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RÉSUMÉ EN FRANÇAIS

Contexte

Les Technologies de l’Information et de la Communication (TIC) permettent la généra-
tion, la distribution, le stockage et le traitement de données. Afin de répondre aux besoins
croissants des utilisateurs d’Internet, les infrastructures associées évoluent constamment.
Le Cloud Computing offre à ses utilisateurs une quantité importante de ressources au sein
de Datacenters. Cependant, certaines applications comme la réalité virtuelle présentent
de nouveaux défis, comme la nécessité de latences très faibles. Les datacenters Cloud,
regroupés dans un nombre limité de zones géographiques, ne permettent pas de répondre
à ces exigences. C’est pourquoi de nouvelles approches complémentaires au Cloud sont
proposées, comme le Fog Computing. Avec le Fog, des ressources de calcul et de stockage
sont ajoutées en bordure de réseau, dans des micro-Datacenters. Cela permet une réduction
des temps de communication pour les utilisateurs qui communiquent avec des machines
plus proches géographiquement. Cependant, les micro-Datacenters ont des capacités de
calcul, de communication et un rendement énergétique très variables. Il est ainsi nécessaire
d’évaluer les performances, mais aussi l’impact de ces infrastructures sur l’environnement.

En effet, les coûts des infrastructures TICs sont importants. Différentes études estiment
que les émissions de gaz à effet de serre liées aux TICs représentent entre 1.9% et 3.8%
des émissions mondiales [1]. Ces estimations varient du simple au double à cause de
grandes incertitudes quant aux émissions des TIC durant les différentes phases de leur
cycle de vie. Pour les phases de fabrication et de recyclage, des méthodologies telles que
l’Analyse de Cycle de Vie (ACV) permettent des estimations se basant sur des bases
de données accessibles à tous. Cependant, il est très complexe d’estimer les émissions
durant la phase d’usage en l’absence d’une méthodologie de mesure rigoureuse. Ces
estimations permettraient pourtant aux fournisseurs de services Cloud et Fog d’optimiser
leurs dépenses, et à leurs utilisateurs de réduire les coûts de déploiement et de gestion de
leurs applications.

Plusieurs approches peuvent être utilisées pour tenter d’évaluer ces coûts. Certaines
permettent d’obtenir des résultats à grande échelle peu précis, alors que d’autres approches
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plus fines ne permettent que d’évaluer des infrastructures de taille limitée. Par exemple, les
estimations des émissions mondiales reposent sur des modèles analytiques calibrés à l’aide
de données obtenues à plus petite échelle. Mais des données de calibration réalistes sont
complexes à obtenir et peuvent biaiser les résultats. De nombreux facteurs doivent être pris
en compte : applications, matériel, technologies de communication utilisées, infrastructure
réseau, entre autres.

D’autres résultats peuvent être obtenus à l’aide d’expérimentations in-situ. Dans ce
cas, les scientifiques utilisent des infrastructures réelles, et des outils de mesures comme des
wattmètres physiques ou logiciels. Cependant, cette approche est limitée par les infrastru-
ctures existantes, ne proposant pas forcément le matériel de mesure nécessaire. D’autres
expériences se font à l’aide de plateformes dédiées aux expérimentations (testbed). Ces
testbeds permettent une meilleure reproductibilité des résultats, avec les mêmes limites
matérielles. Enfin, les expériences sur de longues durées nécessitant de nombreuses res-
sources sont limitées par leur coût économique et environnemental.

Une dernière approche est la simulation. En utilisant des modèles de simulation, les
scientifiques peuvent étudier un système du monde réel de manière reproductible. Il existe
une littérature foisonnante sur les modèles de simulation des infrastructures TIC et de
leurs émissions : des modèles réseau pour différentes technologies de communication, des
modèles d’application et de matériel. Cependant, la plupart de ces modèles fonctionnent
en autonomie et ne considèrent pas les interactions possibles entre différents composants
des infrastructures distribuées. De plus, le niveau de granularité des modèles permet
rarement d’étudier des infrastructures de grande taille à cause du coût en temps et en
calcul pour exécuter ces simulations. Une approche intéressante serait de regrouper des
modèles spécialisés dans l’étude des émissions des infrastructures de grande taille au sein
d’un même outil de simulation.

Problématique

La taille, l’hétérogénéité et l’évolution rapide des infrastructures Fog rendent difficile
l’évaluation de leur impact sur l’environnement. Différentes approches sont utilisées dans
la littérature pour mieux les comprendre, mais nous observons que la plupart ne permettent
pas d’obtenir des mesures reproductibles sur des infrastructures de grande taille. Il est
possible d’adapter les modèles de simulation en fonction du but des expériences, entre le
niveau de précision des modèles et leur passage à l’échelle. Ainsi, la simulation pourrait
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être utilisée pour étudier des infrastructures de bout-en-bout, de l’utilisateur jusqu’aux
machines hébergées dans les datacenters. En se basant sur les travaux existants et sur nos
contributions, nous tentons de répondre à la question suivante :

Quel est le compromis entre le passage à l’échelle et la précision des modèles
de simulation pour estimer l’impact environnemental des infrastructures Fog
et de leurs applications ?

Pour répondre à cette problématique, notre approche consiste à développer des modèles
de simulation pour évaluer la performance et la consommation d’énergie de différents
éléments des infrastructures TIC. Ces modèles doivent permettre d’étudier les relations
entre différentes technologies. Par exemple, nous étudions des infrastructures Fog utilisant
des communications filaires en Ethernet dans le coeur du réseau et sans fil via Wi-Fi au
niveau des utilisateurs. Afin d’obtenir des résultats réalistes, il est également nécessaire
de proposer une méthodologie de calibration des modèles visant à simplifier la simulation
d’infrastructures réalistes. La combinaison des modèles et méthodologies proposés permet
d’étudier la consommation énergétique et les émissions d’une infrastructure fog réaliste
exécutant des applications réelles.

Contributions

La première contribution de cette thèse est l’extension et la validation d’un modèle
de simulation des communications Wi-Fi. Ce modèle permet d’étudier des réseaux de
grande taille en représentant les communications en tant que flux de données. Ce modèle
peut être combiné avec d’autres modèles de simulation pour les communications filaires,
permettant l’étude de réseaux hétérogènes. La validation de ce modèle montre que sa
précision est proche de modèles de l’état de l’art reposant sur une modélisation plus fine
des communications. En même temps, notre modèle permet un meilleur passage à l’échelle
en réduisant grandement la durée des simulations.

En se basant sur le modèle de communication Wi-Fi, notre seconde contribution est
un modèle de mesure de la consommation de l’énergie utilisée par les cartes réseau Wi-
Fi. En comparant ce modèle aux prédictions de consommation énergétiques faites par le
simulateur ns-3, nous montrons que notre modèle fourni des estimations précises tout en
réduisant considérablement les durées et l’utilisation mémoire des simulations.

Notre troisième contribution est un modèle d’application microservices pouvant être
calibré de manière semi-automatique grâce à des traces d’exécutions de l’application à
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étudier. Cette approche nous permet de considérablement réduire le travail d’instanciation
des modèles comparé à d’autres travaux de l’état de l’art. Nous comparons la précision
des prédictions de notre approche à plusieurs benchmarks d’applications microservices de
la littérature, exécutés sur une plateforme expérimentale.

Enfin, nous finissons en étudiant, à l’aide de nos modèles, la consommation d’une
infrastructure Fog réaliste de bout-en-bout exécutant une application microservice. Nous
montrons que la configuration de l’infrastructure et des applications qui l’utilisent peuvent
fortement impacter la consommation d’énergie, et les performances des applications.
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Chapter 1

INTRODUCTION

1.1 Context

ICT infrastructures provide computing resources interconnected using various com-
munication technologies for the creation and storage of data, the execution of applica-
tions, and the distribution of network services. Infrastructures continuously evolve to
meet the demands of present-day Internet users. The development of cloud comput-
ing led to centralizing large amounts of computing and storage resources within large
Datacenters (DC). However, emerging applications such as IoT and video streaming cre-
ate novel network constraints such as ultra-low latency requirements. Such constraints
require switching from a centralized data storage and processing cloud model to a more
distributed approach. Fog computing considers small computing facilities at the edge of
networks. Distributing data and processes across different geographical locations can help
to reduce the latency between data producers and processing facilities. But fog infrastruc-
tures are more heterogeneous than clouds: fog DC nodes have varying processing capacity
and energy consumption, while the connectivity between the fog and its users can rely on
either wired or wireless communication technologies such as Ethernet and Wi-Fi.

Despite their benefits, ICT infrastructures have a cost. The increasing demand, the
number of devices, and their limited lifetime raise concerns about their impact on the
planet. As an example, the 2015 Paris Agreement [2] to limit global temperature rise to
1.5°C requires a reduction of GHG emissions by 50% by 2030, down to net zero by 2050.
In this context, the impact of ICT on the world’s GHG emissions is subject to debates [1].
While some studies consider ICT as a source of additional emissions, others consider it
as one of the major levers to decrease global GHG emissions. Current estimations of the
impact of ICT are comprised between 1.9% and 3.8% of the world’s GHG emissions [1].
In France, ICT accounts for 10% of the total electricity used and 2.5% of the total energy
consumption according to a 2022 report from the ADEME and ARCEP [3]. This impact
is non-negligible and can be compared to the aviation sector, estimated to be 2% of the
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world’s emissions in 2016 [4]. Estimating this impact is a complex process that requires
studying the cost of all life-cycle steps of devices from DC servers to the end-users.

Evaluating the impact of manufacturing and recycling phases of devices is possible
using publicly available Life Cycle Assessment (LCA) databases. Estimations of the
impact during the use phase is a difficult task due to the variability that arises from
varying device usage patterns and the absence of a standardized assessment methodology.
Nevertheless, estimating the impact during the use phase can significantly benefit cloud
and fog providers as they allow for the comparison of diverse hardware and network
configurations. Similarly, these estimations can also assist service providers to optimize
their resource allocation strategies and to reduce GHG emissions and economic costs.

Existing works rely on varying assumptions and estimation methodologies. These
diverse methodologies are a result of the balance between achieving scalability for large-
scale measurements while ensuring accurate results. The assessment of the world’s impact
of ICT relies mainly on analytical models. These models are calibrated using data de-
rived from smaller-scale measurements and then extrapolated to estimate the outcomes
at a global scale. However, the values used as input for analytical models are complex
to obtain. Many factors must be considered to provide valuable information: different
types of applications, heterogeneous hardware, communication protocols, and network
architectures, among others.

To obtain these values, one approach is to execute in-situ experiments. In-situ exper-
iments leverage existing platforms and monitor real applications using techniques such as
hardware or software wattmeters. However, this approach suffers from technical limita-
tions such as the availability of power sensors in a limited number of hardware compo-
nents (CPU and memory), and they are limited to the study of the platform’s hardware.
Other works leverage experimental testbeds to deploy experiments using real hardware
and applications. Again, the results obtained with testbeds are limited by their hardware
configuration, and compared to production environments they rely on the use of artificial
loads instead of real users. Additionally, modern ICT infrastructures involve large num-
bers of nodes and applications. The scalability of real experiments is limited by the size of
the platform under study and the cost of running experiments in platforms representative
of the target environment.

To overcome these limitations, scientists make heavy use of simulation. This approach
can be used to study real-world systems in a reproducible manner. Different models
can be combined to estimate the energy consumption of network devices and processing
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nodes. Extensive literature is available on the simulation of different parts of ICT infras-
tructures: network models for various communication technologies or execution models
for different types of applications. But most models only focus on a single part of the
ICT infrastructures. Additionally, while some models provide accurate results, their gran-
ularity requires heavy computations that increase simulation times and reduce the size
of the platforms under study. Finally, existing models are often implemented in distinct
frameworks. The availability of valid communication, execution, and energy models in
the same framework could ease the study of the interdependencies between different parts
of the infrastructures.

1.2 Research problem

The size, heterogeneity, and uncertain evolution of ICT infrastructures make complex
the estimation of their impact. Several approaches enable estimations of this impact, such
as in-situ experiments, testbeds, emulation, and simulation. With simulation, models of
various levels of granularity can be used. However, studying the tradeoff between the
results’ accuracy and the scalability of the simulations is necessary to obtain sound results.
Based on already developed models from the literature and our contributions we try to
answer the following question:

What is the tradeoff between the accuracy and the scalability of simulation
models to estimate the impact of large-scale end-to-end ICT infrastructures
running real applications?

To answer this research question, our approach is to design simulation models to evalu-
ate the performance and energy consumption of the different parts of large-scale networks.
To study the interactions between heterogeneous devices and diverse communication tech-
nologies, these models’ designs must be compatible with one another. In this thesis, we
focus on wired communications with Ethernet and wireless communications using Wi-Fi.
The choice of Wi-Fi communications is motivated by their popularity compared to other
wireless technologies, as stated in a Cisco report “there will be nearly 628 million public
Wi-Fi hotspots by 2023, up from 169 million hotspots in 2018, a fourfold increase” [5].
Since the calibration of simulation models can be complex, the design of our models
has to enable calibration using a well-defined methodology to replicate the behavior of
real-world systems. The combination of the proposed models properly calibrated will en-
able studying the energy consumption of realistic fog infrastructures running distributed
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applications.

1.3 Contributions

The contributions of this thesis are the following:
— The extension and validation of a Wi-Fi performance model based on flow-level

simulation. This model implemented in SimGrid eases the simulation of networks
composed of Ethernet and Wi-Fi communications at scale.

— The design and validation of an energy model for Wi-Fi devices. This model is built
using the flow-based Wi-Fi performance model and enables estimating the energy
consumption of Wi-Fi infrastructures at scale. The validity of this contribution is
evaluated against another model from the literature.

— The proposition of a microservice execution model and a methodology to semi-
automatically transpose real microservice applications into their simulation equiv-
alent using application traces. We assess the validity of this contribution by com-
paring simulated executions of a microservice benchmark to real executions.

— The combination of performance and energy models from the literature and our
contributions to study the performance and GHG emissions of an end-to-end fog
infrastructure running a microservice application. This study compares the en-
ergy requirements of different deployment policies and their impact on application
performance.

1.4 Organization of the document

In Chapter 2, we present the state of the art of the works related to this thesis.
We start by reviewing studies estimating the current and future impact of ICT, and we
discuss the challenges explaining the uncertainties in these works. Then we describe the
large-scale network infrastructures studied in this work and the applications they execute.
Finally, we introduce the principal performance evaluation methodologies before focusing
on existing simulation models to evaluate end-to-end ICT infrastructures.

In Chapter 3, we extend a model to estimate the duration of Wi-Fi communications
to study communications in fog infrastructures more accurately. Then we validate the
model in several scenarios. This model uses flow-level simulation, and we show the ability
of this approach to scale while providing close accuracy compared to more fine-grained
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network simulation approaches.
In Chapter 4, we propose an energy model for Wi-Fi devices based on the Wi-Fi

performance model. We compare the accuracy of the predictions and the scalability of
this model to the predictions of the Wi-Fi energy model available in the ns-3 simulator.

In Chapter 5, we propose a model to simulate realistic microservice applications. We
introduce a methodology to transpose semi-automatically real applications into simula-
tors using application traces. We show the ability of this approach to provide accurate
application performance metrics compared to real microservice benchmarks executions.

In Chapter 6, we combine these models and other models from the literature to sim-
ulate a microservice application deployed in a fog infrastructure. We show the ability of
our approach to provide several end-to-end metrics about the application’s performance,
energy consumption, and the GHG emissions of the infrastructure.

Finally, Chapter 7 concludes this work and provides research directions to improve
further the study of these large-scale infrastructures.

1.5 Publications

— "Automated performance prediction of microservice applications using simulation.",
Clément Courageux-Sudan, Anne-Cécile Orgerie, and Martin Quinson. IEEE In-
ternational Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS). 2021.

— "A flow-level Wi-Fi model for large scale network simulation.", Clément Courageux-
Sudan, Loic Guegan, Anne-Cécile Orgerie, and Martin Quinson. Proceedings of
the 25th International ACM Conference on Modeling Analysis and Simulation of
Wireless and Mobile Systems (MSWiM). 2022.

— "A Wi-Fi Energy Model for Scalable Simulation.", Clément Courageux-Sudan,
Anne-Cécile Orgerie, and Martin Quinson. 24th IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks (WoWMoM). 2023.
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Chapter 2

STATE OF THE ART

The continuous ICT improvements characterized by significant architectural changes
and frequent material replacement come at a price. The manufacturing, usage, and dis-
posal of devices, along with the rising user demand lead to increased ICT related energy
consumption and GHG emissions. The existing scientific literature reveals difficulties
in enhancing the energy efficiency of ICT, ensuring accurate measurements, and aligning
with political climate commitments. In this chapter, we start in Section 2.1 by motivating
our work through a review of existing literature regarding the use of ICT infrastructures
and their GHG emissions, highlighting the uncertainties and difficulties of performing
accurate predictions. To overcome these difficulties, we review the state-of-the-art of
modern ICT infrastructures in Section 2.2 from the end-user to the premises of cloud
providers, emphasizing the decentralization of application towards the edge of networks.
After a discussion on performance evaluation methodologies, we review the literature of
simulation models adapted to the study of fog infrastructures in Section 2.3. Finally,
Section 2.4 examines additional material to simulate end-to-end infrastructures at scale.

2.1 ICT: current trends and future prospects

As the quantity of interconnected devices rises, disputes emerge concerning the eco-
logical impact of ICT infrastructures in the world’s GHG emissions and their ability to
lower emissions in other sectors. In this section, we study literature forecasts about the
present state and the future evolutions of ICT. We highlight the challenges motivating
our work to obtain accurate forecasts of environmental impacts.

2.1.1 The energy consumption and GHG emissions of ICT

In pace with an increased number of devices, the energy consumed by ICT raised to
concerning levels. We review the literature on the current footprint of ICT.
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Estimating the current footprint of ICT

The world’s GHG emissions due to ICT [1, 6, 7] is estimated in the range of 1.8%-3.9%
of the world’s emissions in 2020. To obtain these estimations, studies have to consider:

Life-cycle of devices: The impact of ICT devices does not only depend on energy
consumption during the use phase. The life-cycle of a device considers a) embodied
GHG emissions (to extract materials, manufacture and transport devices), b) use-phase
emissions (energy consumption of the device when used), c) end-of-life emissions (disposal,
recycling). Methodologies such as LCA aid the estimation of the impact of each phase [8].
While LCA helps to estimate the footprint of devices, studies highlight the absence of
up-to-date metrics due to rapid evolutions and companies’ unreleased data [1, 9, 10].

Energy mix: While the electricity used by infrastructures is often identical between
geographical locations, their GHG footprint can vary a lot. GHG emissions required to
manufacture and run devices highly depend on the energy mix of the host countries. As
an example, a device in the USA emits 388gCO2e/kWh [11] while the same device emits
56gCO2e/kWh in France [12]. Only a few contributions provide information on GHG
emissions, most works only provide power usage data [13], while others lack clarity on the
specific energy mix they are using.

Rebound effects: Rebound effects in ICT happen when the increase in efficiency of
technologies leads to higher usage. This increased usage can, in turn, lead to an increased
footprint [14]. Rebound effects are complex to evaluate given their large scope, but have
been observed in ICT for the last 20 years [15]. The authors of [1] mention that many
studies concluding on a reduction of the footprint due to ICT efficiency improvements
such as a report from the GeSI [16] do not consider or minimize rebound effects.

In addition to these factors, the evolution of the number of devices and their applica-
tions impacts the estimations of ICT–related emissions.

2.1.2 Evolutions of ICT infrastructures

According to a report published by CISCO in 2020 [5], the number of Internet users was
estimated to increase from 3.9 to 5.3 billion between 2018 and 2023. Similarly, this report
predicted the number of devices per capita to increase from 2.4 to 3.9, corresponding
to 29.3 billion networked devices [5]. Additional devices lead to a greater volume of
communications, resulting in increased data storage and processing.

According to industry actors such as Malmodin from Ericsson Research in [1], the
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rapid increase in the number of networked devices will result in near-term saturation in
specific domains, smartphones in particular. While some sectors may reach saturation,
others continue to grow. Machine-to-Machine communications (M2M) allows machines to
communicate and process data without human intervention, while Internet of Things (IoT)
equips physical objects with sensors connected to the Internet. According to ICT forecasts,
M2M communications in conjunction with IoT devices are going to comprise a significant
portion of the overall number of networked devices by 2030 [5, 17, 18, 19]. However,
there are important uncertainties between different studies. For instance, projections of
the number of IoT devices by 2025 range from 20 billion according to CISCO [5] to 100
billion according to ARM [19], a prominent IoT chip manufacturer. Despite uncertainties,
studies agree on the key role of IoT and M2M in the future of ICT.

The data generated by ICT devices is propagated through network infrastructures
that continuously improve to obtain larger throughput. Average fixed broadband speeds
were predicted to increase from 45.9Mbps in 2018 to 110.4Mbps in 2023, according to
CISCO [5]. Faster networks lead to new applications such as high-quality content stream-
ing or low-latency cloud gaming.

Increased bandwidth also leads to bigger volumes of data. The IDC’s Global Data-
sphere Forecasts [20] published in 2020 estimations of the “total volume of data created
and replicated worldwide”. They forecast an almost three-fold data increase between 2021
and 2025, from 64.2 to 181 zettabytes.

The data generated by ICT devices is usually stored and processed by high-capacity
Datacenter (DC) servers. A DC is an infrastructure providing end-users with networked
computer servers that process, store, and distribute data. A scientific report on the energy
usage of DCs in the USA [21] published in 2016 sheds light on the growth in DC sizes.
This growth has led to the creation of hyper-scale DCs which are DCs “covering up to
more than 400,000 sq ft” with efficient “cooling systems and redundant power”. Despite
efficiency improvements to optimize DCs’ resources, the estimated number of servers in
the United States continuously increased from 12 million in 2008 to 18 million in 2020
according to [21]. The persistent rise in demand coupled with the recent deceleration of
Moore’s Law [1] tend to show that this increase in the number of servers will continue.

Evolution of the demand

Some uncertainties in ICT forecasts are due to the uncertain evolution of networked
devices usages and emerging applications.
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IoT devices are used in many domains: health, agriculture [22], animal populations
monitoring, among others. For example, the city of Angers in France invested 178 million
euros in 2019 to improve the efficiency of public services and to deploy 50,000 sensors [23].
Some sensors produce metrics a few times a day, others create much more data like video
surveillance cameras. The city claims they will contribute to reducing by 30% the amount
of water used for plants and by 66% the electricity used by public lights by 2026 [24].
However, little information is available on the energy used by the sensors themselves, the
energy used to send and process the data over the network.

As of 2023, Artificial Intelligence (AI) is a topic of interest for researchers and the
industry. A 2021 report on the evolution of AI supported by actors such as Google and
OpenAI [25] estimates the growth of AI peer-reviewed publications from 40,000 in 2014 to
120,000 in 2019. Industrial AI applications are also widespread. Large-scale models such
as GPT-3 [26] and Stable Diffusion [27] are trained and process requests using specialized
hardware. A report from Google published in 2022 evaluates the energy consumption of
AI during training and inference phases [10]. This report describes different hardware
solutions, such as NVIDIA V100 Graphics Processing Units (GPUs) or custom Tensor
Processing Units. End-user devices such as smartphones also include AI-specific hard-
ware [28]. Amid an increase of AI hardware and software, the precise impact of this rapid
evolution in the years to come is uncertain. While some works predict a plateau in the
future carbon footprint of AI [10], most studies anticipate increased emissions [1, 5].

With cryptocurrencies and smart contracts, blockchains can induce major changes in
the future usage of ICT. Blockchains require many devices to perform computations and
store large amounts of data as in the case of Bitcoin’s proof-of-work [29, 30]. Cryptocur-
rencies’ impact on the energy consumption of ICT was estimated to account for 68.7TWh
in 2020, or the equivalent of 7 million US households according to [1]. Alternative trans-
action validation techniques such as proof-of-stake could significantly reduce the energy
consumed by blockchain such as Ethereum [31].

Despite the lack of a formal definition, the metaverse aims at easing communication
between Internet users [32]. Large-scale adoption of this concept would impact ICT in-
frastructures with the use of Virtual Reality (VR) hardware, and the need for real-time,
low-latency communications. Similarly, complete offloading of the games’ executions to
cloud DCs with cloud gaming could reshape ICT infrastructures. To reach sufficient Qual-
ity of Experience, data streams must achieve very low latency, while high-quality graphics
require large bandwidth [33]. To enable such technologies, the research community stud-
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ies the possibility of offloading computations to the edge of networks, reducing latencies
and core network usage [32, 34], but increasing the power used by edge nodes.

While this review is not exhaustive, it illustrates the growing number of connected
devices. While efficiency improvements can reduce the energy consumed by devices, the
majority of forecasts concerning the impact of ICT suggest an overall increase in emissions,
despite uncertainties on the precise magnitude of this rise.

2.1.3 Forecasting the footprint of ICT infrastructures

Figure 2.1 compares GHG emissions forecasts of ICT made by different studies, taken
from [1]. These predictions vary by a factor of 3, with results for 2030 comprised between
1.5GtCO2e and 4.8GtCO2e. We can categorize existing literature into two groups: a)
works that estimate ICT will enable reduced GHG emissions in the future, b) works that
plan on an increase of GHG emissions due to ICT.

Figure 2.1 – Projections of ICT’s GHG emissions from 2020. Source: [1]

In 2020, the International Telecommunication Union (ITU) published a standard [35]
on the evolution of ICT to stay in line with the 1.5°C agreements with important industry
actors: GeSI (AT&T, Deutsche Telekom, Huawei...), GSMA (Microsoft, Cisco, Deutsche
Telekom...) 1, SBTi [36]. Many companies engaged to reduce their GHG footprint by 45%
by 2030, mainly through the use of renewable energies. Moreover, ICT could also help to

1. https://www.gsma.com/betterfuture/egdc, last accessed December 2023
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gain energy in other sectors. In 2015 the GeSI published a document [16] estimating a
possible reduction of 20% of the world’s GHG emissions with ICT efficiency improvements.

However, other works observe the necessity of estimating the footprint of ICT infras-
tructures considering different evolution scenarios, without omitting part of the infrastruc-
tures and factors such as rebound effects. Most predictions concluding on the reduction
of ICT emissions do not consider any rebound effect despite their likelihood [37]. More
cautious approaches need to be adopted considering all parameters [1, 15, 38].

To estimate more accurately the future footprint of ICT, some works propose to estab-
lish scenarios for the evolution of infrastructures and applications to estimate the footprint
of each scenario [15, 39, 40]. Adopting this approach requires deciding on a set of sce-
narios representing the evolution of ICT hardware and software, and using a transparent
and open methodology to estimate the GHG emissions of ICT.

ICT evolution scenarios

Based on prospective ICT studies such as [1, 5], one can estimate the evolution of
the infrastructures and their GHG footprint. Then, use cases permit to study the use of
these infrastructures. Experimental use-case scenarios are proposed in many works in the
literature for different ICT infrastructures and applications. For example, the authors
of [41] propose scenarios to study vehicular networks, while the authors of [42] propose a
scenario to study the electricity demand of Japanese telecommunication networks. These
scenarios enable the analysis of the interactions between different parts of infrastructures
(DC, network equipment, end-user devices). However, to the extent of our knowledge,
most scenarios focus on a single type of application at a limited scale, hindering the
understanding of systemic effects. The lack of a methodology to evaluate the end-to-end
impacts of ICT scenarios during use-phase also complexifies these evaluations.

Improving impact evaluations

Based on prospective ICT scenarios, one can estimate their energy and GHG footprint.
The obtained estimations could help industrials and politics to make decisions towards
more reasonable use of ICT. Although embodied and end-of-life emissions are evaluated
using standardized methodologies, no standard approach exists for assessing use-phase
emissions. Furthermore, considering uncertain device usage patterns adds complexity
to the prospective evaluation of GHG emissions during this phase. For these reasons,
solutions are proposed to evaluate the impact of ICT infrastructures and applications
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from the end-users to the premises of cloud providers. There are several challenges to the
production of accurate predictions during the use phase:

— Modeling the architecture of current and future end-to-end ICT infrastructures;
— Accounting for the heterogeneity between different types of devices;
— Capturing the interactions between different ICT components at scale;
— Studying versatile applications.
In this work, we try to answer these challenges. Doing so requires solutions that enable

accurate footprint estimations of ICT infrastructures at scale. These solutions need to
enable the study of networks mixing between wired network links and wireless technologies
at the edge of the network in a reproducible manner. In this thesis, we restrain our study
of network technologies to Ethernet and Wi-Fi because of their popularity. Additional
technologies could also be considered as future work.

2.2 ICT infrastructures: towards the fog

The increasing number of Internet applications, large data transfers, and computa-
tionally intensive tasks require efficient infrastructures. This led to the development of
large DCs and cloud computing solutions. However, applications introducing novel chal-
lenges such as the need for ultra-low latencies benefit from alternative approaches like
fog computing. This section outlines the adaptations of current infrastructures and their
applications to obtain lower network latency and reduce the use of the core network.

2.2.1 From Cloud to Fog computing

Cloud Computing

Cloud computing consists in the on-demand availability of computing resources (stor-
age, processing, applications) within remote infrastructures [43]. When comparing cloud
computing to self-hosting, cloud computing provides virtually infinite computing power,
reduces maintenance costs, and can increase resource usage efficiency. The energy ef-
ficiency of cloud DCs depends on the usage of servers and the efficiency of additional
datacenters’ equipment (cooling, lighting). The impact of this additional equipment is
estimated using the Power Usage Effectiveness (PUE) indicator, a ratio between the total
energy consumed by the infrastructure and the energy consumed solely by ICT devices.
According to a report from uptime intelligence in July 2023, “the average annual power
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usage effectiveness (PUE) reported in 2022 was 1.55” [44]. The PUE of self-hosting
can exceed 2.0, while the PUE of current hyperscale DCs approximates 1.1 according to
various reports [21, 45].

Despite the ability of large-scale DCs to execute processing tasks very efficiently,
emerging ICT applications requirements show the limits of the centralized cloud comput-
ing model. Challenging technical issues arise to achieve very low latencies, for example
below 20ms for Augmented Reality (AR) applications [46]. The geographical distribution
of DCs in a limited number of locations can impact communication latencies and exceed
this threshold, especially when users are far away from DCs [47]. Similarly, transmitting
the data generated by devices such as IoT to cloud servers is costly and may benefit from
preprocessing to reduce the data volume sent to the cloud. Solving these issues has led
to the development of an extension of the cloud model, where the execution of tasks can
take place near the end users.

Edge and Fog computing

Edge and fog computing have been proposed to solve the latency and congestion issues
of cloud computing [48]. In contrast to the centralized cloud model, edge computing places
storage and compute resources close to the data sources. Groups of resource-limited nodes
such as Raspberry PIs form a nano Datacenter (nDC). While such nDCs are less powerful
and more heterogeneous than large cloud DCs, their distribution at the edge of the network
reduces network latencies. This reduced latency can meet the requirements of applications
such as AR as noted by the authors of [49]. Despite the advantages of edge over cloud
computing, the scarcity of edge servers combined with their reduced processing capacity
makes difficult the execution of compute-intensive tasks compared to clouds. Similarly,
small-scale nDC infrastructures are less optimized than large hyperscale DCs, reducing
their energy efficiency [21].

Compared to edge computing, fog computing creates several layers of computing re-
sources between the data source and the cloud DC [48]. Figure 2.2 illustrates a fog
infrastructure composed of three layers: a) end-users producing data and connected to
the network using wireless links, b) fog DCs located at a short distance to the users, c)
the cloud DC that can be anywhere in the world. These layers enable the use of low-
latency edge resources and efficient cloud DCs simultaneously. Processes can be placed
depending on application requirements, between low latency but resource-constrained
nodes and fast executions of tasks on far-away servers [50]. While edge computing is
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already widely adopted, for instance, to cache videos using the Akamai Content Delivery
Network (CDN) [51], real-world use cases for fog computing are mostly experimental [52].

Edge servers

Cloud servers

Fog devices

Serv 1

Serv 2

Serv 3

Serv 4

Serv 5

Serv k

Microservice
Applications

...

Figure 2.2 – Overview of the actors of a fog infrastructure. Inspired from [53].

Edge and fog computing tackle the latency and network congestion issues of cloud
computing. However, they also bring new challenges. The geographical distribution
of servers requires separating the applications between compute-intensive tasks in cloud
servers and smaller tasks close to the data sources. In this context, applications are
distributed, despite uncertainties on the tradeoffs between optimized performance and
energy consumption.

Microservice applications: distributed and scalable

Modern applications can benefit from the design of fog infrastructures. A preva-
lent approach is to transform monolithic applications into interconnected microservices.
The authors of [54] characterize microservice applications as a set of independent services,
where each service can be maintained, deployed, and tested without modifying the others.
Services can be developed independently, reducing the development costs and duration.
When a service receives a request, it can be propagated to other services situated on
separate nodes. Request executions in a microservice application form a Directed Acyclic
Graph (DAG) of function calls, as shown in Figure 2.3 for a synthetic application. Ta-
ble 2.1 summarizes the main differences between microservice and monolithic applications’
architectures.
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Figure 2.3 – Synthetic example of the DAG of a microservice application

Prominent Internet actors embraced microservices, such as Twitter, Netflix, Uber, and
WeChat [55]. While the exact architecture of popular microservice platforms remains
undisclosed, reports suggest that Netflix employs over 600 services, Uber utilizes more
than 1,000 services, and WeChat incorporates over 3,000 [56].

Although individual microservices are simple and lightweight, multiple services are
combined to fulfill a single request. It results in intricate network interactions and ad-
ditional processing overhead for each service. Additionally, cautious orchestration of the
application is necessary to obtain good performance, as we see in the next section.

Table 2.1 – Comparing monolithic and microservice applications, inspired by [57, 58, 59]

Monolithic application Microservice application
Single large application Independent light services
Complex application architecture Light interfaces between services
Full application replicas Individual service replicas
Full application deployment Independent service deployment
Execution of requests in a single location Network communications between services
No network overhead Overheads between services
Few dependencies Many dependencies (orchestration)

Performance of cloud and fog applications

The emergence of fog, edge computing, and microservice applications has mitigated
some constraints associated with traditional clouds. Nevertheless, there is an ongoing
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debate regarding the precise advantages and potential drawbacks of these approaches on
performance and energy consumption.

Some studies [57, 58] compare the performance of monolithic and microservice ap-
plications deployed in cloud environments. These studies conclude on the benefits of
microservice replication at the service level, which can handle larger volumes of requests
with reduced failures compared to monolithic applications. However, these contributions
do not precisely measure the overhead of microservices compared to monolithic appli-
cations. Network messages have to be received and processed by each service, while a
monolithic application only receives requests once.

The authors of the DeathStarBench microservice benchmark [60] compared the ratio
of time spent processing network requests in monolithic and microservice deployments of
the benchmark. While execution times are faster with microservices, the time spent by
services processing network requests is three times higher than with a monolithic appli-
cation (2ms in the monolithic deployment against 6ms for microservices). The authors
of [61] also study the overhead of microservices, showing that the context switching and
network operations overheads depend on the number of services.

Another debate in this context is the real impact of fog infrastructures and applications
on energy consumption and GHG emissions. Since the fog requires the deployment of
many small nDCs, its impact in all stages of the life-cycle of devices could be major. In
this section, we only focus on use phase emissions.

The authors of [62] propose a theoretical model to evaluate the fog’s latency and energy
improvements compared to cloud computing. Their results show that a fog approach can
help reduce the response time of their application and the energy consumed to transmit
and process data by “40.48% compared to the conventional cloud computing model” [62].
However, the proposed model needs precise calibration and could be completed. This
model does not consider a) heterogeneous communication and processing technologies,
and b) the PUE despite its higher value in fogs than in clouds [21].

Similarly, the authors of [63] simulate microservice applications in the fog. Again, fog
deployments give better performance and energy consumption than a cloud environment.
However, no information is available on the PUE of the infrastructure, we have no infor-
mation on the energy consumed by the core and access networks, and the application is
small-scale (5 services). Finally, the simulation models used do not differentiate between
communication technologies (wireless in the edge and wired in the core).

Other works regarding fog and edge energy consumption have similar limitations. The
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authors of [50] reviewed the experimental methodologies of 99 fog placement publications.
Their analysis states that: a) the evaluated platforms are often self-generated by the
authors of the papers with no justification (77/99), b) the infrastructure’s parameters
(latency, bandwidth, CPU, memory), were generated with no justification for 61 papers,
while c) only 19 experiments evaluated their contribution with more than one cloud
datacenter and 100 fog nodes. This survey highlights the need for realistic networks and
application evaluations at scale without omitting parts of the infrastructure. We also note
the importance of some power parameters (PUE) that can impact the results.

In addition to end-to-end infrastructure parameters, the authors of [64] provide infor-
mation on the overhead of the kubernetes [65] orchestrator for geo-distributed fog cluster
federations. The results show that the processing of data and the number of metrics sent
to the monitoring servers can be important within large fogs (27MiBps of cross-cluster
traffic in their evaluation). This can be a problem for network-constrained environments.

To overcome missing end-to-end metrics for the energy consumed by fog and edge
applications and the limited scalability of most contributions, the next section compares
the evaluation methodologies to obtain end-to-end energy and performance metrics for
large-scale IT platforms.

2.2.2 End-to-end performance evaluation methodologies

Scientific contributions in computer science evaluate their results using different ap-
proaches. The advantages of different methodologies depend on the goal of the research
questions under study, as explained in [66, 67, 68]. We compare three experimental
methodologies in this section: real experiments, emulation, and simulation. We com-
pare their ability to answer our research question: estimating the energy consumption of
end-to-end large-scale infrastructures. We base our comparison on the tradeoffs between:

— Accuracy: As detailed in [66], experiments are performed to answer a specific re-
search question. The research question under study thus determines the necessary
level of accuracy. For instance, comparing the communication bandwidth between
different Wi-Fi standards necessitates very fine-grained metrics, while studying net-
work bandwidths in a large-scale end-to-end application may not require the same
level of granularity. Different methodologies enable different levels of granularity.

— Scalability: The evaluation of computer systems is possible at different scales.
While very fine-grained experiments provide accurate outputs, investigating the
footprint of networks at scale poses significant challenges when relying on fine-
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grained approaches. Fined-grained studies at scale have prohibitive costs and re-
quire using large amounts of resources over long timespans.

— Reproducibility: The term reproducibility has many definitions at different de-
grees [69]. An evaluation is reproducible when the authors provide enough infor-
mation to allow others to run and observe the same conclusions. Reproducibility
consists mainly of the transparency of models, a clear definition of the evaluation
methodology and scenarios, available datasets, and open access to the hardware
and software used.

One experimental approach cannot maximize these three properties simultaneously.
While accurate experiments tend to have limitations in terms of scalability, scalable exper-
iments are challenging to reproduce and offer broader, less detailed results. The optimal
balance between those properties depends on the objectives of the evaluation [66, 67].

Real-world experiments

Experiments can be conducted by deploying scenarios on real hardware and monitoring
application- and system-level metrics. Real experiments can run on production infrastruc-
tures equipped with monitoring tools or with the help of experimental testbeds. Testbeds
are platforms built specifically for the study and validation of scientific questions. They
provide computing resources, monitoring devices like Wattmeters, and software stacks.
Compared to production environments, testbeds give large control to their users, making
results more reproducible. Conversely, concurrent platform users can impact the results
of experiments running on services such as Amazon’s AWS or Microsoft Azure clouds.

When physical wattmeters are not available, an alternative is to use software-based
powermeters for different devices’ components. The authors of [70] review different tech-
niques and tools to measure the power usage of CPUs, GPUs, and memory. This option
mainly relies on power sensors available in the hardware. The drawback of this approach
is the lack of measurement for the power consumed by other hardware components such
as the network card, the entire device, and the rest of the infrastructure such as cooling.

Various scientific testbeds exist to conduct experiments in different domains. In
France, Grid’5000 [71] is very popular for cloud-related experiments, with 800 nodes in
8 separate locations. More than 2,000 publications use this testbed to study topics such
as the orchestration of fog applications [72]. Chameleon [73] is similar to Grid’5000, with
nodes in different countries. Other testbeds such as FIT IoT-LAB [74] with more than
1,500 nodes are more specific to IoT devices, sensor networks, and mobility.
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While testbeds give better control on experimental conditions compared to public
clouds, there are drawbacks to this approach when evaluating end-to-end infrastructures.
First, the execution of end-to-end scenarios requires interactions between separate spe-
cialized testbeds. For example, the execution of an IoT application with a back-end in
the cloud may require using Grid’5000 and FIT IoT-LAB simultaneously. Second, the
size of the testbeds limits the scalability of the experiments. For instance, Grid’5000
clusters are much smaller than the size of today’s hyperscale DCs. They are also limited
by the testbed’s hardware, making it hard to study specialized devices not available on
the testbed. Exploring many parameters requires extensive computing power, consumes
a large amount of energy, and has a high monetary cost. Finally, the reproducibility of
some experimental scenarios is very complex. For example, Wi-Fi communications can
be affected by external factors such as interferences or other testbed users [75]. To sum-
marize, real experiments provide accurate results but can be limited in scalability and
reproducibility.

Emulation

Emulation consists in reproducing the behavior of a computer system within another
host computer system. Different emulation solutions exist at different levels of granularity.

Hardware-level emulation with solutions such as QEMU [76] can emulate systems
at the hardware level. The main benefits of such solutions are their accuracy and re-
producibility. Full replication is possible with this methodology, provided the emulation
software and enough computing power. However, this solution cannot simulate large-scale
distributed systems because a) the overhead of this emulation requires much more power
than the system under study, and b) the network topology between different nodes also
needs to be emulated.

Network emulation makes it possible to study distributed systems. CrystalNet [77],
Distem [78], or Kollaps [79] are network-level emulators. These emulators use real com-
puting nodes and limit their processing and memory resources using Virtual Machines or
containers. The creation of virtual routes between hosts emulates the network. The au-
thors of Kollaps [79] managed to reproduce a distributed system composed of more than
2,600 nodes. Distem [78] uses 100 physical nodes to emulate 5,000 virtual nodes. However,
these emulation techniques limit the capacity of physical nodes and network links to em-
ulate a distributed system. Using this approach does not enable studying faster networks
and larger infrastructures than the physical testbed used to run the experiments.
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Alternative approaches try to overcome some of these limitations. Bonsai [80] aims
at compressing networks to simplified topologies while preserving most properties. Other
works simulate the network between emulated nodes like TANSIV [81] and ns-3 DCE [82].

To summarize, emulation can study both limited and large-scale infrastructures. How-
ever, the emulation of large systems requires more powerful infrastructures than the sys-
tem to emulate, limiting the reproducibility of large-scale systems emulation. Emulation
provides accurate results depending on the goal of the experiments, where different tools
provide results at different levels of granularity.

In this thesis, we aim to study large-scale ICT infrastructures such as a fog connected
to a large cloud data center. These infrastructures require the evaluation of thousands
of nodes and network links. In this context, emulation methods based on limitation
techniques are very expensive to use during long timespans and require access to extensive
computing resources, limiting the scalability of this approach.

Simulation

A model is an abstract representation of a real-world system [66]. Simulation makes
use of models to evaluate and validate or invalidate scientific questions. Different models
can simulate the same phenomena but do not rely on the same hypotheses. Before using a
model, the authors of [66, 67, 68] advise understanding the validity limitations of existing
models and choosing a model corresponding to the hypotheses of the research question.
We differentiate models by their level of granularity. We observe a tradeoff between fine-
grained models that are too expensive to study large infrastructures and coarse-grained
models with less precise results but better scalability. In the following, we compare three
different levels of granularity for network communications simulation: link, packet, and
flow-level models. Similar levels of granularity occur for other models with the same
advantages and drawbacks (instruction- and system-level models for CPUs).

Link-level simulation: Link-level models can simulate network communications
down to the physical layer. As explained in [83], link-level models reproduce the physical
phenomena of digital data transmission: modulation and demodulation, channel access,
signal loss, and the configuration of emission and reception equipment. Usually, this
low-level approach uses MATLAB models, such as the WLAN toolbox for Wi-Fi commu-
nications [84]. Despite the accuracy of these models, “the runtime complexities of these
simulators limit their suitability to single link simulation” [83]. Thus, the scalability of
link-level models does not allow the simulation of scalable ICT infrastructures.
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Packet-level simulation: Packet-level models abstract the physical layer and model
communications at the granularity of network packets. Packet models are used to model
network stacks, for instance, to compare the performance of network protocols. Packet-
level models can benefit from link-level results to simplify physical phenomena, such as in
the Wi-Fi models of the ns-3 network simulator where channel errors are estimated using
a lookup table produced with a link-level model [83, 85]. The authors of [83] explain
that this approach is more scalable than link-level models and can “simulate networks
with hundreds of nodes with reasonable runtime”. However, the simulation of large-scale
networks using packet-level models has shown to be resource intensive, simulations requir-
ing several hours of runtime with important memory usage [86, 87]. To this extent, the
scalability of packet-level models does not permit answering the research question of this
thesis. Nevertheless, similarly to link-level models’ results to calibrate packet-level mod-
els, a more coarse-grained simulation approach could benefit from packet-level models’
information to obtain more scalable results.

Flow-level simulation: Flow-level models represent network communications at the
granularity of network packets. They do not represent every packet going through the
network but represent sets of network packets as communication flows. Network flows
are comparable to fluids moving in pipes instead of many network packets. Similarly to
packet-level compared to link models, flow models abstract part of the network commu-
nications, and can use the results of more fine-grained models. For example, flow-level
simulation frameworks such as SimGrid [88] can use the results of packet-level models to
abstract channel-sharing mechanisms while keeping credible outputs. However, cautious
validation is required to assess the validity and the accuracy limits of these models. Re-
garding scalability, flow models enable the simulation of more large-scale networks with
lower resource usage than packet-level models. Some flow-level models have been used to
study networks with thousands of nodes within limited runtimes [87, 89, 90].

Table 2.2 – Comparison of performance evaluation methodologies ( very good;
good; ∼ variable; bad)

Methodology Accuracy Scalability Reproducibility
Real experiments

Emulation ∼
Simulation ∼ ∼
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In this section, we compared the advantages and drawbacks of simulation, emulation,
and real experiments to study the energy consumed by networks and applications at
scale. A summary of this comparison is in Table 2.2. We observe the possibility of
designing simulation models depending on the question under study to match scalability
and accuracy requirements. In comparison, emulation and real experiments can provide
more realistic results but suffer from limited scalability. For this reason, in this work,
we focus on simulation models to estimate the energy consumption of fog networks and
applications at scale. Flow-level models seem a reasonable approach between packet-level
models that are too fine-grained to simulate large infrastructures and analytical models
that are too coarse-grained to study some network and application behaviors.

2.3 Simulation frameworks to estimate fog perfor-
mance and energy consumption

In this section, we review state-of-the-art simulation frameworks for the simulation of
different parts of ICT infrastructures and the missing contributions towards end-to-end
infrastructures’ simulation. We start by describing network simulation tools with different
levels of granularity in Section 2.3.1. In Section 2.3.2 we focus on tools for the simulation
of task executions and the architecture of applications. Then, we review tools to evaluate
energy and GHG emission in Section 2.3.3.

2.3.1 Network simulation tools

We review existing simulation tools from the most fine-grained to the more coarse-
grained solutions. We focus on simulation tools for Wi-Fi and Ethernet communications,
even if other technologies can be simulated by some of the presented frameworks.

Matlab’s WLAN Toolbox [84] is used to simulate IEEE 802.11 network links down
to the physical layer. It models the physical transmission of data including waveforms,
signal modulation, and demodulation, and has detailed propagation models. These models
provide very fine-grained results but suffer from important scalability limitations. As an
example, the simulations of a single Wi-Fi link in the WLAN Toolbox compared to ns-3
packet-level simulations in [91] are slower by a factor of 46 (60 minutes against 77 seconds).
This approach is preferred to simulate single network links as explained in [83].

Ns-3 [92], OMNET++ [93], and Komondor [94] are packet-level network simulators.
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Compared to link-level models, they can simulate in a few minutes scenarios that take
hours with link models as shown in [83]. While ns-3 and OMNET++ are general-purpose
packet-level frameworks, Komondor focuses on IEEE 802.11ax communications. The
models of these frameworks have been developed and validated. For example, the Wi-Fi
models of ns-3 have been validated against link-level simulation in [83, 85], and Komondor
has been validated with identical results compared to ns-3 and analytical models in [94].
In addition to Wi-Fi models, ns-3 and OMNET++ propose models for wired communi-
cations and other wireless technologies (e.g. 3G, LoRA). Ns-3 is a very active simulator
in research, used by “thousands of publications to date” 2, and is actively maintained.
Despite better scalability than link-level models, packet-level simulators still suffer from
scalability issues when simulating networks with many nodes because of an important
computational cost, as shown in [53, 86].

Simgrid [95], Narses [89], and FLEO [90] are flow-level network simulation frameworks.
FLEO is an OMNET++ extension for the study of CDN networks without wireless nodes,
and Narses only provides models for wired communications. SimGrid is more versatile,
with wired network models validated in [88, 96] against a packet-level simulator, and a
Wi-Fi model introduced in 2021 in the thesis of Loic Guegan [53]. The scalability of
flow models is better than packet-level frameworks. SimGrid can be used for experiments
with thousands of nodes [86], Narses speeds up 45 times compared to packet-level simu-
lation [89], while FLEO was validated with scenarios comprising 3,515 nodes [90]. To the
extent of our knowledge, no other flow-level simulation frameworks than SimGrid propose
validated Wi-Fi models. Additionally, this model is limited to the simulation of Wi-Fi in
ideal channel conditions according to [53], and its validity limitations were too important
to be used in fog scenarios before this thesis.

ClouSim Plus [97] and the fog-specialized frameworks IFogSim [63, 98] and YAFS [99]
propose network models for the simulation of cloud and fog communications. However,
the accuracy of the simulated network communication times of CloudSim (in the core of
IFogSim) is questioned in [100] where channel sharing is shown to be invalid. For these
validity concerns, we do not consider CloudSim-based simulators to study fog communi-
cations in this thesis.

A summary of the network simulators presented in this section is proposed in Table 2.3.
We observe that flow-level models propose good scalability properties, but are limited by
the lack of a Wi-Fi model adapted to the simulation of fog environments.

2. https://www.nsnam.org/research/, last accessed December 2023
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Table 2.3 – Comparison of network simulation frameworks ( yes; no; contribution
of this thesis).

Simulator Network
Wired Wi-Fi Energy Wired/Wi-Fi Scalability

WLAN Toolbox [84] / Link-level
ns-3 [92] / Packet-level
OMNET++ [93] / Packet-level
Komondor [94] / Packet-level
Narses [89] / Flow-level
FLEO [90] / Flow-level
CloudSim Plus [97] / Packet-level
IFogSim [98, 63] / Packet-level
YAFS [99] / Queue-based
SimGrid [95] / Flow-level

2.3.2 Task processing simulation tools

Computing nodes need to process the data they receive. In this section, we review
models for the execution of tasks. We start by reviewing existing resource usage models
(CPU, memory). Then we focus on models for the simulation of distributed applications.

Hardware execution

The gem5 simulator [101] is extensively used to perform cycle-accurate simulations of
CPU tasks. Similarly to link-level models that simulate network communications down
to physical phenomena, cycle-accurate models can be used to compare processor microar-
chitectures. Despite the accuracy of the results of this simulator, it is not adapted to the
study of large-scale systems with compute-intensive applications due to the computational
costs of the models. As written in [102], one second of simulated time in gem5 can require
thousands of seconds of simulation time without reducing the simulations’ fidelity.

More coarse-grained simulators such as SimGrid [95] can model the execution of tasks
on simulated nodes. In this case, CPU executions are modeled depending on the number
of CPU cores on the nodes, the frequency, and the usage of each core. SimGrid models
have been used to simulate different applications at scale. More than 3,000 Message
Passing Interface (MPI) processes are simulated in [103] and 12,000 cloud VMs within
two hours in [104]. But SimGrid also has some limitations. No memory model is available,
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and the simulation of realistic distributed applications such as microservices requires a
lot of work to instantiate correctly all the models.

CloudSim plus [97] and fog-specialized simulators such as YAFS [99] and IFogSim [63,
98] also simulate the execution of tasks with good scalability. The execution models are
based on queues and can be used to simulate cloud computing environments including
task executions, Virtual Machine (VM), and scaling algorithms. Similarly to their network
models, the validity of the execution models of CloudSim is questioned in the literature.
The authors of [105] declare “Unfortunately, the result was very different in terms of
simulated timespan. CloudSim could not even be close to it” when comparing the results
of different simulators, showing that the start time of tasks is not realistic in CloudSim.

Table 2.4 compares the features of the task execution models of this section. We can
observe that no ideal framework exists that combines fast simulations using valid models
with fine-grained results. However, in the context of this thesis, we observe SimGrid as
a good compromise between the fine-grained execution models of gem5 and the coarse-
grained models with validity limitations of CloudSim.

Table 2.4 – Comparison of state-of-the-art simulators for task executions and distributed
applications ( yes; no; contribution of this thesis).

Simulator Network Computing Energy Domain
Wired Wi-Fi CPU Memory Network Nodes

gem5 [101] Processes
ns-3 [92] Network

OMNET++ [93] Network
CloudSim Plus [97] Cloud
DISSECT-CF [106] Cloud

µqsim [107] Microservices
YAFS [99] Fog

IFogSim [63] Fog
BigHouse [108] Cloud
SimGrid [95] Versatile
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Application architecture

Application models can be used to study the interactions between network and pro-
cessing models when running real applications.

BigHouse [108] models simulate cloud applications using statistical methods based on
a discrete-event simulator. Unfortunately, recent works have shown that the accuracy of
BigHouse is limited for distributed applications composed of several components deployed
on different nodes due to its very high-level representation of applications [107].

Based on the limits of BigHouse, the authors of µqsim [107] use a finer-grained rep-
resentation of microservice applications. µqsim allows for detailed modeling of internal
microservice executions using sets of execution stages for the requests received by mi-
croservices, and communication dependencies for interactions between services. Appli-
cations form a DAG where nodes are services and edges represent the path followed by
individual requests processed by the application. With a correct calibration of the dif-
ferent execution stages of each service and their interactions for different request types,
the authors manage to reproduce the behavior of a complex microservice benchmark [60].
Whereas the calibration of the models is feasible by hand for small applications, the lack
of a proper calibration methodology leads to a tedious and error-prone process with large
applications. This approach also requires to re-calibrate the models each time the code
of a service is modified to match the application’s new behavior.

Other simulators help the study of fog and IoT-specific applications. IFogSim [98, 63]
can simulate microservices in fogs with mobility, scheduling, and energy models. Again,
this simulator is based on CloudSim and inherits its limited validity [100, 105]. Sim-
ilar works such as IoTSim-Osmosis [109] or YAFS [99] propose models specific to IoT
applications in the fog. While these tools can simulate end-to-end infrastructures, their
communication and execution models remain very simplistic. For instance, these sim-
ulators do not differentiate wired and wireless communications despite their different
channel-sharing mechanisms, and their different energy usage.

In the context of this state-of-the-art review, we observe a tradeoff between the accu-
racy of the application models and the difficulty of their calibration. A methodology to
transpose real-world applications into their simulation equivalent could ease the study of
real applications using simulation. We observe that other domains make use of runtime
traces to extract application information and simulate tasks using these traces [105].
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2.3.3 Energy simulation frameworks

Based on the performance models for nodes and communications, power models can
compute the energy consumed by the infrastructure. Figure 2.4 illustrates the behavior of
power consumption models for ICT devices. The power consumed by a device Ptot is the
sum of a) a static power consumption Pstat (the minimum power to operate the device)
and b) a dynamic power consumption Pdyn (depending on device’s activity). Depending
on the devices, the calibration of power models will vary along with the computations of
Pstat and Pdyn. Since power models depend on devices’ usage, their results are accurate
only if the durations of communications/process executions are accurate. We assume
performance models are accurate in this section.

Pstat

Pdyn

Ptot

P

T

Figure 2.4 – Power usage of a device Ptot = Pstat + Pdyn

CPU power usage

The static power consumption of a node corresponds to the power used by the machine
when idle. When a node processes data, the additional dynamic power usage depends on
the number and utilization of active CPU cores and the frequency of the cores.

Gem5 [110] has an energy consumption model for CPUs considering instruction sets
and microarchitecture implementation. Again, this type of simulation does not allow for
large-scale simulation, despite providing fine-grained information.

SimGrid, IFogSim [63, 98], and YAFS [99] have models to study the energy consumed
by bare metal servers and VMs. Properly calibrated, these models use linear regression
to estimate the nodes’ energy consumption depending on their average usage. SimGrid
model was used to measure the energy consumption of cloud nodes in [111] for instance.
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These models abstract microarchitecture details to estimate the energy consumption of
CPUs when executing tasks.

Table 2.4 summarizes the power models available in different frameworks for task
executions.

Network Interface Card power usage

The power consumption of a Network Interface Card (NIC) depends on its communi-
cation technology and usage.

Ns-3 has power models for wired communications in Ecofen [112]. Similarly, Wi-Fi
and battery power models are also available and published in [113]. These models rely
on ns-3’s packet-level performance models that have been extensively validated. These
models are considered accurate but limited by the scalability of packet-level simulation.

SimGrid has a model to simulate the energy consumption of wired network inter-
faces [86] based on its flow-based wired communication model. The results of this model
have a relative error of 4% compared to ns-3. However, using a flow-level model reduces
the runtime of scenarios executed in SimGrid by 120 times compared to simulations with
ns-3. To the extent of our knowledge, there was no energy model for Wi-Fi using flow-level
simulation before this thesis. A flow-based energy Wi-Fi model would be more scalable
compared to packet-level solutions. Consequently, the flow-level simulation of the energy
consumed by large-scale networks is currently limited to wired links.

The power models of IFogSim [63] do not differentiate between wired and wireless
communication technologies. While this model can give broad estimations of the energy
consumed by communications, the accuracy of communication times predictions and the
lack of network protocol consideration reduces the accuracy of these models. Indeed, the
energy consumed by a Wi-Fi network card changes depending on the number of antennas
of the device, and the state of each antenna, which is not the case for wired links [114].

To study the energy consumption of fog networks at scale, using a flow-level framework
with energy models for both wired and Wi-Fi communications is promising. However, Wi-
Fi energy models are not offered by current flow-level tools.

2.4 End-to-end simulation of ICT infrastructures

In this section, we outline information about missing models for the end-to-end scalable
simulation of network and processing infrastructures. In the previous section, we have seen
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there already exist scalable and valid models for the simulation of wired communications
and their energy consumption. However, available Wi-Fi models are either too fine-grained
to study fog infrastructures or rely on strong hypotheses. Similarly, while microservice
models exist in the literature, their calibration is very complex for large applications. In
Section 2.4.1, we review Wi-Fi simulation requirements and introduce the material utilized
in this thesis to model Wi-Fi communications. Section 2.4.2 focuses on the literature to
model the energy consumption of Wi-Fi NICs. Finally, Section 2.4.3 reviews the design
and calibration of microservice application models.

2.4.1 Wi-Fi medium access mechanisms

Wi-Fi channel access

In this thesis, we consider Wi-Fi in infrastructure mode, excluding ad-hoc networks.
Thus, a Wi-Fi network is a set of Stations (STA) connected to an Access Point (AP)
through a communication channel. The IEEE 802.11 standards define different parame-
ters such as the frequencies that can be used by Wi-Fi devices, the bandwidth of commu-
nication channels, available coding schemes, and the number of spatial streams. These
network parameters, known as the Modulation and Coding Scheme (MCS) configuration,
have an impact on the communication throughput when devices use the network. Fine-
grained simulation of Wi-Fi requires in-depth computations for each of these parameters
to obtain accurate physical-layer transmission times. However, this accuracy comes at
the cost of reduced scalability, limiting such models to the simulation of small-sized in-
frastructures as explained in Section 2.3.1. We decide to use a more coarse-grained model
to simulate Wi-Fi communications and reach better scalability in terms of simulation
runtime and platform size. In this context, an MCS configuration corresponds to the
theoretical maximum throughput of the channel, defined at calibration time.

At the Medium Access Control (MAC) layer, IEEE 802.11 standards define the rules
followed by Wi-Fi nodes (STAs and APs) to share a common communication channel.
The Distributed Coordination Function (DCF) shares the access to the wireless channel
between the STAs that try to send data concurrently. This function determines the time
and the amount of data each station can send when active on the channel. It relies on
different techniques to avoid collisions between several STAs that would otherwise start
communicating concurrently. Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) is the MAC layer protocol used to decide which node has access to the
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channel. CSMA/CA states that every STA must sense an idle channel for a duration called
Distributed Inter Frame Space (DIFS) before transmission. After sensing the channel as
idle, an exponential backoff requires STAs to wait for an additional duration before sending
their data. This duration is randomly chosen and multiplied by two after each channel
access failure. Finally, the receiver emits an Acknowledgement (ACK) within the Short
Inter Frame Space (SIFS) upon successful transmission. Figure 2.5 illustrates channel
access between two STAs that a Wi-Fi performance model needs to reproduce.

Tx Packet ACK Collision

Collision

DIFS

DIFS

2 1 0

4 3 2 Busy Channel

DIFS
2 01

DIFS
2 01

Backoff

A

B

SIFS

Figure 2.5 – MAC layer channel sharing example with 2 concurrent STAs trying to access
the channel. Collisions happen when 2 STAs A and B start sending data simultaneously.

Flow-level Wi-Fi simulation model

A flow-level model was proposed for SimGrid by Loic Guegan in [53] to simulate the
access to Wi-Fi channels with the DCF function. The calibration of this model consists
in defining the application bandwidth for all STAs attached to an AP. Experiments
using this flow-level model require less runtime and memory than the same experiments
within ns-3 [53] but rely on strict hypotheses. This model does not consider collisions or
mobility and was shown valid with a single MCS configuration. The authors also mention
that validity is limited in scenarios with interferences, but “the accuracy of our model
is correlated with the number of stations that communicate through the wireless channel.
Thus, grounding the interference model on the number of stations would be a good starting
point toward accurate performance predictions”.

Extending this model with an interference mechanism could enlarge the range of valid
scenarios. The extended model could then be used to study more realistic fog scenarios,
including dense Wi-Fi networks with nodes causing interferences.

2.4.2 Wi-Fi power consumption modeling

The duration of communications highly impacts the dynamic energy consumption
of Wi-Fi NICs. Thus, Wi-Fi power models rely on performance models that predict
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communication durations to evaluate the devices’ energy consumption.
An example of the power usage of a Wi-Fi interface is given in Figure 2.6. We observe

that interfaces switch between different states depending on the tasks executed by the
NICs (sending, receiving data, channel sensing). These different power states originate
from the activation of different parts of the NIC depending on its activity. As reviewed
in the literature [113, 114], the states of a Wi-Fi network interface are:

— IDLE : The NIC does not perform any operation, consuming PIDLE;
— Transmission (Tx): The NIC actively sends data, requiring to power the antennas

of the device, consuming PT x. In contrast to CPU power models that experience
varying power consumption depending on the number and frequency of active cores,
Wi-Fi NICs transition between fixed states, without intermediate power levels;

— Reception (Rx): The NIC actively receives data, which requires listening to the
wireless channel, consuming PRx;

— Sleep: The NIC deactivates some circuitry to reduce energy consumption. In this
case, the power usage of the NIC reduces to Psleep.

IDLE IDLETx SleepRxIDLE

Figure 2.6 – A Wi-Fi NIC switches between different states depending on the task per-
formed by the device

For the calibration of Wi-Fi power models, state-of-the-art contributions measure the
power drawn by different NICs in each state.

The authors of [114] provide power values for an Intel Wi-Fi NIC supporting IEEE
802.11 a/b/g/n. They measure the power consumed by the NIC by placing a resistor on
its power supply. Their experiment provides the NIC’s power consumption with varying
channel width, different spatial stream configurations (up to 3 antennas), and different
transmit powers. Despite the accuracy of their measurements, this study is not represen-
tative of the Wi-Fi NICs used in other devices (smartphones, routers).
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Another paper published in 2015 [115] adopted a similar approach to measure the
power usage of a wide range of Wi-Fi interfaces. In this case, they measure the NICs’
power usage for routers, a smartphone, and a Raspberry PI. For each device, they measure
and model the power usage when idle, sending, and receiving data with different MCS
configurations. Compared to the previous paper, the authors also measure the power
consumed by the operating system to decode and process network packets. They ob-
serve that the implementation of the operating system’s network stack can impact energy
consumption and name this impact the cross-factor.

To instantiate ns-3’s Wi-Fi power model, the authors of [113] reuse the measurements
obtained in [114]. The model’s authors also mention the energy consumed during Clear
Channel Assessment (i.e. sensing if the channel is busy and if a station can send data).
Based on previous works, their resulting model does not differentiate between the power
usage in IDLE and CCA states. In this thesis, we consider the same default calibration
values as ns-3’s power model [113].

Modeling the duration and the energy consumed by Wi-Fi communications at scale
permits the study of ICT infrastructures mixing between wired and wireless communica-
tions like fog infrastructures. In the following, we focus on understanding how resources
are utilized by applications to simulate scenarios involving microservices. Specifically, we
emphasize the instantiation of the models to ease the study of large applications.

2.4.3 Microservice applications simulation

Since the use of resources in ICT infrastructures depends on the applications, it is crit-
ical to simulate realistic applications to obtain credible results. We focus on microservice
applications given their popularity in modern ICT infrastructures such as fogs [5].

Application model

Microservice simulation tools need to consider the application at three different levels:
a) the execution of requests within each service, b) the interdependencies between services
of the application, c) the placement and autoscaling algorithms to dynamically adapt the
application to the load.

A request executed in a service uses resources (CPU, I/O, RAM). First, when receiv-
ing and forwarding requests, there is an overhead due to the reception and processing
of network data [61]. This duration can be estimated using network models. Then, a
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microservice instance can process some requests in parallel depending on the capacity
of its host. The execution of the request necessitates CPU and I/O durations estima-
tions. These durations can be estimated using processing and disk models, as available
in SimGrid [116]. Then, the accuracy of intra-service request executions depends on the
calibration of the model.

To model the interactions between services, we need to consider the requests’ execution
path. As explained in Section 2.2.1, microservice applications form DAGs of dependencies
between tasks executions [60, 63, 107]. In this DAG, nodes correspond to executions of
requests within a service, and edges to network messages between services.

Finally, microservice applications are monitored by tools such as Kubernetes [65] to
automatically deploy new instances of services in case of high loads. In this context,
considering autoscaling policies helps to produce realistic results. Different autoscaling
policies are available, for example using system metrics to deploy new replicas when
exceeding usage thresholds [117, 118]. Placement policies are also important because of
the impact of services’ location on application performance.

Model instantiation

Since microservice applications can be composed of numerous services with several re-
quest execution paths, the instantiation of microservice models is complex. When study-
ing state-of-the-art microservice simulation frameworks [107], the calibration of the models
is manual, requiring a lot of time and leading to potential errors.

In the domain of High-Performance Computing, researchers encountered comparable
issues when simulating MPI applications. Some works base the calibration of their models
on the data obtained within application traces to solve these issues. For instance, the
authors of [103] use real-world MPI application traces to calibrate SimGrid’s MPI model.
A similar approach may ease the instantiation of microservice models.

Most microservice applications are instrumented to assist application maintainers in
identifying performance bottlenecks. Distributed tracing standards like OpenTracing [119]
and its successor OpenTelemetry [120] permit the generation of traces for each service’s
performance at runtime. These standards define the traces’ format to simplify their pro-
cessing. Jaeger [121], initially developed by Uber in 2015, and Zipkin [122] from Twitter
and now managed by the OpenZipkin organization, are two popular open-source projects
for trace processing and visualization. They reconstitute the path of requests among dif-
ferent services and measure single or average requests’ execution durations in each service.
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Thus, an alternative use for these tools is to benchmark an application and obtain ser-
vice execution times and the DAG of function calls automatically for models’ calibration.
Since these monitoring solutions are widespread among microservice developers, traces
are available without extensive programming effort.

To the extent of our knowledge, no state-of-the-art contributions for the simulation of
microservices make use of application traces to instantiate the models.

2.5 Conclusion

Our review of existing literature on the study of end-to-end ICT infrastructures high-
lights important efforts made in this field to improve the efficiency of devices and perform
accurate measurements.

In Section 2.1, we observed the important uncertainties between different studies re-
garding the evolutions of ICT infrastructures and their energy consumption. Different
prediction methodologies lead to very different estimations of the future impact of ICT
and show the need for reproducible and scalable methodologies to estimate this impact,
especially during the use phase.

In Section 2.2, we focused on the evolution of ICT infrastructures and applications to
improve application performance. We observed the complexity of modern ICT infrastruc-
tures with cloud and fog computing. We also reviewed the uncertain tradeoff between the
gain of performance of novel fog approaches and the environmental impact of decentral-
ized nano DCs. To better understand this tradeoff, we observed the necessity to evaluate
the energy consumed by end-to-end infrastructures.

In Section 2.3, we focused on simulation to study the energy consumption of fog infras-
tructures. Compared to other methodologies, simulation models can be tuned to reach a
given tradeoff between scalability and accuracy depending on the research questions under
study. We observed that flow-level simulation models can provide sufficient accuracy in
our context while preserving good scalability.

In Section 2.4, we reviewed the background towards the scalable simulation of end-
to-end infrastructures. We focused on the simulation of Wi-Fi communications and their
energy consumption, along with the execution of microservice applications.

These observations call for a methodology enabling accurate evaluations of the energy
consumption of end-to-end fog infrastructures running applications, as we shall introduce
in the next chapters. The position we defend in this work is that flow-level models can be
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used to simulate end-to-end fog infrastructures at a large scale, while preserving accurate
results.
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Chapter 3

VALIDATION OF A FLOW-LEVEL WI-FI

MODEL FOR LARGE SCALE NETWORK

SIMULATION

Network communications at the edge of the network often rely on wireless technologies
such as Wi-Fi. However, state-of-the-art simulation models for Wi-Fi either lack validation
or scalability. In this chapter, we propose to study the tradeoff between the accuracy and
the scalability of Wi-Fi models based on flow-level simulation. After describing a flow-
based Wi-Fi model proposed in a previous work by Loic Guegan [53], we extend this
model and evaluate its accuracy and scalability against ns-3.

This chapter is organized as follows. Section 3.1 introduces the flow-based framework
used in the rest of this chapter and the design proposed in [53]. In Section 3.2, we extend
the base model to provide improved estimations of network communication durations.
In Section 3.3, we describe the implementation of this model in SimGrid and its cali-
bration methodology. Section 3.4 compares the accuracy and scalability of the SimGrid
implementation of the model against ns-3. Section 3.5 concludes this work.

3.1 Context and hypotheses

3.1.1 Flow model framework

Obtaining a scalable flow-based Wi-Fi model requires switching to a more abstract rep-
resentation of communications than packet-level models. As described in Section 2.2.2,
packet-level simulators consider every packet transmitted between nodes, each packet re-
quiring computations to estimate the probability of its successful reception and its trans-
mission time. Using flow-level simulation, the communication between two nodes of a
network is represented as a single flow. In this chapter, we use the term Wi-Fi link to
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describe the Wi-Fi cell, i.e., the aggregation of an AP, the communication channel, and
the STAs attached to the AP. The bandwidth allocated to a flow depends on the prop-
erties of the link, and the other flows in the network. Flows have a constant throughput
between network events such as the arrival or deletion of a flow. Upon network events,
the bandwidth associated to each flow is updated to match the new state of the network.
This approach is less compute-intensive than packet-level simulation since the number of
packets is typically much higher than the number of flow-related events. However, the
gains in scalability come at the price of less fine-grained results. Compared to a packet-
level simulator that can provide the state of the network at any time, a flow approach
only provides the average bandwidth between events.

In this context, designing a flow-level Wi-Fi model requires defining the properties of
each Wi-Fi flow, and the rules to update the bandwidth of flows upon network events.
This is done through the use of a solver that takes the state of the network as an input,
modeled as an inequation system, and outputs the bandwidth allocated to each active flow.
The inequation system is defined using variables and constraints similar to Equation 3.1.



∑
i using
link 1

a1,i × ρi ≤ C1

...∑
i using
link r

ar,i × ρi ≤ Cr

...∑
i using
link m

am,i × ρi ≤ Cm

(3.1)

Each link of the network is represented by one inequation r associated with a constraint
Cr. The inequation is used to compute the throughput of all the flows passing through
this link. The variable ρi represents the bandwidth allocated to the flow i. The constraint
Cr ensures that the sum of the bandwidths of all the flows passing through link r will not
exceed the link’s capacity. Cr thus corresponds to the maximum throughput of the link.
Coefficients ar,i can be used for each variable to model behaviors such as acknowledgments
as their usage happens to reduce the link’s available capacity.

To attribute the bandwidth ρi of each active flow i, we solve the following prob-
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lem [123]:
MAXIMIZE mini wi × ρi

UNDER CONSTRAINTS{
∀r,

∑
i using

ressrouce r

ar,i × ρi ≤ Cr

Where the constraints are the system given in Equation 3.1, and the weight of flow
i, wi can be used to prioritize some flows and model phenomena such as RTT-Fairness
(when the bandwidth of a node decreases inversely proportionally to its round trip time).
Solving this problem can be done iteratively [123], starting from the most constrained
link until all throughputs are determined. The load of the link associated to inequation
r can be noted ϵr = Cr/(∑

i using r
ar,i

wi
). Consequently, the most constrained inequation of

the system is the one that minimizes ϵr. Solving that inequation is done by computing
ρi = ϵr/wi for each flow i traversing the link corresponding to this inequation. Once
an inequation is fixed, constraints Cr through which passes flow i are updated such that
C ′

r = Cr − ar,i × ρi. Then, the same operation is iterated to fix all flows.
This kind of solver is used in the SimGrid simulation framework [95], and in other

flow-level simulators such as Narses [89]. More details about the implementation of this
solver in SimGrid called the Linear Max-Min solver (LMM), and how to apply it to model
wired communications can be found in [123].

In the case of Wi-Fi, Loic Guegan [53] proposed to adapt this inequation system,
initially proposed for the simulation of wired communications, to the constraints of Wi-
Fi. In the following, we summarize and quote the equations for the Wi-Fi model of [53].

3.1.2 Flow-based Wi-Fi bandwidth sharing

The model introduced in this section is based on the description of the MAC layer
IEEE 802.11 channel sharing given in Section 2.4.1. As explained in Section 2.4.1, a Wi-Fi
model needs to reproduce the behavior of the DCF, i.e. managing the access of STAs to
the wireless channel. In this section, the channel is supposed to be in ideal conditions with
no interferences, no signal loss, and no hidden node. The two factors that play a major
role in the way the channel is shared among stations are a) ri, the datarate associated
with station STAi which depends on AP and STA configurations, b) di the amount of
data to be sent by STAi. For conciseness, in this chapter, we use the term channel to
describe both the nodes (STA, AP) and the channel of a Wi-Fi cell. We now describe the
flow-based model presented in [53].
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The model’s design is illustrated using the example of Figure 3.1 within a single Wi-Fi
cell composed of one AP and three STAs. In this example, the three STAs want to send
data to the AP concurrently over some time T. Each STA needs to send some packets:
STA1 and STA2 have 8 packets to send, while STA3 has 1 packet. Figure 3.1b shows one
possible share of the channel that could be obtained using a packet-level model.

STA2STA3 STA1

duration (s)

data size (B)

STA3

STA2

STA1

time (s)

(a )  Data to send

(b )  Time domain (c )  Flow-based solution

Figure 3.1 – Example of Wi-Fi communication over a period T with 3 STAs where r2 =
2r1 = 4r3, taken from [53].

The goal is to compute the time each STA spends sending data over T , as shown in
Figure 3.1c. The use of the Wi-Fi link for period T is expressed as C =

∑n

i=1 di

T
. Because

of the exponential backoff described in Section 2.4.1, all nodes have the same probability
of accessing the channel and transmitting frames. This leads to a fair share of the channel
regarding the amount of data sent by each station. Theoretically, all stations will transmit
the same amount of data, ∀i, j, di = dj = d, where dk is the amount of data sent by STAk

during T . As a consequence, the throughput of all nodes during T is equal to the same
value, ∀i, j, ρi = ρj = ρ. Therefore, the usage of link C in the max-min inequation system
is a fair share among all active flows:

C =
n∑

i=0
ρi = n × d

T
= n × d∑n

i=0
d
ri

= 1
1
n

∑n
i=0

1
ri

(3.2)

However, some of the flows might be fixed by other constraints of the system. Suppose
the throughput of the flow starting from STA1 (noted ρ1) is fixed such that ρ1 ≤ C

n

because the receiver of the flow is slower than the maximum transmission rate of STA1.
Because STA1 does not take all its fair share of airtime, the other flows will share with
the remaining link capacity. C ′ corresponds to the remaining capacity of the channel once
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the fixed flow has been removed. Let df be the amount of data sent by the fixed flow such
that df ̸= d. Since tf = df

rf
an ρf = df

T
, we have:

T = T ′ + tf = T ′ + df

rf

= T ′ + T × ρf

rf

, hence T = T ′

1 − ρf

rf

(3.3)

Let d′ be the amount of data to be sent by the remaining stations. Since we have

C =
n∑

i=0
ρi = ρf + C ′ = df + (n − 1)d′

T
,

the capacity of the remaining flows can be computed as:

C ′ =
n∑

i=0,i ̸=f

ρi = (n − 1)d′

T
= (n − 1)d′

T ′ ×
[
1 − ρf

rf

]
= 1

1
n−1

∑n
i=0,i ̸=f

1
ri

×
[
1 − ρf

rf

]
(3.4)

Let I be the set of all the flows not fixed in the system, and F the set of fixed flows,
we can generalize Equation 3.4 to an arbitrary number of fixed flows:

C ′ = 1
1

|I|
∑

i∈I
1
ri

×

1 −
∑
f∈F

ρf

rf

 (3.5)

Equation 3.5 defines how to update the inequation system once one or several flows
have external constraints limiting their sending capacity. Solving this system is less com-
putationally intensive than a packet-level approach where each network packet has to go
through a set of complex models. Few parameters are necessary compared to packet-level
models: a) the number of flows, b) the sizes of flows, c) the datarate of each station.

3.2 Model extension

The model presented in Section 3.1.2 can be used to simulate IEEE 802.11n commu-
nication durations in ideal conditions. In this section, we extend this model to permit
considering non-ideal channel conditions.

3.2.1 Capacity reduction of concurrent flows

The equations from Section 3.1.2 enable sharing the bandwidth of a Wi-Fi channel
between a set of flows in ideal conditions. We refine the base model by taking some
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potential causes of performance degradation on the Wi-Fi channel into account.

One example is the case of collisions between nodes. The more flows are executed
concurrently on a single channel, the higher is the probability of having two stations
sending data at the same time, leading to collisions and retransmissions. This reduces the
channel time for successful communications. The exponential backoff and mechanisms
such as Request To Send/Clear To Send (RTS/CTS) try to minimize the probability of
such events, but collisions still happen in real networks.

In packet-level simulators, successful transmissions and receptions are computed using
protocol-specific propagation and probabilistic loss models [85, 124]. We propose a more
minimalistic approach to capture this issue, adapted to a flow model.

We expand the bandwidth-sharing model to adjust the constraint associated with the
maximum capacity of a Wi-Fi link depending on the number of active flows using the
link. To compute a performance loss we can thus define a function f depending on the
number of concurrent flows i using resource r, such that:

Cr = f(
∑

i uses r

1) (3.6)

This function f can be used to capture collision effects in heavily loaded Wi-Fi net-
works. In our simulations of single Wi-Fi cells using ns-3 in Section 3.3.2, we observe an
overall stationary throughput in IEEE 802.11n cells up to a certain number of concurrent
flows, after which the throughput linearly decreases. Once the threshold and the coeffi-
cients of the linear curve are obtained experimentally (either through real or simulated
experiments using more fine-grained models), we can define f such that:

f(x) =

bw0 x < thresh

a ∗ x + bw0 x >= thresh
(3.7)

Where bw0 is the maximum throughput, a is the coefficient of the curve, and x is the
number of concurrent flows. While this calibration process requires some experiments,
once the function has been extracted, it can be reused for several simulations. In addition,
other definitions of f could be used in the future to model other effects even if we only
use f as defined in Equation 3.7 in this thesis.
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3.2.2 Propagation model with SNR Levels

By default, the STAs on a Wi-Fi link are assumed equidistant to the AP. We can
extend the base model to allow STAs to have different positions when starting an exper-
iment. STA mobility during the experiments remains out of the scope of this work. The
position of a STA can impact its datarate. Packet-level simulators compute a SNR for each
data frame based on a loss model and use it to deduce a Packet Error Rate (PER) [85].

Again, our approach is more minimalistic than packet-level models. We do not have
access to the same amount of information, preventing us from estimating SNR and PER
values accurately. Instead, we allow the experimenter to define the list of datarates that
we name SNR levels for each station in a cell. At runtime, it is possible to define which
datarate to use for each STA separately depending on its position. As described in the
equations of Section 3.1.2, the datarate limits the maximum bandwidth of a station if its
SNR is lower than the theoretical maximum STA throughput.

3.3 Model implementation and calibration

3.3.1 Implementation

Loic Guegan’s model [53] was implemented in 2021 in the SimGrid simulation frame-
work. Our extension has been added to that base model [95]. As described in Section 2.2.2,
SimGrid is a flow-level simulation framework for distributed systems proposing various
models for Ethernet communication, CPU, and disk usage, among others. We chose Sim-
Grid for the efficiency of the integrated inequation solver, and the possibility of combining
the Wi-Fi model with other SimGrid models. SimGrid being open source software, this
model is integrated within SimGrid’s source tree and will be available in all future re-
leases [125]. Currently, Wi-Fi cells must be at the end or start of a flow’s path. Wi-Fi
links in the middle of the communication path could be considered as future work.

Adding this model to SimGrid requires the creation of communication links specific
to Wi-Fi. In the solver, the bandwidth of flows using Wi-Fi links are updated using the
equations of Section 3.2. Wired and wireless links can thus be used jointly in a simulation.
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3.3.2 Calibration

Since the bandwidth of Wi-Fi channels highly depends on the experimental scenario
under study, the flow model must be carefully calibrated to obtain accurate performance
estimations. The configuration of STAs, the density of nodes in the network, and external
channel degradation have all an impact on the capacity of a Wi-Fi cell. Using our model,
we rely on the calibration of Wi-Fi parameters before executing simulations to consider
the impact of those effects. Calibration values can be obtained through real measurements
or microbenchmarks on more fine-grained simulators such as ns-3. The rest of this section
describes the different calibration steps.

Single station throughput:

The frames sent over an IEEE 802.11 channel do not only include applications’ data
frames. Control frames, beacons, and RTS/CTS messages can also be sent regularly on
the Wi-Fi channel. This time spent managing the cell impacts the throughput available
for application data compared to the theoretical maximum available throughput. The
flow model does not account for the time spent sending such frames and thus needs to
be calibrated to fit that maximum throughput. This value can be obtained by running
microbenchmarks to obtain the maximum data throughput between a STA and an AP.
The result can then be used to calibrate SimGrid.
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Figure 3.2 – Single station throughput given flow size with 100 seeds for ns-3 in red.

We chose to run an ns-3 simulation with one Wi-Fi cell made of an AP and one STA
configured with an MCS of 3. A single flow is created from the STA towards the AP
in this cell. The simulation is repeated several times with 100 different random seeds.
Figure 3.2 shows the results of this experiment where red points are the throughput of
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ns-3 for different data sizes. We observe that the maximum flow throughput converges
around 44.1Mbps when increasing the size of flows.

By calibrating SimGrid’s model with this datarate r = 44.1Mbps, we obtain the blue
line of Figure 3.2. SimGrid estimations do not depend on random number generation,
thus all experiments will give the same outputs in contrast to ns-3. This value remains
within 1% of all observed values with ns-3 during this calibration experiment.

Overall bandwidth reduction upon high contention:

This step focuses on the throughput available for stations depending on the number
of concurrent flows in the network.

Various amounts of concurrent flows are simulated in a cell, where a different number
of STAs try to send data simultaneously. In this case, flows towards the AP (ascending)
and from the AP to the STAs (descending) are mixed. Pairs of STAs are created and com-
municate from one node to the other, passing by the AP. We executed the same scenario
with exclusively ascending or descending flows, leading to similar results. The results
obtained with ns-3 are shown in Figure 3.3, where each point is a different simulation
execution with as many STAs on the channel as the number of concurrent flows.
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Figure 3.3 – Throughput degradation under concurrent flows.

This experiment highlights a new phenomenon that was not observable in the previous
calibration step. The throughput available to communicate decreases with the number of
concurrent flows. This happens regardless of the MCS configuration used for the exper-
iments as shown in Section 3.4. This decrease can be explained by several factors: more
concurrent flows require more management frames and RTS/CTS requests if activated
(in this case, RTS/CTS is used for packets above 100 bytes), and it also increases the
probability of having collisions when STAs start sending data at the same time. Even
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without collisions, already communicating nodes slow down the others, which need to
increase their backoffs. This issue is accounted for with the link capacity degradation
mechanism described in Section 3.2.1.

Using the observations of ns-3, the function f is designed as a linear piecewise function,
using a constant maximum throughput below 20 concurrent flows before linearly decreas-
ing the maximum throughput once this threshold is exceeded. A linear regression has
been done to estimate the throughput degradation related to the amount of concurrency.
Once these values are obtained, we inject them into SimGrid to obtain the triangles visi-
ble in Figure 3.3. We observe that, from a few ns-3 simulations, we manage to calibrate
our model to run under an arbitrary number of concurrent flows. Ns-3 results vary with
different random seeds, while the flow model always gives the same results. The same
approach can be used for other MCS configurations.

Distance to the access point:

The last benchmarks we used to calibrate our model observe the maximum distance
between an AP and the STAs that communicate with it. It can be done by running an
experiment within a Wi-Fi cell with one AP and a single STA. Several simulations are
done, where the throughput obtained between the AP and the STA is observed depending
on the distance between the two nodes. Once we know the maximum communication
distance, we can set the datarate of STAs according to the values obtained experimentally,
i.e. any STA located above the maximal distance will be assigned a datarate of 0bps. Rate
adaptation algorithms [126] are out of the scope of this work, along with mobility during
the experiment. In our validation, STAs have a fixed position, defined at the beginning
of the experiment.

3.4 Validation

This section evaluates our flow-based model. As a baseline to compare the metrics
provided by our model, we compare the outputs of SimGrid to the outputs of ns-3. This
choice to compare a flow model to another simulator is motivated by the following reasons:

— real experiments using wireless devices are very hard to reproduce at scale;
— ns-3 is actively maintained by a large community;
— ns-3 models are publicly available and validated in peer-reviewed articles [85];
— ns-3 is extensively used for Wi-Fi simulations;
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— the packet-level nature of ns-3 provides more fine-grained results than flow-level
simulation. Closely related results between SimGrid and ns-3 would show the
accuracy of our approach.

We compare different metrics such as the overall Wi-Fi cell throughput, single flow
throughput, or performance metrics for several use cases. In the following, we first assess
the validity of our model on simulations of limited scale, before validating the scalability
of our approach on a realistic infrastructure.

Experimental Setup. Experiments use SimGrid v3.29 with the implementation of
our model, whereas we use an unmodified ns-3 v3.33 with IEEE 802.11n models. Random
number generation within ns-3 has been shown to lead to very different results depending
on the random seed used to initialize the simulations. This is due to the probabilistic
nature of some phenomena such as drawing random backups or signal propagation, among
others. Experiments are executed on the Grid’5000 [71] testbed to sample executions using
different seeds. Regarding STAs positions, we uniformly put the stations within a circle
of radius of 15 meters around the AP when not explicitly written. This mitigates issues
such as the hidden node problem [127] and simplifies the analysis of the results.

Source code and reproducibility. Experiment artifacts, including code, scripts,
visualizations used for this chapter, and additional results are available at https://
github.com/klementc/wifi-reproducibility

3.4.1 Small-scale validation through microbenchmarks

In the following, we study the capacity of our model to give accurate performance
estimations on limited-size platforms.

Using the throughput reduction mechanism:

We observe the impact of the number of concurrent flows using different Wi-Fi MCS.
Figure 3.4 shows the overall throughput of a cell using four MCS configurations (MCS
2 to 5). To obtain these results, we first execute ns-3 microbenchmarks to calibrate our
model with the maximum available throughput and the coefficient of the linear decrease
of function f . This calibration is made, as in Section 3.3.2, with a limited number of
ns-3 experiments to avoid overfitting. The simulated communication flows start simulta-
neously, once all STAs are properly attached to the AP. We simulate the Wi-Fi cell with
different numbers of concurrent flows and compare the outputs of the flow model to the
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Figure 3.4 – Comparison of overall throughputs between ns-3 (in red) and SimGrid (in
blue) simulations, depending on the number of concurrent flows in a single Wi-Fi cell
using 35 ns-3 seeds. Black bars show the standard deviation around the mean for ns-3
simulations.

outputs of ns-3.
Each plot in Figure 3.4 shows the throughput estimations obtained after calibration.

Different MCS configurations lead to different maximum theoretical throughput values,
visible in our plots where Figure 3.4a (MCS 2) is estimated to reach approximately
33.3 Mbps against 86.5 Mbps in Figure 3.4d (MCS 5). The maximum relative error
of the overall throughput is 1.5% under MCS 2 with a small number of concurrent flows.

This experiment shows the ability of our model to simulate the share of a Wi-Fi channel
between an arbitrary number of concurrent flows under various MCS configurations. After
calibrating the model, it is possible to obtain closely related outputs compared to ns-3.

SNR levels microbenchmark:

This experiment simulates communications when STAs have different locations. Two
STAs send data to the AP, where STA1 is fixed, and the distance between STA2 and
the AP is increased between consecutive simulations. This scenario does not consider
mobility since the STAs do not move during a simulation. The two stations are always
within reach to avoid the hidden node issue. The flow-based model is calibrated following
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Figure 3.5 – Impact of STA distance on the throughput share between stations.

the methodology of Section 3.3.2. The MCS of the stations is set to 3, and channel
bonding and RTS/CTS are deactivated.

Figure 3.5 shows the throughput of nodes 1 and 2, where the distance between the
AP and STA2 ranges from 50 m to 65 m. Ns-3 results are sampled with 30 different seeds
since its signal propagation and packet-loss models depend on probabilistic computations.
Below 51.5 meters, the channel is fairly shared between the two stations in both ns-3 and
the flow model. Above this limit, node 2 is too far from the AP to attach and communicate
properly, and cannot send any more data. The bandwidth that was previously dedicated
to node 2 is given to node 1, which can use the full capacity of the link.

These results show that even without complex PER computations, simply defining
the datarates of STAs as described in Section 3.3.2 allows simulating STAs with different
locations. Both the flow model and ns-3 lead to the same bandwidth modification when
node 2 is too far from the AP.

3.4.2 Use case: large scale infrastructure

This section evaluates the performance and accuracy of Wi-Fi communications in
a more realistic use case. The infrastructure simulated in this section is a metropolitan
public Wi-Fi network. Such networks are extensively used in wide areas such as university
campuses [128], commercial centers [129], or to cover entire cities as in the case of Google
Wi-Fi [130]. These networks are typically used to allow users to connect to an AP and
access services over the Internet. They can be composed of hundred APs, used by clients
to access the Internet. Figure 3.6 illustrates the infrastructure of the platform we simulate
in this section. The network is decomposed into two layers: a) a set of Wi-Fi APs to
which clients connect using their Wi-Fi devices, and b) a wired gateway between the APs
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Internet

Dst

Figure 3.6 – Simulated architecture for the large-scale experiment

and the core network to access the Internet. Network flows are created between client
STAs and the core network towards an Internet destination Dst.

We evaluate the accuracy of the flow-based model against ns-3, modifying the number
of STAs per cell, the number of APs, the size of network flows, the number of messages
sent by each STA, and the random seed of ns-3.

Overall throughput:

In this scenario, each Wi-Fi cell is composed of 20 nodes, sending a message whose
size is randomly selected between 10 MB and 30 MB to the gateway. All flows start at
the same simulated timestamp of 10 seconds. This ensures that all nodes have enough
time to connect to their respective AP before the flows start. It also constitutes a more
challenging situation for the model, as non-concurrent flows are easier to predict.

Figure 3.7 shows the duration between the beginning of communications and the time
of the last received byte in both SimGrid and ns-3 with 3 Wi-Fi cells. We use 35 different
seeds for ns-3, where we remove the runs where the flows are not finished by the end of the
experiment (145 seconds), considered as outliers. This experiment shows that SimGrid’s
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Figure 3.7 – Time to communicate the same amount of data between SimGrid in blue
and ns-3 in red on the same network topology. Times above 145s with ns-3 are considered
outliers and have been removed. Ns-3 points have different x-axis positions to observe the
values for different seeds more easily.

estimation of the time to send data from concurrent stations in the network is within the
error range of ns-3 outputs that differ by the random seed.

When considering the overall network usage, the outputs of SimGrid are coherent
with the ones of ns-3 despite the more abstract model. Repeating this experiment with
different flow sizes (between 10 and 30 MB per flow) and number of Wi-Fi cells (1 to 10
cells) gives similar outputs that are omitted for conciseness 1.

Single flows throughput:

This experiment compares the duration of each communication flow between the Sim-
Grid implementation of the model and ns-3. Simulations are similar to the previous
section, with ascending flows from the STAs towards the AP, with varying flow sizes.
The flow-level model being less fine-grained than ns-3’s, it does not compute probabilis-
tic phenomena as ns-3 does. In Figure 3.8, flows do not overlap, a situation that would
happen in a quiet Wi-Fi cell with low traffic. In the case of Figure 3.9, all the flows start
at the same time, T=10s.

Figures 3.8 and 3.9 present chronological plots indicating the flow termination times-
tamps in both SimGrid and ns-3. The top points indicate the end times for each flow
in SimGrid, while the bottom points represent the timestamps of the same flows in ns-3.

1. https://github.com/klementc/wifi-reproducibility/blob/master/analysis/Figures_
paper_reproducibility.ipynb notebook with experiments’ results, last accessed December 2023
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Figure 3.8 – Flows end timestamps without concurrency (no overlap between flows start
and end) in a cell of 5 STAs
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Figure 3.9 – Flows end timestamps with concurrency (flows start at T=10s) in a cell of
14 STAs

Each vertical line connects SimGrid and ns-3 for a given flow. When the outputs of Sim-
Grid and ns-3 perfectly match for a given flow (as we intend to), the corresponding line is
perfectly vertical. In the case of non-overlapping flows, the logarithmic error, as defined
in [100], is on average equal to 0.051, meaning a 5% relative error between SimGrid and
ns-3 flow durations. In the case of concurrent flows, however, the end timestamps do
not match between ns-3 and SimGrid, leading to very important relative errors. In this
case, the throughput sharing of ns-3 is very dependent on the random seed used for the
simulation, as highlighted for seeds 19 and 20. For instance, the flow colored in green
finishes just after 60 seconds in SimGrid. While ns-3 outputs a similar timestamp in
Figure 3.9a, there are more than 10 seconds of delay in the case of Figure 3.9b (around
73 seconds). The error between the flow model and ns-3 is thus very different depending
on the random seed of ns-3. Additionally, we can also observe that the end timestamps
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of the last flows are similar in SimGrid and ns-3.
What is obtained using SimGrid is one of the possible shares of the channel between the

concurrent flows (a theoretical fair share). Despite having very different results between
ns-3 and SimGrid for single flow durations depending on the random seed, leading to an
important logarithmic error, the flow-based model outputs a coherent time-share of frames
in the network. As outlined previously, we estimate accurately the overall duration for
all flows (shown in Figure 3.7) and give one possible share of the channel when observing
flows separately.

Network throughput over time:

This experiment explores the evolution of the throughput in the same infrastructure
under a variable load. In this case, 22 Wi-Fi cells and 126 active STAs are simulated.
Each station sends a number of messages centered around 40 with a deviation of 3, of
variable size 1.5 MB with a deviation of 1 MB over 1250 seconds of simulated time. Wi-Fi
cells do not overlap to avoid inter-cell interference. Ns-3 experiments are replicated using
35 different seeds.
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Figure 3.10 – On top, data received by the gateway node by 10s intervals with 22 cells
and 126 stations. At the bottom, the relative error between ns-3 and SimGrid

Figure 3.10 shows the amount of data originating from the STAs and received by the
gateway node by intervals of 10 seconds. We note thsg (respectively thns) the throughput
of SimGrid (respectively ns-3) during each interval. The amount of data going through
the network changes over the simulated time because of the different packet sizes and
time intervals between consecutive messages for each STA. The relative error regarding
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the data throughput (computed as |thsg−thns|
thns

for each interval) remains below 12.5% at
most, and below 10% on average.

This experiment shows that our model can be used to study large-scale platforms
under dynamic network loads with a reasonable relative error.

Performance comparison:

This experiment explores the performance improvement of our flow-based model com-
pared to ns-3. To that extent, we simulate between 1 and 22 Wi-Fi cells. The number
of STAs in each cell is centered around 7, with a deviation of 3, uniformly distributed
around the AP. Flows are the same as above.
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Figure 3.11 – Wallclock comparison of simulation durations between ns-3 and SimGrid.
The black line is the linear regression of time values.

Figure 3.11 shows the time spent simulating our scenarios for infrastructures of differ-
ent sizes. While the simulations using ns-3 require several hours for each seed, SimGrid-
based simulations take at most a few seconds for the longest simulations. This difference
is explained by the tradeoff between the model granularity of Wi-Fi communications de-
pending on flow and packet-based models. While the packet-based approach can be of
linear complexity with regard to the number of simulated packets, the complexity of the
flow-based approach only depends on the number of flows. We executed other simulations
in SimGrid, made of up to 650 STA across 100 cells. The longest simulations took ap-
proximately 25 seconds to complete. Similar experiments using ns-3 would require more
than 44 hours according to a linear regression made with the data of Figure 3.11. For
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large simulations, the peak memory usage was higher with SimGrid compared to ns-3
(approximately 300 MB against 150 MB for ns-3 to simulate 100 STAs) due to the large
number of simultaneous flows to handle in SimGrid. But this memory usage takes place
over a much shorter amount of time in SimGrid than ns-3.

Overall, our experiments show that using a flow-based model instead of the classi-
cal packet-level one leads to a runtime improvement of several orders of magnitude for
simulating large Wi-Fi networks while providing estimations of similar accuracy.

3.5 Conclusion

In this chapter, we focused on the simulation of Wi-Fi communication times. Our con-
tribution extends a Wi-Fi performance model implemented in SimGrid. We extended the
model with a bandwidth reduction mechanism that can limit the maximum bandwidth
of the link depending on the number of active flows. This can be used to model some
interferences, and dense networks more accurately. Then, we validated our contribution
against ns-3 simulations. Properly calibrated, this model can estimate accurately the du-
ration of Wi-Fi communication under different MCS configurations and flow concurrency
degrees. We also evaluated the scalability of our model in comparison to the Wi-Fi models
of ns-3, showing significant speedup with a limited loss of accuracy.
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Chapter 4

A WI-FI ENERGY MODEL FOR

SCALABLE SIMULATION

In Chapter 3, we extended and validated a flow-level Wi-Fi performance model. This
model provides closely related results compared to ns-3 while significantly improving
simulation durations. Based on the communication time predictions of the performance
model, we propose an energy model for Wi-Fi adapted to flow-level simulation.

In Section 4.1, we introduce the hypotheses and the context in which our Wi-Fi energy
model can be used. In Section 4.2 we detail the model, its implementation in SimGrid, and
its calibration. In Section 4.3 we compare the accuracy of the results of our model with
the results of ns-3’s energy models in microbenchmarks. We study a large-scale scenario
and compare the salability of flow-level and packet-level energy simulation in Section 4.4.
We discuss the limitations of our approach in Section 4.5. Section 4.6 concludes this
chapter.

4.1 Hypotheses and conditions

Estimating the energy consumption of Wi-Fi nodes depends on the evolution of the
NICs’ states during simulations. We have seen in Section 2.4.2 that communications
modify the state of the NIC from idle to Rx or Tx, which is the main reason for power
variation. In this chapter, we assume that the simulation of the durations of Wi-Fi
communications is accurate.

Wi-Fi standards such as IEEE 802.11ax [131, 132] define different Power Saving Mech-
anisms, such as Target Wake Time, PS-POLL, or Operation Mode Indication. These
mechanisms are out of the scope of this work and are not considered in this chapter.

The use of several antennas to add redundancy or to transmit and receive data in
parallel, known as Multiple-Input Multiple-Output (MIMO), can be considered using the
energy model presented in this chapter but has not been validated.
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The model presented in this chapter is based on the Wi-Fi performance model pre-
sented in Chapter 3. This model does not consider control and management frames nor
beacons which are used to manage Wi-Fi networks. These frames are responsible for
advertising the network, performing probe requests, associating a STA to the AP, or
synchronizing devices. Beacons are a type of Wi-Fi frame sent periodically from the AP
toward STAs. The performance model does not inject them in the network load, thus they
are not modifying the state of the simulated NICs contrarily to the packet-level simulation
model of ns-3 [113]. We need to consider them in our model.

A flow-based energy model induces constraints in comparison to packet-based models.
Our flow-based approach estimates the energy consumption of Wi-Fi NICs not at the level
of Wi-Fi devices, but at the granularity of the communication medium (called link here-
after). As in the previous chapter, we use the term Wi-Fi link to describe the aggregation
of an AP, the communication channel, and the STAs attached to the AP. Figure 4.1
shows the difference between simulating power consumption using a packet model and
our approach. In Figure 4.1a, the power is estimated using network packets’ events hap-
pening within each NIC, while Figure 4.1b illustrates our approach at the granularity of
links, with network events at the beginning and termination of network flows.

Packet

(a) Packet-based simulation, power estimated
at the granularity of network interfaces

Flow

(b) Flow-based measurement, power esti-
mated at the granularity of Wi-Fi "links", ag-
gregating the NICs of the AP and the STAs

Figure 4.1 – Flow vs. Packet power measurement. Packet-based measurements are done
with NICs’ granularity whereas flow-based measurements are done at the WLAN’s level

Finally, the model introduced in this section is homogeneous. In contrast to hetero-
geneous models where the power states of each device can be different, a homogeneous
model considers that all the devices attached to a Wi-Fi link consume the same amount
of energy to perform the same actions. While implementing a heterogeneous model is
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possible, homogeneous models provide good accuracy [87] and increase scalability.

4.2 Modeling the energy consumption of Wi-Fi NICs

4.2.1 Model overview

Different components need to be taken into account to compute the overall energy
consumption of a Wi-Fi link over an experiment of duration T . The energy consumed by
a Wi-Fi link in Joules over that period is expressed as the integral of the power of the
link during that period.

E(T ) =
∫ T

0
P (t)dt (4.1)

The power of a Wi-Fi link corresponds to the sum of its static power consumption
Pstat and its dynamic power consumption Pdyn. In our case, Pstat and Pdyn correspond to
the energy consumption of all devices (AP and STAs) attached to a Wi-Fi link, expressed
in Watts.

In a discrete event flow-level simulator, an event is triggered for every start or termi-
nation of a network flow. An event involving a Wi-Fi link may change the power usage
of some devices, requiring an update of the overall power consumed on the link.

The energy consumed in between each event is computed using the following equation:

Etot(link) = t × (
∑

s∈ST A(link)
(Pstat(s) + Pdyn(s))

+Pstat(AP ) + Pdyn(AP ))
(4.2)

where t is the duration since the previous event, and STA(link) is the set of all stations
on the Wi-Fi link link, and AP is the access point. To simulate a network with more
than one Wi-Fi WLAN, the energy consumed by the whole network is equal to the sum
of the energy consumed by each of the Wi-Fi links.

4.2.2 Pstat: Static power consumption

Pstat is the power used by network interfaces without active communications. For
Wi-Fi links, computing this value requires knowledge of the power consumed by NICs in
the idle state. Static power consumption on the link is then equal to the sum of the static
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power consumption of each device, whether AP or STAs, as follows:

Pstat(link) = Pidle(AP ) +
∑

s∈ST A(link)
Pidle(s) (4.3)

In the validation of this work, only homogeneous network devices (in terms of electric
consumption) are considered, so the idle power consumption on a Wi-Fi link is the same
for all NICs. Thus, n STAs attached to the link (and an AP), with a homogeneous idle
consumption on the link Pidle, we get :

Pstat(link) = (n + 1) × Pidle (4.4)

This equation gives the power consumed by a Wi-Fi link without any active commu-
nication. Pstat can be multiplied by the simulated time to obtain the energy consumed
by the link. Switching from a homogeneous to a heterogenous model only requires using
Equation 4.3 instead of Equation 4.4, and considering the energy consumed by each NIC
individually. However, it requires additional computation at simulation time.

4.2.3 Pdyn: Dynamic power consumption

The dynamic power consumption Pdyn is the power used by the Wi-Fi devices to
receive or send data actively on the communication channel. Since Wi-Fi networks use
broadcasting, when one device sends data on the channel, all STAs in the range of that
device receive the data at the NIC level, even if only the destination acknowledges the
frame and processes it at the application level.

The computation of Pdyn for a Wi-Fi link is based on the power consumption of NICs
in the Tx and Rx states. When a device starts a communication, it switches to the
transmission state, consuming power PT x, and the other nodes in the range of the STA
on the same channel (including the AP) listen for this information, consuming PRx. This
way, in a network composed of n STAs and one AP, we obtain :

Pdyn(link) = U(link) × (PT x(link) + n × PRx(link)) (4.5)

where U is the usage function of the link: If there is at least one active communication
on the Wi-Fi link, U is equal to 1. If there is no active communication the value of U is
equal to 0, consequently the dynamic power consumption is also equal to 0. Again, since
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the proposed model is homogeneous, the values of PT x and PRx are the same for all the
interfaces within a Wi-Fi LAN.

4.2.4 Power consumption of control frames

Since the performance model used to build this power model only considers the ap-
plicative data transferred on a Wi-Fi link, we need to consider control frames separately.
This factor is important in networks with few communications where control frames can
become the main source of dynamic energy consumption.

We extend our model to account for their energy consumption using an additional
factor. We only consider beacons because once STAs are connected to their AP, they
represent the majority of control frames in the network. Since beacon frames are sent
periodically, usually at approximately 10Hz for IEEE 802.11 (every 102.4 ms), the energy
cost of sending and receiving beacons is constant over time and depends on the number
of machines on the link. To obtain the overall power consumption, we add the cost of
beacons to the static and dynamic power consumption of nodes. We note C the factor
used to model the energy consumption of beacons. C corresponds to a ratio of the time
spent each second by the nodes of a WLAN exchanging beacons. By introducing C into
Equations 4.4, 4.5, we obtain:

Ptot(link) = Pstat(link) + Pdyn(link) + C × (PT x + n × PRx) (4.6)

The value of C can be computed using the lowest rate of the frequency band employed
in the Wi-Fi network – since it is the rate employed to transmit beacons (especially for
backward compatibility reasons) – and using the beacon size (depending on the Wi-Fi
version). It can also be estimated experimentally from the amount of time spent in the
communication of beacons. Section 4.3 shows how to do it using the ns-3 simulator for a
single transmission rate, but this could be done for other network configurations.

Finally, applying Equation 4.6 to Equation 4.2 provides an estimation of the overall
energy consumed by a Wi-Fi network.

4.2.5 Implementation

We implemented this model in SimGrid. We rely on the Wi-Fi performance model
presented in Chapter 3 to accurately compute the duration of Wi-Fi flows once correctly
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calibrated.
SimGrid has a plugin system allowing easy integration of our energy model by hooking

onto the network events of Wi-Fi links. Our model relies on the estimation of the power
consumption of a Wi-Fi link between each arrival or termination of a Wi-Fi flow. The
plugin hooks onto events linked to flow creation and destruction and updates the power
consumption of the link using the previously described equations.

Since the model is based on the Wi-Fi performance model of Chapter 3, this imple-
mentation inherits from the limitations of the underlying Wi-Fi performance model.

4.3 Validation

4.3.1 Experimental setup and methodology

To validate this energy model, we compare the output of our implementation in Sim-
Grid to the predictions of ns-3 [113]. We chose to compare the two simulators for the
same reasons as given in Section 3.4 of the previous chapter.

The ns-3 and SimGrid models are calibrated with the default energy values of ns-3
given in Table 4.1. These values originated from [114].

Table 4.1 – Power values used to calibrate the model. Obtained from ns-3’s WifiRadioEn-
ergyModel [113, 114]

NIC State Power (W)
IDLE 0.82

Rx 0.94
Tx 1.14

Sleep 0.10

The metrics compared between the two simulators are: a) the overall energy consump-
tion of Wi-Fi interfaces, b) the dynamic energy consumption only since it is the most
challenging value to estimate, c) the memory footprint and the execution time between
ns-3 and SimGrid for different experiments to evaluate the scalability of our approach.

All experiments have been executed using the Grid’5000 [71] experimental testbed,
allowing the simulation of a large number of scenarios while using several random seeds
in ns-3, which impact the underlying error models and communication times.
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Source code and reproducibility: The code of the model, the code of the experi-
ments, the scripts used to generate all figures, the logs of the results used in this chapter,
information on how to reproduce our results, and additional results are available at the
following address: https://github.com/klementc/wifi_energy_experiments.

4.3.2 Evaluating the cost of beacons

The first set of simulations calibrates the cost of control frames in the network, as
described in Section 4.2.4. We compute experimentally the value of the factor C to
obtain accurate predictions of the energy consumed in the network without active flows
by using ns-3 simulations. We run several experiments where we measure the dynamic
energy consumption of ns-3 devices in a single Wi-Fi cell. Measuring only the dynamic
energy consumption means setting the idle power consumption to 0W in the configuration
of ns-3 while leaving the other values identical to Table 4.1. Simulations are performed
with between 1 and 30 STAs connected to the AP, varying the simulated time of the
experiment between 100s and 1500s, with 100 different ns-3 random seeds. No flows are
created between the STAs and the AP, meaning that only control frames are consuming
energy on the Wi-Fi channel. Using the results, we estimate the ratio of time spent
communicating beacons on the channel per second.
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Figure 4.2 – Simulating the energy cost of beacon frames in a single WLAN

The results obtained are shown in Figure 4.2. Figure 4.2a shows the dynamic energy
consumption of the network depending on the number of devices for 1100 seconds of
simulated time, while Figure 4.2b shows the dynamic energy consumption for different
simulated times in a cell with 20 STAs. In both cases, we first execute experiments in
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ns-3. We can observe that the energy consumption values obtained vary linearly with the
number of STAs in the LAN and the simulated time, matching the description of periodic
beacons given in Section 4.2.4. Using linear regression, we compute a value C = 0.0021
for our model, leading to the outputs observed for SimGrid. This value of C gives a
mean relative error (computed as |valsg−valns|

valns
) of 7.0% over all the simulated experiments,

showing that we obtain closely related results with both models.
Consequently, simulations use the value C = 0.0021 in our experiments. To match

other transmission configurations, C can be modified in SimGrid at calibration time.
These results also allow us to observe that control frames have a relatively small

impact on the overall energy consumption of Wi-Fi nodes. While this factor is negligible
for heavily used Wi-Fi networks where large flows consume much energy, it may become
important on networks with long inactive channel periods.

4.3.3 Single WLAN energy prediction

Once the model is calibrated for control frames, it is possible to run a set of mi-
crobenchmarks to evaluate the accuracy of our model in the presence of network flows in
a single Wi-Fi cell. We perform several experiments using two different types of flows: a)
flows between STAs and the AP, b) flows between pairs of STAs (going through the AP).

The explored parameters are: the size of network flows (between 1 MB and 30 MB) and
the number of STAs in the simulated Wi-Fi network (between 1 and 20 for the AP/STA
flows, and between 2 and 20 for the flows between pairs of STAs). To avoid comparing
our results to an outlier output of ns-3, each scenario is executed with 100 different ns-3
random seeds.

Figure 4.3 shows results for the simulation of flows between the STAs towards the
AP with 600s of simulated time, where each flow has a size of 10MB. Figure 4.3a shows
the overall energy consumption (Etot = Edyn + Estat), while Figure 4.3b shows only the
dynamic energy consumption for the same experiments, summing both the cost of control
frames and the cost of application flows in the network.

We observe that the overall energy consumption in Figure 4.3a is a quasi-linear function
depending on the number of connected STAs. This observation is consistent with the fact
that static energy consumption accounts for most of the overall energy consumption in
the network. In Figure 4.3b, we observe that more flows lead to more dynamic energy
consumption, along with additional beacon receptions in both simulators.

The results of both figures show that the values computed by our model match with the
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between SimGrid and ns-3

Figure 4.3 – Energy consumption comparison between SimGrid and ns-3 using different
numbers of STAs in the downstream flows scenario

predictions of ns-3. The average relative error over all our experiments when computing
the total energy consumption is equal to 0.15%, while the same error is equal to 5.22%
regarding the dynamic energy consumption only. The error is bigger when measuring the
dynamic energy consumption only since it is highly dependent on the simulated duration
of network flows, which is complex to estimate (and slightly varies between different ns-3
seeds).

We also execute the flow pairs scenario, where flows start from one STA, and go
towards another STA in the same WLAN, passing through the AP. Figure 4.4 gives
an overview of the average dynamic power usage of the Wi-Fi nodes between ns-3 and
SimGrid for this scenario. Results are shown only for a flow size of 20 MB, while the
results with other flow sizes are available in the online notebook 1. We observe that the
average power in the cell depends on the size of the Wi-Fi cell, i.e. the number of STAs
attached to the AP. The flow-based model provides very similar results compared to the
outputs of ns-3, showing the accuracy of our model in this scenario.

Overall, the microbenchmarks at the scale of a single Wi-Fi cell show that the flow-
level model matches the energy predictions of ns-3. This is the case when comparing the
overall energy consumption but also the dynamic energy consumption individually.

1. https://github.com/klementc/wifi_energy_experiments/blob/master/analysis/Figures_
microbenchmarks.ipynb, last accessed December 2023
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Figure 4.4 – Average dynamic power usage of STAs (IDLE power set to 0 W) in the flow
pairs scenario for different ns-3 random seeds represented as points

4.3.4 Simulation of mixed Wi-Fi/Wired communications

Network simulators such as ns-3 and SimGrid allow the simulation of heterogenous
networks (i.e. networks mixing different communication technologies in the same exper-
iment). This feature is important to study realistic infrastructures, for example, mixing
Ethernet links and Wi-Fi cells. This set of experiments simulates a small-scale heteroge-
neous infrastructure composed of two Wi-Fi networks joined by an Ethernet link.

Each of the STAs in the first Wi-Fi network is the source of a network flow towards
another STA in the second Wi-Fi network. Each network flow passes through the wired
link, leading to additional simulation constraints. We use the standard PointToPoint
model of ns-3 to simulate this link and the default model for wired communications from
SimGrid where the throughput of the link is set to 10Gbps. We run several simulations
varying the size of flows between 3 MB and 20 MB, the number of STAs in each cell
between 1 and 10, a simulated time between 700 and 1100 seconds, and 40 different ns-3
seeds.

Figure 4.5 shows the results obtained with a simulation time of 900 seconds, between
3 and 6 STAs in each cell, and flow sizes of 6, 9, and 12 MB respectively. In each

79



Chapter 4 – A Wi-Fi Energy Model for Scalable Simulation

case, we provide a violin plot of the dynamic energy consumption estimated in ns-3
using different seeds against SimGrid’s energy predictions (SimGrid predictions do not
depend on random computations, leading to a single point). The violin and the black
dots allow observing the dispersion of ns-3 results. Depending on the random seed, the
Wi-Fi channel is shared differently in ns-3, leading to different communication times,
hence different dynamic energy consumption values. Even if most values are relatively
close, there are outliers such as in the 12 STAs setup where we can observe a difference
of ∼ 17% between different executions of ns-3.
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Figure 4.5 – Dynamic energy consumption in the heterogeneous infrastructure. Each facet
corresponds to a different flow size, where colored points designate the mean dynamic
energy consumption for every number of STAs. Black dots show the dispersion of ns-3
predictions depending on the random seed, and the red violin the probability density of
the data at different values.

Overall, our results remain close to the average of ns-3, with a mean relative error of
4.4% for the dynamic energy consumption. In this setup, the error is more important for
small flow sizes. As in the previous experiments, looking at the overall energy consump-
tion of the network further reduces this error given the important proportion of energy
consumed in the idle state, which is easier to predict.

This set of experiments validates our model at a small scale in the case of a heteroge-
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neous network.

4.4 Large scale simulations

The experiments in this section explore the ability of a flow-based model to efficiently
simulate the energy consumption of large-scale networks. We reuse the same simulated
network infrastructure based on a public Wi-Fi network as in Chapter 3. A description
of this platform is given in Section 3.4.2 and Figure 3.6. Since communication times are
supposed to be valid in this infrastructure, we can focus on energy metrics in this section.

We perform several simulations in both ns-3 and SimGrid using different parameters:
the number of available APs for STAs to connect to (between 1 and 50), the number of
STAs connected to each AP (17 on average with a standard deviation of 2), the size of
the network flows, the timestamp at which network flows are created, and 30 ns-3 seeds.
In every experiment, each STA in the network sends 25 messages on average towards the
destination node Dst connected to the APs via wired network links. Each simulation runs
for 1,100 seconds of simulated time.

4.4.1 Energy predictions

Figure 4.6 shows the energy consumption of the overall infrastructure over time for one
execution of the experiment with 15 Wi-Fi cells and a simulated time of 1100 seconds.
Figure 4.6a plots the overall energy consumption while Figure 4.6b only measures the
dynamic energy. In each case, we measure by steps of 10 seconds the energy consumed
by the nodes and compute the relative error between ns-3 and SimGrid, visible as black
points. Similar figures using other parameters are available in our online notebook 2.

We observe that, even at a larger scale, ns-3 and SimGrid compute similar energy
consumption values. The relative error does not exceed 0.3% for the overall energy con-
sumption, while it is almost always below 10% for the dynamic energy consumption. The
error in dynamic energy consumption is more important during the first few time slots
since only a small amount of data is going through the link, while our model is calibrated
for large data throughput.

During the phase when most messages are sent (i.e. between 200 and 550 seconds),
a rapid increase in the dynamic energy consumption can be observed, but this increase

2. https://github.com/klementc/wifi_energy_experiments/blob/master/analysis/Figures_
large_scale.ipynb, last accessed December 2023
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Figure 4.6 – Evolution over time of the overall and dynamic energy consumption values
between ns-3 and SimGrid for the large-scale experiment

seems to have a limited impact on the overall energy consumption of the network that
remains quasi-linear.

Even at a much larger scale than the previous microbenchmarks, a flow-level model
provides accurate energy prediction values compared to ns-3 within 10% of relative error.

4.4.2 Performance comparison

We now compare the memory footprint and simulation times between execution of the
same scenarios (i.e. 1,100 seconds of simulated time) in ns-3 and SimGrid. Results for
the memory usage are in Figure 4.7 while Figure 4.8 shows the time required to simulate
each scenario with the two energy models. In both figures, we can observe that using a
flow-based model increases the performance by several orders of magnitude compared to
the packet-based model of ns-3.

Regarding the memory footprint, Figure 4.7 shows that simulating 55 Wi-Fi cells
required up to 80 GB of memory with ns-3, while 1.2 GB was needed at maximum to
study the same scenarios using SimGrid. Regarding runtime, simulations take up to 8
hours to complete using ns-3, while the runtime of SimGrid simulations does not exceed
a few seconds.

Comparing the performance gains between a packet-based energy model and our ap-
proach, we can see the opportunity of our solution to perform large-scale studies with
better performance than the packet model of ns-3, while keeping comparable accuracy.
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Figure 4.7 – Memory footprint comparison of SimGrid and ns-3 simulations (1,100 seconds
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Figure 4.8 – Simulation time comparison of SimGrid against ns-3 (1,100 seconds of sim-
ulated time)

4.5 Threats to validity

Section 4.3 and 4.4 show the validity of the flow-level energy model in different use
cases. However, the model can be limited under certain conditions. Below is a list of
issues not directly taken into account by our model.

The Wi-Fi performance model only models the successful application throughput on
the link while bad conditions may result in an important amount of errors and retransmis-
sions. One solution to account for data loss due to retransmissions in energy predictions
is to multiply the energy values of Table 4.1 by the average number of retransmissions in
the channel, but this remains to be done and carefully validated.

Our validation experiments do not account for hidden nodes, which can lead to col-
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lisions when two STAs are not in range and start sending data simultaneously. The
collisions occurring on STAs in range with both emitting nodes are difficult to detect
for the emitters. This leads to a reduced application throughput. A model where STAs
subject to hidden node issues consume more energy due to retransmissions could improve
the accuracy of predictions in this context, but remains to be validated.

Our model does not reproduce the variability observed in the results of ns-3 with dif-
ferent random seeds. This variability depends on ns-3’s computations for backoffs, errors,
and retransmissions. The energy model should give accurate predictions without modifi-
cations if the underlying performance model from Chapter 3 considered these phenomena.

Regarding the energy consumption of control frames, we only considered beacons and
ignored other frames such as association requests that are very sparse in the studied use
cases. In a network with many association frames, their energy consumption could be
estimated using the same approach, and by recalibrating the model to account for them.

Since the hardware of APs is often different than the hardware of STAs, another
possibility is to have separated static power consumption values between STAs and APs.
It would be possible to model this difference by having different power calibration values
or using a multiplicative factor: one for STAs and the other for the AP.

4.6 Conclusion

This chapter introduces a flow-level model to simulate the energy consumption of
Wi-Fi NICs. This linear model computes the energy consumed by Wi-Fi interfaces when
sending or receiving data, as well as the energy consumed by control frames in the network.

The experimental results on both small and large-scale infrastructures show that the
implementation of the model in SimGrid provides energy predictions within 10% of ns-3
predictions in a large set of scenarios while requiring much fewer resources than ns-3.
While ns-3 performs more fine-grained simulations, the flow-level approach enables large-
scale experiments without extensive runtime and memory usage.

The model presented in this chapter and the Wi-Fi performance model introduced
in Chapter 3 can be used to perform accurate simulations of communication times and
energy consumption in IEEE 802.11n. The use of these models along with other models for
wired communications would allow studying the impact of different application structures
and deployment configurations on the network’s energy consumption.
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Chapter 5

AUTOMATED PERFORMANCE

PREDICTION OF MICROSERVICE

APPLICATIONS USING SIMULATION

Chapters 3 and 4 introduced scalable simulation models for the performance and
energy consumption of Wi-Fi communications. The combination of these models with
already developed energy and performance models enables the simulation of realistic in-
frastructure with heterogeneous devices and communication technologies.

In this chapter, we focus on the applications executed by these simulated infrastruc-
tures. We propose a model to simulate the execution of microservice applications. Since
these applications are complex and require several interactions between different actors,
we also propose a methodology to transpose real applications into their simulated equiv-
alent.

5.1 Overview

As explained in Section 2.2.1, the microservice approach is very popular and used by
some of the largest internet actors, such as Twitter, Netflix, Uber, and WeChat [55].

Despite their advantages, microservices require complex interactions to fulfill requests.
Large applications can be composed of hundreds of services and serve huge workloads.
With this complexity, optimizing the deployment settings of microservices is challenging.
Given an application and a constrained infrastructure budget, one must evaluate and
answer the following questions:

Q1. How will the execution times of a microservice react to a variable load?
Q2. How would a CPU upgrade improve the maximum sustainable load?
Q3. Will distributing microservices on more than one node increase performances?

85



Chapter 5 – Automated performance prediction of microservice applications using simulation

Q4. How to optimize the location of services in a computing cluster to obtain the
best performances?

To answer these questions, we try to use simulation techniques adapted to microservice
performance studies. Our analysis of previous contributions about microservice simula-
tion in Section 2.4.3 has shown a costly process to transpose real applications into their
simulated twins. There is a need for a methodology to ease the simulation of real appli-
cations.

Our contributions are the following:
— In Section 5.2, we propose a model for microservice-based applications. This model

is simple enough to be calibrated without extensive work while being complete
enough to simulate real applications.

— In Section 5.3, we propose a methodology to instantiate our model and accurately
study the performances of real applications.

— In Section 5.4, we validate the accuracy of our approach using a set of microbench-
marks as well as real use cases based on existing microservice benchmarks.

Finally, Section 5.5 concludes this work.

5.2 A simple microservice model

Modern applications are composed of many services interacting together to fulfill re-
quests. To understand the performance of a complete microservice application, one must
first understand the behavior of single, isolated microservices. A microservice offers a well-
defined interface, constantly listening for incoming requests. When a request is received,
it triggers internal functions computing a result that is then returned to the initiator of
the request.

We introduce a model representing microservice request executions. Our design goal
for this model is to be as simple as possible to enable fast calibrations while being accurate
enough to represent real microservices. Figure 5.1 describes the design of our internal
microservice model as a 3-stage pipeline. The time spent by a request in each stage
depends on both the state of the service when the request is received (queuing, resource
overload, etc.), and intrinsic service properties such as its degree of parallelism. The total
execution time of request r in service s is given by:

Dexec(r, s) = dqueue(r) + dCP U(r) + dIO(r) + dcomm(r)
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where dqueue(r) is the queuing time of request r before starting its execution, dCP U(r) is
the CPU time to execute request r, dIO(r) the amount of time waiting for I/O operations,
and dcomm(r) the time spent communicating with external services. We now detail these
factors.

(a) Queue(r)
(b.1) CPU(r)

(b.2) I/O(r)
(c) Comm(r)

O3

O2

O1I1

I2

I3

Figure 5.1 – Intra-service execution pipeline.

(a) Queuing time: On Figure 5.1, when a request is sent to a service, it can expe-
rience variable queuing times depending on the service’s state. Most services limit their
maximum amount of concurrent requests to avoid resource overloads and performance
degradation due to the system’s context switches. In our model, a service comprises a
waiting queue where incoming requests are stored until their execution starts. The time
spent by a request in the reception queue is dependent on both the input load and the
scale of the deployed application. Through vertical scaling, the service is deployed on
more efficient resources, leading to reduced execution times during step (b.1), and an in-
creased maximum load capacity. Horizontal scaling does not improve the execution time
of single requests but allows for more requests to be executed in parallel through the use
of several service instances during step (b).

(b.1) CPU usage: A request starts executing once an execution slot is available in
an instance of the service. The duration of a request execution dCP U(r), depends on its
CPU usage r and the number of requests executed concurrently. The machine executing
the request has a limited amount of CPU resources (in flops) and shares them between all
active requests on the host. The cost associated with a request execution further depends
on its type. A single microservice can offer more than one function through its interface,
each of them leading to different execution times. Thus, the CPU usage of a service
corresponds to: the provisioned capacity of the executing node, a mapping of request
type to CPU costs, and the maximum amount of concurrent executions.

(b.2) I/O idle time: A service execution does not only require CPU processing but
also I/O operations. In some cases, I/O can be overlapped with CPU executions. In other
cases, I/O can result in periods where the CPU remains idle. We define the time spent in
I/O by using an active ratio that represents the time spent doing I/O compared to pure
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CPU execution. Currently, we model I/O as a simple delay, thus we do not consider disk
contention.

(c) Service output: Most microservices request data from other services. Using our
model, a request can be forwarded to other services once it has finished CPU execution
(b.1) and waiting for I/O to finish (b.2). The type of the request defines the list of
services to contact. If the output services called during this step are running on different
computing nodes than the current service, a network communication is initiated to forward
the request. This enables the observation of performance bottlenecks due to network
limitations. Microservices linked through inter-service communications form a DAG for
each request type, as described in Section 2.2.1. In Figure 5.1, we separate the execution of
a request from outer communications. It is a simplification compared to real microservices
that often interleave executions and communications. Our approach does not represent
the execution of a request at such a fine granularity but conserves the overall execution
time as well as communication dependencies.

Table 5.1 gives a summary of the parameters to instantiate this model.

Table 5.1 – Summary of inter-service and intra-service properties used to calibrate our
microservice model.

Granularity Parameters
Request - Type of the request

Intra-service properties
- CPU costs
- I/O ratios
- Parallelization degree

Inter-service properties
- Output services (a DAG
for each type of request)
- Network requests sizes

This microservice model is implemented on top of the SimGrid simulation framework
and is available online 1. It allows to define a microservice application using a simple
interface with the parameters from Table 5.1. In addition to the service model, we provide
interfaces to define autoscaling policies that adapt the number of replicas of each service
depending on the input load. The proposed implementation includes a CPU autoscaler
based on usage thresholds inspired by the literature [118]. Users can use this autoscaler
and define the CPU usage threshold to automatically create or delete service instances at

1. https://github.com/klementc/microservices_simgrid_reproducibility code of the used
model, scripts and benchmarks for the contribution’s validation, last accessed December 2023.
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frequent time intervals.
The model can be manually instantiated to study real applications in order to evaluate

their performance in various configurations. Even if possible, the manual instantiation of
the models for all services of large applications with the correct values remains a challeng-
ing task. Both service interactions and individual service behaviors need to be taken into
account for possibly hundreds of services. In the following, we propose a methodology to
automate the transformation of real applications into instantiated simulation models.

5.3 Modeling real microservice applications

Previous works on microservice simulation such as µqsim [107] recommend modifying
the code of applications to log additional data later used as calibration values. However,
manual code modification remains burdensome and error-prone for large applications. It is
also not evolutive since it has to be made again when the structure of the code is modified.
Our goal is to allow developers of microservice applications using state-of-the-art service
monitoring techniques to automatically obtain the description of the structure of their
application and the calibration values for our microservice model. This methodology
does not require code modifications provided that the targeted application uses one of the
standard service monitoring solutions, as detailed hereafter.

To instantiate our microservice model, we need to gather values for the parameters
given in Table 5.1. The request types to study depend on the application and the goal of
the experiment.

Intra-service properties need to be observed at both application- and system-levels.
Indeed, overall service execution times can be observed easily from the application, but
the ratio of active and idle CPU times requires lower-level information.

Inter-service information can be obtained by observing the network interactions be-
tween services running in separate containers.

From our experience, distributed tracing as discussed in Section 2.4.3 can provide most
calibration values at a low cost. Whereas the typical use case of distributed tracing is
to help identify the services inducing performance issues, we leverage it to calibrate our
model. Traces entail the path followed by requests and the amount of time spent in each
service. Each service execution is called a span, and the set of all spans linked to the
same request forms the DAG of the overall execution. The collected data provide the
inter-service DAGs and intra-service execution times.
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Figures 5.2 and 5.3 show an execution trace automatically extracted from the Death-
StarBench’s social network microservice benchmark [60]. In Figure 5.2, a partial execution
trace can be observed, directly taken from the web interface of Jaeger [121], whereas Fig-
ure 5.3 is a DAG representation of the same request. Figure 5.4 summarizes our approach
exploiting the information contained in a single execution trace per type of studied re-
quest. Based on this example, we now show how to calibrate our model by following the
steps of Figure 5.4.

Figure 5.2 – Part of a trace from the execution of DeathStarBench’s [60] social network
COMPOSE request extracted from Jaeger [121]. Services implied in the execution of the
request as well as the relation between services can be observed.

nginx-web-server compose-post-
service

text-service url-shorten-
service

user-mention-
service

user-service

text-service

Figure 5.3 – Graph representation of the request sample from Figure 5.2.
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Figure 5.4 – Transformation of an execution trace in an executable simulator.

Step 1: Obtain calibration traces. The application modeler gathers execution
traces of the requests to simulate. These traces are created upon request executions,
with a tracing system such as OpenTracing [119], OpenTelemetry [120], or Kieker [133].
The user runs the instrumented application on a machine representative of the targeted
platform. Finally, the traces containing the information to use in the following steps are
obtained using the tracing system.

Particular care must be taken in the selection of the traces to ensure that they are
representative of the behavior of the application. Using average execution times helps
avoiding outliers. In the case of Figure 5.2, the application runs a medium workload for
several minutes to select a trace corresponding to the application’s behavior in steady-
state: no overloaded services, the caches are warm, databases are populated, etc.

Step 2: Process the traces to obtain calibration values. The second step is to
obtain the values required for the instantiation of our microservice model from the traces.
They provide enough information to calibrate our model even if low-level metrics may
be missing. In our example of Figure 5.3, a Jaeger trace contains the execution DAG of
services execution. We can use it to define inter-service properties. In this example, the
size of network requests is not available, but additional monitoring could for example allow
us to send request sizes to Prometheus [134]. Intra-service properties are also partially
included in the traces. We obtain an estimation of real request execution durations for
each service. Still, our example trace does not provide an I/O ratio, but complementary
solutions such as Docker monitoring could be used.

Step 3: Building and configuring the simulator. The values obtained during the
previous steps are used to instantiate a microservice model for each service of the target
application. We can then observe the duration of end-to-end request executions through
simulation. Simulations can be configured to explore the performance of the application
under various deployment settings. Because obtaining calibration values is relatively easy
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with our approach, it is possible to adjust them rapidly after the modification of a service’s
implementation.

To profit from the ability of distributed tracing to provide the intra- and inter-service
properties of an application, we provide a script 2 to automatically produce the code of
a simulator with calibrated microservices given Jaeger traces. This allows for a semi-
automatic performance simulation of compatible instrumented applications.

5.4 Experimental validation

To evaluate our contribution, we rely on both a set of microbenchmarks and published
microservice benchmark use cases. We compare the simulation outputs using our approach
to real application executions.

Experimental setup: All experiments have been run on the Grid’5000 testbed [71].
We run our experiments on the paravance cluster composed of nodes with 2 × Intel Xeon
E5-2630 v3 with 8 cores/CPU, 128 GiB of memory, and 2 × 10 Gbps network interfaces.
They run Debian 10 under kernel 4.19.0-16-amd64. Services run within Docker containers
and multi-node deployments are done with Docker-swarm [135].

Source code and reproducibility: The source code of our contribution is available
online at https://github.com/klementc/microservices_simgrid_reproducibility
along with the scripts used to obtain the results. We provide notebooks with the code
used to generate the figures and additional experimental results.

5.4.1 Microbenchmarks

Before predicting the performance of large-scale microservice applications, we need
to ensure that our model allows for accurate execution time predictions at the scale of
single services. This first experiment aims to show the ability of our microservice model
to reproduce request execution times accurately under a dynamic load.

We launch a microservice application that executes a fixed amount of CPU work for
each request. The microservice fetches incoming requests through a RabbitMQ queue,
and it is possible to chain multiple services to obtain multi-step executions. The results
detailed hereafter consist in a single service sending its results directly to a sink. We run

2. https://github.com/klementc/microservices_simgrid_reproducibility/tree/main/
script, last accessed December 2023.
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microbenchmarks using 2 chained services leading to similar results not shown here 3.
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Figure 5.5 – Synthetic load generated for microbenchmark experiments: Requests Per
Second (RPS) during 5 minutes with 3 load spikes.

To simulate this application using our model, we proceed in two steps. First, we
obtain the execution time of a request given its CPU cost by sending calibration requests.
These calibration values represent the execution duration when a service is not overloaded.
Through linear regression, we estimate the duration of request executions for any CPU
cost assigned to the service. We then calibrate the service model to use these values before
running simulations and comparing the results to executions on a real platform.

We generate a synthetic load using LIMBO, an HTTP load model and generator [136].
It consists in requests spanning over 5 minutes with between 1 and 40 requests per second
and three activity spikes for a total amount of around 4,500 requests as shown in Fig-
ure 5.5. We launch this experiment 5 times for each configuration. Configurations vary
by the quantity of work to be executed and the maximum amount of parallel executions.

Figure 5.6 shows the results obtained during the microbenchmark execution with one
service, a CPU cost of 25ms per request, and two concurrency degrees: five and ten. The
concurrency degree refers to the maximum number of parallel requests for a given service.
We restrict the application to execute using only a single CPU core. For each request
executed during the experiment, Figure 5.6 shows the estimated execution time of requests
obtained using our model in SimGrid and the execution times of a real deployment.

We make two observations. First, both SimGrid predictions and real-world results
have higher execution times during request arrival spikes, which happen at 20s, 150s, and

3. https://github.com/klementc/microservices_simgrid_reproducibility/blob/main/
comparison/Comparison_analysis_scenario2.ipynb, last accessed December 2023.
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Figure 5.6 – Comparison between our model’s prediction and a real execution with two
different concurrency degrees under a synthetic load.

250s. This is caused by the processing of several requests in parallel and queuing. This
shows the ability of our service model to reproduce the processing times of requests under
a dynamic load.

Second, we observe that the execution time per request changes with the concurrency
degree of the application. With a concurrency degree of 5, the maximum request execution
time (125ms) is approximately two times lower than the maximum request execution time
with 10 parallel requests. A smaller concurrency degree decreases single request execution
time at the cost of increased queuing times. Executing an important amount of parallel
requests on a single CPU core will also lead to overheads due to operating system thread
switching. The execution model of SimGrid does not take into account context switching
costs, thus it might underestimate execution times when the number of parallel requests
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is much higher than the number of CPU cores to execute them. Yet, in the results of this
chapter, this effect does not impact our observations.

These results show that our microservice model implementation in SimGrid can ac-
curately predict the performance of simple CPU-intensive microservices under variable
loads, and thus it answers the first question:
Q1. How will the execution times of a microservice react to a variable load?

5.4.2 Use-case 1: TeaStore login requests

We now observe the performance when modifying the resources (i.e. number of cores)
dedicated to the execution of an application within a single computing node. This ques-
tion is of importance for real deployments to estimate the cost/gain ratio of different
hardware options. Our goal is to obtain the same results between real observations and
our simulations when changing the number of resources to be used. To evaluate the ver-
satility of our approach, we only rely on one calibration experiment detailed hereafter to
instantiate our service models.

We run TeaStore [137], a microservice application benchmark used in microservice
performance evaluation literature [138]. We focus on the LOGIN request of this applica-
tion. This request involves 4 different services running in separate Docker containers. We
study the maximum sustainable load (in Requests Per Second, RPS) of the application
under different resource configurations and compare real results to simulated predictions.

TeaStore is natively instrumented with Kieker [133]. We use the average request exe-
cution duration of each service to calibrate our service models within SimGrid by doing
a real execution under a low load profile. From this execution, we extract a trace with
Kieker, providing us the calibration values. As recommended by TeaStore’s documen-
tation, the load is generated by LIMBO [136]. We benchmark the application under 3
different configurations. For the real experiments, the application is deployed on a ma-
chine with either 4, 8, or 16 cores dedicated to the execution of the services. We execute
each configuration 20 times. A summary of the results is shown in Figure 5.7.

The goal of this experiment is to detect the breaking point after which the application
is overloaded. This breaking point is detected by our model, for example around 320
requests per second in the configuration with 4 cores, as shown in Figure 5.7. Regarding
the accuracy of our model, we observe the mean relative error (MRE) between SimGrid
predictions and real-world values. Over the different workloads shown in Figure 5.7, we
observe an average MRE of 11.8%, 4.9%, and 3.6% with maximum values of 21%, 17%,
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Figure 5.7 – Comparison of teastore’s LOGIN performance between SimGrid predictions
(black line) and real-world executions (colored dots) for 4, 8, and 16 cores dedicated to
the execution of the application.

and 14.9% in the 4, 8 and 16 cores configurations respectively. While the maximum error
observed is non-negligible, especially in the 4 cores configuration, the predictions of our
model allow observing trends, and comparing the advantages of one configuration over
another. This experiment allowed us to answer the second question:
Q2. How would a CPU upgrade improve the maximum sustainable load?

5.4.3 Use-case 2: DeathStarBench’s social network

The next step is to evaluate the performance of an application running on more than
one physical server, one of the main assets of the microservice architecture. Yet, finding
the best partitioning of services is a complex task.

We chose to study one of the most realistic published microservice benchmarks to
our knowledge, the social network from DeathStarBench [60]. We reproduce the most
complex request of this application, the COMPOSE request that submits a publication to
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the social network. This request includes more than 30 spans across 12 different services.
We deploy the social network using Docker-swarm and vary the location of each service
and the number of replicas. We compare the maximum sustainable request throughput
obtained with our simulator against real executions with 10 real runs per configuration.

Table 5.2 – Service configurations for the social-network application.

Node 1 Node 2

Config 1

nginx_web_server,
compost_post_service,
unique_id, media_service,
user_service, text_service,
user_mention, home_timeline,
social_graph, user_timeline,
post_storage_service,
url_shorten

Config 2.a

nginx_web_server,
compose_post, unique_id,
user_service, text_service,
user_mention, home_timeline,
social_graph, url_shorten,
user_timeline

media_service,
post_storage_service

Config 2.b

nginx_web_server,
compost_post, home_timeline,
social_graph, user_timeline,
post_storage_service

unique_id, media_service,
user_service, text_service,
user_mention, url_shorten

Table 5.2 shows the server allocations for the microservices required to execute the
COMPOSE request in each of the three studied configurations. With configuration 1,
all services are using the resources of a single node. It should be the least efficient
configuration due to fewer resources available for each service. Configurations 2.a and 2.b
divide the 12 services into two randomly selected groups, each running on different nodes.
For all configurations, other services of the application, not involved in executing the
COMPOSE request, are running on a separate node not considered here. The SimGrid
calibrated simulator is generated using the Jaeger trace partially shown in Figure 5.2 and
the code generation script described in Section 5.3.

We observe one limitation of our approach during this experiment as our model does
not capture the communication overhead due to Apache Thrift under high load. We
choose to reduce this overhead (that is known to the authors of [60]) by executing two
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instances of each service, as would be done in a real deployment to improve the application
throughput. Such fine-grain overheads could be considered in future work.
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Figure 5.8 – Comparison of social network COMPOSE request between SimGrid predic-
tions (black line) and real-world observations (colored dots) with 10 cores per node and
either 1 (config. 1) or 2 (config. 2.a and 2.b) nodes.

Figure 5.8 shows the result obtained with 10 cores per node to execute the application.
In this figure, we observe the maximum request throughput estimated by SimGrid and
obtained through real-world executions. We observe that SimGrid accurately detects the
breaking point where the application becomes saturated, at around 1,500 RPS with 1×10
cores for configuration 1, and 1,750 RPS and 2,200 RPS under configurations 2.a and 2.b
with 2×10 cores. A non-proportional maximum throughput between the configurations
can be observed. Indeed, configuration 2.a presents an unbalanced grouping of services
among the nodes which leads to the overloading of one node while the other is still able
to process requests. A very naive service model would predict an improvement factor
of two between configurations 1 and 2.a, and would predict identical performance for
configurations 2.a and 2.b. Since our model considers the processing costs of each service,
it is able to show that configuration 2.b performs better than configuration 2.a, as in the
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real executions.
Regarding the accuracy of our predictions, configurations 1, 2.a, and 2.b have an

average MRE of respectively 3.5%, 3.7%, and 1.4%, whereas the maximum measured
errors are 21%, 20%, and 6.6%. The maximum error values can be explained, as with the
TeaStore experiment, by a different behavior of our model compared to the real application
once the breaking point is reached. Before that point, the error remains very low between
the simulated predictions and real measurements, while the breaking point is observable
in Figure 5.8, at 1500, 1700, and 2250 requests per second in scenarios 1, 2.b and 2.b.

These experimental results show that our approach, based on a microservice model
and code tracing tools, provides accurate estimations of the performance of microservice
applications with different configurations, thus answering both questions:
Q3. Will distributing microservices on more than one node increase performance?
Q4. How to optimize the location of services in a cluster to obtain the best performance?

5.5 Conclusion

Microservice applications trade monolithic complexity for intricate interactions be-
tween simple services, hindering the system performance evaluation.

In this chapter, we proposed a microservice simulation model based on a reduced
number of calibration values to describe microservice applications. Our contribution is
more precise than large grain models while being easier to instantiate than precise models.
We proposed a methodology leveraging distributed tracing systems to instantiate the
simulation models of real applications using standard instrumentation solutions. Our
model has been implemented on top of SimGrid, and we applied our methodology to
applications instrumented with Jaeger and Kieker.

Our contributions were evaluated on microservice benchmarks, demonstrating their
ability to answer the operational questions Q.1-4 introduced in Section 5.1 on such ap-
plications. This could be used in various what-if analyses such as the exploration of per-
formance trade-offs under scarce resources that are common in fog infrastructures. More
interestingly, it could even be used to dimension a Fog infrastructure given an application
and a workload to serve, an intractable problem with other solutions.

In the next chapter, we combine this microservice simulation approach and the Wi-Fi
performance and energy models of Chapters 3 and 4 to study the performance and energy
consumption of an end-to-end fog infrastructure executing a microservice application.
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Chapter 6

STUDYING THE END-TO-END

PERFORMANCE, ENERGY CONSUMPTION,
AND CARBON FOOTPRINT OF FOG

APPLICATIONS

After examining state-of-the-art simulation models for the study of the energy con-
sumption of ICT infrastructure in Chapter 2, we put existing works in 2 different cate-
gories: models intended to study a single part of ICT infrastructures, and models allowing
end-to-end analysis of ICT infrastructures and their applications. We observed two is-
sues with state-of-the-art single component models: a) the detailed results of fine-grained
models prevent their use for large-scale simulations, and b) the focus on the simulation of
a single part of ICT infrastructures requires the combination of several models in different
frameworks. The end-to-end simulation tools studied in Section 2.3.1 are often limited in
terms of validity or do not permit studying heterogeneous infrastructures accurately.

In this chapter, we propose to combine the validated simulation models introduced in
this thesis with other models implemented in the SimGrid simulation framework. Contrar-
ily to some other solutions, these models have been validated, use flow-level simulation,
and are all implemented in a single simulation framework. This chapter illustrates one
possible purpose of the models introduced in Chapters 3, 4, and 5. Other possible uses
of these models include the comparison of different autoscaling policies for microservice
applications in the fog or the study of the impact of different energy production methods
on the GHG emissions of a datacenter.

We use these models to simulate a microservice application running in a fog infrastruc-
ture from the end-user devices up to the fog computing nodes. The rest of this chapter is
organized as follows. Section 6.1 describes an end-to-end model for fog infrastructure and
applications. Section 6.2 proposes an overview of the metrics available using our approach
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through a use-case inspired by the literature. Section 6.3 concludes this work.

6.1 End-to-end modeling of a fog infrastructure and
its applications

We propose a generic description of fog infrastructures coupled with validated models
allowing the simulation of devices, network interfaces, and their energy consumption. The
models are all implemented in SimGrid and can be used simultaneously to study various
scenarios. We describe fog hardware in Section 6.1.1. In Section 6.1.2, we describe fog
microservice applications, before focusing on energy parameters in Section 6.1.3.

6.1.1 Infrastructure model

Data source

Fog nodes

Core router

Ethernet link

Wi-Fi Channel

Cloud nodes

Access Point

Figure 6.1 – Overview of the different actors in an end-to-end fog infrastructure

Figure 6.1 presents an overview of the components common to all fog infrastructures.
We divide it into three parts: 1) end-users, 2) fog micro-datacenters, 3) cloud datacenter.
This infrastructure corresponds to a graph G(N, L). In this graph, vertices n ∈ N are
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computing nodes or routers and edges l ∈ L are network links (wired or wireless) between
pairs of nodes.

Computing nodes

All machines in the fog infrastructure are capable of executing tasks. The maximum
number of concurrent task executions on a node corresponds to its number of CPU cores
Ncore. Each core has a processing capacity Ccore expressed in flops. Thus, nodes can
execute at maximum Ncore ∗ Ccore flops. Table 6.1 provides realistic calibration values
for a server from the experimental testbed Grid’5000 [71] and a Raspberry Pi 4 model
B. To simulate task executions, we use the execution model of SimGrid. As explained in
Section 2.3.2, this model, properly calibrated, provides valid results for different types of
applications such as MPI [103], cloud VMs [104], and microservices as shown in Chapter 5.

Since the energy consumption of nodes depends on their CPU usage, each node has a
power profile Pprof detailed in Section 6.1.3.

Table 6.1 – Nodes CPU capacity

Cloud Node Fog Node
Device Grid’5000 Taurus [71] Raspberry Pi 4B [139]
Ncore 32 4
Ccore 4 GFLOPS/core 1 GFLOPS/core

Network links

A network link enables two neighbor nodes to communicate. Different communication
technologies can be used in the fog for different parts of the network. In the following, we
consider Ethernet and Wi-Fi links.

As explained in Section 2.3.1, separate communication technologies need separate
models to obtain accurate results. We leverage already validated flow-based models to
simulate Ethernet links [88] and the Wi-Fi model of Chapter 3 implemented in SimGrid.
Compared to other network models based on packet-level simulation such as ns-3, these
models enable more scalable simulations while providing sufficiently accurate results for
our use. Validation of the models estimated 5% of relative error on average for wired
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communications in [88] and 10% on average for Wi-Fi compared to ns-3. The models’
calibration requires providing the bandwidth of the network links and their latencies.

The power used by NICs also partly depends on their usage. We attach to network
interfaces a power profile Pnet used to measure power usage, detailed in Section 6.1.3.
Table 6.2 provides bandwidth calibration values for different parts of the network taken
from the literature.

Table 6.2 – Bandwidth of network interfaces

Interface Bandwidth source
Intra-Cloud 10Gbps [140]

Core/Edge router 48x1Gbps (avgU=25%) [141]
Intra-Fog 1Gbps /
WLAN 44.23Mbps Chapter 3

Overall structure

As shown in Figure 6.1, end-user devices are connected to access points using Wi-Fi.
Access Points are then connected to the fog using Ethernet links. A core network enables
nodes of the fog layer to communicate with the cloud datacenter. The core network
comprises a set of core routers. The core network links’ bandwidth is usually much bigger
than that of the aggregation network between the end users and the fog.

6.1.2 Microservice application model

As explained in Chapters 2 and 5, microservice applications are decomposed into light
interconnected services. Services can run on different computing facilities. This allows,
for example, to run the interface on low-latency but limited fog nodes while placing
compute-intensive services further away in the cloud [142].

We use the microservice model proposed in Chapter 5 where each service is modeled
as a three-step pipeline: 1) storing received requests in a queue; 2) executing requests
using the host node’s resources; 3) forwarding the result to the output services. Service
requests are characterized by their CPU cost Creq (in flops) and their network size sizereq

(in bits). We note the ratio between the received request’s size and the size of the result
sent to the output services ratioI/O. We can also leverage the CPU-based autoscaling
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policy to dynamically adapt the number of service replicas. Using this model, users can
generate a simulator corresponding to a real application given application-level traces.
This model has been validated against real-world microservice benchmarks in Section 5.4.

6.1.3 Energy and gas emission models

Based on the infrastructure and application models, we estimate the energy consump-
tion of an application. It corresponds to the sum of the energy of the computing nodes,
the network interfaces, and the rest of the infrastructure (cooling, lighting). As explained
in Section 2.3.3, the power usage of a device is the sum of a) the static power consumption
Pstat (the minimum power to operate the device) and b) the dynamic power consumption
Pdyn (depending on the activity of the device).

Power consumption of nodes

The static power consumption of a computing device (either cloud, fog, or end-user)
corresponds to the power used by the machine when idle, noted P node

idle . When devices
process data, the additional dynamic power usage depends on the number of active CPU
cores, their frequency, and their utilization. The device power at maximum use is P node

max .
In between, its power consumption is extrapolated with linear regression as in [103]. For
core network routers, we compute their energy consumption as a ratio between the data
sent by the executing applications over the total data that could be sent over the router.
This approach has been used in previous works [111, 143]. In the rest of this chapter, we
use the model described in Section 2.3.2 implemented in SimGrid [103].

Network links

The power consumption of a network interface depends on its communication technol-
ogy. In the case of an Ethernet interface, we note P eth

idle the power of an Ethernet interface
when idle, and P eth

max at maximum use. The dynamic power usage of the Ethernet interface
is proportional to the utilization of the device u ∈ [0, 1].

In Section 2.4.2, we explained that Wi-Fi NICs switch between states depending on
whether asleep, idle, receiving, or sending data. Each state has a different power usage:
Pidle when idle, PRx when receiving data, PT x when sending data, and Psleep if the interface
is in sleep mode. In this chapter, we estimate the energy of network interfaces using the
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wired power model of [86] and the Wi-Fi power model from Chapter 4 calibrated with
values from the literature summarized in Table 6.3.

Table 6.3 – Calibration values for the power usage of nodes and their network interfaces

Component Parameter Power source
CPUs cloud [P cloud

idle , P cloud
max ] [94.75, 178.88]W [103]

CPUs fog [P fog
idle , P fog

max] [2.28, 6.82]W [139]
CPUs end-user [P EU

idle , P EU
max] [2.28, 6.82]W /

Core router NIC [P eth
idle, P eth

max]corerouter [0, 21.168]W [111, 141]
Edge router NIC [P eth

idle, P eth
max]edgerouter {0, 0.441}W [111]

Wi-Fi AP NIC {Pidle, PT x, PRx, Psleep}W iF i {0.82, 1.14, 0.94, 0.1}W [113]
P corerouter

static 555 W [111, 141]
Routers P edgerouter

static 150 W [111, 141]
P AP

static 11 W [144]
Infrastructure PUEfog 1.7 [21]

PUEcloud 1.1 [45]

Power Usage Effectiveness of the infrastructure

To estimate the additional power consumption of cloud and fog datacenters for actions
such as cooling or lighting, we use the PUE. As explained in Chapter 2, the value of the
PUE depends on the location and scale of datacenters [21]. In this chapter, we consider a
PUE of 1.1 for cloud datacenters [45] and 1.7 for fog micro-datacenters [21], as summarized
in Table 6.3. We multiply the PUE by the power consumption of the datacenter’s nodes
to obtain total power consumption.

GHG Emissions

Energy consumption values allow estimating GHG gas emissions. Table 6.4 provides
CO2 equivalent emissions per kWh in different countries. This value depends on the
countries’ energy sources. We multiply the energy consumed during an experiment by
this value to estimate GHG emissions.
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Table 6.4 – CO2e emissions rates due to electricity production in different countries (ex-
pressed in gCO2e/kWh).

Country gCO2e/kWh Source
France 56 [12]
Spain 141 [12]

Great-Britain 184 [12]
USA 388 [11]

6.2 Use-case

Based on our model of fog infrastructures, we show the ability of our approach to
evaluate the performance, energy consumption, and GHG emissions of an end-to-end fog
infrastructure executing a microservice application.

6.2.1 Setup and methodology

The application under study is inspired by the use-cases of IFogSim [98]. It processes
data from video cameras to detect movements using four services. Figure 6.2 shows the
DAG of this application, and Table 6.5 the request processing cost for each service. Cam-
eras send requests to the Motion Detect service to detect an object’s movement in images.
Object Detect identifies the object and sends results to Object Tracker and User Interface.
Object Tracker is in charge of reorienting the camera to follow the movement, while User
Interface displays results to the user. We execute more or less compute-intensive scenarios
using different values of the computing ratio ρ: ρ ∈ {0.1, 0.5, 1}. This ratio is multiplied
by the default cost of a task when executing a request. The size of network requests also
changes to simulate a more or less data-intensive application: sizereq ∈ {80kb, 1Mb}. We
simulate scenarios with both Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP) communications to observe the impact of the network protocol on en-
ergy and performance. We compare two application placement policies. a) cloud only:
deployment of services in the cloud datacenter, b) fog only: deployment of services using
fog nodes, each micro-datacenter having a copy of the application.

The application runs in the infrastructure depicted in Figure 6.1. This platform
includes one cloud datacenter of 64 servers and 14 fog micro-datacenters. A micro-
datacenter has 64 Raspberry Pi model 4B. Four 802.11n access points are connected
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MOTION
DETECT

OBJECT
TRACKER

USER
INTERFACE

OBJECT
DETECT

Figure 6.2 – DAG of the application, inspired from the surveillance camera use-case of [98].
The critical path is in red (used to measure end-to-end request latency).

Table 6.5 – CPU cost of executing a request in the application’s services. ρ ∈ {0.1, 0.5, 1}
allows modifying processing intensity.

Service Creq (MFLOPS)
MOTION DETECT ρ ∗ 500
OBJECT DETECT ρ ∗ 250

OBJECT TRACKER ρ ∗ 500
USER INTERFACE ρ ∗ 250

to each fog. Four cameras are connected to each access point, for a total of 224 cameras.
The cameras send between 1 and 5 requests per second. Each simulation runs for

230 seconds before stopping the cameras. We execute simulations with different distances
between the fog and the cloud datacenters by modifying the number of intermediate
core routers: 2, 5, and 7. Each core router adds 5ms of latency. The latency between
micro-datacenter nodes varies between 2 and 5 ms.

At the beginning of the simulation, we deploy only one instance of each service. Every
5 seconds, a reactive autoscaler based on CPU thresholds can deploy additional service
instances. If the average CPU usage of the nodes hosting the service exceeds 70%, the
autoscaler creates a replica. Nodes that do not host any service are powered off at the
beginning of the scenario and turned on by the autoscaler when needed.

All simulations use the models described in Section 6.1, implemented in SimGrid. The
code, scripts to reproduce results, and notebooks used to generate the data of this chapter
are online: https://github.com/klementc/end-to-end-fog-reproducibility. Addi-
tional results not covered in this chapter can be visualized at https://klementc.github.
io/end-to-end-fog-reproducibility/energy_analysis/visualize/.
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Figure 6.3 – Simulating the execution time of requests under different deployment policies

6.2.2 End-to-end latency of requests

In this experiment, we study a processing-intensive scenario with high CPU usage
and relatively small network requests. Network communications use TCP, and the size
of each request is 80 kb. There are seven hops to reach the cloud datacenter from the
fog, a latency of 2ms between fog nodes, and 0.5ms between cloud nodes. The CPU
execution ratio is ρ = 1, and ratioI/O = 1. In Figure 6.3, we show the evolution of
end-to-end request execution times and the total number of service instances during the
experiment. Figure 6.3a shows results for the cloud deployment and Figure 6.3b for the
fog deployment.

At the beginning of the simulation, the end-to-end latency rapidly increases in both
cases because of the time taken to scale the application to the workload. The cloud
deployment can manage the load with 16 service instances after 20 seconds. Since fog
nodes are less powerful, more than 550 service instances are used over all fog datacenters.
Scaling takes longer in the fog because the autoscaler adds one service replica per trigger.

Once the number of replicas is stable, we observe more variations between the end-to-
end latency of fog requests compared to cloud ones. A large number of service replicas
increases the number of possible execution paths.

In this experiment, execution times dominate communication times. Lower ρ values
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can invert this trend, decreasing execution times and leading to faster fog end-to-end
duration.

6.2.3 Impacts of network configuration on performance

Table 6.6 compares output metrics between different network configurations. In all
scenarios, ρ = 0.1, and sizereq = 1Mb. This means the application is network intensive.

Comfirst is the average communication time between end-users and the first service.
Comother is the average service-to-service communication time. When the distance be-
tween the end-user and the cloud increases from 2 to 7 core hops, we observe a significant
increase of Comfirst: 198% under TCP and 134% using UDP. It does not affect Comother

since the latency between cloud nodes does not change. In the fog, modifying the latency
between fog nodes from 2 to 5 ms does not impact significantly the latency between end-
users and the first fog service but increases the latency between services (200% with TCP,
128% with UDP). Regarding execution time, the average execution time of requests Dexec

is higher for the fog application since fog nodes have fewer CPU resources.

Table 6.6 – Impact of network configuration on application metrics in the network-
intensive scenario. Energy results do not consider power usage effectiveness.

Cloud (#Hops) Fog (lat)
2 5 7 2ms 5ms

Comfirst
TCP
UDP

331ms
78ms

526ms
94ms

657ms
105ms

162ms
71ms

197ms
73ms

Comother
TCP
UDP

16ms
4ms

16ms
4ms

16ms
5ms

74ms
21ms

148ms
27ms

Dexec
TCP
UDP

9ms
9ms

9ms
9ms

9ms
9ms

148ms
149ms

149ms
149ms

Enetdev
TCP
UDP

66.0kJ
65.7kJ

66.7kJ
66.3kJ

72.8kJ
66.7kJ

70.2kJ
67.0kJ

70.8kJ
68.0kJ

Erouters
TCP
UDP

3.7kJ
3.7kJ

9.2kJ
9.2kJ

12.8kJ
12.8kJ

0kJ
0kJ

0kJ
0kJ

Ehosts
TCP
UDP

425.1kJ
424.9kJ

425.0kJ
425.0kJ

425.1kJ
425.0kJ

368.5kJ
368.5kJ

368.5kJ
368.5kJ

The network configuration has little impact on energy consumption. The energy used
by network interfaces Enetdev and core router devices Erouters (not considering PUE to get
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only the power usage of devices) do not significantly change between scenarios. Erouters in
the cloud increases when adding more network hops due to additional core routers, while
no core routers are necessary in the fog. Since the workload does not change, Ehosts does
not significantly vary with modified network parameters.

Figure 6.4 shows the communication durations of individual requests in the cloud and
fog placement policies. These durations depend on the bandwidth and latency of the
traversed network links, and on the size of the network flows. In Figure 6.4a, there are 5
core network hops and 0.5ms of latency between cloud nodes in the same datacenter. In
Figure 6.4b, there are 2ms of latency between fog nodes. With the cloud policy, we observe
two groups of values: the first hop to reach the datacenter, and the communications
between cloud nodes. In the fog, the highest communication durations are about 3 times
lower than to reach the cloud. However, the minimum communication latency is much
higher than in the cloud. This observation illustrates the need to consider the placement
of services according to the number of network hops between services, and the importance
of co-located services.
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Figure 6.4 – Simulated communication times

We executed additional experiments to show the importance of co-locating fog services
to avoid too many network hops. When placing Motion Detect and Object Detect on the
same fog nodes, the end-to-end latency of data-intensive applications reduces significantly.
In the cloud, the impact is lower since the latency between nodes is low.
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6.2.4 Overall energy consumption

Figure 6.5 shows the energy consumption of different parts of the infrastructure. We
reuse the scenario of Section 6.2.2 which is CPU-intensive. The energy consumption for
the cloud placement is in Figure 6.5a, and Figure 6.5b for the fog placement.

We compute the energy of the end-users as the sum of the energy consumption of the
camera nodes and the Wi-Fi APs. Network energy is the sum of the energy of the Wi-Fi
interfaces, the links between datacenters nodes, and the application’s use of core routers.

In Figure 6.5, we observe that network communications consume less than 10% of the
overall energy. Compared to end-user devices and cloud servers, the energy consumed
by the network does not have a high impact. Fog nodes consume less than cloud nodes
individually, but their limited processing capacity requires more replicas for each service.

Since the PUE of a fog micro-datacenter is higher than a cloud, we observe higher
energy consumption in the fog in this scenario. More energy-efficient fogs could lead to
significant energy savings at runtime. In this chapter, we only consider runtime energy
usage. Studying the entire life of devices (building, using, recycling) with a life-cycle
assessment would be interesting since fogs require many small nodes.

In conclusion, efficient energy management in the fog is crucial to overcome cloud
infrastructure performances. We observe that fog datacenters, usually having higher PUE
values than high-end cloud datacenters [21], do not always permit energy gains.

Cloud / Edge
End-Users
Network

63.6 kJ

304.6 kJ

576.4  kJ

Total: 944.6 kJ

(a) Energy of a cloud deployment

66.4 kJ

587.0 kJ

304.6 kJ
Total: 958.0 kJ

(b) Energy of a fog deployment

Figure 6.5 – Estimated energy consumption in different parts of the infrastructure com-
posed of 224 cameras, 14 fog nDC equipped with 64 Raspberry PIs, and 1 cloud datacenter
with 64 servers. The simulated duration is 230 seconds.
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6.2.5 GHG emissions
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(a) CO2 emissions under cloud deployment
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(b) CO2 emissions under fog deployment

Figure 6.6 – GHG emissions for the same energy consumption in different countries

Figure 6.6 shows estimated GHG emissions to run the application for one year with 224
active cameras. This is the same scenario as Section 6.2.2, except the execution ratio we
set to ρ = 0.5. Since we do not expect the number and activity of cameras to change with
time, we use the energy consumption for the duration of the simulation, and extrapolate
the energy used during a year. Then we use the GHG emission rates in different countries
from Table 6.4, to compute the emissions of the fog and cloud infrastructures.

We observe a high variation of emissions to produce the same amount of energy in
different countries. Running a fog application in the USA, where the end-users and
processing nodes are in the same neighborhood leads to more than 3.5 tCO2e. In terms
of order of magnitude, the 3.5tCO2e utilized by the 224 cameras align with the average
cabon emissions of using a diesel car in 2022 (130g/km [145]) for a journey of 26,900
km. If we switch from fog to cloud placement in a French datacenter, the amount of
GHG drops to approximately 500 kgCO2e. We also observe that the difference between
emissions of a fog and a cloud application in the same country is very small since they
have similar energy usage.

While local execution in fogs sometimes improves performance, the micro-datacenter’s
location can lead to increased GHG emissions. Traveling long distances to reach clus-
ters using clean energy production methods can be more efficient from a greenhouse gas
emissions point-of-view. Application placement policies should consider GHG emissions
altogether with energy usage.
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6.3. Conclusion

6.3 Conclusion

Despite its potential, fog computing raises questions about how to effectively leverage
its benefits. Application developers need to adapt their applications to take advantage of
this new architecture.

In this chapter, we proposed an end-to-end description of fog infrastructures and
their applications. We leveraged existing and validated models to simulate each part of
the infrastructure with accurate results. We studied a microservice application deployed
under different settings using the SimGrid simulator and its models. Simulation outputs
provide metrics for the application’s performance but also the energy consumption and
GHG emissions of the underlying infrastructure in the use phase.

Our use case shows that our approach permits to study the impact of application
placement, workload, and network configuration on performance and energy consumption.
We observe the importance of studying the tradeoffs between application performance
and energy efficiency. Considering and improving the PUE of fogs could allow consequent
energy gains. Finally, the energy savings of fog computing can lead to negative impacts
in terms of GHG emissions depending on the location of fog clusters.

In the future, this approach could allow the study of different aspects of resource
placement algorithms for fog applications. It also allows getting application knowledge
before real deployments and playing with what-if scenarios.
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Chapter 7

CONCLUSION

Concerns regarding the impact of ICT infrastructures and applications on the world’s
GHG emissions require accurate and scalable tools to estimate this impact and help build
sustainable solutions. Cloud and fog computing paradigms rely on the collaboration of
multiple actors to process and transmit data, with actors located on different machines.
In this context, considering the interactions between networks, computing nodes, and
end-user devices, and estimating the cost of platforms with many nodes is necessary for
credible results. Consequently, the estimations’ scalability, accuracy, and reproducibility
are crucial. This thesis centers on using simulation to study plausible ICT scenarios
in a reproducible manner. We observed the limitations of state-of-the-art contributions
regarding scalability and accuracy, coupled with the fragmentation of models scattered
across separate simulation frameworks. Then, we explored the opportunity of flow-level
simulation to estimate the impact of end-to-end ICT infrastructures at scale.

7.1 Conclusion

The first objective of this thesis was to design performance and energy models to
simulate large-scale, end-to-end ICT infrastructures. In this context, models for hetero-
geneous network communication technologies (wired and wireless) are necessary. While
validated scalable flow-level models already exist for the simulation of Ethernet commu-
nications, available wireless models are either too fine-grained for the study of large-scale
infrastructures or lack model validation. We proposed to focus on the use of Wi-Fi given
the popularity and widespread usage of this technology. We extended a basic flow-level
model for Wi-Fi communications with an interference mechanism to enable the simulation
of additional scenarios. Then, we have shown the validity of a correctly calibrated model
considering the configuration of the channel and the conditions of the studied scenarios by
comparing our flow-level Wi-Fi model to the ns-3 network simulator. Simulation outputs
had similar accuracy when measuring communication durations. At the same time, the
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scalability of the flow-level approach reduces simulation times for 650 STAs from several
hours to seconds.

Additionally, we proposed an energy model adapted to the study of the energy con-
sumed by Wi-Fi NICs. This model has been built on top of the Wi-Fi flow-level per-
formance model and inherits its scalability properties. Validation against the ns-3 Wi-Fi
energy model shows that the results of the proposed model accurately estimate the energy
consumed by Wi-Fi devices within 10% of relative error. The proposed Wi-Fi performance
and energy consumption models are available in the SimGrid software distribution and
can be extended and used by everyone to conduct reproducible experiments.

The second objective of this thesis was to simplify the process of simulating real-world
applications deployed on distributed infrastructures. Large-scale and distributed appli-
cations such as microservices can have thousands of interdependent services located on
separate computing nodes. The manual calibration of application models in this context
is time-consuming and error-prone. We proposed a microservice execution model ac-
counting for the dependencies between services, the processing costs of requests, and the
ratio between I/O and CPU usage. To facilitate real-world application transposition into
simulators, the instantiation of this model can be semi-automatic based on application-
level traces from popular microservice monitoring solutions. We validated our model and
methodology by comparing simulations to real-world executions of a popular microservice
benchmark deployed under different configurations. Results show that our approach can
estimate the application’s performance with different service placement strategies.

The third objective of this thesis was to combine the previous models to simulate
a realistic fog infrastructure running applications. We leveraged existing and validated
models along with our contributions to simulate each part of the infrastructure with
accurate results. We studied a microservice application deployed under different settings
using the SimGrid simulation framework. Simulation outputs provide metrics for the
application and network performance, the energy consumption, and the GHG emissions
of the underlying infrastructure during the use phase. The analysis of the results shows
that application placement, workload, and network configuration can significantly impact
performance and energy consumption. We observe that the tradeoff between application
performance and energy efficiency needs to be further studied while improving the PUE
of fog nano datacenters could allow substantial energy gains.

The contributions of this thesis extended the use of flow-level models to consider
wireless network communications and to enable the study of heterogeneous infrastructures.
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We considered the tradeoff between accuracy and scalability to simulate networks at scale
while ensuring credible outputs.

7.2 Future directions

Our contributions help to simulate large-scale, heterogeneous, end-to-end ICT infras-
tructures. However, they are based on hypotheses limiting the study of some research
questions. This section explores possible extensions of our work to address some limita-
tions of our contributions.

7.2.1 More heterogeneous networks and machines

In Chapters 3 and 4, we design and validate models for the simulation of Wi-Fi.
These models are only validated using the IEEE 802.11n standard and still rely on some
hypotheses. A future direction is to extend these models to consider more modern features
such as energy-saving mechanisms that we did not consider [132]. Also, additional work
is needed to study scenarios where the nodes’ SNRs vary with time, where loss rates are
important, and with mobile devices. Using rate adaptation algorithms can help in these
situations. Additionally, our contributions would benefit from an improved calibration
procedure for the Wi-Fi performance model. A possible improvement of the calibration is
to provide default values for typical Wi-Fi configurations depending on the MCS. Another
possibility is to automate the calibration depending on the scenario under study: number
and configuration of AP and STAs, interferences during the experiment.

Some components of an end-to-end ICT infrastructure have not been considered in
Chapter 6, such as redundant network devices in the core network. Future work could
consider the impact of those devices.

Regarding the validity of the contributions, the proposed models have been evaluated
against ns-3. Additional validation against other state-of-the-art simulators (e.g. OM-
NET++ [93], WLAN Toolbox [84]) could be considered. Comparing the predictions of
the proposed models to real-world experiments is also possible, despite the difficulty of
analyzing and reproducing the behavior of real-world Wi-Fi networks.

While Wi-Fi is very popular at the edge of networks, other communication technologies
and types of machines could be considered. For instance, IoT sensors are very different
than the end-user nodes studied in Chapter 6. Such sensors can depend on energy sources
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like intermittent renewable energy, and operate differently than the studied use case.
Similarly, communication technologies such as LoRa and 802.15.4 are popular in the IoT
community and consume energy differently than Wi-Fi network cards. Considering these
more heterogeneous devices and protocols are promising future works.

7.2.2 In-depth study of the tradeoffs during use-phase

Chapter 6 shows the ability of our contributions to simulate an end-to-end infrastruc-
ture by combining a set of flow-level models. While we observe with this study some
interesting tradeoffs between the advantages and drawbacks of cloud and fog computing,
our scenario remains simplistic.

The service placement strategies used in this use case consider fog-only and cloud-
only placements. Several works in the literature [146] propose more complex algorithms
to optimize performance and energy consumption. Considering these allocation strategies
and exploring the advantages and drawbacks of different approaches would be of interest.

Similarly, the autoscaling strategy used throughout Chapter 6 relies on CPU usage
thresholds. An extension of our contributions would be to implement and evaluate more
complex autoscaling strategies from the literature [117, 118]. A comparison of these
policies considering energy instead of only performance metrics would be interesting.

Some methods are proposed in the literature to save energy by optimizing different
components: the utilization of devices, the structure of the application, among others.
Our models can help to analyze the tradeoffs between the gains of such optimizations in
end-to-end infrastructures, and the impact they have on application performance.

7.2.3 Full life-cycle analysis

Our contributions focus on the energy consumption of ICT resources during the use
phase. Future works could complete this thesis to consider the other phases.

During the use phase, we considered the energy consumed by datacenter infrastruc-
tures using the PUE and the emissions of the devices with publicly available data. Future
works could consider the use of alternative energy production and storage technologies by
modeling renewable energies or batteries. The energy distribution network could also be
considered to account for the advances of the smart grid.

Another future work is the consideration of the other life-cycle steps of ICT devices.
The other life-cycle phases represent a big part of the impact of devices [1]. The con-
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tributions presented in this thesis do not enable the evaluation of the cost of devices’
manufacturing and disposal, but their output could complete the results obtained using
LCA. They can also be used to study scientific questions regarding the energy demand
during the use phase for prospective scenarios.
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Titre : Simulation de bout-en-bout de la consommation d’énergie des infrastructures fog et de
leurs applications

Mot clés : Simulation, fog-computing, énergie, Wi-Fi, microservices, simulation-flux

Résumé : Afin de résoudre les problèmes
liés à l’augmentation du nombre de machines
connectées et de réduire les latences des
applications, le Fog consiste à placer des
ressources de calcul et de stockage en
bordure des réseaux. Cela conduit à la
création de petits centres de données avec
des capacités de calcul et de communication
hétérogènes. Malgré les avantages de
cette approche, des questions se posent
concernant l’impact de ces infrastructu-
res sur les émissions de gaz à effet de
serre. Il est possible d’estimer cet impact
en utilisant des plateformes expérimentales
ou des modèles de consommation d’énergie.
Cependant, il est nécessaire de trouver un

équilibre entre la précision des résultats et la
taille des infrastructures étudiées. L’objectif
de cette thèse est d’étudier davantage ce
compromis entre précision et passage à
l’échelle pour évaluer des infrastructures
fog de bout en bout. Nous proposons des
modèles de simulation flux afin d’étudier les
performances et la consommation d’énergie
des communications Wi-Fi ainsi que pour
les applications microservices. De plus,
nous combinons nos contributions avec
des modèles existants pour étudier une
infrastructure fog réaliste de grande taille.
Les modèles proposés sont implémentés et
disponibles dans le simulateur open source
SimGrid.

Title: End-to-end simulation of the energy consumption of fog infrastructures and applications

Keywords: simulation, fog-computing, energy, Wi-Fi, microservices, flow-level

Abstract: To reduce the latency of applica-
tions and to cope with an increasing number
of networked devices, fog computing places
processing and storage resources towards the
edge of the networks. This leads to the cre-
ation of small data centers, with heteroge-
neous hardware, and communication proto-
cols. Despite the advantages of this approach,
many concerns arise regarding the share of
the energy consumed by network infrastruc-
tures and their applications on the world’s
GHG emissions. To estimate this impact, ex-
isting works propose to make use of testbeds
or models to better understand the cost of
different parts of the network. However, ex-
isting works have to balance between accu-

rate results for small-scale measurements and
large-scale experiments with coarse-grained
results. The goal of this thesis is to further
study the tradeoff between scalability and ac-
curacy to measure the emissions of end-to-
end fog infrastructures at scale. We propose
models based on flow-level simulation to eval-
uate the performance and the energy con-
sumed by Wi-Fi networks and microservice
applications. Furthermore, we combine our
contributions with previous flow-level models
to study a realistic fog infrastructure at scale.
The models proposed in this thesis are avail-
able within the open-source SimGrid simula-
tion framework, with reproducible validation
experiments.
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