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RÉSUMÉ

Grâce aux nouveaux paradigmes introduits dans la dernière génération de
réseaux sans fil, les attentes concernant le temps de service, la latence et la
performance du réseau ont augmenté. Pour modéliser ces réseaux, la théorie
des processus ponctuels et la géométrie stochastique se sont avérées utiles car
elles fournissent un cadre polyvalent et robuste pour obtenir des résultats
lorsque l’on travaille avec ces réseaux sans fil. L’ajout d’une dynamique
markovienne pour modéliser les connexions et les temps de service complète
le cadre d’analyse de ces réseaux sans fil.

La première contribution du travail présenté dans cette thèse réside dans
l’analyse de la différenciation des services : les réseaux 5G NR ont introduit
le partitionnement de la bande passante comme outil pour augmenter la per-
formance du réseau. Dans cette configuration de réseau, tous les utilisateurs
n’interfèrent pas les uns avec les autres avec la même puissance : les utilisa-
teurs qui émettent avec un spectre de fréquence d’émission plus large auront
une plus grande bande passante, mais ils rencontreront également plus d’in-
terférences de la part des autres utilisateurs dans le réseau. En revanche,
les utilisateurs dont le spectre est plus étroit subiront moins d’interférences.
Nous définissons un cadre markovien pour étudier un tel processus spatial
multiclasse de naissance et de mort, et nous décrivons sa région de stabilité.
Pour de tels systèmes, les propriétés du régime stationnaire sont analysées,
telles que les mesures moment ou l’attraction, ce qui permet de mieux com-
prendre cette dynamique.

Le deuxième problème que nous examinons est celui de la mobilité, qui est
devenue une caractéristique importante des réseaux sans fil en raison de l’util-
isation d’antennes hautement directionnelles. En utilisant une architecture
simple pour un réseau cellulaire à deux niveaux, nous étudions deux familles
de politiques d’association : une première famille qui s’appuie uniquement
sur la mobilité de l’utilisateur, et une seconde qui offre un compromis en-
tre la géométrie du réseau et la mobilité de l’utilisateur afin d’augmenter
les performances du réseau. Ces politiques sont ensuite comparées à une
politique d’association classique de puissance maximale afin d’évaluer leurs
performances.
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ABSTRACT

Thanks to the new paradigms introduced in the latest generation of wireless
networks, expectations concerning service time, latency and network perfor-
mance have increased. To model such networks, point process theory and
stochastic geometry have proven to be useful as they provide a versatile and
robust framework to obtain results when working with such wireless net-
works. Adding to this Markov dynamics to model connections and service
times completes this framework to analyze such wireless networks.

The first contribution of the work presented in this thesis lies in the anal-
ysis of service differentiation: 5G NR networks have introduced bandwidth
partitioning as a tool to increase network performance. Under this network
setup, not all users interfere with each other with the same power: users
transmitting with a broader transmitting frequency spectrum will have a
larger bandwidth, but they will also encounter more interference from the
other users in the network. In contrast, users with a narrower spectrum will
experience less interference. We define a Markovian framework to study such
a multiclass spatial birth-and-death process, and we describe its stability re-
gion. For such systems, properties of the stationary regime are analyzed,
such as moment measures or statistical clustering, leading to a better under-
standing of these dynamics.

The second problem we look into is mobility, which has become an impor-
tant feature in wireless networks due to the use of highly directional antennas.
Using a simple architecture for a two-tier cellular network, we study two fam-
ilies of association policies: a first family which only relies on user mobility,
and the second offers a trade-off between network geometry and user mobil-
ity to increase network performance. These policies are then compared to a
classical max-power association policy to assert their performance.
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INTRODUCTION

Wireless networks have seen an important growth over the past decades,
driven by the increasing demand for mobile communication services and the
development of wireless technologies. This growth was accompanied by a
number of constraints resulting from the intrinsic properties of wireless net-
works, where network performance depends on the spatial configuration of
transmitting users at a given moment. The latest generation of wireless net-
works have brought another layer of constraints, notably with the introduc-
tion of multi-tier networks and service differentiation. These considerations
have brought a multitude of questions about network load, communication
latency and transmission performance, and the need for robust frameworks
to model such networks.

Communication networks have been studied extensively in queuing the-
ory, as information about user latency and service times has become in-
creasingly interesting. Among the properties of interest, stochastic stability
ensures to avoid congestion or overload in the network, and provides useful
bounds in population of the network. Under the Markov property, the sta-
bility condition is also important to ensure the convergence of latency to a
stationary distribution which one wants to characterize analytically. Jack-
son networks ([55]) and their multi-class extension, BCMP networks ([24]),
fall within the classes of studied networks, but stability results about net-
works with service differentiation as intended in this work remains an open
question.

Another tool that has risen in popularity to study and model communica-
tion networks is stochastic geometry ([12], [48]), as it provides a flexible and
reliable framework to encapsulate the features of wireless communications.
This has become especially true in the most recent wireless networks, as the
standards set in terms of reliability and latency have become very high, for
which stochastic geometry has proven to be useful ([53]). A vast literature
exists on stochastic geometry ([86]) and its applications to wireless networks
([18]), as the framework it offers allows to obtain bounds and performance
guarantees in wireless networks ([42]).

This manuscript will tackle two different aspects of wireless networks
combining these two approaches. In the two first parts, we consider a dy-
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namical system network modeled on Markov jump process, where immobile
users arrive and leave upon the completion of a transmission, for which we
establish conditions for its stochastic stability and provide results about its
steady-state dynamics through Palm calculus and stochastic geometry. In
the last part of this thesis, we will look to a fixed network with mobile users
and look to obtain results about network performance when taking into ac-
count user velocity. The work presented here is seen as a first step towards
designing a comprehensive mathematical framework to encapsulate all the
features of 5G NR networks and their future releases.

Stochastic stability in communication
networks
Spatial interactions and spatial interacting queuing systems have been stud-
ied for a long time, as they prove to be useful to model a large variety of
physical phenomena, ranging from physics to epidemiology, biology or com-
munication theory. Queuing systems have also been studied extensively, as
many results have been obtained about their behavior, especially under the
Markov assumption, which provides a framework where several additional
properties can be reached (existence of a stationary distribution, converging
times, etc.). Adding spatial interactions to queuing systems defines the the-
ory of spatial queuing networks ([82]), which form a class of queuing systems
where the locations of queues are not fixed locations in space, and where
the arrival and departure times depend on the geometry of the system at a
given time. Such systems have been introduced by Preston ([75]) as jump
processes over the set of counting measures on a given region of space.

A particularity of wireless networks comes from the nature of spatial
interactions between users. In a device to device wireless network, users
arrive at random locations in time and space and their service rate at any
time is a function of the interference created by other users transmitting at
the same time in the network. In [80], the authors introduced a framework
to study such wireless spatial birth-and-death networks, derived the stability
region, i.e, the set of arrival rates for which the network is stochastically
stable, which happens to be an interval, and studied the stationary regime
of this class of dynamics. On the other hand, when working with cellular
networks, the study of stability happens to be more complex, as metastable
regimes may emerge ([4]). Both problems have been studied in a setup where
all users use the same communication channels, which ensures that all users
interact with each other.

Various instances of spatial queuing networks have been studied and re-
sults have been obtained using queuing theory tools to assert the recurrence
and stability conditions for such systems in a Markov setup ([3], [16], [17],
[29]). Among the numerous fields in which spatial queuing systems have been
studied, communication systems provide an interesting framework, as many
communication protocols prove to respect the Markov property (ALOHA,



ix

DMAA under natural assumptions - [85]).

Service differentiation in wireless networks
The latest generations of wireless networks, such as 4G LTE and 5G NR ([9]),
have introduced service differentiation as a means to increase bandwidth and
network performance ([39]), and to decrease user latency and increase com-
munication reliability ([62]). This service differentiation uses bandwidth par-
titioning algorithms ([67]) in order to assign to users communication channels
matching their needs and respecting certain fairness criteria.

In the multiclass wireless networks considered here, users can transmit
on several frequency bands. Those using a large number of bands transmit
with a strong signal, but generate a lot of interference for other users, hence
slowing down their transmission. On the other hand, users transmitting on
a small number of bands have a weaker signal, but generate less interference
and block less the other transmissions. It it also to note that some users
do not interfere with each other, as the sets of frequency bands allocated to
them do not overlap, while others may interfere with all present users, e.g.
when they use the whole available spectrum of bands to transmit.

A first goal of this thesis is to develop frameworks designed at modelling
dynamic multiclass wireless networks, and studying some of their properties:
stability, stationary regime and establishing results about network perfor-
mance based on the parameters. To capture the space-time interactions
between users, we use a birth-and-death process of wireless dipoles (see [12],
[47]). In this model, dipoles arrive according to a Poisson rain of constant
intensity, representing the arrival rate of users in the network, and leave
with a rate inversely proportional to a shot-noise of the configuration. These
dynamics are standard when studying wireless networks and represent a lin-
earized version of the Shannon-Hartley formula in the interference limited
case, corresponding to low SINR, modelling the capacity of a transmission
channel ([83]). This relatively simple framework captures some of the key
features of bandwidth partitioning in a 5G network and has been an open
question for several years.

As mentioned, the novelty of this works lies in the study of this net-
work of interacting point processes. Spatial birth-and-death processes in the
single-class setup have been studied in [80], but they cannot be immediately
generalized to a multiclass network. The main difficulty lies in the presence
of multiple available communication channels, which we have to take into
account in the proofs. In this work, we will restrict our study to a network
in a square torus. Studying spatial queuing networks in a finite region of
space allows for an easier study, as most classical methods fail or are harder
to generalize when considering the whole Euclidean plane (see [16], [81] for
instance). This thesis is a first step towards studying more complex net-
works: the hypothesis considered in this work are restrictive compared to
real life systems, but the network setup we decided to study gathers some
key features of wireless communication networks and bandwidth sharing and
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partitioning policies used in telecommunication protocols, while allowing us
to establish a methodology for their study.

Association policies in heterogenous networks
Another question of interest when considering dynamics of wireless networks
is the study of heterogenous and multi-tier networks. Since the introduction
of microcells, picocells until the emergence of femtocells in 4G LTE ([57]),
association policies have become a key feature of wireless networks. Such
multitier network architectures have emerged as a means to improve signal
power and reduce interference ([39]), as they allow the network load to be
spread over multiple parallel instances of a network ([40]). Multiple types
of association policies have been studied ([65]), but max-power association
remains a good performer ([79]).

Among the important features an association policy has to take into ac-
count, user mobility has become a prominent factor with the democratization
of beam-based communications, which rely on narrow beams to concentrate
transmission power. In this network paradigm, when a user moves out of the
beam it uses to communicate with its serving base station, it has to reselect
a new beam, which halts the transmission with the network. These beam re-
selections are added to the cell handover, performed when a user moves out
of the coverage of a base station to create an overhead in the transmission,
significantly decreasing the network performance over a transmission. Thus,
designing relevant association policies when studying such networks have to
take user mobility into account.

In this line of thoughts, association policies need to be rather simple as
more complex association policies may prove to be computationally heavy
and may need a controller to associate users to different tiers, which be-
comes less interesting with the increase of the number of connected users to
a network. As a result, decentralized, user-centric association scheme have
become prominent in massive MIMO networks ([25]), which have to consider
a large amount of connections simultaneously. We will propose a simple 2-
tier wireless networks with macro and micro base stations, capturing some
essentials features of 5G NR networks (directional beamforming, mobility
and beam misalignment), using a similar analysis as developed in [53].

Organization of the manuscript
This manuscript consists in three parts. The first part of this work is dedi-
cated to establishing a framework to study the stability of a multiclass spatial
queuing system with wireless interactions. There, we extend a framework in-
troduced in [80] to adapt it to the multiclass setup. In a first step, we
introduce a symmetry assumption to simplify the study of the system and
allow us to obtain a closed form fo the critical arrival rate in the system.
This study relies on the use of the definition of adequate interference queue-
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ing networks (see [81]) to obtain bounds for the stability region. Due to the
nature of these dynamics, fluid limits ([78]) provide a useful framework to
obtain conditions for stability ([37]). In a second step, we relax this sym-
metry assumption and manage to obtain a general stability condition for
spatial queuing systems for which fluid limits follow a certain evolution, giv-
ing a reciprocal to a result presented in [84]. Finally, we present numerical
simulations for our result and discuss some natural extensions of the model.

The second part focuses around the study of the stationary regime of
the dynamics presented in Part I. We start by presenting two heuristics to
estimate the spatial user densities in the stationary regime with the use of
stochastic geometry tools (see [12]) as well as Palm calculus (see [14]) in
order to obtain heuristics for user densities in the stationary regime. A
first heuristic relies on a mean-field approximation for the interacting point
processes. These approximations are known to provide a powerful framework
to obtain both qualitative and quantitative results in many cases. From [80]
we know that a monotype wireless network displays clustering, i.e. attraction
between users in the stationary regime, which leads us to investigate this
property in the multiclass regime, as the spatial interaction between users
are different. Finally, we prove the existence of exponential moments for the
system. This last property allows us to bound the tails of the steady-state
distribution of the dynamics, which have an important practical implications
for wireless communications.

The third part revolves around the study of association policies for a
two-tier heterogeneous wireless network, based on a study presented in [53].
Because mobility has become a prominent feature to take into account when
designing wireless networks ([10], [23]), we introduce a category of associ-
ation policies based on user velocity to maximize the spectral efficiency in
the network. This class of association policies is interesting as they manage
to outperform the classical max-power association policies in some network
setups. Because these policies only rely on the user velocity and not on net-
work geometry, we introduce velocity-biased max power policies to take into
account these two components and we propose a computational framework
to study them under a set of networks parameters.
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CHAPTER A

MATHEMATICAL
FOUNDATIONS

In this chapter, we will detail the mathematical framework as well as some
basics properties, results and theorems about the mathematical objects that
will be used in this thesis.

A.1 Notation
Firstly, let us define some notations. Vectors will be denoted as bold-faced
letters and their coordinates in regular script (for instance, x = (𝑥𝑖)0≤𝑖≤𝑑−1 ∈
ℝ𝑑), and ≤ will denote the coordinate-wise partial ordering when used for
vectors. Let 𝑆 be a second-countable locally compact Hausdorff space. In the
manuscript, 𝑆 will either be equal to the positive real line ℝ+, the Euclidean
plane ℝ2 or a compact subset of it. Let 𝒮 be the canonical Borel 𝜎-algebra
associated with 𝑆. Let (Ω,ℱ, ℙ) be a probability space, and we define ℳ(𝑆)
the set of counting measures on 𝑆.

For𝑁 ∈ ℕ, we denote by𝐷([0,∞),ℝ𝑁) the set of càdlàg (right-continuous
with left limits) functions from ℝ+ to ℝ𝑁. We consider stochastic processes
as measurable maps from (Ω,ℱ) to (𝐷([0,∞),ℝ𝑁), 𝒮). Let 𝑑0∞ be the infinite
norm in ℝ𝑑, |𝑥| be the 𝐿1 norm and ‖𝑥‖ denote the 𝐿2 norm of 𝑥.

For a sequence (𝑥𝑛)𝑛≥0 and 𝑥 in 𝐷([0,∞),ℝ𝑁), we write 𝑥𝑛 → 𝑥 if, for
all 𝑇 > 0 :

lim
𝑛→∞

sup
0≤𝑡≤𝑇

‖𝑥𝑛(𝑡) − 𝑥(𝑡)‖ = 0. (A.1)

In the rest of this thesis, if no mode of convergence is specified, this
definition of convergence is used.

We denote by ℰ(ℝ𝑑) the set of probabilities on ℝ𝑑 (with 𝑑 ≥ 1), and we
define the partial ordering of probability measures ≤𝑖. We define:

1
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𝐼 = {𝑓 ∈ ℰ(ℝ𝑑), 𝑓 is coordinate-wise non-decreasing}.

For each 𝐹,𝐺 ∈ 𝐼, we write 𝐹 ≤𝑖 𝐺 if and only if

∫
ℝ𝑑

𝑓(𝑥)𝐹(d𝑥) ≤ ∫
ℝ𝑑

𝑓(𝑥)𝐺(d𝑥),

for all 𝑓 ∈ 𝐼. ≤𝑖 is a partial order on the set of random vectors of ℝ𝑑.
The next table resumes all the notations used in this chapter.

Let Ψ and Ψ′ be two point processes on 𝒟. We write Ψ ≤ Ψ′ if we have
Ψ(𝒟) ≤𝑖 Ψ′(𝒟). In the rest of this thesis, we will use this partial order when
comparing stochastic processes. Finally, we say that a random variable 𝑋
with values in ℝ𝑑 dominates 𝑌 if the cumulative distribution functions of 𝑋
and 𝑌, denoted as 𝐹𝑋 and 𝐹𝑌, are such that 𝐹𝑌 ≤𝑖 𝐹𝑋. A consequence of
stochastic domination is, for all x ∈ ℝ𝑑 and for all probabilities ℙ defined on
ℝ𝑑, we have ℙ[𝑋 > x] ≥ ℙ[𝑌 > x].

Finally, for two random variables 𝑋 and 𝑌, we write 𝑋 𝑑∼ 𝑌 if 𝑋 and 𝑌
have the same probability distribution.

A.2 Point process theory
The main mathematical object we manipulate in this manuscript are point
process. The most common way to visualize a point process is to consider a
random collection of points of a set, whether is it the real line, the Euclidean
plane or any mathematical space. Point processes have been introduced as
a means to model and study a vast variety of physical processes, like the
position of stars in the sky (which gave the idea to John Mitchell in 1767 of
what would become the Poisson point process). Nowadays, point processes
are used to study a variety of physical phenomena, ranging from biology ([41],
[90]) and epidemiology ([66]) to wireless communication networks ([80]). This
section aims at presenting point processes and some basics properties and
results of point processes that will be used throughout this manuscript.

The first object we define is the point process:

Definition A.1. A point process on 𝑆 is a map Φ ∶ Ω × 𝒮 ↦ ℕ such that:

– For all 𝜔 ∈ Ω, Φ(𝜔, ⋅) is a locally finite counting measure on 𝑆, i.e.
for all 𝑥 ∈ 𝑆, there exists an open neighborhood 𝑁𝑥 of 𝑥 such that
Φ(𝜔,𝑁𝑥) < +∞.

– For every 𝐵 ∈ 𝒮, Φ(⋅, 𝐵) is a random variable on ℕ.

A point process Φ is a random variable over ℳ(𝒮) over the set of locally
finite counting measures on 𝑆 in a sense that for all 𝜔, Φ(𝜔, ⋅) is a count-
ing measure on ℕ, selected randomly. In this thesis, all point processes will
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Notation Description
𝑆 A second-countable, separable Hausdorff space (assimilated

to ℝ+, ℝ2 or any compact subset of ℝ2)
𝒮 Canonical Borel 𝜎-algebra associated with 𝑆
(Ω,ℱ, ℙ) A probability space
𝐷(𝐴,𝐵) Set of càdlàg function from 𝐴 to 𝐵
𝑑0∞ Infinite norm in ℝ𝑑

|⋅| 𝐿1 norm
‖⋅‖ 𝐿2 norm
ℳ(𝑆) Set of counting measures on (𝑆, 𝒮)
Φ Point process
𝛿 Dirac measure
𝜈 Lebesgue measure on 𝑆
Λ Intensity measure of Φ
𝒞 Campbell measure of a marked point process
ℙ0
Φ Palm probability measure with respect to the point process

Φ
𝔼0
Φ Palm expectation with respect to the point process Φ

⋆ Convolution of probability distributions
𝐾(⋅, ⋅) Kernel of a Markov jump process
𝜆(𝑥) Jump intensity function of a jump process
Π(⋅, ⋅) The transition matrix of a jump process
̄𝑥 Fluid limit associated with the Markov chain 𝑋

ℓ Path loss function
𝒩0 Thermal noise density in the network

Table A.1: Table of notations of Chapter A

be considered as random locally finite counting measures, and for simplic-
ity, we will write Φ(⋅) to denote either the random variable Φ or one of its
realizations.

A common way to visualize point processes is as a random set of points
in 𝑆: let 𝑋1, ⋅, 𝑋𝑛, where 𝑛 may be infinite and the 𝑋𝑖 may not necessarily
be distinct, be the points in 𝑆 for which Φ({𝑋𝑖}) > 0. Then, to represent
the point process, one can write Φ = {𝑋1,…𝑋𝑛} to emphasize this interpre-
tation. Because point processes are also random measures on 𝑆, we will also
use two other representations, which involve measure theory. The first one
is:

Φ =
𝑛
∑
𝑖=1

𝛿𝑋𝑖
,

where 𝑛 is an integer-valued random variable denoting the number of points
of the realization of Φ and 𝛿 is the Dirac measure. The second representation
for point process we will use is the counting notation. Let 𝑇 be a compact
subset of 𝑆. Then, we define:
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Φ(𝑇 ) = ∫
𝑥∈𝑇

Φ(d𝑢).

This way, Φ(𝑇 ) represents the number of points of Φ in 𝑇. This counting
notation will be particularly useful when studying stationary point processes
in Part II. We will also use the classical set operations on point processes:
𝑥 ∈ Φ means that 𝑥 belongs to a realization of the point process Φ, and we
will use the notations Ψ ⊂ Φ, Φ ∪Ψ, Φ ∩Ψ and Φ\Ψ in their usual sense to
respectively denote inclusion, union, intersection and difference between the
random sets Ψ and Φ. Finally, the translation operator 𝑥 + Φ, where 𝑥 ∈ 𝑆
and the dilation operator 𝜆Φ with 𝜆 ∈ ℝ keep their usual meaning.

If, for all 𝑥 ∈ 𝑆, we have Φ({𝑥}) ≤ 1, then the point process is said to be
simple. A point process is said to be stationary if for all 𝑦 ∈ 𝑆, the process
Φ̃ = Φ + 𝑦, defined as the set {𝑦 +𝑋𝑖, 𝑋𝑖 ∈ Φ} has the same distribution as
Φ. A point process is said to be isotropic if it is invariant by rotation, i.e. if
𝑅(Φ) has the same distribution as Φ, where 𝑅 is a rotation of 𝑆. The study
of stationary point processes is a vast field of research in itself, as it has a
lot of interesting properties (see for instance Chapter 4 from [86] or Chapter
1 from [14]).

Two important quantities for point processes are their intensity measure
and their distribution. The intensity measure of a point process is a measure
on 𝒮 defined, for all 𝐵 ∈ 𝒮, by:

Λ(𝐵) = 𝔼 [Φ(𝐵)] .

In other words, the intensity measure of a point process is the mean num-
ber of points of the point process is a given Borel set 𝐵. If the point process
is stationary, this intensity measure is translation-invariant. An important
result in measure theory is that every isometry invariant Radon measure is
absolutely continuous with regard to the Lebesgue measure, which can be
applied here. As such, if the point process is stationary, there exists 𝜆 ∈ ℝ
such that for all Borel set 𝐵:

Λ(𝐵) = 𝜆𝜈(𝐵),

where 𝜈 is the Lebesgue measure on 𝒮. 𝜆 is called the intensity of the point
process, and it can be interpreted as the average number per unit of space
of the process, or its spatial intensity.

The distribution of the Point process is defined as (ℙ[𝑌 ∈ Φ]) for all the
configuration sets 𝑌. This distribution uniquely determines the point process.

The Poisson point process
Among existing point processes, a common instance is the Poisson point
process (PPP). The main idea behind the Poisson point process is to model
random events sparsely separated spatially or temporally.

To define a Poisson point process, let us take a locally finite intensity
measure Λ on 𝒮, and we define the Point process Φ such that:



A.2. POINT PROCESS THEORY 5

– For all 𝐵 ∈ 𝒮, Φ(𝐵) is distributed according a Poisson law, i.e., for all
𝑛 ∈ ℕ:

ℙ [Φ(𝐵) = 𝑛] = Λ(𝐵)𝑛

𝑛!
𝑒−𝑛,

– The number of points in 𝑛 disjoint Borel subsets of 𝑆 are independent
random variables, i.e., for all𝐵1,… ,𝐵𝑛 ∈ 𝒮 such that 𝑖 ≠ 𝑗 ⇒ 𝐵𝑖∩𝐵𝑗 =
∅, we have:

ℙ [Φ(𝐵1) = 𝑚1,… ,𝐵𝑛 = 𝑚𝑛] =
𝑛
∏
𝑖=1

ℙ [Φ(𝐵𝑖) = 𝑚𝑖] .

The second property of Poisson point processes is also referred to as
independent scattering or increment independence, as it captures the lack
of interaction between of points in the Poisson process. A consequence of
this property is that the points of a Poisson point process are uniformly
distributed on 𝑆.

If there exists 𝜆 > 0 such that Λ = 𝜆𝜈, where 𝜈 is the Lebesgue measure
on 𝒮, then we say that the Poisson point process is homogenous. An inter-
esting property of homogenous Poisson point processes is that, when used
to model arrival times of events the independent scattering tells us that the
time between events is exponentially distributed with mean 1/𝜆.

A second interesting property of the Poisson point process is that it is
both stationary and isotropic. This allows for the definition of a typical point
for the point process, which we usually assume to be located at the origin,
useful to obtain results about the process.

A first interesting result about point processes is Campbell’s Theorem
(named after the work of Campbell, see [33])

Theorem A.1. Let 𝑓 ∶ 𝑆 ↦ ℝ be a non-negative measurable function. Then:

𝔼[∑
𝑥∈Φ

𝑓(𝑥)] = ∫
𝑦∈𝑆

𝑓(𝑦)Λ(d𝑦).

This theorem is an application of Fubini’s Theorem to the random sum,
after rewriting it as a double integral. Campbell’s theorem is a particularly
useful too when working with shot-noises over point processes, because it
allows for a practical way to express the value of a shot-noise of the point
process. It is to note that if Φ is a homogenous PPP with intensity 𝜆, we get
the following alternative form:

𝔼[∑
𝑥∈Φ

𝑓(𝑥)] = 𝜆∫
𝑦∈𝑆

𝑓(𝑦)d𝑦.

Marked point processes
When using point processes, it is common to attach to each point a charac-
teristic (or mark). Let 𝕄 be the space of marks and ℳ its Borel 𝜎-algebra.
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We define a marked point process Ψ = {[𝑥𝑚, 𝑦𝑚]}, where the points {𝑥𝑚}
form a point process with intensity measure Λ, called the ground process,
and the 𝑦𝑚 is the process of marks. We can define an intensity measure for
the marked point process for all 𝐵 ∈ 𝒮 and 𝑀 ∈ ℳ as:

Υ(𝐵 ×𝑀) = 𝔼 [Ψ(𝐵 × 𝐿)] .
For all 𝑀 ∈ ℳ, the measure Υ(⋅ × 𝑀) is absolutely continuous with

regard to the intensity of the ground process. There exists a probability
distribution ℙ𝑚, depending on 𝑥 ∈ 𝑆, on ℳ such that:

Υ(d(𝑥,𝑚)) = ℙ𝑚(𝑥,d𝑚)Λ(d𝑥).
If the marked point process is stationary, then, ℙ𝑚(𝑥, ⋅) = ℙ𝑚(⋅) for all

𝑥 ∈ 𝑆, and we have:

Υ(𝐵 ×𝑀) = 𝜆ℙ𝑚(𝑀)𝜈(𝐵). (A.2)
Let Ψ be a stationary marked point process with marks in (𝕄,ℳ). We

can define the following random counting measure on (𝑆 ×𝕄,𝒮 ⊗ℳ):

𝒞(𝐵 ×𝑀) = ∫𝜙(𝐵)1{𝑀}(𝐵)ℙ(d𝜙). (A.3)

In other words, this measure counts the average number of points in 𝐵
with marks in 𝑀. This measure is called the Campbell measure of the point
process Ψ.

Palm calculus
When studying point processes, an important question is that of the exis-
tence of some events, or the value of certain quantities conditioned on a point
being present at a given location. For instance, the probability that a point
has no neighbor located closer than 𝑟 is equal to ℙ [Φ(𝐵(𝑥, 𝑟)) = 1||𝑥 ∈ Φ].
This conditional probability is ambiguous, because the conditioned event
has a probability 0. In order to define such conditional events, we intro-
duce the Palm probability distribution. In this section, we will propose two
definitions of the Palm probability distribution: a first one relying on the
Campbell measure defined above, and a second one based an interpretation
from Matthes.

Let us take Ψ a stationary marked point process. From (A.2), we know
that the intensity measure of Ψ is a product form involving the Lebesgue
measure, the intensity of the ground process of Ψ and a probability distri-
bution ℙ𝑚. Taking the definition of the Campbell measure from (A.3), we
get:

𝒞(𝐵 ×𝑀) = ∫𝜙(𝐵)1{𝑀}(𝐵)ℙ(d𝜙) = 𝜆∫
𝐵
ℙ𝑚(𝑀)𝜈(d𝑥).

The probability distribution ℙ𝑚 is called the Palm probability distribu-
tion, and it can be seen as the Radon-Nikodym derivative of the Campbell
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measure with regard to the intensity measure of the ground process of Ψ.
Although this definition is implicit, it underlines its dependency with the
Campbell measure of a stationary marked point process. The following defi-
nition will give an explicit definition and another interpretation for the Palm
probability distribution:

Definition A.2. Let Φ be a stationary point process with a finite, nonzero
intensity 𝜆. The Palm probability distribution (at 0) is the probability distri-
bution defined on (ℕ,𝒩) as:

ℙ0
Φ[𝑌 ] = 1

𝜆𝜈(𝐵)
∫ ∑

𝑥∈Φ(𝐵)
1{Φ − 𝑥 ∈ 𝑌 }ℙ(dΦ), (A.4)

where 𝐵 is an arbitrary Borel set with positive measure. It is to note that
this definition does not depend on the choice of set 𝐵.

The Palm probability distribution introduces a measure which acts as a
condition probability given that a point of Φ is located at 0. To understand
why, we can use Matthes’ interpretation. Let us associate to each point in
Φ a mark, equal to 0 or 1 whether the shifted point process Φ − 𝑥 belongs
to 𝑌. To come back to the previous example, with 𝑌 = {Φ,Φ(𝐵(0, 𝑟) = 0)},
a point 𝑥 will have mark 1 if and only if its nearest neighbor is located at
a distance greater than 𝑟. The process of marks is stationary, and we can
extract the subprocess of points with marks 1, which has intensity 𝜆{1}. The
mark distribution 𝑀 is given by:

𝑀({1}) =
𝜆{1}

𝜆
.

Let us take a Borel set 𝐵. The average number of points in 𝐵 that have
mark 1 has mean 𝜆{1}𝜈(𝐵), implying that:

ℙ0
Φ[𝑌 ] = 𝑀({1}),

and that the choice of 𝐵 does not play a role in (A.4).
A second definition of the Palm probability distribution can be reached

from the Campbell measure (see Section 4.3.4 from [86]). This measure can
be proven to be absolutely continuous with respect to the intensity mea-
sure of the point process Φ, which allows us to derive the Palm probability
distribution.

Using the Palm probability measure, we can define the Palm expectation.
This expectation can be interpreted as the average of a variable at the points
of the process Φ. This expectation can be expressed in terms of Φ as:

𝔼0
Φ[𝑌 ] = 1

𝜆𝜈(𝐵)
𝔼[∑

𝑥∈𝐵
𝑌 + 𝑥] ,

where 𝑌 + 𝑥 = {𝑦 + 𝑥, 𝑦 ∈ 𝑌 }. To illustrate the Palm expectation, let us
consider a point process 𝑁 on the positive real line ℝ+ with probability ℙ,
and let us take a stochastic process (defined in the next chapter) 𝑍. If the
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point process is ergodic, we can use ergodic theorems (see [27] or Theorem
1.6.4 from [14]) and (A.4), then we can write the Palm expectation and the
classical expectation as follows:

𝔼0
𝑁 [𝑍(0)] = lim

𝑡→∞

1
𝑁((0, 𝑡])

∫
𝑡

0
𝑍(𝑠)𝑁(d𝑠) 𝔼[𝑍(0)] = lim

𝑡→∞

1
𝑡
∫

𝑡

0
𝑍(𝑠)d𝑠.

The difference between Palm expectation and regular expectation is fun-
damental in our work, especially when we will study the properties of the
stationary regime of the system considered in Part II. The Palm expectation
works as a user average, as it only considers the values of 𝑌 at locations in the
Point process Φ, as the classical expectation can be interpreted as a system
average.

An important result linking the Palm probability measure and Poisson
point processes is Slivnyak’s Theorem (sometimes referred to as Slivnyak-
Mecke’s theorem):

Theorem A.2 (Slivnyak). Let Φ be a point process with intensity measure
Λ and distribution ℙ. Then, for all 𝑥 ∈ 𝑆, we have:

ℙ𝑥 = ℙ ⋆ 𝛿𝑥,

where ⋆ is the convolution of distributions and 𝛿𝑥 is the distribution of the
point process consisting of the non-random point 𝑥.

In other words, the Palm distribution of Φ with respect to 𝑥 is the dis-
tribution of Φ, with an added point at 𝑥, as the convolution of distributions
corresponds to the superposition of point processes. This theorem allows to
link the Palm probability measure, and subsequently the Palm expectation,
with the original distribution of Φ.

A second important result is the inversion formula of Slivnyak and Ryll-
Nardzewski:

Theorem A.3. Let 𝑌 be a non-negative random variable. We have:

𝔼[𝑌 ] = 𝜆𝔼0
Φ [∫

𝑥∈𝑆
(𝑌 + 𝑥) d𝑥] . (A.5)

This result links the Palm probability measure, the intensity of the point
process Φ and the expectation. We can use (A.5) as well as (A.4) to obtain
a second equation to express a random sum over a point process. We have,
for all 𝐵 ⊂ 𝑆 and for all non-negative function 𝑓 ∶ 𝑆 → ℝ:

𝔼[ ∑
𝑥∈Φ(𝐵)

𝑔(𝑥)] = 𝔼[Φ(𝐵)]𝔼0
Φ [𝑔(0)] . (A.6)

This formula is a mean-value formula and uses the user average interpre-
tation for the Palm probability. To put it in words, to obtain the average
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value of the sum of Φ, we multiply the expected value for one user, the typical
user, an multiply it by the number of users in the process.

Another result about Palm calculus that we will use in this thesis links
the Palm probability distribution of a superposition of point processes and
the intensities of these processes:

Lemma A.4. Let Φ1 and Φ2 be two stationary point processes on 𝒟 with
respective intensities 𝜇1 and 𝜇2, and denote Φ = Φ1 + Φ2 the superposition
of the two processes. Then, we have:

𝔼0
Φ[𝐹 (0, Φ0)] =

𝜇1
𝜇1 + 𝜇2

𝔼0
Φ1

[𝐹 (01, Φ0)] +
𝜇2

𝜇1 + 𝜇2
𝔼0
Φ2

[𝐹 (02, Φ0)], (A.7)

where 0, 01 and 02 respectively denote the typical users of Φ, Φ1 and Φ2, and
𝐹 is a shot-noise of the point processes.

Proof. Let 𝐹 be a shot-noise over Φ. Then, we have, from the definition of
the Palm probability distribution:

𝔼[∑
𝑥∈Φ

𝐹(𝑥,Φ)] = 𝔼0
Φ[𝐹 (0, Φ)]𝔼[Φ(𝒟)] = 𝔼0

Φ[𝐹 (0, Φ)](𝔼[Φ1(𝒟)] + 𝔼[Φ2(𝒟)]).

We also know that:

𝔼[∑
𝑥∈Φ

𝐹(𝑥,Φ)] = 𝔼[∑
𝑥∈Φ1

𝐹(𝑥,Φ)] + 𝔼[∑
𝑥∈Φ2

𝐹(𝑥,Φ)]

= 𝔼0
Φ1

[𝐹 (01, Φ)]𝔼[Φ1(𝒟)] + 𝔼0
Φ2

[𝐹 (02, Φ)]𝔼[Φ2(𝒟)].

We combine these two equations to conclude the proof.

The last important formula we will mention about Palm calculus in this
section is the Papangelou formula, which gives a Radon-Nikodym derivative
of the Palm probability measure.

Theorem A.5. Let Φ be a point process and ℱ𝑡 be a history of Φ adapted
to the flow {𝜃𝑡}. Assume furthermore that the ℱ𝑡-predictable structure is
adapted to {𝜃𝑡}. Then, Φ admits an intensity 𝜆(𝑡) if and only if 𝑃 0 ≪ 𝑃.
In this case, we can chose 𝜆(𝑡) of the form 𝜆(𝑡) = (𝜇 ∘ 𝜃𝑡)𝜆, where 𝜇 is the
Radon-Nikodym derivative of 𝑃 0 on ℱ−

0 with respect to ℙ:

𝜇 =
dℙ0

Φ
dℙ

∣
ℱ−

0

.

This result allows to reduce the value of an unknown Palm probability
measure using possibly known values of the stochastic intensity of other pro-
cesses. Papangelou’s formula, when combined with the inversion formula
from (A.5) allows to obtain meaningful results about point processes, as
displayed in Part II.
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A.3 Poisson-Voronoi Tessellations
The last notion regarding point process theory we will cover in this chapter
is the Poisson-Voronoi tessellation (for more results about random plane
tessellations, see [13]). A tessellation is a partition of the plane, i.e. a set
Θ = {𝑇𝑖}𝑖∈𝐼 such that:

– ⋃𝑖∈𝐼 𝑇𝑖 = ℝ2,

– for all 𝑖 ≠ 𝑗, 𝑇𝑖 ∩ 𝑇𝑗 = ∅.

Let 𝕋 be the set of all possible tessellations of ℝ2. When considering
set of points 𝑆 = ⋃𝑛

𝑖=1{𝑥𝑖} with 𝑥1,…𝑥𝑛 ∈ 𝑆, one can derive the Voronoi
tessellation associated with 𝑆, 𝒱(𝑆) = {𝑐1,… , 𝑐𝑚} where, for all 1 ≤ 𝑖 ≤ 𝑚:

𝑐𝑖 = {𝑦 ∈ 𝑆, ‖𝑦 − 𝑥𝑖‖ < ‖𝑦 − 𝑥𝑗‖, 𝑗 ≠ 𝑖}.

In other words, the Voronoi cell 𝑖 is the set of points of 𝑆 that are closer
to 𝑥𝑖 than to any other point 𝑥𝑗, with 𝑗 ≠ 𝑖. It is to note that the cells 𝑐𝑖 may
be infinite. Voronoi tessellations (also called Voronoi diagrams or Dirichlet
tessellations) have a lot of applications, but the one we will focus on comes
from information theory and wireless communications. Let us consider a
collection of antennas in a wireless network. If we assume that users in the
network always associate with the closest antenna to their location, the result
association policy creates a Voronoi tessellation of the plane.

Let Φ be a homogenous PPP with intensity 𝜆 > 0. As a random collection
of points of 𝑆, we can associate it with a Voronoi tessellation 𝒱(Φ). This
Voronoi diagram is called a Poisson-Voronoi (PV) tessellation of 𝑆.

When studying PV tessellations of the plane, two cells are of interest:

– The typical cell, whose existence comes from the stationarity of the
PPP used to generate the diagram, which can be seen as a cell sampled
randomly in the tessellation, denoted as 𝑉,

– The 0-cell, which is the cell containing the origin, denoted as 𝑉0.

Multiple results exist about the typical cell of a PV tessellation (see Chap-
ter 9 of [86]). For instance, we know that the average volume of the typical
cell is equal to:

𝔼 [|𝑉 |] = 1
𝜆
. (A.8)

An important lemma linking the volumes of 𝑉 and 𝑉0 in PV tessellations
is:

Lemma A.6. In a PV tessellation, the 0-cell is on average larger than the
typical cell:

𝔼[|𝑉 |] ≤ 𝔼[|𝑉0|].
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Proof. Let us define 𝛼0 as the point process of vertices of the tessellation,
𝛼1, the point process of the edge midpoints and denote as 𝜆0 and 𝜆1 their
respective intensities, and let 𝛽 = 𝛼0 ⊕ 𝛼2 ⊕Φ, which has intensity 𝜆𝛽. The
Palm probability of 𝛽 is defined as:

𝜆𝛽ℙ0
𝛽[𝑌 ] = ∫

𝜃∈𝕋
∑

𝛽([0,1])
1𝑌 {𝜃 − 𝑥}ℙ(d𝜃). (A.9)

Let 𝑓 be a measurable function on 𝕋 and 𝑇 = {𝜃 ∈ 𝕋, 0 ∈ Φ} be the set
of tessellations for which the origin is the center of a cell. Let us define:

𝔼2[𝑓(Θ)] =
𝜆𝛽

𝜆
∫
𝑇2

𝑓(𝜃)ℙ(d𝜃).

We have:

𝜆𝔼2 [∫
𝑉0

𝑓(Θ − 𝑥)d𝑥] = 𝜆𝛽 ∫
𝕋
∫
ℝ2

1𝑇2
(𝜃)1𝑉0(𝜃)(−𝑥)𝑓(𝜃 + 𝑥)ℙ0

𝛽(d𝜃).

We use the mass transportation principle. We have, for any measurable
function 𝑣:

𝜆𝛽 ∫
𝑇
∫
ℝ2

𝑣(𝑥, 𝜃)d𝑥ℙ0
𝛽(d𝜃) = ∫

𝕋
∑
𝛽

𝑣(𝑥, 𝜃 − 𝑥)ℙ(d𝜃).

With 𝑣(𝑥, 𝜃) = 1𝑇2
(𝜃)1𝑉0(𝜃)(−𝑥)𝑓(𝜃 + 𝑥) we get:

𝜆𝔼2 [∫
𝑉0

𝑓(Θ − 𝑥)d𝑥] = ∫
𝕋
∑
𝑥∈𝛽

1𝑇2
(𝜃 − 𝑥)1𝑉0(𝜃−𝑥)(−𝑥)𝑓(𝜃)ℙ(d𝜃).

We know that 1𝑇2
(𝜃 − 𝑥)1𝑉0(𝜃−𝑥)(−𝑥) = 1 if and only if −𝑥 belongs in

the 0-cell of 𝜃 − 𝑥. In each 𝜃, there is only one such 𝑥, giving:

𝜆𝔼2 [∫
𝑉0

𝑓(Θ − 𝑥)d𝑥] = ∫
𝕋
𝑓(𝜃)ℙ(d𝜃) = 𝔼[𝑓(Θ)]. (A.10)

Using this result with 𝑓 = 1 yields:

𝜆𝐸2 [∫
𝑉0

d𝑥] = 𝜆𝔼[|𝑉 |] = 1,

which is the volume of the typical cell of a PV tessellation. Using (A.10)
with 𝑓 = 1/|𝑉0| gives:

𝔼[ 1
|𝑉0|

] = 𝜆 = 1
𝔼[|𝑉 |]

.

Using Jensen’s inequality gives:
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𝔼 [|𝑉 |] ≤ 𝔼[|𝑉0|],

which is the intended result and concludes the proof.

Another interesting result about the link between the 0-cell and the typ-
ical cell in a PV tessellation comes from [69]:

Lemma A.7 (Mecke, 1998). For any measurable, non-negative function 𝑔,
we have:

𝔼[𝑔(|𝑉0|)] =
1

𝔼[|𝑉 |]
𝔼[|𝑉 |𝑔(|𝑉 |)].

Lemma A.7 gives an interesting link when comparing quantities linked
with the volume of the 0-cell and the typical cell, which is usually easier to
compute - for instance in the case of homogenous PPP.

Although the PV tessellation is one of the simplest instances of random
tessellations of the plane, there are very few analytical results about the size
distribution of PV cells, but several heuristics and approximation for this
distribution. Among the different existing heuristics, [43] provides a simple,
one-parameter yet performant heuristic to approximate the size distribution
of PV cells:

𝑝(𝑦) = 𝐴𝑦5/2 exp(−7
2
𝑦) , (A.11)

where 𝐴 = (7
2 )

7
2

Γ(7
2 )

is a normalization constant. Using this heuristic allows us
to derive an approximation for the size of the 0-cell. We have:

𝔼[|𝑉0|] ≃ ∫
+∞

0
𝑥𝑝(𝑥)d𝑥 = 9

7
1
𝜆
≃ 1.28𝔼[|𝑉 |].

This numerical approximation holds when simulating the average size of
the typical cell against the size of the 0-cell of a PV tessellation. Figure A.1
displays the size of the zero-cell (in dashed line) against the size of the typical
cell (in plain line) for several values of 𝜆.

In wireless communications, an interesting problem is to study the num-
ber of users connected to the same antenna (for reasons exposed in the next
chapter). To do so, if we assume that antennas and mobile users are dis-
tributed according to two PPP of respective intensities 𝜆 and 𝜈, a naive
heuristic to obtain the average number of users in the zero-cell of the net-
work is given by:

𝔼[ 1
𝑍
] ≈ 1

1 + 1.28𝜆
𝜈
. (A.12)

Though, as we will see late in this section, this approximation performs
poorly to estimate the inverse load in a network. This leads us to defining
the following heuristic, using (A.11):
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Figure A.1: Size of the 0-cell (dashed line) against the size of a typical cell
(plain line) for a homogenous PV tessellation

Lemma A.8. Let Φ and Ψ be two PPPs of respective intensities 𝜆 and 𝜈.
Let 𝑉0 be the 0-cell of the PV tessellation associated with the process Φ and

let 𝑍 = 1 + |Ψ ∩ 𝑉0|. Finally, let 𝐿 ∶ 𝑥 ↦ 𝑥(1 − ( 1
1+ 2

7𝑥
)
7/2

). The moment

of order −1 of 𝑍 can be approximated by:

𝔼[ 1
𝑍
] ≈ 𝐿(𝜆

𝜈
) .

Proof. The number of users in Ψ in the zero-cell of the Poisson-Voronoi
tessellation associated with Φ is distributed with a Poisson law of parameter
𝜈|𝑉0|, where 𝑉0 is the 0-cell of the tessellation. We have:

𝔼[ 1
1 + |Ψ (𝑉0)|

] =𝔼[
∞
∑
𝑁=0

1
1 + 𝑁

ℙ [|Ψ (𝑉0)| = 𝑁]]

=𝔼[
∞
∑
𝑁=0

1
1 + 𝑁

(𝜈|𝑉0|)𝑁

𝑁!
𝑒−𝜈|𝑉0|]

=𝔼[ 1
𝜈|𝑉0|

(1 − 𝑒−𝜈|𝑉0|)] .

We can use Lemma A.7, with 𝑔(𝑉 ) = 1
𝑉 (1 − 𝑒−𝜈𝑉) and 𝔼[|𝑉 |] = 1/𝜆.

𝔼[ 1
1 + |Ψ (𝑉0)|

] = 𝜆
𝜈
(1 − 𝔼 [𝑒− 𝜈

𝜆 (𝜆|𝑉 |)]) . (A.13)

Equation A.13 is the Laplace transform of the random variable 𝜆|𝑉 | at 𝑠 =
𝜈
𝜆 . Using (A.11) to evaluate the Laplace transform, we get the following
approximation:
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Figure A.2: Performance of the heuristic of Lemma A.8 (plain line) against
the simulation (circles) and the naive heuristic (dashed-dotted line) for dif-
ferent values of 𝜆/𝜈.

𝔼 [𝑒−𝜈|𝑉 |] = (1 + 2
7
𝜈
𝜆
)
−7/2

.

Substituting this result in (A.13) leads to the result.

It is to note that this result only relies on the ratio of intensities 𝜆
𝜈 , and not

on the value of the intensities themselves.We can use numerical simulation
to assert the performance of this heuristic, by simulating the inverse load
in a homogenous PPP of intensity 𝜆 and a homogenous PPP of intensity 𝜈.
Figure A.2 shows the comparison between the simulation results (in circles)
with the heuristic from Lemma A.8 (in dashed line) and the naive heuristic
from (A.12) (in dashed-dotted line)

The reason for this numerical setup will be explained in Part III of this
manuscript, as having a performant approximation for the average inverse
load in the typical cell of the PV tessellation will allow us to define heuristics
to maximize some network metrics.

A.4 Markov Jump Processes
In this section, we will present some basic results about Markov processes.
We will consider stochastic processes as measurable maps from (Ω,ℱ) to
(𝑆, 𝒮). The main category of stochastic processes we consider in this work are
Markov Jump Processes, which is an extension of Markov chain in continuous
time. Intuitively, a Markov jump process is a piece-wise constant stochastic
process with exponentially distributed interevent times.
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Firstly, we define a Markov kernel (or probability kernel) as any map
𝑃 ∶ 𝑆 × 𝒮 → [0, 1] such that:

1. The map 𝑥 ↦ 𝑃(𝑥,𝐴) is measurable for all 𝐴 ∈ 𝒮.

2. For every 𝑥 ∈ 𝑆, the map 𝐴 ↦ 𝑃(𝑥,𝐴) is a probability measure on
(𝑆, 𝒮).

If, instead of having mass 1 on 𝑆, we have 𝑃(𝑥, 𝑆) ≤ 1 for all 𝑥 ∈ 𝑆, we
say that 𝑃 is a sub-Markov kernel. We then say that the family of Markov
kernels (𝑃𝑡)𝑡≥0 is a transition function on 𝑆 if:

1. For all 𝑥 ∈ 𝑆,𝐴 ∈ 𝒮 and 𝑠, 𝑡 ≥ 0, (𝑃𝑡) satisfies the Chapman-Kolmogorov
equations:

∫
𝑦∈𝑆

𝑃𝑠(𝑦,𝐴)𝑃𝑡(𝑥,d𝑦) = 𝑃𝑠+𝑡(𝑥,𝐴).

2. 𝑃0(𝑥,𝐴) = 𝛿𝑥(𝐴) for all 𝑥 ∈ 𝐸 and 𝐴 ∈ 𝒮.

Now, let (𝑋𝑡)𝑡≥0 be a stochastic process with state space 𝑆 and ℱ𝑡 =
𝜎{𝑋𝑠, 𝑠 ≤ 𝑡} be its canonical filtration. We say that (𝑋𝑡)𝑡≥0 satisfies the
simple Markov property with respect to ℱ if for all 𝑡, ℎ ≥ 0, we have:

ℙ[𝑋𝑡+ℎ ∈ 𝐴|𝑋𝑠, 𝑠 ≤ 𝑡] = ℙ[𝑋𝑡+ℎ ∈ 𝐴|𝑋𝑡]ℙ − a.s. (A.14)

We then say that (𝑋𝑡) has transition function (𝑃𝑡) if and only if:

ℙ[𝑋𝑡+ℎ ∈ 𝐴|𝑋𝑡] = 𝑃ℎ(𝑋𝑡 ∈ 𝐴). (A.15)

Equations (A.14) and (A.15) can be seen as the extension of the well-
known Markov property for discrete-time processes to continuous time.

Now, we can move on to defining jump processes. Let Π be a Markov
Kernel on (𝑆, 𝒮), and let 𝜆 ∶ 𝑆 → [0,∞) be a non-negative, measurable
function. We define the jump kernel as:

𝐾(𝑥,d𝑦) = 𝜆(𝑥)Π(𝑥, d𝑦).

We can then move to defining the jump-hold construction of the Markov
jump process: let us take a law 𝜇, random variables (𝑍𝑛)𝑛≥0 with values in
𝑆 and (𝑡𝑘)𝑘≥1 positive random variables (possibly infinite) such that:

– (𝑍𝑛)𝑛≥0 is a Markov chain with transition kernel Π and initial law
𝑍0 ∼ 𝜇. (𝑍𝑛) is called the embedded jump chain or embedded Markov
chain.

– The variables (𝑡𝑘)𝑘≥1 conditional on (𝑍𝑛) are independent exponential
variables are exponential random variables with respective parameters
𝜆(𝑍𝑘−1). The (𝑡𝑘)𝑘≥1 are called the holding times of the process.
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This jump-hold construction displays the two main properties of a Markov
jump process: the existence of an embedded Markov chain, representing the
jumps in the process, and a collection of exponentially distributed family
of holding times depending at each step only on the previous jump. This
exponential distribution of holding times and the fact that jumps are follow-
ing a Markovian evolution justify the name Markov jump process, as each
jump and the time to wait until the next jump are entirely determined by
the present state of the system.

Another determination of Markov jump process comes from its transition
function (𝑃𝑡). Let us take (𝑥𝑛)𝑛≥0 be elements of 𝑆 and take 0 < 𝑡1 <
⋯ < 𝑡𝑘 < 𝑡 be real numbers. Taking a jump process with jump kernel
𝐾(𝑥,d𝑦) = 𝜆(𝑥)Π(𝑥, d𝑦), a path from 𝑥0 to 𝑥𝑘 in time 𝑡 in 𝑘 jumps at times
(𝑡𝑖)1≤𝑖≤𝑘 and locations 𝑥1,… , 𝑥𝑘−1 can be associated with weight:

𝜆(𝑥0)Π(𝑥0,d𝑥1)𝑒−𝜆(𝑥1)(𝑡2−𝑡1)Π(𝑥1,d𝑥2)… 𝑒−𝜆(𝑥𝑘−1)(𝑡𝑘−𝑡𝑘−1).
Let us define the following sequence, for 𝑛 ≥ 0, 𝑡 > 0, 𝑥0 ∈ 𝑆 and 𝐴 ∈ 𝒮:

𝑃𝑛
𝑡 (𝑥0, 𝐴) =𝑒−𝜆(𝑥0)𝑡𝛿𝑥0

(𝐴) +
𝑛
∑
𝑘=1

∫
0<𝑡1<⋯<𝑡𝑘≤𝑡

d𝑡1 …d𝑡𝑘

∫
𝑆𝑘

Π(𝑥0,d𝑥1)…Π(𝑥𝑘−1,d𝑥𝑘)1𝑥𝑘∈𝐴

× 𝜆(𝑥0)𝑒−𝜆(𝑥0)(𝑡1)𝜆(𝑥1)𝑒−𝜆(𝑥1)(𝑡2−𝑡1) …𝜆(𝑥𝑘−1)
𝑒−𝜆(𝑥𝑘−1)(𝑡𝑘−𝑡𝑘−1) + 𝑒−𝜆(𝑥0)𝑡1𝑥0∈𝐴.

We can prove that this family of functions is increasing, and that the
point-wise limit 𝑃 ⋆

𝑡 (𝑥,𝐴) = lim𝑛→∞ 𝑃𝑛
𝑡 (𝑥,𝐴) exists for all 𝑥 ∈ 𝑆 and 𝐴 ∈ 𝒮.

We can also prove that 𝑃 ⋆
𝑡 is a sub-Markov kernel.

The main result about the family 𝑃 ⋆
𝑡 is the following:

Theorem A.9. The 𝑃 ⋆
𝑡 is the solution to the Kolmogorov backward equa-

tion:
𝜕
𝜕𝑡

𝑃 ⋆
𝑡 (𝑥,𝐴) = ∫

𝑆
𝐾(𝑥,d𝑦)(𝑃 ⋆

𝑡 (𝑦,𝐴) − 𝑃 ⋆
𝑡 (𝑥,𝐴)). (A.16)

Every other sub-Markov kernel solution to (A.16) is greater than 𝑃 ⋆
𝑡 .

Finally, if (𝑃 ⋆
𝑡 ) is a family of Markov kernels, i.e. if 𝑃 ⋆

𝑡 (𝑥, 𝑆) = 1 for all
𝑥 ∈ 𝑆, then it is the unique solution to (A.16).

This Theorem gives us a second characterization of Markov jump pro-
cesses, through its transition functions. If the transition function of the
process is a Markov kernel, then the only solution of (A.16) fully character-
izes the jump process, and it uniquely characterizes the transition kernel of
the jump process.

Spatial birth-and-death process
Among the Markov jump processes, birth-and-death processes have been
used often to model physical phenomena, especially in biology.
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We say that a Markov jump process is a birth-and-death process if the
only possible transitions from a state with 𝑛 elements are towards a state
with either 𝑛−1 or 𝑛+1 elements. For instance, the continuous-time M/M/1
queue with an arrival parameter 𝜆 and a departure parameter 𝜈 is a simple
example of a birth-and-death process.

Though there exists a large variety of birth-and-death processes, the cat-
egory we will focus in this work is the spatial birth-and-death (SBD) process.
This class of birth-and-death process form a Markov jump process on point
process of a region (or the entirety) of ℝ𝑑, and where arrivals and departures
depend on the spatial configuration of the system.

These processes have been introduced for the first time by Preston in [75].
In a spatial birth-and-death process, the law of the jump kernel 𝐾 depends
on the spatial configuration of the system at a given time.

To define such a process, assume that at a given time 𝑡, points are located
at 𝑋1,… ,𝑋𝑛 in 𝑆. Then, we need two functions 𝑏 and 𝑑 such that:

– 𝑏 is a finite measure on (𝑆, 𝒮) such that the probability that a point
arrives in 𝐴 ∈ 𝒮 between times 𝑡 and 𝑡+𝑠 is equal to 𝑏(𝑋1,… ,𝑋𝑛; 𝐴)𝑠.

– 𝑑 ∶ 𝑆 → ℝ+ is a measurable function such that the probability that
a point 𝑥 leaves the system between times 𝑡 and 𝑡 + 𝑠 is equal to
𝑑({𝑋𝑖, 𝑋𝑖 ≠ 𝑋};𝑋)𝑠.

These two functions, called respectively the birth and the death functions
of the process, define a Markov jump process, with state space ℳ(𝑆), the
state of counting measures on 𝑆. We can consider that at each time, the
elements of the Markov jump process form a point process on 𝑆.

A.5 Stability theory
The final section we will tackle in this chapter comes from the study of the
stability of Markov chains. The results and definitions presented here will
be used throughout Part I of this manuscript.

The study of the behavior of Markov chains is an interesting question, as
it allows to obtain a lot of asymptotical results about the processes we study.
In this section, X denotes a Markov chain with state space ℕ (these results
can be extended to any Markov chain with countable state space).

The first notion we define is the irreducibility of a Markov chain:

Definition A.3. The Markov chain 𝑋 is 𝜙-irreducible if and only if there
exists a measure 𝜙 on ℬ such that whenever 𝜙(𝐴) > 0 for 𝐴 ∈ ℬ, we have
Π(𝑥,𝐴) > 0 for all 𝑥 ∈ 𝑆. A Markov jump process is irreducible if and only
if its embedded Markov chain is 𝜙-irreducible for some measure 𝜙.

In other words, a chain is 𝜙-irreducible whenever we can find an irre-
ducibility measure 𝜙 such that any event with positive measure 𝜙 can be
reached from any given state. A consequence is that a 𝜙-irreducible Markov
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chain has only one communication class, i.e., that any state can be reached
from any given given starting point with non-zero probability.

We can now move to defining notions about stability of the Markov chain.
The time of first return to state 𝑖 ∈ ℕ is the first moment at which the chain
hits state 𝑖 given it started in this state:

𝑇𝑖 = inf{𝑘 ≥ 1,𝑋𝑘 = 𝑖|𝑋0 = 𝑖}.

A state 𝑖 is said to be transient if ℙ[𝑇𝑖 = ∞] > 0 and recurrent otherwise.
Moreover, we say that a state is positive recurrent if the state 𝑖 is recurrent
and we have:

lim
𝑛→∞

1
𝑛

∑
0≤𝑘≤𝑛−1

1{𝑋𝑘=𝑖} = 𝜋𝑖 > 0. (A.17)

In other words, a state is recurrent if is return time is almost surely finite,
and transient otherwise, i.e., if we have a non-zero probability to never return
to it. Finally, a state is positive recurrent if we return to it a significant
portion of the time. An equivalent definition to A.17 for positive recurrence
is that 𝔼[𝑇𝑖|𝑋0 = 𝑖] < ∞, i.e., that the average return time to state 𝑖 is
always finite. If this mean return time to state 𝑖 is infinite but it is recurrent,
we say that it is null recurrent.

We say that the Markov chain is recurrent if all its states are recurrent,
and transient if all its states are transient. Finally, we say that a chain is
positive recurrent if all its states are positive recurrent.

Positive recurrence for Markov chain is an important property as it gives
an easy characterization for the stationary distribution of the Markov chain:
let us define 𝜋𝑖 as in (A.17). Then, (𝜋𝑖)𝑖∈ℕ forms a probability distribution
on ℕ, which is the stationary distribution for the chain X. It also allows
for the use of large deviation inequalities, and gives bounds for the speed of
convergence to the stationary distribution of the chain.

Definition A.4. We say that a Markov chain is stable if it is positive
recurrent. Otherwise, it is unstable.

From the definitions of positive recurrence, transience and null recurrence,
this definition of stability ensures that ℙ-almost surely, the value of 𝑋(𝑡) is
finite.

A first interesting result linking 𝜙-irreducibility and state classification of
a Markov chain comes from Theorem 8.2.5 from [70]:

Theorem A.10 (Meyn, Tweedie). Every 𝜙-irreducible Markov chain is ei-
ther transient or recurrent.

This result about the classification of Markov chain will help us in obtain-
ing a description of recurrence and transience of Markov chains. The main
result about stability for Markov chains comes from Foster (see [44]):
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Theorem A.11 (Foster, 1953). Let Y be a Markov process with countable
state space 𝐸. Let 𝐶 ⊂ 𝐸 be a compact subset of the state space, 𝛼, 𝛽 > 0 be
two constants and 𝑉 ∶ ℕ𝑁 → ℝ+ be a positive definite function. Then, if:

Δ𝑉 (𝑥) = 𝔼 [𝑉 (Y(𝑇1)) − 𝑉 (Y(0))|Y(0) = 𝑥] ≤ 𝛽1𝑥∈𝐶 − 𝛼1𝑥∉𝐶,

where 𝑡1 is the time of the first event in the system, then, Y is positive
recurrent.

In other words, if we find a positive definite function 𝑉, i.e., such that
𝑉 (𝑥) > 0 for all 𝑥, and 𝑉 (𝑥) = 0 if and only if 𝑥 = 0 and a compact subset
of the state space such that this subset acts as an attractor for the dynamics,
then we obtain the positive recurrence for the Markov chain. Sometimes, this
theorem is referred to as the Foster-Lyapunov theorem, as it is reminiscent of
arguments used in stability theory to find attractors for dynamical systems,
and the condition stated resembles the negative Lie derivative requirement
to obtain stable points or intervals for systems of ODEs.

This class of arguments, called drift arguments, as we need to bound the
average increase in the chain over one (or several) jumps. Unfortunately, the
main limitation for the use of this Theorem is the need to find an appropriate
Lyapunov for the Markov chain we study. Outside of certain go-to forms
for certain classes of dynamics, there are not particular method to find an
appropriate Lyapunov function for Markov jump processes. Thus, we will
rely on another method to obtain stability for Markov processes: fluid limits.

Fluid limits
Fluid limits have been introduced by Rybko and Stolyar in [78] to study the
stability for queues of networks using a different method than the classical
arguments stated above. The main idea behind fluid scaling is the following:
let 𝕏 be a Markov chain, and we define the fluid-scaled sequence of processes
X𝑛 as:

{
X𝑛(0) = 𝑛
X𝑛(𝑡) = 1

𝑛X(𝑛𝑡).

The goal is to study the limit as 𝑛 goes to infinity of the fluid-scaled
sequence X𝑛. If such a function exists, we denote its value at time 𝑡 as
̄𝑥(𝑡). If the function ̄𝑥 is continuous, we call it a fluid limit for the stochastic

process X. Usually, when studying this limit, we obtain function equations
defining the function ̄𝑥, which we call a fluid model for the dynamics.

We can generalize fluid scaling to any positive increasing sequence (𝑎𝑛)𝑛≥0
with lim𝑛→∞ 𝑎𝑛 = ∞. The sequence of fluid-scaled processes wth (𝑎𝑛)𝑛≥0 is
defined as:

{
X𝑛(0) = 𝑎𝑛
X𝑛(𝑡) = 1

𝑎𝑛
X(𝑎𝑛𝑡).
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It is to note that multiple fluid limits can exists for a given process, as it
may depend on the sequence used for scaling. For the same scaling sequence,
fluid limits may not be unique. For instance, [77] show an example of a
queuing system where fluid limits are random.

Definition A.5. We say that a fluid limit is stable if and only if there exists
𝛿 > 0 such that ̄𝑥(⋅ + 𝛿) = 0.

The main interest for fluid limits is its ties with positive recurrence in
Markov chains. The main result linking the two comes from Theorem 4.4
from [37]:

Theorem A.12 (Dai, 1995). If the fluid limit ̄𝑥 is stable, the Markov chain
X is positive recurrent.

An example to display how fluid limits work is the M/M/1 queue with an
arrival rate 𝜆 > 0 and a departure rate 𝜇 > 0 and an initial condition X(0).
The stochastic recurrence for the queue length process X(𝑡) is:

X(𝑡) = X(0) + 𝒜(𝜆𝑡) − 𝒟(𝜇𝑡),

where 𝒜 and 𝒟 are PPP with intensity 1 (see [31]). Let us take the fluid
scaled process with 𝑎𝑛 = 𝑛. We have:

X𝑛(𝑡) = 1
𝑛

X(0) + 1
𝑛
𝒜(𝜆𝑛𝑡) − 1

𝑛
𝒟(𝜇𝑛𝑡).

Using the strong law of large numbers, we get the equation ruling the
evolution of the fluid limit ̄𝑥, called the fluid model:

̄𝑥(𝑡) = 1 + (𝜆 − 𝜇)𝑡. (A.18)

We can immediately see that the condition for the fluid limit to reach 0
after a certain point is 𝜆 < 𝜇, which is the well-known stability condition for
the 𝑀/𝑀/1 queue.

Among the results giving stability for fluid models, an interesting one
that we will use later in this work comes from [84]:

Lemma A.13 (Shneer, Stolyar, 2020). Let X = (𝑋𝑖)0≤𝑖≤𝑁−1 be a Markov
chain with the following fluid model:

{
̄𝑥′
𝑖(𝑡) = 𝜆𝑖 − 𝜓𝑖( ̄𝑥(𝑡))
̄𝑥(0) = x0,

where x0 ∈ ℝ𝑁 (𝜓𝑖) are function such that:

1. 𝜓𝑖 is non-increasing in 𝑥𝑗, for all 𝑗 ≠ 𝑖,

2. for all 𝑖, 𝜓𝑖 is 0-homogenous, i.e., 𝜓𝑖(𝑠𝑡) = 𝜓𝑖(𝑡) for all 𝑠, 𝑡 > 0,

3. ∑𝑖 𝑥𝑖(𝑡) > 0 implies that 𝑥𝑖(𝜏) > 0 for 𝜏 sufficiently close to 𝑡.
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Let 𝒞 = {z ∈ ℝ𝑁
+ , 𝑧𝑖 ≤ 𝜓𝑖(p) for some p ∈ ℝ𝑁

+}. Assume there exists
𝜈 ∈ 𝒞 such that for all 𝑖, 𝜆𝑖 ≤ 𝜈𝑖. Then, for all 0 < 𝛿 < 𝐾 < ∞, there exists
𝑇 > 0 such that for any trajectory with ‖ ̄𝑥(0)‖ = 𝐾, we have:

‖ ̄𝑥(𝑇 )‖ < 𝛿.

To obtain stability for the chain X, we use this results with 𝐾 = 1 and
𝛿 = 1 − 𝜀, for some 𝜀 > 0. This result linking positive recurrence and fluid
limits will be used in Part I to reach a stability condition for the system.

Lemma A.13 allows to give bounds for the stability region, but in certain
cases, these bounds are not tight, and it allows only for a partial description
of the stability region. Unfortunately, the reciprocal for this result is not
true: Bramson, in [30], showed that there exists transient queuing networks
for which the fluid limit match the condition of Theorem A.12.

To obtain a reciprocal, we need to loosen the condition, and define the
notion of weak instability, from [38]. We say that a fluid model is weakly
unstable if for any fluid limit ̄𝑥 such that ̄𝑥(0) = 0, there exists 𝛿 > 0 such
that ̄𝑥(𝛿) > 0. The reciprocal for Theorem A.12 becomes:

Theorem A.14. If the fluid model is weakly unstable, then we have:

ℙ [ lim
𝑡→∞

X(𝑡) = +∞] = 1.

This result implies that the Markov chain X is transient, which gives a
description of regions where the chain X is positive recurrent or transient.
Coming back to the M/M/1 queue, with an empty initial condition, (A.18)
becomes:

̄𝑥(𝑡) = (𝜆 − 𝜇)𝑡.

Immediately, we can see that if 𝜆 > 𝜇, the fluid limit ̄𝑥(𝑡) is strictly
increasing and the fluid model is weakly unstable, which gives us instability
for the M/M/1 queue. This also shows a limitation of fluid limits, where
it is not uncommon to obtain a stability and an instability region that do
not cover all cases: here, we cannot answer the case 𝜆 = 𝜇 (which is null
recurrent).

This concludes this chapter about the mathematical foundations of the
work presented in this manuscript. The next chapter will cover the basics of
wireless communications we modelled in this work.





CHAPTER B

WIRELESS NETWORKS

This chapter focuses on wireless networks as well as some elements of infor-
mation theory that will be used in this thesis. Results shown here as well as
more details can be found in Volume I and II of [12], in [36] and in [8].

In our work, we will consider two types of network architectures: cellular
networks and device-to-device networks. These two network architectures
have a radically different conception of communications: in cellular network,
the network is vertical, i.e, there is one particular user, the base station, to
which all users of the network connect, either to transmit or receive data.
On the opposite, device-to-device networks are horizontal in the sense that
each transmitter has its own dedicated receiver, and all receiver-transmitter
pairs in the networks are treated equally in the network. This chapter will
cover the basics of the models we use for wireless communications.

B.1 Channel capacity and Shannon rate
When working with communication channels, a most important quantity to
consider is the rate at which information is transmitted in the channel. Let
us consider a simple communication system.

Figure B.1 shows a basic communication system, where 𝑊 is the message
to transmit, 𝑋 is the channel input, 𝑌 is the channel output and �̂� is the
transmitted message, which is an estimate of the original message 𝑊, and 𝑓
(resp. 𝑔) are the encoding (resp. decoding) functions. 𝑝(𝑦|𝑥) represents the
noisy channel as a conditional probability distribution, i.e. the probability

Figure B.1: Basic communication system

23
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that the output is 𝑌 given the input is message 𝑋. This condition probability
is a property of the communication channel. In this setup, the distribution
of input messages 𝑝𝑋 fully determines the joint distribution 𝑝(𝑋,𝑌 )(𝑥) =
𝑝(𝑦|𝑥)𝑝𝑋(𝑥)

We also define the mutual information of the two random variables 𝑋
and 𝑌 as:

𝐼(𝑋; 𝑌 ) = 𝐷KL(𝑝(𝑋,𝑌 )||𝑝𝑋 ⊗ 𝑝𝑌),

where 𝐷KL is the Kullback-Leibler divergence (see [59]). Then, the channel
capacity is defined as:

𝐶 = sup
𝑝𝑋

𝐼(𝑋; 𝑌 ).

In other words, the channel capacity is the maximum amount of informa-
tion that can be transmitted over the communication channel with arbitrary
precision. The Shannon-Hartley theorem (see [83]) gives a useful expression
for channel capacity in a particular case:

Theorem B.1. The channel capacity 𝐶 in a communication channel subject
to additive white Gaussian noise is equal to:

𝐶 = 𝐵 log2 (1 +
𝑆
𝑁
) , (B.1)

where 𝐵 is the bandwidth of the channel, 𝑆 is the average signal power received
over the bandwidth and 𝑁 is the average power of the noise and interference.

In the presence of interference, and if we consider interference as noise, the
quantity 𝑆

𝑁 has to be replaced by 𝑆
𝑁+𝐼 , where 𝑁 is the noise power and 𝐼 is the

interference power.This ratio is called the Signal-to-Noise and Interference
Ratio (SINR). In the rest of this work, the channel capacity from (B.1) will
be noted as ℛ and referred to as the Shannon rate. In a more general case,
when working with non-deterministic networks, the result from Theorem B.1
becomes:

ℛ = 𝐵𝔼 [log(1 + SINR)] . (B.2)

Cover and outage probabilities
When considering SINR and channel capacity, an interesting property to
study is coverage. Let us set 𝑇 > 0 a SINR threshold. We say that a point 𝑥
is in coverage if and only if SINR(𝑥) > 𝛽. If a point is not in coverage, then
we say it is in outage.

The study of SINR cells and spatial coverage is a subject of study in
itself (see Chapter 5 of [12]). In our work, we will consider the coverage
probability, defined as:
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Definition B.1. Let 𝛽 > 0. The coverage probability at point 𝑥 is defined
as:

𝑝𝑐(𝑥, 𝛽) = ℙ[SINR(𝑥) > 𝛽].

In this definition of the coverage probability, the SINR is a random vari-
able depending on the distribution of the base station process. Using the
definition of the channel capacity, we can rewrite (B.1) using the coverage
probability:

Lemma B.2. Given the coverage probability, the channel capacity can be
rewritten as:

ℛ(𝑥) = ∫
∞

0

𝑝𝑐(𝑥, 𝛽)
𝛽 + 1

d𝛽.

This result is obtained by using an integration by parts on (B.2). Lemma B.2
gives a useful link tying the coverage probability and the Shannon rate, which
we will exploit later in this manuscript.

B.2 Wireless networks and stochastic
geometry

Stochastic geometry has emerged to become a powerful tool to model wire-
less networks (see [6], [48]), as it provides a flexible framework to define
and compute network metrics and encapsulate the main features of wireless
networks.

In this work, we will assume that base stations (BSs) will be spatially
distributed according a homogeneous Poisson point process Φ with intensity
𝜆 > 0. Mobile users (MUs) are distributed according an independent homo-
geneous PPP Φ𝑢 with intensity 𝜆𝑢. Finally, we will assume that MUs move
in a straight line with velocities i.i.d. with distribution 𝑓. The stationary
and isotropy of the MU process is allows us to define the typical MU located
at the origin.

When it comes to access policies, we assume that the networks will always
be in open access, i.e., that all users can connect without restrictions and
that there are no communication abandonments. We also assume that a MU
will always connect to its closest antenna. This association policy defines
a Voronoi diagram based on the BS process. Because they are distributed
according a homogeneous PPP, it forms a PV tessellation and we can use
results presented in A.3.

When modeling wireless communications, we have to take into account
the attenuation of the signal among the link between the receiver and the
transmitter. To take into account signal decay over the distance and electro-
magnetic and atmospheric phenomena, we use an omnidirectional path-loss
(OPL) function to model attenuation over the link. For wireless network,
we will use an OPL3 function (see Section 23.1.2 from [12]) of the form
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ℓ(𝑥) = 𝐾𝑥−𝛼, with 𝐾 > 0 being a constant depending on the frequency used
for the communications and 𝛼 > 2 denotes the attenuation of the signal. It
is to note that this function has a singularity when 𝑥 becomes close to 0.

When studying systems at a smaller scale, like D2D networks, to avoid
singularities, we use the OPL2 function of the form ℓ(𝑥) = 𝐾

1+𝑥𝛼 for D2D
networks, which is defined when 𝑥 = 0. As for the path-loss exponent, for
numerical applications, we will use 𝛼 = 4, which gives a satisfactory approx-
imation of the signal attenuation in a environment with a lot of reflection
and obstacles, like a city.

A phenomenon we need to take into account is fading, which models the
effects of propagation of the signal in the environment. In our models, we
will only consider the case of Rayleigh fading, which gives a good approx-
imation of signal fading in urban areas (see [34]). Under Rayleigh fading,
the signal over the communication channel is multiplied by a fading coeffi-
cient ℎ𝑥 distributed exponentially with mean 1

𝜇 , where 𝜇 denotes the fading
power in the system. When not specified, we will take a fading 𝜇 = 1 in our
calculations.

The interference in the network is a shot-noise of the base station process.
Let us assume that the base stations in the system form a point process Φ.
We can define the interference seen from transmissions at location 𝑥 as:

𝐼(𝑥,Φ) = ∑
𝑦∈Φ\{𝑥}

𝐾ℎ𝑦ℓ(‖𝑥 − 𝑦‖).

Assuming that the transmitter associated with the receiver located at 𝑥
is at a distance 𝑟𝑥 and that the network has a noise power density 𝒩0, we
have:

SINR(𝑥) = 𝐾ℎ𝑥ℓ(𝑟𝑥)
𝒩0 + 𝐼(𝑥,Φ)

.

As mentioned earlier, this rather simple SINR model encapsulates most
of the key phenomena needed to model wireless and radio transmissions, and
it proves to be interesting as a lot of closed-form result can be obtained from
it, as shown in Part III of this manuscript.

B.3 Beam-based communications
In the latest generation of wireless communications, antennas use directional
beamforming to communicate with MUs (see [49]) as this technology has
emerged as a mean to increase the spectral efficiency of millimeter-wave net-
works ([11]). The main idea behind this technology is for antennas to use
narrow and directive beams tracking users in order to increase the band-
width in the network. The bean in which the user is located is called its
reference beam. To ensure that the user is always located in its reference
beam, the network sends a synchronization signal at a fixed frequency 𝜏,
called a synchronization signal burst (SSB).



B.3. BEAM-BASED COMMUNICATIONS 27

Figure B.2: Sector approximation of the antenna gains

Directional beam forming and sector approximation

In this setup, each antenna has a fixed number 𝑛 of beams, usually, we
have 𝑁 = 2𝑘 for some 𝑘 > 0. Under directional beamforming, the MU
is tracked by the BS so that communication operate through the reference
beam. We model beam-based communications using a sector approximation
of the antenna. The beam tracking the user thus has an antenna gain equal
to the gain of the main lobe of the antenna. To model the residual power
emitted around the antenna, we add side lobes to the antenna, which users
outside of the beamwidth of the main lobe see. Each beam has the same
angular width 𝜓 = 2𝜋

𝑛 . The main lobe is restricted to the beamwidth. The
antenna gain in the macro tier is assumed to be:

𝐺𝑀(𝜃) = {
𝐺𝑀

𝑚 if |𝜃| ≤ 𝜓𝑀/2
𝐺𝑀

𝑠 else,

where 𝐺𝑀
𝑚 is the main lobe gain and 𝐺𝑀

𝑠 is the side lobe gain. The probability
that an MU lies within the main lobe of an interfering BS is 𝑝𝑚 = 𝜓

2𝜋 = 1
𝑛 .

The BS antenna gain 𝑔𝑥, seen at the origin of the system, of an interfering
BS located at 𝑥 in the macro tier is given by:

𝑔𝑀,𝑥 = {
𝐺𝑀

𝑚 w.p. 𝑝𝑀,𝑚

𝐺𝑀
𝑠 w.p. 1 − 𝑝𝑀,𝑚.

(B.3)

This approximation is a first order approximation of the distribution of
antenna gains in space. More complex models exist to obtain more precise
calculations, but they fall out of the scope of our work.
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Overhead and beam reselections
When an MU crosses the boundary of the cell of its serving BS, it needs to
select a new antenna to connect and it performs a handover to the next BS.
Similarly, when an MU moves outside of its reference beam, it needs to select
the next beam of its serving BS, performing a beam reselection.

Using stochastic geometry tools, for an MU moving in a straight line at
velocity 𝑣, we can compute the time intensity 𝜈𝑐 of BS handovers in a wireless
network using Theorem 2 of [54]:

𝜈𝑐 =
4
√
𝜆

𝜋
𝑣 𝜈𝑏 =

𝑛
√
𝜆

𝜋
𝑣

Let 𝑇𝑐 and 𝑇𝑏 be the time of a BS handover and a beam reselection,
respectively. We define the total overhead per unit of time 𝑇𝑀

𝑜 as the frac-
tion of time in which MUs are not transmitting to the network due to cell
handovers and beam reselections:

𝑇𝑀
𝑜 = 𝜈𝑐𝑇𝑐 + 𝜈𝑒𝑇𝑏. (B.4)

An interesting thing to note in the definition of the overhead is the exis-
tence of a velocity 𝑣 such that 𝑇𝑜 = 1. In this case, the moving MU spends
all of its time reshuffling for new beams or new BS to connect to, and will
not be able to transmit to the network. This velocity, denoted as 𝑣max, is
equal to:

𝑣max =
𝜋√

𝜆(4𝑇𝑐 + 𝑛𝑇𝑏)
. (B.5)

With the previous definitions and results, we can define the effective Shan-
non rate (ESR) ℛeff as:

ℛeff(𝑣) = ℛ (1 − 𝑇𝑜(𝑣))
+ , (B.6)

where 𝑥+ ≜ max(0, 𝑥). This definition of the ESR comes from an ergodic
interpretation: when the MU is reselecting a new beam, or performing a han-
dover at the boundary between two cells in the network, it cannot transmit.
Figure B.3 displays the overhead of a moving MU in a single-tier network.

Mobility-induced beam misalignment
Due to intra-cell mobility, an MU has to reselect a beam when it moves
from the coverage of one beam to another. Such a beam reselection in a
5G network occurs during a synchronization signal block (SSB) burst with
period 𝜏. If the MU moves out of the main lobe of its original connection
beam (also called the reference beam) between two consecutive SSB bursts
without selecting a new beam, a beam misalignment occurs, namely, the MU
receives from the serving BS via a side lobe. We assume, as in [54], that the
probability 𝑝𝑀bm that there is a beam misalignment event for an MU moving
at velocity 𝑣 is equal to:



B.4. BANDWIDTH PARTITIONING 29

Figure B.3: Illustration of the total overhead for a moving MU. Each red
(resp. blue) line represents the amount of time needed for a beam reselection
(resp. a cell handover).

𝑝𝑀bm(𝑣) = 1 − exp (−𝑣𝜈𝑀,𝑏𝜏) , (B.7)
where 𝜈𝑀,𝑏 is the time intensity of beam reselections. Hence, taking this
beam misalignment into account, the antenna gain 𝑔𝑀,0 at the serving BS of
the typical MU is given by:

𝑔𝑀,0 = {
𝐺𝑀

𝑚 w.p. 1 − 𝑝𝑀bm(𝑣)
𝐺𝑀

𝑠 w.p. 𝑝𝑀bm(𝑣).
(B.8)

We also have to take beam misalignment into account when computing
the overhead of users in the system: if the time intensity of beam reselections
is higher than the frequency of SSBs, beam reselections happen during each
SSB. If the time intensity of beam reselections is lower, the user may stay
in the same reference beam between two consecutive SSB bursts, and thus,
there are no beam reselection. Thus the effective time intensity 𝜈𝑒 of beam
reselections in macro tier is:

𝜈𝑒 = min(1
𝜏
, 𝜈𝑏) .

B.4 Bandwidth partitioning
The densification of wireless communication networks and the arrival of new
generation communication protocols set new standards in terms of network
performance, among which reliability and latency take a prominent place. To
match these standards, the latest generation of telecommunication networks
have introduced service differentiation as a mean to provide more flexibility
and broader capacities for wireless networks. An important improvement
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introduced in 5G networks is the adaptive use of multiple frequency bands
available for communications ([1], [2], [88]). The idea is to increase the
network capacity through a more flexible frequency band allocation, adapted
to the needs of users. In such a setup, the number of bands allocated to
a transmission depends on its nature: users transmitting less information
(phone calls or text messages) will be allocated less frequency bands than
users transmitting large amounts of data (video streaming for instance).

Service differentiation has been extensively studied in queueing networks.
For instance, BCMP type queueing networks ([24]) extend the Jackson frame-
work to the multi-class setting. When it comes to bandwidth sharing, an
important problem comes from the allocation of resources to users in the
network. A most common allocation is to attribute radio resources propor-
tionnally to the needs of users as to maintain fairness in the system (see [56],
[67]).

In 4G LTE and 5G wireless networks, this bandwidth partitioning is im-
plemented in a time divisive way: when transmitting, messages are encoded
during radio frames, that are each divided in a certain number fo subframes.
Then, each subframe in divided in a resource grid, where frequencies are dis-
cretized, of resource blocks. These resource blocks consist in a certain number
𝑁𝑅𝐵

𝑠𝑐 (12 for 5G NR networks for instance) of physical resource blocks (PRBs)
that can support in parallel 𝑁𝑠𝑙𝑜𝑡

𝑠𝑦𝑚𝑏 ⋅ 2𝜇 transmissions. When a MU transmits
on the network, it receives a number of resource blocs, usually contiguous to
ease the allocation, of PRBs, on which it will transmit. Figure B.4 gives an
illustration of the

Figure B.4: Physical layer of 5G NR networks (source: [87])

When considering bandwidth partitioning in our study, we will assume
that the frequency space is divided in 𝐾 channels, and that each MU receives
a set of bands according a probability distribution that represents user needs.
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In a first time, we will assume that all PRB configuration are possible (al-
though this is not the case in real-world applications), and we may relax this
assumption later in the manuscript.





Part I

Multiclass spatial queuing
networks
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CHAPTER 1

MATHEMATICAL
FRAMEWORK: MULTICLASS

SBD PROCESSES

1.1 Network setup: bandwidth partitioning
Let us consider an infrastructureless wireless network, where arrivals of trans-
mitters follow a Poisson rain of intensity 𝜆 > 0 on a compact subset 𝒟 of ℝ2.
We assume that the region 𝒟 is a square torus. This choice is motivated by
the difficulty to obtain results on queuing systems over the whole Euclidean
plane (see [81]).

To each arriving transmitter we associate a receiver located at a fixed
distance 𝑟 ≥ 0 in a random direction, with 𝑟 small compared to the side
of the square. This framework defines a Poisson dipole network, as in-
troduced in [12]. We describe the configuration of users present in the
network at a given time as receiver-transmitter pairs, denoted by Φ𝑡 =
{(𝑥1, 𝑦1),… (𝑥𝑁𝑡

, 𝑦𝑁𝑡
)}, where 𝑁𝑡 is the number of pairs present in the net-

work at time 𝑡, (𝑥𝑖)1≤𝑖≤𝑁𝑡
denotes the location of receivers and (𝑦𝑖)1≤𝑖≤𝑁𝑡

that of transmitters. Let Φ𝑇
𝑡 be the point process describing the location of

transmitters in the network and Φ𝑅
𝑡 be that of the locations of receivers at a

given time 𝑡. We will refer to receiver-transmitter pairs or dipoles as users.
The process Φ𝑡 is thus collection of random segments of fixed length for which
one of the ends is a part of a Poisson point process. In this part, we will
start by studying the case 𝑟 = 0, in which the receivers and the transmitters
processes are the same as the user process. In this case, we will denote as Φ𝑡
this unique process. Later in Part I, we will generalize the result to the case
𝑟 > 0.

𝐾 orthogonal transmission channels of equal width are available to users
arriving in the network. Channels 𝑖 ≠ 𝑗 do not interfere with one another. Let
𝒫(𝐾) denote the set of non-empty subsets of [1, 2,… ,𝐾] (in the dynamics
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involved in this thesis, a transmitter using ∅ as a communication channel
cannot transmit any signal to its receiver and will not interfere with other
users in the network). An arriving user selects a set of channels 𝐶 ∈ 𝒫(𝐾) on
which to transmit according a given distribution {𝑝𝐶}𝐶∈𝒫(𝐾). This selection
is made independently of the state of the network. In the rest of this chapter,
we will call 𝐶 the class of a user.

A receiver-transmitter pair (𝑥, 𝑦) ∈ 𝒟 of class 𝐶 arrives with a file of
random size 𝐿𝑥,𝑦 attached. File sizes for users in the same class 𝐶 are i.i.d.
random variables distributed with an exponential law of mean 𝐿𝐶. Once the
file has been transmitted to the receiver, the pair or dipole (𝑥, 𝑦) leaves the
network. Finally, let 𝒩0 denote the thermal noise density in the network.

Wireless interactions and service times
Let ℓ be a non-negative, bounded and non-increasing path-loss function with
⟨ℓ𝒟⟩ < ∞. Without loss of generality, we assume that ℓ(0) = 1.

The interference experienced by a receiver located at 𝑥 ∈ 𝒟 of class 𝐶𝑥,
whose transmitter is located at 𝑦 ∈ Φ𝑇

𝑡 , is equal to:

𝐼(𝑥,Φ𝑡) = ∑
𝑧∈Φ𝑇

𝑡 \{𝑦}

|𝐶𝑥 ∩ 𝐶𝑧|ℓ(‖𝑥 − 𝑧‖), (1.1)

where 𝐶𝑧 is the class of the transmitter located at 𝑧. Note that a receiver
does not interfere with its own transmitter. We assume a low-SINR approx-
imation, which allows us to linearize the the Shannon-Hartley formula (see
Theorem B.1 and Equation (B.2)). Here, |𝐶𝑥|ℓ(𝑟) is the signal power received
by the receiver located at 𝑥 ∈ 𝒟 from its transmitter, and 𝒩0 + 𝐼(𝑥,Φ𝑡) is
the noise and interference power seen by this receiver. Under these con-
siderations, the rate-of-transmission function for the receiver located at 𝑥
is:

𝑅(𝑥,Φ𝑡) =
|𝐶𝑥|ℓ(𝑟)

𝒩0 + 𝐼(𝑥,Φ𝑡)
, (1.2)

The instantaneous departure rate of a receiver-transmitter pair of class
𝐶 with receiver located at 𝑥 ∈ 𝒟, at time 𝑡, is equal to:

𝑑(𝑥, 𝑡) = 1
𝐿𝐶

𝑅(𝑥,Φ𝑡). (1.3)

Using this setup, we can formulate this problem as follows:

Definition 1.1. The stochastic process Φ𝑡 is a Markov jump process on the
set of counting measures on 𝒟, ℳ(𝒟), which we call a BWP model. At all
times 𝑡 > 0, Φ𝑡 is a point process on 𝒟.

We define Δ ∶ (Φ0, 𝜆,L, 𝑅) ↦ Φ𝑡 as the realization of the dynamics, where
Φ0 is the initial condition of the network, 𝜆 is the arrival rate, L is the vector
of average file sizes and 𝑅 is the rate-of-transmission function.
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To understand why Φ𝑡 is a Markov jump process, we can reformulate the
dynamics presented earlier using a stochastic recurrence relation for each of
the subprocesses Φ𝐶,𝑡. Let (𝑇𝐶,𝑛)𝑛≤0 be the times at which events (either an
arrival or a departure) happen in Φ𝐶,𝑡. The relation between Φ𝐶,𝑇𝐶,𝑛

and
Φ𝐶,𝑇𝐶,𝑛+1

is given by:

{
Φ𝐶,𝑇𝐶,𝑛+1

= Φ𝐶,𝑇𝐶,𝑛
+ℬ𝐶,𝑛 −𝒟𝐶,𝑛,

𝑇𝐶,𝑛+1 = 𝑇𝐶,𝑛 + 𝜏𝐶,𝑛,
(1.4)

where ℬ𝐶,𝑛 and 𝒟𝐶,𝑛 are ℳ(𝒟)-valued random variables that are defined as
follows: let 𝑏𝐶 be a real-valued random variable distributed according to an
exponential distribution with rate 𝜆𝑝𝐶 and d𝐶,𝑛 be a ℝΦ𝐶,𝑛(𝒟)-valued ran-
dom variable where each coordinate is distributed according an independent
exponential distribution with rate 1

𝐿𝐶
𝑅(𝑥𝑖, Φ𝑇𝐶,𝑛

), for each 𝑥𝑖 ∈ Φ𝐶,𝑇𝐶,𝑛
.

Then, the values of ℬ𝐶,𝑛 and 𝒟𝐶,𝑛 are given as follows :

- ℬ𝐶,𝑛 is equal to the null measure if 𝑏𝐶 ≥ mind𝐶,𝑛, or equal to 𝛿𝑥,
where 𝑥 is sampled uniformly in 𝒟 otherwise;

- 𝒟𝐶,𝑛 is equal to the null measure if 𝑏𝐶 ≤ mind𝐶,𝑛 or if Φ𝐶,𝑛(𝒟) in
the null measure, or equal to 𝛿𝑥, for some 𝑥 ∈ Φ𝐶,𝑛.

Finally, the time between events is equal to 𝜏𝐶,𝑛 = min{𝑏𝐶,mind𝐶,𝑛}. With
this stochastic recurrence, we can see that Φ𝑡 is a jump process, and the
Markov property comes from the exponential distribution of the file sizes for
each user and of the time between arrivals.

We define ⟨⋅𝒟⟩ as follows:

⟨𝑓𝒟⟩ = {
∫
𝒟
𝑓(‖𝑥‖)d𝑥, ∀𝑓 ∶ ℝ → ℝ

∫
𝒟
𝑓(𝑥, 0)d𝑥, ∀𝑓 ∶ ℝ2 ×ℝ2 → ℝ,

(1.5)

whenever the integrals are defined. We use here the same notation for two
different notions; this choice is motivated by results presented in this part.
Table 1.1 summarizes the notation we use in this part.

1.2 Monotonicity and irreducibility
A first result about BWP models we can prove is the following.

Theorem 1.1. Φ𝑡 is a 𝜙-irreducible Markov jump process on ℳ(𝒟).

It is to note that the similarity in notation between 𝜙-irreducibility and
the point process Φ𝑡 is coincidental, the two notions are independent.

Proof. Let 𝜙 be the set function defined as:



38 CHAPTER 1. MATHEMATICAL FRAMEWORK

Notation Description
Φ𝑅

𝑡 , Φ𝑇
𝑡 Receiver (resp. transmitter) locations at time 𝑡

Φ𝐶,𝑡 Point process of users of class 𝐶 at time 𝑡
𝒫(𝐾) Set of subsets of [1,…𝐾] with the exception of ∅
ℓ Path-loss function
𝑟 Receiver-transmitter distance
𝜆 Intensity of the arrival process
(𝑝𝐶)𝐶∈𝒫(𝐾) Arrival distribution of users of each type
𝐿𝐶 Average file size for users of class 𝐶
𝑅 Rate-of-transmission function
𝒩0 Thermal noise density in the network
⟨ℓ𝒟⟩ ∫

x∈𝒟
ℓ(‖x‖)dx

Φ0,𝐶 Stationary point process of users of type 𝐶
𝜇𝐶 Spatial intensity of point process Φ0,𝐶
𝔼0
Φ0,𝐶

Palm expectation with respect to Φ0,𝐶

Table 1.1: Table of notations

– 𝜙({0ℳ(𝑆)}) = 1, where 0ℳ(𝑆) is the measure associated with the null
counting measure,

– For 𝑘 ∈ ℕ and 𝐵1, 𝐵2,… ,𝐵𝑁 disjoint Borel subsets of 𝑆, we define the
event 𝐴𝑛 = {Φ ∈ ℳ(𝑆) ∶ Φ(𝑆) = 𝑛,Φ = (𝑦1, 𝑦2,… , 𝑦𝑛) ∈ 𝐵1 × ⋯ ×
𝐵𝑛, Φ(𝐵1) > 0,…Φ(𝐵𝑛) > 0}. We then set:

𝜙(𝐴𝑛) =
1
2𝑛

𝐻(𝐵1)𝐻(𝐵2)…𝐻(𝐵𝑛), (1.6)

where 𝐻 is a Haar measure on the square torus 𝒟.

Here, 𝜙 is a set function on the semiring of sets (𝐴𝑛)𝑛∈ℕ,(𝐵𝑖)∈ℱ𝑛 . Using
Theorem 11.3 from [26], we can extend 𝜙 in a unique way to a measure on
the 𝜎-field generated by the set of events {𝐴𝑛 ∶ 𝑛 ∈ ℕ, (𝐵𝑖) ∈ ℱ𝑛}, which is
equal to ℱ. For ease of notation, we will denote this measure by 𝜙 as well.
This way, 𝜙 is a measure defined on the set of counting measures ℳ(𝑆).

To obtain 𝜙-irreducibility, we will proceed in two steps: in the first step,
we prove that, from each state 𝑋 with 𝑁 points, we can reach the empty
state with positive probability, and in the second step, we prove that, from
the empty state, we can reach any state 𝐴 with 𝜙(𝐴) > 0 with positive
probability in a finite number of steps, which allows us to conclude.

Let us assume that at a given time 𝑡, the SBD process is in state x =
{𝑥1,… , 𝑥𝑛} ∈ 𝑆𝑁 with 𝑁 being the number of points in the SBD. The
probability that we have the departure of the 𝑁 points in the next 𝑁 steps
is equal to:

ℙ[𝑁 departures in a row |Φ𝑡 ] =
𝑁
∏
𝑖=1

𝑑𝐶𝑖

𝑑𝐶𝑖
+ 𝑏𝐶𝑖

,
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where 𝑏𝐶𝑖
= 𝜆𝑝𝐶𝑖

|𝒟| and 𝑑𝐶𝑖
= 1

𝐿𝐶𝑖
𝑅(𝑥𝑖, Φ𝑡𝑖), with Φ𝑡𝑖 being the network

configuration after the departure of the user (𝑥𝑖, 𝑦𝑖). This probability is non-
null, i.e., we can reach the null measure with nonzero probability from any
other state.

Similarly, assume we start from the empty state, let 𝑛 be an integer,
𝐵1,… ,𝐵𝑛 be 𝑛 disjoint Borel subsets of 𝑆, and let us define 𝐴𝑛 as previously.
By definition, 𝜙(𝐴𝑛) > 0. The probability to reach 𝐴𝑛 from the empty state
∅ can be expressed as:

ℙ𝑛 (∅,𝐴𝑛) = ∫
𝑦1∈𝐵1

…∫
𝑦𝑛∈𝐵𝑛

∫
∞

𝑡1=0
∫

∞

𝑡2=𝑡1

…∫
∞

𝑡𝑛=𝑡𝑛−1

𝐻(d𝑦1)…𝐻(d𝑦𝑛)

𝑒−𝜆𝑝𝐶1𝑡1𝑒−𝜆𝑝𝐶2(𝑡2−𝑡1) …𝑒−𝜆𝑝𝐶𝑛(𝑡𝑛−𝑡𝑛−1)𝜆𝑝𝐶1
d𝑡1 …𝜆𝑝𝐶𝑛

d𝑡𝑛 ∏
𝑖

𝑏𝐶𝑖

𝑏𝐶𝑖
+ 𝑑𝐶𝑖

,

where 𝐶𝑖 denotes the class of the 𝑖-th user. This probability is positive,
which means that we can reach 𝐴𝑛 from the empty measure with positive
probability in 𝑛 steps, which gives us 𝜙-irreducibility for the process Φ𝑡.

The second property we need for our study is stochastic monotonicity,
which we use to obtain bounds for the dynamics of the network through the
definition of queuing systems that dominate or are dominated by the original
dynamics. We need the following theorem:

Theorem 1.2. Let Φ = Δ(Φ0, 𝜆, 𝑑) and Φ′ = Δ(Φ′
0, 𝜆′, 𝑑′). The following

conditions are sufficient for Φ′ to dominate Φ (with all the other parameters
taken equal) :

𝑖) 𝜆 ≤ 𝜆′;

𝑖𝑖) L ≤ L′;

𝑖𝑖𝑖) for all point processes Ψ ≤𝑖 Ψ′ on 𝒟 and 𝑥 ∈ 𝒟, 𝑅′(𝑥,Ψ′) ≤ 𝑅(𝑥,Ψ);

𝑖𝑣) Φ0 ⊆ Φ′
0.

It is to note that condition 𝑖𝑖𝑖) is met when we have two path-loss func-
tions ℓ and ℓ′ such that for all 𝑟 ≥ 0, ℓ(𝑟) ≤ ℓ′(𝑟).

Proof. To obtain domination, we use a coupling argument between two in-
stances of the dynamics to obtain the domination relation, similar as the
ones used in Appendix B of [81].

Let us take 0 < 𝜆 < 𝜆′ with the same fixed initial condition Φ0, a
vector L and a rate-of-transmission function 𝑅, and let Φ𝑡 = Δ(Φ0, 𝜆, 𝑑) and
Φ′

𝑡 = Δ(Φ0, 𝜆′, 𝑑). The quantities related to Φ′ will be denoted with a prime.
We want to prove that for all times 0 ≤ 𝑡, Φ𝑡 ⊆ Φ′

𝑡.
We couple both the arrival and the departure processes in the network

as follows: the arrival process of Φ is a Poisson rain 𝒜 with parameter 𝜆,
and the arrival process for Φ′ is 𝒜 ∪𝒜′, with 𝒜′ being a Poisson rain with
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intensity 𝜆′ − 𝜆 > 0 independent from 𝒜, so that common arrivals in Φ𝑡
and Φ′

𝑡 happen at the same locations and times. Using this coupling, we will
show that, at all times 𝑡, Φ𝑡 ⊆ Φ′

𝑡.
At time 𝑡 = 0, we have trivially Φ0 ⊆ Φ0. At time 𝑡 > 0, we know

that both Φ𝑡(𝒟) and Φ′
𝑡(𝒟) are almost surely finite. Let us write Φ𝑡 =

∑𝐶∈𝒫(𝐾) ∑
Φ𝐶,𝑡(𝒟)
𝑖=1 𝛿𝑥𝐶,𝑖

and Φ′
𝑡 = ∑𝐶 ∑Φ′

𝐶,𝑡(𝒟)
𝑖=1 𝛿𝑥′

𝐶,𝑖
.

Assume that up to time 𝑡, Φ𝑡 ⊆ Φ′
𝑡 and assume that tne next event

happens at a time ̂𝑡 ≥ 𝑡. It can be one of the following nature:

- The arrival of a user of class 𝐶 in Φ𝑡;

- The arrival of a user of class 𝐶 in Φ′
𝑡;

- The departure of a user of class 𝐶 in Φ𝑡;

- The departure of a user of class 𝐶 in Φ′
𝑡.

Because arrivals are coupled, an arrival in either Φ𝑡 or Φ′
𝑡 maintains the

inclusion. The same holds if an element of Φ𝑡 leaves. The last case to look
at is the departure of an element 𝑥 of Φ′

𝑡.
Let ̂𝑡− be such that ̂𝑡− = ̂𝑡 but the departure of 𝑥 has not happened yet.

From our assumptions, we know that Φ𝐷, ̂𝑡− ⊆ Φ′
𝐷, ̂𝑡− for all classes 𝐷 ∈ 𝒫(𝐾).

Assume the next departure is for a user at 𝑥 of class 𝐶 ∈ 𝒫(𝐾):

𝑅(𝑥,Φ ̂𝑡−) =
|𝐶|ℓ(𝑟)

𝒩0 +∑𝑈∈𝒫(𝐾) ∑𝑦∈Φ𝑈, ̂𝑡−
|𝐶 ∩ 𝑈|ℓ(‖𝑥 − 𝑦‖)

≥ |𝐶|ℓ(𝑟)

𝒩0 +∑𝑈∈𝒫(𝐾)|𝐶 ∩ 𝑈|(∑𝑦∈Φ𝑈, ̂𝑡−
ℓ(‖𝑥 − 𝑦‖) +∑𝑦∈Φ′

𝑈, ̂𝑡−\Φ𝑈, ̂𝑡−
ℓ(‖𝑥 − 𝑦‖))

= 𝑅(𝑥,Φ′
̂𝑡−).

In other words, the departure rates in Φ ̂𝑡− are larger than in Φ′
̂𝑡− .

We take the Poisson imbedding of the departure processes (see [31]): let
𝒟𝐶,𝑡 and 𝒟′

𝐶,𝑡 be the point processes of users of class 𝐶 that left each sys-
tem up to time 𝑡. These processes have respective stochastic intensities
1
𝐿𝐶

𝑅(𝑥,Φ𝑡) and 1
𝐿𝐶

𝑅(𝑥,Φ′
𝑡). Using Lemma 3 from [31], we can imbed them

on the same Poisson point process 𝒩 of intensity 1 on ℝ2.
Using this Poisson imbedding, any point 𝑥 leaving Φ′

𝐶, ̂𝑡− has already left
Φ𝐶, ̂𝑡− , which proves that the inclusion is maintained if the next event to come
is a departure in Φ′

𝑡 and this concludes the proof of Condition 𝑖).
To obtain the other conditions, we use the same argument and we compare

the rate-of-transmission functions in each case to get the required inclusion.

Theorem 1.2 is central to our study, because it will allow us to bound
from above and below the dynamics of the network we are studying in order
to obtain bounds for the limits of the stability region of the network.
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1.3 Critical arrival rate
In the definition of the dynamics we presented here, the value of the arrival
parameter 𝜆 plays an important role on the behavior of the dynamics of the
system. Intuitively, if 𝜆 becomes too large, then no receiver-transmitter pair
can transmit and the population of the system explodes, preventing arriving
users from transmitting. Conversely, if 𝜆 becomes very low, transmissions
can terminate and we can conjecture that the population of the system can
stay bounded. The study of this particular kind of network is also dependent
on inter-class interactions, as not all users interfere with each other.

The first result linking the value of 𝜆 and the stability of the system is
the following:

Theorem 1.3. Under the foregoing assumptions, there exist two values 0 ≤
𝜆−
𝑐 ≤ 𝜆+

𝑐 such that:

– ∀𝜆 < 𝜆−
𝑐 , Φ𝑡 is stable;

– ∀𝜆 > 𝜆+
𝑐 , Φ𝑡 is unstable.

Proof. This theorem is a consequence of Theorem 1.2: if the system is stable
for a given 𝜆0, then it is stable for each 𝜆 < 𝜆0 and if the system is unstable
for a given 𝜆1, then it is unstable for all 𝜆 > 𝜆1. The existence of cutoff
(or critical) arrival rates is well-established in monotonic queueing networks,
and was adapted to spatial birth-and-death processes (see Theorems 1 and
2 of [80] for instance). Let 𝜆−

𝑐 and 𝜆+
𝑐 be defined as:

𝜆−
𝑐 = sup

𝜆>0
{𝜆 such that Φ𝑡 is stable},

𝜆+
𝑐 = inf

𝜆>0
{𝜆 such that Φ𝑡 is unstable}.

Φ𝑡 is an irreducible Markov chain on ℳ(𝒟). We know that the Markov
chain is either recurrent or transient (see Theorem A.10). Using stochastic
monotonicity in the network from Theorem 1.2, we know that the chain Φ𝑡
is positive recurrent for all 𝜆 ≤ 𝜆−

𝑐 and transient for all 𝜆 ≥ 𝜆+
𝑐 , which gives

𝜆−
𝑐 ≤ 𝜆+

𝑐 . Since the system is trivially stable for 𝜆 = 0 (in which case Φ𝑡
is constantly equal to the null measure), 𝜆−

𝑐 and 𝜆+
𝑐 are well defined and

𝜆−
𝑐 ≥ 0, which concludes the proof.

Once the two values of 𝜆+
𝑐 and 𝜆−

𝑐 are defined, a natural question arising
is their respective values. In a favorable case, these two values are equal,
which would give a clear description of the stability region of the network.
We can prove this intermediate result, giving a simple lower bound for 𝜆−

𝑐
and an upper bound for 𝜆+

𝑐 :

Lemma 1.4. 𝜆−
𝑐 and 𝜆+

𝑐 satisfy:

ℓ(𝑟)
𝐾�̄�⟨ℓ𝒟⟩

≤ 𝜆−
𝑐 ≤ 𝜆+

𝑐 ≤ 𝐾ℓ(𝑟)
𝐿⟨ℓ𝒟⟩

, (1.7)

where �̄� = max𝐶 𝐿𝐶, 𝐿 = min𝐶 𝐿𝐶 and ⟨ℓ𝒟⟩ = ∫
𝑥∈𝒟

ℓ(‖𝑥‖)d𝑥.



42 CHAPTER 1. MATHEMATICAL FRAMEWORK

Proof. The rate-of-transmission is bounded from below by that where all
interfering users transmit on all channels (i.e., are of class [1,… ,𝐾]) and the
transmitting user uses only one channel, i.e., for all 𝑥, 𝑡:

𝑅(𝑥,Φ𝑡) ≥ 𝑅𝑢(𝑥, Φ𝑡) ≜
ℓ(𝑟)

𝒩0 +∑𝑦∈Φ𝑡\{𝑥}
𝐾ℓ(‖𝑥 − 𝑦‖)

.

Moreover, by definition, L < �̄� component-wise.
Conversely, the rate-of-transmission is bounded from above by that where

interfering users use a single channel and the transmitting users use all 𝐾
channels, i.e., for all 𝑥, 𝑡:

𝑅(𝑥,Φ𝑡) ≤ 𝑅𝑑(𝑥, Φ𝑡) ≜
𝐾ℓ(𝑟)

𝒩0 +∑𝑦∈Φ𝑡\{𝑥}
ℓ(‖𝑥 − 𝑦‖)

,

and 𝐿 ≤ L component-wise. For any given initial condition Φ0 and arrival
rate 𝜆, let Φ𝑢,𝑡 = Δ(Φ0, 𝜆, 𝐿,𝑅𝑢) and Φ𝑑,𝑡 = Δ(Φ0, 𝜆, �̄�, 𝑅𝑑). Φ𝑢 and Φ𝑑
two monotype dipolar Poisson networks, as defined in [80]. Using the main
result of [80], we know that the cut-off arrival rate is equal to ℓ(𝑟)

𝐾�̄�⟨ℓ𝒟⟩ for Φ𝑑,𝑡

and to 𝐾ℓ(𝑟)
𝐿⟨ℓ𝒟⟩ for Φ𝑢,𝑡.

We apply Theorem 1.2, which states that Φ𝑢,𝑡 dominates Φ𝑡 and Φ𝑑,𝑡 is
dominated by Φ𝑡 to obtain the intended inequality. Since ℓ(𝑟)

𝐾�̄�⟨ℓ𝒟⟩ > 0 and
𝐾ℓ(𝑟)
𝐿⟨ℓ𝒟⟩ < ∞, we can conclude that 0 < 𝜆−

𝑐 and 𝜆+
𝑐 < ∞.

When taking 𝐾 = 1 in (1.7), we obtain:

𝜆−
𝑐 = 𝜆+

𝑐 = ℓ(𝑟)
⟨ℓ𝒟⟩𝐿

,

which is the value of the critical arrival rate obtained in [80]. In the light of
this remark, we can hope to obtain that 𝜆−

𝑐 = 𝜆+
𝑐 in the multiclass system

as well, and in this case, which we will also call critical arrival rate.



CHAPTER 2

STABILITY OF SYMMETRIC
SYSTEMS

In this chapter, we will study the BWP model in a particular case, which
introduces several simplifications in the combinatorics of the system: sym-
metric systems.

Definition 2.1. A BWP model is symmetric, if all users transmitting on
the same number of bands have the same stochastic properties, i.e., whenever
|𝐶| = |𝐷|, we have 𝑝𝐶 = 𝑝𝐷 and 𝐿𝐶 = 𝐿𝐷.

An instance of a symmetric model is that of a system where user needs
are split in 𝐾 categories, depending on their needs (e.g. phone calls, text
messages, web browsing or video streaming). Each arriving user has a prob-
ability 𝑝𝑗 of having a need of category 𝑗. Upon arrival, users with needs of
category 𝑗 are given a set of 𝑗 bands to transmit, sampled uniformly at ran-
dom among the (𝐾𝑗 ) possibilities. Thus, the probability that a user transmits
on a given set 𝐶 of 𝑗 bands is equal to 𝑝𝐶 = 𝑝𝑗

(𝐾𝑗 )
. The quantity of information

this arriving user has to transmit to the network is thus sampled from an ex-
ponential distributions with parameter 𝐿𝑗 with 1 ≤ 𝑗 ≤ 𝐾. Setting 𝐿𝐶 = 𝐿𝑗
and 𝑝𝐶 = 𝑝𝑗

(𝐾𝑗 )
gives an example of a symmetric system. The symmetry in

the system will be important to simplify the combinatorics we will encounter
in Section 2.1, when proving Theorem 2.2.

In this chapter, we study the stability of symmetric BWP models as
defined in the previous parts. Using Theorem 1.2, we bound from above
and from below the dynamics in the network in order to obtain meaningful
bounds in the symmetric case to describe the stability region of the system
in terms of the value of 𝜆.

43
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2.1 Discretization of the dynamics
To study our dynamics, we introduce the following discretization: for 𝜀 > 0,
we tessellate 𝒟 in 𝑁𝜀 square cells of side length 𝜀, such that the origin is at
the center of its cell. We denote by 𝐴𝑖 the cell centered at 𝑎𝑖 ∈ 𝒟. Finally,
we introduce the stochastic process X𝜀(𝑡) = (𝑋𝑖,𝐶(𝑡))0≤𝑖≤𝑁𝜀−1,𝐶∈𝒫(𝐾), where
for all 𝑖, 𝐶, 𝑋𝑖,𝐶(𝑡) = Φ𝑡,𝐶(𝐴𝑖) is the number of receiver-transmitter pairs of
type 𝐶 in cell 𝑖.

We now use this discretization of the dynamics to define two interference
queueing networks (as defined in [81]) X̄𝜀 and X𝜀 with state space ℕ𝑁𝜀×2𝐾−1

such that:

– X̄𝜀 dominates X𝜀

– X𝜀 is dominated by X𝜀.

Let �̄�𝑖,𝐶(𝑡) and 𝑋𝑖,𝐶(𝑡) denote the respective number of users of type
𝐶 in cell 𝑖 in each of the two processes. For a given configuration of each
process, we define the dynamics as follows:

– The birth process of X̄𝜀 is a Poisson rain of intensity 𝜆|𝒟| and the
death rate for users in cell 𝑖 of class 𝐶 at time 𝑡 is �̄�𝑖,𝐶(𝑡)

𝐿𝐶
�̄�𝑖,𝐶(𝑡)

– The birth process of X𝜀 is a Poisson rain of intensity 𝜆|𝒟| and the

death rate for users in cell 𝑖 and class 𝐶 at time 𝑡 is
𝑋𝑖,𝐶(𝑡)

𝐿𝐶
𝑅𝑖,𝐶(𝑡).

To define the functions �̄�𝑖,𝐶 and 𝑅𝑖,𝐶, we start by defining two path-loss
functions ℓ𝜀 and ℓ𝜀 as follows:

{
ℓ𝜀(𝑥, 𝑦) = ℓ𝜀(𝑎𝑖, 𝑎𝑗) ∀𝑥 ∈ 𝐴𝑖, 𝑦 ∈ 𝐴𝑗,with
ℓ𝜀(𝑎𝑖, 𝑎𝑗) = max{ℓ(‖𝑏𝑖 − 𝑏𝑗‖), 𝑏𝑗 ∈ 𝒱𝑗, 𝑏𝑖 ∈ 𝒱𝑖} ,

(2.1)

and

{
ℓ𝜀(𝑥, 𝑦) = ℓ𝜀(𝑎𝑖, 𝑎𝑗) ∀𝑥 ∈ 𝐴𝑖, 𝑦 ∈ 𝐴𝑗,with
ℓ𝜀(𝑎𝑖, 𝑎𝑗) = min{ℓ(‖𝑏𝑖 − 𝑏𝑗‖), 𝑏𝑗 ∈ 𝒱𝑗, 𝑏𝑖 ∈ 𝒱𝑖} ,

(2.2)

where, for 0 ≤ 𝑖 ≤ 𝑁𝜀 − 1, we define 𝒱𝑖 = {𝑏𝑖, ‖𝑏𝑖 − 𝑎𝑖‖ ∈ {0, 𝜀}}. This way,
we know that for all 𝑥, 𝑦 ∈ 𝒟, we have:

ℓ𝜀(𝑥, 𝑦) ≤ ℓ(‖𝑥 − 𝑦‖) ≤ ℓ𝜀(𝑥, 𝑦). (2.3)
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Using the dominated convergence theorem, we get:

lim
𝜀→0+

⟨ℓ𝜀𝒟⟩ = lim
𝜀→0+

⟨ℓ𝜀,𝒟⟩ = ⟨ℓ𝒟⟩, (2.4)

where ⟨⋅𝒟⟩ is defined in (1.5). Because of the square torus topology of 𝒟, we
have:

∀𝑖,
𝑁𝜀−1

∑
𝑘=0

ℓ𝜀(𝑎𝑖, 𝑎𝑘) =
𝑁𝜀−1

∑
𝑘=0

ℓ𝜀(0, 𝑎𝑘) =
1
𝜀2

⟨ℓ𝜀𝒟⟩. (2.5)

The same result holds for ℓ𝜀.
The interferences ̄𝐼𝑖,𝐶 and 𝐼𝑖,𝐶 experienced by users in cell 𝑖 of class 𝐶

and with path-loss functions ℓ𝜀 and ℓ𝜀 are respectively equal to:

̄𝐼𝑖,𝐶(𝑡) =
𝑁𝜀−1

∑
𝑘=0

∑
𝑈∈𝒫(𝐾)

|𝐶 ∩ 𝑈|ℓ𝜀(𝑎𝑘, 𝑎𝑖) (�̄�𝑘,𝑈(𝑡) − 1{𝑈=𝐶,𝑖=𝑘})

𝐼𝑖,𝐶(𝑡) =
𝑁𝜀−1

∑
𝑘=0

∑
𝑈∈𝒫(𝐾)

|𝐶 ∩ 𝑈|ℓ𝜀(𝑎𝑘, 𝑎𝑖) (𝑋𝑘,𝑈(𝑡) − 1{𝑈=𝐶,𝑖=𝑘}) .

Finally, the rate-of-transmission functions of users in cell 𝑖 of class 𝐶 are
defined by:

�̄�𝑖,𝐶(𝑡) =
|𝐶|

𝒩0 + ̄𝐼𝑖,𝐶(𝑡)
, 𝑅𝑖,𝐶(𝑡) =

|𝐶|
𝒩0 + 𝐼𝑖,𝐶(𝑡)

.

Theorem 2.1. X̄𝜀 and X𝜀 are two irreducible Markov jump processes with
state space ℕ𝑁𝜀×2𝐾−1. Moreover, X̄𝜀 stochastically dominates X𝜀, and X𝜀
is stochastically dominated by X𝜀.

Proof. From 2.3, we can obtain that for all 𝐶 ∈ 𝒫(𝐾), 0 ≤ 𝑖 ≤ 𝑁𝜀 − 1,
𝑥 ∈ 𝐴𝑖,𝐶 and a given network configuration Φ𝑡, we have:

�̄�𝑖,𝐶(𝑡) ≤ 𝑅(𝑥,Φ𝑡) ≤ 𝑅𝑖,𝐶(𝑡). (2.6)

To obtain the domination relation, we can now apply Theorem 1.2. Irre-
ducibility is obtained by developing the same argument as for Theorem 1.1,
which concludes the proof.

Using Theorem 2.1, we can now reduce the study of the SBD process Φ𝑡
to the study of the stability of the two processes X𝜀 and ̄X𝜀. In the next
section, we introduce a framework to obtain a condition on the arrival rate
such that the former is unstable, and the latter is stable.
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2.2 Fluid model and fluid limits
From the definitions of the dynamics in our system, we can establish an
equation for the dynamics of X̄𝜀, which will allow us to obtain a condition
on 𝜆−

𝑐 for the stability of the system.
Let (𝒜𝑖,𝐶) and (𝑁𝑖,𝐶) be two families of independent Poisson processes

with intensity 1. By definition of the dynamics of the discretized systems,
arrivals of users in cell 𝑖 of class 𝐶 happen with rate 𝜆𝑝𝐶𝜀2. If the system
is in state 𝑥 = (𝑥𝑖,𝐶) ∈ ℕ𝑁𝜀×2𝐾−1 at time 𝑡, users in cell 𝑖 and class 𝐶 have
a departure rate equal to 1

𝐿𝐶
𝑥𝑖,𝐶(𝑡)�̄�𝑖,𝐶(𝑡). We thus obtain the following

equation ruling the evolution of the population in the chain ̄X𝜀:

�̄�𝑖,𝐶(𝑡) = �̄�𝑖,𝐶(0) + 𝒜𝑖,𝐶(𝜆𝑝𝐶𝜀2𝑡) − 𝑁𝑖,𝐶 ( 1
𝐿𝐶

∫
𝑡

0
�̄�𝑖,𝐶(𝑢)�̄�𝑖,𝐶(𝑢)d𝑢) .

(2.7)

The goal of this section is to find a condition on 𝜆 so that the Markov
chain X̄𝜀(𝑡) is positive recurrent.

2.3 Main result
In this section, we study the stability of the system through stochastic dom-
ination and the use of a discretization of the dynamics of the SBD process.
We state the following theorem:

Theorem 2.2. In the symmetric setup, 𝜆−
𝑐 = 𝜆+

𝑐 ≜ 𝜆𝑐, where 𝜆𝑐 is the
critical arrival rate, equal to:

𝜆𝑐 =
𝐾ℓ(𝑟)
⟨ℓ𝒟⟩𝔏

, (2.8)

where 𝔏 ≜ ∑𝐶 𝑝𝐶|𝐶|𝐿𝐶.

We start by proving Theorem 2.2 in the case 𝑟 = 0 (we remind that we
assumed, without loss of generality, that ℓ(0) = 1). We then extend the
result in the case 𝑟 > 0 to obtain the intended stability condition.

Stability of the dominating chain
We start by studying the stability of the chain X̄𝜀. The stability condition
for the chain is obtained though the study of its fluid limits. We can state
the following result:

Theorem 2.3. The fluid limits for the chain X̄𝜀 exist and are solutions to
the following system of equations:
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̄𝑥′
𝑖,𝐶(𝑡) = 𝜆𝑝𝐶𝜀2 −

1
𝐿𝐶

|𝐶| ̄𝑥𝑖,𝐶(𝑡)
∑𝑁𝜀−1

𝑘=0 ∑𝑈∈𝒫(𝐾)|𝐶 ∩ 𝑈|ℓ𝜀(𝑎𝑘, 𝑎𝑖) ̄𝑥𝑘,𝑈
if ̄x(𝑡) ≠ 0

̄x0 = X̄𝜀(0).

In this theorem, the convergence is taken in the sense of (A.1). The
proof of this result, based on a construction presented in [76], is presented
in Section 3.1. It is to note that these dynamics are not well-defined in
the case ̄x(𝑡) = 0, but we do not need such a definition: the results about
stability and fluid limits we use involve fluid limits with a strictly positive
initial condition.

Once the evolution of the fluid limit is established, we can obtain the
following Theorem:

Theorem 2.4. Let 𝜀 > 0 and �̄�𝜀 = 𝐾
𝔏⟨ℓ𝜀𝒟⟩ . If 𝜆 < �̄�𝜀, then the chain X̄𝜀 is

stable.

Proof. To obtain stability for the chain X̄𝜀, we will rely fluid limits and
Lemma A.13. We start by obtaining the existence of fluid limits for this chain.
The proof of this result is presented in Section 3.2 of the next chapter.

We know from Theorem 2.1 that the process X̄𝜀 dominates the original
dynamic. From Theorem 1.2, we obtain that, for all 𝜀 > 0, 𝜆𝑐 ≥ 𝐾

𝔏⟨ℓ𝜀𝒟⟩ .
Taking the limit as 𝜀 goes to 0 gives us:

𝜆−
𝑐 ≥ 𝐾

𝔏⟨ℓ𝒟⟩
.

Instability of the dominated chain
We know from Theorem A.14 that the conditions to obtain instability for
Markov chains are weaker than the ones to obtain stability. Unfortunately,
to use this result, we have to study fluid limits starting from 0, and the
dynamics of our fluid limit model are not defined when ̄x = 0.

To obtain instability for the system, we use stochastic domination and
an adequate Markov chain to bound X𝜀 from below. We have the following
theorem:

Theorem 2.5. Let 𝜆𝜀 = 𝐾
⟨ℓ𝜀,𝒟⟩𝔏 . In the symmetric case, if 𝜆 > 𝜆𝜀, then X𝜀

is unstable.

The proof of this theorem is presented in Section 3.3. We know that the
network is unstable if 𝜆 > 𝐾

⟨ℓ𝜀,𝒟⟩𝔏 for each 𝜀 > 0. Taking the limit as 𝜀 goes
to 0, we conclude:

𝜆+
𝑐 ≤ 𝐾

⟨ℓ𝒟⟩𝔏
. (2.9)
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When combining the results of Theorem 2.4 and Theorem 2.5, we obtain
that:

𝜆−
𝑐 = 𝜆+

𝑐 = 𝐾
⟨ℓ𝒟⟩𝔏

, (2.10)

which concludes the proof of Theorem 2.2 in the case 𝑟 = 0.

Generalization to 𝑟 > 0
In the previous section, all the calculations were made with the assumption
that 𝑟 = 0, i.e., in the case where the receiver and the transmitter are
located in the same cell in the discretized system. To generalize the result
of Theorem 2.2 to an arbitrary link length 𝑟 > 0, we have to consider the
location of the transmitters and of the receivers in the system, because a
transmitter will not necessarily located in the same cell as its receiver.

Let us define Z̄𝜀(𝑡) = (𝑍𝑖,𝐶(𝑡)) the 𝑁𝜀 × 2𝐾 − 1 vector of transmitter
locations in the dominating system and ̄M𝜀(𝑡) be such that �̄�𝑖,𝐶(𝑡) is a
𝑁𝜀 × 2𝐾 − 1 vector whose coordinate (𝑗,𝐷) denotes how many transmitters
in cell 𝑗 of class 𝐷 have a receiver in cell 𝑖 of class 𝐶 at time 𝑡 in the network.

We define the process:

S̄(𝑡) = (X̄𝜀(𝑡), Z̄𝜀(𝑡), M̄𝜀(𝑡)),

which is a Markov chain with countable state space. The dynamics of ̄S(𝑡)
are as follows: to each receiver of class 𝐶 arriving in cell 𝑖, we pick uniformly
a point 𝑥 ∈ 𝐴𝑖. We then draw a circle with radius 𝑟 centered at 𝑥 and we
pick a point 𝑦 uniformly at random on the circle to decide in which cell the
transmitter is located.

To obtain the interference in the network, we have to take into account
the positions of the receivers. The interference experienced by a transmitter
of class 𝐶 located in cell 𝑖 with its receiver located in cell 𝑘𝐶 in this new
system becomes:

̄𝐼𝑖,𝐶(𝑡) = ∑
𝑘,𝑈

|𝐶 ∩ 𝑈|ℓ𝜀(𝑎𝑘, 𝑎𝑖) ̄𝑍𝑘,𝑈(𝑡) − 1{𝑈=𝐶,𝑘=𝑘𝐶}

The rate-of-transmission function changes to:

�̄�𝑖,𝐶(𝑡) =
|𝐶|ℓ(𝑟)�̄�𝑘,𝑈(𝑡)
𝒩0 + ̄𝐼𝑖,𝐶(𝑡)

Using the definitions of the process S̄(𝑡) and the same steps as for The-
orem 2.3, we can obtain the existence of fluid limits for the process S̄𝜀(𝑡),
denoted as ̄𝑠(𝑡):

d
d𝑡

̄𝑥𝑖,𝐶(𝑡) = 𝜆𝑝𝐶𝜀2 −
1
𝐿𝐶

|𝐶|ℓ(𝑟) ̄𝑥𝑖,𝐶(𝑡)
∑𝑘,𝑈 ℓ𝜀(𝑎𝑘, 𝑎𝑖)|𝐶 ∩ 𝑈| ̄𝑧𝑘,𝑈(𝑡)

≜ 𝜆𝑝𝐶𝜀2 − 𝜓𝑖,𝐶( ̄𝑠(𝑡)).
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We can now use similar arguments as for Theorem 2.4 to obtain the
stability of the Markov process ̄S(𝑡) under the condition:

𝜆+
𝑐 ≤ 𝐾ℓ(𝑟)

𝔏⟨ℓ𝜀𝒟⟩
. (2.11)

To obtain the reciprocal, we define similarly a chain S(𝑡), with the same
interference and rate-of-transmission - using the adequate quantities - as for
S̄(𝑡). From this, we can use a similar argument as the ones used to obtain
Theorem 2.5 to bound the chain S(𝑡) by an appropriate M/M/1 queue and
obtain its instability whenever:

𝐾ℓ(𝑟)
𝔏⟨ℓ𝜀𝒟⟩

≤ 𝜆−
𝑐 . (2.12)

Letting 𝜀 go to 0 gives us the intended result and proves Theorem 2.2.

Simulations
To obtain a numerical validation of Theorem 2.2, we can simulate the dynam-
ics of the symmetric network. To do so, we consider a simple network setup
with 2 channels, meaning there are 22 − 1 = 3 classes denoted as {1}, {2}
and {1, 2}. We take as average file sizes are 𝐿{1} = 𝐿{2} = 1 and 𝐿{1,2} = 2
and the probability distribution is 𝑝{1} = 𝑝{2} = 0.4 and and 𝑝{1,2} = 0.2.
The path-loss function is ℓ(𝑥) = (1 + 𝑥)−4, and the domain 𝒟 is the square
torus centered at the origin with side length 10.

To simulate the dynamics of the system, we use the jump-hold construc-
tion of the Markov jump process: at each iteration, we compute the time to
the next birth by drawing a time 𝑡𝑏 from an exponential distribution with
mean 𝜆|𝒟| and a random vector t𝐷 where each coordinate corresponds to a
user located at 𝑥𝑖 of class 𝐶𝑖 and is drawn from an exponential distribution
with mean 1

𝐿𝐶𝑖
𝑅(𝑥𝑖, Φ𝑡).

We then compare the values of 𝑡𝑏 and the minimum of t𝐷: if the former
is lower, a user arrives at a location 𝑥 taken uniformly at random in 𝒟; if the
latter is lower, the corresponding user leaves the system. We then update
the value of the interference in the system and move forward in time to the
next event. If (𝑇0 = 0, 𝑇1,… , 𝑇𝑛) are the event times in the network and 𝑋
is the embedded Markov chain, we obtain that Φ𝑇𝑛

= 𝑋𝑛, which gives us
the representation of process Φ𝑡.

Figure 2.1 shows the behavior of the system for two values of 𝜆: one that
shows stability, and the other, instability.

As expected by the result of Theorem 2.2, when 𝜆 is lower than the value
𝜆𝑐, the population in the network stays bounded, as if 𝜆 is larger than 𝜆𝑐,
the population diverges to infinity. A reliable criterion to study the stability
of the system is Little’s law (see [64]), that links the average staying time 𝑊
of a user in the system, the arrival rate 𝜆 and the number of users 𝐿 in the
system in the stationary regime:
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Figure 2.1: Number of active users in the network over time with 𝐾 = 2
bands for two values of 𝜆. On the left, 𝜆 = 0.95𝜆𝑐 and we can see that the
number of users in the network stays bounded. On the right, 𝜆 = 1.05𝜆𝑐. In
this case, population grows linearly over time in the network, showing the
instability of the system.

𝐿 = 𝜆𝑊. (2.13)
Using the parameters for our system, (2.13) becomes:

𝔼 [Φ𝑡,𝐶(𝒟)] = 𝜆𝑝𝐶𝑊𝐶, (2.14)

where 𝑊𝐶 is the staying time of a user of class 𝐶 and 𝔼 [Φ𝑡,𝐶(𝒟)] is the
average number of users of class 𝐶 in the stationary regime. When simulating
the dynamics of the network, we can compute the average time spent by users
in the network in each class. If the value converges to a fixed, finite value,
then the network is stable and the number of users follow (2.14). If the time
lived in the network grows linearly and diverges to infinity, then the network
is not stable.

Figure 2.2 shows the average staying time of users in the network for
two different values of 𝜆. The phase transition in the network happens as
expected: for 𝜆 = 0.9𝜆𝑐, the system appears to be stable and for 𝜆 = 1.1𝜆𝑐,
the average staying time grows linearly, meaning that no stationary regime
exists for in the network, and that our dynamics are unstable.

Figure 2.2: Average staying time of users in the network with 𝐾 = 2 channels
for two different values of 𝜆: 𝜆 = 0.9𝜆𝑐 (left) and 𝜆 = 1.1𝜆𝑐 (right).

The implementation used for simulation runs the system in linear type
with respect to the number of steps desired, so we can further verify this con-
jecture for other configuration, though, the number of possible configuration
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grows exponentially with 𝐾. To be able to consider a system with a large
number of bands, we can consider not allowing all possible configurations in
the network, which contradicts our initial assumption that 𝑝𝐶 > 0 for all
𝐶 ∈ 𝒫(𝐾). In Chapter 5, we will discuss how blocking certain configurations
of bands may change the stability condition for the system.

Figure 2.3 shows the sojourn time in a system with 𝐾 = 4 bands (the
legend has been omitted for readability). In the stable case (on the left),
we can observe that users with the same number of bands have sojourn
times converging to the same values. This property of the system will be
investigated in Part II of this thesis.

Figure 2.3: Staying time in the system for 𝐾 = 4 bands, with 𝜆 = 0.95𝜆𝑐 on
the left and 𝜆 = 1.05𝜆𝑐 on the right.

In this chapter, we have seen how fluid limits and combinatorics allows us
to obtain a simple closed-form for the critical arrival rate for the system with
the symmetry assumption. As mentioned in the introduction, this symmetry
assumption is featured in a variety of resource allocation policies. In the next
chapter, we will study the system without the symmetry assumption.





CHAPTER 3

PROOFS OF THEOREMS OF
CHAPTER 2

This chapter focuses around proving the Theorems about stability of the
dominating chain X̄𝜀 and the instability of the chain X𝜀 presented in Chap-
ter 2.

We start by establishing the fluid model for the dynamics by proving
Theorem 2.3. Then, we move on to proving the stability of the chain X̄𝜀,
establishing Theorem 2.4. The last part of this chapter proposes a proof for
the instability of X𝜀, giving Theorem 2.5.

3.1 Proof of Theorem 2.3

Let us take a sequence of initial conditions X̄𝑛
𝜀 (0) = ( ̄𝑥𝑛

𝑖,𝐶) for our system,
with lim𝑛→∞ ̄𝑥𝑛

𝑖,𝐶 = ∞. The goal in this section is to study the limit of the
sequence of fluid-scaled processes ( 1

𝑛X̄𝜀(𝑛𝑡)) and to obtain a system of ODEs
for which the limit of this sequence is a solution.

Using (2.7), we get, for all 𝑖, 𝐶:

1
𝑛
�̄�𝑖,𝐶(𝑛𝑡) =

1
𝑛

̄𝑥𝑛
𝑖,𝐶 + 1

𝑛
𝒜𝑖,𝐶(𝜆𝑝𝐶𝜀2𝑛𝑡)

− 1
𝑛
𝑁𝑖,𝐶 ( 1

𝐿𝐶
∫

𝑛𝑡

0
�̄�𝑖,𝐶(𝑢)𝑅𝑖,𝐶(X̄𝜀(𝑢))d𝑢) . (3.1)

We use the variable change 𝑢 = 𝑛𝑠 in the integral to get:

53
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∫
𝑛𝑡

0
�̄�𝑖,𝐶(𝑢)𝑅𝑖,𝐶(X̄𝜀(𝑢))d𝑢

= ∫
𝑡

0
�̄�𝑖,𝐶(𝑛𝑠)𝑅𝑖,𝐶(X̄𝜀(𝑛𝑠))𝑛d𝑠

= ∫
𝑡

0

|𝐶|�̄�𝑖,𝐶(𝑛𝑠)
𝒩0 +∑𝑘,𝑈 ℓ𝜀(𝑎𝑘, 𝑎𝑖)|𝐶 ∩ 𝑈| (�̄�𝑘,𝑈(𝑛𝑠) − 1{𝑈=𝐶,𝑖=𝑘})

𝑛d𝑠

= 𝑛∫
𝑡

0

|𝐶| 1𝑛�̄�𝑖,𝐶(𝑛𝑠)
𝒩0
𝑛 +∑𝑘,𝑈 ℓ𝜀(𝑎𝑘, 𝑎𝑖)|𝐶 ∩ 𝑈| ( 1

𝑛�̄�𝑘,𝑈(𝑛𝑠) − 1
𝑛1{𝑈=𝐶,𝑖=𝑘})

d𝑠.

We define:

𝑅𝑛
𝑖,𝐶(𝑥) =

|𝐶|
𝒩0
𝑛 +∑𝑘,𝑈 ℓ𝜀(𝑎𝑘, 𝑎𝑖)|𝐶 ∩ 𝑈| (𝑥𝑘,𝑈 − 1

𝑛1{𝑈=𝐶,𝑖=𝑘})
.

Using this, (3.1) becomes:

1
𝑛
�̄�𝑖,𝐶(𝑛𝑡) =

1
𝑛

̄𝑥𝑛
𝑖,𝐶 + 1

𝑛
𝒜𝑖,𝐶(𝜆𝑝𝐶𝜀2𝑛𝑡)

− 1
𝑛
𝑁𝑖,𝐶 ( 𝑛

𝐿𝐶
∫

𝑡

0

1
𝑛
�̄�𝑖,𝐶(𝑛𝑠)𝑅𝑛

𝑖,𝐶 (1
𝑛

X̄𝜀(𝑛𝑠))d𝑠) ,

Let 𝑀𝑛
𝑖,𝐶(𝑧) =

1
𝑛𝑁𝑖,𝐶(𝑛𝑧) − 𝑧 for 𝑧 ∈ ℝ, and let us define:

̄𝑌 𝑛
𝑖,𝐶(𝑡) =

1
𝑛

̄𝑥𝑛
𝑖,𝐶 + 1

𝑛
𝒜𝑖,𝐶(𝜆𝑝𝐶𝜀2𝑛𝑡)

−𝑀𝑛
𝑖,𝐶 ( 1

𝐿𝐶
∫

𝑡

0

1
𝑛
�̄�𝑖,𝐶(𝑛𝑠)𝑅𝑛

𝑖,𝐶 (1
𝑛

X̄𝜀(𝑛𝑠))d𝑠) . (3.2)

We can note that 𝑀𝑛
𝑖,𝐶 is a martingale and ̄𝑌 𝑛

𝑖,𝐶 is its compensator, for
which we obtain a limit in order to obtain the fluid limit. By using (3.1), we
have:

1
𝑛
�̄�𝑖,𝐶(𝑛𝑡) = ̄𝑌 𝑛

𝑖,𝐶(𝑡) −
1
𝐿𝐶

∫
𝑡

0

1
𝑛
�̄�𝑖,𝐶(𝑛𝑠)𝑅𝑛

𝑖,𝐶 (1
𝑛

X̄𝜀(𝑛𝑠))d𝑠. (3.3)

Let us denote x̄0 = lim𝑛→∞
1
𝑛 ̄𝑥𝑛

𝑖,𝐶 when it exists. We say that x̄0 is finite
if and only if all its coordinates are finite.

Lemma 3.1. If x̄0 exists and is finite, then:

∀𝑡 ≥ 0, ∀𝑖, 𝐶, lim
𝑛→∞

̄𝑌 𝑛
𝑖,𝐶(𝑡) = �̄�𝑖,𝐶(0) + 𝜆𝑝𝐶𝜀2𝑡. (3.4)
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Proof. Using the strong law of large numbers yields, ℙ-almost surely:

lim
𝑛→∞

1
𝑛
𝒜𝑖,𝐶(𝜆𝑝𝐶𝜀2𝑛𝑡) = 𝜆𝑝𝐶𝜀2𝑡.

Moreover, we have:

1
𝐿𝐶

∫
𝑡

0

1
𝑛
�̄�𝑖,𝐶(𝑛𝑠)𝑅𝑛

𝑖,𝐶 (1
𝑛

X̄𝜀(𝑛𝑠))d𝑠

= 1
𝐿𝐶

∫
𝑡

0

1
𝑛
�̄�𝑖,𝐶(𝑛𝑠)

|𝐶|
𝑁0
𝑛 +∑𝑘,𝑈|𝐶 ∩ 𝑈|ℓ𝜀(𝑎𝑘, 𝑎𝑖) 1𝑛�̄�𝑘,𝑈(𝑛𝑠)

d𝑠

≤ 1
𝐿𝐶

∫
𝑡

0

1
𝑛
�̄�𝑖,𝐶(𝑛𝑠)

|𝐶|
|𝐶|ℓ𝜀(𝑎𝑖, 𝑎𝑖) 1𝑛�̄�𝑖,𝐶(𝑛𝑠)

d𝑠

= 𝑡
𝐿𝐶

,

where we use the fact that for all 0 ≤ 𝑖 ≤ 𝑁𝜀 − 1, ℓ𝜀(𝑎𝑖, 𝑎𝑖) = 1.
We use Prohorov’s Theorem (see Theorems 5.1 and 5.2 of [26]) to obtain

that the sequence of processes { 1
𝑛�̄�𝑖,𝐶(𝑛⋅) 𝑅𝑛

𝑖,𝐶(
1
𝑛X̄𝜀(𝑛⋅))} is tight. Finally,

because 𝑀𝑛
𝑖,𝐶(𝑧) → 0 as 𝑛 goes to infinity for all 𝑧 (using the strong law of

large numbers), we can conclude that:

lim
𝑛→∞

𝑀𝑛
𝑖,𝐶 ( 1

𝐿𝐶
∫

𝑡

0

1
𝑛
�̄�𝑖,𝐶(𝑛𝑠)𝑅𝑛

𝑖,𝐶 (1
𝑛

X̄𝜀(𝑛𝑠))d𝑠) = 0,

which leads to the intended result.

For 𝑣 ∶ [0, 𝑇 ) → ℝ and 0 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑇, let us define:

𝑤(𝑣, [𝑡1, 𝑡2]) = sup {|𝑣(𝑢1) − 𝑣(𝑢2)|, 𝑢1, 𝑢2 ∈ [𝑡1, 𝑡2]} .

Let us define the modulus of continuity 𝜔(𝑣, 𝛿, 𝑇 ) = sup{𝑤(𝑣, [𝑠, 𝑡]), 0 ≤
𝑠, 𝑡 ≤ 𝑇 , |𝑠 − 𝑡| < 𝛿}. We introduce the concept of C-tightness and a useful
characterization (see Definition VI.3.25 and Proposition VI.3.26 from [51]):

Definition 3.1 (C-tightness). A sequence {𝑉 𝑛, 𝑛 ≥ 1} of functions is C-
tight if and only if, for all 𝑡0 > 0, 𝜂 > 0, 𝑇 > 0, there exists 𝐾0

𝜂 , 𝑛0
𝜂 and 𝛿0𝜂

such that, for all 𝑛 ≥ 𝑛0
𝜂:

i) ℙ [sup0≤𝑡≤𝑇|𝑉
𝑛(𝑡)| ≥ 𝐾0

𝜂] < 𝜂.

ii) ℙ [𝜔(𝑉 𝑛, 𝛿0𝜂, 𝑡0) > 𝜂] < 𝜂.

Condition 𝑖𝑖) implies that any limit point of 𝑉 𝑛 has continuous sam-
ple paths, ℙ-almost surely: let 𝑉 be a limit point of the sequence 𝑉 𝑛. By
definition, for all 𝜂 > 0, we have:

ℙ [𝜔(𝑉 , 𝛿0𝜂, 𝑡0) > 𝜂] < 𝜂. (3.5)
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This means, that, ℙ-almost surely, 𝜔(𝑉 , 𝛿0, 𝑡0) > 𝜂 for each 𝑇 > 0 and
𝛿𝐶 > 0. By continuity of the function 𝛿 ↦ 𝜔(𝑉 , 𝛿, 𝑡0) at 0, we can conclude
that 𝑉 is ℙ-almost surely continuous.

We can prove the following lemma:

Lemma 3.2. If ̄x0 exists and is finite, the sequence of processes { 1
𝑛X̄𝜀(𝑛⋅), 𝑛 ≥

0} is C-tight.

Proof. Let 𝑇 > 0 and 𝜂 > 0. As 𝑛 goes to infinity, we know that ̄𝑌 𝑛
𝑖,𝐶(𝑡) →

�̄�𝑖,𝐶(0) + 𝜆𝑝𝐶𝜀2𝑡 ℙ-almost surely from Lemma 3.1. For each 𝜂 > 0, there
exists 𝑛𝑇,1

𝜂 such that for 𝑛 ≥ 𝑛𝑇,1
𝜂 :

ℙ[ sup
0≤𝑡≤𝑇

| ̄𝑌 𝑛
𝑖,𝐶(𝑡)| ≥ 𝜆𝑝𝐶𝜀2𝑇 + 1] ≤ 𝜂. (3.6)

We also know that 1
𝑛�̄�𝑖,𝐶(𝑛𝑡)𝑅𝑛

𝑖,𝐶(
1
𝑛X̄𝜀(𝑛𝑡)) ≤ 1 at all times 𝑡, a fortiori

for all 𝑡 ≤ 𝑇. Using (3.3), we deduce that for all 𝑛 ≥ 𝑛𝑇,1
𝜂 :

ℙ[ sup
0≤𝑡≤𝑇

∣ 1
𝑛
�̄�𝑖,𝐶(𝑛𝑡)∣ ≥ 𝜆𝑝𝐶𝜀2𝑇 + 1 + 1] ≤ 𝜂. (3.7)

We set 𝐾0
𝜂 = 𝜆𝑝𝐶𝜀2𝑇 + 2 to obtain condition 𝑖).

To obtain condition 𝑖𝑖), we remark that proving the continuity of the
limits is equivalent to showing that there exists a 𝛿0𝜂 > 0 such that for all 𝑖, 𝐶
and at all times 𝑡 < 𝑇, we have:

ℙ[𝜔(1
𝑛
�̄�𝑖,𝐶(𝑛𝑡), 𝛿0𝜂, 𝑡0) > 𝜂] < 𝜂.

Let 𝛿 > 0. (3.3) gives at all times 𝑡 ≥ 0:

1
𝑛
�̄�𝑖,𝐶(𝑛(𝑡 + 𝛿)) − 1

𝑛
�̄�𝑖,𝐶(𝑛𝑡) =

̄𝑌 𝑛
𝑖,𝐶(𝑡 + 𝛿) − ̄𝑌 𝑛

𝑖,𝐶(𝑡) −
1
𝐿𝐶

∫
𝑡+𝛿

𝑡

1
𝑛
�̄�𝑖,𝐶(𝑛𝑢)𝑅𝑛

𝑖,𝐶 (1
𝑛

X̄𝜀(𝑛𝑢))d𝑢.

Taking the supremum over 𝑡 ∈ [0, 𝑇 ], and we remind that:

1
𝑛
�̄�𝑖,𝐶(𝑛𝑡)𝑅𝑛

𝑖,𝐶(
1
𝑛

X̄𝜀(𝑛𝑡)) ≤ 1. (3.8)

We have:

sup
0≤𝑡≤𝑇

∣ 1
𝑛
�̄�𝑖,𝐶(𝑛(𝑡 + 𝛿)) − 1

𝑛
�̄�𝑖,𝐶(𝑡)∣ ≤ sup

0≤𝑡≤𝑇
∣ ̄𝑌 𝑛

𝑖,𝐶(𝑡 + 𝛿) − ̄𝑌 𝑛
𝑖,𝐶(𝑡)∣ +

𝛿
𝐿𝐶

.

From Lemma 3.1, we know that ̄𝑌 𝑛
𝑖,𝐶(𝑡) → �̄�𝑖,𝐶(0) + 𝜆𝑝𝐶𝜀2𝑡 ℙ-almost

surely. This implies that there exists 𝑛𝑇,2
𝜂 > 0 and 𝜅0

𝜂 > 0 such that, with
probability at least 1 − 𝜂, | ̄𝑌 𝑛

𝑖,𝐶(𝑡 + 𝛿) − ̄𝑌 𝑛
𝑖,𝐶(𝑡)| < 𝜆𝑝𝐶𝜀2𝛿 + 𝛿𝜅0

𝜂.
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This implies that for all 𝑖, 𝐶, we have, with probability at least 1 − 𝜂:

𝜔(1
𝑛
�̄�𝑖,𝐶, 𝛿, 𝑡0) < 𝛿(𝜆𝑝𝐶𝜀2 + 𝜅0

𝜂 +
1
𝐿𝐶

) . (3.9)

Let us set 𝛿0𝜂 = 𝜂(𝜆𝑝𝐶𝜀2 + 𝜅0
𝜂 + 1

𝐿𝐶
)
−1

. Thus, we get, for all 𝑛 ≥ 𝑛𝑇,2
𝜂 :

ℙ[𝜔(1
𝑛
�̄�𝑖,𝐶, 𝛿0𝜂, 𝑡0) < 𝜂] > 1 − 𝜂. (3.10)

Setting 𝑛0
𝜂 = max(𝑛1,0

𝜂 , 𝑛2,0
𝜂 ) concludes the proof of the C-tightness of the

sequence of processes ( 1𝑛X̄𝜀(𝑡)).

We can now establish the equation ruling the evolution of the fluid scaled
model:

Theorem 3.3. If 1
𝑛X̄𝜀(0) → x̄0 as 𝑛 goes to ∞, then the sequence of processes

1
𝑛X̄𝜀(𝑛⋅) converges ℙ-almost surely to x̄𝜀(𝑠) = ( ̄𝑥𝑖,𝐶(𝑠)), which is the unique
solution of the following system of differential equations:

⎧{
⎨{⎩

d
d𝑡 ̄𝑥𝑖,𝐶(𝑡) = 𝜆𝑝𝐶𝜀2 − 1

𝐿𝐶

|𝐶|�̄�𝑖,𝐶(𝑡)
∑𝑁𝜀−1

𝑘=0 ∑𝑈∈𝒫(𝐾)|𝐶∩𝑈|ℓ𝜀(𝑎𝑘,𝑎𝑖)�̄�𝑘,𝑈
if ̄x ≠ 0

x̄(0) = x̄0.
(3.11)

Proof. From Lemma 3.2, the sequences { 1
𝑛X̄𝜀(𝑛⋅), 𝑛 ≥ 1} and {Ȳ𝑛, 𝑛 ≥ 1}

are both tight. It follows from Theorem 11.6.8 from [89] that the sequence
{( 1𝑛X̄𝜀(𝑛⋅), Ȳ𝑛), 𝑛 ≥ 1} is tight in 𝐷([0,∞], ℝ𝑁𝜀×2𝐾−1), and thus, by using
Prohorov’s Theorem, relatively compact.

Let 𝑛𝑙 be a subsequence along which ( 1
𝑛𝑙

X̄𝜀(𝑛𝑙⋅), Ȳ𝑛𝑙) converges to a
limit point ( ̄x𝜀, Ȳ) as 𝑙 goes to infinity.

We use the Skorokhod representation theorem (see Theorem 6.7 in [26]) to
get a probability space (Ω̂, ̂ℱ, ℙ̂) with a sequence of processes {(X̂𝑛𝑙 , Ŷ𝑛𝑙), 𝑙 ≥
1} and two processes ̂x𝜀 and Ŷ such that:

– (X̂𝑛𝑙 , Ŷ𝑛𝑙) → (x̂𝜀, Ŷ), ℙ̂-almost surely;

– (X̂𝑛𝑙 , Ŷ𝑛𝑙) 𝑑∼ ( 1
𝑛𝑙

X̄𝜀(𝑛𝑙, ⋅), Ȳ𝑛𝑙) for all 𝑙 ≥ 1;

– ( ̂x𝜀, Ŷ) 𝑑∼ (X̄𝜀, Ȳ).

The second point gives, for all 𝑙 ≥ 1:

�̂�𝑛𝑙
𝑖,𝐶(𝑡) = ̂𝑌 𝑛𝑙

𝑖,𝐶(𝑡) −
1
𝐿𝐶

∫
𝑡

0
�̂�𝑛𝑙

𝑖,𝐶(𝑠)𝑅𝑛
𝑖,𝐶(X̂𝑛𝑙(𝑠))d𝑠. (3.12)

Using the C-tightness of X̄𝜀, ̂X and Ŷ are continuous. This implies that:

sup
𝑙≥1

sup
0≤𝑡≤𝑇

‖𝑋𝑛𝑙
𝑖,𝐶(𝑡)‖ < ∞.
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Furthermore, we have, for all 𝑥 ∈ ℕ𝜀×2𝐾−1:

lim
𝑙→∞

𝑅𝑛𝑙
𝑖,𝐶(𝑥) =

|𝐶|
∑𝑘,𝑈 ℓ𝜀(𝑎𝑘, 𝑎𝑖)|𝐶 ∩ 𝑈|𝑥𝑘,𝑈

≡ 𝑅𝑖,𝐶(𝑥). (3.13)

Combining all these results, we can take the limits as 𝑙 goes to infinity
in (3.12) and use the dominated convergence theorem to get the following
equation for ( ̂x𝜀, Ŷ):

̂𝑥𝑖,𝐶(𝑡) = ̂𝑌𝑖,𝐶(𝑡) −
1
𝐿𝐶

∫
𝑡

0

|𝐶| ̂𝑥𝑖,𝐶(𝑠)
∑𝑘,𝑈 ℓ𝜀(𝑎𝑘, 𝑎𝑖)|𝐶 ∩ 𝑈| ̂𝑥𝑘,𝑈(𝑠)

d𝑠. (3.14)

Let us remind that, from Lemma 3.1, ̄𝑌𝑖,𝐶(𝑡) = �̄�𝑖,𝐶(0) + 𝜆𝑝𝐶𝜀2𝑡, which
gives us the following equation for the limit process:

̂𝑥𝑖,𝐶(𝑡) = ̂𝑥𝑖,𝐶(0) + 𝜆𝑝𝐶𝜀2𝑡 −∫
𝑡

0

1
𝐿𝐶

|𝐶| ̂𝑥𝑖,𝐶(𝑠)
∑𝑘,𝑈 ℓ𝜀(𝑎𝑘, 𝑎𝑖)|𝐶 ∩ 𝑈| ̂𝑥𝑘,𝑈(𝑠)

d𝑠.

(3.15)

To obtain the intended equations, we differentiate (3.15), which concludes
the proof.

3.2 Proof of Theorem 2.4
In this section, we provide a proof for Theorem 2.4 using Lemma A.13, which
is applicable to our model. We have:

Lemma 3.4. Assume that there exists z ∈ ℝ𝑁𝜀×2𝐾−1
+,⋆ such that for all 𝑖, 𝐶:

𝜆𝑝𝐶𝜀2 ≤ 1
𝐿𝐶

|𝐶|𝑧𝑖,𝐶
∑𝑘,𝑈 ℓ𝜀(𝑎𝑘, 𝑎𝑖)|𝐶 ∩ 𝑈|𝑧𝑘,𝑈

Then, the Markov chain X̄𝜀 is positive Harris recurrent.

Proof. To obtain this result, we use Lemma A.13: the fluid limit x(𝑡) meets
the intended requirements. Let us take such a z ∈ ℝ𝑁𝜀×2𝐾−1

+,⋆ . We know that
for all 0 < 𝛿 < 𝑀 < ∞, there exists 𝑇 > 0 such that whenever ‖x(0)‖ = 𝑀,
we have |x(𝑇 )‖ < 𝛿.

Theorem 4.2 from [37] with the fluid limit x̄ allows us to obtain positive
Harris recurrence for the chain X.

We use this result in ℝ𝑁𝜀×2𝐾−1
+ by setting 𝜓𝑖,𝐶(x) = 1

𝐿𝐶

|𝐶|𝑥𝑖,𝐶
∑𝑘,𝑈 ℓ𝜀(𝑎𝑘,𝑎𝑖)|𝐶∩𝑈|𝑥𝑘,𝑈

,
which is 0-homogeneous, and non-increasing in 𝑥𝑘,𝑈 for (𝑘, 𝑈) ≠ (𝑖, 𝐶).
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The goal here is to find an appropriate vector 𝑧 to get the desired upper
bound on 𝜆. Let us set 𝑧𝑖,𝐶 = 𝑝𝐶𝐿𝐶 for all 𝐶 ∈ 𝒫(𝐾). We want that, for
each 𝐶 ∈ 𝒫(𝐾):

𝜆𝑝𝐶𝜀2 ≤ 1
𝐿𝐶

|𝐶|𝑝𝐶𝐿𝐶
∑𝑘,𝑈 ℓ𝜀(𝑎𝑘, 𝑎𝑖)|𝐶 ∩ 𝑈|𝑝𝑈𝐿𝑈

. (3.16)

Using the torus property in our system, Equation (3.16) becomes:

𝜆 ≤ 1
⟨ℓ𝜀𝒟⟩

|𝐶|
∑𝑈|𝐶 ∩ 𝑈|𝑝𝑈𝐿𝑈

. (3.17)

We will use the following Lemma to simplify (3.17):

Lemma 3.5. Let (𝑦𝐶)𝐶∈𝒫(𝐾) ∈ ℝ2𝐾−1 be such that |𝐶| = |𝐷| ⇒ 𝑦𝐶 = 𝑦𝐷.
We have:

∀𝐶 ∈ 𝒫(𝐾), ∑
𝑈∈𝒫(𝐾)

|𝐶 ∩ 𝑈|𝑦𝑈 = |𝐶|
𝐾

∑
𝑈∈𝒫(𝐾)

|𝑈|𝑦𝑈. (3.18)

Proof. Let 𝐶 ∈ 𝒫(𝐾) with |𝐶| = 𝑗, and (𝑦𝑈)𝑈∈𝒫(𝐾) ∈ ℝ2𝐾−1 be such that
𝑦𝑈 = 𝑦𝑉 whenever |𝑈| = |𝑉 |. We have:

∑
𝑈∈𝒫(𝐾)

|𝐶 ∩ 𝑈|𝑦𝑈 =
𝐾
∑
𝑙=1

𝑗∧𝑙

∑
𝑚=1

∑
𝑈∶|𝑈|=𝑙

|𝐶∩𝑈|=𝑚

𝑚𝑦𝑈. (3.19)

The number of sets 𝑈 ∈ 𝒫(𝐾) such that |𝑈| = 𝑙 and |𝐶 ∩𝑈| = 𝑚 is equal
to ( 𝑗

𝑚)(
𝐾−𝑗
𝑙−𝑚). Using the symmetry property of 𝑦, we know that 𝑦𝑈 = 𝑦[1,𝑙].

Using the fact that we have 𝑦𝑈 = 1
(𝐾𝑙 )

∑|𝑉 |=𝑙 𝑦𝑉(𝑡). We can rewrite (3.19) as:

∑
𝑈∈𝒫(𝐾)

|𝐶 ∩ 𝑈|𝑦𝑈 =
𝐾
∑
𝑙=1

𝑦[1,𝑙]
𝑗∧𝑙

∑
𝑚=1

𝑚( 𝑗
𝑚
)(𝐾 − 𝑗

𝑙 −𝑚
)

=
𝐾
∑
𝑙=1

(∑
|𝑈|=𝑙

𝑦𝑈)
𝑗∧𝑙

∑
𝑚=1

𝑚
( 𝑗
𝑚)(

𝐾−𝑗
𝑙−𝑚)

(𝐾𝑙 )
. (3.20)

We can prove that ∑𝑗∧𝑙
𝑚=1 𝑚

( 𝑗
𝑚)(𝐾−𝑗

𝑙−𝑚)
(𝐾𝑙 )

= 𝑙𝑗
𝐾 by using the formula for the ex-

pectation of a hypergeometric variable with parameters𝐾, 𝑗 and 𝑙. Replacing
𝑙 by |𝑈| and 𝑗 by |𝐶| leads to:

∑
𝑈∈𝒫(𝐾)

|𝐶 ∩ 𝑈|𝑦𝑈 = |𝐶|
𝐾

∑
𝑈∈𝒫(𝐾)

|𝑈|𝑦𝑈, (3.21)

which concludes the proof of Lemma 3.5.



60 CHAPTER 3. PROOFS OF THEOREMS OF CHAPTER 2

The vector (𝑝𝐶)𝐶∈𝒫(𝐾) verifies the conditions of Lemma 3.5, which allows
us to obtain, after setting 𝔏 = ∑𝑈|𝑈|𝑝𝑈𝐿𝑈:

𝜆 ≤ 1
⟨ℓ𝜀𝒟⟩

𝐾
𝔏
. (3.22)

The result of Lemma 3.4 gives us stability for the fluid model (3.11) in
the sense of Definition 4.1 of [37] with 𝑀 = 1. Applying the result from
Theorem 4.2 of the same paper gives us positive Harris recurrence for the
chain X̄𝜀. X̄𝜀 is an irreducible Markov jump process that is also positive
recurrent. Thus, X̄𝜀 is ergodic, which concludes the proof of Theorem 2.4.

3.3 Proof of Theorem 2.5
To prove the instability of the chain X𝜀, we start by introducing, for each
𝑖, 𝐶, the function 𝑟𝑖,𝐶 defined as:

𝑟𝑖,𝐶 ∶ x ∈ ℝ𝑁𝜀×2𝐾−1
+,∗ ↦ 1

𝑝𝐶𝐿𝐶𝜀2
|𝐶|𝑥𝑖,𝐶

∑𝑘,𝑈 ℓ𝜀(𝑎𝑘, 𝑎𝑖)|𝐶 ∩ 𝑈|𝑥𝑘,𝑈
.

For all 𝑖, 𝐶, 𝑟𝑖,𝐶 is continuous and 0-homogenous, and it is not defined for
x = 0: let us take the sequences x𝑛 and y𝑛 such that 𝑥0,{1},𝑛 = 𝑦0,{1},𝑛 = 1

𝑛 ,
𝑦1,{1},𝑛 = 1

𝑛 and all the other coordinates set to 0. Immediately, lim𝑛→∞ x𝑛 =
lim𝑛→∞ y𝑛 = 0. Using the 0-homogeneity of the functions, we have:

∀𝑛, 𝑟0,{1}(x𝑛) =
1

𝑝{1}𝐿{1}𝜀2
, 𝑟0,{1}(y𝑛) =

1
𝑝{1}𝐿{1}𝜀2

1
1 + ℓ𝜀(𝑎0, 𝑎1)

,

which have different limits as 𝑛 goes to infinity.
Let us now consider the function x ∈ ℝ𝑁𝜀×2𝐾−1

+,∗ ↦ min𝑖,𝐶 𝑟𝑖,𝐶(x). It
is also 0-homogenous is not defined at x = 0, and it is continuous on the
set 𝒮 = {x ∈ ℝ𝑁𝜀×2𝐾−1

+,∗ ∶ |x| = 1}, which is compact. Thus, it admits a
maximum on 𝒮, and on ℝ𝑁𝜀×2𝐾−1

+,∗ as a consequence. We set

ℬ = argmax
x∈ℝ𝑁𝜀×2𝐾−1

+,∗

{min
𝑖,𝐶

1
𝑝𝐶𝐿𝐶𝜀2

|𝐶|𝑥𝑖,𝐶

∑𝑘,𝑈 ℓ𝜀(𝑎𝑘, 𝑎𝑖)|𝐶 ∩ 𝑈|𝑥𝑘,𝑈
}, (3.23)

which is non-empty.

Lemma 3.6. Let z ∈ ℬ and let 𝑖⋆, 𝐶⋆ be the coordinates of a point where the
maximum is attained. Let 𝜆 > 0 be such that:

𝜆𝑝𝐶⋆𝜀2 > 1
𝐿𝐶⋆

|𝐶⋆|𝑧𝑖⋆,𝐶⋆

∑𝑘,𝑈|𝐶 ∩ 𝑈|ℓ𝜀(𝑎𝑘, 𝑎⋆𝑖 )𝑧𝑘,𝑈
.

Then, X𝜀 is transient.
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Proof. Let z ∈ ℬ. By definition, there exists 𝑖⋆, 𝐶⋆ such that the maximum
value of min𝑖,𝐶 𝑟𝑖,𝐶 is equal to 𝑟𝑖⋆,𝐶⋆(z). Let us take 𝜆 > 0 such that:

𝜆𝑝𝐶⋆𝜀2 > 1
𝐿𝐶⋆

|𝐶⋆|𝑧𝑖⋆,𝐶⋆

∑𝑘,𝑈|𝐶 ∩ 𝑈|ℓ𝜀(𝑎𝑘, 𝑎⋆𝑖 )𝑧𝑘,𝑈
.

We define the process Y such that:

– Arrivals in queue 𝑖, 𝐶 happen with rate 𝜆𝑝𝐶𝜀2, for all 𝑖, 𝐶;

– Departures in queue 𝑖, 𝐶 happen with rate:

– 1
𝐿𝐶⋆

|𝐶⋆|𝑧𝑖⋆,𝐶⋆

∑𝑘,𝑈|𝐶∩𝑈|ℓ𝜀(𝑎𝑘,𝑎𝑖)𝑧𝑘,𝑈
if 𝑖, 𝐶 = 𝑖⋆, 𝐶⋆,

– 1
𝐿𝐶

|𝐶|𝑌𝑖,𝐶(𝑡)
∑𝑘,𝑈|𝐶∩𝑈|ℓ𝜀(𝑎𝑘,𝑎𝑖)𝑌𝑘,𝑈(𝑡)+𝒩0

else.

Y is a Markov jump process, with state space ℕ𝑁𝜀×2𝐾−1. By definition
of z, we have, at all times 𝑡 ≥ 0:

1
𝐿𝐶⋆

|𝐶⋆|𝑧𝑖⋆,𝐶⋆

∑𝑘,𝑈|𝐶 ∩ 𝑈|ℓ𝜀(𝑎𝑘, 𝑎𝑖)𝑧𝑘,𝑈
≥ 1

𝐿𝐶⋆

|𝐶⋆|𝑋𝑖⋆,𝐶⋆(𝑡)
∑𝑘,𝑈|𝐶 ∩ 𝑈|ℓ𝜀(𝑎𝑘, 𝑎𝑖)𝑋𝑘,𝑈(𝑡) +𝒩0

.

Using a coupling argument similar to the one used in the proof of Theo-
rem 1.2, we obtain, for all 𝑖, 𝐶 and at all times 𝑡:

𝑌𝑖,𝐶(𝑡) ≤ 𝑋𝑖,𝐶(𝑡), ℙ-a.s.

The queue 𝑌𝑖⋆,𝐶⋆ is an M/M/1 queue with constant arrival rate 𝜆𝑝𝐶⋆𝜀2

and a departure rate equal to 1
𝐿𝐶⋆

|𝐶⋆|𝑧𝑖⋆,𝐶⋆

∑𝑘,𝑈|𝐶∩𝑈|ℓ𝜀(𝑎𝑘,𝑎𝑖)𝑧𝑘,𝑈
.

It is unstable and ℙ [lim𝑡→∞ 𝑌𝑖⋆,𝐶⋆(𝑡) = +∞] = 1, implying the same for
𝑋𝑖⋆,𝐶⋆ , which concludes the proof.

We can note that queue 𝑋𝑖⋆,𝐶⋆ is not the only queue whose population
diverges to infinity. The departure rates in all queues (except for queue
𝑖⋆, 𝐶⋆) are decreasing functions of 𝑋𝑖⋆,𝐶⋆(𝑡). Thus, for a given queue 𝑋𝑗,𝐷,
there exists a time 𝑇𝑗,𝐷 after which the departure rate in this queue becomes
lower than its arrival rate. We can then bound from below 𝑋𝑗,𝐷 after time
𝑇𝑗,𝐷 by an adequate M/M/1 queue and obtain that the population in queue
𝑗,𝐷 goes to infinity, ℙ-almost surely for all 𝑗,𝐷.

To complete the proof of Theorem 4.5, we characterize the value of z:

Lemma 3.7. Let z ∈ ℬ. Then, z is a solution to the following system of
equations, for all 0 ≤ 𝑖, 𝑗 ≤ 𝑁𝜀 − 1 and 𝐶,𝐷 ∈ 𝒫(𝐾):
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1
𝑝𝐶𝐿𝐶

|𝐶|𝑧𝑖,𝐶
∑𝑘,𝑈 ℓ𝜀(𝑎𝑘, 𝑎𝑖)|𝐶 ∩ 𝑈|𝑧𝑘,𝑈

= 1
𝑝𝐷𝐿𝐷

|𝐷|𝑧𝑗,𝐷
∑𝑘,𝑈 ℓ𝜀(𝑎𝑘, 𝑎𝑗)|𝐷 ∩ 𝑈|𝑧𝑘,𝑈

.

(3.24)

Proof. Let z be such that:

z ∈ argmax
y∈ℝ𝑁𝜀×2𝐾−1

+

min
𝑖,𝐶

𝑟𝑖,𝐶(y).

To prove this result, we use the maximality of z. Without loss of gener-
ality, let us assume that the minimum over 𝑖, 𝐶 of 𝑟𝑖,𝐶(z) is reached for 𝑖 = 0
and 𝐶 = {1}. We know that the function 𝑟0,{1} is a decreasing function of
𝑧𝑖,𝐶 for all 1 ≤ 𝑖 ≤ 𝑁 − 1 and 𝐶 ≠ {0}. Hence, these values have to be
minimal in order to maximize 𝑟0,{1}.

By definition, for all 1 ≤ 𝑗 ≤ 𝑁𝜀−1, 𝐶 ≠ {1}, we have 𝑟0,{1}(z) ≤ 𝑟𝑖,𝐶(z).
But, for 𝑖 ≥ 1 and 𝐶 ≠ {0}, 𝑟𝑖,𝐶 is an increasing function of 𝑧𝑖,𝐶. Thus, the
only possible value for z is such that:

𝑟0,{1}(z) = 𝑟𝑖,𝐶(z),

which concludes the proof.

Finally, we know that z such that for all 𝑖, 𝐶, 𝑧𝑖,𝐶 = 𝑝𝐶𝐿𝐶 is a solution
to (3.24). Using Lemma 3.6, the system is unstable if:

𝜆𝑝𝐶⋆𝜀2 ≥ 1
𝐿𝐶⋆

|𝐶⋆|𝑝𝐶⋆𝐿𝐶⋆

∑𝑘,𝑈 ℓ𝜀(𝑎𝑘, 𝑎𝑖⋆)|𝐶⋆ ∩ 𝑈|𝑝𝑈𝐿𝑈

(𝑎)
= |𝐶⋆|𝑝𝐶⋆

1
𝜀2 ⟨ℓ𝜀,𝒟⟩ |𝐶

⋆|
𝐾 ∑𝑈|𝑈|𝑝𝑈𝐿𝑈

= 𝜀2𝑝𝐶⋆𝐾
⟨ℓ𝜀,𝒟⟩ |𝐶

⋆|
𝐾 ∑𝑈|𝑈|𝑝𝑈𝐿𝑈

= 𝐾
⟨ℓ𝜀,𝒟⟩𝔏

,

where (𝑎) uses Lemma 3.5 with the vector (𝑝𝐶𝐿𝐶)𝐶∈𝒫(𝐾) and the square torus
property of 𝒟. Setting 𝔏 = ∑𝑈|𝑈|𝑝𝑈𝐿𝑈 gives us the intended condition for
𝜆 and concludes the proof.



CHAPTER 4

GENERALIZATION TO
NON-SYMMETRIC SBD
PROCESSES AND OTHER

DYNAMICS

In this chapter, we will extend the result presented in Theorem 2.2 when
relaxing the symmetry condition presented in Definition 2.1. This work was
firstly motivated by the study of BWP models where the symmetry assump-
tion was relaxed. In these systems, we allow a differentiated use of communi-
cation channels, with different arrival rates and different file sizes. Relaxing
the symmetry hypothesis for BWP models allows to capture a more diverse
array of association policies. When investigating this problem, we obtained a
more general stability condition for an array of dynamics of queuing networks
with state-dependent departure rates.

This chapter thus focuses on obtaining a general stability condition for
queuing networks where the departure rate in a given server is a decreasing
function of other queue sizes. To do so, we will focus on a queuing network
consisting in 𝑁 servers for which the queuing discipline is Markovian. We
will consider a constant arrival rate with a given routing policy for jobs to be
addressed to each server in the network, and the departure rate for jobs in
the system will be depending on the state of the system at a given time. We
will then apply the main result of this chapter to obtain a stability condition
for the non-symmetric SBD process.
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4.1 Queuing systems with state dependent
departure rates

Let us consider a queueing network of 𝑁 ≥ 2 interacting queues, with (𝑋𝑖(𝑡))
denoting the queue length process. In each queue, users carrying jobs arrive
at a constant rate and leave the system at a rate depending on the state
of the queuing system at a given time. Our model is motivated by wireless
networks, so we assume that the departure rate in queue 𝑖 is a decreasing
function of the lengths of queues 𝑋𝑗, for 𝑗 ≠ 𝑖. Finally, we assume that users
leave the system once their job is completed, and we assume that queue
lengths are not bounded. Finally, we assume that the system is Markovian
(such an example can be found in [84] for instance)

Arrivals in the system happen at rate 𝜆 > 0, and upon arrival, a user is
routed independently with probability 𝑝𝑖 to server 𝑖. Thus, arrivals in server
𝑖 happen with rate 𝜆𝑖 = 𝜆𝑝𝑖. We assume that for all 𝑖, 𝑝𝑖 ≠ 0.

Departures in server 𝑖 happen with a state-dependent rate Ψ𝑖(X(𝑡)),
where, for all 0 ≤ 𝑁 − 1, Ψ𝑖 is decreasing in 𝑋𝑗 for all 𝑗 ≠ 𝑖. Further-
more, we assume that, for all 𝑖, Ψ𝑖 is such that the following limit exists for
all x ∈ ℝℕ

+:

lim
𝑛→∞

Ψ𝑖(𝑛x) = 𝜓𝑖(x),

where 𝜓𝑖 is non-constant, continuous and 0-homogeneous, i.e., for all 𝑠 > 0
and x ∈ ℝℕ

+, 𝜓𝑖(𝑠x) = 𝜓𝑖(x).
Using similar coupling arguments as the ones presented in Theorem 1.2

in Section 1.2 of Chapter 1, we can prove the following Theorem:

Theorem 4.1. Let us take X and Y to realizations of the dynamics with
respective arrival rates 𝜆𝑋 and 𝜆𝑌, initial conditions X(0) and Y(0), and
departure rates (Ψ𝑖)0≤𝑖≤𝑁−1 and (Φ𝑖)0≤𝑖≤𝑁−1. The following conditions are
sufficient for X to dominate Y (when the two other parameters are taken
equal):

A) Y(0) ≤ X(0) coordinate-wise,

B) 𝜆𝑌 ≤ 𝜆𝑋

C) for all x,y ∈ ℝ𝑁 with x ≤ y coordinate-wise, Ψ𝑖(x) ≤ Φ𝑖(y).

Fluid model
Using a similar proof as the one from Theorem 2.3, we can obtain that the
sequence of fluid-scaled processes ( 1

𝑛𝑋𝑖(𝑛𝑡))𝑛≥0
admits a limit ( ̄𝑥𝑖(𝑡)) as 𝑛

goes to infinity, solution to the following equation:

̄𝑥𝑖(𝑡) = ̄𝑥𝑖(0) + 𝜆𝑖𝑡 −∫
𝑡

0
𝜓𝑖( ̄x(𝑠))d𝑠. (4.1)
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Assumptions made about the functions (Ψ𝑖) and (𝜓𝑖) give three properties
of the fluid system:

𝑖) for all 𝑖, 𝜓𝑖 is non-increasing in 𝑥𝑗 for all 𝑗 ≠ 𝑖 and increasing in 𝑥𝑖,

𝑖𝑖) for all 𝑖, 𝜓𝑖 is 0-homogenous, i.e., for all t ∈ ℝ𝑁
+ and 𝑠 ≥ 0, 𝜓𝑖(𝑠t) =

𝜓𝑖(t),

𝑖𝑖𝑖) the (𝜓𝑖) are such that if ∑𝑖 ̄𝑥𝑖(𝜏) > 0 for a given 𝜏, there exists 𝛿 > 0
such that ̄𝑥𝑖(𝑡) > 0 for all 𝑖 and 𝑡 ∈ [𝜏, 𝜏 + 𝛿].

Let us define:

ℬ = {𝜆 ∈ ℝ+ ∶ 𝜆 ≤ 1
𝑝𝑖
𝜓𝑖(p) for some p ∈ ℝ𝑁

+ and all 𝑖} .

The main result about the stability of such dynamics is given by Lemma A.13,
which allows to conclude about stability for the Markov chain X.The main
goal of this chapter is to obtain a converse for this result, and to find a
characterization of the maximal value of ℬ in a particular case.

4.2 An instability condition
The main Theorem of this section is a reciprocal to Lemma 3.4, which will
give a condition for stability for the non-symmetric BWP model:

Theorem 4.2. If 𝜆 > 𝜆⋆, where 𝜆⋆ = supℬ, then the chain X is transient.

Proof. The first thing to note is that, because the functions 𝜓𝑖 are 0-homogeneous,
finding a maximum for 1

𝑝𝑖
𝜓𝑖 over ℝ𝑁

+ can be resumed to looking its maximum
over (0, 1]𝑁. Because the 𝜓𝑖 are continuous, x ↦ min𝑖 1

𝑝𝑖
𝜓𝑖(x) is also contin-

uous, and admits a maximum in (0, 1]𝑁. Finally, the value for this function
at x = 0 is not defined: because 𝜓𝑖 is not constant, let us take x1,x2 such
that 𝜓𝑖(x1) ≠ 𝜓𝑖(x2).

We define two sequences x𝑛 = 1
𝑛x1 and y𝑛 = 1

𝑛x2. We have lim𝑛→∞ x𝑛 =
lim𝑛→∞ y𝑛 = 0, but lim𝑛→∞ 𝜓𝑖 (x𝑛) = 𝜓𝑖(x1) and lim𝑛→∞ 𝜓𝑖 (y𝑛) = 𝜓𝑖(x2),
which are not equal.

Thus, we can take z ∈ ℝ𝑁
+ such that:

z ∈ argmax
x∈ℝ𝑁

+

min
𝑖

1
𝑝𝑖
𝜓𝑖(z).

Let 𝜆 > 𝜆⋆. By definition, there exists 𝑖⋆ such that:

𝜆𝑝𝑖⋆ > 𝜓𝑖⋆(z).

Let us define the chain Y as follows:

– For all 0 ≤ 𝑖 ≤ 𝑁 − 1, 𝑌𝑖(0) = 𝑋𝑖(0)
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– The arrival rate in 𝑌𝑖 is equal to 𝜆𝑝𝑖

– The departure rate in 𝑌𝑖 is equal to:

– 𝜓𝑖(Y(𝑡)) if 𝑖 ≠ 𝑖⋆

– 𝜓𝑖⋆(z) if 𝑖 = 𝑖⋆

By definition of z, we know that for all 𝑡 ≥ 0, 𝜓𝑖⋆(z) ≥ Ψ𝑖⋆(X(𝑡)). Hence,
we can apply Lemma 4.1 to obtain, for all 0 ≤ 𝑖 ≤ 𝑁 − 1:

𝑌𝑖(𝑡) ≤ 𝑋𝑖(𝑡) ℙ−a.s.

To conclude, we can remark that server 𝑖⋆ is a M/M/1 queue with an
arrival rate 𝜆𝑝𝑖⋆ and a departure rate 𝜓𝑖⋆(z). We thus have, ℙ-almost surely
lim𝑡→∞ 𝑌𝑖⋆(𝑡) = ∞ if 𝜆 ≥ 𝜆⋆, which allows us to conclude that X is transient.

We can remark that the 𝑖⋆-th queue length is not the only one to diverge
to almost surely diverge to infinity if 𝜆 > 𝜆⋆. We know that 𝑋𝑖⋆(𝑡) goes to
infinity. Because all the functions Ψ𝑗 are decreasing functions of 𝑋𝑖⋆ , for all
𝑗, there exists a time 𝑇𝑗 after which Ψ𝑗(X(𝑇𝑗)) < 𝜆𝑝𝑗. We can then bound
from below the 𝑗-th queue by a M/M/1 queue whose arrival rate is strictly
larger than its departure rate. Hence, we get:

∀𝑗, ℙ [ lim
𝑡→∞

𝑋𝑗(𝑡) = ∞] = 1.

Combining the results of Lemma 3.4 and Theorem 4.2 give us the follow-
ing result:

Theorem 4.3. Let 𝜆⋆ = supℬ. If 𝜆 < 𝜆⋆, the Markov chain X is positive
recurrent. If 𝜆 > 𝜆⋆, it is transient.

The behavior of the Markov chain for 𝜆 = 𝜆⋆ is not studied in this thesis.
We know that in the general case, the study of dynamic systems in the case
𝜆 = 𝜆⋆, although results can be obtained using fluid limits in some cases
(see [35]).

An interesting remark for this Theorem comes from the consequences of
Theorem 4.1. If the system meets a separability condition, one can use the
saturation rule (see [20]). This rules states that the Markov chain repre-
senting our dynamics is either positive recurrent, or transient, and that the
stability region is uniquely defined by the value of lim𝑛→∞

𝑇𝑛
𝑛 , where (𝑇𝑛)𝑛≥0

is the sequence of maximal daters in the system. Unfortunately, for our dy-
namics, defining maximal daters and computing the value of the limit seems
to be a hard problem, which leads us to obtain stability through different
channels.

The second main result of this Chapter is a better characterization of the
value of 𝜆⋆, under a stronger assumption. Let us replace assumption 𝑖) for
the functions (𝜓𝑖)0≤𝑖≤𝑁−1 by assumption 𝑖⋆):

𝑖⋆) for all 𝑖, 𝜓𝑖 is non-increasing in 𝑥𝑗 for all 𝑗 ≠ 𝑖 and increasing in 𝑥𝑖.
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This stronger assumption is motivated by communication networks, where
the departure rates of one user is inversely proportional to a shot-noise of the
queue length process and proportional to the queue length of the observed
server. To obtain the departure rate of all users in a given server, we have to
multiply this departure rate by the queue length of said server, which gives
a departure rate in a server increasing with its queue length (see [81], [84]
for instance).

Theorem 4.4. Under assumptions 𝑖⋆), 𝑖𝑖), 𝑖𝑖𝑖), 𝜆⋆, the maximal value of ℬ
is obtained for any z solution to, for all 0 ≤ 𝑖, 𝑗 ≤ 𝑁 − 1:

1
𝑝𝑖
𝜓𝑖(z) =

1
𝑝𝑗
𝜓𝑗(z). (4.2)

We thus have 𝜆⋆ = 1
𝑝𝑖
𝜓𝑖(z), for any 0 ≤ 𝑖 ≤ 𝑁 − 1.

The proof of this result uses the same arguments as the proof of Lemma 3.7,
presented in Section 3.3 fo the Appendix. This result gives us a simple con-
dition to characterize the values of ℬ. In the next section, we will use this
result to prove stability of non-symmetric BWP models.

4.3 Stability of non-symmetric BWP models
We can now move on to obtaining stability for the non-symmetric multiclass
SBD process. In this setup, we allow users transmitting on the same number
of bands to have different stochastic properties in the system. This way, we
can encompass more complex allocation policies as the symmetric system do.
We formulate the following result:

Theorem 4.5. The non-symmetric multiclass SBD system is stable if 𝜆 < 𝜆⋆

and unstable if 𝜆 > 𝜆⋆, where:

𝜆⋆ = 1
𝑝𝐶𝐿𝐶

|𝐶|𝑧⋆𝐶
⟨ℓ𝒟⟩∑𝑈|𝐶 ∩ 𝑈|𝑧⋆𝑈

,

where z⋆ is a solution to the following system of equations:

∀𝐶,𝐷 ∈ 𝒫(𝐾) 1
𝑝𝐶𝐿𝐶

|𝐶|𝑧⋆𝐶
∑𝑈|𝐶 ∩ 𝑈|𝑧⋆𝑈

= 1
𝑝𝐷𝐿𝐷

|𝐷|𝑧⋆𝐷
∑𝑈|𝐷 ∩ 𝑈|𝑧⋆𝐷

. (4.3)

Proof. The goal here is to obtain the stability condition for the two chains
X𝜀 and X̄𝜀, and then to obtain the wanted stability condition for the original
system.

Let us start with obtaining the stability condition for the dominating
chain ̄X𝜀. We take, for all 𝑖, 𝐶, the functionΨ𝑖,𝐶(x) = 1

𝐿𝐶

𝒩0+|𝐶|𝑥𝑖,𝐶
∑𝑘,𝑈 ℓ𝜀(𝑎𝑘,𝑎𝑖)|𝐶∩𝑈|𝑥𝑘,𝑈

.

Immediately, we can see that, for all x ∈ ℝ𝑁×2𝐾−1
+ , we have:
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lim
𝑛→∞

Ψ𝑖,𝐶(𝑛x) = 1
𝐿𝐶

|𝐶|𝑥𝑖,𝐶

∑𝑘,𝑈 𝑎𝑘,𝑖|𝐶 ∩ 𝑈|𝑥𝑘,𝑈
≜ 𝜓𝑖,𝐶(x).

Moreover, the functions (𝜓𝑖,𝐶) meet conditions 𝑖⋆) − 𝑖𝑖𝑖), which allow us
to use the result from Theorem 4.4 to get that X is stable whenever 𝜆 < 𝜆⋆,
where 𝜆⋆ is such that:

𝜆⋆𝑝𝐶𝜀2 = 𝜓𝑖,𝐶(z),

where z is solution to (4.2).
Let us now prove that for all 𝑖, 𝑗 and for all 𝐶, 𝑧𝑖,𝐶 = 𝑧𝑗,𝐶. Let us take

0 ≤ 𝑗 ≤ 𝑁, and define z′ = (𝑧𝑖+𝑗,𝐶), where we denote 𝑖 + 𝑗 as remainder
modulo 𝑁 of the sum if 𝑖 + 𝑗 ≥ 𝑁. We have, for all 𝑖, 𝐶:

𝜓𝑖,𝐶(z′) = 1
𝐿𝐶

|𝐶|𝑧𝑖+𝑗,𝐶

∑𝑘,𝑈 ℓ𝜀(𝑎𝑖, 𝑎𝑘)|𝐶 ∩ 𝑈|𝑧𝑘,𝑈
(𝑎)
= 1

𝐿𝐶

|𝐶|𝑧𝑖+𝑗,𝐶

∑𝑘′,𝑈 ℓ𝜀(𝑎𝑖+𝑗, 𝑎𝑘′)|𝐶 ∩ 𝑈|𝑧𝑘′,𝑈
= 𝜓𝑖+𝑗(z).

To explain (𝑎), we use the fact that 𝒟 is a square torus, and that the
function ℓ𝜀 is defined on a grid. This way, we know that, for each 𝑖, 𝑗, 𝑘,
there exists a unique 𝑘′ such that ℓ𝜀(𝑎𝑖+𝑗, 𝑎𝑘) = ℓ𝜀(𝑎𝑖, 𝑎𝑘′). We use this
reindeixation of the sum to conclude. Finally, we know that z is solution
to (4.2), which gives 𝜓𝑖+𝑗(z) = 𝜓𝑖(z) and gives:

𝜓𝑖,𝐶(z′) = 𝜓𝑖,𝐶(z).

From this result, we know that for any solution z to (4.3), the value of
𝜓𝑖,𝐶(z) is invariant by translation on 𝑖. From this, we can conclude that for
all 𝑖, 𝑗, 𝑧𝑖,𝐶 = 𝑧𝑗,𝐶 = 𝑧𝐶. Using this, searching for solutions of the system
over ℝ𝑁𝜀×2𝐾−1 amounts to searching for solutions over ℝ2𝐾−1. The system
becomes:

1
𝑝𝐶𝜀2

𝜓𝑖,𝐶(z) =
1

𝑝𝐶𝜀2
1
𝐿𝐶

|𝐶|𝑧𝐶
∑𝑘,𝑈 ℓ𝜀(𝑎𝑘, 𝑎𝑖)|𝐶 ∩ 𝑈|𝑧𝑈

= 1
𝑝𝐶𝐿𝐶

|𝐶|𝑧𝐶
⟨ℓ𝜀𝒟⟩∑𝑈|𝐶 ∩ 𝑈|𝑧𝑈

.

After simplification, we get:

1
𝑝𝐶𝐿𝐶

|𝐶|𝑧𝐶
∑𝑈|𝐶 ∩ 𝑈|𝑧𝑈

= 1
𝑝𝐷𝐿𝐷

|𝐶|𝑧𝐶
∑𝑈|𝐶 ∩ 𝑈|𝑧𝑈

. (4.4)

We can use the result from Theorem 4.4 and the domination properties
from Theorem 1.2 to get the following stability condition for the system:

𝜆+
𝑐 ≤ 1

𝑝𝐶𝐿𝐶

|𝐶|𝑧𝐶
⟨ℓ𝜀𝒟⟩∑𝑈|𝐶 ∩ 𝑈|𝑧𝑈

. (4.5)
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We can use the same steps with the dominated chain X𝜀 to obtain the
same system as in (4.4), and the reciprocal condition:

𝜆−
𝑐 ≥ 1

𝑝𝐶𝐿𝐶

|𝐶|𝑧𝐶
⟨ℓ𝜀,𝒟⟩∑𝑈|𝐶 ∩ 𝑈|𝑧𝑈

. (4.6)

Finally, let 𝜀 tend to 0, which gives the condition:

𝜆𝑐 =
1

𝑝𝐶𝐿𝐶

|𝐶|𝑧𝐶
⟨ℓ𝒟⟩∑𝑈|𝐶 ∩ 𝑈|𝑧𝑈

. (4.7)

where z is solution to (4.4), which concludes the proof.

We can make two remarks about the result of Theorem 4.4. The first
one is that the system of equations we obtain for z does not depend on the
path-loss function ℓ in the system. This lack of dependency comes from the
square torus topology we use in our system, which allows for a simplification
of the system presented in Theorem 4.3.

The second remark we can make is that this result can be easily general-
ized to any link length 𝑟 > 0 by taking the same steps as in Subsection 2.3,
to get that:

𝜆𝑐 =
ℓ(𝑟)
𝑝𝐶𝐿𝐶

|𝐶|𝑧𝐶
⟨ℓ𝒟⟩∑𝑈|𝐶 ∩ 𝑈|𝑧𝑈

,

To verify this result, we add the symmetry hypothesis to compare it to the
result known in [72]: whenever |𝐶| = |𝐷|, we have 𝑝𝐶 = 𝑝𝐷 and 𝐿𝐶 = 𝐿𝐷,
i.e. users with the same number of communication channels have the same
stochastic properties in the network. With 𝐾 = 2 bands, we look for a
solution to (4.3) in the form z = (𝑥, 𝑦, 𝑧). The first equation gives:

1
𝑝{1}𝐿{1}

𝑥
𝑥 + 𝑧

= 1
𝑝{1}𝐿{1}

𝑦
𝑦 + 𝑧

,

which yields 𝑥 = 𝑦. Injecting this result in the second equation gives:

1
𝑝{1}𝐿{1}

𝑥
𝑥 + 𝑧

= 1
𝑝{1,2}𝐿{1,2}

2𝑧
𝑥 + 𝑦 + 2𝑧

= 1
𝑝{1,2}𝐿{1,2}

𝑧
𝑥 + 𝑧

,

which, after solving for 𝑧, gives 𝑧 = 𝑝{1,2}𝐿{1,2}
𝑝{1}𝐿{1}

𝑥. The solution to the system

are of the form x = (𝑥, 𝑥, 𝑝{1,2}𝐿{1,2}
𝑝{1}𝐿{1}

𝑥), for 𝑥 ∈ (0,∞). We thus get for 𝜆𝑐:

𝜆𝑐 =
2

⟨ℓ𝒟⟩ (𝑝{1}𝐿{1} + 𝑝{2}𝐿{2} + 2𝑝{1,2}𝐿{1,2})
,

which is the value of the critical arrival rate for this network. If we generalize
this result for 𝐾 ≥ 2, we can see that z = 𝑝𝐶𝐿𝐶 is a solution for the system
defined in Theorem 4.5. We thus get:

𝜆⋆𝑝𝐶 = 1
𝐿𝐶

|𝐶|𝑝𝐶𝐿𝐶
⟨ℓ⟩∑𝑈|𝑈|𝑝𝑈𝐿𝑈

,
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which, after some combinatorics, give:

𝜆⋆ = 𝐾
⟨ℓ⟩∑𝑈|𝑈|𝑝𝑈𝐿𝑈

,

which is the critical arrival rate for the symmetric network.
We can also verify this stability region through simulation: Figure 4.1

displays a non-symmetric BWP model ith 𝐾 = 2 bands where bands {1}
and {2} are not considered symmetrically by the system: 80% of users trans-
mitting on one band chose band {1}, and the remaining 20% chose band {2}.
The rest of network parameters are the same as the ones used in Section 2.3.

Figure 4.1: Number of active users in the non-symmetric network over time
with 𝐾 = 2 bands for two values of 𝜆. In this setup, 𝑝{1} = 0.64, 𝑝{2} = 0.16
and 𝑝{1,2} = 0.2.



CHAPTER 5

EXTENSION AND CONCLUSION

In the first part of this manuscript, we studied the stability of a multiclass
SBD model with wireless-type interactions. As mentioned multiple times,
these dynamics are leveraged by wireless networks, but in Chapter 4, we
were able to obtain a general stability condition for systems that have fluid
limits meeting certain requirements. In the chapter, we will discussed the
results obtained in this part and interpret them.

5.1 Interpretation of the results
Theorem 2.2 gives the critical arrival rate 𝜆𝑐 below which the dynamics is
stable and above which it is not in the symmetric system:

𝜆𝑐 =
𝐾ℓ(𝑟)
𝔏⟨ℓ𝒟⟩

. (5.1)

We can note that the form of this critical value in question is somewhat
unexpected. The quantity 𝔏 = ∑𝑈 𝑝𝑈|𝑈|𝐿𝑈 appears, while a natural inter-
pretation would have preferred the quantity ∑𝑈 𝑝𝑈

𝐿𝑈
|𝑈| , which denotes the

average user load per band in the network. We can give the following inter-
pretation for the value of 𝔏: on average, a user has 𝐿𝑈 bits to transmit over
|𝑈| bands. Hence, a user of type 𝑈 brings a time-space load equal to |𝑈|𝐿𝑈
to the network. Taking the average over the distribution of user types, we
obtain 𝔏. We can rewrite the stability condition 𝜆 < 𝐾ℓ(𝑅)

⟨ℓ𝒟⟩𝔏 as:

𝜆 𝔏
𝐾

< ℓ(𝑅)
⟨ℓ𝒟⟩

,

Under this form and with the previous remark, we can interpret the left
hand side term as the average load arriving per unit of time and per channel.
The right-hand side is the throughput capacity of one channel in heavy load
(the signal power divided by the fluid interference power). This way, the
stability condition for the symmetric system can be seen as the classical
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condition 𝜌 < 1 seen in Jackson networks, for which the density of arriving
jobs in the system cannot exceed its throughput.

For the non-symmetric system, we can not reach a closed form condition
for the value of 𝜆𝑐, though we can define it as:

𝜆𝑐 =
1

𝑝𝐶𝐿𝐶

|𝐶|ℓ(𝑟)𝑧𝐶
⟨ℓ𝒟⟩∑𝑈|𝐶 ∩ 𝑈|𝑧𝑈

, (5.2)

where z ∈ ℝ2𝐾−1 is the solution of a system of equations given in Theo-
rem 4.5. This results is a corollary of Theorem 4.2, which states that the
vector z is such that:

z ∈ argmax
x∈ℝ𝑁𝜀

min
𝑖

1
𝑝𝐶𝐿𝐶

|𝐶|ℓ(𝑟)𝑥𝑖,𝐶

∑𝑘,𝑈 ℓ𝜀(𝑎𝑘, 𝑎𝑖)𝑥𝑘,𝑈
.

To interpret this result, we can see z as the maximal capacity of the
channel with the lowest throughput in the network. Due to the nature of
the interactions in the system, whenever the population of a queue explodes,
it propagates to the other queues, leading to the instability of the system.
Once again, we obtain a ”load-throughput” condition for the stability of the
system in the non-symmetric system.

5.2 Restricting band configurations
In this work, we considered that all band configurations are allowed for users
in the system. On top of allowing an exponential number of configurations
for users, this setup is not commonly used for wireless networks. For instance,
a usual setup for band allocation is to only alow the use of contiguous bands
(this way, with 𝐾 = 4, configurations {1, 2} and {2, 3, 4} are allowed but not
{1, 3}). We will see in this section how to extend the previous results when
restricting the band configurations, i.e., when allowing 𝑝𝐶 = 0 for certain
𝐶 ∈ 𝒫(𝐾). Let us now denote 𝒫(𝐾)⋆ = {𝐶 ∈ 𝒫(𝐾), 𝑝𝐶 ≠ 0} as the set of
used band configurations in the network.

The main result we use to obtain stability in the system is stochastic
monotonicity. In simple words, this property states that when we increase
the population of one class of users, it slows down transmissions for all the
other classes in the system. The second observation about the network we
can make is the system of equations obtained in Theorem 4.5: this system
needs to have a solution space of dimension 1 (i.e., of the form x0𝑡 for a given
x0 and 𝑡 > 0) for the value of 𝜆𝑐 to be uniquely defined.

If there exists a subset of classes ”disconnected” from the system in the
sense that they do not have an impact on the rate of transmissions, i.e. a
subset 𝐻 ∈ 𝒫(𝐾) of classes 𝐷 such that for all 𝐻 ∉ 𝑆, 𝐶 ∩ 𝐷 = ∅, it will
act as a single-class SBD process independent from the rest of the dynamics,
with its own stability condition.

Assuming the Poisson rain of arriving users stays common to all users, this
leads us to obtain a condition on the form of the set {𝐶 ∩ 𝑈,𝐶,𝑈 ∈ 𝒫(𝐾)}.
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This condition can be expressed in terms of the matrix ℑ = (|𝐶∩𝑈||)𝐶,𝑈∈𝒫(𝐾):
if such classes 𝐷 exists, it implies that the matrix ℑ can be rearranged to be
a block matrix. Another way to describe it is to consider the graph 𝒢 for
which the vertices are labelled with the elements of 𝒫(𝐾) and two vertices
labelled with 𝑈 and 𝑉 are connected if and only if 𝑈 ∩𝑉 ≠ ∅. The conditions
then becomes that the graph 𝒢 is connected.

Collecting these observations, we can state the following Theorem:

Theorem 5.1. If the interaction graph 𝒢 is connected (or, if the interaction
matrix ℑ cannot be rearranged in a block matrix), the critical arrival 𝜆𝑐
remains unchanged when allowing the 𝑝𝐶 to be equal to 0.

If the interaction graph 𝒢 is not connected (or, if the interaction matrix
ℑ can be rearranged in a block matrix), let 𝑆1,… , 𝑆𝑛 be the 𝑛 sets labelling
the connected components of 𝒢 (or the blocks of ℑ), and let 𝜆𝑐,1,… , 𝜆𝑐,𝑛 be
the critical arrival rates obtained when considering separately each of the
configuration sets 𝑆1,… , 𝑆𝑛. The critical arrival rate for the whole system
becomes:

𝜆𝑐 = min
𝑖

𝜆𝑐,𝑖. (5.3)

An interesting remark is that if we now assume that the Poisson rains
for the arrival of users are independent for each of the possible configuration
sets 𝑆1,… , 𝑆𝑛, instead of taking the minimum critical rate for the system,
the stability condition becomes:

𝜆𝑐 = ∑
𝑖

𝜆𝑐,𝑖.

Using Theorem 5.1 and the previous remark allows to capture even more
resource allocation policies for networks, and this result can be used for load
balancing purposes, as one can be interested in maximizing the value of 𝜆𝑐
by tuning the parameters of each of the multiclass SBD processes to desire.

Finally, the results presented in this part have been proved when assuming
that the interfering power between channels was equal to the size of their
intersection, but they can be extended to any similarity measure 𝑓(𝐶,𝑈) > 0
between channels 𝐶 and 𝑈 by using it instead of the intersection measure in
all the previous equations.

5.3 Extension
The work presented in this part is meant to introduce a framework to study
multiclass SBD processes. This framework is simple yet it captures some key
features leveraged in bandwidth partitioning model. Future work may add
more complex features to study a larger variety of networks.

A first direction to look into is the cellular version of the presented net-
work. In the setup we presented in this part, we studied a device-to-device
network (D2D). A natural extension would be to study a device-to-network
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(D2N) version, where an antenna is located at the origin, and all the trans-
mitter share this antenna as a receiver. In such a setup, if we assume that
the antenna has an infinite channel capacity, the rate-of-transmission func-
tion becomes:

𝑅(𝑥,Φ𝑡) =
|𝐶|ℓ(‖𝑥‖)

𝒩0 + 𝐼(𝑥,Φ𝑡)
.

The behavior of D2N networks is known to be different than that of D2D
networks. For instance, [3] shows a D2N version of the SBD process studied
in [80], in which meta-stability appears: the system appears to be stable until
a moment where the network population explodes. In this newer setup for
example, it not sufficient to have ℓ′(𝑥) ≤ ℓ(𝑥) anymore to obtain domination,
but the other conditions from Theorem 1.2 still hold. Thus, a first extension
of the problem would be to study the stability of this new system and see
how the stability condition from Theorem 2.2 changes.

Among the other possible extensions, one can think of adding fading to
the system, to model blocking or atmospheric phenomena that can alter the
quality of transmission, and can add line-of-sight models in order to see how
the stability condition changes.

This concludes the first part of this work, focusing on describing the sta-
bility region of this array of multiclass SBD processes. As positive recurrent
Markov processes, these dynamics have a stationary distribution to which
they converge. The next part will focus on the study on this stationary dis-
tribution as well as the result point processes and some of their properties.



Part II

Stationary interacting
point processes
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CHAPTER 6

STUDY OF THE STEADY STATE
DYNAMICS

The main result of Part I, Theorem 2.2, gives the existence of a stationary
regime for the multiclass spatial birth-and-death process when 𝜆 < 𝜆𝑐. The
existence of a stationary regime of the dynamics raises interesting questions
about the nature of this stationary regime and the properties of the resulting
point process.

The first question we will tackle in this part is the stationary user densities
in the system. We know that the arrival process is a Poisson rain in the
system, and we also know the stochastic intensity of the departure process.
Given this, we try to estimate the spatial user densities in the stationary
regime.

The second question we will answer in this part is revolves around the
geometry of the point process in the stationary regime. We know from [80]
that the single class system show clustering, i.e. attraction in the stationary
regime. In a clustered point process, points ”attract” each other, which
translates in a condition between the regular and the Palm expectation of
shot noises of the point process.

Finally, the last question of interest revolves around the stationary dis-
tribution of the queuing process. The discretization of the multiclass SBD
process introduced in Part I lead us to define two multiclass interference
queuing networks (defined similarly as in [81]). We know from [22] that
single-class interference queuing networks have exponential moments, which
gives as a consequence bounds on the tails of the distribution. This property
is interesting for ultra reliable, low latency (URLLC) networks ([62]), as it
gives tight bounds for the tails of the distribution of latency in this system.
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6.1 First order heuristic and Poisson
estimate for 𝜆𝑐

The goal of this first chapter is to develop two heuristics to estimate the
spatial densities of users in the stationary regime. The first heuristic we
develop is a mean-field heuristic: in this heuristic, we assume that all the
subprocess of users of class 𝐶 ∈ 𝒫(𝐾) are homogenous PPP, and we use
this assumption to derive an equation giving the first-order heuristic. Such
Poisson heuristics have already been studied in different setups, like in replica
mean-field models: in [19], the authors prove that as the number of replicas
goes to infinity, they behave like independently distributed Poisson processes.
In another setup, [5] and [45] provide a quantification of the error of the
mean-field approximation. We then define a second heuristic using a cavity
approximation (see [80]) in order two refine the approximation. We say that
this heuristic is of the second order because we rely on the cross correlation
function 𝜌(2). We then discuss the relative performance of these two heuristics
in a numerical setup.

Let 𝜇𝐶 = 1
|𝒟|𝔼 [Φ𝐶,0(𝒟)] denote the user density of the point process

Φ𝐶,0 of users of class 𝐶 ∈ 𝒫(𝐾) in the stationary regime.
A first heuristic to estimate 𝜇𝐶 is the Poisson heuristic: we assume that,

in the stationary regime, all the point processes Φ𝐶,0 for 𝐶 ∈ 𝒫(𝐾) are in-
dependent Poisson point processes with intensity 𝜇𝑓

𝐶. As mentioned earlier,
Poisson approximations appear in to replica mean-field methods, where we
consider multiple realizations of our stochastic process and interactions be-
tween users are picked uniformly at random among replicas of the dynamics.
We know that (see [19]) as the number of replicas go to infinity, the processes
behave like independent Poisson point processes, which justifies the Poisson
approximation. The Poisson heuristic presented here falls in the same line
of thought. We define the following heuristic:

Heuristic 1. We define the Poisson heuristic 𝜇𝑓
𝐶 for 𝜇𝐶 as the smallest

solution of the following equation:

𝜇𝑓
𝐶 ∫

∞

0
𝑒−𝑧𝒩0 exp[− ∑

𝑈∈𝒫(𝐾)
𝜇𝑓
𝑈ℐ(𝑧, |𝐶 ∩ 𝑈|)]d𝑧 = 𝜆𝑝𝐶𝐿𝐶

|𝐶|ℓ(𝑟)
. (6.1)

where ℐ(𝑧, 𝑘) = ∫
𝒟
(1 − 𝑒−𝑧𝑘ℓ(‖𝑥‖))d𝑥.

We numerically observe that the values of the intensities 𝜇𝑓
𝐶 obtained by

solving (6.1) do not depend on the value of 𝒩0 > 0. This observation is
consistent with the fluid system and the stability condition in the network
being independent of the value of 𝒩0.

Proof. Let us apply the RCP to the process Φ0,𝐶 of users of class 𝐶 ∈ 𝒫(𝐾)
during a time interval 𝑑𝑡:
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𝜆𝑝𝐶𝐿𝐶|𝒟| = 𝔼[ ∑
𝑥∈Φ𝐶,0

𝑅(𝑥,Φ0)] .

We use the definition of the Palm probability measure to rewrite this as:

𝜆𝑝𝐶𝐿𝐶|𝒟| = 𝔼0
Φ𝐶,0

[𝑅(0𝐶, Φ0)] 𝔼 [Φ𝐶
0 (𝒟)] . (6.2)

Using this, we get that, in the stationary regime:

𝜆𝑝𝐶𝐿𝐶 = 𝜇𝐶𝔼0
Φ𝐶,0

[𝑅(0𝐶, Φ0)] = |𝐶|𝜇𝐶ℓ(𝑟)𝔼0
Φ𝐶,0

[ 1
𝑁0 + 𝐼𝐶

] .

This is equivalent to:

𝜇𝐶 = 𝜆𝑝𝐶𝐿𝐶
|𝐶|ℓ(𝑟)

(𝔼0
Φ𝐶,0

[ 1
𝑁0 + 𝐼𝐶

])
−1

.

Let us state use this Lemma (see Lemma 1 from [80]):

Lemma 6.1. Let 𝑌 be a positive random variable with finite expectation and
𝑐 > 0 be a real number. Then:

𝔼[ 1
𝑐 + 𝑌

] = ∫
∞

0
𝑒−𝑧𝑐𝔼[𝑒−𝑧𝑌]d𝑧.

Using Lemma 6.1 with 𝑌 ≡ 𝐼(0𝐶, Φ0), which has a finite first moment
and with 𝑐 ≡ 𝒩0, we get:

𝔼0
Φ𝐶,0

[ 1
𝒩0 + 𝐼𝐶

] = ∫
∞

0
𝑒−𝑧𝒩0𝔼0

Φ𝐶,0
[𝑒−𝑧𝐼𝐶]d𝑧.

Let us assume that the processes Φ0,𝑈 are independent Poisson point
processes denoted by Ψ𝑈. Using this, combined with Slivnyak’s theorem, we
get:

𝔼0
Φ𝐶,0

[ 1
𝑁0 + 𝐼𝐶

] ≈ ∫
∞

0
𝑒−𝑧𝒩0 ∏

𝑈∈𝒫(𝐾)
𝔼[𝑒−𝑧∑𝑥∈Φ𝑈

0 \{0𝐶} 𝑃|𝐶∩𝑈|ℓ(‖𝑥‖)]d𝑧.

Using the formula for the Laplace transform of a Poisson point process,
we get:

𝔼[𝑒−𝑧∑𝑥∈Φ𝑈
0 \{0𝐶}|𝐶∩𝑈|ℓ(‖𝑥‖)] = exp [−𝜇𝑓

𝑈 ∫
𝒟
(1 − 𝑒−𝑧|𝐶∩𝑈|ℓ(‖𝑥‖))d𝑥] .

To conclude the proof, we combine these equations:

𝜇𝑓
𝐶 ∫

∞

0
𝑒−𝑧𝒩0 exp[− ∑

𝑈∈𝒫(𝐾)
𝜇𝑓
𝑈ℐ(𝑧, |𝐶 ∩ 𝑈|)]d𝑧 = 𝜆𝑝𝐶𝐿𝐶

|𝐶|ℓ(𝑟)
,

which is the announced result.
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An observation we can make comes from the symmetry hypothesis. We
can conjecture that under this assumption, the stationary user densities fol-
low the same property, i.e., are such that whenever |𝐶| = |𝐷|, 𝜇𝐶 = 𝜇𝐷. The
proof for this result is not presented in this work, but numerical simulations
we performed suggest that it holds.

We can use this observation to obtain another version of the system of
equations in (6.1): if we define 𝜇𝑗 = 1

|𝒟|𝔼[∑𝑈∶|𝑈|=𝑗 Φ𝑈,0(𝒟)] = ∑𝑈∶|𝑈|=𝑗 𝜇𝑈
as the intensity of users communicating on 𝑗 channels, for 1 ≤ 𝑗 ≤ 𝐾, with
𝐿𝑗 = 𝐿𝐶 and 𝑝𝑗 = (𝐾𝑗 )𝑝𝐶 for all 𝐶 such that |𝐶| = 𝑗, we obtain the following
system of equations from Heuristic 1:

𝜇𝑓
𝑗 ∫

∞

0
𝑒−𝑧𝒩0 exp[−

𝐾
∑
𝑙=1

𝜇𝑓
𝑙

min(𝑗,𝑙)

∑
𝑚=1

𝛼𝑚,𝑗,𝑙ℐ(𝑧,𝑚)] d𝑧 =
𝜆𝑝𝑗𝐿𝑗

𝑗ℓ(𝑟)
, (6.3)

where 𝛼𝑚,𝑗,𝑙 =
( 𝑗
𝑚)( 𝑗−𝑙

𝑙−𝑚)
(𝐾𝑗 )

. This result if a consequence of Lemma 3.5 applied
to the vector of user densities.

This result can be interesting computationally, in the case where we want
to quickly estimate the density of users transmitting on a given class in the
symmetric system: in contrast to the system proposed in Heuristic 1, which
needs to solve 2𝐾 − 1 equations, the symmetric system from (6.3) possesses
𝐾 equations. As 𝐾 grows larger, the gain in performance becomes non-
negligible.

A heuristic for 𝜆𝑐

An interesting result arising from Heuristic 1 is an estimate for the value of
𝜆𝑐: a necessary condition for the fixed point equation (6.1) to admit solutions
is that the system is in it stationary regime, i.e., if 𝜆 < 𝜆𝑐. We define the
following estimate for 𝜆𝐶:

Heuristic 2. Let 𝜆P be the largest value of 𝜆 such that Equation (6.1) admits
a solution (or Equation (6.3) in the symmetric network). Then, 𝜆P is an
estimate for 𝜆𝑐, which we call the Poisson heuristic estimate.

This estimate is interesting because it comes from a completely different
approach and is only relying on the study of the stationary regime of Poisson
approximates of the network. We will discuss in Section 6.3 the performance
of this heuristic.

The reason why this heuristic captures the stability region of our dynam-
ics is not yet understood. We do not know if the value of 𝜆P is equal to the
value of 𝜆𝑐 presented in Theorem 2.2 or if this value is a precise numerical
approximation of the critical arrival rate.
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6.2 Second order heuristic
In an effort to refine the first order heuristic for user densities from Heuris-
tic 1, we introduce a second order heuristic, which uses an approximation for
the pair-wise correlation function in the stationary regime.

Heuristic 3. The second-order heuristic for the intensity of Φ0,𝐶 is 𝜇𝑠
𝐶

defined as:

𝜇𝑠
𝐶 = 𝜆𝑝𝐶𝐿𝐶

|𝐶|ℓ(𝑅)
(𝒩0 + 𝐼𝐶) , (6.4)

where 𝐼𝐶 ≜ 𝔼0
Φ𝐶,0

[𝐼(0𝐶, Φ0)] is the interference experienced by the typical
user of class 𝐶 in the stationary regime. The vector I = (𝐼𝐶)𝐶∈𝒫(𝐾) is the
solution to the following equation:

𝐼𝐶 = ∑
𝑈∈𝒫(𝐾)

|𝐶 ∩ 𝑈|
𝜇𝑠
𝐶

∫
𝑥∈𝒟

ℓ(‖𝑥‖)𝜌(2)𝐶,𝑈(𝑥, 0)d𝑥 ∀𝐶 ∈ 𝒫(𝐾), (6.5)

with the second order moment measure 𝜌(2)𝐶,𝑈 is defined as a function of I:

𝜌(2)𝐶,𝑈(𝑥, 𝑦) =
𝜆(𝜇𝑠

𝑈𝑝𝐶 + 𝜇𝑠
𝐶𝑝𝑈)

1
𝐿𝐶

|𝐶|ℓ(𝑅)
𝒩0+|𝐶∩𝑈|ℓ(‖𝑥−𝑦‖)+𝐼𝐶

+ 1
𝐿𝑈

|𝐷|ℓ(𝑅)
𝒩0+|𝐶∩𝐷|ℓ(‖𝑥−𝑦‖)+𝐼𝑈

. (6.6)

Proof. To obtain this heuristic, we make the following cavity approximation
in the system: let us consider a pair of points (𝑥, 𝑦) in 𝒟, where 𝑥 is of class
𝐶 and 𝑦 is of class 𝐷.

The arrival rate of the pair is 𝜆𝑝𝐶𝜇𝐷 + 𝜆𝑝𝐷𝜇𝐶, taking into account the
contributions of the two processes. To obtain the departure rate, let us fix
the locations of the two points. The interference experienced by a point
located at 𝑥 of class 𝐶 in the stationary regime conditioned on a user of class
𝐷 being present at 𝑦 is equal to:

𝐼(𝑥) = |𝐶 ∩ 𝐷|ℓ(‖𝑥 − 𝑦‖) + ∑
𝑈∈𝒫(𝐾)

∑
𝑧∈Φ0,𝑈\{𝑦}

|𝐶 ∩ 𝑈|ℓ(‖𝑧 − 𝑥‖)

= |𝐶 ∩ 𝐷|ℓ(‖𝑥 − 𝑦‖) + 𝐼𝐶, (6.7)

where 𝐼𝐶 is the interference experienced by the typical user of class 𝐶 in the
network, i.e. 𝐼𝐶 = 𝔼0

Φ0
[𝐼(0𝐶, Φ0)]. Using the definition of the second order

moment measure relative to processes Φ𝐶,0 and Φ𝑈,0, 𝜌
(2)
𝐶,𝑈, we have:

𝐼𝐶 = 𝔼0
Φ0

[𝐼(0𝐶, Φ0)] = ∑
𝑈

𝔼0
Φ0

[𝐼(0𝐶, Φ𝑈
0 )]

= 1
𝜇𝐶

∑
𝑈
|𝐶 ∩ 𝑈|∫

𝑥∈𝒟
ℓ(‖𝑥‖)𝜌(2)𝐶,𝑈(𝑥, 0)d𝑥.
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We obtain the departure rate for the pair (𝑥, 𝑦) with 𝑥 being of type 𝐶
and 𝑦 being of type 𝐷:

𝑑𝐶,𝐷(𝑥, 𝑦) =
1
𝐿𝐶

|𝐶|ℓ(𝑅)
𝒩0 + |𝐶 ∩ 𝐷|ℓ (‖𝑥 − 𝑦‖) + 𝐼𝐶

+ 1
𝐿𝐷

|𝐷|ℓ(𝑅)
𝒩0 + |𝐶 ∩ 𝐷|ℓ (‖𝑥 − 𝑦‖) + 𝐼𝐷

.

In the stationary regime, on average, the umber of arrivals compensate
the departures, which gives us:

𝜆(𝜇𝑈𝑝𝐶 + 𝜇𝐶𝑝𝑈) = 𝜌(2)𝐶,𝑈(𝑥, 𝑦)𝑑𝐶,𝐷(𝑥, 𝑦).
Finally, to obtain the second-order heuristic for 𝜇𝐶, we use Miyazawa’s

Rate Conservation principle for the process Φ𝐶,0(𝒟), assuming that all the
quantities are distributed according to their stationary distribution:

𝜆𝑝𝐶|𝒟| = 𝔼 [Φ𝐶,0(𝒟)] |𝐶|ℓ(𝑟)
𝒩0 + 𝐼𝐶

,

which gives the intended result.

6.3 Numerical simulations and performance
of the heuristics

We can compare the heuristics from Heuristic 1 and 2 to the value we obtain
through simulation. To compute this intensity, we use an ergodic approxi-
mation of the form:

𝜇𝐶 ≈ 1.28
𝑡

∫
𝑢+𝑡

𝑢

Φ𝑤,𝐶(𝒟)
|𝒟|

d𝑤, (6.8)

where 𝑢 is taken sufficiently large to ensure we are in the stationary regime
of the system and 𝑡 is large enough so that the approximation is correct. The
1.28 factor arising in (6.8) comes from a Palm bias: in the simulation, when
we compute the average number of users in 𝒟, we introduce an observation
bias when estimating the stationary user density, which we correct by using
this multiplicative factor.

Figure 6.1 displays the results of both the Poisson (in red, dashed) against
the numerical estimation of the user density (in blue, plain) for the process
Φ{1} using (6.8).

As we expected from previous results (see Section IV from [80]), the
Poisson heuristic for spatial wireless networks does not estimate precisely
the stationary user densities. This difference in predicted values can be eas-
ily explained by the fact that the stationary point process are not Poisson:
making a Poisson approximation amounts to removing the spatial interac-
tions between point processes in the stationary regime, which is likely to
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Figure 6.1: Value of 𝜇{1} as a function of 𝜆/𝜆𝑐 in a symmetric configuration.

not be true in our systems. From [80], we know that the single-class sys-
tem shows clustering in the stationary regime, which renders the Poisson
approximation less accurate when predicting the steady-state user densities.
A sensible conjecture to make is that our spatial multiclass wireless network
displays the same behavior in the stationary regime, which would provide an
explanation for this observation.

On the other hand, we can see that the second-order heuristic is more per-
formant when it comes to predicting the user densities, although the heuristic
is more computationally heavy as we have to evaluate double integrals. One
can further refine the approximation by developing higher order heuristics.
In such a setup, to develop a heuristic of order 𝑛, we would have to assume
the locations of 𝑛 points in the system, which we can approximate using
the heuristic of order 𝑛 − 1. This would lead us to building recursively a
sequence of heuristics for the 𝑛-th order of which we can study the conver-
gence (see [21]) in order to predict the spatial user densities in the stationary
regime.

Poisson heuristic
The Poisson heuristic for 𝜆𝑐 gives us an interesting result: Figure 6.2 shows
the respective values of 𝜆𝑐 and 𝜆P both in the symmetric and non-symmetric
case for different values of 𝑝{1,2}. In the symmetric case, we use 𝑝{1} =
𝑝{2} = 1−𝑝{1,2}

2 and we use the value of 𝜆𝑐 from Theorem 2.2. For the non-
symmetric case, we add a dysymmetry factor 𝛼, and we set 𝑝{1} = 𝛼𝑥,
𝑝{2} = (1 − 𝛼)𝑥 and 𝑝{1,2} = 1−𝑥

2 . For the value of 𝜆𝑐, we solve the system
defined in Theorem 4.5.

We can see that the Poisson heuristic for 𝜆𝑐 is very performant in both
cases. To explain this result, we can make the following conjecture: the first
order heuristic fails to predict correctly the spatial user density, but from
Figure 6.1, the difference in the predicted value tends to become smaller as
𝜆/𝜆𝑐 tends to 1. We can thus conjecture that in the heavy-traffic regime,
when 𝜆 becomes arbitrarily close to 𝜆𝑐, the subprocesses Φ0,𝐶 become Poisson
as the spatial interactions average out. Thus, the value of 𝜇𝐶 predicted
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Figure 6.2: Comparison between 𝜆𝑐 and its Poisson heuristic as a function
of 𝑝{1,2} in the network in the symmetric and the non-symmetric case.

through Heuristic 1 becomes exact, and as a consequence, the value of 𝜆P
becomes equal to 𝜆𝑐.



CHAPTER 7

CLUSTERING

We remind here the definition of clustering, taken from [80]: a point process is
said to be clustered if the dynamics show attraction in the stationary regime,
i.e.:

Definition 7.1. A PP Φ0 will be said to be clustered if and only if we have,
for all non-negative, non-increasing bounded function 𝑓:

𝔼 [𝐹(0, Φ0)] ≤ 𝔼0
Φ0

[𝐹 (0, Φ0)] . (7.1)

where 𝐹(𝑥,Φ0) = ∑𝑦∈Φ0\{𝑥}
𝑓(‖𝑥 − 𝑦‖) for 𝑥 ∈ Φ0.

The goal in this chapter is to study this property in the stationary regime,
and we will establish that the dynamics in the steady-state are clustered.
This question is of interest to allow for a better description of the stationary
regime of the dynamics, and to explain the precision of the Poisson heuristic
defined in the previous section.

A useful tool we will use to display clustering in the system is the Ripley-K
function, defined as:

𝐾Φ0
(𝑟) = 1

𝜆
𝔼0
Φ0

[𝜙(𝐵(0, 𝑟) − 1)] , (7.2)

where 𝜆 is the intensity of Φ0. Using 𝑓(𝑥) = 1{𝑥 ≤ 𝑟} in (7.1), we obtain a
necessary condition for clustered point processes: let Φ be a clustered point
process with intensity 𝜆 > 0 and Ψ be a homogenous PPP with intensity 𝜆.
Then, we have, for all 𝑟 > 0:

𝐾Φ(𝑟) ≥ 𝐾Ψ(𝑟) = 𝜋𝑟2.

This results gives the classical interpretation for clustering, where users
in the stationary regime attract each other. We know that clustering was
proved in the single-class case (see [80]), and we would like to see how this
translates in the multiclass setting. First, let us state the following lemma:
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Lemma 7.1. If Φ𝑡 is stable, we have, for all 𝐶 ∈ 𝒫(𝐾):

𝑝𝐶𝔼[𝐹(0𝐶, Φ0)] + ∑
𝑈∈𝒫(𝐾)

𝑝𝑈𝔼[𝐹(0𝑈, Φ0,𝐶)]

≤ 𝔼0
Φ0,𝐶

[𝐹 (0𝐶, Φ0)] + ∑
𝑈∈𝒫(𝐾)

𝔼0
Φ0,𝑈

[𝐹 (0𝑈, Φ0,𝐶)]. (7.3)

Proof. Let 𝐶 ∈ 𝒫(𝐾) and let us denote 𝐹𝑡,𝐶 = ∑𝑥∈Φ𝑡,𝐶
𝐹(𝑥,Φ𝑡), where 𝐹 is

a shot-noise following the conditions stated in Definition 7.1.
Let us assume that a user arrives at 𝑎 ∈ 𝒟 between times 𝑡 and 𝑡 + 𝑑𝑡 so

that Φ𝑡+𝑑𝑡 = Φ𝑡 ∪ {𝑎}. By making a simple case study, if 𝑎 is of class 𝐶, we
have:

𝐹𝑡+𝑑𝑡,𝐶 = ∑
𝑥∈Φ𝑡+𝑑𝑡,𝐶

𝐹(𝑥,Φ𝑡+𝑑𝑡) = ∑
𝑥∈Φ𝑡,𝐶

𝐹(𝑥,Φ𝑡+𝑑𝑡) + 𝐹(𝑎,Φ𝑡+𝑑𝑡)

= ∑
𝑥∈Φ𝑡+𝑑𝑡,𝐶

( ∑
𝑦∈Φ𝑡+𝑑𝑡\{𝑥}

𝑓(‖𝑥 − 𝑦‖)) + ∑
𝑦∈Φ𝑡+𝑑𝑡\{𝑎}

𝑓(‖𝑎 − 𝑦‖)

= ∑
𝑥∈Φ𝑡,𝐶

( ∑
𝑦∈Φ𝑡\{𝑥}

𝑓(‖𝑥 − 𝑦‖)) + ∑
𝑦∈Φ𝑡,𝐶\{𝑎}

𝑓(‖𝑎 − 𝑦‖) + 𝐹(𝑎,Φ𝑡)

= 𝐹𝑡,𝐶 + 𝐹(𝑎,Φ𝑡,𝐶) + 𝐹(𝑎,Φ𝑡).

If 𝑎 is of class 𝑈 ≠ 𝐶, we make a similar calculation to get:

𝐹𝑡+𝑑𝑡,𝐶 = 𝐹𝑡,𝐶 + 𝐹(𝑎,Φ𝑡,𝐶).

Let 𝐹0,𝐶 denote the stationary regime of the stochastic process 𝐹𝑡,𝐶, and
let AF𝐶 = 𝐹0+,𝐶−𝐹0,𝐶 be the increase in 𝐹𝑡,𝐶 in the stationary regime after
one arrival.

An arriving user in the network choses class 𝐶 with probability 𝑝𝐶. Let
𝔼↑ be the Palm probability associated with the PP of arrival instants in ℝ.
We use the PASTA property i.e., we can assume that an arriving user is the
typical user using this class. This means that the increase in 𝐹0,𝐶 induced by
an arrival of a user of class 𝐶 ∈ 𝒫(𝐾) is equal to 𝔼 [𝐹(0𝐶, Φ0,𝐶 + 𝐹(0𝐶, Φ0))],
and to 𝔼 [𝐹(0𝐷, Φ0,𝐶)] if the arriving user is of class 𝐷 ≠ 𝐶. We have:

𝔼↑[AF𝐶] = 𝑝𝐶𝔼[𝐹(0𝐶, Φ0,𝐶) + 𝐹(0𝐶, Φ0)] + ∑
𝑈≠𝐶

𝑝𝑈𝔼[𝐹(0𝑈, Φ0,𝐶)]

= 𝑝𝐶𝔼[𝐹(0𝐶, Φ0)] + ∑
𝑈∈𝒫(𝐾)

𝑝𝑈𝔼[𝐹(0𝑈, Φ0,𝐶)].
(7.4)

We consider the point process corresponding to deaths instants of users of
class 𝐶. It admits as stochastic intensity R𝑡,𝐶 = 1

𝐿𝐶
∑𝑥∈Φ𝑡,𝐶

𝑅(𝑥,Φ𝑡) with
respect to the filtration ℱ𝑡,𝐶 = 𝜎{Φ𝐶,𝑠, 𝑠 < 𝑡}. Using Papangelou’s theorem
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(see Theorem 1.9.2 in [14]), the associated Palm probability measure admits
a Radon-Nikodym derivative equal to:

dℙ↓

dℙ𝐶
=

R0,𝐶

𝔼[R0,𝐶]
. (7.5)

A user located at 𝑏 ∈ Φ0 with class 𝐷 ∈ 𝒫(𝐾) leaves the system with
probability 𝑅(𝑥,Φ0)

𝐿𝐷𝔼[R0,𝐷] . Let DF𝐶 = 𝐹0,𝐶−𝐹0−,𝐶 denote the decrement process
of 𝐹0,𝐶. We can write the expected decrease in 𝐹𝑡,𝐶 caused by a departure
from the system:

𝔼↓[DF𝐶] = 𝔼[
R0,𝐶

𝔼[R0,𝐶]
∑

𝑥∈Φ0,𝐶

𝑅(𝑥,Φ0)
𝐿𝐶R0,𝐶

(𝐹(𝑥,Φ0) + 𝐹(𝑥,Φ0,𝐶))]

+ 𝔼[∑
𝐷≠𝐶

R0,𝐷

𝔼[R0,𝐷]
∑

𝑥∈Φ0,𝐷

𝑅(𝑥,Φ0,𝐷)
𝐿𝐷R0,𝐷

𝐹(𝑥,Φ0,𝐶)] .

We can rearrange the previous equation by using the definition of the
Palm expectation to get:

𝔼↓[DF𝐶] =
𝔼[Φ0,𝐶(𝒟)]
𝐿𝐶𝔼[R0,𝐶]

𝔼0
Φ0,𝐶

[𝑅(0𝐶, Φ0)𝐹(0𝐶, Φ0)]+

∑
𝑈∈𝒫(𝐾)

𝔼[Φ0,𝑈(𝒟)]
𝐿𝑈𝔼[R0,𝑈]

𝔼0
Φ0,𝑈

[𝑅(0𝑈, Φ0,𝐶)𝐹(0𝑈, Φ0,𝐶)] . (7.6)

Let us apply the RCP to the quantity of information present in the net-
work. We get:

𝔼[R0,𝐶] = 𝜆𝑝𝐶|𝒟|
𝔼0
Φ0,𝐶

[𝑅(0𝐶, Φ0)]𝐸[Φ0,𝐶(𝒟)] = 𝜆𝑝𝐶𝐿𝐶|𝒟|. (7.7)

Let 𝑈,𝐶 ∈ 𝒫(𝐾). Then, 𝑅(0𝑈, Φ0,𝐶) and 𝐹(0𝑈, Φ0,𝐶) are negatively
correlated: if 𝐶 ∩ 𝑈 ≠ ∅, an arrival of a user of class 𝑈 increases the shot-
noise on users of class 𝐶, and slow down the rate-of-transfer for these users.
If 𝐶∩𝑈 = ∅, there exists 𝐷 such that 𝐶∩𝐷 ≠ ∅ and 𝐶∩𝑈 ≠ ∅ (for example,
𝐷 = 𝐶 ∪𝑈). An arrival of a user of class 𝑈 increases the shot-noise for users
of class 𝐷 and decrease the rate-of-transfer for these users. Consequently,
the rate-of-transfer for users of class 𝑈 slows down as well.

Moreover, 𝑅(0𝐶, Φ0) and 𝐹(0𝐶, Φ0) are also negatively correlated. Using
the FKG inequality in (7.6) and the two relations from (7.7) yields:

𝔼↓[DF𝐶] ≤ 𝔼0
Φ0,𝐶

[𝐹 (0𝐶, Φ0)] + ∑
𝑈∈𝒫(𝐾)

𝔼0
Φ0,𝑈

[𝐹 (0𝑈, Φ0,𝐶)]. (7.8)

A last application of the RCP to the number of users of class 𝐶 in the
system in the stationary regime gives:
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𝔼↑[AF𝐶] = 𝔼↓[DF𝐶], (7.9)

which gives the following inequality, for all 𝐶 ∈ 𝒫(𝐾):

𝑝𝐶𝔼[𝐹(0𝐶, Φ0)] + ∑
𝑈∈𝒫(𝐾)

𝑝𝑈𝔼[𝐹(0𝑈, Φ0,𝐶)]

≤ 𝔼0
Φ0,𝐶

[𝐹 (0𝐶, Φ0)] + ∑
𝑈∈𝒫(𝐾)

𝔼0
Φ0,𝑈

[𝐹 (0𝑈, Φ0,𝐶)], (7.10)

which is the intended result.

We can see that Lemma 7.1 is a consequence of the clustering of the
subprocesses Φ0,𝐶: if each of these processes was clustered, then we would
have:

𝔼[𝐹(0𝐶, Φ0)] ≤ 𝔼0
Φ0,𝐶

[𝐹 (0𝐶, Φ0)],

which immediately yields the same result.
Let us sum (7.3) over 𝐶 ∈ 𝒫(𝐾). Using the law of total expectations,

and reminding that the typical user is of type 𝐶 with probability 𝑝𝐶 and that
Φ0 is the superposition of the processes Φ0,𝐶, we have:

∑
𝐶

[𝑝𝐶𝔼[𝐹(0𝐶, Φ0)]+ ∑
𝑈∈𝒫(𝐾)

𝑝𝑈𝔼[𝐹(0𝑈, Φ0,𝐶)]]

= ∑
𝐶

𝑝𝐶𝔼[𝐹(0, Φ0,𝐶|0𝐶)] +∑
𝐶

∑
𝑈∈𝒫(𝐾)

𝑝𝑈𝔼[𝐹(0𝑈, Φ0,𝐶)]

=
(𝑎)

𝔼[𝐹(0, Φ0)] +∑
𝑈

∑
𝐶

𝔼[𝐹(0, Φ0,𝐶|0𝑈)]

= 2𝔼[𝐹(0, Φ0)],

where (𝑎) uses the fact that ∑𝐶 𝔼[𝐹(0, Φ0,𝐶|0𝑈)] = 𝔼[𝐹(0, Φ0|0𝑈)]. This
yields:

2𝔼[𝐹(0, Φ0)] ≤ 2 ∑
𝐶∈𝒫(𝐾)

𝔼0
Φ0,𝐶

[𝐹 (0𝐶, Φ0)]. (7.11)

We thus obtain the following result:

Theorem 7.2. In the stationary regime, we have:

𝔼[𝐹(0, Φ0)] ≤ ∑
𝐶∈𝒫(𝐾)

𝔼0
Φ0,𝐶

[𝐹 (0𝐶, Φ0)]. (7.12)

The condition established in (7.2) is weaker than the clustering condition
established in Definition 7.1. To see why, we can iterate the result from
Lemma A.4 over all 𝐶 ∈ 𝒫(𝐾) to obtain:
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∑
𝐶∈𝒫(𝐾)

𝜇𝐶
𝜇0

𝔼0
Φ0,𝐶

[𝐹 (0𝐶, Φ0)] = 𝔼0
Φ0

[𝐹 (0, Φ0)].

In the general case, we have no way to directly compare∑𝐶
𝜇𝐶
𝜇0

𝔼0
Φ0,𝐶

[𝐹 (0𝐶, Φ0)]
and ∑𝐶 𝔼0

Φ0,𝐶
[𝐹 (0𝐶, Φ0)], so we cannot establish clustering in the network

as it is defined in [80].
Though, the result from Theorem 7.2 can be interpreted. Firstly, we can

remark that in case 𝐾 = 1, we obtain the statistical clustering observed
in [80], which gives attraction between the points in the single-tier case. In
the case 𝐾 ≥ 2, we use 𝑓(𝑥) = 1{𝑥 ≥ 𝑟} and Slyvniak’s theorem to obtain
the following condition:

𝜋𝑟2 ≤ ∑
𝐶∈𝒫(𝐾)

𝜇𝐶
𝜇0

𝐾Φ0,𝐶
(𝑟). (7.13)

Equation (7.13) states that the average number of points we see around
around a given user is larger than its Poisson equivalent, i.e. that the system
shows some kind of attraction in the stationary regime. The reason why we
cannot reach per-class attraction in the stationary regime comes from the
multiclass setup of the network: due to the difference in relative interference
power in the users, some users attract other users more than others. With
this observation, users of class 𝐶 will be attracted by other users of class
𝐶, but also by users of class 𝐷 such that 𝐷 ∩ 𝐶 ≠ ∅. The condition from
Theorem 7.2 averages the observation over all classes to remove this effect.





CHAPTER 8

HIGHER ORDER MOMENT
MEASURES

In the stationary regime, the definition of stability implies that the first order
moment measure is finite. Higher order moment measures are an interest-
ing object of study. In [22], Banerjee and Sankararaman study interference
queuing networks on the lattice ℤ𝑑 and obtain the existence and finiteness
of exponential moment measures. The architecture of this section is based
on these results.

From Theorem 2.1, we know that the SBD process Φ0(𝒟) can be bounded
from above and below by two interference queuing networks (as defined
in [81]). The goal of this chapter is to study how the results obtained on this
category of queuing network translates to our dynamics, and if we can ob-
tain the existence of exponential moments for the jump process Φ0(𝒟). This
question is of interest as it allows to obtain information about the stationary
distribution of the queuing process Φ0(𝒟), which represent the population of
users in the network, and allows to bound the tails of the distribution using
the probability generating function.

The following Theorem is the main result in this section:

Theorem 8.1. In the symmetric case, for all 𝜆 ≤ 𝜆𝑐, there exists 𝑐0 > 0
such that for all 𝑐 ∈ [0, 𝑐0), we have:

𝔼 [𝑒𝑐Φ0(𝒟)] < ∞.

Proof. We will start by proving that the queuing system �̄�𝜀 has exponential
moments. We will then conclude with the existence of exponential moments
for Φ0(𝒟) using the stochastic domination from Theorem 1.2.

Let us start the following Lemma:

Lemma 8.2. Let y ∈ ℝ𝑁𝜀×2𝐾 . Then, we have:
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�̄�𝑐 ∑
𝑖,𝐶

𝑦𝑚𝑖,𝐶 ≤ ∑
𝑖,𝐶

𝑦𝑚𝑖,𝐶
1

𝐿𝐶𝑝𝐶𝜀2
𝑅𝑖,𝐶(y), (8.1)

Proof. Using the Cauchy-Schwartz inequality, we have:

(∑
𝑖,𝐶

𝑦𝑚𝑖,𝐶)
2

≤ (∑
𝑖,𝐶

𝑦𝑚𝑖,𝐶
1

𝐿𝐶𝑝𝐶𝜀2
𝑅𝑖,𝐶(y))(∑

𝑖,𝐶

𝑦𝑚𝑖,𝐶
1

𝐿𝐶𝑝𝐶𝜀2𝑅𝑖,𝐶(y)
) . (8.2)

Let us focus on the second term of the right-hand side of the inequality.
We know, from the definition of �̄�𝑐, that it is the largest 𝜈 > 0 such that there
exists z ∈ ℝ𝑁𝜀×2𝐾−1

+ such that for all 𝑖, 𝐶, 𝜈𝑝𝐶𝜀2 ≤ 1
𝐿𝐶

|𝐶|𝑧𝑖,𝐶
∑𝑘,𝑈 ℓ𝜀(𝑎𝑘,𝑎𝑖)|𝐶∩𝑈|𝑧𝑘,𝑈

.

As a consequence, for all y ∈ ℝ𝑁𝜀×2𝐾−1
+ , we have:

1
𝐿𝐶

𝑅𝑖,𝐶(y) ≥ �̄�𝑐𝑝𝐶𝜀2.

This yields:

∑
𝑖,𝐶

𝑦𝑚𝑖,𝐶
1

𝐿𝐶𝑝𝐶𝜀2𝑅𝑖,𝐶(y)
≤ ∑

𝑖,𝐶

1
𝜆𝑐

𝑦𝑚𝑖,𝐶.

Injecting this result into (8.2) gives:

�̄�𝑐 ∑
𝑖,𝐶

𝑦𝑚𝑖,𝐶 ≤ ∑
𝑖,𝐶

𝑦𝑚𝑖,𝐶
1

𝐿𝐶𝑝𝐶𝜀2
𝑅𝑖,𝐶(y), (8.3)

which concludes the proof.

We can now prove this next lemma:

Lemma 8.3. Let 𝜆 < �̄�𝑐 and 𝐷𝜀 =
�̄�𝑐−𝜆

𝜆+1/�̄� ̄𝑝𝜀2
, where �̄� ̄𝑝 = min𝐶 𝐿𝐶𝑝𝐶. Then,

we have:

𝐷∑
𝑖,𝐶

𝔼[𝑋𝑚
𝑖,𝐶] ≤ ∑

𝑖,𝐶
(𝑚+ 1

𝑘
)𝐸[𝑋𝑘

𝑖,𝐶] .

Proof. Let us consider the function 𝑉 (y) = ∑𝑖,𝐶
1

𝑝𝐶𝜀2𝑦
𝑚+1
𝑖,𝐶 , and let ℒ be

the infinitesimal generator associated with the Markov chain X̄. Since the
system is stationary, 𝔼 [ℒ𝑉 (X̄)] = 0, which translates as:

∑
𝑖,𝐶

𝜆𝔼 [(�̄�𝑖,𝐶 + 1)𝑚+1 − �̄�𝑚+1
𝑖,𝐶 ]

+∑
𝑖,𝐶

𝔼[ 1
𝐿𝐶𝑝𝐶𝜀2

𝑅𝑖,𝐶(X̄) ((�̄�𝑖,𝐶 − 1)𝑚+1 − �̄�𝑚+1
𝑖,𝐶 )] = 0,
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After separating the terms of index 𝑚 on the left side of the equations,
and the others in the right side, we get:

∑
𝑖,𝐶

𝔼[(−𝜆 + 1
𝐿𝐶𝑝𝐶𝜀2

𝑅𝑖,𝐶(X̄)) �̄�𝑚
𝑖,𝐶]

= ∑
𝑖,𝐶

𝑚−1
∑
𝑘=0

(𝑚+ 1
𝑘

)𝔼[(𝜆 + 1
𝐿𝐶𝑝𝐶𝜀2

𝑅𝑖,𝐶(X̄)(−1)𝑘+1−𝑙)�̄�𝑘
𝑖,𝐶] .

We then remind that we have, for all 𝑖, 𝐶, 1
𝐿𝐶𝑝𝐶𝜀2𝑅𝑖,𝐶(X̄) ≤ 1

𝐿𝐶𝑝𝐶𝜀2 . We
apply this to the two sides of the equation, and we use Lemma 8.2 to the
left-hand side to get:

∑
𝑖,𝐶

(�̄�𝑐 − 𝜆)𝔼 [�̄�𝑚
𝑖,𝐶] ≤ ∑

𝑖,𝐶

𝑚−1
∑
𝑘=0

(𝜆 + 1
𝐿𝐶𝑝𝐶𝜀2

)(𝑚+ 1
𝑘

)𝔼[�̄�𝑘
𝑖,𝐶]

Let �̄� ̄𝑝 = min𝐶 𝑝𝐶𝐿𝐶. We get:

(�̄�𝑐 − 𝜆)∑
𝑖,𝐶

𝔼[�̄�𝑚
𝑖,𝐶] ≤ (𝜆 + 1

�̄� ̄𝑝𝜀2
)∑

𝑖,𝐶

𝑚−1
∑
𝑘=0

(𝑚+ 1
𝑘

)𝔼[�̄�𝑘
𝑖,𝐶]

Let us set 𝐷𝜀 =
�̄�𝑐−𝜆

𝜆+ 1
�̄��̄�𝜀2

, which concludes the proof.

We can move to proving the main result of the theorem. We multiply
each side by 𝑐𝑚

𝑚! sum the inequalities for 1 ≤ 𝑚 ≤ 𝑁:

𝐷𝜀

𝑁
∑
𝑚=1

𝔼[∑
𝑖,𝐶

�̄�𝑚
𝑖,𝐶]

𝑐𝑚

𝑚!
≤

𝑁
∑
𝑚=1

𝑚−1
∑
𝑘=0

𝑐𝑚

𝑘!(𝑚 + 1 − 𝑘)!
𝔼[∑

𝑖,𝐶
�̄�𝑘

𝑖,𝐶]

≤ ∑
𝑖,𝐶

𝑁−1
∑
𝑘=0

𝑁
∑

𝑚=𝑘+1

𝔼[�̄�𝑘
𝑖,𝐶]

𝑘!

𝑁
∑

𝑚=𝑘+1

𝑐𝑘

(𝑚 + 1 − 𝑘)!

= ∑
𝑖,𝐶

𝑁−1
∑
𝑘=0

𝔼[�̄�𝑘
𝑖,𝐶]

𝑘!

𝑁−𝑘−1
∑
𝑢=0

𝑐𝑘+𝑢+1

(𝑢 + 2)!

≤ ∑
𝑖,𝐶

𝑁−1
∑
𝑘=0

𝔼[�̄�𝑘
𝑖,𝐶]

𝑐𝑘+1

𝑘!

∞
∑
𝑢=0

𝑐𝑢

(𝑢 + 2)!

≤ 𝑐𝑒𝑐 ∑
𝑖,𝐶

𝑁
∑
𝑘=0

𝔼[�̄�𝑘
𝑖,𝐶]

𝑐𝑘

𝑘!
.

Let 𝑆𝑁 = ∑𝑖,𝐶 ∑𝑁
𝑚=0 𝔼[�̄�𝑚

𝑖,𝐶]
𝑐𝑚
𝑚! . The last inequality can be rearranged

as:
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𝐷𝜀(𝑆𝑁 − 1) ≤ 𝑐𝑒𝑐𝑆𝑁 ⇔ 𝑆𝑁 ≤ 𝐷𝜀
𝐷𝜀 − 𝑐𝑒𝑐

. (8.4)

We thus obtain that for each 𝑖, 𝐶, 𝔼[�̄�𝑚
𝑖,𝐶] ≤ 𝑆𝑁 ≤ 𝐷𝜀

𝐷𝜀−𝑐𝑒𝑐 . Since the
sequence is increasing, and bounded from above, it converges, and we can
conclude that 𝔼[𝑒𝑐�̄�𝑖,𝐶] is finite as long as 𝑐𝑒𝑐 ≤ 𝐷𝜀. We set ̄𝑐0 = 𝑊(𝐷𝜀),
where 𝑊 is the Lambert W function, i.e. for all 𝑥, 𝑊(𝑥) is the unique value
such that 𝑥 = 𝑊(𝑥)𝑒𝑊(𝑥).

We have proven that any queue taken at random in X̄ has finite exponen-
tial moments, whenever 𝜆 < �̄�𝑐. We can easily observe that lim𝜀→0+ 𝐷𝜀 = 0,
which gives as a consequence, that 𝔼 [𝑒𝑐Φ0(𝒟)] is finite if and only if 𝑐 = 0
(due to the fact that 𝑊(0) = 0).

We remind that Φ0(𝒟) ≤ ∑𝑖,𝐶 �̄�𝑖,𝐶, for all 𝜀 > 0. Instead of letting 𝜀 go
to 0, we can take its largest possible value, i.e. 𝜀2 = |𝒟|, which corresponds
to the setup where there is only one queue in the region. Let �̄�0 be the
critical arrival rate for this system, and we define:

𝐷0 = �̄�0 − 𝜆
𝜆 + 1

�̄��̄�|𝒟|
.

We can use stochastic domination to conclude that for all 𝑐 < 𝑐0, 𝔼 [𝑒𝑐Φ0(𝒟)] <
∞, with 𝑐0 = 𝑊(𝐷0), whenever 𝜆 < 𝜆𝑐.

Among the notable consequences of Theorem 8.1, we can obtain interest-
ing bounds for the number of users in the stationary regime:

Theorem 8.4. There exists 𝑐1 > 0 and 𝑥0 such that for all 𝑥 > 𝑥0, we have:

ℙ [Φ0(𝒟) > 𝑥] ≤ 𝑒−𝑐1𝑥.

Proof. We apply Markov’s inequality to the variable 𝑒𝑐Φ0(𝒟), with 0 < 𝑐 < 𝑐0:

ℙ [𝑒𝑐Φ0(𝒟) > 𝑒𝑐𝑥] ≤
𝔼 [𝑒𝑐Φ0(𝒟)]

𝑒𝑐𝑥
. (8.5)

Let 𝐾 > 0 that 𝔼 [𝑒𝑐Φ0(𝒟)] < 𝐾 < ∞. Because the function 𝑥 ↦ 𝑒𝑐𝑥 is
positive and increasing, we obtain:

ℙ [Φ0(𝒟) > 𝑥] ≤ 𝐾𝑒−𝑐𝑥. (8.6)

Through calculation, we can obtain that there exists 𝑥0 > 0 and 𝑐1 > 0
such that for 𝑥 ≥ 𝑥0, 𝐾𝑒−𝑐𝑥 ≤ 𝑒−𝑐1𝑥, which concludes the proof.

The result from Theorem 8.4 can provide for bounds for the staying time
for users in the system, using Little’s law (see [64]), which provides an inter-
esting result about transmitting time in the network.

Figure 8.1 displays the population in the system for two values of 𝜆,
one in the stable regime, the other in the unstable regime. The form of
the histograms tend to show that in the stable regime, the population in
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Figure 8.1: Population distribution for two realizations of the network, in the
stable regime (left, 𝜆 = 0.9𝜆𝐶) and unstable regime (right, 𝜆 = 1.1𝜆𝑐). In
the stable regime, we see that the stationary distribution has bounded tails
whereas in the unstable regime, the stationary distribution is unbounded.

the network has bounded tails, whereas the unstable system has unbounded
tails. This result is displayed in Figure 8.2 shows the distribution tails in the
system in the two regimes, and outline the result of Theorem 8.4.
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Figure 8.2: Population tails in the symmetric system, with 𝜆 = 0.95𝜆𝐶

The result of Theorem 8.4 allows to obtain an interesting bound for the
population of users in the stationary regime. Using this result with Little’s
law (see [64]), we can also obtain that the distribution of service times in the
system has exponential tails, which is a very interesting property to have in
communication networks.





Part III

Velocity-based association
policies in multitier
wireless networks
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CHAPTER 9

TWO-TIER 5G WIRELESS
NETWORK

9.1 Network setup
The classical setup for multi-tier networks relies on maximum power associ-
ation policies [39], where MUs always connect to the tier and the BS that
offers the best received power. These policies only rely on the geometry of
the network and do not take into account MU mobility. In [73], the authors
studied a class of association policies purely based on user velocity, consisting
in setting a velocity threshold deciding which tier an MU should be associ-
ated with. The main result of [73] lies in finding an optimal threshold, that
maximizes the expected mean effective Shannon rate the typical user in the
network receives. These threshold association policies are able to outperform
the classical max power association policies for densely populated networks
with high mobility MUs, but offer poor performance in other mobility or
user-density patterns.

The goal of this part and the following ones is to define a class of associ-
ation policies incorporating both the ideas of max power and velocity-aware
association policies, that rely on MU velocity, using only the network param-
eters and easily obtainable data, such as velocity and received power. This
line of thought leads us to introduce velocity-biased max power (VBMP) as-
sociation policies, where users are associated with the network tier that offers
the best received power, up to a bias factor dictated by the velocity of the
MU.

For our study, we propose a simple two-tier network architecture using two
types of base stations (BSs) with the same frequency bands and differences
in spatial intensity and transmit power: smaller micro cells overlay larger
macro cells. We assume that base stations (BSs) are located according to
two independent homogeneous Poisson point processes (PPP): the macro
BSs form a PPP Φ𝑀 ⊂ ℝ2 of intensity 𝜆𝑀 and the micro BSs a PPP Φ𝜇 of
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intensity 𝜆𝜇, with 𝜆𝜇 > 𝜆𝑀.
We assume that mobile users (MUs) are located according to a third sta-

tionary PPP Φ𝑢 of intensity 𝜆𝑢. Each MU moves on a straight line with
an orientation chosen at random and independent of other MUs. Each MU
travels at a constant velocity 𝑣, sampled from a given distribution 𝑓, inde-
pendently for each user. Without loss of generality, using the homogeneity
and isotropy of the PPP, we can assume that the typical MU is located at
the origin and that its motion is along the 𝑥-axis.

We assume that all BSs are always active. Some of the results presented
here can be extended to the case where BSs with no users are shut off, but
this does not fall in the scope of this work.

Base stations use directional beamforming with a sector approximation to
communicate with the typical MU (see Section B.3). Under this assumption,
the probability that the typical MU lies in the main (resp. side) lobe of its
serving BS in the macro tier is thus equal to 𝑝𝑀,𝑚 = 1

𝑛𝑀
(resp. 1 − 𝑝𝑀,𝑚).

The antenna gain of the typical MU is thus equal to:

𝑔𝑀,𝑥 = {
𝐺𝑀

𝑚 w.p. 𝑝𝑀,𝑚

𝐺𝑀
𝑠 w.p. 1 − 𝑝𝑀,𝑚.

(9.1)

The micro and macro tiers share the same spectrum, so they interfere
with one another. We call the tier with which the typical MU is associated
the association tier, and the other tier, the interferer tier. An MU in the
network always connects to the closest BS in its association tier. This BS
association results in cells of BSs forming a Poisson-Voronoi (PV) tessellation
(see Section A.3).

Let ℓ(𝑥) ≜ 𝐾𝑥−𝛼, with 𝛼 > 2 and 𝐾 = ( 𝑐
4𝜋𝑓𝑐

)
2
, be the path-loss function

for the system, where 𝑓𝑐 is the carrier frequency and 𝑐 is the speed of light.
We assume Rayleigh fading with mean 1 between the BS located at 𝑥 and
the typical MU at the origin, denoted by ℎ𝑥. Let 𝑃𝑀 and 𝑃𝜇 denote the
transmit powers for each tier, with 𝑃𝜇 < 𝑃𝑀, and 𝐺𝑀

𝑥 and 𝐺𝜇
𝑦 the antenna

gains for macro and micro BSs located at 𝑥 and 𝑦, respectively. We define
the interference experienced by the typical MU from macro tier BSs as:

𝐼𝑀(Φ𝑀) = ∑
𝑥∈Φ𝑀

ℎ𝑥𝑔𝑀,𝑥𝑃𝑀ℓ(‖𝑥‖).

Let 𝑋𝑀,0 be the closest macro BS to the typical MU, and 𝑋𝜇,0 be its
micro counterpart. Conditioned on that the closest macro BS to which the
typical MU connects is at distance 𝑟 > 0, the SINR at the typical MU,
denoted as SINR𝑀 is expressed as

SINR𝑀 =
ℎ0𝑃𝑀𝑔𝑀,0𝐾𝑟−𝛼

𝜎2 + 𝐼𝑀(Φ𝑀\{𝑋𝑀,0}) + 𝐼𝜇(Φ𝜇)
, (9.2)

where 𝑔𝑀,0 (given by (B.8)) is the gain of the serving BS of the typical
MU and 𝜎2 is the thermal noise density.
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Parameters
We consider that both tiers use a carrier frequency 𝑓𝑐 in the 3.5 GHz range
with a bandwidth 𝑊 = 100 MHz. The transmit powers of macro and micro
BSs are assumed to be 20 W and 4 W, respectively. The antenna gain profile
we consider for numerical results is that the main lobe gain is 𝐺𝑀

𝑚 = 𝑛𝑀
and the side lobe gain is 𝐺𝑀

𝑠 = 1/𝑛𝑀, but other gain profiles can be used.
The thermal noise 𝜎2 is −174 dBm.Hz−1. Finally, MU velocities are sampled
from an exponential distribution with scale parameter 𝑣𝑢. Table 9.1 gives
the parameters used in the numerical results.

Table 9.1: Values of network parameters in Part III

Parameter Micro tier Macro tier
Carrier frequency (𝑓𝑐) 3.5 GHz
Bandwidth (𝑊) 100 MHz
Thermal noise density (𝜎2) −174 dBm.Hz−1

Transmit powers (𝑃𝜇, 𝑃𝑀) 36 dBm 43 dBm
Beam reselection time (𝑇𝜇,𝑏, 𝑇𝑀,𝑏) 23 ms
BS handover time (𝑇𝜇,𝑐, 𝑇𝑀,𝑐) 43 ms
SSB burst periodicity (𝜏) 20 ms
Path-loss exponent (𝛼) 4
Number of beams (𝑛𝜇, 𝑛𝑀) 8
MU intensity (𝜆𝑢) 1 m−2

BS intensities (𝜆𝜇, 𝜆𝑀) 0.1 m−2 0.02 m−2

Velocity scale parameter (𝑣𝑢) [1, 10, 35] m.s−1

Maximum SINR (𝑄max) 30 dB

9.2 Shannon rate
We denote the Shannon rate per Hertz in each tier byℛ𝑀 = 𝔼 [log(1 + SINR𝑀)]
and ℛ𝜇 = 𝔼[log(1 + SINR𝜇)]. Due to RF imperfections and modulation
schemes, we set 𝑄max to be the maximum achievable SINR. Thus, we have

ℛ𝑀 = ∫
𝑄max

0

𝑝𝑀(𝑇 )
1 + 𝑇

d𝑇 (9.3)

in the macro tier. The same applies in the micro tier by using the appropriate
values. Using Theorem 10.1, the Shannon rate achieved by the typical MU
can be expressed as

ℛ𝑀(𝑣) = (1 − 𝑝𝑀bm(𝑣))ℛ𝑀,𝑚 + 𝑝𝑀bm(𝑣)ℛ𝑀,𝑠, (9.4)

where ℛ𝑀,𝑚 is the Shannon rate achieved with no beam misalignment, while
ℛ𝑀,𝑠 is its equivalent with beam misalignment (as discussed in Section B.3).
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Equation (9.3) gives the Shannon rate for the typical MU without con-
sidering the overheads associated with beam reselections during intra-cell
mobility and BS handovers during inter-cell mobility. To take these over-
heads into account, we now define the effective Shannon rate.

9.3 Mean Effective Shannon rate under an
association policy

The metric we use to compare association policies is the ESR received by the
typical MU as given by (B.6). In this chapter and the following, we define an
association policy 𝒫 as a property for MUs 𝒫 such that if for a MU located
at 𝑥, if 𝒫(𝑥) holds, the MU is associated with the micro tier of the network,
and if 𝒫 does not hold, it is associated with the macro tier.

In the case of velocity-based association policies, the property 𝒫 depends
only on the velocity 𝑣 of the MU, and we denote as 𝒫(𝑣) the truth value of
the property. �̄� represents the negation of the proposition 𝒫. We have:

Lemma 9.1. For a given velocity-based association policy 𝒫, the average
ESR received by the typical MU is given by:

ℛ(𝒫) = ∫
∞

0
(ℛ𝜇,eff(𝑣)1𝒫(𝑣) +ℛ𝑀,eff(𝑣)1�̄�(𝑣)) 𝑓(𝑣)d𝑣, (9.5)

where 1(⋅) is the indicator function and �̄� the negation of 𝒫.

This result uses and ergodic interpretation: to obtain the average MESR
the typical user experiences over its trajectory, we compute the spatial av-
erage of the ESR over a large ball of radius 𝑅 > 0 centered at the origin,
with MUs having velocities sampled i.i.d. from the distribution 𝑓. Under a
velocity-based association policy, the spatial average of the MESR of MUs in
this ball becomes an average over the velocities of the MUs. Using Birkhoff’s
ergodic theorem [27], we can prove that this spatial average converges to a
constant, ℛ(𝒫), which is also equal to the ESR experienced by the typical
MU.

This metric will be used throughout this part to compare the performance
of the different policies we use. Due to the isotropy and stationarity of
the MU and BS processes, finding bounds and computing results for the
the average MESR ensures the performance of the network, which are then
verified experimentally by simulating the dynamics described here. In the
next chapter, we will use the result of Lemma 9.1 to a first array of association
policies to obtain a maximal MESR for the network.



CHAPTER 10

VELOCITY-BASED
ASSOCIATION POLICIES

Among the variety of velocity-based association policies for multi-tier net-
works, a simple family to study is the family of threshold policies.

Definition 10.1. Let 𝑣𝑇 > 0. The threshold policy associated with 𝑣𝑇 is the
association policy such that, for a MU moving at velocity 𝑣:

– if 𝑣 ≤ 𝑣𝑇, the MU is associated with the micro tier,

– if 𝑣 > 𝑣𝑇, the MU is associated with the macro tier.

This family of velocity-based association policies have the advantage of
being simple to implement, as they act as a binary decision problem, depend-
ing only on one parameter which we can estimate with a certain precision
for mobile phones (using for instance GPS location data). In the chapter, we
propose an in-depth study of threshold policies and how they affect network
performance.

10.1 Coverage probability
The first quantity we need to evaluate is the coverage probability under a
given threshold association policy

Theorem 10.1 (Coverage probability). The coverage probability with the
macro tier association is

𝑝𝑀(𝑣, 𝑇 ) = (1 − 𝑝𝑀bm(𝑣))𝑞𝑀(𝐺𝑀
𝑚 , 𝑇 ) + 𝑝𝑀bm(𝑣)𝑞𝑀(𝐺𝑀

𝑠 , 𝑇 ), (10.1)
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where
𝑞𝑀(𝐺, 𝑇 ) = 𝜋𝜆𝑀 ∫

𝑟≥0
𝑒−𝜋𝜆𝑀𝑟 exp(− 𝑇𝜎2

𝑃𝑀𝐾𝐺
𝑟1/𝛿)

exp(−𝜋𝑟( 𝑇
𝑃𝑀𝐺

)
𝛿

(𝜆𝑀𝑃 𝛿
𝑀𝜌𝑀(𝐺, 𝑇 ) + 𝜆𝜇𝑃 𝛿

𝜇𝜅𝜇))d𝑟.

Here 𝛿 ≜ 2/𝛼, and 𝜌𝑀 and 𝜅𝜇 are given by

𝜌𝑀(𝐺, 𝑇 ) = 𝑝𝑀,𝑚(𝐺𝑀
𝑚)𝛿 ∫

∞

(𝑇𝐺𝑀𝑚
𝐺 )

−𝛿

d𝑢
1 + 𝑢1/𝛿 + (1 − 𝑝𝑀,𝑚)(𝐺𝑀

𝑠 )𝛿 ∫
∞

(𝑇𝐺𝑀𝑠
𝐺 )

−𝛿

d𝑢
1 + 𝑢1/𝛿 ,

𝜅𝜇 = (𝑝𝜇,𝑚 (𝐺𝜇
𝑚)𝛿 + (1 − 𝑝𝜇,𝑚) (𝐺𝜇

𝑠 )𝛿)∫
∞

0

d𝑢
1 + 𝑢1/𝛿 .

The coverage probability in the micro tier is obtained by swapping the role of
both tiers.

Proof. The proof for this result is given in Section 12.1 of Chapter 12.

We can verify the result given by Theorem 10.1 numerically. We start by
sampling two homogenous PPP for the base stations. We then sample a large
number of velocities for the typical MU, and we compute the coverage prob-
ability. Figure 10.1 displays the coverage probability, 𝑝𝑐(𝛽) = ℙ[SINR0 > 𝛽]
for the macro and micro tier for values of 𝛽 ranging from 0.01 to 100 dB.
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Figure 10.1: Coverage probability in each tier (blue: in the macro tier, red:
in the micro tier). Here, the typical MU moves at a constant velocity 𝑣 =
10m.s−1.

An interesting case to look at is the interference-limited setup, where 𝜎2

can be considered to be equal to 0. In this case, the functions 𝑞𝑀 and 𝑞𝜇
simplify to:

𝑞𝑀(𝐺, 𝑇 ) = 1
1 + ( 𝑇

𝐺)𝛿 (𝜌𝑀(𝐺, 𝑇 ) + Ω𝜅𝜇)

𝑞𝜇(𝐺, 𝑇 ) = 1
1 + ( 𝑇

𝐺)𝛿 (𝜌𝜇(𝐺, 𝑇 ) + 1
Ω𝜅𝑀)

,

(10.2)

(10.3)
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where we set Ω = 𝜆𝜇𝑃𝛿
𝜇

𝜆𝑀𝑃𝛿
𝑀
. When setting Ω = 0, which corresponds to setting

either 𝜆𝜇 = 0 or 𝑃𝜇 = 0, i.e., removing the micro tier, we obtain the same
formula as the one from [7].

10.2 Optimal threshold association policy
A question arising when studying association policies is that of the optimal
policy, i.e., the policy that maximizes a certain network metric. In the case
we are studying, the metric of interest we consider is the average MESR.
Our question then becomes: what is the threshold policy that maximizes the
average MESR in the system?

Under a threshold policy, the average ESR is given by:

ℛ(𝑣𝑇) = ∫
𝑣𝑇

0
ℛ𝜇,eff(𝑣)𝑓(𝑣)d𝑣 +∫

∞

𝑣𝑇

ℛ𝑀,eff(𝑣)𝑓(𝑣)d𝑣. (10.4)

We have the following Theorem when considering one MU per antenna:

Theorem 10.2 (Optimal threshold policy). Under the foregoing assump-
tions, there exists a unique threshold maximizing the average ESR per user.
This optimal threshold 𝑣⋆𝑇 does not depend on the velocity distribution 𝑓 of
MUs, and is the unique solution to the following equation:

ℛ𝜇,eff(𝑣⋆𝑇) = ℛ𝑀,eff(𝑣⋆𝑇). (10.5)

Proof. The proof for this Theorem is available in Section 12.2 in Chapter 12.

Figure 10.2 shows the normalized ESR, i.e. the average MESR as a
percentage of its maximum value for three exponential distributions for MUs.
We can see that the maximum value of the MESR is attained for the same
velocity threshold in all cases.

This network setup mimics an ideal situation, in which the antenna have
infinite radio resources. In such a setup, we can consider that the system
behaves as if only one MU is connected to each antenna, as allocating radio
resources to one MU does not affect transmission for the other transmitting
MUs. Moreover, the rate received by an MU in the setup corresponds to
the peak rate that it receives in the network. A more realistic setup with
multiple MUs is studied in the next section.

10.3 Load-dependent threshold policies
If we consider that radio resources for each antenna are not infinite any-
more, we have to consider the number of MUs connected to a given antenna.
The radio resources are now equally shared among these users. This sharing
can either be done temporally, where transmission are scheduled sequentially
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Figure 10.2: Normalized ESR in the network as a function of the velocity
threshold 𝑣𝑇. The optimal threshold does not depend on the scale parameter
𝑣𝑢.

(corresponding to a TDMA setup) or spatially, where transmission are en-
coded in the same signal (corresponding to a CSMA setup). In our study,
both cases translate with the same modification in the network metrics, which
we detail here.

Let 𝒫 be a given velocity-based association policy. Under the association
policy 𝒫, let 𝑍0

𝜇(𝒫) denote the number of users associated with the micro
BS corresponding to the 0-cell, i.e., the Voronoi cell containing the typical
MU located at the origin 0, and 𝑍0

𝑀(�̄�) be its macro counterpart. Note
that 𝑍0

𝜇(𝒫) and 𝑍0
𝑀(�̄�) are random variables due to the random network

geometry and velocity. For this setup, we can modify (9.5) to rewrite the
average ESR ℛload as follows:

ℛload(𝒫) = 𝔼[
ℛ𝜇,eff(𝑣)
𝑍0
𝜇(𝒫)

1𝒫(𝑣) +
ℛ𝑀,eff(𝑣)
𝑍0
𝑀(�̄�)

1�̄�(𝑣)] . (10.6)

In (10.6), the number of MUs associated to the 0-cell and the ESR both
depend on the geometry of each PV tessellation. We make the following
assumption: let us assume that the number of users in the 0-cell of the PV
tessellation in each tier is independent from the SINR. Under this assump-
tion, we can define the following heuristic to approximate ℛload:

ℛ̂load(𝒫) = 𝔼[ 1
𝑍0
𝜇(𝒫)

]𝔼 [ℛ𝜇,eff(𝑣)1𝒫(𝑣)] + 𝔼[ 1
𝑍0
𝑀(�̄�)

]𝔼 [ℛ𝑀,eff(𝑣)1�̄�(𝑣)] ,

(10.7)

where 𝔼[ 1
𝑍0

𝜇(𝒫)] and 𝔼[ 1
𝑍0

𝑀(�̄�)] are the average inverse load in the 0-cell
of micro and macro tiers, respectively.

Like in Section 10.2, threshold policies remain good candidates to maxi-
mize the average ESR experienced by the typical MU. Let 𝑣𝑇 be a velocity
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threshold. Under the threshold policy with threshold 𝑣𝑇, the intensity of the
PPP of users associated with the micro tier is equal to 𝜆𝑢𝐹(𝑣𝑇), with 𝐹 being
the CDF of the velocity distribution, and the intensity of the PPP of users
associated with the macro tier is equal to 𝜆𝑢(1 − 𝐹(𝑣𝑇)). Although we do
not have an analytical formula for the average inverse load in the network,
we can use the heuristic developed in Lemma A.8.

We set the following notation:

𝔼[ 1
𝑍0
𝜇(𝑣𝑇)

] = 𝐿(
𝜆𝜇

𝜆𝑢𝐹(𝑣𝑇)
) ≡ 𝐿𝜇(𝑣𝑇)

𝔼 [ 1
𝑍0
𝑀(𝑣𝑇)

] = 𝐿( 𝜆𝑀
𝜆𝑢(1 − 𝐹(𝑣𝑇))

) ≡ 𝐿𝑀(𝑣𝑇).

Under a velocity-based threshold policy, the average ESR in the TDMA
setup becomes

ℛ̂load(𝑣𝑇) = 𝐿𝜇(𝑣𝑇)∫
𝑣𝑇

0
ℛ𝜇,eff(𝑣)𝑓(𝑣)d𝑣 + 𝐿𝑀(𝑣𝑇)∫

∞

𝑣𝑇

ℛ𝑀,eff(𝑣)𝑓(𝑣)d𝑣.

(10.8)

We define the load-threshold heuristic for the optimal threshold policy in
the TDMA setup as follows:

Definition 10.2 (Load-threshold heuristic). The load-threshold heuristic is
the threshold 𝑣LT that maximizes ℛ̂load, i.e., such that:

𝑣LT ≜ argmax ℛ̂load(𝑣𝑇). (10.9)

The optimal load-threshold policy is the threshold policy associated with
𝑣LT.

As shown in Fig. 10.3, we numerically observe that 𝑣LT is uniquely defined
although we cannot prove it in the general case that the function ℛ̂load(𝑣𝑇)
goes through a unique maximum. Specifically, Fig. 10.3 compares the simu-
lations under TDMA and the heuristic from (10.9). The difference between
the simulation and the predicted value of the heuristic comes from the fact
that the inverse of the load and the ESR are not independent.

Further simulation can give us an order of magnitude for the difference
between the optimal value of the MESR computed and the MESR obtained
when selecting the threshold obtained in the load-threshold heuristic from
Definition 10.2. Table 10.3 displays the difference in value between these two
values.
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Figure 10.3: Comparison of the heuristic in (10.8) (in plain line) and simu-
lations (circles)

Table 10.1: Numerical illustration of the load-threshold heuristic

𝑣𝑢 (m.s−1) 1 10 35
𝑣LT (m.s−1) 1.30 4.90 9.41
ℛload(𝑣LT) 0.294 0.242 0.201
Optimal MESR 0.289 0.252 0.195

10.4 Discussion and comparison with a
classical association policies

When interpreting these results, we can observe that the load-threshold
heuristic is rather performant to estimate the maximal MESR in the net-
work with a low computational cost, as the method is based on solving an
only fixed point equation. One can try to refine this heuristic by using more
performant methods, but this search will come at the cost of an increase in
computational costs.

Another interesting question is to investigate the dependence of 𝑣LT on
the MU parameters. The density 𝜆𝑢 of MUs allows us to understand how well
the network performs under different load conditions. Specifically, as 𝜆𝑢 → 0,
the ESR in the network becomes equal to the Shannon rate without TDMA,
which is its peak rate. This translates into 𝑣LT becoming equal to 𝑣⋆𝑇 from
Theorem 10.2. Conversely, as 𝜆𝑢 → ∞, the number of MUs associated with
the micro tier becomes arbitrarily large. Because its contribution towards
the ESR is larger than that from the macro tier, to maximize the average
ESR, the optimal velocity threshold approaches zero.

The behavior of the optimal threshold for intermediate values of 𝜆𝑢 de-
pends on the velocity distribution. Figure 10.4 gives the optimal velocity
threshold for the heuristic given in (10.9). The MU velocity is a limiting
factor in the network: if the velocity of MUs is higher, the average overhead
per unit of time in the macro tier increases, leading to a decrease in the
contribution of the macro tier to the average ESR. To balance this effect,
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Figure 10.4: Optimal velocity threshold obtained for the heuristic from (10.9)
(in plain line) for three velocity distributions against the density of users. In
black, dashed, the equivalent network without load.

more MUs are associated with the micro tier, resulting in an increase in the
optimal velocity threshold.

We now compare the optimal average ESR using the optimal load-threshold
heuristic based on 10.2 to a classical association policy based on the maxi-
mum received power (MRP), where MUs connect to the BS with the highest
average received power. Because MUs move fast in the network, we do not
take into account fading in the signal: the typical MU located at the origin
connects to the macro tier BS located at 𝑋0,𝑀 if the received power in the
macro tier 𝑅𝑃𝑀 = 𝑃𝑀𝐺0,𝑀ℓ(|𝑋0,𝑀|) is higher than the received power from
the micro BS located at 𝑋0,𝜇, 𝑅𝑃𝜇 = 𝑃𝜇𝐺0,𝜇ℓ(|𝑋0,𝜇|). It is to note that the
MARP policy is primarily based on the received power, and thus, the net-
work geometry, and the threshold policy on velocity. Hence, this comparison
allows us a fine-grained view at the ESR, which has two main components as
seen from (10.8): ℛ𝑀, the Shannon rate as a function of the SINR and hence
the received power, and 𝑇𝑀

𝑜 (𝑣), the overhead as a function of the velocity 𝑣
of an MU.

As shown in Fig. 10.5, for a given value of MU density, the average ESR
decreases faster with velocity under the MRP policy than under the load-
threshold heuristic: while for low values of 𝑣𝑢, the MRP policy outperforms
the load-threshold heuristic, the threshold policy provides MUs with a better
average ESR for velocities 𝑣𝑢 higher than 11 m.s−1, up to a gain of 45%. The
fact that these results are obtained for parameters representing accurately
the sub-6 GHz setting of 5G new radio (NR) supports the importance of the
study of velocity-based threshold policies.
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line) and the threshold policy under 𝑣LT (circles, plain line) with 95% confi-
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CHAPTER 11

VBMP ASSOCIATION
POLICIES

In the last section of the previous chapter, we compared the optimal load-
threshold heuristic with a max-power association policy, and observed through
simulation that the former policy works better for densely populated network
with fast-moving MUs. On the other hand, this policy is not interesting when
it comes to sparsely populated networks or with slowly-moving MUs, as it
performs worse than the maximum received power (MRP) policy, i.e. the pol-
icy such that a user associates to the tier that provides the maximal received
power at its location.

The goal of this chapter is to look for policies that outperforms both
threshold and MRP policies. To do so, we define a class of association policies
incorporating both the ideas of max power and velocity-aware association
policies. This line of thought leads us to introduce velocity-biased max power
(VBMP) association policies, where users are associated with the network
tier that offers the best received power, up to a bias factor dictated by the
velocity of the MU.

11.1 VBMP policies
We keep the same network setup as we did in the previous chapter, but for
simplicity purposes, we decide to omit beam misalignement. This feature can
easily be applied to all the results presented in this section by taking similar
steps as the ones we used for threshold policies and adding the adequate
terms when considering the main or the side lobes of the antenna.

We define the velocity-biased max power policies as follows:

Definition 11.1. Let 𝐾 be a positive real function. The velocity-biased max
power (VBMP) policy associated with 𝐾 is the association policy such that:

– If R𝑀 ≥ 𝐾(𝑣)R𝜇, we associate the MU with the macro tier

111
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– If R𝑀 < 𝐾(𝑣)R𝜇, we associate the MU with the micro tier

The function 𝐾 acts as a bias term in the classical MRP policy, in order
to take into account MU velocity in the association between the two tiers. It
is to note that threshold policies and MRP policies are both types of VBMP
policies. The MRP policy is the VBMP policy with the function 𝐾 = 1, and
the threshold policy with threshold 𝑣𝑇 is associated with the function 𝐾 such
that 𝐾(𝑣) = 0 if 𝑣 < 𝑣𝑇, and 𝐾(𝑣) = +∞ if 𝑣 > 𝑣𝑇.

In this chapter, we will look for the function 𝐾 that maximizes the MESR
in the network. In order to do so, we will use variational calculus, so we will
focus only on differentiable functions.

Coverage probability
Let us take a VBMP policy with an associated function 𝐾. A first metric of
interest is the coverage probability. We have the following theorem:

Theorem 11.1 (Coverage Probability). Let 𝜃 > 0. Under a VBMP policy,
the coverage probability in the macro tier is equal to:

ℙ [SINR0,𝑀 > 𝜃] = 𝛿𝐶∫
1/𝐾(𝑣)

𝑧=0

𝑧−𝛿−1𝑒−𝜃𝑧

(1 + 𝐶𝑧−𝛿 + 𝜃𝛿𝐹(𝜃, 𝛿) + 𝐶𝜃𝛿𝐹(𝑧𝑇 , 𝛿))2
d𝑧.

where 𝛿 = 2/𝛼, Ω = 𝜆𝜇
𝜆𝑀

( 𝑃𝜇
𝑃𝑀

)
𝛿

and 𝐹(𝜃, 𝛿) = ∫∞
𝜃−𝛿

d𝑢
1+𝑢1/𝛿 . The coverage

probability in the micro tier, defined as the probability that SINR0,𝜇 > 𝜃
and the typical MU is associated with the micro tier - denoted as Micro - is
obtained by swapping the roles of the two tiers:

ℙ [SINR0,𝜇 > 𝜃] = 𝛿Ω∫
1/𝐾(𝑣)

𝑧=0

𝑧−𝛿−1𝑒−𝜃/𝑧

(1 + Ω𝑧−𝛿 + 𝜃𝛿𝐹 (𝜃𝑧 , 𝛿) + Ω𝜃𝛿𝐹 (𝑇𝑧 , 𝛿))
2d𝑧.

The proof for this result is presented in Appendix 12.3

MESR under a VBMP policy
We can compute the MESR under a VBMP policy using the coverage prob-
ability from Theorem 11.1 and using an integration by parts (see (9.3)):

ℛ𝑀,eff(𝑣) = (1 − 𝑇𝑜,𝑀(𝑣))+ ∫
𝑄m

0
ℙ [SINR0,𝑀 > 𝜃,Macro] d𝜃

𝜃 + 1
.

We can define the average MESR for the typical user located at the origin
in a similar way as in Lemma 9.1:
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ℛ(𝐾) = ∫
𝑣max

0
((1 − 𝑇𝑜,𝑀(𝑣))+𝔼 [log(1 + SINR0,𝑀(𝑣,𝐾))]

+(1 − 𝑇𝑜,𝜇(𝑣))+𝔼 [log(1 + SINR0,𝜇(𝑣,𝐾))]) 𝑓(𝑣)d𝑣

= ∫
𝑣max

0
(ℛ𝑀,eff(𝐾, 𝑣) + ℛ𝜇,eff(𝐾, 𝑣)) 𝑓(𝑣)d𝑣.

(11.1)

(11.2)

This quantity can be expressed in terms of network parameters by using
Theorem 11.1. In the general case, there is no closed-form formula for ℛ(𝐾)
depending on 𝐾 and 𝑣, but we will see in the next section that this result is
sufficient to obtain an equation to define the function 𝐾 that maximizes the
average MESR in the network.

11.2 Optimal VBMP policy
We want to find the VBMP policy that maximizes the average MESR in the
system. This amounts to finding the function 𝐾 that maximizes ℛ(𝐾). We
define an optimal VBMP policy:

Definition 11.2. The optimal VBMP policy is the VBMP policy with a
function 𝐾⋆ that maximizes the average MESR in the system.

From (11.2), the function ℛ has the following form:

ℛ(𝐾) = ∫
𝑣max

𝑣=0
𝐽(𝑣,𝐾)𝑓(𝑣)d𝑣, (11.3)

with 𝐽(𝑣,𝐾) = ℛ𝑀,eff(𝐾, 𝑣) + ℛ𝜇,eff(𝐾, 𝑣). We use the Euler-Lagrange cri-
terion to obtain:

𝜕
𝜕𝐾

(ℛ𝑀,eff(𝐾⋆, 𝑣) + ℛ𝜇,eff(𝐾⋆, 𝑣)) = 0. (11.4)

Using the definition for the MESR and the result from Theorem 11.1, we
can rewrite equation (11.4) in terms of network parameters as follows:

𝜕
𝜕𝐾

ℛ𝑀,eff(𝐾⋆, 𝑣) = −(1 − 𝑇𝑜,𝑀(𝑣))+ ∫
𝑄m

0

𝛿Ω𝐾⋆(𝑣)𝛿−1

𝜃 + 1

𝑒−
𝜃

𝐾⋆(𝑣)

(1 + Ω𝐾⋆(𝑣)𝛿 + 𝜃𝛿𝐹(𝜃, 𝛿) + Ω𝜃𝛿𝐹( 𝜃
𝐾⋆(𝑣) , 𝛿))

2d𝜃

𝜕
𝜕𝐾

ℛ𝜇,eff(𝐾, 𝑣) = (1 − 𝑇𝑜,𝜇(𝑣))+ ∫
𝑄m

0

𝛿Ω𝐾⋆(𝑣)𝛿−1

𝜃 + 1
𝑒−𝜃𝐾⋆(𝑣)

(1 + Ω𝐾⋆(𝑣)𝛿 +Ω(𝜃𝐾⋆(𝑣))𝛿𝐹(𝜃, 𝛿) + (𝜃𝐾⋆(𝑣))𝛿𝐹 (𝜃𝐾⋆(𝑣), 𝛿))2
d𝜃.

We can state the following theorem:
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Figure 11.1: Plot of the function 𝐾⋆ as a function of 𝑣 against the MRP and
the velocity-threshold functions.

Theorem 11.2. For each 𝑣 > 0, we define 𝐾⋆(𝑣) as the smallest positive
solution to (11.4). The optimal VBMP policy is the policy associated with
𝐾⋆.

We observe numerically, in the network setups we investigated, that (11.4)
admits a unique solution, but we did not manage to prove it in the general
case.

An important observation to make is that the optimal VBMP policy does
not depend on the distribution of velocities in the network: when applying
the Euler-Lagrange’s criterion to our dynamics, all the terms depending on
𝑓(𝑣) disappear in the equation. Thus, this VBMP policy is optimal for any
velocity distribution profile.

Numerically, in our network setup, we can observe that (11.4) has a unique
solution. Although this result is not proved, we can conjecture that this
solution is actually unique. Figure 11.1 shows the solution of (11.4) as a
function of 𝑣 (in green). We can see that for immobile users, the optimal
VBMP policy has the same criterion as for the MRP policy, i.e., gives a
max-power association. As the MUs move faster, the bias term for the micro
tier becomes lower, i.e., we associate more users with the macro tier. This
can be explained by the fact that the micro tier gives the best performance,
and we prefer to prevent as much as possible fast moving users to connect
to it.

Figure 11.2 shows a comparison between the optimal VBP policy with
the MRP and the load-threshold policies. As expected, it performs bet-
ter than the load-threshold in the one MU per cell case, as it showed poor
performance, and the gain in performance compared to the MRP policy is
negligible. This result could be predicted from the fact that, without tak-
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Figure 11.2: Comparison between the MRP policy (red), the load-threshold
policy (blue) and the optimal VBMP policy (green) in the one MU per cell
case.

ing into account the load in the network, max-power association performs
extremely well.

11.3 Load-dependent VBMP policy
As the VBMP policies do not seem to provide a significative improvement
to the MESR in the network, we can look into the load-dependent case.
We saw in the previous chapter that this network setup changes drastically
compared to the one MU per cell. We use the same expression for the MESR
as in (10.6).

ℛload(𝐾) = ∫
𝑣max

0
𝔼[ log(1 + SINR(𝑣,𝐾))

𝑍0(𝐾)
(1 − 𝑇𝑜(𝑣))+] 𝑓(𝑣)d𝑣,

Let 𝑍0,𝑀(𝐾) and 𝑍0,𝜇(𝐾) respectively denote the random variables asso-
ciated with the number of users in the 0-cell in the macro and the micro tier
under the VBMP policy associated with 𝐾. We user the following heuristic:

ℛ̂(𝐾) = ∫
𝑣max

0
𝔼[ 1

𝑍0,𝑀(𝐾)
]ℛ𝑀,eff(𝑣,𝐾)𝑓(𝑣)d𝑣

+∫
𝑣max

0
𝔼[ 1

𝑍0,𝜇(𝐾)
]ℛ𝜇,eff(𝑣,𝐾)𝑓(𝑣)d𝑣.
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We can use Lemma A.8 to obtain the values of the average inverse load in
the network. To do so, we remind that the point processes of MUs associated
with each network tier are independent thinnings of the PPP of transmitting
MUs Φ𝑢. We thus need to find the probability that a MU is associated with
one tier or the other given a VBMP policy 𝐾.

Lemma 11.3. The probability for an MU moving at velocity 𝑣 under a given
VBMP policy to be associated with the macro tier is equal to:

𝐺𝑀(𝐾) = ℙ [Macro] = ∫
𝑣max

𝑣=0

𝑓(𝑣)
1 + Ω𝐾(𝑣)𝛿

d𝑣. (11.5)

The probability of being associated with the micro tier is ℙ [Micro] =
1 − 𝐺𝑀(𝐾).

The detail for this result is given in Appendix 12.4. We thus obtain the
following average inverse load in the network:

𝔼[ 1
𝑍0,𝑀(𝐾)

] = 𝐿( 𝜆𝑀
𝜆𝑢𝐺𝑀(𝐾)

) ≜ 𝐿𝑀(𝐾)

𝔼[ 1
𝑍0,𝜇(𝐾)

] = 𝐿(
𝜆𝜇

𝜆𝑢(1 − 𝐺𝑀(𝐾))
) ≜ 𝐿𝜇(𝐾),

(11.6)

where 𝐿(𝑥) = 𝑥(1 − ( 1
1+ 2

7𝑥
)
7/2

). We get this formula for ℛ̂(𝐾) :

ℛ̂(𝐾) = ∫
𝑣max

0
(𝐿𝑀(𝐾)ℛ𝑀,eff(𝑣,𝐾) + 𝐿𝜇(𝐾)ℛ𝜇,eff(𝑣,𝐾)) 𝑓(𝑣)d𝑣.

We can thus define the optimal load-dependent VBMP policy as:

Definition 11.3. The optimal load-aware VBMP policy is the function 𝐾†

that corresponds to a maximum of ℛload. The load-K heuristic is the function
𝐾⋆

load that maximizes ℛ̂.

Unlike the one MU per BS case, we cannot use the Euler-Lagrange equa-
tion to find the function 𝐾†. Here, the terms under the integral are not
depending on 𝐾 and its derivatives at the same point, which are local condi-
tions and allow us to obtain the Euler-Lagrange equation. Instead, we have
a global condition, in the form of 𝐺𝑀(𝐾), which prevents us from using the
classical results in calculus of variations. To obtain an equation defining the
optimal load-dependent VBMP policy, let us define the function 𝐹 as:

𝐹(𝑣,𝐾,𝐺(𝐾)) = (ℛ𝑀,eff(𝐾, 𝑣)𝐿𝑀(𝐺(𝐾)) + ℛ𝜇,eff(𝐾, 𝑣)𝐿𝜇(𝐺(𝐾))) ,

so that ℛ̂(𝐾) = ∫∞
0

𝐹(𝑣,𝐾,𝐺(𝐾))d𝑣. Let us take 𝜀 > 0 and ℎ an integrable
function such that ℎ(0) = 0 and lim𝑥→∞ ℎ(𝑥) = 0. We define 𝐾𝜀 = 𝐾 + 𝜀ℎ
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and 𝐹𝜀 = 𝐹(𝑣,𝐾𝜀, 𝐺(𝐾𝜀)). Using Euler’s condition, we know that ℛ̂(𝐾) is
maximal whenever:

d
d𝜀

ℛ̂(𝐾𝜀) = ∫
𝑣max

0

d
d𝜀

𝐹𝜀d𝑣 = 0.

We take the total derivative of 𝐹𝜀 with respect to 𝜀:

d
d𝜀

𝐹𝜀 =
d𝐾𝜀
d𝜀

𝜕𝐹𝜀
𝜕𝐾𝜀

+ d𝐺(𝐾𝜖)
d𝜀

𝜕𝐹𝜀
𝜕𝐺(𝐾𝜖)

We know that:

d𝐾𝜀
d𝜀

= ℎ(𝑣)

𝜕𝐹𝜀
𝜕𝐾𝜀

= 𝐿𝑀(𝐺(𝐾𝜀))
𝜕
𝜕𝐾

ℛ𝑀,eff(𝐾𝜀, 𝑣) + 𝐿𝜇(𝐺(𝐾𝜀))
𝜕
𝜕𝐾

ℛ𝜇,eff(𝐾𝜀, 𝑣).

After some calculation, we can also obtain:

d𝐺(𝐾𝜖)
d𝜀

= 𝐶𝛿∫
∞

0

ℎ(𝑢)𝐾(𝑢)𝛿−1

(1 + 𝐶𝐾(𝑢)𝛿)
𝑓(𝑢)d𝑢,

and:

𝜕𝐹𝜀
𝜕𝐺(𝐾𝜖)

= (− 𝜆𝑀
𝜆𝑢𝐺(𝐾𝜀)2

𝐿′ ( 𝜆𝑀
𝜆𝑢𝐺(𝐾𝜀)

)ℛ𝑀,eff(𝑣,𝐾)+

𝜆𝜇

𝜆𝑢(1 − 𝐺(𝐾𝜀))2
𝐿′ (

𝜆𝜇

𝜆𝑢(1 − 𝐺(𝐾𝜀))
)ℛ𝜇,eff(𝑣,𝐾)) 𝑓(𝑣).

Unfortunately, due to the nature of the dependency of d𝐺(𝐾𝜖)
d𝜀 on ℎ, we

cannot use the fundamental lemma of calculus of variations (see Lemma 1.1.1
in [52]) to obtain an equation defining 𝐾†. A way to obtain a numerical
approximation of the function 𝐾† is to introduce a discretization for the
problem.

Let us assume that velocities can only take a finite number of values
(𝑣𝑖)0≤𝑁−1, ranging from 0 to a velocity 𝑣𝑀, separated by a step 𝜖 = 𝑣𝑀

𝑁−1 ,
so that 𝑣𝑖 = 𝑣0 + 𝑖𝜖. Let us denote 𝑝𝑖 = ℙ [𝑣𝑖 ≤ 𝑣 < 𝑣𝑖+1], 𝐾𝑖 = 𝐾(𝑣𝑖) and
K = (𝐾𝑖)0≤𝑖≤𝑁−1.

This discretization allows us to rewrite the quantities defined earlier as
sums:

𝐺(K) =
𝑁−1
∑
𝑖=0

𝑝𝑖
1 + 𝐶𝐾𝛿

𝑖
,

𝐿𝑀(K) = 𝐿( 𝜆𝑀
𝜆𝑢𝐺(K)

) ,

𝐿𝜇(K) = 𝐿(
𝜆𝜇

𝜆𝑢𝐺(K)
) .
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Figure 11.3: Plot of the estimate K† (green) of the optimal VBMP policy
for an exponential distribution with parameter 𝑣𝑢 = 10 against the MARP
policy (red) and the optimal threshold policy (blue).

We can define a newer version of the target ℛ̂:

ℜ(K) =
𝑁−1
∑
𝑖=0

(ℛ𝑀,eff(𝐾𝑖)𝐿𝑀(K) + ℛ𝜇,eff(𝐾𝑖)𝐿𝜇(K)) 𝑝𝑖.

Let K† ∈ ℝ𝑁
+ that maximizes the function ℜ. Using the dominated

convergence theorem as well as Riemann sums, we know that as 𝜖 goes to 0,
the vector K† approaches the function 𝐾†.

Numerical resolution

We can now move on to solving the system using know algorithmic method.
The results presented here are obtained using Python’s scipy.optimize.minimze
function, which implements multiple gradient descent algorithms to solve for
K†.

Using a gradient descent algorithm leads to numerous evaluations of
ℛ𝑀,eff(𝐾𝑖) and ℛ𝜇,eff(𝐾𝑖), which can become computationally heavy when
looking for a small value of 𝜖. The regular integration packages in Python to
evaluate double integrals use the library QUADPACK ([71]), which achieves
slow convergence in the cases we consider here. Among the other meth-
ods existing to evaluate multiple integrals, we decide to use the Genz-Malik
scheme (as presented in [46]) to evaluate the integrals, which allows to obtain
a value of K† in reasonable time.
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Figure 11.4: Comparison of the three association policies: the optimal VBMP
policy (green), the MARP policy (red) and the optimal threshold policy
(blue) as a function of 𝑣𝑢.

11.4 Discussion and comparison
We can compare the optimal load-aware VBMP policy defined in Defini-
tion 11.3 to the two other association policies defined earlier: the optimal
load-threshold policy. Figure 11.4 displays the comparison between the three
policies for different values of 𝑣𝑢, where the MU velocity is exponentially dis-
tributed with mean 𝑣𝑢.

We can see that the proposed association policy performs better than
the classical MARP policy at all velocities, but still is outperformed by the
load-threshold policy for high MU velocities, although we originally designed
this VBMP policy to outperform it. This observation can be explained by
two factors.

The first factor is the precision of the numerical integration methods we
use to evaluate ℛ𝑀,eff(𝐾𝑖) and ℛ𝜇,eff(𝐾𝑖) at each iteration. In the numerical
simulations, we use an adaptive Genz-Malik scheme over the classical nu-
merical integration method to increase the speed of computation. Another
candidate to evaluate quickly multiple integrals is Monte-Carlo integration,
which is also known to be performant, but can have high variance. We can
compare the three methods of integration to compute ℛ𝑀(𝐾𝑖) for values of
𝐾𝑖 ranging from 0 to 1 to see the differences in the three methods.

Figure 11.5 shows the three methods of integration, and we can see that
the Genz-Malik scheme and the quadpack integration both give similar re-
sults for the value of ℛ𝑀(𝐾𝑖), while the Monte-Carlo integration presents
high variance, and sometimes can prove to have a very large interval confi-
dence. In the simulation ran here, we can see that it can also present outliers
and miss the exact value of the integral. On the other hand, we can see that
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Figure 11.5: Comparison of the three QUADPACK integration (in red), the
Genz-Malik scheme (in blue) and the Monte-Carlo integration (in green) with
200 000 samples.

the Genz-Malik integration scheme predicts relatively well that value of the
integral, which asserts its utility here.

The second factor that can impact the precision of the load-dependent
VBMP policy we obtain is the minimization method we use to obtain the
vector 𝐾†. The library scipy.optimize implement by default the L-BFGS-
D method ([32]), but other methods can be investigated to see if they yield
better results in the cases we are considering, such as Powell’s method ([74]),
which achieves better results with noisy inputs. Investigating this point to
find - or design - a better method to maximize the MESR under a load-
dependent VBMP policy needs to be further investigated and may be the
focus of a future work.

Although the results in this part did not lead to the original goal we set
- obtaining an association policy able to outperform both the load-threshold
policy defined in Definition 10.2, we still managed to obtain an association
policy that outperforms the classical MARP policy when the load of the
antennas is taken into account: Figure 11.4 shows that the proposed load-
dependent VBMP policy performs better at all velocities, with the simple
addition of a bias term in the original MARP policy.

The work proposed in this part opens a new line of though about incor-
porating velocity in the design of association policies in multitier wireless
networks. We proposed two user-centric, simple associations policies cen-
tered around MU velocity, and we showed that they can both outperforme
a classical max-power association policy when we consider multiple MU per
cell. The work presented here can be seen as a first step into designing more
comprehensive association policies incorporating MU velocity, in order to
achieve better network performance.



CHAPTER 12

PROOF OF THEOREMS OF
CHAPTERS 10 AND 11

12.1 Proof of Theorem 10.1

Base stations in the macro tier are distributed according a homogenous PPP
with intensity 𝜆𝑀. The probability that the BS 𝑋 is located at a distance
𝑟 > 0 from the origin and the associated distribution function:

𝐹𝑀(𝑟) = ℙ[‖𝑋‖ ≤ 𝑟] = 1 − 𝑒−𝜆𝑀𝜋𝑟2

𝑓𝑀(𝑟) ≡ 𝑑
d𝑟

𝐹𝑥(𝑟) = 2𝜋𝑟𝑒−𝜆𝑀𝜋𝑟2 .

We assume that the typical MU is located in the main lobe of its associ-
ation beam, i.e. 𝑔𝑀0 = 𝐺𝑀

𝑚 . We get:

ℙ [SINR𝑀,0 > 𝑇 |𝑟, 𝑔𝑀0 = 𝐺𝑀
𝑚] = ℙ[

𝑃𝑀𝐺𝑀
𝑘 ℎ0𝑟−𝛼

𝜎2 + 𝐼𝑀,𝑎 + 𝐼𝜇,𝑖
> 𝑇 |𝑟]

= ℙ[ℎ0 > 𝑇𝑟𝛼

𝑃𝑀𝐺𝑀
𝑘
(𝜎2 + 𝐼𝑀,𝑎 + 𝐼𝜇,𝑖) |𝑟]

= 𝑒
− 𝜇𝑇𝑟𝛼

𝑃𝑀𝐺𝑀
𝑘 𝔼[exp(− 𝜇𝑇

𝑃𝑀𝐺𝑀
𝑘
𝐼𝑀,𝑎 −

𝜇𝑇
𝑃𝑀𝐺𝑀

𝑘
𝐼𝜇,𝑖)] .

Focusing on the first term in the expectation, we get:

121
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𝔼[exp(− 𝜇𝑇
𝑃𝑀𝑔𝑀,0

𝐼𝑀,𝑎)] = 𝔼[ ∏
𝑥∈Φ𝑀\{𝑋}

𝔼[exp(−𝜇𝑇𝐺𝑥
𝑔𝑀0

𝑟𝛼ℎ𝑥ℓ(|𝑥|))]]

= 𝔼⎡⎢
⎣

∏
𝑥∈Φ𝑀\{𝑋}

𝔼⎡⎢
⎣

1
1 + 𝑇𝐺𝑥

𝑔𝑀0
𝑟𝛼ℓ(|𝑥|)

⎤⎥
⎦
⎤⎥
⎦

= 𝔼⎡⎢
⎣

∏
𝑥∈Φ𝑀\{𝑋}

𝑝𝑀,𝑚

1 + 𝑇𝐺𝑀
𝑚

𝑔𝑀0
𝑟𝛼ℓ(|𝑥|)

+
1 − 𝑝𝑀,𝑚

1 + 𝑇𝐺𝑀
𝑠

𝑔𝑀0
𝑟𝛼ℓ(|𝑥|)

⎤⎥
⎦
,

Using the formula for the Laplace transform of a PPP, we have:

𝔼[exp(− 𝜇𝑇
𝑃𝑀𝑔𝑀,0

𝐼𝑀,𝑎)]

= exp⎛⎜
⎝
−2𝜋𝜆𝑀 ∫

∞

𝑟

⎛⎜
⎝
1 −

𝑝𝑀,𝑚

1 + 𝑇𝐺𝑀
𝑚

𝑔𝑀,0
𝑟𝛼ℓ(|𝑥|)

−
1 − 𝑝𝑀,𝑚

1 + 𝑇𝐺𝑀
𝑠

𝑔𝑀,0
𝑟𝛼ℓ(|𝑥|)

⎞⎟
⎠

𝑧d𝑧⎞⎟
⎠

(𝑎)
= exp⎛⎜⎜

⎝
−𝜋𝜆𝑀𝑟2𝑇 𝛿 ⎛⎜⎜

⎝
𝑝𝑀,𝑚 ( 𝐺𝑀

𝑚
𝑔𝑀,0

)
𝛿

∫
∞

(
𝑇𝐺𝑀

𝑗
𝑔𝑀,0

)
−𝛿

d𝑢
1 + 𝑢1/𝛿

+(1 − 𝑝𝑀,𝑚)( 𝐺𝑀
𝑠

𝑔𝑀,0
)

𝛿

∫
∞

(
𝑇𝐺𝑀

𝑗
𝑔𝑀,0

)
−𝛿

d𝑢
1 + 𝑢1/𝛿

⎞⎟⎟
⎠

⎞⎟⎟
⎠

.

Where (𝑎) uses the change of variables 𝑢 = ( 𝐺𝑀
𝑚

𝑇𝑔𝑀,0
)
𝛿
𝑧2
𝑟2 for the first

integral and 𝑢 = ( 𝐺𝑀
𝑠

𝑇𝑔𝑀,0
)
𝛿
𝑧2
𝑟2 for the second one. Using the same steps and

some results developed in Appendix A, the second expectation yields:

𝔼[exp(− 𝜇𝑇
𝑃𝑀𝑔𝑀,0

𝐼𝜇,𝑖)]

= exp(−𝜋𝜆𝜇𝑟2𝑇 𝛿 (
𝑃𝜇

𝑃𝑀𝑔𝑀,0
)

𝛿

(𝑝𝜇,𝑚(𝐺𝜈
𝑀)𝛿 + (1 − 𝑝𝜇,𝑚)(𝐺𝜈

𝑀)𝛿)𝐶(𝛿)) .

Where 𝐶(𝛿) = ∫∞
0

d𝑢
1+𝑢1/𝛿 = 𝛿𝜋

sin(𝜋𝛿) . Reminding that the typical MU is
aligned, we have 𝑔𝑀,0 = 𝐺𝑀

𝑚 , which leads to:

𝔼 [ℙ [SINR𝑀,0 > 𝑇 |𝑟, 𝑔𝑀0 = 𝐺𝑀
𝑚]] =

𝜋𝜆𝑀 ∫
𝑟≥0

𝑒−𝜋𝜆𝑀𝑟𝑒−
𝜇𝑇𝑟1/𝛿

𝑃𝑀𝐺𝑀𝑚 exp(( 𝑇
𝑃𝑀𝐺𝑀

𝑚
)

𝛿

(𝜆𝑀𝑃 𝛿
𝑀𝜌𝑀(𝐺𝑀

𝑚 , 𝑇 ) + 𝜆𝜇𝑃 𝛿
𝜇𝜅𝜇(𝛿)))d𝑟.

Finally, we obtain:
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𝑞𝑀𝑚 (𝑇 ) = ∫
𝑟≥0

𝔼 [ℙ [SINR𝑀,0 > 𝑇 |𝑟, 𝑔𝑀0 = 𝐺𝑀
𝑚]] 2𝜋𝜆𝑀𝑟𝑒−𝜋𝜆𝑀𝑟2𝑑𝑟. (12.1)

Making the change of variables 𝑣 = 𝑟2 gives the intended result for 𝑞𝑀𝑚 (𝑇 ).
To obtain the result for 𝑞𝑀𝑠 , 𝑞𝜈𝑀 and 𝑞𝜇𝑠 , we simply swap the roles of the two
network tiers and use the adequate values.

12.2 Proof of Theorem 10.2
Differenciating (10.4) w.r.t. the velocity threshold 𝑣𝑇 gives:

𝒟
𝒟𝑣𝑇

ℛ(𝑣) = ℛ𝜇,eff(𝑣)𝑓(𝑣) − ℛ𝑀,eff(𝑣)𝑓(𝑣). (12.2)

Granted that 𝑓 > 0, the points where the derivative is equal to zero are
solutions to:

ℛ𝜇,eff(𝑣) = ℛ𝑀,eff(𝑣). (12.3)

Using definitions from Section 9.3, we know that:

ℛ𝑀,eff(𝑣) = (1 − 𝑇𝑀
𝑜 (𝑣))+ℛ𝑀

and that 𝑇𝑀
𝑜 (𝑣) = 𝜈𝑀,𝑐(𝑣)𝑇𝑀,𝑐 + 𝜈𝑀,𝑒(𝑣)𝑇𝑀,𝑏. We also know that 𝜈𝑀,𝑒(𝑣)

is equal to 𝜈𝑀,𝑏(𝑣) for 𝑣 < 𝑣𝑀,𝜏 = 𝜋
𝑛𝑀𝜏√𝜆𝑀

, and to 1
𝜏 else. We can solve for

𝑇𝑀
𝑜 (𝑣) = 1 depending on the value of 𝑣. We obtain two solutions:

⎧{{
⎨{{⎩

𝑤𝑀,1 = 𝜋
√𝜆𝑀(4𝑇𝑐,𝑀 + 𝑛𝑀𝑇𝑏,𝑀)

if 𝑣 < 𝑣𝑀,𝜏

𝑤𝑀,2 = 𝜋
√𝜆𝑀4𝑇𝑐,𝑀

(
𝑇𝑀,𝑏

𝜏
− 1) if 𝑣 ≥ 𝑣𝑀,𝜏.

Using the numerical parameters from Table 9.1, we obtain 𝑣𝑀,𝜏 = 138.84
m.s−1, 𝑤𝑀,1 = 62.40 m.s−1 and 𝑤𝑀,2 = 19.37 m.s−1. Because 𝑤𝑀,2 <
𝑣𝑀,𝜏, we reject this second solution, which gives us the following formula for
ℛ𝑀,eff(𝑣):

ℛ𝑀,eff(𝑣) = {
ℛ𝑀 (1 − 𝑣√𝜆𝑀

𝜋 (4𝑇𝑐,𝑀 + 𝑛𝑀𝑇𝑏,𝑀)) for 𝑣 ≤ 𝑤𝑀,1

0 else

Conducting the same analysis for the micro network, we define 𝑣𝜇,𝜏, 𝑤𝜇,1
and 𝑤𝜇,2 similarly. When evaluating the numerical values, we reject the
solution 𝑤𝜇,2, because 𝑤𝜇,2 < 𝑣𝜇,𝜏, and we obtain the following expression
for ℛ𝜇,eff:



124CHAPTER 12. PROOF OF THEOREMS OF CHAPTERS 10 AND 11

ℛ𝜇,eff(𝑣) = {
ℛ𝜇 (1 − 𝑣√𝜆𝜇

𝜋 (4𝑇𝑐,𝜇 + 𝑛𝜇𝑇𝑏,𝜇)) for 𝑣 ≤ 𝑤𝜇,1

0 else

ℛ𝑀,eff(𝑣) and ℛ𝜇,eff(𝑣) are two linear functions of 𝑣, with negative slopes
respectively equal to−ℛ𝑀

√𝜆𝑀
𝜋 (4𝑇𝑐,𝑀 + 𝑛𝑀𝑇𝑏,𝑀) and−ℛ𝜇

√𝜆𝜇
𝜋 (4𝑇𝑐,𝜇 + 𝑛𝜇𝑇𝑏,𝜇).

Because ℛ𝜇 > ℛ𝑀 and 𝜆𝜇 > 𝜆𝑀, the lines intersect at a unique point, and
we can conclude that (12.3) admits a unique positive solution, denoted as
𝑣⋆𝑇.

Finally, because ℛ𝜇,eff ≥ ℛ𝑀,eff for 𝑣 < 𝑣⋆𝑇 and ℛ𝜇,eff ≤ ℛ𝑀,eff for 𝑣 > 𝑣⋆𝑇,
the threshold 𝑣⋆𝑇 corresponds to a maximum of the function ℛ.

12.3 Proof of Theorem 11.1
Let 𝜃 > 0. The coverage probability in the macro tier as the probability that
SINR0,𝑀 is greater than 𝜃 > 0 and the typical MU is associated with the
macro tier. To evaluate this probability, we condition the event SINR0,𝑀 > 𝜃
and that the typical MU is associated with the macro tier on the closest BS
in the macro tier 𝑋0,𝑀 being at a distance 𝑟 of the origin and its micro
counterpart, 𝑋0,𝜇, being at a distance 𝑠. We have:

ℙ [SINR0,𝑀 > 𝜃,Macro ∣|𝑋0,𝜇| = 𝑠, |𝑋0,𝑀| = 𝑟]

= ℙ[ℎ0 > 𝜃𝑟𝛼

𝑃𝑀𝜅
(𝜎2 + 𝐼𝑀 (Φ𝑀\{𝑋0,𝑀}) + 𝐼𝜇 (Φ𝜇))]

= 𝔼[exp(− 𝜃𝑟𝛼

𝜅𝑃𝑀
𝐼𝜇 (Φ𝜇)) ,Macro∣ |𝑋0,𝜇| = 𝑠]

𝔼[exp(− 𝜃𝑟𝛼

𝜅𝑃𝑀
𝐼𝑀 (Φ𝑀\{𝑋0,𝑀})) ,Macro∣ |𝑋0,𝑀| = 𝑟]

The first expectation gives:

𝔼[exp(− 𝜃𝑟𝛼

𝜅𝑃𝑀
𝐼𝑀 (Φ𝑀\{𝑋0,𝑀})) ,Macro∣ |𝑋0,𝑀| = 𝑟]

= 𝔼[ ∏
𝑥∈Φ𝑀\{𝑋0,𝑀}

𝔼[exp(−𝜃ℎ𝑥 (
𝑟
𝑥
)
𝛼
]]

(𝑎)
= 𝔼[ ∏

𝑥∈Φ𝑀\{𝑋0,𝑀}

1
1 + 𝜃 ( 𝑟

𝑥)
𝛼]

(𝑏)
= exp(−2𝜋𝜆𝑀 ∫

∞

𝑟

d𝑥
1 + 𝜃 ( 𝑟

𝑥)
𝛼),

where (𝑎) uses the Laplace transform of an exponential variable with param-
eter 1, and (𝑏) uses the Laplace transform of a Poisson process. With the
change of variables 𝑢 = 𝜃−𝛿 (𝑥𝑧 )

2, we get:
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𝔼[exp(− 𝜃𝑟𝛼

𝜅𝑃𝑀
𝐼𝑀 (Φ𝑀\{𝑋0,𝑀})) ,Macro∣ |𝑋0,𝑀| = 𝑟]

= exp(−2𝜋𝜆𝑀𝑟2𝜃𝛿 ∫
∞

𝜃−𝛿

d𝑢
1 + 𝑢1/𝛿) .

For the second expectation, we remind that the closest BS 𝑋0,𝜇 is at a
distance 𝑠 of the origin. We have:

𝔼[exp(− 𝜃𝑟𝛼

𝜅𝑃𝑀
𝐼𝜇 (Φ𝜇)) ,Macro∣ |𝑋0,𝜇| = 𝑠]

= 𝔼[exp(−
𝜃𝑃𝜇

𝑃𝑀
(𝑟
𝑠
)
𝛼
− 𝜃𝑟𝛼

𝜅𝑃𝑀
𝐼𝜇 (Φ𝜇\{𝑋0,𝜇}))]

= 𝑒−
𝜃𝑃𝜇
𝑃𝑀

(𝑟𝑠 )
𝛼

𝔼⎡⎢
⎣

∏
𝑥∈Φ𝜇\{𝑋0,𝜇}

1
1 + 𝜃𝑃𝜇

𝑃𝑀
( 𝑟
𝑥)

𝛼
⎤⎥
⎦

= 𝑒−
𝜃𝑃𝜇
𝑃𝑀

(𝑟𝑠 )
𝛼

exp⎛⎜
⎝
−2𝜋𝜆𝜇 ∫

∞

𝑠

d𝑥
1 + 𝜃𝑃𝜇

𝑃𝑀
( 𝑠𝑥)

𝛼
⎞⎟
⎠

.

We introduce the change of variables 𝑢 = 𝜃𝛿 ( 𝑃𝜇
𝑃𝑀

)
𝛿

𝑟2
𝑦2 in the inside inte-

gral to get:

𝔼[exp(− 𝜃𝑟𝛼

𝜅𝑃𝑀
𝐼𝜇 (Φ𝜇)) ,Macro∣ |𝑋0,𝜇| = 𝑠]

= 𝑒−
𝜃𝑃𝜇
𝑃𝑀

(𝑟𝑠 )
𝛼

exp⎛⎜
⎝
−𝜋𝜆𝜇 ∫

∞

𝑢=(𝑃𝑀
𝑃𝜇

)
𝛿
𝑠2
𝑟2

d𝑥
1 + 𝑢1/𝛿

⎞⎟
⎠

.

The probability that a BS 𝑋 is located at a distance 𝑟 > 0 from the origin
and the associated distribution function in the macro tier are equal to:

𝐹𝑀(𝑟) = ℙ [|𝑋0,𝑀 ≤ 𝑟] = 1 − exp (−𝜋𝜆𝑀𝑟2)

𝑓𝑀(𝑟) = d
d𝑟

𝐹𝑀(𝑟) = 2𝜋𝜆𝑀𝑟𝑒−𝜋𝜆𝑀𝑟2 ,

with a similar expression for the micro tier by using the adequate values.
To obtain the coverage probability, we integrate over all the realisations
of the PPP Φ𝑀 and Φ𝜇. A user is associated with the macro tier if 𝑠 >
(𝑃𝜇𝐾(𝑣)

𝑃𝑀
)
𝛼
𝑟, and to the micro tier if 0 ≤ 𝑠 ≤ (𝑃𝜇𝐾(𝑣)

𝑃𝑀
)
𝛼
𝑟. With these

bounds of integration, we get:

ℙ [SINR0,𝑀 > 𝜃] = ∫
∞

𝑟=0
∫

∞

𝑠=(𝑃𝜇𝐾(𝑣)
𝑃𝑀

)
1/𝛼

𝑟
𝑒−𝜋(𝜆𝑀𝑟2+𝜆𝜇𝑠2)

× ℙ[SINR0,𝑀 > 𝜃 ∣|𝑋0,𝜇| = 𝑠, |𝑋0,𝑀| = 𝑟] 4𝜋2𝜆𝜇𝑟𝜆𝑀𝑠d𝑠d𝑟.
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We introduce the change of variables 𝑦 = 𝜋𝜆𝜇𝑠2 and 𝑥 = 𝜋𝜆𝑀𝑟2 to obtain:

ℙ [SINR0,𝑀 > 𝜃]

= ∫
∞

𝑥=0
∫

∞

𝑦=𝐶𝐾(𝑣)𝛿𝑥
𝑒−𝜃(𝐶𝑥

𝑦 )
1/𝛿

𝑒−𝑥−𝑦𝑒
(−𝑥(𝜃𝛿 ∫∞

𝜃−𝛿
d𝑢

1+𝑢1/𝛿+𝐶𝜃𝛿 ∫∞
𝑦
𝑥

1
𝐶𝜃𝛿

d𝑢
1+𝑢1/𝛿))

d𝑦d𝑥.

We introduce a second change of variables for the inside integral, 𝑧 =
(𝐶𝑥

𝑦 )
1/𝛿

, with d𝑦 = −𝛿 𝐶𝑥
𝑧1+𝛿d𝑧. We have

ℙ [SINR0,𝑀 > 𝜃] = ∫
∞

𝑥=0
∫

0

𝑧= 1
𝐾(𝑣)

𝑒−𝜃𝑧 (−𝛿 𝐶𝑥
𝑧𝛿+1)

𝑒
(−𝑥(𝜃𝛿 ∫∞

𝜃−𝛿
d𝑢

1+𝑢1/𝛿+𝐶𝜃𝛿 ∫∞
1

(𝑧𝑇)𝛿

d𝑢
1+𝑢1/𝛿))

𝑒−𝑥(1+ 𝐶
𝑧𝛿

)d𝑥d𝑧.
After rearranging the terms and using Fubini’s Theorem to swap the two

integrals and introducing 𝐹(𝜃, 𝛿) = ∫∞
𝜃−𝛿

d𝑢
1+𝑢1/𝛿 , we get

ℙ [SINR0,𝑀 > 𝜃] = 𝛿𝐶∫
1/𝐾(𝑣)

𝑧=0

𝑧−𝛿−1𝑒−𝜃𝑧

(1 + 𝐶𝑧−𝛿 + 𝜃𝛿𝐹(𝜃, 𝛿) + 𝐶𝜃𝛿𝐹(𝑧𝑇 , 𝛿))2
d𝑧.

For the formula in the micro tier, we swap the role of the two network tiers
and use the appropriate values to get the intended result, which concludes
the proof.

12.4 Proof of Lemma 11.3
Let us consider an MU located at the origin and moving at a given velocity
𝑣 > 0. It is associated with the macro tier if and only if R𝑀 > 𝐾(𝑣)R𝜇.
Let us assume that the closest macro BS to the origin, 𝑋0,𝑀 is located at
distance 𝑟 > 0 and its micro counterpart, 𝑋0,𝜇, is at distance 𝑠 > 0.

The MU is thus associated with the macro tier if and only if 𝑠 > (𝑃𝜇𝐾(𝑣)
𝑃𝑀

)
1/𝛼

𝑟.
This leads to:

ℙ[Macro| 𝑣] = 4𝜋2 ∫
∞

𝑟=0
∫

∞

𝑠=(𝑃𝜇𝐾(𝑣)
𝑃𝑀

)
1/𝛼

𝑟
𝑒−𝜋𝜆𝑀𝑟2−𝜋𝜆𝜇𝑠2𝜆𝑀𝜆𝜇d𝑠d𝑟.

We use the new variables 𝑥 = 𝜋𝜆𝑟2 and 𝑦 = 𝜋𝜆𝜇𝑠2, and introduce 𝐶 =
𝜆𝜇
𝜆𝑀

(𝑃𝑀
𝑃𝜇

)
𝛿
, which yields:

ℙ[Macro| 𝑣] = ∫
∞

𝑥=0
∫

∞

𝑦=𝐶𝐾(𝑣)𝛿𝑥
𝑒−𝑥−𝑦d𝑥d𝑦 = 1

1 + 𝐶𝐾(𝑣)𝛿
.

To obtain the probability that the typical MU is associated with the macro
tier, we integrate with respect to the MU velocity distribution 𝑓, which gives
the intended result.



CHAPTER 13

CONCLUSION

In this thesis, we developed frameworks using stochastic geometry and ele-
ments of queuing theory to study some aspects of the dynamics of spatial
queuing systems, aimed at modelling wireless networks. In this chapter, we
will summarize the results obtained, focus on some questions of interest that
arose during our study, and propose some prospects for future work.

Summary
The first system we studied is a multiclass spatial birth-and-death process.
Spatial queuing systems and birth-and-death processes have been studied
in various setups ([15], [80]), and some results already exist. In our work,
we introduced a form of service differentiation to modify the classical wire-
less network dynamics, under which users are allocated a given number of
frequency bands to transmit on, and interfere only with users that have
overlapping frequency bands. This differentiation is motivated by the intro-
duction of bandwidth partitioning ([68]) algorithms in the latest generation
of wireless networks as a means to increase network performance.

The first step of our study was to develop a broader framework than
the one proposed in [80] to capture the multiclass nature of the interactions
we consider here, and to establish several useful properties (monotonicity,
irreducibility). We then moved on to studying the stability of the dynamics
under a symmetry assumption. To study the stability of this system, we first
introduced two queuing systems that bound the dynamics of the original
system from above and below, and relied on fluid limits ([78]), which give
helpful relations linking the behavior of a system of differential equations and
the recurrence of these queuing systems. Once stability for these two systems
was reached, we could reach the stability condition for the symmetric spatial
birth-and-death process. After this, we relaxed the symmetry assumption
and showed that we can reach a more general stability condition for non-
symmetric networks using similar fluid limit argument, using a reciprocal to
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a stability condition obtained in [84].

In a second part, we looked into the stationary regime of the dynamics
introduced in Part I. The first quantities of interest we looked into are spatial
user densities, which characterize the steady-state dynamics of this network.
We derived two heuristics: a first one relying on a Poisson approximation,
similar in a way to replica mean-field methods, and a second one leveraging
a cavity approximation and using a second-order approximation. A most
interesting result in this section is that the Poisson approximation allowed
us to obtain a precise heuristic to estimate the critical arrival rate of the sys-
tem. The second interesting property of the stationary regime is clustering.
We know that such a property arises in the single-class system ([80]). In the
multiclass system though, we reached a weaker condition, which can be ex-
plained by the fact that not all users interact with each other with the same
power, weakening the attraction-inducing properties of wireless interactions.
Finally, we completed the study of the stationary regime by showing that
the queuing process admits exponential tails, which is of great interest for
communication networks as it help to bound precisely latency and service
times - two of the requirements of URLLC networks.

The third part of the manuscript focused on a different perspective: in-
stead of considering time dynamics, where immobile users appear and dis-
appear in the network, we consider spatial dynamics, where users move on
a straight line inside a fixed network consisting in two types of base sta-
tions: macro and micro base stations. Macro BSs provide more power but
have a larger coverage than micro BSs, which are more directional but less
powerful. This model is motivated by multitier networks using beam-based
communications ([39], [40]), which can be found in the newly deployed 5G
wireless networks ([49]). The goal of this study of such a network is to de-
sign user-centric association policies taking into account user mobility, which
are easily implementable and have a low computational cost. This lead us
to define two families of association policies: one only considering user ve-
locity, and the second one, offering a trade-off between network geometry
and user mobility. Using relevant numerical computations and heuristics, we
could prove that these family of policies can be tuned to maximize a certain
network performance metric, which can be tied to spectral efficiency. Under
this framework, we could compare these two association policies to a classical
max-power association policies to find out that the two proposed association
policies outperform this max-power association in several cases, notably, in
densely populated networks with fast-moving users.

Although our study is separated in two parts leveraging two different
frameworks and mathematical tools, the study we present here is a first step
towards building a comprehensive framework to model time-spatial inter-
actions in a multitier 5G network. In the next two sections, we will focus
on some questions of interest that appeared during this work, and some
prospects and natural extensions that can be investigated using the tools we
developed here.



129

Discussion and questions of interest

The systems we considered in this thesis are idealized version of real-world
systems, yet the framework we used encapsulates the main features of wireless
communications (beam-based communication, bandwidth partitioning, user
mobility, communication overheads, etc.). The work we presented here can
be seen as a first step on building a more comprehensive framework to model
future wireless networks.

The results proved in Part I can be extended to other queuing networks.
Stability conditions for spatial queuing systems have already been studied
([15], [28], [58]) using various methods. The framework we present here has
the advantage of being robust, as it can be applied to other types of dynamics.
We can adapt Theorem 1.2 and the discretization to other types of departing
processes, and reach the stability condition using the method developed in
the proof of Theorem 2.3. This would allow us to reach stability conditions
for any spatial queuing systems with monotonicity and where the arrival rate
is constant and the departure rates is inversely proportional to a shot-noise
of users in the system.

In Part II, we developed heuristics to estimate the spatial user densities
in the network, and we derived from the Poisson heuristic an estimate for
the value of 𝜆𝑐, which turns to be an accurate estimate for the critical arrival
rate in the system. The main question arising from this is the relevance of
the Poisson heuristic and how can such a result be explained. We know that
in replica mean-field systems and under some hypothesis, the replicas behave
as independent Poisson processes (see [19]). One can wonder if such a result
can be extended to our dynamics, by designing a replica mean-field version
of our system and studying the behavior of such a system as the number of
copies go to infinity.

When comparing association policies in Part III, we saw that numerically,
the optimal load-dependent VBMP policy outperformed the classical max-
power association policy for all user velocities, but that it failed to do better
than the load-threshold policy for high velocities. The question that arises
from this is whether it is possible to obtain an association policy that outper-
forms both. We saw that the optimization problem for which the theoretical
best VBMP policy was not solvable using the classical techniques of calcu-
lus of variations, and that we had to rely on a estimate by discretizing that
velocity space. This method of estimating the optimal VBMP policy faces
two obstacles: the computational cost of decreasing the grid size of velocities
is high, and the optimization methods used may face convergence issues to
find the global maximum of the MESR. Another explanation why the op-
timal VBMP policy does not outperform the load-threshold policy is that
the VBMP policies use bias factors that are differentiable (even, 𝒞1) while
the bias factor in the load-threshold policy is a Heaviside function. These
questions need to be investigated and my be the subject of future work.
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Prospects and future work
Networks with heterogenous interactions An interesting question com-
ing from this line of thought would be spatial dynamical systems where the
interactions between users are of different nature. An instance of such a het-
erogenous network is the following: let us imagine a network mixing users
that transmit by peer-to-peer connection (as presented in [15]) and users
that transmit using wireless transmissions. Under this setup, we would have
a first class of users for which the intensity of the departure process is pro-
portional to a shot-noise of the point process of users of the class, and a
second class of users for which the departure process will have a stochastic
intensity inversely proportional to a shot-noise of users of both classes.

Another interesting thing to note is that the framework we developed
linking stability with fluid limits is an equivalence between Markov chains
and Markov jump processes with systems of differential equations and their
stability conditions. In the case we studied, stability regions are intervals of
ℝ+ containing 0 due to the monotonicity of the network, but one can wonder
whether other network setups could give different behaviors for the fluid limit
and how it could transpose for the original Markov chain.

Load balancing and allocation policy In Part I, the user type distri-
bution (𝑝𝐶)𝐶∈𝒫(𝐾) is determined by the user needs in the system, and can
be empirically obtained by studying wireless traffic. From Theorem 2.2 and
Theorem 4.4, we know that the critical arrival rate 𝜆𝑐 is defined as the max-
imum rate of transmission of the class that is able to transmit the less (see
Theorem 4.4). A first question arising is the question of the maximization
of the stability region, although an immediate analysis of the result from
Theorem 4.4 gives that the maximum value of 𝜆𝑐 is reached when we set
𝑝𝐶⋆ = 1, where 𝐶⋆ is the class with the lowest 𝐿𝐶. Another problem we can
look into is load balancing in the network: how can we select the value of
(𝑝𝐶) to limit the queue size of certain classes? Theorem 8.1 gives bounds for
the queue length of each process linked with the value of 𝜆𝑐, which is linked
as well to the service times in the system, through Little’s law ([64]).

We can also consider the case of adaptive allocation policies, which are
critical in 5G NR ([63]). Among the possible allocation policies, a possibility
is to let each 𝑝𝐶 be inversely proportional to its queue length. In such a
setup, the larger a queue grows, the smaller the arrival rate in such queue is
and we obtain a sort of dampening effect that would prevent queue length
from becoming too large. Studying such a network would require to change
the network setup a reestablish the fluid limits from Theorem 2.3 in order to
account for these changes, and study the new stability region.

Poisson heuristic and critical arrival rate One of the most interesting
question arisen in this work comes from the Poisson heuristic for 𝜆𝑐, which
proves to be very efficient to determine an approximate value of 𝜆𝑐. We can
wonder whether this result holds in more general cases. We know from [19]
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that replica mean-field models have arrival processes that converge to Poisson
point processes as the number of replica goes to infinity.

An idea to prove this result would be to consider 𝑛 parallel instances
of our network, and for each user, to sample users among all the replicas
uniformly at random, and to study the evolution of such a system as 𝑛 goes
to infinity using a similar methodology. Such a result would be interesting
for two reasons. The first is that it would allow for an easy way to reach
a stability condition for spatial birth-and-death processes, as stochastic ge-
ometry tools and rate conservation arguments allow to easily reach simple
results when working with Poisson point processes. The second one would
be more theoretical, as it could be seen as a commutative diagram property,
where we could obtain an equality between a certain temporal average in the
system (the fluid limit) and a spatial average (the Poisson approximation in
the stationary regime).

Spatial birth-and-death processes with mobility As we saw in Part
III of the thesis, mobility is a key factor when taking into account wireless
communication, which can be easily included in our framework: assume that
users move on a straight line with an angle 𝜃 with the x-axis i.i.d sampled
from a distribution 𝑔 at a velocity 𝑣 sampled from distribution 𝑓, which
forms a spatial birth-and-death move process ([60]). Due to the exponential
distribution for file sizes in the system, the system is still a Markov jump
process, and still possesses the domination property that allows us to bound
the dynamics from above and below by two interference queuing networks.
To obtain the stability condition, we have to add two terms, one to represent
the users leaving the cell, the second for the users arriving in the cell; these
two terms will depend on the distributions 𝑓 and 𝑔. Once the queueing
equations for the two systems is established, we could obtain fluid limits and
investigate the stability condition of such a network.

An situation where such processes would arise can be found from vehicular
networks. A first instance comes from wireless sensor networks, which have
been studied for some time ([61]). In the framework of 5G URLLC networks,
using service differentiation would allow for more flexibility and possibly low
latency in vehicular networks. In such a setup, sensors are represented by
transmitters and the onboard computer of car is the receiver, which are
located at a fixed distance from each other, which would form a SBD move
process. Providing a study for such networks could allow for more efficient
wireless sensor networks, and provide useful results about latency. A second
instance featuring the dynamics we studied in this thesis is the modelling a
fleet of autonomous vehicles. In this framework, moving vehicles transmit in
a cellular network and transmit to base stations placed at given locations in
space. Such systems have already been deployed ([50]), and leverage features
from both the systems we studied in this work.





CHAPTER 14

RÉSUMÉ DU MANUSCRIT EN
FRANÇAIS

Cette thèse s’intéresse à différents aspects de l’application de la théorie des
processus ponctuels pour modéliser les nouvelles générations de réseaux de
communication sans fil. Ce manuscrit s’articule en trois parties. Dans une
première partie, nous nous intéressons à une classe de processus de saut
markoviens qui implémentent une forme de différenciation de service, le par-
titionement de bande passante, similaire aux echnologies introduites dans
les réseaux 5G. Dans une seconde partie, nous étudions les propriétés du
régime stationnaire des dynamiques introduites dans la partie I, en étudiant
les mesures moments et leur estimation, la distribution stationnaire du pro-
cessus de saut ainsi que la présence d’attraction statistique. Pour finir, en
partie III, nous changeons d’objet d’étude : considérons un réseau sans fil
de type 5G avec plusieurs niveaux (dans notre exemple, 2 : un niveau micro
et un niveau macro). Une question importante est la politique d’association
dans un tel réseau. Dans les réseaux 5G, la mobilité des utilisateurs est une
dimension importante à prendre en compte, car elle affecte de manière non-
négligeable les performances du réseau. La question que nous traitons dans
cette dernière partie est la performance de politiques d’associations dépen-
dant de la vitesse des utilisateurs.

Partie I - Stabilité d’un processus de vie et
de mort spatial mutliclasse avec des
interactions sans fil
Dans cette première partie, nous nous intéressons à un modèle similaire à
celui présenté dans [80]. Considérons une région fermée et bornée 𝒟 du plan
euclidien. Par simplicité, supposons que 𝒟 est un tore carré plat.
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Des récepteurs arrivent dans 𝒟 selon une pluie de Poisson d’intensité
𝜆 > 0. Lors de leur arrivée dans le système, chaque récepteur arrive avec un
transmetteur situé à une distance 𝑟 > 0 dans une direction aléatoire. Pour
transmettre, les paires de récepteurs/transmetteurs (ou utilisateurs) peuvent
utiliser 𝐾 > 1 canaux de communication orthogonaux, dépendant de leurs
besoins (par exemple, des utilisateurs devant transmettre plus d’informations
pourraient demander plus de canaux de communication). Pour 𝐶 ⊂ [1,…𝐾],
un utilisateur recevra l’ensemble de configuration (ou classe) 𝐶 sur lesquels
transmettre avec une probabilité 𝑝𝐶 > 0, et reçoit un fichier distribué in-
dépendamment selon une loi exponentielle de moyenne 𝐿𝐶 > 0. Comme les
canaux sont orthogonaux, un utilisateur de classe 𝐶 recevra une interférence
d’un utilisateur de classe 𝐷 avec une puissance proportionnelle à la taille de
l’intersection de leurs classes, |𝐷 ∩ 𝐶|.

Le système ainsi définit forme un processus de vie et de mort spatial, et
est une extension du système introduit par Sanakararaman et Baccelli ([80])
dans le cas où plusieurs canaux de communications sont disponibles. Notons
Φ𝑇 le processus ponctuel des transmetteurs, Φ𝑅, celui des récepteurs, Φ le
processus des paires récepteurs-transmetteurs. Supposons que l’atténuation
du signal dans le système est modélisée par une fonction ℓ de path-loss posi-
tive, non-croissante et bornée, et nous avons la présence d’un bruit extérieur
de densité 𝒩0.

Pour définir le taux de départ des utilisateurs, nous pouvons exprimer
l’interférence subie par un point situé en 𝑥 avec un récepteur situé en 𝑦
comme un bruit de grenaille (shot-noise) du processus des utilisateurs:

𝐼(𝑥,Φ𝑡) = ∑
𝑧∈Φ𝑇

𝑡 \{𝑦}

|𝐶𝑥 ∩ 𝐶𝑧|ℓ(‖𝑥 − 𝑧‖).

En considérant l’interférence dans le système comme du bruit et en sup-
posant que le signal est faible devant l’interférence et le bruit, nous pouvons
définir un taux de transfert de fichier comme suit:

𝑅(𝑥,Φ𝑡) =
|𝐶|

𝒩0 + 𝐼(𝑥,Φ𝑡)

En l’absence d’abandon de communication, le taux de départ des utilisa-
teurs de classe 𝐶 est égal à 1

𝐿𝐶
∑𝑥∈Φ𝑡,𝐶

𝑅(𝑥,Φ𝑡).
Le processus Φ est un processus de saut markovien, que nous appellerons

processus BWP. Nous disons que ce processus est stable si et seulement s’il
est positif récurrent. La question principale de la partie I est la définition de
la région de stabilité de tels processus en fonction du paramètre d’arrivée 𝜆.

L’étude de ce genre de système dynamique peut s’avérer complexe sans in-
formation supplémentaire sur les propriétés du système. Parmi les propriétés
qui s’avèrent utiles, nous pouvons compter la monotonie stochastique. Cette
propriété utilise un ordre partiel sur les processus stochastiques, la domi-
nation stochastique, pour lier la stabilité ou l’instabilité d’un processus de
Markov à celle d’un autre en utilisant des majoration ou des minorations
adéquates.
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Au vu de la définition de la dynamique, nous pouvons identifier quatre
quantités qui ont une influence sur le système : le taux d’arrivée 𝜆, la con-
dition initiale Φ0, le vecteur des tailles moyennes de fichiers L et la fonction
de transfert de fichier 𝑅 (ou, de manière équivalente, la path-loss ℓ).

En utilisant des arguments de couplages, nous pouvons prouver que les
quatre conditions suivantes sont suffisantes pour qu’un processus BWP Ψ′

domine un processus Ψ (avec les trois autres paramètres pris égaux - les
quantités marquées d’un prime se rapportent à Ψ′ et les autres, à Ψ):

– 𝜆 < 𝜆′,

– Ψ0 ⊂ Ψ′
0,

– L ≤ L′ (par coordonnée),

– Pour tout Ψ1 ⊂ Ψ2 et 𝑥 ∈ 𝒟, 𝑅′(𝑥,Ψ1) ≤ 𝑅(𝑥,Ψ2), ou, de manière
équivalente, pour tout 𝑠 ≥ 0, ℓ(𝑠) ≤ ℓ′(𝑠).

En utilisant les propriétés de monotonie stochastique, nous pouvons dé-
duire que si Ψ′ domine Ψ, si Ψ′ est stable, Ψ est stable et si Ψ est instable,
Ψ′ est instable.

Pour obtenir la stabilité du processus Φ, nous allons définir deux systèmes
en utilisant une discrétisation de la région 𝒟 en cellules de taille 𝜀, puis
définir deux nouvelles path-loss ℓ𝜀 et ℓ𝜀 dans le système, de sorte que tous
les utilisateurs dans la même cellule voient la même atténuation du signal
des autres cellules, et telles que :

ℓ𝜀(𝑥, 𝑦) ≤ ℓ(‖𝑥 − 𝑦‖) ≤ ℓ𝜀(𝑥, 𝑦).

En utilisant les deux nouvelles fonction de path-loss, nous pouvons définir
deux interference queueing networks (voir [81]), qui sont des réseaux de file
d’attente avec un espace d’état fini. Un premier, X̄𝜀 qui domine Φ et un
second, X𝜀, qui est dominé par Φ. Nous pouvons ensuite obtenir la stabilité
de X̄𝜀 en utilisant des limites fluides ([84]) et l’instabilité de X𝜀 en utilisant
de la domination stochastique avec une fille M/M/1 adéquate.

Nous obtenons deux conditions de stabilité:

– X̄𝜀 est stable si 𝜆 < �̄�𝜀,

– X𝜀 est instable si 𝜆 > 𝜆𝜀.

En faisant tendre 𝜀 vers 0, nous obtenons que �̄�𝜀 et 𝜆𝜀 ont une limite
commune, 𝜆⋆, ce qui nous permet d’obtenir le résultat principal de la partie
I:

Theorem. Le modèle BWP est stable si 𝜆 < 𝜆⋆ est instable si 𝜆 > 𝜆⋆, où:

𝜆⋆ = 1
𝑝𝐶𝐿𝐶

|𝐶|𝑧⋆𝐶
⟨ℓ𝒟⟩∑𝑈|𝐶 ∩ 𝑈|𝑧⋆𝑈

,

et où z⋆ est solution du système:
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∀𝐶,𝐷 ∈ 𝒫(𝐾) 1
𝑝𝐶𝐿𝐶

|𝐶|𝑧⋆𝐶
∑𝑈|𝐶 ∩ 𝑈|𝑧⋆𝑈

= 1
𝑝𝐷𝐿𝐷

|𝐷|𝑧⋆𝐷
∑𝑈|𝐷 ∩ 𝑈|𝑧⋆𝐷

.

Partie II - étude de processus ponctuels
stationnaire en interaction
La partie II de ce manuscrit se concentre sur l’étude du système défini en
partie I dans son régime stationnaire. L’étude de ce régime stationnaire
permet d’obtenir des informations intéressantes sur la distribution spatiale
des utilisateurs soumis à ce genre de dynamiques. Dans cette partie, nous
étudions trois propriétés de ce régime stationnaire : l’estimation des mesures
moment, l’existence de moments exponentiels et l’attraction statistique.

Les mesures moments, et plus précisément, l’estimation des densités spa-
tiales d’utilisateurs dans le réseau en régime stationnaire. Pour estimer cette
quantité, nous ne pouvons pas obtenir de forme close, mais nous définissons
deux heuristiques.

La première heuristique s’appuie sur une approximation de champ moyen :
nous supposons que dans le régime stationnaire, les processus Φ0,𝐶 des util-
isateurs de classe 𝐶 sont des processus de Poisson d’intensité 𝜇𝐶. En utilisant
des lois de conservation dans le système, nous piuvons obtenir sous cette hy-
pothèse, un système d’équations dont les 𝜇𝐶 sont solutions. Cette heuristique
poissonienne fournit une première approximation des densités spatiales. Un
résultat intéressant, conséquence de ces calcules, est le suivant: si le sys-
tème a un régime stationaire,donc la dynamique est stable, nous pouvons
calculer les 𝜇𝐶 par cette méthode. Par contraposée, si nous ne pouvons pas
les calculer, le système est instable. Si 𝜆P est la plus grande valeur de 𝜆
telle que nous pouvons calculer les 𝜇𝐶 par cette méthode, nous obtenons
une estimation de la valeurs de 𝜆⋆, taux critique d’arrivée dans le système.
En comparant cette valeur, obtenue numériquement, et la valeur obtenue en
partie I, 𝜆P est une estimation assez précise de 𝜆⋆. La raison de ce résultat
n’est pas étudiée dans ce manuscrit.

La seconde heuristique que nous développons est une approximation par
cavité, provenant de la physique statistique. En supposant la présence de
deux utilisateurs, un en 𝑥 de classe 𝐶 et l’autre en 𝑦 de classe 𝐷, nous
pouvons estimer la fonction de corrélation croisée 𝜌(2)𝐶,𝐷 et appliquer des lois de
conservation dans le système pour obtenir une seconde estimation, meilleure
que la première, pour les densités spatiales d’utilisateurs 𝜇𝐶, au prix d’un
calcul plus coûteux.

Pour ce qui est des mesures moments d’ordre supérieur, nous avons obtenu
l’existence de moments exponentiels dans le système, i.e. l’existence de 𝑐0 > 0
tel que pour tout 0 ≤ 𝑐 < 𝑐0, 𝔼 [𝑒𝑐Φ0,𝐶(𝒟)] < ∞. L’existence de moments
exponentiels dans le système permet de borner les queues de la distribution
stationnaire et d’obtenir des garanties de performance dans le réseau.
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La dernière propriété intéressante sur laquelle nous nous sommes penchés
est l’attraction statistique en régime stationnaire. Nous savons que le cas
𝐾 = 1 crée de l’attraction en régime stationnaire, i.e. que la dynamique fait
que les utilisateurs se regroupent en grappes où les communications sont plus
lentes. Dans le cas 𝐾 ≥ 2, nous avons prouvé une version relaxée de cette
attraction, que nous pensons être due aux non-linéarités introduites par la
différenciation de service dans notre modèle.

Partie III - Politique d’association basée sur
la mobilité dans des réseaux sans fil 5G
Dans la troisième partie de ce manuscrit, nous nous intéressons à un réseau
sans fil 5G possédant deux niveaux d’antennes : un premier niveau, appelé
macro, avec des antennes puissantes à large couverture et un second niveau,
micro, d’antennes plus faibles avec une plus faible couverture.

Dans les réseaux 5G, les antennes utilisent des faisceaux étroits et directifs
pour communiquer avec les appareils connectés. Lorsqu’un appareil sort du
faisceau de la station à laquelle il est connecté, il doit resélectionner un
nouveau faisceau. Cette opération prend un certain temps pendant lequel
l’appareil ne peut pas transmettre avec le réseau. De la même façon, si
l’appeil connecté sort de la couverture de la station à laquelle il est connecté,
il doit sélectionner une nouvelle station, opération pendant laquelle il ne
pourra pas communiquer avec le réseau. Suivant cette obersation, la prise
en compte de la mobilité des appareils connectés dans les réseaux 5G sans fil
devient une composante importante de la mesure des performances du réseau.
Plus particulièrement, dans les réseaux étagés, nous allons nous demander
comment la prendre en compte pour concevoir des politiques d’association
intéressantes.

Nous considérons un réseau sans fil à deux niveaux, macro et micro. Les
stations de base (SBs) de chacun des deux niveaux sont distrivuées selon
deux processus ponctuels de Poisson indépendants, Φ𝑀 et Φ𝜇, d’intensités
respectives 𝜆𝑀 et 𝜆𝜇, possédant 𝑛𝑀 et 𝑛𝜇 faisceaux et de puissances 𝑃𝑀
et 𝑃𝜇. Les utilisateurs mobiles (UMs) dans le réseau sont distribués selon
un troisième PPP indépendant Φ𝑢 d’intensité 𝜆𝑢. Ces UMs se déplacent en
ligne droite à une vitesse distribuée indépendamment selon une distribution
𝑓.

On suppose que les communications sont descendantes dans le réseau,
et les UMs se connectent à la SB la plus proche d’eux dans leur niveau
d’association, ce qui forme deux tessellations de Poisson-Voronoï - une par
niveau du réseau.

En utilisant l’isotropie et l’invariance du réseau, nous pouvons résumer
l’étude des performances dans le réseau à l’étude de l’utilisateur typique situé
à l’origine du repère. Nous pouvons également supposer qu’il se déplace sur
une ligne droite selon l’axe des abscisses.

Nous pouvons calculer les intensités temporelles de resélections de fais-
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Figure 14.1: Illustration de l’overhead par unité de temps dans un réseau
mobile. Les resélections de faisceaux sont en jaune, les changements de SB,
en orange

ceaux et de changement de cellule (voir [53]) en fonction des paramètres du
réseau et en fonction de la vitesse 𝑣 d’un UM:

𝜈𝑐,𝑀 =
4√𝜆𝑀

𝜋
𝑣 𝜈𝑏,𝑀 =

𝑛𝑀√𝜆𝑀
𝜋

𝑣

Nous définissons alors l’overhead par unité de temps comme la proportion
du temps pendant laquelle l’UM ne transmet pas avec le réseau:

𝑇𝑀
𝑜 = 𝜈𝑐,𝑀𝑇𝑐,𝑀 + 𝜈𝑏,𝑀𝑇𝑏,𝑀.

Grâce à une interprétation ergodique, nous pouvons définir un taux de
Shannon effectif dans un niveau du réseau comme étant le taux de Shannon
global pondéré par la proportion du temps pendant laquelle l’UM transmet,
en prenant en compte l’overhead, ce qui mène à la définition suivante:

ℛ𝑀,eff(𝑣) = ℛ𝑀 (1 − 𝑇𝑀
𝑜 (𝑣))+ ,

Nous allons donc définir des politiques d’association ayant pour but de
maximiser le taux moyen effectir de Shannon (MESR) dans le réseau.

La première famille de politiques que nous étudions sont les politiques
de seuil: en fixant un seuil 𝑣𝑇 > 0, tous les UM de vitesse inférieure à 𝑣𝑇
sont associés avec le niveau micro, et tous ceux ayant une vitesse supérieure
à 𝑣𝑇 sont associés avec le niveau macro. Nous pouvons calculer le MESR de
l’utilisateur typique dans le réseau sous une politique de seuil donnée:

ℛ(𝑣𝑇) = ∫
𝑣𝑇

0
ℛ𝜇,eff(𝑣)𝑓(𝑣)d𝑣 +∫

∞

𝑣𝑇

ℛ𝑀,eff(𝑣)𝑓(𝑣)d𝑣.

Dans un premier temps, nous supposons qu’il n’y a qu’un seul UM par
SB dans le réseau. Nous obtenons le théorème suivant:
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Theorem (Politique de seuil optimale). Il existe un unique seuil 𝑣𝑇 qui
maximise le MESR dans le réseau. Ce seuil optimal 𝑣⋆𝑇 ne dépend pas de la
distribution de vitesse 𝑓, et est solution de l’équation suivante:

ℛ𝜇,eff(𝑣⋆𝑇) = ℛ𝑀,eff(𝑣⋆𝑇).

Si nous relaxons la supposition selon laquelle nous avons un seul UM par
SB, nous introduisons 𝑍0

𝑀(𝑣𝑇) la variable aléatoire dénotant le nombre d’UM
partageant la SB de l’utilisateur typique sous une politique de seuil dans le
niveau macro. Nous pouvons redéfinir le MESR dans le réseau :

ℛ̂load(𝑣𝑇) = 𝔼[
ℛ𝜇,eff(𝑣)
𝑍0
𝜇(𝑣𝑇)

1𝑣≤𝑣𝑇 +
ℛ𝑀,eff(𝑣)1𝑣>𝑣𝑇

𝑍0
𝑀( ̄𝑣𝑇)

] ,

Dans le cas général, nous ne pouvons pas calculer facilement le maximum
de cette fonction. Nous devons utiliser deux heuristiques pour simplifier cette
expression:

– Nous supposons que le SINR et les 𝑍0 sont indépendantes,

– Nous utilisons une heuristique pour la taille des cellules d’une tessel-
lation de Poisson-Voronoi pour approcher la moyenne de 1/𝑍0

𝑀(𝑣𝑇) et
1/𝑍0

𝜇(𝑣𝑇) par deux fonctions 𝐿𝑀(𝑣𝑇) et 𝐿𝜇(𝑣𝑇).

Le MESR moyen dans le réseau devient alors, sous ceux deux heuristiques:

ℛ̂load(𝑣𝑇) = 𝐿𝜇(𝑣𝑇)∫
𝑣𝑇

0
ℛ𝜇,eff(𝑣)𝑓(𝑣)d𝑣 + 𝐿𝑀(𝑣𝑇)∫

∞

𝑣𝑇

ℛ𝑀,eff(𝑣)𝑓(𝑣)d𝑣.

Nous pouvons définir une nouvelle politique de seuil optimale en prenant
en compe la charge dans le système:

Theorem. L’heuristique de charge-seuil est le seuil 𝑣LT qui maximise ℛ̂load,
i.e., tel que :

𝑣LT ≜ argmax ℛ̂load(𝑣𝑇).
La politique de charge-seuil optimale est la politique de seuil associée avec

𝑣LT.

Nous pouvons comparer cette politique de charge-seuil optimale à une
politique d’association classique : la politique max-power (MARP), où les
UMs sont associés au niveau du réseau qui leur fournit le meilleur SINR dans
le cas où la vitesse de UM est distribuée selon une distributuion exponentielle.

Nous pouvons voir sur la Figure 14.2 que la politique de charge-seuil
optimale offre des performances supérieures à celles de la politique MARP
dès que la vitesse moyenne de UM devient grande, ce qui donne un exemple
simple de cas de figure où les politiques définies dans ce travail surpassent
une politique déjà établie.
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Figure 14.2: Comparaison entre la politque max-power (marquers carrés, en
pointillés) et la politique de charge-seuil optimale (cercles, ligne pleine).

La seconde catégorie de politiques d’association que nous explorons sont
des politiques de biabs dépendant de la vitesse. Les politique de seuil dépen-
dent uniquement de la vitesse des UMs, et ignorent la géométrie du réseau.
Le but de cette étude est de concevoir une famille de politiques d’association
combinant les idées de la politique MARP et des politiques de seuil.

Soit 𝐾 une fonction continue, positive. Nous définission la politique
VBMP (max-power biaisée par la vitesse) de la façon suivante : si R𝑀 et R𝜇
sont les puissances reçues par l’UM typique située à l’origine, alors :

– si R𝑀 > 𝐾(𝑣)R𝜇, on associe l’UM avec le niveau macro,

– sinon, on l’associe avec le niveau micro.

Nous pouvons reformuler les résultats obtenus avec les politiques de seuil
pour obtenir un MESR dépendant de la charge sous une politique VBMP:

ℛload(𝐾) = ∫
𝑣max

0
𝔼[ log(1 + SINR(𝑣,𝐾))

𝑍0(𝐾)
(1 − 𝑇𝑜(𝑣))+] 𝑓(𝑣)d𝑣.

Nous allons utiliser les mêmes heuristiques que celles utilisées précédem-
ment pour déifnir la politique VBMP qui maximise le MESR sujet à la charge
dans le réseau:

ℛ̂(𝐾) = ∫
𝑣max

0
(𝐿𝑀(𝐾)ℛ𝑀,eff(𝑣,𝐾) + 𝐿𝜇(𝐾)ℛ𝜇,eff(𝑣,𝐾)) 𝑓(𝑣)d𝑣,

où:

– 𝐿𝑀(𝐾) = 𝐿( 𝜆𝑀
𝜆𝑢𝐺𝑀(𝐾)),

– 𝐺𝑀(𝐾) = ∫𝑣max

𝑣=0
𝑓(𝑣)

1+Ω𝐾(𝑣)𝛿d𝑣 est la probabilité que l’UM typique est
associée avec le niveau macro.
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Figure 14.3: Comparaison des trois politiques d’associations : MARP (en
rouge), charge-seuil optimale (en bleu) et VBMP optimale (en vert)

La forme du MESR ℛ̂(𝐾) que nous cherchons à maximiser est partic-
ulière, car elle ne nous permet pas d’utiliser des résultats de calculs de vari-
ations pour obtenir une condition sur la fonction 𝐾 qui maximise le MESR.

Pour approcher le maximum, nous utilsons une discrétisation de l’espace
des vitesses et de la fonction 𝐾, et nous utilisons des méthodes d’optimisa-
tion numériques pour chercher le maximum du MESR. Malheureusement, les
méthodes utilisées ne nous ont pas permis d’obtenir le résultat escompté : la
politique que nous obtenons est meilleure que la politique MARP, mais offre
des performances inférieures à la politique de charge-seuil. La raison de ce
résultat reste une question ouverte dans ce manuscrit (voir Figure 14.3).

Conclusion
Dans ce manuscrit, nous avons exploré deux modèles mathématiques faisant
intervenir des technologies mises en ouevre dans les dernières générations de
réseaux de communication sans fil : la différenciation de service, le beam-
forming directionel et les réseaux étagés.

Dans les deux premières parties, nous avons étudié la différenciation de
service et son impact sur un réseaux de files d’attente spatial en proposant un
cadre d’étude qui peut être généralisé à un ensemble de dynamiques. Nous
avons également obtenu des résultats sur les mesures moments, la distribution
stationaire des dynamiques et un résultat sur l’attraction statistique que les
dynamiques sans fil engendrent.

La troisième partie se concentre sur l’étude d’un réseau 5G à deux niveaux,
où la mobilité joue un rôle important. Nous avons proposé un cadre simple
présentant des particularités des réseaux 5G de nouvelle génération, défini
une métrique et étudié deux familles de politiques d’associations : une pre-
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mière basée uniquement sur la vitesse des utilisateurs dans le réseau et une
seconde, mélangeant mobilité et géométrie. Nous les avons ensuite comparées
à une politique d’association classique pour estimer leurs performances.

Le travail présenté dans ce manuscrit peut être vu comme une premère
étape vers la définition d’un cadre d’étude plus large pour modéliser des
réseaux plus complexes. Les résultats présentés dans ce manuscrit peuvent
être étendus à des cadres d’étude voisins possédant des propriétés similaires.
Les travaux présentés dans cette thèse ouvrent également de nouvelles per-
spectives, avec plusieurs questions ouvertes sur certains résultats présentés,
qui pourraient faire l’objet de futures recherches.
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MOTS CLÉS

Géométrie aléatoire, Chaînes de Markov, Processus ponctuels, Réseaux de communication sans fil, Limites

fluides, Calcul de Palm

RÉSUMÉ

Grâce aux nouveaux paradigmes introduits dans la dernière génération de réseaux sans fil, les attentes concernant le

temps de service, la latence et la performance du réseau ont augmenté. Pour modéliser ces réseaux, la théorie des

processus ponctuels et la géométrie stochastique se sont avérées utiles car elles fournissent un cadre polyvalent et

robuste pour obtenir des résultats lorsque l'on travaille avec ces réseaux sans fil. L'ajout d’une dynamique markovienne

pour modéliser les connexions et les temps de service complète le cadre d'analyse de ces réseaux sans fil.

La première contribution du travail présenté dans cette thèse réside dans l'analyse de la différenciation des services :

les réseaux 5G NR ont introduit le partitionnement de la bande passante comme outil pour augmenter la performance du

réseau. Dans cette configuration de réseau, tous les utilisateurs n'interfèrent pas les uns avec les autres avec la même

puissance : les utilisateurs qui émettent avec un spectre de fréquence d'émission plus large auront une plus grande

bande passante, mais ils rencontreront également plus d'interférences de la part des autres utilisateurs dans le réseau.

En revanche, les utilisateurs dont le spectre est plus étroit subiront moins d'interférences. Nous définissons un cadre

markovien pour étudier un tel processus spatial multiclasse de naissance et de mort, et nous décrivons sa région de

stabilité. Pour de tels systèmes, les propriétés du régime stationnaire sont analysées, telles que les mesures moment ou

l’attraction, ce qui permet de mieux comprendre cette dynamique.

Le deuxième problème que nous examinons est celui de la mobilité, qui est devenue une caractéristique importante des

réseaux sans fil en raison de l'utilisation d'antennes hautement directionnelles. En utilisant une architecture simple pour

un réseau cellulaire à deux niveaux, nous étudions deux familles de politiques d'association : une première famille qui

s'appuie uniquement sur la mobilité de l'utilisateur, et une seconde qui offre un compromis entre la géométrie du réseau

et la mobilité de l'utilisateur afin d'augmenter les performances du réseau. Ces politiques sont ensuite comparées à une

politique d'association classique de puissance maximale afin d'évaluer leurs performances.

ABSTRACT

Thanks to the new paradigms introduced in the latest generation of wireless networks, expectations concerning service

time, latency and network performance have increased. To model such networks, point process theory and stochastic

geometry have proven to be useful as they provide a versatile and robust framework to obtain results when working

with such wireless networks. Adding to this Markov dynamics to model connections and service times completes this

framework to analyze such wireless networks.

The first contribution of the work presented in this thesis lies in the analysis of service differentiation: 5G NR networks

have introduced bandwidth partitioning as a tool to increase network performance. Under this network setup, not all users

interfere with each other with the same power: users transmitting with a broader transmitting frequency spectrum will have

a larger bandwidth, but they will also encounter more interference from the other users in the network. In contrast, users

with a narrower spectrum will experience less interference. We define a Markovian framework to study such a multiclass

spatial birth-and-death process, and we describe its stability region. For such systems, properties of the stationary regime

are analyzed, such as moment measures or statistical clustering, leading to a better understanding of these dynamics.

The second problem we look into is mobility, which has become an important feature in wireless networks due to the use of

highly directional antennas. Using a simple architecture for a two-tier cellular network, we study two families of association

policies: a first family which only relies on user mobility, and the second offers a trade-off between network geometry and

user mobility to increase network performance. These policies are then compared to a classical max-power association

policy to assert their performance.

KEYWORDS
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