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Résumé: Dans cette thèse, on étudie les fais-
ceaux sur les variétés hyper-Kähleriennes, avec ob-
jectif final de résoudre une conjecture de longue
date due à Markman et O’Grady. Plus précisé-
ment, on démontre qu’on peut réaliser OG10 en
tant qu’espace de modules de fibrés stables sur
une variété hyper-Kählerienne de dimension qua-
tre. On commence par étudier les faisceaux sta-
bles et, de manière plus générale, les complexes
stables sur les surfaces K3. Il est admis, grâce
au travail de nombreuses personnes, que les es-
paces de modules de tels complexes stables sont
des variétés projectives hyper-Kähleriennes. Dans
le premier chapitre, on propose une nouvelle dé-
monstration conceptuelle de ce fait, en exploitant
les puissantes techniques de wall-crossing rendues
possibles par la théorie des conditions de stabilité
de Bridgeland.

Le reste de la thèse est consacré aux faisceaux
sur les variétés hyper-Kähleriennes de dimensions
supérieures. Il s’agit d’une théorie relativement
récente, qui a débuté avec le travail révolution-
naire de Taelman sur l’algèbre LLV et les travaux

d’O’Grady sur les faisceaux modulaires. Le deux-
ième chapitre de cette thèse est consacré à une
revue des principales propriétés de la cohomolo-
gie d’une variété hyper-Kählerienne, en mettant
l’accent sur le travail de Taelman.

La théorie a ensuite été développée indépen-
damment par Beckmann et Markman, qui ont
introduit une classe de faisceaux qu’on appelle
maintenant atomiques. On passe en revue leurs
travaux, ainsi que ceux d’O’Grady, dans le chapitre
trois. Dans le reste de la thèse, on considère
deux nouveaux exemples de faisceaux atomiques
stables sur une variété hyper-Kählerienne de di-
mension quatre. Ils sont obtenus en appliquant
des équivalences dérivées aux surfaces lagrangien-
nes. Dans les deux cas, leurs espaces de modules
sont des variétés symplectiques de dimension dix
(éventuellement singulières) et sont birationnels à
OG10. Dans l’un de ces cas, on est en mesure de
prouver la régularité et donc d’obtenir une variété
hyper-Kählerienne de type OG10 en tant qu’espace
de modules de faisceaux atomiques stables.
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Abstract: In this thesis we study sheaves on
hyper-Kähler manifolds, with final goal to solve
a long standing conjecture due to Markman and
O’Grady. Namely, we show that we can real-
ize OG10 as a moduli space of stable bundles on
a hyper-Kähler fourfold. We begin with stable
sheaves and, more in general, stable complexes
on K3 surfaces. It is a celebrated result, due
to the work of many people, that moduli spaces
parametrizing such stable complexes are projec-
tive hyper-Kähler manifolds. In the first chapter
we provide a new conceptual proof of this fact,
exploiting the powerful wall-crossing techniques
made possible by the theory of Bridgeland stability
conditions.

The rest of the thesis is devoted to sheaves on
higher dimensional hyper-Kähler manifolds. This
is a relatively recent theory, which started with the
breakthrough work by Taelman on the LLV alge-

bra, and O’Grady’s works on modular sheaves. The
second chapter of this thesis is devoted to a re-
view of the main properties of the cohomology of
a hyper-Kähler manifold, especially on Taelman’s
work.

The theory was later developed independently
by Beckmann and Markman, who introduced a
class of sheaves which we now call atomic. We
review their works, together with O’Grady’s, in
chapter three. In the rest of the thesis we consider
two new examples of stable atomic sheaves on a
hyper-Kähler fourfold. They are obtained by ap-
plying derived equivalences to Lagrangian surfaces.
In both cases, their moduli spaces are ten dimen-
sional (possibly singular) symplectic varieties, and
are birational to OG10. In one of these cases, we
are able to prove smoothness and therefore obtain
a hyper-Kähler manifold of type OG10 as a moduli
space of stable atomic sheaves.
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Introduction

0.1 Hyper-Kähler manifolds
We say that a compact Kähler manifold X is hyper-Kähler (or simply HK) if it is
simply connencted and

H0(X,Ω2
X) = Cσ,

where σ is a holomorphic symplectic form on X. It would be more appropriate
to call such manifolds irreducible holomorphic symplectic, but in fact, thanks to
Yau’s Theorem, this condition is equivalent to the existence of a hyper-Kähler
metric on X.

Hyper-Kähler manifolds have attracted a lot of interest in recent years. His-
torically, the main motivation to study them comes from the Beauville-Bogomolov
decomposition Theorem, which implies that hyper-Kähler manifolds form building
blocks for Kähler manifolds with trivial canonical bundle.

Theorem 0.1.1 ([12, Théorème 1]). Let Y be a compact Kähler manifold with
trivial canonical bundle. There exists a finite étale cover

T ×
∏
i

Vi ×
∏

Xi → Y

where T is a complex torus, each Vi is a Calabi-Yau manifold and each Xi is
hyper-Kähler.

The presence of a symplectic form forces the dimension of a hyper-Kähler
manifold X to be even. In dimension two, the definition agrees with that of a
K3 surface, but in higher dimension it is much harder to find examples. The first
was provided by Beauville [12] and Fujiki [36], and it is the Hilbert scheme of
points S[n] on a K3 surface S. We say that a hyper-Kähler manifold in the same
deformation class as S[n] is of type K3[n]. In [12] is shown that, if A is an abelian
surface, the fiber Kn(A) of the albanese morphism

A[n] → A

7



8 INTRODUCTION

is a HK as well. The corresponding deformation class is called generalized Kummer
and denoted by Kumn. Besides these two classes of examples, which exist in
every even dimension, there are only two sporadic examples, first constructed
by O’Grady [91, 92]. They have dimension respectively six and ten, and their
deformation classes are called OG6 and OG10.

In contrast with the lack of examples, the general theory is rich and well devel-
oped, and it culminates in the Global Torelli Theorem [79, 113]. In close analogy to
the case of K3 surfaces, also for high dimensional hyper-Kähler manifolds much of
the geometry is encoded by the (integral) second cohomology group. It is equipped
with a non-degenerate quadratic form of signature (3, b2(X)− 3)

q : H2(X,Z)×H2(X,Z)→ Z

called Beauville-Bogomolov-Fujiki (or BBF) form. If X is of dimension 2n, the
BBF form satisfies the relation∫

X

α2n = (2n− 1)!!cXq(α)
n, for every α ∈ H2(X,Z) (1)

where cX > 0 is a rational constant, which depends only on the deformation
class of X. In all known examples, the isomorphism class of this lattice has been
computed. For example, in the case of a K3 surface S, we have

(H2(S,Z), q) ≃ U⊕3 ⊕ E8(−1)⊕2, (2)

where U is the hyperbolic plane, and E8(−1) is the negative unimodular lattice of
rank eight.

The natural Hodge structure on H2(X,Z) is compatible with the BBF form
q, and therefore it is completely determined by the subspace H2,0(X). This gives
rise to a period map which is valued in the period domain

{σ ∈ P(H2(X,C)) | q(σ) = 0, q(σ, σ) > 0}.

The Global Torelli Theorem can be stated in terms of this period map, see [50] for
more details.

0.2 Moduli spaces of sheaves on K3 surfaces
The most powerful method we have to construct hyper-Kähler manifolds is the
theory of moduli spaces of sheaves on K3 surfaces. Let S be a projective K3
surface, and consider its Mukai lattice H̃(S,Z). This is the lattice

H̃(S,Z) := H∗(S,Z) = H0(S,Z)⊕H2(S,Z)⊕H4(S,Z).
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together with its Hodge structure and a non-degenerate pairing called Mukai pair-
ing, see Section 2.2.1 for the precise definition.

Just as the geometry of S is encoded by the second cohomology group H2(S,Z)
together with the intersection form and the Hodge structure, so the properties of
the derived category of coherent sheaves Db(S) are captured by the Mukai lattice.

In order to construct moduli spaces, we have to choose a discrete (topological)
invariant. There are several equivalent choices, but for various reasons the Mukai
vector is best suited for K3 surfaces. If E is a coherent sheaf on S, its Mukai vector
is the algebraic class

v(E) := ch(E) ∪ td(S)
1
2 ∈ H̃alg(S,Z).

Having fixed a class v ∈ H̃alg(S,Z), we can consider the set

{E ∈ Coh(S) | v(E) = v}/ ∼=

of isomorphism classes of sheaves fixed Mukai vector v. This set in general is not
countable, and the goal of moduli theory is to put a reasonable geometric structure
on it. We would like the resulting space to be (at least) a scheme of finite type.
Most of the times this will not be the case, and to solve this issue we can impose
a stability condition.

The classical choice, and the best suited to the construction of moduli spaces,
is Gieseker stability.

Definition 0.2.1. Let H be a polarization on S. A coherent sheaf E over S is
Gieseker H-semistable if it is pure and

pH(F,m) ≤ pH(E,m)

for every proper subsheaf F ⊂ E, where pH(E,m) is the reduced Hilbert polyno-
mial. It is stable if the strict inequality holds.

For every polarization H there is a projective scheme MS,H(v) over C, whose
closed points are

{E ∈ Coh(S) | E is H-semistable, and v(E) = v}/ ∼=,

see [48, Theorem 4.3.7]. If v is primitive, and H is generic, i.e. it is in the
complement of a union of hyperplanes in the ample cone, then MS,H(v) is smooth
and parameterizes stable sheaves. The tangent space to a closed point [E] ∈
MS,H(v) is identified with Ext1(E,E).

The first insights in the rich geometry of MS,H(v) are due to Mukai [87]. He
noted that the pairing

Ext1(E,E)× Ext1(E,E)→ C, (a, b) 7→ Tr(a ◦ b)
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induces a holomorphic two form on MS,H(v), which is non-degenerate by Serre
duality. Therefore, the moduli space MS,H(v) is a smooth projective holomorphic
symplectic variety.

In the groundbreaking works [22, 23], Bridgeland introduced a notion of sta-
bility conditions on Db(S), allowing for the construction of moduli spaces MS,σ(v)
of stable complexes up to quasi-isomorphisms. Most of the properties of mod-
uli of sheaves carry over to the derived setting as we recall in Theorem 2.3.2,
but moduli spaces of stable complexes are much more flexible than their classical
counterparts. In Chapter 2 we take full advantage of this flexibility to reprove the
following classical result.

Theorem 0.2.2 (Theorem 2.1.1). Let S be a K3 surface. Assume that v ∈
H∗

( S,Z) is a primitive vector and let σ ∈ Stab†(S) be a v-generic stability condition
on S. Then:

(1) The moduli space MalgS, σ(v) is non-empty if and only if v2 ≥ −2. In this
case, it is a smooth projective HK variety of dimension v2 +2, deformation-
equivalent to a Hilbert scheme of points on a K3 surface.

(2) If v2 ≥ 0, then there exists a natural Hodge isometry

θ−1
v : H2(MS,σ(v),Z)

∼−−−−→

{
v⊥ if v2 > 0

v⊥/Zv if v2 = 0,

where the orthogonal is taken in H∗(S,Z).
The analogous result for Gieseker stable sheaf is a celebrated theorem due to the

work of many people: Beauville [12], Mukai [88, 89], Kuleshov [63], O’Grady [96],
Huybrechts [44], with the final statement appearing in Yoshioka’s paper [118]. The
idea of the proof is simple: with a sequence of derived equivalences, wall-crossing
and deformations, we show that the moduli space Mσ(v) is deformation invariant
to the Hilbert scheme of points on a (different) K3 surface.

We can ask what happens if we allow the Mukai vector v to be a multiple

v = mv0, with m > 1

of a primitive vector v0 ∈ H∗(S,Z). Then, the moduli space MS,H(v) will be
always singular, due to the presence of strictly semistable sheaves, but the singu-
larities can be understood. If m = 2 and v2

0 = 2, O’Grady [92] showed that there
is a symplectic resolution

M̃S,H(v)→MS,H(v),

which means that the pullback of the symplectic form extends to a global holo-
morphic two form on M̃S,H(v). In this case, the smooth space M̃S,H(v) is a ten
dimensional HK manifold of type OG10. In all other cases there is no symplectic
resolution, by [60, Theorem B]. The other exceptional example OG6 is constructed
in a similar way, starting from an abelian surface instead of a K3 surface.
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0.3 Sheaves on higher dimensional HK manifolds

It is natural to wonder if Theorem 2.1.1 generalizes to moduli spaces on higher
dimensional HK manifolds. Historically the first to observe that this could be a
fruitful direction was Kobayashi. In [61] he noted that some moduli spaces of vector
bundles on a hyper-Kähler manifold are naturally equipped with a symplectic form
on their smooth locus.

Unfortunately, the theory in higher dimensions turns out to be much more
difficult than on K3 surfaces, and it is still in its infancy. Here we lest a few
difficulties:

• On a K3 surface S, Serre duality implies that for every sheaf F ∈ Coh(S)
we have

ext0(F, F ) = ext2(F, F ).

Since χ(E,E) is a numerical invariant, this implies that on the stable lo-
cus of a moduli space of sheaves the dimension ext1(F, F ) is constant. In
higher dimension, there are also other Ext groups responsible for the Euler
characteristic, which make smoothness of the stable locus much harder to
control.

• One of the key steps in the proof of Theorem 2.1.1 is the deformation of
the base K3 surface to an elliptic one. Indeed on a K3 surface, every simple
sheaf deforms sideways provided its first Chern class remains algebraic [88,
Theorem 1.17]. This is far from being the case if the dimension is bigger
than two: a necessary condition for a sheaf to deform sideways is that the
entire Chern character stays algebraic.

• The proof of the irreducibility result for surfaces [60, Theorem 4.1] also cru-
cially uses the dimension two, and it does not generalize to higher dimen-
sions. As of the present moment, there is no argument available to prove
irreducibility of moduli spaces of sheaves on high dimensional HK.

Therefore, just considering stable sheaves does not cut it, we need to find a
class of sheaves with good enough properties that resemble those of sheaves on K3
surfaces. A first candidate for this class was introduced by Verbitsky in the form
of hyperholomorphic sheaves.

Definition 0.3.1. Let X be a HK manifold and ω ∈ H1,1(X,R) a Kähler class.
A sheaf F on X is called hyperholomorphic if it is µω-stable and c1(F ) and c2(F )
remain of Hodge type along the twistor line Xω → P1

ω generated by ω. It is called
projectively hyperholomorphic if the endomorphism sheaf End(F ) is hyperholo-
morphic.

In [112] he noted that hyperholomorphicity is a sufficent condition to deform
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a stable bundle sideways along the twistor deformation.1

Theorem 0.3.2 ([112, Theorem 3.19]). Let ω ∈ H1,1(X,R) be a Kähler class, and
let E be a (possibly twisted) ω-slope vector bundle. Assume that ∆(E) remains of
type (2, 2) along the twistor line Xω → P1

ω spanned by ω. Then there exists a flat
deformation E on Xω, such that Et is stable for every t ∈ P1

ω.

For us the most important feature of (projectively) hyperholomorphic bundles
is that their moduli spaces is naturally equipped with a symplectic structure, as
Verbitsky first noted. The symplectic form can be given pointwise as follows. Let
E be a projectively hyperholomorphic vector bundle on X. There is a natural map

H i(X, End(E))→ H i+2(X, End(E))

induced by cup product with the class σ ∈ H2(X,OX).

Theorem 0.3.3 ([108, Theorem 4.2A]). Let E be a slope stable projectively hy-
perholomorphic vector bundle on a HK manifold X. For every i the map above

H i(X, End(E))→ H i+2(X, End(E))

is an isomorphism.

This generalizes also the work of Kobayashi [61]. In Section 4.8.2 we show that
this in fact gives rise to a symplectic form on the smooth locus of a moduli space
of stable projectively hyperholomorphic bundles. In Section 4.8 we will prove a
result about the smoothness of moduli spaces of hyperholomorphic sheaves, see
Theorem 4.8.8.

After [111] hyperholomorphic vector bundles were not really considered much,
especially because of the lack of examples. Indeed, apart from the tangent bundle
and its relatives, it is extremely difficult to construct examples. The more recent
theory of modular and atomic sheaves is helpful in this direction.

0.4 Modular and atomic sheaves
In a quest to generalize to higher dimensions the properties of stable bundles on
elliptic K3 surfaces, O’Grady [93] introduced the notion of modular sheaves. A
torsion-free sheaf F on a hyper-Kähler manifold X is called modular if there exists
a constant d(F ) ∈ Q such that∫

X

∆(F ) ∪ ω2n−2 = d(F )(2n− 3)!!q(ω)n−1,

1This was later generalized by Markman [78, Corollary 6.11] to stable reflexive sheaves.
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for every ω ∈ H2(X,Q), see Definition 4.3.7 and Remark 4.3.8. This property is
satisfied, for example, if ∆(F ) remains of type (2, 2) along all deformations of X.

The most important feature of modularity is its relationship with slope stability.
One of the main results in [94], which we recall in Section 4.7 is that, for modular
sheaves, slope stability works just as it does for sheaves on surfaces. Namely,
for every choice of the Mukai vector, the ample cone has a wall and chamber
decomposition with similar properties of that on K3 surfaces. Furthermore, if F
is a sheaf on a HK with a Lagrangian fibration

π : X → Pn,

slope stability with respect to polarizations in one of this chamber is intimately
related to the stability of the restriction Ft to a general fiber, see Section 4.7.2.

O’Grady [93, 94] constructs rigid stable modular vector bundles on every HK
of K3[n]-type, and shows that they are also unique. That is, the moduli space of
stable locally free sheaves with certain invariant is a single reduced point, but it
might be that there are components which parametrizes sheaves none of which is
locally free. Nevertheless, this is the only instance in which a partial irreducibility
result is known. We recall this construction and others in Section 4.5.

Atomic objects

Motivated by O’Grady’s results, Markman [77] studied a similar, more categorical
notion. The starting point is the observation that, if the discriminant ∆(E) of a
stable bundle E remains of type (2, 2) on every commutative deformation of X,
then E is modular. We can ask what happens when we look at non-commutative
deformations.

Recall that a first-order deformation of Db(X) can be seen as an element of
the group

HT2(X) = H2(X,OX)⊕H1(X,TX)⊕H0(X,
∧2

TX),

for details see Section 4.2.1. The cohomological obstruction map for an object
E ∈ Db(X) is the map

χH
E : HT2(X)→ H∗(X,C), η 7→ η⌟v(E)

given by contraction with the Mukai vector of E, see Definition 4.2.11. As the
name suggests, if

χH
E (η) = 0,

then v(E) remains algebraic along the deformation induced by η. There is almost
no object with χH

E ≡ 0, so the smallest possible rank for χH
E for interesting objects
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is one. Objects with cohomological obstruction map of rank one are called atomic
and have been studied independently by Beckmann in [15]. It turns out that they
enjoy several good properties.

First of all, as could be expected, an atomic torsion-free sheaf is modular as
we show in Proposition 4.3.11, but the reverse implication is far from being true.
Most importantly though, as we review in Section 4.3, an atomic object E ∈ Db(X)
possess an extended Mukai vector

ṽ(E) ∈ H̃(X,Q),

which lives in the extended Mukai lattice. It was first introduced by Verbitsky
[107], as an analogue of the classical Mukai lattice of a K3 surface, and in the
breakthrough work by Taelman [103] it was shown to be a derived invariant. This
is the rational vector space

H̃(X,Q) := Qα⊕H2(X,Q)⊕Qβ,

equipped with the quadratic form q̃, obtained by extending the BBF form on
H2(X,Q) by declaring that α and β are orthogonal to H2(X,Q), isotropic and
q̃(α, β) = −1. We can also equip it with a Hodge structure obtained by declaring

H̃(X,Q)2,0 = H2,0(X,C)

and imposing compatibility with q̃.
The main feature of the extended Mukai lattice is the fact that is preserved

under derived equivalences. Precisely, if

Φ : Db(X) ≃ Db(Y )

is a derived equivalence, then there exists an induced Hodge isometry

ΦH̃ : H̃(X,Q) ≃ H̃(Y,Q).

This is compatible, in some sense which is made precise in Theorem 3.6.8, with
the usual isometry

ΦH : H∗(X,Q) ≃ H∗(Y,Q)

induced in cohomology. This turns out to be extremely useful.
Partly because the extended Mukai lattice has small dimension compared to

the entire cohomology H∗(X,Q). Hence it is much easier to compute the action
of derived equivalences, as we do for instance in Proposition 5.2.9.

But mostly because the extended Mukai vector of an atomic object E ∈ Db(X)

is preserved (up to constants) under ΦH̃ :

ΦH̃(⟨ṽ(E)⟩) = ⟨ṽ(Φ(E))⟩ ⊂ H̃(X,Q).
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In particular the notion of atomicity is invariant under derived equivalences, and
this is fundamental to find new examples of modular bundles.

Indeed, one can find an atomic object in Db(X) for which the condition of being
atomic is easily checked (in our case it will be the structure sheaf of a Lagrangian
submanifold) and then map it to a vector bundle via a derived equivalence.

0.5 Main results
The main goal of this thesis is to investigate the following question, posed by
Markman and O’Grady.

Question: Can we realize a HK manifold of type OG10 as a moduli space of
sheaves on a hyper-Kähler manifold of type K3[2]?

In Chapter 6 we manage to give an affirmative answer to it. The base HK
fourfold we consider is the Beauville-Mukai system

M :=MS(0, H,−1)→ |H|,

where (S,H) is a general polarized K3 surface of degree two. The reason for this
is that there exists a Poincaré sheaf

U ∈ Coh(M ×|H| M),

which induces an autoequivalence

ΦU : Db(M) ≃ Db(M).

As we show in Proposition 5.2.6, this equivalence transforms (the structure sheaves
of) Lagrangian surfaces finite over P2 into locally-free sheaves. Our first result,
which is the main result of [21], is the construction of a stable atomic vector bundle,
which is not rigid and whose moduli space is close to OG10.

Theorem 0.5.1 (Theorem 5.7.5 and Proposition 5.8.2). Let M = MS(0, H,−1)
be the Beauville Mukai system above. There exist a stable, atomic vector bundle F
on M with Mukai vector

v(F ) = 5

(
1− 3

4
q2 +

9

32
pt

)
.

The Ext1(F, F ) is ten dimensional. The Yoneda pairing is skew-symmetric and
induces an isomorphism ∧2

Ext1(F, F )
∼−→ Ext2(F, F ).
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In particular, its deformation functor is smooth. Moreover, there is a component
M of the moduli space of semistable sheaves with Mukai vector v(F ) which is
birational to OG10.

The bundle F is obtained by applying the equivalence ΦU to a reducible La-
grangian surface Z ⊂M . The surface Z has two components, and for this reason
the resulting bundle will not be stable. To make it stable we apply one more
autoequivalence, as described in Section 5.7.

In order to prove this we also prove a number of general results on the structure
of moduli of atomic bundles. This is done in Section 4.8. The most important of
these is Theorem 4.8.8, which is the only way that we have to tackle the singular-
ities of these moduli spaces. It can be reformulated as follows.

Theorem 0.5.2 (Theorem 4.8.8). Let MX,H(v) be a moduli space of semistable
projectively hyperholomorphic sheaves. Assume that it parametrizes only slope sta-
ble vector bundles. Then its singular locus is either empty or pure of codimension
one.

The assumption of parametrizing locally free sheaves is important in the proof,
although one could imagine that with more work it could be extended to all sheaves.
For this reason we are not able to prove smoothness of the whole component M.
Indeed, the semistable deformations of the bundle F could very well be non locally
free, and as of now we have no way of understanding them.

To circumvent this difficulty, and find a moduli space parametrizing only locally
free sheaves, we slightly modify the construction. Namely, we consider a cubic
fourfold Y ⊂ P5, such that its Fano variety of lines is equipped with a Lagrangian
fibration

F (Y )→ P2.

And we also ask for the cubic Y to be general among those, see Section 6.3 for
the precise assumptions. In this situation, combining Theorem 6.2.5 with Propo-
sition 6.5.1, we prove that there exists a twisted Poincaré sheaf

U ∈ Coh(F (Y )×P2 M, p∗2(α)),

where α ∈ Br′(M) is a Brauer class. This enjoys similar properties to the untwisted
Poincaré sheaf. Namely, the twisted Fourier Mukai transform

ΦU : Db(F (Y )) ≃ Db(M)

is an equivalence. Moreover it maps Lagrangian surfaces which are finite over the
base to vector bundles.

In this case, the surfaces we are interested in are the surfaces of lines of hyper-
plane sections F (YH) ⊂ F (Y ). In Section 6.3 we show that they are indeed finite
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over P2. Therefore we produce, via the equivalence ΦU , a twisted vector bundle
on M . Now the surfaces are integral, so this bundle is immediately slope stable,
as we show in Section 6.5. Surprisingly, in this case we manage to understand also
its semistable degenerations, enough to obtain a positive answer to the question
above.

Theorem 0.5.3 (Theorem 6.6.3). There is a connected component M of a mod-
uli space of twisted semi stable sheaves on M , which is a smooth projective HK
manifold of type OG10.

The fundamental geometrical step for analyzing the semistable degeneration
is understanding the compactified Picard group of the surface F (YH). Indeed,
through the equivalence ΦU , degenerating the bundle is equivalent to degenerating
the structure sheaf of the surface F (YH) ⊂ F (Y ).

Theorem 0.5.4 (Theorem 6.4.1). For any hyperplane section YH ⊂ Y , the moduli
space Pic0(F (YH)) parametrizes only Cohen-Macaulay sheaves.

The property of being CM is the technical condition that ensures that the
image under ΦU is a vector bundle. This theorem is proved in Section 6.4, and
relies heavily on the work [66]. Hence the proof of Theorem 6.6.3 is not completely
internal to moduli theory, it still requires a geometric input.

To conclude this quick summary we highlight that, although apparently irrele-
vant, the framework of atomic and modular sheaves was central in our arguments.
For example, in order to prove stability of the bundles we consider, we rely heavily
on the notion of suitable polarization Definition 4.7.8. This notion was introduced
by O’Grady [94] in the context of modular sheaves, and it allows to prove stability
by analyzing the stability of the restriction to a general fiber. In turn, to prove
that our bundles are modular, the notion of atomicity comes into play. Indeed as
anticipated, for Lagrangians submanifold atomicity is an easy condition to check,
and is preserved under derived equivalences.

Further work

The construction of Theorem 0.5.3 seems to be a good indication that this could
be a fruitful direction to find new examples of HK manifolds. For example, one
could try to replicate this strategy to investigate moduli spaces of sheaves on HK
manifolds of type OG10. In particular, let Y ⊂ P5 be a smooth cubic fourfold,
and

JY → |OY (1)| and J t
Y → |OY (1)|

be respectively the intermediate Jacobian fibration (constructed in [66]) and its
twisted version (constructed in [115]). Then, it is conjectured that there exists a
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(possibly twisted) Poincaré-like sheaf

U ∈ Coh(J t
Y ×Pn JY , p

∗
2(α)),

where α ∈ Br′(JY ). By Poincaré-like we simply mean that the associated Fourier-
Mukai transform is an equivalence, and that, for every t ∈ Pn, the restriction

U|t ∈ Coh(Xt × Yt, αt)

is a CM sheaf. The goal now would be to find a Lagrangian subvariety

Z ⊂ J t
Y

with the following properties:
(1) Its structure sheaf OZ ∈ Db(J t

Y ) is an atomic object. That is, it satisfies the
conditions of Theorem 4.6.2.

(2) There is a component of the Hilbert scheme of the embedded deformations
of Z ⊂ J t

Y which is a projective space P . Moreover, we ask that every
deformation Z ′ ∈ P is integral.

(3) Lastly, we want that for every Z ′ ∈ P , the closure of the set of line bundles

Pic0(Z ′) ⊂ Pic0(Z ′)=

parametrizes only Cohen-Macaulay sheaves.
If all of these conditions were satisfied, then the arguments of this thesis would
produce a moduli space of twisted bundles on JY which is a smooth projective
symplectic manifold. If it were also HK, it would most likely be a new example,
because we would expect the second Betti number to be 25.

Of course, this is very far away from current research. Already finding a La-
grangian surface which satisfies (1) would be extremely interesting. We could pro-
duce possibly twisted vector bundles on JY , and perhaps study the degenerations
by different means.

In a different direction, we could try to study objects supported on Lagrangians
which have high rank. There is an explicit condition for when such an object
is atomic, see Theorem 4.6.6. Studying such objects on the known Lagrangian
surfaces could produce new examples of singular HK manifolds.

0.6 Structure of the thesis
In Chapter 2 we give a new proof of Theorem 2.1.1. The proof is a reformulation
in modern language of the classical proof by O’Grady and Yoshioka. This is the
content of the paper [19].
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In Chapter 3 we review some results on the cohomology of hyper-Kähler manifolds.
In particular the LLV algebra and its interactions with the derived category, which
first appeared in the work of Taelman [103]. With the exception of Section 3.7,
everything in this chapter is not original work. The first few sections are the
content of the paper [20]
In Chapter 4 we review the theory of atomic and modular sheaves following [94,
93, 77, 17, 15]. With the exception of Section 4.3 where we prove some numeri-
cal properties of atomic sheaves, and Section 4.8 where we prove Theorem 0.5.2,
everything else is not original work.
In Chapter 5 we construct our first example of atomic bundle, and we prove The-
orem 0.5.1. This chapter also contains the main technical result we use to prove
local freeness, which is Proposition 5.2.6. This is the content of the preprint [21].
In Chapter 6 deal with the twisted case and we prove Theorem 0.5.3, which gives
a positive answer to the question above.

0.7 Notation and conventions
Unless otherwise specified, all functors are derived. We use O’Grady’s normal-
ization for the Fujiki constant cX , which means that it satisfies (1). With the
exception of Chapter 2 where X is used to denote a K3 surface, we will always
denote a K3 surface by the letter S, while X will be reserved for higher dimen-
sional HK manifolds. A moduli space of stable sheaves on a projective variety
(X, h) with fixed invariants v will be usually denoted by MX,h(v). When it will
not cause confusion we will drop the X from the notation.
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Chapter 1

Résumé en Français

1.1 Variétés hyper-Kähleriennes
On dit qu’une variété Kähler compacte X est hyper-Kählerienne (ou simplement
HK) si elle est simplement connexe et

H0(X,Ω2
X) = Cσ,

où σ est une forme symplectique holomorphe sur X. Il serait plus approprié
d’appeler de telles variétés symplectiques holomorphes irréductibles, mais en fait,
grâce au Théorème de Yau, cette condition est équivalente à l’existence d’une
métrique hyper-Kähler sur X.

Les variétés hyper-Kähleriennes ont suscité beaucoup d’intérêt ces dernières
années. Historiquement, la principale motivation pour les étudier provient du
Théorème de décomposition Beauville-Bogomolov, qui implique que les variétés
hyper-Kähler forment des éléments constitutifs pour les variétés Kähleriennes avec
fibré canonique trivial.

Theorem 1.1.1 ([12, Théorème 1]). Soit Y une variété Kähler compacte avec
fibré canonique trivial. Il existe un revêtement fini étale

T ×
∏
i

Vi ×
∏

Xi → Y

où T est un tore complexe, chaque Vi est une variété de Calabi-Yau et chaque Xi

est hyper-Kählerienne.

La présence d’une forme symplectique impose que la dimension d’une variété
hyper-Kähler X soit paire. En dimension deux, la définition correspond à celle
d’une surface K3, mais en dimension supérieure, il est beaucoup plus difficile de
trouver des exemples. Le premier a été fourni par Beauville [12] et Fujiki [36], et

21
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c’est le schéma de Hilbert des points S[n] sur une surface K3 S. On dit qu’une
variété hyper-Kähler dans la même classe de déformation que S[n] est de type
K3[n]. Dans [12], il est montré que, si A est une surface abélienne, la fibre Kn(A)
du morphisme d’Albanese

A[n] → A

est aussi hyper-Kähler . La classe de déformation correspondante est appelée
Kummer généralisé et notée Kumn. Outre ces deux classes d’exemples, qui existent
dans chaque dimension paire, il n’y a que deux exemples sporadiques, d’abord
construits par O’Grady [91, 92]. Ils ont respectivement une dimension six et dix,
et leurs classes de déformation sont appelées OG6 et OG10.

Contrairement au manque d’exemples, la théorie générale est riche et bien
développée, et elle aboutit au Théorème de Torelli Global [79, 113]. En analogie
étroite avec le cas des surfaces K3, également pour les variétés hyper-Kähler de
grande dimension, une grande partie de la géométrie est encodée par le groupe de
cohomologie de degré deux (entier). Il est équipé d’une forme quadratique non
dégénérée de signature (3, b2(X)− 3)

q : H2(X,Z)×H2(X,Z)→ Z

appelée forme de Beauville-Bogomolov-Fujiki (ou BBF). Si X est de dimension 2n,
la forme BBF satisfait la relation∫

X

α2n = (2n− 1)!!cXq(α)
n, pour tout α ∈ H2(X,Z) (1.1)

où cX > 0 est une constante rationnelle, qui dépend uniquement de la classe de
déformation de X. Dans tous les exemples connus, la classe d’isomorphisme de ce
réseau a été calculée. Par exemple, dans le cas d’une surface K3 S, on a

(H2(S,Z), q) ≃ U⊕3 ⊕ E8(−1)⊕2, (1.2)

où U est le plan hyperbolique, et E8(−1) est le réseau unimodulaire négatif de
rang huit.

La structure de Hodge naturelle sur H2(X,Z) est compatible avec la forme
BBF q, et donc elle est complètement déterminée par le sous-espace H2,0(X). Cela
donne lieu à une application de période qui prend ses valeurs dans le domaine des
périodes

{σ ∈ P(H2(X,C)) | q(σ) = 0, q(σ, σ) > 0}.

Le Théorème de Torelli Global peut être formulé en termes de cette application
de période, voir [50] pour plus de détails.
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1.2 Espaces de modules de faisceaux stables sur le
surfaces K3

La méthode la plus puissante que nous ayons pour construire des variétés hyper-
Kähler est la théorie des espaces de modules des faisceaux sur les surfaces K3. Soit
S une surface projective K3, et considérons son réseau de Mukai H̃(S,Z). Il s’agit
du réseau

H̃(S,Z) := H∗(S,Z) = H0(S,Z)⊕H2(S,Z)⊕H4(S,Z).

accompagné de sa structure de Hodge et d’un appariement non dégénéré appelé
appariement de Mukai.

Tout comme la géométrie de S est encodée par le groupe de cohomologie
H2(S,Z) avec la forme d’intersection et la structure de Hodge, les propriétés de
la catégorie dérivée des faisceaux cohérents Db(S) sont capturées par le réseau de
Mukai.

Pour construire des espaces de modules, nous devons choisir un invariant discret
(topologique). Il existe plusieurs choix équivalents, mais pour diverses raisons, le
vecteur de Mukai est le mieux adapté aux surfaces K3. Si E est un faisceau
cohérent sur S, son vecteur de Mukai est la classe algébrique

v(E) := ch(E) ∪ td(S)
1
2 ∈ H̃alg(S,Z).

Ayant fixé une classe v ∈ H̃alg(S,Z), nous pouvons considérer l’ensemble

{E ∈ Coh(S) | v(E) = v}/ ∼=

des classes d’isomorphisme de faisceaux ayant le vecteur de Mukai fixé v. Cet
ensemble n’est en général pas dénombrable, et le but de la théorie des modules est
de lui donner une structure géométrique raisonnable. Nous aimerions que l’espace
résultant soit (au moins) un schéma de type fini. La plupart du temps, cela ne
sera pas le cas, et pour résoudre ce problème, nous pouvons imposer une condition
de stabilité.

Le choix classique, et le mieux adapté à la construction d’espaces de modules,
est la stabilité de Gieseker.

Definition 1.2.1. Soit H une polarisation sur S. Un faisceau cohérent E sur S
est H-semi-stable de Gieseker s’il est pur et

pH(F,m) ≤ pH(E,m)

pour tout sous-faisceau propre F ⊂ E, où pH(E,m) est le polynôme de Hilbert
réduit. Il est stable si l’inégalité stricte est vérifiée.
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Pour chaque polarisation H, il existe un schéma projectif MS,H(v) sur C, dont
les points fermés sont

{E ∈ Coh(S) | E est H-semi-stable, et v(E) = v}/ ∼=,

voir [48, Théorème 4.3.7]. Si v est primitif, et H est générique, c’est-à-dire qu’il est
dans le complément d’une union d’hyperplans dans le cône ample, alors MS,H(v)
est lisse et paramétrise des faisceaux stables. L’espace tangent en un point fermé
[E] ∈MS,H(v) est identifié avec Ext1(E,E).

Les premières observations dans la riche géométrie de MS,H(v) sont dues à
Mukai [87]. Il a remarqué que l’appariement

Ext1(E,E)× Ext1(E,E)→ C, (a, b) 7→ Tr(a ◦ b)

induit une deux-forme holomorphe sur MS,H(v), qui est non dégénérée par dualité
de Serre. Par conséquent, l’espace de modules MS,H(v) est une variété symplec-
tique holomorphe projective lisse.

Dans les travaux révolutionnaires [22, 23], Bridgeland a introduit une notion de
conditions de stabilité sur Db(S), permettant la construction d’espaces de mod-
ules MS,σ(v) de complexes stables jusqu’à quasi-isomorphisme. La plupart des
propriétés des espaces de modules de faisceaux se transfèrent au cadre dérivé,
mais les espaces de modules de complexes stables sont beaucoup plus flexibles que
leurs homologues classiques. Nous tirons pleinement parti de cette flexibilité pour
démontrer à nouveau le résultat classique suivant.

Theorem 1.2.2. Soit S une surface K3. Supposons que v ∈ H∗
( S,Z) soit un

vecteur primitif et que σ ∈ Stab†(S) soit une condition de stabilité v-générique sur
S. Alors:

(1) L’espace de modules MalgS, σ(v) est non vide si et seulement si v2 ≥ −2.
Dans ce cas, il s’agit d’une variété hyper-Kähler (hyperkählérienne) lisse pro-
jective de dimension v2+2, déformation-équivalente à un schéma de Hilbert
de points sur une surface K3.

(2) Si v2 ≥ 0, alors il existe un isomorphisme de Hodge naturel

θ−1
v : H2(MS,σ(v),Z)

∼−−−−→

{
v⊥ si v2 > 0

v⊥/Zv si v2 = 0,

où l’orthogonal est pris dans H∗(S,Z).

Le résultat analogue pour les faisceaux stables de Gieseker est un théorème
célèbre dû au travail de plusieurs personnes : Beauville [12], Mukai [88, 89],
Kuleshov [63], O’Grady [96], Huybrechts [44], avec l’énoncé final apparaissant
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dans l’article de Yoshioka [118]. L’idée de la démonstration est simple : avec une
séquence d’équivalences dérivées, de sauts de murs (wall-crossing) et de déforma-
tions, nous montrons que l’espace de modules Mσ(v) est invariant par déformation
vers le schéma de Hilbert de points sur une surface K3 (différente).

Nous pouvons nous demander ce qui se passe si nous autorisons le vecteur de
Mukai v à être un multiple

v = mv0, avec m > 1

d’un vecteur primitif v0 ∈ H∗(S,Z). Alors, l’espace de modules MS,H(v) sera
toujours singulier, en raison de la présence de faisceaux strictement semi-stables,
mais les singularités peuvent être comprises. Si m = 2 et v2

0 = 2, O’Grady [92] a
montré qu’il existe une résolution symplectique

M̃S,H(v)→MS,H(v),

ce qui signifie que le relevé de la forme symplectique s’étend à une deux-forme
holomorphe globale sur M̃S,H(v). Dans ce cas, l’espace lisse M̃S,H(v) est une
variété hyper-Kähler de dimension dix de type OG10. Dans tous les autres cas,
il n’y a pas de résolution symplectique, par [60, Théorème B]. L’autre exemple
exceptionnel OG6 est construit de manière similaire, en partant d’une surface
abélienne au lieu d’une surface K3.

1.3 Faisceaux sur des variétés HK de dimensions
supérieures

Il est naturel de se demander si le Theorem 1.2.2 généralise aux espaces de mod-
ules sur des variétés HK de dimensions supérieures. Historiquement, le premier
à observer que cela pourrait être une direction fructueuse fut Kobayashi. Dans
[61], il nota que certains espaces de modules de fibrés vectoriels sur une variété
hyper-Kählérienne sont naturellement équipés d’une forme symplectique sur leur
lieu lisse.

Malheureusement, la théorie en dimensions supérieures se révèle bien plus diffi-
cile qu’en surfaces K3, et elle en est encore à ses débuts. Voici quelques difficultés:

• Sur une surface K3 S, la dualité de Serre implique que pour chaque faisceau
F ∈ Coh(S), nous avons

ext0(F, F ) = ext2(F, F ).

Puisque χ(E,E) est un invariant numérique, cela implique que sur le lieu
stable d’un espace de modules de faisceaux, la dimension ext1(F, F ) est con-
stante. En dimension supérieure, il existe également d’autres groupes Ext



26 CHAPTER 1. RÉSUMÉ EN FRANÇAIS

responsables de la caractéristique d’Euler, ce qui rend le contrôle de la régu-
larité du lieu stable beaucoup plus difficile.

• Une des étapes clés dans la démonstration du Theorem 1.2.2 est la déforma-
tion de la surface K3 vers une surface elliptique. En effet, sur une surface K3,
chaque faisceau simple se déforme latéralement à condition que sa première
classe de Chern reste algébrique [88, Théorème 1.17]. Ce n’est de loin pas
le cas si la dimension est supérieure à deux : une condition nécessaire pour
qu’un faisceau se déforme latéralement est que l’ensemble du caractère de
Chern reste algébrique.

• La démonstration du résultat d’irréductibilité pour les surfaces [60, Théorème
4.1] utilise également de manière cruciale la dimension deux, et elle ne se
généralise pas aux dimensions supérieures. À l’heure actuelle, aucun argu-
ment n’est disponible pour prouver l’irréductibilité des espaces de modules
de faisceaux sur des variétés HK de dimensions élevées.

Par conséquent, se limiter à considérer uniquement les faisceaux stables ne
suffit pas, nous devons trouver une classe de faisceaux ayant des propriétés assez
bonnes pour ressembler à celles des faisceaux sur les surfaces K3. Un premier
candidat pour cette classe a été introduit par Verbitsky sous la forme de faisceaux
hyperholomorphes.

Definition 1.3.1. Soit X une variété HK et ω ∈ H1,1(X,R) une classe Kähléri-
enne. Un faisceau F sur X est appelé hyperholomorphe si son discriminant

∆(F ) := −2 rk(E) ch2(E) + c1(E)
2 ∈ H4(X,Q)

reste de type (2, 2) le long de la ligne du twistor Xω → P1
ω générée par ω. Il est

appelé projectivement hyperholomorphe si le faisceau d’endomorphismes End(F )
est hyperholomorphe.

Dans [112], il nota que l’hyperholomorphie est une condition suffisante pour
déformer latéralement un fibré stable le long de la déformation du twistor.1

Theorem 1.3.2 ([112, Théorème 3.19]). Soit ω ∈ H1,1(X,R) une classe Kähléri-
enne, et soit E un fibré vectoriel ω-pente (éventuellement tordu). Supposons que
∆(E) reste de type (2, 2) le long de la ligne du twistor Xω → P1

ω engendrée par ω.
Alors il existe une déformation plate E sur Xω, telle que Et soit stable pour tout
t ∈ P1

ω.

Pour nous, la caractéristique la plus importante des faisceaux (projectivement)
hyperholomorphes est que leurs espaces de modules sont naturellement équipés

1Cela a été ensuite généralisé par Markman [78, Corollaire 6.11] aux faisceaux réflexifs stables.
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d’une structure symplectique, comme l’a d’abord noté Verbitsky. La forme sym-
plectique peut être donnée ponctuellement comme suit. Soit E un fibré vectoriel
projectivement hyperholomorphe sur X. Il existe une application naturelle

H i(X, End(E))→ H i+2(X, End(E))

induite par le produit cup avec la classe σ ∈ H2(X,OX).

Theorem 1.3.3 ([108, Théorème 4.2A]). Soit E un fibré vectoriel projective-
ment hyperholomorphe stable en pente sur une variété HK X. Pour chaque i,
l’application ci-dessus

H i(X, End(E))→ H i+2(X, End(E))

est un isomorphisme.

Cela généralise également le travail de Kobayashi [61]. Nous montrons que cela
donne en fait une forme symplectique sur le lieu lisse d’un espace de modules de
fibrés projectivement hyperholomorphes stables. Nous aussi prouverons un résultat
sur la régularité des espaces de modules de faisceaux hyperholomorphes.

Après [111], les fibrés vectoriels hyperholomorphes n’ont pas été vraiment con-
sidérés, notamment en raison du manque d’exemples. En effet, à part le fibré
tangent et ses apparentés, il est extrêmement difficile de construire des exemples.
La théorie plus récente des faisceaux modulaires et atomiques est utile dans cette
direction.

1.4 Faisceaux modulaires et atomiques
Dans une quête pour généraliser aux dimensions supérieures les propriétés des
fibrés stables sur les surfaces elliptiques K3, O’Grady [93] a introduit la notion de
faisceaux modulaires. Un faisceau libre de torsion F sur une variété HK X est
appelé modulaire s’il existe une constante d(F ) ∈ Q telle que∫

X

∆(F ) ∪ ω2n−2 = d(F )(2n− 3)!!q(ω)n−1,

pour tout ω ∈ H2(X,Q). Cette propriété est satisfaite, par exemple, si ∆(F ) reste
de type (2, 2) le long de toutes les déformations de X.

La caractéristique la plus importante de la modularité est sa relation avec la
stabilité en pente. L’un des principaux résultats de [94], est que, pour les faisceaux
modulaires, la stabilité en pente fonctionne de la même manière que pour les
faisceaux sur les surfaces. En d’autres termes, pour chaque choix du vecteur de
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Mukai, le cône ample a une décomposition en murs et chambres avec des propriétés
similaires à celles sur les surfaces K3. De plus, si F est un faisceau sur une variété
HK avec une fibrations lagrangienne

π : X → Pn,

la stabilité en pente par rapport à des polarisations dans l’une de ces chambres est
intimement liée à la stabilité de la restriction Ft à une fibre générale.

O’Grady [93, 94] construit des fibrés vectoriels modulaires stables rigides sur
chaque variété HK de type K3[n], et montre qu’ils sont également uniques. Autrement
dit, l’espace de modules des faisceaux stables localement libres avec certain invari-
ant est un point réduit unique, mais il se pourrait qu’il existe des composantes qui
paramétrisent des faisceaux dont aucun n’est localement libre. Néanmoins, c’est
le seul cas où un résultat partiel d’irréductibilité est connu. Nous rappelons cette
construction et d’autres dans.

Objets atomiques

Motivé par les résultats d’O’Grady, Markman [77] a étudié une notion similaire,
mais plus catégorique. Le point de départ est l’observation que si le discriminant
∆(E) d’un faisceau stable E reste de type (2, 2) sur chaque déformation commu-
tative de X, alors E est modulaire. On peut se demander ce qui se passe lorsque
l’on regarde les déformations non commutatives.

Rappelons qu’une déformation de premier ordre de Db(X) peut être vue comme
un élément du groupe

HT2(X) = H2(X,OX)⊕H1(X,TX)⊕H0(X,
∧2

TX),

pour plus de détails voir. La carte d’obstruction cohomologique pour un objet
E ∈ Db(X) est l’application

χH
E : HT2(X)→ H∗(X,C), η 7→ η⌟v(E)

donnée par contraction avec le vecteur de Mukai de E. Comme son nom l’indique,
si

χH
E (η) = 0,

alors v(E) reste algébrique le long de la déformation induite par η. Il n’y a presque
aucun objet avec χH

E ≡ 0, donc le rang le plus petit possible pour χH
E pour des ob-

jets intéressants est un. Les objets avec une carte d’obstruction cohomologique de
rang un sont appelés atomiques et ont été étudiés indépendamment par Beckmann
dans [15]. Il s’avère qu’ils possèdent plusieurs bonnes propriétés.
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Tout d’abord, comme on pouvait s’y attendre, un faisceau libre de torsion
atomique est modulaire, mais l’implication inverse est loin d’être vraie. Surtout,
un objet atomique E ∈ Db(X) possède un vecteur de Mukai étendu

ṽ(E) ∈ H̃(X,Q),

qui vit dans le réseau de Mukai étendu. Il a été introduit pour la première fois
dans le travail révolutionnaire de Taelman [103] en tant qu’analogue du réseau de
Mukai classique d’une surface K3. Il s’agit de l’espace vectoriel rationnel

H̃(X,Q) := Qα⊕H2(X,Q)⊕Qβ,

équipé de la forme quadratique q̃, obtenue en étendant la forme BBF sur H2(X,Q)
en déclarant que α et β sont orthogonaux à H2(X,Q), isotropes et q̃(α, β) = −1.
On peut également l’équiper d’une structure de Hodge obtenue en déclarant

H̃(X,Q)2,0 = H2,0(X,C)

et en imposant la compatibilité avec q̃.
La caractéristique principale du réseau de Mukai étendu est le fait qu’il est

préservé sous les équivalences dérivées. Précisément, si

Φ : Db(X) ≃ Db(Y )

est une équivalence dérivée, alors il existe une isométrie de Hodge induite

ΦH̃ : H̃(X,Q) ≃ H̃(Y,Q).

Cela est compatible, d’une certaine manière, avec l’isométrie habituelle

ΦH : H∗(X,Q) ≃ H∗(Y,Q)

induite en cohomologie. Cela s’avère extrêmement utile.
En partie parce que le réseau de Mukai étendu a une petite dimension par

rapport à la cohomologie entière H∗(X,Q). Il est donc beaucoup plus facile de
calculer l’action des équivalences dérivées.

Mais surtout parce que le vecteur de Mukai étendu d’un objet atomique E ∈
Db(X) est préservé (à des constantes près) sous ΦH̃ :

ΦH̃(⟨ṽ(E)⟩) = ⟨ṽ(Φ(E))⟩ ⊂ H̃(X,Q).

En particulier, la notion d’atomicité est invariante sous les équivalences dérivées, et
cela est fondamental pour trouver de nouveaux exemples de faisceaux modulaires.

En effet, on peut trouver un objet atomique dans Db(X) pour lequel la condi-
tion d’atomicité est facilement vérifiée (dans notre cas, ce sera le faisceau structural
d’une sous-variété lagrangienne) et ensuite le mapper vers un fibré vectoriel via
une équivalence dérivée.
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1.5 Résultats principaux
L’objectif principal de cette thèse est d’explorer la question suivante, posée par
Markman et O’Grady.

Question : Peut-on réaliser une variété hyper-Kähler (HK) de type OG10 en tant
que lieu des modules de faisceaux sur une variété HK de type K3[2] ?

Dans cette thèse nous parvenons à donner une réponse affirmative à cette ques-
tion. La variété HK quadratique que nous considérons est le système de Beauville-
Mukai

M :=MS(0, H,−1)→ |H|,
où (S,H) est une surface K3 polarisée de degré deux générale. La raison en est
qu’il existe un faisceau de Poincaré

U ∈ Coh(M ×|H| M),

qui induit une autoéquivalence

ΦU : Db(M) ≃ Db(M).

Cette équivalence transforme (les faisceaux structurels des) surfaces lagrangiennes
finies sur P2 en faisceaux localement libres. Notre premier résultat, qui est le
principal résultat de [21], est la construction d’un fibré vectoriel atomique stable,
qui n’est pas rigide et dont l’espace des modules est proche de OG10.

Theorem 1.5.1. Soit M = MS(0, H,−1) le système de Beauville-Mukai men-
tionné ci-dessus. Il existe un fibré vectoriel atomique stable F sur M avec un
vecteur de Mukai

v(F ) = 5

(
1− 3

4
q2 +

9

32
pt

)
.

L’espace Ext1(F, F ) est de dimension dix. Le couplage de Yoneda est antisymétrique
et induit un isomorphisme∧2

Ext1(F, F )
∼−→ Ext2(F, F ).

En particulier, son foncteur de déformations est lisse. De plus, il existe une com-
posante M de l’espace des modules de faisceaux semi-stables avec vecteur de Mukai
v(F ) qui est birationnelle à OG10.

Le faisceau F est obtenu en appliquant l’équivalence ΦU à une surface lagrang-
ienne réductible Z ⊂ M . La surface Z a deux composantes, et c’est pourquoi le
fibré résultant ne sera pas stable. Pour le rendre stable, nous appliquons une autre
autoéquivalence.
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Pour prouver cela, nous démontrons également plusieurs résultats généraux sur
la structure des espaces des modules de faisceaux atomiques. Le plus important
d’entre eux est Theorem 1.5.2, qui est la seule façon que nous avons de traiter les
singularités de ces espaces des modules. Il peut être reformulé comme suit.

Theorem 1.5.2. Soit MX,H(v) un espace des modules de faisceaux projectivement
hyperholomorphes semi-stables. Supposons qu’il paramètre uniquement des fibrés
vectoriels stables. Alors son lieu singulier est soit vide, soit de codimension un.

L’hypothèse de paramétrisation de faisceaux localement libres est importante
dans la démonstration, bien que l’on puisse imaginer qu’avec plus de travail, elle
pourrait être étendue à tous les faisceaux. Pour cette raison, nous ne sommes
pas en mesure de prouver la régularité de toute la composante M. En effet, les
déformations semi-stables du fibré F pourraient très bien être non localement
libres, et à l’heure actuelle, nous ne savons pas comment les comprendre.

Pour contourner cette difficulté, et trouver un espace des modules paramétrant
uniquement des faisceaux localement libres, nous modifions légèrement la construc-
tion. Nous considérons une quadrique Y ⊂ P5, telle que sa variété de Fano des
droites est équipée d’une fibration lagrangienne

F (Y )→ P2,

et nous demandons également que la quadrique Y soit générale parmi celles-ci.
Dans cette situation, nous prouvons qu’il existe un faisceau de Poincaré tordu

U ∈ Coh(F (Y )×P2 M, p∗2(α)),

où α ∈ Br′(M) est une classe de Brauer. Cela a des propriétés similaires au faisceau
de Poincaré non tordu. En particulier, la transformée de Fourier tordue de Mukai

ΦU : Db(F (Y )) ≃ Db(M)

est une équivalence. De plus, il mappe les surfaces lagrangiennes qui sont finies
sur la base en fibrés vectoriels.

Dans ce cas, les surfaces qui nous intéressent sont les surfaces des droites des
sections hyperplanes F (YH) ⊂ F (Y ). Nous aussi montrons qu’elles sont effec-
tivement finies sur P2. Par conséquent, nous produisons, via l’équivalence ΦU ,
un fibré vectoriel tordu sur M . Maintenant que les surfaces sont intégrales, ce
fibré est immédiatement stable. Étonnamment, dans ce cas, nous parvenons égale-
ment à comprendre ses dégénérescences semi-stables, suffisamment pour obtenir
une réponse positive à la question ci-dessus.

Theorem 1.5.3. Il existe une composante connectée M d’un espace des modules
de faisceaux tordus semi-stables sur M , qui est une variété HK projective lisse de
type OG10.
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L’étape géométrique fondamentale pour analyser la dégénérescence semi-stable
est de comprendre le groupe de Picard compactifié de la surface F (YH). En effet,
grâce à l’équivalence ΦU , dégénérer le fibré est équivalent à dégénérer le faisceau
structural de la surface F (YH) ⊂ F (Y ).

Theorem 1.5.4. Pour toute section hyperplane YH ⊂ Y , l’espace des modules
Pic0(F (YH)) paramètre uniquement des faisceaux de Cohen-Macaulay.

La propriété d’être CM est la condition technique qui garantit que l’image sous
ΦU est un fibré vectoriel. Ce théorème repose fortement sur le travail [66]. Ainsi,
la preuve de Theorem 1.5.3 n’est pas entièrement interne à la théorie des modules,
elle nécessite toujours une contribution géométrique.

Pour conclure ce résumé rapide, soulignons que, bien que cela puisse sembler
sans importance, le cadre des faisceaux atomiques et modulaires était central dans
nos arguments. Par exemple, pour prouver la stabilité des faisceaux que nous
considérons, nous nous appuyons fortement sur la notion de polarisation appro-
priée. Cette notion a été introduite par O’Grady [94] dans le contexte des faisceaux
modulaires, et elle permet de prouver la stabilité en analysant la stabilité de la
restriction à une fibre générale. À son tour, pour prouver que nos faisceaux sont
modulaires, la notion d’atomicité entre en jeu. En effet, comme anticipé, pour les
sous-variétés lagrangiennes, l’atomicité est une condition facile à vérifier et elle est
préservée par les équivalences dérivées.



Chapter 2

Moduli spaces of sheaves on K3
Surfaces

2.1 Introduction

Moduli spaces of semistable sheaves on a complex projective K3 surface X are
a well studied class of algebraic varieties, and they are among the only known
examples of compact hyperkähler (or irreducible holomorphic symplectic) vari-
eties. Classically, we consider the moduli space MH(v) of Gieseker-stable co-
herent sheaves with fixed topological invariants, encoded in the Mukai vector
v ∈ H∗

alg(X,Z). Recall that, given a polarization H, a coherent sheaf E is Gieseker
semistable if it is pure and

p(F,m) ≤ p(E,m)

for every proper subsheaf F ⊂ E, where p(E,m) is the reduced Hilbert polynomial.
It is stable if the strict inequality holds. The stability condition gives a GIT
construction of MH(v), which is then projective. If v is primitive, and H is
generic, i.e. it is in the complement of a union of hyperplanes in the ample cone,
then MH(v) is smooth and parameterizes stable sheaves.

In [23] and [22] Bridgeland defined the notion of a stability condition on a
triangulated category, and constructed stability conditions on the bounded derived
category of coherent sheaves Db(X) on a K3 surface X. These stability conditions
form a complex manifold Stab(X), and given a Mukai vector v ∈ H∗

alg(X,Z) there
is a set of real-codimension one submanifolds, such that stability of objects with
class v is constant in each chamber, i.e. in each connected component of the
complement of the walls. If v is primitive, we say that a stability condition σ ∈
Stab(X) is v-generic if it varies in a chamber for v. In this case, every σ-semistable
object is σ-stable. Moreover, there is a chamber, near the “large volume limit",
where Bridgeland stability recovers Gieseker stability. The connected component

33
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of Stab(X) containing this chamber is called the distinguished component and
denoted by Stab†(X).

Moduli stacks of semistable complexes were studied by many people: Toda
[105], Abramovich-Polishchuk [2], and finally a complete treatment can be found
[11, Part II]. If v is primitive, and σ ∈ Stab†(X) is v-generic there exists a coarse
moduli space as an algebraic space, and it parameterizes stable complexes. More-
over, under these assumptions the coarse moduli space is a smooth and proper
algebraic space, by results of Inaba [58, 57] and Lieblich [69]. In contrast to the
classical Gieseker moduli spaces, these have no obvious GIT construction. Projec-
tivity was shown in [9]. The idea is to use a Fourier-Mukai argument to reduce to
the classical case of (twisted) Gieseker stability for which a GIT construction is
available.

The goal of this chapter is to give a new proof of the following result.

Theorem 2.1.1. Let X be a K3 surface. Let H∗
alg(X,Z) be its extended Mukai

lattice, together with the Mukai Hodge structure. Assume that v ∈ H∗
alg(X,Z) is

a primitive vector and let σ ∈ Stab†(X) be a v-generic stability condition on X.
Then:

(1) The moduli space Mσ(v) is non-empty if and only if v2 ≥ −2. Moreover, it
is a smooth projective hyperkähler variety of dimension v2+2, deformation-
equivalent to a Hilbert scheme of points on a K3 surface.

(2) If v2 ≥ 0, then there exists a natural Hodge isometry

θ−1
v : H2(Mσ(v),Z)

∼−−−−→

{
v⊥ if v2 > 0

v⊥/Zv if v2 = 0,

where the orthogonal is taken in H∗(X,Z).

Here θv is the Mukai homomorphism, see Definition 2.3.7 for the precise defi-
nition.

Now we briefly explain the idea of the proof, the complete argument will be in
Section 2.6. We start with a K3 surfaceX, a primitive Mukai vector v ∈ H∗

alg(X,Z)
with v2 ≥ −2 and a generic stability condition σ in the distinguished component
Stab†(X). The basic geometric input is that Theorem 2.1.1 holds for Hilbert
schemes of points on a K3 surface, this is a classical result due to Beauville [12].
So, we want to reduce from our starting moduli space Mσ(v) on X, to the Hilbert
scheme Hilbn(Y ) on another K3 surface Y , in such a way that Theorem 2.1.1
remains true at every step. For this reduction we will use the following tools:

(1) Derived equivalences:
• Shifts E 7→ E[1],
• Tensor product with L ∈ Pic(X),
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• The spherical twist STOX
around the structure sheaf,

• The Fourier-Mukai transform ΦE with kernel the universal family of a
fine, two-dimensional, projective moduli space parameterizing Gieseker-
stable sheaves.

(2) Existence of relative stability conditions on a smooth projective family X →
C of K3 surfaces over a smooth quasi-projective curve, and existence of the
corresponding relative moduli spaces, this is done in [11].

(3) Wall-crossing for moduli spaces of spherical and isotorpic objects on any
K3 surface, and for the Hilbert scheme Hilbn(X) on a K3 surface X with
Pic(X) = Z ·H with H2 = 2k2(n− 1).

In the first five sections we show that the statement of Theorem 2.1.1 is invariant
under operations of the above type, and in Section 2.6 we combine them to conclude
the argument.

The argument goes roughly as follows: we begin with a sequence of autoquiv-
alences of type (1) to modify the Mukai vector v. This is done for the following
reason. We can choose a polarization H on X with H2 = 2d and the new Mukai
vector v′, so that its Hodge locus in the moduli space of polarized K3 surfaces of
degree 2d contains a polarized K3 surface (Y,H ′) with the following properties:

(1) Its Picard group Pic(Y ) is a hyperbolic plane.
(2) There is an algebraic class w ∈ H∗

alg(Y,Z) such that the moduli space M :=
MH′(w) is fine, non-empty, and a K3 surface.

(3) The product of the classes v and w is (v,w) = −1.
Then, we deform to this K3 surface Y , and consider the Fourier-Mukai transform
given by the universal family E of M . The transformed vector is, up to tensoring
with line bundles on M , the Mukai vector of the Hilbert scheme.

If v2 = 0 or−2 we argue as follows. We connect the resulting stability condition
on M to the Gieseker chamber with a path. This path meets finitely many walls,
so we only need to study wall-crossing at each of them. For this, we prove the
following result.

Theorem 2.1.2 (Theorem 2.4.1). Let X be a K3 surface, v be a primitive vector,
with v2 = −2 or v2 = 0. Let W be a wall for the wall and chamber decomposition
for v, and denote by σ± two generic stability conditions, one on each side of the
wall, and σ0 ∈ W a generic stability condition on the wall.

• If v2 = −2, then Mσ+(v) ̸= ∅ implies Mσ−(v) ̸= ∅.
• If v2 = 0, then there exists a spherical, σ0-stable object S such that either
STS :Mσ+(v)→Mσ−(v) or ST±2

S :Mσ+(v)→Mσ−(v) are isomorphism.

By applying the above Theorem finitely many times we complete the proof of
Theorem 2.1.1 in the case where v2 = 0 or −2.

A similar statement holds for v2 > 0 but is much more complicated, and it is the
main result of [8]. In general, wall-crossing induces birational maps Mσ+(v) 99K
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Mσ−(v), which are not necessarily isomorphisms. Moreover, showing that this
birational map is defined in codimension one requires a detailed analysis, and it
relies on existence of stable complexes.

Instead, for the positive square case we use a different argument. We note that
the Picard group Pic(M) of the Fourier-Mukai partner M is again a hyperbolic
plane, hence is has polarizations of any degree. In particular, we can deform to
a K3 surface X ′ with Pic(X ′) = Z ·H ′ with (H ′)2 = 2k2(n − 1). Up to changing
the Fourier-Mukai partner M with an isomorphic one obtained by wall-crossing
via the above theorem, we can assume that the resulting stability condition on X ′

lies in a domain V (X ′) ⊂ Stab†(X ′). This can be characterized as the locus of
stability conditions where all the skyscraper sheaves are stable of phase one, see
Definition 2.2.12 and Lemma 2.2.14. Under these assumptions, Theorem 2.1.1 will
be established in Section 2.5, where we prove the following result.

Theorem 2.1.3 (Corollary 2.5.5). Let X be a K3 surface with Pic(X) = Z · H
with H2 = 2d and d = k2(n − 1) for k > 1 integer. There is only one wall for
v = (1, 0, 1 − n) in V (X), and the shifted derived dual RHom(−,OX)[2] induces
an isomorphism

Mσ+(v)
∼−→Mσ−(v),

where σ+ and σ− are two generic stability conditions in the two chambers. In
particular, Theorem 2.1.1 holds for both of them.

Structure of the chapter

In Section 2.2 we review the theory of Bridgeland stability conditions on K3 sur-
faces. We pay particular attention to those results in [22] which rely on existence
of stable sheaves. The main purpose of this section is to recall the definition of
the distinguished component Stab†(X) of stability conditions. We also recall a
result by Hartmann: the derived equivalences above preserve the distinguished
component Stab†(X).

In Section 2.3 we review some aspects of theory of moduli of stable complexes,
and hyperkähler varities.

In Section 2.4 we study the wall-crossing behavior for Mukai vectors v with
v2 ≤ 0, and prove Theorem 2.4.1.

In Section 2.5 we study wall-crossing for the Hilbert scheme on a K3 surface
with Pic(X) = Z ·H and degree H2 = 2k2(n− 1). In this section we restrict our
attention to stability conditions of the form σαH,βH , with α > 0.

In Section 2.6 we complete the proof of Theorem 2.1.1, by reducing to the case
of the Hilbert scheme.
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2.2 Review: Bridgeland stability conditions
In this section we review the theory of Bridgeland stability on K3 surfaces, as
introduced in [22]. The main objective is to define the distinguished component
Stab†(X) of the space of stability conditions and to show that (some) derived
equivalences preserve this component. All of the results here are well known, due
to Bridgeland and Hartmann, but some proofs in the literature use existence of
slope stable spherical sheaves. Here we give a treatment that avoids that problem
by slightly modifying the standard definitions.

2.2.1 Basic definitions and results

Let X be a K3 surface, denote by Db(X) the bounded derived category of coherent
sheaves on X, and by

H∗
alg(X,Z) := H0(X,Z)⊕ NS(X)⊕H4(X,Z)

the algebraic part of the cohomology. It comes equipped with an integral even
bilinear form of signature (2, ρ(X)), called Mukai pairing and defined by:

(v,v′) = ∆.∆′ − rs′ − r′s,

where we write v = (r,∆, s) and v′ = (r′,∆′, s′). Recall that given an object
E ∈ Db(X), its Mukai vector v(E) ∈ H∗

alg(X,Z) is defined as

v(E) := ch(E).
√
tdX = (ch0(E), ch1(E), ch2(E) + ch0(E)).

Definition 2.2.1. A (full, numerical) stability condition is a pair σ = (Z,A),
where Z : H∗

alg(X,Z) → C is a group homomorphism (called central charge), and
A ⊂ Db(X) is a heart of a bounded t-structure, satisfying the following properties:

(1) For any 0 ̸= E ∈ A, the central charge Z(E) lies in the semi-closed upper
half-plane

H := R>0e
(0,1]iπ

(2) Given an object 0 ̸= E ∈ A we define the slope as νσ(E) := −ℜZ(E)
ℑZ(E)

. A
non-zero object E is said (semi)stable if for every proper subobject F ⊂ E
the following inequality holds:

νσ(F ) < (≤)νσ(E).

Then, every 0 ̸= E ∈ A has a Harder-Narasimhan filtration, i.e. a filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E,

with semistable quotients of decreasing slope.
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(3) Fix a norm ∥∗∥ on H∗
alg(X,Z). Then there is a constant C > 0, such that

for every semistable object E ∈ A, we have

∥E∥ < C|Z(E)|

Given a pair (Z,A) as above, we can extend the notion of stability to the full
derived category Db(X) in the following way. For every φ ∈ (0, 1] define P(φ)
as the full subcategory of semistable objects E ∈ A with Z(E) ∈ R>0e

iφ. Then
extend this definition to every φ ∈ R by the compatibility condition P(φ + n) =
P(φ)[n].

Every non-zero object E ∈ Db(X) has a Harder-Narasimhan filtration, i.e. a
sequence of maps

0 = E0 → E1 → · · · → En−1 → En = E,

with cones Ai that are semistable of decreasing phases. The phases of the first and
last Harder-Narasimhan factors are denoted by φ+

σ (E) and φ−
σ (E). The category

P(φ) is abelian of finite lenght, so every semistable object has a Jordan-Holder
filtration, i.e. a finite filtration with stable cones of the same phase. Two semistable
objects with the same associated graded are called S-equivalent.

It is shown in [23, Proposition 5.3] that the data of (Z, {P(φ)}φ∈R) is equivalent
to the data of the heart A and the central charge Z. The inverse equivalence is
given by forming the category P(0, 1], where P((a, b]) is the full subcategory of
Db(X) with objects

{E ∈ Db(X) | φ−(E), φ+(E) ∈ (a, b]}.

The definition was extended in [11] to include openness of stability in families
and existence of moduli spaces. Precisely we add the conditions:

(4) For every scheme T and for every T -perfect complex E ∈ DT−perf(S×T ) the
set

{t ∈ T | Et ∈ P(φ)}
is open.

(5) for every v ∈ H∗
alg(X,Z) and every φ ∈ R such that Z(v) ∈ R>0e

iπφ the
functor

T →Mσ(v, φ)(T ) := {E ∈ DT−perf(S × T ) | Et ∈ P(φ) and v(Et) = v}

is bounded.
Let Stab(X) be the set of all stability conditions. It has a natural topology

induced by a metric, see [23, Section 6] for the precise form of the metric. This
topology can be characterized as the coarsest topology that makes the functions

σ 7→ Z and σ 7→ φ±
σ (E)

continuous, for every 0 ̸= E ∈ Db(X). The main result in [23] is the following.
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Theorem 2.2.2 (Bridgeland Deformation Theorem). The map

π : Stab(X)→ Hom(H∗
alg(X,Z),C)

σ = (Z,A) 7→ Z

is a local homeomorphism. In particular, every connected component of Stab(X)
is a complex manifold of dimension rk(H∗

alg(X,Z)).

Remark 2.2.3 ([23, Lemma 8.2]). There are two natural actions on the space of
stability conditon: a left action by the group Aut(Db(X)) of exact autoequivalences
of Db(X), and a right action by G̃L

+

2 (R), the universal cover of the group GL+
2 (R).

Given an autoequivalence Φ and a stability condition σ = (Z,P) we set Φ(σ) :=

(Z ◦ Φ−1,P ′), where P ′(t) := Φ(P(t)). The action of G̃L
+

2 (R) is given by lifting
the right action of GL+

2 (R) on Hom(H∗
alg(X,Z),C).

We are interested in knowing how stability varies when we deform σ; this
was first done in [22, Proposition 9.3]. See also [10, Proposition 3.3] and [105,
Proposition 2.8].

Proposition 2.2.4. Fix a class v ∈ H∗
alg(X,Z). There exists a locally finite set of

real codimension one manifold with boundary, called walls, in Stab(X), such that
when σ varies within a chamber (a connected component of the complement of the
set of walls), the set of σ-semistable and σ-stable objects does not change. If v is
primitive and σ varies in a chamber, every semistable object is stable.

Definition 2.2.5. Let v ∈ H∗
alg(X,Z). We say a stability condition σ is v generic

if is not on a wall for v. We say a stability condition is generic on a wall if it lies
on only one wall.

Remark 2.2.6. If an object E is semistable in a chamber, it continues to be
semistable on a wall of that chamber. Indeed, the condition for E to be semistable
is given by the equality φ+

σ (E) = φ−
σ (E), which is a closed condition on the space

of stability conditions.

2.2.2 Construction of stability conditions on K3 surfaces.

We review the construction of stability conditions on K3 surfaces, given in [22].
Let ω ∈ NS(X)⊗ R ample. Recall the definition of the slope of a coherent sheaf
E ∈ Coh(X),

µω(E) :=

{
ω.c1(E)
ω2r(E)

if r(E) > 0,

+∞ otherwise,

where r(E) denotes the rank of E.
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Definition 2.2.7. A coherent sheaf E ∈ Coh(X) is slope (semi)stable if for every
proper subsheaf A ⊂ E we have

µω(A) < (≤)µω(E/A).

For later use we also recall the definition of B-twisted Gieseker stability, for B
a rational divisor. Note that if B = 0 we recover the classical notion of Gieseker
stability.

Definition 2.2.8. Let ω,B ∈ NS(X)Q, with ω ample. We define the B-twisted
Hilbert polynomial of a coherent sheaf E as

P (E,m) :=

∫
X

emω−B.v(E).

A pure d-dimensional coherent sheaf E is B-twisted Gieseker (semi)stable if, for
every proper non trivial subsheaf F ⊂ E we have

P (F,m)

αd(F )
< (≤)P (E,m)

αd(E)
,

for m >> 0, where αd(E) is the degree d coefficient of P (E,m).

Remark 2.2.9. Similarly to Bridgeland stability, both slope stability and Gieseker
stability satisfy the existence of Harder-Narasimhan filtrations. That is every non-
zero coherent sheaf E ∈ Coh(X) has a filtration with slope-semistable (respectively
Gieseker semistable) quotients of decreasing slope (respectively decreasing reduced
Hilbert polynomial).

Now consider the pair σω,B = (Zω,B,Coh
ω,B) where

Zω,B(v) := (v, exp(B + iω)),

and Cohω,B(X) is the tilt of Coh(X) with respect to the torsion pair (T β,Fβ),
defined as follows

T β := {T ∈ Coh(X) | All HN factors Ai of T satisfy µω(Ai) >
ω.B

ω2
};

Fβ := {F ∈ Coh(X) | All HN factors Ai of F satisfy µω(Ai) ≤
ω.B

ω2
},

where the Harder-Narasimhan factors are with respect to slope stability.

Definition 2.2.10. An object E ∈ Db(X) is spherical if

Exti(E,E) =

{
C if i = 0, 2

0 otherwise.
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Theorem 2.2.11 ([22, Lemma 6.2]). The above construction gives a stability con-
dition σω,B on Db(X), provided Zω,B(E) ̸∈ R≤0 for every spherical torsion-free
sheaf E.

Definition 2.2.12. The set of stability conditions σω,B = (Zω,B,Coh
ω,B), with

Zω,B(E) ̸∈ R≤0 for every spherical sheaf E is denoted by V (X). We define the
geometric chamber U(X) as the subset

G̃L2

+
(R).V (X) ⊆ Stab(X)

obtained from V (X) via the action of G̃L2

+
(R). A stability condition is geometric

if it belongs to U(X).

To define the distinguished component we need to show that the sets V (X) and
U(X) are connected. To show this we follow the proof in [22] and introduce several
auxiliary spaces. Using the Mukai pairing form on H∗

alg(X,Z) we can identify the
central charge Z of a stability condition with a vector ΩZ ∈ H∗

alg(X,Z)⊗ C.
Define P(X) ⊂ H∗

alg(X,Z)⊗C as the set of vectors Ω whose real and imaginary
parts span positive definite two-planes in H∗

alg(X,Z) ⊗ R. Define P0(X) as the
subset of P(X) of classes not orthogonal to any spherical class:

P0(X) := {Ω ∈ P(X) | (Ω, δ) ̸= 0 for every δ ∈ ∆(X)}

where ∆(X) := {δ ∈ H∗
alg(X,Z) | δ2 = −2}. Consider the subset of P0(X) given

by the vectors Ω obtained by the construction above:

K(X) := {Ω ∈ P0(X) | Ω = exp(B+ iω) with ω ∈ Amp(X) and B ∈ NS(X)⊗R}

The set P0(X) has two connected components, we call P+
0 (X) the one containing

K(X).

Proposition 2.2.13 ([22, Proposition 8.3]). The set P0(X) ⊂ N (X)⊗C is open,
and the restriction

π : π−1(P0(X))→ P0(X)

is a covering map.

To show that V (X) and U(X) are connected, we need to introduce two more
subsets:

Q(X) := {Ω ∈ P(X) | (Ω,Ω) = 0, (Ω, Ω̄) > 0, r(Ω) = 1}
and

L(X) := {Ω ∈ K(X) | (Ω, δ) ̸∈ R≤0 ∀δ ∈ ∆+(X)},
where ∆+(X) := {δ ∈ ∆(X) | r(δ) > 0}, and r : H∗

alg(X,Z)⊗ C→ H0(X,C) ∼= C
is the first component.



42 CHAPTER 2. MODULI SPACES OF SHEAVES ON K3 SURFACES

Lemma 2.2.14. We have

V (X) = {σ ∈ Stab(X) | Ox is stable of phase 1 ∀x ∈ X, and π(σ) ∈ Q(X)}

and

U(X) = {σ ∈ Stab(X) | Ox is stable ∀x ∈ X, and π(σ) ∈ P+
0 (X)}

Proof. We start by noticing that by [35, Proposition 2.9], we have that if every
skyscraper sheaf is stable, then they are all stable of the same phase. Now, without
the condition π(σ) ∈ P+

0 (X) the lemma from the proof of [22, Proposition 10.3].
In the third step of the proof, Bridgeland shows, using existence of slope stable
sheaves, that if all the skyscraper sheaves are σ-stable, then the central charge is
in P+

0 (X). Since we explicitly ask for the central charge to be in P+
0 (X), we can

skip this step.

Lemma 2.2.15. The restriction π|V (X) : V (X)→ Q(X) has open image and it is
an homeomorphism onto its image.

Proof. Since every stability condition in V (X) is obtained by tilting, the map π
is injective when restricted to V (X). So it is enough to show that it remains
a covering on V (X). Notice that Lemma 2.2.14 and [22, Proposition 9.4] imply
that U(X) ⊂ Stab(X) is an open subset. Since π(U(X)) ⊂ P0(X) by definition
and U(X) is open, the map π restricted to U(X) is a covering onto its image.
Moreover, a stability condition σ ∈ U(X) is determined by its central charge
π(σ) up to even shifts, because the even shifts are the only elements of G̃L+

2 (R)
that fix the central charge. Let A be a small neighborhood of π(σ), since π is
a cover on U(X), the inverse image π−1(A) ∩ U(X) is homeomorphic to A × Z,
where the second factors records the shift. Restricting to Q(X) ∩ A we see that
π−1(A∩Q(X))∩V (X) is contained in one component of π−1(A)∩U(X), so π|V (X)

induces an homeomorphism onto its image.

It is easy to see that the pairing (−, δ)|K(X) : K(X) → C with any class δ is
submersive when restricted to K(X). In particular the preimage of a real half-line
is a locally closed submanifold of real codimension one. These submanifolds are
contained in real hyperplanes of H∗

alg(X,Z)⊗C. Bridgeland shows that the union
of these hyperplanes is locally finite, and it uses this to show the following.

Lemma 2.2.16 ([22, Lemma 11.1]). The set L(X) ⊂ Q(X) is open and con-
tractible.

The proof of the following Proposition is the same as [22, Proposition 11.2]
with an extra step, but we reproduce the entire proof for readability.
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Proposition 2.2.17. The spaces V (X) and U(X) are connected.

Proof. First we claim that
L(X) ⊆ π(V (X)).

Lemma 2.2.15 implies that π(V (X)) is an open subset of Q(X) and π|V (X) :
V (X)→ π(V (X)) is an homemorphism. From Lemma 2.2.16 we get that L(X)∩
π(V (X)) is open in L(X). Since L(X) is connected, we only need to show that
the intersection is closed in L(X).

Let Ω ∈ L(X) ∩ π(V (X)) ⊂ L(X). Since π is an homeomorphism restricted to
V (X), there exists a stability condition σ ∈ V (X) such that π(σ) = Ω. If σ is not
in V (X), Lemma 2.2.14 implies that there is a strictly semistable skyscraper sheaf
Ox; consider its Jordan-Holder factors Ai. From the definition of the category
Cohω,B(X), and the fact that ω is ample, it follows that if ℑZ(Ai) = 0 and
r(Ai) = 0, then v(Ai) is a multiple of v(Ox). This implies that there is a Jordan-
Holder factor A with positive rank. Since A has the same phase as Ox we have
Z(A) ∈ R<0, and we claim that A is spherical. Recall that

ℜZ(A) = 1

2r
((∆2 − 2rs) + r2ω2 − (∆− rB)2),

where v(A) = (r,∆, s). We have ℑZ(A) = (∆ − rB).ω = 0, which implies
(∆ − rB)2 ≤ 0 by the Hodge index Theorem. Hence ∆2 − 2rs < 0, which means
A spherical, because it is stable. We found a spherical class δ := v(A) ∈ ∆+(X)
such that (Ω, δ) < 0, which contradicts the assumption that Ω ∈ L(X).

To finish the proof, it is enough to show that V (X) is connected. Since π is a
homeomorphism restricted to V (X), we need to show that π(V (X)) is connected.
Since L(X) is connected, it is enough to show that L(X) is dense in π(V (X)). If we
assume non-emptiness of moduli stable of slope stable spherical sheaves, we have
equality, as showed in [22, Proposition 11.2]. If we do not have the non-emptiness,
it could happen that for an Ω ∈ π(V (X)) we have (Ω,v(E)) ̸∈ R≤0 for every
spherical torsion-free sheaf E, but (Ω, δ) ∈ R≤0 for some spherical class δ for which
there are no corresponding sheaves. That is, the difference π(V (X)) − L(X) is
contained in a locally finite union of locally closed submanifolds of real codimension
one. Hence L(X) is dense in π(V (X)) and V (X) is connected because L(X) is.

Definition 2.2.18. Define the distinguished component Stab†(X) as the con-
nected component of the preimage π−1(P+

0 (X)) ⊂ Stab(X) containing U(X).

Remark 2.2.19. As mentioned above, our definition differs from Bridgeland’s
original definition in [22]. In ibidem it is defined as the connected component of
Stab(X) containing the geometric chamber U(X), and it is a Theorem that it gets
mapped onto P+

0 (X) via π. The proof requires existence of slope stable sheaves.
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In any case, our definition is sufficient to prove existence of slope stable shaves,
because Stab†(X) contains the Gieseker chamber. So, once we prove Theorem 2.1.1
with our definition, it will also follow Theorem 2.1.1 for the standard definition of
Stab†(X).

2.2.3 Equivalences preserving Stab†(X).

To conclude this section we want to show that there are enough equivalences
between derived categories of K3 surfaces preserving Stab†(X). Every result here
has already been shown by Hartmann in the appendix of [41]. The idea is simple:
since Stab†(X) is connected and contains the geometric chamber U(X) it is enough
to find a point σ ∈ Stab†(X) that goes to the geometric chamber. This is easy to
check thanks to the explicit description of U(X) in Lemma 2.2.14. In our argument,
there is the extra check that the equivalences preserve the domain P+

0 (X), which
(in the generality needed in this paper) is due to Huybrechts and Stellari [49].

We start by recalling some generalities about Fourier-Mukai equivalences be-
tween K3 surfaces. Let H be a polarization on X, let w ∈ H∗

alg(X,Z) be a Mukai
vector, and consider the moduli space M := MH(w) of Gieseker stable sheaves
of class w. Assume that it is a smooth projective surface, and that it is fine, i.e.
it has a universal family E ∈ Coh(X ×M). We can consider the Fourier-Mukai
transform with kernel the universal family:

ΦE : Db(M)→ Db(X)

F 7→ q∗(E ⊗ p∗F ),

where we denoted by p, q the projections from X × M on the first and second
factor, and where every functor is derived.

Proposition 2.2.20 ([89],[46, Proposition 10.25]). If M is a smooth projective
surface, and it is a fine moduli space, then the functor ΦE is an equivalence.

Recall that if X is a K3 surface the structure sheaf OX is a spherical object. In
particular we can consider the spherical twist STOX

around OX defined as follows.

Definition 2.2.21. Let S ∈ Db(X) be a spherical object. The spherical twist
around S, denoted by STS(−) is defined, for every E ∈ Db(X), as the cone of the
evaluation map:

RHom(S,E)⊗ S → E → STS(E)→ RHom(S,E)⊗ S[1].

Proposition 2.2.22 ([101, Proposition 2.10],[46, Proposition 8.6]). The spherical
twist STS around a spherical object S is an equivalence.
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Every Fourier-Mukai equivalence ΦE : Db(X)
∼−→ Db(X ′) between derived cate-

gories of K3 surfaces induces a map in integral cohomology. It is the cohomological
Fourier-Mukai transform with kernel the Mukai vector v(P):

ΦH
E (x) = q∗(v(P).p∗(x)),

where p and q are the projections X ×X ′ on the first and second factor. It is well
known that it is a Hodge isometry, if we equip the integral cohomology with the
following weight two Hodge structure :

H∗(X,C) = H2,0(X)⊕ (H0(X,C)⊕H1,1(X)⊕H4(X,C))⊕H0,2(X).

In particular it induces an isometry ΦH
E : H∗

alg(X,Z)
∼−→ H∗

alg(X
′,Z) between the

algebraic parts. Every derived equivalence Φ : Db(X)
∼−→ Db(X ′) is of Fourier-

Mukai type, and the induced isometry does not depend on the kernel. If the
kernel is not given, we will denote the induced isometry by ΦH .

The equivalences we are interested in are the following:
(1) Tensor product by a line bundle: E 7→ E ⊗ L;
(2) Shift: E 7→ E[1]
(3) The spherical twist STOX

around OX ;
(4) Fourier-Mukai transforms ΦE associated to a fine two dimensional moduli

space of Gieseker stable sheaves.

Proposition 2.2.23 ([49, Remark 5.4 and Proposition 5.5]). The isometries in-
duced by the equivalences of type (1)− (4) preserve the set P+

0 (X).

An equivalence Φ : Db(X)
∼−→ Db(X ′) induces an isomorphism of spaces of

stability conditions

Φ∗ : Stab(X)
∼−→ Stab(X ′)

(Z,P) 7→ (Z ◦ Φ−1,P ′)

where P ′(t) = Φ(P(t)). We say that Φ preserves the distinguished component if

Φ∗(Stab
†(X)) = Stab†(X ′).

Lemma 2.2.24. Let Φ : Db(X)
∼−→ Db(X ′) be a derived equivalence of K3 surfaces

of type (1) − (4). Assume that there exists σ′ = (Z ′,P ′) ∈ Stab†(X ′) such that
the objects Φ(Ox) are σ′-stable and such that ΩZ′ ∈ P+

0 (X
′). Then Φ preserves the

distinguished component.

Proof. It is enough to show that a point of Stab†(X) gets mapped to Stab†(X ′).
Consider (Z,P) = σ := Φ−1

∗ (σ′). By assumption the skyscraper sheaves Ox are
all σ-stable. Proposition 2.2.23 shows that the induced isometry in cohomology
sends P+

0 (X) to P+
0 (X

′). In particular ΩZ = (ΦH)−1(ΩZ′) is in P+
0 (X). Then,

Lemma 2.2.14 implies σ ∈ U(X) ⊂ Stab†(X).
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In order to show that the equivalences we are interested in preserve the distin-
guished component, we need a standard result about the large volume limit. Let
H ∈ NS(X) be an ample class, and B ∈ NSQ(X) a rational class. Consider the
stability condition σαH,B.

Theorem 2.2.25 ([22, Proposition 14.1] and [105, Section 6]). Let v = (r,∆, s)
be a primitive Mukai vector, with either r > 0 or r = 0 and ∆ ̸= 0 effective. Then
there exists an α0 such that, for every α ≥ α0, an object E ∈ Db(X) of class v is
σαH,B-stable if and only if it is a shift of a B-twisted H-Gieseker stable sheaf.

Corollary 2.2.26 ([41, Lemma 7.2, Propositions 7.5 and 7.6]). The equivalences
of type (1)− (4) preserve the distinguished component.

Proof. The equivalences of type (1) and (2) send skyscraper sheaves to (shifts of)
skyscraper sheaves, so by Lemma 2.2.14 and Proposition 2.2.23 they preserve the
geometric chamber U(X) and, a fortiori, the distinguished component.

For the remaining two (3) and (4) we use Lemma 2.2.24: it is enough to find a
stability condition σ ∈ Stab†(X) such that Φ(Ox) are σ-stable, and whose central
charge satisfies ΩZ ∈ P+

0 (X). For the spherical twist, notice that STOX
(Ox) = mx,

the ideal sheaf of the point x. These are Gieseker stable, so by choosing σαH,B

appropriately as in Theorem 2.2.25 we find a σ ∈ V (X) that works. Similarly,
if E is a universal family over a Gieseker moduli space, the objects ΦE(Ox) are
Gieseker stable, and again we conclude by Theorem 2.2.25.

2.3 Review: Moduli spaces of sheaves
In this section we give a short review on hyperkähler varieties, and basic facts
about moduli spaces of stable sheaves and stable complexes.

Definition 2.3.1. A projective hyperkähler variety is a smooth projective complex
variety, which is simply connected and such that H0(X,Ω2

X) is one dimensional
and spanned by a symplectic 2-form.

On the H2(X,Z) there is a natural integral quadratic form qX , called Beauville-
Bogomolov-Fujiki (or BBF) form. It is a deformation invariant, and has signature
(3, b2(X)− 3). It satisfies the Fujiki relation∫

X

αn = (2n− 1)!!cXqX(α)
n, α ∈ H2(X,Z).

The constant cX is called Fujiki constant, and it is deformation invariant.
Fix σ = (Z,P) ∈ Stab(X) a stability condition, a phase φ ∈ R and a Mukai

vector v ∈ H∗
alg(X,Z). Consider the moduli stack Mσ(v, φ) of σ-semistable objects



2.3. REVIEW: MODULI SPACES OF SHEAVES 47

of class v and phase φ. Its objects over S are S-perfect complexes E ∈ Db
S−perf(S×

X), whose restriction over a closed point s ∈ S belongs to P(φ) and has class v.
The following is a collection of result by Toda [105], Inaba [57], and Lieblich [69].

Theorem 2.3.2. Let X be a K3 surface, v ∈ H∗
alg(X,Z) and σ ∈ Stab†(X). Then

Mσ(v, φ) is an Artin stack of finite type over C. Denote by Ms
σ(v, φ) ⊆Mσ(v, φ)

the open substack parametrizing σ-stable objects. If Ms
σ(v, φ) = Mσ(v, φ), then

Mσ(v, φ) is a Gm-gerbe over its coarse moduli space Mσ(v, φ), which is a smooth,
proper, symplectic algebraic space with expected dimension v2 + 2.

In particular the assumptions are satisfied if v is primitive and σ is v-generic.
The phase φ is determined by the rest of the data, up to an even integer. Since
the corresponding moduli spaces are isomorphic via shifts, from now on we drop
the φ from the notation, and denote a moduli space simply by Mσ(v).

The moduli spaces Mσ(v) are not necessarily fine, but if v is primitive and
σ ∈ Stab†(X) is v-generic, they are equipped with a quasi-universal family unique
up to equivalence, by [89, Theorem A.5].

Definition 2.3.3. Let M =Mσ(v, φ) be a coarse moduli space.
(1) A flat family E on M × X is called a quasi-family of objects in Mσ(v) if,

for all closed points m ∈ M , there exists an integer ρ > 0, and an element
E ∈Mσ(v)(C) such that E|t×X

∼= E⊕ρ. If M is connected ρ is independent
of m, and is called the similitude of E .

(2) Two quasi-families are equivalent if there exists vector bundles V and V ′ on
M such that E ′ ⊗ p∗MV ∼= E ⊗ p∗MV ′.

(3) a quasi-family E is called a quasi-universal family if, for every scheme T and
for any quasi-family T on M×X, there exists a unique morphism f :M → T
such that f ∗E and T are equivalent.

Projectivity of the coarse moduli space Mσ(v) was proved in [9]. The problem
is that in general for moduli spaces of stable complexes there is no obvious GIT
construction. Bayer and Macrì constructed a divisor class lσ ∈ NS(Mσ(v))R as
follows:

C 7→ lσ.C := ℑ(−Z(v(ΦE(OC)))

Z(v)
),

where C ∈Mσ(v) is a curve, and E is a quasi-universal family.

Theorem 2.3.4 ([9, Theorem 4.1 and Remark 4.6]). Let v be a primitive Mukai
vector, σ ∈ Stab†(X) a v-generic stability condition. Then the class lσ defined
above is ample.

One of the key steps in the proof is the use of [9, Lemma 7.3] to reduce to to
the classical case of Gieseker stable sheaves. The same reduction argument also
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shows irreducibility of Mσ(v). The following statement summarizes the discussion
above.

Corollary 2.3.5. Let X be a K3 surface, v ∈ H∗
alg(X,Z) a primitive vector with

v2 ≥ −2. Let σ ∈ Stab†(X) be a v-generic stability condition. Then if Mσ(v) is
non-empty, it is a smooth, projective symplectic variety of dimension v2 + 2 and
it consists of stable objects.

Remark 2.3.6. There is a subtlety here. To use the arguments in [9, Lemma 7.3]
we need to know Theorem 2.1.1 for the case of a primitive vector v ∈ H∗

alg(X,Z)
with v2 = 0. We will prove Theorem 2.1.1 for the a Mukai vector with square zero
before the positive square case. Any such moduli space will be automatically pro-
jective, since it is a two-dimensional, smooth and proper algebraic space. Having
this, one can use the projectivity result in [9] for the positive square case.

Definition 2.3.7. Let v ∈ H∗
alg(X,Z) a primitive class with v2 > 0, and let

σ ∈ Stab†(X) be a v-generic stability condition, in particular every σ-semistable
object of Mukai vector v is σ-stable. We define the Mukai homomorphism θv :
v⊥ → H2(Mσ(v),Z) by

θv(x) =
1

ρ
[ΦH

E (x
∨)]1 (2.1)

where E is a quasi-universal family of similitude ρ, [−]1 is the component belonging
to H2(Mσ(v),Z), and (x0, x1, x2)

∨ := (x0,−x1, x2). If v2 = 0, the same formula
gives a well defined map θv : v⊥/Z.v→ H2(Mσ(v),Z)

It can be shown that it does not depend on the quasi-universal family E if we
restrict to v⊥.

Remark 2.3.8. The definition of Mukai homomorphism in [96] and [118] is

1

ρ
[pMσ(v)∗ ch(E)p∗X(

√
tdXx

∨)]1.

This is equivalent to ours. Indeed, recall the definition of the Mukai vector

v(E) = ch(E)p∗Mσ(v)

(√
tdMσ(v)

)
p∗X

(√
tdX

)
.

The degree two component of Todd class tdMσ(v) is 0, because Mσ(v) has trivial
canonical bundle, so its square root does not contribute to the degree two compo-
nent.

Recall that an anti-equivalence is an equivalence from the opposite category
Db(X)op to Db(X ′). Every anti-equivalence is given by a composition of an equiv-
alence and the dualizing functor RHom(−,O′

X).
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Remark 2.3.9. Let Φ : DbS
∼−→ DbS ′ an equivalence. Assume that it maps the

set of σ-stable object of fixed class v bijectively to the set of σ′-stable objects with
class v′. Then, at the level of moduli spaces the map

MS,σ(v)→MS′,σ′(v′), E 7→ Φ(E)

is an isomorphism of algebraic varities. Indeed, for any test scheme T one considers
the equivalence

Φ⊠ idDb(T ) : D(S × T ) ∼−→ D(S ′ × T ).

It is T -linear and it preserves T -perfect complexes. It follows from this that the col-
lection

(
Φ⊠ idDb(T )

)
T

is an isomorphism of stacks MS,σ(v)
∼−→MS′,σ′(v′) inducing

the map above at the level of moduli spaces.

Proposition 2.3.10. Let X,X ′ be two K3 surfaces, v,v′ two Mukai vectors on
X and X ′ respectively. Let σ ∈ Stab†(X) be a v-generic stability condition on X,
and σ′ ∈ Stab†(X ′) a v′-generic stability condition on X ′. Assume that there is an
(anti)-equivalence Φ : Db(X)

∼−→ Db(X ′) that induces an isomorphism MX,σ(v)
∼−→

MX′,σ′(v′). If v2 > 0 we have a commutative diagram

v⊥ v′⊥

H2(MX,σ(v),Z) H2(MX′,σ′(v′),Z)

θv

±ΦH

θv′

where the sign is + if Φ is an equivalence and − if it is an anti-equivalence. The
analogous statement holds if v2 = 0. In particular, if θv is a Hodge isometry then
so it is θv′.

Proof. This follows from the same computations of [118, Propositions 2.4 and
2.5].

We conclude this section with two concrete examples. These will be the main
geometric input in the proof of Theorem 2.1.1: the Hilbert scheme is the base case
to which we want to reduce, and moduli spaces of vector bundles on the fibers of
an elliptic K3 surface will be Fourier-Mukai partners.

Example 2.3.11. Let X be a K3 surface, consider the vector v = (1, 0, 1 − n)
with n ≥ 2. A sheaf with class v has trivial double dual, and the natural map
F → F∨∨ ∼= OX has cokernel of length n. Every such sheaf is torsion free with
rank one, so it is Gieseker stable with respect to any polarization H. The natural
map

MH(v)→ Hilbn(X)
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F 7→ (F ↠ F∨∨/F)

is an isomorphism, where Hilbn(X) is the Hilbert scheme of n points. The Mukai
homomorphism is compatible with such identification, and for Hilbn(X) it is an
isometry [12, Proposition 6.6 and Lemma 9.1].

Example 2.3.12. Let X be an elliptic K3 surface, assume that PicX = ZΣ⊕Zf ,
where f is the class of a fiber, and Σ is the class of a section. The intersection
form with respect to this basis is (

−2 1
1 0

)
,

so the Picard group is a hyperbolic plane. Consider a Mukai vector

w = (0, αf, β), with α > 0, β ̸= 0 and gcd(α, β) = 1.

Let H be a generic polarization, see [99, Definition 2.3]. Since we are assuming
β ̸= 0 and gcd(α, β) = 1 (that is the class w is primitive), every H-semistable
sheaf with is also H-stable, as explained in [99, Remark 2.6]. It follows from the
definition and the Grothendieck-Riemann-Roch Theorem that if E is a slope-stable
bundle of rank α and degree β supported on a smooth fiber C ∈ |f |, then it is
H-stable as a torsion sheaf on X. So the Gieseker moduli space M := MH(w) is
a smooth, projective, symplectic surface.

2.4 Wall-crossing: Semirigid case
The objective of this section is to show that the statement of Theorem 2.1.1 is
preserved under wall-crossing, when the Mukai vector v is spherical (v2 = −2) or
isotropic (v2 = 0). The precise setup is the following. We fix a K3 surface X,
a primitive Mukai vector with v2 = −2 or v2 = 0, and W ⊂ Stab†(X) a wall
for v. We denote the adjacent chambers with C+ and C−, we also denote with
σ± a generic stability condition in C±, and with σ0 = (Z0,P0) a generic stability
condition on the wall. The following is the main result of this section.

Theorem 2.4.1. Let X be a K3 surface, v be a primitive vector, with v2 = −2
or v2 = 0. Let W be a wall for the wall and chamber decomposition for v.

(1) If v2 = −2, then Mσ+(v) ̸= ∅ implies Mσ−(v) ̸= ∅.
(2) If v2 = 0, then there exists a spherical, σ0-stable object S such that either

STS or ST±2
S induce an isomorphism Mσ+

∼−→Mσ−.

This immediately implies the invariance of Theorem 2.1.1 under wall-crossing
for spherical and isotropic classes, see Corollary 2.4.11.
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2.4.1 Lattice associated to the wall

The key tool to study wall-crossing is a rank two lattice HW associated to our
setup. It was introduced in [8, Section 5], for the case of a vector with v2 > 0.
In that case, HW is always hyperbolic, while if v2 ≤ 0 it can also be negative
semi-definite.

Definition 2.4.2. Define the lattice associated to W as

HW := {w ∈ H∗
alg(X,Z) | ℑ

Z0(w)

Z0(v)
= 0},

where Z0 is the central charge of a generic stability condition on the wall W .

Proposition 2.4.3 ([8, Proposition 5.1]). The lattice HW has the following prop-
erties.

(1) It is a rank 2 primitive sublattice of H∗
alg(X,Z).

(2) For every σ+-stable object E of class v, the Mukai vectors of its Harder-
Narasimhan factors with respect to σ− are contained in HW .

(3) If E is σ0-semistable of class v, then its Harder-Narasimhan factors with
respect to σ− have Mukai vectors contained in HW .

(4) If E is σ0-semistable of class v(E) ∈ HW , then its Jordan-Holder factors
have Mukai vector in HW .

Lemma 2.4.4. The lattice HW is not positive definite.

Proof. Acting with G̃L2(R) we can assume σ0 be such that Z0(v) = −1. Write
Z0 = (−,Ω), since σ0 ∈ Stab†(X) we have Ω ∈ P(X), in particular (ℑΩ)2 > 0. By
definition, the lattice HW is contained in the orthogonal complement to ℑΩ. The
Mukai lattice has signature (2, ρ(X)), hence the orthogonal to ℑΩ has signature
(1, ρ(X)). This implies that HW contains classes with negative square, hence the
thesis.

Remark 2.4.5. Notice that if HW were strictly negative definite, there would be
at most two spherical classes up to sign, and no isotropic class. It is easy to see
that in this case every spherical object with class inHW remains stable on the wall.
Since we are interested in studying wall-crossing, we can restrict our attention to
consider only hyperbolic or negative semi-definite case.

We are going to need a couple of technical lemmas, that we recall here.

Lemma 2.4.6 (Mukai’s Lemma, [22, Lemma 5.2]). Let 0→ A→ E → B → 0 be
a short exact sequence inside a heart A ⊂ Db(X). If Hom(A,B) = 0, then

ext1(E,E) ≥ ext1(A,A) + ext1(B,B).
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Lemma 2.4.7. Let W ⊂ Stab(X) be a wall for v, σ0 ∈ W a generic stability
condition, and σ+ a stability condition on one of the adjacent chambers. Consider
a short exact sequence in Aσ+

0→ S → E → T⊕a → 0,

where S and T are σ0-stable of the same phase, and v(E) = v. Assume that
φσ+(S) < φσ+(E) < φσ+(T ), and Hom(T,E) = 0, then E is σ+-stable.

Proof. Assume E is not σ+-stable, and consider a σ+-stable destabilizing subobject
A ↪→ E in Aσ+ . By assumption we have φσ+(A) ≥ φσ+(E) > φσ+(S). If φσ+(A) >
φσ+(T ) we have Hom(A, T ) = 0 by stability. Then, the morphism A ↪→ E factors
via S, but Hom(A, S) = 0 by stability, which implies that A = 0. If φσ+(A) =
φσ+(T ) the map A → T⊕a is non-zero if and only if A = T , because T is also
σ+-stable. The case A = T contradicts the assumption Hom(T,E) = 0. So the
map A→ T⊕a is zero, and we conclude as above that A = 0. So we must have

φσ+(S) < φσ+(A) < φσ+(T ).

This implies that A is σ0-semistable of the same σ0-phase as S and T . Since S
and T are simple objects in the abelian category of σ0-semistable objects of their
phase (i.e. they do not have proper subobjects), we see that A is an extension

0→ S → A→ T⊕b → 0

or A = T⊕b for some 0 < b < a. The first case contradicts φσ+(A) ≥ φσ+(E) and
the second one Hom(T,E) = 0.

2.4.2 Spherical Mukai vector

Here we prove part (1) of Theorem 2.4.1. Fix a Mukai vector v with v2 = −2.
Given a σ+-stable spherical object E with v(E) = v, we want to construct a σ−-
stable spherical object E ′ with the same Mukai vector. The idea is to deform the
stability condition σ+ to a generic stability condition σ0 on the wall W and take
the Jordan-Holder filtration of E. It turns out (Proposition 2.4.8) that E has only
two Jordan-Holder factors, although they can appear multiple times. Call this
two Jordan-Holder factors S and T , and their classes s and t. They are σ0-stable
spherical objects, so they are σ−-stable too, since the condition that an object is
stable is open in Stab(X). To construct the desired object E ′, we will construct
inductively, starting from S and T , a σ−-stable spherical object with class v′ for
every spherical v′ that is a linear combination of s and t with positive coefficients.
Since E has a Jordan-Holder filtration with factors S and T , its class v is of that
form.
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Proposition 2.4.8. Let E ∈ Mσ+(v). Assume that it is not stable on the wall.
Then there are two σ0-stable spherical objects that appear as Jordan-Holder factors
of E, possibly with multiplicity.

Proof. Assume that E gets destabilized. From Lemma 2.4.6 it follows that its
Jordan-Holder factors with respect to σ0 are all spherical. Since v is primitive,
it must have at least two different factors S, T , call their classes s, t. Since S, T
are stable and non isomorphic we have (s, t) = ext1(S, T ) ≥ 0. This in turn
implies that s and t are linearly independent over R. Indeed, if we could write
s = λt, then λ would be positive, because S and T have the same σ0-phase, hence
(s, t) = −2λ < 0. The argument to show that these are the only Jordan-Holder
factors is different in the case when HW is semi-definite and in the case when it is
hyperbolic.

Semi-definite case. From the linear independence it follows that (s, t) = 2.
The spherical classes of σ0-stable objects of the same phase as E lie on two parallel
half-lines, as shown in Figure 2.1(A). Furthermore, the product of two classes is
positive if and only if they lie on different lines. We conclude that, up to shifts, S
and T are the only two σ0-stable spherical objects with classes in HW .

Hyperbolic case. In this case we havem := (s, t) ≥ 3. Then, by the following
argument from [8], we see again that, up to shifts, S and T are the only two σ0-
stable spherical objects. Assume r is the class of another σ0-stable spherical object,
we can write r = xs+ yt. We see that

(s, r) ≥ 0 =⇒ y ≥ 2x

m

(t, r) ≥ 0 =⇒ y ≤ mx

2
(r, r) = −2 =⇒ −2x2 + 2mxy − 2y2 = −2,

which is easily seen to be contradictory.

Remark 2.4.9. Assume that E is σ+-stable, spherical and not stable on the wall.
Proposition 2.4.8 gives two spherical classes s, t. They are a basis for HW,R, and
the class v = v(E) is a linear combination of s and t with positive coefficients.
Writing the quadratic form with respect to the basis {s, t} we get:

− 2x2 + 4xy − 2y2 in the semi-definite case,
− 2x2 + 2mxy − 2y2, with m := (s, t) > 2 in the hyperbolic case.

In both cases there are infinitely many spherical classes in the lattice ⟨s, t⟩ spanned
by s and t. In the hyperbolic case there are no isotropic classes, because

√
m2 − 4

is irrational if m ≥ 3. The spherical classes live on two branches of a hyperbola in
the hyperbolic case, and on two parallel lines in the semi-definite case.
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(a) Semi-definite case (b) Hyperbolic case

Figure 2.1: Spherical classes in ⟨s, t⟩

Assume without loss of generality that φσ+(t) > φσ+(s). Consider the spherical
classes that are linear combination of s and t with positive coefficient, ordered with
respect to σ+ phase. Call ti for i ≥ 1 the classes on the upper branch, and si for
i ≤ 0 the classes on the lower branch, as shown in the Figure 2.1. They can also
be defined inductively by

t1 = t

t2 = ρt(s),

ti+1 = −ρti(ti−1).


s0 = s

s−1 = ρs(t),

s−i−1 = −ρs−i
(s−i+1).

where ρs(v) := v+(s,v)s. This is clear in the semi-definite case, because ti is the
midpoint of the segment ti−1, ti+1, and is also easy to see in the hyperbolic case
by writing down the previous reflections in coordinates with respect to s and t.

With this we are ready to show the first part of Theorem 2.4.1.

Proof of Theorem 2.4.1(1). Let E ∈Mσ+(v), we want to show that there exists a
σ−-stable object with Mukai vector v. Let φ be the phase of E with respect to
σ0; we can assume up to shifts that 0 < φ ≤ 1. Assume E is not stable on the
wall, otherwise we are done. From Proposition 2.4.8 and Remark 2.4.9 we get that
v = ti or v = s−i for some i. Assume v = s−i, the other case is analogous. We
prove existence of σ−-stable objects of class s−i by induction on i. Proposition 2.4.8
implies that there is a σ0-stable object S of class s0 = s, and a σ0-stable object T
of class t1. Define S−

−i inductively as

S−
−i−1 :=

{
STS(T ) if i = 0,

STS−
−i
(S−

−i+1)[−1] if i > 0

By stability of S and T we have a short exact sequence in P(φ)

0→ T → STS(T )→ Ext1(S, T )⊗ S → 0.
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Since S, T are simple in the abelian category P(φ) and φσ−(T ) < φσ−(S), we can
apply Lemma 2.4.7 and conclude that S−

−1 is σ−-stable. Furthermore, if we take
σ− close to the wall, S and T lie in the heart Aσ− = Pσ−(0, 1], and so does S−

−1.
Now, assume by induction that S−

−j is σ−-stable for every j ≤ i, and that it
lies in the heart Aσ− . We want to show that the same holds for S−

−i−1. First we
claim that RHom(S−

−i, S
−
−i+1) is concentrated in degree zero. Indeed S−

−i, S
−
−i+1 are

two σ−-stable objects with φσ−(S
−
−i) < φσ−(S

−
−i+1). Therefore Hom2(S−

−i, S
−
−i+1)

vanishes by stability and Serre duality. From the inductive definition and Serre
duality we get

ext1(S−
−i, S

−
−i+1) = ext1(S−

−i+1, S
−
−i)

= hom(S−
−i+1, STS−

−i+1
(S−

−i+2))

= hom(ST−1

S−
−i+1

(S−
−i+1), S

−
−i+2)

= hom(S−
−i+1[1], S

−
−i+2)

which is zero because it is a negative Ext between two objects of a heart.
This shows that we have the exact triangle

S−
−i−1 → Hom(S−

−i, S
−
−i+1)⊗ S−

−i → S−
−i+1 → S−

−i−1[1] (2.2)

Taking the long exact sequence of cohomology with values in the heart Aσ− =
Pσ−(0, 1], we see that S−i−1 ∈ Pσ−(0, 2]. Now let F be a σ−-stable object with
bigger phase φσ−(F ) > φσ−(S

−
−i−1), we want to show that Hom(F, S−i−1) = 0,

which will prove σ−-semistability of S−i−1.
Applying the functor Hom(F,−) to the triangle 2.2 we get the exact sequence:

Hom(F, S−
−i+1[−1])→ Hom(F, S−

−i−1)→ Hom(S−
−i, S

−
−i+1)⊗ Hom(F, S−

−i). (2.3)

Assume that F ∈ Aσ− [n] with n > 0. By induction hypotesis S−
−i+1 and S−

−i lie in
the heart Aσ− . Therefore, the first and the third terms vanish because they are
negative Ext between objects of a heart, so the middle one does too.

If F ∈ Aσ− is an object of the heart with bigger σ−-phase than S−1
−i−1, then

its class f lies under the line 0, s−i−1 in HW,R, because the ordering of the phases
with respect to σ− is opposite than the one induced by σ+. In particular, outside
of the closed positive cone, so it has negative square f2 < 0. Since F is stable,
it must be spherical, because f2 ≥ −2. So F ∈ {S0, . . . , S

−
−i} as can be seen in

Figure 2.1. If F ∈ {S0, . . . , S
−
−i+1} we conclude by the inductive assumption and

the exact sequence (2.3), so the only case to check is F = S−
−i. We have

Hom(S−
−i, STS−

−i
(S−

−i+1)[−1]) = Hom(S−
−i[2], S

−
−i+1)

which is again zero because it is a negative Ext between objects of a heart. This
shows that S−i−1 is σ−-semistable, since φσ−(T ) < φσ−(S−i−1) < φσ−(S) it also
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lies in Aσ. Now to show that is σ−-stable, consider its Jordan-Holder filtration.
Every factor must be a spherical object of the same phase, by Mukai’s Lemma.
Since the line connecting the origin to v meets the lower branch of the hyperbola
only in v, there is only one σ−-stable spherical object of that phase up to shifts,
so the Jordan-Holder filtration is trivial.

2.4.3 Isotropic Mukai vector

Now we turn our attention on moduli spaces Mσ+(v) with vector v with v2 = 0.
The lattice HW can be negative semi-definite or hyperbolic, and in the latter case
there is only one spherical class up to sign. Indeed, if there were two linearly
independent spherical classes, the argument in Remark 2.4.9 would show that
there could be no isotropic classes. In contrast to the spherical case, where the
proof works the same in both cases, if v is isotropic the signature of the lattice
HW matters. In Proposition 2.4.10 we describe the Jordan-Holder filtration of a
stable object E with v(E) = v with respect to σ0. This result is analogous to
[22, Theorem 12.1], where Bridgeland studies wall-crossing for v = (0, 0, 1) and
W a wall on the boundary of the geometric chamber U(X). In fact, assuming
non-emptiness of moduli spaces with isotropic vector, Proposition 2.4.10 follows
from Bridgeland’s result via a Fourier-Mukai argument, as shown in [8, Lemma
8.1].

Proposition 2.4.10. Keeping notation as above we have:
(1) If HW is semi-definite then there is a smooth rational C curve inside Mσ+(v)

that becomes σ−-unstable, and the Jordan-Holder filtration for E ∈ C with
respect to σ0 is of the form

0→ S → E → T → 0,

where S and T are two σ0-stable spherical objects.
(2) If HW is hyperbolic the wall W is totally semistable, i.e. every object E ∈

Mσ+(v) becomes σ0-semistable. The Jordan-Holder filtration of an object
E ∈Mσ+(v) is

0→ S⊕a → E → F → 0 or 0→ F → E → S⊕a → 0,

where S is a σ0-stable spherical object, and F is a σ0-stable isotropic object.
Moreover, in both cases the Jordan-Holder filtration with respect to σ0 coincides
with the Harder-Narasimhan filtration with respect to σ−.

Proof. We begin by proving part (1). Since HW is a negative semi-definite lattice
of rank two, the isotropic classes in HW,R form a one dimensional subspace, which
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is the radical of the Mukai pairing. Therefore there is at most one, up to a sign,
primitive isotropic class in HW . Assume that E ∈Mσ+(v) becomes semistable on
W . From Lemma 2.4.6 it follows that its Jordan-Holder factors are spherical or
isotropic, with at most one being isotropic.

Since there is just one primitive isotropic class, this means that all the Jordan-
Holder factors are spherical, in particular there are two distinct σ0-stable spherical
objects S, T . The only isotropic class is s + t, hence the Jordan-Holder filtration
is

0→ S → E → T → 0,

where we assume φσ+(S) < φσ+(T ).We have ext1(S, T ) = (s, t) = 2, and every non
trivial extension gives a σ+-stable object by Lemma 2.4.7. So there is a rational
curve P(Ext1(S, T )) ⊂ Mσ+(v) of objects that become semistable on the wall.
Notice also that the Jordan-Holder filtration with respect to σ0 coincides with the
Harder-Narasimhan filtration with respect to σ−, because S, T are σ−-stable with
φσ−(S) > φσ−(T ).

Now we prove part (2). First we show the second part of the statement, so let
E be σ0-semistable. Lemma 2.4.6 implies that the only objects that can appear as
Jordan-Holder factors are spherical or isotropic, with at most one being isotropic.
Furthermore, from the discussion in Remark 2.4.9, we see that if HW contains an
isotropic class, then it contains at most one spherical class up to a sign. Therefore
there is a unique σ0-stable spherical object of the same phase as E. Hence all
the Jordan-Holder spherical factors are of the form S⊕a. This implies that the
Jordan-Holder filtration is of the form

0→ S⊕a → E → F → 0 or 0→ F → E → S⊕a → 0,

with F isotropic and σ0-stable. Which one it is depends on the ordering of the
phases: it is the first one if φσ+(S) < φσ+(E) and the second one if φσ+(E) >
φσ+(S). We can assume to be in the first case, the proof of the other is analogous.

As in the previous case, since S and F are σ0-stable, they are also σ−-stable,
so the Harder-Narasimhan filtration coincides with the Jordan-Holder filtration on
the wall.

To show that the wall is totally semistable we argue as follows. The Jordan-
Holder filtration implies that we can write v = s + w where w := v(F ). We
have

v2 = 0 = −2a2 + 2a(s,w),

hence a = (s,w). The spaces Hom(S, F ) and Hom(F, S) vanish for σ0-stability,
hence a = ext1(S, F ). Applying Hom(S,−) to the Jordan-Holder filtration we see
that hom(S,E) = a and we get the exact sequence:

0→ Ext1(S,E)→ Ext1(S, F )→ Ext2(S, S)⊕a → Ext2(S,E). (2.4)
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By Serre Duality and σ+-stability the last space is 0, which implies that

Ext1(S, F ) ∼= Ext2(S, S)⊕a

because they have the same dimension. Thus Ext1(S,E) = 0, and RHom(S,E) =
Hom(S,E). This implies (s,v) = − hom(S,E) = −a < 0. In particular, for every
object E ′ ∈ Mσ+(v) there are non zero morphisms Hom(S,E ′) ̸= 0. Hence, every
E ′ ∈Mσ+(v) is σ0-semistable.

We can finish the proof of Theorem 2.1.1 of this section.

Proof of Theorem 2.4.1(2). We separate the proof in two cases, depending on the
signature of HW . If HW is negative semi-definite, we want to show that the
spherical twist STS induces an isomorphism Mσ+(v)

∼−→ Mσ−(v), where S is the
spherical object of Proposition 2.4.10. If HW is hyperbolic, we want to show that
ST±2

S induces an isomorphism Mσ+(v)
∼−→Mσ−(v), where S is the spherical object

of Proposition 2.4.10 and the sign depends on the ordering of the phases φσ+(S)
and φσ+(E).

Semi-definite case. Consider the destabilizing spherical object S of Propo-
sition 2.4.10. We claim that

(1) If E ∈Mσ+(v) remains stable on the wall, then STS(E) = E,
(2) If E ∈Mσ+(v) becomes semistable on the wall, then STS(E) is σ−-stable.

To show (1) observe that if E remain stable on the wall, then σ0-stability gives
Hom(E, S) = Hom(S,E) = 0. Since (s,v) = 0, we also get RHom(S,E) = 0. It
follows from the definition of spherical twist that then STS(E) = E.

To show (2), consider the Jordan-Holder filtration

0→ S → E → T → 0.

Applying Hom(S,−) to the Jordan-Holder filtration we see that Hom(S,E) ∼=
Hom(S, S) is one dimensional. By σ+-stability we get Hom(E, S) = 0, and from
(s,v) = 0 we see ext1(S,E) = 1. The definition of spherical twist gives a distin-
guished triangle:

S ⊕ S[−1]→ E → STS(E)→ S[1]⊕ S

Taking the long exact sequence with respect to the heart Aσ0 we get the two short
exact sequences:

0→ S → E → R→ 0

0→ R→ STS(E)→ S → 0

The first one shows R = T and it is the Jordan-Holder filtration. The second
one then becomes T → STS(E) → S which shows that STS(E) is σ−-stable
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using Lemma 2.4.7. Starting from F ∈ Mσ−(v), the filtration is reversed, and
the analogous argument shows that ST−1

S (F ) is σ+-stable. In conclusion, passing
to moduli spaces as in Remark 2.3.9, we see that STS induces an isomorphism
Mσ+(v)

∼−→Mσ−(v).
Hyperbolic case. Let E ∈ Mσ+(v) and assume φσ+(S) < φσ+(E), the other

case being proved similarly. Proposition 2.4.10 gives the Jordan-Holder filtration
with respect to σ0:

0→ S⊕a → E → F → 0.

Applying Hom(S,−) to it we get the exact sequence (2.4). In the same way as
before we deduce that RHom(S,E) = Hom(S,E) ∼= Hom(S, S)⊕a. By choosing a
basis for Hom(S,E) one sees that there is a commutative diagram

Hom(S,E)⊗ S E

S⊕a E

∼=

ev

In particular, this gives an isomorphism STS(E) ∼= F .
Now, we have the two distinguished triangles

Hom(S,E)⊗ S → E → STS(E)→ Hom(S,E)⊗ S[1]
STS(E)→ ST2

S(E)→ Hom(S,E)⊗ S → STS(E)[1],

where the first one is obtained by definition, and the second one applying the
equivalence STS to the first. Since STS(E) ∼= F , we conclude that ST2

S(E) is σ−-
stable by Lemma 2.4.7. An analogous argument shows that ST−2

S sends σ−-stable
objects with vector v to σ+-stable objects with vectors v. Passing to moduli spaces
as in Remark 2.3.9 we see that ST2

S induces an isomorphism Mσ+

∼−→Mσ− .

Corollary 2.4.11. Let X be a K3 surface, v ∈ H∗
alg(X,Z) primitive with v2 = −2

or v2 = 0. Let W ⊂ Stab†(X) be a wall, σ0 ∈ W a generic stability condition
on the wall, and σ± generic stability conditions on the adjacent chambers. Then
Theorem 2.1.1 holds for Mσ+(v) if and only if it holds for Mσ−(v).

Proof. If v2 = −2 we have to show that if Mσ+(v) is a single point, the same
is true for Mσ−(v). Point (1) of Theorem 2.4.1 gives Mσ−(v) ̸= ∅, so we only
have to show uniqueness of stable spherical objects with class v. Assume that
there are two non isomorphic spherical stable objects E,E ′ with the same vector
v. Up to shift we can assume they are both in the heart of σ−. By stability,
we have Hom(E,E ′) = Hom2(E,E ′) = 0. Since they are in the heart, we have
0 ≤ hom1(E,E ′) = v2 = −2, which is a contradiction.
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If v2 = 0 and primitive, we want to show that if Mσ+(v) is a K3 surface, and

θv : v⊥/Zv→ H2(Mσ+(v),Z)

is a Hodge isometry, the same is true for Mσ−(v). This follows from part (2) of
Theorem 2.4.1 combined with Proposition 2.3.10.

2.5 Wall-crossing for the Hilbert Scheme

In this section we study wall-crossing for the Hilbert scheme of n points on a K3
surface of Picard rank one when the degree is high with respect to the number of
points. Of course, this setting is less general than the previous one; nevertheless
thanks to the argument in Section 2.6 we will be able to reduce to this case.
Throughout this section we assume X is a K3 surface with Pic(X) = Z ·H with
H2 = 2d and d = k2(n−1), where k ∈ Z, k > 1, the Mukai vector is v = (1, 0, 1−n),
and the stability condition is σα,β ∈ V (X). The notation σα,β denotes the stability
condition σαH,βH ∈ V (X), see Section 2.2.2 for the definition. In particular, the
heart is CohαH,βH(X) and the central charge is

Zα,β(u) := (u, exp(βH + iαH)) = dr(α2 − β2) + 2dcβ − s+ 2id(c− rβ)α,

where u = (r, cH, s). One can check that the heart does not depend on α; in
this section we will denote it just by Cohβ(X). It is a stability condition for
(β, α) ∈ R× R>0, provided that ℑZ(E) ̸= 0 for every spherical torsion-free sheaf
E. Hence, the domain V (X) is identified with the upper half plane R×R>0 with
some isolated points removed. The following is the main result of this section.

Theorem 2.5.1. Let X be a K3 surface with Pic(X) = Z ·H with H2 = 2d and
d = k2(n−1) for k > 1 integer. Then Mσα,β

(v) = Hilbn(X) for every σα,β ∈ V (X)
with β < 0, and v = (1, 0, 1− n).

For convenience in this section we work with the slope να,β, instead of the phase
φα,β. It is defined for objects E ∈ Cohβ(X) as

να,β(E) :=

{
−ℜZα,β(u)

ℑZα,β(u)
= dr(β2−α2)−2dcβ+s

2d(c−rβ)α
if ℑZα,β(u) ̸= 0

+∞ if ℑZα,β(u) = 0
,

where u = v(E) = (r, cH, s). It is related to the phase via the formula

φα,β(E) =
1

π
cot−1(να,β(E)),
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so it gives the same notion of stability on Cohβ(X). If W is a wall for v, and u
is the class of a destabilizing object, we can recover the equation of the wall by
να,β(u) = να,β(v). Writing u = (r, cH, s) and expanding this equation we get

cd(α2 + β2)− β(r(n− 1) + s) + c(n− 1) = 0.

The following is a well know fact, see [75, Proposition 3.7].

Theorem 2.5.2 (Bertram Nested Wall Theorem). Let v = (r, cH, s) ∈ H∗
alg(X,Z),

with v2 > 0. The walls in V (X) are either semicircles with center in the β-axis
or lines parallel to the α-axis. If r ̸= 0 there is a unique vertical wall at β = µ(v),
and there are two sets of nested semicircular walls, one on each side of the vertical
wall.

We are interested in the walls for the vector v = (1, 0, 1 − n) of the Hilbert
scheme. In this case the above Theorem tells us that there is a vertical wall on the
line β = 0; this wall corresponds to the Hilbert-Chow contraction. The moduli
space Mα,β(v) with α >> 0 and β < 0 is the Hilbert scheme of points Hilbn(X),
thanks to Theorem 2.2.25. It parameterizes ideal sheaves of subschemes Y ⊂ X
of dimension 0 and lenght n. On the vertical wall two ideal sheaves become S-
equivalent if and only if the corresponding subschemes have the same support.

Recall that to a wall W we associate the rank two lattice HW given by all the
classes u with Z(u) on the same line of Z(v), see Definition 2.4.2. Lemma 2.4.4
implies that HW is hyperbolic, since it contains the class v, which has positive
square by assumption.

The idea of the proof of Theorem 2.5.1 is simple. First, we show that the
vertical line β = − 1

k
does not meet any semicircular wall. This is because the

imaginary part ℑZt,− 1
k
(E) takes non-negative integer values (up to a constant)

when E varies in Cohβ(X), and ℑZt,− 1
k
(v) is the minimal positive value. This is

completely analogous to the fact that rank one torsion free sheaves are Gieseker
stable with respect to any polarization.

Then we show that, in fact, the line β = − 1
k

should meet every semicircular
wall in the left quadrant. This implies that there are no semicircular walls in the
left quadrant.

Lemma 2.5.3 ([9, Examples 9.7 and 10.5]). The stability condition σt,− 1
k

exists
for every t > 0, and the moduli space Mσ

t,− 1
k

(1, 0, 1 − n) is equal to the Hilbert
scheme Hilbn(X)

Proof. We have

ℑZt,− 1
k
(r, cH, s) = 2dt

ck + r

k
∈ 2td

k
Z, (2.5)
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for any vector (r, cH, s). First we show that the stability condition σt,− 1
k

is defined
for every t > 0. This means that there is no spherical class u = (r, cH, s) such
that ℑZt,− 1

k
(u) = 0. If there were one, it would satisfy{

r = −ck
2dc2 = 2rs− 2

Substituting d = k2(n− 1) gives a contradiction with k > 1.
Now assume that an object E of class (1, 0, 1− n) becomes strictly semistable

for some stability condition σt,− 1
k
. We have a destabilizing short exact sequence in

Cohβ(X)
0→ F → E → G→ 0,

with νt,− 1
k
(F ) = νt,− 1

k
(E) = νt,− 1

k
(G) < +∞. By definition of Bridgeland stability

condition, we have

0 ≤ ℑZt,− 1
k
(F ) ≤ ℑZt,− 1

k
(E) =

2dt

k
,

and similarly for G. The equality (2.5) implies that ℑZt,− 1
k
(F ) = 0 or ℑZt,− 1

k
(G) =

0. In both cases this contradicts the finiteness of the slopes.

Lemma 2.5.4. The vertical line β = − 1
k

meets every semicircular wall in the left
quadrant β < 0.

Proof. Consider a destabilizing exact sequence on the wall W :

0→ F → E → G→ 0.

The equation of the wall is να,β(F ) = να,β(E). Call u = v(F ) and v = (1, 0, 1−n).
To simplify the computations we change u in the lattice HW with a vector of rank
zero, such that the equation of the wall is still given by να,β(v) = να,β(u). To do
this is sufficient to take u as the Mukai vector of a semistable object in the heart
Cohβ(X) of the same slope as E, with respect to every stability condition on the
wall W . We do it as follows.

• If r = 0, we do not change u.
• If r > 0 take u := v(E⊕r−1 ⊕G).
• If r < 0 take u := v(E⊕−r ⊕ F ).

Write u = (0, cH, s), the equation of the wall and the β coordinate of the center
become: {

cd(α2 + β2)− βs+ c(n− 1) = 0,

β0 =
s

2cd
.

(2.6)
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Since u is the class of an object in the heart Cohβ(X), it satisfies

ℑZα,β(u) = 2dcα ≥ 0.

Since α > 0 this gives c ≥ 0. If c = 0 we would get the Hilbert-Chow wall, so we
have c > 0. The center of any semicircular wall is on the negative β-axis, hence
β0 < 0. The above equation gives s < 0.

The classes u and v are linearly independent over R, and the lattice HW is
hyperbolic, therefore we have

det

(
v2 (v,u)

(u,v) u2

)
< 0,

where 
v2 = 2(n− 1),

u2 = 2dc2,

(u,v) = −s.
This implies

4d(n− 1)c2 − s2 < 0.

Substituting d = k2(n− 1), and taking square roots we get:

s < −2k(n− 1)c or s > 2k(n− 1)c.

The second inequality contradicts s < 0 and c > 0, so we must have

s < −2k(n− 1)c (2.7)

The condition for the wall to meet the vertical line β = − 1
k

is for the equation

cd(α2 +
1

k2
) +

s

k
+ c(n− 1) = 0,

to have a solution for α > 0. Substituting d = k2(n− 1) and rearranging we get:

ck2(n− 1)α2 = − s
k
− 2(n− 1)c.

Since c > 0 a solution exists if and only if s
k
+ 2(n− 1)c < 0, which is (2.7).

Corollary 2.5.5. Let X be a K3 surface with Pic(X) = Z ·H with H2 = 2d and
d = k2(n − 1) for k > 1 integer. The vertical wall β = 0 is the only wall for
v = (1, 0, 1 − n) in V (X), and the shifted derived dual RHom(−,OX)[2] induces
an isomorphism

Mσα,β
(v)

∼−→Mσα,−β
(v),

for β ̸= 0. In particular, Theorem 2.1.1 holds for both of them.
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Proof. The functor RHom(−,OX)[2] induces the desired isomorphism by [8, Propo-
sition 2.11]. Combined with Theorem 2.5.1 this implies that β = 0 is the only
wall in V (X). The moduli space Mσα,β

(v) for β < 0 is the Hilbert scheme,
so Theorem 2.1.1 holds for it (Example 2.3.11) and RHom(−,OX)[2] is an anti-
autoequivalence, so it preserves the Mukai homomorphism by Proposition 2.3.10.

2.6 Reduction to the Hilbert scheme

In this section we conclude the proof of Theorem 2.1.1. We fix a K3 surface X,
a primitive Mukai vector v ∈ H∗

alg(X,Z), with v2 ≥ −2, and a v-generic stability
condition σ ∈ Stab†(X). Recall the statement of Theorem 2.1.1

Theorem 2.6.1. Let X be a K3 surface, v ∈ H∗
alg(X,Z) primitive, and σ ∈

Stab†(X) a v-generic stability condition. Then:
(1) Mσ(v) is non-empty if and only if v2 ≥ −2. Moreover, it is a smooth

projective hyperkähler variety of dimension v2+2, deformation-equivalent to
the Hilbert scheme of points on a K3 surface.

(2) If v2 ≥ 0, then the Mukai Homomorphism θv gives a Hodge isometry

θ−1
v : H2(Mσ(v),Z)

∼−−−−→

{
v⊥ if v2 > 0

v⊥/Zv if v2 = 0,

where the orthogonal is taken in H∗(X,Z).

The proof is in several steps. First, we apply a sequence of autoequivalences to
get a Mukai vector of the form v = (r,∆, s) with r > 0 and ∆ ample. Since ∆ is
ample, the Hodge locus of v contains an ellitpic K3 surface X ′ with a section. We
deform to X ′, where we can find a vector of the form w = (0, αf, β), where f is the
class of an elliptic fiber, such that (w,v) = −1. The moduli space M = MH(w)
is non-empty: a generic point is just a vector bundle supported on a smooth fiber.
Moreover, it is a fine moduli space, and the Fourier-Mukai ΦE with the universal
family as kernel is an equivalence Db(X ′)

∼−→ Db(M). Via this equivalence v gets
mapped to (1, 0, 1 − n), up to tensoring with line bundles. Now assume n ≤ 1
or equivalently v2 = −2 or v2 = 0. The moduli space of Gieseker stable shaves
with vector (1, 0, 0) is a point, and with vector (1, 0, 1) is the K3 surface itself. To
conclude the proof of Theorem 2.1.1 in this case we apply the wall-crossing results
of Section 2.4.

If v2 > 0, we take a different K3 surface as a Fourier-Mukai partner: M =
Mσ(w), where w is the same vector as before, but the stability condition is the
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same one we are studying. We are allowed to do this, because we proved Theo-
rem 2.1.1 for isotropic vectors first. As before, via the Fourier-Mukai transform
ΦE the vector v goes to (1, 0, 1− n), but σ goes to the geometric chamber U(X).
Moreover, we show that Pic(M) is a hyperbolic plane, so we can deform to a K3
surface Y of the type studied in Section 2.5. Being in the geometric chamber is
an open condition, so the deformed stability condition remains in the geometric
chamber for Y . If we act with G̃L2(R) we end up in the setting of Section 2.5,
where the moduli space is just the Hilbert scheme Hilbn(Y ) up to a shifted derived
dual.

In the argument, we apply Proposition 2.3.10 to equivalences of type (1)− (4)
of Section 2.2.3, which preserve the distinguished component (Corollary 2.2.26).
It is useful to recall their action in cohomology:

(1) Tensor product with L ∈ Pic(X) acts via multiplication with exp(c1(L))(
r,∆, s

)(
1, c1(L),

c1(L)
2

2

)
=

(
r,∆+ rc1(L), r

c1(L)
2

2
+ ∆.c1(L) + s

)
.

(2) The shift [1] acts as − id.
(3) The spherical twists acts like the reflection around (1, 0, 1)

ρ(1,0,1)((r,∆, s)) = (−s,∆,−r).

(4) The Fourier-Mukai ΦE acts like the cohomological Fourier-Mukai, with kernel
the Mukai vector v(E).

For the deformation arguments we use the notion of a relative stability con-
dition σ over a base C. It was introduced in [11], and it consists, given a family
X → C, of a collection σ = (σc)c∈C of stability conditions on the fibers Xc sat-
isfying some technical conditions. There is also a well-behaved notion of relative
moduli space. We use the following result, which can be proved by following the
arguments given in [11, Corollary 32.1] for cubic fourfolds, but the main existence
result is [11, Theorem 24.1].

Theorem 2.6.2. Let (X,H) be a polarized K3 surface of degree 2d, v a primitive
vector, and σ ∈ Stab†(X) a v-generic stability condition. Let (X ′, H ′) be another
polarized K3 surface of the same degree, in the Hodge locus where v stays algebraic
inside the moduli space of polarized K3 surfaces of degree 2d. Then, there exists
a smooth family X → C over a smooth connected quasi-projective curve, and a
relative stability condition σ on Db(X ) such that:

(1) The class v stays algebraic for all c ∈ C.
(2) The stability condition σc is in Stab†(Xc) and v generic for all c ∈ C.
(3) Xc0 = X, Xc1 = X ′ and σc0 is a small deformation of σ such that MX,σ(v) =

MX,σc0
(v).
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(4) The relative moduli space Mσ(v) exists as a smooth and proper algebraic
space over C.

The first step in the reduction to the Hilbert scheme is to apply a sequence of
autoequivalences to change the Mukai vector v.

Lemma 2.6.3. Let X be a K3 surface, v = (r,∆, s) primitive, and let σ ∈
Stab†(X) be v-generic. Then, there exist a primitive v′ = (r′,∆′, s′) with r′ > 0
and ∆′ ample, a v′-generic stability condition σ′ ∈ Stab†(X ′), and an isomorphism
Mσ(v) ∼= Mσ′(v′).

Proof. First we reduce to r > 0. If r < 0 then a shift suffices. If r = 0 and ∆ = 0,
then v = (0, 0,±1) so after applying either STOX

[1] or STOX
we get (1, 0, 0). If

∆ ̸= 0, then, up to a shift, we can assume it to be effective. If H is an ample line
bundle, tensor product with nH sends v to (0,∆, s + nH.∆). By taking n >> 0
we can assume s > 0. Applying the shifted spherical twist STOX

[1] we get r > 0.
If r > 0, to get a ∆ ample we can tensor with powers of an ample line bun-

dle. Indeed, ∆ goes to ∆ + rnH, which is ample if n >> 0. The distinguished
component is preserved due to Corollary 2.2.26.

The next step is a deformation to an elliptic K3 surface. Consider (X,v, σ) as
in the conclusion of the lemma above, i.e. v = (r,∆, s) with r > 0 and ∆ ample.
We write ∆ = mH with m ∈ Z>0 and H a primitive polarization on X of degree
H2 =: 2d

Lemma 2.6.4. Let (X,v, σ) be as in the conclusion on the lemma above. Then,
there exists an elliptic K3 surface X ′ such that v remains a Hodge class on X ′,
with Pic(X ′) = ZΣ⊕ Zf , where f is the class of the elliptic fiber and Σ the class
of a section, and a stability condition σ′ on X ′ such that MX,σ(v) is deformation
equivalent to MX′,v′(v).

Proof. We only need to check the hypothesis of Theorem 2.6.2. First assume d > 1.
By the surjectivity of the period map, there exists a K3 surface X ′ with Picard
group as in the statement. Equipping it with the polarization Σ + (d + 1)f , it
defines a point in the moduli space of polarized K3 surfaces of degree 2d. Since
∆ is a multiple of a polarization H it remains algebraic on X ′, so we are in the
hypotesis of Theorem 2.6.2. The relative moduli space of point (4) gives us the
desired deformation.

If d = 1, the class Σ + (d + 1)f is not ample. In this case, we can apply
Theorem 2.6.2 to first deform to a K3 surface X ′′ with ρ(X ′′) > 1. Indeed, such
K3 surfaces are dense in the locus where v remains a Hodge class. On X ′′ we can
tensor by an ample line bundle and obtain a Mukai vector v′′ = (r′′,∆′′, s′′) with
∆′′ = mH ′′ and (H ′′)2 >> 0. So we reduced to the case d > 1, and the argument
above concludes the proof of the Lemma.
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Remark 2.6.5. Since the previous deformation is given by a relative moduli space,
the quasi-universal family deforms, and so does the Mukai homomorphism. In
particular, the function

θv : v⊥ ∩H∗(Xc,Z)→ H2(MXc,σc(v),Z)

is a locally constant on C. Since C is connected, and the Beaville-Bogomolov form
is deformation invariant, θv is a Hodge isometry on X ′ if and only if it is on X.

Now we prove Theorem 2.1.1 for spherical and isotropic classes v.

Theorem 2.6.6. Let X be a K3 surface, v primitive and σ ∈ Stab†(X) a v-
generic stability condition. If v2 = −2, the moduli space Mσ(v) is a reduced point.
If v2 = 0, then the moduli space Mσ(v) is a projective K3 surface, and the map
θv : v⊥/Zv→ H2(Mσ(v),Z) is a Hodge isometry.

Proof. As a preliminary remark, notice that if v2 = 0, then Mσ(v) is a two-
dimensional smooth and proper algebraic space, hence projective, and moreover it
is symplectic, see Corollary 2.3.5 and Remark 2.3.6. So, to prove the Theorem it
is enough to show that Mσ(v) is deformation equivalent to a point if v2 = −2 or
to a K3 surface if v2 = 0.

From Lemmas 2.6.3 and 2.6.4 we can assume that X is an elliptic K3 surface,
with Pic(X) = ZΣ ⊕ Zf , where f is the class of a fiber and s is the class of a
section. Moreover, from Lemma 2.6.7 and an application of the shifted spherical
twist STOX

[1] we can assume that the Mukai vector v = (r,∆, s) has rank positive
rank r > 0 and coprime with ∆.f .

Consider a vector w = (0, αf, β); we have (w,v) = α∆.f − βr. Since r and
∆.f are coprime, we can find α and β such that (v,w) = −1. Since r > 0 we can
assume also that α > 0 and β ̸= 0. LetH be a polarization such thatM :=MH(w)
is non-empty and parameterizes stable sheaves, as in Example 2.3.12. The moduli
space M is fine because (−v,w) = 1, see [48, Remark 4.6.8].

Consider the Fourier-Mukai transform

ΦE : Db(M)
∼−→ Db(X)

given by the universal family; it is an equivalence by Proposition 2.2.20. Since M is
a projective symplectic surface, derived equivalent to a K3 surface, it is a K3 surface
itself. At the level of cohomology ΦH

E is an isometry, and (ΦH
E )

−1(w) = (0, 0, 1).
Define σ′ := Φ−1

E,∗(σ) and v′ := (ΦH
E )

−1(v). Then

r(v′) = −(v′, (0, 0, 1)) = −(v,w) = 1

Up to twisting for a line bundle we can assume v′ = (1, 0, 1−n), with n = v2+2
2
≥ 0.

By Proposition 2.3.10 the moduli space MX,σ(v) is isomorphic to the moduli space
MM,σ′((1, 0, 1− n)), and the morphism θv is compatible with this isomorphism.
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Consider the wall and chamber decomposition for the vector v′ on Stab†(M).
Let H ′ be a polarization on M . From Theorem 2.2.25 there is a chamber where
Bridgeland stability is the same as Gieseker H ′-stability. If v2 = −2, then
v′ = (1, 0, 1). The moduli space for this vector in the Gieseker chamber is a
reduced point corresponding to OX . If v2 = 0, the new vector is (1, 0, 0) and the
moduli space in the Gieseker chamber parameterizes ideal sheaves of points, so it
is isomorphic to the underlying K3 surface. Moreover, the Mukai homomorphism
is just the identity on H2(X,Z).

Since Stab†(M) is connected by definition, we can find a path that connects
the Gieseker chamber with the stability condition σ′. This will intersect finitely
many walls, because they are locally finite. From Corollary 2.4.11 and Remark
2.6.5 we get the thesis.

Lemma 2.6.7. Let X be an elliptic K3 surface with Pic(S) = ZΣ⊕Zf where f is
the class of an elliptic fiber, and Σ is the class of a section. Let v = (r,m(Σ+df), s)
primitive, with r,m, d ∈ Z>0, and assume gcd(m, r) ̸= 1. Then, there exist k ∈ Z
such that, if we write v.(kΣ) = (r,∆k, sk), we have gcd(∆k.f, sk) = 1.

Proof. We have

∆k = (m+ rk)Σ +mdf ;

sk = s+m(d− 2)k − rk2.

Thus, ∆k.f = m+ rk and sk = s+m(d− 1)k − (m+ rk)k, which give

gcd(∆k.f, sk) = gcd(m+ rk, s+m(d− 1)k).

To conclude the proof we apply the lemma below to the arithmetic progressions
m + rk and s + m(d − 1)k. We show that the assumptions are satisfied. The
primitivity of v gives

gcd(m, r, s) = 1.

If the equality
r

gcd(m, r)
=

m(d− 1)

gcd(s,m(d− 1))

held, we would havem | gcd(s,m(d−1)), because the left hand side has no common
factor with m. In particular, m would divide s and thus the primitivity of v would
force gcd(r,m) = 1, contradicting our assumption.

Lemma 2.6.8. Let x+yk and u+vk be two arithmetic progressions with y, v > 0.
Assume

gcd(x, y, u) = 1,
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and that
y

gcd(x, y)
̸= v

gcd(u, v)
.

Then, for infinitely many k

gcd(x+ yk, u+ vk) = 1.

Proof. Take k of the form k = gcd(x, y)h with h ∈ Z. Write

x+ yk = gcd(x, y)

(
x

gcd(x, y)
+ yh

)
,

u+ vk = gcd(u, v)

(
u

gcd(u, v)
+
v · gcd(x, y)
gcd(u, v)

h

)
.

By assumption the arithmetic progressions inside the brackets are different, and
they both have coprime generators. Assume without losing generality that the
first one is bigger, for h >> 0, than the second one.

From Dirichlet’s Theorem on arithmetic progressions we can find infinitely
many h for which

(
x

gcd(x,y)
+ yh

)
is a prime. If h is large, this prime is bigger

than both gcd(u, v) and
(

u
gcd(u,v)

+ u·gcd(x,y)
gcd(u,v)

h
)
. Since gcd(x, y) and gcd(u, v) are

coprime by assumption, for any such h we have the conclusion.

The last step is to prove Theorem 2.1.1 for Mukai vector v such that v2 > 0.
We first show that the Picard group of the Fourier-Mukai partnerM is a hyperbolic
plane, and then deform to a K3 surface of Picard rank one.

Lemma 2.6.9. Let X be an elliptic K3 surface with Pic(X) = ZΣ ⊕ Zf , let
v = (r,m(Σ + (d + 1)f), s) primitive, with r > 0 and σ generic. There exists
another elliptic K3 surface M with Pic(M) = ZΣ′ ⊕ Zf ′, and an isomorphism
MX,σ(v) ∼= MM,σ′((1, 0, 1 − n)) where n = v2+2

2
and σ′ ∈ U(M) is generic for

(1, 0, 1− n).

Proof. We begin as in the proof of Theorem 2.6.6: we apply Lemma 2.6.7 and a
spherical twist to reduce to r and ∆.f coprime, and we consider a vector w =
(0, αf, β) such that (w,v) = −1. Deforming σ if necessary, we can assume it
to be w-generic too. Theorem 2.6.6 applied to the moduli space M := Mσ(w),
implies that it is non-empty and a K3-surface. It is fine because the wall-crossing
isomorphisms are induced by equivalences by Theorem 2.4.1, so they preserve the
universal family. The universal family induces a derived equivalence

ΦE : Db(M)
∼−→ Db(X).
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As in the proof of Theorem 2.6.6, define

σ′ := Φ−1
E,∗(σ) and v′ := (ΦH

E )
−1(v).

Up to twisting with a line bundle on M we can assume v′ = (1, 0, 1 − n). To
conclude the proof, it remains to show that σ′ is in U(M) and that Pic(M) =
ZΣ′ ⊕ Zf ′.

From Lemma 2.2.14 and Proposition 2.2.23, we only have to show that the
skyscraper sheaves {Om | m ∈M} are σ′ stable. This is true because ΦE(Om) are
precisely the objects of the moduli space M , which by construction are σ-stable.

For the second statement, consider the two vectors w′ := (α, βΣ+(α+β)f, β)
and t := (α, βΣ+(β−r)f,−∆.f) on X, where βr−α∆.f = 1. It is a computation
to check that they satisfy the following relations.

{
(w′,w′) = 0,

(w′,w) = 0.


(t, t) = −2,
(t,w) = 0,

(t,w′) = −1.

This implies that (ΦH
E )

−1(w′) = (0, l, a) and (ΦH
E )

−1(t) = (0, t, b), with
(l, l) = 0,

(t, t) = −2,
(l, t) = −1.

which means that Pic(M) contains a hyperbolic plane. Since the Picard rank is a
derived invariant for K3 surfaces, the Picard group is a hyperbolic plane.

Proof of Theorem 2.1.1. Consider X any K3 surface, v = (r,∆, s) a primitive
vector with v2 ≥ −2, and σ ∈ Stab†(X) a v-generic stability condition. The
cases v2 = −2 and v2 = 0 were proved in Theorem 2.6.6, so we assume v2 > 0.
By Corollary 2.3.5 and Remark 2.3.6 we see that Mσ(v) is smooth, symplectic
and projective. Since the Hodge numbers are invariant under deformations of
projective varieties it is enough to show that Mσ(v) is deformation equivalent (via
a relative moduli space) to the Hilbert scheme of points on a K3 surface.

Applying Lemma 2.6.3 we can assume r > 0 and ∆ ample. Under this assump-
tions, using Lemma 2.6.4 we deform to an elliptic K3 with a section and using
Lemma 2.6.7 we can assume r and ∆ to be coprime. Finally with Lemma 2.6.9 we
reduce to v = (1, 0, 1−n) with n > 1, a generic σ ∈ U(X), and Pic(X) = ZΣ⊕Zf .

Let d = k2(n − 1), the class Σ + (d + 1)f is ample on X of degree 2d. With
a small deformation we reduce to the case of a K3 surface X ′ of Picard rank
one, degree 2d and Mukai vector v = (1, 0, 1 − n). Since stability is an open
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property for families of objects, every skyscraper sheaf is still stable with respect
to the deformed stability condition. So the deformed stability condition lies in the
geometric chamber U(X ′) by Lemma 2.2.14. By definition of U(X ′) we can act by
the group G̃L2(R) and get a stability condition σα,β ∈ V (X ′). This brings us in the
setting of Corollary 2.5.5, and we conclude the proof. Indeed, at every step of the
reduction we get either isomorphisms that preserve the Mukai homomorphism by
Proposition 2.3.10, or deformations that also preserve the Mukai homomorphism
by Remark 2.6.5.





Chapter 3

Cohomology of hyper-Kähler
manifolds

3.1 Introduction
This chapter is essentially a review of the papers [71] and [103]. The fundamental
result we are interested in is Theorem 3.5.1, which says that the LLV algebra is
a derived invariant for HK manifolds. The LLV algebra, introduced in [71] and
[107], is a rational Lie algebra

g(X) ⊂ End(H∗(X,Q))

defined for every Kähler manifoldX. Heuristically, is is defined by putting together
every Hodge-theoretic sl2-triple associated to a Kähler class. In the case of HK
manifolds it is fully understood in terms of the BBF form.

Theorem 3.1.1 (Theorem 3.2.14). Let X be a hyperkähler manifold.
(1) The total Lie algebra g(X) lives only in degrees −2, 0, 2, so it decomposes as:

g(X) = g(X)−2 ⊕ g(X)0 ⊕ g(X)2.

(2) There are canonical isomorphisms g(X)±2
∼= H2(X,Q).

(3) There is a decomposition g(X)0 = g(X)′0⊕Qh with g(X)′0
∼= so(H2(X,Q), q),

where q is the Beauville–Bogolomov–Fujiki quadratic form. Furthermore
g(X)′0 acts on H∗(X,Q) by derivations.

The first application that comes to mind is to study the natural action of
g(X) on the cohomology algebra, and in particular its decomposition in irreducible
representations. This is because this decomposition is finer than the other usual
decompositions (e.g the Hodge decomposition, the Lefschetz decomposition), and

73
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so gives a lot of infromation on the topology of X. This was indeed done in [39],
where the decomposition is found for every known examples. Their proof relies on
previous work, for example [86] and [29] respectively for OG6 and OG10. See also
[97] for more details on this.

The reason we care about the LLV algebra is different, and much more surpris-
ing. It was noted by [103], that although g(X) depends only on the topology of
X, it is also preserved by derived equivalences. The most important consequence
of this is the existence of the extded Mukai lattice, see Definition 3.6.1. This is
the rational vector space

H̃(X,Q) := Qα⊕H2(X,Q)⊕Qβ,

equipped with the quadratic form q̃ obtained by extending the BBF form on
H2(X,Q) by declaring that α and β are orthogonal to H2(X,Q), isotropic and
q̃(α, β) = −1.

The classes α and β are a priori just abstract classes, but is is not difficult to
give them a geometric interpretation. Indeed, the exteded Mukai lattice is related
to the cohomology H∗(X;Q) by the short exact sequence of Theorem 3.6.4:

0→ SH(X)→ SymnH̃(X,Q)→ Symn−2H̃(X,Q)→ 0,

where SH(X) ⊂ H∗(X,Q) is the Verbitsky component (Definition 3.3.4). This
sequence admits an orthogonal splitting

T : SymnH̃(X,Q)→ SH(X).

The images of αiβn−i under it generate the monodromy invariant part, as shown in
Remark 3.6.13. Furthermore, Taelman [103, Theorems 2.4, 4.8, 4.9] showed that
an equivalence Φ : Db(X) ≃ Db(Y ) induces Hodge isometries

ΦSH : SH(X)→ SH(Y ) and ΦH̃ : H̃(X,Q)→ H̃(Y,Q).

These two isometries are compatible via the sequence above, in the sense that the
diagram

SH(X) SH(Y )

SymnH̃(X,Q) SymnH̃(Y,Q)

ΦSH

SymnΦH̃

commutes up to a sign. This fact is extremely useful to compute the action of an
equivalence

Φ : Db(X) ≃ Db(Y )

on the cohomology of a HK. Indeed, sometimes (see Proposition 5.2.9) we can
compute the isometry ΦH̃ relatively easily from geometrical consideration, while
the isometry ΦH would take more intense computations.
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3.1.1 Structure of the chapter

In Section 3.2 we introduce the LLV algebra following [71]. We start with a general
framework and study a close relative of the LLV algebra. Defined in the same way
starting from Kähler classes associated to a HK metric. Using this, in Section 3.2.2
we prove Theorem 3.2.14.

In Section 3.3 we introduce and study the Verbitsky component

SH(X) ⊂ H∗(X,Q).

The main result here is Theorem 3.3.8 which gives an expression for the kernel of
the natural map

Sym∗H2(X,Q)→ SH(X).

In the short Section 3.4 we conclude our review of the LLV algebra, and study
how the action of the LLV algebra g(X) on the cohomology lifts to the algebraic
connected groups Spin(H2(X,Q), q) and SO(H2(X,Q), q).

In Section 3.5, following [103], we prove that the LLV algebra is a derived invariant
(see Theorem 3.5.1). We also recall some basics on the Hochschild structure on
the derived category of a HK manifold.

Again following [103], in Section 3.6 we introduce the extended Mukai lattice, and
study its main properties. We prove Theorem 3.6.4 and Theorem 3.6.8, which we
anticipated above.

Lastly, in Section 3.7 we explore the relationship between the Mukai lattice and
the second Hochschild cohomology group. Using a morphism

µ : HH2(X)→ H̃(X,Q),

introduced by Markman [77], we compare the isomorphisms ΦH̃ and ΦHH.

3.2 The LLV algebra
Let V =

⊕
k∈Z Vk be a finite dimensional graded vector space over a field F of

characteristic 0, and denote by h the operator:

h|Vk
= k · id.

Definition 3.2.1. Let e : V → V be a degree 2 endomorphism. We say e has the
Lefschetz property if

ek : V−k → Vk

is an isomorphism.
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Remark 3.2.2. The degree two operators with the Lefschetz property form a
Zariski open subset of End2(V ).

Theorem 3.2.3 (Jacobson–Morozov, [59, Theorem 3]). An operator e has the
Lefschetz property if and only if there exists a unique degree −2 endomorphism
f : V → V such that

[e, f ] = h.

Moreover, if L ⊂ End(V ) is a semisimple Lie subalgebra and e, h ∈ L, then f ∈ L.

We say that the triple (e, h, f) is an sl2-triple. The reason is that we can define
a representation sl2(F)→ End(V ) of the Lie algebra sl2(F) on the vector space V
as follows (

0 1
0 0

)
7→ e,

(
1 0
0 −1

)
7→ h,

(
0 0
1 0

)
7→ f.

In the rest of these notes, we will mostly be interested in the graded rational
vector space V = H∗(X,Q)[N ], where X is a compact Kähler manifold of dimen-
sion N . Here [m] indicates the shift by m, so that V0 = HN(X,Q). To any class
a ∈ H2(X,Q) we can associate the operator in cohomology obtained by taking
cup product

ea : H
∗(X,Q)→ H∗(X,Q), ω 7→ a.ω.

The operator h becomes
h|Hk(X,Q) := (k −N)id.

From Theorem 3.2.3 we see that if ea has the Lefschetz property (for example if
a is a Kähler class), there is an operator fa of degree −2 that makes (ea, h, fa) an
sl2-triple. Moreover, the map

f : H2(X,Q) 99K End−2(H
∗(X,Q)),

that sends a to the operator fa is defined on a Zariski open subset and rational.

Remark 3.2.4. If a ∈ H1,1(X,Q) is a Kähler class, it follows from standard Hodge
theory that everything can be defined at the level of forms. The dual operator is
fa = ∗−1ea∗, where ∗ is the Hodge star operator. The sl2-action preserves the
harmonic forms, so it induces an action on cohomology.

Definition 3.2.5 ([72, 107]). Let X be a compact Kähler manifold. The total Lie
algebra g(X) of X is the Lie algebra generated by the sl2-triples

(ea, h, fa),

where a ∈ H2(X,Q) is a class with the Lefschetz property.
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The following is a general result about this Lie algebra for compact Kähler
manifolds. Denote by φ the pairing on H∗(X,C) given by

φ(α, β) = (−1)q
∫
X

α.β,

if α has degree N + 2q or N + 2q + 1.

Proposition 3.2.6 ([72, Proposition 1.6]). The Lie algebra g(X) is semisimple
and preserves φ infinitesimally. Moreover, the degree-0 part g(X)0 is reductive.

Now let X be a compact hyperkähler manifold of complex dimension 2n. In
this case, the Lie algebra g(X) is also called the Looijenga-Lunts-Verbitsky Lie
algebra. It is well known that for each hyperkähler metric g on X we get an action
of the quaternion algebra H on the real tangent bundle TX. This means that we
have three complex structures I, J,K such that

IJ = −JI = K. (3.1)

To each of these complex structures we can associate Kähler forms

ωI := g(I(−),−), ωJ := (J(−),−), ωK := g(K(−),−),

and holomorphic symplectic forms

σI = ωJ + iωK , σJ = ωK + iωI , σK = ωI + iωJ .

Definition 3.2.7. The characteristic 3-plane F (g) of the metric g is

F (g) := ⟨[ωI ], [ωJ ], [ωK ]⟩ = ⟨[ωI ], [ℜσI ], [ℑσI ]⟩ ⊂ H2(X,R).

Definition 3.2.8 ([106]). Denote by gg ⊂ End(H∗(X,R)) the Lie algebra gener-
ated by the sl2-triples (ea, h, fa) where a ∈ F (g).

Remark 3.2.9. This Lie algebra is generated by the three sl2-triples associated
to the classes [ωI ], [ωJ ], [ωK ]. Indeed, from the discussion in the following section
we will see that the subalgebra generated by these three sl2-triples is semisim-
ple. From the Jacobson-Morozov Theorem and the linearity of e : H2(X,R) →
End(H∗(X,R)) we conclude that it contains every sl2-triple (ea, h, fa) with a ∈
F (g).
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3.2.1 The algebra associated to a metric

In this section we study the smaller algebra gg and its action on cohomology.
These results are due to Verbitsky [106], see also [52] Proposition 24.2, and [72]
Proposition 4.4.

We start with a general algebraic construction. Let H be the quaternion alge-
bra. As a real vector space it is generated by 1, I, J,K, where I, J,K satisfy the
relations (3.1). We denote by H0 the pure quaternions, i.e. the linear combinations
of I, J,K.

Let V be a left H-module, equipped with an inner product

⟨−,−⟩ : V × V → R,

and assume that I, J,K act on V via isometries. The H-action gives three complex
structures I, J,K on V , satisfying the relations (3.1). Consider the forms

ωI = ⟨I(−),−⟩,

ωJ = ⟨J(−),−⟩,

ωK = ⟨K(−),−⟩

and the holomorphic symplectic forms σI = ωJ+iωK , σJ = ωK+iωI , σK = ωI+iωJ .

Remark 3.2.10. Note that the operators eλ for λ = ωI , ωJ , ωK have the Lefschetz
property; the dual operator is given by fλ = ∗−1eλ∗, where ∗ is the Hodge star
operator on Λ•V ∗ induced by the inner product.

Definition 3.2.11. Let g(V ) ⊂ End(
∧• V ∗) be the Lie algebra generated by the

sl2-triples
(eλ, h, fλ)λ=ωI ,ωJ ,ωK

,

where h is the shifted degree operator.

In particular, this definition makes sense for the rank one module H equipped
with the standard inner product. This gives a Lie algebra g(H) ⊂ End(

∧•H∗).
We denote by g(H)0 the degree-0 component of g(H) (here the degree is viewed
as an endomorphism of the graded vector space). It is a Lie subalgebra, and we
denote it by g(H)′0 := [g(H)0, g(H)0] its derived Lie algebra.

Theorem 3.2.12. With the above notation we have the following.
(1) There is a natural isomorphism g(V ) ∼= g(H).
(2) There is an isomorphism g(H) ∼= so(4, 1).
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(3) The algebra decomposes with respect to the degree as

g(H) = g(H)−2 ⊕ g(H)0 ⊕ g(H)2.

Furthermore, g(H)±2
∼= H0 as Lie algebras, and g(H)0 = g(H)′0 ⊕ Rh with

g(H)′0
∼= H0; this last isomorphism is compatible with the actions on

∧• V ∗.

Proof. (1) Since ⟨−,−⟩ is H-invariant, we can find an orthogonal decomposition

V = H⊕ · · · ⊕H.

Taking exterior powers we get
∧• V ∗ =

∧•H∗⊗· · ·⊗
∧•H∗. This gives an injective

map g(H) → End(
∧• V ∗), given by the natural tensor product representation. It

is a direct check that the image of this morphism is exactly the algebra g(V ).
(2) Consider the subrepresentation W ⊂

∧•H∗ given by

W =
∧0

H∗ ⊕ ⟨ωI , ωJ , ωK⟩ ⊕
∧4

H∗.

We equip it with the quadratic form given by setting
∧0H∗ ⊕

∧4H∗ to be a
hyperbolic plane, orthogonal to the 3-plane, and {ωI , ωJ , ωK} to be an orthonormal
basis of the 3-plane. By a direct computation we can see that the action of g(H)
respects infinitesimally this quadratic form. This gives a map

g(H)→ so(W ) ∼= so(4, 1), (3.2)

that we next show to be an isomorphism.
Since W has dimension 5, the Lie algebra so(W ) has dimension 10. Now

consider the following 10 elements of g(H):

h, eI , eJ , eK , fI , fJ , fK , KIJ , KIK , KJK ,

where KIJ := [eI , fJ ], KIK = [eI , fK ] and KJK = [eJ , fK ]. Verbitsky [106] showed
that KIJ acts like the Weil operator associated with the Hodge structure on

∧•H∗

given by K, and similarly KJK and KIK . This means that it acts on a (p, q) form
with respect to K as multiplication by i(p− q). It follows that the ten operators
above are linearly independent over W , hence the map is surjective. Moreover
they generate g(H) as a vector space. In fact, they generate g(H) as a Lie algebra,
and one has the following relations (see [106]):

[Kλ,µ, Kµ,ν ] = Kλ,ν , [Kλ,µ, h] = 0,

[Kλ,µ, eµ] = 2eλ, [Kλ,µ, fµ] = 2fλ,

[Kλ,µ, eν ] = 0, [Kλ,µ, fν ] = 0,
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where λ, µ, ν ∈ {I, J,K} and ν ̸= λ, ν ̸= µ. This implies that they are a basis of
g(H), hence the map (3.2) is an isomorphism.

Point (3) follows using this explicit basis. Indeed we have

g(H)−2 = ⟨fI , fJ , fK⟩, g(H)2 = ⟨eI , eJ , eK⟩, and
g(H)0 = ⟨KIJ , KJK , KIK⟩ ⊕ Rh.

In particular, we have:

g(H)′0
∼−→ H0,

KIJ 7→ K,

KJK 7→ I,

KIK 7→ J.

Since I, J,K ∈ H0 act on
∧•H∗ as Weil operators for the corresponding complex

structures on H, the isomorphism is compatible with the actions.

Now we can compute the Lie algebra gg. As above we denote by (gg)0 the
degree-0 part, and by (gg)

′
0 := [(gg)0, (gg)0] its derived Lie algebra.

Proposition 3.2.13. Let (X, g) be a hyperkähler manifold with a fixed hyperkähler
metric.

(1) There is a natural isomorphism of graded Lie algebras gg ∼= g(H). In partic-
ular gg ∼= so(4, 1).

(2) The semisimple part (gg)′0 acts on H∗(X,R) via derivations.

Proof. (1). Consider the Lie subalgebra ĝg ⊂ End(Ω•
X), generated by the sl2-

triples (ea, h, fa) with a ∈ F (g), at the level of forms (in particular fa = ∗−1ea∗).
From Theorem 3.2.12, we see that for every point x ∈ X there is an inclusion
g(H) ↪→ End(Ω•

X,x). This gives an inclusion g(H) ↪→
∏

x∈X End(Ω•
X,x). It follows

from the definitions that the two algebras g(H) and ĝg are equal as subalgebras of∏
x∈X End(Ω•

X,x).
Since the metric g is fixed, the sl2-triples (ea, h, fa) preserve the harmonic forms

H∗(X), and so does ĝg. Since H∗(X) ∼= H∗(X,R) we get a morphism

g(H) ∼= ĝg → gg.

This map is surjective, because the image contains the sl2-triples that generate gg.
Moreover, by explicit computations similar to the proof of Theorem 3.2.12, we can
see that dim gg ≥ 10. Hence the map is an isomorphism.
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(2). From the previous proposition we have an isomorphism compatible with
the actions on cohomology

(gg)
′
0
∼= g(H)′0

∼= H0.

Hence, it suffices to prove the statement for the action of I, J,K. Each of them
gives a complex structure, and acts as the Weil operator on the associated Hodge
decomposition. So, the action on (p, q) forms is given by multiplication by i(p−q),
which is a derivation.

3.2.2 The LLV Lie algebra of a HK manifold

The goal of this section is to prove the following result due to Looijenga and Lunts
[72, Proposition 4.5] and Verbitsky [107, Theorem 1.6].

Theorem 3.2.14. Let X be a hyperkähler manifold. With the above notation, we
have the following.

(1) The total Lie algebra g(X) lives only in degrees −2, 0, 2, so it decomposes as:

g(X) = g(X)−2 ⊕ g(X)0 ⊕ g(X)2.

(2) There are canonical isomorphisms g(X)±2
∼= H2(X,Q).

(3) There is a decomposition g(X)0 = g(X)′0⊕Qh with g(X)′0
∼= so(H2(X,Q), q),

where q is the Beauville–Bogolomov–Fujiki quadratic form. Furthermore
g(X)′0 acts on H∗(X,Q) by derivations.

The main geometric input in the proof is the following lemma.

Lemma 3.2.15. If X is a compact hyperkähler manifold, then [fa, fb] = 0 for
every a, b ∈ H2(X,R) for which f is defined.

The proof relies on the following fact.

Proposition 3.2.16. The set of characteristic 3-planes is open in the Grassman-
nian of 3-planes in H2(X,R).

In turn, this follows from a celebrated theorem by Yau.

Theorem 3.2.17 (Yau). Let X be a hyperkähler manifold, and let I be a complex
structure on X. If ω is a Kähler class, then there is a unique hyperkähler metric
g such that [ωI ] = ω.
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Proof of Lemma 3.2.15. If we fix a hyperkähler metric g on X, then for every
a, b ∈ F (g) we have [fa, fb] = 0. This holds already at the level of forms, using
the definition fa = ∗−1ea∗ and the fact that ∗ depends only on the metric. Let
a ∈ H2(X,R) be a class for which fa is defined. Since f is a rational endomorphism,
the condition [fa, fb] = 0 is Zariski closed with respect to b ∈ H2(X,R). From
Proposition 3.2.16 it follows that the set

{b ∈ H2(X,R) | a, b ∈ F (g) for some metric g}

is open. Since [fa, fb] = 0 for every b in this open set, we get [fa, fb] = 0 for every
b where fb is defined.

While the statement of Theorem 3.2.14 is over Q, we will give the proof over
R following [72].

Proof of Theorem 3.2.14. Consider the subspace

V := V−2 ⊕ V0 ⊕ V2 ⊂ g(X),

where V2 is the abelian Lie subalgebra generated by ea with a ∈ H2(X,R), V−2

is the abelian Lie subalgebra generated by the fa with a ∈ H2(X,R) where fa is
defined, and V0 is the Lie subalgebra generated by [ea, fb]. To prove (1) and (2),
it is enough to show that V is a Lie subalgebra of g(X). Indeed, since g(X) is
generated by elements contained in V this would imply V = g(X). Since V2 and
V−2 are abelian, it suffices to show that [V0, V2] ⊂ V2 and [V0, V−2] ⊂ V−2.

Claim. Define V ′
0 := [V0, V0]. We have V0 = V ′

0⊕Rh where V ′
0 acts on cohomology

via derivations.

Proof of the claim. Proposition 3.2.16 implies that the set {(a, b) ∈ H2(X,R) ×
H2(X,R) | a, b ∈ F (g) for some metric g} is open. Arguing as in the proof of
Lemma 3.2.15 we see that V0 is generated by the elements [ea, fb] with a, b ∈ F (g)
for some metric g. If we fix a hyperkähler metric g, the elements [ea, fb] with a, b ∈
F (g) generate the Lie algebra (gg)0 and their brackets the Lie subalgebra (gg)

′
0.

Thus, V ′
0 is generated by the Lie algebras (gg)

′
0 and their brackets. Since the Lie

algebras (gg)′0 act on cohomology via derivations, the same is true for their brackets,
hence V ′

0 acts via derivations. Moreover, from point (3) of Theorem 3.2.12 we get
the decomposition V0 = V ′

0 +Rh. Since g(X)0 is reductive (Proposition 3.2.6) and
h is in the center, we get h ̸∈ V ′

0 ⊂ g(X)′0, so the sum is direct.

Now we show that [V0, V2] ⊂ V2. Since the adjoint action of h gives the grading,
it is enough to show that [V ′

0 , V2] ⊂ V2. Let u ∈ V ′
0 and ea ∈ V2. For every

x ∈ H2(X,R) we have

[u, ea](x) = u(a.x)− a.u(x) = u(a).x = eu(a)(x), (3.3)



3.2. THE LLV ALGEBRA 83

because u is a derivation.
The inclusion [V0, V−2] ⊂ V−2 is more difficult. Let G′

0 ⊂ GL(H∗(X,R)) be the
closed Lie subgroup with Lie algebra V ′

0 . For every t ∈ G′
0 we have teat−1 = et(a)

and tht−1 = h, by integrating the analogous relations at the level of Lie algebras.
Since the third element of a sl2-triple is unique, we get that tfat−1 = ft(a). This
implies that the adjoint action of G′

0 leaves V−2 invariant, hence so does the Lie
algebra V ′

0 .
To summarize, at this point we showed (1) and (2), and also that g(X)′0 acts

via derivations. It remains to show that g(X)′0
∼= so(H2(X,R), q).

We begin by defining the map g(X)′0 → so(H2(X,R), q). For this, we consider
the restriction of the action of g(X)′0 to H2(X,R), and show that it preserves
infinitesimally the Beauville–Bogomolov–Fujiki form q. We can fix a hyperkähler
metric g and check this for (gg)

′
0, because these Lie subalgebras generate g(X)′0.

From Theorem 3.2.12 it is enough to check it for the Weil operators associated to
the three complex structures I, J,K induced from g. Fix one of them, say I; we
have to verify that

q(Iα, β) + q(α, Iβ) = 0,

for every α, β ∈ H2(X,R). This follows from a direct verification using the q-
orthogonal decomposition

H2(X,R) = (H2,0(X)⊕H0,2(X)) ∩H2(X,R)⊕H1,1(X,R),

induced by the Hodge decomposition with respect to the complex structure I.
To conclude the proof it remains to show that this map is bijective; we begin

with the surjectivity. Fix a hyperkähler metric g, the image of the Lie algebra (gg)
′
0

in so(H2(X,R), q) is generated (as a vector space) by the Weil operators associated
to I, J,K. Using this, it is easy to see that (gg)

′
0 kills the q-orthogonal comple-

ment to the characteristic 3-plane F (g), and it maps onto so(F (g), q|F (g)). One
can check that varying the metric g the Lie subalgebras so(F (g), q|F (g)) generate
so(H2(X,R)), hence the surjectivity.

For the injectivity we proceed as follows. Let SH2(X,R) ⊂ H∗(X,R) be the
graded subalgebra generated by H2(X,R); it is a g(X) representation for Corollary
3.3.6. By Lemma 3.3.7, the map g(X)→ gl(SH2(X,R)) is injective. Since g(X)′0
acts via derivations, the map must be injective already at the level ofH2(X,R).

Corollary 3.2.18. The Hodge structure on H∗(X,R) is determined by the Hodge
structure on H2(X,R) and by the action of g(X)2,R ∼= H2(X,R) on H∗(X,R).

Proof. Let I, J,K be the three natural complex structures associated to a hyper-
kähler metric g, and assume I is the given one. As recalled before, the commutator
KJK = [eJ , fK ] acts like the Weil operator for I; hence it recovers the Hodge struc-
ture. By definition, it depends only on the classes [ωI ], [ωK ] and their action on
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H∗(X,R). Since the Hodge structure is given by the class of the symplectic form
[σI ] = [ωJ ] + i[ωK ], the conclusion follows.

Recall that if g is a Lie algebra, the universal enveloping algebra Ug of g is
the smallest associative algebra extending the bracket on g. It is defined as the
quotient of the tensor algebra by the elements of the form:

x⊗ y − y ⊗ x− [x, y] x, y ∈ g.

In particular, if g is abelian, then Ug = Sym∗g.

Corollary 3.2.19. There is a natural decomposition

Ugtot(X) = Ugtot(X)2 · Ugtot(X)0 · Ugtot(X)−2,

where · denotes the multiplication in Ugtot(X).

Proof. We have to show that every element in x ∈ Ugtot(X) can be written as
a sum of elements of the form x2 · x0 · x−2 with xi ∈ Ugtot(X)i. It is enough to
check this on the images of pure tensors. On these it follows from the fact that
the bracket is graded and the decomposition in Theorem 3.2.14.

3.3 The Verbitsky component
In this section, we study the relationship between the actions of g(X) and g(X)0 on
H∗(X,Q), where X is a compact hyperkähler manifold of dimension dim(X) = 2n.
The main reference is [72], see also [81, Theorem 4.4].

Definition 3.3.1. Let V be a gtot(X)-representation. We define the primitive
subspace as:

Prim(V ) = {x ∈ V | (g(X)−2).x = 0}.

If V = H∗(X,Q) is the standard representation we denote the primitive sub-
space as Prim(X).

Remark 3.3.2. This definition is compatible with the usual notion of primitive
element with respect to a Kähler class α in Hodge theory. Indeed, by Lemma 6.24
in [114] we see that an element x ∈ Hk(X,R) is primitive with respect to α if and
only if it is killed by the dual operator fα.

Remark 3.3.3. The primitive subspace Prim(V ) is a gtot(X)0-subrepresentation.
This follows from the fact that [g(X)0, g(X)−2] ⊂ g(X)−2.

Definition 3.3.4. The Verbitsky component SH2(X,Q) ⊆ H∗(X,Q) is the graded
subalgebra generated by H2(X,Q).
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Proposition 3.3.5 ([72, Corollary 1.13 and Corollary 2.3]). The cohomology
H∗(X,Q) is generated by Prim(X) as a SH2(X,Q)-module. Moreover, if W ⊂
Prim(X) is a g(X)0 irreducible subrepresentation, then SH2(X,Q).W ⊂ H∗(X,Q)
is an irreducible g(X)-module.

Proof. Since gtot(X) is semisimple, we can decompose the cohomology in irre-
ducible gtot(X)-representations:

H∗(X,Q) = V1 ⊕ · · · ⊕ Vk.

The primitive part is compatible with this decomposition, so we get the decompo-
sition

Prim(X) = Prim(V1)⊕ · · · ⊕ Prim(Vk),

of g(X)0-representations.
We first want to show that SH2(X,Q).Prim(Vi) = Vi. We have

SH2(X,Q).Prim(Vi) = Ug(X)2.Prim(Vi) = Ug(X).Prim(Vi) ⊂ Vi, (3.4)

where the first equality follows from the fact that g(X)2 is abelian, and the second
from Corollary 3.2.19 and Remark 3.3.3. Thus SH2(X,Q).Prim(Vi) is a gtot(X)
subrepresentation of Vi, but Vi is irreducible, so the equality holds. This proves
the first part of the proposition.

To prove the second part it is enough to show that each Prim(Vi) is irreducible
as a g(X)0-representation. Assume it is not and write Prim(Vi) = W1 ⊕ W2.
The identities (3.4) show that acting with SH2(X,Q) gives a decomposition Vi =
SH2(X,Q).W1 ⊕ SH2(X,Q).W2. Again, this contradicts the fact that Vi is an
irreducible g(X)-representation.

Corollary 3.3.6. The Verbitsky component SH2(X,Q) ⊂ H∗(X,Q) is an irre-
ducible gtot(X) subrepresentation.

Proof. By definition we have

SH2(X,Q) = SH2(X,Q).H0(X,Q), and H0(X,Q) ⊂ Prim(X).

So it is enough to observe that H0(X,Q) is preserved by g(X)0, then we conclude
by the previous proposition.

Lemma 3.3.7. The restriction map g(X)R → gl(SH2(X,R)) is injective.

Proof. Let K ⊂ g(X)R be the kernel. It is immediate to see that K ⊂ g(X)′0. The
action of K is 0 on H2(X,R), so by (3.3) we get [K, g(X)R,2] = 0. Taking the
Lie group of K and the corresponding adjoint action, we see that [K, fa] = 0 for
every a ∈ H2(X,R) for which fa is defined. So K has bracket 0 with g(X)R,2 and
g(X)R,−2, thus also with g(X)R,0. Since g(X) is semisimple this implies K=0.
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3.3.1 Verbitsky’s Theorem

In this section we give a proof of a result by Verbitsky on the structure of the
irreducible component SH2(X). This result is particularly useful to study the
action of the LLV algebra on the rational cohomology. As a consequence, one can
understand SH2(X) as a highest weight module for g(X), see [97]. The argument
presented here was given by Bogomolov in [18].

Theorem 3.3.8. There is a natural isomorphism of algebras and g(X)0-modules:

SH2(X,C) ∼= Sym∗H2(X,C)/⟨αn+1 | q(α) = 0⟩.

The key technical fact is the following lemma from representation theory, of
which we omit the proof.

Lemma 3.3.9. Denote by A the graded C-algebra Sym∗H2(X,C)/⟨αn+1 | q(α) =
0⟩. Then we have:

(1) A2n
∼= C.

(2) The multiplication map Ak × A2n−k → A2n induces a perfect pairing.

Proof of the theorem. From the local Torelli Theorem we have that αn+1 = 0 for
an open subset of the quadric {α ∈ H2(X,C) | q(α) = 0}. Since the condition
αn+1 = 0 is Zariski closed, we get that it holds for the entire quadric. Consider
the multiplication map

Sym∗H2(X,C)→ SH2(X,C).

The kernel contains {αn+1 | q(α) = 0}, hence it factors via the ring A. It is
an algebra homomorphism by construction, and a map of g(X)0-representations
because g(X)′0 acts via derivations.

The induced map A → SH2(X,C) is surjective by construction. If it were
not injective, by the above lemma, the kernel would contain A2n. But this is
impossible, because in top degree the map A2n → H4n(X,C) is non-zero. Indeed
if σ is a holomorphic symplectic form, the form (σ + σ)2n is non-zero.

Corollary 3.3.10. There are natural isomorphisms defined over Q

SH2(X,Q)2k ∼=

{
SymkH2(X,Q) if k ≤ n,

Sym2n−kH2(X,Q) if n < k ≤ 2n.

Proof. The properties (1) and (2) in Lemma 3.3.9 hold for SH2(X,C), as a conse-
quence of Theorem 3.3.8. Up to up to multiplication with a nonzero scalar, they
also hold for SH2(X,Q). The multiplication map SymkH2(X,Q)→ SH2(X,Q)2k
is an isomorphism if k ≤ n, because it is so over C. If k > n we have

SH2(X,Q)2k ∼= SH2(X,Q)∗4n−2k
∼= Sym2n−kH2(X,Q)∗ ∼= Sym2n−kH2(X,Q),

where the last equality is due to the Beauville–Bogomolov–Fujiki form.
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Example 3.3.11. If X is of K3[2]-type, for dimensional reasons, the Verbitsky
component SH(X) is the only irreducible component in the cohomology. For
higher values of n the decomposition of H∗(X,Q) in irreducible components is
described in [39], for more details on this see [97].

3.4 Spin action

In this section we study how the action of

g(X)′0 = so(H2(X,Q), q)

integrates to an action of the simply connected algebraic group Spin(H2(X,Q), q).
Recall that there is an exact sequence of algebraic groups

1→ ±1→ Spin(H2(X,Q), q)→ SO(H2(X,Q), q)→ 1.

For more information see [16] and [97].

Proposition 3.4.1 ([81, Theorem 4.4],[109]). The action of so(H2(X,Q), q) on
H∗(X,Q) integrates to an action of the algebraic group Spin(H2(X,Q), q) via ring
isomorphisms. On the even cohomology it induces an action of SO(H2(X,Q), q).

Proof. The first part of the statement is clear: we can always lift the action
because the algebraic group Spin(H2(X,Q), q) is simply connected. The group
Spin(H2(X,Q), q) acts via ring isomorphisms because the Lie algebra acts via
derivations.

To show the second part of the statement we proceed as follows. Fix a hyper-
kähler metric g and a compatible complex structure I. The Weil operator with
respect to I is contained in (gg)

′
0
∼= so(H2(X,Q)). The exponential exp(πI) ∈

Spin(H2(X,Q), q) acts on the (p, q) part of Hk(X,C) as multiplication by ei(p−q)π,
which is just multiplication by (−1)k. In particular, on H2(X,Q) it acts as
the identity, so exp(πI) = −1 ∈ Spin(H2(X,Q), q). We have also shown that
−1 ∈ Spin(H2(X,Q), q) acts on Hk(X,Q) as (−1)k, which means that the action
on even cohomology factors through SO(H2(X,Q), q).

3.5 Derived invariance of the LLV algebra

A crucial result, upon which the theory of derived categories of hyper-Kähler man-
ifolds lies, is the compatibility between the LLV algebra and the derived category.



88 CHAPTER 3. COHOMOLOGY OF HYPER-KÄHLER MANIFOLDS

Theorem 3.5.1 ([103, Theorem A]). Let X1 and X2 be hyper-Kähler varieties, and
let Φ : Db(X1) ≃ Db(X2) be a derived equivalence. Then there exists a canonical
isomorphism of rational Lie algebras

Φg : g(X1) ≃ g(X2)

and the isometry ΦH : H∗(X1,Q)→ H∗(X2,Q) is equivariant with respect to Φg.

Recall that every derived equivalence Φ : Db(X) ≃ Db(Y ) between smooth
projective varieties is of Fourier–Mukai type. This means that there exists a unique
E ∈ Db(X × Y ) such that

Φ = ΦE := pY,∗ ◦ (E ⊗ −) ◦ p∗X ,
where pX : X×Y → X and pY : X×Y → Y are the two projections. The cohomo-
logical transform ΦH : H∗(X,Q) → H∗(Y,Q) is obtained via the correspondence
v(E) ∈ H∗(X × Y ). It is compatible with the derived equivalence via the Mukai
vector, namely the following diagram commutes

Db(X) Db(Y )

H∗(X,Q) H∗(Y,Q)

v v

Φ

ΦH

see [46, Section 5].
The isomorphism ΦH preserves neither the cup product nor the grading on H∗

in general. It does preserve the columns of the Hodge diamond, that is the weight
zero Hodge structure given by

H−k,k :=
⊕

p−q=−k

Hq(X,Ωp
X), (3.5)

because the Mukai vector v(E) is a Hodge class in H∗(X × Y ). In particular, it
preserves the even (and odd) cohomology.

Furthermore, it is an isometry with respect to the generalized Mukai pairing

(v.v′) :=

∫
X

exp(c1(X)/2) ∪ v∨ ∪ v′, (3.6)

where if v =
∑

k vk is the decomposition into graded components, then

v∨ :=
∑
k

(
√
−1)kvk.

The idea behind the proof of Theorem 3.5.1 is to replicate the definition of
the LLV algebra Definition 3.2.8 in the context of Hochschild cohomolgy, which is
a derived invariant. It will follow automatically that this new ‘Hochschild’ LLV
algebra is a derived invariant, the non-trivial part is to show that it agrees with
the usual LLV algebra.
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3.5.1 Hochschild cohomology

Let X be a smooth projective variety of dimension n, and let ∆ : X → X ×X be
the diagonal embedding. The Hochschild cohomology is defined as

HHk(X) := Extk(∆∗OX ,∆∗OX)

and the Hochschild homology as

HHk(X) := Extn−k(∆∗OX ,∆∗ωX).

The Yoneda product induces maps

HHn⊗HHm → HHn+m and HHn⊗HHm → HHm−n, (3.7)

making HH• a graded ring, and HH• a graded module over HH•. Since the defini-
tion can be stated only in terms of the derived category, the following result comes
naturally.

Theorem 3.5.2 ([28, Theorem 8.1]). If Φ : Db(X1) ≃ Db(X2) is an equivalence,
it induces isomorphisms

ΦHH : HH•(X1)→ HH•(X2) and ΦHH : HH•(X1)→ HH•(X2).

Where ΦHH is a graded algebra isomorphism, and ΦHH is equivariant with respect
to the action (3.7).

Define
HTk(X) :=

⊕
i+j=k

Hj(X,
∧i

TX).

The Hochschild–Kostant–Rosenberg isomorphism

∆∗∆∗OX ≃
⊕
k

Ωk
X [k]

induces isomorphisms

IHKR : HH•(X) ≃ HT•(X) and IHKR : HH•(X) ≃ H(X,C). (3.8)

We twist them by the square root of the Todd class as explained in [27]:

IH := (td
−1/2
X ⌟−) ◦ IHKR IH := (td

−1/2
X ∧−) ◦ IHKR. (3.9)

In this way, IH becomes a graded algebra isomorphism, and the action of HH•(X)
on HH•(X) is mapped under IH to the action of HT•(X) on H(X,C) given by
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contraction. Moreover, as shown in [76, Theorem 1.2], via IH the isomorphism
ΦHH becomes the usual ΦH , that is the following diagram commutes

HH•(X1) H•(X1)

HH•(X2) H•(X2)

ΦHH•

I
X1
H

ΦH

I
X2
H

Combining this with Theorem 3.5.2 we get the following.

Proposition 3.5.3. Let Φ : Db(X1) ≃ Db(X2) an equivalence. Then we have
isomorphisms

ΦHT : HT•(X1) ≃ HT•(X2) and ΦH : H(X,C)→ H(X,C).

Where ΦHT is a graded algebra isomorphism, and ΦH is equivariant with respect
to the action of HT(X) on H(X,C) given by contraction. That is

ΦHT (α)⌟ΦH(ω) = ΦH(α⌟ω),

for every α ∈ HT•(X) and ω ∈ H(X,C).

3.5.2 Hochschild LLV algebra

Consider the operator h′ ∈ End(H(X,C)) defined by

h′|Hq(X,Ωp
X) := (q − p) id .

The HKR isomorphism IH maps the HHk(X) the −k-th graded component of the
grading induced by h′, which is just the k-th column of the Hodge diamond.

Via the action of HTl(X) on H(X,C), we define the operator

e′µ(−) = µ⌟− ∈ End(H(X,C)) for every µ ∈ HTl(X).

It has degree l by the grading induced by h′.

Proposition 3.5.4. For a holomorphic symplectic variety (X, σ) the operator e′µ
has the Hard Lefschetz property for µ in a dense open set in HT2(X).

To show this fact we briefly explain the structure of the Hochschild cohomology
for a symplectic variety. The symplectic form induces an isomorphism TX ≃ ΩX ,
and taking exterior power gives

∧i TX ≃ Ωi
X . Similarly, the holomorphic volume

form σn induces an isomorphism of sheaves
∧i TX ≃ Ω2n−i.
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Taking cohomology we get the two isomorpshism:

γ : HT∗(X) ≃ H∗(X,C), α 7→ α⌟σn

σ : HT∗(X) ≃ H∗(X,C), α 7→ α⌟σ.

The isomorphism σ : HT•(X) ≃ H(X,C) is a graded algebra isomorphism,
that is

σ(µ ∧ ν) = σ(µ) ∪ σ(ν). (3.10)

While γ intertwines the action of HT• with the wedge product:

e′µ(γ(α)) = γ(µ ∧ α) (3.11)

Proof of Proposition 3.5.4. The fact that σ is an isomorphism of algebras implies
that the operator µ ∧ − has the HL property on HT•(X). The statement then
follows from (3.11).

Remark 3.5.5. The composition

η := γ ◦ σ−1 (3.12)

is called the Verbitsky operator. It is immediate from the definitions that

η ◦ h ◦ η−1 = h′. (3.13)

In other words, it exchanges the rows and columns of the Hodge diamond. This
allows to use Hochschild (co)homology to gain information on the Hodge structure
and viceversa.

Definition 3.5.6. The Hochschild LLV algebra g(X)′ is the Lie subalgebra of
End(H(X,C)) generated by the sl2-triples (e′µ, h′, fµ) for all µ ∈ HT2(X) with the
HL property.

Recall from Section 3.4 that the LLV action integrates to an action

ρ : Spin(H2(X,Q), q)→ End(H(X,C)).

The fundamental result we are going to need is the following.

Theorem 3.5.7 ([112, Theorem 9.1 and 9.7(i)]). The operator η ∈ End(H(X,C))
is an involution and lives in the image of ρ.

Theorem 3.5.8 ([103, Proposition 2.8]). The algebras g(X)⊗Q C and g(X)′ are
equal as subalgebras of End(H(X,C)).
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Proof. It follows from the definition of η and (3.11) that

η ◦ eσ(µ) ◦ η−1 = e′µ. (3.14)

That is
η(g(X)⊗Q C)η−1 = g(X)′,

but by Theorem 3.5.7 the left hand side is equal to g(X)⊗Q C.

Corollary 3.5.9 ([103, Theorem A]). Let Φ : Db(X1) ≃ Db(X2) be an equivalence
between hyper-Kähler manifolds. Then there is an induced isomorphism

Φg : g(X1) ≃ g(X2)

of rational Lie algebras such that

ΦH : H∗(X1,C) ≃ H∗(X2,C)

is equivariant with respect to Φg.

Proof. Via Theorem 3.5.2 and the HKR isomorphism, we get that the isomorphism

ΦH : H∗(X1,Q) ≃ H∗(X2,Q)

is equivariant with respect to the algebra isomorphism ΦHT : HT∗(X1,Q) ≃
HT∗(X2,Q). Since the algebra g(X)′ is defined in terms of this action, the re-
sult follows from Theorem 3.5.8.

Corollary 3.5.10. The Hodge isometry ΦH restricts to a Hodge isometry

ΦSH : SH(X1) ≃ SH(X2),

where SH(X) is equipped with the restriction of the Mukai pairing. Moreover, this
Hodge isometry is equivariant with respect to the action of the LLV algebra.

Proof. In the proof Corollary 3.3.6 we see that SH(X) is the unique irreducible
subrepresentation of H∗(X,Q) whose Hodge structure contains

H−2n,2n = H2n(X,OX).

Since ΦH respects the Hodge structure (3.5) we conclude by Corollary 3.5.9.

Remark 3.5.11. On the Verbitsky component the restriction bSH of the general-
ized Mukai pairing (3.6) becomes

(λ1 · · · · · λk, µ1 · · · · · µ2n−k) = (−1)k
∫
X

λ1 ∪ · · · ∪ λk ∪ µ1 ∪ · · · ∪ µ2n−k. (3.15)
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3.6 Extended Mukai lattice
One particularly useful application of Corollary 3.5.9 is the existence of a small
dimensional quadratic vector space which is invariant under derived categories.
This will make easier the otherwise often impossible task of computing the induced
isomorphism ΦH in cohomology.

Definition 3.6.1. Let X be a hyper-Kähler manifold of dimension 2n. The ra-
tional extended Mukai lattice is the rational vector space

H̃(X,Q) := Qα⊕H2(X,Q)⊕Qβ.1

It is endowed with the non-degenerate quadratic form q̃ obtained by extending the
BBF form q on H2(X,Q) by declaring that α and β are orthogonal to H2(X,Q),
isotropic and q̃(α, β) = −1.

Notice that this looks like the extended Mukai lattice for a K3 surface recalled
in Section 2.2.1. In the same flavour one can also equip H̃(X,Q) with a weight
two Hodge structure, compatible with q̃, given by

H̃(X,C)2,0 = H2,0(X), H̃(X,C)1,1 = Cα⊕H1,1(X)⊕Cβ, H̃(X,C)0,2 = H0,2(X),

where H̃(X,C) := H̃(X,Q)⊗Q C. There is also a grading given by

α = −2, ω = 0 for every ω ∈ H2(X,Q), β = 2.

The last piece of structure on H̃(X,Q) we want to describe is the the action
of g(X). An element λ ∈ H2(X,Q) induces an operator eλ ∈ so(H̃(X,Q)) defined
as

eλ(α) = λ, eλ(ω) = q(λ, ω)β, eλ(β) = 0.

This extends to an action of g(X) on H̃(X,Q), by letting h acts as the grading.

Theorem 3.6.2. The action induces an isomorphism

g(X) ≃ so(H̃(X,Q), q̃)

Proof. Recall that for a rational quadratic space (V, q) there is an isomorphism∧2
V

≃−→ so(V, q), x ∧ y 7→ 1

2
(q(x,−)y − q(y,−)x)

The desired isomorphism follows from this, at least at the level of vector spaces.
The computations to show that it is in fact an isomorphism of Lie algebras are
carried out in [39, Proposition 2.7].

1Here α and β are just formal classes.
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Corollary 3.6.3. An element ω ∈ H2(X,Q) has the HL property if and only if
q(ω) ̸= 0.

Proof. As before, we denote in the same way the operator eω acting on H∗(X,Q)

or H̃(X,Q). By Theorem 3.2.3 the HL property for either of these actions is
equivalent to the existence of an operator Λω which completes the pair (eω, h) to
an sl2-triple. In particular, eω has the HL property on H∗(X,Q) if and only if it
does on H̃(X,Q). For this last space this means just that

e2ω : Qα→ Qβ, α→ q(ω)β

is an isomorphism. This happens precisely if and only if q(ω) ̸= 0.

Taelman constructed, for every equivalence Φ : Db(X1) ≃ Db(X2) a Hodge
isometry ΦH̃ : H̃(X1,Q) ≃ H̃(X2,Q). The construction is different from ΦH

because it is not a ‘cohomological Fourier-Mukai transform’, but rather comes out
of a representation-theoretic construction. The following result allows to relate the
extended Mukai lattice with the Verbitsky component SH(X) (see Definition 3.3.4).

Theorem 3.6.4 ([103, Lemma 3.7]). There is a short exact sequence

0→ SH(X)[2n]
Ψ−→ SymnH̃(X,Q)

∆−→ Symn−2H̃(X,Q)→ 0.

The two maps are given as follows. Denote by x(n) ∈ SymnH̃(X,Q) the n-th
symmetric power of x ∈ H̃(X,Q). Then Ψ is defined as

λ1 . . . λk 7→ eλ1 . . . eλk
(α(n)/n!),

where the action of eλi
∈ g(X) on SymnH̃(X,Q) is by derivations.

Remark 3.6.5. By [103, Lemma 3.6] Ψ is g(X)-equivariant, and in fact is the only
g(X)-equivariant map mapping 1 to α(n)/n!. It is also clear from the definitions
that it respects the grading and the Hodge structures.

The map ∆ is called the Laplacian, and is defined on generators by

x1 . . . xn 7→
∑
i<j

q̃(xi, xj)x1 . . . x̂i . . . x̂j . . . xn.

Again, this is g(X) equivariant.

Proof of Theorem 3.6.4. Since Ψ is equivariant, and SH(X) is an irreducible g(X)
representation, it follows that Ψ is injective. Moreover

∆(Ψ(1)) = ∆(α(n)/n!) = 0

so the sequence is exact in the middle. The result follows if we know that ∆ is
surjective with irreducible kernel, which is a well-known result in representation
theory.
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Define a pairing b[n] on SymnH̃(X,Q) as

b[n](x1 · · · xn, y1 · · · yn) = (−1)ncX
∑
σ∈Sn

n∏
i=1

q̃(xi, yσ(i)). (3.16)

Then, Ψ is an isometry with respect to the pairings bSH and b[n] by [103, Proposition
3.8].

Remark 3.6.6. Recall that, with the normalization we are using, the Fujiki con-
stant cX is characterized by the property that∫

X

α2n = cX(2n− 1)!!q(α)n

for every α ∈ H2(X,Q).

Let X be a HK manifold of dimension 2n. If we take an autoequivalence Φ :
Db(X) ≃ Db(X), by Corollary 3.5.10 we get a Hodge isometry ΦSH ∈ O(SH(X)).
Since it is equivariant with respect to the action of the LLV algebra, it lives in
the normalizer group N(g(X)) of g(X) in GL(SH(X)). The following is the main
representation-theoretic ingredient that we need.

Theorem 3.6.7 ([103, Proposition 4.1 and 4.4]).
(1) There is a short exact sequence

1→ {±1} → O(H̃(X,Q))×Q∗ → N(g(X))→ 1

(2) The intersection of the normalizer with the isometries of SH(X) is:

N(g(X)) ∩O(SH(X)) ≃

{
O(H̃(X,Q)) if n is odd,
O(H̃(X,Q))/{±1} × {±1} if n is even.

Proof. This essentially follows from Theorem 3.6.4 which exhibits the Verbitsky
component as the kernel of the Laplacian. Here we just describe the two maps in
(1), for a full proof we refer to [103].

The first map is ε 7→ (ε, εn). The second map is given as follows. If φ is
an isometry of H̃(X,Q) the symmetrization Symnφ is an isometry of SymnH̃
commuting with the Laplacian. In particular, it restricts to an isometry of SH(X)
thanks to Theorem 3.6.4. The map then is (φ, λ) 7→ λSymnφ|SH(X).

Point (2) follows from (1). Indeed, for λSymnφ|SH(X) to be an isometry we
need λ to be ±1, and taking the quotient gives the result.



96 CHAPTER 3. COHOMOLOGY OF HYPER-KÄHLER MANIFOLDS

So, for every autoequivalence Φ there is an isometry ΦH̃ ∈ O(H̃(X,Q)), which
is uniquely determined up to a sign. Define the sign of ΦH̃ as

ε(ΦH̃) :=

{
1 if n is odd,
detΦH̃ if n is even.

(3.17)

Then, the proposition above implies the following.

Theorem 3.6.8 ([103, Theorem C]). Let X be a HK manifold of dimension 2n,
and assume that either n is odd or b2(X) is odd. Let Φ : Db(X) ≃ Db(X) be
an autoequivalence. Then, there exists a Hodge isometry ΦH̃ making the following
diagram commute

SH(X) SH(X)

SymnH̃(X,Q) SymnH̃(X,Q)

Ψ

ε(ΦH̃)ΦSH

Ψ

SymnΦH̃

Proof. The isometry ΦH̃ is defined above, and the commutativity of the diagram
is clear from the definition. Notice that if b2(X) is odd then:

SO(H̃(X,Q))× {±1} ∼= O(H̃(X,Q)) (φ, λ)→ λφ,

with inverse given by ψ 7→ ((detψ)ψ, detψ). It only remains to see that it is a
Hodge isometry, but this follows from the commutativity and the fact that Ψ is a
Hodge isometry.

Remark 3.6.9. Everything still applies to the more general case of an equivalence
Φ : Db(X1) ≃ Db(X2) between two different HK manifolds, provided they are of
one the known deformation types. Indeed, X1 and X2 are as above, then they
are also deformation equivalents, as can be seen just by checking the list. Then
one can just choose an isometry H2(X1,Q) ∼= H2(X2,Q) which allows to identify
the quadratic vector spaces H̃(X1,Q) and H̃(X2,Q). With this identification, the
above arguments still work.

Notice also that, for the known deformation types, the assumption of Theo-
rem 3.6.8 are always satisfied.

Example 3.6.10. If L ∈ Pic(X) is a line bundle, the tensorization by L is an au-
toequivalence. Let λ = c1(L) ∈ H2(X,Z), then the induced isometry on H̃(X,Q)
is

Bλ(rα + µ+ sβ) = rα + µ+ rλ+

(
s+ q(λ, µ) + r

q(λ, λ)

2

)
β. (3.18)



3.6. EXTENDED MUKAI LATTICE 97

Indeed, Bλ ∈ SO(H̃(X,Q)) is the exponential of the nilpotent operator eλ ∈
so(H̃,Q). Hence, it acts on SH(X) by the exponential of eλ, which means by
multiplication by exp(λ). Since the latter is the action in cohomology induced by
tensorization by L, uniqueness of ΦH̃ gives the result.

3.6.1 Geometric interpretation

So far the classes α and β in H̃(X,Q) are purely abstract classes, but the exact
sequence of Theorem 3.6.4 allows us to give a geometric interpretation for them.
Before doing that, we recall the following fact.

Theorem 3.6.11 ([37, 51]). Let ω ∈ H4i(X,R) be a class that remains of type
(2i, 2i) on every small deformation of X. Then, there exists a constant C(ω) ∈ R
such that ∫

X

a2n−2iω = C(ω)q(a)n−i,

for every a ∈ H2(X,R).

This constant C(ω) is called generalized Fujiki constant. Notice that C(1)
differs from cX of Remark 3.6.6 by the factor (2n− 1)!!.

Definition 3.6.12 ([17, Section 3]). Let X be a HK manifold of dimension 2n.
For every 1 ≤ i ≤ n, denote by q2i ∈ SH4i(X,Q) the class defined by the property∫

X

a2n−2iq2i = cX
(2n− 2i)!

2n−i(n− i)!
q(a)n−i = cX(2n− 2i− 1)!!q(a)n−i, (3.19)

for every a ∈ H2(X,Q). For i = 0 we set q0 := 1.

Remark 3.6.13. If a non-zero class ω ∈ SH(X)2i is monodromy invariant (i.e. it
stays of type (i, i) for every small deformation of X), then i = 2j must be even,
and ω is a multiple of q2j by Theorem 3.6.11. Indeed, the polynomial on H2(X,Q)

P (a) :=

∫
X

a2n−i ∪ ω

vanishes on {a ∈ H2(X,Q) | q(a) = 0}. In particular, it has even degree, so i is
even.

To relate α and β with these q2i, we consider the map

T : SymnH̃(X,Q)→ SH(X) (3.20)

defined as the orthogonal splitting of the injection Ψ. It is g(X)-equivariant,
because it is a projection onto an irreducible subrepresentation. For an element
x ∈ H̃(X,Q) we denote by x(n) ∈ SymnH̃(X,Q) the n-th symmetric power.
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Proposition 3.6.14 ([17, Lemma 3.5]). For 0 ≤ i ≤ n we have

T (α(n−i)β(i)) = (n− i)!q2i.

Proof. For i = 0 we have T (α(n)/n!) = T (Ψ(1)) = 1. For i ≥ 1, by definition
T (α(n−i)β(i)) ∈ SH(X)4i, so we need to prove that∫

X

x2n−2iT (α(n−i)β(i)) =
(2n− 2i)!

2n−i
q(x)n−i,

for every x ∈ H2(X,Q). We have∫
X

x2n−2iT (α(n−i)β(i)

) = bSH(x
2n−2i, T (α(n−i)β(i))) = b[n](Ψ(x2n−2i), α(n−i)β(i)).

Using that Ψ(x2n−2i) = e2n−2i
x (α(n)/n!), and doing explicit calculations we con-

clude. We refer to [17] for details.

Following [17, (3.1)] define the constant

rX :=
C(c2(X))2nn!(2n− 1)

(2n)!24cX
∈ Q (3.21)

The explicit value for the known deformation types is

rX =

{
n+3
4

for K3[n] or OG10 type
n+1
4

for Kumn or OG6 type
(3.22)

Corollary 3.6.15 ([17, Lemma 3.3]). The projection of the square root of the Todd
class onto the Verbitsky component is

(td
1/2
X )SH =

∑
i

riX
i!
q2i = T

(
(α + rXβ)

(n)

n!

)
.

Proof. Again we refer to [17] for the full proof, here we just outline the argument.
The idea is a simple but often useful one. We exploit the relation (cf [90])∫

X

td1/2 exp(ω) = (1 + λ(ω))n
∫
X

td
1/2
X , (3.23)

where ω is any class in H2(X,R) and λ(ω) is its characteristic value (cf [90, Def-
inition 17]). Evaluating it in tω, for t ∈ R, we get an equation between two
polynomials. Comparing the coefficents in the various degrees, and using Propo-
sition 3.6.14 we get the result.
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3.7 Mukai lattice and Hochschild cohomology
In this section we explore the relationship between the extended Mukai lattice and
the second Hochschild cohomology. As a result we will obtain a way of computing
the action of an equivalence on HH2.

Consider the morphism

µ : HT2(X)→ H̃(X,C), η 7→ e′η(σ). (3.24)

It is the composition

HT2(X)
e′−→ g(X)

evσ−−→ H̃(X,Q),

Lemma 3.7.1 ([77]). The morphism µ is injective. Moreover, it satisfies

µ(H0(
∧2

TX)) = Cα, µ(H1(TX)) = H1,1(X), µ(H2(OX)) = Cβ.

Proof. Consider the analogous morphism

H2(X,C)→ H̃(X,C) λ 7→ eλ(α).

By definition it is injective, and the image is the degree 0 component. This mor-
phism is obtained by conjugating µ with the action of η, as shown in (3.14). It
follows that µ is injective. Moreover, by (3.13) the operator η exchanges the
eigenspaces of h and h′, which implies the rest of the statement.

A general version (without assumptions on the dimension or the b2) of Theo-
rem 3.6.8 can be stated as follows. The proof follows from Theorem 3.6.7 in the
same way.

Lemma 3.7.2. Let Φ : Db(X1) ≃ Db(X2) be an equivalence between HK manifolds.
Then, there exists a Hodge similitude ΦH̃ and a scalar λ ∈ Q∗ such that the
following diagram commutes

SH(X) SH(X)

SymnH̃(X,Q) SymnH̃(X,Q)

Ψ

ΦSH

Ψ

λSymnΦH̃

In particular, ΦH̃ is equivariant with respect to Φg that is:

Φg(f).ΦH̃(x) = ΦH̃(f.x)

for every f ∈ g(X) and x ∈ H̃(X,Q).
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Here by similitude we mean an element of O(H̃(X,Q))×Q∗. Since ΦH̃ respect
the Hodge structure, there is a constant c ∈ C∗ such that ΦH̃(σ) = c′σ. If moreover
ΦH̃ is an isometry (e.g. if n is odd or b2(X) is odd), then |c′| = 1.

Proposition 3.7.3. Let Φ : Db(X1) ≃ Db(X2) be an equivalence of HK manifolds.
Then there is c ∈ C∗ such that

c · ΦHT = µ−1 ◦ ΦH̃ ◦ µ.

Proof. First notice that, since ΦH̃ respects the Hodge structure, it maps the (1, 1)
part to itself. The (1, 1) part coincides with the image of µ, hence the statement
makes sense. By the construction of Φg in Corollary 3.5.9, we see that the diagram

HT2(X1) g(X1)

HT2(X2) g(X2)

≃ ΦHT

e′

≃ Φg

e′

is commutative. Which, combined with the lemma above, implies

e′ΦHT(µ)(Φ
H̃(σ))) = ΦH̃(e′µ(σ))).

Using, ΦH̃(σ) = cσ this gives the statement.



Chapter 4

Atomic and modular sheaves

4.1 Introduction
In the first part of this chapter we review the papers [17, 15, 77], which introduce
the notion of an atomic object, and the papers [94, 93] which deal with modular
sheaves.

To introduce the notion of atomicity, we take the point of view of Markman
[77], and we deal with the obstruction map first. To any object E ∈ Db(X) there
is associated a map

χE : HT2(X)→ Ext2(E,E)

which measures the obstruction to lift E along a non-commutative deformation.
Then we say that E is 1-obstructed if χE has rank one. This is a very strong
condition on E, and we expect that it should be related to the uniqueness of the
symplectic form on a moduli space.

More precisely, assume that M is a moduli space of stable sheaves on X. In
Section 4.8.2 we show that if η ∈ HT∗(X), the map

τη : Ext
1(E,E)× Ext1(E,E)→ C, (a, b) 7→ Tr(χE(η) ◦ a ◦ b) (4.1)

defines a closed two form on the smooth locus of M. If we want M to be a
smooth projective HK, it should have a unique symplectic form. The expression
of τη suggests that the sheaves it parametrizes should be 1-obstructed.1

The issue here is that we don’t know if the rank of the obstruction map is
constant in families of stable sheaves. To remedy this one can investigate the
situation at a cohomological level. In complete analogy to the previous case, there
is a cohomological obstruction map

χH
E : HT2(X)→ H∗(X,C)

1This turns out not to be true in examples, but we feel it is a useful heuristic.
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which measures the obstruction for a class to remain of Hodge type along a non-
commutative deformation. We say that E is cohomologically 1-obstructed if χH

E

has rank one. A priori this is a weaker notion than 1-obstructedness, but it is
conjectured that for a stable sheaf the two are equivalent.

The cohomologically 1-obstructed objects are also called atomic (the name
comes from [15]) Actually, the original definition of atomic object involves the ac-
tion of the LLV algebra, see Definition 4.2.16, but it is equivalent to cohomological
1-obstructedness (see Theorem 4.2.17).

The most important feature of an atomic object is its exteded Mukai vector

ṽ(E) ∈ H̃(X,Q).

Besides being invariant, up to constants, via derived equivalences, it is also inti-
mately related to the usual Mukai vector. Indeed, if

T : SymnH̃(X,Q)→ SH(X)

denotes the orthogonal projection (3.20), then we have

T
(
ṽ(E)(n)

)
= av(E)

where a ∈ Q is a non-zero constant, see Proposition 4.3.2.
Using this fact in Section 4.3.2 we give the explicit formula of the Mukai vector

of an atomic sheaf on a fourfold. In the same way, in Section 4.3.3, we compute the
projection onto the Verbitsky component of the discriminant of an atomic sheaf,
which turns out to be

∆(E)SH =
(
q̃(ṽ(E), ṽ(E)) + 2rXr(E)

2
)
q2.

This shows also that an atomic torsion-free sheaf is modular. This implication is
useful because we are ultimately interested in studying moduli of stable atomic
sheaves, and stability behaves for modular sheaves as it does for sheaves on sur-
faces. The chain of relationships between these notion can be summarized as
follows.

1− obstructed Atomic Modular

FalseConjecture
assuming stability

The last part of the chapter, Section 4.8 is original work. Here we study the
geometry of moduli spaces of atomic sheaves, with the most important result being
Theorem 4.8.8.
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Theorem 4.1.1 (Theorem 4.8.8). Let X be a hyper-Kähler manifold of dimension
at least four, and E → S×X a family of slope stable projectively hyperholomorphic
vector bundles. Assume moreover that S is integral and normal, and that the
function

s→ ext1(Es, Es)

is constant on an open U ⊂ S, with complement S − U of codimension at least
two. Then it is constant on all of S.

We see that the important condition for the smoothness of the moduli space
is that it parametrizes projectively hyperholomorphic bundles. This is always the
case for modular sheaves on a hyper-Kähler manifold of type K3[2].

We give a brief overview of the argument to give the reader a feeling for the
ideas which come in to play. Assume that E is a vector bundle over S ×X, with
the property that for for every s ∈ S the sheaf Es is slope stable and projectively
hyperholomorphic. We anticipated in Theorem 0.3.3 that cup product with σ ∈
H2(X,OX) induces an isomorphism

Ext1(Es, Es)→ Ext2n−1(Es, Es).

It is not hard to see that this isomorphism is induced by Equation (4.1) where
η = σ. We show in Section 4.8.2 that this form globalizes to a morphism

Ext1π(E , E)→ Ext2n−1(E , E)

compatible with the base change maps

Ext iπ2
(E , E)|s → Exti(Es, Es), for i = 1, 2n− 1.

The idea behind the proof of Theorem 4.8.8 is to use this section to compare the
two base change maps, and deduce via the Cohomology and base change Theorem
that Ext1π2

(E , E) is locally free, and the base change

Ext1π2
(E , E)|s → Ext1(Es, Es)

is an isomorphism.

4.1.1 Structure of the chapter

In Section 4.2 we begin by reviewing the theory of first order non commutative
deformations of a variety X, following [104]. The main result we recall is Propo-
sition 4.2.7, which naturally leads to the definition of the obstruction map. Then
we discuss the cohomological obstruction map, we recall the definition of atomic
objects, and we show that it coincides with cohomologically 1-obstructed.
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In Section 4.3 we investigate the numerical properties of atomic objects. On
fourfolds, we compute their Mukai vector in terms of the extended Mukai vector.
In general, we compute their discriminant and show that atomic implies modular.
Lastly, we compute the Euler pairing χ(E,E) as a function of the extended Mukai
vector ṽ(E).

In Section 4.4 we slightly extend the definition of an atomic sheaf to the twisted
case. This will be relevant in Chapter 6. We do not generalize the entire theory,
but we limit ourself to explain what is the extended Mukai vector in that case.

In Section 4.5 we recall the first examples of atomic bundles which appeared
in the literature. We follow the works of O’Grady [94, 93] and Markman [77].

In Section 4.6 we deal with the case of atomic objects supported on Lagrangians
submanifolds. Following [15], we recall the conditions for the structure sheaf of a
Lagrangian to be atomic in Theorem 4.6.2. We also present in Theorem 4.6.6 a
slight generalization in the case of dimension four. This is based on the compu-
tations in Section 4.3 and gives numerical conditions for any object supported on
a Lagrangian surface to be atomic. We also review some geometric examples of
Lagrangians which satisfy these conditions.

In Section 4.7 we review the theory of slope stability for modular sheaves as
developed in [94, 93]. In particular we recall the wall and chamber decomposition,
and how to check stability for modular sheaves on a Lagrangian fibration. Of
particular importance for later is the notion of a suitable polarization, see Defini-
tion 4.7.8.

In Section 4.8 we prove some of the main results of this thesis, namely Theo-
rem 4.8.8. In doing so, we also show that the obstruction map globalizes and it
gives rise to a morphism

HH2(X)→ H0(M,Ω2
M)

which allows to construct holomorphic two forms on the moduli space.

4.2 Obstruction map

4.2.1 Non commutative deformations, after Toda

Let X be a smooth projective variety. A first order deformation of X is a cartesian
diagram

X X

SpecC SpecC[ε]/(ε2)

π

⌟
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where π is a flat map. It is well known that first order deformations of X are
parametrized by the cohomology group H1(X,TX). There is a similar theory for
infinitesimal deformations of the abelian category Coh(X), whose the deformations
are controlled by HH2(X), see [74, 73]. Here we will not need the full theory, and
so we roughly explain how to associate a deformation of Coh(X) to an element in
HH2(X), for more detaiils see [104, Section 4]. The construction goes through the
(unmodified) HKR isomorphism (3.8)

IHKR : HH2(X) ≃ HT2(X) = H2(X,OX)⊕H1(X,TX)⊕H0(X,
∧2

TX).

Take an element v ∈ HH2(X) and write IHKR(v) = (α, β, γ) ∈ HT2(X). We
want a C[ε]/(ε2)-linear category Coh(X, v). For this, we first construct a sheaf
of C[ε]/(ε2) algebras O(β,γ)

X , and then use α to take twisted sheaves in the usual
sense. Notice that:

(1) The element β ∈ H1(X,TX) corresponds to a first-order (usual) deformation
X of X, as recalled before.

(2) The element γ gives rise to a bidifferential operator OX ×OX → OX .
So, as Oβ,γ

X we take the sheaf OX with multiplication modified by the bidifferential
operator γ. The element α ∈ H2(X,OX) can be represented by a Čech cocycle
{αijk}ijk, which can be lifted to a 2-cocycle of Oβ,γ

X by α̃ijk := {1− αijkε}ijk.

Definition 4.2.1 ([104, Definition 4.4]). The category Coh(X, v) is the category
of α̃-twisted coherent modules over the sheaf of non-commutative algebras Oβ,γ

X .
We also define the C[ε]/(ε2)-linear category

Db(X, v) := Db(Coh(X, v)).

This construction is compatible with the action of derived equivalences, in
a way which gives a concrete interpretation for the induced isomorphism ΦHH :
HH2(X1) ≃ HH2(X2). From the construction of Oβ,γ

X it follows that there is a
morphism of algebras

i : Oβ,γ
X → OX .

This induces two functors

i∗ : D
b(X)→ Db(X, v) Li∗ : Db(X, v)→ Db(X) (4.2)

which realize Db(X) as the ‘central fiber’ of the first order non commutative de-
formation Db(X, v). Lastly, denote by J : HH2(X) ≃ HH2(X) the automorphism
obtained by

(α, β, γ) 7→ (α,−β, γ)

after applying IHKR.
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Theorem 4.2.2 ([104, Theorem 1.2]). Let ΦE : Db(X1) ≃ Db(X2) be an equiv-
alence between smooth projective varieties with Fourier-Mukai kernel E, and let
ΦHH

E : Db(X1) → Db(X2) the induced isomorphism. Then, there exists an object
Ẽ ∈ Dperf(X1 ×X2,−J(v1)⊞ v2) inducing a Fourier-Mukai equivalence

ΦẼ : Db(X1, v1) ≃ Db(X2, v2)

such that Li∗Ẽ ∼= E, if and only if ΦHH(v1) = v2.

For the proof of this result we refer to [104]. The main difficulty can be ab-
stracted by the following general question:

Question: Given an object E ∈ Db(X) and a class v ∈ HH2(X), when can we lift
E to a perfect complex Ẽ ∈ Dperf(X, v) such that Li∗Ẽ ∼= E?

4.2.2 Obstruction to lifting a deformation

We first recall how to deform a coherent sheaf F along a first order (commutative)
deformation of X. Let X be a smooth projective variety. Consider the extension

0→ ∆∗Ω
1
X → OX×X/I

2
∆ → ∆∗OX → 0 (4.3)

coming from the isomorphism ∆∗Ω
1
X ≃ I∆/I

2
∆. The universal Atiayh class is

the class AtX ∈ Ext1X×X(O∆,∆∗Ω
1
X) represented by the sequence above. Taking

Fourier-Mukai transforms, we obtain a natural transformation

Φ∆∗(OX) → Φ∆∗Ω1
X
[1].

Since Φ∆∗(OX) = IdX and Φ∆∗Ω1
X
= −⊗ Ω1

X , for every F ∈ Db(X) we have a map

F → F ⊗ Ω1
X [1] ∈ Ext1(F, F ⊗ Ω1

X).

This is called the Atiyah class AtX(F ) of F .

Remark 4.2.3. Assume F is a locally-free sheaf, and let J1
X(F ) := ΦOX×X/I2∆

(F )
be the first jet bundle. It is easy to see that a splitting of the sequence

0→ F ⊗ Ω1
X → J1

X(F )→ F → 0

exists if and only if there is an algebraic connection F → F ⊗ Ω1
X . So we can

interpret the Atiyah class At(F ) as the obstruction to the existence of an algebraic
connection.
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Let F be a coherent sheaf on smooth projective X. Define the obstruction map
obF : H1(X,TX)→ Ext2(F, F ) by the composition

obF : Ext1X(Ω
1
X ,OX)

−⊗idF−−−−→ Ext1(Ω1
X ⊗ F, F )

−◦AtX(F )−−−−−−→ Ext2(F, F ). (4.4)

where ◦ denotes the Yoneda pairing. The following classical result justifies the
name.

Theorem 4.2.4 ([56, p. IV.3.1.8]). Let k ∈ H1(X,TX) be a first order deformation
of X, and denote i : X ↪→ X the embedding of X into the total space. There exists
a flat coherent sheaf F on X such that F|X = F if and only if obF (k) = 0.

To extend this to the non commutative deformations in HT2(X) we proceed as
follows. Combining the Yoneda product with the exterior product on the algebra
Ω∗

X one gets a product

∪E : Exti(E,E ⊗ Ωp
X)⊗ Extj(E,E ⊗ Ωq

X)→ Exti+j(E,E ⊗ Ωp+q
X ).

More explicitly call ε : Ωp
X ⊗ Ωq

X → Ωp+q
X the natural map. Then for f ∈

Exti(E,E ⊗ Ωp
X) and g ∈ Extj(E,E ⊗ Ωq

X) the element f ∪E g is obtained as
the following composition

E
f−→ E ⊗ Ωp

X [i]
g⊗id

Ω
p
X

[i]

−−−−−→ E ⊗ Ωq
X [j]⊗ Ωp

X [i]
ε[i+j]−−−→ E ⊗ Ωp+q

X [i+ j].

In particular in this way we can define the powers of the Atiayh class, and its
exponential

exp(AtX(E)) =
∑
q

AtX(E)
q

q!
∈
⊕
q

Extq(E,E ⊗ Ωq
X). (4.5)

We can also pair an element in Hp(X,
∧q TX) with AtX(E)

q via

Extp(Ωq
X ,OX)× Extq(E,E ⊗ Ωq

X)→ Extp+q(E,E), v 7→ (idE ⊗v) ◦ AtX(E)q.

Extending this by additivity to the exponential we define:

Definition 4.2.5. The (non-commutative) obstruction map for an object E ∈
Db(X) is defined by

χE : HT2(X)→ Ext2(E,E), v 7→ (idE ⊗v) ◦ exp(AtX(F )).

In components it becomes

(α, β, γ) 7→ α⊗ idF +(β ⊗ idF ) ◦ AtX(F ) + (γ ⊗ idF ) ◦ At2X(F )/2.
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Remark 4.2.6. This definition also works for HTk(X) for every k:

HTk(X)→ Extk(E,E), v 7→ v ◦ exp(AtX(F )).

In fact, one can put all of these toghether to get a graded algebra morphism
HT∗(X)→ Ext∗(F, F ), as we will see later.

As the name suggests this map is the non-commutative version of the map
above, in the sense that it gives the obstruction to lift a perfect complex along a
non commutative deformation of X.

Proposition 4.2.7 ([104, Proposition 6.1]). Let E ∈ Db(X) and v ∈ HT2(X).
Assume that χE(v) = 0, then there exists a perfect complex Ẽ ∈ Db

perf(X, v) such
that Li∗E ≃ E.

4.2.3 Relation to Hochschild cohomology

There is a more functorial way to describe the obstruction map via the (unmod-
ified) HKR isomorphism IHKR : HH∗(X) ≃ HT∗(X) introduced in (3.8). Re-
call that the Fourier–Mukai transform with kernel ∆∗OX [k] ∈ Db(X × X) is
the shift [k] functor. In this way, we can represent the objects in HHk(X) =
Extk(∆∗OX ,∆∗OX [k]) as natural transformations

idDb(X) → idDb(X)[k].

So, for every E ∈ Db(X) we get a morphism of graded algebras

evE : HH∗(X)→ Ext∗(E,E), η → ηE : E → E[k].

That is, we interpret η ∈ HHk(X) as a natural transformation and we evaluate it
at E. This is related to the obstruction map defined above by the following result.

Proposition 4.2.8 ([43, Theorem A]). There is a commutative diagram

HH∗(X) HT∗(X)

Ext∗(E,E)

IHKR

evE χE

In particular, the obstruction map χ : HT∗(X) → Ext∗(E,E) is a morphism of
graded algebras.
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Remark 4.2.9. With this interpretation of the obstruction map it is immediate
that it is compatible with derived equivalences.

HH2(X1) HH2(X2)

Ext2(E,E) Ext2(Φ(E),Φ(E))

ΦHH

evE evΦ(E)

Φ

Before giving the proof we explain the relation between the HKR isomorphism
and the exponential of the universal Atiayh class:

exp(AtX) : ∆∗OX →
⊕
i

∆∗Ω
i
X [i].

Consider an element u ∈ Hp(X,
∧q TX) as a morphism

u : ΩX → OX [p].

Then, the element (IHKR)−1(u) ∈ HHp+q(X) = Hom(∆∗OX ,∆∗OX [p + q]) can be
described as the following composition

∆∗OX

AtqX−−→ ∆∗Ω
q
X [q]

∆∗u[q]−−−→ ∆∗OX [p+ q]. (4.6)

This follows from [27, Proposition 4.4], and writing down the inverse of the HKR
isomorphism as in [27, Proof of Corollary 4.2].

Proof of Proposition 4.2.8. We prove that for u ∈ Hp(X,
∧q TX), we have

evE((I
HKR)−1(u)) = χE(u).

Taking Fourier-Mukai of the composition (4.6) we get natural transformations

idX =⇒ −⊗ Ωq
X [q] =⇒ IdX [p+ q],

where the first one is induced by AtqX and the second one by ∆∗u[q]. Evaluating
at E gives

E
Atq(E)−−−−→ E ⊗ Ωq

X [q]
idE ⊗u[q]−−−−−→ E[p+ q],

which is exactly the formula in Definition 4.2.5. For a more general statement see
also [104, Lemma 5.8].

Remark 4.2.10. Consider the case of an object E ∈ Db(X) with non-zero rank.
Then if σ ∈ H2(X,OX) is the conjugate of the symplectic form, we get that

χE(σ) = idE ⊗σ : E → E[2].

Under the trace map Tr : Ext2(E,E)→ H2(X,OX) we see that this class becomes
rk(E) · σ, as showed in [48, Lemma 10.1.3(i)] In particular is non-zero, so that
H2(X,OX) ⊂ HT2(X) is not contained in the kernel of the obstruction map.
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4.2.4 Cohomological obstruction map

A necessary condition for an object E ∈ Db(X) to deform along a (commutative)
deformation π : X → ∆ of X is that its chern character ch(E) ∈ H∗(X,Q) remains
of Hodge type on X . If the base space is geometric (e.g. a smooth curve) this
means that the parallel transport of ch(E) along the fibers of the local system
R∗π∗Q remains of Hodge type. If we take a first order deformation, one has to
take the limit of this condition. That is we ask that under the contraction map

H1(X,TX)→
⊕
p≥1

Hp+1(X,Ωp−1
X ), v 7→ v⌟ ch(E)

the class k corresponding to the deformation vanishes. Extending to the non
commutative deformations we define the cohomological obstruction map.

Definition 4.2.11 ([77, 15]). Let E ∈ Db(X) define the cohomological obstruction
map

χH
E : HT2(X)→ H∗(X,C), u 7→ u⌟v(E),

where v(E) is the Mukai vector of E.

Remark 4.2.12. As usual we have replaced the Chern character by the Mukai
vector, because the latter is more convenient when dealing with derived categories.
Indeed, if Φ : Db(X1) ≃ Db(X2) is an equivalence, we have a commutative diagram

HH2(X1) HH2(X2)

H∗(X1,C) H∗(X2,C).

ΦHH

χE◦IH

ΦH

χΦ(E)◦IH

Definition 4.2.13. Let X be a HK manifold and E ∈ Db(X). We say that E is
(numerically) 1-obstructed if the (cohomological) obstruction map has rank one.

Intuitively we would expect that if an object E ∈ Db(X) deforms along
u ∈ HT2(X) then so must do its Mukai vector. This is clearly true for com-
mutative deformation, but there is a subtlelty which must be accounted for when
also considering non-commutative deformation.

Define the Duflo isomorphism

D : HT2(X) ≃ HT2(X), v 7→ td
−1/2
X ⌟v. (4.7)

This is the modification required to make the HKR isomorphism compatible with
the algebraic structure on Hochschild cohomology.
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Proposition 4.2.14. If u ∈ HT2(X) is such that χE(u) = 0, then D(u)⌟v(E) = 0.
That is

D(ker(χE)) ⊆ kerχH
E .

In particular, a 1-obstructed object E is numerically 1-obstructed.

Proof. This follows from [43, Lemma 3.2] together with the fact that the mod-
ified HKR maps the action of HH∗(X) on HH∗(X) to the action of HT∗(X) by
contraction on cohomology.

Remark 4.2.15. On a K3 surface S the cohomological obstruction map is a linear
map

χH
E : HT 2(S)→ H2(S,OS).

So every object with non-zero Mukai vector is numerically 1-obstructed. Indeed,
after tensor product with a line bundle and spherical twists we can always assume
that the rank is non-zero, so the cohomological obstruction map does not vanish.
This is also immediate using Theorem 4.2.17.

Notice that, even on a K3 surface, it is not true that every object is 1-
obstructed. For example, if L ∈ Pic(S) is a non-trivial line bundle, then OS ⊕ L
has obstruction map of rank two, as shown in [15, Example 4.4].

On a higher dimensional hyperkähler, the cohomological obstruction map can
take different values, and one could try to classify objects depending on this rank.
The rank is zero only for very degenerate objects: their Mukai vector would have
to be annihilated by the action of the whole LLV algebra, and this imposes very
strong numerical conditions, see [15, Appendix A].

4.2.5 Atomic objects

The next step are the objects with cohomological obstruction map of rank one,
which are the object of interest in this thesis. They have been indipendently
studied by Markman [77] and Beckmann [15] because their behaviour is very similar
to that of objects on a K3 surface.

Definition 4.2.16 ([15, Definition 1.1]). Let X be a HK manifold. An object
E ∈ Db(X) is called atomic if there exists a non zero ṽ(E) ∈ H̃(X,Q) such that

Ann(v(E)) = Ann(ṽ(E))

as sub-Lie algebras of g(X).

The original definition of atomic object is the following equivalent condition.
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Theorem 4.2.17 ([15, Theorem 1.2]). An object E ∈ Db(X) is atomic if and only
if is numerically 1-obstructed.

Before giving the proof, recall that the action of HT2(X) on H∗(X,C) factors
as the composition

HT2(X) ↪→ g(X)⊗ C ⊂ End(H∗(X,C)),

where the first inclusion comes from Theorem 3.5.8. The kernel of the obstruction
map is the intersection

AnnC(v(E)) ∩ HT2(X) ⊂ HT2(X).

In a similar way one can act via HT2(X) on the Mukai lattice H̃(X,C) with
operators which have degree two with respect to the grading induced by h′. Hence
we get a pairing

HT2(X)× H̃(X,C)(1,1) → H2(X,OX) = Cσ, (4.8)

where H̃(X,C)alg = Cα ⊕H1,1(X)⊕ Cβ is the (1, 1) part of the extended Mukai
lattice. By [77, p. 6.3] this pairing is non-degenerate.

Lemma 4.2.18. Let v ∈ H∗(X,Q) be a non-zero algebraic class. Assume that
Ann(x)C ∩ HT2(X) is a hyperplane in HT2(X). Then the Lie algebra Ann(x)C is
abstractly isomorphic to so(b2(X) + 1).

Proof. If we conjugate with η, as in Theorem 3.5.8, the decomposition in Theo-
rem 3.2.14 (1), we get a ‘Hochschild’ version of the same decomposition

g(X)C = g′(X)C,−2 ⊕ g′(X)C,0 ⊕ g′(X)C,2,

where the g′(X)C,i are the weight spaces for the action of h′. Moreover, we have
g′(X)C,−2

∼= g′(X)C,2 ∼= HT2(X), and writing

g′(X)C,0 = Ch′ ⊕ g′(X)C,0,

we get that g′(X)C,0 ≃ so(HT2(X)), where HT2(X) is equipped with the quadratic
form induced by the isomorphism HT2(X) ≃ H2(X,C). Since the class x is
algebraic, it has pure weight zero for the action of h′, hence its annihilator is
compatible with the decomposition above

Ann(x)C = Ann(x)C,−2 ⊕ Ann(x)C,0 ⊕ Ann(x)C,2. (4.9)

Moreover, we can write Ann(x)C,0 = Ch′ ⊕ A0 for some A0. The subspace

W := Ann(x)C,2 = Ann(x)C ∩ HT2(X) ⊂ HT2(X)
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is a hyperplane by assumption. By conjugating (3.3) with η we get that the adjoint
action of A0 on W gives a map

A0 → so(W ),

which factors via the restriction so(HT 2(X)) → so(W ). Since W is a hyperplane
this map is injective, because a skew-symmetric matrix has even rank. Since we
also have the inclusion [W−2,W2] ⊆ A0, we see that A0 ≃ so(W ) and the thesis
follows as in Theorem 3.6.2.

Proof of Theorem Theorem 4.2.17. Assume first that

Ann(v(E)) = Ann(ṽ(E))

for some ṽ(E) ∈ H̃(X,Q). Since v(E) is algebraic, we have that h′(v(E)) = 0, so
h′(ṽ(E)) = 0. This means that ṽ(E) ∈ H̃(X,C)1,1. Since (4.8) is a perfect pairing,
we see that the intersection

AnnC(ṽ(E))C ∩ HT2(X)

has codimension one. Since this is equal to the kernel of the cohomological ob-
struction map, we conclude.

Now assume that the kernel of the obstruction map

W := Ann(v(E))C ∩ HT2(X).

has codimension one. Again, since (4.8) is a perfect pairing, there exists a unique
(up to constants) non-zero ṽ ∈ H̃(X,C)1,1 which pairs trivially with W . We want
to show the equality

Ann(v(E))C = Ann(ṽ)C.

First note that, since both are algebraic classes, the operator h′ belongs to both
annihilators. Hence, for every µ ∈ W with the HL property (which exists by
Corollary 3.6.3), we have

0 = h′(v(E)) = [e′µ,Λ
′
µ](v(E)) = e′µ(Λ

′
µ(v(E))). (4.10)

Since e′µ has the HL property, we also get that Λ′
µ(v(E)) = 0. Call hW the sub-Lie

algebra of g(X) generated by the sl2 triples associated to elements in W . We
proved the inclusion

hW ⊂ Ann(v(E))C. (4.11)

Since ṽ is defined by pairing trivially with W , the same proof works giving

hW ⊂ Ann(ṽ)C. (4.12)



114 CHAPTER 4. ATOMIC AND MODULAR SHEAVES

Since the Lie algebra g(X)C is abstractly isomorphic to so(b2(X) + 2), the annihi-
lator of a non-zero element is abstractly isomorphic to so(b2(X) + 1). Moreover,
one can prove

hW ≃ so(b2(X) + 1). (4.13)

with the same computations as Theorem 3.6.2. Hence both the inclusions above
are equalities by dimensional reasons. The fact that ṽ is actually defined over Q
is proved in [15, Lemma 3.2] with the argument of [77, Lemma 6.9].

4.3 Extended Mukai vector

The ṽ ∈ H̃(X,Q) of Theorem 4.2.17 is called extended Mukai vector . Notice that,
if such a ṽ exists, it is only defined up to a non-zero constant. In fact, as implicit in
[77] the more natural object to work with is the line spanned by ṽ. Nevertheless,
in some cases, there is a natural normalization that one can choose, as we will
discuss in this section. It is almost immediate from the definition that it is well
behaved under derived equivalences.

Proposition 4.3.1 ([77, Theorem 6.14(4)] and [17, Section 4]). Let Φ : Db(X) ≃
Db(Y ) be a derived equivalence between HK manifolds. If E ∈ Db(X) is an atomic
object, then Φ(E) is an atomic object and

⟨ΦH̃(ṽ(E))⟩ = ⟨ṽ(Φ(E))⟩ ⊂ H̃(Y,Q), (4.14)

where ⟨x⟩ denotes the line in H̃(X,Q) spanned by x

Proof. If Φ : Db(X) ≃ Db(Y ) is a derived equivalence, then ΦH is Φg-equivariant
so

Φg(Ann(v(E))) = Ann(ΦH(v(E))) = Ann(v(Φ(E))).

By the Φg equivariance of ΦH̃ we have

Φg(Ann(ṽ(E)) = Ann(ΦH̃(ṽ(E))).

Hence Ann(v(Φ(E))) = Ann(ΦH̃(ṽ(E))), which means that Φ(E) is atomic with
extended Mukai vector ΦH̃(ṽ(E)).

The advantage of the extended Mukai vector over the usual one is that it is
valued in a much smaller dimensional vector space, but for the moment it is still
difficult to compute, since it is constructed in a rather abstract way. So, our next
goal is to relate it more explicitly with the usual Mukai vector, generalizing the
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computation in Section 3.6.1. Recall that we introduced in (3.20) the ortogonal
projection

T : SymnH̃(X,Q)→ SH(X).

It is g(X)-equivariant, hence also SO(H̃(X,Q))-equivariant.

Proposition 4.3.2 ([15, Proposition 3.3] and [77, Theorem 6.13(2)]). Let E ∈
Db(X) be an atomic object. Then T (ṽ(E)(n)) ̸= 0, and the projection onto the Ver-
bitsky component of the Mukai vector v(E)SH is a rational multiple of T (ṽ(E)(n)).

Proof. The idea is to study the action of the Lie algebra Ann(v(E)) = Ann(ṽ(E)),
and show that in SH(X) there is a unique (irreducible) trivial subrepresentation.
Since both T (ṽ(E)(n)) and v(E)SH are annihilated by Ann(v(E)), the thesis follows.

Notice that the statement is invariant under the action of SO(H̃(X,Q)), so we
can use it to simplify the computations, in a very similar way to Lemma 2.6.3.

Write ṽ = rα + λ + sβ. If r ̸= 0 we can rescale and assume r = 1, and act by
exp(−λ/r) to get it to the form

ṽ = α + kβ, (4.15)

for some k ∈ Q. If r = 0, we can first act by exp(µ) for some µ ∈ H2(X,Q) to
obtain s ̸= 0, and then exchange α and β to obtain r ̸= 0. A bit of care is needed if
b2(X) is even, since in that case the isometry exchanging α and β has determinant
−1. In this case one can fix this by also acting as −1 on a class in H2(X,Q) with
positive square. Summing up, we can always assume ṽ to have the form (4.15).

Now, take x ∈ SH(X), and assume it is killed by Ann(ṽ)). Since e′µ ∈ Ann(ṽ))
for every µ ∈ H2(X,Q), we get that x is monodromy invariant. Hence, by Re-
mark 3.6.13 we can write

x =
n∑

i=1

aiq2i, (4.16)

for some coefficents ai ∈ Q. To determine the coefficents note that if ω has the
Hard Lefschetz property, we have

Λω(β) =
2

q(ω)
ω.

This can be seen for example using

0 = h

(
1

q(ω)
ω

)
= [eω,Λω]

(
1

q(ω)
ω

)
,

which implies Λω(β) = eω(Λω(
1

q(ω)
ω)) = eω(

2
q(ω)

α). This implies that (2keω −
q(ω)Λω)(α + kβ) = 0. By assumption the same must hold for x, and we obtain
the relations

ai+1q(ω)Λω(q2i+2) = ai2k(q2i ∧ ω). (4.17)
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If we put k = rX , we are in the situations of Corollary 3.6.15; so setting x = td
1/2
SH

we obtain
ri+1
X

(i+ 1)!
q(ω)Λω(q2i+2) = 2

ri+1
X

i!
(q2i ∧ ω).

So that q(ω)Λω(q2i+2) = 2(i+1)(q2i ∧ω), and substituting in (4.17) we get ai+1 =
k

i+1
ai. So, up to multiplicative constants we have

x =
∑
i

ki

i!
q2i,

which is precisely n!T (ṽ(n)).

This property for the extended Mukai vector is extremely useful to do compu-
tations, and already very interesting on its own. Indeed, in Beckmann’s first paper
[17] he was just interested in objects having an exteded Mukai vector satisfying
this property, and only later in [15] he looked atomic objects to also account for
the other irreducible subrepresentations.

4.3.1 Normalization

If we want to give an explicit formula for the Mukai vector in terms of the extended
Mukai vector, it is useful to choose a representative for the line spanned by ṽ(E).
If the the rank or the determinant of E do not vanish, we can normalize ṽ(E) as
follows. We will see in Section 4.6 what happens if the rank is zero.

Proposition 4.3.3 ([15, Proposition 3.8] and [77, Theorem 6.13(3)]). Assume
rk(E) ̸= 0. Then ṽ(E) can be chosen of the form

rk(E)α + c1(E) + s(E)β,

for some s(E) ∈ Q.

Proof. Write
ṽ = rα + λ+ sβ,

with r = rk(E). Computing T (ṽ(n)) we get

T (ṽ(n)) = n!rn + n!rn−1λ+ . . .

By Proposition 4.3.2 this is a multiple of the projection of the Mukai vector on
the Verbitsky component, which is v(E) = r + c1(E). So we must have T (ṽ(n)) =
n!rn−1v(E), and λ = c1(E).
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Sometimes we wil call this the normalized extended Mukai vector. As we will
see later, this normalization is not always useful when doing computations; for
example, it is not preserved under derived equivalences. The question of finding
a suitable normalization, compatible with derived equivalences and Bogomolov’s
inequality (see Corollary 4.3.13), remains open in general.

For certain objects, as those in the orbit of the structure sheaf or of the
skyscraper sheaf at a point, it is partially settled in [17]. In the first case, it
turns out that the rank is always of the form rk = ±rn0 , by [17, Lemma 4.8 (iv)],
where n is half the dimension. So, if ṽ denotes the normalized extended Mukai
vector, one could choose also

ṽ0 :=
ṽ

rn−1
0

. (4.18)

This normalization is preserved under derived equivalences up to sign [17, Equation
(4.6)], and satisfies

q̃(ṽ0) = −2rX , (4.19)
by [17, Lemma 4.8(ii)].

4.3.2 On fourfolds

Using Proposition 4.3.2 we can produce an explicit formula for the Mukai vector
of an atomic sheaf on a HK fourfold.

Lemma 4.3.4. For every γ ∈ H2(X,Q) we have

T (α(n−2) · γ(2)) = (n− 2)!(γ2 − q(γ, γ)q2) ∈ SH4(X).

Proof. By definition

Ψ(γ2) = eγ · eγ(αn/n!) =
α(n−2) · γ(2)

(n− 2)!
+ q(γ, γ)

α(n−1) · β
(n− 1)!

.

The map Ψ is a section of T , so T (Ψ(γ2)) = γ2. Substituting we get

T (α(n−2) · γ(2)) = (n− 2)!

(
T (Ψ(γ2))− q(γ, γ)T (α

(n−1) · β)
(n− 1)!

)
= (n− 2)!(γ2 − q(γ, γ)q2),

where we used Proposition 3.6.14 in the last equality.

Lemma and Definition 4.3.5. Let X be a hyper-Kähler fourfold, and let λ ∈
H2(X,C). Denote by λ∨ ∈ H6(X,Q) the class such that∫

X

λ∨µ = cXq(λ, µ), for every µ ∈ H2(X,Q). (4.20)

Then we have T (λβ) = λ∨.



118 CHAPTER 4. ATOMIC AND MODULAR SHEAVES

Proof. By linearity, we can assume that q(λ, λ) ̸= 0. By definition we have

Ψ(λ3) = eλ · eλ · eλ
(
α(2)

2

)
= 3q(λ, λ)λβ.

Using that Ψ is a section of T we obtain T (λβ) = λ3

3q(λ,λ)
, which is easily seen to

satisfy the thesis.

Corollary 4.3.6. Let X be a hyper-Kähler fourfold, and E ∈ Db(X) an atomic
object with non-zero rank. Write

ṽ(E) = rα + λ+ sβ.

Then we have

v(E) = r + λ+
λ2 − q̃(ṽ(E))q2

2r
+
s

r
λ∨ +

s2

2r
q4

Proof. The symmetric square of ṽ(E) is given by

ṽ(E)(2) = r2α(2) + 2rαλ+ 2rsαβ + λ(2) + 2sλβ + s2β(2) ∈ H∗(X,Q). (4.21)

With the computations above we obtain

T (ṽ(E)(2)) = 2r2 + 2rλ+ 2rsq2 + (λ2 − q(λ, λ)q2) + 2sλ∨ + s2q4.

Dividing by 2r and rearranging the terms we obtain the formula for the Mukai
vector in the statement.

4.3.3 Discriminant and modular sheaves

Atomic sheaves are very closely related to modular sheaves. This notion was
introduced by O’Grady in [94] a few years before the works of Markman and
Beckmann, and it only looks at the commutative deformations. Intuitively, a sheaf
on a HK X is modular if it can be deformed to all commutative deformations
of X where the first chern class remains of type (1, 1). The reason why this is
interesting is that this is a crucial step in the proof (even in the classical one)
of Theorem 5.7.5, see Lemma 2.6.4. The idea is to focus the study on sheaves
satisfying this modularity property and try to replicate the proof of Theorem 5.7.5
also for higher dimensional HK.

Definition 4.3.7 ([94]). Recall that the discriminant of a torsion-free sheaf F is
the class

∆(F ) := −2 rk(F ) ch2(F ) + ch1(F )
2 ∈ H4(X,Q).

A torsion-free sheaf F is modular if the projection ∆(F )SH on the Verbitsky com-
ponent is monodromy invariant.
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Remark 4.3.8. Explicitly this means the following. By Remark 3.6.13 the mon-
odromy invariant part of SH(X)4 is spanned by q2. Hence there exists a constant
d(F ) ∈ Q such that∫

X

∆(F ) ∪ ω2n−2 = d(F )(2n− 3)!!q(ω)n−1,

for every ω ∈ H2(X,Q).

Notice that, if F can be deformed along a deformation of X, then the full
Chern character remains of Hodge type along the deformation, so of course in
particular the c1 and the discriminant do. It was observed by Verbitsky in [112]
that essentially preservation of two classes is the only obstruction to deform a
stable vector bundle.2

Theorem 4.3.9 ([112, Theorem 3.19]). Let ω ∈ H1,1(X,R) be a Kähler class, and
let E be a (possibly twisted) ω-slope vector bundle. Assume that ∆(E) remains of
type (2, 2) along the twistor line Xω → P1

ω spanned by ω. Then there exists a flat
deformation E on Xω, such that Et is stable for every t ∈ P1

ω.

A sheaf E satisfying the conclusion is called hyperholomorphic. If instead
End(E) satifies the conclusion is called projectively hyperholomorphic. For hyper-
holomorphic bundles we have an even stronger result on deformations.

Theorem 4.3.10 ([110, Proposition 6.3]). Let X be a HK manifold, and ω ∈
H1,1(X,R) a Kähler class. Let E be a ω-projectively hyperholomorphic bundle E,
and E is the deformation along the twistor line π : Xω → P1

ω. Then

Riπ∗(End(E)) ∼= OP1
ω
(i)⊗ ExtiX(E,E).

In particular, the Ext∗ algebra of Et is constant along the twistor line.

By Theorem 3.6.11, the Definition 4.3.7 is a weakening of the condition that
the discriminant remains of type (2, 2) on every deformation. Both Markman [77,
Theorem 1.2] and Beckmann [15, Proposition 1.5] proved that a torsion-free atomic
sheaf is modular. Actually, Markman proved a much stronger result, namely that
an atomic sheaf satisfies the conclusion of Theorem 4.3.9 Here we give a different
proof of the modularity, by explicitly computing the projection of the discriminant.

Proposition 4.3.11. Let F be an atomic torsion-free sheaf. Then F is modular,
and

∆(F )SH =
(
q̃(ṽ(F ), ṽ(F )) + 2rXr(F )

2
)
q2.

2This was later generalized by Markman [78, Corollary 6.11] to stable reflexive sheaves.
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Proof. Taking the n-th symmetric power of ṽ(F ) we get

ṽ(F )(n) = r(F )nα(n) + nr(F )n−1α(n−1)c1(F ) +

(
n

2

)
r(F )n−2α(n−2)c1(F )

(2)

+ nr(F )n−1s(F )α(n−1)β + . . .

Using Proposition 3.6.14 and Proposition 3.6.14 we get

T (ṽ(F )(n)) =n!r(F )n + n!r(F )n−1c1(F ) +

(
n

2

)
r(F )n−2(n− 2)!(c1(F )

2

− cXq(c1(F ), c1(F ))q2) + cXn!r(F )
n−1s(F )q2 + . . .

The projection onto SH(X) of the Mukai vector of F is a rational multiple of this
class. Since the rank is non-zero, we deduce that n!r(F )n−1v(F ) = T (ṽ(F )(n)).
Dividing by n!r(F )n−1 and comparing the terms of degree four, we get

v2(F )SH =
1

2r(F )
(c1(F )

2 − q(c1(F ), c1(F ))q2) + s(F )q2. (4.22)

On the other hand, by definition v(F ) = ch(F ) ∪ (tdX)
1
2 . Lemma 3.3 in [17] gives

(tdX)
1
2
SH = 1 + rXq2 + . . .

Taking the product with the projection of the Chern character gives

ch2(F )SH = v2(F )SH − rXr(F )q2 =
1

2r(F )
(c1(F )

2 − q(c1(F ), c1(F ))q2)

+ (s(F )− rXr(F )) q2.

Substituting ch2(F )SH in the definition of the discriminant we obtain

∆(F )SH = (q(c1(F ), c1(F )) + 2rXr(F )
2 − 2r(F )s(F ))q2

= (q̃(ṽ(F ), ṽ(F )) + 2rXr(F )
2)q2.

In particular, this implies that F is atomic.

Remark 4.3.12. The reverse implication is not true. The most natural modular
sheaf which is not atomic is, surprisingly, the tangent bundle, see [15, Proposition
8.3].

Corollary 4.3.13. If F is an atomic torsion-free slope semistable sheaf, then

q̃(ṽ(F ), ṽ(F )) + 2rXr(F )
2 ≥ 0.



4.3. EXTENDED MUKAI VECTOR 121

Proof. If F is slope semistable for a polarization H on X, Bogomolov’s inequality
gives ∫

X

∆(F ) ∪Hn−2 ≥ 0.

The thesis follows from the proposition above because∫
X

Hn−2q2 = cX(2n− 3)!!q(H)n−1

is non negative for every H ample.

Remark 4.3.14. If X = S is a K3-surface, we recover the ‘weak’ Bogomolov’s
inequality

v(F )2 ≥ −2r(F )2.

It is possible that, similarly to the case of K3 surfaces, a stronger version of the
inequality 4.3.13 holds, and equality should be related to F being a P-object.

A precise formulation of this inequality seems to be related to understanding
how to normalize the extended Mukai vector. For example, for the normalization
in (4.18) the equality

q̃(ṽ(F ), ṽ(F )) = −2rX
holds for objects in the orbit of the structure sheaf (which in particular are P-
objects).

4.3.4 Euler characteristic

Since the euler pairing of two sheaves is cohomological, by Hirzebruch-Riemann-
Roch, we can also give a formula for it with similar computations. In this section
we do it under the assumption that the Mukai vector is contained in the Verbitsky
component. Recall that there is a bilinear product bSH on SH(X), defined by

bSH(λ1 · . . . λm, µ1 · . . . µ2n−m) := (−1)m
∫
X

λ1 ∪ . . . λm ∪ µ1 ∪ · · · ∪ µ2n−m.

Lemma 4.3.15. There exists a constant C such that

bSH(T (ṽ
(n)), T (ṽ(n))) = Cq̃(ṽ)n.

Proof. Since both sides of the equality are homogeneous polynomials of degree 2n,
invariant under the action of SO(H̃(X,Q)), we can perform the same reductions
as in the proof of Proposition 4.3.2 and assume that

ṽ = α + sβ.



122 CHAPTER 4. ATOMIC AND MODULAR SHEAVES

for some s ∈ Q. By definition we have q̃(ṽ, ṽ) = −2s. Moreover, we have

ṽ(n) =
∑(

n

i

)
siα(n−i)β(i).

Applying Proposition 3.6.14 we obtain

T (ṽ(n)) =
∑ n!

i!
siq2i.

By definition of the Mukai pairing bSH we get

bSH(T (ṽ
(n)), T (ṽ(n))) =

(∑ n!

i!

n!

(n− i)!

∫
X

q2iq2n−2i

)
sn = Cq̃(ṽ, ṽ)n,

for some constant C independent of ṽ.

Theorem 4.3.16. Let E ∈ Db(X) be an atomic object with non-zero rank r.
Assume that its Mukai vector v(E) is contained in the Verbitsky component. Then

χ(E,E) = (−1)n(n+ 1)r2
(
q̃(ṽ(E))

2rXr2

)n

.

Proof. From the Hirzebruch-Riemann-Roch Theorem and the assumption that
v(E)SH = v(E) it follows that

χ(E,E) = bSH(v(E), v(E)).

Since T (ṽ(n)) = n!rn−1v(E), the previous lemma implies

bSH(r
n−1v(E), rn−1v(E)) = Cq̃(ṽ)n

for some constant C. Dividing both sides by rn we get

bSH

(
v(E)

r
,
v(E)

r

)
= Cq̃

(
ṽ

r

)n

(4.23)

To compute the constant C, we substitute ṽ = α+rXβ, the extended Mukai vector
of the structure sheaf. Since r = 1 and χ(OX ,OX) = n+1 we get C = (−1)n n+1

(2rX)n
.

Substituting C into (4.23) and rearranging we get the result.

Remark 4.3.17. The assumption that the Mukai vector is contained in the Verbit-
sky component is satisfied for every atomic E in the case of hyper-Kähler varieties
of K3[2]-type. In this case, the formula becomes

χ(E,E) = 3 ·
(
q̃(ṽ(E))

2rrX

)2

.

Note that it gives a non-trivial integral constraint on the difference ext2(E,E) −
2 ext1(E,E). Finding an independent restriction on its possible values, for example
in the form of a bound on ext2(E,E), could be a path to investigate smoothness
of the moduli space of semistable deformations of E.
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4.4 Twisted atomic sheaves

In this section we want to extend the theory of atomic sheaves to the case of
twisted sheaves. We will need this in Chapter 6. Recall that, if X is an analytic
space, given an element

α ∈ H2(X,O∗
X)

represented by a Čech cocycle {αijk}, there is the notion of α-twisted sheaves, see
[25]. Roughly speaking, an α-twisted sheaf F is a collection of sheaves Fi over an
open cover {Ui} plus transition functions φij : Fi|Uij

≃ Fj|Uij
which satisfy the

cocycle condition up to αijk.
In [54] it is shown that a twisted Fourier-Mukai equivalence ΦE : Db(X) ≃

Db(Y, α) induces an isomorphism in rational cohomology. We briefly recall how it
works in our setting, referring to [54, Proposition 1.2] for more details in the general
case. Choose a B-field B ∈ H2(Y,Q) lifting α, that is a rational cohomology class
such that

exp(B0,2) = α ∈ H2(Y,O∗
Y ).

For an object E ∈ Db(Y, α) one defines the twisted Chern character, depending
on the B-field,

chB(E) ∈ exp(B)

(⊕
p

Hp,p(Y,Q)

)
, (4.24)

and the twisted Mukai vector v(E) := chB(E) · td1/2
Y . The induced isomorphism in

cohomology is constructed as usual

ΦH
E := p2,∗

(
vp

∗
2(B)(E) · p∗1(−)

)
: H∗(X,Q) ≃ H∗(Y,Q)

It depends on the choice of the B-field, but we will often drop this dependence
from the notation if it is clear that we have fixed a B-field. On Y one can define
a weight zero Hodge structure by

H−k,k := exp(B)

( ⊕
p−q=−k

Hp,q(Y,Q)

)
. (4.25)

Then, similarly to the untwisted case we have the following.

Proposition 4.4.1 ([54, Section 4]). If ΦE : Db(X) ≃ Db(Y, α) is an equivalence,
then ΦH

E respects the Mukai pairing and the weight zero Hodge structures.

We want to generalize Section 4.3 to the twisted case, in the following setting,
which will be that of Chapter 6. Let πX : X → ∆ and πY : Y → ∆ be two families
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of hyper-Kähler manifolds (not necessarily projective) and let α ∈ H2(Y ,O∗
Y). Let

E ∈ Db(X ×∆ Y , p∗2(α)) be such that

Φt := ΦEt : D
b(Xt) ≃ Db(Yt, αt)

is an equivalence for every t ∈ T . The twist αt will be torsion, hence lie in the
Brauer group Br(Yt) := H2(Yt,O∗

Yt
) precisely when Yt is projective. If we assume ∆

to be simply connected, then parallel transport gives isomorphisms in cohomology

fH
X,t : H

∗(Xt,Q) ≃ H∗(X0,Q) and fH
Y,t : H

∗(Yt,Q) ≃ H∗(Y0,Q) (4.26)

and for the LLV algebra

f g
X,t : g(Xt) ≃ g(X0) and f g

Y,t : g(Yt) ≃ g(Y0). (4.27)

It is explicitly given in the following way. The rational local system R•π∗Q is
trivial, because ∆ is simply connected. In particular

H∗(X ,Q) ≃ H0(∆, R•π∗Q) (4.28)

and the restriction map H∗(X ,Q)→ H∗(Xt,Q) is an isomorphism for every t ∈ ∆.
Then fH

t is the composition

H∗(Xt,Q) ≃ H∗(X ,Q) ≃ H∗(X0,Q).

The isomorphism f g
t is induced from the graded algebra isomorphism fH

t .

Remark 4.4.2. Notice that, by construction, we have that fH
t is equivariant with

respect to f g
t .

Since α0 = 0, the equivalence Φg
0 : Db(X0) ≃ Db(Y0) induces an isomorphism

of Lie algebras Φ0 : g(X) ≃ g(Y ). Define

Φg
t := (f g

Y,t)
−1 ◦ Φg

0 ◦ f
g
X,t.

To get an easy generalization of the arguments in Section 4.3 we assume that
on the fibers where αt is torsion, hence it is a class in Br(Yt) = H2(Yt,OYt)tor, the
induced isometry

ΦH
Et : H

∗(X,Q)→ H∗(Yt,Q)

is equivariant with respect to Φg
t .
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4.4.1 Twisted extended Mukai lattice

Let Y be a HK manifold, and α ∈ H2(Y,O∗
Y ). Having fixed a B-field B ∈

H2(Y,Q), we get an isometry

exp(B) ∈ SO(H̃(Y,Q))

of the rational extended Mukai lattice. We can use it to define a ‘twisted’ weight
zero Hodge structure H̃(Y,Q, B) by

H̃(Y,C, B)(p,q) := exp(B)
(
H̃(Y,C)(p,q)

)
,

in analogy with (4.25). This induces a Hodge structure on the symmetric power,
by declaring SymnH̃(Y,C, B)(p,q) to be the subspace generated by x1 · · · · ·xn, with
xi ∈ H̃(Y,C, B)(pi,qi) and

∑
i pi = p and

∑
i qi = q.

Remark 4.4.3. Notice that this Hodge structure SymnH̃(Y,C, B) is equal to

SymnH̃(Y,C, B)(p,q) = exp(B)
(
SymnH̃(Y,C)(p,q)

)
.

Since the morphism Ψ is equivariant with respect to SO(H̃(Y,Q)), and it is a
morphism of weight zero Hodge structure with the usual ones, we see that it
remais a morphism of Hodge structures

Ψ : SH(X,B)→ SymnH̃(Y,Q, B)

also with the twisted ones.

Proposition 4.4.4. Assume that either n or b2(X) is odd. Then, there exists a
Hodge isometry ΦH̃

t : H̃(Xt,Q) ≃ H̃(Yt,Q, Bt) such that the following diagram
commutes

SH(Xt) SH(Yt, Bt)

SymnH̃(Xt,Q) SymnH̃(Yt,Q, Bt).

Ψ

ε(ΦH̃
t )ΦSH

t

Ψ

SymnΦH̃
t

Proof. It follows as in the untwisted case from the assumption that ΦH
Et is equiv-

ariant with respect to Φg
t and [103, Propositions 4.1 and 4.4].

Definition 4.4.5. Let Y be a HK manifold, α ∈ H2(Y,O∗
Y ) a Brauer class, and

B a B-field lifting α. An object E ∈ Db(Y, α) is atomic if there exists a non-zero
ṽB(E) ∈ H̃(X,Q) such that

Ann(vB(E)) = Ann(ṽB(E))

as sub Lie algebras of g(X).
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Remark 4.4.6. If h′ denotes the Weil operator for the usual Hodge structure on
H∗, we have

h′ ◦ exp(−B) ∈ Ann(vB(E))

because of (4.24). So, if E is atomic, h′ ◦ exp(−B) ∈ Ann(ṽB(E)), which means
that ṽB(E) ∈ H̃(Y,Q, B) is of Hodge type for the twisted Hodge structure.

Proposition 4.4.7. In the setting above, for every atomic object E ∈ Db(Xt), the
image Φt(E) ∈ Db(Yt, αt) is a twisted atomic sheaf.

Proof. The Hodge isometry ΦH̃
t of Proposition 4.4.4 is LLV-equivariant for the

same reason as in the untwisted case. Hence the result follows from the definition
of twisted atomic object.

4.5 First examples

As we have seen, atomic objects have very rigid properties, and they are very
hard to find. Not many examples are known, and atomic sheaves with moduli are
especially difficult to find. The general strategy to produce more objects is to apply
derived equivalences to known ones. Of course, this operation does not change the
number of moduli, and it means that we must still start from something, and this
usually involves some geometrical considerations. Nevertheless, applying derived
equivalences is often interesting, for example to produce vector bundles out of
torsion sheaves. In this section we study the very first examples that appeared in
the literature, mainly in [94] and [77].

4.5.1 Rigid bundles

One very easy way of getting 1-obstructed (hence atomic) objects, is to ask for
the Ext2 to be one dimensional. This condition is satisfied in particular by the
P-objects. They were introduced in [55] as the hyper-Kähler analogues of spherical
objects, see Section 5.3 for more information.

Definition 4.5.1. Let X be a HK manifold of dimension 2n. An object E ∈
Db(X) is a Pn-object (or just P-object) if there is an isomorphism

Ext∗(E,E) ∼= H∗(Pn,C)

of graded algebras.

For example, the structure sheaf OX is a P-object.
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Lemma 4.5.2. Let E ∈ Db(X), and assume that Ext2(E,E) is one dimensional.
If the obstruction map χH

E is not identically zero, then E is 1-obstructed, hence
atomic.

Proof. We need to show that the obstruction map has rank one, atomicity follows
from Theorem 4.2.17. We know by Proposition 4.2.8 that

rkχE ≥ rkχH
E ,

and this is at least one by assumption. Since ext2(E,E) = 1, we also have rkχE ≤
1, hence both the ranks are equal to one.

Remark 4.5.3. The condition that the cohomological obstruction map does not
vanish is very mild. It is satisfied for example if v(E)SH ̸= 0, which holds for every
sheaf E by [15, Lemma 3.7].

Proposition 4.5.4. Let X a HK manifold. The structure sheaf OX ∈ Db(X) is
1-obstructed. In particular it is atomic, and its extended Mukai vector is

ṽ = α + rXβ.

Proof. The first part follows from the lemma above, we just have to compute the
Mukai vector. We computed in Corollary 3.6.15 that

v(OX)SH = (td
1/2
X )SH = T

(
(α + rXβ)

(n)

n!

)
.

In particular this implies that Ann(ṽ) ⊆ Ann(v(OX)), which must be an equality
for dimensional reasons.

Remark 4.5.5. For objects in the orbit (under the action of derived equivalences)
of the structure sheaf, it is possible to find a normalization of the Mukai vector
which is preserved by derived equivalences. See [17, Section 4] for more details.

An immediate consequence is that we can compute the extended Mukai vector
of all line bundles. Indeed if L ∈ Pic(X) is a line bundle, then we can write
L = L ⊗ OX . If λ = c1(L), the action of − ⊗ L on H̃(X,Q) is given by Bλ, see
Example 3.6.10. So we have

ṽ(L) = BL(ṽ(OX)) = α + λ+

(
rX +

q(λ)

2

)
β. (4.29)

As anticipated, a construction of atomic bundles of higher rank, which we now
describe, has been carried out in [94, 77]. Let S be a K3 surface, and let F be a
spherical vector bundle on S. On the Hilbert scheme S[n], consider the bundle

F⊠n
:= F ⊠ · · ·⊠ F.
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It is naturally equipped with a Σn-linearization λ, given by permuting the factors.
So we have an object (F⊠n

, λ) ∈ Db
Σn(S

n).
Let Zn be the isospectral Hilbert scheme. It fits in a diagram

Zn

S[n] Sn

S(n)

pq

h b

as the reduced fiber product. The map p : Zn → Sn is the blow-up on the big
diagonal, and the map q : Zn → S[n] is the quotient for the lifted action of Σn.
As usual, denote by En ⊂ S[n] the divisor of non-reduced subschemes, and by
δn = En

2
∈ Pic(S[n]).

Theorem 4.5.6 ([40, Theorem 1]). The isospectral Hilbert scheme Zn is Cohen-
Macaulay, and the quotient q : Zn → S[n] is flat.

If (E, λ) is an object in Db
Σn(S

n), the induced linearization on the object
q∗p

∗(E, λ) is actually an action, because Σn acts trivially on S[n]. The functor
which takes the invariant part of a sheaf with a Σn-action is denoted by (−)Σn .

Theorem 4.5.7 ([24, Corollary 1.3]). The functor

ΦBKR : Db
Σn(S

n)→ Db(S[n]), (E, λ) 7→ (q∗p
∗(F, λ))Σn

is an equivalence.

So, starting from F , spherical bundle on the K3 S, we can define (c.f. [94,
Definition 5.1]) the object

F [n]+ := ΦBKR(F
⊠n

, λ). (4.30)

If F is locally freem then q∗p
∗F⊠n is as well, because q is flat. So the invariant

part is again a vector bundle, being a direct summand.

Remark and Definition 4.5.8. Let (OSn , ρ) ∈ Db
Σn(S

n) be the structure sheaf
equipped with the linearization induced by the sign. Tensorization by (OSn , ρ) is
an autoequivalence of Db

Σn(S
n), so we can also define the object

F [n]− := ΦBKR(F
⊠n

, λ⊗ ρ). (4.31)

This is also a direct summand of q∗p∗F⊠n , hence locally free.
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Proposition 4.5.9 ([77, Section 10] and [94, Proposition 5.4]). The vector bundle
F [n]± is a Pn-object in Db(S[n]), i.e.

Ext∗S[n](F [n]
±, F [n]±) ∼= H∗(Pn,C).

Proof. By Theorem 4.5.7 we have

Ext∗S[n](F [n]
±, F [n]±) ∼= Ext∗Sn(F⊠n

, F⊠n

)Σn ,

where the action of Σn on

Ext∗Sn(F⊠n

, F⊠n

) = Ext∗S(F, F )⊗ · · · ⊗ Ext∗S(F, F )

is given by permutation. The invariant part then is Symn Ext∗S(F, F ) which is
isomorphic to H∗(Pn,C) since F is spherical.

By Lemma 4.5.2 the vector bundle F [n]± is 1-obstructed. In particular it is
atomic and we would like to compute its extended Mukai vector.

Proposition 4.5.10 ([95, Proposition 3.2]). Let F be a spherical bundle on S with
Mukai vector

v(F ) = (r0, D, s0) ∈ H̃(S,Z).

Then F+[n] is an atomic locally free sheaf with normalized Mukai vector

ṽ(F+[n]) = rn0α + rn−1
0

(
D +

r0 − 1

2
δn

)
+ rn−1

0

(
s0 +

(r0 − 2)(1− n)
4

)
β

and discriminant

∆(F+[n]) =
r2n−2
0 (r20 − 1)

12
c2(X).

Proof. It is clear by the construction that the rank is rk(F [n]±) = rn0 . The first
Chern class can be computed by restricting to Y∗, where Y = S[n],Zn, S

n, defined
as the locus in Y where at most two points collide. In fact, Y∗ has complement
of codimension two, so the first Chern class is determined by its restriction. The
map

q : Zn,∗ → S[n]
∗

is n! : 1 with a simple 2 : 1 ramification along the exceptional divisor. Moreover,
Zn,∗ is non-singular, hence one can use Grothendieck-Riemann-Roch to get the
result, see [95, Proposition 3.5] for the full computation. The discriminant is
computed with a similar technique, see also [95, Corollary 3.7]. Once the rank and
the first Chern class are known, the full Mukai vector is determined by imposing
that (4.19) holds.
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Remark 4.5.11. Notice how in this case there one can factor out rn−1
0 , so (4.18)

seems to be the more natural normalization.

Restricting to the case of an elliptic K3, O’Grady proves in [95, Section 4] that
F [n]+ is slope-stable for some polarizations. We will see more on this in Section 4.7.
In [77, Section 10] a different strategy is used to prove stability. Namely, one does
the same construction for a non-projective K3 surface, and there one can prove
stability directly by showing that F [n]+ has no subsheaves of smaller rank.

In both cases, after proving stability for specific HK manifolds, we can deform
to every HK manifold on which the c1 remains algebraic by Theorem 4.3.9. So we
get an existence result for stable atomic sheaves having the numerical invariants of
such an F [n]+ for some F . The main result of [94, 95] is that for fixed numerical
invariants, this vector bundle is unique. For the explicit form of the invariants,
which does not make a reference to F [n]+, we refer to [95, Theorem 1.1].

4.5.2 Semirigid bundles

With a similar construction, Markman obtained stable atomic vector bundles
which are non-rigid. In fact, they are deformations of bundles which are image via
derived equivalences of the skyscraper sheaf of a point.

Proposition 4.5.12 ([77, Section 3] and [17, Section 4]). Let X be a HK manifold
of dimension 2n, and let x ∈ X be a point. Then the skyscraper sheaf C(x) is 1-
obstructed, and

ṽ(Cx) = β.

Proof. In this case we can explicitly compute the obstruction map. We have

ExtkX(C(x),C(x)⊗ Ω1
X)
∼= H0(X, Extk(C(x),C(x))⊗ Ω1

X)
∼= H0(X,TX,x ⊗ Ω1

X)

∼= End(
∧k

TX,x),

and the k-th power of the Atiyah class AtkX(C(x)) is the identity under this iso-
morphism. The obstruction map

χC(x) : H
p(X,

∧q
TX)

−◦AtqX(C(x))
−−−−−−−→ ExtkX(C(x),C(x)) ∼=

∧k
TX,x,

vanishes if q ̸= k, and is the restriction if q = 0. In particular for p+ q = 2 it has
rank one. By Proposition 3.6.14 we know that T (β(n)) is proportional to the class
of a point, hence

Ann(β) ⊆ Ann(pt) = Ann(v(C(x))).

By atomicity we get the equality.
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The starting point of the semirigid examples is a K3 surface S with a two
dimensional moduli space M := MS(r0, D, s0) consisting only of vector bundles.
We assume that M is fine, so that there exists a tautological bundle E on S ×M ,
inducing an equivalence

ΦE : Db(M)→ Db(S)

by Proposition 2.2.20. Following Ploog [100], we consider the equivariant kernel

(E⊠n

, λ) ∈ Db
Σn(M

n × Sn), (4.32)

where Σn acts on the product Mn × Sn via the diagonal action, and λ is the
linearization which permutes the factors. Then Φ⊠n

:= Φ(E⊠n ,λ) : Db
Σn(M

n) ≃
Db

Σn(S
n) is an equivalence. Associated to the same kernel of the equivalence in

Theorem 4.5.7 one has also an equivalence in the opposite direction

Φbkr := p∗q
∗ : Db(M [n]) ≃ Db

Σn(M
n). (4.33)

which is not the inverse.

Proposition 4.5.13 ([77, Section 11]). Let ξ ∈ M [n] be a point corresponding to
a reduced subscheme. Define

Fξ :=
(
ΦBKR ◦ Φ⊠n ◦ Φbkr

)
(C(ξ)).

Then Fξ is a locally free atomic sheaf, with normalized extended Mukai vector

ṽ(Fξ) = n!rn0α + n!rn−1
0

(
D − r0

δn
2

)
+ n!rn−1

0

(
s0 +

r0(1− n)
4

)
Moreover, if ξ = {x1 + · · ·+ xn}, we have

Fξ
∼= ΦBKR

(⊕
σ∈Σn

Eσ(1) ⊠ · · ·⊠ Eσ(n)

)
. (4.34)

where Ei is the vector bundle on S parametrized by xi.

Proof. For a complete proof we refer to [77, Section 11]. The 1-obstructedness is
immediate from Proposition 4.5.12 and the definition. Since

Φbkr(C({x1 + · · ·+ xn})) =
⊕
σ∈Σn

C(xσ(1), . . . , xσn),

the definition implies (4.34). As in the rigid case, locally freeness follows from the
flatness of q : Zn → S[n]. The rank can be computed from (4.34), and the c1 is
computed in [77, Lemma 11.1]. The rest of the extended Mukai vector is computed
by imposing that it squares to zero.

Again, one can prove stability by considering the case of an analytic K3 surface,
as done in [77, Lemma 11.5]. Then deform to get a (possibly twisted) vector bundle
with Mukai vector of square zero on every HK of type K3[n].
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4.6 Lagrangian submanifolds

So far we have mostly focused on atomic sheaves of positive rank, so we might
wonder what happens if the rank is zero. It turns out that the condition of being
atomic imposes strong restrictions on the support of a sheaf.

Proposition 4.6.1 ([15, Proposition 3.11] and [77, Theorem 6.24]). Let X be a
HK manifold of dimension 2n, and let F ∈ Db(X) be an atomic object of zero
rank. Then the Chern classes of F are all isotropic. Moreover, if chn(F ) = 0,
then F is supported in dimension zero.

Proof. Write the extended Mukai vector as

ṽ(F ) = λ+ sβ.

Since λ ∈ H1,1(X,Q) we have q(λ, σ) = 0, so

eσ ∈ Ann(ṽ(F )) = Ann(v(F )).

This implies that vi(E) ∪ σ = 0 (or equivalently chi(F ) ∪ σ = 0), for all i.
For the last statement, recall that by Proposition 4.3.2 the Mukai vector v(F )

is a multiple of T (ṽ(n)). In particular vn(F ) = chn(F ) is proportional to T (λ(n)),
which does not vanish if λ ̸= 0. If λ = 0, then

T (ṽ(n)) = T (snβ(n)) ∈ H4n(X,Q)

is a multiple of the class of a point. Therefore, if F is atomic and chn(F ) = 0 we
must have λ = 0, so that F is supported in dimension zero.

In particular, if F is a sheaf supported on an irreducible subvariety Z ⊂ X,
then Z is either a Lagrangian subvariety or a point. As we have seen in Propo-
sition 4.5.12 every sheaf supported in dimension zero is atomic. For structure
sheaves on Lagrangian submanifolds we have the following.

Theorem 4.6.2 ([15, Theorem 1.8]). Let i : Z ↪→ X a connected Lagrangian
submanifold. Then i∗OZ is atomic if and only if the restriction map

i∗ : H2(X,Z)→ H2(Z,Z)

has rank one, and ωZ ∈ Imi∗.

This goes back, at least at the level of commutative deformations, to a classical
result of Voisin.
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Theorem 4.6.3 ([116, Corollaire 0.2]). Let Z ⊂ X be a Lagrangian submanifold.
Let

K := ker
(
i∗ : H2(X,Q)→ H2(Z,Q)

)
.

Then, the deformation space of the pairs Def(X,Z) is the space of the deformations
of X preserving K ⊂ NS(X).

Remark 4.6.4. If the restriction map has rank one, then Z deforms in codimen-
sion one, at least as far as the commutative deformations are concerned. Moreover,
in this case

ker i∗ = λ⊥ for some λ ∈ H1,1(X,Z),
where the orthogonal is with respect to the BBF form. Indeed, the fact that Z
is Lagrangian implies that both σ|Z and σ|Z vanish. The restriction preserves the
Hodge structure, hence it is non-trivial only on the H1,1(X). So the orthogonal to
the kernel is an integral (1, 1) class.

To understand Theorem 4.6.2, look at the cohomological obstruction map

HT2(X) = H2(X,OX)⊕H1(X,TX)⊕H0(X,
∧2

TX)→ H∗(X,Z),

µ 7→ µ⌟v(OZ).

The fact that Z is Lagrangian implies that σ⌟v(OZ) vanishes. The first condition in
the statement implies that Z deforms in codimension one in H1(X,TX), thanks to
Theorem 4.6.3. The second condition controls the non-commutative deformations
parametrized by H0(X,

∧2 TX), so that the full cohomological obstruction map
has rank one.

Proposition 4.6.5 ([77, Lemma 6.25]). Let i : Z ⊂ X an atomic Lagrangian, and
write λ := ker(i∗)⊥ and ωZ = tλ|Z, with t ∈ Q. Then the extended Mukai vector is

ṽ(OZ) = λ− tq(λ)
2
β.

Proof. The proof of Proposition 4.6.1 already implies that

ṽ(OZ) = λ+ sβ,

for some s ∈ Q. To compute the s, Markman uses the following trick. First
observe that, if (OZ)

∨ denotes the derived dual, then

ṽ((OZ)
∨) = −λ+ sβ,

as can be seen directly via Proposition 4.3.2 (see also [77, Lemma 6.15]). On the
other hand (OZ)

∨ ≃ i∗ωZ [−n], hence

v((OZ)
∨) = (−1)n exp(tλ)v(OZ),

which implies ṽ((OZ)
∨) = −Btλṽ(OZ). Comparing the coefficent of β gives the

result.
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4.6.1 Lagrangian surfaces

If X has dimension four and Z is a Lagrangian surface, we can prove a slight
generalization of Theorem 4.6.2 using the computation of the Mukai vector in
Corollary 4.3.6. For any class α ∈ H2(Z,Q) we define the α-twisted Chern char-
acter as

chα := ch∪ exp(α) ∈ H∗(Z,Q). (4.35)

For any class λ ∈ H2(X,Q) define the λ|Z-discriminant as

∆
ωZ
2

λ|Z (F ) :=
(
ch

ωZ
2

1 (F ) · λ|Z
)2
− 2 (λ|Z · λ|Z) ch

ωZ
2

0 (F ) · ch
ωZ
2

2 (F ), (4.36)

where · denotes the Poincaré pairing on Z.

Theorem 4.6.6 (Macrì). Let X be a HK fourfold, and i : Z ⊂ X be a Lagrangian
submanifold. If F ∈ Db(Z), then i∗F is atomic if and only if there exists a class
λ ∈ H2(X,Z) and a rational number γ ∈ Q such that

[Z] = γ
(
λ2 − q(λ)q2

)
and ∆

ωZ
2

λ|Z (F ) = 0.

Proof. Assume first that i∗F is atomic, and write

ṽ(i∗F ) = λ+ sβ,

with λ ∈ H2(X,Z) and s ∈ Q. By the computations in Corollary 4.3.6 we see that
its Mukai vector v(i∗F ) is a multiple of

T (ṽ2) =
(
λ2 − q(λ)q2

)
+ 2sλ∨ + s2q4.

On the other hand, the proof of [15, Lemma 7.4] gives

v(i∗F ) = i∗

(
ch(F ) · exp

(ωZ

2

))
= i∗

(
ch

ωZ
2

)
.

Since Z has codimension two in X, we have that

v(i∗F )2 = ch2(i∗F ) = rk(F )[Z].

It follows that [Z] is proportional to (λ2 − q(λ)q2), and we define γ ∈ Q so that
the first condition is satisfied. Let r := rk(F ); the Mukai vector must be

v(i∗F ) = γr
(
λ2 − q(λ)q2

)
+ 2γrsλ∨ + γrs2q4. (4.37)

This implies that∫
Z

ch
ωZ
2

1 (F ) ∪ λ|Z =

∫
X

i∗

(
ch

ωZ
2

(F )

1

)
∪ λ = 2γrsq(λ),
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and ch
ωZ
2

2 (F ) = rγs2

cX
pt. By Remark 3.6.6 and Definition 3.6.12 we have

(λ|Z · λ|Z) =
∫
Z

λ|Z ∪ λ|Z =

∫
X

λ2 ∪ [Z] = γ

∫
X

λ2 ·
(
λ2 − q(λ)q2

)
= γ(3cXq(λ)

2 − cXq(λ)2) = 2γcXq(λ)
2.

Combining all of the above we get

∆
ωZ
2

λ|Z (F ) = (2γrsq(λ))2 − 4q(λ)2γr2s2 = 0.

For the reverse direction, note that if [Z] is as in the statement, then it deforms
in codimension one. Therefore

ker(i∗ : H2(X,Q)→ H2(Z,Q) = λ⊥ ⊂ H2(X,Q).

by Theorem 4.6.3 and Remark 4.6.4. Serre duality and the Universal Coefficents
Theorem imply that the pushforward i∗ : H2(Z,Q) → H6(X,Q) has rank one,
and the image is spanned by λ∨. In particular, i∗ ch

ωZ
2

1 (F ) is a multiple of λ∨ and
the vanishing of the discriminant forces the Mukai vector to be (4.37).

4.6.2 Examples

Contrary to the examples discussed in Section 4.5, the examples of atomic La-
grangians have a geometric nature. In this section we will discuss a few of them.
We begin with some preliminary observations. It’s well known that if Z ⊂ X is
a Lagrangian submanifold, the isomorphism TX ∼= ΩX induced by the symplectic
form restricts to an isomorphism

NZ/X
∼= Ω1

Z . (4.38)

So that the second page of the local-to-global spectral sequence

Ep,q
2 = Hp(X, Ext q(OZ ,OZ)) =⇒ Extp+q(OZ ,OZ)

becomes Ep,q
2
∼= Hp(X,Ωq

Z).

Theorem 4.6.7 ([85, Theorem 2.1.7]). Let X be a HK manifold of dimension
2n, and Z ⊂ X a Lagrangian submanifold. The local-to-global spectral sequence
degenerates multiplicatively in the second page and gives an isomorphism

Ext∗(OZ ,OZ) ∼= H∗(Z,C),

as graded algebras.
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Projective spaces

Let X be a HK of dimension 2n, and let P ⊂ X be a subvariety isomorphic to
a projective space of dimension n. Since there are no holomorphic two forms on
Pn, it is automatically Lagrangian. Theorem 4.6.7 implies that OP ∈ Db(X) is a
P-object, and so it is 1-obstructed by Lemma 4.5.2.

Lagrangian tori

Let T ⊂ X be a Lagrangian complex torus. Then it is projective, because every
Lagrangian submanifold is, and it is the fiber of a Lagrangian fibration π : X → Pn,
by the positive answer to Beauville’s conjecture in [38]. Moreover, we have the
following.

Theorem 4.6.8 ([116, 98]). Let X → Pn be a Lagrangian fibration. If Xt is a
smooth fiber, then the restriction

H2(X,Z)→ H2(Xt,Z)

has rank one.

Corollary 4.6.9. The structure sheaf OT of a Lagrangian torus T ⊂ X is an
atomic object. If f := c1(π

∗OPn(1)) ∈ H2(X,Z), then the extended Mukai vector
is

ṽ(OT ) = f.

Proof. Since the canonical bundle ωT is trivial, this follows from Theorem 4.6.2
and Proposition 4.6.5.

Fano variety of lines

Let Y ⊂ P5 be a smooth cubic fourfold. Let

X := F (Y ) ⊂ G(2, 6)

be the Fano variety of lines contained in Y . It is a classical result of Beavuille
and Donagi [14] that F (Y ) is a HK manifold of type K3[2]. Let h ∈ NS(X) be the
restriction of the Plücker polarization. It is (very) ample with

q(h) = 6 and div(h) = 2, (4.39)

where the divisibility is defined as the positive generator of the ideal

{q(h, λ) | λ ∈ H2(X,Z)} ⊂ Z.

If H ⊂ P5 is a hyperplane, let Z ⊂ X be Z := F (Y ∩ H) the variety of lines
contained in Y ∩H. We collect some useful results in the following.
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Proposition 4.6.10 ([15, Example 8.1.3] and [77, Example 3.11(2)]). The sub-
manifold Z ⊂ X is a Lagrangian surface, with Hodge numbers

h1,0(Z) = 5, h2,0(Z) = 10, h1,1(Z) = 25.

The structure sheaf OZ ∈ Db(X) is an atomic object, and

ṽ(OZ) = h− 3β.

Proof. The Hodge numbers are computed in [30, Equations (9.5), (9.12) and
(10.12)] The fact that Z is Lagrangian and deforms everywhere X remains the
Fano of a cubic is proved in [117]. By Theorem 4.6.3 this means that

ker
(
H∗(X,Z)→ H2(Z,Z)

)
= h⊥.

Therefore the first term in ṽ is h. Since Z is the zero locus of a global section of
the dual of the tautological bundle on G(2, 5), adjunction formula implies

h|Z ∼= ωZ . (4.40)

Hence the extended Mukai vector follows by Proposition 4.6.5.

Double EPW sextics

Let X be a double EPW sextic. It is a HK manifold of K3[2]-type, which is a
double cover of a sextic in P5. The natural covering involution is antisymplectic,
and we let Z ⊂ X be the fixed locus. There is a natural polarization h ∈ NS(X)
with

q(h) = 2 and div(h) = 1.

Proposition 4.6.11 ([15, Example 8.1.4] and [77, Example 3.11(3)]). The sub-
manifold Z ⊂ X is a Lagrangian surface, with Hodge numbers

h1,0(Z) = 0, h2,0(Z) = 45, h1,1(Z) = 100.

Its structure sheaf OZ is an atomic object and

ṽ(OZ) = h− 3β

Proof. It follows from the definition that it is a Lagrangian surface. The Hodge
numbers are computed in [34, Section 13.3]. In [34, Proposition 4.22] it is proved
that

[Z] = 5h2 − c2(X)

3
and ωZ = 3h|Z .

Hence, it follows from Theorem 4.6.2 that the extended Mukai vector is as in the
statement.
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4.7 Stability for modular sheaves
The condition of modularity, surprisingly, makes the behaviour of sheaves on HK
manifolds very similar to that of sheaves on surfaces when it comes to slope stabil-
ity. This was first observed by O’Grady in [94]. Recall that the slope of a coherent
sheaf F on a polarized variety (X,H) is the rational number

µH(F ) =
c1(F ) ·HdimX−1

rk(F )
. (4.41)

A torsion-free sheaf F is slope semistable if for every subsheaf E ⊂ F with rk(E) <
rk(F ) we have

µH(E) ≤ µH(F ),

and is slope stable if the inequality is strict.

Remark 4.7.1. The condition of slope stabilty depends on the polarization H,
which can be also a real class in Amp(X)R. Notice that if X has dimension two,
the function

Amp(X)R → R, H 7→ µH(F )

is linear. For this reason the variation of stability only happens along hyperplanes
(called walls) in the ample cone, and the family of walls is locally finite. See [48,
Chapter 4.C] for a review of this phenomenon.

If dimX is higher than two, the slope stops being a linear function and the
beahviour of the slope is more difficult. On hyper-Kähler manifolds, we can use
the BBF form to remedy to this situation. Let E ⊆ F a subsheaf, we define the
class

λE,F := rk(F )c1(E)− rk(E)c1(F ) ∈ H2(X,Z), (4.42)

following [94, Equation (3.2.1)]. Then, Fujiki’s formula3 implies that the function
h 7→ q(λF,E, h) can be used as a substitute for the slope to recover linearity.

Lemma 4.7.2 ([94, Lemma 3.7]). Let (X, h) be a polarized hyper-Kähler manifold,
and E,F torsion free sheaves on X. Then

(1) µh(E) > µh(F ) if and only if q(λE,F , h) > 0.
(2) µh(E) = µh(F ) if and only if q(λE,F , h) = 0.

This already implies that if F changes its stability, then it must becomes strictly
semistable for some polarization h. Moreover, the polarization h must lie in the
hyperplane orthogonal to λE,F . Notice that this holds without any assumption on
the modularity of E or F .

3It is the polarization formula applied to (3.6.6)
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4.7.1 Wall and chamber decomposition

What changes when we look at variation of stability for a modular sheaf is that
we can describe which classes give rise to walls. The reason lies in the following
observation (c.f. [94, Lemma 3.9]). If

0→ E → F → G→ 0

is a short exact sequence, then

rk(F ) rk(G)∆(E) + rk(F ) rk(E)∆(G) = rk(E) rk(G)∆(F ) + λ2E,F . (4.43)

Together with Fujiki’s formula, this implies the following.

Lemma and Definition 4.7.3 ([94, Definition 3.3 and Proposition 3.10]). Let
(X, h) a polarized HK, and F a torsion-free modular sheaf on X, and let d(F ) be
as in Remark 4.3.8. Define

a(F ) :=
rk(F )2d(F )

4cX
. (4.44)

Assume that F is strictly semistable, and E ⊂ F is slope destabilizing. Then

−a(F ) ≤ q(λE,F ) ≤ 0,

and q(λE,F ) = 0 if and only if λE,F = 0.

This motivates the following definition.

Definition 4.7.4 ([94, Definitions 3.1 and 3.2]). Let a a positive real number. An
a-wall is the intersection

λ⊥ ∩ Amp(X)R,

where λ ∈ NS(X) with −a ≤ q(λ) < 0. An a-chamber is a connected component
of the complement of the union of the a-walls.

Remark 4.7.5. Notice that if λE,F = 0, then

c1(E)

rk(E)
=
c1(F )

rk(F )
.

In particular, E is destabilizing for every polarization h.

The behaviour of variation of stability for a modular sheaf can be summarized
in the following result.
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Theorem 4.7.6 ([94, Proposition 3.4]). Let F be a torsion-free modular sheaf on
a HK manifold X.

(1) Assume that h is polarization which lies in a a(F )-chamber. If F is strictly
h-semistable, and E ⊂ F is destabilizing, then λE,F = 0.

(2) If h0 and h1 belong to the same a(F )-chamber, then F is h0-slope-stable if
and only if is h1-slope-stable.

Proof. For (1), if E ⊂ F is destabilizing a semistable sheaf, by Lemma and Defi-
nition 4.7.3 we have

−a(F ) ≤ q(λE,F ) ≤ 0.

By Lemma 4.7.2 we must have q(λE,F , h) = 0, but h is in a chamber so is not
orthogonal to any λ with −a(F ) ≤ q(λ) < 0. It follows that q(λE,F ) = 0, hence
λE,F = 0 by Lemma and Definition 4.7.3. For (2), if F is h0-slope-stable and
h1-slope unstable, then there must be an h in the segment joining h0 and h1 for
which F is stricly semistable. Since the chambers are convex, h also belong in the
same a(F )-chamber as h0, h1. So by point (1) we have λE,F = 0 for some E. This
contradicts the h0-stability by Remark 4.7.5.

4.7.2 Lagrangian fibrations

Another extremely useful result on the stability of modular sheaves, is the possi-
bility to gain information on it via the restriction to a general fiber of a Lagrangian
fibration. In this section we fix a Lagrangian fibration π : X → Pn, and we denote

f := c1(π
∗(OPn(1))) ∈ NS(X).

Recall that f is a nef class, hence it lies in the boundary of the ample cone.
We wish to compare slopes when we restrict to a general fiber. The following

Lemma contains the key computation; it can be seen as a fiberwise analogue of
Lemma 4.7.2.

Lemma 4.7.7 ([94, Lemma 3.11]). Let π : X → Pn a Lagrangian fibration. Let
E ⊆ F be torsion-free sheaves. Let t ∈ Pn be a general point. Then, for every
ample class h, we have

(1) µh(Et) < µh(Ft) if and only if q(λE,F , f) < 0,
(2) µh(Et) = µh(Ft) if and only if q(λE,F , f) = 0,

where Et := E|π−1(t) denotes the restriction to the fiber π−1(t).

Proof. Let h the polarization on X, and ht := h|Xt . Fujiki’s formula gives∫
X

λEt,Ft ∪ hn−1
t = cXn! · q(h, f)n−1q(λE,F , f). (4.45)

Since q(h, f) is strictly positive, we see that the left hand side has the same sign
as q(λE,F , f), which is precisely the statement.
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If F is a modular sheaf, we know by Theorem 4.7.6 that the ample cone is
subdivided in chambers. Since f is a nef class, there is one chamber which contains
it in its closure. The above lemma suggests that, when investigating stability of
Ft, the polarizations in this chamber are privileged.

Definition 4.7.8 ([94, Definition 3.5]). Let a be a positive real number. A class
h ∈ Amp(X) is called a-suitable if for every λ ∈ NS(X) as in Definition 4.7.4,
either q(λ, h) and q(λ, f) have the same sign or they are both zero.

The following is one of the main results of [94], and we refer to it for the proof.

Theorem 4.7.9 ([94, Proposition 3.6]). Let π : X → Pn a Lagrangian fibration,
and F a modular sheaf on X. Assume that Sing(F ) does not dominate Pn. Let h
be an ample class which is a(F )-suitable. Then the following hold

(1) If the restriction of F to a generic fiber of π is slope stable, then F is slope
stable.

(2) If F is slope semistable then the restriction of F is slope semistable.

The case we will be interested in is one of a vector bundle which is strictly
semistable when restricted to the fibers, hence we will need a different result.

Proposition 4.7.10. Let X be a HK manifold of Picard rank two, π : X → Pn a
Lagrangian fibration, and F a modular torsion-free sheaf on X. Let h be an ample
class which is a(F )-suitable. Assume that Sing(F ) does not dominate Pn, and that
for general t the restriction Ft is semistable. If E ⊂ F is a destabilizing subsheaf
we have

q(λE,F , f) = 0,

and Et ⊂ Ft is destabilizing for t ∈ Pn general.

Proof. Since Ft is semistable we have µ(Et) ≤ µ(Ft), which gives

q(λE,F , f) ≤ 0, (4.46)

by Lemma 4.7.7. On the other hand, if E ⊂ F destabilizes we have

q(λE,F , h) ≥ 0, (4.47)

by Lemma 4.7.2. We can assume h is an a(F )-suitable rational ample class. Any
such class can be written as

h = f + ελ,

for some ample class λ and ε << 1, and viceversa every class of this form is
a(F )-suitable provided ε is sufficently small. Substituting in (4.47) we have

q(λE,F , h) = q(λE,F , f) + εq(λE,F , λ) ≥ 0,
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for every ε << 1. Passing to the limit ε → 0, we get q(λE,F , f) ≥ 0. Combined
with (4.46), it implies

q(λE,F , f) = 0.

By Lemma 4.7.7 this implies that µ(Et) = µ(Ft), hence E destabilizes F .

Remark 4.7.11. Notice that the only place we need modularity in this statement
is for the existence of suitable polarizations.

Corollary 4.7.12. In the setting of Proposition 4.7.10, assume moreover that
ρ(X) = 2 and c1(F ) is a multiple of f . If E ⊆ F is destabilizing, then c1(E) is a
multiple of f .

Proof. We can write
c1(E) = af + bλ,

where λ restricts to a principal polarization on the general fiber. In particular,
q(λ, f) ̸= 0. By Proposition 4.7.10 we get

0 = q(λE,F , f) = rk(F )q(c1(E), f),

because c1(F ) is a multiple of f . This implies that b = 0, i.e. c1(E) is a multiple
of f too.

4.8 Moduli spaces of stable atomic sheaves
In this section we investigate in as much generality as we can the geometrical
properties of the moduli spaces of atomic sheaves. The motivating goal would be
to have some sort of analogue of Theorem 2.1.1, which for the moment is far out
of reach.

The setting is classical: we let (X, h) be a polarized HK manifold, and v ∈
H∗(X,Q). We consider the coarse moduli space

MX,h(v) := {F ∈ Coh(X) | F is h-Gieseker semi-stabstable, with v(F ) = v}/ ∼,

where∼ is the S-equivalence relation. As is well-known, this moduli space is always
projective because it is constructed via a GIT quotient of a projective scheme.

When dealing with sheaves on high-dimensional HK manifolds, the foundations
have a still strong differential geometric nature. In particular, we will make use of
results by Verbitsky (c.f. Theorem 4.8.5), which apply to slope stable projecively
hyperholomorphic vector bundles.

Recall that a vector bundle E is projectively hyperholomorphic if End(E) is
hyperholomorphic, which means that it satisfies the conclusion of Theorem 4.3.9.



4.8. MODULI SPACES OF STABLE ATOMIC SHEAVES 143

This happens, for example, if E is atomic and its Mukai vector is contanined in
the Verbitsky component.4

So, while our results are general, we are tacitly assuming that (at least an
irreducible component of) our moduli space parametrizes only slope-stable vector
bundles. This will be the case in one of our examples in Section 5.8.

Remark 4.8.1. The fact that the sheaves in M(X,h)(v) are atomic should tell us
even more than just the smoothness. In fact we expect a Hodge isometry

H2(MX,h(v),Q) ≃ ṽ⊥ ⊂ H̃(X,Q),

in a similar fashion as Theorem 2.1.1. This is still conjectural, but would be
a strong indication that moduli spaces of atomic objects can produce new HK
manifolds.

4.8.1 Globalizing the obstruction map

We claim that the 1-obstructedness condition is sometimes related to the existence
of a unique symplectic form on the moduli space. We first show how the obstruction
map produces such forms, using classical techniques from [48, Chapter 10]. Let
E → X × S an S-flat family of stable sheaves.

Remark 4.8.2. Is not in general true that the moduli space MX,h(v) is fine, but
we can always find an étale cover∐

i

Si →MX,h(v),

such that over each X × Si there is a tautological family Ei. We are mainly
interested in the case where the variety S is the normalization of one of these Si,
and E is the pullback family.

In Section 4.2.2 we introduced the obstruction map

χE : HH2(X)→ Ext2(E,E)

for every object E ∈ Db(X). There is a natural relative version of it, which we
can construct as follows. If π2 : X × S → S is the second projection, we consider
the i-th relative Ext sheaf

Ext iπ2
(E , E) := Hi (π2,∗ ◦ Hom(E , E)) ,

4If X is of type K3[2] this is always the case.
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where both functors are derived. There is a base change map

φi(s) : Ext iπ2
(E , E)|s → ExtiX(Es, Es),

which satisfies similar properties to the usual cohomology and base change Theo-
rem [42, Theorem 12.11(ii)] as proved in [65].

Proposition 4.8.3. There is a morphism

χ : HH2(X)→ H0
(
S, Ext2π2

(E , E)
)
,

such that for every s ∈ S the composition with the base change map

HH2(X)→ H0
(
S, Ext2π2

(E , E)
)
→ Ext2X(Es, Es)

gives the obstruction map χEs.

Proof. Every element µ ∈ HH2(X) is a morphism

µ : O∆ → O∆ ∈ Db(X ×X).

Taking Fourier-Mukai with kernel E we obtain

E → E ∈ Db(X × S),

i.e. an element in Ext2X×S(E , E). There is a local-to-global spectral sequence

Ep,q
2 = Hp

(
S, Ext qπ2

(E , E)
)

=⇒ Extp+q
X×S(E , E)

which gives a ’localization’ morphism

Ext2X×S(E , E)→ H0
(
S, Ext2π2

(E , E)
)
,

and we let χ : HH2(X) → H0
(
S, Ext2π2

(E , E)
)

be the composition. It is a matter
of chasing the definitions that for every s ∈ S the following diagram commutes

Ext2(E , E) H0
(
S, Ext2π2

(E , E)
)

Ext2(Es, Es) Ext2(Es, Es)

The statement then follows from Definition 4.2.5.
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4.8.2 Symplectic form

How can this be used to construct a symplectic form? For this, we put ourself
in the setting of Remark 4.8.2. In particular, S is equipped with a map to the
moduli space MX,h(v). Denote by S0 ⊂ S the inverse image of the regular locus
of MX,h(v), it is smooth because S →MX,h(v) is étale on M0.

Then, the Kodaira-Spencer map globalizes to a bundle isomorphism

TS0 ≃ Ext1π2
(E , E)|S0 , (4.48)

because it is an isomorphism on the fibers.
For every s ∈ S0, the Yoneda pairing

Ext1X(Es, Es)× Ext1X(Es, Es)→ Ext2X(Es, Es)

is skew-symmetric, because Es is a smooth point in the moduli space. For every
section η ∈ H0

(
S0, Ext2π2

(E , E)|S0

)
we have a map of vector bundles

Ext2π2
(E , E)|S0 →

∧2
Ext1π2

(E , E)∨|S0 ,

c 7→ Tr
(
ηn−2 ◦ c ◦ − ◦ −

)
.

The Kodaira-Spencer isomorphism (4.48) implies that the target budle is Ω2
S0

.
Taking global section we get a map

H0
(
S0, Ext2π2

(E , E)|S0

)
→ H0(S0,Ω

2
S0
).

In particular, looking at the image of η we produce a skew-symmetric form on S0,
and by abusing the notation still denote by τ ∈ H0(S0,Ω

2
S0
).

The composition with the (globalized) obstruction map, allows us to associate
to every µ ∈ HH2(X) a skew symmetric form τµ ∈ H0(S0,Ω

2
S0
). On each point

s ∈ S0 it is given by
τµ(a, b) = Tr

(
χEs(µ)

n−1 ◦ a ◦ b
)

(4.49)

for every a, b ∈ Ext1(Es, Es).

Remark 4.8.4. Here we are being slightly sloppy with the notation. The trace
of an element in Ext2n(Es, Es), is a class in H2n(X,OX), which is indeed one di-
mensional but is not canonically trivialized. To trivialize it we need to choose a
symplectic form σ on X. Then, the precise formula for the value of τµ at s is

τµ(a, b) =

∫
X

(
Tr
(
χEs(µ)

n−1 ◦ a ◦ b
)
∪ σn

X

)
∈ C. (4.50)
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So, for every class in the image of the obstruction map we get a skew-symmetric
form on S, we want to now when this form is symplectic. First notice that the
composition of the map

Ext1(Es, Es)→ Ext1(Es, Es)∗, a 7→ τµ(a,−)

with Serre duality is the Yoneda product:

Ext1(Es, Es)→ Ext2n−1(Es, Es), a 7→ χ(µ)n−1 ◦ a.

Therefore, τµ is symplectic if and only if this is an isomorphism. The key result
we need is the following.

Theorem 4.8.5 ([108, Theorem 4.2A]). Let E be a slope stable projectively hy-
perholomorphic vector bundle on a HK manifold X. For every i the map

χE(σ)
n−i ◦ − : Exti(E,E)→ Ext2n−i(E,E)

is an isomorphism.

In particular, if S0 parametrizes only locally free sheaves, the form τσ ∈
H0(S0,Ω

2
S0
) is non-degenerate. To show symplecticity we must prove that it is

closed (with respect to the de-Rham differential), and for this we give an alterna-
tive definition of τσ.

In In [64] the authors associate, to any class ωHn−k−2(X,Ωn−k
X ) a closed two-

form αω ∈ H0(S0,Ω
2
S0
). On a point s ∈ S0 its value is

αω(a, b) =

∫
X

(
Tr
(
At(Es)k ◦ a ◦ b

)
∪ ω
)
. (4.51)

Proposition 4.8.6. For every µ ∈ HH2(X) the two-form τµ is closed. In partic-
ular, if S0 parametrizes only locally free sheaves, the form τσ is symplectic.

Proof. Assume by linearity that µ ∈ Hp(X,
∧q TX), and let s ∈ S0. According to

(4.50) we have

τµ(a, b) =

∫
X

(
Tr
(
χEs(µ)

n−1 ◦ a ◦ b
)
∪ σn

X

)
=

∫
X

(
Tr
(
χEs(µ

n−1) ◦ a ◦ b
)
∪ σn

X

)
by Proposition 4.2.8,

=

∫
X

(
Tr
((
(µn−1 ⊗ idEs) ◦ At(Es)q(n−1)

)
◦ a ◦ b

)
∪ σn

X

)
by Definition 4.2.5

=

∫
X

(
µn−1 ◦ Tr

(
At(Es)q(n−1) ◦ a ◦ b

)
∪ σn

X

)
,
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where the last equality is due to the linearity of the Atiyah class, see [64, Section
1.2]. To conclude notice that there must be some ω which makes this expression
equal to αω. Indeed, we can consider the functional

Hq(n−1)+2(X,Ω
q(n−1)+2
X )→ C, x 7→

∫
X

(µn−1 ◦ x ∪ σn),

which must be represented by some ω ∈ Hn−q(n−1)−2(X,Ω
n−q(n−1)
X ) by Poincaré

duality.

Remark 4.8.7. Beckmann conjectures that, for a 1-obstructed object, the image
of the obstruction map has the Hard-Lefschetz property on the Ext algebra, see
[15, Conjecture A]. Hence, at least conjecturally, a moduli space of 1-obstructed
objects should carry a symplectic form on the smooth locus.

4.8.3 Smoothness

In this section we prove smoothness result on the moduli space M . The setting
is more special than that of the previous section. Let X be a hyper-Kähler man-
ifold of dimX = 2n ≥ 4, and E → S × X a family of slope stable projectively
hyperholomorphic vector bundles.

A general statement we can prove is the following.

Theorem 4.8.8. In the setting above, assume moreover that S is integral and
normal, and that the function

s→ ext1(Es, Es)

is constant on an open U ⊂ S, with complement S − U of codimension at least
two. Then it is constant on all of S.

Note that since E is a vector bundle

RHom(E , E) = Rπ2(End(E)),

so that we can apply freely the cohomology and base change Theorems and Grauert’s
Theorem. A point s in S corresponds to a bundle Es: when it does not generate
confusion we will simply denote it by E.

Lemma 4.8.9. The sheaf Ext0π2
(E , E) is isomorphic to the structure sheaf, and

Ext2n(E , E) is a line bundle. Moreover, the base change maps

Ext iπ2
(E , E)|E → Exti(E,E)

are isomorphisms for i = 0, 2n.
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Proof. By stability and Serre duality exti(E,E) = 1 for every E ∈ S and for
i = 0, 2n. Grauert’s Theorem yields that Ext iπ2

(E , E) are line bundles and that the
base change maps are isomorphisms The Ext0π2

(E , E) is trivial because the trace
map

Tr : π2,∗End(E)→ OM

is a fiberwise isomorphism.

The next step is to prove that Ext1π2
(E , E) is a reflexive sheaf. For this we

will use Grothendieck-Verdier duality for the projection π2 : X ×M →M . Notice
that since X is smooth and projective, we can apply Grothendieck-Verdier duality,
giving

Rπ2,∗RHom(End(E),OM [2n]) ≃ RHom(Rπ2,∗(End(E)),OM). (4.52)

Since End(E) is autodual, this is also isomorphic to Rπ2,∗(End(E)[2n]).

Lemma 4.8.10. There is an isomorphism

Ext1π2
(E , E) ≃ Ext2n−1

π2
(E , E)∨.

In particular, the sheaf Ext1π2
(E , E) is reflexive.

Proof. There is a spectral sequence

Ep,q
2 = Extp(Ext−q

π2
(E , E),OM) =⇒ Hp+q(RHom(Rπ2,∗(End(E)),OM)).

Grothendieck-Verdier duality (4.52) implies that

Hp+q(RHom(Rπ2,∗(End(E)),OM)) ≃ Extp+q−2n
π2

(E , E).

Since −2n ≤ q ≤ 0, and p ≥ 0, for p+ q = −(2n− 1) the only non-zero terms are
• E

0,−(2n−1)
2 = Hom(Ext2n−1

π2
(E , E),OM)→ E1,−2n

2 = Ext2(Ext2nπ2
(E , E),OM).

• E1,−2n = Ext1(Ext2nπ2
(E , E),OM)

Now, the terms E1,−2n
2 and E2,−2n vanish because Ext2nπ2

(E , E) is a line bundle by
Lemma 4.8.9. So at this level the spectral sequence degenerates at the second page
giving the isomorphism in the statement.

Remark 4.8.11. Notice that looking at p+ q = −2n gives

Ext0π2
(E , E) ≃ (Ext2nπ2

(E , E))∨.

Which by Lemma 4.8.9 implies that Ext2nπ2
(E , E) is the trivial line bundle.
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Lemma 4.8.12. Let φy : Ext2n−1
π2

(E , E) → (Ext1π2
(E , E))∨ be the map induced by

the Yoneda pairing. Then the composition

Ext1π2
(E , E) τη−→ Ext2n−1

π2
(E , E) φy−→ (Ext1π2

(E , E))∨

is an isomorphism.

Proof. Notice that since Ext1π2
(E , E) is reflexive and S is normal, it suffices to prove

the result on an open of codimension two. By assumption we know that ext1(E , E)
is constant in U which has codimension two. On U , by Grauert’s Thereom [42,
Corollary 12.9], the sheaf Ext1π2

(E , E) is locally free, and the base change map

Ext1π2
(E , E)|E → Ext1(E,E)

is an isomorphism. The same holds for Ext2n−1
π2

(E , E) by (pointwise) Serre duality.
Since both maps φy and τη are constructed starting from the Yoneda pairing, they
are compatible with the base change maps.

Therefore, for every E ∈ U we have a commutative diagram

Ext1π2
(E , E)|E Ext2n−1

π2
(E , E)|E Ext1π2

(E , E)∨|E

Ext1(E,E) Ext2n−1(E,E) Ext1(E,E)∨

τη |E φy |E

≃ ≃ ≃

≃ ≃

Here the first bottom map is an isomorphism by Theorem 4.8.5, and the second
one by Serre duality. This gives that the upper composition is an isomorphism.

Proof of Theorem 4.8.8. The composition of the map φy with the inverse of the
isomorphism of Lemma 4.8.12 gives a morphism

Ext2n−1
π2

(E , E)→ Ext1π2
(E , E)

which is surjective because it is a splitting of τη. For every E ∈ S we have a
commutative diagram

Ext2n−1
π2

(E , E)|E Ext1π2
(E , E)|E

Ext2n−1(E,E) Ext1(E,E)

φy |E

≃

≃

where the bottom map is the isomorphism in Theorem 4.8.5. The left vertical
map is surjective, by the cohomology and base change theorem (c.f. [42, Theorem
12.11(ii)]) because

Ext2nπ2
(E , E)|E → Ext2n(E,E)
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is an isomorphism. Since the composition is surjective, it follows that the base
change map

Ext1π2
(E , E)|E → Ext1(E,E) (4.53)

is surjective for every E ∈ S.
Another application of [42, Theorem 12.11(ii)] implies that the sheaf Ext1π2

(E , E)
is locally free because the base change map for Ext0π2

(E , E) is an isomorphism.
Lastly, by point (i) in loc. cit. we get that the base change map (4.53) is an
isomorphism. Hence ext1(E,E) is constant in S.



Chapter 5

Towards a modular construction of
OG10

5.1 Introduction
Motivated by the question of realizing OG10 as a moduli space of sheaves on a
HK fourfold, in this Chapter we construct a stable atomic bundle whose moduli
space is birational to OG10. The main result is the following.

Theorem 5.1.1 (Theorem 5.7.5). Let X be a hyper-Kähler of K3[2]-type. There
exist a stable, atomic vector bundle F0 with Mukai vector

v(F0) = 5

(
1− 3

4
q2 +

9

32
pt

)
.

The Ext1(F0, F0) is ten dimensional. The Yoneda pairing is skew-symmetric and
induces an isomorphism∧2

Ext1(F0, F0)
∼−→ Ext2(F0, F0).

In particular, its deformation functor is smooth.

We briefly describe the steps involved in the construction.
(1) If X ⊂ P5 is a general cubic fourfold and H is a general hyperplane, then the

structure sheaf OF (X∩H) is an atomic object in Db(F (X)). We degenerate
the cubic to the determinantal cubic and consider the corresponding degen-
eration of the Fano variety of lines. After a resolution, the central fiber is
a moduli space M of torsion sheaves on a general K3 surface of degree two,
and the surface F (X ∩H) degenerates to a reducible Lagrangian Z with two
components.

151
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(2) The moduli space M is endowed with a Lagrangian fibration π : M → P2.
As shown in [3], there is an autoequivalence Φ of M mapping a general point
to a line bundle supported on its fiber. The complex Φ(OZ) ∈ Db(M) is a
locally free sheaf, but it is not stable.

(3) To make it stable we apply a second autoequivalence: the composition of two
(inverses of) P-twists around line bundles. After twisting by a line bundle,
the resulting vector bundle will have c1 = 0. Using atomicity we can easily
compute the Mukai vector from this construction.

Along the way we prove a number of interesting results on their own. We
highlight especially the following.

Proposition 5.1.2 (Proposition 5.2.6). Let M = MS(0, H, 1 − g) be a moduli
space of torsion sheaves on a general polarized K3 surface (S,H) of genus g, and
let π : M → Pg be the Lagrangian fibration. Let L ⊂ M be a subvariety such that
π|L : L → Pg is finite. If VL is a Cohen-Macaulay sheaf on L, then Φ(VL) is a
locally free sheaf.

The proof is based on an analysis done by Arinkin in [7] on the singularities
of the Fourier-Mukai kernel of Φ. This is the first technique to produce locally
free sheaves from structure sheaves of subvarieties in this context. We believe this
could be helpful in understanding the relationship between atomic vector bundles
and atomic Lagrangians.

The rest of the chapter is devoted to the study of the irreducible component
of the moduli space M of Gieseker semi-stable sheaves on M containing F0. The
main result is the following.

Theorem 5.1.3 (Proposition 5.8.2 and Theorem 5.8.6). The smooth locus Msm

is equipped with a closed holomorphic 2-form. Moreover, there is a birational map
preserving the 2-form

X 99K M,

where X is a hyper-Kähler manifold of type OG10.

The birational map is easily described. Recall that M is a moduli space of
sheaves on a general polarized K3 surface (S,H) of degree two. The reducible
Lagrangian Z ⊂ M has two components. One is the image P ′ of a section of the
Lagrangian fibration π. The other is a Lagrangian surface L isomorphic to Sym2C,
where C ⊂ S is a general curve in |2H|.

In the proof of Theorem 5.7.5 it is not necessary to consider the image of the
structure sheaf OZ , we can allow a slight generalization. Namely, we can consider
a line bundle L on Z of degree zero, which restricts to the structure sheaf on P ′

and to the symmetric square of a line bundle of degree zero on C.
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A degree zero line bundle supported on a general curve in |2H| is a general
element in the moduli space MS(0, 2H,−4). The variety X is the symplectic
resolution of this moduli space, and the birational map is given by the steps (1)−(3)
applied to L.

5.1.1 Structure of the chapter

In Section 5.2 we review some basics facts about Beauville-Mukai systems. In
particular, we focus on the construction of the Poincaré sheaves following [7, 3]
and its properties. We prove Proposition 5.1.2 and compute the action of the
equivalence induced by the Poincaré sheaf on the extended Mukai lattice.

Section 5.3 is purely algebraic. It serves to build the computational background
to do the semistable reduction in Section 5.7. We compute how the P-twist around
a P-object E acts on an object F under some assumptions on the Ext groups
Ext∗(E ,F).

In Section 5.5 we show we can degenerate the Fano variety of lines of a cubic
fourfold to the moduli space MS(0, H,−1), and that the surface of lines becomes
a reducible Lagrangian Z. Nothing here is original work, the degeneration of the
fourfold is done in [33] and the one of the surface goes back to [31].

In Section 5.6 we begin the proof of Theorem 5.1.1. Using the results of previous
sections, we construct an atomic vector bundle with Mukai vector v(F0). We
compute its Ext algebra, and show that the Yoneda pairing is skew-symmetric
and induces the desired isomorphism.

In Section 5.7 we show that the bundle constructed before is not slope stable. The
cause of the instability lies in the fact that the Lagrangian Z ⊂ M is reducible.
To get something stable we show that it suffices to apply two P-twists. This is a
wall-crossing phenomenon, very similar to what happens in Section 2.4.

In Section 5.8 we prove Theorem 5.1.3. The key intermediate result is Theo-
rem 5.8.6 where we show that the bundles we are considering are not just atomic
but actually 1-obstructed.

5.2 Moduli spaces of torsion sheaves
In this section we collect some results on certain moduli spaces of sheaves on K3
surfaces. The setting is the following. Let (S,H) be a polarized K3 surface, and
assume that |H| parametrizes only irreducible curves, this is the case for example if
(S,H) is general. We consider the moduli space Md :=MS(0, H, d). It is equipped
with a Lagrangian fibration

πd :Md → |H|
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realizing it as the relative compactified Picard Picd+g−1(C/|H|) of the the universal
curve over the linear system |H|. Recall that the compactified Picard of an integral
curve C is the moduli space

Pic
l
(C) = {torsion-free sheaves on C of rank 1 and degree l}/∼=.

Therefore, a point lying in the regular locus of the map πd is a line bundle of degree
d on a smooth curve in the linear system |H|. In particular, if d = 1 − g, we get
the relative compactified Jacobian Pic0(C/|H|). Notice that in this case, π1−g has
a natural section given by

|H| →M1−g, C 7→ OC .

The following is an immediate consequence of Theorem 2.1.1.

Lemma 5.2.1. Let (S,H) is a general polarized K3 surface of genus g. Then

NS(M0) ∼= Zf ⊕ Zλ,

with
q(λ, λ) = 2g − 2, q(λ, f) = 2, q(f) = 0.

5.2.1 Relative Poincaré sheaf

If C is an integral curve with planar singularities, Arinkin constructs a Cohen-
Macaulay sheaf

PC ∈ Coh(J(C)× J(C)),
such that the Fourier-Mukai transform

ΦP : Db(J(C)) ≃ Db(J(C))

is an equivalence.
In [3] the authors extend the construction of the Poincaré sheaf to the relative

compactified Jacobian. We recall the main properties in the following.

Proposition 5.2.2 ([3, 7]). Let (S,H) be a polarized K3 surface of genus g, such
that every curve in |H| is integral, and let M := M(0, H, 1 − g). There exists a
coherent sheaf

P ∈ Coh(M ×|H| M),

flat with respect to both projection, and such that for every x ∈ M the restriction
PM×|H|{x} is a Cohen-Macaulay sheaf on M ×|H| {x} = π−1(π(x)). The Fourier-
Mukai transform with kernel P

Φ := ΦP : Db(M) ≃ Db(M)

is an equivalence.
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Remark 5.2.3. The sheaf P is not uniquely determined by Proposition 5.2.2. For
example we can twist it by the pullback of a line bundle on |H|, and still get a
valid Poincaré sheaf. In our case, we normalize it by imposing that

Φ(OP ′) = OM (5.1)

where P ′ ⊂M is the natural section of the Lagrangian fibration.

The statement in [3, Proposition 2.1(a)] includes also Md for every d, with the
caveat that in that case P is a twisted sheaf. We will discuss this later in this
section.

Remark 5.2.4. Let x ∈M be a point lying over the curve π(x) = C. The image
of a skyscraper sheaf C(x) is

Φ(C(x)) ∼= PM×|H|{x}.

This is always a Cohen-Macaulay sheaf on the fiber J(C), but if x is in the regular
locus of the Lagrangian fibration Φ(C(x)) a line bundle on the fiber.

Since the kernel P lives in the fiber product, the equivalence Φ is a relative
equivalence in the following sense.

Lemma 5.2.5. Let M → |H| be the relative compactified Jacobian, and Φ :
Db(M) ≃ Db(M) the autoequivalence induced by the Poincaré sheaf.

(1) For every object E ∈ Db(M) we have

ΦP(E)|Mt = iMt,∗ΦPt(E|Mt), for a general t ∈ (P2)∨.

(2) If Z ⊂M is finite of degree d over the base |H|, and L ∈ Coh(Z) is a sheaf
of generic rank one, then for general t ∈ (P2)∨ the restriction Φ(ML)|t is a
sum of four non-trivial line bundles of degree 0 on Mt.

Proof. First note that the equivalence Φ is (P2)∨-linear, because the kernel P is
defined on the fiber product. In particular there is an isomorphism of functors

Φ(−)⊗OMt = Φ(−⊗OMt).

Projection formula gives the isomorphism of functors −⊗OMt
∼= iMt,∗i

∗
Mt

(−). To
prove (1) it remains to prove that

Φ(iMt,∗(−)) ∼= iMt,∗ΦPt(−),

which follows from the base change Theorem as explained in [47, Lemma 11.30].
Point (2) follows from (1) combined with Remark 5.2.4.
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The most useful property of Φ we are after is its ability to turn supported
objects into vector bundles. This can be seen as a globalization of point (2) in the
previous Lemma.
Proposition 5.2.6. Let M =MS(0, H, 1−g) be a moduli space of torsion sheaves
on a general polarized K3 surface (S,H) of genus g, and let π : M → Pg be the
Lagrangian fibration. Let L ⊂ M be a subvariety such that π|L : L→ Pg is finite.
If VL is a Cohen-Macaulay sheaf on L, then Φ(VL) is a locally free sheaf.

We first recall the key result from [102] that we need in the proof.
Theorem 5.2.7 ([102, Corollary to Theorem V.4]). Let X be a smooth variety,
and let F and G two Cohen-Macaulay sheaves on X. Assume that G ⊗ F is of
finite lenght. Then

dimSuppF + dimSuppG = dimX,

is equivalent to
TorOX

k (F,G) = 0 ∀k < 0.

Proof of Proposition 5.2.6. Since the Poincaré sheaf P ∈ Coh(M ×Pg M) is flat
with respect to both projections by [7, Theorem A], π∗

1(ML) ⊗ P is a sheaf on
M ×Pg M . So, Φ(VL) is a complex concentrated in non negative degrees. To show
that it is a locally free sheaf, it suffices to prove

ExtiM(Φ(VL),C(x)) = 0 for i > 0,

for every x ∈M , where C(x) denotes the skyscraper sheaf at x. From [7, Proposi-
tion 7.1] it follows that Φ−1(C(x)) = PM×{x∨}[g], where x∨ parameterizes the dual
sheaf to x. So, we have

ExtiM(Φ(VL),C(x)) = ExtiM(VL,Lt[g]),

where t := π(x), and Lt := PM×{x∨} is a torsion-free rank one sheaf supported on
Mt. Since VL is a Cohen-Macaulay sheaf of dimension g on M , the derived dual
RHomM(VL,OM) is just Extg(VL,OM)[−g]. Hence we have

ExtiM(VL,Lt[g]) ≃ Hi(M,RHomM(VL,OM)⊗L Lt[g])

≃ Hi(M, Extg(VL,OM)⊗L Lt).

The sheaf

Hi(Extg(VL,OM)⊗L Lt) = T orOM
k (Extg(VL,OM),Lt)

vanishes by Theorem 5.2.7. Indeed, by [7, Theorem A(2)] the sheaf Lt is Cohen-
Macaulay of dimension g on M , and the same holds for Extg(VL,OM). So we
have

Hi(M, Extg(VL,OM)⊗L Lt) = H i(M, Extg(VL,OM)⊗ Lt) = 0 for i > 0,

because the sheaf Extg(VL,OM)⊗ Lt is supported on Mt ∩ L which is finite.
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5.2.2 Action on extended Mukai lattice

Let M be the compactified Jacobian M1−g. Our next goal is to compute the
isometry induced by Φ on (the algebraic part of) the extended Mukai lattice

ΦH̃ : H̃(M,Q) ≃ H̃(M,Q).

Recall that
H̃(M,Q)(1,1) = Qα⊕Qf ⊕Qλ⊕Qβ,

with f and λ as in Lemma 5.2.1. We use the diagram

SH(X) SH(X)

SymnH̃(X,Q) SymnH̃(X,Q)

Ψ

ε(ΦH̃)ΦSH

Ψ

SymnΦH̃

of Theorem 3.6.8.

Remark 5.2.8. Notice that if the genus is even, the Theorem applies because the
second betti number is b2(M) = 23, in particular is odd. Contrary to the case of
odd genus, in this case, the diagram above does not uniquely determine ΦH̃ , but
it does so only up to a sign.

Following [17] we introduce the class

h := −λ
2
+
g − 1

4
f +

g + 1

2
β. (5.2)

The computation for odd genus first appeared in [17, Proposition 10.4].

Proposition 5.2.9. The equivalence Φ acts on the extended Mukai as follows.
(1) If the genus is even

β 7→ f, f 7→ β, α 7→ h, h 7→ α.

(2) If the genus is odd

β 7→ f, f 7→ −β, α 7→ h, h 7→ −α + (g + 1)f.

Proof. The main ingredient we need on P is the autoduality property (c.f. [7,
Lemma 6.2 and Equation (7.8)]). Consider the fiberwise dual automorphism

ν :M ≃M, i∗F → i∗(F
∨),
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where i : C ⊂ S is the embedding of a curve in the linear system |H|. The
autoduality property takes the following form

Φ−1(−) ∼= ν∗ ◦ Φ(−)⊗OM ((g + 1)f) [g]. (5.3)

Remark 5.2.4 implies that the skyscraper sheaf of a point gets mapped to a line
bundle of degree zero on a fiber. At the level of Mukai vectors this means that

β 7→ f,

using Proposition 4.5.12 and Corollary 4.6.9. The autoduality property then im-
plies that

f 7→ (−1)gβ.

Our choice of normalization Equation (5.1) gives that

Φ(ṽ(OP ′)) = A

(
α +

g + 3

4
β

)
,

by Proposition 4.5.4, where A is some rational number. The extended Mukai
vector of P ′ can be computed using Proposition 4.6.5,

ṽ(OP ′) = λ− (g + 1)f + (g + 1)β.

Since ν∗ commutes with Φ, the autoduality property implies

Φ(OM) = OP ′ ⊗O(−(g + 1)f)[−g].

So
α +

g + 3

4
β 7→ B(λ− (g + 1)f + (g + 1)β).

Imposing ΦH̃ to be a Hodge isometry allows to determine the coefficents A and B,
and rearranging gives the statement.

5.3 P-twist

In this section we collect some purely algebraic computations, which will be very
useful later. They are at the core of the semistable reduction in Section 5.7, and
they are should be seen as an higher dimensional analogue of the computations in
Section 2.4.

The setting is the following. We take two coherent sheaves E and F on a
hyper-Kähler fourfold X. We make the following assumptions
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(1) E is a P-object, i.e. there is an isomorphism

Ext∗(E , E) ∼= H∗(P2,C)

of graded algebras.
(2) There is an isomorphism

Ext∗(E ,F) ∼= C[−1]⊕ C[−3]

and it is non-trivial as a module over Ext∗(E , E).
In particular, there is a unique non-trivial extension

0→ F → G → E → 0.

To a P-object E one can associate an autoequivalence PE of Db(X) called the
P-twist around E . Here we briefly recall the definition, for details see [55, Section
2]. If we let h ∈ Ext2(E , E) be a generator, we can define the map

h
∨
: Ext∗−2(E ,F)→ Ext∗(E ,F)

as the precomposition with h. The P-twist around E applied to F can be described
as

PE(F) = C

(
C(Ext∗−2(E ,F)⊗ E h

∨·id− id ·h−−−−−−→ Ext∗(E ,F)⊗ E)→ F
)

(5.4)

Remark 5.3.1. By the octahedral axiom one can see that PE(F) can be equiva-
lently described as the cone of the map

Ext∗(E ,F)⊗ E [−1]→ C(Ext∗(E ,F)⊗ E → F).

The goal of this section is to compute the cohomology sheaves of the complex
PE(F). We do it step by step, so we begin with the cone of the evaluation map.

Lemma 5.3.2. Consider the evaluation map

Ext∗(E ,F)⊗ E → F .

The cohomology sheaves of its cone C are

Hk(C) ∼=


G for k = 0,

E for k = 2,

0 otherwise.
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Proof. The long exact sequence in cohomology gives the two sequences

0→ F → H0(C)→ E → 0,

0→ H2(C)→ E → 0.

The rest of the long exact sequence shows that there is no cohomology in degrees
different from 0 and 2. The first sequence is induced by the evaluation map
Ext1(E ,F)⊗ E → F . Therefore it is not split, and H0(C) ∼= G.
Proposition 5.3.3. The cohomology sheaves of PE(F) are given by

Hk(PE(F)) ∼=

{
G for k = 0,

E for k = 3.

In particular, there is a distinguished triangle

G → PE(F)→ E [−3].

Proof. Consider the distinguished triangle

Ext∗(E ,F)⊗ E [−1]→ C(Ext∗(E ,F)⊗ E → F)→ PE(F)

of Remark 5.3.1. Applying the long exact sequence of cohomology sheaves and
Lemma 5.3.2 we get the exact sequences

0→ G → H0(PE(F))→ 0,

0→ H1(PE(F))→ E → E → H2(PE(F))→ 0,

0→ H3(PE(F))→ E → 0.

If we check that the middle map E → E in the second sequence is the identity we
are done. By definition it is induced in H2 from the map

Ext∗(E ,F)⊗ E [−1]→ C,

which in turn is obtained from the octahedral axiom, composed with the isomor-
phism in Lemma 5.3.2. Chasing the definitions and the commutativity in the
octahedral axiom one sees that the wanted map is induced in H2 by the map

H[−1] : Ext∗(E ,F)⊗ E [−1]→ Ext∗(E ,F)⊗ E [1],

described explicitly as
E [−2] E

E [−4] E [−2]

h

h[−2]

id⊕ ⊕

in the proof of [55, Lemma 2.5]. From this description is clear that the induced
map in H2 is the identity.
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Corollary 5.3.4. The object P−1
E (G) sits in a distinguished triangle

E → P−1
E (G)→ F .

Proof. From [55, Lemma 2.5] we see that PE(E) ∼= E [−4]. Applying the equivalence
P−1
E to the distinguished triangle

G → PE(F)→ E [−3]

of Proposition 5.3.3 we obtain

P−1
E (G)→ F → E [1].

Rotating this triangle gives the thesis.

Corollary 5.3.5. If E and F are as above, we have

Extk(E ,G) ∼=

{
0 if k ̸= 4,

C if k = 4.

Proof. Setting G ′ := P−1
E (G) we get

Extk(E ,G) = Extk(E , PE(G ′)) = Extk(E [4],G ′)
= Extk−4(E ,G ′).

Both objects G and G ′ are sheaves, so the ext groups above vanish for k ̸= 4. For
k = 4, the exact sequence

Ext4(E , E)→ Ext4(E ,G)→ Ext4(E ,F) = 0,

shows that it is at most one dimensional. It is non-zero, because of the map G → E ,
so it is one dimensional.

5.4 Normal crossing Lagrangians
In this section we study the Ext groups of a normal crossing Lagrangian in a HK
manifold X of dimension 2n. By this we mean a subvariety Z ⊂ X of the form

Z = Z1 ∪ Z2

where Z1 and Z2 are smooth Lagrangians, and their scheme theoretic intersection
W := Z1 ∩ Z2 is smooth of dimension n− 1. In particular

TZ1|W ∩ TZ2|W = TW .
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Lemma 5.4.1 (Markman). The normal bundle NW/Z1 is dual to NW/Z2.

Proof. We begin with an observation. Since TW ⊂ TZi
|W and each Zi is La-

grangian, we have

σX(v, w) = 0 for every v ∈ TZi
and w ∈ TW ,

where σ is the symplectic form on X. The sum TZ1|W + TZ2|W is a subbundle of
TX |W of rank n + 1, so it must be equal to the symplectic orthogonal T⊥

W to TW .
Consider the following diagram

0 0

TW TZ1|W ∩ TZ2|W

0 TW ⊕ TW TZ1|W ⊕ TZ2|W NW/Z1 ⊕NW/Z2 0

0 TW TZ1|W + TZ2|W (TZ1|W + TZ2 |W )/TW 0

0 0

∼=

∼=

The nine lemma implies that the right vertical map is an isomorphism. The
previous observation gives that

(TZ1 |W + TZ2|W )/TW ∼= (TW )⊥/TW ,

which is a symplectic rank two bundle, in particular it has trivial determinant. We
conclude that

NW/Z1 ⊗NW/Z2
∼=
∧2

(NW/Z1 ⊕NW/Z2)
∼= OX .

Lemma and Definition 5.4.2. Define the vector bundle1

Ñ := TX |W/(TZ1|W + TZ2|W ).

There is an isomorphism of short exact sequences

0 NW/Z1 NZ2/X |W Ñ 0

0 N∨
W/Z2

ΩZ2 |W ΩW 0

∼= ∼= ∼=

1This notation is from [26].
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Proof. To get the short exact sequence above, start with

0→ (TZ1|W + TZ2 |W )/TZ2|W → TX |W/(TZ2|W )→ TX |W/(TZ1|W + TZ2|W )→ 0,

and note that
(TZ1 |W + TZ2|W ) /TZ2|W ∼= TZ1|W/TW .

The central vertical map in the diagram is the usual map induced by the restriction
of the isomorpshim σX : TX ∼= ΩX . The composition

TZ1 + TZ2 → TX ∼= ΩX → ΩW

vanishes by because TZ1 + TZ2 is symplectic orthogonal to TW . Therefore the
central map factors to give the diagram in the statement.

We name the relevant embeddings W ⊂ Zi ⊂ X as in the diagram below

W Z1

Z2 X

i2

i1

j1

j2

If E1 and E2 are locally free sheaves on Z1 and Z2 we can compute the Ext groups
ExtkX(j1,∗E1, j2,∗E2) using the following spectral sequence.

Theorem 5.4.3 ([26, Theorem A.1]). With the above notation, there is a conver-
gent spectral sequence

Ep,q
2 := Hp(W,E∨

1 |W ⊗ E2|W ⊗NW/Z2 ⊗
∧q−1

Ñ) =⇒ Extp+q(j1,∗E1, j2,∗E2).

Example 5.4.4. Assume that X has dimension 4, and let E = OZ1 and F =
OZ2(−W ). By Lemma and Definition 5.4.2 the second page of the spectral se-
quence above takes the form

Ep,q
2 = Hp(N∨

W/Z2
⊗NW/Z2 ⊗ Ωq−1

W ) = Hp(Ωq−1
W ).

It degenerates at the second page, by degree reasons, giving the isomorphism

Extk(OZ1 ,OZ2(−W )) ∼= Hk−1(W,C).

Proposition 5.4.5. Assume that X has dimension four. Then, there is a long
exact sequence

Hk(Z2,C)→ Extk(OZ2(−W ),OZ)→ Hk−1(W,C)→ Hk+1(Z2,C),

where the connecting homomorphism is the pushforward in cohomology along the
inclusion W ⊂ Z2.
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Proof. Consider the long exact sequence obtained applying Hom(OZ2(−W ),−) to

0→ OZ2(−W )→ OZ → OZ1 → 0.

Since Z2 ⊂ X is a Lagrangian surface, by dimensional reasons the local-to-global
spectral sequence vanishes and yields

Extk(OZ2(−W ),OZ2(−W )) ∼= Hk(Z2,C). (5.5)

Example 5.4.4 implies that

Extk(OZ2(−W ),OZ1)
∼= Hk−1(W,C). (5.6)

Therefore, we only need to show that the connecting homomorphisms

Extk(OZ2(−W ),OZ1)→ Extk+1(OZ2(−W ),OZ2(−W ))

become identified with the pushforwards in cohomology. The Serre dual statement
is that the connecting map

Extk(OZ2(−W ),OZ2(−W ))→ Extk+1(OZ1 ,OZ2(−W ))

is the restriction Hk(Z2,C) → Hk(W,C). The isomorphisms (5.5) and (5.6) are
induced by the degeneration of the spectral sequences:

Hp RHom(H−q(j∗2j2,∗OZ2(−W )),OZ2(−W )) =⇒ Extp+q(OZ2(−W ),OZ2(−W ))

and

HpRHom(H−q(j∗2j1,∗OZ1),OZ2(−W )) =⇒ Extp+q+1(OZ1 ,OZ2(−W )).

The connecting homomorphism is induced by pullback along the map

OZ1 → OZ2(−W )[1].

Taking j∗2 and H−q we get the zero map in cohomology for every q. This implies
that the long exact cohomology sequence induced by j∗2OZ1 → j∗2cOZ2(−W )[1] is
actually a collection of short exact sequences, represented by maps

H−q(j∗2j1,∗OZ1)→ H−q(j∗2j2,∗OZ2(−W ))[1]. (5.7)

Pulling back along those maps gives a map on the E2 page of the spectral sequences,
which induces the connecting homomorphism that we wish to understand.

Using [26, Proposition A.6] we obtain H−q(j∗2j1,∗OZ1)
∼= i2,∗

∧q Ñ∨. So the
map (5.7) becomes

i2,∗
∧q

Ñ∨ →
∧q

N∨
Z2/X

⊗OZ2(−W )[1].

Verdier duality gives that i!2 = i∗2 ⊗ OW (W )[−1], so the map becomes
∧q Ñ∨ →∧qN∨

Z2/X
, which is identified with the restriction map via Lemma and Defini-

tion 5.4.2.
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5.5 Degenerating the cubic
Let X0 ⊂ P5 be the determintatal cubic, that is the secant variety to the Veronese
surface V ⊂ P5. It is given in coordinates by∣∣∣∣∣∣

x0 x1 x2
x2 x3 x4
x2 x4 x5

∣∣∣∣∣∣ = 0.

It is singular along the Veronese surface. If P5 is identified with the space of
conics on a projective plane, X0 corresponds to the singular conics and V to the
non-reduced ones.

Let X ⊂ P5 be a general cubic and let X → ∆ be the pencil spanned by X0

and X. If X = {f = 0}, the equation of the pencil is∣∣∣∣∣∣
x0 x1 x2
x2 x3 x4
x2 x4 x5

∣∣∣∣∣∣+ tf = 0.

Taking the relative Fano variety of lines, we get a family F → ∆ whose general
fiber Ft is the Fano variety of lines F (Xt) of a general member of the pencil. The
central fiber F0 = F (X0) is described in [33, Propositions 3.2.3 and 3.2.4]: it is
the union of F1

∼= (P2)[2] and F2
∼= P2 × (P2)∨, where F1 is non-reduced with

multiplicity four.

Proposition 5.5.1 ([33, Theorem 3.3.7]). After a base change along a 2 : 1 map
∆′ → ∆ and blowing up F in F1, we get a family F̂ → ∆′ such that

(1) The special fiber has two irreducible components

F̂0 = E ∪ F̂2.

(2) The map F̂2 → F2 is an isomorphism, in particular F̂2
∼= P2 × (P2)∨.

(3) The intersection E ∩ F̂2 ⊂ F̂2 is isomorphic to the incidence variety in P2 ×
(P2)∨.

(4) The blow up F̂ is smooth along F̂2.

We describe the family F̂ in more detail. Since the Veronese surface V has
degree two, the intersection V ∩ X gives a smooth sextic curve Γ ∈ P2. Let
p : S → P2 be the K3 surface obtained as the double cover of P2 ramified over Γ.
Let P ⊂ S[2] be the image of the map

P2 → S[2], x 7→ p−1(x),

where p−1(x) denotes the schematic fiber. Rephrasing [33, Theorems 3.5.8 and
3.5.11] gives the following result.
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Theorem 5.5.2. There is a smooth family F → ∆′ such that the general fiber
F t = F (Xt) is the Fano variety of lines of the cubic Xt and the special fiber
F0 is isomorphic to S[2]. The family F̂ is the blow-up of F in P . Under this
identification F̂2 is the exceptional divisor, and E ∼= BlP (S

[2]).

Consider the moduli space M := M(0, H,−1), where H := p∗(O(1)). As
recalled in Section 5.2 this is the relative compactified Jacobian of the universal
curve over the linear system |H|. It has a Lagrangian fibration π :M → |H|, given
by sending a sheaf to its support.

There is a birational map

g : S[2] 99KM, ξ 7→ ωC ⊗ Iξ, (5.8)

where C is the unique curve in |H| containing ξ. This is well defined outside the
plane P ⊂ S[2]. The birational map g is the Mukai flop of the plane P , and the
dual plane P ′ ⊂M is the image of the section of the Lagrangian fibration.

Remark 5.5.3. Since the cubic X is general, the plane P ⊂ S[2] does not deform
sideways in F → ∆′. The argument in the proof of [45, Theorem 3.4] shows
that the Mukai flop (5.8) can be deformed to F . This implies that F̂ can also
be contracted to a family F ′ → ∆′ with the same general fiber and special fiber
F ′

0
∼= M .

In [31] Collino does the same operations with the Fano variety of lines of a
hyperplane section. More precisely, let H ⊂ P5 be a general hyperplane. The
intersection V ∩H gives a general conic K ⊂ P2, and the intersection X0 ∩H is
the secant variety of the image of K via the Veronese embedding. Define C :=
p−1(K) ⊂ S as the inverse image of the conic via the double cover, it is a genus
five curve.

Let XH → ∆ be the pencil of the hyperplane sections and let Z ⊂ F be the
relative Fano surface of lines. The special fiber is the union of two components
Z0 = Z1 ∪ Z2 ⊂ F1 ∪ F2, where both Z1 and Z2 are isomorphic to P2, and Z1 is
non reduced of multiplicity four.

Proposition 5.5.4 ([31, Proposition 2.1]). After a base change along a 2 : 1 map
∆′ → ∆ and blowing up Z in Z1, we get a smooth family Ẑ → ∆′ with reducible
central fiber

Ẑ0 = E ′ ∪ Ẑ2.

Moreover the exceptional divisor E ′ is isomorphic to Sym2C and Ẑ2 is isomorphic
to Z2.
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We want to understand the image of Ẑ via the contraction F̂ → F ′ of Remark
5.5.3. First observe that the intersection Z1 ∩ Z2 consists of the lines tangent to
K, so it is isomorphic to K∗. Via the embedding Z2 ⊂ P2 × (P2)∨ it gets mapped
into the incidence variety inside K ×K∗. In particular it maps isomorphically to
its image under both projections.

Via the contraction F̂ → F ′, the component F̂2 in the central fiber F̂0 gets
mapped to (P2)∨, so it induces a map Ẑ2 → (P2)∨. This map must be an isomor-
phism. This is because

Ẑ2
∼= Z2

∼= P2,

and the contraction maps the intersection Ẑ2 ∩E ′ isomorphically to its image K∗.
Hence, the special fiber of Ẑ remains unchanged under the contraction F̂ → F ′.
The same argument also works for the contraction F̂ → F . Summarizing the
argument, and adjusting the notation, we showed the following.

Theorem 5.5.5. There is a smooth family F → ∆ and a smooth subvariety Z ⊂ F
with the following properties.

• The general fibers Ft and Zt are respectively the Fano varieties of lines F (Xt)
of the cubic Xt, and of its hyperplane section F (Xt ∩H).

• The special fiber F0 is identified with the moduli space M =M(0, H,−1).
• The special fiber Z0 is a normal crossing P ′∪L, where L ⊂M is a Lagrangian

surface isomorphic to Sym2C. The intersection L ∩ P ′ is isomorphic to K.

We conclude the section with a more detailed description of the geometry of
the central fiber. By Lemma 5.2.1 the Neron-Severi lattice of the moduli space M
is

NS(M) = Zλ⊕ Zf,

the Beauville-Bogomolov form with respect to this basis has matrix(
2 2
2 0

)
.

From the point of view of the Hilbert scheme, we have

NS(S[2]) = Zh⊕ Zδ,

where h is the polarization induced by H = p∗(OP2(1)) on S, and δ is half the
exceptional divisor of the Hilbert-Chow map. The Mukai flop identifies the divisors

h←→ λ,

h−δ ←→ f.
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Remark 5.5.6. As explained in [33, Section 3.7] the family F → ∆ of Theo-
rem 5.5.5 is a projective family, and comes equipped with an ample line bundle L.
On the general fiber this line bundle is the Plücker polarization, and on the special
fiber F0 =M is OM(λ+ f). It has square 6 and divisibility 2 on every fiber.

Proposition 5.5.7. The Lagrangian fibration π is finite of degree 4 when restricted
to L.

Proof. The map π|L : L → (P2)∨ is proper, so it suffices to show that it is quasi-
finite. The intersection P ′ ∩L is one dimensional and it maps bijectively onto the
dual conic K∗ via π. On the complement of P ′ the Mukai flop is an isomorphism,
so it suffices show that Sym2C −K → (P2)∨ is quasi-finite.

The fiber of a line l ∈ (P2)∨ consists of the subschemes ξ ∈ S[2] mapping to the
schematic intersection l∩K. The number of such subschemes is always finite. If l
intersects K transversely outside the ramification locus Γ, there are four reduced
subschemes mapping to the intersection.

5.6 Construction of the sheaf
Let Z ⊂ M be the central fiber of the family of Lagrangian Z ⊂ F of Theo-
rem 5.5.5. So that Z is the reducible Lagrangian P ′ ∪ L, and the intersection
P ′ ∩ L is the dual conic K∗.

We make the following construction. Start with L a line bundle of degree zero
on L. Since K∗ is rational, the restriction L|K∗ is trivial. Hence L glues with the
structure sheaf of P ′ and gives a global line bundle L on Z. This means that we
have a short exact sequence

0→ L(−K∗)→ L → OP ′ → 0 (5.9)

of sheaves on X.

Proposition 5.6.1. Let Φ : Db(M) ≃ Db(M) be the autoequivalence induced by
the Poincaré sheaf. For every L ∈ Pic0(L), the object

FL := Φ(L) ∈ Db(X)

is an atomic vector bundle of rank five. Its normalized extended Mukai vector is

ṽ(F ) = 5α + 15f − 15

4
β.

Proof. Since L has degree zero, the Mukai vector of L is the same as v(OZ), which
is atomic by Proposition 4.6.10. Moreover Theorem 5.5.5 exhibits the Lagrangian
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Z as the limit of the surface of lines. Hence, by Proposition 4.6.10 and Remark 5.5.6
we have

ṽ(OZ) = λ+ f − 3β.

The computation of the extended Mukai vector then follows from from Proposi-
tion 5.2.9.

By our normalization Equation (5.1) of P , the object FL fits in a distinguished
triangle

0→ Φ(L(−K∗))→ FL → OM → 0. (5.10)

Proposition 5.2.6 implies that Φ(L(−K∗)) is a locally free sheaf. The rank can
be computed after restricting to a general fiber, and we see that it is equal to
the degree of Sym2C over P2. By Proposition 5.5.7 this degree is four, hence by
Equation (5.10) the rank of FL is five.

Remark 5.6.2. We can kill the first Chern class by twisting by O(−3f), so that
the Mukai vector takes a simpler form. The extended Mukai vector of the twisted
sheaf F0 := F ⊗O(−3f) is

ṽ(F0) = 5

(
α− 3

4
β

)
.

So that the Mukai vector is

v(F0) = 5

(
1− 3

4
q2 +

9

32
pt

)
,

by Corollary 4.3.6.

5.6.1 Ext groups

Since we are interested in moduli spaces, it is vital to compute the Ext groups of
FL. We do this by applying the results of Section 5.4 to the reducible Lagrangian
Z = P ′ ∪ L.

Lemma 5.6.3. With the above notation we have isomorphisms

Ext1
(
L,L

) ∼= H1(L,C),
Ext2

(
L,L

) ∼= Cok
(
H0(K∗,C)→ H2(L,C)

)
.

Proof. The isomorphisms (5.5) and (5.6) remain valid also for a line bundle of
degree zero. for the same reasons, thanks to (5.9). The rest of the proof of
Proposition 5.4.5 is not affected by the twist, so it remains to show that

Exti
(
L,L

) ∼= Exti
(
L(−K∗),L

)
for i = 1, 2. (5.11)
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The sheaves E = OP ′ and F = L(−K∗) satisfy the assumptions of Section 5.3 by
Theorem 5.4.3. Thus (5.11) is a consequence of the vanishings in Corollary 5.3.5.

We can also understand the algebra structure.

Lemma 5.6.4. There is a commutative diagram

H1(L,C)×H1(L,C) H2(L,C)

Ext1
(
L,L

)
× Ext1

(
L,L

)
Ext2

(
L,L

)≃

where the vertical maps are the those of the lemma above, and the horizontal maps
are respectively the Yoneda pairing and the cup product.

Proof. The sequence (5.9) gives an injective morphism

f : L(−K∗)→ L,

which gives rise to

Exti(L(−K∗),L(−K∗))

Exti
(
L,L

)
Exti

(
L(−K∗),L

)f∗

≃

f∗

where the horizonal map f ∗ is an isomorphism for i = 1, 2 by Corollary 5.3.5.
Unpacking the proof of the lemma above, we see that the vertical maps are the
composition

H i(L,C) ≃ Exti (L(−K∗),L(−K∗))
f∗−→ Exti

(
L(−K∗),L

) (f∗)−1

−−−−→ Exti
(
L,L

)
.

The first isomorphism is induced by the degeneration of the local-to-global spectral
sequence, which in dimension four is due to degree reasons, and it is the i-th graded
piece of an isomorphism of graded algebras, see Theorem 4.6.7. Therefore, to prove
the statement we must check that

(f ∗)−1(f∗(a ◦ b)) = (f ∗)−1(f∗a) ◦ (f ∗)−1(f∗b).
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for every a, b ∈ Ext1(L(−K∗),L(−K∗)). If we write a, b as maps L(−K∗) →
L(−K∗)[1], there is a commutative diagram

L(−K∗) L(−K∗)[1] L(−K∗)[2]

L L[1] L[2]

a b[1]

f f [1] f [2]

(f∗)−1(f∗a) (f∗)−1(f∗b)

(f∗)−1(f∗(a◦b))

since the Yoneda pairing is precisely the composition in the derived category, we
conclude.

Corollary 5.6.5. The Yoneda pairing is skew-symmetric and induces an isomor-
phism ∧2

Ext1
(
L,L

) ∼−→ Ext2
(
L,L

)
, a ∧ b→ a ◦ b.

Proof. This relies on the fact that the Lagrangian L is in fact the symmetric square
of a genus five curve C. In fact we have

H2(L,C) ∼= H2(C,C)⊕
∧2

H1(L,C),

where the second summand is embedded via cup product. The fundamental class
of K∗ ⊂ Sym2C spans the direct summand H2(C,C). Thus, taking the cokernel
as in Lemma 5.6.3 we get

Ext2
(
L,L

) ∼=∧2
H1(L,C). (5.12)

We conclude by Lemma 5.6.4.

5.7 Semistable reduction
In Section 5.6 we showed that the object

FL := Φ(L) ∈ Db(M)

is a vector bundle of rank five for any degree zero line bundle L ∈ Pic0(L). In fact
this is true for any CM sheaf on L, but we do not need this now. In this section
we investigate its slope stability.

The object GL := Φ(L(−K∗)) is itself a vector bundle, as observed in the proof
of Proposition 5.6.1, and it sits in the short exact sequence (5.10)

0→ GL → FL → OM → 0.
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The intersection P ′ ∩ L is isomorphic to the dual conic K∗, so Example 5.4.4
implies that the sheaves E = OP ′ and F =L (−K∗) are as in the setting of
Section 5.3. By Corollary 5.3.4 the inverse P-twist around OP ′ lives in a short
exact sequence

0→ OP ′ → P−1
OP ′

(
L
)
→ L(−K∗)→ 0,

and we set
F ′
L := Φ

(
P−1
OP ′

(
L
))
∈ Db(M). (5.13)

By construction of the P-twist we have F ′
L
∼= P−1

OM
(F ). Applying the equivalence

Φ we get a short exact sequence

0→ OM → F ′
L → GL → 0.

In particular, for any line bundle L, the sheaf F ′
L is locally free of rank five.

Lemma 5.7.1. Let L ∈ Pic0(L) be a line bundle. The vector bundles FL and F ′
L

are unstable for every polarization h on M .

Proof. By [55, Remark 2.4] any P-twist acts like the identity in cohomology, so
F and F ′ have the same extended Mukai vector, which we computed in Proposi-
tion 5.6.1. In particular

rk(FL) = rk(F ′
L) = 5 and c1(FL) = c1(F

′
L) = 15f.

Therefore, the slope with respect to any polarization h is

µ(FL) = µ(F ′
L) = 3q(h, f) > 0.

So the sequence (5.10) destabilizes FL.
To destabilize F ′

L, first recall that the normal bundles of K∗ in P ′ and L are
dual to each other

OL(K
∗)|K∗ ∼= OP ′(2)|∨K∗ ,

as we proved in Lemma 5.4.1. Since the restriction L|K∗ is trivial, because K∗ is
rational, we

Hom(L(−K∗),OP ′(2)|K∗) = H0(K∗,OK∗) = C.

The unique map
L(−K∗) ↠ OP ′(2)|K∗ ,

must be a twisting of the canonical map associated to the embedding K∗ ⊂ L, in
particular is surjective. Since Ext1(P−1

OP ′ (OZ),OP ′) = 0, we can lift the composite
map

P−1
OP ′ (OZ)→ OL(−K∗)→ OP ′(2)|K∗ ,
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to a diagram

0 OP ′ P−1
OP ′

(
L
)

L(−K∗) 0

0 OP ′ OP ′(2) OP ′(2)|K∗ 0

(5.14)

where the short exact sequence below is the defining sequence of the inclusionK∗ ⊂
P ′. When applying Φ, the vertical central map becomes a non-zero morphism
F ′
L → OM(2f). The inequality

µ(OM(2f)) = 2q(h, f) < 3q(h, f) = µ(F ′
L)

show that F ′
L is destabilized by this map.

To obtain a stable bundle F ′′
L, we replicate the construction of F ′

L with an
additional P-twist around the line bundle OM(2f). Namely, define

F ′′
L := P−1

OM (2f)(F
′
L),

and notice that
F ′′
L ≃ Φ

(
P−1
OP ′ (2)

(P−1(L))
)

by construction. A diagram chase in (5.14) shows that

Ker
(
P−1
OP ′

(
L
)
→ OP ′(2)

)
= L(−2K∗).

So, defining G′
L := Φ(OL(−2K∗)) we have a short exact sequence

0→ G′
L → F ′

L → OM(2f)→ 0.

From the spectral sequence in Theorem 5.4.3 we see that the pair E = OM(2f)
and F = OL(−2K∗) satisfies the assumptions of Section 5.3. Via the equivalence
Φ, Corollary 5.3.4 provides a short exact sequence

0→ OM(2f)→ F ′′
L → G′

L → 0, (5.15)

from which we deduce that F ′′
L is a locally free sheaf of rank five. Notice that

µ(OM(2f)) < µ(F ′′), so this sequence does not destabilize.

Remark 5.7.2. In general, FL, F
′
L and F ′′

L have all the same Mukai vector. This
is easily seen either from the short exact sequences (5.10) and (5.15), or by the
fact that any P-twist acts trivally in cohomology. In particular they are all atomic,
because FL is by Proposition 5.6.1.
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5.7.1 Proof of stability

As is turns out, by stopping at F ′′
L we have performed enough P-twists to get a

slope stable vector bundle. To start, notice that the exact sequence (5.15) this
implies that for a general t

F ′′
L,t = OMt ⊕ Lt,1 ⊕ · · · ⊕ Lt,4,

thanks to Lemma 5.2.5. where Li are line bundles of degree zero on Mt. Hence, the
restriction to a generic fiber is semistable, which suggests to try to prove stability
with respect to a suitable2 polarization h in the sense of Definition 4.7.8.

Lemma 5.7.3. Assume that there exists an h-destabilizing sequence

0→ A→ F ′′
L → B → 0.

Then either rk(A) = 1 or rk(A) = 4.

Proof. On a general fiber Mt we can write

F ′′
L,t = Lt,0 ⊕ Lt,1 ⊕ · · · ⊕ Lt,4,

where Lt,0 = OMt , and Lt,i are line bundles of degree zero. The restriction At has
the same slope as F ′′

L,t, hence it is a sub-sum of these line bundles,

At = Lt,i1 ⊕ · · · ⊕ Lt,ir .

Taking Φ−1, Lemma 5.2.5 gives

Φ−1(A)|Mt = iMt,∗Φ
−1
Pt
(At) = OMt,[Lt,i1

] ⊕ · · · ⊕ OMt,[Lt,ir ]
.

We deduce that over an open U ⊂ P2, the support SuppΦ−1(A) ⊆ Z and it is
finite over the base of degree r. Since r < 5 by assumption SuppΦ−1(A) it not
equal to the whole Z. Hence it must be one of the two components, giving the
dichotomy in the statement.

Theorem 5.7.4. The bundle F ′′
L is slope-stable with respect to any suitable polar-

ization h.

Proof. Recall that rk(F ′′) = 5 and c1(F ′′) = 15f . Let

0→ A→ F ′′
L → B → 0,

be a slope destabilizing short exact sequence. We assume A saturated, so B is
torsion-free. By Lemma 5.7.3 either rk(A) = 1 or rk(A) = 4.

2We mean a(F ′′
L)-suitable
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Case 1. Assume that rk(A) = 1. Consider the following commutative diagram
with exact rows and columns

0 0 0

0 OM(2f) ∩ A A A/(OM(2f) ∩ A) 0

0 OM(2f) F ′′
L G′

L 0

0 OM(2f)/(OM(2f) ∩ A) B

0 0

The sheaf A/(OM(2f) ∩A) has rank 0 and embeds into G′
L, which is locally free.

Hence it is zero, which gives
A ⊂ OM(2f).

Using that B is torsion-free, the same argument yields OM(2f) ⊂ A. We deduce
that A = OM(2f), which is not destabilizing.
Case 2. Assume that rk(A) = 4. The quotient B is a torsion-free rank one sheaf,
so it injects into its double dual B∨∨ which is a line bundle on M . Therefore it
suffices to show that Hom(F ′′,L) = 0 vanishes for every L line bundle on M with
c1(L) = kf and k ≤ 3, thanks to Corollary 4.7.12. By construction we have

Hom(F ′′
L,O(2f)) = Hom(P−1

OM (2f)(F
′
L),OM(2f)) = 0.

It follows that Hom(F ′′,OM(kf)) = 0 for every k ≤ 2, because h0(M,OM(f)) ̸= 0.
The only case left is k = 3, that is it remains to show that

Hom(F ′′,OM(3f)) = 0.

Let φ : F ′′ → OM(3f) be a morphism, and call A its kernel. Restricting to a
general fiber Mt we see that Hom(OM(2f), A) = 0, because At splits as a sum of
four non trivial line bundles of degree 0. This implies that the composition

OM(2f)→ F ′′ → OM(3f)

is not zero, hence it is injective. Applying Φ−1 we obtain a diagram

0 OP ′(2) P−1
OP ′ (2)

(
P−1
OP ′

(
L
))

L(−2K∗) 0

0 OP ′(2) OP ′(3) Ol(3) 0

Φ−1(φ)
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where Ol is the structure sheaf of a line l ⊂ P ′, i.e. of the zero locus of a section
of OP ′(1). A line l is never contained in L, because the intersection P ′ ∩ L is a
smooth conic. It follows that the map OL(−2K∗) → Ol(3) is zero, so that the
central map factors through OP ′(2). Since Hom(F ′′,O(2f)) = 0 is zero, we get
that φ is zero.

Collecting everything in this section together, we obtain the following result.

Theorem 5.7.5. Let X be a hyper-Kähler of K3[2]-type. There exist a stable,
atomic vector bundle F0 with Mukai vector

v(F0) = 5

(
1− 3

4
q2 +

9

32
pt

)
.

The Ext1(F0, F0) is ten dimensional. The Yoneda pairing is skew-symmetric and
induces an isomorphism∧2

Ext1(F0, F0)
∼−→ Ext2(F0, F0).

In particular, its deformation functor is smooth.

Proof. The vector bundle F ′′
L constructed above is stable and atomic. By Remark

5.6.2 we can twist F ′′
L to obtain a stable atomic vector bundle F0 with Mukai vector

v(F0) = 5

(
1− 3

4
q2 +

9

32
pt

)
.

By Theorem 4.3.9 we can deform F0 along with every Kähler deformation of M ,
or equivalently F0 is hyperholomorphic with respect to any polarization. The Ext
algebra remains constant along these deformations by Theorem 4.3.10. In Corol-
lary 5.6.5 we proved that the Yoneda pairing is skew-symmetric. To prove smooth-
ness of the deformation space we argue as follows. The main result in [84] (or [15,
Theorem 6.1]) gives formality of the algebra RHom(F0, F0). So the obstruction to
lifting a first order deformation is the Yoneda square, which vanishes.

5.8 Partial compatification
Here we focus on the semistable deformations of the example constructed in Sec-
tion 5.5. In this section, we denote by X the moduli space of torsion sheaves
MS(0, H,−1), that before we called M . We recall that we start from a line bundle
L ∈ Pic0(L), and glue it to the structure sheaf of P ′ to obtain

0→ L(−K∗)→ L → OP ′ → 0.
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Applying the equivalence Φ induced by the Poincaré sheaf to L, we obtain a slope
stable locally free sheaf FL. We can tensor by O(−3f) to kill its first chern class,
so that

v0 := v(F0) = 5

(
1− 3

4
q2 +

9

32
pt

)
,

as showed in Theorem 5.7.5. Consider the moduli space MX,h(v0) parametrizing
h-Gieseker semistable sheaves on X with Mukai vector v0, where h is a suitable
polarization as in Section 5.7.1.

Remark 5.8.1. Every sheaf in the moduli space MX,h(v0) is Gieseker stable, not
just semistable. Indeed, since every P-twist acts as the identity in cohomology,
the Euler characteristic is unaffected by the semistable reduction. Example 5.4.4
gives that χ(GL) = −2, so we have

χ(F ′′
L) = χ(FL) = χ(GL) + χ(OM) = 1,

which is (tautologically) coprime with the rank. Therefore, every sheaf is Gieseker
stable, because the Euler characteristic is the constant term of the Hilbert poly-
nomial.

To study the moduli space MX,h(v0) we want to relate it to a known HK
manifold. The key observation is the following. The Lagrangian L ⊂ X is by
definition the symmetric square of a curve C ⊂ S in the linear system |2H|. It
follows from the Künneth formula, that there is an isomorphism

Pic0(C) ≃ Pic0(Sym2C), G 7→ G(2) (5.16)

where G(2) denotes the symmetrization of the line bundle G. It is defined as the
equivariant line bundle

G⊠G ∈ Pic0(C × C),

equipped with the linearization which swaps the factors.
Line bundles of degree zero supported on curves in |2H| are generic points of

the moduli space MS(0, 2H,−4). Since the vector (0, 2H,−4) is not primitive,
this moduli space is singular, but thanks to a celebrated result by O’Grady [92]
its singularities are symplectic. The total space of the symplectic resolution

ρ : M̃S(0, 2H,−4)→MS(0, 2H,−4)

is a HK variety of type OG10. Similarly to the case considered in Section 5.2,
there is a morphism

π :MS(0, 2H,−4)→ |2H|, F → Fitt(F )
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sending a sheaf F to its Fitting support. The composition

M̃S(0, 2H,−4)
ρ−→MS(0, 2H,−4)

π−→ |2H|

is a Lagrangian fibration.

Proposition 5.8.2. The autoequivalence

Ψ := (−⊗O(−3f)) ◦ P−1
OM (2f) ◦ P

−1
OM
◦ Φ

induces a morphism

ψ : M̃S(0, 2H,−4) 99KMX,h(v0), G 7→ F ′′
G(2) ⊗O(−3f),

which is birational onto an irreducible component M0.

Proof. As remarked previously, a general element of M̃S(0, 2H,−4) is a line bundle
of degree zero supported on a curve C ∈ |2H|. It follows from the discussion above
that sending G ∈ Pic0(C) to the bundle F ′′

G(2) ⊗ O(−3f) implies that ψ is well-
defined. It is invertible where is defined, because it is the composition of the
equivalence Ψ and the isomorphism (5.16).

Symplectic forms

Both the source an target of the maps ψ are naturally equipped with symplectic
forms on the smooth locus, so it is natural to ask if ψ preserves the symplectic
form. It is implicit in Theorem 2.3.2 that the symplectic form on a stable sheaf
GC ∈MS(0, 2H,−4), supported on a curve C ∈ |2H|, is given by Serre duality

Ext1(G,G)× Ext1(G,G)→ C, (a, b) 7→ Tr(a ◦ b).

The degeneration of the local-to-global spectral sequence induces a graded algebra
isomorphism

Ext∗S(G,G)
∼= H∗(C,C),

therefore the symplectic form can be identified with Poincaré duality

H1(C,C)×H1(C,C)→ C, (a, b) 7→
∫
C

a ∪ b. (5.17)

On the other hand, the symplectic form τσ on the locally-free locus of M0 was
defined in (4.49). If F ∈M0 is a stable bundle, it takes the form

Ext1(F, F )× Ext1(F, F )→ C, (a, b) 7→ Tr (χEs(σ) ◦ a ◦ b) . (5.18)
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So in order to compare the two, we need first to compute the obstruction map on
M0. For this we exploit the compatibility with derived equivalences, so we can
compute

χLC
: HT2(M)→ Ext2

(
L,L

)
,

where L is a line bundle of degree zero supported on Z. Recall that under the
(unmodified) HKR isomorphism (3.9) there is a decomposition

HT2(M) ∼= H0(M,
∧2

TM)⊕H1(M,TM)⊕H2(M,OM),

which gives rise to non commutative deformations as explained in Section 4.2.1.
Given a sheaf GC ∈ MS(0, 2H,−4) supported on C, we call LC := G

(2)
C the sym-

metrization, and by LC its gluing with OP ′ .

Lemma 5.8.3. Under χLC
, the image of HT2(M) and H1(M,TM) agree.

Proof. The obstruction map restricted to H2(M,OM) does not involve the Atiyah
class, it is just the tensorization by

σ : OM → OM [2].

Since LC is supported on a Lagrangian submanifold Z, this tensorization vanishes.
To deal with H0(M,

∧2 TM), we use that the equivalence Ψ maps LC to a stable
bundle F ′′

LC ,0 which deforms to all commutative deformations. This follows from
Theorem 4.3.9 using that the first Chern class vanishes. This means that χΨ(LC)
vanishes when restricted to H1(M,TM). We also have

χΨ(LC) = Ψ ◦ χLC
◦
(
Ψ̃HT

)−1

, (5.19)

where Ψ̃HT is obtained from ΨHH by conjugation with the modified HKR. by Propo-
sition 4.2.8 and Remark 4.2.9. To compute ΨHT we use the morphism

µ : HT2(M)→ H̃(X,C), η 7→ mη(σ),

of section Section 3.7. Proposition 3.7.3 gives a commutative diagram

HT2(M) H̃(M,C)

HT2(M) H̃(M,C),

ΨHT ΨH̃

µ

µ



180 CHAPTER 5. TOWARDS A MODULAR CONSTRUCTION OF OG10

and now ΨHT is obtained from ΨHH by conjugation with the modified HKR iso-
morphism (3.9).3 Looking at the definitions gives

ΨHT = D ◦ Ψ̃HT ◦D−1,

where D is the Duflo isomorphism (4.7). It acts on HT2(M) as

D̃|H2(OX) = id,

D̃|H1(TX) = id,

D̃|H0(
∧2 TX)(σ

∨) = 1⌟σ∨ +
c2(X)

6
⌟σ∨ = σ∨ + C · σ,

for some complex number C. Since the P-twist acts trivially in cohomology, Propo-
sition 5.2.9 implies that(

ΨHT
)−1

(σ∨) ∈ H1(M,TM)⊕H2(M,OM) and,(
ΨHT

)−1
(f) ∈ H2(M,OM).

which implies
χLC

(Cσ∨) = χΨ(LC)(Cσ) = χLC
(Cf),

where we are identifying f ∈ H1(M,Ω1
M) with its image in H1(M,TM) via the

isomorphism Ω1
M
∼= TM .

It is only left to compute the restriction of the obstruction map on H1(M,TM).
Recall that a class η ∈ HH2(M) represents a natural transformation idM → [2],
and the obstruction map is essentially the evaluation at an object by Proposi-
tion 4.2.8. The naturality of η provides a commutative triangle

HT2(M)

Ext2(LC ,LC) Ext2(LC ,LC)

χLC

χLC

where the horizontal map is the map inducing the isomorphism of Lemma 5.6.3.
For this reason, we focus first on the obstruction map for LC . Recall that, by
Theorem 4.6.7 there is a graded algebra isomorphism

Ext∗(LC ,LC) ∼= H∗(L,C), (5.20)

where the Lagrangian L ⊂M is isomorphic to Sym2C.
3Because the modification is necessary to have compatibility with the action in cohomology.
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Lemma 5.8.4. The image of H1(M,TM) under the obstruction map χL is

C[∆C ]⊕H2(C,C),

where [∆C ] ∈ H2(L,C) is the class of the diagonal.

Proof. By [77, Remark 3.10] there is a commutative diagram

H1(M,TM) H1(M,Ω1
M)

Ext1(LC ,LC) H1(L,Ω1
L)

χLC

≃

≃

where the right vertical map is the restriction map. The restriction can be com-
puted on the other birational model, that is

H2(S[2],C)→ H2(Sym2C,C) ∼= H2(C,C)⊕
∧2

H1(C,C).

The Künneth formula implies that the first summand in

H2(S[2],C) ∼= H2(S,C)⊕ Cδ.

maps to H2(C,C). To conclude note that, by definition, the class δ maps to a
multiple of the class of the diagonal ∆C ⊂ Sym2C.

Remark 5.8.5. The proof of Lemma 5.6.4 gives also a commutative diagram

Ext2(LC ,LC)× Ext2(LC ,LC) Ext4(LC ,LC)

Ext2
(
LC ,LC

)
× Ext2

(
LC ,LC

)
Ext2(LC ,LC)× Ext4

(
LC ,LC

)
where the horizontal maps are the Yoneda pairings on L and Z respectively.

Theorem 5.8.6. The image of the obstruction map for LC is one dimensional.
Under the isomorphism

Ext2
(
LC ,LC

) ∼=∧2
H1(C,C)

it is spanned by the class representing the Poincaré pairing on C. In particular, ψ
preserves the symplectic forms.
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Proof. By Lemma 5.8.3, the only piece responsible for the image of the obstruction
map is H1(M,TM). By Lemma 5.8.4 we see that the image of obstruction map
for L is

C[∆C ]⊕H2(C,C) ⊂
∧2

H1(C,C)⊕H2(C,C).

Hence, the projection onto the first factor is spanned by the projection of the
class of the diagonal. By Lemma 5.6.4 the Yoneda pairing, under the isomorphism
Ext1

(
LC ,L

) ∼= H1(C,C) can be identified to

(α, β) 7→ π∗
1(α) ∪ π∗

2(β)− π∗
1(β) ∪ π∗

2(α) ∈ H2(Sym2C,C),

where α, β ∈ H1(C,C) and πi : C × C → C are the two projections. Therefore,
by (4.49) and Remark 5.8.5 we can write the symplectic form on LC as

(α, β) 7→
∫
L

(π∗
1(α) + π∗

2(α)) ∪ (π∗
1(β) + π∗

2(β)) ∪ [∆C ]

To conclude note that we have∫
∆C

(π∗
1(α) + π∗

2(α)) ∪ (π∗
1(β) + π∗

2(β))|∆C
= 2

∫
C

α ∪ β.

Hence, the image of [∆C ] in
∧2H1(C,C) represents the Poincaré pairing on C,

and the form τσ is the Poincaré pairing under the isomorphism (5.20)
For a given stable sheaf G ∈MS(0, 2H,−4), the map ψ acts on the Ext groups

as the composition of the symmetrization

Exti(G,G)→ Exti(LC ,LC)

and the gluing map
Exti(LC ,LC)→ Exti

(
LC ,LC

)
.

Via the isomorphism (5.20) the symmetrization is the natural symmetrization map

H i(C,C)→ H i(Sym2C,C).

After this isomorphism, the symplectic form on MS(0, 2H,−4) is the Poincaré
pairing on C, thus the above argument implies that ψ is symplectic.



Chapter 6

A modular construction of OG10

6.1 Introduction
In this Chapter we degenerate a cubic Y ⊂ P5 to a general cubic with the property
that its variety of lines F (Y ) has a Lagrangian fibration. We show that, in this
case, there exists a derived equivalence

Φ : Db(F (Y )) ≃ Db(M,α),

where M is a four dimensional moduli space of torsion sheaves, and α ∈ Br′(M)
is a Brauer class. Then, we replicate the construction in Section 5.6 to obtain a
slope stable atomic twisted vector bundle on M . More precisely, we consider the
Lagrangian surfaces of hyperplane sections

F (YH) ⊂ F (Y ),

and their image under the equivalence Φ. To show that image is locally free
(which we do in Proposition 6.5.4), we just have to check the assumptions of
Proposition 5.2.6. That is, we need to check that for every hyperplane section
YH ⊂ Y , the Lagrangian fibration

F (YH)→ F (Y )

is finite. This is done in Proposition 6.4.14. In contrast to what happens in the
previous Chapter, in this case all the surfaces F (YH) are integral if Y is general
enough. Hence, stability of the image

F = Φ(OF (YH))

with respect to a suitable polarization is automatic by a monodromy argument
(see Theorem 6.5.6), and we do not need a semistable reduction as in Section 5.7.

183
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The same continues to be true for any line bundle of degree zero supported
on F (YH). Hence, to study the moduli space of semistable deformations of F , we
need to understand the compactified Picard scheme

Pic0(F (YH)) ⊂ Pic0(F (YH))
=

which we define in Section 6.4. Our main result is that under our assumptions,
every sheaf in Pic0(F (YH)) is Cohen-Macaulay.

To see this, we construct a local complete intersection morphism

φ : F (YH)→ Prym(C/D)

to the compactified Prym of an étale 2 : 1 cover f : C → D. Here C and D are
integral curves with planar singularities, therefore every sheaf in

Pic0(Prym(C/D))

is CM, as a consequence of the work of Arinkin [7]. Since the morphism φ is lci,
it induces a pullback at the level of CM sheaves

φ∗ : Pic0(Prym(C/D))− → Pic0(F (YH))
−

which turns out to be dominant, as we prove in Lemma 6.4.20. Since the do-
main is proper, the same is true for the target, which therefore it is equal to the
compactified Picard scheme of F (YH).

The consequence is that there is an irreducible component of moduli space
M0 of twisted sheaves on M , which parametrizes only locally free sheaves. Then,
the results of Section 4.8 imply that this component is a smooth hyper-Kähler
manifold, with the same arguments of Section 5.8. It is easy to see that this
moduli space compactifies the intermediate jacobian fibration

JU → U,

where U ⊂ P5 parametrizes smooth hyperplane sections YH ⊂ Y . By [66], this
admits a HK compactification of type OG10, soM0 is of type OG10 itself, giving
a positive answer to the question by Markman and O’Grady asked in the intro-
duction.

6.1.1 Structure of the chapter

In Section 6.2 we construct the twisted version of the Poincaré sheaf of Sec-
tion 5.2.1. We recall the Tate–Shafarevich and Brauer groups, and show that
the Poincaré sheaf relates the two.
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In Section 6.3 we discuss the geometry of the Fano surfaces F (YH) under our
assumptions on Y . We recall that (even the singular ones) are integral, and show
that they are finite over the base of the Lagrangian fibration F (Y )→ P2.

In Section 6.4 we prove Theorem 6.4.1, which says that every sheaf in the
compactified Picard scheme is CM. The proof is rather technical, and involves
subtle geometrical facts about lines in cubic threefolds.

Section 6.5 is the analogue of Section 5.6. Here we show that applying the
equivalence induced by the twisted Poincaré sheaf to the surfaces of lines produces
slope stable twisted vector bundles.

Lastly, in Section 6.6 we study the moduli space of these twisted sheaves, and
prove Theorem 6.6.3 which is the main result of this thesis.

6.2 Twisted Poincaré sheaf

Let (S,H) be a polarized K3 surface, and assume that every curve in |H| is integral.
This happens for example if (S,H) is general. Let B := |H| and π : X :=

Pic0(X/B) → B be the relative compactified Jacobian of the universal curve
C → B, considered in Section 5.2. Note that π has a section σ : B → X defined
by sending a curve to its structure sheaf.

In Section 5.2.1 we recalled that there exists a relative Poincaré sheaf U on
X ×B X, which induces a derived equivalence

ΦU : Db(X)
≃−→ Db(X).

We want to see that if we twist X by an element in the Tate–Shafarevich group,
the Poincaré sheaf glues to a twisted sheaf.

6.2.1 Tate–Shafarevich group

The Tate–Shafarevich group of the Lagrangian fibration X → B was first intro-
duced in [80, Section 7] as the natural generalization of the Tate–Shafarevich group
of an elliptic fibration, and later further studied in [1]. It is defined as

X := H1(B,Aut0X/B),

where Aut0X/B is the image of the exponential map

π∗TX/B → AutX/B.
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An element t ∈ H1(B,Aut0X/B) can be represented by a Čech cocycle of relative
automorphisms

tij ∈ Aut0(π−1(Uij)/Uij),

with respect to an open cover B =
⋃

i Ui. By the cocycle condition, the tij can be
interpreted as transition functions and used to re-glue the manifold X to a new
one X t, equipped with a fibration πt : X t → B. In general, the X t satisfies all
the properties for being hyper-Kähler besides being Kähler. In our setting, that is
for moduli space of torsion sheaves on a K3 surface, by [80, Proposition 7.7] the
manifold X t is also Kähler, and πt is a Lagrangian fibration.

As a consequence of [83, Theorem 1.2]

Riπ∗OX
∼= Ωi

B, (6.1)

we get an isomorphism π∗TX/B
∼= R1π∗OX . The group H1(B,R1π∗TX/B) is de-

noted by X̃ and its image via the exponential map by X0 ⊂X. There is a short
exact sequence

0→X0 →X→ H2(B,Γ)→ 0,

where Γ is a sheaf of finitely generated torsion-free abelian groups, see [1, Lemma
3.1].

From now on, we will often abuse the notation denoting by the same letter t
both an element in X̃ and its image under the exponential map in X. All the
twisted fibrations coming from elements in X0 can be put in a family over X̃, as
made precise in the following.

Proposition 6.2.1 ([1, Proposition 3.3]). Let X → B be a Lagrangian fibration
without multiple fibers in codimension one, for example the one above. There exists
a holomorphic family

X → X̃, (6.2)

such that the fiber over t ∈ X̃ is X t. Moreover, there exists a holomorphic fibration

X → B × X̃, (6.3)

which restricts to πt : X t → B for every t ∈ X̃.

6.2.2 Brauer group vs Tate–Shafarevich group

Recall that an element
α ∈ Br′(X) := H2(X,O∗

X)
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can be represented also as a gerbe. In simple terms, this is just a collection {Lij} of
line bundles, each over the intersection Uij of some open in a cover of X, satisfying
an approprite cocycle condition, namely

Lijk := Lij ⊗ Ljk ⊗ Lki

is trivial. The actual definition is a bit more precise, and we refer to [25, Section
1.1] for details. With this interpretation of a Brauer class, one can also describe
an α-twisted sheaf as collection of sheaves {Fi} over the cover {Ui} such that

Fi|Uij
∼= Fj|Uij

⊗ Lij,

for some line bundles Lij on Uij.
Our next goal is to compare the Brauer group and the Tate–Shafarevich group,

and show that, in some sense, the equivalence induced by the Poincaré sheaf ex-
changes the two.

Lemma 6.2.2. There is a canonical injection

T : H1(B,R1π∗O∗
X) ↪→ H2(X,O∗

X).

Proof. We analyze the Leray filtration on H2(X,O∗
X). The E2-page takes the

following form:
• E2,0

2 = H2(B,O∗
B) = 0.

• E1,1
2 = H1(B,R1π∗O∗

X)
d1,12−−→ E3,0

2 = H3(B,O∗
B).

• E0,2
2 = H0(B,R2π∗O∗

X)
d0,22−−→ E2,1 = H2(B,R1π∗O∗

X).
So, if we show that d1,12 vanishes, the degeneration E1,1

2 = E1,1
∞ will give the desired

injection. For this we proceed in a similar way as in the proof of [80, Lemma 7.3].
The cokernel of the differential d1,12 is isomorphic to the the image of

π∗ : H3(B,O∗
B)→ H3(X,O∗

X).

Since π has a section σ : B → X, the composition

H3(B,O∗
B)

π∗
−→ H3(X,O∗

X)
σ∗
−→ H3(B,O∗

B)

is the identity, so π∗ is injective. So H3(B,O∗
B) is isomorphic to the cokernel of

d1,12 , which means that d1,12 vanishes.

Theorem 6.2.3. The morphism T is an isomorphism, and fits in the commutative
diagram

H1(B,R1π∗OX) H2(X,OX)

H1(B,R1π∗O∗
X) H2(X,O∗

X)
≃
T

≃
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Proof. The diagram is obtained by the functoriality of the Leray spectral sequence
via the exponential map OX → O∗

X . Using the isomorphism (6.1), we get that
the top map is an isomorphism. The right vertical map is surjective, because
H3(X,Z) = 0. Since the diagram is commutative, the bottom map T is also
surjective, hence bijective.

Remark 6.2.4. Since the fibers of π : X → B are integral, there is an isomorphism
of sheaves of abelian groups

R1π∗O∗
X ≃ PicX/B.

Hence, an element t ∈ H1(B,R1π∗O∗
X) is represented by a collection of relative

line bundles Lij ∈ Pic(π−1(Ui)) for some cover B =
⋃

i Ui, satisfying the cocycle
condition. The collection {Lij} represents T (t) as a gerbe. For more on this see
the proof of [32, Theorem 3.1].

Theorem 6.2.5. Let t ∈ X̃, and let X t be the twisted Lagrangian fibration. Then,
there exists a p∗2T (t)-twisted sheaf U on X t ×X, supported on X t ×B X, inducing
an equivalence

Db(X t) ≃ Db(X,T (t))

Proof. Over some cover B =
⋃

i Ui the class t ∈X is represented by local auto-
morphisms

tij : Xij
∼−→ Xji,

satisying the cocycle condition. Denote by P the fiber productX t×|H|X. LetXi :=
π−1(Ui) and similarly Pi := X t

i ×Ui
Xi. Denote by Uij the double intersections,

and similarly Xij, Pij, etc.
Since, by definition X t

i = Xi, by [7] there exists a universal sheaf Ui over Pi,
for details see the proof of [3, Proposition 2.1]. We are interested in understanding
how they glue along

Pi ⊃ Pij
≃−−−→

tij×id
Pji ⊂ Pj.

Let X◦
ij the smooth locus for the fibration π, so that over a curve C ∈ Uij the

fiber is Pic0(C). Naturally its complement has codimension two in Xij. Note that
when restricted to

P ◦
ij := X t

ij ×Uij
X◦

ij,

both Ui and Uj are line bundles. More precisely, over the open set Uij we have an
isomorphism

X◦
ij
∼= Pic0(X t

ij/Uij), (6.4)

and both Ui|P ◦
ij

and (tij × id)∗(Uj|P ◦
ij
) are universal line bundles. By the definition

of the Picard functor, they differ from pullbacks of line bundles on X◦
ij

(tij × id)∗(Uj|P ◦
ij
) ∼= Ui|P ◦

ij
⊗ p∗2Lij. (6.5)
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SinceX◦
ij ⊂ Xij has codimension two, the line bundles Lij extend toXij. Moreover,

the Poincaré sheaves Uij are Cohen-Macaulay sheaves by Proposition 5.2.2, so the
isomorphism (6.5) extends to Pij.

The cocycle condition on the tij implies that the collection {Lij} is a gerbe on
X, representing the obstruction to the existence of a universal sheaf on X t×BX. It
follows from Remark 6.2.4 that the class of this gerbe is precisely α = T (t). Lastly,
the isomorphism (6.5) means that U glues to a p∗2(α)-twisted Cohen-Macaulay
sheaves on Xs×BX. It induces an equivalence because it does so on each fiber.

Remark 6.2.6. The above arguments also applies to the relative case. More
precisely, let X → X̃ be the family of Proposition 6.2.1, and define

X ′ := X × X̃→ B,

to be the trivial family. We can equip it with a tautological Brauer twist, namely
a class

α̃ ∈ Br′(X ′)

such that for every t ∈ X̃ it satisfies α|t = T (t). Then, there exists a twisted sheaf

Ũ ∈ Coh
(
X ×X̃ X

′, p∗2(α̃)
)

(6.6)

such that for every t the restriction Ũ |t is the sheaf constructed above.

Remark 6.2.7. Notice that, at least for the first order deformations, we would
expect Ũ to exists by virtue of Theorem 4.2.2. We know that for t = 0, there exists
a Poincaré sheaf

U ∈ Coh(X ×B X)

which induces a derived equivalence. Therefore, to check that it deforms along the
family X ×X̃ X

′ we just need to check that the action on the second Hochschild
cohomology is compatible. The first order deformation associated to X is the class

σ−1(f) ∈ H1(X,TX) ⊂ HH2(X),

by [80, Theorem 7.11], where σ : TX ≃ Ω1
X is the isomorphism induced by the

symplectic form. The (non-commutative) first order deformation associated to X
with the tautological twist is

σ ∈ H2(X,OX) ⊂ HH2(X).

Then, Proposition 3.7.3 combined with Proposition 5.2.9 imply that

ΦHH
U (σ−1(f)) = σ,

which is what we needed.
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6.2.3 Cohomological action

Here we describe the action induced in cohomology by the equivalence

ΦU : Db(X t)→ Db(X,T (t)).

For this, note that by Remark 6.2.6 we have a relative twisted Poincaré

U ∈ Coh (X ×C (X × C), α)

where α ∈ H2(X × C,O∗
X×C) is the universal twist.

Remark 6.2.8. By [1, Theorem 5.19], for a t ∈ C = X0(X/Pn) the twist X t is
projective if and only if the image of t in X(X/Pn) is torsion. Hence, if X t is
projective, the twist T (t) ∈ H2(X,O∗

X) is torsion, and therefore a Brauer class.
This is not the case for every fiber, therefore the global twist will not be a Brauer
class, but only on a dense subset of C. So, at least for projective fibers of the
family X → C, it makes sense to talk about the induced action in cohomology.

Recall from Section 4.4 that we call

fH
t : H∗(Xt,Q)→ H∗(X0,Q)

the parallel transport operator, and we define

Φg
t := Φg

U0
◦ fH

t : g(Xt)→ g(X).

The main result of this section is the following.

Proposition 6.2.9. Let t ∈X0(X/Pn) such that exp(t) ∈X(X/Pn) is torsion,
and consider the equivalence

ΦUt : D
b(X t)→ Db(X,αt).

Let B ∈ H2(X,Q) be a B-field lifting αt. Then the induced Hodge isometry

ΦH
Ut

: H∗(X t,Q)→ H∗(X,Bt,Q)

coincides with the isometry ΦH
U0

. In particular, it is equivariant with respect to Φg
t .

Proof. To prove the statement it suffices to see that

fH
t (v(Ut)) = v(U0) ∈ H∗(X ×X,Q).

The sheaf U is supported on the fiber product Z := X ×C×Pn (X × C) and has
rank one on it. This implies that the restriction of the twist α|Z ∈ Br(Z) vanishes.
Because of this, by [25, Theorem 2.2.4] we get a (twisted) pushforward functor

iα∗ : Coh(Z)→ Coh(X ×C (X × C), α),
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which is exact because i is a closed embedding. Since P is Cohen–Macaulay, we
have

P = iα∗ i
∗P .

We also have the usual untwisted pushforward

i∗ : Coh(Z)→ Coh(X ×C (X × C)).

This allows us to “untwist” P by defining

P̃ := i∗i
∗P ∈ Coh(X ×C (X × C)). (6.7)

This untwisted family is still flat over both factors, because locally it is isomorphic
to P .

Recall the alternative definition of the twisted Mukai vector given in [119]. Let
G be an αt-twisted locally free sheaf on Xt×X, which exists because αt ∈ Br(X),
and B a B-field lifting αt. Then we have

vBG(−) =
v(G∨ ⊗−)
ch−B(G∨)

. (6.8)

We have

v(G∨ ⊗ Pt) = v(i∗(i
∗(G∨ ⊗ Pt))) = i∗ (v(i

∗Pt) · ch(i∗G∨)) ,

where the first equality follows from the fact that G∨⊗Pt is a CM untwisted sheaf
supported on Zt, and the second by the Grothendieck–Riemann–Roch theorem.
Substituting in (6.8), and using projection formula we get

v(G∨ ⊗ Pt) = i∗
(v(i∗Pt) · ch(i∗G∨))

ch(i∗G∨)
= i∗v(i

∗Pt).

Here we have used that
i∗ ch−B

G (G∨) = ch(i∗G),

because the twist is trivial on Zt.
To conclude, observe that, since the untwisted family P̃ is flat with respect to

∆, we have
i∗v(i

∗Pt) = v(P̃t) = v(P̃0) = v(P0),

because αt = 0 for t = 0.

Having this, the results of Section 4.4 imply that ΦUt maps atomic objects in
Db(X t) to twisted atomic objects in Db(X,αt).
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6.3 Variety of lines with Lagrangian fibrations
Let K2

6 be the moduli space of polarized hyper-Kähler manifolds (X, h) of degree
6 and divisibility 2. A general (X, h) ∈ K2

6 can be described as the variety of
lines X = F (Y ) on a smooth cubic fourfold Y ⊂ P5 equipped with the Plücker
polarization.

Let N (d) ⊂ K2
6 be the closure of the locus parameterizing polarized hyper-

Kähler manifolds with Neron-Severi NS(X) = Zh⊕Zf and Beauville–Bogomolov
matrix (

6 2d
2d 0

)
.

A general (X, h) ∈ N (d) has a unique (up to automorphism of P2) Lagrangian
fibration π : X → P2, that satisfies π∗OP2(1) = OX(f). In this section we collect
some results on the geometry of this situation.

Lemma 6.3.1. Let π : X → P2 be the Lagrangian fibration. Then, for every
smooth hyperplane section YH ⊂ Y , the restriction

π|Z : Z = F (YH)→ P2

is a finite morphism of degree 5d2.

Proof. Let i : Z ↪→ X be the inclusion. Recall that the restriction map

i∗ : H2(X,Z)→ H2(Z,Z)

has rank one, so every algebraic class in its image is ample. In particular

π|∗Z(OP2(1)) = i∗π∗OP2(1)

is ample on Z, which is equivalent to the finiteness of π|Z . To compute the degree
it suffices to compute the intersection∫

X

[Z] ∪ f 2.

By [77, Lemma 7.3]

[Z] =
5

8

(
h2 − 1

5
c2(X)

)
∈ H4(X,Z).

For a HK fourfold, the second Chern class c2(X) is a multiple of the class q2, hence∫
X

c2(X) ∪ f 2 = 0,
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because q(f) = 0. Moreover, by Fujiki formula we have∫
X

h2 ∪ f 2 = 2q(h, f)2 = 2 · (2d)2

Putting everything together we get∫
X

[Z] ∪ f 2 =
5

8

∫
X

h2 ∪ f 2 − 1

8

∫
X

c2(X) ∪ f 2 = 5d2,

which is equal to the degree.

Remark 6.3.2. The union of the Nother-Lefschetz divisors⋃
d

N (d) ⊂ K2
6

is dense in the classical topology. This means that all statements which hold for
a general X ∈ K2

6 remain true for a general element of N (d) for infinitely many
d. The particular result we are interested in is [66, Lemma 2.5], which says that
the class of the surface Z indecomposable in H4(X,Z). This implies that, writing
X = F (Y ), for every hyperplane section YH ⊂ Y , the surface of lines F (YH) is
integral.

We wish to generalize Lemma 6.3.1 to the singular case. The end goal here
is to verify the assumptions of Proposition 5.2.6, but this time, in contrast to
Section 5.5, we want to do it for all degenerations.

Consider Z ⊂ X a singular surface of lines, and et ν : Z̃ → Z be a resolution of
singularities. Write j = i ◦ ν : Z̃ → X for the composition. Then, by [67, Lemma
2.7] we have

rk
(
j∗ : H2(X,Z)→ H2(Z̃,Z)

)
= 1. (6.9)

In particular, this implies that

j∗ : NS(X)→ NS(Z̃)

has rank one.

Proposition 6.3.3. For every hyperplane section YH ⊂ Y , the restriction of the
Lagrangian fibration

π|Z : Z = F (YH)→ P2

is a finite morphism of degree 5d2.
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Proof. As in the smooth case, we wish to show that π|∗ZOP2(1) is ample on Z. By
the Nakai–Moishezon criterion, π|∗ZOP2(1) is ample if and only if its class f ∈ NS(Z)
satisfies

(f .C) > 0

for every curve C ⊂ Z. It follows from (6.9) that

j∗O(f) = j∗O(h) ∈ NS(Z̃),

so we conclude that O(f)|Z = O(h)|Z if we show that

ν∗ : NS(Z)→ NS(Z̃)

is injective. Assume that ν∗(L) ≡ 0. Let C ⊂ Z be an integral curve, and C̃ ⊂ Z̃
any integral curve in ν−1(C) mapping surjectively to C. We have

deg(ν∗L|C̃) = deg(ν∗|C̃(L|C)) = deg(ν∗|C̃) · deg(L|C).

By assumption we have deg(ν∗L|C̃) = 0. Since deg(ν∗|C̃) ̸= 0, this implies that
deg(L|C) = 0, so L is numerically trivial on Z. The degree is computed as in the
smooth case.

6.4 Compactified Picard group of the surface of
lines

Let Y ⊂ P5 be a general cubic fourfold. Let H ⊂ P5 be any hyperplane, and
Z := F (Y ∩ H) be the surface parametrizing lines in the intersection Y ∩ H.
Following Altman-Kleiman [4], we denote by

Pic0(Z)= := {torsion-free sheaves on Z of rank 1 and degree 0}/∼=.

the moduli space of torsion-free sheaves of rank one on Z, and by

Pic0(Z) ⊂ Pic0(Z)=

the irreducible component of Pic0(Z)= containing line bundles. The goal of this
section is the following result.

Theorem 6.4.1. For a general cubic Y ⊂ P5 and any hyperplane H ⊂ P5, the
moduli space Pic0(Z) parametrizes only Cohen-Macaulay sheaves.

Remark 6.4.2. If J denotes the compactified Jacobian of an integral curve C
with planar singularities, then every sheaf in Pic

0
(J) is Cohen-Macaulay, as shown

in [7, Theorem A and B].
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To exploit this fact, we find an integral curve C and a locally complete inter-
section morphism

i : Z → J(C).

Since any lci morphism has finite tor dimension, the pullback is well-defined at the
level of CM sheaves. That is, we get an induced morphism

i∗ : Pic0(J(C))− → Pic0(Z)−,

where, again following [4], we use the notation Pic0(−)− ⊂ Pic0(−)= to indicate
the locus of Cohen-Macaulay sheaves. In particular, by Remark 6.4.2 we can
restrict our attention to limits of line bundles, and get a map

i∗ : Pic0(J(C))→ Pic0(Z)− ∩ Pic0(Z), (6.10)

Since Pic0(J(C))− is complete, if we can prove that i∗ is dominant, we conclude
that Pic0(Z) is contained in Pic0(Z)−.

6.4.1 Reminders on lines on cubic threefolds

In this section, we let V ⊂ P4 denote a (not necessarily smooth) cubic threefold.
If l ⊂ Y is a line, the projection to a complementary plane defines a rational map

πl : Y 99K P2.

It is resolved by blowing up the line, and so we obtain a conic bundle

Yl → P2. (6.11)

The discriminant curve, that is the curve parametrizing the singular fibers, is a
plane quintic Dl ⊂ P5.

If we assume that the fibers of πl are all reduced, then the curve Dl admits a
natural 2 : 1 étale cover

fl : Cl → Dl. (6.12)

Denote by ι : Cl → Cl the covering involution; notice that it has no fixed points
since the quotient map is étale. The curve Cl can also be realized as the closure
of the scheme

{l′ ∈ F (V ) | l ̸= l′ and l′ ∩ l ̸= ∅} (6.13)

of lines meeting l, as shown in [53, Lemma 1.26]. From this point of view, the
covering involution is described as

l′ 7→ l′′, where Span(l, l′) ∩ V = l ∪ l′ ∪ l′′. (6.14)

That is, takes a line l′ to the residual line of the intersection of the plane spanned
by l′ and l with V .
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Definition 6.4.3 ([66, Definition 2.9]). Let V ⊂ P4 be a cubic threefold. A line
l ⊂ V is very good if every fiber of πl is reduced, and the curve Cl is integral.

Remark 6.4.4. If p ∈ V a singular point, the locus of lines through p

Cp = {l ∈ F (V ) | p ∈ l}

is a curve, and the singular locus of F (V ) is the union of these curves, see for
example [6, Lemma 1.5(ii)] It follows that a very good line must be contained in
the smooth locus of V , otherwise Cl would have at least two components. This
means that a very good line l ∈ F (V ) is a smooth point.

Proposition 6.4.5 ([66, Proposition 2.10]). If Y is a general cubic fourfold, for
every hyperplane section Y ∩H there exists a very good line l ∈ F (Y ∩H).

Let J(Cl) be the degree zero component compactified Picard of Cl. Following
[66, Section 4.1] we can define the compactified Prym variety associated to the
double cover fl : Cl → Dl as

Prym(Cl, Dl) := Fix(−i∗)0 ⊂ J(Cl), (6.15)

where Fix(−i∗)0 denotes the component of the fixed locus which contains the
structure sheaf. The Prym variety is related with the Fano variety of lines by the
following well-known result.

Proposition 6.4.6. Let V ∈ P4 be a smooth cubic threefold, and l ∈ F (V ) be a
general line. Then, there is a closed embedding

F (V ) ↪→ Prym(Cl/Dl).

Proof. The generality assumption is needed to make sense of the Prym. So we
need that the curve Cl is smooth, and the involution (6.14) has no fixed point.
Then by [53, Proposotion 3.10] there is an isomorphism

Pic0(F (V )) ≃ Prym(Cl/Dl), L 7→ L|Cl
(6.16)

induced by the restriction along the inclusion Cl ⊂ F (V ). Moreover, if we fix a
line l0 ∈ F (V ), the Abel-Jacobi map is a closed embedding

F (V ) ↪→ Pic0(F (V )), l 7→ O(Cl − Cl0), (6.17)

see [53, Corollary 5.3.5].
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6.4.2 Relative setting

Let Y ⊂ P5 a general cubic fourfold, and let B := |OY (1)| ≃ P5 the space of
hyperplane sections. Let

V := {(x,H) | x ∈ Y ∩H, H ∈ B} ⊂ Y ×B

be the universal hyperplane section. The second projection V → B is flat, and the
fibers are the hyperplane sections of Y . The first projection V → Y is a P4-bundle,
so the space V is regular of dimension eight.

Analogously, we can consider the relative fano variety of lines

F := {(l, H) | l ∈ F (Y ∩H), H ∈ B} ⊂ F (Y )×B.

The second projection F → B is flat, and the fiber over H is the surface of lines
of Y ∩ H. The first projection F → F (X) is a P3-bundle hence the space F is
smooth of dimension seven. Following [66] we denote by F0 ⊂ F the locus of very
good lines. By Proposition 6.4.5 and Remark 6.4.4 the map F0 → B is smooth
and surjective.

We can relativize the construction of the compactified Prym over F0. Consider
the universal incidence curve

C0 := {(l, l′, H) | l ̸= l′, l ∩ l′ ̸= ∅, l, l′ ⊂ Y ∩H} ⊂ F0 ×B F .

It is equipped with a fiberwise involution, and taking the quotient we get a flat
family of 2 : 1 étale cover C0 → D0. We can consider the relative compactified
Prym

PF0
:= Prym(C0/D0) := Fix(−i∗)0 ⊂ Pic

0
(C0/F0),

where Fix(−i∗)0 denotes the component of the fixed locus which contanins the
zero section.

Theorem 6.4.7 ([66, Proposition 5.1]). The relative compactified Prym PF0 is
smooth, and the morphism PF0 → F0 is flat of relative dimension five.

6.4.3 Picard group in the singular case

Recall that a morphism f : X → S is called locally complete intersection (or lci)
if locally it factors as

X ↪→ PS ↠ S,

where the first map is Koszul regular 1 and the second map is smooth.
1This means that is induced by a sequence whose Koszul complex is acyclic.
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Remark 6.4.8. The morphisms V → B and F → B are both lci morphisms.
Indeed, the embeddings

V ⊂ Y ×B and F ⊂ F (Y )×B

are both obtained as zero loci of regular sections of vector bundles. In the first case
is just a section of the tautological divisor, and in the second case of the vector
bundle π∗

1U∨ ⊗ π∗
2OB(1).

In order to prove Theorem 6.4.1, our goal is to construct a morphism of schemes
over F0

φ : F ×B F0 → PF0 .

Since F ×B F0 → F0 is a lci morphism, and the total space PF0 is regular, the
map φ is automatically lci by [Stacks, Lemma 37.60.13]. In this way, taking the
fiber over (l, H) ∈ F0, we get morphism

φ(l,H) : F (Y ∩H)→ Prym(Cl/Dl),

which we will show to be lci. Since the morphism is lci, the pullback is well defined
at the level of CM sheaves, as in (6.10). Therefore, Theorem 6.4.1 is proved if we
can show that this pullback is dominant, which will follow from the smooth case.

Remark 6.4.9. This morphism φ|(l,H) will be given by

l′ 7→ IC′
l∩Cl
⊗O(Cl)|Cl

where IC′
l∩Cl

is the ideal sheaf of the intersection C ′
l ⊂ Cl as a subscheme of Cl. If

H gives rise to a smooth linear section YH , this morphism will recover the inclusion

F (YH) ↪→ Prym(Cl/Dl),

of Proposition 6.4.6.

The family C0 → F0 is a family of curves with integral fibers. In this case,
the relative compactifed Jacobian has a universal property (i.e. is a fine moduli
space), see [4, Theorem 7.9]). So, giving a morphism φ is equivalent to giving a
sheaf G ∈ Coh(F ×B C0), flat over F ×B F0, and such that restricted to each fiber
is torsion-free of rank one, and invariant under the action of −i∗.

Our first goal is to prove the following.

Proposition 6.4.10. There exists an integral closed subvariety

C ⊂ F ×B F

such that:
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(1) The variety C is CM, and the projection pi : C → F is flat, for i = 1, 2.
(2) For a general (l, H) ∈ F , there is a natural identification of the fiber p−1

1 (l, H) =
Cl with the curve of lines in F (YH) meeting l.

Assuming the existence of such C, notice that the restriction to F0

C0 = C ∩ (F ×B F0) ⊂ F ×B F0,

is a Cartier divisor, because the ambient space is regular. Consider the intersection

Ξ := p−1
12 (C) ∩ p−1

23 (C0) ⊆ F ×B F ×B F0,

where

p12 : F ×B F ×B F0 → F ×B F and p23 : F ×B F ×B F0 → F ×B F0

are the projections. Let I be its ideal sheaf in F ×B C0

I := IΞ/p−1
23 (C0) ⊂ OF×BC0 .

Our main technical result is the following.

Theorem 6.4.11. The sheaf I ∈ Coh(F ×B C0) is a flat family of torsion free
sheaves over F ×B F0.

Family of incidence curves

Now we focus on proving Proposition 6.4.10. Of course, the first guess for the
definition of C is the relative incidence curve

C ′ := {(l, l′, H) ∈ F ×B F | l ̸= l′, l ∩ l′ ̸= ∅, l, l′ ⊆ H}. (6.18)

Unfortunately, taking the closure makes proving flatness over F a difficult task.
For this reason we use a different point of view for the construction of the curve Cl,
which we now explain. For reference, see [53, Lemma 5.1.26] and the discussion
above, and [13, Proposition 1.5].

Let V ⊂ P4 be a cubic with only isolated singularities, and let l ⊂ V be any
line. Projecting away from the line gives a rational map

V 99K P2

which is resolved by blowing up the line. The resulting regular map

π : Ṽ → P2
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is a conic bundle. The discriminant locus Dl ⊂ P2 is a plane quintic.
The Hilbert scheme G(π−1(Dl)) of lines contained in the inverse image π−1(Dl)

has a flat 2 : 1 map
G(π−1(Dl))→ Dl.

It is easy to see (c.f. [53, Lemma 5.1.26]), at least when the line is general, that
this is precisely the cover

Cl → Dl.

This construction that generalizes well to the relative situation, as we now
show. Let LV ⊂ V ×B F be the universal line. If H ⊂ P5 × B → B denotes the
universal hyperplane section, we can find a family of 2-planes

Π ⊂ H×B F

disjoint from the line F . Blowing up the universal line we get the projection

Ṽ ×B F Π

F

π

By the above discussion, the discriminant locus D ⊂ Π is a hypersurface, which
restricts to the plane quintic Dl ⊂ P2 for every (l, H) ∈ F . Define

C := GD(π
−1(D))→ D

to be the relative Hilbert scheme of lines in the fibers of π : π−1(D)→ D.

Lemma 6.4.12. The natural map

C → D

is flat, and C is Cohen-Macaulay.

Proof. Notice that every fiber (even those corresponding to lines of the second
type) of the map

π−1(D)→ D
is a singular conic. Since the Hilbert scheme is compatible with base change, the
fiber over a point d ∈ D is

C|d = G(π−1(d)),

the Hilbert scheme of lines in the singular conic π−1(d). It consists of two reduced
points if the conic is reduced, and a double point if the conic is a double line. So,the
map C → D is finite with fibers of constant lenght two, hence flat. Moreover,
since any lenght two scheme is CM, the map is also CM by [Stacks, p. 37.22.3].
Therefore, C is CM by [Stacks, p. 37.22.4].
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Lemma 6.4.13. There is a closed embedding of schemes over F

C ↪→ F ×B F .

Proof. The product F ×B F is the relative Hilbert scheme of lines of the map

V ×B F → F .

Therefore, to obtain the desired map it suffices to exhibit a family of lines

L ⊂ C ×F (V ×B F) .

By construction, C is a relative Hilbert scheme of lines, so it comes equipped with
a family

L̃ ⊂ C ×F π
−1(D) ⊂ C ×F Ṽ ×B F .

Moreover, for every (l, H) ∈ F the blow-down

Bll(YH)→ YH

does not contract any fiber of the projection πl. Hence, blowing down gives the
desired family L. This arguments also shows that the map

C → F ×B F

is a map of Hilbert schemes of lines, which is induced by the closed embedding
π−1(D) ⊂ Ṽ ×B F , composed with an isomorphism induced by the blow-down.
Hence it is a closed embedding.

Proof of Proposition 6.4.10. To prove (1) notice that, since the fibers of the natu-
ral map

C → F
are finite over the fibers of D → F , they have dimension one. Since C is CM and
F is regular, this map is flat by miracle flatness. Moreover, it can be identified
with the first projection via the embedding of Lemma 6.4.13.

Point (2) is shown in [53, Lemma 5.1.26]. We also remark that for every
(l, H) ∈ F , we have a set-theoritical equality. Indeed, the fiber p−1

1 (l, H) contains
only lines in YH which meet l, and contains l precisely if and only if there is a
plane tangent to YH in l. This, in turn, happens if and only if l ∈ Cl, see [53,
Lemma 5.1.11].

To see that C is integral, we show that it is equal to the relative incidence curve
C ′ ⊂ F ×B F defined in (6.18). Since it is the closure of a scheme which is integral
by [66, Lemma 2.14], it is itself integral. Therefore, we have

C ′ ⊂ C,
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by the set-theoretical equality.
The morphism C → F is projective, and taking the Hilbert polynomials of the

fibers with respect to a relatively ample line bundle, we get the inequality

PC′|(l,H)
(m) ≤ PC′|(l,H)

(m).

On the other hand, the Hilbert polyonimal on the right is constant in the family,
because C → F is flat, and the one on the left can only increase on special fibers
by [62, Proposition 28(1)]. Since generically we have equality, it must be that

PC′|(l,H)
(m) = PC′|(l,H)

(m) and C ′|(l,H) = C(l,H),

proving the statement.

The proof above says that we can interpret the fiber C|(l,H) as the correct scheme
structure on the curve Cl ⊂ F (YH) to obtain a flat family.

Conclusion of the proof

Now we can conclude the proof of Theorem 6.4.11. To start, we investigate when
the intersection Cl∩C ′

l is proper, i.e. the two curves have no common components.

Proposition 6.4.14. The morphism Ξ→ F×BF0 is finite away from the diagonal

∆F0 ⊂ F0 ×B F0 ⊂ F ×B F0.

Proof. We generalize the argument of [53, Remark 1.13]. It is clearly projective,
so it suffices to show that it is quasi finite. For this, it suffices to show that set-
theoretically, the intersection Cl ∩Cl′ is finite, where l ⊂ F (Y ) is a very good line
and l′ ⊂ F (Y ) is any line different from l.

Case 1. Assume that l ∩ l′ ̸= ∅, so they span a plane. Then the lines in Y
meeting both are: the residual line of the intersection Span(l, l′)∩Y , and the lines
through the intersection point. Since l is very good, through each point of l there
can pass only finitely many lines. Indeed, if there were a curve of lines passing
through one point of l, that curve would be an irreducible component of Cl.

Case 2. Assume l ∩ l′ = ∅, so they span a three dimensional space. Consider
the cubic surface

S := Span(l, l′) ∩ Y.

Every line in Y meeting both l and l′ must live in S. If S were reducible, it would
have a plane as a component. Since Y is assumed to be general, this does not
happen, so S is irreducible.

If there are only finitely many lines in S meeting l (e.g. if S is regular of with
normal rational singularities) we are done. Hence, assume otherwise: there is a
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curve of lines meeting l in S. Since l is very good, this curve which must be Cl

because it is integral.
If S is a cone over an integral plane cubic, every two lines in S must meet,

contradicting our assumption that l ∩ l′ ̸= ∅.
If S is integral, but non normal and not a cone, then is one of two explicit

cubics, see [68, Section 2.3]. In both cases S is singular along a line, and the pencil
of planes contaning l induces a ruling on S. One checks by explicit computations
that a line in S is either an isolated point in F (S) or a line in the ruling. Since
there is a curve of lines meeting l, this curve must be the ruling, contradicting the
assumption that Cl is integral.

Over the diagonal, there is a simple way of checking that I is a flat family of
torsion-free sheaves.

Lemma 6.4.15. Over the open locus F0 ×B F0, the sheaf I is a flat family of
torsion-free sheaves of rank one.

Proof. When restricted to F0 ×B C0, the subscheme p−1
12 (C) becomes the Cartier

divisor p−1
12 (C0). By Proposition 6.4.10 the variety p−1

12 (C0) is integral, so we have
a short exact sequence

0→ OF0×BC0

(
−p−1

12 (C0)
)
→ OF0×BC0 → OΞ|F0×BF0 → 0.

Thereefore, the sheaf

I|F0×BC0 = OF0×BC0

(
−p−1

12 (C0)
)

is a line bundle on F0 ×B C0. Since the map F0 ×B C0 → F0 ×B F0 is flat, the
same is true for I. The fiber over a point in F0 ×B F0 is again a line bundle, in
particular torsion-free of rank one. Notice although, that the fiber over a point in
the diagonal is not the ideal sheaf of Ξ|(l,l,H) ⊂ Cl. In fact, the latter scheme is
the whole of Cl, so its ideal sheaf agrees with the structure sheaf.

Proof of Theorem 6.4.11. By Lemma 6.4.15 we know that the statement is true
over F0 ×B F0, in particular near the diagonal. We now prove that Ξ→ F ×B F0

is flat away from the diagonal. For this, we consider the embedding

Ξ := p−1
12 (C) ∩ p−1

23 (C0) ⊂ p−1
12 (C).

It is a Cartier divisor, because p−1
23 (C0) is. Moreover, away from the diagonal it is

fiberwise a proper intersection, by Proposition 6.4.14. Consider the defining short
exact sequence

0→ Op−1
12 (C)(−p

−1
23 (C0))→ Op−1

12 (C) → OΞ → 0.
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Taking the fiber over a point (l′, l, H) ∈ F ×B F0 with l ̸= l′, we get

0→ T or
O

p−1
12 (C)

(
OC|(l′,H)

,OΞ|(l′,l,H)

)
→ OC|(l′,H)

(
−C0|(l,H)

)
→ OC|(l′,H)

→ OΞ|(l′,l,H) → 0.

Observe that C|(l′,H) has no embedded points, because C → F is flat, F is regular,
and C is CM. Hence

T or
O

p−1
12 (C)

(
OC|(l′,H)

,OΞ|(l′,l,H)

)
= 0,

because it is supported in dimension zero by Proposition 6.4.14. Therefore, the
lenght of Ξ|(l′,l,H) is equal to

χ
(
Ξ|(l′,l,H),OΞ|(l′,l,H)

)
= χ

(
C|(l′,H),OC|(l′,H)

)
− χ

(
C|(l′,H),OC|(l′,H)

(
−C0|(l,H)

))
which is constant on the complement of the diagonal in F ×B F0. This follows
again by the flatness of C → F and the fact that Op−1

12 (C)(−p
−1
23 (C0)) is a line bundle

on p−1
12 (C), so it is flat as well.

To conclude the proof, we show that the restriction I|(l′,l,H) is torsion-free also
when l ̸= l′, which, combined with Lemma 6.4.15, gives the statement. Now we
consider Ξ as a subscheme of p−1

23 (C0). The defining short exact sequence is

0→ I → Op123(C0) → OΞ → 0.

Restricting to the fiber over the point (l′, l, H) ∈ F × F0 gives

0→ I|((l′,l,H)) → O|C0|(l,H)
→ OΞ|(l′,l,H) → 0,

because Ξ is flat over F × F0. Since

C0|(l,H) = Cl ⊂ F (YH)

is integral by definition of very good line, we conclude that I is torsion-free.

The universal property of the relative compactified Jacobian gives a morphism

F ×B F0 → Pic(C0/F0),

which over the line (l, H) ∈ F0 acts as

l′ ∈ F (Y ∩H) 7→ IC′
l∩Cl

,

where the intersection is seen as a Weil divisor in Cl. We note that the image is
not a degree zero divisor, but this is readily fixed by considering the map induced
by

I ⊗ p∗2OC0(C0) ∈ Coh(F0 × C0),
where OC0(C0) is the normal bundle of the embedding C0 ⊂ F ×B F0.
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Proposition 6.4.16. The morphism

φ : F ×B F0 → Pic(C0/F0),

induced by the sheaf I ⊗ p∗2OC0(C0), factors through the compactified Prym and
gives a morphism.

Proof. Let B◦ ⊂ B be the open locus where the hyperplane section YH is regular.
Over a very good line l ∈ F (YH), the map φ becomes

F (YH)→ Prym(Cl/Dl), l
′ 7→ OF (Y ∩H)(Cl − C ′

l)|Cl

This is the composition of the map

F (YH)→ Pic0(F (YH)), l
′ 7→ OF (Y ∩H)(Cl − C ′

l)

described in [53, Lemma 3.1], and the restriction

Pic0(F (YH)) 7→ Pic0(Cl).

This last restriction factors via the Prym variety Prym(Cl/Dl) ⊂ Pic0(Cl) by
virtue of [53, Corollary 3.2] as explained in [53, Proposition 3.10]. Therefore, we
deduce that over B◦ the image of φ is contained in the relative Prym, hence taking
the closure we get the result.

Remark 6.4.17. The map φ : F ×B F0 → PF0 is a local complete interection
morphism because both F ×B F0 and PF0 are regular. This follows from [Stacks,
Lemma 37.60.13].

Now we specialize to a fiber, our first goal is to show that the morphism

φ(l,H) : F (YH)→ Prym(Cl/Dl)

is a local complete intersection morphism for every hyperplane H and every very
good line l.

Lemma 6.4.18. Consider the following commutative diagram

X Y

S

h

p

Assume that h is a local complete intersection morphism, S is a smooth variety,
and X and Y are flat over S. Then, for every s ∈ S,

fs : Xs → Ys

is a local complete intersection morphism.
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Proof. Since h is local complete intersection, locally on X is the composition of a
smooth morphism with a Koszul regular embedding

U
i
↪−→ V

π−→ Y.

The diagram
U V

S

satisfies the same assumptions as our original one, so we can assume that h is a
Koszul regular embedding.

For x ∈ X such that p(x) = s call R := OY,x. Let (f1, . . . , fn) be the equations
of X in Y around x, and let (g1, . . . , gm) be the equations of Ys in Y around x. By
our assumptions they are both Koszul regular sequences. We want to show that
the images (f1, . . . , fn) in R/(g1, . . . , gm) form a Koszul regular sequence, which
means that Xs ⊂ Ys is a regular embedding.

By [Stacks, Lemma 15.30.13] the sequence (f1, . . . , fn, g1, . . . , gm) is Koszul
regular in R. Being Koszul regular is independent of the order, so the sequence
(g1, . . . , gm, f1, . . . , fn) is Koszul regular in R. We conclude by [Stacks, Lemma
15.30.14] that the images (f1, . . . , fn) are Koszul regular in R/(g1, . . . , gm).

Corollary 6.4.19. For every hyperplane H and every very good line l, the map

φ(l,H) : F (YH)→ Prym(Cl/Dl)

is a local complete intersection morphism.

Therefore, we get an induced map at the level of CM sheaves

Pic0 (Prym(Cl/Dl))
− → Pic0(F (YH))

−.

To prove Theorem 6.4.1 it suffices to show the following.

Lemma 6.4.20. The pullback

φ∗ : Pic0 (Prym(Cl/Dl))→ Pic0(F (YH))

is dominant.

Proof. Consider the composition

Cl

i(l,H)−−−→ F (YH)→ Prym(Cl/Dl).
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If YH is regular, this composition is equal to the Abel-Prym map

AP : Cl → Prym(Cl/Dl),

as mentioned in [53, Remark 3.9]. It has the property that the pullback induces
an isomorphism

AP∗ = φ∗
(l,H) ◦ i∗(l,H) : Pic

0(Prym(Cl/Dl)) ≃ Prym(Cl/Dl). (6.19)

Since,

dimPic0(F (YH)) = dimPic0(Prym(Cl/Dl)) = dimPrym(Cl/Dl) = 5

the pullback φ∗
(l,H) must also be surjective, for the composition to be surjective.

We can globalize this argument: the composition

C0 ⊂ F ×B F0
φ−→ PF0 .

is well-defined everywhere and equal to the (singular) Abel-Prym map also for the
singular hyperplane sections. This continues to satisfy the isomorphism (6.19), on
the open locus of locally free sheaves. So the argument above works and gives that
φ∗
(l,H) is dominant also in the singular case.

Now we have all the ingredients to prove the main result of this section.

Proof of Theorem 6.4.1. Let YH ⊂ Y be any hyperplane section, and denote by
Z ⊂ X the corresponding surface of lines. By Corollary 6.4.19 and Lemma 6.4.20
we know that there is a dominant morphism

φ∗ : Pic0(Prym(Cl/Dl))
− → Pic0(Z)−,

where l ∈ Z is a very good line. The inclusion

j : Prym(Cl/Dl) ⊂ Pic0(Cl)

is also a local complete intersection morphism. This is because the action

Prym(Cl/Dl)× Pic0(Dl)→ Pic0(Cl), (F,L) 7→ F ⊗ f ∗L

is étale. The pullback

j∗ : Pic0
(
Pic0(Cl)

)
→ Pic0

(
Prym(Cl/Dl)

)
is easily seen to be dominant, with a similar argument to Lemma 6.4.20. Hence,
putting everything toghether we have a dominant morphism

Pic0
(
Pic0(Cl)

)−
→ Pic0(Z)−.
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By Remark 6.4.2, we have that

Pic0
(
Pic0(Cl)

)−
= Pic0

(
Pic0(Cl)

)
is proper, hence the same is true for Z

Pic0(Z)− = Pic0(Z),

which means that the component Pic0(Z) parametrizes only CM sheaves.

6.5 Locally freenes and stability

The goal of this section is to show that the sheaves obtained via the twisted
Poincaré sheaf from the Lagrangian surfaces Z ⊂ X are locally free and slope
stable. To be more precise, let Y ⊂ P5, be a cubic, such that its variety of lines
X := F (Y ) is a general element in the Noether-Lefschetz locus N (d) ⊂ K2

6. To
imitate the construction in Section 5.6 we need a derived equivalence induced by
some Poincaré sheaf. We start by recalling the following geometrical fact.

Proposition 6.5.1 ([93, Proposition B.4]). If

d > 5 · 7 = 35 and 3 ∤ d, (6.20)

then this Lagrangian fibration can be realized as a Tate–Shafarevich twist of the
Beauville-Mukai system

M :=MS(0, H,−1)→ P2,

where (S,H) is a K3 surface of degree two.

The reason for this is [80, Theorem 7.11], which says that via the period map,
the base X̃ of the family (6.2) gets mapped to the line through M which keeps
f of type (1, 1). As showed in [80, Theorem 7.13] this implies that a general such
X is birational to a Tate–Shafarevich twist of M , and the numerical conditions
(6.20) guarantee that the movable cone of X has no walls.

Remark 6.5.2. Notice that even imposing the condition (6.20) we are left with
an infinte collection of Noether-Lefschetz loci. They continue to be dense in the
moduli space K2

6, hence the statements in Section 6.4 (which require Y to be
general) hold in our situation.
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From now on we take a d satisfying (6.20), and consider X ∈ N (d) general. by
Theorem 6.2.5 there exists a twisted Poincaré sheaf

U ∈ Coh(X ×P2 M, p∗2(α))

for some α ∈ Br(M). Let YH ⊂ Y be any hyperplane section (possibly singular),
and Z = F (YH) its surface of lines. For any G ∈ Pic0(Z), we consider the α-twisted
object

FG := ΦU(G) ∈ Db(M,α). (6.21)

Remark 6.5.3. From the proof of Theorem 6.2.5 we see that there is an open
cover B =

⋃
i Ui, such that the twist α ∈ Br(M) represents the obstruction for

patching up the relative Poincaré sheaves on

XUi
×Ui

MUi
.

Therefore, the twist α vanishes when restricted to π−1(Ui). In particular the
restriction of any α-twisted sheaf F , to a fiber Mt becomes untwisted. In the
particular case of FG, Lemma 5.2.5 implies that the restriction FG|t to a general
fiber splits as the sum of line bundles of degree zero.

Proposition 6.5.4. For every G ∈ Pic0(Z), the object

FG ∈ Db(M,α)

is a locally free twisted atomic sheaf of rank 5d2.

Proof. The proof is the same as Proposition 5.6.1. To see that it is locally-free,
take a cover P2 =

⋃
i Ui such that over each Ui the sheaf U is untwisted and gives

an equivalence
ΦU|Ui

: Db(XUi
) ≃ Db(M |Ui

).

Since G is a Cohen-Macaulay sheaf by Theorem 6.4.1, and Z is finite over P2 by
Proposition 6.3.3, the proof of Proposition 5.2.6 shows that F |MUi

is locally free.
Notice that the Poincaré sheaf can be deformed in a one parameter family to an
untwisted sheaf, by Remark 6.2.6. Therefore, we are in the setting of Section 4.4
and FG is a twisted atomic sheaf by Proposition 4.4.7. The rank is equal to the
degree of Z over P2, which we computed in Lemma 6.3.1.

Recall that on a projective variety X with a fixed Brauer class α ∈ Br(X), the
definition of slope stability for an α-twisted torsion-free sheaf F is analogous to
the classical one. Namely, having chosen a B-field lifting α, we define the twisted
slope as

µB
h (F ) :=

cB1 (F ).h
dimX−1

rk(F )
,
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where h is an ample class on the variety X.
We say that F is h-slope (semi)stable if for every twisted subsheaf

E ⊂ F ∈ Coh(X,α), with rk(E) < rk(F )

we have the inequality
µB
h (E)(≤) < µB

h (F ).

See [119] for more details on the theory of stability for twisted sheaves.

Remark 6.5.5. The computations done in Proposition 4.3.11 apply just as well for
the extended Mukai vector ṽB(−) of an α-twisted atomic sheaf. This is because the
B-field only affects the Hodge structure, and these computations are independent
of the Hodge structure. In particular we see that the projection of the discriminant
onto the Verbitsky component

∆(FG)SH ∈ SH(M),

is a multiple of q2. From this we also deduce that the endomorphism bundle
End(FG) is modular (as an untwisted sheaf), since its discriminant is a multiple of
∆(FG).

Theorem 6.5.6. Consider the α-twisted vector bundle FG on X, and choose a
B-field B lifting α. If h be a polarization which is a(End(FG))-suitable, then FG is
h-slope stable for every G ∈ Pic

0
(Z).

Proof. Assume that there exists a destabilizing twisted subsheaf

E ↪→ FG.

We can tensor by F∨
G to obtain a destabilizing subsheaf

E ⊗ F∨
G ↪→ End(FG),

which now lives in the untwisted category of coherent sheaves. Since h is suitable
for End(FG), we are under the assumptions of Proposition 4.7.10. Indeed, the
restriction End(FG)|t splits as a sum of line bundles of degree zero, in particular is
semistable. Therefore, Corollary 4.7.12 implies that

c1(E ⊗ F∨
G) ∈ Zf ∈ NS(M),

because c1(End(FG)) = 0. By Remark 6.5.3, on Mt every α-twsited sheaf becomes
untwisted, hence we have

0 = c1(E ⊗ F∨
G)t = c1(E|t),
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because FG|t splits as the sum of line bundles of degree zero on Mt. From here
we conclude as in Lemma 5.7.3. Namely, Et has to be a subsum of the line
bundles which make up FG|t. Hence Φ−1

U (E) is an untwisted sheaf whose support
is finite over P2 and contained in Z. The surface Z is integral by Remark 6.5.2
and Remark 6.3.2. Therefore we must have

SuppΦ−1
U (E) = Z,

which means that E = FG and FG is stable.

6.6 Compactification

Let α ∈ Br′(M) be the twist of FG constructed above. Let B be a B-field lifting
α, and let

vB
0 := vB(FG) ∈ H∗(M,Q, B)

the (twisted) Mukai vector of FG. Let h be an a(End(FG))-suitable polarization,
and consider the (coarse) moduli space MX,h(v

B
0 ) of h Gieseker semistable, α-

twisted sheaves with twisted Mukai vector equal to vB
0 . The moduli theory for

twisted sheaves is very similar to the untwisted case, and it is worked out in [70,
119]. In particular, the moduli space MM,h(v

B
0 ) is a projective scheme by [119,

Theorem 2.1]. LetM0 ⊂MM,h(v
B
0 ) be the irreducible component containing the

sheaves FG constructed above.
Consider the linear system B = |OY (1)| ≃ P5 of hyperplane sections of the

cubic Y . The association
H → F (YH) ⊂ X

embeds B as a component of the Hilbert scheme of deformations of Z in X.
Explicitly, if S∨ denotes the dual of the tautological bundle on X, then

B ≃ P
(
H0(X,S∨)

)
is the space of zero loci of sections of S∨ on X. Let F → B be the universal
Fano surface of lines (or the universal section of S∨) as in Section 6.4. It is a flat
projective morphism with integral Cohen-Macaulay fibers. With the notation of
[4, 5], let Pic0(F/B)= be the moduli space of torsion-free sheaves of rank one and
degree zero on the fibers of F → B. It is representable by a scheme each of whose
component is proper over B by [5, Theorem 3.1]. Also let Pic0(F/B)− be the
locus of such sheaves which are CM. In [4, Theorem 6.6] it is shown that with the
natural scheme structure (induced by the moduli problem) is quasi projective over
B. A priori, these schemes could have multiple irreducible components. By a slight
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abuse, we use the same notation to denote the irreducible component containing
the line bundles. With this abuse, in Section 6.4 we have shown that

Pic0(F/B)− = Pic0(F/B)=.

We denote this scheme by Pic0(F/B); since it is quasi projective and proper, it is
projective over B. It is also projective itself, because B ∼= P5 is projective.

Lemma 6.6.1. The fiber of the natural map

π : Pic0(F/B)→ B,

over Z ∈ B is
π−1(Z) = Pic0(Z).

In particular, the singular locus in Pic0(F/B) has codimension at least two.

Proof. In Section 6.4 we show that there is a surjective morphism of schemes over
F0

Pic0(Pic0(C0/F0))
− → Pic0(F0 ×B F/F)−.

Hence, the fiber π−1(Z) is dominated by the fiber of

ρ : Pic0(Pic
0
(C0/F0))

− → F0

over some very good line l ⊂ Z. Therefore we conclude if we show that every such
fiber is integral. On the locus parametrizing line bundles the fibers are connected,
and, since it maps surjectively to F0, by Stein factorization every fiber is con-
nected. By [7, Theorem B] the compactified Picard Pic

0
(Pic

0
(Cl)) is a connected

component in Pic0(Pic
0
(Cl))

=. The fiber ρ−1 clearly contains it, therefore they
must be equal

ρ−1(l) = Pic
0
(Pic

0
(Cl)).

This implies that every fiber of ρ is integral, and so every fiber of π is. Therefore,
the inclusion

Pic0(Z) ⊂ π−1(Z) (6.22)
is an equality. The singular locus lives in the complement of the locus of line
bundles, which has codimension two by (6.22).

The arguments in Section 5.6 give the following.

Proposition 6.6.2. The equivalence

ΦU : Db(X) ≃ Db(M,α)

induces an isomorphism
φU : Pic0(F/B) ≃M0.

Hence, the component M0 parametrizes only locally free twisted sheaves.
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Proof. It is well defined at the level of sets by Theorem 6.5.6. Therefore it induces a
morphism of stacks, which descends to coarse moduli spaces by the same argument
in Remark 2.3.9. It is an isomorphism because ΦU is an equivalence. Notice that
the key here is that we are taking the natural scheme structure induced by the
moduli problem. The fact that every sheaf F ∈ M0 is locally free follows from
Proposition 6.5.4. Indeed every point in Pic0(F/B) is a CM sheaf supported on a
Z ∈ B, hence is mapped to a (twisted) vector bundle via ΦU .

Now we can prove the main result of this thesis.

Theorem 6.6.3. The scheme M0 is a smooth projective hyper-Kähler manifold
of type OG10, and the map

π ◦ φ−1
U :M0 → B

is a Lagrangian fibration.

Proof. We know it is projective by the discussion above. To show smoothness we
apply Theorem 4.8.8, to each open Si of an étale cover∐

Si →M0,

as in Remark 4.8.2. Indeed, we know by Proposition 6.6.2 that M0 parametrizes
only locally-free (twisted) sheaves. Notice that, although we are dealing with
twisted vector bundles, the arguments in Section 4.8.3 depend only on the en-
domorphism sheaves of local tautological families. These are always untwisted
bundles even if M0 parametrizes twisted sheaves. It only remains to check that
the sigular locus has codimension at least two. For this, after applying φ−1

U we see
that the smooth locus of Pic0(F/B) has complement of codimension at least two
by Lemma 6.6.1.

The same can be said in regards to the symplectic form constructed in Sec-
tion 4.8.2. That is, the proof of Theorem 4.8.5 involves only the cohomology of
the endomorphisms sheaves. Hence, for F ∈M0, the formula (4.49)

τµ(a, b) = Tr
(
χEs(µ)

n−1 ◦ a ◦ b
)
, a, b ∈ Ext1(F, F )

defines a symplectic form on the whole ofM0 by Proposition 4.8.6.
We have showed thatM0 is a smooth projective variety equipped with a sym-

plectic form. It is also birational to Pic0(F/B), which admits a HK compactifica-
tion to a variety of type OG10 by the main result of [66]. It follows that M0 is
itself a hyper-Kähler manifold, and since is birational to OG10, it is of type 0G10.
Lastly, the map π ◦ φ−1

U :M0 → B must be a Lagrangian fibration by [82].
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