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Résumé

Espaces médians

Le sujet de cette thèse porte sur les espaces métriques qu'on appelle espaces médians
et la direction principale concerne l'étude des actions isométriques sur les espaces médians
complets connexes localement compact et de rang �ni. On montre d'abord une caracté-
risation de la compacité locale dans le contexte de cette géométrie. Puis, on donne une
classi�cation, dans cette classes, pour les espaces médians qui admettent une action transi-
tive. On montre qu'un tel espace est nécessairement isométrique à Rn munie de la métrique
ℓ1. Finalement on montre que si le groupe d'isométrie d'un espace médian X véri�e cer-
taines conditions qui sont assez naturelles, alors les orbites de n'importe quelle action
isométrique sur X sont discrètes.

Mots clés :Géométrie métrique, espaces médians, algèbres médianes, algèbres universelles,
dualité.
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Abstract

Median spaces

The subject of this thesis is median spaces and the main direction concerns the study
of isometric actions on complete connected locally compact median space of �nite rank.
We �rst give a characterization of the local compactness in this context. Then we give a
classi�cation theorem in this class for median spaces which admit a transitive action. We
show that such median spaces are necessarily isometric to Rn endowed with the ℓ1-metric.
Finally, we prove that when the isometry group of a median space X veri�es certain condi-
tions, then the orbits of any action on X are discrete.

Key Words : Metric geometry, median spaces, median algebras, universal algebras, dua-
lity.

ii







Remerciements

Ces quelques années de thèse étaient pour moi une riche expérience, autant sur le plan
pédagogique que sur le plan humain et je voudrais pro�ter de ces lignes pour remercier
toutes les personnes qui ont rendu ce cheminement possible et surtout plaisant.

Je tiens tout d'abord à exprimer ma profonde gratitude envers ma directrice de thèse,
Indira, qui a toujours été disponible au cours de ces années. J'ai énormément appris sous
sa direction, et je lui suis très reconnaissant pour son soutien, ses encouragements, ainsi
que pour l'e�ort qu'elle a consacré à moduler ma manière de penser, veillant à ce qu'elle
soit exempte de tout ce qui est absurde (même quand il s'agit de raisonner par ce dernier).

Je voudrais remercier Mark Hagen et Graham Niblo d'avoir accepté de rapporter cette
thèse ainsi que pour les corrections et conseils dont ils m'ont fait part et qui ont permis
d'améliorer la clarté du manuscrit. Je remercie chaleureusement Goulnara Arzhantseva,
Elia Fioravanti, François Gautero et Mai Gehrke et je suis honoré qu'ils aient accepté de
faire partie de mon jury de thèse.

Je remercie Clemens Berger et François Gautero pour avoir accepté de faire partie de
mon comité de suivi de thèse, ainsi que pour leur disponibilité et leur précieuse écoute.

Je remercie les personnes du laboratoire J.A. Dieudonné qui étaient toujours disponibles
pour apporter aides et soutiens. En particulier Andreas Höring, François Labourie, Florence
Marcotte, Vincent Pecastaing et Jérémy Toulisse. Je tiens aussi à remercier Mai Gehrke
ainsi que Jérémie Marques pour le temps qu'ils m'ont consacré à discuter sur la dualité de
Stone dans le cadre médian et pour la clarté qui en a découlée. Je voudrais aussi remercier
Jean-Marc Lacroix, Rolland Ruelle et Clara Salaun pour leur aide et amabilité.

Je suis profondément reconnaissant envers Abdelghani Zeghib et Mehdi Belraouti qui
m'ont incité à découvrir le monde de la géométrie et qui m'ont inspiré à poursuivre dans
cette direction à travers toutes les activités qu'ils ont organisées et supervisées. L'énorme
e�ort, volontaire, qu'ils dédient à former les jeunes mathématiciens algériens est exemplaire.
Sans oublier Samir Bekkara, Moussa Benoumhani et Azzedine Saouli pour lesquelles j'ai
un grand respect.

Je tiens aussi à exprimer ma gratitude envers les professeurs du L'U.S.T.H.B qui m'ont
beaucoup aidé durant mon parcours universitaire, notamment Mourad Abchiche, Kamel
Betina, Mohamed De�af, Salim Khelifa, Rabah Messaci et Yazid Ra�ed.

Durant tout mon parcours, j'ai eu l'honneur et le privilège de rencontrer des jeunes
personnes de tout horizon, avec qui j'ai partagé de très bon moments. Mes profonds re-
merciements vont :

v



A Dahmane, Gustave et Zaki, les trois algériens avec qui j'ai passé la quasi-totalité de
mon temps à Nice ainsi que mes meilleurs moments, que ce soit au labo ou ailleurs. Leurs
conseils, soutien et réconfort m'ont été d'une aide inestimable.

A Ali, Charbel, Hashem et Najwa, pour leur bienveillance et sympathie. Je garderai un
très bon souvenir des escapades découvertes et culinaires ainsi que de tous les débats de
sourds que nous avons eu.

A Billel, Gaëtan et Thibault qui se sont certainement dit qu'ils avaient remporté le gros
lot de m'avoir eu comme co-bureau. Avec tous les bon moments qu'on a passé ensemble,
je peux dire que c'est réciproque.

A Abderrahim, Adem, Alaa, Athmane, Farid, Fayssal, M'hammed, Mahieddine, Malek,
Moussadek, Radhwane, Salah et Souheib avec qui je ne me lasserai jamais de discuter, que
ce soit de maths ou de futilités.

A tous les camarades du LJAD : Alex, Alexis, Antoine, Bat-Od, Benjamin, Biao, Bruno,
Cécile, Christian, Dominico, Enrico, Jérémie, Lorenzo, Matthieu, Meriem, Mohamed, Nas-
sim, Pablo, Pénélope, Riccardo, Ryan, Salma, Thanos, Tianyi, Timothé, Titouan, Tom-
maso, Victor et Yash, qui, à travers les di�érents GDR, ont contribué à rendre le labo aussi
agréable et animé qu'il est.

A Anis, Farouk, Koceila, Nassim, Wadah et Walid qui, malgré la distance, demeurent
toujours aussi proche du c÷ur.

Je voudrais exprimer ma profonde gratitude envers les personnes qui me sont les plus
chères et à qui je dois tout : mes parents et mon frère Khelifa. Leur présence a été la force
motrice derrière toutes mes motivations. Je leurs suis à jamais reconnaissant pour tous les
conseils prodigués, toute la con�ance accordée, et leur soutien inconditionnel.

J'étends ma gratitude à tous les membres de la famille : grand-parents, tantes, oncles,
cousines et cousins pour leurs encouragements continus. Être entouré par eux est une source
de �erté et de bonheur !

vi



Table des matières

Abstract ii

Acknowledgments v

Table des matières vii

Introduction 1

1 Median geometry 9
1.1 Algebraic structure of the median geometry . . . . . . . . . . . . . . . . . 9

1.1.1 Median algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.2 Poc Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.3 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Metric structure of the median geometry . . . . . . . . . . . . . . . . . . . 26
1.2.1 Median spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.2.2 Measured poc sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.2.3 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 Strongly separated median space 41
2.1 Median space with strong separation property . . . . . . . . . . . . . . . . 41
2.2 Duality for median spaces with the strong separation property . . . . . . . 43

3 Action of S-arithmetic lattices on median spaces 49
3.1 Lattices in

ź

iPI

PSLp2, kiq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 pp ` 1q-regular tree associated to PSLp2,Qpq . . . . . . . . . . . . . 49
3.1.2 Lattices in

ź

iPI

PSLp2, kiq . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Fioravanti's machinery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.1 Roller boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.2 Barycentric subdivision . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.3 Mixing on the set of halfspaces . . . . . . . . . . . . . . . . . . . . 59
3.2.4 Stabilizer of points . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



TABLE DES MATIÈRES

3.2.5 Tits alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.6 Superrigidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Action of S-arithmetic lattices on �nite rank median spaces . . . . . . . . . 67

4 Isometric actions on �nite rank median spaces 69
4.1 An embedding lemma of the convex hull . . . . . . . . . . . . . . . . . . . 69
4.2 Characterization of compactness by mean of halfspaces . . . . . . . . . . . 72

4.2.1 Convex hull of compact subsets . . . . . . . . . . . . . . . . . . . . 72
4.2.2 Proof of Theorem B . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Transitive actions on median spaces of �nite rank and local compactness . 80
4.3.1 Trace of halfspaces on convex sets . . . . . . . . . . . . . . . . . . . 80
4.3.2 Proof of Theorem D . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.3 A comment on a weaker assumption in Theorem D . . . . . . . . . 84

4.4 Actions with discrete orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Bibliographie 89

viii



Introduction

A median space pX, dq is a metric space such that for any three points a, b, c P X, there
exist a unique point mpa, b, cq P X, called the median points between a, b and c, such that

ra, bs X rb, cs X ra, cs “ tmpa, b, cqu

where the interval ra, bs between a and b corresponds to the set of point x P X such that
dpa, bq “ dpa, xq ` dpx, bq.

Motivational examples are given by simplicial (real) trees where the intervals coincide
with the geodesics. First examples of median spaces go back to [BK47] and are given by
metric distributive lattices, see [Bir67] Ch. V, �9 for a de�nition of metric lattices.

Any median space comes naturally with a ternary operation m, called the median
operation, which associates to each triple, their median point. This ternary operation en-
capsulates a great deal of the geometry of the median space as it detects intervals as
follows

ra, bs “ tc P X | mpa, b, cq “ cu.

The median operation veri�es the following set of equations :

mpx, x, yq “ x

mpx, y, zq “ mpy, x, zq “ mpx, z, yq

mpmpx, y, zq, u, vq “ mpx,mpy, u, vq,mpz, u, vqq

Conversely, any set pA,mq endowed with a ternary operation m : A3 Ñ A which veri�es
the above set of equations will enjoy the same property as the median operation obtained
from a median space. We call pA,mq a median algebra and a generic example is given by
the set of subsets of a set X, where the ternary operation is de�ned as follows :

mPpA,B,Cq “ pA Y Bq X pB Y Cq X pA Y Cq

“ pA X Bq Y pB X Cq Y pA X Cq,

for any A,B,C P PpXq.
The structure of median algebras �rst appears as a way to characterize boolean algebra

in [Gra47] and distributive lattices in [BK47] by the mean of a ternary operation verifying
some set of postulates.
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We note that the set of axioms cited above are not canonical and median algebras
were studied under di�erent set of postulates (and di�erent names also). In fact, median
algebras can be approached from di�erent angles : median ternary operation, intervals (or
segments) seen as a map from X2 Ñ PpXq and a ternary relation called betweenness. The
equivalence between the three approaches was shown in [Sho54].

Median spaces gained interest from the �eld of graph theory with the notion median
graph which gives a natural generalization to simplicial trees and hypercubes. The link
between graphs and median algebras appeared implicitly in [BK47] and [Ava61], where the
graph is the one associated with the distributive lattice. In the same vein, this association
was studied in [Neb70] and [Neb71] were the median graphs are the principal objects of
study. For an overview on median graphs and their applications see [Mul11].

Convexity in median algebras is de�ned with respect to intervals. A halfspace is a
convex subset with a convex complement. Assuming Zorn's lemma, such halfspaces exist
and any pair of points are separated by a halfspace, see Theorem 1 [Nie79] where ideal and
prime ideal stand for convex subset and halfspace respectively. The set of halfspace of a
median algebra comes with a natural structure of a partially ordered set with a complemen-
tary operation (poc set) pP,ď, ˚, 0q where 0 is a minimal element and the complementary
operation is an involution ˚ : P Ñ P such that :

@ p, q P P, p ď q ùñ q˚
ď p˚

@ p P P, p ď p˚
ùñ p “ 0

A duality result a la Stone was shown between the category of median algebras and the
category of poc sets in [Isb80] and [Wer81].

Another important class of examples of median spaces is given by CAT(0) cube com-
plexes. These objects played a key role in understanding groups which arise as the funda-
mental group of three dimensional manifolds. A CAT(0) cube complex is a cube complex
which is a CAT(0) space when endowed with the length metric, where each cell is endowed
with the euclidean metric. If we consider the length metric where each cell is endowed with
the ℓ1-metric, we obtain a median space (see Theorem 6.8 [Che00]).

In the same spirit of Stalling's theorem about ends of group, It was shown in [Sag95]
that a group has more then one end with respect to a subgroup if and only if it acts
essentially on a CATp0q cube complex.

In [NR98] and [Rol16], the authors linked Sageev construction of the CATp0q cube
complex with the duality between median algebra and poc set, where the 0-skeleton of
the CATp0q cube complex comes with a median algebra structure. The link with median
algebra was implicit in [NR98] and more explicit and detailed in [Rol16].

In fact, the graph obtained from the 1-skeleton of any CATp0q cube complex is a median
graph and any median graph arises as such, as it was shown in [Che00].

In [Nic04] and [CN05], the relation between group actions on space with walls (see
[HP98]) and CATp0q cube complexes was made. In [CDH10], it was shown that a group
acts isometrically on a space with measured walls, which is the non discrete version of
space with walls (see [CMV04]), if and only if it acts isometrically on a median space.
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Moreover, the following characterization of Kazhdan's property (T) and Haagerup property
was made :

Theorem ([CDH10] Theorem 1.2 ). Let G be a locally compact second countable group.

� The group G has Kazhdan's property (T) if and only if any continuous isometric
G-action on a median space has bounded orbits.

� The group has Haagerup property if and only if there exist a continuous proper
isometric G-action on some median space.

There is a suitable and practical way of speaking of dimension in the case of median
spaces, given by the notion of the rank. Loosely speaking, this detects the highest dimension
of discrete cubes, endowed with the ℓ1-metric, that can be isometrically embedded into the
space, see De�nition 1.1.9.

In two directions of this thesis, we will be working in the realm of �nite rank median
spaces. In the other direction, we will be investigating the duality in a certain class of
complete median spaces of in�nite rank. The latter class encompasses the class of locally
convex median spaces (see De�nition 2.1.1).

Isometric actions on locally compact median space

Median spaces of �nite rank generalize �nite dimensional CAT(0) cube complexes the
same way R-trees generalize simplicial trees. Any CAT(0) cube complex has a canonical
metric which makes it a median space. The converse holds for complete connected median
spaces of �nite rank as it was shown in [Bow16] that these spaces admit a bilipschitz equiva-
lent metric which is CATp0q. Any geometric action, i.e. properly discontinuous cocompact
action, on an R-tree gives rise to a geometric action on a simplicial tree. It is unknown
whether any geometric action on a �nite rank median space gives rise to a geometric action
on a �nite dimensional CAT(0) cube complex, see [CD17] subsection 1.b. It is false in the
in�nite rank case and examples are given by irreducible lattices in a product of SOpn, 1q. It
was shown in [CD17] that SOpn, 1q acts properly cocompactly on an in�nite rank median
space and we know by results given in [Fio19] that any action of an irreducible lattice in
a product of SOpn, 1q on a median space of �nite rank has �nite orbit.

Many evidence for an a�rmative answer to the latter question in the �nite rank case
are given by works of E. Fioravanti which extended many results concerning action on
CAT(0) cube complexes to the case of �nite rank median spaces.

In [Sha00], the author obtains as a consequence of his superrigidity result that irredu-
cible lattices in higher rank lie groups, except few cases, have the �xed point property for
their isometric actions on trees. In the case of CATp0q cube complexes, it was done in the
Appendix [CFI16]. A similar result follows in the case of complete median spaces of �nite
rank as it was shown in [Fio19].

A version of Tits alternative for groups acting on CATp0q cube complexes was shown
in [SW05], [CS11]. The same results hold in the case of median spaces of �nite rank and it
was done in [Fio18] by extending the machinery used in [CS11] to the latter case.
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It is a well known fact that isometry group of real trees are semi simple. The same hold
for CATp0q cube complexes as it was shown in [Hag21]. The result was extended to the
case of connected �nite rank median spaces in [Fio21].

In one direction of this thesis, we will be investigating isometric action on complete
locally compact median space of �nite rank. We �rst show, assuming certain conditions on
the isometry group of the median space, that orbits are discrete :

Theorem A. (see Theorem A) LetX be an irreducible complete connected locally compact
median space of �nite rank. Let us assume that the action of G :“ IsompXq on X is Roller
non elementary, Roller minimal and minimal. Then any G-orbit is discrete.

The argument of the proof relies in an essential way on the machinery developed in
[Fio19].

Assuming that the median space is locally compact imposes a certain con�guration on
the halfspaces which are transverse to a ball. We give the following characterization of
compact subsets by the combinatoric of the halfspaces which are transverse to the subset :

Theorem B. (see subsection 4.2.2) Let X be a complete connected median space of rank
n. Let C be a closed bounded subset of X. Then the following are equivalent :

1. The subset C is compact.

2. For any x0 P C and ϵ ą 0, there exist x1, ..., xkϵ P C such that for any x P C we have
dpx, rx0, xisq ď ϵ for some i P t1, .., kϵu.

3. For any ϵ ą 0, if Hϵ is a family of pairwise disjoint halfspaces transverse to C and of
depth bigger than ϵ in the convex hull of C, then it is �nite.

Where the depth of a subset H Ă X inside another subset C is de�ned as depthCpHq :“
supptdpx,Hcq{x P Cu.

Theorem B falls within the framework of the duality between the category of median
spaces and the category of pointed measured partially ordered sets with inverse operation.
It characterizes the subcategory of the latter category which is dual to the subcategory of
complete compact connected median space of �nite rank.

Having Theorem B in hand, we prove the following classi�cation of complete connected
locally compact median space of �nite rank which admits a transitive action :

Theorem C. Let X be a connected locally compact median space of �nite rank which
admits a transitive action, then X is isometric to pRn, l1q.

The argument consists of considering the set of halfspaces which are "branched" at an
arbitrary point. A halfspace is a convex subset such that its complementary is also convex.
The set HxpXq of halfspaces branched at a point x P X in a complete median space of
�nite rank is the set of halfspaces h Ă X such that x P h̄ X h̄c. The set HxpXq can be
seen as the extension of the notion of the valency at a point x in an R-tree to the case of
complete median space of �nite rank. Theorem C is obtained then as a consequence of the
following results :

4
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Theorem D. (see subsection 4.3.2) Let X be a complete connected median space of rank
n which admits a transitive action. If for some or equivalently any x P X :

1. The set Hx contains no triple of pairwise disjoint halfspaces then the space X is
isomorphic to pRn, l1q.

2. The set Hx contains three halfspaces which are pairwise disjoint then the space X is
not locally compact.

We note that the result of Theorem C still holds when we assume that the action of
the group of isometry is topologically transitive, although we do not give a proof.

Duality

In [Sto36], M. H. Stone showed a duality between the category of boolean algebra and
the category of Stone space (Totally separated compact space). The contravariant functor
from the latter category to the former one associates to each Stone space X, the set of
continuous maps from X to t0, 1u, where its boolean algebra structure is induced from
PpXq – t0, 1uX .

The other contravariant functor associates to each boolean algebra B the set of mor-
phisms of boolean algebras from B to the trivial boolean algebra t0, 1u, endowed with the
topology of pointwise convergence. It identi�es naturally with the set t0, 1uB endowed with
the product topology.

This duality extends to the framework of median algebras as it was proved in [Isb80]
(see Theorem 6.13 therein), where it was shown in particular that the category of Stone
median algebra and the category of poc sets are dually equivalent. A Stone median algebra
is a median algebra endowed with a Stone topology such that the ternary operation is
continuous.

Theorem ([Isb80] Theorem 6.13, [Rol16] Theorem 5.3). A Stone median algebra is iso-
morphic to its double dual.

An analogue of the above duality holds in the case of median space as it was �rst
shown in [CDH10]. The additional metric structure on the median algebra is encoded in
a structure of measured space on the set of halfspaces. There is a canonical way to endow
the set of halfspaces HpXq of a median space X with a structure of measured space such
that the measure of the set of halfspaces separating two points coincides with the distance
between them. To each set of halfspaces with such structure of measured space, there is
a canonical median space MpXq, the double dual of X, associated to it and there is a
natural IsompXq-equivariant isometric embedding of X into MpXq.

The duality in the metric case was investigated in more details in [Fio20] and the analogy
with Isbell duality is more explicit where the notion of measured poc sets is introduced. In
particular, E. Fioravanti showed that a complete locally convex median space is isometric
to its double dual (Theorem A [Fio20]).

5
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We say that a median space X veri�es the strong separation if for any x, y P X there
exists a halfspace h Ă X which contains x in its interior and contains y in the interior of
its complement hc. This class of median spaces strictly contains the class of locally convex
median spaces. We extend the latter theorem using another proof to the case of complete
median space which admits a strong separation property (see De�nition 2.1.1).

Theorem E. (see Theorem 2.2.1) Let X be a complete median space which satis�es the
strong separation property. Then X is isometric to its double dual MpXq.

The proof of the above Theorem relies uniquely on the structure of measured space on
the set of halfspaces introduced in [CDH10] which is "coarser" then the one introduced in
[Fio20]. An essential ingredient in the proof of Theorem 2.2.1 is the following remark :

Proposition F. (see Lemma 2.2.6) Let X be a complete median space. Then any interval
is compact with respect to the topology where the closed subsets are generated by bounded
gate convex subsets of X.

Actions of S-arithmetic lattices on median spaces

By the results of Theorem 1.2 [CDH10], the action of any lattice in a locally compact
group satisfying the Kazhdan's property (T) has bounded orbits. Examples involves lattices
in simple algebraic group of rank greater than or equal two over a local �eld, lattices
in Sppn, 1q, the subgroup of special linear transformations which preserve a quaternionic
hermitian form of signature pn, 1q.

In the other side of the spectrum, groups having the Haagerup property always admit
a proper isometric on a median space. Hence, lattices arising in a product of SOpn, 1q,
SUpn, 1q or in a product of their universal cover, acts properly on a median space. In fact,
lattices in a product of SOpn, 1q acts geometrically on a locally compact median space of
in�nite rank (see [CD17]).

However, when the median space is of �nite rank irreducible lattices in a product of
SOpn, 1q cannot even act properly on a complete median space of �nite rank. This is a
consequence of a result by E. Fioravanti which is much more general.

Theorem ([Fio19] Corollary D and Theorem C). Let X be a complete median space of
�nite rank and let Γ be an irreducible lattice in a connected semisimple Lie group of higher
rank. Then any isometric action of Γ on X has �nite orbit.

In the other hand, there is no proper action of a discrete solvable group which is not
virtually abelian on a complete median space of �nite rank (see Theorem A [Fio18]). Hence,
non uniform lattices in SUpn, 1q, for n ě 2, does not act properly on a complete median
space of �nite rank as they contains Heisenberg subgroup obtained from the intersection
of the lattices with a horospheric subgroup of SUpn, 1q. The existence of proper action of
uniform lattices in SUpn, 1q on a complete median space of �nite rank is unknown, but
evidences for a negative answer are shown in [DP19].
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TABLE DES MATIÈRES

The group PSLp2,Qpq acts geometrically on a homogeneous simplicial tree of valency p`

1, the Bruhat-Tits tree associated to SLp2,Qpq. Hence, lattices in a product of PSLp2,Qpq

acts geometrically on a median space of �nite rank, given by the ℓ1-product of the Bruhat-
Tits tree. The groups PSLp2,Rq and PSLp2,Cq being isomorphic to SOp2, 1q and SOp3, 1q

respectively, lattices in a product of
ź

iPS

PSLp2, kiq acts geometrically on a locally compact

median space of in�nite rank, where ki is either R, C or Qp.
With regards to the �nite rank case, we show the following :

Theorem G. (see Theorem 3.3.1) Let Γ ď
ź

iPS

PSLp2, kiq be a lattice such that its projec-

tion into each factor PSLp2, kiq is dense, where ki is either R, C or Qp. Then there is no
proper action of Γ on a complete median space of �nite rank.

The proof of the above theorem relies heavily on Fioravanti's machinery, especially on
its superrigidity result with regards to actions of lattices in a product of locally compact
groups on complete median spaces of �nite rank ([Fio19] Theorem B).

Document structure

In Chapter 1, we describe the median geometry �rst from the general algebraic point
of view of median algebras, then from the particular metric point of view of metric spaces.
We describe the duality in both cases and make the analogy between the algebraic and
metric one.

In Chapter 2, we introduce the class of strongly separated median space and prove all
the needed results, for instance Proposition F, to prove the duality Theorem E.

Chapter 3 is devoted to the proof of Theorem G. In the �rst section we describe brie�y
the structure of the p-adic group PSLp2,Qpq and the needed properties satis�ed by lattices
in a product of PSLp2, kiq. In the second section, we recall Fiovaranti's machinery with
regards to isometric actions on complete �nite rank median space.

In Chapter 4, we investigate isometric action on complete locally compact median space
of �nite rank. In the �rst section, we prove an embedding lemma of the convex hull that
we will be using in the proof of the classi�cation Theorem C. In the second section, we
prove the characterization of compactness Theorem B. The third and fourth sections are
devoted to the proof of Theorems D and A.
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Chapitre 1

Median geometry

1.1 Algebraic structure of the median geometry

1.1.1 Median algebra

De�nition 1.1.1. (Median algebra) A median algebra is a set M with a ternary ope-
ration m : M ˆ M ˆ M Ñ M which veri�es the following set of equations :

mpx, x, yq “ x.

mpx, y, zq “ mpy, x, zq “ mpx, z, yq.

mpmpx, y, zq, u, vq “ mpx,mpy, u, vq,mpz, u, vqq.

A median morphism Φ : M Ñ N between two median algebras is a map which
commutes with the ternary operation m, i.e. ΦpmMpx, y, zqq “ mNpΦpxq,Φpyq,Φpzqq. Let
M be a median algebra, the interval between any two point a, b P M denoted by ra, bs is
the set of �xed points of the ternary operationmpa, b, ˚q. The following properties ensure us
that the intervals of median algebra can support a strong notion of convexity (see Section
2 Intervals [Rol16]) :

Remark 1.1.2. Let M be a median algebra and let a, b, c, d P M . We have then :

� If c, d P ra, bs then rc, ds Ď ra, bs.

� ra, bs X rb, ds “ rb,mpa, b, cqs.

� ra, bs X rb, cs X ra, cs “ tmpa, b, cqu.

We note that by the third property can serve as an axiom to de�ne median algebras.
More precisely, we have the following alternative de�nition by mean of segments :

De�nition 1.1.3. Let M be a set endowed with a map I : M ˆM Ñ PpMq which veri�es
the following :

1. Ipx, xq “ txu.

9



1.1. ALGEBRAIC STRUCTURE OF THE MEDIAN GEOMETRY

2. If z P Ipx, yq then Ipx, zq Ď Ipx, yq (Convexity).

3. For any triple x, y, z P M , the three subsets Ipx, yq, Ipy, zq and Ipx, zq intersect in a
unique point.

The equivalence between the two de�nitions was shown in [Sho54], see Theorem 4.11
therein. Sholander does not assume the interval map to be symmetric in his axioms, but
it is easily deduced from the postulate pγq therein and remarking from the postulate pβq

that b P ra, bs, by letting a “ b in the postulate pαq (see [Sho54] Postulates 4.10 pp.806).

Examples 1.1.4. 1. Let pO,ăq be a totally ordered set. The ternary operation which
associates to any three points a, b, c P O such that a ă b ă c the point b endows the
set O with a structure of a median algebra. For any a, b P O such that a ă b, the
interval between them is given by ra, bs “ tc P O | a ă c ă bu. In particular, the real
line has a natural structure of median algebra.

2. The arbitrary product of a family of median algebras pMi,miqiPI is naturally endowed
with the product structure where the median point of the triple paiqiPI , pbiqiPI , pciqiPI P

pMiqiPI is pmipai, bi, ciqqiPI .

3. More generally, let pL,^,_q be a distributive lattice. A median structure on L is
given by the following ternary operation

mpa, b, cq :“ pa ^ bq _ pb ^ cq _ pa ^ cq “ pa _ bq ^ pb _ cq ^ pa _ cq.

The interval between a, b P L is the set of elements which contain the meet of a, b and
is contained in the join of a, b, i.e. ra, bs “ tc P L | pa^ bq _ c “ c and pa_ bq ^ c “ cu.
In particular boolean algebras admit a natural structure of median algebra. A very
particular example is the trivial boolean algebra t0, 1u. We will see later that any
median algebra embeds into a product of the median algebra t0, 1u.

A subset C Ă M is convex if for any a, b P M the interval ra, bs lies in C.
A well known fact, due to Eduard Helly, is that the intersection of a �nite family of

convex subsets in the euclidean space Rn is empty if and only if the intersection of some
subfamily of cardinal less than or equal n ` 1 is empty. In the particular case of the real
line, the intersection of a �nite family of convex subsets is empty if and only if there exist
two convex subsets of the family which are disjoint. The same holds for median algebra
(see Theorem 2.2 [Rol16]) :

Theorem 1.1.5 (Helly's Theorem). Let X be a median space and let C1, .., Cn P X be a
family of pairwise intersecting convex subsets. Then their intersection is not empty.

Halfspaces and convex walls :

De�nition 1.1.6. (Halfspace) Let M be a median algebra. A convex subset h Ă M is a
halfspace if its complementary hc is also convex. A convex wall is a couple ph, hcq where

10



CHAPITRE 1. MEDIAN GEOMETRY

h Ă M is a halfspace. We denote by HpMq and WcpMq the sets of halfspaces and convex
walls of M respectively.

For any A,B Ď M , we denote by HpA,Bq the set of halfspaces which separate B from
A, i.e.HpA,Bq :“ th P HpXq{B Ď h, A Ď hcu. We will be using the following notation
H̃pA,Bq “ HpA,Bq Y HpB,Aq when we do not need to keep track on the "orientation".
In the same vein, we de�ne the convex walls interval between A and B as WpA,Bq :“
tph, hcq{h P HpA,Bqu. When A and B are singletons, we simply write Hpx, yq and Wpx, yq.
When there is no confusion, we will just say walls instead of convex walls.

We say that a halfspace is transverse to a subset A Ă M if both h X A and h X Ac

are not empty. We denote by HpAq the set of halfspaces which are transverse to A and by
HA the set of halfspaces which contain A.

Assuming Zorn's lemma, not only halfspaces exist but they separate any two convex
subsets in a median algebra (see Theorem 2.8 in [Rol16]) :

Theorem 1.1.7. (Separation theorem) Let M be a median algebra and let A,B Ď M be
two disjoint convex subsets. There exist a halfspace h Ď M such that A Ď h and B Ď hc.

The above separation property is of fundamental importance, especially in the duality
between the median algebra and its set of halfspaces (See Subsection 1.1.3).

We have a correspondence between the set of halfspaces of a median algebra M and the
set of median morphisms between M and the median algebra t0, 1u. The correspondence is
given by considering the characteristic function over a halfspace h and the inverse image 0
or 1 under such median morphisms. Hence, any median algebraM embeds into the product

ź

hPHpMq

t0, 1u by the product of the characteristic functions 1h's. Theorem 1.1.7 ensures that

the later median morphism is injective.
In the language of universal algebra, the above paragraph translates into saying that the

category of median algebras with median morphisms is the same as the variety generated
by median algebra t0, 1u, that is, the smallest category containing t0, 1u and stable under
considering submedian algebras, median quotient and direct product.

Remark 1.1.8. Let f : M Ñ N be a morphism of median algebras. Then the inverse
image of any halfspace of N by f is a halfspace of M . This is due to the fact that the
inverse image of a convex subset is convex and that f´1pAcq “ pf´1pAqqc.

Halfspaces give a natural way of speaking about "dimension" in median algebras :

De�nition 1.1.9. (Rank) Let M be a median algebra.

� Let h1, h2 P HpMq be two halfspaces. We say that h1 and h2 are transverse if the
following intersections are not empty :

h1 X h2 hc1 X h2 h1 X hc2 hc1 X hc2.

� We say that the median algebra is of rank n if there exist a family of pairwise
transverse halfspaces h1, .., hn P HpMq where n is maximal.

11
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Convex hull and Gate convex subsets

De�nition 1.1.10. (Convex hull) LetM be a median algebra and let A Ă M . The convex
hull of A, that we denote by ConvpAq, is the intersection of all convex subsets containing
A.

The convex hull of the union of subsets which form a directed set is the union of the
convex hull of each set. Therefore, we get the following proposition (Corollary 2.5 [Rol16]) :

Proposition 1.1.11. Let X be a median algebra, then for any A Ď X we have :

ConvpAq “
ď

x1,..,xnPA

Convptx1, .., xnuq.

For any a, b, x P M and y P ra, bs, we have :

mpx,mpx, a, bq, yq “ mpx,mpx, a, bq,mpy, a, bqq As y P ra, bs

“ mpmpx, x, yq, a, bq

“ mpx, a, bq

The median point mpx, a, bq lies in the interval rx, ys for any y P ra, bs. Hence, if we �x
the two �rst variables of the ternary operation mp˚, ˚, ˚q, the morphism obtained can be
seen as the nearest point projection into the interval ra, bs. This motivates the following
de�nition :

De�nition 1.1.12. (Gate convex) A convex subset C Ă M is gate convex if for any
x P M there exist a point πCpxq P C, called the gate projection of x into C, such that for
any a P C the point πCpxq lies in the interval rx, as.
We denote by πC : M Ñ C the retraction which associates to each point x its gate
projection in C.

We note that in the literature regarding median algebra, it is the term retract that
it is used to denote gate convex subset, whereas the latter is used in the case of median
space.

Remark 1.1.13. 1. Let C Ď M be a gate convex subset and let a P M . Any halfspace
which separates a from πCpaq must separate a from C as for any point c P C, we
have πCpaq P ra, cs.

2. The gate projection is a median morphism from M to C where the latter is endowed
with the median algebra structure induced from M .

Lemma 1.1.14. Let M be a median algebra and let C Ď M be a gate convex subset and
A Ă M a convex subset such that A X C ‰ H. Then the projection of A into C lies in
A X C.

Proof. Let us consider a point a P A. The intersection C X A being assumed to be not
empty, we choose a point c P C X A. We conclude then πCpaq P ra, cs Ď C.
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Remark 1.1.15. Let M be a median algebra and let C Ď M be a gate convex subset.
Any halfspace h̃ of C, when the latter is seen as a median algebra, lifts to a halfspace of M
under the inverse of image of the gate projection onto C (see Remark 1.1.8). In the other
hand, any halfspace h P HpMq gives rise to a halfspace h̃ :“ h X C in HpCq. By Lemma
1.1.14, we have π´1

C ph X Cq “ h. Hence, we have a correspondance between the halfspace
of C and the halfspace of M which are transverse to C.

De�nition 1.1.16. (Join) Let M be a median algebra and let A,B Ď M .

� The join rA,Bs between is the union of all intervals having endpoints in A and B.

� The n-iterated join An of a subset A is de�ned recursively by An “ rAn´1, An´1s

and A0 “ A.

By the paragraph preceding De�nition 1.1.12, we know that intervals are gate convex.
Moreover, we have the following proposition :

Proposition 1.1.17. Let M be a median algebra and let C1, C2 Ď M be two gate convex
subset. Then the join rC1, C2s is also gate convex.

Proof. Let us consider x P M and set x̃ :“ mpx, πC1pxq, πC2pxqq. Let y P rC1, C2s and let
us show that x̃ P rx, ys. Before doing so, we show that y P rπC1pyq, πC2pyqs. Note that
any halfspace which separates y from πCi

pyq must separate y from Ci. Hence, if y lies
outside the interval rπC1pyq, πC2pyqs, it must lie outside the convex hull of C1 Y C2. It last
to show that x̃ P rx, ys. By Proposition 1.1.19, there exist y1 P C1 and y2 P C2 such that
y P ry1, y2s. Hence, we have mpπC1pxq, x, yq “ πC1pxq and mpπC2pxq, x, yq “ πC2pxq as
πC1pxq, πC2pxq P rx, ys. Therefore, we conclude by :

mpx̃, x, yqq “ mpmpx, πC1pxq, πC2pxqq, x, yq

“ mpx,mpπC1pxq, x, yq,mpπC2pxq, x, yqq

“ mpx, πC1pxq, πC2pxqq

As a consequence of the above proposition, we remark the following :

Proposition 1.1.18. Let M be a median algebra. Then the convex hull of any �nite subsets
is a gate convex.

We deduce from Propositions 1.1.11 and 1.1.18, the following description of the convex
hull between two convex subsets :

Proposition 1.1.19. Let M be a median algebra and let C1, C2 Ă M be two convex subsets.
The convex hull of the union of C1 and C2 is equal to their join rC1, C2s.

When the median algebra is of �nite rank, it was shown in [Bow13] (Lemma 6.4) that
the convex hull of any subset is obtained by iterating a �nite number of time the join
operation :
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Proposition 1.1.20. Let M be a median algebra of rank n and let A Ď M . We have then :

ConvpAq “ An.

The same result holds when the �niteness restriction is on the cardinal of the set rather
than the rank of the space :

Proposition 1.1.21. Let M be a median algebra and let F Ă M be a subset of cardinal
n. we have then :

ConvpF q “ F n.

Proof. We proceed by induction on the cardinal of the set F . If F is a singleton there is
nothing to show. Let us assume that the proposition holds for subset of cardinal n´ 1. By
Proposition 1.1.19, we conclude that :

ConvpF q “ rConvpF ztauq, taus.

Let us look more closely at the convex hull between two gate convex subsets.

Proposition 1.1.22. Let M be a median algebra and let C1, C2 Ď M be two gate convex
subsets. Then ConvpπC1pC2q, πC2pC1qq is isomorphic to πC1pC2q ˆ rx, πC2pxqs where x is
any point in πC1pC2q.

We call the convex subset ConvpπC1pC2q, πC2pC1qq the bridge between C1 and C2, let
us denote it by BpC1, C2q.

We note that when the median algebra is a median graph, the above notion of bridge
corresponds with the notion of bridge between halfspaces of CAT(0) cube complexes that
arises in [CFI16] Section 2.G.

Before proving Proposition 1.1.22, we will be needing some lemmas.

Lemma 1.1.23. Let M be a median algebra and let C1, C2 Ă M be two gate convex subsets.
Then the image of C1 under the projection onto C2 is convex.

Proof. Let us consider x1, y1 P C1 and set x2 :“ πC2px1q, y2 :“ πC2py1q P C2. After choosing
a point x P rx2, y2s and setting x̃ “ πC2pπC1pxqq, let us show that there is no halfspace that
separates x and x̃, which implies that x “ x̃. Let h P HpXq be a halfspace containing x.
If h does not separate x2, y2, then it will contain the point x̃ as the latter belongs to the
interval rx2, y2s. Let us assume now that h does separate x2 from y2. By Lemma 1.1.14,
the halfspace h would also separate x1 from x2. Again by Lemma 1.1.14, we deduce that
πC1pxq and x̃ “ πC2pπC1pxqq also belongs to h.

Lemma 1.1.24. Let C1 and C2 be two gate convex subset. Then we have

pπC1 ˝ πC2q|πC1
pC2q “ 1πC1

pC2q.
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Proof. Let us consider two gate convex subsets C1, C2 Ď M and a point x P C2. We have
πC2pπC1pxqq P rx, πC1pxqs. The gate projection onto gate convex subset being a morphism
of median algebra, we compose the latter inclusion by the gate projection onto C1 to obtain

πC1pπC2pπC1pxqqq P πC1prx, πC1pxqsq “ rπC1pxq, πC1pπC1pxqqs “ tπC1pxqu.

The equality between πC1prx, πC1pxqsq and rπC1pxq, πC1pπC1pxqqs is a consequence of Lemma
1.1.23.

Proof of Proposition 1.1.22. Let us denote by C the convex hull between πC1pC2q and
πC2pC1q. By Proposition 1.1.19 and Lemma 1.1.24, we have

C “
ď

xPπC1
pC2q

x1PπC2
pC1q

rx, x1
s “

ď

xPπC1
pC2q

rx, πC2pxqs..

Note that we have rx, πC2pxqs X C1 “ txu and rx, πC2pxqs X C2 “ tπC2pxqu. It last to
show that for any y P C1, the intervals rx, πC2pxqs and ry, πC2pyqs are isomorphic. By
Proposition 1.1.14, we have mpy, x, πC2pxqq “ x and mpπC2pyq, x, πC2pxqq “ πC2pxq. Hence,
by Lemma 1.1.23, we have πrx,πC2

pxqspry, πC2pyqsq “ rx, πC2pxqs and πry,πC2
pyqsprx, πC2pxqsq “

ry, πC2pyqs. By Lemma 1.1.24, we conclude that the intervals rx, πC2pxqs and ry, πC2pyqs are
isomorphic.

Remark 1.1.25. By remark 1.1.13 and Proposition 1.1.22, we deduce that for any two gate
convex subset C1, C2 Ă M , there exist c1 P C1 and c2 P C2 such that HpC1, C2q “ Hpc1, c2q.
It is enough to take c1 P πC1pC2q and c2 :“ πC2pc1q.

The following is a remark regarding the equivalence between the existence of a half-
space which is transverse to two gate convex subsets and the bridge relating them being a
singleton.

Proposition 1.1.26. Let M be a median algebra and let C1, C2 Ă X be two gate convex
subsets. We have then WcpC1qXWcpC2q “ WcpπC1pC2qq. In particular, there is no halfspace
which is transverse to both C1 and C2 if and only if πC1pC2q and πC2pC1q are singletons.

Proof. Note that by Proposition 1.1.22, the convex subsets πC1pC2q and πC2pC1q are iso-
morphic. Let h P HpMq be a halfspace which is transverse to both C1 and C2. By Lemma
1.1.14, the images of C1 X h and C1 X hc under the projection πC2 lie in C2 X h and C2 X hc

respectively. For the other inclusion, any halfspace which separates two points of πC1pC2q

is a halfspace which is transverse to both πC1pC2q and πC2pC1q by Lemma 1.1.14.

Gluing median algebras along gate convex subsets As median algebras are parti-
cular case of universal algebras, they bene�t from the properties of the latter. In particular,
the category of median algebra with median morphisms is stable under products, projective
limits and inductive limits. Thus, this give a way to construct new examples of median
algebra. One may also construct new examples by gluing median algebra along gate convex
subsets by the mean of a median isomorphism, that what we will describe in the following
paragraph
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Proposition 1.1.27. Let pM1,m1q and pM2,m2q be two median algebras. Let C1 Ď M1

and C2 Ď M2 be two gate convex subsets such that there exist a median isomorphism
Φ : C1 Ñ C2. Then the set M̃ :“ M1

ğ

C1„ΦC2

M2 is naturally endowed with a median

algebra structure given by the following ternary operation :

mpx, y, zq :“

$

&

%

mipx, y, zq if x, y, z P Mi

m1px, y,Φ
´1pπC2pzqqq if x, y P M1 and z P M2

m2px, y,ΦpπC1pzqqq if x, y P M2 and z P M1

We de�ne the interval ra, bs as it was de�ned for median algebra, that is the set of
�xed points of mpa, b, ˚q. Note that for any x, y P Mi, we have rx, ys “ rx, ysMi

, where the
latter is the interval corresponding to the median algebra structure of Mi. Before proving
the above proposition, let us �rst prove some lemmas about the properties veri�ed by the
intervals of M :

Lemma 1.1.28. Under the same notation of Proposition 1.1.27, fr any x, y P M̃ and
z P rx, ys, we have rx, zs Ď rx, ys.

Proof. It is enough to consider the case where x, z P M1 and y P M2. Let us consider a
point t P rx, zs and show that t P rx, ys. We have :

mpt, x, yq “ m1pt, x,Φ´1
pπC2pyqqq

“ m1pm1pt, x, zq, x,Φ´1
pπC2pyqqq

“ m1pt,m1px, x,Φ
´1

pπC2pyqq,m1pz, x,Φ´1
pπC2pyqqq

“ m1pt, x, zq pAs z P rx, ysq

“ t

Lemma 1.1.29. Under the same notation of Proposition 1.1.27, for any x P M1 and
y P M2 we have rx, ys X M1 “ rΦ´1pπC2pyqq, xs.

Proof. Remark that for any z P rx, ys X M1 we have :

z “ mpx, y, zq “ mpx, z, yq “ m1px, z,Φ
´1

pπC2pyqqq.

Hence, we have the inclusion rx, ys X M1 Ď rΦ´1pπC2pyqq, xs.
For the other inclusion, we have mpx,Φ´1pπC2pyqq, yq “ mpx,Φ´1pπC2pyqq,Φ´1pπC2pyqq “

Φ´1pπC2pyqq. Hence, we conclude by Lemma 1.1.28 that rx,Φ´1pπC2pyqqs Ď rx, ys

Proof of Proposition 1.1.27. It is enough to show that the intervals of M verify the axioms
of De�nition 1.1.3. Note that the �rst axiom is direct. The second one is given by Lemma
1.1.28. It last to show that it veri�es the last axiom. Let us consider a triple of points
x, y, z P M . Without loss of generality, we assume that x, y P M1 and z P M2. We have :

rx, ys X rx, zs X ry, zs “ rx, ys X M1 X rx, zs X ry, zs.
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Hence By Lemma 1.1.29, we deduce that :

rx, ys X rx, zs X ry, zs “ rx, ys X rx,Φ´1
pπC2pzqqs X ry,Φ´1

pπC2pzqqs

“ rx, ysM1 X rx,Φ´1
pπC2pzqqsM1 X ry,Φ´1

pπC2pzqqsM1

“ tm1px, y,Φ
´1

pπC2pzqqqu

“ tmpx, y, zqu

Using the above construction, one can show that R-trees have a natural structure of
median algebra obtained from the inductive limit of R-trees which have �nitely many
branching points.
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1.1.2 Poc Set

The set of halfspaces HpXq of a median algebra X is naturally endowed with a partial
order relation given by the inclusion and a complementary operation which associates to
each halfspaces its complement inX, thus inverting the partial order relation. This provides
HpXq with a natural structure of a poc set.

De�nition 1.1.30. (Poc set) A poc set pP,ď, ˚, 0q is a partially ordered set pP,ďq with
a minimal element 0 and involution ˚ : P Ñ P such that it inverses the order in P and the
minimal element 0 is the unique element in P which is smaller than its complement 0˚.
A morphism of poc sets is a morphism which respect the order and commutes with the
complementary operations.

Examples 1.1.31. 1. The trivial poc set t0, 1u consisting a minimal and a maximal
element.

2. Any boolean algebra pB, 0, 1,_,^,1 q has a natural structure of a poc set. The partial
order relation is given de�ned by a ď b if and only if a ^ b “ b. The complementary
operation is given by the negation 1.

3. Let P1 and P2 be two poc sets. The disjoint union poc set P1

š

P2 between P1 and P2

is de�ned by taking the disjoint union of P1 and P2, where we identify their respective
minimal elements and maximal elements. The partial order relation is the same on
each component Pi and the elements of P1 are not comparable with the elements
of P2, besides the maximum and the minimum. This operation corresponds to the
coproduct or the categorical sum (in [Rol16] the author used the notation ‘) in the
category of Poc sets and morphism of poc sets.

For any subset A Ă P , we de�ne A˚ :“ tp˚ | p P Au.
A �lter in a set of subsets PpXq is a non empty subset F Ă PpXqztHu which is stable

under intersection and is upward stable, that is, for any A P F and B P PpXq such that
A Ď B we have B P F . Its de�nition extends to the case of poc set :

De�nition 1.1.32. (Filter) Let pP,ď, 0, ˚q be a poc set. A non empty subset F Ă P is a
�lter if it veri�es the following :

1. The minimal element 0 does not lie in F .

2. For any p, q P F the inequality p ď q˚ does not hold. (Stability under intersection)

3. For any p P F and q P P such that p ď q, then q P F . (Upward stability)

For any �lter F Ă P , the transverse to F is de�ned by T pF q :“ P zpF Y F ˚q.

Proposition 1.1.33. (Extension of a �lter) Let P be a poc set and let F Ă P be a �lter. Let
a P P zt0u such that neither a P F nor a˚ P F . Then the set F̃ :“ tp P P | p P F or a ď pu

is a �lter which contains F and a.

Proof. By construction the set F̃ is upward stable and it does not contain the minimal
element 0. Last to show the stability under "intersection". Let us consider p, q P F̃ . We
have three case :
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� Case 1 : Both p and q lie in F . In this case, there is nothing to show as F is assumed
to be a �lter.

� Case 2 : Both p and q are greater than a. Therefore, we can not have p ď q˚ as it
would imply that a ď a˚.

� Case 3 : We have p P F and a ď q. Again, we can not have p ď q˚ as it would imply
that p ď a˚ which contradicts the assumption that a˚ does not belong to F .

An ultra�lter is a �lter which is maximal with respect to the inclusion. Proposition
1.1.33, gives us the following characterization of ultra�lter :

De�nition 1.1.34. (Ultra�lter) Let pP,ď, 0, ˚q be a poc set. A subset u Ď P is an ultra-

�ler if it veri�es the following :

1. For any p, q P F we do not have p ď q˚.

2. For any p P P , we have either p P u or p˚ P u.

When the poc set P corresponds to the set of halfspaces of a median algebra M , the
subset of a halfspaces containing a convex subset C constitutes a �lter of HpMq and its
transverse T pHpMqq is HpCq, the set of halfspaces which are transverse to C. The subset
of halfspaces containing a �xed point constitutes a maximal �lter in P and they are called
principal ultra�lters .

Remark 1.1.35. Let f : P Ñ Q be a morphism of poc sets. Then the inverse image of
any ultra�lter of Q by f is an ultra�lter of P . This is due to the fact that the inverse image
of any �lter is a �lter and that f´1pAcq “ pf´1pAqqc.

As for the halfspaces in median algebras, by assuming Zorn's lemma ultra�lters exist
and verify the following "separation" property :

Theorem 1.1.36. Let P be a poc set and let F1, F2 Ă P be two �lters. There exist then
an ultra�lter u Ă P such that F1 Ă u and F2 X T pF1q Ă u.

Moreover, if T pF1q X T ppF2q “ H, then such ultra�lter u is unique.

Before proving the above Theorem, we make the following remarks to give a geometric
picture of it.

Remark 1.1.37. � In the case where the �lters F1 and F2 of Theorem 1.1.36 arise as
the set of halfspaces which contain a gate convex subset of a median algebra M , i.e.
Fi “ HCi

where C1, C2 Ď M are gate convex subsets. The ultra�lter u is given by a
principal ultra�lter over a point lying in the projection πC1pC2q of C2 into C1.
The condition T pF1q X T ppF2q “ H translates into the non existence of a halfspace
which is transverse to both C1 and C2. In this case, the projection of C2 into C1 is
a singleton txu, and the ultra�lter u corresponds to the principal ultra�lter over the
point x (compare with Proposition 1.1.26).
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� We note that the ultra�lter u obtained in Theorem 1.1.36 veri�es F2 X u˚ “ F2 XF ˚
1 .

The �lter F1 being included in u, we deduce that F ˚
1 Ď u˚, thus F2 X F ˚

1 Ď F2 X u˚.
In the other hand, we have u˚ Ď F ˚

1 Y T pF1q. As F2 X T pF1q Ď u we deduce that
F2 X u˚ Ď F ˚

1 .
Again when F1 and F2 arise as the set of halfspaces which contain gate convex subsets
C1 and C2 respectively, the remark above translates into saying that any halfspace
which separates C2 from the point x must separate it also from C1.

Proof of Theorem 1.1.36. Let A be the set of �lters F which contains F1 and such that
T pF1q X F ˚

2 X F “ H. The set A is an inductive set and is not empty as it contains F1.
Assuming Zorn's lemma, let us consider a maximal element u P A. We claim that u is an
ultra�lter which contains T pF1q X F2.

Let p P P such that neither p P F1 nor p˚ P F1, that is, the element p lie in T pF1q.
Without loss of generality, we assume that p does not lie in F ˚

2 . The subset F2 being a
�lter F ˚

2 is downward closed, i.e. for any a P P and b P F ˚
2 such that a ď b then a P F ˚

2 .
Hence any element which is greater than p lie outside F ˚

2 . By proposition 1.1.33, the set ũ
consisting of the union of all the elements which are greater than p and the elements of u
is a �lter which veri�es T pF1q X F ˚

2 X ũ “ H. By the maximality of u, we conclude that
p P u. In particular, we have shown that F2 X T pF1q Ă u.

Let ũ be another maximal element in A. There exist then p P P such that p P u
and p˚ P ũ. The element p necessarily lie in T pF1q. As we have T pF1q X F ˚

2 X ũ “ H

and T pF1q X F ˚
2 X u “ H , we conclude that p P T pF2q. Therefore, if the intersection

T pF1q X T ppF2q is empty, then the ultra�lter is unique.

In particular we get the following corollary :

Corollary 1.1.38. (Separation Theorem) Let P be a poc set and let p, q P P . There exist
then an ultra�lter which separates p and q.

Proof. Without loss of generality we can assume that p ę q and p ę q˚. Let us set
F1 :“ tx P P {p ď xu and F2 :“ tx P P {q˚ ď xu. By Theorem 1.1.36, there exist an
ultra�lter u Ă P such that F1 Ď u and F2 X T pF1q Ď u. As p ę q and p ę q˚, the element
q and its complementary q˚ lie in the transverse set T pF1q of the �lter F1. Therefore, the
ultra�lter u contains p and q˚.

Let us denote by UpP q the sets of ultra�lters of the poc set P . With analogy to the case
of median algebra, the sets of ultra�lters of a poc set P is in correspondence with the set
of poc sets morphisms from P to the trivial poc set t0, 1u by considering the characteristic
map on the ultra�lters for the �rst direction and considering the inverse image of t1u under
the latter poc set morphisms for the other direction. We obtain then that any poc set P
embeds into the product

ź

uPUpP q

t0, 1u where the injectivity is ensured by the Separation

Theorem 1.1.38. We deduce then that the category of poc sets and poc set morphisms is
the same as the variety generated by the trivial poc set t0, 1u.
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The set UpP q is a subset of the boolean algebra PpP q which is not closed under inter-
section nor under the union. However, it is closed under the median operation de�ned in
1.1.4. Hence it is naturally endowed with a structure of a median algebra. Therefore, there
is a canonical way to associate to each poc set P a median algebra UpP q. This association
veri�es a nice functorial properties. It is the subject of the next subsection.

1.1.3 Duality

We have a duality between, due to Marshal Stone, between the category of boolean
algebras with boolean morphisms and the category of Stone spaces with homeomorphisms.
A Stone space is a totally separated compact topological space.

In [Isb80], the author extended the latter duality to the case of median algebras and
poc sets in two ways (see Theorem 6.13 therein, J. R. Isbell refers to median alebras and
poc sets by symmetric media and binary messages respectively). The �rst way is to see poc
sets as a generalization of boolean algebras. In this case, it will be dual to the category of
Stone median algebras with continuous median morphisms. A Stone median algebra is
a median algebra endowed with a topology which makes it a Stone space and such that
the median operation is continuous.

The second way is to see median algebras as a generalization of boolean algebras. One
obtain then a duality between the category of median algebras with median morphisms
and the category of Stone poc sets with continuous morphisms of poc set. A Stone poc set

is a poc set endowed with a Stone topology which is compatible with the complementary
operation ˚ ([Rol16], section 6).

Let us denote by H the contravariant functor, which associates to each median algebra
M the poc set HpMq consisting of the halfspaces of M , and to each median morphism
f : M Ñ N the poc set morphism Hpfq :“ f´1 : HpNq Ñ HpMq, the latter is well de�ned
(see Remark 1.1.8).

Let U be the functor which associates to each poc set P the median algebra consisting
of ultra�lters of P and to each poc set morphism f : P Ñ Q the median morphism
Upfq :“ f´1 : UpQq Ñ UpP q, the latter is well de�ned (see Remark 1.1.35).

Let us feature how the concepts seen before translate into the dual of their category :

Convex subsets and �lters Let M be a median algebra and let us consider a convex
subset C. We recall that HC corresponds to the set of halfspaces containing C. We have
seen that it is the canonical example of a �lter in the poc set HpMq and that if C is a
singleton then HC is a principal ultra�lter. Note that not all �lter of HpMq arise as such.

Conversly we have the following :

Proposition 1.1.39. Let P be a poc set and let F Ă P be a �lter. Then the set UF Ă UpP q

consisting of ultra�lter containing F is a convex subset of the median algebra UpP q.

Moreover, if F is generated by an element p P P , that is F “ tq P P {p ď qu, then UF

is a halfspace.
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Proof. We recall that for any two ultra�lter u1, u2 P UpP q, the interval ru1, u2s is the set of
ultra�lters which contains u1 X u2 and is contained in u1 Y u2. Hence, for any u1, u2 P UF

and u P ru1, u2s we have F Ď u1 X u2 Ď u. Therefore, we have ru1, u2s Ď UF .
Let us assume now that F is generated by an element p. In this case, it remains to show

that U c
F is also convex. Let us consider u1, u2 P U c

F . There exist then p1 P u1 and p2 P u2
such that p ď p˚

i . Let us consider an ultra�lter u P ru1, u2s. The ultra�lter being contained
in the union u1 Y u2, at least one of the pi's lies in u, which implies that u does not contain
F , which complete the proof.

Let us consider a gate convex subset C Ď M . Then the �lter HC associated to the latter
veri�es the additional property that for any principal ultra�lter ux where x P M , there exist
a principal ultra�lter ux̃ such that ux X u˚

x̃ “ ux X H˚
C (compare with Theorem 1.1.36 and

Remarks 1.1.37 by setting F1 “ HC , F2 “ ux and u “ ux̃). The point x̃ corresponds to the
gate projection of x into C.

Under the above translation gate convex subsets into the category of poc sets, Theorem
1.1.36 implies that for any �lter F Ă P the convex subset UF Ď UpP q is gate convex.

This can be also justi�ed through the following facts :
The �rst is that the category of Poc sets with poc sets morphisms and the category of
Stone median algebras with continuous median morphisms are dually equivalent (Theorem
6.13 [Isb80], Theorem 5.3 [Rol16]). The �rst functor is the functor U seen above which
associates to each poc set P , the Stone median algebra UpP q consisting of ultra�lters of
P and the halfspaces Up Ď UpP q, where p P P , constitute the subbasis for the topology
of UpP q. The converse functor associates to each Stone median morphism, the poc set of
closed-open halfspaces. Hence, for any �lter F Ď P , the convex subset UF “

č

pPF

Up is closed

in the Stone median algebra UpP q.
The second fact is that a convex subset of a Stone median algebra is gate convex if and
only if it is closed (Proposition 5.6 [Rol16]). We conclude then that the convex subsets UF

corresponding to �lters F Ă P are gate convex.

Direct product of median algebras and direct sum of poc sets We have seen in
Examples 1.1.4 and 1.1.31 that the category of median algebra with median morphisms
admits a product operation over an arbitrary family and that the category of poc sets with
poc set morphisms admits a coproduct operation over an arbitrary family.

Let us take a closer look on the halfspaces of a product of median algebras. Throughout
the following, let pMiqiPI denote a family of median algebras and let M :“

ś

iPI Mi be the
product median algebra. We denote by πi the canonical projection from M to Mi. We �rst
remark the following description of the intervals in an arbitrary product :

Remark 1.1.40. 1. The median operation of the product of median algebras being
de�ned pointwise, we have for any a, b P M :“

ź

iPI

Mi :

ra, bsM “
ź

iPI

rai, bisMi
.
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Where ai and bi are the projection of a and b respectively into the factors Mi under
the canonical projections πi.

2. For any subsets pAiqiPI , pBiqiPI Ď pMiqiPI , we have the following description of the
join between two products :

r
ź

iPI

Ai,
ź

iPI

BisM “
ź

iPI

rAi, BisMi
.

More generally, we have the following :

Proposition 1.1.41. For any �nite subset A Ă M , we have :

ConvMpAq “
ź

iPI

ConvMi
pπipAqq.

Proof. We proceed by induction on the cardinal of the subset A. The equality is trivially
veri�ed when A is a singleton. Let us assume that the claim is true for all subsets of cardinal
n ´ 1 and consider a subset A Ď M of cardinal n. After �xing a point a P A and setting
Ã :“ Aztau, we get then :

ConvMpAq “ ConvMpÃ Y tauq

“ rÃ, taus By Proposition 1.1.19.

By assumption we have the following splitting ConvpÃq “
ź

iPI

ConvMi
pπipÃqq. We deduce

then the following :

ConvMpAq “ r
ź

iPI

ConvMi
pπiÃqq, taus

“
ź

iPI

rπipÃq, πipaqs By Remark 1.1.40 (2)

“
ź

iPI

rπipÃq, πipaqs

“
ź

iPI

ConvMi
pπipAqq.

We conclude from the above Proposition and Proposition 1.1.11, that the convex hull
of any subset A Ď M is the union of the product of the projections of its �nite subsets :

Remark 1.1.42. For any A Ď M , we have by Propositions 1.1.41 and 1.1.11 the following :

ConvpAq “
ď

x1,..,xnPA

p
ź

iPI

ConvMi
ptx1, .., xnuqq.

In particular, if the index set I is �nite we get that :

ConvpAq “ ConvMi1
pπi1pAqq ˆ ... ˆ ConvMin

pπinpAqq.
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In the following proposition, we give a description of halfspaces in a �nite product of
median algebras :

Proposition 1.1.43. Let M1, ..,Mn be median algebras and let h Ă M :“ M1 ˆ ... ˆ Mn

be a proper halfspace. Then there exist k P t1, .., nu such that πiphq is a proper halfspace of
Mk and for all i ‰ k we have πiphq “ Mi. Moreover, we have :

h “ πkphq ˆ p

n
ź

i“1
i‰k

Miq.

Proof. By Remark 1.1.42 (2), we have h “

n
ź

i“1

πiphq. The halfspace being assumed to

be proper, there exist k P t1, .., nu such that πkphq ‰ Mk. In the other hand, hc “
n

ź

i“1

πiph
c
q “ p

n
ź

i“1

πiphqq
c. We conclude that for the rest of the indices i P t1, .., nuztku we

have πiphq “ Mi.

Remark 1.1.44. Proposition 1.1.43 is no longer true when we consider a product of an
in�nite family of median algebras. The halfspaces described in Proposition 1.1.43 obviously
constitutes halfspaces of the product but one obtain in�nitely many halfspaces of other
type.
Take for instance the product M :“

ź

iPN

R and consider the convex subsets

C1 :“ tpxiqiPN | xi ě 0u

C2 :“ tpxiqiPN | xi ď 0 except for �nitely many i P Iu

Any halfspace of the form hk ˆ p
ź

iPN
i‰k

Miq where hk is a halfspace of Mk, must intersects C2.

In the other hand, as C1 and C2 does not intersect, there exist a halfspace which separates
them by Theorem 1.1.7.

Conversely, we have the following description of the ultra�lters in a coproduct of poc
sets :

Proposition 1.1.45. Let pPiqiPI be a family of poc sets and let P :“
ž

iPI

Pi. Then the set

of ultra�lters of P is in bijection with the product of the sets of utra�lters of each Pi.

Proof. Each Pizt0u embeds as a �lter of P . Hence, for any ultra�lter u Ă P the intersection
u X Pi identi�es with a �lter of Pi and it is maximal as for any p P P , we have either p P u
or p˚ P uc. For the converse direction, any pair of elements pi P Pi and pj P Pj, where i ‰ j,
are transverse. Hence, for any ultra�lters ui Ă Pi and uj Ă Pj, their union is a �lter of P .
Therefore, we conclude that the union

ď

iPI

ui of a family of ultra�lters ui Ă Pi is a maximal

�lter of P .
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We sum up the above discussion into the following proposition :

Proposition 1.1.46. Let M1, ..,Mn be a family of median algebras and let pPjqjPJ be a
family of poc sets. We have the following :

� The poc set HpM1 ˆ .. ˆ Mnq is isomorphic to HpM1q
ž

...
ž

HpMnq.

� The median algebra Up
ž

jPJ

Pjq is isomorphic to
ź

jPJ

UpPjq.

Remark 1.1.47. It is perhaps counter intuitive that the functor U commutes with an
arbitrary co-product of poc sets and the functor H only commutes with �nites product
of median algebras. This is due to the fact that the category of poc sets is dual to the
category of Stone median algebras, and the functor which goes from the latter category
to the former one associates to each Stone median algebra its set of clopen halfspaces and
not the set of all of its halfspaces.
Hence, if pPiqiPI is a family of poc set and M :“

ź

iPI

UpPiq the Stone median algebra

associated to the coproduct of the family pPiqiPI . The median algebra is endowed with the
product topology where each median algebra UpPiq is endowed with the topology generated
by the subbasis Up for p P Pi. In this case, the halfspaces of M which are closed and open
at the same time are those of the form Hk ˆ p

ź

iPI
i‰k

Miq.
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1.2 Metric structure of the median geometry

1.2.1 Median spaces

De�nition 1.2.1 (Median spaces). A median space is a metric space pX, dq such that
for any three points a, b, c P X there exist a unique point m P X, called the median point
between a, b and c, such that the three intervals relating each two points of the former
triple intersect uniquely in tmu, i.e. :

ra, bs X rb, cs X ra, cs “ tmu

where the interval between two points is de�ned as follows :

ra, bs :“ tx P X | dpa, bq “ dpa, xq ` dpx, bqu.

We say that a point x P X is between a and b if it lies in the ra, bs.

Examples 1.2.2. 1. The real line with the usual metric is a median space.

2. The ℓ1-product pX1 ˆ X2, dℓ1q of two median spaces pX1, d1q and pX2, d2q, i.e.
dppx1, y1q, px2, y2qq “ d1px1, x2q`dpy1, y2q is again a median space. Its median algebra
structure corresponds to the cartesian product of the median algebra structure of both
X1 and X2. For instance Rn endowed with the ℓ1-metric is a median space. Note that
the interval between a and b corresponds to the product of the interval between the
canonical projection of a and b on each factors.

3. More generally, if pA, µq is a measured space. The space L1pA, µq of ℓ1-integrable
real functions over pA, µq is a median space. The median structure comes from the
median structure of the target space which is R. A representative of the median
class between any three classe of functions rf s, rgs and rhs is de�ned point wise, i.e.
rmpf, g, hqpxqs “ rmRpfpxq, gpxq, hpxqqs. The median algebra structure of L1pA, µq

corresponds to the ultraproduct p
ź

A

Rq{U , where

U :“ tB Ď A | B are measurable and µpA∆Bq “ 0u,

that is the quotient of
ź

A

R by the equivalence relation „U de�ned by f „U g if

and only if kerpf, gq P U where kerpf, gq :“ tx P A | fpxq “ gpxqu. As the set of
subsets U is stable under �nite intersection, the equivalence relation „ is compatible
with median operation of the product

ź

A

R, that is, for any f1, g1, f2, g2, f3, g3 P
ź

A

R

such that fi „U gi, then mpf1, f2, f3q „ mpg1, g2, g3q. Hence, the quotient p
ź

A

Rq{U

is naturally endowed with a median algebra structure. See De�nition 6.3 in [BS81]
for a concrete overview on ultraproducts.

26



CHAPITRE 1. MEDIAN GEOMETRY

4. We say that a graph is median if its set of vertices, when endowed with the combina-
torial metric, is a median space. Simplicial trees are examples of median graphs. More
generally, the 0-skeleton of a CAT(0) cube complex, seen as a graph and endowed
with the combinatorial metric is a median graph. In fact, any median graph arise as
the 0-skeleton of a CAT p0q cube complex (see [Che00] Theorem 6.1).

5. R-tree are median spaces of rank 1. In fact, a metric space is a R-tree if and only if
it is a connected median space of rank 1 (see [Bow13] Lemma 9.5).

6. An isotone valuation on a lattice pL,_,^q is a real valued function v : L Ñ R
such that

� For any a, b P L we have vpaq ` vpbq “ vpa _ bq ` vpa ^ bq.

� For any a, b P L such that a ď b, i.e. a ^ b “ a, then vpaq ď vpbq

Any isotone valuation gives rise to a pseudo metric on the lattice

dpa, bq “ vpa _ bq ´ vpa ^ bq.

A lattice endowed with an isotone valuation is called a quasi metric lattice . When
the isotone valuation gives rise to a metric, we say then that pL, dq is a metric lattice
( see [Bir67] Ch V, �6 and �7 for de�nitions and properties).
The relation a „ b whenever dpa, bq “ 0 is a congruence relation, that is, if a1 „ a2
and b1 „ b2 then pa1 ^ b1q „ pa2 ^ b2q and pa1 _ b1q „ pa2 _ b2q (see [Bir67] Ch V,
�7 Theorem 9 p77). Hence the quotient L̃ :“ L{ „ is metric distributive lattice. By
Theorem 1 [BK47], we have c P ra, bs if and only if dpa, bq “ dpa, cq ` dpc, bq for any
a, b, c P L̃ and where ra, bs is the interval with respect to the median algebra structure
associated to the distributive lattice L̃ (see (3) in Examples 1.1.4). A σ-algebra B
over a set X with a measure µ is an example of a distributive metric lattice. The
valuation is given by the measure µ and the pseudo metric between two measurable
subsets of X corresponds to the measure of their symmetric di�erence.

The intervals in a median space X, seen as a map X2 Ñ PpXq, verify the axioms of
median algebra by mean of intervals described in Proposition 1.1.3. Hence median space
admits a natural structure of median algebra. Let us describe how the notions seen in the
previous section translate into the metric framework.

As for median algebra, convexity is de�ned with respect to intervals. Note that median
spaces need not to be geodesic spaces, nor to be even connected. However, we have the
following :

Proposition 1.2.3. Any complete connected median space is geodesic.

Proof. LetX be a complete connected median space. The space being complete, it is enough
to show that for any two points, there exist a point in the middle, i.e. for any a, b P X there
exist x P ra, bs such that dpa, xq “ dpb, xq. One may then construct a geodesic between any
two points a, b P X by extending the isometric embedding of the dyadic rational of the
interval r0, dpa, bqs P R, using the completeness of X.
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As we assumed the space X to be connected, for any two points a, b P X the subset
Ma,b :“ tx P X | dpa, xq “ dpb, xqu is not empty as it separates the two disjoint open
subsets tx | dpa, xq ă dpb, xqu and tx | dpa, xq ą dpb, xqu. Then the median point between
a, b and any point in Ma,b lies in the middle of a and b.

Obviously, if a median space X is geodesic, geodesics joining two points belongs to the
interval between the latter, but it does not coincide with it. In fact geodesics and intervals
in a median space coincide if and only if the space is of rank 1, and it is the case when the
median space is a R-tree.

In the following, we show that in a median space X, gate convex subsets arise as the
closed convex subsets. We remark by the de�nition of the intervals in term of the metric of
X that the projections onto gate convex subsets coincide with the nearest point projections.
A median space is in general not a CAT p0q space, in fact a connected complete median
space is CAT p0q if and only if it is a R-tree (see Lemma 4.3.8). However, the convexity
being de�ned with regard to intervals instead of geodesic, convex subset features some
rigidity and we still have nice properties appearing in CAT p0q spaces. In particular, we
have the following :

Proposition 1.2.4. Let X be a median space and let C Ă X be a gate convex subset. Then
the projection πC onto C is 1-lipschitz.

Proof. Let us consider x1, x2 P X and assume, without loss of generality, that dpx2, πCpx2qq ď

dpx1, πCpx1qq. The point πCpx1q lies in the interval rx1, πCpx2qs, that is

dpx1, πCpx2qq “ dpx1, πCpx1qq ` dpπCpx1q, πCpx2qq.

We deduce then

dpπCpx1q, πCpx2qq “ dpx1, πCpx2qq ´ dpx1, πCpx1qq

ď dpx1, x2q ` dpx2, πCpx2qq ´ dpx2, πCpx2qq

ď dpx1, x2q.

In particular, the gate projections onto gate convex subsets in median spaces are conti-
nuous morphisms. We deduce the following :

Corollary 1.2.5. Let X be a median space. Then gate convex subset are closed.

Proof. Let C be a gate convex subset. Note that C corresponds to the set of points which
are stabilized by projection map πC . The latter map being continuous by Proposition 1.2.4
and the space X being Hausdor�, we deduce that C is closed.

Proposition 1.2.6. In a complete median space, a convex subset if gate convex if and only
if it is closed.

28



CHAPITRE 1. MEDIAN GEOMETRY

Proof. By Corollary 1.2.5, it is left to show that a closed convex subset C Ă X in a complete
median space is a gate convex subset. Let x P X and let pxiqiPN Ď C be a sequence of point
such that limiÑ`8dpx, xnq “ dpx,Cq. As C is convex, the median point mpx, xi, xjq lies
in C for any i, j P N. Hence, the sequence pxiqiPN is a cauchy sequence. Its limit is the
nearest point projection of the point x onto C. It is left to show that the limits does not
depends on the sequence pxiqiPN. Let a, b P C such that dpx, aq “ dpx, bq “ dpx,Cq. Then
the median point mpa, b, cq is a point of C which is closed to x and lies in the interval ra, bs.
We deduce that a “ mpa, b, cq “ b which �nishes the proof.

The intervals being a gate convex subset in median algebras, we deduce that in a median
space X, for any point a, b P X the interval ra, bs is closed and its projection map given by
mp˚, a, bq is 1-lipschitz. Moreover, we have the following :

Proposition 1.2.7 (Corollary 2.15 [CDH10]). In a median space X the median operation
m : pX3, dℓ1q Ñ X is a 1-lipschitz morphism of median algebra.

It is very convenient to assume the metric space to be complete and almost all of the
results concerning median spaces are stated under that assumption. It is a mild condition
as the median structure is preserved under metric completion.

Proposition 1.2.8. The metric completion of a median space is a median space.

We �rst prove the following Lemma :

Lemma 1.2.9. Let pX, dq be a metric space endowed with a symmetric ternary operation
m such that for any a, b, c P X we have mpa, b, cq P ra, bs. We have then :

ra, bs “ tc P X | mpa, b, cq “ cu.

In particular, if pX,mq is a median algebra then pX, dq is a median space.

Proof. For any c P ra, bs, we have :

dpa,mpa, b, cqq ` dpmpa, b, cq, cq “ dpa, cq.

dpb,mpa, b, cqq ` dpmpa, b, cq, cq “ dpb, cq.

After we sum the equations above, we get :

dpa, bq ` 2dpmpa, b, cq, cq “ dpa, bq.

We conclude that dpmpa, b, cq, cq “ 0, that is c “ mpa, b, cq.

Proof of Proposition 1.2.8. Let X be a median space and let X̂ be its metric completion.
The median ternary operation m extends to a continuous ternary operation on X̃. We �rst
show that the interval between two points a, b P X̃ corresponds to the stabilizer of the map
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mpa, b, ˚q. By Lemma 1.2.9, it is enough to show that mpa, b, xq P ra, bs for any x P X. Note
that it is the same as saying that the map f : X̃3 Ñ X̃ de�ned by

fpx, y, zq :“ dpx, yq ´ dpx,mpx, y, zqq ´ dpy,mpx, y, zqq

is null. The map f is continuous and it vanishes in the dense subset X3, hence it vanishes
in the whole domain X̃.

By the equivalence of the two De�nitions 1.1.1 and 1.1.3, it last to show that the ternary
operationm veri�es the axiom of median algebras stated in De�nition 1.1.1. The solution of
the equations arising in De�nition 1.1.1 corresponds to the zero of real continuous functions
de�ned over a power of X̃, where the power depends on the number of variable. The median
space X being dense in X̃ and being a median algebra, we deduce that the latter functions
vanishes at a dense subset. Hence by continuity of those functions, the equations de�ning
a median algebra are veri�ed by all points of X̃, which �nishes the proof.

Median spaces of �nite rank The rank of a median space X is the rank of the median
algebra associated to it. There is a dichotomy between the �nite rank case and the in�nite
one. For instance, it was shown in [Fio21] that isometries without wall inversion in a �nite
rank median space X are semi simple ([Fio21] Corollary D), where an isometry g is said
to be without wall inversion if for any halfspace h P HpXq we have g.h ‰ hc. This is no
longer the case when the median space is of in�nite rank. Examples are given by proper
action of group which have a distorted abelian subgroup, like some lie groups which veri�es
Haagerup property. It was shown in [CDH10] (Theorem 2.2) that a locally compact second
countable group has the Haagerup property if and only if it admits a proper continuous
isometric action on a median space. Thus such actions of ˜PSLp2,Rq, the universal cover
of PSLp2,Rq or SOpn, 1q on median spaces cannot be semisimple, as there exist distorted
real line which is not relatively compact inside these groups (one may consider the one
parameter group of a parabolic element in SOpn, 1q).

Another major di�erence between the �nite and the in�nite rank case is local convexity.
Let X be a median space, then for any x P X and ϵ ą 0 the join rBpx, ϵq, Bpx, ϵqs of the ball
centred at x and of radius x is, by triangular inequality, inside the ball Bpx, 2ϵq. If X is of
rank n then by Proposition 1.1.20 we have ConvpBpx, ϵqq Ď Bpx, 2nϵq. Hence median spaces
of �nite rank are locally convex (see [Bow13] Lemma 7.1). This not necessarily the case
in in�nite rank median space. One may consider for example L1pRq where the convex hull
of any ball is the whole space. The iterated join between the elements fn “ 1rn,n`1s yields
elements in the convex hull of the unit ball around the null function which get arbitrary
far from the center (see [Fio20] example 2.24). This a�ects the shape of halfspaces as in
the latter cases, they become dense in the space.

Even if we assume the space to be locally convex, the space may contain halfspaces
which are dense. Consider for instance the space

X “ p
ź

iPN

r´
1

2n
,
1

2n
s, ℓ1q – tf P L1

pNq | fpiq P r´
1

2n
,
1

2n
su.
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The median space X is compact and locally convex. The following two convex subsets

hi,ă0 :“ tf P X{ fpiq ă 0 except for �nitely many i P Nu,

hi,ą0 :“ tf P X{ fpiq ą 0 except for �nitely many i P Nu

are disjoint and dense in X. Thus so is the halfspace which separates them and such
halfspaces exist by Theorem 1.1.7.

In the �nite rank case, halfspaces are more manageable geometrically :

Proposition 1.2.10 ([Fio20] Corollary 2.23). Let X be a complete median space of �nite
rank. Then any halfspace are either open, closed or possibly both.

When the median space is of �nite rank, all of its halfspaces are bounded by a hyper-
plane which is formally de�ned as follows :

De�nition 1.2.11 (Hyperplanes). Let X be a complete �nite rank median space and
let h P HpXq be a halfspace. The closed convex subset ĥ :“ h̄ X h̄c is the hyperplane
associated to h.

If X is a complete median space of rank n, then any hyperplane is of rank less or equal
n ´ 1 ([Fio20] Proposition 2.22). Note that if the median space is not connected, then
the intersection h̄ X h̄c may be empty. It occurs exactly when h and hc are both closed.
Hyperplanes in �nite rank median spaces appear to be very useful, for instance, they are
practical to prove properties of median spaces of �nite rank using an argument by induction
on the rank of the spaces.

For a complete connected median space of �nite rank, we set Hx :“ th P HpXq | x P

h X hcu. It consists of the set of halfspaces which are "branched at the point x. It is the
natural generalization of the valency from R-trees to the higher rank case.

Remark 1.2.12. By Proposition 4.3.7, any halfspace h P Hx which contains x, in a
complete median space of �nite rank, is necessarily closed.

Before closing this part, we take a brief look at the convex hull of balls in median spaces
of �nite rank. In a median space, the balls are convex if and only if the median space is of
rank 1, that is, it is tree like.

One may remark from Proposition 1.1.20 that the convex hull of the ball of radius r
lies in a ball of radius 2n´1r. In the following proposition we show that in a median space
of rank n, the convex hull of the ball of radius r ą 0 is contained in a ball of radius nr :

Proposition 1.2.13. Let X be a median space of rank n. Then for any a P X and r ą 0,
we have :

ConvpBpa, rqq Ď Bpa, nrq.

Before proving the statement, we will be needing some lemmas. The following lemma
is a strengthening of the separation Theorem 1.1.7 in the case of complete median space
of �nite rank :
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Lemma 1.2.14. Let X be a complete connected median space of �nite rank. Then for any
a, b P X, there exists a halfspace h P Hpa, bq such that dpa, hq “ 0.

In particular, we have
č

hPHapXq

aPh

h “ tau

Proof. Let us consider two distinct points a, b P X. The median space X being complete
and connected, there exists a midpoint b1 P ra, bs, i.e. dpa, b1q “ dpb1, bq “

dpa,bq

2
. Let

h1 P Hpa, b1q be a halfspace separating b1 from a. Let b2 be a midpoint of ra, πĥ1
paqs and

let h2 P Hpa, b2q be a halfspace separating b2 from a. The halfspace h2 separates ĥ1 from
a, hence it contains the halfspace h1. Proceeding by iteration, we obtain an ascending
sequence of halfspaces phnqnPN˚ separating b from a and such that lim

nÑ8
dphn, aq “ 0. The

subset h :“
ď

nPN˚

hn is our desired halfspace.

Remark 1.2.15. Lemma 1.2.14 above remains true in the case of a complete connected
locally convex median space. One may adapt the argument given in Theorem 2.8 [Rol16]
by looking at a maximal element in the family of convex subsets which contains b in their
interior and separates it from a, and show that such a maximal element is a halfspace
which contains a on its closure.

We deduce the following lemma :

Lemma 1.2.16. Let X be a median space of rank n, and a, b P X. Then there exists a
halfspace h P Hpa, bq such that dpa, hq “ 0 and dpb, hcq ě

dpa,bq

n
.

Proof. We proceed by induction on the rank of the space X. The lemma is trivial for a
connected R-tree. Let us assume that the lemma is true for median spaces of rank n´1. Let
X be a median space of rank n, and let a, b P X. Let us take a halfspace h P Hpa, bq such
that dpa, hq “ 0, Lemma 1.2.14 ensures the existence of such halfspace. Let us assume that
h is not our desired halfspace, that is dpb, hcq ă

dpa,bq

n
. Let us consider then the projections

b̃ :“ πĥpbq, πĥpaq “ a. We have then :

dpa, bq “ dpa, b̃q ` dpb̃, bq.

We deduce the following :

dpa, b̃q “ dpa, bq ´ dpb, b̃q

ě dpa, bq ´
dpa, bq

n

ě
pn ´ 1qdpa, bq

n
.

The interval ra, b̃s lies in the hyperplane ĥ, which is a median space of rank n ´ 1. Hence,

there exists a halfspace h̃ P Hpa, b̃q such that dpa, h̃q “ 0 and dpb̃, h̃cq ě
dpa,b̃q

n´1
. The projection
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into a convex subset being 1-lipschitz, we get dpb, h̃cq ě dpb̃, h̃cq. We conclude then :

dpb, h̃cq ě dpb̃, h̃cq ě
dpã, bq

n ´ 1

ě

pn´1qdpa,bq

n

n ´ 1
ě

dpa, bq

n
.

Therefore h̃ is our desired halfspace.

Proof of Proposition 1.2.13. Note that there is no loss of generality if we assume X to be
complete. Let b P X such that dpa, bq ą nr. By Lemma 1.2.16, there exists a halfspace
h P Hpa, bq such that dpa, hq “ 0 and dpb, hcq ě

dpa,bq

n
. Thus, the ball Bpb, rq is contained

in the halfspace h. Hence, the convex hull of Bpb, rq also lies in h. We conclude that any
point which is at distance bigger then nr from the point b lies outside the convex hull of
Bpb, rq.

Remark 1.2.17. As it was pointed out to us by M. Hagen, Proposition 1.2.13 remains
true when we replace the point a by a closed convex subset C and consider the tubular
neighbourhood of it. More precisely, for any r ą 0 we have :

ConvpNrpCqq Ď NnrpCq.

To see this, let us consider a point x P X which is at distance greater than n.r and show
that there exist a halfpsace h P HpC, xq such that dpC, hq ą r. By Lemma 1.2.16, there exist
a halfspace h P HpxC , xq, where xC :“ πCpxq and such that dpxC , hq ą r. By the bridge
Lemma, we have dpC, hq “ dpxC , πh̄pxCqq. Hence the r-tubular neighbourhood NrpCq of C
is contained in hc. Therefore we conclude that ConvpNrpCqq Ď hc which implies that the
point x is not contained in ConvpNrpCqq.

1.2.2 Measured poc sets

As it was displayed in Subsection 1.1.3, a median algebra is determined by the poc set
of its halfspaces and there is a duality between the category of median algebra and the
category of poc set. The duality extends in a sense to the case of median spaces where the
additional metric structure on the median algebra gives rise to a structure of measured
space on its set of halfspaces. This was �rst shown in [CDH10] using the language of space
with measured walls and the study was extended in [Fio20]. The idea used in [CDH10] to
construct the structure of measured space on the set of halfspaces is to consider the ring
generated by walls intervals (see De�nitions 1.1.6) and de�ne on it a premeasure in order
to apply the Carathéodory extension theorem. Let us describe brie�y the construction.

Let X be a complete median space and let WcpXq be its set of convex walls. Let us
denote by R Ď PpWcpXqq the ring generated by wall intervals which separates two points
(with the convention Wcpx, xq “ H), that is, the smallest subset of PpWcpXqq contai-
ning the wall intervals, closed under �nite union and closed under relative complements.
Note that by Remark 1.1.25, any walls interval between two disjoint gate convex subsets
corresponds to the walls interval between two points. We have the following :
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Proposition 1.2.18 (Lemma 3.3 [CDH10]). Let X be a median space and let R be the
ring generated by wall intervals of the form Wcpx, yq. Then any for any A P R, there exist
x1, y1, .., xn, yn P X such that A “ W px1, y1q \ ... \ W pxn, ynq.

A premeasure over a ring R is a function µ : R Ñ r0,`8s such that µpHq “ 0 and
for any countable sequence pAnqnPN Ď R of pairwise disjoint sets, we have :

µp
ď

nPN

Anq “
ÿ

nPN

µpAnq.

Proposition 1.2.19 (Corollary 5.16 [CDH10]). Let R be the ring as de�ned above. Then

µ : R Ñ r0,`8s

I ÞÑ µpIq :“
nI
ÿ

i“0

dpxi, yiq Where I “

nI
ğ

i“0

Wcpxi, yiq

is a well de�ned premeasure over R.

By Carathéodory extension theorem (see [Bog07] Ch 1, � 11 Theorem 1.11.8), the
premeasure µ extends to a measure over the σ-algebra generated by walls intervals.

Theorem 1.2.20 (Theorem 5.1 [CDH10]). Let X be a median space. Then the set of
halfspaces HpXq admits a natural structure of a measured space pHpXq,B, µq, where B is
the σ algebra generated by the sets H̃px, yq “ Hpx, yq Y Hpy, xq and µpH̃px, yqq “ dpx, yq.

In [CDH10], the structure of measured space is constructed on the set of convex walls
WcpXq and the structure considered on HpXq in Theorem 1.2.20 is the one induced from
the latter under the natural identi�cation of elements in PpWcpXqq with the elements
of PpHpXqq which are stable under the complementary operation of HpXq. Hence, the
σ-algebra considered in HpXq is the one generated by the subsets of the form H̃px, yq.

Remark 1.2.21. Let X1, X2 be two median spaces and let f : X1 Ñ X2 be an isometry.
Then the map f´1 : pHpX2q, µ2q Ñ pHpX1q, µ1q is a measurable poc set morphism which
preserves the measure.

In [Fio20], a �ner σ-algebra is considered in order to obtain a semi �nite measure on
WcpXq. A measure µ on X is semi �nite if for any measurable subset A Ă X such that
µpAq “ `8, there exist another measurable subset B Ă A such that µpBq ă `8.

The measure arising in Theorem 1.2.20 is not necessarily semi �nite. For instance let
us consider a R-tree X which is not separable. Not that in this case, the hyperplane of
a halfspace is a point. A uncountable family consisting of halfspaces which give rise to a
family of hyperplanes which are discrete is a measurable subset with an in�nite measure.

In [CDH10], a duality result was shown between the category of median spaces and the
category of spaces with measured walls.
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De�nition 1.2.22. [Space with measured walls] A Wall in a set X is a couple pA,Acq

where A Ď X. We de�ne the wall interval Wpx, yq between two points x, y P X to be the
set of walls pA,Acq such that x P A and y P Ac.

A space with measured wall is the data pX,W ,B, µq where W is a set of walls in
X, B is a σ-algebra on W and µ a measure on the latter such that for any x, y P X, the
wall interval Wpx, yq is measurable and is of �nite measure.

The structure of a space with measured wall on a set X de�nes a natural pseudo metric
on the latter called the wall pseudo metric dW where dWpx, yq “ µpWpx, yqq. If it is a
metric, we say that pX,W ,B, µq is a faithful space with measured walls.

To each median space, there is a canonical space with measured walls associated to it
which is faithful and the wall pseudo metric coincides with the median metric (Theorem
1.1 [CDH10]). To make the analogy with the duality in the context of median algebra and
poc set, we will be using the language of pointed measured poc set introduced in [Fio20].
We recall the de�nition :

De�nition 1.2.23 (Pointed measured poc set). A pointed measured Poc set is a qua-
druple pP,B, u0, µq where P is a poc set, B is a σ-algebra over P , µ a measure de�ned on
B and u0 an ultra�lter in UpP q.

We will assume that the σ- algebra B consists of subset which are stable under the
complementary operation ˚ of P , i.e. A˚ “ A for all A P B.

The latter assumption was not made in the original de�nition (De�nition 2.13 [Fio20])
and is restrictive as it gives no chance for ultra�lters to be measurable subset. However,
throughout this section, we will be only using the structure of measured poc set given by
Theorem 1.2.20. Hence, the assumption is made for the convenience of switching between
the language of measured halfspaces and measured convex walls of the median space.

Note that any space with measured wall pX,W ,B, µq gives rise to a pointed measured
poc set pP,B1, u0, µ

1q such that P :“ π´1pWq, B1 :“ π´1pBq, u0 a principal utra�lter over
an arbitrary point x0 P X i.e u0 :“ tA P P | x0 P Au and µ1pBq “ µpπpBqq, where π is the
canonical projection which associates to each subset of X the wall corresponding to it, i.e.
A ÞÑ πpAq “ pA,Acq.

1.2.3 Duality

Let pP,B, u0, µq be a pointed measured poc set. Let X be a median space. In the end of
Subsection 1.1.2, we have seen that the set of ultra�lters over P carries a natural structure
of median algebra. Let us set Uu0pP q :“ tu P UpP q | u∆u0 P B and µpu∆u0q ă `8u and
show that it is stable under the median operation of UpP q :

Lemma 1.2.24. The set Uu0pP q is a median subalgebra of UpP q.

Proof. Let us denote by m the median operation of UpP q induced from the median algebra
structure of the set of subsets of PpP q (see Example 1.1.4 (3)). For any u1, u2, u3 P Uu0pP q

we have :
u1∆mpu1, u2, u3q “ pu1∆u2q X pu1∆u3q.
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In the other hand, we have u0∆mpu1, u2, u3q “ pu0∆u1q∆pu1∆mpu1, u2, u3qq. Hence, the
subset u0∆mpu1, u2, u3q is measurable. It remains to show that it is of �nite measure.

We remark that for any A,B,C,D Ă P , we have :

mPpP qpA,B,Cq∆D “ ppA X Bq Y pA X Cq Y pB X Cqq∆D Ă pA∆Dq Y pB∆Dq Y pC∆Dq.

Hence, for any u1, u2, u3 P Uu0pP q we have :

µpmpu1, u2, u3q∆u0q ď µpu1∆u0q ` µpu2∆u0q ` µpu3∆u0q ă `8.

As for any u1, u2 P Uu0pP q, we have :

pu1∆u0q∆pu2∆u0q “ u1∆u2,

the measure of the subset u1∆u2 is �nite. Therefore, the measure µ endows the median
algebra Uu0pP q with a pseudo metric dµ where dpu1, u2q “ µpu1∆u2q. Let us denote by Ũu0

the metric space obtained by identifying the ultra�lters which are at null pseudo distance.

Proposition 1.2.25 ([CDH10] Proposition 3.14 ). The space Ũu0pP q is a median space.

Proof. Let us �rst show that the median operation of Uu0 is well de�ned on the quotient
Ũu0 . Let us consider u1, u

1
1, u2, u

1
2, u3, u

1
3 P Uu0pXq such that µpui∆u1

iq “ 0. We remark that

mpu1, u2, u3q∆mpu1, u2, u
1
3q Ď u3∆u1

3 (Compare with Proposition 1.2.4).

In the same spirit of the proof of Proposition 1.2.7 given in [CDH10] Corollary 2.15, we
remark that

mpu1, u2, u3q∆mpu1
1, u

1
2, u

1
3q “ pmpu1, u2, u3q∆mpu1, u2, u

1
3qq∆pmpu1, u2, u

1
3q∆mpu1

1, u
1
2, u

1
3qq.

mpu1, u2, u
1
3q∆mpu1

1, u
1
2, u

1
3q “ pmpu1, u2, u3q∆mpu1, u

1
2, u

1
3qq∆pmpu1, u

1
2, u

1
3q∆mpu1

1, u
1
2, u

1
3qq.

We deduce then that

mpu1, u2, u3q∆mpu1
1, u

1
2, u

1
3q Ď pu1∆u1

1q Y pu2∆u1
2q Y pu3∆u1

3q,

which implies that µpmpu1, u2, u3q∆mpu1
1, u

1
2, u

1
3qq “ 0.

By Lemma 1.2.9, to conclude that Ũu0 is a median space, it is enough to show that for
any ru1s, ru2s, ru3s P Ũu0 we have rmpu1, u2, u3qs P rru1s, ru2ssdµ , that is

µpu1∆u2q “ µpu1∆mpu1, u2, u3qq ` µpmpu1, u2, u3q∆u2q.

To simplify the notation, let us set m “ mppu1, u2, u3q. We have :

u1∆u2 “ pu1∆mq∆pu2∆mqq “ ppu1∆mq Y pu2∆mqqzppu1∆mq X pu2∆mqqq.
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In the other hand, we have :

u1∆mpu1, u2, u3q “ pu1∆u2q X pu1∆u3q.

Thus
ppu1∆mq X pu2∆mqqq “ pu1∆u2q X pu1∆u3q X pu2∆u3q “ H.

Therefore, we conclude that

u1∆u2 “ pu1∆mq∆pu2∆mqq “ ppu1∆mq \ pu2∆mqq.

Which completes the proof

Remark 1.2.26. Note that one can obtain Proposition 1.2.25 from the results of Birkho�,
See Examples 1.2.2 (6). Lemma 1.2.24 is equivalent to say that the relation which identi�es
ultra�lter which have a symmetric di�erence of null measure is a congruence with respect
to the median operation of UpP q (compare with Theorem 9 in [Bir67] Ch V, �7 pp 77).
Proposition 1.2.25 shows that the metric given by the measure coincides with the median
algebra structure induced from the quotient of UpP q, which is the analogue of Theorem 1
in [BK47] in this particular case.

Each ultra�lter u P UpP q de�nes a, possibly trivial, median space Uu. Hence, when we
consider the quotient of UpP q under the relation u1 „ u2 if and only if u1∆u2 P B is of �nite
measure. The median algebra UpP q splits into components which are at in�nite "distance"
and each components is a median space. Hence, when we �x the ultra�lter u0, we are �xing
a component in UpP q{ „

Remark 1.2.27. 1. Let pP1,B1, u1, µ1q, pP2,B2, u2µ2q be two measured poc sets and let
f : P1 Ñ P2 be a measurable morphism of poc set which preserves the measure and
such that µ1pf´1pu2q∆u1q ă `8. Then the morphism f´1 : Uu2 Ñ Uu1 is an isometry.

2. Let pP1,B1, u0, µ1q be a measured poc set. In the same vein as proposition 1.1.39, any
element p gives rise to a halfspace Up in Uu0pP q by considering the set of ultra�lters
of Uu0 which contains p. In the proof of Proposition 1.2.25, we have seen that the
quotient of Uu0pP q onto Ũu0pP q is a surjective morphism of median algebra. Hence,
the image Ũp of the halfspace Up under the latter quotient is a halfspace of Ũu0pP q.
The halfspace Ũp is characterized as follows :

Ũp :“ trus P Ũu0pP q | there exist u1
P rus such that p P u1

u.

In contrast with pointed measured poc sets, the dual median space Ũux0
(MpXq in

[CDH10]) to a space with measured walls pX,W ,B, µq, where x0 P X, comes with the
additional canonical morphism Φ : X Ñ Ũux0

which associates to each point x, the principal
ultra�lter over it. This morphism is injective if for any x, y P X we have µpWpx, yqq ą 0.
If X is a metric space and its structure of a space with measured walls is faithfull, then
the morphism Φ is an isometric embedding.
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The hyperbolic space Hn has a natural structure of a space with measured walls. The
set of walls WpHnq considered is given by the set of hyperplanes of Hn, where to each
hyperplane ĥ, we associate the couples ph, hcq such that h is a halfspace bounded by ĥ.
The group SOpn, 1q acts by isometries on Hn and the action is transitive on the set of
hyperplanes. Each hyperplane is isometric to a hyperbolic space of dimension n ´ 1 and
the stabilizer of a hyperplane in SOpn, 1q is isomorphic to SOpn ´ 1, 1q. Thus the space of
hyperplanes of Hn corresponds to the quotient SOpn, 1q{SOpn ´ 1, 1q. We endow the set
of walls WpHnq with µ, the push-forward of a Haar measure on SOpn, 1q to the quotient
SOpn, 1q{SOpn ´ 1, 1q. Up to rescaling µ, we have the following Crofton formula x, y P Hn

µpWpx, yqq “ dpx, yq for any x, y P Hn, that was proved in [Rob98] Proposition 2.1 (see
[CMV04] Proposition 3 for a di�erent proof).

In [CD17], it was shown that the median space associated to pHn,WpHq, µq is locally
compact, of in�nite rank, and the image of Hn under the canonical isometric embedding Φ
is at �nite Hausdor� distance from the ambient median space. In particular, they proved
the following :

Theorem 1.2.28 ([CD17] Corollary 1.2). There exist an SOpn, 1q-equivariant isometric
embedding Φ : Hn Ñ X, where X is a locally compact median space of in�nite rank and
ΦpHnq is at bounded Hausdor� distance from X.

X connected versus pWcpXq, µq "atomless" :
In [Fio20], the author shows that a median space is connected if and only if the �ner

algebra de�ned on its set of halfspaces contains no atoms (see Lemma 3.5 therein). In the
following, we give a reformulation of the latter characterization when WcpXq is endowed
with the structure of measured set obtained from Theorem 5.1 in [CDH10] (see Theorem
1.2.20).

De�nition 1.2.29. Let pX,B, µq be a measurable space. A subset A P B is an atom if
µpAq ą 0 and for any B P B such that B Ď A we have either µpAXBq “ 0 or µpAXBcq “ 0.
We say that pX,B, µq is atomless if B contains no atoms.

Proposition 1.2.30. Let X be a complete median space. Then X is connected if and only
if pWcpXq, µq contains no �nite atoms.

We �rst remark the following characterization of connectedness in term of intervals.

Lemma 1.2.31. Let X be a complete median space. Then X is connected if and only if
for any x, y P X we have rx, ys ‰ tx, yu.

Proof. Note that for any x, y P X, the map mpx, y, ˚q is a retraction from X onto rx, ys.
Hence, if X is connected any interval is connected.

We assume now that X is not connected and let U Ă X be a proper clopen subset. We
set F :“ tra, bs | a P U, b P U cu. We endow F by the reverse order ď obtained from the
inclusion, i.e. ra, bs ď rc, ds i� rc, ds Ď ra, bs. By Lemma 2.2.6 pF ,ďq is an inductive set.
This is also due to the fact that both U and U c are closed, which ensures us that for any
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interval ra, bs which is obtained from the intersection of an increasing (with respect to ď)
sequence of intervals in F , we have a P U and b P U c. Any maximal element ra, bs P F is
necessarily of the form ra, bs “ ta, bu and by Zorn's lemma such maximal element exists,
which �nishes the proof.

Proof of Proposition 1.2.30. If X is not connected, there exist two distinct points x, y P X
such that rx, ys “ tx, yu. By Remark 1.1.15, the inverse image of y under the retraction
mpx, y, ˚q is the unique halfspace ofX which separates y from x, that isWcpx, yq “ tph, hcqu.
Hence thu is measurable and µpthuq “ dpx, yq ‰ 0, that is thu is an atom.

Conversely, let us assume that there exist an atom A Ď WcpXq such that 0 ă µpAq ă

`8. By construction, we have :

µpAq “ inft
ÿ

nPN

µpWcpxi, yiqq | A Ď
ď

iPN

Wcpxi, yiqu.

The measure of A being �nite, there exist sequences of points pxiqiPN, pyiqiPN Ď X such that
A Ď

ď

iPN

Wcpxi, yiq. Because the measure of A is positive, there exist at least one n P N such

that µpA X Wcpxn, ynqq ą 0. As A is an atom, we have µpA X Wcpxn, ynqq “ µpAq, that is
µpAzWcpxn, ynqq “ 0. Hence, we deduce that

µpAq “ inftµpWcpx, yqq “ dpx, yq | µpAzWcpx, yqq “ 0u.

We claim that the limit above is attained by some a, b P X and ra, bs “ ta, bu. Let us
denote by IA the set of intervals rx, ys such that µpAzWcpx, yqq “ 0. We have already
shown that IA is not empty. Let us endow it with the reverse order given by the inclusion,
i.e. rx, ys ď rz, ts i� rz, ts Ď rx, ys, and show that it is an inductive set. Let prxi, yisqiPN be
an increasing sequence with respect to ď. By Lemma 2.2.5, we may assyme that xi`1 “

mpxi, xi`1, yi`1q and yi`1 “ mpyi, xi`1, yi`1q. By Lemma 2.2.6, the intersection
č

iPN

rxi, yis is

not empty and equal rx̃, ỹs where x̃ and ỹ are the limits of pxiqiPN and pyiqiPN respectively.
By Lemma 2.2.7 we have W 1

cpxi`1, yi`1q Ď W 1
cpxi, yiq and W 1

cpx̃, ỹq Ď
č

iPN

W 1
cpxi, yiq. As

lim
iÑ`8

dpxi, yiq “ dpx̃, ỹq we get

µpWcpx̃, ỹqzp
č

iPN

Wcpxi, yiqqq “ 0.

We deduce then

µpAzWcpx̃, ỹqq “ µpAzp
č

iPN

Wcpxi, yiqqq

“ µp
ď

iPN

AzWcpxi, yiqq

“ lim
iÑ`8

µpAzWcpxi, yiqq

“ 0.
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We conclude that pIA,ďq is an inductive set. Assuming Zorn's lemma, there exist a
maximal element ra, bs P pIA,ďq. Note that a is distinct from b as µpAq ą 0. For any
c P ra, bs we have Wcpa, bq “ Wcpa, cq \ Wcpc, bq. Thus as A is an atom, we have either
µpAzWcpa, cqq “ 0 or µpAzWcpc, bqq “ 0. Therefore, by the maximality of ra, bs we have
ra, bs “ ta, bu which, by Lemma 1.2.31, implies that X is not connected.

Remark 1.2.32. It is not clear if any measurable subset A Ď WcpXq of in�nite measure
contains a subset B such that none of the two subsets A X B and AzB is of null measure.
This is one of the points where the �ner algebra with the new measure constructed in
[Fio20] appears to be very helpful, being semi �nite.

Product and co-product

De�nition 1.2.33. We say that a median space X is reducible if X splits as the ℓ1-
product of two median spaces which are not singletons.

We say that it is irreducible if it is not reducible.

We have seen in Paragraph 1.1.3 of Subsection 1.1.3 how the functors U and H inter-
twines between products of median algebras and co-product of poc sets. By construction,
the same hold in the metric case :

Proposition 1.2.34. Let pX1, d1q, pX2, d2q be two median spaces and let pP1,B1, u1, µ1q, pP2,B2, u2, µ2q

be two pointed measured poc sets. We have then :

1. The measured poc setHµpd1ˆ
ℓ1

d2
qpX1ˆX2q is isomorphic to the coproductHµd1

pX1q
š

Hµd2
pX2q.

2. The median space Udpµ1`µ2q
pP1

š

P2q is isometric to the ℓ1-product Udµ1
ˆ Udµ2

.

By Theorem 2.2.1, we deduce the following :

Proposition 1.2.35. Let X be a complete median space with the strong separation pro-
perty. Then the following are equivalent :

1. The median space X is reducible.

2. The measured set of walls of X decomposes into the following

pWcpXq, µq “ pW 1
cpXq, µ1

q
ž

pW2
c pXq, µ2

q,

where each wall of W 1
c is a transverse to any wall of W2

c .
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Chapitre 2

Strongly separated median space

Let us denote by Hµ the contravariant functor which associates to each median spaces
X the pointed measured poc set pHpXq,B, µ, uxq where x P X. Note that the structure of
measured poc set pHpXq,B, µ, uxq does not depend on the base point x as all points in X
de�ne the same component in U{ „.

Let us denote by Ud the contravariant functor which associates to each pointed measured
poc set pP,B, u0, µq the median space pŨu0 , dµq. If there is no risk of confusion, we will simply
write H and U to denote Hµ and Ud respectively.

To each median algebra M there is a natural embedding of median algebra into its
double dual UpHpMqq, through the map which associates to each point x P M the princi-
pal ultra�lter ux. In [Isb80], it was shown that the embedding is a homeomorphism when
M is a Stone median algebra and the poc set considered is the set of closed open halfspaces
(Theorem 6.13 [Isb80]). An analogue to this in the metric case was shown in [Fio20] (Theo-
rem A), where it shows that the isometric embedding from X to UdpHµpMqq is surjective
when X is locally convex and complete.

We give another proof to the latter Theorem without considering the �ner sigma algebra
constructed in [Fio20] and extend it to the case where the median space X is complete and
for any two points x, y P X, there exist a halfspace which contains x in its interior and the
interior of its complementary contains y.

Before stating the duality theorem, we �x some terminology and notation with regard
to the latter class of median spaces in the following section.

2.1 Median space with strong separation property

De�nition 2.1.1. Let X be a complete median space. For any x, y P X, we denote by
H1px, yq the set of halfspaces h P HpXq such x P h˝ and y P phcq˝, where h˝ is the
interior of h. Following the same notation of De�nition 1.1.6, we set W 1

cpx, yq :“ tph, hcq P

Wcpx, yq | h P H1px, yqu and H̃1px, yq “ H1px, yq Y H1py, xq.
We say that a median space has the strong separation property if for any points

x, y P X, the subset H1px, yq is not empty.
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Note that by virtue of Theorem 1.1.7, any locally convex median space has the strong
separation property (see also [Bow13] Lemma 7.3). In the other hand, there are median
spaces which have the strong separation property and are not locally convex as shown in
the following examples.

Example 2.1.2. Let X :“ ℓ1pRq “ L1pN, µq where µ is the counting measure. The space
X is not locally convex as the convex hull of any ball is unbounded.
For each i P N and r P R, the following sets

hi,ăr :“ tf P X{ fpiq ă ru,

hi,ąr :“ tf P X{ fpiq ą ru

are open halfspaces of X and hi,ăr Ă phi,ąrq
c. For any f, g P X, there exist i P N and r P R

such that f P hi,ăr and g P hi,ąr. Hence for any f, g P X, the set H1pf, gq is not empty.
We remark that there are also in�nitely many halfspaces which are dense in the space X.
In fact, for any f, g P X which di�er in an in�nite subset of N there exist a halfspace
h P Hpx, yq which is dense in X.

In the same spirit of the above example, one may generate many examples of median
spaces which satisfy the strong separation property through the direct sum of locally convex
median space.

De�nition 2.1.3 (See also [CMV04] De�nition 5). Let ppXi, aiqqiPN be a family of pointed
median space. We de�ne the direct sum p

à

iPN
pXi, aiq, dq of the family ppXi, aiqqiPN to be

à

iPN
pXi, aiq :“ tpxiqiPN P

ź

iPN

Xi |
ÿ

iPN

dpxi, aiq ă `8u.

And for x̃ “ pxiqiPN, ỹ “ pyiqiPN P
à

iPN
pXi, aiq, the distance between them is de�ned by

dpx̃, ỹq “
ÿ

iPN

dpxi, yiq.

The direct sum
à

iPN
pXi, aiq is a median space of in�nite rank (if we assume that Xi is

di�erent from a singleton for in�nitely many i P N).

Let us denote by X̃ :“
à

iPN
pXi, aiq. If the family ppXi, aiqqiPN consists of complete median

spaces, then their direct sum is also a complete median space. Each of the complete median
spaceXk embeds as a closed convex subset of X̃ through the isometric embedding ϕk de�ned
by ϕkpxq “ pxiqiPN such that xi “ ai for all i ‰ k and xk “ x. By Remark 1.1.15, any
halfspace hk P HpXkq lifts into a halfspace h̃k in X̃ where

h̃k “ tpxiqiPN P X̃ | xk P hku.

The projection into gate convex subset being 1-Lipschitz by Proposition 1.2.4, we deduce
that for x, y P Xk and hk P H1

Xk
px, yq, and for any x̃ “ pxiqiPN, ỹ “ pyiqiPN such that xi “ x

and yi “ y, we have h̃k P H1px̃, ỹq. In particular we deduce the following
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Proposition 2.1.4. The direct sum of a family of complete locally convex median space is
a median space which satis�es the strong separation property.

The direct sum of complete locally convex median spaces is in general not locally convex.
When each of the median space is assumed to be connected, we have the following criterion

Proposition 2.1.5. Let pXi, aiqiPN be a family of complete connected median space. Then

X̃ :“
à

iPN
pXi, aiq is locally convex if and only if each Xi is locally convex and

ÿ

iPN

diampXiq ă `8,

where diampXiq is the diameter of Xi.

Proof. Note That as each Xi embeds as a closed convex subset of X̃, if one of the Xi

is not locally convex then X̃ will not be locally convex. We assume that each Xi is lo-
cally convex and show that X̃ is locally convex if and only if

ÿ

iPN

diampXiq ă `8. Let

us assume �rst that
ÿ

iPN

diampXiq ă `8 and �x r ą 0, b̃ “ pbiqiPN P X̃. There exist

N P N such that
ÿ

iąN

diampXiq ă r. The spaces Xi's being locally convex, there exist

for each i P t1, .., Nu a convex subset Ci which contains bi in its interior such that
ÿ

iďN

diampCiq ă r ´
ÿ

iąN

diampXiq. Then the closed convex subset C :“ tpxiqiPN | xi P

Ci for each i ď Nu contains b̃ in its interior and is contained in the ball of radius r,
thus we have shown that X̃ is locally convex.

Let us assume now that
ÿ

iPN

diampXiq “ `8 and show that the convex hull of any ball in

X̃ is unbounded. Let us �x an integer m P N and consider the sequence x̃n “ pxi,nqiPN such
that xi,n “ ai for each i ‰ n and xn,n P Cn be such that dpxn,n, anq “ minp 1

n
, diampXiqp1´

1
2n

q, 1
m

q. We note that such point xn,n exist as each Xi is assumed to be connected. The
convex hull of the sequence px̃nqnPN contains the points ỹn “ pyi,nqiPN de�ned by yi,n “ xi

for each i ď n and yi,n “ ai for each i ą n. The sequence of points pỹnqnPN goes arbitrarily
far from the origin paiqiPN, which proves that X̃ is not locally convex.

2.2 Duality for median spaces with the strong separa-

tion property

The aim of this paragraph is to prove the following theorem

Theorem 2.2.1. Let X be a complete median space with the strong separation property.
Then the canonical isometric embedding of X into UdpHµpXqq is surjective.

We obtain the above theorem as a consequence of the following proposition :

Proposition 2.2.2. Let X be a complete median space with the strong separation property.
Then the image of X under the canonical embedding is a closed convex subset of the median
space UdpHµpXqq.
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We already know that the space X embeds isometrically into UdpHµpXqq, to show that
its image is a convex of UdpHµpXqq, we need to prove that any ultra�lter in UdpHµpXqq

which lies between two principal ultra�lter has a null symmetric di�erence with some prin-
cipal ultra�lter uc. We will be needing some lemmas before proving the latter proposition.

Lemma 2.2.3. Let X be a complete median space such that for any x, y P X, the set
W 1

cpx, yq is not empty. Then for any a, b P X and any ϵ ą 0 small enough there exist
a1 P ra, bs such that dpa, a1q ă ϵ and any halfspace h P Hpb, a1q contains a in its interior.

Proof. Let Xa Ď ra, bs be the set of points x such that any halfspace separating x from b
contains a in its interior. We �rst show that the subset Xa is not empty. Let us consider
h P H1pb, aq and set a1 :“ πh̄pbq. Any halfspace which separates a1 from b contains h, hence
contains a in its interior. Note that a1 is distinct from b as the latter is contained in the
interior of hc.

The claim of the lemma translates into saying that r :“ inftdpa, xq{ x P Xau “ 0. We
note that for any x, y P Xa, the median point mpa, x, yq belongs to Xa as any halfspace
which separates the latter point from b must either separate x from b or y from b. Let us
consider a sequence of points pxiqiPN Ď Xa such that lim

iÑ`8
dpa, xiq “ r and show that it is

a Cauchy sequence. Let ϵ ą 0 and n P N such that |dpa, xiq ´ r| ď ϵ for all i ą n. Let us
�x indices i and j bigger than n and set mi,j :“ mpa, xi, xjq. We have then :

dpxi, xjq “ dpxi,mi,jq ` dpmi,j, xjq “ dpa, xiq ´ dpa,mi,jq ` dpa, xjq ´ dpa,mi,jq.

In the other hand, any halfspace which separates mi,j from a must at least separate xi

or xj from a. Hence, any such halfspace must contains a in its interior. We deduce that
mi,j P Xa, thus dpa,mi,jq ě r. We conclude that :

dpxi, xjq “ pdpa, xiq ´ dpa,mi,jqq ` pdpa, xjq ´ dpa,mi,jqq ď 2ϵ.

The space X being complete and the intervals being closed, the sequence pxiqiPN converges
to a point x P ra, bs, with dpa, xq “ r. Let us assume, for sake of contradiction, that x is
distinct from a. We consider a halfspace h P H1px, aq and set x̃i :“ πh̄pxiq. Any halfspace
which separates x̃i from b either :

� Separates x̃i from xi, in which case contains a in interior as it would contain h.

� Separates both x̃i and xi from b. In this case, the halfspace would also contain a in
its interior as the points xi belong to Xa.

We deduce that the sequence px̃iqiPN lies in Xa. As it converge to the point πh̄pxq, there
exist k P N such that dpa, x̃iq ă r, which is a contradiction.

Lemma 2.2.4. Let X be a complete median with the strong separation property and let
pWcpXq, µq be the canonical structure of a measure set de�ned on the set of walls of X (see
Theorem 1.2.20). Then the set Wcpa, bqzW 1

cpa, bq is measurable and it has null measure.
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Proof. Let us consider a, b P X. For any n P N there exist, by Lemma 2.2.3, an P ra, bs
and bn P ran, bs such that Wcpan, bnq Ď W 1

cpa, bq with dpa, anq ď 1
n
and dpb, bnq ď 1

n
.

Let panqnPN, pbnqnPN Ď ra, bs be sequences of such points. One may moreover assume that
ran, bns Ď ran`1, bn`1s up to considering the sequences ãi :“ mpa, ai, ãi´1q and b̃i :“
mpb, bi, b̃i´1q where ã0 “ a0 and b̃0 “ b0. Remark that for any h P H1pa, bq there exist
n P N such that h P Hpan, bnq. Thus we get :

W 1
cpa, bq “

ď

nPN

Wcpan, bnq.

We conclude that W 1
cpa, bq is measurable and

µpW 1
cpa, bqq “ lim

nÑ`8
µpWcpan, bnqq “ lim

nÑ`8
dpan, bnq “ dpa, bq.

Which �nishes the proof.

In the following lemma, we remark that any closed convex subset of any interval in a
complete median space is also an interval

Lemma 2.2.5. Let M be a median algebra and let x, y P M . Then for any gate convex
subset C Ď rx, ys, we have C “ rπCpxq, πCpyqs.

Proof. Let M be a median algebra and let x, y P M . Let C Ď rx, ys be a gate convex
subset. Note that any wall which separates two points in rx, ys must separate x and y. Let
c P C and let h P Hpx, yq be a halfspace which contains x. By Lemma 1.1.14, we have
πCpxq P hc and πCpyq P h. Hence there is no halfspace which separates c from both πCpxq

and πCpyq. Therefore by Theorem 1.1.7, the point c belongs to the interval rπCpxq, πCpyqs

which �nishes the proof.

In a general complete median space, intervals need not to be compact. But if we consider
the topology generated by closed convex subsets, intervals become compact as shown in
the following lemma. See Theorem 14 in [Mon06] for the analogue in the case of CAT(0)
metric spaces.

Lemma 2.2.6. Let X be a complete median space and let pCiqiPI Ă ra, bs be a family of

pairwise intersecting closed convex subsets. Then the intersection
č

iPI

Ci is not empty.

Proof. By Helly's Theorem, we have for any �nite subset J Ă I, the intersection CJ :“
č

iPJ

Ci is a non empty closed convex subset. By Lemma 2.2.5, we have CJ “ rπCJ
paq, πCJ

pbqs.

Let us set aJ :“ πCJ
paq and bJ :“ πCJ

pbq. Note that for any two �nite subsets J,K Ď I, we
have raJYK , bJYKs Ď raJ , bJ s X raK , bKs Ď ra, bs. We deduce that the nets paJqJPPf pIq and
pbJqJPPf pIq are Cauchy nets, where Pf pIq denote the set of �nite subsets of I endowed with
the partial order relation given by the inclusion. The metric space X being complete, the
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nets paJqJPPf pIq and pbJqJPPf pIq converges to ã and b̃ respectively. Therefore we conclude

that ã, b̃ P C :“
č

iPI

Ci.

Let us moreover show that C “ rã, b̃s. The points ã and b̃maximize the distances dpa, aJq

and dpb, bJq respectively. In the other hand, for any J P Pf pIq we have πCpaq P ra, πCJ
paqs

and πCpbq P rb, πCJ
pbqs. Thus, we get dpa, πCpaqq ě dpa, ãq and dpb, πCpbqq ě dpb, b̃q. As

πCpaq P ra, ãs and πCpbq P rb, b̃s, we conclude that ã “ πCpaq and b̃ “ πCpbq.

Proof of Proposition 2.2.2. Let us denote by Φ the canonical isometric embedding of X
into its double dual UpHpXqq. Note that X being complete and Φ an isometric embedding,
then ΦpXq is closed. It last to show that ΦpXq is a convex subset of UdpHµpXqq. Let us �x
a, b P X, u P rΦpaq,Φpbqs and show that there exists c P ra, bs such that µpΦpcq∆uq “ 0.
By Lemma 1.2.24 and Proposition 1.2.25, we have µpmpΦpaq,Φpbq, uq∆uq “ 0. This means
that for µ almost all wall w “ ph, hcq P pWcpa, bqqc, that is a, b P h or a, b P hc, we have
h P u. The idea of the proof is to approximate the ultra�lter u by the set of halfspaces
which contains some convex subset of ra, bs, and at each "time" we consider a smaller
convex subset until we reach a singleton.

By Lemma 2.2.5, each closed convex subset F Ď ra, bs is of the form rπF paq, πF pbqs,
hence the set of walls which are not transverse to F constitutes a µ measurable set as it is
the complement of WcpπF paq, πF pbqq. Let Fu be the set of closed convex subsets F Ď ra, bs
such that for µ almost any wall w “ ph, hcq P Wcpa, bq with F Ă h, we have h P u. The set
Fu is not empty as it trivially contains the interval ra, bs. Let us endow Fu with the partial
order relation ď where F1 ď F2 if and only if F2 Ď F1. Lemma 2.2.6 implies that pFu,ďq is
an inductive set, hence by Zorn's lemma, it contains a maximal element Fm. Let us show
that Fm is a singleton. By Lemma 2.2.5, there exist x, y P ra, bs such that Fm “ rx, ys.
Let us assume for sake of contradiction that x and y are distinct. Let us consider then
a halfspace h P H1px, yq and assume, without loss of generality, that h P u. Let us set
x̃ :“ πh̄ and note that any halfspace which contains both x̃ and y either contains both x
and y or it separates x̃ from x, that is Wcpx̃, yqc “ Wcpx, yqc \Wcpx, x̃q. In the other hand,
any halfspace which separates x̃ from x must contains the halfspace h. Therefore, we get
Hpx, x̃q Ă u. We deduce then that rx̃, ys belongs to Fµ which contradicts the maximality
of Fm.

We have shown that Fm is a singleton, let us denote it by tcu. By construction, we have
µpuc∆uq “ 0, which �nishes the proof.

We will be needing more lemmas before deducing Theorem 2.2.1 from Proposition 2.2.2.

Lemma 2.2.7. Let X be a complete median space and let us consider a, b P X and c P ra, bs.
Then any halfspace h P Hpa, cq which contains c in its interior contains b in its interior.

Proof. Let us consider h P Hpa, cq such that c P h˝. By assumption c lies outside hc. Hence c
does not belong to the interval rπhcpaq, πhcpbqs “ ra, πhcpbqs which is inside hc. We conclude
that b is distinct from πhcpbq.
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Lemma 2.2.8. Let X be a complete median space with the strong separation property and
let pHpXq, µq be the canonical structure of measurable set on the set of halfspaces of X. Let
us consider a point x P X and an ultra�lter u P UpHpXqq such that ux∆u is measurable
with µpux∆uq ă `8. Then µpux∆uq “ 0 if and only if there is no halfspace h P ux∆u
which contains x in its interior.

Proof. Let us assume that there exist h P ux∆u which contains x in its interior and set
x̃ “ πhcpxq. The point x being in the interior of h, it is distinct from x̃. In the other hand,
any halfspace which separates x from x̃ contains hc, hence it belongs to u. Therefore we
get H̃px, x̃q Ď ux∆u with µpH̃px, x̃qq “ dpx, x̃q ą 0.
For the other inclusion, let us assume that ux∆u contains no halfspace h which contains x in
its interior and show that µpux∆uq “ 0. The measure µ being build from the Caratheodory
extension theorem, we have :

µpux∆uq “ inft
ÿ

nPN

µpH̃pxi, yiqq{ ux∆u Ď
ď

iPN

H̃pxi, yiqu.

Its measure being �nite, there exist a sequence of pairs pxiqiPN, pyiqiPN Ď X such that
ux∆u Ď

ď

iPN

H̃pxi, yiq. In one hand, we have Hpx, aq X Hpb, aq “ Hpmpa, x, bq, aq. In the

other one, Lemma 2.2.7 implies that H1pmpx, xi, yiq, yiq Ď H1px, yiq. Thus we get

pHpx, yiqzH1
px, yiqq X Hpxi, yiq Ď Hpmpx, xi, yiq, yiqzH1

pmpx, xi, yiq, yiq.

The point mpx, xi, yiq being in the interval rxi, yis, we have

H̃pxi, yiq “ H̃pxi,mpx, xi, yiqq \ H̃pmpx, xi, yiq, yiq.

As we assumed that ux∆u contains no halfspace which contains x in its interior, we deduce
the following inclusion

pux∆uqXH̃pxi, yiq Ď pH̃pxi,mpx, xi, yiqqzH̃1
pxi,mpx, xi, yiqqqYpH̃pmpx, xi, yiq, yiqzH̃1

pmpx, xi, yiq, yiqq.

The right hand of the above inclusion being of null measure by Lemma 2.2.4, we conclude
that µpux∆uq “ 0.

Proof of Theorem 2.2.1. Let us consider an ultra�lter u P UpHpXqq such that ux∆u ă `8

for some, hence for all, x P X. By Proposition 2.2.2, the image of X under the canonical
embedding into UdpHµpXqq is a closed convex subset. Let a P X be such that ruas is the
gate projection πΦpXqprusq of rus into ΦpXq. We claim that µpu∆uaq “ 0. The class ruas

being the gate projection of u into ΦpXq, we have ruas P rrus, ruxss for any x P X. Which
translate into saying that for any x P X

µpmpua, ux, uq∆uaq “ 0.
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Let h P HpXq be a halfspace separating u from ua, that is h P pu∆uaqXu and set ã :“ πh̄paq.
Any halfspace in X which separates ã from a must be contained in u. Hence we have the
following inclusion H̃pa, ãq Ď pua, uã, uq∆ua. We deduce then

dpa, ãq “ µpH̃pa, ãq ď µpmpua, uã, uq∆uaq “ 0.

Therefore, for any h P pu∆uaq X u we have a “ πh̄paq, which implies that there is no
halfspace h P ua∆u which contains a in its interior. We conclude by Lemma 2.2.8 that
µpua∆uq “ 0.
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Chapitre 3

Action of S-arithmetic lattices on

median spaces

3.1 Lattices in
ź

iPI

PSLp2, kiq

3.1.1 pp ` 1q-regular tree associated to PSLp2,Qpq

p-adic �eld : Let Q be the �eld of rational numbers.

De�nition 3.1.1. A valuation on Q is a group homomorphism v : pQ˚, ˚q Ñ pR,`q such
that :

vpx ` yq ě minpvpxq, vpyqq.

Note that each valuation is determined uniquely by the values that it takes on the
integer. We say that two valuation v1 and v2 are equivalent if there exist a constant λ ą 0
such that v1 “ λv2.

Examples 3.1.2. 1. There is the trivial valuation which take value 0 on Q˚.

2. The p-adic valuation vp, where p is a prime number, associates to each integer k the
maximal n such that pn divides k, which corresponds to the �rst power of p in the
development of k in the basis p, k “

ÿ

iěn

ai.p
i where an ‰ 0.

Each valuation v gives rise to an absolute value | | on Q by |r|v :“ e´vprq which veri�es
the ultra-metric inequality |r1`r2| ď maxp|r1|, |r2|q. A consequence of Ostrowski's theorem
(see Ch 2, �2.1 p85), is that the valuations arising in Examples 3.1.2 are the unique valuation
on the �eld Q, up to equivalence.

The ultrametric absolute value | |vp associated to a p-adic valuation vp is called the
p-adic norm. The metric space pQ, dpq arising from this norm is totally disconnected and
the integers accumulates around 0. The space pQ, dpq is not complete, one may consider
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for instance a Cauchy sequence of the form ki “

k
ÿ

i0

ai.p
i. The metric completion of pQ, dpq

denoted by Qp is the �eld of the p-adic numbers . Note that the valuation vp extends to
Qp. The unit ball around zero, which is a clopen, is called the rings of p-adic integers

or the valuation ring of Qp and is denoted by Zp. It corresponds to the set of points
which have positive valuation and it can be described as the set of formal series with bases
p

Zp :“ t
ÿ

i“k

ai.p
i

| k ď 0 and ai P t0, .., p ´ 1uu.

For a reference about the theory of p-adic �eld, see [Rob00].

The homogeneous simplicial tree associated to PSLp2,Qpq : Throughout this pa-
ragraph, we will follow the construction explained in [Ser80] Ch II �1.1 p.69. Let V be a
vector space of dimension 2 over Qp. A lattice pL,`q ă pV,`q is a free Zp-module of rank
2, i.e. L “ Zp.e1 `Zp.e2, where e1, e2 P V are linearly independent. Let us denote by L the
set of lattices in V . We say that two lattices L1 and L2 are equivalent if there exist k P Qp

such that L1 “ k.L2, we denote this equivalence by „.
The linear action of SLp2,Qpq on V induces a natural action on L. The stabilizer of a

lattice L is conjugate, in GLp2,Qpq, to SLp2,Zpq. Note that SLp2,Zpq acts transitively on
the set of basis of the lattice that it stabilizes.

Let us consider two lattices L1, L2 P L and a p-adic integer k P Zp such that k.L2 Ď L1.
The existence of such p-adic integer is due to the fact that Qp is the fraction �eld over
Zp. By the elementary divisors theorem (see [Lan02] Theorem 7.8 Ch III �7 p.153), there
exist a basis B “ te1, e2u of L1, and n1, n2 P N˚ such that k.L2 “ă pn1 .e1, p

n2 .e2 ą, with
n1 ď n2. Note that the di�erence n2 ´ n1 does depend only on the equivalence classes of
the lattices L1 and L2, we denote it by dprL1s, rL2sq. We set L̃ :“ L{ „.

Proposition 3.1.3 (Theorem 1, [Ser80] Ch II �1.1). The space pL̃, dq is a (p`1q-homogeneous
simplicial tree.

The action of SLp2,Qpq descends to an isometric action on L̃. Let us consider L̃1, L̃2 P L̃
and let e1, e2 P V , n P N such that te1, e2u and te1, p

n.e2u are basis for some L1 P L̃1 and L2 P

L̃2 respectively. Then the application corresponding to the matrix A “
`

1 0
0 pn

˘

P GLp2,Qpq

maps L̃1 to L̃2. If n is even, then the element represented by the matrix
`

p´ n
2 0

0 p
n
2

˘

P

SLp2,Qpq induces the same action as A on L̃. If n is odd, the action of A can not be
induced from an element in SLp2,Qpq. This is due to the fact that p does not have a square
root in Qp (see [Rob00] Ch.1, �.6.6, p.49). Hence, the action of SLp2,Qpq is transitive on
the set of points which are at even distance. There exist two conjugacy class of maximal
compact subgroup in SLp2,Qpq. Each element in the conjugacy class corresponds to the
stabilizer of an element in L̃, and each such maximal compact subgroup is a conjugate in
GLp2,Qpq to SLp2,Zpq.
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3.1.2 Lattices in
ź

iPI

PSLp2, kiq

In the next sections, we will be considering isometric action of lattices Γ ď G “
ź

sPS

PSLp2, ksq where S is �nite and each ks is either R, C or Qp and the projection of Γ

into each factors is dense.
We say that Γ is irreducible if for any J Ă S the projection of Γ into

ź

sPJ

PSLp2, ksq is

dense.

Example 3.1.4. � The group PSLp2,Zr1
p
sq is a non cocompact lattice in PSLp2,Rq ˆ

PSLp2,Qpq.

� Let p P Z a prime number such that ´1 is a square in Qp. Note that is is equivalent to
require that p ” 1r4s as the polynomial Xp ´1 has always a solution which generates
the cyclic group of roots of unity, which is of order p´1 (see [Rob00] Ch.1, �.6.7, p.51).
The ring Zr i

p
s embeds as a lattices in CˆQp ˆQp through the Z-linear morphism ϕ

which sends i into pi, ĩ, ˜́iq where ĩ is a square root of ´1 in Qp.
The group PSLp2,Zr i

p
sq embeds as a non cocompact lattice in PSLp2,CqˆPSLp2,Qpqˆ

PSLp2,Qpq, where the entries of the matrices representing elements of PSLp2,Zr i
p
sq

are mapped through the map ϕ.

In the proof of Theorem 3.3.1, we will be considering separately the case where the
lattice Γ is cocompact and the case where it is not. To deal with the latter case, we will be
using the following fact

Theorem 3.1.5. Let Γ ď
ź

sPS

PSLp2, ksq be an irreducible lattice which is not cocompact

and |S| ě 2. There exist then a solvable subgroup of Γ which is not virtually abelian.

The subgroup is obtained by considering the intersection of a borel subgroup of G with
Γ. For example, when Γ “ PSLp2,Zr1

p
sq the subgroup represented by the upper triangular

matrices of SLp2,Zr1
p
sq is a solvable subgroup which is not virtually abelian.

Proof of Theorem 3.1.5. By Margulis's arithmeticity theorem, any such irreducible non-
cocompact lattice is commensurable with a conjugate of PSLp2,OSq, where S is the ring
of S-integers, that is

OS “ tx P Q | |x|vp ď 1 for any p -adic norm on Q which is not in the class of the | |ks 'su.

Hence, it is enough to show that PSLp2,OSq contains a solvable subgroup which is not
virtually abelian. By The Dirichlet Theorem (See [Lan94] Unit Theorem, Ch.V, �.1, p.104),
there exist a non trivial invertible element t P O. Hence, such solvable non virtually abelian
group is given by the group generated by the element A “

`

t 0
0 t´1

˘

and the horospherical
subgroup HS “ t

`

1 z
0 1

˘

| z P OSu.
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Another property of Γ which plays a key role in the proof of Theorem 3.3.1 is the
quasi-simplicity.

Theorem 3.1.6 ([Mar91] Ch IX, �5 Theorem 5.4 p.325). Let Γ ď
ź

sPS

PSLp2, ksq be an

irreducible lattice. Then :

� For any normal subgroup N � Γ, either N or Γ{N is �nite.

� The quotient Γ{rΓ,Γs is �nite.

3.2 Fioravanti's machinery

3.2.1 Roller boundary

Let X be a complete locally convex median space. A natural way to de�ne points at
in�nity in the median case is through ultra�lters. But not all ultra�lters of UpHpXqq points
toward a direction to "in�nity". Consider for example a principal ultra�lter ux P UpHpXqq

over x P X, that is, the ultra�lter consisting of all halfspaces of X which contain x. Let
h P ux be a minimal element (note that such element always exist by Zorn's lemma). Note
that x must be contained in the closure of hc. Then uxzthuYthcu is also an ultra�lter which
is "close-�tting" to ux.

When we endow UpHpXqq with the pseudo metric given by the canonical measure
over HpXq, the pseudo-distance between ultra�lters which di�er with an countably many
halfspaces is zero. For instance, when X is of �nite rank, there are only �nitely many
minimal element in each ultra�lter. However, when the rank of X is in�nite, one can have
uncountably many such minimal elements and �nd two ultra�lters with in�nite distance
and which di�er only on a set of halfspaces which contain a common point of X on their
hyperplane.

In [Fio20] section 3, E. Fioravanti dealt with this issue in the case of complete locally
convex median space by considering a �ner sigma algebra B1 over HpXq and a measure v̂
over it which coincides with the canonical measure µ on the elements with �nite measure
of the canonical σ-algebra B. Let us �rst point out that in [Fio20], the canonical structure
of measured space over HpXq is the one generated through the Caratheodory extension
theorem on the ring of sets generated by the sets of oriented halfspace intervals Hpx, yq,
instead of the set of the non oriented halfspaces intervals H̃px, yq. Hence, measurable subsets
include non symmetric set of halfspaces, that is, set of halfspaces which are not stable under
the complementary operation c.

Roughly speaking, the construction of B1 consist of adding all subset of HpXq such
that their intersection with any directed halfspace interval Hpx, yq is measurable with
respect to the canonical sigma algebra. It was shown then that for any x P X, the set
adjpxq :“ th P HpXq | x P hc, x P h̄u is measurable and of zero measure with respect
to v̂ (see [Fio20] Lemma 3.6). Remark that adjpxq contains complements of all minimal
halfspaces of the principal ultra�lter ux.

52



CHAPITRE 3. ACTION OF S-ARITHMETIC LATTICES ON MEDIAN SPACES

All principal ultra�lter are measurable with respect to the sigma algebra B1 (Lemma
3.6 [Fio20]). As in Subsection 1.2.2 the measure v̂ de�nes a pseudo metric dv̂pu1, u2q :“
1
2
v̂pu1∆u2q, with possible in�nite value, on UpHpXqq and the relation „ de�ned by u1 „ u2

if and only if u1∆u2 “ 0 is a congruence. The quotient of UpHpXqq by the congruence „

is a median algebra that is denoted by X̄ “ UpHpXqq{ „. It decomposes into components,
constituted of elements which are at �nite distance dv̂. The restriction of dv̂ on each com-
ponent gives rise to a median space and each component is a convex in X̄ (Proposition
4.19 [Fio20]). There is a unique component which contains an isometrically embedded copy
of X, through the canonical isometric embedding which associates to each point of X the
principal ultra�lter corresponding to it. This component is denoted by MpXq in [Fio20]
and as the median space is assumed to be locally convex, the componentMpXq is isometric
to X. Hence, there is no confusion if we still denote this component by X. The Roller
boundary of X is the set BX :“ X̄zX.

Every isometric action Γ ñ X gives rise to an action Γ ñ X̄ which sends each com-
ponent of X̄ into another one and preserves the component corresponding to X.

De�nition 3.2.1. Let Γ ñ X be an isometric action on a complete locally convex median
space. We say that the action is :

� Roller Elementary if it has a �nite orbit in X̄

� Roller minimal it does not �x a component of BX and there is no proper Γ-invariant
closed convex subset in X.

If the median space X is of �nite rank, then for any isometric action Γ ñ X, one can
always �nd a closed convex Γ-invariant subset where the action of Γ is Roller minimal as
stated in the following proposition :

Proposition 3.2.2 (Proposition 2.9 [Fio19]). Let X be a complete median space of �nite
rank and let Γ be a group acting non elementarily on it. Then there exist a Γ-invariant
closed convex subset C Ď Z, where Z is a Γ-invariant component in X̄ such that the
restriction of the action of Γ on C is Roller minimal.

The following proposition states that for any convex subset C Ď X̄, there exist a unique
component in Z Ď X̄ such that C Ď Z̄

Proposition 3.2.3 (Corollary 4.31 [Fio20]). Let X be a complete locally convex median
space with compact intervals. Then any convex subset C Ă X̄ intersects a unique component
of X̄ of maximal rank.
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3.2.2 Barycentric subdivision

Almost all the properties obtained from group action on median spaces of �nite rank
require the assumption on the action being Roller minimal. The assumption is necessary to
ensure that the action have a good mixing property on the Roller boundary of the median
space, and can move the space in the transverse direction to almost all halfspace. But the
condition is not su�cient as one may have an action which is arti�cially Roller minimal,
and this may occur especially when the space is not connected.

Consider for example the space X “ R ˆ t´1, 1u endowed with the ℓ1-product metric.
The action of its group of isometries is Roller minimal, but one can imagine that it �xes
an imaginary axes R ˆ t0u. This prevent the action to move points transversally to this
imaginary line. This behaviour can be detected by the inversion which maps the halfspaces
R ˆ t´1u to its complement R ˆ t1u.

The same pathology may arise in the assumption of the action being free, where the
freeness of the action can be arti�cial. If the action of a group on a simplicial tree is free
only on the set of vertices, one can deduce nothing about the group being free or not.
Consider for instance the action of the in�nite dihedral group on Z.

To avoid this particular cases, one need to assume that there is no elements which maps
a halfspace to its complement.

De�nition 3.2.4. Let Γ be a group acting by isometries on a complete median space X
which is f �nite rank. We say that γ P Γ acts without wall inversion if for any h P HpXq

we have γ.h ‰ hc.

We say that the action of Γ is without wall inversion if all of its elements act without
wall inversion.

To get rid of the above assumption, one consider the barycentric subdivision of the
space which consist of adding all the imaginary convex parts which lie between each clopen
halfspace and its complement. The construction was done in [Fio18] Section 2.3. In the
case of a simplicial tree, it consists of considering the new simplicial tree where we add a
vertex in the middle of each edge.

More generally, let X be a complete median space of �nite rank. We assume that X
is not connected which is, by Lemma 1.2.31 and Remark 1.1.8, equivalent to the existence
of a halfspace which is clopen. Let h P HpXq be such clopen halfspace. By Lemma 1.1.24,
the two convex subsets πhph

cq and πhcphq are isometric and the isometry is given by the
projections πh and πhc , see Figure 3.2.2 below.
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Figure 3.2.1 �

Roughly speaking, the barycentric subdivision of the spaceX consists of adding between
each clopen halfspace h and its complement a copy of the convex subset πhph

cq which lies
at distance dph,hcq

2
from both h and hc as shown in Figure 3.2.2 below.

Figure 3.2.2 �

Note that there are other convex subsets which are added when we have many pairwise
transverse clopen halfspaces.

Formally, We consider a �ner poc set H1pXq induced from HpXq, which contains all
the halfspaces of HpXq which are not atoms and each atom h of HpXq is split into two

55



3.2. FIORAVANTI'S MACHINERY

"halfpsaces" h´ and h`, each one of them has half the measure of h. The structure of poc
set of H1pXq is constructed by keeping the same structure on the halfspaces which are not
atoms and setting h´ ď h`, h˚

´ “ phcq`, h˚
` “ phcq´ and h1 ď h´ (respectively h1 ě h`)

if and only if h1 ď h (respectively h1 ě h) for all h1 P HpXq and atoms h P HpXq. Note
that by construction, any halfspace h1 P HpXq is transverse to h P HpXq if and only if
either one or equivalently both of h´ and h` are transverse to h1, in the sense that h´ ę h1,
h´ ę h1˚, h˚

´ ę h1 and h˚
´ ę h1˚.

Let us denote by ApXq the subset of atoms of HpXq. We have a canonical projection
p : H1pXq Ñ HpXq which is the identity on the part corresponding to HpXqzApXq and
which associates to each h´ and h` there corresponding clopen halfspace h.

Let pHpXq,B, µq be the measured poc set structure described in Theorem 1.2.20. Let us
denote by BA :“ tth, hcu | h P Au. The structure of measured poc set of pHpXq,B, µq lifts
to a structure of measured poc set on pH1pXq,B1, µ1q where B1 :“ p´1pBq Y p

ď

hPApXq

th, hcuq

and µ1pEq “ µpppEq X ApXqcq `
ÿ

hPA
h´PE

µpth, hcuq

2
`

ÿ

hPA
h`PE

µpth, hcuq

2
.

De�nition 3.2.5. Let X be a complete median space. We call the median space X 1 :“
UppH1pXqq associated to the pointed measured poc set pH1pXq,B1, µ1, uxq, where x P X is
arbitrary, the barycentric subdivision of X. Throughout the following we will abuse the
notation and identify X with its image in X 1.

The surjective measurable poc set morphism p : H1pXq Ñ HpXq gives rise to an
isometric embedding Φb of X into X 1. Moreover, we have :

Proposition 3.2.6 (Proposition 2.15 (2) [Fio18]). Let X be a complete median space of
�nite rank, we have then ConvX 1pXq “ X 1.

Remark 3.2.7. Let X be a complete median space of �nite rank. For any convex subset
C Ď X̄ we have a natural isometric identi�cation between C 1 and ΦpCq.

The following Lemma ensures us that there is no additional halfspaces that appear in
the barycentric subdivision in addition to the one coming from the non atomic halfspaces
of HpXq and the imaginary ones corresponding to the split of atoms.

Lemma 3.2.8 (Lemma 2.14 [Fio18]). Let X be a complete median space of �nite rank.
We have then HpX 1q “ H1pXq.

Remark 3.2.9. We point out that we are not being totally faithful in our transcription
of the de�nition and construction given in [Fio18], as we are using the measured poc set
structure described in [CDH10] instead of the one introduced in [Fio20]. Nevertheless,
this will not change the properties satis�ed by the barycentric subdivision and it is the
propositions concerning these properties shown by Fioravanti that we are going to appeal
that matters.
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Any isomorphism f of the measured poc set pHpXq,B, µq gives rise to an isomorphism
f 1 where f 1ph´q “ pfphqq´, f 1ph`q “ pfphqq` and f 1phq “ fphq for any h P HpXqzApXq.

Hence any isometric action on X induces an isometric action on its barycentric subdi-
vision X 1, and the isometric embedding of X into X 1 is equivariant whit respect to these
actions.

We have the following :

Proposition 3.2.10 (Lemma 2.13 [Fio19]). Let X be a complete median space of �nite
rank and let Γ be a group acting by isometries on X. Then the action of Γ on X is Roller
non elementary if and only if its action on X 1 is Roller non elementary.

Roller minimal actions on a median space does not necessarily induces a Roller minimal
action on its barycentric subdivision, even if we assume that the action to be Roller non
elementary. Consider for instance the ℓ1-product of a homogeneous simplicial tree with
t0, 1u and the action of its group of isometries on it. However if we assume the space to be
irreducible we get the following :

Proposition 3.2.11. Let X be a complete irreducible median space of �nite rank. Let Γ
be a group acting Roller non elementarily and Roller minimally on X. Then the induced
action of Γ on X 1 is also Roller minimal.

The above Proposition is proven in [Fio19] Lemma 2.14 using Lemma 2.13. Since I am
not sure to understand the argument in Lemma 2.13, we will proceed di�erently for the
proof of Proposition 3.2.11. The main line of the argument is as follows. Given a Roller
non elementary and Roller minimal action of Γ on a complete median space of �nite rank
X, we consider a closed Γ invariant convex subset E Ď X̄ 1 for the sake of contradiction. By
Proposition 3.2.3 and Remark 3.2.7 there is no loss of generality to assume that E Ă X 1.
Since the Γ-action on X is Roller minimal, the subset E does not intersect X, because the
closure of ConvpΓ.pE X Xqq is a Γ-invariant closed convex subset of X. For any convex
subset E Ă X 1zX there exist a halfspace h P ApXq such that E Ď h` X hc´, this is shown
in Lemma 3.2.12. Finally, one show that any other halfspace of X is transverse to h, which
gives a splitting of X.

Lemma 3.2.12. Let X be a complete median space of �nite rank. Then for any closed
convex subset E Ď X 1zX, there exist a clopen halfspace h P pXq such that E Ď h` X hc´.

Proof. Let n be the rank of the space X and let x P E. By Lemma 2.13 [Fio18], there
exist an embedding of median algebras ix : t´1, 1uk Ñ X which extends to an embedding
ĩx : t´1, 0, 1u Ñ X 1, where 1 ď k ď n and such that Cpxq :“ ixpt´1, 1ukq and C 1pxq :“
ĩxpt´1, 1uk) are gate convex subset of X and X 1 respectively.

As the gate convex subset E lies entirely inside X 1zX, its intersection with C 1pxq be-
longs to the image under ĩx of a hyperplane of the form tpx1, .., xkq P t´1, 0, 1uk | xi “

0 for some �xed i P t1, .., kuu. By Lemma 1.1.14 the lift under π´1
C1pxq

of the halfspaces of

C 1pxq given by the image under ĩpxq of the halfspaces tpx1, ..., xkq P t´1, 0, 1uk | xi ď 1u

and tpx1, ..., xkq P t´1, 0, 1uk | xi ě ´1u are two halfspaces such that their intersection
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contains E and lies in X 1zX. By Lemma 3.2.8, the latter halfspaces necessarily arise as h´

and h` for some h P ApXq, which completes the proof.

Lemma 3.2.13. Let X be a complete median space of �nite rank and let h P ApXq be a
clopen halfspace of X. Then any halfspace h1 P H1pXq which separates two points of h` Xhc´
is a halfspace which is transverse to both h` and h´.

Proof. Despite the natural identi�cation betweenH1pXq andHpX 1q, given by Lemma 3.2.8,
to avoid confusion between their elements, we will denote the element of the former poc
set by h and their corresponding one in the latter poc set by h1. Let x, y P h1

` X ph1
´qc

and let h P H1px, yq be a halfspace which separates y from x with x P h̊ and y P ˚phcq. By
Lemma 1.2.10 there is no loss of generality to assume that h is closed. By construction x
and y are classes of ultra�lters which contains h` and h´. Note that despite the measure
of a non clopen halfspace is zero, each ultra�lter in the class x (respectively y) contains h˚

(respectively h). This is due to the fact that any ultra�lter which contains h (respectively
hc) will contains the chains Hpx, πhpxqq (respectively Hpy, πhcpyqq) which is of positive
measure.

Let x̃ be an ultra�lter in the class of x and let ỹ be an ultra�lter in the class of y.
We claim that x̃` :“ px̃zth`uq Y th`u and ỹ` :“ pỹzth`uq Y th`u are ultra�lters, it is
enough to show it for x̃`. Note that by construction, we have x̃` Y x̃˚

` “ H1pXq. It last
to show that there is no t P x̃` such that h` ď t˚. By construction of pH1pXq,ďq, any
element t P x̃` which veri�es the latter inequality, must verify h´ ď t˚. As both t and h´

lies in x̃ which is an ultra�lter, such inequality can not hold. Therefore, both x̃` and ỹ`

are ultra�lters which contain h˚
` and dprx̃`s, xq “ dprỹ`s, yq “ µph`q. In the other hand

we have dprx̃`s, rỹ`sq “ dpx, yq. Thus we conclude that the intersections h1
` X h1, h1˚

` X h1,
h1

` X h1˚ and h1˚
` X h1˚ are not empty, which �nishes the proof.

Proof of Proposition 3.2.11. Let E Ď X̄ 1 be a proper Γ-invariant closed convex subset. By
Proposition 3.2.3 E intersects a unique component Z 1 Ă X̄ of X̄ of maximal rank. By
Remark 3.2.7, the component Z 1 is the barycentric subdivision of a component Z Ď X̄
of X. If Z 1 is distinct from X 1 then we consider the restriction of the action of Γ on Z 1,
the latter is Γ-invariant as it is the unique component of maximal rank which intersects
E. If E “ Z 1, then Z 1 X X̄ is a proper Γ invariant closed subset of X̄, which contradicts
the assumption on the action Γ ñ X being Roller minimal. Hence up to considering
the restriction of the action Γ on Z 1 and the intersection of E with Z 1, there is no loss of
generality to assume that E is a proper subset ofX 1. By Lemma 3.2.12 there exist h P ApXq

such that E Ď h` Xhc´. We claim that all other halfspace of t P H1pXqzth´, h
c
´, h`, h

c
`u are

transverse to both h´ and h`. By lemma 3.2.13, any halfspace of X 1 which is transverse to
E is transverse to both h` and h´. In the other hand, as there is no halfspace h1 P H1pXq

such that h´ ď h1 ď h`, any halfspace which contains E either contains hc´ or h`. Let
us consider then a halfspace h1 P H1pXqzth´, h

c
´, h`, h

c
`u. If h1 is transverse to E, there is

nothing to show. If it contains it, up to considering hc´ instead of h` or the complements
of h1, we can assume that h` Ă h1. Then for any x P X X h1 X hc` and any g P Γ we have
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dpE, xq “ dpE, gpxqq. Hence the orbit Γ.x lies inside h1. Therefore the closure of the convex
hull is a proper Γ invariant subset of X, which contradicts the minimality of X.

3.2.3 Mixing on the set of halfspaces

The argument for the proof of Theorem A relies heavily on the existence of a strongly
separated facing triple which are determined by one point. In this subsection, we recall the
machinery needed to prove their existence.

Throughout this section X will be a complete �nite rank median space and Γ a group
acting without wall inversion on it. We say that a halfspace h P HpXq is �ipped by
g P IsompXq if dpg.h, hq ą 0 and g.h ‰ hc (g does not inverse the wall ph, hcq).

We say that a halfspace h P HpXq is thick if both h and hc are of non empty interior. If
the action Γ ñ X is Roller minimal, then for any thick halfspace h P HpXq, the intersection
č

gPΓ

g.h must be empty in X̄. By the compactness of X̄ ([Fio20] Theorem 4.14), one deduce

that there exist g P Γ such that g.hX h “ H. Note that the assumption on h being thick is
to ensure that h̄ ‰ X. We summarize the above discussion into the following proposition :

Proposition 3.2.14 ([Fio18] Theorem 5.1). Let X be a complete median space of �nite
rank and let Γ ñ X be a Roller minimal action without wall inversion. Then any thick
halfspace is �ipped by some element in Γ.

Through �ipping operation, one generate hyperbolic type isometries g in the sense that
there exist a halfspace hg P HpXq such that g.hg Ă hg. Under the assumption that any
thick halfspace is �ipped by some isometry, there exist for any thick halfspace a hyperbolic
element which translates transversally to it. The latter isometry is obtained by composing
two elements γ1, γ2 P Γ such that dpγ1.h, hq ą 0 and dpγ2.h

c, hcq ą 0. Using the same
construction, we get the double skewering lemma (see [CS11] Double skewering Lemma
and [Fio18] Corollary 5.4) :

Proposition 3.2.15. Let X be a complete �nite rank median space and let Γ ñ X be a
Roller minimal action without wall inversion. Then for any thick halfspaces h1, h2 P HpXq

with h1 Ď h2, there exist g P Γ such that g.h2 Ă h1 Ď h2.

If the median space X is irreducible, Proposition 3.2.15 can be strengthened into re-
quiring hc1 and g.h2 to be strongly separated. The irreducibility of X ensure the existence
of two strongly separated halfspace through the following criterion :

Theorem 3.2.16 ([Fio18] Theorem 5.9). Let X be a median space which admits a Roller
minimal action. Then X is irreducible if and only if for any thick halfspace h1 P HpXq there
exist two thick halfspaces h, t P HpXq such that h Ď h1 Ď t where h and tc are strongly
separated.

We deduce the following lemma :
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Lemma 3.2.17. Let X be a complete irreducible �nite rank median space and let Γ ñ X
be a Roller minimal action without wall inversion. Then for any halfspaces h1, h2 P HpXq

such that h1 Ď h2 there exist two halfspace h, t P HpXq such that t Ď h1 Ď h2 Ď h where hc

and t are strongly separated.

Proof. By Theorem 3.2.16, there exist h, h1 P HpXq such that h1 Ď h2 Ď h where hc and h1

are strongly separated. If h1 Ď h1 then we are done. If h1 Ď h1, we set t “ h1. Hence, let us
assume that h1 and h1 are transverse. Let γ1 P Γ be such that dpγ1.h

1c, h1cq ą 0 and remark
that h1c Ď γ1.h

1 Ď γ1.h. Hence, the halfspace h1c and γ1.h
c are strongly separated. As h1

is transverse to h1, it cannot be transverse to γ1.h
c, which yields γ1.h Ď h1. We complete

then the proof by setting t :“ γ1.h.

Composing through elements which �ip around strongly separated halfspaces, one ge-
nerate contracting hyperbolic isometries.

Lemma 3.2.18. Let X be a complete irreducible �nite rank median space and let Γ ñ X
be a Roller minimal action without wall inversion. Then for any h1, h2 P HpXq such that
h1 Ď h2, there exits g P Γ such that h1 Ď h2 Ă g.h1 where g.h

c
1 and h2 are strongly separated.

Proof. By Lemma 3.2.17, there exist h, t P HpXq such that t Ď h1 Ď h2 Ď h where hc and t
are strongly separated. The isometry g P Γ is given by setting g “ γ1 ˝ γ2 where γ1, γ2 P Γ
such that dpγ1.t

c, tcq ą 0 and dpγ2.h, hq ą 0.

It is left to prove the existence of a facing triple of halfspaces, that is, a triple of
halfspaces which are pairwise disjoint. If we assume in addition that the action of Γ is
Roller non elementary, then such facing triple exists.

Proposition 3.2.19 ([Fio18] Proposition 6.2). Let X be a complete irreducible median
space of �nite rank and let Γ ñ X be a Roller non elementary and Roller minimal action
without wall inversion. Then there exist a triple of thick halfspaces which are pairwise
strongly separated.

The idea of the proof is to start with a thick halfspace h and consider a hyperbolic
isometry g such that g.h Ă h where hc and g.h are strongly separated. Then one look
at the interval rξ1, ξ2s, where ξ1, ξ2 P BX along which the element g translates. the two
point ξ1 and ξ2 are chosen in

č

iPN

gn.h and
č

iPN

g´n.hc respectively (see Figure 3.2.3. The

action being Roller non elementary, the median space X is not contained in rξ1, ξ2s. Let
x P Xzrξ1, ξ2s and consider t P Hprξ1, ξ2s, txuq “ Hpmpξ1, ξ2, xq, xq, that is a halfspace
which separates x from rξ1, ξ2s. The projection of x into rξ1, ξ2s lies between two halfspace
gn.h and gn`1.hc. For each n, the couple gn.hc and gn`1.h being strongly separated, the
halfspace t is contained in gn´1.h and gn`2.hc. Therefore, the sequence pg3.tqnPN constitutes
a family of pairwise strongly separated halfspaces.
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Figure 3.2.3 � The con�guration arising in the proof of the Proposition 3.2.19

Combining all the results stated above, we deduce the following

Proposition 3.2.20. [See also [Fio19] Lemma 4.1] Let X be an irreducible median space
of �nite rank. Let us assume that the action of IsompXq is Roller non elementary and
Roller minimal without walls inversion. Then there exists a strongly separated facing triple
of thick halfspaces h1, h2, h3 P HpXq, and a point c P X such that for any xi P hi, we have
mpx1, x2, x3q “ c. Note that the point c lies in hc1 X hc2 X hc3.

Proof. Let h1, h2, h3 P HpXq be a triple of halfspaces which are pairwise strongly separated.
By Proposition 3.2.14, there exist g1, g2, g3 P IsompXq such that dpgi.h

c
i , h

c
iq ą 0 for all

i P t1, 2, 3u. Then the set of halfspaces h1
1 :“ g1.h2, h1

2 :“ g2.h1 and h1
3 :“ g3.h1 constitute

a strongly separated facing triple. Remark that for each i P t1, 2, 3u the halfspaces hci and
h1
i are strongly separated. By Proposition 1.1.26, the halfspace h1

i projects into a point
ai :“ πh̄ci

phiq in h̄i. Hence, for any a, b P hci and any x P h1
i we have mpa, b, xq “ mpa, b, aiq.

We deduce that for any triple px1, x2, x3q P h1
1ˆh1

2ˆh1
3 we havempx1, x2, x3q “ mpa1, a2, a3q,

which completes the proof.

3.2.4 Stabilizer of points

Pointwise convergence topology on IsompXq : In a R-tree, the stabilizer of any point
is open in the isometry group when the latter is endowed with the topology of pointwise
convergence. The same hold for any the stabilizer of any point x P T which has valency
greater than 2 in a R-tree T . This is due to the fact for any sequence pgnqnPN Ď IsompXq

such that gnpxq ‰ x with gnpxq converges to x, and for any neighbourhood of x, there exist
points whose orbits accumulate nowhere.
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The same holds for the median space of �nite rank which admits a Roller non elemen-
tary and Roller minimal action as for space, there exist points which exhibits the same
characteristic as the points with valency greater than 3 in a R-tree. This was remarked in
[Fio19] (Remark 4.5 therein).

Proposition 3.2.21. Let X be a complete irreducible median space of �nite rank. Let
h1, h2, h3 P HpXq be a facing triple of thick halfspaces and a P X such that for any x1 P

h1, x2 P h2 and x3 P h3 we have mpx1, x2, x3q “ a. Then the stabilizer of a is open IsompXq,
where the latter is endowed with the topology of pointwise convergence.

If the median space X admits a Roller minimal and Roller non elementary action then
such con�guration exists (see Proposition 3.2.20).

Proof. Let pgnqnPN Ď IsompXq be a sequence of isometries of X. If the sequence gn.paq

is in�nite, we apply the same argument as the one given in the proof of Theorem A to
�nd a in�nite family of pairwise disjoint halfspaces gin .hk. Then for any point x P hk, the
sequence ginpxq accumulates nowhere. This implies that if a sequence pgnqnPN Ď IsompXq

converges to an isometry in Stabpaq, then it necessarily stabilizes the point a from some
n ě N .

Stabilizer of points at in�nity Let T be a R-tree. Each element g P IsompXq which
does not inverse a wall either stabilizes a subset of T or leaves invariant a geodesic line
inside T , the minimum of dpgx, xq is veri�ed in this axe. The former isometry is called
elliptic and the latter is called hyperbolic.

Let η P BT be a point in the Roller boundary of T . Note that the Roller boundary of
T coincides with the visual boundary. The stabilizer Stabpηq of η in the isometry group
consist either of hyperbolic elements which their axe of translation have η as one of their
extremities, or of elements which �x a geodesic ray pointing to η.

Let us denote the length translation of an isometry of g by pgq :“ infxPXtdpx, gxqu.
The application χ : Stabpηq Ñ R such that

χpgq “

#

lpgq if η is an attractive point of g

´lpgq if η is a repelling point of g

is a homomorphism. Hence, the group Stabpηq �ts into the following exact sequence :

0 ÝÑ Nη ÝÑ Stabpηq ÝÑ R,

where the kernel Nη corresponds to the subgroup of isometries where each isometry �xes
some geodesic ray pointing toward η.

In the higher rank case, an analogue holds for a subgroup of �nite index of Stabpηq

and this was shown in [Fio18] Section 4. The argument is much more complicated as the
points at in�nity can lie in the corner of many transverse "directions" and one need a
formal description of the latter. The argument is an extension of a result of P.E Caprace
in the case of CATp0q cube complexes (see the Appendix of [CFI16]) to the case of median
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spaces of �nite rank. The canonical "directions" towards a point at in�nity are described
by the notion of unidirectional boundary sets (UBS) that was �rst introduced in the case
of CATp0q cube complexes by M.F. Hagen in [Hag13] and adapted to the case of median
space of �nite rank by E. Fioravanti in [Fio18].

De�nition 3.2.22. Let X be a complete median space of �nite rank and let η P B be a
point in the Roller boundary of X. An inseparable subset U Ď HpXq is a subset such
that for any h1, h2 and h1 Ď h Ď h2 then h P HpXq.

A unitary boundary set of η is an inseparable subset Ω Ă HpXq such that it contains
a diverging sequence of halfspaces to η, that is a decreasing sequence phiqiPN Ď uηzux for
some x P X, such that lim

iÑ`8
dpx, hiq “ `8.

A partial order relation ď is de�ned on the set of UBS of η by Ω1 ď Ω2 if and only if
there exist, or equivalently, for any x P X we have sup

hPΩ1zΩ2

tdpx, hqu ă `8.

We say that two UBS Ω1 and Ω2 of η are equivalent if Ω1 ď Ω2 and Ω2 ď Ω1.

We denote by Upηq the set of equivalence classes of UBS of η. The partial order relation
de�ned on the set of UBS of η descends naturally to a partial order relation on Upηq. We
say that an rΩ1s P Upηq is minimal if there is no rΩ2s P Upηq such that rΩ2s ď rΩ1s.

The minimal equivalence classes of UBS of η will constitutes the canonical directions
pointing toward η. Any UBS of η is equivalent to the inseparable closure of the union of
representatives of �nitely many minimal classes of UBS of η.

Proposition 3.2.23 (Proposition 4.7 [Fio18]). Let X be a complete median space of rank
n and let η P BX.

1. The cardinal of the set of minimal classes of UBS in Upηq is bounded by the rank of
X.

2. For any rΩs P Upηq there exist minimal classes of UBS rΩ1s, ..., rΩks P Upηq, where
k P t1, ..., nu and such that for any x P X we have sup

hPΩ∆pΩ1Y...YΩkq

tdpx, hqu ă `8.

Moreover, this decomposition of rΩs is unique.

The action of Stabpηq on X extends naturally to an action on Upηq. Let rΩ1s, ..., rΩks P

Upηq be all the minimal equivalence classes of UBS of η and let Kη ď Stabpηq be the
subgroup of isometries which �x all the classes rΩis's. We have then :

Theorem 3.2.24 (Lemma 4.8, Proposition 4.9 in [Fio18] and Proposition 2.19 in [Fio19]).
The map

χη : Kη Ñ Rk

g Ñ pv̂pg´1ΩizΩiq ´ v̂pΩizg
´1Ωiqqi

where v̂ is the measure constructed in [Fio20], is a homomorphism. Moreover

1. When Stabpηq is endowed with the topology of pointwise convergence, the homomor-
phism χη is continuous.
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2. The orbit of any point x P X by any �nitely generated subgroup of kerpχηq has at
most 2n elements, where n is the rank of the space X.

The map χη is called the full transfer homomorphism . Note that when X is a
median space of rank 1, the equivalence class of UBS of η is a singleton and the full
transfer homomorphism coincide with the map described in 3.2.4.

3.2.5 Tits alternative

We say that a group G veri�es the Tits alternative if for any �nitely generated subgroup
Γ ď G, either Γ is virtually solvable or it contains a free non abelian subgroup. This
property was �rst shown by J. Tits in [Tit72] for linear subgroup over a �eld of characteristic
zero answering a conjecture by J.P. Serre.

This property holds for a large classes of groups : hyperbolic groups, mapping class
group, outer automorphism group of a free group... It is still open whether groups acting
geometrically on a CAT(0) spaces verify the Tits alternative. For groups acting on CAT(0)
cube complexes, the following version of Tits alternative was shown by M. Sageev and D.
Wise :

Theorem 3.2.25 (Theorem 1.1 [SW05]). Let G be a group acting properly on a �nite
dimensional CAT(0) cube complex. We assume that there is a uniform bound on the order
of �nite subgroups of G. Then either G is virtually �nitely generated abelian group or it
contains a non abelian free subgroup.

The argument goes by induction on the rank of the CAT(0) cube complex X by consi-
dering a multi-ended subgroup H of G. This subgroup corresponds to the stabilizer of a
hyperplane of X and its existence is ensured by Theorem 5.1 [Sag95]. If H contains a non
abelian free subgroup so does G and if it is virtually �nitely generated abelian group, then
the algebraic torus theorem ([DS00]) gives three possibilities for the structure of the group
G, where each case is treated separately.

Two other version of the Tits alternative in the case of CAT(0) cube complexes were
shown by P.E. Caprace and M. Sageev in [CS11] (Theorem F and G therein) using di�erent
argument. They showed that under the assumption on the action being non elementary
(with respect to the visual boundary), it has a nice mixing property on the set of halfspaces
of the CAT(0) cube complex. One may then �nd two hyperbolic isometries and use a ping
pong argument in order to show that they generate a non abelian free subgroup.

Both versions of the Tits alternative shown in [CS11] were extended to the case of
median space of �nite rank by E. Fioravanti in [Fio18].

Theorem 3.2.26 (Theorem E [Fio18] ). Let Γ be a group acting by isometries on a com-
plete median space of �nite rank. Then either the action is Roller elementary or Γ contains
a non abelian free group.

The idea of the proof is to go �rst by induction on the rank of X to reduce the study
to the case when X is irreducible. Up to restricting the action to an invariant subset in
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an invariant component X̄, one can assume the action to be Roller minimal (Proposition
3.2.2). By Proposition 3.2.11, there is no loss of generality to assume that the action of
Γ is without wall inversion. Under these assumptions, for any n P N˚ there exist a family
of pairwise disjoint halfspaces h1, t1.., hn, tn P HpXq of positive depth in X (Lemma 6.3
[Fio18]) and a family of elements g1, ..., gn P Γ such that gn.h˚

n Ă tn (Corollary 5.4 [Fio18]).
Remark that we also have g´1

n .t˚n Ă hn. One conclude then with the ping-pong lemma that
the subgroup generated by the elements g1, ..., gn is free.

Using Theorem 3.2.26 and the structure of the stabilizer of points lying in the Rol-
ler boundary (Theorem 3.2.24), one deduce the following other formulation of the Tits
alternative in the median case :

Theorem 3.2.27 (see Theorem A [Fio18] ). Let Γ be a group, with no non-abelian free
subgroup, which acts on a complete �nite rank median space X. If the action Γ ñ X is
proper, then Γ is virtually (locally �nite)-by-abelian.

3.2.6 Superrigidity

Let G1, ..., Gn be a �nite family of locally compact compactly generated group. We say
that a lattice Γ ď G1 ˆ .. ˆ Gn is irreducible if its projection into each factor is dense. We
will be needing the following version in the irreducible case of Fioravanti's superrigidity
results :

Theorem 3.2.28 (Theorem 4.4 [Fio19]). Let Γ ď G “ G1 ˆ .. ˆ Gn be an irreducible
uniform lattice which acts Roller non elementarily on a complete irreducible median space
X of �nite rank. Then there exist a Γ-invariant component Z Ď X̄ with a Γ-invariant
median subalgebra Y Ď Z such that the action of Γ on Y extends continuously to G.
Moreover, the action of G on Y factors through the canonical projection onto a factor Gi

for some i P t1, ..., , nu.

Remark 3.2.29. If we assume in addition that the action arising in Theorem 3.2.28 is
Roller minimal, the Γ-invariant median subalgebra Yi lies in X.

The above result does not restrict to the case of lattice which are uniform. The original
statement is stated for lattices �lling the square integrability condition, which is veri�ed
when they are uniform. This condition allows to extend unitary representation of Γ into
another unitary representation of the whole group G.

Let us explicit the main lines of the proof of the above theorem. Let X be a complete
median space of �nite rank and let Γ be a group acting isometrically on X. After �xing a
point x P X, the action Γ ñ X induces an a�ne isometric action ρx of Γ on the Hilbert
space L2pHpXq, v̂q de�ned as follows :

pρxpgq.F qphq :“ F pg.hq ` p1ugpxq
´ 1uxq, @F P L2

pHpXq, v̂q.

If we change the base point x by y P X, the action with respect to the base point y is
obtained from the former one by the following cocycle 2p1g.Hpx,yq ´ 1Hpx,yqq. We say that
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an isometric action of a topological group G on a metric space H have almost �xed points
if for for any ϵ ą 0, and any compact subset K Ď G, there exists a point v P H such that
dpgpvq, vq ă ϵ.

Remark that for any x, y P X, the action ρx has almost �xed points if and only if ρy
has it.

Theorem 3.2.30 (Theorem A [Fio19]). Let X be a complete �nite rank median space with
an isometric action Γ ñ X. Then the action Γ ñ X is Roller elementary if and only if
Γ ñ L2pHpXq, v̂q, through ρx, has almost �xed point for a given or, equivalently, for any
x P X.

Let Γ ñ X be a Roller non elementary action on a complete median space of �nite
rank. Up to restrict the action on a Γ-invariant component of X̄ and up to consider its
barycentric subdivision, we may assume that the action is Roller minimal and without wall
inversion. By Theorem 3.2.30, the isometric a�ne action ρx is without almost invariant
�xed point. Shalom's superrigidity results on a�ne isometric action of such lattices on
Hilbert space ensures the existence of a non trivial Γ-invariant subspace Hi Ď L2pHpXq, v̂q

such that the restriction of the unitary part of ρx on it extends to a continuous unitary
representation of Gi. One consider then a vector f P Hi and remark that for any γ P Γ
and any sequence pγkqkPN P Γ, such that πipγkq tends to identity in Gi, the vector γ.f is an
almost invariant vector for the latter sequence. The second step is to show from the latter
data the following claim :

Claim 3.2.31. The following median subalgebra is not empty

Y :“ tx P X | @pγkqkPN P Γ Ă Γ, πipγkq Ñ id then γipxq “ x @i ě N for some N P Nu.

To prove the claim, one consider a thick halfspace h0 such that the restriction of the
function f on the set of halfspaces which their walls are "contained" in h0 is at distance ϵ
from f . One remark then that for any γ P Γ such that γ.h0 X h0 “ H then ||f ´ γ.f ||2 ě

2||f ||2 ´ 6ϵ2. The action Γ ñ X being Roller non elementary, Roller minimal, without wall
inversion and the space X being irreducible, there exist g1, g2 P Γ such that h0, h1 :“ g1.h
and h2 :“ g2.h are pairwise strongly separated which are uniquely determined by a point
a P hc0Xhc1Xhc2 in the sense that for any px0, x1, x2q P h0ˆh1ˆh2 we have mpx1, x2, x3q “ a.
Then for any sequence pγkqkPN P Γ, such that πipγkq tends to identity in Gi and N P N
such that ||γn.f ´f ||, ||γnpg1.fq ´ pg1.fq|| and ||γnpg2.fq ´ pg2.fq|| are small enough for any
n ě N , we have γn.hi X hi ‰ H for all i P t0, 1, 2u. Therefore, we get γnpaq “ a whenever
n ě N , which implies that a P Y .

For the last step, it remains to extend the restriction of the action of Γ on the closure of
Y to Gi. The closure of Y is a Γ-invariant complete median subalgebra of X. By construc-
tion of the subalgebra Y , any sequence pγkqkPN Ď Γ such that its projection into Gi tends to
identity, then its image in IsompȲ q also tends to the identity, when the latter is endowed
with the pointwise convergence topology. This ensures us (see Proposition 4.3 [Sha00]) that
the extension of the action of Γ through its projection into Gi, where it projects as a dense
subgroup, is a continuous homomorphism from Gi to IsompY q.
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Remark 3.2.32. Let a P Y be the point arising from the proof of the Claim 3.2.31. As
the action Γ ñ X is Roller non elementary and Roller minimal, the orbit of a meets every
thick halfspace. Hence the halfspaces h0, h1, h3 that are determined by a are transverse to
Y , that is, they constitute a strongly separated facing triple in Y . Therefore, by Proposition
3.2.21, the stabilizer of a is also open in IsompY q.

3.3 Action of S-arithmetic lattices on �nite rank median

spaces

Let Γ ď G “
ź

sPS

PSLp2, ksq be a lattice such that at least one ki is archimedean and the

projection of Γ into each factor PSLp2, kiq is dense. By the work of Chatterji and Drutu,
both PSLp2,Rq and PSLp2,Cq acts properly discontinuously on locally compact median
space of in�nite rank (Theorem 1.2.28). Hence, the lattice Γ acts geometrically on a locally
compact median space obtained by the product of the median spaces associated to H2, H3

and the pp ` 1q-homogeneous simplicial trees associated to PSLp2,Qpq. However, in the
�nite rank case we have the following :

Theorem 3.3.1. Let Γ ď G “
ź

sPS

PSLp2, ksq be a lattice such that at least one ki is

archimedean and the projection of Γ into each factor PSLp2, kiq is dense. Then there is no
proper action of Γ on a complete median space of �nite rank.

Proof. We �rst note that there is no loss of generality to assume that Γ is irreducible, up
to considering a projection into

ź

sPJ

PSLp2, ksq for a subset J Ă S of cardinal greater than

2. Margulis superrigidity theorem ensures that there is at least one s P J such that ks is
archimedean.

By Selberg's Lemma, there exist a �nite index subgroup which is torsion free. Hence,
there is no loss of generality if we assume that Γ is torsion free. If the lattice is non-
uniform, there exist by virtue of Theorem 3.1.5 a solvable subgroup of Γ which is non
virtually abelian. Hence the action cannot be proper by Theorem 3.2.27.

Let us assume now that Γ is uniform. The group Γ being quasi simple and by Theorem
3.2.24, any Roller elementary action of Γ on an irreducible median space �xes a point in X,
up to restricting to a �nite index subgroup. Thus, we assume that the action of Γ is Roller
non elementary. Let us �rst deal with the case where the action of Γ is Roller minimal.

We set S1 “ ti P S | ki is archimedeanu, S2 :“ SzS1 and set G̃1 “
ź

iPS1

PSLp2, kiq, G̃2 “

ź

iPS2

PSLp2, kiq. We note that the projections of Γ into G̃1 and G̃2 are both dense. The median

space X decomposes into a �nite product X1 ˆ ..ˆXk where each Xi is irreducible. Up to
considering a �nite index subgroup of Γ, we may assume that Γ preserves the factorization
of X, that is, the representation maps Γ into the product IsompX1q ˆ .. ˆ IsompXkq. Let
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us consider a decomposition of X “ X̃ ˆ X̃1 ˆ .. ˆ X̃k1 , where the X̃i's are irreducible and
such that the action of Γ is Roller elementary on X̃ and Roller non elementary on each
X̃i. Again up to considering a �nite index subgroup, there exist a Γ �xed point x̃ P X̃ and
Γ-invariant closed median subalgebras Yi Ď X̃i such that the restriction of the action of
Γ on each Yi extends continuously to G and factors through PSLp2, kni

q for some ni P S.
As the action of Γ is Roller non-elementary, it cannot factor through PSLp2, kiq where ki
is archimedean since the latter is generated by any small neighbourhood of the identity
and there are points x P Yi such that the stabilizer of x in IsompYiq is an open which
contains the identity(see Remark 3.2.32). Hence, we obtain a continuous action of G̃2 on
Y :“ tx̃u ˆ Y1 ˆ .. ˆ Yk1 which extend the action of Γ. The lattice Γ being irreducible, its
projection into G̃2 is dense, hence it accumulates around the identity. Therefore, the action
of Γ on Y Ď X is not proper.

It last to consider the case where the action of Γ on X is not Roller minimal. By Propo-
sition 3.2.2, there exist an Γ-invariant closed convex X̃ inside a Γ-invariant component of
the Roller compacti�cation of X, such that the restriction of the action of Γ on X̃ is Roller
minimal. By the previous reasoning, there exist a Γ-invariant median subspace Y Ă X̃
such that the action of Γ is extended to G̃2, where Γ lies as a dense subgroup. Let ξ P Y
such that Stabpxq is open in IsompY q, such point exist see 3.2.32. There exist a compact
open subgroup K of G̃2, which corresponds to the stabilizer in G̃2 of a �nite subset of
the product

ź

iPS2

Tki , which is mapped into StabY pξq. Let us denote Γ̃ the intersection of

Γ with K. The subgroup Γ̃ being dense in K, its commutator subgroup is in�nite (the
group Γ being torsion free, it is enough to �nd two elements which does not commute). In
the other hand, the image of the subgroup Γ̃ by the representation lies in the intersection
StabY pξq XStabXpξq. Hence, we deduce that the intersection of its image with Nξ, the ker-
nel of the full transfer character map χξ arising in Theorem 3.2.24, is in�nite. Therefore,
there exist a point in X which is �xed by in�nitely many elements of Γ, which completes
the proof.
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Chapitre 4

Isometric actions on �nite rank median

spaces

4.1 An embedding lemma of the convex hull

The following embedding property of the convex hull of two closed convex subsets with
no transverse halfspace in common will be a key ingredient in the proof of Theorem D :

Proposition 4.1.1. Let X be a complete median space of �nite rank and let C1, C2 P X
be closed convex subsets such that there is no half-space which is transverse to them both.
Then the following map

f : ConvpC1, C2q Ñ pC1 ˆ C2 ˆ rc1, c2s, d
1
ℓq

x ÞÑ fpxq “ pπC1pxq, πC2pxq, πrc1,c2spxqq

is an isometric embedding, where πCi
denote the projection onto the closed convex subset

Ci, c1 “ πC1pC2q and c2 “ πC2pC1q

For the proof of Proposition 4.1.1, we need the following lemma :

Lemma 4.1.2. Let X be a complete median space of �nite rank and let C1, C2 Ď X
such that there is no halfspace which is transverse to both. After setting c1 “ πC1pC2q,
c2 “ πC2pC1q and considering any x, y P ConvpC1, C2q we have :

Wpx, yq “ WpπC1pxq, πC1pyqq \ WpπC2pxq, πC2pyqq \ Wpπrc1,c2spxq, πrc1,c2spyqq (4.1.1)

Proof. For any closed convex subset C Ď X and any x, y P X, we have :

WpπCpxq, πCpyqq Ď Wpx, yq.

This come from the fact that for any c P C, the interval rc, xs contains πCpxq. Thus, we
have the inclusion of the right hand of the equality p1q into the left side. For the other
inclusion, let us consider x, y P ConvpC1, C2q and h P Hpx, yq. Let us assume that h does
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not separate πC1pyq from πC1pxq and πC2pyq from πC2pxq. By Proposition 1.1.19, if the
projections πC1pxq, πC1pyq, πC2pxq and πC2pyq lie in a halfspace h, then so do x and y.
As the halfspace h separates y from x there is no loss of generality if we assume that
πC1pxq, πC1pyq belong to hc and πC2pxq, πC2pyq to h. As πC1pyq P rc1, ys and πC2pxq P rc2, xs,
we necessarily get that c1 P hc and c2 P h. We conclude that πrc1,c2spxq P rc1, xs Ď hc

and πrc1,c2spyq P rc2, ys Ď h (see the Figure 4.1.1 below). Therefore, the halfspace h lies in
Hpπrc1,c2spxq, πrc1,c2spyqq.

It is left to show that the sets arising in the right hand of the equality are indeed dis-
joint. Under our assumtpion that the convex subsets C1 and C2 being strongly separated, we
already have the disjointness ofWpπC1pxq, πC1pyqq withWpπC2pxq, πC2pyqq. A wall which se-
parates two points of the interval rc1, c2s must separate c1 and c2. The point c1 being contai-
ned in any interval connecting C1 to C2, we deduce that any wall inWpπrc1,c2spxq, πrc1,c2spyqq

must separate C1 and C2. Hence, such wall cannot be inWpπC1pxq, πC1pyqq nor inWpπC2pxq, πC2pyqq.

Figure 4.1.1 � Any halfspace which separates x and y is either transverse to C1, to C2 or
to the interval rc1, c2s.

Proof of Proposition 4.1.1. As there is no halfspace which is transverse to both C1 and C2,
the projection of C1 (resp C2) into C2 (resp C1) is a singleton, according to Proposition
1.1.26. Let us set denote them by c1 “ πC1pC2q and c2 “ πC2pC1q.

By Lemma 4.1.2, we get the following :

Wpx, yq “ WpπC1pxq, πC1pyqq \ WpπC2pxq, πC2pyqq \ Wpπrc1,c2spxq, πrc1,c2spyqq.
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We deduce then

µpWpx, yqq “ µpWpπC1pxq, πC1pyqqq ` µpWpπC2pxq, πC2pyqqq ` µpWpπrc1,c2spxq, πrc1,c2spyqqq

dpx, yq “ dpπC1pxq, πC1pyqq ` dpπC2pxq, πC2pyqq ` dpπrc1,c2spxq, πrc1,c2spyqq

“ dℓ1pfpxq, fpyqq

where µ is the measure given by Theorem 1.2.20.

By considering a stronger assumption in Proposition 4.1.1, we get a local version of the
�rst part of Theorem D :

Proposition 4.1.3. Let X be a complete median space of �nite rank and let C1, C2 Ď X
be two closed convex subsets such that C1 X C2 “ tx0u. Then, for any x P ConvpC1, C2q,
the interval rx, x0s is isometric to the ℓ1-product of rπC1pxq, x0s and rπC2pxq, x0s.

Proof. For any x P ConvpC1, C2q, we have :

Hprx, x0sq “ Wpx, x0q “ 1 WpπC1pxq, x0q \ WpπC2pxq, x0q

where any halfspace inHpπC1pxq, x0q is transverse to any halfspace inHpπC2pxq, x0q. Hence,
by Proposition 1.2.34 the median space UpHprx, x0sqq is isometric to the ℓ1-product of
UpHprπC1pxq, x0sqq with UpHprπC2pxq, x0sqq. The intervals being closed subsets and the
median space being complete, we conclude by Theorem 2.2.1 that the interval rx, x0s is
isomorphic to UpHprx, x0sqq and that the latter is isomorphic to the ℓ1-product of the two
intervals rπC1pxq, x0s, rπC2pxq, x0s, by Proposition 1.2.34.

Median space of rank greater or equal 2 are are not CAT(0) spaces, they are not even
uniquely geodesic spaces. Nevertheless, convexity in median space being de�ned by mean
of intervals, convex subsets in median spaces are rigid enough to share many properties
that are featured in CATp0q spaces.

Using Proposition 4.1.4, Lemma 1.1.24 and the fact that gate projection are 1-lipschitz,
we deduce the following version of the Sandwich lemma ( [BH99] Exercise II.2.12) :

Proposition 4.1.4 (Proposition 2.21 [Fio19]). Let X be a median space and let C1, C2 Ď

X be two closed convex subset. Then ConvpπC1pC2q, πC2pC1qq is isometric to πC1pC2q ˆ

rx, πC2pxqs where x is any point in πC1pC2q.

Remark 4.1.5. Proposition 4.1.1 can be extended to the case where C1 and C2 admits a
common transverse halfspace by taking the projection of the convex hull between C1 and C2

into the product C1 ˆC2 ˆBpC1, C2q endowed with the ℓ1-product metric. The map is not
necessarily an isometry, it is a 2-lipschitz embedding. For any two points in ConvpC1 YC2q

separated by halfspaces which are transverse to both C1 and C2, the horizontal distance
with respect to C1 and C2 is counted twice in C1 ˆ C2 ˆ BpC1, C2q.

1. This equality comes from Lemma 4.1.2
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4.2 Characterization of compactness by mean of half-

spaces

In the �rst subsection, we recall some results about the convex hull of compact subsets
in a median space. The next subsection is devoted to the proof of Theorem B.

4.2.1 Convex hull of compact subsets

It was shown in [Fio20] that any interval in a median space of rank n embeds isometri-
cally into Rn, see Proposition 2.19 therein. A direct consequence is that the convex hull of
�nite subsets in a �nite rank median space are compact. More generally, the convex hull
of a compact subset in a complete �nite rank median space is also compact, see Lemma
13.2.11 in [Bow22]. In a complete median space, the convex hull of a compact subset is not
necessarily compact. In general, even the interval are not necessarily compact, consider for
instance intervals in L1pRq. However, under the assumption that the intervals of X are
compact, the convex hull between any two convex compact subsets is also compact. Before
giving a proof, we will be needing some results.

Lemma 4.2.1. Let C Ď X be a convex subset and a point x P ra, bs Ď X, we have :

dpx,Cq ď dpa, Cq ` dpb, Cq.

Proof. Any halfspace which separates C from x must separate it either from a or from b
(or from both). Thus we get

dpx,Cq “ µpWpx,Cqq ď µpWpa, Cqq ` µpWpb, Cqq “ dpa, Cq ` dpb, Cq.

We deduce the following lemma :

Lemma 4.2.2. Let X be a complete median space. Then the join between any two closed
convex subsets is closed.

Proof. Let us consider two convex subsets C1, C2 Ď X and let pxnqnPN Ď rC1, C2s be a se-
quence of points converging to x P X. Note that each xn lies in the interval rπC1pxnq, πC2pxnqs.
As gate projections are 1-lipschitz, the sequences pπC1pxnqqnPN and pπC2pxnqqnPN are Cau-
chy sequences. Thus they converge to a P C1 and b P C2 respectively. In the other hand,
we have

dpx, ra, bsq “ dpx,mpx, a, bqq ď dpx, xnq ` dpxn,mpxn, a, bqq ` dpmpxn, a, bq,mpx, a, bqq

“ dpx, xnq ` dpmpxn, a, bq,mpx, a, bqq ` dpxn, ra, bsq

Where the right side tend to zero when n goes to in�nity by the continuity of the
projection and Lemma 4.2.1.
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Remark 4.2.3. The join between two closed subset of a complete median space of �nite
rank is not necessarily closed, even if we assume that the subsets are bounded. Take for
instance the product of the closed segment of the real line with a star like simplicial tree
with in�nite edges of length 1. One may consider then a sequence of points such that their
projections into the star like simplicial tree run injectively through its vertices and their
projections into the closed segment of the real line accumulate around 0 but never attain
it.

Proposition 4.2.4. Let X be a complete median space which have compact intervals. Then
the convex hull between any two compact convex subsets is also compact.

Proof. By Proposition 4.1.1 and Lemma 4.2.2, for any closed convex subset C1, C2 Ď X,
their convex hull embeds as a closed subsets into the ℓ1-product of C1, C2 and BpC1, C2q,
where the latter, by Proposition 4.1.4, is isometric to an interval and a closed convex subset
of C1, which is compact.

In particular, we have the following :

Corollary 4.2.5. Let X be a complete medians space with compact intervals. Then the
convex hull of any �nite subset is compact.

In the following lemma, we show that the Hausdor� limit of compact subsets is a
relatively compact subset :

Lemma 4.2.6. Let X be a complete metric space and let pKiqiPN be a sequence of compact
subsets of X which converge, with respect to the Hausdor� metric, to a subset K Ď X.
Then the closure of K is a compact subset of X.

Démonstration. Note that up to considering the sequence of subsets K̃n “

n
ď

i“0

Kn, there

is no loss of generality to assume that the sequence pKnqnPN is ascending. Let pxiqiPN be
a sequence of points in K and let us show that it contains a subsequence which converge
to a point in X. If there exist Ki such that it contains an in�nite subsequence of pxiqiPN
then we are done. Let us assume then that each Ki contains �nitely many points of pxiqiPN.
For each n P N, let in P N be such that dHauspKin , Kq ă 1

n
. We consider a sequence

px̃n,iqiPN Ď Kin such that dpx̃n,i, xiq ă 1
n
for any i P N. The subset Kn being compact, there

exists subsequence px̃n,ΦpiqqiPN which converges to a point x̃n P Kin . Iterating the same
process for each n and considering at each step a subsequence of the previous subsequence,
we obtain the following con�guration :

� For each n there exist a sequence px̃n,iqiPN Ď Kin such that for any i P N we have
dpx̃n,i, xΦnpiqq ă 1

n
, where each Φn : N Ñ N is an increasing injective map and

Φn`1pNq Ď ΦnpNq.

� Each sequence px̃n,iqiPN converges to a point x̃n P Kin .
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Claim 1 : The sequence px̃nqnPN is a Cauchy sequence.
Let us show that for any n,m P N we have dpx̃n, x̃mq ă 1

n
` 1

m
. Let us �x n,m P N such

that m ě n and consider ϵ ą 0. Let N P N be such that for any integer i ě N , we have
dpx̃n,i, x̃nq ă ϵ and dpx̃m,i, x̃mq ă ϵ. Hence for any i P N such that minpi,Φ´1

n pΦmpiqqq ě N ,
we have :

dpx̃n, x̃mq ď dpx̃n, x̃n,Φ´1
n pΦmpiqqq ` dpx̃n,Φ´1

n pΦmpiqq, xΦmpiqq ` dpxΦmpiq, x̃m,iq ` dpx̃m,i, x̃mq

ď ϵ `
1

n
`

1

m
` ϵ

ď
1

n
`

1

m
` 2ϵ.

The ϵ being arbitrary, we conclude that dpx̃n, x̃mq ă 1
n

` 1
m
.

As the space X is complete, the sequence px̃nqnPN converges to a point x̃.
Claim 2 : The point x̃ is an accumulation point for the sequence pxiqiPN.
Let us �x ϵ ą 0 and consider n P N such that dpx̃, x̃nq ă ϵ. For any i P N big enough such
that dpx̃n, x̃n,iq ď ϵ, we get

dpx̃, xΦnpiqq ď dpx̃, x̃nq ` dpx̃n, x̃n,iq ` dpx̃n,i, xΦnpiqq

ď 2ϵ `
1

n

Which proves Claim 2 and �nishes the proof of the lemma.

4.2.2 Proof of Theorem B

De�nition 4.2.7. Let X be a complete median space of �nite rank and let h P HpXq

be a halfspace. We call the depth of h in A Ď X, that we denote by depthAphq, the
maximum distance between points lying in h X A and the hyperplane ĥ bounding h, i.e.
depthAphq :“ suptdpx, ĥq | x P h X Au.

Before proving Theorem B, we will be needing some lemmas. The following lemma is a
strengthening of Lemma 1.2.16 :

Lemma 4.2.8. Let X be a complete connected median space of rank n and let a, b P X.
Then for any small ϵ ą 0 which is smaller then dpa,bq

n
, there exist a pairwise transverse

halfspaces h1, ..., hk P Hpa, bq, where k ď n, such that for all i P t1, ..., ku we have :

� dphci , bq ě ϵ.

� dpa,
k

č

i“1

hiq ě dpa, bq ´
npn ` 1q

2
ϵ.

Proof. Let us proceed by induction on the rank of X. The lemma is trivially true for
complete connected median space of rank 1, that is, in the case of R-trees.

Let us assume then that the lemma is true for complete connected median space of
rank n ´ 1. Let us �x a, b P X and 0 ă ϵ ď

dpa,bq

n
. Let us consider x P ra, bs such that
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dpx, bq “ nϵ, such point x exists as the space X is connected. By Lemma 1.2.16, there
exists a halfspace h P ∆px, bq such that dphc, bq ě

dpx,bq

n
ě ϵ and dpx, hq “ 0. For simplicity

let us set ã :“ πĥpaq. The hyperplane ĥ being a median space of rank less than n, there exists
then a family of pairwise transverse halfspaces h1, ..., hk P Hpã, xq, where k ď n ´ 1 and

such that for any i P t1, ..., ku, we have dphci , xq ě ϵ and dpã,
k

č

i“1

hiq ě dpã, xq ´
npn ´ 1q

2
ϵ.

Note that each halfspace hi is transverse to h as it is, with its complementary, the lift of
a halfspace of ĥ with non empty interior (see Proposition 4.3.2 below). As the point x
belongs to the interval ra, bs, any halfspace which separates x from hci must also separate
b from hci . Hence each hci is at distance greater than ϵ ą 0 from b. It last to show that the
intersection of h with the hi's is at distance greater than dpa, bq ´

npn`1q

2
ϵ from a. For any

y P p

k
č

i“1

hiq X h, the point ã “ πĥpaq “ πhpaqbelongs to the interval ra, ys. Thus we have :

dpa, yq “ dpa, ãq ` dpã, yq ě dpa, ãq ` dpã, xq ´
npn ´ 1q

2
ϵ (4.2.1)

The equality dpã, xq ` dpa, ãq “ dpa, xq “ dpa, bq ´ nϵ combined with Inequality (4.2.1)
above yields

dpa, yq ě dpa, bq ´ nϵ ´
npn ´ 1q

2
ϵ “ dpa, bq ´

npn ` 1q

2
ϵ.

Lemma 4.2.9. Let C be a complete connected median space of �nite rank which is bounded.
Let h Ă X be a halfspace, then for any ϵ ą 0 such that there is no two disjoint halfspaces
of depth bigger than ϵ contained in h and for any a P h such that dpa, ĥq ě depthcphq ´ ϵ,
the convex hull Convptau Y ĥq it at Hausdor� distance less than pnpn ` 1q ` 1qϵ from h,
where n is the rank of C.

Proof. Let us choose a point a P h such that dpa, ĥq ě depthCphq´ϵ. We set Ch “ Convpĥ, aq

and take a point x P h lying outside Ch. We consider its projections into Ch and ra, πĥpaqs

that we denote by xCh
:“ πCh

pxq and x̃ :“ mpx, a, πĥpaqq respectively (See Figure 4.2.1) .

Let us �rst show that dpx̃, ĥq “ dpxCh
, ĥq. As the interval rπĥpaq, as lies in Ch, we have :

x̃ “ mpx, a, πĥpaqq “ πrπĥpaq,aspxq “ πrπĥpaq,aspπCh
pxqq “ πrπĥpaq,aspxCh

q.

Hence, any halfspace separating x̃ from ĥ, separates a from πĥpaq, therefore it must separate

xCh
from ĥ as well by Lemma 1.1.14. In the other hand, note that any halfspace separating

any point in Ch from ĥ must separate the point a from ĥ as the convex subset Ch is
the convex hull of ĥ Y tau. Hence by Lemma 1.1.14, any halfspace separating xCh

from ĥ
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Figure 4.2.1 � The con�guration arising in the second part of the proof of Lemma 4.2.9

separates also x̃ from ĥ. Therefore, the two walls intervals Wpx̃, ĥq and WpxCh
, ĥq coincide,

which implies the equality dpx̃, ĥq “ dpxCh
, ĥq. We deduce then the following :

dpx, xCh
q “ dpx, ĥq ´ dpxCh

, ĥq

ď depthCpHq ´ dpx̃, ĥq

ď dpa, ĥq ` ϵ ´ dpx̃, ĥq

As x̃ lies in the interval ra, πhpaqs, then its projection into ĥ is precisely the point πhpaq.
Hence dpa, ĥq “ dpx̃, πhpaqq. Replacing the latter in the inequality above, we get :

dpx, xCh
q ď dpa, x̃q ` ϵ (4.2.2)

If the distance between x and Ch is less than pn ` 1qϵ, then there is nothing to show.
Let us assume then that dpx,Chq ě pn`1qϵ, which by Inequality (4.2.2) above, implies also
that dpa, x̃q ě nϵ. Hence by Lemma 4.2.8, there exist two families of pairwise transverse
halfspaces th1, ..., hpu Ď Hpx̃, aq and th1

1, ..., h
1
qu Ď HpxCh

, xq such that the halfspaces hci
and h1c

j are of depth bigger than ϵ and verify the following :

dpx̃,
p

č

i“1

hiq ě dpx̃, aq ´
npn ` 1q

2
ϵ and dpxCh

,
q

č

i“1

hiq ě dpxCh
, xq ´

npn ` 1q

2
ϵ.

By assumption, the halfspace h does not contain two disjoint halfspace of depth bigger
than ϵ. Hence, the halfspaces hci and h1c

j are not disjoint for any i P t1, ..pu and j P t1, .., qu.
In the other hand, any halfspace h in ∆pĥ, x̃q “ ∆pĥ, xCh

q contains the points a and
x (note that they do not not necessarily contain the halfspaces hi and hj). Hence the
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intersection p
č

h1P∆pĥ,x̃q

h1
q contains the interval ra, xs. Therefore by Helly's Theorem 1.1.5,

the intersection p
č

h1P∆pĥ,x̃q

h1
q X p

p
č

i“1

hciq X p

q
č

j“1

h1c
j q is not empty. Let us consider a point y in

the latter intersection and let y1 and y2 be its projections into the interval rxCh
, xs and

rx̃, as respectively. We claim the following :

dpy, ĥq ě dpxCh
, ĥq ` dpxCh

, y1q ` dpx̃, y2q (4.2.3)

Indeed, by construction we have the following inclusion :

Wpy1, xCh
q Y Wpy2, x̃q Y WpxCh

, ĥq Ď Wpy, ĥq.

In the other hand, all the wall intervals arising on the left hand of the inclusion are disjoints,
therefore we get :

µpWpy1, xCh
q Y Wpy2, x̃q Y WpxCh

, ĥqq “ µpWpy1, xCh
qq ` µpWpy2, x̃qq ` µpWpxCh

q, ĥqq

“ dpy1, xCh
q ` dpy2, x̃q ` dpxCh

, ĥq

ď µpWpy, ĥqq “ dpy, ĥq

Having the inequality 4.2.3 in hand, we get :

depthCpHq ě dpy, ĥq

ě dpxCh
, ĥq ` dpy1, xCh

q ` dpy2, x̃q

ě dpxCh
, ĥq ` dpxCh

, xq ´
npn ` 1q

2
ϵ ` dpx̃, aq ´

npn ` 1q

2
ϵ

As dpxCh
, ĥq “ dpx̃, ĥq, we get :

depthCpHq ě dpx̃, ĥq ` dpx̃, aq ` dpxCh
, xq ´ npn ` 1qϵ “ dpĥ, aq ` dpxCh

, xq ´ npn ` 1qϵ.

We deduce then the following :

dpxCh
, xq ď depthCpHq ´ dpĥ, aq ` npn ` 1qϵ ď pnpn ` 1q ` 1qϵ.

Which �nishes the proof.

Proof of Theorem B. Let us �rst remark that there is no loss of generality to assume that
C is a closed convex subset. Indeed, the complete space X being of �nite rank, the convex
hull of C is compact if and only C is compact (see Lemma 13.2.11 [Bow22]). In the other
hand, Remark 1.2.17 implies that if a halfspaces is of depth less than ϵ in C, then it is of
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depth less than n.ϵ in ConvpCq where n is the rank of the space X. Hence, the condition
p3q holds with respect to C if and only if it holds with respect to ConvpCq.

The implication 1 ñ 2 is obvious. Let us �rst show the implication 2 ñ 3. For a �xed
ϵ ą 0 there exist x0, x1, ..., xnϵ P C such that the subset C is at Hausdor� distance less

than ϵ from
nϵ
ď

i“1

rx0, xis. Let h P HpXq be a halfspace transverse to C. If h does not contain

any of the xi, then it must be of depth less than ϵ in C. Thus any halfspace transverse to
C of depth bigger than ϵ must separate x0 from some xi. Therefore there is only �nitely
many pairwise disjoint halfspaces transverse to C and of depth bigger than ϵ.

We now prove the implication 3 ñ 1. By Lemma 4.2.6, it is enough to show that
under the conditions of statement p3q, the set C is the Hausdor� limit of some sequence
of compact subsets. Let us �x ϵ and consider a family Hϵ of maximal cardinal of pairwise
disjoint halfspaces transverse to C and of depth bigger than ϵ in C. The maximality implies
that each halfspace h P Hϵ does not contain two disjoint halfspaces of depth bigger than ϵ
in CXh. As we are considering only halfspaces which are transverse to the convex subset C,
we may forget about the ambient space X and assume that each halfspace is a halfspace of
C, up to taking the intersection with the latter (see Remark 1.1.15 and Proposition 4.3.1).
Under the assumption of statement p3q, the set Hϵ is �nite. Let us set Cϵ “ Convp

ď

hPHϵ

ĥq

and �rst show that it is at Hausdor� distance less than nϵ from C z
ď

hPHϵ

h. Let x P C be a

point lying outside all of the halfspace h P Hϵ. Note then that any halfspace separating x
from Cϵ is disjoint from any halfspace in Hϵ. Hence by the maximality of the family Hϵ,
any halfspace separating x from Cϵ is of depth less than ϵ in C. Therefore, we conclude by
Lemma 1.2.16 that the point x is at distance at most nϵ from Cϵ.

For each h P Hϵ, we choose a point ah P h such that dpah, ĥq ě depthCphq ´ ϵ. We set
Ch :“ Convptahu Y ĥq and use Lemma 4.2.9 to conclude that it is at Hausdor� distance
less than pnpn ` 1q ` 1qϵ from h.

Let us set C̃ϵ “
ď

hPHϵ

Ch Y Cϵ. We have shown that C̃ϵ is at Hausdor� distance less than

pnpn ` 1q ` 1qϵ from C. It last to show that it is compact. We proceed by induction on
the rank of C. Note that when the rank of C is 1, then the hyperplane corresponds to a
point. Hence by Proposition 4.2.4, the subset C̃ is compact as it is a �nite union of the
convex hull of compact subsets. Let us assume now that the rank of C is equal n and
that the implication 3 ñ 1 is true for median space of rank less or equal n ´ 1. Since we
have assumed Condition p3q to be true, it is veri�ed by each hyperplane ĥ. Therefore each
hyperplane ĥ is compact. We conclude then by Proposition 4.2.4 that C̃ϵ is compact, which
�nishes the proof.

For the general case when the rank is in�nite, it is harder to manipulate halfspaces as
they may all be dense in the space and even if it is the case, one can no longer use an
argument by induction on the rank of the space. Let us give a criterion of local compactness
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in the in�nite rank case :

Proposition 4.2.10. Let X be a complete median space with compact intervals and let
K Ď X be a closed subset. If the outer measure of the set of transverse halfspaces to K is
�nite,
i.e µ̄pHpKqq ă `8, where µ is the canonical measure associated to HpXq, then K is
compact.

Let us �rst make the following remarks :

Remark 4.2.11. � If X be a complete median space and K Ď X a subset such that
µ̄pHpKqq ă `8, then the convex hull of K is bounded. This is �rst due to the
fact that the set of halfspaces which are transverse to K is the same as the set of
halfspaces which are transverse to the convex hull of K. In the other hand, having a
sequence of points which is unbounded give rise to a sequence of wall interval with
an arbitrarily big measure.

� The converse of Proposition 4.2.10 is false, even in the �nite rank case. One may
consider a star like tree obtained from the concatenation of the intervals r0, 1

n
s at

t0u.

Proof of Proposition 4.2.10. Let K Ď X be a closed subset such that µ̄pHpKqq “ M . By
Remark 4.2.11, there is no loss of generality if we consider the closure of the convex hull of
K. Let us �rst remark that for any x, y P X, the set of halfspaces which separate x from
y is exactly the same as the set of halfspaces separating πKpxq from πKpyq. Hence, for any
ϵ ą 0, there exist x1, y1, ..., xnϵ , ynϵ P K such that Wpxi, yiq and Wpxj, yjq are disjoint for
any i ‰ j and :

µp

nϵ
ď

i“1

Wpxi, yiqq “ µp

nϵ
ÿ

i“1

dpxi, yiqq ě M ´ ϵ.

Let consider the convex hull of all the point Cϵ “ Convptx1, y1, ..., xnϵ , ynϵuq and a point
x P K. Then any halfspace separates x from Cϵ if and only if it separates x from all the
points xi and yi. Thus, we must have µpWpx,Cϵqq ď ϵ. Let us then consider a sequence
C 1

n
de�ned as above. We may assume that the sequence pC 1

n
qnPN is ascending with respect

to the inclusion. By Proposition 4.2.5, each subset C 1
n
is compact. In the other hand,

the sequence pC 1
n

qnPN converges with respect to the Hausdor� metric to C “

i
ď

nPN

C 1
n
. As

each C 1
n
is compact, the subset C is totally bounded. Thus its closure is a compact which

contains the closed subset K. We conclude that the subset K is also compact.
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4.3 Transitive actions on median spaces of �nite rank

and local compactness

4.3.1 Trace of halfspaces on convex sets

Throughout this section X is a complete connected median space of �nite rank.
Let us denote the set of hyperplanes of X by ĤpXq and deduce from Remark 1.1.15

that any hyperplane in a closed convex subset is induced from a hyperplane of the ambient
space as stated in the following :

Proposition 4.3.1. Let C Ď X be a closed convex subset. We have then :

ĤpCq “ tĥ X C | ĥ P ĤpXq and separates two points of Cu.

Proof. By Remark 1.1.15, it is enough to show that for any halfspace h which is transverse
to C we have h X C “ h̄ X C. The inclusion h X C Ď h̄ X C is obvious. For the converse,
let us take a sequence pxnqnPN Ď h which converges to a point x P C. We denote by
yn :“ πCpxnq their projection into the closed convex set C. As h X C is not empty, we get
that pynqnPN Ď h X C. Due to the continuity of the projection, the sequence pynqnPN Ď h
converges to πCpxq “ x.

Let C Ď X be a convex subset and h Ď X a halfspace. We call the trace of the
hyperplane ĥ on C the intersection ĥ X C.

Proposition 4.3.2. Let C Ď X be a closed convex subset and h P HpXq be a halfspace.
Then the lift of any halfspace T of ĥ X C to the ambient space X is a halfspace transverse
to h assuming that T and its complementary are of non empty interior inside ĥ X C.

Proof. Let T P Hpĥ X Cq be an halfpsace of the trace of the hyperplane ĥ on the convex
subset C. To show that the lift of T to X is transverse to h, it is enough to show that
there exist points in h and hc which projects into T and another ones which projects into
T c X C X ĥ. The halfspace T being inside the trace of the hyperplane ĥ, for any point x in
the interior of T or its complementary inside ĥ X C, there exists a sequence pxnqnPN inside
h X C which converge to x. Taking the index n big enough, the point xn projects inside a
small neighborhood of x in T .

Remark 4.3.3. The proposition will no longer be true if we drop the assumption on T
and its complementary being both of non empty interior. One may consider for instance
the following subspace of pR2, ℓ1q :

X “ tpx, yq P R2
| x ď 0u Y tpx, yq P R2

| y ´ x ě 0u.

We take the convex subset C to be the half line x “ 0 and T , a halfspace of C, to be
the trace of the halfspace h :“ tpx, yq P X | y ą 0u. The convex subset C is also the
hyperplane which bounds the halfspace de�ned by the inequality x ą 0. The lift of p0, 0q,
the complement of T inside C, is not transverse to h as it is disjoint from it.
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Proposition 4.3.4. Let C Ď X be a convex subset which isometric to an n-cube pr´ϵ, ϵs, ℓ1q

where n is the rank of X. Let h P HpXq be a halfspace in X which is disjoint from C. If
its hyperplane ĥ intersects the interior of C, then there exist h1, h2 P HpXq such that they
constitute with the halfspace h a facing triple in X and ĥ X ĥ1 X ĥ2 ‰ H.

Proof. Let us identify C with r´ϵ, ϵsn. By Proposition 4.3.2, the rank of ĥ X C is smaller
than n. Hence the latter is contained in a hyperplane of C, let us say the hyperplane
given by the equation x1 “ 0. Then the lift to the ambient space of the two halfspaces
H1 “ tpx1, ..., xnq P C | x1 ą 0u and H2 “ tpx1, ..., xnq P C | x1 ă 0u give us the desired
halfspaces. Indeed, Lemma 1.1.14 tell us that h projects into h X C “ ĥ X C, which is
outside H1 and H2.

Finally we deduce the following corollary in the case where the median space admits a
transitive action :

Corollary 4.3.5. Let X be a complete connected median space of rank n. Let x P X and
let pr´ϵ, ϵsn, ℓ1q – C Ď X be an isometrically embedded n-cube centred at x. If HxpXq does
not contain a facing triple, then it coincides with HxpCq.

Proof. By Remark 1.1.15, it is enough to show that any halfspace in HxpXq is transverse
to the n-cube C. Let us consider a h P HxpXq branched at x. The set HxpXq does not
contain a facing triple and the intersection ĥ X C is not empty as both contain the point
x, hence Proposition 4.3.4 implies then that the halfspace h is necessarily transverse to
C.

4.3.2 Proof of Theorem D

Proof of the �rst claim of Theorem D : LetX be a complete connected median space
of �nite rank which admits a transitive action. Let us �x a maximal pairwise transverse
family of halfspaces H “ th1, ..., hnu in HpXq. Let us set the following

Di :“
č

j‰i

ĥj (4.3.1)

Let us show that each Di is a strongly convex isometric embedding of an R-tree.

Proposition 4.3.6. Each Di, endowed with the induced metric of X, is a complete connec-
ted median space of rank 1.

Let us �rst show the following lemma :

Lemma 4.3.7. Let X be a complete connected median space of �nite rank. We assume that
there exist two transverse halfspaces h1, h2 Ď X. Then there exist two transverse halfspaces
such that both them and their complements are of non empty interior inside X.
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Proof. Let us consider two transverse halfspaces h1, h2 Ď X. By Proposition 1.2.10 and
up to considering the complement, we may assume that they are both open in X. Let us
consider a point x P h1 Xh2. Let us set the following xi :“ πhci

pxq and x0 :“ πhc1Xhc2
pxq. Note

that x0 “ πhc1
px2q “ πhc2

px1q by Lemma 1.1.14. The halfspaces h1 and h2 being both open,
the points x1 and x2 are distinct from x0. Let us set C :“ Convprx0, x1s Y rx0, x2sq and set
x̃ :“ πCpxq. Note that πhci

px̃q “ xi. As rx0, x1s X rx0, x2s “ tx0u, Proposition 4.1.3 implies
that the interval rx̃, x0s is isometric to the ℓ1-product rx0, x1s ˆ rx0, x2s. Hence, the lift to
X of any halfspaces H1 P Hprx, x1sq and H2 P Hprx, x2sq, such that Hi and Hc

i are of non
empty interior in rx, xis, yields two transverse halfspaces such that both them and their
complements are of non empty interior in X.

Proof of Proposition 4.3.6. By Helly's Theorem 1.1.5, eachDi is a non empty closed convex
subset of X and it intersects both hi and hci . Hence, each Di is of rank bigger then or equal
one. It is left to show that it is of rank smaller then two. If there exist two transverse
halfspaces in Di, Lemma 4.3.7 ensures that there is no loss of generality if we assume them
to be with their complement inside Di of non empty interior. In the other hand, Proposition
4.3.2 implies that the lift of such halfspaces to the ambient space X yields halfspaces which
are transverse to each hj where j ‰ i, which would contradict the maximality of the family
phiq.

Following the same argument of the proof of Proposition 4.3.6, we note that for i ‰ j,

we have Di X Dj “

n
č

k“1

ĥk “ ta0u for some a0 P X.

In the following, we show that any point is the center of an isometrically embedded
n-cube.

Lemma 4.3.8. Under the assumptions that the median space X is complete and admits a
transitive action, there exists ϵ ą 0 such that any x P X is the center of an isometrically
embedded convex n-cube pr´ϵ, ϵsn, ℓ1q centred at x.

Proof. By the transitivity assumption of the isometry group of X, it is enough to show
the existence of an isometrically embedded n-cube in X. By Helly's Theorem 1.1.5, the

intersection
n

č

i“1

hi is not empty. Let us consider a point a in the latter intersection. Again by

Helly's Theorem, the intersections hi XDi are not empty and do not contain a0, hence the
projection of a into Di avoid a0. Let us set ai :“ πDi

paq. By Proposition 4.3.6, each interval
ra0, ais is isometric to closed interval of R. Let us denote by C the convex hull between the
R-trees Di. By Lemma 4.1.3, the interval ra0, πCpaqs is isometric to the ℓ1-product of the
intervals ra0, ais, thus completing the argument.

Let us assume now that the set Ha0pXq does not contain a pairwise disjoint triple of
halfspaces. Remark that the transitivity assumption implies then that for any x P X the
set HxpXq does not contain such triple.
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Proposition 4.3.9. Each Di, as de�ned in the beginning of Subsction 4.3.2 Equality
(4.3.1), is isometric to the real line.

Proof. By Proposition 4.3.6, we already know that each Di is a closed convex subset of
rank 1, hence it is isometric to a complete connected R-tree. Under the assumption that
the set Ha0pXq does not contain any facing triple, Remark 1.1.15 and Helly's Theorem
1.1.5 imply that no Di can contain a facing triple. Hence, each Di is isometric to an
interval of the real line. To conclude that it is isometric to the real line, it is enough to
show that any point in Di lies in the interior of an interval in Di. Let us consider a point
x P Di. By Lemma 4.3.8, there exists an embedded n-cube C –s ´ ϵ, ϵrn in X centred at
the point x. Under the assumption that there is no facing triple in HxpXq, Corollary 4.3.5
implies that the halfspace hj, for any j ‰ i, are transverse to the n-cube. We have then
p
č

j‰i

ĥjq X C –s ´ ϵ, ϵrĎ Di. As Di identi�es with an interval of R, the latter intersection

intersection is open in Di, which �nish the argument.

Now, we have all the ingredients needed to prove the �rst part of Theorem D :

Proposition 4.3.10. The convex hull of the lines Di contains X and is isometric to
pRn, ℓ1q.

Proof. We set C :“ ConvpD1 Y ... Y Dnq. The set C is a closed subset of the complete
median space X, as it is the convex hull of �nitely many closed convex subsets, hence it is
also complete. By Proposition 4.1.1, it embeds isometrically, through the projections onto

the Di's, as a closed subset of
n

ź

i“1

Di – Rn. It is enough to show that the embedding is open

to conclude that it is surjective. In our way proving that, we prove also that C contains
X. Let us take a point x P X and consider the family hi,l :“ π´1

Di
ps ´ 8, πDi

prxqrq, hi,r :“

π´1
Di

prπDi
prxq,`8rq, where rx :“ πCpxq and each Di is identi�ed with R. By Remark 1.1.15,

each hi,l and hi,r is a halfspace of X. By Lemma 4.3.8, there exists an n-cube centered
at x̃. Thus by Corollary 4.3.5, the family of halfspaces th1,l, h1,r, ..., hn,l, hn,ru and their
complementary in X constitutes all the elements of Hx̃. In one hand, this implies that the
projection map pπD1 , ..., πDnq is open. In the other hand, by Lemma 1.2.14 we get :

n
č

i“1

phi,l X hi,rq “ trxu.

As the projections onto each Di factor through the projection onto C, that is πDi
pxq “

πDi
pπCpxqq “ πDi

px̃q, the point x lie in phi,l X hi,rq for any i P t1, ..., nu. Hence, we get
x “ x̃, which proves that C “ X and complete the proof.

Proof of the second part of Theorem D The idea of the proof is to show that
under the assumption of the existence of a facing triple in Ha0 and a transitive action on
X, there exist in�nitely many pairwise disjoint halfspaces with depth uniformly bounded
below inside any ball centred at a0. Let us �rst show that any halfpaces in Ha0 is of positive
depth inside any ball centred at a0.
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LOCAL COMPACTNESS

Proposition 4.3.11. Let X be a complete connected median space of �nite rank which ad-
mits a transitive action. Then for any halfspace h P Ha0 and r ą 0, we have depthBpa0,rqphq ą

0.

Proof. Let h P Ha0 be a halfspace containing the point a0 in its hyperplane. If the halfspace
h is open, its depth inside any ball centered at a0 is positive. Let us assume then that the
halfspace h is closed. By Proposition 4.1.3, there exists an isometrically embedded n-cube
C – r´ϵ, ϵsn where n is the rank of the space X. The action being transitive, we can assume
that the n-cube is centred at a0. If the halfspace h is transverse to the n-cube C, then it
gives rise to a halfspace of C which contains a0 and which is of positive depth inside C.
If h is not transverse to C, then it will contain it. Let us consider then the trace of the
hyperplane ĥ which bounds the halfspace h, on the n-cube, that is, its intersection with the
latter. Let us denote it by Ĉ. It is a convex subset which contains a0. The rank of X being
n, Proposition 4.3.2 implies that the convex subset Ĉ is of rank less than n ´ 1. Again,
there exist then points inside C which are at positive distance from Ĉ, hence from ĥ.

Proof of the second part of Theorem D. Let us �x a point a0 P X and show that under
the assumptions of Theorem D, any neighbourhood of a0 contains in�nitely many disjoint
halfspaces of depth bigger than some ϵ ą 0 inside the latter neighbourhood. We will
conclude then by Theorem B that the space is not locally compact.

The action of IsompXq being transitive, by Lemma 4.3.8, there exists an isometrically
embedded n-cube C – pr´η, ηsn, ℓ1q centred at a0. Let us parametrize the n-cube by
x1, ..., xn and identify a0 with p0, ..., 0q. Let h1, h2, h3 P Ha0 be a facing triple. By Proposition
4.3.11, each of the hi is of positive depth inside any ball centred at x0. For any point x
inside the n-cube, there exists an isometry g P IsompXq which maps a0 to x. At least,
the image of one of the hi's by the isometry g is disjoint from the n-cube. Hence, for any
r Ps0, ηr there exists a halfspace hr P Hpr,...,rq which is disjoint from the n-cube and of
depth bigger than some uniform ϵ. The trace of the hyperplane ĥr on the n-cube C is a
convex subset of rank less than n containing the point pr, ..., rq. Hence, it is contained in a
hyperplane of the n-cube C given by an equation of the form xir “ r. Thus, there exists an
in�nite subset I Ďs0, ηr such that for any r1, r2 P I, the trace of the hyperplane ĥr1 on the
n-cube is disjoint from the trace of the hyperplane ĥr2 . By Lemma 1.1.14, if the halfspaces
hr1 and hr2 intersect, then projection of their intersection into the n-cube C lies inside
ĥr1 X ĥr2 . Hence, for any such r1 and r2, the halfspaces hr1 and hr2 are disjoint. Therefore,
the set pHrqrPI give us the desired in�nite family of pairwise disjoint halfspaces of depth
bigger than some uniform ϵ ą 0.

4.3.3 A comment on a weaker assumption in Theorem D

One may weaken the assumption in Theorem D and assume the action of IsompXq to
be topologically transitive instead of transitive, that is, it admits a dense orbit. The same
strategy works, we divide the theorem into condition on the existence of a facing triple in
the neighbourhood of a points. Theorem D adapts into the following :
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Theorem 4.3.12. Let X be a complete connected median space of rank n which admits a
topologically transitive action. If there exist x P X and ϵ ą 0 such that the set of halfspaces
HpBpx, ϵqq contains no facing triple then the space X is isomorphic to pRn, ℓ1q.

The second part reformulates into the following :

Proposition 4.3.13. Let X be a complete connected median space of rank n which admits
a topologically transitive action. If there exists x P X such that for any ϵ ą 0, the set of
halfspaces HpBpx, ϵqq contains a facing triple, then the space X is not locally compact.

The proof of Proposition 4.3.13 follows exactly the path of the proof of the second
part of Theorem D. Regarding the proof of Theorem 4.3.12. One shows that under its
assumption, we obtain the same result as in Corollary 4.3.5, that is, the space X is locally
isometrically modelled on pRn, ℓ1q. The rest of the arguments follow more or less the same
path.

4.4 Actions with discrete orbit

The aim of this section is to show that an isometric action which is Roller non elemen-
tary, Roller minimal and minimal on a complete locally compact median space of �nite
rank has discrete orbits.

We �rst remark that under the minimality assumption, every halfspaces are thick. We
say that an action is minimal if the convex hull of any orbit is the whole space.

Proposition 4.4.1. Let X be a complete connected median space which admits a minimal
action. Then any halfspace is thick.

Proof. Let us assume that X is of rank n, there exist then a n-cube isometrically embedded
into X. Let us denote by a0 its center. Let h P HpXq be a halfspace in X. Under the
assumption of the existence of a minimal action, there exist an isometry which maps the
center of the cube a0 into h. We obtains embedded n-cube which has it center inside h. The
rank of X being n, at least a lift of one canonical halfspace of the n-cube which contains
the center, contains the halfspace hc. We consider then a point inside the n-cube which
is at positive distance from the corresponding halfspace. the latter point is necessarily at
positive distance from hc.

Any complete connected median space X is geodesic (see Lemma 13.3.2 [Bow22]).
Hence by Hopf-Rinow Theorem, showing that a median space X is not locally compact is
equivalent to �nd a closed ball which is not compact.

Lemma 4.4.2. Let X be a median algebra of �nite rank and let H Ď HpXq be an in�nite
subset of halfspaces such that any h1, h2 P H are either transverse or disjoint. Then there
exists an in�nite subset H1 Ď H of pairwise disjoint halfspaces.
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Proof. Let us consider the dual graph Γ ofH, that is, the non oriented graph whose vertices
are the halfspaces of H and two vertices are joined by and edge if the halfspaces labelling
the vertices are transverse, i.e. Γ :“ pV,Eq such that V “ H and ph1, h2q P E if and only if
h1 and h2 are transverse. Thus, �nding an in�nite family of pairwise disjoint halfspaces in
H translates into �nding an in�nite subset A of the graph Γ consisting of vertices which
are pairwise non adjacent. As the rank of the space X is �nite, the graph Γ corresponds to
the 1-skeleton of �nite dimensional simplicial complex. The set of vertices being in�nite,
the graph is unbounded with regard to its combinatorial metric. Therefore such subset A
exists.

Let G be a group acting by isometries on a median space X. We denote by StabGpxq

the subgroup of G consisting of isometries which stabilize the point x. If G “ IsompXq we
simply write Stabpxq. We have the following proposition :

Proposition 4.4.3. Let X be a complete connected locally compact median space of �nite
rank and let x0, x P X. If all the halfspace of Hx are thick then the orbit Stabpx0q.x is
�nite.

Before proving the proposition, we will be needing some results. We have the following
lemma which states that any point x0 P X is determined by the couple x P X and Hx X

Hpx0, xq :

Lemma 4.4.4. Let X be a complete connected median space of �nite rank. Let us consider
x, x0 P X and set C :“

č

hPHxXHpx0,xq

h. We have then πCpx0q :“ x.

Note that the convex subset C is closed by Remark 1.2.12, hence the nearest point
projection onto C exists.

Proof. By Remark 1.1.15 and Proposition 1.2.14, we have :

C X rx0, xs “ p
č

hPHxXHpx0,xq

hq X rx0, xs “ txu.

We conclude by Lemma 1.1.14 that πCpx0q “ x.

Lemma 4.4.5. Let X be a complete connected median space of �nite rank and let x P X.
Then for any isometry g P Stabpx0q and a closed halfspace h P HpXq such that x0 P hc, the
halfspaces h and g.h are either transverse or disjoint.

Proof. Let us consider g P Stabpx0q and a closed halfspace h P H1. As both hc and pg.hqc

contains x0, it is enough to show that we have g.h Ď h if and only if g.h “ h. Note that
the same conclusion will yield with regards to the case when h Ď g.h as we have g.h Ď h if
and only if h Ď g´1.h. Let us assume then that g.h Ď h. We set x̃0 :“ πhpx0q and �rst show
that πg.hpx0q “ x̃0. In one hand, We have x̃0 P rπg.hpx0q, x0s, which implies that :

dpπg.hpx0q, x0q “ dpπg.hpx0q, x̃0q ` dpx̃0, xq.
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In the other hand, we have

dpx0, x̃0q “ dpg.x0, g.x̃0q “ dpx0, πg.hpgpx0qqq “ dpx0, πg.hpx0qq.

Hence, we have dpx̃0, πg.hpx0qq “ 0.
Finally, we deduce that for any point a P h we have x̃0 P ra, x0s. As x0 P pg.hqc and

x̃0 P pg.hq, the point a cannot lie outside g.h. Therefore, we do have g.h “ h.

Proof of Proposition 4.4.3. Let us consider x0, x P X and g P Stabpx0q. We denote by
H1

x the set of minimal halfspaces in Hx X Hpx0, xq. By Lemma 4.4.4, any point x P X is
determined by the point x0 and the setH1

x. Hence, it is enough to show that the orbit of any
halfspace by Stabpx0q is �nite. By Lemma 4.4.5, the union of the orbit of each halfspace in
H1

x under Stabpx0q constitutes a family of halfspaces which are either transverse or disjoint.
The space X being assumed to be locally compact, the �niteness of the latter family is
ensured by Lemma 4.4.2 and Theorem B.

Proof of Theorem A. By Proposition 4.4.1, the minimality assumption on the action im-
plies that all halfspaces of X are thick. Let us show that if X admits an action which is
Roller minimal and Roller non elementary with a non discrete orbit, then it is not locally
compact. Let us set G :“ IsompXq and let x0 P X such that G.x0 is non discrete. By
Proposition 3.2.20, there exists a facing triple of thick halfspaces h1, h2, h3 P HpXq which
are uniquely determined by a point x P hc1 X hc2 X hc3 in the sense that for any xi P hi, we
have mpx1, x2, x3q “ x. Let us �x R ą 0 and let K Ď IsompXq such that dpx0, gi.x0q ď R
for any g P K. As the orbit of x0 under G is not discrete, the subset K is in�nite. If
K.x is �nite, this implies that the orbit of x0 under Stabpxq is in�nite. Hence, by Pro-
position 4.4.3 the space X would not be locally compact. Let us assume then that K.x
is in�nite. By Proposition 1.2.13 and Theorem B, it is enough to �nd an in�nite subset
in H :“ K.h1 Y K.h2 Y K.h3 which consists of halfspaces which are pairwise disjoint. If
H does not contain an in�nite chain then by considering the minimal element of each
maximal chain, one obtain a subfamily of halfspaces which are either transverse of disjoint.
Hence, by Lemma 4.4.2, there exist an in�nite subfamily of pairwise disjoint halfspaces.
Let us assume then that there exists an in�nite countable chain H1 Ď H. As h1, h2 and h3
are disjoints, the chain H1 is given by pg1,n.hinqnPN where g1,n P K and in P t1, 2, 3u. Let
us set H1 :“

ď

iPN

pg1,n.h1 Y g1,n.h2 Y g1,n.h3q and note that H1zH1 is in�nite. Again, If the

subset H1zH1 does not contain an in�nite chain then we are done. Let us assume then that
H1zH1 contains an in�nite chain H2. Such chain is given by pg2,n.hjnqnPN where g2,n P K
and jn P t1, 2, 3u. Note that as the halfspaces h1, h2 and h3 are pairwise strongly separated,
for any isometry g P G, the halfspace g.hi cannot intersect two halfspaces in th1, h2, h3u.
Hence, if for each i P t1, 2, 3u such that g.hi intersects a halfspace in th1, h2, h3u, then there
exists a permutation σ P S3 such that g.hi intersects only the halfspace hσpiq. In the latter
case, we necessarily have gpxq “ x as for any xi P hi X hσpiq we have mpx1, x2, x3q “ x
and mpx1, x2, x3q “ gpxq. As we are considering the isometries g P K such that gpxq ‰ x,
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we conclude that the in�nite subset
ď

iPN

pg2,n.h1 Y g2,n.h2 Y g2,n.h3qzpH1 Y H2q consists of

pairwise disjoint halfspaces, which completes the proof.
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