± .001

σ
2

=
10
−

3

.0 .905 ± .012 .904 ± .012 .911 ± .011 .909 ± .011 .909 ± .011 .909 ± .011

.1 .479 ± .002 .480 ± .001 .496 ± .001 .493 ± .001 .491 ± .001 .495 ± .001

.2 .415 ± .002 .415 ± .001 .432 ± .001 .428 ± .001 .427 ± .001 .430 ± .001

.3 .417 ± .001 .416 ± .001 .434 ± .001 .430 ± .001 .429 ± .001 .431 ± .001

.4 .333 ± .001 .323 ± .001 .341 ± .001 .337 ± .001 .336 ± .001 .338 ± .001

.5 .316 ± .001 .311 ± .001 .331 ± .001 .327 ± .001 .325 ± .001 .326 ± .001

.6 .280 ± .001 .281 ± .001 .302 ± .001 .298 ± .001 .296 ± .001 .296 ± .001

.7 .239 ± .001 .234 ± .001 .257 ± .001 .252 ± .001 .250 ± .001 .250 ± .001

.8 .249 ± .001 .245 ± .001 .274 ± .001 .268 ± .001 .266 ± .001 .264 ± .001

.9 .233 ± .001 .232 ± .002 .272 ± .002 .263 ± .002 .260 ± .002 .260 ± .002
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GAppendix of Chapter 7

G.1 Proof of Theorem 7.3.1

Theorem 7.3.1 (Generalization Bound with Complexity Measures). Let φ :
[0, 1]2→R be the generalization gap. For any D on X × Y, for any H, for any
distribution π ∈ M∗(H) on H, for any µ :H×(X×Y)m→R, for any δ∈(0, 1], we have

P
S∼Dm, h′∼π, h∼ρS

φ(RD(h),RS(h)) ≤
[
αRS(h′) + µ(h′,S)

]
−
[
αRS(h) + µ(h,S)

]

+ ln π(h′)
π(h) + ln

( 4
δ2 E

S′∼Dm
E
h′∼π

exp [φ(RD(h′),RS′(h′))]
) ≥ 1−δ.

Proof. First of all, we denote as Z =
∫
H exp [−αRS(h′)− µ(h′,S)] dξ(h′), the

normalization constant of the Gibbs distribution ρS and ξ the reference measure
on H. Moreover, we have

ρS(h) = 1
Z

exp [−αRS(h)− µ(h,S)] ∝ exp [−αRS(h)− µ(h,S)] .

We apply Theorem 2.4.1 with δ
2 instead of δ and with the function ϕ(h,S) =

φ(RD(h),RS(h)) to obtain with probability at least 1 − δ
2 over S ∼ Dm and

h ∼ ρS

φ(RD(h),RS(h)) ≤ ln
[
ρS(h)
π(h)

]
+ln

[2
δ

E
S′∼Dm

E
h′∼π

eφ(RD(h),RS′ (h′))
]
.
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G.1. Proof of Theorem 7.3.1

We develop the term ln
[
ρS(h)
π(h)

]
in Theorem 2.4.1. We have

ln
[
ρS(h)
π(h)

]
= ln

(
exp [−αRS(h)− µ(h,S)]

Z

1
π(h)

)
= ln (exp [−αRS(h)− µ(h,S)])

− ln
(
π(h)

∫
H

exp [−αRS(h′)− µ(h′,S)] dξ(h′)
)

= −αRS(h)−µ(h,S)

− ln
(
π(h)

∫
H

π(h′)
π(h′) exp [−αRS(h′)− µ(h′,S)] dξ(h′)

)

= −αRS(h)−µ(h,S)− ln
(

E
h′∼π

π(h)
π(h′)e

−αRS(h′)−µ(h′,S)
)
.

Hence, we obtain the following

P
S∼Dm,h∼ρS

φ(RD(h),RS(h)) ≤ ln
[2
δ

E
S′∼Dm

E
h′∼π

eφ(RD(h),RS′ (h′))
]

− αRS(h)−µ(h,S)− ln
(
Eh′∼π

π(h)
π(h′)e

−αRS(h′)−µ(h′,S)
)  ≥ 1− δ

2 . (G.1)

We can now upper-bound the term − ln
(
Eh′∼π

π(h)
π(h′)e

−αRS(h′)−µ(h′,S)
)

. To do so,
since π(h)

π(h′)e
−αRS(h′)−µ(h′,S) > 0 for all h ∈ H and S ∈ (X × Y)m, we apply

Markov’s inequality (Theorem A.2.1) to obtain for all h ∈ H and S ∈ (X× Y)m
with probability at least 1− δ

2 over h′ ∼ π

π(h)
π(h′)e

−αRS(h′)−µ(h′,S) ≤ 2
δ

E
h′∼π

(
π(h)
π(h′)e

−αRS(h′)−µ(h′,S)
)

⇐⇒ − ln
(

E
h′∼π

[
π(h)
π(h′)e

−αRS(h′)−µ(h′,S)
])
≤ ln 2

δ
− ln

(
π(h)
π(h′)e

−αRS(h′)−µ(h′,S)
)
.

Moreover, by simplifying the right-hand side of the inequality, we have

− ln
(
π(h)
π(h′)e

−αRS(h′)−µ(h′,S)
)

= ln π(h′)
π(h) + αRS(h′) + µ(h′,S).
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G.2. Proof of Corollary 7.3.1

Hence, we obtain the following inequality:

P
h′∼π

[
− ln

(
π(h)
π(h′)e

−αRS(h′)−µ(h′,S)
)
≤ ln 2

δ
+ ln π(h′)

π(h) +αRS(h′)+µ(h′,S)
]
≥ 1−δ2 .

(G.2)

By using an union bound on Equations (G.1) and (G.2) an rearranging the terms,
we obtain the claimed result. �

G.2 Proof of Corollary 7.3.1

Corollary 7.3.1 (Practical Generalization Bound with Complexity Measures). For
any distribution D on X× Y, for any bounded hypothesis set H, given the uniform
prior distribution π on H, for any µ : H×(X×Y)m→R, for any δ ∈ (0, 1], with
probability at least 1− δ over S ∼ Dm, h′ ∼ π, h ∼ ρS we have

kl [RS(h)‖RD(h)] ≤ 1
m

[[
αRS(h′) + µ(h′,S)

]
−
[
αRS(h) + µ(h,S)

]
+ 8
√
m

δ2

]
+
,

(7.5)∣∣∣∣RD(h)−RS(h)
∣∣∣∣ ≤

√√√√ 1
2m

[[
αRS(h′) + µ(h′,S)

]
−
[
αRS(h) + µ(h,S)

]
+ 8
√
m

δ2

]
+
,

(7.6)

where [a]+ = max(0, a), and ρS is the Gibbs distribution defined by Equation (7.2).

Proof. Since π is the uniform distribution we have: Eh′∼π ln π(h)
π(h′) = 0. We in-

stantiate Th. 7.3.1 with φ(RD(h),RS(h)) = m kl [RS(h)‖RD(h)]. It remains to
upper-bound ES′∼DmEh′∼πexp (m kl [RS′(h′)‖RD(h′)]). We have

E
S′∼Dm

E
h′∼π

em kl[RS′ (h′)‖RD(h′)] = E
h′∼π

E
S′∼Dm

em kl[RS′ (h′)‖RD(h′)] (G.3)

E
S′∼Dm

E
h′∼π

em kl[RS′ (h′)‖RD(h′)] ≤ 2
√
m, (G.4)

where Equation (G.3) is due to Fubini’s theorem (i.e., we can exchange the two
expectations), and Equation (G.4) is due to Maurer (2004) (see Lemma B.16.1).
By rearranging the terms, with probability at least 1−δ over S∼Dm, h ∼ ρS, and
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G.3. Proof of Proposition 7.5.1

h′ ∼ π we have

kl [RS(h)‖RD(h)] ≤ 1
m

[
[αRS(h′) + µ(h′,S)]− [αRS(h) + µ(h,S)] + ln 8

√
m

δ2

]
.

Hence, by definition of [a]+, we can deduce Equation (7.5). From Pinsker’s
inequality (Theorem B.5.1), we have

2(RD(h)−RS(h))2 ≤ kl [RS(h)‖RD(h)] .

Hence, thanks to this inequality and by rearranging the terms, we obtain Equa-
tion (7.6). �

G.3 Proof of Proposition 7.5.1

Proposition 7.5.1 (Set-theoretic view of Definition 7.3.1). Let φ : [0, 1]2→R
be a generalization gap and assume that there exists a function Φµ :
H×(X×Y)m×(0, 1] → R fulfilling Definition 7.3.1. Under these conditions,
with Zd=

{
(h,S) ∈ H×(X×Y)m : φ(RD(h),RS(h)) ≤ Φµ(h,S, δ)

}
, and

PS∼Dm,h∼ρS [(h,S) ∈ Zd] ≥ 1−δ, we have

Equation (7.1) ⇐⇒ ∀(h,S) ∈ Zd, φ(RD(h),RS(h)) ≤ Φµ(h,S, δ)

⇐⇒ sup(h,S)∈Zd

{
φ(RD(h),RS(h))− Φµ(h,S, δ)

}
≤ 0.

Proof. First of all, by definition of the supremum, we have

∀δ ∈ (0, 1], ∀(h,S) ∈ Zd, φ(RD(h),RS(h)) ≤ Φµ(h,S, δ)
∀(h,S) ∈ Zd, φ(RD(h),RS(h))−Φµ(h,S, δ) ≤ 0

⇐⇒ sup
(h,S)∈Zd

φ(RD(h),RS(h))− Φµ(h,S, δ)

 ≤ 0.

It remains to prove that

Equation (7.1)︸ ︷︷ ︸
(A)

⇐⇒ ∀(h,S) ∈ Zd, φ(RD(h),RS(h)) ≤ Φµ(h,S, δ)︸ ︷︷ ︸
(B)

to complete the proof.
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G.4. Proof of Proposition 7.5.2

Step 1 ((A) ⇒ (B)). Assuming that (A) holds, by definition of Zd, we have

P
S∼Dm,h∼ρS

φ(RD(h),RS(h)) ≤ Φµ(h,S, δ)
 ≥ 1− δ

⇐⇒ P
S∼Dm,h∼ρS

(h,S) ∈ Zd

 ≥ 1− δ,

since I [φ(RD(h),RS(h)) ≤ Φµ(h,S, δ)] = I [(h,S) ∈ Zd].
Additionally, by definition of Zd, we know that

∀(h,S) ∈ Zd, φ(RD(h),RS(h)) ≤ Φµ(h,S, δ),

where PS∼Dm,h∼ρS [(h,S) ∈ Zd] ≥ 1− δ.
Step 2 ((A) ⇐ (B)). Note that from the definition of Zd we have

P
S∼Dm,h∼ρS

[(h,S) ∈ Zd] ≥ 1−δ.

Additionally, we can deduce that

P
S∼Dm,h∼ρS

[(h,S) ∈ Zd] ≥ 1−δ

⇐⇒ P
S∼Dm,h∼ρS

[φ(RD(h),RS(h)) ≤ Φµ(h,S, δ)] ≥ 1−δ.

�

G.4 Proof of Proposition 7.5.2

Proposition 7.5.2 (Set-theoretic View of Uniform Convergence Bounds). Let φ :
[0, 1]2→R be a generalization gap and assume that there exists a function Φu :
(0, 1] → R fulfilling Definition 1.3.2. Under these conditions, with Zu =

{
S ∈

(X×Y)m :∀h ∈ H, φ(RD(h),RS(h)) ≤ Φu(δ)
}

, and PS∼Dm [S∈Zu]≥1−δ, we have

Equation (1.1) ⇐⇒ ∀S ∈ Zu, ∀h∈H, φ(RD(h),RS(h)) ≤ Φu(δ)
⇐⇒ sup

S∈Zu

sup
h∈H

{
φ(RD(h),RS(h))

}
≤Φu(δ).
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G.5. Proof of Corollary 7.5.1

Proof. First of all, by definition of the supremum, we have

∀δ ∈ (0, 1], ∀S ∈ Zu, ∀h ∈ H, φ(RD(h),RS(h)) ≤ Φu(δ)
⇐⇒ sup

S∈Zu

sup
h∈H

{
φ(RD(h),RS(h))

}
≤Φu(δ).

It remains to prove that

Equation (1.1)︸ ︷︷ ︸
(A)

⇐⇒ ∀S ∈ Zu, ∀h∈H, φ(RD(h),RS(h)) ≤ Φu(δ)︸ ︷︷ ︸
(B)

to complete the proof.
Step 1 ((A) ⇒ (B)). Assuming that (A) holds, by definition of Zu, we have

P
S∼Dm

[
∀h ∈ H, φ(RD(h),RS(h)) ≤ Φu(δ)

]
≥ 1−δ

⇐⇒ P
S∼Dm

[
S ∈ Zu

]
≥ 1−δ,

since I [∀h ∈ H, φ(RD(h),RS(h)) ≤ Φu(δ)] = I [S ∈ Zu].
Additionally, by definition of Zu, we know that

∀S ∈ Zu, ∀h ∈ H, φ(RD(h),RS(h)) ≤ Φu(δ),

where PS∼Dm

[
S ∈ Zu

]
≥ 1−δ.

Step 2 ((A) ⇐ (B)). Note that from the definition of Zu we have

P
S∼Dm

[S ∈ Zu] ≥ 1−δ.

Additionally, we can deduce that

P
S∼Dm

[S ∈ Zu] ≥ 1−δ ⇐⇒ P
S∼Dm

[
∀h ∈ H, φ(RD(h),RS(h)) ≤ Φu(δ)

]
≥ 1−δ.

�

G.5 Proof of Corollary 7.5.1

Corollary 7.5.1 (Uniform Convergence Bound from Theorem 7.3.1). Let φ :
[0, 1]2→R be the generalization gap and assume that there exists a func-
tion Φu : (0, 1] → R fulfilling Definition 1.3.2 such that Φu(δ) ≥

– 352 –



G.6. Proof of Proposition 7.5.3

ln
[

4
δ2 ES′∼Dm Eh′∼π exp (φ(RD(h′),RS′(h′)))

]
. For any D on X × Y, for any hy-

pothesis set H, for any δ ∈ (0, 1], we have

P
S∼Dm,h∼ρS

φ(RD(h),RS(h)) ≤ Φu(δ)
 ≥ 1− δ.

Proof. Let the parametric function µ() defined as

∀(h,S) ∈ H×(X×Y)m, µ(h,S) = −αRS(h)− ln π(h) + Φu

(
δ
)
.

Given the definition of ρS (with the parametric function µ() defined above), we
can deduce from Theorem 7.3.1 that

P
S∼Dm, h′∼π,h∼ρS

φ(RD(h),RS(h)) ≤ ln
( 4
δ2 E
S′∼Dm

E
g∼π

exp [φ(RD(g),RS′(g))]
)

= P
S∼Dm, h∼ρS

φ(RD(h),RS(h)) ≤ ln
( 4
δ2 E
S′∼Dm

E
g∼π

exp [φ(RD(g),RS′(g))]
) ≥ 1−δ.

Note that the equality holds since h′ ∼ π does not appear in the bound. If the
assumption Φu(δ) ≥ ln

[
4
δ2 ES′∼Dm Eg∼π exp (φ(RD(g),RS′(g)))

]
is satisfied, then,

we can deduce Corollary 7.5.1. �

G.6 Proof of Proposition 7.5.3

Proposition 7.5.3 (Set-theoretic View of Algorithmic Dependent Bounds). Let
φ : [0, 1]2→R be a generalization gap and assume that there exists a function
Φa : (0, 1]→ R fulfilling Definition 1.3.5. Under these conditions, with Za =

{
S ∈

(X×Y)m :φ(RD(hS),RS(hS)) ≤ Φa(δ)
}

and PS∼Dm [S ∈ Za] ≥ 1−δ, we have

Equation (1.2) ⇐⇒ ∀S ∈ Za, φ(RD(hS),RS(hS)) ≤ Φa(δ)
⇐⇒ supS∈Za

φ(RD(hS),RS(hS)) ≤ Φa(δ).
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G.7. Proof of Corollary 7.5.2

Proof. First of all, by definition of the supremum, we have

∀δ ∈ (0, 1], ∀S ∈ Za, φ(hS,S) ≤ Φa(δ) ⇐⇒ sup
S∈Za

φ(hS,S) ≤ Φa(δ).

It remains to prove that

Equation (1.2)︸ ︷︷ ︸
(A)

⇐⇒ ∀S ∈ Za, φ(RD(hS),RS(hS)) ≤ Φa(δ)︸ ︷︷ ︸
(B)

to complete the proof.
Step 1 ((A) ⇒ (B)). Assuming that (A) holds, by definition of Za, we have

P
S∼Dm

[
φ(hS,S) ≤ Φa(δ)

]
≥ 1− δ ⇐⇒ P

S∼Dm

[
S ∈ Za

]
≥ 1− δ.

since I [φ(hS,S) ≤ Φa(δ)] = I [S ∈ Za].
Additionally, by definition of Za, we know that

∀S ∈ Za, φ(hS,S) ≤ Φa(δ), where P
S∼Dm

[
S ∈ Za

]
≥ 1− δ.

Step 2 ((A) ⇐ (B)). Note that from the definition of Za we have

P
S∼Dm

[
S ∈ Za

]
≥ 1− δ.

Additionally, we can deduce that

P
S∼Dm

[
S ∈ Za

]
≥ 1− δ ⇐⇒ P

S∼Dm

[
φ(hS,S) ≤ Φa(δ)

]
≥ 1−δ.

�

G.7 Proof of Corollary 7.5.2

Corollary 7.5.2 (Algorithmic-dependent Bound from Theorem 7.3.1). Let φ :
[0, 1]2→R be the generalization gap and assume that there exists a func-
tion Φa : (0, 1] → R fulfilling Definition 1.3.5 such that Φa(δ) ≥
ln
[

4
δ2 ES′∼Dm Eh′∼π exp (φ(RD(h′),RS′(h′)))

]
. For any D on X × Y, for any hy-
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pothesis set H, for any δ ∈ (0, 1], we have

P
S∼Dm,h∼ρS

φ(RD(h),RS(h)) ≤ Φa(δ)
 ≥ 1− δ.

Proof. Let the parametric function µ() defined as

∀(h,S) ∈ H×(X×Y)m, µ(h,S) = −αRS(h)− ln π(h) + Φa

(
δ
)
.

Given the definition of ρS (with the parametric function µ() defined above), we
can deduce from Theorem 7.3.1 that

P
S∼Dm, h′∼π,h∼ρS

φ(RD(h),RS(h)) ≤ ln
( 4
δ2 E
S′∼Dm

E
g∼π

exp [φ(RD(g),RS′(g))]
)

= P
S∼Dm, h∼ρS

φ(RD(h),RS(h)) ≤ ln
( 4
δ2 E
S′∼Dm

E
g∼π

exp [φ(RD(g),RS′(g))]
) ≥ 1−δ.

Note that the equality holds since h′ ∼ π does not appear in the bound. If the
assumption Φa(δ) ≥ ln

[
4
δ2 ES′∼Dm Eg∼π exp (φ(RD(g),RS′(g)))

]
is satisfied, then,

we can deduce Corollary 7.5.2. �

G.8 Details on the Experiments

In this section, we introduce additional figures concerning the tightness, the influ-
ence of α, and the influence of the number of parameters. Additionally, we provide
more experiments with data-dependent complexity measures that we present in Ap-
pendix G.8.1.
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G.8.1 Data-dependent Complexity Measures Φµ(h,S, δ)
As we have pointed out in the paper, the parametric function µ() depends on the learn-
ing sample S. We illustrate this dependence with other parametric functions defined as

Dist Fro−Aug(hw,S) = Dist Fro(hw) + Aug(hw,S),
Dist l2−Aug(hw,S) = Dist l2(hw) + Aug(hw,S),

Param Norm−Aug(hw,S) = Param Norm(hw) + Aug(hw,S),
Path Norm−Aug(hw,S) = Path Norm(hw) + Aug(hw,S),

Sum Fro−Aug(hw,S) = Sum Fro(hw) + Aug(hw,S),
Zero−Aug(hw,S) = Zero−Aug(hw) + Aug(hw,S),

where

Aug(h,S) = −1
2RS(h) + 1

2RŜ(h),

and Ŝ is a data-augmented learning sample. More precisely, we apply to each example
(x, y) ∈ S (a) a random rotation (with a maximum angle set to 20◦) and (b) a random
translation (with a maximum of 3 translated pixels per dimension).

G.8.2 Tightness of the Bounds
Figures G.1 and G.2 report the tightness of the bounds for the data-dependent com-
plexity measures introduced in Appendix G.8.1.

G.8.3 Influence of the Parameter α
Figures G.3 to G.6 shows the influence of the parameter α for all parametric functions.

G.8.4 Influence of the Depth/Width
Figures G.7 to G.10 shows the influence of the depth and the width for all parametric
functions.
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Figure G.1. Scatter plot given a parametric function µ(h,S), where each segment
represents a neural network hw learned with a given α, width H and depth L. For each
segment, there is a corresponding orange square and a blue circle. The orange squares
corresponds to the empirical risk RS(h) (x-axis) and test risk RT (h) (y-axis). The blue
circle resp. the black triangle represents Equation (7.7) resp. Equation (7.8) in the
x-axis and the test risk RT (h) in the y-axis. The dashed line is the identity function.
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Figure G.2. Scatter plot given a parametric function µ(h,S), where each segment
represents a neural network hw learned with a given α, width H and depth L. For each
segment, there is a corresponding orange square and a blue circle. The orange squares
corresponds to the empirical risk RS(h) (x-axis) and test risk RT (h) (y-axis). The blue
circle resp. the black triangle represents Equation (7.7) resp. Equation (7.8) in the
x-axis and the test risk RT (h) in the y-axis. The dashed line is the identity function.
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Figure G.3. Influence of the parameter α in the x-axis. The bound values are
represented in blue and the test risk in red. The two (solid) lines are the mean values
computed on the depths and widths; the shadows are the standard deviation. The
dashed lines are the minimum and the maximum values.
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Figure G.4. Influence of the parameter α in the x-axis. The bound values are
represented in blue and the test risk in red. The two (solid) lines are the mean values
computed on the depths and widths; the shadows are the standard deviation. The
dashed lines are the minimum and the maximum values.
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Figure G.5. Influence of the parameter α in the x-axis. The bound values are
represented in blue and the test risk in red. The two (solid) lines are the mean values
computed on the depths and widths; the shadows are the standard deviation. The
dashed lines are the minimum and the maximum values.
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Figure G.6. Influence of the parameter α in the x-axis. The bound values are
represented in blue and the test risk in red. The two (solid) lines are the mean values
computed on the depths and widths; the shadows are the standard deviation. The
dashed lines are the minimum and the maximum values.
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Figure G.7. Influence of the depth and the width in the x-axis as “depth/width”. The
(solid) lines are the mean values computed on the different values of α; the shadows are
the standard deviation. The dashed lines are the minimum and the maximum values.
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Figure G.8. Influence of the depth and the width in the x-axis as “depth/width”. The
(solid) lines are the mean values computed on the different values of α; the shadows are
the standard deviation. The dashed lines are the minimum and the maximum values.
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Figure G.9. Influence of the depth and the width in the x-axis as “depth/width”. The
(solid) lines are the mean values computed on the different values of α; the shadows are
the standard deviation. The dashed lines are the minimum and the maximum values.
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Figure G.10. Influence of the depth and the width in the x-axis as “depth/width”. The
(solid) lines are the mean values computed on the different values of α; the shadows are
the standard deviation. The dashed lines are the minimum and the maximum values.
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Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentra-
tion Inequalities - A Nonasymptotic Theory of Independence. Oxford University Press.
(2013)

Cited on page 43.
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Gaël Letarte, Pascal Germain, Benjamin Guedj, and François Lavi-
olette. Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural
Networks. NeurIPS. (2019)

Cited on pages 22, 150, 158, 164.

Guy Lever, François Laviolette, and John Shawe-Taylor. Tighter PAC-
Bayes bounds through distribution-dependent priors. Theoretical Computer Science.
(2013)

Cited on pages 93, 324.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. CoRR. abs/1312.4400.
(2013)

Cited on page 186.

Ben London. A PAC-Bayesian Analysis of Randomized Learning with Application to
Stochastic Gradient Descent. NIPS. (2017)

Cited on page 65.

Stephan Sloth Lorenzen, Christian Igel, and Yevgeny Seldin. On PAC-
Bayesian bounds for random forests. Machine Learning. (2019)

Cited on pages 102, 201.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards Deep Learning Models Resistant to Adver-
sarial Attacks. ICLR. (2018)

Cited on pages 82, 85, 95, 272.

Andrés Masegosa, Stephan Sloth Lorenzen, Christian Igel, and Yevgeny
Seldin. Second Order PAC-Bayesian Bounds for the Weighted Majority Vote. NeurIPS.
(2020)

Cited on pages 22, 39, 60, 61, 64, 92, 100, 102, 105, 121, 122, 128, 138, 201, 214.

Andreas Maurer. A Note on the PAC Bayesian Theorem. CoRR. cs.LG/0411099.
(2004)

Cited on pages 52, 70, 238, 242, 314, 316, 321, 349.

David McAllester. Some PAC-Bayesian Theorems. COLT. (1998)
Cited on pages 19, 56, 90, 134.

– 378 –



References

David McAllester. Some PAC-Bayesian Theorems. Machine Learning. (1999)
Cited on pages 52, 64.

David McAllester. PAC-Bayesian Stochastic Model Selection. Machine Learning.
(2003)

Cited on pages 60, 66, 67, 74, 102, 106, 107, 110, 221, 227.

Warren McCulloch and Walter Pitts. A Logical Calculus of Ideas Immanent
in Nervous Activity. Bulletin of Mathematical Biophysics. (1943)

Cited on page 35.

Colin McDiarmid. On the method of bounded differences. Surveys in Combina-
torics. (1989)

Cited on pages 47, 49.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
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Abstract. In machine learning, a model is learned from data to solve a task automatically. In the
supervised classification setting, the model aims to predict the label associated with an input. The
model is learned using a limited number of examples, each consisting of an input and its associated
label. However, the model’s performance on the examples, computed by the empirical risk, does not
necessarily reflect the performance on the task, which is represented by the true risk. Moreover, since
it is not computable, the true risk is upper-bounded by a generalization bound that mainly depends
on two quantities: the empirical risk and a complexity measure. One way to learn a model is to min-
imize a bound by a type of algorithm called self-bounding. PAC-Bayesian bounds are well suited to
the derivation of this type of algorithm. In this context, the first contribution consists in developing
self-bounding algorithms that minimize PAC-Bayesian bounds to learn majority votes. If these bounds
are well adapted to majority votes, their use for other models becomes less natural. To overcome this
difficulty, a second contribution focuses on the disintegrated PAC-Bayesian bounds that are natural for
more general models. In this framework, we provide the first empirical study of these bounds. In a third
contribution, we derive bounds that allow us to incorporate complexity measures defined by the user.

Keywords. Machine Learning, Generalization, PAC-Bayesian Bound, Disintegrated PAC-Bayesian
Bound, Self-Bounding Algorithm, Majority Vote, Neural Network, Complexity Measure.

Résumé. En apprentissage automatique, un modèle est appris à partir de données pour résoudre une
tâche de manière automatique. Dans le cadre de la classification supervisée, le modèle vise à prédire
la classe associée à une entrée. Le modèle est appris à l’aide d’un nombre limité d’exemples, chacun
étant constitué d’une entrée et de sa classe associée. Cependant, la performance du modèle sur les
exemples, calculée par le risque empirique, ne reflète pas nécessairement la performance sur la tâche
qui est représentée par le risque réel. De plus, n’étant pas calculable, le risque réel est majoré pour
obtenir une borne en généralisation qui dépend principalement de deux quantités : le risque empirique
et une mesure de complexité. Une façon d’apprendre un modèle est de minimiser une borne par un type
d’algorithme appelé auto-certifié (ou auto-limitatif). Les bornes PAC-Bayésiennes sont bien adaptées à
la dérivation de ce type d’algorithmes. Dans ce contexte, la première contribution consiste à développer
des algorithmes auto-certifiés qui minimisent des bornes PAC-Bayésiennes pour apprendre des votes
de majorité. Si ces bornes sont bien adaptées aux votes de majorité, leur utilisation pour d’autres
modèles devient moins naturelle. Pour pallier cette difficulté, une seconde contribution se concentre
sur les bornes PAC-Bayésiennes désintégrées qui sont naturelles pour des modèles plus généraux. Dans
ce cadre, nous apportons la première étude empirique de ces bornes. Dans une troisième contribution,
nous dérivons des bornes permettant d’incorporer des mesures de complexité pouvant être définies par
l’utilisateur.

Mot-clés. Apprentissage Automatique, Généralisation, Borne PAC-Bayésienne, Borne PAC-Bayésienne
Désintégrée, Algorithme Auto-certifié, Algorithme Auto-limitatif, Vote de Majorité, Réseau de Neurones,
Mesure de Complexité.


