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Résumeé

Espaces médians

Le sujet de cette thése porte sur les espaces métriques qu’on appelle espaces médians
et la direction principale concerne I’étude des actions isométriques sur les espaces médians
complets connexes localement compact et de rang fini. On montre d’abord une caracté-
risation de la compacité locale dans le contexte de cette géométrie. Puis, on donne une
classification, dans cette classes, pour les espaces médians qui admettent une action transi-
tive. On montre qu’un tel espace est nécessairement isométrique a R™ munie de la métrique
¢'. Finalement on montre que si le groupe d’isométrie d’un espace médian X vérifie cer-
taines conditions qui sont assez naturelles, alors les orbites de n’importe quelle action
isométrique sur X sont discrétes.

Mots clés : Géométrie métrique, espaces médians, algébres médianes, algébres universelles,
dualité.



Abstract

Median spaces

The subject of this thesis is median spaces and the main direction concerns the study
of isometric actions on complete connected locally compact median space of finite rank.
We first give a characterization of the local compactness in this context. Then we give a
classification theorem in this class for median spaces which admit a transitive action. We
show that such median spaces are necessarily isometric to R” endowed with the ¢!-metric.
Finally, we prove that when the isometry group of a median space X verifies certain condi-
tions, then the orbits of any action on X are discrete.

Key Words : Metric geometry, median spaces, median algebras, universal algebras, dua-
lity.
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Introduction

A median space (X, d) is a metric space such that for any three points a, b, c € X, there
exist a unique point m(a, b, c) € X, called the median points between a, b and ¢, such that

[a,b] N [b,c] N [a,c] = {m(a,b,c)}

where the interval [a, b] between a and b corresponds to the set of point x € X such that
d(a,b) = d(a,z) + d(x,b).

Motivational examples are given by simplicial (real) trees where the intervals coincide
with the geodesics. First examples of median spaces go back to [BK47| and are given by
metric distributive lattices, see [Bir67] Ch. V, §9 for a definition of metric lattices.

Any median space comes naturally with a ternary operation m, called the median
operation, which associates to each triple, their median point. This ternary operation en-
capsulates a great deal of the geometry of the median space as it detects intervals as
follows

[a,b] = {ce X | m(a,b,c) = c}.

The median operation verifies the following set of equations :

m(z,z,y) = x
m(x7 y7 Z) = m(y7l’7 Z) = m(aj’ Z? y)
m(m(z,y, z),u,v) = m(x,m(y,u,v),m(z,u,v))

Conversely, any set (A, m) endowed with a ternary operation m : A> — A which verifies
the above set of equations will enjoy the same property as the median operation obtained
from a median space. We call (A, m) a median algebra and a generic example is given by
the set of subsets of a set X, where the ternary operation is defined as follows :

mp(A,B,C) = (AuB)n(BuC)n(AuC)
= (AnB)u(BnC)u(An(O),

for any A, B,C € P(X).

The structure of median algebras first appears as a way to characterize boolean algebra
in [Gra47] and distributive lattices in [BK47| by the mean of a ternary operation verifying
some set of postulates.
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We note that the set of axioms cited above are not canonical and median algebras
were studied under different set of postulates (and different names also). In fact, median
algebras can be approached from different angles : median ternary operation, intervals (or
segments) seen as a map from X? — P(X) and a ternary relation called betweenness. The
equivalence between the three approaches was shown in [Sho54].

Median spaces gained interest from the field of graph theory with the notion median
graph which gives a natural generalization to simplicial trees and hypercubes. The link
between graphs and median algebras appeared implicitly in [BK47| and [Ava61|, where the
graph is the one associated with the distributive lattice. In the same vein, this association
was studied in [Neb70] and [Neb71] were the median graphs are the principal objects of
study. For an overview on median graphs and their applications see [Mulll].

Convexity in median algebras is defined with respect to intervals. A halfspace is a
convex subset with a convex complement. Assuming Zorn’s lemma, such halfspaces exist
and any pair of points are separated by a halfspace, see Theorem 1 [Nie79] where ideal and
prime ideal stand for convex subset and halfspace respectively. The set of halfspace of a
median algebra comes with a natural structure of a partially ordered set with a complemen-
tary operation (poc set) (P, <, *,0) where 0 is a minimal element and the complementary
operation is an involution = : P — P such that :

*

VpgeP, p<q = ¢ <p
VpeP, p<p* = p=0

A duality result a la Stone was shown between the category of median algebras and the
category of poc sets in [[sh80| and [Wer81].

Another important class of examples of median spaces is given by CAT(0) cube com-
plexes. These objects played a key role in understanding groups which arise as the funda-
mental group of three dimensional manifolds. A CAT(0) cube complex is a cube complex
which is a CAT(0) space when endowed with the length metric, where each cell is endowed
with the euclidean metric. If we consider the length metric where each cell is endowed with
the ¢*-metric, we obtain a median space (see Theorem 6.8 [Che00]).

In the same spirit of Stalling’s theorem about ends of group, It was shown in [Sag95]
that a group has more then one end with respect to a subgroup if and only if it acts
essentially on a CAT(0) cube complex.

In [NR98] and [Roll6], the authors linked Sageev construction of the CAT(0) cube
complex with the duality between median algebra and poc set, where the O-skeleton of
the CAT(0) cube complex comes with a median algebra structure. The link with median
algebra was implicit in [NR98] and more explicit and detailed in [Roll6].

In fact, the graph obtained from the 1-skeleton of any CAT(0) cube complex is a median
graph and any median graph arises as such, as it was shown in [Che00)].

In [NicO4] and [CNO5]|, the relation between group actions on space with walls (see
[HP98]) and CAT(0) cube complexes was made. In [CDH10], it was shown that a group
acts isometrically on a space with measured walls, which is the non discrete version of
space with walls (see [CMV04]), if and only if it acts isometrically on a median space.

2
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Moreover, the following characterization of Kazhdan’s property (T) and Haagerup property
was made :

Theorem ([CDH10| Theorem 1.2 ). Let G be a locally compact second countable group.

— The group G has Kazhdan’s property (T) if and only if any continuous isometric
G-action on a median space has bounded orbits.

— The group has Haagerup property if and only if there exist a continuous proper
isometric G-action on some median space.

There is a suitable and practical way of speaking of dimension in the case of median
spaces, given by the notion of the rank. Loosely speaking, this detects the highest dimension
of discrete cubes, endowed with the /!-metric, that can be isometrically embedded into the
space, see Definition 1.1.9.

In two directions of this thesis, we will be working in the realm of finite rank median
spaces. In the other direction, we will be investigating the duality in a certain class of
complete median spaces of infinite rank. The latter class encompasses the class of locally
convex median spaces (see Definition 2.1.1).

Isometric actions on locally compact median space

Median spaces of finite rank generalize finite dimensional CAT(0) cube complexes the
same way R-trees generalize simplicial trees. Any CAT(0) cube complex has a canonical
metric which makes it a median space. The converse holds for complete connected median
spaces of finite rank as it was shown in [Bow16] that these spaces admit a bilipschitz equiva-
lent metric which is CAT(0). Any geometric action, i.e. properly discontinuous cocompact
action, on an R-tree gives rise to a geometric action on a simplicial tree. It is unknown
whether any geometric action on a finite rank median space gives rise to a geometric action
on a finite dimensional CAT(0) cube complex, see [CD17] subsection 1.b. It is false in the
infinite rank case and examples are given by irreducible lattices in a product of SO(n, 1). It
was shown in [CD17]| that SO(n, 1) acts properly cocompactly on an infinite rank median
space and we know by results given in [Fiol9| that any action of an irreducible lattice in
a product of SO(n, 1) on a median space of finite rank has finite orbit.

Many evidence for an affirmative answer to the latter question in the finite rank case
are given by works of E. Fioravanti which extended many results concerning action on
CAT(0) cube complexes to the case of finite rank median spaces.

In [Sha00], the author obtains as a consequence of his superrigidity result that irredu-
cible lattices in higher rank lie groups, except few cases, have the fixed point property for
their isometric actions on trees. In the case of CAT(0) cube complexes, it was done in the
Appendix [CFI16]. A similar result follows in the case of complete median spaces of finite
rank as it was shown in [Fiol9].

A version of Tits alternative for groups acting on CAT(0) cube complexes was shown
in [SWO05], [CS11]. The same results hold in the case of median spaces of finite rank and it
was done in [Fiol8| by extending the machinery used in [CS11] to the latter case.

3
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It is a well known fact that isometry group of real trees are semi simple. The same hold
for CAT(0) cube complexes as it was shown in [Hag21|. The result was extended to the
case of connected finite rank median spaces in [Fio21].

In one direction of this thesis, we will be investigating isometric action on complete
locally compact median space of finite rank. We first show, assuming certain conditions on
the isometry group of the median space, that orbits are discrete :

Theorem A. (see Theorem A) Let X be an irreducible complete connected locally compact
median space of finite rank. Let us assume that the action of G := Isom(X) on X is Roller
non elementary, Roller minimal and minimal. Then any G-orbit is discrete.

The argument of the proof relies in an essential way on the machinery developed in
[Fio19].

Assuming that the median space is locally compact imposes a certain configuration on
the halfspaces which are transverse to a ball. We give the following characterization of
compact subsets by the combinatoric of the halfspaces which are transverse to the subset :

Theorem B. (see subsection 4.2.2) Let X be a complete connected median space of rank
n. Let C' be a closed bounded subset of X. Then the following are equivalent :

1. The subset C' is compact.

2. For any zy € C' and € > 0, there exist x1, ..., x;, € C' such that for any x € C' we have
d(x,[zo, x;]) < € for some i € {1, .., k.}.

3. For any € > 0, if H, is a family of pairwise disjoint halfspaces transverse to C' and of
depth bigger than € in the convex hull of C, then it is finite.

Where the depth of a subset H < X inside another subset C'is defined as depthc(H) :=
sup({d(x, H)/x € C}.

Theorem B falls within the framework of the duality between the category of median
spaces and the category of pointed measured partially ordered sets with inverse operation.
It characterizes the subcategory of the latter category which is dual to the subcategory of
complete compact connected median space of finite rank.

Having Theorem B in hand, we prove the following classification of complete connected
locally compact median space of finite rank which admits a transitive action :

Theorem C. Let X be a connected locally compact median space of finite rank which
admits a transitive action, then X is isometric to (R™, ).

The argument consists of considering the set of halfspaces which are "branched" at an
arbitrary point. A halfspace is a convex subset such that its complementary is also convex.
The set H.(X) of halfspaces branched at a point x € X in a complete median space of
finite rank is the set of halfspaces h = X such that z € h n he. The set H,(X) can be
seen as the extension of the notion of the valency at a point z in an R-tree to the case of
complete median space of finite rank. Theorem C is obtained then as a consequence of the
following results :
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Theorem D. (see subsection 4.3.2) Let X be a complete connected median space of rank
n which admits a transitive action. If for some or equivalently any x € X :

1. The set H, contains no triple of pairwise disjoint halfspaces then the space X is
isomorphic to (R",').

2. The set H, contains three halfspaces which are pairwise disjoint then the space X is
not locally compact.

We note that the result of Theorem C still holds when we assume that the action of
the group of isometry is topologically transitive, although we do not give a proof.

Duality

In [Sto36], M. H. Stone showed a duality between the category of boolean algebra and
the category of Stone space (Totally separated compact space). The contravariant functor
from the latter category to the former one associates to each Stone space X, the set of
continuous maps from X to {0,1}, where its boolean algebra structure is induced from
P(X) = {0,1}*.

The other contravariant functor associates to each boolean algebra B the set of mor-
phisms of boolean algebras from B to the trivial boolean algebra {0, 1}, endowed with the
topology of pointwise convergence. It identifies naturally with the set {0, 1} endowed with
the product topology.

This duality extends to the framework of median algebras as it was proved in [Isb&0]
(see Theorem 6.13 therein), where it was shown in particular that the category of Stone
median algebra and the category of poc sets are dually equivalent. A Stone median algebra
is a median algebra endowed with a Stone topology such that the ternary operation is
continuous.

Theorem (|Isb80] Theorem 6.13, [Rol16] Theorem 5.3). A Stone median algebra is iso-
morphic to its double dual.

An analogue of the above duality holds in the case of median space as it was first
shown in [CDH10|. The additional metric structure on the median algebra is encoded in
a structure of measured space on the set of halfspaces. There is a canonical way to endow
the set of halfspaces H(X) of a median space X with a structure of measured space such
that the measure of the set of halfspaces separating two points coincides with the distance
between them. To each set of halfspaces with such structure of measured space, there is
a canonical median space M(X), the double dual of X, associated to it and there is a
natural /som(X)-equivariant isometric embedding of X into M(X).

The duality in the metric case was investigated in more details in [Fi020] and the analogy
with Isbell duality is more explicit where the notion of measured poc sets is introduced. In

particular, E. Fioravanti showed that a complete locally convex median space is isometric
to its double dual (Theorem A |Fio20]).
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We say that a median space X verifies the strong separation if for any =,y € X there
exists a halfspace h < X which contains x in its interior and contains y in the interior of
its complement h¢. This class of median spaces strictly contains the class of locally convex
median spaces. We extend the latter theorem using another proof to the case of complete
median space which admits a strong separation property (see Definition 2.1.1).

Theorem E. (see Theorem 2.2.1) Let X be a complete median space which satisfies the
strong separation property. Then X is isometric to its double dual M(X).

The proof of the above Theorem relies uniquely on the structure of measured space on
the set of halfspaces introduced in [CDH10] which is "coarser" then the one introduced in
[Fi020]. An essential ingredient in the proof of Theorem 2.2.1 is the following remark :

Proposition F. (see Lemma 2.2.6) Let X be a complete median space. Then any interval
is compact with respect to the topology where the closed subsets are generated by bounded
gate convex subsets of X.

Actions of S-arithmetic lattices on median spaces

By the results of Theorem 1.2 [CDH10], the action of any lattice in a locally compact
group satisfying the Kazhdan’s property (T) has bounded orbits. Examples involves lattices
in simple algebraic group of rank greater than or equal two over a local field, lattices
in Sp(n, 1), the subgroup of special linear transformations which preserve a quaternionic
hermitian form of signature (n,1).

In the other side of the spectrum, groups having the Haagerup property always admit
a proper isometric on a median space. Hence, lattices arising in a product of SO(n, 1),
SU(n, 1) or in a product of their universal cover, acts properly on a median space. In fact,
lattices in a product of SO(n, 1) acts geometrically on a locally compact median space of
infinite rank (see [CD17]).

However, when the median space is of finite rank irreducible lattices in a product of
SO(n,1) cannot even act properly on a complete median space of finite rank. This is a
consequence of a result by E. Fioravanti which is much more general.

Theorem ([Fiol9] Corollary D and Theorem C). Let X be a complete median space of
finite rank and let I" be an irreducible lattice in a connected semisimple Lie group of higher
rank. Then any isometric action of I' on X has finite orbit.

In the other hand, there is no proper action of a discrete solvable group which is not
virtually abelian on a complete median space of finite rank (see Theorem A [Fio18]). Hence,
non uniform lattices in SU(n, 1), for n = 2, does not act properly on a complete median
space of finite rank as they contains Heisenberg subgroup obtained from the intersection
of the lattices with a horospheric subgroup of SU(n, 1). The existence of proper action of
uniform lattices in SU(n, 1) on a complete median space of finite rank is unknown, but
evidences for a negative answer are shown in [DP19].

6
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The group PSL(2, Q,) acts geometrically on a homogeneous simplicial tree of valency p+
1, the Bruhat-Tits tree associated to SL(2,Q,). Hence, lattices in a product of PSL(2,Q,)
acts geometrically on a median space of finite rank, given by the ¢*-product of the Bruhat-
Tits tree. The groups PSL(2,R) and PSL(2, C) being isomorphic to SO(2,1) and SO(3,1)
respectively, lattices in a product of H PSL(2, k;) acts geometrically on a locally compact

€S
median space of infinite rank, where k; is either R, C or Q,.
With regards to the finite rank case, we show the following :

Theorem G. (see Theorem 3.3.1) Let I' < H PSL(2, k;) be a lattice such that its projec-
€S

tion into each factor PSL(2, k;) is dense, where k; is either R, C or Q,. Then there is no

proper action of I' on a complete median space of finite rank.

The proof of the above theorem relies heavily on Fioravanti’s machinery, especially on
its superrigidity result with regards to actions of lattices in a product of locally compact
groups on complete median spaces of finite rank ([Fio19] Theorem B).

Document structure

In Chapter 1, we describe the median geometry first from the general algebraic point
of view of median algebras, then from the particular metric point of view of metric spaces.
We describe the duality in both cases and make the analogy between the algebraic and
metric one.

In Chapter 2, we introduce the class of strongly separated median space and prove all
the needed results, for instance Proposition F, to prove the duality Theorem E.

Chapter 3 is devoted to the proof of Theorem G. In the first section we describe briefly
the structure of the p-adic group PSL(2,Q,) and the needed properties satisfied by lattices
in a product of PSL(2,k;). In the second section, we recall Fiovaranti’s machinery with
regards to isometric actions on complete finite rank median space.

In Chapter 4, we investigate isometric action on complete locally compact median space
of finite rank. In the first section, we prove an embedding lemma of the convex hull that
we will be using in the proof of the classification Theorem C. In the second section, we
prove the characterization of compactness Theorem B. The third and fourth sections are
devoted to the proof of Theorems D and A.






Chapitre 1

Median geometry

1.1 Algebraic structure of the median geometry

1.1.1 Median algebra

Definition 1.1.1. (Median algebra) A median algebra is a set M with a ternary ope-
ration m : M x M x M — M which verifies the following set of equations :

m(z,z,y) = =x.
m(z,y,z) = m(y,z,z) =mx,z,vy).
m(m(z,y, z),u,v) = m(x,m(y,u,v),m(z,u,v)).

A median morphism ® : M — N between two median algebras is a map which
commutes with the ternary operation m, i.e. ®(my(x,y, 2)) = my(P(z), P(y), P(2)). Let
M be a median algebra, the interval between any two point a,b € M denoted by [a, b] is
the set of fixed points of the ternary operation m(a, b, ). The following properties ensure us
that the intervals of median algebra can support a strong notion of convexity (see Section
2 Intervals [Roll6]) :

Remark 1.1.2. Let M be a median algebra and let a,b,c,d € M. We have then :
— If ¢,d € [a, b] then [c,d] < [a, b].
— |[a,b] n [b,d] = [b,m(a,b,c)].
— la,b] N [b,c] N [a,c] = {m(a,b,c)}.

We note that by the third property can serve as an axiom to define median algebras.
More precisely, we have the following alternative definition by mean of segments :

Definition 1.1.3. Let M be a set endowed with a map [ : M x M — P (M) which verifies
the following :

1. I(z,x) = {z}.
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2. If ze I(x,y) then I(x,z) < I(x,y)  (Convexity).

3. For any triple x,y, z € M, the three subsets I(x,y), I(y, z) and I(z, z) intersect in a
unique point.

The equivalence between the two definitions was shown in [Sho54|, see Theorem 4.11
therein. Sholander does not assume the interval map to be symmetric in his axioms, but
it is easily deduced from the postulate () therein and remarking from the postulate (3)
that b € [a, b], by letting a = b in the postulate (a) (see |[Shob4| Postulates 4.10 pp.806).

Examples 1.1.4. 1. Let (O, <) be a totally ordered set. The ternary operation which
associates to any three points a, b, c € O such that a < b < ¢ the point b endows the
set O with a structure of a median algebra. For any a,b € O such that a < b, the
interval between them is given by [a,b] = {c€ O | a < ¢ < b}. In particular, the real
line has a natural structure of median algebra.

2. The arbitrary product of a family of median algebras (M;, m;);c; is naturally endowed
with the product structure where the median point of the triple (a;)icr, (bi)ier, (¢i)ier €
(M;)icr is (mi(ag, bi, ;) )ier-

3. More generally, let (L, A, v) be a distributive lattice. A median structure on L is
given by the following ternary operation

m(a,b,c):=(anb)v(brc)v(anc)=(avb) Abve)a(avec).

The interval between a, b € L is the set of elements which contain the meet of a, b and
is contained in the join of a, b, i.e. [a,b] ={ce L | (anb)ve=cand (avb)Ac=c}.
In particular boolean algebras admit a natural structure of median algebra. A very
particular example is the trivial boolean algebra {0,1}. We will see later that any
median algebra embeds into a product of the median algebra {0, 1}.

A subset C' < M is convez if for any a,b e M the interval [a,b] lies in C.

A well known fact, due to Eduard Helly, is that the intersection of a finite family of
convex subsets in the euclidean space R™ is empty if and only if the intersection of some
subfamily of cardinal less than or equal n + 1 is empty. In the particular case of the real
line, the intersection of a finite family of convex subsets is empty if and only if there exist
two convex subsets of the family which are disjoint. The same holds for median algebra
(see Theorem 2.2 [Rol16]) :

Theorem 1.1.5 (Helly’s Theorem). Let X be a median space and let C,..,C, € X be a
family of pairwise intersecting convexr subsets. Then their intersection is not empty.

Halfspaces and convex walls :

Definition 1.1.6. (Halfspace) Let M be a median algebra. A convex subset h < M is a
halfspace if its complementary h¢ is also convex. A convex wall is a couple (b, h¢) where

10
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h < M is a halfspace. We denote by H(M) and W,.(M) the sets of halfspaces and convex
walls of M respectively.

For any A, B <€ M, we denote by H(A, B) the set of halfspaces which separate B from
A i.eH(A,B) == {h € H(X)/B < h, A < h°}. We will be using the following notation
H(A, B) = H(A, B) U H(B, A) when we do not need to keep track on the "orientation".
In the same vein, we define the convexr walls interval between A and B as W(A, B) :=
{(h,5°)/b € H(A, B)}. When A and B are singletons, we simply write H(z,y) and W(z, y).
When there is no confusion, we will just say walls instead of convex walls.

We say that a halfspace is transverse to a subset A ¢ M if both h n A and h n A€
are not empty. We denote by H(A) the set of halfspaces which are transverse to A and by

‘H 4 the set of halfspaces which contain A.

Assuming Zorn’s lemma, not only halfspaces exist but they separate any two convex
subsets in a median algebra (see Theorem 2.8 in [Rol16]) :

Theorem 1.1.7. (Separation theorem) Let M be a median algebra and let A, B < M be
two disjoint convex subsets. There exist a halfspace h < M such that A < b and B < b°.

The above separation property is of fundamental importance, especially in the duality
between the median algebra and its set of halfspaces (See Subsection 1.1.3).

We have a correspondence between the set of halfspaces of a median algebra M and the
set of median morphisms between M and the median algebra {0, 1}. The correspondence is
given by considering the characteristic function over a halfspace h and the inverse image 0
or 1 under such median morphisms. Hence, any median algebra M embeds into the product

1_[ {0, 1} by the product of the characteristic functions 1,’s. Theorem 1.1.7 ensures that
heH (M)
the later median morphism is injective.

In the language of universal algebra, the above paragraph translates into saying that the
category of median algebras with median morphisms is the same as the variety generated
by median algebra {0, 1}, that is, the smallest category containing {0, 1} and stable under
considering submedian algebras, median quotient and direct product.

Remark 1.1.8. Let f : M — N be a morphism of median algebras. Then the inverse
image of any halfspace of N by f is a halfspace of M. This is due to the fact that the
inverse image of a convex subset is convex and that f~1(A¢) = (f~1(A))-.

Halfspaces give a natural way of speaking about "dimension" in median algebras :

Definition 1.1.9. (Rank) Let M be a median algebra.

— Let b1, by € H(M) be two halfspaces. We say that h; and by are transverse if the
following intersections are not empty :

binba bBinby bbby b nbs.

— We say that the median algebra is of rank n if there exist a family of pairwise
transverse halfspaces by, .., b, € H(M) where n is maximal.

11
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Convex hull and Gate convex subsets

Definition 1.1.10. (Convex hull) Let M be a median algebra and let A < M. The convez
hull of A, that we denote by Conv(A), is the intersection of all convex subsets containing
A.

The convex hull of the union of subsets which form a directed set is the union of the
convex hull of each set. Therefore, we get the following proposition (Corollary 2.5 [Roll6]) :

Proposition 1.1.11. Let X be a median algebra, then for any A <€ X we have :
Conv(A) = U Conv({xy,..,zn}).

r1,..,Ln€A
For any a,b,z € M and y € [a, b], we have :

m(z,m(z,a,b),y) = m(zx,m(z,a,b),m(y,a,b)) Asyea,b]
= m(m(x,z,y),a,b)

= m(z,a,b)

The median point m(x,a,b) lies in the interval [x,y| for any y € [a,b]. Hence, if we fix
the two first variables of the ternary operation m(x,*, =), the morphism obtained can be
seen as the nearest point projection into the interval [a,b]. This motivates the following
definition :

Definition 1.1.12. (Gate convex) A convex subset C' = M is gate convez if for any
x € M there exist a point mo(x) € C, called the gate projection of x into C, such that for
any a € C the point 7o (x) lies in the interval [z, a].

We denote by 7 : M — C the retraction which associates to each point x its gate
projection in C.

We note that in the literature regarding median algebra, it is the term retract that
it is used to denote gate convex subset, whereas the latter is used in the case of median
space.

Remark 1.1.13. 1. Let C < M be a gate convex subset and let a € M. Any halfspace
which separates a from 7¢(a) must separate a from C as for any point ¢ € C, we
have m¢(a) € [a, c].
2. The gate projection is a median morphism from M to C' where the latter is endowed
with the median algebra structure induced from M.

Lemma 1.1.14. Let M be a median algebra and let C = M be a gate convexr subset and
A c M a convex subset such that A n C # . Then the projection of A into C lies in
AnC.

Proof. Let us consider a point a € A. The intersection C' n A being assumed to be not
empty, we choose a point ¢ € C'n A. We conclude then 7 (a) € [a,c] < C. ]

12
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Remark 1.1.15. Let M be a median algebra and let C' € M be a gate convex subset.
Any halfspace b of C, when the latter is seen as a median algebra, lifts to a halfspace of M
under the inverse of image of the gate projection onto C' (see Remark 1.1.8). In the other
hand, any halfspace b € H (M) gives rise to a halfspace h := h n C in H(C). By Lemma
1.1.14, we have Wal(f) n C') = b. Hence, we have a correspondance between the halfspace
of C' and the halfspace of M which are transverse to C.

Definition 1.1.16. (Join) Let M be a median algebra and let A, B < M.
— The join [A, B] between is the union of all intervals having endpoints in A and B.

— The n-iterated join A™ of a subset A is defined recursively by A" = [A"~1, A"~1]
and A° = A.

By the paragraph preceding Definition 1.1.12, we know that intervals are gate convex.
Moreover, we have the following proposition :

Proposition 1.1.17. Let M be a median algebra and let Cy,Cy < M be two gate convex
subset. Then the join [Cy, Cs] is also gate conver.

Proof. Let us consider x € M and set T := m(x, 7o, (x), 70, (x)). Let y € [C1, Cs] and let
us show that Z € [z,y]|. Before doing so, we show that y € [7¢,(y), 7o, (y)]. Note that
any halfspace which separates y from m¢, (y) must separate y from C;. Hence, if y lies
outside the interval [7¢, (v), 7o, ()], it must lie outside the convex hull of Cy U Cs. Tt last
to show that Z € [x,y]. By Proposition 1.1.19, there exist y; € C; and y, € Cy such that
y € |y1,y2]. Hence, we have m(mw¢g, (x),2z,y) = 7o, () and m(ne,(z),x,y) = me,(x) as
7o, (x), me, (z) € [z, y]. Therefore, we conclude by :

m(i,x,y)) = m(m(mv7rC1(x)>7TC’2(x))7x7y)
= m(x,m(ﬂcl(x),x,y),m(w@(x),x,y))

= m(x,me, (x), 10, (7))

As a consequence of the above proposition, we remark the following :

Proposition 1.1.18. Let M be a median algebra. Then the convex hull of any finite subsets
1S a gate convew.

We deduce from Propositions 1.1.11 and 1.1.18, the following description of the convex
hull between two convex subsets :

Proposition 1.1.19. Let M be a median algebra and let Cy,Cy < M be two convex subsets.
The convex hull of the union of Cy and Cy is equal to their join [Cy, Cs].

When the median algebra is of finite rank, it was shown in [Bow13] (Lemma 6.4) that
the convex hull of any subset is obtained by iterating a finite number of time the join
operation :

13
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Proposition 1.1.20. Let M be a median algebra of rank n and let A < M. We have then :
Conv(A) = A™.

The same result holds when the finiteness restriction is on the cardinal of the set rather
than the rank of the space :

Proposition 1.1.21. Let M be a median algebra and let F < M be a subset of cardinal
n. we have then :

Conv(F) = F".

Proof. We proceed by induction on the cardinal of the set F'. If F'is a singleton there is
nothing to show. Let us assume that the proposition holds for subset of cardinal n — 1. By
Proposition 1.1.19, we conclude that :

Conv(F) = [Conv(F\{a}), {a}].

Let us look more closely at the convex hull between two gate convex subsets.

Proposition 1.1.22. Let M be a median algebra and let Cy,Cy < M be two gate convex
subsets. Then Conv(me, (Cs), 7oy (Ch)) is isomorphic to we, (Cy) % |z, 7oy (x)] where x is
any point in mc, (Cy).

We call the convex subset Conv(me, (Cs), 7o, (C1)) the bridge between C; and Cs, let
us denote it by B(CY, Cy).

We note that when the median algebra is a median graph, the above notion of bridge
corresponds with the notion of bridge between halfspaces of CAT(0) cube complexes that
arises in [CFI16] Section 2.G.

Before proving Proposition 1.1.22, we will be needing some lemmas.

Lemma 1.1.23. Let M be a median algebra and let Cy,Cy < M be two gate convex subsets.
Then the image of Cy under the projection onto Cy is convex.

Proof. Let us consider x1,y; € C and set x9 1= me, (1), Y2 := 7, (y1) € Co. After choosing
a point x € [xq, yo]| and setting T = 7¢, (7, (z)), let us show that there is no halfspace that
separates x and Z, which implies that x = Z. Let h € H(X) be a halfspace containing x.
If b does not separate x5, 3, then it will contain the point x as the latter belongs to the
interval [z, ys2]. Let us assume now that b does separate x5 from y,. By Lemma 1.1.14,
the halfspace hh would also separate x; from x5. Again by Lemma 1.1.14, we deduce that
7o, (x) and T = 7e, (me, (z)) also belongs to b. O

Lemma 1.1.24. Let C and Cy be two gate convex subset. Then we have
(71 © 76y me, (o) = L, (Ca)-

14
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Proof. Let us consider two gate convex subsets C,Cy € M and a point x € C. We have
7o, (Mo, () € [z, 7o, (2)]. The gate projection onto gate convex subset being a morphism
of median algebra, we compose the latter inclusion by the gate projection onto Cy to obtain

Ty (7TC'2(7T01 (1}))) € WCI([‘I77TCI ($>]) = [ﬂ-Cl (x)vﬂ'cl (7T01 (SC))] = {7"01 (x>}

The equality between ¢, ([z, 7o, (z)]) and [7¢, (z), 7¢, (7e, (2))] is a consequence of Lemma
1.1.23. [

Proof of Proposition 1.1.22. Let us denote by C the convex hull between 7, (Cy) and
7o, (Ch). By Proposition 1.1.19 and Lemma 1.1.24, we have

C= U [QJ,ZE,] = U [I77TC2(I>]"

zenc, (C2) zemc, (C2)

z'ency (C1)
Note that we have [z, 7c,(2)] N C; = {z} and [z, 70, (x)] N Cy = {me,(x)}. Tt last to
show that for any y € C, the intervals [z, 7, (z)] and [y, 7e,(y)] are isomorphic. By
Proposition 1.1.14, we have m(y, z, 7¢c,(z)) = x and m(n¢, (y), z, 7, (z)) = 7c, (z). Hence,
by Lemma 1.1.23, we have 7, »o, )]([¥, 7, (¥)]) = [z, 7o, (2)] and 7y 7, @ ([, Te, (7)]) =
[y, 7, (y)]. By Lemma 1.1.24, we conclude that the intervals [z, m¢, ()] and [y, mc, (y)] are
isomorphic. O]

Remark 1.1.25. By remark 1.1.13 and Proposition 1.1.22, we deduce that for any two gate
convex subset O, Cy < M, there exist ¢; € Cy and ¢y € Cy such that H(Cy, Cy) = H(ey, o).
It is enough to take ¢; € m¢, (Cs) and ¢ 1= 7e, (¢1).

The following is a remark regarding the equivalence between the existence of a half-
space which is transverse to two gate convex subsets and the bridge relating them being a
singleton.

Proposition 1.1.26. Let M be a median algebra and let Ci,Cy < X be two gate convex
subsets. We have then W.(C1) nWe(Ca) = We(mc, (Ca)). In particular, there is no halfspace
which is transverse to both Cy and Cy if and only if m¢, (Ca) and 7, (Ch) are singletons.

Proof. Note that by Proposition 1.1.22, the convex subsets 7¢, (C) and 7¢,(Cy) are iso-
morphic. Let h € H(M) be a halfspace which is transverse to both C; and Cs. By Lemma
1.1.14, the images of C; nh and Cy n h° under the projection 7, lie in Co nh and Cy N §°
respectively. For the other inclusion, any halfspace which separates two points of 7¢, (Cs)
is a halfspace which is transverse to both ¢, (Cs) and 7, (Ch) by Lemma 1.1.14. O

Gluing median algebras along gate convex subsets As median algebras are parti-
cular case of universal algebras, they benefit from the properties of the latter. In particular,
the category of median algebra with median morphisms is stable under products, projective
limits and inductive limits. Thus, this give a way to construct new examples of median
algebra. One may also construct new examples by gluing median algebra along gate convex
subsets by the mean of a median isomorphism, that what we will describe in the following
paragraph
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Proposition 1.1.27. Let (M, my) and (Ms, my) be two median algebras. Let C; < M,
and Cy & My be two gate convex subsels such that there exist a median isomorphism
® : Cy — Cy. Then the set M = M, |_| M2 is naturally endowed with a median

C1~3C2
algebra structure given by the following ternary operation :

mi(l'?ya Z) Z.fl'ayaz € Mz
m(q:,y,z) = ml(xay7 (bil(ﬂ_CQ(Z))) Zf‘ray € Ml and z € M2
m2<xay7 CD(TFCH (Z))) meay € M2 and z € Ml

We define the interval [a,b] as it was defined for median algebra, that is the set of
fixed points of m(a,b, *). Note that for any z,y € M;, we have [z,y] = [z, y]|u,, where the
latter is the interval corresponding to the median algebra structure of M;. Before proving
the above proposition, let us first prove some lemmas about the properties verified by the
intervals of M :

Lemma 1.1.28. Under the same notation of Proposition 1.1.27, fr any x,y € M and
z € [x,y], we have |z, z] < [z,y].

Proof. 1t is enough to consider the case where x,z € M; and y € M,. Let us consider a
point ¢ € [z, z] and show that ¢ € [z, y]. We have :

m(t,z,y) = mai(t, 2, @ (1e,(y)))
ml(ml(t,x,z),x,(I)_l(WCQ(y)))
ml( ,ml(:L',x,@_l(ﬂc2(y)),m1(z,x,<I>_1(7T02(y)))
(

t
my taxVZ) (AS z € [«T,y])

|
~

]

Lemma 1.1.29. Under the same notation of Proposition 1.1.27, for any x € M; and
y € My we have [z,y] n My = [ (7e,(y)), z].

Proof. Remark that for any z € [z, y] n M; we have :
Z= m(x, Y, Z) = m(x, Z, y) = ml(xa 2 @_1(7T02(y))),

Hence, we have the inclusion [z,y] n My € [} (7, (v)), x].
For the other inclusion, we have m(xz, ® 1 (7c,(y)),y) = m(z, ® (7, (v)), @ Hme, (y)) =
®~1(mc,(y)). Hence, we conclude by Lemma 1.1.28 that [z, @' (7¢,(y))] S [z, y] O

Proof of Proposition 1.1.27. It is enough to show that the intervals of M verify the axioms
of Definition 1.1.3. Note that the first axiom is direct. The second one is given by Lemma
1.1.28. Tt last to show that it verifies the last axiom. Let us consider a triple of points
x,y,z € M. Without loss of generality, we assume that x,y € M; and z € My. We have :

[z,y] N [z, 2] N [y, 2] = [z, y] n My 0 [z, 2] 0 [y, 2].

16
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Hence By Lemma 1.1.29, we deduce that :

[z, y] 0 [z, 2] 0 [y, 2] = [2,9] 0 2,07 (76,(2))] 0 [y, @7 (70, (2))]
= [z, 9l 0 (2,27 (70, (2) o, 0 [y, @7 (7o, (2)) sy
= {ma(z,y, 27 (16,(2)))}
= {m(z,y,2)}

[

Using the above construction, one can show that R-trees have a natural structure of
median algebra obtained from the inductive limit of R-trees which have finitely many
branching points.

17
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1.1.2 Poc Set

The set of halfspaces H(X) of a median algebra X is naturally endowed with a partial
order relation given by the inclusion and a complementary operation which associates to
each halfspaces its complement in X, thus inverting the partial order relation. This provides
H(X) with a natural structure of a poc set.

Definition 1.1.30. (Poc set) A poc set (P, <,*,0) is a partially ordered set (P, <) with
a minimal element 0 and involution = : P — P such that it inverses the order in P and the
minimal element 0 is the unique element in P which is smaller than its complement 0*.
A morphism of poc sets is a morphism which respect the order and commutes with the
complementary operations.

Examples 1.1.31. 1. The trivial poc set {0,1} consisting a minimal and a maximal
element.

2. Any boolean algebra (B, 0,1, v, A,/ ) has a natural structure of a poc set. The partial
order relation is given defined by a < b if and only if a A b = b. The complementary
operation is given by the negation ’.

3. Let P, and P, be two poc sets. The disjoint union poc set P; [ [ P> between Py and P,
is defined by taking the disjoint union of P, and P», where we identify their respective
minimal elements and maximal elements. The partial order relation is the same on
each component P; and the elements of P, are not comparable with the elements
of P, besides the maximum and the minimum. This operation corresponds to the
coproduct or the categorical sum (in [Rol16] the author used the notation @) in the
category of Poc sets and morphism of poc sets.

For any subset A < P, we define A* := {p* | pe A}.

A filter in a set of subsets P(X) is a non empty subset F' < P(X)\{} which is stable
under intersection and is upward stable, that is, for any A € F' and B € P(X) such that
A € B we have B € F. Its definition extends to the case of poc set :

Definition 1.1.32. (Filter) Let (P, <,0,*) be a poc set. A non empty subset F' — P is a
filter if it verifies the following :
1. The minimal element 0 does not lie in F'.
2. For any p, g € F the inequality p < ¢» does not hold.  (Stability under intersection)
3. For any pe F and g € P such that p < ¢, then ge F.  (Upward stability)

For any filter F' < P, the transverse to I is defined by T (F) := P\(F u F*).

Proposition 1.1.33. (Extension of a filter) Let P be a poc set and let F' = P be a filter. Let
a € P\{0} such that neither a € F nor a* € F. Then the set F :={pe P |pe F or a <p}
15 a filter which contains F' and a.

Proof. By construction the set F is upward stable and it does not contain the minimal
element 0. Last to show the stability under "intersection". Let us consider p,q € F. We
have three case :

18
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— Case 1 : Both p and ¢ lie in F. In this case, there is nothing to show as F' is assumed
to be a filter.

— Case 2 : Both p and ¢ are greater than a. Therefore, we can not have p < ¢* as it
would imply that a < a™.

— Case 3 : We have p e F' and a < ¢. Again, we can not have p < ¢* as it would imply
that p < a* which contradicts the assumption that a* does not belong to F'.

]

An wltrafilter is a filter which is maximal with respect to the inclusion. Proposition
1.1.33, gives us the following characterization of ultrafilter :

Definition 1.1.34. (Ultrafilter) Let (P, <,0,*) be a poc set. A subset u € P is an ultra-
filer if it verifies the following :

1. For any p,q € F' we do not have p < ¢x.

2. For any p € P, we have either p € u or px € u.

When the poc set P corresponds to the set of halfspaces of a median algebra M, the
subset of a halfspaces containing a convex subset C' constitutes a filter of H(M) and its
transverse T (H(M)) is H(C'), the set of halfspaces which are transverse to C. The subset
of halfspaces containing a fixed point constitutes a maximal filter in P and they are called
principal ultrafilters.

Remark 1.1.35. Let f : P — @ be a morphism of poc sets. Then the inverse image of
any ultrafilter of ) by f is an ultrafilter of P. This is due to the fact that the inverse image
of any filter is a filter and that f~'(A4¢) = (f~1(A))".

As for the halfspaces in median algebras, by assuming Zorn’s lemma ultrafilters exist
and verify the following "separation" property :

Theorem 1.1.36. Let P be a poc set and let Fi, Fy < P be two filters. There exist then
an ultrafilter w < P such that Fy < u and Fo 0T (F}) < u.
Moreover, if T(Fy) nT((Fy) = &, then such ultrafilter u is unique.

Before proving the above Theorem, we make the following remarks to give a geometric
picture of it.

Remark 1.1.37. — In the case where the filters F; and F5 of Theorem 1.1.36 arise as
the set of halfspaces which contain a gate convex subset of a median algebra M, i.e.
F; = He, where O, Cy € M are gate convex subsets. The ultrafilter u is given by a
principal ultrafilter over a point lying in the projection ¢, (Cs) of Cy into Cf.
The condition T (Fy) n T((Fz) = & translates into the non existence of a halfspace
which is transverse to both C; and Cs. In this case, the projection of C5 into (] is
a singleton {x}, and the ultrafilter u corresponds to the principal ultrafilter over the
point = (compare with Proposition 1.1.26).
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— We note that the ultrafilter u obtained in Theorem 1.1.36 verifies F, nu* = Fy n F}.
The filter F; being included in u, we deduce that F}" < u*, thus Fy n FJ" € F, nu*.
In the other hand, we have u* < F}* U T(Fy). As Fo n T(F1) < u we deduce that
Fnnu*cC Fl*
Again when F; and F5 arise as the set of halfspaces which contain gate convex subsets
C: and C5 respectively, the remark above translates into saying that any halfspace
which separates C5 from the point x must separate it also from C}.

Proof of Theorem 1.1.36. Let A be the set of filters F' which contains F; and such that
T(F) n Fy n F = . The set A is an inductive set and is not empty as it contains F}.
Assuming Zorn’s lemma, let us consider a maximal element u € A. We claim that u is an
ultrafilter which contains 7 (Fy) n Fb.

Let p € P such that neither p € F} nor p* € Fy, that is, the element p lie in T (F}).
Without loss of generality, we assume that p does not lie in Fy. The subset F5 being a
filter Fy is downward closed, i.e. for any a € P and b € Fy such that @ < b then a € Fy.
Hence any element which is greater than p lie outside F'. By proposition 1.1.33, the set u
consisting of the union of all the elements which are greater than p and the elements of u
is a filter which verifies T(F) n Fy nu = ¢J. By the maximality of u, we conclude that
p € u. In particular, we have shown that Fo n T (F}) < u.

Let u be another maximal element in A. There exist then p € P such that p € u
and p* € u. The element p necessarily lie in 7(F}). As we have T(Fy) n Ff nu = &
and T(Fy) n Ff nu = & , we conclude that p € T(Fy). Therefore, if the intersection
T(F1) n T((F,) is empty, then the ultrafilter is unique. O

In particular we get the following corollary :

Corollary 1.1.38. (Separation Theorem) Let P be a poc set and let p,q € P. There exist
then an ultrafilter which separates p and q.

Proof. Without loss of generality we can assume that p € ¢ and p € ¢*. Let us set
Fy == {x € P/p <z} and F» := {z € P/q¢* < z}. By Theorem 1.1.36, there exist an
ultrafilter u P such that F} S uand Fo n T (F)) € u. As p € ¢ and p € ¢*, the element
q and its complementary ¢* lie in the transverse set T (F}) of the filter F;. Therefore, the
ultrafilter u contains p and ¢*. O

Let us denote by U(P) the sets of ultrafilters of the poc set P. With analogy to the case
of median algebra, the sets of ultrafilters of a poc set P is in correspondence with the set
of poc sets morphisms from P to the trivial poc set {0, 1} by considering the characteristic
map on the ultrafilters for the first direction and considering the inverse image of {1} under
the latter poc set morphisms for the other direction. We obtain then that any poc set P
embeds into the product H {0,1} where the injectivity is ensured by the Separation

ueld (P
Theorem 1.1.38. We deduce t(hén that the category of poc sets and poc set morphisms is
the same as the variety generated by the trivial poc set {0, 1}.
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The set U(P) is a subset of the boolean algebra P(P) which is not closed under inter-
section nor under the union. However, it is closed under the median operation defined in
1.1.4. Hence it is naturally endowed with a structure of a median algebra. Therefore, there
is a canonical way to associate to each poc set P a median algebra U (P). This association
verifies a nice functorial properties. It is the subject of the next subsection.

1.1.3 Duality

We have a duality between, due to Marshal Stone, between the category of boolean
algebras with boolean morphisms and the category of Stone spaces with homeomorphisms.
A Stone space is a totally separated compact topological space.

In [Isb80], the author extended the latter duality to the case of median algebras and
poc sets in two ways (see Theorem 6.13 therein, J. R. Isbell refers to median alebras and
poc sets by symmetric media and binary messages respectively). The first way is to see poc
sets as a generalization of boolean algebras. In this case, it will be dual to the category of
Stone median algebras with continuous median morphisms. A Stone median algebra is
a median algebra endowed with a topology which makes it a Stone space and such that
the median operation is continuous.

The second way is to see median algebras as a generalization of boolean algebras. One
obtain then a duality between the category of median algebras with median morphisms
and the category of Stone poc sets with continuous morphisms of poc set. A Stone poc set
is a poc set endowed with a Stone topology which is compatible with the complementary
operation * (|[Roll6], section 6).

Let us denote by ‘H the contravariant functor, which associates to each median algebra
M the poc set H(M) consisting of the halfspaces of M, and to each median morphism
f: M — N the poc set morphism H(f) := f~1 : H(N) — H(M), the latter is well defined
(see Remark 1.1.8).

Let U be the functor which associates to each poc set P the median algebra consisting
of ultrafilters of P and to each poc set morphism f : P — () the median morphism
U(F) == [ UQ) — U(P), the latter is well defined (see Remark 1.1.35).

Let us feature how the concepts seen before translate into the dual of their category :

Convex subsets and filters Let M be a median algebra and let us consider a convex

subset C'. We recall that H¢ corresponds to the set of halfspaces containing C'. We have

seen that it is the canonical example of a filter in the poc set H(M) and that if C is a

singleton then H¢ is a principal ultrafilter. Note that not all filter of H (M) arise as such.
Conversly we have the following :

Proposition 1.1.39. Let P be a poc set and let F' < P be a filter. Then the set Up < U(P)
consisting of ultrafilter containing F is a convex subset of the median algebra U(P).

Moreover, if F is generated by an element p € P, that is F' = {q € P/p < q}, then UF
s a halfspace.
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Proof. We recall that for any two ultrafilter u;, us € U(P), the interval [uj, us] is the set of
ultrafilters which contains u; m us and is contained in u; U uy. Hence, for any uy,us € Up
and u € [uy, us] we have F' € uy nuy € u. Therefore, we have [u, us] € Up.

Let us assume now that F' is generated by an element p. In this case, it remains to show
that Uy, is also convex. Let us consider u;,uy € Uf. There exist then p; € u; and py € uy
such that p < pf. Let us consider an ultrafilter u € [uy, us]. The ultrafilter being contained
in the union u; U uy, at least one of the p;’s lies in u, which implies that u does not contain
F', which complete the proof. ]

Let us consider a gate convex subset C' € M. Then the filter H associated to the latter
verifies the additional property that for any principal ultrafilter u, where x € M, there exist
a principal ultrafilter u; such that u, nui = u, N H (compare with Theorem 1.1.36 and
Remarks 1.1.37 by setting F} = He, Fo = u, and u = uz). The point  corresponds to the
gate projection of x into C.

Under the above translation gate convex subsets into the category of poc sets, Theorem
1.1.36 implies that for any filter F' — P the convex subset Ur < U(P) is gate convex.

This can be also justified through the following facts :

The first is that the category of Poc sets with poc sets morphisms and the category of
Stone median algebras with continuous median morphisms are dually equivalent (Theorem
6.13 [Isb80], Theorem 5.3 [Roll6]). The first functor is the functor U seen above which
associates to each poc set P, the Stone median algebra U(P) consisting of ultrafilters of
P and the halfspaces U, < U(P), where p € P, constitute the subbasis for the topology
of U(P). The converse functor associates to each Stone median morphism, the poc set of
closed-open halfspaces. Hence, for any filter F' < P, the convex subset Up = ﬂ U, is closed
peF

in the Stone median algebra U(P).

The second fact is that a convex subset of a Stone median algebra is gate convex if and
only if it is closed (Proposition 5.6 [Rol16]). We conclude then that the convex subsets Up
corresponding to filters F' < P are gate convex.

Direct product of median algebras and direct sum of poc sets We have seen in
Examples 1.1.4 and 1.1.31 that the category of median algebra with median morphisms
admits a product operation over an arbitrary family and that the category of poc sets with
poc set morphisms admits a coproduct operation over an arbitrary family.

Let us take a closer look on the halfspaces of a product of median algebras. Throughout
the following, let (M;);er denote a family of median algebras and let M := [[._; M; be the
product median algebra. We denote by ; the canonical projection from M to M;. We first
remark the following description of the intervals in an arbitrary product :

Remark 1.1.40. 1. The median operation of the product of median algebras being
defined pointwise, we have for any a,be M := H M; -

el

[a, b]ar = | [las bilas,-

iel
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Where a; and b; are the projection of a and b respectively into the factors M; under
the canonical projections ;.

2. For any subsets (A;)icr, (Bi)ier S (M;)icr, we have the following description of the
join between two products :

el el el
More generally, we have the following :

Proposition 1.1.41. For any finite subset A < M, we have :

Convy(A) = n Convyy, (m;(A)).

el
Proof. We proceed by induction on the cardinal of the subset A. The equality is trivially
verified when A is a singleton. Let us assume that the claim is true for all subsets of cardinal
n — 1 and consider a subset A © M of cardinal n. After fixing a point a € A and setting
A = A\{a}, we get then :
Convy(A) = Convy(A U {a})
— [A,{a}] By Proposition 1.1.19.

By assumption we have the following splitting Conv(A) = 1_[ Convyy, (mi(A)). We deduce

iel

then the following :
Convy(A) = [H Conuyy,(m;A)), {a}]
- H[m(ﬁ),m(a)] By Remark 1.1.40 (2)

iel

= [TIm(A),m()

el

= HCOHU]LL(W'L(A))'

el
O]

We conclude from the above Proposition and Proposition 1.1.11, that the convex hull
of any subset A € M is the union of the product of the projections of its finite subsets :

Remark 1.1.42. For any A € M, we have by Propositions 1.1.41 and 1.1.11 the following :
Conv(A) = U (1_[ Convyg, ({1, .., Tn})).

T1,..,kn€A i€l

In particular, if the index set [ is finite we get that :

Conv(A) = Convyy, (mi,(A)) x ... x Conuvyy, (75, (A)).
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In the following proposition, we give a description of halfspaces in a finite product of
median algebras :

Proposition 1.1.43. Let M, .., M, be median algebras and let h < M := My x ... x M,
be a proper halfspace. Then there exist k € {1,..,n} such that 7;(h) is a proper halfspace of
M. and for all i # k we have m;(h) = M;. Moreover, we have :

-1

i#k

Proof. By Remark 1.1.42 (2), we have h = Hm(f)). The halfspace being assumed to
i=1

be proper, there exist k € {1,..,n} such that m(h) # M. In the other hand, h° =

Hm(hc) = (H mi(H))¢. We conclude that for the rest of the indices i € {1,..,n}\{k} we

i=1 i=1

have Wl(f)) = M,L O

Remark 1.1.44. Proposition 1.1.43 is no longer true when we consider a product of an
infinite family of median algebras. The halfspaces described in Proposition 1.1.43 obviously
constitutes halfspaces of the product but one obtain infinitely many halfspaces of other

type.
Take for instance the product M := HR and consider the convex subsets

€N
01 = {(uEz)ZEN | X, = 0}
Cy = {(x)ien | z; <0 except for finitely many ¢ € I}

Any halfspace of the form by x (n M;) where by, is a halfspace of M}, must intersects Cj.
In the other hand, as C; and C5 does not intersect, there exist a halfspace which separates
them by Theorem 1.1.7.

Conversely, we have the following description of the ultrafilters in a coproduct of poc
sets :

Proposition 1.1.45. Let (P;)ic; be a family of poc sets and let P := HR. Then the set

el
of ultrafilters of P 1s in bijection with the product of the sets of utrafilters of each P;.

Proof. Each P\{0} embeds as a filter of P. Hence, for any ultrafilter u = P the intersection
un P; identifies with a filter of P; and it is maximal as for any p € P, we have either p e u
or p* € u°. For the converse direction, any pair of elements p; € P; and p; € P;, where i # j,
are transverse. Hence, for any ultrafilters u; = P, and u; < F;, their union is a filter of P.
Therefore, we conclude that the union U u; of a family of ultrafilters u;  P; is a maximal

iel

filter of P. O]
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We sum up the above discussion into the following proposition :

Proposition 1.1.46. Let My, .., M, be a family of median algebras and let (P;)jes be a
family of poc sets. We have the following :

— The poc set H(M;y x .. x M,) is isomorphic to H(M,) H H?—l(]\/[n)
— The median algebra Z/{(H P;) is isomorphic to HZ/{(P])

jedJ jed

Remark 1.1.47. It is perhaps counter intuitive that the functor & commutes with an
arbitrary co-product of poc sets and the functor H only commutes with finites product
of median algebras. This is due to the fact that the category of poc sets is dual to the
category of Stone median algebras, and the functor which goes from the latter category
to the former one associates to each Stone median algebra its set of clopen halfspaces and
not the set of all of its halfspaces.

Hence, if (P,);e; is a family of poc set and M := HU(H) the Stone median algebra

iel

associated to the coproduct of the family (FP;);c;. The median algebra is endowed with the
product topology where each median algebra U(F;) is endowed with the topology generated
by the subbasis U, for p € P;. In this case, the halfspaces of M which are closed and open
at the same time are those of the form H; x (H M;).

el
i#k
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1.2 Metric structure of the median geometry

1.2.1 Median spaces

Definition 1.2.1 (Median spaces). A median space is a metric space (X, d) such that
for any three points a,b,c € X there exist a unique point m € X, called the median point
between a,b and ¢, such that the three intervals relating each two points of the former
triple intersect uniquely in {m}, i.e. :

la, 0] v [b, ] n [a, ¢] = {m}
where the interval between two points is defined as follows :
[a,0] :={x e X | d(a,b) =d(a,z)+ d(x,b)}.
We say that a point € X is between a and b if it lies in the [a, b].

Examples 1.2.2. 1. The real line with the usual metric is a median space.

2. The ¢'-product (X; x Xy, dp) of two median spaces (X1,d;) and (X, dy), i.e.
d((z1,11), (z2,y2)) = di(z1, x2) +d(y1, y2) is again a median space. Its median algebra
structure corresponds to the cartesian product of the median algebra structure of both
X, and X,. For instance R" endowed with the ¢!-metric is a median space. Note that
the interval between a and b corresponds to the product of the interval between the
canonical projection of a and b on each factors.

3. More generally, if (A, u) is a measured space. The space L'(A,u) of ¢'-integrable
real functions over (A, i) is a median space. The median structure comes from the
median structure of the target space which is R. A representative of the median
class between any three classe of functions [f], [g] and [h] is defined point wise, i.e.
[m(f,g,h)(x)] = [mr(f(x),g(x), h(x))]. The median algebra structure of L'(A,u)

corresponds to the ultraproduct (H R)/U, where
A

U:={B < A | B are measurable and u(AAB) = 0},

that is the quotient of HR by the equivalence relation ~; defined by f ~y ¢ if
A

and only if ker(f,g) € U where ker(f,g) :={x e A| f(x) = g(z)}. As the set of

subsets U is stable under finite intersection, the equivalence relation ~ is compatible

with median operation of the product H R, that is, for any f1, g1, f2, 92, f3, 93 € 1_[ R
A A

such that f; ~y g;, then m(f1, fo, f3) ~ m(g1, g2, g3). Hence, the quotient (H R)/U
A

is naturally endowed with a median algebra structure. See Definition 6.3 in [BS81]
for a concrete overview on ultraproducts.
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4. We say that a graph is median if its set of vertices, when endowed with the combina-
torial metric, is a median space. Simplicial trees are examples of median graphs. More
generally, the O-skeleton of a CAT(0) cube complex, seen as a graph and endowed
with the combinatorial metric is a median graph. In fact, any median graph arise as
the O-skeleton of a C'AT'(0) cube complex (see [Che00] Theorem 6.1).

5. R-tree are median spaces of rank 1. In fact, a metric space is a R-tree if and only if
it is a connected median space of rank 1 (see [Bow13] Lemma 9.5).

6. An isotone wvaluation on a lattice (L, v, A) is a real valued function v : L — R
such that

— For any a,b e L we have v(a) + v(b) = v(a v b) + v(a A b).
— For any a,b € L such that a < b, i.e. a A b = a, then v(a) < v(b)

Any isotone valuation gives rise to a pseudo metric on the lattice
d(a,b) =v(a v b) —v(a nb).

A lattice endowed with an isotone valuation is called a quast metric lattice. When
the isotone valuation gives rise to a metric, we say then that (L, d) is a metric lattice
( see |Bir67] Ch V, §6 and §7 for definitions and properties).

The relation a ~ b whenever d(a,b) = 0 is a congruence relation, that is, if a; ~ ag
and by ~ by then (a1 A by) ~ (ag A by) and (ay v by) ~ (ag v be) (see [Bir67] Ch V,
§7 Theorem 9 p77). Hence the quotient L := L/ ~ is metric distributive lattice. By
Theorem 1 [BK47|, we have ¢ € [a,b] if and only if d(a,b) = d(a,c) + d(c,b) for any
a,b,c e L and where [a, b] is the interval with respect to the median algebra structure
associated to the distributive lattice L (see (3) in Examples 1.1.4). A o-algebra B
over a set X with a measure p is an example of a distributive metric lattice. The
valuation is given by the measure p and the pseudo metric between two measurable
subsets of X corresponds to the measure of their symmetric difference.

The intervals in a median space X, seen as a map X? — P(X), verify the axioms of
median algebra by mean of intervals described in Proposition 1.1.3. Hence median space
admits a natural structure of median algebra. Let us describe how the notions seen in the
previous section translate into the metric framework.

As for median algebra, convexity is defined with respect to intervals. Note that median
spaces need not to be geodesic spaces, nor to be even connected. However, we have the
following :

Proposition 1.2.3. Any complete connected median space is geodesic.

Proof. Let X be a complete connected median space. The space being complete, it is enough
to show that for any two points, there exist a point in the middle, i.e. for any a,b € X there
exist x € [a, b] such that d(a,z) = d(b, z). One may then construct a geodesic between any
two points a,b € X by extending the isometric embedding of the dyadic rational of the
interval [0, d(a,b)] € R, using the completeness of X.
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As we assumed the space X to be connected, for any two points a,b € X the subset
M,y == {z € X | d(a,z) = d(b,x)} is not empty as it separates the two disjoint open
subsets {z | d(a,z) < d(b,z)} and {z | d(a,z) > d(b,z)}. Then the median point between
a,b and any point in M, lies in the middle of a and 0. O

Obviously, if a median space X is geodesic, geodesics joining two points belongs to the
interval between the latter, but it does not coincide with it. In fact geodesics and intervals
in a median space coincide if and only if the space is of rank 1, and it is the case when the
median space is a R-tree.

In the following, we show that in a median space X, gate convex subsets arise as the
closed convex subsets. We remark by the definition of the intervals in term of the metric of
X that the projections onto gate convex subsets coincide with the nearest point projections.
A median space is in general not a CAT(0) space, in fact a connected complete median
space is CAT(0) if and only if it is a R-tree (see Lemma 4.3.8). However, the convexity
being defined with regard to intervals instead of geodesic, convex subset features some
rigidity and we still have nice properties appearing in CAT(0) spaces. In particular, we
have the following :

Proposition 1.2.4. Let X be a median space and let C = X be a gate conver subset. Then
the projection wo onto C' is 1-lipschitz.

Proof. Let us consider z1, 5 € X and assume, without loss of generality, that d(xs, mc(22)) <
d(x1,mc(x1)). The point wo (1) lies in the interval [z, mo(x2)], that is

d(zy, mo(22)) = d(xy, 7o (21)) + d(me(21), T (22)).

We deduce then

d(me (1), me(x2)) = d(zy,me(x2)) — d(zy, mo(21))
< d(l’l, ZUQ) + d($2, 7Tc($2)) — d(ZUQ, 71'0(272))
< d(fl?l,l’g).

]

In particular, the gate projections onto gate convex subsets in median spaces are conti-
nuous morphisms. We deduce the following :

Corollary 1.2.5. Let X be a median space. Then gate convex subset are closed.

Proof. Let C be a gate convex subset. Note that C corresponds to the set of points which
are stabilized by projection map m¢. The latter map being continuous by Proposition 1.2.4
and the space X being Hausdorff, we deduce that C' is closed. O

Proposition 1.2.6. In a complete median space, a convex subset if gate convez if and only
if it is closed.
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Proof. By Corollary 1.2.5, it is left to show that a closed convex subset C' = X in a complete
median space is a gate convex subset. Let z € X and let (x;);en € C be a sequence of point
such that lim; . od(z,z,) = d(z,C). As C is convex, the median point m(x,z;, z;) lies
in C for any i,7 € N. Hence, the sequence (;);eny is a cauchy sequence. Its limit is the
nearest point projection of the point z onto C. It is left to show that the limits does not
depends on the sequence (x;);en. Let a,b € C such that d(z,a) = d(z,b) = d(z,C). Then
the median point m(a, b, ) is a point of C' which is closed to = and lies in the interval [a, b].
We deduce that a = m(a,b,c) = b which finishes the proof. O

The intervals being a gate convex subset in median algebras, we deduce that in a median
space X, for any point a,b € X the interval [a, b] is closed and its projection map given by
m(*,a,b) is 1-lipschitz. Moreover, we have the following :

Proposition 1.2.7 (Corollary 2.15 [CDH10|). In a median space X the median operation
m: (X3,dpn) — X is a 1-lipschitz morphism of median algebra.

It is very convenient to assume the metric space to be complete and almost all of the
results concerning median spaces are stated under that assumption. It is a mild condition
as the median structure is preserved under metric completion.

Proposition 1.2.8. The metric completion of a median space is a median space.
We first prove the following Lemma :

Lemma 1.2.9. Let (X, d) be a metric space endowed with a symmetric ternary operation
m such that for any a,b,c € X we have m(a,b,c) € [a,b]. We have then :

[a,b] = {ce X | m(a,b,c) = c}.
In particular, if (X, m) is a median algebra then (X, d) is a median space.

Proof. For any c € [a, b], we have :

After we sum the equations above, we get :

d(a,b) + 2d(m(a,b,c),c) = d(a,b).
We conclude that d(m(a,b,c),c) = 0, that is ¢ = m(a, b, c). ]
Proof of Proposition 1.2.8. Let X be a median space and let X be its metric completion.

The median ternary operation m extends to a continuous ternary operation on X. We first
show that the interval between two points a,b € X corresponds to the stabilizer of the map
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m(a,b, +). By Lemma 1.2.9, it is enough to show that m(a,b, r) € [a, b] for any z € X. Note
that it is the same as saying that the map f : X® — X defined by

f(ZL’,y,Z) = d(‘r7y) - d(x,m(x,y,z)) - d(y,m(x,y,z))

is null. The map f is continuous and it vanishes in the dense subset X3, hence it vanishes
in the whole domain X.

By the equivalence of the two Definitions 1.1.1 and 1.1.3, it last to show that the ternary
operation m verifies the axiom of median algebras stated in Definition 1.1.1. The solution of
the equations arising in Definition 1.1.1 corresponds to the zero of real continuous functions
defined over a power of X, where the power depends on the number of variable. The median
space X being dense in X and being a median algebra, we deduce that the latter functions
vanishes at a dense subset. Hence by continuity of those functions, the equations defining
a median algebra are verified by all points of X, which finishes the proof. O

Median spaces of finite rank The rank of a median space X is the rank of the median
algebra associated to it. There is a dichotomy between the finite rank case and the infinite
one. For instance, it was shown in [Fio21] that isometries without wall inversion in a finite
rank median space X are semi simple (|[Fio21]| Corollary D), where an isometry g is said
to be without wall inversion if for any halfspace h € H(X) we have g.h # h°. This is no
longer the case when the median space is of infinite rank. Examples are given by proper
action of group which have a distorted abelian subgroup, like some lie groups which verifies
Haagerup property. It was shown in [CDH10| (Theorem 2.2) that a locally compact second
countable group has the Haagerup property if and only if it admits a proper continuous
isometric action on a median space. Thus such actions of PSL(2,R), the universal cover
of PSL(2,R) or SO(n,1) on median spaces cannot be semisimple, as there exist distorted
real line which is not relatively compact inside these groups (one may consider the one
parameter group of a parabolic element in SO(n, 1)).

Another major difference between the finite and the infinite rank case is local convexity.
Let X be a median space, then for any 2 € X and e > 0 the join [B(z, €), B(z, €)] of the ball
centred at x and of radius z is, by triangular inequality, inside the ball B(z, 2¢). If X is of
rank n then by Proposition 1.1.20 we have Conv(B(z,€)) € B(x,2"¢). Hence median spaces
of finite rank are locally convex (see [Bow13] Lemma 7.1). This not necessarily the case
in infinite rank median space. One may consider for example L'(R) where the convex hull
of any ball is the whole space. The iterated join between the elements f, = L, 1) yields
elements in the convex hull of the unit ball around the null function which get arbitrary
far from the center (see [Fi020] example 2.24). This affects the shape of halfspaces as in
the latter cases, they become dense in the space.

Even if we assume the space to be locally convex, the space may contain halfspaces
which are dense. Consider for instance the space

X - <1;[[2—1n,2%1,el> > (Fe L) | f) e[ oo

1}
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The median space X is compact and locally convex. The following two convex subsets

hico = {fe X/ f(i) <0 except for finitely many i € N},
hi=o = {fe X/ f(i) >0 except for finitely many i € N}

are disjoint and dense in X. Thus so is the halfspace which separates them and such
halfspaces exist by Theorem 1.1.7.
In the finite rank case, halfspaces are more manageable geometrically :

Proposition 1.2.10 ([Fio20] Corollary 2.23). Let X be a complete median space of finite
rank. Then any halfspace are either open, closed or possibly both.

When the median space is of finite rank, all of its halfspaces are bounded by a hyper-
plane which is formally defined as follows :

Definition 1.2.11 (Hyperplanes). Let X be a complete finite rank median space and
let h € H(X) be a halfspace. The closed convex subset h := b n h¢ is the hyperplane
associated to b.

If X is a complete median space of rank n, then any hyperplane is of rank less or equal
n — 1 (JFio20] Proposition 2.22). Note that if the median space is not connected, then
the intersection h N h¢ may be empty. It occurs exactly when h and h¢ are both closed.
Hyperplanes in finite rank median spaces appear to be very useful, for instance, they are
practical to prove properties of median spaces of finite rank using an argument by induction
on the rank of the spaces.

For a complete connected median space of finite rank, we set H, := {h € H(X) | z €
b~ be}. It consists of the set of halfspaces which are "branched at the point x. It is the
natural generalization of the valency from R-trees to the higher rank case.

Remark 1.2.12. By Proposition 4.3.7, any halfspace h € H, which contains x, in a
complete median space of finite rank, is necessarily closed.

Before closing this part, we take a brief look at the convex hull of balls in median spaces
of finite rank. In a median space, the balls are convex if and only if the median space is of
rank 1, that is, it is tree like.

One may remark from Proposition 1.1.20 that the convex hull of the ball of radius r
lies in a ball of radius 2" 1r. In the following proposition we show that in a median space
of rank n, the convex hull of the ball of radius » > 0 is contained in a ball of radius nr :

Proposition 1.2.13. Let X be a median space of rank n. Then for any a € X and r > 0,
we have :
Conv(B(a,r)) < B(a,nr).

Before proving the statement, we will be needing some lemmas. The following lemma
is a strengthening of the separation Theorem 1.1.7 in the case of complete median space
of finite rank :

31



1.2. METRIC STRUCTURE OF THE MEDIAN GEOMETRY

Lemma 1.2.14. Let X be a complete connected median space of finite rank. Then for any
a,be X, there exists a halfspace b € H(a,b) such that d(a,b) = 0.

In particular, we have ﬂ h = {a}

heHa (X)
aeh

Proof. Let us consider two distinct points a,b € X. The median space X being complete
and connected, there exists a midpoint by € [a,b], i.e. d(a,b;) = d(by,b) = d(‘;’b). Let
b1 € H(a,b1) be a halfspace separating by from a. Let by be a midpoint of [a, m; (a)] and

let by € H(a,bs) be a halfspace separating be from a. The halfspace by separates hAl from
a, hence it contains the halfspace h;. Proceeding by iteration, we obtain an ascending

sequence of halfspaces (B, )nens separating b from a and such that lim d(h,,a) = 0. The
n—0oo

subset b := U b, is our desired halfspace. O]

neN*

Remark 1.2.15. Lemma 1.2.14 above remains true in the case of a complete connected
locally convex median space. One may adapt the argument given in Theorem 2.8 [Rol16]
by looking at a maximal element in the family of convex subsets which contains b in their
interior and separates it from a, and show that such a maximal element is a halfspace
which contains a on its closure.

We deduce the following lemma, :

Lemma 1.2.16. Let X be a median space of rank n, and a,b € X. Then there exists a
halfspace b € H(a,b) such that d(a,b) = 0 and d(b,h°) = @.

Proof. We proceed by induction on the rank of the space X. The lemma is trivial for a
connected R-tree. Let us assume that the lemma is true for median spaces of rank n—1. Let
X be a median space of rank n, and let a,b € X. Let us take a halfspace h € H(a, b) such
that d(a,h) = 0, Lemma 1.2.14 ensures the existence of such halfspace. Let us assume that
b is not our desired halfspace, that is d(b, h¢) < d(‘;—’b). Let us consider then the projections

b= m;(b), m3(a) = a. We have then :
d(a,b) = d(a,b) + d(b,b).
We deduce the following :
d(a,b) = d(a,b)—d(b,
d(a
> d(a,b) — —
(a.8) - =2

(n—1)d(a, b)‘

b)
b)

\Y

The interval [a, l;] lies in the hyperplane b, which is a median space of rank n — 1. Hence,
there exists a halfspace h € H(a, b) such that d(a, h) = 0 and d(b, h°) > %. The projection
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~ < d(a,b)
) = )= —
ab.b%) = d(bh%) = S0
n—1 n
Therefore b is our desired halfspace. [

Proof of Proposition 1.2.13. Note that there is no loss of generality if we assume X to be
complete. Let b € X such that d(a,b) > nr. By Lemma 1.2.16, there exists a halfspace
h € H(a,b) such that d(a,bh) = 0 and d(b, h°) = @. Thus, the ball B(b,r) is contained
in the halfspace h. Hence, the convex hull of B(b,r) also lies in h. We conclude that any
point which is at distance bigger then nr from the point b lies outside the convex hull of
B(b,r). O

Remark 1.2.17. As it was pointed out to us by M. Hagen, Proposition 1.2.13 remains
true when we replace the point a by a closed convex subset C' and consider the tubular
neighbourhood of it. More precisely, for any r > 0 we have :

Conv(N,.(C)) € N, (C).

To see this, let us consider a point x € X which is at distance greater than n.r and show
that there exist a halfpsace h € H(C, x) such that d(C, ) > r. By Lemma 1.2.16, there exist
a halfspace h € H(zc,x), where z¢ := me(x) and such that d(z¢,bh) > r. By the bridge
Lemma, we have d(C,b) = d(z¢, m5(2¢)). Hence the r-tubular neighbourhood N,.(C) of C
is contained in h°. Therefore we conclude that Conv(N,(C)) € h° which implies that the
point z is not contained in Conv(N,.(C)).

1.2.2 Measured poc sets

As it was displayed in Subsection 1.1.3, a median algebra is determined by the poc set
of its halfspaces and there is a duality between the category of median algebra and the
category of poc set. The duality extends in a sense to the case of median spaces where the
additional metric structure on the median algebra gives rise to a structure of measured
space on its set of halfspaces. This was first shown in [CDH10| using the language of space
with measured walls and the study was extended in [Fio20|. The idea used in [CDH10] to
construct the structure of measured space on the set of halfspaces is to consider the ring
generated by walls intervals (see Definitions 1.1.6) and define on it a premeasure in order
to apply the Carathéodory extension theorem. Let us describe briefly the construction.

Let X be a complete median space and let W,(X) be its set of convex walls. Let us
denote by R € P(W.(X)) the ring generated by wall intervals which separates two points
(with the convention W,(x,x) = (), that is, the smallest subset of P(W.(X)) contai-
ning the wall intervals, closed under finite union and closed under relative complements.
Note that by Remark 1.1.25, any walls interval between two disjoint gate convex subsets
corresponds to the walls interval between two points. We have the following :
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Proposition 1.2.18 (Lemma 3.3 [CDHI10|). Let X be a median space and let R be the
ring generated by wall intervals of the form W.(x,y). Then any for any A € R, there exist
1, Y1y ooy Ty Y € X such that A=W (xy, 1) U ... w W(zp,yn)-

A premeasure over a ring R is a function p : R — [0, +o0] such that u(¢) = 0 and
for any countable sequence (A, ),eny © R of pairwise disjoint sets, we have :

pllJ An) = X A,

neN neN

Proposition 1.2.19 (Corollary 5.16 [CDH10]). Let R be the ring as defined above. Then
p:R — [0,+0]

nr nr
I = p(l) = Zd(l’nyi) Where 1 = |_|Wc(95i>yi)
i=0

i=0
s a well defined premeasure over R.

By Carathéodory extension theorem (see [Bog07| Ch 1, § 11 Theorem 1.11.8), the
premeasure p extends to a measure over the o-algebra generated by walls intervals.

Theorem 1.2.20 (Theorem 5.1 [CDHI10]). Let X be a median space. Then the set of
halfspaces H(X) admits a natural structure of a measured space (H(X), B, u), where B is

the o algebra generated by the sets H(x,y) = H(x,y) U H(y, z) and p(H(z,y)) = d(z,y).

In [CDH10], the structure of measured space is constructed on the set of convex walls
W,(X) and the structure considered on H(X) in Theorem 1.2.20 is the one induced from
the latter under the natural identification of elements in P(W,(X)) with the elements
of P(H(X)) which are stable under the complementary operation of H(X). Hence, the
o-algebra considered in H(X) is the one generated by the subsets of the form 7-2(:1:, Y).

Remark 1.2.21. Let X, X5 be two median spaces and let f : X; — X5 be an isometry.
Then the map f~!: (H(X3), u2) — (H(X1), 1) is a measurable poc set morphism which
preserves the measure.

In [Fio20], a finer o-algebra is considered in order to obtain a semi finite measure on
W.(X). A measure p on X is semi finite if for any measurable subset A — X such that
((A) = 400, there exist another measurable subset B < A such that pu(B) < 4.

The measure arising in Theorem 1.2.20 is not necessarily semi finite. For instance let
us consider a R-tree X which is not separable. Not that in this case, the hyperplane of
a halfspace is a point. A uncountable family consisting of halfspaces which give rise to a
family of hyperplanes which are discrete is a measurable subset with an infinite measure.

In [CDH10], a duality result was shown between the category of median spaces and the
category of spaces with measured walls.
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Definition 1.2.22. [Space with measured walls] A Wall in a set X is a couple (A, A°)
where A € X. We define the wall interval W(z,y) between two points z,y € X to be the
set of walls (A, A°) such that x € A and y € A°.

A space with measured wall is the data (X, W, 3, 1) where W is a set of walls in
X, B is a o-algebra on W and p a measure on the latter such that for any z,y € X, the
wall interval W(z,y) is measurable and is of finite measure.

The structure of a space with measured wall on a set X defines a natural pseudo metric
on the latter called the wall pseudo metric dy, where dw(z,y) = p(W(z,y)). If it is a
metric, we say that (X, W, B, 1) is a faithful space with measured walls.

To each median space, there is a canonical space with measured walls associated to it
which is faithful and the wall pseudo metric coincides with the median metric (Theorem
1.1 [CDH10]). To make the analogy with the duality in the context of median algebra and
poc set, we will be using the language of pointed measured poc set introduced in [Fio20].
We recall the definition :

Definition 1.2.23 (Pointed measured poc set). A pointed measured Poc set is a qua-
druple (P, B,ug, 1) where P is a poc set, B is a o-algebra over P, u a measure defined on
B and ugy an ultrafilter in U(P).

We will assume that the o- algebra B consists of subset which are stable under the
complementary operation = of P, i.e. A* = A for all A e B.

The latter assumption was not made in the original definition (Definition 2.13 |Fio20])
and is restrictive as it gives no chance for ultrafilters to be measurable subset. However,
throughout this section, we will be only using the structure of measured poc set given by
Theorem 1.2.20. Hence, the assumption is made for the convenience of switching between
the language of measured halfspaces and measured convex walls of the median space.

Note that any space with measured wall (X, W, B, i) gives rise to a pointed measured
poc set (P, B’ ug, ;') such that P := 7='(W), B := 7~ !(B), uy a principal utrafilter over
an arbitrary point xg € X i.e ug:= {Ae P | zg € A} and ¢/(B) = p(mw(B)), where 7 is the
canonical projection which associates to each subset of X the wall corresponding to it, i.e.

A w(A) = (A, A°).

1.2.3 Duality

Let (P, B,ug, i) be a pointed measured poc set. Let X be a median space. In the end of
Subsection 1.1.2, we have seen that the set of ultrafilters over P carries a natural structure
of median algebra. Let us set U, (P) := {u € U(P) | uAug € B and p(uAuy) < 400} and
show that it is stable under the median operation of U(P) :

Lemma 1.2.24. The set Uy, (P) is a median subalgebra of U(P).

Proof. Let us denote by m the median operation of U (P) induced from the median algebra
structure of the set of subsets of P(P) (see Example 1.1.4 (3)). For any uy, ug, ug € Uy, (P)
we have :

w Am(ug, us, uz) = (U Auy) N (uAug).
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In the other hand, we have ugAm(uy, us,uz) = (ugAuy)A(u; Am(ug, us, u3)). Hence, the
subset ugAm(uy,us, ug) is measurable. It remains to show that it is of finite measure.
We remark that for any A, B,C, D < P, we have :

mppy(A, B,C)AD = (AnB)u (AnC)u (BnC))AD c (AAD) u (BAD) u (CAD).
Hence, for any uy, us, uz € Uy, (P) we have :

M(m(ﬂl,ug,U3)Au0) < u(ulAuo) + M(ugAu()) + /J(U.3AU.0) < +00.

As for any uy, uy € Uy, (P), we have :
(ulAuo)A(ugAuo) = ulAug,

the measure of the subset u;Auy is finite. Therefore, the measure p endows the median

algebra U,,(P) with a pseudo metric d, where d(uy,us) = p1(u3Auy). Let us denote by U,
the metric space obtained by identifying the ultrafilters which are at null pseudo distance.

Proposition 1.2.25 ([CDIT10] Proposition 3.14 ). The space Uy, (P) is a median space.

Proof. Let us first show that the median operation of U, is well defined on the quotient
Uy,. Let us consider uy, uf, ug, uh, us, uy € Uy, (X) such that p(uw;Aul) = 0. We remark that

m(ug, ug, uz) Am(ug, ug, uj) < ugAuy (Compare with Proposition 1.2.4).

In the same spirit of the proof of Proposition 1.2.7 given in [CDHI10| Corollary 2.15, we
remark that

m(ug, ug, uz) Am(up,ug, uy) = (m(ug, ug, ug) Am(uy, ug, uz))A(m(ug, ug, ug) Am(u, uj, us)).
m(ug, ug, ug) Am(uy, ug, uy) = (m(ug, ug, ug) Am(ug, uly, ug))A(m(ug, uj, wy) Am(ul, uj, us)).

We deduce then that
m(ug, ug, uz) Am(ul, uy, uy) S (upAuf) U (uAuy) U (uzAuy),
which implies that p(m(u, uz, uz) Am(u), uy, u3)) = 0.
By Lemma 1.2.9, to conclude that U, is a median space, it is enough to show that for
any [u1], [uz], [us] € Uy, we have [m(ur, us, us)] € [[w], [uz]]a,, that is
w(ugAug) = p(ug Am(ug, ug, ug)) + p(m(ug, ug, uz)Aus).

To simplify the notation, let us set m = m((uy, us, u3). We have :

w Ay = (LAM)A(uAm)) = ((pAm) U (uAm))\((uAm) N (usAm))).
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In the other hand, we have :
w Am(ug, us, uz) = (U Auy) N (uAug).

Thus
(1 Am) N (ueAm))) = (U Aug) N (3 Aug) N (uAuz) = .

Therefore, we conclude that
u Auy = (1 Am)A(ugAm)) = (i Am) u (upAm)).
Which completes the proof O

Remark 1.2.26. Note that one can obtain Proposition 1.2.25 from the results of Birkhoff,
See Examples 1.2.2 (6). Lemma 1.2.24 is equivalent to say that the relation which identifies
ultrafilter which have a symmetric difference of null measure is a congruence with respect
to the median operation of U(P) (compare with Theorem 9 in [Bir67] Ch V, §7 pp 77).
Proposition 1.2.25 shows that the metric given by the measure coincides with the median
algebra structure induced from the quotient of U(P), which is the analogue of Theorem 1
in |[BK47] in this particular case.

Each ultrafilter u € U(P) defines a, possibly trivial, median space U,. Hence, when we
consider the quotient of U (P) under the relation u; ~ uy if and only if u; Aus € B is of finite
measure. The median algebra U (P) splits into components which are at infinite "distance"
and each components is a median space. Hence, when we fix the ultrafilter uy, we are fixing
a component in U(P)/ ~

Remark 1.2.27. 1. Let (P, By, uy, pt1), (Pe, B2, Uspio) be two measured poc sets and let
f: PL — P, be a measurable morphism of poc set which preserves the measure and
such that ; (f~!(u2)Auy) < +00. Then the morphism f=1 : U, — U,, is an isometry.

2. Let (P, By, ug, p11) be a measured poc set. In the same vein as proposition 1.1.39, any
element p gives rise to a halfspace U, in U,,(P) by considering the set of ultrafilters
of U,, which contains p. In the proof of Proposition 1.2.25, we have seen that the
quotient of U, (P) onto Uy, (P) is a surjective morphism of median algebra. Hence,
the image U, of the halfspace U, under the latter quotient is a halfspace of U, (P).
The halfspace Z;{p is characterized as follows :

U, := {[u] € Uy, (P) | there exist ' € [u] such that p e u'}.

In contrast with pointed measured poc sets, the dual median space Z;{umD (M(X) in
[CDH10]) to a space with measured walls (X, W, B, ), where o € X, comes with the
additional canonical morphism ¢ : X — Z;{um0 which associates to each point z, the principal
ultrafilter over it. This morphism is injective if for any x,y € X we have p(W(x,y)) > 0.
If X is a metric space and its structure of a space with measured walls is faithfull, then
the morphism @ is an isometric embedding.
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The hyperbolic space H™ has a natural structure of a space with measured walls. The
set of walls W(H") considered is given by the set of hyperplanes of H", where to each
hyperplane 6, we associate the couples (b, h¢) such that b is a halfspace bounded by 6
The group SO(n,1) acts by isometries on H" and the action is transitive on the set of
hyperplanes. Each hyperplane is isometric to a hyperbolic space of dimension n — 1 and
the stabilizer of a hyperplane in SO(n, 1) is isomorphic to SO(n — 1,1). Thus the space of
hyperplanes of H" corresponds to the quotient SO(n,1)/SO(n — 1,1). We endow the set
of walls W(H") with u, the push-forward of a Haar measure on SO(n,1) to the quotient
SO(n,1)/SO(n —1,1). Up to rescaling p, we have the following Crofton formula z,y e H"
uW(x,y)) = d(x,y) for any z,y € H", that was proved in [Rob98| Proposition 2.1 (see
|CMV04] Proposition 3 for a different proof).

In [CD17], it was shown that the median space associated to (H", W(H), n) is locally
compact, of infinite rank, and the image of H" under the canonical isometric embedding ¢
is at finite Hausdorff distance from the ambient median space. In particular, they proved
the following :

Theorem 1.2.28 (|CD17] Corollary 1.2). There exist an SO(n, 1)-equivariant isometric
embedding ® : H" — X, where X is a locally compact median space of infinite rank and
O(H") is at bounded Hausdorff distance from X.

X connected versus (W,.(X), ) "atomless" :

In [Fio20], the author shows that a median space is connected if and only if the finer
algebra defined on its set of halfspaces contains no atoms (see Lemma 3.5 therein). In the
following, we give a reformulation of the latter characterization when W,.(X) is endowed
with the structure of measured set obtained from Theorem 5.1 in [CDH10] (see Theorem
1.2.20).

Definition 1.2.29. Let (X, B, 1) be a measurable space. A subset A € B is an atom if
w(A) > 0 and for any B € B such that B € A we have either y(AnB) = 0 or u(AnB°) = 0.
We say that (X, B, i) is atomless if B contains no ators.

Proposition 1.2.30. Let X be a complete median space. Then X is connected if and only
if We(X), 1) contains no finite atoms.

We first remark the following characterization of connectedness in term of intervals.

Lemma 1.2.31. Let X be a complete median space. Then X is connected if and only if
for any x,y € X we have [x,y] # {z,y}.

Proof. Note that for any =,y € X, the map m(z,y, =) is a retraction from X onto [z,y].
Hence, if X is connected any interval is connected.

We assume now that X is not connected and let U < X be a proper clopen subset. We
set F :={[a,b] | a€ U, be U}. We endow F by the reverse order < obtained from the
inclusion, i.e. [a,b] < [¢,d] iff [¢,d] € [a,b]. By Lemma 2.2.6 (F, <) is an inductive set.
This is also due to the fact that both U and U€ are closed, which ensures us that for any

38



CHAPITRE 1. MEDIAN GEOMETRY

interval [a, b] which is obtained from the intersection of an increasing (with respect to <)
sequence of intervals in F, we have a € U and b € U°. Any maximal element [a,b] € F is
necessarily of the form [a,b] = {a,b} and by Zorn’s lemma such maximal element exists,
which finishes the proof. O

Proof of Proposition 1.2.30. If X is not connected, there exist two distinct points z,y € X
such that [x,y] = {x,y}. By Remark 1.1.15, the inverse image of y under the retraction
m(z,y, =) is the unique halfspace of X which separates y from x, that is W.(x, y) = {(h, h°)}.
Hence {h} is measurable and pu({h}) = d(z,y) # 0, that is {h} is an atom.

Conversely, let us assume that there exist an atom A € W,(X) such that 0 < p(A) <
+00. By construction, we have :

lnf{z 1’1,% ’ Ac UW xu%)}

neN ieN

The measure of A being finite, there exist sequences of points (x;)ien, (¥i)ien S X such that

Ac U We(z4,y;). Because the measure of A is positive, there exist at least one n € N such
ieN

that u(A n W.(zp,yn)) > 0. As A is an atom, we have u(A N W.(zn,y,)) = n(A), that is

(AW, (2, yn)) = 0. Hence, we deduce that

pw(A) = inf{u(We(z,y)) = d(x,y) | p(A\We(z,y)) = 0}.

We claim that the limit above is attained by some a,b € X and [a,b] = {a,b}. Let us
denote by I the set of intervals [z,y] such that p(A\W.(x,y)) = 0. We have already
shown that 4 is not empty. Let us endow it with the reverse order given by the inclusion,
ie. [z,y] <[z t] iff [2,t] S [z,y], and show that it is an inductive set. Let ([x;, ¥i])ien be
an increasing sequence with respect to <. By Lemma 2.2.5, we may assyme that x;;; =
m(zi, i1, Yiv1) and Y1 = m(Yi, Tit1, Yir1)- By Lemma 2.2.6, the intersection ﬂ[xz,yl] is
1eN
not empty and equal [Z, 7] where Z and § are the limits of (z;);eny and (y;)ien respectively.
By Lemma 2.2.7 we have W.(x;11,yiv1) S Wiz, y;) and Wi(Z,7) < ﬂWé(xl,yz) As
€N
lim d(x;,y;) = d(Z,7) we get

5N ) Weli ) = 0.
We deduce then
PAWET) = p(AN( Wl i)

= M(U AWe(z3,9:))

ieN

= lim p(AW.(z:, )

1—+00

= 0.
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We conclude that (14,<) is an inductive set. Assuming Zorn’s lemma, there exist a
maximal element [a,b] € (I4,<). Note that a is distinct from b as u(A) > 0. For any
c € |a,b] we have W.(a,b) = W,(a,c) u W.(c,b). Thus as A is an atom, we have either
w(A\We(a,c)) = 0 or u(A\W,.(c,b)) = 0. Therefore, by the maximality of [a,b] we have
[a,b] = {a,b} which, by Lemma 1.2.31, implies that X is not connected. O

Remark 1.2.32. It is not clear if any measurable subset A € W,(X) of infinite measure
contains a subset B such that none of the two subsets A n B and A\B is of null measure.
This is one of the points where the finer algebra with the new measure constructed in
[Fi020] appears to be very helpful, being semi finite.

Product and co-product

Definition 1.2.33. We say that a median space X is reducible if X splits as the (!-
product of two median spaces which are not singletons.
We say that it is #rreduczble if it is not reducible.

We have seen in Paragraph 1.1.3 of Subsection 1.1.3 how the functors ¢ and H inter-
twines between products of median algebras and co-product of poc sets. By construction,
the same hold in the metric case :

Proposition 1.2.34. Let (X;,d,), (Xo,ds) be two median spaces and let (Py, By, uy, 1), (Ps, By, Ug, f12)
be two pointed measured poc sets. We have then :

u(dlxgld2)(X1 x Xy) is isomorphic to the coproduct H,, (X1) [[H,, (Xa).
2. The median space Uy, (P11 P) is isometric to the ('-product Uy, x Uy, -

1. The measured poc set H

By Theorem 2.2.1, we deduce the following :

Proposition 1.2.35. Let X be a complete median space with the strong separation pro-
perty. Then the following are equivalent :

1. The median space X is reducible.

2. The measured set of walls of X decomposes into the following

(WC<X)7M) = (Wé(X)aul) H(Wg(X),,u”),

where each wall of W' is a transverse to any wall of WY.
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Chapitre 2

Strongly separated median space

Let us denote by H,, the contravariant functor which associates to each median spaces
X the pointed measured poc set (H(X), B, u,u,) where z € X. Note that the structure of
measured poc set (H(X), B, 1, u,) does not depend on the base point z as all points in X
define the same component in U/ ~.

Let us denote by U, the contravariant functor which associates to each pointed measured
poc set (P, B, ug, ju) the median space (U, d,,). If there is no risk of confusion, we will simply
write H and U to denote H, and Uy respectively.

To each median algebra M there is a natural embedding of median algebra into its
double dual U(H(M)), through the map which associates to each point x € M the princi-
pal ultrafilter u,. In [Isb80], it was shown that the embedding is a homeomorphism when
M is a Stone median algebra and the poc set considered is the set of closed open halfspaces
(Theorem 6.13 [Isb80]). An analogue to this in the metric case was shown in [Fio20] (Theo-
rem A), where it shows that the isometric embedding from X to Uy(H,(M)) is surjective
when X is locally convex and complete.

We give another proof to the latter Theorem without considering the finer sigma algebra
constructed in |Fio20| and extend it to the case where the median space X is complete and
for any two points x,y € X, there exist a halfspace which contains x in its interior and the
interior of its complementary contains y.

Before stating the duality theorem, we fix some terminology and notation with regard
to the latter class of median spaces in the following section.

2.1 Median space with strong separation property

Definition 2.1.1. Let X be a complete median space. For any z,y € X, we denote by
H'(z,y) the set of halfspaces h € H(X) such = € h° and y € (h°)°, where bh° is the
interior of h. Following the same notation of Definition 1.1.6, we set W.(x,y) := {(h,h°) €
Welw,y) | b e H (z,y)} and H'(z,y) = H'(2,y) v H'(y, ).

We say that a median space has the strong separation property if for any points
x,y € X, the subset H'(x,y) is not empty.
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Note that by virtue of Theorem 1.1.7, any locally convex median space has the strong
separation property (see also [Bow13] Lemma 7.3). In the other hand, there are median
spaces which have the strong separation property and are not locally convex as shown in
the following examples.

Example 2.1.2. Let X := (!(R) = L'(N, 1) where p is the counting measure. The space
X is not locally convex as the convex hull of any ball is unbounded.
For each 7 € N and r € R, the following sets

bir = {feX/f() <7},
bimr = {f€X/[(i)>r)

are open halfspaces of X and b; -, < (h;~,)¢ For any f, g € X, there exist i € Nand r € R
such that f € b, o, and g € b, ~,. Hence for any f,g € X, the set H'(f,g) is not empty.
We remark that there are also infinitely many halfspaces which are dense in the space X.
In fact, for any f,g € X which differ in an infinite subset of N there exist a halfspace
b € H(x,y) which is dense in X.

In the same spirit of the above example, one may generate many examples of median
spaces which satisfy the strong separation property through the direct sum of locally convex
median space.

Definition 2.1.3 (See also [CMV04] Definition 5). Let ((Xj, a;)):en be a family of pointed
median space. We define the direct sum (P (X;,a;),d) of the family ((X;,a;))sen to be

€N
D (X, a;) = {(2)sen € HXZ' | Zd(xi,a,») < 40o0}.
ieN ieN ieN

And for T = (23)ien,J = (Yi)ien € @(Xi,ai), the distance between them is defined by

1€N
d(Z,9) = Zd(%, Yi)-
1eN
The direct sum (P(X;, a;) is a median space of infinite rank (if we assume that X is

1eN
different from a singleton for infinitely many i € N).

Let us denote by X := @(Xi, a;). If the family ((X}, a;))ien consists of complete median
€N
spaces, then their direct sum is also a complete median space. Each of the complete median
space X embeds as a closed convex subset of X through the isometric embedding ¢, defined
by ¢r(z) = (2i)iew such that x; = a; for all i # k and x; = z. By Remark 1.1.15, any
halfspace by, € H(X}) lifts into a halfspace by in X where

6k = {(7)ien € X | 21 € i}
The projection into gate convex subset being 1-Lipschitz by Proposition 1.2.4, we deduce

that for z,y € Xj and by, € H, (2,y), and for any & = (2;)ien, ¥ = (¥i)ien such that z; = x

and y; = y, we have by, € H'(Z,y). In particular we deduce the following
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Proposition 2.1.4. The direct sum of a family of complete locally convexr median space is
a median space which satisfies the strong separation property.

The direct sum of complete locally convex median spaces is in general not locally convex.
When each of the median space is assumed to be connected, we have the following criterion

Proposition 2.1.5. Let (X;, a;)ien be a family of complete connected median space. Then

X = P (Xi, a;) is locally convex if and only if each X; is locally convex andE diam(X;) < 40,
ieN 1eN

where diam/(X;) is the diameter of X;.

Proof. Note That as each X; embeds as a closed convex subset of X, if one of the X;

is not locally convex then X will not be locally convex. We assume that each X; is lo-

cally convex and show that X is locally convex if and only if Zdiam(Xi) < +o0. Let

1eN
us assume first that Zdiam(Xi) <+ and fix r > 0, b = (b;)ieny € X. There exist
1€eN
N € N such that Z diam(X;) < r. The spaces X;’s being locally convex, there exist

>N
for each ¢ € {1,.., N} a convex subset C; which contains b; in its interior such that
Z diam(C;) < r — Z diam(X;). Then the closed convex subset C' := {(x;)ien | 7; €
i<N i>N
C; for each i < N} contains b in its interior and is contained in the ball of radius r,
thus we have shown that X is locally convex.
Let us assume now that Z diam(X;) = 400 and show that the convex hull of any ball in
€N
X is unbounded. Let us fix an integer m € N and consider the sequence &, = (2;,)ien such
that x;,, = a; for each i # n and z,,, € C,, be such that d(z,,,a,) = min(%, diam(X;)(1—
2%), %) We note that such point z,,, exist as each X, is assumed to be connected. The
convex hull of the sequence (Z,)qen contains the points 7, = (i )ien defined by vy;,, = ;
for each ¢ < n and y;,, = a; for each i > n. The sequence of points (¥, )neny goes arbitrarily

far from the origin (a;)en, which proves that X is not locally convex. O]

2.2 Duality for median spaces with the strong separa-
tion property

The aim of this paragraph is to prove the following theorem

Theorem 2.2.1. Let X be a complete median space with the strong separation property.
Then the canonical isometric embedding of X into Uy(H, (X)) is surjective.

We obtain the above theorem as a consequence of the following proposition :

Proposition 2.2.2. Let X be a complete median space with the strong separation property.
Then the image of X under the canonical embedding is a closed convex subset of the median

space Ug(H,(X)).
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We already know that the space X embeds isometrically into Uy(#, (X)), to show that
its image is a convex of Uy(H, (X)), we need to prove that any ultrafilter in Uy(H (X))
which lies between two principal ultrafilter has a null symmetric difference with some prin-
cipal ultrafilter u.. We will be needing some lemmas before proving the latter proposition.

Lemma 2.2.3. Let X be a complete median space such that for any x,y € X, the set
W.(z,y) is not empty. Then for any a,b € X and any € > 0 small enough there exist
aj € [a,b] such that d(a,a1) < € and any halfspace b € H(b,ay) contains a in its interior.

Proof. Let X, < [a,b] be the set of points x such that any halfspace separating = from b
contains a in its interior. We first show that the subset X, is not empty. Let us consider
bh e H'(b,a) and set ' := m;(b). Any halfspace which separates a’ from b contains b, hence
contains a in its interior. Note that «’ is distinct from b as the latter is contained in the
interior of h°.

The claim of the lemma translates into saying that r := inf{d(a,z)/ x € X,} = 0. We
note that for any =,y € X,, the median point m(a,x,y) belongs to X, as any halfspace
which separates the latter point from b must either separate x from b or y from b. Let us
consider a sequence of points (z;)eny € X, such that lim d(a,z;) = r and show that it is

1—+00
a Cauchy sequence. Let € > 0 and n € N such that |d(a,z;) — r| < € for all i > n. Let us
fix indices i and j bigger than n and set m; ; := m(a, z;, x;). We have then :

d(z;, z;) = d(x;,mi ;) + d(m;, ;) = d(a, z;) — d(a,m; ;) + d(a, z;) — d(a,m; ;).

In the other hand, any halfspace which separates m;; from a must at least separate x;
or z; from a. Hence, any such halfspace must contains a in its interior. We deduce that
m;j € Xq, thus d(a,m; ;) = r. We conclude that :

d(z;,z;) = (d(a, z;) — d(a,m;;)) + (d(a,z;) — d(a,m;;)) < 2e.

The space X being complete and the intervals being closed, the sequence (z;),n converges
to a point x € [a, b], with d(a,z) = r. Let us assume, for sake of contradiction, that z is
distinct from a. We consider a halfspace h € H'(z,a) and set &; := m;(x;). Any halfspace
which separates x; from b either :

— Separates z; from x;, in which case contains a in interior as it would contain §.

— Separates both Z; and z; from b. In this case, the halfspace would also contain a in
its interior as the points x; belong to X,,.

We deduce that the sequence (7;);en lies in X,. As it converge to the point 74(z), there

exist k£ € N such that d(a, ¥;) < r, which is a contradiction. O

Lemma 2.2.4. Let X be a complete median with the strong separation property and let
(W.(X), p) be the canonical structure of a measure set defined on the set of walls of X (see
Theorem 1.2.20). Then the set We(a,b)\WV.(a,b) is measurable and it has null measure.
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Proof. Let us consider a,b € X. For any n € N there exist, by Lemma 2.2.3, a,, € [a,b]
and b, € [a,,b] such that We(a,,b,) = Wi(a,b) with d(a,a,) < + and d(b,b,) < =.
Let (an)nen, (bn)nen S [a,b] be sequences of such points. One may moreover assume that
[an,bn] S [a@ni1,bn11] up to considering the sequences a; := m(a,a;,a;_1) and b =
m(b, bi,l;i_l) where Gy = ag and by = by. Remark that for any b € H'(a,b) there exist
n € N such that h € H(ay,b,). Thus we get :

Wia,0) = | We(an, bn).

neN

We conclude that W/(a,b) is measurable and

puWi(a, b)) = lim uW.(an,b,)) = lim d(an,b,) = d(a,b).

n—+0o0 n—+0o0

Which finishes the proof. O

In the following lemma, we remark that any closed convex subset of any interval in a
complete median space is also an interval

Lemma 2.2.5. Let M be a median algebra and let x,y € M. Then for any gate convex
subset C' < [z,y], we have C = [nc(x), 7o (y)].

Proof. Let M be a median algebra and let xz,y € M. Let C' < [x,y] be a gate convex
subset. Note that any wall which separates two points in [z, y] must separate x and y. Let
ce C and let h € H(x,y) be a halfspace which contains x. By Lemma 1.1.14, we have
mo(x) € b and 7w (y) € h. Hence there is no halfspace which separates ¢ from both 7o ()
and m¢(y). Therefore by Theorem 1.1.7, the point ¢ belongs to the interval [7o(z), 7o (y)]
which finishes the proof. ]

In a general complete median space, intervals need not to be compact. But if we consider
the topology generated by closed convex subsets, intervals become compact as shown in
the following lemma. See Theorem 14 in [Mon06] for the analogue in the case of CAT(0)
metric spaces.

Lemma 2.2.6. Let X be a complete median space and let (C;)ier < [a,b] be a family of
pairwise intersecting closed conver subsets. Then the intersection ﬂ C; is not empty.

iel

Proof. By Helly’s Theorem, we have for any finite subset J < I, the intersection C; :=
C; is a non empty closed convex subset. By Lemma 2.2.5, we have C; = [7¢, (a), 7c, (b)].

ieJ

Let us set ay := 7¢,(a) and by := m¢,(b). Note that for any two finite subsets J, K < I, we

have [ajok,brok] S [ag,bs] N ax,bk] < [a,b]. We deduce that the nets (a)sep,(r) and

(1) sep, (1) are Cauchy nets, where P¢(I) denote the set of finite subsets of I endowed with

the partial order relation given by the inclusion. The metric space X being complete, the
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nets (ay)sep;ry and (by)sep,(r) converges to a and b respectively. Therefore we conclude
that a,be C := (] C:.
el
Let us moreover show that C' = [, b]. The points G and b maximize the distances d(a, a)
and d(b, by) respectively. In the other hand, for any J € P;(I) we have nc(a) € [a, 7, (a)]
and 7¢(b) € [b, 7, (b)]. Thus, we get d(a,mc(a)) = d(a,a) and d(b, 7c(b)) = d(b,b). As
no(a) € [a,a] and 7o (b) € [b,b], we conclude that a = m¢(a) and b = 7o (). O

Proof of Proposition 2.2.2. Let us denote by ® the canonical isometric embedding of X
into its double dual U (#H(X)). Note that X being complete and ® an isometric embedding,
then ®(X) is closed. It last to show that ®(X) is a convex subset of Uy(#,,(X)). Let us fix
a,be X, ue [®(a),P(b)] and show that there exists ¢ € [a,b] such that pu(P(c)Au) = 0.
By Lemma 1.2.24 and Proposition 1.2.25, we have pu(m(®(a), ®(b), u)Au) = 0. This means
that for p almost all wall w = (h,h°) € We.(a,b))", that is a,b € b or a,b € h¢, we have
h € u. The idea of the proof is to approximate the ultrafilter u by the set of halfspaces
which contains some convex subset of [a,b], and at each "time" we consider a smaller
convex subset until we reach a singleton.

By Lemma 2.2.5, each closed convex subset F' < [a,b] is of the form [7gr(a), 7r(D)],
hence the set of walls which are not transverse to F' constitutes a p measurable set as it is
the complement of W, (7r(a), mr(b)). Let F, be the set of closed convex subsets ' < |a, D]
such that for p almost any wall w = (b, h°) € W,.(a,b) with F' < b, we have h € u. The set
J. is not empty as it trivially contains the interval [a, b]. Let us endow F, with the partial
order relation < where F; < F; if and only if F;, € F}. Lemma 2.2.6 implies that (F,, <) is
an inductive set, hence by Zorn’s lemma, it contains a maximal element F},. Let us show
that F), is a singleton. By Lemma 2.2.5, there exist z,y € [a,b] such that F,, = [z,y].
Let us assume for sake of contradiction that x and y are distinct. Let us consider then
a halfspace h € H'(x,y) and assume, without loss of generality, that h € u. Let us set
T := 7;; and note that any halfspace which contains both 7 and y either contains both
and y or it separates & from z, that is W,.(z,y)¢ = W.(x,y)° uW,(z, z). In the other hand,
any halfspace which separates  from x must contains the halfspace h. Therefore, we get
H(x,Z) < u. We deduce then that [Z,y] belongs to F, which contradicts the maximality
of I,,,.

We have shown that F), is a singleton, let us denote it by {c}. By construction, we have
p(u.Au) = 0, which finishes the proof. O

We will be needing more lemmas before deducing Theorem 2.2.1 from Proposition 2.2.2.

Lemma 2.2.7. Let X be a complete median space and let us consider a,b e X and c € [a,b].
Then any halfspace b € H(a,c) which contains ¢ in ils interior contains b in its interior.

Proof. Let us consider h € H(a, c) such that c € h°. By assumption c lies outside h¢. Hence ¢

does not belong to the interval [mg(a), m5=(b)] = [a, m=(b)] which is inside be. We conclude
that b is distinct from 7g=(b). O
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Lemma 2.2.8. Let X be a complete median space with the strong separation property and
let (H(X), 1) be the canonical structure of measurable set on the set of halfspaces of X. Let
us consider a point x € X and an ultrafilter uw € U(H(X)) such that u,Au is measurable
with p(uzAu) < 4+00. Then p(u,Au) = 0 if and only if there is no halfspace h € u,Au
which contains x in its interior.

Proof. Let us assume that there exist h € u,Au which contains x in its interior and set
T = mg=(x). The point x being in the interior of b, it is distinct from 7. In the other hand,
any halfspace which separates x from = contains h¢, hence it belongs to u. Therefore we
get H(x, ¥) S u,Au with pu(H(x, %)) = d(z, %) > 0.

For the other inclusion, let us assume that u, Au contains no halfspace h which contains x in
its interior and show that p(u,Au) = 0. The measure u being build from the Caratheodory
extension theorem, we have :

p(uAu) = lnf{Z xlayz )/ uzAu S UH Tiy Yi) }-

neN ieN

[ts measure being finite, there exist a sequence of pairs (z;)ien, (¥i)ien S X such that

u, Au < U?—[(xz,yl) In one hand, we have H(z,a) n H(b,a) = H(m(a,z,b),a). In the
ieN

other one, Lemma 2.2.7 implies that H'(m(z, x;,v;),y:) < H'(x,y;). Thus we get

(H(z, yi) \H' (2, 1:)) 0 H(zi, yi) © H(m(@, 4, 91), yi) \H (m(z, 24, 9i), vi)-

The point m(z, x;, y;) being in the interval [z;,y;], we have

H(xiayz) /}:[('Iza (x7$uyl)) L ,ﬁ[(m(‘r)xwyl)vyz)

As we assumed that u, Au contains no halfspace which contains x in its interior, we deduce
the following inclusion

(uwAu)mﬂ(xiv yl) < (7‘2(1’“ m(a:, T, yz))\?—zl(mlv m(:c, Li, yl)>>u(7—~l<m<x7 L yl)7 yl)\ﬂ/(m(xv Lis yl)v yl))

The right hand of the above inclusion being of null measure by Lemma 2.2.4, we conclude
that p(u,Au) = 0. O

Proof of Theorem 2.2.1. Let us consider an ultrafilter u € U (#H (X)) such that u, Au < +o0
for some, hence for all, x € X. By Proposition 2.2.2, the image of X under the canonical
embedding into Uy (H,(X)) is a closed convex subset. Let a € X be such that [u,] is the
gate projection mg(x)([u]) of [u] into ®(X). We claim that p(uAu,) = 0. The class [u,]
being the gate projection of u into ®(X), we have [u,] € [[u], [u;]] for any = € X. Which
translate into saying that for any x € X

w(m(ug, uz, u)Au,) = 0.
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Let h € H(X) be a halfspace separating u from u,, that is h € (uAu,) nu and set a := 7;(a).
Any halfspace in X which separates a from a must be contained in u. Hence we have the
following inclusion H(a,a) < (uq, Uz, u)Au,. We deduce then

d(a,a) = p(H(a,a) < p(m(ug, uz, u)Au,) = 0.
Therefore, for any h € (uAu,) N u we have a = 7;(a), which implies that there is no

halfspace h € u,Au which contains a in its interior. We conclude by Lemma 2.2.8 that
p(u,Au) = 0. O
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Chapitre 3

Action of S-arithmetic lattices on
median spaces

3.1 Lattices in | | PSL(2, k)

el
3.1.1 (p+ 1)-regular tree associated to PSL(2,Q,)
p-adic field : Let Q be the field of rational numbers.

Definition 3.1.1. A wvaluation on Q is a group homomorphism v : (Q*, ) — (R, +) such
that :
o(z +y) = min(o(z), v(y))

Note that each valuation is determined uniquely by the values that it takes on the
integer. We say that two valuation v; and vy are equivalent if there exist a constant A > 0
such that v; = Avs.

Examples 3.1.2. 1. There is the trivial valuation which take value 0 on Q*.

2. The p-adic valuation v,, where p is a prime number, associates to each integer k the
maximal n such that p™ divides k, which corresponds to the first power of p in the
development of k in the basis p, k = Z a;.p" where a,, # 0.

=n

Each valuation v gives rise to an absolute value | | on Q by |r|, := e7*(") which verifies

the ultra-metric inequality | +72| < maz(|r1], |r2]). A consequence of Ostrowski’s theorem
(see Ch 2, §2.1 p85), is that the valuations arising in Examples 3.1.2 are the unique valuation
on the field Q, up to equivalence.

The ultrametric absolute value | |,, associated to a p-adic valuation v, is called the
p-adic norm. The metric space (Q,d,) arising from this norm is totally disconnected and
the integers accumulates around 0. The space (Q,d,) is not complete, one may consider

49



3.1. LATTICES IN | [ PSL(2, k)

lel

k
for instance a Cauchy sequence of the form k; = Z a;.p’. The metric completion of (Q, d,)

denoted by Q, is the field of the p-adic numbers. Note that the valuation v, extends to
Qp. The unit ball around zero, which is a clopen, is called the rings of p-adic integers
or the valuation ring of Q, and is denoted by Z,. It corresponds to the set of points
which have positive valuation and it can be described as the set of formal series with bases

p
Zy = (Y aip' | k<0and a; € {0,..p— 1}}.

i=k

For a reference about the theory of p-adic field, see [Rob00].

The homogeneous simplicial tree associated to PSL(2,Q,) : Throughout this pa-
ragraph, we will follow the construction explained in [Ser80] Ch IT §1.1 p.69. Let V be a
vector space of dimension 2 over Q,. A lattice (L,+) < (V,+) is a free Z,-module of rank
2,i.e. L = 7Z,.ey + Zy.es, where e, e € V are linearly independent. Let us denote by £ the
set of lattices in V. We say that two lattices L; and L, are equivalent if there exist £ € Q,
such that L, = k.L,, we denote this equivalence by ~.

The linear action of SL(2,Q,) on V induces a natural action on £. The stabilizer of a
lattice L is conjugate, in GL(2,Q,), to SL(2,Z,). Note that SL(2,Z,) acts transitively on
the set of basis of the lattice that it stabilizes.

Let us consider two lattices Ly, Ly € £ and a p-adic integer k € Z, such that k.L, < L;.
The existence of such p-adic integer is due to the fact that Q, is the fraction field over
Z,. By the elementary divisors theorem (see |[Lan02] Theorem 7.8 Ch III §7 p.153), there
exist a basis B = {e1, e} of Ly, and ny,ny € N* such that k.Ly =< p™.eq,p™.ey >, with
n1 < ng. Note that the difference ny — n; does depend only on the equivalence classes of
the lattices Ly and Lo, we denote it by d([L1], [L2]). We set £ := L/ ~.

Proposition 3.1.3 (Theorem 1, [Ser80] Ch 11 §1.1). The space (£, d) is a (p+1)-homogeneous
simplicial tree.

The action of SL(2,Q,) descends to an isometric action on L. Let us Consider;il, Lyel
and let 1, e € V', n € Nsuch that {e;, eo} and {e;, p".ea} are basis for some L, € L; and L €
Ly respectively. Then the application corresponding to the matrix A = ((1) pql) e GL(2,Q,)
maps L; to Lo. If n is even, then the element represented by the matrix (p_; 0%) €

- p
SL(2,Q,) induces the same action as A on L. If n is odd, the action of A can not be
induced from an element in SL(2, Q,). This is due to the fact that p does not have a square
root in Q, (see [Rob00] Ch.1, §.6.6, p.49). Hence, the action of SL(2,Q,) is transitive on
the set of points which are at even distance. There exist two conjugacy class of maximal
compact subgroup in SL(2,~@p). Each element in the conjugacy class corresponds to the

stabilizer of an element in £, and each such maximal compact subgroup is a conjugate in
GL(2,Q,) to SL(2,Z,).
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3.1.2 Lattices in HPSL(Z, k)
=
In the next sections, we will be considering isometric action of lattices [' < G =

HPSL(Z, ks) where S is finite and each k; is either R, C or Q, and the projection of I'

seS
into each factors is dense.

We say that I is 2rreducible if for any J < S the projection of I into H PSL(2, k) is

seJ
dense.

Example 3.1.4. — The group PSL(2, Z[Il)]) is a non cocompact lattice in PSL(2,R) x

— Let p € Z a prime number such that —1 is a square in QQ,,. Note that is is equivalent to
require that p = 1[4] as the polynomial X? — 1 has always a solution which generates
the cyclic group of roots of unity, which is of order p—1 (see [Rob00] Ch.1, §.6.7, p.51).
The ring Z[i] embeds as a lattices in C x Q, x Q, through the Z-linear morphism ¢
which sends i into (i, 7, —i) where i is a square root of —1 in Q,.

The group PSL(2, Z[%]) embeds as a non cocompact lattice in PSL(2, C) xPSL(2, Q,) x
PSL(2,Q,), where the entries of the matrices representing elements of PSL(2, Z[é])
are mapped through the map ¢.

In the proof of Theorem 3.3.1, we will be considering separately the case where the
lattice I' is cocompact and the case where it is not. To deal with the latter case, we will be
using the following fact

Theorem 3.1.5. Let I' < HPSL(2, ks) be an irreducible lattice which is not cocompact

seS
and |S| = 2. There exist then a solvable subgroup of T' which is not virtually abelian.

The subgroup is obtained by considering the intersection of a borel subgroup of G with
I'. For example, when I" = PSL(2, Z[%]) the subgroup represented by the upper triangular
matrices of SL(2, Z[%]) is a solvable subgroup which is not virtually abelian.
Proof of Theorem 3.1.5. By Margulis’s arithmeticity theorem, any such irreducible non-
cocompact lattice is commensurable with a conjugate of PSL(2, Og), where S is the ring

of S-integers, that is
Og = {xe Q| |z|,, <1 for any p -adic norm on Q which is not in the class of the | [x,’s}.

Hence, it is enough to show that PSL(2,Og) contains a solvable subgroup which is not
virtually abelian. By The Dirichlet Theorem (See [Lan94| Unit Theorem, Ch.V, §.1, p.104),
there exist a non trivial invertible element ¢t € O. Hence, such solvable non virtually abelian
group is given by the group generated by the element A = (6 t91) and the horospherical

subgroup Hg = {(§%) | z € Og}. O
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3.2. FIORAVANTT'S MACHINERY

Another property of I' which plays a key role in the proof of Theorem 3.3.1 is the
quasi-simplicity.

Theorem 3.1.6 ([Mar91] Ch IX, §5 Theorem 5.4 p.325). Let I' < HPSL(Q,kS) be an
seS
irreducible lattice. Then :
— For any normal subgroup N T, either N or I'/N is finite.

— The quotient I'/[T',T'] is finite.

3.2 Fioravanti’s machinery

3.2.1 Roller boundary

Let X be a complete locally convex median space. A natural way to define points at
infinity in the median case is through ultrafilters. But not all ultrafilters of U (H (X)) points
toward a direction to "infinity". Consider for example a principal ultrafilter u, € U(H(X))
over x € X, that is, the ultrafilter consisting of all halfspaces of X which contain x. Let
b € u, be a minimal element (note that such element always exist by Zorn’s lemma). Note
that = must be contained in the closure of h¢. Then u,\{h} U {h°} is also an ultrafilter which
is "close-fitting" to u,.

When we endow U(H(X)) with the pseudo metric given by the canonical measure
over H(X), the pseudo-distance between ultrafilters which differ with an countably many
halfspaces is zero. For instance, when X is of finite rank, there are only finitely many
minimal element in each ultrafilter. However, when the rank of X is infinite, one can have
uncountably many such minimal elements and find two ultrafilters with infinite distance
and which differ only on a set of halfspaces which contain a common point of X on their
hyperplane.

In [Fi020] section 3, E. Fioravanti dealt with this issue in the case of complete locally
convex median space by considering a finer sigma algebra B’ over H(X) and a measure 0
over it which coincides with the canonical measure p on the elements with finite measure
of the canonical o-algebra B. Let us first point out that in [Fio20], the canonical structure
of measured space over H(X) is the one generated through the Caratheodory extension
theorem on the ring of sets generated by the sets of oriented halfspace intervals H(z,y),
instead of the set of the non oriented halfspaces intervals 7:[(:15, y). Hence, measurable subsets
include non symmetric set of halfspaces, that is, set of halfspaces which are not stable under
the complementary operation ©.

Roughly speaking, the construction of B’ consist of adding all subset of H(X) such
that their intersection with any directed halfspace interval H(z,y) is measurable with
respect to the canonical sigma algebra. It was shown then that for any x € X, the set
adj(z) = {h € H(X) | z € b°, x € b} is measurable and of zero measure with respect
to 0 (see [Fio20] Lemma 3.6). Remark that adj(z) contains complements of all minimal
halfspaces of the principal ultrafilter u,.
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All principal ultrafilter are measurable with respect to the sigma algebra B’ (Lemma
3.6 |[Fio20]). As in Subsection 1.2.2 the measure v defines a pseudo metric d;(uy,uy) =
£0(uy Auy), with possible infinite value, on U (H(X)) and the relation ~ defined by u; ~ uy
if and only if u;Auy = 0 is a congruence. The quotient of U(#H (X)) by the congruence ~
is a median algebra that is denoted by X = U(H(X))/ ~. It decomposes into components,
constituted of elements which are at finite distance d;. The restriction of d; on each com-
ponent gives rise to a median space and each component is a convex in X (Proposition
4.19 [Fio20]). There is a unique component which contains an isometrically embedded copy
of X, through the canonical isometric embedding which associates to each point of X the
principal ultrafilter corresponding to it. This component is denoted by M(X) in [Fio20]
and as the median space is assumed to be locally convex, the component M (X) is isometric
to X. Hence, there is no confusion if we still denote this component by X. The Roller
boundary of X is the set 0X := X\ X.

Every isometric action I' —~ X gives rise to an action I' —~ X which sends each com-
ponent of X into another one and preserves the component corresponding to X.

Definition 3.2.1. Let I' —~ X be an isometric action on a complete locally convex median
space. We say that the action is :

— Roller Elementary if it has a finite orbit in X

— Roller minimal it does not fix a component of 0.X and there is no proper I-invariant
closed convex subset in X.

If the median space X is of finite rank, then for any isometric action I' —~ X one can
always find a closed convex I'-invariant subset where the action of I' is Roller minimal as
stated in the following proposition :

Proposition 3.2.2 (Proposition 2.9 [Fiol9]). Let X be a complete median space of finite
rank and let I' be a group acting non elementarily on it. Then there exist a I'-invariant
closed convexr subset C' < Z, where Z is a I'-invariant component in X such that the
restriction of the action of I' on C' is Roller minimal.

The following proposition states that for any convex subset C' < X, there exist a unique
component in Z < X such that C' < Z

Proposition 3.2.3 (Corollary 4.31 [[Fi020]). Let X be a complete locally conver median
space with compact intervals. Then any conver subset C' < X intersects a unique component
of X of maximal rank.
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3.2.2 Barycentric subdivision

Almost all the properties obtained from group action on median spaces of finite rank
require the assumption on the action being Roller minimal. The assumption is necessary to
ensure that the action have a good mixing property on the Roller boundary of the median
space, and can move the space in the transverse direction to almost all halfspace. But the
condition is not sufficient as one may have an action which is artificially Roller minimal,
and this may occur especially when the space is not connected.

Consider for example the space X = R x {—1,1} endowed with the ¢*-product metric.
The action of its group of isometries is Roller minimal, but one can imagine that it fixes
an imaginary axes R x {0}. This prevent the action to move points transversally to this
imaginary line. This behaviour can be detected by the inversion which maps the halfspaces
R x {—1} to its complement R x {1}.

The same pathology may arise in the assumption of the action being free, where the
freeness of the action can be artificial. If the action of a group on a simplicial tree is free
only on the set of vertices, one can deduce nothing about the group being free or not.
Consider for instance the action of the infinite dihedral group on Z.

To avoid this particular cases, one need to assume that there is no elements which maps
a halfspace to its complement.

Definition 3.2.4. Let [' be a group acting by isometries on a complete median space X
which is f finite rank. We say that v € I" acts without wall inversion if for any h € H(X)
we have ~v.h # h°.

We say that the action of I' is without wall inversion if all of its elements act without
wall inversion.

To get rid of the above assumption, one consider the barycentric subdivision of the
space which consist of adding all the imaginary convex parts which lie between each clopen
halfspace and its complement. The construction was done in [Fiol8] Section 2.3. In the
case of a simplicial tree, it consists of considering the new simplicial tree where we add a
vertex in the middle of each edge.

More generally, let X be a complete median space of finite rank. We assume that X
is not connected which is, by Lemma 1.2.31 and Remark 1.1.8, equivalent to the existence
of a halfspace which is clopen. Let h € H(X) be such clopen halfspace. By Lemma 1.1.24,
the two convex subsets my(h°) and mye(h) are isometric and the isometry is given by the
projections 7y and 7ye, see Figure 3.2.2 below.
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() 75(H°)

b : )

FIiGURE 3.2.1 —

Roughly speaking, the barycentric subdivision of the space X consists of adding between
each clopen halfspace h and its complement a copy of the convex subset 7, (h°) which lies
at distance w from both b and h¢ as shown in Figure 3.2.2 below.

() 75(H°)

b : : b

FIGURE 3.2.2 —

Note that there are other convex subsets which are added when we have many pairwise

transverse clopen halfspaces.
Formally, We consider a finer poc set ‘H'(X) induced from #H(X), which contains all

the halfspaces of H(X) which are not atoms and each atom h of H(X) is split into two
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"halfpsaces" h_ and b, each one of them has half the measure of . The structure of poc
set of H'(X) is constructed by keeping the same structure on the halfspaces which are not
atoms and setting h_ < by, b* = (b4, bt = (h°)_ and b’ < h_ (respectively b’ > b))
if and only if b’ < b (respectively b’ > ) for all h’ € H(X) and atoms h € H(X). Note
that by construction, any halfspace h' € H(X) is transverse to h € H(X) if and only if
either one or equivalently both of h_ and b, are transverse to ', in the sense that h_ < by,
b < b™ b2 £ b and h* £ ™.

Let us denote by A(X) the subset of atoms of H(X). We have a canonical projection
p: H'(X) — H(X) which is the identity on the part corresponding to H(X )\ A(X) and
which associates to each h_ and b, there corresponding clopen halfspace b.

Let (H(X), B, i) be the measured poc set structure described in Theorem 1.2.20. Let us
denote by B4 := {{h,h°} | h € A}. The structure of measured poc set of (H(X), B, ) lifts

to a structure of measured poc set on (H'(X), B, ') where B' := p~'(B) u ( U {h,b°})

heA(X)
and 1/(E) = p(p(B) 0 AX)%) + Y pih.0%) 3 p({h.b%})
.

Definition 3.2.5. Let X be a complete median space. We call the median space X' :=
U((H'(X)) associated to the pointed measured poc set (H'(X), B, i/, u,), where z € X is
arbitrary, the barycentric subdivision of X. Throughout the following we will abuse the
notation and identify X with its image in X’.

The surjective measurable poc set morphism p : H'(X) — H(X) gives rise to an
isometric embedding ®; of X into X’. Moreover, we have :

Proposition 3.2.6 (Proposition 2.15 (2) [Fiol8]). Let X be a complete median space of
finite rank, we have then Convx/(X) = X'.

Remark 3.2.7. Let X be a complete median space of finite rank. For any convex subset
C < X we have a natural isometric identification between C’ and ®(C).

The following Lemma ensures us that there is no additional halfspaces that appear in
the barycentric subdivision in addition to the one coming from the non atomic halfspaces
of H(X) and the imaginary ones corresponding to the split of atoms.

Lemma 3.2.8 (Lemma 2.14 [Fiol8|). Let X be a complete median space of finite rank.
We have then H(X') = H'(X).

Remark 3.2.9. We point out that we are not being totally faithful in our transcription
of the definition and construction given in [Fiol8], as we are using the measured poc set
structure described in [CDHI10] instead of the one introduced in [Fio20]. Nevertheless,
this will not change the properties satisfied by the barycentric subdivision and it is the
propositions concerning these properties shown by Fioravanti that we are going to appeal
that matters.
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Any isomorphism f of the measured poc set (H(X), B, i) gives rise to an isomorphism
7 where f'(5_) = (F(b), f'(h.) = (/(8))+ and f'(h) = f(b) for any b & H(X)\A(X).

Hence any isometric action on X induces an isometric action on its barycentric subdi-
vision X', and the isometric embedding of X into X’ is equivariant whit respect to these
actions.

We have the following :

Proposition 3.2.10 (Lemma 2.13 [Fio19]). Let X be a complete median space of finite
rank and let I' be a group acting by isometries on X. Then the action of I' on X s Roller
non elementary if and only if its action on X' is Roller non elementary.

Roller minimal actions on a median space does not necessarily induces a Roller minimal
action on its barycentric subdivision, even if we assume that the action to be Roller non
elementary. Consider for instance the ¢!-product of a homogeneous simplicial tree with
{0,1} and the action of its group of isometries on it. However if we assume the space to be
irreducible we get the following :

Proposition 3.2.11. Let X be a complete irreducible median space of finite rank. Let T’
be a group acting Roller non elementarily and Roller minimally on X. Then the induced
action of I' on X' is also Roller minimal.

The above Proposition is proven in [Fiol9] Lemma 2.14 using Lemma 2.13. Since I am
not sure to understand the argument in Lemma 2.13, we will proceed differently for the
proof of Proposition 3.2.11. The main line of the argument is as follows. Given a Roller
non elementary and Roller minimal action of I' on a complete median space of finite rank
X, we consider a closed I invariant convex subset 2 < X’ for the sake of contradiction. By
Proposition 3.2.3 and Remark 3.2.7 there is no loss of generality to assume that £ < X'.
Since the ['-action on X is Roller minimal, the subset £ does not intersect X, because the
closure of Conv(I'.(E n X)) is a ['-invariant closed convex subset of X. For any convex
subset F < X"\ X there exist a halfspace h € A(X) such that £ < b, n h°, this is shown
in Lemma 3.2.12. Finally, one show that any other halfspace of X is transverse to b, which
gives a splitting of X.

Lemma 3.2.12. Let X be a complete median space of finite rank. Then for any closed
conver subset E < X'\ X, there exist a clopen halfspace b € (X) such that E < b, nbh°.

Proof. Let n be the rank of the space X and let x € E. By Lemma 2.13 [Fiol8|, there
exist an embedding of median algebras i, : {—1,1}* — X which extends to an embedding
iz 1 {—1,0,1} — X', where 1 < k < n and such that C(z) := i,({—1,1}*) and C'(z) :=
iz({—1,1}*) are gate convex subset of X and X’ respectively.

As the gate convex subset E lies entirely inside X"\ X, its intersection with C’(z) be-
longs to the image under i, of a hyperplane of the form {(z1,..,2;) € {~1,0,1}* | 2; =
0 for some fixed i € {1,..,k}}. By Lemma 1.1.14 the lift under 7r5,1($) of the halfspaces of
C'(z) given by the image under i(z) of the halfspaces {(zy,...,2;) € {—1,0,1}* | ; < 1}
and {(z1,...,2) € {—=1,0,1}* | ; = —1} are two halfspaces such that their intersection
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contains F and lies in X"\ X. By Lemma 3.2.8, the latter halfspaces necessarily arise as b_
and b, for some h € A(X), which completes the proof. ]

Lemma 3.2.13. Let X be a complete median space of finite rank and let h € A(X) be a
clopen halfspace of X. Then any halfspace b/ € H'(X) which separates two points of h nhe
15 a halfspace which is transverse to both b, and h_.

Proof. Despite the natural identification between H'(X') and H(X"), given by Lemma 3.2.8,
to avoid confusion between their elements, we will denote the element of the former poc
set by b and their corresponding one in the latter poc set by h'. Let z,y € b’ n (h")°

and let h € H'(z,y) be a halfspace which separates y from = with x € b and y € (h°). By
Lemma 1.2.10 there is no loss of generality to assume that b is closed. By construction x
and y are classes of ultrafilters which contains b, and h_. Note that despite the measure
of a non clopen halfspace is zero, each ultrafilter in the class = (respectively y) contains h*
(respectively b). This is due to the fact that any ultrafilter which contains b (respectively
b°) will contains the chains H(z,m (7)) (respectively H(y, ms=(y))) which is of positive
measure.

Let £ be an ultrafilter in the class of x and let y be an ultrafilter in the class of y.
We claim that Z, := (Z\{h.}) U {b;:} and g, = (9\{b+}) U {b} are ultrafilters, it is
enough to show it for Z,. Note that by construction, we have 7, U % = H'(X). It last
to show that there is no t € Z, such that h, < t*. By construction of (H'(X), <), any
element t € T, which verifies the latter inequality, must verify h_ < t*. As both t and h_
lies in & which is an ultrafilter, such inequality can not hold. Therefore, both 7, and g,
are ultrafilters which contain b* and d([Z4],z) = d([9+],y) = pu(hy). In the other hand
we have d([Z4], [9+]) = d(x,y). Thus we conclude that the intersections b’, N b’, b’F N by,
b, N bh"™ and b’ N b are not empty, which finishes the proof. ]

Proof of Proposition 3.2.11. Let E < X’ be a proper I-invariant closed convex subset. By
Proposition 3.2.3 E intersects a unique component Z' — X of X of maximal rank. By
Remark 3.2.7, the component Z’ is the barycentric subdivision of a component Z < X
of X. If Z’ is distinct from X’ then we consider the restriction of the action of I on 7,
the latter is [-invariant as it is the unique component of maximal rank which intersects
E.If E = 7', then Z' n X is a proper I invariant closed subset of X, which contradicts
the assumption on the action I' —~ X being Roller minimal. Hence up to considering
the restriction of the action I' on Z’ and the intersection of F with Z’, there is no loss of
generality to assume that E is a proper subset of X'. By Lemma 3.2.12 there exist h € A(X)
such that £ < b nh°. We claim that all other halfspace of t e H'(X)\{h_, b, b, b} are
transverse to both h_ and h,. By lemma 3.2.13, any halfspace of X’ which is transverse to
E is transverse to both h, and h_. In the other hand, as there is no halfspace ' € H'(X)
such that h_ < b’ < b, any halfspace which contains E either contains h° or h,. Let
us consider then a halfspace h' € H'(X)\{h_, 0%, b4, bS}. If b’ is transverse to E, there is
nothing to show. If it contains it, up to considering h¢ instead of b, or the complements
of b’, we can assume that h. < b’. Then for any x € X n b’ nh$ and any g € I' we have
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d(E,z) = d(E, g(z)). Hence the orbit I'.z lies inside h’. Therefore the closure of the convex
hull is a proper I' invariant subset of X, which contradicts the minimality of X. ]

3.2.3 Mixing on the set of halfspaces

The argument for the proof of Theorem A relies heavily on the existence of a strongly
separated facing triple which are determined by one point. In this subsection, we recall the
machinery needed to prove their existence.

Throughout this section X will be a complete finite rank median space and I" a group
acting without wall inversion on it. We say that a halfspace h € H(X) is flipped by
g € Isom(X) if d(g.h,h) > 0 and g.h # h° (g does not inverse the wall (b, h)).

We say that a halfspace h € H(X) is thick if both b and h¢ are of non empty interior. If
the action I' —~ X is Roller minimal, then for any thick halfspace h € H(X), the intersection
ﬂ g.h must be empty in X. By the compactness of X (|[Fio20] Theorem 4.14), one deduce

el’
ihat there exist g € I' such that g.h nh = F. Note that the assumption on § being thick is
to ensure that h # X. We summarize the above discussion into the following proposition :

Proposition 3.2.14 (|Fiol8] Theorem 5.1). Let X be a complete median space of finite
rank and let I' —~ X be a Roller minimal action without wall inversion. Then any thick
halfspace is flipped by some element in T.

Through flipping operation, one generate hyperbolic type isometries ¢ in the sense that
there exist a halfspace h, € H(X) such that ¢g.h, < bh,. Under the assumption that any
thick halfspace is flipped by some isometry, there exist for any thick halfspace a hyperbolic
element which translates transversally to it. The latter isometry is obtained by composing
two elements 71,72 € I' such that d(v:.h,h) > 0 and d(72.h¢ b¢) > 0. Using the same
construction, we get the double skewering lemma (see [CS11] Double skewering Lemma
and |Fiol8] Corollary 5.4) :

Proposition 3.2.15. Let X be a complete finite rank median space and let I' —~ X be a
Roller minimal action without wall inversion. Then for any thick halfspaces b1, by € H(X)
with by € b, there exist g € I' such that g.ho < b1 S bs.

If the median space X is irreducible, Proposition 3.2.15 can be strengthened into re-
quiring bh{ and g.hs to be strongly separated. The irreducibility of X ensure the existence
of two strongly separated halfspace through the following criterion :

Theorem 3.2.16 (|[Fiol8] Theorem 5.9). Let X be a median space which admits a Roller
minimal action. Then X is irreducible if and only if for any thick halfspace by € H(X) there
exist two thick halfspaces h,t € H(X) such that b < by S t where h and ¢ are strongly
separated.

We deduce the following lemma, :
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Lemma 3.2.17. Let X be a complete irreducible finite rank median space and let ' —~ X
be a Roller minimal action without wall inversion. Then for any halfspaces by, by € H(X)
such that By S by there exist two halfspace h,t € H(X) such that t < by S by S b where h°
and t are strongly separated.

Proof. By Theorem 3.2.16, there exist h, b’ € H(X) such that b’ < hy < b where h° and b’
are strongly separated. If b’ < by then we are done. If h; < ', we set t = h;. Hence, let us
assume that by and b’ are transverse. Let 7, € I" be such that d(y;.h'¢,§®) > 0 and remark
that b’ < v.h' < ~1.h. Hence, the halfspace h’® and ~,.5¢ are strongly separated. As b
is transverse to §’, it cannot be transverse to ~;.h°, which yields v;.h < b;. We complete
then the proof by setting t := 7;.h. [

Composing through elements which flip around strongly separated halfspaces, one ge-
nerate contracting hyperbolic isometries.

Lemma 3.2.18. Let X be a complete irreducible finite rank median space and let I' = X
be a Roller minimal action without wall inversion. Then for any b1, bhs € H(X) such that
b1 S b, there exits g € I such that by S by < g.by where g.h§ and b are strongly separated.

Proof. By Lemma 3.2.17, there exist b, t € H(X) such that t £ h; < hy < bh where h° and t
are strongly separated. The isometry g € I' is given by setting g = 1 0 75 where 1,7, € I’
such that d(y;.t%t°) > 0 and d(~,.h, ) > 0. O

It is left to prove the existence of a facing triple of halfspaces, that is, a triple of
halfspaces which are pairwise disjoint. If we assume in addition that the action of I' is
Roller non elementary, then such facing triple exists.

Proposition 3.2.19 (|Fiol8| Proposition 6.2). Let X be a complete irreducible median
space of finite rank and let I' —~ X be a Roller non elementary and Roller minimal action
without wall inversion. Then there exist a triple of thick halfspaces which are pairwise
strongly separated.

The idea of the proof is to start with a thick halfspace h and consider a hyperbolic
isometry g such that g.h < b where h° and g.h are strongly separated. Then one look
at the interval [&;,&,], where &,& € 0X along which the element ¢ translates. the two
point & and & are chosen in ﬂg”.b and ﬂg‘”.bc respectively (see Figure 3.2.3. The

1eN 1eN
action being Roller non elementary, the median space X is not contained in [£;,&;]. Let
x € X\[&,&] and consider t € H([{1, &), {x}) = H(m(&, &, x), x), that is a halfspace
which separates z from [£;, . The projection of z into [£1, €] lies between two halfspace
g".h and ¢""1.h°. For each n, the couple g".h¢ and ¢"*'.h being strongly separated, the
halfspace t is contained in ¢g"~1.h and ¢"*2.h¢. Therefore, the sequence (g>.t),cy constitutes
a family of pairwise strongly separated halfspaces.
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FIGURE 3.2.3 — The configuration arising in the proof of the Proposition 3.2.19

Combining all the results stated above, we deduce the following

Proposition 3.2.20. /See also [Fio19] Lemma 4.1] Let X be an irreducible median space
of finite rank. Let us assume that the action of Isom(X) is Roller non elementary and
Roller minimal without walls inversion. Then there exists a strongly separated facing triple
of thick halfspaces 1, b2, b3 € H(X), and a point c € X such that for any x; € b;, we have
m(z1, x2,x3) = c. Note that the point c lies in b N b N bS.

Proof. Let by, ba, bz € H(X) be a triple of halfspaces which are pairwise strongly separated.
By Proposition 3.2.14, there exist g1, g2, g3 € Isom(X) such that d(g;.h,h$) > 0 for all
i € {1,2,3}. Then the set of halfspaces b} := g1.h2, b} := ¢go.h1 and b} := gs.h; constitute
a strongly separated facing triple. Remark that for each i € {1,2,3} the halfspaces h$ and
b, are strongly separated. By Proposition 1.1.26, the halfspace b} projects into a point
a; := mge(;) in b;. Hence, for any a,b € h¢ and any z € b we have m(a,b,z) = m(a,b, a;).
We deduce that for any triple (z1, x2, x3) € b} x b}y x b} we have m(xy, za, x3) = m(ay, as, as),
which completes the proof. O

3.2.4 Stabilizer of points

Pointwise convergence topology on [som(X): InaR-tree, the stabilizer of any point
is open in the isometry group when the latter is endowed with the topology of pointwise
convergence. The same hold for any the stabilizer of any point x € T" which has valency
greater than 2 in a R-tree 7. This is due to the fact for any sequence (g, )nen S Isom(X)
such that g, (x) # x with g, (z) converges to x, and for any neighbourhood of x, there exist
points whose orbits accumulate nowhere.

61



3.2. FIORAVANTT'S MACHINERY

The same holds for the median space of finite rank which admits a Roller non elemen-
tary and Roller minimal action as for space, there exist points which exhibits the same
characteristic as the points with valency greater than 3 in a R-tree. This was remarked in
[Fi019] (Remark 4.5 therein).

Proposition 3.2.21. Let X be a complete wrreducible median space of finite rank. Let
b1, b2, b3 € H(X) be a facing triple of thick halfspaces and a € X such that for any x1 €
b1, 22 € by and x3 € by we have m(xy, xa, x3) = a. Then the stabilizer of a is open Isom(X),
where the latter is endowed with the topology of pointwise convergence.

If the median space X admits a Roller minimal and Roller non elementary action then
such configuration exists (see Proposition 3.2.20).

Proof. Let (gn)nen S Isom(X) be a sequence of isometries of X. If the sequence g,.(a)
is infinite, we apply the same argument as the one given in the proof of Theorem A to
find a infinite family of pairwise disjoint halfspaces g; .hx. Then for any point z € by, the
sequence g;, (z) accumulates nowhere. This implies that if a sequence (g, )neny S Isom(X)
converges to an isometry in Stab(a), then it necessarily stabilizes the point a from some
n=N. [

Stabilizer of points at infinity Let 7' be a R-tree. Each element g € I'som(X) which
does not inverse a wall either stabilizes a subset of 7" or leaves invariant a geodesic line
inside 7', the minimum of d(gx,x) is verified in this axe. The former isometry is called
elliptic and the latter is called hyperbolic.

Let n € 0T be a point in the Roller boundary of 7. Note that the Roller boundary of
T coincides with the visual boundary. The stabilizer Stab(n) of n in the isometry group
consist either of hyperbolic elements which their axe of translation have 7 as one of their
extremities, or of elements which fix a geodesic ray pointing to 7.

Let us denote the length translation of an isometry of g by (¢) := infex{d(x, gz)}.
The application x : Stab(n) — R such that

() = l(g) if n is an attractive point of ¢
—I(g) if n is a repelling point of ¢

is @ homomorphism. Hence, the group Stab(n) fits into the following exact sequence :
0 — N, — Stab(n) — R,

where the kernel N, corresponds to the subgroup of isometries where each isometry fixes
some geodesic ray pointing toward 7.

In the higher rank case, an analogue holds for a subgroup of finite index of Stab(n)
and this was shown in [Fiol8] Section 4. The argument is much more complicated as the
points at infinity can lie in the corner of many transverse "directions" and one need a
formal description of the latter. The argument is an extension of a result of P.E Caprace
in the case of CAT(0) cube complexes (see the Appendix of [CFI16]) to the case of median
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spaces of finite rank. The canonical "directions" towards a point at infinity are described
by the notion of unidirectional boundary sets (UBS) that was first introduced in the case
of CAT(0) cube complexes by M.F. Hagen in [Hagl3| and adapted to the case of median
space of finite rank by E. Fioravanti in [['i018].

Definition 3.2.22. Let X be a complete median space of finite rank and let n € 0 be a
point in the Roller boundary of X. An inseparable subset U < H(X) is a subset such
that for any by, bhs and h; € h < by then h e H(X).

A unitary boundary set of 1) is an inseparable subset 2 < H (X)) such that it contains
a diverging sequence of halfspaces to 7, that is a decreasing sequence (h;)en S u,\u, for
some x € X, such that ihgloo d(x,b;) = +oo.

A partial order relation < is defined on the set of UBS of n by Q; < Qs if and only if

there exist, or equivalently, for any x € X we have sup {d(z,h)} < +o0.
hEQl\QQ

We say that two UBS Q; and €25 of n are equivalent if 2; < Q5 and 25 < Q.

We denote by U(n) the set of equivalence classes of UBS of 7. The partial order relation
defined on the set of UBS of 1 descends naturally to a partial order relation on U(n). We
say that an [$2;] € U(n) is minimal if there is no [Q] € U(n) such that [Qs] <[]

The minimal equivalence classes of UBS of n will constitutes the canonical directions
pointing toward 7. Any UBS of 7 is equivalent to the inseparable closure of the union of
representatives of finitely many minimal classes of UBS of 7.

Proposition 3.2.23 (Proposition 4.7 |Fiol8|). Let X be a complete median space of rank
n and let n € 0X.

1. The cardinal of the set of minimal classes of UBS in U(n) is bounded by the rank of
X.

2. For any [Q] € U(n) there exist minimal classes of UBS [Q4], ..., [Q%] € U(n), where

ke {l,..,n} and such that for any x € X we have sup {d(z,h)} < +c0.
hEQA(Q1U...UQk)

Moreover, this decomposition of [Q] is unique.

The action of Stab(n) on X extends naturally to an action on U(n). Let [4], ..., [Q%] €
U(n) be all the minimal equivalence classes of UBS of n and let K, < Stab(n) be the
subgroup of isometries which fix all the classes [€2;]’s. We have then :

Theorem 3.2.24 (Lemma 4.8, Proposition 4.9 in |[Fiol8| and Proposition 2.19 in [Fiol9]).
The map

X K, — RF
g — (0(g7"u\) — o(\g ™))
where 0 is the measure constructed in [Fio20], is a homomorphism. Moreover

1. When Stab(n) is endowed with the topology of pointwise convergence, the homomor-
phism X, is conlinuous.
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2. The orbit of any point x € X by any finitely generated subgroup of ker(x,) has at
most 2" elements, where n is the rank of the space X.

The map x, is called the full transfer homomorphism. Note that when X is a
median space of rank 1, the equivalence class of UBS of n is a singleton and the full
transfer homomorphism coincide with the map described in 3.2.4.

3.2.5 Tits alternative

We say that a group G verifies the Tits alternative if for any finitely generated subgroup
I' < G, either I' is virtually solvable or it contains a free non abelian subgroup. This
property was first shown by J. Tits in [Tit72] for linear subgroup over a field of characteristic
zero answering a conjecture by J.P. Serre.

This property holds for a large classes of groups : hyperbolic groups, mapping class
group, outer automorphism group of a free group... It is still open whether groups acting
geometrically on a CAT(0) spaces verify the Tits alternative. For groups acting on CAT(0)
cube complexes, the following version of Tits alternative was shown by M. Sageev and D.
Wise :

Theorem 3.2.25 (Theorem 1.1 [SWO05]). Let G be a group acting properly on a finite
dimensional CAT(0) cube complex. We assume that there is a uniform bound on the order
of finite subgroups of G. Then either G s virtually finitely generated abelian group or it
contains a non abelian free subgroup.

The argument goes by induction on the rank of the CAT(0) cube complex X by consi-
dering a multi-ended subgroup H of G. This subgroup corresponds to the stabilizer of a
hyperplane of X and its existence is ensured by Theorem 5.1 [Sag95]. If H contains a non
abelian free subgroup so does G and if it is virtually finitely generated abelian group, then
the algebraic torus theorem ([DS00]) gives three possibilities for the structure of the group
GG, where each case is treated separately.

Two other version of the Tits alternative in the case of CAT(0) cube complexes were
shown by P.E. Caprace and M. Sageev in [CS11] (Theorem F and G therein) using different
argument. They showed that under the assumption on the action being non elementary
(with respect to the visual boundary), it has a nice mixing property on the set of halfspaces
of the CAT(0) cube complex. One may then find two hyperbolic isometries and use a ping
pong argument in order to show that they generate a non abelian free subgroup.

Both versions of the Tits alternative shown in [CS11] were extended to the case of
median space of finite rank by E. Fioravanti in |Fiol8|.

Theorem 3.2.26 (Theorem E [Fiol8| ). Let I' be a group acting by isometries on a com-
plete median space of finite rank. Then either the action is Roller elementary or I' contains
a non abelian free group.

The idea of the proof is to go first by induction on the rank of X to reduce the study
to the case when X is irreducible. Up to restricting the action to an invariant subset in
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an invariant component X, one can assume the action to be Roller minimal (Proposition
3.2.2). By Proposition 3.2.11, there is no loss of generality to assume that the action of
I' is without wall inversion. Under these assumptions, for any n € N* there exist a family
of pairwise disjoint halfspaces h1,t;1.., h,, t, € H(X) of positive depth in X (Lemma 6.3
[Fi018]) and a family of elements g, ..., g, € T such that g,.h* < t,, (Corollary 5.4 [Fiol8|).
Remark that we also have g, '.t* < b,. One conclude then with the ping-pong lemma that
the subgroup generated by the elements ¢y, ..., g, is free.

Using Theorem 3.2.26 and the structure of the stabilizer of points lying in the Rol-
ler boundary (Theorem 3.2.24), one deduce the following other formulation of the Tits
alternative in the median case :

Theorem 3.2.27 (see Theorem A [Fiol8] ). Let " be a group, with no non-abelian free
subgroup, which acts on a complete finite rank median space X. If the action I' —~ X 1is
proper, then T is virtually (locally finite)-by-abelian.

3.2.6 Superrigidity

Let GGy, ..., G, be a finite family of locally compact compactly generated group. We say
that a lattice I' < Gy x .. x G, is irreducible if its projection into each factor is dense. We
will be needing the following version in the irreducible case of Fioravanti’s superrigidity
results :

Theorem 3.2.28 (Theorem 4.4 [Fiol9]). Let ' < G = Gy x .. x G, be an irreducible
uniform lattice which acts Roller non elementarily on a complete irreducible median space
X of finite rank. Then there exist a T'-invariant component Z < X with a T-invariant
median subalgebra Y < Z such that the action of I' on Y extends continuously to G.
Moreover, the action of G on'Y factors through the canonical projection onto a factor G;
for some i€ {1,...;,n}.

Remark 3.2.29. If we assume in addition that the action arising in Theorem 3.2.28 is
Roller minimal, the I'-invariant median subalgebra Y; lies in X.

The above result does not restrict to the case of lattice which are uniform. The original
statement is stated for lattices filling the square integrability condition, which is verified
when they are uniform. This condition allows to extend unitary representation of I' into
another unitary representation of the whole group G.

Let us explicit the main lines of the proof of the above theorem. Let X be a complete
median space of finite rank and let I be a group acting isometrically on X. After fixing a
point x € X, the action I' —~ X induces an affine isometric action p, of I' on the Hilbert
space L2(H(X),d) defined as follows :

(02(9).F)(h) :== F(g.h) + (Ly,,, — L), VFe L*(H(X),0).

If we change the base point x by y € X, the action with respect to the base point y is
obtained from the former one by the following cocycle 2(1g7/(zy) — L2(zy))- We say that
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an isometric action of a topological group G on a metric space H have almost fixed points
if for for any € > 0, and any compact subset K < G, there exists a point v € H such that
d(g(v),v) <e.

Remark that for any z,y € X, the action p, has almost fixed points if and only if p,
has it.

Theorem 3.2.30 (Theorem A [Fiol9]). Let X be a complete finite rank median space with
an isometric action I' —~ X. Then the action I' —~ X is Roller elementary if and only if
[ —~ L*(H(X),0), through p,, has almost fized point for a given or, equivalently, for any
reX.

Let I' —~ X be a Roller non elementary action on a complete median space of finite
rank. Up to restrict the action on a I'-invariant component of X and up to consider its
barycentric subdivision, we may assume that the action is Roller minimal and without wall
inversion. By Theorem 3.2.30, the isometric affine action p, is without almost invariant
fixed point. Shalom’s superrigidity results on affine isometric action of such lattices on
Hilbert space ensures the existence of a non trivial [-invariant subspace H; = L*(H(X), ?)
such that the restriction of the unitary part of p, on it extends to a continuous unitary
representation of G;. One consider then a vector f € H; and remark that for any v € I’
and any sequence (Vx)ren € I, such that m; () tends to identity in G;, the vector v.f is an
almost invariant vector for the latter sequence. The second step is to show from the latter
data the following claim :

Claim 3.2.31. The following median subalgebra is not empty
Yi={zeX |V(Wenel T, mi(y) — id then ~;(x) =x ¥Yi = N for some N € N}.

To prove the claim, one consider a thick halfspace by such that the restriction of the
function f on the set of halfspaces which their walls are "contained" in b, is at distance ¢
from f. One remark then that for any v € " such that v.hg N by = & then || f —~.f|* >
2||f||* — 6€%. The action I' = X being Roller non elementary, Roller minimal, without wall
inversion and the space X being irreducible, there exist g, go € I" such that by, b1 := g1.h
and by := ¢o.h are pairwise strongly separated which are uniquely determined by a point
a € b N h§ N b5 in the sense that for any (xg, z1, 22) € ho x by x ha we have m(z1, o, x3) = a.
Then for any sequence (7Vx)reny € I', such that m;(7x) tends to identity in G; and N € N
such that |-/ — . [ (g1-) — (91 )| and [[7,(g2- ) — (g2- )| are small enough for any
n = N, we have v,.h; n bh; # & for all i € {0, 1,2}. Therefore, we get v,(a) = a whenever
n > N, which implies that a € Y.

For the last step, it remains to extend the restriction of the action of I' on the closure of
Y to G;. The closure of Y is a ['-invariant complete median subalgebra of X. By construc-
tion of the subalgebra Y, any sequence (x)ren < I' such that its projection into G; tends to
identity, then its image in Isom(Y’) also tends to the identity, when the latter is endowed
with the pointwise convergence topology. This ensures us (see Proposition 4.3 [Sha00]) that
the extension of the action of I' through its projection into G;, where it projects as a dense
subgroup, is a continuous homomorphism from G; to Isom(Y).
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Remark 3.2.32. Let a € Y be the point arising from the proof of the Claim 3.2.31. As
the action I' —~ X is Roller non elementary and Roller minimal, the orbit of a meets every
thick halfspace. Hence the halfspaces hg, b1, h3 that are determined by a are transverse to
Y, that is, they constitute a strongly separated facing triple in Y. Therefore, by Proposition
3.2.21, the stabilizer of a is also open in I'som(Y).

3.3 Action of S-arithmetic lattices on finite rank median
spaces

Let ' < G = 1_[ PSL(2, k;) be a lattice such that at least one k; is archimedean and the

seS
projection of I' into each factor PSL(2, k;) is dense. By the work of Chatterji and Drutu,

both PSL(2,R) and PSL(2,C) acts properly discontinuously on locally compact median
space of infinite rank (Theorem 1.2.28). Hence, the lattice I" acts geometrically on a locally
compact median space obtained by the product of the median spaces associated to H?, H?
and the (p + 1)-homogeneous simplicial trees associated to PSL(2,Q,). However, in the
finite rank case we have the following :

Theorem 3.3.1. Let ' < G = HPSL(Z,kS) be a lattice such that at least one k; is

seS
archimedean and the projection of ' into each factor PSL(2, k;) is dense. Then there is no

proper action of I' on a complete median space of finite rank.

Proof. We first note that there is no loss of generality to assume that I' is irreducible, up
to considering a projection into 1_[ PSL(2, ks) for a subset J — S of cardinal greater than

seJ
2. Margulis superrigidity theorem ensures that there is at least one s € J such that k; is

archimedean.

By Selberg’s Lemma, there exist a finite index subgroup which is torsion free. Hence,
there is no loss of generality if we assume that I' is torsion free. If the lattice is non-
uniform, there exist by virtue of Theorem 3.1.5 a solvable subgroup of I" which is non
virtually abelian. Hence the action cannot be proper by Theorem 3.2.27.

Let us assume now that I is uniform. The group I' being quasi simple and by Theorem
3.2.24, any Roller elementary action of I' on an irreducible median space fixes a point in X,
up to restricting to a finite index subgroup. Thus, we assume that the action of I' is Roller
non elementary. Let us first deal with the case where the action of I' is Roller minimal.

We set S1 = {i € S| k; is archimedean}, S, := S\S; and set G, = H PSL(2, k;), Gy =

€51
H PSL(2, k;). We note that the projections of I into Gy and G are both dense. The median
1ES!
sp;(:e X decomposes into a finite product X; x .. x X where each X; is irreducible. Up to
considering a finite index subgroup of I', we may assume that I" preserves the factorization
of X, that is, the representation maps I' into the product Isom(X;) x .. x Isom(X}). Let
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us consider a decomposition of X = X x Xl X X Xk/, where the X,’s are irreducible and
such that the action of T is Roller elementary on X and Roller non elementary on each
X;. Again up to considering a finite index subgroup, there exist a I' fixed point # € X and
[-invariant closed median subalgebras Y; < Xi such that the restriction of the action of
I on each Y; extends continuously to G and factors through PSL(2, k,,) for some n; € S.
As the action of I' is Roller non-elementary, it cannot factor through PSL(2, k;) where k;
is archimedean since the latter is generated by any small neighbourhood of the identity
and there are points = € Y; such that the stabilizer of z in Isom(Y;) is an open which
contains the identity(see Remark 3.2.32). Hence, we obtain a continuous action of G on
Y :={&} x Y] x .. x Y which extend the action of I". The lattice I' being irreducible, its
projection into G is dense, hence it accumulates around the identity. Therefore, the action
of ' on Y € X is not proper.

It last to consider the case where the action of I' on X is not Roller minimal. By Propo-
sition 3.2.2, there exist an T-invariant closed convex X inside a I-invariant component of
the Roller compactification of X, such that the restriction of the action of I on X is Roller
minimal. By the previous reasoning, there exist a I'-invariant median subspace Y < X
such that the action of I' is extended to G, where T lies as a dense subgroup. Let £ € Y
such that Stab(x) is open in I'som(Y'), such point exist see 3.2.32. There exist a compact
open subgroup K of G, which corresponds to the stabilizer in G of a finite subset of
the product H Ty, which is mapped into Staby (§). Let us denote [ the intersection of

1€So
I' with K. The subgroup I' being dense in K, its commutator subgroup is infinite (the
group I" being torsion free, it is enough to find two elements which does not commute). In
the other hand, the image of the subgroup [ by the representation lies in the intersection
Staby (§) N Stabx (§). Hence, we deduce that the intersection of its image with N, the ker-
nel of the full transfer character map x, arising in Theorem 3.2.24, is infinite. Therefore,
there exist a point in X which is fixed by infinitely many elements of I', which completes
the proof. ]
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Chapitre 4

Isometric actions on finite rank median
spaces

4.1 An embedding lemma of the convex hull

The following embedding property of the convex hull of two closed convex subsets with
no transverse halfspace in common will be a key ingredient in the proof of Theorem D :

Proposition 4.1.1. Let X be a complete median space of finite rank and let Cy,Cy € X
be closed convex subsets such that there is no half-space which is transverse to them both.
Then the following map

f:Conv(Cy,Cy) — (Cy x Cy x [c1, 2], dy)
xr = f(x) = (71-01 ("E)vﬂ-cz(l‘)?ﬂ-[chw](x))

is an isometric embedding, where m¢, denote the projection onto the closed convex subset

Cy, c1 = 1, (Co) and c3 = 7, (Ch)
For the proof of Proposition 4.1.1, we need the following lemma :

Lemma 4.1.2. Let X be a complete median space of finite rank and let C,Cy = X
such that there is no halfspace which is transverse to both. After setting ¢, = 7o, (Cy),
ca = e, (Ch) and considering any z,y € Conv(Cy, Cy) we have :

W(QZ, y) = W(T‘-Cl (l’), Tcy (y)) o W<7TC2 (SL’), TCy (y)> L W<7T[Cl762] (l’), 7T[01762](y)) (4'1'1)
Proof. For any closed convex subset C' < X and any z,y € X, we have :
Wi(rc(z), me(y)) € W(z,y).

This come from the fact that for any ¢ € C, the interval [c, z] contains 7o (x). Thus, we
have the inclusion of the right hand of the equality (1) into the left side. For the other
inclusion, let us consider z,y € Conv(Cy,Cs) and h € H(x,y). Let us assume that h does
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not separate m¢, (y) from 7e, (z) and e, (y) from 7, (x). By Proposition 1.1.19, if the
projections ¢, (x), me, (y), 7o, (x) and e, (y) lie in a halfspace b, then so do x and y.
As the halfspace b separates y from x there is no loss of generality if we assume that
e (I>7 e (y) belong to h* and TCy (I>7 TCy (y) to h. As TCy (y> € [Cl> y] and TCy ('T) € [627 J,’],
we necessarily get that c¢; € h° and ¢, € h. We conclude that 7, .,1(z) € [c1,2] S h°
and 7, ,1(y) € [c2,y] S b (see the Figure 4.1.1 below). Therefore, the halfspace b lies in
H(Ter,e2) (%), Ty e (¥))-

It is left to show that the sets arising in the right hand of the equality are indeed dis-
joint. Under our assumtpion that the convex subsets C; and Cy being strongly separated, we
already have the disjointness of W(m¢, (x), e, (y)) with W(me, (z), 7o, (). A wall which se-
parates two points of the interval [c1, co] must separate ¢; and ¢,. The point ¢; being contai-
ned in any interval connecting C; to Cy, we deduce that any wall in W(m[e, ¢,1(), T[e, e01(Y))
must separate C; and Cy. Hence, such wall cannot be in W(m¢, (2), 7, (y)) nor in W(re, (z), 7o, (v)).

O

S/ Conv(Cy, Cy)

Xy

9

C)

FIGURE 4.1.1 — Any halfspace which separates x and y is either transverse to Cy, to Cy or
to the interval [cq, co].

Proof of Proposition 4.1.1. As there is no halfspace which is transverse to both C and Cj,
the projection of C) (resp Cs) into Cy (resp C) is a singleton, according to Proposition
1.1.26. Let us set denote them by ¢; = m¢, (Cy) and ¢ = e, (Ch).

By Lemma 4.1.2, we get the following :

W(z,y) = W(me, (), me, (y) 0 W(me, (2), 7o, () 0 W(T ey e) (), Ter e1 (9))-
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We deduce then

,u(W(a:,y)) = ,U(W(Trcﬁ (x>77rcl (y))) + /’L(W<7TCQ (x)77‘-02 (y))) + M(W<7T[01,C2] (x)7ﬂ[01702](y)>>
d(xv y) = d(ﬂ-cl (l’), ye (y)) + d(ﬂ-cb (‘T)v Ty (y)) + d(ﬂ-[cl,CQ] (I’), Te1,e2] (y))
de (f(2), f(y))

where p is the measure given by Theorem 1.2.20. [

By considering a stronger assumption in Proposition 4.1.1, we get a local version of the
first part of Theorem D :

Proposition 4.1.3. Let X be a complete median space of finite rank and let C,Cy € X
be two closed convex subsets such that Cy n Cy = {xo}. Then, for any v € Conv(Cy, Cy),
the interval [z, x| is isometric to the (*-product of [7c,(x), z0] and [7c,(z), xo)-

Proof. For any x € Conv(Cy, Cy), we have :
H([z, x0]) = W(x,20) = ' Wme, (x), 20) u W(mc, (2), 7o)

where any halfspace in ‘H(7¢, (), x¢) is transverse to any halfspace in H (7, (x), zo). Hence,
by Proposition 1.2.34 the median space U(H([z,xo])) is isometric to the ¢'-product of
U(H([me, (x), x0])) with U(H([mey(x),x0])). The intervals being closed subsets and the
median space being complete, we conclude by Theorem 2.2.1 that the interval [z, z] is
isomorphic to U(H([x,x0])) and that the latter is isomorphic to the ¢*-product of the two
intervals [7¢, (z), o], [7c,(x), xo], by Proposition 1.2.34. O

Median space of rank greater or equal 2 are are not CAT(0) spaces, they are not even
uniquely geodesic spaces. Nevertheless, convexity in median space being defined by mean
of intervals, convex subsets in median spaces are rigid enough to share many properties
that are featured in CAT(0) spaces.

Using Proposition 4.1.4, Lemma 1.1.24 and the fact that gate projection are 1-lipschitz,
we deduce the following version of the Sandwich lemma ( [BH99| Exercise 11.2.12) :

Proposition 4.1.4 (Proposition 2.21 [Fiol9|). Let X be a median space and let Cy,Cy <
X be two closed convexr subset. Then Conv(me, (Cs),me,(Ch)) is isometric to e, (C) x
[z, 70, (x)] where x is any point in we, (Cy).

Remark 4.1.5. Proposition 4.1.1 can be extended to the case where C; and Cy admits a
common transverse halfspace by taking the projection of the convex hull between C} and Cs
into the product Cy x Cy x B(CY, Cy) endowed with the ¢'-product metric. The map is not
necessarily an isometry, it is a 2-lipschitz embedding. For any two points in Conv(C u Cy)
separated by halfspaces which are transverse to both C; and C5, the horizontal distance
with respect to C and Cy is counted twice in C7 x Cy x B(Cy, Cy).

1. This equality comes from Lemma 4.1.2

71



4.2. CHARACTERIZATION OF COMPACTNESS BY MEAN OF HALFSPACES

4.2 Characterization of compactness by mean of half-
spaces

In the first subsection, we recall some results about the convex hull of compact subsets
in a median space. The next subsection is devoted to the proof of Theorem B.

4.2.1 Convex hull of compact subsets

It was shown in [Fi020] that any interval in a median space of rank n embeds isometri-
cally into R", see Proposition 2.19 therein. A direct consequence is that the convex hull of
finite subsets in a finite rank median space are compact. More generally, the convex hull
of a compact subset in a complete finite rank median space is also compact, see Lemma
13.2.11 in [Bow22]. In a complete median space, the convex hull of a compact subset is not
necessarily compact. In general, even the interval are not necessarily compact, consider for
instance intervals in L'(R). However, under the assumption that the intervals of X are
compact, the convex hull between any two convex compact subsets is also compact. Before
giving a proof, we will be needing some results.

Lemma 4.2.1. Let C < X be a convex subset and a point x € [a,b] € X, we have :
d(z,C) < d(a,C) +d(b,C).

Proof. Any halfspace which separates C' from x must separate it either from a or from b
(or from both). Thus we get

d(z,C) = p(W(z,C)) < uOW(a, C)) + p(W(b,C)) = d(a,C) + d(b, C).

We deduce the following lemma, :

Lemma 4.2.2. Let X be a complete median space. Then the join between any two closed
convex subsets is closed.

Proof. Let us consider two convex subsets C,Cy © X and let (2,),eny S [Ch, C2] be a se-
quence of points converging to x € X . Note that each z,, lies in the interval [7¢, (x,,), 7o, (2,)].
As gate projections are 1-lipschitz, the sequences (m¢, (75))nen and (wo, (%) )nen are Cau-
chy sequences. Thus they converge to a € C; and b € Cs respectively. In the other hand,
we have

d(z,[a,b]) = d(z,m(z,a,b)) < d(z,z,)+ d(x,, m(z,,a,b)) + d(m(x,,a,b),m(z,a,b))
= d(z,z,) + d(m(z,,a,b),m(x,a,b)) + d(x,, [a,b])

Where the right side tend to zero when n goes to infinity by the continuity of the
projection and Lemma 4.2.1. O
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Remark 4.2.3. The join between two closed subset of a complete median space of finite
rank is not necessarily closed, even if we assume that the subsets are bounded. Take for
instance the product of the closed segment of the real line with a star like simplicial tree
with infinite edges of length 1. One may consider then a sequence of points such that their
projections into the star like simplicial tree run injectively through its vertices and their
projections into the closed segment of the real line accumulate around 0 but never attain
it.

Proposition 4.2.4. Let X be a complete median space which have compact intervals. Then
the conver hull between any two compact convex subsets is also compact.

Proof. By Proposition 4.1.1 and Lemma 4.2.2, for any closed convex subset C1,Cy < X,
their convex hull embeds as a closed subsets into the ¢!-product of Cy, Cy and B(Cy, Cy),
where the latter, by Proposition 4.1.4, is isometric to an interval and a closed convex subset
of C1, which is compact. ]

In particular, we have the following :

Corollary 4.2.5. Let X be a complete medians space with compact intervals. Then the
convex hull of any finite subset s compact.

In the following lemma, we show that the Hausdorff limit of compact subsets is a
relatively compact subset :

Lemma 4.2.6. Let X be a complete metric space and let (K;)ien be a sequence of compact
subsets of X which converge, with respect to the Hausdorff metric, to a subset K < X.
Then the closure of K 1s a compact subset of X.

n
Démonstration. Note that up to considering the sequence of subsets K, = U K, there

i=0
is no loss of generality to assume that the sequence (K, )nen is ascending. Let (z;);en be
a sequence of points in K and let us show that it contains a subsequence which converge
to a point in X. If there exist K; such that it contains an infinite subsequence of (x;);en
then we are done. Let us assume then that each K; contains finitely many points of (x;);en.
For each n € N, let i, € N be such that dga.:(K;, , K) < % We consider a sequence
(Tni)ien S K, such that d(Z,,,,z;) < % for any i € N. The subset K, being compact, there
exists subsequence (in@(i))ieN which converges to a point 7, € K; . Iterating the same
process for each n and considering at each step a subsequence of the previous subsequence,
we obtain the following configuration :

— For each n there exist a sequence (Z,;)ieny € K;, such that for any i € N we have
d(Zn;, To,m) < +, where each ®, : N — N is an increasing injective map and

— Fach sequence (Z,;)en converges to a point Z,, € K, .

)
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Claim 1 : The sequence (Z,).en is a Cauchy sequence.

Let us show that for any n,m € N we have d(Z,, Z,,) < % + % Let us fix n,m € N such
that m > n and consider € > 0. Let NV € N be such that for any integer ¢ > N, we have
d(Zni,Tn) < € and d(Zp,;, Tm) < €. Hence for any ¢ € N such that min(i, ®,1(®,,(:))) = N,
we have :

AT, Tr) < d(Tn, xn,(bgl(ém(i))) + d(‘%n,<1>;1(q>m(i))’ :L‘q)m(i)) + d(ICPm(i)» ‘%m,i) + d(‘%m,ia L)

The € being arbitrary, we conclude that d(z,, Z,,) < % - %
As the space X is complete, the sequence (Z,),en converges to a point Z.
Claim 2 : The point ¥ is an accumulation point for the sequence (;)en.
Let us fix € > 0 and consider n € N such that d(Z,z,) < e. For any ¢ € N big enough such
that d(Z,,Z,,) <€, we get

d(i‘a xfbn(z)) < d(‘%a jn) + d(jn7 fn,z) + d(jn,ia $<Pn(i))

1
< 2+ —
n
Which proves Claim 2 and finishes the proof of the lemma. O

4.2.2 Proof of Theorem B

Definition 4.2.7. Let X be a complete median space of finite rank and let h € H(X)
be a halfspace. We call the depth of h in A < X, that we denote by deptha(h), the
maximum distance between points lying in h n A and the hyperplane h bounding b, i.e.

depth4(h) := sup{d(z,b) | z € h n A}.

Before proving Theorem B, we will be needing some lemmas. The following lemma is a
strengthening of Lemma 1.2.16 :

Lemma 4.2.8. Let X be a complete connected median space of rank n and let a,b € X.
Then for any small € > 0 which is smaller then @, there exist a pairwise transverse
halfspaces by, ..., bx € H(a,b), where k < n, such that for all i€ {1,....,k} we have :

— d(bs,b) = e.
A n(n + 1)
— d(a,g bl) = d(a, b) — TE.

Proof. Let us proceed by induction on the rank of X. The lemma is trivially true for
complete connected median space of rank 1, that is, in the case of R-trees.
Let us assume then that the lemma is true for complete connected median space of
d(a,b)

rank n — 1. Let us fix a,b € X and 0 < e < =>>. Let us consider = € [a,b] such that
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d(x,b) = ne, such point z exists as the space X is connected. By Lemma 1.2.16, there
exists a halfspace h € A(z,b) such that d(h°,b) > @ > € and d(z,h) = 0. For simplicity
let us set a := 7r6(a). The hyperplane 6 being a median space of rank less than n, there exists
then a family of pairwise transverse halfspaces by, ..., by € H(ZL, x), where k < n —1 and
n(n2— 1) .
Note that each halfspace b; is transverse to b as it is, with 1ts Complementary, the lift of
a halfspace of h with non empty interior (see Proposition 4.3.2 below). As the point x
belongs to the interval [a, b], any halfspace which separates = from hS must also separate

b from b§. Hence each h{ is at distance greater than e > 0 from b. It last to show that the
n(n+1)
2

such that for any i € {1, ..., k}, we have d(h$,z) = € and d(a ﬂb ,T) —

intersection of h with the b,’s is at distance greater than d(a,b) — ¢ from a. For any

€ (ﬂ hi) N b, the point a = m;(a) = m5(a)belongs to the interval [a,y]. Thus we have :
i=1
. . N . n(n—1)
d(a,y) = d(a,a) + d(a,y) = d(a,a) + d(a,z) — ¢ (4.2.1)
The equality d(a,z) + d(a,a) = d(a,z) = d(a,b) — ne combined with Inequality (4.2.1)
above yields

d(a,y) = d(a,b) — ne — we =d(a,b) — @e.

[

Lemma 4.2.9. Let C' be a complete connected median space of finite rank which is bounded.
Let h < X be a halfspace, then for any € > 0 such that there is no two disjoint halfspaces
of depth bigger than € contained in b and for any a € b such that d(a, 6) > depth.(h) — ¢,
the convex hull Conv({a} U ) it at Hausdorff distance less than (n(n + 1) + 1)e from b,
where n s the rank of C.

Proof. Let us choose a point a € b such that d(a, h) > depthe(h)—e. We set Cyy = Conv(h, a)
and take a point z € b lying outside Cy. We consider its projections into Cy and [a, 73 (a)]
that we denote by z¢, := m¢, (x) and & := m(z, a, m;(a)) respectively (See Figure 4.2.1) .
Let us first show that d(z,h) = d(rc,, b). As the interval [75(a), a] lies in Gy, we have :

¥ =m(z,a,m(a)) = T, (@).0) (%) = Ty @)1 (70, (7)) = Ty (1.0 (T3, )-

Hence, any halfspace separating x from 6, separates a from T (a), therefore it must separate

o, from b as well by Lemma 1.1.14. In the other hand, note that any halfspace separating
any point in Cj from f) must separate the point a from h as the convex subset Cy is
the convex hull of h U {a}. Hence by Lemma 1.1.14, any halfspace separating r¢, from f
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FIGURE 4.2.1 — The configuration arising in the second part of the proof of Lemma 4.2.9

separates also T from h. Therefore, the two walls intervals W(z, 6) and W(x¢,, 6) coincide,
which implies the equality d(Z, 6) = d(v¢,, 6) We deduce then the following :

d(z,zc,) = d(z,b)—d(zc,,b)
< depthe(H) — d(z,h)
< d(a,h) + e —d(z,h)

As Z lies in the interval [a,my(a)], then its projection into § is precisely the point 7y (a).
Hence d(a, ) = d(Z, m(a)). Replacing the latter in the inequality above, we get :

d(z,z¢,) < d(a,T) + e (4.2.2)

If the distance between z and Cj is less than (n + 1)e, then there is nothing to show.
Let us assume then that d(z, Cy) = (n+1)e, which by Inequality (4.2.2) above, implies also
that d(a,Z) > ne. Hence by Lemma 4.2.8, there exist two families of pairwise transverse
halfspaces {h1,....,h,} < H(F,a) and {b},....b;} < H(zc,,v) such that the halfspaces by
and b are of depth bigger than € and verify the following :

q

1

¢ and d(zc, [ )b:) >d(xch7x)_@€.
i=1

n(n+1)

d(i,[)b:) = d(#,a) — 5
i=1

By assumption, the halfspace h does not contain two disjoint halfspace of depth bigger
than e. Hence, the halfspaces b and b’ are not disjoint for any i € {1,..p} and j € {1, .., q}.

In the other hand, any halfspace b in A(G,:}Z) = A(&xoh) contains the points a and
x (note that they do not not necessarily contain the halfspaces h; and b;). Hence the
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intersection ( ﬂ b’) contains the interval [a,z]. Therefore by Helly’s Theorem 1.1.5,
beA(h,7)
p q
the intersection ( ﬂ h') N (ﬂ o) N (ﬂ b’’) is not empty. Let us consider a point y in
b'eA(h,2) =1 =1
the latter intersection and let y; and y, be its projections into the interval [z¢,,z] and
[Z, a] respectively. We claim the following :

~ ~

d(y7 b) = d(ﬂfch, h) + d(wayl) + d(fu y2) (423)
Indeed, by construction we have the following inclusion :
W<y17 xC’h) Y W(yQa 'i') v W(xCW 6) = W(y7 6)

In the other hand, all the wall intervals arising on the left hand of the inclusion are disjoints,
therefore we get :

Wy, z¢,)) + nW(ys, 7)) + n(W(zg, ), b))

= d(yl,xch) + d(y2>'%) + d(.TCh, h)
n(W(y. b)) = d(y. b)

W (1, z¢,) U W(ys, &) U Wac,, b))

N

Having the inequality 4.2.3 in hand, we get :

depthe(H) = d(y,b)
> d(zc,,h) +d(yi,2c,) + d(y2, 7)
R 1 1
. d(l’cha b) + d($Ch7$> _ @6 +d(Z,a) — %e

As d(zg,, h) = d(z,b), we get :
depthe(H) = d(2,b) + d(i, a) + d(zc,, ) — n(n + 1)e = d(h, a) + d(zc,, ©) — n(n + 1)e.
We deduce then the following :
d(zc,,x) < depthe(H) — d(h,a) +n(n + 1)e < (n(n + 1) + 1)e.
Which finishes the proof. O

Proof of Theorem B. Let us first remark that there is no loss of generality to assume that
(' is a closed convex subset. Indeed, the complete space X being of finite rank, the convex
hull of C' is compact if and only C' is compact (see Lemma 13.2.11 [Bow22]). In the other
hand, Remark 1.2.17 implies that if a halfspaces is of depth less than € in C, then it is of
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depth less than n.e in Conv(C') where n is the rank of the space X. Hence, the condition
(3) holds with respect to C' if and only if it holds with respect to Conv(C).

The implication 1 = 2 is obvious. Let us first show the implication 2 = 3. For a fixed
€ > 0 there exist xg,x1,...,2, € C such that the subset C is at Hausdorff distance less

€

than e from U[xo, x;]. Let h € H(X) be a halfspace transverse to C. If h does not contain
i=1
any of the z;, then it must be of depth less than € in C. Thus any halfspace transverse to

C' of depth bigger than ¢ must separate z from some z;. Therefore there is only finitely
many pairwise disjoint halfspaces transverse to C and of depth bigger than e.

We now prove the implication 3 = 1. By Lemma 4.2.6, it is enough to show that
under the conditions of statement (3), the set C' is the Hausdorff limit of some sequence
of compact subsets. Let us fix € and consider a family . of maximal cardinal of pairwise
disjoint halfspaces transverse to C' and of depth bigger than € in C'. The maximality implies
that each halfspace h € H. does not contain two disjoint halfspaces of depth bigger than e
in C'nh. As we are considering only halfspaces which are transverse to the convex subset C,
we may forget about the ambient space X and assume that each halfspace is a halfspace of
C, up to taking the intersection with the latter (see Remark 1.1.15 and Proposition 4.3.1).
Under the assumption of statement (3), the set H, is finite. Let us set C. = Conu( U b)

heH.
and first show that it is at Hausdorff distance less than ne from C' \ U h. Let x € C' be a

heHe
point lying outside all of the halfspace ) € H.. Note then that any halfspace separating x

from C. is disjoint from any halfspace in H.. Hence by the maximality of the family #,,
any halfspace separating x from C, is of depth less than € in C'. Therefore, we conclude by
Lemma 1.2.16 that the point x is at distance at most ne from C..

For each b € H,, we choose a point ay € b such that d(a, 6) > depthc(h) — €. We set
Cy := Conv({ay} U h) and use Lemma 4.2.9 to conclude that it is at Hausdorff distance
less than (n(n + 1) 4+ 1)e from b.

Let us set C, = U Cy U Ce. We have shown that C. is at Hausdorff distance less than

hete
(n(n 4+ 1) + 1)e from C. It last to show that it is compact. We proceed by induction on
the rank of C'. Note that when the rank of C' is 1, then the hyperplane corresponds to a
point. Hence by Proposition 4.2.4, the subset C' is compact as it is a finite union of the
convex hull of compact subsets. Let us assume now that the rank of C' is equal n and
that the implication 3 = 1 is true for median space of rank less or equal n — 1. Since we
have assumed Condition (3) to be true, it is verified by each hyperplane b. Therefore each
hyperplane 6 is compact. We conclude then by Proposition 4.2.4 that C. is compact, which
finishes the proof.
]

For the general case when the rank is infinite, it is harder to manipulate halfspaces as
they may all be dense in the space and even if it is the case, one can no longer use an
argument by induction on the rank of the space. Let us give a criterion of local compactness
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in the infinite rank case :

Proposition 4.2.10. Let X be a complete median space with compact intervals and let
K < X be a closed subset. If the outer measure of the set of transverse halfspaces to K is
finite,

i.e p(H(K)) < +oo, where p is the canonical measure associated to H(X), then K is
compact.

Let us first make the following remarks :

Remark 4.2.11. — If X be a complete median space and K < X a subset such that
A(H(K)) < 400, then the convex hull of K is bounded. This is first due to the
fact that the set of halfspaces which are transverse to K is the same as the set of
halfspaces which are transverse to the convex hull of K. In the other hand, having a
sequence of points which is unbounded give rise to a sequence of wall interval with
an arbitrarily big measure.

— The converse of Proposition 4.2.10 is false, even in the finite rank case. One may

consider a star like tree obtained from the concatenation of the intervals [0, %] at

{0}.

Proof of Proposition 4.2.10. Let K < X be a closed subset such that g(H(K)) = M. By
Remark 4.2.11, there is no loss of generality if we consider the closure of the convex hull of
K. Let us first remark that for any z,y € X, the set of halfspaces which separate x from
y is exactly the same as the set of halfspaces separating 7 (z) from 7 (y). Hence, for any
€ > 0, there exist x1,y1, ..., Tn., Yn. € K such that W(z;,y;) and W(z;,y;) are disjoint for
any ¢ # j and :

p(U WG 0)) = oY) dlar ) = M e

Let consider the convex hull of all the point C. = Conv({x1,41, ..., Tn., Yn.}) and a point
x € K. Then any halfspace separates x from C. if and only if it separates x from all the
points x; and y;. Thus, we must have u(W(z,C.)) < e. Let us then consider a sequence
C'1 defined as above. We may assume that the sequence (C'1),ey is ascending with respect
to the inclusion. By Proposition 4.2.5, each subset C’% is’ compact. In the other hand,

(]
the sequence (C'1),en converges with respect to the Hausdorff metric to C' = U Ci. As
neN
each C'1 is compact, the subset C' is totally bounded. Thus its closure is a compact which
contains the closed subset K. We conclude that the subset K is also compact. O
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4.3 Transitive actions on median spaces of finite rank
and local compactness

4.3.1 Trace of halfspaces on convex sets

Throughout this section X is a complete connected median space of finite rank.

Let us denote the set of hyperplanes of X by ﬁ(X) and deduce from Remark 1.1.15
that any hyperplane in a closed convex subset is induced from a hyperplane of the ambient
space as stated in the following :

Proposition 4.3.1. Let C' < X be a closed conver subset. We have then :
7:1(0) = {6 nC | he 7:[(X) and separates two points of C'}.

Proof. By Remark 1.1.15, it is enough to show that for any halfspace f which is transverse
to C' we have h nC = h n C. The inclusion h n C < § n C is obvious. For the converse,
let us take a sequence (z,),ey S b which converges to a point x € C. We denote by
Yn = mc(x,) their projection into the closed convex set C. As h n C' is not empty, we get
that (yn)neny € b N C. Due to the continuity of the projection, the sequence (y,)nen S b
converges to m¢(x) = x. O

Let ¢ < X be a convex subset and h < X a halfspace. We call the trace of the
hyperplane h on C' the intersection h n C.

Proposition 4.3.2. Let C' < X be a closed conver subset and b € H(X) be a halfspace.
Then the lift of any halfspace T' of h n C to the ambient space X is a halfspace transverse
to b assuming that T and its complementary are of non empty interior inside h n C.

Proof. Let T € 7-[(6 n C') be an halfpsace of the trace of the hyperplane 6 on the convex
subset C. To show that the lift of T" to X is transverse to b, it is enough to show that
there exist points in h and h* which projects into 7" and another ones which projects into
T°nCn h The halfspace T being inside the trace of the hyperplane h for any point x in
the interior of T" or its complementary inside b N C, there exists a sequence (,)ney inside
b n C which converge to z. Taking the index n big enough, the point x,, projects inside a
small neighborhood of x in T. O

Remark 4.3.3. The proposition will no longer be true if we drop the assumption on 7'
and its complementary being both of non empty interior. One may consider for instance
the following subspace of (R?, (') :

X={(zy)eR|z<0}u{(r,y) eR* |y -z >0}

We take the convex subset C' to be the half line x = 0 and T, a halfspace of C, to be
the trace of the halfspace h := {(z,y) € X | y > 0}. The convex subset C' is also the
hyperplane which bounds the halfspace defined by the inequality = > 0. The lift of (0, 0),
the complement of T" inside C is not transverse to h as it is disjoint from it.
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Proposition 4.3.4. Let C = X be a conver subset which isometric to an n-cube ([—¢, €], (1)
where n is the rank of X. Let h € H(X) be a halfspace in X which is disjoint from C. If
its hyperplane 6 intersects the interior of C, then there exist h1,bhs € H(X) such that they
constitute with the halfspace b a facing triple in X and 6 N f]Al N hAQ #* .

Proof. Let us identify C' with [—e¢, €]™. By Proposition 4.3.2, the rank of b~ C is smaller
than n. Hence the latter is contained in a hyperplane of C', let us say the hyperplane
given by the equation x; = 0. Then the lift to the ambient space of the two halfspaces
9, = {(x1,...,z,) € C | &y > 0} and 9, = {(x1,...,z,) € C | 1 < 0} give us the desired
halfspaces. Indeed, Lemma 1.1.14 tell us that b projects into h n C' = b n C, which is
outside $, and $,. O]

Finally we deduce the following corollary in the case where the median space admits a
transitive action :

Corollary 4.3.5. Let X be a complete connected median space of rank n. Let x € X and
let ([—€,€]™, ') = C = X be an isometrically embedded n-cube centred at x. If H,(X) does
not contain a facing triple, then it coincides with H,(C).

Proof. By Remark 1.1.15, it is enough to show that any halfspace in H,(X) is transverse
to the n-cube C. Let us consider a h € H,(X) branched at z. The set H,(X) does not
contain a facing triple and the intersection 6 N C'is not empty as both contain the point
x, hence Proposition 4.3.4 implies then that the halfspace b is necessarily transverse to

C. ]

4.3.2 Proof of Theorem D

Proof of the first claim of Theorem D : Let X be a complete connected median space
of finite rank which admits a transitive action. Let us fix a maximal pairwise transverse
family of halfspaces H = {b1,...,h,} in H(X). Let us set the following

D; = (4.3.1)

j#i
Let us show that each D; is a strongly convex isometric embedding of an R-tree.

Proposition 4.3.6. Fach D;, endowed with the induced metric of X, is a complete connec-
ted median space of rank 1.

Let us first show the following lemma :

Lemma 4.3.7. Let X be a complete connected median space of finite rank. We assume that
there exist two transverse halfspaces h1,Hs © X. Then there exist two transverse halfspaces
such that both them and their complements are of non empty interior inside X.
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Proof. Let us consider two transverse halfspaces b1, < X. By Proposition 1.2.10 and
up to considering the complement, we may assume that they are both open in X. Let us
consider a point x € h; N by. Let us set the following z; := mye(z) and x¢ := mye~pg(2). Note
that xg = mye(22) = myg(21) by Lemma 1.1.14. The halfspaces b1 and b, being both open,
the points 21 and x5 are distinct from xg. Let us set C' := Conv([zg, 1] U [z0, 22]) and set
T := mo(z). Note that mye(Z) = x;. As [zo, 21] N [20, 22] = {70}, Proposition 4.1.3 implies
that the interval [Z, 7] is isometric to the ('-product [zg, 1] x [zg, ¥2]. Hence, the lift to
X of any halfspaces $; € H([z,2z1]) and 92 € H([x, x2]), such that $; and $H¢ are of non
empty interior in [z, x;], yields two transverse halfspaces such that both them and their
complements are of non empty interior in X. O

Proof of Proposition 4.3.6. By Helly’s Theorem 1.1.5, each D; is a non empty closed convex
subset of X and it intersects both b; and h{. Hence, each D; is of rank bigger then or equal
one. It is left to show that it is of rank smaller then two. If there exist two transverse
halfspaces in D;, Lemma 4.3.7 ensures that there is no loss of generality if we assume them
to be with their complement inside D; of non empty interior. In the other hand, Proposition
4.3.2 implies that the lift of such halfspaces to the ambient space X yields halfspaces which
are transverse to each h; where j # ¢, which would contradict the maximality of the family

(hi). O

Following the same argument of the proof of Proposition 4.3.6, we note that for ¢ # j,

we have D; n D; = ﬂ by = {ag} for some ag € X.
k=1
In the following, we show that any point is the center of an isometrically embedded

n-cube.

Lemma 4.3.8. Under the assumptions that the median space X is complete and admils a
transitive action, there exists € > 0 such that any x € X 1is the center of an isometrically
embedded convex n-cube ([—e,€]™, (1) centred at x.

Proof. By the transitivity assumption of the isometry group of X, it is enough to show
the existence of an isometrically embedded n-cube in X. By Helly’s Theorem 1.1.5, the

n

intersection ﬂ b, is not empty. Let us consider a point a in the latter intersection. Again by
i=1

Helly’s Theorem, the intersections b; n D; are not empty and do not contain ag, hence the

projection of a into D; avoid ay. Let us set a; := mp,(a). By Proposition 4.3.6, each interval
[ao, a;] is isometric to closed interval of R. Let us denote by C' the convex hull between the
R-trees D;. By Lemma 4.1.3, the interval [ag, ¢ (a)] is isometric to the ¢!-product of the
intervals [ag, a;], thus completing the argument. ]

Let us assume now that the set H,,(X) does not contain a pairwise disjoint triple of

halfspaces. Remark that the transitivity assumption implies then that for any x € X the
set H,(X) does not contain such triple.
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Proposition 4.3.9. Fach D;, as defined in the beginning of Subsction 4.3.2 FEquality
(4.3.1), is isometric to the real line.

Proof. By Proposition 4.3.6, we already know that each D; is a closed convex subset of
rank 1, hence it is isometric to a complete connected R-tree. Under the assumption that
the set H,,(X) does not contain any facing triple, Remark 1.1.15 and Helly’s Theorem
1.1.5 imply that no D; can contain a facing triple. Hence, each D; is isometric to an
interval of the real line. To conclude that it is isometric to the real line, it is enough to
show that any point in D; lies in the interior of an interval in D;. Let us consider a point
x € D;. By Lemma 4.3.8, there exists an embedded n-cube C' =] — €, ¢[™ in X centred at
the point z. Under the assumption that there is no facing triple in H,(X), Corollary 4.3.5
implies that the halfspace bh;, for any j # ¢, are transverse to the n-cube. We have then
(ﬂ h,) N C =] — ¢, e[S D;. As D; identifies with an interval of R, the latter intersection
j#1
irjltersection is open in D;, which finish the argument. O

Now, we have all the ingredients needed to prove the first part of Theorem D :

Proposition 4.3.10. The convexr hull of the lines D; contains X and is isometric to
(R™, ¢1).
Proof. We set C' := Conv(Dy U ... U D,,). The set C' is a closed subset of the complete

median space X, as it is the convex hull of finitely many closed convex subsets, hence it is
also complete. By Proposition 4.1.1, it embeds isometrically, through the projections onto

the D;’s, as a closed subset of H D; =~ R". Tt is enough to show that the embedding is open
i=1
to conclude that it is surjective. In our way proving that, we prove also that C' contains
X. Let us take a point x € X and consider the family b;; := 7r51_1(] — 0, 7p,(Z)]), hiy =
T ([7p, (%), +o0[), where ¥ := mc(z) and each D; is identified with R. By Remark 1.1.15,
each bh;; and b;, is a halfspace of X. By Lemma 4.3.8, there exists an n-cube centered
at Z. Thus by Corollary 4.3.5, the family of halfspaces {h1, b1, ..., Bns, bn} and their
complementary in X constitutes all the elements of H;. In one hand, this implies that the
projection map (mp,, ..., mp,) is open. In the other hand, by Lemma 1.2.14 we get :
(i b)) = {3}
i=1
As the projections onto each D; factor through the projection onto C, that is 7p,(z) =
mp,(mc(x)) = mp,(Z), the point z lie in (h;; N b;,) for any ¢ € {1,...,n}. Hence, we get
x = T, which proves that C' = X and complete the proof. O

Proof of the second part of Theorem D The idea of the proof is to show that
under the assumption of the existence of a facing triple in ‘H,, and a transitive action on
X, there exist infinitely many pairwise disjoint halfspaces with depth uniformly bounded
below inside any ball centred at ag. Let us first show that any halfpaces in H,, is of positive
depth inside any ball centred at a,.
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Proposition 4.3.11. Let X be a complete connected median space of finite rank which ad-
mits a transitive action. Then for any halfspace b € Ho, andr > 0, we have depthpq, . (h) >
0.

Proof. Let b € H,, be a halfspace containing the point a in its hyperplane. If the halfspace
b is open, its depth inside any ball centered at ag is positive. Let us assume then that the
halfspace b is closed. By Proposition 4.1.3, there exists an isometrically embedded n-cube
C =~ [—¢, €]™ where n is the rank of the space X. The action being transitive, we can assume
that the n-cube is centred at ag. If the halfspace b is transverse to the n-cube C, then it
gives rise to a halfspace of C' which contains ag and which is of positive depth inside C.
If b is not transverse to C, then it will contain it. Let us consider then the trace of the
hyperplane 6 which bounds the halfspace b, on the n-cube, that is, its intersection with the
latter. Let us denote it by C. It is a convex subset which contains ag. The rank of X being
n, Proposition 4.3.2 implies that the convex subset C is of rank less than n — 1. Again,
there exist then points inside C' which are at positive distance from C, hence from Ij ]

Proof of the second part of Theorem D. Let us fix a point ay € X and show that under
the assumptions of Theorem D, any neighbourhood of ag contains infinitely many disjoint
halfspaces of depth bigger than some € > 0 inside the latter neighbourhood. We will
conclude then by Theorem B that the space is not locally compact.

The action of Isom(X) being transitive, by Lemma 4.3.8, there exists an isometrically
embedded n-cube C =~ ([—n,n]™ (') centred at ag. Let us parametrize the n-cube by
x1, ..., T, and identify ag with (0, ..., 0). Let by, b, b3 € H,, be a facing triple. By Proposition
4.3.11, each of the b; is of positive depth inside any ball centred at xy. For any point x
inside the n-cube, there exists an isometry g € Isom(X) which maps ag to z. At least,
the image of one of the h;’s by the isometry g is disjoint from the n-cube. Hence, for any
r €]0,n[ there exists a halfspace b, € H, .,y which is disjoint from the n-cube and of

depth bigger than some uniform e. The trace of the hyperplane 67. on the n-cube C'is a
convex subset of rank less than n containing the point (r,...,r). Hence, it is contained in a
hyperplane of the n-cube C' given by an equation of the form x;, = r. Thus, there exists an
infinite subset I <]0, 7| such that for any 71,75 € I, the trace of the hyperplane 6r1 on the
n-cube is disjoint from the trace of the hyperplane 6T2. By Lemma 1.1.14, if the halfspaces
b, and b,, intersect, then projection of their intersection into the n-cube C' lies inside
67’1 N 67«2. Hence, for any such r; and ry, the halfspaces b,, and b,, are disjoint. Therefore,
the set (H,).es give us the desired infinite family of pairwise disjoint halfspaces of depth
bigger than some uniform e > 0.

]

4.3.3 A comment on a weaker assumption in Theorem D

One may weaken the assumption in Theorem D and assume the action of Isom(X) to
be topologically transitive instead of transitive, that is, it admits a dense orbit. The same
strategy works, we divide the theorem into condition on the existence of a facing triple in
the neighbourhood of a points. Theorem D adapts into the following :
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Theorem 4.3.12. Let X be a complete connected median space of rank n which admits a
topologically transitive action. If there exist x € X and e > 0 such that the set of halfspaces
H(B(x,€)) contains no facing triple then the space X is isomorphic to (R™, (*).

The second part reformulates into the following :

Proposition 4.3.13. Let X be a complete connected median space of rank n which admits
a topologically transitive action. If there exists x € X such that for any € > 0, the set of
halfspaces H(B(x,€)) contains a facing triple, then the space X is not locally compact.

The proof of Proposition 4.3.13 follows exactly the path of the proof of the second
part of Theorem D. Regarding the proof of Theorem 4.3.12. One shows that under its
assumption, we obtain the same result as in Corollary 4.3.5, that is, the space X is locally
isometrically modelled on (R™, ¢!). The rest of the arguments follow more or less the same
path.

4.4 Actions with discrete orbit

The aim of this section is to show that an isometric action which is Roller non elemen-
tary, Roller minimal and minimal on a complete locally compact median space of finite
rank has discrete orbits.

We first remark that under the minimality assumption, every halfspaces are thick. We
say that an action is menimal if the convex hull of any orbit is the whole space.

Proposition 4.4.1. Let X be a complete connected median space which admits a minimal
action. Then any halfspace is thick.

Proof. Let us assume that X is of rank n, there exist then a n-cube isometrically embedded
into X. Let us denote by ag its center. Let h € H(X) be a halfspace in X. Under the
assumption of the existence of a minimal action, there exist an isometry which maps the
center of the cube ag into h. We obtains embedded n-cube which has it center inside f. The
rank of X being n, at least a lift of one canonical halfspace of the n-cube which contains
the center, contains the halfspace h¢. We consider then a point inside the n-cube which
is at positive distance from the corresponding halfspace. the latter point is necessarily at
positive distance from §°. O

Any complete connected median space X is geodesic (see Lemma 13.3.2 [Bow22|).
Hence by Hopf-Rinow Theorem, showing that a median space X is not locally compact is
equivalent to find a closed ball which is not compact.

Lemma 4.4.2. Let X be a median algebra of finite rank and let H < H(X) be an infinite
subset of halfspaces such that any b1,bo € H are either transverse or disjoint. Then there
exists an infinite subset H' < H of pairwise disjoint halfspaces.
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Proof. Let us consider the dual graph I' of H, that is, the non oriented graph whose vertices
are the halfspaces of H and two vertices are joined by and edge if the halfspaces labelling
the vertices are transverse, i.e. I := (V, E) such that V' = H and (b, h2) € E if and only if
by and by are transverse. Thus, finding an infinite family of pairwise disjoint halfspaces in
‘H translates into finding an infinite subset A of the graph I' consisting of vertices which
are pairwise non adjacent. As the rank of the space X is finite, the graph I" corresponds to
the 1-skeleton of finite dimensional simplicial complex. The set of vertices being infinite,
the graph is unbounded with regard to its combinatorial metric. Therefore such subset A
exists. O]

Let G be a group acting by isometries on a median space X. We denote by Stabg(x)
the subgroup of G consisting of isometries which stabilize the point x. If G = Isom(X) we
simply write Stab(x). We have the following proposition :

Proposition 4.4.3. Let X be a complete connected locally compact median space of finite
rank and let xo,x € X. If all the halfspace of H, are thick then the orbit Stab(x).x is
finite.

Before proving the proposition, we will be needing some results. We have the following
lemma which states that any point x¢ € X is determined by the couple z € X and H, n
H(zo, ) :

Lemma 4.4.4. Let X be a complete connected median space of finite rank. Let us consider
x,x0 € X and set C := ﬂ h. We have then mc(xg) = .

hE’HIﬁH(CC(),m)
Note that the conver subset C s closed by Remark 1.2.12, hence the nearest point

projection onto C' exists.

Proof. By Remark 1.1.15 and Proposition 1.2.14, we have :

C N [z, x] = ( ﬂ h) N [xo, 7] = {z}.

heH»NH(zo,2)
We conclude by Lemma 1.1.14 that 7¢(zo) = . O

Lemma 4.4.5. Let X be a complete connected median space of finite rank and let x € X.
Then for any isometry g € Stab(xy) and a closed halfspace b € H(X) such that xy € b°, the
halfspaces by and g.h are either transverse or disjoint.

Proof. Let us consider g € Stab(zy) and a closed halfspace h € H'. As both b and (g.h)°
contains xg, it is enough to show that we have ¢g.h < b if and only if g.h = h. Note that
the same conclusion will yield with regards to the case when h < g.h as we have g.h < b if
and only if h < ¢g~'.h. Let us assume then that g.h < h. We set T := my(20) and first show
that 7, (o) = Zo. In one hand, We have % € [m,4(z0), Zo], which implies that :

d(Tg.5(20), 20) = d(mg5(20), To) + d(Zo, ).
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In the other hand, we have

d(o, o) = d(g-70,9-To) = d(x0, 7g.5(9(20))) = d(0, Tg(0))-

Hence, we have d(Z¢, m,4(z0)) = 0.
Finally, we deduce that for any point a € h we have Zy € [a,zo]. As x¢ € (g.h)¢ and
Zo € (g.h), the point a cannot lie outside g.h. Therefore, we do have g.h = b. O

Proof of Proposition 4.4.3. Let us consider zo,x € X and g € Stab(zy). We denote by
H!. the set of minimal halfspaces in H, N H(zo,z). By Lemma 4.4.4, any point x € X is
determined by the point zy and the set H. . Hence, it is enough to show that the orbit of any
halfspace by Stab(zy) is finite. By Lemma 4.4.5, the union of the orbit of each halfspace in
H!, under Stab(zo) constitutes a family of halfspaces which are either transverse or disjoint.
The space X being assumed to be locally compact, the finiteness of the latter family is
ensured by Lemma 4.4.2 and Theorem B. O]

Proof of Theorem A. By Proposition 4.4.1, the minimality assumption on the action im-
plies that all halfspaces of X are thick. Let us show that if X admits an action which is
Roller minimal and Roller non elementary with a non discrete orbit, then it is not locally
compact. Let us set G := Isom(X) and let zp € X such that G.zy is non discrete. By
Proposition 3.2.20, there exists a facing triple of thick halfspaces b1, b, h3 € H(X) which
are uniquely determined by a point = € h{ N h§ N b5 in the sense that for any z; € b;, we
have m(xy, z2,x3) = . Let us fix R > 0 and let K < Isom(X) such that d(zo, g;.z0) < R
for any g € K. As the orbit of xg under G is not discrete, the subset K is infinite. If
K.z is finite, this implies that the orbit of zy under Stab(x) is infinite. Hence, by Pro-
position 4.4.3 the space X would not be locally compact. Let us assume then that K.x
is infinite. By Proposition 1.2.13 and Theorem B, it is enough to find an infinite subset
in H := K.h; u K.hy U K.hs which consists of halfspaces which are pairwise disjoint. If
‘H does not contain an infinite chain then by considering the minimal element of each
maximal chain, one obtain a subfamily of halfspaces which are either transverse of disjoint.
Hence, by Lemma 4.4.2, there exist an infinite subfamily of pairwise disjoint halfspaces.
Let us assume then that there exists an infinite countable chain H; € H. As by, o and b
are disjoints, the chain H; is given by (g1.,.bi, )nen Where g1, € K and 4, € {1,2,3}. Let
us set H' = U(gl,n.bl U g1.n-D2 U g1.0.03) and note that H'\H, is infinite. Again, If the
€N
subset H'\'H; does not contain an infinite chain then we are done. Let us assume then that
H'\H; contains an infinite chain Hs,. Such chain is given by (g2,,,-h;, )Jnen Where go,, € K
and j, € {1,2,3}. Note that as the halfspaces by, h2 and b3 are pairwise strongly separated,
for any isometry g € G, the halfspace g.h; cannot intersect two halfspaces in {1, bo, b3}.
Hence, if for each ¢ € {1, 2,3} such that g.h; intersects a halfspace in {h1, h2, h3}, then there
exists a permutation o € S3 such that g.h; intersects only the halfspace b,(;). In the latter
case, we necessarily have g(xz) = x as for any z; € b; N b we have m(zy, 29, 23) = @
and m(x1,z2,x3) = g(x). As we are considering the isometries g € K such that g(z) # x,
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we conclude that the infinite subset U(gzm.hl U g2.n-H2 U g2.1.03)\(H1 U H2) consists of
€N
pairwise disjoint halfspaces, which completes the proof. O
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