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Todo el trabajo presentado en esta tesis no hubiese existido sin la dirección, inteligencia y generosidad de
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Et puisque, malgré une thèse, la terre continue de tourner et la vie ne s’arrête pas, j’ai été très heureuse de
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italian people for being so nice with me. Merci aussi à Gaétan, Capucine, Damien, Marie Laure, Ion et Martin
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spéciale à la Bastille, qui me rend toujours de bonne humeur. Tu vas tellement me manquer !

Eta eskerrik beroenak etxekoei. Mila esker Ainize, Irati eta Irati nire aurkezpena ikustera Grenobleraino
etorri izanagatik. Horregatik, eta beste guztiagatik.
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Introduction

The ultimate goal of cosmological analyses is to model the observed Universe so that we can explain its evo-
lution from the primordial ages to our days. The last decades have brought accurate measurements of the
temperature and anisotropies in the Cosmic Microwave Background [1], of the abundances of the primordial
elements [2], of the accelerating expansion of the Universe [3] and of the baryon acoustic oscillations [4] that
helped to improve our knowledge of the content and expansion rate of the Universe. These observations are
fairly well represented by the standard model of cosmology.

Aiming towards a concordance model, the combination of different cosmological probes is thought to be
the best way to improve on accuracy and reduce to a minimum the contribution of systematic effects that each
observable could be subject to. The high-precision era of cosmology has demonstrated that despite the overall
agreement between cosmological models and observations, some fundamental questions remain unanswered
and several inconsistencies appear from the comparison of the results obtained from different probes. These
days, we still fail to describe both the early- and late-Universe with a unique model.

This could mean that the current prevailing cosmological models are either wrong or incomplete. Although
we are able to reproduce at large scales the structure formation in the Universe driven by gravitational forces,
at small scales additional forces come into play and these are not yet well understood. We now know that
the latter have a non-negligible impact on the formation history of galaxy clusters, galaxies and even smaller
astrophysical objects. In addition, the inconsistencies between different observables could originate from an
incorrect treatment of systematic effects in the data. Thus, it is essential to dig into the biases and uncertainties
of each individual analysis.

In the framework of observational cosmology, the present thesis focuses on different systematic effects that
might limit the use of galaxy clusters as cosmological probes. Galaxy clusters are formed at the end of the
hierarchical structure formation process in the Universe and their distribution in mass and redshift traces the
evolution and matter content of the Universe. Thus, the mass of galaxy clusters is a fundamental property of
interest for cosmological analyses with clusters. However, cluster masses are not direct observable quantities
and have to be estimated under several assumptions from observations. Mass estimates of clusters and their
associated biases and uncertainties constitute the major field of study of this thesis.

In the last years, several galaxy cluster surveys [5–15] have been able to exploit large catalogues of clusters
of galaxies and infer the so-called cosmological parameters. At millimetre wavelengths, the Planck satellite
[16], the Atacama Cosmology Telescope (ACT) [17] and the South Pole Telescope (SPT) [18] have observed
large fractions of the sky with arcminute resolutions and detected thousands of clusters through the Sunyaev-
Zel’dovich (SZ) effect, being able to obtain statistically significant cosmological results. To date, these analyses
are limited by the incomplete knowledge of galaxy clusters’ physical properties. In particular, the character-
isation of high redshift clusters requires high angular resolution observations. The NIKA2 camera, installed
at the IRAM 30-metre telescope, is an ideal instrument for observing clusters through the SZ effect at sub-
arcminute resolution. Even higher resolution can be attained thanks to the NOrthern Extended Millimeter
Array (NOEMA) interferometer.

This thesis offers a multi-wavelength view of galaxy clusters. An important part of the work is devoted to
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the analysis of NIKA2 data at millimetre wavelengths. We investigate the impact of different systematic effects
related to the raw data analysis on the mass reconstruction of clusters. From the comparison to X-ray and
optical data, we assess the error in the mass related to data selection or assumed hypotheses. We also make use
of simulated galaxy clusters to evaluate intrinsic effects in the cluster mass estimations that are unquantifiable
from observations. The manuscript is divided into eight chapters.

– The first chapter (1) presents the current understanding of the structure formation in the Universe within
the standard model of cosmology. We describe also the physical properties and components of galaxy
clusters, as well as their observations at different wavelengths. We motivate the use of galaxy clusters
as a cosmological probe and explain the importance of their masses for cosmological purposes. The
last part of the chapter is consecrated to the different approaches used to estimate cluster masses from
observations.

– Chapter 2 is devoted to the NIKA2 camera. We present the main characteristics of the instrument and
the observations with NIKA2, together with the steps in the raw data processing pipeline that are needed
to get to calibrated data. In the same chapter, we describe the noise subtraction methods for NIKA2
observations and the assessment of the quality of the final maps.

– The NIKA2 SZ Large Programme is presented in chapter 3, where we explain the scientific goals of the
programme and the selected targets. The method used to reconstruct the thermal pressure of clusters
accounting for the contamination by other astrophysical sources in the data and by instrumental and data
processing effects is detailed also in chapter 3. We propose different approaches to estimate the mass
of galaxy clusters from the combination of NIKA2 data with X-ray observations under the hydrostatic
equilibrium assumption.

– In chapter 4 we study the impact of the systematic effects related to the NIKA2 data analysis presented
in the previous chapters on the reconstructed hydrostatic masses. We illustrate with the example of the
CL J1226.9+3332 galaxy cluster. We compare the results obtained in our analysis to other works in the
literature, taking care of the different assumptions and definitions considered in each case.

We then seek to quantify and understand the origin of the bias of cluster masses estimated under the hy-
drostatic equilibrium hypothesis. These masses are compared to the estimates obtained from the lensing
effects on background galaxies. Two distinct studies are presented in two chapters.

– In chapter 5 we investigate the bias of hydrostatic masses with respect to lensing mass estimates for four
clusters (CL J1226.9+3332, PSZ2 G144.83+25.11, PSZ2 G228.16+75.20 and MACS J1423.8+2404)
observed with the NIKA2 camera or with its pathfinder NIKA. For the lensing masses, we make use of the
convergence maps reconstructed with the Cluster Lensing And Supernova survey data from the Hubble
space telescope. We study the different biases of hydrostatic masses obtained from the combination of
SZ and X-ray data or from X-ray data only. We also compute the gas mass fraction in the clusters.

– A larger sample of clusters spanning a redshift range of 0.05 < z < 1.07 is used in chapter 6 to explore a
potential evolution of the hydrostatic mass bias with redshift. In this case, hydrostatic masses are derived
from X-ray-only analyses. An important part of the chapter is devoted to the sample selection and to
the comparison of masses obtained by different works in the literature. Then, we model the evolution of
the bias, both neglecting and accounting for the intrinsic scatter of hydrostatic and lensing masses with
respect to the true masses of clusters.

– Chapter 7 is based on simulated clusters from THE THREE HUNDRED project and explores the intrinsic
effects that bias the reconstruction of the mass of clusters from projected data, without considering obser-
vational and instrumental uncertainties. We use a sample of synthetic clusters selected to be twins to the
NIKA2 SZ Large Programme targets. We reconstruct the mass of each object by modelling the projected
convergence maps, following the same method as for the lensing mass reconstructions in chapter 5. From
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the comparison to the true masses of the clusters known from the simulation, we investigate the origin of
the mass bias and its scatter.

– The last chapter (8) of this thesis is devoted to an unprecedented observation of a galaxy cluster with the
NOEMA interferometer. We describe the principles of radio interferometry and the observations of the
CL J1226.9+3332 galaxy cluster. NOEMA offers a very high angular resolution that, if demonstrated to
be adapted to detect the SZ of clusters, can be used to investigate the gas distribution in the core of very
high redshift clusters, as well as the background, foreground and member galaxies. In this chapter, we
present the analysis of the sources in the field of CL J1226.9+3332 and the first detection of the SZ of a
cluster with NOEMA.
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The precise reconstruction of the physical properties and, in particular, of the mass of clusters of galaxies is
the main topic of this thesis. In this chapter, we present the cosmological framework that explains the formation
of structures in the Universe, from the primordial Universe until the formation of galaxy clusters. We describe
the general physical properties of clusters and present their observations at different wavelengths. We then
motivate the use of galaxy clusters as a cosmological probe and, at the end of the chapter, we detail different
approaches to estimate their mass.

1.1 Structure formation in an evolving Universe

In this section, we introduce the standard model of cosmology, which offers a temporal and spatial de-
scription of the Universe related to its content. In such evolving Universe, we present how, to our current
understanding, halos are formed in a structure formation process that is hierarchical.
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1.1.1 The standard model of cosmology

The standard model of cosmology describes in a remarkable manner the evolution of the Universe (see
Abdalla et al. (2022) [19] for a review). Following Einstein’s theory of General Relativity, it assumes that
changes in space-time are related to the energetic content of the Universe through

Gµν − Λgµν =
8πG
c4 Tµν, (1.1)

where Gµν and gµν are the Einstein tensor and metric, respectively, and describe space-time. Tµν is the stress-
energy tensor that describes the content of the Universe. In Eq. 1.1 Λ, G and c are the cosmological constant,
the gravitational constant and the speed of light in vacuum. Considering the content of the Universe to be a
perfect fluid, the stress-energy tensor can be written as

Tµν = (p/c2 + ρ)uµuν − pgµν, (1.2)

with p, ρ and uµ the pressure, the energy density and the four-velocity of the fluid, respectively.

If we assume an isotropic and homogeneous Universe, the simplest metric is given by the Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) metric, which can be written in spherical coordinates (r, θ, ϕ) as

ds2 = gµνdxµdxν = c2dt2 − a2(t)
[

1
1 − kr2 dr2 + r2dθ2 + r2 sin2 θ dϕ2

]
. (1.3)

In Eq. 1.3 we introduce the scale factor of the Universe a(t) that describes its expansion along cosmic time.
It was shown for the first time by Lemaı̂tre [20] and Hubble observations [21] that photons of wavelength λ1
emitted (by a galaxy) at time t1 are observed at time t0 with a larger wavelength λ0. Thus, the Universe is
expanding (i.e., a increasing) and photons are red shifted due to the expansion of space-time. The scale factor
and the redshift, z, are related to this dilatation of wavelengths following:

1 + z =
λ0

λ1
=

a(t0)
a(t1)

. (1.4)

The curvature of the Universe is represented by the k parameter in Eq. 1.3. From the combination of the
above-mentioned equations (Eq. 1.1, 1.2 and 1.3), we get the Friedmann equations that relate the expansion of
the Universe to its content:

H2(t) ≡
( ȧ
a

)2
=

8πG
3
ρ +
Λc2

3
−

kc2

a2 , (1.5)

ä
a
= −

4πG
3

(
ρ +

3
c2 p

)
+
Λc2

3
, (1.6)

where ȧ is the time derivative of the scale factor a and H(t) is the Hubble parameter that quantifies the rate of
expansion of the Universe. Considering the Universe to be formed by matter and radiation fluids, we can write
the Friedmann equation as the sum of the different component densities,

H2(t) =
8πG

3
ρm(a) +

8πG
3
ρr(a) +

Λc2

3
−

kc2

a2 , (1.7)

with ρm the matter density and ρr the radiation density. The matter component comprises the non-relativistic
(p ≪ ρc2) elements in the Universe, that is, the baryons (with the cosmological definition of “baryons”, includ-
ing both baryons and leptons) and the cold dark matter (hereafter CDM). The radiation component refers to the
photons and any other relativistic element in the Universe, such as neutrinos. We note that ρm and ρr are both
functions of the scale factor, but with a different dependency in each case: ρm ∝ a−3 and ρr ∝ a−4.

The density of a Universe with a curvature equal to k = 0 and a null cosmological constant, Λ = 0, defines
the critical density of the Universe,

ρcrit ≡
3H2(a)

8πG
. (1.8)
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It is from the ratio of the different densities with respect to the critical density that we define the widely
used cosmological parameters: Ωm(a) ≡ ρm(a)/ρcrit and Ωr(a) ≡ ρr(a)/ρcrit. With the cosmological parameters
corresponding to the cosmological constant and the curvature defined asΩΛ ≡ Λc2/3H2 andΩk ≡ −kc2/(aH)2,
we rewrite the rate of expansion of the Universe as

H2(a) = H2
0 [Ωm(a) + Ωr(a) + ΩΛ(a) + Ωk(a)] . (1.9)

We introduce here another cosmological parameter, the Hubble constant, H0, that quantifies the current expan-
sion rate, H0 = H(z = 0). As we will see in Sect. 1.2.3, the ultimate goal of cosmological analyses [19] is
to constrain at the highest precision the values of these cosmological parameters. The standard cosmological
model is often separated into the Big Bang theory describing the expansion of the Universe from the Friedmann
equations and the ΛCDM describing the energy content of the Universe.

1.1.2 The thermal history of the Universe

According to the Big Bang theory in the standard model of cosmology, the Universe emerged from an
extremely hot and dense state. This primordial plasma was composed of ionised particles confined in a very
small volume at high pressure. In this compressed state, particles were free and in constant interaction, and the
energy density of the universe was dominated by the radiation component, ρr.

The Universe started to expand, decreasing significantly its density and temperature and, therefore, reducing
the interactions between particles. Soon afterwards, ∼ 3 minutes after the Big Bang (z ∼ 4 × 108), when the
Universe was cool enough (∼ 100 keV ∼ 109 K) the first nuclei were formed from the combination of protons
and neutrons. In this Primordial Nucleosynthesis or Big Bang Nucleosynthesis (BBN) hydrogen, helium, and,
then, lithium were composed. The success of the theory has been to predict the abundances of the observed
amounts of these elements [2].

The Universe kept expanding and with it the density of radiation decreased more rapidly (ρr ∝ a−4) than
the matter density (ρm ∝ a−3). At redshift z ∼ 3400 (T ∼ 104 K), right after the matter-radiation equality,
the Universe reached a matter-dominated era and with it, the expansion rate increased. When the temperature
decreased down to ∼ 3000 K, the protons and electrons became bound to form the first hydrogen atoms. This is
the recombination era of the Universe. The transition of hydrogen atoms from the high energy state to the low
energy state emitted photons that could travel freely and decoupled from matter. This light, emitted at redshift
z ∼ 1100, is the first light of the Universe and it is known as the Cosmic Microwave Background (CMB).

Given that the primordial plasma was in thermal equilibrium, the emission of the CMB follows a black-body
spectrum, with a temperature that depends on the energetical content of the Universe. In Penzias and Wilson
(1965) [1] authors estimated for the first time the temperature of the CMB radiation to be 3.5 ± 1.0 K from
the measurement of the unexplained temperature in the Holmdel Horn Antenna. The posterior measurement
of the black-body spectrum with the FIRAS instrument in the COBE satellite [22] enabled to constrain the
temperature of the CMB black-body to TCMB = 2.725 ± 0.002 K [23]. The great agreement of the model to the
observed data was another success for the standard model of cosmology.

Since then, other instruments have again measured the temperature of the CMB [24, 25]. Despite the
exceptional homogeneity of the emission, primordial anisotropies of the order of 10−4 (few 100 µK) with re-
spect to the average temperature were found1. We present in Fig. 1.1 a full-sky map of the CMB temperature
anisotropies obtained with the Planck satellite. These anisotropies, created by weak fluctuations in the primor-
dial plasma, are the first sign of the structures that were later created in the dense regions of the Universe. The
characteristics of the CMB anisotropies are closely related to the properties of the Universe at the time of the
emission of this light. For this reason, the analysis of the power spectrum of the CMB temperature anisotropies
has been a very powerful tool to constrain cosmological parameters [24]. However, the standard model of
cosmology is not able to fully explain the presence of such fluctuations.

1In addition to the primordial anisotropies, the temperature map of the CMB contains also a few mK signal from the CMB dipole,
introduced mainly by the motion of the solar system with respect to the background [26]
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Figure 1.1: CMB temperature anisotropies measured by Planck. The grey line indicates the confidence galactic mask. Figure from
https://www.cosmos.esa.int/web/planck/picture-gallery, published in Planck Collaboration et al. (2020) [27].

9 × 109 years after the Big Bang, at redshift z ∼ 0.4 − 0.5, the dark energy (represented in our equations by
the cosmological constant Λ) started to dominate the energetical content of the Universe. From this moment
on the expansion of the Universe started to accelerate. The observational evidence of the accelerated expansion
was obtained from the observation of Type Ia supernovae in Riess et al. (1998) [3].

1.1.3 Origin of large-scale structures explained by the inflation

Even though the standard model of cosmology succeeds in describing many of the observations, it is not
able to answer some fundamental questions. We briefly explain here three phenomena that can not be explained
by the standard model.

The presence of inhomogeneities. As aforementioned, the measurements of the CMB temperature showed
that the Universe, although homogeneous at large scales, it presents inhomogeneities at smaller angular scales.
These anisotropies in the density field are the precursors of the astrophysical objects, such as the stars, galaxies
or clusters of galaxies, that we observe today (Sect. 1.1.4). Nonetheless, the standard cosmological model can
not explain the presence of inhomogeneities in the Universe.

The horizon problem. The prominent homogeneity of the CMB at large scales is also a problem for the
standard cosmological model. Observations show that the CMB is (almost) homogeneous in the whole sky
map, which contains regions separated by up to 180 degrees. Nevertheless, at the epoch of recombination only
regions separated by less than the Hubble horizon of ∼ 100 Mpc were causally connected, meaning that in the
CMB map regions separated by more than ∼ 1 degree should not be causally connected.

The flatness problem. The Friedmann equation has unstable solutions towards k = 0, that is, for a flat
Universe. However, recent cosmological analyses [27] agree on a Universe with a geometry very close to
flatness. According to Planck Collaboration et al. (2020) [28] results, the current curvature of the Universe is
of Ωk,0 ∼ 10−3, which would imply a curvature in the first 10−43 seconds of the Universe smaller than 10−60.
Such flatness can not be easily understood with the standard model, since it requires the Hubble constant to be
fine-tuned to reproduce observations.

In the 1980s the inflationary model was proposed [29, 30] as a possible mechanism to understand some of
the issues in the standard cosmological model. According to inflation, the primordial Universe goes through an
inflationary phase characterised by an extremely fast (of some 10−32 seconds) accelerated expansion.

During the inflation phase the Hubble comoving horizon radius decreases with time, before starting to

https://www.cosmos.esa.int/web/planck/picture-gallery
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increase as we observe in the late-Universe. This means that regions that seem causally disconnected in the
CMB, in the past had been within the same Hubble sphere, solving in this way the horizon problem. In addition,
the inflationary process can also solve the flatness problem, as Ωk = 10−60 at the end of the inflation.

Also, the presence of inhomogeneities can be explained by inflation. Quantum fluctuations of the infla-
tionary scalar field produced initial perturbations, introducing inhomogeneities in the primordial plasma that
evolved to form the structures we observe today.

1.1.4 Evolution of large-scale structures in the linear regime

The quantum fluctuations in the inflationary field lead to tiny density perturbations that evolve first in the
linear regime. We can write the density at every (comoving) position x⃗ and time t as the sum of the mean
density of the Universe, ρ(t), and the first order perturbation,

ρ(x⃗, t) = ρ(t)
[
1 + δ(x⃗, t)

]
, (1.10)

with δ(x⃗, t) the density contrast parameter.

Using the Euler, continuity and Poisson equations, we obtain that the contrast parameter evolves as

δ̈ + 2H(t)δ̇ =
[
4πGρ(t) +

c2
s

a2∇
2
]
δ(x⃗, t), (1.11)

with cs the speed of sound of the Universe. By defining the Jeans length λJ ≡ cs/
√
π/Gρ, its associated mode

kJ = 2πa/λJ and δk sin
(⃗
k · r⃗

)
= δ(x⃗, t), the evolution of the perturbations is written in Fourier space as

δ̈k + 2Hδ̇k =
c2

s

a2

(
k2

J − k2
)
δk. (1.12)

We can distinguish two different regimes: k2 ≪ k2
J and k2 ≫ k2

J . When the Jeans length is smaller than the
scale of perturbations, that is, when k2 ≪ k2

J , gravitation dominates this evolution and perturbations grow.
If perturbations happen in a smaller scale than the Jeans length, k2 ≫ k2

J , pressure is more important than
gravitation and the collapse stops.

In the course of the thermal history of the Universe (Sect. 1.1.2), perturbations evolve differently depending
on the epoch. In the primordial radiation-dominated era density perturbations oscillate, growing due to gravita-
tional forces and then decreasing when the pressure becomes more important than gravitation. Thus, during this
epoch inhomogeneities overall do not evolve. At z ∼ 3400, when the Universe becomes dominated by matter,
gravitation turns out to be stronger than pressure forces and perturbations grow, following δ(t) ∝ t2/3 and creat-
ing the structures we observe in the Universe. Now, in the dark energy dominated era (z < 0.5), the accelerated
expansion of the Universe is making the value of the contrast parameter decrease as δ(t) ∝ exp(−2Ht).

Under the assumption of Gaussian fluctuations in the primordial Universe, the correlation function of the
contrast parameter is a valuable function to understand the primordial density distribution. Averaging over all
positions x⃗ in the Universe we obtain

ξ(⃗r) =
〈
δ(x⃗ + r⃗)δ(⃗r)

〉
. (1.13)

The Fourier transform of the correlation function gives the power spectrum,

P(k) =
∫

ξ(⃗r)e−i⃗k·⃗rdr⃗. (1.14)

As aforementioned, the primordial fluctuations evolve to form the inhomogeneities in the current Universe.
Thus, the power spectrum of the matter distribution observed at z = 0 is not the same as the power spectrum of
the primordial density distribution. However, both are closely related via the transfer function, T (z, k), which is
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used to quantify the evolution of perturbations along cosmic time, and relate the power spectrum in Eq. 1.14 to
the spectrum at any redshift z:

P(z, k) = P(k)primordial × T 2(z, k). (1.15)

Observationally constraining and understanding the shape of this power spectrum and its evolution are key
elements for the comprehension of the structure formation in the Universe [27]. From the power spectrum we
can define the σ8 cosmological parameter that quantifies the amplitude of the matter fluctuations in a sphere of
8h−1 Mpc radius at redshift z = 0:

σ8 =

√
σ2(z = 0, r = 8h−1 Mpc) ,with σ2(z, r) =

1
(2π)3

∫
W(kr)P(z, k)d3k. (1.16)

Here W(kr) is the window function (see Cui et al. (2008) [31] for details on window functions). We will see in
the next sections that the measurement of σ8 is very important for cosmological studies with galaxy clusters.

1.1.5 Halos in the non-linear regime

When in a given region of the Universe the contrast parameter reaches δ(x⃗, t) ∼ 1, meaning that the ampli-
tude of the inhomogeneities is of the same order as the average density, the linear regime is no longer valid.
In these overdense regions matter is accumulated creating structures by gravitational collapse. The largest
gravitationally bound structures in the Universe are the clusters of galaxies and the density in their cores can
reach currently ∼ 10−22 kg/m3, which corresponds to a contrast of ∼ 104 with respect to the average density of
the Universe. Thus, the inhomogeneities in which galaxy clusters lie are very far from the δ ≪ 1 required to
consider the linear regime.

To date, there is not a rigorous description of the evolution of the density field in the non-linear regime.
Nonetheless, observations and large scale structure N-body simulations (see Sect. 7.1) show that structures
created in such regime tend to form relatively stable objects in hydrostatic equilibrium [32]. Based on this fact,
phenomenological approaches try to explain the dynamics of the density field in the non-linear regime.

A widely accepted approach is the Press-Schechter formalism [33], which predicts the number of objects
of a certain mass and within a given volume of the Universe created by gravitational collapse. This formalism
assumes that at redshift z = 0 all the matter in the Universe is contained in spherical halos that are virialised
(Sect. 1.3.3). According to Press-Schechter, the radii of overdense regions first grow, but then collapse gravi-
tationally, reaching finally an equilibrium in which the pressure forces compensate the gravity. The number of
halos with masses between M and M + dM is given by the halo mass function: dn/dM.

Based on the distribution of dark matter halos from numerical simulations, authors in Tinker et al. (2008)
[34] gave a formal shape to the halo mass function:

dn
dM
= f (σ)

ρ

M

∣∣∣∣∣∣d lnσ−1

dM

∣∣∣∣∣∣ , (1.17)

with ρ and σ the mean density of the Universe and the amplitude of matter fluctuations (Eq. 1.16). Here f (σ)
is the halo multiplicity function, that varies from one halo mass function model to another. Regardless of the
chosen model, the halo mass function will predict a different amount of halos depending on the matter distri-
bution in the Universe (through the power spectrum in Eq. 1.16) and, therefore, depending on the cosmological
parameters. In Fig. 1.2 we show the halo mass function predicted by the model in Tinker et al. (2008) [34] at
redshift z = 0.5 for different values of the Ωm and σ8 parameters. We observe that varying those parameters
changes the number of matter halos: higher matter density (Ωm) and fluctuations in the matter distribution (σ8)
create more halos, and, therefore, more clusters of galaxies. Thus, measuring the distribution of clusters in the
Universe with respect to their mass and redshift is a way to constrain the values of Ωm and σ8, and the other
cosmological parameters. This is the principle of the cosmological analyses with cluster number counts that
we will present in Sect. 1.2.3.



CHAPTER 1. COSMOLOGY AND CLUSTERS OF GALAXIES 19

Figure 1.2: Halo abundances at redshift z = 0.5 predicted by the halo mass function in Tinker et al. (2008) [34] for different values of
the Ωm (left) and σ8 (right) cosmological parameters. Figure from Kéruzoré (2021) [35].

From Fig. 1.2 we observe that variations of the matter density have an important influence on the abundance
of low mass halos (left panel), while changes in σ8 modify principally the number of massive halos (right
panel). Given the impact that both parameters have on the halo abundances, cosmological analyses with cluster
number counts can not constrain both parameters separately, but they are sensitive to a combination of Ωm and
σ8, usually defined as: S 8 ≡ σ8

√
Ωm/0.3 (Sect 1.2.3).

Recent observations from the James Webb Space Telescope (JWST), launched in December 2021, have
allowed us to detect the most distant galaxies discovered to date. Some of them appear to be larger and more
massive than initially expected [36], at redshifts (z ∼ 10−13) where such large structures would not be predicted
to be bound according to the standard model. Posterior works have shown that the presence of such galaxies
could be in reality explained by our current cosmological models [37]. In any case, these observations have
opened new questions regarding our understanding of the evolution of the Universe and the impact of baryonic
physics on the formation of structures at early times.

1.2 Clusters of galaxies
Since the observations of Charles Messier and William Herschel in the 18th century, it was known that

nebulae tend to cluster [32]. Posterior galaxy observations in the 19th and early 20th centuries confirmed the
tendency of galaxies to group in very large systems (see Kravtsov and Borgani (2012) [32] and references
therein). It was in the 1930s when, from the measurement of the galaxy velocities in clusters, it was shown
that under the virial equilibrium assumption the total gravitating mass of clusters had to be enormous [38–40].
These high masses did not match the amount of matter from the observed stars in the clusters and Zwicky
postulated the existence of a halo of dark matter (DM) that would explain the missing matter. In the 1970s
observations of the Coma cluster in X-rays [41–43] showed the existence of an extended emission at very high
energies. It was understood to be a thermal bremsstrahlung emission of the hot intracluster medium (ICM)
that was filling the intergalactic space in the cluster [44]. In order to explain the presence of bound objects at
such high temperatures, it was also necessary to have a very strong gravitational potential. This confirmed the
need to have a very prominent dark matter component in galaxy clusters. Since then, thousands of clusters of
galaxies have been observed at different wavelengths (see Sect. 1.2.2) and we now know that galaxy clusters
are the most massive halos in the Universe.

From our current understanding of a structure formation process that is hierarchical, the perturbations in the
primordial density field led to the collapse of small-scale structures that then merged and accreted surrounding
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matter to create a filamentary large-scale structure (LSS), also known as the cosmic web [32]. Thus, small
structures such as stars and, later galaxies, virialised first and, then, assembled in larger systems in equilibrium.
This way, at redshift z ∼ 3 [45] the first clusters started to form in the nodes of the cosmic web, where the
Universe is the densest.

In the past years, great effort was also put into observing high-redshift protoclusters, which are thought to
be the progenitors of virialised galaxy clusters [45]. Numerical simulations allow us to trace back clusters in
order to define and understand protoclusters [46]. Recent observations of a protocluster at redshift z ∼ 2.16
[47] show that a protocluster is not only an association of galaxies, since the observed system already contains a
halo of hot baryonic gas. This supports the hierarchical structure formation picture. The evolution from sparse
protoclusters into virialised clusters requires very energetic events, such as infall and accretion of surrounding
matter, mergers of subclusters and feedback from active galactic nuclei (AGN). These effects will certainly
impact the thermalisation process, until equilibrium, and the properties of the resulting galaxy cluster. It is
hoped that we will be able, in the years to come, to better comprehend these processes and, therefore, have a
complete understanding of the cluster formation history.

We will dedicate this section to galaxy clusters. In the first place, we present the properties of clusters as the
astrophysical objects they are. In the second place, we describe the observations of galaxy clusters at different
wavelengths. And third, we review the different approaches that can be followed to use them as a cosmological
probe.

1.2.1 Physical properties

As discovered in the 1930s, galaxy clusters are very massive objects, with masses that span from ∼ 1014 M⊙
to some few 1015 M⊙. We now estimate that ∼ 85% of their total mass is in the form of dark matter, ∼ 12% is
hot baryonic matter (again, with the cosmological definition of “baryonic”) in the ICM and only the remaining
∼ 3% corresponds to member galaxies. Thus, the matter content in galaxy clusters is fairly representative of
that of the Universe [48]. Clusters have typical sizes of the order of some Mpc, but given their extended nature,
one can only define their extent based on the drop off of the mass density towards the outskirts or from the
radius within which the virial equilibrium is satisfied (Rvir, see Sect. 1.3.3). Most commonly, we define the
mass of the cluster M∆ enclosed in a radius R∆ as:

M∆ =
4π
3
∆ρR3

∆, (1.18)

where ρ is either the mean (ρm) or critical (ρcrit, Eq. 1.8) matter density of the Universe at the cluster’s redshift.
The overdensity ∆ can take any positive value, but typically masses are given at overdensities of ∆ = 2500, 500
or 200. R200 is usually close to the virial radius.

Dark matter

Since dark matter is the main component in clusters, at first approximation we can imagine their formation
to be driven only by spherical gravitational collapse in an expanding Universe, without any other force playing
a role. In that case, the characteristics of the fluctuations in the random Gaussian field that forms the large-scale
matter distribution, make the collapsed halos to be self-similar [49]. This means that, since gravitation does not
have preferred scales, when normalised with respect to mass and redshift, matter halos are scaled versions of
each other.

The self-similarity of DM halos has been observed from cosmological simulations [50]. In Navarro et al.
(1996) [51] and Navarro et al. (1997) [52] authors used N-body simulations of a CDM Universe to reproduce the
collapse of DM in halos. They obtained that there is a universal spherical mass density profile that, when scaled,
describes the density profile of every halo. This is the well-known Navarro-Frenk-White (NFW) spherical mass
density profile:

ρNFW(r) =
ρs

r/rs(1 + r/rs)2 =
ρcritδc∆(c∆)

r/rs(1 + r/rs)2 =
ρcritδc∆(c∆)

rc∆/R∆(1 + rc∆/R∆)2 , (1.19)
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where rs = R∆/c∆ is the scale radius, c∆ the concentration parameter at the ∆ overdensity and δc∆ is a function
that depends only on the concentration and the overdensity,

δc∆ =
∆

3

c3
∆

ln(1 + c∆) − c∆/(1 + c∆)
. (1.20)

Navarro et al. (1996) [51] concluded that the concentration of halos is correlated to their mass. In addition,
the concentration of halos is related to the cluster’s redshift, since it traces the density of the Universe at the
epoch of their collapse. Thus, according to Navarro et al. (1996) [51] there is also a relation between the
mass of clusters and the redshift at which halos were formed. In summary, if clusters were formed only under
gravitational collapse, they could be fully characterised by their redshift and mass.

Intracluster medium

However, clusters also contain ∼ 15% of baryonic matter. This implies the interplay of forces other than
gravitation, and, therefore, more complex physics. As discussed above, most of the baryonic matter in clusters
is in the fully ionised intracluster medium. The ICM is a hot gas (107−108 K) of light nuclei and free electrons.
It is a sparse plasma, with electron and proton densities of ∼ 10−2 cm−3 in the core of the cluster, decreasing
towards the outskirts. Thus, it behaves as an ideal gas that is practically thermalised.

During the structure growth process by the merging of smaller substructures or the accretion of the sur-
rounding material, the co-evolution of gas and DM introduces bulk and turbulent motion in the ICM. As a
consequence, ICMs are not fully thermalised and it is estimated that ∼ 10% to 30% of their pressure has dif-
ferent natures other than the thermal [53]. In addition, the energetic processes in the formation of clusters can
create shocks and adiabatic compression of the gas plasma, as well as turbulence, that as a consequence can heat
the ICM [54, 55]. The kinetic energy dissipated in the ICM during the formation process can also contribute to
amplifying magnetic fields [56, 57] or to accelerating cosmic rays [58] associated with the intracluster medium.

Shocks are characterised by a discontinuity in the pressure of the ICM. For some time now shocks have been
observed in disturbed clusters [59, 60] at X-ray and millimetre wavelengths (Sect. 1.2.2). Recently, they have
also been detected in the outskirts of clusters [61]. Such detection is interpreted as the shock produced during
the accretion with infalling gas from the outskirts towards the cluster, as we would expect in the hierarchical
structure formation context. Even in relaxed clusters, where isobaric perturbations dominate, the ICM turbu-
lence introduces pressure fluctuations. According to simulations [62, 63], these fluctuations are of ∼ 10% of the
pressure in the core of relaxed systems and of ∼ 20% for disturbed clusters, increasing towards the outskirts.
In parallel, the subsonic bulk motion of the gas in clusters is identified from high density cold fronts.

The exact origin of magnetic fields within clusters ICM is still unclear and it could derive both from the
primordial Universe [64] or from the galaxy formation processes [65]. Along the structure formation, magnetic
fields are amplified. The amplitude of the field increases with the electron density in pure adiabatic compression
as |B⃗| ∝ n2/3

e . Nonetheless, additional contributions are needed to explain the amplitude of the measured
magnetic fields in clusters. Turbulence during merging processes and matter accretion introduces kinetic energy
to the ICM, that it is converted through dynamo effects in an amplification of the magnetic fields. Such fields
produce synchrotron emission that it is observed in radio frequencies (Sect. 1.2.2) as a diffuse signal coincident
with the ICM position.

We also know that cosmic rays (CRs) are present and accelerated within cluster ICMs, due to multiple and
possibly entangled processes [58]. Jets of AGNs or the star formation activity could inject these high-energy
particles into the ICM. In addition, shocks during cluster formation introduce high energies that can accelerate
the particles [59], but it is still difficult to model the relation between the dissipated energy in the ICM shocks
and the energy of CRs [66]. Turbulence is also considered an important mechanism that reaccelerates CRs [58].

This dynamical activity goes on for ∼ Gyr timescales, which is of the same order as cluster formation pro-
cesses. As a consequence, observed clusters can be in multiple dynamical states (from disturbed to completely
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relaxed) and their physical properties will change depending on their level of relaxation. Overall, baryonic
physics will introduce deviations from self-similarity. Comparisons of simulations and observations in Na-
gai et al. (2007) [67] showed the impact that astrophysical processes have on the thermodynamical quantities
of cluster ICMs. Despite the scatter, they demonstrated that the pressure profiles of clusters are also close
to self-similarity and that, when scaled, they can be described by an analytical model, the generalised NFW
(gNFW):

P(r)
P500

=
P0

xc(1 + xa)(b−c)/a , (1.21)

with x ≡ x/rp and rp ≡ R500/c500. b and c are the external and internal slopes, respectively, and a the parameter
describing the steepness of the slopes transition. The model is scaled by the pressure P500 defined as P500 =

1.45 × 10−11erg cm−3
(

M500
1015h−1M⊙

)2/3
E(z)8/3 according to self-similarity [49, 68]. E(z) is the dimensionless

Hubble parameter, E(z) = H(z)/H0 and h = H0/100 km s−1 Mpc−1. In Nagai et al. (2007) [67] the best-fit model
parameters on clusters observed with Chandra [69] are given by [P0, c500, a, b, c] = [3.3, 1.8, 1.3, 4.3, 0.7].

Similarly, in Arnaud et al. (2010) [70] (hereafter, A10) XMM-Newton satellite [71] observations of the ICM
of clusters were used to study the thermodynamical profiles for the REXCESS cluster sample. The REXCESS
sample comprises 33 local (z < 0.2) clusters spanning a mass range of 1014 M⊙ < M500 < 1015 M⊙. In Planck
Collaboration et al. (2013) [72] data from Planck and XMM-Newton satellites were combined to study the ICM
of 62 clusters, most of them with redshifts lower than 0.3.

We present in the left panel in Fig. 1.3 the normalised best pressure profiles obtained in A10 in green and
in Planck Collaboration et al. (2013) [72] in black. In both works the full sample of clusters was separated,
according to their dynamical state, in two: the relaxed cool-core clusters (CC, dashed lines) and the disturbed
clusters (non-CC, solid lines). As we observe in Fig. 1.3, on average relaxed clusters have a higher pressure in
the core than disturbed ones, showing the impact of the relaxation state on the pressure profile. Nonetheless,
both populations of clusters are self-similar at radial ranges between 0.5 < r/R500 < 1, where gravity is
driving the physical process. In the right panel in Fig. 1.3 we show in red the pressure profile reconstructed in
Pointecouteau et al. (2021) [73] by stacking 31 clusters (0.16 < z < 0.70) from the PACT project combining
millimetre observations (Sect. 1.2.2) from Planck and ACT. The figure shows a comparison to the mean profiles
obtained in the aforementioned works.

Just like for the pressure, the whole thermodynamical history of each cluster induces characteristic shapes in
the entropy, temperature and electron density profiles [76, 77]. However, the mentioned scatter in the profiles
is the smallest for the pressure [70]. The cited works [67, 70, 72, 73] studied the average thermodynamical
profiles for low redshift clusters, with most of the objects at z < 0.5. Analyses based on higher redshift samples
[78, 79] seem to agree on a weak evolution of the ICM physics, at least until z ∼ 1.5. In particular, in McDonald
et al. (2014) [80] Chandra observations of 80 SPT-detected clusters (with redshifts 0.3 ≲ z ≲ 1.2) were used
to study the potential evolution of the pressure profile along cosmic time. They found that outside the core of
clusters the profile does not evolve with redshift.

Galaxies

A small fraction (of the order of a few percent) of the matter in galaxy clusters corresponds to its member
galaxies. The distribution and number of galaxies (richness) associated with a cluster are understood to trace
the total matter distribution in the cluster (see Sect. 1.3.5). On average, and depending on the cluster’s mass,
each cluster contains some hundreds or thousands of member galaxies, the galaxy number density decreasing
towards the outskirts. Galaxies also interplay with the rest of the matter in the cluster.

Close to the centre of mass of the dark matter halo lies usually the Brightest Cluster Galaxy or BCG. This
BCG hosts often an active galactic nucleus (AGN) with a black hole that releases energy in the ICM in the
so-called AGN feedback mechanism [81]. In the absence of AGN feedback, the gas in the ICM of relaxed
clusters would cool down due to the X-ray radiation. In such a case it would be impossible to understand the
high temperatures and entropy in the cluster cores [82] and the evidence that the star formation rate of galaxies
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Figure 1.3: Scaled galaxy cluster pressure profiles. Left: profiles derived from Planck and XMM-Newton observations. Solid and
dashed lines show the average profiles for non cool-core and cool-core clusters, respectively. In green the results from Arnaud et al.
(2010) [70] and in black from Planck Collaboration et al. (2013) [72]. The figure has been extracted from Planck Collaboration et al.
(2013) [72]. Right: a comparison of the profile obtained from Planck and ACT data [73] in red, to other results in the literature. The
purple, green, yellow, blue and brown lines correspond respectively to the outcomes from Planck Collaboration et al. (2013) [72],
Arnaud et al. (2010) [70], Sayers et al. (2013) [74], Sayers et al. (2016) [75], and Nagai et al. (2007) [67]. Figure from Pointecouteau
et al. (2021) [73]. The purple shaded area in the right panel and the red in the left panel show the dispersion of the profiles along the
sample in Planck Collaboration et al. (2013) [72].

in relaxed clusters is much smaller than expected otherwise [83]. In other words, the energy injected by the
powerful jets of AGNs quenches star formation and explains the observed thermodynamical properties of the
ICMs of clusters [84].

The metallicity of the ICM is also a consequence of the interplay with galaxies, the latter producing the
metals ejected to the intracluster plasma. In addition, the triaxial orientation of the BCG and the cluster have
been shown to be correlated [85, 86], proving again the close connection of galaxies within clusters and the
surrounding matter in the halo.

In summary, clusters are not perfect spherical systems in hydrostatic equilibrium. In the last years, many
efforts have been made to understand and characterise their dynamical state. Simulations have helped to define
different indicators that relate observables to morphological and dynamical properties [87, 88] and these indica-
tors have then been applied to observations [89, 90]. For example, a positional offset between the cluster X-ray
emission peak and the BCG is a sign of an unrelaxed system. Equally, clusters that are experiencing merging
events have their total matter content distributed in various substructures [91]. Discrepancies between masses
of clusters estimated from different methods (Sect. 1.3) have also been correlated to systems with complex
morphologies [47].

The described astrophysical effects break the ideal self-similarity of halos, but turn clusters into very in-
teresting laboratories to investigate the interactions between dark and baryonic matter. Still, dominated by the
dark matter content, we will see in Sect. 1.2.3 that galaxy clusters are great cosmological probes.

1.2.2 Observations of clusters of galaxies

Given the multi-component nature of clusters and the many physical processes that take place in them,
galaxy clusters can be observed at different frequency ranges. In this section, we present the observables that
allow us to detect and characterise clusters, as well as the physical properties that each probe traces.
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Optical and infrared wavelengths

Observations in optical and infrared frequencies trace the galaxies in the field of view of the cluster. On
the one hand, we observe the member galaxies, that is, the galaxies that belong to clusters. As we have seen
in Sect. 1.2.1, the star formation rate of galaxies in clusters is closely related to the density and temperature
of the ICM. Therefore, by studying the nature of these galaxies [92], we can learn about the properties and
formation process of the matter halos that they occupy. In addition, the number of galaxies associated with a
cluster (richness) and their dynamics (velocity dispersion) are tracers of the cluster mass (Sect. 1.3). The radial
distribution of the galaxies in the cluster [93] is also important for cluster detection algorithms at optical and
infrared wavelengths [94].

On the other hand, optical and infrared wavelengths also trace indirectly the total matter in the cluster from
the observation of the galaxies in the background of clusters. The shapes and positions of these galaxies are
distorted by the total matter the light has traversed on its way to the observer. This is the lensing effect (Sect. 1.3
and 5.1) produced by the deep gravitational potential well of halos. Therefore, as we will see in Sect. 1.3 and
5.1, galaxy observations are a very valuable tool to reconstruct the total mass of clusters.

From a technical point of view, optical and infrared observations can be performed in photometry and spec-
troscopy modes. When in photometry, the sky is mapped to obtain images in different frequency bands. Such
images allow observers to identify simultaneously large numbers of galaxies and to estimate their redshifts
from the combination of multiple bands [95]. In the last few years, photometry techniques have enabled to
build large galaxy catalogues that are then used to detect clusters and study their properties [11, 96]. Spec-
troscopic observations target sources detected in photometry and extract the spectra of the light from galaxies.
From the analyses of these spectra we can identify the emission lines of different elements and, thus, precisely
constrain the redshifts of the emitting sources. Spectroscopic techniques, although time-consuming, provide
more accurate and reliable redshift estimates than photometry. From the instrumental side, spectroscopy has
gone through big improvements in the last years [97–99]. The redshift estimates of member galaxies, from
optical and infrared observations are used to estimate the redshift of clusters.

Future large surveys, such as the Legacy Survey of Space and Time (LSST) at the Vera Rubin Observatory
[100] and the recently launched Euclid mission [101], will provide huge galaxy catalogues and, in this way,
contribute to the picture of stellar and total matter distribution in clusters. It is expected that the Euclid mission
will observe ∼ 106 galaxy clusters [101], while ∼ 105 clusters will be detected by LSST [102].

X-rays

X-ray observations trace the bremsstrahlung emission of the ionised electrons in the hot ICM plasma. The
surface brightness of a cluster observed in X-rays, S X, is given by the integral along the line-of-sight of the
electron density in the ICM, ne, and the cooling function, Λ(Te,Z),

S X =
1

4π(1 + z)4

∫
Λ(Te,Z)n2

edl. (1.22)

Note that the electron density is squared in the integral and that the cooling function depends on the temperature
in the plasma, Te, and on the metallicity of the ICM, Z. The surface brightness is affected by cosmological
dimming, implying that it decreases with redshift as (1 + z)−4 (Eq. 1.22). For this reason, it is challenging to
observe high redshift clusters in X-rays.

The metallicity, Z, informs us about the amount of heavy elements, that is, elements other than hydrogen or
helium, in the medium. Spectroscopic measurements are used to identify emission lines of energy transitions
for different elements and estimate their abundance in the clusters. Regarding the temperature, Te, it can
also be measured from spectroscopic X-ray observations, since the shape of the ICM spectrum depends on its
temperature [103]. We can clearly see, from figure 6 in Böhringer and Werner (2010) [103], that bremsstrahlung
emission becomes more important at higher temperatures, contrary to emission lines of heavy elements, that
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Figure 1.4: Electron density (left), temperature (centre) and pressure (right) profiles of the REXCESS clusters reconstructed from X-ray
data. Colours indicate the dynamical state. Figure from Pratt et al. (2009) [106].

are less and less dominant since elements are ionised at high temperatures. However, a reliable and resolved
temperature mapping of clusters in X-rays [104] requires deep and, therefore, time-consuming observations.

Following Eq. 1.22, X-ray surface brightness maps of clusters can be used to reconstruct the underlying
electron density. The classical procedure follows a geometrical deprojection of concentric annuli from the
surface brightness map [77, 105]. Therefore, high quality X-ray observations enable the reconstruction of the
electron temperature and density in the ICM. Gas clumps and temperature inhomogeneities in the cluster can
bias these estimates and data has to be carefully corrected for them. In addition to the emission from the cluster,
other X-ray emitting point sources can also contaminate the signal and they need to be removed (as for example,
in Pratt et al. (2007) [76]). Assuming that the ICM behaves as an ideal gas, X-ray measurements are enough
to estimate the electron pressure in the medium: Pe = nekBTe, with kB the Boltzmann constant. In Fig. 1.4 we
present the electron density, temperature and pressure profiles reconstructed from XMM-Newton observations
for the clusters in the REXCESS sample [70, 106].

As shown in Fig. 1.3, relaxed and unrelaxed or, respectively, cool-core and non-cool-core clusters show
different pressure profile shapes. As for the pressure, the electron density is higher in the core of relaxed
clusters (see also figure 4 in Hudson et al. (2010) [107]). This makes cool-core clusters to be more easily
detected in X-rays, introducing the so-called Cool-core Bias [108, 109] in X-ray-selected samples.

Since the discovery in the 1970s of the X-ray emission of galaxy clusters with the Uhuru satellite [42, 43],
several satellites have been launched above the Earth’s atmosphere to map the Universe in X-rays. Nowadays,
most of the observations are carried out with XMM-Newton [71] and Chandra [69] instruments, at high angu-
lar resolution. Although the extended ROentgen Survey with an Imaging Telescope Array (eROSITA) [110]
operations are currently paused, these full-sky observations will provide a large catalogue of X-ray detected
clusters. From the already available eROSITA observations, 542 galaxy cluster and group candidates have been
detected in an area of ∼ 140 square degrees [15]. According to Liu et al. (2022) [15] the clusters span a redshift
range between z = 0.01 and 1.3 with an average temperature of ∼ 2 keV. The (New)Athena mission (which is
being redesigned) will probably bring competitive X-ray spectroscopic measurements in the future [111].

Millimetre wavelengths

Soon after the discovery of the X-ray emission of clusters, Y. N. Pariysky observed a deficit of brightness
in the CMB signal in the direction of the Coma cluster [112]. According to Sunyaev and Zeldovich (1972)
[112] that deficit could only be explained by the presence of the recently detected hot gas in the ICM: the light
from the CMB is scattered by inverse Thomson (also named as inverse Compton) effect in the presence of the
very energetic electrons in the ICM. It was the discovery of the Sunyaev-Zel’dovich (SZ) effect (left panel in
Fig. 1.5).
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Figure 1.5: The Sunyaev-Zel’dovich effect. Left: illustration of a decrement observed in the CMB temperature. Figure from Sunyaev
and Zeldovich (1972) [112]. Right: illustration of the SZ effect from Mroczkowski et al. (2019) [113]. A low energy CMB photon
gains energy (changing from red to blue wavelengths in the illustration) when traversing the hot ICM plasma.

We define the Sunyaev-Zel’dovich effect as the distortion of the CMB spectrum caused by the interaction of
the Cosmic Microwave Background photons with the electrons in the cluster [114, 115]. It is a weak distortion
and, just like the CMB emission, we observe it at millimetre wavelengths (in the GHz−THz frequency range).
When low energy CMB photons (of some 10−6 keV) traverse the ICM of a cluster, part of the kinetic energy
of the electrons is transferred to the CMB photons (see the right panel in Fig. 1.5 for an illustration). As a
consequence, the CMB black-body spectrum changes its shape. Depending on the origin of the kinetic energy
of the electrons we distinguish the thermal and kinematic or kinetic SZ effects. We also need to consider their
relativistic corrections, as well as the hardly assessable polarised and non-thermal SZ effects. In this section
and all along this thesis we will focus on the thermal SZ effect. More detailed descriptions of the different
contributions can be found in Birkinshaw (1999) [115] and Mroczkowski et al. (2019) [113].

I. The thermal SZ effect

The thermal SZ effect (tSZ) corresponds to the SZ effect caused by the thermal energy of the electrons. At
temperatures of the order of 107 − 108 K in the ICM (Sect. 1.2.1), the thermalised plasma reaches energies of
1 − 10 keV. At these energies, electrons are non-relativistic (mec2 ≫ kBTe).

The Kompaneets equation (Eq. 12 in Kompaneets (1957) [116]) allows us to relate the spectral distortion
of a Iν intensity light at a frequency ν with the thermal energy of the ICM electrons. If the temperature of the
incident photons is negligible with respect to the temperature of the medium, which is true for the SZ effect of
clusters, the Kompaneets equation can be written as

∂n
∂y
=

1
x2

∂

∂x

(
x4 ∂n
∂x

)
, (1.23)

where n ≡ Iνc2/2hν3 is the occupation number of photons. Here x is defined as x ≡ hν/kBTCMB with ν the
frequency of photons and TCMB the temperature of the CMB. The Compton parameter y is related to the thermal
energy of the electrons in the ICM through

y ≡

∫
kBTe

mec2 dτe =
σT

mec2

∫
kBTene dl. (1.24)

Here τe is the Thomson scattering optical depth crossed by the photons in the ICM, given by τe = σTnel, with
σT the Thomson cross section and l the line-of-sight depth. In the integral in Eq. 1.24 we can easily identify
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Figure 1.6: Distortion of the CMB spectrum due to the SZ effect. Left: the solid line shows the black-body spectrum of the CMB (Iν)
and the dashed line the same spectrum distorted after multiple Compton scattering (ItSZ

ν ). Figure extracted from Sunyaev and Zeldovich
(1980) [114]. Right: rescaled CMB spectrum (red dotted line) and the spectral distortions of the thermal (solid) and kinematic (dashed)
SZ effects including and not the relativistic corrections. Extracted from Mroczkowski et al. (2019) [113].

the expression of the pressure for an ideal gas, Pe = kBTene. Thus, the Compton parameter can be defined as
proportional to the integral of the thermal pressure of the electrons,

y =
σT

mec2

∫
Pe dl. (1.25)

Accounting for the black-body spectrum of the CMB for Iν and solving the Eq. 1.23 leads to a distortion
given by:

∆ItSZ
ν = ItSZ

ν − Iν = I0 × y ×
x4ex

(ex − 1)2

[
xcoth

( x
2

)
− 4

]
[1 + δtSZ(x,Te)] , (1.26)

with δtSZ the relativistic correction (see Mroczkowski et al. (2019) [113] for more detailed explanations) and I0
the CMB intensity [113],

I0 =
2(kBTCMB)3

(hc)2 = 270.33
[ TCMB

2.7255 K

]3
MJy/sr. (1.27)

If we ignore the relativistic correction, which will only be relevant for extremely hot clusters, we observe
in Eq. 1.26 that the spectral dependence of the distortion is independent of the temperature in the cluster (right
side of the equation). The amplitude of the effect is given by the Compton parameter and it changes also with x,
that is, with the frequency ν. The left panel in Fig. 1.6 illustrates the distortion in the CMB black-body spectrum
due to the tSZ effect. A very large value of the Compton parameter (y = 0.15) has been used to amplify the
effect. We observe that photons have increased their energy (dashed lines) after the inverse Compton scattering.

The yellow line in the right panel in Fig. 1.6 shows the distortion ∆ItSZ
ν of the CMB spectrum for y = 10−4.

This is the order of magnitude for the tSZ amplitude in cluster centres, which varies with the cluster mass and
redshift. As a consequence of the deformation of the spectrum, the intensity of the light at frequencies below
217 GHz decreases with respect to the intensity of the CMB. Thus, the distortion takes negative values. On
the contrary, it is positive at higher frequencies. Multi-frequency observations at millimetre wavelengths detect
the decrement (for ν < 217 GHz) and increment (ν > 217 GHz) in the surface brightness of the CMB in the
direction of galaxy clusters. We present in Fig. 1.7 seven maps of the Abell2319 galaxy cluster observed by the
Planck satellite in seven bands. At low frequencies the cluster is seen as a negative blue decrement in the centre
of the map, and as a red positive signal at high frequencies. As expected, no tSZ signal is detected at 217 GHz.
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Figure 1.7: The Abell2319 galaxy cluster observed by Planck. Blue and red represent negative and positive distortions, respectively.
Figure obtained from the Planck data base at https://sci.esa.int/s/WvJQxgW.

We have seen in Eq. 1.24 that the Compton parameter traces the integral along the line-of-sight of a combi-
nation of the electron density and temperature in the ICM. Consequently, mapping galaxy clusters at millimetre
wavelengths and estimating the contribution of the tSZ effect enables the reconstruction of kBTene or, equiv-
alently, the pressure, Pe, of an ideal gas. This is how the thermal pressure of galaxy clusters has been recon-
structed in a large number of works in the literature (as in Planck Collaboration et al. (2013) [117], Romero
et al. (2017) [118], Adam et al. (2015) [119] and Di Mascolo et al. (2023) [47] to cite a few examples). In
chapter 3 we will describe the reconstruction of the cluster pressure from NIKA2 observations.

Contrary to the X-ray surface brightness, the tSZ effect is not affected by cosmological dimming. Given
that the observable is a distortion of the CMB spectrum instead of a brightness, its amplitude does not depend
on the redshift of the cluster. For this reason, the tSZ effect is an excellent tool to detect and characterise the
ICM of high redshift clusters (Fig. 1.3). The comparison of the pressure reconstructed from X-rays and from
tSZ can shed light on the origin of systematic effects (chapter 4 and 5). In addition, tSZ observations offer the
possibility to estimate the temperature in the ICM by combining the pressure from the tSZ and the electron
density from X-rays, without the need of X-ray spectroscopy [120].

II. The kinematic SZ effect

The kinetic or kinematic SZ effect (kSZ) is the scatter of the cold CMB photons induced by the bulk motion
of the cluster plasma with respect to the CMB rest frame [121],

∆IkSZ
ν = I0 × ykSZ ×

x4ex

(ex − 1)2

[
1 + δkSZ(x,Te, vz)

]
. (1.28)

In this case, the relativistic correction δkSZ(x,Te, vz) depends also on the velocity of the gas along the line-of-
sight, vz. For the kSZ, the equivalent to the Compton parameter is ykSZ, that increases with the line-of-sight
velocity as

ykSZ ≡ −
vz

c

∫
dτe = −

vzσT

c

∫
nedl. (1.29)

The stronger the bulk motion of the gas, the more important its kinetic energy is and, in consequence, the
larger the amplitude of the kSZ effect. The red dashed line in the right panel in Fig. 1.6 shows the effect on the
CMB brightness caused by ICM gas moving at vz = 1000 km/s, with the peak of the spectrum at 217 GHz. The
contribution of the kSZ can be both positive or negative, depending on the direction of the bulk motion.

The peculiar motion of clusters is expected to be of the order of a few 100 km/s [113], which corresponds
to ykSZ ∼ 10−5. Therefore, for hot clusters with temperatures of Te ∼ 10 keV, the amplitude of the kSZ effect
is 10 times weaker than the tSZ. Then, detecting the kSZ and separating its contribution from the tSZ requires
very sensitive multi-frequency observations. When detected, it can be used to reconstruct the bulk velocity or
density of the electronic plasma as given by Eq. 1.29, if density or velocity is already known, respectively.

In addition, if the angular resolution of the observations is enough to resolve substructures within clusters,
the kSZ effect can be used to estimate the relative velocities between different clumps and probe the gas dynam-
ics. Such detection has been possible for the merging system in the MACS J0717.5+3745 galaxy cluster [74,

https://sci.esa.int/s/WvJQxgW
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122, 123]. In Adam et al. (2017) [123] authors mapped the kSZ effect on MACS J0717.5+3745 by using 150
and 260 GHz resolved observations from the NIKA camera [119, 124, 125]. From the combination with X-ray
data they obtained that two of the subclusters in MACS J0717.5+3745 are moving along the line-of-sight, one
of them away and the other one towards us, with velocities of the order of ∼ 1000 km/s. Statistical approaches
can also be used to detect the kSZ [126].

III. Non-thermal and polarised SZ and relativistic corrections

The Sunyaev-Zel’dovich effect has additional flavours besides the thermal and kinematic SZ. On the one
hand, relaxing the hypothesis of thermalised electrons, we find a more general formalism that describes the
scattering of the CMB. This is the non-thermal SZ effect. The shape of the non-thermal SZ spectrum depends
on the energy distribution of the electrons and can be intricate to detail [113]. Assuming a relativistic Maxwell-
Boltzmann distribution for electron energies, the non-thermal SZ is equivalent to the tSZ effect with temperature
corrections.

On the other hand, it is known that the SZ effect is polarised due to multiple mechanisms [113]. However,
for all the cases the polarised SZ signal is very weak (two orders of magnitude fainter than the kSZ). On top of
that, multiple astrophysical objects contaminate the polarised SZ, so in practice, the detection of polarised SZ
is very challenging.

Regarding the relativistic δtSZ and δkSZ corrections in Eq. 1.26 and 1.28, they have to be accounted for when
the thermal energy and bulk motion of electrons induce velocities of the order of the speed of light. At high
temperatures the relativistic corrections become important and contribute to the SZ spectra by shifting them in
frequency and changing their amplitudes [113]. The right panel in Fig. 1.6 shows the impact of the relativistic
corrections on the spectral distortions of the tSZ and kSZ effects.

Detecting such fine effects and disentangling the different contributions is extremely challenging and re-
quires observations at several frequency bands. In the millimetre observations analysed in this thesis (in chap-
ters 3, 4 and 5) we will only be able to detect the tSZ effect. The kSZ will be at the level of the noise and
relativistic corrections, as well as the non-thermal and polarised SZ, out of reach. Thus, for simplicity, in the
following we will use SZ to refer to the thermal SZ effect.

IV. CMB lensing

Galaxy clusters can also be observed at millimetre wavelengths through the lensing effect they produce on
the CMB [127]. CMB lensing is a tracer of the total mass and, therefore, it can be directly used to reconstruct
cluster masses [128, 129] (Sect. 1.3).

Other than the clusters in themselves, observations at millimetre wavelengths allow us to detect dusty galax-
ies in the field. Flux measurements of dusty galaxies will be very useful to estimate their contamination in
cluster maps for the characterisation of the SZ effect in chapter 3.

Radio

At radio frequencies (∼ GHz) we can also observe galaxy clusters. The presence of magnetic fields within
clusters (Sect. 1.2.1) brings with it synchrotron radiation and, therefore, a diffuse radio emission coincident with
the ICM [130]. These radio halos are usually compact (∼ 100 kpc) in cool-core clusters and more extended
(∼Mpc) in mergers.

In addition, in the outskirts of clusters we can observe extended radio emissions, also known as relics.
These relics are related to the presence of shocks [131]. Thus, radio observations trace the dynamical history
of clusters. Recently, results from the LOFAR instrument have shown that the magnetic field in distant clusters
is as strong as in low redshift ones [57].
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Figure 1.8: Multi-wavelength view of the PSZ2 G091.83+26.11 galaxy cluster. Top left: the diffuse radio emission observed with
LOFAR with the black contours indicating the S/N levels. The figure was taken from Di Gennaro et al. (2021) [57]. Top right: the map
of PSZ2 G091.83+26.11 at 150 GHz obtained from NIKA2 data in Artis et al. (2022) [132]. The northern (N) and southern (S) white
stars indicate the X-ray peaks detected from XMM-Newton observations and the purple star corresponds to the X-ray centroid. Bottom
left: X-ray Chandra data image extracted from Di Gennaro et al. (2023) [133]. Yellow stars show the same X-ray peaks as in the top
right panel, the white cross indicates the cluster centre and white contours show the radio emission at 3 GHz from the Very Large Array
(VLA). Bottom right: in white the optical observations with PanSTARRS gri. Blue and red in the image correspond to Chandra X-ray
and VLA radio data. Figure taken from Di Gennaro et al. (2023) [133].

Radio observations can also be very useful to measure the emission of member galaxies. Typically cool-
core clusters host powerful radio-loud BCGs, which are responsible for injecting energy into the ICM [130].
As for dusty galaxies, flux measurements of radio galaxies in the field of clusters will be used to account for
their contribution in SZ analyses (chapter 3).

For illustration, in Fig. 1.8 we present a multi-wavelength view of the PSZ2 G091.83+26.11 galaxy cluster
at z = 0.822 from X-ray, optical, radio and millimetre observations. We witness the same elongated shape in
the four maps, as well as hints of a double interacting system [132].

1.2.3 Clusters of galaxies as a cosmological probe

As we have seen in Sect. 1.1, the distribution of matter halos in the Universe is sensitive to its expansion
history and matter content, as well as to the initial conditions in the primordial Universe [134]. Thus, galaxy
clusters can be used to probe the underlying cosmology through the estimation of the cosmological parameters.
In this section, we present the methods based on cluster number counts, on the analysis of the angular power
spectrum of the tSZ effect and on the measurement of the baryon fraction in clusters. Less common approaches
related, for example, to the ellipticity of clusters [135], to the measurement of H0 from the combination of SZ
and X-ray observations [136], to the nature of DM from merging clusters [137] or to the evolution of the CMB
temperature [138], will not be discussed. At the end of this section we compare the cosmological constraints
obtained with clusters to other cosmological probes.
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Cluster number counts

Cluster number count analyses consist in comparing the predicted abundance of halos, in a given cosmo-
logical scenario, with the observed one. The abundance of halos expected in a given redshift and mass range
is provided by the halo mass function dn/dMdz (Eq. 1.17). This function has to be calibrated on simulations
in order to relate the cosmological parameters to the number of clusters that are formed. With the drop of
statistical errors thanks to large cluster catalogues in the near future (Sect. 1.2.3), the uncertainties related to the
knowledge of the halo mass function will become non-negligible. It will, therefore, be necessary to improve its
accuracy [139].

From the observational side, large surveys map the sky, detect clusters and provide catalogues of galaxy
clusters with their mass and redshift [95, 140–142]. However, multiple things have to be considered before
comparing the observed cluster abundances to the halo mass function.

First, a survey will never be able to observe all the clusters in the sky. Owing to the finite speed of light,
only a portion of the sky, given by the comoving volume Vc, will be observable. In addition, the surveys might
not cover the full sky, but only a solid angle, Ω. Under ideal conditions, the abundance of observed clusters per
mass, redshift and solid angle unit is:

dn
dMdzdΩ

=
dn
dM

dVc

dzdΩ
. (1.30)

Secondly, all the clusters within the observable volume of the survey will not be detected. Quantified by
the selection function χ̂(M, z, l, b), the probability of a survey to detect a cluster of mass M and redshift z at a
position in the sky (l, b), will depend on the quality of the observations, the algorithm used to detect clusters
and on the observable in itself. Thus, the selection function quantifies the capacity of an experiment to identify
clusters and it has to be assessed from simulations. The number of expected clusters with redshift and masses
between zi and zi + ∆zi and Mi and Mi + ∆Mi is,

ni =

∫
dΩ

∫ zi+∆zi

zi

dz
∫ Mi+∆Mi

Mi

dM
dn
dM

dVc

dzdΩ
χ̂(M, z, l, b). (1.31)

Third, as we will see in Sect. 1.3, the mass of clusters is not an observable quantity and has to be estimated
under diverse assumptions that will depend on the type of observation. Therefore, the selection function must
encode instrumental selection effects related to the quantity used to estimate the mass. For instance, for sur-
veys at millimetre wavelengths (Sect. 1.2.2) observing the SZ effect, the observable is given by the integrated
Compton parameter Y∆ (Eq. 1.55) and the probability of observing a cluster of amplitude Y∆ and size θ∆ for a
cluster of mass and redshift M∆ and z is P(Y∆, θ∆|z,M∆). Therefore, the selection function is

χ̂(M∆, z, l, b) =
∫

dY∆

∫
P(Y∆, θ∆|z,M∆) χ(Y∆, θ∆, l, b) dθ∆, (1.32)

where χ(Y∆, θ∆, l, b) is the probability of the experiment to detect a cluster of amplitude Y∆ and size θ∆ at a
given sky position (l, b) above a given signal-to-noise (S/N) ratio.

The number of clusters Ni measured by a survey in the mass and redshift bin i can finally be compared to
the predicted value ni (Eq. 1.31). The cosmological parameters in ni (encoded in the halo mass function and the
comoving volume factors) that maximise the likelihood with respect to the Ni distributions are the cosmological
result of cluster number count analyses. Potential biases in the raw data, in the selection function or in the
observable-mass relation impact directly the inferred cosmological parameters and have to be accounted for
[5].

In the last decade the Planck, ACT and SPT instruments have observed large fractions of the sky at millime-
tre wavelengths and, by measuring the SZ effect, they have provided large galaxy cluster catalogues [8, 141,
142] with a few thousand of detected clusters in total. The different instrumental and observational capabilities
of those instruments have been complementary to observe clusters in different mass and redshift ranges. In the
left panel in Fig. 1.9 we show the detections in the mass-redshift plane for the different surveys.
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Figure 1.9: Cluster number counts. Left: mass and redshift of clusters detected with Planck (purple), ACT (blue) and SPT (plus
sign markers, different colours for different sky coverages). Small and big blue markers show the detected clusters for different S/N
thresholds. Figure from Hilton et al. (2021) [141]. Right: impact of the halo mass function on the posterior distributions of the σ8 and
Ωm parameters in the cluster number count analysis in Planck Collaboration et al. (2016) [6]. Grey contours are obtained by assuming
the function in Tinker et al. (2008) [34], while the red is the result with Watson et al. (2013) [143].

Cosmological analyses with cluster number counts have been carried out individually [5–9] and from the
combination of multiple instrument detections [144]. The analysis in Planck Collaboration et al. (2016) [6]
with 439 Planck clusters, combined with baryon acoustic oscillations (BAO) and BBN constraints, concluded
that the amplitude of the matter fluctuations and the matter density are σ8 = 0.76± 0.03 and Ωm = 0.33± 0.03,
the results varying with the priors in the mass calibration. In the right panel in Fig. 1.9 we show the impact of
the chosen halo mass function on the resulting cosmological parameters. As mentioned at the end of Sect. 1.1.5,
we also observe in Fig. 1.9 that σ8 and Ωm are correlated.

The cosmological analysis of 343 SPT clusters spanning the redshift range 0.25 < z < 1.75 concluded that
σ8 = 0.781 ± 0.037 and Ωm = 0.276 ± 0.047, assuming a flat Cold Dark Matter cosmological model with dark
energy and with the sum of neutrino masses as a free parameter [8]. In Salvati et al. (2022) [144] Planck and
SPT cluster number counts were jointly reanalysed, showing the impact that the mass calibration, the assumed
priors and the sample can have on the cosmological results. Making use of 15 ACT clusters and a fixed scaling
relation between the observable and the mass, in addition to BBN and H0 constraints, authors in Hasselfield
et al. (2013) [9] obtained Ωm = 0.252 ± 0.047 and σ8 = 0.872 ± 0.065.

Observations at optical wavelengths have also enabled cluster number count analyses. In Costanzi et al.
(2019) [10] the Sloan Digital Sky Survey (SDSS) data was used to estimate the abundance of clusters from the
observation of member galaxies. For the cosmological study they used a sample of 6964 clusters in the redshift
range 0.1 < z < 0.3 and concluded that S 8 = 0.79+0.05

−0.04, including some priors on H0 and BBN and assuming
a flat ΛCDM model with massive neutrinos. In Abbott et al. (2020) [96] a very low value of S 8 was obtained
from optical observations of clusters from the Dark Energy Survey (DES) Year 1 dataset, S 8 = 0.65 ± 0.04.
Authors in Abbott et al. (2020) [96] indicated that modelling issues or systematic errors in the data might
be present in their analysis. By exploiting the 3652 galaxy clusters in the redshift range 0.1 < z < 0.6 of
the AMICO Kilo Degree Survey (KiDS) DR3 catalogue, the number count study in Lesci et al. (2022) [11]
obtained Ωm = 0.24+0.03

−0.04, σ8 = 0.86+0.07
−0.07 and S 8 = 0.78+0.04

−0.04.

Large galaxy cluster catalogues have also been built from observations at X-ray wavelengths [12–14]. In
the last years possible biases in cluster catalogues selected from X-ray observations have been largely debated
(Sect. 1.2.2). A careful selection was done when building the XXL Survey, with the aim of having a sample
suitable for cosmological studies [14]. In Garrel et al. (2022) [145] 128 of the XXL clusters with redshifts up to
z ∼ 1 and observed with the XMM-Newton satellite were used for a cosmological analysis. Authors concluded
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Figure 1.10: Marginalised probability density distributions of σ8 and Ωm. Left: constraints obtained from ROSAT cluster catalogues.
The solid red contours correspond to the NORAS II cluster sample and the blue dashed lines to REFLEX II. Figure from Böhringer
et al. (2017) [146]. Right: a combination of σ8 and Ωm posterior distributions from the analysis of the tSZ power spectrum (in brown
and orange), from cluster number counts (in green), and from the analysis of the CMB anisotropies with BAO constraints (dark blue),
and with additional constraints from CMB lensing (bright blue). Extracted from Planck Collaboration et al. (2016) [148].

that the best parameters describing the observed cluster abundances are: σ8 = 0.99+0.14
−0.23, Ωm = 0.296 ± 0.034

and S 8 = 0.98+0.11
−0.21. By using 860 clusters with a median redshift of z = 0.102 observed with the ROentgen

SATellite (ROSAT), authors in Böhringer et al. (2017) [146] obtained the posterior distributions for σ8 and Ωm
shown with red contours in Fig. 1.10. The blue contours correspond to the analysis in Böhringer et al. (2014)
[147] for 910 different galaxy clusters also observed by ROSAT. After ROSAT, eROSITA has imaged the sky
in X-rays and, for the moment, a catalogue of 542 candidate clusters and groups of galaxies has been made
available [15]. In addition to the mentioned works, multiple X-ray-based studies have used cluster number
counts to infer the underlying cosmology (see section 5.1.2 in Pratt et al. (2019) [48]).

Together with eROSITA, which plans to detect ∼ 105 galaxy clusters up to z > 1 in X-rays, at optical
wavelengths Euclid and the Nancy Grace Roman Space Telescope, as well as the LSST camera, will provide
very large galaxy cluster catalogues that will reduce the statistical errors in cluster number count analyses. At
millimetre wavelengths, the Simons Observatory [149] plans also to detect ∼ 16, 000 galaxy clusters, being
able to observe more than 3000 at z > 1 and about 50 at z > 2. The next generation of CMB experiments,
named CMB-S4, is expected to observe at high significance (> 5σ) 70, 000 clusters of galaxies [150].

Angular power spectrum of the tSZ effect

An alternative approach consists in using the angular power spectrum of the full-sky thermal SZ effect
(Sect. 1.2.2) to constrain the cosmological parameters. We have seen that the amplitude of the distortion of the
CMB spectrum caused by the tSZ at millimetre wavelengths is characterised by the Compton parameter y. By
mapping the full sky, one can build a y(n⃗) map, that can be decomposed in spherical harmonics

y(n⃗) =
∑
ℓ,m

yℓmYℓm(n⃗). (1.33)

From this, the power spectrum of the y-map is given by

CtSZ
ℓ =

1
2ℓ + 1

∑
m

yℓmy
∗
ℓm, (1.34)

with ℓ the multipoles. However, the cluster population does not follow a Gaussian field and it is not well
represented by Eq. 1.34. Instead, according to the halo model, the statistical properties of the matter density
field can be modelled assuming that all the matter content in the Universe is in the form of virialised halos. In
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this framework, the 1-halo contribution to the angular power spectrum of the tSZ effect is

C1h
ℓ =

∫
dVc

dzdΩ
dz

∫
dn

dM500
|yℓ(M500, z)|2 dM500, (1.35)

where yℓ(M500, z) is the two dimensional Fourier transform of the electron pressure profile Pe,

yℓ(M500, z) =
σT

mec2

4πR500

ℓ2
500

∫
x2 sin(ℓx/ℓ500)

ℓx/ℓ500
Pe(x|M500, z) dx, (1.36)

with x ≡ r/R500 the normalised radial distance to the centre of the halo, ℓ500 ≡ DA/R500 and Pe(x|M500, z) a
universal pressure profile model that depends on M500 and z. DA is the angular diameter distance.

The observed Cℓ power spectrum is, in reality, the sum of several components. In practice we use compo-
nent separation algorithms (like, for example, the Internal Linear Combination technique used in the MILCA
algorithm [151]) in multi-frequency sky maps to isolate the tSZ signal. Nevertheless, residuals from other
components are expected. For the Planck case we measure

Cℓ = C1h
ℓ + ACIBCCIB

ℓ + AIRCIR
ℓ + AradCrad

ℓ + ACNCCN
ℓ , (1.37)

where C1h
ℓ is the component that will be used to recover the cluster cosmological information and CCIB

ℓ
, CIR

ℓ ,
Crad
ℓ

and CCN
ℓ

are respectively the residual power spectrum of the Cosmic Infrared Background (CIB), the power
spectrum of infrared sources, the power spectrum of radio sources and the correlated noise. ACIB, AIR, Arad and
ACN are the corresponding amplitudes, which are generally fitted to the data.

By assuming a universal pressure profile (Sect. 1.2.1) and a relation between the thermal energy in clusters
and their mass, as well as the number of expected clusters according to a halo mass function, one can model
C1h
ℓ [148]. Thus, the model of the tSZ power spectrum will depend also on Ωm and σ8. The parameters that

maximise the likelihood between the Cℓ measurements and the model described by the Eq. 1.37 will be the
cosmological results of the tSZ angular power spectrum analysis. In the right panel in Fig. 1.10 we present in
brown and orange the posterior distributions of the combined Ωm and σ8 parameters obtained from the power
spectrum analysis of the tSZ data from Planck observations [148]. The difference between the brown and
orange results resides in the mass calibration of clusters. The brown histogram can be compared to the result
from number counts in green.

In conclusion, the tSZ power spectrum approach is complementary to cosmological studies based on cluster
number counts, but it also requires precise knowledge of the pressure profile and mass in clusters. In addition,
the presence of contaminants (CIB, IR, rad, CN) has to be carefully considered. The capability of different
instruments to probe different multipoles can help disentangle the contribution of each component in Eq. 1.37.
For instance, the angular resolution of Planck observations limits the power spectrum to multipoles of ℓ ≤ 2000.
The higher resolution of ACT and SPT instruments enables probing larger multipoles [152].

Baryon fraction

The baryon fraction in clusters and its evolution with redshift are additional cosmological probes. We define
the baryon fraction in clusters as the ratio between their baryonic and total mass,

fb =
Mb

Mtot
=

Mgas + M∗
Mtot

= fgas + f∗, (1.38)

with the baryonic mass being the sum of the mass of the ionised gas in the ICM (Mgas) and of the stellar content
(M∗).

On the one hand, baryon fraction measurements are used to quantify to which extent the distribution of
matter in clusters is representative of the matter content in the Universe [153]. From the comparison of fb to the
ratio of baryonic matter density and total matter density in the Universe, Ωb/Ωm, we can measure the departure
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from the Universal fraction. How this deviation from Ωb/Ωm evolves with redshift and with the size of the
clusters, as well as how the baryonic content is separated between the gas and the stellar matter will impact the
cluster assembly and the galaxy evolution and star-formation efficiency within clusters [154]. In Sect. 5.3 we
will measure the gas fraction fgas for four intermediate to high redshift clusters and explain all the additional
physical processes that have to be taken into account to conform to the Universal value.

On the other hand, some works [155, 156] try to directly infer cosmological parameters from the measure-
ment of the gas fraction in individual clusters. The relation between the Universal baryon fraction and the gas
fraction can be modelled as

fgas = K
Υ(M, z)
B(M, z)

A(z)
(
Ωb

Ωm

) Dref
A (z)
DA(z)

3/2

− f∗, (1.39)

with

A(z) ≃
(

H(z)DA(z)
[H(z)DA(z)]ref

)0.442

. (1.40)

In these equations K is the instrumental calibration factor that accounts for possible biases in the masses
estimated with the data from a given instrument with respect to the results from another instrument (see chap-
ter 6). B(M, z) quantifies the potential bias in the total mass estimate related to the assumed hypotheses. All
the quantities denoted with “ref” correspond to the reference cosmology used for the analysis and Υ(M, z) is
the baryon depletion factor that describes the amount of baryons that are depleted in clusters due to physical
processes that occur within them. To reconstruct the gas mass, as we will do in Sect. 5.3, this type of analyses
require X-ray observations. For example, authors in Wicker et al. (2023) [156] fit the cosmological parameters
in Eq. 1.39 to the measurement of fgas for 120 clusters observed with Planck and XMM-Newton satellites. The
dependence on the cosmological model is encoded in the A(z), Ωb/Ωm andDA(z) factors.

Comparison to other cosmological probes

Cosmology with clusters of galaxies is limited by systematic effects and, usually, these analyses rely on mul-
tiple assumptions. However, they give a complementary picture of the matter distribution in the late-Universe.

The cluster number count analysis in Planck Collaboration et al. (2014) [5] showed a tension on the S 8
parameter with respect to the results obtained from the analysis of the CMB anisotropies also with Planck data
(as shown in the right panel in Fig. 1.10). The left panel in Fig. 1.11 shows in blue the posterior probability
distribution contours obtained from the combination of cluster number counts, BAO and BBN and in red the
posterior distributions corresponding to the CMB analysis. Such tension, at the level of ∼ 2.7σ, was confirmed
by the analysis in Planck Collaboration et al. (2016) [6], the tension level varying with the assumed scaling
relation between the observable (Y∆) and the mass of clusters. According to the CMB results, we should
observe twice as many massive galaxy clusters in the Universe as we detect [19]. In Fig. 1.12 we present a
summary of the constraints on S 8 from different observables and works. The dark blue markers on top show
the results for different CMB analyses. Brown markers correspond to cluster count (CC) analyses based on SZ
data.

A different calibration of the cluster masses in the SZ analyses, including, for example, a corrective bias that
would increase the mass values (Sect. 1.3.4) would move the blue contours in Fig. 1.11 towards CMB results
and resolve the tension. Also, adding a non-minimal mass for neutrinos would lower the σ8 results obtained
with the CMB anisotropies [6]. However, the second option would increase the tension on the H0 parameter
between the CMB and other direct H0 estimates, in particular, the discrepancy with the results from Supernovae
calibrated with Cepheids (see figure 2 in Abdalla et al. (2022) [19]).

We observe in Fig. 1.12 that cluster number count analyses based on optical and X-ray observations (shown
in red) also tend towards lower values of S 8 than CMB anisotropies. Even if the tension is weak, the situation
is not satisfactory. From the clusters side, it is not clear if the discrepancy has its origin in a wrong modelling
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Figure 1.11: Posterior density distributions of cosmological parameters. Left: red contours show the results for the CMB analysis in
Planck Collaboration et al. (2014) [157] and the blue correspond to the cluster count analysis with clusters detected in SZ by Planck,
with additional constraints from BAO and BBN. Figure from Planck Collaboration et al. (2014) [5]. Right: comparison of recent
cosmological results obtained from cosmic shear analyses (blue, green and red) and from the Planck Collaboration et al. (2020) [28]
CMB anisotropies (orange). Figure from Li et al. (2023) [158].

of the astrophysical processes in clusters or if it corresponds to an incomplete understanding of the structure
formation and evolution in the Universe.

There are also cosmological studies based on the weak lensing (WL or cosmic shear) of the light of galaxies
by all the matter in the way to the observer. Yellow markers show in Fig. 1.12 the constraints on S 8 from
different WL works in the literature. In addition, the distribution of galaxies in the Universe can also be
used as a cosmological probe (galaxy clustering, Baryon Acoustic Oscillations and Redshift-space distortions,
respectively, GC, BAO and RSD). Orange markers in Fig. 1.12 indicate the results for the S 8 parameter from
combined WL and galaxy clustering analyses. Bright blue and green markers show respectively the constraints
on S 8 for GC and RSD studies. We observe that, in agreement with cluster number count and tSZ power
spectrum results, they tend to low values. The discrepancy between the cosmological parameters inferred
from CMB anisotropies and from cluster and galaxy observations is understood to be a tension between early-
Universe (the CMB at z ∼ 1100) and late-Universe (galaxies and clusters mainly at z < 1 − 2) probes. In
this regard, the Subaru Hyper Suprime-Cam (HSC) collaboration focused their Year 3 (Y3) data analysis on
the inference of a robust and unbiased S 8 estimate. The results, published at the beginning of 2023, confirm
that from an analysis of cosmic shear, galaxy-galaxy weak lensing and projected galaxy clustering (with the
HSC-Y3 shape catalogue and the SDSS DR11 spectroscopic galaxy catalogue) and assuming a ΛCDM model,
S 8 exhibits a ∼ 2.5σ tension with Planck CMB results [159]. From the analysis in Miyatake et al. (2023) [159],
they obtain S 8 = 0.763+0.040

−0.036. By using a different modelling, but also based on HSC-Y3 and SDSS DR11 data,
authors in Sugiyama et al. (2023) [160] obtain less tight results, which are compatible with both the Planck
Collaboration et al. (2020) [28] and the Miyatake et al. (2023) [159] constraints. Cosmic shear analyses based
on HSC-Y3 data [158, 161] show also a ∼ 2σ tension with Planck Collaboration et al. (2020) [28] (right panel
in Fig. 1.11).

Also in the spring of 2023, new cosmological results were published based on the CMB lensing signal
measured with ACT [162, 163]. This probe traces the matter distribution in the Universe in the redshift range
between z ≃ 0.5 to 5 and in linear scales. In the left panel in Fig. 1.13 we present in red the posterior distribu-
tions for the σ8 and Ωm parameters obtained from the combined CMB lensing data from ACT and Planck. The
different blue contours correspond to the latest HSC, KiDS and DES constraints and in black the result from the
analysis of the CMB anisotropies with Planck. In the right panel in Fig. 1.13 the constraints on S 8 are shown
in green for CMB anisotropy analyses, in red for CMB lensing results (combined with BAO measurements)
and in blue for late-Universe probes in the non-linear regime, as well as for some cross-correlation studies. We
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Figure 1.12: A summary of the constraints on S 8 from different probes and works in the literature. The dark blue results on top
correspond to early-Universe observations, while the rest were derived from the analysis of the late-Universe large scale structure. The
figure has been extracted from the review by Abdalla et al. (2022) [19].
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Figure 1.13: Cosmological results from the ACT CMB lensing compared to other works. Left: posterior probability density distribution
for σ8 and Ωm. Red contours show CMB lensing results from ACT and Planck combined with BAO constraints. Blue contours
correspond to the latest results from galaxy weak lensing. Right: marginalised posteriors of S 8 for studies with CMB anisotropies,
CMB lensing+BAO and galaxy distributions, in green, red and blue, respectively. Both figures are from Madhavacheril et al. (2023)
[162].

observe from this figure that CMB lensing results agree with the prediction from the early Universe, while blue
markers tend towards lower values. In conclusion, authors in Madhavacheril et al. (2023) [162] suggest that the
aforementioned tension of low redshift probes with high redshift observables might be more of a discrepancy
between low/intermediate redshifts and non-linear/linear scales: the matter at intermediate-z and linear scales
and the matter at low-z and in non-linear scales give different cosmological results.

In conclusion, further investigation is required to clarify whether these tensions originate from systematic
effects in the analyses or from unrevealed physical processes. Studies based on galaxy observations are reaching
now high precision results. Regarding the cosmology with galaxy clusters, a better knowledge of their masses
will be fundamental. Large cluster catalogues will help to downsize the statistical errors in the near future.

1.3 The mass of galaxy clusters
The mass of galaxy clusters is, together with their redshift, the most fundamental property for cosmological

analyses with clusters. Nevertheless, the mass is not an observable quantity and has to be estimated under sev-
eral hypotheses from observations. A large part of this thesis is dedicated to the reconstruction and comparison
of cluster masses. In this section, we describe different approaches for their estimation.

We first present the mass reconstruction from the kinematics of member galaxies and from the lensing on
background sources. Then, we detail the estimation of the mass under the hydrostatic equilibrium hypothesis,
as well as its related bias. The scaling relations between observables and masses are explained at the end of this
section.

1.3.1 Kinematics of member galaxies

The first evidence of the large mass of clusters arose from the observation of the cluster galaxy members by
Zwicky in the 1930s [39]. Assuming that galaxies are tracers of the total matter in the cluster, the distribution
of radial and tangential velocities of the cluster member galaxies is related to the mass of the underlying matter
halo. If in dynamical equilibrium and in the absence of bulk motions, following the Jeans equation we can write

Mdyn(< r) = −
r2

nG
d(nσ2

r )
dr

−
2r
G

(
σ2

r − σ
2
t

)
. (1.41)

Here Mdyn(< r) is the dynamical mass of the cluster at a radius r from the centre and it can be used as an
estimator of the total mass. The number density of galaxies is n and σr and σt are the radial and tangential
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velocity dispersions of the galaxies, respectively. Thus, the estimation of the dynamical mass requires the
measurement of individual galaxy velocities. In practice, only the line-of-sight component of the velocities
can be observed, via the redshift measurements. The impossibility of having access to the radial and tangential
components introduces the so-called mass-anisotropy degeneracy, which can only be solved by assuming matter
and velocity distribution models (see Pratt et al. (2019) [48] for a more detailed explanation). Beyond the virial
equilibrium region, the Causticmethod is used to relate galaxy velocities to the mass of the cluster they belong
to [164].

The kinematics of galaxies have been very useful to trace the matter profile in halos for large radial ranges,
from the core to the outskirts of clusters [140, 165]. Nonetheless, these mass estimates are subject to numerous
systematic effects. In addition to the mass-anisotropy degeneracy, reliable dynamical mass estimates need a
large amount [48] of well measured galaxy redshifts per cluster. If member galaxies are not properly selected,
that is, if interlopers contaminate the sample of member galaxies, according to simulations [166] cluster masses
are overestimated (underestimated) for low (high) mass halos. Moreover, if the triaxial shape of clusters and
their orientation with respect to the line-of-sight are not considered, dynamical masses are biased. Latest
dynamical mass studies rely on scaling relations to estimate masses based on velocity dispersion measurements
(see Sect. 1.3.5, [167, 168]).

1.3.2 Lensing of background sources

The light rays of sources in the background of galaxy clusters are deflected via the lensing effect on the way
to the observer due to the deep gravitational potential well of clusters. These deviations are sensitive to all the
gravitating matter the light traverses, therefore, they trace the total mass of clusters, including both the dark and
the baryonic content.

At visible and infrared wavelengths (Sect. 1.2.2) the stars in galaxies emit in the background of clusters
and the lensing effect distorts the galaxy shapes. This lensing effect can be used to reconstruct the total mass
of clusters. The formalism that describes the relation between the light deflection and the traversed cluster
mass density is presented in chapter 5. We distinguish the strong and weak lensing effects, that show different
features, depending on the density of the matter traversed by the light with respect to the background density
(Sect.5.1.1).

We are currently experiencing a rise in galaxy cluster mass reconstructions based on lensing data, which
is closely related to the technical improvements in the last decade [48]. The most important asset of lensing
masses is that they do not rely on any assumption regarding the physical nature of the matter and neither on
the dynamical state of the cluster. However, for the cluster mass reconstruction an estimation of the redshift
of every emitting background galaxy is needed. The precision of these redshift estimates, together with the
accuracy of the galaxy shape and multiple images measurements, will determine the quality of the lensing
masses.

In addition, since the early Universe contains a smaller amount of galaxies, high redshift galaxy clusters
have less background sources [169]. As a consequence, their lensing mass reconstructions are intrinsically
subject to larger statistical uncertainties. The triaxial nature of dark matter halos is also a source of error for
lensing masses. We will present a dedicated study based on simulations in chapter 7. Overall, lensing masses
are thought to be (almost) unbiased, but scattered, estimates of the total mass in clusters.

As aforementioned, the light from the CMB that we observe at millimetre wavelengths is also lensed in
the presence of matter along the line-of-sight (Sect. 1.2.2). Presented in Melin and Bartlett (2015) [129] as
“a promising new technique” to estimate cluster masses, the CMB lensing method is based on the modelling
of the characteristic pattern that the potential well of clusters imprints on the CMB anisotropies. One of the
advantages of the CMB lensing is that it works for high redshift clusters as well as for low redshift ones and
that, contrary to the lensing of galaxies, the redshift of the emitting source, that is, the CMB, is precisely
known. Nevertheless, the signal is extremely weak and individual cluster mass reconstructions have still very
large uncertainties [129]. Moreover, CMB lensing reconstructions are affected by the contaminants in the
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foreground of the CMB; namely, by the SZ effect of clusters. The thermal SZ effect of clusters can be removed
by spectral separation methods, but it is not the case of the kSZ, which has the same spectral signature as the
CMB.

Planck data has already enabled the statistical measurement of the CMB lensing signal related to individual
clusters [6, 170]. Present and future experiments, such as ACT [171, 172], SPT [173] and CMB-S4 [174], will
make use of the CMB lensing to reconstruct the gravitational potential of clusters of galaxies.

1.3.3 The hydrostatic mass

Following the assumptions in the Press-Schechter formalism (Sect. 1.1.5), galaxy clusters at redshift z = 0
are virialised spherical matter halos. A system is virialised within a volume when the total internal energy in
that volume is −1/2 times the total gravitational binding energy. The radius at which this condition is satisfied
defines the virial radius Rvir.

If, in addition, we assume that the equilibrium between the internal energy and the gravitational force is
assured at all positions in the cluster, with negligible velocity fields, we can write that

1
ρcoll

−→
∇Pcoll = −

−→
∇Φ, (1.42)

which is the hydrostatic equilibrium (HSE) equation. Here ρcoll and Pcoll are the density and pressure of a
collisional gas and Φ the cluster gravitational potential,

Φ(⃗r) = −G
∫

d3r⃗′
ρ(r⃗′)

|r⃗′ − r⃗|
, (1.43)

with ρ(⃗r) the total mass density of the cluster at a position r⃗ from the centre.

Considering collisionless dark matter, the only collisional gas in clusters is the ICM plasma. After ∼ 109

years of formation process galaxy clusters are expected to reach HSE [32]. At the same time, all the kinetic
energy of merger and accretion processes is predicted to thermalise [175]. Thus, most of the gas pressure
in evolved and relaxed clusters is considered to have a thermal origin (Pcoll ∼ Pthermalised gas). Under these
assumptions and following Eq. 1.42, if the gas distribution traces the potential well, the measurement of ICM
gas density and thermal pressure enables the reconstruction of the total gravitational potential of the cluster.
For spherical clusters the hydrostatic equilibrium equation is

1
ρcoll

dPcoll

dr
= −

dΦ
dr
= −
−GMHSE(< r)

r2 , (1.44)

with MHSE(< r) the hydrostatic mass of the cluster enclosed within the radius r. As presented in Sect. 1.2.2,
the observations of galaxy clusters in X-rays and through the SZ effect allow us to reconstruct their electron
density (ne), temperature (Te) and thermal pressure (Pe). The gas mass density in clusters is proportional to
the electron number density, ρcoll = µmpne, with µ and mp the mean molecular weight of the ICM gas and the
proton mass, respectively. We can assume µ ≈ 0.6 [175, 176] for the gas in clusters. Therefore, the HSE mass
is related to the observables with,

MHSE(< r) = −
1

µmpG
r2

ne(r)
dPe(r)

dr
. (1.45)

Following this equation and as already demonstrated in the literature [119, 177, 178], the HSE hypothesis
offers a way to directly compute the mass profile of clusters from SZ and X-ray observations. An alternative
formulation of Eq. 1.45 is

MHSE(< r) = −
kBTe(r)r
µmpG

(
d ln ne

d ln r
+

d ln Te

d ln r

)
, (1.46)
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which is commonly used in X-ray-only analyses, since the derivatives are directly computed on the electron
density and temperature observables. It has been shown that how the pressure profile derivative is computed,
either using Eq. 1.45 or 1.46, matters [86, 179]. In addition, X-ray and SZ observations are subject to different
systematic effects of instrumental (e.g., absolute calibration of the spectroscopic temperatures) and physical
(e.g., gas clumping) origin. In chapters 4 and 5 we compute the HSE masses of individual galaxy clusters from
the combination of X-ray electron density and SZ-derived electron pressure profiles and compare them to the
HSE mass estimates obtained from X-ray-derived electron density and temperature profiles.

The reconstruction of HSE mass profiles requires spatially resolved X-ray and/or SZ observations. The
XMM-Newton and Chandra satellites offer angular resolutions below 10 arcsec, allowing them to resolve clus-
ters up to high redshift and to identify contaminating gas clumps and point sources in the field of view. At
millimetre wavelengths, NIKA, MUSTANG [180] and Bolocam [181] have been key instruments to probe the
ICM of clusters through the SZ effect. Nowadays, NIKA2 (see chapter 2) and MUSTANG2 [182] cameras
offer the best capabilities for mapping galaxy clusters. By using the Atacama Large Millimeter/submillimeter
Array (ALMA), recent works have also re-demonstrated the possibility to observe and investigate the ICM gas
in the core of halos through interferometry [183], which was already known since the first SZ observations of
clusters at the end of the 20th century (Sect. 8.1). In chapter 8 we present the first detection with the NOrthern
Extended Millimeter Array (NOEMA) of the thermal SZ in a cluster.

Compared to lensing masses, HSE estimates are less scattered, since the gas in clusters is more spherically
distributed than the dark matter. Based on hydrodynamical simulations, we will study this difference in chap-
ter 7. The main drawback of HSE mass estimates is the large number of assumptions they rely on. Deviations
from hydrostatic equilibrium, non-spherical symmetry or an incomplete thermalisation of the ICM will bias the
reconstructed mass.

1.3.4 The hydrostatic mass bias

It has been widely investigated and proved that masses reconstructed under the hydrostatic equilibrium
hypothesis are biased low. This HSE mass bias, b or bHSE, could be the needed element to reconcile the
cosmological tension of cluster number count analyses that rely on HSE masses with the power spectrum of
CMB anisotropies [5, 184] presented in Sect. 1.2.3. Nevertheless, as explained in Sect. 1.2.3, this S 8 tension is
not unique to cluster count results with HSE masses. However, all along this thesis we will assume hydrostatic
equilibrium to compute cluster masses from the combination of SZ and X-ray data and we will investigate the
validity of such an assumption. Comprehending the HSE mass bias might be a way to shed light on the still
incomplete understanding of the baryonic physics that could be at the origin of the S 8 tension.

The HSE mass bias is defined as the relative difference between the HSE mass estimate and the true mass
of the cluster, Mtrue,

b = (Mtrue − MHSE)/Mtrue. (1.47)

In the literature, we find different approaches to estimate the hydrostatic mass bias. On the one hand, studies
based on simulations compare the HSE masses of clusters to their true masses. HSE masses are computed by
combining, under the HSE hypothesis (Eq. 1.42), the thermodynamical quantities (density, temperature and/or
pressure) from the intracluster medium in the simulations. A large variety of simulations have been used in
different works in the literature [5, 179, 185, 186] and they all tend to a bias of (1 − b) = MHSE/Mtrue > 0.7.
The left panel in Fig. 1.14 shows a compilation of the bias values obtained from various simulations in different
studies [179].

On the other hand, combined CMB power spectrum and cluster number count analyses fit the bias value that
is required to get consistent results. According to Planck Collaboration et al. (2014) [5] (1 − b) = 0.59 ± 0.05
would be needed to reconcile the results from the Planck CMB analysis in Planck Collaboration et al. (2014)
[187] with the cluster counts cosmology from Planck Collaboration et al. (2014) [5]. The posterior analysis of
Planck data in Planck Collaboration et al. (2016) [6] obtained (1 − b) = 0.58 ± 0.04, together with (1 − b) =



42 1.3. THE MASS OF GALAXY CLUSTERS

Figure 1.14: Summary of HSE mass bias measurements from different works in the literature with vertical red and orange areas
showing the value needed to reconcile the CMB. Left: HSE bias measurements from simulations, shades of blue representing different
complexity in the physics included in the simulations. Figure from Gianfagna et al. (2021) [179]. Right: estimates of the HSE
bias values obtained from the comparison of hydrostatic mass estimates to weak lensing masses. The purple area represents the bias
preferred by simulations. Figure extracted from Salvati et al. (2018) [184].

0.60 ± 0.042, (1 − b) = 0.61 ± 0.049 and (1 − b) = 0.66 ± 0.045 considering different priors for the bias
(based both on X-ray and lensing data). The updated analysis in Planck Collaboration et al. (2020) [28] gave
(1−b) = 0.62±0.03, compatible with the (1−b) = 0.62±0.07 from Salvati et al. (2018) [184]. Accounting for
the power spectrum of the thermal SZ effect together with the cluster number counts, Salvati et al. (2018) [184]
concluded that the bias needed to reconcile the CMB should be (1 − b) = 0.63 ± 0.04. Considering also the
trispectrum in the covariance matrix of the tSZ power spectrum analysis, Bolliet et al. (2018) [188] estimated
(1 − b) = 0.58 ± 0.06 (68% C.L.) to be compatible with CMB anisotropies.

In an attempt to have a direct measurement of the bias of observational HSE masses, several works have
compared the HSE masses to lensing mass estimates. Under the assumption that lensing masses are unbiased
estimates of the true mass of clusters, such HSE-to-lensing mass biases are good estimators of the HSE bias.
Most of the studies in the literature are based on lensing masses estimated from the weak lensing signal on
background galaxies (chapter 5). The right panel in Fig. 1.14 shows a compilation of hydrostatic-to-lensing
mass biases from different works. Despite the heterogeneity of the data and methods used in the various
studies, the presented results prefer values of MHSE/Mlens above 0.7. The orange area in Fig. 1.14 indicates the
value of the HSE mass bias needed for Planck masses to reconcile the CMB anisotropy results. We observe
that, in general, it is not compatible with the HSE-to-weak lensing mass biases. Lensing mass reconstructions
from a combination of weak and strong lensing data have also been used to measure the HSE-to-lensing mass
bias on small samples [189–191], obtaining MHSE/Mlens values that span from ∼ 0.6 to ∼ 1.

As above-mentioned, the lensing of the CMB anisotropies due to the presence of clusters can also be used
to estimate their mass [129]. A comparison of HSE and CMB lensing masses based on Planck data gave
1/(1 − b) = 0.99 ± 0.19, approximately (1 − b) = 1.01+0.24

−0.16 [6]. The posterior analysis in Zubeldia and
Challinor (2019) [170] fitted jointly the cosmological parameters and the HSE mass bias in the scaling relation
between the SZ signal from Planck and cluster masses, using CMB-lensing. They obtained that the bias is of
(1 − b) = 0.71 ± 0.10. According to the SPT data analysis by Baxter et al. (2015) [173], the masses inferred
from CMB-lensing are consistent with those estimated from the SZ.

Other than lensing, some works in the literature use the dynamical mass estimates of clusters, based on
the velocity dispersion of member galaxies, to compute the bias corresponding to HSE masses (see Ferragamo
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et al. (2021) [192] and references therein). According to the analysis with SDSS archival data in Ferragamo
et al. (2021) [192], for the 207 galaxy clusters studied, the HSE-to-dynamical bias of Planck masses is (1−b) =
0.83 ± 0.07(stat.) ± 0.02(sys.). Also from optical observations, authors in Aguado-Barahona et al. (2022)
[140] measured the HSE-to-dynamical mass bias for a different sample of 297 Planck clusters and obtained
(1 − b) = 0.80 ± 0.04(stat.) ± 0.05(sys.).

In Wicker et al. (2023) [156] authors investigated the evolution of the HSE bias with mass and redshift by
studying the gas mass fraction in galaxy clusters with XMM-Newton mass reconstructions from Lovisari et al.
(2020) [193]. The main result in Wicker et al. (2023) [156] is that the value of the HSE bias and its dependence
on mass and redshift varies significantly with the analysed cluster sample, in agreement with the conclusions
in Salvati et al. (2019) [194]. However, according to Wicker et al. (2023) [156] a value of (1 − b) ∼ 0.8 is
preferred. A different approach was taken in Hurier and Lacasa (2017) [195], where authors used the Planck
galaxy cluster number counts, tSZ power spectrum and bispectrum to constrain (1− b) = 0.71± 0.07. This was
obtained by fitting the normalisation of the SZ-mass scaling relation (SR), interpreting that the bias must appear
in the calibration of the scaling relation. They assumed a gNFW pressure profile for the gas in clusters, using
the best-fitting parameter values from Arnaud et al. (2010) [70], with the normalisation parameter computed to
agree with the scaling relation in Planck Collaboration et al. (2014) [5]. The choice of this particular pressure
profile could affect the resulting bias value.

There are, therefore, different issues to be considered. Firstly, as stated in Planck Collaboration et al. (2016)
[6], the main limitation of cosmological analyses with cluster number counts from SZ data (and, more generally,
from HSE cluster masses) is the large uncertainty on the HSE mass bias. But despite the large uncertainty, the
compilation of many studies shows that the bias values estimated with and without considering the need to
reconcile CMB results have different tendencies. Such inconsistency is in line with the more general tension
between results from early- and late-Universe probes presented in Sect. 1.2.3 (see Abdalla et al. (2022) [19] for
a review).

Any deviation from the assumptions needed to estimate HSE masses can introduce a bias on the mass.
However, the non-thermal pressure component in clusters seems to be the main source of bias. If the hypothesis
that gas in the ICM is thermalised is not satisfied, meaning that the kinetic energy is not completely dissipated,
it implies that non-thermal processes, such as turbulence and bulk motions, contribute also to the pressure in
the ICM. Thus, the thermal pressure underestimates the total pressure in the cluster, and in turn, does the HSE
mass. Simulations [62, 196] predict the non-thermal pressure to be 15 to 30% of the total, varying with the
accretion history of each cluster or with the considered radial range [48]. In Eckert et al. (2019) [53] authors
estimated the non-thermal pressure fraction from observations. They concluded that, for the 12 clusters in their
sample, the median non-thermal pressure fraction is 6% at R500 and 10% at R200.

Hence it is essential to have a deeper understanding of the HSE mass bias and its possible evolution with
mass and/or redshift. In chapters 5 and 6 we will investigate the deviation from hydrostatic equilibrium of
galaxy clusters by comparing HSE masses to lensing estimates.

1.3.5 Mass proxies and scaling relations

The masses of galaxy clusters are essential for cosmological purposes (Sect. 1.2.3). However, most of the
large galaxy cluster surveys cannot reconstruct resolved mass profiles of individual clusters using the presented
approaches and they need to rely on scaling relations that relate the observed quantities to the masses. Assuming
that galaxy clusters are self-similar, they are all expected to follow the same physical processes. If a global
physical property in a cluster is closely related to its mass in a given way, the same physical property will be
related in the same manner to the mass in every cluster. For this reason, scaling relations Q ∝ E(z)βMα

∆
[49]

should naturally exist between the mass and certain physical quantities, Q. The latter are named mass proxies.
Any deviation from the self-similar hypothesis implies a different physical behaviour, which is translated into
a scatter with respect to the scaling relation.

In practice, large galaxy cluster analyses proceed in the following way. First, a small and well characterised
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sample of clusters is selected. For those clusters the masses are estimated using any of the above-mentioned
reconstruction methods (or from simulations). Measurements of the proxy observable of interest are also avail-
able for each of the clusters in the sample, which allows one to build the observable-mass scaling relation. The
observable-mass scaling relation calibrated on the small sample is then applied to the observations of the full
cosmological catalogues. This method requires an accurate calibration of the SR since it will directly impact
the mass estimates and, consequently, the cosmological analyses. For instance, the sample of clusters used to
calibrate the SR has to be representative of the full population.

Multiple observables are proxies of the mass. Regarding the stellar content, the galaxy richness in clusters
is known to be correlated to the total mass of the matter halo [48]. The richness of a cluster is defined as
the number of member galaxies in the cluster brighter than a given magnitude limit. If the light traces the
underlying mass content, there should be a scaling relation between the number of galaxies and the mass in
a cluster. Robust scaling laws between the richness and lensing masses have now been established (see, for
example, Rozo et al. (2009) [197], Ford et al. (2015) [198] and Melchior et al. (2017) [199]) and are of crucial
importance for the cosmological exploitation of large-area optical surveys (e.g., SDSS, LSST, Euclid).

In addition, the velocity dispersion of the member galaxies is used as a mass proxy. For example, in
Ferragamo et al. (2021) [192] and Aguado-Barahona et al. (2022) [140] the dynamical masses within R200 were
computed following

Mdyn
200

1015 M⊙
=

(
σ200

A

)1/α
, (1.48)

with α and A the parameters of the scaling relation calibrated on simulations [167, 168].

Different observables of the ICM scale also with the mass. For self-similar clusters [48] we distinguish the
SR between the gas mass and the total mass,

Mgas
∆
∝ M∆, (1.49)

the scaling relation between the temperature (as derived from X-ray spectroscopy) and the mass,

TX ∝ E2/3(z)M2/3
∆
, (1.50)

and the SR with the X-ray luminosity,
LX ∝ E7/3(z)M4/3

∆
. (1.51)

The integrated SZ signal (and its X-ray equivalent, YX, established by Kravtsov et al. (2006) [200]) is also
related to the mass. For an ideal gas and in the case of an isothermal sphere, a solution to the hydrostatic
equilibrium equation in Eq. 1.45 is given by,

M(< r) = 4π
∫ r

0
r2ρ(r)dr =

2kBT
Gm

r, (1.52)

where m = µmp and ρ(r) are the mass of the particles that constitute the ICM and the spherical mass density,
respectively, so that ρ(r) = mne(r) = µmpne(r). As explained in Sect. 1.2.1, the size and mass of clusters is
usually defined at a given overdensity ∆ compared to the critical density of the Universe,

R∆ =
[

2GM∆
∆H2(z)

]1/3

, (1.53)

which means that the temperature and the mass of a cluster can be related with

kBT = µmp∆
1/3

[
GM∆H(z)

4

]2/3

. (1.54)
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In addition, we can define the integrated Compton parameter Y∆, from the spherical integral of the electronic
pressure in the ICM

Y∆ = 4π
σT

mec2

∫ R∆

0
Pe(r)r2dr. (1.55)

And by using again the ideal gas equation and Eq. 1.54,

Y∆ = 4π
σT

mec2µmp∆
1/3

[
GM∆H(z)

4

]2/3 ∫ R∆

0
ne(r)r2dr. (1.56)

The integral of the electron density is related to the gas mass density through the mean molecular weight, µe,
of the electrons, ρgas = µempne. Therefore, the gas mass is calculated as

Mgas
∆
= 4πµemp

∫ R∆

0
r2ne(r) dr. (1.57)

So, by defining the gas mass fraction in clusters as the ratio of the gas mass with respect to the total mass,
f gas ≡ Mgas/M (Eq. 1.38), the integrated Compton parameter scales with the cluster mass following,

Y∆ =
σT

mec2

(G
4

)2/3
f gas µ

µe
∆1/3H2/3(z)M5/3

∆
. (1.58)

Numerical simulations try to understand the potential deviations from the self-similar scaling relations and
scatters related to gas physics [201–203]. For example, LX–M and Y–M relations depend directly on the gas
content in clusters and they will be wrongly calibrated if the baryon depletion in clusters is misunderstood. In
this sense, calibrating the relations from simulations requires complete hydrodynamical models that consider,
in particular, the AGN feedback.

The scatters of the scaling relations change with the chosen observable. Good observables are those whose
relation to the total mass depends as little as possible on the gas physics and, therefore, give low scatter scaling
laws. The SZ is considered to be a robust mass proxy, given that the behaviour of the pressure in the cluster
(besides the core) is mainly driven by the potential well [204, 205]. For this reason, large galaxy cluster surveys
in SZ are key for the cosmology with cluster number counts, together with the SZ angular power spectrum.

A widely used SR between the SZ effect and the hydrostatic mass of clusters is the one derived from X-ray
data in Arnaud et al. (2010) [70] (see left panel in Fig. 1.15). However, this scaling relation was calibrated on
local clusters (z < 0.2) and any potential redshift evolution of the relation could not be accounted for. Posterior
works in Planck Collaboration et al. (2011) [206] and Planck Collaboration et al. (2014) [5] estimated also the
scaling relation between the SZ signal and the mass for 62 and 71 nearby galaxy clusters, respectively. Measur-
ing the scaling relation between the integrated Compton parameter and resolved HSE masses for intermediate
to high redshift (0.5 < z < 0.9) clusters is one of the goals of the NIKA2 SZ Large Programme (see Sect. 3.1).

To estimate the mass of ACT clusters, authors in Hilton et al. (2021) [141] used also the scaling relation
from Arnaud et al. (2010) [70], but compared the results to the masses obtained from scaling laws based on
additional scaling relations between richness and weak lensing [208, 209]. They concluded that masses from
the SR in Arnaud et al. (2010) [70] are lower than those from relations based on weak lensing measurements.
For the SPT analysis in Bocquet et al. (2019) [8] authors used the significance of the cluster detection, given
directly by the employed detection algorithm, as a mass proxy. In this work weak lensing masses were used
to calibrate the proxy-mass scaling relation. However, for the cosmological analysis in Bocquet et al. (2019)
[8], the cosmological parameters and those of the scaling relation were simultaneously fitted. There is now an
increasing preference towards cosmological analyses that fit jointly the observable-mass scaling laws and the
cosmological parameters. Nonetheless, as stated in Pratt et al. (2019) [48] and studied in Bocquet et al. (2015)
[210], both outcomes are degenerated and results have to be interpreted carefully.

Before finishing this section dedicated to the estimation of the mass of galaxy clusters, we would like to
remark that comparing different mass estimates and their corresponding uncertainties requires a careful under-
standing of the underlying hypotheses. An important part of this thesis is dedicated to this subject, especially
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Figure 1.15: Left: scaling relation between the integrated Compton parameter and the mass of clusters within R500. The thin black
line shows the best scaling law fitting the black data points. Different colour and linestyles correspond to different departures from
self-similarity and to different definitions of the integrated Compton parameter, respectively. Figure from Arnaud et al. (2010) [70].
Right: 2D posterior probability density contours of the Y5R500 and θs parameters obtained with the MMF3Matched Multi-filters on Planck
data [207]. Results for the PSZ2 G160.83+81.66 (CL J1226.9+3332) galaxy cluster. The black line shows the relation between Y5R500

and θs given by the pressure profile in Arnaud et al. (2010) [70] and the blue marker corresponds to the SZ flux value published in the
PSZ2 catalogue [142]. Figure provided by J.-B. Melin, equivalent to figure 16 in Planck Collaboration et al. (2016) [142].

in chapters 4, 5, and 6. Nonetheless, we will work with individual cluster masses that have been estimated
mostly from resolved observations. The comparison to masses provided in large cluster catalogues, such as
in the Planck Legacy Archive2, is even more delicate. In addition to all the aforementioned drawbacks and
hypotheses of scaling relations, the angular resolution of instruments like Planck is not enough to resolve the
cluster signal above a certain redshift. In those cases, only integrated quantities can be recovered using clus-
ter detection adapted filters [207]. In the right panel in Fig. 1.15 we show in red the outcome of one Planck
cluster detection algorithm for the PSZ2 G160.83+81.66 galaxy cluster. Planck data allows one to measure the
integrated Compton parameter at radii of 5 times R500 with respect to the size of the cluster (here given by the
θs parameter). However, uncertainties are too large and an additional constraint from X-rays (here in black)
was used to restrict the size and the SZ flux of the cluster. The value of the integrated Compton parameter in
the intersection shown by the blue marker was then used to estimate the cluster mass with an SZ-mass scaling
relation. It is therefore evident that the uncertainties of masses obtained with this method (for example, in
Planck Collaboration et al. (2016) [142]) and the ones from the M500 measurement in resolved mass profiles
are not of the same nature.

1.4 Conclusions

The standard model of cosmology offers, in general, a good description of the observed Universe and,
combined with inflation, can explain most of its history. However, understanding the nature of dark matter and
dark energy is still an open topic in the modern cosmology. All along this chapter we have also insisted on the
discrepancy between the measurements of the matter density and the amplitude of the density field fluctuations
in the current Universe and the results obtained from the extrapolation of high redshift measurements assuming
the evolution described by the standard cosmological model. The inconsistency is even stronger for the Hubble
constant, H0, describing the expansion rate. Such tensions motivate, on the one hand, a thorough investigation
of the systematic effects affecting each analysis, and, on the other hand, the research of possible extensions to
the standard model.

Clusters of galaxies are unique tracers of the structure formation in the Universe. They are (almost) self-

2https://pla.esac.esa.int/#catalogues

https://pla.esac.esa.int/#catalogues
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similar and multi-component objects that, observed at different wavelengths, probe the baryonic and dark mat-
ter distribution. How the matter is accumulated in the overdensity peaks and how gravity interplays with other
forces can be understood from the multi-wavelength studies of galaxy clusters. Thus, clusters are both inter-
esting astrophysical laboratories where galaxies coexist with the hot ionised plasma of the intracluster medium
and the dark matter, and also, key tools that can contribute to answering the open questions in cosmology.

The constraining power of cluster analyses for cosmological purposes is currently limited by the difficulty
in accurately recovering the mass of galaxy clusters. In this chapter we have presented different methods to
reconstruct the mass, based on diverse hypotheses and types of data. The comparison of masses estimated
under different assumptions will reveal the systematic effects related to each method and, in particular, precise
constraints on the HSE mass bias will be very valuable. Moreover, cosmological analyses with clusters observed
at millimetre wavelengths need to rely on a profile that describes, on average, the distribution of the pressure in
the ICM of every cluster. A well characterised profile from the core to the outskirts of clusters will require the
combination of different instruments that probe small to large angular scales. In addition, the evolution of the
mentioned HSE mass bias and of the mean pressure profile with redshift have still to be explored in detail.

Only multi-probe, multi-wavelength and multi-instrument studies will be able to answer these questions. In
this thesis, we intend to move a step forward in understanding the systematic effects that affect galaxy cluster
analyses.

Throughout the thesis we assume a flat ΛCDM cosmology with H0 = 70 km s−1 Mpc−1 and Ωm = 0.3.
The only exception is chapter 7, where we use the cosmology based on Planck Collaboration et al. (2016) [24]
results, to agree with the cosmological model assumed in the simulations.
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As described in the previous chapter, from millimetre and X-ray observations we can reconstruct the thermal
energy and electron density in the ICM of galaxy clusters and, therefore, the hydrostatic mass of clusters. In this
chapter, we present the NIKA2 instrument, that is used to observe the SZ of clusters at millimetre wavelengths.
We describe the steps needed to build cluster maps from NIKA2 observations. We will focus on the raw data
processing pipeline that aims at subtracting the different noise contaminants from the data. We also present
different approaches to quantify and account for the residual noise in the final maps and for the filtering of the
cluster signal due to the data processing.

2.1 NIKA2

The New IRAM KID arrays 2 or NIKA2 camera is a millimetre dual-band camera built by the NIKA2
collaboration in Grenoble [211–213] and installed in the Nasmyth cabin of the 30-metre telescope. It is the
instrument that follows its pathfinder NIKA [119, 124, 125].

2.1.1 The 30-metre IRAM telescope

The NIKA2 camera is operated at the Institut de Radioastronomie Millimétrique (IRAM) 30-metre telescope
on Pico Veleta (03◦23′33.7′′W, 37◦03′58.3′′N, Sierra Nevada, Spain) at 2850 metres above the sea level. A
picture of the telescope is shown in the left panel in Fig. 2.1. A 30-metre diameter primary mirror, constituted
by aluminium and polyurethane panels forming a paraboloid shape, collects the sky light. The panels have been
covered with an infrared reflector that reduces the deformations due to the temperature gradients, especially at
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sunrise and sunset. In addition, the primary mirror is actively thermalised. The secondary mirror is located
10.5 metres from the primary, which corresponds to the focal distance of the 30-metre primary mirror. The
secondary is a 2-metre diameter hyperboloidal mirror that collects the light from the primary and reflects it into
the Nasmyth cabin of the telescope [214].

The large diameter of the primary mirror provides a high angular resolution. In an ideal case, the diffraction
of a monochromatic light of wavelength λ, when impinging on a circular aperture of diameter D, forms an
Airy disk. The instrumental angular resolution can be defined as the full width at half maximum (FWHM)
of the main peak in the Airy disk: θ = arcsin(1.029λ/D). For 150 and 260 GHz monochromatic light the
ideal angular resolution would be of 14.1 and 8.2 arcsec, respectively. Nevertheless, the sky light reaching the
30-metre telescope is always polychromatic and the effective instrumental beam for NIKA2 is characterised as
described in Sect. 2.1.2.

The high altitude and low humidity of the Pico Veleta observatory are key elements for good atmospheric
transmission. Despite these conditions, the atmosphere is still the main contaminant in the observations at
the 30-metre telescope. On the one hand, the opacity of the atmosphere increases with the humidity, making
observations very difficult when the precipitable water vapour (PWV) gets to large values. On the other hand,
unstable weather conditions can introduce large fluctuations in the signal of the atmosphere, which complicates
the subtraction of the atmospheric contribution from raw data. The best period for observations are stable very
cold winter nights.

2.1.2 The NIKA2 camera

Main characteristics of the NIKA2 camera

NIKA2 operates simultaneously at 150 and 260 GHz, with three arrays of Kinetic Inductance Detectors
(KIDs) [211]. One of the arrays, composed of 616 KIDs of 2.8× 2.8 mm2 each, has a bandpass with maximum
sensitivity at 150 GHz and it is referred to as the 2 mm array or A2. The other two arrays (A1 and A3) contain
1140 KIDs of 2 × 2 mm2 each, with a maximum sensitivity at 260 GHz and are named the 1 mm arrays. The
bandpasses of NIKA2 are adapted to the millimetre wavelength atmospheric transmission windows since they
avoid the atmospheric absorption lines of the dioxygen (at ∼ 118 GHz) and water (at ∼ 185 and 325 GHz).
They are also ideal to identify the characteristic spectrum of the thermal SZ effect (Sect. 1.2.2). NIKA2 has an
instantaneous field of view (FoV) of 6.5′ in diameter.

In Fig. 2.1 we present the bandpass or relative spectral response for the three NIKA2 arrays. Bright and
dark blue lines show the response of the two 260 GHz arrays (A1 and A3), while the red line indicates the
transmission of the 150 GHz A2 array (the orange line corresponds to an old 150 GHz array). The black lines
in Fig. 2.1 illustrate the transmission related to the atmosphere, according to the ATM model [215], for 1 and
5 mm of precipitable water vapour. We observe the oxygen absorption line at ∼ 118 GHz and the two water
lines at ∼ 185 and ∼ 325 GHz.

The light arriving in the Nasmyth cabin is transmitted following an optical path with four mirrors to the
cryostat of the NIKA2 instrument (the light enters the cryostat from the left in the illustration shown in Fig. 2.2).
Once inside the cryostat, the light is reflected by another optical system (with two additional mirrors and
a diaphragm) until it reaches the dichroic filter that splits the light beam in two. The dichroic splits the beam
between the light reflected to the 150 GHz array and the rest, which is transmitted and passes through a polariser
before reaching the two 260 GHz arrays. Thus NIKA2 has also the capability for observing the polarisation
of photons at 260 GHz. Throughout this thesis we combine the data from the two 260 GHz arrays together,
without exploiting the polarisation capabilities of NIKA2. Detectors in the focal plane are cooled down to
∼150 mK using a closed 3He − 4He dilution circuit. In Fig. 2.2 we show the different cryogenic stages of the
NIKA2 camera (see Adam et al. (2018) [211] for more details).
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Figure 2.1: Left: The IRAM 30-metre telescope. Figure by K. Zacher (IRAM) taken from https://iram-institute.org/
observatories/30-meter-telescope/. Right: Bandpasses of the three NIKA2 arrays. The two 260 GHz arrays are shown in
blue and the 150 GHz array in red. Solid and dashed lines represent the atmospheric transmission for 1 and 5 mm PWV, respectively.
Figure from Perotto et al. (2020) [216].

Kinetic Inductance Detectors

The KIDs or Kinetic Inductance Detectors are superconducting detectors [217]. Below a critical temperature
Tc, the electrons in superconductors are separated into two populations. Some electrons remain free and are
called quasiparticles. Others create Cooper pairs, bounded electron pairs that have boson properties and conduct
electric current without resistance. Therefore, in the presence of a direct current, this is all conducted by the
Cooper pairs. But if the current is alternating, Cooper pairs will show resistance against the changes in the
electric field and introduce a kinetic inductance Lk in the material.

At temperatures below Tc the kinetic inductance in a thin film of a superconducting material is inversely
proportional to the density of Cooper pairs. This is the most important property used for NIKA2 observations.
At a constant T << Tc photons reaching the superconducting material can break the Cooper pairs if their energy
is larger than the gap energy of the Cooper pairs (2∆ ≃ 3.53kBTc [218]), modifying the kinetic inductance δLk.

In order to measure the variations of the kinetic inductance, each KID is an RLC resonant circuit, whose
resonance frequency f is given by:

f =
1

2π
√

(Lg + Lk)C
, (2.1)

where Lg is the geometric inductance and C is the capacitance. Therefore, a change in the resonance frequency
of the KID will mean a change in the Lk, which at the same time is inversely proportional to a change in the
incident optical power Popt:

δ f = −2π2C f 3δLk ∝ −δPopt. (2.2)

NIKA2 KIDs are made of an ∼ 18 nm aluminium film deposited on a silicon substrate of 150 and 260
microns for maximal optical absorption at 150 and 260 GHz, respectively. The critical temperature of the
aluminium is Tc = 1.19 K and, as discussed above, the detector arrays are placed inside the NIKA2 cryostat,
which reaches 150 mK. Thus, the aluminium KIDs are superconductors. With Tc = 1.19 K, the gap energy
needed to break a Cooper pair in the aluminium is of 2∆ ≃ 0.36 meV, which corresponds to the energy of
∼ 90 GHz photons. Therefore, photons from the CMB at the characteristic frequency ranges of the thermal SZ

https://iram-institute.org/observatories/30-meter-telescope/
https://iram-institute.org/observatories/30-meter-telescope/
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Figure 2.2: Top: the cryostat of NIKA2 and the different cryogenic stages needed to reach 150 mK. NIKA2 arrays are inside the dark
blue contours. Left: one of the NIKA2 260 GHz arrays. Right: a KID in the 150 GHz array. Figures from Adam et al. (2018) [211].

effect will be detected with these KIDs. Assuming a Rayleigh-Jeans spectrum, the resonance frequency of a
NIKA2 KID changes ∼ 2 kHz and ∼ 1 kHz per Kelvin for the 260 and 150 GHz arrays, respectively. NIKA2
KIDs are Lumped Element KIDs (LEKIDs) [219] and so act also as antennae for absorbing directly the photons.

In the left panel in Fig. 2.2 we show a picture of one of the two 260 GHz arrays, composed of 1140 detectors,
after packaging. The picture in the right panel in Fig. 2.2 corresponds to a back-illuminated KID used for
NIKA2 observations at 150 GHz. The image is resolved enough to distinguish the different components of one
detector in the centre of the image: the inductance meander is in the centre, the capacitor on top of it and the
transmission line in the bright horizontal line in the bottom. Many KIDs can be simultaneously monitored with
the same readout line (multiplexed) if the resonance frequency of each detector is different and spaced enough
from others. As indicated in the Eq. 2.1 the resonance frequency can be modulated by varying the capacitance
C of the condensator of each RLC circuit. The reading of the NIKA2 KIDs is performed with 4 electronic
NIKEL boxes [212] for the 150 GHz array and 8 for each of the 260 GHz arrays (20 boxes in total).

Performance of NIKA2 observations

After the commissioning phase and instrument performance measurements carried out between 2015 and
2018, the main characteristics of NIKA2 observations at the 30-metre telescope were described in Perotto et al.
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Table 2.1: Main characteristics of the NIKA2 instrument. We give the values measured in Perotto et al. (2020) [216] and in Ruppin
et al. (2018) [177].

Characteristic 260 GHz arrays 150 GHz array
Reference Wavelength [mm] 1.15 2
Reference frequency [GHz] 260 150
Number of design detectors 1140 × 2 616

Fraction of valid detectors [%] 84 90
Main beam FWHM [arcsec] 11.1 ± 0.2 17.6 ± 0.1

Field of view [arcmin] 6.5 6.5
RMS pointing error [arcsec] < 3 < 3

Absolute calibration uncertainty [%] 5 5
NEFD [mJy·s1/2] 30 ± 3 9 ± 1

Conversion factor y-Jy/beam −11.9 ± 0.9 3.7 ± 0.4

(2020) [216]. Here we present briefly the most important features and summarise them in Table 2.1.

The effective angular resolution or beam of NIKA2 was characterised during the commissioning phase
from the measurement of the angular response of the instrument to bright point sources. Despite the complex
structure of the precise beam (see Fig. 5 in Perotto et al. (2020) [216]), the angular resolution of NIKA2 at the
30-metre telescope can be described by a primary beam of 11.1′′ ± 0.2′′ and 17.6′′ ± 0.1′′ FWHM at 260 and
150 GHz, respectively. These values are slightly larger than the ideal angular resolution for monochromatic
light. The efficiency of the primary beam, i.e. the ratio between the solid angle covered by the primary beam
with respect to the solid angle covered by the actual beam of the instrument, was quantified to be of 47± 3% at
260 GHz and 64 ± 3% at 150 GHz.

Another important feature is the noise level or sensitivity in the observations, given by the Noise Equivalent
Flux Density (NEFD). The NEFD is defined as the 1σ error, in one second of integration time, on the flux
density of a point source for zero atmospheric opacity. For NIKA2 it was measured during the instrument
performance observation campaign, from the residual noise in the maps of weak sources (here weak sources
mean those with a flux density smaller than 1 Jy) and it is of 9 and 30 mJy·s1/2 at 150 and 260 GHz, respectively.
The NEFD being three times better at 150 GHz than at 260 GHz, it translates into an easiest detection of
weak sources at 150 GHz. Overall, the very good sensitivity of the NIKA2 camera makes of it a competitive
instrument for the observation of very weak sources, such as clusters of galaxies, in a reasonable amount of
time (from 2 to 20 hours per object for the reconstruction of pressure profiles up to R500). On average, 84% and
90% of the detectors in the 260 GHz and 150 GHz arrays are valid in each observation [216].

2.2 NIKA2 raw data processing pipeline

The frequency shifts measured by the electronic readout lines have to be calibrated and projected into surface
brightness maps of the observed sky. In this section, we present first the different operations carried out at the
telescope necessary to calibrate the observations for science. Then we describe the different steps followed
during the NIKA2 data analysis.

The schematic Fig. 2.3 summarises the NIKA2 raw data processing pipeline. In blue and green we show
the technical and science operations performed at the telescope and the data we get from those observations.
In orange we present the steps followed in the NIKA2 raw data analysis pipeline to get calibrated data. All the
information is combined to obtain the NIKA2 maps in Sect. 2.3 (pink in Fig. 2.3).

Currently, two completely independent pipelines enable going from raw data to NIKA2 maps (that is, fol-
lowing all the steps in Fig. 2.3). On the one hand, we have the Interactive Data Language (IDL) [220] pipeline
developed within the NIKA2 collaboration. It corresponds to the pipeline used for the baseline method pre-
sented in Perotto et al. (2020) [216] and for previous NIKA analyses [221]. This will be the reference pipeline
used to analyse the NIKA2 data in this thesis, hereafter named Iterative Multi Common Modes (IMCM). On



54 2.2. NIKA2 RAW DATA PROCESSING PIPELINE

Science observations 

NIKA2 data processing pipeline

NIKA2: from raw to science 
ready data 

Raw data from KIDs 

Reconstruction of the resonance 
frequency shift of KIDs  

Atmospheric extinction 
correction & flagging 

Calibrated TOIs 

From NIKA2 TOIs to maps 

Maps 

Calibrated KIDs 

Raw TOIs 

Telescope pointing

Technical observations 

Pointing 

Pointing corrections 

Focus 

Beammaps 

Relative KIDs calibration & 
KIDs position 

Calibration scans 

Absolute calibration 

Opacity reconstruction 

 τν

Figure 2.3: Overview of the NIKA2 pipeline. In blue, green, orange and pink we indicate the technical observations at the telescope,
the science observations, the NIKA2 raw data analysis, and the map making, respectively.

the other hand, the Pointing and Imaging In Continuum3 (PIIC) software was developed at IRAM. It is now
used for calibrations at the telescope and we will make use of it to check the robustness of our results. More
details on the differences between both pipelines are given in respect of the noise subtraction and map making
in Sect. 2.3. An alternative pipeline, based on the Scanamorphos algorithm originally developed for Herschel
data, has also been adapted to analyse calibrated NIKA2 data (based on the IDL pipeline calibration) [222]. We
will not present this method.

2.2.1 Operations at the telescope

Before observing the scientific targets different types of operations need to be performed at the telescope,
to both optimise the quality of the observations and have the necessary information to calibrate the data.

Pointing

The first step consists in verifying the correct alignment of the optics in the telescope and the NIKA2
detectors. For that purpose, during observations, we regularly perform pointing scans on bright and point-like
sources. These correspond to cross-shaped scans around the source: we first do a two-way scan in azimuth
and then in elevation. We fit a 1D Gaussian function to the signal measured in both ways and directions and
compare the position of the peak on the fitted Gaussian functions to the known position of the source in the
sky. This gives a correction factor in azimuth and elevation that is applied in order to adjust the pointing of the
instrument. In addition, at the beginning of each observation campaign the pointing model of the telescope is
updated using a set of continuous observations of point sources.

3https://publicwiki.iram.es/PIIC

https://publicwiki.iram.es/PIIC
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Figure 2.4: Reconstruction of the focal plane for the KIDs in the three NIKA2 arrays during the technical campaign. The circles
indicate 5.5 arcmin and 6.5 arcmin diameter regions. Figure from Perotto et al. (2020) [216].

Focus

Moreover, the telescope has to be regularly focused by moving the secondary mirror with respect to the
primary one. A wrongly focused telescope introduces a broadening of the beam and, therefore, a degradation
of the angular resolution and deformations in the observed objects. Focus scans consist of five raster scan
observations of a very bright source (see more on raster scans at the end of this section). Each of the scans is
done by varying the distance between the primary and secondary mirror by a given step. We produce one source
map for each of the scans and measure the size of the beam and the flux of the source. Either by searching to
minimise the size of the beam or to maximise the source flux we obtain the needed correction for the distance
between the mirrors.

Beammaps: reconstruction of the focal plane

The readout electronic of NIKA2 gives only the list of resonance frequencies corresponding to the detectors
(Sect. 2.2.2) but does not inform directly about the physical KIDs associated with these resonances. For this
reason, before science observations it is necessary to reconstruct the geometry of the focal plane to identify
the KID corresponding to each resonance frequency, or equivalently, its position in the sky. This is achieved
with the so-called Beammaps, which consist of deep observations of bright and well-known sources, most often
planets, such as Uranus, Neptune or Jupiter. These observations have to be of high quality so that a map of the
source can be reconstructed for every single detector [216].

From the position of the bright source in these maps, the resonance frequencies are associated with posi-
tions in the sky. In addition, this procedure permits identifying fake resonances that do not correspond to real
detectors, out-of-resonance KIDs and detectors in diaphony. The relative calibration of KIDs is obtained from
the observed shift in frequency for each detector compared to the known flux of the source. The instrumental
beam of each KID is also characterised from the Beammaps, being a way to discard those detectors with very
large beams. Finally, the absolute calibration of the surface brightness observed by NIKA2 is done from the
combination of the Beammaps for all the good detectors, by calibrating the amplitude of the flux of the ob-
served planet with its known brightness. The three panels in Fig. 2.4 show the average positions in the focal
plane of the detectors in the three NIKA2 arrays, as reconstructed for the commissioning of the camera [216].
Only the detectors that were considered valid for at least two Beammaps during the NIKA2 technical campaign
are shown [216]: 952, 961 and 553 detectors for A1, A3 and A2, respectively. Red KIDs are those that are
considered always valid. Blue detectors were valid only in two out of the ten Beammaps. Beammaps are done
a few times during each observation campaign.
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Figure 2.5: Illustration of a raster scan performed by the telescope. In red we show the path of a vertical scan composed of seven
subscans, in blue the detectors in the 150 GHz NIKA2 array and in grey the observed source. Contours correspond to the NIKA2 S/N
levels for the ACT-CL J0215.4+0030 galaxy cluster at 150 GHz [178].

Calibration scans

Other than Beammaps, all along the observation periods we also perform calibration scans to monitor the
absolute flux calibration. As described in Perotto et al. (2020) [216], we distinguish two types of calibration
sources. The primary calibrators correspond to the well-known sources that we observe to define the absolute
calibration. For NIKA2 observations we use planets as primary calibrators, typically Uranus and Neptune. The
calibration factors derived from the primary sources are verified on secondary calibrators. We use MWC349 (a
stellar binary system), CRL2688 (an Asymptotic Giant Branch star) or NGC7027 (a young, dusty, carbon rich
Planetary Nebula with an ionized core) [216].

Science observations: Time ordered information

As explained in Sect. 2.1.2, KIDs are sensitive to the variation of the optical power. In order to detect
non-varying sources, such as clusters of galaxies, we take the following observing strategy [211, 223]. Once
the focus and pointing of the telescope have been corrected, the telescope performs raster scans around the
region of interest (see Fig. 2.5), knowing at all times the position in the sky of the reference KID. Each detector
measures the variation of the optical power with a sampling frequency of 23.7 Hz. This is stored in the Time
Ordered Information (TOI) or data timelines. A pointing matrix allows one to project the TOI of each KID
into a position in the sky. The pointing matrix for every KID is calculated by combining the pointing of the
telescope at all times and the relative position of the KID with respect to the reference detector.

All the NIKA2 observations exploited in this work followed the same observation strategy, with raster scans
of 4 × 8 arcmin2 or 10.33 × 3 arcmin2 in a series of four scans with angles of 0, 45, 90, and 135 degrees
with respect to the right ascension axis. Each scan is composed of multiple subscans (Fig. 2.5). Changing the
observation angle improves the isotropic coverage of the sky. In Fig. 2.6 we illustrate the observation of a mock
galaxy cluster seen by different KIDs. In the left panel we see the TOI in units of Jy/beam of different detectors
during the observation of the cluster. Given that KIDs are located at different positions in the focal plane, each
of them detects the cluster (negative peaks in the figure) at a different time. In the right panel we present the
projected surface brightness map of the mock cluster of galaxy.
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Figure 2.6: Signal of a mock galaxy cluster. Left: the cluster signal seen by different KIDs in the 150 GHz array assuming a raster
scan. The negative peaks correspond to the cluster signal as seen by each detector, which are represented with different colours. Right:
surface brightness map at 150 GHz.

2.2.2 NIKA2: from raw to science ready data

All the information collected at the telescope is then combined and processed to get science ready NIKA2
data. We present in this section the different steps.

Reconstruction of the resonance frequency shift in KIDs

We have seen that the incident optical power introduces a change in the resonance frequency of the KIDs.
Aiming to measure such resonance frequency change, an input electric signal is fed to the detectors through
the transmission line. This signal is composed of multiple tones, fLO, at the expected resonance frequencies of
the detectors for the reference background. The tones are kept fixed during the duration of the science scan,
so that we can measure the differences induced by the input signal with the KID transfer function. The KID
transfer function is defined as the ratio of the transmitted signal to the input signal and it can be represented by
a complex quantity,

S ( f ) = I + iQ, (2.3)

with I and Q the real and imaginary parts, respectively.

Ideally, we would like to have a measurement of the transfer function at every time t and at every frequency,
so that the shift in frequency of each KID can be monitored precisely. However, this would be very complex
and would require large computational resources. Instead, we modulate at 1 kHz each frequency tone by ±δ fLO
via a synthesiser. This way we can compute four quantities at 23.7 Hz: I,Q, dI and dQ (mean and differences).
From these quantities we can estimate the shifts of the resonance frequency for each KID, as in Calvo et al.
(2013) [224].

Calibration

The resonance frequency shift of each KID in Hz is then converted into Jy/beam flux densities during a
calibration procedure. As described in Perotto et al. (2020) [216], the procedure is performed in two steps.
First, the Beammaps are used to measure the beam size of each detector. It is at this stage also that the maps
of the observed source per KID are calibrated to the known flux of the source at 150 and 260 GHz. From the
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comparison of the calibration per detector we obtain the relative calibration between KIDs. Then, using both
the compilation of the Beammaps for all the KIDs and the calibration scans, we refine the absolute calibration
of the KID resonance frequencies into flux density units.

In addition, we have discussed above that Beammaps are used to reconstruct the position of each detector
in the focal plane. From the combination of these data with the information of the pointing of the telescope
at every time t, we can build the pointing matrix Pk(t, x, y), which gives the position in the sky (x, y) of each
detector k at every time t.

Atmospheric extinction correction

As shown in Fig. 2.1, millimetre observations are very sensitive to the PWV in the atmosphere. When
the amount of water vapour in the air increases the opacity of the atmosphere increases with it and, therefore,
the transmission deteriorates. We can see in Fig. 2.1 that the effect is more important at high frequencies. In
general, we say that the transmission of the atmosphere at a frequency ν is

Tν = exp(−τν/ sin(δ)), (2.4)

with τν the atmospheric opacity at a frequency ν and δ the elevation. The opacity of the sky quantifies the
ratio between the observed flux density in a ground-based telescope and the flux density out of the atmosphere.
It is constantly monitored at the telescope and it can be extracted either from taumeter measurements4 or by
skydip procedures following Catalano et al. (2014) [223] and Perotto et al. (2020) [216]. The air mass 1/ sin(δ)
accounts for the variations with elevation of the atmosphere.

We notice in Fig. 2.1 that bad atmospheric conditions reduce the measured absolute brightness (lower trans-
mission) and also filter some of the frequencies in the NIKA2 bandpasses. To account for both, in practice, we
quantify the flux that is lost integrated in the NIKA2 bandpasses and apply a corrective factor to the TOIs. A
thick atmosphere also increases the noise in detectors.

Flagging

Next, noisy and saturated detectors are discarded (as explained in Catalano et al. (2014) [223]). In addition,
for the well-behaving KIDs, noisy regions in the TOIs are also excluded. They correspond mainly to the
regions of the scan in between two subscans (see Fig. 2.5) or at the beginning or the end of each subscan.
Moreover, parts of scans affected by large accelerations of the telescope are flagged.

All of that leads to science ready TOIs. We will see in Sect. 2.3 how these TOIs are analysed to remove
contaminants and build the maps of our astrophysical sources of interest.

2.3 From NIKA2 TOIs to maps
At this stage, TOIs are ready for scientific analyses, but the signal from astrophysical sources needs to be

separated from atmospheric and electronic noise. In this section, we describe different approaches to subtract
the contaminants from the TOIs and their impact on the cluster signal. We also evaluate the residual noise in
the final maps.

The measured surface brightness for each detector k at the frequency ν can be written as:

TOIk(t, ν) = Pk(t, x, y) × S (x, y, ν) + αk(t)Ak(t, ν) + βk(t)Ek(t, ν) +Ck(t) + Nk(t) (2.5)

where S (x, y, ν) is the signal of astrophysical objects at the position (x, y) in the map and Pk(t, x, y) is the
pointing matrix (Sect. 2.2.2) for the calibrated detector k. At millimetre wavelengths the signal of the sky

4https://www.iram.es/IRAMES/weather/tauMeter.html

https://www.iram.es/IRAMES/weather/tauMeter.html


CHAPTER 2. NIKA2: FROM OBSERVATIONS TO SZ MAPS 59

Figure 2.7: Mock NIKA2 observations for different detectors in the 150 GHz array. Left: TOIs including the signal of a mock cluster,
a common mode due to the atmospheric emission and white noise. Right: TOIs from the left panel after estimation and subtraction of
a common mode.

contains, in addition to the CMB and the SZ due to the presence of galaxy clusters, the emission of galaxies
(Sect. 1.2.2). The galaxies in the field of view can be cluster members or foreground sources, as well as
background galaxies that can be even lensed by the strong potential well in clusters. The infrared emission
of dusty galaxies, quasars accretion disks and intergalactic stars form the Cosmic Infrared Background (CIB)
that is also present in the NIKA2 bands. The amplitude of the CMB and CIB signal is in general an order of
magnitude smaller than other contaminants (Sect. 2.3.3), so they do not represent a major problem.

In Eq. 2.5 Ak(t, ν) is the signal of the atmosphere seen by each KID, that for a large telescope such as
the 30-metre can be considered, to first order, to be the same for all the detectors, Ak(t, ν) = A(t, ν) ∀k, by a
factor αk. As aforementioned, for the observations at Pico Veleta observatory, the amplitude of the atmospheric
signal is several orders of magnitude larger than the signal from clusters. We show in the left panel in Fig. 2.7
the TOIs of several detectors when observing the mock cluster presented in Fig. 2.6 with the αk(t)Ak(t, ν)
contribution extracted from NIKA2 observations carried out in February 2018. Note the large amplitude of
the signal in Fig. 2.7 with respect to the flux of the expected signal of a cluster in Fig. 2.6. These TOIs also
contain the Nk(t) intrinsic noise per detector extracted from white noise realisations for each KID. The emission
of the atmosphere at millimetre wavelengths fluctuates due to the non-homogeneous thermal emission, mainly
created by the changes in the distribution of water vapour (for example, by clouds) in the sky along the raster
scans of the telescope. The contribution of the atmosphere to the TOIs is so important that it will have to be
carefully subtracted to detect the signal from the cluster. Nk(t) is the ultimate noise of the detectors and it
is not correlated amongst the KIDs. Therefore, it can not be removed and constitutes the limiting factor that
determines the sensitivity of NIKA2.

The correlated noise introduced by the electronics is given by βk(t)Ek(t, ν), where βk represents the response
of each detector, and Ek(t, ν) is common for the KIDs in the same electronic box. Although less important than
the atmosphere regarding the amplitude, the electronic noise is correlated for different detectors and its proper
subtraction is crucial (Sect. 2.3.1). Finally, Ck(t) corresponds to the cryogenic induced noise, mainly due to the
vibrations of the 4 K stage. Such vibrations leave a sinusoidal signal in the data timelines, and so, they can be
subtracted after their identification in the Fourier transforms of the TOIs.

2.3.1 Decorrelation: correlated noise subtraction

We have seen that the contamination by cryogenics vibrations can be easily removed from the TOIs. On
the contrary, separating the signal coming from astrophysical objects from the contribution of the atmosphere
and electronics is very delicate, especially for weak sources such as clusters of galaxies. In the following we
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present the general principles of noise subtraction for NIKA2 data. Then, we compare the approaches taken in
the IMCM and PIIC pipelines.

General principles

The goal of our data processing pipeline is to maximise the recovered signal of galaxy clusters as well as to
minimise the residual noise. We aim to reach the intrinsic white noise of detectors. The main principle of the
atmospheric and electronic noise subtraction procedure resides in the fact that the noise for different KIDs is
correlated. That is why we call the data processing procedure decorrelation.

We assume that at a given time t all the detectors observe the same contribution from the atmosphere. On the
contrary, along the raster scan each KID points towards the astrophysical object of interest at different times.
We see in Fig. 2.6 that different detectors go across the cluster at a different moment. Thus, we can calculate
the common signal (also known as common mode) amongst all the KIDs in an array to have an estimate of
the atmospheric noise contribution. In the right panel in Fig. 2.7 we show the TOIs of several KIDs once the
common mode has been removed from the data timelines in the left panel. Given the presence of the white
noise, it is impossible to distinguish the cluster signal in individual TOIs.

By construction, the detectors associated with the same electronic box are subject to electronic noise contri-
butions that are alike. Thus, the electronic noise in KIDs connected to the same readout line are correlated. As
for the atmosphere, common modes of TOIs from the same electronic box and readout can be used to estimate
the electronic noise [221]. Although weaker than the contribution of the atmosphere, the electronic noise has
to be removed from the data timelines if we aim at recovering the SZ of clusters at ∼ mJy levels. In addition
to the mentioned correlations, some KIDs have sometimes TOIs that are strongly correlated to others, without
necessarily being connected by the same electronics. Therefore, another approach consists of calculating the
correlation matrix of the TOIs for all the KIDs and identifying for each detector the most correlated detectors.

In either case, once a common mode is estimated, it is removed from the TOIs to obtain a cleaner data set.
However, if the estimation of the common mode is not refined enough, in addition to the noise it will contain
some signal from the astrophysical source of interest. And when subtracting the common mode from the TOIs
the signal of interest will also be removed and lost forever. In such cases, we say that the signal has been
filtered.

The filtering of the signal can be reduced using masks. The idea is to mask, when estimating the common
mode, the regions on the TOIs that contain the signal from the astrophysical object of interest. As we have
seen in Fig. 2.6, each KID detects the source at a different time. Thus, masks for the different detectors are not
at the same position in time. Excluding those regions, the common mode will contain a significantly reduced
contribution from the source we are interested in. Although the precise area covered by the cluster’s signal is
not known in advance, it is a good starting point to assume that the cluster will appear as a circular object of a
given radius R in the centre of the map. The pointing matrix allows us to relate the positions we want to mask
in the map to the positions in the TOI of each KID.

In general, the decorrelation analysis is performed by subscans to limit the contribution of strong variations
in the TOIs signal induced by acceleration and deceleration at the beginning and end of each subscan.

Based on these principles, different approaches can be used to build clean NIKA2 maps. The quality of the
decorrelation method used to reconstruct NIKA2 maps is evaluated with two criteria. Firstly, we consider that
the method is satisfactory if the residual noise in the maps is close to white noise. Secondly, the decorrelation
works well if the filtering effects on the astrophysical source of interest are as small as possible. Satisfying both
criteria at the same time can be difficult since methods that remove very well the correlated noise tend to filter
the signal of the source and those that preserve better the signal give noisier maps. It is, therefore, a matter
of finding a compromise. We present in the following the decorrelation methods used in the IMCM and PIIC
pipelines.
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Iterative Multi Common Modes

Figure 2.8: Correlation matrices between the TOIs of the KIDs in the 150 GHz array of NIKA2, before (left) and after (right) decorre-
lation.

The so-called Iterative Multi Common Modes (IMCM) is the decorrelation method of reference used to
reduce NIKA2 data in this work and within the LPSZ. It corresponds to the most correlated pixels method from
Adam et al. (2015) [119] and Perotto et al. (2020) [216]. It uses the correlation matrix between the TOIs of
all the KIDs within an array to group those KIDs that are the most correlated. However, before computing the
correlation matrix the sky region where the source is expected to be is masked, so that the KIDs correlation is
due only to noise and systematic contributions. In the left panel in Fig. 2.8 we show the correlation matrix of
the KIDs in the 150 GHz NIKA2 array before any noise subtraction in the TOIs. For each block of N most
correlated KIDs the common mode is estimated with:

CM(t, ν) =

∑N
k=1

1
gk

TOIk(t, ν) × Mk(t, ν)∑N
k=1 Mk(t, ν)

, (2.6)

where the sum runs for the N KIDs in the block. TOIk(t, ν) is the TOI of each KID k and gk is the in-
tercalibration factor, calculated from the distance to the median of the TOIs of all the KIDs, TOIk(t, ν) =
gk ×Med[TOIk′(t, ν)]k′ . Mk(t, ν) is the mask so that Mk(t, ν) = 1 if outside the source and Mk(t, ν) = 0 if inside.
This common mode is then removed from the TOIs of the detectors in the corresponding block:

TOIclean
k (t, ν) = TOIk(t, ν) − αkCM(t, ν), (2.7)

where αk is computed via linear regression for each subscan. In this procedure we also use other templates
like, for example, the elevation variation with time. Furthermore, we can do extra filtering using polynomials
or Fourier series to account for gaps in the data. In the right panel in Fig. 2.8 we show the correlation matrix of
the clean TOIs for the KIDs in the 150 GHz NIKA2 array. We observe that the largest correlations have been
removed. However, there are residual correlations and we almost distinguish by eye four blocks that correspond
to the four electronic boxes in the 150 GHz array.

The initial mask is assumed, as abovementioned, a disk centred in the coordinates of the cluster. After the
first common mode subtraction the data are projected into maps. The maps of all the available scans of the same
source are coadded to get a first clean map (Sect. 2.3.2). The residual noise map is also calculated following
the description in Sect. 2.3.3, and so, it is possible to get a signal-to-noise map.
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Figure 2.9: Evolution of the mask in the IMCM decorrelation for CL J1226.9+3332. The red contours show the masks used to obtain
each of the maps.

In this work we use the IMCM method iteratively. From the signal-to-noise map obtained in the 0th iteration,
we have a better knowledge about the extent and shape of the source and we can define a new mask in the area
where the signal-to-noise is larger than a given threshold, which is generally fixed to 3. We can then repeat the
common mode estimation procedure to get a new clean and noise map. This procedure can be repeated multiple
times until convergence, usually after ∼ 4 − 5 iterations. The contours in red in Fig. 2.9 are the masks defined
at the beginning of each iteration, using the S/N map from the previous one, except for the 0th. In the left panel
in Fig. 2.10 we show the NIKA2 150 GHz map of CL J1226.9+3332 (also known as PSZ2 G160.83+81.66)
galaxy cluster obtained after 5 iterations. The negative region in the centre of the map is the signal of the
thermal SZ effect due to the presence of the cluster. The positive sources in the field are point sources that we
will discuss in Sect. 3.2.1.

PIIC

PIIC can also be used in an iterative way to get clean maps of clusters. In the 0th iteration, after discarding
the noisy detectors and those that are pointing towards the mask of the source, common modes are estimated for
the most correlated KIDs. Therefore, the first step is equivalent to the IMCM method. The obtained common
modes are removed from the TOIs and clean timelines are projected into sky maps to obtain signal, noise and
signal-to-noise maps.

PIIC also uses the signal-to-noise map to identify the source, but unlike the IMCM approach, it subtracts
that first estimation of the source signal from the TOIs. In the next iteration, the correlation matrix of the KIDs
is recalculated and common modes are estimated from TOIs that do not contain the source signal, so that in
principle they are a better estimation of the noise. The new common modes are removed from the original TOIs
and again clean timelines are projected into maps. The procedure can be repeated as many times as desired.

The main difference between both pipelines is that for the estimation of common modes the IMCM method
just masks a region, while PIIC removes the signal of the source estimated from the previous iteration. Further-
more, PIIC uses a projection kernel (taken to be a Gaussian of the size of the expected beam), while the IMCM
pipeline uses a nearest grid projection algorithm. In the right panel in Fig. 2.10 we present the CL J1226.9+3332
map obtained after 5 iterations with PIIC. The comparison to the map in the left panel shows that the recon-
structed structures and their fluxes are slightly different between the two methods. In the following sections we
will quantify how these differences propagate to the reconstruction of physical properties of clusters.

It is worth reminding that all the raw data preprocessing described in Sect. 2.2.2 is performed with the
PIIC and IMCM methods independently. Hence the agreement between IMCM and PIIC results will prove the
robustness of the whole NIKA2 calibration and data analysis pipeline.

2.3.2 Signal maps

These decorrelation methods are applied independently on single scans that have to be correctly combined
to obtain the final signal maps. Firstly, cleaned TOIs of all k detectors in a scan s are projected, using the
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Figure 2.10: NIKA2 maps of CL J1226.9+3332 galaxy cluster at 150 GHz. The map on the left is obtained with the IMCM decorrelation
method and the map on the right with PIIC.

Pk(t, x, y) pointing matrix, in sky maps per scan,

Ms(x, y) =
∑

k,t Pk(t, x, y)wkTOIclean
k (t)∑

k,t Pk(t, x, y)wk
. (2.8)

The weight wk of each KID k is estimated from the variance of its TOI (considering the values outside the
source mask), so that noisier detectors are less relevant:

wk =
1

Var[TOIk(t)]t
. (2.9)

Second, we estimate the hits map per scan. This map quantifies the number of samples from the TOIs that lie
in each pixel and is calculated from the sum of the pointing matrices for all the valid KIDs within a scan and
along the whole scan:

Nhits,s(x, y) =
∑
k,t

Pk(t, x, y). (2.10)

The larger the value of Nhits in a pixel, the better, since it means that the value of the signal map in that pixel
has been obtained from the combination of many samples, reducing the statistical uncertainty. Similarly, the
variance map is calculated by summing the variances of the TOIs of the detectors (Var[TOIk(t)]t) that lie in each
pixel. The square root of the variance map is the RMS map and it constitutes an estimation of the uncertainty
related to the signal measured in each pixel of the map. Finally, from the combination of all scans we get the
signal map:

M(x, y) =
∑

s ws(x, y)Ms(x, y)∑
s ws(x, y)

, (2.11)

where ws(x, y) is the weight in the (x, y) pixel of the scan s:

ws(x, y) =
Nhits,s(x, y)

Var
[
Ms ×

√
Nhits,s

] . (2.12)

The variance is calculated for the pixels outside the mask and with this definition noisy scans have lower
weights. As discussed before, all LPSZ cluster observations are performed using raster scans at 0, 45, 90, and
135 degrees with respect to the right ascension axis. The scans observed in different directions are combined
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using the coaddition methods presented here. This improves the coverage of the observed region and reduces
the directional effects.

The final outputs of the pipeline are the maps of the sky at 150 and 260 GHz, and per array, and the maps
of the number of hits and of the standard deviation per pixel.

2.3.3 Residual correlated noise

Figure 2.11: Null maps for NIKA2 150 GHz observations of the CL J1226.9+3332 cluster. On the left the JK map that corresponds to
data reduced with IMCM and on the right with PIIC. The differences are computed between scans with the same angle with respect to
the right ascension axis.

Figure 2.12: Null maps for NIKA2 150 GHz observations of CL J1226.9+3332 cluster using the IMCM method. The differences are
computed between scans with the same angle with respect to the right ascension axis (AO, left) and between consecutive scans (TO,
right).

The decorrelation methods try to eliminate the correlated noise from the data, but some residual noise, both
from the atmospheric emission and the electronics, will always be present in the final NIKA2 maps, indepen-
dently of the processing method. The significant contribution of correlated noise in the maps can introduce
fake structures that might be difficult to distinguish from the signal of interest. The residual noise is usually
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Figure 2.13: Power spectra of JK maps. Left: in magenta and orange the power spectra for the IMCM and PIIC null maps in Fig. 2.11.
Right: again in magenta the power spectrum for the AO IMCM noise map and in black the spectrum for TO. Grey-shaded areas
correspond to the NIKA2 field of view (for small angular frequencies) and beam FWHM (for large angular frequencies) instrumental
limits.

estimated on null maps, also known as jackknives (JKs), by computing half-differences of two statistically
equivalent sets of scans to eliminate the astrophysical signal and recover the residuals:

JK(x, y) =
∑

s ws(x, y)Ms(x, y) × (−1)s∑
s ws(x, y)

. (2.13)

We assume that the astrophysical signal is the same for the maps of all the scans. Therefore, given that even
scans are multiplied by (−1), the astrophysical signal is cancelled in the JK map. By contrast, the residual noise
will, in first approximation, keep its statistical properties when following Eq. 2.13. Thus, the JK map can be
considered as an estimate of the noise in the clean map. In Fig. 2.11 we present the residual noise maps for
the IMCM and PIIC pipelines. From their visual comparison we can already guess that the PIIC noise map is
smoother.

During this thesis we proposed two different noise estimates to evaluate possible systematic bias and un-
certainties. The angle order (AO) noise map is computed from the half-differences of scans observed with the
same angle with respect to the right ascension axis. This ensures that signal residuals from differential filter-
ing along the scan direction are minimised in the null maps. Alternatively, the time order (TO) noise map is
calculated from the half-differences of consecutive scans. This minimises the time-dependent effects that may
be induced by atmospheric residual fluctuations. In Fig 2.11 both JK maps were obtained from angle ordered
scans. We present in Fig. 2.12 the noise maps of IMCM estimated with the angle order (left) and time order
(right) approach. From the maps we observe that the residual noise structures generally contribute more when
estimated with the TO method.

To quantify the presence of residual noise in the clean NIKA2 maps we calculate the power spectrum of
null maps, after correcting for the non-homogeneous exposure time (i.e., we divide by the estimated noise per
pixel in the maps). A flat power spectrum is indicative of white noise only in the map, while correlated noise
at large angular scales appears as a power law function of the form P(k) ∝ k−α. We define k from the quadratic
sum of the kx and ky angular frequencies in the two directions, k2 = k2

x + k2
y .

The left panel in Fig. 2.13 shows the power spectra corresponding to the IMCM and PIIC null maps in
Fig. 2.11. As we could see from the maps, PIIC noise is smoother than IMCM, the latter containing strongly
correlated noise at large scales (small k-s). Similarly, in the right panel in Fig. 2.13 we compare the power
spectra of the AO and TO null maps at 150 GHz for CL J1226.9+3332 obtained with the IMCM decorrelation
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method (Fig. 2.12). The AO null map has a flatter power spectrum for large angular scales (small wave num-
bers), meaning that it contains less large-scale correlated noise than the TO null map. This suggests that the TO
null map might be affected by signal or atmospheric residuals which are differently filtered for each scanning
angle.

The residual noise in the final 150 GHz NIKA2 maps needs to be accounted for in the reconstruction of the
pressure profiles of clusters in Sect. 3.2. Following the method developed in Adam et al. (2016) [225], the power
spectra shown in Fig. 2.13 are used to estimate the pixel-pixel noise covariance matrices. First, 1000 realisations
of white noise maps are generated, with pixel values randomly selected from a N ∼ (0, 1) distribution. Then,
each of the white noise maps is convolved with the power spectrum of the noise and multiplied by the RMS
map (Sect. 2.3.2). By means of this procedure, we obtain 1000 maps that contain the correlation and noise
level of the JK map. With these 1000 maps we can compute the pixel to pixel covariance matrix to account
for the correlations of the noise in the final maps. This correlation matrix is used in the likelihood presented in
Sect. 3.2.2.

2.3.4 Transfer function

The filtering induced by the observation and the data reduction process on the cluster signal needs also to
be evaluated to be accounted for when reconstructing the pressure profile of the cluster (see Sect. 3.2.2). We
estimate the filtering from simulations, with a transfer function that measures the ratio in Fourier space between
a simulated cluster signal, S in, and the outcome of this signal after the decorrelation procedure, S out:

TF(kx, ky) =
|F T (S out)|2

|F T (S in)|2
. (2.14)

The input SZ signal map is a mock map created by integrating the pressure profile of the cluster, assuming
the universal pressure profile from Arnaud et al. (2010) [70], along the line-of-sight (Eq. 1.25). Considering
the M500 = 5.7 × 1014 M⊙ mass from Planck Collaboration et al. (2016) [142] and z = 0.89 redshift for the
CL J1226.9+3332 galaxy cluster, we obtained the map in the right panel in Fig. 2.6. We add to the simulated
cluster a Gaussian signal with flat spectrum in map space (i.e. random white signal following N ∼ (0, 0.1 ×
flux of SZ peak)) to explore angular scales at which the cluster signal is negligible. From a technical point of
view, this avoids the presence of zeros in the input power spectra and their ratio computation in Eq. 2.14.

The input signal, S in, is converted into TOIs of detectors using the pointing matrix and added to the TOIs of
real observations. The decorrelation procedure described for NIKA2 data is repeated on these TOIs that contain,
in addition to the real data, the signal of the simulated cluster. We use the last mask obtained for the real data
decorrelation to compute the common modes. In this case, the output of the data processing pipeline gives
a map that contains the NIKA2 clean data together with the S in affected by the filtering of the decorrelation.
Subtracting the NIKA2 data clean map we get S out. We can apply this procedure both to the IMCM and PIIC
based pipelines.

Figure 2.14: The signal filtered per scan in the subtraction of a common mode. From left to right, four scans with angles of 0, 45, 90,
and 135 degrees with respect to the right ascension axis. Examples without masking the source.
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Figure 2.15: Same as Fig. 2.14, but using a 100 arcsec radius mask centred in the source.

Traditionally the NIKA2 SZ Large Programme and NIKA analyses [119, 177, 178] considered one-
dimensional transfer functions (1D TF). In these cases, circular symmetry is assumed and the 1D TF is obtained
by averaging the power spectra ratio (Eq. 2.14) in Fourier-domain annuli at a fixed angular scale k. Neverthe-
less, the filtering is not isotropic in the maps. In Fig. 2.14 we show the lost cluster signal in the subtraction of
a common mode from the simulated TOIs in Fig. 2.7. We present the example for four scans with angles of 0,
45, 90, and 135 degrees with respect to the right ascension axis. We notice that the filtering is not homogeneous
nor isotropic, with a strong dependence on the direction of the scan. Similarly, in Fig. 2.15 we show the signal
of the cluster that is lost in the subtraction of a common mode, but this time masking the data points inside a
circle of a radius of 100 arcsec. The improvement introduced by the use of the mask is evident, with the signal
being less filtered when a mask is used in the estimation of the common mode. However, the directionality of
the filtering remains.

The anisotropy of the filtering motivated the development in this thesis of the two-dimensional transfer
function (2D TF). In the right panel of Fig. 2.16 we present the 2D TF in the (kx, ky) plane describing the
filtering of the CL J1226.9+3332 cluster signal in the NIKA2 150 GHz map. It is the transfer function that
corresponds to the map in the left panel in Fig. 2.10, obtained with the IMCM decorrelation pipeline. The
black line in the left panel of Fig. 2.16 shows the 1D TF, whereas the coloured lines correspond to the one-
dimensional cuts of the 2D TF for the different directions represented in the right plot. Grey-shaded areas
correspond to the NIKA2 field of view (for small angular frequencies) and beam FWHM (for large angular
frequencies) instrumental limits.

Figure 2.16: Transfer functions, 1D (left) and 2D (right), describing the filtering induced by data processing for the 150 GHz map in
the left panel in Fig. 2.10. The coloured lines in the left panel represent the values of the 2D transfer function for the directions shown
with the same colours in the right panel.

Except for the scanning directions, the 2D TF is compatible with the 1D TF, and is greater than 0.8 at
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large angular scales, meaning that the signal is well preserved. On the contrary, filtering is strong for angular
frequencies below ∼ 0.5 arcmin−1. At 0.4 arcmin−1 ≲ k ≲ 0.8 arcmin−1 the transfer function is larger than unity,
meaning that at these scales the signal has been slightly enhanced by the data analysis process.

From the 2D TF shown in Fig. 2.16 the anisotropy of the filtering is undeniable. We can see that angular
frequencies perpendicular to the scanning directions are more strongly filtered. A bad knowledge of this filtering
could lead to a wrong interpretation of the data in NIKA2 maps. We stress that the goal of the transfer function
is to represent, in the most accurate manner, the filtering that the cluster’s signal has undergone. In Fig. 2.17
we show a different way to check the precision of the TFs. In the left panel we present the “true filtering”, i.e.
the difference between the simulated map after and before the decorrelation procedure. In the central panel we
show an equivalent figure, but assuming that S out is well represented by the convolution between S in and the
two-dimensional transfer function. The right panel presents the same figure using the 1D TF. Although it is
not able to represent all the structures of the filtering, the 2D transfer function can cope, as expected, with the
anisotropies.

Figure 2.17: Performance of transfer fuctions. Left: the difference between a mock cluster signal after and before going through the
decorrelation pipeline. Centre: the difference between the input signal convolved by the 2D transfer function and the input signal.
Right: same, but convolved by the 1D transfer function.

In chapter 4 we will evaluate the robustness of the different pipelines and the impact of considering the AO
or the TO noise estimator, as well as the anisotropy of the filtering, on the analysis of the CL J1226.9+3332
galaxy cluster.
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In this chapter we present the scientific goals and targets of the NIKA2 Sunyaev-Zel’dovich Large pro-
gramme (LPSZ), which is an important part of this thesis. In the context of the LPSZ, we describe how the
thermal pressure profile of galaxy clusters is reconstructed from NIKA2 SZ maps. From the combination with
X-ray data, we detail the estimation of the hydrostatic mass profile for LPSZ clusters. This chapter is devoted
to the description of the general procedure, illustrating the developments performed during this thesis with the
analysis of the PSZ2 G228.16+75.20 galaxy cluster.

3.1 The NIKA2 SZ Large Programme

The NIKA2 Sunyaev-Zel’dovich Large programme or LPSZ [226–229] is one of the large programmes of
the NIKA2 collaboration. As reward for the construction of the NIKA2 camera, 1300 hours of guaranteed
time (GT) were allocated to the five large programmes: Galactic Star Formation with NIKA2 (GASTON),
The NIKA2 Cosmological Legacy Survey (N2CLS), Interpreting the Millimetre Emission of Galaxies with
IRAM and NIKA (IMEGIN), Probing the B-Field in star-forming Filaments Using NIKA2-Pol (B-FUN) and
the LPSZ. The latter benefits from 300 hours.
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Figure 3.1: Sky coverage of different surveys in equatorial coordinates. The blue area shows the region of the sky observed by ACT
[141] and the orange and green are the areas covered by SPT [230, 231]. The dashed area is inaccessible from the 30-metre telescope.
Each point represents one of the 45 LPSZ clusters. Figure extracted from Kéruzoré (2021) [35].

3.1.1 The sample of the LPSZ

The NIKA2 Sunyaev-Zel’dovich Large Programme consists of 45 clusters of galaxies observed through the
SZ effect with the NIKA2 camera and selected to cover uniformly the redshift and mass ranges z ∈ [0.5, 0.9]
and M500 ∈ [3, 11] × 1014 M⊙. Clusters were chosen from Planck and ACT catalogues [9, 142] available at the
time of the creation of the Large Programme. Given the location of the 30-metre telescope, LPSZ observations
were limited to sky declinations above −20◦. This limitation prevents from using the clusters detected with the
SPT [230, 231] survey for the LPSZ follow-up. In Fig. 3.1 we show the regions of the sky covered by different
SZ surveys, the LPSZ sample and the inaccessible sky at the 30-metre. The Planck catalogue covers the full
sky.

The mass and redshift ranges were divided into five bins in mass and two in redshift and five clusters were
randomly chosen from the mentioned catalogues for each mass-redshift bin. For the lowest mass bin the clusters
were selected from the ACT catalogue and for the rest of the bins from Planck detections. The masses used to
classify the clusters in bins were estimated from the SZ signal of each cluster with the SZ-mass scaling relation
from Arnaud et al. (2010) [70]. Selecting clusters in these bins was a way to ensure a homogeneous repartition
of the sample in mass and redshift. Given that clusters were chosen according to their SZ signal, the sample is
not subject to the selection effect biases of X-ray samples (discussed in Sect. 1.2.2). The distribution in mass
and redshift of the LPSZ clusters is shown in Fig. 3.2. As indicated in Fig. 3.2, some of the clusters in the LPSZ
sample have also been observed in X-rays with the XMM-Newton satellite. Chandra data is also available for
others.

The 300 NIKA2 hours allocated to the LPSZ were distributed amongst the clusters in the sample to ensure
a S/N = 3 in the SZ surface brightness radial profiles at θ500 for all clusters. These calculations were performed
assuming the scaling relation and pressure profile from A10, the outcomes of the Planck and ACT catalogues
and the expected performances of the NIKA2 instrument, which was not built at the time of the selection of the
sample. Therefore, the final quality of the maps can differ from the anticipated data if any of these hypotheses
are not satisfied.

At the time of writing this manuscript the 300 hours have already been observed (LPSZ observations finished
in February 2023) and the first analyses of the whole sample are being carried out. Some clusters appear to be
weaker than expected, which is also confirmed by the X-ray follow-ups. In order to ensure a homogeneous data
quality along the sample, some clusters will be dropped and the final LPSZ sample will contain ∼ 35 objects.

In addition to SZ and X-ray data, the clusters in the LPSZ sample are also being observed by the Gran
Telescopio de Canarias. These observations provide a spectroscopic view of the member galaxies in the clusters,
which can be used to have an independent estimate of the mass for each cluster [140, 233]. Some LPSZ clusters
have also been observed by the Hubble Space Telescope as part of the CLASH sample. This data is used in
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Figure 3.2: Distribution of the LPSZ cluster sample in the five bins in mass and two in redshift. Red circles and blue diamonds indicate
the clusters from Planck and ACT catalogues, respectively. Purple stars show the objects followed up in X-rays with XMM-Newton.
Figure from Ruppin (2018) [232].

chapter 5 to get lensing mass estimates and to assess the deviation from the hydrostatic equilibrium hypothesis
of the LPSZ clusters. At the same time, simulated clusters from THE THREE HUNDRED Project [234] allow
us to investigate intrinsic effects that might also affect LPSZ results and can not be studied from observations
(chapter 7).

3.1.2 Scientific goals

The LPSZ seeks to address some of the open questions of the cosmology with clusters of galaxies. As
presented in chapter 1 different surveys have obtained large SZ-detected galaxy cluster catalogues [141, 142,
230, 235]. However, they need to rely on a mean pressure profile and an SZ-mass scaling relation to carry out
cosmological analyses.

Mean pressure profile. The first objective of the LPSZ is to re-estimate the mean pressure profile of galaxy
clusters. The cosmological analyses of Planck and ACT collaborations [141, 142] used the so-called universal
pressure profile from Arnaud et al. (2010) [70] to build their catalogues. But, as mentioned in chapter 1, this
profile was obtained from the X-ray observations of the REXCESS sample, a sample with clusters at z < 0.2.
A posterior work [72] reconstructed the mean pressure profile combining Planck and XMM-Newton data. The
analysis was done for a sample of massive low redshift clusters, all of them at z < 0.5 and most of them at
z < 0.3. Recently the PACT sample was used to build a stacked pressure profile for 0.16 < z < 0.70 clusters
[73].

The goal of the LPSZ is to go beyond z = 0.5 and to check the potential evolution of the average pressure
profile of galaxy clusters with the sample at 0.5 < z < 0.9. Pressure profiles could evolve with redshift, meaning
that the mean profiles from the abovementioned works are not representative of the clusters at higher redshifts.
Some works in the literature use already high-resolution X-ray observations to study such evolution [80, 236],
but the pressure profile reconstructed using exclusively SZ data could differ from the profiles with X-ray data,
due to different instrumental limitations and to the used sample selection method (see chapter 1). Therefore, a
comparison to the results from SZ data is essential. As shown in Ruppin et al. (2019) [237] slight changes in
the mean pressure profile have an important impact on the cosmological analyses performed with SZ data, so
well resolved profiles and precise observations are key.

SZ-mass scaling relation. Another important goal of the SZ Large Programme is to deliver to the commu-
nity a revised scaling relation between the SZ effect and the mass of clusters. As for the pressure profile, to
date, most of the SZ-mass scaling relations have been determined from low-redshift (z < 0.5) cluster samples



72 3.1. THE NIKA2 SZ LARGE PROGRAMME

with masses obtained from X-ray observations [70, 206]. Other scaling relations, with optical data for example
[238] are also used. In any case, it is necessary to study the redshift evolution of these scaling relations as they
have an important impact on the final cosmological results [239]. To build such scaling relations the precise
reconstruction of the mass of galaxy clusters is crucial. As presented in chapter 1, under several assumptions,
namely the hydrostatic equilibrium hypothesis, we can reconstruct the mass profile of single clusters from the
combination of SZ and X-ray data. It is for this purpose that the LPSZ counts on X-ray observations from the
XMM-Newton and Chandra satellites, being the LPSZ the only sample of clusters at z > 0.5 with equivalent
resolution for X-ray and SZ data. We will present in the following sections the detailed HSE mass reconstruc-
tion procedure for the LPSZ.

Thermodynamical properties at high angular resolution. Together with the pressure and the HSE mass,
the LPSZ will study the temperature and entropy (as defined by Voit et al. (2002) [240]) profiles of galaxy
clusters. The shape of the entropy profile of clusters can be an indicator of their dynamical state and thermal
history [77], so the resolved LPSZ profiles could be a way to learn about the distribution of relaxed and disturbed
cluster populations. As explained in chapter 1 all the mentioned thermodynamical quantities can be inferred
from X-ray observations only. Nevertheless, estimating the temperature with X-ray data requires spectroscopic
measurements, which are time-consuming and difficult for high redshift objects. Combining SZ data with
X-rays we can reconstruct the ICM temperature of clusters without X-ray spectroscopy.

Some analyses of individual clusters have already been performed based on LPSZ data. The first analysis
on PSZ2 G144.83+25.11 comprised a science verification study, as well as the proof of the impact of sub-
structures on the reconstruction of the physical cluster properties [177]. The second, the worst-case scenario
for the NIKA2 SZ Large Programme, analysed the ACT-CL J0215.4+0030 galaxy cluster, proving the qual-
ity of NIKA2 camera in the most challenging case of a high-redshift and low-mass cluster [178]. In the next
chapter we will present the third work, a study of the systematic effects related to the data reduction and mod-
elling used within the LPSZ and their impact on the mass of the CL J1226.9+3332 galaxy cluster, published in
Muñoz-Echeverrı́a et al. (2023) [191].

3.1.3 The adequacy of NIKA2 for the LPSZ

The NIKA2 camera is an ideal instrument for achieving the aforementioned goals through the observation
of the SZ effect of clusters of galaxies. As shown in Fig. 3.3, the two observing frequency bands are adapted
to detect the decrement due to the SZ effect at 150 GHz and the positive signal at 260 GHz. In practice, with
NIKA2 it is difficult to observe the galaxy clusters at 260 GHz. Firstly, and as indicated in the previous chapter,
NIKA2 is three times less sensitive at 260 GHz than at 150 GHz. Therefore, larger integration times are needed
to reach the same signal-to-noise level for the same flux density at 260 GHz. Secondly, the amplitude of the SZ
signal integrated in the NIKA2 bandpasses is smaller in the 260 GHz band than in the 150 GHz one by a factor
of ∼ 3 [177] in mJy/beam units. And, in addition, the atmospheric transmission is always worse at 260 GHz
(Fig. 2.1). As a result, the clusters are not detected in the 260 GHz NIKA2 maps, but these maps are very useful
to characterise the contamination of the cluster signal by millimetre point sources (see Section 3.2.1), mainly
dusty or radio galaxies.

The high angular resolution of NIKA2 is one of its most powerful capabilities. Clusters of galaxies are about
a couple of megaparsecs large, which translates into angular diameters of ∼ 10 and ∼ 3 arcmin at z = 0.2 and
z = 1, respectively. The arcminute scale angular resolution of large SZ survey instruments limits their capacity
to resolve clusters at high redshift. On the contrary, NIKA2 provides an angular resolution (∼ 18 arcsec at
150 GHz) that in addition to resolving the clusters up to z ∼ 2, it is enough to map in detail the different
substructures.

Detecting the SZ effect in a reasonable amount of time requires a very good sensitivity since the signal
of clusters is very weak. While the fluctuations of the atmosphere give typically surface brightnesses of 1 −
10 Jy/beam for NIKA2 observations, the flux density of the thermal SZ effect at 150 GHz is of the order of a
few mJy/beam at the peak. At 150 GHz the sensitivity of NIKA2 being able to map a 1400 arcmin2 region in
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Figure 3.3: NIKA2 bandpasses in purple (150 GHz) and orange (260 GHz), the black body spectrum of the CMB in blue and its spectral
distortion due to the tSZ effect in red, for large Compton parameter values. Figure from Ruppin (2018) [232].

one hour with a 1σ = 1 mJy noise level, it is enough to map the SZ of clusters up to θ500 in a few hours.

3.2 Pressure profile reconstruction within the LPSZ

Within the SZ Large Programme, the NIKA2 150 GHz maps of clusters of galaxies are used to reconstruct
the thermal pressure in the ICM of clusters. In this section, we present the modelling of the SZ effect, but
before going into the pressure reconstruction, we will discuss the contamination by point sources and their
characterisation. We illustrate the different steps of the analysis for the PSZ2 G228.16+75.20 galaxy cluster
and a more detailed study will be presented in chapter 4 for CL J1226.9+3332.

3.2.1 Contamination by point sources

The presence of positive point sources in the 150 GHz maps can affect the modelling of the SZ effect.
When those sources lie on the same line-of-sight as the cluster, they can partially or completely compensate the
negative signal from the thermal SZ effect, and therefore, bias the pressure reconstruction. Thus, it is essential
to consider their contamination. The high angular resolution of NIKA2 is key in this respect since it permits
identifying sources that would be unresolved and potentially ignored with lower resolution instruments.

Overall, in a simplified way, we classify the galaxies emitting in the 150 GHz band into two types. On
the one hand, the submillimetre galaxies are the dusty galaxies that emit mostly at wavelengths below the
millimetre domain, thus they emit more at 260 GHz than at 150 GHz. On the other hand, the so-called radio
galaxies emit mainly at frequencies of the order of a few GHz, much lower than the NIKA2 bands, but can
contaminate the 150 GHz map and sometimes also contribute to the 260 GHz one. We deal with the two types
of sources slightly differently.

Submillimetre sources

For the characterisation of submillimetre sources we make use of the NIKA2 260 GHz maps. We present
in Fig. 3.4 the 150 GHz and 260 GHz maps of PSZ2 G228.16+75.20 galaxy cluster obtained with the IMCM
decorrelation method on the NIKA2 data from 1.6 hours of observations. Black contours indicate significance
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levels starting from 3σ with a 3σ spacing. In the left panel the cluster appears as a decrement in the centre of
the 150 GHz map. At the same time, some positive sources are detected above the 3σ noise level. In the right
panel we present the map at 260 GHz. As expected, we do not observe any SZ signal in the 260 GHz map, but
we detect some positive sources, a few of them being coincident with the detections at 150 GHz. Sources that
are weaker at 150 than at 260 GHz are good submillimetre galaxy candidates.

Figure 3.4: NIKA2 maps of PSZ2 G228.16+75.20 at 150 GHz (left) and 260 GHz (right) in Jy/beam units. Contours show S/N levels
in multiples of ±3σ. Both maps have been smoothed with a 10′′ FWHM Gaussian kernel. White and red circles in the 260 GHz map
show the submillimetre and radio point sources, respectively.

We cross-check the detections with S/N greater than 3 with the Herschel SPIRE5 and PACS6 catalogues.
These catalogues contain fluxes and positions of galaxies identified at 600, 860 and 1200 GHz with SPIRE and
at 1870 and 3000 GHz with PACS. We present in Table 3.1 the Herschel fluxes for the point sources found
within the PSZ2 G228.16+75.20 cluster map. Fluxes for sources from PS1 to PS12 were directly extracted
from SPIRE and PACS catalogues, while the flux values of PS13 to PS16 were obtained from Herschel maps7.

After sources have been identified, we use the PSTools software to estimate their flux at 260 GHz from
NIKA2 maps. PSTools was originally presented in Kéruzoré (2021) [35] and it is based on Adam et al. (2016)
[225] and Ruppin et al. (2017) [241].

This tool fits simultaneously the flux and the position of a point source, as well as a zero level, in a 1 ar-
cminute cropped region of the 260 GHz NIKA2 map. Point sources are modelled as two dimensional Gaussian
functions with the size of the 260 GHz beam that was used for the absolute calibration in the NIKA2 commis-
sioning [216]: FWHM = 12.5′′. The amplitude of the Gaussian function fitted to each source corresponds to its
flux. PSTools uses the Python iminuit library [242] to minimise the χ2.

For each of the submillimetre sources, a modified black-body spectrum model is adjusted to the fluxes from
Herschel data together with the measurements at 260 GHz from the NIKA2 map:

F(ν) = F0

(
ν

ν0

)β
Bν(T ). (3.1)

Here F(ν) is the flux of the source at the frequency ν, Bν(T ) is a T temperature black-body spectrum, F0 is the
5European Space Agency, Herschel SPIRE Point Source Catalogue, Version 1.0, 2007. https://doi.org/10.5270/

esa-6gfkpzh
6European Space Agency, Herschel PACS Point Source Catalogue, Version 1.0, 2007. https://doi.org/10.5270/

esa-rw7rbo7
7http://herschel.esac.esa.int/twiki/pub/Public/Level-3Products/SPIRE_Level3_HCSS14.2.1.txt

https://doi.org/10.5270/esa-6gfkpzh
https://doi.org/10.5270/esa-6gfkpzh
https://doi.org/10.5270/esa-rw7rbo7
https://doi.org/10.5270/esa-rw7rbo7
http://herschel.esac.esa.int/twiki/pub/Public/Level-3Products/SPIRE_Level3_HCSS14.2.1.txt
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Table 3.1: Submillimetre point sources identified in the field of PSZ2 G228.16+75.20. We give the coordinates, the name assigned to
each source and the fluxes from Herschel PACS and SPIRE data.

Coordinates J2000 Source 3000 GHz 1800 GHz 1200 GHz 860 GHz 600 GHz
[mJy] [mJy] [mJy] [mJy] [mJy]

11h49m46.33s +22d25m40.58s PS1 15.527 ± 2.898 47.200 ± 8.100 46.500 ± 9.000 41.700 ± 6.600
11h49m44.72s +22d21m48.31s PS2 20.165 ± 3.988 18.900 ± 3.800 22.100 ± 6.700 26.100 ± 5.900
11h49m37.68s +22d21m38.02s PS3 17.300 ± 4.900 21.800 ± 6.600 20.100 ± 5.400
11h49m30.26s +22d24m25.15s PS4 20.608 ± 1.872 104.356 ± 19.185 53.300 ± 6.700 51.800 ± 8.200 31.000 ± 4.200
11h49m24.84s +22d26m43.85s PS5 34.100 ± 8.400 46.300 ± 12.000 36.800 ± 8.500
11h49m21.61s +22d26m30.42s PS6 71.300 ± 9.300 62.200 ± 13.600 40.500 ± 10.000
11h49m16.66s +22d25m14.02s PS7 30.200 ± 4.100 31.000 ± 7.400 18.700 ± 5.400
11h49m49.33s +22d24m44.60s PS8 21.200 ± 6.700
11h49m37.20s +22d24m33.02s PS9 24.300 ± 5.700
11h49m27.37s +22d26m05.61s PS10 19.100 ± 5.700 24.400 ± 7.000
11h49m26.31s +22d24m59.09s PS11 31.139 ± 6.773 31.400 ± 7.400
11h49m46.05s +22d24m27.95s PS12 33.000 ± 5.300 21.700 ± 6.500
11h49m40.87s +22d23m11.75s PS13 49.778 ± 5.977 57.749 ± 6.891 54.705 ± 6.829
11h49m32.47s +22d22m42.23s PS14 56.627 ± 6.613 65.676 ± 7.675 49.966 ± 6.331
11h49m38.46s +22d24m45.02s PS15 26.021 ± 3.364 54.384 ± 6.514 46.055 ± 5.848
11h49m38.89s +22d25m40.58s PS16 31.900 ± 4.088 47.729 ± 5.794 51.690 ± 6.438

Figure 3.5: Some characteristics of point sources in the field of PSZ2 G228.16+75.20. Left: the fit of a modified black-body SED for
PS4. Blue and green data points show the fluxes from PACS and SPIRE, respectively. In red we present the flux at 260 GHz measured
from the NIKA2 map. In pink we show the 1σ and 2σ contours of the fit and the black dashed line indicates the 150 GHz frequency at
which the SED will be evaluated. Right: PDFs of the flux at 150 GHz for the two radio sources.

amplitude of the spectral energy distribution (SED) at ν0 = 500 GHz and β describes a possible deviation from
a black-body spectrum. The T temperature of the black-body is the effective emitting temperature.

The SED fits are also performed with a modified version of PSTools (that I modified to account for PACS
data), through a Markov chain Monte Carlo (MCMC) method using the emcee Python package [243, 244].
To remove the degeneracy of F0, β and T free parameters, first F0 is fitted linearly to data and fixed for the
following (as in Désert et al. (2008) [245]). Then β and T are fitted with a normal and flat prior, β ∼ N(2, 0.5)
and T ∈ [0, 50] K, based on prior knowledge of the SEDs of dusty galaxies from the literature [246]. The fitted
spectra are then extrapolated to 150 GHz to obtain an estimate of the flux of each source at 150 GHz. In the left
panel in Fig. 3.5 we show the SED fit for the PS4 source.

Radio sources

Often radio sources close to the centre of LPSZ clusters correspond to the Brightest Cluster Galaxy (BCG),
typically AGNs with very strong magnetic fields emitting due to the synchrotron radiation [247]. We know
beforehand that their contribution at 150 GHz is small, but given their central position it is important to consider
them.

Usually radio sources are not detected at 260 GHz, so we use external radio surveys (as in Adam et al. (2014)
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[221]), such as VLA FIRST [248] and NVSS [249], to get an approximative estimation of their contribution
at 150 GHz. Assuming a synchrotron spectrum F(ν) = F0(ν/ν0)α with α = −0.7 ± 0.2, which describes the
spectral energy distribution for an average radio source [250], we extrapolate the fluxes to 150 GHz. The
extrapolation of fluxes from radio to millimetre wavelengths can be dangerous and lead to biasing the electron
pressure reconstruction, so extreme care is needed especially with very central sources.

In the VLA FIRST catalogue and within a region of 6′ diameter around PSZ2 G228.16+75.20 galaxy
cluster centre we find two radio sources: PS17 in (RA, DEC)J2000 = (11h49m39.357s, +22d24m31.06s) and
PS18 in (RA, DEC)J2000 = (11h49m22.315s, +22d23m26.43s). Their fluxes at 1.4 GHz are 1.76 ± 0.15 mJy
and 4.86 ± 0.15 mJy, respectively. From the extrapolation, assuming the synchrotron spectrum with a
Gaussian distribution for α, we estimate the probability distribution of their fluxes at 150 GHz. We present the
distributions in the right panel in Fig. 3.5. Both are weak at NIKA2 frequencies and compatible with a null
flux.

In the right panel in Fig. 3.4 we indicate in white and red the dusty and radio galaxies identified around
PSZ2 G228.16+75.20. Both from the 150 and 260 GHz maps there seem to be a source in the north-western
part of the cluster, compensating the SZ effect. Nevertheless, no counterpart was found in the external cata-
logues, nor in the Herschel maps. For the well characterised submillimetre and radio sources, the probability
distributions of the fluxes at 150 GHz are used as priors for the joint fit of the cluster pressure profile and the
point sources fluxes described in the following section.

3.2.2 Thermal SZ modelling

As presented in chapter 1, the spectral distortion of the CMB caused by the thermal energy in the cluster (i.e.,
the tSZ effect) is characterised by its amplitude or Compton parameter, y [112], which is directly proportional
to the thermal pressure of the electrons in the ICM (Eq. 1.25). Hence, the SZ surface brightness is proportional
to the Compton parameter integrated over the SZ spectrum convolved by the NIKA2 bandpass, and therefore,
proportional to the integrated thermal pressure of the ICM in the cluster. In this section we present the pressure
profile reconstruction method employed within the NIKA2 Sunyaev-Zel’dovich Large Programme.

To estimate the electron pressure in the ICM for each galaxy cluster we fit a model map of the surface
brightness of the cluster, M, to the NIKA2 150 GHz map, D. The model map is obtained from the pres-
sure profile of the galaxy cluster integrated along the line-of-sight in Compton parameter (y) units, following
Eq. 1.25. Multiple models can be used to represent the pressure profile in the ICM of clusters. For example, we
can describe the pressure of galaxy clusters with a radially binned spherical model (also called non-parametric
model in Ruppin et al. (2017) [241] and Romero et al. (2018) [251]),

Pe(ri < r < ri+1) = Pi

(
r
ri

)−αi

, (3.2)

where Pi and αi are the values of the pressure and the slope at the radial bin ri. The slope is directly calculated
as

αi = −
log Pi+1 − log Pi

log ri+1 − log ri
. (3.3)

We initialise the pressure bin values by taking, at each radial bin, random values from a normal distribution
centred at the corresponding pressure from the universal profile of A10 [70]. The radial bins are chosen to
cover mainly the range between the NIKA2 resolution and field of view capabilities. The derived y-map is
convolved with the NIKA2 beam at 150 GHz, which is approximated by a two-dimensional Gaussian with
FWHM = 17.6′′ [216]. In order to account for the attenuation or filtering effects due to data processing in the
NIKA2 150 GHz map, the model map is also convolved with the transfer function calculated as described in
Sect. 2.3.4.
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Finally, the y-map is converted into surface brightness units with a conversion coefficient, accounting for the
SZ spectrum shape convolved by the NIKA2 bandpass. This conversion coefficient was calculated in Ruppin
et al. (2018) [177], for the observations of the PSZ2 G144.83+25.11 galaxy cluster, under the observational
conditions of April 2017: −11.9 ± 0.9 Jy/beam/y. Given that the coefficient includes the integration in the
NIKA2 bandpass, for observations carried out in a different period its value may differ from the one obtained
in Ruppin et al. (2018) [177] if the bandpass is not identical, for example, due to different observing conditions.
For this reason, the conversion coefficient is also left as a nuisance parameter of the map fit, with a prior value
centred on −11.9 Jy/beam/y. In this way, we can also account for uncertainties in the total calibration.

Furthermore, for the comparison with the 150 GHz NIKA2 map, we add the contribution of point sources
to the model mapM. Point sources are modelled as two-dimensional Gaussian functions, with priors on the
fluxes at 150 GHz obtained from the results of the SED fitting procedures presented in Sect. 3.2.1. The last
component in the model map is a constant zero-level that we also adjust as a nuisance parameter.

Therefore, the parameters (ϑ) of the fit are the pressure radial bins describing the ICM of the cluster, the
conversion factor from Compton to surface brightness units, the fluxes of the contaminant point sources, and
the zero-level. The likelihood that we use to compare our modelM(ϑ) pixel by pixel to the dataD is given by

logL(ϑ) = −
1
2

npixels∑
i=1

[
(M(ϑ) −D)T C−1

pix−pix (M(ϑ) −D)
]
i

−
1
2

Y500(ϑ) − Ycatalogue
500

∆Ycatalogue
500


2

.

(3.4)

Here Cpix−pix is the pixel-pixel noise covariance matrix accounting for the residual noise in the NIKA2 150 GHz
map (Sect. 2.3.3). For each pressure profile model we also compute the integrated Compton parameter, Y500
(Eq. 1.55). We compare in the likelihood in Eq. 3.4 the integrated Compton parameter from the pressure
model to the value measured by large SZ surveys and given in the Planck and ACT cluster catalogues [9, 142],
Ycatalogue

500 . This additional condition in the likelihood helps to constrain the external region of the profile, which
can be difficult to determine using only NIKA2 data.

For the map fit, we use the panco2 pipeline [252] and follow the procedure described in Adam et al. (2015)
[119], Ruppin et al. (2018) [177], and Kéruzoré et al. (2020) [178]. This pipeline performs an MCMC fit
using the emcee Python package. The sampling is performed using 40 walkers and 105 steps, with a burn-in
of 103 samples. Convergence is monitored following the R̂ test of Gelman and Rubin (1992) [253] and chains
autocorrelation as described in Kéruzoré et al. (2023) [252]. The panco2 code has been successfully tested on
simulations.

We present in Fig. 3.6 the NIKA2 150 GHz map of PSZ2 G228.16+75.20 compared to the best-fit model
map and the residual. The fit is performed on the IMCM map, using the 2D transfer function (Sect. 2.3.4) and
estimating the noise with time ordered scans (Sect. 2.3.3). The SZ emission of PSZ2 G228.16+75.20 is diffuse,
with a large number of point sources in the field. The model represents the SZ effect due to the cluster and the
flux of sources. The most important residual is the positive emission to the south of the cluster, for which no
corresponding point source was found in the catalogues, nor in the NIKA2 260 GHz map (Fig. 3.4).

We show in Fig. 3.7 the electron pressure profile obtained from the fit to the NIKA2 150 GHz map. In the
right panel we present the correlation matrix of the pressure bins obtained for PSZ2 G228.16+75.20, where we
see that the 4th bin is very anticorrelated with the central ones. First and last bin couples are also remarkably
anticorrelated.

3.3 X-ray observations with XMM-Newton
For the clusters in the LPSZ with XMM-Newton data, the raw X-ray data is analysed following the standard

procedure used in previous works in the literature [77, 177, 178, 254]. The electron density and temper-
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Figure 3.6: Best-fit for the 150 GHz map of PSZ2 G228.16+75.20. From left to right: the NIKA2 surface brightness map, the best-fit
model of the SZ signal and point sources, and the difference map between the data and the best-fit model.

Figure 3.7: Radially binned pressure profile fit to PSZ2 G228.16+75.20 data. Left: in green the mean posterior profile with 1σ and
2σ contours. Empty symbols correspond to the pressure profile obtained from the combination of XMM-Newton electron density and
temperature profiles. Vertical dotted lines indicate the instrumental limits of NIKA2 as radius of the beam and FoV. Right: correlation
matrix for the six fitted pressure bins.
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Figure 3.8: Electron density (left) and temperature (right) profiles for the PSZ2 G228.16+75.20 galaxy cluster reconstructed from
XMM-Newton observations, with 1σ error bars.

ature profiles are extracted following the methodology described by Pratt et al. (2010) [77] and Bartalucci
et al. (2017) [254]. Following Eq. 1.22, the electron density profile can be directly inferred from the X-ray
surface brightness. The vignetted-corrected and background-subtracted surface brightness profile obtained in
concentric annuli from the X-ray peak is deconvolved from the point spread function (PSF) and geometrically
deprojected, assuming spherical symmetry, using the regularisation technique described in Croston et al. (2006)
[255].

The temperature profile is derived also in concentric annuli from the X-ray map, through a spectral anal-
ysis modelling of the ICM emission and accounting for both the instrumental and astrophysical backgrounds.
The derived 2D temperature profile is then PSF-corrected and deprojected following the non-parametric-like
method presented in Bartalucci et al. (2018) [105]. In Fig. 3.8 we present the electron density and temperature
profiles for PSZ2 G228.16+75.20.

The gas pressure profile is then derived from the deprojected density, ne, and temperature, Te, profiles
assuming Pe ∝ ne×Te. The NIKA2 pressure profile presented in Fig. 3.7 was reconstructed assuming the same
centre position as the X-ray profiles, so we can compare the profiles obtained from the NIKA2 SZ data to the
pressure reconstructed using X-ray observations from the XMM-Newton satellite. Both reconstructions agree
at intermediate radii, but there seem to be pressure missing in the SZ data, or overestimated by the X-rays. The
fact that we have ignored a lack of SZ in the centre of the 150 GHz map, created maybe by a point source,
could explain the lower pressure in the NIKA2 profile. The comparison between SZ and X-ray reconstructions
is particularly useful to exhibit this type of effects.

3.4 Hydrostatic mass reconstruction within the LPSZ

Under the hydrostatic equilibrium hypothesis, for a spherical cluster we can compute its total mass enclosed
within the radius r (Eq. 1.45). If the electron pressure, Pe, and the density, ne, have been reconstructed assuming
the same centre, we can combine the pressure profile obtained from the thermal SZ or X-ray data with the
electron density from the X-rays and estimate the mass of the galaxy cluster, as already demonstrated in the
literature [119, 177, 178].

Deriving the mass directly from the radially binned pressure profiles leads to non-physical results (i.e.,
negative mass contributions) since no constraint was imposed regarding the slope of the profile in the pressure
reconstruction. This was done to minimise the imposed assumptions on the model of the pressure profile. To
overcome the negative mass issue, we fit here pressure models ensuring physical mass profiles to the radially
binned SZ results from Sect. 3.2.2. We propose two different approaches: 1) a direct fit of a gNFW pressure
profile to the radially binned pressure, and 2) an indirect fit of an NFW mass density model under the HSE
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assumption.

3.4.1 gNFW pressure model

The first approach consists in fitting the widely used gNFW pressure profile model [67] to the SZ data, that
we parametrise as

PgNFW
e (r) =

P0(
r
rp

)c (
1 +

(
r
rp

)a)(b−c)/a , (3.5)

where P0 is the normalisation constant, b and c are respectively the external and internal slopes, rp is the
characteristic radius of slope change, and a the parameter describing the steepness of the slopes transition.

The fit of the gNFW model to the pressure bins is performed with an MCMC method, using the emcee
package, with 200 walkers, 15 × 104 steps and a burn-in of 5 × 104. The MCMC searches to maximise the
likelihood defined by,

logL(ϑ) =

−
1
2

(
PgNFW

e (ϑ) − PN2
e

)T
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(
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1
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500
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2

,

(3.6)

where PN2
e and C represent the NIKA2 radially binned pressure profile bins and the associated covariance matrix

(Fig. 3.7) and PgNFW
e (ϑ) are the gNFW pressure profile values for a set of parameters ϑ = [P0, rp, a, b, c]. We

also set a constraint on the integrated Compton parameter of the model YgNFW
500 (ϑ), again using the catalogue

results, Ycatalogue
500 , and a condition that ensures that HSE mass profiles increase with radius: r2

ne(r)
dPe(r)

dr < 0. In
the left panel in Fig. 3.9 we show the fit of the gNFW model using MCMC to the radially binned pressure of
PSZ2 G228.16+75.20. Given the small amount of data points a, b and c parameters were fixed to the values of
the universal pressure profile from Arnaud et al. (2010) [70]. We observe that the external slope of the pressure
profile is not completely well represented by this model.

Following the hydrostatic equilibrium equation, we can combine the posterior parameters of the gNFW
model with the electron density profile to get the HSE mass profile. In Fig. 3.9 we present the HSE mass profile
for the PSZ2 G228.16+75.20 galaxy cluster. We compare the mass profile obtained from the combination of
NIKA2 SZ data and XMM-Newton X-ray data to the profile reconstructed using only X-rays (see chapter 4 for
a more detailed discussion). Assuming spherical symmetry, the X-ray HSE mass profile was derived, following
the Monte Carlo procedure detailed in Démoclès et al. (2010) [256] and Bartalucci et al. (2017) [254] with the
XMM-Newton electron density and temperature profiles presented in Fig. 3.8.

In parallel, panco2 offers the possibility of fitting directly a gNFW electron pressure profile to the NIKA2
maps, building the model map in Eq. 3.4 from the integration of the pressure in Eq. 3.5. The derivative of a
gNFW profile is analytic and, therefore, at each step of the map fit a mass profile following the HSE equation
in Eq. 1.45 can be easily computed. Then, the parameter combinations that do not satisfy an increasing mass
profile can be discarded. This alternative pressure and mass reconstruction method has been used in several SZ
studies [118, 119, 177, 178] and will be exploited for the analysis of the full LPSZ sample.

The main advantage of fitting gNFW models to maps is that the obtained pressure and mass profiles are
smooth and slopes can be supervised during the fit to ensure physical masses. At the same time, this is one of
the drawbacks of the method: if the electron density profile derived from X-ray data is employed throughout
the NIKA2 map fit to calculate the HSE mass at each step of the MCMC (following Eq. 1.45), the resulting
pressure profile will depend on the X-ray data given as an input. Thus, pressure profiles will not be independent
SZ estimates. Combining the NIKA2 pressure profile with external data sets is also easier if the pressure
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model is radially binned. An example with the CL J1226.9+3332 galaxy cluster is presented in chapter 4.
Furthermore, radially binned models are more general, since they are a way of reducing dimensionality with
the only requirements of sphericity and a power law relation between the radial bins.

3.4.2 NFW mass density model

The estimation of the pressure derivative (Eq. 1.45) can be very problematic, first because it is very sensitive
to local variations in the slope of the pressure profile and because it requires, as discussed above, additional
constraints to ensure recovering physical masses. To overcome these issues, in this thesis we also model the
pressure profile starting from a mass density model and assuming HSE. An equivalent idea is the backward
process of fitting X-ray temperatures described in Ettori et al. (2013) [257]. This method was used for mass
reconstruction in Ettori et al. (2019) [175] and in Eckert et al. (2022) [258]. From the HSE defined in Eq. 1.45,
we can write

Pe(rb) − Pe(ra) =
∫ rb

ra

−µmpGne(r)
MHSE(< r)

r2 dr. (3.7)

Moreover, we can relate a radial mass density profile ρ(R) to the mass by

M(< r) =
∫ r

0
4πR2ρ(R) dR, (3.8)

which allows us to relate the pressure directly to a mass density profile. We use here the NFW model (Eq. 1.19),
which is a good description of dark matter halos [51] and has been widely used in the literature. Here we switch
from an overdensity of 500 to 200 in order to conform to most of previous works. Using this definition, we
obtain

Pzero − Pe(ra) = −µmpG4πρcδc200(c200)r3
s∫ rzero

ra

ne(r)
r2

[
1

1 + r/rs
+ ln(1 + r/rs) − 1

]
dr,

(3.9)

where rzero is the radius at which we are dominated by a zero-level component. Details on the mass integral for
the NFW model are given in Eq. 7.5.

Figure 3.9: Fit to the radially binned pressure profile of PSZ2 G228.16+75.20 with gNFW (left) and NFW (right) models. Results
obtained by Renaud Serra during his Master 1 internship under my supervision. For the gNFW model a = 1.0510, b = 5.4905 and
c = 0.30810 were fixed.

We can perform an MCMC analysis similar to the one described above for the gNFW pressure profile model.
In this case, the free parameters of the model are ϑ = [c200, rs, Pzero]. At each step of the MCMC, we compute
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Figure 3.10: The hydrostatic mass profile of PSZ2 G228.16+75.20. In blue the SZ+X-ray profiles obtained from the fit of a gNFW
pressure (left) or NFW density (right) model to the pressure bins in Fig. 3.9. Pink markers show the HSE mass profile obtained using
only XMM-Newton data. Black markers indicate the HSE mass profile obtained from the derivation of the radially binned pressure
profile. Results obtained by Renaud Serra during his Master 1 internship under my supervision.

the integral in Eq. 3.9 to evaluate Pe(ϑ) as needed for the likelihood function in Eq. 3.6. Calculating the integral
can be computationally very expensive. As the result of this integral depends only on rs and ra, we create a
grid of the integrals for a range of rs values (from 100 to 2000 kpc) and ra the radial bins of interest. We use
this grid to interpolate the values of the integrals at each step. The electron density profile comes also into
play in the integral and it is redefined by logarithmic interpolation. In the right panel in Fig. 3.9 we present the
pressure profile obtained from the fit of the NFW density model to PSZ2 G228.16+75.20 pressure bins. The
model is a good representation of the binned data points. The corresponding mass profile is shown in Fig. 3.10.
From the comparison of the gNFW and NFW profiles shown in Fig. 3.10, we observe that masses reconstructed
with both models are overall compatible. These profiles also agree with the pink markers that correspond to the
X-ray-only mass derived from XMM-Newton data. However, we notice that, while the gNFW model is above
the black markers at ∼ 1000 kpc, NFW is below. This difference comes from the distinct shapes of the models
in the pressure profile and it can be crucial when defining M500.

3.4.3 M500 − R500

As explained in chapter 1, for cosmological analyses with clusters instead of considering mass profiles we
use integrated masses. Following Eq. 1.18, the mass at a density contrast of ∆ = 500 is defined as

M500 = 500 × ρcrit(z)
4
3
πR3

500. (3.10)

By definition, M500 and R500 are correlated quantities and are obtained simultaneously by searching in the mass
profile for the mass and radius values that satisfy the condition in Eq. 3.10.

From the profiles in Fig. 3.10 we obtain for PSZ2 G228.16+75.20 the HSE masses M500 = 10.07+0.68
−0.70×1014

M⊙ and M500 = 7.87+0.59
−0.55 × 1014 M⊙ for the gNFW and NFW models, respectively. We consider that, given

the problems of the gNFW model (with fixed values for a, b and c parameters) to represent the radially binned
pressure profile in Fig. 3.9, the corresponding mass is not fully reliable.

Some works in the literature [259, 260] define a fixed R500 radius, which may come from a different analysis,
and evaluate the mass profile at that radius. In those cases the size of the uncertainties in the mass profile will
be directly the error bar on M500. Throughout this thesis we consider M500 and R500 the values measured
simultaneously in the mass profile following Eq. 3.10. It will be explicitly precised if different (chapter 6).
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3.5 Conclusions

We have seen in chapters 2 and 3 that the NIKA2 camera is well adapted for mapping the Sunyaev-
Zel’dovich effect in clusters at intermediate and high redshifts. Nevertheless, careful and thorough data analysis
is required to extract the weak and diffuse SZ signal from raw data.

To characterise the residual noise in the final maps we have proposed two definitions of null maps: 1) time
ordered (TO), and 2) angle ordered (AO). The former is well adapted to track time variations, but might be
contaminated by signal residuals filtering. These residuals can be minimised with the AO approach. The real
noise in the final maps being unknown, we propose computing the jackknives with both TO and AO definitions
as a systematic test to be done on every cluster.

Regarding the filtering of the cluster signal due to the data processing, we have demonstrated that for the
maps reconstructed with the LPSZ scanning strategy and decorrelation pipeline, it is anisotropic. We propose a
two dimensional transfer function that captures the directional effects of the filtering that can not be accounted
for with the one dimensional transfer function, which was used by the NIKA2 collaboration before.

In addition, the clean signal maps are contaminated by point sources that can compensate the negative SZ
signal at 150 GHz. Ignoring such point sources biases the amplitude of the SZ signal and, consequently, the
reconstructed thermal pressure of clusters. We have shown that thanks to the high angular resolution of NIKA2
observations we can detect and characterise these sources. By using external data sets, we are able to have an a
priori estimate of the flux of the submillimetre and radio sources at 150 GHz.

These a priori estimates are then used in the joint fit of the cluster pressure and point sources model to the
NIKA2 150 GHz map. Making use of the panco2 pipeline, we have reconstructed the pressure profile of the
PSZ2 G228.16+75.20 cluster, which has an extended signal contaminated by many sources in the field. We
propose two approaches to estimate the HSE mass from the combination of SZ-obtained pressure and X-ray
electron density profiles: either fitting directly a gNFW model to the pressure (traditionally used for this kind of
analysis) or instead fitting an integrated NFW mass density model. From the comparison of both approaches, we
evidence the importance of having precisely reconstructed pressure profiles to get accurate HSE mass estimates.
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In the last two chapters we have presented the procedure needed to go from NIKA2 raw observations to
sky maps and, then, to hydrostatic masses of clusters. In this chapter we test the robustness of the NIKA2 data
analysis and the impact of the systematic effects related to that data processing on the HSE mass. We then
apply the methods described in chapter 3 to, combined with other SZ and X-ray observations, reconstruct the
HSE mass of CL J1226.9+3332 galaxy cluster, also known as PSZ2 G160.83+81.66. An important part of the
work presented in this chapter has been published in Muñoz-Echeverrı́a et al. (2023) [191].

4.1 The CL J1226.9+3332 galaxy cluster

Discovered by the Wide Angle ROSAT Pointed Survey [261], CL J1226.9+3332 has already been studied
at different wavelengths: X-ray [262, 263], visible [264], and millimetre [119, 263, 265, 266] wavelengths.
Located at redshift 0.89 [140, 142], it is the highest-redshift cluster of the NIKA2 SZ Large Programme sample,
with the X-ray peak at (R.A., Dec.)J2000 = (12h26m58.37s, +33d32m47.4s) according to Cavagnolo et al. (2009)
[267]. Less than 2 arcseconds away from this peak, its BCG is located at (R.A., Dec.)J2000 = (12h26m58.25s,
+33d32m48.57s) according to Holden et al. (2009) [268].
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4.1.1 Previous observations

Since the first SZ observations with BIMA [269], the projected morphology of CL J1226.9+3332 appeared
to have a quite circular symmetry. Nevertheless, the combination of XMM-Newton and Chandra X-ray data
[270] showed a region, at ∼ 40′′ to the south-west of the X-ray peak with a much higher temperature than the
average in the ICM. This substructure was also confirmed by posterior SZ analyses with MUSTANG [266] and
NIKA [119, 124, 125]. Romero et al. (2018) [251] (hereafter R18) performed a study combining SZ data from
the NIKA, MUSTANG, and Bolocam instruments. Their different capabilities allowed them to probe different
angular scales in the reconstruction of ICM properties and agreed with a non-relaxed cluster core description
for CL J1226.9+3332. For a precise reconstruction of the HSE mass of CL J1226.9+3332, in this chapter we
also make use of the pressure profiles obtained from the NIKA, MUSTANG, and Bolocam data summarised in
Table 2 in Romero et al. (2018) [251].

Lensing data from the Cluster Lensing And Supernova survey with Hubble (CLASH) [271], as well as
the galaxy distribution in the cluster [264], agree on the existence of a main clump centred on the BCG and
a secondary clump to the south-west. However, this second region does not appear as a structure in X-ray
surface brightness [270]. One hypothesis presented in Jee and Tyson (2009) [264] suggests that the mass of
the southwestern galaxy group is not big enough to be observed as an X-ray overdensity. Motivated by the
slight elongation of the X-ray peak towards the south-west, Jee and Tyson (2009) [264] also hypothesise that
the two-halo system is being observed after the less massive cluster has passed through the central one. A
previous study [262] also showed a region of cooler emission on the west side of the BCG, that is, in the north
of the mentioned hot region. This was seen using Chandra data, and it was explained as a possible infall of
some cooler body. Additionally, from the diffuse radio emission analysis with LOFAR data, Di Gennaro et al.
(2021) [57] showed that CL J1226.9+3332 hosts the most distant radio halo discovered to date: a radio emission
with a size of 0.7 Mpc that follows the thermal gas distribution. In brief, CL J1226.9+3332 shows evidence of
disturbance in the core, but a relaxed morphology at large scales.

4.1.2 The mass of CL J1226.9+3332

Regarding the mass of CL J1226.9+3332, which constitutes the main topic in this chapter, we present here
the results obtained in previous works (summarised in Table 4.1). These masses have not been homogenised or
scaled to the same cosmology, and are the values extracted directly from different analyses.

The first SZ mass analysis of this cluster was done in Joy et al. (2001) [269] and they estimated M(r <

340 h−1
100 kpc) = (3.9 ± 0.5) × 1014 M⊙. Using Chandra X-ray data from Cagnoni et al. (2001) [282] and

assuming an isothermal β-model, Jee and Tyson (2009) [264] obtained the hydrostatic projected mass M(r <
1 Mpc) = 1.4+0.6

−0.4×1015 M⊙. Also assuming an isothermal β-model and hydrostatic equilibrium, Maughan et al.
(2004) [262] obtained M1000 = 6.1+0.9

−0.8 × 1014 M⊙ and M200 = (1.4 ± 0.5) × 1015 M⊙ with XMM-Newton data.
The subsequent analysis of three-dimensional hydrodynamical properties with Chandra and XMM-Newton by
Maughan et al. (2007) [270], again under the assumptions of spherical symmetry and hydrostatic equilibrium,
concluded that M500 = 5.2+1.0

−0.8 × 1014 M⊙. According to the X-ray analysis in Mantz et al. (2010) [272], the
mass of the cluster is M500 = (7.8 ± 1.1) × 1014 M⊙.

From the combination of the Sunyaev-Zel’dovich Array (SZA) [275] interferometric data and the Chandra
X-ray observations, under the hydrostatic equilibrium hypothesis, Mroczkowski et al. (2009) [265] obtained
M500 = 7.37+2.50

−1.57 × 1014 M⊙ and M2500 = 2.67+0.29
−0.27 × 1014 M⊙. This was compared to the results using only the

X-ray data and assuming an isothermal β-model: M500 = 7.30+2.10
−1.51 × 1014 M⊙, M2500 = 2.98+0.90

−0.63 × 1014 M⊙.

Using a new approach, that instead relies on the virial relation, Mroczkowski (2011) [273] and Mroczkowski
(2012) [274] estimated the mass for CL J1226.9+3332 using only SZ data from SZA. In this approach,
first, a pressure profile model is fitted to the SZ data. The obtained pressure profile is used to calculate
the thermal energy profile and the non-vanishing surface pressure in the cluster, which are related, through
the virial relation, to the gravitational potential energy of the halo. Finally, the potential energy is related
to the total mass in the cluster, modelled in Mroczkowski (2011) [273] using the NFW mass density pro-
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Table 4.1: Mass estimates found in the literature for CL J1226.9+3332. We differentiate the masses reconstructed from ICM observ-
ables, from the lensing effect on background sources and from the study of the dynamics of member galaxies. Most of the masses were
computed from spherical models, and we give the radius at which each mass is evaluated when available. When the mass has been
evaluated at a given R = R∆ we also present the value of the density contrast ∆.

Observable R ∆ M (< R) Reference Comments
[kpc] [1014 M⊙]

ICM
340 h−1

100 - 3.9 ± 0.5 Joy et al. (2001) [269]
1000 - 14+6

−4 Jee and Tyson (2009) [264] Projected
730 ± 40 1000 6.1+0.9

−0.8 Maughan et al. (2004) [262]
1660 ± 340 200 14 ± 4 Maughan et al. (2004) [262]
880 ± 50 500 5.2+1.0

−0.8 Maughan et al. (2007) [270]
1000 ± 50 500 7.8 ± 1.1 Mantz et al. (2010) [272]
980+100

−70 500 7.37+2.50
−1.57 Mroczkowski et al. (2009) [265]

410+10
−10 2500 2.67+0.29

−0.27 Mroczkowski et al. (2009) [265]
980+90

−70 500 7.30+2.10
−1.51 Mroczkowski et al. (2009) [265]

420+40
−30 2500 2.98+0.90

−0.63 Mroczkowski et al. (2009) [265]
940+20

−20 500 6.49+0.34
−0.34 Mroczkowski (2011) [273], Mroczkowski (2012) [274]

390+10
−10 2500 2.35+0.15

−0.16 Mroczkowski (2011) [273], Mroczkowski (2012) [274]
940+20

−20 500 6.42+0.36
−0.36 Mroczkowski (2011) [273], Mroczkowski (2012) [274]

400+10
−10 2500 2.53+0.14

−0.15 Mroczkowski (2011) [273], Mroczkowski (2012) [274]
1140+100

−80 200 7.19+1.33
−0.92 Muchovej et al. (2007) [275]

310+30
−20 2500 1.68+0.37

−0.26 Muchovej et al. (2007) [275]
812+71

−81 500 4.25+1.22
−1.14 Bulbul et al. (2010) [276]

379+37
−41 2500 2.16+0.69

−0.63 Bulbul et al. (2010) [276]
- 500 5.71+0.63

−0.69 Planck Collaboration et al. (2016) [142] Scaling relation
930+50

−43 500 5.96+1.02
−0.79 Adam et al. (2015) [119]

937+72
−58 500 6.10+1.52

−1.06 Adam et al. (2015) [119]
995+65

−65 500 7.30+1.52
−1.34 Adam et al. (2015) [119]

910+89
−72 500 5.57+1.81

−1.23 Castagna and Andreon (2020) [277]
Lensing

1640 ± 100 200 13.8 ± 2.0 Jee and Tyson (2009) [264]
880 ± 50 - 7.34 ± 0.71 Jee and Tyson (2009) [264]
155 - 1.3 ± 0.1 Jee and Tyson (2009) [264] Projected
155 - 0.85 ± 0.06 Jee and Tyson (2009) [264] Projected (SW clump)
1680+100

−90 200 13.7+2.4
−2.0 Jee et al. (2011) [278]

- 200 22.3 ± 1.4 Merten et al. (2015) [279]
- 500 15.4 ± 1.2 Merten et al. (2015) [279]
- 2500 6.1 ± 1.0 Merten et al. (2015) [279]
- 200 10.0 ± 2.4 Sereno and Covone (2013) [280]
- 200 11.114 ± 2.442 Sereno and Covone (2013) [280], Sereno (2015) [281]8

- 500 7.96 ± 1.44 Sereno and Covone (2013) [280], Sereno (2015) [281]8

- 2500 3.45 ± 0.37 Sereno and Covone (2013) [280], Sereno (2015) [281]8

500 - 3.947 ± 0.285 Sereno and Covone (2013) [280], Sereno (2015) [281]8

1000 - 7.882 ± 1.013 Sereno and Covone (2013) [280], Sereno (2015) [281]8

1500 - 10.938 ± 1.784 Sereno and Covone (2013) [280], Sereno (2015) [281]8

Galaxy dynamics
- 500 4.7 ± 1.0 Aguado-Barahona et al. (2022) [140] 52 galaxies
- 500 4.8 ± 1.0 Aguado-Barahona et al. (2022) [140] 49 galaxies
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Figure 4.1: M500 estimates for CL J1226.9+3332 in the literature. Filled grey diamonds represent HSE masses from the combination of
SZ and X-ray data and empty ones correspond to X-ray-only results. Magenta squares show the SZ-only mass assuming virial relation,
purple circles are dynamical mass estimates, and brown stars correspond to lensing M500.
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file. Following this method, authors in Mroczkowski (2011) [273] and Mroczkowski (2012) [274] estimated:
M500 = 6.49+0.34

−0.34×1014 M⊙ and M2500 = 2.35+0.15
−0.16×1014 M⊙ assuming a pressure described by a gNFW profile

with (a, b, c) = (0.9, 5.0, 0.4) parameters and M500 = 6.42+0.36
−0.36×1014 M⊙ and M2500 = 2.53+0.14

−0.15×1014 M⊙ with
(a, b, c) = (1.0510, 5.4905, 0.3081) as in A10 [70].

Some years before, Muchovej et al. (2007) [275] fitted the temperature decrement due to the cluster’s SZ
effect to the SZA data and assuming hydrostatic equilibrium and isothermality estimated M200 = 7.19+1.33

−0.92 ×

1014 M⊙ and M2500 = 1.68+0.37
−0.26 × 1014 M⊙.

Another approach was considered in Bulbul et al. (2010) [276] to compute the hydrostatic mass, with the
polytropic equation of state and using only Chandra X-ray observations, M500 = 4.25+1.22

−1.14×1014 M⊙ and M2500
= 2.16+0.69

−0.63 × 1014 M⊙. According to the Planck Collaboration et al. (2016) [142] results, the hydrostatic mass
of the cluster is M500 = 5.70+0.63

−0.69 × 1014 M⊙. This mass was obtained using the SZ−mass scaling relation given
in Eq. 7 of Planck Collaboration et al. (2014) [5].

In addition, combining SZ data from NIKA and Planck with the X-ray electron density from the Chandra
ACCEPT data [267], Adam et al. (2015) [119] obtained three hydrostatic mass estimates for different parame-
ters in their gNFW pressure profile modelling: M500 = 5.96+1.02

−0.79 × 1014 M⊙ using (a, b, c) = (1.33, 4.13, 0.014),
M500 = 6.10+1.52

−1.06 × 1014 M⊙ with (b, c) = (4.13, 0.014) and M500 = 7.30+1.52
−1.34 × 1014 M⊙ with (a, b, c) =

(0.9, 5.0, 0.4). Also combining NIKA and Chandra data, Castagna and Andreon (2020) [277] reconstructed
M500 = 5.57+1.81

−1.23 × 1014 M⊙.

The weak-lensing analysis in Jee and Tyson (2009) [264] found that M200 = (1.38 ± 0.20) × 1015 M⊙ by
fitting an NFW density profile. Similarly, they computed the weak-lensing mass estimate at the R500 from
Maughan et al. (2007) [270]: M(r < (0.88 ± 0.05) Mpc) = (7.34 ± 0.71) × 1014 M⊙, and found a 30% higher
mass than the X-ray estimate in Maughan et al. (2007) [270]. This discrepancy was explained in Jee and
Tyson (2009) [264] as a sign of an ongoing merger in the cluster that would create an underestimation of the
hydrostatic mass with X-rays without altering the lensing estimate. Jee and Tyson (2009) [264] also estimated
the projected mass in each of the two big substructures within r < 20′′. For the most massive and central clump
they found M(r < 20′′) = (1.3 ± 0.1) × 1014 M⊙, and for the structure at ∼ 40′′ to the south-west of the BCG
M(r < 20′′) = (8.5 ± 0.6) × 1013 M⊙. Merten et al. (2015) [279] performed a lensing analysis and obtained
M200 = (2.23 ± 0.14) × 1015 M⊙, M500 = (1.54 ± 0.12) × 1015 M⊙, and M2500 = (0.61 ± 0.10) × 1015 M⊙ by
fitting an NFW density profile to the CLASH data. In addition, based on the weak and strong lensing analysis
from Sereno and Covone (2013) [280], Sereno (2015) [281] followed the same procedure as for all clusters in
the CoMaLit8 sample (see chapter 6) and obtained M500 = (7.96 ± 1.44) × 1014 M⊙.

Moreover, a recent study based on the velocity dispersion of galaxy members in Aguado-Barahona et al.
(2022) [140] obtained two dynamical mass estimates for CL J1226.9+3332: M500 = (4.7 ± 1.0) × 1014 M⊙ and
M500 = (4.8 ± 1.0) × 1014 M⊙ from the velocities of 52 and 49 member galaxies, respectively.

We display in Fig. 4.1 the different M500 estimates found in the literature. Grey diamonds with error bars
correspond to the HSE mass estimates. We distinguish the HSE masses obtained from the combination of SZ
and X-ray data (filled diamonds) and the X-ray-only results (empty diamonds). The mass given by Planck
Collaboration et al. (2016) [142] is considered here to be an SZ+X result, but it is important to keep in mind
that this mass was obtained by applying a scaling relation (derived from X-ray data) to the Planck SZ signal.
The empty magenta squares show the M500 assuming the virial relation and using only SZ data [273, 274].
The purple circles are the dynamical masses from Aguado-Barahona et al. (2022) [140] and the brown stars
the lensing estimates from Merten et al. (2015) [279] and Sereno (2015) [281]. We decided not to present in
the same figure the projected masses, as it would be misleading to compare them to the masses integrated in a
sphere. The figure shows that both HSE and lensing masses among them vary more than 40% from one analysis
to another.

All these mass estimates for CL J1226.9+3332 are hindered by systematic effects, which are difficult to deal
8COmparing MAsses in the LITerature. Cluster lensing mass catalogue available at http://pico.oabo.inaf.it/˜sereno/

CoMaLit/

http://pico.oabo.inaf.it/~sereno/CoMaLit/
http://pico.oabo.inaf.it/~sereno/CoMaLit/
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Figure 4.2: Electron density (left) and temperature (right) profiles reconstructed from XMM-Newton observations, with 1σ error bars.
The profiles are centred at the X-ray peak (R.A., Dec.)J2000 = (12h26m58.08s, +33d32m46.6s).

with. Properly comparing masses obtained from different observables, methods, or modelling approaches is
crucial, but very challenging. Moreover, as the shape of the mass profile varies depending on the data and the
analysis procedure that is considered, the value of R500 is not the same for all estimates presented in Fig. 4.1.
Comparisons are thus delicate due to the correlation between the mass and the radius at which it is estimated
(Eq. 3.10). As mentioned, accurate knowledge of the mass of galaxy clusters is essential for cosmological
purposes [48]. This motivates the following study, which continues for the lensing part in chapter 5.

4.2 ICM observations

4.2.1 X-ray observations with XMM-Newton

The cluster was observed by XMM-Newton for a total observation time of 90/74 ks (MOS/pn), reduced
to 63/47 ks after cleaning. Following the XMM-Newton data reduction procedure presented in Sect. 3.3, X-
ray observations of CL J1226.9+3332 were analysed to obtain the electron and temperature profiles shown in
Fig. 4.2.

4.2.2 SZ observations with NIKA2

CL J1226.9+3332 was observed by NIKA2 for 3.6 hours during the 15th science-purpose observation cam-
paign (13-20 February 2018). The data consists of 36 raster scans of 8 × 4 arcminutes in a series of four scans
with angles of 0, 45, 90, and 135 degrees with respect to the right ascension axis. The scans were centred at the
XMM-Newton X-ray peak, (R.A., Dec.)J2000 = (12h26m58.08s, +33d32m46.6s) and the mean elevation of the
scans is 58.51◦. The raw data were calibrated and reduced as described in Sect. 2.3.

We present in Fig. 4.3 the NIKA2 surface brightness maps at 150 and 260 GHz for CL J1226.9+3332,
resulting from the IMCM decorrelation method. These are the maps used for the following analysis. As in
Fig. 3.4 black contours indicate significance levels starting from 3σ with a 3σ spacing. Again, the map at
150 GHz (left panel) shows the cluster as a negative decrement with respect to the background, where we also
identify positive sources that can compensate the negative SZ signal of the cluster. This is the case for the
central south-eastern source. Moreover, in the 150 GHz map, we observe an elongation of the SZ peak towards
the south-west. Similar structures were found by Maughan et al. (2007) [270], Korngut et al. (2011) [266],
Adam et al. (2015) [119], Zitrin et al. (2015) [271], and Jee and Tyson (2009) [264], as mentioned in Sect. 4.1.
The 260 GHz map (right panel) is dominated by the signal of the point sources.

For the 150 GHz map in Fig. 4.3 we computed the 1D and 2D transfer functions (Fig. 2.16) and estimated
both the angle order and time order noise estimates (Fig. 2.12), with their associated correlated noise covariance
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Figure 4.3: NIKA2 maps of CL J1226.9+3332 at 150 GHz (left) and 260 GHz (right). Contours show S/N levels in multiples of ±3σ.
Both maps have been smoothed with a 10′′ FWHM Gaussian kernel. The position of the X-ray centre is shown as a magenta cross in
the 150 GHz map and the elongation of the SZ signal towards the south-west is indicated by the white arrow. White and red circles in
the 260 GHz map show the submillimetre and radio point sources, respectively.

Table 4.2: Submillimetre point source coordinates and fluxes identified within a radius of 2′ around the centre of CL J1226.9+3332.
Fluxes at 600, 860, and 1200 GHz are obtained from the SPIRE catalogue.5 Fluxes at 1870 and 3000 GHz are given in the PACS
catalogue.6

Source Coordinates J2000 600 GHz 860 GHz 1200 GHz 1870 GHz 3000 GHz
[mJy] [mJy] [mJy] [mJy] [mJy]

PS1 12h27m00.01s +33d32m35.29s 100.3 ± 10.0 121.2 ± 10.0 109.8 ± 7.6 55.7 ± 6.0 14.6 ± 2.1
PS2 12h26m51.22s +33d34m39.61s 37.8 ± 9.0 46.4 ± 9.9 29.1 ± 7.5 24.9 ± 7.4 8.0 ± 1.7
PS3 12h27m07.02s +33d31m49.79s 34.8 ± 7.9 32.4 ± 8.7 25.6 ± 7.7 31.1 ± 6.6 25.6 ± 2.5
PS4 12h26m52.84s +33d33m10.74s 33.0 ± 10.3 41.9 ± 9.7 31.5 ± 7.0 17.7 ± 1.8
PS5 12h27m07.87s +33d32m32.08s 30.0 ± 9.4
PS6 12h27m02.43s +33d32m55.06s
PS7 12h26m53.86s +33d32m58.10s 21.8 ± 1.5 14.4 ± 3.0
PS8 12h26m46.93s +33d32m52.66s 19.8 ± 5.5

matrices. We repeated the whole pressure profile reconstruction for the four possible combinations of TF and
noise covariance matrices to check for their impact on the final results.

4.2.3 Point source contamination

The contamination of the CL J1226.9+3332 150 GHz map by point sources was characterised as described
in Sect. 3.2.1. We started by identifying submillimetre sources by blindly searching for point sources in the
NIKA2 260 GHz map. By cross-checking the detections with a S/N greater than 3 with Herschel SPIRE and
PACS catalogues, seven submillimetre sources were identified in the region covered by the NIKA2 maps. The
position and fluxes from the above-mentioned catalogues for each submillimetre point source (PS1 to PS5, PS7,
and PS8) are summarised in Table 4.2. Combining these values with the flux measurements in the 260 GHz
map, modified black-body spectrum models were adjusted and extrapolated to 150 GHz (as in Fig. 3.5).

The PS6 source does not have a counterpart in the Herschel SPIRE and PACS catalogues, but it appears as a
weak signal in the Herschel maps and as a 3σ detection in the 260 GHz NIKA2 map. Moreover, it compensates
the extended SZ signal at 150 GHz (also clearly observed in Adam et al. (2015) [119]). For this source the
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Table 4.3: Submillimetre and radio point sources fluxes. Fluxes at 150 GHz obtained from the joint point sources and pressure profile
fits.

Source 150 GHz 150 GHz 150 GHz 150 GHz
[AO 1D] [TO 1D] [AO 2D] [TO 2D]
[mJy] [mJy] [mJy] [mJy]

PS1 2.0+0.1
−0.2 1.9+0.2

−0.2 2.0+0.2
−0.2 1.9+0.2

−0.2
PS2 0.9+0.5

−0.1 0.9+0.2
−0.1 0.9+0.1

−0.2 0.9+0.2
−0.1

PS3 1.3+0.2
−0.1 1.3+0.2

−0.1 1.4+0.2
−0.2 1.3+0.2

−0.2
PS4 0.4+0.1

−0.1 0.38+0.10
−0.07 0.38+0.11

−0.07 0.39+0.09
−0.08

PS5 0.6+0.1
−0.1 0.5+0.2

−0.1 0.6+0.2
−0.1 0.5+0.2

−0.1
PS6 0.3+0.2

−0.1 0.2+0.2
−0.1 0.3+0.1

−0.2 0.2+0.2
−0.1

PS7 0.03+0.08
−0.03 0.03+0.08

−0.03 0.03+0.08
−0.03 0.04+0.08

−0.04
PS8 0.5+0.1

−0.1 0.45+0.12
−0.09 0.45+0.13

−0.09 0.44+0.14
−0.07

PS9 0.06+0.11
−0.05 0.07+0.11

−0.06 0.06+0.09
−0.05 0.06+0.10

−0.04

modified black-body is used to obtain prior knowledge of the flux at 150 GHz from the flux measurement at
260 GHz and the assumed prior distributions of the spectral index and temperature [178] (Sect. 3.2.1). Another
tricky point source is PS7. The extrapolated 150 GHz values (∼ 1.2 mJy) clearly overestimate the flux of the
source. This is understandable since we do not have enough constraints for the low-frequency slope of the SED.
We choose to use the obtained values as upper limits of a flat prior for the flux of PS7 in the estimation of the
cluster pressure profile.

In addition to submillimetre sources, according to the VLA FIRST Survey catalogue [248], a radio source
of 3.60 ± 0.13 mJy at 1.4 GHz is present in (R.A., Dec.)J2000 = (12h26m58.19s, +33d32m48.61s), hereafter
PS9 (the source is also detected in NVSS observations [283]). This galaxy corresponds to the BCG identified
in Holden et al. (2009) [268] and the compact radio source detected with LOFAR in Di Gennaro et al. (2021)
[57]. Assuming a synchrotron spectrum, as explained in Sect. 3.2.1, we obtain a prior estimate of the flux at
150 GHz: 0.1 ± 0.2 mJy.

4.3 Thermal pressure reconstruction

The thermal pressure in the ICM of the cluster and, simultaneously, the flux of point sources were fitted
to NIKA2 150 GHz maps assuming a radially binned model and maximising the likelihood in Eq. 3.4. The
integrated Compton parameter Y500 obtained from the integration of the model was compared to the value
measured by Planck Collaboration et al. (2016) [142], YPlanck

500 = (3.82±0.79)×10−4 arcmin2 within an aperture
of θ500 = 1.907 arcmin. We decided not to compare the integrated Compton parameter at 5θ500, as measured
by Planck, because it would require extrapolating the pressure profile far beyond the NIKA2 data. We centred
the pressure profile at the coordinates of the X-ray peak, as determined from XMM-Newton data analysis.

To estimate the robustness of the results, we performed the fit to the NIKA2 data in four different cases with
respect to the choice of noise residuals and transfer function estimates. Thus, we considered AO1D (TO1D)
and AO2D (TO2D) using the AO (TO) noise residual map and the 1D and 2D transfer functions, respectively.
In Fig. 4.4 we compare the NIKA2 150 GHz map of CL J1226.9+3332 to the obtained best-fit models and
their residuals for these four analyses. Comparing the power spectra of the residual maps to the power spectra
of the noise estimate maps, we see in Fig. 4.5 that for the TO case the fit residuals and the noise estimates
power spectra are consistent. For the AO cases there is an excess of power in the fit residuals, which could
be interpreted as coming from the signal due to the differential filtering effects that are not captured in the AO
noise. Regarding point sources, the reconstructed fluxes are consistent for the four analyses (see Table 4.3).

We present in Fig. 4.6 the radially binned best-fit pressure profiles obtained for the four tested cases. The
blue and cyan (dark and light green) dots correspond to the AO (TO) 1D and 2D transfer function estimates,
respectively. The plotted uncertainties correspond to 1σ of the posterior distributions derived from the MCMC
chains. Overall, the four NIKA2 analyses give consistent results, especially in the radial ranges where we
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Figure 4.4: 150 GHz maps of CL J1226.9+3332. Left: NIKA2 150 GHz surface brightness map of CL J1226.9+3332. Top: Best-fit
models of the SZ signal and point sources. Bottom: Residual maps, the difference between the data map and each best-fit model.
Results obtained with different transfer function and noise estimates (from left to right): AO1D, AO2D, TO1D, and TO2D. All maps
have been smoothed with a 10′′ Gaussian kernel for display purposes and are shown in units of Jy/beam.

Figure 4.5: Power spectra of noise map estimates for NIKA2 150 GHz data. The spectra for the JK maps estimated with angle ordered
and time ordered scans are shown in magenta and black, respectively. The power spectra of the different residual maps for the best-fit
models shown in Fig. 4.4 are in blue and green.
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Figure 4.6: Pressure profile of the ICM of CL J1226.9+3332. Blue and green symbols correspond to the results obtained in this
work from the NIKA2 150 GHz map. The error bar edges represent the 1σ uncertainties. Magenta, yellow, and black stars show
the profiles reconstructed in R18 for NIKA, MUSTANG, and Bolocam data, respectively. Empty symbols correspond to the pressure
profile obtained from the combination of XMM-Newton electron density and temperature profiles. Vertical dashed lines indicate the
instrumental limits of NIKA2 as radius of the beam and FoV.

expect the NIKA2 results to be reliable (i.e. between the beam and the FoV scales, both represented with
dashed vertical lines in the figure). We give the FWHM of the NIKA2 beam at 150 GHz (17.6′′/2) and half the
diameter of the FoV (6.5′/2) in the physical distances corresponding to the redshift of the cluster.

In terms of noise estimates, we observe that the uncertainties on the pressure bin estimates are slightly
larger for the time-ordered cases, as expected. However, we note no significant bias between the time and
angle ordered results. The effect of the transfer function is hard to evaluate: even if the 2D TF is a more
precise description of the filtering in the map, when fitting a spherical cluster model the use of the 1D TF gives
consistent results.

4.3.1 Robustness of the NIKA2 analyses

We have seen in Sect. 2.3 that the NIKA2 150 GHz maps reconstructed with different raw data analysis
pipelines (IMCM and PIIC) differ both in the filtering of the astrophysical signal and the correlated noise level in
the map. However, these effects are considered by using the transfer function and the noise correlation matrix in
the fit of the map. To check if the pressure profiles reconstructed from differently reduced maps are compatible,
we repeat the pressure profile fit with the CL J1226.9+3332 map obtained from the PIIC analysis. The prior
150 GHz flux estimates of the point sources, given as an input to panco2, are also calculated independently for
IMCM and PIIC results, using the NIKA2 260 GHz map obtained with each of the pipelines.

In addition, we have repeated the analysis for the 1D and 2D transfer functions. We present in the left panel
in Fig. 4.7 the pressure profiles for CL J1226.9+3332 galaxy cluster reconstructed from IMCM and PIIC maps,
with angle ordered noise, and using both 1D and 2D TFs. The four profiles are compatible within error bars in
the intermediate bins, but they differ beyond ∼ 900 kpc.

The explanation for this difference is shown in the right panel in Fig. 4.7. In this figure we present a
Compton profile model in black (we used the Compton profile that corresponds to the mock cluster simulation



CHAPTER 4. THE MASS OF CL J1226.9+3332 95

Figure 4.7: Comparison of results with IMCM and PIIC maps in cyan (TF2D) and blue (TF1D) and orange (TF2D) and red (TF1D),
respectively. Left: radially binned pressure profiles reconstructed for CL J1226.9+3332 galaxy cluster. Right: a mock Compton profile
in black and the same profile filtered by different transfer functions. The black dashed line indicates the zero.

in Fig. 2.6). We also show, in colours, the same profile filtered by different transfer functions. The relative
difference to the original Compton profile increases with the radius, meaning that the filtering is more and more
strong. At radii between 500 to 1000 kpc, depending on the pipeline, the filtered profiles go below zero. In
those cases the signal of the cluster has been fully filtered.

4.3.2 Comparison to previous results

In Fig. 4.6 we compare our results from the IMCM pipeline to the profiles obtained in R18 with SZ data
from NIKA (magenta), Bolocam (black), and MUSTANG (yellow). MUSTANG’s high angular resolution (9′′

FWHM at 90 GHz) enables us to map the core of the cluster, whereas Bolocam’s large field of view (8′ at
140 GHz) allows us to recover the large angular scales. NIKA and the improved NIKA2 camera are able to
cover all the intermediate radii. The consistency of the different pressure bins in the radial range from the
NIKA2 beam to the FoV proves the reliability of the reconstruction with NIKA2 data. In the same figure, we
also present the ICM pressure profile reconstructed from X-ray data only (empty black dots), which follows
closely the NIKA pressure bins.

Before going any further, we have to consider again the effect of the filtering on the NIKA2 data. As dis-
cussed in Sect. 2.3.4 and 4.3.1, the filtering due to the data processing affects mainly small angular frequencies,
i.e. small k numbers, which is translated into large angular scales in real space. This means that, in this case,
the region at ∼ 1000 kpc from the centre of the cluster is strongly filtered. For this reason, we cast doubt on our
results for the last NIKA2 bin in pressure. This is confirmed by the spread of the different results for different
hypotheses and pipelines.

4.4 Hydrostatic mass

With the two HSE mass estimation approaches presented in Sect. 3.4 we reconstruct the mass of
CL J1226.9+3332 starting from the radially binned pressure profiles. Aiming for a precise reconstruction
of the HSE mass, which requires having accurately constrained slopes for the pressure profile, in both cases we
combine the NIKA2 pressure bins with the results obtained in R18.9 Thus, we modify the likelihood in Eq. 3.6

9The binned profiles in R18 and those in this work are centred at positions separated by 3 arcsec, which is the typical RMS pointing
error for NIKA2 [216], so we consider that combining them is a valid approach.
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Figure 4.8: Pressure profile and best-fit for the gNFW (left) and NFW (right) models. The data points correspond to the NIKA2 radially
binned results for the four data sets discussed above, and to the NIKA, MUSTANG, and Bolocam bins from R18. Blue and green solid
lines represent the best-fit values for the four NIKA2 pressure estimates considered. The shaded regions show the 2.5th, 16th, 84th, and
97.5th percentiles.
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(4.1)

As we do not rely on the value of the last NIKA2 pressure bin, we choose to modify the NIKA2 inverse
covariance matrix C−1 by setting the last diagonal term to [C−1]5,5 = 0, so that the correlation of the last bin
with the others is taken into account, but not its value.

The best-fit gNFW pressure profiles (solid lines) and uncertainties (shaded area) are presented in the left
panel of Fig. 4.8 for the four sets of NIKA2 data. Here the model was fitted using the MCMC method. We
observe that the best-fit models are a good representation of the data over the full range in radius, as demon-
strated by the corresponding reduced χ2, which are close to 1 and compatible with the expected χ2-distribution
for all the cases (see solid lines in Fig. 4.10). The posterior distributions of the ϑgNFW parameters can be found
in Fig. 4.9. We observe there is consistency between the results for the different TF and noise estimates. The
degeneracy between the gNFW parameters is very important.

In addition, it is interesting to compare our results to those from Planck for which a similar modelling was
used. In Fig. 4.11 we present the 2D posterior distributions of the integrated Compton parameter at 5R500,
Y5R500, (with R500 calculated independently in each case) with respect to the Θs parameter of the gNFW model,
at a confidence level (C.L.) of 68%, 95%, and 99%. The parameters Θs and rp are related via the angular
diameter distance at the cluster redshift: tan(Θs) = rp/DA. We compare the results obtained in Planck Col-
laboration et al. (2016) [142] (with the MMF3 matched multi-filter, available in the Planck Legacy Archive2 and
also in Fig. 1.15) to the constraints from the gNFW profiles obtained in this work with the NIKA2, R18, Planck
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Figure 4.9: Posterior distributions of the parameters obtained in the fit of the NIKA2 and R18 pressure bins for the gNFW pressure
model.

Figure 4.10: Reduced χ2 of the gNFW (solid) and NFW (dashed) model fits to the NIKA2 and R18 pressure bins. The different blue
and green shades show the results for the used NIKA2 bins from different TF and noise estimates.
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Figure 4.11: Distribution of Y5R500 with respect to Θs for the gNFW pressure model fits to Planck data (grey) in Planck Collaboration
et al. (2016) [142] and to the NIKA2 + R18 + XMM-Newton data (blue) in this work. Different contours show 68%, 95%, and 99%
confidence intervals. The black star corresponds to the intersection between the Planck Collaboration et al. (2016) [142] distribution
and the X-ray scaling law shown in Fig. 16 in Planck Collaboration et al. (2016) [142].

and XMM-Newton data. Our contours were obtained from the MCMC chains (varying all the parameters in
the gNFW model fit) by computing Y5R500 and Θs, while for Planck the a, b, and c parameters were fixed to
the A10 values. For simplicity, we only show the contours for the NIKA2 AO1D case. This figure illustrates
the important gain in precision due to high-resolution observations: resolving the galaxy cluster allows us to
determine, even at such a high redshift, the Θs characteristic radius.

The NFW mass density model was also fitted to the pressure bins in Fig. 4.6, in this case taking flat priors
for the concentration and the characteristic radius, 0 < c200 < 8 and 100 kpc < rs < 2000 kpc. The best-fit
pressure profiles and uncertainties are presented in the right panel of Fig. 4.8 for the four NIKA2 radially binned
data sets discussed above. The posterior probability distributions of the free parameters of the model are shown
in Fig. 4.12. The posterior distributions of the c200 and rs parameters can be compared to the results for the
analyses of clusters in X-rays [175, 258, 284]. In these studies, c200 spans from 1 to 6 and rs from 200 kpc to
1200 kpc, which is compatible with our results. We find that the NFW model is overall a good fit to the data as
shown by the reduced χ2 ∼ 1 (see Fig. 4.10 for the distributions). However, we observe that the uncertainties
increase significantly in the outskirts of the cluster with respect to the gNFW model fit. This can probably be
explained by the flexibility of the NFW-based approach, which is high enough to show that the last point in the
profile is not well constrained by the data. We observe no significant difference between the results for the two
TF and noise estimates used for NIKA2.

Once the pressure profiles are fitted, we can directly calculate the corresponding HSE mass profiles for
CL J1226.9+3332. We present in Fig. 4.13 the HSE mass profiles inferred from the gNFW best-fit pressure
profile, in combination with the XMM-Newton electron density, and from the NFW density best-fit model.
Uncertainties (shaded areas) are obtained directly from the MCMC chains by computing the HSE mass profile
for each sample from the model parameters. For the sake of clarity, we only present the masses obtained with
NIKA2 AO1D estimates, but we changed the colour-coding for the gNFW profile so that we can differentiate
between the two results.

We observe in Fig. 4.13 that the HSE mass profiles for the gNFW and NFW models are compatible within
2σ. The vertical dashed lines in the figure represent the RHSE

500 for each mass profile. The capability of the
pressure model to describe the shape of the profile slopes is the key element for a good HSE mass reconstruction
and we can see that slight differences in the shape of the pressure profile at ∼ R500 are critical for defining RHSE

500
and MHSE

500 .

These mass profiles, obtained from the combination of SZ and X-ray data, are also compared to the X-ray-
only HSE mass estimate (empty dots) in Fig. 4.13. Assuming spherical symmetry, the X-ray mass profile was
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Figure 4.12: Posterior distributions of the parameters obtained in the fit of the NIKA2 and R18 pressure bins, combined with the
XMM-Newton electron density, for the NFW density model fitted to the pressure.

derived, as in Sect. 3.4, with the XMM-Newton electron density and temperature profiles presented in Sect. 4.2.

Despite the different behaviour of the X-ray-only HSE mass profile in the cluster core, it is consistent with
the SZ+X estimates at around RHSE

500 . We note that the difference must come from the estimate of the derivative
of the pressure, which for X-analyses is computed using the density and spectroscopic temperature profiles.
The temperature profile from the X-rays is not used to compute the HSE mass in the SZ+X analyses.

From the reconstructed HSE mass profiles we can obtain the RHSE
500 −MHSE

500 probability distributions for each
of the considered cases. We present in the left and central panel of Fig. 4.14 the RHSE

500 − MHSE
500 distributions for

the gNFW and NFW models. They were obtained from the MCMC chains in the same way the uncertainties
in Fig. 4.13 were computed. We also account for uncertainties in the electron density profile, which are of
the order of 20%. These uncertainties were computed by combining the best-fit NFW and gNFW profiles with
random realisations of the electron density profile following a Gaussian distribution centred in the central values
of ne and with the error bars as standard deviation. The width of the ellipses in Fig. 4.14 is an artefact from the
display procedure, and each value of MHSE

500 is associated with a single value of RHSE
500 .

In Fig. 4.14 we present the results for the four NIKA2 analyses (AO1D/2D and TO1D/2D). The results
are consistent, with little dependence on the chosen TF estimate. From the comparison of the left and central
panels in Fig. 4.14 we verify that the largest uncertainty in the HSE mass estimates comes from the modelling
of the pressure profile. Despite this effect, the reconstructed HSE mass profiles are compatible within 1σ. The
right panel of Fig. 4.14 shows the RHSE

500 −MHSE
500 probability distribution obtained with XMM-Newton-only data.

Even if it is compatible with the gNFW and NFW results, it favours lower HSE masses. A similar effect was
observed for the ACT-CL J0215.4+0030 cluster [178], but not for PSZ2 G144.83+25.11 [177]. We summarise
in Table 4.4 the marginalised MHSE

500 masses. We give the mean value and the 84th and 16th percentiles. For
gNFW and NFW we combine the probability distributions obtained for the four NIKA2 results so that the results
account for systematic effects in the NIKA2 data processing. The error bars also account for the uncertainties
related to the electron density.
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Figure 4.13: HSE mass profile estimates for CL J1226.9+3332 obtained with NIKA2 (angle order 1D) and R18 SZ data combined
with the XMM-Newton electron density profile. The solid magenta and dashed blue lines correspond to the gNFW and NFW methods,
respectively. The shaded areas show the 2.5th, 16th, 84th, and 97.5th percentiles. Empty dots correspond to the HSE mass profile
obtained from XMM-Newton-only data. Vertical dashed lines show the RHSE

500 obtained from each mass profile. The grey region
represents the radial ranges at which the profiles are extrapolated.

Figure 4.14: Probability distributions (1D and 2D) for MHSE
500 and RHSE

500 from the gNFW (left) and NFW (centre) models in the combined
XMM-Newton, NIKA2 and R18 data, and from the XMM-Newton X-ray-only data (right). The different blue and green lines correspond
to the results for the four NIKA2 test cases considered. Notice that the width of the contours in the 2D distributions is an artefact of the
plotting procedure. Each RHSE

500 is associated with a single MHSE
500 value.

Table 4.4: HSE masses for different estimates at RHSE
500 .

HSE mass estimates MHSE
500 [1014 M⊙]

(SZ+X-ray)gNFW 6.26+1.38
−1.38

(SZ+X-ray)NFW 7.00+1.76
−1.76

X-ray 4.83+0.98
−0.96
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Figure 4.15: R − M(< R) plane summarising the HSE mass results for CL J1226.9+3332. The blue and green 1σ contours show the
M500 − R500 results obtained in this chapter combining SZ and X-ray data for the four NIKA2 analyses. The solid and dashed lines
are for the gNFW pressure and the NFW density models, respectively. The grey contour corresponds to the HSE mass estimate for the
XMM-Newton-only data. In the case of literature data, the filled (empty) grey diamonds represent HSE masses from the combination
of SZ and X-ray data (X-ray-only results). Grey crosses show HSE masses from the literature close to M500. The diagonal bright grey
line defines the R500 − M500 relation. Slight deviations from this line are due to differences in the cosmological model used in each
work.

4.4.1 Comparison to previous results

The comparison of different mass estimates is difficult and can lead to incorrect physical conclusions. In
particular, when comparing integrated masses the radius at which the mass is computed has a significant impact:
R500 and M500 being constrained at the same time, our data are affected by that degeneracy. For this reason, in
Fig. 4.15 we show, in the R − M(< R) plane, the results from the literature compared to those obtained in this
chapter with NIKA2, XMM-Newton and R18 data.

The green and blue contours show again the RHSE
500 − MHSE

500 results obtained for the gNFW (solid lines)
and NFW (dashed lines) SZ and X-ray data combined analyses. For comparison, the filled grey diamonds
correspond to the results from the literature presented in Fig. 4.1, also for combined SZ and X-ray data. We
observe that the NIKA2+R18+XMM-Newton results are compatible with previous analyses within 1σ, centred
around ∼ 7 × 1014 M⊙.

Regarding X-ray-only results, the HSE mass estimates obtained with XMM-Newton data (grey contours)
suggest mass values centred at ∼ 5×1014 M⊙. This is in agreement with the lowest estimates from the literature
(empty grey diamonds) presented in Bulbul et al. (2010) [276] and Maughan et al. (2007) [270]. On the contrary,
the results from Mantz et al. (2010) [272] and Mroczkowski et al. (2009) [265] show higher masses. However,
the MHSE

500 in Mantz et al. (2010) [272] is not a direct measurement, but an extrapolation from a gas mass
measured at R2500 converted into total mass, making this result less reliable. Overall, for CL J1226.9+3332 the
HSE masses obtained only from X-ray data tend to lower values than those from the combination of SZ and
X-rays.

The result from Planck Collaboration et al. (2016) [142] is also a special case, as it is not a direct mass
measurement, but a mass obtained from the X-ray-derived scaling relation (Eq. 7 in Planck Collaboration et al.
(2014) [5]) applied to the SZ measurement. This may explain why it lies at the border between the X-ray-only
data and the SZ+X combined results. The differences observed between X-ray-only and the combined SZ+X
results could have a physical and observational origin. For such a high-redshift cluster X-ray observations
become challenging. If the south-western sub-clump in the cluster is really a hot but not dense structure (as
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suggested by Jee and Tyson (2009) [264]), the electron density measurements from X-ray observations might
be difficult to perform.

4.5 Conclusions

In this chapter we have put together, in a detailed analysis of the hydrostatic mass of CL J1226.9+3332, the
methods described in chapters 2 and 3. We have studied the systematic effects related to the NIKA2 raw data
analysis and to the HSE mass reconstruction for the highest redshift cluster of the LPSZ.

We have obtained NIKA2 150 and 260 GHz maps, which have allowed us to reconstruct the radially binned
pressure profile of the cluster from the SZ data. To characterise the robustness of our results with respect to
the data processing, we have repeated the whole analysis for the two pipeline-filtering transfer functions (1D
and 2D), and for the two noise estimates (TO and AO) for the 150 GHz map, as well as for the output maps of
the two NIKA2 independent data analysis pipelines. We have also accounted for the presence of point sources.
The reconstructed pressure profiles are consistent amongst them, and compatible, within the angular scales
accessible to NIKA2, with the profiles obtained from three independent instruments in R18. This validates the
pressure profile reconstruction procedure that will be used for the analysis of the full sample in the NIKA2 SZ
Large Programme. Nevertheless, we have shown that large angular scales are filtered out in these NIKA2 maps.

From the combination of SZ-based pressure and XMM-Newton electron density profiles, and by using the
two approaches presented in chapter 3, we have reconstructed the HSE mass of CL J1226.9+3332. Modelling
the pressure with an NFW mass density profile seems a promising approach to ensure radially increasing HSE
mass estimates. Both NFW and gNFW methods give completely compatible HSE mass profiles and integrated
MHSE

500 . From the comparison of the different mass estimates, we also conclude that for the moment, when
estimating the HSE mass of the CL J1226.9+3332 galaxy cluster in the NIKA2 SZ Large Programme, the
error budget is dominated by model dependence rather than by the instrumental and data processing systematic
effects that we investigated. We think that the only way to reduce the current uncertainties is to precisely
constrain the slope of the mass profile at ∼ RHSE

500 since we have proved that very similar mass profiles overall
can result in significant differences at MHSE

500 .

In addition, these results are in agreement with the X-ray-only HSE mass estimate obtained from the XMM-
Newton electron density and temperature profiles. Nevertheless, the X-ray-only estimate favours lower mass
values than the combined SZ+X-ray results. We have also shown that our results are compatible with all the
HSE mass estimates found in the literature within uncertainties, which are large.
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In the previous chapters we have presented the hydrostatic mass reconstruction of clusters of galaxies within
the NIKA2 SZ Large Programme. These estimates, that are robust against NIKA2 data analysis systematic
effects and compatible with different results in the literature, are subject to a bias induced by the different
assumptions used to compute HSE masses. As introduced in Sect. 1.3.4, if the gas pressure in the ICM is not
purely thermal nor spherically distributed, or if the hydrostatic equilibrium hypothesis is not satisfied in the
cluster (i.e. if the potential well is not balanced by the gas pressure), HSE masses may suffer from the HSE
mass bias.

In this chapter we present a different way to estimate the mass of galaxy clusters, using convergence maps
obtained from lensing data. We compare the HSE masses of some clusters observed with NIKA and NIKA2
to their lensing mass estimates. We first present the basic concepts of the formalism that describes the lensing
of galaxies due to the presence of clusters. We equally introduce the data set from the Cluster Lensing And
Supernova survey with Hubble (CLASH) [285] and describe the lensing mass reconstruction method. Then, we
present the NIKA(2)-CLASH sample and the comparison of lensing masses to HSE estimates for the clusters in
the sample. In addition, we make use of the lensing mass estimates to compute the gas-to-lensing mass fraction.

5.1 Lensing as a tracer of the mass

The lensing masses of the clusters in our sample were reconstructed from the publicly available CLASH
convergence maps [271]. However, convergence maps are not observables and need to be estimated from
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Figure 5.1: Sketch of the gravitational lensing effect in the thin lens approximation. Figure from Bartelmann and Schneider (2001)
[287].

lensing observations. In this section, we present the basics of the gravitational lens theory needed to understand
the reconstruction of convergence maps from observations. Then we briefly describe the CLASH survey and
its convergence maps, as well as the lensing mass reconstruction method [190, 191].

5.1.1 Gravitational lensing of background galaxies

Gravitational lensing refers to the deflection of light rays by gravitational fields (see Bartelmann (2010)
[286] for a review). As presented in chapter 1 the potential well of different massive objects in the universe can
create this deflection on the multiple light sources in the background. In our case we will refer to the bending
of the light from galaxies due to the presence of galaxy clusters in the line-of-sight.

In Fig. 5.1 we show a schematic representation of the gravitational lensing effect. The light source (the
galaxy) and the deflecting mass (the cluster, the lens) are located at Ds and Dd distances from the observer,
respectively. In the absence of the lensing effect, the source would be seen by the observer with an angle β⃗ with
respect to the deflecting mass. But the presence of this mass bends the light ray of the source and it is observed
at θ⃗. The difference between the two angles is the deflection angle: ˆ⃗α. The impact parameter is given by ξ⃗.

In this representation we consider that the width of the deflecting mass along the line-of-sight is much
smaller than the distances between the source and the deflecting mass (Dds) and between the observer and
mass (Dd). Under this assumption, we can use the thin lens approximation and suppose that the deflection is
instantaneous, i.e., that we can represent the path of the light as a straight ray that is deviated in the lens plane.
From Fig. 5.1 we can write:

η⃗ =
Ds

Dd
ξ⃗ − Dds

ˆ⃗α(ξ⃗), (5.1)

and using η⃗ = Dsβ⃗ and ξ⃗ = Ddθ⃗ we obtain the lens equation and define the scaled deflection angle, α⃗(θ⃗):

β⃗ = θ⃗ −
Dds

Ds

ˆ⃗α(Ddθ⃗) ≡ θ⃗ − α⃗(θ⃗). (5.2)
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At the same time, General Relativity predicts that the deflection angle created by a point mass M is:

α̂ =
4GM
c2ξ

, (5.3)

where G and c are the gravitational constant and the speed of light, respectively. Instead of using a point
mass, we can consider a three-dimensional mass distribution with a mass density ρ(⃗r) = dm/dV that is defined
in r⃗ = (ξ′1, ξ

′
2, r
′
3). Assuming that the incoming light from the source propagates along the r′3 direction, the

impact parameter with respect to the three-dimensional mass distribution is ξ⃗ − ξ⃗′, with ξ⃗′ = (ξ′1, ξ
′
2). Then, the

deflection angle for the impact parameter ξ⃗ is given by the integral over the whole mass distribution,

ˆ⃗α(ξ⃗) =
4G
c2

∑
dm(ξ′1, ξ

′
2, r
′
3)

ξ⃗ − ξ⃗′

|ξ⃗ − ξ⃗′|2

=
4G
c2

∫
d2ξ′

∫
dr′3ρ(ξ′1, ξ

′
2, r
′
3)

ξ⃗ − ξ⃗′

|ξ⃗ − ξ⃗′|2
.

(5.4)

The integral or projection along the line-of-sight of the mass density gives the surface mass density:

Σ(ξ⃗′) ≡
∫

dr′3ρ(ξ′1, ξ
′
2, r
′
3), (5.5)

therefore, the deflection angle is

ˆ⃗α(ξ⃗) =
4G
c2

∫
d2ξ′Σ(ξ⃗′)

ξ⃗ − ξ⃗′

|ξ⃗ − ξ⃗′|2
. (5.6)

As mentioned above, for the lensing mass reconstructions in this section we use convergence maps. The
convergence, κ, is defined as the surface mass density, Σ, normalised by the critical surface mass density Σcrit,

κ(θ⃗) = Σ(Ddθ⃗)/Σcrit ,where Σcrit =
c2

4πG
Ds

DdDds
. (5.7)

The critical surface mass density delimits, as we will see later on, the difference between weak and strong
lensing regimes. From the previous relations, we can write the scaled deflection angle as

α⃗(θ⃗) =
1
π

∫
d2θ′κ(θ⃗′)

θ⃗ − θ⃗′

|⃗θ − θ⃗′|2
, (5.8)

and if the scaled deflection angle is the gradient of the deflection potential, α⃗ = ∇ψ, the deflection potential ψ
is

ψ(θ⃗) =
1
π

∫
d2θ′κ(θ⃗′) ln |⃗θ − θ⃗′|. (5.9)

Therefore, from the solutions of the lens equation in Eq. 5.2 we would be able to estimate the surface mass
density in the lens plane. However, this requires knowing the true β⃗ position of the source, which is actually
unknown. Another important characteristic of the lensing effect is that it preserves surface brightness, in other
words, the surface brightness I s(β⃗) of a source will be the same as the lensed one: I(θ⃗) = I s[β⃗(θ⃗)]. If the size of
the source is much smaller than the scales on which the distortion changes, we can linearise the lens mapping
β⃗(θ⃗):

I(θ⃗) = I s
[
β⃗0 +A(θ⃗0)(θ⃗ − θ⃗0)

]
, (5.10)

whereA(θ⃗0) is the Jacobian matrix of the distortion at θ⃗0,

A(θ⃗) =
∂β⃗

∂θ⃗
=

δi j −
∂2ψ(θ⃗)
∂θi∂θ j

 =
 1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

 . (5.11)
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In Eq. 5.11 we have introduced γ1 and γ2, the two components of the shear γ ≡ γ1 + iγ2 that are related to
the deflection potential through,

γ1 =
1
2

(
∂2ψ

∂2θ1
−
∂2ψ

∂2θ2

)
, γ2 =

∂2ψ

∂θ1∂θ2
. (5.12)

Thus, we can also relate the convergence to the shear with,

γ(θ⃗) =
1
π

∫
d2θ′D(θ⃗ − θ⃗′)κ(θ⃗′), where D(θ⃗) =

−1
(θ1 − iθ2)2 . (5.13)

Weak lensing

When κ, γ ≪ 1 we say that we are in the weak lensing regime. This happens when the light ray of the source
crosses the lens plane far from the centre of the cluster, where the surface mass density Σ is much smaller than
Σcrit. Due to the deflection of light rays, weak lensing creates small distortions in the shapes of the light sources
and the first step of the lensing analyses is to measure those distortions. From Eq. 5.10 we read that circular
sources will be observed as elliptical objects.

As mentioned, the lensing effect created by the presence of clusters of galaxies is observed through the dis-
tortion of background galaxy shapes. Nevertheless, galaxies are intrinsically elliptical [288] and it is necessary
to differentiate the ellipticity introduced by the lensing effect from the intrinsic shape of the source. Fortunately,
the intrinsic ellipticities of galaxies are randomly oriented, while the distortion introduced by the presence of a
massive object (a cluster) affects in a coherent way all the background galaxy observations. We can write the
intrinsic ellipticity of a galaxy as

ϵtrue = ϵtrue
1 + iϵtrue

2 , (5.14)

and with the reduced shear g = γ
1−κ , the observed ellipticity of a galaxy that has been lensed is:

ϵlensed =
ϵtrue + g

1 + g∗ϵtrue . (5.15)

Observations of the shape of single galaxies (ϵlensed) do not allow one to distinguish between g and ϵtrue.
Assuming that, as mentioned, galaxies are randomly oriented, the average intrinsic ellipticity of all galaxies is
zero: ⟨ϵtrue⟩ = 0. Thus, in a region of the sky where the shear can be considered to be constant and g ≪ 1 (weak
lensing regime), the average over all the galaxy shapes measured in that region is

⟨ϵlensed⟩ = ⟨
ϵtrue + g

1 + g∗ϵtrue ⟩ ≈ ⟨ϵ
true + g⟩ ≈ g. (5.16)

So, in the weak lensing regime where κ ≪ 1, the measurement of the shapes of many galaxies in the field of
a cluster permits reconstructing the γ created by the cluster’s mass: ⟨ϵlensed⟩ ≈ g ∼ γ. Following Eq. 5.13 it is
also possible to recover the corresponding κ.

The measurement of the shapes and sizes of galaxies is a very delicate step in the weak lensing analyses
and great efforts are put in the lensing community to obtain precise ϵlensed measurements from sky maps [289].
In addition, the distortions introduced by weak lensing are small (g ∼ 10−2 − 10−1) and atmospheric and
instrumental effects can produce changes in the galaxy shape that can be stronger than the weak lensing effect
itself. As detailed in Bartelmann and Schneider (2001) [287], weak lensing is a very powerful tool, but with
numerous sources of uncertainties [290–293].

Strong lensing

If the lens equation in Eq. 5.2 has multiple solutions, that is, if for a source at a position β⃗ different θ⃗ are
possible, the same source can be observed at different positions in the sky. This can only happen in the strong
lensing regime, when κ and γ ∼ 1. Therefore, strong lensing happens close to the centres of clusters.
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Figure 5.2: Lensing of galaxies. Left: lensing of galaxies around Abell 370. Credit: NASA, ESA, and J. Lotz and the HFF Team
(STScI). Right: strong lensing reconstruction for MACS J1149.5+2223. Figure from [295].

Based on their redshift, the objects that correspond to the same galaxy are identified in the observed images,
requiring very precise redshift measurements (usually spectroscopic estimates [294]). The repetition and dis-
tribution of the galaxies in the images are modelled, as presented in the following, to reconstruct the mass of
the lens.

In the left panel in Fig. 5.2 we show an image of the Abell370 galaxy cluster observed with the Hubble Space
Telescope (HST). We can see that background galaxies are distorted forming arcs around the cluster. Almost
100 identified galaxies in the field have multiple images due to the strong lens of the cluster. In the right panel
in Fig. 5.2 we present a map of MACS J1149.5+2223 galaxy cluster (also known as PSZ2 G228.16+75.20,
Sect. 5.2.1 and chapter 3) with different contours reconstructed from the modelling of strongly lensed galaxies:
the white contours show the κ = 1 lines (for Dds/Ds = 1). The green circles represent the 50 kpc and 200 kpc
distances to the BCG.

5.1.2 Cluster Lensing And Supernova survey with Hubble

The Cluster Lensing And Supernova survey with Hubble (CLASH) [285] comprises the study of 25 galaxy
clusters. Among them, 20 were X-ray selected and are mostly relaxed and high temperature systems. The
remaining 5 were chosen because of their strong lensing power. The main objective of the survey was to use
gravitational lensing observations from HST to reconstruct precisely the mass distribution in those clusters
and estimate the concentration of dark matter in their cores. In addition, the survey sought to detect high
redshift galaxies and Type Ia supernovae, as well as to study the properties of member galaxies of clusters and
background galaxies. Observations were carried out between November 2010 and July 2013, being able to
reach their main scientific goals.

Estimating the concentration of clusters requires having cluster mass density profiles that are accurately
reconstructed from the core to the outskirts, since the concentration is defined from the ratio of an external
radius (typically the virial radius) and an internal radius (it can be the radius at which the mass density profile
has a slope of −2, that is, ρ ∝ r−2). Given that strong and weak lensing are good tools to trace the matter in the
cluster core and at large scales, respectively, combining both is a clever strategy to map the mass distribution at
all radial ranges.

Convergence maps: LTM and PIEMD+eNFW

In Zitrin et al. (2015) [271] authors used the weak and strong lensing measurements from HST to reconstruct
the projected mass density distribution for the 25 clusters in the CLASH sample. Convergence maps, together
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with shear and magnification maps, were made publicly available10. These are the convergence maps used to
estimate lensing masses throughout this chapter. In Merten et al. (2015) [279] authors also reconstructed the
convergence maps for 19 of the CLASH clusters. Although we will not use their maps, the lensing masses
obtained in Merten et al. (2015) [279] will be compared to our results in Sect. 5.2.2.

To account for modelling effects, two different parametrisations were used in Zitrin et al. (2015) [271] to
reconstruct the lens model, based on previously used strong lensing modelling methods [296–298] adapted to
fit also weak lensing shape distortion measurements. The main principle of the methods is to build mass dis-
tribution models and to compare the lensing that those distributions would produce on the background galaxies
to the observed strong and weak lensing signal. The minimised χ2

tot is,

χ2
tot = χ

2
SL + χ

2
WL =

∑
i

(x′i − xi)2 + (y′i − yi)2

σ2
pos

+
∑

j

(g′1, j − g1, j)2 + (g′2, j − g2, j)2

σ2
ell

, (5.17)

where (xi, yi) and (x′i , y
′
i) are the positions of the observed and modelled multiple images of the i’th galaxy due

to strong lensing, and (g1, j, g2, j) and (g′1, j, g
′
2, j) are the observed and modelled reduced shear components of

the j’th galaxy produced by weak lensing. The uncertainty on the positions is given by σ2
pos (in Zitrin et al.

(2015) [271] fixed to σpos = 0.5′′) and σ2
ell represents the error in the reduced shear (in Zitrin et al. (2015)

[271] σell = 0.3, based on the width of the distribution of measured ellipticities, as in the literature).

The first of the parametrisations is called Light-Traces-Mass, hereafter LTM, and it is based on the assump-
tion that the observed light in a cluster traces its total matter distribution. LTM models are the sum of multiple
components: for every cluster member galaxy a mass distribution is added, depending on the luminosity of the
galaxy; the combination of all those galaxy components is smoothed with a 2D Gaussian component to repre-
sent the DM and a general normalisation factor is added to the total distribution. Thus, LTM matter models are
formed by a sum of matter peaks connected by a smooth DM halo.

The second model is the Pseudo-Isothermal Elliptical Mass Distribution with an elliptical NFW,
PIEMD+eNFW. As for the LTM, galaxies in the cluster are assumed to trace the matter distribution, but here
only for the galaxy component. For every galaxy in the cluster, a Pseudo-Isothermal Elliptical Mass Distri-
bution (from Jullo et al. (2007) [299]) is considered. The mass distribution is scaled by the luminosity of the
corresponding galaxy. Then a DM halo centred in the BCG is added following an elliptical NFW (eNFW)
model. For some complex clusters, it was required to add a second eNFW dark matter halo.

All the convergence maps reconstructed in Zitrin et al. (2015) [271] are 273 × 273 arcsec2 large, which
corresponds to different physical sizes depending on the redshift of the cluster.

5.1.3 Lensing mass reconstruction from convergence maps

For the lensing mass profile reconstruction we followed the approach described in Muñoz-Echeverrı́a et
al. (2023) [191], similar to the one presented in Ferragamo et al. (2022) [190]. Instead of analysing directly
the lensed galaxy measurements, we used the already modelled convergence maps presented in the previous
section. The same procedure was also followed in Merten et al. (2015) [279], where they used their own
convergence map reconstructions.

As given by Eq. 5.7, the convergence maps describe the projected mass density of the cluster, Σ, in criti-
cal density units. The publicly available CLASH κ-maps [271] have been normalised to Ds/Dds = 1, so by
knowing the angular diameter distance Dd to the clusters, κ-maps can be converted into projected mass density
maps. To estimate the lensing mass profiles of clusters, we fitted a mass density model to each Σ-map. We
assumed spherical symmetry and an NFW density profile (see Eq. 1.19). We chose to directly fit the analytical
projected NFW density profile to the radially averaged projected profiles of the Σ-maps. Using Eq. 7, 8 and 9

10https://archive.stsci.edu/prepds/clash/

https://archive.stsci.edu/prepds/clash/
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in Bartelmann (1996) [300] the projected NFW density profile is,

ΣNFW(x) =


2ρsrs
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(
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)
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arctanh
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1−x
1+x

)
(x < 1)

2ρsrs
3 (x = 1)

with x = R/rs and ρs = ρcritδc200 . R is the projected radius and δc200 the function of c200 presented in Eq. 1.20
for the NFW model. Therefore, the free parameters in the model are the characteristic radius rs and the con-
centration c200.

The fits were performed via MCMC analysis using the emcee software. We considered flat priors on c200
and rs with 0 < c200 < 10 and 0.01 < rs/Mpc < 6. We checked the convergence following the R̂ test of Gelman
and Rubin [253]. We centred the Σ-profiles at the same positions as for the HSE mass reconstruction of each
cluster (see Sect. 5.2.1) and searched to minimise:

χ2 = (ΣNFW − Σ
κ
data)TC−1(ΣNFW − Σ

κ
data). (5.18)

Σκdata is the radially averaged projected mass density profile for each κ-map and ΣNFW the model. C is the
covariance matrix of the Σκdata radial bins and it is built accounting for the 100 realisations provided for each
κ-map model (also publicly available10) and the uncertainties from the dispersion in each radial bin. The 100
realisation maps correspond to random models from the Monte Carlo chains [271]. From the best-fit NFW
density profiles we can reconstruct the lensing mass profiles (Eq. 3.8) and subsequently the Mlens

500 .

As an example, we show in Fig. 5.3 the CLASH convergence maps for PSZ2 G144.83+25.11 galaxy cluster
(also known as MACS J0647.7+7015), the best-fit NFW mass density model converted into a convergence map
and their difference. The difference between the LTM (top) and PIEMD+eNFW (bottom) convergence maps is
big enough to impact the fitted NFW density models and therefore, the lensing mass estimates. In the following
we account for those differences by considering, when available, the lensing masses estimated from both LTM
and PIEMD+eNFW maps.

In Fig. 5.4 we present the radial profiles of the projected mass density for CL J1226.9+3332 obtained from
the CLASH LTM (left) and PIEMD+eNFW (right) convergence maps. We show for both profiles the projected
best-fit NFW density model and percentiles (shaded area). We observe that for the LTM convergence map the
best-fit NFW model underestimates the data except for cluster core and that the uncertainties in the model do
not fully account for this. By contrast, the fit for the PIEMD+eNFW succeeds in representing the data.

5.2 The HSE-to-lensing mass bias

To assess the deviation from hydrostatic equilibrium in clusters of galaxies, in this section we compare
the resolved HSE mass estimates of individual clusters (obtained as described in chapter 3) with their lensing
mass estimates (reconstructed from CLASH convergence maps). As presented in chapter 1, some works in the
literature have already performed similar analyses for low redshift clusters (z < 0.5) [301], and unique studies
have compared the resolved HSE masses obtained from X-ray data to lensing estimates at higher redshifts
(z > 0.5) [105]. Here we compare, for the first time for a z > 0.5 sample, the resolved HSE masses obtained
from the combination of SZ and X-ray data to lensing estimates. We also compare the results to the X-ray-only
analyses.

5.2.1 The NIKA(2)-CLASH sample

By cross-checking the sample of CLASH clusters with the LPSZ clusters, we built a joint sample that
contains the CL J1226.9+3332, PSZ2 G144.83+25.11 and PSZ2 G228.16+75.20 clusters. In addition, we added
MACS J1423.8+2404 to the sample, a CLASH cluster that was observed with NIKA (as already mentioned,
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Figure 5.3: CLASH convergence maps, best-fit NFW model and the residual for PSZ2 G144.83+25.11 galaxy cluster. Top: LTM
convergence map. Bottom: PIEMD+eNFW.

Figure 5.4: Projected mass density profiles obtained from CLASH convergence maps for the LTM (left) and PIEMD+eNFW (right)
models for CL J1226.9+3332 galaxy cluster. We also show the best-fit NFW model (orange and red lines) and the 2.5th, 16th, 84th and
97.5th percentiles (shaded areas).



CHAPTER 5. HSE-TO-LENSING MASS BIAS FOR NIKA(2)-CLASH CLUSTERS 111

the pathfinder of NIKA2 [223]). We detail in this section the special characteristics of each cluster and show
the corresponding mass profiles. The lensing masses for all of them were obtained following the NFW fitting
procedure presented in Sect. 5.1.3. Although the general steps to reconstruct the HSE masses are described
in chapter 3, we detail the differences from cluster to cluster. Looking for the fairest comparison between
the masses of different clusters, in this study we only considered HSE masses obtained from the SZ electron
pressure modelled with a gNFW profile (Sect. 3.4).

All the clusters in the NIKA(2)-CLASH sample were also observed by MUSTANG and Bolocam and an SZ
analysis that combined data from both instruments allowed to fit a gNFW pressure profile per cluster in Romero
et al. (2017) [118]. As shown in chapter 4, the different instrumental capabilities of MUSTANG and Bolocam
probe the core and the outskirts of clusters, respectively. The a and b parameters of the gNFW model (Eq. 3.5)
were fixed to the values obtained in A10, a = 1.05 and b = 5.49. We used the gNFW profile parameters
given in Table 5 in Romero et al. (2017) [118] to compute the HSE masses per cluster by combining these
SZ pressure profiles with the same XMM-Newton electron density profiles used to compute NIKA(2) HSE
masses. In addition, the archive of Chandra data (ACCEPT11) [267] contains also the X-ray-only HSE mass
profiles for the NIKA(2)-CLASH clusters. Although MUSTANG, Bolocam and Chandra profiles were not
extracted assuming the exact same centres we considered for NIKA(2), XMM-Newton and CLASH, they are
very interesting for comparison. On average, the different centres are separated at most by ∼ 4 arcsec.

CL J1226.9+3332

The first object in the NIKA(2)-CLASH sample is the already presented CL J1226.9+3332 cluster at z =
0.89. The electron density and temperature profiles extracted from XMM-Newton data were centred on the
XMM-Newton X-ray peak, (RA, Dec)J2000 = (12h26m58.08s, +33d32m46.6s). Thus, the electron pressure
obtained from SZ data (in chapter 4), as well as the NFW mass density profiles fitted to CLASH convergence
maps were centred on the same position.

We present in Fig. 5.5 the different mass profiles for the CL J1226.9+3332 galaxy cluster. The solid blue
profile shows the HSE mass from Muñoz-Echeverrı́a et al. (2023) [191] described in chapter 4. It was obtained
by combining the gNFW pressure profile from SZ observations and the XMM-Newton electron density. We
have shown in chapter 4 that the impact of the systematic effects from NIKA2 raw data analysis on the final
results is very minor. Thus, here we only consider the “most precise” case, where the pressure profile was
reconstructed with the 2D transfer function and the time order noise estimate. Black empty markers show the
HSE mass profile from XMM-Newton data shown in Fig. 4.13. For comparison, we also present with the dashed
blue line and the grey markers the HSE mass estimates obtained by using the pressure reconstruction from
Romero et al. (2017) [118] (with 11.8 and 4.9 hours of Bolocam and MUSTANG observations, respectively)
and the ACCEPT data (64.4 and 9.8 ks of exposure time for ACIS-I and ACIS-S detectors), respectively. At
inner radii the mass profile reconstructed using the pressure from Bolocam and MUSTANG data follows nicely
the shape of the XMM-Newton mass. In order to avoid any extrapolation we cut the HSE masses from the
combination of SZ and X-ray data where the XMM-Newton electron density profile ends.

In the same figure, we present the lensing mass profiles obtained from the CLASH LTM (orange) and
PIEMD+eNFW (red) convergence maps. The error bars were calculated from the posterior distributions of the
model parameters at the end of the fit shown in Fig. 5.4. The envelopes of the lensing mass profiles are very thin
compared to the HSE ones. This is due to the small amount of parameters (2 for NFW) that we fit compared to
the case of the HSE mass, as well as to the fact that we consider the convergence maps as true. Both profiles
end just above 1000 kpc, limited by the size of the convergence maps. The mass at larger radii can only be
obtained from the extrapolation of the profiles, where there is no more data.

The vertical lines show the mean R500 obtained from each mass profile. The dotted blue and black lines
correspond to the HSE mass profiles from NIKA2 and XMM-Newton and XMM-Newton-only, while the red
and orange are the lensing R500 from PIEMD+eNFW and LTM convergence maps. The blue dashed line is the

11Available at https://web.pa.msu.edu/astro/MC2/accept/

https://web.pa.msu.edu/astro/MC2/accept/
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Figure 5.5: Three dimensional mass profiles reconstructed from observations of the CL J1226.9+3332 galaxy cluster. The blue profiles
correspond to HSE masses obtained from the combination of SZ pressure and X-ray electron density profiles. The solid blue line was
obtained with the gNFW pressure profile from the LPSZ analysis in chapter 4 and the XMM-Newton electron density profile. Contours
show the 16th to 84th percentiles. The blue dashed line instead was obtained from the gNFW pressure profile reconstructed with
Bolocam+MUSTANG data in Romero et al. (2017) [118]. Black and grey empty circles indicate the X-ray-only HSE mass profiles,
obtained, respectively, from XMM-Newton and Chandra data. The error bars in XMM-Newton black profiles show the 1σ uncertainties.
The lensing mass profiles reconstructed from the CLASH LTM and PIEMD+eNFW convergence maps are shown in orange and red,
respectively, with contours indicating 1σ uncertainties. The vertical black dashed lines indicate the instrumental limits of NIKA2 as
radius of the beam and FoV. The other vertical lines show the R500 for each of the mass profiles with the same colour scheme as the
profiles. More details can be found in the text.

R500 for the blue dashed profile, i.e. MUSTANG+Bolocam+XMM-Newton. ACCEPT data points do not go far
enough to define an R500.

PSZ2 G144.83+25.11

The PSZ2 G144.83+25.11 galaxy cluster, at redshift z = 0.58, was thoroughly studied with NIKA2, MUS-
TANG, Bolocam and Planck data in Ruppin et al. (2018) [177]. In this work authors performed a complete
characterisation of the electron pressure in the ICM of the cluster, accounting for the contamination by point
sources in the SZ maps and using the 1D transfer function for NIKA2 data. An overpressure was detected
in the south-western region of the cluster and it was shown that such overpressure impacts the pressure profile
reconstructed from NIKA2 maps, as well as from X-ray observations. In Fig. 5.6 we show with a solid blue line
the HSE mass reconstructed in Ruppin et al. (2018) [177] combining SZ and X-ray observations and with black
empty dots the X-ray-only reconstruction, in both cases masking the overpressure region. PSZ2 G144.83+25.11
was observed by NIKA2 and XMM-Newton for 11.3 and ∼ 18.9 hours (∼ 68 ks), respectively. Limited by the
X-ray spectroscopic temperature measurements, the XMM-Newton HSE mass profile is here logarithmically
extrapolated to reach R500 (black dotted line).

In Fig. 5.6 we compare these profiles to other HSE mass reconstructions from the literature (11.7 and 16.4
hours of Bolocam and MUSTANG observations and 39.3 ks with Chandra’s ACIS-I): up to ∼ 600 kpc there
is a very good agreement between all the HSE mass profiles and the dispersion gets more important at larger
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Figure 5.6: Same as Fig. 5.5 for PSZ2 G144.83+25.11 galaxy cluster. The blue contours in this case correspond to the 68% confidence
region for the SZ+X HSE mass profile reconstructed in Ruppin et al. (2018) [177].

radii.

The orange and red profiles correspond again to lensing masses from CLASH LTM and PIEMD+eNFW
convergence maps (Fig. 5.3). These results were published in Ferragamo et al. (2022) [190], at that time not
accounting for the covariance matrix obtained from the 100 convergence maps realisations as described in
Sect. 5.1.3. In this thesis we do account for the covariance in the analysis. The angular size of the convergence
maps being the same for all clusters, the covered physical area is smaller for PSZ2 G144.83+25.11 as it is at a
lower redshift than CL J1226.9+3332. Thus, the lensing mass profiles end before reaching 1000 kpc and have
to be extrapolated, following the best-fit NFW model, to reach R500. The profiles in our lensing analyses were
centred on (RA, Dec)J2000 = (06h47m50.5s, +70d14m53.0s) as in Ruppin et al. (2018) [177].

PSZ2 G228.16+75.20

PSZ2 G228.16+75.20 (z = 0.545), also known as MACS J1149.5+2223, is the third cluster in the NIKA(2)-
CLASH sample. As presented in chapter 3, the analysis of the NIKA2 SZ data for this cluster has shown
that the thermal emission of the ICM gas is very diffuse and that the thermal SZ is contaminated by many point
sources in the field (Fig. 3.4). From multi-wavelength studies in the literature PSZ2 G228.16+75.20 was known
to be a massive and impressive lens (see, for example, Smith et al. (2009) [302]) with a complex morphology
and radio emission in the ICM [303].

In spite of that, the different HSE mass reconstructions shown in Fig. 5.7 are rather coherent. The solid
blue and empty black markers correspond to the mass profiles reconstructed from a gNFW fit to the NIKA2
map combined with the XMM-Newton electron density profile and to the XMM-Newton-only mass shown
in Fig. 3.10, respectively. Extrapolation was needed to reach R500. XMM-Newton data was obtained from
∼ 7.5 hours of observation, MUSTANG and Bolocam observed PSZ2 G228.16+75.20 for 13.9 and 17.7 hours,
respectively, and Chandra had 38.5 ks of exposure time with ACIS-I.
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Figure 5.7: Same as Fig. 5.5 for PSZ2 G228.16+75.20 galaxy cluster. The blue contours show the 16th to 84th percentiles for the SZ+X
HSE mass profile reconstructed from NIKA2 and XMM-Newton data. The vertical grey dashed line shows the R500 corresponding to
the HSE mass profile from Chandra data, which for this cluster reaches R500.

Probably due to the complex matter distribution in this cluster [304], fitting a PIEMD+eNFW model to
lensing data was not reasonable and only a LTM convergence map is available for PSZ2 G228.16+75.20. The
reconstructed lensing mass, centred at (RA, Dec)J2000 = (11h49m35.43s, +22d24m03.89s), is shown in orange
in Fig.5.7.

MACS J1423.8+2404

The last cluster in the sample is MACS J1423.8+2404 (z = 0.545). It was observed with the NIKA camera in
February 2014 (for 1.47 hours on-target) and its thermodynamical properties were studied in Adam et al. (2016)
[225]. The SZ signal of this cluster is strongly contaminated by point sources (Fig. 1 in Adam et al. (2016)
[225]), with a radio source that compensates completely the SZ signal in the core of MACS J1423.8+2404.
We use here the HSE masses estimated in Adam et al. (2016) [225], considering the M2 method, where
point sources were subtracted from the 150 GHz NIKA map before modelling the thermal pressure pro-
file. A gNFW pressure model was directly fit to the NIKA map. In addition, MUSTANG and Bolocam
observed MACS J1423.8+2404 for 11.2 and 21.7 hours, respectively. The mass from the combination of
NIKA SZ and X-ray data is shown with the solid blue line in Fig. 5.8. We observe that it converges with the
MUSTANG+Bolocam+X-ray mass profile (dashed blue) towards the outskirts of the cluster, around R500.

In Adam et al. (2016) [225] two different X-ray data sets were used to reconstruct the X-ray-only thermo-
dynamical quantities, from XMM-Newton and Chandra instruments. In Fig. 5.8 we present in black the HSE
mass obtained from XMM-Newton data (from 109 ks ∼ 30 hours of observations), which is in agreement with
Chandra (grey markers) at intermediate radii. Chandra data corresponds to 18.5 ks of exposure time with
ACIS-I and 115.6 ks with ACIS-S.

The two lensing mass profiles, reconstructed considering the XMM-Newton profile extraction centre (RA,
Dec)J2000 = (14h23m47.9s, +24d04m42.3s), follow closely the HSE masses.
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Figure 5.8: Same as Fig. 5.5 for the MACS J1423.8+2404 cluster. The blue shaded area shows the 68% confidence limit from the M2
model in Adam et al. (2016) [225]. Here the vertical black dashed lines indicate the instrumental limits of NIKA as radius of the beam
and FoV.

Overall, from the comparison of the mass profiles for these four clusters we do not see any hint that indicates
a systematic over or underestimation of the HSE masses reconstructed using NIKA(2) and/or XMM-Newton
data. For the sake of simplicity, in the following we will only use the HSE mass estimates obtained with
NIKA(2) and XMM-Newton data.

5.2.2 Comparison of M500 estimates

We have seen that galaxy cluster masses are commonly defined as integrated quantities and the consensus
in the cluster cosmology analyses during the last years [6, 8] has been to use the masses defined at the ∆ = 500
overdensity (Sect. 3.4.3). In this context, from each of the previously presented mass profiles we calculated
the corresponding M500 and R500. In the following, we compare our results to other mass estimates from the
literature. As verified for the HSE masses of the CL J1226.9+3332 galaxy cluster presented in chapter 4,
not all the masses in the literature are given homogeneously and comparisons have to be done with care. In
addition, we have to keep in mind that although high angular resolution observations enable reconstructing
entirely resolved mass profiles, the retained information is reduced to the region where the R500 −M500 relation
crosses the profile (Eq. 3.10). Even so, we present cluster by cluster the comparison of different HSE and
lensing results. For the sake of completeness, when available in the literature, we also compare to dynamical
masses or to mass estimates reconstructed under the assumption of virial equilibrium (Sect. 4.1.2).

CL J1226.9+3332

The HSE mass of CL J1226.9+3332 galaxy cluster has been thoroughly studied in chapter 4, presenting in
Fig. 4.15 a summary of all the HSE estimates around M500. In the same way, we show in Fig. 5.9 all the masses
at M500 or close to M500 found in the literature (summarised in Table 4.1), compared to our results. The lensing
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M500 estimates reconstructed from the CLASH LTM and PIEMD+eNFW convergence maps are presented as
orange and red contours, respectively. The lensing M500 from other works are shown as brown stars, while
mass estimates evaluated at a radius other than R500 are represented with crosses.

We observe that our lensing reconstructions are consistent with the lensing mass from Sereno (2015) [281]
and Sereno and Covone (2013) [280] (the brown star just above 1000 kpc) and with some of the HSE mass
estimates. On the contrary, they are very different from the Merten et al. (2015) [279] lensing mass (the brown
star in the top right corner). In Merten et al. (2015) [279] authors performed an independent analysis of the
CLASH data, reconstructing their own convergence map. The projected mass density profile presented in
Fig. 16 in Merten et al. (2015) [279] shows a denser cluster than the profiles from the convergence maps that
we use (Fig. 5.4). For this reason, Merten et al. (2015) [279] obtained, also with an NFW density fit, 35%
higher masses than Jee and Tyson (2009) [264]. The disturbed state of CL J1226.9+3332 could be the reason,
according to Merten et al. (2015) [279], for the different lensing mass estimates. Moreover, the high redshift of
the cluster makes the precise reconstruction of the convergence map more difficult.

The virial masses estimated in Mroczkowski (2011) [273] and Mroczkowski (2012) [274] are indicated in
Fig. 5.9 with magenta squares. As explained in Sect. 4.1.2, they rely on the virial relation and on given pressure
and density profile models to relate directly the SZ flux to the mass (Eq. 15 in Mroczkowski (2011) [273]).
This kind of analysis seems a good alternative to the HSE mass for clusters without X-ray data. The dynamical
mass estimates (purple circles), which we would expect to be larger than the HSE estimates, appear particularly
low for CL J1226.9+3332 [140]. According to the MSZ

500 − Mdyn
500 scaling relation obtained from the analysis of

297 Planck galaxy clusters in Aguado-Barahona et al. (2022) [140] (Eq. 8 and Table 2) and considering MSZ
500

the value in Planck Collaboration et al. (2016) [142], the dynamical mass corresponding to CL J1226.9+3332
should be in the range 6 − 7.5 × 1014 M⊙, thus more in agreement with our lensing mass estimates. Similar
problems are reported in Ettori et al. (2019) [175] and Logan et al. (2022) [305], the latter showing that a large
number of galaxies with spectroscopic redshift measurements (> 200) are needed to get robust results. The
orientation of the merger could also be an explanation for the underestimation of the dynamical mass: if the
merger is happening in the plane of the sky, the dispersion, and thus the mass, is lower.

PSZ2 G144.83+25.11

In Table 5.1 we present the HSE and lensing mass estimates of PSZ2 G144.83+25.11 galaxy cluster found
in the literature and we compare them to our M500 estimates (contours) in Fig. 5.10. The blue 1σ contour
corresponds to the MHSE

500 mass obtained from the combination of SZ and X-ray data in Ruppin et al. (2018)
[177], while the grey contour is the XMM-Newton-only HSE mass. For PSZ2 G144.83+25.11 the HSE masses
tend to have lower values than the lensing estimates. Furthermore, we notice some discrepancies between the
different lensing mass estimates. The two Mlens

500 masses that we reconstructed from LTM and PIEMD+eNFW
convergence maps lie between the different results from the literature.

In this thesis we have only considered the HSE masses from the analysis in Ruppin et al. (2018) [177] for
which the overpressure region is masked. It was shown by Ruppin et al. (2018) [177] and Ferragamo et al.
(2022) [190] that for this cluster SZ+X hydrostatic mass reconstructions are strongly affected by including or
excluding the overpressure: the measured masses vary by ∼ 50% both at a fixed radius close to R500 and at the
RHSE

500 estimated from each profile. Only high angular resolution observations allow one to detect such kind of
effects on the morphological state of the clusters and evaluate how much they affect the mass reconstructions.

PSZ2 G228.16+75.20

For PSZ2 G228.16+75.20 we present in Fig. 5.11 the masses at and around M500 from the literature (sum-
marised in Table 5.2) and our results. X-ray-only HSE masses prefer lower values than the hydrostatic masses
from the combination of SZ and X-rays. One could also think that the blue contours, showing the MHSE

500 from
the combination of NIKA2 and XMM-Newton data, are overestimating the HSE mass. Nevertheless, the com-
parison to the MUSTANG+Bolocam+XMM-Newton mass profile (dashed blue line) in Fig. 5.7 confirms such
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Figure 5.9: Same as Fig. 4.15 but including other mass estimates in addition to HSE masses. The orange and red contours correspond to
the lensing mass estimates obtained from the CLASH LTM and PIEMD+eNFW convergence maps in this work, respectively. Magenta
squares show the SZ-only mass assuming virial relation, purple circles are dynamical mass estimates, and brown stars the lensing
estimates. Brown crosses show lensing masses from the literature close to M500. The diagonal bright grey line defines the R500 − M500

relation. Slight deviations from this line are again due to differences in the cosmological model used in each work. Figure from Muñoz-
Echeverrı́a et al. (2023) [191].

Table 5.1: Mass estimates found in the literature for PSZ2 G144.83+25.11 (equivalent to Table 4.1). We differentiate the masses
reconstructed from ICM observables and from the lensing effect on background sources. We give the radius at which each mass is
evaluated when available. When the mass has been evaluated at a given R = R∆ we also present the value of the overdensity ∆.

Observable R ∆ M (< R) Reference Comments

[kpc] [1014 M⊙]

ICM

65′′ - 2.6+1.5
−0.5h−1 LaRoque et al. (2003) [306]

- 500 8.22+0.71
−0.73 Planck Collaboration et al. (2016) [142] Scaling relation

1180.0 500 8.8556 Piffaretti et al. (2011) [307] Scaling relation

- 200 11.69 ± 1.46 Javid et al. (2019) [308]

- 500 7.32 ± 0.89 Javid et al. (2019) [308]

Lensing

- 200 13.824 ± 4.177 Umetsu et al. (2016) [309], Sereno (2015) [281]8

- 500 9.427 ± 2.493 Umetsu et al. (2016) [309], Sereno (2015) [281]8

- 2500 3.683 ± 0.97 Umetsu et al. (2016) [309], Sereno (2015) [281]8

500 - 3.668 ± 0.64 Umetsu et al. (2016) [309], Sereno (2015) [281]8

1000 - 7.992 ± 1.413 Umetsu et al. (2016) [309], Sereno (2015) [281]8

1500 - 11.608 ± 2.381 Umetsu et al. (2016) [309], Sereno (2015) [281]8

- 500 7.7 ± 2.7 Umetsu et al. (2014) [310]

1500 - 13.3+5.7
−5.6 Applegate et al. (2014) [311]

1500 - 14.9+5.2
−5.3 Applegate et al. (2014) [311]
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Table 5.2: Equivalent to Table 4.1 for PSZ2 G228.16+75.20 galaxy cluster.

Observable R ∆ M (< R) Reference Comments

[kpc] [1014 M⊙]

ICM

65′′ - 1.5+0.9
−0.3h−1 LaRoque et al. (2003) [306]

- 500 10.42+0.52
−0.55 Planck Collaboration et al. (2016) [142] Scaling relation

1220.0 500 9.3427 Piffaretti et al. (2011) [307] Scaling relation

- 200 15.63 ± 1.66 Javid et al. (2019) [308]

- 500 9.78 ± 1.01 Javid et al. (2019) [308]

Lensing

- 200 24.855 ± 5.494 Umetsu et al. (2016) [309], Sereno (2015) [281]8

- 500 14.447 ± 3.034 Umetsu et al. (2016) [309], Sereno (2015) [281]8

- 2500 3.68 ± 1.095 Umetsu et al. (2016) [309], Sereno (2015) [281]8

500 - 3.439 ± 0.483 Umetsu et al. (2016) [309], Sereno (2015) [281]8

1000 - 9.41 ± 1.04 Umetsu et al. (2016) [309], Sereno (2015) [281]8

1500 - 15.625 ± 1.852 Umetsu et al. (2016) [309], Sereno (2015) [281]8

- 500 14.2 ± 3.4 Umetsu et al. (2014) [310]

500 - 6.7 ± 0.4 Smith et al. (2009) [302] Projected

1500 - 14.4+3.3
−3.3 Applegate et al. (2014) [311]

1500 - 13.6+3.1
−3.1 Applegate et al. (2014) [311]

- 500 7.06 ± 0.30h−1 Penna-Lima et al. (2017) [189]

Galaxy dynamics

- 500 14.6 ± 8.9 Aguado-Barahona et al. (2022) [140] 13 galaxies

- 500 16.0 ± 11.1 Aguado-Barahona et al. (2022) [140] 11 galaxies

a high profile. In any case, PSZ2 G228.16+75.20 is known for its complex morphology, so the hydrostatic
equilibrium hypothesis is most probably inappropriate for this cluster.

Purple markers in Fig. 5.11 show the mass estimates from the analysis of the dynamics of the galaxies in
the cluster. Given the little amount of galaxies (13 and 11), these estimates are highly uncertain. The projected
mass from Smith et al. (2009) [302] provided in Table 5.2 is not presented in Fig. 5.11 to avoid confusion
between spherical and projected masses.

MACS J1423.8+2404

The results for MACS J1423.8+2404 are shown and summarised in Fig. 5.12 and Table 5.3. The orange
and red contours corresponding to the Mlens

500 reconstructions from the LTM and PIEMD+eNFW convergence
maps are not compatible, showing the impact that the modelling of the lens has on the mass estimates. Since
the lensing mass profiles in Fig. 5.8 are extrapolated to reach R500 (as done for PSZ2 G144.83+25.11 and
PSZ2 G228.16+75.20), the estimates could be unreliable. Lensing mass estimates from the literature seem to
be more in line with the mass obtained from the PIEMD+eNFW map. The very large uncertainties of the HSE
mass reconstructed from NIKA and XMM-Newton data (blue contour) make the result compatible with all the
other M500 estimates.

In conclusion, the estimation of the mass of individual clusters is very complex and subject to different
systematic effects. The reconstructed masses vary depending on the used observables, data sets and considered
hypotheses and models. Most often uncertainties of mass estimates are not large enough to account for this.
However, overall, the HSE and lensing masses that we have reconstructed from NIKA(2), XMM-Newton and
CLASH data are coherent with the results from previous works. From the comparison of HSE and lensing
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Table 5.3: Equivalent to Table 4.1 for MACS J1423.8+2404.

Observable R ∆ M (< R) Reference Comments

[kpc] [1014 M⊙]

ICM

65′′ - 1.6+1.0
−0.3h−1 LaRoque et al. (2003) [306]

990.0 500 4.9804 Piffaretti et al. (2011) [307] Scaling relation

- 178Ωm(z)0.45 4.52+0.79
−0.64h−1 Schmidt and Allen (2007) [312] h = 0.7

Lensing

- 200 8.107 ± 1.422 Merten et al. (2015) [279], Sereno (2015) [281]8

- 500 5.826 ± 0.853 Merten et al. (2015) [279], Sereno (2015) [281]8

- 2500 2.551 ± 1.134 Merten et al. (2015) [279], Sereno (2015) [281]8

500 - 2.768 ± 0.293 Merten et al. (2015) [279], Sereno (2015) [281]8

1000 - 5.588 ± 0.613 Merten et al. (2015) [279], Sereno (2015) [281]8

1500 - 7.799 ± 1.007 Merten et al. (2015) [279], Sereno (2015) [281]8

65′′ - 4.35 ± 0.6 Limousin et al. (2010) [313] Projected

1500 - 3.7+2.8
−2.2 Applegate et al. (2014) [311]

1500 - 8.8+3.6
−3.6 Applegate et al. (2014) [311]

Figure 5.10: Same as Fig. 5.9 but for PSZ2 G144.83+25.11.

Figure 5.11: Same as Fig. 5.9 but for PSZ2 G228.16+75.20.
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Figure 5.12: Same as Fig. 5.9 but for MACS J1423.8+2404.

estimates, the latter seem to prefer larger mass values. We discuss in the next section the HSE-to-lensing mass
bias.

5.2.3 The HSE-to-lensing mass bias

We do not expect the HSE hypothesis to be fulfilled by all galaxy clusters in the Universe and we want
to measure how far clusters might be from the hydrostatic equilibrium assumption. As defined in Eq. 1.47,
the HSE mass bias is the relative difference between the true mass and the HSE mass of clusters. From the
observational point of view, the real HSE bias is unachievable as one cannot determine the true mass of a cluster.
However, it can be approximated using mass estimates that do not rely on the HSE hypothesis and trace the
total mass of the cluster, for instance, the lensing mass.

In this section we compute the hydrostatic-to-lensing mass bias, bHSE/lens, using the results obtained for the
clusters in the NIKA(2)-CLASH sample (see Sereno and Ettori (2015) [314] for an analysis of the CoMaLit
samples). Assuming that HSE and lensing masses are uncorrelated estimates, we combined their probability
distributions and computed the ratio,

MHSE
500 /M

lens
500 = 1 − bHSE/lens. (5.19)

We present in Fig. 5.13 the probability density distributions of the HSE-to-lensing mass bias for the four
clusters in the NIKA(2)-CLASH sample, with a different colour for each cluster. Solid lines show the bias
obtained when considering the LTM convergence maps to estimate the lensing mass. Dashed lines correspond
to the bias when using the PIEMD+eNFW lensing estimates. In the left panel, we present the bias for HSE
masses obtained from the combination of NIKA(2) pressure profiles and X-ray electron densities, while the
distributions in the right panel show the biases with X-ray-only HSE masses from XMM-Newton profiles.

For CL J1226.9+3332 both Mlens
500 estimates are in agreement (Fig. 5.9) and the bias of the SZ+X hydrostatic

mass is compatible with 0, meaning that lensing masses are consistent with the MHSE SZ+X
500 . The complex

morphology of PSZ2 G228.16+75.20 makes the spherical modelling results difficult to interpret. Even if our
MHSE SZ+X

500 estimate is consistent with Planck Collaboration et al. (2016) [142], uncertainties are large and, as
aforementioned, the spherical and equilibrium assumptions doubtful. In the left panel the HSE-to-lensing mass
ratio for PSZ2 G228.16+75.20 is larger than 1, meaning a negative HSE mass bias. For PSZ2 G144.83+25.11
the SZ data is of very good quality (see Ruppin et al. (2018) [177]) and the spherical electronic pressure
profile, having masked the overpressure region, fits very nicely the data. This gives a very well defined HSE
mass estimate (Fig. 5.10) and, consequently, small error bars on the HSE-to-lensing mass bias. The two Mlens

500
estimates for PSZ2 G144.83+25.11 are also in agreement within 1σ uncertainties. On the contrary, the two
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Figure 5.13: The HSE-to-lensing mass ratio at R500 for the clusters in the NIKA(2)-CLASH sample, using HSE masses from the
combination of NIKA(2) pressure profiles and XMM-Newton electron density profiles (left), and, using XMM-Newton electron den-
sity and spectroscopic temperature profiles (right). In green, orange, blue and red the CL J1226.9+3332, PSZ2 G228.16+75.20,
PSZ2 G144.83+25.11 and MACS J1423.8+2404 clusters, respectively. We distinguish with solid and dashed lines the HSE-to-lensing
mass ratios obtained with the LTM and PIEMD+eNFW lensing mass estimates. The grey distributions show the HSE-to-lensing mass
ratios for the full sample.

incompatible Mlens
500 estimates for MACS J1423.8+2404 (Fig. 5.12) create two distinct HSE-to-lensing mass

bias distributions.

The HSE-to-lensing mass ratio distributions presented in the left panel in Fig. 5.13 span from 0 to 2, showing
a variety of results for different clusters. In the right panel, where HSE masses correspond to X-ray-only
estimates, the biases for different clusters are more alike. Grey histograms show in Fig. 5.13 the HSE-to-
lensing mass ratio from the combination of all the NIKA(2)-CLASH clusters, considering both the LTM and
PIEMD+eNFW results. We account for the estimates obtained from both convergence map models since there
are no clear reasons to favour any of them. The mean values of the distributions with 16th and 84th percentiles
are given in Table 5.4. We observe two differences between the SZ+X and X-ray-only biases. First, the
distribution of the bias when using SZ+X hydrostatic masses is two times larger than for the masses from
X-ray observations. Secondly, the mean HSE-to-lensing mass ratio is smaller for X-ray-only masses, so the
bias is larger. This result is in line with the tendency observed for CL J1226.9+3332 in Sect. 4.4.1, where the
HSE masses obtained only from X-ray data tend to lower values than those from the combination of SZ and
X-rays. Nevertheless, both biases are compatible. Simulations [86] predict that the way in which the derivative
of the pressure is computed, in order to estimate the HSE mass profile (Eq. 1.45), has an important impact
on the scatter of the profiles at ∼ R500. According to Ansarifard et al. (2020) [86], if a clump is present in a
cluster, it will affect more the derivative of the pressure profile (as done for SZ data, Eq. 1.45) than the sum
of the derivatives of the gas density profile and the temperature (as done in the X-ray-only analyses, Eq. 1.46).
As a consequence, the scatter of the HSE bias in a sample of clusters is larger for SZ+X-ray masses than for
X-ray-only masses [86].

Radial extrapolation of lensing mass profiles was needed to measure the Mlens
500 for PSZ2 G228.16+75.20,

PSZ2 G144.83+25.11 and MACS J1423.8+2404 clusters. To avoid extrapolating the profiles we have also
compared the HSE-to-lensing mass bias in an inner region of clusters, at an overdensity of ∆ = 1000. We
show in Fig. 5.14 all the HSE-to-lensing mass ratios. In this case, from the combination of the four clusters
we obtain smaller biases (see Table 5.4), but compatible with those at ∆ = 500. This result is in agreement
with simulations [86, 179], where authors conclude that the HSE mass bias (calculated with respect to the true
mass of clusters) increases at large radii, most probably due to an important presence of non-thermal processes
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Figure 5.14: The HSE-to-lensing mass ratio at R1000 for the clusters in the NIKA(2)-CLASH sample. Equivalent to Fig. 5.13.

∆ MHSE SZ+X
∆

/Mlens
∆

MHSE X
∆

/Mlens
∆

500 0.82+0.36
−0.34(0.76) 0.61+0.17

−0.17(0.59)

1000 0.86+0.26
−0.27(0.82) 0.74+0.19

−0.20(0.73)

Table 5.4: HSE-to-lensing mass ratio for the clusters in the NIKA(2)-CLASH sample at overdensities of ∆ = 500 and 1000 for HSE
masses obtained from the combination of SZ and X-ray data and with X-ray data only. We give the mean value and the 84th and 16th
percentiles, and the median value in brackets.

in the outskirts of clusters. Nonetheless, the size of our sample is very small to draw strong conclusions. The
tendency of X-ray HSE masses to be more biased than SZ+X masses is also observed at ∆ = 1000.

These results highlight the impact that systematic effects can have on our mass estimates and as a conse-
quence on the bias. We see that the data quality, the cluster morphology and dynamical state, as well as the
chosen observables and the modelling influence the mass bias. Although the SZ effect and the X-ray obser-
vations are both supposed to trace the thermal energy of the gas in the ICM of clusters, we observe that, in
practice, for individual clusters, they can drive to different results.

Previous works in the literature have followed similar approaches. In Ettori et al. (2019) [175] authors
reconstructed the HSE mass profiles of 13 nearby (0.04 < z < 0.1) clusters (12 from the X-COP sample and
Abell 780) by using Planck and XMM-Newton data. They compared the HSE masses to masses obtained from
weak lensing, scaling relations, galaxy dynamics and caustics, by evaluating the hydrostatic mass profiles at
the radius defined by the other methods at a given overdensity. From the comparison of HSE and weak lensing
masses for 6 of the clusters in the X-COP sample they obtained an average ratio of Mlens

500 /M
HSE
500 ∼ 1.14 − 1.18,

that is, MHSE
500 /M

lens
500 ∼ 0.88 − 0.85, which is in agreement with our results.

Also in the framework of the X-COP sample, the analysis in Eckert et al. (2019) [53] investigated the con-
tribution of non-thermal pressure to the total pressure in clusters. They used again HSE masses from combined
XMM-Newton X-ray and Planck SZ data and assuming a universal gas fraction, from the measurements of the
gas fraction in the galaxy clusters in the sample they obtained that the contribution of non-thermal pressure is
very low: 5.9+2.9

−3.3% at R500. This corresponds to a median bias for their sample of MHSE
500 /M

tot
500 = 0.94±0.04. As

stated in Eckert et al. (2019) [53], according to simulations the presence of non-thermal pressure is expected to
be more important at higher redshift (see for example Fig. 1 in Nelson et al. (2014) [63]), which should imply
also a larger bias for HSE masses. Nevertheless, given the small redshift range covered by the clusters in Eckert
et al. (2019) [53] and Ettori et al. (2019) [175], all of them being at z < 0.1, this evolution could not be proved
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in their works.

Other works in the literature [189, 315, 316] compared SZ-derived masses to lensing estimates, but using
HSE mass estimates obtained from SZ-mass scaling relations applied to SZ measurements. For high redshift
clusters such SZ observations (obtained with Planck for the mentioned works) are not resolved enough to
reconstruct reliable mass profiles. As we have shown, the identification of substructures, departures from
sphericity and contamination by point sources in galaxy clusters impact the HSE mass estimates. To study
high redshift clusters and a potential evolution of their characteristics with respect to low redshift clusters high
angular resolution observations are necessary. Therefore, the arrival of high-resolution SZ observations is an
important step forward and it makes this small NIKA(2)-CLASH sample a unique opportunity to constrain the
HSE-to-lensing mass bias at high redshift.

5.3 Gas-to-lensing mass fraction

The baryon content in clusters of galaxies is considered to be representative of the universal baryon fraction
[50] and most of the baryonic matter in galaxy clusters is in the form of hot gas in the ICM. Thus, it is interesting
to estimate the fraction of gas mass with respect to the total mass of the clusters, since it can be used as a
cosmological probe (see Sect. 1.2.3).

The gas mass of a cluster can be calculated with X-ray data following Eq. 1.57 and assuming a mean
molecular weight of the electrons, µe, so that ρgas = µmp(ne + np) = µempne. We fixed µe = 1.148 as in Arnaud
et al. (2010) [70], but this value varies from work to work in the literature. For example, in Eckert et al. (2019)
[53] the ratio of electron and proton number densities is fixed to ne = 1.17np and µ = 0.61, so that µe = 1.13.
The difference in the value of µe between Arnaud et al. (2010) [70] and Eckert et al. (2019) [53] is propagated
to the gas mass estimate.

Assuming that lensing masses are a good proxy of the total mass in clusters, we can approximate (as in
Ferragamo et al. (2022) [190]) the gas mass fraction by the gas-to-lensing mass fraction. We present in Fig. 5.15
the ratio of gas mass with respect to lensing mass for all the clusters in the NIKA(2)-CLASH sample. We use the
lensing masses reconstructed from CLASH LTM (solid lines) and PIEMD+eNFW (dashed lines) convergence
maps and present the radial profiles normalised with respect to the corresponding Rlens

500 for each case. We
observe that, in agreement with previous works, the gas fraction within clusters increases with radius, although,
as above-mentioned, extrapolation was needed in most of the cases to reach Rlens

500 .

From these results we obtain that the mean gas-to-lensing mass fraction for NIKA(2)-CLASH clusters at
R500 is: Mgas/Mlens(Rlens

500 ) = 0.11 ± 0.02. Assuming that lensing masses are unbiased estimates of the total
mass of clusters, we can compare this value to the universal baryon fraction by using the baryon density,
Ωbh2 = 0.0224 ± 0.0001, and the matter density parameter, Ωm = 0.315 ± 0.007, from Planck Collaboration
et al. (2020) [28]. Considering h = 0.674 [28] and no correlation between the parameters, we calculate the
universal baryon fraction: Ωb/Ωm = 0.157 ± 0.004.

Nonetheless, additional considerations are needed to compare the gas mass fraction in clusters to the univer-
sal baryon fraction (see Eq. 1.39). First, not all the baryonic content of clusters is in the form of hot gas and the
cold gas or stellar content is estimated to hold ≲ 6% of the total matter in clusters [317]. From a compilation of
works, authors in Eckert et al. (2019) [53] estimated the stellar fraction in clusters to be 1.5 ± 0.5% of the total
matter. Second, the gas in clusters is affected by baryonic physics (such as the heating by AGNs) which can
deplete the gas content by driving it out of the potential wells. This gas depletion has been widely studied from
hydrodynamical simulations and observations (e.g., Planelles et al. (2013) [318] and references therein) and it
is estimated to deplete ∼ 6% [53] to ∼ 15% [318] of the baryons. Including these effects, the baryon fraction
for the clusters in our sample is of the order of Mbaryons/Mlens(R500) ∼ 0.14.

Despite all these uncertainties related to the baryonic physics that interplay in clusters, it is of great interest
to study the gas-to-lensing mass fraction from resolved profiles. Multiple works have computed the gas fraction
of clusters from the ratio of gas mass and HSE mass estimates [77, 258, 319–321], correcting in some cases
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Figure 5.15: Gas-to-lensing mass fraction for the clusters in the NIKA(2)-CLASH sample. Solid lines with envelopes show the
fraction of gas mass with respect to the lensing mass obtained from LTM convergence maps. The line gives the mean profile and the
envelopes show the 16th to 84th percentiles. Dashed lines show the mean mass fraction when considering lensing masses estimated from
PIEMD+eNFW convergence maps. We show in green, orange, blue and red the results for CL J1226.9+3332, PSZ2 G228.16+75.20,
PSZ2 G144.83+25.11 and MACS J1423.8+2404 clusters, respectively. The grey area shows the 16th to 84th percentiles for the gas-to-
lensing mass from the combination of all the profile distributions.
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for the bias of HSE masses. Those analyses obtain gas mass fraction values compatible with our result. The
comparison of gas masses to lensing masses (as in Okabe et al. (2014) [322]) has an additional interest since
the latter do not rely on ICM observables. By studying the evolution with redshift of the gas fraction we can
learn about the evolution along cosmic time of the gas depletion (as in Holanda et al. (2022) [323]) and the
disturbance or entropy in galaxy clusters [77].

5.4 Conclusions

The precise measurement of the bias of masses estimated under the hydrostatic equilibrium assumption
could be a key element to solve the tension between the cosmology inferred from cluster number counts in SZ
and from early-Universe probes. In this chapter we have investigated the bias of resolved HSE masses with
respect to lensing estimates for a sample of four clusters at intermediate to high redshift.

We have reconstructed the lensing mass profiles making use of the CLASH convergence maps, considering,
when available, two different convergence map models per cluster. We observe that the model used to build
the convergence map can have a strong impact on our lensing mass estimates: for CL J1226.9+3332 and
PSZ2 G144.83+25.11 lensing masses reconstructed from LTM and PIEMD+eNFW maps are compatible within
1σ, but accounting for both introduces an additional uncertainty on Mlens

∆
. For MACS J1423.8+2404 the two

lensing mass estimates are not consistent. Thus, from the combination of the masses reconstructed from both
convergence map models we have been able to estimate, in a certain way, the uncertainties induced by modelling
effects. On the contrary, other sources of uncertainties, such as those related to the selection of background
galaxies and the estimation of their redshifts, can not be easily quantified with our approach.

Regarding the hydrostatic mass profiles, we have used the profiles reconstructed in chapters 3 and 4, as well
as in previous works in the literature. By comparing the mass profiles reconstructed with data from different
instruments, we do not observe any clear hint of systematic bias related to a given instrument. Nevertheless,
HSE masses from X-ray-only data tend to lower values than the masses estimated from the combination of SZ
and X-rays. In addition, we have seen that substructures and the contamination by point sources, as well as
the data quality affect directly the HSE mass estimates and their uncertainties. Therefore, we conclude that
resolved observations of clusters are mandatory. Given that high angular resolution SZ observations are rare,
resolved high redshift cluster observations are unique and the NIKA(2)-CLASH sample is relevant and timely.

From the comparison of our M500 estimates to other results from the literature, we demonstrate the com-
plexity of the estimation of the mass of individual clusters. As for the HSE-to-lensing mass bias, we conclude
that HSE estimates are overall smaller than lensing masses by ∼ 20% − 40%. Despite the large uncertainties,
we have the sensitivity to measure the bias of individual clusters, even for the highest-redshift cluster of the
NIKA2 SZ Large Programme. However, a larger sample of clusters would be needed to distinguish between
systematic and statistical effects. At this regard, in chapter 6 we extend the analysis to a larger sample, but only
for HSE masses reconstructed with X-ray data.

Finally, from the estimation of the gas mass in the ICM, we have computed the gas-to-lensing mass fraction
profile for the four clusters in the NIKA(2)-CLASH sample. We find that the fraction of gas mass in the ICM of
clusters is smaller than the universal baryon fraction, with the gas-to-lensing mass fraction increasing towards
the outskirts of the clusters.
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Following on with the HSE-to-lensing mass bias analysis in the previous chapter, in this one we aim at
extending the study to a larger sample of clusters that covers a wide redshift range. Given the numerous methods
and models that can be employed to reconstruct HSE and lensing masses and the potentially different biases
that they could be subjected to (see chapter 5), we focus here on a sample of clusters for which X-ray-based
HSE and lensing masses have been homogeneously reconstructed from mass profiles.

As indicated by Sereno and Ettori (2015) [314], and shown also in the previous chapters, cluster mass
estimates can vary up to ∼ 40% from one work to another. Being aware of this, we compile also results
from several works that have equally produced M500 estimates based on mass profiles. We use those estimates
to measure the systematic dispersion with respect to our homogeneous sample of masses and propagate such
dispersion. This goes a step beyond previous studies [301, 314, 324].

We first present the data describing the homogeneous and comparison cluster samples. Then we detail the
method used to match clusters from different catalogues and the measurement of the systematic dispersion of
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the homogeneous masses with respect to other estimates. We build the reference sample that is used to estimate
the HSE-to-lensing mass bias, the scaling relation and its evolution with redshift. At the end of the chapter, we
compare our results to similar works in the literature. This chapter is based on a work accepted for publication
in Astronomy and Astrophysics [325].

6.1 Cluster sample construction

6.1.1 Homogeneous sample

This study is built aiming for a cluster sample with resolved HSE and lensing masses that are compara-
ble amongst all the objects (homogeneous reconstruction procedure) and covers the largest possible redshift
range. We present in this section the mass reconstruction and regularisation procedure of the XMM-Newton
and CoMaLit clusters [281], which constitute our homogeneous sample.

CoMaLit sample

The CoMaLit sample contains the clusters with lensing masses that we used to build the homogeneous sam-
ple. They correspond to the clusters from the Literature Catalogs of weak Lensing Clusters (LC2) compilation
presented in Sereno (2015) [281]. LC2 contains 806 clusters (in the 3.9 version of the LC2-single catalogue8)
with weak lensing masses obtained from different works in the literature, including the widely used Canadian
Cluster Comparison Project (CCCP) [315, 326] and Weighing the Giants (WtG) [311] cluster samples.

Although the masses were not derived homogeneously amongst the original works, an effort was made in
Sereno (2015) [281] to select the most comparable mass estimates. Only masses reconstructed assuming spher-
ical symmetry were considered, clusters without optical, X-ray or SZ counterparts were excluded and when the
same authors or collaborations had published several estimates for the same cluster along a refinement process,
only the latest result was considered. In addition, all the masses were standardised to the same cosmology (a
flat ΛCDM cosmology with Ωm = 0.3 and H0 = 70 km/s/Mpc) and given at the overdensities of 2500, 500 and
200, as well as at the virial radius. We will consider only the masses at an overdensity of ∆ = 500. For some
cases, the masses given in the original papers had to be extrapolated following the density profile adopted in
the original paper or with an NFW model.

XMM-Newton sample with the reference X-ray pipeline

Regarding the HSE masses, we built a sample of clusters with masses reconstructed from XMM-Newton
data and following the same procedure, hereafter XMM-Newton or reference X-ray pipeline. This pipeline has
already been used in chapters 3, 4 and 5 (as well as in several published works [77, 177, 178, 191, 254]) to
reconstruct HSE mass profiles of clusters from XMM-Newton data. A brief description of the procedure can be
found in Sect. 3.3 and 3.4.

The binned HSE mass profiles (as the ones shown, for example, in Fig. 3.10 and 4.13) were interpolated
to define the M500 masses used in this analysis. Based on the same XMM-Newton data two differently esti-
mated M500 are available per cluster: masses derived from an X-ray calibrated scaling relation [70] and masses
estimated from a forward NFW profile fit to the density and temperature profiles (same idea as the method in
Sect. 3.4.2). We will not use these two types of masses in our main analysis, but they are employed to inves-
tigate the consistency of all three estimates in Sect. 6.6. Amongst the clusters with XMM-Newton data, we
distinguish three different subsamples along the redshift: low-, intermediate- and high-redshift clusters.

I. Low-z clusters: ESZ+LoCuSS

Many of the low redshift (z < 0.5) clusters detected by Planck were also observed by XMM-Newton. It is the
case of the 62 Planck Early Sunyaev-Zel’dovich (ESZ) clusters [327], whose HSE masses were reconstructed
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with X-ray data in Planck Collaboration et al. (2011) [206]. Similarly, based on the Local Cluster Substructure
Survey (LoCuSS12) sample, Planck Collaboration et al. (2013) [328] reconstructed the HSE mass of 19 clusters.

II. Intermediate-z clusters: LPSZ

As presented in Sect. 3.1, the NIKA2 SZ Large Programme was designed to follow-up clusters with redshifts
between z = 0.5 and 0.9 by using NIKA2 and XMM-Newton. In this chapter we will make use of the HSE
masses obtained from XMM-Newton data only.

III. High-z clusters: Bartalucci+2018

Bartalucci et al. (2017) [254] and Bartalucci et al. (2018) [105] were able to go beyond z = 0.9 and measure
the HSE mass of 5 individual clusters from resolved mass profiles. Given the difficulties related to the high red-
shift of the clusters, XMM-Newton data were combined with Chandra observations. Although supplementary
Chandra data was added, we will consider these masses to be homogeneous with respect to the ESZ+LoCuSS
and LPSZ samples, since the same reconstruction pipeline was employed. However, special care will be taken
when studying the impact of these clusters. Authors in Bartalucci et al. (2018) [105] also indicate that the
mass estimate for the SPT-CLJ2106-5844 cluster is not reliable, therefore, we will exclude it from our analyses.

6.1.2 Comparison sample

It is undeniable, from the previous chapters of this thesis, that the mass estimate for a cluster often varies
from one analysis to another (even up to 50%), because of differences related to the raw data or to the mass
reconstruction method. In order to try to account for possible systematic biases in the CoMaLit and the refer-
ence X-ray pipeline masses, we gather as many as possible HSE and lensing mass estimates from the literature
for the clusters in our homogeneous sample. Again, we make sure that the masses in the chosen studies are
measured on resolved profiles, excluding masses derived from scaling relations. We only consider HSE masses
obtained from X-ray data. Comparing to HSE masses that use SZ data or scaling relations is also of great
interest, but it would be an independent analysis in itself (see chapters 4 and 5) and beyond the scope of this
chapter. For lensing, in addition to the weak lensing masses, we also compare to masses reconstructed from the
combination of strong and weak lensing signals.

We present in the following a brief description of this comparison sample, highlighting the distinctive char-
acteristics of each analysis.

Ettori+2010

In Ettori et al. (2010) [329] (and the Corrigendum in Ettori et al. (2011) [330]) authors reconstructed the
HSE mass of 44 clusters with redshifts 0.092 < z < 0.307 using XMM-Newton observations. They employed
two different methods (M1 and M2) and gave the results in units of R500. We converted the R500 values into
M500 masses. The main caveat of these results is that profiles were extrapolated to reach R500 assuming an
NFW model. As the coordinates of the assumed centre of the clusters are not given in Ettori et al. (2010) [329],
we took them from Yuan et al. (2022) [331]13 and when missing, from the 4XMM-DR9 source list14.

Landry+2013

In Landry et al. (2013) [321] the HSE masses of 35 clusters with redshifts between 0.152 < z < 0.3017 were
obtained using Chandra data. Two different mass estimates are given in the paper: either using the Vikhlinin

12http://www.sr.bham.ac.uk/locuss/home.php
13http://zmtt.bao.ac.cn/galaxy_clusters/dyXimages/newton.html
14http://xmmssc.irap.omp.eu/Catalogue/4XMM-DR9/4xmmdr9_obslist.html

http://www.sr.bham.ac.uk/locuss/home.php
http://zmtt.bao.ac.cn/galaxy_clusters/dyXimages/newton.html
http://xmmssc.irap.omp.eu/Catalogue/4XMM-DR9/4xmmdr9_obslist.html
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model or the polytropic equation of state, and according to authors the profiles of 7 clusters required “slight”
extrapolation to reach R500. Again, the coordinates of the assumed centres of the clusters are not given in
Landry et al. (2013) [321], so most of the coordinates were taken from Ebeling et al. (1998) [332]. When
missing, position coordinates of clusters were found by querying in the Simbad-CDS portal15 with the cluster
name given in Table 1 in Landry et al. (2013) [321].

LoCuSS

The aforementioned LoCuSS sample contains in all 50 clusters, with 0.152 < z < 0.3 [333]. For our mass
comparisons, we used the LoCuSS HSE masses published in Martino et al. (2014) [334] and the lensing masses
from Okabe and Smith (2016) [335]. The HSE masses were reconstructed with Chandra data for 43 clusters
and with XMM-Newton observations for 39. For some clusters both estimates are available. Central coordinates
of clusters were also taken from Martino et al. (2014) [334]. The analysis in Zhang et al. (2010) [336] studied
12 out the 50 clusters with XMM-Newton and Subaru data. The lensing masses published in Zhang et al. (2010)
[336] are equivalent to those in Okabe and Smith (2016) [335], but the HSE mass profiles were evaluated at the
R500 corresponding to the lensing analyses. We, therefore, gave preference to the results in Okabe and Smith
(2016) [335] and Martino et al. (2014) [334], and, restricted the LoCuSS masses to the estimates in the latter
two studies.

Mahdavi+2008

Uniformly estimated masses of 18 clusters were published in Mahdavi et al. (2008) [337]. Lensing masses
were obtained as in Hoekstra (2007) [338], but with the photometric redshift distributions from Ilbert et al.
(2006) [339]. The lensing mass reconstruction was done with a method based on aperture mass estimation,
that is, obtaining first projected masses, and subsequently deprojecting by assuming an NFW density model
and the concentration-mass scaling relation from Bullock et al. (2001) [340]. For the HSE masses, Chandra
observations were used. As indicated in Table 2 in Mahdavi et al. (2008) [337], for 14 out of the 18 clusters the
HSE masses at R500 were obtained from extrapolation and all of them were measured at the lensing R500.

Mahdavi+2013

In Mahdavi et al. (2013) [259] authors studied a sample of 50 clusters with redshift 0.152 < z < 0.55.
The clusters correspond to the CCCP sample. The HSE masses were reconstructed from a combined analysis
of XMM-Newton and Chandra data. For the same sample lensing estimates were obtained in Hoekstra et al.
(2012) [326], using CFH12k and Megacam data from the Canada-France-Hawaii Telescope. HSE masses were
measured at the R500 obtained from lensing masses.

Israel+2014

The analysis in Israel et al. (2014) [260] contains 8 clusters with redshift 0.35 < z < 0.80. The lens-
ing masses were obtained from an NFW fit to the tangential shear profiles of clusters, assuming a mass-
concentration relation. To reconstruct the HSE mass authors used the electron density profiles of individual
clusters, which were estimated from Chandra surface brightness maps. The temperature profile of individual
clusters being more challenging to obtain, authors combined the Chandra data of all clusters in the sample to
reconstruct a single global temperature profile for the whole sample. The HSE masses in Israel et al. (2014)
[260] were also evaluated at the R500 measured from lensing mass profiles.

15http://simbad.u-strasbg.fr/simbad/

http://simbad.u-strasbg.fr/simbad/
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LPSZ+CLASH

In chapter 5 we have estimated the lensing mass for three clusters in the sample in common between the
LPSZ and CLASH samples (CL J1226.9+3332, PSZ2 G144.83+25.11 and PSZ2 G228.16+75.20). We have
reconstructed the masses by fitting a projected NFW mass density profile to the publicly available CLASH
convergence maps, having in some cases two estimates per cluster. We use those lensing masses to compare to
the CoMaLit estimates, as well as the masses published in Umetsu et al. (2014) [310] and Merten et al. (2015)
[279] for the same clusters.

Bartalucci+2018

In Bartalucci et al. (2018) [105] authors studied the HSE-to-lensing mass bias of five SPT clusters. The
weak lensing masses were obtained by Schrabback et al. (2018) [341] using Hubble Space Telescope (HST)
observations. The profiles were centred in the X-ray peak or the SZ peak (indicated in Table 1 in Schrabback
et al. (2018) [341]), giving two different lensing mass estimates per cluster.

6.2 Combination of catalogues

In this section, we present the comparison of the XMM-Newton and CoMaLit mass estimates to the results
from other works presented in Sect. 6.1.2. We describe the procedure used to match and select clusters from
different catalogues, and then quantify the scatter based on the comparison of several mass measurements for
each cluster across our sample. With the latter, we intend to estimate overall uncertainties in the mass estimates
both for X-ray and lensing.

6.2.1 Matching clusters

We match clusters from different catalogues on the basis of their central coordinates. We consider that two
entries in two distinct catalogues correspond to the same cluster for angular separations smaller than 400′′. We
further verify every match by checking the redshifts given in the different catalogues. We identify suspicious
mismatching between A1606 (z = 0.0963) and A2029 (z = 0.078) and exclude it.

At the same time, we discard clusters that appear as one object in some catalogue and as a combination of
multiple substructures in another. For example, the cluster A1758 in Landry et al. (2013) [321] has four entries
in the LC2-single catalogue: A1758S, A1758NW, A1758N, A1758NE. Similarly, we exclude A222, A223N
and A223S. In addition, we identified and discarded A750 (present in CoMaLit, LoCuSS, Mahdavi+2013 and
Mahdavi+2008 catalogues), whose mass estimate can not be reliable since it is superimposed along the line-of-
sight with MS0906+11 [342].

We summarise in Table 6.1 the overlap between the clusters in the homogeneous XMM-Newton and CoMa-
Lit samples and those from other works presented in Sect. 6.1.2. For 36 of the XMM-Newton and 82 of the
CoMaLit clusters we identified other HSE and lensing mass estimates16.

6.2.2 Estimation of systematic dispersion

We present in the top left panel in Fig. 6.1 the relation between X-ray HSE masses obtained with the
reference X-ray pipeline (homogeneous masses) with respect to other X-ray HSE masses from the literature
(comparison sample). In the right panel, we show the relation between lensing masses from different works
with respect to the estimates summarised in CoMaLit. Each colour represents one of the samples described
in Sect. 6.1.2 and different estimates of the same work are differentiated with markers. The black dashed line
shows the one-to-one relation.

16Since the LC2 catalogue is a compilation of masses from many works in the literature, it is not surprising that some CoMaLit
masses are directly the estimate published in other works. It is the case for some LoCuSS clusters.
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Figure 6.1: The relation between HSE (left) and lensing (right) masses from the homogeneous samples in this work (XMM-Newton
and CoMaLit) with respect to other estimates from the literature (comparison sample). Each colour indicates a different analysis and
several results for the same work are differentiated by using different markers. The black dashed line shows the one-to-one relation.
We give the statistical, systematic and raw variances as defined in the text. All the variances are in units of (1014 M⊙)2. In the bottom
panels we show the same relations, but not accounting for clusters with very large uncertainties and with very different XMM-Newton
and CoMaLit centres excluded in Sect. 6.3.1 and 6.3.2.
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Sample Redshift Type of mass # of clusters # of clusters in common # of clusters in common

with the XMM-Newton sample with the CoMaLit sample

Ettori+2010 0.092 < z < 0.307 HSE 44 24

Landry+2013 0.152 < z < 0.3017 HSE 35 19

LoCuSS 0.152 < z < 0.3 HSE and lensing 50 22 45

Mahdavi+2013 0.152 < z < 0.55 HSE and lensing 50 18 44

Mahdavi+2008 0.170 < z < 0.547 HSE and lensing 18 11 17

Israel+2014 0.35 < z < 0.80 HSE and lensing 8 0 8

LPSZ+CLASH 0.55 < z < 0.89 lensing 3 3

Bartalucci+2018 0.933 < z < 1.066 lensing 4 3

All 94 120

All without repetition 36 82

Table 6.1: Summary of the number of clusters in each of the comparison samples and their overlap with the homogeneous XMM-
Newton and CoMaLit samples. We also report the total amount of matches corresponding to the data points in the top panels in Fig. 6.1
and the number of different objects.

Overall, the agreement between the samples is reasonable, with a significant dispersion around the 1:1
relation. We identify some clusters for which the mass estimates differ significantly. These are Abell521,
Abell2390, Abell2163 in X-rays and RXJ1347.5-1145, CL1641, CL1701 in the lensing mass comparisons.
The cluster shown with the green marker on top of the top left panel in Fig. 6.1 is Abell2390 and, despite its
departure from the 1:1 relation, we do not have strong arguments for excluding it. For lensing masses (in the
top right panel in Fig. 6.1) there seem also to be a hint of some bias that we will not propagate hereafter. We
verify that the bias does not correlate with a comparison sample in particular, but rather with high mass clusters.
Further investigation would be needed to understand this trend.

To quantify the systematic dispersion with respect to the 1:1 relation, we follow Eq. 3 and 4 in Pratt et
al. (2009) [106]. For the Nlens = 120 matched entries between the CoMaLit catalogue and the other lensing
samples (Table 6.1), we define the raw variance as

σ2
raw lens =

1
Nlens − 2

Nlens∑
i=1

wi(Mother lens − MCoMaLit lens)2, (6.1)

where, wi is the weight of each cluster i and MCoMaLit lens and Mother lens are the lensing mass in the CoMaLit
catalogue and in a different analysis, respectively. The weight given to each cluster is

wi =
1/σ2

i

1/N
∑N

j=1 1/σ2
j

, (6.2)

using σ2
i = δ

2
Mother lens

+δ2
MCoMaLit lens

, the sum of the uncertainties related to each cluster. The σ2
raw HSE is measured

in an equivalent way using the HSE masses and uncertainties for each cluster: MXMM HSE and Mother HSE and
δ2

MXMM HSE
and δ2

Mother HSE
.

The expected statistical error associated with the mass estimates is obtained for both lensing and X-ray
masses accounting for the weight, wi, and uncertainties, σ2

i , for each cluster:

σ2
stat =

1
N − 2

N∑
i=1

wiσ
2
i =

1
N − 2

N∑
i=1

N∑N
j=1 1/σ2

j

. (6.3)

This allows us to define the systematic scatter, that is, the excess of scatter in the raw variance not explained by
the statistical uncertainties, as

σ2
sys = σ

2
raw − σ

2
stat. (6.4)
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Sample σ2
raw HSE σ2

stat HSE σ2
sys HSE Figure

[1028 M2
⊙] [1028 M2

⊙] [1028 M2
⊙]

All 3.231 1.507 1.724 Fig. 6.1

Without MHSE(< Rlens
500 ) 3.393 1.501 1.892 Fig. 6.2

Without clusters discarded in Sect. 6.3 3.161 1.396 1.765 Fig. 6.1

Without MHSE(< Rlens
500 ) and clusters discarded in Sect. 6.3 3.405 1.388 2.017 Fig. 6.2

σ2
raw lens σ2

stat lens σ2
sys lens Figure

[1028 M2
⊙] [1028 M2

⊙] [1028 M2
⊙]

All 5.280 4.340 0.940 Fig. 6.1

Without clusters discarded in Sect. 6.3 5.612 4.409 1.202 Fig. 6.1

Table 6.2: Raw, statistical and systematic variances of the HSE and lensing mass estimates from the homogeneous samples in this work
(XMM-Newton and CoMaLit) with respect to other estimates from the literature (comparison samples). We report the different values
depending on the sample selection criteria, showing in bold the systematic scatters considered for the rest of the chapter.

We report in Fig. 6.1 (and in Table 6.2) the statistical, systematic and raw scatter for the HSE and lensing
masses. The raw dispersion of lensing masses is larger than HSE ones and the uncertainties of individual
lensing masses being larger, the statistical dispersion is also larger. Nevertheless, the error bars of HSE masses
are not large enough to cope with the excess of scatter around the 1:1 relation, making the systematic scatter
for HSE masses to be larger than for lensing.

As mentioned in the description of each sample in Sect. 6.1.2, HSE masses in some works were evaluated
at the R500 obtained from lensing. We check the impact of excluding such estimates from the analysis. In the
left panel in Fig. 6.2 we present the relation between the XMM-Newton reference pipeline masses and X-ray
masses from the comparison sample without accounting for MHSE(< Rlens

500 ) estimates (that is, without Mahdavi
et al. (2008) [337] and Mahdavi et al. (2013) [259]). The statistical, raw and systematic variances change by
0.4, 5 and 10%, respectively. Hence, taking the most conservative approach, in the following sections we will
consider the largest scatter values obtained.

6.3 Selection and characterisation of the reference sample

Following the procedure described in Sect. 6.2.1, we match the clusters in the CoMaLit catalogue
(Sect. 6.1.1) with the clusters with HSE masses from the XMM-Newton reference pipeline (Sect. 6.1.1) and
obtain an homogeneous sample composed of 65 clusters. Amongst the 65 clusters, 54 correspond to the
ESZ+LoCuSS samples, 8 clusters are from the LPSZ and 3 from Bartalucci+2018. For these clusters, we
perform additional checks to verify which of them can be used for the HSE-lensing mass comparison and
define the final reference sample.

6.3.1 Uncertainties in mass estimates

For the clusters in the homogeneous sample, we observe that mass estimates and their associated uncer-
tainties appear correlated: error bars are larger for more massive objects. As already mentioned, lensing mass
uncertainties are larger than HSE ones. In addition, the relative uncertainties, when calculated with respect
to the value of the measured mass, are also larger for lensing than for HSE estimates. For some clusters the
uncertainties on HSE masses are suspiciously large (100%) or abnormal (negative error bars). We decide to
exclude for these reasons the clusters Abell119, Abell521 (the LoCuSS and Mahdavi+2013 cluster out of the
plot in the left panel in Fig. 6.1) and SPT-CLJ0516-54.



CHAPTER 6. EVOLUTION OF THE HSE-TO-LENSING MASS BIAS 135

Figure 6.2: Relation between X-ray masses from literature and from the XMM-Newton reference pipeline without accounting for
MHSE(< Rlens

500 ). In the left (right) the clusters with very large uncertainties and with very different XMM-Newton and CoMaLit centres
are considered (not considered).

6.3.2 Difference of centres for HSE and lensing reconstructions

For some of the clusters the HSE and lensing masses have been reconstructed assuming different cluster
centre positions. We investigate in the following if this miscentring is correlated to the mass ratio and redshift
and how it may affect the mass estimates.

Miscentring

In the left panel in Fig. 6.3 we present the ratios between the HSE and lensing masses with respect to the sep-
arations between the centres considered in the X-ray and lensing analyses. Each marker corresponds to one of
the 65 clusters, showing with magenta crosses, purple squares and grey circles the clusters from ESZ+LoCuSS,
LPSZ and Bartalucci+2018 samples, respectively. Uncertainties have been obtained from the propagation of
the individual XMM-Newton and CoMaLit uncertainties. The separation between X-ray and lensing centres
goes from 1.5 kpc to 700 kpc. However, there is no significant correlation between the miscentring and the
HSE-to-lensing mass ratio.

The miscentring could also be related to the redshift of the cluster. In the right panel in Fig. 6.3 we show
the redshift with respect to the separation of the centres. There is neither indication of correlation. We do not
find any significant correlation between the redshift and the uncertainties of mass ratios either.

The dynamical state of clusters is an important point to better understand the evolution of the HSE bias. In
particular, according to simulations, relaxed clusters tend to have smaller HSE bias as compared to disturbed
ones Gianfagna et al. (2021) [179]. The offset between the centres used in lensing and X-ray analyses could be
an indicator of the departure from sphericity and equilibrium of clusters. However, the absence of correlation
between the separation of centres and the HSE-to-lensing mass ratio or the redshift does not enable any clear
dynamical classification of the clusters in our sample.
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Figure 6.3: Correlation between the HSE-to-lensing mass ratio (left) and redshift (right) of the 65 clusters in the homogeneous XMM-
Newton-CoMaLit sample with respect to the separation between the centres assumed in the X-ray and lensing analyses. Error bars in
the left panel do not account for the systematic scatters discussed in Sect. 6.2.2.

Model c500 α β γ τ η

NFW 1.0, 2.25, 3.5, 4.75, 6.0
Hernquist 1.0, 2.25, 3.5, 4.75, 6.0

gNFW 6.0 0.3, 0.85, 1.4, 1.95, 2.5 2.0, 3.0, 4.0, 5.0, 6.0 0.3, 0.475, 0.65, 0.825, 1.0
tNFW 6.0 0.2, 1.15, 2.1, 3.05, 4.0 0.5, 1.125, 1.75, 2.375, 3.0

Table 6.3: Different mass density models and their corresponding parameters used to study the miscentring effect in Fig. 6.4.

Simulations to quantify the impact of miscentring

It is evident that two mass estimates computed assuming very different centres are hardly comparable.
Moreover, setting a quantitative limit of the acceptable separation is not straightforward. In this section we
make use of simulated mock mass density profiles to check the impact of miscentring on the mass profiles and,
consequently, on the estimation of M500.

We simulate mass density profiles by using the profiley17 Python package, which contains already tested
[172] functions that describe density profiles, as well as the corresponding miscentred density profiles. We test
a variety of profile shapes: NFW, gNFW, truncated Navarro-Frenk-White (tNFW) [343] and Hernquist [344]
models. To initialise the density profiles we consider different M500 (in the range ∼ 1 to 9 × 1014 M⊙) and
model parameters. The parameters considered for each model are given in Table 6.3.

For each mass density profile we build the corresponding miscentred profiles by displacing the centre by
0.0 to 0.7 Mpc from the original one. We integrate each miscentred density profile to get a mass profile and
obtain the miscentred M500 estimate at the radius where the overdensity reaches ∆ = 500, Mmiscent

500 . In Fig. 6.4
we show the relative error of the miscentred masses with respect to the separation to the true centre, for all
types of profiles considered and for different redshifts, z = [0.1, 0.45, 0.8, 1.15, 1.5]. Each marker indicates a
different mass density model and the colours show the true M500. For visualisation purposes gNFW, tNFW and

17 https://profiley.readthedocs.io/en/latest/index.html.

https://profiley.readthedocs.io/en/latest/index.html
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Figure 6.4: Relative error on the estimation of M500 as a function of the separation between the true and the considered centre for the
mass reconstruction. Colours indicate the true M500 and markers the mass density model. Markers have been shifted for visualisation
purposes. The black dashed line indicates a 50% error in M500.

Hernquist markers have been shifted by 0.01, 0.02 and 0.03 Mpc. As expected, the figure shows that computing
the density profile from a centre that is separated from the true centre gives biased mass reconstructions. This
bias increases with the separation, less massive clusters being more sensitive to this effect. The black dashed
line in Fig. 6.4 indicates (Mmiscent

500 − M500)/M500 = 0.5.

Considering the tested density profiles, and redshift and mass ranges, the error due to miscentring is smaller
than 50% only if the distance to the real centre is smaller than 100 kpc. Therefore, we decide to exclude
clusters for which X-ray and lensing centres are separated by more than 100 kpc. These clusters are: Abell3856,
Abell3888, Abell773, Abell665, Abell267, 1E0657-56, Abell521, Abell3376E, Abell520 and Abell2163.

6.3.3 Reference sample

As a result, our reference sample contains 53 clusters with homogeneous HSE and lensing masses that
can be used for comparisons. We present in Table 6.4 the 53 clusters in the reference sample. We give their
names (as named in the CoMaLit LC2 catalogue), redshifts, masses and mass uncertainties from the analyses
of reference, i.e., XMM-Newton mass reconstruction pipeline masses and CoMaLit estimates.

We present in Fig. 6.5 a summary of the characteristics of the sample. The histograms on the left show the
number of clusters with respect to redshift, HSE mass and lensing mass. The right panel in Fig. 6.5 presents
the clusters in the mass-redshift plane. While very few works in the literature go above z = 0.5 [105, 259, 324,
337], 20% of the clusters in our sample have redshifts higher than 0.5. However, the distribution in redshift of
the sample is dominated by low-z clusters.

After excluding in Sect. 6.3.1 and 6.3.2 12 clusters from the XMM-Newton and CoMaLit samples, we
recalculate the scatter with respect to other HSE and lensing masses in the bottom panels in Fig. 6.1. Compared
to top panels, the raw, statistical and systematic dispersions remain of the same order (less than 10% of change
as seen in Fig. 6.1 and Table 6.2), but the impact of individual clusters is again noticeable in the resulting
values. Therefore, we take the most conservative approach and we will consider that the systematic scatters to
be accounted for in the XMM-Newton and CoMaLit masses are the largest values we have found: σ2

sys lens =

1.202 × (1014 M⊙)2 and σ2
sys HSE = 2.017 × (1014 M⊙)2. Note that the clusters used for these calculations

are not necessarily the 53 in our reference sample, but the ones in common between XMM-Newton and other
X-ray samples and between CoMaLit and other lensing works (summarised in Table 6.1). We compare in
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CoMaLit name z Centre coordinates [deg] Masses [1014 M⊙]
CoMaLit α CoMaLit δ XMM α XMM δ MCoMaLit lens

500 δMCoMaLit lens MXMM HSE
500 δMXMM HSE

ABELL2744 0.3080 3.57875 -30.38944 3.57752 -30.38633 13.849 2.824 10.472 2.218
CL0016+16 0.5490 4.63933 16.43694 4.63986 16.43622 17.821 4.609 8.062 1.147
ABELL68 0.2550 9.27479 9.16000 9.27792 9.15685 9.171 1.587 6.872 1.181
ABELL85 0.0550 10.46017 -9.30306 10.46132 -9.30438 5.700 2.200 12.150 2.169

ABELL2813 0.2924 10.85167 -20.62139 10.85190 -20.62294 8.557 1.450 4.131 0.665
Abell209 0.2060 22.96892 -13.61122 22.96912 -13.61121 9.614 1.965 6.309 1.010

ABELL291 0.1960 30.43417 -2.20083 30.42942 -2.19678 4.514 0.986 2.718 0.380
RXCJ0232.2-4420 0.2840 38.07750 -44.34667 38.07721 -44.34638 5.380 1.815 6.558 0.986

Abell383 0.1870 42.01417 -3.52914 42.01418 -3.52889 5.871 1.727 2.629 0.409
ABELL478 0.0881 63.35667 10.46694 63.35581 10.46371 8.772 2.078 7.043 0.325

MS0451.6-0305 0.5389 73.54767 -3.01411 73.54705 -3.01620 9.994 4.060 7.352 1.733
RXCJ0528.9-3927 0.2840 82.22083 -39.47161 82.22109 -39.47136 4.480 1.310 9.276 2.541
RXCJ0532.9-3701 0.2750 83.23208 -37.02667 83.23226 -37.02703 6.960 1.430 4.847 0.852
SPT-CLJ0546-5345 1.0660 86.65321 -53.76039 86.65500 -53.76000 3.700 2.760 4.060 0.500
SPT-CLJ0615-5746 0.9720 93.96521 -57.77881 93.96600 -57.77960 4.700 2.252 11.960 1.750

ABELL3404 0.1670 101.37292 -54.22697 101.37122 -54.22732 8.750 2.085 6.360 0.968
MACSJ0647.7+7015 0.5840 101.95946 70.24861 101.95900 70.24810 9.427 2.493 6.296 1.014
MACSJ0911.2+1746 0.5050 137.79529 17.77539 137.79704 17.77603 10.862 3.259 3.392 0.424

ABELL963 0.2060 154.26483 39.04764 154.26530 39.04816 4.583 1.637 4.884 0.968
ABELL1300 0.3080 172.97583 -19.92772 172.97749 -19.92848 5.950 1.695 5.341 0.476

MACSJ1149.5+2223 0.5440 177.39871 22.39850 177.39763 22.40108 14.447 3.034 6.536 1.608
ABELL1413 0.1430 178.82500 23.40503 178.82495 23.40487 7.200 2.100 6.816 0.815

MACSJ1206.2-0847 0.4400 181.55062 -8.80094 181.55208 -8.80017 12.176 2.477 9.681 1.203
ZwCl1215.1+0400 0.0750 184.42137 3.65589 184.42236 3.65650 3.500 2.200 5.629 0.566
CLJ1226.9+3332 0.8900 186.74271 33.54683 186.74203 33.54627 15.298 1.275 4.732 1.042

ABELL1576 0.3010 189.24583 63.19056 189.24408 63.18711 13.543 4.243 4.064 0.782
ABELL1644S 0.0470 194.30000 -17.41306 194.29601 -17.41110 1.309 0.748 13.664 5.775
ABELL1650 0.0840 194.67287 -1.76139 194.67336 -1.76223 7.100 2.000 3.629 0.315
ABELL1651 0.0850 194.84371 -4.19603 194.84380 -4.19831 5.600 2.400 4.486 0.429
ABELL1689 0.1830 197.87300 -1.34100 197.87263 -1.34172 15.033 1.025 8.071 1.078
ABELL1763 0.2279 203.82583 40.99694 203.82979 41.00010 16.014 2.050 5.102 0.779
ABELL1795 0.0620 207.21871 26.59300 207.22115 26.58994 9.300 2.200 10.910 0.291
ABELL1835 0.2530 210.25804 2.87775 210.25916 2.87824 15.510 4.503 8.200 0.660

PSZ2G099.86+58.45 0.6160 213.69662 54.78433 213.69522 54.78396 7.242 3.043 6.421 2.038
ABELL1914 0.1712 216.50667 37.82722 216.51053 37.82434 7.929 1.293 6.909 1.390

ZwCl1454.8+2233 0.2578 224.31292 22.34278 224.31293 22.34242 3.771 1.457 3.407 0.584
Zwicky7215 0.2900 225.34483 42.34750 225.34451 42.34650 5.390 1.504 5.418 1.142
ABELL2034 0.1130 227.54875 33.51472 227.55283 33.51044 5.169 3.100 5.750 0.643
ABELL2029 0.0770 227.73371 5.74481 227.73502 5.74410 12.100 2.500 5.592 0.661
ABELL2065 0.0730 230.62150 27.70769 230.62257 27.70901 8.000 2.100 5.326 0.474
ABELL2204 0.1520 248.19650 5.57583 248.19592 5.57544 16.051 2.963 7.966 1.605
ABELL2218 0.1760 248.95329 66.21417 248.95972 66.21254 8.900 2.700 3.829 0.597
ABELL2219 0.2280 250.08475 46.70833 250.08366 46.71067 11.729 1.852 10.287 2.969

RXJ1720.1+2638 0.1640 260.04167 26.62464 260.04166 26.62503 3.510 1.485 6.006 1.314
Abell2261 0.2240 260.61325 32.13258 260.61267 32.13237 15.613 3.043 3.900 0.590

MACSJ2129.4-0741 0.5880 322.35717 -7.69189 322.35913 -7.69133 13.486 3.890 6.127 1.179
RXJ2129.7+0005 0.2340 322.41650 0.08922 322.41660 0.08861 4.470 1.158 4.277 0.491

ABELL2390 0.2330 328.40446 17.69594 328.40308 17.69493 11.183 2.396 9.652 1.668
RXJ2228.6+2037 0.4110 337.13658 20.62072 337.14047 20.62040 9.728 2.626 6.844 0.819

MACSJ2243.3-0935 0.4470 340.83933 -9.59522 340.83868 -9.59470 20.294 3.865 8.625 1.317
RXJ2248.7-4431 0.3480 342.18317 -44.53092 342.18243 -44.53054 12.400 3.605 14.262 3.762

ABELL2631 0.2780 354.40971 0.27069 354.40634 0.26678 11.748 1.888 9.785 3.807
SPT-CLJ2341-5119 1.0030 355.30092 -51.32850 355.30100 -51.32860 1.600 1.890 3.190 0.750

Table 6.4: The reference sample. Column 1: cluster names from the CoMaLit catalogue (entries Comalit Name and Comalit Num).
Column 2: redshift. Columns 3 to 6: right ascension α and declination δ of the cluster centres according to CoMaLit or X-rays.
Columns 7 to 10: cluster masses and uncertainties from the CoMaLit catalogue and from the XMM-Newton analysis.
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Figure 6.5: Main characteristics of the reference sample. Histograms in the left panels show the redshift, HSE mass and lensing
mass distributions. We show in magenta, purple and grey the distributions for ESZ+LoCuSS, LPSZ and Bartalucci+2018 clusters,
respectively. The black dashed lines represent the distributions for the full reference sample. In the right panel we show the HSE and
lensing masses as a function of redshift for all the clusters.

Figure 6.6: Comparison between statistical uncertainties and systematic scatters for the reference sample. Dashed line histograms show
the statistical uncertainties of all HSE mass estimates from XMM-Newton reference analysis (left) and CoMaLit lensing mass estimates
(right). Vertical red lines give the systematic scatter estimated with respect to other published results in Sect. 6.3.3.

Fig 6.6 the systematic standard deviation values to the individual statistical uncertainties of the masses from
the XMM-Newton reference pipeline and the CoMaLit catalogue.

In the following sections we will investigate how the HSE-to-lensing mass bias and scaling relation change
when accounting for these systematic scatters. In order to propagate the scatters to the final results, we will
consider that the uncertainties in the mass of each cluster are the quadratic sum of the measured statistical
uncertainties and the systematic scatters derived in this section. We have

δ2
lens = δ

2
MCoMaLit lens

+ σ2
sys lens (6.5)

for the lensing masses, and
δ2

HSE = δ
2
MXMM HSE

+ σ2
sys HSE (6.6)

for the hydrostatic ones.

This is a very conservative approach that assumes that the mass estimates from the X-ray reference pipeline
and the CoMaLit catalogue may have an additional error (due to, for example, the used data set or the mass
reconstruction method) that can be quantified from the distance to other estimates. Such supplementary error
is usually not considered in the literature. For this reason, we also perform the study without accounting for
the systematic uncertainties. An alternative approach was considered in Sereno and Ettori (2015) [314] by
separating the analysis in subsamples.
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Sample # of clusters z∗ No σ2
sys With σ2

sys

(1 − B)/(1 + z∗)βz βz (1 − B)/(1 + z∗)βz βz

Reference sample 53 0.253 0.585+0.059
−0.050 −0.797+0.309

−0.373 0.632+0.093
−0.074 −0.787+0.418

−0.529

z < 0.9 50 0.234 0.591+0.060
−0.050 −0.846+0.306

−0.381 0.642+0.094
−0.079 −0.860+0.427

−0.528

z < 0.5 42 0.215 0.578+0.095
−0.082 −0.744+0.724

−0.773 0.618+0.130
−0.112 −0.661+0.887

−0.948

z < 0.2 19 0.113 0.716+0.159
−0.144 −1.577+1.589

−1.560 0.802+0.216
−0.235 −2.226+2.515

−1.993

z > 0.2 34 0.305 0.471+0.071
−0.057 −0.271+0.344

−0.424 0.543+0.131
−0.092 −0.392+0.496

−0.668

z > 0.5 11 0.588 0.665+0.620
−0.279 −1.043+1.020

−1.355 0.692+1.267
−0.356 −0.987+1.380

−2.249

Ref. no CL J1226.9+3332 52 0.244 0.548+0.069
−0.060 −0.467+0.453

−0.505 0.594+0.100
−0.086 −0.483+0.562

−0.639

z < 0.9 no CL J1226.9+3332 49 0.233 0.560+0.071
−0.059 −0.578+0.443

−0.517 0.610+0.104
−0.085 −0.610+0.548

−0.648

z > 0.2 no CL J1226.9+3332 33 0.301 0.353+0.076
−0.059 0.855+0.552

−0.650 0.432+0.135
−0.096 0.452+0.732

−0.886

z > 0.5 no CL J1226.9+3332 10 0.586 0.060+0.154
−0.015 4.593+0.584

−2.867 0.068+0.350
−0.018 4.398+0.592

−4.097

Table 6.5: Best-fit values and uncertainties for the normalisation and redshift evolution parameters of the mass bias model in Eq. 6.7
for different subsamples of the reference sample. Columns 1 to 3 present the considered sample, the number of clusters and the median
redshift. Columns 4 to 7 give the best-fit values with 16th and 84th percentiles of the posterior distributions for parameters describing
bias evolution, accounting (columns 6 and 7) or not (columns 4 and 5) for the systematic scatters. In bold the values corresponding to
the full reference sample accounting for the systematic scatters.

6.4 Direct HSE-to-lensing mass bias measurement
The bias of HSE masses with respect to lensing estimates is defined from the ratio of the masses following

Eq. 5.19. For simplicity, in the rest of the chapter we will name the HSE-to-lensing mass bias without subscripts,
b = bHSE/lens.

Following the parametrisation in Salvati et al. (2019) [194] and Wicker et al. (2023) [156], we describe the
redshift evolution of the HSE-to-lensing mass bias as

MHSE
500 /M

lens
500 (z) = (1 − b)(z) = (1 − B)

(
1 + z
1 + z∗

)βz

, (6.7)

where (1 − B) is the bias normalised at the pivot redshift, z∗, and βz describes the evolution with redshift. As
in Salvati et al. (2019) [194], we take z∗ the median redshift value of the clusters in the analysed sample. In
Wicker et al. (2023) [156] the pivot redshift is the mean of the sample.

We perform an MCMC analysis to constrain the model in Eq. 6.7 with the reference sample. We use the
emcee Python package [243, 244] and consider uniform priors for the parameters, (1 − B) ∼ U(0, 2) and
βz ∼ U(−8, 8). We assume a Gaussian likelihood and no correlation between points. We show in Fig. 6.7 the
HSE-to-lensing mass ratio with respect to redshift for the 53 clusters in the reference sample. Uncertainties
include systematic scatter following Eq. 6.5 and 6.6. The grey shaded area in the top panel indicates the 16th
to 84th percentile region of the bias evolution model obtained from the posterior distributions of the fitted
parameters. For comparison, the horizontal lines show the mean (dash-dotted line), median (dotted line) and
error-weighted mean (solid line) HSE-to-lensing mass ratio obtained with the masses for the reference sample.
Posterior distributions for the fitted parameters are shown with grey contours in Fig. 6.8. The best-fit values
and uncertainties are given in the first row of Table 6.5. We give (1−B)/(1+ z∗)βz , which is the value of the bias
at z = 0. We also report the results without accounting for the systematic uncertainties on the lensing and HSE
masses. As expected, when accounting for σ2

sys in the uncertainties, the posterior distributions are enlarged by
a factor up to 50%.

Due to the significant differences in the mass uncertainties and the non-uniform distribution of the clusters
in redshift, certain subsamples might be driving the fit of the model. To check for these effects and investigate
any dependence with redshift, we repeat the fit by considering clusters in different redshift ranges.

Considering only the clusters with z < 0.9 (that is, those in ESZ+LoCuSS and LPSZ samples) and only
those with z < 0.5 (only ESZ+LoCuSS), the results are very close to the ones obtained with the reference
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Figure 6.7: HSE-to-lensing mass ratio as a function of the redshift. Markers with error bars show the HSE-to-lensing mass ratio for
each cluster in the reference sample with error bars accounting for the systematic uncertainties. Horizontal solid, dotted and dash-dotted
black lines give the error-weighted mean, median and mean mass ratio for the data points, respectively. Colour shaded areas represent
the 16th to 84th percentiles of the bias evolution model obtained by fitting different redshift ranges. Top: the bias evolution model
obtained with the reference sample. Centre: same as before, but different colours indicate the best-fit models for different redshift
ranges. Bottom: as before, but excluding the CL J1226.9+3332 galaxy cluster.
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Figure 6.8: 1D and 2D posterior distributions of the parameters for the redshift-dependent mass bias model, accounting for systematic
uncertainties. Different colours correspond to the results for the various samples presented in Table 6.5. For the sake of clarity, we only
show in grey, green and red the results for the whole sample, the z < 0.2, and the z > 0.2 subsamples, respectively. Dashed distributions
have been obtained excluding CL J1226.9+3332 galaxy cluster.

sample. This means that the grey result in Fig. 6.7 and 6.8 is most probably dominated by ESZ+LoCuSS
clusters. Best-fit values and uncertainties for these two cases are given in Table 6.5. The corresponding bias
evolution models are shown in blue (z < 0.9) and cyan (z < 0.5) in the central panel in Fig. 6.7.

We find more significant differences when considering only low redshift clusters (z < 0.2, in green), or,
when discarding them (z > 0.2, in red). For low redshift clusters, the HSE masses at z = 0 are less biased
with respect to lensing masses ((1−B)/(1+ z∗)βz closer to 1) than for the reference sample, but the dependence
on redshift is stronger. Exactly the opposite happens when fitting only z > 0.2 masses: the HSE-to-lensing
mass bias is larger at z = 0 (smaller (1 − B)/(1 + z∗)βz), but the redshift evolution is weaker (the absolute value
of βz smaller). These conclusions agree with the results in Wicker et al. (2023) [156], where the same cut in
redshift is adopted. In Smith et al. (2016) [333] authors also reported a different tendency for Planck cluster
masses depending on the redshift, with a larger HSE-to-lensing bias value (smaller 1 − b) for Planck masses at
z > 0.3, than the bias at z < 0.3. However, these masses were inferred from the SZ-mass scaling relation and
not measured from profiles. Nonetheless, in our analysis βz is compatible with no redshift evolution both for
z < 0.2 and z > 0.2 subsamples (see posterior probability density contours in Fig. 6.8).

As shown in Fig. 6.5, the clusters at high redshift are rare in our sample, with a large gap between z = 0.62
and z = 0.89. Only CL J1226.9+3332, SPT-CLJ0615-5746, SPT-CLJ0546-5345 and SPT-CLJ2341-5119 are
above z = 0.62. The CL J1226.9+3332 galaxy cluster has bias uncertainties that are more than one order of
magnitude smaller than the uncertainties of the three SPT clusters. We suspect that this single cluster may be
forcing the bias towards lower values at high redshift. To test the impact that CL J1226.9+3332 has on the
fits, we repeat the analyses excluding it. The results without CL J1226.9+3332 are shown, following the same
colour scheme as before, in the bottom panel in Fig. 6.7 and with dashed lines in Fig. 6.8. βz varies significantly
when excluding CL J1226.9+3332 and it tends to be more compatible with no redshift evolution. At the same
time, the bias at z = 0 is slightly shifted towards lower values. All the results are summarised in Table 6.5.

The described HSE-to-lensing mass bias estimation method neglects the intrinsic scatters of the HSE and
lensing mass estimates. As explained in Sereno and Ettori (2015) [314], this could influence the resulting bias
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that relates HSE and lensing masses. For this reason, in the next section we take a different approach to estimate
the HSE-to-lensing mass bias.

6.5 HSE-to-lensing mass scaling relation

Estimating the scaling relation between HSE and lensing masses is an alternative way for measuring the
HSE-to-lensing mass bias (Eq. 5.19), together with the intrinsic scatter associated with HSE and lensing masses.
We follow the methodology presented in Sereno and Ettori (2015) [314], and, consider that both the HSE and
the lensing masses are scattered and biased estimates of the true mass of clusters, such that

ln Mlens ± δlens = α
lens + βlens ln MTrue ± σlens, (6.8)

ln MHSE ± δHSE = α
HSE + βHSE ln MTrue ± σHSE. (6.9)

Here δlens and δHSE are the measurement uncertainties associated with the logarithm of the lensing and HSE
mass estimates for each cluster. α and β are the natural logarithm of the bias and the deviation from linearity,
respectively. The intrinsic scatters of the lensing and HSE masses with respect to the true mass are given by
σlens and σHSE. All the masses in the arguments of logarithms are in 1014 M⊙ units. Authors in Sereno and
Ettori (2015) [314] verified that the scatter and bias results do not vary if αlens = 0 or αHSE = 0 is considered,
so following their work we fix αlens = 0.

We use the LInear Regression in Astronomy (LIRA18) [345] R package and the pylira19 Python wrapper
to perform the fit of the SR. LIRA performs the Gibbs sampling of a posterior distribution constructed from an
MCMC fit based on a Bayesian hierarchical modelling. It can account for heteroscedastic measurement errors,
intrinsic scatter and time evolution of the SR.

6.5.1 Reference scaling relation

The SR of reference in our analysis is built using the aforementioned 53 clusters in the reference sample,
assuming that both the lensing and the HSE masses scale linearly with the true mass, βlens = 1 and βHSE = 1,
and, that there is no evolution of the SR with redshift. The MCMC sampling is performed using 200 chains and
6×106 steps, with a burn-in of the first half of the steps. Convergence is checked following the R̂ test of Gelman
and Rubin (1992) [253]. We take uniform priors for the free parameters: αHSE ∼ U(−4, 4), σHSE ∼ U(0, 10),
σlens ∼ U(0, 10).

We present in the left panel in Fig. 6.9 the HSE-to-lensing mass scaling relation obtained with the reference
sample. Data points correspond to each one of the clusters in the sample, with the ellipses in the figure indicating
the error bars in both axes when considering the systematic scatter. We assume no correlation between both
mass estimates. The grey and pink lines show respectively the scaling relation accounting and not accounting
for the systematic scatter in the error bars of each cluster (Eq. 6.5 and 6.6). Shaded areas indicate the 1σ region.
The black dashed line shows the one-to-one relation between HSE and lensing masses.

In the right panel in Fig. 6.9 we show the posterior distributions of the fitted scaling relation parameters. The
intrinsic scatter related to HSE masses is remarkably shifted towards zero when accounting for the systematic
scatter in the error bars of cluster masses. This is expected since increasing the error bars of clusters reduces
the need to have a dispersion around the SR. The median values with the 16th and 84th percentiles of the
posterior distributions of αHSE, σHSE and σlens are given in the first row of Table 6.6. From αHSE we compute
the HSE-to-lensing mass bias at R500 (Eq. 5.19), which gives (1 − b) = 0.739+0.075

−0.070 considering the systematic
uncertainties as described in Sect. 6.3.3.

18https://cran.r-project.org/web/packages/lira/
19https://github.com/fkeruzore/pylira

https://cran.r-project.org/web/packages/lira/
https://github.com/fkeruzore/pylira


144 6.5. HSE-TO-LENSING MASS SCALING RELATION

Figure 6.9: Scaling relation between HSE and lensing masses in the reference sample. Data points with ellipses represent each cluster
masses and the uncertainties in both axes accounting for the systematic scatter. The pink line corresponds to the SR for the median
value of parameters obtained without σsys and the solid grey line with σsys. The shaded regions show the 16th and 84th percentiles and
the black dashed line gives the one-to-one relation. The corner plots in the right panel are the posterior 1D and 2D distributions of the
parameters in the SR, including (grey) or not (pink) systematic scatters.

Figure 6.10: Scaling relation between HSE and lensing masses for the reference sample in grey and for different subsamples in colours,
all accounting for σsys. As in Fig. 6.8, we only show the cases for z > 0.2 and z < 0.2. The corner plots in the right panel are the
posterior 1D and 2D distributions of the parameters in the SR.
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Cluster sample # of clusters No σ2
sys

αHSE eα
HSE
= (1 − b) σHSE σlens

Reference sample 53 −0.338+0.105
−0.097 0.713+0.075

−0.069 0.304+0.069
−0.072 0.305+0.080

−0.083

z < 0.9 50 −0.309+0.124
−0.110 0.734+0.091

−0.081 0.275+0.071
−0.071 0.267+0.083

−0.086

z < 0.5 42 −0.328+0.111
−0.102 0.720+0.080

−0.073 0.282+0.080
−0.086 0.308+0.090

−0.091

z < 0.2 19 −0.215+0.223
−0.166 0.806+0.180

−0.133 0.332+0.114
−0.128 0.368+0.155

−0.152

z > 0.2 34 −0.421+0.139
−0.129 0.656+0.091

−0.085 0.298+0.076
−0.090 0.334+0.090

−0.086

z > 0.5 11 −0.668+0.316
−0.320 0.513+0.162

−0.164 0.403+0.155
−0.116 0.307+0.200

−0.157

Ref. no CL J1226.9+3332 52 −0.350+0.098
−0.092 0.705+0.070

−0.065 0.294+0.072
−0.075 0.295+0.084

−0.087

z < 0.9 no CL J1226.9+3332 49 −0.338+0.114
−0.099 0.713+0.081

−0.070 0.273+0.073
−0.074 0.274+0.083

−0.086

z > 0.2 no CL J1226.9+3332 33 −0.430+0.130
−0.126 0.651+0.085

−0.082 0.289+0.082
−0.099 0.320+0.093

−0.093

z > 0.5 no CL J1226.9+3332 10 −0.629+0.332
−0.410 0.533+0.177

−0.219 0.446+0.184
−0.133 0.189+0.209

−0.131

With σ2
sys

αHSE eα
HSE
= (1 − b) σHSE σlens

Reference sample 53 −0.303+0.101
−0.095 0.739+0.075

−0.070 0.166+0.086
−0.101 0.257+0.080

−0.092

z < 0.9 50 −0.260+0.124
−0.110 0.771+0.095

−0.084 0.122+0.090
−0.082 0.220+0.084

−0.099

z < 0.5 42 −0.280+0.114
−0.104 0.756+0.086

−0.079 0.136+0.098
−0.090 0.262+0.089

−0.100

z < 0.2 19 −0.191+0.181
−0.157 0.827+0.150

−0.129 0.179+0.123
−0.111 0.318+0.135

−0.130

z > 0.2 34 −0.388+0.136
−0.127 0.679+0.092

−0.086 0.162+0.099
−0.103 0.271+0.095

−0.103

z > 0.5 11 −0.621+0.305
−0.308 0.538+0.164

−0.166 0.293+0.175
−0.150 0.252+0.206

−0.156

Ref. no CL J1226.9+3332 52 −0.312+0.096
−0.091 0.732+0.070

−0.067 0.154+0.089
−0.097 0.249+0.084

−0.096

z < 0.9 no CL J1226.9+3332 49 −0.287+0.116
−0.102 0.750+0.087

−0.077 0.120+0.089
−0.080 0.226+0.085

−0.099

z > 0.2 no CL J1226.9+3332 33 −0.397+0.131
−0.131 0.672+0.088

−0.088 0.151+0.103
−0.097 0.264+0.100

−0.112

z > 0.5 no CL J1226.9+3332 10 −0.587+0.332
−0.427 0.556+0.185

−0.238 0.339+0.207
−0.170 0.190+0.216

−0.132

Table 6.6: Table summarising the median values and uncertainties at 16th and 84th percentiles of the parameters for the HSE-to-lensing
SR assuming linearity (βHSE = 1). We present the results for different data subsamples, with and without accounting for the systematic
uncertainties in the error bars of the masses. We show in bold the parameters for the scaling relation of reference presented in Sect. 6.5.
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Figure 6.11: Same as Fig. 6.10, but without considering the systematic uncertainties in the data.

As for the bias model in Sect. 6.4, we also want to check how the SR parameters may vary depending on
the chosen redshift range. Therefore, we repeat the analysis for the different redshift subsamples considered in
Sect. 6.4. We present in Fig. 6.10 and 6.11, and in Table 6.6 the different results, with and without σ2

sys. Again,
we observe that the bias changes for z < 0.2 and z > 0.2 clusters, in line with a (1 − b) value that decreases
with redshift. The SRs for the z < 0.9 and z < 0.5 samples remain almost unchanged with respect to the SR of
reference. Overall, we find that the SRs are compatible for the different subsamples.

The posterior distribution of the SR parameters obtained for the z < 0.5 clusters without σ2
sys (see Fig. 6.12)

can be directly compared to Figure 5 in Sereno and Ettori (2015) [314]. In that work, the 50 CCCP clusters
from Mahdavi et al. (2013) [259] were used to measure the HSE-to-lensing mass scaling relation (even though
the HSE masses were evaluated at the R500 obtained from lensing). The intrinsic scatters seem to be differently
correlated in Sereno and Ettori (2015) [314] and in our results. However, in both cases, we observe no strong
correlation between αHSE and the intrinsic HSE or lensing scatters. In our case, for the z < 0.5 clusters without
(with) σ2

sys we measure (1 − b) = 0.720+0.080
−0.073 ((1 − b) = 0.756+0.086

−0.079). These results (Table 6.6) are in line with
the values reported in Table 6 in Sereno and Ettori (2015) [314] and Table 2 in Lovisari et al. (2020) [301].

6.5.2 Investigations of possible model extensions

Beyond the reference scaling relation, for which we have assumed no redshift evolution and a linear scaling
between the masses, in this section we test if relaxing some of these assumptions improves the description of
the data by the scaling relation model.

Deviation from linearity

The HSE and/or lensing masses could also scale non-linearly with the true mass, meaning that the HSE-to-
lensing bias would depend on the mass of the clusters. In Hoekstra et al. (2015) [315] and von der Linden et al.
(2014) [316] authors investigated such dependence on the mass comparing Planck results to CCCP and WtG
lensing masses, respectively. Both works found modest evidence for a mass-dependence: MPlanck ∝ M0.64±0.17

CCCP
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Figure 6.12: As Fig. 6.9, but without considering systematic uncertainties in the data. The grey and cyan lines correspond to the results
for the reference sample and for the subsample containing only z < 0.5 clusters.

Figure 6.13: Same as Fig. 6.9 considering a deviation from linearity.
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Cluster sample # of clusters No σ2
sys

αHSE βHSE σHSE σlens γHSE

Reference sample 53 0.705+0.666
−1.249 0.519+0.576

−0.309 0.335+0.057
−0.066 0.275+0.103

−0.163 [0]

Reference sample (BCES) 53 0.826 ± 0.886 0.481 ± 0.415 0.326∗ - [0]

Reference sample 53 −0.219+0.137
−0.134 [1] 0.303+0.069

−0.072 0.295+0.082
−0.085 −1.742+1.082

−1.083

Ref. no CL J1226.9+3332 52 −0.263+0.140
−0.136 [1] 0.297+0.072

−0.073 0.292+0.084
−0.087 −1.168+1.156

−1.163

AHSE [1014 M⊙] BHSE σHSE [1014 M⊙] σlens [1014 M⊙] γHSE [1014 M⊙]

Reference sample 53 0.818+2.313
−3.037 0.614+0.351

−0.270 1.673+0.413
−0.640 3.159+0.701

−0.983 [0]

Reference sample (BCES) 53 4.467 ± 1.85 0.246 ± 0.19 2.109∗ - [0]

Reference sample 53 0.545+2.465
−2.925 0.675+0.334

−0.291 1.644+0.439
−0.700 3.188+0.674

−0.854 −2.685+4.654
−4.260

With σ2
sys

αHSE βHSE σHSE σlens γHSE

Reference sample 53 0.824+0.719
−1.087 0.498+0.481

−0.326 0.204+0.068
−0.082 0.242+0.091

−0.135 [0]

Reference sample (BCES) 53 1.000 ± 0.692 0.397 ± 0.324 0.191∗ - [0]

Reference sample 53 −0.193+0.135
−0.134 [1] 0.168+0.086

−0.100 0.246+0.082
−0.095 −1.530+1.071

−1.085

Ref. no CL J1226.9+3332 52 −0.242+0.139
−0.137 [1] 0.153+0.090

−0.096 0.248+0.084
−0.093 −0.896+1.154

−1.155

AHSE [1014 M⊙] BHSE σHSE [1014 M⊙] σlens [1014 M⊙] γHSE [1014 M⊙]

Reference sample 53 1.603+1.665
−2.994 0.522+0.349

−0.194 0.949+0.557
−0.602 2.867+0.806

−1.251 [0]

Reference sample (BCES) 53 4.644 ± 1.727 0.226 ± 0.176 1.340∗ - [0]

Reference sample 53 1.434+1.780
−3.005 0.570+0.346

−0.210 0.950+0.570
−0.612 2.927+0.771

−1.131 −2.493+4.535
−4.282

Table 6.7: Table summarising the median values and uncertainties at the 16th and 84th percentiles of the parameters in the HSE-to-
lensing SR when considering a deviation from linearity, an offset between HSE and lensing masses or an evolution with redshift. We
present the results for the reference sample, accounting or not for the systematic scatter in the error bars of the masses. For the BCES
fit we report the best-fit values and 1σ uncertainties. (∗) We also calculate the scatter with respect to the best BCES scaling relations
following Eq. 6.4.

Figure 6.14: HSE-to-lensing mass ratio as a function of the lensing mass. The grey hatched area indicates the 16th to 84th percentiles
of the HSE-to-lensing mass bias without mass dependence, accounting for systematic uncertainties on HSE and lensing masses. The
green area shows the bias evolution when assuming a deviation from linearity of the HSE and lensing masses. The blue area indicates
the bias evolution when considering an offset between HSE and lensing masses. Horizontal solid, dotted and dash-dotted black lines
give respectively the error-weighted mean, median and mean mass ratio for the 53 reference sample clusters, same as in Fig. 6.7.
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with αHSE ∼ 0.55 in Hoekstra et al. (2015) [315], and MPlanck ∝ M
0.68+0.15

−0.11
WtG with αHSE ∼ 0.38 and MPlanck ∝

M
0.76+0.39

−0.20
WtG with αHSE ∼ 0.19 in von der Linden et al. (2014) [316] for different cluster samples. Physically, this

mass dependence could correspond, for example, to an impact of the baryonic physics that would depend on
the strength of the clusters potential wells. In this case, low mass clusters having shallower potential wells, we
can imagine that baryonic effects are stronger in them [346]. On the contrary, simulations [347] also indicate
that massive objects are the most disturbed ones and have, probably, more complex temperature structures.

We also test this hypothesis by fitting the SR in Eq. 6.8 and 6.9 leaving βHSE as a free parameter. We take a
uniform prior for βHSE ∼ U(0, 2) and consider the same priors for αHSE, σHSE and σlens. The resulting scaling
relations are presented in Fig. 6.13 and the median values are given in Table 6.7. As shown in the corner plot in
Fig. 6.13, αHSE and βHSE are completely degenerated. Nevertheless, our results are in agreement with Hoekstra
et al. (2015) [315] and von der Linden et al. (2014) [316]. Notice however that the HSE masses in those works
were Planck masses from the SZ-mass scaling relation. We observe again that the HSE intrinsic scatter is
shifted towards lower values when the systematic uncertainties are considered in cluster masses.

For comparison to the results obtained with LIRA, we also perform the fit of the SR using the orthogonal
Bivariate Correlated Errors and intrinsic Scatter (BCES) method [348]. BCES favours a larger deviation from
linearity, that is, smaller βHSE. We also report the results in Table 6.7. Given the large uncertainties on αHSE

and βHSE, the scaling relations obtained with LIRA and BCES are compatible.

In Fig. 6.14 we present the HSE-to-lensing mass ratio as a function of the lensing mass for the αHSE and
βHSE values obtained from the LIRA scaling relation fit, with the green shaded area showing the 16th to 84th
percentiles. The horizontal grey hatched area represents the HSE-to-lensing mass ratio measured in the previous
section assuming that HSE and lensing masses scale linearly with the true mass. Given that we obtain βHSE < 1,
on average the difference between HSE and lensing masses is larger for more massive objects. This is in
agreement with the mild decreasing tendency for the HSE-to-lensing mass ratio obtained in Hoekstra et al.
(2015) [315], von der Linden et al. (2014) [316], and Eckert et al. (2019) [53], but different from the trend
observed in Salvati et al. (2019) [194]. Nevertheless, since we obtain βHSE = 0.498+0.481

−0.326 (βHSE = 0.519+0.576
−0.309),

our results are consistent with no mass dependence of the ratio within 2σ (1σ) when we (do not) account for
systematic uncertainties.

Considering an offset

In addition to the HSE-to-lensing mass bias defined in Eq. 5.19, there could be also an offset between the
HSE and lensing mass estimates. Thus, the scaling relation could be defined as,

Mlens ± δlens = MTrue ± σlens, (6.10)

MHSE ± δHSE = AHSE + BHSEMTrue ± σHSE, (6.11)

where AHSE and BHSE are the offset and the multiplicative factor, respectively. Here σHSE and σlens are again
the scatter of HSE and lensing masses with respect to the SR, but in this case in units of 1014 M⊙.

We perform again the fit of the SR using both the LIRA and BCES methods. We present in Fig. 6.15 and
Table 6.7 the results. As for the non-linear SR fit, AHSE and BHSE are completely degenerated. The results
obtained with LIRA indicate an offset in mass completely compatible with zero. It is reassuring to verify that
the data motivates a scaling relation model for which the HSE mass goes to zero in the limit MTrue → 0. We
show in Fig. 6.14 the bias evolution in blue, indicating again that there is no significant trend of the HSE-to-
lensing mass ratio with cluster mass.

Evolution with redshift

LIRA enables fitting a scaling relation that evolves with redshift. Looking for such evolution can be par-
ticularly interesting with our reference sample, given the large redshift range that it covers (0.05 < z < 1.07).
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Figure 6.15: Scaling relation between HSE and lensing masses in the reference sample considering an offset between both mass
estimates. Data points with ellipses represent each cluster’s masses and the uncertainties in both axes accounting for the systematic
scatter. The pink line corresponds to the SR obtained without σsys and the solid grey line with σsys. The black dashed line shows
equality. The corner plots in the right panel are the posterior 1D and 2D distributions of the parameters in the SR, including (grey) or
not (pink) systematic scatters.
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Figure 6.16: HSE-to-lensing mass ratio as a function of redshift. The grey shaded area shows the evolution from Fig. 6.7 for all the
clusters in the sample and in darker excluding CL J1226.9+3332. The blue area gives the evolution with redshift obtained from the fit
of the SR with the reference sample. The grey hatched area corresponds to the results without considering a redshift evolution. The
blue dark area is the evolution obtained for the reference sample excluding CL J1226.9+3332. As in Fig. 6.7, markers with error bars
show the mass ratio per cluster in the reference sample and error bars account for the systematic uncertainties. Horizontal solid, dotted
and dash-dotted black lines give the error-weighted mean, median and mean mass ratio for the data points, respectively.

Assuming again that HSE and lensing masses scale linearly with the true mass (βlens = βHSE = 1), we write

ln Mlens ± δlens = ln MTrue ± σlens, (6.12)

and,
ln MHSE ± δHSE = α

HSE + ln MTrue ± σHSE + γHSET. (6.13)

T is the time evolution factor, T = log
(

1+z
1+zre f

)
, with zre f = 0.01 the normalisation redshift set by default

in LIRA. We take flat priors for the parameter describing the evolution with redshift: γHSE ∼ U(−10, 10).
Similarly, we consider the evolution with redshift for the SR defined in Eq. 6.10 and 6.11. Given the strong
impact on the fits of the CL J1226.9+3332 galaxy cluster at high redshift, we repeat the analysis excluding it.
All the results are summarised in Table 6.7.

In Fig. 6.16 we present the redshift evolution of the HSE-to-lensing mass ratio, for the analyses performed
with the reference sample and accounting for systematic uncertainties for the HSE and lensing masses. We
show in grey the results obtained in Sect. 6.4, neglecting the intrinsic scatter of HSE and lensing masses with
respect to the true masses. In blue we present the bias evolution model resulting from the scaling relation fit in
this section. Darker regions show the evolution with redshift obtained when excluding CL J1226.9+3332 from
the analyses.

There seem to be a tendency for a decreasing HSE-to-lensing mass ratio with redshift (γHSE = −1.530+1.071
−1.085),

but it is not statistically significant when removing CL J1226.9+3332 from the sample (γHSE = −0.896+1.154
−1.155).

From the comparison of the grey and blue results we observe directly the impact that has on the bias the fact of
accounting for the intrinsic scatters of the SR. Considering the intrinsic scatter reduces the difference between
HSE and lensing masses and, therefore, the bias.
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Figure 6.17: Same as Fig. 6.9 with dashed lines showing the results if an evolution with redshift is considered in the scaling relation
and solid lines without evolution. The shaded regions show the 16th and 84th percentiles, for visualisation purposes, only for the cases
without redshift evolution.

We present in Fig. 6.17 and 6.18 a comparison of the scaling relations and posterior distributions of pa-
rameters when accounting for redshift evolution (dashed lines) and not accounting for it (solid lines). The
contribution of the redshift evolution factor introduces a change of the order of a few percent (or less) in the
intrinsic scatters. Given the correlation of the other parameters with γHSE, the change is of ∼ 30% for αHSE and
of the order of 10% for AHSE and BHSE. However, the results are compatible with the ones obtained without
considering redshift evolution, so there is no strong evidence of redshift evolution in the data.

6.5.3 Comparison of SR models

In this section, we compare the tested SR models to assess which is the one preferred by the data. We define
the goodness of fit χ̂2 of the scaling relations following Eq. 3 in Lovisari et al. (2020) [193]:

χ̂2 =

Nclusters∑
i=1

[
ln MHSE

i − ln MHSE
(
ln Mlens

i , zi, ϑ
)]2

δ2
HSE,i +

(
σHSE)2

+
(
βHSE)2 [

δ2
lens,i +

(
σlens)2] , (6.14)

where the sum is done over the Nclusters = 53 clusters in the reference sample. In Eq. 6.14
ln MHSE

(
ln Mlens

i , zi, ϑ
)

is the function described by Eq. 6.9 or 6.13 depending on the SR model, with the
parameters ϑ = [αHSE, βHSE, γHSE] defined accordingly. The factors ln MHSE

i , ln Mlens
i , δHSE,i and δlens,i are the

HSE and lensing mass of each cluster i and their associated uncertainties, and zi is the redshift of each clus-
ter. We compare the results obtained considering always the systematic uncertainties in the HSE and lensing
masses. We take the posterior distributions of the parameters for αHSE, βHSE, γHSE, σHSE and σlens. For the
scaling relations considering an offset in mass (Eq. 6.10 and 6.11), we replace the logarithmic masses and un-
certainties by the linear values in the χ̂2 definition in Eq. 6.14. Similarly, we take AHSE and BHSE instead of
αHSE and βHSE.

In Fig. 6.19 we present as solid line histograms the χ̂2 distributions for each SR model normalised by the
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Figure 6.18: Same as Fig. 6.15 with dashed lines showing the results if an evolution with redshift is considered in the scaling relation
and solid lines without evolution. The shaded regions show the 16th and 84th percentiles, for visualisation purposes, only for the cases
without redshift evolution.

corresponding degrees of freedom (d.o.f.). In the left panel, we present the results for the scaling relations
fitted in ln MHSE − ln Mlens and in the right for MHSE − Mlens. The blue histogram in the left panel shows the
reduced χ̂2 for the scaling relation of reference in this work and the vertical solid line is the median value of the
distribution. For comparison, the dashed lines correspond to the expected χ2-distributions,

f (χ2) =
1

2ν/2Γ(ν/2)
e−χ

2/2(χ2)(ν/2)−1, (6.15)

where ν is the number of the degrees of freedom (d.o.f.). For the scaling relation of reference we have d.o.f.
= 53 − 3 = 50. The red and green results show the reduced χ̂2 for the fits of the scaling relations when
considering a deviation from linearity or an evolution with redshift, respectively. In these cases we have 49
degrees of freedom. The histograms follow fairly well the χ2-distributions with ν degrees of freedom.

We use the Akaike information criterion (AIC) [349] and the Bayesian information criterion (BIC) [350] to
compare the improvement in the χ̂2 when adding parameters to the model. We calculate:

AIC = χ̂2
min + 2K, (6.16)

and
BIC = χ̂2

min + K ln N, (6.17)

where χ̂2
min is the minimum of the χ̂2 values for each model. K and N are the number of free parameters in

the model and the total number of data points, i.e. N = Nclusters = 53, respectively. We report in Table 6.8 the
results for the different scaling relation models and the ∆AIC and ∆BIC differences with respect to the simplest
scaling law amongst the nested models.

According to the AIC and BIC criteria, the scaling relation of reference and the one considering a deviation
from linearity are almost equally probable. On the contrary, there is statistically no gain in adding a parameter
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Figure 6.19: Comparison of the reduced χ̂2 distributions for different scaling relation fits (colour histograms) and the χ2-distribution
(Eq. 6.15) for the degrees of freedom in each fit (dashed colour lines). Vertical lines show the median value of each histogram.

Model K N χ̂2
min AIC ∆AIC BIC ∆BIC

Reference SR 3 53 18.126 24.126 0.000 21.422 0.000

Deviation from linearity 4 53 16.020 24.020 -0.106 21.565 +0.143

Evolution with redshift 4 53 22.784 30.784 +6.658 28.329 +6.907

Considering an offset 4 53 13.929 21.993 0.000 19.475 0.000

Evolution with redshift and offset 5 53 17.992 27.992 +5.999 26.039 +6.564

Table 6.8: The statistical results for the scaling relation models presented in this analysis. We report the values for the fits accounting
for the systematic scatter of HSE and lensing masses.

that describes an evolution with redshift. In other words, redshift evolution does not seem to be favoured by the
data.

Anyhow, the intrinsic scatters for the HSE and lensing masses being free parameters in our LIRA fits, we
expect all the models to adjust the data points at the expense of increasing these scatters. From the comparison
of all the σHSE and σlens (see Tables 6.6 and 6.7), there is not a statistically significant increase, nor decrease in
the intrinsic scatters when changing the number of free parameters in the SR model.

In conclusion, our best scaling law between X-ray HSE and lensing masses is given by the scaling relation
of reference:

ln Mlens = ln MTrue ± 0.257+0.080
−0.092, (6.18)

ln MHSE = −0.303+0.101
−0.095 + ln MTrue ± 0.166+0.086

−0.101, (6.19)

which corresponds to a HSE-to-lensing mass bias of

MHSE
500 /M

lens
500 = (1 − b) = 0.739+0.075

−0.070 (stat.) ± 0.226 (intrin. scatter), (6.20)

assuming Gaussian intrinsic scatters for lensing and HSE masses.

6.6 Robustness of XMM-Newton masses
As described in Sect. 6.1.1, all the XMM-Newton HSE masses used in this work were obtained from mass

profiles, by interpolating the binned profile to get M500 and R500. For all the clusters in our reference sample we
also have access to X-ray masses obtained with the YX − MHSE

500 scaling relation from Arnaud et al. (2010) [70].
YX is defined as the product of the gas mass (Mgas

500) and the spectroscopic temperature (TX) and it is the X-ray
analogue of the integrated Compton parameter [200]. We use these masses as MHSE estimates and fit again the
scaling relations in Eq. 6.8, 6.9, 6.10 and 6.11.
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Sample # of clusters No σ2
sys

YX − MHSE
500 αHSE eα

HSE
= (1 − b) βHSE σHSE σlens

Reference sample 53 −0.237+0.095
−0.087 0.789+0.075

−0.069 [1] 0.105+0.063
−0.067 0.247+0.058

−0.056

Reference sample 53 −0.131+0.542
−0.631 0.953+0.296

−0.263 0.133+0.075
−0.088 0.231+0.068

−0.098

Reference sample (BCES) 53 0.504 ± 0.262 0.662 ± 0.122 0.250∗ -

AHSE [1014 M⊙] BHSE σHSE [1014 M⊙] σlens [1014 M⊙]

Reference sample 53 0.990+1.748
−2.050 0.672+0.235

−0.205 0.930+0.508
−0.633 2.333+0.594

−1.032

Reference sample (BCES) 53 2.401 ± 0.781 0.487 ± 0.095 1.480∗ -

NFW fit αHSE eα
HSE
= (1 − b) βHSE σHSE σlens

z < 0.9 50 −0.309+0.119
−0.107 0.734+0.087

−0.079 [1] 0.249+0.059
−0.063 0.212+0.077

−0.086

z < 0.9 50 −0.361+0.692
−0.955 1.030+0.480

−0.341 0.246+0.073
−0.121 0.220+0.081

−0.119

z < 0.9 (BCES) 50 0.032 ± 0.485 0.836 ± 0.222 0.329∗ -

AHSE [1014 M⊙] BHSE σHSE [1014 M⊙] σlens [1014 M⊙]

z < 0.9 50 1.205+1.490
−2.463 0.579+0.287

−0.173 1.576+0.408
−0.589 1.989+0.843

−1.164

z < 0.9 (BCES) 50 0.530 ± 1.343 0.646 ± 0.159 1.944∗ -

Table 6.9: Table summarising the median values and uncertainties at the 16th and 84th percentiles of the fitted parameters for the
HSE-to-lensing mass SR for HSE masses obtained from the YX −MHSE

500 scaling relation and from the fit of an NFW model to the X-ray
data. We present the results assuming linearity, a deviation from linearity and an offset between HSE and lensing masses. For the BCES
fit we report the best-fit values and 1σ uncertainties. (∗) We also calculate the scatter with respect to the best BCES scaling relations
following Eq. 6.4.

The median values and uncertainties of the best-fit SR parameters are given in Table 6.9. When using
YX − MHSE

500 estimates, the intrinsic scatters of HSE and lensing masses with respect to the SR are reduced by
∼ 40% and ∼ 10%, respectively. The measured HSE bias is also smaller: (1 − b) = 0.789+0.075

−0.069.

For ESZ+LoCuSS and LPSZ sample clusters we have a third estimate of the HSE mass, obtained by fitting
an NFW mass model to the X-ray profiles. Such masses tend to agree with the interpolated ones (the reference
XMM-Newton masses used in this work, Sect. 6.1.1), with a mean and median ratio for the 50 cluster estimates
of MHSE

500 /M
NFW
500 ∼ 1.11 and 0.95, indicating that the HSE masses used in the analyses of reference are robust

against modelling effects. Masses obtained by fitting an NFW model have in median 30% smaller uncertainties
than the interpolated estimates. The scaling relations obtained with NFW fitted masses (Table 6.9) and interpo-
lated ones (the second row in Table 6.6 for the 50 clusters with z < 0.9) are almost identical, with αHSE centred
in the exact same value, but with 10 − 20% smaller intrinsic scatters when using NFW masses.

6.7 Caveats

The two main caveats of the analysis presented in this chapter are the representativity of the used sample
and the inhomogeneity of lensing masses. The former is hardly quantifiable, given that the selection of the
homogeneous sample (Sect. 6.1.1) is mainly a combination of the selection criteria used for the ESZ, LoCuSS,
LPSZ and Bartalucci et al. (2018) [105] clusters. An equivalent study for a sample that is representative of the
clusters in the Universe would refine the presented results. Regarding the lensing masses, we have exploited the
compilation of mass estimates from different works standardised in the CoMaLit catalogue. We have treated
all the CoMaLit masses equally, but the different quality of the data and/or the methods used in each of the
original works make the uncertainties of lensing masses not homogeneous within the CoMaLit sample. By
propagating σsys lens we account, to first order, for the overall error of CoMaLit masses with respect to other
estimates. A possible improvement would be to measure an independent systematic scatter σsys lens for each
of the works used in the CoMaLit sample. Instead, we quantify a posteriori the goodness of our best scaling
relation (estimated with all the 53 clusters in the reference sample, Eq. 6.18 and 6.19) for the cluster masses
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Figure 6.20: χ̂ for the clusters in the reference sample with respect to the reference scaling relation. We distinguish the results from the
various lensing works used to build the CoMaLit sample with different colour markers. The number of clusters used in the reference
sample from each of the works is indicated in brackets. For works with multiple clusters, we give the mean χ̂ and the 16th to 84th
percentiles over all those clusters. Grey shaded areas indicate 1σ and 2σ regions.

extracted from each of the different works within the CoMaLit catalogue. In Fig. 6.20 we show, for the clusters
obtained from each of the lensing works, the corresponding χ̂ defined as

χ̂ =
ln MHSE

i − ln MHSE
(
ln Mlens

i , zi, ϑ
)

√
δ2

HSE,i +
(
σHSE)2

+
(
βHSE)2 [

δ2
lens,i +

(
σlens)2] . (6.21)

For those works with several clusters in our reference sample, we give the mean value and the 16th to 84th
percentiles over all the used clusters. We observe that only ‘merten+15’ [279], ‘monteiro-oliveira+20’ [351]
and ‘pedersen&07’ [352] cluster masses are at more than 1σ. The cluster from ‘monteiro-oliveira+20’ at more
than 2σ from the scaling relation is Abell1644 (on the top left of all our SRs), which is known for being a
cluster in a merger scenario. Thus, the scaling relation of reference fits well the large majority of the clusters in
the reference sample, no matter the work from which the lensing mass has been extracted.

6.8 Comparison to previous results
Similar studies to the one presented in this chapter were previously done in the literature. However, the

methods used to estimate the masses and to compute the HSE-to-lensing bias differ from work to work. Thus,
comparisons are again very delicate. In Fig. 6.21 we present our best bias estimate together with the HSE-to-
lensing M500 ratios obtained in the works detailed below. We use Roman numerals (I to IX) to refer to each
result from the literature. The different results are also summarised in Table 6.10.

The HSE-to-lensing mass bias was measured in Smith et al. (2016) [333] with the 50 clusters from the
LoCuSS sample (0.15 < z < 0.3). By using resolved HSE mass estimates, they computed the weighted mean
HSE-to-lensing bias: (1 − b) = 0.95 ± 0.05 (I in Fig. 6.21). Uncertainties were calculated from the standard
deviation of 1000 bootstrap samples geometric means. Following the equations used to calculate the weighted
mean in Smith et al. (2016) [333] (Eq. 1 and 2 in Smith et al. (2016) [333]) we obtain for our reference sample
a mean bias of: (1 − b) = 0.763 and 0.818 not including and including, respectively, the systematic error in the
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Reference Sample # of clusters Redshift (1 − b) = MHSE
500 /M

lens
500 Notes

This work - Reference SR 53 0.05 < z < 1.07 0.739+0.075
−0.070 Propagating the systematic uncertainties,

accounting for intrinsic dispersion

I Smith et al. (2016) [333] 50 0.15 < z < 0.3 0.95 ± 0.05 Weighted mean

II Mahdavi et al. (2008) [337] 18 0.170 < z < 0.547 0.78 ± 0.09 MHSE(Rlens
500 )

III Mahdavi et al. (2013) [259] 50 0.152 < z < 0.55 0.8 − 1 MHSE(Rlens
500 )

IV Israel et al. (2014) [260] 8 0.35 < z < 0.80 0.8 − 1 Global temperature profile for the whole

sample, MHSE(Rlens
500 )

V Bartalucci et al. (2018) [105] 4 0.933 < z < 1.066 1.39+0.51
−0.37 Weighted mean

VI This work - Chapter 5 4 0.55 < z < 0.89 0.61 ± 0.17

VII Eckert et al. (2022) [258] 12 0.047 < z < 0.09 0.85 − 0.9

VIII Lovisari et al. (2020) [301] 62 z < 0.5 0.74 ± 0.06 Accounting for intrinsic dispersion

IX Sereno et al. (2020) [324] 100 0.054 < z < 1.050 0.91 ± 0.17 Accounting for intrinsic dispersion,

temperature measured within 300 kpc

Table 6.10: HSE-to-lensing mass bias values from resolved mass profiles. We report our reference result and different values from the
literature. The last column indicates the singularity of each analysis.

uncertainty of each mass estimate. Considering, as in Smith et al. (2016) [333], only the clusters in the redshift
range 0.15 < z < 0.3, we obtain (1 − b) = 0.769 and 0.720 with and without the systematic scatter.

In Mahdavi et al. (2008) [337] authors compared the HSE and lensing masses evaluated at the same radius,
in particular at the R500 measured from the lensing mass profile of each cluster. With a sample of 18 clusters,
Mahdavi et al. (2008) [337] concluded that at Rlens

500 the ratio of masses is MHSE/Mlens = 0.78 ± 0.09 (II).
Extending the analysis, the HSE-to-lensing mass bias obtained in Mahdavi et al. (2013) [259] is consistent with
no bias for cool-core clusters, while (1 − b) ∼ 0.8 for non-cool core clusters (III). In the same line, authors in
Israel et al. (2014) [260] concluded, from the study of 8 clusters with redshifts 0.35 < z < 0.80, that HSE and
lensing masses differ by 0 to 20% (IV).

By using very high redshift clusters (0.933 < z < 1.066), Bartalucci et al. (2018) [105] obtained that HSE
masses from X-rays are a factor of 1.39+0.51

−0.37 (V) larger than weak lensing estimates, in contradiction with
the rest of the results. The clusters in Bartalucci et al. (2018) [105] are the highest redshift clusters in our
reference sample (Sect. 6.1.1). Using the same HSE masses as in Bartalucci et al. (2018) [105], but with the
CoMaLit lensing estimates, we obtain an error-weighted mean ratio of MHSE

500 /M
lens
500 = 1.56(1.58) not including

(including) the systematic error in the uncertainty of each mass estimate. Instead, the error-weighted mean ratio
for our full reference sample is MHSE

500 /M
lens
500 = 0.47(0.51). In chapter 5 we have estimated the mean HSE-to-

lensing mass bias from the combination of the results for four 0.55 < z < 0.89 CLASH clusters and obtained
MHSE

500 /M
lens
500 = 0.61±0.17 (VI). For the clusters in the X-COP sample Eckert et al. (2022) [258] found that HSE

masses estimated using XMM-Newton data are 10 to 15% lower than the lensing estimates in Herbonnet et al.
(2020) [353] (VII). With a different approach and assuming that the gas fraction in clusters is constant, Eckert
et al. (2019) [53] obtained that HSE masses are biased (with respect to the true total mass) by 7% at R500.

Regarding the evolution of the bias with redshift, which we have largely discussed in Sect. 6.4 and 6.5, the
tendency for a larger bias at higher redshift seems to be in line with the results from Wicker et al. (2023) [156]
and Smith et al. (2016) [333].

Particularly interesting are the comparisons to Sereno et al. (2020) [324], Lovisari et al. (2020) [301] and
Sereno and Ettori (2015) [314] works, where the used methods are equivalent to the ones employed in this
study, making use of the LIRA code and accounting for the intrinsic dispersion of HSE and lensing masses to
the SR. The analysis in Lovisari et al. (2020) [301] compares the HSE masses obtained with XMM-Newton
data (from Lovisari et al. (2020) [193]) to lensing estimates in the CoMaLit LC2 catalogue, for 62 clusters from
the Planck-ESZ sample with z < 0.5. With this sample, authors obtain (1 − b) = 0.74 ± 0.06 (VIII) and no
redshift evolution. This is in excellent agreement with our result. In Lovisari et al. (2020) [301] the results
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Figure 6.21: HSE-to-lensing mass ratio with respect to redshift. Shaded areas indicate different results from different works in the
literature. See text and Table 6.10 to identify Roman numerals with the works. The horizontal grey hatched area represents the HSE-
to-lensing mass ratio measured in this chapter assuming that HSE and lensing masses scale linearly with the true mass, accounting for
the systematic scatter and considering no evolution with redshift. For comparison, we also indicate the error-weighted mean (solid),
mean (dash-dotted) and median (dotted) bias for the clusters in the reference sample.

found with CoMaLit lensing masses are also compared to those obtained with other lensing masses from other
works in the literature: the HSE-to-lensing mass ratio spans from ∼ 0.6 to ∼ 1 depending on the used data set.

Conclusions are along the same line in Sereno and Ettori (2015) [314], where different samples with HSE
and lensing mass estimates are used to measure the scaling relation and, consequently, the HSE-to-lensing mass
bias. The effect that intrinsic scatters have on the determination of scaling relations is also studied in Sereno
and Ettori (2015) [314]. They conclude that not taking into account the scatter of masses explicitly makes
scaling relations flatter, as we see when using BCES instead of LIRA (also in agreement with Lovisari et al.
(2020) [193]). While the intrinsic scatter for lensing masses obtained in Sereno and Ettori (2015) [314] is of
the order of the expected values from simulations (∼ 10 − 15%), the intrinsic dispersion for HSE masses is
larger than expected (∼ 20 − 30%). An underestimation of the statistical uncertainties in HSE masses could
be the reason, according to Sereno and Ettori (2015) [314], for this large intrinsic scatter. Accounting for the
systematic scatter in the uncertainty of each cluster mass, as described in this chapter, could help to have more
realistic uncertainties of the HSE mass estimates. The HSE-to-lensing mass ratio in Sereno and Ettori (2015)
[314] depends again on the used sample and data, and spans from ∼ 0.5 to ∼ 1.

Also Sereno et al. (2020) [324] used the Bayesian hierarchical modelling from Sereno (2016) [345] to fit
a scaling relation between HSE masses from XMM-Newton data and weak lensing masses of clusters in the
Hyper Suprime-Cam Survey [354]. The median redshift of the 100 clusters in the sample is z = 0.30, spanning
from z = 0.054 to z = 1.050. Thus, the analysis in Sereno et al. (2020) [324] is probably the closest study
to our work. Nevertheless, to get temperature profiles that reach R500 with X-ray data (to compute then the
HSE mass), in Sereno et al. (2020) [324] a model was iteratively fitted to the integrated temperature measured
per cluster within 300 kpc, well below R500. Assuming βHSE = 1, βlens = 1 and αlens = 0 they obtained:
αHSE = −0.04 ± 0.08, σHSE = 0.31 ± 0.05, and σlens = 0.37 ± 0.06. According to Sereno et al. (2020) [324]
the difference between HSE and lensing masses is of b = 0.09 ± 0.17 (IX). The αHSE from Sereno et al. (2020)
[324] is at 3σ from our result with the full reference sample (αHSE = −0.338+0.105

−0.097 without accounting for the
systematic uncertainties). Their values for σHSE and σlens agree with the intrinsic scatter values that we obtain
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when we do not account for the systematic uncertainties (σHSE = 0.304+0.069
−0.072 and σlens = 0.305+0.080

−0.083).

In addition, the behaviour of the HSE-to-lensing mass bias could vary with the overdensity at which masses
are measured (see Table 5.4). By estimating weak lensing masses and HSE masses from X-rays at R200, Jee et al.
(2011) [278] concluded that for a sample of 14 very massive and distant clusters (0.83 < z < 1.46), the HSE and
lensing masses are compatible. However, the HSE masses were obtained from the extrapolation of a singular
isothermal sphere profile to reach R200, which likely limits the validity of their HSE mass estimates. Similarly,
in Amodeo et al. (2016) [90] authors compared M200 masses reconstructed from Chandra data (although the
radial reach of Chandra is way below R200) to their lensing estimates, and concluded that both mass estimates
are in agreement. No evolution with redshift was detected in Amodeo et al. (2016) [90]. We prefer to avoid
extrapolating the mass profiles to reach R200.

6.9 Conclusions
In this chapter, we have investigated the HSE-to-lensing mass bias with masses inferred at R500 from re-

solved profiles. We carefully selected the clusters and obtained a reference sample with 53 objects with redshifts
spanning from z = 0.05 to 1.07. This is the largest redshift range analysed homogeneously with this type of
data, having access to X-ray HSE masses obtained from resolved profiles. HSE masses were estimated with
the XMM-Newton mass reconstruction reference pipeline and lensing masses were extracted from the LC2

CoMaLit catalogue.

To account for possible systematic effects in the reference analysis masses, we compared the XMM-Newton
and CoMaLit masses to other estimates from the literature. The obtained systematic uncertainties were propa-
gated to our analyses, but all the main conclusions do not seem affected by them.

We performed different tests in the measurement of the HSE-to-lensing mass scaling relation and bias,
varying the considered redshift range and the scaling relation model. We find that the best scaling relation
between HSE and lensing masses is our scaling relation of reference, where we assume that there is no evolution
with mass and redshift and that HSE and lensing masses scale linearly. Considering σ2

sys HSE and σ2
sys lens,

we measure for the 53 clusters in the reference sample a HSE-to-lensing mass ratio of MHSE
500 /M

lens
500 = (1 −

b) = 0.739+0.075
−0.070 (stat.) ± 0.226 (intrin. scatter), which corresponds to a scaling relation given by αHSE =

−0.303+0.101
−0.095, σHSE = 0.166+0.086

−0.101 and σlens = 0.257+0.080
−0.092. Ignoring the intrinsic scatter of HSE and lensing

masses with respect to the true mass of clusters introduces a bias in the measurement of the HSE-to-lensing
mass bias.

When we let the bias evolve with redshift, we observe a trend towards a larger difference between HSE
and lensing masses at high redshift, but it is not statistically significant. In conclusion, there is no evidence of
evolution with redshift. Furthermore, we find no dependence of the HSE-to-lensing bias on cluster masses.

Given the size of the sample, single clusters can be driving the fits and special care needs to be taken for
clusters with very small uncertainties. We have investigated the case of CL J1226.9+3332 galaxy cluster, whose
impact is crucial when determining the bias at high redshift.

Additional considerations are needed to compare the HSE-to-lensing mass bias obtained in this study to the
bias needed to reconcile cluster number counts and CMB power spectrum results (see chapter 1): 1) the HSE
masses used in cluster number count analyses are not direct HSE mass measurements, but masses obtained from
an SZ (or X-ray) measurement through an SZ-mass (or X-ray-mass) scaling relation (Sect. 1.3.5), 2) lensing
masses can also be biased with respect to the true mass of clusters [290], and 3) this sample is not representative
of the cluster population in any given survey. Instead, this study provided a step forward in our understanding
of the deviation from hydrostatic equilibrium of galaxy clusters and of the impact of systematic and intrinsic
errors on the bias computation.

We have seen in chapter 5 that HSE masses inferred from the SZ+X-ray combination or from X-ray-only
data can be differently biased. An equivalent study to the one presented in this chapter, spanning a large
range in redshift, but from resolved SZ and X-ray data, will only be possible with high angular resolution SZ
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observations. It is in this context that the NIKA(2)-CLASH sample from chapter 5 will be fundamental to cover
the intermediate to high redshift ranges.
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As we have seen in the previous chapters, each of the observational galaxy cluster mass reconstruction
methods is known to bias differently the results due to instrumental limits or departures from the assumed hy-
potheses. From comparisons between different observational results, we try to understand those issues (chap-
ters 4, 5 and 6). However, other biases are intrinsic to cluster physics and geometry, and, need to be quantified
from simulations. Simulations allow one to compare the three dimensional properties of clusters, needed for
cosmological studies, to those inferred from projected maps.

In this chapter we will present a study on the mass bias and its scatter when reconstructed from projected
mass maps, leaving aside all observational and instrumental effects. We will make use of THE THREE HUN-
DRED project simulation20 in the context of the NIKA2 SZ Large Programme. Given the importance of the
sample selection, we will use clusters that are twins to those from the LPSZ, so that the mass and redshift
distribution is representative of the real sample. We will describe the mass estimation method and its associated

20 https://the300-project.org

https://the300-project.org


162 7.1. THE THREE HUNDRED PROJECT

bias, and we will investigate the different sources of this bias and its scatter. We focus the analysis on total
mass observables, but at the end of the chapter we also compare the results of gas observables of clusters. We
compare all the masses at an overdensity of ∆ = 500 to be consistent with the LPSZ outcomes (chapters 3,
4 and 5). The analysis presented in this chapter is based on a work accepted for publication in Astronomy &
Astrophysics [355].

7.1 The Three Hundred project

Since the first cosmological simulations in the 1960s and 1970s based on gravitation-only N-body systems
[356, 357], a lot of improvements have been made. Nowadays, a vast variety of cosmological simulations allow
us to test models and data analysis pipelines. On the one hand, we distinguish the dark-matter-only N-body
simulations, which are able to describe the collapse of matter and the structure formation under the gravitational
force. Such simulations can now be performed in ∼ Gpc side box volumes at a high resolution [358, 359],
with particle mass resolutions going down to ∼ 106 h−1 M⊙. However, these simulations do not consider
the presence and effects of baryonic matter in the Universe. On the contrary, Semi-analytical simulations and
hydrodynamical simulations are able to account for baryonic effects. Therefore, they can be used to investigate
baryonic observables (galaxies, gas in clusters, etc.) and understand their impact on the surrounding dark
matter. Semi-analytical simulations rely on the dark-matter-only simulations that are ‘painted’ with baryonic
models describing physical effects calibrated on observations [360, 361]. Once DM-only Universes are created,
Semi-analytical simulations are fast to compute and allow us to cover large sky areas easily. By contrast,
hydrodynamical simulations search to solve simultaneously the equations of gravitation and of gas dynamics.
As we have seen in chapter 1, the interplay between baryons and dark matter impacts the structure formation
at small angular scales, and hydrodynamical simulations can reproduce such effects. Nevertheless, they are
computationally very expensive.

The analysis in this chapter is based on THE THREE HUNDRED project galaxy cluster simulations. THE

THREE HUNDRED project consists of zoom-in hydrodynamical re-simulations of the 324 Lagrangian regions
centred on the most massive galaxy clusters identified in the MultiDarkPlanck2 box of side length 1h−1 Gpc
of the MultiDark21 dark-matter-only simulation. The regions, of radius 15 h−1 Mpc and identified at z = 0,
contain clusters with virial masses above 1.2 × 1015 M⊙ and dark-matter particles of mass 1.5 × 109h−1M⊙.
The simulation assumes a cosmology based on the Planck Collaboration et al. (2016) [24] results: h = 0.6777,
n = 0.96, σ8 = 0.8228, ΩΛ = 0.692885, Ωm = 0.30711 and Ωb = 0.048206. This is also the cosmological
model assumed in the rest of this chapter.

The selected DM-only volumes were mapped back to the initial conditions, dark matter particles were
split into dark matter and gas particles and the regions were re-simulated with three hydrodynamical codes:
GADGET-MUSIC [362], GIZMO-SIMBA [363, 364] and GADGET-X [365]. We will use the results from the latter,
which implements very complete baryonic physics models.

The GADGET-X code accounts for dark matter, gas, stellar and black hole particles. Black hole particles in
the simulation accrete hot and cold gas [234] and AGN feedback is implemented following the model from
Steinborn et al. (2015) [366]. In addition, the cooling of the gas is assumed to be metal dependent [367]. Pre-
vious works based on GADGET-X have shown agreement between simulations and observations. According to
the study in Truong et al. (2018) [203], at R500 the gas density and temperature of the clusters in the simulation
reproduce the observations. In addition, authors in Rasia et al. (2015) [365] showed that the gas density and en-
tropy profiles of the simulation agree with observed data. Equally, conformity between observed and simulated
pressure profiles was demonstrated in Planelles et al. (2017) [368].

21Publicly available at the https://www.cosmosim.org database.

https://www.cosmosim.org
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Twin sample M200 [1014 M⊙] M500 [1014 M⊙]

TS T M 4.19 - 16.38 (8.43) 2.99 - 11.08 (5.68)

TS HEM 4.40 - 16.95 (8.39) 3.23 - 11.73 (6.03)

TS Y 5.43 - 17.48 (9.06) 3.94 - 12.64 (6.62)

Table 7.1: Range of masses covered by the clusters in each twin sample and the median value in brackets. We give the masses at
overdensities of ∆ = 200 and 500.

Figure 7.1: Clusters in the NIKA2 LPSZ sample shown in the mass-redshift plane (blue circles). The orange squares, green triangles
and red diamonds show respectively the clusters in the twin samples built from The Three Hundred project simulations based on the
total M500 mass, hydrostatic M500 mass and Y500 signal of the clusters. Figure from Paliwal et al. (2022) [369].

7.1.1 The Three Hundred-NIKA2 LPSZ samples

For our analysis, we used the clusters from THE THREE HUNDRED project simulations selected to constitute
twin samples of the LPSZ. As described in Paliwal et al. (2022) [369], the clusters were chosen to cover the
same redshift range as the LPSZ, i.e., 0.5 ≲ z ≲ 0.9. Amongst all the clusters in THE THREE HUNDRED

satisfying this condition, we chose the snapshots 101 at z = 0.817, 104 at z = 0.700, 107 at z = 0.592 and 110
at z = 0.490. Three different samples were generated by matching properties of the clusters in the simulation
to those known for the clusters in the LPSZ. The three twin samples (TS ) are: 1) TS T M, the total mass twin
sample, in which the clusters in the simulation are selected so that the total M500 from the simulation matches
with the M500 mass of the LPSZ clusters according to Planck or ACT catalogues [141, 142], 2) TS HEM, the
hydrostatic mass twin sample, in which the hydrostatic mass of simulated clusters, MHSE

500 , is matched with the
Planck or ACT masses and 3) TS Y , the twin sample based on the Y500 parameter, the integrated SZ signal
within R500 (Eq. 1.55).

This selection gives three twin samples with 45 clusters. We present in Table 7.1 the range of masses
covered by the clusters in each twin sample. In Fig. 7.1 we show the three twin samples in the mass-redshift
plane, together with the clusters from the LPSZ sample. Some of the clusters being repeated, we have altogether
122 different objects. In this analysis we used all the clusters from the three twin samples simultaneously. The
results presented in the following do not vary from one twin sample to another and, on the contrary, accounting
for the 122 clusters simultaneously improves significantly our statistics.
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7.1.2 The synthetic data sets

In this section we present the processed data generated from the simulations and used in our analyses.

Figure 7.2: Normalised 3D gas pressure (left) and total matter mass density (right) spherical profiles for all the clusters in The Three
Hundred-NIKA2 LPSZ twin samples. In the left panel we show the universal pressure profile from the X-ray analysis in A10 and
the one obtained from the X-ray and SZ analysis in P13. All profiles are drawn with respect to the radii normalised by the R500

corresponding to each cluster. The grey shaded areas indicate the regions below 0.025 × R500 that are not numerically robust.

Radial profiles

For comparison sake, we made use of the spherical three-dimensional radial profiles of cluster properties
extracted from the simulations. In particular, we used the ICM pressure and total mass profiles. The profiles
were computed accounting for particles in concentric shells and spheres centred at the maximum density peak,
with radial bins starting at 10 kpc from the centre of the cluster and increasing radii by 10% (as in Gianfagna
et al. (2023) [91]).

The gas pressure profiles were extracted considering hot gas particles (i.e., only particles with a temperature
above 0.3 keV) and following Eq. 1 in Planelles et al. (2017) [368], with the correction for Smoothed-particle
hydrodynamics (SPH) simulations proposed in Planelles et al. (2017) [368] and Battaglia et al. (2015) [370].
The total mass profiles account for the mass of all the particles (dark matter, hot and cold gas, stars and black
holes) and are used to define the true R500 and M500 of clusters (Eq. 3.10). Profiles at r ≲ 0.025 × R500 are not
reliable since less than 100 particles are used to measure the thermodynamical quantities at these radial ranges.

In Fig. 7.2 we present the normalised pressure and mass density profiles for all the clusters in our sample.
The pressure profiles have been normalised with respect to the P500 obtained from Eq. 5 in A10. Following
figure 3 in Gianfagna et al. (2021) [179], we plot in the same figure the universal pressure profile from A10, as
well as the profile obtained from the combination of XMM-Newton and Planck data in Planck Collaboration
et al. (2013) [72], hereafter P13. The density profiles have been obtained by dividing the mass in each spherical
shell by the volume of the shell and normalised with the critical density of the Universe at the corresponding
redshift of each cluster (Eq. 1.8). The self-similarity of clusters regarding the gas pressure distribution, as well
as the total matter density distribution, is clearly visible in Fig. 7.2.
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Projected observable maps

I. Projected total mass: κ-maps

To study the projected mass of galaxy clusters, we used the convergence maps or κ-maps produced as
described in Herbonnet et al. (2022) [371] and Euclid Collaboration et al. (2023) [169]. These convergence
maps were generated together with shear maps to mimic the lensing effect due to the simulated clusters on
background sources. As given by the Eq. 5.7, the convergence of a lens at a position θ⃗ is defined as the ratio
between the projected mass density of the cluster, Σ(θ⃗), and the critical surface density, Σcrit.

To create the convergence maps, first the Σ-maps were obtained by adding, within a volume of depth 10 Mpc,
the masses of all the particles of the simulated clusters along different projections. Then, these Σ-maps were
divided by Σcrit, assuming all background sources to be at z = 3. For each cluster, maps of 6 × 6 Mpc2 were
produced, centred on the minimums of the gravitational potential wells. To avoid boundary errors, final maps
are 5 × 5 Mpc2 with 2048 × 2048 pixels, which gives different angular resolution pixels for different redshift
clusters.

Six different maps are available for each cluster, corresponding to different projection axes. Three maps
(hereafter 0, 1 and 2) are obtained from the projection along the x, y and z orthogonal axes of the simulation. In
principle, they correspond to random directions with respect to the morphology of the clusters. The other three
(0 pr axes, 1 pr axes and 2 pr axes) are aligned with the principal axes of the clusters regarding their moments
of inertia [372].

II. Sunyaev-Zel’dovich effect: y-maps

The gas in the ICM of galaxy clusters is investigated starting from the y-maps. As described in Cui et al.
(2018) [234] (and previously done in Sembolini et al. (2013) [362] and in Le Brun et al. (2015) [373]), in
THE THREE HUNDRED project the integration along the line-of-sight needed to obtain the Compton parameter
(Eq. 1.24) is converted into a summation22. The sum is computed over the gas particles in the line-of-sight and
within a 2 × R200 depth volume,

y =
σT kB

mec2dA

Ngas part.∑
i=0

Te,iNe,iW(r, hi). (7.1)

Here the electron number density ne from Eq. 1.24 is represented as the number of electrons in a given gas
particle, Ne, divided by its spatial volume dV (dV = dldA): ne = Ne/dV = Ne/dA/dl. W(r, hi) corresponds
to the SPH smoothing kernel used to smear the signal of each particle to the projected pixels, with smoothing
length hi [234].

For each cluster there are 29 y-maps available, projected along the x, y and z main axes of the simulation,
plus along other 26 random axes. We analysed only the projections in common with the κ-maps, hence the
three main axes projections. Centred on the projected maximum density peak of the clusters, maps have 1920×
1920 pixels of 5′′ angular resolution, going up to ∼ 14 to ∼ 30 × R200.

III. Projected gas mass maps

A different way to characterise the distribution of the gas in the ICM is to use projected gas mass maps.
They were generated as the Σ-maps, but accounting only for the gas particles along the line-of-sight. Final
maps are also 5 × 5 Mpc2 with 2048 × 2048 pixels and projected along the three main axes of the simulation.

7.2 Sources of the mass bias: state of the art
The orientation of clusters is known to affect the mass reconstruction from observations. As shown in Oguri

et al. (2009) [374], Oguri and Blandford (2009) [375], Hennawi et al. (2007) [376], Meneghetti et al. (2010)
22Using the publicly available Python package: https://github.com/weiguangcui/pymsz.

https://github.com/weiguangcui/pymsz.
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[377], Gralla et al. (2011) [378], and Euclid Collaboration et al. (2023) [169] when clusters are observed
elongated along the line-of-sight, masses are overestimated. The contrary happens when the major axes of
clusters are on the plane of the sky. Thus, the projection through which clusters are observed impacts their
mass estimates. In Meneghetti et al. (2014) [379] authors explored the impact of projection effects by using
the MUSIC-2 simulations [362, 380], which consist of N-body MultiDark simulations to which baryons were
added using SPH techniques on the dark matter, in the non-radiative flavour and without accounting for the
energy feedback from AGNs. Authors estimated the mass by fitting different density models to the spherical
mass density profiles of the clusters as well as to the projected mass maps. Overall, masses reconstructed
from projected maps are ∼ 13 − 14% more scattered than those estimated from the fit to three dimensional
density profiles. Furthermore, according to this work, masses estimated from projected data are on average
underestimated by 5%. They affirm, as in Giocoli et al. (2012) [381], that this bias is due to the orientation
of clusters. As explained in chapter 5, lensing observations give an estimate of the projected matter density
distribution, therefore, the difficulty resides in recovering precise three dimensional profiles.

According to simulations in the cold dark matter framework [382], clusters are more frequently prolate
systems than oblate-shaped. This means that, in general, the ratio of intermediate to minor axes is larger than
the ratio of major to intermediate axes in clusters. This prolateness is presented in Giocoli et al. (2012) [381] as
another intrinsic source of bias. After halo triaxiality, in Giocoli et al. (2012) [381] the presence of substructures
is found to be the second contributor to the mass bias.

The model chosen to reconstruct the three dimensional mass profile can also be a source of bias. In
Meneghetti et al. (2014) [379] authors used the NFW, gNFW and Einasto [383] models to fit three dimen-
sional mass density profiles of simulated clusters in ranges between 0.02Rvir and R200. They concluded that,
as expected, models with three parameters (gNFW with b = β = 3 and a = α = 1, and Einasto) fit better the
density profile than those with two (NFW). An important projection effect was also found regarding modelling:
not all clusters that in three dimensions have density profiles following an NFW shape have an NFW-like den-
sity when projected [379]. In Euclid Collaboration et al. (2023) [169] authors created Euclid-like weak lensing
observables from THE THREE HUNDRED simulation shear maps. By fitting smoothly-truncated NFW density
models [343] to this data, they concluded that the truncation radius chosen in the model impacts the bias of
reconstructed masses. In addition, they showed that the bias at R200 and its relative uncertainty are smaller if
the concentration parameter is fixed, namely at c200 = 3.

Moreover, as presented in Rasia et al. (2012) [347], another reason to explain the bias is the approach used
to select the sample. For clusters selected according to their X-ray luminosity, the reconstructed concentration-
mass relation has a larger normalisation and steeper slope than the genuine relation [379, 384]. The reason
behind is that, for a given mass, the most luminous clusters are the most concentrated ones (Sect. 1.2.2). On
the contrary, if clusters are chosen for their strong lensing signal, they are preferentially elongated along the
line-of-sight [377, 385] and, as a consequence, the masses obtained from projected maps are overestimated.

Many are the effects at the origin of the bias and the scatter of the weak lensing masses of clusters. As sum-
marised in Lee et al. (2023) [386], assuming an NFW profile and a concentration-mass relation can introduce
uncertainties in the mass of 10 to 50% due to the non-sphericity of clusters, structures along the line-of-sight,
miscentring and halo concentration. Regarding the concentration-mass relation, from an analysis of mock
galaxy cluster lenses created with the MOKA23 code [387], Giocoli et al. (2012) [381] concluded that the am-
plitude of the relation is lower when derived from lensing analyses, therefore, from projected mass tracers, than
from the three dimensional studies.

In Rasia et al. (2012) [347] they used 20 halos (with 3 projections per cluster) simulated to mimic Subaru
observations [388]. By fitting an NFW model to the reduced tangential shear profiles they concluded that the
masses at R500 are biased low by ∼ 7 − 10% with a scatter of 20%. The lensing analysis based on simulations
in Becker and Kravtsov (2011) [290] also concluded that, including shape noise only, these mass estimates
are biased by ∼ 5 − 10% with a 20 to 30% scatter. In the same line, the weak lensing analysis in Euclid

23https://cgiocoli.wordpress.com/research-interests/moka/

https://cgiocoli.wordpress.com/research-interests/moka/
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Collaboration et al. (2023) [169] derived an average 5% mass bias at R200, with the bias for a given cluster
differing by up to 30% depending on the orientation of the projection of the cluster observation.

Giocoli et al. (2012) [381] investigated also the dependence of the bias with redshift and found very little
evolution. Quite the opposite, they showed that the radial range chosen to fit the density or mass profile model
has an important impact on the bias. According to Euclid Collaboration et al. (2023) [169], the underestimation
of cluster masses in Euclid-like weak lensing reconstructions is more important at higher redshift, modulated
by the number density of background sources.

Some works compared also the uncertainties of masses reconstructed from total matter observables to those
estimated from gas observables. They showed, on the one hand, the small impact of orientation in gas observ-
ables with simulated SZ and X-ray data [389] and, on the other hand, the irreducible non-sphericity of halos that
affects the intrinsic scatter of the weak lensing masses, tracers of the total matter distribution [290]. In the same
line, Meneghetti et al. (2010) [390] suggested that lensing masses are three times more scattered (∼ 17 − 23%
of scatter) than X-ray estimates. The error budgets given in Pratt et al. (2019) [48] indicate that the assumption
of spherical symmetry affects HSE masses at the level of a few percent, while lensing masses are affected by
about 10% due to mass modelling. According to Rasia et al. (2012) [347], weak lensing biases are at least twice
more scattered than X-ray outcomes.

In the above-mentioned analysis published in Euclid Collaboration et al. (2023) [169], THE THREE HUN-
DRED simulated data were used also to study the bias of weak lensing mass reconstructions on the prospect
of the preparation work for the Euclid mission [391]. In this case, the simulated data was converted into a
Euclid-like weakly lensed galaxy distribution. From shear estimates on these galaxies, they built excess surface
mass density profiles. The latter were fitted with the smoothly-truncated NFW model (tNFW) to reconstruct
the three dimensional mass density profiles of clusters. In this chapter we do not aim to reproduce such obser-
vational effects, but the comparison to the results from Euclid Collaboration et al. (2023) [169] will be valuable
to elucidate the origin of some of the observed effects. We also stress that our study differs from the work
of Euclid Collaboration et al. (2023) [169] regarding the considered cluster sample and the overdensity of the
reconstructed masses. While we restrict, as discussed above, our analysis to a subsample of THE THREE HUN-
DRED clusters in the redshift and mass range covered by the LPSZ programme and evaluate the masses at R500,
in Euclid Collaboration et al. (2023) [169] the bias was studied at R200 for all THE THREE HUNDRED clusters
at 9 different redshifts between z = 0.12 and z = 0.98.

7.3 Total mass reconstruction from κ-maps

Just like in Meneghetti et al. (2014) [379], in our analysis we did not consider any systematic effect, such as
the accuracy of galaxy shape measurements or photometric redshifts, that may affect lensing analyses (chap-
ters 5 and 6). Those effects can introduce additional uncertainties that require separate investigations [169, 392].
We restricted our work on simulated data to the effects that arise from the reconstruction of three-dimensional
quantities from projected data.

7.3.1 Mass reconstruction procedure

To estimate the total mass of the clusters from projected maps we followed the procedure presented in
chapter 5 for CLASH convergence maps [190, 191, 393]. As a reminder, in chapter 5 convergence maps from
the CLASH data set are used to reconstruct the lensing mass of galaxy clusters: κ-maps are converted into
projected mass density maps, Σ, and mass density models are fitted to the radial profile of Σ, which allows one
to reconstruct the lensing mass.

Similarly, from the convergence maps described in Sect. 7.1.2, we obtain projected Σ-profiles by radially
averaging the values in the map, starting from their central pixel. Uncertainties are computed from the disper-
sion in each radial bin to account for non-circular features in the map. The size of these uncertainties does not
necessarily correspond to what we would expect from observations. For instance, in weak lensing observations
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error bars tend to be larger in the centre and smaller in the outskirts of clusters. In a previous work Giocoli
et al. (2012) [381] showed that the choice of the radial range for the fit can also impact the results. We decided
to take 60 bins in a range between 0.4′′ and 500′′ with respect to the centre of the map. In this way we account
for the central and external regions of the clusters, as in Ferragamo et al. (2022) [190], Muñoz-Echeverrı́a et al.
(2023) [191], and Muñoz-Echeverrı́a et al. (2022) [393]. By contrast, to build the excess surface mass density
profiles in Euclid Collaboration et al. (2023) [169] authors used 22 logarithmically spaced bins, spanning from
0.02 to 1.7h−1 Mpc from the cluster centre.

To model the Σ-profile we used the two-parameter NFW mass density model (Eq. 1.19) and the three-
parameter Einasto model, as in Meneghetti et al. (2014) [379]. We fitted the Σ-profiles from the convergence
maps with the mass density profile models projected following

Σmodel(R) = 2
∫ +∞

0
ρmodel

( √
r2 + R2

)
dr. (7.2)

Here r is the radius of three-dimensional spherical profiles, while R corresponds to the projected profiles. For
this analysis, we parametrised the NFW model as a function of c∆ and R∆ (Eq. 1.19).

The Einasto density model is defined as

ρEin(r) = ρs exp
{
−

2
α

[(
r
rs

)α
− 1

]}
, (7.3)

where the free parameters are rs, ρs and α, that correspond to the scale radius, the characteristic density and the
shape parameter, respectively.

We made use again of the profiley Python package17, which contains also line-of-sight projected density
profiles. As described in Sect. 5.1.3, the fits were performed via MCMC analysis (using the emcee software)
and we initialised the chains by taking: 1.0 < R200/Mpc < 3.5 and 2.0 < c200 < 3.5 for NFW, and, 1014 <

ρs/M⊙/Mpc3 < 1016, 0.2 < rs/Mpc < 1.0 and 0.0 < α < 0.5 for Einasto. Once the fit is performed, we verify
that the modelled Σ-profile is a good representation of the data following the goodness of fit criterion defined
as

FQ ≡ Fit quality ≡ median(|Σdata − Σmodel|/σΣdata), (7.4)

where the median is estimated over all the radial bins and posterior distributions of the model. Bad fits are
rejected if FQ > 1. This means that if the median of the absolute difference between the Σ-profile data bins
and the model with respect to the uncertainties is larger than unity, the fit is not satisfactory.

After the fit, mass profiles are obtained by computing for each sample of parameters the corresponding
profile. For the NFW model the spherical mass profile is described by,

MNFW(< r) = 4πρsr3
s

[
1

1 + r/rs
+ ln(1 + r/rs) − 1

]
=

4πc3
200200ρcrit/3I(c200)(R200/c200)3[

1
1 + rc200/R200

+ ln(1 + rc200/R200) − 1
]
.

(7.5)

And for Einasto,

MEin(< r) =
4πρsr3

s

α
e2/α

(
α

2

)3/α
γ

[
3
α
,

2
α

(
r
rs

)α]
, (7.6)

where γ is the incomplete lower gamma function:

γ(a, x) =
∫ x

0
ta−1e−tdt. (7.7)
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Figure 7.3: The projected mass density profiles (empty markers) for the six available convergence maps for the 0306 cluster in the
snapshot 101 (z = 0.817). The orange and purple profiles show the best-fit profile for the NFW and Einasto models, respectively. We
also show 1σ uncertainties as the shaded areas of the same colours. The numerical values given in the captions correspond to the FQ
estimator (Eq. 7.4) for each projection and model. From left to right and top to bottom we present the 0, 1 and 2 random projections
and 0 pr axes, 1 pr axes and 2 pr axes principal moment of inertia projections. The vertical cyan line shows the true R500 of the cluster.

Finally, from the reconstructed mass profiles we compute the Mκ
500 mass of the cluster at its corresponding

radius Rκ500 (Eq. 3.10). This procedure for both models is applied to all clusters in the twin samples and to all
the discussed projections in order to estimate the Mκ

500. As an example, in Fig. 7.3 we present the Σ-profiles
for the six projections of one cluster (number 0306 in THE THREE HUNDRED) at z = 0.817. The orange
and purple lines show the best-fit profiles (solid lines) and 1σ uncertainties (shaded areas) obtained from the
posterior distributions of the NFW and Einasto fits, respectively. This figure shows that the Einasto model is a
better fit to the data, being able to describe the multiple slope changes at small and large radii. Nonetheless, at
intermediate radii (0.1 − 1 Mpc) the NFW fit follows better the data. In the 2 pr axes projection the cluster is
observed along its most elongated axis. For this reason, the centre appears very massive and the density in the
outskirts drops fast.

In Fig. 7.4 we show the mass profiles corresponding to the projected mass density best-fits of Fig. 7.3 with
the NFW and Einasto models for the 0306 cluster in the snapshot 101. We present again the profiles for the
projections along the 3 main axes of the simulation on top, and in the bottom the profiles for the main inertia
moment axes of the cluster. The dashed line shows the R500 − M500 relation and the cyan profile corresponds
to the spherical true mass profile (Sect. 7.1.2). The departure of the NFW and Einasto profiles from the true
spherical mass profile at ∼ R500 will determine the difference between the true M500 and the NFW and Einasto
estimates.

We repeat the analysis for all the clusters in our sample and for the following we take, amongst all the
Σ-profile fits, the results that pass the quality criterion in Eq. 7.4 for both the NFW and Einasto fits. Thus, we
keep 116 clusters. As we will explain in Sect. 7.4.2, in the following we will only consider the three projections
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Figure 7.4: Mass profiles reconstructed from the convergence map fits for the 0306 cluster in the snapshot 101 (z = 0.817). The orange
and purple profiles correspond to NFW and Einasto models, respectively. We give the mean profiles with 1σ contours. The cyan profile
is the spherical mass profile computed by adding in concentric spheres the mass of all the particles in the simulation. The black dashed
line shows the R500 − M500 relation.

along the x, y and z orthogonal axes of the simulation, unless stated otherwise.

In Fig. 7.5 we present the relation between the best-fit values of the parameters obtained from all NFW (left)
and Einasto (right) fits. We also provide in the figure the Pearson correlation coefficient for each pair of pa-
rameters represented. Regarding the Einasto parameters, shown in the right panel of Fig. 7.5, an anticorrelation
between ρs and rs parameters is clearly noticeable, with a Pearson correlation coefficient of −0.6. In the left
panel we also indicate, with large stars, the mean concentration in bins of M200 for NFW, and compare our result
to the concentration-mass relations in Cui et al. (2018) [234]. In this paper authors show that the concentration-
mass relation of z = 0 clusters from THE THREE HUNDRED simulation is flatter for GADGET-X clusters than
for GADGET-MUSIC. The concentration-mass relation obtained in our analysis with the NFW model follows the
decreasing tendency of the GADGET-MUSIC clusters results from THE THREE HUNDRED in Cui et al. (2018)
[234], which is also in agreement with previous studies (such as López-Cano et al. (2022) [394] and references
therein). As a reference, we also show the horizontal c200 = 3 line that corresponds to the concentration value
fixed in Euclid Collaboration et al. (2023) [169] to minimise the mass bias when fitting tNFW density mod-
els. Some works (e.g., Oguri et al. (2009) [374]) find also a dependence of the concentration parameter with
redshift. By contrast, our results do not present any clear evolution along cosmic time (the Pearson correlation
coefficient between the redshift and the concentration is r = −0.01). According to Meneghetti et al. (2014)
[379] the redshift evolution of the concentration-mass relation is weak for the MUSIC-2 simulation.
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Figure 7.5: The best-fit values of the posterior distributions of NFW (left) and Einasto (right) parameters. Each point corresponds
to one projection of one cluster. We give the Pearson correlation coefficients for the parameters presented in each panel. In the left
panel the big stars show the mean NFW concentration and the standard deviation in different mass bins. Blue and red lines show the
concentration-mass relations for GADGET-X and GADGET-MUSIC simulations obtained in Cui et al. (2018) [234] accounting for different
radial ranges: with solid lines considering data above 0.05 × R200 and with dashed lines the results considering data above 34h−1 kpc.
The horizontal brown line at c200 = 3 in the left panel represents the best concentration value obtained in Euclid Collaboration et al.
(2023) [169] to reconstruct unbiased masses. For comparison, in the left panel we also plot the M200 and c200 = R200/rs obtained for the
Einasto best-fits (blue dots).

7.3.2 Mass bias from convergence maps

The mass bias we refer to in this chapter is the relative difference between each reconstructed mass, Mκ
500

(as above-mentioned, evaluated at the Rκ500 obtained from the reconstructed mass profile), with respect to the
true mass of the cluster, M500:

bκ = (M500 − Mκ
500)/M500. (7.8)

We present in Fig. 7.6 the bias estimated from all the analysed maps with respect to the true M500 for each
cluster. Orange and purple markers show the bias and uncertainties measured for the NFW and Einasto mass
density models, respectively. Uncertainties are computed from the propagation of the posterior distributions
of the parameters in each model. The distributions on the right-hand side plot show also the bias per map
fit for each cluster. The horizontal orange line shows the mean bias for NFW, while the purple corresponds
to Einasto. The median biases for the NFW and Einasto reconstructions are med(bκ) = 0.036 and 0.179,
respectively. Surprisingly, Einasto gives, on average, a more biased estimate of the mass of the clusters.

To address this issue, we come back to the Σ-profiles presented in Sect. 7.3.1. In Fig. 7.7 we show the
relative difference between the fit of the Σ-profile for the NFW and Einasto models and the profiles measured
from the convergence maps. Although the overall Einasto best-fit models are a better representation of the Σ-
profiles, NFW fits the intermediate radial ranges better than Einasto. We see in Fig. 7.7 that Einasto projected
mass density fits are systematically biased at R ∼ R500. Since these are the crucial radii that determine R500,
a precise description of the density here, gives proper M500 estimates. One could think of improving the fits
either by adapting the radial range ad hoc to get a less biased result (given the important role of the outer radii
in Einasto fits, we could imagine studying the impact of accounting for the data above 500′′, that is, above
∼ 2 − 4 × R500) or by choosing a more flexible density model. As discussed above, this type of studies have
already been done in the literature [379, 381] and we will not go through those refinements in our analysis.
Furthermore, authors in Cui et al. (2018) [234] concluded that the NFW model is a good representation of the
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Figure 7.6: Mass bias for masses inferred from fitted κ-maps with respect to M500 per cluster. Each data point corresponds to the mean
bias of a cluster for a given random projection (0, 1 or 2) with error bars showing the 1σ uncertainty. Results for the Einasto model have
been artificially shifted in mass for visualisation purposes. The Gaussian distributions (one per data point) on the right side represent
the same results. The horizontal orange and purple dashed lines show the mean for all the results for NFW and Einasto, respectively.
The black line indicates the zero.

Figure 7.7: Relative difference between the data and best-fit Σ-profiles as a function of the radius for NFW (left) and Einasto (right)
models. Solid lines indicate the median of all the profiles in each panel. The horizontal dashed lines show the zero.
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Figure 7.8: Mean bias for the three projections (left) and dispersion, σ2
b,3 projections, (right) per cluster for Einasto against NFW recon-

structions. Each dot corresponds to one cluster. We give the Pearson correlation coefficient for the values given in each panel and fix
the same limits in both axes.

Figure 7.9: Mass bias for NFW (orange) and Einasto (purple) best-fits of the Σ-profiles when aligned with the principal axes of the
clusters regarding their moments of inertia. Solid lines correspond to 0 pr axes, dashed lines to 1 pr axes and dotted lines to 2 pr axes.
Histograms account for all the results for all the well fitted clusters. We give the value of the median and the 16th and 84th percentiles.
The vertical lines show the median value that corresponds to each distribution and the shaded areas represent the 1σ regions of the bias
obtained for all the clusters with the three random projections (Fig. 7.6).
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spherical mass density profile of the clusters in THE THREE HUNDRED simulation, even considering different
inner radii. However, according to the work in Euclid Collaboration et al. (2023) [169], THE THREE HUNDRED

clusters are not perfect NFW halos.

In the left panel in Fig. 7.8 we present the mean bias per cluster obtained for the NFW density best-fits
with respect to the mean bias for the Einasto ones. There is a direct correlation between the NFW and Einasto
biases, with a Pearson correlation coefficient of 0.71. This might mean that, despite the differences in the
reconstructed masses due to modelling effects, the impact of the modelling is not enough to blur the information
in the convergence maps.

We also verify that the orientation of the cluster affects directly the bias. In Fig. 7.9 we present the bias
measured from the maps projected along the three axes of inertia: when the cluster is elongated along the
line-of-sight (2 pr axes) the reconstructed mass is on average overestimated and when the major axes are on
the plane of the sky (0 pr axes), underestimated. In Herbonnet et al. (2022) [371] the authors investigated the
relation between the orientation of halos and their brightest cluster galaxy (BCG). They found that the major
axes of halos and BCGs are aligned with an average separation of ∼ 20 degrees. For this reason, having access
to the orientation of the BCG would provide a way to improve the knowledge of the orientation of the cluster,
and therefore, of its mass reconstruction.

Given all the mentioned differences between our study and the analysis in Euclid Collaboration et al. (2023)
[169], comparisons to the latter have to be done with extraordinary care. By fixing the truncation parameter
of the tNFW model to t = 3, they find that the weak lensing masses reconstructed for the clusters at redshift
z = 0.22 are on average biased low by ∼ 7%, with a standard deviation of 0.24 (for the reconstructed to true
mass ratio) over the full sample (using the full THE THREE HUNDRED sample of clusters). Assuming also a
fixed concentration parameter c200 = 3 and considering the clusters at redshifts below z = 0.7, according to
Euclid Collaboration et al. (2023) [169], weak lensing M200 masses are on average underestimated by less than
5%. We observe in figure 14 in Euclid Collaboration et al. (2023) [169] that, for the redshift range considered
in our analysis (0.5 < z < 0.9), the mean biases on M200 vary from 0% to 20% depending on the chosen
value for the c200 parameter. Overall, these biases are slightly larger than our NFW results at R500 (∼ 3%),
but in agreement within uncertainties. It is worth reminding that, unlike in our analysis, the study in Euclid
Collaboration et al. (2023) [169] considered the presence of noise in the shear of galaxies. Regarding the impact
of the orientation of clusters on the mass bias, in Euclid Collaboration et al. (2023) [169] authors concluded
that when clusters are oriented along the major and minor axes, the mass biases are respectively ∼ 25% larger
and smaller than the biases for random orientations. Therefore, their results are completely in line with those
presented in Fig. 7.9.

7.4 Scatter of the mass bias
In the previous section, we have been looking at the mean biases estimated for each model making use of

our full sample. The dispersion from cluster to cluster and for the different projections of the same cluster
appear to be very important (Fig. 7.6). In this section we try to identify and quantify the different effects that
contribute to the scatter of the biases in the reconstruction. For this, we will use a statistical approach and we
will consider the full sample.

We first define the total variance per model from the scatter of the bias values obtained with the same model
for all the clusters and all their projections (see Fig. 7.6):

σ2
b,tot =

1
NchainsNprojectionsNclusters

Nchains,Nprojections,Nclusters∑
i, j,k=1,1,1

(bκi, j,k− < bκ >)2. (7.9)

Here Nchains is the number of chains kept after each fit, Nprojections is the number of different projections per
cluster and Nclusters the amount of clusters considered. < bκ > is the mean bias for all the clusters, accounting
for all the projections and chains. Our purpose is to estimate the dispersion expected in a real observed sample.
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We separate this total variance into two main contributions: 1) the variance from cluster to cluster,
σ2

b,cluster−to−cluster, showing how different are the bias values depending on the cluster, and 2) the variance of the
results for each cluster, due to the different values depending on the projection, σ2

b,3 projections. So we write, as
in Bartalucci et al. (2023) [395],

σ2
b,tot ∼ σ

2
b,cluster−to−cluster + σ

2
b,3 projections. (7.10)

Here σ2
b,3 projections is the dispersion of the results of three projections, that for each cluster c is obtained as,

(σ2
b,3 projections)c =

1
NchainsNprojections

Nchains,Nprojections∑
i, j=1,1

(bκi, j,c− < bκ >c)2, (7.11)

where < bκ >c is the mean bias per cluster c, considering the different projections and all the samples in the
MCMC chains of the individual fits.

Furthermore, for each σ2
b,3 projections per cluster there are two sources of dispersion that we name: 1)

σ2
b,intrinsic proj, which accounts for the fact that the results obtained from three projections differ intrinsically,

and, 2) σ2
b,fit that quantifies the uncertainties of the fitting procedure. Therefore, we can write

σ2
b,3 projections ∼ σ

2
b,intrinsic proj + σ

2
b,fit. (7.12)

In the following subsections we study each contribution to the total scatter.

7.4.1 Fitting procedure uncertainties: σ2
b,fit

The most evident source of scatter is the one related to the model fitting uncertainties, i.e., the scatter
propagated from the posterior distributions of the parameters of the fitting function at one specific projection
for one cluster. We define (σ2

b,fit)proj,c as the variance of the bias values of each map fit (‘proj’) for each cluster
(c):

(σ2
b,fit)proj,c =

1
Nchains

Nchains∑
i=1

(bκi,proj,c− < bκ >proj,c)2 (7.13)

In the left panel in Fig. 7.10 we show the distribution of σ2
b,fit for all the clusters (and all their projections)

in our sample. The histograms correspond to the bias variance for the NFW (orange) and Einasto (purple)
profiles. We report the mean and median values in Table 7.2. The variance introduced by the fitting procedure
or measurement error is larger for Einasto than for NFW. This might be expected since the Einasto model has
one degree of freedom more than the NFW one. On average for the NFW and Einasto models 15% (σ2

b,fit ∼

0.02) and 25% (σ2
b,fit ∼ 0.06) of uncertainties in the reconstructed masses come only from the uncertainty

in the fit. We also note that the reduced χ2 for the fits have median values with 84th and 16th percentiles
of χ2/d.o.f. = 1.12+1.09

−0.53 and χ2/d.o.f. = 0.44+0.60
−0.26 for the NFW and Einasto models, respectively. These are

compatible with the expected values for χ2-distributions of the corresponding degrees of freedom. The small χ2

values for Einasto fits could be a signature of overfitting with respect to the size of the data point error bars. In
some cases, NFW fits have large χ2, as it is shown by the percentiles of the reduced χ2 that reach χ2/d.o.f. ∼ 2.

7.4.2 Projection scatter: σ2
b,3 projections

As discussed above, for each cluster three different projections are available and the variance of the results
from the three is σ2

b,3 projections, as defined in Eq. 7.11. As for the fitting uncertainties, we show the histograms of
the variance associated with the projection scatter for each cluster in the right panel in Fig. 7.10. The variance
of each cluster accounts for the posterior distributions of the mass biases for the three projections together. We
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Figure 7.10: Variance of mass bias for all clusters. Left: scatter induced by uncertainties in the fitting procedure, for all the projections
for all the clusters in our sample. Right: variance of the bias in the mass reconstruction of each cluster accounting for the results from
the different projections.

Name Definition NFW Einasto

σ2
b,fit Eq. 7.13

〈
σ2

b,fit

〉
= 0.0234

〈
σ2

b,fit

〉
= 0.0620

med(σ2
b,fit) = 0.0139 med(σ2

b,fit) = 0.0495

σ2
b,3 projections Eq. 7.11

〈
σ2

b,3 projections

〉
= 0.0440

〈
σ2

b,3 projections

〉
= 0.0762

med(σ2
b,3 projections) = 0.0333 med(σ2

b,3 projections) = 0.0650

σ2
b,intrinsic proj Eq. 7.12

〈
σ2

b,3 projections

〉
−

〈
σ2

b,fit

〉
= 0.0205

〈
σ2

b,3 projections

〉
−

〈
σ2

b,fit

〉
= 0.0142

med(σ2
b,3 projections)−med(σ2

b,fit) = 0.0194 med(σ2
b,3 projections)−med(σ2

b,fit) = 0.0155

σ2
b,tot Eq. 7.9 0.1005 0.1135

σ2
b,cluster−to−cluster Eq. 7.10 σ2

b,tot −
〈
σ2

b,3 projections

〉
= 0.0565 σ2

b,tot −
〈
σ2

b,3 projections

〉
= 0.0373

σ2
b,tot−med(σ2

b,3 projections) = 0.0672 σ2
b,tot−med(σ2

b,3 projections) = 0.0485

σ2
b,mean Eq. 7.22 0.0555 0.0331

(σκ−map
b,intrinsic proj)

2 Eq. 7.14 From maps ∼ 0.01

Table 7.2: Summary of the mass bias scatters studied in this chapter. We present the name given to each scatter term, the reference to
the definition in the text and the obtained values for masses reconstructed using NFW and Einasto models. In some cases we give the
mean, ⟨...⟩, and median, med(...), values.
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Snapshot z Cluster fs(R200) ∆r(R200) Dynamical state within R200 fs(R500) ∆r(R500) Dynamical state within R500

101 0.817 0306 0.19 0.11 Disturbed 0.09 0.10 Intermediate

104 0.700 0206 0.18 0.08 Intermediate 0.16 0.16 Disturbed

107 0.592 0046 0.12 0.03 Intermediate 0.07 0.00 Relaxed

110 0.490 0198 0.18 0.14 Disturbed 0.19 0.15 Disturbed

Table 7.3: Dynamical state indicators at R200 and R500 for the clusters analysed from 100 projections.

Density model Snapshot z Cluster < bκ > σ2
b,100 projections < bκ > σ2

b,3 projections < bκ > σ2
b,3 projections

100 random 100 random 3 main 3 main 3 inertia 3 inertia

NFW

101 0.817 0306 0.1401 0.0372 0.1285 0.0377 -0.0443 0.1069

104 0.700 0206 0.3542 0.0408 0.3091 0.0043 0.1213 0.1408

107 0.592 0046 -0.1404 0.0466 -0.2298 0.0403 -0.4174 0.2708

110 0.490 0198 0.0896 0.0407 0.0555 0.0199 -0.1099 0.0569

Einasto

101 0.817 0306 0.2079 0.0664 0.2202 0.0709 0.1865 0.1582

104 0.700 0206 0.3418 0.0357 0.4033 0.0204 0.2680 0.1012

107 0.592 0046 -0.0905 0.1080 -0.0167 0.1660 0.0539 0.3499

110 0.490 0198 0.2453 0.0837 0.4707 0.1069 0.3099 0.1650

Table 7.4: Mean bias and variance due to projection effect for the 4 clusters studied with 100 maps. The three main projections are the
so-called 0, 1 and 2 or x, y and z projections. The 3 inertia projections are 0 pr axes, 1 pr axes and 2 pr axes.

report the mean and median values of the histograms in Table 7.2. Again, the bias measured for the Einasto
model has a larger dispersion than for the NFW one. In the right panel of Fig. 7.8 we present the σ2

b,3 projections
obtained with NFW and Einasto models for each cluster in our sample, showing the correlation between the
variances measured with the different models.

We study this scatter to quantify the uncertainty that should be accounted for in observational mass re-
constructions, when clusters are only observed in one projection. To truly estimate the projection effect, the
dispersion of the masses obtained from the infinite projections of each cluster would be needed. To evaluate
the uncertainties introduced in our analysis by using only three projections, we compare to the results obtained
from 100 projections for a handful of clusters.

Validation of the projection effect

For 4 different clusters in THE THREE HUNDRED simulation we produced 100 κ-maps along random pro-
jections. We chose one cluster per snapshot, with diverse dynamical states, mostly unrelaxed. The sample is
described in Table 7.3, with the dynamical state indicators defined following the definitions in De Luca et al.
(2021) [88].

For each map, we followed the NFW and Einasto mass reconstruction procedure described in Sect. 7.3.1,
and estimated the Mκ

500 and the associated biases. The mean bias and variance for the 100 projections, for the 3
main axes and for the 3 inertia moment axes are summarised in Table 7.4. Although considering the principal
axes of the clusters regarding their moments of inertia is a way to account for the whole dispersion due to
projection, it gives systematically overestimated scatter values with respect to the dispersion obtained from 100
projections. Instead, for the projections along the 3 main (that is, random) axes the measured dispersion can be
both over and underestimated. Hence, for the analysis with the full sample of clusters we decided to remove
the 0 pr axes, 1 pr axes and 2 pr axes projections.
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7.4.3 Intrinsic projection effect: σ2
b,intrinsic proj

For both the NFW and Einasto models, there is a contribution to σ2
b,3 projections that is not explained by the

uncertainties on the fitting procedure. We consider that this is due to the real intrinsic projection effect presented
in Eq. 7.12. From the difference between the mean (and also between the median) values of σ2

b,3 projections and
σ2

b,fit, the intrinsic projection effect is of the order of ∼ 0.014−0.020. This corresponds to about 12−14% error
on the mass bias, and then on M500. We stress that this is true for both the NFW and Einasto models, which
is comforting since we are looking for an intrinsic effect that should depend only on the clusters themselves.
We also note that the values for σ2

b,intrinsic proj obtained from the differences of the mean and the median of
σ2

b,3 projections and σ2
b,fit are remarkably close, indicating that the σ2

b,intrinsic proj distribution is well approximated
by a Gaussian.

Alternative estimation of the intrinsic projection effect: model independent

We are also interested in quantifying the contribution of σ2
b,intrinsic proj without being affected by modelling

effects. For this purpose, we take a different approach and infer masses directly from the projected convergence
maps. By integrating the Σ-maps up to the true θ500 we compute directly the total mass of clusters from
cylindrical integration, Mκ,cyl

500 , where tan(θ500) = R500/DA, with R500 the true radius of the cluster and DA the
angular diameter distance at the cluster redshift. For each cluster we have three different Mκ,cyl

500 and bκ−map, one
per projected map. The grey histogram in Fig. 7.11 shows the variance of the mass bias per cluster c for all the
clusters in our sample obtained from

(σκ−map
b,intrinsic proj)

2
c =

1
Nprojections

Nprojections∑
j=1

(bκ−map
j,c − < bκ−map >c)2. (7.14)

On average, the projection effect when integrating the total mass at a fixed aperture is of the order of
(σκ−map

b,intrinsic proj)
2 ∼ 0.01. Therefore, uncertainties of about 10% on the mass. The projection effect com-

puted in this way is close, but not enough to fully explain the 12 − 14% uncertainties obtained from the
σ2

b,3 projections − σ
2
b,fit difference.

An additional term could explain the difference: while the masses used to compute σ2
b,3 projections are esti-

mated at different radii (each Mκ
500 measured at the corresponding Rκ500), here all the Mκ,cyl

500 for (σκ−map
b,intrinsic proj)

2

are measured at fixed θ500 per cluster. Therefore (σκ−map
b,intrinsic proj)

2 needs a corrective term to be fully comparable
to σ2

b,intrinsic proj. We quantified this effect based on mock mass density profiles of galaxy clusters with a large
variety of shapes and masses.

Scatter from spherical mass estimates and from projected masses within a fixed aperture

We used simulated profiles following the NFW (parametrised as in Eq. 1.19), gNFW, tNFW and Hernquist
models. We define the gNFW mass density profile (equally defined for the pressure in Eq. 3.5) as

ρgNFW(r) =
ρs(

r
rs

)γ (
1 +

(
r
rs

)α) β−γα , (7.15)

with α = 3, rs = R∆/c∆ and:

ρs =
c3
∆
∆ρcrit(−3 + γ)

−3(c3
∆

)1−γ/3 2F1((β − γ)/3, 1 − γ/3, 2 − γ/3,−c3
∆

)
. (7.16)

Here 2F1 is a Gaussian hypergeometric function. The tNFW is given by

ρtNFW(r) =
ρs

r/rs(1 + r/rs)2

(
τ2

τ2 + (r/rs)2

)η
, (7.17)
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Figure 7.11: Variance of the mass bias estimated from maps. The grey histogram is obtained from the integration of convergence maps,
i.e., Mκ,cyl

500 . The magenta histogram corresponds to the variance for gas masses (MGas,cyl
500 ) estimated from gas mass maps. The empty

green histogram shows the dispersion of the Mcyl
500 after conversion from the Ycyl

500 measured from y-maps, using the scaling relation in
Fig. 7.17.

with η = 1, rs = R∆/c∆ and:

ρs =
c3
∆
∆ρcrit

3I(c∆)
, (7.18)

where,

I(c∆) = τ2
−1

[
2(1 + τ2) − (−1 + τ2) ln

(
τ2

)]
2(1 + τ2)2 +

τ2
2(1+τ2)
(1+c∆) + 4τarctan(c∆/τ)

2(1 + τ2)2 +

τ2
(−1 + τ2)

[
2 ln(1 + c∆) − ln

(
c2
∆
+ τ2

)]
2(1 + τ2)2 .

(7.19)

The Hernquist mass density profile is defined as

ρHernquist(r) =
ρs

r
rs

(
1 + r

rs

)3 , (7.20)

with rs = R∆/c∆ and:

ρs =
c∆∆ρcrit2(1 + c∆)2

3
. (7.21)

We produced profiles with a wide variety of parameters for 5 different initial M500 values be-
tween 3 × 1014 M⊙ and 11 × 1014 M⊙ and for the four different redshifts in our twin samples (z =
[0.490, 0.592, 0.700, 0.817]). For NFW and Hernquist models we varied c500 from 1 to 6. For gNFW and
tNFW we fixed c500 = 4, and varied β = 3 − 6 and γ = 0.4 − 1 for gNFW, and τ = 0.2 − 4 for tNFW. All the
considered projected mass density profiles are shown in the left panel in Fig. 7.12 to demonstrate the variety of
the analysed density shapes.

To mimic a departure from the true mass, for each profile with M500 we estimated a distribution of new
profiles with masses that vary by −25% to 25% from the true M500, Mnew sph

500 (based on an average σ2
b,3 projections
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measured in the mass reconstructions). For each of the new profiles, we integrated the projected density up to
the original θ500 to obtain Mnew cyl

500 . Comparing the new Mnew sph
500 and Mnew cyl

500 to the original M500 we got the
spherical and cylindrical biases. From the distribution of biased masses, we took randomly trios, to simulate
the 3 random projections, and estimated their variance: σ2

bsph is the variance of three biased spherical masses,
and with their corresponding cylindrically integrated masses we get σ2

bcyl .

Figure 7.12: Projected mass density profiles used to quantify the difference in scatter for spherically and cylindrically integrated masses
(left). The variance of cylindrically integrated masses with respect to spherically integrated masses (right). The black dashed line
corresponds to σ2

bsph = σ
2
bcyl . In blue NFW, in red gNFW, in green tNFW and in orange Hernquist models.

In the right panel in Fig. 7.12 we present the relation between the mean σ2
bsph and σ2

bcyl for each mass, redshift
and profile shape considered. Same colours as in Fig. 7.12 are used to refer to each density profile model. The
blue points close to the black one-to-one line correspond all to NFW models with a concentration of c500 = 1.

As expected, the figure shows that the dispersion of cylindrically integrated masses at a given aperture tends
to be smaller than spherical integrations up to the corresponding radius in each case. This additional variance
is of the order of ∼ 0.001 to 0.01, so 1 to 10% of the mass, depending on the mass, redshift and shape of the
density profile of the cluster. We note that additional differences could appear when integrating spherically
against cylindrically, related, for example, to the presence of substructures.

Therefore, both from a model dependent and a model independent approach we obtain compatible values
for σ2

b,intrinsic proj. We conclude that when deriving cluster masses from observables tracing the total mass (for
instance, the lensing effect), the intrinsic effect of the projection introduces an error in the M500 estimates of
10% to 14%. These values could probably vary if the κ-maps are created by integrating the particles in the
simulation within a different depth.

7.4.4 Total: σ2
b,tot

Finally, we quantify the total variance of the bias along the sample and the scatter from cluster to cluster.
We compute, following Eq. 7.9, the total variance of the bias in our sample by accounting for all the clusters,
with all the projections and their fit uncertainties. Following Eq. 7.10, we obtain the excess with respect to the
projection and fitting effects. All the values are given in Table 7.2.
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The total dispersion is significantly larger than the average projection effect. This could be due to some
clusters with a very important projection effect (right panel in Fig. 7.8) that might be affecting significantly
σ2

b,tot. But it could also originate from the scatter of the mean bias values per cluster. We compute first the
mean bias per cluster c accounting for the masses reconstructed from all the chains for the three projections
convergence maps: < bκ >c=< (M500 −Mκ

500)/M500 >. Then, we quantify how different the mean biases for all
the clusters are in the sample. We define the variance of the mean biases, σ2

b,mean, as:

σ2
b,mean =

1
Nclusters

Nclusters∑
j=1

(< bκ > j −
〈
< bκ >c

〉
)2, (7.22)

where ⟨< bκ >c⟩ is the mean over the mean biases of all the clusters. Results are shown in Table 7.2.

The missing dispersion inσ2
b,tot seems to be well explained by the dispersion of the mean bias across clusters,

σ2
b,cluster−to−cluster ∼ σ

2
b,mean. We notice that it is a model dependent effect, since results for NFW and Einasto

differ significantly, NFW results being more scattered with respect to ⟨< bκ >c⟩. This difference could be due to
the fact that the NFW reconstructions fail to describe the mass of some of the clusters and compared to Einasto
ones the NFW fitting uncertainties are not large enough to account for it.

7.4.5 Intrinsic scatter: σ2
b,cluster−to−cluster

The dispersion of the bias from cluster to cluster can be caused by multiple effects. We investigate here the
impact of the limitations of our data set and of the mass, redshift and dynamical state of the clusters.

Limitations of the data set

We only consider 3 projections per cluster and the mean bias obtained from these 3 may not be a good
representation of the true mean bias. We test the impact of this effect using the four clusters for which we have
100 projections (Table 7.3). For each cluster we calculate the mean bias accounting for the 100 projections.
Values are shown as vertical dashed lines in Fig. 7.13. At the same time, we select randomly three projections
out of the 100 and compute the mean for those trios. The histograms in Fig. 7.13 show the results for 100
realisations. They illustrate that the mean bias < bκ >c estimated from 3 random projections can in some
cases be significantly different from the true one. Although histograms are centred in the mean bias of the 100
projections, their variance is of the order of ∼ 0.01. The latter also contributes to σ2

b,cluster−to−cluster or σ2
b,mean.

Figure 7.13: Mean bias per cluster. The vertical lines show the mean bias when using 100 projections to reconstruct the mass. The
histograms are obtained from the mean bias computed by taking randomly 3 projections out of the 100 available 100 times.

Impact of mass and redshift

There could be also a correlation between the intrinsic properties of clusters (mass, redshift, etc.) and the
measured biases. To investigate these effects we separate our sample in subsamples. We choose a binning close
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# of clusters z = 0.490 z = 0.592 z = 0.700 z = 0.817

M500/1014M⊙ < 4 3 5 10 2

4 ≤ M500/1014M⊙ < 6 13 10 15 8

6 ≤ M500/1014M⊙ < 8 14 6 7 6

8 ≤ M500/1014M⊙ < 10 12 0 4 1

10 ≤ M500/1014M⊙ 3 2 1 0

Table 7.5: Classification of twin samples’ clusters in mass and redshift bins. We give the number of clusters per bin.

to the one used for the NIKA2 LPSZ (Sect. 3.1): four bins in redshift (one per snapshot) and five bins in mass
(in the NIKA2 LPSZ only two bins in redshift are considered, but with the objective of observing any evolution,
we choose to distinguish four). The five bins in mass are defined in Table 7.5, where we also report the number
of clusters in each mass and redshift bin.

We show in Fig. 7.14 the evolution of the mean bias with redshift and mass for NFW and Einasto mass
reconstructions. A slight evolution of the bias with redshift is observed for NFW results, which is less evident
for Einasto. A similar trend is confirmed in Euclid Collaboration et al. (2023) [169] for the bias of M200 masses
with redshift. In that work, they claim that the evolution is due to the low weak lensing signal-to-noise at
high redshift, but this argument does not explain our results, since we have not modified the signal-to-noise
ratio depending on the redshift and the available number density of background sources. In the right panel in
Fig. 7.14 we observe that in our case and for the Einasto model the bias increases with the true M500, contrary
to the evolution with M200 obtained in Euclid Collaboration et al. (2023) [169]. We note, in any case, that our
results are compatible with no evolution with redshift and mass.

Figure 7.14: Bias for clusters in different redshift (left) and mass (right) bins. We give the mean value and the σb,mean scatter for the
mean bias of clusters in each bin. Results for NFW and Einasto models are shown in orange and purple, respectively, with a line as a
guide to the eye.

Impact of the dynamical state

The dynamical state of clusters can also be related to the bias of masses reconstructed from projected maps
and to their dispersion. To classify the clusters in our sample according to their dynamical state, we use the fs

and ∆r indicators at R200 (and R500). They correspond, respectively, to the ratio between the sub-halo masses
and the cluster mass within R200 (R500) aperture, and, to the offset between the centre of mass of the cluster
and the maximum density peak position, normalised by R200 (R500). Following the definitions in De Luca et al.
(2021) [88], clusters are relaxed (disturbed) if fs < 0.1 and ∆r < 0.1 ( fs > 0.1 and ∆r > 0.1). Otherwise, we
consider them in an intermediate dynamical state.



CHAPTER 7. MASS BIAS FROM PROJECTED MASS MAPS IN THE THREE HUNDRED 183

Figure 7.15: Bias dependence on the dynamical state of clusters within R200. Left: distributions of the mean bias per cluster for relaxed
(green), intermediate (blue) and disturbed (red) clusters. We show the bias from NFW (left) and Einasto (right) reconstructions. Right:
distributions of the variance of the bias per cluster accounting for three projections. Clusters are classified according to their dynamical
state and results for NFW (left) and Einasto (right) are shown. The vertical lines show the mean values of the distributions.

Figure 7.16: Summary of bias properties depending on the dynamical state of clusters within R200 (empty) and R500 (filled). Left: mean
(circle) and median (star) of the mean biases of each type of cluster. Right: mean and median of the σ2

b, 3 projections for all the clusters of
each type. We show in green, blue and red the results for relaxed, intermediate and disturbed clusters, respectively.
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In the left panels in Fig. 7.15 we present the distribution of the mean bias per cluster independently for
relaxed (green), intermediate (blue) and disturbed (red) clusters, classified with the indicators at R200. The
variance of these mean biases from cluster to cluster is slightly larger for the disturbed sample (σ2

b, mean =

0.0679 and 0.0401 for NFW and Einasto, respectively) than for the relaxed one (σ2
b, mean = 0.0592 for NFW

and 0.0264 for Einasto). On average, relaxed clusters are less biased than disturbed ones. Clusters that are
classified as intermediate have unpredictable behaviour.

In the right panels in Fig. 7.15 we show the variance of the bias per cluster as computed from the three pro-
jections. Although we would expect to detect the departure from sphericity in the measurement of σ2

b,3 projections,
from these results we observe no difference between relaxed and disturbed clusters, and the three subsamples
(relaxed, intermediate and disturbed) give scatter values that are compatible with those of the full sample.

The classification of clusters changes if we use the dynamical state indicators at R500. In Fig. 7.16 we
summarise the mean and median values obtained from the distributions in Fig. 7.15 for dynamical states of
clusters defined within R500 and R200. From this figure, the bias and scatter of masses reconstructed with our
method seem weakly correlated to the relaxation status of the galaxy clusters.

In Euclid Collaboration et al. (2023) [169] authors used stronger constraints to classify clusters as relaxed:
they considered relaxed systems if fs < 0.1 and ∆r < 0.0524 or if fs < 0.1, ∆r < 0.04 and 0.85 < η < 1.15
(with η the virial ratio, as in Cui et al. (2018) [234]), all within R200, and unrelaxed otherwise. Following this
classification, they concluded that for unrelaxed clusters the fitting procedure is less efficient than for relaxed
ones, but that the mean bias of both types of clusters is completely consistent with that of the full sample.

7.4.6 Summary

In this section, we have quantified the different contributions to the dispersion of mass estimates of clus-
ters reconstructed from convergence maps. We find that M500 cluster masses reconstructed from convergence
maps have an uncertainty of the order of 20% that corresponds to uncertainties in the fitting procedure and
varies with the chosen model. In addition, a 10 to 14% uncertainty should be added to account for intrinsic
projection effects. Regarding the variation of the bias along the cluster sample, which is of the order of 20%
(σ2

b,cluster−to−cluster = 0.06 for NFW and 0.04 for Einasto), we conclude that it is probably overestimated due to
the limited number of projections per cluster available. When we try to correlate the bias and its dispersion to
intrinsic characteristics of clusters, we find that redshift, mass and dynamical state appear weakly correlated to
the bias. Additional effects that we have not considered in this analysis, such as the presence of substructures
along the line-of-sight, could also be at the origin of the cluster-to-cluster scatter in observations.

7.5 Comparison to gas observables

As investigated in several works (e.g., Meneghetti et al. (2010) [390], Rasia et al. (2012) [347]), the spatial
distribution of the gas in the ICM does not follow necessarily the same distribution as the rest of the matter.
This implies that the above conclusions may not apply to masses reconstructed from gas observables. In this
section we compare the projection effect obtained for total matter observables to the effect for gas observables.

To measure the impact of the projection when estimating masses from gas maps we take two approaches.
The most direct option consists in measuring the mass of the gas from the gas mass maps (Sect. 7.1.2). We
compute MGas,cyl

500 by integrating the gas mass maps up to θ500. The distribution of dispersions for the three
masses calculated from the different projections is shown for all the clusters in the magenta histogram in
Fig. 7.11. These results reflect the impact of the orientation as regards the arrangement of the gas in the cluster,
but we note that MGas is not an estimate of the total mass.

A less direct option consists in estimating the mass from the integrated Y500 signal in the y-maps by applying
a Y500 − M500 scaling relation. First, the signal in the y-maps is integrated up to the true θ500 for each cluster,

24∆r is named xoff in Euclid Collaboration et al. (2023) [169]
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Figure 7.17: Y500−M500 scaling relations for cylindrically integrated SZ signal with respect to spherically (right) and cylindrically (left)
integrated masses. Black dots correspond to the values per cluster in our sample, while the blue line shows the best-fit relation. In the
right panel the solid brown line shows the result from Planck Collaboration et al. (2014) [5], and the black dash-dotted is from Nagarajan
et al. (2019) [396]. The pink dotted and green dashed relations are the results of Cui et al. (2018) [234] for the GADGET-MUSIC and
GADGET-X simulations (of all clusters at z = 0).

which gives the cylindrically integrated Compton-y parameter Ycyl
500. We then convert the Ycyl

500 in M500 assuming
a given scaling relation.

There are several scaling relations in the literature that relate Y500 to M500 (e.g., A10 and Cui et al. (2018)
[234]). However, most of them look for a relation between the observed Ycyl

500 and the spherical mass Msph
500. In

our case we build a Ycyl
500 − Mκ,cyl

500 scaling relation for our sample that will allow us to compare cylindrically
integrated masses.

Building the Y500 − M500 scaling relation

We construct our own scaling relation following the parametrisation in Eq. 16 in Arnaud et al. (2010) [70]:

h(z)−2/3 Y500 = β

 M500

3 × 1014 h−1
70 M⊙

α h−1
70 (7.23)

where Y500 is in Mpc2 and M500 in M⊙. Here h(z) = E(z) is the ratio of the Hubble constant at redshift z to its
present value, and, h70 the Hubble constant in units of 70 km/s/Mpc.

We build two scaling relations that relate the cylindrical Y500 to the spherical and cylindrical M500 mass.
The spherical quantities are computed from the ICM profiles: Msph

500 is obtained by evaluating the mass profile
at R500, i.e. the true M500 throughout this chapter. The cylindrical quantities Mcyl

500 and Ycyl
500 are calculated by

integrating the signal within θ500 in the κ- and y-maps. In each case, we fit the data to the model represented
by Eq. 7.23 using the orthogonal BCES method. Uncertainties on the best-fit parameters are estimated from
100000 bootstrap resamples of the data. We show the SRs in Fig. 7.17, as well as the best-fit parameters (top
legends in the figure). The slopes of both relations are consistent, but since the cylindrically integrated masses
are larger than spherically integrated ones, the intercepts are not compatible.

We compare, as in Fig. 10 in Cui et al. (2018) [234], the Ycyl
500 − Msph

500 relation to results in the literature.
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In Cui et al. (2018) [234] authors computed the scaling relation using all THE THREE HUNDRED clusters at
redshift z = 0, for both GADGET-X and GADGET-MUSIC flavours. The SR obtained from our sample has a lower
normalisation and slightly steeper slope than the results obtained with GADGET-X simulations in Cui et al.
(2018) [234]. The differences may be due to both the considered cluster sample and the redshift range. The
GADGET-MUSIC scaling relation from Cui et al. (2018) [234] has an even smaller intercept value, showing the
impact of the hydrodynamical model on the simulation. In the same figure, we also compare the results to the
SRs obtained from observations in Planck Collaboration et al. (2014) [5] and Nagarajan et al. (2019) [396].
Our SR lies between both observational results, with a flatter slope than Planck Collaboration et al. (2014) [5]
and steeper than Nagarajan et al. (2019) [396].

By making use of the SR in the left panel in Fig. 7.17, we compute the Mcyl
500 for each Ycyl

500. The dispersion of
the recovered masses for different projections of a single cluster allows us to quantify, to first order, the intrinsic
projection effect. The empty green histogram in Fig. 7.11 shows the distribution of the dispersion of the biases
estimated for all clusters from y-maps.

We observe that both approaches (from gas mass and y-maps) suggest an intrinsic projection effect of
σ2

b,intrinsic proj ∼ 10−4 (a few percent scatter on M500) for the gas, meaning that for the considered data and
within the same θ500 the gas is an order of magnitude less dispersed (i.e., more spherically distributed) than
the dark matter. This is in agreement with previous works [48, 290, 347, 389, 390] that also indicate that
mass reconstructions from gas observables are less scattered than those from dark matter observables due to the
difference in the spatial distribution of the matter.

From the comparison between the bias of cylindrically integrated masses from the κ-maps and the bias of
masses obtained from y-maps (with the Ycyl

500 − Mκ,cyl
500 scaling relation) we obtain that their correlation is weak,

with a Pearson correlation coefficient of 0.28. The correlation is stronger between the bias dispersions (i.e., σb)
measured from the three random projections in κ- and y-maps: r = 0.55.

7.6 Conclusions

In this chapter we have studied the bias of galaxy cluster mass estimates reconstructed by fitting three
dimensional NFW and Einasto density models to the projected mass density profiles obtained from convergence
maps. We have performed the analysis making use of THE THREE HUNDRED GADGET-X hydrodynamical
simulated clusters, selected to be representative of the NIKA2 LPSZ sample: THE THREE HUNDRED-NIKA2
LPSZ twin samples. All the results shown here were obtained with the 122 clusters of the three twin samples
combined (Sect. 7.1.1). We checked that conclusions do not vary from one twin sample to another.

We decided to fit the mass density profiles accounting for all the radial ranges available. In doing so, we
have re-demonstrated the importance of the considered radii and the different behaviour of the models with
respect to this. Although the flexibility of the Einasto model permits fitting the projected density profiles by
accounting for the different slopes, in our case the fit is driven by the inner and outer bins and it fails to describe
the mass at ∼ R500. The opposite happens with the NFW model. These results are related to the uncertainties of
the projected density profiles, that in this analysis were computed from the dispersion in each radial bin. Some
works in the literature [379] choose ad hoc the radial range and conclude that, as expected, models with more
parameters fit better the density profile and therefore, give lower biases. By contrast, in this study, we have
shown that a projected mass density fit that is overall good does not give necessarily a good M500 estimate.

But even if NFW and Einasto mass reconstructions are differently biased, we have observed that both
the mean bias and the scatter of the recovered masses are correlated for the two models. This could mean
that, despite important modelling effects, individual relative cluster properties are preserved in both analyses.
Quantitatively, the NFW M500 masses are biased by 3%, which is in agreement with the lowest bias estimates
from previous works [379, 390]. It is not the case for our Einasto reconstructions, which present a larger bias
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(20%) because the procedure is ill-fitting the Σ-profiles at ∼ R500.

Regarding the uncertainties associated with the mass estimates, we have considered different contributions.
With our approach, the uncertainty of the density profile fit to the convergence map introduces a mean uncer-
tainty on the mass of 15% and 25% for the NFW and Einasto profiles, respectively. An additional contribution
comes from projection effects and we estimate that about 10 to 14% of dispersion should be considered in
lensing mass estimates. Such a result matches the conclusions in the review from Pratt et al. (2019) [48]. Ac-
counting for the projection effect together with the uncertainties on the fitting, the scatter is of the order of
∼ 20 − 25%. We, therefore, confirm the values in Becker and Kravtsov (2011) [290] and Rasia et al. (2012)
[347], the latter being obtained from the fit of tangential shear profiles of simulated clusters.

When accounting for the full sample of THE THREE HUNDRED-NIKA2 LPSZ clusters, there is an excess
of dispersion with respect to what corresponds to projection effects. This depends also on the choice of the
model. We investigate the origin of such dispersion and we find, firstly, an uncertainty due to the fact that we
use only three projections per cluster. Making use of 100 random projections for four clusters, we verify that
considering only 3 projections per cluster the mean bias of the three can be scattered about up to 10%.

We tried to correlate the bias of masses reconstructed from convergence maps to intrinsic properties of
clusters and we checked the evolution of the mass bias with the true mass and redshift of clusters. Contrary
to Euclid Collaboration et al. (2023) [169], our results show a weak tendency of the bias to increase with the
cluster mass, which could be related to the important presence of substructures in massive halos [381]. Despite
our narrow range in redshift, we also observe a modest evolution of the bias with redshift, as in Giocoli et al.
(2012) [381] and Euclid Collaboration et al. (2023) [169].

In addition, we investigated the relation between the dynamical state and reconstructed masses of clusters,
concluding that disturbed clusters are slightly more biased than relaxed ones. Regarding the orientation of
clusters, we confirm that with our method and for clusters observed elongated along the line-of-sight, the re-
constructed masses are overestimated. On the contrary, masses are underestimated if the major axes of clusters
are on the plane of the sky. These conclusions are in agreement with the results in Euclid Collaboration et al.
(2023) [169], where THE THREE HUNDRED convergence maps are used to create weak lensing observables
for the preparation of the Euclid mission.

Finally, we also compared how spherical is the spatial distribution of total matter and gas by measuring the
dispersion from projection to projection in total mass and gas maps. Within R500 the gas is more spherically
distributed than the dark matter, which makes mass reconstructions from projected maps less dependent on the
orientation of the cluster. This was already known from previous studies [390] and motivated the observation
of clusters in X-rays and at millimetre wavelengths. For observational HSE-to-lensing mass biases estimated
as in chapters 5 and 6, this would imply that most of the projection scatter is introduced by the lensing mass
estimate.
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Current galaxy cluster observations with single-dish telescopes are limited at high angular resolution, which
prevents from resolving the structures in the core of clusters. As discussed before, at present, the NIKA2
camera at the 30-metre IRAM telescope and MUSTANG2 on the 100-metre Green Bank Telescope offer the
best capabilities. As described in chapter 2, NIKA2 maps the sky at 150 GHz and 260 GHz with 17.6′′ and
11.1′′ FWHM angular resolutions, respectively. MUSTANG2 has a 9′′ FWHM beam at 90 GHz. Increasing the
resolution is, at the moment, only possible with radio interferometers like ALMA and the NOrthern Extended
Millimeter Array (NOEMA). Recent works have demonstrated the power of ALMA observations to do cluster
science [47, 183, 397]. Competitive results in the Northern Hemisphere will only be possible if the SZ of
clusters can be detected with NOEMA. In this chapter, we present the basics of radio-interferometry and the
NOEMA instrument. We then describe the observations of the CL J1226.9+3332 galaxy cluster with NOEMA,
the characterisation of the point sources in the field and the detection of the thermal SZ effect.

8.1 Interferometry with NOEMA

Historically, radio interferometers have had an incomparable importance in the detection of clusters in SZ.
To name a few, the Very Large Array [398], the Very Small Array [399], the Ryle telescope [400, 401], the
Berkeley-Illinois-Maryland Array [402], the Sunyaev-Zeldovich Array [275] or the Arcminute MicroKelvin
Interferometer [403], imaged for the first time the SZ of clusters and performed observations of ∼ 60 objects
(see Carlstrom et al. (2002) [404] for a review on the status of cluster observations through the SZ effect at the
beginning of the century). Recently, the capabilities of the ALMA instrument have led to interferometric SZ
observations of clusters able to resolve structures and merger shocks in high redshift objects [47, 183, 397] at
arcsecond scales.
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Figure 8.1: A schematic representation of a radio interferometer. The figure shows two antennas, H1 and H2, separated by a physical
distance D and the light wavefront arriving from the θ direction. The red line represents the uv-plane, parallel to the wavefront and
perpendicular to the line-of-sight. The signal received in both telescopes is combined in the correlator. Figure modified from Thompson
et al. (2017) [405].

8.1.1 Interferometry

A radio interferometer is composed of a collection of antennas that observe simultaneously the same region
of the sky. According to the van Cittert-Zernike theorem, if a source is at large distance from the antennas
(compared to the relevant spatial scale of the source distribution), the light emitted by the source has no spatial
coherence, and the medium between the source and the antennas is homogeneous, then the spatial correlation of
the electric fields measured by two antennas in the plane parallel to the light wavefront is the Fourier transform
of the source brightness distribution, I(α⃗, ν), at the sky position α⃗

V(u⃗, ν) =< E(x⃗1, ν)E(x⃗2, ν) >= FT
[
I(α⃗, ν)

]
. (8.1)

E(x⃗1, ν) and E(x⃗2, ν) are respectively the electric field at the frequency ν measured in the first antenna at the
position x⃗1 and in the second antenna at the position x⃗2, all in the plane parallel to the wavefront. In Eq. 8.1 the
average is calculated over time and the correlation will only depend on the spatial frequency u⃗ = x⃗1− x⃗2 = (u, v).
V(u⃗, ν) is named visibility and it corresponds to the correlation measured by a pair of antennas in the uv-plane,
that is, in the aforementioned plane parallel to the light wavefront or perpendicular to the line-of-sight. Ideally,
if one could measure V(u⃗, ν) for every u⃗, it would be possible to reconstruct the brightness distribution of the
astrophysical object. In Fig. 8.1 we present a schematic representation of the simplest interferometer we can
have, with two antennas separated by a distance D and the red line indicating the uv-plane. Assuming again that
the astrophysical sources we are observing are distant enough to consider that their light reaching the antennas
is a planar wavefront, the pair of antennas will measure the signal with a geometrical time delay related to
the distance between them: τg = D sin θ/c, where θ is the direction of the observed source with respect to the
zenith. The correlator in Fig. 8.1 will combine the signals from the two antennas, so that the output is directly
the visibility V(u⃗, ν).

In practice, the uv-plane will never be perfectly and fully covered and, therefore, it will be impossible to
recover I(α⃗, ν). Instead, we will recover a dirty image of the source, ID(α⃗, ν), that is defined as the convolution
of the image of the source by the dirty beam, BD(α⃗, ν),

ID(α⃗, ν) = I(α⃗, ν) ∗ BD(α⃗, ν). (8.2)



CHAPTER 8. HIGH-RESOLUTION OBSERVATIONS OF THE SZ EFFECT WITH NOEMA 191

The dirty beam accounts for the incomplete coverage of the uv-plane and it can be defined as,

BD(α⃗, ν) =
∫

S (u⃗, ν)e−2πiu⃗·x⃗dx⃗, (8.3)

with S (u⃗, ν) the sampling function tracing the (not-)sampled uv positions: S (u⃗, ν) = 1 at (u, v) points where
visibilities are measured, and S (u⃗, ν) = 0 elsewhere. The better the uv-plane is sampled, the better will be the
reconstruction of the source brightness (Eq. 8.1).

In addition, the response of each antenna introduces an attenuation of the sky signal, that will depend on
the frequency ν. Including the contribution from this primary beam, Bprimary(α⃗, ν), we can write each complex
visibility as

V(u⃗, ν) =
∫

Bprimary(α⃗, ν)I(α⃗, ν)e2πiu⃗·α⃗dα⃗, (8.4)

and rewrite Eq. 8.2 as follows

ID(α⃗, ν) =
[
Bprimary(α⃗, ν)I(α⃗, ν)

]
∗ BD(α⃗, ν). (8.5)

The angular resolution of an interferometer is related to the distance D between the antennas. For a pair
of antennas with a geometric delay of τg, observing at a frequency ν and pointing towards the θ direction, the
phase of the interferometric fringe will be ϕ = 2πντg = 2πνD sin θ/c. If, instead, the antennas point towards
θ + ∆θ with respect to the zenith, the phase coherence will be ϕ + ∆ϕ = 2πνD sin θ/c + 2πνD cos θ∆θ/c. The
angular resolution at a given frequency ν will be the angular separation of a complete 2π fringe period,

θD =
∆θ

2π
=

1
D cos θ

c
ν
. (8.6)

From this equation, we observe that the resolution improves by increasing the distance between the two anten-
nas. In addition, if we write λ = c/ν we have θD = λ/(D cos θ), which for small θ corresponds to the λ/D used
when defining the angular resolution of single-dish telescopes (Sect. 2.1.1). Therefore, in some way, we could
think of two antennas separated by a distance D in an interferometer as a single-dish telescope of diameter
D. Limited by the size of the dishes, it will be impossible to measure the visibilities at small u and v with an
interferometer. Consequently, when performing the Fourier transform of the visibilities (Eq. 8.1) large angular
scales will be missing in the image of the source. To overcome this issue some works in the literature combine
interferometric data with single-dish observations [406, 407].

8.1.2 NOEMA at Plateau de Bure

The interferometric data used in this chapter were obtained with the NOEMA instrument [408, 409].
NOEMA is located at the Plateau de Bure, in the South of the French Alps at 2560 metres altitude above
sea level. Since September 2022, the interferometer comprises 12 antennas that can be moved along a T-shaped
track and can reach distances up to 1.7 kilometres. Each antenna is a Cassegrain telescope of 15 metre diameter,
limiting the above-mentioned smallest uv distance to 15 metres.

Every pair of antennas constitutes a baseline and measures a visibility. At a fixed configuration of the
interferometer, with N antennas there are simultaneously N(N − 1)/2 different baselines, and, therefore, the
same number of visibilities in different positions of the uv-plane. The 12 NOEMA telescopes can be placed in
different configurations, depending on the angular resolution and sensitivity required by the scientific case. The
noise on each visibility25 is given by the efficiency, η, the surface of the antenna, A, the system temperature,
Tsys, the integration time per visibility, ∆t, and the frequency resolution, ∆ν,

σV =

√
2kB

ηA
Tsys
√
∆t∆ν

. (8.7)

25See https://www.iram.fr/IRAMFR/GILDAS/doc/html/noema-intro-html/noema-intro.html for a technical descrip-
tion of NOEMA.

https://www.iram.fr/IRAMFR/GILDAS/doc/html/noema-intro-html/noema-intro.html
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Figure 8.2: Arrangement of the 6 overlapping regions mosaic chosen to observe CL J1226.9+3332 under the D19AB project. We also
show the profile and simulated map of the expected SZ emission.

Figure 8.3: Surface brightness map of CL J1226.9+3332 galaxy cluster from the 6-patches mosaic DDT NOEMA observations com-
bined. We also show as white contours the NIKA2 SZ map at 150 GHz in the left panel and at 260 GHz in the right panel.

The signal measured by each antenna is transmitted to the central building, where the PolyFiX correlator
processes the data. NOEMA heterodyne receivers can observe from 70 to 380 GHz. Each antenna is equipped
with two sideband receivers, the lower (LSB) and the upper sideband (USB) receivers, that cover a ∼ 7.7 GHz
bandwidth each.

Observations are carried out by the IRAM staff at the Plateau de Bure. Calibrated data containing the
visibilities and the related uncertainties in surface brightness units are supplied.

8.2 Observations of the CL J1226.9+3332 galaxy cluster

Aiming for the first SZ detection with NOEMA, the CL J1226.9+3332 galaxy cluster was thought to be
a suitable target. As presented in Sect. 4.1, this cluster has been widely observed and studied at different
wavelengths. It is the highest redshift cluster of the LPSZ and, therefore, one of the most compact. In addition,
it is a hot and massive cluster, which ensures a strong thermal SZ signal. We know from previous observations
that the SZ signal of the cluster is contaminated by point sources in the field and that, most probably, the core
of the cluster is disturbed. All of that leads to an interesting scientific case to be investigated at high angular
resolution.
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Figure 8.4: Coverage of the uv-plane for the lower sideband in the NOEMA single-field observations of CL J1226.9+3332. Different
colours correspond to different tracks.

The CL J1226.9+3332 galaxy cluster was first observed with NOEMA on Director’s Discretionary Time
(DDT) under the proof-of-concept project D19AB (PI: J. F. Macı́as-Pérez and F. Ruppin). Observations were
carried out in a 9-antenna compact configuration in the 72 − 96 GHz frequency range, considering a mosaic of
6 overlapping regions (shown in Fig. 8.2) and a total on-source integration time of 9.5 hours. Although two
point sources were identified in the field, sensitivity was not enough to detect the SZ effect of the cluster. We
show in Fig. 8.3 the combined NOEMA map from the 6-patches mosaic DDT observations. The white contours
indicate the S/N levels from the NIKA2 SZ map (Fig. 4.3) at 150 GHz (left) and 260 GHz (right). The bright
source to the south-east of the centre is in agreement with the NIKA2 260 GHz detection, also known as PS1
from Sect. 4.2.2.

In 2022 we requested 27 hours of observation (15.6 hours on source) targeting the core of CL J1226.9+3332
in single-field mapping (proposal S22BU, PI: M. Muñoz-Echeverrı́a). We chose the 10D configuration of the
interferometer, which is the compact configuration, best suited for maximising sensitivity at the expense of
a lower angular resolution. Given the weak and extended nature of the SZ signal, this is thought to be the
most appropriate observing mode for clusters. We requested a 5.2 µJy/beam sensitivity, with the low and
upper sidebands covering ∼ 70 − 78 GHz and ∼ 86 − 94 GHz frequency ranges, respectively. At the time
of writing this thesis, the observations are ongoing and we are now at half of the requested sensitivity. The
results presented in this chapter have been obtained with the single-field data that we have currently on hand. In
Fig. 8.4 we show the positions in u and v of the measurements performed by the NOEMA interferometer during
the observations of the CL J1226.9+3332 galaxy cluster for the lower sideband. Each colour corresponds to an
observing session. A better coverage is expected when observations will be completed.

By using the GILDAS26 tools, we converted the calibrated uv visibilities provided by IRAM into image space
maps (by reversing Eq. 8.1). The software gave us a spectral cube of dirty images for the observed region, with
a 20 MHz spectral resolution.

8.2.1 Point sources in CL J1226.9+3332

The high angular resolution of NOEMA can be exploited to characterise the point sources in the field of the
cluster. As we have seen in chapters 3 and 4, the impact of the sources on the SZ of clusters has to be accounted
for, in particular, if the sources lie close to the centre of the cluster [308]. Previous observations presented in
chapter 4 have shown that several submillimetre and radio galaxies are present in the field of CL J1226.9+3332.

From the spectral inspection of the NOEMA dirty maps, we identified a source with an emission line centred
26https://www.iram.fr/IRAMFR/GILDAS/

https://www.iram.fr/IRAMFR/GILDAS/
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Table 8.1: Observing frequency (in MHz) of different transitions at different redshifts. The first row indicates the redshift of the galaxy
assuming that the emission line at 70.6 GHz corresponds to each of the transitions in the first column. We show in bold the frequencies
we could have observed in the NOEMA data.

Redshift 0.633 2.265 3.898 5.530 7.162 8.794 10.426 5.971 10.464

Transition

CO(1 − 0) 70600

CO(2 − 1) 70600

CO(3 − 2) 105897 70600

CO(4 − 3) 94129 70600

CO(5 − 4) 88245 70600 82665

CO(6 − 5) 105887 84714 70600 99191

CO(7 − 6) 98825 82360 70600 70365

CI(1 − 0) 100483 75365 70600

CI(2 − 1) 99154 82635 70835 70600

at ∼ 70.6 GHz and located at (RA, DEC)J2000 = (12h27m00s, +33d32m36s). In the left panel in Fig. 8.5 we
show the spectrum of the source. The line extends from 70.5 GHz to 71 GHz. In the right panel we show the
map obtained by merging the bands in the mentioned frequency range. The emission of the source is clearly
visible, coincident with the PS1 source detected also in the mosaic-mode observations, and seems slightly
elongated towards the north-west.

Sources close to clusters can be high redshift objects lensed by the power of the deep cluster potential wells.
For this reason, the detection of this line can be particularly interesting to determine the redshift of the emitting
source. The estimation of a redshift requires as a minimum the identification of two species in the spectrum.
We check if the observed line corresponds to any of the usual molecular transitions in galaxies in Table 8.1.
The table indicates the possible redshifts of the source if the emission at 70.6 GHz corresponds to any of
the considered transitions. In addition, for those redshifts, we give the frequencies at which other transitions
should be observed. In bold we indicate the emission lines we could have seen in our data and that exclude
the corresponding redshifts. With the data on hand, we can not confirm any nor exclude all of the options, and
neither determine the redshift of the galaxy.

A more precise measurement of the frequency of the line will be needed to exclude, with strong arguments,
the z = 3.898 redshift, which should show a CO(4 − 3) emission line at 94.129 GHz, close to the upper limit
of our USB band. In any case, even if we finally conclude that the line is emitting at 70.5 GHz, the CO(4 − 3)
line should be observed at 93.995 GHz, which is nearly impossible given the frequency coverage of our bands.
A more detailed study and complementary observations searching for CO and other molecular transitions are
needed to shed light on the redshift of the source.

To avoid the contamination of the emission line in the measured fluxes, we then filtered out the LSB data
between the 70.5−71 GHz frequency range. We computed the continuum of the LSB and USB bands using the
MAPPING software in GILDAS and merged both bands to obtain, from the combined uv table, the dirty map in
Fig. 8.6. The resulting synthesised beam (resolution) in this map is of 5.0 arcsec× 3.4 arcsec at a position angle
of 45◦ and the Full Width Half Power (FWHP) of the primary beam is of 56.2 arcsec at 90 GHz. The map,
with an RMS of 12 µJy/beam, shows some positive detections and an extended negative bowl in the centre,
the darkblue region around the central source. The nature of this negative signal will be discussed in the next
section. In the right panel in Fig. 8.6 we show the dirty beam corresponding to the map in the left panel.

Regarding the compact sources, we recognise some of the point sources presented in Sect. 4.2. Very close
to the centre of the map lies the PS9 radio galaxy (Table 4.3), the BCG of the CL J1226.9+3332 cluster. This
source was undetectable in the NIKA2 150 and 260 GHz maps, but, as described in Sect. 4.2, we could account
for it from the extrapolation of the flux measured at 1.4 GHz in the VLA FIRST Survey. In addition, its flux
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Figure 8.5: Emission line at ∼ 70.6 GHz. Left: detection of the line in the spectrum of the LSB at (RA, DEC)J2000 = (12h27m00.0s,
+33d32m33s). Figure by R. Neri. Right: dirty map for the combination of the channels between 70.5 GHz and 71 GHz.

at 1.4 GHz is given in the Table 1 in Sayers et al. (2013) [283] from NVSS observations: 4.3 ± 0.5 mJy. The
Table 4 in Korngut et al. (2011) [266] summarises also different estimates. According to Korngut et al. (2011)
[266] at 1.4 GHz the flux of PS9 is of 3.61 ± 0.22 mJy and 4.34 ± 0.47 mJy from NVSS and FIRST data,
respectively. The measurements with OVRO, BIMA and the SZA put an upper limit of < 0.2 mJy at 30 GHz.
And, by extrapolating the fluxes with a power law spectral energy distribution, according to Korngut et al.
(2011) [266] the source at 90 GHz has a flux of < 0.13 mJy.

Moreover, the previously identified source emitting at 70.6 GHz coincides with the PS1 submillimetre
galaxy characterised in Sect. 4.2 from the NIKA and NIKA2 maps, as well as from Herschel catalogues. To the
south-west of the centre of the map in Fig. 8.6 a ∼ 5σ positive detection indicates the presence of a potentially
new source. Although the detection is weak, we will name it PS10 and try to measure its flux. Authors in
Korngut et al. (2011) [266] state also that MUSTANG observations at 90 GHz suggest the presence of a point
source 10 arcsec north of the cluster’s X-ray peak (i.e., cluster centre), which was not detected by Mroczkowski
et al. (2009) [265] at 30 GHz. They speculate this source to be a high-redshift lensed galaxy with a rising
spectrum that would correspond to a dusty star-forming galaxy. We do not detect such source in the NOEMA
single-field data.

For NOEMA observations, we perform the fit of the point sources directly in the space of visibilities.
Thanks to the uv fit routine included in MAPPING we can simultaneously fit multiple sources, their fluxes,
positions and sizes. For point-like sources we used the point function, which assumes that they are unresolved
for NOEMA. Together with the positive sources we had to account for the negative emission observed in the
centre of the map. If this emission, probably due to the SZ effect in the cluster, is not considered, the fluxes
of the sources are underestimated. We modelled the negative extended emission with the circular gaussian
function of uv fit. The resulting values from the fit are summarised in Table 8.2. The left panel in Fig. 8.7
shows the dirty map once the fitted extended emission has been subtracted in the uv space. We observe that the
large structures in Fig. 8.6 have now significantly disappeared and that the signal of the central radio source is
enhanced. In the right panel in Fig. 8.7 we present the dirty map after the subtraction of the sources and the
negative extended emission. We have no indication of additional detections in this residual map.

Aiming to quantify the impact of PS10, we repeated the fit in the uv space but only for PS1, PS9 and the
negative component, in other words, ignoring PS10. The resulting positions, fluxes and FWHP are completely
compatible with the results in Table 8.2. Therefore, it is hard to say whether PS10 is a new detection or if we are
just fitting some noise that has been boosted by the positive structure that the central negative signal introduces.
We hope that increasing the S/N with the observations to come will allow us to conclude on this.
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Figure 8.6: Dirty map (left) and dirty beam (right) for the combination of LSB and USB data, once the 70.5 − 71 GHz frequency range
is filtered.

Table 8.2: Point sources and negative extended emission identified with NOEMA. We give the best position and flux for each point
source fitted to the visibilities. We also provide the position, flux and size of the simultaneously fitted negative emission. None of these
values have been corrected for the primary beam attenuation.

Coordinates J2000 Source Function Flux FWHP

[µJy] [arcsec]

12h27m00.11s +33d32m36.3s PS1 point 38 ± 10

12h26m58.11s +33d32m48.5s PS9 point 81 ± 11

12h26m57.52s +33d32m24.2s PS10 point 60 ± 10

12h26m57.83s +33d32m49.1s SZ of the cluster circular gaussian −2448 ± 662 24.5 ± 2.2
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Figure 8.7: NOEMA dirty maps. To obtain the map in the left panel we have subtracted the fitted negative emission from the visibilities.
For the right panel, we have subtracted the contribution of the point sources (PS1, PS9 and PS10), in addition to the negative extended
emission.

In Fig. 8.8 we show a zoom-up of the NOEMA dirty map from Fig. 8.6 with the NIKA2 and MUSTANG
contours for the CL J1226.9+3332 galaxy cluster observations superimposed in black and white, respectively.
The red and white circles correspond to the same sources as in Fig. 4.3, while the stars indicate the positions
obtained from the analysis of NOEMA data. We observe that the so-called PS10 does not agree with any
detection in the NIKA2 260 GHz map, and neither does with missing SZ in the 150 GHz map. MUSTANG
contours in the right panel indicate a 1σ positive detection coincident with PS1.

From the flux measurements in Table 8.2, we have a more complete picture of the spectral energy distri-
bution of the galaxies in the field of CL J1226.9+3332. In Fig. 8.9 we put together all the aforementioned
flux estimates and correct the NOEMA fluxes for the primary beam attenuation. In the left panel we present
the spectral energy distribution for PS9. To have a prior estimate of the flux of this radio source at 150 GHz,
in chapter 4 we had to assume a synchrotron spectrum F(ν) = F0(ν/ν0)α. We considered a power law with
α = −0.7 ± 0.2, but the NOEMA measurement (empty marker in Fig. 8.9) seems to indicate that the spectrum
of the source is probably steeper (α ∼ −0.9), as shown by the dashed line. The posterior flux estimate from the
joint fit of the cluster’s pressure profile and the flux of sources in the NIKA2 150 GHz map gave a value for PS9
(cyan marker in the left panel of Fig. 8.9) in agreement with the SED preferred by the NOEMA results. Thus,
we can confirm that, in the analysis of the pressure profile of CL J1226.9+3332 in chapter 4, we accounted
correctly for the contamination by PS9. In the right panel we present the SED for PS1. The pink area shows
the modified black-body SED fitted in Sect. 4.2 to the Herschel and NIKA2 260 GHz fluxes. The extrapolation
of this SED at 150 GHz was used to have a prior estimate to be used in the NIKA2 150 GHz map fit and the
resulting flux is the cyan data point with imperceptible error bars. The measurement with NOEMA agrees with
the spectrum of a dusty galaxy and it is compatible within 1σ with the best-fit model.

8.2.2 The SZ effect in CL J1226.9+3332

The ultimate goal of this analysis is to prove the capability of NOEMA to observe galaxy clusters through
the SZ effect. The dirty image in Fig. 8.6 shows already two signs of such a signal. On the one hand, a negative
extended emission is surrounding the central radio source. We observe in Fig. 8.8 that this signal is coincident
with the SZ peak in the NIKA2 150 GHz and MUSTANG maps. On the other hand, on both sides of the
negative bowl we observe diagonal positive structures, that disappear when subtracting the negative emission
from the visibilities (see Fig. 8.7).

In Fig. 8.10 we show for illustration purposes a model of a cluster SZ signal contaminated by two sources.
In the left panel we present the model I(α⃗, ν) and in the right panel we show the dirty image obtained following
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Figure 8.8: Zoom-up of the NOEMA dirty map in Fig. 8.6 with contours from other CL J1226.9+3332 observations. Contours in the
left and central panel correspond respectively to NIKA2 150 GHz and 260 GHz S/N levels, starting from 3σ and spaced by 3σ. White
and red circles indicate the point sources identified in the NIKA2 analysis, while the white stars show the positions fitted to NOEMA
data. White contours in the right panel correspond to MUSTANG S/N levels obtained from https://safe.nrao.edu/wiki/bin/
view/GB/Pennarray/MUSTANG_CLASH. We show the [-4, -3, -2, 1, 2] σ levels, with solid and dashed lines for positive and negative
values, respectively.

Figure 8.9: Spectral energy distributions of the point sources in the field of CL J1226.9+3332. Left: synchrotron SED of the PS9 radio
source. Blue and purple markers show the flux measurements at 1.4 GHz. For visibility purposes, we have shifted in frequency three
of the markers. In orange and green we show the upper limits given by Korngut et al. (2011) [266]. The empty circle is the fit to
NOEMA data and the cyan marker shows the flux from the joint fit to the NIKA2 150 GHz map. The dashed line represents the best
spectrum describing the 1.4 GHz and NOEMA measurements. Right: modified black-body spectrum of PS1. In red and orange the
flux at 260 GHz from NIKA2 and NIKA data, respectively, and in green and blue Herschel SPIRE and PACS fluxes. In pink we show
the 1σ and 2σ contours of the fit to NIKA2 260 GHz, Herschel SPIRE and PACS data. Empty and cyan markers correspond again to
NOEMA and NIKA2 150 GHz fluxes.

https://safe.nrao.edu/wiki/bin/view/GB/Pennarray/MUSTANG_CLASH
https://safe.nrao.edu/wiki/bin/view/GB/Pennarray/MUSTANG_CLASH
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Figure 8.10: Illustration of the impact of the incomplete uv coverage on the surface brightness map reconstructed from interferometric
observations without noise. Left: surface brightness map of a mock cluster SZ signal and two positive sources. Right: the mock signal
in the left panel multiplied by the primary beam and convolved with the dirty beam corresponding to NOEMA observations with the
coverage in Fig. 8.4. Maps are shown in arbitrary units.

Eq. 8.5, that is, the model multiplied by the primary beam (of 56.2′′ FWHM) and convolved with the dirty
beam. We observe that the incomplete coverage of the visibility space encoded in the dirty beam creates
complex structures in the dirty image. Note the similarity of the structures in Fig. 8.6 with the simplistic
simulation in Fig. 8.10. Thus, from the visual inspection of the dirty map, we see hints of SZ.

We then subtract from the NOEMA visibilities the contribution of the point sources (Table 8.2) and save the
data in a new uv table. The outcoming dirty map is shown in Fig. 8.11. The negative signal in the centre and
the positive structures in the south-east to north-west direction are now more obvious.

However, raw interferometric data and the associated uncertainties being defined in the uv-plane, it is pre-
ferred to detect and model the signal in the visibility space instead of in the image space [410]. By computing
the average visibility values in concentric annuli in the uv-plane, we obtain the profiles shown with empty
markers in Fig. 8.12. The top panel shows the real part of the visibilities, while the bottom panel corresponds
to the imaginary component. We show with black circles the visibilities when subtracting PS1, PS9 and PS10
from the data and with grey stars without any subtraction. Although removing the sources has an impact on the
remaining visibilities, in particular at intermediate angular scales, both profiles are compatible. The negative
signal in the real component of the visibilities in Fig. 8.12, without such systematic deviation in the imaginary
part, is the evidence of the SZ in our data.

In order to check if the amplitude of the detected SZ signal is the expected one, we compare the visibilities
measured with NOEMA to the best SZ models estimated from other data sets. We make use of the galario27

[411] library: an SZ model map multiplied by the primary beam is given to galario, as well as the table
containing the visibilities, the corresponding weights (inverse of the square root of the variance related to each
visibility, Eq. 8.7) and their positions in the uv-plane for the NOEMA data. As an output galario provides the
input SZ model in the visibility space. Given that the output model samples the same u and v positions as the
NOEMA data, it is affected by the same dirty beam.

We repeat this procedure for different SZ models obtained for CL J1226.9+3332. We show in Fig. 8.12 the
best-fit gNFW pressure model reconstructed in Romero et al. (2017) [118] from the combination of MUSTANG
and Bolocam data in solid blue and the result from the joint MUSTANG+Bolocam+NIKA fit from Romero et
al. (2018) [251] with the dashed blue line. The orange profiles correspond to 100 SZ models obtained by

27https://mtazzari.github.io/galario/index.html

https://mtazzari.github.io/galario/index.html
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Figure 8.11: Same as Fig. 8.6 once the point sources have been subtracted from the visibilities.

randomly sampling the density distributions of the gNFW parameters in Fig. 4.9. They result from the joint
fit to Planck, NIKA, NIKA2, MUSTANG and Bolocam data for CL J1226.9+3332. In addition, the solid and
dashed red lines correspond to A10 pressure profiles for masses of M500 = 5 × 1014 M⊙ and M500 = 6.5 × 1014

M⊙, respectively. They represent the ∼ 1σ limits of the Planck constraints28. Planck measured the integrated
SZ emission of the cluster, and assuming the A10 universal pressure profile and scaling relation, estimated that
the mass of CL J1226.9+3332 is MPlanck

500 = 5.7+0.63
−0.69 × 1014 M⊙. We observe in Fig. 8.12 that the NOEMA data

points are compatible with the results in this thesis.

The next step will be to fit, as for the arcminute scale SZA analysis in Mroczkowski et al. (2009) [265]
and in Muchovej et al. (2007) [275] or the earlier OVRO and BIMA analysis in Joy et al. (2001) [269], the
pressure profile of CL J1226.9+3332 to the NOEMA data. Nonetheless, given the filtering of large scales by
interferometers, it might be more interesting to solve the short-spacing problem, that is, the missing small
uv distances, with single-dish data (as already done, for example, in Di Mascolo et al. (2019) [406]). This
way we will try to probe the maximum number of angular scales as possible and have a complete view of the
distribution of the gas in the cluster. However, we anticipate that combining NOEMA and NIKA2 data may
be complex given the different observing frequencies and sensitivities of both instruments. A higher signal-to-
noise detection of the SZ will be needed to demonstrate also the departure from sphericity of the signal in the
core of the cluster and, therefore, the above-mentioned disturbance (Sect. 8.2 and 4.1).

8.3 Conclusions
In this chapter, we have analysed the interferometric data obtained with the NOEMA instrument for the

CL J1226.9+3332 galaxy cluster. After the unfruitful attempt to detect the cluster in a mosaic-like observation
mode, single-field observations are currently ongoing and we are now at half of the requested sensitivity.

With the data on hand, we have studied the point sources in the field. The angular resolution of NOEMA has
enabled the flux measurement of the radio source in the centre of the cluster at 90 GHz, which was not detectable
with MUSTANG. With it, we have verified the solidity of the extrapolation of the flux at 150 GHz. NIKA2
and, in particular, LPSZ cluster observations could benefit from a better knowledge of the spectral energy
distribution of the (almost) always very central radio loud BCGs with this type of NOEMA data. Characterising
these sources can be crucial since they are not detected at higher frequencies, but can bias the SZ signal in the
inner part of the cluster. In addition, the spectrum of the PS1 source shows an emission line at ∼ 70.6 GHz in

28https://heasarc.gsfc.nasa.gov/W3Browse/all/plancksz2.html

https://heasarc.gsfc.nasa.gov/W3Browse/all/plancksz2.html
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Figure 8.12: Real (top) and imaginary (bottom) components of visibilities as a function of binned uv distances. Circles show the profile
for the NOEMA data once the contribution of the point sources has been subtracted from the visibilities. Stars correspond to the profile
before point source subtraction. Error bars indicate 1σ uncertainties propagated from the error bar associated with each visibility.
Dashed and solid blue lines represent the best SZ models from Romero et al. (2018) [251] and Romero et al. (2017) [118]. In orange
we show the gNFW models obtained in Fig. 4.9 and the red lines correspond to A10 pressure profiles for masses of M500 = 5 × 1014

M⊙ (solid) and M500 = 6.5 × 1014 M⊙ (dashed).
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NOEMA data, which motivates further spectral observations.

Moreover, we have been able to detect, for the first time with NOEMA, the SZ effect of a cluster. We have
verified that the position and amplitude of the SZ signal are in agreement with previous observations and that
this result is not sensitive to the subtraction of the point sources in the field. This detection demonstrates the
power of NOEMA to do cluster science. Complementary to ALMA in the Northern Hemisphere, the high
angular resolution of NOEMA will be very important to resolve high-redshift compact clusters.

Once the observations of CL J1226.9+3332 will be completed, we plan to repeat the analysis presented in
this chapter, most probably exploiting the NOEMA capabilities together with the single-dish data from NIKA2
and MUSTANG.



Conclusions and perspectives

The main topic of my PhD thesis has been cluster science from a multi-observation and multi-probe perspective.

An important part of my work has been developed in the framework of the NIKA2 SZ Large Programme.
I have become part of the NIKA2 collaboration and participated in observation campaigns at the IRAM 30-
metre telescope, both remotely and on-site. Getting involved in data acquisition campaigns has allowed me
to understand the origin of different noise contributions in NIKA2 data and the observational challenges that
detecting the weak SZ signal requires. My overall implication in the NIKA2 collaboration has granted me the
core team status.

The processing of NIKA2 data for SZ observations of clusters of galaxies is a delicate procedure based
on the correlation of the signal detected by the different KIDs. The procedure aims at the subtraction of
contaminants, including atmospheric fluctuations and electronic noise, with minimal filtering of the SZ signal.
In this regard, I have demonstrated that the filtering of the signal at large angular scales is the major problem in
NIKA2 cluster SZ analyses. In addition, I have proposed a two-dimensional transfer function that allows us to
account for the anisotropic filtering introduced by the scanning strategy and data processing procedures. This
option is now implemented in the official LPSZ pipelines. NIKA2 maps reconstructed by using different data
reduction pipelines have different characteristics. However, I have shown that if the noise properties and the
effect of filtering are well propagated, we reconstruct compatible pressure profiles, all within the limits of the
filtering. This was a very reassuring result for the NIKA2 LPSZ. The performance of the NIKA2 camera has
demonstrated the power of KIDs technology for future experiments.

For the PSZ2 G228.16+75.20 and CL J1226.9+3332 galaxy clusters in the NIKA2 LPSZ sample, I have
performed detailed analyses of their SZ maps. Both studies required a careful treatment of point sources in the
field. The modified black-body spectrum used to characterise the spectral energy distribution of submillimetre
sources needs a well-constrained slope at high frequencies so that the temperature of the emitting galaxies
can be properly estimated. I generalised the existing SED fitting tools to account for flux measurements at
high frequencies and, thus, improve on point source subtraction. Moreover, we evidence that the LPSZ is a
unique programme allowing us to study galaxies in the vicinity of clusters from intermediate to high redshifts
at millimetre wavelengths.

In addition, I reconstructed the thermal pressure profiles of the mentioned clusters and investigated the
problems in the hydrostatic mass reconstruction methods. To overcome the filtering issues of the NIKA2 data
at large angular scales I proposed modelling the SZ maps with a radially binned pressure model, that can then
be easily combined with external data sets. At the same time, to solve the problems in the HSE mass estimation
related to the computation of the derivative of the pressure profile, I have implemented an approach based on
the modelling of the mass density profile. I conclude that the only way of reducing the current uncertainties
on MHSE

500 masses is to precisely constrain the slope of the mass profiles at ∼ RHSE
500 . In that direction, the

combination of SZ data from various instruments probing different angular scales appears to be the best way to
obtain complete radial coverage of the thermal pressure and mass distribution in clusters.

I have performed a more detailed analysis of the CL J1226.9+3332 galaxy cluster. I have compared the
pressure profiles reconstructed from NIKA2 data for different noise estimates and accounting or not for the
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anisotropic filtering in the SZ map. In conclusion, the impact of these effects is minor. A thorough investigation
in the literature of the mass estimates obtained for this cluster has shown that the HSE masses we reconstructed
with SZ and X-ray data are robust. The wide variety of types of analyses and definitions used to estimate and
present cluster masses in different works hinders fair comparisons. To overcome this issue, I present the results
in the radius-mass plane and explicitly state the underlying assumptions for each estimate. This work has been
published in Muñoz-Echeverrı́a et al. (2023) [191].

I have also significantly contributed to the publication of the first combined LPSZ and CLASH analy-
sis for PSZ2 G144.83+25.11 presented in Ferragamo et al. (2022) [190]. I have extended the study to the
clusters in common between NIKA, NIKA2 and CLASH samples and reconstructed the lensing mass of
CL J1226.9+3332, PSZ2 G144.83+25.11, PSZ2 G228.16+75.20 and MACS J1423.8+2404 clusters based on
CLASH convergence maps. We find no hints of systematic bias in our mass reconstructions with respect to
other HSE and lensing analyses, but the dispersion of the results amongst different works for the same cluster is
very large. We measure the hydrostatic-to-lensing mass bias for the four clusters and confirm that HSE masses
are biased low with respect to lensing estimates. In addition, HSE masses appear differently biased if X-ray
spectroscopic temperature profiles or, instead, SZ data are employed. This result highlights the importance of
SZ analyses to shed light on possible systematic biases in X-ray studies. Multi-wavelength and multi-probe
analyses are unavoidable if we aim at identifying and correcting for systematics in the used data sets or in
the assumptions of the mass reconstructions. This is the first comparison of lensing and resolved HSE masses
obtained from SZ and X-ray data at redshifts z > 0.5, and demonstrates the pertinence of NIKA2 observations.

Given the relevant implications the hydrostatic mass bias has on the cluster cosmological analyses calibrated
on hydrostatic mass estimates, I performed another study on this subject. Cluster masses used in cosmological
analyses are based on scaling relations, that have to be first determined from a sample of clusters with resolved
mass estimates. An unbiased scaling relation requires, then, unbiased masses for those individual clusters. In
chapter 6, I have presented the study on the bias of X-ray hydrostatic mass estimates with respect to lensing
masses, for masses that have been individually obtained for each cluster without considering any scaling rela-
tion. As discussed above, the obtained masses can considerably depend on the data set used or on the mass
reconstruction method. For this reason, I have built a sample of clusters that is as large as possible, but for
which homogeneous methods have been applied consistently to the full sample. From the comparison of these
homogeneous mass estimates to other resolved masses we conclude that, in general, the agreement between
the works is good, with a non-negligible scatter. I have propagated this scatter and computed the hydrostatic-
to-lensing mass bias for the 53 clusters in the sample with redshifts spanning from z = 0.05 to 1.07. I have
investigated the evolution of the bias with redshift since an evolving hydrostatic mass bias could explain the dis-
crepancies between cosmological analyses from cluster counts calibrated on HSE masses and the CMB power
spectrum. In addition, it could be indicative of a deviation from equilibrium of clusters that evolves with cosmic
time. Nevertheless, our results do not confirm such evolution. Along this study, I have shown that hydrostatic
and lensing masses are scattered estimates of the true mass of clusters and that these uncertainties have to be
considered in the computation of the hydrostatic-to-lensing mass bias. A paper describing this analysis was
accepted for publication in Astronomy and Astrophysics [325].

During my PhD, I have also become a member of THE THREE HUNDRED collaboration. I have made
use of the clusters from THE THREE HUNDRED hydrodynamical simulations to study the bias in cluster mass
estimates introduced during the deprojection procedure of mass maps assuming spherical density models. As
shown for the mass reconstructions from observational data in chapters 3, 4 and 5, the M500 − R500 definition
used to determine the mass at the overdensity of interest (∆ = 500) is very unstable. Even if density or mass
profiles are overall good representations of the distribution of matter in the cluster, the M500 estimate will
be significantly biased if the model is failing at ∼ R500. Without considering instrumental nor observational
effects, we have seen from simulations that the triaxiality of clusters introduces a 10 to 14% dispersion in the
masses reconstructed assuming sphericity from projected data (for total matter tracers). Thus, the orientation
of clusters is a very important source of uncertainties and bias, which is hardly quantifiable from observations.
On the contrary, we find a very weak correlation between the bias of mass estimates and intrinsic properties
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of clusters (mass, redshift and dynamical state). From the comparison of the distribution of the gas and the
dark matter in the simulated clusters, we confirm that gas is more spherically distributed, which ensures smaller
projection effects for gas tracers and makes gas observables less scattered proxies of the mass of clusters. This
conclusion is in line with the observational results in chapter 6 and it was also one of the reasons that motivated
SZ and X-ray observations to study cluster masses. I wrote a paper describing this work that was accepted for
publication in Astronomy and Astrophysics [355].

The last part of my work has been devoted to the analysis of the NOEMA observations of the
CL J1226.9+3332 galaxy cluster. As a follow-up to previous NOEMA observations, I proposed a new open
time project that was accepted by the IRAM programme committee. The objective of the observations was to
demonstrate that NOEMA is able to detect galaxy clusters through the SZ effect and that it will be a unique
tool to investigate the core of clusters and point sources in the field at very high angular resolution. Data acqui-
sition took place during the last months of my thesis and I was able to analyse the first part of the data. From
the study of the radio and submillimetre sources in the field, we have now improved the constraints on their
spectral energy distributions. We have verified that CL J1226.9+3332 hosts a radio source close to its core that
contaminates the SZ signal at 90 GHz. Moreover, the spectral data has revealed an emission line at 70.6 GHz
in the submillimetre source close to the cluster, which motivates further investigation. These observations have
also shown the presence of a negative and diffuse signal in the centre of the map. We argue in chapter 8 that
this can not be an artefact introduced by the noise. Instead, it is coincident in position and flux with the ex-
pected thermal SZ signal for CL J1226.9+3332. Extra NOEMA data was available at the time of writing these
conclusions, confirming these results. This is the first detection of the SZ effect with NOEMA and paves the
way for new observations of galaxy clusters at high angular resolution in the Northern Hemisphere, which is
only partially observable with ALMA.

In summary, in this thesis, I have proposed new analysis methods for the LPSZ clusters and assessed the
robustness of the final results. This work has been very useful to define a standard LPSZ pipeline. In terms of
the determination of the mass of clusters, I have investigated systematic and projection effects using existing
data and simulations. I have shown that projection effects are particularly important and that systematics should
be considered in scaling relations.

In addition to the work presented in the manuscript, I have also led an open time proposal targeting spec-
troscopy observations of the MACS J0416.1-2403 galaxy cluster with CONCERTO [412]. The proposed ob-
servations aim to disentangle the thermal and kinetic SZ effects and, thus, have a better understanding of the
possible merger event. Given the well-known spectral signature of the tSZ and kSZ effects, we will probably
take an Internal Linear Combination [413] approach to disentangle the presence of both effects by making use
of the multi-frequency maps. We will try to identify possible pressure jumps and to quantify the velocities
of the two substructures in the cluster. The proposal, requesting 90 hours of observation, was accepted by
the European Southern Observatory (ESO). Data acquisition has now finished and the analysis of the data is
ongoing. The CONCERTO data processing pipeline is still under development, so I plan to participate in this
task. If successful results are attained, the doors of sub-arcminute and spectral observations will be opened
at millimetre wavelengths, which are particularly interesting for investigating the tSZ, kSZ and rSZ effects in
clusters. In this context, I have also taken charge of on-site observation campaigns with CONCERTO at the
APEX telescope.

In the last chapter of this thesis, we have demonstrated that the NOEMA interferometer is adapted for
observing galaxy clusters. After these fruitful proof-of-concept observations, we plan to get the most of the
high-resolution data to characterise the gas and galaxies in the core of clusters. From now on SZ observations of
clusters with NOEMA will be complementary to ALMA observations in the Southern Hemisphere. Targeting
clusters with many point sources in the field and complex internal structures can be particularly interesting.
We will certainly propose new observations of high redshift objects (clusters or even protoclusters) that are
unresolved by NIKA2 and can be a mine of very high redshift lensed galaxies.

As shown in this thesis, current constraints on individual cluster masses are weak and resolved SZ observa-
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tions are essential to identify potential systematic biases in X-ray observations at similar resolutions. No other
project but the NIKA2 LPSZ will bring such information, thanks to the angular resolution and sensitivity of the
NIKA2 camera. The results from the standard analysis of the NIKA2 LPSZ will be published in the following
years. The released mean pressure profile and Y500 − M500 scaling relation will be unique tools for cluster
cosmology in SZ.

The synergy between NIKA2 observations and cosmological simulations will happen in both directions. On
the one hand, simulated clusters from THE THREE HUNDRED project will be used to assess the robustness of
the LPSZ mass reconstructions, by creating NIKA2-like SZ maps and applying the mass estimation methods
employed in the standard LPSZ analyses. However, the use of simulations is currently limited by their accuracy
in representing the actual Universe. Therefore, on the other hand, high-resolution observations such as the LPSZ
data, will constitute valuable feedback for simulations to improve.

Moreover, the next decades will be rich in large cluster surveys. The recently launched Euclid satellite
and the very soon commissioning Vera Rubin observatory will build three-dimensional maps of the Universe
at visible and infrared wavelengths. By studying the richness of clusters and the lensing effect created on
background sources, we will have stronger statistical constraints on the mass of clusters. On the X-rays side,
eROSITA has already delivered [414] the first catalogue of galaxy clusters, going deeper than ever in X-rays.
The complementary observations at millimetre wavelengths will come by the hands of The Simons Observatory
and CMB-S4. Since the SZ effect is not affected by cosmological dimming, it will be the best observable to
detect the highest redshift clusters in the Universe. We expect that these large cluster catalogues and the multi-
wavelength observations will help to explain the matter content and structure formation along cosmic time.
Better modelling of the non-linear regime of the matter power spectrum and the impact of baryonic effects at
those scales will have to be tackled if precise cosmological constraints are aimed. From a more general point
of view, the future of cosmology will be built on multi-probe analyses able to break the degeneracies between
the different cosmological parameters and to identify the subjacent systematic biases each probe is subject to.
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vitesse radiale des nébuleuses extra-galactiques”, Annales de la Societe Scientifique de Bruxelles 47
(1927), pp. 49–59 (cit. on p. 14).

[21] E. Hubble. “A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae”, Pro-
ceedings of the National Academy of Science 15.3 (1929), pp. 168–173 (cit. on p. 14).

[22] D. J. Fixsen et al. “The Cosmic Microwave Background Spectrum from the Full COBE FIRAS Data
Set”, ApJ 473 (1996), p. 576. arXiv: astro-ph/9605054 [astro-ph] (cit. on p. 15).

[23] J. C. Mather et al. “Calibrator Design for the COBE Far-Infrared Absolute Spectrophotometer (FI-
RAS)”, ApJ 512.2 (1999), pp. 511–520. arXiv: astro-ph/9810373 [astro-ph] (cit. on p. 15).

[24] Planck Collaboration et al. “Planck 2015 results. XIII. Cosmological parameters”, A&A 594 (2016),
A13. arXiv: 1502.01589 [astro-ph.CO] (cit. on pp. 15, 47, 162).

[25] C. L. Bennett et al. “Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final
Maps and Results”, ApJS 208.2 (2013), p. 20. arXiv: 1212.5225 [astro-ph.CO] (cit. on p. 15).

[26] N. Jarosik et al. “Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky
Maps, Systematic Errors, and Basic Results”, ApJS 192.2 (2011), p. 14. arXiv: 1001 . 4744
[astro-ph.CO] (cit. on p. 15).

[27] Planck Collaboration et al. “Planck 2018 results. I. Overview and the cosmological legacy of Planck”,
A&A 641 (2020), A1. arXiv: 1807.06205 [astro-ph.CO] (cit. on pp. 16, 18).

[28] Planck Collaboration et al. “Planck 2018 results. VI. Cosmological parameters”, A&A 641 (2020), A6.
arXiv: 1807.06209 [astro-ph.CO] (cit. on pp. 16, 36, 42, 123).

[29] A. H. Guth. “Inflationary universe: A possible solution to the horizon and flatness problems”, Phys.
Rev. D 23.2 (1981), pp. 347–356 (cit. on p. 16).

[30] A. D. Linde. “A new inflationary universe scenario: A possible solution of the horizon, flatness, ho-
mogeneity, isotropy and primordial monopole problems”, Physics Letters B 108.6 (1982), pp. 389–393
(cit. on p. 16).

[31] W. Cui et al. “An Ideal Mass Assignment Scheme for Measuring the Power Spectrum with Fast Fourier
Transforms”, ApJ 687.2 (2008), pp. 738–744. arXiv: 0804.0070 [astro-ph] (cit. on p. 18).

[32] A. V. Kravtsov and S. Borgani. “Formation of Galaxy Clusters”, ARA&A 50 (2012), pp. 353–409. arXiv:
1205.5556 [astro-ph.CO] (cit. on pp. 18–20, 40).

[33] W. H. Press and P. Schechter. “Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravi-
tational Condensation”, ApJ 187 (1974), pp. 425–438 (cit. on p. 18).

[34] J. Tinker et al. “Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality”,
ApJ 688.2 (2008), pp. 709–728. arXiv: 0803.2706 [astro-ph] (cit. on pp. 18, 19, 32).

https://arxiv.org/abs/1810.03849
https://arxiv.org/abs/2106.14518
https://arxiv.org/abs/1007.0290
https://arxiv.org/abs/0907.4445
https://arxiv.org/abs/2203.06142
https://arxiv.org/abs/astro-ph/9605054
https://arxiv.org/abs/astro-ph/9810373
https://arxiv.org/abs/1502.01589
https://arxiv.org/abs/1212.5225
https://arxiv.org/abs/1001.4744
https://arxiv.org/abs/1001.4744
https://arxiv.org/abs/1807.06205
https://arxiv.org/abs/1807.06209
https://arxiv.org/abs/0804.0070
https://arxiv.org/abs/1205.5556
https://arxiv.org/abs/0803.2706


BIBLIOGRAPHY 209
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Abstract

In this thesis, we present a multi-wavelength study of galaxy clusters. The work is focused on the
precise reconstruction and comparison of cluster masses, which are an elemental quantity to use
galaxy clusters as a cosmological probe. In the context of the NIKA2 guaranteed time  Sunyaev
Zel'dovich Large Programme, we present the characterisation of the systematic effects affecting the
NIKA2 millimetre cluster maps and how they impact the estimation of the hydrostatic mass. The
filtering at large angular scales is the main limiting factor to constrain precisely the mass. From the
comparison of hydrostatic masses to lensing estimates, we conclude that the former are biased low
by  about  20  to  40%  with  respect  to  lensing  and  that  hydrostatic  masses  obtained  from  the
combination  of  Sunyaev  Zel’dovich  and  X-ray  data  tend  to  be  less  biased  than  X-ray-only
estimates. The bias is confirmed in the study of a larger cluster sample with XMM-Newton data,
while a potential evolution of the hydrostatic-to-lensing mass ratio with redshift is not statistically
significant.  Regarding the  intrinsic  effects  that  affect  the  reconstruction of  cluster  masses  from
observations, we present an analysis based on THE THREE HUNDRED hydrodynamical simulations. We
show that, under the assumption of sphericity, the projection along which the cluster is observed is a
major source of scatter in the mass estimation for dark matter observables. The effect is an order of
magnitude smaller for the tracers of the gas in the intracluster medium, demonstrating the power of
X-ray and Sunyaev Zel’dovich observations. However, our knowledge about the distribution of the
gas in the core of clusters remains subject to the angular resolution of the instruments in X-ray and
millimetre  wavelengths.  We present in this  thesis  the first  detection of the Sunyaev Zel’dovich
effect of a cluster with the Northern Extended Millimeter Array interferometer.

Résumé 

Nous présentons une étude multi-longueur d'onde des amas de galaxies. Le travail se concentre sur
la reconstruction précise et la comparaison des masses d'amas, qui sont une quantité élémentaire
pour utiliser les amas de galaxies comme sonde cosmologique. Dans le cadre du Grand Programme
Sunyaev  Zel'dovich  de  temps  garanti de  NIKA2,  nous  présentons  la  caractérisation  des  effets
systématiques affectant  les  données millimétriques  NIKA2 et  leur  impact  sur l'estimation de la
masse hydrostatique. Le filtrage aux grandes échelles angulaires est le principal facteur limitant les
contraintes précises sur la masse. De la comparaison des masses hydrostatiques aux estimations
basées  sur  l’effet  de  lentille  gravitationnelle,  nous  concluons  que  les  premières  sont  biaisées
d'environ 20 à 40% par rapport aux deuxièmes et que les masses hydrostatiques obtenues à partir de
la combinaison des données millimétriques et des rayons X ont tendance à être moins biaisées que
les estimations basées uniquement sur des rayons X. Le biais est confirmé sur l'étude d'un plus
grand échantillon d’amas avec des données XMM-Newton, alors qu'une potentielle évolution du
rapport de masse hydrostatique sur masse de lentille gravitationnelle avec le décalage vers le rouge
n'est pas statistiquement significative. En ce qui concerne les  effets intrinsèques qui affectent la
reconstruction des masses d'amas à partir des observations, nous présentons une analyse basée sur
les simulations hydrodynamiques  THE THREE HUNDRED.  Nous montrons que,  sous l'hypothèse de
sphéricité, la projection sur laquelle l'amas est observé est une source majeure de dispersion dans
l'estimation  de  masse  pour  les  observables  de  matière  noire.  L'effet  est  un  ordre  de  grandeur
inférieur  pour  les  traceurs  du  gaz  dans  le  milieu  intra-amas,  démontrant  la  puissance  des
observations en millimétrique et en X. Cependant, notre connaissance sur la distribution du gaz au
cœur des amas est limitée par la résolution angulaire des instruments. Nous présentons dans cette
thèse la première détection de l'effet Sunyaev Zel’dovich d'un amas avec l'interféromètre Northern
Extended Millimeter Array.
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