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Abstract

In this thesis, we propose some probabilistic numerical approximation with appli-
cation in carbon emission market as well as PnLL hedging. Including a theoretical
splitting scheme by treating differently transport equation and diffusion equation,
an alternative particles and tree-based scheme, and approximate computation for
PnL hedging.

In the first part of this thesis, we focus on the numerical approximation of a
class of Forward-Backward Stochastic Differential Equations(FBSDEs) which have
a degenerate forward component and non-regular terminal condition. It is proposed
in [20] for carbon emission market modelling and studied in [19]. We propose a new
theoretical splitting scheme for solving this FBSDE systems in a high-dimensional
setting. This scheme consists of separating diffusion and non-linear transport parts.
We also manage to prove a convergence rate results for our theoretical scheme under
structural assumptions.

In practice, in order to be able to implement this scheme, we propose a discrete-
time version combining finite difference method for transport operator and non-linear
regression method for diffusion operator. We employ conservative finite difference
methods such as Lax-Friedrichs and Upwind approximation. Concerning non-linear
regression part, we propose a backward scheme involving deep neural networks to
overcome the curse of dimensionality of process P, inspired by the scheme DBDP1
in Huré et al. [18].

To validate empirically the numerical results obtained with the non-linear regres-
sion scheme, it is necessary to have a proxy. For this purpose, we propose an another
numerical scheme in moderate dimension of P based on splitting scheme but combine
a particle method with tree-like regression. In particular, we employ the celebrated
Sticky Particle Dynamics (SPD) [53, 55] to approximate the transport operator. In
the second work, we study the convergence error by decomposition: local error due
to transport operator, propagation error, diffusion error as well as splitting error,
and we prove a theoretical convergence bound of rate 1/6 with respect to time step
for this alternative scheme under some assumptions by considering the convolution
with respect to smooth compactly supported probability density function.

In the second part of this thesis, we focus on a class of non standard control
problems in which we impose on the controlled process a constraint involving its
law at a terminal time. The classical example is the so-called quantile hedging see
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e.g. [30]. We first introduce weak hedging problem and encapsulate all possible
cases for target measure pu: discrete and finite or arbitrary in a general setting.
Especially, in linear framework we establish an explicit representation via optimal
transportation for weak hedging problem in the case where u a probability measure,
and for p a discrete and finite measure, we also obtain a new dual characterisation
for “Kantorovich version” problem. Based on this dual formulation, we propose a
new numerical approach using SGD algorithms. Several numerical tests are run
showing quite satisfactory results.

Keywords: singular FBSDEs, splitting scheme, non-linear regression, deep learn-

ing, sticky particle dynamics, quantile hedging, optimal transport, duality, stochastic
gradient descent.
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Résumé

Dans cette thése, nous proposons une approximation numérique probabiliste avec
une application au marché des émissions de carbone ainsi qu’a la couverture PnL.
Y compris un schéma de splitting théorique en traitant différemment I’équation de
transport et ’équation de diffusion, un schéma alternatif basé sur les particules et
I’arbre, et le calcul pour 'approximation de la couverture PnL.

Dans la premiere partie de cette these, nous nous concentrons sur ’approximation
numérique d’une classe d’équations différentielles stochastiques progressifs et rétro-
grades (EDSPRs) qui ont une composante forward dégénérée mais aussi une condi-
tion terminale irréguliere. Il est proposé dans [20] pour la modélisation du marché
des émissions de carbone et étudié dans [19]. Nous proposons un nouveau schéma
de splitting théorique pour résoudre ces systemes EDSPRs dans un cadre de grande
dimension. Ce schéma consiste a séparer les parties de diffusion et celles de trans-
port non linéaire. Nous parvenons également a prouver un résultat de ordre de
convergence pour notre schéma théorique sous I’hypothese minimale.

En pratique, afin de pouvoir implémenter ce schéma, nous proposons ainsi une
version en temps discret qui combine la méthode des différences finies pour 'opérateur
de transport et la méthode de régression non linéaire pour I'opérateur de diffusion.
Nous utilisons des schéma a la loi de conservation aux différences finies comme Lax-
Friedrichs et Upwind. Concernant la partie régression non linéaire, nous proposons
un schéma rétrograde en utilisant deep learning pour franchir “curse of dimension-
ality” du processus P, inspiré du schéma DBDP1 proposé dans Huré et al [18].

Pour valider empiriquement les résultats numériques obtenus avec le schéma
de régression non linéaire ci-dessus, il est nécessaire d’avoir un proxy de solution.
Pour cela, nous proposons un autre schéma numérique en dimension modérée de
P basé sur le schéma de splitting mais avec une méthode particulaire avec une
régression par les arbres. En particulier, nous utilisons la célebre dynamique des
particules collantes (SPD) pour approximer 'opérateur de transport. Dans le second
travail, nous étudions la décomposition de ’erreur : erreur locale due a 'opérateur
de transport, erreur de propagation, erreur de diffusion ainsi que erreur de splitting,
et nous prouvons un ordre de convergence théorique pour ce schéma alternatif sous
I’hypothése minimale en introduisant la convolution par rapport a fonction de densité
de probabilité smooth avec un support compact.

Dans la deuxiéme partie de cette theése, nous nous intéressons a une classe de



problemes de contrdle non standard dans lesquels nous imposons au processus con-
trolé une contrainte sur sa loi au temps terminal. L’exemple classique est ce qu’on
appelle la couverture quantile voir e.g. [36]. Nous introduisons d’abord probléeme
de couverture faible et encapsulons tous les cas possibles pour la mesure cible p :
discrete et finie ou arbitraire dans un cadre général. En particulier, nous établissons
une représentation explicite via transport optimal pour le probléme de couverture
faible dans le cas p une mesure de probabilité. Et pour p une mesure discrete et
finie, nous obtenons également une nouvelle caractérisation duale pour le probléme
de “Kantorovich”. A partir de cette formulation duale, nous proposons une nou-
velle approche numérique qui se base sur des algorithmes de descente de gradient
stochastique. A la fin, nous démontrons également numériquement l'efficacité de
notre méthode pour plusieurs cas.

Mots clé: EDSPRs singuliers, schéma de splitting, régression non linéaire, deep

learning, dynamique de particules collantes, quantile hedging, transport optimal,
dualité, descente de gradient stochastique.
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Résumé détaillé

Ce manuscrit étudie les méthodes numériques pour les équations différentielles sto-
chastiques progressives et rétrogrades (EDSPRs) singuliéres et approximation de
la couverture PnL.

Partie I : Méthodes numériques pour EDSPRs singuliéres de grande
dimension (Chapitres 2 et 3)

Soit (€2, F,P) une base stochastique qui supporte un mouvement brownien W de
dimension d et T' > 0 un temps de maturité. On note (F;)>o la filtration engendrée
par le mouvement brownien (augmentée et complétée). On considere tout d’abord
une classe générale de systeme EDSPR singuliére qui prend la forme suivante :

t t
Xy = Xo + J a(sv Xs, Vs, Zs)ds + f b(sa Xs, Vs, Zs)dW87 (001)
0 0
T T
Ve =g(Xr) + J f(s, Xs, Vs, Z5)ds — J Z - AW, (0.0.2)
t t

dans le cas de coefficients de fonctions déterministes et sous des hypotheses appro-
priées, le processus X ci-dessus apparait comme les “caractéristiques aléatoires” de
I’EDP quasilinéaire suivante :

U + a(-) TV Ul + Te[bT6V2U)] + (U, 6TV U()) =0, (0.0.3)

et le lien avec (0.0.2) est donné par Yy = U(t, X;) et en supposant une certaine régu-
larité, on aura Z; = b V,U(t, &X;), voir par exemple [63]. De nombreuses difficultés
sont rencontrées dans I’étude théorique des systemes de type (0.0.1)-(0.0.2) en raison
du couplage entre deux équations. Méme dans le cas Lipschitz pour les coefficients
(a,b,f,g), Uexistence et 'unicité ne sont pas garanties sans hypothéses supplémen-
taires. Néanmoins, un cas particulier du systeme EDSPR ci-dessus a été initialement
introduit par Carmona, Delarue, Espinosa et Touzi dans [20] pour la valorisation des
dérivés des émissions de carbone, étudiée ensuite en cas général dans [19], sous des



Résumé détaillé

hypothéses minimales, admet une solution (P, Ey, Y;, Zt)o<i<T telle que :

dPt = b(Pt)dt + O'(Pt)th
Yy, = Z,-dWw,

La fonction b : R — R4 o : RY — My, ot My est Pensemble des matrices d x d
sur R et 1 : R x R* — R sont Lipschitz continues. Ce systéme peut modéliser des
systemes “cap-and-trade”, dans lesquels une autorité centrale fixe un plafond ou une
limite sur le total des émissions de carbone cumulées pour les acteurs du marché, et
des pénalités seront payées si I’émission total dépasse la limite d’émission au temps
terminal 7. Et nous disons que Y est le prix d’un droit de polluer, E est I’émission
totale cumulée du polluant et P représente certaines variables d’état de I’émission
(demande, prix de ’énergie etc, donc de grande dimension en général). Le coefficient
w1 est naturellement décroissant en variable y pour traduire le fait qu’un prix plus
élevé de droit de polluer entraine une émission plus faible. La condition terminale
est donnée par ¢(Ep, Pr), ot ¢ : R x R — R est une fonction mesurable, non-
décroissante en variable E et Lipschitz continue en variable P. Un exemple typique
est le suivant :

e — qb(e) = 1{e>A} , A>0. (005)

La constante A agit comme une limite d’émissions fixé par le gouvernement ou le
régulateur. Elle traduit le fait qu’une pénalité sera payée si les émissions cumulées
sont en-dessus de A en temps terminal 7.

Dans la premiere partie de cette these nous nous intéressons a ’approximation
numérique de la solution u(t, P, E}) de 'EDP quasi-linéaire suivante,

oru(t,p,e) + u(u(t,p,e),p)ocu(t,p,e) + Lyu(t,p,e) =0, (t,p,e)e[0,T] x R? x R,
w(T,p,e) = ¢(e), (p,e)eR? xR,
(0.0.6)

ou I'on définit le générateur infinitésimal £, par rapport a la variable p, pour ¢ assez
réguliere,

Lyplt,p.) = b(p) - Vyltop,) + S TAG)Vapltp )], (007)

ot V,, désigne la jacobienne par rapport a p, A(p) := (00 ')(p) et VZQ) est la ma-
trice de 'opérateur de dérivée seconde. Tout d’abord, il a été suggéré et remarqué
dans [17] qu'une méthode EDP pourrait s’appliquer & EDSPR singuliére ci-dessus
pour obtenir une approximation numérique. Cependant, dans le pratique, la variable
d’état P est de grande dimension et rend donc ces méthodes EDP peu pratiques.
Pour le cas de dimension modérée, certaines méthodes probabilistes classiques pour
EDSPRs existent, il est donc naturel d’aborder le probleme de (0.0.4) en utilisant
les schémas probabilistes déja connus, voir par exemple méthode Bender-Zhang [1],
méthode Delarue-Menozzi [33]. Récemment, des méthodes de réseaux de neurones
en profondeur ont été congues et appliquées pour les problemes d’approximation
des EDSRs, en particulier pour leur utilité dans un cas de trés haute dimension.
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value of u
value of u

— Proxy
2-dim DM Scheme
Deep FESDE Solver 00

— Proxy
2-dim DM Scheme
Deep FBSDE Solver

-2 -1 0 1 2 3 -2 -1 0 1 2 3

value of u

02 — Proxy
2.dim DM Scheme
Deep FBSDE Solver

-2 -1 0 1 2 3

(¢) 0 =1.0

FIGURE 1 : Comparaison de ¢ — V(0,0,¢) obtenu par Deep FBSDE Solver et Delarue-
Menozzi Scheme (DM Scheme) au proxy, pour différentes volatilités. Nous observons qu’ils
ne reproduisent pas correctement le Procuration.

[11] a analysé le deep BSDE solver introduit dans [13] & nouveau dans le cadre du
petit couplage. Enfin, les méthodes ci-dessus échouent, en pratique, a approximer
correctement la solution de (0.0.4). Pour illustrer empiriquement ce fait, nous consi-
dérons un “toy model” introduit dans [20]. Le probléme vient du fait que la partie
transport non-linéaire de ’équation est dégénérée. En effet, les méthodes ci-dessus
sont incapables de capturer la bonne solution de I’entropie au sens faible. Ceci est
particulierement clair dans le cas ¢ = 0.01 voir Figure la, dans lequel la volatilité
est relativement faible et la bonne solution devrait correspondre a la solution de
I’équation de Burgers non visqueuse avec o — 0.

Cependant, d’un point de vue différent, on sait que les systémes de particules
reproduisent la bonne solution d’entropie de loi de conservation unidimensionnelle ou
d’équation de transport dans différents contextes : par exemple en astrophysique ou
en dynamique des gaz. Dans ce systeme, de nombreuses particules évoluent a vitesse
constante. Il a été introduit et prouvé pour la premiere fois dans Brenier et Grenier
[17] que la dynamique des particules collantes peut approximer la solution d’entropie
des lois de conservation unidimensionnelles avec une condition initiale monotone.
Et plus précisément Jourdain et Reygner [53] prouvent et garantissent un taux de
convergence théorique d’ordre % pour la norme L1 en utilisant le multitype SPD
(Sticky Particles Dynamics). Dans Bossy et Talay [9, 10], les auteurs proposent un
algorithme de particules en interaction, correspondant & un SPD sans collision pour
résoudre une équation de type Burgers, une classe d’EDP c}%amp—mloyen et prouvent
également un taux de convergence théorique d’ordre N~ 2 + Atz pour la norme
L1 sous certaines hypotheses. De nombreux autres travaux basés sur des particules
stochastiques en interaction ou des SPDs pour résoudre les lois de conservation ou
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I’équation de transport sont apparus, voir par exemple [52, 55, 6, 8, 56, 51, 54].

Dans la premiere partie de cette thése, nous avons analysé et développé en détail
les méthodes d’approximation numérique pour les équations différentielles stochas-
tiques progressifs et rétrogrades singuliéres et couplées qui présentent une compo-
sante forward dégénérée et une condition terminale non réguliere, qui sert a modéliser
le marché des émissions de carbone, voir par exemple [34, 22, 20].

Pour contourner cette difficulté sur la dégénérescence et la non-régularité, dans le
chapitre 2, nous profitons de I'unidimensionnalité de 'opérateur de transport pure-
ment non-linéaire et introduisons un schéma théorique de splitting pour approximer
la solution de EDSPR singuliére en traitant différemment 'approximation numé-
rique de 'opérateur de diffusion de grande dimension et de 'opérateur de transport
unidimensionnel rétrograde. Nous avons également étudié la vitesse de convergence
ainsi que la stabilité sous 'hypothése minimale garantissant le caractere bien posé du
probléme. Notre résultat principal, dans le théoréme 2.2.2; prouve que ce schéma de
splitting est convergent avec un taux % par rapport au pas de temps sous I’hypothese
minimale utilisée dans [19] pour obtenir I'existence et 1'unicité de la solution V. Notre
deuxieme résultat se trouve dans la section 2.3, qui présente, sous les hypotheses pré-
cédentes, plusieurs schémas numériquement implémentables, et la procédure globale
devient une séquence de problemes d’optimisation de régression non linéaire et de
problemes d’approximation de ’équation de transport. En pratique, nous nous ap-
puyons sur des méthodes de différences finies (schéma de Lax-Friedrichs ou schéma
Upwind), voir par exemple [60] pour approximation de I’équation de transport et
sur le réseau de neurones, voir par exemple [12, 18, 13] pour la régression non linéaire
qui franchit la ”"malédiction de la dimension”. Enfin, nous introduisons un schéma,
numérique alternatif basé sur SPDs et arbres binomiaux comme proxy et différents
tests numériques ont été mis en ceuvre et montrent de tres bons résultats.

Dans le chapitre 3, basé sur des travaux précédents sur les systémes de particules
et les particules en interaction voir par exemple [53, 55, 8, 9, 10], nous développons
et introduisons un schéma de splitting alternatif qui découple 'EDP (0.0.6) séparé-
ment en équation de transport unidimensionnelle et en équation de diffusion pour
chaque pas de temps. Ce schéma est basé sur la dynamique des particules collantes
et I’arbre binomial pour approximer respectivement les parties de transport et de
diffusion. Comme mentionné dans le chapitre 2, ce schéma sert de solution “proxy”,
il est donc intéressant de contrdler I'erreur d’approximation due a ce schéma, qui
est l'objectif principal de ce chapitre de thése. Comme indiqué dans [53], le SPD
induit génériquement des solutions faibles exactes, mais pour une condition initiale
discrete, et n’a pas besoin de satisfaire la condition d’entropie [58] de Kruzkov ou la
condition d’entropie de viscosité de Bianchi-Bressan [7], ce qui nous conduit & sépa-
rer lerreur d’approximation totale (pour la norme L1) en quatre erreurs : lerreur
de transport, l'erreur de diffusion, l'erreur de splitting ainsi que l’erreur de pro-
pagation. L’approximation de l'opérateur de transport est abordée dans la section
3.4.1. L’erreur due a la diffusion a été abordée dans la section 3.4.4. En particulier,
pour surmonter la difficulté face a I’'explosion du gradient et a la non-régularité au
temps terminal 7', nous employons une technique de régularisation en considérant
sa convolution par rapport a une fonction compacte et réguliere ¢. L’erreur due au
splitting a été étudiée en détail dans Chassagneux [20] et la preuve a été adaptée
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dans la section 3.4.3. La principale nouveauté de notre approche par rapport aux
travaux précédents est que nous proposons un nouveau schéma numérique basé sur
le splitting qui capture la solution d’entropie des EDPs quasi-linéaires et prouvons
aussi un taux de convergence théorique % par rapport au pas de temps est prouvé
sous certaines hypotheses.

Soit une grille en temps discret 7 = {0 =: ) < -+ < t, < -+ < ty := T}
avec N un entier positif qui désigne le nombre de pas de temps. Pour une utilisation
ultérieure, nous notons || := maxo<n<n(tn+1 — tn)-

Un algorithme de splitting est appliqué itérativement sur les étapes de diffusion
et les étapes de transport dans la grille temporelle ci-dessus. L’objectif principal est
de prouver une borne supérieure pour le taux de convergence du schéma de splitting
en termes de pas de temps sous 'hypothese suivante.

Assumption 0.0.1 Nous supposons que (b,o, ) € A et la condition terminale ¢ €
K. ot

1. A la classe des fonctions telles que B : R* > R?, ¥ : R > My, F:RxRY —
R qui sont des fonctions L-Lipschitz continues. De plus, F est strictement
décroissante en y et vérifie, pour tout p € R?,

Lly =y > < (y—y)F(y,p) — Fy,p)) < laly —y'|>. (0.0.8)

2. K la classe de fonctions ¢ : R x R — [0,1] telle que ¢ soit Ly-Lipschitz dans
la premiere variable pour un certain Ly > 0 et non décroissante en sa seconde
variable,

6(p.€) — 60, €)| < Lolp— /| pour tout  (p,pse) e R x R x R |

(0.0.9)
o(p, €)= d(pe) si e =e, (0.0.10)

et en plus,
sup ¢(p,e) =1 et ir;f d(p,e) =0 pour tout peR?. (0.0.11)

Dans la section 2.2, nous introduisons d’abord le schéma de splitting théorique,
qui est un schéma numérique qui traite différemment 1’étape de diffusion et 1’étape
de transport. Nous introduisons I’étape de transport ou la partie diffusion est fixée.

Theorem 0.0.1 (Proposition 2.10 dans [19], Proposition 3.2 dans [22]) Soient
7>0,(B,X,F)e AetPek.

Etant donnée toute condition initiale (to,p,e) € [0,7) x R x R, il existe un unique 4-
tuple de processus progressivement mesurable (PP EloPe ylobe glopey e
S2U[to, 7]) x S2([to, 7]) x S ([to, 7)) x H2U([to,]) satisfaisant la dynamique

AP[OPe = B(PIOP€)dt 4+ S(POPE)AW,, PP =peRY, (0.0.12)
ABOP = P(yjore, Pt By =ceR (0013)
dyore = ztore g, (0.0.14)
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et tel que

P [(I)(P;fo’p’e, Elope) < ltiTnT1 YOPe < & (Plope, Ejoﬁpve)] =1. (0.0.15)

L’unique champ de découplage défini par
[0,7) x R? x R 3 (tg, p, e) — w(to, p,e) = Y;ﬁo’p’e eR
est continue et satisfait

1. Pour toutt e [0,7), la fonction w(t,-,-) est 1/(l1(T —1t))-Lipschitz continue par
rapport a e,

2. Pour tout t € [0,7), la fonction w(t,-,-) est C-Lipschitz continue par rapport
a p, ou C est une constante dépendant de L, T et Ly uniquement.

3. Soit (p,e) € R* xR, pour toute famille (py, et)o<t<r convergeant d (p,e) comme
t1 7, ona

d_(p,e) < lign infw(t, pt, er) < limsupw(t, pr,er) < Py(p,e). (0.0.16)
—T

t—T1
4. Pour tout t € [0,7), la fonction w(t,-,-) € K.
Definition 0.0.1 (Opérateur de transport) Nous fixons
(0,00) x K 3 (h,v) = Ta(¢) = 9(0,-) € K

ot U est le champ de découplage défini dans le théoréeme 0.0.1 avec des paramétres
T=h, B=0,%X =0, F = pu et condition terminale ® = 1.

Dans la définition ci-dessus, o(-) est 'unique solution d’entropie pour

Y
Ow + 0c(M(p,w)) =0, o M(p,y) = J p(pv)dv, 0<y<1,  (0.0.17)
0

et 0(h,-) = 1. Nous utiliserons ce fait dans la partie numérique.

Comme pour ’étape de transport ci-dessus, il est naturel de fixer le processus E
a sa valeur initiale et d’introduire I’étape de diffusion.

Definition 0.0.2 (Opérateur de diffusion) Nous fizons
(0,00) x K3 (hﬂ/)) = Dh(w) = 1_)(07 ) ek

ot v(0,-) est le découplage dans le théoréeme 0.0.1 avec paramétres T = h, B = b,
=0, F =0 et condition terminale ® = 1.

Observons que, pour t € [0, h),

(t,p,e) = E[zp(Pvap, e)] et B(t,) € K . (0.0.18)

Alors, avec les deux étapes d’approximation ci-dessus en téte, nous considérons na-
turellement le schéma théorique suivant sur la grille .
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Definition 0.0.3 (Schéma de splitting théorique) Nous fizons
(0,00) x K3 (h,9) = Sp(¢) := T, o Du(¢) € K.

Pour n < N, on note uly la solution de la récurrence suivante sur m :
— S
- pour n = N, poser uy 1= ¢,
L — ™
-pourn < N, uy =S, ¢, (U ).

Le (ul})o<n< N représente I'approximation du champ de découplage V(t, ) pour t € .
De plus, on observe, a partir de la propriété de T et D, que

up € K, pour tout 0 < n < N. (0.0.19)

Notre résultat principal théorique concernant le taux de convergence du schéma
de splitting ci-dessus est le suivant

Theorem 0.0.2 (Taux de convergence) Selon nos hypothéses permanentes, nous
avons la borne suivante

fR V(0,p,¢) — 1 (p,)|de < CT(1 + [pl)v/I.

pour une constante positive C.

Le résultat de convergence ci-dessus garantit 1'utilisation de ce schéma de split-
ting. A partir de ce schéma, nous proposons plusieurs algorithmes numériquement
implémentables qui combinent I'approximation par différences finies de 1’équation
de transport et 'approximation probabiliste de I'opérateur de diffusion.

Soit J un entier positif et € = (e;)1<j<s une grille discrete de 'espace R. On
note 7716 une approximation de 'opérateur 7j sur €. c’est-a-dire R? x R’ > (p, 0) —
T.E(p,0) € R7. Cela signifie que pour chaque p € R, T,E(p, -) est une approximation
sur la grille & de 1’équation correspondante (0.0.17) sur [0, h]. On suppose de plus
qu’il vérifie, pour certain ¢ > 1 et ¢ > 1,

T (p, 0)] < C(1+ |p|? + [0]7) . (0.0.20)
La condition terminale ¥ : R? x R — R est approximée sur la grille & par

09 = 1(p,e;), pour tout 1 < j < J et p € R Etant donné cette approximation

de transport, nous introduisons une approximation probabiliste de V(0,p,-) sur €.
Pour cela, on considere le schéma d’Euler associé a P sur m, pour n = 0,

P = PF 4 b(PF)(tng1 — tn) + o(PF)AW, et Bf =p. (0.0.21)

tn+1

Ici, (Aﬁ\/n)ogng ~N_1 sont des v.a. indépendantes qui représentent une approximation
de la loi de (W4, ., — Wi, Jo<n<n—1-

Nous définissons maintenant un processus en temps discret (', )g<n<ny & valeur dans
R’ comme le suivant.

Definition 0.0.4 (T';,)o<n<n est la solution du schéma suivant :

1. Pourn =N, F?V :¢(]3t’]r\,,ej) pour 1 <j<J.
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2. Pourn < N, calculer

Ly = Eg(ﬁtZ,E[FnHIﬁtﬁ]) : (0.0.22)

Pour une utilisation ultérieure, nous définissons le processus auxiliaire (fn) par
i = E[Ff;ﬂ\ﬁg;] pour tout 1 < j < J. (0.0.23)

Nous observons également que, grace a la propriété Markovienne de P™ sur 7, (Tn)
satisfait

Tpi=7(PF), 0<n<N, (0.0.24)
ot les fonctions 7, : R — R, sont données par
Definition 0.0.5 1. Pourn =N, ﬁv(p) =o¢(p,ej), 1<j<J,pe RY.
2. Puis, calculer pour n < N, pe RY,
¥ (p) = E['yflﬂ (p + b(p)h + U(p)Aﬁ\/n)] pour tout 1 < j <J, (0.0.25)
V(D) = Ty (0, (D)) - (0.0.26)

Avec les définitions ci-dessus, nous avons que I'g = vo(P) représente une approxi-
mation de V(0, I, -) sur la grille €.

Nous considérons d’abord "approximation de Lax-Friedrichs de I’équation rétrograde
de transport (0.0.17) et définissons 7}%?; hoC R? x R/ — R’ lapproximation de
lopérateur associé Ty. Il est défini comme suit, voir par ex. [60, Chapitre 12].

Definition 0.0.6 (Lax-Friedrichs) Pourpe R? et e R’ donnés, soit (V N<k<K,i<j<J
Vapproximation au point (ry,e;). La procédure pour calculer V' est :
- Au temps rg = h : poser VJK =0;,1<j<J,
- pour 0 < k < K : définir V¥ = VlkH, V}“ = V}”l et calculer, pour 1 <j < J :
1)

vk = <%ﬁﬁ1+vk+1)+%<m( k) - m(p,vj’gﬁl)). (0.0.27)

Ensuite, définir €§Rh( ,0) := V0.

Lorsque la fonction p est de signe constant, la méthode Upwind est meilleure, car
elle est moins diffusive. Comme les modeles aux marchés du carbone donnés dans
les exemples ci-dessous qui sera bien le cas, nous considérons la méthode upwind
pour g = 0. On définit donc maintenant T@%ﬁ’h :R? x R’ — R’ Papproximation de
l'opérateur associé T, voir par exemple [60].

Definition 0.0.7 (Upwind for u > 0) Pourpe R? et e R’ donnés, soit (Vk)1<j<J 1<k<K
Uapproximation au point (ry,e;). Les étapes pour calculer V- sont :

- au temps rg = h 'poserVK—Gj,l j<J,

-pour 0 < k < K : poser VJ = Vl€+1 et calculer, pour 1 < j < J :

5
vE =V S (M VD - e Vi) (0.0.28)

Ensuite, définir 7'617}%7,1(1),0) = VO,
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Le dernier point est de calculer 'espérance conditionnelle du schéma en Définition
0.0.4, i.e. a chaque pas de temps les quantités ’yn(ﬁtfl) = E[Pn_t,_l‘ﬁ;;]. Pour cela,
nous utiliserons deep learning car il est tres efficace pour les équations de grande
dimension, voir par ex. [13, 48]. On note NNy, 4, .m l’ensemble des réseaux de
neurones, qui sont des fonctions ®(-;0) : R% — R paramétrées par O et avec
les caractéristiques suivantes : la dimension d’entrée est dy, la dimension de sortie
est di, L + 1 est le nombre de couches, m = (m;)o<m,<r, 00 m; est le nombre de
neurones sur chaque couche, [ = 0, ..., L : par défaut, mg = d et mp = d;.

Definition 0.0.8 (Schéma de régression non-linéaire par réseaux neurones)
Pour ty = T} ﬁ%(p) = %\/(p) = 525(]9, ej)z I < .] < Jz pbE Rd'

2. Pour n = N —1,...,1 : Etant donné les trajectoires de P, on cherche a
optimiser
~ D = DT DT DT 2
£0(0) = E[TE(PE,, A (PL,,) = (ValPE,©) + Za(PE,0) (Wi, s = Wa,)) |
(0.0.29)

avec (Vn(+,0), Zn(-,0)) € NNy (a41)x,L,m telles que

N in £,(0) etd () == Yl 07).
n € arg min (©) et donc  An() = In(,05)

3. En temps initial to = 0, calculer %(135) = E[’];l@(]gg,’:yl(ﬁt’{))]

Dans le chapitre 3, nous allons étudier en détail la convergence du schéma numé-
rique alternatif BT & SPD qui consiste se base sur des arbres binomiaux et des
dynamiques de particules collantes présenté dans la section 2.3.3.1 du chapitre 2. La
convergence est prouvée en utilisant la décomposition des erreurs et quelques résul-
tats intermédiaires dans [26, 53], de plus, certaines techniques comme la convolution
sont utilisées pour s’affranchir de I’explosion du gradient pres du temps terminal 7.
En plus, nous nous restreignons dans un cas particulier en faisant ’hypothese 0.0.2.

Pour valider empiriquement nos résultats obtenus avec le schéma de régression
non linéaire dans le chapitre 2, il est intéressant de développer une autre méthode
numérique basée sur le schéma de splitting combinant une méthode particulaire en
dimension modérée (2 a 5). L’approximation discréte sur la grille 7 est donnée par
le schéma d’Euler classique

Po=Pyet Py, = By, +b(P,) + o(P,) AW, (0.0.30)

ol (AWn) est une approximation discrete des incréments browniens (W, ., =W, Jo<n<n—1-
Pour une 'utilisation ultérieure, nous définissons également, pour p € R¢ et tout
0<n<N-1,

Dln,p . 1T

PP i=p+b(p)h + o(p) AW, . (0.0.31)
Notons P, le support discret et fini de I?’tn pour 0 < n < N — 1. On observe, grace

a la définition ci-dessus de (P, ), que pour p € P, ﬁtt;:’z € Pri1-
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Dans ce contexte, nous introduisons d’abord une version discréte de 'opérateur T,
qui calculera une approximation de (0.0.17) écrite en forme forward : nous utiliserons
le Sticky Particle Dynamics (SPD) [17] voir [53, Section 1.1]. Le SPD est simple
a mettre en ceuvre dans notre cas particulier puisqu’il n’y a pas de collision de
particules en raison de ’hypothése de monotonie sur (u, ).

Nous notons ¥ 'opérateur discréte, agit sur la CDF empirique appartenant a
I,

M
(0,00) x RY x ZM 5 (h, p,0) — TM(p,0) := Hx(+ Db my) €M, (0.0.32)

Notons que (eh,(h))1<m<nm est calculé de maniére suivante : étant donné la posi-
o : - s T M
tion initiale e(0) € Dy et les vitesses (Fi, (p))1<m<r fixées & Fy,(p) = — SEZ”/L*I)/M w(p, y)dy,
on considére M particules (€h,)1<m<nr, dont les positions au temps ¢ € [0, h] sont
simplement données par

el (t) = em(0) + Fn(p)t . (0.0.33)

Ainsi défini (€}, (t))1<m<nrr € Dar, pour tout t € [0, h], puisque —p est non décrois-
sante.

Nous définissons maintenant I’approximation utilisée pour I'opérateur de Dy (1)),
pourwelCnH et pePn. On a

B(p,e) = E[w(Plr0.e)| = 5 Z w(Pirz)' o) (0.0:34)
1 M
= Z * M di )(e) (puisque 9 € KM 1) (0.0.35)
i=1 m=1
I M
= H* Z i (par linéarité) (0.0.36)
z=1 m=1

L’approximation de I'opérateur de diffusion est donc donnée par
KM 59— DM () =5, e KM, (0.0.37)
Enfin, le schéma aura essentiellement deux versions :

CASE 1 : On garde les particules 2dM dans chaque étape n. La procédure globale sera
alors 'itération des deux opérateurs T et ©, voir Définition 0.0.9 ci-dessous.

CASE 2 : Il n’est pas nécessaire de conserver 2dM particules dans chaque étape n, avec la
fonction 1 en étape n+ 1 est donnée par M particules (pour chaque p € Pp41).
Pour réduire le nombre de particules, on applique un autre opérateur R, pour
M=mz=1,

M 34p > RM™ () e ™ . (0.0.38)

Diverses implémentations sont possibles, nous renvoyons a la partie numérique
pour une description précise.

10
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Introduisons enfin le schéma formel.

Definition 0.0.9 (Schéma en CASE 1) Soit M > 1 et on se donne pour 0 <
n< N, M, :=2d)N"M.

1. Pour n = N : initialiser ey = (A,...,A) € Dy dont la CDF empirique
est la condition terminale ¢ = l.>py. En posant u%’M(p, ) = ¢, pour tout

N,M My
p € Pn, on observe que uy™ € Kiy™.

; P M, P
2. Pourn < N : étant donné v’ € K, définir

n+1
alM = M (N ¢ oM (0.0.39)
et pour tout p € Py,
un M (p,) = )" (0, 5" (p, ) (0.0.40)

L’approzimation de V(0, Py, -) est alors donnée par uéV’M(Po, ).

Definition 0.0.10 (Schéma en CASE 2) Soit M > 1.

1. Pourn = N :initialiser en := (A,--- ,A) € Dy dont la CDF empirique est la
condition terminale ¢ = 1(.>py. En posant vjj\\,]’M(p, -) := ¢, pour tout p € Py,

on observe que v%’M € ICJ]‘V/I.

2. Pour n < N : étant donné vrjx’r]\f e KM |, définir oM = @nM(vgf\l/[) e KC2dM
rappeler (0.0.37), et alors pour chaque p € Py,
M = A (M (p, ) (0.0.41)
et enfin,
un M (p,) = T (o, 00 M (p, ) (0.0.42)

L’approzimation de V(0, Py, ) est alors donnée par UéV’M(Po, ).

Dans la suite, pour chercher a controler I'erreur locale de différentes sources, on
se restreint dans un cas particulier en faisant ’hypothese suivante,

Assumption 0.0.2 Le champ découplage V € €521([0,T) x R x R) est la solution
d’EDP suivante,

1
oV + u(V,p)deV + b(p)dpV + Ea%pv =0. (0.0.43)
En particulier, la fonction o(-) est constante o(-) := oly avec d > 0 et Iy est le d x d
matrice d’identité. De plus, la fonction b est €*(RY) avec des dérivées bornées et

Lipschitz et la fonction p est €*( R x [0,1]) avec Lipschitz et de dérivées bornées.

11
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Décomposition de I’erreur L’erreur totale pourrait étre décomposée et contro-
lée en quatre parties : erreur due a I'opérateur de transport par les particules, régula-
risation, diffusion ainsi que diffusion. Cependant, les techniques d’analyse classiques
échouent puisque la solution V n’est pas réguliere a priori, ce qui donne une explo-
sion de gradient ainsi que non-régularité en termes de L1-norme en général. Pour
contourner cette difficulté, nous introduisons la régularisation V¢ en considérant sa
convolution par rapport a une fonction compacte et réguliere o, comme suit :

V(t,p,e) := JV(t,p +q,e)pe(q)dg, ot wc(q) := %s@(g), (0.0.44)

€

et avec ¢(-) une fonction de probabilité de densité réguliere de support compact.

, . R N,M N,M
L’erreur que nous cherchons a contréler est, pour v, = u,~ ou v, = vn’

(selon CASE 1 our CASE 2),

err(N, M) f\’yg Py,e) —V(0, Py, e)|de . (0.0.45)
Et nous avons d’abord
err < & (Py) + & , (0.0.46)
et pour 0 < n < N, et pe Py,
E0) = [V (tnpe) = Vitwpr e, (0.0.47)
= J\‘f)/n(]% 6) - Ve(t’rlupa €)‘d€. (0048)

L’erreur &,(p) pourrait étre décomposée en quatre parties dans le CASE 1.

Lemma 0.0.1 Sous CASE 1, pour0 < n < N — 2,
En(p) < & (p) + Enlp) + &7 (p) + E; (p) (0.0.49)
et

En-1(p) < Ex_1(p) + EN_1(p) + fle(qﬁ('))(p, e) = Oy(¢(-))(p, e)lde  (0.0.50)

ot pour p € Py,

W) = [ [T )6 - Tl ()0 (0.051)

Ta(p, @M (. ))(€) = T (. BVt P20 (e de, (00.52)
et pour p € R?,

E2) = [ [Totp B (tasr. B2 () = Tl BV (b, P DD @)de

En(p) = ﬂﬁ(p,E[Ve(th, PP )])(e) = VE(tn, pye)|de, (0.0.54)
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notons que

X (p) = J\sg” (5, 6())(€) — Ty (1, S()(€))Ide (0.0.55)

Avec les estimations d’erreur ci-dessus a la main, nous obtenons un controle
global sur l'erreur de convergence err(N, M) entre la solution de EDSPR singulier V
et approximation numérique 7y par le schéma alternatif BT&SPD, plus précisément

Theorem 0.0.3 Sous l’hypothése 0.0.2 et dans le cas CASE 1,

err(N, M) < C(% + \e/f +€), (0.0.56)

rappeler (0.0.45). De plus, en posant € = h% et M = %, on a

o=

fV(o, Py, e) — uy"™M (P, e)|de < Ch. (0.0.57)

Partie II : Calcul et I’approximation de la couverture PnL (Chapitre
4)

Dans cette deuxiéme partie de these, nous introduisons une classe de problemes
de controle non standard dans lesquels nous imposons au processus controlé une
contrainte sur sa loi au temps terminal. Dans ce cadre, nous nous intéressons au
probleme de couverture faible, en particulier a la représentation duale dans le cas
linéaire. Dans cette partie, nous établissons d’abord un lien entre notre probléme
de couverture faible général et un probléme de transport optimal en considérant a
la fois la représentation de Monge et de Kantorovitch. Sous certaines hypotheses,
nous prouvons l’équivalence entre la représentation de Monge et la représentation
de Kantorovitch dans un cas général. En particulier lorsque le marché est linéaire
et avec p a support fini, nous prouvons et présentons une formulation duale du pro-
bléeme de Kantorovitch. Cette formulation donne naturellement un nouveau schéma
numérique utilisant la descente de gradient stochastique. De plus, dans le cas ou
1 une mesure de probabilité, nous trouvons également une représentation explicite
par une résolution directe du probleme de transport optimal. La nouveauté de notre
approche par rapport aux travaux précédents [15, 11, 13] est que nous arrivons &
étendre les résultats théoriques pour une mesure arbitraire p en assurant 1’équi-
valence de Kantorovitch et de Monge. En plus nous trouvons aussi une nouvelle
formulation de dualité pour le probleme de Kantorovitch et particulierement dans
le cas linéaire, on développe un schéma numérique basé sur une descente de gra-
dient ainsi qu’une solution explicite basée du transport optimal pour une mesure de
probabilité pu.
On considére un processus controlé : pour y € R et Z € 772,

t t
VoL =y | Y Z) dst | ZaW., te[0.T) (0.0.58)
0 0

ot (f(s,))se[o,r] €St un processus progressivement mesurable prenant des valeurs
dans Lip(R x R% R) et tel que E[Sg |f(S,O,O)|2dS] < +00. De plus, pour tout £ €
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L2(P), il existe un unique (Yo, Z) € R x 2 tel que YTyO’Z = £. On fixe alors

Vi = Ygo[g]’z[g] pour tout ¢ € [0,7], de sorte que (Y, Z) est la solution du BSDE
avec le driver f et la condition terminale ¢,

T T
yt:g+f f(s,ys,Zs)ds—J Z AW, ,0<t<T,
t t

Egalement donné une (Fr ® B(R), B(R))-fonction aléatoire mesurable  x R 3
(w,7) — G(w,7) € R tel que v — G(v) est croissant et continu a gauche. Nous intro-
duisons maintenant le probleme de la couverture quantile. Notons, pour u € P(R),

) = {y eR ‘ 3Z e A2 P(YYZ = G(v)) = Fuly), Wy e ]R} . (0.0.59)
Nous définissons maintenant le priz de couverture quantile comme

Vwi(p) = inf H(p). (0.0.60)
Probléeme de Monge relaxé (RM) Pour le probleme de Monge, on a 1’équiva-
lence suivante

Proposition 0.0.1 Soit € P4(R). Nous avons l’équivalence suivante

Vwn(p) = Vam := inf  W[G(X)], (0.0.61)
X€T+ (1)

ot T (p) = {x € LYFr) | xsP € K.}, avec

Vwi(p) = inf H(u), avec H(p) := {y e R|3Z € 72, \IJ(Y%/’Z)jj]P) € ICH} ,  (0.0.62)

Probléme de Kantorovitch (KP) Nous supposons maintenant

Assumption 0.0.3 La distribution de probabilité p € Po(R) a un support fini, c’est-
a-dire p = Z?:I(qi — Qi41)0y, avec d =1, v < - <ygetl=q > - > qq >
gi+1 = 0, soit supplp] = {v1,...,74} et ¢ = Fu(vi) pour tout 1 < i < d. Pour
chaque 1 < i < d, on pose p; := q; — qi+1 = w({V})-

Lemma 0.0.2 Sous I’hypothése 0.0.3, nous avons

Vwn (i) = Vem() = Vem () :=  inf  [G(x)] (0.0.63)
X€TL (1)

ot Ty (p) = {x € L7(Fr) [ x4P € Ry}

Dans le suivant on s’intéresse a établir une équivalence entre le probleme de
Monge Vg et le probleme de Kantorovitch Vkp soit Vkp = Vg dans le cas général
ainsi qu’un résultat de dualité pour le probleme de Kantorovich Vkp (1) dans le cadre
linéaire ol f(s,y,2) = asy + b] z et u & support fini, donné par

d
Vkp(u)=  inf  E DIH) Qi — Qi) | - (0.0.64)
Q)i ear(w) |
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Pour établir I’équivalence entre les représentations de Monge et de Kantorovitch
du probléme OT, nous démontrons d’abord l'inégalité Vkp < Vrm. En effet, pour
X € 9" (p), il suffit de constater que

d

G(x) = Z Ly=yi = Z G(vi) (L 1x2%‘+1) )

i=1

et en considérant @Q; := 1,>,,, ce qui donne Yy[G(x)] = Vkp(n). Pour I'inégalité
inverse, on construit d’abord une variable aléatoire ¢ indépendante de Fr_. pour

tout € > 0, par exemple ¢ = N (%) Alors en fixant n > 0 et par définition,

il existe (Q7)™} € Qr(u), notant P := Q7 — QY ,, tel que

d d
Ve (1 Z () (@] Qz-i—l)] —n=:D | D GW)P'| =n,  (0.0.65)
i=1 i=1
Soit € > 0 et on note alors
Q?’E = IE[Q:’ | ]:T o, 1<i<d+1, et (0.0.66)
PP = Q1M - QS = HP/ |fT J, 1<i<d. (0.0.67)

Introduisons la variable aléatoire Fpr-mesurable y¢ = Z?Zl vl (QUsue=Q15 ) il
i = i+1

suffit alors de prouver que

d
Yo [2 G(’Yi)Pi"] > Vo [G(X")] = w(n, €) = Vem(p) — ofe) (0.0.68)

=1

pour conclure. Avec controle des estimations sur la solution de BSDE non linéaire
avec condition terminale ¢ € £2(Fr_.) au temps terminal T'—e. Avec ces deux points,
nous prouvons donc (0.0.68) et concluons que Vkp(p) = Vam(p) — w(n, €) —n, avec
w(n, €) qui converge vers 0 lorsque e converge vers 0, soit Vkp = VM.

Dans le suivant, nous établissons la dualité entre Vkp et Vpp, donnée par

d
Vop(p) == sup (E{X] + ) (I)iﬂ({'Yi})) , (0.0.69)
(X, 2)ePy i=1

ou
P, = {(X, o) e LH(Fr) % Ai‘H(%) >X 1+ d,1<i<dP— a.s.} . (0.0.70)

Nous prouvons l'inégalité Vpp < Vkp en considérant le probleme KP comme le
suivant

f H(w, y)I(dw, d
Hegg #J (w, ) (dw, dv).

Pour I'inégalité inverse, nous développons Vpp en transformée de Fenchel,

Vop (1) = HH (y1)] + B(p2; - - - pa)
= HH ()] + (g, qa),
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ou

Y(p) = sup ((Z Czpz+1> - L<r?33{1 (G — FI(%H))J) , (0.0.71)

CeAd 1

d—1
W(q) = sup > 0gj41 —E| max (ZG - %H) : (0.0.72)
+

GERd 1j 1 1<i<d—-1

Ensuite, nous prouvons que la fonction définie par

d—1
0) =) 0jqj51 —E ax (2 0 — H(w %+1)) ;
Jj=1 = +

est continue, concave sur Rflfl et limyg_,o, w(f) = —co. Ceci nous permet de déduire
une existence de * € R4 telle que SUPpd-1 w(f) = w(0*) = W(q). Pour avoir un dé-

veloppement en somme qui nous permet de calculer son sous—fiifférentiNel sur w(#), on
définit pour 1 < i < d—1, 4;(09) := {®;(09)) > 0} = {6; + H(vi) — H(yi41) + @41 (60FV) > 0}
et Aqg(D) = @ par convention.

Et pour 2 < i < d+1et e R on définit Q;(6) := 10;;11 A0y €t Q1(0) := 1.

On pose aussi, pour 1 < i < det § € R Py(0) := Q;(0) — Qi1(0) = Qi(0)(1 —
Ly,0000)) = Qi(0)1 4,90y
Alors pour 0 € Rd 1 on prouve que

d
Z (gj+1 —HQ;+1(0) Z ] .

et surtout que son sous-différentiel dw(f) < T [0; 1 w(8), &; —w(H)], avec pour tout
1<i<d-—1, 0;—w(f) (resp. 0; +w(#)) est la dérivée partielle gauche (resp. droite)
de w en 6,

Oi,—w(0) = (+OO)19 —0 + (gi+1 —EHQi+1(9)])
6i7+w 9 = i+ E[Qz-i-l ]

avec Q74 (0) := Qi(0)1{9i+ﬁ(w)—ﬁ(w+1)+<1>i+1(9““))20}' De plus, comme 0 € 0,,(6*),
on en déduit que pour 1 < j <d—1,

gj+1 — HQj+1(07)] = 0= gj41 — E[QJH(G*)]

Avec les conditions ci-dessus et différentes discussions sur les frontieres de ]Rflfl,
nous prouvons que Vpp = Vkp.
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Chapter

Introduction

This manuscript investigates the solution of singular FBSDEs by different numerical
schemes and the computation for approximate weak hedging problem. The aim of
this chapter is to introduce and motivate the questions we studied and to summarize
the main results obtained and also the open questions that could be part of future

research.
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1.1. Numerical schemes for high-dimensional singular FBSDEs

1.1 Numerical schemes for high-dimensional singular FB-
SDEs

1.1.1 Background and limits of classical probabilistic methods for
singular FBSDEs

Let (©, F,P) be a stochastic basis supporting a d-dimensional Brownian motion W
and 7' > 0 a terminal time. We denote by (F;)i>o the filtration generated by the
Brownian motion (augmented and completed), and consider first of all a general
class of singular FBSDE system which takes the following form:

t t
X=X+ [ ol A Vi Z)ds 4 | b XD 2N (1L
0 0
T T
Ve = o(Xr) + J f(s, Xs, Vs, Z5)ds — J Z, - dW. (1.1.2)
t t

In the case of deterministic function coefficients and under suitable assumptions, the
X process above appears as the “random characteristics” of the following quasilinear
PDE:

U + a(-) 'Vl + Te[b T 6V2UC)] + (-, U(), 6TV U()) =0, (1.1.3)

and the link with (1.1.2) is given by V; = U(¢t, X;) and, assuming some smoothness,
Z; = bV, U(t, &), see e.g. [63]. Many difficulties are encountered in the theoretical
study of system of the kind (1.1.1)-(1.1.2) due to the coupling of the two equations.
Even in the Lipschitz setting for the coefficients (a, b, f, g), existence and uniqueness
are not guarantee without further assumptions. A special class of the above FBSDE
system has been originally introduced by Carmona, Delarue, Espinosa and Touzi in
[20] for carbon emission derivatives pricing, and studied thoroughly in [19] under
structural assumptions, admits solution (P, Et, Yi, Zt)o<it<T such that:

dPt = b(Pt)dt + O'(Pt)th
dE;, = p(Y;, Py)dt (1.1.4)
ay, = Z-dW;

The function b : R* —» R%, ¢ : R — My, where My is the set of d x d matrices on
R, and i : R x R? — R are Lipschitz-continous. This system can be used to model
cap-and-trade schemes, in which a central authority sets a cap or limit on the total
cumulative carbon emissions for all the market participants, and penalties will be
charged if terminal emission is outside of the limit of emission. In this case Y is the
price of a pollution permit, F is the total cumulative emission of the pollutant and
P represents some state variables influencing the emission (demand, energy prices
etc. thus high-dimensional in general). The coefficient p is naturally decreasing in
the y-variable to translate the fact a higher price of pollution permit results in lower
emission. The terminal condition is given by ¢(Er, Pr), where ¢ : R x R* — R is
a measurable function, non-decreasing in its E-variable and Lipschitz continuous in
the P-variable. A typical example is the following:

e — qb(e) = 1{e>A} s A>0. (1.1.5)
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The constant A here acts as a cap limit on emissions set by government or regulator.
It translates the fact that a penalty should be paid if the cumulative emission are
above the cap A at terminal time T

In the first part of the thesis we are concerned with the numerical approximation
of the solution u(t, P;, E;) of the following quasi-linear PDE,

oru(t, pye) + p(u(t,p, e), p)oeu(t, p,e) + Lou(t,p,e) =0, (t,p,e) e [0,T] x R? x R,
w(T,p,e) = d(e), (p,e) e R xR,
(1.1.6)

where we define its infinitesimal generator £, with respect to variable p, for ¢ smooth
enough, by

Loplt,p.) = b(p) - Vol p.0) + S THAG)V2pltp.0)],  (1LL)

where V), denotes the Jacobian with respect to p, A(p) := (o0 ')(p) and V3 is the
matrix of second derivative operator. It was first suggested and noticed in [17] that
a PDE method could be applied to above singular FBSDE to obtain a numerical
approximation. However in practical economic setting, P is high-dimensional thus
it is impractical to apply. For moderate dimension case, some classical probabilistic
FBSDE methods exist, thus it is natural to tackle the problem of (1.1.4) by using the
already known probabilistic schemes, see. e.g. Bender-Zhang method [1], Delarue-
Menozzi method [33]. However neither of them provide a theoretical convergence
guarantee in problem under our studies. Recently, deep neural networks methods
have been designed and applied for BSDEs approximation problems, especially in
high-dimensional setting. In particular, [11] has analysed the deep BSDE solver
introduced in [13] again in the setting of small coupling. Unfortunately, the above
methods fail to approximate correctly the solution to (1.1.4). Indeed, we consider a
toy model introduced in [20] as follows.

Example 1.1.1 (Linear model)

dPt = O'th (118)
14

dE, = | —= Y Pt Y, | dt 1.1.9

t (\/g; A t) (1.1.9)

dY; = Z; - AW, (1.1.10)

with terminal function given by (1.1.5) and where W is a d-dimensional Brownian
motion and o > 0.

And as suggested in Chapter 2, the “classical” probabilistic FBSDEs methods [/,
, 23] as well as Deep BSDE solver [11] fail. The main difficulty comes from the
degeneracy of non-linear transport part of equation as well as the non-regularity of
terminal condition. In consequence, the above methods are unable to capture the
correct weak entropy solution. This is particularly clear when ¢ = 0.01 see Figure
1.1a, in which the volatility is relatively small and the correct solution should almost
correspond to the solution of the inviscid Burgers’ equation as vanishing limit.
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value of u
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Figure 1.1: Comparison of e — V(0,0,¢e) obtained by Deep FBSDE Solver and Delarue-
Menozzi Scheme (DM Scheme) to the proxy, for different volatilities. We observe that they
fail to reproduce correctly the proxy.

However, to tackle the issue of degeneracy of one-dimensional transport equa-
tion, by taking a different point of view, particle systems have been known to repro-
duce the correct entropy solution of one-dimensional conservation laws or transport
equations in different contexts: for example in astrophysics or gas dynamics. In this
system, many particles evolve at constant velocity and stick together at collisions. It
was first introduced and proved in Brenier and Grenier [17] that sticky particle dy-
namics can approximate the entropy solution of one-dimensional cosnervation laws
with monotonic initial condition. And more specifically Jourdain and Reygner [53]
proves and guarantees a theoretical convergence rate of order % under the L1-norm
by using multitype SPD (Sticky Particles Dynamics). In Bossy and Talay [9, 10],
the authors propose a stochastic interacting particles algorithm, corresponding to a
SPD without collisions to solve a Burgers’ type equation, a class of I\I/Iean ﬁ?ld PDE
problems and also prove a theoretical convergence rate of order N™2 + Atz for the
L1-norm under certain assumptions. Many other works based on stochastic inter-
acting particles or sticky particles dynamics to solve conservation laws or transport
equation appeared, see for example [52, 55, 6, 8, 56, 51, 54].

1.1.2 Ouwur contributions

In the first part of this thesis, we analyse and develop in details the numerical
approximation methods in the framework of singular fully coupled forward backward
stochastic differential equations which presents a degenerate forward component and
non-smooth terminal condition. They are frequently used for modelling of carbon
emission market, see e.g. [34, 22, 20].

To circumvent the mathematical difficulty on degeneracy and non-regularity, in

20



Chapter 1. Introduction

Chapter 2, we take advantage of the uni-dimensionality of the purely non-linear
transport operator and introduce a theoretical splitting approach to approximate
the solution of singular FBSDEs by treating differently the numerical approxima-
tion of high-dimensional diffusion operator and backward one-dimensional transport
operator. We have also studied its convergence rate as well as its stability under
the minimal conditions guaranteeing the well posedness of the problem. Our main
theoretical result, in Theorem 2.2.2, proves that this splitting scheme is convergent
at a rate % with respect to the time step under the minimal assumption used in
[19] to obtain existence and uniqueness of the solution V. Our second main results
are in section 2.3, which presents, under previous standing hypothesis, several fully
implementable numerical schemes, and the overall procedure becomes a sequence of
combination of non-linear regression optimisation problems and transport operator
approximation problems. In practice, we rely on conservative finite difference meth-
ods (Lax-Friedrichs scheme or Upwind scheme), see e.g. [60] for transport equation
approximation and also on neural network, see e.g. [12, 43, 48] for non-linear re-
gression to tame the “curse of dimensionality. Last, we introduce an alternative
particles and tree-based scheme as a proxy and various numerical tests have been
implemented in a high-dimensional setting and the tests show very good results.
In Chapter 3, based on previous works of particles systems and interacting par-
ticles see e.g. [53, 55, 8, 9, 10], we develop and introduce an alternative scheme
which decouples PDE (1.1.33) separately into one-dimensional transport equation
and diffusion equation at each time step. This scheme is based on sticky particle dy-
namics and binomial-tree to approximate respectively transport and diffusion parts.
As mentioned in the Chapter 2, this scheme serves as a “proxy” solution, thus it
is of interest to control the numerical error due to this procedure, this is the main
purpose of this chapter of thesis. As stated in [53], the SPD generically induce exact
weak solutions, but for discrete initial condition, and need not satisfy Kruzkov’s [58]
entropy or Bianchi-Bressan’s [7] viscosity condition. Thus it leads us to separate the
total approximation error (in the Ll-norm) into four sources of error: the transport
part error, the diffusion error, the splitting error as well as the propagation error.
The error due to approximation of transport operator is well studied in Jourdain
et al [53, 55] and addressed in Section 3.4.1. The error due to diffusion has been
addressed in Section 3.4.4. In particular, to overcome the difficulty faced to gradient
explosion and non-regularity at terminal time, we employ a regularization technique
by considering its convolution of theoretical solution respect to a compactly smooth
function ¢. The error due to splitting has been thoroughly studied in the Chapter 2
and its proof has been adapted in Section 3.4.3. The main novelty of our approach
compared to previous works lies in the fact that a new numerical scheme based on
splitting that captures the entropy solution of the quasilinear PDEs and a theoreti-
cal convergence rate % with respect to time step is proved under assumptions which
guarantees the well-posedness of problem and smoothness of value function V.

1.1.3 Splitting scheme

In Chapter 2, given a discrete time grid m = {0 =:tg < -+ < t, < -+ < ty:=T}
with N a positive integer which denotes the number of time steps. For later use, we
denote || := maxo<p<N(tn+1 — tn)-
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1.1. Numerical schemes for high-dimensional singular FBSDEs

A splitting algorithm involving a diffusion step and a transport step is applied
iteratively within the above time grid. The main goal is to compute an approxima-
tion of u(0, Py, Ey), where u the solution to the PDE (1.1.6) at the initial time and
prove an upper bound for the convergence rate of the splitting scheme in terms of
the time grid step under the minimal following assumption see e.g. [19, 22].

Assumption 1.1.1 We assume that (b,o,u) € A and terminal condition ¢ € K.
where

1. A be the class of functions such that B : R* — R?, ¥ : RY — My, F :
R x R — R which are L-Lipschitz continuous functions. Moreover, F is
strictly decreasing in y and satisfies, for all p € R?,

Uly -y < (y—y)FW,p) — Fly,p) < baly — ¢/ |*. (1.1.11)

2. Let K be the class of functions ¢ : R x R — [0, 1] such that ¢ is Ly-Lipschitz
in the first variable for some Ly > 0 and non-decreasing in its second variable,
namely

|6(p,€) — ¢(p,€)| < Lglp—p/|  forall (p,p',e) eRT xR xR, (1.1.12)
/

| <
)= ope) if € =e, (1.1.13)
and moreover satisfying,

supd(p,e) =1 and infp(p,e) =0 forall peR?. (1.1.14)
e e

1.1.3.1 Theoretical splitting scheme

In Section 2.2, we first introduce the theoretical splitting scheme, which is a numeri-
cal scheme that treats separately high-dimensional diffusion step and one-dimensional
degenerate transport step. For this purpose, we first introduce the transport step
where the diffusion part is frozen.

Theorem 1.1.1 (Proposition 2.10 in [19], Proposition 3.2 in [22]) Let 7 >
0, (B,X,F)e Aand ® € K.
Given any initial condition (tg,p,e) € [0,7) x R? x R, there exists a unique progres-

sively measurable 4-tuple of processes (PO E{oP€ ylope zlobey, . e Sg’d([to, 7]) x

S3([to, 7)) x S ([to, 7)) x H2U([to, 7]) satisfying the dynamics

dPttOJLG _ B(Ptto’p’e)dt + Z(Ptto’p’e)th, Ptt(;hp,e =pe Rd7
dE;fO,p,@ _ F(}/;to,pye’ Ptto’p’e)dt, E;fg,p,@ =ecR, (1_115)
dY;tO’p’e _ Z:O’p’e AW,

and such that

P [(I)_(pﬁom,e’ Ei(),pﬁ) < ltiTIE Y;tovp,e < (1)4_(]3i()710767 Ei(),p,e)] = 1. (1.1.16)
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The unique decoupling field defined by
[0,7) x R x R 3 (tg, p,e) — w(to, p,e) = Ytgo’p’e eR
is continuous and satisfies
1. For any t € [0,7), the function w(t,-,-) is 1/(l1(7 — t))-Lipschitz continuous

with respect to e,

2. For any t € [0,7), the function w(t,-,-) is C-Lipschitz continuous with respect
to p, where C is a constant depending on L, 7 and Ly only.

3. Given (p,e) € R* x R, for any family (p:, et)o<i<r converging to (p,e) ast 1 T,
we have

O_(p,e) < liminfw(t, pt, er) < limsupw(t, pr,er) < Py(p,e). (1.1.17)

t—>7 t—T1
4. For any t € [0,7), the function w(t,-,-) € K.
Definition 1.1.1 (Transport step) We set
(0,00) x K3 (hﬂl)) g 771(¢) = 6(07 ) e K,

where ¥ is the decoupling field defined in Theorem 1.1.1 with parameters T = h,
B=0,%=0, F =pu and terminal condition ® = 1.

And we denote 9(+) the unique entropy solution to the following transport equation
Y

Orw + Oe(M(p,w)) =0,  where M(p,y) = f pp,v)dv, 0 <y <1, (1.1.18)
0

with o(h,-) = .
Taking the same idea as before, it is natural to froze the E- process to its initial
value and introduce the diffusion step.
Definition 1.1.2 (Diffusion step) We set
(0,50) x K 3 (h, ) > D) = 5(0, ) € K,

where ©v(0,-) is the decoupling in Theorem 1.1.1 with parameters T = h, B = b,
=0, F =0 and terminal condition ® = 1.

Observe that, for ¢ € [0, h),
u(t,p,e) = E[w(PZ’p,e)] and v(t,-) € K. (1.1.19)

Then, with the above two approximation steps at hand, we consider naturally the
following theoretical scheme on 7 by a backward induction.

Definition 1.1.3 (Theoretical splitting scheme) We set
(07 OO) x K3 (hﬂ/}) — Sh(w) = 7;L o Dh(q/]) € K.

For n < N, we denote by ul the solution of the following backward induction on :
- form =N, set u}y := ¢,

-forn < N, ul =S, —t, (U], 1).

The (ull)o<n<n stands for the approximation of the decoupling field V(¢,-) for ¢ € 7.
Moreover, from the property of 7 and D, u} € K, forall 0 <n < N.
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1.1. Numerical schemes for high-dimensional singular FBSDEs

1.1.3.2 Main results

In Theorem 1.1.2, under some theoretical assumptions such as a structural assump-
tions which guarantees existence and well-posedness of problem, the Ll-error of the
theoretical splitting numerical scheme is controlled by the truncation error and the
error due to the L'-stability of perturbed scheme. Since the solution itself presents
a gradient explosion in the E-variable near the terminal time 7', to circumvent it,
we employ a smoothed version of decoupling field as in Section 2.2.3.1. We first find
a bound on the local truncation error in the norm Loo see Lemma 2.2.1, and then
extend it to global Ll-error as proposed in Proposition 2.2.1. Combined with the
stability of scheme in Proposition 2.2.2, we finally reach the convergence rate of the
splitting scheme:

Theorem 1.1.2 Under our standing assumptions, there exists a constant C such
that

fR V(0. p,e) — 6 (p,)lde < CT(L + [pl)v/I.

where ufj(p, e) the solution obtained through theoretical splitting scheme at time t =

0.

We show that a convergence rate of order % and this guarantees the reasonableness

of using a splitting scheme to solve above singular FBSDEs (1.1.4).

1.1.3.3 Implementable schemes

Based on this theoretical splitting approach, we propose several numerically imple-
mentable schemes which combines a finite difference approximation of the transport
operator and a probabilistic approximation of the diffusion operator.

Let € = (ej)1<j<s be a discrete grid of R with J a positive integer. We denote by
T,& an approximation of the operator Ty, on €. i.e. RIxR’ 5 (p,0) — TE(p,0) e R7,
which means that 7;16 (p,-) is an approximation on the grid € of the corresponding
equation (1.1.18) on [0, k] for p € R%. In addition, we assume that 7,%(p, 0) has at-
most polynomial growth. The terminal condition 1 : R x R — R is approximated
on & by ¢ = 1(p,e;), for all 1 < j < J and p € R%  Given this approximate
transport operator, we now introduce a probabilistic approximation of decoupling
field V(0,p, -) on €. For this purpose, we consider the Euler scheme associated to P
on 7, namely, for n > 0,

Pl = P 4+ b(P])(tas1 — ta) + o(PF)AW, and P§ =p. (1.1.20)
Here, (AWH)0<H< ~N—1 are independent random variables that stands for an approx-
imation of the law of (W4, ., — Wi, Jo<n<n—1-
We now define a discrete time process (I'y )o<n<n valued in R7 as follows.

Definition 1.1.4 (T'),)o<n<n is solution to the following backward scheme:

1. Forn=N, T} =¢(PF  e;) for1 <j<J.
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2. Forn < N, compute

T = TP B Dot | P ) (1.1.21)

For later use, we define the auxiliary process (') by
T = E[F%HU%Z] forall 1 < j < J. (1.1.22)

We also importantly observe that, due to the Markovian property of P on 7, (Tn)
satisfies

Tni=7(PF), 0<n<N, (1.1.23)
where the functions v, : R — R”, are given by

Definition 1.1.5 (Markovian) 1. For n = N, 'yfv(p) = ¢(p,ej), 1 < j < J,
peR?.

2. Then, compute forn < N, p e RY,

7 (p) = E[’YZH (p +b(p)h + a(p)AWn)] forall1 < j < J, (1.1.24)
7 (p) = Ty (0730 (P)) - (1.1.25)

With the above definitions, we have that I'g = o (Fp), which is an approximation of
V(0, Py, ) on the discrete grid €.

1.1.3.4 Conservative Finite Difference scheme

Concerning the approximation of backward non-linear transport operator (1.1.18),
we first consider the Lax-Friedrichs scheme and define 7}%“; ot R? x R’ +— R’ the
approximation of the associated operator Tp. It is defined as follows, see e.g. [60,
Chapter 12].

Definition 1.1.6 (Lax-Friedrichs) Fora givenp e R? and 0 e R, let (ij)lgkgKlgng
denotes the approzimation at the point (ry,e;) The steps to compute V are:

- at time rg = h: sethKzﬂj, 1<5<J,

-for0<k<K: set Vff = VlkH, V}“ = V}“H and compute, for 1 <j < J :

1 )
VE= (VI VD + o (93?(19, Vi — M(p, Vj’il)) : (1.1.26)

Then, set Tégh(p, 0) := V.

When the function p has constant sign, a more satisfactory method to use is the
upwind method, as it is less diffusive. Since in the application to carbon markets
given in Example 1.1.2 and 1.1.3 below, this will be the case, we consider the upwind
method for p = 0. We thus now define TGU§R Bt R? x R +— R” the approximation of
the associated operator T, as follows, see again e.g. [60].
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1.1. Numerical schemes for high-dimensional singular FBSDEs

Definition 1.1.7 (Upwind for p > 0) For a givenp € R? and 6 € R’ let (‘/jk)lgjgj71<k<]{
denotes the approzimation at the point (ry,e;) The steps to compute V are:

- at time rg = h: sethKzﬂj, 1<j<J,

-for0< k< K: set V}“ = V}“H and compute, for 1 < j < J :

)
VE = Vi = (M ViR - an(p V) (1.1.27)

Then, set %?%,h(p, 0) := V.

In the sequel, we denote for this part our approximation of transport operator
by 7;16.

1.1.3.5 Non-linear regression scheme

To compute the conditional expectation quantities 'yn(ﬁg;) = E[Fn+1|]3{;] at each
time step as defined in Definition 1.1.4 and 1.1.5, we will use deep learning as it was
demonstrated to be very efficient for high dimensional system, already in the setting
of BSDES, see e.g. [13, 18, 19]. Indeed, in the past years, neural networks have been
used in many fields (such as image recognition, artificial intelligence, NLP etc...) and
this resulted in massive improvements, especially to overcome empirically the curse
of dimensionality when solving high-dimensional problems. Indeed, using neural
networks results in approximations computed in an at-most polynomially growing
time.

For this purpose, we choose to use a feed-forward neural network to get the
approximation of 7,. We denote by NNy, 4,.1,m the set of neural nets, functions
®(-;0) : R s RY | with parameter © and with the following characteristics: the
input dimension is dy, the output dimension is di, L + 1 is the number of layers,
m = (my)o<m,<r, Where my is the number of neurons on each layer, | = 0, ..., L: by
default, mg = d and m, = d;. The neural network has thus L — 1 hidden layers and
the number of total parameters is Ny, ,,, = ZlL:_Ol my(1 +my41), and thus © € RVe.m,

Given a discrete approximation of 7;?3, the scheme to compute (9, ¥5) approxi-
mation of (yy,%,) in Definition 1.1.5 is given as follows.

Definition 1.1.8 (Non-linear regression by deep neural-networks) 1. At

2. Forn =N —1,...,1: given a simulation of P[, optimize
~ D = DT DT DT 2
£0(0) = E[TE(PE., Fut (PL.,) = (Va(PE,©) + Za(PE, ©) (Wi, = Wi,)) |
(1.1.28)
where (Vn(,0), Zn(+,0)) € NNy (a41)xJ,L,m» S0 that
e e in £,(0 dthen () := Yu(- 07).
n €arg min £,(0) and then  Yn() = Yn(+0y)

3. At the initial time to = 0, compute %(]3(?) = E[ﬁle(ﬁg,%l(f’g))]
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1.1.3.6 Numerical results

In Section 2.3.3, we work on numerical tests of different models given in Example
1.1.2, 1.1.3 and 1.1.1 under the setting of Assumption 1.1.1, using the non-linear
regression and splitting method in 2.3.1. Especially for the linear model, we have
plotted the 1-dim proxy of the solution, solution of alternative scheme and solution
of Neural nets & LF particularly for linear model 1.1.1 in Figure 1.2.

Example 1.1.2 (BM with positive emission)

d
1
dPf = odW{ and dE; = p(Yy, —= Y P)dt (1.1.29)
\/g /=1

with p(y,p) = 1+ 152= —y and d(p, e) = Liezy -

The above model will have non negative p which is more realistic if one has in mind
application to carbon market. A criticism could be however that it is driven by
a Brownian Motion and that it will not suffer any discrete time error. We then
introduce a multiplicative model as follows.

Example 1.1.3 (Multiplicative model)

AP} = pPldt + oP{dW/, P§ = 1, and dE; = ji(Yy, P,)dt (1.1.30)

a1
with fi(y,p) = (nglpé> Ve e~ for some 0 > 0 and B(p,e) = Lie=oy -

101 — proxy 101 — proxy 101 — proxy
NMs & LF NMs & LF NNs & LF
08 BT & SPD 4-dim BT & SPD 4-dim BT & SPD 4-dim

(a) o =0.01 (b) 0 =0.3 (¢) o =1.0

Figure 1.2: Comparison of the two methods Neural Nets & Lax-Friedrichs (NN&LF) with
d = 10 and the alternative scheme (BT&SPD) with d = 4. The Proxy solution is given by
the same particle method used in on the one-dimensional PDE.

As what we expected, our schemes are able to reproduce the proxy for the true
solution of Example 1.1.1 as reported in Figure 1.2, compared to the results of
Figure 1.1 for the “classical” FBSDEs methods. And note the non-linear regression
scheme (denoted NN&LF) is tested in dimension d = 10 and the alternative scheme
(denoted BT&SPD) in dimension d = 4.
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1.1. Numerical schemes for high-dimensional singular FBSDEs

Empirical order of convergence rate In this part, we estimate the empirical
order of convergence rate of introduced by the splitting scheme with respect to
time step. In particular, we consider the multiplicative model defined in 1.1.3 with
o = 0.3, in which there is no simulation error (since the forward process is a Brownian
Motion). We have tested for number of time steps N := {4, 8,16, 32,64, 128}, and
compute the L1 and Loo error by NN & Upwind method. Note that to reach a
better accuracy, the proxy solution is given by one dimensional equivalent model.
We found that the empirical convergence rate is close to one, which is slightly better
than the upper bound obtained in Theorem 1.1.2.

0] e @® Llogerror L-1
# Log error L-inf

— -0.92x+0.64

— - 0.8x+111

Log error

Logh

Figure 1.3: Convergence rate on N for model Example 1.1.3 with parameters d = 10,0 = 0.3
and K = 20, J = 400.

Numerical results on Dirac mass at the terminal time Ep It was also
described in Carmona and Delarue [19, 20] that the fact that the emission process
in the singular FBSDE can develop at a Dirac mass at the point of discontinuity
of a Heaviside terminal condition at terminal time 7. This phenomenon could be
thought as a kind of a stochastic residual of the shock wave, as it is known [60],
linked to inviscid Burgers’ equation with a discontinuous condition. Formally, they
prove that in [20, Proposition 3.2] that the marginal distribution of E; is absolutely
continuous with respect to the Lebesgue measure for any 0 < t < ¢, and has a Dirac
mass at A when ¢t = T, i.e. there exists a constant ¢ such that

P(ERP = A) 0

We have tested this result numerically via forward simulations of Er using following
Euler scheme:

B = M(Pf()’p,v(t, PO, Ef“’p’e))dt, (1.1.31)
Efoie = E;Svpve + M(Ptt:’pyvn (tngf)tt:7p7E527p7e))h7 (1132>
where h := T/N time step and v, is the numerical solution obtained by neural

networks or binomial trees at time step t,,. Empirically, we observed that Er indeed
show a Dirac mass at A (see Figures 1.4 and 1.5): it is clear that there are peaks
around A and we have double-checked that P(Ep € [—e+A, e+A]) > 0 with typically
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a small € = 1075, which validates numerically the theoretical result. Note that for
this example we choose initial values e = 0,0.1, the cap A = 0 and tg = 0,p = 0.

Distribution of E at t=T with 2=0,lambd=0

35000

30000

25000

20000

15000

10000

5000

-05 -04 -03 -02 -01 oo 01 02

Figure 1.4: Cumulative emission Er at terminal time with e = 0, A = 0 for model 1.1.1

Distribution of E at t=T with e=0.1

40000
35000
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20000
15000
10000

o
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Figure 1.5: Cumulative emission Ep at terminal time with e = 0.1, A = 0 for model 1.1.1

Moreover, as stated in [29, 19] the price (allowance) process (Y;)o<i<r, solution of
the singular FBSDE, loses its Markovian property at terminal time: the topological
support of the random variable Y7 conditional on event {E; = A} is the whole
interval [0,1], which means that Y7 is not anymore a deterministic function of
variable Ep on {E7 = A}. Numerically we have the same result see Figure 1.6.

Distribution of Yt at t=T-.conditioned on ET = Lambda

025

010

005

0.00

Figure 1.6: Y7y = Yr_ conditioned on Ep = A, has the whole of the interval [0, 1] as
topological support, for A = 0.2.

Numerical results on decreasing terminal condition Instead of considering
increasing terminal condition as (1.1.5), we consider a decreasing terminal condition
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1.1. Numerical schemes for high-dimensional singular FBSDEs

¢ with respect to variable e. For simplicity we choose ¢(e) = l.<o and also linear
model as described in 1.1.1. We plot the curves of numerical solutions at different
levels of volatility: o € {0.001,0.01,0.1,0.3,0.5,0.7,0.8,1.0} using specifically the
BT & LF (Binomial Trees and Lax-Friedrichs) method, see Figure 1.7. We observe
that its behaviour is different from the increasing terminal function case.

10
; A
0.6
04

0z

0.0

-2 -1 0 1 2 3

Figure 1.7: Entropy solution for linear model with decreasing terminal condition ¢(e) =
le<q, with different levels of volatility by BT & LF method.

1.1.4 Convergence of particles and tree based scheme

In Chapter 3, we analyse an alternative scheme originally presented in Section 2.3.3.1
of Chapter 2 which treats separately diffusion operator with moderate dimension and
one-dimensional non-linear transport operator respectively by Binomial Tree and
SPD(Sticky Particle Dynamics), see e.g. [53, 17, 55]. The convergenc of this scheme
is proved by using decomposition of errors and also several intermediate results in
[26, 53], in addition, to control the local error estimates, we made an additional
assumption on the regularity of value function V and employed regularization to
overcome the gradient explosion near the terminal time T. We recall that we are
interested in this second chapter of the thesis with an alternative numerical scheme
of approximation of solution wu(t, P;, E;) where u is the value function of the entropy
solution to the following quaisi-linear PDE

owu(t,p,e) + p(u(t,p,e), p)oeul(t, p,e) + Lyu(t,p,e) =0, (t,p,e)€[0,T] x R? x R,
u(T,p,e) = ¢(e), (p,e) e R xR

(1.1.33)
1.1.4.1 Implementable scheme
Notations: For M > 1, let
Dy = {ez (€1, vem,-.en) ERM e <o <epy < - - <6M} (1.1.34)
1 M
and ZM = {9 e g o():= H*(M Z Je,, ), € € DM} (1.1.35)
m=1

where H is the Heaviside function z +— 1,0, * the convolution operator and
dc is the Dirac mass at e € R. For later use, we also introduce, for M > 0 and
n € {0,..., N}, the set of function

Ky ={¢: Py xR —[0,1]] for pe Po, ¢(p,-) e TV} . (1.1.36)
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As mentioned in the above, to validate empirically our results obtained with the non-
linear regression scheme, it is thus of interest for us to develop an another numerical
method, here based on the splitting scheme combining a particle method with tree-
based regression in moderate dimension (say 2 to 5). And this alternative scheme
will be efficiently implemented on the various Examples 1.1.2, 1.1.3 and 1.1.1 for the
reasons that we work in moderate dimension and the process P can be expressed
as a function of the underlying Brownian motion, namely P, = B(¢, W;). We treat
the general case where P is solution to a SDE with Lipschitz coefficients as given
in (1.1.4). The discrete approximation on the grid 7 is given by the classical Euler
Scheme

Py=Pyand P, ., = Py, + b(P,,)b + o(P, ) AW, , (1.1.37)

where (Aﬁ[\/n) is discrete approximation of the Brownian increments (W;, ., =W, Jo<n<N—1-
For later use, we also define, for p € R? and any 0 < n < N — 1,

Pint = p+ b(p)h + o (D) AW, . (1.1.38)

tn+1

Let us denote by P, the discrete and finite support of ﬁtn for0<n<N-—-1. We
observe, due to the above definition of (P, ), that

for p € Pn, PP € Poyy . (1.1.39)

lny1

In this context, we first introduce a discrete version of the operator 7, recall Defini-
tion 1.1.1, that will compute an approximation to (1.1.18) written in forward form:
We shall use the celebrated Sticky Particle Dynamics (SPD) [17] see also [53, Section
1.1]. The SPD is simple to implement in our special case since there is no particle
colliding due to the monotonicity assumption on (u, ).

We first present the discrete version of 7, which we denote ¥, acts on empirical
CDF belonging to ZM,

1

(0,00) x RT x ZM 5 (h,p,0) — M (p, ) := He(57 ) Serny) € ™ (1.1.40)

1

P M=

Above (€h,(h))1<m<m is a set of particles computed as follows. Given the initial
m/

position e(0) € Dys and velocities (Fy, (p))1<m<s set to F,(p) = — S(meU/M w(p, y)dy,
we consider M particles (eh,)1<m<nr, whose positions at time ¢ € [0, h] are simply
given by

el (t) = em(0) + F(p)t . (1.1.41)

We observe that (eh,(t))1<m<nm € D, for all t € [0, k], as —pu is non-decreasing.

We now present the approximation used for the approximation of Dy(v), recall
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1.1. Numerical schemes for high-dimensional singular FBSDEs

Definition 1.1.2 and (1.1.19). For ¢ € KM | and p € P,,. We have, from (1.1.38)

Un(p, €) = E[w@f:ﬁ, e)] = % 2 w((ﬁfjﬁ)l e) (1.1.42)
1 Z:dl 1 M
- MEH“M% Jei )(e) (Since € Kply)  (1.1.43)
= Hx( ! zI: f d.i )(e) (By linearity) (1.1.44)
2dM ~ Ao

The approximation of the diffusion operator is thus given by
KM 59— DM () = 5, e KM, (1.1.45)
Finally, the scheme will have essentially two versions:

CASE 1: We keep the 2dM particles at each step n. The overall procedure will then be
the iteration of the two operators € and 2, see Definition 1.1.9 below.

CASE 2: There is no need to keep 2dM particles at step n, when the function v at step
n + 1 is given by M particles (for each p € P,,11). To reduce the number of
particles, we apply another operator R, namely, for M > m > 1,

M 5 9p > RM™ () e T . (1.1.46)

Various implementation are possible, we refer to the numerical section for a
precise description.

Let us now finally introduce the scheme formally.

Definition 1.1.9 (Scheme in CASE 1) Fix M > 1 and set for 0 < n < N,
M, = (2d)N-"M.

1. Atn = N: Setey := (A,...,A) € Dy, whose empirical CDF is the terminal
condition ¢ = Li>py. Setting simply u%’M(p, ) = ¢, for all p € Py, we do
observe that u%’M € IC%N.

e NM _ -Mn g1
2. Forn < N: Given u,;; € K, [, define

af M = oM () e KA (1.1.47)
recall (1.1.45), and then uh M by, for each p € Py,
recall (1.1.40).

The approzimation of V(0, Py, -) is then given by uéV’M(PO, ).
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Definition 1.1.10 (Scheme in CASE 2) Fiz M > 1.

1. At n = N: Setey := (A,---,A) € Dy whose empirical CDF is the terminal
condition ¢ = Ly.>py is the empirical CDF of en := (0,...,0) € Dyy. Setting

simply vjj\\;’M(p, :) := ¢, for all p € Py, we do observe that vx’M e KA.
2. Forn < N: Given UTJL’A{ € IC%H, define oM = @nM(vT]x’r]‘f) e K2M  recall
(1.1.45), and then for each p € Py,
G (11.49)

recall (1.1.46), and finally vi "™ (p,-) by,
v M () = Ty (0.0 M () (1.1.50)
recall (1.1.40).

The approzimation of V(0, Py, -) is then given by véV’M(PO, ).

1.1.4.2 Decomposition of total error

The total error could be decomposed and controlled by four parts: error due to trans-
port operator by the particles, propagation, diffusion as well as splitting. However,
classical analysis techniques fail since the solution V is not smooth a priori, thus
its gradient at time ¢ in terms of L1-norm leads to an explosion when ¢ approaches
the terminal time T'. To circumvent this difficulty, we introduce the mollification V¢
by considering its convolution respect to a smooth compact function ¢, which we
defines V¢ as follows:

i(tpe)i= [Vitp+adedads where v = o) (LL5)

€

and with () a smooth compactly supported density probability function. We first
observe that the mollification V¢ satisfies same PDE in the above 1.1.33 up to an
error term as follows

Lemma 1.1.1 The reqularized function V¢ satisfies on [0,T) x R? x R,
1

OV + V(L p, €))LV BRIV + STV = O (pe)  (L152)
and w(T,-) = ¢(-) with 6 a continuous function. Moreover, we have that

6(t,p, )] < Ce ( | v p+ g eledaia + 2y e e>) . (11s3)
And we will see that three error terms 0. V*(t,p, e),|0,V(t, p, €)|, |05,V (¢, p, €)| on
the right-hand side can be controlled in terms of L1-norm. And it is also crucial to
have a control of d,V¢ in terms of norms Loo and Ll-norm, indeed, in Proposition

1.1.1, we prove that

0V )l < C and [ [0,V(tpre)de < (T —1) (1.1.54)
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1.1. Numerical schemes for high-dimensional singular FBSDEs

In the following ,we perform an analysis on the decomposition of total errors
introduced by the scheme given in CASE 1.

The error we seek to control is, for ~,, = udM or Y = vh M given above,
err(N, M) := J|’yo(Pg,e) —V(0, Py, e)|de . (1.1.55)

And we first observe

err < & (Py) + &, (1.1.56)

with for 0 < n < N and p € P,,
E7(p) = J]Ve(tn,p, €)= V(tn, p,e)lde, (1.1.57)
JI% pie (tn,p,e)|de. (1.1.58)

Error &,(p) could be decomposed further into four parts as follows under CASEL.

Lemma 1.1.2 Under CASE 1, for0<n < N —2,

£(p) < EX(D) + E0) + EP () + E3(0) (1159
and
Ex-1(p) < E_1(p) + Ex 1 (p J\Sb —0,(6()(pe)lde  (1.1.60)
where for p e Py,
p) i [ 5 0.5 o))~ T . )) o) de. (11.61)

En(p J‘ﬁ b, n7 (p’ ))( ) - ﬁl(p’E[Ve(tn-i-laﬁtt:_ﬁa )])(6)‘(16’ (1162)
and for p € R?,

&Mm=ﬂﬁ@ﬂwwwh%ﬁ»ma—ﬁ@mwwwhﬁﬁ»m%@,

(1.1.63)
ﬂn D EV (s 1, P D) (€) = V<t o) e (1.1.64)

observing that
51 = [ 190 6())(€) = Tolp. o) e fde. (1.1.65)
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1.1.4.3 Control of local errors in a smooth setting

The main assumption we shall use is the following. We mention that it is satisfied
in the linear toy model defined in Example 1.1.1.

Assumption 1.1.2 The decoupling field V is a €1%1([0,T) x R? x R) solution to
1
OV + u(V,p)0eV + b(p)d,V + 552Apv =0. (1.1.66)

In particular, the function o(-) is constant o(-) := olg with ¢ > 0 and I is the
d x d identity matriv. Moreover, the function b is €*(R?) with bounded and Lips-
chitz derivatives and the function u is € (R% x [0,1]) with Lipschitz and bounded
derivatives.

We first list some local control estimates of the function V in the regular setting
of the previous assumption.

Proposition 1.1.1 Under Assumption 1.1.2, the function V satisfies, for (t,p,e) €
[0,T) x RY x R,

0 < V(t,p,e) < TL—t and [pV(t,p,e)| < C . (1.1.67)

Moreover, for (t,p) € [0,T) x R?,
Jyapva,p, e)lde < C(T — 1) | (1.1.68)
and, thus, for p' € R?,
f\V (t,p,e) = V(t,p',e)|de < C(T = t)[p — p'|. (1.1.69)

From (1.1.52), we observe that since V¢ belongs to €% ([0, T) x R? x R), it satisfies
the same bounds in the above as ) .

As well as some control estimates on second and third-order derivatives of V¢ in
terms of norm L1,

Lemma 1.1.3 Under assumption 1.1.2, the followings hold, for (t,p) € [0,T) x R,
GJ |8§ipjve(t,p, e)|de + € J| pipson V(L D, €)|de < O (1.1.70)
fori,j,ke{l,...,d}. And thus, for (t,p,p') € [0,T) x R? x RY,

C
Jlapvg(t,p, — 0pV(t, P, €)|de + ef\&Q Ve(t,p,e) — 0§pve(t,p',e)|de < ?\b— al .
(1.1.71)

In the following, we will list local error estimates linked to approximation of
transport operator, diffusion, regularization, and splitting, as mentioned in the above
Section 1.1.4.2, and also our main results in Theorem 1.1.3.
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1.1.4.3.1 Approximation of transport operator

Lemma 1.1.4 Under Assumption 1.1.2 and in CASE 1, the following holds

El(p) < CML ,pEPy. (1.1.72)

1.1.4.3.2 Regularization error

Proposition 1.1.2 Under Assumption 1.1.2, the following holds, for n < N,
E(p) < Ce, pe R4

1.1.4.3.3 Splitting error In the article [20], the error due the theoretical split-

ting, has already been studied and the results obtained there can be used in our

setting. However, we should point out that here V¢ appears instead of V. We first
present the following lemma.

Lemma 1.1.5 Under Assumption 1.1.2, the following holds,
E3(p) < C(L + IpP)h2 + Eu(p) (1.1.73)
with

€ (p) = ﬂ@h(ve(tnﬂ, N €) = Vi(tn, ps e)|de. (1.1.74)

Concerning control on the term &,(p), we prove the following proposition.

Proposition 1.1.3 Let Assumption 1.1.2 hold. Then, forn < N —2, p e R%,

En(p) = JIGh(VE(th, (P, €) = V(tn, p,e)|de < Che. (1.1.75)

1.1.4.3.4 Diffusion error

Proposition 1.1.4 Under Assumption 1.1.2, the following holds

for0<n <N —1 andpeR%

1.1.4.4 Main results

Based on the above control of local errors linked to approximation of transport and
diffusion operators as well as splitting at each stage of the scheme, together with
the stability property of propagation error £,(p), we can decompose iteratively the
global error into a sum of local errors, indeed,

err < £5(Po) + &o(Po) < E§(Po) + E (Po) + E1(Po) + EP (Po) + &7 (Po)
< ... (iteration on propagation error &)
N-2
<E&(R)+ Y, BET(P,) + EP(B,) + E3(R,) | + Blen1(Puy,) |

n=0
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With the above local error estimates at hand, we obtain a global control on the
convergence error between the theoretical solution and the numerical approximation
by our numerical scheme CASE 1, more precisely, the global L1-error is controlled

1
by O(e + Z—g) For the purpose of finding an optimal order, we denote € := h, and
it’s then converted to an optimisation problem which leads to a* = 1/6.

Theorem 1.1.3 Let Assumption 1.1.2 hold. Then, under CASE 1,

err(N, M) < C’(% + \e/f +€), (1.1.76)

recall (1.1.55). Moreover, setting € = bo and M = 1, we have

f\V(O,PO,e) _ M (P e)|de < Oy, (1.1.77)

1.1.4.5 Numerical results

Comparison between CASE 1, CASE 2 and proxy To view the differences
between the various reducing particles implementations in CASE 2 scheme, we test
those two numerical schemes in a linear toy model with Brownian setting, recall
Example 1.1.1, as plotted in Figure 1.8. And in Figure 1.9, we plot the solutions
obtained by CASE 1 and CASE 2 against the proxy solution presented in [9] for
different levels of volatility ¢ = 0.01,0.3,1.0. Both CASE 1 and CASE 2 scheme
could reproduce correctly the “entropy” solution.

Comparison between BT&SPD and PDE method Apart from NN & Up-

wind presented in [20] and method in [9], we would like also compare our CASE1
scheme to a PDE method see e.g. [1(] for 2-dimensional toy model 1.1.1, with
a discontinuous terminal condition ¢(e) = 1.>¢ and different levels of volatility

o € {0.01,0.3,1.0}, see Figure 1.10a,1.10b and 1.10c. Note that we choose the Lax-
Friedrichs scheme for conservation law appearing in the PDE. We observe that both
methods could reproduce correctly the weak entropy solution. However in practice
we observe that PDE method is not very stable and sometimes its numerical solution
is not convergent. To ensure the stability, in practice we need to choose parameters
to verify the CNL condition, in our case, we choose number of time steps = 800,
number of P-space steps = 50, and number of E steps = 400. Thus by the “diffusive”
nature of Lax—Friedrichs scheme as well as the constraints on stability imposed by
CNL condition, PDE method require much more time to compute than BT&SPD
method for a fixed accuracy.

Empirical convergence rate of CASE1 In this part, we estimate the empirical
order of convergence rate of introduced by CASE1 scheme with respect to time step
bh. In particular, we consider the linear toy model defined in 1.1.1 with ¢ = 1.0. We
have tested for number of time steps N := {2,4,8,16,32,64}, and compute the L1-
error by CASE1 method. Note that to reach a better accuracy, the proxy solution
is given by one dimensional equivalent model applied by method in [10]. We found
that the empirical convergence rate is very close to one see Figure 1.11, which is
better than the upper bound obtained in Theorem 1.1.2.

37



1.1. Numerical schemes for high-dimensional singular FBSDEs

10 1 — CASE 2: leftmost 10 1 — CASE 2: leftmost
CASE 2: mean CASE 2: mean
08— CASE 2: rightmost 0] — CASE 2: rightmost
0.6 1 06 1
0.4 1 0.4 {
0.2 1 0.2 1
0.0 0.0 1
2 3 2 a 0 1 2 3
(b) o =0.3
10 1 — CASE 2: leftmost
CASE 2: mean
0l CASE 2: rightmost
06 1
0.4
02 A
0.0 1
2 4 2 3
(¢)o=1.0
Figure 1.8: Model of Example 1.1.1: Comparison of the different implementations:

leftmost,mean,rightmost in CASE2 with d = 4. The Proxy solution is given by the
same particle method on the one-dimensional PDE. For BT&SPD CASE 2, the number of
particles is M = 3500 and the number of time steps N = 20.
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10 1 — Proxy
CASE 2:mean
ngl — cAsEl

0.6 1

0.4 4

0.2 4

0.0 4
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0.0 4

— Proxy

CASE 2:mean
—— CASE1

10 4

0.8 1

06

044
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0.0+

-2

—— Praxy
CASE 2:mean
—— CASE1

(¢) o =1.0

Figure 1.9: Model of Example 1.1.1: Comparison of the two methods CASE 1 & CASE2:
mean with d = 4. The Proxy solution is given by the same particle method on the one-
dimensional PDE. For BT&SPD: both CASE 1 and CASE 2, the number of particles is
M = 3500 and the number of time steps N = 20.
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024

0.0 1
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Figure 1.10: Comparison of e — V(0,0,¢e) obtained by BT&SPD and PDE method, for
different volatilities, for the linear model 1.1.1.

40



Chapter 1. Introduction

35 — 3 4099
EX]
25
20
15

10

log L1-error

05

0o

-0.5

-45 -40 35 -30 -25 -20 -15 -10 -05
log h

Figure 1.11: Convergence rate on time step h := % for model Example 1.1.1 with parameters
d=4,0=1.0.

1.2 A dual approach to weak hedging problem

In this second part of thesis, we consider a class of non standard control problems
where we impose on the controlled process a constraint involving its law at termi-
nal time 7. Within this framework, we are interested in the so-called weak hedging
problem, especially in a new dual approach in the linear setting case. For this pur-
pose, we first introduce weak hedging problem and its properties in a non-linear
setting by encapsulating all possible cases for target measure u: 1. discrete and
finite 2. arbitrary measure, then we establish a link between our general weak hedg-
ing problem and a kind of optimal transport problem by considering its “Monge”
and “Kantorovitch” version representation. Under suitable assumption, we prove its
equivalence in a non-linear setting. Particularly in the linear framework and p with
finite support, we present and prove a dual representation of the “Kantorovitch”
problem. This formulation gives naturally a numerical scheme using stochastic gra-
dient descent see e.g. [3]. Besides, in the case where p a probability measure and
G(y) = £ + v, with £ a fixed random variable, we also find an explicit solution by
direct resolution of optimal transport problem. The main novelty of our approach
in comparison to the previous works [15, 11, 13] is that we extend theoretical results
to an arbitrary target measure g in a non-linear setting and we find a duality for-
mulation for Kantorovitch problem and especially in the linear framework we find
an implementable numerical scheme based on SGD as well as an explicit solution
based on OT for the case where p a probability measure and G(y) = £ + 7.

1.2.1 Weak hedging problem

This question named Quantile hedging see [30, 11] or in general PnL hedging is not
new and has been studied before in various settings. In this case, the controlled pro-
cess is a portfolio of financial assets. The key point is that the value of this portfolio
at time T is not supposed to perfectly replicate a given contingent claim. In the
quantile hedging problem, the agent will seek to replicate the contingent claim with
only a 95% (say) probability of success. On a theoretical point of view, the problems
of perfect replication and partial replication lead to quite different stochastic control
problem. The first one has been generally recognized as a case of stochastic target
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1.2. A dual approach to weak hedging problem

problem see e.g. [05, 66]. The second one has been treated as a weak stochastic
target problem and needs extra work to be solved, see e.g. [14]. In particular, it
leads to a degenerate PDE representing its value function which is quite involved
to work with and to approximate numerically, see e.g. [5]. A natural extension to
the quantile hedging problem is the PnL matching problem introduced in [15]. In
this second part of the thesis, we consider a finite number of quantile constraint,
representing a given target PnL: in other words, the targeted law for the PnL is
discrete and finite. The next step would be naturally to impose any possible law as
target PnL. Having in mind financial applications, we have called this more generic
problem the weak hedging problem.

Notation:

o If (Q,F,F,P) is a filtered probability space and E a normed space, we define
H%(F,P; E) as the set of progressively measurable processes U : 2x[0,T] — E
with T > 0 fixed satisfying

T
EU |Ut2dt} < 4o
0

and .72(F,P; E)) as the set of processes U : Q x [0,T] — E continuous and
adapted s.t.

]E[ sup |Uydt| < +oo.

t€[0,T]

o For (Q,F,P) a probability space, we denote Np the set of negligible sets,
namely

Np i= {Ae F|P(A) = 0}.

o Given a measurable space (E,£), the set of positive measures on F (resp. the
subset probability measures) is denoted .#Z (F) (resp. P(E)). For p > 1, we
consider

Pp(R) = {V e P(R) ’ J z[Pv(dz) < +oo}.

Let (£2,.A,P) be a complete probability space supporting a m-dimensional Brownian
Motion, where m is a positive integer. We denote by F = (F;);>0 the natural P-
augmented filtration of W. In the sequel, we work with a finite time horizon T' > 0.
We consider the following class of controlled processes: for y € R and Z € 72,

t t
e f f(s,Ys, Zs) ds + f ZsdWs, te0,T], (1.2.1)
0 0

where (f(s,*))se[0,7] is @ progressively measurable process taking values in Lip(R x
R? R), the set of Lipschitz continuous function from R x R? to R, and such that
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E[S§|f(s,0,0)|2ds] < +00. Moreover, for any ¢ € Z?(Fr), there exists a unique

(Yo, Z) € R x 2 such that Yq})o,Z = ¢ We then set ), := YTyO[g]’Z[g] for all
t € [0,T7], so that (), Z) is the solution to the BSDE with driver f and terminal
condition &, namely

T T
yt:£+J f(say&zs)ds_J Z, AW, ,0<t<T,
t t

also given a (Fr ® B(R), B(R))-measurable random function 2 x R 3 (w,7) —
G(w,v) € R such that v — G(v) is non-decreasing and left-continuous. We now
introduce the weak hedging problem. Denote, for p € P(R),

() = {y eR ‘ 3Z e A2 P(YEZ = G(y)) = Fuly), Wy e ]R} , (1.2.2)

where we denote F), := p([-,0]) for a probability measure u on R. We now define
the weak hedging price as

Vwn (p) = inf (). (1.2.3)

For later use, we denote  := Q x R and F := F ® B(R), with B(R) the Borel
sigma-algebra of R. We define the following projections

pry: Q3 (w,y) »we, and pry: 23 (w,7) — y€R.

1.2.2 Monge and Kantorovitch representation

In the sequel, for two probability measures p,v on R, we denote v > u as the first
order stochastic dominance, i.e v ([-,0)) := F, = F,, =: ([-,00)) on R. We define

Kup:={rePR)|yv=pu} and K :=K,nPyR), p>1.
and
Ry = {v € K| supp[v] = supp[p]} and RE:=R,nPyR), p=1,
where supp|v] is the support of the measure p.
1.2.2.1 Relaxed Monge problem (RM)
For Monge problem, we have the following equivalence

Proposition 1.2.1 Let u € P4(R). We have the equivalent formulations

Vwa() = Vem :=  inf  J[G(X)], (1.2.4)
X€T+ (1)
where Ty (1) = {x € L*(Fr) | xsP € K.}, and
Vi (1) = inf H(p), with H(u) := {y eR|3Z e A2 WYL )P e /cu} . (1.2.5)
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1.2.2.2 Kantorovitch problem (KP)

We now assume

Assumption 1.2.1 The probability distribution p € P(R) has discrete and finite
support, namely supp[p] = {v1,...,va} with v < --- < 4. We denote qp = F,(V¢)
and pg := qr — quv1 = p({ve}), for £ € {1,...,d} with the convention q+1 = 0.

Lemma 1.2.1 Under Assumption 1.2.1, the following holds

Vwn (i) = Vem(p) = Vam(p) := RG] (1.2.6)

and where T (p) = {x € L (Fr) | xsP € Ru}.

We now introduce the Kantorovitch representation of the quantile hedging prob-
lem. We define

Vip(p):= inf Yy UG w,v)p N (w, dy)] (1.2.7)

eCr (P,u)

where p!! is obtained from the disintegration of the measure II.

1.2.3 Our contributions

Besides the previous representations, we also establish an equivalence between “Monge”
problem Vgy and “Kantorovitch” problem Vgp i.e. Vkp = VrM in the original gen-
eral setting as well as a duality result for “Kantorovich” problem Vgp(u) in the
linear setting where f(s,y,2) = asy + b} 2z and p with discrete and finite support,
given by

Vip(p) = inf

it GO)(Qi — Qisn) |- (1.2.8)
€

IM&

where, for all ¢ € [0,T7],

Qi(p) = {(Qz‘)fill e L (F)|1=Q1=>Qu4=>Qqs1 =0and HQ;] > ¢, 1 <i< d}
(1.2.9)

To establish the equivalence between Monge and Kantorovitch representation of OT
problem, we first prove the inequality Vkp < Vrm. Indeed, for x € H"(u), it suffices
to observe that

d
G(x) = Z Ly=yi = Z G(vi) (L 1x>w+1) )
i=1

and considering @Q; := 1y>,,, which leads to V|G (x)] = Vkp(n). For the converse
inequality, we first construct a random variable $1¢ independent of F;_. for any € > 0,
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for example U = N (%) Then fixing n > 0 and by definition there exists

QN € Q7 (u), denoting P := Q7 — Q, ,, such that

d d
Vip (@ Z (vi)(Q] QH—I)] -n= Z ] = (1.2.10)
Let € > 0 and we then denote
Q) = IE[Q?IfT d, 1<i<d+l, and (1.2.11)
P QU Qs P Fr). 1< i<d (1.2.12)

Introducing the Fp-measurable random variable x"¢ = 2?21 1 QI ue>Que b it
i =z i+1

then suffices to prove that there exists w(n, €) <295 0 such that

d
Yo [Z G(%)Pi"] > Vo [G(X™)] = w(n,€) = Vrm(p) — ofe) (1.2.13)

i=1

to conclude. Along with control of estimates on the solution of non-linear BSDE
with terminal condition ¢ € L£L2(Fr_.) at terminal time T — e. Combining those
two points, we prove the above (1.2.13) and make the conclusion that Vkp(p) =

Vem(p) —w(n, €) —n, i.e. Vkp = Vrm.
In the following, we establish the duality between Vkp and Vpp, given by
d
Vop(p) := sup | EX]+ ) ®iu({n}) |, (1.2.14)
(X, 2)eBr i=1

where

P, = {(X, o) e LH(Fr) % A‘i‘H(%) > X +d,1<i<dP- a.s.} . (1.2.15)

with Ai : {x eERI <z <+ < md}. We prove the inequality Vpp < Vkp by
writing KP problem as the following

inf H I(dw. d
Heg}(wf (w, ) (dw, dv),

where C™(P, p) := {Il € P(Q)| (pry)sII = P, (pry);Il € R}, and from which we de-
duce that for H € C’”(IF’ p) and (X, ®) € Py ,, we have

JH w, V) (dw, dy) = FX] + Z Pip({ri})-

=1

For the converse inequality, we develop Vpp into Fenchel transform,

Vop (1) = HH (y1)] + B(p2; - - - pa)
= HH ()] +2W(g, - qa),
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where

d—1
B(p) = sup ((Z Cz'pi+1> —E[lglgjc_l (G — Fl(fyi+1))+D , (1.2.16)
=1 =T

d—1
CeAT

d—1 i
D)= o 3 biayn m(Z “en) | o2
J=1 i

Then we prove that the function defined as

d—1
= 0:qg;.1 —E| max
) Z 345+ 1<i<d—1
Jj=1 J

.

9] ‘E[ O.) 7@-{-1)) )
i—1

+
is continuous, concave on R‘fr_l and limg|_,,, w(f)) = —oo. This allows us to deduce an
existence of 0* € R4 such that Suppa—1 w(f) = w(0*) = QB( ). To have a further
+
development on w(#), we define for 1 < i < d — 1, A;(#W) := = {®4( 00) > 0} =

{Hi + fI(%) — fI(%H) + <I>i+1(9(i+1)) > O} and Ay() = by convention.

And for 2 < i < d+ 1 and 0 € R¥! we define Q;(0) := 1ﬂ§€;11Ak(9(k)) and
Q1(0) := 1. We also set, for 1 <i < d and 0 € R¥™', Pi(0) := Q:(0) — Qir1(0) =
Qi(0)(1 — 1y, 9000)) = Q@( )14, (00 e

Then for 0 € Rd 1 we prove that

d
Z q]+1 E{Qgﬂ Z ]:I% ]

and more importantly that its sub-differential dw(f) < T9Z}{[d; yw(h), & _w()],
with for all 1 < <d—1, ¢; —w(f) (resp. 0; +w(f)) is the left (resp. right) partial
derivative of w at 6,

Oi—w(0) = (+OO)19 —0 + (gi+1 —HQi+1(0)])
8,-7+w (0) = qi+ IE[Qz+1 ]

with QZ“( ) = Qi(9)1{9i+H(’Y1‘)—H(’Yi+1)+®z‘+1(9(i+1))>0}' Moreover, since that 0 €
Ow(0*), we deduce that for 1 < j < d—1,

441~ EQi1(0)] > 0> g1 — E[QF,(0%)].

With the above conditions along with different discussion on the frontiers of Rflfl,
we prove that Vpp = Vkp in some cases: one (d = 2) and two constraints (d = 3)
case. For the general case where d > 3, we conjecture that it still hold on.

Apart from the above dual characterization, we also obtain an explicit represen-
tation for p a general probability measure via optimal transportation approach. We
assume that G(vy) := £ + v, where £ a fixed random payoff. In this case, we recall
from (1.2.4) that

Vem(p) = HT7€] +  inf HI7x]
XET+ (1)
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and define a more restricted problem

Vor(p) = xlé% HI'7 (€ + x)], (1.2.18)

where T (1) = {x € L*(Fr) | xsP € K,.}.

Theorem 1.2.1 Suppose that the law of I'r is absolutely continuous with respect to
the Lebesgue measure, for € Py, we have

Vou(n) = BE2¢] = 3B[(0r?] - 5 [ aulda) + gWRE(-Prh. (1219)

In addition, ]7RM(/L) = Vor(u) and there exists x* € T,, such that

Vor(p) =HI'r (£ +x7)],

which writes explicitely x* = Nu_l o Ng(—rp)(=I'r). Here, N, stands for the c.d.f.
of the law u and Nljl its generalized inverse.

1.2.4 Numerical results

Finally, we now turn to numerical experiments by applying previous results in the
linear framework, especially for the Black & Scholes model, already studied in [36, 5].
We recall that in the linear setting, the process I' is solution to

¢

t
=1+ J Doa(s, X,)ds + f D.B(s, X)) TdW,, 0<t<T. (1.2.20)
0 0

Example 1.2.1 (Black & Scholes Model) The process X satisfies

t ¢
X = XO‘*‘J bXsds+f o XsdWs
0 0

withbe R,o0 > 0 and Xo > 0. The function f is given by:

A~

b—r

flt,z,y,2) = —ry — z=:—ry— Az, (1.2.21)

br

o

where r = 0 the interest rate, and A := the risk premium. The Radon-Nikodym

derivative defined in (1.2.20) is thus:

I'r

d r—b 1(r—b)?

=§’T=exp( o WT_Q( 02) T)’

One constraint We consider a target measure p = (1 — p)dy + pd,. We have
tested numerical results by SGD algorithm against OT-APPROACH, and results are
reported in Table 1.1. The SGD algorithm is applied to function 20 defined in
(1.2.17). We note that the number of simulations of trajectories of brownian motion
is N = 100000, European claim payoff function g(z) = (z — K)+ with K = 100.
Concerning the dynamics of X, we take Xy = 100, r = 0,(3 = 0.1,0 = 0.2, and time
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1.2. A dual approach to weak hedging problem

Probability p p=0.01 \ p=0.1 \ p=05 \ p=009 \ p =0.99
Computation time of SGD | 17.89s 18.14s | 19.17s | 17.88s 18.93s
SGD algorithm 7.99 8.36 11.08 15.72 17.81
Optimal transport 7.94 8.36 11.15 15.78 17.78

Table 1.1: Numerics of measure p = (1 — p)dg + pd, with different probabilities with SGD
algorithm and OT-APPROACH.

’ Quantiles p1, po ‘ Y1, Y2 ‘ SGD ‘ oT ‘ Computation time of SGD

(0.3,0.5) (10,20) | 17.38 | 17.48 30.665
(0.05,0.05) 848 | 841 30.31s
(0.05,0.9) 24.41 | 24.44 29.46s

(0.3,0.5) (10,100) | 42.07 | 42.19 32.47s
(0.05,0.05) 957 | 9.62 31.40s
(0.05,0.9) 87.89 | 87.57 30.68s

Table 1.2: Numerics of measure pt = (1—py —p2)do +p16-, +p2d,, with different probabilities
and quantiles with SGD algorithm and OT-APPROACH.

horizon T" = 1.0. We also note that the solution of OT-APPROACH is obtained by
computing (1.2.1) in Theorem 1.2.1.

One can see in Table 1.1 that SGD algorithm performs very well compared to
OT-APPROACH and we also plot the learning curves of quantile 8* during the SGD
algorithm, see Figure 1.12, we observe that they all converge and verify the convex
constraint.

T

0 200 400 600 800 1000 0 200 200 600 800 1000 [ 200 400 600 800 1000
iteration iteration iteration

(a) p=0.1 (b) p=10.5 (c)p=09

Figure 1.12: Numerical convergence of 8* for different values of quantiles p = 0.1,0.5,0.9
and v = 10 by SGD algorithm.

Two constraints We consider in this part a discrete measure with two constraints
p = (1=p1—p2)do+p1d4, +p20,,. The numerical results are reported in the Table 1.2.
Again we observe that the numerical solutions by SGD perform well in comparison
to the OT-APPROACH.

Quantile hedging In this part, we want to validate our numerical methods by

comparison with some theoretical quantile hedging results see e.g. [5, 36, 11]. In
this setting, it presents two following constraints: P(Yr > 0) = 1 and P(Yp >
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9(X7)) = p. We consider a set of probabilites p := {ﬁ,o < i < 100}. We have
tested our numerical scheme for classical European call and put option claims against
theoretical price see e.g. [36]. We first observe that our numerical scheme is able to
reproduce correctly the true solution of call option claim, even for extreme values of
p, as reported in Figure 1.13. However we note that SGD algorithm does not work
pretty well for put option as reported in Figure 1.13.

= Follmer-Leukert ]
ADAM |
—— 5GD

— Follmer-Leukert
ADAM
— 5GD

LT N L T L - TR I}

T Y . I

0.0 02 0.4 0.6 08 10 0o 02 04 0.6 08 10

(a) Put option (K —5)+ (b) Call option (S — K)+

Figure 1.13: Comparison of the three methods: SGD algorithm, ADAM optimizer & Exact
solution [5, 36] for put and call options, with parameters Xy = 100, r = 0, 0 = 0.2 and
b= 0.1, strike K = 100, terminal time 7" = 1.

= Follmer-Leukert
ADAM /
—— G0 I

I T . - )

0.0 0.2 04 06 08 10

Figure 1.14: Comparison of the thrqe methods: SGD algorithm, ADAM optimizer & Exact
solution [5, 36] for put option with b = r = 0, other parameters are same as above.

We think it is largely because of the trapping in a saddle point: this phenomenon
suggests us using an adaptive gradient descent method such as ADAM optimizer
[57]. Concerning the ADAM optimiser, we tested two cases mentioned in the above:
b= 0.1,7 = 0 and b=r =0, see in the Figure 1.13 and 1.14, note that we choose
parameters §1 = 0.9, 82 = 0.999 as well as a batchsize = 256. We observe that
Adam optimizer caputres quite well the extreme quantiles than vanilla SGD.
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Chapter

Numerical approximation of singular

FBSDEs

The content of this chapter is from an article in collaboration with Jean-Francois
Chassagneux [20]. Published in Journal of Computational Physics.
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2.1 Introduction

In this work, we study the approximation of a class of singular fully coupled Forward
Backward Stochastic Differential Equations (FBSDE). Let (2, F,P) be a stochastic
basis supporting a d-dimensional Brownian motion W and T > 0 a terminal time.
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2.1. Introduction

We denote by (F;)¢=0 the filtration generated by the Brownian motion (augmented
and completed). The singular FBSDE system, with solution (P, Et, Yi, Zt)o<i<T,
has the following form:

dPt = b(Pt)dt + O'(Pt)th
dE, 1(Yz, Py)dt (2.1.1)
ay, = Z;-dW;

The function b : R —» R, o : R — My', where My is the set of d x d matrices on R,
and g : R x R? — R are Lipschitz-continous. These equations have been introduced
in [20] as models for carbon emission market. They can model, more generally, cap-
and-trade scheme used by government to limit the emission of certain pollutant. In
these models, Y is the price of a pollution permit, F is the cumulative emission of the
pollutant and P represents some state variables influencing the emission (demand,
energy prices etc.). The coefficient p is naturally decreasing in the y-variable. The
initial condition for (P, E) in (2.1.1) is given by some (P, Ey) = (p,e) € R? x R.
The terminal condition is given by ¢(Er, Pr), where ¢ : R x R? — R is a measurable
function, non-decreasing in its E-variable and Lipschitz continuous in the P-variable.
In its simplest form, it is given typically by:

e ¢(e) = Lie=py, A>0. (2.1.2)

The constant A appears as a cap on emissions set by the regulator. The shape given
in (2.1.2) translates the fact that a penalty (here set to one) is paid if the emission
are above the regulatory cap at T

We observe that (2.1.1) has a forward one dimensional E-component of bounded
variation and a backward component with an irregular terminal condition (2.1.2).
This renders the mathematical analysis of the FBSDE system difficult. Nevertheless,
the well-posedness and main features of (2.1.1) have been thoroughly studied in
[19], see also Section 2.2.1 below. Notably, the authors of [19] prove existence and
uniqueness of the solution to (2.1.1) but show at the same time that the terminal
condition can only be attained in the following weak sense:

1(A,+oo)(ET) <Yr < 1[A,+oo)(ET) , (2.1.3)

using to simplify the presentation at this point the terminal function (2.1.2). Their
study is based on the celebrated markovian representation of Y as

Y, = V(t, Pt,Et), for t < T, (214)

and the careful analysis of the property of V, where V, known as the decoupling
fields, is solution to a quasilinear PDE. As mentioned in [19], the FBSDE system
can be seen as a random perturbation of a scalar conservation law. The behavior
at the terminal time is reminiscent of shocks appearing in conservation law. Let us

1To alleviate the notation, we assume that P and W have the same dimension and the coefficient
functions of P are time-homogeneous. Note however that o will not be assumed to be uniformly
elliptic, which allows to consider a dimension of P as time and to embed the case of different
dimension for P and W in our framework.
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Chapter 2. Numerical approximation of singular FBSDEs

note that the markovian representation breaks down at 7" as indicated by (2.1.3).
Moreover, the function V is only locally Lipschitz-continuous on [0,7):

V(t,p,e) = V(t,p' )| < clp—p'| + - le—¢|, (2.1.5)

1
o(T —t)
for some constants c1,ca > 0, (p,p’,e,¢') e R4 x RY x R x R.
The application to carbon market is also a key motivation for our numerical study
here: efficient numerical simulation of the price Y would allow to calibrate properly
the model to market data and validate its efficiency in practice. A first approach
for the numerical approximation of Y or ¥V would be to use PDE methods, and this
is suggested in [17]. However, in the economic applications we have in mind, the
dimensionality of the process P prevents generally the use of these methods. In order
to work on problems in moderate dimension, say 5 to 10, some probabilistic methods
could be introduced. Probabilistic schemes have already been designed for FBSDEs
and one could be tempted (as we were) to use the already known methods to tackle
the numerical approximation of (2.1.1). In [4], the authors use a Picard Iteration
method to decouple the FBSDE system and then obtain an approximation of V by
performing iteratively linear regression. Unfortunately, this method has only been
shown to be convergent in the case of Lipschitz coefficient and for small coupling
between the forward and backward part (or equivalently small time horizon), see []
for details. Recently, machine learning methods have been considered for BSDEs
approximation, especially for their applicability in very high-dimensional setting. In
particular, [14] has analysed the deep BSDE solver introduced in [13] again in the
setting of small coupling. In [33], a grid algorithm is introduced where the decoupling
is obtained by a predictor: there, the time horizon or the coupling is arbitrary but the
diffusion coefficient of the forward process must be uniformly elliptic. As observed,
the FBSDE system under study is degenerate in the F-component and the terminal
condition is not Lipschitz, so that none of the known methods for FBSDEs are
proved to be convergent in the setting of (2.1.1). Moreover, the above methods fail,
in practice, to approximate correctly the solution to (2.1.1). To empirically illustrate
this fact, we consider the following toy model borrowed from [20]:

Example 2.1.1 (Linear model)

dPt = O'th (216)
1 d

dE, = [ —= NPl — v, | dt 2.1.7

- (Gg) 0

dY; = Z; - AW, (2.1.8)

with terminal function given by (2.1.2) and where W is a d-dimensional Brownian
motion and o > 0.

By using a change of variable, this d + 1 dimensional model can be reduced to a one
dimension model. Indeed, from [20, Proposition 6], there exists v € C%2([0,T), R),
solution to

v — voev + Uz(Tz_t)zﬁéu =0 and v(T,¢) = ¢(&). (2.1.9)
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Figure 2.1: Comparison of e — V(0,0,e) obtained by Deep FBSDE Solver and Delarue-
Menozzi Scheme (DM Scheme) to the proxy, for different level of volatility. The methods
fail to reproduce correctly the proxy.

By essentially applying Ito’s formula (see the proof of [20, Proposition 7] for details
on proving (2.1.9)), one obtains that V(t,p,e) = v(t,e + (T — t)% S pe). This
observation allows us to use efficient methods to solve (2.1.9) numerically and to
compare them to numerical solutions obtained by “classical” FBSDE scheme. In
particular, we use a probabilistic method studied in [10] using interacting particle
system, a class of mean field SDE, to obtain a “proxy” for e — V(0,0,¢), see also
[9, 51].

Going back to the approximation of (2.1.6)-(2.1.7)-(2.1.8) by “classical” FBSDEs
methods, we first note that, in [23, Chapter 4], the authors report an application of
the Bender-Zhang scheme [1]. The main issue is then that the Picard iteration does
not converge to a single limit. Next, we have tested the Delarue-Menozzi scheme
[33] and the deep FBSDE solver [11] for different value of o, the results are given in
Figure 2.1.

Except maybe for the Delarue-Menozzi scheme in Figure 2.1c, the methods fail
clearly to approximate the correct solution V(0,0,+). The problem comes from the
nonlinear transport part of the equation in this degenerate setting. Indeed, the
methods seem unable to recover the correct weak entropy solution. This is particu-
larly clear on Figure 2.1a, where the level of noise is extremely small and the correct
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Chapter 2. Numerical approximation of singular FBSDEs

solution is almost the solution to the inviscid Burger’s equation. This leads us to
introduce a new method to approximate the FBSDE system (2.1.1).

As already mentioned, in the socio-economic applications, the dimension of the
P-variable is generally large. On the contrary, the E-variable is constrained to be
of dimension one. We note also that approximating the dynamics of the P-variable
corresponds to approximating simply a diffusion process, which can be easily done.
To take into account these key differences in the two variables, we follow a splitting
approach to compute numerically the solution V. On a discrete time grid, we iterate
backward in time, a diffusion operator where the E-variable is fixed to capture the
effect of the P-dynamics in (2.1.1), and a transport operator where the P variable is
fixed to capture the effect of E-dynamics in (2.1.1). Our main theoretical result, see
Theorem 2.2.2, proves that this scheme is convergent at a rate % with respect to the
time step. Our analysis is done under the minimal assumption used in [19] to obtain
existence and uniqueness of the solution V. One of the main difficulty encountered
is therefore due to the gradient explosion at the end of the time interval (2.1.5).

Then, we propose various implementations of the splitting scheme. They have
however a common structure: given a discrete transport operator, the diffusion part
is computed by means of probabilistic methods. The overall scheme is a then a
sequence of (non linear) regressions in the high dimensional space where lives the
approximation of ¥V with respect to the E-variable. In our numerical experiments, we
consider approximations of the transport operator by conservative finite difference
methods (Lax-Friedrichs scheme or Upwind scheme), see e.g. [60]. As we do not
always have access to a proxy for the tested models, we introduce an alternative
implementation of the splitting scheme to validate our numerical results. It combines
a particle approximation of the transport operator with a tree based regression for
the diffusion operator. We validate empirically both approaches on Example 2.1.1
for which we have a one dimensional proxy at hand. We then test models with no
equivalent one-dimensional PDE but whose d+ 1 dimensional version can be reduced
to 2-dimensional specification, see Section 2.3.3 for details. The tree-based algorithm
is then used as a proxy as it is very efficient in low-dimension (we test dimension 4)
for the models under consideration. When combining feedforward neural networks
to compute the regression step and finite difference scheme for the transport step, we
show that our splitting procedure can compute precisely and in reasonable amount
of time the solutions of 10 + 1 dimensional models.

The rest of this chapter is organised as follows. In Section 2.2, we first recall
key properties of the theoretical solution. We then introduce the splitting approach
and prove the convergence of the splitting scheme. In Section 2.3, we present a
regression method for the splitting scheme at a theoretical level, which uses a grid
approximation of the transport operator. We then introduce various implementation
of the transport operator and a neural network approximation for the regression
part. We finally present various numerical experiments to validate the efficiency of
our method in practice.

Notation.

In the following we will use the following spaces
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2.2. A splitting scheme

« For fixed 0 < a < b < +o0 and I = [a,b] or I = [a,b), S?¥(I) is the set of
RF-valued cadlag? Fi-adapted processes Y, s.t.

V|3 :=E {sup |Yt|2] < 0.
tel

Note that we may omit the dimension and the terminal date in the norm
notation as this will be clear from the context. S- ’k(I ) is the subspace of
processes with continuous sample paths.

« For fixed 0 < a < b < +00, and I = [a,b], we denote by H>*(I) the set of
R*-valued progressively measurable processes Z, such that

|20 = E U |Zt|2dt} < .
I

For ¢ : R? x R — R, measurable and non-decreasing in its second variable, the
functions ¢_ and ¢, are the left and right continuous versions, respectively defined,
for (p,e) e R? x R, by,

- (p,€) = sup p(p, e')

¢'<e / (2.1.10)
¢+(p,e) = inf p(p,€).

e'>e

Moreover, we denote by | - | the essential supremum:

lplloo = esssupy, eyeraxrle (P €)] -

2.2 A splitting scheme

In this section, we introduce a theoretical splitting scheme to compute the solution
of the singular FBSDEs. This scheme consists into iterating a “diffusion step” and
a “transport step” on a discrete time grid

mi={0=tg< - <tp<---<tn:=T},

where N is a positive integer. For latter use, we denote by |7| := maxo<n<n(tnt1 —
tn).

Before defining the splitting scheme for the system (2.1.1), we recall some key
theoretical properties of the solution obtained in [19], with slight extensions for
the case of P-dependent terminal condition in [22]. The rest of the section is then
dedicated to the proof of an upper bound for the convergence rate of the splitting
scheme in terms of |7|. This is our main theoretical result, given in Theorem 2.2.2.
Numerical implementations are presented in the next section.

2French acronym for right continuous with left limits.
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Chapter 2. Numerical approximation of singular FBSDEs

2.2.1 Well-posedness and properties of singular FBSDEs

We first introduce two classes of functions, that will be useful in the sequel. The
terminal condition function for (2.1.1) will belong to the first one.

Definition 2.2.1 Let K be the class of functions ¢ : R x R — [0,1] such that ¢ is
Ly-Lipschitz in the first variable for some Ly > 0 and non-decreasing in its second
variable, namely

[6(p.e) — ¢ (p', )
( /

and moreover satisfying,

Lglp—p'|  forall (p,p/,e)eR*xRIxR,  (22.1)
¢(p

<
> ¢(p,e) if € =e,

supp(p,e) =1 and inf¢(p,e) =0 forall pe R . (2.2.3)

Note that the bounds given in (2.2.3) are motivated by our main application, but up
to a rescalling they can be arbitrary changed. We now introduce a class of admissible
coefficient functions, for which the singular BSDE is well-posed, see Theorem 2.2.1
below. This class will be also useful to define the splitting scheme.

We consider three positive constants L, ¢, and /5.

Definition 2.2.2 Let A be the class of functions B : R — R%, ¥ : R* — My,
F : R xR% - R which are L-Lipschitz continuous functions. Moreover, F is strictly
decreasing in y and satisfies, for all p € RY,

Gly—y'? < (y—y)F,p) — Fy,p)) < laly — ¢/ |*. (2.2.4)

Standing assumptions: From now on, we assume that (b,o,u) € A, recalling
(2.1.1).

Theorem 2.2.1 (Proposition 2.10 in [19], Proposition 3.2 in [22]) Let 7 >

0, (B,X,F)e Aand ® K.

Given any initial condition (tg,p,e) € [0,7) x R? x R, there exists a unique progres-
stvely measurable 4-tuple of processes (Ptto’p’e, Efo’p’e, Ytto’p’e, Z:O’p’e)togth € Sg’d([to, T]) %
S ([to, 7]) x S ([to, 7)) x H24([to, T]) satisfying the dynamics

dP/oPe = B(PP€)dt + B(PP)dW;, PP =peRY,
dEOPC = F(Y[oPe, poPe)dt, Efg’f” =ceR, (2.2.5)
dYoPe = Z,oP€ . AW,

and such that

P [@(ije,EjOvPv ) < 1t1Tan YoPe < & (PjO’p’e,Eﬁ"’p’e)] =1. (2.2.6)

The unique decoupling field defined by
[0,7) x R x R 3 (t, p,e) — w(to,p,e) = Y; P e R

s continuous and satisfies
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2.2. A splitting scheme

1. For any t € [0,7), the function w(t,-,-) is 1/(I1(7 — t))-Lipschitz continuous
with respect to e,

2. For any t € [0,7), the function w(t,-,-) is C-Lipschitz continuous with respect
to p, where C is a constant depending on L, 7 and Ly only.

3. Given (p,e) € RY xR, for any family (p:, et)o<t<r converging to (p,e) ast 7,
we have

P_(p,e) < h?l inf w(t, pr, er) < limsupw(t, p, e) < 4 (pe). (2.2.7)

t—T

4. For any t € [0,7), the function w(t,-,-) € K.

Remark 2.2.1 From the previous Theorem, we observe that the function w is only
locally Lipschitz continuous before T, in the E-variable. This will need some special
care in the convergence’s proof of the splitting method. Nevertheless, one can also see
this property as a reqularization provided by the dynamics, since the terminal con-
dition is discontinuous. This smoothing effect is due to the structural monotonicity
assumptions made on the coefficient functions F' and V. In the example given in
Figure 2.1a, this fact is clearly illustrated as w is close to be a solution to Burger’s
inviscid equation (seen backward in time) in the setting of a rarefaction wave.

Using the previous result, we define the following operator associated to (2.1.1).

Definition 2.2.3 We define the operator © by
(0,50) x K 3 (h, 1) = (1) = v(0, ) € K (2:2.8)

where v is the decoupling field given in Theorem 2.2.1 with parameters T = h, B = b,
Y=o, F=pand ® =1.
We also deduce from Theorem 2.2.1 that (0;)p<; is a semi-group of non-linear oper-

ators. In particular, we observe that V(0,-) := O1(¢) = [ [o<peny Otns1—tn (@), recall
(2.1.4).

The following result arises from the proof of the previous Theorem, see [22].

Corollary 2.2.1 (Approximation result) Let 7 > 0, (B,X,F) € A and ® €
K. Let (¢¥)r=0 be a sequence of smooth functions belonging to K and converging
pointwise towards ¢ as k goes to +00. For ¢ > 0, consider then wS* the solution to:

1
oru + F(u,p)Oeu + Lyu + 562(6geu + Appu) =0 and u(r,-) = ¢F (2.2.9)

where Ay, is the Laplacian with respect to p, and L, is the operator

Lo(@)(t0.€) = Gpplt.p. OB() + ST [ADE] (D)(Epe), (2210)

with 0, denotes the Jacobian with respect to p, and A = YT, where T is the
transpose and 012,1, is the matriz of second derivative operators. (For later use, we
define L€ := L, + 12(0% + App) . )

Then the functions w* are C%2 (continuously differentiable in t and twice con-
tinuously differentiable in both p and e) and limy_, lim,_o w* = w where the con-
vergence is locally uniform in [0,7) x R? x R. Moreover, for all k,e, w*<(t,-) € K.
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Chapter 2. Numerical approximation of singular FBSDEs

2.2.2 Scheme Definition

Let us first introduce the transport step where the diffusion part is frozen.
Definition 2.2.4 (Transport step) We set
(0700) x K> (hﬂ/f) — ﬁ(w) = le)(07 ) ek

where ¥ is the decoupling field defined in Theorem 2.2.1 with parameters T = h,
B =0,% =0, F = pu and terminal condition ® = 1.

In the definition above, ©(-) is the unique entropy solution, see e.g. [15], to
y
Ow + 0e(M(p,w)) =0,  where M(p,y) = f plu,p)dv, 0 <y <1, (2.2.11)
0

and v(h, ) = 1. We will use this fact in the numerical section.

We now introduce the diffusion step, where conversely, the E - process is frozen
to its initial value.

Definition 2.2.5 (Diffusion step) We set
(0,00) x K3 (h,9) = Dp(yp) = v(0,-) €K

where v(0,-) is the decoupling in Theorem 2.2.1 with parameters T = h, B = b,
=0, F =0 and terminal condition ® = 1.

Observe that, for ¢t € [0, h),

v(t,p,e) = E[w(PfL’p, e)] and v(t,-) € K. (2.2.12)
with P;;’p = P}i’p “ process at time h when starting from (¢,p,e). We can now define
the theoretical scheme on 7 by a backward induction.
Definition 2.2.6 (Theoretical splitting scheme) We set

(0,50) % K 5 (hy 1)) > Sn(1) i= Th o Dh(¥) € K.

For n < N, we denote by ul the solution of the following backward induction on :
- form =N, set u}y := ¢,
- forn <N, Ug = Stn-;—l*tn(ufz-‘rl)'

The (ull)o<n<n stands for the approximation of the decoupling field V(¢,-) for ¢ € 7.
Moreover, we observe, from the property of 7 and D, that

ur € K, forall0 <n < N. (2.2.13)
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2.2. A splitting scheme

2.2.3 Convergence analysis

Our main theoretical result concerning the splitting is the following

Theorem 2.2.2 Under our standing assumptions, the following holds

fR V(0,pre) — i (p,)|de < CT( + [pl)v/I,

for a positive constant C.

The proof of the Theorem is postponed to the end of the section. It is classically
based on the study of the scheme’s stability and its truncation error.

2.2.3.1 Truncation error

We need to compare, for ¢ € K, ©p(¢)) and Sp(¥), h > 0, to assess the truncation
error. As already mentioned, the true solution V' has minimal locally Lipschitz
regularity and it exhibits a gradient explosion in the E-variable near the terminal
time T. In the proof below, we thus need to consider smoothed version of the
decoupling fields introduced in the definition of ©, 7, D and S.

First of all, for a given v € KC, we consider a smooth approximation sequence 9* as
in Corollary 2.2.1. In particular, v%€ is the smooth approximation of the decoupling
field v = ©p(v) in Definition 2.2.3 and the associated FBSDEs, for 0 < ¢t < h,
Kik76 = Uhe(tv Efﬁv Py)

t 4
Pf=p+ J b(PS)ds + J o(PS)dW, + eW/ , (2.2.14)
0 0
4
Bhe — e +J (YR, POYds + By (2.2.15)
0

where (W', B) is a Brownian motion independent from W. Note that for the reader’s
convenience, we omit the dependence upon the starting point (0, p, €) in the FBSDEs
notation. The convergence of v¥¢ to v is given in Corollary 2.2.1.

We also need to consider a smooth version of Sy (7)), that we define now:

1. for 0 <t < h, set:
" (t,p,e) = E[w’“(Pﬁft, e)] (2.2.16)

2. then, 9% is the decoupling of the following FBSDE, for all p € R?, e € R:

ay}c = zFaB, | (2.2.17)
dEP = p(Y{, p)dt + ed B, (2.2.18)
with terminal condition f/,f’e = u7¢(0, p, E,]:’e) and initial condition Eg’ﬁ = e.
Observe that the P-variable is frozen in the above definition and that fftk’e =

o< (t, p, Ef’€), for 0 <t < h.
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Chapter 2. Numerical approximation of singular FBSDEs

Before studying the truncation error, we give a strong local error control between
the smooth approximations v*€ and #%€. Note that this local error control in vh
does not allow obtaining a converging global error control. We will however use it
to obtain a better local control error in L1l-norm, see the proof of Proposition 2.2.1.

Lemma 2.2.1 Under our standing assumptions on (u,b, o), the following holds,
forpeRY, h >0,

sup  [oR(t,p, e) — TF€(t, p,e)| < Cr,(1+ Ip|)Vh.
te[0,h],ecR

Importantly, Cp,, does not depend on k nor €, however it depends on the Lipschiz
constant of ¥ in the P-variable.

Proof. For t < h, let V¢ = oh<(t, p, EF) —oPe(t, Pt EFS) with (P, E¥©) = (pe).
Applying Ito’s formula, we compute, since Y*¢ is a martingale, recall (2.2.17),

t
V= Vg - f (0 <(s, Pe, BE) + (T, p)ocwh (s, PL, BE<) + L0b<(s, PE, EE<) ) ds + ML,
0

where MF¥€ is a square-integrable martingale.
From the PDE (2.2.9) satisfied by v, we get

¢
VEE =V [ (T ) = (s P ER), PE)) 2t (s, P B + ME

0

(2.2.19)
We set, for 0 < s < h, §P; = PS — p and we observe
:u(vk’e(& Pse7 Ef’e)v Pse) - M(Y/sk7eap) = /J’(Uk’e(sv Psev Eéc,e)’ P;) - M(Y/sk’e’ P;) + :U’(Y/sk’i Pse) - /“L(Y/sk’evp)
= —c, VP 1+ dyo P,

with
L :u(vk’e(sv Pse7 Eﬁ’e)a Pse) B /‘(Y/S]&E»PSE)
Cs += ke ke 1 ke e ke ke B (2220)
'Uk’e(S,P;,ES’ ) — Y {U € (s,PS,E5 ) =Y #O}
ke ke
p(Ys™, Pg) — u(Ys ™, p)
g, = M MO D), (2.2.91)
s

From Definition 2.2.2 and (2.2.4), we know that, for all 0 < s < h,
cslic,20p < —f1 <0 and [ds| < L. (2.2.22)
Then, (2.2.19) reads
Ve =y - Jt Cs Lo p0y VIO (s, PE, BF€)ds + f t ds0 PO (s, PS, E*€)ds + M)
’ ’ (2.2.23)
We set, for 0 <t < h, & = o es1{cg0)0ev (5,25, B )ds and, we have

0<& <1, forallO<t<h, (2.2.24)
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2.2. A splitting scheme

since v"¢ € KC, recall (2.2.22). We then compute

t
EVIC =V 4 J ds6Py0, v (s, PS, EF)Eyds + N (2.2.25)
0

where N*¢ is a square-integrable martingale. In particular, we get

ke ke . ‘ds|
Vo I < E[ [V,

0 |csl

|0 Py|es e, 20y 0ev™ (s, PE, Ef’e)é’sds] (2.2.26)

recall (2.2.22). Observe that, for all 0 < s < h,
Es 1= Cs1ie, 20y 00 (s, PE, EF)E, (2.2.27)

where the dot denotes classicaly the time derivative. We thus deduce from (2.2.26)

|V0k,e’ < E[V}f’EI + C sup |0Fs|(& — 5h)]

s€[0,h]
< E[Ith’el] +C(1+ |p)Vh. (2.2.28)
Now, we observe that
B 1V, | = B 5540, p, £ — w(P5, B3| (2.2.29)
= E[IIE[ZD(PE, )] e — w(P,i,EN,’j‘N] (2.2.30)
< 2LyH|[0 P[] - (2.2.31)

We thus get E[\th’el] < C(1+ |p|)Vh, which, combined with (2.2.28), concludes the
proof. O

We now turn to the main result for this part, which gives an upper bound to the
error between Sy, (1) and ©p,() that is effectively a control on the truncation error
of the scheme.

Proposition 2.2.1 (truncation error) Under our standing assumptions on the
coefficients (u, b, 0), the following holds, for i € K:

flSh(w)(p, e) — On(¥)(p,e)|de < Cr, (1 + |p|})h? (2.2.32)

forpeRY h>0.

Proof. 1. We first consider the regularised version of the decoupling fields, as
introduced in (2.2.16)-(2.2.17). Let Vte’k’E = ﬁk’e - vk’e(t,Pf,Ef’E), for t < h, with
(P§, Eg’ﬁ) = (p,e). We first observe that by definition (2.2.16) and the fact that P¢
and B (and thus subsequently Ee’k’e) are independent,

E[V;f’k’elB] = 9(0,p, Ey) — E[zﬁ’“(P,i, E§’€)|B] =0. (2.2.33)
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Chapter 2. Numerical approximation of singular FBSDEs

We also observe that, for 0 <t < h,

|‘/te,k,6| < |®k,6(t7p, Etk,E) _ 'l)k’e(t,p, Ef?ﬁ)’ + |1)k’€(t,p, E”fﬁ) . ]C,E(t7 Pte7Ef75)‘
<O+ ph)Vh +CIPf —pl,

where for the last inequality we used Lemma 2.2.1 and the uniform Lipschitz con-
tinuity of v*¢ (Note that C' depends upon the Lispchitz constant of ). This leads
to

sup E[esssupe\‘/f’kﬂ] < C(1+[p)Vh. (2.2.34)
te[0,h]

2. Let us consider the tangent process d,E%< given by

t
OEF =1+ f Oy (Y€, p) oo™ (s, p, EF)0. EFds (2.2.35)
0

_ o0 Oy (Y p)acth e (s,p,ES ) ds (2.2.36)

And we observe that 0 < 86Etk’€ <1, forall0 <t <h.
In order to bound the error § |Voe’k’E |de, we will study the dynamics of ¢ +— § |E[W€’k’€86Ef’6] |de.
Using (2.2.19), we compute

t
Vf’k’eaeEtk’E _ Vbe,k‘,e + J V:’k’eﬁyu(nk’e,p)@eﬁk’e(s,p, Ef’e)aeEf’eds + Ntk,e
0
(2.2.37)

t
= | (V) — (o P ER), PY)) 20 P R0 EE s
0
(2.2.38)

where N*€ is a square-integrable martingale. Taking expectation on both sides of
the above equality, we get

h
Vi) < 18] [ (T (05, P2 BE), ) (o, P B0 B s |
0
(2.2.39)

h
+ |EU VERCO, (Y, p)o.i™ (s, p, Ef’e)aeEf’eds] | (2.2.40)
0
recall (2.2.33). Since 0,9%¢(), 0. E* and —0,u() are non-negative, we deduce

h
vk < EU (T2, p) — (0P (s, PE, B5<), P9)|aa(s, P, Eff)aeEfveds}
0

(2.2.41)
h
o E{f |Vse,k:,e
0

Oy (Y e, p)d.o™ (s, p, Ef’f)aeE;“’Eds] : (2.2.42)
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Integrating the previous inequality, we get

h
J‘Vb&kﬂde < E[JJ ‘M(Y;k’e,p) o /L(Uk’e(S,P;,E;C’E),P;)
0

8e[vk’6(s,P§,Ef’€)]dsde] =: A

h
_ E{ f f VERe| oy [ (55 (s, p, B2, p)]dsde} 4y (2.2.43)
0

ke

We now study the term Ay above: Since, 7€ is bounded i.e. %€ uniformly bounded

by a constant: |0%€| < C and p is Lipschitz continuous, we have

| 2t (s, B2 p)lael < €1+ o) (22.44)
the factor (1 + |p|) above comes from the fact p is Lipschitz continuous

(s p) = (-, 0)] < C(1 + |pl)

and then

h
Ay < C(1+ |p\)E[J esssupe|V:’k’€|ds]
0

< C(1+ |pP)hz,

recalling (2.2.34).
We now compute an upper bound for A;. Since u is Lipschitz-continuous, we have

h
A< CE[ J | (vt 1P = 1) 8€[vk’6(s,P§,Ef’€)]dsde]
0

h
< CE[J (esssup,|VER€| + | PS — p|) J&e[vk’€(s, Ps, Ef’e)]deds]
0

ke

Since v™*¢ is (uniformly) bounded and using (2.2.34), we obtain

A < C(1+ |pP)h2 (2.2.45)
Combining the estimate for A; and As, we conclude:
[ 174406 = 50,0 < 00+ it (2.2.46)

Then passing to the limits in k, e and using the dominated convergence theorem
conclude the proof. O

2.2.3.2 Scheme stability

We now study the scheme’s stability by a introducing a perturbed version of the
scheme given in Definition 2.2.6.
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Chapter 2. Numerical approximation of singular FBSDEs

Definition 2.2.7 (Perturbed scheme) For n < N, let n, : R x R — R be
measurable functions satisfying

f|77n(p, e)lde < ¢(1 + |p|®) for some k= 1,¢> 0, (2.2.47)

where k, ¢ do not depend on n. We denote by (ul)o<n<n the solution of the following
backward induction:

- forn =N, set uy := ¢ +nn,

- forn < N, uw, =St 1—tn (U1 1) + -

Proposition 2.2.2 (L!-stability) Under our standing assumptions, the following

holds true for (ny,),satisfying (2.2.47), perturbation of the scheme given in Definition
2.2.6 :

N
s 07 07
OgiXNE[ f |u™ —u'n](Ptnp,e)de] < ZOEU |nn|(Ptnp,e)de] . (2.2.48)
n=

Proof. 1.a In the proof, we denote dul = u,, — ul,, for all n < N.
We observe that

| Bunl(p.e)de < [ v, ehde < c(1 + 151", (2.2.49)
where we used (2.2.47) for the last inequality. We have then
}EU|5UN|(p%p,e)de] < E[ J |17N|(P§:p,e)de] <. (2.2.50)

We used the fact that for any ¢ > 0,

E| sup |PYP)7| < Cu(1 + |pl9). (2.2.51)

te[0,T7]

1.b Assume (induction hypothesis)
|0un+1|(p, e)de < Kpi1(1 + [p|~) . (2.2.52)

for some positive K1 < +o0 (Note that Ky = ¢ from (2.2.49)). Denoting 41 =

D(tn+1—tn)(ug+1) and a;’L-‘rl = D(tn+l_tn)(u'/fl+1)’ we have

g — | < | Ttp1 ) (Unt1) = Tt sa—ta) (Un )| + [10] (2.2.53)
From Lemma 3.6 in [22] applied to T, we obtain
| sty @) = T @00 < [ s = Tl c)de (225)
Moreover,
— —/ _ , / 0,p
1 = W1 = By (P2, 0) =y (P2, o) (2.2.55)

67



2.3. Numerical schemes

which leads to
f|5un|(p, e)de < fE[\(SunH](Pt(i’ﬁl_tn, e)de] + J [nn|(p, e)de . (2.2.56)
From the induction hypothesis, we know that

E[[éun+1|(P&f1,tn, e)de] < Kpii(1+ E[\Pt?{p |H])

+17tn

leading to E[|5un+1\(P0’p e)de] < Kpt1Ck(1 + |p|*), where we used (2.2.51).

tn+1 —tn?

Using (2.2.47), we then obtain
J|5un\(p, e)de < K(1+ [p|") with Ky — Kne1Cr + ¢,

proving the induction hypothesis (2.2.52) for the next step. Moreover, this shows
that E[S\éunH](PO’p e)de] < 400 and E[S|5un|(P&p,e)de] < +00. Thus, we de-

thy1?

duce from (2.2.56),
0,p 0,p 0,p
E[]éun](Ptn ,e)de] < ]E[|6un+1\(Pth,e)de] +E[ f 7 (P2 ,e)de] (2.2.57)

2. From step l.a and 1.b above, we deduce that (2.2.57) holds for all n < N.
Iterating the inequality on n concludes the proof. |
2.2.3.3 Proof of Theorem 2.2.2

We classicaly writes the true solution given by the decoupling field as a perturbed
splitting scheme, for a perturbation ({,)o<n<n given as follows: (x = 0 and (,(-) =
Ot i1—t, V(tns1,)) — Stryi—t, (V(tns1,-)). We observe that, indeed, for all n < N,

V(tn, ) = Stoyr—tn V(tns1,)) + Cal) - (2.2.58)

From Proposition 2.2.1, we know that ¢, satisfies (2.2.47) with k = 2, recall (2.2.32),
and then

3
E[J \Cn\(Ptn,e)de] <O+ |p*) (tns1 —tn)2. (2.2.59)
Using Proposition 2.2.2, we obtain that for n = 0 in particular,
[ W©.0.0) — 0. e)lte < T+ ).
O

2.3 Numerical schemes

The possible difference in the dimension between the F-variable and the P-variable
leads us to treat these variables very differently in the numerical procedure. The
convergence result obtained in the previous section indicates that it is indeed reason-
able to use a splitting scheme. We then work toward a fully implementable scheme
building on this approach.
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Chapter 2. Numerical approximation of singular FBSDEs

2.3.1 A regression method for the splitting scheme

We present here a — still theoretical — discrete-time scheme which combines a finite
difference approximation of the transport operator and a probabilistic approximation
of the diffusion operator. In the next section, we discuss various possible implemen-
tations.

We first suppose that the approximation of the transport operator is given as
follows. Let J be a positive integer and € = (e;)1<j<s a discrete grid of R. We
denote by 771@ an approximation of the operator T, on €. Namely,

R? x R? 3 (p,0) — T,E(p,0) e RY. (2.3.1)

This means that for each p € R%, 7716 (p,-) is an approximation on the grid € of the
corresponding equation (2.2.11) on [0, h]. We assume moreover that it satisfies, for
some ¢ > 1and ¢ > 1,

1TE(p,0)] < C(1+ [p|? +[0]7) . (2.3.2)

The terminal condition 1) : RIxR — R is simply approximated on € by 67 = 1(p, ¢;),
for all 1 < j < J and p e R%.

Given this approximate transport operator, we now introduce a probabilistic approx-
imation of V(0,p,-) on €. To this end, let us consider the Euler scheme associated
to P on m, namely, for n > 0,

PF = PF 4 b(PF)(tns1 — tn) + o(PF)AW, and BT =p. (2.3.3)

tn+1

Here, (Aﬁ\/n)ogng ~N—1 are independent random variables that stands for an approx-
imation of the law of (W;, ., — Wi, )Jo<n<n—1 and we assume that their moments

verify E[|AI//I\/n|p] < Cpltngr — tul2, p = 1. It is well known from the Lipschitz

continuity assumption on b and o that, for any p > 1,

E[sup ﬁmp] < Cy(1+[pl?) . (2.3.4)
tem

We now define a discrete time process (I'y,)o<n<n valued in RY as follows.
Definition 2.3.1 (I'y,)o<n<n s solution to the following backward scheme:
1. Forn= N, ng = (;S(f’g]rv,ej) for1 <j<J.

2. Forn < N, compute

Lo = TP B[ D PL ) (2.3.5)

For later use, we define the auxiliary process (') by

T = E[r{m@g; ] forall 1 <j<J. (2.3.6)
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We also importantly observe that, due to the Markovian property of P on 7, (Tn)
satisfies

Tpi=7(PF), 0<n<N, (2.3.7)
where the functions v, : R — R”, are given by
Definition 2.3.2 1. Forn= N, ’ﬂv(p) =d(p,e;), 1 <j<J,peR%

2. Then, compute forn < N, p e RY,

¥ (p) = E[ﬂ;ﬂ (p + b(p)h + U(p)AWn)] foralll <j<J, (2.3.8)
(D) = T (p:n(p)) - (2.3.9)

With the above definitions, we have that I'g = 7 (F) which stands for an approxi-
mation of V(0, Py, ) on the grid €.

To obtain the wellposedness of the previous definitions, we check that the conditional
expectations at each step of the scheme are well defined. This follows from a direct
backward induction using (2.3.2) and (2.3.4).

Depending on how large d, the dimension of the P-variable, is, we may choose various
probabilistic schemes to compute (2.3.6). This has been thoroughly studied in the
context of BSDEs approximation and various methods have been suggested: linear
regression [38, 39, 40], quantization methods [2, 1, 62], cubature methods [30, 31, 25]
or Malliavin calculus approach [16, 32]. In the next section, we present a non-linear
regression method used e.g. in [18].

2.3.2 Implementation using non linear regression

We now turn to an implementation that can work in a high dimensional setting for
P. To perform the regression step in Definition 2.3.1, we will use Neural Networks
representation of the value function. This will be coupled with conservative finite
difference approximation of the transport operator that we first recall.

2.3.2.1 Conservative Finite Difference approximation of transport equa-
tion

We shall now consider conservative methods for the transport operator associated
to the backward equation (2.2.11).

Recall that, for a given positive integer J, € = (e;)1<j<s is a uniform grid of R
where we set § := ej11—e;. Wealsointroduce R = {ro =0<--- <rp <--- <rg =h}
a uniform grid for a given positive integer K, and we set 0 := h/K.

We first consider the Lax-Friedrichs approximation to the backward transport equa-
tion (2.2.11) and define T@LFh : R? x R7 — R the approximation of the associated
operator Tp. It is defined as follows, see e.g. [60, Chapter 12].
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Definition 2.3.3 (Lax-Friedrichs) Fora givenp e R? andf € R”, let (ij)lgkgKJSjSJ
denotes the approzimation at the point (ry,e;) The steps to compute V are:

- at time rg = h: sethK=9j, 1<j5<J,

-for0<k < K: set VF = VlkH, V}“ = Vf“ and compute, for 1 <j < J :

1 1)
Vi = SRS VI & 2 (M, VEL) - MG, VD)) (2.3.10)

Then, set Tégh(p, 0) := V.

When the function p has constant sign, a more satisfactory method to use is the
upwind method, as it is less diffusive. Since in the application to carbon markets
given in Example 2.3.2 and 2.3.1 below, this will be the case, we consider the upwind
method for p = 0. We thus now define T@Uﬂce Bt R? x R/ — R” the approximation of
the associated operator Ty, as follows, see again e.g. [60].

Definition 2.3.4 (Upwind for x> 0) Fora givenp € R and 6 € R” let (\/}k)lgjgmgkg[(
denotes the approzimation at the point (ry,e;) The steps to compute V are:

- at time rg = h: sethK:«%, 1<j5<J,

-for0<k < K: set V}“ = V}“H and compute, for 1 < j<J :

)
VE = VS (G VAR - ;. V). (2:3.11)

Then, set %?%,h(p, 0) := V.

2.3.2.2 Non-linear regression and implemented scheme

We first mention that for this part the Euler scheme (2.3.3) is computed using real
Brownian increment, namely AW, = (Wioor = Wi,), 0 <n < N —1. We have
seen in the last section two possible implementations of the transport operator 7y,
on the spatial grid &, that we shall denote for this part simply by 7;?. The last point
to precise is the computation of the conditional expectation part of the scheme in
Definition 2.3.1, where at each time step the quantities fyn(f’tfl) = E[Fn+1’ﬁt::| has
to be estimated, recall Definition 2.3.2. In order to do so, we will use deep learning
as it was demonstrated to be very efficient for high dimensional system, already
in the setting of FBSDEs, see e.g. [13, 18]. The functions (7,) will be optimally
approximated by a feedforward neural network. We denote by NNy, 4, .m the set
of neural nets, which are functions ®(-;0) : R% — R%  parametrised by © and
with the following characteristics: the input dimension is dy, the output dimension
is di, L + 1 is the number of layers, m = (my)o<m,<r Where my is the number
of neurons on each layer, [ = 0,...,L: by default, mg = d and my = dy. The
neural network has thus L — 1 hidden layers. We refer, to e.g. [18, Section 2] for a
detailed description of feedforward neural network. The number of total parameters
is Npm = ZlL;Ol my(1 + myy1), and thus © € RVEm,

Given 7;16 = T@U% p OF 7;16 = 'T@LSIZ; 5> the scheme to compute (9, ) approximation
of (Vn,n) in Definition 2.3.2 is given as follows.
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Definition 2.3.5 1. Atity =T, %\,(p) = %V(p) =d(p,e;), 1<j<J,peR%

2. Forn =N —1,...,1: given a simulation of P[, optimize

~ ~ ~ A~ A~ ~ 2
£0(©) = E[TE(PE,, A (PL,,) = (ValPE,©) + Za(PL,0) Wi,y = Wa,)) |
(2.3.12)

where (Vn(,0), Zn(+,0)) € NNy (a+1)x.J,L,m, SO that

~

o: in £,(© d th () = Vul-,0%).
n €arg min (©) and then () := Vu(-,O7)

3. At the initial time to = 0, compute %(fﬁr) = E[E@(ﬁg,%l(ﬁg))]
The function 4y (-) stands for the numerical approximation of V(0, Py, ).

Remark 2.3.1 (i) The loss minimisation in (2.3.12) is done using a Stochas-
tic Gradient Descent algorithm: we use Adam Optimizer [57] provided in the
Keras API [28]. The good approximation of the function 7, is guaranteed by
universal approximation theorem for neural networks [/5] and is quite efficient
in practice, as demonstrated by our numerical examples below.

(ii) Definition 2.3.5 should be compared with the scheme DBDP1 in []5, Section 3].
In this paper, the authors compute a non-linear conditional expectation (related
to BSDEFEs) at each step: Here, we only compute a conditional expectation and
use Z as a control variate. In particular, differently to DBDP1, we have to
apply ’7;16 in Ln(-) at each step. Note also that one can not apply directly
DBDP1 to the singular FBSDE (2.1.1) under study as it is a fully-coupled
FBSDE.

(iii) A key point is to ensure the stability of the finite difference scheme for the
transport equation, namely that the CFL condition is satisfied. For example,
for the Lax-Friedrichs scheme given in Definition 2.3.3, one has to enforce, for
each time ty,:

Jj pm 0
sup ’,u(Vk,Ptn)f‘ <1,
1<k<K,1<5<J [

see e.g. [00, Chapter 13]. In practice, we choose B, such that

sup Iu(y,p)é‘ <1
y€[0,1],pe[— B, B4 0
The constant B depends obviously on the parameters 9,0 and should be large
enough. Then, in the simulation, ]3{; is projected on [—B, B]d. We also ensure
that 0 < ij < 1 by truncating ’% if necessary and relying on the scheme
monotony.
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Chapter 2. Numerical approximation of singular FBSDEs

2.3.3 Numerical experiments

In this section, we present the results of our numerical experiments that show that
the splitting scheme is efficient in practice to approximate V(-). The method pre-
sented in the previous section, will be tested on two complementary models to Ex-
ample 2.1.1. The first one reads as follows.

Example 2.3.1 (BM with positive emission)

1
AP} = odW/ and dE; = p(Y;, — > Pl)dt (2.3.13)

with p(y,p) = 1+ 152= —y and d(p, e) = Liezy -

The above model will have non negative p which is more realistic if one has in
mind application to carbon market. A critic could be however that it is driven by
a Brownian Motion and that it will not suffer any discrete time error. We then
introduce a multiplicative model as follows.

Example 2.3.2 (Multiplicative model)

dP! = pPfdt + o PfAWS, P =1, and dE; = ji(Yy, P;)dt (2.3.14)

e
with fi(y,p) = (Hg:1p£> Vd o=y for some 6 > 0 and ¢(p,e) = 1o} -

We are not aware of any explicit solution for these models but they have the prop-
erty that any d + 1 > 2 dimensional model can be recast as a 2-dimensional model
(one dimension for the P-variable, one dimension for the E-variable). This will be
used for numerical validation of the non-linear regression scheme used for the multi-
dimensional models by introducing an alternative scheme efficient in low dimension
(see next Section). However, one should notice that there is no simple equivalent
one-dimensional PDE available for Examples 2.3.2 or 2.3.13 as it is the case for
Example 2.1.1, recall (2.1.9).

2.3.3.1 An alternative scheme

To validate empirically the results obtained with the non-linear regression scheme, we
could use a PDE method in low dimension. However, we chose to use here another
method based on the splitting scheme that will combine a particle method with
tree-like regression. This method will be efficiently implemented on the Examples
2.3.1, 2.3.2 and 2.1.1 for two main reasons: We work in moderate dimension and
the process P can be expressed as a function of the underlying Brownian motion,
namely P = B(t, Wy).

Here, contrarily to the previous section, (AI//I\/n = I//I\/tn o th)ogngg\z,l stands
for discrete approximation of the Brownian increments (W;,., — Wy, Jo<n<n—1. We
also assume that the time grid 7 is equidistant and thus |r| = L =: . One could

=l

then use, for all 1 < ¢ < d, }P’(I//I\/ﬁ = vh) = P(W,f = —vh) = } in (2.3.3) but
this requires 2¢ points in total for the approximation. We use instead the cubature
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2.3. Numerical schemes

formula introduced in [11, Section A.2] which requires only 2d points. Denoting
(¢/)1<r<q the canonical basis of R, we set, for 1 <i < I = 2d, ]P’(AI//I\/n = wé) = &
and wé = —\/dhet, if i = 2¢ or wé — dpe! if i = 2¢ — 1. At a given point
(tn, ]352 = P(tn, th), e), the approximation of Dy(1)), recall Definition 2.2.5, reads
then simply

E[w(Pth, |Ptn] . Zw (b1, W, + 0l e) . (2.3.15)
For 0 < n < N, we denote by &,, the discrete support o of the random variable

W . We observe that 6,, € 6,41 and for x € &,,, x + AW € G,,+1- Thus, when
computlng (2.3.15), there is no need for an interpolation step, if ¥(+, ) is known on
G,41. We will obviously exploit this fact and compute recursively, backward in time,
the approximation of V on the discrete sets (&,,)o<n<n. The full approximation of
the diffusion operator D, ., _¢,) that acts at time ¢,, will be given after discussing
the discrete version of the operator 7T, as it will be then more easily justified.

Let us thus now introduce a discrete version of the operator 7, recall Defini-
tion 2.2.4, that will compute an approximation to (2.2.11) written in forward form:
We shall use the celebrated Sticky Particle Dynamics (SPD) [17] see also [53, Sec-
tion 1.1]. The SPD is particularly simple to implement in our case, since, due to
the monotonicity assumption on (u, ), there is no particle colliding! For M > 1
let Dy = {ez (el,...,em,...,eM)eRM]el <---<ep < <6M}. The discrete
version of T will act on empirical CDF or equivalently on empirical distribution
ﬁ 2%21 Je,, (Oc is the Dirac mass at e). Generally, ¢(p,.), which is a CDF for each
p € R%, would need to be approximated in an optimal way on Dy;. We observe here
that the terminal condition ¢ to Examples 2.3.1, 2.3.2 and 2.1.1, is simply repre-
sented by e = (0,...,0). The iterative algorithm allows us to restrict our study to
terminal condition ¢, such that ¥ (p, ) = Hx(4; Z%:l Je,,) for some e € Dy, where
H is the Heaviside function and * the convolution operator. The approximation of
T is then given by

R? x Dy 3 (p,e) = T (p.e) = (EP™)1<m<m € Dt (2.3.16)

where (E}"™)1<m<nr is a set (of positions) of particles computed as follows. Given
the initial position e € Djs (representing 1) and velocities (Fi,(p))i<m<m Set to
F.(p) = — S%ﬁ)/M w(p,y)dy, we consider M particles (EP™)1<m<nr, whose posi-
tions at time ¢ € [0, h] are simply given by

EP™ = e, + Fp(p)t . (2.3.17)

We observe that (EY"™)1<m<m € D, for all ¢ € [0, k], as —p is non-decreasing.

We are now ready to define the approximation of the diffusion operator Dy, , 4,,
denoted DM: it will take into account that T,/ acts at the level of particles. Intro-
duce, to ease the presentation, P,+1 = {p = P(tn+1, W), w € Sp41}, which is simply
the (discrete) support of Igt’fH .- Assume that

6n+1 SWi— \IJ(W) :eWeDM

74



Chapter 2. Numerical approximation of singular FBSDEs

is given such that for p € Pyy1, p = P(tns1, W), we have ¥(p,-) = H*(ﬁ Z%:l ew ).
Then, for w € &, setting WfLH =w+ wé, (2.3.15) reads

Ba(w,€) i= B(PL ., )P = Blta,w)]

1 1
_ M;H*(M,;_léeﬁﬂ)(e) ,
1 I M
=My 24 20, ))

This means that, the function e — v(w,e) is an empirical CDF and is determined
by the particles £ = Uilzl {ewiﬁl}. There is no need to keep 2dM particles at step
n, when the function 1 at step n + 1 is given by M particles (for each p € P,11).
To reduce the number of particles, we first sort the cloud of particles £ to obtain

&V € Dagpr, then we consider € := (€, )i<m<m. The approximation operator DM
is finally defined by

(Dpr)®m+t 30— DM(W)(w) =& e (D)% . (2.3.18)

The overall procedure is as follows

Definition 2.3.6 (Alternative scheme) 1. At n = N: Set ey := (0,---,0)
whose empirical CDF is ¢. Then define, vn by

TN 9W'—>’yN(W):eN-

2. For n < N: Given ypy1 @ Gpye1 — Dy, define 7, @ &, — Dy by v, =
D%(’Yn+1) and then Tn by

Sy 3w Yu(w) = T (B(tn, W), Jn(w)) € Day (2.3.19)

The approzimation of V(0,0,-) is then given by Hx~y.

2.3.3.2 Numerical results

In this section, we report the findings of the numerical tests we performed on the
models given in Examples 2.3.1, 2.3.2 and 2.1.1, using the non-linear regression
and splitting method of Definition 2.3.1 and the alternative scheme, presented in
Definition 2.3.6.

Concerning the non-linear regression, we use a common structure in all our
experiments for the feedforward neural networks used in (2.3.12) to represent (), Z),
namely:

- The output layer is of dimension (J + 1) x d, where J is size of the E-variable grid;
- Two intermediate layers of dimension k; x d + 10 (ks is fixed to 20 below);

- An input layer of dimension d.

As already mentionned, the training is done using the Adam optimiser using 100
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Figure 2.2: Model of Example 2.1.1: Comparison of the two methods Neural Nets & Lax-
Friedrichs (NN&LF) with d = 10 and the alternative scheme (BT&SPD) with d = 4.
The Proxy solution is given by the same particle method used in Figure 2.1 on the one-
dimensional PDE (2.1.9). Lax-Friedrichs scheme implemented with discretization of space
J = 1500, 1000, 500, for o = 0.01,0.3, 1 respectively and number of time step K = 30. The
number of time step for the splitting is N = 64. For BT&SPD, the number of particles is
M = 3500 and the number of time steps IV = 20.

mini-batches with size 50 and batch normalization. We check validation loss every
30 iterations with the validation batch of size 500. The learning rate is initially fixed
at n = 0.001.

We first observe that our schemes are able to reproduce the proxy for the true
solution of Example 2.1.1 as reported in Figure 2.2. This has to be compared with
the results of Figure 2.1 for the “classical” FBSDEs methods. Let us emphasize
that the non-linear regression scheme (denoted NN&LF) is tested in dimension
d = 10 and the alternative scheme (denoted BT'&SPD) in dimension d = 4. Since
the Lax-Friedrichs scheme presents a diffusive phenomenon, we increase the space
discretization steps to overcome this effect when o decreases. In the numerical
computations, we choose respectively J = 500, 1000, 1500 for ¢ = 1.0,0.3,0.01 to
obtain satisfactory approximations.

Next, we tested our scheme on the models of Example 2.3.1 and Example 2.3.2.
The results are reported on the graphs in Figure 2.3 and 2.4 respectively. Since the
function p is always positive in these two examples, we can use an Upwind scheme.
Unlike the Lax-Friedrichs scheme, the Upwind scheme is less diffusive, and we can
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101 — BT&SPD 101 — BT&SPD
NNs & Upwind g NMs & Upwind
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Figure 2.3: Example 2.3.1 in dimension d = 10: Comparison of two methods Neural nets
& Upwind scheme and solution obtained using the alternative scheme on equivalent 4-
dimensional model. The Upwind scheme used discretization of space J = 100,300,400
respectively for ¢ = 1,0.3,0.01 and number of time step K = 20. The number of time step
for the splitting is N = 32. For BT&SPD, the number of particles is M = 3500, and the
number of time steps N = 20.
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Figure 2.4: Example 2.3.2 in dimension d = 10: Comparison of two methods Neural

nets & Upwind scheme and solution obtained using the alternative scheme on equiva-
lent 4-dimensional model (BT&SPD). The Upwind scheme used discretization of space
J = 100,400,500 respectively for ¢ = 1,0.3,0.01 and number of time step K = 20. The
number of time step for the splitting is N = 32. For BT&SPD, the number of particles is
M = 3500, and the number of time steps N = 20.

lower the number of space discretization. In our example, we take J = 100, 300,400
respectively for o = 1.0,0.3,0.01. We are not aware of an exact solution for this
model, so we compare both the non-linear regression scheme (NN&U) for d = 10
and the alternative scheme (BT&SPD) on an equivalent four dimensional model.
As we pointed out before, Lax-Friedrichs scheme is more diffusive than Upwind
scheme: this is illustrated on Figure 2.5, by considering the case where ¢ = 0.01,
and taking J = 400 only for the LF space discretisation. On this graph and the
computations below, the ‘Proxy’ to the true solution is obtained by running an
equivalent one-dimensional model using the alternative scheme (BT&SPD) with
parameters: number of particles M = 3500, number of time step N = 20. Table
2.1 presents the error obtained by comparing the non-linear regression scheme to
this proxy, the computational times is also given® The Ll-error is the error used in
the theoretical part, but one can see that the Loo-error behaves also very well. The
computational times can still be reduced on our examples by diminishing the batch
size but this would certainly not generalise to other models more challenging for

3Intel Core i5-8265U, 16.0 GB RAM.
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Chapter 2. Numerical approximation of singular FBSDEs

the training of the neural networks. We remark that increasing number of layers,
number of neurons as well as number of samples, the improvements are small even
barely significant.

10 4 — BT & SPD 10

NNs & LF

—— BT & 5PD
NNs & LF

08 0.8

06 06

0.4 0.4

0.2 0.2

Y,

-1.0

(a) o = 0.01,.J = 500

0.0 0.0

-15 -1.0 -0.5 0.0 05 10

(b) o = 0.01,.J = 1500

-2.0 -15 -0.5 0.0 05 10 -2.0

Figure 2.5: Example 2.3.2 in dimension d = 10: Neural nets & Lax-Friedrichs with J = 500
and 1500, compared with the Proxy (BT&SPD in dimension one).

Model ‘ Sigma ‘ Method ‘ Parameters ‘ L1 ‘ Loo ‘ Time ‘
Ex 2.1.1 1.0 NN & LF J =500 0.0233 | 0.0283 | 3813s
Ex 2.3.1 NN & Upwind J =500 0.0116 | 0.0142 | 1687s
Ex 2.3.2 NN & Upwind J =100 0.0206 | 0.0856 | 336s
Ex 2.1.1 0.3 NN & LF J =1000 | 0.0183 | 0.0250 | 7660s
Ex 2.3.1 NN & Upwind J =500 0.0147 | 0.0220 | 1693s
Ex 2.3.2 NN & Upwind J =400 0.0756 | 0.1253 | 1488s
Ex 2.1.1 | 0.01 NN & LF J =2000 | 0.0055 | 0.0215 | 15139s
Ex 2.3.1 NN & Upwind J =500 0.0141 | 0.0365 | 1712s
Ex 2.3.2 NN & Upwind J =500 0.0410 | 0.0843 | 1701s

Table 2.1: Numerics of model 2.1.1, 2.3.1 and 2.3.2 with different parameters in dimension
d = 10.

Finally, we want to empirically estimate the convergence rate of the error intro-
duced by the splitting. We consider the model 2.3.2 where ¢ = 0.3 and for which
there is no discrete-time simulation error (as the forward process is a Brownian Mo-
tion). We consider a set of number of time steps N := {4,8, 16, 32,64, 128}, and
compute the L1 and Loo-error by NN & Upwind method (with K = 20, J = 400).
The proxy solution is always given by alternative scheme in one dimensional equiv-
alent model, to achieve a better precision. The empirical convergence rate with
respect to the number of time step is close to one see Figure 2.6, which is slightly
better than the upper bound obtained in Theorem 2.2.2.

Finally, in Table 2.2, we report the computational time and the error associated
to different dimensions d = 1,5,10 in Example 2.3.2 where o = 0.3 with NNs & Up-
wind scheme (K = 20, J = 400) and with fixed number of time step for the splitting
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0] e @® Llogerror L-1
® Log error Linf
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Logh

Figure 2.6: Convergence rate on N for model Example 2.3.2 with parameters d = 10,0 = 0.3
and K = 20, J = 400.

N = 32. Per our specification, the computational time does not increase exponen-
tially and, importantly, neither the empirical error. This behaviour is expected from
the non-linear regression using neural networks.

Dimension‘ d=1 \ d=5 \d:m\

Time 673s 1077s | 1488s
L1 Error | 0.0431 | 0.0594 | 0.0756
Loo Error | 0.0867 | 0.1041 | 0.1253

Table 2.2: Computational cost in example 2.3.2 for different dimension d (for the P-variable).
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Chapter

Convergence of particles and tree based
scheme for singular FBSDESs

The content of this chapter is from a work in collaboration with Jean-Francois
Chassagneux.
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3.1 Introduction

In this work, we study the theoretical and numerical convergence of particles and
tree based scheme for singular FBSDEs. The class of singular Forward Backward
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3.1. Introduction

Stochastic Differential Equations (FBSDE) is motivated by application in the mod-
eling of carbon markets [17, 20, 22]. Let (Q, F,P) be a stochastic basis supporting a
d-dimensional Brownian motion W and 7' > 0 a terminal time. We denote by (F3)t>0
the filtration generated by the Brownian motion (augmented and completed). The
singular FBSDE system, with solution (P, Ey, Y, Z;)o<t<r, has the following form:

dP, = b(P)dt + o(P)dW,
Y ZydWy

The terminal condition is typically given by
Yp = ¢(Er) where ¢(e) = Lezy (3.1.2)

for some A > 0. Existence and uniqueness to the above FBSDE is not straightfor-
ward has it is fully coupled (the backward process Y appears in the coefficient of the
forward process E), it is degenerate in the forward direction E and the terminal con-
dition is discontinuous. However, assuming some structural conditions, see Theorem
3.2.1 below for a precise statement, Carmona and Delarue [20] managed to prove
the wellposedness of such singular FBSDEs. They also show that for 0 <t < T, the
following Markovian representation holds true for the Y-process, namely:

Y}/ = V(t, Pt, Et) (313)

where the measurable function V : [0,T] x R* x R — R is classically named the
decoupling field.
The decoupling field V associated to (3.1.1) is a weak solution to

Oru + 0 (M(p, w)) + dpudb(p) + %Tr[a(p)aT(p)ézp] =0 and u(T,p,e) = ¢(e),
(3.1.4)

with
Y
M(p,y) = f p(p,v)dv, 0 <y <1, (3.1.5)
0

where 0, denotes the Jacobian with respect to p, J; the time derivative, 0. the
derivative with respect to the e variable, T is the transpose and af,p is the matrix of
second derivatives with respect to the p variable.

The algorithm we study is based on a splitting scheme designed for this kind of
equation and introduced in [26]. Though it could be defined at a general level for
the PDE, we should note that the convergence proof rely on the FBSDE setting.
Indeed, under appropriate conditions, the FBSDE appears as well-posed random
characteristics for the PDE (3.1.4). The splitting scheme rely on the iteration on
a discrete time grid of the composition of two operators : a transport operator
T (in this case the P variable is fixed) and a diffusion operator D (in this case
the E variable is fixed). Precise definitions are given in the next section. From
[26], we already know that the theoretical splitting scheme is convergent with a
rate one half. This result is obtained under the same structural conditions which
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guarantee the well-posedness of the FBSDE. In [20], the splitting scheme is then
implemented using various finite difference approximations of the transport operator
and a non-linear regression using Deep Neural Networks for the diffusion operator.
An alternative scheme [20, Section 3.3.1] is also suggested to verify the convergence
result of the main numerical procedure. In this paper, we analyse precisely this
alternative scheme by proving its convergence with a rate under some conditions.

The rest of this chapter is organized as follows. In the next Section, we recall the
theoretical setting for the study of singular FBSDEs and introduce the theoretical
splitting scheme. We also give some properties of the solution in the framework used
to study the convergence of the numerical method. In Section 3.3, we present the
numerical algorithm and some of its variant that will be used for numerical tests.
We also state our main convergence result in Theorem 3.3.1. Section 3.4 is dedicated
to the proof of the convergence by studying precisely all sources of errors. The last
section presents numerical results for the various schemes introduced, illustrating
the theoretical convergence.

Notations In the following we will use the following spaces

 For fixed 0 < a < b < 4o and I = [a,b] or I = [a,b), S*#(I) is the set of
RF-valued cadlag! F-adapted processes Y, s.t.

V|2 :=E {sup \Y}]Q] < 0.
tel

Note that we may omit the dimension and the terminal date in the norm
notation as this will be clear from the context. SZ¥(I) is the subspace of

processes with continuous sample paths.

« For fixed 0 < a < b < +00, and I = [a,b], we denote by H>F(I) the set of
R*-valued progressively measurable processes Z, such that

12|32 :==E U |Zt|2dt} < 0.
1

We denote by Z(R) the space of probability measure on R and Z;(R), ¢ > 1
the subset of probability measure which have a g-moment finite.
We denote by .# the space of cumulative distribution function (CDF) namely func-
tions € given by
Raz— 0(x) = u((—o0,z]) € [0,1]

for some p e Z(R).

3.2 Review of theoretical result for singular FBSDEs

In this section, we first recall the main properties of solution to (3.1.1). We then
define the theoretical splitting scheme studied in [26] and used to build our imple-
mented algorithms introduced in the next section. Finally, we consider a smooth

!French acronym for right continuous with left limits.
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framework for the solution of (3.1.4) and obtain some properties useful to prove the
convergence of the numerical schemes.

3.2.1 Well-posedness of Singular FBSDEs

We first define a class of function whose the solution belongs to.

Definition 3.2.1 Let K be the class of functions ® : R x R — [0,1] such that ® is
Ly-Lipschitz in the first variable for some Ly > 0, namely

|B(p,e) —®(p',e)| < Lalp—p'| forall (p,p,e)eR?xRIxR, (3.2.1)
and moreover satisfying, for all p e R4

O(p,e) = p(p, (—0,e]) where u(p,-) € Po(R) . (3.2.2)

From the above definition that ®(p,-) € .# and is thus non-decreasing, right contin-
uous function and satisfies, for all p € R¢,

lim ®(p,e) =0and lim ®(p,e) =1. (3.2.3)
e—>—00 e——00

We now recall the existence and uniqueness result for the singular FBSDE. It is
also key to define the theoretical splitting scheme. This result is obtained for the
following class of admissible coefficient functions.

Definition 3.2.2 Let A be the class of functions B : R — R4, ¥ : R* — My,
F : R xR% - R which are L-Lipschitz continuous functions. Moreover, F is strictly
decreasing in y and satisfies, for all p € RY,

Uly—y')> < (y—y)(FW.p) — Fly.p) < baly — o/, (3.2.4)
where L, 0, and o are positive constants.

The well-posedness result in this setting reads as follows.

Theorem 3.2.1 (Proposition 2.10 in [20], Proposition 3.2 in [22]) Let 7 >

0, (B,X,F)e Aand ®e K.

Given any initial condition (tg,p,e) € [0,7) x R x R, there exists a unique progres-
sively measurable 4-tuple of processes (PjOP, EloPe ylove glopey e §2([ty, r])x
S21([to, 7]) x S ([to, 7)) x H2([to, 7)) satisfying the dynamics

dP/OP¢ = B(P"P€)dt + B(PP)dW;, PP =peRY,
dEPC = F(PPPe Y/[oPe)dt, E"P¢ = ceR, (3.2.5)
Ayore = zioreqw,,

and such that

P {@_(P:OJLG’ Eioyp,e) < ltle Y;fo,pye <D, (Pio,ne’ Eio,ne)] =1. (3.2.6)
T

The unique decoupling field defined by
[0,7) x R? x R 3 (to, p, €) — w(to, p, €) = Y;Jo,p,e eR

s continuous and satisfies
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1. For any t € [0,7), the function w(t,-,-) is 1/(I1(7 — t))-Lipschitz continuous
with respect to e,

2. For any t € [0,7), the function w(t,-,-) is C-Lipschitz continuous with respect
to p, where C is a constant depending on L, T and Ly only.

3. Given (p,e) € R* x R, for any family (p:, et)o<i<r converging to (p,e) ast 1 T,
we have

d_(p,e) < lign inf w(t, p, er) < limsupw(t, pr,er) < Py(p,e). (3.2.7)
—T

t—1

4. For any t €[0,7), the function w(t,-,-) € K.

The previous result leads us to define a non-linear operator associated to (3.1.1)
under the following assumption on the coefficient function appearing in (3.1.1).

Standing assumptions: From now on, we assume that (b, o, 1) € A.
Definition 3.2.3 We define the operator © by
(0,00) x K 3 (h,¥) — Op(¢) =v(0,-) e K (3.2.8)

where v is the decoupling field given in Theorem 3.2.1 with parameters T = h, B = b,
Y=o, F=pand® =1

In particular, we observe that V(0,-) := O1(¢) = [ [o<pen Otps1—t. (@)

The next result arises from the proof of the previous Theorem, see [22].

Corollary 3.2.1 (Approximation result) Let 7 > 0, (B,X,F) € A and ® €

K. Let (9%)=0 be a sequence of smooth functions belonging to K and converging
pointwise towards ¢ as k goes to +00. Forn > 0, consider then w™* the solution to:

1
oru + F(u,p)Oeu + Lyu + 5772@3@“ + Appu) =0 and u(r,-) = OF (3.2.9)

where Ap, is the Laplacian with respect to p, and L, is the operator

Lo(@)(1.p,e) = pplt . B() + 5T [ADE) (D)Epe),  (3210)

with 0, denotes the Jacobian with respect to p, and A = YT, where T is the
transpose and 8517 is the matriz of second derivative operators. (For later use, we
define L7 := L, + in?(0% + App) . )

Then the functions w* are CY? (continuously differentiable in t and twice con-
tinuously differentiable in both p and e) and limy_, lim,_o w* = w where the con-
vergence is locally uniform in [0,7) x R? x R. Moreover, for all k,n, w*(t,-) e K.

For later use, we introduce the associated system of FBSDEs. We consider
(W, B, B) to be independent Brownian motions. For tg € [0,T) and (p,e) € R? x R,
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let (P, E"™F) € 82([to, T]) xS ([to, T]) and (YW*, Zk, Znk Z0k) e S24([ty, T]) x
H>4([to, T]) x H>U([to, T]) x H>'([to,T]) be the solution to

AP} = B(P)dt + S(F)AW; +ndB;, Py =p.
dEZ%k _ F(P:,Y;n’k)dt + ndét’ EZ) —e, (3.2.11)
Ak = ZmRqW, + Z7RAB, + 27k B,.

Observe that Y;"* = wk(t, P, EP'®) for t € [to, T], in particular Y;?* = ®%(Pr, E;).
Let us note that the above processes depend upon the initial condition (tg,p,e) but
we slightly abuse the notation in this regard by omitting to indicate it.

3.2.2 A theoretical splitting scheme

The numerical algorithm is based on a splitting method for the quasilinear PDE
(3.1.4), which has been introduced in [26]. We first recall quickly the splitting
approach at a theoretical level.

We first introduce the transport step where the diffusion part is frozen.

Definition 3.2.4 (Transport step) We set
(0,00) x K 3 (h,v) = Ta(¢)) = 9(0,-) € K

where ¥ is the decoupling field defined in Theorem 3.2.1 with parameters T = h,
B =0,%=0, F=pu and terminal condition ® = .

In the definition above, #(-), defined on [0, k] x R? x R, is the unique entropy solution
to

Orw + O (M(p,w)) =0 and o(h,-) = (3.2.12)
recall (3.1.4).

Remark 3.2.1 For later use in the convergence analysis, we introduce a small mod-
ification of the previous operator that acts on function in & instead of KC. Namely,
we set

(0,00) x RE x .Z 5 (h,p,0) — Tr(p,0) = 0,(0,-) e I
where (0, -) is the unique entropy solution to
Orw + O (M(p,w)) =0 and Op(h,-) =0 (3.2.13)
One observes that T, (1) (p, ) = Tr(p, ¥(p,-)).

From e.g. [53, Theorem 1.1], we have the following stability result:

Jlﬁ(w/}l(n N(e) = Tu(p, ¥2(p, ) (e)|de < flwl(p, e)) — a(p,e)lde, (3.2.14)

for ¢1, Q,Z)Q e k.

We now introduce the diffusion step, where conversely, the E - process is frozen to
its initial value.
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Definition 3.2.5 (Diffusion step) We set

(0,00) x K 3 (h,¥) — Dp(¢) =0(0,:) e K

where v(0, ) is the decoupling field in Theorem 3.2.1 with parameters T = h, B = b,
=0, F =0 and terminal condition ® = 1.

Observe that, for ¢ € [0, h),

u(t,p,e) = E[¢(P£’p, e)] and v(t,-) € K. (3.2.15)

Let us now be given a discrete time grid of [0, T']:
={tp:=0<---<t, <...ty:=T}, (3.2.16)
for N > 1. For ease of presentation, we assume that the time grid = is equidistant
and thus, for 0 <n < N —1,
tnstl —th = — =: b. (3.2.17)

We can now define the theoretical scheme on 7 by a backward induction. Since
V(0,)=07(¢) = [[ Oniitl®), (3.2.18)
os<n<N

the main point of the scheme is to replace one step of © by one step of 7 o D. This
leads to the following.

Definition 3.2.6 (Theoretical splitting scheme) We set
(0,00) x K 3 (h,9) = Sp(¥) := Tr o Dn(¥) € K.

For n < N, we denote by uly the solution of the following backward induction on m:
- form = N, set u}y := ¢,
-forn <N, up = Stn+1—tn(ug+1)'

The (ull)o<n<n stands for the approximation of the decoupling field V(¢,-) for ¢ € 7.
It is proven in [26, Proposition 2.1] a key result concerning the scheme’s truncation
error.

Proposition 3.2.1 (truncation error) Under our standing assumptions on the
coefficients (u,b,0) € A, the following holds, for ¢ € K:

‘[|c»l (1, €) — O(W)(p.e)lde < Cp, (1 + |pl?)hi | (3.2.19)

forpeRY, h>0.

This allows in particular to obtain the convergence with a rate % of the theoretical
splitting scheme to the decoupling field V, namely

LW@%@—%m@wéCOHWM@,peW,

for a positive constant C.
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3.2.3 Smooth setting for convergence results

We now consider a more restricted framework. In this setting, we give further
properties of the value function V that will be used to prove our convergence results.
Indeed, even if the scheme can be defined in a quite general setting, the convergence
with a rate is obtained in more regular framework.

Therefore, the main assumption we shall use is the following, see Remark 3.2.2
below.

Assumption 3.2.1 The decoupling field V is a €1%1([0,T) x R? x R) solution to
1
otV + u(V,p)deV + b(p)d,V + 552Apv =0. (3.2.20)

In particular, the function o(-) is constant o(-) := olq with & > 0 and 14 is the d x d
identity matriz, recall (3.1.4). Moreover, the function b is €*(R?) with bounded and
Lipschitz derivatives and the function p is €1 (R% x [0, 1]) with Lipschitz and bounded
derivatives.

We first list some further properties of the function V in the regular setting of
the previous assumption.

Proposition 3.2.2 Under Assumption 3.2.1, the function V satisfies, for (t,p,e) €
[0,T) x R? x R,

0 <0 V(t,p,e) < % and [0pV(t,p,e)| < C . (3.2.21)
Moreover, for (t,p) e [0,T) x R?,
J@,V(t, pe)lde < C(T —1) (3.2.22)
and, thus, for p' € R?,

f Vit p.e) — V(b5 e)lde < C(T — t)lp— ¥ (3.2.23)

Proof. The estimates (3.2.21) are obtained directly from the property of V given
in Theorem 3.2.1. We now study the L'-control.

Let V"* be the smooth approximation given in Corollary 3.2.1 to V. We consider
also the associated FBSDE (P", E"F Y"F) in (3.2.11). We adapt the computations
in the proof of Lemma 3.8 in [22], to obtain the equivalent of equation (3.35) there.
In our simpler framework (r = 0, ¢ does not depend on p), it reads

T
apv"mo,p,e):E[ f ameﬁ,n””‘?)apPﬁaeEf*’“eaev"”f<t,PﬂE?’“)dt] (3:2:24)
to
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where (0, P", 0. E"F€) are the tangent processes associated to (P7, E"F€). They are
given by

t
O ETMe = 1 +f Oyp(P1 VMR (s, PTLETRE)) 9, V1 (s, PTETR) 0, ETMeds

to

(3.2.25)

¢
(0,0 P = Lypopy + L " (P10, Plds for £, e{1,...,d}. (3.2.26)

0

It is well known in our setting that
E| sup |0,P)"| < C, (3.2.27)
te[to,T]

for k > 1.
For a positive real number R, we obtain from (3.2.24) that

R T rR
[ o topclac g [ [ our.voma,mrlo v e pr. E7 aeat|
) N

(3.2.28)

recalling that 0, E"*< and 9,V"*(-). Moreover, since V" is bounded and y Lipschitz
continuous, we compute

R
J |0,V (t0, p, €)lde < 2V oo | Gppa oo (T — tO)E[ sup |0 F/|
R te(to,T]

Using (3.2.27), we eventually obtain

R

f 10,V (to, p, €)|de < C(T — ty) . (3.2.29)
R

Since V¥ (tg, p + 6,e) — V¥ (tg, p,e) = (5% OpVE (o, p + AJ, e)d), we have

R 1 rR
J [V (tg,p + 6, ) — VP (Lo, p, €)|de < 5f J |0V (t0, p + Ad, €)|de,
—R 0 J-R
(3.2.30)
< C(T —t)d (3.2.31)

where we used (3.2.29) for the last inequality. The dominated convergence theorem
leads to

R
1
J S|V(t0,p + 55 6) - V(thPa 6)‘d€ < C(T - tO) ) (3232)
R
recalling Corollary 3.2.1. Taking limit as § — 0, we obtain

R
[ vt < o@—r). (3.2.33)
R
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The estimate (3.2.22) is then obtained by letting R — +00 and invoking monotone
convergence. O

The study of the regularity of the decoupling field is outside the scope of this paper.
We, however, give now an example of model for which Assumption 3.2.1 is known
to hold.

Remark 3.2.2 Let us consider the following toy model, which has been studied in
[20]
dP, = odW;, Py =0p,
dE, = (P, —Y,)dt, Ey =e, (3.2.34)
dYy = Z, dW,.

Here, & is a positive constant, W is a one-dimensional Brownian Motion and the
terminal condition (in the weak sense of (3.2.6)) for Y is given by ¢(Er), recall
(3.1.2). By Theorem 3.2.1 above, it has a unique solution and we denote by v its
decoupling field. In particular, we have v(0,p,e) = Yy. Now, we introduce, as in
[20], the following process

E,=E +(T-t)P,, (3.2.35)

and observe then that (E,Y) satisfies

(3.2.36)
dY; = Z,dW,

{dEt = ~Yydt + (T — t)dW,
with the same terminal condition since Er = Ep. Independently from (3.2.34), the
system (3.2.36) is thoroughly studied in [20, Section 4], this system has also a unique
solution with a decoupling field Yy = ©(0, Ey), and from Proposition 6 in [20] again,
v is €12([0,T) x R). We deduce that v(0,p,e) = v(0,e + Tp) and more generally
v(t,p,e) = 0(t,e+(T—t)p) fort e [0,T). This yields that v is €>>%([0,T) x R?x R).

Let us observe that Proposition 3.2.2 states estimates for the first order derivatives
of V. And even though V is assumed to be smooth in Assumption 3.2.1, nothing
is said on the control of higher order derivatives. And, as we will see later on, the
control of the second order derivative and third order derivative with respect to p,
will be needed. This should not come as a surprise as we will approximate the P
process by a discrete in time and space process, see Section 3.3.1.1. We will not make
further assumption on the behavior of V and its derivatives. Instead, we introduce a
proxy to V that will be used in the proof of convergence of our numerical algorithm.

Let then V¢ be a smoothing of the decoupling field V, namely: For € € (0, 1),

Ve(t,p.e) = f V(tp+a.cedadg where olg) = o(l)  (323)

€

and with ¢(-) a smooth compactly supported probability density function.

We now show that V¢ satisfies the same PDE as V up to an error term that we can
control. From the previous Assumption 3.2.1, we first observe that V¢, defined in
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(3.2.37) belongs also to €1%1([0,T) x R% x R) and that it satisfies the same bounds
as V, namely

0 < 0 VE(t,p,e) < (3.2.38)

T—t’
0,V (£, p, )| < C and f OVt poe)lde < C(T —1) . (3.2.39)

Proposition 3.2.3 Under Assumption 3.2.1, the function V¢ satisfies on [0,T) x
R? x R,

Ve +b(p)dp V< + %52APV6 + u(V(t,p,e),p)0e Ve = 6°(t, p,e) (3.2.40)
with

|6°(t,p,e)| < Ce (f |OpVE(t, p + ¢, e)|pe(q)dg + 0. V(1 p, e)) . (3.2.41)
Proof. Recall that V satisfies (3.2.20), and that,

V(L p,e) = fﬁtv(t,p + ¢, €)pe(q)dg and 0,V (L, p,e) = faﬁpv(t,p +q,e)pe(q)dq.
(3.2.42)

We thus compute, by linearity of d¢, A,

1_ €
oVe(t,p,e) + §U2APV (t,p,e) = — Jb(p +q)pV(t,p+ q,e)pe(q)dg  (3.2.43)

- J,u(V(t,p +q,e),p+ q)0V(t,p + q,e)pe(q)dg (3.2.44)
which leads to
OVt p, €) + b(p)a, V(1 pr ) + %&QAPVE@, pe) (3.2.45)
+ u(V(t,p,e),p)oV(t,p,e) = 0°(t,p,e) (3.2.46)
with
O (t.p.e) = [ 006) ~ bo+ )}V (Ep + gshgla)d (3.2.47)

" j V(. ), p) — HV(Ep + 4.0),p + 0)} 2Vt p + 4, €)pe(a)dg
(3.2.48)

We compute, using the uniform Lipschitz property of b, i and V in the p variable
and 0.V > 0 that

|0°(t,p, e)| < Cf lq||opV(t, p + q,e)|pe(q)dg + C J |q|0V(t, p + q,e)pe(q)dg
(3.2.49)

< Ce (J |0pV(t, 0+ q,€)|pe(q)dg + 0 V(1 p, e)) (3.2.50)
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where we use the fact that ¢ has compact support to get the last inequality. |
To conclude this section, we collect some useful control in the L!-sense of the
function V¢ and its derivatives.

Lemma 3.2.1 Assumption 3.2.1, the followings hold, for (t,p) € [0,T) x R?,

Jy B2, V(t,p, )lde + € Jy 3 Vet pe)lde < C (3.2.51)
fori,j,ke{l,...,d}. And thus, for (t,p,p') € [0,T) x R? x RY,
C
[ 1vet.p0) = Ve ellde ¢ [ 18,V e e) - V(e 0)lde < Tlb - al.
(3.2.52)

Proof. For sake of clarity, we recall the main arguments in dimension one. From
the definition of V¢ in (3.2.37), we observe

. 1 1 ,.4q
BVtpe) = ¢ [Vt ae (D (325)
and
B Ve(tpre) = — | o, LoDy 3.2.54
pPP 7p7€)_§ §4 (7p+Q76)€90 (2) q ( cL )
Then classical computations, using the estimate (3.2.22), allow to conclude. O

3.3 Numerical algorithm

In this section, we first introduce various version of the splitting scheme that will be
implemented in practice. We then introduce the numerical errors that have to be
taken into account in order to obtain the convergence of the scheme. The main error
decomposition is given at the end of this section together with our main convergence
result. Precise study of each error is postponed to the next section.

3.3.1 Fully implementable schemes

The schemes we consider are all based on the approximation of the Wiener measure
by a discrete and finite set of path. Indeed, on the grid 7, the Brownian motion
is approximated by a discrete time process denoted w. At each date t,, &, c R
denotes the support of the law of the random variable Wt To define W we first
define (AW = th 1 th)0<n< ~N—1 which stands for discrete approximation of
the Brownian increments (W, ., — Wi, Jo<n<n—1-

Definition 3.3.1 (Brownian increments approximation) We use the cubature
formula introduced in [/1, Section A.2] which requires only 2d points Denoting

(¢“)1<r<q the canonical basis of Rd, we set, for 1 <i <1 =2d, IP’(AW = wh) = 5
andwb = —\/dbet, if i =20 or’wh = \/dbe’ zfz:%—l.

By construction, we observe that
forx e &,, v+ Aﬁ\/n €Gni1. (3.3.1)

Moreover, the set &,, are discrete and finite.
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3.3.1.1 Schemes for generic diffusion

In this section, we treat the general case where P is solution to a SDE with Lipschitz
coefficients as given in (3.1.1). The discrete approximation on the grid 7 is given by
the classical Euler Scheme

Py=Pyand P, = P,, +b(P,,)b + o(P,,) AW, (3.3.2)

where (Aﬁ\/n) is introduced in Definition 3.3.1. For later use, we also define, for
peR?andany 0 <n < N —1,

Bt = p o+ b(p)h + o(p) ATV, (3.3.3)
and, for 1 < i < 2d,
(BL) o=+ o)t + olp)esh. (3.3.4)

Let us denote by P, the discrete and finite support of ﬁtn for0<n<N-—-1. We
observe, due to the very definition of (P, ), that

for pe Pn, PI"P € Py . (3.3.5)

tn+1

In this context, we first introduce a discrete version of the operator 7T, recall Defini-
tion 3.2.4, that will compute an approximation to (3.2.12) written in forward form:
We shall use the celebrated Sticky Particle Dynamics (SPD) [17] see also [53, Sec-
tion 1.1]. The SPD is particularly simple to implement in our case, since, due to the
monotonicity assumption on (u, ), there is no particle colliding!

For M > 1, let

DM:={ez(61,...,6m,...,€M)E]RM|€1é”'éemé'ﬂéeM} (3.3.6)
M
1
M. _ N 2
and ZM {9€f| o(-) : H*(Mmz_lléem),eeDM} (3.3.7)

where H is the Heaviside function x — 1,0, * the convolution operator and . is
the Dirac mass at e € R.
For later use, we introduce, for M > 0 and n € {0, ..., N}, the set of function

KM = {4 : P, x R — [0,1]] for p € Py, ¢(p,-) e M} . (3.3.8)

The discrete version of 7, denoted ¥, acts on empirical CDF belonging to ZM and
is given by

1
i 0
1

(0,00) x R x ZM 5 (b, p, 0) — TM (p, ) := Hx( w) €M (3.3.9)

eh

HNE

Above (emm(h))i<m<nr is a set (of positions) of particles computed as follows.
Given the initial position e(0) € Djys (representing 6) and velocities (Fp,(p))1<m<m
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set to F,(p) = — SE%ﬂ)/M w(p,y)dy, we consider M particles (eh,)1<m<nr, whose
positions at time ¢ € [0, h] are simply given by

el (t) = em(0) + Fn(p)t . (3.3.10)

We observe that (€}, (t))1<m<m € Dar, for all t € [0, k], as —p is non-decreasing.

We now present the approximation used for the approximation of Dy(v)), recall
Definition 3.2.5 and (3.2.15).
Let 1 € KM, and fix p € P,,. We observe

Tn(p,e) = E[w(ﬁ;gg, ] dzw ( ;;g;) e) (3.3.11)

recall (3.3.4).
Since ¥ € IC%H, recall (3.3.8), we know that there is some e’ € Dy, such that

. i M
w((Ph) o) = Hel7 )] b )e).

By linearity, (3.3.11) reads

1 I M
On(p,€) = Hx (5 Z D76 )(e). (3.3.12)

The approximation of the diffusion operator is thus given by
KM 34 DM (y) =1, € KM, (3.3.13)
Finally, the scheme will have essentially two versions:

CASE 1: We keep the 2dM particles at each step n. The overall procedure will then be
the iteration of the two operators T and ©, see Definition 3.3.2 below.

CASE 2: There is no need to keep 2dM particles at step n, when the function v at step
n + 1 is given by M particles (for each p € P,,41). To reduce the number of
particles, we apply another operator R, namely, for M = m > 1,

™M 59 > RM™ () e T™ | (3.3.14)

Various implementation are possible, we refer to the numerical section for a
precise description. The overall procedure for this case is given in Definition
3.3.3.

Let us now finally introduce the scheme formally.

Definition 3.3.2 (Scheme in CASE 1) Fizx M > 1 and set for 0 < n < N,
M, = (2d)N-"M.
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1. Atn = N: Setey := (A,...,A) € Dy, whose empirical CDF is the terminal

condition ¢ = 1y>py, recall (3.1.2). Setting simply u%’M(p,-) = ¢, for all

p € Pn, we do observe that u%’M € IC%N.

o N,M _ ~Mn 1
2. Forn < N: Given u,;; € K, [, define

af;ﬂM — @flwn-%—l(u?]:[_;_ﬂld) c IC,,]an , (3315)

recall (3.3.13), and then ulM by, for each p € Py,
ulM(p, ) = T (p, ul M (p, ), (3.3.16)
recall (3.3.9).
The approzimation of V(0, Py, -) is then given by uéV’M(PO, ).
Definition 3.3.3 (Scheme in CASE 2) Fiz M > 1.

1. Atn = N: Set ey := (A,--- ,A) € Dy whose empirical CDF is the terminal
condition ¢ = Ly.>py is the empirical CDF of en := (0,...,0) € Dyy. Setting
simply v]J\\,]’M(p, ) := ¢, for all p € Py, we do observe that U%’M e K¥.

2. For n < N: Given vflvff e KM, define oM = @nM(vfyﬁy) e K2M " recall
(3.3.13), and then for each p € Py,

GIM — gr2AMM (GNM () (3.3.17)
recall (3.3.14), and finally qulv’M(p, -) by,

véV’M(p, ) = zé\/l<p7 777?7M(p7 )) 5 (3318)
recall (3.3.9).

The approzimation of V(0, Py, +) is then given by véV’M(PO, ).

3.3.1.2 A simplified functional Brownian setting

We now consider a special case for the process P for which the numerical implemen-
tation is less computationally demanding, see Remark 3.3.2 below.

Assumption 3.3.1 The process P is given as a function of the Brownian motion,
namely

P, = P(t, W) for P :[0,T] x R? — R? .
Remark 3.3.1 The main application of this case is when P is the Brownian motion

itself (also known as the Bachelier model in financial application) or a Geometric
Brownian Motion (also known as Black-Scholes model in financial application).
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Compared to the previous section, the only difference is the approximation of P. In
this context, it is naturally given by

D =P, W,), ter. (3.3.19)

Note that we slightly abuse the notation here by keeping the same ones as the ones
introduced in the previous section.
So, for 0 < n < N,

Pn = {p = m(tn,W)aW € 671} ) (3320)

which is the (discrete) support of Istn. We also define, for p = PB(t,, w),

A~ ~ ~ i .
PI"P — B(t, 41, w + AW,) and <Pf:ﬁ) = P(tnrt1, W+ wp) (3.3.21)

tn+1

for 1 < i < 2d, recall Definition 3.3.1.

Now that the approximation of P has been precised in this context, we can use the
various schemes given in Definition 3.3.2 and Definition 3.3.3.

Remark 3.3.2 The main difference between the generic diffucion case and the func-
tional Brownian setting comes from the numerical complexity associated to their im-
plementation. Indeed, it is the case that the growth size of &, with respect to n is
tamed (for low dimensional problem) because the “tree” associated to the brownian
motion is naturally recombining. It is a priori not the case for generic diffusion and
in particular the growth of Py is exponential in n. For implementation purposes, we
just use the Brownian setting. A well known way to control the growth for generic
diffusion is to introduce some interpolation on a grid as e.g. in [25], this method is
well known and we do not present it here. It introduces a further error that would
need to be controlled. Note that all the method we have described here and we study
are impacted by the “curse of dimensionality” associated to the dimension of P.
However, we should also note that for dimension around 5 and in the case of the
brownian setting, the problems are tractable numerically, see section 3.5.

3.3.2 Error decomposition and main result

We first present the various sources of errors introduced by the schemes above. In
the sequel, we shall mainly conduct our analysis for the scheme given in CASE 1.

The error we seek to control is, for ~,, = ulM or Y = vh M given above,
err(N, M) := J”YO(P(), e) —V(0, Py, e)|de . (3.3.22)

And we first observe

err < & (Py) + & , (3.3.23)
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with for 0 < n < N and p e P,,

)= f V(tn, b, €) — V(tn, p,€)|de (3.3.24)
f!'yn p,e (tn,p,e)|de. (3.3.25)

In CASE 1, we define, for p € P,,

X = [ [E (@ (. ))e) — Tap, M . )) e, (3.3.26)

&up) 1= [ [T M .)(€) — Talpn BV (6, P @)t (3320)

recall Definition 3.3.2 and Remark 3.2.1.
Moreover for p € R?, we set

ﬂTh P EV (tni1, P2 )] (€) = Ta(p, BV (tng1, PEE, -)])(e)‘de,
(3.3.28)
& (p ﬂTh PEV (tng1, P2 )] (€) = VE(tn, pse)|de . (3.3.29)

We have the following.

Lemma 3.3.1 Under CASE 1, for0<n < N —2,
En(p) < &) (D) + Enlp) + £ (D) + E5 (D) (3.3.30)
and

En-1(p) < Ex_1(p) + EN_1(p) + J Sy (0(-))(p€) — Oy (¢(-)) (p,€)de  (3.3.31)

observing that

En-1(p) = f\Ty(p,cﬁ(-))( ) = Ty(p, ¢(-)(e))|de . (3.3.32)
Proof. The first inequality is straightforward. For the second, we observe that
%N = ¢ and does not depend on p variable so that u%]\{ ¢.

J"U’N 1p7 ve(tN—lapve”de
f T (p, B())(€) — Ve(txr—1,p. 0)lde
f T (p, 6())(e) — T (s 6())e |de+fm P.6())(€) — Vity_1,p,)lde

n j V(ty—1,p,€) — Ve(tn—1,p;€)|de
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We then observe that 7y(p, ¢(-))(e) = Sp(é(-))(p, e) as again ¢ does not depend on
p. g

We now comment quickly the various errors appearing above: The term & (p) is
the local error due to the approximation of the transport operator by the SPD. The
term &, (p) will allow to propagate the local errors thanks to the L' stability of 7 (-).
The term EP is linked to the approximation of the diffusion by the tree and £° is
the splitting error applied to the proxy V¢.

Proposition 3.3.1 (Stability) Under CASE 1, the following hold
N ~ ~
&o(Py) < 2 [ (P.) +EP(B,) +5§(Ptn)] +E[5N_1(pml)] . (3.3.33)

Proof. Since Ty, is L'-stable, (3.3.27) yields for p € P,

5 () < f @M (1, p,€) — E[V(tns1, PP )| de

Under CASE 1, recall (3.3.15), we then get

[J|u ’ "+1’Pt:fr1’ e) — V(t n+1,Pt J’rl, )de] (3.3.34)
Thus,
E[gn(ﬁtn)] < E[gnﬂ(ﬁtnﬂ)] . (3.3.35)

We thus deduce from Lemma 3.3.1

B &n(P,)| <BET(R) + €2 () + E5(P) | + B (P) | (3:3.36)
The proof is concluded by induction observing IE[S N(ﬁtN)] = 0. O

The next section is dedicated to the study of the various error appearing above.
We prove there the main theoretical result of the paper:

Theorem 3.3.1 Let Assumption 3.2.1 hold. Then, under CASE 1,

ere(N, M) < 0(% + ‘6/25 L), (3.3.37)

recall (3.3.22). Moreover, setting € = h% and M = %, we have

\:T‘
m\»—‘

f\vo Pose) —ulM (Py, e)|de < (3.3.38)
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3.4 Study of the errors

3.4.1 Approximation of transport operator

We discuss here the error introduced by the use of the SPD approximation in our
framework. The numerical analysis of this method is now well known see e.g. [53].

Lemma 3.4.1 Under Assumption 3.2.1 and in CASE 1, the following holds

&y (p) chi , DEPn. (3.4.1)

Proof. By Definition 3.3.2, for pe P, and n < N — 2, we have
& (p) = J ‘Té”” (@™ (p,-),p) = To(un M (p,-), p)|de (3.4.2)

with ﬂg’M(p, -) € Iypy,. For fixed p, the property of ‘I{)V[ are discussed in [53, Sec-
tion 1.1]. We use here the estimate given in [53, Theorem 3.1], observing that, in
our context, there is no error due to the discretization of the initial condition. In-
deed, ﬂnN’M(p, -) appears already as the CDF of an empirical distribution. Thus,
straightforwardly, we get

b

T —_—
Ea(p) <C N (3.4.3)

where C' does not depend on p but depends on the Lipschitz constant of dyu, recall
Assumption 3.2.1.
For the step n = N — 1, we have,

En-1(p) = JTé”(p, ¢(-))(e) = Ty(p, o(-)(e))|de (3.4.4)

recall (3.3.32). It turns out that for our application ¢ is trivially the CDF of an

empirical distribution, recall (3.1.2). Thus, we indeed have, £%_,(p) < C ﬁ O

3.4.2 Regularization error

Proposition 3.4.1 Under Assumption 3.2.1, the following holds, for n < N,
E'(p) < Ce, pe R4,

Proof. We first observe that £3,(p) = 0 as ¢ does not depend on p. For n < N, we
have that

Enlp) = J|V5(tn,p, e) — V(tn,p, e)|de (3.4.5)
= J | J{V(tn,p +q,e) = V(tn,p,€)} pe(q)dg|de (3.4.6)
< [ [ Wtap+ a.6) = Vitwp.e)ldertarda (3.4.7)
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Thus, using (3.2.23), we compute

&(w) < C [ laledlada < Ce. (3.4.8)

which concludes the proof. O

3.4.3 Splitting error

Recall that the splitting error is given by
&) = | [Tolp BV b, P2 OD(E ~ Vit lfde. (349

for0<Kn<N-—1,peR?

In [26], the error due the theoretical splitting, has already been studied and the
results obtained there can be used in our setting. However, we should point out
that here V¢ appears instead of V. We thus first observe the following.

Lemma 3.4.2 Under Assumption 3.2.1, the following holds,
E3(p) < C(1L+ [pl)h? + €(p) (3.4.10)
with

€ (p) i= ﬂ@h(w(tm, ). €) = VF(tn ) de. (3.4.11)

Proof. We compute
E30) < | |Tap BVt P D) = @0V (b, D) de

* f OVt 1) (pr€) = V¥t )| de.

The first term in the RHS above is then controlled by invoking Proposition 3.2.1.
O

It remains to study &,. The upper bound for this term is obtained in Proposition
3.4.2 below, which allows to conclude for the splitting error in Corollary 3.4.1. We
first need the following result.

Lemma 3.4.3 Let Assumption 3.2.1 hold. Then, forn < N — 2,

W (Ot Do) —Vi(tpe)| < Ce. (3412)
(t’pve)e[tn:thrl]XRdXR

Proof. Without loss of generality, we do the proof for n = 0, working on [0,¢; = b].
We denote w(s, ) = O _s(V(t1,-)) for s € [0,1]. Recall that the following FBSDE
is well posed: for s € [0, 1],

-

Py =p+ J b(Py)dt 4+ oW,
0

S
By — o+t J u(Yi, P)dt, (3.4.13)
0
t1
}/8 :V€(t17Pt17Et1) _j thWta

s

\
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with Yy = w(s, Ps, Es) for s € [0,t1]. Without loss of generality, we will prove
(3.4.12) at the point (0,p,e) (and for n = 0).

Let Vi = Y, —V<(t, P, E}). Applying Ito’s formula and using the martingale property
of Y we get,

AV, = dM, — u(Yy, P)o.VE(t, Py, By)dt (3.4.14)

1
- {(9tV€(t,Pt, Ey) + b(Py)opVe(t, Py, Ey) + iApVE(t, P, Et)} dt (3.4.15)

where M is a square integrable martingale with My = 0.
Using the PDE (3.2.40) satisfied by V¢ we get

d‘/’t = th —({/,L(Y;g, Pt)) - ,u(Ve(t, Pt, Et)7Pt))} 56V€(t,Pt,Et) + ee(t,Pt, Et)) dt
(3.4.16)

Observe that

1
/,L(YVt,Pt) — /L(V€(t, Pt,Et),Pt)) = Ct‘/t with Ct = J ay,u(Ve(t, Pt,Et) + )\‘/t,Pt)d)\
0

(3.4.17)
and from the property of u, recall (3.2.4), we have
e <~ <0. (3.4.18)
We get, for s € [0,t]
S
V,— Vp— — f (ctVid V<L, oy Ex) + 6°(t, Py, Ey)) dt + M, (3.4.19)
0
We set, for 0 <t <tq, & = 3o €50V (5,Ps, B )ds and, we have
0<&E<T, forall0 <t <tp, (3.4.20)
since 0. V¢ is non negative, recall also (3.4.18). We then compute
S
EVs—Vy = —J 65(75, P, Et)gtdt + Ny (3421)
0

with N a square integrable martingale such that Ny = 0. In particular, recalling
(3.2.41), we get

W < ‘Hgs‘/;] | + Che + C€E|:J éevf(t, P, Et)gtdt:| (3422)
0

where we use the fact that |0pV| is bounded and 0.V*(t, P, E;) = 0. The above
inequality reads also

Vol < HE V]| + Che — CeEU %66126(@ P, Et)é'tdt] (3.4.23)
0 t
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Observing that _
& = cdV(t, Py, Ey)&,

since |¢;| = ¢ > 0, we obtain
Vol < [HEVS] |+ C(1 + bh)e (3.4.24)

and since V3, =0
|w(0,p,e) - Ve(O,p,e)| = H/O‘ < Ce,

which concludes the proof. O

Proposition 3.4.2 Let Assumption 3.2.1 hold. Then, for n < N —2, pe R%,
€a(p) = [ 189V (s ) (p.€) = V(b pr)lde < Che. (3.4.25)

Proof. Without loss of generality, we prove the statement in the same setting as
the one used for the proof of Lemma 3.4.3. We just stress here the dependence upon
the initial condition: V¢ = Y* — V(t, P, Ey) since Ey = e. We consider the tangent
process 0.F given by

t

0Er =1 —|—J Oy(Ys, Ps)Oew(s, Ps, Es)0cEqds, (3.4.26)
0

— elo Oun(Ye,Ps)0cw(s, P, Be)ds (3.4.27)

And we observe that 0 < 0.E; < 1, for all 0 < t < ¢y, since dow = 0 and p is
decreasing in y, recall (3.2.4).
In order to bound the error § |V{f|de, we will study the dynamics of ¢ — { |[H[V,°0. Ef] |de.
Recalling (3.4.19), we compute
d(‘/f&eEt) = dNt + Vfﬁyu(Yt, Pt)(?ew(t, Pt, Et)(?eEtdt (3428)
—(ctVte&eVE (t, P, Et)aeEt + 6° (t, P, Ef)&eEt) dt, (3429)

where N is a square integrable martingale satisfying Ng = 0.

b
E[W]eaeEh - ‘/be] = E[J ‘/te (ayﬂ(na Pt)ae[w(ta Pt’ EtG)] - Ct‘/;feae[v€(ta Pta Ef)])dt]
0

(3.4.30)
+ E[ L b Qe(t,Pt,Et)aeEtdt} . (3.4.31)

Since Vi = 0 and dew > 0, 0.V = 0, d.E¢ = 0, we obtain
[ivsiac< [ B [ 1 2un. POl L, Pi B e a (3.432)

b
+ j E[J |t VIE|O [ VE(E, P, Ef)]de] dt
0

b
+ E[ | e EmaeEtde] dt.

0

102



Chapter 3. Convergence of particles and tree based scheme for singular FBSDEs

We obtain, using Lemma 3.4.3 and the bound on |y,

f\Vfayum,B>|ae[w<mpt,Ef>]de < Ce f ou[w(t, Py, E9)de,
< Ce, (3.4.33)

where we used the fact that w is bounded in the last inequality. Similar arguments,
since ¢ is bounded, lead to

f cVEIBL[VE(t, Py, ES)]de < Ce. (3.4.34)
From (3.2.41), we know that
6°(t, P, Ey)| < Ce (J |0pV(t, Py + q, EY)|pe(q)dg + 0. V(8 Py, Et)> . (3.4.35)
We compute, using the change of variable e — ¢ = Ef
| [1ae o+ a.Elec@daoErae = [ [ a1 Pt 0 0lpodade, (3.436)
<C, (3.4.37)
where we used the L!-bound on 9,V given in (3.2.22) . We then compute
E[J‘ |0€(t, Pt, Et)|6eEtde] < CE(]. + E[J 6eVe(t, Pt, Et)ﬁeEtde} ), (3438)

< Ce. (3.4.39)

The proof is concluded by combining the previous inequality, the estimates given in
(3.4.33)-(3.4.34) with (3.4.32). O

Combining Lemma 3.4.2 with the result Proposition 3.4.2, we obtain straightfor-
wardly the following.

Corollary 3.4.1 Let Assumption 3.2.1 hold. Then, forn < N —2, pe RY,
E3(p) < C(1L+ [pl*)h? + Ceb. (3.4.40)

3.4.4 Diffusion error

We now study the term given in (3.3.28) and we straightforwardly observe

EnD(p) = J‘,ﬁl(pJE ( n+1af)tn+li7 )])(e) - 771<p7E[ ( Tl+17ptn+p17 )])(6) de,
(3.4.41)

< [ [B0 (ter, Blz 0] = BV (b, Pz 0l (3.4.42)

where we use the L'-stability of 7.

This motivates the introduction of the following auxiliary result.
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Proposition 3.4.3 Let Assumption 3.2.1 hold. For 0 < n < N — 1, let w, be the
solution on [t,,tni1] x RY to the following PDE:

1
drw + b(p)dpw + 56’2Appw =0 and w(tpt1,-) = V<(tnt1,-,€) , (3.4.43)

for a fized e € R. Then, under Assumption 3.2.1, the followings hold, for q,q' € R?
and t € [0,T),

C
J |ap€wn(t7 q, 6) - ap“Un(t7 q/> 6)|d€ < ;|q - q,| (3444')
and
C
J\&;epe,wn(t, q,e) — 5}2)£pe/wn(t,q’, e)lde < G—Q\q —q|, (3.4.45)
for all 0,0 € {1,...,d}. Moreover,
f|8pwn(t,p, e)lde < C. (3.4.46)

Proof. For ease of presentation, the proof is done in the one-dimensional case.
By Theorem 2.3.5 in Zhang [68], we have the following expressions for the first and
second order derivative with respect to vector p, for (¢,p,e) € [tn, tnt1] X R x R,

dywn(t,p,e) = [a VE(tus1, PP |, )0, PLY ] , (3.4.47)
02 wn(t,p,€) = B2,V (bt P, €)@ PLT )2 4 0V (b, LY )38, BT, |
(3.4.48)
where, for t < s < t,.1,
PP =p 4 f b(PLPYdr + o(Ws — W), (3.4.49)
t
OpPIP =1+ J V' (PLP)o, PhPdr (3.4.50)
t
02, PP = ft (0" (Py)|6p PP |? + ¥ (Py) oz, PEP) dr (3.4.51)
In this setting, classical arguments lead to,
E| sup [0,PLP|"+ sup |05,PPPI"| < C, (3.4.52)
sE[t,t7l+1] sE[t,t7l+1

and for ¢,¢' e R, se [t,T], k = 1,

E[‘P5t7q _ P;’q,‘” + ’appg,q _ 5pp;f,q”n + ‘5]2)pP;,q _ agpp;f,q”n] < C]q _ q/’n )
(3.4.53)
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We now study the second order derivative given in (3.4.48).
We compute, for (t,q,q) € [tn, tn+1] x R x R,

f |a§pwn (t; q, e) - Q,gpwn(t, q/, e) |d€ (3454)

EU|a§pV€(th,Pt 1 e) (Pt )’ — 2V (b1, PLT " .e)(0p Ptﬁl) |de] =B
(3.4.55)

+IEU\8 V(tni1, PO )02 PrY — 0V (tns1, PLY L €)02, P} +1|de] = By
(3.4.56)

For the first term By,
[ [ 18 b, P @R = 2Vt PE L) 0P |de]

—HE[JM Ve(tns1, P, tn+1’ e)(0p Pt"il) —8§pve(tn+1,Ptn+l, e)(0p Pt"il) |de]

We then compute

EUw;pv (b PEL L €)(0pPET )2 = 2V (bny1, PET ) (0,P17 )2 |de}, (3.4.57)

“(a Pt )2 — (3, P )2 J|a2 Ve(tns1, PO, )|de], (3.4.58)
C
< <H|@P )2 - P07 (3.4.59)

where we used for the last inequality Lemma 3.2.1. Observing that

‘(a pha

tnt1

’ t7 t7 !
72— (@pPLY | < |opPit, + 0P,

t+1

t, t,
Jevpi, = aptt |,
we combine Cauchy-Schwarz inequality with (3.4.53) to obtain

H(a P12 — (3, PR )2 H <Clg—dq|. (3.4.60)

tnt1

Combining the previous inequality with (3.4.59), we get

€ € C
(3.4.61)

We also compute
E[ [ 18V b, P @PEL Y = 2Vt L), |de]
[(8 Pt"il) J|a§pve(tn+l,ptfn+l7 e) — a2 Ve(t n+1,Pt7;+1, )|de]
<Sl-¢
~ 62 q q
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where we used Lemma 3.2.1 and (3.4.52), for the last inequality. Combining (3.4.61)
with the previous inequality, we finally obtain that

C C
By < glq —q|+ ?Iq —q. (3.4.62)

For the term Bs given in (3.4.56), we observe

UW@V b, PET L €)02 PIT 0,V (b1, PR )02, t+1m4
qﬁ@wmwhtﬂ,mztﬂ—av<whtﬂ,w2tﬂm4

Combining Lemma 3.2.1, the estimates given in (3.4.53)-(3.4.52), with similar com-
putations as done previously, we obtain

c
By < ;|q—q'| +Clg—{| . (3.4.63)

Inserting (3.4.62)-(3.4.63) back into (3.4.56), we obtain the

C
f|@ wnp(t,q,e) — (912,pwn(t, ¢, e)|de < ?|q -], (3.4.64)

as e < 1.
Similar arguments allow to retrieve the estimates for the first order derivatives. O

Proposition 3.4.4 Under Assumption 3.2.1, the following holds

3
h2
EP(p) < 067

for0<n <N —1 andpeR%

Proof. For ease of presentation, we do the proof in dimension d = 1.
1. We first recall Definition 3.3.1 and (3.3.3). In this context, we introduce two new
discrete processes:

PP — 4 b(p)(t tn)+avt\/_ﬁtn

_ t—1t,
PP = p 4 b(p)(t — 1) + A7

Vb

forpe R, t € [tn,tns1], A€[0,1]] and 0 <K n < N — 1.
Now, recalling (3.4.42), we first observe

AW, ,

AW,

E[V ( n+1, Ptn_ﬁ’ )] - E[Ve(tn-i-la Ptt:fiae)] = E[wn(tn+1a f)tt:;pl’e)] - ’an(tn,p, 6) :
(3.4.65)
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We apply the discrete Ito formula given of Proposition 14 in [24] to our much simpler
framework, to obtain

ln1 ~ ~
Ewn(tns1, P77, €)] — wnltn, p, ) = J B dvn (b, B, €) + b(p)pun(t, PP, e)| at

tn+1 ’
tnt1 A
[ f f (t, Pi™P )d)\dt] .

Using the PDE (3.4.43) satisfied by w,,, the previous equality leads to
E[wn(thrl; jﬁtn,p e)] - wn(tmpa 6)

tn+1?

tn+1 R
tn+1 R
+ P |:J + f a wn t Ptnﬁl’, ) —_ 6§pwn(t’ Pttn,p’ e)]d)\dt:| ] (3467)
in

2. For e € R, we denote by Al(e), the term in (3.4.66) and by A?(e), the term in
(3.4.67) .
We compute

tn+1 ~ —~
A (e)] < f B l(b(p) = b(P{" ") [Bpwn(t, B/, €)1 ] dt,
tn+1 ~
< f B 6ywn(t, B, o)l at,
tn
and thus
tn+1 ~y
J|A1( )|de < Ch [J|é’pwn (t, P,™P, )|de}

< Crﬁ , (3.4.68)

where we used (3.4.46) for the last inequality.
Using Proposition 3.4.3, we compute

D L) 7A D . C D LS 7>\ 5 L3
J|(?2 wy(t, PP e) — 02wy (t, PP, e)|de < 6—2|Ptt PA _ pinp|

C
< 5.

€

This yields
C
f|A2(e)|de < 5ot (3.4.69)

Combining the previous inequality with (3.4.68) and (3.4.66)-(3.4.67), we get

¢

2 3
J‘E[wn(th?Pf:ﬁ,e)] — Wy (tn, p, e)|de < b2

™

The proof is concluded recalling (3.4.65) and (3.4.42). O
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3.4.5 Proof of Theorem 3.3.1

The proof of our main is now almost straightforward. From Lemma 3.4.1, Corollary
3.4.1 and Proposition 3.4.4, we observe that

b

T(H i Db e S(D L
BT (P,)| < 05 HEP(R,)| < 0% and HEFP,)| <O (b +¢) .
(3.4.70)
Summing over n, we get
N—2
~ ~ ~ 1
> E[gg(Ptn) +EP(P,) + S,f(Ptn)] <C(y7 + *e/f +e) (3.4.71)
n=0
For the last step, we obtain
~ h 1
E[&N_l(Pthl)] <C(5+e+b (bz + e)) (3.4.72)

combining (3.3.31) with Proposition 3.4.1 and Proposition 3.2.1. The previous in-
equality combined with (3.4.71) and Proposition 3.3.1 yields (3.3.37).
Balancing optimally the errors in (3.3.37) allows to conclude by proving (3.3.38). O

3.5 Numerics
In this section, we realize numerical experiments to test in practice the schemes
introduced in Section 3.3.1.

We first introduce the models we will use. They have already been considered in
[26], which facilitates the comparison with previous numerical results.
Let us first define the following toy model where the process P corresponds to a

Brownian motion and is a multidimensional version of the model given in Remark
3.2.2:

Example 3.5.1 (Linear model)

d
1
dP; = odW;, dE; = ( DI Pl-Y; | dt (3.5.1)
vd 5

with terminal function (p,e) — ¢(p,e) = 1=y and where W is a d-dimensional
Brownian motion and o > 0.

We will also consider a multiplicative model:

Example 3.5.2 (Multiplicative model) Let W be a d-dimensional Brownian mo
tion. For all L€ {1,...,d}, we set

dP! = puPldt + o PfdW{, P§ =1, and dE; = u(Y;, P;)dt (3.5.2)

1
with (y,p) — A(y,p) = (H?:Ipé> Ve =0y for some 0 > 0. The terminal condition
is given by (p,e) — ¢(p,€) = Liczq} -
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As mentioned in [26], one advantage of these models is that they can be reduced
to models with lower dimension (at most 2) whatever the value of d. For comparison,
we will also use some numerical prozy: for the first model 3.5.1, we use the method
considered in [9] applied to the one dimensional reduction of the model, for the
second model 3.5.2 we use the NN & Upwind scheme. Both methods are introduced
and discussed in [20].

We also observe that the above models fit into the setting of Section 3.3.1.2, recall
Assumption 3.3.1. As shown below and as expected, they are thus numerically
tractable. We shall use in this regard the scheme introduced in Definition 3.3.2,
linked to CASE 1. We will also consider CASE 2, where the number of particles
is capped. To this end, we need to define precisely the operator RM™ appearing in
Definition 3.3.3.

Definition 3.5.1 (Operator RM™) For M > m > 1, we first denote S™ the
operator of sorting M particles in ascending order, namely

RM 5 ¢ SM(¢) e Dy (3.5.3)

At each step n, for a set of 2dM particles namely & € R?4M | §2dM (€Y coyld be written
as follows:

SPM(E) = (S*1(E), -, S*M(©)), (3.5.4)

; Q02d,i . [ g2daM ; 2dM _

where for 1 <i < M,S**"(§) : (SJ (§)>2d(i71)<]’<2di € Dog, with S (€) denot

ing the i-th coordinate of vector S?™ (¢). For ¢ € T**M associated to & € Dogyy,
we recall that

1 2dM
vS = H» (557 2. Ssnce)-
m=1

we then define the following operator
| M
W 5 T2M L R2AMM () . [ & (7 3 5ém> e TM, (3.5.5)
M m=1

where three different choices for €,, are considered, leading to three different imple-
mentations. namely, for each 1 < m < M,

mean: The mean position of 2d particles of §2d’m(§), namely

2dm

5 1

em = 5 > S, (3.5.6)
j=2d(m—1)+1

leftmost: The minimum position among the 2d particles of §2d’m(£) is kept,

Em = min{S?M(£),2d(m — 1) + 1 < j < 2dm} = 3407 1,16, (35.7)
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rightmost: The mazimum position among the 2d particles of §2d’m(§) is kept,

Em 1= max{S;™M (&), 2d(m — 1) + 1 < j < 2dm} = S530] (€). (3.5.8)

First of all, to validate empirically our different implementations of operator *R,
we report the Ll-error and Loo-error against “proxy” solution for different num-
bers of particles, based on different reducing particle implementations defined in
Definition 3.5.1 for ¢ = 0.01,0.3,1.0, see Table 3.1. We observe that those three
implementations of R including leftmost, mean, rightmost of positions of parti-
cles, have practically same numerical results for different levels of volatilities. The
advantage of considering the CASE 2 scheme is that the number of particles does
not grow exponentially during the iterations, hence it takes less computational time
compared to CASE 1, see Table 3.2. We observe that as dimension d grows, the com-
putational time of CASE 1 scheme increased exponentially. Hence in the following,
we only consider the implemented operator R mean.

’ Sigma ‘ Number of particles Method Ll-error | Loo-error

1.0 1000 leftmost | 0.00571 0.0167
mean 0.00496 0.0150
rightmost | 0.00539 0.0180
5000 leftmost | 0.00505 0.0145
mean 0.00492 0.0146
rightmost | 0.00492 0.0153
0.3 1000 leftmost | 0.00134 0.0085
mean 0.00088 0.0061
rightmost | 0.00125 0.0091
5000 leftmost | 0.00094 0.0068
mean 0.00088 0.0061
rightmost | 0.00092 0.0065
0.01 1000 leftmost | 0.00027 0.0039
mean 0.00013 0.0020
rightmost | 0.00048 0.0043
5000 leftmost | 0.00009 0.0013
mean 0.00008 0.0017
rightmost | 0.00013 0.0018

Table 3.1: Ll-error and Loo-error for model Example 3.5.1 with different numbers of particles
with respect to leftmost,mean,rightmost, note that the time steps N = 20.

Dimension ‘ d=1 ‘ d=4 ‘

Time for CASE 1 | 46.96s | 784s
Time for CASE 2 0.3s 1.3s

Table 3.2: Computational cost in Example 3.5.1 for different dimension d (for the P-variable)
for CASE 1 and CASE 2 schemes.
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101 — Proxy 101 — Proxy
CASE Z:mean CASE Z:mean
—— CASE1 — CASE1
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10 1 — Proxy
CASE 2:mean

osd — CASE1
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02

0o

(¢) o =1.0

Figure 3.1: Model of Example 3.5.1: Comparison of the two methods CASE 1 & CASE2
with d = 4. The Proxy solution is given by the same particle method on the one-dimensional
PDE. For BT&SPD: both CASE 1 and CASE 2, the number of particles is M = 3500 and
the number of time steps N = 20.

To validate empirically our numerical schemes, we plot the value function V of
model Example 3.5.1 using scheme CASE 1 and CASE 2 against the prozy solution
presented in [9], see Figure 3.1. As expected, both CASE 1 and CASE 2 scheme
could reproduce correctly the entropy solution of the PDE (3.2.1). We also observe
that the solutions obtained by CASE 1 and CASE 2 scheme are quite close.

Apart from the linear model, we have also tested numerically our CASE 1 and
CASE 2 schemes in model Example 3.5.2 against a NN & Upwind method based
on splitting schemes presented in [26], see Figure 3.2. We note that the function u
in model Example 3.5.2 is always non negative, thus we take Upwind scheme which
is less “diffusive” than Lax-Friedrisch scheme as argued in [26]. As expected, both
CASE 1 and CASE 2 schemes give satisfying numerical results for different levels of
volatility.

At last, we want to empirically estimate the convergence rate of the error in-
troduced by our numerical scheme. We consider the model Example 3.5.1 where
o = 1.0. We consider a set of number of time steps N := {2,4,8,16,32,64} and
time step b := %, and compute the Ll-error for BT & SPD method. Note that the
proxy solution is always given by method in [9] applied to one-dimensional equiva-
lent model. The empirical convergence rate with respect to the time step is close to

one see Figure 3.3, which is much better than the theoretical convergence order %
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10 4 = NNs & Upwind
BT & SPD, CASE 2: mean
08— BT & SPD, CASE 1
0.6 1
0.4 1
0.2 1
0.0
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10 1 —— MNNs+Upwind
BT & SPD, CASE 2: mean
0] — BT & SPD, CASE 1
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0.0
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(b) o =0.3
—— MNNs+Upwind

BT & 5PD, CASE 2: mean

- BT & SPD, CASE 1

(¢) 0 =1.0

0.0 0.5 10

Figure 3.2: Model of Example 3.5.2: Comparison of the two methods CASE 1 & CASE2 with
d = 4. The Proxy solution is given by the Neural nets & Upwind in [26]. For BT &SPD:
both CASE 1 and CASE 2, the number of particles is M = 3500 and the number of time

steps N = 20.
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obtained in Theorem 3.3.1.

Bl— 38+0.99x

X

log L1-error

-45 —-40 -35 -30 -5 -0 -l5 -10 -05
log h

Figure 3.3: Convergence rate on h for model Example 3.5.2 with parameters d = 4,0 = 1.0
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Chapter

A dual approach to weak hedging
problem

The content of this chapter is from a work in progress with Cyril Bénézet and
Jean-Francois Chassagneux.
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4.1 Introduction

In this work, we consider a class of non standard control problems. Indeed, we
impose on the controlled process at a terminal time T' > 0 a constraint which
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involves its law. In finance, the classical example of such problem would be the so-
called quantile hedging problem, see e.g. [36, 14]. In this case, the controlled process
is a portfolio of financial assets. The key point is that the value of this portfolio
at time 7" is not supposed to perfectly replicate a given contingent claim, as usual
in mathematical finance. In the quantile hedging problem, the agent will seek to
replicate the contingent claim with only a 95% (say) probability of success. This
approach really puts a probability constraint or a quantile constraint on the total
PnL of the position held by the agent. On a theoretical point of view, the problems
of perfect replication and partial replication lead to quite different stochastic control
problem. The first one has been generally recognized as a case of stochastic target
problem see e.g. [65, (66]. The second one has been coined as a weak stochastic
target problem and needs extra work to be solved, see e.g. [l1]. In particular, it
leads to a degenerate PDE representing its value function which is quite involved
to work with and to approximate numerically, see e.g. [5]. A natural extension to
the quantile hedging problem is the PnL matching problem introduced in [15]. In
this article, the authors consider a finite number of quantile constraint, representing
a given target PnL: in other words, the targeted law for the Pnl is discrete and
finite. The next step would be naturally to impose any possible law as target PnL,
which, to the best of our knowledge has not been previously considered. The control
problem that we introduce here encapsulates all this possible cases. Having in mind
financial applications, we have called this more generic problem the weak hedging
problem. It is, as we will show, closely related to partial hedging with controlled
loss.

Our goal is thus to solve this weak hedging problem theoretically but also to
propose a new numerical method to approximate its solution. Indeed, it is known
that this kind of problem is difficult to tackle numerically [5, 11, 15]. The known
approaches are usually based on PDE methods. Here, we follow a totally different
road as we will rely on stochastic gradient algorithms. The first part of the work
is thus dedicated to obtain a convenient formulation of the weak hedging problem.
We rewrite it as a classical control problem involving the minimisation of non-linear
expectation over a tailored class of random variables. We then make the new and
crucial observation that this problem resembles optimal transportation problem ‘a
la Monge’. We then naturally introduce a ‘Kantorovich version’ and look for a
dual characterization. In some important cases, we are able to obtain this dual
characterization and this is the starting point of our numerical algorithms, which
are proved to be efficient in practice.

The rest of the paper is organized as follows. In the next section, we introduce
formally the weak hedging problem and we present some important properties in
a non linear setting. Section 3 focuses on a linear framework in which we obtain
duality results. The last Section presents the new numerical approach based on SGD
algorithms. Various numerical experiments are run showing that the methods are
reliable.

4.1.0.0.1 Notations that will be used throughout the paper:

o If (Q,F,F,P) is a filtered probability space and E a normed space, we define
H%(F,P; E) as the set of progressively measurable processes U : 2x[0,T] — E
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with T' > 0 fixed satisfying

T
EU |Ut|2dt} < +o0
0

and .7?(F,P; E)) as the set of processes U : Q x [0,T] — E continuous and
adapted s.t.

E[ sup |Uzdt| < +oo.

te[0,T]

For (Q,F,P) a probability space, we denote Np the set of negligible sets,
namely

— {Ae F|P(A) = 0}.

Given a measurable space (F, ), the set of positive measures on E (resp. the
subset probability measures) is denoted .#, (E) (resp. P(F)). For p > 1, we
consider

Pp(R) = {V e P(R) ’ J |z[Pr(dx) < +oo} .
For two probability measures u, v on R, v > p denotes the first order stochastic
dominance, i.e

v([-,0)):=F, > F,=:pu([,0)) onR.
We define
Ky ={rePR)y=p} and K :=K,nPp[R), p=1.
We also introduce
p = {v € K| supp[v] c supp[u]} and RE:=R,nP(R), p>1,

where supp[v] is the support of the measure p.

For (Q, F,P) a complete probability space, we denote Q := Q x R and F :=
F ® B(R), with B(R) the Borel sigma-algebra of R. We define the following
projections

pry;: Q3 (w,y) —weQ, and pry: Q3 (w,7) — yeR.

We also introduce the following set of measures on €,

+(P):={lle #,(Q)|V(A,B) e Np x B(R), II(A x B) =0} (4.1.1)
( 1) := {Il € M (P) | supp[profill] < supp[u]}, (4.1.2)
C(P,p) := {1 € P(Q) | (pry)sIT = P, (pry)yIT € Ky}, (4.1.3)

C*(P, 1) = {IT & P(Q) | (pr )41 = P, (pro)sTl € Ry} (4.14)



4.2. Approximate hedging: problem and general results

o For F a topological space, the set of bounded (resp. continuous, resp. bounded
continuous, resp. continuous with linear growth) functions with values in R is
denoted #A(F) (resp. € (F), resp. €,(F) = € (E) n B(E), resp. € (F)).

o Let .#(R) be the set of increasing functions from R to R.
o Foralld>1, weset A := {z e R0 <z < < 2q}.

o For two metric spaces F,E’, Lip(E, E’) is the set of Lipschitz continuous
function from F to E'.

4.2 Approximate hedging: problem and general results

Let (€2, .A,P) be a complete probability space supporting a m-dimensional Brownian
Motion, where m is a positive integer. We denote by F = (F;);>0 the natural P-
augmented filtration of W. In the sequel, we work with a finite time horizon 7" > 0.

4.2.1 Problem formulation

We will consider controlled processes of the following form. For y € R and Z € 2,

t t
Y;fyz =Yy—- J f(«%ifs, Zs) ds + J ZsdWs, te [O’T]v (4'2'1)
0 0

where (f(s, -))se[0,7] is @ progressively measurable process taking values in Lip(R x
R™ R) and such that E[S(:]F |f(s,0,0)|2ds] < +00. Note that the assumptions on f

guarantee the well-posedness in .#? of the above dynamics.

A key result in this context is given by the existence and uniqueness of BSDEs with
a prescribed terminal value & € Z?(Fr), see e.g. [35]. Namely, there exists a unique

Vo, Z2) e R x 22 such that YTyO’Z = £. In this case, we define )y := Y;yo[g],z[g] for
all t € [0,7T], so that (), Z) is the solution to the BSDE with driver f and terminal
condition &, namely

T T
YV, =€+ f (s, Vs, Z)ds — J 2 AW, 0<t<T. (4.2.2)
t t

To insist on the dependence upon the terminal condition £, we shall sometimes
denote the solution of the above BSDE by ();[¢], Z¢[£])o<t<T-

In the next section, we will consider the following linear setup for f.

Assumption 4.2.1 There exists two bounded progressively measurable stochastic
processes (a,b) such that

f(t,y,2) = ay + b/ 2, for (t,y,2) € [0,T] x R x R™ . (4.2.3)
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Remark 4.2.1 Under Assumption 4.2.1, it is well known that Yo[€] for & € L?(Fr)
rewrites as an expectation, see e.g. Proposition 2.2 in [75]. More precisely, let us
introduce, the process I' solution to

ATy = Ty(asdt + b dW;) and Ty =1, (4.2.4)

which satisfies, for any p = 1,

E[ sup [I4P| < Cp. (4.2.5)
te[0,T]
Then, one has,

Yol¢] = HI'r£] - (4.2.6)

Let us also be given a (Fr ® B(R), B(R))-measurable random function
QxR (w,y)— Gw,v)eR

such that v — G(7v) is non-decreasing and left-continuous.
In the sequel, we shall also make use of the following

Assumption 4.2.2 There exists € € L*(Fr) such that, P-almost surely and for all
v€R,

[GNI < €1+ [7]). (4.2.7)

Moreover, the following holds P — a.s.

G(+m) := 7l_i)r}?ao G(v) = 4o, (4.2.8)
G(—w) := 7&@@ G(7) € [-o0, +0), (4.2.9)
and G(—x0) < G(y), VyeR. (4.2.10)

We recall the definition of the generalized inverse of G,
U(w,y) :=sup{yeR|y > G(w,7)} e R U {—w, +0}, (w,y) € Q. (4.2.11)

Note that ¥ is a (Fr ® B(R), B(R))-measurable random function, P-almost surely
non-decreasing and right-continuous. Under Assumption 4.2.2, the value 4o is
avoided thanks to (4.2.8), and

(W(w,y) = —o0} = {y < G(w,~0)}. (4.2.12)
We shall also use the following assumption.

Assumption 4.2.3 There exists € € L*(Fr) such that, P-almost surely and for all
yeR,

[ (1) 1w (y)>—ooy| < €A+ Jyl). (4.2.13)
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Observe that, by left-continuity of G and the right continuity of W,

GoVU<Idg<Vod. (4.2.14)

We are now in position to introduce the weak hedging problem.
Denote, for u € P(R), the set of super weak hedge price by

() = {y e R‘ 1Z € 2, P(YYZ = G(y)) = Fuly), Yy € R} . (4.2.15)

We now define classicaly the weak hedging price as
Vwa(p) :=inf H(p) , for pe P(R). (4.2.16)

We make directly the following observation, whose proof is postponed at the end of
this introductory section. It says basically that the constraints are only binding for

7 € supp[p].
Proposition 4.2.1 We have $(u) = H(u), with

S(n) = {ye R |32 € 22, PP 2 G()) = Fu(v), ¥ € supply |

The weak hedging problem is general enough to encapsulate in particular the fol-
lowing problems, which will be studied extensively in the subsequent sections, see
Section 4.3.1 and Section 4.3.2.

Example 4.2.1 (PnL matching problem) Forn > 1 and 0 < § < --- <§, €
L?(Fr), we define

Gw,i1) :=¢&w),weQ,0<i<n,

and po,...,pn > 0 such that 37 p; = 1, we set p = > pid;.

Then we recover the PnL matching problem with multiple constraints as introduced
in [15]. Precisely, there are n + 1 constraints, one super-replication constraint and
n quantile constraints. Indeed, recalling Proposition 4.2.1,

Vavn (1 1nf{ye]R{‘3Ze,%”2 P(YY? > G(i)) >Fu(i),0<i<n}

= inf ye]R‘EIZE%”Q (Yy’ fz’)>Qi,0<i<n},

with ;== Y7_;pj, 1 <i<n
Two cases of the above multzple constraints problem are of particular interest.

o Forn =0, one gets the super-replication problem (see e.g. [05], [060]): G(w,0) =
¢ for some € € L*(Fr), u = 6o, and then

Vwn(u) = inf

{yeR‘HZeuo,P(ngZ >6) > 1}
:inf{yeR‘ﬂZeuo,Yff’Z > 6P a.s.}.
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o Formn =1, one recovers the classical quantile hedging problem (see e.g. [30],
[14], [5]) and we denote Vwn by Vqu in this case: G(w,0) =0, G(w,1) =&
for some 0 < € € L2(Fr), p= (1 —p)do + pd1 for pe [0,1], and then

Vau(u) = inf {y e R[32 € #2,Y}7 2 0,P — a.s., and PV}7 > €) = p}.
(4.2.17)

The discrete setting for u, given in the example above is not the only one of interest.
We can also consider more complex parametrization for y. We give now an example,
where the targeted PnL is possibly a continuous distribution.

Example 4.2.2 Let £ € £*(Fr) and p € Pa(R). Set G(w,y) = &(w) + v, for
(w,y) € Q, then one gets the following problem

Vawn () = inf {y e R‘ AZ € A2 PYEZ > €+ 7) = Fu(7), v € R} (4.2.18)

=inf{yeR‘3Ze%2, (Y;{’Z—g)upe/@}. (4.2.19)

Remark 4.2.2 Note that in the above examples, when G is only defined on Q x FE
with E < R, it is easy to extend G to Q x R as an almost-surely non-decreasing left-
continuous map satisfying to (4.2.7)-(4.2.8), and such that its generalized inverse ¥
also satisfies to (4.2.13).

Remark 4.2.3 Proposition 4.2.1 sheds some light on the Assumption (4.2.9) on the
random map G: if the support of the probability distribution u is bounded from below,
i.e. included in [y—(u),00) for some y_ > —oo, then the map G can be arbitrarily
modified on a neighbourhood of —oo for almost all w € §2, in particular in a way so
that (4.2.9) is satisfied.

The assumption (4.2.9) is also obviously satisfied in the important application (4.2.18).

We conclude this section with the short

Proof of Proposition 4.2.1 We obviously have () < H(p).

Conversely, let 3 € $(p) and let v € R\supp[z]. Let 4 := inf supp[u] n [, c0]. Note
that v+ € (v, 0], and we have either v* = o0 or v € supp[u] N (v, 0), as supp|u]
is closed.

If v = +o0, then F,(y) = 0 and P(Y27 = G(y)) = Fu(y) = 0 is satisfied.
Otherwise, v € supp[u] n (v, 0) and we have

Fu(7) = Fu(7") < P(YE7 = G(vh) < P(VE7 = G(v)),

the last inequality being true as, since G is non-decreasing, {Y%”Z > G(vT)} <
{Yff’z > G(v)}. This proves that y € $(x), hence $(u) < H(p). 0
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4.2.2 The Monge representation

Proposition 4.2.2 Let € P4(R). We have the equivalent formulations

Vwia() = Vem i=  inf  J[G(X)], (4.2.20)
X€T+ (1)

where To(p) = {x € L*(Fr) | xsP € K.}, and
Vi (i) = inf (), with H(u) == {y eR|3Z € A%, U(YI7)P e /cu} . (4.2.21)
recall (4.2.11).

Proof. 1. We first prove (4.2.20). Set :6(#) = {[G(x)] | x € T+(n)}. First, since
p € Pa(R), notice that 71 (u) is not empty as there always exists a Fp-measurable
random variable with law 4, for example F,~ YN (%))

l.a Let x € T4 (p) and set € := G(x). Observe that, since G is non-decreasing, for
cach v € R, we have {x =~} c {£¢ = G(y)}. Thus P(§ = G(v)) = P(x = v) = Fu(v)
as x3P > . Using (4.2.7) and the fact that x € £(Fr), we have that £ € £2(Fr) and
then the BSDE (Y[¢], Z[]), recall (4.2.2), is well posed. We deduce Yy[€] € H(p).
Thus H(pn) < H(p) and hence Vwy < Vrm(p).

1.b Conversely, let y € $(p), so that there exists Z € 72 s.t. Y%”Z satisfies to
P(YY? = G(v)) = Fu(y) for all y € R. We set x := ¥(Y¥?): We first notice that
IP’(Y#Z > G(—w)) = IF’(Y%/’Z > G(v)) , for all v € R since {xy = —o0} = {Yff’z <
G(—0)}. Thus (Y27 > G(—0)) = limy o (VL7 = G(7)) = limy_o Fu(y) =
1. Recalling (4.2.12), we have that {xy = —o0} = {Y%”Z < G(—)} and thus deduce
from the previous observation P(xy > —o) = 1. Then, using (4.2.13) and the
fact that YYQ’Z e L?(Fr), we obtain that x € £2(Fr). Recalling (4.2.14), we have
that YJQ’Z > G(v) implies x = \II(Y:,?’Z) > VoG(y) =~ Thus, P(x = v) =
P(Y%’Z > G(v)) = Fu(v) yielding x3P > p. Again from (4.2.14), we also observe
that G(x) = G(U(YE?)) < V&7 leading to Wo[G(x)] < Wo[YZ?] = y by the
comparison theorem for Lipschitz BSDEs. We then obtain 9RM(/,L) < y, hence
Vem(p) < Vwa(p)-

2. We now turn to the equivalent formulation (4.2.21). Denote 9(u) the quantity on
the right hand side of (4.2.21). From the step 1.b above, we obtain that Vywu(u) >
#(p). Now, let y € $(y), then there exists Z, s.t. x := \I/(YYQ’Z) satisfies x#P > pu.
Using (4.2.14), we observe that YYQ’Z > G(x). In particular on {x = ~v}, we have,
since G is non decreasing, that Yj?i”Z > G(v). Thus P(Y%’Z > G(v)) = Fu(v) proving
that y € H(p). O

Remark 4.2.4 1. The formulation (4.2.21) given in the previous proposition
shows that the weak hedging problem is a particular instance of more generic
weak stochastic target problem: Consider a set M < P(R) and a right contin-
uous non decreasing random function O and solve

inf{yeRHZe A2 O(YLP )P e M}. (4.2.22)
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Chapter 4. A dual approach to weak hedging problem

The weak hedging problem corresponds to the case O = V and M := K, for
a given w. In [12], the authors introduce a similar problem to (4.2.22) where
M= {pePR)s.t.{yu(dy) = p} for a given level p € R.

2. The formulation (4.2.21) opens the way to a dynamic approach to characterize
the solution of the quantile hedging problems as a BSDE, as done in [17] in
a special case or to a PDE characterization in o Markovian setting, as done
in [1/]. The extension of these results to our framework is left for further
research.

Remark 4.2.5 In the problem (4.2.20), “RM” stands for “Relaxed Monge”. Indeed,
let Assumption 4.2.1 hold. Then Yy is a linear operator, since Yol&] = HI'r€], for
some Iy € L?(Fr), recall Remark 4.2.1. Then, one has

Do) = it EPrGOO) = int j I'7() G, x(w))B(dw),

which can be interpreted as an “a la Monge” optimal transport problem. We use
the term ‘relazed’ as the target distribution is not exactly p, but can be any square-
integrable probability distribution stochastically dominating p. This linear framework
will be extensively studied in Section 4.3.

4.2.3 The Kantorovitch representation

In this section, we will work with the following

Assumption 4.2.4 The probability distribution p € P(R) has discrete and finite
support, namely supp[p] = {v1,...,v4} with v < --- < 4. We denote qp = F,(v¢)
and pg := qr — quv1 = p({ve}), for L€ {1,...,d} with the convention q4+1 = 0.

The main point of the following result is that we are able to work with probability
distribution whose support is included in the support of u.

Lemma 4.2.1 Under Assumption 4.2.4, the following holds

Viwn(t) = Ven (i) = Vam(p) := Jnf WG] (4.2.23)

and where T (p) = {x € L2 (Fr) | xsP € Ru}.

Proof. Let $H"(u {yo ’X e Tt } and recall the definition of 55( ) in
the proof of Proposmon 4.2.2. Smce T}r"( ) < T (), it is clear that S () < H(p),
hence Vrm(p) < Vrm(p). Conversely, for x € T4 (u), we define, setting v441 := +00,

) € LP(Fr), (4.2.24)

€[ve,ve+1)

HM&

we observe that x > x, thus G(x) > G(x). From the comparison theorem for
one-dimensional Lipschitz BSDEs, we deduce Yo[G(x)] = Jo[G(X)] . Moreover, we
observe that supp[xfP] — supp[u], by construction. Last, we easily compute, for
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Ce{l,....d}, P(x = v) = P(x = ) = Fl.(v¢), which proves that x € 7 (p).
We then have Vrm(p) < Wo[G (~)] < W[G(x)], hence Vrm(p) < Vrm(u), which
concludes the proof. O

We now introduce the Kantorovitch representation of the quantile hedging problem.

We define

Vip(u) = inf My U (w, )" (w, dy)] (4.2.25)

HeCr(P,p)

where p'! is obtained from the disintegration of the measure II, recall (4.1.4). More
specifically, for all IT € C*(PP, i), there exists a map p'! : Q x B(R) — R such that
(see e.g. Villani [67])

o forall we Q, p'(w,-) is a probability distribution on (R, B(R)),
o for all Ae B(R), p'(-, A) is (Fr, B(R))-measurable,
o M(dw,dy) = p"(w, dy)P(dw).

Remark 4.2.6 In the linear setting of Remark 4.2.5, (4.2.23) writes

Vem(p) = inf JFT(w)G(w,X(w))dP(w),

X€ETT (1)

and the associated Kantorovich (4.2.25) problem

= inf r dII .
Vie() = | _int [ )G, ), )

Moreover, using disintegration T1(dw,dy) = p'(w, dy)P(dw), we obtain

Vip (1)

podnt [ Tre) [ G, a)B(a)

- 1'[661’?(f P,u) [FT f G ’7)}

which motivates our definition (4.2.25). Theorem 4.2.1 shows that it is indeed the
natural non-linear counterpart of the previous relation.

Lemma 4.2.2 Under Assumption 4.2.4, the set C*(P, ) is equal to
d
{H € P(Q) [dIT = P(dw) } (Qi(w) = Qir1(w)) 85, (dy) , (Qi)Z7 (u)} :
. (4.2.26)
where, for all t € [0,T],

Q) = {(QE € L2F) |1 = Q1>+ 2 Qu > Quar = 0 and HQ] > g1 < i < d}
(4.2.27)
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Proof. Let us denote C the set given in (4.2.26).
1. For Il € C, we have obviously (pry)II = P.
Moreover, for all 1 < i <d, II(Q x {v;}) = HQ; — Qi+1], so

d
TI(€ x supp|u Z (HQi] —EQi+1]) = HQ1] — EQas1] =1

as Q1 = 1 and Qg1 = 0, hence supp[(pry);TT] < supp[u].
Last, for all 1 <i < d,

(pra)¢ ([, o0 ZHQJ —HQjn] = HQi] = ¢ = Fu(v),

which proves that (pro)Il > p. Thus, II € C*(P, p).

2. Conversely, let II(dw,dy) = p"(w,dy)P(dw) € C*(P, ). Define, for 1 < i < d

<
Qi(w) = F,n(,)(7i). Since supp[(pry)I1] < supp[yu], we have §o P w,supp[,u,] P(dw) =
1, implying that p™(w, supp[u]) = 1 almost surely. Hence, for almost all w, 1 = @y
= Qg = Qq+1 = 0. We also observe

~—

\Y

dIl = P(dw) — Qi+1(w)) by, (d7).

IIM&

Now, for 1 < i < d, since (pry)sII > p, we have
HQ.) = BFn(0] = | o[ ) (o) > g

which implies that II € C and concludes the proof. O

With the notations introduced in the previous Lemma, we obtain straightforwardly
the following formulation.

Corollary 4.2.1 Under Assumption 4.2.4, the Kantorovitch problem (4.2.25) then
writes

d
V() = inf ()yo DG Qi — Qi) | - (4.2.28)
=1

Q)i €7 (u

We now state and prove the main result of this section, namely that the value of the
Monge and Kantorovitch problems (4.2.23) and (4.2.25) coincide.

Theorem 4.2.1 Under Assumption 4.2.4, the following holds true
Vrm(p) = Vp (1) (4.2.29)
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Proof. 1. We first observe that, for all € > 0, there exists a Fp-measurable ran-

dom variable ¢ with uniform distribution and independent of Fp_., for example
He=N (%) Here, N denotes the c.d.f of the standard centered gaussian

law.

2. Let x € H"(n). Since supp[xsPP] < supp[p] = {71,...,74}, we have

d
G(x) = Z 1y—y, = Z G(%i) (Lyzv x>%+1) )
=1

where 441 := +00. Defining the Fpr-measurable random variables @; := 1,>-, for
all 1 <7 < d+ 1, one straightforwardly has 1 = Q1 = -+ = Qg = Q411 = 0 and

HQi] = P(x = v) = Fu(vi) = @i, as x3P > p. This proves that Q) e Qr(n).
Hence

d
Yo [G(X)] = Yo [Z G(i)(Qi — Qi+1)] = Vkp (1),
-1

where we used Corollary 4.2.1 for the last inequality. Taking the infinimum over y;,
we obtain Vrm(p) = Vkp (1)

3. We now prove the converse inequality.
3.a Let 7 > 0 and (Q1)t]! € Qr(u), such that

d d
Vip(1) = Wo| D, G(r)(QF — QZH)] —n =V [ D G)P!| —n,  (4.2.30)
i=1 i=1
Let € > O and denote
Qr :=HQ!| ]-'T E] , 1<i<d+1, and (4.2.31)
PP = Q- Qlf, = HP/ | Fr—e, 1<i<d. (4.2.32)
Note that (Q7)! € Qr (1) as
1=Q7 > > QU =0 and HQ?] = HQ/] > ¢, forie{l,...,d}.
We now introduce the Fpr-measurable random variable
d
X77,E = Z‘i ’yil{Q?,e2u€>Q;]rl}7 (4233)
1=
where 1€ is constructed in step 1.
One easily computes, for all 1 <7 < d,
Bt s | Fr-d = H1pgpesuy | Fro| = @1 (4.2.34)
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Since (Q)} € Qr_c(1), we deduce, for all 1 <i < d,

P (™ = %) = BE1pmesqy | Frod] | = HQYT = g,
which implies that x"¢ e 7} (u). Assume that

d

> G(w) P!

i=1

Vo = Vo [G(XT)] —w(n, €) (4.2.35)

where w(n, €) =0 0 for all fixed n > 0.
From the definition of Vry(1), we straightforwardly obtain

d
y() Z G(’Y@)PZ? = VRM(,U) - w(% 6)7 (4'2'36)

i=1

which, combined with (4.2.30), leads to

Ve (1) = Vem(p) — w(n, €) —n.

Sending € to 0 and then 7 to 0 yields the inequality for this step and then (4.2.29).
3.b To conclude, it remains to prove (4.2.35).

We define, for all 1 < i < d, G(v;) := HG(v;)|Fr—c]. Recalling (4.2.33), we observe
that

UK

-
Il
—_

HG (") [ Fr— =

Ge(’Yi)E[lQ”’E?ue>Q;’_fl ]:T—e] (4237)

d
G ()P = G(v)H P | Fr—],

i=1

where we used (4.2.32) for the last equality. For & € L2(Fr_.), let (V5[€], Zf (€] tefo,7—e]
be the solution of the BSDE with terminal condition £ at terminal time 7" — ¢, driver
f, namely

I
\M&

-
I
—

T—e T
Ve =€+ | V1 Z0es - | 2w, te [T -l
t t
For the reader’s convenience, let us denote
d
g:= > G(w)P!. (4.2.38)
i=1

We have, by (4.2.37),

Yolg]l — Do [G(xT€)] = AT + B™ + C"° 4+ D", with

AP = Yo lg] = Vo [Eg | Fr—el]

B™ = Y [Ela| Fr—d] - V5 [EG (™) | Fr—]l,

O = VS [EIG (") | Fr—]] = V5 [HG(X™) | Fr—]], and ,
D™= VS [EG(X") | Fr—c]] = Yo [G(XT9)]-
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We have, by the flow property and stability of Lipschitz BSDEs, that there exists
C,C" = 0 such that

A = 1Y [Vr—c [a]] = Yo [Hg | Fr—c]ll

< CE[!yT—e [o] —Hg| fT—e]F];

<o | e 2 [gm?dsr

T—e

T 2
<of [ AP+ a2 P - 2l 0.0
T—e

which goes to 0 with €, as (Y [g], Z [g], f(-,0,0)) € #%(F) x S#2(F) x #%(F).
Similarly,

T
D™ < C”EU AL% Vs [G(XP)])? + AL% | Z, [G(X™)]* + 2 |f(s,0,0)\2ds} 0 0.
T—e

We also have, by dominated convergence

[ d 2 %
|B"| < CE| |E| Y. (G(vi) — G*(v)) P! fT_e]
i=1
; 213
< CE| > (G(v:) — G(%:)) P —e50 0
i=1

and, again by dominated convergence,

1
C™) < CHIHG () - GO | Fr-P?]”

< CH|G (™) = G(X™)]

which concludes the proof. O

=

—¢0 0,

4.3 Duality in the Linear case

We now focus on a special framework, useful for application, where tractable and
implementable formula can be derived, namely the linear setting. We will thus
assume that the Assumption 4.2.1 is in force throughout the section. We will use
duality methods to solve the weak hedging problem, first for generic random function
G in the setting of Assumption 4.2.4, then for a specific PnLL matching problem with
a more general target probability. In this last case, the duality method boils down
to use classical optimal tools.

Recalling the setting of Remark 4.2.1, we define the random function

H(w,y) :=T7r(w)G(w,7), (4.3.1)
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and Combining (4.2.5) and (4.2.7), we observe that, for all v € R,
H(y) e L*(Fr). (4.3.2)

In this framework, Proposition 4.2.2, Lemma 4.2.1, Corollary 4.2.1 and Theorem
4.2.1 write

Corollary 4.3.1 1. For all pn € P4(R), we have Vwu (1) = Van(p) with

Viar (1) = ot HH)]- (4.3.3)

2. If, moreover, Assumption 4.2.4 holds, then Vqu(u) = Vam(p) = Vip (1), with

Verm(p) = Xei,rnrf(#) EH (x)], (4.3.4)

d

Vp (1) = inf  E[ Y H)(Qi — Qi1) |- (4.3.5)

Q) er(n) | i

4.3.1 4 has finite support

We work under Assumption 4.2.4.

We now introduce the dual formulation of the Kantorovitch problem. For p satisfy-
ing to Assumption 4.2.4, we set

(qu))emH”u

d
Vop(p) :=  sup (HX] +) <I>m({%'})> : (4.3.6)
=1

where

P, = {(X, ®) e L2(Fr) x A ‘ Hv) = X + 05,1 <i<d,P— a.s.} . (43.7)

Proposition 4.3.1 Under Assumption 4.2.4, we have

Vip (1) = Vop (1), (4.3.8)
and
d
Vop (i) = sup (E[@b] +3 <I>m({%})> , (4.3.9)
@eAi i=1
with, for ® € A‘i,
b .__ : N &, 2
P’ = o [H(y:) — @] € L4 (Fr), (4.3.10)

so that in particular (3°,®) € P .
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Proof. 1. For ITe C"(P, 1) and (X, ®) € Py ,, we have

d
| #o e d9) = |3 (@, ) (43.11)
=1
d
> f (X (W) + @) T(dw, {7:}) (4.3.12)
Q=1
d
= B[XT+ ) @i(pro)sII({v:}) (4.3.13)
=1
d
> HX]+ ) ®ip({n}), (4.3.14)
=1

where we used the definition of Py, and the fact that 0 < &1 < --- < &4 together
with (pry)pll > p.

2. From the definitions, we straightforwardly have that (®°,®) € Ry, for any
® e A?. Hence

d
Vop(u) = sup (E[q’b] + Z @u({%})) :

d
PeAq

Conversely, for any (X, ®) € Py ,, it is clear that X < ®® and thus

sup (B|9°) + 2 @en((e)) > B[ @] + Y Benal{30)

dend
> FX]+ ) Sou({ye}),
hence
d
sup (E[@b] + 2 (I)z',u({%'})> = Vpp(p),
fDeAi i=1
which concludes the proof. O

Regarding the dual problem (4.3.6), one can in fact reduce the dimension using
(4.3.9). To this effect, for all 1 < i < d, we set

H(vi) = H(vi) — H(m) = Tr(G(v) — G(m)). (4.3.15)
We then have

Corollary 4.3.2 Under Assumption 4.2.4, we have

Vop (1) = HH (y1)] + B(p2; - - - pa)
= HH ()] +W(a2, - -, q4), (4.3.16)
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where

d—1
Y(p) = sup ((Z Cipi+1> — ELglgj{_l (CZ- — ﬁ(wﬂ)h}) , (4.3.17)
i=1 SIS

d—1
CeAT

d—1
W(g) = sup > 0ig11 —E | Inax (Ze - %+1> : (4.3.18)
+

geRE 521 sisd—1

Proof. For ¢ € Ai, we have, with §; := ®,,1 — &1, 1 <i<d—1,

> _ _ (e _
® = H(m) - max (G- H0i)), -8

Thus

d
Vpp(p) := sup E[q’b] + Z D;p;
Pend ;

d
sup ]E[H(vl) max (¢ — H(7vi41)) ] Z (®; — 1) p

(I)EAi 1<i<d-1

d—1
~HHO+ sup Y Grier ~ B, max (ci—ﬁf(%+1))+].

<i<d—
CEAd 1 1<i<d-1

Last, notice that Ad L and Rd L are in bijection, through Ad Ls¢w 9 = (0; :=
G — Go1)i)! € RT! and its inverse RE 30 — ¢ = (G := Z; 10,9}, We then
have

d—1 %
Vop = BLH (1)) + sup >, (Z )pm | max <Z 0; — H(7it1 )
.

9€R+ =1 Jj=1

d—1d—1
_HHG] + swp DY pid — B 1335(1(29 . 7) |
+

GERd 1]' 1= =j

Recalling the notations in Assumption 4.2.4, we have g1 = Z?:_jl Pi+1, which con-
cludes the proof. O

Remark 4.3.1 1. In the applications, it is common to have G(v1) = 0, see e.qg.

[14, 15].

2. The function U above appears as the Fenchel transform of the function

¢ ]E{ max ({ — ffi+1)+] :

ie{l,...,d—1}

This has already been observed and used in the context of one quantile con-
straint see e.g. [1/, 11].
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4.3.1.1 Proof of duality

The remaining of this section is dedicated to prove the reverse inequality Vpp = Vkp
in various settings. We obtain the duality for the case of one quantile constraint and
two quantile constraints. This is obtained after tedious computations which allow
us to characterise precisely the payoff to replicate, when one considers financial
application, see Remark 4.3.3. The results for the general multi-dimensional are
mostly conjectured in Section 4.3.1.4.

We shall use Corollary 4.3.2 and in particular the form given in (4.3.18). To this
end, we define

@ : R SR (4.3.19)
d—1
0 — Zlejqu | max <Z 0; — H(7it1 )
J= +

In the following, we will often use the extended version of @ on R¢~! to apply general
results of convex analysis (see e.g. [61]). Namely, we consider the function

w = ’(Z)].Rd—l + (—OO)IRd\RUJl:l . (4.3.20)

+

We now list some general properties useful to solve the optimisation of the dual
problem.

Lemma 4.3.1 The function w is concave, continuous on R‘fr_l and satisfies

lim w(f) = —oo. (4.3.21)

6] —00,0eRE!

In particular, there exists 0* € Ri_l such that

W(q) = sup w(f) = w(6). (4.3.22)
geRI!

Proof. Continuity and concavity are straightforward consequences of (4.3.19), as
the max operator is convex.
We have, since 1 > qo > -+ > gg > 0,

d—1 d—
= (]; 93‘) <Q2 —-P Z 9]' = FI('Yd) ) - E[ﬁ(’Yd)l{Z?;% gj;f[(»yd)}] .
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Hence, as || — o0, we have, since §; > 0 for all 1 < j < d — 1, recall (4.3.2),

d—1

d—1
Zej—>OO, QQ_P[ZGj>.FI(7d)]—>q2_1<O, and
j=1 J=1

E[ﬁ(%l)l{zj;i 93-2?1(%)}] - E{ﬁ('Yd)] > —00,

which proves that w(#) goes to —co.
We note that the continuity and coercivity of w on (R )4~! guarantee the existence
of an argument maximum. O

4.3.1.2 The one quantile constraint case

We first consider the case d = 2 in Assumption 4.2.4, i.e. where 1 = (1—¢q)d,, +qd-,
with 0 < ¢ < 1. This case has already been well studied in the literature, see Remark
4.3.2 below.

In that setting, Corollary 4.3.1, Proposition 4.3.1 and Corollary 4.3.2 read simply

Corollary 4.3.3 We have Vqu (1) = Vem(p) = Ve (r) = Vop (), with

Vem(p) = Xien;r F[H (x)], (4.3.23)

Vip(p) = (LQ,Oi)Ing(u)H(l —Q)H(m) + QH(7)], (4.3.24)

recall (4.2.27) and

Vop(p) = H(71) + ?igw(@), (4.3.25)

with w(0) = 0q — E[(6 — H(y2))*], recall (4.3.19).

Remark 4.3.2 Classically, see e.g. [0, 1/, 5], the quantile hedging problem with
one quantile constraint is formulated with a positivity contraint, namely H(y1) = 0.
Moreover, one chooses y1 = 0, 72 = 1, setting G(0) = 0 and G(1) = &y for some
payoff € = 0 to partially hedge. In particular the following formula for the quantile
hedging price is stated, see [1/],

= inf HI'pE1
V(p) = jnf HI7€lp=o],
where 2P = {P e L*(Fp)| P € [0,1] and B[P] = p}, which corresponds ezactly to

the Relazed Monge problem (4.3.23). The classical dual approach (followed e.g. in
[14, 11]) is then to introduce the quantity

V(p) = inf HIrEP
V(p) = inf EI7EP],
which in turn corresponds exactly to the Kantorovich Problem problem (4.3.24).

We now prove the duality in this case.
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Theorem 4.3.1 We have Vkp () = Vpp(p) and setting, for 8* € argmax w, recall
(4.3.25),

q— P H(v) < 6*]

VM) iy -] Gy (4320
which, is such, that (1,Q*,0) € Qr(n), we have
Vop(r) = (1 - Q")H(m) + Q"H(12)] .
Moreover, if {H(y2) = 0*] = 0, then
Vop(p) = BH(x")], (4.3.27)
with
X = ML fn0e) P (1<) € TE(D): (4.3.28)

Proof. Since Vkp(p) = Vpp(p) by Proposition 4.3.1, we only need to prove that
Vop(1) = Vkp(i). Recall that, for 6 > 0,

w() := 0q — (0 — fI(’yQ))+] (4.3.29)

—60/(q—HH (1) < 0]) + H H(2)1 (51,20 |- (4.3.30)

We have that w is concave, recall Lemma 4.3.1, and it admits left-hand derivatives
at every point of (0,00) and right-hand derivatives at every point of [0, 0) given by

w () =q—PH(yp) <0], 6>0,
W', (0) =q—P[H(p) <0], 0=0.

Moreover, for all 0 < 0§ < 6’ < o (setting in addition w’ (0) := +o0),

The classical result from convex optimisation states
argmax w = {6 € [0,00) |w’_(§) = 0= w',(0)},

here [w!,(6),w’ ()] is the subdifferential of w at 6.

Let 6* € argmax w. We now discuss various cases.
1. If w’ (6*) = 0, then ]F[ﬁ('yg) <0*] = ¢, and w(0*) = E[ﬁ(’yg)l{mwkg*}], recall
(4.3.30). Then, setting x* as in (4.3.28), we obtain, recalling (4.3.25) and (4.3.15),

Vo (p) = BLH(x")]-
Since Flx = 2] = IP’[fI(”yg) < 0*] = ¢, we have that x* € T} (p). This proves for this

case Vpp (1) = Vem(p) = Ve (n)- )
2. Otherwise, 0 < w’_(8*) = ¢ — F{H(72) < 0*], and since 0 > v/, (6*) = ¢ —
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P[f{(’}/g) < 6], we have IP’[I;T('yg) <0*] < q <HH(y2) <0*], s0 }P’[ﬁ(’yg) =60*] >0
We then compute, recall (4.3.25),

Vop () = HH(71)] + w(6%)

— HH(y0)] + 0" (¢~ H{H(12) < 0°]) + B H02)1 5,0y

q—TP[H(72) < 6]
PH (72) = 6*]

= EH ()] + B H ()L 10,91} |

= HH ()] + H(H(72) — H(n))Q"]

+ B 021 100

recall (4.3.26). Note that (1,Q*,0) € Qp(u) asHQ*| = ¢, and Q* € {1, w} c

0.1 P[H (v2)=6*]
q—HH () < 6] _ — P[H(v2) < 6*] o1
P{H (72) = 6% IP’[H Y2) < 0| —B[H(y2 < 0%)]
Hence Vpp(p) = H(1 — Q*)H (1) + Q*H(y2)] = Vkr(1)- -

Remark 4.3.3 1. We note that in the case (4.3.27), the infimum in the ‘Relazed
Monge’ problem (4.3.4) is a minimum.

2. In financial applications, Theorem 4.3.1 gives the modified payoff to replicate.
In the most general case, it is given by

§ = 01-Q)GMm) +Q"G(72), (4.3.31)

since I'r interprets as the density of the risk neutral measure.

4.3.1.3 Application to two constraints case

We consider the case d = 3 in Assumption 4.2.4, i.e. where p = (1 —¢2)d,, + (q2 —
43)0~, + G305, wWhere ¢1 == 1 > ¢ > g3 > 0 and 7; < 72 < 73. In that setting,
Corollary 4.3.1, Proposition 4.3.1 and Corollary 4.3.2 write

Corollary 4.3.4 We have Vqu (i) = Vem(p) = Vip(p) = Vop(p), with

Vrum(p) = Xlg. EH (x)], (4.3.32)

Vip(p) = (1,Q2,Q;%f)EDT(u)E{(1 — Q2)H(m) + (Q2 — Q3)H(72) + Q3H(73)]
(4.3.33)

Vop(p) = H(v) + 2(q), (4.3.34)

with
W(gq2,q3) = sup  w(bq,62),

01=0,02=0

w(61,602) = 012 + 02g3 — E[max (0,61 — H(y2), 61 + 02 — H(73))] .
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We will now prove the duality in some particular cases. By Lemma 4.3.1, w is
concave on R,y x R,. Hence it admits left and right partial derivatives at every
point, which we now compute. To this effect, we define, for 6 = (61,62) e Ry x Ry,

©1(0) = (61 — H(72) + @2(0))+, and D2(0) = (62 + H(72) — H(73))+-

Lemma 4.3.2 Forall e Ry x R,,

O1,—w(8) = g2 — 14, (9)>0] + (+20) 19, -0},

O1+w(0) = g2 — E[le—ﬁ(72)+<1>2(9)>0] :

O2,~w(0) = g3 — E[1g, (9)>01a,(0)>0] + (+50)1ig,—0},
O2,+w(0) = g3 — E[lel_ﬁ(w)ma(e)zo192—H(72>+H(73)>0] :

Proof. We have, for all # e Ry x Ry,

w(f) =01q2 + O2q3 — B[ (61 + 02 — H(y3))La, (9)>01a,(0)>0] — B (01 — H(72))18,(6)>0Le,0)0]
=01 (02 — H1a,(0)>0]) + 02 (33 — H[1a,(0)>01056)>0]) (4.3.35)
+ B[ (72) (L,(6)>0 — Loy (0)=0105(0)>0) | + ELH (73) 10, (6)>0 La,(9)>0]
=01 (g2 — ] 1o, (9)>0)) + 02 (43 — 1, (6)>01a,(0)>0))
+ B[ H (v2) g, (9)>0] + B[ (H (v3) — H(72))1a, (0)=01d5(8)=0] -
We now compute the partial left and right derivatives.

1. Computing 0;,—w: We first have, for 6 € R% x R, setting ®; := ®1(0), ®2 =
®9(0), and for all € > 0, P := ®1(0; — €,02) and 5 := Po(61 — €, 62),

o1,—w(f) = <Q2 - Oiigoﬂ?{l@po]) — 0101, H1,50] — 0201, H1g,~01a,>0]
+ 01, —B[H(2) 1o, 50| + 01,-E[(H(v3) — H(7v2))1e,>01e,>0]
- <QQ B oiigo IE[1¢,61>0])

. 1 . 1
+ 01 Oilefgo EE{1¢1>0 — 1ocso| + 0o Oilsfgo EE{1¢1>01¢2>0 — 1opcolag>0]

1 .-
— lim —E[H(72) (1g,50 — Lac>0) |

0<e—0 €

1 5
- oggo E]E{(H(Ws) — H(72)) (1o,5018,50 — Loc=0lag=0) ]

- (qz ety IE[LI)PO])

+ lim S (01— (1)) (Laywo — Las-0)]

0<e—0 €

1 ~ 3
+ oggo EE{(HQ + H(v2) — H(73)) (18,5010,>0 — 1ac>0las=0) | -

We have, as 3 = ¢§ = (92 + ﬁ(%) - FI(’Y?)))JH

(62 + H(y2) — H(73)) (Loy>0la,>0 — 1<1>;>01c1>;>0) = Py (1o,0 — 1c1>;>o) ;
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hence

01,—w(h) = (qQ— lim E{1¢e>0]>

0<e%0

+ lim H‘3[(91 H(y2) + ®2) (1,50 — 1oc=o)] -

0<e—0 €
Using ®§ = (01 — e — ﬁ(vg) + P9)+ = (P17 — €)1p,~¢, we obtain

(01 — H(v2) + ©2) (1a,50 — Loc=o) = (01 — H(72) + ®2) (Lo<o,<c + Leca, — Lo,>c)
= (61 — H(72) + ®2) Lo<a,<e = P1(0)Lo<a, <

This gives
0< ollergo IB3[‘5110<<1>1<e] < Oiigoﬁ[lo«plse] =0,
and eventually

O1,—w(f) = (qg— lim E{lq>e>0])

O<e—

1. Computing 0 +w: We have, for § € Ry x Ry, setting ®; := ®1(0), $2 := $2(6),
and for all € > 0, ®f := ®1(0; + €,62) and D§ := Po(6; + €, 02),

d14w(f) = (QQ —  lim E[1<1>6>0]> — 0101 +]E{1<1>1>0] — 0201+ ] 1g,>01a,>0]

+ 01 +E{H v2)1o,50] + 01+ B (H(v3) — H(72))10,5010,50]
- (q2 B oiienio E[1®§>0]>

. 1
— 61 lim *E[1q>6>0 - 1<1>1>o] — 0 lim E[1¢’6>01¢’6 0= Loy >01a,0]

0<6*>0 0<e—0 €

+ lim IE[H ) (Loc>0 — 1o,50) ]

0<e—0 €

+ lim 6IE{( H(y2)) (Loc=0lag=0 — 1o,5010,50) ]

B <q2 B oligo Hl@iw])
1 .
— lim fIE[(Hl — H(vg)) (1q>;>0 - 1<I>1>0)]

0<e—0 6

— lim 45[(92 + H(v2) — H(73)) (1<1>;>01<1>g>0 —1g,~01a,50)] -

0<e—0 €

We have, as &3 = @5 = (92 + H (72) ﬁ(’Y?;))Jr

(02 + H(v2) — H(73)) (1o, 501050 — Loc=0las=0) = P2 (1o,50 — Lac>0)

hence

O1,+w(0) = (qQ— lim E[1¢e>0])

O<E*>0

— lim IE[(91 H(v2) + ®2) (Loc>0 — 1o,>0)] -

0<e—0 €
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Using @1 = (01 — H(72) + ®2)+ = (P] — €)1ac=e, we obtain

(01 — H(7v2) + ®2) (1ocs0 — 1a,50) = (01 — H(72) + P2) (Locos<e + Lacse — Locsc)
1 1 1 1
= (61 — H(72) + ®2) Locas<e = (B] — €) Locac <
This gives

1 .
0> lim *E[(q)i — 6) 10<<I>§<5] > lim _H10<¢’1<6] = 0,

0<e—0 € 0<e—0

and eventually

O rw(f) = <q2 B OE—EOE{I‘P?O]) '

3. Computing do —w: We have, for 6 € R, x R, setting @1 := ®1(0), ®2 := P(0),
and for all € > 0, ®f := D1(01,02 — €) and P§ := Po(01, 62 — €),

O2,—w(0) = — 0102 _H1s,50] + (g3 — OiigoE[lépol@?o]) — 0202, 1g,>013,>0]

+ 0o, H H(72)1a,50] + 02, F[(H(y3) — H(72))10,>010,50]
=(g3 — Jim F1g¢~01ag>0])

.1 1
+oh lim EE[1<1>1>0 — 1o + 0o Jm EIE{1¢»1>01<1>2>0 — 1gc=0lag=0]

O0<e—
R
- oggo EF{H(W) (1,50 — Lac=0) |
1 . . -
- Oiiefgo EE{(H(%) — H(72)) (1o,5010550 — Loc=0lag=0) ]
=(q3 — oim H1a<-01a550])
.1 -
+ oggo EE{(HI — H(72)) (1o,50 — 1ac>0) |
1 . .
+ Oiigo E]E{(HQ + H(v2) — H(73)) (1a,501,50 — 1ac=0lag=0) ] -

We have, as ®5 = (02 — € + H(v2) — H(’yg))Jr = (D3 — €)1p,=,

(62 + H(v2) — H(73)) (1a,>018,>0 — Laog=0las=0)
= (02 + H(y2) — H(73)) (10,5010,50 — Loc=01ay>c)
= 10<dy<cP210,50 + Leca, P2 (1,50 — Lac>0)
hence
O2,—w(0) =(q3 — OiigoE[1<1>§>01<I>;>0])
1 .
+ lim *E[(Ql — H(’}/Q) + <I>2) (1<I>1>0 - 1<I>§>0) 15<<I>2]
.1 ~
+ Jim EE[(91 — H(72)) (1a,50 — 1ac>0) lo<as<c|

. 1
+ hmo EH10<©2<6®21¢1>0] .

O0<e—
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Using @5 = (61 — H(72) + ®5)1 = Laoy=c(6r — H(72) + P2 — €)1 + Lo<ay<c(th —
H(72))+ = Layscloy=e(P1 — €) + Lo<sy<e(61 — H(72))+, we obtain

(91 — Ir]( ) + (I)2) (1<1>1>0 - 1<I>§>O) 16<<I>2
(91 (’}/2) + @2) (1¢1>0 — ].<I>1>e) 1e<q>2 = (p110<<I>1S616<(1327

and
(01 — H(y2)) (1,50 — 1a¢-0) Lo<dr<c
= (91 - H(’YQ)) <191 (’yg)+¢)2>0 191 (’yz)>0) 10 <Po<e
= (01— H(72)) 14,20, fi(r3)<0Lo<r=e

Hence

327_’(1)(0) Z(Q?, — hm E{]_q)e>0]_q)e>0])

+ lim E[‘I)1 lo<o,<cle<a,]

0<e—0

1
+ Oilg() 6 E[ (91 (’72)) —Po<ly— (’yz)<010<<1>2<€:|

+ lim E[10<<1>2<e(1)2 15,>0] -

0<e—0

We eventually have

0< lim *E[‘I)110<q>1<ele<<1>2] H1lo<a,<c] — O,

0<e—0 6

0> oilgo g [(91 H(y)) 17<D2<617H(“/2)<010<‘1>2<e] > —Hlp<p,<c] =0

0< lim IE[10<¢>2<6<I)21¢1>0] < 1iH1 H1lo<o,<e] — 0,
0<e—0 € <e—0

hence

Oa,—w(0) = q3 — 02@)0[@{1@?01@?0] .

4. Computing 0y yw: for § € Ry x Ry, setting @1 := ®1(6), $2 := $2(F), and for all
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€>0, O := P1(01,02 + €) and D := Po(61,02 + €),

O2,+w(0) = — 0102 + H1e,~0] + (g3 — OEEIE)OE[1<I>§>01<I>§>O]) — 0202 +H1g,>01a,>0]

+ 0y B[ H (72) e, 50] + 02+ F[(H (73) — H(72))1a,>01a,0]
=(q3 — Jim E[1g:=01as>0])

o1 1
— 91 Ollergo E]E{1q>§>o — 1<1>1>0] - 92 OEEIEO EE{1<I>§>01<I>§>D - 1<I>1>01<I>2>0]

1 ~
+ lim ~E[H(y2) (1oc>0 — 1a,50) |

0<e—0 €

1. .
+ lim = (H(y3) = H(12)) (1eg=01a5>0 = La>01a,20)]

=(g3 — lim H1gc-01a550])

— lim 1]E[((gl — FI(’YQ)) (1cI>§>0 - 1<I>1>0)]

0<e—0 €

1 . N
— lim —H (62 + H(y2) — H(13)) (Lec>0lag>0 — 1o,>01a,>0) ] -

0<e—0 €

We have, as o = (92 + H(y) — ﬁ(’)’3))+ = (®5 — &) Lag>c,

(62 + H(v2) — H(v3)) (1ec>01a5>0 — 1o, >01a,50)
= (62 + H(y2) — H(3)) (1ac=0lag>0 — 1o, >0las=c)

= ®olos>c(los>0 — 1a,>0),

hence
Oz, +w(0) =(q3 — 0520H1¢i>01¢5>0])

1 .
= olim (01— H(72)) (Log=0 — Lay>0) Lo<as<c]

0<e—0 €

1 -
— lim *E[(Ql — H(’}/Q) + ‘I’Z) (1<I>§>O - 1<I>1>0) 1<I>§>e] .

0<e—0 €

Using P, = (91 - H(’YQ) + (I)g)+ = 1q>§>6(91 - H(’)/Q) + (I)g — €)+ + 10S®§<6(91 —

H(’YQ))+ = 1(I)§>51<I>§>e(®i - 6) + 10$¢’2<6(01 - H(’YQ))+7 we obtain

(01 — H(y2) + ©2) (Loc>0 — Loy >0) Le<as
= (61 — H(72) + ®2) (Lac>0 — 1acse) lecas = (] — €)locas<clecas,
and

(61 = (1)) (Log0 — Loy-0) Lo<ag

= (01— ﬁ(72))(191_ﬁ(72)>_<1>; =1 f1(y)>0) Lo<dg<e

= (61 — ﬁ(’h))17<1>§<91—H(72)<010<<1>§<6'
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Hence
O2,+w(0) =(g3 — Jim F1ac-01a5-0])

1 ;
— lim *E[(@l—H(’yz))l ®5 <01 — (72)<010<<I>2S6]

0<e—0 6

— lim —e 1 < 1 el.
00 EE{ 0<Pi<e e<<P]

We eventually have

1 ~
0> lim 45[(01 _H<72))1_¢§<91_H(72)<010<¢'§<6] > —Hlo<og<c| —

0<e—0 €

0> lim {—6)lo<apccelecac | = —Hlocpecc| — 0
Z 0<em0 6]E{ 0<<I>1\e e<® ] = E{ 0<<I>1\e] ’

hence
Oa+w(f) = g3 — Oiigoﬁ[lcppolcbgw] .

To summarize, we have

alv_w(a) = q2 - Ollgo IE[1q>1 091 € 92)>0:|
al,"!‘w(e) =q2 — Ollgo IE[1‘1>1 01 +e, 92)>0]
O2,—w(f) = g3 — lim F[10,(6,,60—)>0102(01,0,—)>0] »
827+UJ(9) = q3 - hm IE[1‘1>1 01 92+€)>01@2(91,92+6) ] )

0<e—0

and the lemma is proved as these limits are easily computed. O
We now prove the duality in two particular cases. Note that for 6* € arg SUpg2 W,

we have, by Lemma 4.3.2,

@2~ H[10,(0)20] > 0> &2 ~ B g 1ay0)50] » and (4.3.36)
43 — IE[1<I>1(9*)>01<I>z(9*)>0] 0>q3— E[le* (72)+~1>2(0*)>010*+H(72) H(yg)zo] :
(4.3.37)
Theorem 4.3.2 Assume that there exists 0* € arg SUPpeR?2 W such that
H1g, (0] = E[l ) g(72)+¢2(9*)>0], and (4.3.38)
E[1<I>1(9*)>01‘1)2 0*) >0 E|:1 72)+‘1>2(9*)>019*+H(72) H('Ys)ZO] . (4339)
We then have Vpp (1) = Vkp ().
Proof. By (4.3.38)-(4.3.39) and (4.3.36), we obtain
@2 —H1e,0020] = @3 — H1a,(6)>01as(04)>0] = 0, (4.3.40)
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and we deduce from (4.3.34), (4.3.35) and (4.3.40) that

Vop (1) = HH ()] + B H(72)1a, 94)=0Laes0)-0] + EH(¥3) 1, 0+)>0La,0)=0]
(4.3.41)

= E[H (1) 1o, (9+)=0 + H(12)1a, (0)>01a,0+)=0 + H(13)1a,(64)>01a,(6%)>0]
=HH(x")],

with x* 1= 7114, (9+)=0 + 121&, (6*)>01a,(6+)=0 + V31a, (0)>01 @, (0%)>0-
One has F: *[p(’)/Q) = IP{<I>1(9*) > 0] = Q2 and FX’;P(’)@) = IP{<1>1(0*) > 0, @2(9*) > O] =

g3, so x;P > p. Hence Vpp (i) = Vem(p) = Vip (). 0
Theorem 4.3.3 Assume that there exists 0* € arg SUPgeg? W such that
B L, 64)20] < B Lgs f1ra) 0a(omy0 |+ a7 (4.3.42)
IE[Lln(é?*)>01<I>z(49*)>0] = E[lef—f{(’yg)-‘r(bg(9*)20195+E[(’yg)—[~{(73)20:| : (4.3.43)
We then have Vpp(u) = Vkp(p).
Proof. By (4.3.43) and (4.3.36), we have
43 — H1g, (9+)>01es0%)>0] = 0. (4.3.44)

In addition, by (4.3.42) and (4.3.36), we have either

q2 — E[1¢1(9*)>0] >0 = qs ]E|:19* (72)+¢,2(9*)>0] or (4345)

q2 — E[]_‘:I)l(Q*)>O] = O > q2 — E[lei_}f](72)+q>2(9*)>0:| . (4346)

If (4.3.44)-(4.3.46) are satisfied, then the computations (4.3.41) are still valid and
we obtain Vpp (1) = Vkp (1)
Otherwise, if (4.3.44)-(4.3.45) are satisfied, we easily have that

0 < B\ Lg;_fi(ra) 000610 = B Log—srcrm)—0L020)=0 | + B Loy sty mafor)-oLea(or)=0] -
If E[l(’I*H(WH@?(9*):01‘1)2(9*)>0] > 0, then in particular one would have

E[leg—ﬁ(«,g)Jr@Q(0*);019;+H(72)—1}(y3 >0] IE[1<I>1(9*)>01<1>2(¢9*)>0] >0,
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contradicting (4.3.43). We thus necessarily have E[lf’I*ﬁ(Vz):Ol‘I’?(@*):O] > 0. Then

Vop (1) =HH ()] + 607 (g2 — B[1a, (9+)>0])
+ B[ H(72)1a, (6)>01a,(04)=0 ] + E[H (73)1a, (6)>01a,(6+)>0]
— K1 N
—H[H ()] + 7612 ﬂ‘:{ (6 )>0]

10;=ﬁ(72)1¢2(0*)=0

] E[I:I(W)l@;:H(m)1@2(9*):0]

+ B[ H (72) g, (9)>0Las(0)=0] + ELH (43)1a, (9+)>0La,(0)>0]

] q2 — 1 *
=HH (71)] + E| H(72) | 1o, (6+)>01as0%)=0 + 15, (9+)>0]

+ B[ H (3) e, (9)>0Las (010
=HH(v)(1 - Q2) + H(72)(Q2 — Q3) + H(73)Q3],

Loz~ fi(72) L2 (0%)=0
E[legzﬁ(vg)l%w*)ﬂ] '

where

a2 —H14,(6)>0]

Lyt oy Loat0%)-0 |

Q2 = 1, (0+)>01a,(0+)=0 + 1o, (6=)>01a,(0+)>0 + [ Lgs— f1(yp) Lo (6%)=0;

Q3 = 1o, (6+)>01®,(0%)>0

satisfy 1 = Q2 = Q3 = 0, HQ2] = E[1¢1(9*)>0] +q2 —IE[1¢1(9*)>0] = q9 and Q3] =
B[ 14, (9+)=0La,(0%)>0] = g3, so that (1,Q2,Q3,0) € Qp(u). Hence Vpp(u) = Vkp ().
Od

4.3.1.4 The multidimensional case

We now give a partial duality result in the general case of arbitrary dimension
d = 2, generalising Theorem 4.3.2. We need first to know the left and right partial
derivatives of the function w.

To compute these derivatives, we generalise (4.3.35). Observe that, for all 6 €
RI,

d—1
w(f) = Z 0jqj+1 — E®;(0)],
j=1

with, forall 1 <i<d—1,

D;: QxR SR, (4.3.47)

(w, (04,...,04-1)) — max (0, max <Z O + H(w,v;) — ﬁ(w,yj+1)>> )
k=i

i<j<d—1

We easily show that, almost surely and for all 1 <i < d— 1 and 6 € R, setting
0@ = (6;,...,04_1) € R,

i(0) = (65 + H(v) — His1) + @411 (601)) L (4.3.48)
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where, by convention 6(® := & and ®4() = 0.
We define

Ai(00) = {@i(00) > 0} = {6 + A () = H(yi1) + @i (0D) > 0}, 1<i<d-1,

with A4() := & by convention so that Qg11(0) = 0. We also set Q1(6) := 1.
We immediately observe that, for all 6 € R‘i_l and 1 <1 <d,

Qa+1(0) =0 < Qit1(0) = Qi(0)1 4,900 < Qi(0) < 1 = Q1(6).

Lemma 4.3.3 We have, for all 0 € Ri_l,

Z (gj+1 —HQ;4+1(0)]) + Z E{H ) (Qi(0) = Qj+1(0)] . (4.3.51)

Proof. We prove more generally by induction that, for all 1 <i<d—1,

%

Z (gj+1 —HQ;+1(0) Z 0;qj+1 (4.3.52)

j=1 Jj=i+1

N Z[E[[:](’yj)(Qj( — Qi+1(0))] + HH (7::41)Qi+1(0)]
—2

- E[¢i+1(9(i+1))Qi+l(9)] ;

noticing that (4.3.52) for i = d — 1 is (4.3.51), as Qq41(0) = 0 and ®4(89) = 0.
First, notice that, by (4.3.48), for Ac Fpr, 1 <i<d—1and §e R

B 0(09)14] = B (6-+ A0 ~ Fi0) + @i (664)) 1]
= eiE[lAmAi(G(i))] + E[ﬁ(’yi)lAmAi(G(i))] (4.3.53)
- E[f{(%Jrl)lAmAi(e(i))] + E[(I)iJrl(0(i+1))1AmAi(9(i))] :

For i = 1, we have, using (4.3.53) with A = Q, as H(y;) = 0,

d—1
0) = Z 0;qj+1 — H®1(0)]
j=1

d—1
=01 (@2 —H1a,9)]) + Z 0,051 + EH(y2)1a, 0] — HP2(02,...,04-1)14, ()]
j=2
d—1
01 (g2 — HQ2(0)]) + Z 0;qj+1 + EHH(1)Q2(0)] — [@2(9(2))622(9)] ;
j=2
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which is equality (4.3.52) for ¢ = 1. Assume now that (4.3.52) is true for some
1 < i< d-—1, we prove it for i + 1. By (4.3.52) for 4, using also (4.3.53) as

B[®;41(0%1)Qi41(0)] = E[(I)i+1(9(i+l))1ﬂ2:1Ak(g(k))]a we obtain

1 d—1
w(®) = Y05 (gj+1 — HQj+1(0)]) + Oisrgiva + . 0igjn
j=1 j=i+2

4 2 E{f{(’}’j) (Q]( Q]+1 ] + E[H Yi+1 Q2+1( )]
=2

_ 9i+1E[1ﬂ§;:1 Ak(e(k))mAi+1(9(i+1)):| — E[H(’Yi-u)lﬂz:l Ak(g(k))mAHl(g(iﬂ))]

* E[ﬂ(%”)lﬂizl Ay a(k))ﬂAi+l(9(i+1 )] B E[@”2(9(i+2))1ﬂ}; Ak(e(k))ﬂAi+1(9(i+1))]

i+1
= Z 9 QJ+1 HQ]JA Z 0iqj+1 + Z ]E{H 73 ]
j=1 j=1+2

+HHGi4) (Qix1(0) — Qisal0) pwmw%an%mwwmm,

which is equality (4.3.52) for i + 1. We are done. O

One could then use the previous Lemma to obtain the following generalization
of Lemma 4.3.2, in which we compute each left and right partial derivatives of w.
We conjecture that:

Lemma 4.3.4 (conjecture) For all 1 <i<d—1 and 6 € RS, we have

Oi—w(f) = (+OO)19 —0 + (gi+1 —HQi+1(0)])
8,-,+w (0) = qi+ IE[Qz+1 ]

with QF 1 (0) = Ly 0,4 71()— (25 1) 0141 (00+D)20}

This in turn allows to prove the duality in an important particular case, which
is the generalization of Theorem 4.3.2. Note that for 6* € argsupgpa-1w, we would
+

then have, by Lemma 4.3.4,

Giv1 —HQin1(0)] =02 gy —HQ(0)], 1<i<d-1 (4.3.54)

Theorem 4.3.4 (conjecture) Assume that there evists 0* € argsup, pa—1w such
+
that

HQir1(0M)] =HQS ,(6")], 1<i<d-1. (4.3.55)
We then have Vpp(u) = Vip(1)-
Proof. By (4.3.55) and (4.3.54), we have

qi+1 — HQZ+1(9)] =0, 1<i<d-1 (4.3.56)
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We then compute, using (4.3.16), (4.3.51) and (4.3.56),
d
Vor() = HH ()] + Y B H( 0%) — Qj+1(07))] = HLH (x")],
7=2

with x* := 2?11 7i (Qi(0%) — Qi41(0%)) = Zz 17l MZ) A (0%)n A (0%)e
Last, notice that x* € T (u) as Q1(6*) = 1 > Q2( ) =
Qa+1(0%) and HQ;(6%)] = ¢; for all 2 < i < d. Hence Vpp(u) = Vem(p) = Vop(p

4.3.2 PnL hedging with given probability

In this section, we study how to weakly hedge a position when a constraint on the
PnL target is given in a set of probability. We have to specialize the setting to linear
G function namely, given a fixed random payoff £, we assume in this part that

G(y)=&+7. (4.3.57)

In this setting, we observe that, recall (4.3.1) and (4.3.3),

Vi (1) = Jnf EH()] (4.3.58)
= HI'r{] + _ 1an HTrx] - (4.3.59)

To solve this problem, we use directly results from optimal transportation problem.
In particular, we will first solve the problem above when the constraint is saturated
namely when y#lP = u. We shall rely on the following:

Assumption 4.3.1 The law of I'r is absolutely continuous with respect to the
Lebesgue measure.

We define the following (more restrictive) problem, for p € Py,

Vor(u) := ;g% HI'r (§+x)], (4.3.60)

where T, = {x € L*(Fr) | x4P € K,.}.

Lemma 4.3.5 Under Assumptions 4.3.1, for u € Py, we have

1 1 1
Vor(p) = HI'r¢] - §E[(FT)2] ~3 Jiﬁzﬂ(dﬂﬂ) + §W22(£(_FT)>,U)~
In addition, there exists x* € T, such that

Vor (i) = HI'r (§ +Xx7)],

which writes explicitely x* = Nu_l o Np—rpy(=I'r). Here, N, stands for the c.d.f.
of the law p and Nljl its generalized inverse.
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Proof. We compute, starting from (4.3.60), as each 6 € 7, has law p,
Vor(u) = HI'rg] + 9151; HT'70]
= HI'r€] + inf ~H(-T'7)6]
= HI'ré] + 5 mf (B[(-T7 —0)"] - E{(—TT)Q] — Ho?])
= HI'r¢] — §E{(FT)2] — % Jx p(dx) + = 1nf IE{ —I'r — ] .

Since L£(—I'r) is absolutely continuous with respect to the Lebesgue measure by

Assumption 4.3.1, using Brenier’s theorem (see for example [21, Theorem 5.20]),
there exists an optimal transport map T from v := L(—I'p) to p, i.e. such that
Tyv = p and

Wiwp) = (@ = T(@)w(da),
Defining 6* := T'(—I'r) € 7T, we have
W3 (v, ) = B (~T'p — 6%)*] = o H(-Tr - 6)?].

It is well-known, see for example [2], Remark 5.15], that 6* = N Lo N, (~Tr) as

I'7 has no atom by assumtion. O

Lemma 4.3.6 Under Assumptions 4.3.1, for any v, € Po such that v > u, we
have Vor(v) = Vor ().

Proof. By Lemma 4.3.5, we have that

Vor(v) — Vor(p) = E[I'r (N, Nc( r)(=T'1)) = N (Nporpy (—T1))) |
:E[FT( ,HU) = NSO

with U := Ng(_r;)(—=T'r) is uniformly distributed on [0, 1] as 'z has no atom. Since
v > u, we have N1 > N, " 1 hence the result, as ' > 0, P-almost surely. O

Proposition 4.3.2 Under Assumption 4.3.1, for all i € Py, we have
Vit (1) = Vor(p) -

Proof. Since T(x) < T (1), we have Vam (1) < Vor(p).

Conversely, let (xn,n > 1), a sequence of elements of T, (1) such that Veni(p) + = >
HTr (€ + xn)]- We have F[I'r (£ + x»)] = Vor (XnfP) = VQT( ), thanks to Lemma
4.3.6, as P = u for all n > 1. We then have Vg (1) + 1 > Vor(n) and sending
n to infinity gives the reverse inequality. O

Remark 4.3.4 In this case, the infimum in the weak hedging problem is attained
by replicating the payoff & + x* given in Lemma 4.3.5. Obviously, the value Kan-
torovich problem (4.2.25) (adapted to the linear setting) is obtained for dII* (w,~) =
dy+ (dy)dP(w).
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4.4. Numerical studies

4.4 Numerical studies

We now turn to numerical consideration associated to the above problem having in
mind possible application. We thus first introduced a Markovian setting where our
previous results can be straightforwardly restated.

We introduce a Markovian setting where our previous results can be straightfor-
wardly restated.

t t

b(X,)ds + f o (Xo)dIW, | (4.4.1)

Xt:XO—i_j
0

0

where b: R™ — R™, g : R™ — R™*™ are Lipschitz continuous functions. As usual,
the starting point Xy € R™ at time 0 is arbitrary and we omit it in the notation. In
this setting, the controlled process Y¥#, recall (4.2.1), satisfies

S S
ysy,Z —y— f f(r, X, Yry,Z’ Z,)dr _|_f Z.dW,. | (4.4.2)
¢ t

where f:[0,T] x R™ x R x R™ — R is a Lipschitz continuous function.
Let us mention that all our numerical tests will be done in the linear framework,
basically considering that the following holds:

Assumption 4.4.1 There ezists a bounded continuous map (c, 8) : [0, T]x (0, 0) —
R x R™ such that

ftz,y,2) = alt,2)y + Bt,z)" 2, (t,2,y,2)€[0,T] x (0,00) x R x R™.

Under Assumption 4.4.1, the process I', recall Remark 4.2.1, is solution to

t t
=1+ J Fsa(s, Xg)ds + J D.A(s, Xo) T dW,, 0<t<T. (4.4.3)
0 0

Regarding the terminal constraint, we consider a continuous function:
R? x R 5 (z,7) — g(z,7) € R, (4.4.4)
such that v — g¢(-,7y) is non decreasing. And we set, for all v € R,

G(v) = 9(Xr,v) and H(y) = I'rg(Xr,7). (4.4.5)

4.4.1 Numerical solution for the PnL hedging problem
We consider here the case where p € P4(R) but g has the following form
9(@,7) == g(z) + . (4.4.6)

Assuming that £(—T'7) is absolutely continuous w.r.t. Lebesgue measure, we have,
from Proposition 4.3.2 adapted to our setting,

Praa(e) = ECrg(Xp)] — 3B (0r)?] - j P pudr) + SWR(E(-Tr), ). (447
= HI'7 (§(X7) +x")], (4.4.8)
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with x* = N,u_l o NL(—FT)(_FT)'
We apply the previous result, to the Black & Scholes model, already studied in

[5, 36].
Example 4.4.1 (Black & Scholes Model) The process X satisfies

¢ t
X =X0+J bXsds+f o XsdWs
0 0

withbe R,0 > 0 and Xo > 0. The function f is given by:

A~

ftw,y,2) = —ry — P —ry — Az, (4.4.9)

h—

where r = 0 the interest rate, and X\ := >-* the risk premium. The Radon-Nikodym

derivative defined in (4.4.3) is thus:

_dQ, r—b 1(r—b)?
Lr = gl = exp (= Wr = 5757T),

Using the (almost) explicit formula (4.4.7), we first test the model Example 4.4.1
for a one-constraint target measure p, see Figure 4.1 (note that we consider the set
pi= {#00, 0 < i < 1000}). We also plot the histogram of distribution of g(X;z) +x*
under the probability measure P at the terminal time 7', recall (4.4.8), in Figure 4.2.

13

0.0 0.2 0.4 0.6 0.8 10
p variable

Figure 4.1: Vor(p) for model Example 4.4.1 for call option  — §(z) = (x — K); with
target measure u = (1 —p)dg + pds with following parameters: Xy = 100, interest rate r = 0,
volatility o = 0.2 and drift term b = 0.1, strike K = 100, time horizon T = 1.

4.4.2 The multiple quantile constraint case

We now turn to the numerical study of the general case under Assumption 4.2.4.
When d = 2 in Assumption 4.2.4, the setting essentially corresponds to the quantile
hedging problem. When d > 2, the setting corresponds to the PnL. matching problem
introduced in [15]. Obtaining numerical solution for these weak hedging problem is
quite involved see e.g. [15, 11, 5].

We propose here a new method based on the dual representation obtained (in
some cases) in the previous section. We shall then focus on the computation of
Vpp and more particularly 20, recall Corollary 4.3.2. Based on the shape of 207, it
completely natural to rely on SGD algorithms.
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Figure 4.2: Model Example 4.4.1. Histogram of law g(Xr)+6* for call option z — (z— K)
at terminal time T for the probability measure p = %6_20 + %50 with following parameters:

Xy = 100, interest rate r = 0, volatility ¢ = 0.2 and drift term b= 0.1, strike K = 100, time
horizon T = 1. As expected, the graph presents two Dirac masses around the quantiles 0
and —20.

4.4.2.1 SGD algorithms

We consider various SGD algorithms to compute 6*, recall Lemma 4.3.1. Once
this is achieved, we recompute by Monte Carlo simulation the quantity 2J. Note
that, to slightly simplify the practical implementation, in the following we take the
parameterization using the survival probability ¢, = Z?: ,pj and thus compute 2J
instead of U in Corollary 4.3.2. Indeed, the range of parameter for 6 is R‘fl instead
of the simplex A‘fr_l for ¢, recall (4.3.17). As already mentioned, in order to compute
the optimal 6* so, we will use stochastic gradient descent algorithms. This technique
has been already demonstrated to be quite efficient for quantile estimation problems
(corresponding to the computation of quantile hedging price here). We refer, to e.g.
[3] for a detailed description of computing VaR as well as CVaR (unidimensional,
however could be extended to multi-dimensional) using stochastic approximation.
We note that the stochastic approximation in [3] is originally without any constraint,
however in our case, parameter # is constrained on a convex set C' := R‘i‘l, thus it is
more suitable here to use the Projected Stochastic Gradient (PSG), see e.g. [37, 59]
where at each step, the algorithm move in the direction of the negative gradient and
then project parameters into feasible set.

We now describe the algorithms.
Given a random variable 6y, independent of Brownian motion W with H|6y|] < oo,
Niter the maximal iteration steps, and (7,),>1 a deterministic sequence verifying

Z Nn = +00 and Z 772 < 400, (4.4.10)

n=1 n=1

the scheme to compute §* approximation of #* in Theorem 4.3.4 is given as follows,
and we suppose in addition that 27 is differentiable with respect to 6 € Rflfl.

Definition 4.4.1 1. At initial step n = 0, set ég = 0.
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2. Forn=1,---, Nyer: generate! (I'y, X,,) independent from (I't, X1), -, Tn_1, Xn_1)
(with law (T'p, X7) given by (4.4.3) and (4.4.1) respectively), 0o and 1, > 0

step size,
0 = 7By = mb (01, T X)) (4.4.11)
Where mc(u) := argmin ||u — w|| the orthogonal projection on convexr C =
weC

]R‘_ifl. And the gradient h(0,T',X) := (b1,--- ,hg_1) € R¥™!, where we define
i(0,I,X) =0 +w(8),1 <i<d—1, recall Lemma 4.3.4.

The convergence of projected gradient descent for a convex objective and a convex
constraint is well-studied, see e.g. [37, Theorem 3.6] in Hilbert space, also in [50],
the author proves the convergence of projected gradient descent in the case of a
convex objective, and [59] proves a convergence rate O(%) with T iteration number,
if the additional constraint keeps the feasible set convex and the algorithm used is
projected stochastic subgradient descent with a suitable step size rule.

Remark 4.4.1 We have the following remarks on SGD algorithm:

1. This method is easy to apply provided we can compute the projection. In our
special cases, we project onto C = ]Rfifl for 6 or Aflfl for C, recall Corollary
4.8.2. There exist efficient projection methods in linear time, e.g. if C is a
polyhedron, i.e. a set of v such that Az < b for some matriz A and vector b,
see e.g. Liu and Ye [01], or projection on a simplez, see e.g. [27].

2. In one-dimensional case, for extreme wvalues p = 0 or 1, there is no issue
concerning the convergence see e.g. Figure 4.3 , however when using the above
stopping criteria for SGD algorithm with p = 1, this could lead to a gradient
vanishing problem since during the stochastic gradient descent, the negative
gradient

_enb = 9n1{9n71‘Tg>0}7

could be initially 0 and trigger the stopping criteria, hence for a probability
p close to 1 such as 0.99 or 0.999, the above SGD algorithm with stopping
criteria still works and converges well, see Figure 4.4. For higher-dimensional
case, there is no such gradient vanishing issue with above stopping criteria.

3. For p < p* := Hlo>r,¢], the exact formula of quantile hedging in [70] is
not valid, this issue is resolved automatically in our numerical scheme. To
illustrate this numerically, we consider constraints such that JP’(Y%/’Z =>0) =
1,P(Yff’z > g(Xr) +v) = p with p < p*. As expected, we observe that the
estimated quantile 0* converges well to zero, see Figure 4.5.

One of the difficulties of the above maximization problem is saddle points, i.e.
points where one-dimension slopes up and another slopes down, which makes it very
hard for vanilla SGD to escape, as the gradient becomes vanishing. The advantage

!'We assume here that the law (I'7, X7) is perfectly simulatable. If not, a proxy (given e.g. by
an Euler scheme) has to be used.
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of adaptive gradient algorithms that change learning rates for each parameter, e.g.
ADAM optimizer is that they could potentially escape saddle points unlike the
vanilla SGD algorithm. We thus also consider this alternative algorithm.

Definition 4.4.2 (ADAM optimizer [57]) 1. At initial step n = 0, set 0 =
6.

2. Initialize first moment mg = 0, and second moment vy = 0.

3. Forn =1, -, Niyer: generate (T, X,,) independant from (I'1, X1), -+, (Trn—1, Xn-1),
0o and n, > 0 step size, then we calculate

gn = TC (h(é:z—17 Iy, Xn)) s (4.4.12)

My, = Bimp—1 + (1 — B1)9n, (4.4.13)

U = BaUp—1 + (1 - 62)97217 (4.4.14)
~ m ~ v

mp = l_nnyvn: 1_771”, (4415)

1 2

A A m

0 = (9*_ i ) 4.4.16
n C\Yn—1 Ui /TA)n +e ( )

(a) p=1.0 (b)p=0

Figure 4.3: Evolution of quantile #* in the setting v; = 10,72 = 100 during the stochastic
gradient descent without stopping criteria.

zeta value

o 2000 4000 6000 8000 10000
iteration

Figure 4.4: Evolution of 6* for u = (1 — p)do + pd1o, with p = 0.999 and v = 0, b=0.1,r =
0, K =100, Xy = 100,00 = 0.2.
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o 200 400 600 BOD 1000

Figure 4.5: Evolution of #* in quantile hedging with probability p < p*, as well as with
parameters v = 0, b = 0.1,r = 0, K = 100, Xy = 100,060 = 0.2, with stopping criteria
e=1076.

Probability p p =0.01 \ p=0.1 \ p=0.5 \ p=0.9 \ p=0.99
Computation time of SGD | 17.89s 18.14s | 19.17s | 17.88s 18.93s
SGD algorithm 7.99 8.36 11.08 15.72 17.81
Optimal transport 7.94 8.36 11.15 15.78 17.78

Table 4.1: Numerics of measure y = (1 — p)dg + pd, with different probabilities with SGD
algorithm and OT-APPROACH.

4.4.2.2 Numerical experiments

In this section, we report the findings of our numerical tests we performed on the
model Example 4.4.1 given in the above, using stochastic gradient descent method
of Definition 4.4.1 and the formula (4.4.7), called below OT-APPROACH, obtained
by optimal transport method and used in Section 4.4.1.

Concerning the stochastic gradient descent, we use a common structure in all
our numerical tests, namely:

- The maximum of number of iterations Njz, set to 105.

- The deterministic step 7, = %.

- Initial value 6y is drawn randomly from an exponential distribution exp(1) of
parameter A = 1.

- Stopping criteria: if the absolute value of all coefficients of increment vector

—nph less than a predefined tolerance which we set to 1076,

4.4.2.2.1 One constraint We consider a target measure p = (1 — p)dy + pd.,
which corresponds to an “almost sure” constraint on 0 and a quantile constraint
on v. We have tested numerical results by SGD algorithm against OT-APPROACH,
and results are reported in Table 4.1. We note that the number of simulations of
trajectories of brownian motion is N = 100000, European claim payoff function
g(x) = (r — K)+ with K = 100. Concerning the dynamics of X, we take Xy = 100,
r = O,IA) = 0.1,0 = 0.2, and time horizon 7' = 1.0.

One can see in Table 4.1 that SGD algorithm performs well compared to the
OT-APPROACH and we also plot the learning curves of quantile * during the SGD
algorithm, see Figure 4.6, we observe that they all converge and verify the convex
constraint.
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O

0 200 400 600 800 1000 0 200 200 600 800 1000 [ 200 400 600 800 1000
iteration iteration iteration

(a) p=0.1 (b) p=10.5 (c)p=09

Figure 4.6: Numerical convergence of §* for different values of quantiles p = 0.1,0.5,0.9 and
v =10 by SGD algorithm.

’ Quantiles p1, p2 ‘ Y1, Y2 ‘ SGD ‘ oT ‘ Computation time of SGD

(0.3,0.5) (10,20) | 17.38 | 17.48 30.66s
(0.05,0.05) 8.48 | 8.41 30.31s
(0.05,0.9) 24.41 | 24.44 29.46s

(0.3,0.5) (10,100) | 42.07 | 42.19 32.47s
(0.05,0.05) 957 | 9.62 31.40s
(0.05,0.9) 87.80 | 87.57 30.68s

Table 4.2: Numerics of measure yu = (1—p1 —p2)do +p10+, +p29,, with different probabilities
and quantiles with SGD algorithm and OT-APPROACH.

4.4.2.2.2 Two constraints We consider in this part a discrete measure with two
constraints p = (1 — p1 — p2)dy + P10+, + p26,,. The numerical results are reported
in the Table 4.2. Again we observe that the numerical solutions by SGD perform
well in comparison to the OT-APPROACH. Besides we also report the evolution of
quantile vector 8* = (07,05) for a particular case where p; = 0.05,p2 = 0.9 and
v1 = 10,7 = 100 in Figure 4.7, to illustrate the numerical convergence of SGD
algorithm. We note that the other parameters are same as above.

Learning curve of zetal for two constraint pl = 0.05, p2 = 0.9 Learning curve of zeta2 for two constraint pl = 0.05, p2 = 0.9

175 11s

11a

=
&

zetal value
zetal walue

s B

8

0.0 02 04 06 08 10 00 0z 04 06 08 10
iteration 1ed iteration 1e6

(a) Evolution of 6} (b) Evolution of 63

Figure 4.7: Evolution of quantiles §* = (07,0%) in the setting p; = 0.05,p2 = 0.9 and
v1 = 10,72 = 100 during the stochastic gradient descent.

4.4.2.2.3 Quantile hedging problem In this part, we want to validate our
numerical methods by comparison with some theoretical quantile hedging results see
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e.g. [5, 30, 11]. In this setting, it presents two following constraints: P(Yy > 0) =1
and P(Y7 > g(X7)) = p. We consider a set of probabilites p := {145,0 < i < 100}.
We have tested our numerical scheme for classical European call and put option
claims against theoretical price see e.g. [36]. We first observe that our numerical
scheme is able to reproduce correctly the true solution of call option claim, even for
extreme values of p, as reported in Figure 4.8. However we note that SGD algorithm
does not work pretty well for put option as reported in Figure 4.8: we observe that
the values given by SGD and theoretical values by e.g. Follmer-Leukert [36] are quite
close for p below 0.8, however it seems that SGD algorithm could not reproduce the
correct value for extreme values p (above 0.8). This numerical phenomenon comes
from the difficulty of computation of extreme quantiles in the case of put option,
since the distribution of law I'rg is much rarer in terms of extreme values : this
fact is illustrated on Figure 4.9. And this results in an unstable and inaccurate
computation of rare extreme quantiles during the gradient descent algorithm.

= Follmer-Leukert
ADAM
—— 5GD

= Follmer-Leukert ]
ADAM {
—— 5GD

N o - T )

I R - T )

0.0 02 04 06 08 10 0.0 02 04 06 08 10

(a) Put option (K —5)+ (b) Call option (S — K)4

Figure 4.8: Comparison of the three methods: SGD algorithm, ADAM optimizer & Exact
solution [5, 36] for put and call options, with parameters Xy = 100, r = 0, 0 = 0.2 and
b= 0.1, strike K = 100, terminal time 7" = 1.
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Figure 4.9: Comparison of histograms of distribution of law I'rg for put and call option,
note that other parameters of processes are same as the above.

Finally, to illustrate empirically this rare extreme quantile fact, we tested our
algorithm on a simpler setting where we take b=1r =0 and hence P = Q. The
result of SGD algorithm against theoretical price is reported on the graph in Figure
4.10. As expected, we observe that this phenomenon is much less severe for extreme
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values of p. For comparison, the distribution of law I'rg in this setting is reported
in Figure 4.11 and we observe that it presents less rare extreme quantiles compared
to Figure 4.8 where b = 0.1,7 = 0. Besides we also try to increase the maximal
iteration number Ny, to 10% and decrease the stopping criteria to 10~8 particularly
for the extreme case p = 0.99, although we observe that there is an improvement
compared to before, the computation time is much longer and improvement is barely
mild.

= Follmer-Leukert /
ADAM
—— SGD /

I T L - T )

0.0 02 04 06 08 10

Figure 4.10: Comparison of the three methods: SGD algorithm, ADAM optimizer & Exact
solution [5, 30] for put option with b = r = 0, other parameters are same as above.
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Figure 4.11: Distribution of law of I'pg for put option with b=r= 0, other parameters of
processes are kept same as the above.

As we observed, although there is an improvement for the case b = r, for both
cases, the vanilla SGD could not capture correctly the extreme quantile, we think it
is largely because of the trapping in a saddle point: as we increase the learning rate
or step size, the performance of vanilla SGD becomes much better, as we plotted in
Figure 4.12, since a larger step size can help alleviating the gradient vanishing in a
degree. We mention that for put with b = 0.1, = 0, we chose an initial step size
no = 200, and for put b=r= 0, we chose it as 50. This numerical phenomenon
suggests us using an adaptive gradient descent method such as ADAM optimiser
given in Definition 4.4.2. Concerning the ADAM optimiser, we tested two cases
mentioned in the above: b = 0.1,7 = 0 and b=r= 0, see in the Figure 4.8 and
4.10 , note that we choose parameters 51 = 0.9, 8y = 0.999 as well as a batch size
= 256. We observe that ADAM optimiser captures quite well the extreme quantiles
compared to vanilla SGD.
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(a) Put option with u = 0.1, = 0,70 = (b) Put option with u =r =0, = 50.
200.

Figure 4.12: Comparison of the two methods SGD with larger initial step size & FExact
solution [5, 36] for put options, with parameters X, = 100, o = 0.2, strike K = 100,
terminal time T = 1.
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