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Abstract : This thesis proposes highly-e�cient
heuristic and exact algorithms to solve the
Electric Autonomous Dial-A-Ride Problem (E-
ADARP), which consists in designing a set of
minimum-cost routes that accommodates all
customer requests for a �eet of Electric Au-
tonomous Vehicles (EAVs). The E-ADARP has
two important features : (i) the employment
of EAVs and a partial recharging policy ; (ii)
the weighted-sum objective function that mi-
nimizes the total travel time and the total ex-
cess user ride time. In this thesis, we �rst
propose a Deterministic Annealing (DA) algo-
rithm to solve the E-ADARP. Partial recharging
(i) is handled by an exact route evaluation
scheme of linear time complexity. To tackle
(ii), we propose a new method that allows ef-
fective computations of minimum excess user
ride time by introducing a fragment-based re-
presentation of paths. To validate the perfor-
mance of the DA algorithm, we compare our
algorithm results to the best-reported Branch-
and-Cut (B&C) algorithm results on existing ins-
tances. Our DA algorithm provides �� new best
solutions and �� equal solutions for �� exis-
ting instances. To test the algorithm’s perfor-
mance on larger-sized instances, we establish
new instances with up to � vehicles and �� re-
quests, and we provide �� new solutions for
these instances. Then, we present a highly ef-
�cient CG algorithm, which is integrated into
theBranch-and-price (B&P) scheme to solve the
E-ADARP exactly. Our CG algorithm relies on
an e�ective labeling algorithm to generate co-
lumns with negative reduced costs. In the ex-
tension of labels, the key challenge is deter-
mining all excess-user-ride-time optimal sche-
dules to ensure �nding the minimum-negative-
reduced-cost route. To handle this issue, we

apply the fragment-based representation and
propose a novel approach to abstract frag-
ments to arcs while ensuring excess-user-ride-
time optimality. We then construct a new graph
that preserves all feasible routes of the ori-
ginal graph by enumerating all feasible frag-
ments, abstracting them to arcs, and connec-
ting them with each other, depots, and rechar-
ging stations in a feasible way. On the new
graph, we apply strong dominance rules and
constant-time feasibility checks to compute the
shortest paths e�ciently. In the computational
experiments, we solve �� out of �� instances
optimally, improve �� previously-reported lo-
wer bounds, and generate �� new best solu-
tions on previously solved and unsolved ins-
tances. Finally, we investigate the Bi-objective E-
ADARP (BO-EADARP), which treats the total tra-
vel time and the total excess user ride time as
separate objectives. To tackle the BO-EADARP,
we introduce two criterion space search algo-
rithms and a decision space search algorithm
(i.e., the BOBP algorithm). In the computatio-
nal experiments, we apply these algorithms
to solve the BO-EADARP on small-to-medium-
sized instances with di�erent minimum battery
restrictions. Among the three algorithms, the
BOBP algorithm proves to be the most e�-
cient. We then analyze the e�cient solutions
under di�erent energy restrictions. Our obser-
vations reveal a noticeable increase in total tra-
vel times for the obtained e�cient solutions
with higher energy restrictions, while the cor-
responding total excess user ride times remain
stable. For each level of energy restriction, the
obtained e�cient solutions o�ermanagerial in-
sights for pro�table and non-pro�table service
providers : one objective can be improved signi-
�cantly with a slight increase of the other.
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Chapter 1

Introduction

The Dial-A-Ride Problem (DARP) consists in designing minimum-cost routes by scheduling a fleet of vehicles to serve

a set of customers who specify their origins and destinations (Cordeau & Laporte, 2007). For each customer request,

a time window is defined on either the origin or the destination. The DARP was first introduced in the context of

providing door-to-door service for handicapped individuals, e.g., Madsen et al. (1995); Toth & Vigo (1996). In recent

years, the concept of the DARP has been extended to adopt requests from normal individuals and provide them

with ride-sharing services. Many demand-responsive systems have been constructed, such as the mobile-based

app of BlaBlaCar in France and Didi Hitch in China (Jin et al., 2018). With the booming of on-demand ride-sharing

services, considerable attention has arisen to solving the DARP and its variants (Cordeau & Laporte, 2007; Ho et al.,

2018). The DARP is a generalization of several NP-hard problems such as the Pickup and Delivery Vehicle Routing

Problem (PDPVRP) and the Vehicle Routing Problem with Time Windows (VRPTW) and is therefore very difficult

to solve to optimality using exact methods. Consequently, only a few studies have proposed exact methods, e.g.,

Cordeau (2006); Braekers et al. (2014); Gschwind & Irnich (2015); Ropke et al. (2007); Parragh (2011); Braekers

& Kovacs (2016); Qu & Bard (2015) and most studies propose heuristic and metaheuristic methods that return

high-quality local optimum quickly (e.g., Cordeau & Laporte (2003); Ropke & Pisinger (2006); Parragh et al. (2010);

Masmoudi et al. (2017); Detti et al. (2017)). The DARP is even more challenging than the PDPVRP and the VRPTW,

as user inconvenience needs to be considered while minimizing the operational cost (Cordeau & Laporte, 2003). The

classical DARP model imposes a maximum user ride time constraint for every user request to maintain a certain level

of service quality. Due to this constraint in combination with time windows, scheduling service start times as early as

possible does not necessarily result in a feasible schedule for a given sequence of pickup and delivery locations,

given that one exists. On the contrary, allowing delays in the service start time may help to eliminate unnecessary

waiting time for succeeding nodes and, as such, reduce the user ride time. Heuristic solution methods for the DARP

usually invoke the “eight-step” procedure of Cordeau & Laporte (2003), which composes a feasible schedule with the

latest possible service start time at the origin depot and subsequently delays service start times at pickup nodes
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using the notion of forward time slack (Savelsbergh, 1992) while respecting maximum user ride time constraints. As

a result, the complexity of the route evaluation in the DARP rises substantially.

The Electric Autonomous DARP (E-ADARP) was first introduced by Bongiovanni et al. (2019) and has been

developed to incorporate various real-life settings. Different from the classical DARP, which assumes vehicles to

have homogeneous vehicle capacity (e.g., Cordeau (2006); Cordeau & Laporte (2003)), the E-ADARP accounts

for heterogeneous vehicles with different capacities to better accommodate diverse user requests. Furthermore,

the E-ADARP includes multiple origin and destination depots in the graph, enabling vehicles to start and end their

routes at different depots. Apart from these fundamental characteristics, the E-ADARP also considers practical

aspects associated with the electric and autonomous nature of the vehicles. Firstly, vehicles are allowed to perform

partial recharging at recharging stations, which is a more feasible alternative to full recharging (e.g., Schneider

et al. (2014); Hiermann et al. (2016)). This strategy grants vehicles greater flexibility in charging operations and has

demonstrated efficacy in enhancing solution quality (Keskin & Çatay (2016)). Secondly, given that the E-ADARP

employs autonomous vehicles that need to be continuously relocated during service, it removes the need to predefine

destination depots and enables non-stop vehicle operations. This characteristic is more practical and differentiates

the E-ADARP from most of the DARP literature (e.g., Braekers et al. (2014); Parragh (2011)), where maximum route

duration constraints are considered, and destination depots are predefined.

The objective of the E-ADARP is to design a set of minimum-cost routes for a fleet of Electric Autonomous

Vehicles (EAVs) by scheduling them to provide ride-sharing services for customers that specify their origins and

destinations. Although the E-ADARP shares some of the constraints of the classical DARP (e.g., maximum user ride

time, time window constraints), the E-ADARP is different from the classical DARP in two aspects: (i) the employment

of EAVs and a partial recharging policy, and (ii) a weighted-sum objective that minimizes both total travel time and

total excess user ride time; The first aspect (i) requires checking battery feasibility for a given route and implies other

important features of the E-ADARP: (a) partial recharging is allowed en route, and (b) the maximum route duration

constraints no longer exist due to the autonomy of vehicles. Allowing partial recharging introduces a trade-off between

the time window and battery constraints: although longer recharging extends the driving range, it may also lead to

time-window infeasibility for later nodes. The second aspect (ii) allows quantifying the user inconvenience directly.

By incorporating excess user ride time into the objective, the E-ADARP offers the opportunity to enhance service

quality by minimizing the excess user ride time without introducing additional operational costs. However, solving the

E-ADARP becomes more complex, as it requires determining schedules with minimal total excess user ride time for a

feasible solution. Other problem-specific constraints also increase the complexity of solving the E-ADARP. These

constraints include a minimum battery level that must be maintained at the end of the route as well as limited visits to

each recharging station.

In this thesis, we propose efficient heuristic and exact algorithms (i.e., Deterministic Annealing and Branch-and-

price algorithms) to solve the static version of the E-ADARP. In solving the static E-ADARP, we develop efficient
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methods that can exactly determine excess-user-ride-time optimal schedules for a given E-ADARP path. These

methods are interesting for decision-makers seeking to enhance service quality by strategically scheduling vehicles.

After validating the efficiency of our proposed algorithms, we extend our investigation to the bi-objective version

of the E-ADARP. This variant considers total travel time and total excess user ride time as two distinct objectives.

Our objective in this part is to analyze the trade-off between operational costs, represented by total travel time, and

service quality, measured by total excess user ride time. By examining this trade-off, we aim to provide a full picture of

this trade-off. This analysis is beneficial for decision-makers in both profitable service providers (e.g., Uber and Didi)

and non-profitable organizations (e.g., the Red Cross). Managerial insights from the analysis enable decision-makers

to make more informed and reliable choices based on their specific priorities.

The remainder of this chapter is organized as follows. In Section 1.1, we present a comprehensive literature

review on (1) exact and approximate approaches that solve the classical DARPs, (2) related literature of the DARP

with Electric Vehicles (EVs) and Electric Vehicle Routing Problems (E-VRPs), (3) feasibility checking in DARPs and

excess user ride time minimization, and (4) methods for solving multi-objective problems. Then, we conclude existing

research gaps and the motivation of the thesis. Section 1.2 discusses the challenges in solving the E-ADARP and

highlights the contributions of the thesis. Section 1.3 outlines the structure of the thesis and the organization of the

following chapters.

1.1 Literature Review

The E-ADARP can be regarded as a combination of the classical DARP and the Electric Vehicle Routing Problems

(E-VRPs). However, it is distinct from these two contexts in the following aspects:

1. the application of Electric Autonomous Vehicles (EAVs) in the vehicle fleet and partial recharging performed at

recharging stations;

2. a weighted sum objective function minimizing total travel time and total excess user ride time.

This section first reviews the representative works of exact and heuristic solution methods to tackle the classical

DARP and its variants. Then, we systematically review the literature related to DARPs with EVs and E-VRPs. More

specifically, we focus on reviewing the works that consider the partial recharging policy. The third part of this section

is an overview of feasibility checking and total/excess user ride time minimization in the DARPs. We first review

representative works on the feasibility check for a given DARP route, especially those that focus on evaluating

maximum user ride time feasibility. We then review DARP-related articles that specifically focus on user ride time

minimization. The last part of this section is a comprehensive review of multi-objective optimization, and we mainly

focus on state-of-the-art methods of bi-objective optimization. Related works on multi-objective DARP are analyzed.

This section is closed with the conclusion of the review and the motivation of the thesis.
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1.1.1 Exact and approximate approaches to tackle DARPs

There are two main streams of solution methods to solve the DARP, they are exact and approximate approaches.

Exact approaches mainly take the structure of the branch-and-bound (B&B) tree to obtain the global optimum.

Due to the complexity of the problem as well as the solving mechanism of the B&B (i.e., obtain global optimum by

enumerating all possible solutions), exact approaches can only solve instances of limited size to optimality within

considerable computational time. Considering the NP-hardness of DARPs, most research attention has been

concentrated on developing highly-efficient approximate approaches such as heuristic and meta-heuristic algorithms

to solve larger-sized instances and return high-quality local optimums within reasonable computational time.

Exact algorithms in the literature of DARPs can be classified as Branch-and-Cut (B&C), Branch-and-Price (B&P),

and Branch-and-Price-and-Cut (B&P&C) algorithms. The basic idea of a B&C algorithm is to generate valid cutting

planes to tighten the LP relaxations of the problem in the B&B tree. These additional cuts lead to stronger lower

bounds and increase the chances that an integer solution is found. The first B&C algorithm to solve the classical

DARP is proposed by Cordeau (2006), where the author presented a three-index compact formulation for the DARP

and introduced several families of valid inequalities. The proposed B&C algorithm can solve instances with up to 4

vehicles and 48 requests. Based on the three-index formulation in Cordeau (2006), Ropke et al. (2007) introduced

two tighter formulations of the DARP. Three new classes of valid inequalities, as well as some previously identified

valid inequalities for the DARP and the VRPTW, are added. The largest instances that can be solved optimally with

the proposed B&C algorithm contains 8 vehicles and 96 requests. These identified valid inequalities in Cordeau

(2006); Ropke et al. (2007) have also been applied in the following studies, e.g., Parragh (2011); Braekers et al.

(2014); Braekers & Kovacs (2016); Liu et al. (2015). These works define new variants of the DARP and supplement

problem-specific cuts to solve the defined problem variants. Different from B&C algorithms, the basic idea of the

B&P algorithm is to first reformulate the compact formulation into a master problem (usually formulated as set

partitioning problem) and pricing subproblems (can be formulated as shortest path problem with resource constraints)

by Dantzig-Wolfe decomposition (Lübbecke & Desrosiers (2005)). At each node of the B&B tree, the CG algorithm

is then invoked to obtain tightened lower bounds of the original problem by iteratively solving the restricted master

problem and pricing subproblems. When applying the CG algorithm, the solving efficiency of pricing subproblems

plays the key role in the CG efficiency and the overall performance of a B&P algorithm. In the literature, pricing

subproblems are usually solved by dynamic programming (e.g., Garaix et al. (2011)). Also, pricing subproblems

can be solved with a hybridized framework (e.g., Parragh et al. (2012, 2015)), where heuristic and exact algorithms

are both used to find negative-reduced-cost columns. Finally, the B&P&C algorithms take the structure of B&P and

integrates valid cutting planes in the B&P tree to further enhance the obtained lower bounds. A few existing literature

implement the B&P&C algorithms to solve the DARP and its variants, e.g., Qu & Bard (2015); Gschwind & Irnich

(2015); Ropke & Cordeau (2009), where they observe that adding cuts can effectively reduce the number of nodes
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explored in the B&B tree.

Heuristic and metaheuristic methods are extensively used to solve the DARP and its variants in the literature.

Among literature that proposes heuristic or metaheuristic methods, local search-based metaheuristics take a large

portion. The idea of local search-based metaheuristics is to generate new solutions by exploring the neighborhood of

the current solution through local search operators. By designing efficient local search operators, these metaheuristics

can effectively explore the search space and identify high-quality solutions in short computational time. The most-used

local-search-based metaheuritics in the literature are: tabu search (TS) (e.g., Cordeau & Laporte (2003); Kirchler &

Calvo (2013); Detti et al. (2017); Paquette et al. (2013); Ho & Haugland (2011); Guerriero et al. (2013)), simulated

annealing (SA) and deterministic annealing (DA) (e.g., Braekers et al. (2014); Su et al. (2023); Reinhardt et al. (2013)),

variable neighborhood search (VNS) (e.g.,Parragh et al. (2010, 2012, 2015); Parragh (2011); Detti et al. (2017)), and

large neighborhood search (LNS) and adaptive large neighborhood search (ALNS) (e.g., Ropke & Pisinger (2006);

Gschwind & Drexl (2019); Molenbruch et al. (2017); Braekers & Kovacs (2016); Masson et al. (2014); Qu & Bard

(2013)). Recently, a growing number of researches consider the hybridization of metaheuristic algorithms with other

methods such as mathematical programming approaches or other metaheuristic algorithms. Through combining

different techniques appropriately, the performance of individual techniques is enhanced by leveraging the strengths

of each. For example, some researches hybridize one metaheuristic into another (e.g., Masmoudi et al. (2016, 2017);

Chevrier et al. (2012)). In these hybrid algorithms, local search-based metaheuristics (e.g., TS and SA) are combined

with population-based metaheuristics (e.g., genetic algorithm (GA)). These hybrid algorithms take advantages of both

types of algorithms by using local search to explore the search space around a single solution and population-based

metaheuristics to evolve the population over time. By combining these two approaches, hybrid algorithms can achieve

better performance than using either algorithm alone. Another way to hybridize metaheuristics is to execute them

sequentially. An example is presented in Parragh et al. (2009), where the authors apply a path relinking algorithm

after a VNS algorithm. The idea of path relinking algorithm is to combine two elite solutions (e.g., the solutions from

VNS, one solution called the “start solution”, the other is “target solution”) and to generate a even better solution from

these two solutions.

1.1.2 Related literature of DARPs with EVs and E-VRPs

Several articles have investigated the impact of EVs on the DARP and Masmoudi et al. (2018) is the first work that

introduces DARP with EVs. In their work, EVs are recharged through battery swapping and are assumed to have

a constant recharging time. The authors use a realistic energy consumption model to formulate the problem and

introduce three enhanced Evolutionary VNS (EVO-VNS) algorithm variants, which can solve instances with up to

three vehicles and 18 requests. Bongiovanni et al. (2019) considers EAVs in the DARP and introduces the E-ADARP.

Partial recharging is allowed when vehicles visit recharging stations, and the authors impose a minimum battery level

constraint for the vehicle’s State of Charge (SoC) at the destination depot. The minimum battery level is formulated
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as �Q, where � is the ratio of the minimum battery level to total battery capacity, and Q is the total battery capacity.

Three different � values are analyzed, i.e., � 2 {0.1, 0.4, 0.7}, meaning that 10%, 40%, and 70% of the total battery

capacity must be maintained at the destination depot. Solving the problem becomes more difficult when � increases.

The authors formulate the problem into a three-index and a two-index model and introduce new valid inequalities in a

Branch-and-Cut (B&C) algorithm. When � = 0.1, 0.4, the proposed B&C algorithm obtains optimal solutions for 42 out

of 56 instances. However, when � = 0.7, the B&C algorithm cannot solve 9 out of 28 instances feasibly, even with a

two-hour run time. The largest instance that can be solved optimally by the B&C algorithm contains 5 vehicles and

40 requests. Recently, Bongiovanni et al. (2022b) have proposed a Machine Learning-based Large Neighborhood

Search (MLNS) to solve the dynamic version of the E-ADARP. The proposed approach is a two-phase metaheuristic

that sequential solves static E-ADARP subproblems. However, its performance on the previously defined static

E-ADARP instances is not reported. Different from our algorithm, the authors focus on selecting destroy-repair

operators at each iteration by a machine learning approach, which is trained offline on a large dataset produced

through simulation.

The E-VRP was first introduced by Conrad & Figliozzi (2011), and extensive works have been conducted in the

field of E-VRPs in recent years, e.g., Erdoğan & Miller-Hooks (2012); Schneider et al. (2014); Goeke & Schneider

(2015); Hiermann et al. (2016, 2019). Among them, Erdoğan & Miller-Hooks (2012) is the first to propose a Green

VRP (G-VRP) using alternative fuel vehicles. These vehicles are allowed to visit a set of recharging stations during

vehicle trips. The authors adapt two constructive heuristics to obtain feasible solutions and they further enhance

these heuristics by applying local search. However, the proposed model does not consider capacity restrictions

and time window constraints. Schneider et al. (2014) propose a more comprehensive model named the Electric

Vehicle Routing Problem with Time Windows (E-VRPTW). They extend the work of Erdoğan & Miller-Hooks (2012)

by using electric vehicles and considering limited vehicle capacity and specified customer time windows. They apply

a Variable Neighborhood Search (VNS) algorithm hybridized by Tabu Search in local search to address E-VRPTW.

The recharging stations are inserted or removed by a specific operator, and the recharged energy is assumed to

be linear with the recharging time. They apply a full recharging policy on each visit to a recharging station. All the

vehicles are assumed to be identical in terms of vehicle and battery capacity. Goeke & Schneider (2015) extend

the homogeneous E-VRPTW by considering a mixed fleet of electric and conventional vehicles. A realistic energy

consumption model that integrates speed, load, and road gradient is employed. To address the problem, they propose

an ALNS algorithm using a surrogate function to evaluate violations efficiently. Hiermann et al. (2016) extend the work

of Goeke & Schneider (2015) by taking into account the heterogeneous aspect (i.e., fleet composition). They solve

the problem by ALNS and determine the positions of recharging stations via a labeling algorithm. The recharging

policy considered is also full recharging with a constant recharging rate. Hiermann et al. (2019) extend their previous

work (Hiermann et al., 2016) by considering partial recharging for a mixed fleet of conventional, plug-in hybrid, and

electric vehicles. The engine mode selection for plug-in hybrid vehicles is considered as a decision variable in their
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study. A layered optimization algorithm is presented. This algorithm combines labeling techniques and a greedy

route evaluation policy to calculate the amount of energy required to be charged and determine the engine mode

and energy types. This algorithm is finally hybridized with a set partitioning problem to generate better solutions

from obtained routes. Except for Hiermann et al. (2019), many works also relax the full recharging assumption to a

partial recharging policy, e.g.,(Bruglieri et al., 2015; Keskin & Çatay, 2016; Desaulniers et al., 2016; Duman et al.,

2021; Ceselli et al., 2021). The majority of these articles develop meta-heuristic algorithms to solve the problem,

e.g., Felipe et al. (2014); Hiermann et al. (2019); Montoya et al. (2017); Froger et al. (2017), while some of them

propose exact methods. The representative work is Desaulniers et al. (2016), where the authors investigate four

E-VRP variants: E-VRP with full recharging plus single/multiple visits to recharging stations and E-VRP with partial

recharging plus single/multiple visits to recharging stations. For each variant, customized mono- and bi-directional

labeling algorithms are proposed to solve the CG subproblems within a B&P framework. More recently, Lam et al.

(2022) investigates a more practical case of E-VRPTW in which the availability of chargers at the recharging stations

is considered. They propose a B&C&P algorithm that is capable of solving instances with up to 100 customers.

1.1.3 Feasibility checking in DARPs and related literature that minimizes total or excess

user ride time

As for feasibility checks for a given DARP route, the “eight-step” method introduced in Cordeau & Laporte (2003)

is extensively applied. However, “eight-step” method has a worst-case time complexity of O(r2) (r is the number

of vertices in the route) and would generate considerable computational time in the case of voluminous feasibility

checks are needed (e.g., when applying a heuristic method). To improve the efficiency in feasibility checking for

a DARP route, several works have been conducted. In Hunsaker & Savelsbergh (2002), the authors propose a

feasibility-checking heuristic of linear time complexity in the DARP with maximum waiting time constraints. Their

proposed heuristic constitutes three passes to check the feasibility. However, this method cannot guarantee finding a

feasible schedule in case one exists. In this case, this algorithm returns an incorrect infeasibility declaration. This

issue is handled in Haugland & Ho (2010), where an exact procedure of feasibility checking for a DARP route is

proposed. The worst-time complexity of their procedure is of O(r log r). Tang et al. (2010) proposes an algorithm of

O(r2) worst-time complexity by gradually constructing the schedule on the original route. Then, Firat & Woeginger

(2011) propose another idea to handle the feasibility issue. They rewrite the scheduling problem considered in the

DARP as a system of difference constraints. Then, the feasibility checking is converted to decide whether a digraph

associated with the defined system has a negative-weight cycle. The cycle detection process can be fulfilled in linear

time after reformulating such a system over an appropriate set of variables. Gschwind (2019) proposes a route

feasibility check procedure for the synchronized pickup and delivery problem (SPDP), which was first introduced by

Gschwind (2015). Besides an upper bound on ride time, the SPDP has imposed a lower bound on it. Therefore, the
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SPDP has minimum and maximum ride time constraints. In Gschwind (2019), the author adapted the algorithms of

Tang et al. (2010) and Firat & Woeginger (2011) in the feasibility checking of an SPDP route. From the computational

results, the adapted algorithm of Tang et al. (2010) outperforms the one from Firat & Woeginger (2011) averagely.

Recently, Gschwind & Drexl (2019) proposes an ALNS algorithm equipped with an amortized constant time to check

the insertion feasibility of a request into a given feasible route. They make use of the auxiliary data calculated from

preprocessing work in all feasibility checks. Consequently, the checking is independent of the number of requests

in the route and only takes only constant time for a given route. However, the preprocessing work seems to be

time-consuming and has a time complexity of O(r3) for a route of r vertices to generate necessary auxiliary data.

To conclude, many literature has been proposed to handle the feasibility issue in a more efficient way for a given

complete route. However, in the extension of a given partial path, these above literature is not appropriate for checking

the extension feasibility. Gschwind & Irnich (2015) is the only work that handles the time-window and ride-time

constraints jointly in the labeling algorithm for solving the CG subproblems. This is the first time that the schedule

feasibility issue is tackled in the extension of a partial path. In their proposed labeling algorithm, they introduce

additional resource attribute named “latest possible delivery time”, which is formulated a function of the service

start time t at the current node where all possible time schedules of all open requests along the partial path are

considered. This labeling algorithm results in a labeling-based feasibility check of O(rM) time complexity, where M

is the maximum number of open requests along a feasible path.

All the above-mentioned literature only improves the feasibility checking efficiency of maximum user ride time

constraints for a given DARP route/path. However, these state-of-the-art methods cannot guarantee to minimize the

excess user ride time for a given DARP route/path. In fact, to minimize excess user ride time for a given DARP/path

is a more intricate task, as we need to consider all feasible schedules and pick up the ones who have the minimum

excess user ride time. There are several examples where a service-quality-oriented objective (e.g., user ride time) is

considered in the context of DARP (e.g., Parragh et al. (2009); Parragh (2011); Lehuédé et al. (2014); Molenbruch

et al. (2017); Bongiovanni et al. (2022a)). Among them, Lehuédé et al. (2014) considers the average excess user ride

time as one of the objectives and Parragh et al. (2009); Molenbruch et al. (2017); Bongiovanni et al. (2022a) consider

total user ride time/total excess user ride time as an objective to be minimized. In Lehuédé et al. (2014), the authors

apply a scheduling algorithm based on the “eight-step” method for generated routes. In the work of Parragh et al.

(2009), a two-phase heuristic method is developed. A set of efficient solutions is constructed, minimizing a weighted

sum of total distance traveled and mean user ride time under different weight combinations. In the route evaluation,

the authors point out that the “eight-step” method of Cordeau & Laporte (2003) does not aim to minimize the total

user ride time. An increase in user ride time may happen when delaying the service start time at destination nodes.

Therefore, they improve the original scheme of the “eight-step” method by adapting the computation of forward time

slack to avoid any increase in excess user ride time for requests served on a route. The resulting scheme is more

restrictive in terms of feasibility and may lead to incorrect infeasibility declaration. This drawback is tackled in the
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scheduling heuristic proposed by Molenbruch et al. (2017). The heuristic starts by constructing a schedule (which

may be infeasible) by setting the excess ride time of each request to its lower bound. Then, it gradually removes the

infeasibility by shifting the service start time at some nodes while minimizing excess user ride time. However, the

developed scheduling procedures in Parragh et al. (2009) and Molenbruch et al. (2017) are not proven optimal to

minimize user ride time for a given route. Bongiovanni et al. (2022a) first proposes an exact scheduling procedure

that can minimize the excess user ride time for a path without charging stations in polynomial time. Then, the authors

extend the proposed scheduling procedure in the E-ADARP by integrating a battery management heuristic. However,

the obtained schedules for an E-ADARP route are no longer exact as the excess-time optimal schedules may not be

battery-feasible. The reported results show that on the investigated instances, the proposed scheduling procedure

does not produce incorrect infeasible declarations, while others (i.e., Cordeau & Laporte (2003), Parragh et al. (2009))

do. To the best of our knowledge, no work in the literature can handle excess user ride time minimization exactly for a

given E-ADARP route or in the extension of an E-ADARP partial path.

1.1.4 Related literature of bi-objective optimization

In the context of solving multiobjective mixed integer programming (MOMIP) problems, exact algorithms can be

divided into two classes: criterion space search algorithms (e.g., (Haimes, 1971; Chalmet et al., 1986; Ralphs et al.,

2006; Parragh et al., 2009; Boland et al., 2015; Glize et al., 2022)) and decision space search algorithms (e.g.,

(Mavrotas & Diakoulaki, 1998; Masin & Bukchin, 2008; Sourd & Spanjaard, 2008; Vincent et al., 2013; Stidsen et al.,

2014; Parragh & Tricoire, 2019)). In this part, we focus on reviewing methods to solve bi-objective mixed integer

programming (BOMIP) problems.

Criterion space search algorithms work in the objective space. Pareto optimal solutions are found in the process

of solving a sequence of single-objective problems with single-objective algorithms (e.g, (Boland et al., 2015)). One

of the most popular criterion space search algorithms to handle bi-objective optimization problem is the ✏-constraint

method, which was first introduced by Haimes (1971). The main idea of the ✏-constraint method is to keep one

objective in the objective function and formulate another objective as a constraint binding with ✏ values. In every

iteration, the mono-objective problem is solved and ✏ values are updated to improve the quality of the solution (i.e.,

the second objective values). This method has the advantage of easy implementation while being very effective, and

has therefore been widely applied in the literature to solve bi-objective integer programs (e.g., Kirlik & Say1n (2014);

Lokman & Köksalan (2013); Laumanns et al. (2006); Ozlen et al. (2014)). Another method to find all non-dominated

points in criterion space is called two-phase method (e.g.,Visée et al. (1998),Pedersen et al. (2008),Przybylski et al.

(2008),Przybylski et al. (2010),Özpeynirci & Köksalan (2010), Parragh et al. (2009)). The two-phase method was

originally introduced by Ulungu (1993) to solve a bi-objective assignment problem by dividing the search for efficient

points in criterion space into two phases. The first phase of the two-phase method corresponds to find all extreme

supported efficient points. Usually, the weighted-sum algorithm (also called “dichotomic method”) of Aneja & Nair
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(1979) is used in this stage. After finding all extreme supported efficient points, the second phase aims to find other

efficient points (including non-extreme supported efficient and non-supported efficient points)in the triangles defined

by two consecutive extreme supported efficient points. Recently, Boland et al. (2015) introduced a balanced box

method to generate all efficient points of a bi-objective integer program by iteratively exploring rectangle search areas

defined by newly-found efficient points in the criterion space. Another contribution of this work is the introduction of a

bi-directional ✏-constraint method. In the bi-directional ✏-constraint method, previously generated feasible solutions

that are provided to the integer programming in the later iterations are getting better and better, which benefits

the computational efficiency compared to the single-directional one. They also provide several enhancements to

accelerate the balanced box method as well as other criterion space search algorithms (i.e., those in Haimes (1971);

Ralphs et al. (2006); Chalmet et al. (1986)). From the experimental results, the proposed balanced box method

outperforms the bi-directional ✏-constraint method, the enhanced augmented weighted Tchebycheff method, and

the enhanced perpendicular search method with regards to the computational time and the percentage of solving

instances. More recently, Glize et al. (2022) proposes an ✏-constraint column generation-and-enumeration algorithm.

Five acceleration mechanisms are introduced to speed up the solving process of each single-objective problem

with the column generation-and-enumeration algorithm. The resulting algorithm is proved to be more efficient than

the bi-objective branch-and-price algorithm proposed in Parragh & Tricoire (2019) in solving Bi-Objective Team

Orienteering Problem (BOTOPTW) with Time Windows. This method is also the first exact method that solves the

Bi-Objective Vehicle Routing Problem with Time Windows (BOVRPTW).

Decision space search algorithms work in the space of decision variables. These algorithms can be regarded

as generalizations of Branch-and-Bound (B&B) algorithms in the context of MOMIP, where a bound set instead

of a single numerical value is generated when solving each node. As bounding procedures is the key ingredient

of B&B algorithms, state-of-the-art algorithms mainly focus on this element to enhance the overall efficiency of

algorithms. In the works of Mavrotas & Diakoulaki (1998, 2005), the authors provided B&B algorithms to find efficient

solutions for multiple objectives mixed 0-1 problem (MOM01P), where they fathom a node if the ideal point of the

node (they work on a maximization problem) is dominated by some elements in the lower bound set that is composed

of non-dominated points. Vincent et al. (2013) enhance the bounding procedure of Mavrotas & Diakoulaki (1998,

2005) by comparing the bound set on each node of the B&B tree instead of the ideal point. Sourd & Spanjaard (2008)

defines separating hyperplane h between upper and lower bound sets to judge whether a node can be fathomed

in a general B&B framework. The main idea is first to construct a set L0 which is dominated by the lower bound

set L. Then, L0 is used to define the function h and to check whether a node can be fathomed. Another idea of

bounding procedure in the state-of-the-art B&B algorithms (e.g, Masin & Bukchin (2008)) is to calculate a single lower

bound with a surrogate objective function and decide whether the B&B node can be fathomed with regards to the

numerical value of this lower bound. However, this idea is only illustrated via a small scheduling example and no

computational results have been reported. Based on all the above literature, Stidsen et al. (2014) propose a B&B
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algorithm that can find a complete set of efficient points for a certain class of BOMIP problems. In the bounding

procedure, the authors propose to partition objective space into slices (this is done by adding constraints), then

explore each slice independently. From their computational results, they observed that this strategy could allow more

nodes to be fathomed and will not significantly increase the computational time. Also, they propose to improve the

branching procedure (called “Pareto branching”) by using bounds from enumerated feasible solutions to create nodes.

Extending the idea of Pareto branching from Stidsen et al. (2014), Parragh & Tricoire (2019) introduced a generic

B&B algorithm based on a problem-independent branching rule to solve the BOTOPTW. In the B&B algorithm, they

calculate the lower bound set at each node of the B&B search tree by column generation. Several improvements

derived from the integrality of objective functions are proposed to accelerate the algorithm. In the computational

experiments, the proposed B&B algorithm is compared to several criterion space search algorithms (i.e., algorithms

of Haimes (1971), Boland et al. (2015)) and has been proven to be the most efficient method among all considered

algorithms in solving the BOTOPTW.

In the context of multi-objective DARP, a few works have been conducted to analyze the trade-off between user

inconvenience and operational cost. In the work of Parragh et al. (2009), a two-phase heuristic method is developed.

A set of efficient solutions is constructed, minimizing a weighted sum of total distance traveled and mean user ride

time for different weight combinations. To validate the performance of the proposed heuristic, ✏�constraint method is

used to generate the complete set of efficient points on small instances. The approximated Pareto Front generated

by a heuristic method is compared to the generated set of efficient points. The proposed two-path method is shown

to be efficient in generating high-quality approximations of the true Pareto front. Following Parragh et al. (2009),

Parragh (2011) further considered a weighted-sum objective function consisting of the total routing cost and wait time

for all vehicles with passengers aboard. As in this paper, the objective function included a time-dependent criterion,

which resulted in a highly-constrained model, medium-sized instances with up to 4 vehicles and 40 customers can be

solved. Paquette et al. (2013) integrate tabu search with a reference point method, computing distances to an ideal

point overall objectives. A set of supported efficient solutions is constructed by applying a weighted-sum objective

function in which the search is guided by adapting weights dynamically. Total routing cost, user waiting time, and

user ride time are minimized. Recently, in the work of Molenbruch et al. (2017), the total user ride time is set as

the second objective and a new scheduling heuristic is proposed to construct the schedule that minimizes the total

user ride time. The multi-directional local search embedded variable neighborhood descent framework is proposed.

The problem tackled in this work is characterized by combination restrictions, which prevent some users from being

transported together and limit the set of drivers to which users may be assigned.

1.1.5 Conclusion and motivation

From our review, our first conclusion is that the effect of electric vehicles on the DARP has rarely been investigated in

the previous literature. Bongiovanni et al. (2019) is the only work that conducts a comprehensive study and proposes
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an exact method (i.e., the B&C algorithm) to optimize the static version of the DARP with EVs. However, the proposed

B&C algorithm requires important run-times and has difficulties obtaining optimal/feasible solutions within the given

time limit for medium-to-large-sized instances, which limits its application in practice. The second limitation from

Bongiovanni et al. (2019) is that there are significant gaps between their best-found upper and lower bounds for

medium-to-large-sized instances.

Our second conclusion is that the minimization of total/excess user ride time has rarely been studied in the

literature. This issue is related to optimizing a scheduling problem that is derived from the DARP. Bongiovanni et al.

(2022a) seems to be the only work that proposes an exact scheduling procedure that obtains the excess-user-ride-

time optimal schedule for a DARP route. However, their extended scheduling procedure to handle the E-ADARP turns

out to be a heuristic. Hence, the extended scheduling procedure cannot guarantee to obtain the excess-user-ride-time

optimal schedule for an E-ADARP route. In addition, none of the existing literature is appropriate to derive exact and

efficient excess-user-ride time optimization in the extension of an E-ADARP partial path. Therefore, two limitations

from the literature are observed: (1) no existing work can calculate exactly the minimum excess user ride time for a

given E-ADARP route; (2) no existing work can guarantee excess-user-ride-time optimality in the extension of an

E-ADARP partial path.

Our last conclusion is that few works have been conducted in the context of multiple-objective DARP, and no work

exists for the E-ADARP considering multiple objectives. In the transportation of users, there is a fundamental trade-off

between service quality and operational efficiency: users may not be transported directly to their destinations in the

optimal operational plan. With the development of ride-sharing services, investigating this fundamental trade-off

becomes crucial in finding a good balance between human and economic perspectives. Therefore, we conclude

that it is of great value to consider the conflicting interests of service providers and users in the objective function

and investigate the Bi-objective E-ADARP (hereafter BO-EADARP). Solving the BO-EADARP would help to provide

decision-makers with the full picture of possible efficient transportation plans and select one(s) according to their

priorities and preferences.

The above limitations in the literature motivate us to:

1. Develop an exact and efficient method to calculate minimum excess user ride time for a given E-ADARP route;

2. Based on the above point, propose an efficient metaheuristic algorithm that can provide high-quality solutions

for E-ADARP instances within reasonable computational time;

3. Develop an exact and efficient method that can guarantee excess-user-ride-time optimality in the extension of

an E-ADARP partial path;

4. Based on the above point, propose an efficient CG algorithm, including a labeling algorithm for solving the

pricing problem to provide tighter lower bounds and improved upper bounds;
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5. Based on the developed CG algorithm, develop the B&P algorithm to obtain optimal solutions for the E-ADARP;

6. Extend the single-objective B&P algorithm to solve the BO-EADARP and analyze the generated Pareto optimal

(also called “efficient”) solutions.

1.2 Challenges and Contributions

Several challenges exist in the way of developing highly-efficient heuristics and exact methods to solve the E-ADARP.

These challenges derive from the problem-specific features of the E-ADARP (i.e., partial recharging, excess-user-

ride-time minimization) as well as the nature of methods (i.e., local search, label extension). Here we summarize

these challenges as follows.

1. The efficiency of a metaheuristic largely depends on its neighborhood search mechanisms, which perform

a large number of evaluations. In the case of the DARP, these are route evaluations and cost computations.

These two tasks are more complicated in the E-ADARP than in the DARP, as we allow partial recharging

and minimize total excess user ride time for a given route. Existing scheduling procedures only obtain the

approximation of minimum excess user ride time, which may deteriorate the solution quality and mislead search

direction. Moreover, these procedures are time-consuming when applied in a metaheuristic as they are usually

of quadratic time complexity and may introduce numerous repeated computations. Lastly, the battery constraints

and a partial recharging policy increase the complexity of route evaluation in the E-ADARP.

2. The CG performance largely depends on the efficiency of the labeling algorithm to solve the E-ADARP

subproblems, where one must determine an excess-user-ride-time optimal schedule from battery-feasible

schedules during label extension. This issue complicates solving the E-ADARP subproblems and cannot be

handled exactly by existing DARP feasibility check methods (Gschwind & Irnich, 2015; Gschwind & Drexl, 2019)

and scheduling procedures (Parragh et al., 2009; Molenbruch et al., 2017; Bongiovanni et al., 2022a).

3. The BO-EADARP is much harder to be solved exactly than the single-objective E-ADARP, as one must fully

explore the bi-dimension search area in order to demonstrate the completeness of the Pareto front. The existing

literature (Parragh et al. (2009); Molenbruch et al. (2017)) handles multi-objective DARPs by developing efficient

heuristics to calculate a high-quality approximation of the Pareto front. To the best of our knowledge, no current

work exists for solving the bi-objective DARP with EVs. In the context of bi-objective optimization, some works

(e.g., Glize et al. (2022)) implement exact approaches (e.g., ✏-constraint method) that can efficiently handle

bi-objective problems (e.g., BO-VRP, BOTOPTW). However, as these analyzed problems are much simpler

than the BO-EADARP, the existing methods are not guaranteed to be efficient in solving the BO-EADARP.

The contributions of this thesis are summarized as follows.
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(a) We propose a new approach that efficiently computes minimum excess user ride time by introducing a

fragment-based representation of paths. Then, we apply an exact route evaluation scheme that executes

feasibility checking in linear time. Combining these two methods, we propose an exact and efficient

optimization of excess user ride time for an E-ADARP route.

(b) We adapt a Deterministic Annealing (DA) algorithm to tackle the E-ADARP by integrating the proposed

excess user ride time optimization method. To the best of our knowledge, this is the first time an exact

excess user ride time optimization has been developed for computing locally optimal solutions within an

algorithm for solving the E-ADARP. This method allows computing the minimum excess user ride time for

a feasible E-ADARP route in linear time after preprocessing.

(c) We demonstrate the performance of the proposed DA algorithm through extensive numerical experiments.

On the previously solved instances, the DA algorithm improves the solution quality by 0.16% on average.

We provide the best solutions for 70 out of 84 instances, among which 25 are new best solutions. To

further test our algorithm in solving large-scale instances, we construct new benchmark instances with up

to 8 vehicles and 96 requests, and we provide 19 new solutions on newly-introduced instances. We also

extend the E-ADARP model to investigate the effects of allowing unlimited visits to recharging stations.

The major difficulties for local search introduced by highly-constrained instances are lessened considering

this more realistic situation.

(d) To handle the excess-user-ride-time optimality in the extension of an E-ADARP partial path, we take

advantage of the fragment-based representation defined in (a). On each fragment, we apply a new

approach to determine the minimum excess user ride time and abstract the fragment to an arc while

guaranteeing excess-user-ride-time optimality.

(e) We construct a new graph that preserves all feasible routes of the original one and ensure excess-user-

ride-time optimality on each arc of the new graph. We develop an efficient labeling algorithm with strong

dominance rules on the new graph.

(f) The numerical results demonstrate the superiority of our CG algorithm over the state-of-the-art methods,

with our algorithm being able to provide 40 new best solutions, 29 tighter lower bounds, and 17 new lower

bounds for previously solved and unsolved instances. We prove optimality for 66 out of 84 instances

without branching. For other instances, very small average gaps of 0.07% between lower bounds and the

best-known upper bounds are observed. In addition, our algorithm can easily be adapted to tackle another

problem variant where unlimited visits to each recharging station are allowed. The proposed labeling

algorithm can also serve as the first exact scheduling procedure that generates excess-user-ride-time

optimal schedules for a feasible E-ADARP route.

(g) We integrate the CG algorithm into the B&P framework, and we further solve 5 additional instances
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optimally, obtain 6 tighter lower bounds and generate 3 additional new best solutions. Benefiting from the

good quality of lower bounds obtained at the root node, our B&P algorithm searches only a few nodes of the

search tree to close the gaps. Compared with the best-reported B&C results in Bongiovanni et al. (2019),

we finally solve 71 out of 84 instances optimally within the two-hour time limit, while the B&C algorithm can

only solve 49 instances optimally. In addition, we obtain 26 new best solutions and 54 equal solutions and

enhanced 30 lower bounds. The average computational time of our B&P algorithm decreases by 16%

compared with that of the B&C algorithm. On larger-sized instances (i.e., type-r instances), we obtain 16

new best solutions, compared with the existing results of Su et al. (2023). Therefore, the superiority of our

B&P algorithm upon the existing exact method in the literature to solve the E-ADARP has been proved.

(h) To solve the BO-EADARP, we implement three different algorithms, among which two are criterion space

search algorithms (i.e., ✏-constraint method and balanced box method) and one is a decision space search

algorithm (i.e., the BOBP). In the computational experiments, we solve the BO-EADARP with three different

algorithms on small-to-medium-sized instances. From our results, the BOBP algorithm is the most efficient

algorithm, as it generates the highest number of efficient solutions in the least average computational

time. Then, we analyze the obtained efficient solutions in order to investigate the fundamental trade-off

between service quality and operational efficiency. The obtained efficient solutions offer practical interests

for different service providers: for profitable service providers (e.g., Uber, Didi), it is possible to significantly

improve service quality while keeping near-optimal operational costs; for non-profitable service providers

(e.g., Red Cross), the operational costs can be largely reduced while maintaining high service quality.

1.3 Structure of the Thesis

The remainder of this thesis is organized as follows.

Chapter 2 provides the problem definition and the notations of sets, parameters, and variables (Section 2.1). It

also discusses the objective function and constraints of the E-ADARP (Section 2.2 and 2.3). Then, the compact

formulation of the E-ADARP is introduced (Section 2.4). This chapter ends with a discussion on the effect of relaxing

charging visits per recharging station (Section 2.5).

Chapter 3 presents the DA algorithm to solve the E-ADARP. To overcome the issues mentioned in challenge

1, we first propose an exact method of linear time complexity to compute the cost and evaluate the feasibility of

an E-ADARP route based on battery-restricted fragments (Section 3.1). Repeated computations are avoided via

fragment enumeration in the preprocessing phase (Section 3.2.4). These methods pave the way for an efficient DA

algorithm (Section 3.2) and yield high-quality solutions for all instances. Finally, we conduct extensive experiments

with our proposed DA algorithm (Section 3.3).

Chapter 4 presents the CG algorithm relying on a highly-efficient labeling algorithm to solve the E-ADARP.
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First, the extended formulation of the E-ADARP and description of the CG subproblem is introduced (Section 4.1).

To ensure the excess-user-ride-time optimality during label extension, we construct a new sparser graph, where

excess-user-ride-time optimality is guaranteed on each arc (Section 4.2.2 to 4.2.3). We define a labeling algorithm

on this new graph and handle battery feasibility by tailored REFs. Its efficiency is ensured by strong dominance rules

and constant-time feasibility checks (Section 4.2.4). Cutting planes are introduced to enhance the lower bounds

obtained from the CG algorithm. Also, we implement the B&P algorithm to yield optimal solutions and compare the

obtained B&P results with the best-reported B&C results (Section 4.3). The last part of this chapter (Section 4.4)

includes extensive computational experiments that investigate effects of allowing multiple visits per recharging station.

Chapter 5 tackles the BO-EADARP. First, we introduce notations that are often used in multi-objective optimization

in Section 5.1. Then, we implement two criterion space search algorithms in Section 5.2. These algorithms include

the ✏-constraint method and the balanced-box method. In Section 5.3, we propose a generalized B&P algorithm

that extends the single-objective B&P algorithm to the bi-objective context. Section 5.4 presents computational

experiments with these algorithms on small-to-medium-sized instances under different minimum battery restrictions

(i.e., � = 0.1, 0.4, 0.7) and analyzes the obtained efficient solutions from a managerial perspective.

Chapter 6 concludes the thesis and discusses future works.

The chapters of this thesis are based the following papers:

• Chapter 3 Y. Su, N. Dupin, J. Puchinger (2023). “A deterministic annealing local search for the electric

autonomous dial-a-ride problem”. European Journal of Operational Research, accepted.

• Chapter 4 Y. Su, N. Dupin, S. N. Parragh, J. Puchinger (2023). “A column generation approach for the electric
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• Chapter 5 Y. Su, S. N. Parragh, N. Dupin, J. Puchinger (2023). “The bi-objective electric autonomous dial-a-ride

problem”. Working paper.

Some elements of the research included in this thesis have been presented in conferences. They are:

• Y. Su, N. Dupin, S. N. Parragh, J. Puchinger. A column generation approach for the electric autonomous

dial-a-ride problem. Nominated as one of the 6 finalists for the “Best student article prize” at 24ème congrès

annuel de la société Française de Recherche Opérationnelle et d’Aide à la Décision (ROADEF), Rennes,

France, 2023.

• Y. Su, S. N. Parragh, N. Dupin, J. Puchinger. The bi-objective electric autonomous dial-a-ride problem.

Presented at 24ème congrès annuel de la société Française de Recherche Opérationnelle et d’Aide à la

Décision (ROADEF), Rennes, France, 2023.

• Y. Su, N. Dupin, J. Puchinger. A column-generation based heuristic for the electric autonomous dial-a-ride

problem. Presented at ODYSSEUS 2021, Tangier, Morocco, 2022.
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la Décision (ROADEF), Lyon, France, 2022.

• Y. Su, J. Puchinger, N. Dupin. A deterministic annealing local search for the electric autonomous dial-a-ride

problem. Presented at 31st European Conference on Operational Research (EURO 2021), Athens, Greece,

2021.

• Y. Su, N. Dupin, J. Puchinger. A deterministic annealing local search for the electric autonomous dial-a-ride

problem. Presented at 22ème congrès annuel de la société Française de Recherche Opérationnelle et d’Aide à
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Chapter 2

Problem Statement

In this chapter, we first present the mathematical notations of the E-ADARP that were originally introduced in

Bongiovanni et al. (2019) and are used throughout the thesis. Then, we present the objective function and constraints

of the E-ADARP. Also, we introduce the mathematical formulation of the E-ADARP as a MILP. The final part discusses

the practical interests of extending the original problem to allow unlimited visits to recharging stations.

2.1 Notation and problem statement

The problem is defined on a complete directed graph G = (V,A), where V represents the set of vertices and A

is the set of arcs, i.e., A = {(i, j) : i, j 2 V, i 6= j}. Set V can be further partitioned into several subsets, i.e.,

V = N [ S [ O [ F , where N represents the set of all customers, S is the set of recharging stations, O and F

denote the set of origin depots and destination depots, respectively. The set of all pickup vertices is denoted as

P = {1, · · · , i, · · · , n} and the set of all drop-off vertices is denoted as D = {n+ 1, · · · , n+ i, · · · , 2n}. The union of

P and D is N , i.e., N = P [D. Each customer request is a pair (i, n+ i) for i 2 P and the maximum ride time for

users associated with request i is assumed to be mi. A time window is defined on each node i 2 V , denoted as

[ei, li], in which ei and li represent the earliest and latest time at which the vehicle starts its service, respectively. A

load qi and a service duration si is also associated for each node i 2 V . For pickup node i 2 P , qi is positive. For

the corresponding drop-off node n+ i, we have qn+i = �qi. For other nodes j 2 O [ F [ S, qj and sj are equal to

zero. In this thesis, we tackle the static E-ADARP (i.e., all the customer requests are known at the beginning of the

planning horizon Tp).

Each vehicle k 2 K must start with an origin depot o 2 O and end with a destination depot f 2 F . In this study, the

number of origin depots is equal to the number of vehicles, i.e., |O| = |K|, as in Bongiovanni et al. (2019). However,

the set of destination depots can be larger than the set of origin depots, namely, |F | > |O|, which means a vehicle

can select a depot from F at the end of the route. An E-ADARP route is defined as a path in graph G originating from
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the origin depot and terminating in the destination depot, and passing through the pickup, drop-off, and charging

station (if required) locations, which satisfies pairing and precedence, load, battery, time window, and maximum user

ride time constraints. The E-ADARP consists in designing K routes, one for each vehicle, so that all customer nodes

are visited exactly once, each recharging station and destination depot is visited at most once, and the weighted-sum

objective function (presented in Section 2.2) is minimized. For unemployed vehicles, they travel directly from their

designated origin depot to a destination depot. Vehicles are assumed to be heterogeneous in terms of their maximum

vehicle capacities Ck and homogeneous in terms of battery capacities (denoted as Q).

The travel time on each arc (i, j) 2 A is denoted as ti,j and the battery consumption is denoted as bi,j . We

assume that bi,j is proportional to ti,j and we have bi,j = �ti,j , with � being the energy discharging rate. When a

vehicle recharges at a recharging station, the energy recharged is proportional to the time spent at the facilities.

The recharging rate is denoted as ↵. Energy units are converted to time units by defining hi,j = bi,j/↵. Then, the

battery consumption bi,j on arc (i, j) is converted to the time needed for recharging this amount of energy. Similarly,

we can also convert the current energy level to the time needed to recharge to this energy level. Let H denote the

time required to recharge from zero to full battery capacity Q. Partial recharging is allowed while a vehicle visits

recharging stations, and a minimum battery level �Q must be respected at destination depots. The triangle inequality

is assumed to hold for travel times and battery consumption.

Figure 2.1 presents a solution of an E-ADARP instance that includes 4 vehicles and 16 requests. Each request

contains the pickup node (denoted as i+) and the corresponding drop-off node i�. If minimum battery level constraints

are not satisfied, vehicles must make detours to recharging stations before returning to destination depots. Each

vehicle starts from a different origin depot and returns to a different destination depot. Each recharging station is

visited at most once and no passenger is onboard when recharging.

2.2 Objectives of the E-ADARP

Different from most works in the context of the DARP, the objective of the E-ADARP is expressed as a weighted sum

of the total travel time of all the vehicles and the excess user ride time of all the users. Taking excess user ride time

into the objective allows quantifying the user inconvenience directly. Also, it might help to improve the service quality

by minimizing the excess user ride time at no additional operational cost if considered in a strictly lexicographic way.

Related works considering the inclusion of user ride time in the objective function are Parragh et al. (2009) and

Molenbruch et al. (2017). The objective function is formulated as:

minw1

X

k2K

X

i,j2V

ti,jx
k
i,j + w2

X

i2P

Ri (2.1)
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2. For each request, its corresponding pickup and drop-off node belong to the same route, and the pickup node is

visited before its drop-off node;

3. User nodes and origin depots are visited exactly once, while each destination depot and recharging station is

visited at most once;

4. The maximum vehicle capacity must be respected at each node;

5. Each node is visited within its time window [ei, li] where i 2 V . Vehicle can arrive earlier than ei but cannot

arrive later than li. In the first case, waiting time occurs at i.

6. The maximum user ride time is not exceeded for any of the users;

7. The battery level at the destination depot must be at least equal to the minimal battery level;

8. The battery levels at any nodes of a route can not exceed the battery capacity and cannot be negative;

9. The recharging station can only be visited when there is no passenger on board;

10. Each recharging station s 2 S can only be visited at most once by all vehicles.

An E-ADARP route is called “feasible” if the above constraints, except for constraints (3) and (10), are fulfilled.

Also, it should be noted that one can allow multiple visits to a recharging station by replicating the set of recharging

stations, as in Bongiovanni et al. (2019).

2.4 Mathematical formulation of the E-ADARP

In this section, we present the mathematical formulation of the E-ADARP, which was initially introduced by Bongiovanni

et al. (2019).

minw1

X

k2K

X

i,j2V

ti,jx
k
i,j + w2

X

i2P

Ri (2.2)

subject to:

X

j2P[S[F

xk
ok,j = 1, 8k 2 K (2.3)

X

j2F

X

i2D[S[{ok}

xk
i,j = 1, 8k 2 K (2.4)

X

k2K

X

i2D[S[{ok}

xk
i,j 6 1, 8j 2 F [ S (2.5)
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X

j2V,j 6=i

xk
i,j �

X

j2V,j 6=i

xk
j,i = 0, 8k 2 K, i 2 N [ S (2.6)

X

k2K

X

i2N,j 6=i

xk
i,j = 1, 8i 2 P (2.7)

X

j2N,j 6=i

xk
i,j �

X

j2N,j 6=n+i

xk
j,n+i = 0, 8k 2 K, i 2 P (2.8)

T k
i + si + ti,n+i 6 T k

n+i, 8k 2 K, i 2 P (2.9)

ei 6 T k
i 6 li, 8k 2 K, i 2 V (2.10)

T k
i + ti,j + si �Mi,j(1� xk

i,j) 6 T k
j , 8k 2 K, i 2 V, j 2 V, i 6= j|Mi,j > 0 (2.11)

T k
n+i � T k

i � si 6 mi, 8k 2 K, i 2 P (2.12)

Ri > T k
n+i � T k

i � si � ti,n+i, 8k 2 K, i 2 P (2.13)

Lk
i + lj �Gk

i,j(1� xk
i,j) 6 Lk

j , 8k 2 K, i 2 V, j 2 V, i 6= j (2.14)

Lk
i + lj +Gk

i,j(1� xk
i,j) > Lk

j , 8k 2 K, i 2 V, j 2 V, i 6= j (2.15)

Lk
i > max{0, li}, 8k 2 K, i 2 N (2.16)

Lk
i 6 min{Ck, Ck + li}, 8k 2 K, i 2 N (2.17)

Lk
i = 0, 8k 2 K, i 2 ok [ F [ S (2.18)

29



Bk
i = Bk

0 , 8k 2 K, i 2 ok (2.19)

Bk
j 6 Bk

i � bi,j +Q(1� xk
i,j), 8k 2 K, i 2 V \ S, j 2 V \ {ok}, i 6= j (2.20)

Bk
j > Bk

i � bi,j �Q(1� xk
i,j), 8k 2 K, i 2 V \ S, j 2 V \ {ok}, i 6= j (2.21)

Bk
j 6 Bk

s + ↵Ek
s � bs,j +Q(1� xk

s,j), 8k 2 K, s 2 S, j 2 P [ F [ S, s 6= j (2.22)

Bk
j > Bk

s + ↵Ek
s � bs,j �Q(1� xk

s,j), 8k 2 K, s 2 S, j 2 P [ F [ S, s 6= j (2.23)

Q > Bk
s + ↵Ek

s , 8k 2 K, s 2 S (2.24)

Bk
i > �Q, 8k 2 K, i 2 F (2.25)

Ek
s 6 T k

i � ts,i � T k
s +Mk

s,i

�
1� xk

s,i

�
, 8s 2 S, i 2 P [ S [ F, k 2 K, i 6= s (2.26)

Ek
s > T k

i � ts,i � T k
s �Mk

s,i

�
1� xk

s,i

�
, 8s 2 S, i 2 P [ S [ F, k 2 K, i 6= s (2.27)

xk
i,j 2 {0, 1}, 8k 2 K, i 2 V, j 2 V (2.28)

Bk
i > 0, 8k 2 K, i 2 V (2.29)

Ek
s > 0, 8k 2 K, s 2 S (2.30)

Constraints (2.3) and (2.4) ensure that all vehicles start from their origin depots and end at a selected destination

depot. Constraints (2.5) guarantee that each destination depot and recharging station is visited at most once.

Constraints (2.6) are flow conservation constraints. Constraints (2.7) restrict the visit at each pickup node to exactly

once. The pair and precedence constraints of pickup and drop-off nodes are ensured by constraints (2.8) and (2.9).
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Constraints (2.10) and (2.11) are time window constraints. It should be noted that in Bongiovanni et al. (2019), the

“big M” values are not calculated correctly. We present a more in-depth analysis in Appendix A to illustrate how the

“big M” values should be set correctly. Constraints (2.12) are maximum user ride time constraints, and constraints

(2.13) calculate the excess user ride time for request i. Constraints (2.14) to (2.18) are added to ensure the vehicle

load will not exceed the maximum vehicle capacity. Constraints (2.19) set the initial battery level for vehicle k at the

origin depot ok. Constraints (2.20) and (2.21) calculate the battery levels of vehicles from i 2 V \ S to j 2 V \ {ok}.

Constraints (2.22) and (2.23) track the battery levels of vehicles that leave from a recharging station s 2 S to the

next node j. The maximum battery capacity is ensured in constraints (2.24). Constraints (2.25) restrict the minimum

battery level that vehicle must satisfy when returning to the destination depot. Constraints (2.26) and (2.27) set lower

and upper bounds for recharging time at a recharging station.

Table 2.1 summarizes all the notations and definitions for sets, parameters, and decision variables that will be

used throughout the thesis.

2.5 Multiple visits to a recharging station?

Each E-ADARP instance of Bongiovanni et al. (2019) only contains a few recharging stations. In Bongiovanni et al.

(2019), they first restrict the visit to the recharging station to at most one visit. This assumption is not practical in

real life and increases the complexity of solving the E-ADARP, especially in the scenario of high battery restriction

at the end of the route (i.e., � = 0.7). Then, they investigate the effect of allowing multiple visits to recharging

stations by replicating set S. Allowing multiple visits per station seems to be more practical, as it accounts for the

physical limitations of recharging infrastructure (e.g., the limited number of charging ports) and vehicles can visit the

same recharging station if it allows fewer detours. However, Bongiovanni et al. (2019) uses a predefined maximum

number of visits (denoted as nas) to a recharging station, and their proposed algorithm cannot solve all instances

feasibly within their maximum algorithm capacity. The maximum value of nas that can be solved by their proposed

algorithm is nas = 3. In this thesis, we relax this constraint and allow unlimited visits to the recharging stations in

Chapter 3 and 4 (the corresponding sections are Section 3.3.4 and Section 4.4.2). By treating recharging stations as

unlimited resources (i.e., represented by nas =1), our proposed algorithms obtain feasible solutions for all instances,

where most of them are solved optimally. Then, with obtained solutions, we calculate a more reliable value of nas

by analyzing all the best-obtained solutions for all instances. Our obtained nas ensures solving different types of

instances feasibly. Experiments with setting nas = 2, 3 are also conducted and compared to the best-obtained results

of Bongiovanni et al. (2019).
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Table 2.1 Notations of the E-ADARP

Sets Definitions

N = {1, · · · , n, n+ 1, · · · , 2n} Set of pickup and drop-off nodes

P = {1, · · · , i, · · · , n} Set of pickup nodes

D = {n+ 1, · · · , n+ i, · · · , 2n} Set of drop-off nodes

K = {1, · · · , k} Set of available vehicles

O = {o1, o2, · · · , ok} Set of origin depots

F = {f1, f2, · · · , fh} Set of all available destination depots (supposing the total number is h)

S = {s1, s2, · · · , sg} Set of recharging stations (supposing the total number is g)

V = N [ S [O [ F Set of all nodes

Parameters Definitions

ti,j Travel time from location i 2 V to location j 2 V
bi,j Battery consumption from location i 2 V to location j 2 V
hi,j The time needed for recharging bi,j , i, j 2 V
ei Earliest time at which service can begin at i 2 V
li Latest time at which service can begin at i 2 V
si Service duration at i 2 V
qi Change in load at i 2 N
mi Maximum user ride time for request i 2 P
Ck The vehicle capacity of vehicle k
Q The battery capacity

H Recharging time required to recharge from zero to Q
Bok Initial battery capacity of vehicle k
↵ The recharged energy per time unit

� The discharged energy per time unit

Tp Planning horizon

� The ratio of minimum battery level at destination depot to Q
w1, w2 Weight factors for total travel time and total excess user ride time

Decision Variables Definitions

xk
i,j xk

i,j = 1 if vehicle k travels from location i to j 2 V , 0 otherwise

T k
i Service start time of vehicle k at location i 2 V

Lk
i Load of vehicle k at location i 2 V

Bk
i Battery load of vehicle k at location i 2 V

Ek
s Charging time of vehicle k at charging station s 2 S

Ri Excess user ride time of passenger i 2 P
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Chapter 3

A Deterministic Annealing Local Search for

the Electric Autonomous Dial-A-Ride

Problem

This chapter is based on our published journal paper “A deterministic annealing local search for the electric

autonomous dial-a-ride problem”, by European Journal of Operational Research. In this chapter, we propose a

Deterministic Annealing (DA) algorithm to solve the E-ADARP and provide the first heuristic results for the static

version of the E-ADARP. The two challenges of the E-ADARP presented in the first chapter are handled exactly in

the DA algorithm: Partial recharging (i) is handled by an exact route evaluation scheme of linear time complexity.

The minimum excess user ride time in objective function (ii) is calculated by a new method that allows effective

computations of minimum excess user ride time by introducing a fragment-based representation of paths. Combining

these two methods, we propose an exact and efficient optimization of excess user ride time for a generated E-

ADARP route. The remainder of this chapter is organized as follows. Section 3.1 introduces the fragment-based

representation of paths and the method to minimize total excess user ride time. A novel route evaluation scheme

of linear time complexity is then described. Based on Section 3.1, Section 3.2 presents the framework of the

proposed DA algorithm and its main ingredients. In Section 3.3, we conduct extensive computational experiments to

demonstrate the performance of the proposed DA algorithm. This chapter ends in Section 3.4 with a summary of the

results and contributions, closing with discussions of future extensions.
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3.1 Excess User Ride Time Optimization

The idea of our excess user ride time optimization method is as follows. We first introduce a fragment-based

representation of paths, which extends the one proposed in Rist & Forbes (2021) by additionally considering battery

constraints for ensuring overall route feasibility in terms of energy consumption. Based on this representation of paths,

each E-ADARP route can be represented by a series of battery-restricted fragments (see Definition 1). Then, we

prove in Theorem 1 that the minimum total excess user ride time for a feasible route can be determined by summing

the minimum excess user ride time of each battery-restricted fragment. Following this idea, we enumerate all the

feasible battery-restricted fragments and calculate their minimum excess user ride times in the preprocessing phase

(shown in Section 3.2.4). With all the feasible fragments obtained as well as their minimum excess user ride time, we

only need to check the feasibility of the route, which is realized via an exact route evaluation scheme of linear time

complexity.

3.1.1 Representation of paths

The most important characteristic of the E-ADARP is the incorporation of total excess user ride time in the objective

function as well as the maximum user ride time in the constraints. Usually, the maximum user ride time constraints

can be tackled by calculating forward time slack and delaying the service start time at some nodes (e.g., Cordeau

& Laporte (2003), Kirchler & Calvo (2013), Parragh et al. (2009)). To minimize the total excess user ride time, we

declare one important point: total excess user ride time can only be minimized when vehicles finish their delivery (i.e.,

no open request on the path). We then introduce battery-restricted fragments:

Definition 1 (Battery-restricted fragment). Assume that F = (i1, i2, · · · , ik) is a sequence of pickup and drop-off

nodes, where the vehicle arrives empty at i1 and leaves empty at ik and has passenger(s) on board at other nodes.

Then, we call F a battery-restricted fragment if there exists a feasible route of the form:

(o, si1 , · · · , siv ,

F
z }| {

i1, i2, · · · , ik, siv+1
, · · · , sim , f) (3.1)

where si1 , · · · , siv , siv+1
, · · · , sim(v,m > 0) are recharging stations, o 2 O, and f 2 F .

It should be noted that if no recharging station is required in the route of Definition 1, i.e., v = m = 0 in

Equation (3.1), the battery-restricted fragment is equivalent to a fragment defined in Rist & Forbes (2021). Figure 3.1

presents an example of a feasible route that consists of two battery-restricted fragments, i.e., F1 = {1+, 2+, 1�, 2�}

and F2 = {3+, 3�}. Note that F1 [ F2 is not a battery-restricted fragment, as the vehicle becomes empty at

intermediate node 2-. Based on this definition, each E-ADARP route can be regarded as the concatenation of several

battery-restricted fragments, recharging stations (if required), an origin depot, and a destination depot.
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v < v1, v 2 Fi) to T 0
v = Tv+∆1. The excess user ride time of T1 is at least ∆1 smaller than T . It contradicts

to our assumption that T is an optimal schedule (for example, see Example 1);

(ii) Tv3 = ev3
for some v3 > v2, v3 2 Fi.

If not, we have ∆2 = min
�
Tv2
� arrv2

, {Tv � ev}v>v2,v2Fi

 
> 0. We can obtain a new feasible schedule

T2 by moving forward the service start times of all nodes in Fi that are after node v2 (i.e., node v such

that v > v2, v 2 Fi) to T 00
v = Tv �∆2. The excess user ride time of T2 is at least ∆2 smaller than T . It

contradicts to our assumption that T is an optimal schedule (for example, see Example 2);

Based on (i) and (ii), assuming that vs, ve are the first and the last node of Fi, we derive that all the feasible

schedules for Fi must satisfy the following two points:

(iii) Since we have arrv = Tv for all v < v0 < v1 and Tv0
= lv0 , any feasible schedules over Fi could not begin

service at vs later than Tvs (Tvs
is the latest possible service start time at vs). Otherwise, it will surpass the

latest time window lv0 at node v0;

(iv) Since we have arrv = Tv for all v2 6 v3 < v and Tv3
= ev3

, any feasible schedules over Fi could not arrive

at ve earlier than arrve .

Assuming that T ⇤
i = [· · · , T ⇤

v , · · · ]v2Fi
is an optimal schedule of Fi, and the arrival time at v is arr⇤v =

T ⇤
v�1 + tv�1,v + sv�1. Now, we prove that the excess user ride time of Ti is the same as T ⇤

i using the above

properties. Note that we are still under the condition that arrv < Tv for some v 2 Fi.

According to (iii) and (iv), we have T ⇤
vs

6 Tvs , arr
⇤
ve > arrve for an optimal schedule T ⇤

i over Fi. Clearly, T ⇤
i

satisfies EUmin(T
⇤
i )  EUmin(Ti). Next, we will prove that EUmin(T

⇤
i ) = EUmin(Ti). Then, we prove Ti is an

optimal schedule over Fi. Our proof contains two cases:

(a) If arr⇤v = T ⇤
v for all v 2 Fi: As we have T ⇤

vs
6 Tvs

, then arr⇤ve
6 arrve

. Therefore, we derive that

arr⇤ve
= arrve , T ⇤

vs
= Tvs

. As we assume in the condition that arr⇤v = T ⇤
v for all v 2 Fi, we must have

Tv = T ⇤
v for all k 2 Fi. It contradicts to our assumptions that arrv < Tv for some v 2 Fi. Therefore, this

case will not happen;

(b) If arr⇤v < T ⇤
v for some v 2 Fi: Then we can prove the same result as in (i) (ii) and (iii) for T ⇤

v in the same

manner. Then Tvs
6 T ⇤

vs , arrve
> arr⇤ve

and thus we derive Tvs = T ⇤
vs , arrve

= arr⇤ve
. Then we have

EUmin(T
⇤
i ) = EUmin(Ti). Otherwise, if EUmin(T

⇤
i ) < EUmin(Ti), we can obtain a new feasible schedule

T 0 over R from T by replacing Ti to T ⇤
i , and T 0 has smaller excess user ride time than T , which is a

contradiction!

For the sake of illustration, we take Example 1 and 2 to explain point (i) and (ii) of case 2, respectively.
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Tn+i � Ti � si � ti,n+i 6 Ri, 8i 2 PF (3.5)

ei 6 Ti 6 li, 8i 2 F (3.6)

Ri > 0, 8i 2 PF (3.7)

where Ti denotes the service start time at node i, idxi is the index of node i on the fragment. The objective

function is to minimize the total excess user ride time of F . Constraints (3.3) are time window constraints. Constraints

(3.4) and constraints (3.5) are user ride time constraints.

Note that we ensure the maximum user ride time and vehicle capacity constraints when we generate fragments

(will be explained in Section 3.2.4). If a route R contains an infeasible fragment, it is discarded directly without further

evaluation.

3.1.3 Exact route evaluation scheme of linear time complexity

One challenge of the E-ADARP is tackling the trade-off between recharging time and time window constraints. A

longer recharging time will extend the driving range and is beneficial to meet the energy restriction at the destination

depot. However, the vehicle risks violating the time window constraints for the succeeding nodes. These two aspects

interact, and it is hard to check the feasibility of a generated route (denoted as R). We construct an exact route

evaluation scheme of linear time complexity based on the forward labeling algorithm of Desaulniers et al. (2016). To

the best of our knowledge, it is the first time an exact route evaluation scheme is developed to handle the DARP with

EVs.

Given a route R, we associate each node i 2 R with a label Li := {(T rchs

i )s2S , T
tMin
i , T tMax

i , T rtMax
i } including

four resource attributes. We denote Pi as the partial path from the first node of R until node i. The definition of each

resource attribute is shown as follows:

1. T rchs

i : The number of times recharging station s 2 S is visited along Pi;

2. T tMin
i : The earliest service start time at vertex i assuming that, if a recharging station is visited prior to i along

Pi, a minimum recharge (ensuring the battery feasibility up to i) is performed;

3. T tMax
i : The earliest service start time at vertex i assuming that, if a recharging station is visited prior to i along

Pi, a maximum recharge (ensuring the time-window feasibility up to i) is performed;

4. T rtMax
i : The maximum recharging time required to fully recharge at vertex i assuming that, if a recharging

station is visited prior to i along Pi, a minimum recharge (ensuring the battery feasibility up to i) is performed;

The initial label is defined as {(

|S| times
z }| {

0, · · · , 0), 0, 0, 0}. We compute the succeeding label Lj from the previous label Li

by Resource Extension Functions (REFs):
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T rchs

j = T rchs

i +

8

>><

>>:

1, if j = s

0, otherwise

(3.8)

T tMin
j =

8

>><

>>:

max{ej , T
tMin
i + ti,j + si}, if T rch

i = ;

max{ej , T
tMin
i + ti,j + si}+ Zi,j , otherwise

(3.9)

T tMax
j =

8

>><

>>:

min{lj ,max{ej , T
tMin
i + T rtMax

i + ti,j + si}}, if i 2 S

min{lj ,max{ej , T
tMax
i + ti,j + si}}, otherwise

(3.10)

T rtMax
j =

8

>><

>>:

T rtMax
i + hi,j , if T rch

i = ;

min{H,max{0, T rtMax
i � Si,j}+ hi,j}, otherwise

(3.11)

where:

Si,j(T
tMin
i , T tMax

i , T rtMax
i ) =

8

>><

>>:

max{0,min{ej � T tMin
i � ti,j � si, T

rtMax
i }}, if i 2 S

max{0,min{ej � T tMin
i � ti,j � si, T

tMax
i � T tMin

i }}, otherwise

(3.12)

Zi,j(T
tMin
i , T tMax

i , T rtMax
i ) = max{0,max{0, T rtMax

i � Si,j(T
tMin
i , T tMax

i , T rtMax
i )}+ hi,j �H} (3.13)

The Si,j is the slack time between the earliest time window ej at j and the earliest arrival time to j. If i is a

recharging station, Si,j is the maximum amount of recharging time that can be performed at i, namely T tMax
i �T tMin

i .

Zi,j is the minimum recharging time required to keep battery feasibility accounting for the available slack at the

previous recharging station.

According to Desaulniers et al. (2016), we have following proposition:

Proposition 1. The route R is feasible if and only of 8j 2 R, the label Lj satisfies:

T tMin
j 6 lj , T tMin

j 6 T tMax
j , T rchs

j 6 1, T rtMax
j 6

8

>><

>>:

(1� �)H, j 2 F

H, otherwise

Clearly, the feasibility checking algorithm is of linear time complexity with respect to the length of the input route.

After checking the feasibility, the total cost of route R is obtained by summing the travel time of arcs and the excess

user ride time of fragments, recalling Theorem 1.
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3.2 Deterministic Annealing Algorithm for the E-ADARP

Based on Section 3.1.2 and Section 3.1.3, we establish a DA algorithm that ensures minimal excess user ride time for

a generated solution and integrates an exact route evaluation. Different types of local search operators are embedded

in the proposed DA algorithm to solve the E-ADARP.

DA was first introduced by Dueck & Scheuer (1990) as a variant of simulated annealing. Recent research shows

that DA can obtain near-optimal or optimal solutions for a series of vehicle routing problems (Bräysy et al., 2008;

Braekers et al., 2014). To the best of our knowledge, the only paper that implements DA to solve the DARP is that of

Braekers et al. (2014). Applying DA algorithm provides several advantages, and the most important one is its easy

parameter tuning process, as the DA algorithm mainly relies on a single parameter. In addition, the DA algorithm is

proved to be very efficient in solving the typical DARP. However, Braekers et al. (2014) considers a single-objective

case in the DARP. To solve the E-ADARP, we adapt the DA algorithm to accommodate problem-specific features of

the E-ADARP by integrating the proposed excess user ride time optimization approach.

The framework for the proposed DA algorithm is depicted in Algorithm 1. The algorithm input is an initial

solution xinit constructed by a parallel insertion heuristic (presented in Section 3.2.1) and the initial settings of

DA-related parameters. These parameters include: (i) a maximal number of iterations Niter; (ii) the initial and maximal

temperature Θmax; (iii) restart parameter nimp. It should be mentioned that the initial solution xinit is feasible for the

E-ADARP constraints, except that only a subset of requests may be served. The solution cost of the initial solution is

denoted as c(x), and the number of requests served in the initial solution is updated to Nreq so that a lexicographic

optimization considers cost comparison in c(x) values only if it does not worsen the number of requests served. A list

of indexed operators opt1, . . . , optz are operated sequentially in each DA iteration (presented in Section 3.2.3).

There are two steps in the algorithm: local search and threshold update. At the beginning of the algorithm, the

threshold value Θ is set to Θmax, and the best solution xb and current solution x is initialized to an initial solution xinit.

During the local search process, local search operators are applied to alter the current solution. In the next step, the

threshold value is updated and restarted when the value is negative.

In the local search process, we first remove the existing recharging stations on the current route and then

generate a random neighborhood solution x0 from the current solution x by applying different operators. In the case

of neighborhood solution x0 satisfies c(x0) < c(x) +Θ but violates battery constraints, we call an insertion algorithm

to repair x0 by inserting recharging stations at proper places (presented in Section 3.2.2). Solution x0 is accepted to

become the new current solution when the number of assigned requests increases or the total cost is less than that

of the current solution plus the threshold value Θ.

In the threshold update process, when no new global best solution is found, Θ is reduced by Θmax/Θred, where

Θred is a predefined parameter. To ensure that Θ is always non-negative, we reset Θ to r ⇥Θmax, with r a random

number generated between zero and one whenever Θ becomes negative. The search is restarted from xb when no
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Algorithm 1 DA Algorithm for the E-ADARP

Input: Initial solution xinit, initial values of Niter, Θmax, and nimp. Θ is set to Θmax

Output: Best solution xb found by our algorithm;

1: while iter 6 Niter do

2: iimp ← iimp + 1;

3: for j = 1 → z − 1 do

4: Apply local search operator optj on x to obtain neighborhood solution x0;

5: if c(x0) < c(x) +Θ then

6: x ← x0;

7: end if

8: end for

9: if Nreq < n then

10: Apply optz operator to add request to generate neighborhood solution x0;

11: Update the number of requests served in x0 as N 0

req;

12: end if

13: if (c(x0) < c(xb) and N 0

req = Nreq) or N 0

req > Nreq then

14: xb ← x0

15: iimp ← 0
16: else

17: Θ ← Θ−Θmax/Θred

18: if Θ < 0 then

19: r ← random number between 0 and 1

20: Θ ← r ×Θmax

21: if iimp > nimp then

22: x ← xb

23: iimp ← 0
24: end if

25: end if

26: end if

27: iter ← iter + 1
28: end while

29: return xb
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improvement is found in nimp iterations and Θ becomes negative.

3.2.1 Parallel insertion heuristic

While in most of the literature, the initial solution is often generated randomly, we construct our initial solution by

a parallel insertion algorithm considering the time window and spatial closeness, as in Masmoudi et al. (2017).

First, we sort all the requests (i, n+ i), i 2 P in increasing order based on ei. Then, we randomly initialize k routes

{R1, · · · ,Rk} (0 < k 6 K with K being the number of total vehicles). Each of the k first requests in the sorted

request list is assigned randomly to different routes. These requests are deleted from the list of requests.

Then, we sort the route list {R1, · · · ,Rk} in increasing order with regards to the distance between the last node of

the analyzed route and the pickup node of the first request remaining in the request list. The first request is assigned

to the first route in the route list. To insert the selected request, we enumerate all the possible insertion positions and

insert the corresponding pickup node and drop-off node in a feasible way on this route. If this request cannot be

inserted feasibly, then we move to the second route. This process is repeated until this request is inserted or all the

routes are analyzed. If this request cannot be inserted in any of the existing routes, we move to the second request

in the list and repeat the above process. After this process, if some requests are still not assigned, a new route is

activated, and the above process will be repeated. The algorithm terminates when the request list is empty or the

existing requests in the list cannot be inserted into any of the routes in a feasible way.

3.2.2 Recharging station insertion for a given route

If a route R 2 x0 only violates the battery constraints and neighborhood solution x0 has c(x0) < c(x) + T , we insert

a/several recharging station(s) to repair R. First, we create two empty sets, one is to store repaired route candidates

(called “list of feasible routes”), the other is to store potential route candidates (called “list of candidate routes”). For

each possible insertion position, we select a random recharging station from the set of available stations to insert.

We do not consider inserting the best station (e.g, the closest one), as we may have other battery-infeasible routes in

R, which requires visiting this recharging station to be repaired. If a feasible route is generated after insertion, we

add it to the list of feasible routes. Otherwise, we store this route in the list of candidate routes. Suppose the route

is still infeasible after trying all the possible insertion positions. In that case, we move to the next iteration to insert

another recharging station for all the possible positions of all the candidate routes. The algorithm returns the repaired

minimum-cost feasible route if R can be repaired or an empty set otherwise. For acceleration, we only consider

repairing the route containing less than Nrch recharging stations and we take Nrch = d|S|/2e.
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It should be noted that we tighten the value of ei for node i 2 P by considering the earliest possible service start

time at node i 2 P for arriving at the corresponding drop-off node n+ i at en+i. Hence, ei = max{ei, en+i �mi � si}.

Similarly, we tighten li, i 2 P by considering the latest possible service start time at node i 2 P for arriving at node

n+ i at ln+i, i.e., li = min{ln+i � ti,n+i � si, li}. The arc elimination process follows the method of Cordeau (2006).

We reduce the number of arcs in the graph by removing arcs that will not lead to a feasible solution.

We further accelerate computations by enumerating all feasible fragments before computation, as in Alyasiry

et al. (2019), Rist & Forbes (2021). This method simplifies route evaluation and avoids recalculations as we only

need to query information from each fragment. We enumerate all the feasible fragments with depth-first search and

calculate their minimum excess user ride time. Then, the total excess user ride time of a route R can be calculated

by summing EUmin(F),F ✓ R, recalling Theorem 1.

To generate all feasible fragments, we start from each pickup node and extend it node by node respecting time

window, capacity, battery, and maximum user ride time constraints. We assume that the vehicle starts from each

pickup node with a full battery level. The maximum user ride time, vehicle capacity constraints are checked during

the extension process. For each node on a fragment, it must have a positive battery level.

Note that if a fragment only contains one request, we calculate the excess user ride time directly and check the

maximum user ride time constraints. If a fragment contains two or more requests, we resort to a LP solver (Gurobi) to

solve the LP model (shown in 3.1.2) and check the maximum user ride time constraints. For each feasible fragment,

the obtained minimum excess user ride time value is recorded. We conduct a preliminary test and provide details for

fragment enumeration on each instance as shown in Table B.1 in Appendix B. In Table B.1, Nfrag denotes the number

of fragments generated, Legavg and Legmax denote the average and maximum length of fragments, respectively.

NLP represents the number of time LP is solved, and CPU is the total computational time for enumeration in seconds.

For all the instances, the fragment enumeration can be fulfilled in a matter of seconds. In the computational

experiments, we report the CPU time, which includes the computational time for performing all the preprocessing

works in Section 3.3.

Adapt DA algorithm to allow multiple visits to each recharging station

Different from the model of Bongiovanni et al. (2019), we allow multiple visits at each recharging station without the

need to replicate set S. In the case of nas = 2, 3, we replicate the recharging station set S to allow at most two and at

most three visits per station. All the ingredients remain the same in these two cases. In the case of nas = 1, we

remove the feasibility checking rule T rchs

j 6 1 to allow one route visiting multiple times for a station. When selecting a

recharging station to insert in a route, we relax the set of available recharging stations to S. This operation allows

inserting a recharging station that has already been used in other routes.
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3.3 Computational Experiments and Results

In this section, we conduct extensive numerical experiments and analyze the results. All algorithms are coded in

Julia 1.7.2 and are performed on a standard PC with an Intel Xeon Gold 6230 20C at 2.1GHz. This section is

organized as follows. The benchmark instances for the computational experiments and abbreviations used in the

Tables are introduced in the first part. Then, a sensitivity analysis is conducted to find good parameter settings for the

proposed DA algorithm in Section 3.3.2. After ensuring the robustness of parameters and operators, we validate the

performance of the proposed algorithm on the standard E-ADARP instances compared to the state-of-the-art results

in Section 3.3.3. Section 3.3.4 investigates the effect of allowing multiple visits to recharging stations.

3.3.1 Benchmark instances and abbreviations

This section presents the benchmark instances used to test the algorithm performance, their characteristics, and the

notations for the computational experiments.

Benchmark Instances

Instances are named following the pattern xK-n-�, where K is the number of vehicles, n is the number of requests,

and � 2 {0.1, 0.4, 0.7}. Three sets of instances are considered in the experiments, which differentiate by x 2 {a, u, r}:

• “a” denotes the standard DARP benchmark instance set from Cordeau (2006) extended with features of electric

vehicles and recharging stations by Bongiovanni et al. (2019). To simplify, we call them type-a instances. For

type-a instances, the number of vehicles is in the range 2 6 K 6 5, and the number of requests is in the range

16 6 n 6 50.

• “u” denotes instances based on the ride-sharing data from Uber Technologies (instance name starts with “u”)

that were adopted from Bongiovanni et al. (2019). To simplify, we call them type-u instances. For type-u

instances, the number of vehicles is in the range 2 6 K 6 5, and the number of requests is in the range

16 6 n 6 50, as in type-a instances.

• “r” denotes larger DARP benchmark instances built from Ropke et al. (2007) using the same extension rules to

have E-ADARP instances from DARP instances. To simplify, we call them type-r instances. For type-r instances,

the number of vehicles is in the range 5 6 K 6 8 and the number of requests is in the range 60 6 n 6 96.

Type-a instances are supplemented with recharging station ID, vehicle capacity, battery capacity, the final state of

charge requirement, recharging rates, and discharging rates. The same operation is applied to type-r instances to

generate a large-scale set of instances. The vehicle capacity is set to three passengers, and the maximum user ride

time is 30 minutes. As in Bongiovanni et al. (2019), recharging rates and discharging rates are all set to 0.055KWh
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per minute according to the design parameter of EAVs provided in: https://www.hevs.ch/media/document/1/

fiche-technique-navettes-autonomes.pdf. The efficient battery capacity is set to 14.85 KWh, and the vehicle

can approximately visit 20 nodes without recharging.

The ride-sharing dataset of Uber is obtained from the link: https://github.com/dima42/uber-gps-analysis/

tree/master/gpsdata. Type-u instances are created by extracting origin/destination locations from GPS logs

in the city of San Francisco (CA, USA) and applying Dijkstra’s shortest path algorithm to calculate the travel

time matrix with a constant speed setting (i.e., 35km/h). Recharging station positions can be obtained through

Alternative Fueling Station Locator from Alternative Fuels Data Center (AFDC). For a more detailed description

of instances development, the interested reader can refer to Bongiovanni et al. (2019). The preprocessed data

that extract requests information from the raw data provided by Uber Technologies are published on the website

(https://luts.epfl.ch/wpcontent/uploads/2019/03/e_ADARP_archive.zip). The vehicle capacity is set to three

passengers, and the maximum user ride time is 8 minutes.

Following Bongiovanni et al. (2019), we consider three different � values, i.e., � 2 {0.1, 0.4, 0.7}, representing

different minimal battery restrictions at the destination depot. For weight factors, we take w1 = 0.75 and w2 = 0.25.

Abbreviations in the tables

The DA algorithm has deterministic rules to accept a solution and the sequence of neighborhoods, which is contrary

to Simulated Annealing. There remains a randomized part in the selection of neighboring solutions. Unless indicated,

we perform 50 runs on each instance with different seeds to analyze the statistical distribution of the solution quality.

For each instance, we present the following values:

• BC 0 is the cost of best solutions from B&C algorithm reported in Bongiovanni et al. (2019);

• BC is the cost of best solutions found by the proposed DA algorithm over 50 runs;

• AC is the average-cost solution found by the proposed DA algorithm over the 50 runs.

• Q1 is the middle number between the best-obtained solution and the median of all the solutions over 50 runs;

• Q3 is the middle number between the median of all the solutions over 50 runs and the worst solutions yielded;

To analyze the distribution of the solution found for the 50 runs, we calculate solutions gaps to BC 0. Assuming a

solution with value v (v could be BC, Q1, Q3), we compute its gap to BC 0 by:

gap =
v �BC 0

BC 0
⇥ 100%

Note that type-r instances for the E-ADARP are studied here for the first time, we therefore replace BC 0 with BC

in the above formula to analyze the gaps of Q1/AC/Q3 to BC.
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We present the following average values to analyze the consistency of the proposed DA algorithm:

• Q1% is the average gap to BC 0 of the first quartile value over the different runs;

• Q3% is the average gap to BC 0 of the third quartile value over the different runs;

• BC% is the average gap of BC to BC 0 over the different runs;

• AC% is the average gap of AC to BC 0 over the different runs;

• FeasRatio is the ratio of feasible solutions found among all the solutions generated by DA algorithm;

• CPU is the average computational time of the DA algorithm (preprocessing time is included) in seconds;

• CPU0 is the computational time of the B&C algorithm reported in Bongiovanni et al. (2019) in seconds;

• NC (Not Calculable) means that there are unsolved instances under the analyzed parameter and we cannot

calculate gaps.

• NA (Not Available) indicates that corresponding value (e.g., BC, BC 0) is not available as the analyzed algorithm

cannot provide a feasible solution.

• A dash “–” indicates that the DA algorithm finds new best solutions on a previously unsolved instance and we

cannot calculate the gap.

In Section 3.3.4, we present DA algorithm results when allowing multiple visits to each recharging station. To

distinguish, subscripts “2”, “3”, and “1” are added to BC, AC, and CPU to denote nas = 2, 3,1, respectively. As

Bongiovanni et al. (2019) provides results on type-u instances with nas = 2, 3, we add their reported results in the

column named BC 0
2 and BC 0

3 of Table 3.8 and compare our DA algorithm results to theirs.

3.3.2 Parameter tuning for the DA algorithm

The performance of the proposed algorithm depends on several parameters that must be set in advance. To ensure

the algorithm’s performance, we first identify robust parameter settings. We analyze different settings of parameters

on the type-a instance set, as it contains instances of different sizes and is enough to select good parameters. For a

comprehensive overview, we take into account different scenarios, i.e., � = 0.1, 0.4, 0.7, for each parameter setting.

The DA-related parameters are:

• Number of iterations Niter ;

• Maximum threshold value Θmax;

• Threshold reduction value Θred;
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• Restart parameter nimp.

To avoid re-tuning Θmax when using different instances, we use a relative value for Θmax. The maximum threshold

value is expressed as the product of the average distance between two nodes in the studied graph (denoted c̄) and a

predefined parameter ✓max, that is Θmax = c̄⇥ ✓max, where ✓max is initially set to 1.5. For other parameters like Θred

and nimp, we take the same settings as in Braekers et al. (2014): Θred = 300 and nimp = 50.

Sensitivity analysis and parameter tuning for ✓max

The sensitivity analysis results for ✓max under � = 0.1, 0.4, 0.7 are shown Table 3.1, and we test seven values for

✓max. For each value of ✓max, we perform ten runs on each instance and iterate the proposed algorithm 10000 times

for each run. Under each energy restriction, we report BC%, AC%, Q1%, Q3% over ten runs for the analyzed ✓max

value. For the scenario of � = 0.7, we report FeasRatio and average CPU time. We present detailed results on each

instance under different settings of ✓max in Table B.2 and B.3 in Appendix B.

Table 3.1 Sensitivity analysis for ✓max under different � cases on type-a instances

θmax 0.6 0.9 1.2 1.5 1.8 2.1 2.4

γ = 0.1
BC% 0.11% 0.10% 0.19% 0.32% 0.29% 0.28% 0.51%

AC% 0.49% 0.53% 0.74% 0.83% 0.82% 0.94% 1.07%

Q1% 0.23% 0.30% 0.43% 0.54% 0.56% 0.66% 0.81%

Q3% 0.66% 0.73% 0.90% 0.93% 1.04% 1.22% 1.28%

FeasRatio 140/140 140/140 140/140 140/140 140/140 140/140 140/140

CPU (s) 83.93 77.43 78.52 80.09 81.16 82.12 83.42

γ = 0.4
BC% 0.19% 0.27% 0.27% 0.40% 0.49% 0.70% 0.63%

AC% NC 0.68% 0.79% 0.95% 1.18% 1.36% 1.54%

Q1% 0.31% 0.49% 0.57% 0.65% 0.84% 0.96% 1.11%

Q3% 0.72% 0.84% 0.97% 1.21% 1.5% 1.68% 1.83%

FeasRatio 139/140 140/140 140/140 140/140 140/140 140/140 140/140

CPU (s) 121.34 116.97 119.03 121.72 122.97 125.65 127.80

γ = 0.7
FeasRatio 85/140 106/140 106/140 108/140 112/140 105/140 106/140

CPU (s) 227.05 201.68 206.06 212.5 215.86 221.04 222.31

Contribution of local search operators

As the algorithm largely relies on local search operators, their usefulness is verified. In this part, we analyze the

contribution of local search operators to improve the solution quality. The effectiveness of each local search operator

is presented, and the results of six different algorithm configurations are shown in Table 3.2. In each of these

configurations, one operator is excluded from the algorithm, and we run each algorithm configuration ten times, with

each run iterating the respective algorithm 10000 times. We calculate the average solution gap of BC%, AC%, Q1%,

and Q3%. Results for different algorithm configurations setting the previously selected parameter values (✓max = 0.9)

are summarized in Table 3.2. For the scenario � = 0.7, we report CPU times and FeasRatio.
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Table 3.2 Experimental results when removing a single operator: Ex-pickup, Ex-dropoff, Ex-2-neighbor, Relocate,

Exchange, and 2-opt

Removing None Ex-pickup Ex-dropoff Ex-2-neighbor Relocate Exchange 2-opt

� = 0.1
BC% 0.10% 0.14% 0.23% 0.19% 0.25% 0.38% 2.64%

AC% 0.52% 0.52% 0.55% 0.56% 1.16% 0.68% 5.60%

Q1% 0.30% 0.40% 0.40% 0.44% 0.79% 0.51% 3.76%

Q3% 0.73% 0.74% 0.90% 0.79% 1.64% 1.00% 6.19%

FeasRatio 140/140 140/140 140/140 140/140 139/140 140/140 140/140

CPU (s) 77.43 74.88 71.41 88.97 57.53 79.51 68.92

� = 0.4
BC% 0.27% 0.27% 0.27% 0.38% 0.38% 0.27% 2.56%

AC% 0.68% 0.73% 0.74% 0.78% 1.15% 0.84% 4.92%

Q1% 0.49% 0.51% 0.49% 0.64% 0.86% 0.63% 3.66%

Q3% 0.84% 0.93% 1.22% 1.06% 1.63% 1.10% 6.03%

FeasRatio 140/140 140/140 140/140 139/140 136/140 140/140 140/140

CPU (s) 116.97 109.24 106.25 134.29 81.92 115.52 105.08

� = 0.7
FeasRatio 106/140 96/140 106/140 90/140 86/140 97/140 74/140

CPU (s) 201.68 191.54 185.69 237.5 137.17 210.65 182.31

We can find that each operator performs very well in improving the solution quality, especially the 2-opt operator.

Additionally, the relocate and 2-opt operator contributes to provide more feasible solutions in the case of � = 0.4, 0.7.

Therefore, it is necessary to include these operators in local search. As for add-request, it is essential for inserting

requests that are not served in the current solution. From the above analysis, the usefulness of each local search

operator is proved.

Sensitivity analysis on number of iterations

Then, we conduct the sensitivity analysis for the number of iterations Niter. To identify a good Niter, we conduct

experiments with all the energy-level restrictions on type-a instances. We test ten values of Niter, and report BC%,

AC%, Q1%, Q3% over ten runs. For the scenario of � = 0.7, as different settings of Niter result in a different number

of feasible solutions, we compare FeasRatio. The results are shown in Table 3.3.

From Table 3.3, we observe that the values of BC%, AC%, Q1%, Q3% are improved with more iterations. Among

ten values of Niter, 10000 iterations provide us with the best solution quality. We therefore set Niter to 10000 to

conduct experiments. The performance of DA is also demonstrated as small results dispersion is found under all the

values of Niter. Moreover, we also notice that the computational time grows approximately linearly with the number of

iterations, which is a computational advantage compared with the B&C algorithm.

Note that choosing Niter = 8000 or Niter = 9000 slightly degrades the performances. With such parameters,

the computational time will be decreased. Choosing Niter = 10000 is more robust, especially keeping in mind the

evaluation of larger type-r instances.

53



Table 3.3 Statistical comparison of DA performance under different iteration times for all � values on type-a instances

Niter 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Low energy restriction � = 0.1
BC% 0.60% 0.44% 0.35% 0.31% 0.20% 0.17% 0.14% 0.13% 0.11% 0.10%

AC% NC NC 0.95% 0.82% 0.73% 0.68% 0.63% 0.59% 0.56% 0.53%

Q1% 1.42% 0.82% 0.61% 0.52% 0.45% 0.42% 0.36% 0.34% 0.31% 0.30%

Q3% 2.35% 1.69% 1.12% 1.02% 0.96% 0.88% 0.83% 0.79% 0.76% 0.73%

FeasRatio 138/140 139/140 140/140 140/140 140/140 140/140 140/140 140/140 140/140 140/140

CPU (s) 10.15 17.5 24.86 32.43 39.92 47.45 54.92 62.38 69.79 77.43

Medium energy restriction � = 0.4
BC% 1.07% 0.72% 0.57% 0.48% 0.40% 0.37% 0.34% 0.31% 0.30% 0.27%

AC% NC NC NC 1.17% 1.03% 0.90% 0.84% 0.78% 0.73% 0.68%

Q1% 1.69% 1.18% 0.96% 0.82% 0.72% 0.66% 0.63% 0.57% 0.54% 0.49%

Q3% 2.98% 2.09% 1.61% 1.39% 1.22% 1.14% 1.08% 0.99% 0.87% 0.84%

FeasRatio 138/140 139/140 139/140 140/140 140/140 140/140 140/140 140/140 140/140 140/140

CPU (s) 14.45 25.82 37.21 48.62 59.94 71.29 82.74 94.12 105.7 116.97

High energy restriction � = 0.7
FeasRatio 79/140 88/140 94/140 95/140 96/140 97/140 100/140 102/140 103/140 106/140

CPU (s) 21.94 41.83 61.7 81.88 101.73 121.63 141.56 161.64 181.63 201.68

3.3.3 DA algorithm performance on the E-ADARP instances

In this section, we present the performance of our DA algorithm after tuning parameters from the previous section.

Table 3.4, Table 3.5, and Table 3.6 present our DA algorithm results on type-a, -u, and -r instances under � =

0.1, 0.4, 0.7, respectively. In each table, we report the values of BC, AC, Q1, Q3, and their corresponding gaps

with BC 0 (presented in the column named “BC 0”). If we obtain better solutions than the best-reported results of

Bongiovanni et al. (2019), we mark them in bold with an asterisk. We mark our solutions in bold if they are equal to

those reported in Bongiovanni et al. (2019).

It should be noted that we find strictly better integer solutions than the reported optimal results of Bongiovanni

et al. (2019) in case of � = 0.4, 0.7. The reason is that in the model of Bongiovanni et al. (2019), the employed “big M”

values were not correctly computed. We refer to Appendix A for a more in-depth analysis and how the “big M” values

should be set correctly. To distinguish these incorrect results, we mark them in italics in the column of “BC 0” and

mark our obtained solutions in bold with double stars. The corresponding BC% values are therefore negative.

Type-a instances results under different energy restrictions

We first conduct experiments on type-a instances considering different scenarios � = 0.1, 0.4, 0.7. A higher � value

means a higher minimum battery level that vehicles must keep when returning to the destination depot. Recalling

that each recharging station can only be visited at most once. The E-ADARP model is more constrained with an

increasing �. In Table 3.4, we compare our algorithm results to the best reported results in Bongiovanni et al. (2019).

We obtain equal/improved solutions for 36 out of 42 instances. Among them, 13 are the new best solutions. For
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some instances, we obtain better solutions than the reported optimal solutions in Bongiovanni et al. (2019), leading

to savings on solution cost with up to 1.40%. These instances are: a2-24-0.4, a3-30-0.4, a3-36-0.4, a2-24-0.7,

a3-24-0.7, and a4-24-0.7.

In all the scenarios, the proposed DA algorithm has quite small gaps to the best-reported results in Bongiovanni

et al. (2019). In case of � = 0.1, 0.4, the average BC% is 0.05% and 0.13% (the worst BC% is 0.40% and 1.26%),

and other values AC%, Q1%, Q3% are under 2.09%, 2.51%, and 2.79%, respectively. When � = 0.7, we consistently

provide new solutions for a2-20, a4-32, and a5-40, while B&C cannot solve these instances optimally or feasibly

within two hours. Particularly, the generated new solutions on instance a4-32 and a5-40 have a much lower solution

cost compared to the former reported best solutions in Bongiovanni et al. (2019), with an average gap of -7.49 % and

-5.22%, respectively.

In terms of computational efficiency, the CPU time for the proposed DA algorithm grows approximately in a linear

way with sizes of instances. The average CPU time for all instances is 96.71s, and the proposed DA algorithm can

efficiently solve large-scale instances within maters of minutes.

Type-u instances results under different energy restrictions

On type-u instances, we conduct experiments under different energy-restriction levels � = 0.1, 0.4, 0.7. The results

are shown in Table 3.5.

The proposed DA algorithm finds equal solutions for 22 out of 42 instances and finds new best solutions for 12

previously solved and unsolved instances. Particularly, on instance u2-24-0.1, u2-24-0.4, u4-40-0.4, and u3-30-0.7,

we find strictly better solutions than the reported optimal solutions in Bongiovanni et al. (2019), which contributes to

savings on solution costs with up to 0.43%. In each scenario, our best solutions have quite small gaps to the BC 0

reported in Bongiovanni et al. (2019) (the worst- and best-case BC%is 1.00% and -0.60%, respectively). We further

demonstrate our algorithm consistency via other statistical values (Q1%, AC%, Q3%), as our algorithm continuously

finds high-quality solutions with the increasing size of instances. In terms of computational efficiency, solving the

problem exactly seems more computationally effective on small-sized instances. The reason is that we fix Niter

to 10000 for all instances, whereas the small-sized ones can be solved to their best values (i.e., optimal objective

values reported in Bongiovanni et al. (2019)) in much fewer iterations. On medium-to-large-sized instances, using an

efficient heuristic (e.g., the proposed DA algorithm) is a more computational appealing option.

Type-r instances results under different energy restrictions

We present our algorithm results on type-r instances in Table 3.6. These results are the first solutions found for these

new instances and can serve as benchmark results for future studies.

In scenarios � = 0.1 and � = 0.4, we find feasible solutions for 19 out of 20 instances, with an average CPU

time of 269.71s and 373.89s, respectively. When increasing from � = 0.1 to � = 0.4, the statistical dispersion also
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Table 3.4 Results of the proposed DA algorithm on type-a instances under � = 0.1, 0.4, 0.7

γ = 0.1 Proposed DA algorithm, 10000 iterations, 50 runs Bongiovanni et al.,a

Instance BC BC% Q1 Q1% AC AC% Q3 Q3% CPU(s) BC0 CPU0(s)

a2-16 237.38 0 237.38 0 237.38 0 237.38 0 39.3 237.38⇤ 1.2

a2-20 279.08 0 279.08 0 279.08 0 279.08 0 73.8 279.08⇤ 4.2

a2-24 346.21 0 346.21 0 346.21 0 346.21 0 160.6 346.21⇤ 9.0

a3-18 236.82 0 236.82 0 236.82 0 236.82 0 25.2 236.82⇤ 4.8

a3-24 274.80 0 274.80 0 274.80 0 274.80 0 58.3 274.80⇤ 13.8

a3-30 413.27 0 413.27 0 413.27 0 413.27 0 54.3 413.27⇤ 102.0

a3-36 481.17 0 481.17 0 481.17 0 481.17 0 152.5 481.17⇤ 106.8

a4-16 222.49 0 222.49 0 222.49 0 222.49 0 19.5 222.49⇤ 3.6

a4-24 310.84 0 310.84 0 310.84 0 312.44 0.51% 29.6 310.84⇤ 31.2

a4-32 393.96 0 393.95 0 395.12 0.29% 397.58 0.92% 52.0 393.96⇤ 612.0

a4-40 453.84 0 458.22 0.97% 459.42 1.23% 460.56 1.48% 92.0 453.84⇤ 517.2

a4-48 555.93 0.25% 560.19 1.02% 561.26 1.21% 562.87 1.50% 141.8 554.54 7200.0

a5-40 414.80 0.07% 418.48 0.96% 420.35 1.41% 422.56 1.94% 64.9 414.51⇤ 1141.8

a5-50 561.41 0.40% 567.82 1.55% 570.58 2.04% 573.51 2.56% 137.3 559.17 7200.0

Summary 0.05% 0.32% 0.44% 0.64% 78.6 1210.5

γ = 0.4 BC BC% Q1 Q1% AC AC% Q3 Q3% CPU(s) BC0 CPU0(s)

a2-16 237.38 0 237.38 0 237.38 0 237.38 0 52.9 237.38⇤ 1.8

a2-20 280.70 0 280.70 0 280.70 0 280.70 0 140.7 280.70⇤ 49.8

a2-24 347.04⇤⇤ -0.29% 347.04 -0.29% 347.04 -0.29% 347.04 -0.29% 231.0 348.04⇤ 25.2

a3-18 236.82 0 236.82 0 236.82 0 236.82 0 26.3 236.82⇤ 4.2

a3-24 274.80 0 274.80 0 274.80 0 276.11 0.48% 67.9 274.80⇤ 16.8

a3-30 413.34⇤⇤ -0.01% 413.34 -0.01% 413.34 -0.01% 413.34 -0.01% 88.7 413.37⇤ 99.0

a3-36 483.06⇤⇤ -0.22% 483.83 -0.06% 483.86 -0.06% 485.43 0.27% 157.8 484.14⇤ 306.6

a4-16 222.49 0 222.49 0 222.49 0 222.49 0 19.4 222.49⇤ 5.4

a4-24 311.03 0 311.28 0.08% 311.65 0.20% 313.21 0.70% 32.0 311.03⇤ 39.6

a4-32 394.26 0 395.05 0.20% 397.21 0.75% 400.32 1.54% 63.0 394.26⇤ 681.6

a4-40 453.84 0 457.20 0.74% 459.46 1.24% 461.06 1.59% 116.7 453.84⇤ 417.6

a4-48 558.11 0.63% 561.40 1.23% 563.47 1.60% 565.35 1.94% 177.5 554.60 7200.0

a5-40 416.25 0.42% 418.97 1.08% 420.32 1.40% 422.75 1.99% 72.6 414.51⇤ 1221.0

a5-50 567.54 1.26% 572.23 2.09% 574.56 2.51% 576.11 2.79% 162.8 560.50 7200.0

Summary 0.13% 0.36% 0.52% 0.79% 100.7 1233.5

γ = 0.7 BC BC% Q1 Q1% AC AC% Q3 Q3% CPU(s) BC0 CPU0(s)

a2-16 240.66 0 240.66 0 240.66 0 240.66 0 95.8 240.66⇤ 5.4

a2-20 293.27⇤ – 293.27 – 294.11 – NA NA 172.8 NA 7200.0

a2-24 353.18⇤⇤ -1.40% 366.49 2.31% NA NA NA NA 206.6 358.21⇤ 961.2

a3-18 240.58 0 240.58 0 240.58 0 240.58 0 58.3 240.58⇤ 48.0

a3-24 275.97⇤⇤ -0.63% 275.97 -0.63% 277.43 -0.10% 279.13 0.51% 123.7 277.72⇤ 152.4

a3-30 424.93⇤ – 432.29 – 436.20 – NA NA 77.7 NA 7200.0

a3-36 494.04 0 497.11 0.62% 502.27 1.67% 505.95 2.41% 125.4 494.04 7200.0

a4-16 223.13 0 223.13 0 223.13 0 223.13 0 31.3 223.13⇤ 67.2

a4-24 316.65⇤⇤ -0.49% 318.21 0 318.31 0.03% 320.87 0.84% 53.7 318.21⇤ 1834.8

a4-32 397.87⇤ -7.49% 401.58 -6.63% 405.85 -5.63% 408.69 -4.97% 71.4 430.07 7200.0

a4-40 479.02⇤ – NA NA NA NA NA NA 114.7 NA 7200.0

a4-48 582.22⇤ – 610.75 – NA NA NA NA 164.4 NA 7200.0

a5-40 424.26⇤ -5.22% 433.12 -3.24% 436.94 -2.39% 441.15 -1.45% 97.5 447.63 7200.0

a5-50 603.24⇤ – NA NA NA NA NA NA 158.4 NA 7200.0

Summary – – – – 110.8 4333.4

a: Due to incorrect big M values, some of the reported optimal results of Bongiovanni et al. (2019) are higher than our obtained solution values.
Those results are highlighted in italics and our obtained results are marked in bold with double stars;
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Table 3.5 Results of the proposed DA algorithm on type-u instances under � = 0.1, 0.4, 0.7

γ = 0.1 Proposed DA algorithm, 10000 iterations, 50 runs Bongiovanni et al.,a

Instance BC BC% Q1 Q1% AC AC% Q3 Q3% CPU(s) BC0 CPU0(s)

u2-16 57.61 0 57.61 0 57.61 0 57.61 0 120.1 57.61⇤ 21.0

u2-20 55.59 0 55.59 0 56.34 1.34% 56.34 1.34% 401.8 55.59⇤ 9.6

u2-24 90.73⇤⇤ -0.60% 90.84 -0.47% 90.84 -0.47% 90.98 -0.32% 599.7 91.27⇤ 432.0

u3-18 50.74 0 50.74 0 50.74 0 50.93 0.37% 108.3 50.74⇤ 10.8

u3-24 67.56 0 67.87 0.46% 68.16 0.89% 68.16 0.89% 111.5 67.56⇤ 130.2

u3-30 76.75 0 77.21 0.60% 77.80 1.37% 78.65 2.47% 174.1 76.75⇤ 438.0

u3-36 104.27 0.22% 104.87 0.79% 105.42 1.33% 106.36 2.23% 420.7 104.04⇤ 1084.8

u4-16 53.58 0 53.58 0 53.58 0 53.58 0 51.4 53.58⇤ 48.0

u4-24 90.13 0.34% 90.72 1.00% 90.85 1.14% 90.95 1.25% 55.3 89.83⇤ 13.2

u4-32 99.29 0 99.29 0 99.42 0.13% 99.67 0.38% 119.1 99.29⇤ 1158.6

u4-40 133.11 0 134.46 1.02% 135.18 1.55% 136.08 2.23% 154.0 133.11⇤ 185.4

u4-48 147.75⇤ -0.37% 148.87 0.39% 149.69 0.93% 150.42 1.43% 841.0 148.30 7200.0

u5-40 121.86 0 123.11 1.03% 123.38 1.25% 124.47 2.14% 113.8 121.86 1141.8

u5-50 144.22 0.78% 145.04 1.36% 145.63 1.77% 146.30 2.24% 245.5 143.10 7200.0

Summary 0.03% 0.44% 0.80% 1.19% 251.2 1795.1

γ = 0.4 BC BC% Q1 Q1% AC AC% Q3 Q3% CPU(s) BC0 CPU0(s)

u2-16 57.65 0 57.65 0 57.65 0 57.65 0 156.6 57.65⇤ 25.8

u2-20 56.34 0 56.34 0 56.34 0 56.34 0 606.6 56.34⇤ 12.0

u2-24 91.24⇤⇤ -0.43% 91.27 -0.39% 91.72 0.10% 92.06 0.47% 817.8 91.63⇤ 757.2

u3-18 50.74 0 50.74 0 50.74 0 50.99 0.50% 125.0 50.74⇤ 13.8

u3-24 67.56 0 67.87 0.46% 68.16 0.89% 68.16 0.89% 141.0 67.56⇤ 220.8

u3-30 76.75 0 77.12 0.48% 77.93 1.54% 78.65 2.48% 285.8 76.75⇤ 336.6

u3-36 104.49 0.41% 105.65 1.53% 106.37 2.22% 107.19 3.01% 898.9 104.06⇤ 2010.0

u4-16 53.58 0 53.58 0 53.58 0 53.58 0 60.5 53.58⇤ 44.4

u4-24 90.72 1.00% 90.72 1.00% 91.00 1.30% 91.12 1.44% 65.6 89.83⇤ 28.2

u4-32 99.29 0 99.29 0 99.42 0.13% 99.90 0.61% 156.3 99.29⇤ 2667.6

u4-40 133.78⇤⇤ -0.10% 135.43 1.14% 135.83 1.44% 136.56 1.98% 303.1 133.91⇤ 2653.2

u4-48 148.48⇤ – 149.86 – 150.81 – 151.77 – 1390.7 NA 7200.0

u5-40 121.96⇤ -0.22% 123.08 0.69% 123.63 1.15% 124.42 1.79% 160.8 122.23 7200.0

u5-50 143.68 0.38% 145.66 1.76% 146.60 2.42% 147.15 2.80% 391.5 143.14 7200.0

Summary – – – – 397.2 2169.3

γ = 0.7 BC BC% Q1 Q1% AC AC% Q3 Q3% CPU(s) BC0 CPU0(s)

u2-16 59.19 0 59.26 0.11 60.01 1.38 60.19 1.69 419.6 59.19⇤ 338.4

u2-20 56.86 0 58.39 2.69 58.39 2.69 58.88 3.55 1527.6 56.86⇤ 72.0

u2-24 92.84⇤ – 94.33 – 99.38 – NA NA 502.5 NA 7200.0

u3-18 50.99 0 50.99 0 50.99 0 50.99 0 206.9 50.99⇤ 24.0

u3-24 68.39 0 68.39 0 68.44 0.08% 68.73 0.49% 375.8 68.39⇤ 400.2

u3-30 77.94⇤⇤ -0.26% 78.72 0.74% 79.37 1.57% 79.56 1.81% 1094.8 78.14⇤ 3401.4

u3-36 106.00 0.20% 106.41 0.59% 107.57 1.68% 107.92 2.01% 1606.4 105.79 7200.0

u4-16 53.87 0 53.87 0 53.87 0 53.87 0 96.9 53.87⇤ 88.8

u4-24 90.07 0.12% 90.97 1.12% 90.97 1.12% 90.97 1.12% 254.5 89.96⇤ 22.8

u4-32 99.50 0 100.01 0.51% 101.09 1.60% 101.75 2.26% 325.3 99.50⇤ 2827.2

u4-40 136.08⇤ – 137.65 – 138.98 – NA NA 708.0 NA 7200.0

u4-48 152.58⇤ – 157.85 – 162.62 – NA NA 1958.8 NA 7200.0

u5-40 123.52⇤ – 125.30 – 126.10 – 127.08 – 359.6 NA 7200.0

u5-50 143.51⇤ -0.59% 148.16 2.64% 149.52 3.58% 152.36 5.54% 922.2 144.36 7200.0

Summary – – – – 780.1 3598.2

a: Due to incorrect big M values, some of the reported optimal results of Bongiovanni et al. (2019) are higher than our obtained solution values.
Those results are highlighted in italics and our obtained results are marked in bold with double stars;
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increases, but the dispersion remains quite acceptable. For instance r7-84, most of the runs with � = 0.4 do not find

a feasible solution. For instance r8-96, our DA algorithm cannot find a feasible solution among 50 runs with � = 0.4.

These instances seem challenging for future works.

When � = 0.7, we found no feasible solution for all the type-r instances, despite 50 runs and 10000 iterations.

One reason is that many of these instances are too constrained to be feasible for � = 0.7 with the limitation of visiting

recharging stations. However, it opens a perspective to prove it using exact methods with lower bounds.

Table 3.6 Results of the proposed DA algorithm with 10000 iterations 50 runs on type-r

instances under � = 0.1, 0.4

γ = 0.1 BC Q1 Q1% AC AC% Q3 Q3% CPU(s)

r5-60 691.83 699.93 1.17% 706.20 2.08% 710.43 2.69% 178.44

r6-48 506.72 509.67 0.58% 512.69 1.18% 515.39 1.71% 229.31

r6-60 692.00 696.67 0.67% 700.15 1.18% 703.95 1.73% 127.03

r6-72 777.44 788.12 1.37% 794.69 2.22% 801.87 3.14% 208.39

r7-56 613.10 620.69 1.24% 624.51 1.86% 630.72 2.87% 88.20

r7-70 760.90 772.45 1.52% 778.84 2.36% 786.02 3.30% 209.76

r7-84 889.38 900.34 1.23% 904.88 1.74% 913.88 2.75% 322.66

r8-64 641.99 647.87 0.92% 652.59 1.65% 657.49 2.41% 612.06

r8-80 803.52 820.96 2.17% 828.67 3.13% 834.19 3.82% 357.75

r8-96 1053.11 1069.98 1.60% 1080.80 2.63% 1089.96 3.50% 363.46

Summary 1.25% 2.00% 2.79% 269.71

γ = 0.4 BC Q1 Q1% AC AC% Q3 Q3% CPU(s)

r5-60 697.97 710.30 1.77% 718.44 2.93% 727.27 4.20% 293.25

r6-48 506.91 509.48 0.51% 514.46 1.49% 517.53 2.10% 257.59

r6-60 694.78 702.67 1.14% 706.07 1.62% 710.80 2.31% 173.43

r6-72 799.60 811.85 1.53% 821.17 2.70% 832.07 4.06% 349.98

r7-56 613.66 620.58 1.13% 624.40 1.75% 627.51 2.26% 99.91

r7-70 766.05 778.70 1.65% 784.54 2.41% 791.07 3.27% 273.52

r7-84 932.12 964.04 3.43% NA NA NA NA 584.26

r8-64 638.36 649.84 1.80% 652.30 2.18% 657.02 2.92% 641.63

r8-80 811.19 823.70 1.54% 833.05 2.69% 841.76 3.77% 448.14

r8-89 NA NA NA NA NA NA NA 617.17

Summary NA NA NA 373.89

Conclusion of algorithm performance

On both type-a and -u instances, we observe the limit of solving capabilities of the B&C. Even with a time limit of

two hours, it is difficult for B&C to solve medium-to-large-sized E-ADARP instances, especially under a high energy

restriction. Our DA algorithm can continuously provide high-quality solutions for highly constrained instances within

a reasonable computational time. We also show that our DA algorithm can tackle larger-sized instances with up

to 8 vehicles and 96 requests. Nineteen type-r instances for � = 0.1 and � = 0.4 are solved feasibly, and these

results are the first solutions found for these new instances, which can serve as a benchmark for future studies. To

conclude, the proposed DA algorithm remains highly effective and can provide optimal/near-optimal solutions even

facing highly constrained instances. The proposed DA algorithm significantly outperforms the B&C algorithm for

medium-to-large-sized instances, and its consistency seems quite acceptable for such difficult instances.
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3.3.4 Sensitivity analysis of the maximum number of charging visits per station

As discussed in Section 2.5, the hypothesis of visiting each recharging station at most once is not realistic. We adjust

our DA algorithm as mentioned in Section 3.2.4 to allow multiple visits to each recharging station. The adjusted DA

algorithm is able to investigate the effect of increasing the value of nas on solution cost and feasibility. Recalling that

we analyze four different cases: nas = 1, 2, 3,1.

For type-a instances, as in the scenario of � = 0.1, we obtain optimal solutions for most of the instances, and

other instances are solved without visiting recharging stations. Therefore, we focus on scenarios of � = 0.4, 0.7 and

analyze the effect of allowing multiple visits in these cases. For type-u and -r instances, we conduct experiments with

adjusted DA algorithm with nas = 2, 3,1 under � 2 {0.1, 0.4, 0.7}. The detailed results are presented as below. In

Table 3.7 and 3.9, we compare DA algorithm results on each instance with setting nas = 1, 2, 3,1 and we mark the

best one(s) in bold. In Table 3.8, we compare our algorithm results under each setting of nas with the reported results

in Bongiovanni et al. (2019). Improved solutions are marked in bold with an asterisk while equal solutions are marked

in bold. In the column of BC1, if the obtained solution is better than other solutions obtained under nas = 1, 2, 3, we

mark it in bold with double stars. On each instance, the adjusted DA algorithm performs 50 runs with 10000 iterations

per run. We report the maximum number of recharging visits experienced on a station (denoted as Ns
max) for the

best-obtained solution under nas =1 in the column named “Ns
max”. In addition, we also report the average number

of visited recharging stations under setting nas =1 in the column of “Ns
avg”.

From these results, we observe that the previous difficulties for the DA algorithm to solve the E-ADARP instances

are reduced considering multiple visits per station. The major findings are: (1) significant increases on Ns
avg are

observed on all instances with increasing � value, especially on type-r instances, where the average value of Ns
avg is

tripled when � changes to 0.7; (2) allowing multiple visits to each recharging station improves the solution quality as

we found lower-cost solutions. Particularly, we obtain feasible solutions for all type-r instances under � = 0.7 with

nas = 3,1, while no feasible solution is found with nas = 1; (3) for type-a and -r instances, relaxing to nas = 1

seems to be more computationally attractive as it does not introduce additional computational time, compared to

the results obtained by replicating recharging stations. For type-u instances, having a pre-calculated nas would be

more computationally favorable; (4) on average, allowing at-most-two and -three visits per station slightly increases

the computational time. Allowing at-most-three visits per station seems to strike a good balance between solution

quality and computational time; (5) nas = 3 seems to be a good upper bound for solving type-u instances allowing

multiple recharging visits, while one needs to set nas to 4 and 7 for type-a and -r instances, respectively. A potential

perspective from these results would be to investigate more realistic constraints, e.g., on the capacity of recharging

stations, rather than limiting visits to recharging stations in the E-ADARP. Another direction for future studies is to

design a heuristic to calculate the upper bound on the total number of recharging visits for a given route.
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Table 3.7 Solution quality and performance on type-a instances when increasing the maximum number of charging

visits per station

DA with nas = 1 DA with nas = 2 DA with nas = 3 DA with nas = ∞

γ = 0.4 BC AC CPU BC2 AC2 CPU2 BC3 AC3 CPU3 BC1 AC1 CPU1 Ns
max Ns

avg

a2-16 237.38 237.38 52.85 237.38 237.38 52.65 237.38 237.38 53.07 237.38 237.38 50.65 1 1.0

a2-20 280.70 280.70 140.70 280.70 280.70 148.12 280.70 280.70 141.97 280.70 280.70 144.92 1 1.0

a2-24 347.04 347.04 230.99 346.28 346.28 286.96 346.28 346.28 284.47 346.28 346.28 265.80 2 3.0

a3-18 236.82 236.82 26.30 236.82 236.82 26.93 236.82 236.82 26.43 236.82 236.82 25.36 0 0.0

a3-24 274.80 274.80 67.85 274.80 274.80 71.07 274.80 274.80 69.48 274.80 274.80 66.66 1 0.8

a3-30 413.34 413.34 88.67 413.34 413.34 104.70 413.34 413.34 106.13 413.34 413.34 103.54 1 2.0

a3-36 483.06 483.86 157.79 481.17 481.46 255.25 481.17 481.17 264.23 481.17 481.17 248.95 3 3.0

a4-16 222.49 222.49 19.39 222.49 222.49 19.71 222.49 222.49 19.08 222.49 222.49 17.78 0 0.0

a4-24 311.03 311.65 31.97 311.03 311.65 31.54 311.03 311.65 31.15 311.03 311.65 29.53 0 0.0

a4-32 394.26 397.21 62.95 394.26 397.31 65.66 394.26 397.21 63.85 394.26 397.27 61.71 1 1.0

a4-40 453.84 459.46 116.65 453.84 459.18 125.28 453.84 459.11 116.86 453.84 458.74 121.04 1 0.7

a4-48 558.11 563.47 177.51 558.18 564.63 235.32 557.86 564.21 238.60 558.96 564.86 231.45 2 2.7

a5-40 416.25 420.32 72.64 415.62 420.09 71.75 415.43 420.16 72.01 415.79 419.82 70.78 0 0.1

a5-50 567.54 574.56 162.82 564.90 575.04 190.93 567.40 574.64 189.18 567.13 574.28 184.43 1 1.6

Avg 100.65 120.42 119.75 115.90 1.0 1.2

γ = 0.7 BC AC CPU BC2 AC2 CPU2 BC3 AC3 CPU3 BC1 AC1 CPU1 Ns
max Ns

avg

a2-16 240.66 240.66 95.75 240.66 240.66 125.10 240.66 240.66 124.90 240.66 240.66 119.29 2 3.0

a2-20 293.27 294.11 172.77 286.52 286.52 331.90 285.86 285.86 327.01 286.52 288.89 316.22 2 3.6

a2-24 353.18 NA 206.58 352.25 363.17 373.77 350.49 361.02 390.86 354.38 374.68 357.33 2 3.9

a3-18 240.58 240.58 58.30 238.82 238.82 70.27 238.82 238.82 69.52 238.82 238.82 65.89 3 4.0

a3-24 275.97 277.43 123.71 275.20 275.20 154.90 275.20 275.94 155.39 275.20 275.20 150.02 2 2.9

a3-30 424.93 436.20 77.73 416.87 417.90 173.80 415.71 417.35 176.38 415.71 417.07 170.95 3 4.7

a3-36 494.04 502.27 125.42 486.36 487.34 332.47 484.85 487.59 350.73 484.85 487.91 343.02 3 4.8

a4-16 223.13 223.13 31.32 222.49 223.13 33.40 222.49 222.49 36.24 222.49 222.49 31.37 2 1.7

a4-24 316.65 318.31 53.73 315.98 317.99 74.82 315.98 317.99 80.77 315.98 317.99 70.97 2 2.7

a4-32 397.87 405.85 71.44 395.84 402.85 127.78 394.99 402.38 142.98 394.94 401.82 123.77 4 3.7

a4-40 479.02 NA 114.74 458.98 467.15 235.88 458.73 465.04 250.11 458.52 467.60 226.05 3 4.6

a4-48 582.22 NA 164.39 569.23 576.26 379.04 566.26 577.30 434.97 568.08 575.96 403.27 2 5.3

a5-40 424.26 436.94 97.51 417.35 424.29 153.00 416.89 423.96 169.49 419.33 425.29 149.77 4 4.3

a5-50 603.24 NA 158.39 583.37 590.81 320.55 576.54 589.38 367.00 579.15 588.98 352.73 4 5.7

Avg 110.84 206.19 219.74 205.76 2.7 3.9
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Table 3.8 Solution quality and performance on type-u instances when increasing the maximum number of charging

visits per station

DA with nas = 1 DA with nas = 2 DA with nas = 3 DA with nas = ∞

γ = 0.1 BC AC CPU BC0 BC2 AC2 CPU2 BC0

2
BC3 AC3 CPU3 BC0

3
BC1 AC1 CPU1 Ns

max Ns
avg

u2-16 57.61 57.61 120.06 57.61⇤ 57.61 57.61 124.25 57.61⇤ 57.61 57.61 126.90 57.61⇤ 57.61 57.61 182.64 1 0.8
u2-20 55.59 56.34 401.82 55.59⇤ 55.59 55.59 421.77 55.59⇤ 55.59 55.59 440.65 55.59⇤ 55.59 55.59 642.95 1 0.6
u2-24 90.73⇤ 90.84 599.73 91.27⇤ 90.73⇤ 90.73 572.00 91.27⇤ 90.73⇤ 90.73 592.75 91.27⇤ 90.73 90.73 1021.42 1 2.9
u3-18 50.74 50.74 108.32 50.74⇤ 50.74 50.74 111.63 50.74⇤ 50.74 50.74 112.69 50.74⇤ 50.74 50.74 172.79 0 0.0
u3-24 67.56 68.16 111.49 67.56⇤ 67.56 68.16 115.43 67.56⇤ 67.56 68.16 117.24 67.56⇤ 67.56 68.16 173.10 0 0.0
u3-30 76.75 77.80 174.11 76.75⇤ 76.75 77.55 182.98 76.75⇤ 76.75 77.55 168.08 76.75⇤ 76.75 77.55 268.96 0 0.3
u3-36 104.27 105.42 420.72 104.04⇤ 104.27 105.45 578.30 104.04⇤ 104.27 106.10 552.64 104.04⇤ 104.27 105.48 775.41 1 1.7
u4-16 53.58 53.58 51.37 53.58⇤ 53.58 53.58 51.14 53.58⇤ 53.58 53.58 49.18 53.58⇤ 53.58 53.58 72.84 0 0.0
u4-24 90.13 90.85 55.26 89.83⇤ 89.91 90.85 57.23 89.83⇤ 90.08 90.85 56.87 89.83⇤ 90.08 90.85 79.82 1 0.5
u4-32 99.29 99.42 119.12 99.29⇤ 99.29 99.42 114.88 99.29⇤ 99.29 99.42 118.06 99.29⇤ 99.29 99.42 162.58 0 0.4
u4-40 133.11 135.18 154.00 133.11⇤ 133.11 135.34 163.78 133.11⇤ 133.14 135.21 159.92 133.11⇤ 133.11 135.23 216.58 1 1.7
u4-48 147.75⇤ 149.69 840.96 148.30 147.73⇤ 149.89 917.71 148.37 147.43⇤ 149.52 902.77 149.14 147.33⇤⇤ 149.37 1403.39 2 2.9
u5-40 121.86 123.38 113.81 121.86 121.86 123.54 116.57 121.86 121.86 123.74 118.30 121.86 121.86 123.59 149.98 1 0.8
u5-50 144.22 145.63 245.52 143.10 143.27 145.73 258.43 142.83 143.51 145.91 279.38 142.83 143.14⇤⇤ 146.05 393.68 1 1.5

Avg 251.16 270.43 271.10 408.30 0.7 1.0

γ = 0.4 BC AC CPU BC0 BC2 AC2 CPU2 BC0

2
BC3 AC3 CPU3 BC0

3
BC1 AC1 CPU1 Ns

max Ns
avg

u2-16 57.65 57.65 156.61 57.65⇤ 57.65 57.65 171.29 57.65⇤ 57.65 57.65 168.11 57.65⇤ 57.65 57.65 276.29 1 2.0
u2-20 56.34 56.34 606.64 56.34⇤ 56.34 56.34 690.19 56.34⇤ 56.34 56.34 682.00 56.34⇤ 56.34 56.34 1006.29 1 2.0
u2-24 91.24⇤ 91.72 817.79 91.63⇤ 91.14⇤ 91.43 836.02 91.27⇤ 91.14⇤ 91.43 885.85 91.27⇤ 91.16 91.17 1399.38 2 3.3
u3-18 50.74 50.74 124.95 50.74⇤ 50.74 50.74 129.61 50.74⇤ 50.74 50.74 133.92 50.74⇤ 50.74 50.74 213.60 1 1.1
u3-24 67.56 68.16 141.01 67.56⇤ 67.86 68.06 145.32 67.56⇤ 67.67 68.16 153.68 67.56⇤ 67.56 68.16 214.32 1 1.2
u3-30 76.75 77.93 285.81 76.75⇤ 76.75 78.13 306.82 76.75⇤ 76.75 78.28 298.28 76.75⇤ 76.75 77.85 420.10 1 2.1
u3-36 104.49 106.37 898.90 104.06⇤ 104.06 106.68 1038.76 104.06⇤ 104.69 106.57 1078.92 104.06⇤ 104.31 106.07 1589.46 2 3.5
u4-16 53.58 53.58 60.52 53.58⇤ 53.58 53.58 62.49 53.58⇤ 53.58 53.58 63.21 53.58⇤ 53.58 53.58 85.00 0 0.0
u4-24 90.72 91.00 65.57 89.83⇤ 90.21 90.90 68.48 89.83⇤ 90.13 90.90 70.04 89.83⇤ 90.08⇤⇤ 90.85 91.67 2 2.1
u4-32 99.29 99.42 156.27 99.29⇤ 99.29 99.42 166.76 99.29⇤ 99.29 99.42 162.08 99.29⇤ 99.29 99.42 230.20 1 2.7
u4-40 133.78⇤ 135.83 303.06 133.91⇤ 133.61⇤ 135.75 318.07 133.68⇤ 134.23 136.16 326.55 134.01 133.36⇤⇤ 136.19 457.33 2 4.2
u4-48 148.48⇤ 150.81 1390.74 NA 148.18⇤ 150.53 1247.04 150.96 148.23⇤ 150.21 1454.38 150.78 147.75⇤⇤ 149.71 2050.93 2 4.9
u5-40 121.96⇤ 123.63 160.80 122.23 121.96⇤ 123.50 163.39 122.22 121.96 123.77 166.90 121.96 121.96 123.94 237.16 1 3.3
u5-50 143.68 146.60 391.46 143.14 143.78 146.36 401.78 142.83 143.50 146.21 415.65 143.48 143.42⇤⇤ 145.65 619.05 1 4.1

Avg 397.15 410.43 432.83 835.06 1.3 2.6

γ = 0.7 BC AC CPU BC0 BC2 AC2 CPU2 BC0

2
BC3 AC3 CPU3 BC0

3
BC1 AC1 CPU1 Ns

max Ns
avg

u2-16 59.19 60.01 419.57 59.19⇤ 58.17 58.17 460.44 58.17⇤ 58.17 58.17 530.24 58.17⇤ 58.75 59.46 663.32 2 3.3
u2-20 56.86 58.39 1527.60 56.86⇤ 56.86 58.03 1561.63 56.86⇤ 56.86 57.98 1583.70 56.86⇤ 56.86 58.39 2619.96 1 2.8
u2-24 92.84⇤ 99.38 1065.06 NA 92.43⇤ 105.67 1307.99 97.50 92.43⇤ 101.95 1529.29 NA 92.77 100.36 2090.28 2 5.0
u3-18 50.99 50.99 206.92 50.99⇤ 50.99 50.99 206.48 50.99⇤ 50.99 50.99 217.78 50.99⇤ 50.99 50.99 301.43 1 3.0
u3-24 68.39 68.44 375.75 68.39⇤ 68.24 68.39 389.47 68.06⇤ 68.24 68.51 419.27 68.06⇤ 68.06⇤⇤ 68.41 544.52 2 3.8
u3-30 77.94⇤ 79.37 1094.81 78.14⇤ 77.94⇤ 79.09 1132.97 78.16 77.94⇤ 79.02 1293.92 78.16 77.83⇤⇤ 79.11 1595.22 2 4.2
u3-36 106.00 107.57 1606.43 105.79 106.39⇤ 107.62 1521.37 107.65 106.39 107.07 1605.03 106.18 105.98⇤⇤ 106.95 2690.77 2 4.5
u4-16 53.87 53.87 96.90 53.87⇤ 53.87 53.87 100.33 53.87⇤ 53.87 53.87 103.29 53.87⇤ 53.87 53.87 133.65 1 3.0
u4-24 90.07 90.97 254.45 89.96⇤ 89.96 90.97 263.46 89.83⇤ 89.91 90.97 282.62 89.83 89.83⇤⇤ 90.72 375.00 2 3.9
u4-32 99.50 101.09 325.31 99.50⇤ 99.50 99.95 321.35 99.50⇤ 99.50 100.34 342.44 99.50⇤ 99.50 100.28 526.67 1 4.6
u4-40 136.08⇤ 138.98 708.04 NA 134.98⇤ 138.37 731.95 137.49 135.38⇤ 138.01 730.23 137.61 134.94⇤⇤ 136.20 971.29 2 5.5
u4-48 152.58⇤ 162.62 1958.80 NA 150.55⇤ 154.19 1962.85 NA 151.57⇤ 155.36 1955.60 NA 149.51⇤⇤ 152.90 2907.41 3 6.3
u5-40 123.52⇤ 126.10 359.59 NA 124.04⇤ 126.08 385.25 125.14 123.71⇤ 125.63 401.18 124.18 123.32⇤⇤ 125.15 506.11 2 5.4
u5-50 143.51⇤ 149.52 922.19 144.36 144.24⇤ 148.13 923.51 164.19 143.51⇤ 148.53 1001.25 144.10 142.89⇤⇤ 146.10 1165.39 2 6.1

Avg 780.10 804.93 856.84 1220.79 1.8 4.4
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Table 3.9 Solution quality and performance on type-r instances when increasing the maximum number of charging

visits per station

DA with nas = 1 DA with nas = 2 DA with nas = 3 DA with nas = ∞

γ = 0.1 BC AC CPU BC2 AC2 CPU2 BC3 AC3 CPU3 BC1 AC1 CPU1 Ns
max Ns

avg

r5-60 691.83 706.20 178.44 689.75 703.86 175.42 688.52 706.91 180.86 687.68 705.59 171.75 0 0.2

r6-48 506.72 512.69 229.31 506.45 513.62 241.23 507.03 513.63 231.32 506.91 514.15 241.89 0 0.0

r6-60 692.00 700.15 127.03 690.15 701.15 133.74 692.24 701.86 137.18 691.07 702.09 128.33 0 0.0

r6-72 777.44 794.69 208.39 776.68 795.41 212.78 775.93 793.96 208.77 777.46 795.14 210.51 1 0.1

r7-56 613.10 624.51 88.20 614.61 623.65 91.27 615.61 623.52 84.50 614.18 622.69 87.32 0 0.0

r7-70 760.90 778.84 209.76 761.16 776.92 212.08 761.25 778.05 202.26 760.10 777.10 202.03 0 0.0

r7-84 889.38 904.88 322.66 884.43 903.96 318.05 890.47 905.78 339.95 885.89 905.13 300.21 0 0.1

r8-64 641.99 652.59 612.06 640.05 653.65 645.07 642.09 653.44 773.82 640.24 653.81 647.97 0 0.0

r8-80 803.52 828.67 357.75 807.04 826.91 366.82 799.00 826.71 376.87 804.02 826.92 372.21 0 0.0

r8-96 1053.11 1080.80 363.46 1052.19 1078.29 358.23 1064.64 1081.49 377.77 1049.98 1077.21 366.73 0 0.4

Avg 269.71 275.47 291.33 272.90 0.1 0.1

γ = 0.4 BC AC CPU BC2 AC2 CPU2 BC3 AC3 CPU3 BC1 AC1 CPU1 Ns
max Ns

avg

r5-60 697.97 718.44 293.25 703.00 721.56 308.94 692.84 710.40 288.01 691.72 709.78 285.00 2 3.0

r6-48 506.91 514.46 257.59 506.45 511.62 248.38 506.75 511.00 258.81 507.25 514.64 255.83 0 0.1

r6-60 694.78 706.07 173.43 693.80 706.11 175.96 693.03 703.13 174.80 692.83 701.86 174.24 1 1.7

r6-72 799.60 821.17 349.98 795.88 814.03 342.96 776.17 800.29 336.47 781.22 801.86 342.33 1 3.3

r7-56 613.66 624.40 99.91 612.76 625.42 98.97 616.24 623.58 100.81 615.74 623.51 99.11 0 0.2

r7-70 766.05 784.54 273.52 763.46 785.69 275.48 760.09 783.13 280.49 761.58 778.04 273.50 1 1.5

r7-84 932.12 NA 584.26 897.50 932.05 488.49 897.34 915.24 446.76 896.91 916.23 456.77 3 3.4

r8-64 638.36 652.30 641.63 642.34 652.65 646.45 639.01 652.80 671.52 637.84 652.17 719.50 0 0.2

r8-80 811.19 833.05 448.14 816.17 834.80 438.40 808.14 828.89 420.03 813.16 829.92 450.94 1 1.1

r8-96 NA NA 617.17 1089.18 1129.20 588.26 1060.48 1098.13 545.21 1058.41 1090.04 564.49 5 4.6

Avg 373.89 361.23 352.29 362.17 1.4 1.9

γ = 0.7 BC AC CPU BC2 AC2 CPU2 BC3 AC3 CPU3 BC1 AC1 CPU1 Ns
max Ns

avg

r5-60 NA NA 507.76 731.84 770.95 484.01 704.97 725.74 483.86 708.54 723.73 492.51 5 6.9

r6-48 NA NA 502.21 518.87 540.88 507.06 509.80 525.98 486.31 509.76 525.10 483.94 3 5.0

r6-60 NA NA 327.25 716.48 741.76 300.67 700.82 713.33 306.60 697.57 711.52 289.76 6 7.0

r6-72 NA NA 590.56 920.61 NA 605.16 798.26 817.20 561.24 796.19 826.48 574.02 4 8.4

r7-56 NA NA 221.09 644.19 662.06 208.57 622.66 640.69 210.29 625.91 641.82 212.05 3 7.0

r7-70 NA NA 510.60 866.06 NA 507.14 777.85 803.20 465.43 781.56 800.35 480.03 6 7.8

r7-84 NA NA 790.95 NA NA 753.17 906.14 938.15 623.70 915.61 938.49 705.25 6 8.7

r8-64 NA NA 1207.35 664.02 698.61 1170.20 647.02 666.20 1185.16 649.93 668.48 1290.02 7 6.3

r8-80 NA NA 868.04 966.47 NA 846.51 829.54 857.56 707.30 843.26 865.90 744.33 4 8.2

r8-96 NA NA 860.97 NA NA 845.14 1105.82 1145.82 646.04 1097.76 1136.43 806.99 7 11.2

Avg 638.68 622.76 567.59 607.89 5.1 7.7
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3.4 Conclusion

This chapter proposes an efficient DA algorithm to solve the E-ADARP, which aims to minimize a weighted-sum

objective, including the total travel time and the total excess user ride time. To minimize the total excess user ride

time, we propose a fragment-based representation of paths. A new method is developed upon this representation to

calculate the minimum excess user ride time for a given route. Another challenge in solving the E-ADARP involves

incorporating the partial recharging at recharging stations, which complicates the feasibility checking of a given route;

to resolve this issue, we propose an exact route evaluation scheme of linear time complexity that can accurately

handle the effect of allowing partial recharging and validate the feasibility of solutions. These two methods compose

an exact and efficient optimization of excess user ride time for an E-ADARP route. To the best of our knowledge, this

is the first time that total excess user ride time is optimized in an exact way for the E-ADARP.

In computational experiments, we first prove the effectiveness and accuracy of our DA algorithm compared to the

best-reported results of Bongiovanni et al. (2019). On 84 existing E-ADARP instances, our DA algorithm obtains equal

solutions for 45 instances and provides better solutions on 25 instances. We also demonstrate that the proposed

DA algorithm can consistently provide high-quality solutions in a short computational time. On the previously solved

instances, the DA algorithm improves the solution quality by 0.16% on average. On newly introduced large-scale

E-ADARP instances, we provide new solutions for 19 instances. These results may serve as benchmark results for

future studies. We then extend the E-ADARP model to allow unlimited visits to each recharging station. The previous

difficulties for DA local search are lessened under this more realistic situation, and the results are less dispersed than

the results of the at-most-one visit to each recharging station. Our extension of the E-ADARP model thus offers a

new perspective in proposing a more realistic constraint in the E-ADARP for recharging stations, e.g., considering

capacity and scheduling constraints in recharging stations.
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Chapter 4

Branch-and-Price Algorithm to Solve the

Electric Autonomous Dial-A-Ride Problem

This chapter is based on our journal paper “Column generation for solving the electric autonomous dial-a-ride problem”

(arxiv link: https://arxiv.org/pdf/2206.13496.pdf), which is currently in revision. Some preliminary results have

been reported at the “best student article prize” session of Roadef conference and at Odysseus conference. In this

chapter, we present a highly efficient CG algorithm, which is integrated into the Branch-and-price (B&P) scheme

to solve the E-ADARP exactly. The core part of the CG algorithm is to design an effective labeling algorithm that

computes the shortest paths efficiently in each iteration. In this process, one must determine an excess-user-ride-

time optimal schedule from battery-feasible schedules during label extension. This issue complicates solving the

E-ADARP subproblems and cannot be handled exactly by existing DARP feasibility check methods (Gschwind &

Irnich, 2015; Gschwind & Drexl, 2019) and scheduling procedures (Parragh et al., 2009; Molenbruch et al., 2017;

Bongiovanni et al., 2022a). To handle this issue, we first present a fragment-based representation of paths, which

was first introduced by Su et al. (2023). A novel approach is invoked to abstract fragments to arcs while ensuring

excess-user-ride-time optimality. We then construct a new graph that preserves all feasible routes of the original

graph by enumerating all feasible fragments, abstracting them to arcs, and connecting them with each other, depots,

and recharging stations in a feasible way. On the new graph, we apply strong dominance rules and constant-time

feasibility checks to compute the shortest paths efficiently. These methods pave the way for a powerful labeling

algorithm that ensures excess-user-ride-time optimality in label extension.

This chapter is organized into four sections. In Section 4.1, we present the extended formulation of the E-ADARP

and the CG framework. Section 4.2 introduces the proposed labeling algorithm to solve the pricing subproblems of

the E-ADARP. Section 4.3 presents the cutting planes that strengthen the lower bounds and the principle of the B&P

framework. The results of the proposed CG algorithm and the developed B&P algorithm are presented in Section 4.4.
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Finally, Section 4.5 discusses conclusions.

4.1 Extended Formulation of the E-ADARP and CG subproblem

The E-ADARP consists of finding a set of E-ADARP routes for EAVs to transport users with specific origin-destination

pairs such that each customer i 2 N is visited exactly once, and the weighted sum of total travel time and total excess

user ride time is minimized. The definition of an E-ADARP route is as follows:

Definition 2 (E-ADARP route). An E-ADARP route is a path that starts at an origin depot and ends at a destination

depot such that the following constraints are satisfied:

1) The route starts at an origin depot and ends at a destination depot and has no cycle;

2) Pairing and precedence constraints for pickup and drop-off nodes.

3) Time window, maximum user ride time, vehicle capacity, and battery capacity constraints;

4) The minimum battery level must be satisfied at the destination depot;

5) At-most-one visit to a recharging station if visited.

We obtain the extended formulation (also called “Master Problem”, abbreviated as MP) of the E-ADARP via

Dantzig-Wolfe decomposition. The MP is formulated as a set covering problem, where Ω denotes the set of all

E-ADARP routes. For each route ! 2 Ω, we define c! as the cost of route !. Note that the route cost accounts for the

weighted sum of total travel time and total excess user ride time. We define ✓i! as a binary coefficient that equals

one if the request i is visited by route ! (zero otherwise). Let y! denote a binary variable that equals one if and only if

route ! 2 Ω is included in the solution (0 otherwise). The number of requests to be served is n. To restrict the visits

to each recharging station and destination depot, we define another binary coefficient �f!, determining whether

the recharging station or destination depot f is visited in route !. As we have multiple origin depots which may be

located at different places and cannot be visited repeatedly by different vehicles, we define ✏o! to denote whether

origin depot o is visited in !. The objective function of MP is formulated as the total routing cost and we improve the

formulation of MP by adding a high penalty Pi for request i not served in the objective function. The benefit of adding

penalties is that we can start from a heuristic solution of the E-ADARP (e.g., obtained from the DA algorithm of Su

et al. (2023)) that does not include all the requests. Also, we introduce a binary variable, denoted as ai, to represent

whether request i is visited or not. If ai = 1, request i is omitted, otherwise, request i is visited. The set covering

problem is formulated as:

min
X

!2Ω

c!y! +
X

i2P

Piai (4.1)
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subject to:
X

!2Ω

✓i!y! > 1� ai, 8i 2 P (4.2)

X

!2Ω

�f!y! 6 1, 8f 2 S [ F (4.3)

X

!2Ω

✏o!y! 6 1, 8o 2 O (4.4)

X

!2Ω

y! 6 |K| (4.5)

y! 2 {0, 1}, 8! 2 Ω (4.6)

ai 2 {0, 1}, 8i 2 P (4.7)

Constraints (4.2) and (4.3) restrict the visit to each request, recharging station, and destination depot. Constraints

(4.4) and (4.5) guarantee that each origin depot appears at most once in the solution and at most |K| vehicles are

used. Due to the large size of Ω, we cannot solve the MP directly. Instead, we solve the linear relaxation of the MP

on a subset of set Ω (denoted as Ω0), which we call the continuous Restricted Master Problem (hereafter continuous

RMP). The subset Ω0 can be generated by CG.

In CG, the continuous RMP and the pricing subproblems are solved iteratively. The subproblems are solved to

generate E-ADARP routes with negative reduced costs. These routes are added to Ω0, and the continuous RMP

will be solved to update the dual variable values. With the renewed dual variable values, the subproblems will be

solved again to find E-ADARP routes with negative reduced costs. The iterative solving of the continuous RMP and

subproblems ends when no more negative-reduced-cost columns can be found. In this case, the optimal solution of

the continuous MP is found. The integer RMP is solved at the end to obtain integer solutions by using all columns

generated. Algorithm 2 outlines the CG algorithm framework.

4.1.1 Column Generation Subproblem

As mentioned, we solve the pricing subproblem in order to identify E-ADARP routes with negative reduced cost

c̄!,! 2 Ω. The reduced cost for an E-ADARP route ! is formulated as:

c! �
X

i2P

✓i!�i �
X

f2S[F

�f!⌧f �
X

o2O

✏o!⇣o �  (4.8)
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Algorithm 2 Column Generation Framework

Input: Initial columns pool population, preprocessing work;

Output: Optimal solution of continuous MP and best integer solution;

1: Repeat
2: Solve continuous RMP on Ω0;

3: Update dual variables and optimal cost from continuous RMP;

4: Solve sub-problem exactly by labeling algorithm with updated dual variable values;

5: if objective value of sub-problem is negative then
6: Add all columns with negative reduced cost to column pool;

7: end if
8: Until no more negative-reduced-cost column can be found by labeling algorithm;

9: Solve integer RMP to obtain the best integer solution;

10: Return optimal solution of continuous MP and integer solution;

where �i, i 2 P , ⌧f , f 2 S [ F , and ⇣o, o 2 O are the dual variable values of constraints (4.2), (4.3), and (4.4),

respectively. The dual variable values associated with constraint (4.5) is .

The objective function of the subproblem is:

minimize
!2Ω

c̄! (4.9)

4.2 Forward Labeling Algorithm for ESPPRC-MERT

We design a customized forward labeling algorithm to solve the pricing sub-problems, which are formulated as

Elementary Shortest Path Problems with Resource Constraints and Minimizing Excess Ride Time (hereafter ESPPRC-

MERT). This labeling algorithm extends the one tackling E-VRP subproblems in Desaulniers et al. (2016) by

considering the following aspects:

1) The characteristics of the DARP are taken into account (i.e., pickup and delivery);

2) Problem-specific constraints (i.e., minimum-battery-level constraint, maximum user ride time constraint, limited

visits to each recharging station) are considered;

3) Minimizing the total excess user ride time for a partial path.

The last point is the most challenging one of solving the ESPPRC-MERT, as the minimum excess user ride time

is particularly difficult to be calculated in the extension of labels. This difficulty manifests in two aspects: (1) the

minimum excess user ride time can only be determined at nodes where the vehicle has no passenger onboard at

arrival/departure; (2) an excess-user-ride-time optimal schedule for a partial path may conflict with time window

constraints on succeeding nodes.

To handle this issue, we construct a new sparser graph Gsp, where each arc is ensured to be excess-user-ride-time

optimal. We propose an efficient labeling algorithm over Gsp to compute routes with negative reduced costs. The
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construction of Gsp takes three steps:(1) we generate all battery-restricted fragments (defined in Definition 3); (2) we

abstract each fragment to an arc that ensures excess-user-ride-time optimality; (3) we construct Gsp by connecting

each transformed arc with depots, recharging stations, and other transformed arcs in a feasible way.

This section is organized as follows: in Section 4.2.1, we introduce a fragment-based representation of paths,

which regards fragments as basic components. Then, each partial path is a concatenation of fragments, over which

the minimum excess user ride time is determined. In Section 4.2.2, we explain how fragments are abstracted to

arcs. This abstraction allows us to design a single REF that represents the extension from the start node to the end

node of a fragment. In Section 4.2.3, we enumerate all feasible fragments, abstract fragments to arcs, and connect

transformed arcs with each other, depots, and recharging stations in a feasible way to construct Gsp. We show in

Theorem 3, Gsp preserves all feasible routes of the original one and therefore preserves all negative-reduced-cost

routes of the original graph. Then, we define labels for nodes on Gsp and present their notations and the definitions

of their associated resources in Section 4.2.4. The following part includes the label feasibility check, REFs, and

dominance rules. The last part presents the extension of our CG algorithm to handle the case of heterogeneous

vehicle capacities.

4.2.1 Representation of Partial Paths.

One important characteristic of the ESPPRC-MERT is that the reduced cost incorporates the total excess user ride

time, which needs to be minimized along the extension. In the classical representation of a partial path, the path is

extended in a node-by-node fashion. As mentioned, in the case of open requests existing on the partial path, we

cannot calculate the excess user ride time for these open requests. Hence, for the label associated with this partial

path, its reduced cost cannot be determined. In order to calculate the minimum excess user ride time in the extension

of a partial path, we extend the partial path with battery-restricted fragments, as in Section 3.1, which generalizes the

notion of fragments as proposed in Rist & Forbes (2021) by adding battery constraints in the feasibility check. Here,

we recall the definition of battery-restricted fragments:

Definition 3 (Battery-restricted fragment). Assuming that F = (i1, i2, · · · , ik) is a sequence of pickup and drop-off

nodes, where the vehicle arrives empty at i1 and leaves empty at ik and has passenger(s) on board at other nodes.

Then, we call F a battery-restricted fragment if there exists a feasible route of the form:

(o, si1 , · · · , siv ,

F
z }| {

i1, i2, · · · , ik, siv+1
, · · · , sim , f),

where si1 , · · · , siv , siv+1
, · · · , sim(v,m > 0) are recharging stations, and o 2 O, f 2 F .

Each E-ADARP route can be regarded as the concatenation of an origin depot, battery-restricted fragments

(hereinafter referred to as “fragments”), recharging stations (if required), and a destination depot. Clearly, we can
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A1 and Am for any excess-user-ride-time optimal schedule A over F . To calculate all possible values of A1 and Am,

we introduce vehicle-waiting-time optimal schedules:

Definition 4. A vehicle-waiting-time optimal schedule B for a fragment F is defined as a set of service start times Bi,

i 2 F that minimize the sum of vehicle waiting times at each node along F (i.e.,
Pm

i=2
[Bi � (Bi�1 + ti�1,i + si�1)]).

Note that a vehicle-waiting-time optimal schedule is not necessarily an excess-user-ride-time optimal schedule,

as the latter one minimizes a weighted sum of waiting times along F , which weight factors are equal to vehicle loads

at nodes with waiting time. For a given fragment F , we determine two vehicle-waiting-time optimal schedules:

1. the “latest” vehicle-waiting-time optimal schedule Bl;

2. the “earliest” vehicle-waiting-time optimal schedule Be.

We show later in Theorem 2 that these schedules Bl,Be determine all possible values of A1 and Am in any excess-

user-ride-time optimal schedule A by the following means: For any excess-user-ride-time optimal schedule A, there

exists �l, �e > 0 such that:

A1 = Bl
1 � �l, Am = Bl

m � �l;

A1 = Be
1 + �e, Am = Be

m + �e;

Next, for a given fragment F = {1, 2, · · · ,m}, we present the construction scheme for Bl and Be.

Construction of Bl and Be

The latest vehicle-waiting-time optimal schedule Bl must obey the following two rules:

1. Starting service as late as possible at the first node in F ;

2. Starting service as early as possible at all other nodes in F ;

For the first rule, as the vehicle arrives at the first node of F with no passenger, the delay of service start time at

the first node will always help to eliminate unnecessary vehicle waiting time at succeeding nodes.

As for the second rule, when there is/are passenger(s) on board, it is straightforward to start service as early

as possible as in this case to reduce vehicle waiting time. In the following part, we will first construct Bl and then

construct Be.

• Construct Bl: Assuming that a fragment F = {1, 2, · · · ,m}. Let Bl
i be the service start time for schedule Bl at

node i. Then the arrival time at each node i is Arri = Bl
i�1 + ti�1,i + si�1, 2 6 i 6 m. The waiting time ∆i at

node i is calculated as ∆i = Bl
i �Arri. Based on the proposed rules, we define Bl

i inductively as follows:
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Theorem 2. Assuming that fragment F = {1, 2, · · · ,m}, A is an excess-user-ride-time optimal schedule, Bl is the

constructed latest vehicle-waiting-time optimal schedule over F , and Be is the earliest vehicle-waiting-time optimal

schedule. Then there exists �e, �l � 0 such that:

A1 = Be
1 + �e, Am = Be

m + �e;

A1 = Bl
1 � �l, Am = Bl

m � �l.

Proof of Theorem 2. In the case of ∆u(B
l) = 0 for all 1  u  m (∆i(·) is the waiting time at node i according to a

given schedule), then the theorem clearly holds. Next, we assume that there exists 1  v  m such that ∆v(B
l) 6= 0.

We will show that A1 = Bl
1,Am = Bl

m.

The proof contains two parts.

• A1 = Bl
1. According to the first construction rule of Bl, we have Bl

1 � A1. Next, we prove Bl
1  A1 by

contradiction.

Assuming that Bl
1 > A1, then if ∆2(A) = 0, we must have Bl

2 > A2 � e2, therefore ∆2(B
l) = 0 by our

construction. Moreover, if ∆3(A) = 0, we must have Bl
3 > A3 � e3, therefore ∆3(B

l) = 0.

Repeat the above process, since ∆v(B
l) 6= 0, there exists v0  v such that: Bl

i > Ai,∆i(A) = 0 for 1  i < v0,

∆v0
(A) > 0. Then the total excess user ride time of A can be further reduced by delaying the service start

time by:

min{min1i<v0{B
l
i �Ai},∆v0

(A)}

in 1, · · · , v0 � 1. A is not an optimal plan, which is a contradiction!

• Bl
m = Am. Since there exists 1  v  m such that ∆v(B

l) 6= 0, we have Bl
v = ev at node v. According to the

second construction rules of Bl, we also have Bl
m  Am. Next, we prove Bl

m � Am by contradiction.

Assuming that Bl
m < Am, if ∆m(A) = 0, we must have Bl

m�1 < Am�1. Moreover, if ∆m�1(A) = 0, we

must have Bl
m�2 < Am�2. Since Bl

1 = A1 as we proved above, there must exists 2  v1  m such that:

Bl
i < Ai,∆i(A) = 0 for v1 < i  m and ev1  Bl

v1
< Av1 ,∆v1

(A) > 0. Then the excess user ride time of A can

be further reduced by moving forward the service start time by:

min{minv1im{Ai � Bl
i},∆v1(A)}

in v1, · · · ,m. A is not an optimal plan, which is a contradiction!
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Theorem 2 also implies that as soon as the excess-user-ride-time optimal schedule for fragment F contains

waiting time, we have Bl = Be and �l = �e = 0. In this case, any excess-user-ride-time optimal schedule (denoted

as A) must satisfy A1 = Bl
1 = Be

1 and Am = Bl
m = Be

m, where node 1 and node m are the first and the last node of

F . In the other case, an excess-user-ride-time optimal schedule can be obtained by moving forward(backward) the

vehicle-waiting-time optimal schedule Bl (Be) by �, such that 0 6 � 6 Bl
1 � Be

1.

Abstracting a Fragment to an Arc.

For each fragment F = {1, · · · ,m}, assuming Be,Bl are the corresponding earliest and latest vehicle-waiting-time

optimal schedules. Based on Theorem 2, restricting time windows at node 1 and node m to [Be
1,B

l
1] and [Be

m,Bl
m] will

include all excess-user-ride-time optimal schedules on fragment F = {1, · · · ,m}. Then we can abstract F to an arc

(1,m) such that:

1. the total travel time from 1 to m (denoted as t01,m) is Bl
m � Bl

1;

2. the original time windows of node 1 and node m are restricted to [Be
1,B

l
1] and [Be

m,Bl
m];

3. the battery consumption from 1 to m is
m�1P

i=1

hi,i+1;

If no waiting time is generated on F , we can calculate the minimum excess user ride time directly. It is also

straightforward to compute the minimum excess user ride time for F that contains one request with waiting time

generated. When waiting time is generated on a fragment containing more than two requests, calculating the value

of minimum excess user ride time becomes difficult. In this case, we improve the LP model introduced in Section

3.1.2 by setting the service start times at node 1 and node m to Bl
1 and Bl

m, respectively. Then, we solve the second

version of LP (LP2) to determine the minimum excess user ride time, as presented in the following.

Let PF denote all pickup nodes on F = {1, · · · ,m}:

min
X

i2PF

Ri (4.10)

s.t.

8

>>>>>><

>>>>>>:

Ti = Bl
1, if i = 1

Ti = Bl
m, if i = m

ei 6 Ti 6 li, Otherwise

(4.11)

Ti + si + ti,j 6 Tj , 8i 2 F \ {m}, idxj = idxi + 1 (4.12)

Tn+i � (Ti + si) 6 mi, 8i 2 PF (4.13)
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Tn+i � Ti � si � ti,n+i 6 Ri, 8i 2 PF (4.14)

Ri > 0, 8i 2 PF (4.15)

where idxi is the index of node i on the segment. The objective function is to minimize the total excess user ride

time. Constraints (4.11) to (4.12) are time window constraints where we set the service start time at node 1 and

node m to Bl
1 and Bm

1 (Bl is the latest vehicle-waiting-time optimal schedule), respectively. Constraints (4.13) and

constraints (4.14) are user ride time constraints.

4.2.3 Constructing a New Sparser Graph.

In this section, we construct a new sparser graph Gsp by two steps: (1) we enumerate all feasible fragments and

abstract them to arcs; (2) we connect each transformed arc with depots, recharging stations, and other transformed

arcs in a feasible way.

The fragment enumeration is conducted with depth-first search as in Alyasiry et al. (2019). For each feasible

fragment, the corresponding restricted time windows and minimum excess user ride times are recorded. To generate

all feasible fragments, we assume that the vehicle departs from each pickup node with a full battery level and must

respect constraints of maximum user ride time, battery capacity, time window, pairing, precedence, and vehicle

capacity. We start from each pickup node and extend it node by node until no more feasible fragment that starts from

this pickup node can be generated. By enumerating all feasible fragments before computation, we largely accelerate

the labeling algorithm as we only need to query information instead of recalculating. To provide more details, we

refer to Table B.1 in Section 3.2.4. For all the instances, the fragment enumeration can be fulfilled in a matter of

seconds. In the computational experiments, we report the CPU time, which includes the computational time for

fragment enumeration. With the information of all feasible fragments, we abstract fragments to arcs as presented in

Section 4.2.2.

Then, we construct Gsp by connecting depots, recharging stations, and the start nodes and end nodes of

transformed arcs in a feasible way. Details for the connection between nodes are as follows:

1. Each origin depot connects with all start nodes of arcs, recharging stations, and destination depots;

2. Each recharging station connects with start nodes of arcs and destination depots in a feasible way;

3. Each end node of an arc connects with destination depots, recharging stations, and all the start nodes of arcs

in a feasible way;

Figure 4.3 shows an example of constructing new arcs in Gsp. It should be noted that for two different fragments,

even though they have the same start node i+ and end node j�, we need to treat them as two different arcs in Gsp

as they represent different fragments consisting of different sequences of nodes, which lead to different restricted
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time at node v according to Bl.

In the proof, we show that we can find a �0 satisfying 0  �0  Bl
1 � Be

1 such that A1  B�0
1 ,B�0

m  Am. There are

two cases:

1. If ∆v(B
l) 6= 0 for some 1  v  m, then it is enough to take �0 = 0 as shown in Theorem 2.

2. If ∆v(B
l) = 0 for all nodes on F , let �0 be the maximal value that satisfies (i) B�0 is feasible and (ii) A1  B�0

1 .

There are two cases:

(a) If A1 > Be
1, then we have A1 = B�0

1 . Since ∆v(B
l) = 0 for all nodes, we derive B�0

m  Am.

(b) If A1 < Be
1, then we have A1 < B�0

1 and B�0 = Be. By definition of Be, there must exist a node u 2 F such

that Be
u = eu. Therefore, we derive B�0

m  Am as we have ∆u(B
l) = 0 for all nodes.

Summing up these cases, we can always find �0 such that A1  B�0
1 ,B�0

m  Am.

Then, we design our labeling algorithm on the newly constructed graph.

4.2.4 Labeling Algorithm.

We design a labeling algorithm on the new sparser graph Gsp, where excess-user-ride-time optimality is ensured

on each arc. The proposed labeling algorithm extends the label at the end of the partial path P. We denote Li

as the label associated with a partial path ends with node i. The forward labeling algorithm extends labels from a

source node ok 2 O to a non-predefined sink node f 2 F . Let a label associated with a partial path P from ok to

current vertex i be Li = {Rcost
i , (Rrchs

i )s2S , R
tMin
i , RtMax

i , RrtMax
i , Rreq

i }, the definition of each resource is described

as follows:

1. Rcost
i : The reduced cost of the partial route until i;

2. Rrchs

i : The number of times recharging station s 2 S is visited along partial path P;

3. RtMin
i : The earliest service start time at vertex i that considers a minimum recharging time (ensuring the

battery feasibility up to vertex i) at the recharging station if a recharging station is visited along the partial path

before reaching i;

4. RtMax
i : The earliest service start time at vertex i that considers a maximum recharge time (ensuring the

time-window feasibility up to vertex i) at the recharging station if a recharging station is visited along the partial

path before reaching i;
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5. RrtMax
i : The maximum recharging time required to fully recharge at vertex i. In the case that a recharging

station is visited prior to i along P , the vehicle performs a minimum recharge that ensures the battery feasibility

up to vertex i;

6. Rreq
i : The set of unreachable requests until i along partial path P . A request is said to be “unreachable” if time

window constraints are violated or this request has been visited.

In case no recharging station is visited on partial path P, the value of RtMin
i is equal to RtMax

i , indicating the

earliest service start time at vertex i. RrtMax
i represents the accumulated amount of needed recharging time until i.

In the initial label at vertex ok, Rreq
ok

is an empty set, RtMin
ok

and RtMax
ok

are equal to eok , while all other components

are set to zero. We extend a label Li = {Rcost
i , (Rrchs

j )s2S , R
tMin
i , RtMax

i , RrtMax
i , Rreq

i } along arc (i, j) 2 A0 using

the following REFs:

Rcost
j = Rcost

i + c̄i,j (4.16)

Rrchs

j = Rrchs

i +

8

>><

>>:

1, if j = s

0, otherwise

(4.17)

RtMin
j =

8

>><

>>:

max{Be
j , R

tMin
i + t0i,j}, if Rrch

i = ;

max{Be
j , R

tMin
i + t0i,j}+ Zi,j , otherwise

(4.18)

RtMax
j =

8

>><

>>:

min{Bl
j ,max{Be

j , R
tMin
i +RrtMax

i + t0i,j}}, if i 2 S

min{Bl
j ,max{Be

j , R
tMax
i + t0i,j}}, otherwise

(4.19)

RrtMax
j =

8

>><

>>:

RrtMax
i + h0

i,j , if Rrch
i = ;

min{H,max{0, RrtMax
i � Si,j}+ h0

i,j}, otherwise

(4.20)

Rreq
j = Rreq

i [ Un(R
tMin
j ) (4.21)

where in these functions:

Si,j(R
tMin
i , RtMax

i , RrtMax
i ) =

8

>><

>>:

max{0,min{Be
j �RtMin

i � t0i,j , R
rtMax
i }}, if i 2 S

max{0,min{Be
j �RtMin

i � t0i,j , R
tMax
i �RtMin

i }}, otherwise

(4.22)
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Zi,j(R
tMin
i , RtMax

i , RrtMax
i ) = max{0,max{0, RrtMax

i � Si,j(R
tMin
i , RtMax

i , RrtMax
i )}+ h0

i,j �H} (4.23)

The Si,j is the slack time between the earliest vehicle-waiting-time optimal service start time Be
j at j and the

earliest arrival time to j. If i is a recharging station, Si,j may be equal to the maximum possible recharging time

RrtMax
i at vertex i, while at other nodes, it may be equal to RtMax

i � RtMin
i . Zi,j is the minimum recharging time

accounting for the available slack that the previous recharging station must perform to maintain battery feasibility.

Un(R
tMin
j ) is the function to determine the unreachable nodes from j.

An extension feasibility check is performed while extending label Li to label Lj via arc (i, j) 2 A0. The feasibility

check rules are presented in the following proposition:

Proposition 2. The extension of label Li to label Lj is feasible if and only of label Lj satisfies:

RtMin
j 6 Bl

j , RtMin
j 6 RtMax

j , R
reqp
j 6 1, 8p 2 P, RrtMax

j 6

8

>><

>>:

(1� �)H, j 2 F

H, otherwise

where R
reqp
j is the number of times request p is visited along the partial path.

If j is a recharging station, then constraint (4.24) must be considered:

R
rchj

j 6 1 (4.24)

In case of a feasibility violation, the corresponding label will be discarded. Also, it should be mentioned that each

time when a fragment is added, the visited customers on this fragment need to be checked. If the fragment contains

a visited customer, it should be discarded. The maximum user ride time constraints and capacity constraints are

checked when generating fragments.

Definition 5. Suppose that Lk = {Rcost
k , (Rrchs

k )s2S , R
tMin
k , RtMax

k , RrtMax
k , Rreq

k }, k 2 1, 2 are two labels and the

partial path associated to L1 and L2 are P1 and P2, respectively. Assuming that P1, P2 end at the same node, L1

dominates L2 if and only if:

Rr
1 6 Rr

2, 8r 2 {cost, rch, tMin} (4.25)

Rreq
1 ✓ Rreq

2 (4.26)

RrtMax
1 � (RtMax

1 �RtMin
1 ) 6 RrtMax

2 � (RtMax
2 �RtMin

2 ) (4.27)
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RrtMax
1 � (RtMax

2 �RtMin
1 ) 6 RrtMax

2 (4.28)

The last two conditions are equivalent to the requirement that: for every service start time T2 2 [RtMin
2 , RtMax

2 ],

there exists a service start time T1 2 [RtMin
1 , T2] such that RrtMax

1 � (T1�RtMin
1 ) 6 RrtMax

2 � (T2�RtMin
2 ). In other

words, we can always find a service start time T1 6 T2 that does not consume more energy.

4.2.5 Consideration of Heterogeneous Vehicle Capacities

Our CG algorithm can be extended to allow heterogeneous vehicle capacities. As in Parragh et al. (2012), we define

T as the set of available vehicle types and classify vehicles with the same capacity into one vehicle type t 2 T . Let

Ωt denote the set of feasible routes for vehicles of type t 2 T and Ω =
S

t2T Ωt is the set of all feasible routes, we

only need to reformulate constraint (4.5) in the MP formulation as follows:

X

!2Ω

y! 6 Mt, 8t 2 T (4.29)

where Mt is the maximum number of vehicles of type t that can be included in the solution. Then, we obtain |T |

subproblems in the CG, one for each vehicle type. The reduced cost c̄! for a route ! generated for the subproblem t

is formulated as:

c! �
X

i2P

✓i!�i �
X

f2S[F

�f!⌧f �
X

o2O

✏o!⇣o � t (4.30)

where t is the dual variable value associated with constraints (4.29) for vehicles of type t. Then, we solve each

subproblem t 2 T to generate feasible routes of negative reduced costs.

4.3 Cutting Planes and Branching Strategies

To strengthen the continuous MP formulation, we apply two types of cutting planes for instances that are not solved

optimally by CG. The first type of cutting plane is the two-path cut, which was initially proposed by Kohl et al. (1999)

for solving VRPTW and is defined as follows. For a subset W ✓ N [ S, we define the sets of predecessors of W as

⇡(W ) = {i 2 P : i+ n 2W, i /2W}, the sets of successors of W as �(W ) = {i+ n 2 D : i 2W, i+ n /2W}, and the

flow enter subset W ✓ N [ S is:

x(W ) =
X

i/2W

X

j2W

xi,j (4.31)

where xi,j =
P

k2K

xk
i,j is calculated with the current solution of continuous MP.

We aim at finding the subset W such that x(W ) < 2 and k(W ) > 1, where k(W ) is the smallest number of
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vehicles needed to serve all nodes in W . The corresponding two-path inequality for such a subset W is:

X

!2Ω

nW
! y! > 2 (4.32)

where nW
! is the number of times column ! enters W , i.e., the number of arcs (i, j) 2 ! such that i /2W and j 2W .

To separate two-path inequalities, we adapt the greedy heuristic proposed in Kohl et al. (1999). After identifying

set W satisfying x(W ) < 2, we determine whether there exists an elementary path that serves all nodes in

⇡(W ) [W [ �(W ) in a feasible way. If no such path can be found, then the subset W defines a valid two-path

inequality (4.32), which is added to the continuous MP formulation. The dual variable associated with inequality (4.32)

must be subtracted from c̄! for all arcs (i, j) with i /2W and j 2W .

The second type of cutting planes are subset row inequalities which were first introduced by Jepsen et al. (2008)

to solve the VRPTW. For a subset W ✓ N [ S of three elements, the corresponding subset row inequality is:

X

!2Ω0

mW
! y! 6 1 (4.33)

where mW
! = b�W

! /2c and �W
! is the number of visits to a customer in W along route !. For an elementary route !,

we have mW
! = 1 if ! visits two or three customers in W and mW

! = 0 otherwise.

Subset row inequalities are separated if we find no two-path cut from the current solution of continuous MP. We

separate subset row inequalities by enumerating all subsets of three customers and checking for each subset if

the corresponding inequality is violated. The valid inequalities are added to the continuous MP formulation. Note

that the dual variables associated with the cuts cannot be integrated into the reduced cost of the labels. Instead,

one additional resource attribute is created to record the number of visits to each subset of customers. Also, the

dominance rules are modified, as in Jepsen et al. (2008); Desaulniers et al. (2011). Each time, we identify such cuts

and select at most nSRC
max cuts according to the rules proposed in Desaulniers et al. (2008). In our case, nSRC

max = 10.

4.3.1 Branching Strategies

In case of the CG algorithm does not obtain integer solutions, we impose branching strategies on fractional solutions

to derive integer solutions. We consider two branching strategies in the branch-and-bound search tree: the first

branching strategy branches on the total number of routes (as in Desrochers et al. (1992)), and the second branching

strategy branches on the total flow of an arc (as in Desaulniers et al. (2016)). For a fractional solution, we evaluate

the branching strategies with the mentioned order and select the first type that can be imposed. When imposing the

selected branching strategy, the first type of branching strategy is imposed by adding inequality to the continuous MP.

As for the second type of branching strategy, we remove columns that contain incompatible arcs from the column

pool and prevent the generation of columns that include these arcs in the labeling algorithm. If we obtain fractional
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arc flow for several arcs, the arc with a fractional flow that is closest to 0.5 is selected. Each time when a branching

strategy is imposed, we create two branches and explore the branch-and-bound tree in a depth-first fashion.

4.4 Computational Experiments

In this section, we first describe the benchmark instance sets used to examine the performance of the proposed CG

and B&P algorithms. Thereafter, we first present the results obtained by our CG algorithm under different minimum

battery level restrictions (i.e., � = 0.1, 0.4, 0.7). We compare the root node results (i.e., Lagrangian dual bounds and

CG primal bounds solving integer RMP on the previously generated columns) to the best-reported B&C results of

Bongiovanni et al. (2019). As for large-scale instances, no exact results are reported in Bongiovanni et al. (2019), we

compare the CG results with the best heuristic results of Section 3.3. Next, we integrate the CG algorithm into the

B&P scheme and report the B&P algorithm results on type-a, -u, and -r instances. The B&P results are compared to

the best-reported B&C results of Bongiovanni et al. (2019). Then, we extend the E-ADARP to allow unlimited visits to

each recharging station and compare our results of the B&P algorithm to the best-reported results of at-most-one visit

to each recharging station to analyze the effect of relaxing the restriction of recharging visits. Finally, we compare the

CG and B&P results with DA algorithm results presented in Chapter 3 in terms of solution quality and computational

time. Practical insights are drawn for decision-makers to select methods according to their preferences.

All algorithms are coded in Julia 1.7.2 and are performed on a standard PC with an Intel(R) Core(TM) i7-8700

CPU at 3.20 GHz and with 32 Gb of RAM using a single thread only. Other packages used in the program are JuMP

1.0.0 and Gurobi, 0.11.1. It should be noted that the results reported in Bongiovanni et al. (2019) are obtained from a

computer with an Intel(R) Core(TM) i7-4790 CPU at 3.60 GHz and with 16 Gb of RAM.

4.4.1 Benchmark Instances

The benchmark instance sets that are considered in Chapter 3 are used in the computational experiments of this

chapter. Two are existing benchmark instance sets from Bongiovanni et al. (2019). The third set corresponds to the

large-scale E-ADARP instances introduced in Su et al. (2023). All the instances are labeled in the form xk-n, where

x 2 {a, u, r}, k is the number of vehicles and n is the number of requests. Here we recall the characteristics of the

considered benchmark instance sets are as follows:

• “a” denotes the E-ADARP instances proposed by Bongiovanni et al. (2019) that are extended from the standard

DARP benchmark instance set of Cordeau (2006) by supplementing features of electric vehicles and recharging

stations. These instances are called type-a instances. For these instances, the number of vehicles is in the

range 2 6 k 6 5, and the number of requests is in the range 16 6 n 6 50.

• “u” denotes the E-ADARP instances generated by Bongiovanni et al. (2019) that are based on the ride-sharing
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data from Uber Technologies. These instances are called type-u instances. For these instances, the number of

vehicles is in the range 2 6 k 6 5 and the number of requests is in the range 16 6 n 6 50, as in the type-a

instances.

• “r” denotes the larger E-ADARP instances adopted from Su et al. (2023). These instances are based on the

large-scale instances of Ropke et al. (2007) for the standard DARP and are adapted to the E-ADARP following

the same logic as the type-a instances. These instances are called type-r instances. For these instances, the

number of vehicles is in the range 5 6 k 6 8 and the number of requests is in the range 60 6 n 6 96.

Following Bongiovanni et al. (2019), we set w1 = 0.75, w2 = 0.25. We consider three different � values, namely,

� 2 {0.1, 0.4, 0.7}, representing the low-,medium-, and high-battery-level restriction case, respectively. Higher values

of � result in more tightly constrained instances of the E-ADARP, allowing us to analyze the algorithm’s performance

from the loosely- to the highly-constrained case.

4.4.2 Computational Results

We first solve the continuous RMP with the proposed CG algorithm. To obtain integer solutions, we use the generated

set of columns to solve the integer RMP and report the obtained results. The column pool is initialized by iterating the

DA algorithm (see Chapter 3) 500 times and storing all the generated columns. The time limit for solving continuous

RMP is set to two hours (the same as in Bongiovanni et al. (2019)). To close the integrality gaps in the case of

existing, we tried the following ideas: (1) separating two-path cuts and subset row inequalities and adding them to

continuous MP formulation so as to strengthen lower bounds, and (2) implementing the B&P algorithm. Table 4.1,

Table 4.2, and Table 4.3 present the obtained CG results under different � values (i.e., � = 0.1, 0.4, 0.7) for type-a,

-u, and -r instances, respectively. In each table, the lower bound obtained from solving continuous RMP, the upper

bound from solving the integer RMP, and the computation time in seconds is shown. If our CG algorithm obtains

fractional solutions at the root node, we first try to close integrality gaps by adding cuts to the continuous MP. Then,

the generated lower bounds, upper bounds, and total computational time are reported. We also implement the B&P

algorithm to close integrality gaps if the CG does not obtain integer solutions at the root node. We summarize the

computational results of the B&P algorithm on type-a, -u, and -r instances in Table 4.4, 4.5, 4.6. The obtained B&P

results are compared to the results of the CG algorithm with adding cuts.

The benchmark results from Bongiovanni et al. (2019) are given in the last three columns. The meaning of the

abbreviations in the tables is as follows:

1. Obj and Obj1: The objective values of integer RMP solutions obtained by the CG algorithm without and with

cutting planes being added, respectively;

2. LB and LB1: Lagrangian dual bound values obtained by solving the continuous MP without and with cutting

planes being added, respectively;

83



3. LB% and LB1%: the gaps of the LB and LB1 to the best-obtained integer solution values (denoted as Best)

among all considered algorithms, respectively;

4. CPU : the CPU time in seconds (contained fragment enumeration and preprocessing time);

5. Obj0: the optimal objective values from B&P;

6. LB0: the lower bounds obtained from B&P;

7. LB0%: the gaps of LB0 to the best-obtained integer solution values (denoted as Best) among all considered

algorithms;

8. Nnode: the number of nodes explored in the B&P tree;

9. Obj2: the best solution found by Bongiovanni et al. (2019);

10. LB2: the best lower bounds reported in Bongiovanni et al. (2019);

11. LB2%: the gaps between the LB2 and Best;

12. BKS: the best known solutions of the DA algorithm of Su et al. (2023);

13. CPU : average CPU time (in seconds) per instance;

14. LB% and LB1%: average value of LB% and LB1% per instance, respectively;

15. LB2%: average LB2% per instance;

16. NA (Not Available): the considered algorithm does not obtain a feasible integer solution or solve the continuous

MP within the given time limit for the respective instance;

17. #opt: number of optimal solutions obtained by the respective algorithm;

18. #bestlb: number of times the respective algorithm provides the best lower bound of all considered algorithms;

19. #bestub: number of times the respective algorithm provides the best integer solution of all considered algorithms;

And:

LB% =
Best� LB

Best
⇥ 100%

LB1% and LB2% are calculated similarly.

In Table 4.1, Table 4.2, and Table 4.3, we report solutions for solving the integer RMP in the first column and the

Lagrangian dual bounds (hereafter LB) in the second column. If CG converges within the time limit, the LB values are

equal to solutions to continuous RMP. Otherwise, we mark them in italics. If the optimal solution of continuous MP

is also an integer solution, then we obtain the optimal solution of MP, and we indicate it by an asterisk in column
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“Obj”. Otherwise, we try to close the integrality gap by enhancing the continuous MP formulation with cuts. Then,

we perform the CG algorithm to solve the continuous MP, considering additional dual variables introduced by cuts.

If the remaining integrality gap is closed, we mark the obtained optimal solution with an asterisk in column “Obj1”.

Equal/improved integer solutions and LB values compared to those reported in Bongiovanni et al. (2019) are marked

in bold.

In the scenario of � = 0.4 and � = 0.7, we find strictly better integer solutions than the reportedly optimal

solution in Bongiovanni et al. (2019). After analyzing their model and parameter settings, we find that in the model of

Bongiovanni et al. (2019), the employed “big M” values were not correctly computed. Readers can refer to Appendix A

for a more in-depth analysis and how the “big M” values should be set correctly. These problematic results are marked

in italics in column “Obj2”, and we add two asterisks to our values in columns “Obj” and “Obj1” for the concerned

instances (e.g.,a2-24-0.4, a3-30-0.4). The corresponding LB2% values are therefore negative.

CG Results on type-a instances under different minimum battery level restrictions.

We first conduct experiments on type-a instances considering different minimum battery level restrictions � =

0.1, 0.4, 0.7. With rising values of �, vehicles must have a higher minimum battery level when returning to the depot.

Recalling that each recharging station can only be visited at most once. We present our proposed CG algorithm

results and compare them to those of Bongiovanni et al. (2019).

Before adding cuts to further enhance lower bounds, our proposed CG algorithm obtains optimal solutions for 28

out of 42 instances. In addition, we provide 25 equal integer solutions and generate 11 better integer solutions for

previously solved and unsolved instances. Furthermore, 20 equal lower bounds are generated, and 14 lower bounds

reported in Bongiovanni et al. (2019) are improved by 0.93% on average. Then, the remaining integrality gaps are

closed to a large extent by adding cuts to the continuous MP formulation. The proposed CG algorithm solves 9 more

instances optimally and further improves 6 lower bounds and 4 integer solutions. In total 37 out of 42 instances are

solved optimally at the root node, and we improve the reported lower bounds of Bongiovanni et al. (2019) by 1.06%

on average.

Another important observation is that, in the case of � = 0.4, 0.7, we obtain strictly better optimal solutions than

the reportedly optimal solutions in Bongiovanni et al. (2019). The associated instances are a2-24-0.4, a3-30-0.4,

a3-36-0.4, a2-24-0.7, a3-24-0.7, and a4-24-0.7. The reason is that in the model of Bongiovanni et al. (2019), the “big

M” values were incorrect. We give a detailed explanation in Appendix A.

CG Results on type-u instances under different minimum battery level restrictions.

In this part, we conduct experiments on type-u instances under different minimum battery level restrictions � =

0.1, 0.4, 0.7. The results are summarized in Table 4.2.

Without adding cuts to the continuous MP, the proposed CG algorithm solves 22 out of 42 instances optimally
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Table 4.1 Root node results of CG with labeling algorithm on type-a instances under � = 0.1, 0.4, 0.7

γ = 0.1 CG results CG with cutting planes results Bongiovanni et al., (2019) results a

Instance Obj LB LB% CPU(s) Obj1 LB1 LB1% CPU(s) Obj2 LB2 LB2% CPU(s)

a2-16 237.38⇤ 237.38 0 23.1 237.38⇤ 237.38 0 23.1 237.38⇤ 237.38 0 1.2

a2-20 279.08⇤ 279.08 0 140.6 279.08⇤ 279.08 0 140.6 279.08⇤ 279.08 0 4.2

a2-24 346.21⇤ 346.21 0 274.2 346.21⇤ 346.21 0 274.2 346.21⇤ 346.21 0 9.0

a3-18 236.82⇤ 236.82 0 14.2 236.82⇤ 236.82 0 14.2 236.82⇤ 236.82 0 4.8

a3-24 274.80⇤ 274.80 0 116.4 274.80⇤ 274.80 0 116.4 274.80⇤ 274.80 0 13.8

a3-30 413.27⇤ 413.27 0 351.5 413.27⇤ 413.27 0 351.5 413.27⇤ 413.27 0 102.0

a3-36 481.17⇤ 481.17 0 884.6 481.17⇤ 481.17 0 884.6 481.17⇤ 481.17 0 106.8

a4-16 222.49 222.38 0.05% 7.5 222.49⇤ 222.49 0 11.4 222.49⇤ 222.49 0 3.6

a4-24 310.84⇤ 310.84 0 28.8 310.84⇤ 310.84 0 28.8 310.84⇤ 310.84 0 31.2

a4-32 393.96⇤ 393.96 0 311.3 393.96⇤ 393.96 0 311.3 393.96⇤ 393.96 0 612.0

a4-40 453.84⇤ 453.84 0 764.0 453.84⇤ 453.84 0 764.0 453.84⇤ 453.84 0 517.2

a4-48 554.54⇤ 554.54 0 2148.5 554.54⇤ 554.54 0 2148.5 554.54 526.96 5.04% 7200.0

a5-40 416.79 413.48 0.25% 318.6 414.51⇤ 414.51 0 805.2 414.51⇤ 414.51 0 1141.8

a5-50 559.17⇤ 559.17 0 1521.6 559.17⇤ 559.17 0 1521.6 559.17 531.15 5.01% 7200.0

Avg 0.02% 493.2 0 528.2 0.72% 1210.5

γ = 0.4 Obj LB LB% CPU(s) Obj1 LB1 LB1% CPU(s) Obj2 LB2 LB2% CPU(s)

a2-16 237.38⇤ 237.38 0 40.4 237.38⇤ 237.38 0 40.4 237.38⇤ 237.38 0 1.8

a2-20 280.70⇤ 280.70 0 134.2 280.70⇤ 280.70 0 134.2 280.70⇤ 280.70 0 49.8

a2-24 347.04⇤⇤ 347.04 0 535.5 347.04⇤⇤ 347.04 0 535.5 348.04⇤ 348.04 -0.29% 25.2

a3-18 236.82⇤ 236.82 0 22.8 236.82⇤ 236.82 0 22.8 236.82⇤ 236.82 0 4.2

a3-24 274.80⇤ 274.80 0 81.0 274.80⇤ 274.80 0 81.0 274.80⇤ 274.80 0 16.8

a3-30 413.34⇤⇤ 413.34 0 484.6 413.34⇤⇤ 413.34 0 484.6 413.37⇤ 413.37 -0.01% 99.0

a3-36 483.83⇤⇤ 481.85 0.41% 1273.5 482.75⇤⇤ 482.64 0.02% 7200.0 484.14⇤ 484.14 -0.06% 306.6

a4-16 222.49 222.38 0.05% 6.5 222.49⇤ 222.49 0 10.1 222.49⇤ 222.49 0 5.4

a4-24 311.03⇤ 311.03 0 43.2 311.03⇤ 311.03 0 43.2 311.03⇤ 311.03 0 39.6

a4-32 394.26⇤ 394.26 0 276.9 394.26⇤ 394.26 0 276.9 394.26⇤ 394.26 0 681.6

a4-40 453.84⇤ 453.84 0 681.8 453.84⇤ 453.84 0 681.8 453.84⇤ 453.84 0 417.6

a4-48 554.60⇤ 554.60 0 6648.4 554.60⇤ 554.60 0 6648.4 554.60 529.22 4.58% 7200.0

a5-40 415.25 413.48 0.25% 307.8 414.51⇤ 414.51 0 481.6 414.51⇤ 414.51 0 1221.0

a5-50 559.51⇤ 559.51 0 1984.5 559.51⇤ 559.51 0 1984.5 560.50 528.91 5.47% 7200.0

Avg 0.05% 894.4 0 1330.3 0.74% 1233.5

γ = 0.7 Obj LB LB% CPU(s) Obj1 LB1 LB1% CPU(s) Obj2 LB2 LB2% CPU(s)

a2-16 240.66⇤ 240.66 0 56.1 240.66⇤ 240.66 0 56.1 240.66⇤ 240.66 0 5.4

a2-20 293.27 292.73 0.18% 1108.8 293.27⇤ 293.27 0 1733.8 NA 287.17 2.08% 7200.0

a2-24 353.18⇤⇤ 353.18 0 1057.4 353.18⇤⇤ 353.18 0 1057.4 358.21⇤ 358.21 -1.42% 961.2

a3-18 240.58⇤ 240.58 0 38.6 240.58⇤ 240.58 0 38.6 240.58⇤ 240.58 0 48.0

a3-24 275.97⇤⇤ 275.97 0 175.7 275.97⇤⇤ 275.97 0 175.7 277.72⇤ 277.72 -0.63% 152.4

a3-30 426.40 422.57 0.56% 1171.6 424.93⇤ 424.93 0 3401.9 NA 417.06 1.85% 7200.0

a3-36 500.57 491.80 0.45% 2191.6 494.04 493.71 0.07% 7200.0 494.04 485.91 1.65% 7200.0

a4-16 223.13⇤ 223.13 0 8.4 223.13⇤ 223.13 0 8.4 223.13⇤ 223.13 0 67.2

a4-24 318.24 316.24 0.13% 84.3 316.65⇤⇤ 316.65 0 129.7 318.21⇤ 318.19 -0.49% 1834.8

a4-32 397.87 396.84 0.26% 734.7 397.87 397.78 0.02% 7200.0 430.07 387.99 2.48% 7200.0

a4-40 467.72 466.96 0.16% 3252.4 467.72⇤ 467.72 0 5238.4 NA 443.62 5.15% 7200.0

a4-48 NA 476.54 NA 7200.0 NA 476.54 NA 7200.0 NA 524.92 NA 7200.0

a5-40 418.75 417.25 0.36% 2182.2 418.75⇤ 418.75 0 6808.1 447.63 405.99 4.78% 7200.0

a5-50 NA 176.58 NA 7200.0 NA 176.58 NA 7200.0 NA 522.37 NA 7200.0

Avg 0.32% 1890.1 0.01% 3389.2 1.70% 4333.5

Summary #opt #bestlb LB% #bestub #opt #bestlb LB1% #bestub #opt #bestlb LB2% #bestub
28 34 0.13% 36 37 40 0.003% 40 24 26 1.06% 28

a: Due to incorrect big M values, some of the reported results of Bongiovanni et al. (2019) are higher than the
actual optimal values. Those results are highlighted in italics;
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Table 4.2 Root node results of CG with labeling algorithm on type-u instances under � = 0.1, 0.4, 0.7

γ = 0.1 CG results CG with cutting planes results Bongiovanni et al., (2019) results a

Instance Obj LB LB% CPU(s) Obj1 LB1 LB1% CPU(s) Obj2 LB2 LB2% CPU(s)

u2-16 57.61 57.08 0.92% 43.6 57.61⇤ 57.61 0 72.1 57.61⇤ 57.61 0 21.0

u2-20 55.59⇤ 55.59 0 248.2 55.59⇤ 55.59 0 248.2 55.59⇤ 55.59 0 9.6

u2-24 91.36 90.55 0.12% 851.7 90.66⇤⇤ 90.66 0 7001.9 91.27⇤ 91.27 -0.67% 432.0

u3-18 50.74⇤ 50.74 0 36.6 50.74⇤ 50.74 0 36.6 50.74⇤ 50.74 0 10.8

u3-24 67.56⇤ 67.56 0 107.0 67.56⇤ 67.56 0 107.0 67.56⇤ 67.56 0 130.2

u3-30 76.75⇤ 76.75 0 998.1 76.75⇤ 76.75 0 998.1 76.75⇤ 76.75 0 438.0

u3-36 104.39 103.94 0.10% 1894.6 104.04⇤ 104.04 0 3293.4 104.04⇤ 104.04 0 1084.8

u4-16 53.58⇤ 53.58 0 12.9 53.58⇤ 53.58 0 12.9 53.58⇤ 53.58 0 48.0

u4-24 89.83⇤ 89.83 0 51.3 89.83⇤ 89.83 0 51.3 89.83⇤ 89.83 0 13.2

u4-32 99.29⇤ 99.29 0 434.3 99.29⇤ 99.29 0 434.3 99.29⇤ 99.29 0 1158.6

u4-40 133.11⇤ 133.11 0 3385.9 133.11⇤ 133.11 0 3385.9 133.11⇤ 133.11 0 185.4

u4-48 148.08 147.02 0.72% 7200.0 148.08 147.02 0.72% 7200.0 148.30 134.48 9.18% 7200.0

u5-40 121.86⇤ 121.86 0 1632.0 121.86⇤ 121.86 0 1632.0 121.86 114.12 6.35% 7200.0

u5-50 142.82 142.75 0.05% 7100.9 142.82 142.75 0.05% 7100.9 143.10 132.69 7.09% 7200.0

Avg 0.14% 1714.1 0.06% 2255.3 1.66% 1795.1

γ = 0.4 Obj LB LB% CPU(s) Obj1 LB1 LB1% CPU(s) Obj2 LB2 LB2% CPU(s)

u2-16 57.65⇤ 57.65 0 53.2 57.65⇤ 57.65 0 53.2 57.65⇤ 57.65 0 25.8

u2-20 56.61 56.06 0.50% 407.3 56.34⇤ 56.34 0 665.2 56.34⇤ 56.34 0 12.0

u2-24 91.62 90.80 0.51% 1140.2 91.27⇤⇤ 90.95 0.33% 4266.0 91.63⇤ 91.63 -0.39% 757.2

u3-18 50.74⇤ 50.74 0 45.2 50.74⇤ 50.74 0 45.2 50.74⇤ 50.74 0 13.8

u3-24 67.56⇤ 67.56 0 109.5 67.56⇤ 67.56 0 109.5 67.56⇤ 67.56 0 220.8

u3-30 76.75⇤ 76.75 0 912.8 76.75⇤ 76.75 0 912.8 76.75⇤ 76.75 0 336.6

u3-36 104.06⇤ 104.06 0 4922.7 104.06⇤ 104.06 0 4922.7 104.06⇤ 104.06 0 2010.0

u4-16 53.58⇤ 53.58 0 13.6 53.58⇤ 53.58 0 13.6 53.58⇤ 53.58 0 44.4

u4-24 89.83⇤ 89.83 0 56.8 89.83⇤ 89.83 0 56.8 89.83⇤ 89.83 0 28.2

u4-32 99.29⇤ 99.29 0 696.8 99.29⇤ 99.29 0 696.8 99.29⇤ 99.29 0 2667.6

u4-40 133.78⇤⇤ 133.37 0.31% 2186.1 133.78⇤⇤ 133.46 0.24% 3958.2 133.91⇤ 133.91 -0.10% 2653.2

u4-48 147.63 146.37 0.85% 7200.0 147.63 146.37 0.85% 7200.0 NA 133.86 9.33% 7200.0

u5-40 121.96⇤ 121.96 0 1249.1 121.96⇤ 121.96 0 1249.1 122.23 112.58 7.69% 7200.0

u5-50 142.84 142.75 0.06% 7200.0 142.84 142.75 0.06% 7200.0 143.14 134.09 6.13% 7200.0

Avg 0.16% 1871.0 0.11% 2239.2 1.69% 2169.3

γ = 0.7 Obj LB LB% CPU(s) Obj1 LB1 LB1% CPU(s) Obj2 LB2 LB2% CPU(s)

u2-16 60.01 58.48 1.20% 89.6 59.19⇤ 59.19 0 2597.2 59.19⇤ 59.19 0 338.4

u2-20 56.86⇤ 56.86 0 2247.6 56.86⇤ 56.86 0 2247.6 56.86⇤ 56.86 0 72.0

u2-24 92.17 91.48 0.75% 2056.3 92.17 91.71 0.50% 7200.0 NA 90.83 1.45% 7200.0

u3-18 50.99 50.94 0.10% 65.4 50.99⇤ 50.99 0 116.4 50.99⇤ 50.99 0 24.0

u3-24 68.44 68.00 0.57% 119.9 68.44 68.12 0.47% 176.2 68.39⇤ 68.39 0 400.2

u3-30 77.41⇤⇤ 77.33 0.10% 955.3 77.41⇤⇤ 77.41 0 1778.3 78.14⇤ 78.14 -0.94% 3401.4

u3-36 106.45 105.46 0.31% 7200.0 106.45 105.46 0.31% 7200.0 105.79 104.37 1.34% 7200.0

u4-16 53.87⇤ 53.87 0 33.8 53.87⇤ 53.87 0 33.8 53.87⇤ 53.87 0 88.8

u4-24 89.96⇤ 89.96 0 82.3 89.96⇤ 89.96 0 82.3 89.96⇤ 89.96 0 22.8

u4-32 99.50⇤ 99.50 0 4559.3 99.50⇤ 99.50 0 4559.3 99.50⇤ 99.50 0 2827.2

u4-40 135.33 134.56 0.54% 1959.5 135.29 134.65 0.47% 5555.5 NA 133.01 2.46% 7200.0

u4-48 185.16 -216.07 NA 7200.0 185.16 -216.07 NA 7200.0 NA 132.49 NA 7200.0

u5-40 124.01 122.82 0.81% 4774.6 123.82 122.87 0.77% 7200.0 NA 109.28 11.88% 7200.0

u5-50 216.07 132.79 NA 7200.0 216.07 132.79 NA 7200.0 144.36 133.33 7.64% 7200.0

Avg 0.36% 2753.1 0.21% 3796.2 1.98% 3598.2

Summary #opt #bestlb LB% #bestub #opt #bestlb LB% #bestub #opt #bestlb LB0% #bestub
22 30 0.22% 35 29 38 0.13% 39 26 28 1.78% 29

a: Due to incorrect big M values, some of the reported results of Bongiovanni et al. (2019) are higher than the
actual optimal values. Those results are highlighted in italics;
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at the root node, while all other instances have quite small gaps (0.22%) to the best-found objective values. The

reported B&C results in Bongiovanni et al. (2019) have an average gap of 1.78% between the obtained lower bounds

and the best-found objective values. Additionally, we obtain 21 equal lower bounds, and we improve 9 lower bounds

by employing the CG algorithm, with an improvement of up to 11.88%. Moreover, we report 12 new best solutions

and 23 equal solutions on previously solved and unsolved instances. After adding cuts to the continuous MP, 7 more

instances are solved optimally, and 8 lower bounds are further improved. We also observe that we obtain better

integer solutions than the reportedly optimal solutions in Bongiovanni et al. (2019) as they used incorrect “big M”

values (see analysis in Appendix A). The associated instances are u2-24-0.1, u2-24-0.4, u4-40-0.4, u3-30-0.7.

CG Results on type-r instances under different minimum battery level restrictions.

In Table 4.3, we present the CG results on type-r instances under different � values. Since no optimal solutions are

available for these instances from the literature, we compare the CG results to the heuristic results of Su et al. (2023)

(presented in the last column). BKS denotes the best-known solutions obtained by the DA algorithm of Su et al.

(2023). To tackle large-sized instances, we extend the time limit of our CG algorithm to 5 hours.

Table 4.3 Root node results of CG with labeling algorithm on type-r instances under � = 0.1, 0.4

� = 0.1 CG results CG with cutting planes results DA in Section 3.3

Instance Obj LB CPU(s) Obj1 LB1 CPU(s) BKS

r5-60 687.80 682.27 11263.2 683.39⇤ 683.39 18000.0 691.83

r6-48 506.45⇤ 506.45 1109.1 506.45⇤ 506.45 1109.1 506.72

r6-60 692.25 689.31 2389.2 689.45⇤ 689.45 16387.4 692.00

r6-72 761.34 748.90 18000.0 761.34 748.90 18000.0 777.44

r7-56 613.19 611.97 1402.5 612.02⇤ 612.02 4975.3 613.10

r7-70 760.23 753.56 7275.6 754.28 753.56 18000.0 760.90

r7-84 975.26 638.59 18000.0 975.26 638.59 18000.0 889.38
r8-64 632.22⇤ 632.22 3246.5 632.22⇤ 632.22 3246.5 641.99

r8-80 788.99⇤ 788.99 14563.8 788.99⇤ 788.99 14563.8 803.52

r8-96 1329.75 651.32 18000.0 1329.75 651.32 18000.0 1053.11

Avg 13028.2

� = 0.4 Obj LB CPU(s) Obj1 LB1 CPU(s) BKS

r5-60 686.85 682.76 15555.3 686.85 683.56 18000.0 697.97

r6-48 506.45⇤ 506.45 1195.6 506.45⇤ 506.45 1195.6 506.91

r6-60 695.69 688.81 4109.1 689.48 689.33 18000.0 694.78

r6-72 NA -303.92 18000.0 NA -303.92 18000.0 799.60
r7-56 612.17 611.97 1496.3 612.02⇤ 612.02 3991.7 613.66

r7-70 759.27 753.56 10380.5 754.28⇤ 754.28 18000.0 766.05

r7-84 1081.76 -404.31 18000.0 1081.76 -404.31 18000.0 932.12
r8-64 632.22⇤ 632.22 3030.0 632.22⇤ 632.22 3030.0 638.36

r8-80 788.99 780.81 18000.0 788.99 780.81 18000.0 811.19

Avg 12913.0

Summary #opt #bestub #bestlb #opt #bestub #bestlb #bestub
5 14 17 10 15 17 4

As shown in Table 4.3, we obtain 15 better solutions than the heuristic solutions reported in Su et al. (2023), and
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10 of these solutions are proven optimal. We report the computed lower bound values in the third column, which are

the first lower bound values for the type-r instances. For setting � = 0.7, neither the CG algorithm nor the DA of Su

et al. (2023) is able to provide feasible solutions. We improve a majority of the integer solutions, while several DA

heuristic solutions are still better than CG-obtained solutions.

B&P results on type-a, -u, and -r instances under different minimum battery level restrictions.

From previous experiments, adding cuts is shown to be efficient in enhancing the quality of lower bounds and can

close the integrality gaps for some instances. In this part, we explore the performance of the B&P algorithm by

applying it to solve instances that the CG algorithm obtains fractional solutions. The maximum time limit for executing

the B&P algorithm is set to two hours, and the maximum number of nodes in the B&P tree is 400. The obtained

B&P results on type-a and -u instances are shown in Table 4.4, 4.5 and are compared with the results of the CG

algorithm with cuts and the best-reported B&C results of Bongiovanni et al. (2019). For type-r instances, we extend

the maximum time limit to 5 hours and compare the obtained B&P results to the CG results with adding cuts. The

B&P results on type-r instances are summarized in Table 4.6.

Compared with the best-reported B&C results in Bongiovanni et al. (2019), we finally solve 71 out of 84 instances

optimally within the two-hour time limit, while the B&C algorithm can only solve 49 instances optimally. In addition, we

obtain 26 new best solutions and 54 equal solutions and enhanced 30 lower bounds. As for computational efficiency,

we observe a decrease of 43% in the average CPU time with the proposed B&P algorithm in solving type-a instances,

compared to the reported CPU times of the B&C algorithm. On type-u instances, the average CPU time of the

B&P algorithm is similar to that of the B&C algorithm. The reason might be that type-a instances include identical

vehicles and depot locations, which actually defines identical subproblems. Therefore, it is enough to solve one

subproblem to find minimum-reduced-cost columns. In contrast, type-u instances define heterogeneous subproblems

and require more computational efforts to solve. Then, we compared our B&P algorithm results with our results of

the CG algorithm with cuts. On type-a and -u instances, the proposed B&P algorithm solves 5 additional instances

optimally, obtains 6 tighter lower bounds, and generates 3 additional new best solutions. In addition, benefiting from

the good quality of lower bounds obtained at the root node, only a few nodes of the search tree suffice to close the

gap when applying the B&P. As a result, branching seems to be more computationally attractive than adding valid

cuts, as subset-row inequalities introduce additional complexity to solve the subproblems while branching will not. We

have the same conclusion from the obtained B&P results on type-r instances. Compared with the results of the CG

algorithm with cutting planes, the proposed B&P algorithm solves 3 more instances into optimality, further tightens 4

previously reported lower bounds, and improves 3 previously generated integer solutions.
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Table 4.4 B&P results on type-a instances under � = 0.1, 0.4, 0.7

γ = 0.1 CG with cutting planes results B&P results Bongiovanni et al., (2019) results a

Instance Obj1 LB1 LB1% CPU(s) Obj0 LB0 LB0% Nnode CPU0 Obj2 LB2 LB2% CPU(s)

a2-16 237.38⇤ 237.38 0 23.1 237.38⇤ 237.38 0 1 23.1 237.38⇤ 237.38 0 1.2

a2-20 279.08⇤ 279.08 0 140.6 279.08⇤ 279.08 0 1 140.6 279.08⇤ 279.08 0 4.2

a2-24 346.21⇤ 346.21 0 274.2 346.21⇤ 346.21 0 1 274.2 346.21⇤ 346.21 0 9.0

a3-18 236.82⇤ 236.82 0 14.2 236.82⇤ 236.82 0 1 14.2 236.82⇤ 236.82 0 4.8

a3-24 274.80⇤ 274.80 0 116.4 274.80⇤ 274.80 0 1 116.4 274.80⇤ 274.80 0 13.8

a3-30 413.27⇤ 413.27 0 351.5 413.27⇤ 413.27 0 1 351.5 413.27⇤ 413.27 0 102.0

a3-36 481.17⇤ 481.17 0 884.6 481.17⇤ 481.17 0 1 884.6 481.17⇤ 481.17 0 106.8

a4-16 222.49⇤ 222.49 0 11.4 222.49⇤ 222.49 0 5 8.8 222.49⇤ 222.49 0 3.6

a4-24 310.84⇤ 310.84 0 28.8 310.84⇤ 310.84 0 1 28.8 310.84⇤ 310.84 0 31.2

a4-32 393.96⇤ 393.96 0 311.3 393.96⇤ 393.96 0 1 311.3 393.96⇤ 393.96 0 612.0

a4-40 453.84⇤ 453.84 0 764.0 453.84⇤ 453.84 0 1 764.0 453.84⇤ 453.84 0 517.2

a4-48 554.54⇤ 554.54 0 2148.5 554.54⇤ 554.54 0 1 2148.5 554.54 526.96 5.04% 7200.0

a5-40 414.51⇤ 414.51 0 805.2 414.51⇤ 414.51 0 7 446.7 414.51⇤ 414.51 0 1141.8

a5-50 559.17⇤ 559.17 0 1521.6 559.17⇤ 559.17 0 1 1521.6 559.17 531.15 5.01% 7200.0

Avg 0 528.2 0 1.7 502.5 0.72% 1210.5

γ = 0.4 Obj1 LB1 LB1% CPU(s) Obj0 LB0 LB0% Nnode CPU0 Obj2 LB2 LB2% CPU(s)

a2-16 237.38⇤ 237.38 0 40.4 237.38⇤ 237.38 0 1 40.4 237.38⇤ 237.38 0 1.8

a2-20 280.70⇤ 280.70 0 134.2 280.70⇤ 280.70 0 1 134.2 280.70⇤ 280.70 0 49.8

a2-24 347.04⇤⇤ 347.04 0 535.5 347.04⇤⇤ 347.04 0 1 535.5 348.04⇤ 348.04 -0.29% 25.2

a3-18 236.82⇤ 236.82 0 22.8 236.82⇤ 236.82 0 1 22.8 236.82⇤ 236.82 0 4.2

a3-24 274.80⇤ 274.80 0 81.0 274.80⇤ 274.80 0 1 81.0 274.80⇤ 274.80 0 16.8

a3-30 413.34⇤⇤ 413.34 0 484.6 413.34⇤⇤ 413.34 0 1 484.6 413.37⇤ 413.37 -0.01% 99.0

a3-36 482.75⇤⇤ 482.64 0.02% 7200.0 482.75⇤⇤ 482.75 0 13 4576.6 484.14⇤ 484.14 -0.06% 306.6

a4-16 222.49⇤ 222.49 0 10.1 222.49⇤ 222.49 0 3 10.5 222.49⇤ 222.49 0 5.4

a4-24 311.03⇤ 311.03 0 43.2 311.03⇤ 311.03 0 1 43.2 311.03⇤ 311.03 0 39.6

a4-32 394.26⇤ 394.26 0 276.9 394.26⇤ 394.26 0 1 276.9 394.26⇤ 394.26 0 681.6

a4-40 453.84⇤ 453.84 0 681.8 453.84⇤ 453.84 0 1 681.8 453.84⇤ 453.84 0 417.6

a4-48 554.60⇤ 554.60 0 6648.4 554.60⇤ 554.60 0 1 6648.4 554.60 529.22 4.58% 7200.0

a5-40 414.51⇤ 414.51 0 481.6 414.51⇤ 414.51 0 11 542.4 414.51⇤ 414.51 0 1221.0

a5-50 559.51⇤ 559.51 0 1984.5 559.51⇤ 559.51 0 1 1984.5 560.50 528.91 5.47% 7200.0

Avg 0 1330.3 0 2.7 1147.3 0.74% 1233.5

γ = 0.7 Obj1 LB1 LB1% CPU(s) Obj0 LB0 LB0% Nnode CPU0 Obj2 LB2 LB2% CPU(s)

a2-16 240.66⇤ 240.66 0 56.1 240.66⇤ 240.66 0 1 56.1 240.66⇤ 240.66 0 5.4

a2-20 293.27⇤ 293.27 0 1733.8 293.27⇤ 293.27 0 3 1331.8 NA 287.17 2.08% 7200.0

a2-24 353.18⇤⇤ 353.18 0 1057.4 353.18⇤⇤ 353.18 0 1 1057.4 358.21⇤ 358.21 -1.42% 961.2

a3-18 240.58⇤ 240.58 0 38.6 240.58⇤ 240.58 0 1 38.6 240.58⇤ 240.58 0 48.0

a3-24 275.97⇤⇤ 275.97 0 175.7 275.97⇤⇤ 275.97 0 1 175.7 277.72⇤ 277.72 -0.63% 152.4

a3-30 424.93⇤ 424.93 0 3401.9 424.93⇤ 424.93 0 3 2360.8 NA 417.06 1.85% 7200.0

a3-36 494.04 493.71 0.07% 7200.0 494.04 494.01 0.01% 12 7200.0 494.04 485.91 1.65% 7200.0

a4-16 223.13⇤ 223.13 0 8.4 223.13⇤ 223.13 0 1 8.4 223.13⇤ 223.13 0 67.2

a4-24 316.65⇤⇤ 316.65 0 129.7 316.65⇤ 316.65 0 5 130.0 318.21⇤ 318.19 -0.49% 1834.8

a4-32 397.87 397.78 0.02% 7200.0 397.87⇤ 397.87 0 9 1164.8 430.07 387.99 2.48% 7200.0

a4-40 467.72⇤ 467.72 0 5238.4 467.72⇤ 467.72 0 5 2161.3 NA 443.62 5.15% 7200.0

a4-48 NA 476.54 NA 7200.0 NA 476.54 NA 1 7200.0 NA 524.92 NA 7200.0

a5-40 418.75⇤ 418.75 0 6808.1 418.75⇤ 418.75 0 7 1086.7 447.63 405.99 4.78% 7200.0

a5-50 NA 176.58 NA 7200.0 NA 176.58 NA 1 7200.0 NA 522.37 NA 7200.0

Avg 0.01% 3389.2 0 3.6 2226.5 1.70% 4333.5

Summary #opt #bestlb LB1% #bestub #opt #bestlb LB0% Nnode #bestub #opt #bestlb LB2% #bestub
37 38 0.003% 40 39 40 0 2.7 40 24 26 1.06% 28

a: Due to incorrect big M values, some of the reported results of Bongiovanni et al. (2019) are higher than the actual optimal
values. Those results are highlighted in italics;

90



Table 4.5 B&P results on type-u instances under � = 0.1, 0.4, 0.7

γ = 0.1 CG with cutting planes results B&P results Bongiovanni et al., (2019) results a

Instance Obj1 LB1 LB1% CPU(s) Obj0 LB0 LB0% Nnode CPU0 Obj2 LB2 LB2% CPU(s)

u2-16 57.61⇤ 57.61 0 72.1 57.61⇤ 57.61 0 5 47.2 57.61⇤ 57.61 0 21.0

u2-20 55.59⇤ 55.59 0 248.2 55.59⇤ 55.59 0 1 248.2 55.59⇤ 55.59 0 9.6

u2-24 90.66⇤⇤ 90.66 0 7001.9 90.66⇤⇤ 90.66 0 17 6064.3 91.27⇤ 91.27 -0.67% 432.0

u3-18 50.74⇤ 50.74 0 36.6 50.74⇤ 50.74 0 1 36.6 50.74⇤ 50.74 0 10.8

u3-24 67.56⇤ 67.56 0 107.0 67.56⇤ 67.56 0 1 107.0 67.56⇤ 67.56 0 130.2

u3-30 76.75⇤ 76.75 0 998.1 76.75⇤ 76.75 0 1 998.1 76.75⇤ 76.75 0 438.0

u3-36 104.04⇤ 104.04 0 3293.4 104.04⇤ 104.04 0 19 7200.0 104.04⇤ 104.04 0 1084.8

u4-16 53.58⇤ 53.58 0 12.9 53.58⇤ 53.58 0 1 12.9 53.58⇤ 53.58 0 48.0

u4-24 89.83⇤ 89.83 0 51.3 89.83⇤ 89.83 0 1 51.3 89.83⇤ 89.83 0 13.2

u4-32 99.29⇤ 99.29 0 434.3 99.29⇤ 99.29 0 1 434.3 99.29⇤ 99.29 0 1158.6

u4-40 133.11⇤ 133.11 0 3385.9 133.11⇤ 133.11 0 1 3385.9 133.11⇤ 133.11 0 185.4

u4-48 148.08 147.02 0.72% 7200.0 148.08 147.02 0.72% 1 7200.0 148.30 134.48 9.18% 7200.0

u5-40 121.86⇤ 121.86 0 1632.0 121.86⇤ 121.86 0 1 1632.0 121.86 114.12 6.35% 7200.0

u5-50 142.82 142.75 0.05% 7100.9 142.82 142.75 0.05% 1 7100.9 143.10 132.69 7.09% 7200.0

Avg 0.06% 2255.3 0.06% 3.7 2465.6 1.66% 1795.1

γ = 0.4 Obj1 LB1 LB1% CPU(s) Obj0 LB0 LB0% Nnode CPU0 Obj2 LB2 LB2% CPU(s)

u2-16 57.65⇤ 57.65 0 53.2 57.65⇤ 57.65 0 1 53.2 57.65⇤ 57.65 0 25.8

u2-20 56.34⇤ 56.34 0 665.2 56.34⇤ 56.34 0 7 343.0 56.34⇤ 56.34 0 12.0

u2-24 91.27 90.95 0.33% 4266.0 91.16⇤⇤ 91.16 0 15 6191.6 91.63⇤ 91.63 -0.52% 757.2

u3-18 50.74⇤ 50.74 0 45.2 50.74⇤ 50.74 0 1 45.2 50.74⇤ 50.74 0 13.8

u3-24 67.56⇤ 67.56 0 109.5 67.56⇤ 67.56 0 1 109.5 67.56⇤ 67.56 0 220.8

u3-30 76.75⇤ 76.75 0 912.8 76.75⇤ 76.75 0 1 912.8 76.75⇤ 76.75 0 336.6

u3-36 104.06⇤ 104.06 0 4922.7 104.06⇤ 104.06 0 1 4922.7 104.06⇤ 104.06 0 2010.0

u4-16 53.58⇤ 53.58 0 13.6 53.58⇤ 53.58 0 1 13.6 53.58⇤ 53.58 0 44.4

u4-24 89.83⇤ 89.83 0 56.8 89.83⇤ 89.83 0 1 56.8 89.83⇤ 89.83 0 28.2

u4-32 99.29⇤ 99.29 0 696.8 99.29⇤ 99.29 0 1 696.8 99.29⇤ 99.29 0 2667.6

u4-40 133.78⇤⇤ 133.46 0.24% 3958.2 133.78⇤⇤ 133.70 0.06% 24 7200.0 133.91⇤ 133.91 -0.10% 2653.2

u4-48 147.63 146.37 0.85% 7200.0 147.63 146.37 0.85% 1 7200.0 NA 133.86 9.33% 7200.0

u5-40 121.96⇤ 121.96 0 1249.1 121.96⇤ 121.96 0 1 1249.1 122.23 112.58 7.69% 7200.0

u5-50 142.84 142.75 0.06% 7200.0 142.84 142.75 0.06% 1 7200.0 143.14 134.09 6.13% 7200.0

Avg 0.11% 2239.2 0.07% 4.1 2143.5 1.70% 2169.3

γ = 0.7 Obj1 LB1 LB1% CPU(s) Obj0 LB0 LB0% Nnode CPU0 Obj2 LB2 LB2% CPU(s)

u2-16 59.19⇤ 59.19 0 2597.2 59.19⇤ 59.19 0 49 1307.7 59.19⇤ 59.19 0 338.4

u2-20 56.86⇤ 56.86 0 2247.6 56.86⇤ 56.86 0 1 2247.6 56.86⇤ 56.86 0 72.0

u2-24 92.17 91.71 0.40% 7200.0 92.08 91.60 0.52% 4 7200.0 NA 90.83 1.36% 7200.0

u3-18 50.99⇤ 50.99 0 116.4 50.99⇤ 50.99 0 9 92.2 50.99⇤ 50.99 0 24.0

u3-24 68.44 68.12 0.32% 176.2 68.34⇤⇤ 68.34 0 47 1127.1 68.39⇤ 68.39 -0.07% 400.2

u3-30 77.41⇤⇤ 77.41 0 1778.3 77.41⇤⇤ 77.41 0 9 2086.5 78.14⇤ 78.14 -0.94% 3401.4

u3-36 106.45 105.46 0.31% 7200.0 106.45 105.46 0.31% 1 7200.0 105.79 104.37 1.34% 7200.0

u4-16 53.87⇤ 53.87 0 33.8 53.87⇤ 53.87 0 1 33.8 53.87⇤ 53.87 0 88.8

u4-24 89.96⇤ 89.96 0 82.3 89.96⇤ 89.96 0 1 82.3 89.96⇤ 89.96 0 22.8

u4-32 99.50⇤ 99.50 0 4559.3 99.50⇤ 99.50 0 1 4559.3 99.50⇤ 99.50 0 2827.2

u4-40 135.29 134.65 0.47% 5555.5 135.80 134.99 0.22% 44 7200.0 NA 133.01 2.46% 7200.0

u4-48 185.16 -216.07 NA 7200.0 185.16 -216.07 NA 1 7200.0 NA 132.49 NA 7200.0

u5-40 123.82 122.87 0.05% 7200.0 122.93⇤ 122.93 0 5 2394.4 NA 109.28 11.88% 7200.0

u5-50 216.07 132.79 NA 7200.0 216.07 132.79 NA 1 7200.0 144.36 133.33 7.64% 7200.0

Avg 0.13% 3796.2 0.09% 12.4 3566.5 1.97% 3598.2

Summary #opt #bestlb LB1% #bestub #opt #bestlb LB% Nnode #bestub #opt #bestlb LB0% #bestub
29 35 0.10% 36 32 39 0.07% 6.7 39 25 27 1.78% 28

a: Due to incorrect big M values, some of the reported results of Bongiovanni et al. (2019) are higher than the actual optimal
values. Those results are highlighted in italics;
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Table 4.6 B&P results on type-r instances under � = 0.1, 0.4

� = 0.1 CG with cutting planes results B&P results DA

Instance Obj1 LB1 LB1% CPU(s) Obj0 LB0 LB0% Nnode CPU0 BKS

r5-60 683.39⇤ 683.39 0 18000.0 683.39⇤ 683.39 0 7 7817.0 691.83

r6-48 506.45⇤ 506.45 0 1109.1 506.45⇤ 506.45 0 1 1109.1 506.72

r6-60 689.45⇤ 689.45 0 16387.4 689.45⇤ 689.45 0 15 3695.7 692.00

r6-72 761.34 748.90 NA 18000.0 761.34 748.90 NA 1 18000.0 777.44

r7-56 612.02⇤ 612.02 0 4975.3 612.02⇤ 612.02 0 3 810.8 613.10

r7-70 754.28 753.56 0.01% 18000.0 754.28⇤ 754.28 0 31 18000.0 760.90

r7-84 975.26 638.59 NA 18000.0 975.26 638.59 NA 1 18000.0 889.38
r8-64 632.22⇤ 632.22 0 3246.5 632.22⇤ 632.22 0 1 3246.5 641.99

r8-80 788.99⇤ 788.99 0 14563.8 788.99⇤ 788.99 0 1 14563.8 803.52

r8-96 1329.75 651.32 NA 18000.0 1329.75 651.32 NA 1 18000.0 1053.11

Avg 0 13028.2 0 6.2 10324.3

� = 0.4 Obj1 LB1 LB1% CPU(s) Obj0 LB0 LB0% Nnode CPU0 BKS

r5-60 686.85 683.56 0.54% 18000.0 684.49⇤ 684.49 0 9 18000.0 697.97

r6-48 506.45⇤ 506.45 0 1195.6 506.45⇤ 506.45 0 1 1195.6 506.91

r6-60 689.48 689.33 0.02% 18000.0 689.46⇤ 689.46 0 3 2521.1 694.78

r6-72 NA -303.92 NA 18000.0 NA -303.92 NA 1 18000.0 799.60
r7-56 612.02⇤ 612.02 0 3991.7 612.02⇤ 612.02 0 3 803.0 613.66

r7-70 754.28⇤ 754.28 0 18000.0 754.28⇤ 754.28 0 11 13664.6 766.05

r7-84 1081.76 -404.31 NA 18000.0 1081.76 -404.31 NA 1 18000.0 932.12
r8-64 632.22⇤ 632.22 0 3030.0 632.22⇤ 632.22 0 1 3030.0 638.36

r8-80 788.99 780.81 NA 18000.0 788.99 780.81 NA 1 18000.0 811.19

Avg 0.09% 12913.0 0 10357.1

Summary #opt #bestlb LB% #bestub #opt #bestlb LB% Nnode #bestub #bestub
10 14 0.05% 13 13 17 0 3.4 16 4

Allowing unlimited visits to recharging stations.

In Bongiovanni et al. (2019), each recharging station s 2 S can be visited at most once. The authors allow multiple

visits to each recharging station by replicating the set of recharging stations S. Therefore, the maximum number

of visits per recharging station (denoted as Ns
max, s 2 S) must be predefined. Only three different values of Ns

max,

Ns
max = {1, 2, 3} are tested on the B&C algorithm for type-u instances. From their results, the computational time

increases substantially with a higher value of Ns
max, which prevents them from applying the B&C algorithm to allow

unlimited visits to each recharging station (Ns
max =1).

In this part, we investigate the case of Ns
max =1. To allow unlimited visits per recharging station, the constraints

(4.3) in MP are changed to only restrict the visits to destination depots. In the labeling algorithm, constraints (4.24) are

deleted to allow visits to the same recharging station. The B&P algorithm is executed on type-a, -u, and -r instances.

If the adapted B&P algorithm solves instances optimally at the root node, the corresponding results are marked with

an asterisk in the column named “Obj”. The time limit of the B&P algorithm to solve type-a and -u instances is set to

two hours. For type-r instances, we allow a maximum time of 5 hours.

Table 4.7, Table 4.8, and Table 4.9 show the results of allowing unlimited visits to each recharging station under
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different settings of � for type-a, -u, and -r instances, respectively. For � = 0.1, as the optimal solutions are obtained

without visiting recharging stations multiple times for type-a instances, we only conduct experiments for � = 0.4, 0.7

for type-a instances. For small-to-medium-sized instances (type-a and -u instances), our B&P algorithm obtains

optimal solutions for 62 out of 70 instances, among which 60 are solved optimally at the root node without branching.

For large-scale instances (type-r instances), the proposed B&P algorithm solves 18 instances optimally (12 instances

are solved optimally at the root node). Feasible solutions are yielded for all instances. Hence, we demonstrate in all

cases that the B&P algorithm can be well adapted to allow unlimited visits to recharging stations.

To analyze the effect of allowing unlimited visits, we compare our obtained results with the best-reported results

of allowing at most one recharging visit among the B&P and B&C algorithms (presented in the column named

“BKS0”). The column of “BKS0%” represents the deviation between BKS and the best-obtained results allowing

unlimited charging visits per station. If a solution yielded under Ns
max =1 has a lower cost than under Ns

max = 1,

the corresponding BKS0% is positive. We also report the maximum number of recharging visits on a recharging

station for the obtained solutions in the column named “Ns
max”. The major observations include: (1) we find 52 out

of 100 obtained solutions contain multiple visits to the same recharging station, especially under � = 0.7, and we

observe considerable improvements in solution feasibility and quality with setting Ns
max =1; (2) there are several

solutions for type-a instances that contain multiple recharging visits but have the same cost as the obtained solutions

with Ns
max = 1 (e.g., a3-24-0.4). This situation is possible as all recharging stations for a type-a instance are at the

same location and one can have an equal-cost solution by replacing one recharging station with another; (3) setting

Ns
max = 3 seems enough for solving type-u instances allowing unlimited recharging visits, while one needs to set

Ns
max to 4 and 8 for type-a and -r instances, respectively.

4.4.3 Practical insights from CG, B&P and DA algorithm results

In this part, we compare our obtained CG and B&P algorithm results with the best-reported DA algorithm results

presented in Chapter 3. We present aggregated results of different algorithms on type-a and -u instances in Table

4.10. The reference results are best-reported results of Bongiovanni et al. (2019). As the results of different algorithms

on type-r instances have been presented in Table 4.3 and 4.6, we will not repeat them in this part.
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Table 4.7 Allowing unlimited visits to each recharging station: B&P algorithm results on Type-a

instances under � = 0.4, 0.7

� = 0.4 Unlimited charging visits At-most-one visit

Instance Obj LB LB% Nnode Ns
max CPU(s) BKS0 BKS0%

a2-16 237.38⇤ 237.38 0 1 1 34.6 237.38⇤ 0

a2-20 280.70⇤ 280.70 0 1 1 255.4 280.70⇤ 0

a2-24 346.28⇤ 346.28 0 1 2 964.6 347.04⇤ 0.21%

a3-18 236.82⇤ 236.82 0 1 1 30.1 236.82⇤ 0

a3-24 274.80⇤ 274.80 0 1 2 86.7 274.80⇤ 0

a3-30 413.28⇤ 413.28 0 1 3 742.9 413.34⇤ 0.02%

a3-36 481.17⇤ 481.17 0 1 3 1522.8 482.75 0.33%

a4-16 222.49⇤ 222.49 0 1 0 9.6 222.49⇤ 0

a4-24 311.03⇤ 311.03 0 1 0 34.5 311.03⇤ 0

a4-32 394.26⇤ 394.26 0 1 2 205.0 394.26⇤ 0

a4-40 453.84⇤ 453.84 0 1 1 1027.1 453.84⇤ 0

a4-48 554.54⇤ 554.54 0 1 3 4630.9 554.60⇤ 0.01%

a5-40 414.51⇤ 414.51 0 1 2 539.0 414.51⇤ 0

a5-50 559.48⇤ 559.48 0 1 2 2661.4 559.51⇤ 0.004%

Avg 0 1.0 1.6 909.6 0.04%

� = 0.7 Obj LB LB% Nnode Ns
max CPU(s) BKS0 BKS0%

a2-16 240.66⇤ 240.66 0 1 1 225.4 240.66⇤ 0

a2-20 285.86⇤ 285.86 0 1 2 469.6 293.27⇤ 2.53%

a2-24 350.32⇤ 350.32 0 1 3 3513.6 353.18⇤ 0.81%

a3-18 238.82⇤ 238.82 0 1 3 62.1 240.58⇤ 0.73%

a3-24 275.20⇤ 275.20 0 1 2 244.7 275.97⇤ 0.28%

a3-30 413.35⇤ 413.35 0 1 4 1556.4 424.93⇤ 2.70%

a3-36 483.08⇤ 483.08 0 1 3 1254.4 494.04 2.22%

a4-16 222.49⇤ 222.49 0 1 2 11.0 223.13⇤ 0.29%

a4-24 315.40⇤ 315.40 0 7 2 193.63 316.65⇤ 0.39%

a4-32 394.94⇤ 394.94 0 1 4 427.7 397.87 0.74%

a4-40 457.76⇤ 457.76 0 1 4 1604.2 467.72⇤ 2.13%

a4-48 570.31 556.99 1.95% 1 4 7200.0 NA NA

a5-40 415.88⇤ 415.88 0 1 4 1171.2 418.75⇤ 0.69%

a5-50 580.00 565.89 2.30% 1 4 7200.0 NA NA

Avg 0.30% 1.4 3 1795.3 1.13%

Summary #opt #bestub LB% Nnode Ns
max CPU (s) #bestub BKS0%

26 26 0.15% 1.2 2.3 1352.4 10 0.59%
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Table 4.8 Allowing unlimited visits to each recharging station: B&P algorithm results on Type-u

instances under � = 0.1, 0.4, 0.7

� = 0.1 Unlimited charging visits At-most-one visit

Instance Obj LB LB% Nnode Ns
max CPU(s) BKS0 BKS0%

u2-16 57.61⇤ 57.61 0 1 1 69.5 57.61⇤ 0

u2-20 55.59⇤ 55.59 0 1 1 215.3 55.59⇤ 0

u2-24 90.66⇤ 90.66 0 1 1 7200.0 90.66⇤ 0

u3-18 50.74⇤ 50.74 0 1 0 46.0 50.74⇤ 0

u3-24 67.56⇤ 67.56 0 1 1 109.6 67.56⇤ 0

u3-30 76.75⇤ 76.75 0 1 0 750.8 76.75⇤ 0

u3-36 103.93⇤ 103.93 0 1 2 4326.5 104.04⇤ 0.11%

u4-16 53.58⇤ 53.58 0 1 0 6.5 53.58⇤ 0

u4-24 89.83⇤ 89.83 0 1 1 63.2 89.83⇤ 0

u4-32 99.29⇤ 99.29 0 1 1 416.4 99.29⇤ 0

u4-40 133.11⇤ 133.11 0 1 1 2586.1 133.11⇤ 0

u4-48 147.33 146.74 0.40% 1 2 7200.0 148.08 0.51%

u5-40 121.86⇤ 121.86 0 1 1 1591.2 121.86⇤ 0

u5-50 142.82 142.75 0.05% 1 1 7200.0 142.82 0

Avg 0.03% 1.0 0.93 2270.1 0.04%

� = 0.4 Obj LB LB% Nnode Ns
max CPU(s) BKS0 BKS0%

u2-16 57.65⇤ 57.65 0 1 1 35.7 57.65⇤ 0

u2-20 56.34⇤ 56.34 0 1 1 329.9 56.34⇤ 0

u2-24 90.84⇤ 90.84 0 1 2 2408.5 91.27 0.47%

u3-18 50.74⇤ 50.74 0 1 1 62.6 50.74⇤ 0

u3-24 67.56⇤ 67.56 0 1 1 141.0 67.56⇤ 0

u3-30 76.75⇤ 76.75 0 1 1 1457.8 76.75⇤ 0

u3-36 104.06⇤ 104.06 0 1 1 3729.6 104.06⇤ 0

u4-16 53.58⇤ 53.58 0 1 0 7.1 53.58⇤ 0

u4-24 89.83⇤ 89.83 0 1 1 39.0 89.83⇤ 0

u4-32 99.29⇤ 99.29 0 1 1 438.3 99.29⇤ 0

u4-40 133.36⇤ 133.36 0 1 2 1581.5 133.78 0.31%

u4-48 147.56 146.97 0.40% 1 2 7200.0 147.63 0.05%

u5-40 121.96⇤ 121.96 0 1 1 1073.8 121.96⇤ 0

u5-50 142.83⇤ 142.83 0 1 1 6587.9 142.84 0.007%

Avg 0.03% 1.0 1.14 1927.5 0.06%

� = 0.7 Obj LB LB% Nnode Ns
max CPU(s) BKS0 BKS0%

u2-16 58.17⇤ 58.17 0 1 2 172.2 59.19⇤ 1.72%

u2-20 56.86⇤ 56.86 0 1 1 397.0 56.86⇤ 0

u2-24 91.33⇤ 91.33 0 1 2 5250.1 92.17 0.91%

u3-18 50.99⇤ 50.99 0 1 1 47.4 50.99⇤ 0

u3-24 68.06⇤ 68.06 0 1 2 558.9 68.44 0.48%

u3-30 77.29⇤ 77.29 0 1 2 807.9 77.41⇤ 0.16%

u3-36 106.72 104.85 1.07% 1 2 7200.0 106.50 -0.88%

u4-16 53.87⇤ 53.87 0 1 1 16.7 53.87⇤ 0

u4-24 89.83⇤ 89.83 0 1 2 74.6 89.96⇤ 0.14%

u4-32 99.50⇤ 99.50 0 1 1 1600.3 99.50⇤ 0

u4-40 134.38 134.16 0.16% 45 3 7200.0 135.29 0.67%

u4-48 152.72 145.99 2.35% 1 2 7200.0 185.16 17.52%

u5-40 123.00 122.72 0.23% 1 1 7200.0 123.82 0.66%

u5-50 142.89⇤ 142.89 0 1 2 5628.9 144.36 1.02%

Avg 0.27% 4.1 1.71 3096.7 1.60%

Summary #opt #bestub LB% Nnode Ns
max CPU (s) #bestub BKS%

35 40 0.11% 2.0 1.3 2431.4 26 0.57%
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Table 4.9 Allowing unlimited visits to each recharging station: B&P algorithm results on Type-r

instances under � = 0.1, 0.4, 0.7

� = 0.1 Unlimited charging visits At-most-one visit

Instance Obj LB LB% Nnode Ns
max CPU(s) BKS0 BKS0%

r5-60 683.39⇤ 683.39 0 1 0 13941.5 683.39⇤ 0

r6-48 506.45⇤ 506.45 0 1 0 1675.1 506.45⇤ 0

r6-60 689.45⇤ 689.45 0 9 3 3305.3 689.45⇤ 0

r6-72 761.91 740.87 2.76% 1 1 18000.0 761.34 -0.07%

r7-56 612.02⇤ 612.02 0 1 1 2452.9 612.02⇤ 0

r7-70 754.28⇤ 754.28 0 21 1 18000.0 754.28 0

r7-84 870.21 861.39 1.01% 1 1 18000.0 889.38 2.16%

r8-64 632.22⇤ 632.22 0 1 0 4005.4 632.22⇤ 0

r8-80 788.99⇤ 788.99 0 1 1 4883.0 788.99 0

r8-96 1098.12 807.04 NA 1 1 18000.0 1053.11 -4.27%

Avg 0.42% 3.8 0.9 10226.3 -0.22%

� = 0.4 Obj LB LB% Nnode Ns
max CPU(s) BKS0 BKS0%

r5-60 683.58⇤ 683.58 0 1 3 14205.2 686.85 0.48%

r6-48 506.45⇤ 506.45 0 1 0 1225.8 506.45⇤ 0

r6-60 689.46⇤ 689.46 0 1 2 5133.0 689.48 0.003%

r6-72 762.65 756.44 0.81% 1 3 18000.0 NA NA

r7-56 612.02⇤ 612.02 0 3 1 846.1 612.02 0

r7-70 754.28⇤ 754.28 0 19 1 18000.0 754.28 0

r7-84 891.44 864.14 3.06% 1 3 18000.0 1081.76 17.59%

r8-64 632.22⇤ 632.22 0 1 1 5757.1 632.22⇤ 0

r8-80 788.99⇤ 788.99 0 1 4 11757.7 788.99 0

r8-96 1144.15 881.91 NA 1 3 18000.0 NA NA

Avg 0.39% 3.0 2.1 11853.9 1.81%

� = 0.7 Obj LB LB% Nnode Ns
max CPU(s) BKS0 BKS0%

r5-60 688.84 684.03 0.70% 1 5 18000.0 NA NA

r6-48 508.10⇤ 508.10 0 1 4 2027.7 NA NA

r6-60 689.55⇤ 689.55 0 1 7 6604.7 NA NA

r6-72 788.83 749.70 4.96% 1 4 18000.0 NA NA

r7-56 616.16⇤ 616.16 0 59 7 14247.4 NA NA

r7-70 765.49 754.14 1.48% 1 6 18000.0 NA NA

r7-84 1004.81 787.22 NA 1 4 18000.0 NA NA

r8-64 632.61⇤ 632.61 0 1 6 18000.0 NA NA

r8-80 794.41 794.41 0 1 8 15051.3 NA NA

r8-96 1174.49 755.46 NA 1 4 18000.0 NA NA

Avg 0.81% 6.8 5.5 14593.1 NA

Summary #opt #bestub LB% Nnode Ns
max CPU (s) #bestub BKS%

18 28 0.54% 4.5 2.8 12224.4 14 0.79%

96



Table 4.10 Aggregated results of CG, B&P, and DA algorithm on type-a and -u instances

CG results B&P results DA results

� values #opt #bestub CPU (s) #opt #bestub CPU (s) #bestub CPU (s)

� = 0.1 21 25 1103.7 26 28 1484.1 22 164.9

� = 0.4 20 25 1382.7 25 28 1645.4 22 249.0

� = 0.7 9 18 2281.1 20 23 2896.5 26 445.5

Summary 50 68 1589.2 71 79 2008.7 70 286.5

Comparing our obtained results of CG, B&P, and DA algorithms on different instance sets, we have the following

conclusions: (1) for small-to-medium-sized instances (i.e., type-a and -u instances), the B&P algorithm can obtain

optimal solutions for most instances in a reasonable computational time, and it yields the highest number of best

solutions. The DA and CG algorithms perform comparably well in terms of the number of best solutions found.

However, the DA algorithm stands out with its notably short average computational time. As we tackle the static

E-ADARP, all requests are pre-booked. When there is no urgency, the B&P algorithm can be applied to obtain

minimum-cost solutions. In the case of urgency, the DA algorithm is more applicable to help decision-makers make

prompt decisions while still obtaining high-quality solutions. (2) for large-scale instances, applying the DA algorithm is

a more appropriate choice, as it provides high-quality solutions in a far less average computational time, compared to

that of the CG and B&P algorithms.

4.5 Conclusion

This chapter has presented an effective CG algorithm relying on a problem-tailored labeling algorithm to solve the

E-ADARP. The proposed CG algorithm is then integrated into the B&P scheme to yield optimal solutions for the

E-ADARP. The E-ADARP is differentiated from the classical DARP and E-VRP regarding the following features:

weighted-sum objectives, EAVs, partial recharging, multiple depots, final battery restriction, and limited visits to

recharging stations. The weighted-sum objective function minimizes both total travel time and total excess user ride

time. To solve the E-ADARP efficiently, the design of the labeling algorithm plays a key role in the overall performance.

To guarantee the efficiency and accurateness of the labeling algorithm, we first introduce (1) a fragment-based

representation of paths that replaces a sequence of REFs with a single one, then propose (2) a novel approach that

abstracts fragments to arcs with excess user ride time being minimized to build a new sparser graph that preserves

all feasible routes of the original graph and apply (3) strong dominance rules and constant time feasibility checks on

the new graph.

In the computational experiments, we first demonstrate the performance of the CG algorithm on a large set of
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benchmark instances and compare the obtained results with the best reported exact results in Bongiovanni et al.

(2019). With our proposed CG algorithm, 66 out of 84 instances are solved optimally at the root node. We generate

high-quality lower bounds with a 0.07% average deviation to the best-known solutions. We obtain 49 equal lower

bounds and 29 better lower bounds than those reported in Bongiovanni et al. (2019). The overall quality of the lower

bound is improved by 1.35% on average. In addition, we provide 25 new best solutions on previously solved and

unsolved instances and identify 17 new optimal solutions. On type-r instances, we compare the CG results to the

best-reported heuristic results of Su et al. (2023). We report 15 better solutions (10 of them are optimal) as well as

17 new lower bounds.

Then, the CG algorithm is integrated into the B&P framework, and we further solve 5 additional instances optimally,

obtain 6 tighter lower bounds and generate 3 additional new best solutions. Benefiting from the good quality of lower

bounds obtained at the root node, our B&P algorithm searches only a few nodes of the search tree to close the gaps.

Compared with the best-reported B&C results in Bongiovanni et al. (2019), we finally solve 71 out of 84 instances

optimally within the two-hour time limit, while the B&C algorithm can only solve 49 instances optimally. In addition, we

obtain 26 new best solutions and 54 equal solutions and enhanced 30 lower bounds. The average computational

time of our B&P algorithm decreases by 16% compared with that of the B&C algorithm. On larger-sized instances

(i.e., type-r instances), we obtain 16 new best solutions, compared with the existing results of Su et al. (2023). Also,

the proposed B&P algorithm can be easily adapted to handle other problem variants, such as the one with unlimited

recharging station visits, whereas the B&C cannot. In this case, the adapted B&P algorithm improves 49 solutions

compared to the best-obtained results of allowing at most one recharging visit per station. Therefore, the superiority

of our B&P algorithm upon the existing exact method in the literature to solve the E-ADARP has been proved.

The success of the proposed CG algorithm can be attributed to several aspects. First, the CG-based subproblem

formulation with all intra-route constraints enhances the quality of lower bounds. Second, the key to such stronger

lower bounds is that we can compute them efficiently and exactly with the proposed labeling algorithm on the

constructed new graph, where excess-user-ride-time optimality is guaranteed on each arc, and strong dominance

rules are applied. Last, the application of cutting planes further improves the lower bounds and reduces the remaining

integrality gaps to a large extent. As a result, our proposed CG algorithm solves the majority of instances optimally at

the root node without branching.

Our CG and B&P algorithms also offer new insights into designing an exact algorithm for solving a practical

version of the electric DARP, considering multiple objectives. One important “by-product” of our labeling algorithm is

the first exact scheduling procedure that can efficiently determine the excess-user-ride-time optimal schedule for

a given E-ADARP route. This scheduling procedure can also be applied to optimize excess user ride time in the

classical DARP or the DARP with multiple objectives, in which total excess user ride time is minimized in a separate

objective. The proposed efficient approaches can be adapted to tackle the dynamic DARP/E-ADARP, where new

requests arrive in real time.
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Chapter 5

Solving the Bi-objective Electric

Autonomous Dial-A-Ride Problem

The development of ride-sharing services presents a fundamental trade-off between the operational costs and

the users’ convenience. While ride-sharing operations reduce operational costs, users may experience certain

inconveniences such as longer ride times when sharing their rides with others. This trade-off is critical for service

providers to consider when designing and implementing their services. On the one hand, ride-sharing can lead to

significant cost savings through the sharing of resources such as drivers and vehicles. On the other hand, users

may be less likely to use ride-sharing services if they perceive them as inconvenient or time-consuming. Therefore,

ride-sharing companies must try to strike a balance between minimizing operational costs and providing a convenient

and efficient service to their users.

This chapter is based on our conference paper “The bi-objective electric autonomous dial-a-ride problem”

presented at Roadef conference, where some preliminary results were reported. These results compose the basis

of this chapter and our forthcoming journal paper. In this chapter, we extend the E-ADARP to the Bi-objective

E-ADARP (BO-EADARP), where the total travel time and the total excess user ride time are treated as separate

objectives. We strive to identify the set of Pareto optimal solutions (also called “efficient solution”) with regard to

the two objectives. To solve the BO-EADARP, we consider both criterion space search algorithms (i.e., ✏-constraint

method and balanced box method) and decision space search algorithm (i.e., the generalized B&P). The structure of

this chapter is outlined as follows. In Section 5.1, we present the basic notations and definitions that are used in the

context of bi-objective optimization. Then, we present the criterion space search algorithms that are applied to solve

the BO-EADARP in Section 5.2. In Section 5.3, we investigate the decision space search algorithm. Section 5.4

presents the computational results of solving the BO-EADARP with the developed algorithms and several practical

implications obtained from efficient solutions. This chapter closes with conclusions and discussions in the last part.
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5.1 Preliminaries

We replace the objective function (2.1) presented in Chapter 2 with Equation (5.1) and (5.2):

• Objective 1: minimize the total travel time

min
X

i,j2V

ti,jx
k
i,j (5.1)

• Objective 2: minimize the total excess user ride time

min
X

i2P

Ri (5.2)

Without loss of generality, we present the objective of the BO-EADARP as:

minimize
x2X

z(x) := {z1(x), · · · , zp(x)} (5.3)

where X ⇢ R
n denotes the set of all feasible solutions in the decision space (also called feasible set in the decision

space) and p is the number of objectives. z(x) is the vector of objective functions, and we denote Y as the feasible

set in the criterion space, defined by Y := {z(x) : x 2 X}. As we solve the bi-objective case, we have p = 2 in

Equation (5.3). To facilitate the presentation, we use R
p
� := {y 2 R

p : y � 0} to denote the non-negative orthant of

R
p. Similarly, we use R

p
> := {y 2 R

p : y > 0} to denote the positive orthant of Rp. Finally, we use conv(Y) to denote

the convex hull of feasible set Y in the objective space. For the convenience of the organization, we introduce the

following definitions from Przybylski et al. (2008).

Definition 6 (weakly efficient solution). A feasible solution x0 2 X is called weakly efficient if there is no other x 2 X

such that zp(x) < zp(x
0), p = 1, 2. If x0 is weakly efficient, then z(x0) is called a weakly non-dominated point.

Definition 7 (efficient solution). A feasible solution x⇤ 2 X is called efficient if there does not exist any other feasible

solution x 2 X such that zp(x) 6 zp(x
⇤), p = 1, 2, with at least one strict inequality. z(x⇤) is called a non-dominated

points. The set of efficient solutions is denoted as XE and YN := {z(x) : x 2 XE} is called the non-dominated frontier

or efficient frontier.

After defining efficient solutions XE , we partition XE into the following two sets:

Definition 8 (supported efficient solutions). A feasible solution x is called a supported efficient solution if x is an

optimal solution of a weighted-sum objective problem:

minimize
x2X

�z1(x) + (1� �)z2(x) (5.4)

where 1 > � > 0.
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restrict the search in an iterative way, all the non-dominated points are obtained. The ✏-constraint method finishes

when zB is reached.

In the implementation of the ✏-constraint method to solve the BO-EADARP, we set the total travel time as the

objective and add the total excess user ride time to the MP formulation (as presented in Section 4.1). The MP is

modified as follows and we denote the adapted MP as MP✏:

min
X

!2Ω0

T!y! +
X

i2P

Piai (5.5)

subject to:
X

!2Ω

✓i!y! > 1� ai, 8i 2 P (5.6)

X

!2Ω

X

i2P

Ri!y! 6 E1 � � (5.7)

X

!2Ω

�f!y! 6 1, 8f 2 S [ F (5.8)

X

!2Ω

✏o!y! 6 1, 8o 2 O (5.9)

X

!2Ω

y! 6 |K| (5.10)

y! 2 {0, 1}, 8! 2 Ω (5.11)

ai 2 {0, 1}, 8i 2 P (5.12)

In the objective function, T! is the total travel time for route !. The Constraint (5.7) is the constraint for excess

user ride time. Ri,! denotes the excess user ride time for customer i on route !. The objective function of the pricing

subproblem is:

c! �
X

i2P

✓i,!⇡i �
X

f2S[F

�f!⌧f �
X

o2O

✏o!⇣o � � �
X

i2P

Ri! (5.13)

where ⇡i, i 2 P , ⌧f , f 2 S [ F , and ⇣o, o 2 O are the dual variable of Constraints (5.6), (5.8), (5.9), respectively.

Another dual variable associated with Constraint (5.10) is �. The newly introduced dual variable by Constraint (5.7) is

denoted as . For each single-objective problem (with different ✏ values), the B&P is applied. It should be mentioned

that the ✏-constraint method can also be implemented in the other direction. That is, considering the total excess
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user ride time as the objective and bounding the total travel time with ✏ value. However, our preliminary experiments

showed that the ✏-constraint method in the other direction yields much poorer performance compared to considering

the total travel time as objective. The reason is that solutions with different total travel times may have the same

objective value (i.e., the same value of total excess user ride time). As a result, we must conduct several computations

before reaching the one that has the minimum total travel time among the solutions that have the same value of total

excess user ride time (i.e., the real non-dominated point), which introduces extensive computations. In contrast,

using total travel time as the objective allows for more efficient and effective identification of non-dominated points,

leading to better performance. Hence, we will only present the ✏-constraint method that considers the total travel time

as the objective in this chapter.

The framework of the ✏-constraint method is described in Algorithm 3. We first solve lexminx2X {z1(x), z2(x)},

lexminx2X {z2(x), z1(x)} to obtain zT , zB and ✏ value is initialized to zT2 . The parameter � is set to a sufficiently small

value (e.g., 0.01) to obtain a full Pareto frontier. We apply an adapted version of the single-objective B&P algorithm

presented in Chapter 4 to solve each single-objective problem with respect to minimizing the total travel time. Each

time we obtain the optimal solution x⇤ with an ✏ value, we add it to the set of efficient solutions XE and similarly for its

corresponding point y⇤ in the criterion space.

Algorithm 3 ✏-constraint method framework

Input: XE  ;, YN  ;; z
T  lexminx2X {z1(x), z2(x)}, zB  lexminx2X {z2(x), z1(x)};

XE  XE [ {xT , xB}, YN  YN [ {zT , zB}; ✏ zT2 .

Output: Set of non-dominated points YN and set of efficient solutions XE .

1: while the feasible region is not empty do
2: Solve MP✏ with the adapted B&P algorithm and obtain optimal solution x⇤.

3: Compute the total excess ride time z2(x
⇤) and update ✏ z2(x

⇤)� �.

4: XE  XE [ {x⇤}; YN  YN [ {y⇤}.

5: end while
6: Return XE and YN .

5.2.2 Balanced Box Method

Similar to the ✏-constraint method, the balanced box method also starts by solving two objectives in lexicographical

order (i,e., lexminx2X {z1(x), z2(x)} and lexminx2X {z2(x), z1(x)}) to define an initial rectangle. We keep the nota-

tions zT and zB to denote the obtained non-dominated points through the above processes. These two points define

a rectangle, denoted as R(zT , zB). The balanced box method computes non-dominated points recursively:

1. First, the rectangle R(zT , zB) is split in the horizontal direction along z2(x) axis into two equal small rectangles

RT and RB. These two small rectangles are defined by zT and zt, zb and zB, respectively, with zt =

(zB1 , (zT2 + zB2 )/2) and zb = (zT1 , (z
T
2 + zB2 )/2). As shown in Figure 5.3(a), we define two rectangles RT and RB .

The red solid point is the next non-dominated point that we will obtain in the next step, and the hollow black

points are those that we have not obtained yet.
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Algorithm 4 Balanced box method framework

Input: XE  ;, YN  ;, Rec ;, zT  lexminx2X {z1(x), z2(x)}, zB  lexminx2X {z2(x), z1(x)};

XE  XE [ {xT , xB}, YN  YN [ {zT , zB}, Rec Rec [R(zT , zB).
Output: Set of non-dominated points YN and set of efficient solutions XE .

1: while Rec 6= ; do
2: Extract the first rectangle R(z1, z2) from Rec, Rec Rec \R(z1, z2).
3: RB  ((z11 , (z

1
2 + z22)/2), z

2).
4: z̄1  lexminx2X {z1(x), z2(x) : z(x) 2 RB}.

5: if z̄1 6= z2 then
6: XE  XE [ {x̄1}, YN  YN [ {z̄1}.

7: Rec R(z̄1, z2).
8: end if
9: RT  R(z1, (z̄11 � �, (z12 + z22)/2)).

10: z̄2  lexminx2X {z2(x), z1(x) : z(x) 2 RT }.

11: if z̄2 6= z1 then
12: XE  XE [ {x̄2}, YN  YN [ {z̄2}.

13: Rec R(z1, z̄2).
14: end if
15: end while
16: Return XE and YN .

5.3 Decision Space Search Algorithm

We extend the B&P algorithm developed in Chapter 4 and the BIOBAB algorithm developed in Parragh & Tricoire

(2019) to handle the BO-EADARP. Most ingredients of the proposed algorithm are introduced from Parragh & Tricoire

(2019), while several enhancements are considered:

1. We apply a problem-tailored and effective CG algorithm (as presented in Chapter 4) to compute the lower

bound set at each node of the B&P tree;

2. We consider a new case (case 2 presented in Section 5.3.2) to further enhance the lower bound set filtering

process.

3. We propose a new branching strategy (as presented in Section 5.3.3) to enhance the subproblem formulation at

some nodes of the B&P tree. This branching strategy is applied jointly with state-of-the-art branching strategies.

The principle of the bi-objective B&P is similar to the single-objective one, which aims to divide the original problem

into easier subproblems and store them in the form of “nodes”. We denote each subproblem of the BO-EADARP as

P (⌘), where ⌘ represents the associated node. However, bi-objective B&P is different from the single-objective case

as lower bound and upper bound sets (instead of single numerical values) are used to decide whether to fathom a

node. The main ingredients of the bi-objective B&P are presented as follows:

• Calculate lower bound set and update upper bound set: On each branch-and-bound node, we calculate the

lower bound set with the dichotomic method proposed in Aneja & Nair (1979). To solve each weighted-sum

objective problem, our CG algorithm is applied. Once the lower bound set of the analyzed node ⌘ (denoted as
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L(⌘)) is calculated, we first check if new non-dominated points are obtained. If it is the case, the upper bound

set U is updated.

• Lower bound filtering and node fathoming: Then, the lower bounds in the set are filtered with the current

upper bound set U , which stores each candidate point that corresponds to the integer solution that is not

dominated by other points in the set. The filtering process compares the current L(⌘) with U and returns a set

of non-dominated portions. If no portion is generated after the filtering process, then the analyzed node ⌘ can

be fathomed, as it is fully dominated by the current upper bound set U .

• Branching procedure: If the analyzed node cannot be fathomed, branching is applied to generate child nodes.

We considered three kinds of branching strategies and apply them to each disjoint non-dominated portion. After

branching, a set of child nodes are added to the unprocessed node set T .

The tree search terminates when there is no unprocessed node remaining in T , and we have the set of non-dominated

points YN equals to U . The outline of the above process is shown in Algorithm 5.

Algorithm 5 Bi-objective Branch-and-Price (BOBP) Algorithm

Input: Calculate the lower bound set of the root node L(⌘0); Set T  {⌘0} and update U .

Output: Set of non-dominated points YN .

1: while T 6= ; do
2: Select a node ⌘ from T and update T  T \ {⌘}.

3: Apply dichotomic method calculate L(⌘) for P (⌘).
4: Check if new non-dominated points are obtained and update U .

5: Filter L(⌘) with U .

6: if ⌘ cannot be fathomed then
7: Split P (⌘) into disjoint subproblems P (⌘1), · · · , P (⌘h).
8: Store each subproblem in a unique child node of ⌘ and add them to T .

9: end if
10: end while
11: Return U

The following parts of this section are organized as follows. We first present the update process of the upper

bound set and then introduce the notion of lower bound segments, as in Parragh & Tricoire (2019). By defining lower

bound segments (abbreviated as LB segments), each LB segment included in L(⌘) at node ⌘ is compared to all the

points in U and dominated LB segments are removed. Then, the filtered L(⌘) is served as input to the branching

procedure, which includes the objective branching concept proposed in Parragh & Tricoire (2019) and other branching

rules.

5.3.1 Updating upper bound set

The first step after calculating lower bound set L(⌘) at a node ⌘ is to check if new integer solutions are obtained.

Each time an integer solution is obtained, the upper bound set U is updated. This process must be conducted before
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filtering and branching, as the newly identified non-dominated points can help to further restrict the search area. One

of the three cases can happen when we obtain an integer solution x.

1. Solution x is dominated by solutions corresponding to points in the current upper bound set U . In this case, x is

discarded.

2. Solution x is not dominated by any solutions corresponding to points in the current upper bound set U . In this

case, x is added to the set of efficient solutions, and its corresponding point is added to U . Moreover, if solution

x dominates some solutions corresponding to points in U , then dominated points are removed from U .

5.3.2 Lower bound set filtering and node fathoming

One of the main challenges in designing an effective bi-objective B&B algorithm is to evaluate the obtained lower

bound set in comparison with the current upper bound set and eliminate search areas that will not contain any

non-dominated solutions. In our BOBP algorithm, we obtain the lower bound set L(⌘) for a given node ⌘ (associated

with problem P (⌘)) by solving weighted-sum problems in a dichotomic scheme (Aneja & Nair (1979)). To solve each

weighted-sum problem, we employ the CG algorithm, which is presented in Chapter 4. Once we have obtained the

lower bound set L(⌘), we sort the points in L(⌘) in increasing order of the z1(x) axis. Any two consecutive points

in the sorted L(⌘) accompanying a valid local nadir point define a search area where new non-dominated points

may exist (as shown in Figure 5.4). A valid local nadir point can be obtained by simply taking large enough values

for both objectives as coordinates. In the implementation, we take the maximum values of both objectives among

all the extreme supported points that we obtain when applying the dichotomic method at the root node. The sorted

L(⌘) is then filtered by the current upper bound set U . Assuming Ξ be the set of all points in the objective space that

correspond to feasible solutions of P (⌘). The filtering process is based on the concept of the LB segment, which was

first introduced in Parragh & Tricoire (2019).

Definition 12 (LB segments defined in Parragh & Tricoire (2019)). Assuming there are two points p = (p1, p2),

q = (q1, q2), and a local nadir c = (c1, c2), such that p1 < q1, p2 > q2 and c1 > q1, c2 > p2. These three points define a

segment s if and only if {(z1, z2) 2 Ξ|z2 < az1 + b} = ;, where a = (q2 � p2)/(q1 � p1) presents the slope of the line

connecting p and q and b = p2 � a ⇤ p1 is the intercept of this line on z2-axis.

An example of a LB segment is shown in Figure 5.4. The Definition 12 is extended to Definition 13 to include the

case where p and q are the same points in the objective space.

Definition 13. Two points p = (p1, p2) and c = (c1, c2) define a lower bound segment s if and only if the following

conditions hold: (1) there does not exist a feasible point z that dominates p, (2) c is a valid local nadir point, such that

c1 > p1 and c2 > p2.

With the notion of LB segment, the dominance between a given lower bound set L(⌘) and the current upper

bound set U can be evaluated by splitting L(⌘) into LB segments and filter each LB segment with each point of U .
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introduced branching strategy. In the following part, we first explain the first and the second branching strategy, as

they both involve analyzing the obtained solutions. Then, we explain the third branching strategy, which is applied to

each non-dominated portion. To explain, we assume that s is a LB segment resulting from the filtering procedure and

p, q are two endpoints of s.

1. The first strategy is applied when at least one point between point p and q corresponds to a fractional solution

in the decision space. Here we discuss two cases:

• if only one point between p and q corresponds to a fractional solution, then we consider to branch on (a)

the total number of vehicles, (b) the total flow of an arc.

• if both p and q correspond to fractional solutions, then we choose to branch on the arc with the “most often

fractional” flow among two fractional solutions. To select such an arc to branch on, we record the total

flows of each arc and the number of times the arc has fractional flows. Then, among those who have

the highest number of times being traversed by fractional flow, we select the arc with a fractional flow

closest to 0.5. The advantage of branching on the “most often fractional” flow variable is that we could

avoid repeated computations resulting from branching on a flow variable that is fractional in one solution

and integer in another. Therefore, it helps us to move towards integer solutions more quickly.

2. If p and q both correspond to integer solutions, the second branching strategy is called. This case may happen

when we obtain new non-dominated points in calculating lower bounds in the previous iterations. In this case,

the first branching strategy will not work. Rather than randomly selecting an arc to branch, we select an arc

that has different values of total flow to branch, i.e., we branch on an arc (i, j) that is contained in one solution

(denoted as sol1) but is not contained in the other (denoted as sol2). After branching, we create two child nodes:

one with constraint xi,j = 0 and the other with constraint xi,j = 1. This idea ensures that we can always restrict

the search area and move toward other integer solutions under any situation. The drawback of this branching

strategy is that when we calculate the lower bound set for the first child node (i.e., the one with xi,j = 0), it is

unavoidable to obtain sol2, as it already satisfies xi,j = 0, and similarly when calculating the lower bound set for

the second child node.

3. The third branching strategy is adopted from Parragh & Tricoire (2019) and is called “objective space branching”.

When applying objective space branching, we consider the local nadir point (denoted as c = (c1, c2)) associated

with the analyzed LB segment and add two cutting planes to restrict the two objectives of the generated

solutions being better than c1 and c2. In other words, two constraints are added to the continuous MP

formulation: z1(x) 6 c1 and z2(x) 6 c2.
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5.4 Computational Results

In this section, we conduct experiments on small-to-medium-sized instances under different minimum battery level

restrictions (i.e., � = 0.1, 0.4, 0.7). In Section 5.4.1, we present the analyzed instances in the experiments and

summarize the abbreviations and their meanings in Tables. Section 5.4.2 illustrates the implementation details of the

✏-constraint method, the balanced box method, and the BOBP algorithm. Then, we compare the performance of

different algorithms with regard to their computational efficiency and the number of obtained efficient solutions on

each considered instance in Section 5.4.3. Finally, we analyze the impacts of battery restrictions on obtained efficient

solutions and summarize the managerial insights for different service providers in Section 5.4.4. All algorithms are

coded in Julia 1.7.2 and are performed on a standard PC with an Intel Xeon Gold 6230 20C at 2.1GHz.

5.4.1 Analyzed benchmark instances and abbreviations in tables

Due to the complexity of the BO-EADARP, we only consider small-to-medium-sized type-a instances in the numerical

studies. The instances we considered in this section are instances with pattern “ak � n � �”, where k = 2, 3, 4,

n = 16, 18, 20, 24, � = 0.1, 0.4, 0.7. Overall, 18 instances are analyzed.

The meaning of the abbreviations in the tables is as follows:

1. c1�(x) and c2�(x): z1(x) and z2(x) (i.e., the total travel time and total excess user ride time) values for the obtained

solution x under the analyzed � value, where � 2 {0.1, 0.4, 0.7}.

2. CPU� : the CPU time in seconds of solving the corresponding problem under the analyzed setting of �,

� 2 {0.1, 0.4, 0.7}.

3. X �
E : the set of efficient solutions under the analyzed setting of �.

4. |X �
E |: the number of efficient solutions in XE on an instance under the analyzed setting of �, � 2 {0.1, 0.4, 0.7}.

5. Avg�sol: The average CPU time in seconds for obtaining an efficient solution under the analyzed setting of �,

� 2 {0.1, 0.4, 0.7}.

5.4.2 Implementation details

For the sake of clarity, we present the implementation details of each algorithm in this part. The maximum run

time for each algorithm to solve each instance is set to 5 hours. As for the ✏-constraint and balanced box methods

(presented in Section 5.2.1 and 5.2.2), we call the single-objective B&P algorithm (presented in Chapter 4) to solve

each single-objective problem. The time limit for applying the B&P algorithm is set to 2 hours. The B&P algorithm

terminates when the maximum time limit is reached. As for the BOBP algorithm (presented in Section 5.3), the

maximum number of processed nodes allowed in the bi-objective B&P tree is set to 200. In case of the maximum
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number of processed nodes or a five-hours time limit is reached, the tree search is finished. It should be noted that

the final reported computational time may exceed five hours, as the computational time is updated after solving

single-objective problems with the B&P algorithm or a bi-objective B&P tree node in each iteration. Since we allow

the single-objective B&P and CG algorithms to spend two hours to solve single-objective problems or calculate lower

bound sets, the total computational time may exceed the maximum time limit for some instances.

5.4.3 Compare the performances of three algorithms

In this section, we compare the performance of three different algorithms. Table 5.1 summarizes the computational

time CPU� , the average CPU time to obtain each efficient solution Avg�sol, and the total number of obtained efficient

solutions |X �
E | by applying three different methods (i.e., the ✏-constraint, balanced box, BOBP algorithms) on each

considered instance under three different settings of �.

Table 5.1 Aggregated results of three considered algorithms

✏-constraint Balanced box BOBP algorithm

Instances CPU0.1 Avg0.1sol |X 0.1
E | CPU0.1 Avg0.1sol |X 0.1

E | CPU0.1 Avg0.1sol |X 0.1
E |

a2-16-0.1 18423.8 1674.9 11 19988.5 1537.6 13 2724.5 194.61 14

a2-20-0.1 23865.5 3977.6 6 26640.7 4440.1 6 18034.0 1502.8 12

a3-18-0.1 12521.3 834.8 14 19788.7 1522.2 13 4860.4 347.2 14

a3-24-0.1 25215.6 5043.1 5 25151.4 4191.9 6 18978.0 1725.3 11

a4-16-0.1 20524.6 6841.5 3 22296.3 3716.1 6 1276.4 141.8 9

a4-24-0.1 23686.7 4737.4 5 25084.3 4180.7 6 18016.5 948.2 19

Avg 20706.3 3851.5 7.3 23158.3 3264.8 8.3 10648.3 810.0 13.1

Instances CPU0.4 Avg0.4sol |X 0.4
E | CPU0.4 Avg0.4sol |X 0.4

E | CPU0.4 Avg0.4sol |X 0.4
E |

a2-16-0.4 21650.0 2405.6 9 22703.7 2064.0 11 22279.4 1591.4 14

a2-20-0.4 29573.6 5914.7 5 19991.6 4997.9 4 18092.8 1809.3 10

a3-18-0.4 9848.4 656.6 14 20052.7 2005.3 10 6935.5 495.4 14

a3-24-0.4 28504.2 4750.7 6 28447.9 4741.3 6 18094.8 2010.5 9

a4-16-0.4 24124.8 4020.8 6 29201.2 4866.9 6 1035.4 115.1 9

a4-24-0.4 30366.3 6073.3 5 26241.6 4373.6 6 18154.3 1067.9 17

Avg 24011.2 3970.3 7.5 24439.8 3841.5 7.2 14098.7 1181.6 12.1

Instances CPU0.7 Avg0.7sol |X 0.7
E | CPU0.7 Avg0.7sol |X 0.7

E | CPU0.7 Avg0.7sol |X 0.7
E |

a2-16-0.7 21000.6 2625.1 8 18220.1 3644.0 5 6293.8 699.3 9

a2-20-0.7 47612.6 9522.5 5 18782.4 9391.2 2 28112.5 14056.3 2

a3-18-0.7 23090.7 1649.3 14 18138.1 1648.9 11 4952.4 412.7 12

a3-24-0.7 24416.7 4883.3 5 30476.1 5079.4 6 20016.4 2859.5 7

a4-16-0.7 23532.4 5883.1 4 32173.6 4021.7 8 1315.1 164.4 8

a4-24-0.7 29257.9 5851.6 5 18218.6 4554.7 4 18362.0 2623.2 7

Avg 28151.8 5069.2 6.8 22668.2 4723.3 6.0 13175.4 3469.2 7.5

From Table 5.1, we have the following conclusions: (1) with an increasing value of �, the average computational

time of three algorithms to solve each instance grows significantly. We also observe a decrease in the average

number of generated efficient solutions. (2) among the three analyzed algorithms, the BOBP algorithm generates the

highest number of efficient solutions, while the balanced box method generates the least. (3) The BOBP algorithm
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has the shortest average computational time for solving each instance and spends the least time in obtaining each

efficient solution. (4) The balanced box method has the worst performance among the three algorithms on considered

instances, as it takes a similar computational time as the ✏-constraint method, but it generates the least efficient

solutions on average.

5.4.4 Analyze the obtained efficient solutions under different battery restrictions

One important benefit of using the bi-objective approach is that the obtained efficient solutions can provide a clear

picture of the compromises that need to be made when optimizing one objective at the expense of another. Also,

efficient solutions can help decision-makers to make more informed and reliable choices. In this part, we analyze the

obtained efficient solutions under different settings of � for each instance, majorly from a management perspective.

For the sake of explanation, we take an example with the results of instance a2-16 under � = 0.1, 0.4, 0.7, as we

generated complete sets of efficient solutions on this instance (results are shown in Table 5.2). We also visualize the

efficient solutions we obtained from the ✏-constraint method on instance a2-16 under � = 0.1, 0.4, 0.7, as shown in

Figure 5.7.

Figure 5.7 Non-dominated points obtained for instance a2-16 under � = 0.1, 0.4, 0.7
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From the efficient solutions we obtained under different � settings, we have the following observations:

1. When increasing � from 0.4 to 0.7, at the same level of total excess user ride time, we find an obvious increase

in the total travel time of the obtained efficient solutions. This is consistent with the fact that vehicles need to

make detours to recharging stations more frequently in order to satisfy minimum-battery-level constraints at

the destination depot. As a vehicle performs recharging only when there is no passenger on board, then it will

not introduce extra excess user ride time. Consequently, the efficient solutions obtained under � = 0.7 has

increased total travel times, while the total excess user ride times remain almost the same as in the case of

� = 0.1, 0.4.

2. In the case of � = 0.1, 0.4, most of the obtained non-dominated points are the same. Therefore, we may

potentially improve the computational efficiency of the considered algorithm (e.g., the ✏-constraint algorithm) by

feeding the set of efficient solutions X �
E obtained under lower values of � (e.g., � = 0.1) into the computations

of efficient solutions under higher � values (� = 0.4).

Table 5.2 Non-dominated points for instance a2-16 under � = 0.1, 0.4, 0.7

a2-16 c10.1(x) c20.1(x) CPU0.1(s) c10.4(x) c20.4(x) CPU0.4(s) c10.7(x) c20.7(x) CPU0.7(s)

294.25 72.98 8.1 294.25 72.98 9.2 298.63 72.98 31.9

299.11 65.15 54.3 299.11 65.15 308.2 303.64 51.73 1504.0

299.26 51.73 32.9 299.26 51.73 61.8 309.97 50.02 1830.5

304.12 43.90 62.7 304.12 43.90 222.0 309.90 43.90 1673.1

308.60 38.72 271.6 308.60 38.72 189.9 310.80 38.72 712.9

313.46 30.89 1047.2 313.46 30.89 260.0 315.66 30.89 1317.9

319.38 29.19 616.5 319.38 29.19 825.9 322.15 29.19 847.8

323.64 28.85 424.9 323.67 28.85 389.7 329.87 28.85 3528.3

333.33 21.18 1270.2 325.99 22.88 807.8 331.39 22.88 1073.6

328.51 21.02 374.2 328.54 21.02 1065.8 334.74 21.02 675.6

332.98 15.84 353.0 333.05 15.84 548.6 339.02 15.84 1338.6

337.84 8.01 432.6 337.91 8.01 992.0 343.89 8.01 1325.7

345.51 7.83 157.4 345.58 7.83 106.4 351.56 7.83 295.4

350.38 0.00 414.7 350.44 0.00 197.0 356.42 0.00 482.7

From the efficient solutions we obtained at each � setting, several managerial insights are offered:

1. from the non-dominated points located in the left-upside of the Pareto front, we find that the total excess user

ride time can be improved obviously with a slight increase in the total travel time. For example, the total excess

user ride time decreased from 65.15 minutes to 51.73 minutes with only 0.15 minute’s increase in the total

travel time (from 299.11 to 299.26 minutes). These non-dominated points correspond to efficient solutions

of low operational costs and high user inconvenience. These efficient solutions have practical interests for

profitable service providers (e.g., Uber, Didi) that it is possible to improve the service quality significantly while

keeping the operational cost nearly optimal.
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2. from the non-dominated points located in the right-downside, we have an inverse observation: the total travel

time can be improved obviously with a slight increase in the total excess user ride time. For example, the total

travel time can be reduced from 337.84 minutes to 332.98 minutes with only 0.18 minute’s increase on the total

excess user ride time (from 7.83 to 8.01 minutes). These efficient solutions are interesting for non-profitable

associations (e.g., Red Cross) as they allow to reduce operational costs significantly while maintaining high

service quality.

5.5 Conclusion

This chapter has introduced a new problem variant of the E-ADARP, namely the BO-EADARP, by considering the total

travel time and the total excess user ride time as separate objectives. The BO-EADARP is much more complicated to

be solved than the E-ADARP, as one must fully explore the bi-dimension search area in order to demonstrate the

completeness of the Pareto front. To tackle the BO-EADARP, we introduce two criterion space search algorithms

(i.e., the ✏-constraint and balanced box methods) and a decision space search algorithm (i.e., the BOBP algorithm).

The BOBP algorithm is based on the generalized B&B algorithm proposed in Parragh & Tricoire (2019), where the

lower bound set is calculated by the problem-tailored CG algorithm (as presented in Chapter 4). In the computational

experiments, we solve the BO-EADARP with three different algorithms on small-to-medium-sized instances under

different minimum battery restrictions (i.e., � = 0.1, 0.4, 0.7). Due to the complexity of the problem, it is very hard

to obtain a complete set of efficient solutions, even for small-sized instances. Therefore, we compare the three

algorithms by the number of generated efficient solutions and their average computational time. Among the three

algorithms, the BOBP algorithm seems to be the most efficient algorithm, which generates the highest number of

efficient solutions in the least average computational time. Then, we analyze the efficient solutions under different �

settings. We observe an obvious increase in the total travel times for the obtained efficient solutions with increasing �

values while the corresponding total excess user ride times remain stable. On each level of �, the obtained efficient

solutions offer managerial insights for different service providers: (1) for profitable service providers, it is possible

to significantly improve service quality while keeping near-optimal operational costs; (2) for non-profitable service

providers, there exist efficient solutions of high service quality while at lower operational costs. These efficient

solutions are much interesting for this kind of service provider. To sum up, the obtained efficient solutions can help

decision-makers to select Pareto-optimal transportation plans according to their priorities and preferences. Our next

step will focus on enhancing the computational efficiency of the BOBP algorithm. One possible improvement is that

we can store columns generated under � = 0.1, 0.4 and feed them to solve the considered instance under � = 0.7.

Another idea is to develop methods that can efficiently check the existence of non-dominated points in a given search

area. If we can prove there do not exist any non-dominated points in a given search area, then we do not need to

branch. The last idea is to add cutting planes to enhance the lower bound set so that the number of nodes in the
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B&P tree is reduced.
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Chapter 6

Conclusion and Extensions

In this chapter, we first revisit the objectives, key findings, and contributions of this thesis in Section 6.1. Then, Section

6.2 closes this thesis by discussing the interesting research directions for future works.

6.1 Contributions and Key Findings

In this thesis, we develop highly-efficient heuristic and exact methods (i.e., the DA and B&P algorithms) to solve

the E-ADARP, whose objective is to design minimum-cost routes for EAVs to accommodate all customer requests

that specify their origins and destinations. The E-ADARP includes two important features: (i) the employment of

EAVs and partial recharging allowed at recharging stations; (ii) the weighted-sum objective function that minimizes

the total travel time and the total excess user ride time. These two features impact the design of heuristic and

exact methods in different ways. For a heuristic method, the first aspect (i) requires evaluating the battery feasibility

for a given route, while the second aspect (ii) requires calculating the minimal excess user ride time for a feasible

solution. These aspects involve feasibility checking and cost calculation when evaluating a generated E-ADARP route.

As route evaluations are performed voluminously when running a heuristic, the efficiency of the route evaluation

process plays a crucial role in the overall heuristic performance. How to design an efficient route evaluation process

is the key challenge in the design of a heuristic. When it comes to designing an effective labeling algorithm in

the B&P scheme, one must decide the excess-user-ride-time optimal schedules from battery feasible schedules

along the extension of the partial path. As the path is not fixed until the destination depot is reached, the key

challenge is to determine all excess-user-ride-time optimal schedules in the extension of the partial path to ensure

finding the minimum-negative-reduced-cost route. After designing effective heuristic and exact methods to solve

the single-objective E-ADARP, we extend the model by considering the total travel time and the total excess user

ride time in two separate objectives. Our objective is to find a set of efficient solutions and analyze the fundamental

trade-off between operational cost and service quality.
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The contributions of this thesis are summarized according to the following perspectives:

1. Model and theoretical level:

(a) We introduce a fragment-based representation of paths, which extend the one proposed in Rist & Forbes

(2021) by additionally considering battery constraints for ensuring overall route feasibility in terms of energy

consumption. Based on this representation of paths, each E-ADARP route can be represented by a series

of battery-restricted fragments.

(b) In the process of designing an effective heuristic method to solve the E-ADARP, we propose a new

approach that efficiently computes minimum excess user ride time by introducing a fragment-based

representation of paths. Then, we apply an exact route evaluation scheme that executes feasibility

checking in linear time. Combining these two methods, we propose an exact and efficient optimization of

excess user ride time for an E-ADARP route.

(c) In the process of designing an effective labeling algorithm to solve the E-ADARP subproblems, we handle

the excess-user-ride-time optimality in the extension of an E-ADARP partial path by taking advantage

of the fragment-based representation defined in (a). On each fragment, we apply a new approach to

determine the minimum excess user ride time and abstract the fragment to an arc while guaranteeing

excess-user-ride-time optimality. Then, we construct a new graph that preserves all feasible routes of the

original one, and we ensure excess-user-ride-time optimality on each arc of the new graph. We define

strong dominance rules on the new graph to allow fast shortest-path computations in solving the E-ADARP

subproblems.

(d) We extend the E-ADARP to consider unlimited recharging visits to each recharging station and conduct

sensitivity analysis to investigate the effect of this relaxation.

(e) We extend the single-objective E-ADARP to the BO-EADARP, which considers the total travel time and the

total excess user ride time as two separate objectives.

2. Algorithm level:

• We adapt the DA algorithm to tackle the E-ADARP by integrating the proposed excess user ride time

optimization method. To the best of our knowledge, this is the first time an exact excess user ride time

optimization has been developed for computing locally optimal solutions within an algorithm for solving

the E-ADARP. This method allows computing the minimum excess user ride time for a feasible E-ADARP

route in linear time after preprocessing.

• We develop a highly-efficient labeling algorithm and then integrate it into the CG algorithm and the B&P

algorithm to solve the E-ADARP. One important “by-product” of our labeling algorithm is the first exact
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scheduling procedure that can efficiently determine the excess-user-ride-time optimal schedule for a given

E-ADARP route.

• We adapt the state-of-the-art criterion space search algorithms (i.e., the ✏-constraint method and balanced

box method) and decision space search algorithm (i.e., the BOBP algorithm) to solve the BO-EADARP.

3. Experimental level:

• We demonstrate the performance of the proposed DA algorithm through extensive numerical experiments.

On the previously solved instances, the DA algorithm improves the solution quality by 0.16% on average.

We provide the best solutions for 70 out of 84 instances, among which 25 are new best solutions. To

further test our algorithm in solving large-scale instances, we construct new benchmark instances with up

to 8 vehicles and 96 requests, and we provide 19 new solutions on newly-introduced instances. We also

extend the E-ADARP model to investigate the effects of allowing unlimited visits to recharging stations.

The major difficulties for local search introduced by highly-constrained instances are lessened considering

this more realistic situation.

• The numerical results demonstrate the superiority of our CG algorithm over the state-of-the-art methods,

with our algorithm being able to provide 40 new best solutions. We improve 29 previously-reported lower

bounds by 1.35% on average and provide 17 new lower bounds for large-scale instances with up to 8

vehicles and 96 requests. We prove optimality for 66 out of 84 instances without branching. For other

instances, very small average gaps of 0.07% between lower bounds and the best-known upper bounds

are observed. In addition, our algorithm can easily be adapted to tackle another problem variant where

unlimited visits to each recharging station are allowed. The proposed labeling algorithm can also serve as

the first exact scheduling procedure that generates excess-user-ride-time optimal schedules for a feasible

E-ADARP route.

• We integrate the CG algorithm into the B&P framework, and we further solve 5 additional instances

optimally, obtain 6 tighter lower bounds and generate 3 additional new best solutions. Benefiting from the

good quality of lower bounds obtained at the root node, our B&P algorithm searches only a few nodes of the

search tree to close the gaps. Compared with the best-reported B&C results in Bongiovanni et al. (2019),

we finally solve 71 out of 84 instances optimally within the two-hour time limit, while the B&C algorithm can

only solve 49 instances optimally. In addition, we obtain 26 new best solutions and 54 equal solutions and

enhanced 30 lower bounds. The average computational time of our B&P algorithm decreases by 16%

compared with that of the B&C algorithm. On larger-sized instances (i.e., type-r instances), we obtain 16

new best solutions, compared with the existing results of Su et al. (2023). Therefore, the superiority of our

B&P algorithm upon the existing exact method in the literature to solve the E-ADARP has been proved.
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• We solve the BO-EADARP with three different algorithms (i.e., the ✏-constraint, balanced box, and the

BOBP algorithms) on small-to-medium-sized instances under different minimum battery restrictions (i.e.,

� = 0.1, 0.4, 0.7). Among the three algorithms, the BOBP algorithm seems to be the most efficient algorithm,

which generates the highest number of efficient solutions in the least average computational time.

The key findings of this thesis are summarized as follows:

1. In Chapter 3 and 4, we develop highly-efficient heuristic and exact methods (i.e., DA and B&P algorithms)

to solve the static version of the E-ADARP. The key challenges mentioned at the beginning of this chapter

are handled appropriately by (1) constructing an exact route evaluation scheme for the heuristic algorithm

and (2) constructing a new graph that preserves all feasible routes of the original graph, and we ensure

excess-user-ride-time optimality on each arc of the new graph. We develop an efficient labeling algorithm with

strong dominance rules on the new graph to allow fast shortest-path computations in solving the E-ADARP

subproblems.

2. In the numerical experiments, our proposed DA and B&P algorithms provide 70 and 79 equal or improved

solutions on 84 existing instances, respectively. In total 25 new best solutions are found compared to the

best-reported literature results. Thirty previously reported lower bounds are further enhanced with our B&P

algorithm. On newly-introduced large-scale instances, we report 19 new solutions and 17 new lower bounds.

3. We identify in Chapter 3 and 4 that the model of Bongiovanni et al. (2019) relies on incorrect “big M” values

(detailed analysis is presented in Appendix A). Due to these incorrect “big M” values, in several instances, the

actual optimal solutions are cut off as they are considered infeasible. In this thesis, with our B&P algorithm, we

provide correct optimal solutions for concerned instances, which can serve as new benchmark results for future

studies.

4. From our experiments on allowing multiple visits per recharging station (recalling nas is the maximum number

of charging visits per station), we have the following conclusions:

• significant increases in the average numbers of visited recharging stations in best-obtained solutions are

observed on all instances with increasing � value, especially on type-r instances. Also, allowing multiple

visits to each recharging station improves the solution quality as we found lower-cost solutions.

• for type-a and -r instances, relaxing to nas =1 seems to be more computationally attractive as it does

not introduce additional computational time, compared to the results obtained by replicating recharging

stations. For type-u instances, having a pre-calculated nas would be more computationally favorable;

• on average, allowing at-most-two and -three visits per station slightly increases the computational time.

Allowing at-most-three visits per station seems to strike a good balance between solution quality and

computational time;
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• nas = 3 seems to be a good upper bound for solving type-u instances allowing multiple recharging visits,

while one needs to set nas to 4 and 7 for type-a and -r instances, respectively.

5. From analyzing the obtained efficient solutions under different battery restriction levels (i.e., � = 0.1, 0.4, 0.7),

we have the following observations:

• With increasing minimum battery level restrictions, we find an obvious increase in the total travel time of

the obtained efficient solutions while the total excess user ride time remains stable.

• On each level of �, the obtained efficient solutions offer managerial insights for service providers:

(a) We find efficient solutions at near-optimal operational costs while providing much better service quality

than the one at a slightly-lower operational cost. Hence, it is possible to improve the service quality

significantly while keeping the operational cost nearly optimal. These efficient solutions are interesting

for profitable service providers (e.g., Uber, Didi) to largely improve their service quality only with a

slight increase in their operational costs.

(b) We also find efficient solutions of high service quality while at lower operational costs. Hence, it is

possible to reduce operational costs significantly while maintaining high service quality. These efficient

solutions are interesting for non-profitable associations (e.g., Red Cross) as they can make savings

without degrading their service quality.

6.2 Future Research Directions

This thesis proposes highly-efficient heuristic and exact methods to solve the E-ADARP, a complex combinatorial

optimization problem that integrates autonomous mobility, the management of electric vehicles, and ride-sharing

services. After developing solid and efficient algorithms to solve the single-objective E-ADARP, we investigate a

new problem variant of the E-ADARP (i.e., the BO-EADARP) from algorithmic and operational aspects. From our

proposed methods and results, we find several interesting directions for future studies, which are summarized as

follows:

1. Problem level:

• The E-ADARP model may be improved by taking into account more real-life characteristics. For example,

time-dependent travel times occur with traffic jams in peak hours, non-linear recharging and discharging

functions.

• Relatedly, the static E-ADARP can be extended to dynamic E-ADARP, taking into account updates of

requests during the day (e.g., new requests, cancellations, modifications).

2. Algorithm level:
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• Some instances remain unsolvable even after 50 independent runs of the DA algorithm. One reason may

be that no feasible solution exists for these instances, which remains challenging for future studies using

heuristic and exact methods.

• An interesting investigation would be examining the effects of more randomness in the algorithm, for

example, considering a sequence of randomly ordered operators.

• The computational efficiency of our DA algorithm could be further improved by applying a more intelligent

insertion strategy of recharging stations, adapting a parallel version of the DA algorithm, and designing

stopping criteria to terminate the algorithm before completing all iterations, as in Ropke & Pisinger (2006).

• The proposed DA and CG algorithm can be adapted to tackle the dynamic DARP/E-ADARP, where new

requests arrive in real time. Quick and efficient routing and scheduling heuristics for the dynamic E-ADARP

also seem promising.

3. Theoretical level:

• Our proposed labeling algorithm is the first exact scheduling procedure that can efficiently determine the

excess-user-ride-time optimal schedule for a given E-ADARP route. This scheduling procedure can also

be applied to optimize excess user ride time in the classical DARP or the DARP with multiple objectives, in

which total excess user ride time is minimized in a separate objective.

• From the first-hand results of the BO-EADARP, it would be interesting to develop efficient acceleration

strategies to speed up the BOBP algorithm. One possible direction is that we can store columns generated

under � = 0.1, 0.4 and feed them to solve the considered instance under � = 0.7. Another direction is to

develop methods that can efficiently check the existence of non-dominated points in a given search area.

Finally, adding valid cuts to further enhance the lower bound set would also be worth investigating.
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Appendix A

Appendix for Chapter 2

Several solutions are found by our DA and B&P algorithm are strictly better than the optimal solutions reported in

Bongiovanni et al. (2019). In this section, we analyze why the model proposed in the original paper leads to incorrect

results. To facilitate illustration, we take our obtained solution of instance a2-24-0.4 as an example, where we get a

solution of cost 347.04 while the reportedly optimal solution is 348.03. The solution gap is higher than the 0.01%

default tolerance gap of Gurobi. To find the conflicting constraints in the MIP model, we set the binary variables xk
i,j

to the solution we found as constraints and use “compute conflict” in Julia and print the conflicting constraints. The

optimal solution we obtained is:

route1: [51, 7, 31, 11, 35, 10, 34, 56, 5, 29, 4, 21, 20, 28, 45, 44, 1, 25, 12, 8, 36, 32, 54]

route2: [52, 17, 41, 19, 43, 22, 46, 18, 2, 42, 26, 15, 39, 6, 30, 16, 13, 40, 37, 23, 47, 14, 38, 57, 3, 27, 24, 9, 48, 33, 55, 53]

A.1 Error: Incorrect Value for Big “M”

The problematic constraints in Bongiovanni et al. (2019) are:

Ek
s 6 T k

s � ti,s � T k
i +Mk

i,s

�
1� xk

i,s

�
, 8s 2 S, i 2 D [ S [Ok, k 2 K, i 6= s (A.1)

Ek
s > T k

s � ti,s � T k
i �Mk

i,s

�
1� xk

i,s

�
, 8s 2 S, i 2 D [ S [Ok, k 2 K, i 6= s (A.2)

where Ek
s are the decision variables indicating the recharging time at recharging station s for vehicle k. T k

i and T k
s

are the decision variables indicating the time at which vehicle k starts its service at location i and s, respectively.

In their real implementation, constraints (A.1) and (A.2) are implemented as constraints (A.3) and (A.4). Indeed,

as the time windows on the recharging visits are not binding, we need to consider the path from s to i to restrict the
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recharging time at station s. The recharging time constraints are formulated as follows:

Ek
s 6 T k

i � ts,i � T k
s +Mk

s,i

�
1� xk

s,i

�
, 8s 2 S, i 2 P [ S [ F, k 2 K, i 6= s (A.3)

Ek
s > T k

i � ts,i � T k
s �Mk

s,i

�
1� xk

s,i

�
, 8s 2 S, i 2 P [ S [ F, k 2 K, i 6= s (A.4)

That is, we have the following constraints always hold:

T k
i � ts,i �Mk

s,i(1� xk
s,i) 6 T k

s + Ek
s 6 T k

j � ts,j +Mk
s,j(1� xk

s,j), (A.5)

8s 2 S, i 2 P [ S [ F, k 2 K, i 6= s

However, the value of big “M” used in Bongiovanni et al. (2019) is: Mk
i,j = max{0, li + si + ti,j � ej}. With this

value of big “M”, it will not hold for some cases. We take an example with our obtained solution of a2-24-0.4, where

x1
56,24 = 0, x1

56,5 = 1, M1
56,24 = 127.20, M1

56,5 = 445.32, t56,24 = 15.86, t56,5 = 4.98. As the earliest time window at

node 24 is 603.0, the latest time window at node 5 is 302.85, the time window constraints on node 24 and node 5 are:

T 1
24 > 603.0, T 1

5 6 302.85 (A.6)

Recharging time constraints are:

T 1
24 � t56,24 �M1

56,24(1� x1
56,24) 6 T 1

56 + E1
56 (A.7)

T 1
56 + E1

56 6 T 1
5 � t56,5 +M1

56,5(1� x1
56,5) (A.8)

Introducing constraints (A.6) and x1
56,24 = 0, x1

56,5 = 1, M1
56,24 = 127.20, M1

56,5 = 445.32, t56,24 = 15.86, t56,5 = 4.98

to constraint (A.7) and (A.8), we have:

459.94 6 T 1
56 + E1

56 6 297.87 (A.9)

which is a contradiction!

To obtain the correct big “M” value, we calculate a lower bound for big “M” parameters from constraints (A.3) as

follows:
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Ek
s � T k

i + ts,i + T k
s 6 Mk

s,i (A.10)

The maximum value of the left-hand side is obtained when Ek
s = Q

↵
, T k

i = ei, T
k
s = Tp, where Tp is the planning

horizon. We obtain:

Q

↵
� ei + ts,i + Tp 6 Mk

s,i �!Mk
s,i = min{

Q

↵
� ei + ts,i + Tp, Tp} (A.11)

We take Tp directly as the value of big “M” and the contradiction is solved.

A.2 Typo: Incorrect Value of Big “G”

Furthermore, there is also a typo related to the value of big “G” in Bongiovanni et al. (2019) with the following

constraints:

Lk
i + lj +Gk

i,j

�
1� xk

i,j

�
> Lk

j , 8i 2 V \ F, j 2 V \Ok, i 6= j, k 2 K (A.12)

The big “G” values used in Bongiovanni et al. (2019) is Gk
i,j = min{Ck, Ck + li}. With this value, the solutions

that have continuously visited Ck times drop-off nodes are cut off. For example, our obtained solution has three

continuous visits of drop-off nodes: [28, 45, 44], and we have x1
28,45 = x1

45,44 = 1.0 and x44,28,1 = 0.0. As these nodes

are drop-off nodes, the loads on these nodes are negative: l45 = l44 = l28 = �1.0. The maximal vehicle capacity

Ck(k = 1) equals three. Based on constraints (A.12), we have:

L1
28 + l45 > L1

45 (A.13)

L1
45 + l44 > L1

44 (A.14)

L1
44 + l28 +G1

44,28 > L1
28 (A.15)

However, with the defined value in Bongiovanni et al. (2019), G1
44,28 must satisfy:

G1
44,28 6 C1 + l44 (A.16)

Introducing constraint (A.14), (A.15), and (A.16) into constraints (A.13) leads to contradiction:

�1.0 = C1 + l44 + l45 + l28 > 0 (A.17)
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The correct value is Gk
i,j = max{Ck, Ck + li}. After revising, the contradiction is eliminated.
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Appendix B

Appendix for Chapter 3

We first present the detailed results of fragment enumeration, as shown below.

Table B.1 Details of fragments enumeration for all the

instances
Nfrag Legavg Legmax NLP CPU(s)

a2-16 32 3.06 6 0 0.94
a2-20 51 3.41 6 1 0.23
a2-24 64 3.72 8 1 0.09
a3-18 71 4.25 8 4 0.04
a3-24 110 4.71 12 0 0.06
a3-30 89 3.66 8 0 0.12
a3-36 114 4.12 12 1 0.27
a4-16 78 4.51 8 4 0.04
a4-24 91 4.07 8 2 0.07
a4-32 206 5.58 12 3 0.20
a4-40 242 5.45 12 6 0.37
a4-48 355 5.33 12 15 0.61
a5-40 337 5.65 12 3 0.38
a5-50 659 8.25 24 33 0.99
Avg 178.5 4.70 10.57 5.21 0.32

u2-16 61 3.80 6 0 1.05
u2-20 180 5.26 12 7 0.32
u2-24 66 3.27 4 0 0.06
u3-18 78 3.95 8 0 0.04
u3-24 129 4.25 8 0 0.08
u3-30 255 5.06 8 19 0.29
u3-36 276 5.14 12 12 0.30
u4-16 75 4.03 8 1 0.04
u4-24 57 3.19 6 0 0.05
u4-32 177 4.14 10 3 0.21
u4-40 149 4.01 8 2 0.26
u4-48 1177 9.01 18 7 1.69
u5-40 335 5.28 14 1 0.49
u5-50 584 6.13 14 6 0.96
Avg 257.07 4.75 9.71 4.14 0.42

r5-60 632 6.44 16 44 2.61
r6-48 4082 14.20 36 414 6.89
r6-60 809 6.58 18 40 1.65
r6-72 1080 7.12 22 36 2.51
r7-56 1089 7.92 18 83 1.70
r7-70 2340 8.32 18 183 4.14
r7-84 2892 11.66 30 405 7.77
r8-64 11694 18.23 42 3517 40.52
r8-80 5822 14.89 30 260 14.07
r8-96 3155 9.30 26 312 9.65
Avg 3359.50 10.47 25.6 526.4 9.15
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We present the parameter tuning results for ✓max in Table B.2 and B.3, where we have considered seven different

values of ✓max. It should be noted that the symbol “-” indicates we obtain new best solutions on previously unsolved

instances, and the gap cannot be calculated.

Table B.2 DA algorithm results on type-a instances with different settings of ✓max

θmax = 0.6 θmax = 0.9 θmax = 1.2 θmax = 1.5

γ = 0.1 BC0.6% AC0.6% BC0.9% AC0.9% BC1.2% AC1.2% BC1.5% AC1.5%

a2-16 0 0 0 0 0 0 0 0

a2-20 0 0 0 0 0 0 0 0

a2-24 0 0 0 0 0 0 0 0

a3-18 0 0 0 0 0 0 0 0

a3-24 0 0 0 0 0 0.74% 0 0.37%

a3-30 0 0 0 0 0 0 0 0

a3-36 0 0 0 0 0 0.12% 0 0

a4-16 0 0 0 0 0 0 0 0

a4-24 0 0 0 0 0 0 0 0.70%

a4-32 0 0.13% 0 1.04% 0.02% 0.79% 0.08% 1.31%

a4-40 0 0.62% 0 1.24% 0 1.23% 0.89% 1.38%

a4-48 0.34% 0.71% 0.30% 0.94% 0.67% 1.78% 0.90% 1.99%

a5-40 0.44% 1.36% 0.29% 1.91% 0.42% 1.34% 0.78% 1.75%

a5-50 0.71% 1.68% 0.74% 2.14% 1.61% 2.99% 1.83% 2.56%

Avg 0.11% 0.49% 0.10% 0.53% 0.19% 0.74% 0.32% 0.83%

γ = 0.4 BC0.6% AC0.6% BC0.9% AC0.9% BC1.2% AC1.2% BC1.5% AC1.5%

a2-16 0 0 0 0 0 0 0 0

a2-20 0 0 0 0 0 0 0 0

a2-24 -0.29% -0.29% -0.29% -0.29% -0.29% -0.29% -0.29% -0.21%

a3-18 0 0 0 0 0 0 0 0

a3-24 0 0 0 0.27% 0 0 0 0.23%

a3-30 -0.01% NC -0.01% -0.01% -0.01% -0.01% -0.01% -0.01%

a3-36 -0.22% -0.06% -0.16% 0.01% -0.06% 0.05% -0.03% 0.30%

a4-16 0 0 0 0 0 0 0 0

a4-24 0 0.45% 0 0.09% 0.08% 0.54% 0.08% 0.70%

a4-32 0 0.20% 0.22% 1.26% 0.22% 0.75% 0 1.0%

a4-40 0.27% 0.98% 0 1.28% 0 1.41% 0.27% 1.70%

a4-48 1.04% 1.50% 1.46% 2.37% 1.8% 2.53% 1.85% 2.88%

a5-40 0.35% 1.56% 0.55% 1.19% 0.86% 1.40% 0.55% 1.52%

a5-50 1.46% 2.03% 2.07% 2.84% 1.19% 3.45% 3.14% 4.30%

Avg 0.19% NC 0.27% 0.68% 0.27% 0.79% 0.40% 0.95%

γ = 0.7 BC0.6% F0.6 BC0.9% F0.9 BC1.2% F1.2 BC1.5% F1.5

a2-16 0 9 0 10 0 10 0 10

a2-20 - 7 - 8 - 10 - 7

a2-24 0.85% 1 0.85% 8 0.85% 8 0.85% 8

a3-18 0 10 0 10 0 10 0 10

a3-24 -0.63% 10 -0.63% 10 -0.33% 10 -0.63% 10

a3-30 - 5 - 9 - 6 - 9

a3-36 0.51% 4 0 10 0.02% 10 0.36% 10

a4-16 0 10 0 10 0 10 0 10

a4-24 0 10 -0.49% 10 -0.49% 10 0 10

a4-32 -7.31% 10 -6.40% 10 -7.49% 10 -6.80% 10

a4-40 - 2 - 1 - 2 - 4

a4-48 NA 0 NA 0 NA 0 NA 0

a5-40 -4.43% 10 -3.81% 10 -5.23% 10 -2.44% 10

a5-50 NA 0 NA 0 NA 0 NA 0
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Table B.3 DA algorithm results on type-a instances with different settings of ✓max (continue)

θmax = 1.8 θmax = 2.1 θmax = 2.4

γ = 0.1 BC1.8% AC1.8% BC2.1% AC2.1% BC2.4% AC2.4%

a2-16 0 0 0 0 0 0

a2-20 0 0 0 0 0 0

a2-24 0 0 0 0 0 0

a3-18 0 0 0 0 0 0

a3-24 0 0 0 0.15% 0 0.52%

a3-30 0 0 0 0 0 0

a3-36 0 0.11% 0 0.10% 0 0.62%

a4-16 0 0 0 0 0 0

a4-24 0 0.67% 0 0.35% 0 0.70%

a4-32 0 1.02% 0.06% 1.11% 0.09% 1.22%

a4-40 0 1.6% 0 1.81% 1.24% 1.85%

a4-48 0.82% 2.16% 1.17% 2.38% 1.55% 3.3%

a5-40 0.96% 2.46% 1.16% 2.75% 1.16% 2.55%

a5-50 2.33% 3.29% 1.57% 3.80% 3.13% 3.98%

Avg 0.29% 0.82% 0.28% 0.94% 0.51% 1.07%

γ = 0.4 BC1.8% AC1.8% BC2.1% AC2.1% BC2.4% AC2.4%

a2-16 0 0 0 0 0 0

a2-20 0 0 0 0 0 0

a2-24 -0.29% 0.05% -0.29% -0.12% -0.29% 0.01%

a3-18 0 0 0 0 0 0

a3-24 0 0.74% 0 0.74% 0 0.53%

a3-30 -0.01% 0.06% -0.01% 0.08% -0.01% -0.01%

a3-36 -0.13% 0.94% -0.22% 0.64% -0.06% 1.14%

a4-16 0 0 0 0.12% 0 0.12%

a4-24 0 0.50% 0.08% 0.55% 0 0.70%

a4-32 0 1.64% 1.18% 1.65% 0.17% 1.55%

a4-40 0.99% 1.61% 1.18% 2.58% 1.01% 3.41%

a4-48 2.36% 4.44% 2.87% 4.02% 3.17% 4.54%

a5-40 1.21% 2.24% 1.42% 2.35% 1.86% 3.36%

a5-50 2.71% 3.94% 3.56% 5.25% 2.92% 5.63%

Avg 0.49% 1.18% 0.7% 1.36% 0.63% 1.54%

γ = 0.7 BC1.8% F1.8 BC2.1% F2.1 BC2.4% F2.4

a2-16 0 10 0 10 0 10

a2-20 - 10 - 7 - 8

a2-24 0.82% 10 0.82% 10 0.82% 10

a3-18 0 10 0 10 0 10

a3-24 -0.63% 10 -0.33% 10 -0.38% 10

a3-30 - 10 - 8 - 8

a3-36 0.56% 10 0.98% 10 2.34% 10

a4-16 0 10 0 10 0 10

a4-24 -0.49% 10 0.03% 10 0.03% 10

a4-32 -5.20% 10 -5.06% 10 -6.07% 10

a4-40 - 2 NA 0 NA 0

a4-48 NA 0 NA 0 NA 0

a5-40 -1.25% 10 -3.00% 10 -1.47% 10

a5-50 NA 0 NA 0 NA 0
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