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Mme Laurence Rezeau Présidente
Mme Annick Pouquet Rapportrice
M. Marco Velli Rapporteur
M. Thierry Passot Examinateur
M. Pierre Lessafre Examinateur
Mme Olga Alexandrova Directrice de thèse
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Abstract

Turbulence is a nonlinear process of cross-scale energy transfer in a fluid. The solar wind is an exam-
ple of a turbulent plasma available for investigation owing to in-situ spacecraft measurements. Solar
wind fluctuations are highly irregular and chaotic. Above an incoherent background fluctuations
high-amplitude coherent structures, localized in space, are present.

In this thesis we brought a piece of a new knowledge about the properties of coherent structures
in the solar wind at close distance from the Sun (0.17 au). We confirm, with Parker Solar Probe
(PSP) data, that coherent structures are present not only at MHD and ion scales, but also at
sub-ion scales. We could identify these structures thanks to Morlet wavelet transform. For the first
time, we apply a multi-scale analysis in physical space from MHD down to sub-ion scales.

Using plasma and magnetic field time profiles, we analyze several events in details. The am-
plitude of MHD scale coherent structures is high, comparable in magnitude with the local mean
magnetic field. We show examples of MHD coherent structures with different geometries, such as
current sheets and Alfvén vortices. Some of MHD coherent structures are located within switch-
backs or their boundaries. MHD structures contain a number of embedded substructures at ion
and sub-ion scales. The latter have smaller amplitudes and are not seen in the raw data, but can
be observed after filtration in frequencies and zooming in time. These structures have a typical
magnetic field profiles representing an incompressible Alfvén vortex at ion scales and compressible
vortex at sub-ion scales. We also study the fragmentation of coherent structures, showing that the
number of isolated intermittent events is larger at smaller scales, while the filling factor decrease
from 12% at MHD scales to 7% at ion and 6% sub-ion scales.

Another important point of this thesis is a contribution to our understanding of Alfvén vortices.
We refined the derivation of an Alfvén vortex model by providing a detailed discussion of the
underlying assumptions. We also generalize the model to describe multipole Alfvén vortices. Finally,
we explicit how the modes describing multipole vortices of different order could be combined, or
not. This provides more general Alfvén vortex solutions than derived before.

Finally, we derive a new method of classification of coherent structures in the solar wind.
This method involves the statistical comparison of the observed structures with expectations of
models (using the amplitude anisotropy of magnetic fluctuations). The results with PSP data are
dominantly consistent with the crossings of the Alfvén vortex model. Only a small fraction of the
structures corresponds to current sheets and magnetic holes, in contrast with the previous results
of visual classification.

The results presented in this thesis open a new window of turbulence analysis by showing

the importance of Alfvén vortices from MHD down to sub-ion scales. It will be worth to extend

this study to different types of winds and to different solar distances, in particular to constrain

how these vortices are created and how they evolve in the solar wind. Extending the analysis to

higher frequencies will also provide information on their dissipation at electronic scales, so their

contribution to solar wind heating.
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Résumé

La turbulence est un processus non linéaire de transfert d’énergie à plusieurs échelles dans un fluide.
Le vent solaire est un exemple de plasma turbulent que l’on peut étudier grâce à des mesures
effectuées in situ par des engins spatiaux. Les fluctuations du vent solaire sont très irrégulières et
chaotiques. Des structures cohérentes de grande amplitude, localisées dans l’espace, sont présentes
au-dessus d’un fond de fluctuations incohérentes.

Dans cette thèse, nous apportons de nouvelles connaissances sur les propriétés des structures
cohérentes dans le vent solaire à une distance proche du Soleil (0.17 au). Nous confirmons, avec
les données de la sonde Parker Solar Probe (PSP), que des structures cohérentes sont présentes
non seulement aux échelles MHD et ioniques, mais aussi aux échelles sub-ioniques. Nous avons
pu identifier ces structures grâce à la transformée en ondelettes de Morlet. Pour la première fois,
nous appliquons une analyse multi-échelle dans l’espace physique depuis les échelles MHD jusqu’aux
échelles sub-ioniques.

En utilisant les profils temporels du plasma et du champ magnétique, nous analysons plusieurs
événements en détail. L’amplitude des structures cohérentes aux échelles MHD est élevée, compa-
rable en magnitude au champ magnétique moyen local. Nous montrons des exemples de structures
cohérentes MHD, telles que des nappes de courant et des vortex d’Alfvén. Certaines structures
cohérentes MHD sont situées à l’intérieur des switchbacks ou à leurs frontières. Les structures MHD
contiennent un certain nombre de sous-structures aux échelles ioniques et sub-ioniques. Ces struc-
tures ont un profil de champ magnétique typique d’un vortex d’Alfvén incompressible (à l’échelles
cinétique des ions) et d’un vortex compressible (aux échelles sub-ioniques). Nous avons également
étudié la fragmentation des structures cohérentes, montrant que les événements intermittents isolés
aux petites échelles sont plus nombreux, tandis que le facteur de remplissage diminue de 12% aux
échelles MHD à 7% aux échelles ioniques et 6% aux échelles sub-ioniques.

Un autre point important de cette thèse est une contribution à notre compréhension des vor-
tex d’Alfvén. Nous avons affiné la dérivation d’un modèle de vortex d’Alfvén en fournissant une
discussion détaillée des hypothèses. Nous généralisons également le modèle pour décrire les vortex
d’Alfvén multipolaires. Enfin, nous expliquons comment les vortex multipolaires, décrits par des
modes d’ordre différent, peuvent être superposé. Cela permet d’obtenir des solutions plus générales
pour les vortex d’Alfvén que celles obtenues précédemment.

Enfin, nous proposons une nouvelle méthode de classification des structures cohérentes dans le
vent solaire. Cette méthode implique la comparaison statistique des structures observées avec les
attentes des modèles. Les résultats obtenus avec les données PSP sont principalement cohérents
avec le croisement par PSP du modèle de vortex d’Alfvén. Seule une petite fraction des struc-
tures correspond à des nappes de courant et à des trous magnétiques, contrairement aux résultats
précédents obtenus avec une classification visuelle.

Les résultats présentés dans cette thèse ouvrent une nouvelle fenêtre d’analyse de la turbulence

en montrant l’importance des vortex d’Alfvén de la MHD jusqu’aux échelles du sub-ioniques. Il

sera important d’étendre cette étude à différents types de vents et à différentes distances solaires,

en particulier pour contraindre la façon dont ces vortex sont créés et comment ils évoluent dans le

vent solaire. L’extension de l’analyse à des fréquences plus élevées fournira également l’information

sur leur dissipation aux échelles électroniques, et donc sur leur contribution au chauffage du vent

solaire.
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Chapter 1

Introduction

The corona is the upper layer of the Solar atmosphere. The temperature of the corona
is so high (T ∼ 106 K) that the gravity of the Sun cannot confine it. Therefore there
is a continuous flow of the plasma expanding into the interplanetary medium. This flow,
called the solar wind, is accelerating and exceeds the characteristic speeds of the slow
magnetosonic wave at a distance of about 2-4 solar radii, R⊙

1. It next exceeds the speed
of Alfvén waves and fast magnetosonic waves at a distance of about 10− 20 R⊙. Thus, at
larger radial distances, R ≳ 10 R⊙, the solar wind is both supersonic and superalfvénic.
More precisely, the speed profile versus distance depends on the type of solar wind. The
slow wind accelerates slowly and it has not yet fully reached its maximum speed at 1 au2,
while the faster wind accelerates strongly close to the Sun and reaches a nearly constant
speed above ∼ 0.5 au (Dakeyo et al., 2022). At the distance of 1 au the solar wind speed
is ranging from 300 km/s to 800 km/s.

The large-scale structure of the solar wind is determined by the magnetic field in the
corona. The latter changes with the phase of the solar cycle which period is about 11 years
for activity and about 22 years for its global magnetic field. In Figure 1.1 the solar corona
and the properties of the solar wind are shown during three phases of solar activity. The
background image of the Sun shows the corona on the solar disc in the extreme ultraviolet
observed by the Solar and Heliospheric Observatory (SOHO) spacecraft. Out of the disc,
the corona is observed by (i) the Mauna Loa K coronameter (700–950 nm), and (ii) the
SOHO C2 white light coronagraph. The white light intensity of the corona is proportional
to the plasma density and trace the magnetic field. The superimposed plot shows the solar
wind velocity measured by Ulysses at the distance of a few au from the Sun as a function
of latitude. The magnetic field polarity measured by Ulysses is shown in color: inward in
blue and outward in red, correspondingly.

During the phase of the minimum activity, see Figure 1.1(a), the solar wind can be

1The Solar radius is R⊙ ≃ 7× 105 km.
2The Sun-Earth distance is 1 au ≃ 1.5× 108 km.
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in SC 23, over Ulysses’ third orbit, compared to those taken
during its first orbit at a very similar phase of cycle 22. We
also examine the properties of the in-ecliptic solar wind,
comparing long term trends in the low latitude Ulysses data
with data from the Solar Wind Electron Proton Alpha
Monitor (SWEPAM) [McComas et al., 1998b] on the
Advanced Composition Explorer (ACE).

2. Observations

[7] Figures 1a–1c show polar plots of the solar wind
speed over all three of Ulysses’ orbits. Underlying the
SWOOPS data are composite images of the Sun and corona,
which illustrate the solar conditions for each orbit: mini-
mum in SC 22, maximum in SC 23, and minimum in SC 23,
respectively. Figures 1a and 1b are essentially replots of
figures by McComas et al. [1998a, 2003]. Figure 1d dis-
plays the smoothed sunspot number (black) and averaged
current sheet tilt relative to the solar equator (red), taken
from the Wilcox Solar Observatory (WSO).
[8] Around minimum in SC 22, the band of solar wind

variability was narrow, and confined to low latitudes
(!30! to !20! north) [Gosling et al., 1995, 1997;
McComas et al., 1998a]. This configuration was consis-
tent with the small dipole tilt angles seen at the time and
confinement of the helmet streamers to low latitudes. In
contrast, the tilt of the heliospheric current sheet has
remained substantially higher thus far through the minimum
of SC 23, even though the sunspot number declined to very
low values. Figure 1c shows the comparable plot for
Ulysses’ third orbit. Generally, Figures 1a and 1c look very
similar except for the reversed solar magnetic field. Also
note that the band of solar wind variability extends to
somewhat higher latitudes in the third orbit observations.
The brief low speed interval (!5:30 position) in the
otherwise fast PCH wind was caused by significant mass
loading of the flow by comet McNaught [Neugebauer et al.,
2007].

[9] Figure 2 shows a comparison of various plasma
properties taken as a function of heliolatitude for the
PCH flows observed over Ulysses’ first and third orbits.
From top to bottom, the plots show proton speed, proton
density normalized by R2, proton temperature normalized
by R [McComas et al., 2000], the alpha particle to proton
ratio, and the full normalized momentum flux, or dynamic
pressure, mp(npvp

2 + 4nava
2)(R/Ro)

2. We separated the one-
hour averaged SWOOPS data into 4! bins in heliolatitude
from 40! to 80! and calculated mean values (symbols) and
±1s variations (bars) for each bin.
[10] While there were small variations between the fast

and slow latitude scans (small vs. large symbols) and
northern and southern PCH observations (circles vs.
squares), the most significant differences in Figure 2 are
clearly between first (red) and third (blue) orbits. The PCH
solar wind observed in Ulysses’ third orbit is significantly
slower, less dense and cooler than that observed in Ulysses’
first orbit. Of these, the speed shows the least difference,
particularly at the highest latitudes, although in combination,
these four-degree binned samples show a consistently lower
speed in the third orbit. In addition, the speed also continued
to show its characteristic, but still unexplained, increase of
!1 km s"1 per degree of heliographic latitude [McComas et
al., 2000, 2002, 2003]. Because the wind was slower and
less dense, the dynamic pressure was also lower in the third
orbit. In contrast to these bulk properties, however, the alpha
to proton ratio, which is a measure of the plasma composi-
tion, was essentially identical.
[11] Table 1 provides the mean values for selected plasma

parameters. All values were calculated by averaging all one-
hour averaged data samples obtained above 40! heliolatitude.
The columns show the first orbit mean value, the third
orbit mean value, and the percentage change of the third
orbit value compared to the first. The short interval around
the comet McNaught encounter was removed so as not to
bias the sample. Clearly, the PCH solar wind was consis-

Figure 1. (a–c) Polar plots of the solar wind speed, colored by IMF polarity for Ulysses’ three polar orbits colored to
indicate measured magnetic polarity. In each, the earliest times are on the left (nine o’clock position) and progress around
counterclockwise. (d) Contemporaneous values for the smoothed sunspot number (black) and heliospheric current sheet
tilt (red), lined up to match Figures 1a–1c. In Figures 1a–1c, the solar wind speed is plotted over characteristic solar
images for solar minimum for cycle 22 (8/17/96), solar maximum for cycle 23 (12/07/00), and solar minimum for cycle 23
(03/28/06). From the center out, we blend images from the Solar and Heliospheric Observatory (SOHO) Extreme
ultraviolet Imaging Telescope (Fe XII at 1950 nm), the Mauna Loa K coronameter (700–950 nm), and the SOHO C2
white light coronagraph.
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Figure 1.1: Three phases of the Solar cycle: minimum, maximum and a new minimum
after the magnetic field inversion. In panels (a-c) the background image shows the solar
corona as observed on the disc by the Extreme ultraviolet Imaging Telescope (EIT) on
board of the Solar and Heliospheric Observatory (SOHO) spacecraft, and outside the solar
disc by the Mauna Loa K coronameter (700–950 nm) and by the SOHO C2 white light
coronagraph. The superposed line shows the solar wind velocity as a function of latitude
from Ulysses measurements at radial distance R ranging from 1.35 au to 5.4 au. The color
of the line indicates the inward (in blue) or outward (in red) direction of the interplanetary
magnetic field. Bottom panel shows the number of sunspots as the function of time.
Adapted from McComas et al. (2008)

categorised into two different types. At high latitudes (> 25◦) the solar wind is fast
(V ∼ 700 km/s) and it originates from the large polar coronal holes. At low latitudes
(< 25◦) the solar wind is typically slow (V ≲ 400 km/s). The origin of the slow solar wind
is more debated. There are multiple possible sources: from the streamer belt, from the
boundaries of coronal holes or from the vicinity of active regions (Rouillard et al., 2021).
In the minimum of the solar activity the number of sunspots is small, see panel (d) of
Figure 1.1, so the magnetic activity is low with only a few active regions on the Sun at
a given time. Then, the solar magnetic field is mainly a dipole with open field at both
poles. This explains the observed simple configuration observed around the solar minimum
in Figure 1.1(a,c).

The phase of maximum Solar activity is shown in Figure 1.1(b). The structure of the
coronal magnetic field becomes complex. Indeed, many magnetic flux tubes emerge at
the photospheric level with a dominant bipolar magnetic configuration. They are forming
active regions which have typical scales of about 105 km. The strongest magnetic fields
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are concentrated within active regions and more specifically in sunspots. Then, especially
around the solar maximum, the coronal magnetic field has a complex structure with the
presence of many magnetic bipoles. This has implications on the sources of the solar
wind, with coronal holes forming a complex pattern and extending to lower latitude (even
crossing the solar equator). This complexity is shown in panel (b) by the observed extreme
ultraviolet emission (on the solar disc) and the scattered white light (outside the solar disc).
Both emissions trace the underlying magnetic field since the plasma is mainly frozen-in.

In Figure 1.1(c) the next minimum activity phase of the solar cycle is shown, after the
reversal of the solar magnetic field polarity. The plasma emission has retrieved a more
organized configuration with nearly radial structures observed at low latitudes (where slow
solar wind is present). At higher latitude, two polar coronal holes are formed, with low
emissivity as the plasma density is much weaker there. The main difference with the
previous solar minimum, panel (a), is the reversal of the magnetic field.

The large-scale coronal observations with coronagraphs, as outside the solar disk in
Figure 1.1, and the magnetic field computations of the coronal field from the observed
photospheric magnetic field, both give the impression of a nearly radial magnetic field
at distances R ∈ [3, 30] R⊙. At larger distances, Parker theory predicts the formation
of a spiral field due to the solar rotation Parker (1958). This is a simple magnetic field
configuration where the magnetic field points outward, or inward, in extended longitude
sectors (∆φ may vary between 10◦ and 90◦ as a function of solar activity). These magnetic
sectors are found with in-situ magnetic field measurements. When a spacecraft changes
sector, it crosses a large-scale current sheet, that is called Heliospheric current sheet. Here,
the radial magnetic field component BR changes sign over the thickness of the current sheet
≃ 104 km. The Heliospheric current sheet separates long-lasting (∼ days to week at 1 au)
sectors of uniform BR sign.

At shorter time scales (∼minutes), there are abrupt BR reversals, at odds with previous
simple expectations. These strong magnetic reversals are known as Switchbacks. They were
first observed by Ulysses spacecraft at 1− 5 au and studied by a number of authors, e.g.,
Balogh et al. (1999); Yamauchi et al. (2004); Landi et al. (2006); Neugebauer and Goldstein
(2013); Matteini et al. (2014). More recently, Parker Solar Probe (PSP) revealed that the
Switchbacks are dominant features closer to the Sun (e.g., Bale et al., 2019; Kasper et al.,
2019; Krasnoselskikh et al., 2020; Dudok de Wit et al., 2020; Froment et al., 2021).

The sketch in the top panel of the Figure 1.2 shows a simple representation of switch-
backs (Bale et al., 2019). The bottom panels show a typical example of a switchback
observed by Froment et al. (2021) using PSP data. The radial magnetic field BR is chang-
ing sign from negative to positive at the leading edge of the switchback. The second BR

reversal at t ∼23:25:10 UT shows the trailing edge of the switchback. The duration of the
switchback is around 120 s, corresponding to the scale of 2 · 105 km.

Important information about the switchbacks can be retrieved from the suprathermal
strahl (beam) electrons. These energetic electrons are non collisionnal. Since the magnetic
field strength decreases with distance from the Sun, the velocity distribution of strahl
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Extended Data Fig. 5 | During encounter 1, PSP connected magnetically to a 
small negative-polarity equatorial coronal hole. This schematic shows a 
potential field extrapolation of the solar magnetic field at the time of the first 
perihelion pass of PSP. The solar surface is shown, coloured by AIA 211-Å 
extreme-ultraviolet emission (see Extended Data Fig. 4 for other wavelengths). 
Coronal holes appear as a lighter shade. Superposed are various field lines 
initialized at the solar disk. Black lines indicate closed loops, blue and red 
illustrate open field lines with negative and positive polarities, respectively. As 
depicted here and in Fig. 1c, d, at perihelion PSP connected to a negative 
equatorial coronal hole. The ‘switchbacks’ (the jets) observed by PSP (Fig. 1a) 
are illustrated as kinks in the open field lines emerging from the coronal hole 
that connect to PSP. (Note that neither the radial distance to the spacecraft nor 
the scale or amplitude of the jets or switchbacks are to scale.) Spacecraft 
graphic is courtesy of NASA/Johns Hopkins APL.

A&A 650, A5 (2021)

Fig. 3. Same as Fig. 1, but for event 2 on November 1, 2018, starting at 23:23:04 UT. The average value of the radial velocity (hvRi= 342 km s�1)
was removed for easier visualisation.

which is about 75% of the local Alfvén velocity. Although not
resolved, the presence of this jet is consistent with a change in
sign for the correlation between BL and vL, which is expected
for reconnection exhausts. We finally note that this current sheet
is located in a relatively modest magnetic dip (decrease in |B|
by 22%) preceding the large dip at the leading edge of the

switchback. The guide field was strong: 1.4 times that of the
reconnecting field.

The analysis of the compared evolution of B and v for the
trailing edge is shown in Fig. 7. In the first time window, ending
approximately at the minimum of |B|, there is a clear correla-
tion of BL and vL (correlation coefficient of 0.9). The second
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Figure 1.2: The top panel is based on a magnetic field extrapolation of the observed
photospheric magnetic field. Magnetic field lines are drawn in blue/red colors according to
the magnetic polarity for the open field. The blue field lines are connected to open field
region originating from an equatorial coronal hole. The sketch adds up the PSP spacecraft
and the field line reversals to illustrate what switchbacks are. This panel is adapted from
Bale et al. (2019). The bottom panels show the magnetic field measured by PSP and the
normalized pitch angle distribution of 314 eV electrons. It represents the observed energy
flux of electrons in function of their velocity inclination angle with respect to the local
mean magnetic field B0 (0◦ = aligned and 180◦ = anti aligned with B0). Adapted from
Froment et al. (2021).
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Figure 10. Same as in figure 9, but showing only the current intensity. The
associated movie (available from stacks.iop.org/NJP/10/125007/mmedia) shows
the temporal evolution.

form of Kelvin or Alfvén’s theorems imply that field lines associated with a certain field are (in
the ideal case) frozen to the velocity field and advected as material curves. This fact can be used
to visualize the dynamics of one vector field under the influence of a second by what we called
‘field line advection’: the advection of entire fields (instead of simply points) in a time-varying
velocity field.

In viscous flows, the presence of dissipation introduces a limitation to the idea of pure
advection because field lines cannot be uniquely identified: advecting all points in a field line at
a time T will not result in a field line at a time T + 1. Based on the observed fact that dissipation
in hydrodynamic and MHD flows tends to take place in localized regions, we advect only one
representative point and use the advected point as a seed to compute a new field line at T + 1.
Different prioritization criteria to select the representative point at time T (or a set of points at
time T from which a single point is selected at time T + 1) are allowed to give flexibility to the

New Journal of Physics 10 (2008) 125007 (http://www.njp.org/)

(a) (b)

(d)(c)

Figure 1.3: The four panels show the evolution of the current density in a direct nu-
merical simulation of high resolution, with 15363 nodes, of MHD turbulence. The time
is running from panel (a) to (d) from t ∼ 1.6 to 2.8 in normalized units, with the
initial conditions set at t = 0. The current density is shown in color with intensity
growing from brown, yellow, green up to blue. The corresponding movie is available at
https://stacks.iop.org/NJP/10/125007/mmedia. Adapted from Mininni et al. (2008).

electrons becomes focused along the magnetic field due to conservation of the magnetic
moment. The strahl electrons are always propagating anti-sunward along open magnetic
field lines, unless they are locally folded backward. Indeed, they are following open field
lines outward, propagating always along (or reverse) to the magnetic field. Depending on
the polarity of the magnetic field line at the source, the angle between the velocity of the
electrons and the magnetic field, called pitch angle, equals to 0◦ in the case of positive
polarity of the magnetic field, or 180◦ in the case of negative polarity. During the entire
interval analysed by Froment et al. (2021), the strahl electrons had a pitch angle of 180◦

(see an example in the bottom panel of Figure 1.2), so the plasma is connected on the Sun
to a region of a negative magnetic polarity. This indicates that the magnetic field reversal
is indeed due to the strong bending of the open magnetic lines, as shown in the sketch
of the top panel of Figure 1.2, and not to a change of connection to a positive magnetic
polarity source on the Sun.
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The magnetic field in the solar wind is in fact even more complex than these switchback
reversals. The solar wind is known to be turbulent. Fluctuations of different physical quan-
tities, like magnetic and electric fields, velocity, density and temperature form well defined
power-law spectra, covering wide range of time scales (or frequencies), e.g., Alexandrova
et al. (2013). For example, magnetic fluctuations follow the power low spectrum ∼ f−5/3 in
the range of frequencies f ∈ [10−3, 10−1] Hz, at 1 au (Coleman, 1968; Kiyani et al., 2009;
Bruno and Carbone, 2013). This range corresponds to the MHD inertial range cascade
that transfers the energy from large to small scales. We discuss in more details spectral
properties of solar wind magnetic fluctuations in Chapter 2 of this manuscript.

MHD simulations of solar wind turbulence with smooth initial conditions show the
development of high amplitude localized coherent structures (Sulem et al., 1985; Carbone
et al., 1990; Biskamp, 2003). Figure 1.3 is a visualisation of freely decaying MHD turbulence
simulation performed by Mininni et al. (2008). It shows the evolution of the coherent
structures in time. Panel (a) shows coherent structures in the form of vortices and current
sheets that have developed in the simulation by this time. The current sheet (in the bottom)
and the vortex (in the center) are non-uniformly advected from the bottom towards the
top (panel (b)). The current density increases in the current sheet as it is deformed while
still remaining globally stable. The vortex is also stable until it is sandwiched between the
almost static current sheet on top and the advected current sheet moving from the bottom
(panel (c)). Finally, the vortex is destroyed (panel (d)).

This simulation illustrates several important points about the evolution of coherent
structures, which cannot be directly verified in-situ with data from a single spacecraft.
First, coherent structures can be advected, but remain stable until they encounter and
interact with other coherent structures or they get thin enough to reach dissipation scales.
Second, there are MHD coherent structures with different geometries: flat or cylindrical.
In-situ data permit to test these results with 1D cuts though the encountered plasma over
a broad range of scales that numerical simulations could not presently achieve. In com-
plement numerical simulations provide the 3D context of the complex temporal evolution,
and allow to test the key physical ingredients which are code in.

In this thesis we investigate coherent structures using the Parker Solar Probe measure-
ments in the solar wind at 0.17 au from the Sun.

In Chapter 2 we review the turbulence theories and the associated in-situ observational
results in the solar wind. First we discuss the spectrum of magnetic fluctuations at 1 au
that is naturally divided into frequency ranges corresponding to MHD, ion, and subion
scales. Second, we discuss the solar wind intermittency properties which have been known
before the present work. Finally we show our results from the first PSP perihelion at
0.17 au from the Sun.

Chapter 3 is devoted to the models of different coherent structures in the solar wind. In
Sections 3.1-3.2 we summarize the observational properties of current sheets and magnetic
holes. The Alfvén vortices were less investigated so far, then in Section 3.3 we provide a

12



deeper analysis of the equations describing these cylindrical Alfvénic structures with (anti-
)aligned current and vorticity. We provide the derivation of the Alfvén vortex model and
generalize previous studies to describe the case of multipole vortices. We also clarify when
different modes can be superposed.

In Chapter 4, first, we describe the method designed to detect coherent structures in
turbulent signal of in-situ solar wind data in a wide range of scales (section 4.1). Then, in
Section 4.2, we show four examples of embedded coherent structures from MHD to sub-ion
scales in the form of sharp discontinuities (current sheets) and vortices. At MHD scales
the amplitude of coherent structures is high δB/B0 ∼ 1, with B0 being the local mean
magnetic field. The embedded ion scales structures have amplitudes, which can go up to
δB/B0 ∼ 0.4. At sub-ion scales, the amplitudes are still important for such small scales,
δB/B0 ∼ 0.05. These sub-structures are not seen in the raw data, but can be observed
after filtration (in scales or frequencies) and zooming (in time).

In section 4.3, we present statistical study of hundreds to ten thousands of events de-
tected at different scale-ranges (precisely, at MHD, ion, and sub-ion ranges of scales) during
the analyzed time interval at 0.17 au. The amplitude anisotropy of magnetic fluctuations
and the degree of compressibility allows to determine the dominant type of structures within
each range of scales. We also study the fragmentation of coherent structures, (i.e. forma-
tion of many secondary sub-structures). We show that the number of isolated intermittent
events is larger at smaller scales, while the filling factor is nearly scale independent.

Finally in Chapter 5 we conclude and outline some perspectives.
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Chapter 2

Statistical properties of the solar
wind turbulence

In this chapter first we review the concepts, theories and in-situ observations of turbulence
in the solar wind. First, we review the main results on the turbulent spectrum. Then, we
describe the intermittency properties which are intrinsic to any turbulent flow. Finally, we
summarize our results from the first PSP perihelion at the distance of 0.17 au from the Sun.

2.1 Turbulent cascade

2.1.1 Theoretical prediction of energy spectrum

The first phenomenological description of the turbulence was proposed by Richardson
(1922). These ideas were further developed by Kolmogorov (1941), who introduced the
first theory of hydrodynamic turbulence. This theory considers the incompressible fluid
Navier-Stokes equations:

∂tV +V · ∇V = ∇p/ρ+ ν∇2V (2.1)

∇ ·V = 0 (2.2)

whereV, p, ρ and ν are the velocity, pressure, density and viscosity of the fluid, respectively.
Let us suppose that the energy is injected to the system at large scales L and that V is
the velocity of the injected flow. If the fluid is characterized by a high Reynolds number
R = V L/ν ≫ 1, the injection scale L is much larger than the dissipation scale ld. The
intermediate range of scales (L > l > ld), where the viscous term is negligible compared
to the nonlinear term, is called the inertial range. The injected perturbations at scale L
evolve nonlinearly causing the transfer (cascade) of the energy to the smaller scales. The
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ensemble of eddies is formed over the whole inertial range of scales (L > l > ld). Finally
the smallest eddies (l ∼ ld) are dissipated by the viscous term.

Since turbulent flows are chaotic, the Kolmogorov theory was focused on the statistical
properties of the velocity fluctuations. The fluctuations in the vicinity of a point r can be
quantified with the increments of velocity, defined as follows:

δv(r, l) = |v(r+ l)− v(r)| (2.3)

where v(r+l) and v(r) are velocities at two points separated by a distance l, with r defining
the spatial location. Kolmogorov assumed that the turbulent fluctuations, associated with
eddies, are isotropic and homogeneous, i.e. their statistical properties are invariant with
rotation and translation in space. If the eddies of significantly different scales interact, the
velocity fluctuation of a larger eddie acts on a smaller one nearly as a uniform sweeping.
Therefore it is assumed that only the eddies of similar scales interact nonlinearly. The
energy of an eddie of a scale l is transferred to the smaller scales in a nonlinear time which
is supposed to be of the order of the eddy turnover time: τNL = l/⟨δv(l)⟩. The average ⟨...⟩
is taken over the positional argument r. In the stationary state of the turbulent cascade,
the scale-to-scale energy transfer rate ϵ must be constant for l ∈ (ld, L) and equal to the
dissipation rate at the scale ld. Using the above assumptions, this transfer rate writes

ϵ ∼ ⟨δv(l)⟩2/τNL ∼ ⟨δv(l)⟩3/l .

With ϵ constant, the theory of Kolmogorov predicts the scaling for velocity fluctuations δv
(Kolmogorov, 1941; Frisch, 1995):

⟨δv(l)⟩ ∼ l1/3 (2.4)

It implies that the energy of velocity fluctuations per wavenumber k = 2πl−1, E ∼
⟨δv(l)2⟩ /k, called also power spectrum density) follows:

E ∼ k−5/3 for L−1 < k < l−1
d (inertial range). (2.5)

Similar to neutral fluids, plasmas can also be turbulent. The main difference is the
impact of the magnetic field and its coupling to the plasma. The inertial range cascade is
established between the energy injection scale L and the dissipation scale ld.

The solar wind is weekly compressible. The amplitude of density fluctuations in the
solar wind is 10% of the average density value at the wide range of radial distances (Roberts
et al., 1987; Cuesta et al., 2023). So, to a first approximation the inertial range fluctuations
in the solar wind can be described by the ideal incompressible MHD equations:

ρ(∂t +V · ∇)V = −∇p+ 1

µ0
(∇×B)×B (2.6)

∂tB−∇× (V ×B) = 0 (2.7)
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∇ ·V = 0 (2.8)

∇ ·B = 0 (2.9)

where B is the magnetic field vector.
From the induction equation in the limit of perfectly conducting plasma (Equation

(2.7)), so in the inertial range, it can be shown that the movement of the magnetic flux
tubes is frozen into the fluid (see, for example, the textbook Landau et al., 1995, §65).
Next, in contrast with neutral fluids, the magnetic field strongly impacts the dynamics
of the plasma by means of the Lorentz force (the second term on the right side of the
momentum Equation (2.6)). The Lorentz force can be expanded as follows:

1

µ0
(∇×B)×B =

(B · ∇)B

µ0
−∇

(
B2

2µ0

)
(2.10)

where the first term is the magnetic tension and the second term is the gradient of magnetic
pressure. The magnetic tension acts as a restoring force for the transverse perturbation of
the plasma frozen in the magnetic field. The associated wave mode is known as the Alfvén
wave (Alfvén, 1942). Within a magnetized plasma with homogeneous properties (B0 and
ρ constant), an Alfvén wave is following the linear dispersion relation:

ωA = ±|k∥|VA (2.11)

where k∥ is the component of the wave-vector parallel to the magnetic field, and VA =
B0/

√
µ0ρ is the Alfvén speed. The energy of the wave is transported along the background

magnetic field, since the group velocity Vgr,A is parallel to B0:

Vgr,A =
∂ωA(k)

∂k
= ±VA e∥ (2.12)

where the positive (negative) sign corresponds to parallel (anti-parallel) propagation, and
e∥ is the unit vector along B0. The fluctuations of the velocity and magnetic field are
orthogonal to B0 and they are correlated as follows:

δV⊥/VA = ±δB⊥/B0 (2.13)

An Alfvén wave traveling in a uniform background is dispersionless and incompressible.
Any Alfvén wave, even with a finite amplitude, is an exact solution of the ideal MHD
equations. Because of its dispertionless nature, it can propagate, without changing its
shape/waveform, parallel or anti-parallel to the background magnetic field. They do not
damp like fast and slow magnetosonic waves (Barnes, 1966, 1979). Solar wind fluctuations
reveal a high degree of Alfvénicity, so with Equation (2.13) approximately satisfied (for
positive or negative sign). The Alfvénicity is especially prominent in the fast solar wind
close to the Sun (Belcher and Davis Jr., 1971; Matthaeus and Goldstein, 1982; Bruno
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et al., 1985). Alfvénicity is also present in a fraction of the slow solar wind which has
characteristics similar to the fast solar wind except that it is slow (e.g. D’Amicis et al.,
2019).

Elsässer variables z± are convenient to describe the dynamics of Alfvén waves parallel
and anti-parallel to B0 since z+ (or z−) describes one propagating Alfvén wave. They are
defined as follows (Elsasser, 1950; Dobrowolny et al., 1980; Bruno and Carbone, 2013):

z± = V ±B/
√
4πρ (2.14)

Using Equation (2.14), MHD Equations (2.6-2.9) can be rewritten in a compact form:

∂tz
± ± (VA · ∇)z± + (z∓ · ∇)z± = −∇ · Ptot (2.15)

∇ · z± = 0 (2.16)

where VA = B0/
√
µ0ρ is the vector of the local Alfvén speed; Ptot = (p+ B2

2µ0
)/ρ is the total

pressure divided by the mass density ρ (supposed to be constant). The first two terms on
the left hand side describe the propagation of finite amplitude Alfvén waves.

The nonlinear term (z∓ · ∇)z± does not affect an alone parallel Alfvén wave

z− = f(x− VAt), z
+ = 0 (2.17)

as well as a single anti-parallel Alfvén wave

z− = 0, z+ = g(x+ VAt) (2.18)

where x is the coordinate along B0 and f, g are arbitrary functions. In Equations (2.17)
and (2.18), x is the coordinate along B0. The term (z∓ · ∇)z± is responsible for nonlinear
interactions between z+ and z−. The interaction of counter-propagating waves via this
term leads to the cascade of energy across the scales, so it is essential for the Alfvénic
turbulence.

In the plasma turbulence phenomenology (Iroshnikov, 1963; Kraichnan, 1965) the eddies
represent Alfvén wave packets. The ‘average shape’ of the eddies is assumed to be isotropic
with respect to the magnetic field, i.e. the longitudal scale and the transverse scales are
equal l⊥ = l∥ = l (this is a strong hypothesis not well satisfied in the solar wind, see below).
The magnetic field fluctuation of a large eddie determines the local mean magnetic field
B0 for the smaller eddies, along which they propagate. Then, the nonlinear interaction
occurs only between counter-propagating eddies of similar scale l during the Alfvén time
τA = l/VA. This time is shorter than the non linear time, τNL = l/⟨δv(l)⟩, for the fluid case
because in the inertial range typically ⟨δv(l)⟩ < VA (at most ⟨δv(l)⟩ ∼ VA in the containing
energy range, Matteini et al., 2019). As a result, the scale-to-scale energy transfer rate
is reduced compared to the case of an unmagnetized plasma. Each interaction leads to
a small distortion of the involved wave packet. So the wave packet decays only after a
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sequence of N ∼ (τNL/τA)
2 interactions (Biskamp, 1993, chapter 7), where τNL denotes

the characteristic time taken for the nonlinear term to change the velocity substantially
in the absence of magnetic fields. This implies a different slope of the energy spectrum.
More precisely, as for velocity increments (Equation (2.3)) one introduces the magnetic
field increments:

δB(l) = |B(r+ l)−B(r)| , (2.19)

Using the above assumptions, the transfer rate writes

ϵ ∼ (⟨δv(l)⟩2 + ⟨δB(l)⟩2) / (N τA) ∼ 2⟨δv(l)⟩4 / (l VA) .

since in the Iroshnikov-Kraichnan theory the velocity and magnetic field fluctuations follow
the same scaling. With ϵ constant, the theory predicts the scaling for velocity and magnetic
fluctuations:

⟨δv(l)⟩ ∼ ⟨δB(l)⟩ ∼ l1/4 ∼ k−1/4 (2.20)

and this theory predicts the power energy spectrum, E ∼ (⟨δv(l)2⟩+ ⟨δB(l)2⟩) / k :

E ∼ k−3/2 for L−1 < k < l−1
d (inertial range), (2.21)

which is less steep than the Kolmogorov spectrum (Equation (2.5)).
In fact, in-situ measurements have shown that the solar wind turbulent fluctuations

are anisotropic with respect to the local mean magnetic field B0 (e.g. Horbury et al., 2008;
Podesta, 2009; Wicks et al., 2010). In the Goldreich and Sridhar (1995) model, the eddies
are assumed to have different longitudinal scale l∥ and transverse scale l⊥ with respect to
B0. There are two characteristic times: the nonlinear turnover time τNL = l⊥/δv⊥ and
the linear Alfvén time τA = l∥/VA (i.e. the time of interaction of the counter-propagating
Alfvén wave packets). The shape of the eddies is defined from the requirement that those
two times are set equal τNL = τA (critical balance condition). This assumption implies
that the shape of the eddies are more elongated along B0 at smaller scales. More precisely,
assuming Kolmogorov velocity scaling, Equation (2.4), we get that the longitudinal and

transverse scales of the eddies follow the scaling l⊥ ∼ l
3/2
∥ (a comparable scaling, l⊥ ∼ l

4/3
∥ ,

is obtained if the Iroshnikov-Kraichnan theory, Equation (2.20), is rather used). Goldreich
and Sridhar (1995) phenomenology predicts that the energy spectrum have different slopes
along and across B0:

E⊥ ∼ k
−5/3
⊥ , E∥ ∼ k−2

∥ for L−1 < k⊥, k∥ < l−1
d (inertial range). (2.22)

This implies a strongly decreasing energy spectrum along B0, then the cascade of energy
occurs mostly in directions orthogonal to B0. The discussion of critical balance, and it’s
limitations can be found in Oughton and Matthaeus (2020).
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Figure 1. Typical trace power spectral density of the magnetic &eld 'uctuations of a βi ∼ O(1) plasma in the ecliptic solar
wind at 1 AU. Dashed lines indicate ordinary least-squares &ts, with the corresponding spectral exponents and their &t errors
indicated. This spectrum represents an aggregate of intervals with each smaller interval being containedwithin the subsequent
larger interval—hence the higher frequencies of this spectrum are not representative of the interval describing the lower
frequencies. At the largest scales is a 58 day interval [2007/01/01 00.00–2007/02/28 00.00 UT] from the MFI instrument on
board the ACE spacecraft, illustrating the large-scale forcing range (the so-called f−1 range). The inertial range is computed
from a shorter 51 h interval [2007/01/29 21.00–2007/02/01 00.00 UT] also from the same instrument. Both these datasets are at
1 Hz cadence, so they just begin to touch the beginning of the sub-ion range. The kinetic scale spectrum in the sub-ion scale
range is given by magnetometer data from the FGM and STAFF-SC instruments on the Cluster multi-spacecraft mission, from
spacecraft 4, while it was in the ambient solar wind [2007/01/30 00.10-01.10 UT] and operating in burst mode with a cadence
of 450 Hz—the two signals from both of these instruments have been merged as in [6]. The vertical dashed lines indicate the
three length scalesmentioned above:λc the correlation length,ρi the ion gyro-radius andρe the electron gyro-radius. (Online
version in colour.)

(a) Brief phenomenology of the energy cascade
We ask the reader to turn their attention to figure 1, which shows a canonical power spectral
density at 1 AU in the solar wind. We have chosen the power spectral density as it is not only the
focus of many, if not most, studies of turbulence, but also serves as a simple map to illustrate the
scales of interest in the phenomena. It is also reflective—being the Fourier transform pair—of the
two-point field correlation, another obsession of generations of turbulence researchers. Owing to
the extremely high speed of the solar wind, faster than most temporal dynamics in the system, we
can invoke the ‘Taylor frozen-in flow’ hypothesis to relate temporal scales to spatial scales (see [7]
for caveats to this). Thus, although the abscissa shows a temporal scale of spacecraft frequency,
for most of this spectrum (in the inertial range and above) it can be viewed as a proxy for spatial
scales—some of which are marked at the top of the figure. In particular, we have highlighted four
distinct regions of interest demarcated by three important length scales:

— The f −1 range. At these very small frequencies—corresponding to temporal scales over
many days—what we are actually measuring is the temporal variability of the source of
the solar wind: the Sun and its solar atmosphere. Near the top of this range, we have
the first of our important length scales: the correlation length λc. Below this scale (higher
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Figure 2.1: Spectrum of the solar wind magnetic fluctuations at 1 au. ACE MFI data
during the interval of 58 days are used to cover the f−1 range (blue band) and the inertial
range (red band) of the spectrum. The high-frequency part of the spectrum, corresponding
to ion kinetic scales (green band) and sub-ion scales (yellow band), is obtained from Cluster
burst mode measurements (adapted from Kiyani et al., 2015). The top axis shows the
spatial scales calculated using Taylor’s hypothesis, see Appendix A.

2.1.2 Solar wind spectrum at 1 au

An example of spectrum for the magnetic fluctuations in the solar wind at 1 au is shown
in Figure 2.1. The spectrum covers a wide frequency range (8 order of magnitude in
frequency). Using the Taylor hypothesis, see Appendix A, the corresponding spatial scales
are shown in the top of the panel.

In the frequency range f < 4 ·10−4 Hz (shown in blue) the magnetic spectrum follows a
f−1 power law. This range is called the ‘energy containing range’. The clear f−1 behavior
of the spectrum is observed both in the fast solar wind (Bruno et al., 2009) and in the
highly Alfvénic slow solar wind (D’Amicis et al., 2019).

There are different suggestions about the origin of the f−1 range. Matthaeus and
Goldstein (1986) proposed that the f−1 results from the superposition of uncorrelated
samples of winds with a log-normal distribution of correlation lengths. The samples reflect
the features of the turbulence in the solar photosphere. Alternative mechanism could

19



be that the large-scale solar wind inhomogeneities may generate the reflected backward
secondary Alfvén waves. Then, their interaction with the primary outcoming waves leads
to the f−1 spectrum (Velli et al., 1989; Verdini et al., 2012). Another interpretation
suggests that the f−1 range is related with the low magnetic compressibility Matteini
et al. (2019). As known from the solar wind observations, the modulus of the magnetic
field is nearly constant δ|B|/B0 ∼ 0 (Belcher and Davis Jr., 1971). The requirement
|B| = const implies that the amplitude of turbulent fluctuations has to saturate at the
scale l where |δB(l)|/B0 ∼ 1. Then, redoing the analysis to deduce Equation (2.21),
setting ⟨δB(l)⟩ independent of l to express the amplitude saturation, leads to E ∼ k−1.
Assuming Taylor hypothesis, the spectrum follows f−1. The slow solar wind commonly
has a lower power level in the fluctuations and a higher compressibility with respect to the
fast wind. Therefore, the theory of Matteini et al. (2019) allows to explain why the f−1

range is predominantly observed in the fast solar wind.
At higher frequencies, the spectral slope changes from ≈ -1 to ≈ -1.65 (Figure 2.1).

This occurs at a scale comparable to the magnetic field correlation length (Matthaeus
et al., 2005). This transition is shown by the vertical dashed line at around 6 × 10−5 Hz,
or 106 km. This break point corresponds to the largest scale of the inertial range (and
the smallest scale of the energy containing range). Comparing the magnetic spectra at
different distances from the Sun, the spatial scale corresponding to this spectral break is
changing. The scale is larger when measured further away from the Sun (Denskat and
Neubauer, 1982; Bavassano et al., 1982; Bruno et al., 2009; Chen et al., 2020).

This observed spectrum evolution was interpreted as follows. In order that the cascade
could develops in the inertial range, the typical time for the nonlinear interaction τNL =
l/⟨δv(l)⟩ should be smaller than the expansion time τexp = R/V , where R is the radial
distance from the Sun, V is the solar wind speed (Mangeney et al., 1991; Salem, 2000).
Then, the length L corresponding to the transition between energy containing and inertial
ranges is L ∼ R ⟨δv(L)⟩ / V . Since ⟨δv(L)⟩ ∼ VA in the energy containing range (Matteini
et al., 2019), then the largest scale of the inertial range, L, increases with radial distance
as L ∼ RVA/V . VA, V , are respectively slowly decreasing, increasing, with R. Then, L is
expected to increase slightly less than R. This explains the observed evolution with R of
the turbulent spectrum.

The red band in Figure 2.1 shows the inertial frequency range 4 · 10−4 < f < 0.2 Hz.
The spectral slope αB of magnetic fluctuations at 1 au is ∼ −5/3 as for the Kolmogorov
spectrum (Equation (2.5)) and as E⊥ in Equation (2.22) for Goldreich and Sridhar spec-
trum (Salem, 2000; Podesta et al., 2007; Salem et al., 2009). However, velocity fluctuations
at 1 au have a different spectral slope αV ∼ −3/2. So surprisingly, αB is as the fluid spectra
of Kolmogorov while αV is as the magnetized plasma spectrum of Iroshnikov-Kraishnan.
Moreover, the spectral indices of velocity and magnetic field fluctuations change with the
radial distance from the Sun. Close to the Sun the spectral slope ∼ −3/2 is observed for
both fields (Chen et al., 2020; Wang et al., 2023). At distances R ≳ 0.6 au from the Sun
the spectral slope of the magnetic field is steeper with αB ∼ −5/3 or even steeper (Kiyani

20



et al., 2015; Chen et al., 2020; Wang et al., 2023). Extending the study to a larger range of
distances 1 < R < 5 au, Roberts (2010) showed that the spectral slope of the spectrum of
velocity fluctuations also changes from αV ∼ −3/2 at 1 au to αV ∼ −5/3 at 5 au. To the
best of our knowledge these spectra evolution with solar radial distance is not understood.

An extra level of difficulty is that, in the solar wind, the inertial range fluctuations are
dependent on the level of imbalance between the oppositely directed Alfvén waves. This is
quantified by the normalized cross-helicity σc defined as (Biskamp, 1993, section 7.3):

σc = 2⟨δv · δB⟩ / ⟨δv2 + δB2⟩ . (2.23)

The fluctuations are also dependent on the difference between the energy of magnetic and
velocity fluctuations quantified by the normalised residual energy σD defined as (Pouquet
et al., 1976; Dobrowolny et al., 1980; Biskamp, 1993, section 7.4):

σD = (Ev − Eb)/(Ev + Eb) , (2.24)

where Ev and Eb correspond to the velocity and magnetic field fluctuation energy. When
the cross-helicity σc of the turbulence is nonzero, it is necessary to take into account the
cascades of both energy and cross-helicity (Lithwick et al., 2007; Perez and Boldyrev, 2009).
A finite residual energy imbalance also affects the cascade (Schekochihin, 2020).

The models listed above are not sufficient to explain all the variety of observations.
In particular they assume equal energy of waves traveling from and to the Sun. Within
these models the spectrum of magnetic fluctuations and velocity fluctuations are the same,
which does not correspond to observations at 1 au.

The green band in Figure 2.1 shows the transition range, where the spectrum gradu-
ally becomes steeper (Leamon et al., 1998). Several authors try to fit this range with a
power-law (e.g., Bowen et al., 2020b) but this is not meaningful because of the presence
of characteristic scales (as marked in Figure 2.1) as well as a small frequency range (ap-
proximately only a decade). The MHD inertial range is limited by ion kinetic scales: ion
inertial length di for βi = NikTi/(B

2/2µ0) > 1, or the ion Larmor radius ρi for βi < 1
(Alexandrova et al., 2013; Chen et al., 2014), where ρi = Vi⊥/ωci is the ion Larmor radius,
Vi⊥ =

√
2kTi⊥/mi is the perpendicular ion thermal speed, ωci =

eB
mi

is the ion cyclotron

frequency, di = c/ωpi is the ion inertial length, and ωpi =
√

nie2

ϵ0mi
is the plasma frequency.

At the subion scales (i.e. for l between ρi, di and ρe, de) the spectrum follows a f−2.8

power law (Alexandrova et al., 2009, 2012, 2021; Sahraoui et al., 2009; Kiyani et al., 2009;
Chen et al., 2010; Sahraoui et al., 2013). This different spectral slope than in the inertial
range means that different physics is operating on the turbulent cascade at subion scales.
In contrast with the MHD turbulent cascade, where ions and electrons constitute a single
fluid, sub-ion scale cascade is maintained by the motion of the electrons described as a
magnetized fluid, while ions are static and demagnetized (Schekochihin et al., 2009).

Fluctuations at sub-ion scales are often associated with kinetic Alfvén waves (KAWs)
which are the extension of the Alfvén wave mode for k⊥ρi > 1 (Hasegawa and Chen, 1976;
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Hollweg, 1999; Howes et al., 2006). In contrast with the Alfvén waves, KAWs are com-
pressible, so the magnetic field magnitude is fluctuating. The degree of compressibility
depends on βi and βe (ratio of ion and electron pressure, respectively, to magnetic pres-
sure) (Schekochihin et al., 2009). There is a good correspondence between the observed
compressibility of the magnetic field and the compressibility of oblique (k⊥ ≫ k∥) KAWs
(Salem et al., 2012; Lacombe et al., 2017; Matteini et al., 2020). In Grošelj et al. (2019),
kinetic scale fluctuations were studied using MMS and Cluster data and in 3D fully kinetic
simulations. The spectral field ratios δn/δb∥, δn/δb⊥ and δb∥/δb⊥ as a function of k⊥di
are analyzed for time intervals selected by the level of the local intermittency measure,
LIM. As the LIM threshold increases, the spectral field ratios progressively differ, but only
slightly, from the asymptotic prediction for KAWs. Thus, the authors conclude that KAW
features are not exclusively limited to low-amplitude fluctuations but also valid for the
high-amplitude ones. On this basis the authors claim that the kinetic turbulence cannot
be described as a mixture of mutually exclusive waves and structures.

However, the KAWs are not the only possible explanation of these observations. The
observed spectral ratio δn/δb∥ at the sub-ion scales k⊥di ∈ (∼ 1, 10) is related to the
pressure balance, see Eq. (6) in (Grošelj et al., 2019). Pressure balance is not an exclusive
feature of KAW, but it is also fulfilled for mirror structures or kinetic slow modes and
compressible Alfvén vortices (Jovanović et al., 2020). Another spectral ratio, δb∥/δb⊥,
represents the magnetic compressibility. The δb∥/δb⊥ observed in (Grošelj et al., 2019) can
be explained by the Hall effect for highly oblique wavevectors in the sub-ion range Matteini
et al. (2020) (Section 5.1). These conditions are fulfilled, in particular, for the ion-scale
Alfvén vortices (Jovanović et al., 2020), which are well defined coherent structures and
not wave packets. Therefore, the conclusion of (Grošelj et al., 2019), that the subion-scale
turbulent structures may be viewed as KAW wave packets is questionable.

The alternative point of view is that coherent structures are dominant at sub-ion scales.
In favor of this idea, Papini et al. (2021) found in 2D Hall-MHD simulations, and then
confirmed in 3D simulations (Papini et al., 2022), that most of the energy of subion-scale
fluctuations is stored in localised coherent structures, while the energetic contribution of
kinetic Alfvén waves is minor. This finding is in agreement with observational results where
sub-ion scale current sheets have been found (Perri et al., 2012; Greco et al., 2016).

On scales of the order of the electron Larmor radius l ∼ ρe, the spectrum changes
from a power law to an exponential decrease (Alexandrova et al., 2009, 2012, 2021). This
indicates that dissipation finally occurs on electron scales. The energy of turbulent fluc-
tuations is transformed to heat, preventing the solar wind from cooling adiabatically as it
expands away from the Sun (Coleman, 1968; Vasquez et al., 2007b; Hellinger et al., 2011;
Smith and Vasquez, 2021). The precise mechanism of the dissipation is currently an open
question. Several possible dissipation mechanisms are invoked, such as cyclotron damping,
e.g., (Cranmer, 2000), Landau damping, e.g., (Leamon et al., 1999; Gary and Borovsky,
2004; Cranmer et al., 2007), magnetic reconnection, e.g., (Osman et al., 2011; Karimabadi
et al., 2013), stochastic heating (McChesney et al., 1987; Johnson and Cheng, 2001; Chas-
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ton et al., 2004; Voitenko and Goossens, 2004; Chandran et al., 2010, 2013; Vech et al.,
2017; Hoppock et al., 2018).

In the above models of the cascade, an unrealistic idealization of magnetized plasma is
the use of both the self-similarity and homogeneity assumptions. Below, we describe the
presence of coherent structures and the related intermittency effects.

2.2 Intermittency in turbulence

2.2.1 Theoretical background

The theories discussed above, in sub-Section 2.1.1, implicitly assume that the turbulence
is spatially homogeneous and statistically self-similar at the different scales of the inertial
range. However in neutral fluids (e.g., Frisch, 1995) as well as in the solar wind (e.g.,
Sorriso-Valvo et al., 1999) the turbulence shows a significant spatial structuration as well
a departure from self-similarity, that is manifested in observations as the non-Gaussianity
of turbulent fluctuations, e.g., (Bruno and Carbone, 2013; Matthaeus et al., 2015; Benzi
and Toschi, 2023). This is related to the intermittency of the signal.

Intermittency can be defined as the irregular distribution of fluctuations in a turbulent
medium associated with the formation of coherent structures localized in space and/or
with complex patterns of energy dissipation (Carbone and Pouquet, 2009; Matthaeus and
Velli, 2011). The standard tool to characterise the intermittency in hydrodynamics is the
structure function Sp

v(l) of velocity increments:

Sp
v(l) = ⟨|v(r + l)− v(r)|p⟩ (2.25)

where p = 0, 1, 2... is the order of the structure function. The average ⟨...⟩ is taken over r
and l defines the analyzed scale.

In Kolmogorov (1941) model (in absence of intermittency) the structure functions follow
the scaling:

Sp
v(l) = C ϵp/3 lp/3 (2.26)

where C is a constant, and ϵ is the global energy transfer rate.
The refined self-similarity hypothesis allows to include intermittency into the turbulent

cascade model with an energy transfer ϵ(r) which is strongly dependent on the spatial
location r (Kolmogorov, 1962). The scaling of the structure functions is refined as follows

Sp
v(l) = C ⟨ϵ(r)p/3⟩ lp/3 = C ⟨ϵ(r)⟩p/3 lp/3−ξ(p) (2.27)

where the second equality takes into account a power law scaling with l. Equation (2.27)
differs from the scaling of the structure functions in absence of intermittency (Equation
(2.26)) since ϵ(r) is not uniform. The exponent ξ(p) is the intermittency correction. When
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ξ(p) is linear in p, this is usually interpreted as mono-fractal behavior of turbulent fluctua-
tions. While non-linearity of ξ(p) is usually interpreted as multi-fractal cascade (Horbury
and Balogh, 1997; Bruno and Carbone, 2013).

In order to obtain a specific form of ξ(p), we need to make an additional assumption
on the statistical properties of ϵ(r), as follows. In the so-called β model it is assumed
that the spectral energy transfer ϵ(r) is concentrated in small active regions (Frisch et al.,
1978). The fraction of space where the cascade is active is decreasing from larger to smaller
scales as a power of l (Frisch, 1995; Biskamp, 1993). More precisely, at each step of the
cascade, an eddie of scale ln splits into 2Dβ eddies of scale ln+1 = ln/2, D = 3 is the spatial
dimension. Then, only a fraction 0 ≤ β ≤ 1 of the volume is filled by the smaller eddies.
Including this assumption to the model of hydrodynamic turbulent cascade, the scaling of
the velocity structure function is modified as follows:

Sp
v(l) = C ϵp/3 l(p−δ(p−3))/3 (2.28)

where δ is related to the fractal dimention DF = D − δ, and β = 2−δ is the intermittency
parameter, with δ = 0 for the original self-similar Kolmogorov model. In the simple β
model, the structure exponents depend linearly on the order of the structure functions.
But in multifractal intermittency models, the dependence is nonlinear.

Next, there are different ways to include intermittency in an hydrodynamic cascade. For
example in the P-model (Meneveau and Sreenivasan, 1987) the energy distribution between
the daughter eddies is assumed unequal. Rather, the model of She and Leveque (1994)
is using an assumption on the geometry of the smallest dissipative structures supposing
that they are essentially one-dimensional filaments. Further information are given in the
reviews of Biskamp (1993, Chapter 7.7) and Bruno and Carbone (2013).

Similar developments can be applied to the turbulence models of magnetized plasma.
The structure function of magnetic increments is defined in the same way as for velocity
(Equation (2.25)):

Sp
b (l) = ⟨|B(r + l)−B(r)|p⟩ (2.29)

In the Alfvénic turbulence model of Iroshnikov (1963) and Kraichnan (1965), so in the
absence of intermittency, the velocity and magnetic field fluctuations are coupled and
therefore the velocity and magnetic field structure functions follow the same scaling:

Sp
b (l) ∼ Sp

v(l) ∼ lp/4 (2.30)

In Ruzmaikin et al. (1995) this model is refined using the same assumptions as in the
hydrodynamic β model of Frisch et al. (1978). Next, an extension analogous to the P-model
of Meneveau and Sreenivasan (1987) has been proposed by Carbone (1993). Finally, Grauer
et al. (1994) proposed an extension of the original model where the smallest dissipative
structures in the MHD inertial range are current sheets. All these models have been
critically reviewed in Marsch and Tu (1997) and Horbury and Balogh (1997).
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Table 1. We report the values of the parameters σ0, and the values of µ and β obtained in the fitting
procedure for λ2(τ). We also report the range of scales where the fit has been done.

B (Fast) B (Slow) V (Fast) V (Slow)

σ0 0.85 ± 0.05 0.90 ± 0.05 0.90 ± 0.05 0.95 ± 0.05
µ 0.90 ± 0.03 0.75 ± 0.03 0.54 ± 0.03 0.38 ± 0.02
β 0.19 ± 0.02 0.18 ± 0.03 0.44 ± 0.05 0.20 ± 0.04

Scales τ ≤ 0.72 hours τ ≤ 0.72 hours τ ≤ 1.44 hours τ ≤ 1.44 hours
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Figure 1. The scaling behavior of the PDF for δvτ as calculated from the experimental data (white symbols) in
the fast streams. The full lines represent the fit obtained through the model as described in the text.
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Figure 2. The scaling behavior of the PDF for δbτ as calculated from the experimental data (white symbols) in
the fast streams. The full lines represent the fit obtained through the model as described in the text.

Looking at Figure 3, it can be seen that both in fast and in slow streams magnetic field intensity is more

(a)

(b)

4

Figure 5: Main plot: PDFs rescaled using eq. (3)`
�Bs

z = �Bz⌧
�H

´
. Inset: PDFs at di↵erent scales ⌧ before

rescaling; red and green curves show the smallest and largest
values of ⌧ respectively. A Gaussian fit to the data illustrates
the heavy-tailed non-Gaussian nature of the rescaled PDF.

this property. Our result provides a strong discriminator
of the relevant physics and phenomenology; for example
the monoscaling that we find is reminiscent of that found
at higher orders in electron-MHD simulations [37]. To de-
termine whether this phenomenology is in fact universal,
future studies should aim to reproduce and/or break this
result in more dynamic environments such as at planetary
shocks [22], magnetosheath [24] and at sites of magnetic
reconnection [14, 15]; although the main di�culty here
will be to identify su�ciently long stationary intervals.
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Figure 2.2: Panel (a): Distributions of the magnetic field increments, defined in Equation
(2.19) but rewritten with the time t and the time lag τ (replacing r and l respectively).
These distributions are normalized by [⟨δB2

τ ⟩]1/2. Four time lags τ , corresponding to the
inertial range, are shown. Adapted from Sorriso-Valvo et al. (1999). Panel (b) main plot:
distributions of sub-ion scale magnetic field increments rescaled in accordance with Equa-
tion (2.31): δBs

z = δBzτ
−h. The inset shows the distributions before rescaling. Adapted

from Kiyani et al. (2009).
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and solar wind velocity [44]. For a comparison, K41 and IK linear predictions are also 
shown. From the left panel, we find the well-known shape of tl,{p) as a function of p: 
intermittency affects the scaling exponents of all the flow variables by reducing their 
values from the expected K4I or IK scahng, more and more as p increases. On the 
contrary, when the effects of the most intermittent fluctuations, above VFO, are isolated 
and removed (right panel), well-defined hnear scahng exponents are obtained for the 
fluctuations in the inertial range. Surprisingly, the magnetic field fluctuations display a 
K41-like scaling, while the velocity fluctuations display a IK-like scaling. This result is 
indeed not obvious: one would expect that both dynamical variables would have simflar 
behavior since the inertial range is characterized by Allvenic-type fluctuations! This 
shows that the nonlinear cascade may not be strongly affected by the Aljven effect, 
contrary to the prediction by [18, 19, 20]. This fundamental difference in the scaling 
of the magnetic field and the velocity components have first been reported by Salem few 
years ago using the same data set and the same technique [1,37], but the accuracy of the 
data were questioned. The 3DP and the MFI data quality and precision have since been 
improved through better calibrations compared to the early part of the Wind mission. 
This did not have much of an effect on the results [44] though: the difference in scaling 
for the B and the V fields is even clearer [46, 47,44]. This trend has also been confirmed 
recently through a simple analysis of Fourier power spectra of Wind magnetic field and 
velocity data [48]. 

Using conditioned stmcture functions, we have been able for the first time to clearly 
recover simple, monofractal scaling properties of the standard fluctuations in the in-
ertial range, following the simple K41 or IK phenomenologies. The usual property of 
multifractality of solar wind MHD turbulence appears actually to be determined by the 
topology of the most intermittent structures present at the smallest scales. What fraction 
of the fluctuations do actually alter the monofractal behavior of the turbulence in the in-
ertial range? We find that F = 20 is a limit value for the conditioning threshold, meaning 
that conditioning with any value of F < 20 does not change the linear relation C{p)'^ P 
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Figure 2.3: Left panel: the scaling exponents for the magnetic field and velocity structure
functions. Right panel: conditioned structure exponents for the incoherent component
of the signal. The term ”conditioned” means that they are computed after removing
the wavelet coefficients above the threshold, called F in the right panel, of 20 standard
deviations for the fluctuation distribution. This implies that the coherent structures, with
large deviation to the mean, are removed. Solid dashed lines in both panels show the
prediction of the Kolmogorov (1941) model (Equation (2.26)), as well Iroshnikov (1963)
and Kraichnan (1965) model (Equation (2.30)). The figure is adapted from Salem et al.
(2007).

2.2.2 Intermittency in observations at 1 au

So far, intermittency in the solar wind has been mostly analyzed with in-situ observations
at 1 au. We summarize below the main findings.

Figure 2.2(a), adapted from Sorriso-Valvo et al. (1999), shows distributions of the
magnetic field increments in the solar wind at 1 au. The distributions are shown for 4
different time lags τ corresponding to scales l in the inertial range. The distribution is
Gaussian at the large scales (τ = 23 h). At smaller scales of the inertial range (τ = 0.2 h)
non-Gaussian tails of the distribution are easily seen. This different shape of distribution
functions of increments is usually interpreted as a signature of multi-fractal cascade.

At sub-ion scales the distributions of magnetic increments are also non-Gaussian, see
Figure 2.2(b) inserted panel. Kiyani et al. (2009), at 1 au, and Chhiber et al. (2021),
at 0.17 au, found that the distributions at different lags τ tend to a single function after
applying the rescaling operation. In this case the authors rescale the statistics of the
fluctuations in the following way:

PDF(δB(λτ)) = λh PDF (δB(τ)) (2.31)
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where the scaling exponent h is constant. This is one of the property of mono fractality.
Rescaled distribution functions are shown in Figure 2.2(b) main plot. This means that
subion scale fluctuations demonstrate non-Gaussian mono-fractal behavior.

A complementary approach is to study the structure functions. Figure 2.3 (left panel)
shows, with dashed lines, the exponents of the velocity and magnetic field structure func-
tions in the solar wind (Salem et al., 2007). For small p, the exponents increase with
the order p of the structure functions. For p = 1 and 2, scaling exponents of magnetic
field structure functions are close to the linear prediction of the Kolmogorov (1941) model
(Equation (2.26), shown with a solid line) and velocity exponents approach the Iroshnikov
(1963) and Kraichnan (1965) model (Equation (2.30), solid line). However deviation be-
tween the observational curves and the models becomes apparent for structure function
exponents of higher orders, p ≥ 3. Different multifractal intermittency models can fit this
nonlinear dependence ξ(p) observed in the solar wind (these fits are not shown here, see for
example the review of Horbury and Balogh (1997)). However among these models there
is no model explaining better the observational results (Carbone et al., 1996; Bruno and
Carbone, 2013).

Along with the above intermittency theories, the modern perception that intermittency
means the presence of coherent structures has emerged, e.g., Frisch (1995); Veltri (1999).
Hada et al. (2003) showed that the solar wind fluctuations are not random phased, but
have a certain level of coherence. Using the wavelet techniques (Farge, 1992; Farge and
Schneider, 2015; Lion et al., 2016), turbulent signal can be decomposed into the sum of
coherent and incoherent components. The first corresponds to the high-amplitude localised
in space events, known as coherent structures.

Figure 2.3 (right panel) shows the exponents of the conditioned structure functions.
By ‘conditioned’ Salem et al. (2007) mean that the most energetic coherent structures are
removed before computing the structure functions. Specifically, the Haar wavelet transform
has been applied, then the standard deviations of the wavelet coefficients at each scale
are used to select and remove the values higher than 20 standard deviations. In this
way, the strongest intermittent events are removed, hence the term ‘conditioned’. After
applying this procedure, the exponents of the structure functions have a linear dependence
on the order of the structure function p, as in models without intermittency. Therefore,
surprisingly, the intermittency is due to the coherent structures that occupy a small fraction
of the volume. The strongest events removed by Salem et al. (2007) occupy only ∼ 0.1
to 1% of the volume depending if the structures are 2D or 3D. In conclusion, the multi-
fractality is associated to the coherent structures. Taking them off, the monofractal scaling
is observed.

Still, after removing the coherent structures, the magnetic field and velocity scaling
exponents of the structure functions have different slopes (Figure 2.3 right panel). Mag-
netic fluctuations follow almost the Kolmogorov scaling, while velocity fluctuations fit the
Iroshnikov-Kraishnan prediction. This difference, between properties of magnetic and ve-
locity turbulent fluctuations observed in the solar wind, is still an open question.
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To conclude, multifractal intermittency models are able to explain the observed nonlin-
ear dependence of the structure functions exponents on the order of the structure function
p. But, these models are based on phenomenological assumptions, and not on the governing
physical Equations (2.6 - 2.9), so they are limited and insufficient. In contrast, the concept
of coherent structures necessitates additional studies of their properties and formation.

In the following of this chapter, we summarize our results on statistical properties
of turbulence (spectra and intermittency) as observed with Parker Solar Probe (PSP) at
0.17 au.

2.3 PSP results during the first perihelion

In this section we present statistical properties of turbulent magnetic field measurements of
PSP during 5 hours time interval at 0.17 au. We analysed the time interval on November
6, 2018, [00:00, 05:00] UT during the first encounter, E1, of PSP with the Sun. We select
this time interval because, (i) PSP is in the closest point to the Sun (perihelion) for this
encounter; (ii) only for E1, there are merged data (Bowen et al., 2020a) of two magnetic field
instruments MAG and SCM1, that allow to study turbulent magnetic field from inertial
scales to sub-ion scales.

The magnetic field during the chosen time interval is particularly highly-disturbed due
to the presence of high-amplitude structures (including switchbacks, Bale et al., 2019; Per-
rone et al., 2020). The duration of the chosen interval is long enough to resolve the inertial
range of MHD turbulence but short to see the f−1 domain. During this time interval,
PSP is nearly at the same radial distance from the Sun (0.17 au) and it is magnetically
connected to the same coronal hole (Bale et al., 2019).

2.3.1 Spectra at 0.17 au

The spectrum of the selected time interval is shown in Figure 2.4(a). The orange line shows
the total magnetic field power spectrum (also called Power Spectral Density or PSD):

Etotal(f) = EBR
(f) + EBT

(f) + EBN
(f), (2.32)

where the spectrum of each component, Ei(f), is calculated using Morlet wavelet coeffi-
cients, as was done, e.g., in Equation (2) of Alexandrova et al. (2008). In the studied time
interval, this spectrum follows ∼ f−1.55 within the inertial range 10−2 < f < 1 Hz, in
agreement with previous studies close to the Sun (Chen et al., 2020; Wang et al., 2023).
The ion transition range takes one decade in frequencies: it is observed nearly between the
ion cyclotron frequency fci = eB/2πmi = 1.4 Hz and the frequency of the Doppler-shifted
ion gyroradius fρi = V/2πρi = 11.4 Hz, V = 350 [km/s] denotes the solar wind speed

1For later encounters, such data are not available because of a problem on one of the SCM axis, see
https://fields.ssl.berkeley.edu/data/

28

https://fields.ssl.berkeley.edu/data/


101102103104105
l [km]

10 3 10 2 10 1 100 101 102

f [Hz]

10 5

10 3

10 1

101

103

105
E(

f) 
[n

T2 /H
z]

f 1.55

f 2.75

E
Etotal

fci

f i

fdi

10 3 10 2 10 1 100 101 102

f [Hz]

10 2

10 1

E
/E

to
ta

l

(a)

(b)

Figure 2.4: Results from PSP first perihelion. From top to bottom: (a) magnetic field total
spectrum Etotal in orange and magnetic field modulus spectrum computed with the parallel
fluctuations spectrum E∥ (Equation (2.36)), and (b) the ratio E∥/Etotal. The vertical lines
show the characteristic ion scales: ion cyclotron frequency fci (in blue), and the frequencies
computed with the Doppler shifted ion gyroradius fρi (in black) and the Doppler shifted
ion inertial length fdi (in grey). The frequency ranges are highlighted: MHD in red, ion
scales in green and sub-ion scales in blue (Vinogradov et al., 2023).

29



(Figure 2.4). The frequency of the Doppler-shifted ion inertial length fdi = V/2πdi is in
between these two frequencies. At f > 13 Hz (sub-ion scales), the spectral index stabilizes
at −2.75, in agreement with what is observed at 0.3 and 1 au between proton and electron
scales (Alexandrova et al., 2009; Chen et al., 2010; Alexandrova et al., 2012, 2021).

Based on the magnetic field spectral properties and characteristic plasma scales (fci, fρi
and fdi) we define the following frequency ranges ∆fj , shown as transparent color bands
in Figure 2.4:

∆fj =


(10−2, 1) Hz MHD inertial range (in red)

(1, 13) Hz ion scales (in green)

(13, 128) Hz sub-ion range (in blue)

(2.33)

The corresponding timescale ranges ∆τj are

τj :


τMHD = (1, 100) s

τion = (0.08, 1) s

τsubion = (0.008, 0.08) s

(2.34)

We investigate the compressibility of the magnetic fluctuations at different scales. Com-
pressive fluctuations are approximated by the variation of the magnetic field modulus. This
approximation is valid if the level of the fluctuations is significantly lower than the mean
field B0, i.e., δB/B0 ≪ 1. In this case, we have (Perrone et al., 2016):

δ(|B|2) = |B0 + δB|2 − |B0|2 ≈ 2δB∥B0 ≈ δ(B2
∥) (2.35)

In the inertial range and at higher frequencies the condition |δB|/B0 < 1 is valid. So we
calculate the parallel Power Spectral Density (PSD), E∥(τ), as it was done in Perrone et al.
(2016):

E∥(τ) =
2δt2

T ′

∑
t∈T ′

|W [|B|](t, τ)|2 (2.36)

In the above Equation 2.36, W [|B|] denotes the wavelet transform of the magnetic field
magnitude |B|, δt is the time step, T ′ = [00:22:49, 04:37:11] UT is the time interval, where
the wavelet coefficients at the scales τ < τmax = 103 s are not influenced by the edge effect,
see Appendix B.

The PSD of compressive magnetic fluctuations, E∥, is shown in Figure 2.4(a) with a
blue line. The ratio of compressible fluctuations to the total PSD, E∥/Etotal, is shown in
Figure 2.4(b). In the inertial range, parallel magnetic fluctuations are much less energetic
than perpendicular ones (δB∥ ≪ δB⊥), as is usually observed in the solar wind. Then,
E∥ ≪ Etotal, and Etotal(f) is nearly equal to E⊥(f). At the sub-ion scales, the fraction of
the parallel E∥(τ)/Etotal(τ) increases. This result is consistent with the results of Salem
et al. (2012) and Lacombe et al. (2017) at 1 au.
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Figure 2.5: Histograms of magnetic field fluctuations (solid) compared to the signal
with random phases (RP, dashed) for PSP data at 0.17 au. Panel (a) shows the centered
lowpass-filtered fluctuations of the magnetic field. Panels (b-d) show bandpass-filtered
fluctuations on MHD inertial, ion kinetic, and sub-ion scales, respectively. The horizontal
axis is normalized to the standard deviation of the random-phased signal. The area within
two standard deviations of the random-phased signal is highlighted in gray (Vinogradov
et al., 2023).

2.3.2 Intermittency at 0.17 au

Studies of intermittency in the solar wind typically perform a statistical analysis of fluc-
tuations properties. A simple way to quantify non-Gaussianity of fluctuations at a given
scale is to calculate the kurtosis (or flatness) of their distribution. The kurtosis κX of a
random variable X is defined with the normalized fourth moment:

κX =
⟨X4⟩
⟨X2⟩2 (2.37)

For a Gaussian distribution κX = 3. If the distribution has non-Gaussian tails, κX > 3.
The aim of this work is to identify coherent structures (or intermittent structures),

responsible for the observed non-Gaussianity. Since intermittent structures have coupled
phases across a wide range of scales, see (Lion et al., 2016) or (Vinogradov et al., 2023,
Figure 3, see Appendix E), we decide to consider turbulent fluctuations within ranges of
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scales, defined in Equation (2.34) and not at a fixed scales, as it is usually done. Figure 2.5
shows the result of this approach. Panel (a) represents the distribution of the low-pass
magnetic field components with their mean values subtracted. Panel (b) gives PDF’s of
magnetic fluctuations δBi (with i = R, T,N) at MHD sales (1, 100) s, panel (c) gives the
same representation but for ion sales (0.08, 1) s and (d) gives PDF’s of δBi at sub-ion
scales (0.008, 0.08) s. Solid lines corresponds to observations and dashed lines represent
the PDF’s of the random phase signal with the same energy as the original signal (see
Chapter 4 for more details). The PDFs are normalized by the corresponding standard
deviations of the random-phased signal.

As one can see from Figure 2.5, the random phase signal fluctuations have Gaussian dis-
tributions at all scales. However, the observed magnetic fluctuations show scale-dependent
deviation from Gaussianity. Non-Gaussian tails are identified at MHD scales, and they
become even more pronounced at ion and sub-ion scales. We quantify the extension of
the tails by calculating kurtosis in each ranges, see horizontal dotted lines in Figure 2.6
and Table 1 in Vinogradov et al. (2023, within Appendix E). From Figure 2.6 and from
the values of K, it is clear that non-Gaussianity increases across all scales from MHD to
sub-ion scales, except for K(BR) at sub-ion scales, where a small decrease is observed. It
is possible that this decrease comes from the fact that BR spectrum is the lowest in energy
and may hit the instrumental noise level first (i.e., at lower frequencies than two other
components), see Figure 2.7.

Let us now compare our approach with the classical one. Solid lines in Figure 2.6 show
kurtosis calculated using increments of magnetic field components at different time scales

∆Bτ
i (t) = Bi(t+ τ)−Bi(t), i = R, T,N. (2.38)

The x-axis is frequency, i.e., inversed time scales f = 1/τ . The 3 panels correspond to 3
magnetic field components in (R, T,N) reference frame.

In the inertial range the kurtosis of increments increases with frequency. This is con-
sistent with the behavior of the distribution of increments previously observed at such
scales, Figure 2.2(a). At ion scales, there is a change of behavior for the 3 magnetic field
components: K(BR) show plateau starting from fci and going up to sub-ion scales, K(BT )
has a maximum around fci and a decrease at higher frequencies, and K(BN ) is similar
to K(BR). We note a change of behavior at the highest frequencies for all components.
The saturation of kurtosis at scales smaller than ion scales has been previously observed at
1 au and closer to the Sun (Chhiber et al., 2021). They interpreted it as the development
of monofractal turbulence at the kinetic scales with a scale-independent fragmentation of
current structures, as suggested by kinetic simulations (Karimabadi et al., 2013). We can
interpret the saturation of increment-based-kurtosis in the following way: Since increments
capture mostly planar structures (like current sheets), then their abscence at sub-ion scales
(see below, sub-section 4.3.3) could imply a kurtosis that saturates at these scales.

A third approach is to use Morlet wavelet coefficients as proxies of turbulent fluctua-
tions. Precisely, in this approach, we progressively remove more and more low frequencies
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Figure 2.6: Kurtosis of magnetic field components (BR, BT , BN ) are shown in panels
(a,b,c), respectively. Kurtosis of increments is shown by solid lines. Kurtosis of the
high-pass filtered signal, based on the Morlet wavelet coefficients according to the Equa-
tion (2.40), is shown by dashed lines. The vertical lines show the characteristic ion scales:
ion cyclotron frequency fci (in blue), and the frequencies computed with the Doppler shifted
ion gyroradius fρi (in black) and the Doppler shifted ion inertial length fdi (in gray). Hor-
izontal black dotted lines show the values of kurtosis of the filtered fluctuations, shown in
Figure 2.5.
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of the magnetic field fluctuations to define the signal B<
τ . This is done by using Morlet

wavelet inverse transform at scales τn smaller than τ , see Equation (11) in Torrence and
Compo (1998), or (12) in Perrone et al. (2016).

B<τ
i =

δnδt1/2

Cδψ0(0)

∑
τn<τ

ℜ(W [Bi](t, τn))

τ
1/2
n

. (2.39)

where n is the scale index, δn = 0.25 is the parameter controlling the step in timescales,
the Cδ = 0.776 and ψ0(0) = π1/4 are Morlet transform constants Torrence and Compo
(1998).

Then, we follow the definition of kurtosis by Frisch (1995, page 122, Equation (8.2)):

K<(τ) =
⟨(B<

τ )
4⟩

⟨(B<
τ )

2⟩2 . (2.40)

We show the results in Figure 2.6 by dashed lines. One can see that in the inertial range,
K< based on wavelets (dashed lines) follows K of increments (solid lines): an increase with
frequency is present, as expected. At sub-ion range, K< globally increases. K<(BR) has
significant fluctuations, K<(BT ) increases with smaller fluctuations and K<(BN ) increases
smoothly up to ∼ 50 Hz. At the highest frequencies, the data are affected by instrumental
filtering so we do not trust the K< values for the frequencies f > 50 Hz. The difference in
K<(BR) at sub-ion scales may come from the fact that the power spectral density of BR

is the lowest in energy at high frequencies, as was already discussed above, see Figure 2.7
(red line).

Clearly, different ways to define turbulent eddies give different results for kurtosis K(f).
We have considered: (1) probability distribution functions and their kurtosis for fluctu-
ations covering ranges of scales, then we have considered (2) increments and (3) Morlet
wavelet based high-passed filtered signal. These three approaches have comparable results
in the inertial range with an increase of K with f for the 3 components of magnetic field.
At higher frequencies the results of (1) are in agreement with (3), where we do not see
saturation of intermittency at ion scales as present with (2), but rather an increase of the
signatures of coherent structures. We will verify this result in the physical space in Chap-
ter 4. Now, let us discuss, in the next chapter, the theoretical models of possible coherent
structures we can meet in the solar wind.
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Figure 2.7: Power spectral density of magnetic field components (BR,BT ,BN ) for the
analysed time interval of 5h during the E1 of PSP. At high frequencies (corresponding to
sub-ion scales) the power spectral density of BR (red line) is less energetic than for the
other two components.
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Chapter 3

Models of coherent structures

Previously, turbulence was seen as the chaotic, unpredictable in detail motion of a fluid, so
that only statistical properties of fluctuations are reproducible. It was the common view
until the discovery of the emergence of quasi-deterministic coherent structures in turbulent
flows. Coherent structure can be defined as stable localized in space event with a high-
amplitude and phase coherence over its spatial extent (Hussain, 1986; Fiedler, 1988; Veltri,
1999; Bruno et al., 2001; Mangeney, 2001; Farge and Schneider, 2015; Alexandrova, 2020).

In hydrodynamic experiments, coherent structures typically represent vorticity fila-
ments (van Dyke, 1982; Jiménez et al., 1993; Vincent and Meneguzzi, 1991). They can be
detected in flow visualization experiments (for example Fiedler, 1988; Zhou et al., 1999;
Green et al., 2007). Recently the deep learning methods were applied to predict the number
and filling factor of the coherent structures over time in a turbulent channel flow (Schmekel
et al., 2022).

In this Chapter we discuss different types of coherent structures observed in the solar
wind (properties, occurrence rate, possible generation mechanisms). In Sections 3.1 and
3.2 we briefly describe the coherent structures that are typically studied in the solar wind.
In Section 3.3 we concentrate on the model of Alfvén vortices. We provide the derivation of
the Alfvén vortex model which were less investigated so far than other coherent structures,
so we provide a deeper discussion. We generalize the derivation to describe the case of
multipole vortices.

3.1 Current sheets

Current sheets are locally planar coherent structures that separate the plasma with different
magnetic field directions. Already the first satellite measurements of the magnetic field in
the solar wind revealed the presence of current sheets (Burlaga et al., 1977). Figure 3.1
shows an example of the Explorer 43 satellite measuring the magnetic field in a fast solar
wind stream at 1 au. The magnetic field component By changes sign in the center of the
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TABLE 1. Tangential Discontinuities on April 6, 1971 

UT (Bz), 7 co, deg 

0408 -0.19 30.4 2.0 
0525 -0.78 53.4 13.5 
1004 0.32 78.9 4.3 
1450 0.54 97.6 17.1 
1621 0.16 91.8 6.5 
1638 0.25 167.7 3.6 
1714 0.34 35.3 7.8 
1716 0.21 61.9 8.6 
1827 0.62 30.0 1.9 
1838 0.65 81.9 7.5 
2022 0.85 106.0 6.4 
2347 0.52 78.4 3.4 

< 2 3'; these events are probably TD's, since the uncertainties 
are approximately 1 or 2 3'. In addition, there is a second peak 
in the Bn distribution between 3.5 and 4 3'. For 17 events 
(46%), Bn > 3 'y, and these events are probably RD's. Thus 
during this Alfv6nic period the B, distribution is atypical (in 
comparison with that in Figure 8), being bimodal with roughly 
equal numbers of TD's and RD's. 

We conclude that ( 1 ) TD's can coexist with Alfv6nic fluctua- 
tions and (2) RD's are not necessarily predominant in the 
presence of Alfv6nic fluctuations, but (3) RD's occur preferen- 
tially with Alfv6nic fluctuations in high-speed streams. The 
association of RD's with Alfv6nic fluctuations is not surpris- 
ing, since RD's themselves satisfy the conditions for an Alfv6- 
nic wave. 

5. THICKNESS OF LAMINAR BOUNDARY LAYERS 

Sestero [1964] and Lemaire and Burlaga [1976] developed a 
theory for the structure of 'laminar' boundary layers, i.e., 
those in which the magnetic field varies smoothly in the cur- 
rent sheet. Their results predict that the thickness of such a 

current sheet should be of the order of a few to several proton 
Larmor radii, depending on the details of the distribution 
function in the current sheet and on the conditions on both 

sides of the sheet. To compare this theory with observations, 
we selected the subset of current sheets for which (1) the 
magnetic field changed very smoothly in the layer, (2) there 
was a well-defined beginning and end of the layer, and (3) 
plasma data are available. 

The current sheets are convected with the solar wind past 
the spacecraft. Let the interval during which a layer moves 
past the spacecraft be denoted by ¾. The thickness •/of a cur- 
rent sheet is related to T, the solar wind speed V, and the radial 
component of the unit vector normal to the discontinuity 
surface Inrl by the formula 

(2) 
In order to determine nr accurately with the minimum variance 
method it is necessary to again restrict our attention to discon- 
tinuities with co > 30 ø. 

The 'thickness' distributions for TD's (defined by B, < 2 3') 
are shown in Figure 14. The most probable duration is 2.5 q- 
0.5 s, and the average is 4.7 s. Seventy percent of the durations 
were less than 10 s, and 98% were less than 15 s. The shortest 
duration was 0.6 s. The thickness ranged from 158 to 8000 km; 
in terms of proton gyroradii (RL) the thickness ranged from 
1.5RL to 82R•. The average thickness of the TD's was 1300 km 
and 12R•. 

The thickness distributions for RD's (defined by B• > 3 3') 
are shown in Figure 15. They are similar to the distributions 
for TD's. The most probable duration for the RD's is 5 q- 1 s. 
The average is 5.4 s, and the range is from 1.1 to 14.7 s. The 
average thickness is 1200 km (13R•), and the range is from 250 
km (2.2R•) to 2500 km (43RL). 

The thickness distributions of the observed TD's and RD's 
overlap the thicknesses found for the theoretical current sheets 
that Lemaire and Burlaga considered. The average observed 
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Fig. 12. Structure of two RD's. The magnetic field intensity is constant, and the magnetic field rotates on a cone. The 
component B normal to the base of the cone is large in both cases, indicating that the discontinuities are rotational. 

Current sheet

Figure 3.1: An example of a current sheet crossed by Explorer 43 spacecraft. The panels
show the three components and the magnitude of the measured magnetic field in function
of time (adapted from Burlaga et al., 1977).

interval. This is an example of a current sheet observed in the solar wind.
Current sheets with large rotation angles across the sheet represent the boundaries of

magnetic tubes (Bruno et al., 2001; Borovsky, 2008). The population of current sheets with
smaller rotation angles is much more numerous than the one with large angles (Borovsky,
2008). These current sheets might be formed spontaneously as a result of the turbulent
cascade (e.g. Matthaeus and Montgomery, 1980; Veltri, 1999; Mangeney, 2001; Servidio
et al., 2008; Salem et al., 2009; Zhdankin et al., 2012; Greco et al., 2008, 2009, 2012).

MHD classification of current sheets include rotational (RDs) and tangential (TDs)
discontinuities (e.g. Baumjohann and Treumann, 1997; Tsurutani et al., 2011). A typical
method to distinguish RD from TD is based on the normalised change in magnetic field
magnitude ∆B/B across the discontinuity (which is zero for RD) and the normal magnetic
field component normalised to the magnetic field magnitude Bn/B (which is zero for TD).
The sketch illustrating both types of discontinuities is shown in Figure 3.2. However,
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only explain a factor of !2 difference. High speed streams are
characterized by nonlinear Alfvén waves (Tsurutani et al., 1994;
Balogh et al., 1995).

Fig. 2 shows the magnetic field within a high speed stream
interval observed on day 213, 1995 by Ulysses instrumentation.
The top 3 panels is the magnetic field in the minimum variance
scoordinate system (Sonnerup and Cahill, 1967; Smith, 1973). The
three components 1, 2 and 3 correspond to the magnetic field in
the maximum, intermediate and minimum variance directions.
The hodogram at the bottom left is the plot of B1 (maximum
component) versus B2 (intermediate component). The hodogram
shows the polarization of the wave.

The figure illustrates 3 cycles of an Alfvén wave train. The
intervals are: 0401:00–0410:00, 0410:00–0423:40 and 0423:
40–0433:40 UT. Almost all of the variation is found in the B1
component. In all three ‘‘cycles’’, the B1 component changes
slowly and then has abrupt changes at the end. These abrupt
changes are DDs.

Coincident in time with the DDs are magnetic (field) decreases
(MDs). These can be noted at !0410:00, 0423:40–424:40 and
0433:30–0434:40 UT. Previous analyses of MDs have shown that
they are regions of high plasma densities and there is total
(magnetic plus plasma) pressure balance across the structures
(Winterhalter et al., 1994, 1995). It should be noted that although
there are many magnetic field magnitude decreases in the solar
wind, there are few comparable magnetic field increases.

Fig. 3 shows the Ulysses magnetic field and solar wind velocity
components for 30 days when Ulysses was over the south solar
pole (!801) at a distance of !2 AU from the sun. During this
interval Ulysses was over a large polar coronal hole. The
coordinate system for the field and velocity components is the
heliospheric RTN right-hand system. In this system, the
R component is directed radially outward from the sun. T is
O"R/9O"R9, where O is the north rotation pole of the sun, and
N completes the right-hand system.

It is noted that the solar wind speed is constant within a range
of 750–800 km/s. This is the same speed that will be detected in
the ecliptic plane when the Earth is embedded by a high speed
stream. Two things are particularly noteworthy in the figure. The
high speed stream is characterized by large amplitude magnetic
and velocity fluctuations. The magnetic amplitudes are DB/Bo!1

to 2. These are outward propagating Alfvén waves. The second
feature is the large number of MDs present. These MDs can have
amplitudes (decreases) that are 90% of the ambient magnetic
field. These MDs are intrinsic properties of high speed solar wind
streams. As previously mentioned there are only few magnetic
field increases.

It was concluded by Tsurutani et al. (2007) that DDs are
created by the Alfvén wave steepening process and MDs are
created by the dissipation of the Alfvén waves. Thus kinetic
physics is necessary to understand these structures. The idealized
MHD jump conditions may not be applicable.

2.1.9. DDs: are some of them intermediate shocks?
The existence or nonexistence of intermediate shocks (ISs)

have been debated in the literature. Some have argued that
intermediate shocks were not physical. However Wu (1987, 1990)
and De Sterck and Poedts (2000) have demonstrated that ISs could
be stable if dissipation is included. Here we will discuss DDs that
have such associated dissipation.

Fränz et al. (2000), Neugebauer et al. (2001) and Tsurutani
et al. (2002a, 2002b) have examined the proton distribution
within MDs. They have found that in general, the perpendicular
temperatures are higher inside MDs than outside MDs.

Fig. 4 shows the ratio of proton temperatures taken inside MDs
compared to that just outside MDs. A bi-Maxwellian distribution
was assumed to determine the parallel and perpendicular
(relative to Bo) temperatures. The bottom panel shows a
histogram of the ratio of the parallel temperatures (TJ) inside
MDs to that outside MDs. There are 32 MD cases that were
examined. The histogram distribution is centered roughly around
!1.0 indicating that the temperatures are about the same. The
perpendicular temperature (T?) distributions are considerably
different, however. The distribution is skewed such that
T?/TJ41.0. The interpretation is that the process forming MDs
cannot be an adiabatic one. There must be local heating going on.

Besides the proton perpendicular temperatures, there are
other indirect indications of in situ plasma heating. Mirror mode
structures and proton cyclotron waves have been reported inside
MDs (Tsurutani et al., 2002a). These wave modes are most
certainly generated by ion T?/TJ41.0 anisotropies and are
consistent with the concept of local heating.

Fig. 1. A schematic illustrating idealized TDs and RDs. TDs have no mass flow nor magnetic flux crossing their surfaces. The TD surface is basically an imaginary ‘‘wall’’
separating two dissimilar plasmas. A RD is a sharply kinked Alfvén wave (AW).

B.T. Tsurutani et al. / Journal of Atmospheric and Solar-Terrestrial Physics 73 (2011) 5–198

Figure 3.2: A schematics of tangential and rotational discontinuities showing the variation
of the magnetic field across the structures. Adapted from Tsurutani et al. (2011).

observations showed that current sheets can combine both properties of RDs and TDs
(Neugebauer, 2006; Artemyev et al., 2019).

Typically, the thickness of the current sheets is of the order of ion kinetic scales. But
there are also thin current sheets with spatial sizes ranging from proton Larmor radius ρp
down to electron Larmor radius ρe (Perri et al., 2012; Greco et al., 2016).

Ion kinetic scale current sheets become potential sites of magnetic reconnection (Cassak
et al., 2006; Donato et al., 2012). Reconnection leads to the conversion of magnetic energy
into kinetic and thermal energy. Observations show that high magnetic field increments,
associated with current sheets, correlate with regions of increased local heating (Osman
et al., 2011; Wu et al., 2013; Chasapis et al., 2015; Sioulas et al., 2022). This might
indicate that the reconnection is one of the mechanisms of the turbulent magnetic energy
dissipation.

The first in-situ observational evidence of magnetic reconnection in the solar wind (in
the interior of an interplanetary coronal mass ejection) was found by Gosling et al. (2005),
who observed the bifurcation of the current sheet related with the reconnection jet. When
the spacecraft is crossing a bifurcated current sheet, the magnetic field is changing twice:
first, when the spacecraft enters the reconnection outflow region and the second when it
leaves it. Reconnection events have been frequently observed in the regular solar wind
(Phan et al., 2006; Davis et al., 2006; Gosling, 2007; Enžl et al., 2014, 2017; Mistry et al.,
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2015, 2017). Automatic detection of reconnection events allowed to analyze large statistics
of events (Tilquin et al., 2020; Eriksson et al., 2022; Fargette et al., 2023).

The occurrence rate of current sheets is ranging from a few hundred per day at 1
au (Vasquez et al., 2007a; Podesta, 2017; Vasko et al., 2022) to ≃ 103 day−1 at 0.17 au
(Lotekar et al., 2022). This is a plausible indication that current sheets are mostly formed
close to the Sun and then are dissipated as the distance to the Sun increases. Restricting
only to reconnecting current sheets, the occurrence rate was found from minimum of 0.4
day−1 (WIND data at 1 au, Phan et al., 2010) up to 7 day−1 (Solar Orbiter data at 0.7
au, Fargette et al., 2023).

Interestingly, during the first PSP encounter, most of the reconnection events (21 in
total) were detected far from the perihelion (Phan et al., 2020). They speculate that the
reconnection might be less frequent due to the specific highly-Alfvénic solar wind observed
for this encounter, where the finite normal magnetic field prevents reconnection, and the
dominance of rotational discontinuities.

3.2 Magnetic holes

A magnetic hole is a coherent structure that represents a strong localised magnetic field
modulus decrease. Magnetic holes are observed in the solar wind, e.g. (Turner et al., 1977;
Winterhalter et al., 1994; Stevens and Kasper, 2007; Volwerk et al., 2020; Wang et al.,
2020).

Figure 3.3 shows a typical example of magnetic hole detected by the WIND spacecraft
(Stevens and Kasper, 2007). The magnetic field magnitude dip is shown in the top panel.
The proton density and temperature are enhanced inside the magnetic hole (see 3rd and
4th panels of Figure 3.3). The decrease of magnetic pressure is balanced by the increase
of proton kinetic pressure. The temperature anisotropy Tp,⊥/Tp,∥ (bottom panel) is higher
inside the magnetic hole than in the surrounding plasma. The crossection width of this
magnetic hole is about 100 ρp, where ρp is the proton Larmor radius.

Statistically, the crossing widths of MHD-scale magnetic holes cover a broad range of
scales: from ∼ 10 ρp to ∼ 103ρp (Stevens and Kasper, 2007; Karlsson et al., 2021). The
occurrence rate of magnetic holes is higher closer to the Sun: from 2.4 per day at 0.7 au
to 3.4 per day at 0.3 au (Volwerk et al., 2020).

The origin of magnetic holes is still under debate. The plausible mechanism of the large
(MHD-scale) magnetic holes formation is the mirror mode instability. Under the condition:

1 + βp,∥

(
1− Tp,⊥

Tp,∥

)
< 0, where βp,∥ =

npkBTp,∥

B2/2µ0
(3.1)

an enhanced plasma density develops in the magnetic field depression regions (Chan-
drasekhar et al., 1958; Vedenov and Sagdeev, 1961; Hasegawa, 1969; Southwood and Kivel-
son, 1993). Magnetic holes were mainly detected in the anisotropic, high-β solar wind, in
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T is chosen such that its boundaries coincide with the
boundaries of a magnetic hole, qT is maximized. If T contains
no magnetic holes (or other departures of the field from the
ambient fluctuations within W), qT is generally between +1
and !1, approaching zero with sufficiently large nT. Given a
suitable choice of s, this definition provides us with a
statistical measure of the significance of a magnetic field
depression that can be applied on all scales. The choice of s
is discussed later in this section and in Appendix A3.

[22] The search for magnetic holes is conducted by
calculating a map q(t, dt) which has maxima corresponding
to the best fit times and durations of possible magnetic
holes. This is illustrated in Figure 2, which shows q{t, dt}
over 6 min of observations with a maximum hole duration
of 5 min. Time is in seconds of the day 28 September 1996.
There are two pronounced maxima on this plot,
corresponding to the two magnetic hole candidates with
(t, dt) = (7945, 12 s) and (8067, 21 s).

Figure 1. These two magnetic holes illustrate the similarity between hole signatures in the plasma
kinetic and fluid limits. (a) Example of a kinetic-scale magnetic hole. On this scale, single particle orbits
become comparable to the structure and/or its boundaries, as in current sheets or shock fronts. This
magnetic hole has a cross-sectional width of about 100 proton gyroradii in XGSE. It is linear, with a
negligible change in the orientation of the magnetic field across the boundaries. Three-second ion
measurements show enhancements in ion density, temperature, and temperature anisotropy within the
hole. The stacked pressure plot, second row from the bottom, indicates that the ion pressure increase
nearly compensates the magnetic pressure decrease. (b) Example of a microscale magnetic hole. The
magnetic field and ion signatures of this hole are identical in most respects to those of the kinetic-scale
hole. This hole, however, is about 4000 proton gyroradii across. On this scale, structures are fluid-like, as
in MHD waves.

A05109 STEVENS AND KASPER: MAGNETIC HOLES AT 1 AU

4 of 11

A05109

Figure 3.3: A magnetic hole detected by WIND satellite. From top to bottom the panels
show the magnetic field strength and its components, the proton density and tempera-
ture, the plasma and magnetic pressures, and the ratio of orthogonal to parallel tempera-
tures with respect to the local mean magnetic field orientation (adapted from Stevens and
Kasper, 2007).
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proximity of the instability threshold of Equation (3.1) (Tsurutani et al., 1992; Winter-
halter et al., 1994; Stevens and Kasper, 2007). This observation supports the association
of magnetic holes with mirror modes, however many magnetic holes are also found in the
mirror mode stable environment.

Other mechanisms for the formation of magnetic holes have been proposed, such as
non-linear evolution of Alfvén waves (Tsurutani et al., 2002; Dasgupta et al., 2003); local
inhomogeneities introduced by large-amplitude Alfvén wave packets that evolve into mag-
netic holes (Buti et al., 2001) or soliton solutions in magnetized fluid models (Baumgärtel,
1999).

Sub-ion scale magnetic holes have been found in the solar wind (Wang et al., 2020).
Sub-ion scale magnetic holes display properties that are inconsistent with their formation
by the mirror instability (Sundberg et al., 2015). In particular, their size is much smaller
than the typical wavelengths associated with mirror modes. Moreover, they are typically
observed in an environment which is stable to the mirror instability (Balikhin et al., 2012).
Furthermore, these sub-ion scale structures are typically associated with an enhanced elec-
tron temperature anisotropy, while the ions do not show any response to the presence of
such small-scale magnetic holes. This is in contrast with the properties of large-scale mag-
netic holes, where the magnetic field depression is balanced by an increase in ion density
and pressure.

3.3 Alfvén vortices

3.3.1 Summary of previous works

Alfvén vortices are typically described as cylindrically symmetric coherent structures nearly
aligned with the background magnetic field. The first multi-satellite observation of Alfvén
vortices have been done in the Earth’s magnetosheath with the Cluster mission (Alexan-
drova et al., 2004, 2006; Alexandrova, 2008). Cassini measurements indicate the presence
of such structures in the Kronian magnetosheath as well (Alexandrova and Saur, 2008).
Signatures of Alfvén vortices were found in single spacecraft data (Verkhoglyadova et al.,
2003; Lion et al., 2016). Later the existence of Alfvén vortices in the solar wind was con-
firmed with the 4 spacecrafts of Cluster (Roberts et al., 2016; Perrone et al., 2016, 2017).
Wang et al. (2019) investigated the kinetic effects within an Alfvén vortex thanks to MMS
measurements in the Earth’s magnetosheath.

A recent simulation paper indicates that Alfvén vortices might emerge at the late
stage of the solar wind turbulence (Meyrand et al., 2023). Closer to the Sun the outward
Alfvén waves dominate. The solar wind expantion effects are taken into account in
the simulation. The reflection of Alfvénic fluctuations from background gradients, enable
nonlinear interactions between counter-propagating wave packets. This process is called
the reflection-driven turbulent cascade (Velli et al., 1989; Chandran and Perez, 2019). At
the larger distances the fluctuations gradually become balanced z+ ∼ z−, structured into
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an ensemble of nonlinear Alfvén vortices.
The Alfvén vortex theoretical solution for monopoles and dipoles has been described

for the first time by Petviashvili and Pokhotelov (1992), however the discussion of the
assumptions is not complete. Another derivation of Alfvén vortices with different assump-
tions is given in Verkhoglyadova et al. (2003). In the following section we provide a detailed
derivation of the Alfvén vortex model with the complete description of the underlying as-
sumptions.

3.3.2 Reduced magnetohydrodynamics (RMHD) equations

Hypothesis
Magnetic fluctuations in the solar wind are anisotropic with a much larger energy power in
the fluctuations transverse to the mean local magnetic field compared to the parallel one
so B⊥ ≫ B∥ (see Section 2.3). Accordingly, it is reasonable to use the reduced magnetohy-
drodynamics equations (RMHD, Kadomtsev and Pogutse, 1974; Strauss, 1976). Assuming
that the solution is transverse-dominant, slow-evolving, and for small-amplitudes, we have
the ordering:

∂z/∇⊥ ∼ ∂t/VA∇⊥ ∼ B⊥/B0 ∼ V⊥/VA ≪ 1 (3.2)

General implications
The mass conservation equation reduces to ∇ · V = 0, so the plasma is incompressible.
MHD momentum and induction equations can be simplified to a pair of scalar equations
describing RMHD (Kadomtsev and Pogutse, 1974; Strauss, 1976). The independent vari-
ables of RMHD equations are flux function ψ and axial vector potential Az. The flux
function ψ is defined in the following way:

V⊥ = (ez ×∇ψ) = (−∂ψ
∂y

,
∂ψ

∂x
, 0) (3.3)

The vorticity is Ω = ∇ × V. RMHD involves only the axial vorticity ω (vorticity along
the local mean magnetic field):

ω = Ωz = ∇2
⊥ψ (3.4)

The axial vector potential Az (B = ∇×A) is defined as:

B⊥ = ∇Az × ez (3.5)

The axial current density J (J = 1
µ0
∇×B) writes:

J = Jz = ∇2
⊥Az (3.6)

Conversion to dimensionless equations
As was done in Petviashvili and Pokhotelov (1992), we introduce the following normalized
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Figure 3.4: The left panel shows the propagation of the vortex at the speed u. The vortex
axis is inclined with respect to the local mean magnetic field B0 by the angle φ. z is set
in the direction of B0 and y is set in the plane (u,B0). The right panel introduces the
cylindrical coordinates (r, θ) associated with the moving vortex of radius a.

quantities:

Ωcit, r⊥/ρi,
z

c/ωpi
, ρ/ρ0,

ψ

ρ2iΩci
,

AzVA
B0ρ2iΩci

(3.7)

where Ωci = eB0/mi, ρi = w⊥,i/Ωci =
√
2kBT⊥/mi/Ωci, ωpi =

√
e2ni/ϵ0mi, VA =

B0/
√
µ0ρ0. This allows to write dimensionless equations. In order to simplified the nota-

tions, we still keep the same notation, t, x, y, z, ψ and Az for all the following dimensionless
equations.

RMHD equations in dimentionless units
Using the above assumptions, the momentum and induction MHD equations are simplified
to a couple of dimentionless RMHD equations:

∂tω + {ψ, ω} = −{Az, J}+ ∂zJ (3.8)

∂tAz + {ψ,Az} = −∂zψ (3.9)

where the Poisson brackets are defined as:

{f, g} =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
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3.3.3 RMHD equations for 2D coherent structures

Introducting coherent structures
Equations (3.8) and (3.9) are coupled equations for Az(x, y, z, t) and ψ(x, y, z, t). Here,
following Petviashvili and Pokhotelov (1992), we look for coherent structures which are
propagating in the plasma at a constant velocity u while keeping their shapes, so without
an explicit function of time. For example a function such as Az(x, y − u t) is a two-
dimensionnal solution which is propagating without deformation in the y direction with
the velocity u. This function is independent of z, so it is invariant along the direction of the
background magnetic field B0. In order to be more general, we let the coherent structure
to be inclined on the z axis by an angle φ. In this case, the flux function ψ and the vector
potential Az are functions of the new coordinates (x, η), where

η = y + tan(φ) z − u t (3.10)

The inclination angle φ should be small in accordance with RMHD assumption ∂z/∇⊥ ≪ 1.
We introduce the corresponding inclined coordinate system:

x′ = x

y′ = cosφy + sinφz

z′ = − sinφy + cosφz

(3.11)

The case of a cylindrical structure, defined in the x, y′ plane, and invariant in the z′ di-
rection is represented in Figure 3.4. The propagation speed in the y direction is at the
constant speed u, while the propagation speed orthogonally to the structure, in y′ direc-
tion, is u cosφ.

RMHD equations for coherent structures
With Az(x, η), the derivatives in Equation (3.8) transform as:

∂tAz =
∂Az
∂η

∂η
∂t = −u ∂ηAz

∂xAz = ∂xAz

∂yAz =
∂Az
∂η

∂η
∂y = ∂ηAz

∂zAz =
∂Az
∂η

∂η
∂z = α∂ηAz

(3.12)

where α = tan(φ). Similar expressions are obtained for ψ(x, η).
Then, the induction Equation (3.9) is transformed successively to:

−u ∂ηAz + ∂ηAz ∂xψ − ∂ηψ ∂xAz + α∂ηψ = 0

∂ηAz(∂xψ − u)− ∂ηψ(∂xAz − α) = 0

∂x(ψ − ux)∂η(Az − αx)− ∂x(Az − αx)∂η(ψ − ux) = 0
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This introduces the new Poisson brackets:

{ψ̃, Ãz}x,η =
∂ψ̃

∂x

∂Ãz

∂η
− ∂Ãz

∂x

∂ψ̃

∂η
(3.13)

where we introduce the modified magnetic vector potential and flux function:{
Ãz = Az − αx

ψ̃ = ψ − ux
(3.14)

Finally, the induction RMHD Equation (3.9) is written in the following compact form:

{ψ̃, Ãz}x,η = 0 (3.15)

A similar procedure is next applied to the momentum RMHD equation, and we skip the
derivation steps below. Substituting Equation (3.12), and equivalent forms with ψ, to the
momentum RMHD Equation (3.8) and using Equations (3.13) and (3.14), it is rewritten
as:

{ψ̃, ∇̃2
⊥ψ̃}x,η = {Ãz, ∇̃2

⊥Ãz}x,η (3.16)

where we define the new Laplace operator:

∇̃2
⊥ =

∂2

∂x2
+

∂2

∂η2
(3.17)

In summary, Equations (3.15) and (3.16) are the compact form taken by the RMHD
equations for two-dimentionnal coherent structures where the flux function ψ and the vector
potential Az are functions of (x, η) with η defined by Equation (3.10). This transformation
set the two equations in a more compact format suitable to derive their properties and
analytical solutions, thanks to the properties of Poisson brackets.

3.3.4 General solutions for 2D coherent structures

Solutions for the flux function and vector potential
Equation (3.15) means that ψ̃ and Ãz are dependent on each other. The general solution
of the Equation (3.15) is:

ψ̃ = g(Ãz) (3.18)

where g(Ãz) is an arbitrary function (Petviashvili and Pokhotelov, 1992). Next, we use the
above expression in order to obtain the solution of Equation (3.16). The left side of the
Equation (3.16) is rewritten as:

{ψ̃, ∇̃2
⊥ψ̃}x,η = {g(Ãz), ∇̃2

⊥g(Ãz)}x,η
= {g′ Ãz, ∇̃2

⊥g(Ãz)}x,η
= {Ãz, g

′ ∇̃2
⊥g(Ãz)}x,η
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with g′ = dg/dÃz. Then, Equation (3.16) is rewritten as:

{Ãz, ∇̃2
⊥Ãz − g′ ∇̃2

⊥g(Ãz)}x,η = 0

which implies:
∇̃2

⊥Ãz − g′(Ãz) ∇̃2
⊥g(Ãz) = h(Ãz) (3.19)

where h(Ãz) is another arbitrary function of Ãz. This provides a second order differential
equation for Ãz. Equation (3.19) is generally non linear due to the presence of the general
functions g(Ãz) and h(Ãz). If a set of solutions for Ãz is found, then ψ̃ is obtained with
Equation (3.18). With the definitions of Equation (3.14), this provides solutions to the
RMHD Equations (3.8) and (3.9).

Implications for the velocity and magnetic field
The velocity is given by Equation (3.3) which can be written in function of Ãz as follows:

V⊥ = ez ×∇ψ
= ez ×∇(ψ̃ + ux)

= g′ez ×∇(Ãz) + u ey

= −g′(B⊥ + α ey) + u ey

where we use
B⊥ = (∇Az × ez) = (∇Ãz)× ez)− α ey

In summary, V⊥ and B⊥ are related as:

V⊥ = −g′B⊥ + (u− α g′) ey (3.20)

This implies a finite V⊥ in all the (x, η) plane except where g′ = u/α. Then, for a coherent
structure with a finite spatial extension, the departure of g′(Ãz) from u/α should be limited
to a finite region.

3.3.5 Linearized RMHD equations for 2D coherent structures

Equations (3.15) and (3.16) are the compact form of the RMHD equations for solutions
of the form Az(x, η) and ψ(x, η). Both are generally non linear equations as shown above.
The implied link between V⊥ and B⊥, Equation (3.20), implies g′ = u/α outside the co-
herent structure. Then, using Equation (3.18) this implies a linear relationship between ψ̃
and Ãz (ψ̃ = u/α Ãz). Below, we extend this linear relation ship inside the structure. This
is a linearisation of Equation (3.15). We first explore the implications of this linearisation
below, before exploring the implications of linearising also Equation (3.16).
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Linearisation of the induction equation
Among the infinite set of solutions (see Equation (3.18), we consider the linear one with
g′ = ξ = constant:

ψ̃ = ξÃz (3.21)

Then, Equation (3.20) is rewritten as:

V⊥ = −ξB⊥ + (u− ξα) ey (3.22)

Then, we need to set
ξ = u/α (3.23)

to eliminate the additional constant speed along ey (second term on the right hand side).
This constant speed is a global motion of the plasma, and it can be removed by a change
of frame. This first linearisation means that

V⊥ = −ξB⊥ (3.24)

so they are proportional everywhere. By taking the curl of this equation, one finds the
proportionality everywhere between the vorticity and the current density.

Implication for the momentum equation
Substituting Equation (3.21) into the Equation (3.16), we get:

(ξ2 − 1){Ãz, ∇̃2
⊥Ãz}x,η = 0 (3.25)

There are two independent set of solutions:

• If ξ = ±1 we obtain arbitrary Alfvénic solution with dV⊥ = ∓dB⊥. In this case any
nonlinearities of the RMHD momentum equation can be included. Indeed, with ξ =
±1, the convective term and Lorenz force term in the RMHD momentum Equation
(3.8) are balanced.

• If ξ ̸= ±1, the Poisson bracket must be equal zero which implies

∇̃2
⊥Ãz = h(Ãz) (3.26)

with h(Ãz) an arbitrary function. Physically it means that current density, J =
−∇2

⊥Az = −∇̃2
⊥Ãz, is an arbitrary function of the modified vector potential: J =

J(Ãz).

Linearisation of the momentum equation
Below we further explore the case ξ ̸= ±1 by linearising h(Ãz). We also look for solutions
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for vortices having a cylinder shape. Then, we introduce the cylindrical coordinate system
associated with the vortex: {

r =
√
x2 + η2

θ = arctan(η/x)
(3.27)

The moving boundary of the vortex is defined in the following way:

r =
√
x2 + η2 =

√
x2 + (y + αz − ut)2 = a, where a is the vortex radius (3.28)

We seek the solution with the current density localized in the cylinder so h(Ãz) = 0
for r > a. Equation (3.26) is similar to the force free equation ∇2

⊥Az = h(Az) obtained by
imposing j parallel to B (no Lorentz force). For a linear force free field j = kB with k a
constant. This implies B = kA (selecting a specific gauge, ∇ ·A = 0 as allowed). Then
j = k2A, so that the linear force free equation writes ∇2

⊥Az = −k2Az. Since α is supposed
to be small (to be in the RMHD conditions), Ãz ≈ Az, then we use the same equation for
Ãz in the region r < a. The linear version of Equation (3.26) is an Helmholtz equation
inside the cylinder and a Laplace equation outside the cylinder, as follows:{

∇2
⊥Ãz = −k2Ãz r ≤ a

∇2
⊥Ãz = 0 r > a

(3.29)

where k is an arbitrary constant, and we suppose that there is no perturbation of the
current density outside the vortex.

General solution of the linearized equations
The general solution of the Equation (3.29) is{

Ãz =
∑∞

n=0(anJn(kr) + bnYn(kr)) cos(nθ + θn) r ≤ a

Ãz = −c0 ln(r) + d0 +
∑∞

n=1(cnr
−n + dnr

n) cos(nθ + θn) r > a
(3.30)

In terms of Az = Ãz + αx, the above equation rewrites{
Az =

∑∞
n=0(anJn(kr) + bnYn(kr)) cos(nθ + θn) + αr cos(θ) r ≤ a

Az = −c0 ln(r) + d0 +
∑∞

n=1(cnr
−n + dnr

n) cos(nθ + θn) + αr cos(θ) r > a
(3.31)

The radial and azimuthal components of the magnetic field are deduced from{
Br =

1
r
∂Az
∂θ

Bθ = −∂Az
∂r

(3.32)

Physical constraints for r = 0 and r → ∞
Bessel functions of the second kind Yn are singular at r = 0, it is non-physical, so bn = 0.
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Next, in case of localised vortex solution:Bθ → 0
r→∞

Br → 0
r→∞

(3.33)

So, the boundary conditions at r → ∞ are:∂rAz →
r→∞

0

1
r
∂Az
∂θ →

r→∞
0

(3.34)

In order to satisfy these boundary conditions at r → ∞, we need to set d1 = −α, dn>1 = 0
in solution (3.31).

Physical solutions
With non singular magnetic field at r = 0 and a vanishing perturbation at infinite distance
(r → ∞) the general solution of Equation (3.31) is reduced to:{

Az =
∑∞

n=0 anJn(kr) cos(nθ + θn) + αr cos(θ) r ≤ a

Az = −c0 ln(r) + d0 +
∑∞

n=1 cnr
−n cos(nθ + θ̃n) r > a

(3.35)

The constant c0 is related to the current Jtot integrated over the circle S of the radius
R > a:

Jtot =

∫∫
S
J · ds =

∮
L
Bθdl = −

∫ 2π

0
∂rAz|r=R ·Rdθ = 2πc0 (3.36)

If we impose the condition that the total current of the vortex Jtot = 2πc0 = 0, then c0 = 0.
Otherwise with a finite total current the magnetic field in the exterior decreases as ∼ 1/r,
so the perturbation is slowly decreasing with distance.

Boundary conditions at the vortex border
Now, we set the boundary conditions at r = a to determine an, cn, θn, θ̃n. Divergence-free
condition at the boundary r = a, requires the continuity of Br. If there is no current layer
at the boundary of the vortex, Bθ is also continuous at r = a. Both conditions with respect
to Az give: {

[∂θAz] |r=a = 0

[∂rAz] |r=a = 0
(3.37)

The inner solution implies:{
∂θAz|r=a−0 = −∑∞

n=0 annJn(ka) sin(nθ + θn)− αa sin(θ)

∂rAz|r=a−0 =
∑∞

n=0 ankJ
′
n(ka) cos(nθ + θn) + α cos(θ)

(3.38)
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The outer solution implies:{
∂θAz|r=a+0 = −∑∞

n=1 cna
−n n sin(nθ + θ̃n)

∂rAz|r=a+0 = −∑∞
n=1 cna

−n−1 n cos(nθ + θ̃n)
(3.39)

The application of the continuity of derivatives at r = a, Equation (3.37), must be
satisfied for any θ value, then these conditions apply separately for different n values (as-
sociated to different θ harmonics). A specific derivation is required for the n = 0, n = 1
and n ≥ 2 as follows. For n = 0 (monopole) there is no radial magnetic field component
(so no continuity condition at r = a). However the constraint of a vanishing total electric
current is specific to this case. The case n = 1 (dipole) is particular because it incorporates
the term α r cos θ = αx coming from solving the RMHD equations for a moving vortex. It
implies a specific behavior of the parallel dipole (with Az ∝ cos θ, then a dipole moment
almost aligned with B0). In contrast the transverse dipole (with Az ∝ sin θ, then a dipole
moment almost orthogonal with B0) behaves as the higher n modes. Finally, all the n ≥ 2
modes behave in the same way so they are described below before the n = 1 case as the
transverse dipole has the same behavior.

3.3.6 Alfvén vortex modes

Case n=0 (monopole)
If Jtot ̸= 0, there is a related nonzero coefficient c0 = Jtot/2π, see Equation (3.36). The
continuity conditions for Br and Bθ at the boundary of the cylinder, Equation (3.37),
writes: {

0 = 0

a0kJ
′
0(ka) = −c0/a

(3.40)

In this case, for a given vortex radius a, there is a constraint on k which depends on the
amplitude of the monopole vortex, controlled by a0, and the total current, defined by the
parameter c0.

If we impose Jtot = 0, the continuity condition of Equation (3.37) writes:{
0 = 0

a0kJ
′
0(ka) = 0

(3.41)

Since J ′
0(ka) = J1(ka), the condition of no global currentfor the monopole implies the

condition :
J1(ka) = 0 (3.42)

For a given vortex radius a, this implies that possible k a values are limited to the series
of J1 zeros.
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Case n ≥ 2 (multipole)
Applying the continuity condition of Equation (3.37) to each n mode separately implies:{

−an nJn(ka) sin(nθ + θn) = −cn na−n sin(nθ + θ̃n)

ankJ
′
n(ka) cos(nθ + θn) = −cn na−n−1 cos(nθ + θ̃n)

Since this should be valid for any θ value, the external solution should have the same
angular dependance than the internal one. This implies θ̃n = θn and the equations are
simplified to: {

−an nJn(ka) = −cn na−n

ank a J
′
n(ka) = −cn na−n

(3.43)

We next use the expression for the derivative of the Bessel function and the recurrence
relation:

J ′
n(ka) = (Jn−1(ka)− Jn+1(ka))/2

Jn+1(ka) =
2n

ka
Jn(ka)− Jn−1(ka)

to write kaJ ′
n(ka) = kaJn−1(ka) − nJn(ka). Then, Equations (3.43) are rewritten as the

couple of equations: {
an nJn(ka) = cn na

−n

an (nJn(ka)− ka Jn−1(ka)) = cn na
−n

(3.44)

Both equations can only be satisfied if

Jn−1(ka) = 0 (3.45)

For a given vortex radius a, this implies that possible k a values are limited to the series
of Jn−1 zeros. Since these zeros are different for different n values, two modes cannot be
superposed. However, each n mode has an arbitrary amplitude an.

Case n=1 (dipole)
The dipole case is specific because of the extra term αr cos θ present in Az in Equation
(3.35). The terms in cos(θ+θ1) and cos(θ+ θ̃1) can always be split in a sum of a cos(θ) and
a sin(θ) terms. The same applies for the sin(θ + θ1) and sin(θ + θ̃1) terms. The boundary
conditions at r = a apply separately to each of these terms (different θ behavior). Only the
parallel dipole, with Az ∝ cos θ, is to be grouped with the α r cos θ term. It implies that
the transverse dipole (with Az ∝ sin θ) behaves as the higher n modes. In particular we
can apply exactly the same derivation as above, just setting n = 1 in the above equations
which implies that Equation (3.45) is also true for the transverse dipole.
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For the parallel dipole, the term α r cos θ present in Az implies other contributions,
then Equation (3.44) taken for n = 1 (valid for the transverse dipole) is completed for the
parallel dipole with extra terms proportional to α as follows:

a1 J1(ka) + αa = c1 a
−1 (3.46)

a1 (J1(ka)− ka J0(ka))− αa = c1 a
−1

The subtraction of these equations implies the amplitude of the internal solution:

a1 = −2α/(k J0(ka)) (3.47)

The amplitude of the solution for r > a is

c1 = αa2
(
1− 2

k a

J1(ka)

J0(ka)

)
(3.48)

Then, the parallel dipole has a finite amplitude depending on α = tanφ so on the
inclination of the vortex axis on the mean field B0. In contrast with all other modes, there
is no constraint on k value (apart that J0(ka) ̸= 0). This contrast with the transverse
dipole which has the constraint J0(ka) = 0 (Equation (3.45)). Then the transverse dipole
is incompatible with the presence of the parallel dipole as it would imply an infinite a1
value. This incompatibility can also be seen directly in Equation (3.46) which needs a
finite determinant of the associated matrix of coefficients to have a solution for the parallel
dipole, while the same equation applies, without the terms in α, for the transverse dipole.
In this last case, the equations are compatible only if the determinant vanishes.

3.3.7 Summary and conclusion for Alfvén vortices

Setting the equations
We have searched for theoretical models of coherent structures in the framework of RMHD.
We suppose that a coherent structure could move globally at a velocity u in the plasma
and that it is inclined by an angle φ on the mean magnetic field B0 (Figure 3.4). With
these hypotheses the RMHD equations could be rewritten in a compact form with Poisson
brackets (Equations (3.15) and (3.16)) and the modified magnetic vector potential and
flux function (defined by Equation (3.14)). This allows to derive the general non linear
equation involving only the modified magnetic vector potential, Equation (3.19), and the
relationship between the transverse velocity V⊥ and the transverse magnetic field B⊥,
Equation (3.20). The linearisation of this equation implies V⊥ = −ξB⊥ with ξ a constant
defined by u/ tanφ. The momentum equation is then rewritten in a compact form, Equa-
tion (3.25), which have two set of solutions. The first set is Alfvénic, with V⊥ = ∓B⊥ and
with arbitrary spatial dependance. The second set has ξ ̸= ±1 and a non linear equation,
similar to the non linear force-free equation, needs to be satisfied. We further investigate
this second set of solutions.
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Solving the linear solution
We have search solutions for the linearised RMHD equations with a current density propor-
tional to the magnetic field with a coefficient k (Equations 3.29). The coherent structure
is supposed to be located inside a cylinder of radius a. The equations are solved with a
multipole expansion in cylindrical coordinates (r, θ), see Equation (3.31). The origin of θ
is set by the direction of the velocity u. The solutions involve a variety of Alfvén vortices.

As a first approach, we can impose only that the magnetic field is finite at r = 0 and
vanishes at r → ∞ as well as a divergent free magnetic field. Such generic conditions, select
the r dependence of each mode, in particular by linking the amplitude of the solution in
r > a to the one in r < a (through the continuity of Br components at r = a). However,
this does not impose any condition on the mode amplitude or the k value. More precisely,
the condition of Equation (3.42) for the monopole is not present if the total electric current
does not vanish. For the dipole and multipoles only the first equation in Equations (3.44)
and (3.46) is present (due to a divergence free magnetic field). Then we can select the
amplitude of the vortex and k freely and the continuity of BR determines the external
solution. In such case, the different modes can be superposed as in Equation (3.35), and a
current layer is generically present at r = a.

Properties of the modes
However, if no net total current is present in r ≥ a, this implies for n = 0 mode (monopole)
the condition:

J1(ka) = 0 (3.49)

Next, if Bθ is continuous at r = a, this implies for one of the n = 1 mode (with the dipolar
momentum about transverse to B0) and for the n ≥ 2 modes (multipoles) the condition:

Jn−1(ka) = 0 (3.50)

For a given vortex of radius a, these conditions, Equations (3.49, 3.50) imply that possible
k a values are limited to the series of Jn−1 zeros. Since these zeros are different for different
n values, two modes with n ≥ 2 cannot be superposed in general. The exception is the
monopole and the quadrupole (n = 2) which have the same condition. Finally, each n
mode has an arbitrary amplitude.

The parallel dipole (n = 1, the dipolar momentum is about parallel to B0) is specific
since its amplitude is determined by its inclination φ on the mean field direction. Since its
amplitude is proportional to 1/J0(ka), it becomes infinite for the condition required for the
transverse dipole (J0(ka) = 0). Then, both dipole solutions are incompatible. However,
the transverse dipole is compatible with any other single mode.

In summary, with the constraint of no net total current and no current sheet at the
vortex boundary, only the parallel dipole solution can be superposed with only one other
mode solution with n ≥ 2. This superposition writesAz = αx

(
1− 2

k r
J1(kr)
J0(ka)

)
+ anJn(kr) cos(nθ + θn) r < a

Az = αx
(
1− 2

k a
J1(ka)
J0(ka)

)
a2

r2
+ anJn(ka)

(
a
r

)n
cos(nθ + θn) r > a

(3.51)
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Figure 3.5: The magnetic field of the monopole (a), quadrupole (b), parallel (c) and trans-
verse (d) dipole Alfvén vortices.

The superposition of the monopole, parallel dipole and quadrupole solutions writes:{
Az = a0J0(kr) + αx

(
1− 2α

J0(ka)
J1(kr)
k r

)
+ a2J2(kr) cos(2θ + θ2) r < a

Az = a0J0(ka) + αxa2

r2
+ a2J2(ka)

(
a
r

)2
cos(2θ + θ2) r > a

(3.52)
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where Equation (3.49) is used to simplify the expression for r > a.
In the above equations a (vortex radius) and an (mode amplitude) are free coefficients,

while k is limited to the corresponding zeros of the Bessel function (Jn−1(ka) = 0 and
J1(ka) = 0, respectively). The inclusion of the parallel dipole implies the motion of the
Alfvén vortex at the velocity u, with an inclination φ of its axis (with α = tanφ) on the
local mean field B0. This parallel dipole, of finite amplitude, can transport with it either
a mutipole (n ≥ 2), either a monopole and a quadrupole, with arbitrary amplitude (within
the RMHD limits). Finally, the magnetic field components are obtained with Equation
(3.32). The magnetic field of the monopole, parallel and transverse dipole, and quadrupole
are shown in Figure 3.5. Like for hydrodynamic vortices (Larichev and Reznik, 1976), it
is worth to analyze the stability of these vortex solutions in the future.
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Chapter 4

Investigation of coherent
structures in the solar wind

Coherent structures are important elements of the solar wind turbulence (see Chapter 2).
The nonlinearities of MHD equations cause the formation of current sheets (Frisch et al.,
1983; Greco et al., 2008; Mininni et al., 2006; Greco et al., 2008; Wan et al., 2009). However,
current sheets are not the only type of observed coherent structures (see Chapter 3). So
the aim of this Chapter is to identify coherent structures in the turbulent solar wind at
different scales and to study their physical nature. We use the time interval during the first
encounter of PSP at 0.17 au as described in Sectionı 2.3. These data are unique because we
can study turbulent fluctuations at large MHD scales as well as at ion scales (∼ 100 km)
and sub-ion scales (∼ 10 km).

In this chapter we first discuss the method how to detect coherent structures. Then we
show four examples of detected intermittent events. The first pair represent a current sheet
and an Alfvén vortex. The second pair of events are, respectively, at the boundary of a
switchback, and corresponds to a couple of neighboring switchbacks at the scale ∼ 104 km
similar to one observed by Froment et al. (2021, Figure 4). We show embedded ion and
sub-ion scale structures. Finally in order to determine the dominant type of coherent
structures at each range of scales, we compare observations with models and determine the
probability of each type of coherent structure.

4.1 Local Intermittency Measure

Turbulence is a multiscale phenomenon. So we need a method that allows us to decompose
the signal at different frequencies. A classical method is Fourier transform (see Chapter 2,
Figure 2.1). However the signal is not homogeneous, not stationary and not periodic. So
we need a more sophisticated method to detect these inhomogeneities, which are coherent
structures.
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A general method to detect coherent structures, based on the wavelet transform, was
proposed by Farge (1992). It is summarized in Appendix B. In solar wind turbulence
studies, the wavelet transform is applied to time series of the magnetic field. In order
to cover the timescales up to τmax = 103 s and to avoid the boundary effects (where
wavelets are ill-defined) we use a shorter time interval T ′ = [00:22:49, 04:37:11] UT, which
is determined by the intercept of τ = τmax with the cone of influence (COI) curve (see
Figure B.1 in Appendix B).

The local intermittency measure (LIM) is defined as follows:

L(t, τ) =

∑
i=R,T,N |W [Bi](t, τ)|2

⟨∑i=R,T,N |W [Bi](t, τ)|2⟩t∈T ′
(4.1)

where W [Bi] is the wavelet transform of the component Bi, defined in the RTN system
of coordinates so i = R, T,N . The value L(t, τ) measures the total magnetic energy of
fluctuations at a time t and at a scale τ , relative to the average energy at that scale (as
included in the denominator).

As an example, in Figure 4.1 we show a 30 minutes zoom within T ′. Panel (a) gives
RTN components of the measured B at PSP. Panel (b) shows the computed L(t, τ). The
vertical elongations of enhanced L(t, τ) values are due to coupled (or coherent) phases of the
fluctuations between a range of scales (Lion et al., 2016; Perrone et al., 2016; Alexandrova,
2020).

In order to illustrate the coherent events in the data, we construct an artificial signal
that has the same Fourier spectrum as the original magnetic field measurements, but with
random phases independently for each component (Hada et al., 2003; Koga and Hada,
2003). This synthetic signal Brand is shown in Figure 4.1(c), while the corresponding LIM
Lrand(t, τ) is shown in the panel (d). The energy distribution of the synthetic signal is
incoherent (randomly distributed in the (t, τ)–plane), i.e., peaks of Lrand(t, τ) at different
τ are not observed at the same time. In contrast, the vertical elongations in the observed
L(t, τ) correspond to magnetic fluctuations with coupled phases across scales where the
elongation is observed. The high energy of these events with respect to the mean is a sign
of intense coherent structures formed in the turbulent medium (e.g. Farge, 1992; Bruno,
2019). So, we observe coherent structures which extend from inertial to sub-ion timescales.
Using the Taylor hypothesis (see Appendix A), the timescale range τ ∈ τall = [10−2, 103] s
can be converted into the spatial range ℓ = V · τ ∈ [3, 3 ·105] km, where V is the solar wind
speed.

The difference between random-phased signal and original magnetic field data suggests
a methodology for detecting the central times of coherent structures. Specifically, we
integrate LIM over the timescale range τall:

I(t) =
∑
τ∈τall

L(t, τ) (4.2)
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Figure 4.2(a) shows I(t) (blue-azure line), random phased integrated LIM Irand(t) (black
line) and the threshold Ithreshold = max(Irand(t)) (red horizontal line). The local maxima
of I(t) > Ithreshold give the central times of the coherent structures present in the original
signal. We refer below to this method as the integrated LIM selection.

The comparison of original I(t) and random phased Irand(t) distributions is shown on
Figure 4.2(b). The Irand distribution (in black) is close to Gaussian with a mean of 1
(because of the normalization and random phases). On the contrary, I(t) (in blue-azure)
has a long tail of extreme values due to the presence of coherent structures integrated over
all time scales.

The integrated LIM selection does not have a predetermined scale at which the structure
is searched for but it is preferentially focused on scales where the vertical enhancements in
the LIM L(t, τ) are observed. Imposing I > Ithreshold we found ∼ 104 isolated intermittent
events.

4.2 Examples of embedded coherent structures

In this Section we show four examples of intermittent events among the statistics of 374
visually analyzed events with I/Ithreshold ≥ 6. The first three of them are presented in the
article Vinogradov et al. (2023). Here we put another focus in our discussion to relate the
coherent structures with the surrounding environment.

Close to the Sun the average magnetic field is directed nearly radially (Parker, 1958).
However numerous changes of polarity of BR were detected in the first encounter of the
PSP (Bale et al., 2019; Kasper et al., 2019). Moreover, the pitch angle of the suprathermal
electrons is always anti-aligned with the magnetic field. This implies that the magnetic
field lines are locally bent backward to the Sun then producing twice the observed BR

change of sign. These specific reversals are called switchbacks (see Figure 1.2 and related
text). They are formed of strongly folded magnetic field line connected to one solar region
with a given polarity, rather than a transition region between the solar wind coming from
regions with different magnetic polarities.

The physical origin of switchbacks is not yet understood, so they are actively investi-
gated (for example, Krasnoselskikh et al., 2020; Fedorov et al., 2021). Zank et al. (2020)
and Drake et al. (2021) argued that switchbacks might originate from the Sun as a con-
sequence of interchange reconnection in the corona between open and close magnetic field
lines. In contrast, Schwadron and McComas (2021) proposed that switchbacks might form
further away when streams of fast and slow solar wind are interacting, so that the faster
solar wind is bending the field lines of the slow solar wind located in front. Another possi-
ble mechanisms of their formation is due to the turbulence, as shown in the simulations of
Squire et al. (2020) and Ruffolo et al. (2020). Finally, switchbacks can also be due to large
amplitude Alfvénic fluctuations, more precisely to highly kinked Alfvénic wave packet with
a nearly constant magnetic field strength (Tenerani et al., 2020).
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During the first encounter, PSP was magnetically connected to a coronal hole with
negative polarity BR < 0. Suprathermal electrons (of energy about 314 eV) have a pitch
angle ≈ 180◦ during all the 5 hours studied (and even during a longer time interval, see
Kasper et al., 2019). Then, the analyzed time interval is switchback abundant. It includes
the 1 h 15 time interval characterized by Perrone et al. (2020) as the interval of strong
switchback activity. Below we describe in details four of the detected coherent structures,
two of them being linked to switchbacks.

The event in the left column of the Figure 4.3 was observed on November 6, 2018, at
t0 = 00:36:27 UT. Panel (a) shows the low-pass filtered magnetic field in RTN reference
frame during ±1000 seconds around the central time with t0 subtracted to the observed
time. It is intended to show the global environment around the event. Using the mean
observed velocity, it corresponds to a scale ∼ 3× 105 km, so of the order of injection scales
(Chen et al., 2020). In this case the coherent structure, around t = 0 is associated to a
discontinuity but it is not associated to a switchback (see the original data in Figure 7 of
Vinogradov et al., 2023, see Appendix E).

In Figure 4.3(b-d) we show the filtered magnetic field data δBj at time scales defined
by Equation (2.34), with j =‘MHD’, ‘ion’ and ‘subion’. We use local MVA reference frame
adapted to each scale range shown (see the MVA method description in Appendix C).
The segments between the panels show the zoom location on the panel located just above.
The basis vectors (e1, e2, e3) are directed along the maximum, intermediate and minimum
variance of the magnetic field. Magnetic field components (δB1, δB2, δB3) are shown in
red, green and blue in panels (b-d).

In Figure 4.3(b), a high amplitude current sheet is observed at MHD scales. In (Vino-
gradov et al., 2023, see Appendix E) we use the plasma data to provide a physical analysis
as summarized below. We show that the Walen relation for rotational discontinuities
(∆V = ±∆B/

√
4πρ) is violated in this example. In presence of pressure anisotropy, the

density can change across the discontinuity, and the Walen relation is modified, as follows
(Hudson, 1970; Neugebauer, 2006):

∆(Aρ) = 0

∆V = (ρ/µ0)
1/2A1/2∆(B/ρ) (4.3)

where A = 1−µ0(p∥−p⊥)/B2 is the anisotropy parameter. For this example, the pressure
anisotropy correction (Hudson, 1970) is insufficient to explain the observations (Vinogradov
et al., 2023). In addition, the jump of the magnetic field magnitude across the sheet
∆B/B0 = 0.1 is≈ 2 times greater than the standard deviation of ∆B/B0 in the 5 h interval.
These properties are inconsistent with a rotational discontinuity. So we conclude that the
discontinuity is tangential (Vinogradov et al., 2023). At ion and sub-ion scales (shown
in panels (c) and (d) respectively) we show substructures embedded in this discontinuity.
The ion scale structure resembles crossing the dipole Alfvén vortex model along the center,
see Appendix D. Sub-ion scale structure might represent a compressible vortex (Jovanović
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et al., 2015). Indeed kinetic-scale turbulence may be described with fluid-like equations,
which are structurally similar to reduced MHD equations. Therefore, it is reasonable to
expect that similar types of structures can be distinguished among coherent structures on
ion and subion scales.

The second event is shown in Figure 4.3 (right column) in the same format. The central
time is 01:19:20 UT. It is not associated to a switchback (see the original data in Figure 8
of Vinogradov et al., 2023, see Appendix E). Low-pass filtered magnetic field component
BR is negative during the interval ±100 s, as shown in the panel (f). We interpret this
MHD scale structure as a monopole Alfvén vortex crossed close to its center (Vinogradov
et al., 2023). Within this monopole Alfvén vortex, we observe smaller scale vortices at ion
and sub-ion scales.

Figure 4.4(left column) shows a third event observed at 2:19:38 UT. BR changes sign
across the sheet, meaning that the sheet forms the boundary of a switchback (see the origi-
nal data in Figure 11 of Vinogradov et al., 2023, see Appendix E), similarly to observations
in Krasnoselskikh et al. (2020). In panel (a) the current sheet is located at t − t0 = 20 s.
The velocity magnetic field jumps satisfy the Walen relation and the magnetic field mag-
nitude is constant within the short interval t − t0 ∈ (0, 40) s near the center of the sheet
(Vinogradov et al., 2023). So we conclude that this current sheet follows the characteristic
features of rotational discontinuities. At ion scales (panel (c)) maximum (δB1) and inter-
mediate (δB2) components have similar amplitudes, while δB3 ≈ 0. Both δB1 and δB2 are
transverse to the mean magnetic field; δB1 changes sign, and δB2 has a peak at t− t0 = 0.
This is consistent with the off-center crossing of an Alfvén vortex monopole (Vinogradov
et al., 2023). Sub-ion scale structure (Figure 4.4(d)) has typical properties for structures
at sub-ion scales in our statistics: δB1 has a Mexican hat-like shape, and this event has a
significant compressibility δ|B| ∼ 0.5 δB1. It is very similar to the sub-ion scale structure
shown in Figure 4.3(d). Such localized compressible magnetic fluctuations at sub-ion scales
can be interpreted as the electron Alfvén vortex of Jovanović et al. (2015).

Figure 4.4(right column) shows the fourth example. In the panel (e) the lowpass filtered
BR is positive in the center, indicating a possible switchback. In fact two switchbacks
are present with the original data, see Figure 4.5(top panel). At ion scales we observe
an embedded coherent structure that might represent a monopole Alfvén vortex crossed
through the center (panel (g)). We observe a strong peak-like fluctuation of δB1 at sub-ion
scales (see panel (h)). The intermediate MVA fluctuation δB2 is localised in the center
of the event. The curve δB1 is closely similar to the one of δ|B|. So this structure is
compressible δ|B| ∼ 0.2 δB1. It belongs to the same typical class of sub-ion scale coherent
structures (compressible vortices) as the structures shown in Figures 4.3(d) and 4.4(d).

Figure 4.5 shows the ±1000 s interval around the central time of the fourth example.
The top panel shows BR which attains positive values around the center while reversing
to negative values shortly in the central part. The middle panel shows the pitch angle
distribution of (∼ 36 eV) electrons, while the thermal temperature of electrons is ∼ 30 eV
(see Figure 1(e) in Vinogradov et al., 2023, see Appendix E). So this selected energy band
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is marginally in the suprathermal range. We still select it as the data becomes noisier at
higher energies while still showing the same pattern. The maximum of the flux of electrons
is observed for electrons with 180◦ pitch angles during the whole interval, including times
when BR > 0. Then BR and the pitch angle evolution show the presence of a couple of
switchbacks: while the pitch angle stays 180◦, BR changes its sign few times.

The bottom panel of Figure 4.5 shows the pitch angle distribution for electrons in the
∼ 2 eV energy channel, so well in the thermal core. Still, it shows electrons moving anti
parallel to the magnetic field, as for the higher energy channel shown above. It also shows
electrons moving nearly along the magnetic field. However, the color bar of the bottom
panel is covering a relatively small range of electron fluxes. Then, the ∼ 2 eV electrons
have an isotropic component with a flux variation of about ±50% for directions parallel and
orthogonal to the magnetic field. In contrast, the ∼ 36 eV electrons are highly anisotropic
(with a contrast of about 100). Note, that bottom panel shows an increase of diffused
electrons in pitch angles around the central time, within ±300 s. We may face trapped
electrons within the switchbacks. This will be investigated in a future study.

Summary of Examples

We collected a large statistics of coherent structures (Figure 4.2). At MHD scales some
of these events represent isolated current sheets such as tangential and rotational current
sheets with two examples shown in Figures 4.3(a-b) and 4.4(a-b), respectively. However, we
found that current sheets are not the dominant type of coherent structures. The example in
Figure 4.3(f) is interpreted as the crossing of a monopole vortex along its center (embedded
in a weak and large-scale rotationnal discontinuity). Finally, the example in Figure 4.4(f)
is complex.

The first pair of MHD-scale coherent structures (Figure 4.3), a tangential current sheet
and an Alfvén vortex, are far from the nearest switchback. In contrast, the second pair of
events represent a boundary of a switchback Figure 4.4(a,b) and even a pair of tied switch-
backs as shown in Figure 4.4(e,f). Other events have typically one of these characteristics.
Therefore it can be concluded that a part of the detected coherent structures on MHD
scales is related to switchbacks. This is further investigated in Section 4.4.

More generally we show (Vinogradov et al., 2023), that the embedded structures at ion
and sub-ion scales are mostly Alfvén vortices, independently on the existence of a current
sheet at large scales. In the case of a current sheet at large scales, the sub-ion vortices are
compressible and in the case of the large-scale Alfvén vortex, the small-scale vortices are
incompressible. The generality of this conclusion will be studied in a future work.
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4.3 Statistics of coherent structures at MHD, ion and subion
scales

4.3.1 Detection and filling factor of coherent structures

We use the integrated LIM over the reduced time-scale ranges, to understand in more
details the physical nature of the structures at MHD, ion and subion scales, where physics is
different. So, we define integrated LIM as Ii = (IMHD, Iion, Isubion) over the corresponding
range of timescales τj = (τMHD, τion, τsubion), defined in Equation (2.33):

Ij(t) =
∑
τ∈τj

L(t, τ) (4.4)

Similarly, integrating Lrand(t, τ) over τj we define random phased integrated LIM Irand,j(t).
Then, we define the central times of the structures within these scale-bands as the times
of the local maxima for Ij(t) > Ithreshold,j = max(Irand,j(t)).

This band-integrated LIM selection allows us to see how the number, N , of the struc-
tures and the filling factor F change with scale band. We find a relatively small number
of MHD scale structures (NMHD =196) with a high filling factor (F = 12%), compared
to F = 7% and F = 6% for much more numerous ion scale structures (Nion = 2028) and
sub-ion scale structures (Nsub−ion = 11167). We remark that our estimations of P are
conservative, because only the time intervals where LIM is over the threshold is counted,
while coherent structures have a magnetic field which extends outside of the time where
the energy of the structure is concentrated. So, the filling factor can be more than twice
larger than given here. Finally, numerous small-scale events populate larger ones and may
exist outside them as well.

4.3.2 Multiscale minimum variance analysis

We further analyse the whole set of structures detected by integrated LIM at different
time-scale ranges, see equation (4.4). For all the detected events, we study the amplitude
anisotropy of the measured fluctuations via minimum variance analysis (MVA). Then,
we compare the observed anisotropy with the one of the model structures crossed by a
spacecraft (see Chapter 3). Such synthetic crossings of different models are described in
Appendix D and shown in Figure D.1.

For each coherent structure detected within the j-th range of scales we consider filtered
magnetic field fluctuations δBj at the time interval t − t0 ∈ Tstruct = (−τmax,j , τmax,j) in
the vicinity of the structure center t0, where τmax,j is the maximum timescale of each scale
range defined by Equation (2.34). We define the amplitude of the structure δBstruct,j in
the MV frame as:

δBstruct = max(|δBj |)t∈Tstruct (4.5)
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The amplitude anisotropy of the magnetic fluctuations δBj of the structure along the
crossing trajectory is characterised by MVA eigenvalue ratios λ2/λ1 and λ3/λ2, where
λ1, λ2 and λ3 are the maximum, intermediate and minimum eigenvalues. The relative
amplitude δBstruct,j/B0 is shown in color in the Figure 4.6. For each range of scales, the
number of structures N and the filling factor P are written in the legend of the panels.

Figure 4.6(a) gives the results of the MVA for the raw magnetic field data during 200 s
time intervals around the central times t0 of the MHD-scale coherent structures. The MVA
results for examples shown in Figures 4.3 and 4.4 are marked on the (λ2/λ1,λ3/λ2) plane
with special symbols: Example-1, a tangential discontinuity at large scales, is shown with
a black dot; Example-2, an Alfvén vortex at large scales, is shown with a cross; Example-3,
a rotational discontinuity at large scales, is shown with a plus; and Example-4, a group of
coherent structures, is shown with an odot.

Analysing all the data point in Figure 4.6, we see that the structures are regrouped,
in large bands, along the two main axis. If λ3/λ2) < 0.2, the intermediate over maximum
variance, λ2/λ1, can be anything, as is the case for the monopole and dipole Alfvén vor-
tex, see Figure D.1 of Appendix D. Minimum over intermediate variance, λ3/λ2, sometime
takes high values (> 0.5), as is the case for the monopole vortex, a tangential discontinuity
or a magnetic hole. Values of λ3/λ2 around 0.3 and for small λ2/λ1 can be interpreted as
rotational discontinuities, see Figure D.1. So, the observed distribution of λ3/λ2 as a func-
tion of λ2/λ1 can be due to a superposition of different types of coherent structures. From
this distribution, we conclude that vortices are dominant, but other types of structures
may also exist.

Figure 4.6(b) corresponds to the same set of coherent structures as in panel (a) but for
filtered MHD-scale fluctuations δBMHD instead of the raw magnetic field data. Here, the
data are spread nearly uniformly in the bottom-left part of the panel. This is an indication
that this distribution can be also interpreted as a superposition of the 5 models discussed
above, with a dominance of vortices. This idea is quantified below in Section 4.3.3.

Figure 4.6(c,d) represent the MVA results for ion and sub-ion scale structures respec-
tively. At ion scales, the distribution is similar to what is observed in raw data (we are
using the merged magnetic field data without filtering), but with more cases (2028 vs 196).
Sub-ion scale structures have different distribution of the MVA eigenvalue ratios. Most
of the points, and especially high amplitude events, are grouped closer the left side of the
eigenvalue ratios plane, where λ2/λ1 < 0.25. But this does not exclude any of the 5 models.

An additional distinguishing parameter is the compressibility of magnetic fluctuations
within a coherent structure. A coherent structure is compressible, if the magnetic field
magnitude |B| is not constant due to the parallel magnetic fluctuations of the structure.
Considering the compressibility at j-th range of scales, we filter |B| as we do for fluctuations
δBj . This defines δ|B| at the scale-range j. The amplitude of compression associated with
a coherent structure is defined as max(|δ|B||)t∈Tstruct . We normalize it by δBstruct to define
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Alfvén vortex Current sheet Magnetic hole None
Monopole Dipole Rotational Tangential

RAW MHD 0.04 0.86 0.1 0 0 0
MHD 0.1 0.84 0.0 0 0 0.06
Ion scales 0.15 0.85 0.0 0 0 0
Sub-ion 0.07 0.49 0.05 0 0.004 0.34

Table 4.1: Result of the problem formulated in Equation (4.9). The numbers are the
coefficients p(model) which correspond to the fraction of the observed coherent structures
that have MVA eigenvalue ratios consistent with the crossing of a given model (Figure D.1).

the compressibility of the structure:

Cstruct = max(|δ|B||)/δBstruct (4.6)

We underline that our measure of compressibility differs from the definitions used in Turner
et al. (1977) and Volwerk et al. (2020). It is more similar to those used in Stevens and
Kasper (2007) and Perrone et al. (2016).

The compressibility of magnetic fluctuations in the full time interval is small since we
found earlier on that E∥/Etotal ∼ 5·10−3 at MHD scales and it attains the value E∥/Etotal ∼
0.3 at sub-ion scales (see Figure 2.4(b)). Is it also true for coherent structures? Consistent
with expectations (arising from the four examples we considered in Section 4.2), we find
that only subion scale coherent structures possess a significant level of compressibility.
Among them, the structures with the lowest compressibility are mainly located close to
the λ3/λ2-axis (which is characteristic of current sheets or vortices, see Appendix D). The
most compressible structures (with Cstruc ≥ 0.8) account for 2.7% of the total statistics
and fill the plane uniformly. Finally, there is no characteristic amplitude anisotropy for the
most compressible structures.

In the following Section we compare the amplitude anisotropy and the compressibil-
ity for MHD, ion and sub-ion scale structures, with the crossings of different coherent
structures models (see Appendix D).

4.3.3 Types of observed coherent structures

Below we compare the observational statistics of coherent structures with models. For
convenience we use below the notation (r32, r21) = (λ3/λ2, λ2/λ1) for MVA eigenvalue
ratios. First, we systematically investigate the compressible coherent structures with nearly
linear polarisation, such as magnetic holes (see Section 3.2). We use two criteria to select
magnetic holes. First, Cstruct > 0.8 (Cstruct is defined in Equation (4.6)) to select strongly
compressible structures and second, we delimit the zone (r32 > 0.6, r21 < 0.4) in the MVA
eigenvalue ratios plane, that is characteristic for the magnetic hole crossings, see the bottom
panel of Figure D.1 column (e). Their percentage at MHD, ion and subion scales is shown
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in the column Magnetic hole of Table 4.1. We found that they are observed only at sub-ion
scales. Among sub-ion scale structures, they account for 0.4% of the cases. We will study
these events in more details in a future work.

We define the proportions of vortices and current sheets among the remaining ob-
served structures by comparing the amplitude anisotropy from observation (as shown in
Figure 4.6) to the one of models, without imposing any criterion for compressibility.

Figure 4.7(a) show 2D histograms (6 × 6 bins) of distributions of the data in the
(r32, r21)–plane for raw data (top raw), observations at MHD (second raw), ion (third
raw) and sub-ion (bottom raw) scales. In other words, we show the probability density
Pobs,j of observations

Pobs,j(r32, r21) = Nobs,j(r32, r21)/Nobs,j , (4.7)

where Nobs,j(r32, r21) is the number of the observed structures in a bin, and Nobs,j is the
total number of observed structures. The index j denotes the scale range. The histograms
are limited to few bins (6 × 6) to keep enough cases in bins having the largest counts in
order to limit the statistical fluctuations.

We assume that crossings of coherent structures along trajectories with different impact
parameters are equally probable (because crossings are random) and we take into account
the noise from the observations, with Equation (D.2), in Appendix D. Since the dipole
Alfvén vortex has an angular structure, we average the results over a uniform distribution
of trajectory orientations. Then, we obtain the probability density P (r32, r21|model) of
MVA eigenvalue ratios for each model structure:

Pj(r32, r21|model) = Nmodel,j(r32, r21)/Nmodel,j (4.8)

where the index j denotes the scale range. The probability distributions for 4 different
models Pj(r32, r21|model) are shown in columns (b-e) of Figure 4.7. To simulate different
scales, we change the level of the noise according to what is observed at each scale, see
Equation (D.2).

The observed distribution of MVA eigenvalue ratios Pobs,j can be expressed as the
linear combination of the conditional probabilities Pj(r32, r21|model), determined from the
models. The positive coefficients p(model) reflect the probability to encounter each model
structure. Coefficients p(model) are found from the constrained minimisation problem:

||Pobs(r32, r21)−
∑
model

p(model)P (r32, r21|model)|| → 0∑
model

p(model) ≤ 1

p(model) ≥ 0

(4.9)

We use the least squares minimisation. Note that no compressibility criteria is imposed,
since vortices and current sheets are mostly incompressible structures. The resulting prob-
abilities p(model) at different scales and for different models are shown in Table 4.1: The
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MVA eigenvalues of the observed coherent structures at any scale range are most consistent
with the crossings of the dipole Alfvén vortices. The monopole vortices account for 7−15%
of coherent structures among different scales. The rotational discontinuities are observed
in raw (non-filtered) data at MHD scales only. Tangential discontinuities do not appear
to be statistically significant. There is 6% of events which were not possible to model
at MHD scales. Finally, the results presented in Table 4.1 doesn’t change qualitatively if
instead of least squares, the sum of the absolute values of probability differences (between
observations and models) in each bin is minimized.

At the MHD scales applying MVA to the raw data we found 86% dipole Alfvén vortices,
4% monopole vortices and 10% rotational discontinuities. Analyzing the same structures
with filtered magnetic field data at MHD scales, (1, 100) s, we found 84% dipole vortices,
10% monopole vortices, and 6% unspecified structures. In fact, the discontinuities found
in raw data are rarely isolated (an isolated current sheet is Example 1, Figure 4.3). Thus,
while considering only time scales below 100 s, the amplitude of the jump decreases and
the MVA results give properties of MHD structures around the discontinuity, as is clearly
seen in Example 3, Figure 4.4(b).

On ion scales we found 85% dipole vortices and 15% of monopoles. Planar discontinu-
ities are not found by this method.

On subion scales coherent structures represent dipole vortices (49%), monopole vortices
(7%), rotational current sheets (5%) and magnetic holes (0.4%). Around 34% of sub-ion
scale structures do not fit any of the considered models. It is plausible that this is a
consequence of using incompressible models of vortices in comparison to observations. To
improve this study at sub-ion scales in the future, the electron-scale Alfvén vortex model
of Jovanović et al. (2015) should be used.

The visual classification of ion-scale coherent structures at 0.17 au, during the first PSP
perihelion, has been done recently in Perrone et al. (2020). Three different time intervals
were considered: quiet, weekly-disturbed and highly-disturbed solar wind. The highly-
disturbed interval (of 1.5 h), with BR reversals, is a subset of the 5 h-interval considered
here. The authors concluded that in the highly-disturbed interval current sheets were
dominant (46%), while during the weekly-disturbed interval Alfvén vortices (45%) and
wave packets (50%) were observed. This is in contrast with the quantitative classification
presented above (showing that Alfvén vortices are dominant).

In the previous studies of ion scales coherent structures at 1 au in slow (Perrone et al.,
2016) and fast (Perrone et al., 2017) solar wind with Cluster satellites, the dominance of
Alfvén vortices with respect to current sheets has been found. These results are more
consistent with our results at 0.17 au in the slow wind.
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4.4 Filling factor from MHD to sub-ion scales

In Section 4.1 we showed that the magnetic field measured by PSP differs from the signal
with random phases. Coherent structures appear on the scalogram as time-localized regions
(vertically elongated) with high LIM values (Figure 4.1). However, the time interval of the
scalogram is much longer than the time scales of the corresponding ion and subion scale
structures. Therefore, Figure 4.1 poorly illustrates how many structures exist on ion and
subion scales and how they are clustered/grouped.

Figure 4.8 shows a closer zoom (±100 s around the central time 02:54:08 UT) to the
pair of switchbacks structure shown in Figures 4.4 (right column) and 4.5. The top panel
shows the magnetic field data in the RTN reference frame. The radial component BR is
positive during two intervals t − t0 ∈ (−25, 10) s and t − t0 ∈ (25, 84) s, indicating two
neighboring switchbacks. The boundaries of both switchbacks are current sheets of ion
scale thickness. Figure 4.8(bottom panel) shows the LIM scalogram. A few enhancements
of L(t, τ) cover the periods corresponding to MHD range of scales τ > 1 s (marked with
the pink area on the left side of the bottom panel). The main structures are located
around the switchback boundaries. At ion scales, marked with the green area, a transition
in the enhancement organization is observed with more structures distributed on a larger
fraction of the time range. Much more finer structures are present in the subion region
(blue area), with a large density of structures present in an extended time interval around
the switchbacks boundaries and the structures present in the MHD range. Interestingly,
there are also many LIM enhancements covering τ < 1 s (ion and sub-ion scales) quite
far away from the switchback centers and from their boundaries, for example ones that we
observe at t− t0 ∈ (−100,−75) s.

Next, we analyze intermittent events at each timescale τ , in contrast to the above de-
scription and the approach in Section 4.3.1, where we considered timescale ranges (defined
in Equation 2.34). Specifically we find time intervals when local intermittency measure is
above the threshold:

L(t, τ) > Lthreshold(τ),

where Lthreshold(τ) = max(Lrand(t, τ)) and Lrand(t, τ) is the LIM of the signal with ran-
dom phases. By definition, Equation (4.1), L(t, τ) is the normalized energy of magnetic
fluctuations so, the selection of events by L(t, τ) is a selection by the energy. Below we
refer to them as energetic events.

We define the filling factor F as the fraction of time above the threshold

F = Time(L(t, τ) > Lthreshold(τ)) / T
′.

Then, we identify isolated events, i.e., we find continuous time intervals when L(t, τ) >
Lthreshold(τ). N denotes the number of isolated events at the scale τ .

Apart from the most energetic events we are also interested in the most compressible
events. To detect them we need another measure. Similarly to the approach of Perrone
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et al. (2016), we define intermittency of the parallel fluctuations L∥(t, τ) as follows:

L∥(t, τ) =
|W [|B|](t, τ)|2

⟨|W [|B|](t, τ)|2⟩t∈T ′
(4.10)

The threshold value is defined as L∥,threshold(τ) = max(L∥,rand(t, τ)). In the same way as
it was done above for energetic events, we determine the filling factor and the number of
isolated compressible events. We note that the two families of events are not mutually ex-
clusive: the identified compressible events probably all belong to the family of the energetic
events (this could be done by comparing the central times of compressible and energetic
structures). However, all energetic events are not necessarily compressible.

Figure 4.9(a) shows the number of isolated events N as function of the frequency
f = 1/τ . The number of energetic and compressible events are shown in blue and orange
lines, respectively. Both are increasing monotonously with f and there is about a factor
2 to 3 less compressible events than energetic ones at all scales. There is no significant
change in the relation N(f) at the crossing of the ion scales. We can relate these results
to our previous results on kurtosis, see sub-Section 2.3.2, with all three methods for the
MHD scales, and the ones with wavelet transform for ion and subion scales, as follows.
Let us consider the simple picture of turbulence having random fluctuations plus energetic
events. Then, at each scale, kurtosis will increase with the number of coherent structures
if they are intense enough. This may explain our observations and relate the results of
Figure 4.9(a) to those of Figure 2.6.

The filling factor is shown in Figure 4.9(b). In inertial range the filling factor is decreas-
ing according to a power law as f−0.26 and f−0.13 for energetic and compressible events,
respectively. For both energetic and compressible events, the filling factor becomes con-
stant at subion scales (Figure 4.9(b)) while the number N of structures still grows up with
the same power law than at MHD scales (Figure 4.9(a)).

Next, we investigate the duration of the coherent structures normalized by τ . This
normalized duration, ∆t, is expected to be larger than 1 (due to the wavelet fitering at
scale τ). The results shown in Figure 4.9(c) indicates ∆t ∼ 1.5 at low frequencies, with a
slight increase towards ∆t ∼ 2 at high frequencies. This implies that coherent structures
are dominantly with a duration slightly above τ , so with few oscillations, as the examples
shown in Figures 4.3 and 4.4. In particular, long wave packets, with many oscilations, are
not frequent.

In summary, from the energy spectrum we know that in the inertial range fluctuations
are weekly compressible. The most intense magnetic field compressions are inhomogeneous
since they are localized in coherent structures. The number, N , and filling factor, F of
compressible structures is smaller than energetic structures by a factor 2 to 3, and the
dependence of N and F on timescale τ is similar for both (Figure 4.9). This is probably
because all compressible events are included in the family of the energetic events. The
filling factor of coherent structures is decreasing with frequency and saturates at the ion
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and sub-ion scales. Coherent structures have mainly few oscillations, with a duration
proportional to the scale τ .

In conclusion, the increase of the number of isolated events from large to small scales
is observed both in the inertial range and down to subion scales. Only a part of the subion
coherent structures are linked to MHD coherent structures. This finding is in agreement
with observational results of Greco et al. (2016) who observed that about half of inter-
mittent sub-ion scale structures are not isolated, but belong to a cluster of substructures
formed near the ion-scale current sheet that undergoes a process of fragmentation. Simi-
lar picture with an hierarchy of sub-ion scale structures arise in fully kinetic simulations
of Karimabadi et al. (2013). These results have an implication on the plasma heating
since the energetic events are expected to be tightly associated to the dissipation at even
smaller scales (electron scales). With PSP we have the relevant range of higher frequency
to test this conjecture, but these data are not in the Merged data set used above. We
leave this analysis for a future work. Still our results point to a highly fragmented dissi-
pation in small-scale structures occupying only about 2% of the space along a 1D cut, so
only about 0.04% of the 3D volume if we assumed that the coherent structures are mostly
bi-dimensional (Chapter 3).
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Figure 4.1: A 30 minutes zoom, [03 : 10, 03 : 40] UT, within the analyzed time interval of 5
hours on November 6, 2018 of PSP data. From top to bottom: (a) magnetic field in Radial
Tangential Normal (RTN) reference frame, (b) Local Intermittency Measure (LIM) of the
magnetic fluctuations of the total energy L(t, τ) defined by Equation (4.1), (c) artificial
magnetic field Brand with random phases and the same Fourier amplitudes as original
magnetic field measurements, (d) LIM of the artificial signal Lrand(t, τ). The color bar
indicates the LIM level.
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(a)

(b)

Figure 4.2: (a) the comparison of the integrated LIMs I(t) = ⟨L(t, τ)⟩τ∈[10−2,103] s

(blue), and the Irand(t) = ⟨Lrand(t, τ)⟩τ∈[10−2,103] s (black). The horizontal red line shows
Ithreshold = max(Irand(t)) as defined in panel (b) with a red vertical line. (b) Histograms
of the integrated LIM I(t) and the random phased integrated LIM Irand(t).
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4.3: Columns show the first pair of events: a discontinuity (example 1, left) and
a vortex (example 2, right). The central time of each structure t0 is indicated in the title.
Top row: Low-pass filtered magnetic field in RTN reference frame. Rows 2 through 4:
the bandpass filtered magnetic fluctuations at MHD, ion and sub-ion frequency ranges in
local MVA reference frame (see Appendix C). We note that MHD scale coherent structures
contain more energy that ion-scale and sub-ion scale structures.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4.4: A pair of events associated to switchbacks. On the left side (example 3), a
coherent structure is present around one boundary of a switchback. On the right side
(example 4), two switchbacks are nearby and three coherent structures are indeed forming
these switchbacks. The format is the same as in Figure 4.3.
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Figure 4.5: Time interval of ±1000 s around the central time 02:54:08UT when the
complex structure of example 4 was observed. Top panel: Raw data of the radial magnetic
field component BR showing two nearby switchbacks. Bottom panels: Electron pitch angle
distributions for 36.6 eV and 2.04 eV energy channels.
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Figure 4.6: Minimum variance analysis eigenvalues ratios plane (λ2/λ1, λ3/λ2): each dot
corresponds to an observed coherent structure, the color gives its amplitude δBstruct/B0.
Panels (a,b) correspond to the raw data and MHD scales, respectively. They include
196 structures found at MHD scales. Panel (c) provides the eigenvalues ratios for 2028
structures at ion scales and panel (d) for 11167 events at sub-ion scales. The filling factor
P and the number of detected coherent structuresN at different frequency ranges are shown
in the panel legends. The eigenvalue ratios of the example structures from Figures 4.3 and
4.4 are shown by the black marks: ”circle”, ”cross”, ”plus” and ”odot”, respectively. They
correspond to the example structures 1-4, respectively.
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Figure 4.7: Probability distributions on the MVA eigenvalue ratios plane (r32, r21) =
(λ3/λ2, λ2/λ1). The column (a) shows the probability [%] per bin to observe a coher-
ent structure with the corresponding MVA eigenvalue ratios (so Pobs,j(r32, r21) defined by
Equation (4.7)). First and second panels of the column (a) show the distributions for the
MHD-scale coherent structures using the raw (non-filtered) data and the MHD-range fil-
tered data respectively. Third and fourth rows of the column (a) correspond to coherent
structures detected at ion and sub-ion scale ranges respectively. Columns (b-e) show the
probability densities obtained from simulating model crossings (Pj(r32, r21|model) defined
by Equation (4.8)). The difference between panels in columns (b-e) is due to the different
imposed noise level ϵsim as estimated from the data (see Appendix D for details).
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Figure 4.8: The top panel shows the raw magnetic field in RTN reference frame of example
4 during the time interval of ±100 s around 02:54:08 UT, corresponding to the center
of the switchback structure shown in Figure 4.4(e-f). The bottom panel shows the local
intermittency measure L(t, τ). Transparent colour bands in period-axis show the frequency
ranges: MHD (red), ion (green) and subion (blue), see definition in Equation (2.34).
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Figure 4.9: (a): Number of isolated intermittent events, as a function of frequency f = 1/τ .
The number of energetic events (L(t, τ) > Lthreshold(τ)) is shown in blue line. The orange
line shows the compressible events (L∥(t, τ) > L∥,threshold(τ)). The axis labels above the
panel are showing the corresponding spatial scales x (using the Taylor hypothesis, see
Appendix A). (b): Percentage F of time filled with intermittent events. (c): The average
duration of the events detected at the given timescale τ = 1/f and normalized by τ .
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Chapter 5

Conclusion and discussion

The intermittency in the solar wind is typically investigated from the statistical point of
view. As we have described in Chapter 2, in the inertial range the behavior of the structure
function exponents, in function of the structure function order, deviates from linear scaling.
This is usually interpreted with multifractal models of turbulence. Indeed this is a possible
explanation. Another interpretation was proposed by Salem et al. (2007). They show
clearly that, after removing the most energetic coherent structures, the dependence is linear
(see Figure 2.3). So the physical reason of nonlinear scaling is the presence of coherent
structures.

In this thesis we brought a piece of a new knowledge to the subject. We show, with
Parker Solar Probe (PSP) data, that coherent structures are present not only at MHD and
ion scales, but also at sub-ion scales. For the first time, we apply a multi-scale approach
in physical space to investigate coherent structures and their embedding, from the MHD
scales, to the smallest resolved sub-ion scales, see Section 4.2. Using plasma and magnetic
field time profiles, we characterize several events in more details. The most frequently
observed events are large amplitude Alfvénic (i.e., with δB⊥ ≃ δV⊥ and δB⊥/B0 ∼ 1)
time-localised events at MHD scales, that can be interpreted as incompressible Alfvén
vortices. These large scales vortices include inside a number of embedded incompress-
ible ion-scale Alfvén vortices and sub-ion scale compressible vortices. Less frequently, we
observe planar tangential and rotational discontinuities at MHD scales containing embed-
ded incompressible ion-scale Alfvén vortices and sub-ion scale compressible vortices. This
embedding is shown in Figures 4.3 and 4.4.

The filling factor of the structures weakly decreases with frequency (or at smaller scales).
However, the number of the structures increases toward smaller scales by four orders of
magnitude from MHD to sub-ion scales. No specific change in this scaling is observed
at ion scales, the increase is the same across all available scales. This result indicates
that the active cascade continues up to sub-ion scales. That is at odds with typically
observed saturation of kurtosis of magnetic field increments at scales smaller than ion
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scales. This disagreement can be understood thanks to our observations at small scales:
indeed, we observe only vortex like structures at sub-ion scales. Magnetic field increments
are more sensitive to planar discontinuities than to vortices. Thus kurtosis of increments
saturates. When the wavelet coefficients are used to calculate the kurtosis of high-pass
filtered magnetic field, we rather find that the kurtosis is still increasing with frequency.
We interpret this as the better detection by the Morlet wavelet transform of the increasing
number of Alfvén vortices with frequency.

The analyzed time interval is switchback abundant. Some of the high amplitude MHD
structures are related to switchbacks. In our example we show a rotational discontinuity
present at the boundary of a switchback. This is in favor of the idea that coherent structures
and switchbacks are interrelated.

Another important point of this thesis is a contribution to our understanding of Alfvén
vortices. In Section 3.3 we refined the derivation of an Alfvén vortex model by providing
detailed discussion of the underlying assumptions. We also generalize the model to describe
the solution of the linearized reduced MHD equations with a series expansion in multipoles.
If a current layer is allowed at the vortex boundary, all the terms of the series could be
superposed with arbitrary amplitudes. However, imposing the continuity of the magnetic
field components at the vortex boundary implies resonant1 conditions to be achieved by
most of the multipoles. One of the dipole mode is particular since it has no resonant
condition but its amplitude is fixed by the inclination of the vortex axis on the mean
magnetic field. Finally, we explicit how the modes could be combined, or not, in order to
provide more general Alfvén vortex solutions than derived before.

Analyzing PSP data, we found that Alfvén vortices is the dominant type of structures
at all scales. In Chapter 4 we derive a new method of classification of coherent structures.
This method involves the comparison of the statistical properties of the observed structures
with the model expectations for the amplitude anisotropy of magnetic fluctuations. The re-
sults are dominantly consistent with the crossings of the Alfvén vortex model. Only a small
fraction of the structures corresponds to current sheets and magnetic holes. This result is
in contrast with the conclusion of Perrone et al. (2020) at 0.17 au since they found that
current sheets are more frequently observed (the ’highly perturbed’ time interval analyzed
in (Perrone et al., 2020) is a subset of our’s). However this is in the line of Perrone et al.
(2016, 2017) results at 1 au since they found that, among ion scale coherent structures, the
vortices prevail both in the slow and fast solar wind.

The efficiency of the proposed classification method, in particular the percentage of
each type of structures, can be tested in more controlled conditions. For example, by using
3D turbulence simulations to estimate the fraction of different types of coherent structures

1By ‘resonant condition’ we mean the requirement, that there is no current sheet at the cylindrical
boundary of the Alfven vortex, selects a series of specific and discret modes for the internal solution (like
for a resonant cavity). In contrast, if the current sheet at the boundary is allowed, it provides an additional
degree of freedom and a continuum of modes is allowed.
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(current sheets, vortices and magnetic holes). Alternatively, the method can be tested using
the data from 4-satellite missions, such as Cluster and MMS or the future 9-satellite mission
Helioswarm, since multispacecraft measurements allow to distinguish between cylindrical
and flat geometries of the structures (Alexandrova et al., 2006; Roberts et al., 2016).

The results presented in this thesis are limited to a specific slow highly-perturbed (with
switchbacks) solar wind region at 0.17 au from the Sun. The analysis can be expanded
to different solar wind conditions in order to obtain more general results, in particular to
different types of solar wind and solar source regions.

Are coherent structures formed in the solar wind turbulence or convected from the
Sun? More generally, how do these structures evolve as the solar wind expands outwards?
The statistics of the waiting times between the neighbouring currents sheets suggests that
they are formed due to the turbulence (Vasquez et al., 2007a). But this is not a very clear
evidence. Also the occurrence rate of current sheets is higher closer to the Sun (Tsurutani
and Smith, 1979; Söding et al., 2001). In order to make progress in our understanding, we
need to extend present study to plasma radial alignment with two spacecraft, such as PSP
and Solar Orbiter, in order to follow the evolution of the same, or at least similar, plasma
with solar distance.
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Appendix A

Taylor hypothesis

Single spacecraft measurements are limited to local measurements, then it is difficult to
differentiate between the temporal and spacial variations. For example, let us consider
a wave mode with a wave-vector k and frequency ω advected with velocity Vsw by the
solar wind across the spacecraft. Then, the frequency ωsc of the signal measured on the
spacecraft is:

ωsc = ω + k ·Vsw (A.1)

If the wind velocity is larger than the phase velocity of the wave, |ω| ≪ |k ·Vsw|, then the
frequency of the signal measured on the spacecraft is mainly associated with the component
of the wave-vector parallel to the solar wind velocity.

ωsc ≃ k ·Vsw (A.2)

In other words, the temporal variation of the plasma and magnetic field within the space-
craft measurements is mainly associated with the spatial variation of the solar wind prop-
erties. This defines the so-called Taylor hypothesis (Taylor, 1938).

From the Equation (A.2) the direction of the wave vector is undetermined. In fact,
the signal measured at the frequency ωsc is a superposition of fluctuations with different
wavevectors. But using additional assumptions one can associate the frequency ωsc with
the range of wavevectors that mainly contribute to the signal. Given that the solar wind
turbulence is anisotropic with most of the energy in the fluctuations with k perpendicular
to B0 (as shown in observations Horbury et al. (2008); Podesta (2009), see discussion in
Section 2.1.1), the additional condition k = ke⊥ was imposed by Bourouaine et al. (2012)
leading to the equation:

ωsc = kV sinΘBV cosϕ (A.3)

where V is the solar wind speed, ΘBV is the angle between the B and V (can be determined
from the measurements); ϕ is the angle between the wavevector k and the plane containing
B and V (unknown). Within the inertial range the energy follows a power law decreasing
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with k⊥. Therefore among different possible k⊥, the major contribution comes from the
waves with the smallest k = |k⊥| since more energy is present there. This corresponds to
ϕ ≤ 40◦ (see Bourouaine et al., 2012). Then, as an approximation one can take cosϕ = 1
in Equation (A.3).

Taylor hypothesis may not be valid when waves are highly dispersive or if the solar
wind speed is low (V < VA, Howes et al., 2014). In the solar wind the bulk speed V ≈ 300
- 700 km/s exceeds the Alfvén speed VA = B/

√
µ0ρ ≈ 50 - 200 km/s in the distance range

[0.1, 1] au. Assuming that turbulent fluctuations can be characterized by the dispersion
relation for linear waves, Howes et al. (2014) showed that the Taylor hypothesis is satisfied
for Alfvén waves at MHD scales as well as for the kinetic Alfvén waves at subion scales.
Only the quasi-parallel whistler waves might violate it.

In observations the Taylor hypothesis was widely used for the entire range of frequencies
including the sub-ion scales. For example it is used in Kiyani et al. (2015) to convert
frequency spectra to spacial spectra from MHD down to sub-ion scales (see Figure 2.1).
Perri et al. (2012) used Taylor hypothesis to give an interpretation of high frequency
magnetic fluctuations in terms of spatial structures - current sheets - from proton to electron
kinetic scales.
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Appendix B

Wavelet transform

Wavelet transform is a powerful tool to investigate non-stationary signals covering wide
range of frequencies. Wavelets allow to analyze the signal in time as well as in frequency
domain, therefore they are widely used, specifically to detect spatially localized coherent
structures and measure their contribution to the energy spectrum (e.g. Farge, 1992; Bruno
et al., 2001; Alexandrova et al., 2004; Lion et al., 2016).

We consider a time series Xn which represents a data series. It is defined on the equally
spaced time mesh tn = n δt, where n ∈ (0, 1, ..., N −1) and δt is the time step. The wavelet
transform Wn(s) of the signal Xn is defined as the convolution of Xn with the stretched
and time-shifted mother function ψ:

Wn(τ) =
N−1∑
n′=0

Xn′(tn)ψ
∗
[
(n′ − n) δt

τ

]
(B.1)

where ∗means the complex conjugate, τ is the scale parameter and n is the time index. The
summation over n′ provides the variable time shift in the convolution. The calculation is
repeated with different τ in order to cover the desired range of timescales (or, equivalently,
frequencies).

Since the signal has finite length, wavelet coefficients are influenced by edge effects.
Indeed, low frequencies cannot be constrained by data which duration are shorter than
≈ τ . The cone of influence (COI) curve separates the region of scales where edge effects
become important. The COI is a curve in the frequency-time space which allows to avoid
not enough well constrained low frequency signal (large scales).

To define a wavelet transform it is essential to choose the mother function ψ. The
general requirement for ψ is that it must have zero mean and be localised in both time
and frequency space (Farge, 1992; Kumar, 1994). It is clear, however, that the frequency
resolution ∆f and the temporal resolution ∆t can not be small simultaneously but are
linked by the uncertainty principle:

∆f∆t ∼ const.
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Therefore, there is a compromise to find between frequency and time resolution. There are
a large variety of mother functions which can be orthogonal or non-orthogonal, complex or
real. The selection of the mother function ψ depend on the application and which aspect
is to be optimized. In particular, the shape of the wavelet is important, since the wavelet
function has to reflect approximately the features of the signal we are searching for.

The Morlet wavelet transform is based on the following mother function:

ψMorlet(t) = π−1/4 e−(t−t0)2/(2τ2) ei ω0 (t−t0), (B.2)

where t0 is the central time, τ is the temporal extension, and ω0 is the parameter that
defines the angular frequency of oscillations with respect of the duration of the envelope.
Then, ω0 defines the number of oscillations with significant amplitude modulated behind
the envelop e−t2/(2τ2).

The Fourier transform of Equation (B.2) is still a Morlet function, but written in the
Fourier space:

FψMorlet(ω) = π−1/4 e−(ω−ω0)2 2τ2 ei t0 (ω−ω0), (B.3)

This shows that the Morlet mother function is a wave packet with an ensemble of monochro-
matic waves of frequencies well centered around ω0 due to the Gaussian function exp (−(ω−
ω0)

2 2τ2) with a limited bandwith ≈ 1/τ . Higher values of τ provide higher frequency res-
olution but lower temporal resolution.

In the following we use Morlet wavelet with ω0 = 6. It implies about 3 oscillation
periods with significant amplitudes (Figure B.1(a)) providing a good compromise between
time and scale resolution. Compared to other wavelet transforms, Morlet wavelet has the
advantage to minimize the product of the standard deviations in time and frequency, then
it is broadly used. A drawback is that the set of Morlet mother functions (at various scales)
are not orthogonal, then it does not provide a decomposition of the signal in an orthogonal
base (like Fourier transform). Still the total energy is preserved. The comparison of
power spectral density computed with Fourier and Morlet wavelet transform shows a close
correspondence (Dudok de Wit et al., 2013; Lion et al., 2016). Even more, the spectra
built with wavelets is much less noisy than the ones build with Fourier transform, which
allows to determine more precisely the spectral slopes.

For comparison, we also present the results of wavelet transform with two other mother
functions: Paul and DOG (Torrence and Compo, 1998). We show the shape of the mother
functions ψ for the three different wavelets: Morlet, Paul and Dog in the panels (a-c) on
the left hand side of the Figure B.1.

In order to illustrate the differences between the wavelet transforms we apply them to
the test signal shown with a blue curve at the top of the right panels. The test signal
is built to represent the typical features present in the data. It is the superposition of a
small-amplitude uniform Gaussian noise and 3 high-amplitude events including: a wave
packet with the central wave period τ0 = 0.8 s bounded by the Gaussian envelope, a step
function with thickness dt = τ0 = 0.8 s and a peak function with the same duration.
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A wave, a discontinuity and a Dirac function with different wavelets

Morlet wavelet is a good compromise for time-frequency resolution

A wave, a discontinuity and a Dirac function with different wavelets

Morlet wavelet is a good compromise for time-frequency resolution

log	(𝐿 	𝑡, 𝜏 )

log	(𝐿 𝑡, 𝜏 )

log	(𝐿 𝑡, 𝜏 )

Figure B.1: Tests of wavelet transforms with different mother functions applied to a
synthetic signal. Left: Panels (a-c) show the mother functions ψ of different wavelets:
Morlet (or Gabor), Paul, and Dog respectively. Right top: synthetic signal with various
contributions: Gaussian noise, a wave packet, a sharp variation (discontinuity-like) and
a peak. Right three panels below: Comparison of the LIM scalograms of the test signal
(top right panel) calculated with different wavelets. The horizontal black line shows the
timescale, equal to the central wavelength of the wave packet, the thickness of the sharp
variation and of the peak. The red curve shows the cone of influence, delimiting the wavelet
coefficients, above that line, that are poorly defined due to the boundary effects (due to
finite duration of the signal).

The right panels in Figure B.1 are showing the scalograms of LIM L(t, τ) (as defined by
Equation (4.1)). The noise is filling the scalogram with uncorrelated uniformly distributed
minima and maxima. This is similar to the results obtained by imposing random phases
to the PSP signal (see Figure 4.1(d)). The black horizontal line shows the timescale τ0.
The wave packet can be identified in the scalogram at the timescale τ0 during the long
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time interval t ∈ (−130,−50). In contrast, the ’smooth discontinuity’ (at t = 30 s) and
the peak (at t = 105 s) are causing the increased values of LIM L(t, τ) localized in time
and delocalized in periods with periods larger than the timescale of the structure (so with
τ > τ0).

The wave packet in the test signal is formed by monochromatic waves having nearby
frequencies. This implies an intrinsic extension of periods in the scalogram. For different
mother functions, smaller width in periods in the scalogram means higher frequency reso-
lution of the wavelet. The Morlet wavelet has a good frequency resolution unlike DOG and
Paul wavelets. The Morlet wavelet transform also identifies well the temporal extension of
the wave packet. Finally, the step and peak functions of the signal are well identified both
in time and periods by the three mother functions.

The frequency resolution of the Morlet wavelet can be increased if we use larger value
of ω0. However, a better frequency resolution means a poorer temporal resolution, while a
good temporal resolution is required for determination of the central times of the coherent
structures. Since we are mainly interested in coherent structures, Morlet wavelet with
ω0 = 6 is appropriate, and we do not need higher frequency resolution.
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Appendix C

MVA analysis

The Minimum Variance Analysis (MVA) method (Sonnerup and Scheible, 1998) was ini-
tially used to determine the basis (e1, e2, e3) associated with a current layer. The directions
of the largest (e1), intermediate (e2) and smallest (e3) magnetic field variances are deter-
mined by minimizing the functional of the direction e:

σ2(e) =
1

N

N∑
i=1

∥(B⃗i− < B⃗ >) · e∥ (C.1)

with the condition ∥e∥2 = 1 is fulfilled and where N is the number of data points. This
conditional extremum problem is solved by introducing the Lagrange multiplier λ:

∂

∂ex
(σ2 − λ (∥e∥2 − 1)) = 0 (C.2)

∂

∂ey
(σ2 − λ (∥e∥2 − 1)) = 0 (C.3)

∂

∂ez
(σ2 − λ (∥e∥2 − 1)) = 0 (C.4)

Thus the problem reduces to find the eigenvalues and eigenvectors for the matrix

Mην =< BηBν > − < Bη >< Bν > (C.5)

so to solve the linear system of equations:

3∑
ν=1

Mην eν = λ eη (C.6)

The eigenvectors form an orthogonal basis (e1, e2, e3) corresponding to the direction of the
largest, intermediate, and minimum variance of the magnetic field. The eigenvalues λ1, λ2
and λ3 are real and positive (Mην is real and symmetric).
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When the MVA method is applied to a current layer the direction of e1 corresponds
to the tangential magnetic field component which changes sign and has the largest jump
across the current layer. e1 is typically accurately determined. However, the other two
basis vectors have typically close and low eigenvalues (corresponding to small variation of
the magnetic field components across the current layer). Then, these two eigen vectors are
determined up to a rotation around e1 direction.

When the MVA method is applied to an Alfvén vortex, e1 is also typically well deter-
mined if the impact parameter is small (closest distance of the trajectory to the vortex axis
normalized by the vortex radius). It corresponds to the azimuthal magnetic field compo-
nent (see Appendix D). The quality of the MVA frame, to approximate the local Alfvén
vortex frame, is degrading as the impact parameter increases.
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Appendix D

Model structures crossings

We describe the analysis of five type of coherent structures described by simple models as
shown in the first row of Figure D.1 (see Chapter 3 for a description of the models). We
simulate a series of structure crossings with a range of impact parameters. The simulated
magnetic field components, for trajectory crossing the structure center, are shown in the
second row of Figure D.1. Plotting hodographs of the simulated data is a way to visually
differentiate the models. The results of both off-center (blue) and central (black) crossing
trajectories are shown in the third line of Figure D.1.

In order to compare with the observational results of PSP we need to add a level of noise
similar to the one present in observations. The incoherent noise affects both the frame and
the eigenvalues deduced from the MVA (Chapter C). The eigenvalue ratios are shown in
the bottom row of the Figure D.1 for five types of coherent structures. The greater is the
ratio ϵ = δBnoise/δBstruct, the closer are λ2/λ1 and λ3/λ2) to 1 (since there is no privileged
direction for a fully noisy signal). Therefore, we need to estimate ϵ from observations to
take into account the noise in the model crossings.

For each band of scales we characterize the amplitude of incoherent fluctuations as
follows:

σnoise,j = std(δBj(t ∈ Tno struct)) (D.1)

where Tno struct = Time(Ij(t) < Ithreshold,j), so the time intervals without coherent struc-

⟨ϵobs⟩ σ(ϵobs,j)

RAWDATA MHD 0.11 0.03
MHD 0.11 0.03
Ion scales 0.15 0.05
Sub-ion 0.12 0.03

Table D.1: The mean and the standard deviation of the relative noise level ϵobs at different
ranges of scales (defined in Equation (D.2)).
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𝜙

Figure D.1: Simulation of the spacecraft crossing (a) a monopole Alfvén vortex, (b) a
dipole vortex, (c) a rotational and (d) a tangential discontinuity, and (e) a magnetic hole.
The first row shows the magnetic field vector in the plane perpendicular to the background
magnetic field. The sector, shown in blue, is a set of trajectories crossing the structure at
different angles in order to collect statistics of MVA eigenvalues. The panels in the second
line show the magnetic field in the MVA frame of reference, as it would be measured by
the spacecraft if it crosses the structure along the black trajectory. Panels in the third
line show the hodograph - indicating polarisation for off-center (blue) and central (black)
trajectories. The bottom row shows the eigenvalue ratios for the set of trajectories shown
within the blue cone in the first row in the presence of noise, with ϵ = 0.001 (circles) and
ϵ = 0.1 (crosses). The trajectory angle ϕ, defined in the top left panel, is coded with colors
(see the color scale at the right bottom). Each dashed line shows the boundary of the
regions on the eigenvalue ratios plane that is consistent with crossing the given model of
structures in the presence of the noise level ϵ ∈ (0, 0.1).

tures.
For each structure at the j-th scale range we calculate the ratio of the noise σnoise,j

(defined in Equation (D.1)) to the amplitude of the structure δBstruct,j :

ϵobs,j = σnoise,j/δBstruct,j (D.2)
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At each range of scales the distribution of ϵobs,j is nearly Gaussian, but with different
values of their parameters. The mean values ⟨ϵobs,j⟩ and the standard deviations σ(ϵobs,j)
are shown in Table D.1.

We repeated the crossings simulation with 10 different relative amplitudes of the im-
posed noise ϵsim following the Gaussian distribution deduced from observations, so with
the same parameters, ⟨ϵobs,j⟩ and σ(ϵobs,j), as in observations. The obtained results of the
model crossings with different ϵsim are used in Section 4.3.2.
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Appendix E

Article submitted to ApJ:
Vinogradov et al. (2023)

The article ”Embedded coherent structures from MHD to sub-ion scales in turbulent solar
wind at 0.17 AU”, Vinogradov et al. (2023), is submitted to ApJ. It is accessible in arXiv
at https://arxiv.org/abs/2307.10478.
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Grošelj, D., Chen, C. H. K., Mallet, A., Samtaney, R., Schneider, K., and Jenko, F. (2019).
Kinetic Turbulence in Astrophysical Plasmas: Waves and/or Structures? Physical Re-
view X, 9(3):031037.

Hada, T., Koga, D., and Yamamoto, E. (2003). Phase coherence of MHD waves in the
solar wind. Space Sci. Rev., 107(1):463–466.

Hasegawa, A. (1969). Drift mirror instability of the magnetosphere. Physics of Fluids,
12:2642–2650.

Hasegawa, A. and Chen, L. (1976). Kinetic processes in plasma heating by resonant mode
conversion of Alfvén wave. Physics of Fluids, 19(12):1924–1934.

101
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Coherent Magnetic Vortices in High-β Space Plasmas. Astrophys. J., 896(1):8.
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Sonnerup, B. U. Ö. and Scheible, M. (1998). Minimum and Maximum Variance Analysis.
ISSI Scientific Reports Series, 1:185–220.

Sorriso-Valvo, L., Carbone, V., Veltri, P., Consolini, G., and Bruno, R. (1999). Intermit-
tency in the solar wind turbulence through probability distribution functions of fluctu-
ations. Geophys. Res. Lett., 26(13):1801–1804.

Southwood, D. J. and Kivelson, M. G. (1993). Mirror instability. I - Physical mechanism
of linear instability. J. Geophys. Res., 98(A6):9181–9187.

Squire, J., Chandran, B. D. G., and Meyrand, R. (2020). In-situ Switchback Formation in
the Expanding Solar Wind. Astrophys. J. Lett., 891(1):L2.

Stevens, M. L. and Kasper, J. C. (2007). A scale-free analysis of magnetic holes at 1 AU.
Journal of Geophysical Research (Space Physics), 112(A5):A05109.

Strauss, H. R. (1976). Nonlinear, three-dimensional magnetohydrodynamics of noncircular
tokamaks. Physics of Fluids, 19(1):134–140.

Sulem, P. L., Frisch, U., Pouquet, A., and Meneguzzi, M. (1985). On the exponential
flattening of current sheets near neutral X-points in two-dimensional ideal MHD flow.
Journal of Plasma Physics, 33(2):191–198.

Sundberg, T., Burgess, D., and Haynes, C. T. (2015). Properties and origin of subproton-
scale magnetic holes in the terrestrial plasma sheet. Journal of Geophysical Research
(Space Physics), 120(4):2600–2615.

Taylor, G. I. (1938). The Spectrum of Turbulence. Proceedings of the Royal Society of
London Series A, 164(919):476–490.

110
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