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Résumé : Cette these propose des algorithmes
heuristiques et exacts efficaces pour résoudre
le probléme E-ADARP (Electric Autonomous
Dial-A-Ride Problem), qui consiste a concevoir
un ensemble d'itinéraires a colt minimum qui
répond a toutes les demandes des clients
pour une flotte de véhicules électriques auto-
nomes (EAV). L'E-ADARP présente deux carac-
téristiques importantes : (i) 'emploi des EAVs
et une politique de recharge partielle; (ii) la
fonction objectif de somme pondérée qui mi-
nimise le temps de trajet total et le temps de
trajet total excédentaire de l'utilisateur. Dans
cette these, nous proposons d'abord un algo-
rithme de recuit déterministe (DA). La recharge
partielle (i) est gérée par un schéma d'éva-
luation d'itinéraire exact de complexité tem-
porelle linéaire. Pour aborder (ii), nous propo-
sons une nouvelle méthode qui permet des
calculs efficaces du temps de parcours mini-
mal de l'utilisateur en introduisant une repré-
sentation fragmentée des chemins. Pour vali-
der les performances de l'algorithme DA, nous
comparons les résultats de notre algorithme
aux résultats de l'algorithme Branch-and-Cut
(B&C) sur les instances existantes. Notre algo-
rithme DA fournit 25 nouvelles meilleures solu-
tions et 45 solutions égales pour 84 instances
existantes. Nous établissons de nouvelles ins-
tances avec jusqu'a 8 véhicules et 96 requétes,
et nous fournissons 19 nouvelles solutions pour
ces instances. Ensuite, nous présentons un al-
gorithme CG, qui est intégré dans le schéma
Branch-and-price (B&P) pour résoudre exacte-
ment I'E-ADARP. Notre algorithme CG s'appuie
surun algorithme d'étiquetage efficace pour gé-
nérer des colonnes avec des codts réduits néga-
tifs. Dans I'extension des étiquettes, le principal
défi consiste a déterminer tous les horaires op-
timaux de temps de trajet en exces d'utilisateur.
Pour résoudre ce probléeme, nous appliquons la
représentation basée sur les fragments et pro-
posons une nouvelle approche pour extraire

les fragments des arcs tout en garantissant I'op-
timalité de l'excés de temps de parcours de
I'utilisateur. Nous construisons ensuite un nou-
veau graphe qui préserve toutes les routes réa-
lisables du graphe original en énumérant tous
les fragments réalisables, en les extrayant en
arcs et en les connectant les uns aux autres,
aux dépbts et aux stations de recharge de ma-
niere réalisable. Sur le nouveau graphe, nous
appliquons des régles de dominance fortes et
des vérifications de faisabilité a temps constant
pour calculer efficacement les chemins les plus
courts. Dans les expériences, nous résolvons
71 instances sur 84 optimalement, améliorons
30 bornes inférieures et générons 41 nouvelles
meilleures solutions sur des instances précé-
demment résolues et non résolues. Enfin, nous
étudions le bi-objectif E-ADARP (BO-EADARP),
qui traite le temps de trajet total et le temps de
trajet total de l'utilisateur excédentaire comme
des objectifs distincts. Pour aborder le BO-
EADARP, nous introduisons deux algorithmes
de recherche dans l'espace de criteres et un al-
gorithme de recherche dans l'espace de déci-
sion ( I'algorithme BOBP). Nous appliquons ces
algorithmes pour résoudre le BO-EADARP sur
des instances de petite a moyenne taille avec
différentes restrictions de batterie minimales.
Parmi les trois algorithmes, I'algorithme BOBP
s'avere étre le plus efficace. Nous analysons
ensuite les solutions efficaces sous différentes
contraintes énergétiques. Nos observations reé-
velent une augmentation notable des temps de
trajet totaux pour les solutions efficaces obte-
nues avec des restrictions d'énergie plus éle-
vées, tandis que les temps de trajet excéden-
taires totaux correspondants restent stables.
Pour chaque niveau de restriction d'énergie, les
solutions efficaces obtenues offrent des infor-
mations manageériales pour les fournisseurs de
services rentables et non rentables : un objectif
peut étre amélioré significativement avec une
légeére augmentation de l'autre.
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Abstract : This thesis proposes highly-efficient
heuristic and exact algorithms to solve the
Electric Autonomous Dial-A-Ride Problem (E-
ADARP), which consists in designing a set of
minimum-cost routes that accommodates all
customer requests for a fleet of Electric Au-
tonomous Vehicles (EAVs). The E-ADARP has
two important features : (i) the employment
of EAVs and a partial recharging policy; (ii)
the weighted-sum objective function that mi-
nimizes the total travel time and the total ex-
cess user ride time. In this thesis, we first
propose a Deterministic Annealing (DA) algo-
rithm to solve the E-ADARP. Partial recharging
(i) is handled by an exact route evaluation
scheme of linear time complexity. To tackle
(i), we propose a new method that allows ef-
fective computations of minimum excess user
ride time by introducing a fragment-based re-
presentation of paths. To validate the perfor-
mance of the DA algorithm, we compare our
algorithm results to the best-reported Branch-
and-Cut (B&C) algorithm results on existing ins-
tances. Our DA algorithm provides 25 new best
solutions and 45 equal solutions for 84 exis-
ting instances. To test the algorithm'’s perfor-
mance on larger-sized instances, we establish
new instances with up to 8 vehicles and 96 re-
quests, and we provide 19 new solutions for
these instances. Then, we present a highly ef-
ficient CG algorithm, which is integrated into
the Branch-and-price (B&P) scheme to solve the
E-ADARP exactly. Our CG algorithm relies on
an effective labeling algorithm to generate co-
lumns with negative reduced costs. In the ex-
tension of labels, the key challenge is deter-
mining all excess-user-ride-time optimal sche-
dules to ensure finding the minimum-negative-
reduced-cost route. To handle this issue, we

apply the fragment-based representation and
propose a novel approach to abstract frag-
ments to arcs while ensuring excess-user-ride-
time optimality. We then construct a new graph
that preserves all feasible routes of the ori-
ginal graph by enumerating all feasible frag-
ments, abstracting them to arcs, and connec-
ting them with each other, depots, and rechar-
ging stations in a feasible way. On the new
graph, we apply strong dominance rules and
constant-time feasibility checks to compute the
shortest paths efficiently. In the computational
experiments, we solve 71 out of 84 instances
optimally, improve 30 previously-reported lo-
wer bounds, and generate 41 new best solu-
tions on previously solved and unsolved ins-
tances. Finally, we investigate the Bi-objective E-
ADARP (BO-EADARP), which treats the total tra-
vel time and the total excess user ride time as
separate objectives. To tackle the BO-EADARP,
we introduce two criterion space search algo-
rithms and a decision space search algorithm
(i.e., the BOBP algorithm). In the computatio-
nal experiments, we apply these algorithms
to solve the BO-EADARP on small-to-medium-
sized instances with different minimum battery
restrictions. Among the three algorithms, the
BOBP algorithm proves to be the most effi-
cient. We then analyze the efficient solutions
under different energy restrictions. Our obser-
vations reveal a noticeable increase in total tra-
vel times for the obtained efficient solutions
with higher energy restrictions, while the cor-
responding total excess user ride times remain
stable. For each level of energy restriction, the
obtained efficient solutions offer managerial in-
sights for profitable and non-profitable service
providers : one objective can be improved signi-
ficantly with a slight increase of the other.
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Chapter 1

Introduction

The Dial-A-Ride Problem (DARP) consists in designing minimum-cost routes by scheduling a fleet of vehicles to serve
a set of customers who specify their origins and destinations (Cordeau & Laporte, 2007). For each customer request,
a time window is defined on either the origin or the destination. The DARP was first introduced in the context of
providing door-to-door service for handicapped individuals, e.g., Madsen et al. (1995); Toth & Vigo (1996). In recent
years, the concept of the DARP has been extended to adopt requests from normal individuals and provide them
with ride-sharing services. Many demand-responsive systems have been constructed, such as the mobile-based
app of BlaBlaCar in France and Didi Hitch in China (Jin et al., 2018). With the booming of on-demand ride-sharing
services, considerable attention has arisen to solving the DARP and its variants (Cordeau & Laporte, 2007; Ho et al.,
2018). The DARP is a generalization of several NP-hard problems such as the Pickup and Delivery Vehicle Routing
Problem (PDPVRP) and the Vehicle Routing Problem with Time Windows (VRPTW) and is therefore very difficult
to solve to optimality using exact methods. Consequently, only a few studies have proposed exact methods, e.g.,
Cordeau (2006); Braekers et al. (2014); Gschwind & Irnich (2015); Ropke et al. (2007); Parragh (2011); Braekers
& Kovacs (2016); Qu & Bard (2015) and most studies propose heuristic and metaheuristic methods that return
high-quality local optimum quickly (e.g., Cordeau & Laporte (2003); Ropke & Pisinger (2006); Parragh et al. (2010);
Masmoudi et al. (2017); Detti et al. (2017)). The DARP is even more challenging than the PDPVRP and the VRPTW,
as user inconvenience needs to be considered while minimizing the operational cost (Cordeau & Laporte, 2003). The
classical DARP model imposes a maximum user ride time constraint for every user request to maintain a certain level
of service quality. Due to this constraint in combination with time windows, scheduling service start times as early as
possible does not necessarily result in a feasible schedule for a given sequence of pickup and delivery locations,
given that one exists. On the contrary, allowing delays in the service start time may help to eliminate unnecessary
waiting time for succeeding nodes and, as such, reduce the user ride time. Heuristic solution methods for the DARP
usually invoke the “eight-step” procedure of Cordeau & Laporte (2003), which composes a feasible schedule with the

latest possible service start time at the origin depot and subsequently delays service start times at pickup nodes



using the notion of forward time slack (Savelsbergh, 1992) while respecting maximum user ride time constraints. As
a result, the complexity of the route evaluation in the DARP rises substantially.

The Electric Autonomous DARP (E-ADARP) was first introduced by Bongiovanni et al. (2019) and has been
developed to incorporate various real-life settings. Different from the classical DARP, which assumes vehicles to
have homogeneous vehicle capacity (e.g., Cordeau (2006); Cordeau & Laporte (2003)), the E-ADARP accounts
for heterogeneous vehicles with different capacities to better accommodate diverse user requests. Furthermore,
the E-ADARP includes multiple origin and destination depots in the graph, enabling vehicles to start and end their
routes at different depots. Apart from these fundamental characteristics, the E-ADARP also considers practical
aspects associated with the electric and autonomous nature of the vehicles. Firstly, vehicles are allowed to perform
partial recharging at recharging stations, which is a more feasible alternative to full recharging (e.g., Schneider
et al. (2014); Hiermann et al. (2016)). This strategy grants vehicles greater flexibility in charging operations and has
demonstrated efficacy in enhancing solution quality (Keskin & Catay (2016)). Secondly, given that the E-ADARP
employs autonomous vehicles that need to be continuously relocated during service, it removes the need to predefine
destination depots and enables non-stop vehicle operations. This characteristic is more practical and differentiates
the E-ADARP from most of the DARP literature (e.g., Braekers et al. (2014); Parragh (2011)), where maximum route
duration constraints are considered, and destination depots are predefined.

The objective of the E-ADARP is to design a set of minimum-cost routes for a fleet of Electric Autonomous
Vehicles (EAVs) by scheduling them to provide ride-sharing services for customers that specify their origins and
destinations. Although the E-ADARP shares some of the constraints of the classical DARP (e.g., maximum user ride
time, time window constraints), the E-ADARP is different from the classical DARP in two aspects: (i) the employment
of EAVs and a partial recharging policy, and (ii) a weighted-sum objective that minimizes both total travel time and
total excess user ride time; The first aspect (i) requires checking battery feasibility for a given route and implies other
important features of the E-ADARP: (a) partial recharging is allowed en route, and (b) the maximum route duration
constraints no longer exist due to the autonomy of vehicles. Allowing partial recharging introduces a trade-off between
the time window and battery constraints: although longer recharging extends the driving range, it may also lead to
time-window infeasibility for later nodes. The second aspect (ii) allows quantifying the user inconvenience directly.
By incorporating excess user ride time into the objective, the E-ADARP offers the opportunity to enhance service
quality by minimizing the excess user ride time without introducing additional operational costs. However, solving the
E-ADARP becomes more complex, as it requires determining schedules with minimal total excess user ride time for a
feasible solution. Other problem-specific constraints also increase the complexity of solving the E-ADARP. These
constraints include a minimum battery level that must be maintained at the end of the route as well as limited visits to
each recharging station.

In this thesis, we propose efficient heuristic and exact algorithms (i.e., Deterministic Annealing and Branch-and-

price algorithms) to solve the static version of the E-ADARP. In solving the static E-ADARP, we develop efficient



methods that can exactly determine excess-user-ride-time optimal schedules for a given E-ADARP path. These
methods are interesting for decision-makers seeking to enhance service quality by strategically scheduling vehicles.
After validating the efficiency of our proposed algorithms, we extend our investigation to the bi-objective version
of the E-ADARP. This variant considers total travel time and total excess user ride time as two distinct objectives.
Our objective in this part is to analyze the trade-off between operational costs, represented by total travel time, and
service quality, measured by total excess user ride time. By examining this trade-off, we aim to provide a full picture of
this trade-off. This analysis is beneficial for decision-makers in both profitable service providers (e.g., Uber and Didi)
and non-profitable organizations (e.g., the Red Cross). Managerial insights from the analysis enable decision-makers
to make more informed and reliable choices based on their specific priorities.

The remainder of this chapter is organized as follows. In Section 1.1, we present a comprehensive literature
review on (1) exact and approximate approaches that solve the classical DARPs, (2) related literature of the DARP
with Electric Vehicles (EVs) and Electric Vehicle Routing Problems (E-VRPSs), (3) feasibility checking in DARPs and
excess user ride time minimization, and (4) methods for solving multi-objective problems. Then, we conclude existing
research gaps and the motivation of the thesis. Section 1.2 discusses the challenges in solving the E-ADARP and
highlights the contributions of the thesis. Section 1.3 outlines the structure of the thesis and the organization of the

following chapters.

1.1 Literature Review

The E-ADARP can be regarded as a combination of the classical DARP and the Electric Vehicle Routing Problems

(E-VRPs). However, it is distinct from these two contexts in the following aspects:

1. the application of Electric Autonomous Vehicles (EAVSs) in the vehicle fleet and partial recharging performed at

recharging stations;
2. a weighted sum objective function minimizing total travel time and total excess user ride time.

This section first reviews the representative works of exact and heuristic solution methods to tackle the classical
DARP and its variants. Then, we systematically review the literature related to DARPs with EVs and E-VRPs. More
specifically, we focus on reviewing the works that consider the partial recharging policy. The third part of this section
is an overview of feasibility checking and total/excess user ride time minimization in the DARPs. We first review
representative works on the feasibility check for a given DARP route, especially those that focus on evaluating
maximum user ride time feasibility. We then review DARP-related articles that specifically focus on user ride time
minimization. The last part of this section is a comprehensive review of multi-objective optimization, and we mainly
focus on state-of-the-art methods of bi-objective optimization. Related works on multi-objective DARP are analyzed.

This section is closed with the conclusion of the review and the motivation of the thesis.



1.1.1 Exact and approximate approaches to tackle DARPs

There are two main streams of solution methods to solve the DARP, they are exact and approximate approaches.
Exact approaches mainly take the structure of the branch-and-bound (B&B) tree to obtain the global optimum.
Due to the complexity of the problem as well as the solving mechanism of the B&B (i.e., obtain global optimum by
enumerating all possible solutions), exact approaches can only solve instances of limited size to optimality within
considerable computational time. Considering the A"P-hardness of DARPs, most research attention has been
concentrated on developing highly-efficient approximate approaches such as heuristic and meta-heuristic algorithms

to solve larger-sized instances and return high-quality local optimums within reasonable computational time.

Exact algorithms in the literature of DARPs can be classified as Branch-and-Cut (B&C), Branch-and-Price (B&P),
and Branch-and-Price-and-Cut (B&P&C) algorithms. The basic idea of a B&C algorithm is to generate valid cutting
planes to tighten the LP relaxations of the problem in the B&B tree. These additional cuts lead to stronger lower
bounds and increase the chances that an integer solution is found. The first B&C algorithm to solve the classical
DARP is proposed by Cordeau (2006), where the author presented a three-index compact formulation for the DARP
and introduced several families of valid inequalities. The proposed B&C algorithm can solve instances with up to 4
vehicles and 48 requests. Based on the three-index formulation in Cordeau (2006), Ropke et al. (2007) introduced
two tighter formulations of the DARP. Three new classes of valid inequalities, as well as some previously identified
valid inequalities for the DARP and the VRPTW, are added. The largest instances that can be solved optimally with
the proposed B&C algorithm contains 8 vehicles and 96 requests. These identified valid inequalities in Cordeau
(2006); Ropke et al. (2007) have also been applied in the following studies, e.g., Parragh (2011); Braekers et al.
(2014); Braekers & Kovacs (2016); Liu et al. (2015). These works define new variants of the DARP and supplement
problem-specific cuts to solve the defined problem variants. Different from B&C algorithms, the basic idea of the
B&P algorithm is to first reformulate the compact formulation into a master problem (usually formulated as set
partitioning problem) and pricing subproblems (can be formulated as shortest path problem with resource constraints)
by Dantzig-Wolfe decomposition (LUbbecke & Desrosiers (2005)). At each node of the B&B tree, the CG algorithm
is then invoked to obtain tightened lower bounds of the original problem by iteratively solving the restricted master
problem and pricing subproblems. When applying the CG algorithm, the solving efficiency of pricing subproblems
plays the key role in the CG efficiency and the overall performance of a B&P algorithm. In the literature, pricing
subproblems are usually solved by dynamic programming (e.g., Garaix et al. (2011)). Also, pricing subproblems
can be solved with a hybridized framework (e.g., Parragh et al. (2012, 2015)), where heuristic and exact algorithms
are both used to find negative-reduced-cost columns. Finally, the B&P&C algorithms take the structure of B&P and
integrates valid cutting planes in the B&P tree to further enhance the obtained lower bounds. A few existing literature
implement the B&P&C algorithms to solve the DARP and its variants, e.g., Qu & Bard (2015); Gschwind & Irnich

(2015); Ropke & Cordeau (2009), where they observe that adding cuts can effectively reduce the number of nodes

10



explored in the B&B tree.

Heuristic and metaheuristic methods are extensively used to solve the DARP and its variants in the literature.
Among literature that proposes heuristic or metaheuristic methods, local search-based metaheuristics take a large
portion. The idea of local search-based metaheuristics is to generate new solutions by exploring the neighborhood of
the current solution through local search operators. By designing efficient local search operators, these metaheuristics
can effectively explore the search space and identify high-quality solutions in short computational time. The most-used
local-search-based metaheuritics in the literature are: tabu search (TS) (e.g., Cordeau & Laporte (2003); Kirchler &
Calvo (2013); Detti et al. (2017); Paquette et al. (2013); Ho & Haugland (2011); Guerriero et al. (2013)), simulated
annealing (SA) and deterministic annealing (DA) (e.g., Braekers et al. (2014); Su et al. (2023); Reinhardt et al. (2013)),
variable neighborhood search (VNS) (e.g.,Parragh et al. (2010, 2012, 2015); Parragh (2011); Detti et al. (2017)), and
large neighborhood search (LNS) and adaptive large neighborhood search (ALNS) (e.g., Ropke & Pisinger (2006);
Gschwind & Drexl (2019); Molenbruch et al. (2017); Braekers & Kovacs (2016); Masson et al. (2014); Qu & Bard
(2013)). Recently, a growing number of researches consider the hybridization of metaheuristic algorithms with other
methods such as mathematical programming approaches or other metaheuristic algorithms. Through combining
different techniques appropriately, the performance of individual techniques is enhanced by leveraging the strengths
of each. For example, some researches hybridize one metaheuristic into another (e.g., Masmoudi et al. (2016, 2017);
Chevrier et al. (2012)). In these hybrid algorithms, local search-based metaheuristics (e.g., TS and SA) are combined
with population-based metaheuristics (e.g., genetic algorithm (GA)). These hybrid algorithms take advantages of both
types of algorithms by using local search to explore the search space around a single solution and population-based
metaheuristics to evolve the population over time. By combining these two approaches, hybrid algorithms can achieve
better performance than using either algorithm alone. Another way to hybridize metaheuristics is to execute them
sequentially. An example is presented in Parragh et al. (2009), where the authors apply a path relinking algorithm
after a VNS algorithm. The idea of path relinking algorithm is to combine two elite solutions (e.g., the solutions from
VNS, one solution called the “start solution”, the other is “target solution”) and to generate a even better solution from

these two solutions.

1.1.2 Related literature of DARPs with EVs and E-VRPs

Several articles have investigated the impact of EVs on the DARP and Masmoudi et al. (2018) is the first work that
introduces DARP with EVs. In their work, EVs are recharged through battery swapping and are assumed to have
a constant recharging time. The authors use a realistic energy consumption model to formulate the problem and
introduce three enhanced Evolutionary VNS (EVO-VNS) algorithm variants, which can solve instances with up to
three vehicles and 18 requests. Bongiovanni et al. (2019) considers EAVs in the DARP and introduces the E-ADARP.
Partial recharging is allowed when vehicles visit recharging stations, and the authors impose a minimum battery level

constraint for the vehicle’s State of Charge (SoC) at the destination depot. The minimum battery level is formulated

11



as 7@, where ~ is the ratio of the minimum battery level to total battery capacity, and @ is the total battery capacity.
Three different  values are analyzed, i.e., v € {0.1,0.4,0.7}, meaning that 10%, 40%, and 70% of the total battery
capacity must be maintained at the destination depot. Solving the problem becomes more difficult when ~ increases.
The authors formulate the problem into a three-index and a two-index model and introduce new valid inequalities in a
Branch-and-Cut (B&C) algorithm. When ~ = 0.1, 0.4, the proposed B&C algorithm obtains optimal solutions for 42 out
of 56 instances. However, when ~ = 0.7, the B&C algorithm cannot solve 9 out of 28 instances feasibly, even with a
two-hour run time. The largest instance that can be solved optimally by the B&C algorithm contains 5 vehicles and
40 requests. Recently, Bongiovanni et al. (2022b) have proposed a Machine Learning-based Large Neighborhood
Search (MLNS) to solve the dynamic version of the E-ADARP. The proposed approach is a two-phase metaheuristic
that sequential solves static E-ADARP subproblems. However, its performance on the previously defined static
E-ADARP instances is not reported. Different from our algorithm, the authors focus on selecting destroy-repair
operators at each iteration by a machine learning approach, which is trained offline on a large dataset produced

through simulation.

The E-VRP was first introduced by Conrad & Figliozzi (2011), and extensive works have been conducted in the
field of E-VRPs in recent years, e.g., Erdogan & Miller-Hooks (2012); Schneider et al. (2014); Goeke & Schneider
(2015); Hiermann et al. (2016, 2019). Among them, Erdogan & Miller-Hooks (2012) is the first to propose a Green
VRP (G-VRP) using alternative fuel vehicles. These vehicles are allowed to visit a set of recharging stations during
vehicle trips. The authors adapt two constructive heuristics to obtain feasible solutions and they further enhance
these heuristics by applying local search. However, the proposed model does not consider capacity restrictions
and time window constraints. Schneider et al. (2014) propose a more comprehensive model named the Electric
Vehicle Routing Problem with Time Windows (E-VRPTW). They extend the work of Erdogan & Miller-Hooks (2012)
by using electric vehicles and considering limited vehicle capacity and specified customer time windows. They apply
a Variable Neighborhood Search (VNS) algorithm hybridized by Tabu Search in local search to address E-VRPTW.
The recharging stations are inserted or removed by a specific operator, and the recharged energy is assumed to
be linear with the recharging time. They apply a full recharging policy on each visit to a recharging station. All the
vehicles are assumed to be identical in terms of vehicle and battery capacity. Goeke & Schneider (2015) extend
the homogeneous E-VRPTW by considering a mixed fleet of electric and conventional vehicles. A realistic energy
consumption model that integrates speed, load, and road gradient is employed. To address the problem, they propose
an ALNS algorithm using a surrogate function to evaluate violations efficiently. Hiermann et al. (2016) extend the work
of Goeke & Schneider (2015) by taking into account the heterogeneous aspect (i.e., fleet composition). They solve
the problem by ALNS and determine the positions of recharging stations via a labeling algorithm. The recharging
policy considered is also full recharging with a constant recharging rate. Hiermann et al. (2019) extend their previous
work (Hiermann et al., 2016) by considering partial recharging for a mixed fleet of conventional, plug-in hybrid, and

electric vehicles. The engine mode selection for plug-in hybrid vehicles is considered as a decision variable in their
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study. A layered optimization algorithm is presented. This algorithm combines labeling techniques and a greedy
route evaluation policy to calculate the amount of energy required to be charged and determine the engine mode
and energy types. This algorithm is finally hybridized with a set partitioning problem to generate better solutions
from obtained routes. Except for Hiermann et al. (2019), many works also relax the full recharging assumption to a
partial recharging policy, e.g.,(Bruglieri et al., 2015; Keskin & Catay, 2016; Desaulniers et al., 2016; Duman et al.,
2021; Ceselli et al., 2021). The majority of these articles develop meta-heuristic algorithms to solve the problem,
e.g., Felipe et al. (2014); Hiermann et al. (2019); Montoya et al. (2017); Froger et al. (2017), while some of them
propose exact methods. The representative work is Desaulniers et al. (2016), where the authors investigate four
E-VRP variants: E-VRP with full recharging plus single/multiple visits to recharging stations and E-VRP with partial
recharging plus single/multiple visits to recharging stations. For each variant, customized mono- and bi-directional
labeling algorithms are proposed to solve the CG subproblems within a B&P framework. More recently, Lam et al.
(2022) investigates a more practical case of E-VRPTW in which the availability of chargers at the recharging stations

is considered. They propose a B&C&P algorithm that is capable of solving instances with up to 100 customers.

1.1.3 Feasibility checking in DARPs and related literature that minimizes total or excess

user ride time

As for feasibility checks for a given DARP route, the “eight-step” method introduced in Cordeau & Laporte (2003)
is extensively applied. However, “eight-step” method has a worst-case time complexity of O(r?) (r is the number
of vertices in the route) and would generate considerable computational time in the case of voluminous feasibility
checks are needed (e.g., when applying a heuristic method). To improve the efficiency in feasibility checking for
a DARP route, several works have been conducted. In Hunsaker & Savelsbergh (2002), the authors propose a
feasibility-checking heuristic of linear time complexity in the DARP with maximum waiting time constraints. Their
proposed heuristic constitutes three passes to check the feasibility. However, this method cannot guarantee finding a
feasible schedule in case one exists. In this case, this algorithm returns an incorrect infeasibility declaration. This
issue is handled in Haugland & Ho (2010), where an exact procedure of feasibility checking for a DARP route is
proposed. The worst-time complexity of their procedure is of O(r logr). Tang et al. (2010) proposes an algorithm of
O(r?) worst-time complexity by gradually constructing the schedule on the original route. Then, Firat & Woeginger
(2011) propose another idea to handle the feasibility issue. They rewrite the scheduling problem considered in the
DARP as a system of difference constraints. Then, the feasibility checking is converted to decide whether a digraph
associated with the defined system has a negative-weight cycle. The cycle detection process can be fulfilled in linear
time after reformulating such a system over an appropriate set of variables. Gschwind (2019) proposes a route
feasibility check procedure for the synchronized pickup and delivery problem (SPDP), which was first introduced by

Gschwind (2015). Besides an upper bound on ride time, the SPDP has imposed a lower bound on it. Therefore, the
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SPDP has minimum and maximum ride time constraints. In Gschwind (2019), the author adapted the algorithms of
Tang et al. (2010) and Firat & Woeginger (2011) in the feasibility checking of an SPDP route. From the computational
results, the adapted algorithm of Tang et al. (2010) outperforms the one from Firat & Woeginger (2011) averagely.
Recently, Gschwind & Drex| (2019) proposes an ALNS algorithm equipped with an amortized constant time to check
the insertion feasibility of a request into a given feasible route. They make use of the auxiliary data calculated from
preprocessing work in all feasibility checks. Consequently, the checking is independent of the number of requests
in the route and only takes only constant time for a given route. However, the preprocessing work seems to be
time-consuming and has a time complexity of O(r3) for a route of r vertices to generate necessary auxiliary data.
To conclude, many literature has been proposed to handle the feasibility issue in a more efficient way for a given
complete route. However, in the extension of a given partial path, these above literature is not appropriate for checking
the extension feasibility. Gschwind & Irnich (2015) is the only work that handles the time-window and ride-time
constraints jointly in the labeling algorithm for solving the CG subproblems. This is the first time that the schedule
feasibility issue is tackled in the extension of a partial path. In their proposed labeling algorithm, they introduce
additional resource attribute named “latest possible delivery time”, which is formulated a function of the service
start time ¢ at the current node where all possible time schedules of all open requests along the partial path are
considered. This labeling algorithm results in a labeling-based feasibility check of O(rM) time complexity, where M

is the maximum number of open requests along a feasible path.

All the above-mentioned literature only improves t