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Résumé : La miniaturisation de I'électronique em-
barqué a permis le développement de drones de
petites tailles et d'un large marché civil pour ces
drones. La simplicité d'utilisation et le bas colt
de ces drones en font des outils redoutables pour
des personnes ou organisations mal intentionnées.
Dans ce contexte, les systemes radar peuvent jouer
un rble important pour contrecarrer une attaque
menée avec un ou plusieurs drones. Néanmoins,
les drones volent généralement a faible vitesse et
proche du sol. De plus, ils ont généralement une
faible surface équivalente radar. Ces cibles posent
donc des problemes aux systémes radar qui ont du
mal a les différencier du sol.

Le but de cette these est d'améliorer les capac-
ités de détection endo-clutter des drones en util-
isant la polarisation. Nous présentons une méth-
ode permettant d'étudier les propriétés du clut-
ter terrestre polarimétrique. Nous proposons des
méthodes de simulation permettant d'identifier le
meilleur détecteur dans une scéne avec un clut-
ter changeant sur les axes temporel et spatial.
Nous étudions les avantages des détecteurs po-
larimétriques par rapport aux détecteurs mono-
polarimétriques al'aide d'une méthode de compara-
ison des détecteurs qui permet de choisir le meilleur
détecteur en fonction des propriétés du clutter.

Pour atteindre cet objectif, nous analysons les
propriétés spatio-temporelles du clutter a l'aide
des données d'une campagne de mesure radar en
environnement semi-urbain. Cette campagne de
mesure nous permet de mettre en exergue des pro-
priétés importantes du clutter telles que : la non-
réciprocité du clutter polarimétrique pour un radar
dont les antennes de réception des différentes po-
larisations sont distinctes, l'existence d'un temps
d'intégration Doppler optimisant la stabilité du clut-
ter et une instabilité de la signature polarimétrique

du clutter. Nous proposons de modéliser I'évolution
temporelle du clutter en utilisant conjointement, la
distribution des valeurs propres de sa matrice de
covariance, et, I'angle entre les matrices de covari-
ances d'une méme case clutter a deux instants dif-
férents. Cet angle est appelé "angle de désadapta-
tion".

Dans une deuxiéme phase nous comparons un
ensemble de détecteurs polarimétriques et mono-
polarimétriques pour des détections endo-clutter.
Pour cela:

* Nous étudions l'influence du rang efficace de
la matrice de covariance du clutter - contrdlé
par le temps d'intégration Doppler - sur les
performances des détecteurs et montrons
que la minimisation du rang effectif améliore
les performances des détecteurs.

+ Ensuite, nous étudions les effet de I'angle de
désadaptation sur les performances des dé-
tecteurs en fonction du clutter sélectionné.
Nous constatons que les détecteursfiltrant le
clutter ont des performances qui diminuent
avec l'intervalle de temps entre I'estimation
des propriétés du clutter et la réalisation du
test de détection, alors que les autres dé-
tecteurs ont des performances qui ne sont
pas affectées par cet intervalle de temps.

+ Enfin, nous montrons que les détecteurs
polarimétriques sont plus adaptés aux dé-
tections de drones endo-clutter que les dé-
tecteurs mono-polarimétriques.

Les méthodes d'analyse que nous avons présen-
tées permettent d'optimiser le temps d'intégration
Doppler et peuvent étre utilisées dans les systeme
radar pour déterminer, de maniere adaptative, le
meilleur détecteur, en fonction du clutter étudié.
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Abstract: In the past decades, Unmanned Aerial
Vehicles have benefited from the miniaturization
of electronic components, allowing for cheap and
small drone designs, and allowing a rapid devel-
opment of the civilian market. Unfortunately, due
to their low cost, high availability and ease of use,
these systems have become a tool of choice for ma-
licious actors, and have become a force multiplier
for such actors. In this context, radars can play
a significant role in the effort to thwart an attack
with one or several UAVs. However, UAVs usually
fly at slow speed and close to the ground and have
a low radar cross section, which makes them diffi-
cult to detect as radar systems may have troubles
to differentiate them from the ground. This the-
sis aims at addressing this challenge with the use
of polarization. In this thesis, we aim at improv-
ing endo-clutter detection of UAVs. We study the
advantages of polarimetric detectors over mono-
polarimetric detectors, proposing a method to com-
pare the detectors and choosing the best perform-
ing one according to clutter's properties. In or-
der to do so, we first analyse the spatio-temporal
properties of polarimetric ground clutter thanks to
a measurement campaign in semi-urban environ-
ment. This campaign outlines important properties
of the clutter such as: the non-reciprocity of polari-
metric clutter for quasi-monostatic radar with sepa-
rated transmit and receive antennas, the existence
of an optimal Doppler integration time and the in-
stability of the clutter polarimetric signature with
time. We propose to model the temporal evolu-
tion of the clutter using both the distribution of the
eigenvalues of the covariance matrix and a measure
of the mismatch angle between covariance matri-
ces. Then, we implement a benchmark of polari-
metric and mono-polarimetric detectors to assess
the performances of endo-clutter detection under
spatio-temporal varying clutters. We compare the
robustness of the polarimetric detectors to choose

the best performing detector for a given clutter:

+ First, we study the influence of the effective
rank of the clutter - controlled by the Doppler
integration time - on the performances of de-
tectors and confirm that it is useful to mini-
mize the effective rank of the covariance ma-
trix to improve the detection performances.

* Then, we analyse the influence of the mis-
match angle on the performances of the de-
tectors using simulated clutter in order to se-
lect the best detector, for a given time varying
clutter. It turns out that endo-clutter detec-
tors based on clutter filtering depend on the
time delay between clutter estimation and
detection test, while other detectors are time
independent. Furthermore, this study shows
the sensitivity of the detector performances
to the eigenvalue distribution of the clutter.

+ Finally, we show a clear improvement with
polarimetric detectors over single polariza-
tion detectors for endo-clutter detection of
UAVs in a low grazing geometry.

From these results, we conclude that multi-
polarimetric detectors enable better performances
for endo-clutter UAV detections. In addition we
present a metric to optimize the effective-rank of
the clutter with by adjusting Doppler integration
time to increase the detection performances. Then,
we determine that the shorter the time interval is
between the clutter estimation and the detection
test, the higher performances are. These results
give a clear plan for polarimetric detections of endo-
clutter UAVs, minimizing effective rank and the time
interval between estimation and detection. We con-
clude that simulation methods described in this the-
sis could be used in a radar system to adaptively
estimate the best polarimetric detector for a given
clutter cell and target.
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Résumé en francais

Lors du début du XXI° siécle, les drones ont grandement bénéficié des progres effectués
dans le domaine de la miniaturisation des composants électroniques. Ces progres ont per-
mis le développement de drones de plus en plus petit et de moins en moins cher, permettant
une croissance rapide d’'un large marché civil. Malheureusement, leur nature bon marché
et la facilité d’acces aux drones en fait des outils privilégiés pour les acteurs malveillants,
démultipliant leurs capacités de nuisance. Les radars peuvent jouer un rble prépondérant
pour contrecarrer les attaques de drones. Toutefois, les drones volent généralement a des
vitesses réduites et proche du sol, et ont de faibles sections équivalentes radar. Ceci fait
des drones des cibles compliquées a détecter et en particulier difficile a distinguer du sol.
Cette thése a pour but de s'attaquer a cette problématique grace a la polarisation des ondes
radar. Dans cette these nous cherchons a améliorer les processus de détection des drones
endo-clutters. Nous présentons une méthodologie permettant d'étudier les propriétés po-
larimétiques du clutter de sol. Nous proposons des métriques et des méthodes de simula-
tion permettant d'identifier quel détecteur a les meilleures performances pour les détections
dans un clutter aux propriétés polarimétriques fluctuantes et en incidence rasante. Nous étu-
dions les avantages des détecteurs polarimétriques par rapport a leurs homologues mono-
polarimétriques et proposons une méthode de comparaison des détecteurs qui permet de
choisir le plus apte des détecteurs en fonction des propriétés du clutter. Nous analysons
tout d'abord les propriétés polarimétriques spatio-temporelles du clutter de sol grace a une
campagne de mesure d'un environnement semi-urbain. Cette campagne permet de mettre
en exergue des propriétés importantes du clutter de sol polarimétrique, tel que : la non-
réciprocité du clutter de sol pour un radar terrestre quasi-monostatique dont les antennes
d'émission et de réception sont différentes, I'existence d'un temps d'intégration Doppler opti-
misant les probabilités de détections et l'instabilité de la signature polarimétrique du clutter.
Nous proposons un modéle d'évolution temporelle du clutter basé sur la distribution des
valeurs propres des matrices de covariance du clutter et sur I'angle de désadaptation en-
tre les matrices de covariance du clutter. Nous implémentons un ensemble de détecteurs
polarimétriques et mono-polarimétriques pour estimer leurs performances pour des détec-
tions endo-clutters. Nous comparons la robustesse des différents déteteurs polarimétriques
pour pouvoir choisir le plus efficace pour chaque clutter :

+ Toutd'abord nous étudions l'influence du rang effectif du clutter - contrdlé par le temps
d'intégration Doppler - sur les performances des détecteurs et nous confirmons que
minimiser le rang effectif de la matrice de covariance du clutter sous test permet de
maximiser les performances des détecteurs.

* Ensuite nous analysons l'influence de I'angle de désadaptation sur les performances
des détecteurs pour pouvoir sélectionner le détecteur le plus adapté a chaque clutter
polarimétrique. Cette méthode montre que les détecteurs dont le fonctionnement est
basé sur le filtrage du clutter en utilisant sa matrice de covariance, sont plus sensibles a
I'intervalle de temps entre I'estimation des propriétés du clutter et le test de détection



alors que les autres détecteurs y sont moins sensibles. De plus cette étude se concen-
tre aussi sur I'impact des distribution de valeurs propres des clutters sous test sur les
performances des détecteurs.

+ Enfin nous démontrons un intérét significatif des détecteurs polarimétriques par rap-
port aux détecteurs non-polarimétriques pour les détections de drones endo-clutters.

D’apres ces résultats, nous pouvons conclure que les détecteurs multi-polarimétriques per-
mettent d'obtenir de meilleurs résultats de détections sur les drones endo-clutters. De plus
nous avons proposé des métriques permettant d'optimiser le rang effectif grace au temps
d'intégration Doppler, ce qui permet d'augmenter les performances des détecteurs. En-
suite, nous avons déterminé que la minimisation de l'intervalle entre le test de détection
et I'estimation des propriétés du clutter permettait elle aussi d'augmenter les performances
des détecteurs. Les résultats de cette these permettent d'établir un plan de d’action pour
optimiser la détection de drones endo-clutters, a savoir, minimiser le rang effectif du clutter
sous test, en ajustant le temps d'intégration Doppler, et 'intervalle de temps entre le test de
détection et I'estimation des propriétés du clutter. Enfin nous suggérons qu'il est possible
d'utiliser les méthodes de simulations présentées dans cette thése dans un systéme radar de
lutte anti-drone pour choisir de maniére adaptative le détecteur le plus adapté pour chaque
case de clutter.
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Chapter 1 |
Introduction

This part gives a general introduction of this PhD thesis, contextualizes and explains
the challenges raised by UAVs and drones for air surveillance radars. First, it presents
the uses of UAVs and their different types. Then it briefly explains the specific chal-
lenges posed to counter-UAV radar systems. Finally, it reviews the main objectives of
this PhD work.

1.1. Threat posed by Unmanned Aerial Vehicle

The acronym UAV stands for Unmanned Aerial Vehicle, an aerial vehicle with no pilot
onboard. It can either be remote-controlled by a human or pre-programmed to act on
its own. UAS for Unmanned Aircraft System or drone are also used to designate a UAV.
These terms cover reusable aircrafts, single use aircrafts and ordnance such as cruise
missiles [Unmanned aerial vehicle 2022].

UAVs are used in both military and civilian domains. Today, military forces use UAVs
in awide range of applications, from reconnaissance to weapon launch platform, includ-
ing smart ammunitions. These different missions are carried out by a range of UAVs,
from ultra-light UAVs, weighing less than 20 grams such as the FLIR systems Black Hor-
net [Black Hornet PRS Datasheet 2022] (Figure 1.1a), to several tonnes UAV with very large
wingspan such as the RQ-4 Global Hawk [Northrop Grumman RQ-4 Global Hawk 2022]
(Figure 1.1¢) or the Divine Eagle UAV [SYAC UAV 2022].

They come in various forms: with fixed wings (MQ-9 Reaper, Harfang, Bayraktar TB2,
Shahed-136...), rotary-wings (MQ-8 Fire Scout, DJI Phantom (Figure 1.1b)) [Chaturvedi
et al. 2019], flapping wings, hybrid configurations... While UAVs were first reserved to
armies and state actors due to the high cost and weight of electronics required for
flight control and radio transmission, the increased miniaturization and the access to
cheaper, more powerful and energy efficient electronics have made UAVs affordable
for civilian users. As their military counterparts, civilian UAVs have many applications.
Cinematography, search and rescue operations, geo-scanning, transportation of pay-
loads or hobby, are few of their applications [Yaacoub et al. 2020]. Because of their
simple operation even for beginners, most civilian UAVs are rotary-wings aircrafts, typ-
ically multi-copters. The broad availability of the technologies to build both civilian and
military UAVs means that drones are now widely used [Chaturvedi et al. 2019; Yaacoub
et al. 2020].

UAVs are used in the context of warfare between opposing armies, as weapon carri-
ers, weapons themselves or as intelligence gathering tools. If drones have been widely
used since at least World War Il [Keane and Carr 2013], their military use has sharply
increased since the end of the cold war.

UAVs are also potent tools for malicious operators. Reports indicate that drones
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(b) DJI Phantom used as improvised weapon car-
rier by the Islamic State in Iraq and the Levant,
source: Waters 2017

() RQ-4 Global Hawk High Altitude Long Endurance (HALE) UAV, source: Wikimedia.org

Figure 1.1: Different drones, of various types and size, note the large size differences.

are used to smuggle drug, weapons and other illegal objects into prisons or across bor-
ders, or to plan prison breaks. Civilian drones are even used as weapons and weapon
delivery systems by terrorists [Waters 2017]. Malice is not necessary for UAVs to be dis-
ruptive, for instance the Gatwick airport was paralyzed between the 19th and the 21st
of December 2018 due to several reports of drone sighting near the airport's runway
[Shackle 2020].

By their nature, these disturbances are extremely low-cost since they use drones
available to the public, however, the cost of counter-UAV systems is, by essence, high
as they need to counter a wide range of threats. This rapid evolution requires not only
to adjust air defense systems but to re-think them, in order to address the specific
challenges of UAVs.

1.2 . Specific challenges to counter-UAV systems

A wide range of counter-UAV systems exists, including optro-electronic, acoustic,
and radar systems.

During World War I, radar systems have proven to be better suited to air surveil-
lance and air defense applications than acoustic and optical surveillance systems, quickly
replacing acoustic surveillance [Acoustic mirror 2022] and progressively replacing opti-
cal surveillance. This is due to the many advantages of radar. First, radar systems offer
a very unique all weather day/night surveillance capability. Secondly, radars are able to
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survey very large areas, whereas other systems have much more limited field of view.
It is therefore natural to consider radars for counter-UAV systems.

However, as we will see in the following parts, radar systems also have several lim-
itations when it comes to dealing with UAVs. A radar system ability to detect an object
depends on the target's Radar Cross Section (RCS). RCS is a measure of how much en-
ergy is reflected back to the radar receiver. The RCS of an object depends on several
factors, such as, the size of the object, its geometry, its material composition and the
wavelength used of the radar. All other factors being equal the smaller the object is, the
smaller its RCS. Small size UAVs especially pose challenges since small targets usually
have small RCS and are therefore more difficult to detect. In addition, they are cheaper
and easier to operate than the previous generations of UAVs, which make them a very
common potential threat. These small UAVs also fly close to the ground meaning that
counter-UAV radars need to be deployed in a low-grazing geometry, with gives high
ground clutter returns. Objects illuminated by a radar scatter some energy back to the
radar receiver, it is also true for ground objects, such as terrain and buildings. The
radar returns of these objects are called radar clutter and pollute radar measurements
at low-grazing angle.

Radar systems also use the Doppler effect to separate targets according to their rel-
ative speed with the radar. This property is especially important to discriminate returns
from static objects such as buildings, ground or trees from a UAV. As this discrimina-
tion uses only the speed of the object, it fails to detect static targets relative to the radar
system. Unfortunately many drones have rotary-wings meaning they are able to hover
and therefore are easily confused with static returns. Targets that have the same speed
as the clutter are named endo-clutter targets, and can evade detections.

UAVs also pose further operating challenges, including:

+ the similarity of the flight domain and the magnitude of the radar signature be-
tween birds and UAVs.

+ the highly maneuverable nature of UAVs

+ the short time available to react to a threat as UAVs can appear very close to the
radar and a vast surveillance domain, often 360° coverage

All of these challenges should be addressed if one wants to ensure counter-UAV radar
system robustness.

1.3 . Thesis goal and approach

Extensive works have been published on classification of UAVs, amongst different
types of UAVs or even between UAVs and small objects like birds. These works have
focused on classical classification methods as well as more novel methods based on
machine learning, in particular neural networks. Many papers report classification re-
sults of multi-copter drones using the signature of the blades of the rotor, the so-called
blade flashes [Kang et al. 2021]. This well-known phenomenon is and was previously
used for manned jet aircraft identification, known under the term Jet Engine Modula-
tion [Bell and Grubbs 1993; Research and Technology Organization and Sensors and
Electronics Technology Panel 2004].
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Some works address UAV detection both when they are static or having a relative
movement towards or away from the radar. To achieve endo-clutter detections, many
works focus on the micro-Doppler signature of the blade flashes, because even if the
target is endo-clutter the signature of the blade flashes are separated from the clutter.

As radar signal modulation by blade flashes is widely used for adversarial target
recognition of jet aircraft some modern jet fighter designs already implement some
features that greatly diminish the effectiveness of this method, for instance S-shaped
air inlet [Chung and Tuan 2021].

That is why we choose not to take the access to the micro-Doppler signature for
granted. Some UAVs have either reduced or obfuscated blade signature (for instance
the RQ-16A T-Hawk [Honeywell RQ-16 T-Hawk 2021] has concealed blades) for flight char-
acteristics reasons or maliciously.

This PhD work studies how to improve the detection process of endo-clutter targets
when their signature is non-specific and aims to design robust detection schemes for
endo-clutter UAVs with little or no micro-doppler signatures. To achieve this objective,
we need to increase the diversity of data processed by the radar system. This can be
done by using frequency diversity and a larger signal bandwidth, a distributed radar
systems (with several transmitters and/or receivers), a finer resolution or polarization.
Here we study how to use the polarization of the radar to enhance the detection scheme
of endo-clutter targets in a low-grazing geometry for a ground surveillance radar.

This study uses real-world data collected with ONERA’'s HYCAM radar as well as sim-
ulations based on the analyses of the polarimetric clutter properties . This thesis first
covers a review of previous works on surveillance radar and drone detection, polari-
metric radar and endo-clutter detection schemes. Then, we detail the experimental
protocol and the measurement campaign. These measurements lead to analyses of
the polarimetric properties of the ground clutter in a low-grazing geometry.

The final part is dedicated to detector simulations to test their performances. In
this part we present a simulation method that takes into account the changing clutter
properties. With this simulation method we test the effect on the performances of
polarimetric detectors of some clutter properties. We test the impact of the rank of the
clutter on the performances of the detectors.

Using the mismatch angle, a measure of the mismatch between covariance matri-
ces of the clutter introduced in the previous part, we test the influence of a mismatch
between the estimated polarimetric clutter and the clutter under the target. Finally we
test the robustness of the performances of the detectors to an inadequate estimation
of the clutter polarimetric properties and we assess the performances of each detector
using hybrid simulation based on real-world data of both UAV and clutter. We conclude
with a summary of the content of this thesis and provide perspectives for future work.
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Radar (From RAdio Detection And Ranging (RADAR)) systems were developed dur-
ing the first third of the XXth century and were massively used during World War Il [His-
tory of radar 2022]. They had decisive influence in several campaigns, most famously
the Battle of Britain. Nowadays, radars use radio waves to support multiple applica-
tions in defence and security domains. They are also used for civilian applications, for
example radar imaging for remote sensing or automotive radar. This broad range of
applications is due to their ability to detect targets beyond visual range, e.g regardless
-almost- of daytime, weather condition and environments. Among these applications,
air surveillance is probably the most notable. Air surveillance radar systems, for civilian
or defence applications, implement detection algorithms tuned to specific operations
according to the capabilities of the system. Radars use time to measure distance and
frequency to measure speed thanks to the Doppler effect. In addition, during the sec-
ond half of the XXth century, it appeared that the polarisation properties of the electro-
magnetic emissions could be used in radar systems to detect and classify objects [Giuli
1986].

The goal of this thesis is to study the interest of polarimetry for surface radar sys-
tems to improve the detection of targets embedded in complex environments, with a
special focus on the detection of UAVs). We first present an overview of the past and
current literature adressing different aspects of the UAV endo-clutter detections. The
specificity of UAVs imposes strong constraints such as a low-grazing angle and strong
parasitic returns from building and ground, and leads to the development of new radar
systems and processing. The radar returns from sea, ground, buildings and other slow
or immobile objects have specific properties that are then addressed. Finally, we focus
on the detection theory and modern detection algorithms. The performances of these
algorithms provide an important metric to assess benefits of a radar technology.

2.1. Polarimetric monostatic ground radar.

In this part we describe the operating principle of a monostatic polarimetric ground
radar. We start with the radar equation and explain some important aspects of ground
radar systems, such as gain, transmitted power and wavelength. We then focus on the
basics of radar signals and signal processing, by describing Pulse Repetition Interval
(PRI), pulse-compression and Doppler processing. Finally we introduce radar polarime-
try and review the specific requirements imposes on radar systems’ design.

2.1.1. Monostatic surface radars
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This part is dedicated to monostatic surface radar. We use the radar equation to
show the influence of the antennas gain, wavelength and distance to the target on the
received power as well as the influence of the target's "radar size" called Radar Cross
Section (RCS). We briefly discuss the relationship between antenna type and radar per-
formances and introduce basic radar signal processing steps, from matched filter to
coherent Doppler processing.

Radar basic principles

An active radar transmits electromagnetics waves through an antenna which propagate
at the speed of light ¢ = 299, 792, 458 m-s~! (in vacuum). When a target is illuminated by
the radar, afraction of the incoming electromagnetic wave is scattered toward the radar
receiver. The delay between the transmission of the radar signal and the reception of
the signal backscattered by the target provides the range the target. If either the radar
or the target are moving, the frequency of the received signal is shifted compared to the
transmitted wave, because of the Doppler effect. As this shift is proportionnal to the
speed relative speed between the radar and the target, it allows the radar to measure
its speed relative to the target.

Monostatic radars have collocated antenna(s), transmit and receive units. The trans-
mit and receive units can either share the same antenna or use two different antennas.
To understand how the transmit and receive units and antenna(s) interact with the tar-
get we refer to the famous radar equation [Skolnik 1970]:

1 2
—0 G
71 ()

(2.1.1)

Where;

Received power
Recewving antenna gain
Transmitted power
Transmitting antenna gain
o Radar cross — section Scatter side
A wavelength
R/ Distance between the radar and the target Forward and propagation side

On the transmit side of the radar equation, P, is the transmitted power, the quantity
of energy transmitted by the antenna. It depends on the power amplification stage.

G, is the transmit antenna gain, it measures how directive the antenna is. It is pro-
portional to the surface of the focusing element of the radar. In this case we have:
Gy < 533 with S being the surface of the focusing element, thus, according to the Fraun-
hofer diffraction theory, G; eai%az' with ©,, and ©,, the beam width of the antenna
aperture, respectively, in elevation and azimuth.

Figure 2.1 shows two different radars operating in L-Band (respectively around 1.3
GHz and 1.75 GHz), with respectively ~ 45 dB of transmission gain and ~ 20 dB. The
difference of the beam width also illustrates the relationship between gain and the
energy being "concentrated" as the SRE-M6 (Figure 2.1a) radar has ©,, = ©,, = 1.1°
and the "C il noir" radar (Figure 2.1b) ©,;, = 45° and ©,, = 10°. A larger focusing
element leads to a thinner beam, thus a more concentrated energy and a higher gain.
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(a) SRE-M6 Radar, source: radar-tutorial.eu (b) DRVC 1 A "Gil noir" Radar, source: chars-
francais.net

Figure 2.1: Two L-band (1 to 2 GHz) radar, due to the size difference of their parabola they have
vastly different antenna gains.

> SR s | il
(@) GM4o0 "Ground Master" S-Band Radar phased array radar, (b) DRBV 15A "Sea Tiger" S-Band Radar
source: Wikimedia.org radar with focusing parabola, source:

radar-tutorial.eu

Figure 2.2: S-Band radars (2-4 GHz), phased-array radar and radar with a focusing parabola.


https://www.radartutorial.eu/19.kartei/03.atc/karte013.en.html
https://www.chars-francais.net/2015/index.php/engins-blindes/engins-divers?task=view&id=42
https://www.chars-francais.net/2015/index.php/engins-blindes/engins-divers?task=view&id=42
https://commons.wikimedia.org/wiki/File:Ground_Master_403_(KEVA2010)_Kokonaisturvallisuus_2015_01.JPG
https://www.radartutorial.eu/19.kartei/07.naval/karte099.en.html
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Polar HH
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Figure 2.3: RCS of a UAV as a function of its aspect angle for a frequency band between 12 and
18 GHz. Source: Office National d’Etudes et de Recherches Aérospatiales (ONERA), anechoic
chamber measurements.

A radar with a focusing antenna has few or a single radiating elements at the focal
point of the focusing antenna. The electromagnetic wave are focused by the parabola
on these radiating elements, and the direction in witch the radar beam points depend
solely on mechanical steering. By constrast, the phased array radar has a large number
of radiating elements in its antenna. Figure 2.2a exhibits a phased array radar and
Figure 2.2b a radar with a parabolic antenna.

After transmission, the waveforms propagate with respect to the beam pattern The
term in R~ comes from the conservation of energy and as the target gets further less
and less energy reaches it.

o is the Radar Cross Section (RCS) of the target. Itis the fraction of energy the target
reflects in the direction of the radar. The RCS is the surface of an equivalent metallic
surface, which would reflect the same amount of energy as the target. As an example,
o = 10 m? means that the target reflects as much energy back to the radar as a 10 m?
metallic plate (within the far-field hypothesis). The RCS of a target depends on several
factors:

* The aspect of the target relative to the radar receiver and transmitter
« The wavelength of the radar signal
+ The nature of the target, such as its materials and shape

In the following, the RCS is expressed in dBsm (sm for squared meters), with oygs, =
10log;, 0.2 to account for the fact that RCS value spans over many orders of magnitude.
Figure 2.3 shows strong link between the RCS of a UAV and its aspect for a frequency
band between 12 and 18 GHz.

When the electromagnetic wave hits the target it is scattered or reflected back in
space and a portion propagates back to the radar, once more the conservation of en-
ergy introduces an additional R~2 factor.

G, is the antenna reception gain. We can also model the power reflected by the
target back to the receiver as a photon surfacic flux. Integrating over the receiving sur-
face gives a photon flux, which translates to received power. The gain is proportional to
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Figure 2.4: Radar working chart

the receiver surface. Once more, we can distinguish between antennas with a focusing
element, for instance an antenna with a parabolic and one receiving element, and an
antennas with several receiving elements. Non focused antennas also present an im-
portant drawback over antenna with a focusing element, namely the susceptibility to
jammers. If a jammer is present off axis, a radar with parabolic antenna is not affected.
A multi element antenna filters the jammer with Digital Beam Forming (DBF), but the
if jammer is strong enough to saturate the receivers it is impossible to filter it out and
thus, it pollutes the signal of interest. However active array antennas provide a lot of
advantages, amongst which, their versatile nature and their ability to operate several
functionnality at one (scanning, tracking, electronic warfare, etc).

Finally, P, is the received power after all the steps. The signal received is altered
by various noise. It can be noise from the environment, the antenna, the Low Noise
Amplifier (LNA), or from the rest of the radio frequency chain. When the noise comes
from the Radio Frequency (RF) chain we call it noise factor (F), the quotient between
the P. and F, the noise from the LNA, gives us the instantaneous Signal to Noise Ratio
(SNR). The noise factor of the RF chain should be lower than the LNA noise factor, as
the noise from the LNA is white noise, whereas the rest of the chain can have strongly
colored noise. A colored noise has a nonflat spectrum, which means that the noise level
varies with frequency.

Figure 2.4 shows a flowchart of the radar working principle as detailed above. The
Arbitrary Waveform Generator (AWG) generates the signal transmitted by the radar.
This flowchart is closely related to the radar system we use in the work presented. It
should be noted that different radar design can be adopted, which might not follow the
presented flowchart.

Radar signal

First generation radars transmitted high power pulses. This signal is repeated regu-
larly with a time period named PRI and a pulse duration denoted 7 in the following. 7
only lasts a fraction of the PRI. For these radars the range resolution is given by 7 [Skol-
nik 1970], as 5. It leads to the challenge, from a system perspective, to transmit high
amount of energy in a very short time to guaranty detection and tracking performances
of the system at relatively high resolution.

Instead of transmitting more and more power over shorter and shorter time period,
coded waveform are used. The development of miniaturized electronics allows for the
use of frequency-modulated waveform. With this waveform the range resolution is
inversely proportional to the bandwidth of the waveform, B, and is written 5%, as we
show in the following.
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Figure 2.5: Chirp time serie and spectrum

The linear chirp is a widely used waveform (Figure 2.5 shows the real part and power
spectrum of a chirp) in which the transmitted frequency is linearly swept from f. — g
to f. + % over of duration 7. It can be expressed as:

Sehinp(t) = 2Tt = 3) (2.1.2)

With 0 <t < 7. Thus the transmitted signal becomes:

Schir t ) 0 S t<T
Stransmitted(t) = {O h p( ) <1< PRI (2.1.3)

For implementation issues, the chirp is often generated around an Intermediary
Frequency (IF) central frequency. Then it is transposed to the desired carrier frequency,
in the Radio Frequency (RF) domain. The signal then goes through power amplification,
and is transmitted by the antenna. The waves travel in the space, hit different backscat-
terers, and are partially reflected to the receive antenna. The received signal is filtered
with a band-pass filter centered on the carrier frequency to reject out-of-band signals
that would be amplified and then aliased. The signal is first amplified by a LNA, which
adds thermal noise to the signal. We write the received signal as the sum of the different
contributions of the scatterers and noise:

L
. or )
Sreceived (t) = Z aleuﬁlschirp (t - l) + anoiseeld)nowe (2-1-4)
C
=1
With L being the number of scatterers and:
<anoise>2 - akBBnT (2-1-5)

Where « is the noise factor, kg is the Boltzmann constant, B,, the used bandwidth
and T the noise temperature. Figure 2.6 shows the echo from a target as well as the
thermal noise illustrating equation 2.1.4. q; is given by:

2
o = | ZoG (2.1.6)
r7(4m)
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Figure 2.6: Radar signal showing the return from an airliner (Airbus A320).

where o, is the RCS of the backscatter [ and r; its distance to the radar. ¢, is the intrinsic
phase of the backscatterer.

The signal is down converted to an IF and digitized around this frequency. Lower-
ing the working frequency limits the signal loss in the cable because higher frequency
means a stronger power radiated by a cable, and the hardware for digitizing at lower
frequencies is less constrained.

Pulse compression

Pulse compression is a cross-correlation of the received signal with a replica of the
transmitted signal. The cross-correlation function between the signals sy and s; is given

by:

+oo

(50,51 (1) = / S5 (¢) s (¢ — 1)) db! (2.1.7)

The pulse-compression is the cross-correlation between the transmitted signal and
the received signal:

Spe (t) = <8transmitted7 Sreceived) <t> (2.1.8)

The auto-correlation of the chirp is biven by [Hein 2004]:

t t
T T

Schirp auto—correlation (t) = <Schi7‘pa 8chirp> (t) =T7A ( > sinc (BtA < )> €2iﬂfCt (2-1-9)

With A () = max (1 — |z],0), the triangle function, sinc (z) = @the sinus cardinal
function.

It is often approximated by:
Schirp auto—correlation (t) = Tsinc (Bt> eQiﬂfCt (2.1.10)

Figure 2.7 shows the auto-correlation of the chirp. We notice the sinus cardinal and
its side lobes -13 dB below the main lobe and the first zeros at B!, It means that the

range resolution is proportional to 5%, and exactly 5% using the Rayleigh criterion for
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Figure 2.7: Chirp auto-correlation.

resolution [Lord Rayleigh 1879]. This proportionality relationship between bandwidth
and range resolution is not specific to the chirp and holds true for every signal. The
pulse-compressed signal of the backscatter [ is written:

T
A1Schirp auto—correlation (t - )
2c

Thus, with 2.1.4 and 2.1.8 we can write s,,:

L
T
Spc(t> = Z QS chirp auto—correlation <t - 20) + 7’Ll (2-1-11)
=1
With n’ the noise component after pulse-compression. The total energy of trans-
mitted by the chirp is Ei.ans = PiransT the same energy is conserved after pulse com-
pression. As explained, the resolution after pulse compression is proportional to B the
bandwidth. Thus, Ey,..s is measured over 1/B, thus we have:

Etrans - Ppc/B - -PtransT (2-1-12)

With P,. the peak power after the pulse compression stage, thus we have P, = P,,4,s7B.
The total power transmitted by the radar is P.yy = Piranspr; depending on the radar
duty cycle 55;. Py is thus proportional to 7.

For a single frequency pulse radar the range resolution is proportional to < which
means that increasing 7 increases P,y but degrades the range resolution. However,
for a coded waveform with a bandwidth of B the range resolution is proportional to ;5.
The range resolution does not depend on 7 which means thatincreasing 7 increase P, ;¢
but does not degrade the range resolution. The coded waveforms and pulse compres-
sion allows to decouple, the range resolution from the transmitted power, with range
resolution being independent from 7.

Maximum unambiguous range and minimum measuring range

With a single antenna, a duplexer is used to separate the transmitter unit and receiver
unit as the same antennas serves for both transmission and reception With two anten-
nas, data recorded during the transmission of the radar is often discarded due to the
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Figure 2.8: Radar signal after pulse-compression. There is an offset due to the propagation of
the signal in the cables of the radar system.

coupling between the antennas. Despite the isolation between the antennas a large
quantity of energy can go into the receiving antennas during the transmission. It often
distorts the signal or masks it making its exploitation impossible. The distance  is
therefore called the minimal measuring range and is the radar’s blind spot.

The ambiguous range is defined by the PRI. Since the waveform is transmitted every
PRI, a reflected signal traveling for 6t > PRI before getting back to the radar receiver
cannot be distinguished from a signal travelling for 6t — PRI. The distance <2/ is called

maximum unambiguous range. The radar has another blind spot between % and

# which is the symmetric of the blind zone between o and .. This blind spot is due

to the coupling of the next pulse or the fact that the radar does not record this data.
Without dedicated waveforms management a radar can unambiguously detect tar-

gets between < and %. This is illustrated in Figure 2.8.

Doppler processing

The radar system transmits a waveform at each PRI. We can separate the received
signals in bursts of M pulses transmitted during M x PRI to do a coherent processing
over this block of data organized along two axes. A short time axis corresponding to the
delay between the emission of the waveform and the reception of the waveform and
long time axis corresponding to the index of the pulse in the burst. The signal received
by the radar can be written as:

L

rrim

SPC(t7 m) = Z Q1S chirp auto—correlation (t - léc )> + n' (2.1.13)
=1

With the assumption that the backscatterers remain coherent during the burst, the
pulse to pulse evolution of the signal in a burst allows the measurement of the Doppler
effect on the signal. The Doppler effect is the name of the apparent shift of the sig-
nal frequency received from a moving object. The apparent frequency received by the
radar, f/, is related to the relative speed of the backscaterrer toward the radar (v,.;) and
can be approximated by:
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Figure 2.9: Example of Doppler range map of a radar signal with an airliner.
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For instance, by computing the discrete Fourier transform along the long time axis
we filter the signal according to the relative speed of the backscatterer to the radar.
The signal is organized along a range axis and a speed axis. We illustrate this with a
Doppler-range map (Figure 2.9).

Since we emit the same signal every PRI we have a caracteristic frequency of PRF =
PRI, Pulse Repetition Frequency (PRF) stands for Pulse Repetition Frequency, we
cannot measure shifts in frequency superior to the PRF without aliasing. Thus, the
maximum unambiguous speed depends on the central pulse frequency and the PRI or
PRF, as follows:

PRF c
'Uam == =
T 2f T 4PRIx f.

(2.1.15)

Defining waveforms is therefore a result of a compromise on the PRI since a long
PRI leads to large unambiguous range measurement and low ambiguous speed mea-
surement; conversely, a short PRI yields large unambiguous speed measurements and
small ambiguous range measurements.

Figure 2.9 shows the Doppler range processing of the signal presented in Figure
2.6 and Figure 2.8. We see that for a speed of 0 m/s we have a signal; this signal is
composed of the radar returns from objects that stand still, typically trees, buildings
and terrain. This signal is called clutter in radar literature. In this figure, the airliner's
signal is shifted due to its relative speed. In this example, the airliner was flying toward

the radar at roughly 15 m - s~! below the speed ambiguity, £120 m - s~

2.1.2. Polarimetric radar

In this part we introduce the concept of polarization of the electromagnetic waves,
using the Jones calculus formalism to describe it. We then discuss how a radar can
measure polarization and how it constrains the radar system.
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Polarization

Polarization is a property of waves, including electromagnetic waves. Polarization de-
scribes the direction of oscillation of a plane wave. The shape drawn in the polarization
plane by the oscillations of the electromagnetic field defines the polarization state.

The three different shapes polarization can take are a line, an ellipse and a circle.
The polarization state can be represented within a basis of two orthogonal vectors. Two
different bases are often used, namely the circular basis and the linear basis.

In the orthogonal plane to the direction of propagation we define two axes x and y.
A linear polarization means the shape drawn in the polarization plane is a line, and the
circular polarization means the shape is a circle (see figure 2.10).

The first linear basis means we separate the polarization state into a linear combi-
nation of two linear and orthogonal polarization e.g. the Vertical (V) polarization, and
the Horizontal (H) polarization. We mainly use linear polarization.

The circular basis decomposes the polarization state as a sum of circular polariza-
tion, Right Hand Circular Polarization (RHCP) and Left Hand Circular Polarization (LHCP).
RHCP and LHCP describe in which way the circle is drawn. Two conventions exist: the
Institute of Electrical and Electronics Engineers (IEEE) convention states that LHCP is
a polarization where the polarization rotates clockwise for an incoming wave whereas
most physicists use the opposite convention.

The interaction between an electromagnetic wave and an object (a target) or a col-
lection of objects (water droplets for instance) depends on its polarization. For instance,
a sphere has the same signature whatever the polarization, but a dipole mostly reflects
the polarization parallel to its orientation. Polarization of electromagnetic wave can
also be affected by the propagation medium, and measuring the polarization from an
emitted object or a propagation medium sometimes allows physicists to measure some
of its properties, for instance [Mathys and Stenflo 1986] measures the magnetic field of
distant stars thanks to the polarization of the received light.

Jones calculus is frequently used to describe polarization states [Collett 2005]:

E. et
Jo = <E(1)2i¢y> (2.1.16)

With E, and E; amplitudes of the electric field along the x and y axes, ¢, and ¢, the
phases of the oscillation projected along the x and y axes of the polarization plane. With
this formalism (1 0)" and (0 1)” respectively describe H and V polarizations and ?(1 i)'
and ?(z’ 1)" the two circular polarizations. Using this calculus any linear transformation
can be expressed by:

MJy = J; (2.1.17)
where J, represents the incoming polarization state and J; the final polarization
state and M the scattering or propagation matrix.

Polarimetric radar

In astronomy and more broadly in observational physics, sensors are usually receivers
only. In this case there is only two polarizations (the two components of the Jones
vector).
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Figure 2.10: Example of polarizations, from top to bottom, arbitrary elliptical polarization and
linear polarization, linear polarization basis and circular polarization basis.
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Figure 2.11: Usual transmit and receive scheme for a polarimetric radar.

In our case we use an active radar, which transmits and receives signal. The polar-
ization of the received signal depends on the propagation and scatterring process and
on the transmitted polarization. To characterize our target we cannot rely only on the
Jones vector measured, but we need to measure the backscattering matrix of the target
that also depends on the transmitted signal 2.1.17:

MMM, J7y = Jra (2.1.18)

With Jr, and Jg, the transmitted and received polarization states for a single backscat-
terer, M, is the propagation matrix of the medium in between the target and the radar,

-2
for the vacuum M, = é% OR,z , with R the target distance to the radar, and finally
M, is the scattering matrix of the target:
o Sun  Sva
M,=S= (SH»U S, (2.1.19)

Sap 1s the portion of « polarized electromagnetic wave that is reflected with a 5 po-
larization state. A polarimetric radar using linear polarizations can measure this scat-
tering matrix. When emitting in the H polarization the radar measures Sy, and Sy,
when emitting in V' polarization it measures Sy, and Sy,. According to the reciprocity
principle, for a passive target we have Sy, = Sy, [Tragl 1990].

Has shown in Figure 2.11, radars often emit twice to measure completely the scatter-
ing matrix of the target, once in each polarization while receiving in both polarization
simultaneously. It means that the PRF, and speed ambiguity are halved. The ambiguous
range is unchanged.

Indeed, when the radar transmit a pulse in V' polarization it starts receiving VVh and
Vv polarization signals. It receives these signals up to a distance of £, then the radar
transmits a pulse in H polarization and start receiving Hh and Hv signals. The radar
is still receiving V'h and Vv signals but this signals are coming from scatterers further
than @ whereas the signal in Hh and Hv are closer than @. Because of conser-
vation of energy, the R~* factor in the radar equation, the Vi and Vv signals are a lot
weaker than the Hh and Hwv signals. Thus, we consider only the signal corresponding
to the last polarization transmited. So the maximum unambiguous range is linked to
PRI, the time interval between the transmission of the H polarization and the V' polar-
ization. Furthermore, as the radar transmits only half of the time in a given polarization,
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the transmitted power is effectively halved as well. These are the two main potential
drawbacks of polarimetric surveillance radar.

Surveillance radar must be able to measure a wide range of speed as targets range
from jet fighters to slow civilian airplanes; therefore, a lower speed ambiguity is not
desirable, it can however be adressed by the radar by using additional processes and
several different waveforms. The halved transmitted power can also be a drawback
since it reduces the range of the radar by roughly 20% according to the radar equation
2.1.1.

To fully measure the scattering matrix we need at least 3 channels to the radar, a
channelfor Hh, Vv and Vh (or Hv) polarizations, increasing the system complexity. So far,
this complexity has limited the use of fully polarimetric surveillance radars. However,
polarization brings additional information about targets and the radar scene, thus it is
used in some radar systems. We detail these uses in 2.4 and 2.5.4.

2.2 . Interactions between Radars and UAVSs.

Since World War 2, radar is the main tool for air surveillance. As soon as UAVs be-
came prevalent, the use of radar in a counter-UAV role have been studied. In this part,
we review the literature addressing counter-UAV radars. Drones have a characteristic
signature often exhibiting so-called micro-Doppler components, that are lower than
the signature of the main body, which are used to detect and classify them. UAVs also
require the radar system to operate in a low-grazing geometry as UAVs usually fly close
to the ground, and defending against them necessitate monitoring large sectors at a
time prompting the use Multi-Input Multi-Output (MIMO) radar using DBF.

2.2.1. UAV radar signature

The first element to analyse when we consider a new target class is its signature.
The signature of a target is defined as the RCS of this target as a function of aspect and
frequency, and sometimes specific Doppler components.

The RCS of UAVs is a widely discussed topic with numerous articles in both journals
and conferences. Most RCS measurements take place in anechoic chambers; it is also
true for UAVs [Sedivy and Nemec 2021]. The results discussed in the literature span over
many frequency bands. For a consumer grade quadcopter, the maximum RCS reported
in S-band, is around -19 dBsm, while in Ku-band the maximum RCS is around -9 dBsm
for the same UAV [Li and Ling 2017; Patel, Fioranelli, and Anderson 2018a]. In C-band a
RCS as high as -10 dBsm has been measured for a quadcopter. The lowest measured
RCS are below -30 dBsm for certain frequencies (6.25 GHz and 7.5 GHz depending on
the aspect of the UAV), with an average RCS -17 dBsm. An octocopter RCS has also been
measured and its max RCS is around o dBsm and the minimum RCS always exceeds
-16 dBsm [Herschfelt et al. 2017]. In [Sedivy and Nemec 2021] X-band authors give RCS
measurements for a variety of UAVs, the larger ones have RCS peaks between o and
-10 dBsm, while smaller UAVs have RCS peaks between -15 and -12 dBsm. Finally in W-
band smaller drones have a RCS peak between -15 to -5 dBsm, and mean RCS between
-20 and -15 dBsm, whereas the bigger UAV has peak RCS going from -5 dBsm up to 2
dBsm and a mean RCS of -8 dBsm [Rahman and Robertson 2019]. These bands cover
the low bands used in surveillance radar (L to X) as well as high bands preferred for
classification as they grant better resolutions (Ku to W). Some of the measurements
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Figure 2.12: Comparison between the simulation results and measurements of DJI UAV. The
angle is the angle between the transmit and receive antenna relative to the UAV. Figure from
[Schroder et al. 2015]

take place with in-flight UAV [Sedivy and Nemec 2021; Guay, Drolet, and Bray 2017].

There exists no unifying model, however, a substantial number of measurements
are made on UAVs of commercial brands such as DJI [Sedivy and Nemec 2021; Li and
Ling 2017; Patel, Fioranelli, and Anderson 2018a; Rahman and Robertson 2019; Li et al.
2019; Herschfelt et al. 2017; Ezuma et al. 2022] (one of the leader on the civilian UAV mar-
ket, models of this brand have been identified on warzones being used as makeshift
weapon carriers [Death From Above 2017]). [Patel, Fioranelli, and Anderson 2018a] com-
piles the results of several previous articles in which drone signatures were measured,
including [Schroder et al. 2015] in which the RCS of a DJI Phantom 2 drone is presented.
It is also modelled as a core of pure copper being roughly shaped like the internal elec-
tronics of the UAV and an envelope of a dielectric material around this core to represent
the plastic airframe of the UAV. This model and the measurement give similar results,
as shown in Figure 2.12. The simulation results are not affected much by the dielectric
permittivity chosen for the plastic airframe around the metallic core. In [Patel, Fioranelli,
and Anderson 2018a], the RCS measured in the reviewed articles ranged from -30 dBsm
for the small drones to -8 dBsm for the larger one.

When the measurements are made in anechoic chambers and compared to in flight
measurements, authors find significant variations of RCS between the two configura-
tions. In [Guay, Drolet, and Bray 2017] authors highlight for instance that the RCS was
higher when the drone was flying (from o dB of difference up to RCS 6 dB higher). They
suggest that the vibrations of the UAV during the flight prevent some of the destructive
interferences.
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Figure 2.13: Measured and simulated spectrogram of a flying drone. We notice the blade flashes

(every ~ 11 ms) and the returns from the propeller blade tip (the sine shaped returns). Source:
[Leonardi, Ligresti, and Piracci 2022]

[Sedivy and Nemec 2021] shows that assigning a single number to characterize the
RCS of a UAV is an oversimplification and that the RCS should be characterized by its
distribution as it varies sharply with the aspect of the UAV. [Rahman and Robertson
2019] compares the RCS distributions of UAVs in flight to birds in K. and W bands. They
show some differences in the RCS distributions of the UAV wheter the UAV is in station-
ary flight or not. While hovering UAVs exhibit a lower standard deviation on their RCS
distribution.

From this review, we conclude that UAVs have low RCS usually below -10 dBsm and
often around -20 dBsm similar to 4++ and sth generation fighters in frontal aspect (ac-
cording to open source intelligence and estimations [Zikidis, Skondras, and Tokas n.d.]),
which are notoriously hard to detect. Their RCS are also comparable to birds meaning
that system designs geared toward UAV detection have to deal with birds, which evolve
in the same flight domain as UAVs and are far more numerous.

Another feature of some UAV radar signatures is the presence of micro-Doppler,
which is mainly due to the rotating parts. The blade flashes momentarily increase the
RCS of the UAV when one or more of the propellers of the UAV are facing the radar.
These RCS modulations give a very specific signature for multicopter UAVs. [Patel, Fio-
ranelli, and Anderson 2018a], notes that the reviewed articles show that the blades’
relative signal amplitude usually lay between -20 to -25 dB below the UAV main body sig-
nal amplitude, making their measurement in operational conditions challenging as out-
lined by [Khristenko et al. 2017]. Examples of these blade flashes and specific "Doppler"
signature can be found in Figure 2.13 and in [Harmanny, Wit, and Cabic 2014; Ritchie
et al. 2015; Ritchie et al. 2016; Schrdder et al. 2016; Harman 2017].

For instance, if the RCS of a UAV is o), M B stands for Main Body, the RCS of its
blades will be o, ~ oy 5 — 24dBm, Bl standing for "Blades", and we are able to detect
that UAV at a maximum range of R,,;B. Following 2.1.1 we write the equation:

CRY 5 = ouB (2.2.1)

C is a constant that encapsulates the terms of the radar equation which are kept
equal in this discussion, namely the wavelength, transmitted power, received power
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RY , . ,
and antenna gains. We have 25 = RMB with R, 5 the maximum range at which we can

expect a reliable detection of the blades and op; the RCS of the blades. Therefore we
have Ry = Z45, any signal processing on micro-Doppler signatures (be it classification
or detection) requwes the target to be 4 times closer to the radar. Signal processing
relying on micro-Doppler is thus challenging to implement in operational context as
[Khristenko et al. 2017] outlines. It needs to be emphasized that the typical RCS of small
UAVS' propellers (in the lower range of measured RCS) is roughly the same as the RCS
of sizeable insects [Zikidis, Skondras, and Tokas n.d.].

As already mentionned UAV signatures share some similarities with birds, thus their
signature are often compared [Ritchie et al. 2016; Rahman and Robertson 2019]. [Ritchie
etal.2016] notes that the RCS of birds and UAVs are similar, but their Doppler signatures
are quite different and suggest using such features to classify drones and birds. In
[Rahman and Robertson 2019] the distributions of RCS of UAVs and birds are compared:
even though the distributions exhibit some differences the authors consider this to
be insufficient for classification purposes; and they suggest to use micro-Doppler for
classification.

The influence of polarization for the blades signature is also investigated in [Ritchie
et al. 2015], with simulations and experiments showing a lower return in Vv thanin Hh
polarization for a DJI Phantom drone. The micro-Doppler Hh signal was 30 to 40 dB
lower than the main body signature according to simulations. The return in Vv could
not be measured as the SNR of the Hh micro-Doppler signature was lower than 30 dB.

2.2.2. UAV classification

Another important aspect of counter-UAV radars is their ability to classify drones,
both classify them against other targets, and identify the model of UAV. One aspect
of this classification is the differentiation between a drone and a bird, which are two
target types that are in the same flight domains: close to the ground and usually moving
slowly. The second aspect is the ability to differentiate between drone models. In [Patel,
Fioranelli, and Anderson 2018a] some classification methods are reviewed.

Several methods to classify between UAVs and birds have been investigated. One of
them relies on the RCS of the target. [Harmanny, Wit, and Cabic 2014] suggests that RCS
can be used to discriminate between UAVs and birds as UAVs tend to have a larger RCS.
Nethertheless they mention that this feature is not robust as it varies with the aspect
of the target. [Ritchie et al. 2016] and [Rahman and Robertson 2019] confirm this and
suggest to use other features such as the micro-Doppler signature.

While micro-Doppler signatures can be difficult to detect, as reported earlier, its im-
plementation for classification against birds for instance is by far the most used feature
for classification. Several methods exploit the Doppler signature but not all methods
use the data in the same way.

Some articles analyse the micro-Doppler signature using spectrogram [Wit, Har-
manny, and Molchanov 2014; Harmanny, Wit, and Cabic 2014]. This method requires
a high PRF to measure the effects of the blade flashes. As stated in 2.1.1 the PRF defines
the upper limit of the frequency to be observed. Thus, the PRF must be higher than
Fprop X Npiadgess With F,.,, the propeller’s frequency and Ny,q4es the number of blades
of the propeller. This method allows the discrimination between birds and UAVs. [Wit,
Harmanny, and Molchanov 2014] uses a Single Value Decomposition (SVD) on the spec-
trogram to further quantize the micro-Doppler signature and shows that only a few
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singular vectors carry most of the information (the SVD is the generalization of the
eigenvalue decomposition to arbitrary matrices). [Kang et al. 2021] compares the spec-
trogram to the Doppler spectrum for classification, and outlines some drawbacks of
using the spectrogram compared to the Doppler, notably its strong dependency on a
clean measurement (clear of interference and with a good Signal to Interference plus
Noise Ratio (SINR)) and its computational complexity. They show clear differences in
both Doppler spectrum and spectrogram of birds and UAV thus enabling classification.
[Oh et al. 2018] uses an Empirical Mode Decomposition (EMD) to classify different types
of drones as well as to discriminate drones from birds. EMD is a decomposition of the
signal into a sum of functions, which must satisfy some properties, they should form a
basis that is orthogonal or nearly orthogonal. These functions are called Intrisic Mode
Function (IMF) and are computed from the dataset on which the EMD is performed.
Their computation is a recursive process that is based on the envelope of the signal.
The mean of the envelope of the signal is an IMF. The first IMF is removed from the sig-
nal and the envelope of the new signal is used to compute the next IMF. This recursive
process is repeated until a stoppage criterion is reached and gives the IMF basis. This
method gives good results for discriminating birds and drones as the correct identifica-
tion rate is 99% (true positive rate), and no UAV is classified as bird with a rate above
2% (false negative rate). However this method doesn’t seem to work as well for fixed
wing UAVs as one of the two fixed wing UAVs tested is classified correctly only 58% of
the time and is misclassified as an other fixed wing UAV 31% of the time, which shows
the importance of micro-Doppler in the classifier.

In recent years, there has been a strong trend on using neural networks for classifi-
cation, as it enables the discrimination of the models of UAV as well as birds and UAVs.
[Kim, Kang, and Park 2017; Brooks et al. 2018; Rahman and Robertson 2020; Dale et al.
2021; Dale et al. 2022; Gérard 2022] show good performances of Neural Networks when
it comes to classify drones and birds. It should be noted that [Dale et al. 2021] shows
that the classification performances drop when the SNR gets low: the performances
start to drop around a 35 dB SNR and some classifiers are unable to classify at 20 dB
SNR (The SNR is measured after the Doppler processing in this case). [Dale et al. 2022]
proposes to address this problem with data augmentation. [Gérard 2022] proposes
to use Generative Adversarial Network (GAN) to augment the dataset. GANs are neu-
ral networks that take inputs to generate a new dataset resembling another dataset.
[Gérard 2022] designed GANs that uses flight logs of UAVs to generate signatures for
augmentation.

Another method for classification uses polarization, [Torvik, Olsen, and Griffiths
2016] for instance. They show true positive identification rate (the target is of a certain
class and classified as such) superior to 98.8% for every of the 4 classes defined, UAV
with carbon fiber blades, birds with flapping wings, UAV with plastic blades and gliding
birds. The true positive rate for the UAV with carbon fiber blades is 100% which means
that these targets are never misclassified (however some targets are misclassified as
UAV with carbon fiber blades). They argue that in absence of substantial micro-Doppler
signature for the target, polarization can be used in the classification process. Indeed
the information carried by polarization remains when the frequency band, carrier fre-
quency and dwell time are reduced to be more in line with operational radar standards.

Finally, work has been done on classification between loaded and unloaded drones.
[Ritchie et al. 2017] outlines promising classification methods allowing a preliminary
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assessment of the threat level of a drone thanks to the Doppler signature. The authors
use the Single Value Decomposition (SVD) on the spectrogram of the Doppler data and
achieve true positive rates of classification in excess of 95%.

2.2.3. Counter-UAV radar systems and detection

UAV detection is the first topic to consider for a counter-UAV radar. As mentioned
in part 2.1.2.1, UAVs have low RCS and specific flight behaviours. [Poitevin, Pelletier,
and Lamontagne 2017] outlines that a radar system roughly needs 10 seconds to detect
and establish an accurate track and 20 additional seconds for assessing the class of
the target and the threat level of the UAV and eventually neutralizing the target. If the
UAV is capable of travelling at 20 m - s~! (a common speed for commercial drones),
this processing time allows the UAV to travel 600 meters. It means that the minimum
detection range should be at least one kilometre. Therefore, many operational counter-
UAV radar systems usually operate in lower frequency bands, as shown in [Birch, Griffin,
and Erdman 2015] and [Radar Based Non-Cooperative Target Recognition (NCTR) in the Low
Airspace and Complex Surfaces environments 2021]. This includes L, S, C and X bands.

[Poitevin, Pelletier, and Lamontagne 2017] also outlines the need for counter-UAV
systems to be able to cover a wide area, often having a necessary coverage as large
as 360°. Thus, a frequent configuration for counter-UAV radar system is to use staring
radars instead of scanning radars. A staring beam is a fixed large beam covering the
whole radar surveillance zone allowing long integration time, while a scanning beam is
a narrow beam covering the surveillance zone by being steered back and forth. [Har-
man 2015] describes a C-band radar and shows the different probability of detections
as a function of range and operating mode of the radar with a scanning beam or a star-
ing beam. He shows that depending on the target type staring radar performs better,
staring radars especially give better tracking performances. Aveillant has developped
L-band radars [Jahangir 2015; Jahangir and Baker 2016; Jahangir, Baker, and Oswald
2017; Gersone et al. 2018] for UAV detection with the ability to be used as staring radar.
[Gersone et al. 2018] shows a potential drawback of staring radars for dealing with tar-
gets travelling perpendicular to the line of sight. The signal obtained with a standard
Doppler processing is smeared both range and Doppler wise. The authors propose an
alternative processing to address this problem.

MIMO radar systems (radar system with several independent transmitting and re-
ceiving elements able to emit orthogonal waveforms simultaneously) have large beams
and use DBF which allows them to be in a staring radar configuration while providing a
localisation ability. Thus, they are frequently used for counter-UAV radars. [Frankford
et al. 2014] investigates the use of MIMO radar for the detection of UAVs and shows
potential improvements of using MIMO radar instead of the phased array equivalent
radar. [Klare, Biallawons, and Cerutti-Maori 2017; Biallawons, Klare, and Fuhrmann
2018] demonstrate the capabilities of the MIRA-CLE MIMO radar featuring a sparse an-
tenna. This radar is able to have similar performances to its equivalent array antenna
radar (with the synthetic antenna formed with MIMO processing).

There also exists UAV detection system that run passively, meaning that the radar
does not emit the waveform and uses waveforms of the environment to make detec-
tions. For instance, [Schupbach et al. 2017] reports UAV detections at up to 1.2 km using
digital radio signal. It is reported a detection rate up to 36% for a probability of false
alarm (the probability that a detection does not corresponds to a target) of 1076, [Poullin
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2016] shows it is possible to use a passive radar using digital television signal to detect
UAVs thanks to their blade flashes. [Poullin, Dorey, and Taylor 2022] shows this method
can lead to passive detection of UAVs up to 10 km.

Many counter-UAV radar systems and classifiers implements standard detection al-
gorithm of the Constant False Alarm Rate (CFAR) class for the detection step [Kwag et
al. 2016; Drozdowicz et al. 2016; Hoffmann et al. 2016; Jahangir, Baker, and Oswald 2017;
Aldowesh, Alnuaim, and Alzogaiby 2019; Martinez 2019; Morris and Hari 2021] which we
describe in more detail in 2.5. However, some counter-UAV systems use more complex
detection schemes. Specific detection schemes have been developed to address the
need for a fine Doppler resolution. [Sun et al. 2019] describes the Iterative Adaptive
Approach, which improves the Doppler resolution by iterating several frequency filters
on the data. The iterative filters are used to remove more noise in the Doppler space;
therefore, they allow the SNR of the UAV to increase after this processing, which leads
to better performances for both classification and detection. They gain up to 7 dB for
birds, and up to 4 dB of gain for UAVs.

2.2.4 . Conclusion

In this part, we have discussed the challenges associated with the detection and clas-
sification of UAVs. We outlined the low RCS of UAVs, in the range between -30 and -10
dBsm. We also showed the specificity of the signature of the copter type drones’ blade
flashes. The low RCS means that their signature is similar in terms of magnitude to the
signature of birds which share the same flight domain and can be confused with UAVSs.
Therefore, the classification between UAVs and birds is essential. Measuring the blade
flashes is often paramount for the classification of UAVs and bird as the vast majority
of the methods use the micro-Doppler signature for classification. The flight domain
of drones, close to the ground, at slow speed or even hovering, forces the radar to use
a low-grazing geometry, which exacerbates the influence of clutter. This prevalence of
clutter in the radar scenes makes the detection more difficult. The problem of endo-
clutter detection of UAVSs, is seldom addressed. One of the method used is to detect
the blades exo-clutter signature instead of the endo-clutter signature of the main body.
In our work we focus on the main body endo-clutter signature.

2.3 . Radar Clutter

As the previous part outlined counter UAV radar are forced to operate in a low-
grazing geometry and deal with drones that fly at low speeds, thus, the clutter is an
important feature of the radar scene. For UAV detection, clutter can be considered
as the sum of all unwanted radar returns. Depending on the author, it includes only
returns from stationary backscatterers, or even returns from objects part of the envi-
ronment like cars or birds which can have very similar behaviour to actual targets of
interests. For simplicity sake, in the following, clutter refers to stationary target returns
(building, terrain, etc.), and quasi-stationary targets (vegetation). When clutter is stud-
ied in the next parts it might include targets such as cars and birds that happen to have
null relative speed with the radar. The distributions of the clutter are usually heavy-
tailed (unlike noise), thus they need a different model. Furthermore they have some
form of temporal coherency as we detail.
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2.3.1. General consideration on clutter

As clutter is not a noise, but radar returns, it behaves differently in several ways. First
it is coherent from pulse to pulse contrary to noise, this is called temporal coherency.
It means that clutter has a specific Doppler signature. For a fixed ground radar, clutter
will have a Doppler speed around 0 m - s~! since it is a composed of radar returns from
immobile or slow moving objects (terrain, sea, buildings, trees, etc.). This temporal
coherency has several consequences:

* Longer Doppler integration time does not change the Signal to Clutter Ratio (SCR),
since both the target and clutter are coherent.

+ Higher transmitted power does not change the SCR.

+ If the target and clutter have different speed (if the target is moving for instance),
the clutter can be filtered out using its Doppler signature.

2.3.2. Sea Clutter

Sea clutter is mostly caused by the swell of the sea and is not necessarily stationary.
Sea clutter is usually modelled as a k-distributed random variable [Ward 1982]. Ward
also outlines that the clutter is coherent from pulse to pulse which is not the case for
the noise, which allows for a coherent integration that separates the clutter from the
noise. [Ward, Baker, and Watts 1990] shows model based on the physics of the swell
of the sea. He also proposes a temporal correlation of the complex monopolarimetric
data (not relying only on the magnitude of the signal as usually dine for sea clutter
modelling). [Shnidman 1999] proposes a model for sea-clutter based on a modified Chi-
square (x?) distribution, the Noncentral Chi-Square Gamma (NG). This model provides
the heavy tail behaviour expected while using the often used Chi-square distribution as
underlying basis.

2.3.3. Land Clutter in Low-grazing Geometry

Land clutter is more diverse than sea clutter and is therefore not modelled as easily
as sea clutter. [Sekine et al. 1981] shows that this type of clutter can be modelled as
a Weibull distributed random variable with parameters close to Rayleigh distribution.
The article is based on measurements in low-grazing angle configuration (0.2° to 0.3°).
[Shnidman 1999] states that log-normal and Weibull distributions fit well with ground
clutter as they exhibit the same heavy tail properties that are observed for ground clut-
ter. He proposes the NG distribution for land clutter as it relies on a physical model
based on low number of backscatterers in resolution cells. Thus, it applies for ap-
plications where resolution cells are small such as high frequency radar or Synthetic
Aperture Radar (SAR) (a technique we introduce in 2.4.2). It is not representative of
our case, we detail in 4.1.2. In addition this model distribution allows for the modelling
of speckle (high-resolution granular interferences). [Sayama and Sekine 2001] shows
that cultivated lands are best modelled with Weibull, log-Weibull and K-distributions.
They show that lowering the resolution (larger range cells) means less spread of the
clutter distribution, as more backscatterers are included in the range cell and their con-
tribution averaged. [Billingsley 2002] shows the dependency between the mean and
median value of the clutter returns and the radar frequency. It should be noted that
while the amplitude variations of the returns with frequency are largely monotonous,
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some clutter types exhibit increase of RCS with frequency (for instance, urban clutter
and farmland) and others decrease of RCS (for instance mountains) with frequency. He
also shows that for high frequency radar (S-band and X-band) there is some seasonality
of the mean clutter level, whereas in Ultra High Frequency (UHF), Very High Frequency
(VHF) and L-band the dependency is less or not pronounced. This is not only due to
the smaller range resolution of the lower band but also due to the fact that smaller
object do not backscatter radar signal with large wavelength. For instance, a cultivated
field changes with season, but a lower frequency radar will only be affected by the
ground underneath the culture, and the ground doesn’t change much from season to
season. When range bins are well resolved in L-band, S-Band and X-band, the too high
frequency shows a strong seasonality (up to +15 dB in late spring compared to winter)
while the lower L-band shows little seasonality. [Davidson, Griffiths, and Ablett 2004]
outlines that the estimation of the distribution of the clutter is not trivial due to the high
variability between clutter cells.

2.3.4 . Low-grazing polarimetric surface clutter

[Ward, Baker, and Watts 1990] discusses the polarimetric signature of sea clutter.
Hh returns show higher spikes than expected with the distribution used to model the
sea clutter, with a duration of up to 2 seconds, while Vv polarisation returns are less
spiky. It means that this burst of power are highly polarisation dependant. Sea clutter
is usually heavier tailed in Hh than V.

[Moisseev et al. 2000] notes that the cross-polar to co-polar ratio is used to detect
ground clutter in weather radar. This ratio tends to be higher in ground clutter than in
meteorological targets. The correlation rate between Hh and Vv returns is also used
since ground clutter has low correlation rates (under 0.8).

2.3.5. Conclusion

This part outlines the differences between noise and clutter, namely the fact that
clutter is coherent, and usually heavy-tailed. This means that endo-clutter detections
are harder than exo-clutter detection: whereas a coherent integration allows for an
increase of the target’s signal while it keeps the noise at the same level, a coherent in-
tegration also increases the level of the clutter. In addition clutter returns are radar re-
turns from backscatterers contrary to noise which means that SCR does not behave like
SNR, as neither an increase in transmitted power nor a Doppler processing increases
the SCR. To have better performances for endo-clutter detections we therefore have to
use other sources of diversity such as polarization.

2.4 . Polarimetric Radar Classification Methods

Ground clutter proves to be a complex object that poses challenges to radar, as
we mentioned the additional degrees of freedom brought by polarization are useful to
characterize both environment and targets. The classification methods used in Synthetic
Aperture Radar (SAR) imaging and weather radar informs us on the possibility brought
by polarization.

2.4.1. Weather Radars
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Polarimetry enables weather radars to classify zones according to the rainfall rate.
Authors of [Brandes, Ryzhkov, and Zrnic 2001] describe methods to measure the rainfall
rate, with the specific differential phase (K4,). K4, is the rate at which the relative phase
between H and V signal evolves. H and V polarized waves do not propagate at the
same speed through a medium with non-spherical hydrometeors (water drops, hail,
etc.). Ky, increases with the rainwater content [Sachidananda and Zrnic 19871.

Polarimetric radar also allows the classification of precipitations. [Ryzhkov and Zrnic
1998] proposes a classification of rain and snowstorm. The authors show that using K,
as well as:

* Z4, the depolarization rate defined as the ratio between Hh and Vv channels in
decibels,

« Z, the reflectivity factor (the “RCS” of a volume of hydrometeors),

allows the discrimination between rain and snow. [Schleiss et al. 2020] points out
that polarimetric radar methods for estimating the rainfall rate do not exhibit any bias
linked with the intensity of the signal received contrary to monopolarimetric methods.
To obtain this result, authors compare measurements of rainfall rates obtained with
monopolarimetric radar and polarimetric radar with measurements of ground rain
gauges. In addition, the authors note that the performances obtained by the polari-
metric radar are promising since they were not calibrated by ground rain gauges be-
forehand, contrary to the monopolarimetric radars.
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Figure 2.15: SAR working principle, it shows the synthetic aperture created by the movement of
the radar. Source: wikimedia.org

Polarimetry also allows to classify between hail and rain [Tong et al. 1998] using the
reflectivity in H, Zy, and the difference reflectivity Z,, = 10log (Zy — Zv), as Z,, and
Zy are heavily correlated for rain forming the "rain line" (Figure 2.14). The signature of
volumes of hydrometeors deviates from the "rain line" by AZ. The magnitude of AZ is
linked to the ice fraction, f (the proportion of ice hydrometeors), with f = 1 — 1079142
(Seeinset in Figure 2.14). [Liu and Chandrasekar 2000] shows that polarimetric data can
be used to create a reliable classifier between hydrometeors type going from drizzle to
large hail.

2.4.2 . Synthetic Aperture Radar (SAR)

SAR imaging uses the movement of a vehicle carrying a radar to create a virtual
antenna larger than the physical antenna of the radar and therefore, achieve very fine
resolution (Figure 2.15).

Airborne and spaceborne SAR are used to image large surfaces and polarimetry is
used to classify and segment land patches with two classes of methods: some classi-
fiers use the physics of backscattering mechanisms and others are based on empirical
classifications coming from observations. One such classification methods uses the
Pauli decomposition. With this decomposition of the scattering matrix based on the
Pauli matrices, the scattering vector becomes:

& V2 I

= 7 [SHh + SVv; SHh - SVU7 SHU + SVh?

Each element corresponds to a backscattering process:

X = [01,09,03 (2.4.1)

+ 01 corresponds to odd numbers of bounce scatterings (typically a sphere, trihe-
dron or a plane surface),

* 09 corresponds to even numbers of bounce scatterings like a dihedron,

* o3 corresponds to the depolarizing process, corresponding to volumetric scatter-
ers.
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[Cloude and Pottier 1996] discusses several polarimetric decompositions for classi-
fication. In [Cloude and Pottier 1997], a classification method based on the coherency
matrix is discussed. The coherency matrix is:

1
C= Nzﬁlxixf (2.4.2)
where X is the polarimetric radar data vector of one of N studied cells. This matrix is de-
composed into eigenvalues \; with associated eigenvectors U;. The entropy is defined
as:

H = -} pilogspi (2.4.3)
with p; = )\i/E?:l/\j, the anisotropy is defined as:
A2 — Az
A= AW (2.4.4)
and finally the mean angle
a =3} pia (2.4.5)
with «; defined from the eigenvector U;, with U; = [cos (), ..., ...]. This classification

method uses g classes.

The classes are surfaces in the H — a space (shown in Figure 2.16), and represent,
amongst other things, dihedral reflectors, random surfaces, random anisotropic scat-
terers, etc. The article shows the results obtained during two measurement campaigns:
they seem to follow the physical model. This classification is often used to initialize un-
supervised classification, for instance with machine learning methods.

[Freeman and Durden 1998] presents a classifier based on single and double bounce
as well as a volumetric scattering decomposition and shows that this classifier gives
good performances to distinguish between terrain types and even terrain state (for
instance flooded or nonflooded terrain). Another decomposition based on the covari-
ance matrix or coherency matrix such as the one proposed in [Yamaguchi et al. 2005]



46

Chapter 2. Counter-UAV radar and review of the litterature

propose to add other scattering mechanisms in the decomposition to better classify.
[Yamaguchi et al. 2005] shows that this new component, the helical scattering process,
is a useful component to discriminate between naturally occurring patches of land and
urban areas. It also shows that modifying the volume scattering term is useful to better
model the underlying scattering process and obtain a better classifier. This is an em-
pirical approach to extend a physical classifier. To address the limitation of this model,
[Yamaguchi et al. 2011] modifies the volumetric component of the decomposition, de-
pending on the relative returns of the co-polar channels. This modification is made be-
cause, in light of new datasets the authors concluded that the physical model could be
amended to classify more faithfully the patches, in more diverse measurement condi-
tions. These results outline the risk of bias associated with the use of empirical models,
that might later have to be corrected.

On the other hand, other classification methods do not use physical models to clas-
sify; they rely on observations to assess which combination of polarimetric parameters
is better suited for a given task. For instance, [Wakabayashi et al. 2004] shows that po-
larimetric parameters allow a good classification of ice types. A relation exists between
the Vu-to-Hh scattering ratio and the ice thickness.

2.4.3 . Conclusion

This part gives an overview of the classification methods that use polarimetric data,
we outline that both for weather and imaging radar, polarimetric radar data to increases
the accuracy of the measurements are creates new classification possibilities all to-
gether. Since the polarization is an asset for classification, the next part addresses
radar detectors, and in particular, endo-clutter detection schemes on the one hand
and polarimetric detection schemes on the other hand.

2.5 . Detections

2.5.1. Framework and Mono-channel Detectors

Detecting a target may be the most important step in the radar processing chain as
far as air surveillance is concerned. A radar detector is an algorithm (it can be either
analogic or digital) able to take radar data and classify them between two states: target
is present or target is absent. Given a vector of radar data X in a given cell, the Cell
Under Test (CUT), we write the following;:

{ho . X=n+c (2.5.1)

hi: X=ab+n+c

With n and ¢ respectively a noise vector and clutter vector, b the target vector a is
a scalar which. n and c represents both the power of the noise and clutter, as well as
their structure along the different channels of the radar data, whereas b represents
the structure of the target radar data and a represents its magnitude. Here we do
not consider the influence of interferences and/or jammers. hy and h; are the two
hypotheses the detector must discriminate between. hq is the “no target” hypothesis
and h; is the “target” hypothesis. Most detectors compute a value based on X and
compare it to a threshold, 7y, the detection test is written:
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Figure 2.17: "Leading" and "lagging" windows in relation to the CUT.
ho
F(X)smno (2.5.2)
hy

With f (-) a scalar valued function of the vector X . Two important metrics for detec-
tors are the probability of detection, Pp, and the probability of false alarm Pr4. Pp is
the probability of detecting the target knowing the target is present (the true positive
rate), while the Pr4 is the probability to detect a target knowing none is present (the
false positive rate).

A desirable property of radar is to have a Constant False Alarm Rate (CFAR), meaning
that for a given stable noise and clutter distribution the Pr4 of the detector is constant.
According to 2.5.2 lowering 1, results in more detections, thus increasing the P, and
Pr4. Conversely increasing n, leads to lower Pp and Pr4. Fluctuations of the clutter
or noise obviously impacts the Pr,4. [Finn and Johnson 1968] proposes to adaptively
change the threshold using secondary data. The secondary data is a set of scalar radar
data not in the CUT, {Xf}ie[l AT the superscript £ denotes that the associated variable

is from the estimation dataset. Knowing the clutter and noise statistical distributions,
we deduce the probability of false alarm thanks to the threshold. In [Finn and Johnson
1968] the threshold is dynamically adjusted to ensure a CFAR property, by using sec-
ondary data to estimate the variance of the clutter and noise distribution. We modify
2.5.2:

ho

f(XX) in <{X"E}ie[1,]\q) (2.5.3)

The 7 (-) function takes the secondary data and adjusts a threshold to ensure a con-
stant false alarm rate. It is equivalent to having a fixed threshold with a f () function
that adjusts the output levels with the secondary data and compares it to a fixed thresh-
old as long as f output is in R**. Under these assumptions 2.5.3 becomes:

h
F(x.{xF}) < (2.5.4)
hy

2.5.2 . Mono-channel detector

In [Finn and Johnson 1968], the data on which the detection test is made is scalar.
The secondary data come from the range axis, from two windows, a "leading" one, with
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data in range cells closer to the radar than the CUT and a "lagging" window, data fur-
ther away from the radar than the CUT (Figure 2.17). The assumption is that the sec-
ondary data cells do not contain any target. Assuming the clutter and noise are normal
distributed, the standard deviation of the clutter and noise distribution are computed
using maximum likelihood estimator for zero-mean Gaussian noise:

N XZE2
o= Z' N' (2.5.5)

i=1

We have 7 ({XZE}Z) o o and thus, f (X, {Xf}z) o *. We have:

h

X2

‘02’ S (2.5.6)
hy

[Finn and Johnson 1968] shows that with this adaptive threshold, the probability of
false alarm is independent from noise power. This detector is known as Cell Averaging
CFAR (CA-CFAR) due to how the noise standard deviation is computed. This detector
makes the assumption the secondary data are representative of the clutter or noise we
want to be estimated in the CUT. This is an important drawback as this assertion does
not necessarily hold, for instance, the presence of a target in the secondary data leads
to a degraded Pp.

A solution to overcome this drawback is to censor the secondary data. It can be
based on the raw output of the secondary data, or on more refined metrics such as
variability index as we see next. Even though those methods are quite different they
share a similar concept, as they both rely on cleaning the data entering in the estimation
dataset to ensure they are representative of the noise and clutter under the target.

Greatest Of CFAR (GO-CFAR) [Hansen 1973] and Smallest Of CFAR (SO-CFAR) [Trunk
1978] are two detectors that address the shortcoming of the CA-CFAR. Each detector
censors one of the aforementioned leading and lagging window. The GO-CFAR cen-
sors the smallest mean window. This detector is designed to ensure the Pr4 does not
increase in inhomogeneous environment. The SO-CFAR censors the highest mean win-
dow, and it prevents some decrease of Pp in multi-target or clutter edge scenarios.
These detectors themselves have drawbacks outlined in [Weiss 1982]. Namely, the loss
of Pp of GO-CFAR in multi-targets environment and an increased Pr4 in clutter edge
scenario for the SO-CFAR. The articles conclude that it is unlikely there exists an optimal
CFAR algorithm for each and every case.

The authors of [Smith and Varshney 1997] propose the Variability Index CFAR (VI-
CFAR) that measures the homogeneity of both the lagging and leading window by mea-
suring the Variability Index (VI), VI = 1 + o2 /u* with o2 the variance of the data and p
its mean value. Based on this value this detector switches between SO-CFAR, GO-CFAR
and CA-CFAR. [Smith and Varshney 1997] shows that the detector behaves well in ho-
mogeneous environment as the CA-CFAR and is robust in the case of interfering target
and clutter edge scenarios.

These four algorithms also have a cost of 1 dB as far as the effective SNR is con-
cerned[Finn and Johnson 1968; Hansen 1973; Trunk 1978; Weiss 1982; Smith and Varsh-
ney 1997]. This cost comes from the evaluation of the noise with the secondary data.
The noise and clutter estimation with secondary data cost SNR as it is not perfect (the
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lower the amount of secondary data is the higher the loss is). Both SO-CFAR and GO-
CFAR censors half of the secondary data. Instead of censoring half of the data some
detectors first rank the secondary data to selectively censor only the highest value
whichever the window it is in.

Forinstance the Ordered Statistics CFAR (OS-CFAR) [Blake 1988], ranks the secondary
data and then censors a given percentage of the secondary data according to their
value. Authors of [Blake 1988] show that the Pp losses of CA-CFAR in a multi-target en-
vironment are as large as 40% while in the same scenario the OS-CFAR detector only
loses 5% of the Pp. However if enough secondary data is contaminated the OS-CFAR
presents the same drawback as CA-CFAR as far as Pp loss is concerned. The underly-
ing principle behind these detectors using scalar data, is to censor data that are not
representative of the noise or clutter of the CUT.

More advanced detector adaptive censoring exist. For instance [Farrouki and Barkat
2005] and [Jiang, Huang, and Yang 2016] censor data according to its homogeneity.
Jiang, Huang, and Yang 2016] proposes an algorithm named First Order Differential
CFAR (FOD-CFAR) that assumes that inhomogeneous data implies sharp variation in
the secondary data, and adaptively censors the secondary data. In this detector, the
secondary data are ranked according to their amplitude. The derivative of the ranked
secondary data according to their index is computed. This derivative should be smooth
for homogeneous data, conversely it means that if it exhibits peaks the data is not ho-
mogeneous. If the gradient crosses a certain threshold, the ranked data past the index
of the peak are considered outliers and are censored. This type of detector avoids the
under-censoring problems that the OS-CFAR class detectors can encounter. Authors
show good performances of this type of detectors in terms of Pp in case of interfer-
ing targets even when interfering targets represents more than 25% of the secondary
data, however the Pr4 conservation in clutter edge environment are slightly lower than
those of CA-CFAR and OS-CFAR.

Finally, some CFAR algorithms now use machine learning. For instance the Smart-
CFAR described in [Carretero, Harmanny, and Trommel 2019] matches the performances
of the CA-CFAR detector in homogeneous environment and drastically improves the Pp
in clutter edge scenarios.

Some targets, including drones can be endo-clutter. Endo-clutter targets are targets
which are "in" the clutter, it usually means they share a position and apparent speed
with the clutter, by contrast exo-clutter targets which do not share its position or ap-
parent speed with the clutter and therefore are "out" of the clutter. This has strong
implications for the detectors, which therefore needs to be specifically designed for
this case. Thermal noises usually has a normal distribution that does not vary much,
spatially and temporally. This is different from clutter, which varies abruptly with re-
spect to distance, is rarely Gaussian distributed but has a heavy tail distribution. To deal
with endo-clutter targets, specific detectors are designed. [Schleher 1976] discusses the
problems of detection in a Weibull distributed clutter. He shows that taking the linear
value of the envelope of the signal of the input gives worse results than taking the log-
arithmic value and shows that the best performing detector is a binary detector, which
has two thresholds. A first threshold to count how many "pre-detections" the detec-
tors get. A pre-detection follows the same framework as previously described and is
hypothesis h; in:
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f(Xi)=no (2.5.7)

The pre-detection tests are run over for each X, in the dataset under test { X, } , this
detection tests are identical to normal standard detection tests described above. These
tests are repeated on n different realizations of the same range cell at different times.
We obtain m pre-detections with n tests. The detection hypothesis is met if the number
of "pre-detections"”, m, crosses the second threshold my:

Ms My (2.5.8)

This shows that applying a detection test on a previously processed data can lead to
better performances than strictly relying on a single detection stage.

2.5.3 . Multi-channel Detectors

Another way to make detection in clutter is to filter out clutter by using data repre-
sented by vectors. These vectors contain informations about the physical process and
characteristics of the targets and clutter. They must be estimated with care, ensuring
the estimation is an accurate representation of these phenomena. In [Kelly 1986], Kelly
proposes a detector based on the Matched Filter (MF), to make detections in unknown
Gaussian clutter. The MF test is written:

|5 x| oo

maxW >770 2.5.9

g SRS hy

S being a steering vector (see appendix A), X the measured vector and R being the

known covariance matrix of the noise or clutter while the Kelly’s detector written:

12
HSHRE x| ho

max — s (2.5.10)
s SYRF S

With R” the estimated covariance matrix. In the next parts covariance matrices
noted R denote known covariance matrices and covariance matrices noted R denote
estimated covariance matrices. Assuming a gaussian clutter as we do in the rest of this

work, we use the Sample Covariance Matrix (SCM) estimator to compute RE:

-5 1 E e\
R :NZ<X z) (X Z) (2.5.11)

(2

X ¥, are the data vectors used for estimating clutter properties and N is the number
of data vectors used in the estimation. The author shows that the proposed detector
performs worse than the MF (with SNR losses of 1to 5 dB induced by the estimation of
the covariance matrix), however it does not require any priori knowledge on the clut-
ter or noise covariance matrix. As such, it can be used to adaptively detect targets in
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unknown environment. It forms the basis of endo-clutter detectors when the clutter dis-
tribution is unknown. [Conte, Lops, and Ricci1995] proposes a detector based on a prior
knowledge of the covariance matrix and models the clutter as a compound Gaussian
distribution. The proposed detection scheme works similarly to a CA-CFAR algorithm,
but it gathers secondary data along the time axis in CUT. It allows this detector, contrar-
ily to CA-CFAR, to keep its CFAR property even in a compound Gaussian environment.
This detector outperforms a standard MF detector in case of a steady target in a K-
distributed clutter. This comparison corresponds to a case in which Kelly's approach is
valid (the covariance matrix can be and was estimated accurately) as the a priori knowl-
edge of the covariance matrix is very important for proper operation of the detectors.
Moreover, the standard detector does not retain a CFAR property contrary to the pro-
posed detector. [Jay et al. 2003] proposes a detector, named Bayesian Optimum Radar
Detector (BORD), which exhibits a CFAR property independently of the underlying clut-
ter distribution. The authors also exhibit similar detection performances to optimum
K-distribution detector and optimum Student-t distribution detector respectively, for K-
distributed and Student-t distributed clutter, which are the optimal detectors in those
cases. This is based on modelling the clutter as a spherically invariant random process
to model non-Gaussian process as a complex Gaussian distribution with the variance of
this distrubtion being a positive random variable (the so-called texture of the clutter).
Further work in [Pascal et al. 2004] confirms the CFAR properties from a distribution
standpoint.

In airborne and spaceborne imaging radars the radar data vector X usually con-
tains both space and long-time information. Therefore, the covariance matrix and the
detector tries to filter the clutter according to its Doppler and position, for instance in
Space Time Adaptive Process (STAP) [Ward 1995].

Another way of detecting endo-target clutter is to discriminate the target thanks to
its Doppler signature, as we mentioned in a previous part the case of UAVs with micro-
Doppler signature is addressed in [Hoffmann et al. 2016]. [Duk, Rosenberg, and Ng 2017]
also shows that for sea clutter the wavelet transform improves endo-clutter detections
of small targets. The wavelet transforms allow the separation of the signal in different
frequency sub-bands, and the author notes that the target is generally in a different
frequency band from the clutter signal thus allowing for higher Pp.

2.5.4 . Polarimetric Detectors

The diversity provided by the polarization gives additional opportunities for detec-
tions. [Shrader 1973] shows that even early Air Traffic Control (ATC) radars used po-
larization to facilitate detections, as they note that of circular polarization reduced the
signature of weather events by up to 20 dB, while only reducing the return of the targets
(airliners) by 4 dB. This form of polarimetric detection shows that even monopolarimet-
ric radars (using only one polarization) can take advantage of the polarimetric prop-
erties of the target and/or environment. The interest of multi-polarimetric radar was
stressed as early as 1986 in [Giuli 1986], in which it is stated that polarization diversity
offers additional abilities to make detections by increasing discrimination capabilities
between disturbances and targets. This article notes that targets tend to have reduced
cross-polar responses compared to the co-polar responses. The cross-polar signal is 4
to 14 dB lower than co-polar signal for linear polarization. On the contrary, for circular
polarization cross-polar returns are o to 6 dB higher than the co-polar returns. It also
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notes that the stability of the polarimetric signature is short for lower resolution radar
as it is the sum of many different backscattering returns. The article also outlines the
advantages of the monopolarimetric filtering based on prior knowledge of the distur-
bances. Such approach works for weather disturbances but can also be used to filter
chaffs (metallic objects dropped by aircraft to disturb radar) and jamming as well. The
article separates detectors in two classes of polarimetric detectors. The first class in-
cludes detectors which minimize the expected disturbance returns at emissions (as in
[Shrader 1973]) by not emitting the polarization that will have high parasitic returns.
The second class includes the detectors minimizing the returns of disturbances at the
reception with a similar framework as the one presented in Kelly's detector, by filtering
the parasitic returns afterwards. [Novak, Sechtin, and Cardullo 1989] presents several
detectors using polarization. Some of the detectors deal with polarimetry only by using
amplitude informations whereas others build upon the principle of the Kelly's detector.

Indeed this article presents the Maximum Likelihood (ML) detector, which is an
adaptation of Kelly's detector with a fixed steering vector, this steering vector being
the polarimetric data vector :

——1
HXHRE X‘

hy
S1o (2.5.12)
hy

It also presents the span, which is a detector based on the total polarimetric power.
If X the polarimetric is written, X = (zgn, Ty, Tvh, Ty, ), the span detector is:

h

wanl” + |mo|” + |zval + |2yl <0
— St (2.5.13)

Trace(R ) hy

[Park, Li, and Wang 1995] proposes a detector based on the Generalized Likelihood
Ratio Test (GLRT) and Kelly’s detector to use the polarization in addition to space-time
diversity, by adding the polarization information to the measured vector and the covari-

ance matrix estimation. The detector is called Polarization-Space-Time domain Generalized

Likelihood Ratio (PST-GLR) and the test is written:

1 2

si"RE T, ho
ST (2.5.14)

Z —1
s HXF 131 <1 + aszRE :vp) hy

Where s; = (a8, avs)T with a;, being the polarimetric amplitude and phase of the
target received in polarization h and a, being the one received in v. s is the space-time
signature of the target (the same that is described in [Park, Li, and Wang 1995]). And x,,
is the data vector tested by the detector, with:

ho: xp, = (np + cp, My + cv)T
' T (2.5.15)
hy: x, = (aps + np + Cp, ayS + Ny + Cy)

With ¢, and n,, are the clutter and noise space time signature for the z polarization
(h or v). R is obtained with a training dataset &, k = (1 + Chi, Mok + Co) -
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RE = Y T per (2.5.16)
k

This detector show better performances by around 8 dB of SINR compared to Space-
Time domain Generalized Likelihood Ratio (ST-GLR) (which is the same as STAP).

[Pastina et al. 2000] also proposes a polarimetric GLRT-based detector, and outlines
the particular interest of adding cross-polar data for polarimetric detectors as man-
made targets usually exhibit higher co-polar returns than natural targets. [De Maio
and Ricci 2001] proposes a Polarimetric Adaptive Match Filter that builds on [Park, Li,
and Wang 1995]'s PST-GLR. The test is written:

ZARF'S (SILIRE”S)_1 SHRE 2 ho
51 S o (2.5.17)
(1 +zR z) hy

Using the same formalism as for the PST-GLR description, we have S = <g 2) and:

hi: z=Ssi+n+c (2.5.18)

{ho z=n+c
Which means that z the same data as x, but has dimension 2N instead of N x 2 as
x, (with N the dimension of the space-time data). and with z. ;, data from the training
dataset:

F = Z ze,kze,kT (2519)
k

The authors note that this implementation suffers no performance losses for realistic
case (fluctuating target) against the PST-GLR described in [Park, Li, and Wang 1995]. In
addition it represents a significantly lower computational load, which makes its use
favorable for polarimetric detections.

[Yamaguchi 2002] describes a detector designed for a stepped frequency W-band
radar (94 GHz) under the hypothesis that the decorrelation of the polarimetric clut-
ter is more important than the decorrelation of the target. For each frequency of the
stepped radar a measurement is made. The clutter suffers a larger decorrelation with
the stepped frequencies than the target. The dector gives better results than the Log
and Weibull CFAR detectors. However, we note that targets in the presented experi-
ments are a trihedron and a dihedron, which are obviously more stable targets than
drones. [De Maio, Alfano, and Conte 2004] adapts the GLRT to use polarization diver-
sity and to take into account the non-Gaussian nature of the clutter, by modelling it as a
compound-Gaussian distribution. The detectors presented are tested, and the authors
show that they do not exhibit a strict CFAR property, but are robust to different clutter
textures. Finally, the authors note that the real clutter data can exhibit covariance ma-
trix mismatch between the matrix estimated with the secondary data and the actual
covariance matrix of the clutter, and suggest further work on theoretical performance
analysis of detectors in the presence of mismatch. [Meslot et al. 2016] studies the im-
pact of polarization for ship detection in sea clutter; it shows the importance of dual
polarization radars as the ideal polarization for detection varies with wind speed and
grazing angle. In particular, it shows that using Vv polarization over Hh polarization
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leads to a gain of 3 dB for the detection threshold for incoherent detection (without
Doppler processing). With Doppler processing the gain is even more substantial, as
gains of up to 5 dB can be made by using Vv polarization. Finally, [Bailey, Marino, and
Akbari 2021] compares the use of a benchmark of polarimetric detectors for the detec-
tion of icebergs in the sea ice with a spaceborne SAR, and shows the importance of the
cross-polar component in the performance of the detectors.

2.5.5. Conclusion

This part has outlined the detection framework. First, we have addressed mono-
channel detectors and how they deal with multiple targets scenarios as well as clut-
ter edge scenarios. Then we have discussed endo-clutter detections and how multi-
channel data are processed to suppress clutter. We outline the importance of the prior
knowledge of the clutter data or its estimation as every endo-clutter detector requires
knowledge of the properties of clutter. Finally we discuss polarimetric detections. Po-
larimetric detectors can use an a priori filtering, by not transmitting and/or receiving
polarization which results in unfavorable SNR (For instance if the target does not have
high RCS in Hh polarization but the clutter does the radar can avoid transmitting the H
polarization or receiving h polarization). This technique requires an prior knowledge of
the polarimetric scene and target, this knowledge being used during the design of the
radar system. They can also use several polarimetric channel to increase data diversity
and in similar way to endo-clutter detection filter out undesired signal.

The presented detectors rely on an estimation of the clutter properties to make de-
tections. In particular multi-channel detectors rely on the prior knowledge or estimation
of the covariance matrix representing the clutter to perfrom well.

2.6 . Detectors tested in this thesis

This part presents the detectors we use to assess the interest of polarization for
the endo-clutter detection of UAVs. We present the framework of the detections and
describe detectors from the litterature as well as adaptation of existing detector to the
polarimetric case and a proposed detector which constitutes original work. These de-
tectors constitute the benchmark of detectors we test in this thesis. We introduce the
span, which is a classical detector described in [Novak, Sechtin, and Cardullo 1989], the
square root Maximum Likelihood (srML), an ad-hoc polarimetric adaptation of Kelly's
detector [Kelly 1986] and the Polarimetric SIRV (P-SIRV) detector adapted ad-hoc from
[Jay et al. 2003]. We introduce an additional detector, EVa, based on the eigenvalues
of the SCM estimate of the CUT. We also propose an adaptation of the CA-CFAR detec-
tor [Finn and Johnson 1968] for the monopolarimetric detectors, using the time axis for
clutter estimation instead of the range axis.

2.6.1. Framework

As mentioned in 2.5, the goal of a detector is to convert mono or multi-channel
data into a scalar to be compared with a threshold to assess whether or not a target is
detected. Given a measured radar dataset { X },.; y, the detectors we present aim at
detecting a target in a clutter plus noise characterized by a covariance matrix R, the
clutter plus noise data is written: {Xci}i ~CN (0, RC). We use a high Clutter to Noise
Ratio (CNR) hypothesis, meaning we do not model the clutter plus noise data has the
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sum of data from the noise and the clutter but only as data from the clutter. We want
to detect a target with a radar data written {XUAVZ},.

)

The detector hypothesis hg, target is absent, and h,, target is present is written:

ho @ {X;}, = {Xci—i-XUlAVi}i (2.6.1)

{ho : {Xz}l = {Xcz‘}.

X = {%nvis Tvei, Trni, Thoiy » Where X; is the iy, polarimetric data vector, in the

dataset of N polarimetric data vector under test. In the following X* denotes data
used for the clutter estimation in the detector tests.

2.6.2. Classical and adapted polarimetric detectors

In this part, we present polarimetric detectors found in literature and their adap-
tation to the polarimetric case. We also present an eigenvalue detector and mono-
polarimetric detectors. This set of detectors constitute the basis for the benchmark of
the performances to be performed in the following parts.

Span with multi-look

The span detector is an incoherent polarimetric detector. The span uses the sum of
the power of the polarimetric channels to make detections. With the data vector X =
(Ten, THy, Tvh, Tyy ), the output of the span detector is:

span (X)) = |96’Hh|2 + ’$Hv\2 + ’va\2 + ’$Vh\2 (2.6.2)

In the same manner as CA-CFAR [Finn and Johnson 1968], we use previous data to
adaptively change the output using the estimated clutter properties to keep the False
Alarm Rate (FAR) under control. Therefore, the test is written:

ho
Yispan (X
pan (Xs) _ <o (2.6.3)

Trace (RE ) hy

Where 1), is the detection threshold. The detector is analog to the classical descrip-
tion of the span detector [Novak, Sechtin, and Cardullo 1989]. This approach includes a
multi-look, it consists in summing the output of the span detector for each X, and us-
ing that as the scalar value used for the detection. We have several motivations for the
multi-look: on the one hand, detectors implementing multi-look have been shown to be
suited to endo-clutter detections as mentionned in a previous part (in [Schleher 1976]),
and, on the other hand, some detectors of the benchmark intrinsically implement a
multi-look, thus, a fair comparison between detectors need to include multi-look for
every detector.

This span detector is identical to a CA-CFAR detector with a multi-look and the es-
timation of clutter properties over time instead of range. Thus, it preserves the same
properties as a CA-CFAR detector, it is CFAR in homogeneous environment (homoge-
nous along the time axis, in this case).
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srML with multi-look

The srML is based on the GLRT of the polarimetric data. This detector works by whiten-
ing the signal on which the detection test is performed according to the estimated co-
variance matrix of the underlying clutter:

ho
— 1
Y VXIRY Xisn (2.6.4)
p hy

square root Maximum Likelihood (srML), is named that way because it is based on
the Maximum Likelihood detector for unknown steering vectors for each look, but in-
stead of summing the power, the square-root of the power is considered, see appendix
H

Spherically Invariant Random Vector (SIRV) with multi-look

SIRV detector makes the assumption the clutter data is SIRV, which means that X¢; =
Tg, with g ~ CN (O,RE) is @ random complex Gaussian variable and 7 is a texture
which is statistically independent from g, with a different distribution. This detector is
an adaptation of the GLRT detector to give the detector a CFAR property concerning
the texture of the distribution of the clutter [Jay et al. 2003]. In a compound Gaussian
distribution, the texture is the distribution compounded to the Gaussian distribution.
It is written:

— 1 h
SHRE "X, 0
Z max <no (2.6.5)

i S VSYRF 'S\/X"RF 'X,hy

The term \/XfRE_lXZ- normalizes the results with respect to the filtered polari-
metric power. Therefore, this detector should be sensitive only to the polarimetric sig-
nature of the target compared to the clutter, and ignore the relative power of the target
compared to the clutter. However, SCR still plays a role, as low SCR implies the polari-
metric signature of the target represent a lower proportion of the X ; vector compared
to the clutter.

2.6.3 . Mono-polarimetric detector

To these classical polarimetric detectors we add a mono-polarimetric detector. This
detector is based on the same principle as the CA-CFAR previously described. Instead
of using data of the range axis to evaluate the clutter level, we use data from the time
axis.

|$Pol,z‘|h0
DTS (2.6.6)
i ‘xPol,i hy

We recall:

X = (THhis THo» TVhis TV,i) (2.6.7)
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X" = (96 Hhyis T Huvjis L Vhys L Vv,i) (2.6.8)

We use this detector as a benchmark of performances for detection with the polar-
izations Pol € {Hh, Hv,Vh,Vv}. We use this detector on each of the four polarizations
when we test the detectors on real data, to assess the interest of polarimetric detector.

2.6.4 . New detector, EVa
Finally, we introduce the EVa. It makes detection based on the eigenvalues of the
SCM of the cells under test and the cells used for the estimation of the clutter. With
the eigendecomposition of R and RE, we have (Ao, A1, A2, A3) and (/\EO, AN, )\Eg)
respectively. The eigenvalues are sorted by magnitude. EVa consists in the following
test:

o
max)\—; <1 (2.6.9)
J 0

This detectors aims at detecting change in the dominant backscattering process.
The design philosophy of this detector is the following: for a clutter with a given set of
eigenvalues the inclusion of a target it the same range cell will alter the eigenvalues. A
target with low SCR might not be able to alter the highest eigenvalue much but should
be able to alter the other eigenvalues especially if they are a lot lower than the highest
one.

Preliminary tests of the srML, EVa and monopolarimetric detector (for the Hh polar-
ization) on real UAV and clutter data from the measurement campaign described in 4.2
are in a NATO STO journal article [Rozel, Brouard, and Oriot 2022].

To use these detectors we have to determine several parameters. First, we need to
determine Doppler integration time to extract the clutter data in which we intend to
detect the UAVs. We want to determine this parameter while maximizing the perfor-
mances of the detectors. We then need to determine how we choose the data used
in the clutter estimation. We need to determine if it is better to use data in the same
range cell but at different times as estimation data, or data from adjacent range cell at
the same time as the detection test. We also need to quantify the mismatch between
the dataset under test and the estimation data to quantify its effect on the detetector
performances. In this thesis we develop methods to choose these different parame-
ters.
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Chapter 3 |
Outline of the thesis

3.1. Goals

In this thesis we intend to propose a method to choose the best detector for endo-
clutter detections of UAVs as a function of the encountered clutter. We propose to
optimize the detection of endo-clutter UAVs taking into consideration:

* The type of detector used
* The Doppler integration time

* The mismatch between the estimated clutter covariance matrix and the clutter
covariance matrix in the CUT

3.2. Methods

In order to achieve these goals, we study the covariance matrices of real clutters ob-
tained with a measurement campaign of a semi-urban environment. The presentation
of the experimental setup and the measurement campaign is done in section 4.1 and
4.2.

First, we make the hypothesis that a clutter with covariance matrices that have a
low rank are best suited for good detector performances. We confirm this hypothesis
in section 5.4.

With this criterion, we determine that the estimation of the covariance matrix of
a clutter cell is more accurate using samples from the clutter cell at different times
instead of using samples from adjacent clutter cells at the same time. This analysis is
presented in 4.4.5.

We then study the behaviour of the measured clutter, through its covariance matrix.
We show that we can minimize the rank of the covariance matrices of clutter cells by
adjusting the Doppler integration time (the results are presented in 4.4.4).

Then we propose to model the temporal behavior of the covariance matrices with:

+ An eigenvalue distribution (see 4.4.6).

+ An angle, called the mismatch angle, that characterizes the mismatch between a
pair of covariance matrices of the same cell estimated at two different times. The
mismatch angles measured are then linked to the time interval between the two
clutter estimations and fitted with an exponential decay law (see 4.4.7).

Using this model, we are able to represent temporal clutter behaviors and analyze
the performances of different detectors (in our case the detectors presented in section
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2.6) for different clutter types. This analysis confirms that covariance matrices with low
rank lead to good performances for polarimetric detectors (see section 5.4). They also
confirm that a low mismatch angle between the estimated clutter and the clutter of
the CUT leads to good performances (see section 5.5). However, the drawback of this
method is that it does not take into account the polarimetric structure of the clutter.
Instead it relies on random polarimetric structures for the estimated clutter and the
clutter of CUT, by forcing this random polarimetric structures to correspond with a given
mismatch angle. In order to overcome this drawback we perform hybrid simulations,
more representative of the real clutter data (see section 5.6). We make simulations
to measure the performances of the detectors with the time interval between clutter
estimation and the detector test using measured clutter signature and measured UAV
signature.

This simulation procedures provide a methodology for analyzing clutter and choos-
ing the best polarimetric detectors and the best parameters for its operation.

Part of this work has been published in:

* Rozel, Brouard, and Oriot 2022: Publication related to preliminary tests of the
polarimetric detectors on measured clutter data .

* Rozel et al. 2022a: Publication on the evaluation of the influence of the mismatch
angle on the performances of the detectors.

* Rozel et al. 2022b: Publication related to the upgrade and automatization of the
radar system used in this thesis.

3.3. Outline of the work presented

The next parts are structured as follows:

+ We present the measurement campaign on which we based the work of this thesis.
We present the 3 clutters we study in this thesis and that provide a case study for
our methodology

* We analyze the polarimetric clutter properties

+ We make synthetic simulations of clutter to evaluate the performances of detec-
tors and the influence of the eigenvalue distributions and mismatch angles on the
performances

+ We make hybrid simulations using measured clutters and UAV signature to test
the influence of the time interval between the estimation and detection test on
the performances of the detectors.
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Experimental Study of the Polarimetric
Clutter

Since an accurate estimation of the environment properties is necessary for accu-
rate detections, this chapter addresses several essential properties of the ground clut-
terin alow-grazing configuration. These properties are paramount to accurately assess
the performances of polarimetric detectors.

In this chapter we present a measurement campaign on a UAV and semi-urban clut-
ter and the radar used for this measurement campaign, HYCAM.

We then study the polarimetric properties of the low-grazing clutter. We first show
that Hv and V'h polarization do not necessarily correlate if the receive elements for i
and v polar are not perfectly colocated. We deduce that we have information on the
4 polarization channels instead of 3 in our polarimetric data vectors, this additional
degree of freedom can be used to enhance the detection step. As clutter is extracted
with Doppler processing, we introduce a metric to determine the optimal integration
times.

As we use the time axis to estimate clutter properties and clutter composed of
changing objects (vegetation, slow moving objects, etc.), their properties change and
the estimated properties need to be updated. We introduce a metric to measure how
clutter changes with time, and at which rate. By measuring this metric we derive a decay
time of the clutter which can serve as a guide for determining the clutter estimation up-
date time. Furthermore, we show a distinct advantage in using the time axis for clutter
estimation, as it further reduces the introduced metric and provide a better description
of the clutter than using the range axis for clutter estimation.

4.1. HYCAM

4.1.1 . HYCAM radar architecture

HYCAM is a Software Defined Radar (SDR); it means that analog parts are reduced
to a minimum. Each element of the transmitting antenna can emit an independent ar-
bitrary waveform within the bandwidth constraints. On the receive side, beamforming
is done digitally. This approach means the radar system is highly versatile, and can be
used to test many aspects of the radar processing, such as detection and the effect of
Doppler processing time on detections.

Figure 4.1 presents a flow chart of the radar architecture, each part is addressed in
the following section.
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Figure 4.1: Flow chart detailing HYCAM architecture.
Antennas

HYCAM has two antennas mounted on a turret, a transmit antenna and a receive an-
tenna (Figure 4.2). Both antennas are array antennas. The individual radiating element
is a cross-shaped pair of perpendicular electrical dipoles slanted at 45° (See Figure 4.4).
By shifting the phase of one of the dipole the transmitted polarization is changed (see
figure 4.3).

The aperture of a single element is 120° in both azimuth and elevation. These ele-
ments are grouped in column of 32 elements. The spacing between two consecutive
elements of a column is A\/2 and the spacing between two consecutive columns is \/2,
as shown in Figure 4.4.

Transmit antenna The transmit antenna is composed of 12 columns (Figure 4.5),
which corresponds to a surface of 12 x 32 cross-shaped pair of dipoles. The small-
est individually adressable unit is a column pair, each pair can transmit independently.
Each pair has an aperture of 60° in azimuth and 4° in elevation. The full antenna az-
imuth aperture is 10°. The polarization of the transmitted can be controlled from pulse
to pulse. The polarization is controled by phase shifters. In the measurement cam-
paign we transmitted the same waveform with all column pairs, alternating between
polarization at each pulse.

Receive antenna The receive antenna has 16 independent columns, which corre-
sponds to a surface of 16 x 32 cross-shaped pair of dipoles. The signal from each
columns can be addressed in both polarizations in various combinations. (Figure 4.5).

Figure 4.6 shows two possible configurations for a group of 4 columns. In the single
polarization configuration, each column returns the signal in one given polarization (h
orv, hinthe case presented Figure 4.6). Thus we have four independent signals, one for
each column. In the multiple polarization configuration, for each column we receive the
signal in both polarizations. Thus we have 8 different signals but only 4 output channels.
Thus, we sum full column signal in pairs for each polarization. h signals from column
and (' are summed together, and so are h signals from column C5 and Cs. The same
is true for the v signals of these columns. The four channels contains the sum of the
signals from C, + C; and Cy + C3 columns in both h and v polarizations.
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Figure 4.2: HYCAM radar and its two antennas
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Figure 4.3: Description of an element of the transmit (Tx) antenna.
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Figure 4.4: Radiating elements of the antennas and antenna columns.
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Figure 4.5: Columns of the Tx and receive (Rx) antennas
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Columns

chy, chy ch, ch; + +
Channels
Single polarization Multi polarization
configuration configuration

Figure 4.6: Monopolarimetric and fully polarimetric configuration of the receive antenna, we
only show 4 columns for clarity. h designate the horizontal polarization and v the vertical polar-
ization. ch; designate the i*" channel.

The azimuth receive aperture for a single column is 120° and 60° for a column pair,
the elevation aperture is 4°. The full antenna azimuth aperture is 8°.

In the multiple polarization configuration used in the following thesis we used the
signal of 2 channels from configuration presented in figure 4.6. We used channel o and
channel 3. This means that the antenna that receive the signal in h polarization is not
colocated with the antenna receiving the v polarization. This means that there is a delay
between the receive channels for off-axis targets that depends on the relative azimuth
of the targets to the radar due to the 2\ distance between the receive channels.

Turret

The antennas of HYCAM are mounted on a turret with unlimited rotation in azimuth
and elevation angles varying between —4° and 50°. This turret allows the radar to track
targets with a given target designation. The radar is located in ONERA’s Palaiseau re-
search center on top of a 4-storey building meaning it has a panoramic view on the
surrounding region, allowing for clutter measurements.

HYCAM has a rotating joint to pass the data through the turret.
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Transmitted signal generation and amplification

The transmitted signal has a maximum bandwidth of soo MHz around a central fre-
quency of 3.15 GHz. We generate the transmitted signal with an AWG with 6 indepen-
dent channels, one channel per column pair of the transmit antenna. The signal is
generated in Intermediary Frequency (IF) around 1.5 GHz and transposed to the Radio
Frequency (RF) around 3.15 GHz. The transmitted signal is then passed through the ro-
tating joint of the turret to the power amplifiers. The radar has a peak output power of
700 W with a maximum duty cycle of 30%.

Digitizing the received signal

After reception, the radar signal is amplified by LNAs and then goes through the rotating
joint to a RF down-converter, converting the signals center frequency from 3.15 GHz
to the IF 1.5 GHz. Finally the signal is recorded on a 4-channel 12-bit digitizer able to
accommodate the 500 MHz bandwidth.

Sequencer

To synchronize different parts of the radar, namely, polarization switching at transmis-
sion, power amplification blanking (to avoid transmitting noise when no signal is sup-
posed to be transmitted), the AWG and the digitizer, HYCAM uses a sequencer. All these
components use a common local oscillator to have a common reference frequency.

Control software

All of HYCAM components are controlled digitally. We created a new control software
for the radar system that unifies the different components of the radar. The control
software is able to control and monitor the turret. On the transmit side, the software
can modify the waveforms transmitted by the AWG and the sequences used by the
sequencer. On the receive side the software controls the digitizer, and its main param-
eters, such as sampling frequency, number of channels or acquisition time.

As the new control software controls both the transmit and receive side, it is able
to prepare a measurement on all the devices and launch the measurement via the se-
quencer. The turret can automatically follow any target with appropriate target designa-
tion frames. This new control software coupled with the Opensky Network Application
Programming Interface (API) was used to acquire automatically a large database of air-
craft radar signatures as explained in a communication at the 10th Opensky symposium
[Rozel et al. 2022b].

4.1.2 . Radar configuration for the measurement campaign

For the measurement campaign described in 4.2 we use a Single-Input Multi-Output
(SIMO) waveform using the six transmit column pairs (meaning the same waveform is
transmitted on all independent columns). Thus, the transmit azimuth aperture is 10°.
We used a waveform with 10 MHz bandwidth, PRI of 100 ps between the polar switching
and a pulse duration 7 of 10 ys, alternating between transmitting H and V polarisation
(See Figure 2.11 and Figure 4.7).

The maximum unambiguous range is then 15 km. The maximum unambiguous ve-
locity depends on whether or not the waveform is polarimetric. In 2.1.2 we explained
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that a fully polarimetric waveform (transmitting both polarizations successively) means
the PRF is effectively divided by 2, therefore, the velocity ambiguity is also divided by 2.
Thus, with a fully polarimetric waveform the velocity ambiguity is 120 m - s~! and for
the non polarimetric waveforms the velocity ambiguity is +240 m - s~! because of the
polarimetric PRF being half of the non-polarimetric PRF. The waveforms parameters
are detailed in Table 4.1.

Parameter Value
Carrier frequency 3.15 GHz

T 10 YIS

PRI 100 YIS
Bandwidth 10 MHz
Sampling Frequency 25 MHz

Radar resolution 15 m

Range ambiguity 15 km

Velocity ambiguity +120m-s7!

Transmitted polarization H,V

Coupling range 1500 M

Table 4.1: Parameters used in the measurement campaign.

As explained in 4.1.1, we used one pair of columns of the receive antenna for each
polarization (using chg and chs in the configuration outlined in Figure 4.6): one in h
polarization and the other in v polarization. These two receiving pairs are separated by
two wavelengths, i.e., about 20 cm. As a result, Hv and Vh signals backscattered by a
target off boresight of the radar will have different phases.

For each measurement, we made a calibration measurement using a transponder
as described in 4.1.3.

With 10 MHz of bandwidth and with 10° transmit beam azimuth aperture, the range
cell measures 15 meters and is r%w ~ & wide, with r the range. For instance, at 3.5 km
range, the range cell has a surface of roughly 9,000 m?2. This large surface area implies
that a large number of backscaterrers are present in one single clutter range cell.Thus,
there is a high variability of the polarimetric signature from cell to cell.

4.1.3 . Polarimetric radar characterization and calibration

Characterization and calibration of the radar is essential. We need to ensure that
the phase and amplitude between the different polarimetric channels is stable with
time as the analyses we make in the next parts are based on the stability of the clutter
signature. Furthermore, we want to ensure that the transfer function of the system
does not depend on frequency, which means that the received signal is not distorted
by the RF components. The knowledge of the transfer function also means we are
able to compensate radar response in the received signal. We detail in this part the
calibration and characterization procedure as well as the obtained results.

"It is also possible to use orthogonal waveforms to emit both polarizations at the same time [Titin-
Schnaider and Attia 2003], thus not altering the PRF
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Figure 4.7: Description of the time sequences of data transmitted and received by the radar.

Using a transponder to characterize the radar

To characterize and calibrate HYCAM ONERA uses a transponder system. The transpon-
der is equipped with two horn antennas. The transponder receives the radar signal
through the receive horn antenna, then it amplifies the signal. Next the signal is fed in
an optical fiber of 10 km to shift the position of the radar return (changing its relative
position). This is important since the transponder is approximately 250 meters away
from the radar, in the coupling domain which would degrade the measurement. At 10
km the clutter returns are far lower so it helps avoid disturbances in the measurement
of the transfer function. In addition, the transponder also applies a phase ramp from
pulse to pulse if the signal is strong enough. It simulates a moving target and reemits
the signal toward the radar with the Tx horn antenna. The flowchart of the transponder
is described in Figure 4.8.

It means the “target” is exo-clutter meaning the measurement of the returned power
is not polluted by the clutter signal as shown in Figure 4.9.

The two horn antennas can be rotated to receive and transmit in a specific linear
polarization. In our case we use the two horn antennas in a configuration in which
they are rotated by 45°. According to the malus law [Collett 2005], the receive horn
antenna receives in either H or V polarization with a reduced amplitude of -3 dB. Dif-
ferent configurations of the horn antennas are outlined in Figure 4.10, in particular the
configurations with both antennas at 45°. This method allows for an accurate determi-
nation of the transfer function, moreover, it allows for the measurement of the relative
amplitude and phase of the different polarimetric channels.

Measuring the transfer function. To compute the transfer function, we take a large
number of consecutive waveforms received from the transponder. To increase the
SNR on the measured radar data we want to sum these consecutive data. Integrating
1000 consecutive pulses gives a SNR of 8o dB of SNR. We align their phases before
summing them. We use this method to avoid facing the off-grid problem when trying to
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Figure 4.8: Transponder flow chart.
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Figure 4.9: Doppler-range map with the transponder returns. Note the shift of 20m - s~! on the

Doppler-range map due to the phase shift (the Doppler artefacts on the transponder signals
are due to a small default of the transponder).
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Figure 4.10: Several antenna configurations of the transponder.

measure the transponder response on the Doppler-range map. As we transmit chirps,
we can use the fact that the phase of a chirp is a parabola. Thus, for each waveform
a polynomial fit is performed to get the phase and correct it. Once the phases of the
chirps are realigned, we take the mean of the measured chirps to estimate the “real”
chirp. We use a Fourier transform on this chirp to get the received signal spectrum. By
comparing the received signal spectrum to the spectrum of a perfect chirp we obtain
the transfer function of the radar system.

Measuring the amplitude and phase stability between the polarimetric channels.
When the radar returns from the transponder are isolated we can measure the rela-
tive amplitude and phase between the channels. The transponder has, as any target,
a backscattering matrix, S, depending on the horn antenna configuration. For the con-
figuration in which both horn antennas are oriented at 45° the backscattering matrix is

[Sarabandi, Oh, and Ulaby 1992]:
1 -1
S = (_1 ] ) (4.1.1)

It means that there will be a phase between the polarimetric channels due to the
transponder, but this phase is independent with time. It allows us to check for the
stability of the phase difference beween the channels has well has to determine the
systematic phase difference and the amplitude ratios between the channels.

HYCAM Calibration

We outlined a method for the calibration of polarimetric radars, we now apply this
method to the HYCAM radar, we first measure the transfer function. We notice the the-
oretical and received chirps are different in Figure 4.11. This is to be expected, since the
radar radio frequency chain is not perfect. The auto-correlation of the pulse compres-
sion gives the highest output possible (and thus the highest SNR), when the waveform
used to compute the correlation is identical with the one emitted by the radar.

We see that the chirp power slightly varies across the band of interest for our mea-
surement (less than 2dB over the 10 MHz under consideration). Which is confirmed
by the transfer function (The ratio of the measured chirp spectrum and the theoreti-
cal chirp spectrum) shown in Figure 4.12, we notice that the amplitude variation in the
bandwidth is less than 2 dB.
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Theoretical chirp Measured chirp (1 pulse) Measured chirp (1000 pulses)

Power (dB)
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Figure 4.11: Comparison of the theoretical chirp (left), the chirp measured with 1 pulse (middle),
and the chirp measured with a 1000 pulses (right) (Hh polarization). The chirp parameters are
the following: 23 MHz bandwidth and a 7 of 10 us.
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Figure 4.12: Transfer function of the HYCAM radar for the 10 MHz of the chirp used in this thesis.
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Figure 4.13: Relative phase and power between the Hh and Vv channels.

With the transponder with both horn antennas at 45° we measure the relative phase
and amplitude between the co-polar channels Hh and Vv (see Figure 4.13). As the rest
of our work takes interest only on the relative stability of polarimetric backscaterring
processes of the clutter, via the covariance matrices anlysis on the time axis, it only
necessitate that the amplitude and phase of the radar are stable during time.

It does not require for the ratio of the amplitudes to be equal to 1 or for the phase
difference to be 0°.

As further analysis, we compute the polarimetric SCM of the data from the transpon-
der (Figure ??) as follows:

_ 1
Rypons = ﬁ Z XtXtH (4.1.2)
t ¢

with X, the polarimetric vector received from the transponder at a given time. This
covariance let us estimate the phase and amplitude noise of the radar system. The nor-
malized eigenvalues of this covariance matrix are {0 dB, —41.4 dB,—45.9 dB, —76.5 dB}.
We are measuring one polarimetric state with the system (as all the polarimetric chan-
nels should be perfectly correlated), as such perfect system would have a rank 1 covari-
ance matrix. In our case the interval between the first and second eigenvalue is -41.4
dB, which gives the sensitivity of the system for polarimetric measurements.

Conclusion

We provided a description of the radar system used in this thesis and a method to
calibrate it. We have explained why the characteristics of the HYCAM radar are suitable
for the polarimetric analysis we conduct in the next parts. Namely, the radar has both
stable phase and power ratios between the different polarimetric channels, and we are
able to measure data with a dynamic range of more than 40 dB between the dominant
polarimetric backscattering process and the less intense polarimetric backscattering
process.
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Figure 4.14: Picture of the UAV used in the measurement campaign. The crown carbon fiber
crown was not fitted on the UAV during the campaign.

4.2 . Measurement campaign

The measurement campaign was carried out with the HYCAM radar and a UAV (Fig-
ure 4.14) with pre-defined flight patterns (Figure 4.16):

1. Two consecutive circles of 150 m of diameter with the UAV flying at 5 m - s7*

2. A 300 m length and 100 width hippodrome m with its main axis pointing toward
the radar with the UAV flying at 1o m - s=*

3. An hippodrome of length 250 m and width 50 m with its long axis pointing per-
pendicular to the aiming line of the radar with the UAV flying at 10 m - s~*

4. The drone hovering for go s

We chose these patterns to have a large variety of UAV positions in the range-Doppler
space. The circles give us constant variation of both Doppler and range of the target.
The hippodrome perpendicular to the line of sight of the radar represents a part of the
trajectory in which the UAV has a very weak Doppler signature but is nonetheless flying
at important speed. conversely, the hippodrome aligned with the line of sight of the
radar gives the UAV a stable attitude (to hover UAVs make a lot of adjustments and
thus change their attitude) and a large Doppler shift. The hovering phase gives us long
phases of endo-clutter UAV signal. Figure 4.15 shows an example of flight log informa-
tion projected on Google Earth’s. We distinguish the two hippodrome trajectories and
the circle. The blue line is the line of sight. The radar antenna aimed at the trajectory
of the UAV.
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Figure 4.15: Projection of the trajectory of UAV on the map. Source : Google Earth

Figure 4.16 shows the surroundings, which is a typical semi-urban clutter. It fea-
tures sparsely and densely forested areas and large fields. It also features roads, both
oriented along the radar Line of Sight (LoS), with a Doppler signature for the cars, and
perpendicular to the radar LoS meaning that the cars have Doppler signature similar
to the clutter. Finally, the clutter also contains buildings either isolated or grouped in
small towns.

4.3 . Study of the low-grazing polarimetric clutter

The data of this measurement campaign allows us to determine key quantities for
the polarimetric signature of the clutter. We determine that in spite of reciprocity prin-
ciple Hv and Vh returns are not fully correlated in most clutter cells, which is partially
due to the use of 2 different elements to record Hv and V' h data, as we show with a
simple model. We also establish an optimal Doppler processing time that minimize the
degrees of freedom of our clutter. In addition, we carry out a space-time analysis of
the clutter variations , with respect to received power and polarimetric signature. We
also determine the existence of a decay time for the polarimetric signature of the low-
grazing ground clutter.

4.3.1. Non-correlation of the cross-polarization channels in the presented config-
uration
For any measurement with a colocalized radar we expect correlated returns for Hv
and Vh polarization because of the reciprocity principle. We show this is not the case
in our experiment due to the geometry of the antenna and in our experiment.

Measure of the correlation of the cross-polarization channels

Given the reciprocity principle, Sy, = Sy, the cross-polarization terms of the backscat-
tering matrix are equal, we expect Xy, = Xy}, the cross-polarization returns from a
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Figure 4.16: Map of the zone measured by the radar during the experiments, the orange lines
represents the limit of the aperture of the radar and the blue line is the radar LoS.

given target are equal [Boerner et al. 1981]. However, we observe that for the clutter
cellsin our measurement campaign this relation is not verified (Figure 4.17). By defining
the correlation rate for the clutter cell as:

OX o Xvh

PXpoXyn = 7——— (4-3-1)
V Ug(HvaX?/h

With oxy and 0% respectively the estimated covariance between X and Y and esti-
mated variance of X defined as follows:

oxr =3 é (%, ~X) (v - 7)’ 432)
% = Oxx (4.3.3)

Where z* is the conjugate of z. We compute the correlation along the time axis.
The maximum expected correlation rate that we expect can be expressed as a function
of the Clutter to Noise Ratio (CNR) on the X, and Xy, channels (see appendix C for
demonstration).

VCNRy, x CNRyy,
Pmaz = (434)
VIt CNRy, x V1+ CNRy,

We estimate the CNR by making 128 consecutive Doppler-range maps with a 0.4 s
integration time (Figure 4.18).

In Figure 4.18 cells with a speed of o m-s~! represent the clutter and the cells with an
arbitrary non zero speed (large enough to not be contaminated by the clutter) represent
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Figure 4.17: CNR (left) and expected (right, pimq.) and measured correlation (right, px,,, x,,) rate
between Vh and Hv channels.
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Figure 4.18: Doppler-range map. The clutter appearsatom -s~'.
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Line of Sigh Radar aperture

Figure 4.19: Height level along the radar LoS, and satellite image of the fort of Buc, outlined on
the altitude profile. This range corresponds to a reciprocal clutter (correlation between Hv and
Vh).

the noise (since there are no targets). We take the incoherent mean of the cells over
time to get the noise and clutter power at each range. (Figure 4.17)

In Figure 4.17 we observe p,,., and px,. x,,, as functions of range. We observe that
the correlation rate is lower than the expected value except for rare range cells. This
correlation should be p,,.. since Sy, = Sy, except for noise. Amongst the exceptions,
we notice a strong correlation between 10.5 km and 11 km.

Figure 4.19 shows that it corresponds to a small military fort. This fort is partially
buried; however, it culminates 20 m higher than its surroundings with its trees. These
trees are very densely packed. Furthermore, it is located in the center of the aperture,
which mean that the amplitude received from this backscatterer is very similar for both
antennas and the relative phase is close to 0°.

Modeling and simulation

To analyse this deviation from the expected values a simple clutter model was created.
We run simulations to determine the radar returns of a unique range cell. In the said
range cell at r=10 km we have N backscatterers spread over the aperture with S = Sy, =
Svn, the backscattering is given by:

S ~CN(0,1) (4.3.5)
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Figure 4.20: Drawing of the configuration of one clutter backscatterer.

CN (0, 1) isthe complex normal distribution of mean o and variance 1. Each backscat-
terer is located at an angle 6§ away from the radar LoS, with:

0 ~U (-7, ) (4.3.6)

U (—m, ) is the uniform distribution between —7 and 7.

We model the separation between the Hv and V' h phase centers (Figure 4.20) by
applying a phase, ¢ (6), to the received power of the backscatterer and we apply a fac-
tor to take into account the radar transmit and receive apertures, Ay, (/) and Ay, (0)
denoting respectively the v and h receiving element, Ax, the product of the transmit
aperture in X polarization and receiving aperture in y polarization. We then have fol-
lowing couple:

XH’U = S X AH’U (Q) X €i¢>(9) —+ Ny ( )
XVh = Sx A\/h (9) X ew(*@) + np 4.3-7

with n, the noise that corresponds to the x polarization receive channel. The signal
phase is then defined as:

2 .
—7 4 /1% + % — ar sinf

o (0) =27 3

With A = 1 - 107! m the wavelength of the carrier wave. To obtain Ay, (6) and
Ay, (0), we measured the receiving aperture of HYCAM leading to the measurement
presented in appendix B. By generating N sets (corresponding to N clutter cells) of M
backscatterers we can estimate the signature of the N cells by the two antennas by
coherently adding the backscatterer returns. We have:

(4.3.8)

Xy, = M. S x Ay (6;) x €90 4, ( |
Xvin = XM S x Ayp, (6;) x €0 4y, 4.3.9

We make an ergodic hypothesis, instead of measuring the correlation rate between
the NV iterations of the same clutter we measure the correlation rate between N sets
of clutter cells measured in v and h polarizations.

Figure 4.21(a) shows the results of a 64 simulations with M = 2048 backscatterers,
N = 128 clutter cells, r = 10 km, a separation between the pairs of column a = 2\ = 20
cm with varying CNR between -5 dB and 25 dB. The blue line is the average correlation
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Figure 4.21: Theoretical correlation with the reciprocity principle and simulated correlation with
the receiving pairs of columns separated by 2\ = 20 cm with identically distributed backscatter-
ers (a), and an additional strong backscatterer (10 dB above the other backscatter) (b)

obtained with the simulations for each CNR and the outline is the standard deviation.
The dark red line is the expected result for colocated antennas.

These results demonstrates that even though the reciprocity principle applies, the
measured signature of the clutter for the Hv and Vh polarization do not necessarily
correlate.

If we generate a stronger backscatter in the center of the aperture (corresponding
to the military fort at 10.5 km in our measurement), the correlation rate should go back
up and be close to the theoretical maximum if the proposed model is valid considering
the results observed on the real data (Figure 4.17). The Figure 4.21(b) shows the re-
sults of simulations with the same parameters as for Figure 4.21(a), with an additional
backscatterer in the center of the aperture with a greater magnitude, S = 10 dBsm.
These results confirms that with a strong backscatterer in the center of the aperture
the correlation is close to the theoretical maximum.

Thus a semi-urban clutter with no dominant backscatterer can have different signa-
tures for the Hv and Vh polarization. Hence, we considere the two cross polarization
channels should bring an additional degree of freedom, which, when taken into account
in the detection processing could result in better detection performances.

According to these results the measured polarimetric we consider in the following
work is:

X = {Xvn, Xvo, Xun, Xuo} (4.3.10)

4.4 . Polarimetric Clutter Properties

In order to improve performances of endo-clutter polarimetric detectors, we need
to study polarimetric clutter properties. Since detectors require an estimation of clutter
properties, we need to determine how to estimate polarimetric covariance matrix of
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the clutter. The estimation should be as close as possible to the clutter in the CUT, as
we suppose that cells closer to the CUT should be similar to the CUT, leading to better
estimation of the clutter in the detection test, thus better performances. To make the
estimation of the covariance matrix of a cell we need a dataset with NV measurements of
the cell at different times or N measurements of similar cells (surrounding the CUT). We
need to choose how this estimation is done to better represent the clutter. If the clutter
is perfectly stable with time the covariance matrix estimated along the time axis will be
of rank 1 (if the covariance matrix is estimated on the range axis and the covariance
matrix is stable with range it should also be of rank 1). Simulations conducted in 5.4
show that rank 1 matrices lead to better performances for polarimetric detectors.

Therefore, we try to minimize the rank of the covariance matrices. Thus, we choose
the axis for the covariance matrix estimation that minimizes the rank of the covariance
matrices obtained.

Then, we detail the properties of the polarimetric clutter using the covariance matrix
formalism. We estimate the covariance matrices with SCM estimator and determine the
Doppler processing time that also minimizes the rank of the covariance matrix.

We also define a decay time for the polarimetric signature of the clutter and pos-
tulate that we can partially decouple the polarimetric signature from the power of the
clutter.

These tests serve the simulation establishing the performances of polarimetric de-
tectors for endo-clutter UAVs we present in the final part.

4.4.1. Presentation of the studied clutter range cells

In this thesis, we illustrate our work on three different clutter range cells. These
ranges are representative of different clutters we find in a semi-urban environment.

Farmland Clutter

The first clutter we study is farmland clutter located 3.54 km away from the radar. This
clutter is composed almost exclusively of unharvested farmland (Figure 4.22). The CNR
of this range cell is 14.5 dB for a 10 ms integration time.

Farmland and Road Clutter

The farmland and road clutter is characterized by a nearly tangential road to the radar
meaning that during the measurement clutter will contain cars with a low radial velocity.
The rest of the clutter is composed of unharvested farmland (Figure 4.23). The CNR of
this range cell is 19.4 dB for a 10 ms integration time.

Urban Clutter

A third kind of clutter is composed of buildings which dominate signature of clutter
in this range cell even though the other 2/3 are composed of woodland and farmland
(Figure 4.24). The CNR of this range cell is 12.2 dB for a 10 ms integration time.

The properties of these three clutters which will be detailed in this chapter and are
summed up in 4.4.8.
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Figure 4.22: Map of the farmland clutter.
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Figure 4.23: Map of the farmland and road clutter.
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Figure 4.24: Map of the urban clutter.

4.4.2 . Covariance matrix estimation

We use the polarimetric covariance matrix to analyze the properties of the polari-
metric clutter. After the Doppler-range processing we format each clutter cell as:

X (tad) = {XHhaXHvaXVhaXVv} (441)

with d and t respectively being the distance and time coordinates of the clutter cell. As
emphasized previously, we use both X, and Xy, as they do not completely correlate.
We compute an estimate of the covariance matrix, using the SCM. The SCM is averaged
over the time axis as illustrated in Figure 4.25 as we justify in 4.4.5.

Each clutter cell contains a large number of different backscatterers, which means
their polarimetric signature can strongly vary with distance. On the other hand, there
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Figure 4.25: Estimation of the covariance matrix from the Doppler-range maps.
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are few variations in the nature and number of backscatterers in a clutter cell during
time (except the presence of target or rare phenomena). It means that the polarimetric
signature should be more stable along the time axis than along the distance axis. The
covariance matrix estimates is written:

N—-1
R(t,d) = ]IV S X (¢ +it,d) X (¢ + idt, d) (4.4.2)
=0

4.4.3 . Eigenvalues

To characterize the covariance matrices we use the eigenvalue decomposition. We
have:

R=U'AU (4.4.3)

L= dlag {)\Oa )\1; )\2; )\3} (444)

A; are the sorted eigenvalues and U the eigenvectors basis. Each eigenvalue repre-
sents a set of backscattering processes and its power. An equal repartition of power
between the eigenvalues means that no set of backscattering process is dominant dur-
ing the time of analysis, whereas a concentration of power in a single eigenvalue mean
that the backscattering processes are stable during the time of analysis. A 4x4 complex
covariance matrix estimated with the SCM has 16 independent parameters; the eigen-
values reduce these 16 independent parameters to 4 and allows an analysis based on
the stability of the clutter signature.

We characterize the covariance matrices by their rank as some detectors (srML for
example) project the data from the CUT in the orthogonal subspace to the estimated
clutter. Due to the rank-nullity theorem, the orthogonal subspace is larger as the rank
of the covariance matrix is lower, thus the target is more likely to be in this orthogonal
subspace.

The clutter return is a composition of several polarimetric backscattering processes
shifting during the time of analysis. The rank of the SCM represents how much the
polarimetric signature of the clutter changes during its estimation. To measure the
rank of the SCM we introduce the eigenvalues’ Shannon entropy [Shannon 1948]:

]Vchan_1
H=— Y plogy, pi (4.4.5)
=0
with:

Ai
pi = (4.4.6)

o Nchan_l

We introduce the effective rank as a useful metric for N.,.,,-channel coherent signals
that, related with a finite number of parameters, to estimate dimension of the problem.
[Roy and Vetterli 2007] shows:

Nehan—1

Teff = Ncs;w,n = H pi_pi (4.4.7)
=0
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Figure 4.26: Mean effective rank over the duration of the measurement as a function of the
range cell and the Doppler processing time, normalized for each range under consideration.
Markers indicate the minimum effective range for each range cell.

We expect a low effective rank in range cells where the clutter polarimetric scattering
mechanism are stable with time. As we detail in 5.4, a low effective rank is conducive
to high performance for the detectors based on the structure of the covariance matrix
of the clutter.

4.4.4 . Doppler integration time influence on the SCM

We measure the effective rank as a function of the Doppler processing time. We ap-
ply Doppler processing on the data with different integration time ranging from 200 ps
(no Doppler processing) to 1s (Doppler processing over 5000 pulses). We compute the
SCMs over these Doppler processed data with a fixed number of samples (IV = 20). We
measure the effective rank for each range cell and each integration time. We search
local minima of the effective rank, as lower rank matrices means the clutter filtering
problem has a lower number of degrees of freedom and thus, is easier to address. Fig-
ure 4.27 shows the effective rank as function of range and of the Doppler processing
time. The dynamic is normalized at each range to emphasize the local minimum. Mark-
ers show minimum of the effective rank at each range. We observe that a Doppler
processing time of the order of magnitude of 1072 s seems to consistently minimize
the effective rank for most ranges. At ranges inferior to 2 km, the radar is still receiving
the signal from backscatters in near field and the signal is akin to radar coupling, mean-
ing that this data is not representative of the clutter returns we expect. Returns from
ranges further than 8 km suffer from a low CNR (Figure 4.17 and Figure 4.28b).

Figure 4.27 shows the minimum effective rank at each range. We see a high disper-
sion of value at further ranges, most probably due to the low CNR. The effective rank
level at range closer than g9 km are all lower than 2, which suggests that clutter filtering
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Figure 4.27: Minimum effective rank measured at each range.

works well at this ranges. In the next parts, we choose the integration time following
three constraints:

1. The Doppler integration and the estimation of the SCM must be long enough to
ensure a sufficient CNR and an adequate estimation.

2. The total integration time should be short enough to be actionable, as an integra-
tion time too long masks rapid variations of the clutter and might be longer than
the time the target spends in the clutter.

3. The integration time plays a role in the effective rank of the covariance matrix as
discussed in 4.4.4 and we want to minimize this effective rank.

These computation enables an adaptive Doppler processing time, depending on the
clutter cell under consideration.

As we also want to keep our processing close to what can be achieved operationally,
which means a common integration time for each range cell, even if the integration
time doesn’'t minimize the effective rank at every ranges. The Doppler processing was
computed over 10 ms (50 pulses long burst per polarization), and the SCM estimates
over 50 samples. It means, each covariance matrix, and eigenvalue set, represent 500
ms of data. This Doppler processing time is the one chosen for every studied clutter cell
in the following, except if specified otherwise. This value is a compromise between ad-
equate estimation of the covariance matrix and a fast integration time to have a larger
number of uncorrelated data to study (or in an operational context a faster refresh rate
of the detector).

4.4.5 . Comparison between range and time estimated SCM

The clutter we study in this part exhibits several different behaviors. Figure 4.28a
and 4.28b show the mean eigenvalue over time as a function of the distance for covari-
ance matrices computed over the range axis (Figure 4.28a) and the time axis (Figure
4.28b). To compute the mean eigenvalues we compute covariance matrices of the clut-
ter using a 10 ms Doppler processing time and 50 samples, for each range cell we have
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(b) Covariance matrices computed over the time axis. The outlining shape shows the standard deviation
of the log-distribution of the eigenvalues during time at each range.

Figure 4.28: Mean eigenvalues at each range

several covariance matrices. This matrices are diagonalized and we average their eigen-
values. The profile of the highest eigenvalue are similar, (with some plateaus in Figure
4.28a caused by the spatial averaging) however the lower eigenvalues are significantly
different with the two averaging methods. The lower eigenvalues are significantly lower
with the temporal averaging compared to the spatial averaging.

This leads to an overall higher effective rank when using spatial averaging as shown
in Figure 4.29.

In addition we notice plateaus corresponding to high values, which means that high
clutter signal will contaminate nearby cells. These plateaus reduce the SCR of the target
in the CUT even if the target is not in a cell in which the clutter signal is strong, as long
as a cell with high clutter signal is close to the CUT. The eigenvalues vary sharply with
respect to range (as shown in Figure 4.28b), which means that clutter from one range
cell to another can be very different. As clutter cells differ from range to range, we can-
not estimate the polarimetric properties of a clutter cell by observing a neighboring cell,
and prevents clutter estimations on range data. As two neighboring range clutter cells
can have drastically different behaviors estimating the properties of one of these range
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Figure 4.29: Histograms of the mean effective ranks using spatial and temporal averaging

cells with the other one is not possible. We cannot use spatial data for estimations so
we focus on the time series of eigenvalues as we will use temporal data for estimations,

as we outlined.

4.4.6 . Eigenvalues time series for the selected clutter

In this section we show the time serie of the selected clutter and we study the distri-
butions of these time series. We use these time series to characterize the clutter cells
as they exhibit different properties for different range cells. Figure 4.30 shows the time

series of the eigenvalues of the farmland clutter.

The distributions of the log-eigenvalues time series for the selected range cell are

shown in relation to each others in Figure 4.31

Eigenvalues time serie, Farmland clutter, distance: 3.54 km.
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Figure 4.30: Eigenvalues time series of farmland clutter.
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Figure 4.31: Eigenvalues time series distributions for the farmland clutter. The dashed line is
the median of the distributions of the eigenvalues.

There is an overlap between the eigenvalue distribution meaning that the classifica-
tion method based on the rank of the eigenvalue is limited as they can “switch” depend-
ing on the fluctuations. To better characterize the eigenvalue distribution we fit them
with different distributions (Figure 4.32).

1st Eigenvalue 2nd Eigenvalue 3rd Eigenvalue 4th Eigenvalue
Log-Normal 1.3-107° 3.4-1073 2.0-1072 4.3-1071
Exponential Weibull 1.4-107° 3.1-1073 1.5-1072 3.4-1071
Gamma 1.4-107° 3.3-1073 6.4-1072 821071
x2 1.4-107° 3.3-1073 6.4-102 8.3-1071

Table 4.2: Sum square error for the distribution fit shown in Figure 4.32

Figure 4.32 shows the eigenvalue distributions fitted with a different distribution
to approximate the eigenvalue distribution. The sum square error of each fitted dis-
tribution are given in Table 4.2. The log-normal distribution corresponds to a model
used for the amplitude of non-polarimetric clutter [Shnidman 1999] and properly fits
our eigenvalue distributions. Since no model exists for the polarimetric ground clutter
in the geometry we consider, we assume the eigenvalues time series are lognormal
distributed in the simulations of the following parts. We prefer the lognormal distri-
bution on the exponential Weibull distribution as the lognormal distribution has fewer
parameters.

Time series of urban clutter and road clutter show an important gap between the
first and following eigenvalues. The road and farmland clutter time series are typical of
low effective rank matrices with a dominant eigenvalue (15 dB above in Figure 4.33(a)).
Theroadis nearly perpendicular to the radar LoS, which means that car passing by have
low relative velocity and are endo-clutter. In Figure 4.33(b), we have urban clutter with
one dominant eigenvalue. We expect a stable signature as building's backscattering
processes are stable with time, however this does not seem to be the case here, which
is probably due to the fact that there are roads in the same clutter cell with traffic.

4.4.7 . Temporal stability of the polarimetric signature
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Figure 4.32: Distribution of the 4 eigenvalues time series of the farmland clutter (from left to
right and top to bottom, the lowest to highest ranked eigenvalues distribution), fitted with a
log-normal distribution.
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The eigenvalues time series show that there is a tendency to have stable total clut-
ter power and stable ratios between eigenvalues. We make the hypothesis that the
eigenvalue temporal distributions are stationnary. We want to quantify the temporal
stability of the clutter polarimetric stability to better model its evolution.

To furhter quantify the stability of the clutter we measure a distance between the
covariance matrices of a same range cell according to their relative time point of esti-
mation. With the hypothesis that the eigenvalues distributions are stable, we propose
to use the angle between the matrices as distance measurement. This angle gives us
a measure of the temporal stability. This measurement has a sampling rate limited by
the Doppler integration time and the number of sample in the SCM estimation. In or-
der to measure the temporal stability on a shorter time scale we modify the Doppler
integration and the SCM estimation processes. Using no Doppler integration increases
the sampling rate but reduces the CNR of the clutter cells and the values gives different
mismatch angles. The range cells with the lower CNR exhibit lower mismatch angle, we
hypothesize that this is due to the high proportion of noise in the clutter data. We ex-
plain that such behaviour is expected for covariance matrices containing mainly noise.
We conclude that the mismatch angle model is valid for high CNR data, which is the case
when the Doppler integration time is long enough. Finally we test the hypothesis that
covariance matrix with low CNR behave similarly to noise matrices by measuring the
impact of the number of samples in the SCM estimation. We expect that noise covari-
ance matrices should have low mismatch if the number of samples of the estimation is
high.

Mismatch angle

We define the mismatch angle as the angle between the two square matrices:

(A, B)

— 4.8
PE] (4.4.8)

coslap =

Using the canonical inner product for square matrices, (A, B) = Trace (ABH) and

||-|| its associated norm. We call this quantity the mismatch angle; it aims at measuring

the difference of polarimetric signature using the covariance matrices as an angle. For

a given set of eigenvalues distributions, the mismatch angle depends almost only on

the eigenvectors (see appendix E), which allows us to monitor the fluctuations of the

polarimetric signature while ignoring the fluctuation of total clutter power. To assess

the extent to which the signature of the clutter changes with time we use the mismatch
angle, 6 (t,t + dt).

(R(t), R(t+dt))

cosf (t,t + 6t) = HR (t)H ‘E (t+ 5t)H

(4.4.9)

With R (t) the SCM estimate at time ¢. In the following we focus on the study of the
cosine of the mismatch angle, cosf (t,t + 6t), except if specified otherwise. We intro-
duce:

cos (t,t — dt) + cos (t,t + 6t)

D(t,6t) = .

(4.4.10)
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Figure 4.34: Plot of D for the 3 clutter. Lower D value means the clutter is less stable.

Which represents the mismatch between the SCM at time ¢ and the SCMs at a dis-
tance of dt. Alarge D means the covariance matrix at ¢ is misaligned with the matrices
at time ot.

Figure 4.34 shows the mean cosine of the mismatch angle between a reference ma-
trix measured at time ¢ and and the matrices measured at ¢t + 0t and ¢t — §t (equation
4.4.10). The lower the value of the cosine, the higher the mismatch angle is and thus the
higher the mismatch between the matrices is. Figure 4.34 shows that different range
cells give vastly different results. For the farmland range cell, we notice the cosine of
the mismatch angle gets to low values even for as for small 6¢, which means that the
SCM of the clutter as this range tends to be unstable, despite the stability of eigenvalue
distribution with time. It means that the polarimetric signature of the clutter changes
with time. Similarly, we see an instable clutter signature for the farmland and road. In
the same way, the urban clutter shows lower mismatch than the previous clutter, how-
ever, between 40 s and 200 s and 600 s and 800 s, there is a set of SCM, which have a
strong mismatch for every Jt.

We introduce:

D (6t) = iEt D (t,6t) (4.4.11)

Ny
by averaging D (t, dt) over the time axis.

To assess the typical time of the decay, we do an exponential fit on the data D (dt).
We exclude the data point at ¢ = 0 from the fit since there is no mismatch between two
identical matrices. The gap between D (0) and D (t,) can indicate that the sampling rate
of D (dt) is too low to measure correctly the typical time of decay. In Figure 4.35(a) we
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Figure 4.35: Mean of the decay of the cosine of the mismatch angle over the time axis. Here
mean is shown for two different integration time, no integration (Cl) and typical integration of
10 ms (DR).
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observe alarge gap between D (0) and D (t,) for Doppler integrated data. The cosine of
the mismatch angle starts at approximately 0.8 meaning that 4t resolution is lacking to
properly measure the decay time. However it is sufficient to observe a further decrease
from 0.78 to 0.52 with a time constant of 1.35 s, this corresponds with the observation
of low stability made with Figure 4.34(a). Figure 4.35(b) exhibits a similar decrease with
the floor being higher at 0.77 and the initial drop is less pronounced and the decrease
time is longer: 3.68 s. Finally, Figure 4.35(c) shows a long decay time of 7.53 s and a
higher match during the time, which is expected for urban clutter and a higher floor at
0.8.

Influence of the Doppler integration time on the mismatch angle evolution

In order to increase the sampling rate, and measure the mismatch angle other shorter
5t we compute D (dt) using the pulse-compressed data without any Doppler processing
and we compute the SCMs over 20 samples. This means the SCMs use 4 ms of data.
Since we do not use Doppler processing the CNR is reduced by 17 dB compared to an
integration time of 10 ms: the farmland clutter stands around -3 dB, the urban clutter
CNR stands around -5 dB, and the farmland and road clutter has a CNR around 2 dB.

Figure 4.35(b) shows that the behaviors of the farmland and road clutter are dif-
ferent between long and short integration times. The short time integration leads to
higher mismatch (the dark blue line in Figure 4.35(b)), we make the hypothesis that it
is due to the presence of the road and the clutter signature exhibits high frequency
variations due to the cars, that are averaged by a longer integration time.

The farmland clutter and the urban clutter show lower mismatch whithout Doppler
integration (the dark blue line in Figure 4.35(a) and Figure 4.35(b)). This behaviour typ-
ical of the decay for low CNR range cell. Indeed, if the CNR is lower, the porportion
of noise in the covariance matrix is higher. Since the covariance matrix of the noise is
written:

o2 0 0 0
2
0 o 0 0 (4.4.42)
0 0 o2 0
0 0 0 of

With o2 the noise on the x reception channel, we expect the noise matrices to match
when between each other if the noise is stationnary. The SCM cell in which noise is
important tends toward the value of equation 4.4.12 (see appendix D). This constant
diagonal component added in clutter covariance matrix reduces the mismatch.

Influence of number of samples of the SCM estimate

The quality of the SCM estimation is linked to the number of samples used in the esti-
mation. As noise matrices are identical in our measurements the source of mismatch
between two noise matrices is the estimation quality. Thus, we expect the noise matri-
ces to closely match if they are well estimated. This means the higher the number of
sample we have the lower the mismatch angle should be. This means that for higher
numbers of samples the match between the covariance matrices should be higher if
there is a low CNR. A more accurate estimate leads to a higher match between the
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noise covariance matrices. Meanwhile it should not modify significantly the match of
clutter covariance matrices in which the CNR is high.
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Figure 4.36: Cosine of the mismatch angle with different number of samples for the SCM esti-
mates. There is no Doppler integration, the total integration time are 4 ms, 8 ms, 20 ms and 40
ms.

With a higher number of samples, Figure 4.36(a) shows decreased mismatch angle
between the covariance matrices for the Farmland clutter, which matches with explana-
tion discussed beforehand. It matches with the discussion of appendix D, which shows
that the variance of the terms of the noise SCM decreases with the number of samples,
implying that a high number of samples would lead to the different noise SCM being
closer to the expected value and thus less mismatched. For the farmland and road
clutter and the urban clutter, the number of samples for the SCM estimation doesn’t
seem to affect the mismatch, which suggests the quality of the SCM estimation, is good
enough even with a low number of sample to accurately measure the mismatch. How-
ever, we would expect urban clutter to have a similar behavior to the farmland clutter
has they both have a negative CNR so they should behave as noise. Nonetheless, it is
possible that the underlying structure of the clutter covariance matrix (which has lower
value than the noise covariance matrix due to the low CNR) is more conducive to low
mismatch, which is plausible as the mismatch of this clutter covariance matrix is low
even for high CNR.

We emphasize that this behavior forces us to adapt the detection scheme with clut-
ter compared to noise. On the one hand, noise is stable during time and its covariance
matrices have near zero mismatch angle between themselves, as they are very stable.
On the other hand, this is not the case for clutter, which shows instability, and its esti-
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mation needs to be frequent whereas noise estimation can be less frequent as noise is
stable with time.

Furthermore, these results show that it is important to have a long enough Doppler
integration time to measure a covariance matrix that is mainly representative of clutter
and not noise. It implies a further constraint on the Doppler integration time. However
this constraint should be met when we minimize the effective rank of the covariance
matrix, as a noise covariance matrix has an effective rank close to N, which maxi-
mizes the effective rank.
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4.4.8 . Summary of the clutter range cell analysis
Farmland clutter

Parameter Value
Distance 3.54 km
Span CNR 14.5 dB
Effective-rank 1.63 +0.32
Log-eigenvalues (normalized) (0+24,-10.7+2.3,-16.1+1.7,—-194 + 1.1)
Mismatch decay time constant 135S
Mismatch angle asymptotic cosine 0.52

Table 4.3: Summary of the farmland clutter extracted with a 1oms Doppler integration
time. The log-eigenvalues are normalized with the median of the highest eigenvalue.
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Figure 4.37: Violin plot of the eigenvalue distribution of the farmland clutter, with the median

and standard deviation of each distribution outlined. The log-eigenvalues are normalized with
the median of the highest eigenvalue.
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Farmland and road clutter

Parameter Value
Distance 4.68 km
Span CNR 19.4 dB
Effective-rank 1.22+£0.14
Log-eigenvalues (normalized) (0+22,-16.7+2.1,—-22.0+1.4,—-24.9+0.9)
Mismatch decay time constant 3.68s
Mismatch angle asymptotic cosine 0.77

Table 4.4: Summary of the farmland and road clutter extracted with a 1oms Doppler

integration time. The log-eigenvalues are normalized with the median of the highest
eigenvalue.
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Figure 4.38: Violin plot of the eigenvalue distribution of the farmland clutter, with the median
and standard deviation of each distribution outlined. The log-eigenvalues are normalized with
the median of the highest eigenvalue.
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Urban clutter

Parameter Value
Distance 8.69 km
Span CNR 12.2dB
Effective-rank 1.38 £0.23
Log-eigenvalues (normalized) (0+25,-15.6+1.0,—-17.3+0.6,—18.8 +0.6)
Mismatch decay time constant 7.53S
Mismatch angle asymptotic cosine 0.80

Table 4.5: Summary of the urban clutter extracted with a1oms Doppler integration time.
The log-eigenvalues are normalized with the median of the highest eigenvalue.
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Figure 4.39: Violin plot of the eigenvalue distribution of the farmland clutter, with the median
and standard deviation of each distribution outlined. The log-eigenvalues are normalized with
the median of the highest eigenvalue.



Chapters |
Evaluation of detectors for low-grazing
endo-clutter detections

In this part we establish the performances of polarimetric detectors for low-grazing
endo-clutter detection. We present the detectors we use to assess the gain of polari-
metric detection in the clutter, and study their properties; we show the effective-rank
of the covariance matrix of the polarimetric clutter affects the performances, and that a
low effective-rank is desirable for most polarimetric detectors. We also show that a low
mismatch angle between the clutter estimation of the detector and the actual clutter
in the cells under test enhance the detections for the detectors using covariance ma-
trix as a clutter filter (namely srML and P-SIRV), and does not impact the performances
(with the hypothesis made, constant target and no model for the eigenvectors) of those
using the polarimetric power (span and EVa). Finally, we describe a hybrid simulation
process to test the detectors with the clutter data measured during the measurement
campaign as well as the UAV data extracted from this same campaign. This hybrid sim-
ulation allows us to estimate the performances of the polarimetric detector as well as
mono-polarimetric detectors. This comparison shows that polarimetric detectors have
better performances than the monopolarimetric detectors for endo-clutter detections
in a low-grazing geometry. In addition we show, with this method, that even power
based detectors are sensitive to the mismatch. We propose to use the hybrid simula-
tion method to adaptively estimate the best detector for the clutter range cells under
investigation.

5.1. Detection framework

As outlined in part 2.5, a good detector needs to be adaptive to fit different types of
clutter or noise. This is achieved by using R, the covariance matrix of the clutter and
noise in the cell we are testing for a target, in the detector to adjust the output level.
Adjusting the output level aims at keeping the False Alarm Rate as stable as possible
whatever the properties of the clutter are. Unfortunately, we cannot estimate R® as
we only estimate R (based on X, see equation 5.3.1) which might contain target data.
We need to use secondary data to estimate RC (Figure 5.1).

As explained in 4.4.5, the clutter range cells next to the tested clutter cell are likely
to have different properties so we cannot estimate the covariance matrix of the range
cell under test with data from neighbouring clutter range cell. Therefore we use neigh-
bouring data on the time axis as shown in Figure 4.25, meaning the secondary data

are measured in the same range cell as X;, at a previous time, this set is {XEZ} CON-1]
7 SN —

{XEi}, are clutter data with a the covariance matrix R, therefore, we have: {XEl} ~

%
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Lt bl XnAv 0 0 0
I ) |
{X?Av}kn potential target & 0 absence of target
[ ]
{Xf}Kn clutter used for estimation {Xf}kn clutter under the test
]
R® R
x| .. | xF | .. | XE x§ | . | x| . | x¢

Figure 5.1: Representation of the clutter and the detctor test.

CN (0, RE). We write the different SCM estimates:

N—
N ;0 (5.1.1)
R® = zlvN (x%) (x=) (512)
R 3 (x0) (x€)" 513
RUAV:1NZ_<XUAV)<XUAV> (5.1.4)
N 1=0 ' h

As the clutter under the target and the clutter used for estimation are mismatched
we define the SCR according to RF as the radar operator cannot measure R¢. We
write:

\/ Trace (RUAV)

Trace (ﬁ)

SCR = (5.1.5)

We define the couple (RE, RC) as being a Covariance Matrix Couple (CMC) of the
detection test. This CMC represents the mismatch between actual clutter matrix under
the target and the matrix used to estimate the clutter porperties.
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5.2 . General Simulation Framework

In the following analyses, we use simulations to determine the performances of
detectors. We describe the generic framework of every simulation carried out in the
following parts. The goal of the simulations is to determine the performances of a de-
tector for:

« A given SCR

+ A given property © of the CMC. This property can be: the effective rank of both
covariance matrices, the mismatch angle between the covariance matrices and
eventually the time interval between the estimation covariance matrices of the
couple.

We recall that the hy hypothesis is the "target is absent" hypothesis and the h; hy-
pothesis is the "target is present" hypothesis. To test a detector for hy hypothesis we
generate clutter data to execute a detector test without a target. To test a detector for
hi hypothesis we generate clutter data to execute a detector test with a target. For each
of these detector tests we generate a new clutter dataset. The detector tests for, a given
hypothesis (ho or hy), a given SCR and value a given value of ©, is a random variable, and
the output of the tests are outcomes of a random variable. To assess the performances
of a detector for a SCR and © we need to characterize both the random variables asso-
ciated with hypothesis hq and hy. The outcomes of the hy hypothesis tests let us assess
the Cumulative Distribution Function (CDF) of the random variables associated with the
FAR which provides the Pr4 — threshold relationship. conversely, the outcomes of the
tests following the h; hypothesis gives the CDF of the random variables associated with
detection rates which provides Pp — threshold relationship.

5.3 . Testing a detector with a CMC and SCR

As explained in 5.1, a detector has two inputs: a clutter dataset used to estimate the
properties of the clutter, {XEl} and a clutter dataset in which a target with a given
SCR is or is not present (hypothesis hg or hy):

ho s Xk = (X, (5.3
ho @ {Xi};, = {Xci—i-SC’RxXUAVi}i 5-3-

To test the detector we need to compute the clutter datasets corresponding to a
given CMC, (RE, RC):

. {XEz}Z is generated from RF
. {Xci}, is generated from RC

+ We use a synthetic or measured target polarimetric signature {XUAVZ-}

)

* We use the SCR for which we want to test the detector
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To test the hy hypothesis we feed to the detector the clutter datasets, {XEl}Z and
{Xi}, = {Xci}i, excluding the target from our test, the output we get is y"o. We
test the h; hypothesis with by feeding the detector test with {XEl}Z and {X,}, =
{Xci + SCR x XUAVi}i. The output of this test is y"1.

5.3.1. Testing a detector with a value of © and SCR

y"o and y™ are the results we get with a single test of the detector and a specific
CMC. However, using a specific CMC might introduce biases in the results. A rule of
thumb used in detector tests is that in order to establish performances in terms of Pr4,

we need at least ng.; > <22 measures (this is also true for Pp) [Echard 1991]. To address

; Pra
these issues we need to:

1. Use different CMCs with the same value of ©, to limit the possibility of biases in
the results.

2. Do several tests per CMC to have enough outcomes to properly assess the per-
formances.

Assuming we have m different CMCs sharing the same value of ©, we need n tests
per CMC to properly assess the Pr4 and n’ additional tests per CMC to evaluate the Pp,
meeting the following conditions:

100
Pra > (5.3.2)
XxXn
100
Pp > S (533)
m X n

This condition concerns only the accuracy of the Pr4 and Pj, estimations. In addi-
tion, the m CMCs should be representative of the parameter ©. For instance when we
simulate detection tests to establish the Pr4, we have ¢, an outcome the test of the
detector with a specific CMC. This is the outcome of a random variable associated with
the detector and value © of this CMC. We can index the outcomes of the simulated de-
tection tests depending on which CMC was used for the test and which of the n tests
for that specific CMC it was, y;.f(,; is the k" test of the j** CMC. With this tests we obtain

the set of outcomes {y]h(,;} R We use this set of outcomes to assess the Pr4.
I g<m,k<n

For a given SCR, and the same set of CMCs (therefore the same value of ©) we use

the exact same process to create {y%} e WE USE to assess the Pp.
’ <m, n

5.3.2 . Assessing the Prp, — threshold and Pp — threshold from the set of detector
test outcomes

We want to obtain the Pr4 — threshold from the set of outcomes {yjh[,;} e’ For
) j<m,k<n

any given threshold, some elements of the set of outcomes will be inferior to that value
and some will be superior. The proportion of values in the set superior to the threshold
is the Pr4.
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Card ({y;“;g > threshold}

Z])

Pr4 (threshold) = . (5.3.4)
0
Card ({y]k}”)
Similarly for the Pp — threshold relationship we have:
Card ({yﬁc > threshold}} )
Pp (threshold) = e (5.3.5)

Card ({y;l}c}”)

These two relationships allow us to fully characterize the performances of our de-
tector for a given SCR and value of ©.

5.3.3 . Assessing the performances of detector for different values of © and differ-
ent SCR
The method explained in the previous part can be used for any value of the SCR and
©. We can sample the (SCR, ©) space to assess how our detectors behave in a wide
variety of situations and for various target levels.

5.3.4 . Global parameters of the radar data and detectors

We recall that when real data are used the Doppler integration time is 10 ms, the
range resolution is 15 m. The multilook number N is 50. The detector used are the
multilook srML, the multilook span, the multilook P-SIRV and the EVa detector describer
in 2.6.

5.4 . Influence of the effective rank on the detectors

In 4.4.4, we measured the effective rank of the clutter cells at each range as a func-
tion of the Doppler integration time. The effective rank is a continuous generalization
of the discrete concept of the rank of the matrix (the number of non-zero eigenvalues)
and is a measure of the degree of freedom of the phenomenon we represent with our
covariance matrix. In this part, we determine the influence of the effective rank of the
covariance matrix of the clutter on the polarimetric detectors performances. We show
an influence of the effective rank on the performances and an interest in its minimiza-
tion for most polarimetric detectors, especially those using the structure of the covari-
ance matrix to filter the clutter. We do not make physical hypothesis on the polarimetric
signature of the clutter.

5.4.1. Simulation procedure

The simulation process described in 5.3.1 test detectors for two parameters, © and
SCR. In this part, the matrices of the CMC are identical R = R and © is the effec-
tive rank of the matrices. To test the influence of the effective rank we create clutter
cells with various effective ranks. We must therefore create bins of covariance ma-
trix couples sharing similar effective rank. We use the Metropolis-Hastings algorithm
[Metropolis et al. 1953; Hastings 1970] to create 16 bins of matrix couples. Each bin
contains matrices with an effective rank comprised between two boundary values. The
bins uniformly sample the log of the effective ranks, meaning the boundary of the i‘"
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i4+1

bin is given by 1 + (Nepan — 1)% < e—rank < 1+ (Ngpan — 1), with ¢ going from 0
ton — 1; Nenan is the dimension of the problem, here we have 4 polarization states, so
Nepan = 4. We fill each bin with the same number of samples by rejecting any matrix
that exhibits an effective rank included in a bin already full.

To generate each matrix we first generate a vector of eigenvalue, A = (\;) ., With
each )\; being uniformly distributed between o and 1: o

Ai=U(0,1) (5.4.1)

We define L = diag (A) with:
diag (A) = ¢ 7 e 4.2
iag (A) {li,j:O i it (5.4.2)

We then generate a transfer matrix of an Hermitian matrix. We generate a 4 x 4
Hermitian matrix, A = (z,»j + z;;) with z;; ~ CN (0,1), CN being the complex normal
distribution. The eigendecomposition of A gives its transfer matrix U. R = ULU *
is the covariance matrix of the clutter cell.

Since the covariance matrices are not biased toward any polarization, and we make
no physical assumption on the target signature, the target used in those simulations
has a constant signature in only one polarization XY4V, = (1,0,0,0), with no loss of
generality. We then compute the Prs — threshold and Pp — threshold relationships
according to the part 5.3.1.

5.4.2 . Simulation parameters

To run the simulation we create 16 bins with each m = 2! CMC, and we make n = 2'°
Pr 4 tests per CMC to estimate the Pr4 — threshold relationship. Which means we have
m x n = 2% tests per value of the effective rank. We can assess performances for a Pr 4
aslowas Ppy=10"% > é%) . We assess the Pp — threshold relationship with n’ = 1 test
per CMC, we have m x n’ = 21 tests to assess the P, — threshold relationship for each
SCR, we measure a Pp as low as Pp = 107! > % The reason why the lowest accurate
Ppislower, is that a detector with a Pp lower than 0.1is not of interest, it allows to spare
computing time. This is especially important since the estimation of the P, — threshold

relationship has to be computed for each SCR.

5.4.3 . Simulation results

Figure 5.2 presents the probability of detection for each detector for a probability of
false alarm of 10~ as a function of the SCR and the effective rank. The performances
of every detector are influenced by the effective rank of the covariance matrices. The
performance of the span detector is the least affected by the effective rank of the clutter
covariance matrix. The span performances (as represented by the Pp at a given Pr,)
decrease with the effective rank, which means that span is better suited to high effective
rank clutter (clutter similar to polarimetric white noise).

The span detector is identical to the srML with R® « I,, which is the case of the
covariance matrix with effective rank 4 clutter in its own basis (Figure 5.3(d) shows that
ML and span have near identical performances for clutter of effective rank 4). However,
it is not true for a clutter with an effective rank inferior to 4, as the span does not filter
any polarimetric backscattering process, it does not filter the dominant one, leading to
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reduced performances as this process masks the targets in the detection test. However
the loss of performances between the ideal case, effective rank of 4, and the worst
cases, effective rank of 1, is low, it represents at most a loss of 1.8 dB of equivalent SCR.

All the other tested detectors exhibit an opposite behavior; they have better perfor-
mances for low effective ranks than for high effective ranks. This is expected as the
power of the clutter is concentrated in a smaller proportion of the total polarimetric
space, thus, a larger portion of power of the target is in the orthogonal space of the
clutter and thus not filtered.

For srML, the relationship between the performances and the effective rank for a
given SCRis monotonous. The srML detector consistently outperforms the other detec-
tors. Decreasing the effective rank results in better or equal performances. Between
an effective rank of 1 and 4 the loss of equivalent SCR is substantial and represents 5.5
dB. In addition the worst SCR (worst means highest, since we want to be able to make
detection at the lowest possible SCR) at which a Py of 1 is attained is -0.5 dB which is
the best SCR (conversely best means lowest) at which span attains a Pp of 1.

EVa and P-SIRV performances are not monotonous and while they exhibit perfor-
mances similar to srML for the extreme values of the effective rank, their worst perfor-
mances are not found for an effective rank of 4 but for effective ranks between 3 and

4.

5.4.4 . conclusion

When RF = RC the effective rank impacts the performances of the polarimetric
detectors: a minimal effective rank improves the performances of all the polarimetric
detectors but the span. Figure 5.3 srML is the best detector in these simulations. How-
ever, the covariance matrices are not based on a physical modelling, and are not meant
to be representative of a real clutter.

In the simulations we present in the rest of this part we use real data either in part
(when we simulate to test the influence of the mismatch angle we use the measured
eigenvalues) or in whole. Using real data means we have extracted the clutter with
Doppler processing. Therefore we use the Doppler integration time that minimizes the
effective rank. As shown in 4.4.4, the Doppler processing time influences the effective
rank, and, in particular, a Doppler processing time of 10 ms minimizes the effective
rank for a large number of polarimetric clutter range cells. Thus, we choose to use
this Doppler processing time for the real data we use in the following simulations. This
choice undermines the performances of the span detector over the other detectors,
which could gain up to 2 dB of equivalent SCR if the effective rank was maximized. This
decision of advantaging the other polarimetric detectors is justified by the fact that they
can expect a greater improvement from the minimization of the effective rank than the
improvement the span can get if we maximise the effective rank. In addition, we note
that noise covariance matrix should have an effective rank of 4, thus maximizing the
effective rank with integration time would most probably result in minimizing the CNR,
essentially defeating the role of clutter in our study, by trying to detetect the target
against noise.

5.5 . Robustness of detectors with the covariance matrices mismatch
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Figure 5.2: Probability of Detection (Pp) for the polarimetric detectors for a Pp4 = 1074, as a

function of the single look SCR of the target and the Effective rank of the covariance matrices of
the CMC. 50 multilooks.
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Figure 5.3: Pp — SCR relationship for the polarimetric detectors for a Pry = 1074, for the
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In 4.4.7 we introduced the mismatch angle as a metric to measure the misalignment
between covariance matrices representing the polarimetric clutter properties. In this
part, we assess the impact of the mismatch angle on the performances of the polari-
metric detectors. We model the mismatch for a given eigenvalues distribution and the
mismatch angle. We show a strong influence of the mismatch angle on performances
for the P-SIRV and srML detectors, whereas the span and EVa detectors seem to have
performances that are not correlated with the mismatch angle. The method presented
in this part is the subject of a communication at the International Radar Conference
2022 in Edinburgh [Rozel et al. 2022a].

5.5.1. Generating the covariance matrix couples with mismatch

As we mentioned in 4.4.7 clutter cells at a given range have stationnary eigenvalue
distributions during time. As RF and R€ are at the same range in our framework, they
have the same eigenvalue distributions. The analysis of 4.4.7 points out that each eigen-
value of the covariance matrix is distributed with a log-normal distribution parametrized
by the mean and standard deviation of the associated normal distribution.

Using the simulation process described in 5.3, we test detectors for two parameters,
© and SCR. In this part © represents the cosine of the mismatch angle between the two
matrices of the CMC, RF and R®. We recall that the cosine of the mismatch angle is
given by:

RE,RC>

O =cos = ~———L-
|R¥ R

(5.5.1)
R¥ and R€ are the covariance matrices used to generate both clutters. R gives
us {XEI} the clutter dataset that the detector uses for the estimation of the clutter

properties while R® is used to generate {Xci}, the clutter dataset of the CUT.

We have A the vector of with the mean of the four distributions, A= (S\Z) - and o

the vector of the standard deviations & = (5;)._,. For RF and R® we generate AF and

A€ their eigenvalue vector. We have:

1<4*

AP = () (5.5.2)
AC = (/\Ci)i<4 (5.5.3)

With:
NENG, = lognormal (5\1, 6?) (5.5.4)

We define L¥ = diag(AF) and L€ = diag(A®), and we generate transfer matrices
UF and U¢ in the same way as defined in 4.3.1.
We then have:

RF = UPL" (UE)_l (5.5.5)

RC =U°LC (U°) " (5.5.6)
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This gives us one CMC. This CMC has a mismatch angle . We use the Metropolis-
Hastings algorithm to have CMC in bins according to the cosine of their mismatch angle.
A CMC in the i** bin has its mismatch angle meeting the following condition:

: 11
L < cosf < it (5.5.7)
n n

with n different bins. To favor CMC with a mismatch angle close to o - which are very
rare with this sampling method - we use a resampling method detailed in appendix F.
The matrices generated with this method follow the clutter properties as far as power is
concerned, which means that their power can fluctuate as the power of the polarimetric
clutter, and the CMC are rated according to their mismatch angle.

5.5.2 . Simulation parameters

To generate the bins of CMCs we need to use eigenvalues distributions, we use the
eigenvales distributions from the clutter cells presented in 4.4.8. These distributions
are computed with the empirical SCM estimates in the corresponding range cells.

The we have the following eigenvalue distribution for the three clutter cells:

Clutter Eigenvalue mean Eigenvalue standard deviation
(A, in dB) (6, in dB)

Farmland (0,-10.7,-16.1,-19.4) (2.4,2.3,1.7,1.1)

Farmland and road | (0, —16.7, —22.0, —24.9) (2.2,2.1,1.4,0.9)

Urban (0,—15.6,—17.3,—18.8) (2.5,1.0,0.6,0.6)

We run the simulation with parameters identical to the one we used in 4.3.2.1. l.e.
16 bins with each m = 2!° CMCs, and n = 2!° PF A tests per CMC, therefore we have
m x n = 229 tests per value of the mismatch angle. We measure Pr4 as low as Ppy =
10~ > 15§, We have n’ = 1 test per CMC, therefore we have m x n’ = 2!° tests we

measure Pp as low as Pp = 107! > 5.

5.5.3 . Results according to covariance matrix eigenvalue distributions

The results are presented in Figure 5.4, 5.5 and 5.6. These figures present the Pp
for a Pr, of 10~ as a function of SCR and the mismatch angle of the SCR. We can make
several observations common to the three clutter. The performances of the P-SIRV and
srML detectors correlate with the mismatch angle. All other parameters being equals,
the higher the mismatch angle the lower the Pp is. conversely, the performances of
span and EVa do not correlate with the mismatch angle.

This shows that for given eigenvalue distributions, the eigenvectors play an impor-
tantrolein filtering the clutter, thanks to its estimated covariance matrix, for P-SIRV and
srML. However span and EVa seem to have stable performances even in case of strong
mismatch. With Figure 5.7, 5.8 and 5.9, we see that in the range of expected mismatch
(a cosine of the mismatch angle between 1 and the asymptotic mismatch measured in
4.4.7, Figure 4.35), the equivalent SCR losses varied 4 between 7 dB. However for farm-
land clutter and farmland and road clutter the performances of srML are better than
those of span and EVa for all mismatch angles in the expected range, which suggests
that for these two clutters, they are the best detector to use, even with the SCR losses
associated with mismatch. For urban clutter the EVa outperforms the other detectors
for all mismatch angles except angles lower 15° which makes it a good detector for this
clutter type.
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For farmland clutter and farmland and road clutter span and EVa perform similarly.

5.5.4 . Conclusion

This simulation show that the mismatch angle plays an important role in the perfor-
mances of the srML and P-SIRV. Important gains of performances are obtainable with
closely matched CMC when using these detectors.

The performances of the polarimetric detectors presented vary with the eigenvalue
distributions used in the simulations. For the farmland clutter, the srML detector out-
performs the other detectors for almost every mismatch angle, which means they are
the best detectors to use in this case. Conversely, for urban clutter the EVa detector
outperforms all the other detectors for all mismatch angles but o (cosine of 1) which
means it is the best detector for this case. However, for the road and farmland no
detector consistently outperforms the others for every mismatch angle. These simula-
tions give a link between the mismatch angle and the performances of the detectors.
We propose a method to then project these results on the mismatch angle measured
on the real data of those clutter range cells.

5.5.5 . Assessing the best performing detector
Framework

For each clutter range cell, we established D (6t) in 4.4.7. D (ét) gives the value of
cosf, the polarimetric mismatch between two covariance matrices estimated at differ-
ent times, and §t, the time interval separating the matrices. D (6t) gives us an estima-
tion of the mismatch between the clutter under the target and the clutter estimated for
the detector test. For given Pr4 and Pp, we can write the minimum SCR needed for a
detection as a function of cosf, the cosine of the mismatch angle. Given these relation-
ships we can estimate the SCR as a function of the time interval 6t for each detectors.
We expect that the minimum SCR required to a make a detection for a given Pr4 and
Pp will increase with the time interval.

Results

Figure 5.10, 5.11 and 5.12 present the minimum SCR for a detection with Pr, = 10~* and
Pp = 0.95, for each clutter.

Farmland clutter We see that for the farmland clutter the srML consistently outper-
forms the other detectors for all time intervals. They have identical performances. For
time interval greater than 4 s, approximately thrice the decay time of the exponential
fit on D (6t) in 4.4.7 and Figure 4.35 (1.35 s), the SCR is stable for all detectors. EVa
and span have mostly constant performances with time, as their performances where
mostly independant from the mismatch.

These results suggest we should use the srML in this clutter range cell. Moreover to
maximize the performance we should make covariance matrix estimation as frequently
as possible to eliminate the effect of the decay of the cosine of the mismatch angle. If
we do not minimize the mismatch, with frequent estimations the srML can loose up to
2.5 dB of equivalent SCR
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Figure 5.5: Performances of the polarimetric detectors as a function of the SCR and cosine of
the mismatch angle for a Pr4 of 10~ for the farmland and road clutter.
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Figure 5.7: Performances of the polarimetric detectors for a Pr4 of 1074 and Pp of 0.95 for

the farmland clutter. It shows the SCR needed to achieve a Pp of 0.95 with a Pp4 of 10~* as a
function of mismatch angle (and its cosine).
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Figure 5.8: Performances of the polarimetric detectors for a Pr4 of 10~* and Pp of 0.95 for the
farmland and road clutter. It shows the SCR needed to achieve a Pp of 0.95 with a Pr4 of 104
as a function of mismatch angle (and its cosine).
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Figure 5.9: Performances of the polarimetric detectors for a Pr4 of 10~* and Pp of 0.95 for the
urban clutter. It shows the SCR needed to achieve a Pp of 0.95 with a Pr4 of 10~* as a function
of mismatch angle (and its cosine).

Farmland and road clutter In the farmland and road clutter, we again see that the
srML outperform the other detectors for all time intervals. However, for time intervals
greater than 3.5 s, the span performance converges with the performances of the srML.
For time intervals in excess of 4 s, approximately equal to the decay time measured in
Figure 4.35 (3.68 s), the performances of the detectors are stable.

Similarly to the results of the farmland clutter, the results for the farmland and road
clutter show that we should use the srML. Reducing the time interval between the detec-
tion and the estimation of the SCM will also lead to better performances in this clutter
range cell. In this range cell the effect of the mismatch on the srML s a loss of equivalent
SCR up to 3 dB.

Urban clutter In the urban clutter, EVa outperforms every other detectors for every
possible time intervals. For low time intervals srML and EVa have roughly the same
performances, but as time intervals increase the performance gap widens. The per-
formances of the detectors stabilize for time intervals greater than approximately 8 s
which corresponds with the decay time measured in Figure 4.35.

In urban clutter the detection scheme we should adopt is different, as the EVa detec-
tor outperforms the other detectors. As the performances of EVa are not affected by
the time interval between the estimation and the detection, we can make unfrequent
estimations and expect good performances. This scheme provides advantages as less
frequent estimations are less constraining for processing units and avoid the risk of
using secondary data polluted by an undetected target.

5.5.6 . Conclusion

The study of expected performances of the different detectors as a function of the
time interval allows us to choose the detection scheme for the studied clutter cells.
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Either a detection scheme relying on a detector that is affected by mismatch (srML)
and frequent estimation of the clutter in order to minimize the mismatch, or using a
detector independant from mismatch (EVa in our case), allowing for less frequent esti-
mations.

Moreover we notice that the predicted performances of all the detectors stabilize
after 4 to 8 s. For the farmland clutter it corresponds to three times the decay time
measured in 4.4.7, which means the stabilization of the performances is mainly due to
the stabilization of the mismatch. Whereas, for the urban clutter and for the farmland
and road clutter, the stabilization occurs for time interval comparable to the measured
decay time, which means that there is further stabilization due to SCR-Cosine relation-
ship shown in Figure 5.8 and 5.9. We see that the SCR-Cosine relationship stabilizes for
greater cosines (lower mismatch) for this clutter range cells.

In these simulations we ensured that the eigenvalues of the covariance matrices
were based on the empirical properties of the clutter studied, however the eigenvectors
were purely synthetic and did not use any empirical model. To check if the results hold
with the actual eigenvectors and eigenvalues of the clutter tested we propose an hybrid
simulation method.

5.6 . Hybrid simulations

In this part, we compare the performances of the polarimetric detectors as well as
the mono-polarimetric detectors. The simulation we present do not use any parametric
model for the clutter or the target. The model used for the clutter data is based on
estimated SCMs from the clutter data of the measurement campaign described in 4.2.
These SCMs are used to generate new clutter data, identically distributed to the real
clutter. The target data are extracted from the same measurement campaign using the
method described in appendix G. The SCRis changed in order to simulate for different
SCR. These simulations allow us to avoid any bias linked to an unfaithful model of either
the clutter or the target, and the method used provides a potential framework for the
adaptive evaluation of detectors.

5.6.1. Working principle

In the simulations we present in this part, the CMC is composed of two SCMs mea-
sured in a range cell of the clutter of the measurement campaign. For a given range cell
we have RP = R (t), with R (t) the SCM estimate of the clutter cell at the time t. RC is
SCM estimates measured at ulterior time R¢ = R (t + dt). The parameter in © in these
simulations is dt, the time interval between the two SCMs estimates. To form the bins
of CMC, we select a range cell. For this range cell we compute the SCM estimates for
different times and create the CMC with the couples sharing the right value of 4t.

The ideal method would consist in using directly the clutter datasets measured with
the measurement campaign. Unfortunately the duration of the measurement, 825 sec-
onds, mean that we have at most 1650 non-overlapping clutter datasets, which would
allow at most the measurement of a Ppy < % which is not a realistic value for any
radar operation (With a 2 Hz refresh rate, the operator would experience a false alarm
every 50 seconds per range cell).

To address this issue we generate additional clutter cell with the SCM estimates,

hence R” = R (t) and R® = R (t + dt) as we recall that the CMC (RE, RC) is used to
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generate the two clutter datasets used in the detector tests.

As for the target used in the detector test, we use parts of the UAV signature ex-
tracted from measurement campaign (part 4.2). For a clutter dataset we use the same
targetin all the detector tests to ensure the detectors are always tested in the same con-
ditions. Each set of test aimed at determining the Py, is repeated for several extracts of
the polarimetric signature of the UAV.

5.6.2 . Simulation parameters
The values of tested §t in second are:

{0.5,1,2,3,4,5,6,7,8,9, 10, 20, 30, 40, 50} (5.6.1)

These values are chosen in a pseudo logarithmic way to investigate a large portion
of the parameter space at a lower computational cost.

Each bin has m = 2'° CMCs measured over 562 seconds (R¥ are measured other
512 seconds and R® are measured over 512 seconds as well, but with an offset going
from 0.5 s to 50 s compared to RF). We do n = 2% P, tests per CMC, therefore we
have m x n = 2% tests per value of 6¢. We measure Pp4 as low as Ppy = 107* > 13,
We have n/ = 1 test per CMC and per target, therefore we have m x n’ = 20 tests per
target signature, we measure Pp as low as Pp = 107! > 1. We test the detectors for

120 different target signatures randomly selected in the extracted target signal.

5.6.3 . Simulation results

The clutters used to run the detector tests we presentin this part are the clutter cells
presented in 4.2. Asummary of the properties of these clutters is found in 4.4.8. Figure
5.13, 5.14 and 5.15 give an overview of the results obtained for the 3 different clutters
and each results. For each clutter and detector they show the Pp with Pp, = 10~*as a
function of the SCR and the time interval. Good performance of a detector is its ability
to attain high Pp at low SCR. The Pp value is the median of the Pp values obtained for
each the detector tests over the different target signals tested.

Link between time and performances

Figure 5.16, 5.17 and 5.18 show the minimum SCR necessary to have Pp > 0.95 with
Pr, = 10~* as a function of the time interval for each polarimetric detector. The line
corresponds to the median Pp over the different target signals used for the test. The
upper and lower bounds represent the upper limit of the first and third quartiles, they
show the variability of the performances of the detector with the target.

The performances of every polarimetric detector roughly correlates with the time
interval, except for EVa in the urban clutter. The best performance is always (except for
EVa in the urban clutter) for a time interval 0.5 s, the shortest possible (Figure 5.16, 5.17
and 5.18).

The two peaks present at 7and g seconds are present because of parasitic frequency
detected in the radar signal around 1/8 Hz.

These results are different from the one we obtained with the previous simulation
framework, in which the mismatch was modeled with the mismatch angle and the data
were synthetic. With this framework EVa and span performances were independant
from the mismatch angle and thus independant from time interval (see 5.5.5). This
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Figure 5.13: Performances of each detector for the farmland clutter with Pr4 = 1074
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SCR-Time interval relationship for Pp=0.95 and Pgs =107%
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Figure 5.16: Performances of each detector for the farmland clutter with Pr4 = 10~% and Pp =
0.95.
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Figure 5.17: Performances of each detector for the road and farmland clutter with Pp4 = 10~4
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Figure 5.18: Performances of each detector for the urban clutter with Pr4, = 10~* and Pp =
0.95.

is not the case with the simulation framework described in this part. It means that
even the clutter properties on which the span and EVa rely for making accurate detec-
tions change with time in the studied clutter. Furthermore the EVa detector has highly
variable performances for farmland and road clutter as well as urban clutter. The mod-
elization described in 5.5 is not able to fully explain the behavior of EVa, as the target
was constant. The constant target signature is advantageous to the EVa detector, as
the target is rank 1 and consistant.

These results suggest that any polarimetric endo-clutter detection following the de-
tection framework we describe should minimize the time interval between the clutter
estimation and the detection test.

Comparison between mono-polarimetric and multi-polarimetric detectors

Mono-polarimetric detectors are consistently outperformed by multi-polarimetric de-
tectors (Figure 5.13, 5.14 and 5.15). This result is expected as the main advantage of
mono-polarimetric detectors is that they can be implemented on mono-polarimetric
radar, which all else, being equal, will provide data with higher SNR. In our case the SNR
is a lot higher than the SCR and thus not limiting. Mono-polarimetric radars do not have
higher SCR than multi-polarimetric radar as explained in 2.3.1. Figure 5.19, 5.20 and 5.21
show the difference of performances between the best performing mono-polarimetric
detector of each clutter and srML (which is always the best polarimetric detector or very
close to the best). For a time interval of 0.5 s the loss of equivalent SCR ranges from 2
dB for farmland clutter (Figure 5.19) to 4 dB for urban clutter (Figure 5.21).

Comparison of the results between hybrid simulation and mismatch angle simu-
lation

We compare the results obtained with the hybrid simulations described in this part
to the results of the simulations using the mismatch angle (described in 5.5), in par-
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SCR-Time interval relationship for Pp=0.95 and Pgy = 107
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Figure 5.20: Performances of each detector for the road and farmland clutter for Pp4 = 10~*
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Figure 5.21: Performances of each detector for the urban clutter for Pr4 = 1074,
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ticular the results shown in 5.5.5. We notice that the results for the srML are closely
matched in farmland (Figure 5.10 for mismatch angle simulation and Figure 5.16 for
hybrid simulation) and farmland and road clutter (Figure 5.11 for mismatch angle simu-
lation and Figure 5.17 for hybrid simulation). The difference in simulated performances
are within 2 dB. This is not the case for urban clutter and the other detectors. In urban
clutter the performances have at least 3 dB of difference. P-SIRV was consistently un-
derperforming in the mismatch angle simulations - with 2 to 3 dB higher SCR needed
to achieve the same Pp and Pr,4 - compared to srML (Figure 5.10, 5.11 and 5.12). With
the hybrid simulations, especially in farmland and road and urban clutter (Figure 5.17
and 5.18) the performance gap is smaller. The performances of span and EVa obtained
with mismatch angle simulations and hybrid simulations are dissimilar. With the mis-
match angle simulations, span and EVa have stable performances with regards to the
time interval, less than 1 dB of variation (Figure 5.10, 5.11 and 5.12). However, with hy-
brid simulations the variation of performances are a lot larger, up to 5 dB (Figure 5.16,
5.17 and 5.18). This is linked with the fact that performances of EVa and span obtained
hybrid simulations correlate with the time interval contrary to the ones obtained with
mismatch angle simulations.

Variability of the performances with the target signal used in the detector test

As Figure 5.16, 5.17 and 5.18 show the median SCR necessary to have P, > 0.95 with
Pr, = 10~* as well as the first and third quartiles upper bound of SCR we can see how
much the target signature affects the detectors performances.

Span has very consistent results over the different target signals in the detector
tests. This is expected as we recall that span is used to define the SCR (see equations
5.1.5 and 2.6.3), thus, the span directly follows the SCR whichever the target polarimet-
ric signature is. In this paragraph when we mention multi-polarimetric detector we
exclude span as it behaves differently due to the SCR computation method. In farm-
land clutter the difference between the upper bounds of the first and third quartiles is
similar for the multi-polarimetric detectors, around 1 dB (Figure 5.16). We note that the
distribution of performances of EVa with respect to target signal is highly dissymetric,
as the upper limit of the third quartile is close to the median whereas the upper limit
of the first quartile is almost 1 dB lower. For farmland and road clutter and urban clut-
ter (Figure 5.17 and Figure 5.18), the upper limits of the first and third quartile are also
around 1 dB apart for srML and P-SIRV. However EVa has a large dispersion of results
with the target signal of the detector test, which means that the EVa detector is unpre-
dictable and target signature dependant. This is probably due to the fact that target
signal affect the eigenvalues of { X}, the tested signal in inconsistent ways, depend-
ing on the respective target and clutter signature (wether or not they are "aligned"). In
the theorectical simulations, the target signature was constant and, thus, necessarily
rank 1, in the mismatch angle simulations (described in 5.5) it obfuscated this result
and overestimated the performances of EVa.

Variability of the performances with the target clutter

These simulations show that for the same Pp, Pr,, time interval and detector we can
expect significantly different performances (as have shown the mismatch angle simula-
tions). The SCR required for the same detection performances is significantly higher for
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farmland clutter than road and farmland clutter and urban clutter, up to 4.5 dB more.
Farmland is less favorable for endo-clutter polarimetric detections than urban clutter
or farmland and road clutter. This is probably in part a consequence of its higher effec-
tive rank (as shown in 5.4) which makes it harder to filter out due to the smaller rank
of the space orthotogonal to the polarimetric signature of the clutter. This method is
a good predictor of the performances that can be expected for a given detector in a
given clutter range cell.

We note that, in the hybrid simulations, the EVa detector can achieve low Pp, around
0.2/ 0.3, at lower SCR than the other detectors (around 2 dB lower). However this fact
should not influence our choice of detector since such low probabilities of detection are
not useful for radar operations as P, = 0.3 means that most detections are missed.

5.6.4 . Drawing conclusion from the hybrid simulations

With the results of the hybrid simulations we can draw several conclusions.

Mono-polarimetric detectors should not be used when dealing with endo-clutter
detections as they are consistently outperformed by polarimetric detectors.

The time interval between the clutter estimation and the detection should be kept
as low as possible to maximize polarimetric detectors performances. If we follow this
rule srML is consistently the best performing detectors for desirable Pp (above 0.9),
and should probably be the detectors of predilection with this detection framework, as
far as the explored clutter range cells are concerned.

Span and EVa are not more robust to the covariance matrices mismatch than P-SIRV
and srML detector as the results of 5.5 seemed to indicate. The strong hypothesis on
the target signature made in 5.5, its constant signature leading to a rank 1 signature
and a target returning a constant power to the detector are probably the cause of this
discrepancy.

EVa has inconsistent performances with regards to the signals of the target, and its
performances were overestimated by the mismatch angle simulations described in 5.5.
This is, once more, probably due to the target modelization with a constant signature.

Finally, the hybrid simulation method is able to predict the performances of the
polarimetric detectors in different clutter. This method could serve as basis for an
adaptive detection scheme which could switch between detectors to better suit the
encountered clutter and adapting the detection scheme to each clutter range cells. We
propose performing similar simulations to those we described at the beginning of the
radar operation in order to choose the best detector. This framework could be used
for any detector even in non-gaussian clutter. In our 3 examples srML seems to be the
one to choose but maybe this might not always be the case.
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Conclusions and perspectives

In this part we conclude this PhD thesis by summarizing the main results of this
work and giving perspective on following works. In this thesis we introduce methods
and metrics to characterize the clutter in low-grazing angle configuration and show that
polarimetric detectors have an edge over monopolarimetric detector for the detection
of endo-clutter targets in a low-grazing configuration.

6.1. Summary

In the first part we use existing literature to outline the issues counter-UAV radars
face. We first give a broad description of the working principles of a radar system. We
highlight the importance of the RCS of the target in the equation of radar and intro-
duce the concept of radar clutter and the problems it causes. Thanks to a review of
the literature about counter-UAV radar, radar signature of UAVs and the classification
methods, we establish the low magnitude of the RCS of UAVs as well as the presence of
a micro-Doppler signature caused by the rotating blades of copter type drones (by far
the most common class of consumer UAVs). The micro-Doppler signature of UAVS is
very often used for classification and detection. Furthermore, this review showed that
the flight domain of drones, namely low and slow, implies that they often are endo-
clutter targets, and their signature and low RCS is to be compared with the signature
of the clutter. The review of the literature allowed us to establish that ground clutter is
different from noise. A very important difference is that it is notably coherent, and is
often distributed differently from Gaussian noise. The coherency of the clutter means
that the endo-clutter targets SCR behaves differently from SNR. Whereas SNR increases
with transmitted power and higher integration time, SCR does not. We need to intro-
duce additional diversity to the radar data we measure. To better separate a potentially
endo-clutter target from the clutter we proposed to use polarimetric radar, as we show
that polarization has proven to be a useful tool for radar classification in both imaging
radar or weather radar, improving performances over non polarimetric radar. Finally
we review the literature on detectors, and especially endo-clutter and polarimetric de-
tectors showing the importance of the estimation of the signature of the environment
we want to detect the target against. We then present the radar, HYCAM, used in this
work. We discuss the topic of the characterization and calibration of polarimetric radar.
We follow with the presentation of the measurement campaign that is used for the
rest of the work of this PhD thesis. In this measurement campaign, we used HYCAM
to measure a radar scene in a low-grazing geometry in which a UAV was flying along a
pre-determined flight path. We follow these presentations with diverse analyses of the
clutter behavior. We show, that the clutter in low-grazing angle geometry has a non-
reciprocal polarimetric signature if the receive antenna for the two different received
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polarizations are not colocalized. This is due to the clutter being a large collection of dif-
ferent backscatterers spread in different parts of the aperture of the receive antennas.
It means that in the geometry we consider (separated h and v receive antennas) and
for endo-clutter detection of UAVs, the clutter has four independent polarization sig-
nals. Introducing a representation of the clutter based on its SCM computed over the
time axis, we addressed the polarimetric stability of the clutter using the effective rank
of the SCM. We compute the effective rank of the SCM for different Doppler integration
time. We found that clutter exhibits an optimal Doppler integration time that minimizes
the effective ranks. We show in a later part that a low effective rank leads to increased
performances of the polarimetric detectors. To minimize the effective rank for most
of the clutters measured during the campaign, we can use a Doppler integration time
of 10 ms. It indicates that for most low-grazing semi-urban clutter we measured, this
is an ideal integration time. We then introduce a metric to measure the mismatch be-
tween two different signatures of the same clutter taken at different times. This metric
is based on the angle between two matrices as we characterize the signature of the clut-
ter with its SCM and represents the mismatch of the polarimetric signature irrespective
of the variation of total power. We create a set of 3 different measured clutter, repre-
sentative of the clutter types found in semi-urban areas and determine a decay time of
the clutters. For two estimations of the SCM of the same clutter separated by a given
time interval the mismatch grows with the time. Finally, we detail a benchmark of polari-
metric detectors including a novel detector based on the eigenvalues of the SCM of the
cells under test, as well as a monopolarimetric detector. We first show, as mentioned,
the relationship between effective rank of the SCM of the clutter and the performances
of the polarimetric detectors. For all the detectors but one (the span, based on the
total polarimetric power) the performances are best for a low effective rank, the per-
formance gain between the worst case scenario and best case scenario are equivalent
to an additional 6 dB of SCR, which prompts the use of Doppler integration that mini-
mizes the effective rank in the following simulations. We follow with simulations aimed
at assessing the impact of the mismatch of the clutter estimation with the actual clut-
ter in the cells under test on the performances of the polarimetric detectors. These
simulations use randomly generated couple of covariance matrix to test the different
mismatch angles. The matrices in the couple share a common eigenvalue distribution.
This eigenvalue distribution is the eigenvalue distribution measured in a specific clut-
ter. We do one simulation per clutter in our set of clutter. These simulations show that
the detectors filtering the clutter with the SCM of the estimate clutter suffer an impor-
tant performance losses when the mismatch angle increases, whereas span and EVa
which use polarimetric power have performances that do not correlate with the mis-
match angle. Finally we make hybrid simulations which use the SCM of the clutter of
the clutter set to generate clutter cell identically distributed to the real clutter cell, and
make detection test by injecting real target data in this clutter cell. In these tests the
couple of covariance matrix are two SCMs of the same clutter cell estimated at two dif-
ferent times separated by a fixed time interval. The results of these simulations show
that most polarimetric detectors have better performances if the clutter estimation is
as close as possible to the clutter of the cells under test. This result partly corresponds
to the findings of the simulation on using mismatch angle. Moreover, we find that po-
larimetric detectors consistently outperform the monopolarimetric detectors, and that
no monopolarimetric consistently outperforms the others. It means that a detection
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scheme for endo-clutter UAVs should implement polarimetric feature. However, the
results of these hybrid simulation contradict the previous simulation results and show
that EVa and span do have lower performances if the time interval increases. More-
over it reveals that the performances of the EVa detector depend a lot on the target
signature.

The methods developped in this thesis could be used adaptively in a radar system
to determine the best suited detector for a given clutter.

6.2 . Perspectives

This work gives insight on the advantages of polarimetric detections for endo-clutter
drones. Several perspectives could be explored in relation with this work.

6.2.1. Polarimetric analysis of UAV radar signature

As we have seen some detectors are very sensitive to the polarimetric signature of
targets. This thesis did not analyze the polarimetric signature of UAVs. The analysis of
the evolution of the polarimetric signature UAV with time should be done to allow for
better designs and better performance of endo-clutter detectors.

6.2.2. Further analyses of the polarimetric clutter

The analysis that was conducted on a set of semi-urban clutter that show different
behaviors. Extending this analysis to different clutters using the tools developed in this
thesis would allow for a better understanding of low-grazing polarimetric clutter. Since
the studied clutter exhibits some vegetation features as well as man-made features
it should exhibit some seasonality, further measurement using the effective rank and
mismatch would allow to determine if polarimetric clutter is seasonal. In addition, while
the clutter datasets we used for our data analysis were selected to represent important
feature of semi-urban clutter, it is obvious that it cannot be considered as representing
every type of ground clutter, therefore, analysis on different clutter not covered would
bring a more general understanding of polarimetric clutter.

6.2.3 . Perspectives for the polarimetric detectors

Real world test for the detectors

The hybrid simulation conducted aim to be as close as possible as a real world test
of the detectors while addressing the difficulty of obtaining a sufficient datasets to en-
sure the robustness of the results. However, we suggest that measurement campaigns
featuring a more extensive ground truth, could allow for the test of the detectors on
real data that would ensure a statistical robustness of the results. Such a measure-
ment campaign would also allow for a test of the real-time detector. To achieve such
a measurement campaign the use of several cooperative targets could be used to take
advantage of the capabilities of radar systems to deal simultaneously with several tar-
gets. In addition, such a measurement campaign could use the metrics developed in
this work to adaptively choose the best suited detector for the situation.
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Chapter 6. Conclusions and perspectives

Adding diversity to the polarimetric detectors

To further improve the performances of the polarimetric detectors we could add more
diversity to the data vectors serving as input for the detectors. In a similar fashion to
STAP we could use several range and Doppler cells in the tested radar data vector in
addition to polarization to enhance the performance detection of endo-clutter targets,
as they might not be strictly endo-clutter but also near-clutter (in an off-grid configura-
tion).

6.2.4 . Counter-UAV radar perspective
Classification with polarimetry

This work addresses the topic of the detection of drones in the specific context of low-
grazing clutter with the large resolution cells containing many different backscaterrers.
Polarization has proven to be a useful tool for classification, and classification is an
important topic in the context of counter-UAV radar systems as many objects share
the same flight domain (mainly birds). Further investigation of the use of polarization,
as an additional diversity of data in already proven classifiers using other data, such as
micro-Doppler signature, could prove fruitful.

Multi-target case

Another point of concern for counter-UAV radars is the multi-target scenario in which
several targets are close and can cause some disturbance in the normal operation of
a radar. Counter-UAV radars are especially sensitive to this kind of problem as drones
are capable of coordinated flight and can use swarming tactics. One use of polariza-
tion could be to investigate target separation in swarm scenarios, as the polarimetric
signature of a cell containing several targets might be different from the polarimetric
signature of a cell with a single target. As such polarization diversity could be a viable
alternative to increased bandwidth or shorter PRI for increased resolution to tackle
swarm scenarios.

Radar architecture, SDR and MIMO with polarimetry

Since polarization has proven to be useful for the endo-clutter detection of UAV, its in-
tegration in the architecture of counter-UAV radar is a subject of interest. In particular,
the architecture of a MIMO polarimetric radar can allow for added flexibility as MIMO
radar relies on added diversity of the waveforms used on the transmit size which polar-
ization can provide. The large diversity of scenarios a counter-UAV radar can encounter
also suggests that a cognitive approach to radar system is warranted, using MIMO ar-
chitecture and polarization to build a multi-mode platform.
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Appendix A |
Steering vectors

A steering vector is usually a phase vector that is used filter vectorised data. It gen-
erally uses a phase relationship between the different elements of the data vector. For
instance, let us consider a phased array antenna with N elements (the i** element is
located at ;) and an off-axis signal carried by a plane wave with k its wave vector (the
unitary vector normal to the wave plane and oriented in the propagation direction of
the wave). The plane wave will be measured by the different elements of the array
antenna at different times due to the different positions of the elements. Thus, the
resulting signals will be phase shifted:

X = (xe’jk'”,xe*jk”, e ,xejk’”") (A.0.1)

with X the collection of received signals by each antenna element, x the signal of the
plane wave and e~7¥"i the phase due to the positioning of the i,, element of the antenna.
We define S the steering vector associated with the wave vector k of the incoming wave
and considered array antenna:

S = (e—ﬂ‘k"‘l, e~k ,ejk'”") (A.0.2)

We thus have:

SiX = Nz (A.0.3)

the steering vectors S allows to measure the incoming signal with wave vector k,
whereas the other signals with different wave vectors are not coherently summed, and
thus, are filtered.

This concept applies to any vectorised data in which the individual signals are linked
predetermined phase relationship.
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Appendix B |
HYCAM Receive apertures

To measure the receive aperture of the two pairs of column of the receive antenna
of HYCAM used in the measurement campaign we organized a measurement campaign
in a field with an unobstructed view of HYCAM to ensure a free propagation towards
the radar. During this campaign, we transmitted a pure frequency waveform with a
horn antenna and a synthesizer to measure the reception aperture of a single element
of the receiving antenna for both polarizations (Figure B.1).
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_5 -
_10 -
)
z
c —15-
‘©
(U]
_20 .
_25 .
_30 -
—35 4 — A 1 T

-150 -100 -50 0 50 100 150
Angle (°)

Figure B.1: HYCAM theoretical transmit aperture and measured receive aperture in both polar-
izations.

The measured diagram for h and v polarization turned out to be different with one
being twice as large as the other one.
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Appendix C |
Link between CNR and maximum cor-
relation rate

We recall that for two different signals we have the covariance given by:

rey = =3 (X~ X) (v - T) (o

=1
We write:
Oxx = ai (C.0.2)

And the correlation is given by:
o
p= = (C.0.3)

2 2
O0x0y

We have two clutter identical clutter signals with different noise factor:

X=C+Ng (C.0.9)
Y=C+N (C.0.5)
We define their CNR CN Ry = ;Tg‘ andCNRy = ;’T%
N Ny
We have: ’
oxy = 0cc + 0cn, + 0cn, + OnyN, = aé (C.0.6)

as C'is uncorrelated with Ny and N; and N, and N; are themselves uncorrelated.

2
e (C.0.7)

Jokod  \Jod + ok, ok + ok,
0.4
\/ ﬁ
IO = 02 NO ]\22 (C.O.S)
¢g7+1¢ﬁ7+1
Ny Ny
e VCONR,CNR,
V(CNRy+1) (CNR; + 1)

(C.0.9)
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Appendix D |
Noise analysis

D.1. Noise measurement

We measure the noise on the measurement campaign data used in this thesis.
The noise covariance matrix is:

o, 0 0 0
10 ot 0 0
Rnozse - 0 0 U%—IU O (D-1-1)

0 0 0 o2,

Where o7 is the noise variance of the a3 channel. As the noise on each channel
is independant, which means the non diagonal terms are null. In addition the signal
of Hv and Vv (conversely Hh and V' h) are measured on the same physical channel
at different time as only the transmit polarization changes. Therefore they should be
identically distributed as the noise depends does not depend on the transmit channel,
but only on the enviromnent and receive channel. Therefore we have 0%, = oi, = o}
and %, = 0%, = o2. Therefore giving us the following covariance matrix :

62 0 0 0
0 o2 0 0

Rnoz’se = 0 Oh o2 0 (D.1.2)
0 0 0 o

To measure o7 and o2 we use a doppler range cell at speed 9.5m - s~'. We compute
the mean covariance matrix over the whole measurement duration (836 s) using the
same parameters as in the rest of the thesis (10 ms Doppler integration time). This
SCM is computed over 83600 samples. In Figure D.1, the covariance matrix exhibits the
expected behavior being diagonal with two distinct values on the diagonal, one for o7
and one for o2.

D.2. Consideration on the noise estimation with N samples

The eigenvalues of D.1.2 are {07, 02,02, 02}. However, the value of the SCM depends
on the number of samples, we recall that expression of the terms of the SCM estimated
with N samples is:

Rnoise = (D.2.1)

1 N—-1
(N Z xaﬁ7ix2/6/7i>
i=0 af,a'B'e{Vh,Vv,Hh,Hv}

We have the element-wise expected value given by:
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Figure D.1: Noise polarimetric covariance matrix.

1= +No2,=0% if aB=dp
_ ¥ ) = )N af B
‘E <N ; xaﬂﬂl‘a/ﬁlﬂ,) { O Zf O[/B # a//@/ (D.2.2)
o2 0 0 0
1= . 0 o2 0 0
(TS I & 1 I
’ 0 0 0 o
and the element-wise variance given by:
| v Zob if af=a'f
|Var (N Z $a5,iIZ/3gi>| = ﬁaé if  p=p (D.2.4)
=0 NoRoh if  B#P
200 ol o020} olo}
1 N >|> 1 ot 20t o0} o0
Var | — TaB il g = — v Yy U T (D.2.5)

2 2 2 4 4
0,0y 0.0, o0, 20,

Thus, non-diagonal terms are non-zero and it affects the eigenvalues. An’estimation
noise’is introduced on all terms by the estimation, as a variance inversely proportional
to the number of samples used in the estimation. We expect that the higher the value of
N is, the closer the eigenvalues should be to the actual noise of the channels. We com-
pute the mean eigenvalues over the measurement duration as a function of samples
used to estimates the SCM for the cell under consideration in D.1. We compare this with
the expected simulated results with D.2.3 and D.2.5. Figure D.2 shows the evolution of
the eigenvalues with the number of samples, we see that simulation and measurement
match well. The simulation results are obtained by generating noise vector using the
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Eigenvalue of the noise matrix (1)

Measured
Simulated
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o;

Number of samples for SCM estimation

Figure D.2: Measured and simulated eigenvalues for different numbers of samples used in the
SCM estimation. The rectangle outlines the number of samples used in this thesis when esti-

mating SCM.
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Figure D.3: Mean eigenvalues for ranges from g to 10 km for Doppler cell of speed 8 m - s~ ! (a)
and 0 m-s~! (b) (clutter cells, excerpt from Figure 4.28b, the highest eigenvalue is above 4 dB and
thus hidden). The mean eigenvalues of (a) correspond to noise covariance matrix eigenvalues.
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We see the lowest noise eigenvalue is -0.5 dB.
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asymptotic estimate of the covariance matrix and then computing the SCM estimates
with these generated noise vectors. We see that the last eigenvalue is below the low-
est noise value. This means that even an eigenvalue corresponding to clutter signal
can be lower than the noise floor as measured by the asymptotic estimate of the noise
covariance matrix. However, if a signal is to be considered as clutter signal, it should
always be higher than the last noise eigenvalue measured using the same number of
samples in the estimation of both the noise and clutter covariance matrices. Figure D.3
shows example of noise and clutter eigenvalue distributions. In this example, the last
clutter eigenvalue is lower than the noise floor (0.8 dB) but higher than the last noise
eigenvalue (-0.5 dB).
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Relative angle between two matrices of
identical eigenvalue distributions and
identical eigenvectors

We want to measure the expected value of the angle between two covariance matri-
ces sharing the same lognormal eigenvalue distribution and the exact same eigenvec-
tors. We measure this expected value for each of the clutter under consideration (See
4.4.8). For each clutter we use the measured lognormal distributions of each eigenval-
ues to generate a pair of eigenvalue vectors. The eigenvectors we use to generate the
matrices are the columns of I, the identity matrix of dimension 4. We use the Monte-
Carlo algorithm and generates 10° pairs of vectors of eigenvalues to have 10°¢ pairs of
covariance matrices per studied clutter. We can compute the cosine of the mismatch
angle for each pair of covariance matrix. The mean cosine is the expected value of the
cosine of the mismatch angle for the eigenvalues distributions under consideration.

Farmland clutter Road and farmland clutter Urban clutter
Expected value: 0.99730 Expected value: 0.99984 Expected value: 0.99971
z
‘@
j
o]
a
O.E.}S O.E.}Q 1.00 0.9590 0.9I995 1.0000 0.5598 0.9599 1.000

Cosine of mismatch angle (1)

Figure E.1: Distribution of mismatch angles obtained between matrices sharing the same eigen-
vectors and the same eigenvelue distributions.

Figure E.1 shows the distributions of cosines for the 3 clutter under investigation.
We see the cosine distributions are stacked close to 1. The expected value are shown
in Table E.1.
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Clutter Cosine expected value Corresponding angle (°)
Farmland 0.99730 4.2
Farmland and road 0.99984 1.2
Urban 0.99971 1.4

Table E.1: Cosine expected values and corresponding angles.
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Resampling to favor mismatch angle of
OO

To favor angles close to 0° we follow the normal eigenvalue generation process de-
scribed in 5.5.1. We generate both eigenvalue vectors as follows

AP = (AEZ-)Z,<4 (F.0.1)
AC = (Ac‘i)i<4 (F.0.2)

With:
)\Ei, 2\ = lognormal (5\2-, &f) (F.0.3)

Then we define L¥ = diag(AF) and L¢ = diag(A®). However to favor a mismatch
angle close to o ° we generate a unique transfer matrix for the couple U = U? = U°.
We thus have:

R =UL*U! (F.0.4)

RC¢ =ULCU! (F.0.5)

As both of the matrices of the CMC share the same eigenvectors and eigenvalue
distributions the cosine of the mismatch angle is close to 1 (the expected value of the
cosines for the clutter under consideration with this kind of resampling can be found
in appendix E).
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UAV sighature extraction

As for clutter, no general model for of UAV polarimetric signature of UAVs is not
described in the litterature. Thus, we measure the dynamic signature of the UAV used
in the measurement campaign. The flight data of the UAV were recorded in a log file.
With the log data and the radar position, we compute the distance between the radar
and the UAV. We convert the GPS coordinates of both the UAV and the radar in the
World Geodetic System (WGS) 84 Earth Centered - Earth Fixed (ECEF) coordinate system.
The ECEF is a coordinate systems using cartesian coordinates centered on the center
of the earth, allowing us to compute the Euclidian distance between the UAV and the
radar system:

d= \/(xUAV - xradar)Q + (yUAV - yradar)2 + (ZUAV - Zradar)2 (G-0-1)

The distance obtained with the log data, as shown on a map in Figure 4.15 (we

cleaned the log data before this step), is then visually fitted to the radar data of the

of the UAV flight to ensure an accurate positioning of the vehicle (Figure G.1). We com-

pute the trace of the covariance matrices (computed on 500 ms of data, with a 10 ms
Doppler processing) for the 4 central doppler-range cells (at every range):

Tr (R(t,d,v)) = ZR”< (t,d,v)) (G.0.2)

With v being the velocity of the Doppler-range cell and R;; the element of the i*" col-
umn and row of the R (¢, d, v) matrix. This is the total polarimetric power. We compute
it in decibels and sum the doppler signals:

Pup (t,d) = Tr (R(t,d,v))| (G.0.3)
v#£0
This gives a waterfall visualization of the trajectory of the UAV that can be fitted with

the log data

By taking the differential of the log data over both the time and distance axes, we
compute the speed of the UAV relative to the radar. We show the UAV in the Doppler-
range space over time (Figure G.2).

With these positions we extract the UAV position during time. Since the measure-
ment of the clutter were computed with a 10 ms Doppler processing we need to extract
the UAV signature with the same integration time. We use the knowledge of the UAV
relative speed to compute the Doppler processed data for its specific velocity with the
appropriate Doppler steering vector (Equation G.0.4).

NPulse.s Qiﬁ(UUAV k )
X pop (toduav,voav) = > Xpe(t+ 2k x PRI, dyay) X vamb

amb *Ypulses
k=0

(G.0.4)
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Figure G.1: Log data visually fitted on the radar data. The other visible "tracks" are birds that
were flying during the measurement campaign.
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Figure G.2: Position of the UAV in the Doppler-range space.
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Figure G.3: UAV signal and neighbouring range cells after extraction.

Where X p,, (t,d,v) is the radar signal in all four polarisation at time ¢, distance d
and filtered at speed v over N5, X pe (¢, d) is the radar signal from the pulse-culse
compression at distance d and timet t. v,,,;, is the ambiguous speed associated with
PRI, the PRI of the measurement as defined in 2.1.1.

Figure G.3 show the signal of the UAV signal and neighbouring range cells after ex-
traction. The final step for the signature extraction is to manually remove the parts
where the UAV is in the clutter or has a SNR too low (we chose a minimum SNR of 30
dB), and to keep only the central range cells.
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Maximum Likelihood detector for unknown
amplitude and steering vector for each
look

We write the likelihood ratio as follows:

p(Y[h) _H e (Xilh)

p
LR = = — (H.0.1)
p (Y|h0) i—0 P (Xi|h0)
withY = {Xi}ie[l,N}
The logarithm of LR is:
N-—1
p(X;|h1)
log LR log ———= (H.0.2)
SR 2108 T
with
1 HpE—1
Xi hi) = —(X;—A;S:)" R (X:—A;S:) H.o.
p( ‘ 1) Nenan REHe ( 3)
and
1 E—1
X;lho) = —————— KiRT X H.o.
p( | O) Nean REHe ( 4)
thus, we have:
N-1 _1 1
logLRoc Y A*S"RP X, + A X,"RPS; — |4 ;"R S; (H.0.5)
1=0

To maximize log LR over the A; imply that log LR match the follwoing condition:
d (log LR)
0A4;

Which gives us the Polarimetric GLRT (P-GLRT) (the polarimetric adaptation of the
GLRT), namely:

=0 (H.0.6)

i s x
max log LR =  max ! — (H.0.7)
{Aiticp.noy s {Siticpo..n—1] ; SfRE ISi

{Sitiepp.n—1
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v |sERE T XD a- SHRE x|’
max g Z - — (H.0.8)
{Si}ie[ouNfl] i=0 SHRE , =0 {Si }ze —1] SZHRE S2
with the Cauchy-Scwarz inequality we have:
_ 2 _ _
| x| < (SFR"7'S:) (X R X;) (H.0.9)
the equality is met for:
S =X, (H.o0.10)
thus:
N-1 1
max log LR =Y |X/R"7'X; (H.0.1)
{Ai}ie[ouN—l] i=0
{Siticpo. v
N-1 _1 hO
> |x7R" (H.0.12)
i=0 hy

Equation H.0.12 describes the ML detector with the hypothesis that the S; and A;
are different for each look.
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