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Titre: Détection polarimétrique de drone endo-clutter en incidence rasante
Mots clés: Polarimétrie, Radar, Drone, Fouillis
Résumé : La miniaturisation de l’électronique em-barqué a permis le développement de drones depetites tailles et d’un large marché civil pour cesdrones. La simplicité d’utilisation et le bas coûtde ces drones en font des outils redoutables pourdes personnes ou organisations mal intentionnées.Dans ce contexte, les systèmes radar peuvent jouerun rôle important pour contrecarrer une attaquemenée avec un ou plusieurs drones. Néanmoins,les drones volent généralement à faible vitesse etproche du sol. De plus, ils ont généralement unefaible surface équivalente radar. Ces cibles posentdonc des problèmes aux systèmes radar qui ont dumal à les différencier du sol.Le but de cette thèse est d’améliorer les capac-ités de détection endo-clutter des drones en util-isant la polarisation. Nous présentons une méth-ode permettant d’étudier les propriétés du clut-ter terrestre polarimétrique. Nous proposons desméthodes de simulation permettant d’identifier lemeilleur détecteur dans une scène avec un clut-ter changeant sur les axes temporel et spatial.Nous étudions les avantages des détecteurs po-larimétriques par rapport aux détecteurs mono-polarimétriques à l’aide d’uneméthodede compara-ison des détecteurs qui permet de choisir lemeilleurdétecteur en fonction des propriétés du clutter.Pour atteindre cet objectif, nous analysons lespropriétés spatio-temporelles du clutter à l’aidedes données d’une campagne de mesure radar enenvironnement semi-urbain. Cette campagne demesure nous permet demettre en exergue des pro-priétés importantes du clutter telles que : la non-réciprocité du clutter polarimétrique pour un radardont les antennes de réception des différentes po-larisations sont distinctes, l’existence d’un tempsd’intégration Doppler optimisant la stabilité du clut-ter et une instabilité de la signature polarimétrique

du clutter. Nous proposons demodéliser l’évolutiontemporelle du clutter en utilisant conjointement, ladistribution des valeurs propres de sa matrice decovariance, et, l’angle entre les matrices de covari-ances d’une même case clutter à deux instants dif-férents. Cet angle est appelé "angle de désadapta-tion".Dans une deuxième phase nous comparons unensemble de détecteurs polarimétriques et mono-polarimétriques pour des détections endo-clutter.Pour cela :
• Nous étudions l’influence du rang efficace dela matrice de covariance du clutter - contrôlépar le temps d’intégration Doppler - sur lesperformances des détecteurs et montronsque la minimisation du rang effectif amélioreles performances des détecteurs.
• Ensuite, nous étudions les effet de l’angle dedésadaptation sur les performances des dé-tecteurs en fonction du clutter sélectionné.Nous constatons que les détecteurs filtrant leclutter ont des performances qui diminuentavec l’intervalle de temps entre l’estimationdes propriétés du clutter et la réalisation dutest de détection, alors que les autres dé-tecteurs ont des performances qui ne sontpas affectées par cet intervalle de temps.
• Enfin, nous montrons que les détecteurspolarimétriques sont plus adaptés aux dé-tections de drones endo-clutter que les dé-tecteurs mono-polarimétriques.
Lesméthodes d’analyse que nous avons présen-tées permettent d’optimiser le temps d’intégrationDoppler et peuvent être utilisées dans les systèmeradar pour déterminer, de manière adaptative, lemeilleur détecteur, en fonction du clutter étudié.



Title: Polarimetric detection of endo-clutter UAV in a low-grazing geometry
Keywords: Polarimetry, Radar, UAV, Clutter
Abstract: In the past decades, Unmanned AerialVehicles have benefited from the miniaturizationof electronic components, allowing for cheap andsmall drone designs, and allowing a rapid devel-opment of the civilian market. Unfortunately, dueto their low cost, high availability and ease of use,these systems have become a tool of choice for ma-licious actors, and have become a force multiplierfor such actors. In this context, radars can playa significant role in the effort to thwart an attackwith one or several UAVs. However, UAVs usuallyfly at slow speed and close to the ground and havea low radar cross section, which makes them diffi-cult to detect as radar systems may have troublesto differentiate them from the ground. This the-sis aims at addressing this challenge with the useof polarization. In this thesis, we aim at improv-ing endo-clutter detection of UAVs. We study theadvantages of polarimetric detectors over mono-polarimetric detectors, proposing a method to com-pare the detectors and choosing the best perform-ing one according to clutter’s properties. In or-der to do so, we first analyse the spatio-temporalproperties of polarimetric ground clutter thanks toa measurement campaign in semi-urban environ-ment. This campaign outlines important propertiesof the clutter such as: the non-reciprocity of polari-metric clutter for quasi-monostatic radar with sepa-rated transmit and receive antennas, the existenceof an optimal Doppler integration time and the in-stability of the clutter polarimetric signature withtime. We propose to model the temporal evolu-tion of the clutter using both the distribution of theeigenvalues of the covariancematrix and ameasureof the mismatch angle between covariance matri-ces. Then, we implement a benchmark of polari-metric and mono-polarimetric detectors to assessthe performances of endo-clutter detection underspatio-temporal varying clutters. We compare therobustness of the polarimetric detectors to choose

the best performing detector for a given clutter:
• First, we study the influence of the effectiverank of the clutter - controlled by the Dopplerintegration time - on the performances of de-tectors and confirm that it is useful to mini-mize the effective rank of the covariance ma-trix to improve the detection performances.
• Then, we analyse the influence of the mis-match angle on the performances of the de-tectors using simulated clutter in order to se-lect the best detector, for a given time varyingclutter. It turns out that endo-clutter detec-tors based on clutter filtering depend on thetime delay between clutter estimation anddetection test, while other detectors are timeindependent. Furthermore, this study showsthe sensitivity of the detector performancesto the eigenvalue distribution of the clutter.
• Finally, we show a clear improvement withpolarimetric detectors over single polariza-tion detectors for endo-clutter detection ofUAVs in a low grazing geometry.

From these results, we conclude that multi-polarimetric detectors enable better performancesfor endo-clutter UAV detections. In addition wepresent a metric to optimize the effective-rank ofthe clutter with by adjusting Doppler integrationtime to increase the detection performances. Then,we determine that the shorter the time interval isbetween the clutter estimation and the detectiontest, the higher performances are. These resultsgive a clear plan for polarimetric detections of endo-clutter UAVs, minimizing effective rank and the timeinterval between estimation and detection. We con-clude that simulationmethods described in this the-sis could be used in a radar system to adaptivelyestimate the best polarimetric detector for a givenclutter cell and target.



Remerciements – Acknowledgements

Voici enfin le moment de boucler cette thèse ! Après seulement ��3 4 ans de travaux surma thèse, le manuscrit a enfin été rendu (et validé) et je suis enfin prêt à soutenir ! Aucunebonne thèse ne serait complète sans des remerciements.Je vais tout naturellement commencer par mon encadrement de thèse.Tout d’abord, Hélène, ma directrice de thèse qui aura fait preuve d’une grande patienceavec moi. Un grand merci en particulier pour ton encadrement qui aura permis de canaliserla thèse et l’aura remise dans le droit chemin aumoment où elle en avait le plus besoin. Merciaussi pour m’avoir aiguillé vers les bonnes personnes dans le département pour m’avoirpermis de clairifier efficacement les points d’ombres persistants.Ensuite, je remercie Philippe qui malgré ce que veux bien en dire l’école doctorale m’auraénormément encadré. Je pense en particulier aux nombreuses discussions que nous avonseues. Que ce soit des échanges en rapport direct avec la thèse, portant sur la lutte anti-drone, discussions auxquelles je n’ai pas réussi à rendre entièrement justice avec ma thèseou encore des discussions plus générales, mais toutes aussi intéressantes les unes que lesautres. Enfin merci d’avoir créé ce sujet de thèse si intéressant et si vaste.Merci aussi à Pierre, quim’aura permis d’avancer extrêmement vite sur le sujet compliquéà aborder qu’est le mismatch grâce à ses excellents conseils et de fructueux échanges. Denombreuses parties très concrètes (quasiment autant que du fromage... du jambon...) dema thèse lui doivent énormément, que ce soit l’analyse du clutter polarimétrique ou les sim-ulations des détecteurs. Enfin je le remercie pour ces moments que nous aurons pu passer(et continuons) à développer ensemble sur le radar HYCAM.Enfin, même s’il n’a pas vraiment fait partie de l’encadrement (mais en vrai, si), je remercieici Nicolas qui m’aura permis de découvrir le radar et l’unité quand je suis arrivé à l’ONERAet avec qui je partage une appétence toute particulière pour l’expérimentation (à quand laprochaine manip CORNET ?).
Je tiens aussi à remercier certains collègues qui bienquen’ayant pas participé à l’encadrement,ont particulièrement participé à ma formation lors de ma thèse ou qui m’auront particulière-ment aidé sur un point de ma thèse.Je remercie Fred pour m’avoir appris les bases des traitements radar lors de mon arrivéà l’ONERA en 2019 et pour avoir globalement toujours été de bonne humeur (ou du moins



prêt à l’être), de bon conseil et prêt à aider. Seul bémol il a probablement ramené le COVIDen France, mais chuuuuuuut !!!
Merci à Olivier qui m’aura permis de mettre en place proprement mes simulations dedétecteurs en prenant le temps de m’expliquer les tenants et aboutissants desdites simula-tions.
Enfin merci à Dodo qui m’aura expliqué des concepts de traitements radars un peu plusavancés quand j’ai eu le plaisir de partager le même "bureau" que lui. En outre, sa mauvaisefoi légendaire couplée à son honnêteté sans faille (oui, oui c’est 100% compatible) sont tou-jours là pour égayer l’ambiance. Et pour qui aime l’ordre et le rangement il saura leur faireplaisir avec une visite de son bureau.

Je remercie aussi Fayin pour les bons moments passés, sa bonne humeur et pour gentimentservir de bêta-testeur à mes codes pythons. Et je lui souhaite bien évidemment une excel-lente fin de thèse ! Je remercie aussi mes collègues avec qui j’ai pris et je prends un grandplaisir à partager les pauses café du midi, dans la meilleure salle de pause de l’ONERA, Anil,Daniel et Jean-François, Jérôme (S), Sophie et Romain. Merci aussi à Jérôme (H) pour son aideavec le "nouveau" numériseur d’HYCAM, qui nous aura tant aidé. Un grand merci aussi à Syl-vain pour son aide tout au long de la thèse et tous ses conseils. Je tiens aussi à remerciertrois collègues qui ont quitté l’unité lors de ma thèse et que j’aurais eu le plaisir de rencontréet de cotoyer (trop brièvement), Jean-Paul, Jack et Maxime.
Enfin des mercis en pagaille aux collègues avec qui j’ai eu l’occasion de travailler et/ou departager des discussions et des bons moments pendant la thèse, Mariliza, Abi, Hoa, Steve,Tanguy, Anthony, Pierre, Ba-Huy, Alec et Julien.

Je n’oublie pas non plus la cellule gestion du DEMR qui m’aura accompagné tout au longde ma thèse, en particulier Valérie, Sylvie, Isabelle, Laure et Sophie.
Des remerciements un peu particulier, puisqu’il concerne des collègues que je n’ai pas vrai-ment rencontré pendant ma thèse, mais avec qui j’ai eu le plaisir de travailler alors qu’ellen’étaitmalgré tout à fait pas fini. MerciMichel, Valérie (B), Jean-Philippe, Axel, Laurent, Juanitoet Vincent. Pour finir cette section concernant l’ONERA je remercie aussi la direction du dé-partement de m’avoir fait confiance en m’embauchant alors que ma thèse n’était entière-ment terminée et à tous ceux qui m’ont soutenu et/ou appuyé dans cette démarche.
Enfin, j’ai une pensée à la mémoire d’Orian qui nous a quitté en 2020.

Je tiens aussi à remercier Nathalie Nihouarn, secrétaire de la faculté de physique d’Orsaypour m’avoir énormément aidé à toucher mes salaires d’enseignant vacataire, malgré desconditions d’obtention excessivement compliquées pour un salaire...
Je remercie aussi les différents enseignants, professeurs et maitres de stages qui m’auront



tant appris, et en particulier Baptiste Portelli, quim’aura "propulsé" sur la voie de la physique.

Vous entrez maintenant dans la section dédiée à mes amis de plus ou moins longue datequi m’ont soutenu et aidé avant et pendant ma thèse et j’en suis sûr continuerons à le faireaprès ma soutenance.
Merci à mes anciens camarades de l’ENS et en particulier de la prépa agreg avec qui j’auraipartagé de nombreuses soirées jeux en distanciel pendant les longs mois du COVID.

Merci à mes occasionnels compagnons de jeux-vidéo Jean et Louis. Merci à Apolline pources nombreuses soirées parisiennes au bar. Merci aussi à Hakim et Oscar que je connaisdepuis si longtemps et avec qui j’ai toujours autant de plaisir à partager du temps ! Merci àMohamed pour ces (très) longues conversations téléphoniques toujours rafraichissantes etintéressantes !
Merci à la "team Saint-Just" qui aura tenu contre vents et marées. Merci Pierre, Marc etMarc, au hLM, Hugo, Lucas et Martin.
Un très grand merci à Pio et Olivier pour votre soutien et votre amitié depuis toutes cesannées.
Un très grand merci au Pr. Shadocko (qui n’est pas réellement professeur mais par soucide protection des sources je ne peux pas en dire plus) pour toutes ces magnifiques soiréesde jeux (moins de traquenards qu’avant, il semblerait que la maturité nous gagne...) et tousces beaux memes.
Et un grand merci au DOCTEUR Clément qui m’aura accompagné au quotidien tout aulong de cette thèse, et que j’espère j’aurai réussi à soutenir autant qu’il m’aura soutenu pen-dant la thèse !

Pour finir, un grand merci à ceux qui dans ma famille m’ont soutenu, mes cousins, mescousines, mes oncles, ma sœur, ma mère et mon père.

Je dédie cette thèse à la mémoire de mes deux grand-pères.

And Now for Something Completely Different !



Résumé en français

Lors du début du XXIe siècle, les drones ont grandement bénéficié des progrès effectuésdans le domaine de la miniaturisation des composants électroniques. Ces progrès ont per-mis le développement de drones de plus en plus petit et demoins enmoins cher, permettantune croissance rapide d’un large marché civil. Malheureusement, leur nature bon marchéet la facilité d’accès aux drones en fait des outils privilégiés pour les acteurs malveillants,démultipliant leurs capacités de nuisance. Les radars peuvent jouer un rôle prépondérantpour contrecarrer les attaques de drones. Toutefois, les drones volent généralement à desvitesses réduites et proche du sol, et ont de faibles sections équivalentes radar. Ceci faitdes drones des cibles compliquées à détecter et en particulier difficile à distinguer du sol.Cette thèse a pour but de s’attaquer à cette problématique grâce à la polarisation des ondesradar. Dans cette thèse nous cherchons à améliorer les processus de détection des dronesendo-clutters. Nous présentons une méthodologie permettant d’étudier les propriétés po-larimétiques du clutter de sol. Nous proposons des métriques et des méthodes de simula-tion permettant d’identifier quel détecteur a lesmeilleures performances pour les détectionsdans un clutter aux propriétés polarimétriques fluctuantes et en incidence rasante. Nous étu-dions les avantages des détecteurs polarimétriques par rapport à leurs homologues mono-polarimétriques et proposons une méthode de comparaison des détecteurs qui permet dechoisir le plus apte des détecteurs en fonction des propriétés du clutter. Nous analysonstout d’abord les propriétés polarimétriques spatio-temporelles du clutter de sol grâce à unecampagne de mesure d’un environnement semi-urbain. Cette campagne permet de mettreen exergue des propriétés importantes du clutter de sol polarimétrique, tel que : la non-réciprocité du clutter de sol pour un radar terrestre quasi-monostatique dont les antennesd’émission et de réception sont différentes, l’existence d’un temps d’intégration Doppler opti-misant les probabilités de détections et l’instabilité de la signature polarimétrique du clutter.Nous proposons un modèle d’évolution temporelle du clutter basé sur la distribution desvaleurs propres des matrices de covariance du clutter et sur l’angle de désadaptation en-tre les matrices de covariance du clutter. Nous implémentons un ensemble de détecteurspolarimétriques et mono-polarimétriques pour estimer leurs performances pour des détec-tions endo-clutters. Nous comparons la robustesse des différents déteteurs polarimétriquespour pouvoir choisir le plus efficace pour chaque clutter :
• Tout d’abord nous étudions l’influence du rang effectif du clutter – contrôlé par le tempsd’intégration Doppler – sur les performances des détecteurs et nous confirmons queminimiser le rang effectif de la matrice de covariance du clutter sous test permet demaximiser les performances des détecteurs.
• Ensuite nous analysons l’influence de l’angle de désadaptation sur les performancesdes détecteurs pour pouvoir sélectionner le détecteur le plus adapté à chaque clutterpolarimétrique. Cette méthode montre que les détecteurs dont le fonctionnement estbasé sur le filtrage du clutter en utilisant samatrice de covariance, sont plus sensibles àl’intervalle de temps entre l’estimation des propriétés du clutter et le test de détection



alors que les autres détecteurs y sont moins sensibles. De plus cette étude se concen-tre aussi sur l’impact des distribution de valeurs propres des clutters sous test sur lesperformances des détecteurs.
• Enfin nous démontrons un intérêt significatif des détecteurs polarimétriques par rap-port aux détecteurs non-polarimétriques pour les détections de drones endo-clutters.

D’après ces résultats, nous pouvons conclure que les détecteurs multi-polarimétriques per-mettent d’obtenir de meilleurs résultats de détections sur les drones endo-clutters. De plusnous avons proposé des métriques permettant d’optimiser le rang effectif grâce au tempsd’intégration Doppler, ce qui permet d’augmenter les performances des détecteurs. En-suite, nous avons déterminé que la minimisation de l’intervalle entre le test de détectionet l’estimation des propriétés du clutter permettait elle aussi d’augmenter les performancesdes détecteurs. Les résultats de cette thèse permettent d’établir un plan de d’action pouroptimiser la détection de drones endo-clutters, à savoir, minimiser le rang effectif du cluttersous test, en ajustant le temps d’intégration Doppler, et l’intervalle de temps entre le test dedétection et l’estimation des propriétés du clutter. Enfin nous suggérons qu’il est possibled’utiliser lesméthodes de simulations présentées dans cette thèse dans un système radar delutte anti-drone pour choisir de manière adaptative le détecteur le plus adapté pour chaquecase de clutter.
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Chapter 1 |
Introduction

This part gives a general introduction of this PhD thesis, contextualizes and explainsthe challenges raised by UAVs and drones for air surveillance radars. First, it presentsthe uses of UAVs and their different types. Then it briefly explains the specific chal-lenges posed to counter-UAV radar systems. Finally, it reviews the main objectives ofthis PhD work.

1.1 . Threat posed by Unmanned Aerial Vehicle

The acronymUAV stands for Unmanned Aerial Vehicle, an aerial vehicle with no pilotonboard. It can either be remote-controlled by a human or pre-programmed to act onits own. UAS for Unmanned Aircraft System or drone are also used to designate a UAV.These terms cover reusable aircrafts, single use aircrafts and ordnance such as cruisemissiles [Unmanned aerial vehicle 2022].UAVs are used in bothmilitary and civilian domains. Today, military forces use UAVsin awide range of applications, from reconnaissance toweapon launch platform, includ-ing smart ammunitions. These different missions are carried out by a range of UAVs,from ultra-light UAVs, weighing less than 20 grams such as the FLIR systems Black Hor-net [Black Hornet PRS Datasheet 2022] (Figure 1.1a), to several tonnes UAV with very largewingspan such as the RQ-4 Global Hawk [Northrop Grumman RQ-4 Global Hawk 2022](Figure 1.1c) or the Divine Eagle UAV [SYAC UAV 2022].They come in various forms: with fixedwings (MQ-9 Reaper, Harfang, Bayraktar TB2,Shahed-136. . . ), rotary-wings (MQ-8 Fire Scout, DJI Phantom (Figure 1.1b)) [Chaturvediet al. 2019], flapping wings, hybrid configurations. . . While UAVs were first reserved toarmies and state actors due to the high cost and weight of electronics required forflight control and radio transmission, the increased miniaturization and the access tocheaper, more powerful and energy efficient electronics have made UAVs affordablefor civilian users. As their military counterparts, civilian UAVs have many applications.Cinematography, search and rescue operations, geo-scanning, transportation of pay-loads or hobby, are few of their applications [Yaacoub et al. 2020]. Because of theirsimple operation even for beginners, most civilian UAVs are rotary-wings aircrafts, typ-ically multi-copters. The broad availability of the technologies to build both civilian andmilitary UAVs means that drones are now widely used [Chaturvedi et al. 2019; Yaacoubet al. 2020].UAVs are used in the context of warfare between opposing armies, as weapon carri-ers, weapons themselves or as intelligence gathering tools. If drones have been widelyused since at least World War II [Keane and Carr 2013], their military use has sharplyincreased since the end of the cold war.UAVs are also potent tools for malicious operators. Reports indicate that drones
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(a) Black Hornet UAV, source: Wikimedia.org (b) DJI Phantom used as improvised weapon car-rier by the Islamic State in Iraq and the Levant,source: Waters 2017

(c) RQ-4 Global Hawk High Altitude Long Endurance (HALE) UAV, source: Wikimedia.org
Figure 1.1: Different drones, of various types and size, note the large size differences.

are used to smuggle drug, weapons and other illegal objects into prisons or across bor-ders, or to plan prison breaks. Civilian drones are even used as weapons and weapondelivery systems by terrorists [Waters 2017]. Malice is not necessary for UAVs to be dis-ruptive, for instance the Gatwick airport was paralyzed between the 19th and the 21stof December 2018 due to several reports of drone sighting near the airport’s runway[Shackle 2020].By their nature, these disturbances are extremely low-cost since they use dronesavailable to the public, however, the cost of counter-UAV systems is, by essence, highas they need to counter a wide range of threats. This rapid evolution requires not onlyto adjust air defense systems but to re-think them, in order to address the specificchallenges of UAVs.

1.2 . Specific challenges to counter-UAV systems

A wide range of counter-UAV systems exists, including optro-electronic, acoustic,and radar systems.During World War II, radar systems have proven to be better suited to air surveil-lance and air defense applications than acoustic andoptical surveillance systems, quicklyreplacing acoustic surveillance [Acoustic mirror 2022] and progressively replacing opti-cal surveillance. This is due to the many advantages of radar. First, radar systems offera very unique all weather day/night surveillance capability. Secondly, radars are able to

https://commons.wikimedia.org/wiki/File:Black_Hornet_Nano_Helicopter_UAV.jpg
https://commons.wikimedia.org/wiki/File:Global_Hawk_from_the_rear.jpg
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survey very large areas, whereas other systems have much more limited field of view.It is therefore natural to consider radars for counter-UAV systems.However, as we will see in the following parts, radar systems also have several lim-itations when it comes to dealing with UAVs. A radar system ability to detect an objectdepends on the target’s Radar Cross Section (RCS). RCS is a measure of how much en-ergy is reflected back to the radar receiver. The RCS of an object depends on severalfactors, such as, the size of the object, its geometry, its material composition and thewavelength used of the radar. All other factors being equal the smaller the object is, thesmaller its RCS. Small size UAVs especially pose challenges since small targets usuallyhave small RCS and are therefore more difficult to detect. In addition, they are cheaperand easier to operate than the previous generations of UAVs, which make them a verycommon potential threat. These small UAVs also fly close to the ground meaning thatcounter-UAV radars need to be deployed in a low-grazing geometry, with gives highground clutter returns. Objects illuminated by a radar scatter some energy back to theradar receiver, it is also true for ground objects, such as terrain and buildings. Theradar returns of these objects are called radar clutter and pollute radar measurementsat low-grazing angle.Radar systems also use the Doppler effect to separate targets according to their rel-ative speed with the radar. This property is especially important to discriminate returnsfrom static objects such as buildings, ground or trees from a UAV. As this discrimina-tion uses only the speed of the object, it fails to detect static targets relative to the radarsystem. Unfortunately many drones have rotary-wings meaning they are able to hoverand therefore are easily confused with static returns. Targets that have the same speedas the clutter are named endo-clutter targets, and can evade detections.UAVs also pose further operating challenges, including:

• the similarity of the flight domain and the magnitude of the radar signature be-tween birds and UAVs.
• the highly maneuverable nature of UAVs
• the short time available to react to a threat as UAVs can appear very close to theradar and a vast surveillance domain, often 360° coverage

All of these challenges should be addressed if one wants to ensure counter-UAV radarsystem robustness.

1.3 . Thesis goal and approach

Extensive works have been published on classification of UAVs, amongst differenttypes of UAVs or even between UAVs and small objects like birds. These works havefocused on classical classification methods as well as more novel methods based onmachine learning, in particular neural networks. Many papers report classification re-sults of multi-copter drones using the signature of the blades of the rotor, the so-calledblade flashes [Kang et al. 2021]. This well-known phenomenon is and was previouslyused for manned jet aircraft identification, known under the term Jet Engine Modula-tion [Bell and Grubbs 1993; Research and Technology Organization and Sensors andElectronics Technology Panel 2004].
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Some works address UAV detection both when they are static or having a relativemovement towards or away from the radar. To achieve endo-clutter detections, manyworks focus on the micro-Doppler signature of the blade flashes, because even if thetarget is endo-clutter the signature of the blade flashes are separated from the clutter.As radar signal modulation by blade flashes is widely used for adversarial targetrecognition of jet aircraft some modern jet fighter designs already implement somefeatures that greatly diminish the effectiveness of this method, for instance S-shapedair inlet [Chung and Tuan 2021].That is why we choose not to take the access to the micro-Doppler signature forgranted. Some UAVs have either reduced or obfuscated blade signature (for instancethe RQ-16A T-Hawk [Honeywell RQ-16 T-Hawk 2021] has concealed blades) for flight char-acteristics reasons or maliciously.This PhD work studies how to improve the detection process of endo-clutter targetswhen their signature is non-specific and aims to design robust detection schemes forendo-clutter UAVs with little or no micro-doppler signatures. To achieve this objective,we need to increase the diversity of data processed by the radar system. This can bedone by using frequency diversity and a larger signal bandwidth, a distributed radarsystems (with several transmitters and/or receivers), a finer resolution or polarization.Herewe study how touse thepolarization of the radar to enhance the detection schemeof endo-clutter targets in a low-grazing geometry for a ground surveillance radar.This study uses real-world data collected with ONERA’s HYCAM radar as well as sim-ulations based on the analyses of the polarimetric clutter properties . This thesis firstcovers a review of previous works on surveillance radar and drone detection, polari-metric radar and endo-clutter detection schemes. Then, we detail the experimentalprotocol and the measurement campaign. These measurements lead to analyses ofthe polarimetric properties of the ground clutter in a low-grazing geometry.The final part is dedicated to detector simulations to test their performances. Inthis part we present a simulation method that takes into account the changing clutterproperties. With this simulation method we test the effect on the performances ofpolarimetric detectors of some clutter properties. We test the impact of the rank of theclutter on the performances of the detectors.Using the mismatch angle, a measure of the mismatch between covariance matri-ces of the clutter introduced in the previous part, we test the influence of a mismatchbetween the estimated polarimetric clutter and the clutter under the target. Finally wetest the robustness of the performances of the detectors to an inadequate estimationof the clutter polarimetric properties and we assess the performances of each detectorusing hybrid simulation based on real-world data of both UAV and clutter. We concludewith a summary of the content of this thesis and provide perspectives for future work.



Chapter 2 |
Counter-UAV radar and review of the
litterature

Radar (From RAdio Detection And Ranging (RADAR)) systems were developed dur-ing the first third of the XXth century and were massively used during World War II [His-
tory of radar 2022]. They had decisive influence in several campaigns, most famouslythe Battle of Britain. Nowadays, radars use radio waves to support multiple applica-tions in defence and security domains. They are also used for civilian applications, forexample radar imaging for remote sensing or automotive radar. This broad range ofapplications is due to their ability to detect targets beyond visual range, e.g regardless-almost- of daytime, weather condition and environments. Among these applications,air surveillance is probably the most notable. Air surveillance radar systems, for civilianor defence applications, implement detection algorithms tuned to specific operationsaccording to the capabilities of the system. Radars use time to measure distance andfrequency to measure speed thanks to the Doppler effect. In addition, during the sec-ond half of the XXth century, it appeared that the polarisation properties of the electro-magnetic emissions could be used in radar systems to detect and classify objects [Giuli1986].

The goal of this thesis is to study the interest of polarimetry for surface radar sys-tems to improve the detection of targets embedded in complex environments, with aspecial focus on the detection of UAVs). We first present an overview of the past andcurrent literature adressing different aspects of the UAV endo-clutter detections. Thespecificity of UAVs imposes strong constraints such as a low-grazing angle and strongparasitic returns from building and ground, and leads to the development of new radarsystems and processing. The radar returns from sea, ground, buildings and other slowor immobile objects have specific properties that are then addressed. Finally, we focuson the detection theory and modern detection algorithms. The performances of thesealgorithms provide an important metric to assess benefits of a radar technology.

2.1 . Polarimetric monostatic ground radar.

In this part we describe the operating principle of a monostatic polarimetric groundradar. We start with the radar equation and explain some important aspects of groundradar systems, such as gain, transmitted power and wavelength. We then focus on thebasics of radar signals and signal processing, by describing Pulse Repetition Interval(PRI), pulse-compression and Doppler processing. Finally we introduce radar polarime-try and review the specific requirements imposes on radar systems’ design.
2.1.1 . Monostatic surface radars
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This part is dedicated to monostatic surface radar. We use the radar equation toshow the influence of the antennas gain, wavelength and distance to the target on thereceived power as well as the influence of the target’s "radar size" called Radar Cross

Section (RCS). We briefly discuss the relationship between antenna type and radar per-formances and introduce basic radar signal processing steps, from matched filter tocoherent Doppler processing.
Radar basic principles

An active radar transmits electromagnetics waves through an antennawhich propagateat the speed of light c = 299, 792, 458 m ·s−1 (in vacuum). When a target is illuminated bythe radar, a fraction of the incoming electromagneticwave is scattered toward the radarreceiver. The delay between the transmission of the radar signal and the reception ofthe signal backscattered by the target provides the range the target. If either the radaror the target aremoving, the frequency of the received signal is shifted compared to thetransmitted wave, because of the Doppler effect. As this shift is proportionnal to thespeed relative speed between the radar and the target, it allows the radar to measureits speed relative to the target.Monostatic radars have collocated antenna(s), transmit and receive units. The trans-mit and receive units can either share the same antenna or use two different antennas.To understand how the transmit and receive units and antenna(s) interact with the tar-get we refer to the famous radar equation [Skolnik 1970]:
Pr = PtGt

1
R2 σ

1
R2 Gr

λ2

(4π)3 (2.1.1)
Where:

Pr Received power Receive side
Gr Receiving antenna gain
Pt Transmitted power Transmit side
Gt Transmitting antenna gain
σ Radar cross − section Scatter side
λ wavelength
R/R Distance between the radar and the target Forward and back propagation side

On the transmit side of the radar equation, Pt is the transmitted power, the quantityof energy transmitted by the antenna. It depends on the power amplification stage.
Gt is the transmit antenna gain, it measures how directive the antenna is. It is pro-portional to the surface of the focusing element of the radar. In this case we have:

Gt ∝ S 4π
λ2 with S being the surface of the focusing element, thus, according to the Fraun-hofer diffraction theory, Gt ∝ 4π

ΘaltΘaz
, with Θalt and Θaz the beam width of the antennaaperture, respectively, in elevation and azimuth.Figure 2.1 shows two different radars operating in L-Band (respectively around 1.3GHz and 1.75 GHz), with respectively ∼ 45 dB of transmission gain and ∼ 20 dB. Thedifference of the beam width also illustrates the relationship between gain and theenergy being "concentrated" as the SRE-M6 (Figure 2.1a) radar has Θalt = Θaz = 1.1°and the "Œ il noir" radar (Figure 2.1b) Θalt = 45° and Θaz = 10°. A larger focusingelement leads to a thinner beam, thus a more concentrated energy and a higher gain.
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(a) SRE-M6 Radar, source: radar-tutorial.eu (b) DRVC 1 A "Œil noir" Radar, source: chars-francais.net
Figure 2.1: Two L-band (1 to 2 GHz) radar, due to the size difference of their parabola they havevastly different antenna gains.

(a)GM400 "GroundMaster" S-BandRadar phased array radar,source: Wikimedia.org (b) DRBV 15A "Sea Tiger" S-Band Radarradar with focusing parabola, source:radar-tutorial.eu
Figure 2.2: S-Band radars (2-4 GHz), phased-array radar and radar with a focusing parabola.

https://www.radartutorial.eu/19.kartei/03.atc/karte013.en.html
https://www.chars-francais.net/2015/index.php/engins-blindes/engins-divers?task=view&id=42
https://www.chars-francais.net/2015/index.php/engins-blindes/engins-divers?task=view&id=42
https://commons.wikimedia.org/wiki/File:Ground_Master_403_(KEVA2010)_Kokonaisturvallisuus_2015_01.JPG
https://www.radartutorial.eu/19.kartei/07.naval/karte099.en.html
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Figure 2.3: RCS of a UAV as a function of its aspect angle for a frequency band between 12 and18 GHz. Source: Office National d’Études et de Recherches Aérospatiales (ONERA), anechoicchamber measurements.

A radar with a focusing antenna has few or a single radiating elements at the focalpoint of the focusing antenna. The electromagnetic wave are focused by the parabolaon these radiating elements, and the direction in witch the radar beam points dependsolely onmechanical steering. By constrast, the phased array radar has a large numberof radiating elements in its antenna. Figure 2.2a exhibits a phased array radar andFigure 2.2b a radar with a parabolic antenna.After transmission, the waveforms propagate with respect to the beam pattern Theterm in R−2 comes from the conservation of energy and as the target gets further lessand less energy reaches it.
σ is the Radar Cross Section (RCS) of the target. It is the fraction of energy the targetreflects in the direction of the radar. The RCS is the surface of an equivalent metallicsurface, which would reflect the same amount of energy as the target. As an example,

σ = 10 m2 means that the target reflects as much energy back to the radar as a 10 m2

metallic plate (within the far-field hypothesis). The RCS of a target depends on severalfactors:
• The aspect of the target relative to the radar receiver and transmitter
• The wavelength of the radar signal
• The nature of the target, such as its materials and shape
In the following, the RCS is expressed in dBsm (sm for squaredmeters), with σdBsm =

10 log10 σm2 to account for the fact that RCS value spans overmany orders of magnitude.Figure 2.3 shows strong link between the RCS of a UAV and its aspect for a frequencyband between 12 and 18 GHz.When the electromagnetic wave hits the target it is scattered or reflected back inspace and a portion propagates back to the radar, once more the conservation of en-ergy introduces an additional R−2 factor.
Gr is the antenna reception gain. We can also model the power reflected by thetarget back to the receiver as a photon surfacic flux. Integrating over the receiving sur-face gives a photon flux, which translates to received power. The gain is proportional to
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Figure 2.4: Radar working chart

the receiver surface. Once more, we can distinguish between antennas with a focusingelement, for instance an antenna with a parabolic and one receiving element, and anantennas with several receiving elements. Non focused antennas also present an im-portant drawback over antenna with a focusing element, namely the susceptibility tojammers. If a jammer is present off axis, a radar with parabolic antenna is not affected.A multi element antenna filters the jammer with Digital Beam Forming (DBF), but theif jammer is strong enough to saturate the receivers it is impossible to filter it out andthus, it pollutes the signal of interest. However active array antennas provide a lot ofadvantages, amongst which, their versatile nature and their ability to operate severalfunctionnality at one (scanning, tracking, electronic warfare, etc).Finally, Pr is the received power after all the steps. The signal received is alteredby various noise. It can be noise from the environment, the antenna, the Low Noise
Amplifier (LNA), or from the rest of the radio frequency chain. When the noise comesfrom the Radio Frequency (RF) chain we call it noise factor (F ), the quotient betweenthe Pr and F , the noise from the LNA, gives us the instantaneous Signal to Noise Ratio(SNR). The noise factor of the RF chain should be lower than the LNA noise factor, asthe noise from the LNA is white noise, whereas the rest of the chain can have stronglycolored noise. A colored noise has a nonflat spectrum, whichmeans that the noise levelvaries with frequency.Figure 2.4 shows a flowchart of the radar working principle as detailed above. The
Arbitrary Waveform Generator (AWG) generates the signal transmitted by the radar.This flowchart is closely related to the radar system we use in the work presented. Itshould be noted that different radar design can be adopted, whichmight not follow thepresented flowchart.
Radar signal

First generation radars transmitted high power pulses. This signal is repeated regu-larly with a time period named PRI and a pulse duration denoted τ in the following. τonly lasts a fraction of the PRI. For these radars the range resolution is given by τ [Skol-nik 1970], as cτ
2 . It leads to the challenge, from a system perspective, to transmit highamount of energy in a very short time to guaranty detection and tracking performancesof the system at relatively high resolution.Instead of transmittingmore andmore power over shorter and shorter time period,coded waveform are used. The development of miniaturized electronics allows for theuse of frequency-modulated waveform. With this waveform the range resolution isinversely proportional to the bandwidth of the waveform, B, and is written c

2B
, as weshow in the following.



26 Chapter 2. Counter-UAV radar and review of the litterature

Figure 2.5: Chirp time serie and spectrum

The linear chirp is a widely usedwaveform (Figure 2.5 shows the real part and powerspectrum of a chirp) in which the transmitted frequency is linearly swept from fc − B
2to fc + B

2 over of duration τ . It can be expressed as:
schirp(t) = e2iπt(fc+ B

2τ
t− B

2 ) (2.1.2)
With 0 ≤ t < τ . Thus the transmitted signal becomes:

stransmitted(t) =
{

schirp(t) , 0 ≤ t < τ
0 , τ ≤ t < PRI

(2.1.3)
For implementation issues, the chirp is often generated around an Intermediary

Frequency (IF) central frequency. Then it is transposed to the desired carrier frequency,in the Radio Frequency (RF) domain. The signal then goes through power amplification,and is transmitted by the antenna. The waves travel in the space, hit different backscat-terers, and are partially reflected to the receive antenna. The received signal is filteredwith a band-pass filter centered on the carrier frequency to reject out-of-band signalsthat would be amplified and then aliased. The signal is first amplified by a LNA, whichadds thermal noise to the signal. Wewrite the received signal as the sumof the differentcontributions of the scatterers and noise:
sreceived(t) =

L∑
l=1

ale
iϕlschirp

(
t − 2rl

c

)
+ anoisee

iϕnoise (2.1.4)
With L being the number of scatterers and:

⟨anoise⟩2 = αkBBnT (2.1.5)
Where α is the noise factor, kB is the Boltzmann constant, Bn the used bandwidthand T the noise temperature. Figure 2.6 shows the echo from a target as well as thethermal noise illustrating equation 2.1.4. al is given by:

al =

√√√√σlGtGrλ2

r2
l (4π)2 (2.1.6)
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Figure 2.6: Radar signal showing the return from an airliner (Airbus A320).

where σl is the RCS of the backscatter l and rl its distance to the radar. ϕl is the intrinsicphase of the backscatterer.The signal is down converted to an IF and digitized around this frequency. Lower-ing the working frequency limits the signal loss in the cable because higher frequencymeans a stronger power radiated by a cable, and the hardware for digitizing at lowerfrequencies is less constrained.
Pulse compression

Pulse compression is a cross-correlation of the received signal with a replica of thetransmitted signal. The cross-correlation function between the signals s0 and s1 is givenby:
⟨s0, s1⟩ (t) =

∫ +∞

−∞
s∗

0 (t′) s1 (t − t′) dt′ (2.1.7)
The pulse-compression is the cross-correlation between the transmitted signal andthe received signal:

spc (t) = ⟨stransmitted, sreceived⟩ (t) (2.1.8)
The auto-correlation of the chirp is biven by [Hein 2004]:

schirp auto−correlation (t) = ⟨schirp, schirp⟩ (t) = τΛ
(

t

τ

)
sinc

(
BtΛ

(
t

τ

))
e2iπfct (2.1.9)

With Λ (x) = max (1 − |x| , 0), the triangle function, sinc (x) = sin(x)
x

the sinus cardinalfunction.It is often approximated by:
schirp auto−correlation (t) = τsinc (Bt) e2iπfct (2.1.10)

Figure 2.7 shows the auto-correlation of the chirp. We notice the sinus cardinal andits side lobes -13 dB below the main lobe and the first zeros at B−1. It means that therange resolution is proportional to c
2B
, and exactly c

2B
using the Rayleigh criterion for
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Figure 2.7: Chirp auto-correlation.

resolution [Lord Rayleigh 1879]. This proportionality relationship between bandwidthand range resolution is not specific to the chirp and holds true for every signal. Thepulse-compressed signal of the backscatter l is written:
alschirp auto−correlation

(
t − rl

2c

)
Thus, with 2.1.4 and 2.1.8 we can write spc:

spc(t) =
L∑

l=1
alschirp auto−correlation

(
t − rl

2c

)
+ n′ (2.1.11)

With n′ the noise component after pulse-compression. The total energy of trans-mitted by the chirp is Etrans = Ptransτ the same energy is conserved after pulse com-pression. As explained, the resolution after pulse compression is proportional to B thebandwidth. Thus, Etrans is measured over 1/B, thus we have:
Etrans = Ppc/B = Ptransτ (2.1.12)

WithPpc the peakpower after the pulse compression stage, thuswehavePpc = PtransτB.The total power transmitted by the radar is Peff = Ptrans
τ

P RI
depending on the radarduty cycle τ

P RI
. Peff is thus proportional to τ .For a single frequency pulse radar the range resolution is proportional to cτ

2 whichmeans that increasing τ increases Peff but degrades the range resolution. However,for a coded waveform with a bandwidth of B the range resolution is proportional to c
2B
.The range resolution does not depend on τ whichmeans that increasing τ increasePeffbut does not degrade the range resolution. The coded waveforms and pulse compres-sion allows to decouple, the range resolution from the transmitted power, with rangeresolution being independent from τ .

Maximum unambiguous range and minimummeasuring range

With a single antenna, a duplexer is used to separate the transmitter unit and receiverunit as the same antennas serves for both transmission and reception With two anten-nas, data recorded during the transmission of the radar is often discarded due to the
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Figure 2.8: Radar signal after pulse-compression. There is an offset due to the propagation ofthe signal in the cables of the radar system.

coupling between the antennas. Despite the isolation between the antennas a largequantity of energy can go into the receiving antennas during the transmission. It oftendistorts the signal or masks it making its exploitation impossible. The distance cτ
2 istherefore called the minimal measuring range and is the radar’s blind spot.

The ambiguous range is defined by the PRI. Since the waveform is transmitted everyPRI, a reflected signal traveling for δt > PRI before getting back to the radar receivercannot be distinguished from a signal travelling for δt−PRI . The distance cP RI
2 is called

maximumunambiguous range. The radar has another blind spot between c(P RI−τ)
2 and

cP RI
2 which is the symmetric of the blind zone between 0 and cτ

2 . This blind spot is dueto the coupling of the next pulse or the fact that the radar does not record this data.
Without dedicated waveforms management a radar can unambiguously detect tar-gets between cτ

2 and c(P RI−τ)
2 . This is illustrated in Figure 2.8.

Doppler processing

The radar system transmits a waveform at each PRI . We can separate the receivedsignals in bursts of M pulses transmitted during M × PRI to do a coherent processingover this block of data organized along two axes. A short time axis corresponding to thedelay between the emission of the waveform and the reception of the waveform andlong time axis corresponding to the index of the pulse in the burst. The signal receivedby the radar can be written as:

spc(t, m) =
L∑

l=1
alschirp auto−correlation

(
t − rl (m)

2c

)
+ n′ (2.1.13)

With the assumption that the backscatterers remain coherent during the burst, thepulse to pulse evolution of the signal in a burst allows themeasurement of the Dopplereffect on the signal. The Doppler effect is the name of the apparent shift of the sig-nal frequency received from a moving object. The apparent frequency received by theradar, f ′
c, is related to the relative speed of the backscaterrer toward the radar (vrel) andcan be approximated by:
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Figure 2.9: Example of Doppler range map of a radar signal with an airliner.

f ′
c = fc

c − 2vrel

c
(2.1.14)

For instance, by computing the discrete Fourier transform along the long time axiswe filter the signal according to the relative speed of the backscatterer to the radar.The signal is organized along a range axis and a speed axis. We illustrate this with aDoppler-range map (Figure 2.9).
Since we emit the same signal every PRI we have a caracteristic frequency of PRF =

PRI−1, Pulse Repetition Frequency (PRF) stands for Pulse Repetition Frequency, wecannot measure shifts in frequency superior to the PRF without aliasing. Thus, themaximum unambiguous speed depends on the central pulse frequency and the PRI orPRF, as follows:
vamb = PRF

2fc

= c

4PRI × fc

(2.1.15)
Defining waveforms is therefore a result of a compromise on the PRI since a longPRI leads to large unambiguous range measurement and low ambiguous speed mea-surement; conversely, a short PRI yields large unambiguous speed measurements andsmall ambiguous range measurements.
Figure 2.9 shows the Doppler range processing of the signal presented in Figure2.6 and Figure 2.8. We see that for a speed of 0 m/s we have a signal; this signal iscomposed of the radar returns from objects that stand still, typically trees, buildingsand terrain. This signal is called clutter in radar literature. In this figure, the airliner’ssignal is shifted due to its relative speed. In this example, the airliner was flying towardthe radar at roughly 15 m · s−1 below the speed ambiguity, ±120 m · s−1.

2.1.2 . Polarimetric radar
In this part we introduce the concept of polarization of the electromagnetic waves,using the Jones calculus formalism to describe it. We then discuss how a radar canmeasure polarization and how it constrains the radar system.
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Polarization

Polarization is a property of waves, including electromagnetic waves. Polarization de-scribes the direction of oscillation of a plane wave. The shape drawn in the polarizationplane by the oscillations of the electromagnetic field defines the polarization state.The three different shapes polarization can take are a line, an ellipse and a circle.The polarization state can be representedwithin a basis of two orthogonal vectors. Twodifferent bases are often used, namely the circular basis and the linear basis.In the orthogonal plane to the direction of propagation we define two axes x and y.A linear polarization means the shape drawn in the polarization plane is a line, and thecircular polarization means the shape is a circle (see figure 2.10).The first linear basis means we separate the polarization state into a linear combi-nation of two linear and orthogonal polarization e.g. the Vertical (V) polarization, andthe Horizontal (H) polarization. We mainly use linear polarization.The circular basis decomposes the polarization state as a sum of circular polariza-tion, RightHandCircular Polarization (RHCP) and LeftHandCircular Polarization (LHCP).RHCP and LHCP describe in which way the circle is drawn. Two conventions exist: the
Institute of Electrical and Electronics Engineers (IEEE) convention states that LHCP isa polarization where the polarization rotates clockwise for an incoming wave whereasmost physicists use the opposite convention.The interaction between an electromagnetic wave and an object (a target) or a col-lection of objects (water droplets for instance) depends on its polarization. For instance,a sphere has the same signature whatever the polarization, but a dipole mostly reflectsthe polarization parallel to its orientation. Polarization of electromagnetic wave canalso be affected by the propagation medium, and measuring the polarization from anemitted object or a propagationmedium sometimes allows physicists tomeasure someof its properties, for instance [Mathys and Stenflo 1986] measures the magnetic field ofdistant stars thanks to the polarization of the received light.Jones calculus is frequently used to describe polarization states [Collett 2005]:

J0 =
(

E0e
iϕx

E1e
iϕy

)
(2.1.16)

With E0 and E1 amplitudes of the electric field along the x and y axes, ϕx and ϕy thephases of the oscillation projected along the x and y axes of the polarization plane. With
this formalism (1 0)T and (0 1)T respectively describe H and V polarizations and √

2
2 (1 i)T

and √
2

2 (i 1)T the two circular polarizations. Using this calculus any linear transformationcan be expressed by:
MJ0 = J1 (2.1.17)

where J0 represents the incoming polarization state and J1 the final polarizationstate and M the scattering or propagation matrix.
Polarimetric radar

In astronomy and more broadly in observational physics, sensors are usually receiversonly. In this case there is only two polarizations (the two components of the Jonesvector).



32 Chapter 2. Counter-UAV radar and review of the litterature

Figure 2.10: Example of polarizations, from top to bottom, arbitrary elliptical polarization andlinear polarization, linear polarization basis and circular polarization basis.
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Figure 2.11: Usual transmit and receive scheme for a polarimetric radar.

In our case we use an active radar, which transmits and receives signal. The polar-ization of the received signal depends on the propagation and scatterring process andon the transmitted polarization. To characterize our target we cannot rely only on theJones vectormeasured, but we need tomeasure the backscatteringmatrix of the targetthat also depends on the transmitted signal 2.1.17:
MpMtMpJT x = JRx (2.1.18)

With JT x and JRx the transmitted and receivedpolarization states for a single backscat-terer, Mp is the propagation matrix of the medium in between the target and the radar,
for the vacuum Mp =

(
R−2 0
0 R−2

)
, with R the target distance to the radar, and finally

Mt is the scattering matrix of the target:
Mt = S =

(
SHh SV h

SHv SV v

)
(2.1.19)

Sαβ is the portion of α polarized electromagnetic wave that is reflected with a β po-larization state. A polarimetric radar using linear polarizations can measure this scat-tering matrix. When emitting in the H polarization the radar measures SHh and SHv,when emitting in V polarization it measures SV h and SV v. According to the reciprocityprinciple, for a passive target we have SHv = SV h [Tragl 1990].Has shown in Figure 2.11, radars often emit twice to measure completely the scatter-ing matrix of the target, once in each polarization while receiving in both polarizationsimultaneously. Itmeans that the PRF, and speed ambiguity are halved. The ambiguousrange is unchanged.Indeed, when the radar transmit a pulse in V polarization it starts receiving V h and
V v polarization signals. It receives these signals up to a distance of cP RI

2 , then the radartransmits a pulse in H polarization and start receiving Hh and Hv signals. The radaris still receiving V h and V v signals but this signals are coming from scatterers furtherthan cP RI
2 whereas the signal in Hh and Hv are closer than cP RI

2 . Because of conser-vation of energy, the R−4 factor in the radar equation, the V h and V v signals are a lotweaker than the Hh and Hv signals. Thus, we consider only the signal correspondingto the last polarization transmited. So the maximum unambiguous range is linked to
PRI , the time interval between the transmission of the H polarization and the V polar-ization. Furthermore, as the radar transmits only half of the time in a given polarization,
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the transmitted power is effectively halved as well. These are the two main potentialdrawbacks of polarimetric surveillance radar.Surveillance radar must be able to measure a wide range of speed as targets rangefrom jet fighters to slow civilian airplanes; therefore, a lower speed ambiguity is notdesirable, it can however be adressed by the radar by using additional processes andseveral different waveforms. The halved transmitted power can also be a drawbacksince it reduces the range of the radar by roughly 20% according to the radar equation2.1.1.To fully measure the scattering matrix we need at least 3 channels to the radar, achannel forHh, Vv andVh (orHv) polarizations, increasing the systemcomplexity. So far,this complexity has limited the use of fully polarimetric surveillance radars. However,polarization brings additional information about targets and the radar scene, thus it isused in some radar systems. We detail these uses in 2.4 and 2.5.4.

2.2 . Interactions between Radars and UAVs.

Since World War 2, radar is the main tool for air surveillance. As soon as UAVs be-came prevalent, the use of radar in a counter-UAV role have been studied. In this part,we review the literature addressing counter-UAV radars. Drones have a characteristicsignature often exhibiting so-called micro-Doppler components, that are lower thanthe signature of the main body, which are used to detect and classify them. UAVs alsorequire the radar system to operate in a low-grazing geometry as UAVs usually fly closeto the ground, and defending against them necessitate monitoring large sectors at atime prompting the useMulti-InputMulti-Output (MIMO) radar using DBF.
2.2.1 . UAV radar signature

The first element to analyse when we consider a new target class is its signature.The signature of a target is defined as the RCS of this target as a function of aspect andfrequency, and sometimes specific Doppler components.The RCS of UAVs is a widely discussed topic with numerous articles in both journalsand conferences. Most RCS measurements take place in anechoic chambers; it is alsotrue for UAVs [Sedivy andNemec 2021]. The results discussed in the literature span overmany frequency bands. For a consumer grade quadcopter, themaximumRCS reportedin S-band, is around -19 dBsm, while in Ku-band the maximum RCS is around -9 dBsmfor the same UAV [Li and Ling 2017; Patel, Fioranelli, and Anderson 2018a]. In C-band aRCS as high as -10 dBsm has been measured for a quadcopter. The lowest measuredRCS are below -30 dBsm for certain frequencies (6.25 GHz and 7.5 GHz depending onthe aspect of the UAV), with an average RCS -17 dBsm. An octocopter RCS has also beenmeasured and its max RCS is around 0 dBsm and the minimum RCS always exceeds-16 dBsm [Herschfelt et al. 2017]. In [Sedivy and Nemec 2021] X-band authors give RCSmeasurements for a variety of UAVs, the larger ones have RCS peaks between 0 and-10 dBsm, while smaller UAVs have RCS peaks between -15 and -12 dBsm. Finally in W-band smaller drones have a RCS peak between -15 to -5 dBsm, and mean RCS between-20 and -15 dBsm, whereas the bigger UAV has peak RCS going from -5 dBsm up to 2dBsm and a mean RCS of -8 dBsm [Rahman and Robertson 2019]. These bands coverthe low bands used in surveillance radar (L to X) as well as high bands preferred forclassification as they grant better resolutions (Ku to W). Some of the measurements
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Figure 2.12: Comparison between the simulation results and measurements of DJI UAV. Theangle is the angle between the transmit and receive antenna relative to the UAV. Figure from[Schroder et al. 2015]

take place with in-flight UAV [Sedivy and Nemec 2021; Guay, Drolet, and Bray 2017].
There exists no unifying model, however, a substantial number of measurementsare made on UAVs of commercial brands such as DJI [Sedivy and Nemec 2021; Li andLing 2017; Patel, Fioranelli, and Anderson 2018a; Rahman and Robertson 2019; Li et al.2019; Herschfelt et al. 2017; Ezuma et al. 2022] (one of the leader on the civilian UAVmar-ket, models of this brand have been identified on warzones being used as makeshiftweapon carriers [Death From Above 2017]). [Patel, Fioranelli, and Anderson 2018a] com-piles the results of several previous articles in which drone signatures were measured,including [Schroder et al. 2015] in which the RCS of a DJI Phantom 2 drone is presented.It is also modelled as a core of pure copper being roughly shaped like the internal elec-tronics of the UAV and an envelope of a dielectricmaterial around this core to representthe plastic airframe of the UAV. This model and the measurement give similar results,as shown in Figure 2.12. The simulation results are not affected much by the dielectricpermittivity chosen for the plastic airframe around themetallic core. In [Patel, Fioranelli,and Anderson 2018a], the RCSmeasured in the reviewed articles ranged from -30 dBsmfor the small drones to -8 dBsm for the larger one.
When themeasurements aremade in anechoic chambers and compared to in flightmeasurements, authors find significant variations of RCS between the two configura-tions. In [Guay, Drolet, and Bray 2017] authors highlight for instance that the RCS washigher when the drone was flying (from 0 dB of difference up to RCS 6 dB higher). Theysuggest that the vibrations of the UAV during the flight prevent some of the destructiveinterferences.
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Figure 2.13: Measured and simulated spectrogram of a flying drone. We notice the blade flashes(every ∼ 11 ms) and the returns from the propeller blade tip (the sine shaped returns). Source:[Leonardi, Ligresti, and Piracci 2022]

[Sedivy and Nemec 2021] shows that assigning a single number to characterize theRCS of a UAV is an oversimplification and that the RCS should be characterized by itsdistribution as it varies sharply with the aspect of the UAV. [Rahman and Robertson2019] compares the RCS distributions of UAVs in flight to birds in K and W bands. Theyshow some differences in the RCS distributions of the UAV wheter the UAV is in station-ary flight or not. While hovering UAVs exhibit a lower standard deviation on their RCSdistribution.From this review, we conclude that UAVs have low RCS usually below -10 dBsm andoften around -20 dBsm similar to 4++ and 5th generation fighters in frontal aspect (ac-cording to open source intelligence and estimations [Zikidis, Skondras, and Tokas n.d.]),which are notoriously hard to detect. Their RCS are also comparable to birds meaningthat system designs geared toward UAV detection have to deal with birds, which evolvein the same flight domain as UAVs and are far more numerous.Another feature of some UAV radar signatures is the presence of micro-Doppler,which is mainly due to the rotating parts. The blade flashes momentarily increase theRCS of the UAV when one or more of the propellers of the UAV are facing the radar.These RCS modulations give a very specific signature for multicopter UAVs. [Patel, Fio-ranelli, and Anderson 2018a], notes that the reviewed articles show that the blades’relative signal amplitude usually lay between -20 to -25 dB below the UAVmain body sig-nal amplitude, making their measurement in operational conditions challenging as out-lined by [Khristenko et al. 2017]. Examples of these blade flashes and specific "Doppler"signature can be found in Figure 2.13 and in [Harmanny, Wit, and Cabic 2014; Ritchieet al. 2015; Ritchie et al. 2016; Schröder et al. 2016; Harman 2017].For instance, if the RCS of a UAV is σMB , MB stands for Main Body, the RCS of itsblades will be σBl ≈ σMB − 24dBm, Bl standing for "Blades", and we are able to detectthat UAV at a maximum range of RMB. Following 2.1.1 we write the equation:
CR4

MB = σMB (2.2.1)
C is a constant that encapsulates the terms of the radar equation which are keptequal in this discussion, namely the wavelength, transmitted power, received power
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and antenna gains. We have σMB

σBl
= R4

MB

R4
Bl

withRMB themaximum range at which we can
expect a reliable detection of the blades, and σBl the RCS of the blades. Therefore wehaveRBl = RMB

4 , any signal processing onmicro-Doppler signatures (be it classificationor detection) requires the target to be 4 times closer to the radar. Signal processingrelying on micro-Doppler is thus challenging to implement in operational context as[Khristenko et al. 2017] outlines. It needs to be emphasized that the typical RCS of smallUAVs’ propellers (in the lower range of measured RCS) is roughly the same as the RCSof sizeable insects [Zikidis, Skondras, and Tokas n.d.].
As alreadymentionned UAV signatures share some similarities with birds, thus theirsignature are often compared [Ritchie et al. 2016; Rahman and Robertson 2019]. [Ritchieet al. 2016] notes that the RCS of birds andUAVs are similar, but their Doppler signaturesare quite different and suggest using such features to classify drones and birds. In[Rahman and Robertson 2019] the distributions of RCS of UAVs and birds are compared:even though the distributions exhibit some differences the authors consider this tobe insufficient for classification purposes; and they suggest to use micro-Doppler forclassification.
The influence of polarization for the blades signature is also investigated in [Ritchieet al. 2015], with simulations and experiments showing a lower return in V v than in Hhpolarization for a DJI Phantom drone. The micro-Doppler Hh signal was 30 to 40 dBlower than the main body signature according to simulations. The return in V v couldnot be measured as the SNR of the Hh micro-Doppler signature was lower than 30 dB.

2.2.2 . UAV classification
Another important aspect of counter-UAV radars is their ability to classify drones,both classify them against other targets, and identify the model of UAV. One aspectof this classification is the differentiation between a drone and a bird, which are twotarget types that are in the same flight domains: close to the ground and usuallymovingslowly. The second aspect is the ability to differentiate between dronemodels. In [Patel,Fioranelli, and Anderson 2018a] some classification methods are reviewed.
Several methods to classify between UAVs and birds have been investigated. One ofthem relies on the RCS of the target. [Harmanny, Wit, and Cabic 2014] suggests that RCScan be used to discriminate between UAVs and birds as UAVs tend to have a larger RCS.Nethertheless they mention that this feature is not robust as it varies with the aspectof the target. [Ritchie et al. 2016] and [Rahman and Robertson 2019] confirm this andsuggest to use other features such as the micro-Doppler signature.
While micro-Doppler signatures can be difficult to detect, as reported earlier, its im-plementation for classification against birds for instance is by far themost used featurefor classification. Several methods exploit the Doppler signature but not all methodsuse the data in the same way.
Some articles analyse the micro-Doppler signature using spectrogram [Wit, Har-manny, and Molchanov 2014; Harmanny, Wit, and Cabic 2014]. This method requiresa high PRF to measure the effects of the blade flashes. As stated in 2.1.1 the PRF definesthe upper limit of the frequency to be observed. Thus, the PRF must be higher than

FP rop × Nblades, with Fprop the propeller’s frequency and Nblades the number of bladesof the propeller. This method allows the discrimination between birds and UAVs. [Wit,Harmanny, and Molchanov 2014] uses a Single Value Decomposition (SVD) on the spec-trogram to further quantize the micro-Doppler signature and shows that only a few
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singular vectors carry most of the information (the SVD is the generalization of theeigenvalue decomposition to arbitrary matrices). [Kang et al. 2021] compares the spec-trogram to the Doppler spectrum for classification, and outlines some drawbacks ofusing the spectrogram compared to the Doppler, notably its strong dependency on aclean measurement (clear of interference and with a good Signal to Interference plus
Noise Ratio (SINR)) and its computational complexity. They show clear differences inboth Doppler spectrum and spectrogram of birds and UAV thus enabling classification.[Oh et al. 2018] uses an EmpiricalModeDecomposition (EMD) to classify different typesof drones as well as to discriminate drones from birds. EMD is a decomposition of thesignal into a sum of functions, which must satisfy some properties, they should form abasis that is orthogonal or nearly orthogonal. These functions are called IntrisicMode
Function (IMF) and are computed from the dataset on which the EMD is performed.Their computation is a recursive process that is based on the envelope of the signal.The mean of the envelope of the signal is an IMF. The first IMF is removed from the sig-nal and the envelope of the new signal is used to compute the next IMF. This recursiveprocess is repeated until a stoppage criterion is reached and gives the IMF basis. Thismethod gives good results for discriminating birds and drones as the correct identifica-tion rate is 99% (true positive rate), and no UAV is classified as bird with a rate above2% (false negative rate). However this method doesn’t seem to work as well for fixedwing UAVs as one of the two fixed wing UAVs tested is classified correctly only 58% ofthe time and is misclassified as an other fixed wing UAV 31% of the time, which showsthe importance of micro-Doppler in the classifier.

In recent years, there has been a strong trend on using neural networks for classifi-cation, as it enables the discrimination of the models of UAV as well as birds and UAVs.[Kim, Kang, and Park 2017; Brooks et al. 2018; Rahman and Robertson 2020; Dale et al.2021; Dale et al. 2022; Gérard 2022] show good performances of Neural Networks whenit comes to classify drones and birds. It should be noted that [Dale et al. 2021] showsthat the classification performances drop when the SNR gets low: the performancesstart to drop around a 35 dB SNR and some classifiers are unable to classify at 20 dBSNR (The SNR is measured after the Doppler processing in this case). [Dale et al. 2022]proposes to address this problem with data augmentation. [Gérard 2022] proposesto use Generative Adversarial Network (GAN) to augment the dataset. GANs are neu-ral networks that take inputs to generate a new dataset resembling another dataset.[Gérard 2022] designed GANs that uses flight logs of UAVs to generate signatures foraugmentation.
Another method for classification uses polarization, [Torvik, Olsen, and Griffiths2016] for instance. They show true positive identification rate (the target is of a certainclass and classified as such) superior to 98.8% for every of the 4 classes defined, UAVwith carbon fiber blades, birds with flapping wings, UAV with plastic blades and glidingbirds. The true positive rate for the UAV with carbon fiber blades is 100% which meansthat these targets are never misclassified (however some targets are misclassified asUAVwith carbon fiber blades). They argue that in absence of substantial micro-Dopplersignature for the target, polarization can be used in the classification process. Indeedthe information carried by polarization remains when the frequency band, carrier fre-quency and dwell time are reduced to bemore in line with operational radar standards.
Finally, work has been done on classification between loaded and unloaded drones.[Ritchie et al. 2017] outlines promising classification methods allowing a preliminary
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assessment of the threat level of a drone thanks to the Doppler signature. The authorsuse the Single Value Decomposition (SVD) on the spectrogram of the Doppler data andachieve true positive rates of classification in excess of 95%.

2.2.3 . Counter-UAV radar systems and detection

UAV detection is the first topic to consider for a counter-UAV radar. As mentionedin part 2.1.2.1, UAVs have low RCS and specific flight behaviours. [Poitevin, Pelletier,and Lamontagne 2017] outlines that a radar system roughly needs 10 seconds to detectand establish an accurate track and 20 additional seconds for assessing the class ofthe target and the threat level of the UAV and eventually neutralizing the target. If theUAV is capable of travelling at 20 m · s−1 (a common speed for commercial drones),this processing time allows the UAV to travel 600 meters. It means that the minimumdetection range should be at least one kilometre. Therefore, many operational counter-UAV radar systems usually operate in lower frequency bands, as shown in [Birch, Griffin,and Erdman 2015] and [Radar Based Non-Cooperative Target Recognition (NCTR) in the Low
Airspace and Complex Surfaces environments 2021]. This includes L, S, C and X bands.

[Poitevin, Pelletier, and Lamontagne 2017] also outlines the need for counter-UAVsystems to be able to cover a wide area, often having a necessary coverage as largeas 360°. Thus, a frequent configuration for counter-UAV radar system is to use staringradars instead of scanning radars. A staring beam is a fixed large beam covering thewhole radar surveillance zone allowing long integration time, while a scanning beam isa narrow beam covering the surveillance zone by being steered back and forth. [Har-man 2015] describes a C-band radar and shows the different probability of detectionsas a function of range and operating mode of the radar with a scanning beam or a star-ing beam. He shows that depending on the target type staring radar performs better,staring radars especially give better tracking performances. Aveillant has developpedL-band radars [Jahangir 2015; Jahangir and Baker 2016; Jahangir, Baker, and Oswald2017; Gersone et al. 2018] for UAV detection with the ability to be used as staring radar.[Gersone et al. 2018] shows a potential drawback of staring radars for dealing with tar-gets travelling perpendicular to the line of sight. The signal obtained with a standardDoppler processing is smeared both range and Doppler wise. The authors propose analternative processing to address this problem.
MIMO radar systems (radar system with several independent transmitting and re-ceiving elements able to emit orthogonal waveforms simultaneously) have large beamsand use DBF which allows them to be in a staring radar configuration while providing alocalisation ability. Thus, they are frequently used for counter-UAV radars. [Frankfordet al. 2014] investigates the use of MIMO radar for the detection of UAVs and showspotential improvements of using MIMO radar instead of the phased array equivalentradar. [Klare, Biallawons, and Cerutti-Maori 2017; Biallawons, Klare, and Fuhrmann2018] demonstrate the capabilities of the MIRA-CLE MIMO radar featuring a sparse an-tenna. This radar is able to have similar performances to its equivalent array antennaradar (with the synthetic antenna formed with MIMO processing).
There also exists UAV detection system that run passively, meaning that the radardoes not emit the waveform and uses waveforms of the environment to make detec-tions. For instance, [Schüpbach et al. 2017] reports UAV detections at up to 1.2 km usingdigital radio signal. It is reported a detection rate up to 36% for a probability of falsealarm (the probability that a detection does not corresponds to a target) of 10−6. [Poullin
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2016] shows it is possible to use a passive radar using digital television signal to detectUAVs thanks to their blade flashes. [Poullin, Dorey, and Taylor 2022] shows this methodcan lead to passive detection of UAVs up to 10 km.

Many counter-UAV radar systems and classifiers implements standard detection al-gorithm of the Constant False Alarm Rate (CFAR) class for the detection step [Kwag etal. 2016; Drozdowicz et al. 2016; Hoffmann et al. 2016; Jahangir, Baker, and Oswald 2017;Aldowesh, Alnuaim, and Alzogaiby 2019; Martinez 2019; Morris and Hari 2021] which wedescribe in more detail in 2.5. However, some counter-UAV systems use more complexdetection schemes. Specific detection schemes have been developed to address theneed for a fine Doppler resolution. [Sun et al. 2019] describes the Iterative AdaptiveApproach, which improves the Doppler resolution by iterating several frequency filterson the data. The iterative filters are used to remove more noise in the Doppler space;therefore, they allow the SNR of the UAV to increase after this processing, which leadsto better performances for both classification and detection. They gain up to 7 dB forbirds, and up to 4 dB of gain for UAVs.
2.2.4 . Conclusion

In this part, we have discussed the challenges associatedwith the detection and clas-sification of UAVs. We outlined the low RCS of UAVs, in the range between -30 and -10dBsm. We also showed the specificity of the signature of the copter type drones’ bladeflashes. The low RCS means that their signature is similar in terms of magnitude to thesignature of birds which share the same flight domain and can be confused with UAVs.Therefore, the classification between UAVs and birds is essential. Measuring the bladeflashes is often paramount for the classification of UAVs and bird as the vast majorityof the methods use the micro-Doppler signature for classification. The flight domainof drones, close to the ground, at slow speed or even hovering, forces the radar to usea low-grazing geometry, which exacerbates the influence of clutter. This prevalence ofclutter in the radar scenes makes the detection more difficult. The problem of endo-clutter detection of UAVs, is seldom addressed. One of the method used is to detectthe blades exo-clutter signature instead of the endo-clutter signature of the main body.In our work we focus on the main body endo-clutter signature.

2.3 . Radar Clutter

As the previous part outlined counter UAV radar are forced to operate in a low-grazing geometry and deal with drones that fly at low speeds, thus, the clutter is animportant feature of the radar scene. For UAV detection, clutter can be consideredas the sum of all unwanted radar returns. Depending on the author, it includes onlyreturns from stationary backscatterers, or even returns from objects part of the envi-ronment like cars or birds which can have very similar behaviour to actual targets ofinterests. For simplicity sake, in the following, clutter refers to stationary target returns(building, terrain, etc.), and quasi-stationary targets (vegetation). When clutter is stud-ied in the next parts it might include targets such as cars and birds that happen to havenull relative speed with the radar. The distributions of the clutter are usually heavy-tailed (unlike noise), thus they need a different model. Furthermore they have someform of temporal coherency as we detail.
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2.3.1 . General consideration on clutter

As clutter is not a noise, but radar returns, it behaves differently in several ways. Firstit is coherent from pulse to pulse contrary to noise, this is called temporal coherency.It means that clutter has a specific Doppler signature. For a fixed ground radar, clutterwill have a Doppler speed around 0 m · s−1 since it is a composed of radar returns fromimmobile or slow moving objects (terrain, sea, buildings, trees, etc.). This temporalcoherency has several consequences:
• Longer Doppler integration time does not change the Signal to Clutter Ratio (SCR),since both the target and clutter are coherent.
• Higher transmitted power does not change the SCR.
• If the target and clutter have different speed (if the target is moving for instance),the clutter can be filtered out using its Doppler signature.

2.3.2 . Sea Clutter
Sea clutter is mostly caused by the swell of the sea and is not necessarily stationary.Sea clutter is usually modelled as a k-distributed random variable [Ward 1982]. Wardalso outlines that the clutter is coherent from pulse to pulse which is not the case forthe noise, which allows for a coherent integration that separates the clutter from thenoise. [Ward, Baker, and Watts 1990] shows model based on the physics of the swellof the sea. He also proposes a temporal correlation of the complex monopolarimetricdata (not relying only on the magnitude of the signal as usually dine for sea cluttermodelling). [Shnidman 1999] proposes amodel for sea-clutter based on amodified Chi-square (χ2) distribution, the Noncentral Chi-Square Gamma (NG). This model providesthe heavy tail behaviour expected while using the often used Chi-square distribution asunderlying basis.

2.3.3 . Land Clutter in Low-grazing Geometry
Land clutter is more diverse than sea clutter and is therefore not modelled as easilyas sea clutter. [Sekine et al. 1981] shows that this type of clutter can be modelled asa Weibull distributed random variable with parameters close to Rayleigh distribution.The article is based on measurements in low-grazing angle configuration (0.2° to 0.3°).[Shnidman 1999] states that log-normal and Weibull distributions fit well with groundclutter as they exhibit the same heavy tail properties that are observed for ground clut-ter. He proposes the NG distribution for land clutter as it relies on a physical modelbased on low number of backscatterers in resolution cells. Thus, it applies for ap-plications where resolution cells are small such as high frequency radar or Synthetic

Aperture Radar (SAR) (a technique we introduce in 2.4.2). It is not representative ofour case, we detail in 4.1.2. In addition this model distribution allows for the modellingof speckle (high-resolution granular interferences). [Sayama and Sekine 2001] showsthat cultivated lands are best modelled with Weibull, log-Weibull and K-distributions.They show that lowering the resolution (larger range cells) means less spread of theclutter distribution, as more backscatterers are included in the range cell and their con-tribution averaged. [Billingsley 2002] shows the dependency between the mean andmedian value of the clutter returns and the radar frequency. It should be noted thatwhile the amplitude variations of the returns with frequency are largely monotonous,
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some clutter types exhibit increase of RCS with frequency (for instance, urban clutterand farmland) and others decrease of RCS (for instance mountains) with frequency. Healso shows that for high frequency radar (S-band and X-band) there is some seasonalityof the mean clutter level, whereas in Ultra High Frequency (UHF), Very High Frequency(VHF) and L-band the dependency is less or not pronounced. This is not only due tothe smaller range resolution of the lower band but also due to the fact that smallerobject do not backscatter radar signal with large wavelength. For instance, a cultivatedfield changes with season, but a lower frequency radar will only be affected by theground underneath the culture, and the ground doesn’t change much from season toseason. When range bins are well resolved in L-band, S-Band and X-band, the too highfrequency shows a strong seasonality (up to +15 dB in late spring compared to winter)while the lower L-band shows little seasonality. [Davidson, Griffiths, and Ablett 2004]outlines that the estimation of the distribution of the clutter is not trivial due to the highvariability between clutter cells.

2.3.4 . Low-grazing polarimetric surface clutter

[Ward, Baker, and Watts 1990] discusses the polarimetric signature of sea clutter.
Hh returns show higher spikes than expected with the distribution used to model thesea clutter, with a duration of up to 2 seconds, while V v polarisation returns are lessspiky. It means that this burst of power are highly polarisation dependant. Sea clutteris usually heavier tailed in Hh than V v.

[Moisseev et al. 2000] notes that the cross-polar to co-polar ratio is used to detectground clutter in weather radar. This ratio tends to be higher in ground clutter than inmeteorological targets. The correlation rate between Hh and V v returns is also usedsince ground clutter has low correlation rates (under 0.8).
2.3.5 . Conclusion

This part outlines the differences between noise and clutter, namely the fact thatclutter is coherent, and usually heavy-tailed. This means that endo-clutter detectionsare harder than exo-clutter detection: whereas a coherent integration allows for anincrease of the target’s signal while it keeps the noise at the same level, a coherent in-tegration also increases the level of the clutter. In addition clutter returns are radar re-turns from backscatterers contrary to noise whichmeans that SCR does not behave likeSNR, as neither an increase in transmitted power nor a Doppler processing increasesthe SCR. To have better performances for endo-clutter detections we therefore have touse other sources of diversity such as polarization.

2.4 . Polarimetric Radar Classification Methods

Ground clutter proves to be a complex object that poses challenges to radar, aswe mentioned the additional degrees of freedom brought by polarization are useful tocharacterize both environment and targets. The classificationmethods used in Synthetic
Aperture Radar (SAR) imaging and weather radar informs us on the possibility broughtby polarization.

2.4.1 . Weather Radars
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Figure 2.14: Plot of Zdp as a function of ZH showing the "rain line", source: [Bringi and Chan-drasekar 2001]. We added the inset to show how ∆Z would manifest on a graph of the relation-ship between ZH and Zdp

Polarimetry enables weather radars to classify zones according to the rainfall rate.Authors of [Brandes, Ryzhkov, and Zrnic 2001] describemethods tomeasure the rainfallrate, with the specific differential phase (Kdp). Kdp is the rate at which the relative phasebetween H and V signal evolves. H and V polarized waves do not propagate at thesame speed through a medium with non-spherical hydrometeors (water drops, hail,etc.). Kdp increases with the rainwater content [Sachidananda and Zrnic 1987].Polarimetric radar also allows the classification of precipitations. [Ryzhkov and Zrnic1998] proposes a classification of rain and snowstorm. The authors show that usingKdpas well as:
• Zdr, the depolarization rate defined as the ratio between Hh and V v channels indecibels,
• Z , the reflectivity factor (the “RCS” of a volume of hydrometeors),
allows the discrimination between rain and snow. [Schleiss et al. 2020] points outthat polarimetric radar methods for estimating the rainfall rate do not exhibit any biaslinked with the intensity of the signal received contrary to monopolarimetric methods.To obtain this result, authors compare measurements of rainfall rates obtained withmonopolarimetric radar and polarimetric radar with measurements of ground raingauges. In addition, the authors note that the performances obtained by the polari-metric radar are promising since they were not calibrated by ground rain gauges be-forehand, contrary to the monopolarimetric radars.
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Figure 2.15: SAR working principle, it shows the synthetic aperture created by the movement ofthe radar. Source: wikimedia.org
Polarimetry also allows to classify between hail and rain [Tong et al. 1998] using thereflectivity in H , ZH , and the difference reflectivity Zdp = 10log (ZH − ZV ), as Zdp and

ZH are heavily correlated for rain forming the "rain line" (Figure 2.14). The signature ofvolumes of hydrometeors deviates from the "rain line" by ∆Z. The magnitude of ∆Z islinked to the ice fraction, f (the proportion of ice hydrometeors), with f = 1 − 10−0.1∆Z

(See inset in Figure 2.14). [Liu and Chandrasekar 2000] shows that polarimetric data canbe used to create a reliable classifier between hydrometeors type going from drizzle tolarge hail.
2.4.2 . Synthetic Aperture Radar (SAR)

SAR imaging uses the movement of a vehicle carrying a radar to create a virtualantenna larger than the physical antenna of the radar and therefore, achieve very fineresolution (Figure 2.15).Airborne and spaceborne SAR are used to image large surfaces and polarimetry isused to classify and segment land patches with two classes of methods: some classi-fiers use the physics of backscattering mechanisms and others are based on empiricalclassifications coming from observations. One such classification methods uses thePauli decomposition. With this decomposition of the scattering matrix based on thePauli matrices, the scattering vector becomes:
X = [σ1, σ2, σ3]T =

√
2

2 [SHh + SV v, SHh − SV v, SHv + SV h, ]T (2.4.1)
Each element corresponds to a backscattering process:
• σ1 corresponds to odd numbers of bounce scatterings (typically a sphere, trihe-dron or a plane surface),
• σ2 corresponds to even numbers of bounce scatterings like a dihedron,
• σ3 corresponds to the depolarizing process, corresponding to volumetric scatter-ers.



2.4. Polarimetric Radar Classification Methods 45

Figure 2.16: Different classes of the H − α decomposition[Cloude and Pottier 1997]. Curve I andII show the physical limit, points to the right of the curves are not physical.
[Cloude and Pottier 1996] discusses several polarimetric decompositions for classi-fication. In [Cloude and Pottier 1997], a classification method based on the coherencymatrix is discussed. The coherency matrix is:

C = 1
N

ΣN
i=1XiX

H
i (2.4.2)

whereXi is the polarimetric radar data vector of one of N studied cells. Thismatrix is de-composed into eigenvalues λi with associated eigenvectors Ui. The entropy is definedas:
H = −Σ3

i=1pilog3pi (2.4.3)
with pi = λi/Σ3

j=1λj , the anisotropy is defined as:
A = λ2 − λ3

λ2 + λ3
(2.4.4)

and finally the mean angle
α = Σ3

i=1piαi (2.4.5)
with αi defined from the eigenvector Ui, with Ui = [cos (αi) , ..., ...]. This classificationmethod uses 9 classes.The classes are surfaces in the H − α space (shown in Figure 2.16), and represent,amongst other things, dihedral reflectors, random surfaces, random anisotropic scat-terers, etc. The article shows the results obtained during twomeasurement campaigns:they seem to follow the physical model. This classification is often used to initialize un-supervised classification, for instance with machine learning methods.[Freeman andDurden 1998] presents a classifier based on single and double bounceas well as a volumetric scattering decomposition and shows that this classifier givesgood performances to distinguish between terrain types and even terrain state (forinstance flooded or nonflooded terrain). Another decomposition based on the covari-ance matrix or coherency matrix such as the one proposed in [Yamaguchi et al. 2005]



46 Chapter 2. Counter-UAV radar and review of the litterature
propose to add other scattering mechanisms in the decomposition to better classify.[Yamaguchi et al. 2005] shows that this new component, the helical scattering process,is a useful component to discriminate between naturally occurring patches of land andurban areas. It also shows that modifying the volume scattering term is useful to bettermodel the underlying scattering process and obtain a better classifier. This is an em-pirical approach to extend a physical classifier. To address the limitation of this model,[Yamaguchi et al. 2011] modifies the volumetric component of the decomposition, de-pending on the relative returns of the co-polar channels. This modification is made be-cause, in light of new datasets the authors concluded that the physical model could beamended to classify more faithfully the patches, in more diverse measurement condi-tions. These results outline the risk of bias associated with the use of empirical models,that might later have to be corrected.

On the other hand, other classification methods do not use physical models to clas-sify; they rely on observations to assess which combination of polarimetric parametersis better suited for a given task. For instance, [Wakabayashi et al. 2004] shows that po-larimetric parameters allow a good classification of ice types. A relation exists betweenthe V v-to-Hh scattering ratio and the ice thickness.
2.4.3 . Conclusion

This part gives an overview of the classification methods that use polarimetric data,weoutline that both forweather and imaging radar, polarimetric radar data to increasesthe accuracy of the measurements are creates new classification possibilities all to-gether. Since the polarization is an asset for classification, the next part addressesradar detectors, and in particular, endo-clutter detection schemes on the one handand polarimetric detection schemes on the other hand.

2.5 . Detections

2.5.1 . Framework and Mono-channel Detectors
Detecting a target may be the most important step in the radar processing chain asfar as air surveillance is concerned. A radar detector is an algorithm (it can be eitheranalogic or digital) able to take radar data and classify them between two states: targetis present or target is absent. Given a vector of radar data X in a given cell, the Cell

Under Test (CUT), we write the following:
{

h0 : X = n + c
h1 : X = ab + n + c

(2.5.1)
With n and c respectively a noise vector and clutter vector, b the target vector a isa scalar which. n and c represents both the power of the noise and clutter, as well astheir structure along the different channels of the radar data, whereas b representsthe structure of the target radar data and a represents its magnitude. Here we donot consider the influence of interferences and/or jammers. h0 and h1 are the twohypotheses the detector must discriminate between. h0 is the “no target” hypothesisand h1 is the “target” hypothesis. Most detectors compute a value based on X andcompare it to a threshold, η0, the detection test is written:
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Figure 2.17: "Leading" and "lagging" windows in relation to the CUT.

f (X)
h0
≶
h1

η0 (2.5.2)
With f (·) a scalar valued function of the vector X . Two important metrics for detec-tors are the probability of detection, PD, and the probability of false alarm PF A. PD isthe probability of detecting the target knowing the target is present (the true positiverate), while the PF A is the probability to detect a target knowing none is present (thefalse positive rate).A desirable property of radar is to have aConstant FalseAlarmRate (CFAR),meaningthat for a given stable noise and clutter distribution the PF A of the detector is constant.According to 2.5.2 lowering η0 results in more detections, thus increasing the PD and

PF A. Conversely increasing η0 leads to lower PD and PF A. Fluctuations of the clutteror noise obviously impacts the PF A. [Finn and Johnson 1968] proposes to adaptivelychange the threshold using secondary data. The secondary data is a set of scalar radar
data not in the CUT, {XE

i

}
i∈[1,N ]

, the superscriptE denotes that the associated variable
is from the estimation dataset. Knowing the clutter and noise statistical distributions,we deduce the probability of false alarm thanks to the threshold. In [Finn and Johnson1968] the threshold is dynamically adjusted to ensure a CFAR property, by using sec-ondary data to estimate the variance of the clutter and noise distribution. We modify2.5.2:

f (XX)
h0
≶
h1

η
({

XE
i

}
i∈[1,N ]

) (2.5.3)
The η (·) function takes the secondary data and adjusts a threshold to ensure a con-stant false alarm rate. It is equivalent to having a fixed threshold with a f (·) functionthat adjusts the output levels with the secondary data and compares it to a fixed thresh-old as long as f output is in R∗+. Under these assumptions 2.5.3 becomes:

f
(
X,

{
XE

i

}
i

)h0
≶
h1

η0 (2.5.4)

2.5.2 . Mono-channel detector
In [Finn and Johnson 1968], the data on which the detection test is made is scalar.The secondary data come from the range axis, from two windows, a "leading" one, with
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data in range cells closer to the radar than the CUT and a "lagging" window, data fur-ther away from the radar than the CUT (Figure 2.17). The assumption is that the sec-ondary data cells do not contain any target. Assuming the clutter and noise are normaldistributed, the standard deviation of the clutter and noise distribution are computedusing maximum likelihood estimator for zero-mean Gaussian noise:

σ =

√√√√ N∑
i=1

|XE
i |2

N
(2.5.5)

We have η
({

XE
i

}
i

)
∝ σ and thus, f (X,

{
XE

i

}
i

)
∝ 1

σ
. We have:

|X|2

σ2

h0
≶
h1

η0 (2.5.6)
[Finn and Johnson 1968] shows that with this adaptive threshold, the probability offalse alarm is independent from noise power. This detector is known as Cell Averaging

CFAR (CA-CFAR) due to how the noise standard deviation is computed. This detectormakes the assumption the secondary data are representative of the clutter or noise wewant to be estimated in the CUT. This is an important drawback as this assertion doesnot necessarily hold, for instance, the presence of a target in the secondary data leadsto a degraded PD.A solution to overcome this drawback is to censor the secondary data. It can bebased on the raw output of the secondary data, or on more refined metrics such asvariability index as we see next. Even though those methods are quite different theyshare a similar concept, as they both rely on cleaning the data entering in the estimationdataset to ensure they are representative of the noise and clutter under the target.
GreatestOf CFAR (GO-CFAR) [Hansen 1973] and SmallestOf CFAR (SO-CFAR) [Trunk1978] are two detectors that address the shortcoming of the CA-CFAR. Each detectorcensors one of the aforementioned leading and lagging window. The GO-CFAR cen-sors the smallest mean window. This detector is designed to ensure the PF A does notincrease in inhomogeneous environment. The SO-CFAR censors the highest mean win-dow, and it prevents some decrease of PD in multi-target or clutter edge scenarios.These detectors themselves have drawbacks outlined in [Weiss 1982]. Namely, the lossof PD of GO-CFAR in multi-targets environment and an increased PF A in clutter edgescenario for the SO-CFAR. The articles conclude that it is unlikely there exists an optimalCFAR algorithm for each and every case.The authors of [Smith and Varshney 1997] propose the Variability Index CFAR (VI-CFAR) that measures the homogeneity of both the lagging and leading window by mea-suring the Variability Index (VI), V I = 1 + σ2/µ2 with σ2 the variance of the data and µits mean value. Based on this value this detector switches between SO-CFAR, GO-CFARand CA-CFAR. [Smith and Varshney 1997] shows that the detector behaves well in ho-mogeneous environment as the CA-CFAR and is robust in the case of interfering targetand clutter edge scenarios.These four algorithms also have a cost of 1 dB as far as the effective SNR is con-cerned[Finn and Johnson 1968; Hansen 1973; Trunk 1978; Weiss 1982; Smith and Varsh-ney 1997]. This cost comes from the evaluation of the noise with the secondary data.The noise and clutter estimation with secondary data cost SNR as it is not perfect (the
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lower the amount of secondary data is the higher the loss is). Both SO-CFAR and GO-CFAR censors half of the secondary data. Instead of censoring half of the data somedetectors first rank the secondary data to selectively censor only the highest valuewhichever the window it is in.

For instance theOrdered StatisticsCFAR (OS-CFAR) [Blake 1988], ranks the secondarydata and then censors a given percentage of the secondary data according to theirvalue. Authors of [Blake 1988] show that the PD losses of CA-CFAR in a multi-target en-vironment are as large as 40% while in the same scenario the OS-CFAR detector onlyloses 5% of the PD. However if enough secondary data is contaminated the OS-CFARpresents the same drawback as CA-CFAR as far as PD loss is concerned. The underly-ing principle behind these detectors using scalar data, is to censor data that are notrepresentative of the noise or clutter of the CUT.
More advanced detector adaptive censoring exist. For instance [Farrouki and Barkat2005] and [Jiang, Huang, and Yang 2016] censor data according to its homogeneity.[Jiang, Huang, and Yang 2016] proposes an algorithm named First Order Differential

CFAR (FOD-CFAR) that assumes that inhomogeneous data implies sharp variation inthe secondary data, and adaptively censors the secondary data. In this detector, thesecondary data are ranked according to their amplitude. The derivative of the rankedsecondary data according to their index is computed. This derivative should be smoothfor homogeneous data, conversely it means that if it exhibits peaks the data is not ho-mogeneous. If the gradient crosses a certain threshold, the ranked data past the indexof the peak are considered outliers and are censored. This type of detector avoids theunder-censoring problems that the OS-CFAR class detectors can encounter. Authorsshow good performances of this type of detectors in terms of PD in case of interfer-ing targets even when interfering targets represents more than 25% of the secondarydata, however the PF A conservation in clutter edge environment are slightly lower thanthose of CA-CFAR and OS-CFAR.
Finally, some CFAR algorithms now use machine learning. For instance the Smart-CFARdescribed in [Carretero, Harmanny, and Trommel 2019]matches the performancesof the CA-CFAR detector in homogeneous environment and drastically improves the PDin clutter edge scenarios.
Some targets, including drones can be endo-clutter. Endo-clutter targets are targetswhich are "in" the clutter, it usually means they share a position and apparent speedwith the clutter, by contrast exo-clutter targets which do not share its position or ap-parent speed with the clutter and therefore are "out" of the clutter. This has strongimplications for the detectors, which therefore needs to be specifically designed forthis case. Thermal noises usually has a normal distribution that does not vary much,spatially and temporally. This is different from clutter, which varies abruptly with re-spect to distance, is rarely Gaussian distributed but has a heavy tail distribution. To dealwith endo-clutter targets, specific detectors are designed. [Schleher 1976] discusses theproblems of detection in a Weibull distributed clutter. He shows that taking the linearvalue of the envelope of the signal of the input gives worse results than taking the log-arithmic value and shows that the best performing detector is a binary detector, whichhas two thresholds. A first threshold to count how many "pre-detections" the detec-tors get. A pre-detection follows the same framework as previously described and ishypothesis h1 in:
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f (Xi)
h0
≶
h1

η0 (2.5.7)
The pre-detection tests are run over for eachXi in the dataset under test {Xi}i, thisdetection tests are identical to normal standard detection tests described above. Thesetests are repeated on n different realizations of the same range cell at different times.We obtainm pre-detections with n tests. The detection hypothesis is met if the numberof "pre-detections", m, crosses the second threshold m0:

M
h0
≶
h1

M0 (2.5.8)

This shows that applying a detection test on a previously processed data can lead tobetter performances than strictly relying on a single detection stage.
2.5.3 . Multi-channel Detectors

Another way to make detection in clutter is to filter out clutter by using data repre-sented by vectors. These vectors contain informations about the physical process andcharacteristics of the targets and clutter. They must be estimated with care, ensuringthe estimation is an accurate representation of these phenomena. In [Kelly 1986], Kellyproposes a detector based on theMatched Filter (MF), to make detections in unknownGaussian clutter. The MF test is written:

max
S

∥∥∥SHR−1X
∥∥∥2

SHR−1S

h0
≶
h1

η0 (2.5.9)
S being a steering vector (see appendix A),X the measured vector andR being theknown covariance matrix of the noise or clutter while the Kelly’s detector written:

max
S

∥∥∥∥SHRE
−1

X

∥∥∥∥2

SHRE
−1

S

h0
≶
h1

η0 (2.5.10)

With RE the estimated covariance matrix. In the next parts covariance matricesnoted R denote known covariance matrices and covariance matrices noted R denoteestimated covariance matrices. Assuming a gaussian clutter as we do in the rest of this
work, we use the Sample CovarianceMatrix (SCM) estimator to compute RE :

RE = 1
N

N∑
i

(
XE

i

) (
XE

i

)H (2.5.11)
XE

i are the data vectors used for estimating clutter properties andN is the numberof data vectors used in the estimation. The author shows that the proposed detectorperforms worse than the MF (with SNR losses of 1 to 5 dB induced by the estimation ofthe covariance matrix), however it does not require any priori knowledge on the clut-ter or noise covariance matrix. As such, it can be used to adaptively detect targets in
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unknown environment. It forms the basis of endo-clutter detectorswhen the clutter dis-tribution is unknown. [Conte, Lops, and Ricci 1995] proposes a detector based on a priorknowledge of the covariance matrix and models the clutter as a compound Gaussiandistribution. The proposed detection scheme works similarly to a CA-CFAR algorithm,but it gathers secondary data along the time axis in CUT. It allows this detector, contrar-ily to CA-CFAR, to keep its CFAR property even in a compound Gaussian environment.This detector outperforms a standard MF detector in case of a steady target in a K-distributed clutter. This comparison corresponds to a case in which Kelly’s approach isvalid (the covariance matrix can be and was estimated accurately) as the a priori knowl-edge of the covariance matrix is very important for proper operation of the detectors.Moreover, the standard detector does not retain a CFAR property contrary to the pro-posed detector. [Jay et al. 2003] proposes a detector, named BayesianOptimum Radar
Detector (BORD), which exhibits a CFAR property independently of the underlying clut-ter distribution. The authors also exhibit similar detection performances to optimumK-distribution detector and optimum Student-t distribution detector respectively, for K-distributed and Student-t distributed clutter, which are the optimal detectors in thosecases. This is based on modelling the clutter as a spherically invariant random processtomodel non-Gaussian process as a complex Gaussian distributionwith the variance ofthis distrubtion being a positive random variable (the so-called texture of the clutter).Further work in [Pascal et al. 2004] confirms the CFAR properties from a distributionstandpoint.

In airborne and spaceborne imaging radars the radar data vector X usually con-tains both space and long-time information. Therefore, the covariance matrix and thedetector tries to filter the clutter according to its Doppler and position, for instance in
Space Time Adaptive Process (STAP) [Ward 1995].

Another way of detecting endo-target clutter is to discriminate the target thanks toits Doppler signature, as we mentioned in a previous part the case of UAVs with micro-Doppler signature is addressed in [Hoffmann et al. 2016]. [Duk, Rosenberg, andNg 2017]also shows that for sea clutter the wavelet transform improves endo-clutter detectionsof small targets. The wavelet transforms allow the separation of the signal in differentfrequency sub-bands, and the author notes that the target is generally in a differentfrequency band from the clutter signal thus allowing for higher PD.
2.5.4 . Polarimetric Detectors

The diversity provided by the polarization gives additional opportunities for detec-tions. [Shrader 1973] shows that even early Air Traffic Control (ATC) radars used po-larization to facilitate detections, as they note that of circular polarization reduced thesignature of weather events by up to 20 dB, while only reducing the return of the targets(airliners) by 4 dB. This form of polarimetric detection shows that evenmonopolarimet-ric radars (using only one polarization) can take advantage of the polarimetric prop-erties of the target and/or environment. The interest of multi-polarimetric radar wasstressed as early as 1986 in [Giuli 1986], in which it is stated that polarization diversityoffers additional abilities to make detections by increasing discrimination capabilitiesbetween disturbances and targets. This article notes that targets tend to have reducedcross-polar responses compared to the co-polar responses. The cross-polar signal is 4to 14 dB lower than co-polar signal for linear polarization. On the contrary, for circularpolarization cross-polar returns are 0 to 6 dB higher than the co-polar returns. It also
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notes that the stability of the polarimetric signature is short for lower resolution radaras it is the sum of many different backscattering returns. The article also outlines theadvantages of the monopolarimetric filtering based on prior knowledge of the distur-bances. Such approach works for weather disturbances but can also be used to filterchaffs (metallic objects dropped by aircraft to disturb radar) and jamming as well. Thearticle separates detectors in two classes of polarimetric detectors. The first class in-cludes detectors which minimize the expected disturbance returns at emissions (as in[Shrader 1973]) by not emitting the polarization that will have high parasitic returns.The second class includes the detectors minimizing the returns of disturbances at thereception with a similar framework as the one presented in Kelly’s detector, by filteringthe parasitic returns afterwards. [Novak, Sechtin, and Cardullo 1989] presents severaldetectors using polarization. Some of the detectors deal with polarimetry only by usingamplitude informations whereas others build upon the principle of the Kelly’s detector.Indeed this article presents the Maximum Likelihood (ML) detector, which is anadaptation of Kelly’s detector with a fixed steering vector, this steering vector beingthe polarimetric data vector :
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It also presents the span, which is a detector based on the total polarimetric power.If X the polarimetric is written, X = (xHh, xHv, xV h, xV v), the span detector is:

|xHh|2 + |xHv|2 + |xV h|2 + |xV v|2

Trace
(
RE

) h0
≶
h1

η0 (2.5.13)
[Park, Li, and Wang 1995] proposes a detector based on the Generalized Likelihood

Ratio Test (GLRT) and Kelly’s detector to use the polarization in addition to space-timediversity, by adding the polarization information to themeasured vector and the covari-ancematrix estimation. Thedetector is calledPolarization-Space-TimedomainGeneralized
Likelihood Ratio (PST-GLR) and the test is written:
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Where s1 = (ahs, avs)T with ah being the polarimetric amplitude and phase of thetarget received in polarization h and av being the one received in v. s is the space-timesignature of the target (the same that is described in [Park, Li, and Wang 1995]). And xpis the data vector tested by the detector, with:
{

h0 : xp = (nh + ch, nv + cv)T

h1 : xp = (ahs + nh + ch, avs + nv + cv)T (2.5.15)
With cx and nx are the clutter and noise space time signature for the x polarization

(h or v). RE is obtained with a training dataset xe, k = (nh,k + ch,k, nv,k + cv,k)T :
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RE =
∑

k

xe,kxe,k
T (2.5.16)

This detector show better performances by around 8 dB of SINR compared to Space-
Time domain Generalized Likelihood Ratio (ST-GLR) (which is the same as STAP).[Pastina et al. 2000] also proposes a polarimetric GLRT-based detector, and outlinesthe particular interest of adding cross-polar data for polarimetric detectors as man-made targets usually exhibit higher co-polar returns than natural targets. [De Maioand Ricci 2001] proposes a Polarimetric Adaptive Match Filter that builds on [Park, Li,and Wang 1995]’s PST-GLR. The test is written:
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Using the same formalism as for the PST-GLR description, we have S =
(

s 0
0 s

)
and:

{
h0 : z = n + c
h1 : z = Ss1 + n + c

(2.5.18)
Which means that z the same data as xp but has dimension 2N instead of N × 2 as
xp (with N the dimension of the space-time data). and with ze,k data from the trainingdataset:

RE =
∑

k

ze,kze,k
T (2.5.19)

The authors note that this implementation suffers no performance losses for realisticcase (fluctuating target) against the PST-GLR described in [Park, Li, and Wang 1995]. Inaddition it represents a significantly lower computational load, which makes its usefavorable for polarimetric detections.[Yamaguchi 2002] describes a detector designed for a stepped frequency W-bandradar (94 GHz) under the hypothesis that the decorrelation of the polarimetric clut-ter is more important than the decorrelation of the target. For each frequency of thestepped radar a measurement is made. The clutter suffers a larger decorrelation withthe stepped frequencies than the target. The dector gives better results than the Logand Weibull CFAR detectors. However, we note that targets in the presented experi-ments are a trihedron and a dihedron, which are obviously more stable targets thandrones. [De Maio, Alfano, and Conte 2004] adapts the GLRT to use polarization diver-sity and to take into account the non-Gaussian nature of the clutter, bymodelling it as acompound-Gaussian distribution. The detectors presented are tested, and the authorsshow that they do not exhibit a strict CFAR property, but are robust to different cluttertextures. Finally, the authors note that the real clutter data can exhibit covariance ma-trix mismatch between the matrix estimated with the secondary data and the actualcovariance matrix of the clutter, and suggest further work on theoretical performanceanalysis of detectors in the presence of mismatch. [Meslot et al. 2016] studies the im-pact of polarization for ship detection in sea clutter; it shows the importance of dualpolarization radars as the ideal polarization for detection varies with wind speed andgrazing angle. In particular, it shows that using Vv polarization over Hh polarization
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leads to a gain of 3 dB for the detection threshold for incoherent detection (withoutDoppler processing). With Doppler processing the gain is even more substantial, asgains of up to 5 dB can be made by using V v polarization. Finally, [Bailey, Marino, andAkbari 2021] compares the use of a benchmark of polarimetric detectors for the detec-tion of icebergs in the sea ice with a spaceborne SAR, and shows the importance of thecross-polar component in the performance of the detectors.

2.5.5 . Conclusion
This part has outlined the detection framework. First, we have addressed mono-channel detectors and how they deal with multiple targets scenarios as well as clut-ter edge scenarios. Then we have discussed endo-clutter detections and how multi-channel data are processed to suppress clutter. We outline the importance of the priorknowledge of the clutter data or its estimation as every endo-clutter detector requiresknowledge of the properties of clutter. Finally we discuss polarimetric detections. Po-larimetric detectors can use an a priori filtering, by not transmitting and/or receivingpolarization which results in unfavorable SNR (For instance if the target does not havehigh RCS in Hh polarization but the clutter does the radar can avoid transmitting the Hpolarization or receiving h polarization). This technique requires an prior knowledge ofthe polarimetric scene and target, this knowledge being used during the design of theradar system. They can also use several polarimetric channel to increase data diversityand in similar way to endo-clutter detection filter out undesired signal.The presented detectors rely on an estimation of the clutter properties to make de-tections. In particularmulti-channel detectors rely on theprior knowledgeor estimationof the covariance matrix representing the clutter to perfrom well.

2.6 . Detectors tested in this thesis

This part presents the detectors we use to assess the interest of polarization forthe endo-clutter detection of UAVs. We present the framework of the detections anddescribe detectors from the litterature as well as adaptation of existing detector to thepolarimetric case and a proposed detector which constitutes original work. These de-tectors constitute the benchmark of detectors we test in this thesis. We introduce thespan, which is a classical detector described in [Novak, Sechtin, and Cardullo 1989], the
square root Maximum Likelihood (srML), an ad-hoc polarimetric adaptation of Kelly’sdetector [Kelly 1986] and the Polarimetric SIRV (P-SIRV) detector adapted ad-hoc from[Jay et al. 2003]. We introduce an additional detector, EVa, based on the eigenvaluesof the SCM estimate of the CUT. We also propose an adaptation of the CA-CFAR detec-tor [Finn and Johnson 1968] for the monopolarimetric detectors, using the time axis forclutter estimation instead of the range axis.

2.6.1 . Framework
As mentioned in 2.5, the goal of a detector is to convert mono or multi-channeldata into a scalar to be compared with a threshold to assess whether or not a target isdetected. Given a measured radar dataset {X i}i∈[1,N ], the detectors we present aim at

detecting a target in a clutter plus noise characterized by a covariance matrix RC , the
clutter plus noise data is written: {XC

i

}
i

∼ CN
(
0, RC

). We use a high Clutter toNoise
Ratio (CNR) hypothesis, meaning we do not model the clutter plus noise data has the
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sum of data from the noise and the clutter but only as data from the clutter. We want
to detect a target with a radar data written {XUAV

i

}
i
.

The detector hypothesis h0, target is absent, and h1, target is present is written:
h0 : {X i}i =

{
XC

i

}
i

h0 : {X i}i =
{
XC

i + XUAV
i

}
i

(2.6.1)
X i = {xHv,i, xV v,i, xHh,i, xHv,i} , where Xi is the ith polarimetric data vector, in thedataset of N polarimetric data vector under test. In the following XE denotes dataused for the clutter estimation in the detector tests.

2.6.2 . Classical and adapted polarimetric detectors
In this part, we present polarimetric detectors found in literature and their adap-tation to the polarimetric case. We also present an eigenvalue detector and mono-polarimetric detectors. This set of detectors constitute the basis for the benchmark ofthe performances to be performed in the following parts.

Span with multi-look

The span detector is an incoherent polarimetric detector. The span uses the sum ofthe power of the polarimetric channels to make detections. With the data vector X =
(xHh, xHv, xV h, xV v), the output of the span detector is:

span (X) = |xHh|2 + |xHv|2 + |xV v|2 + |xV h|2 (2.6.2)
In the same manner as CA-CFAR [Finn and Johnson 1968], we use previous data toadaptively change the output using the estimated clutter properties to keep the False

Alarm Rate (FAR) under control. Therefore, the test is written:
Σispan (X i)
Trace

(
RE

) =
h0
≶
h1

η0 (2.6.3)

Where η0 is the detection threshold. The detector is analog to the classical descrip-tion of the span detector [Novak, Sechtin, and Cardullo 1989]. This approach includes amulti-look, it consists in summing the output of the span detector for each X i, and us-ing that as the scalar value used for the detection. We have several motivations for themulti-look: on the one hand, detectors implementingmulti-look have been shown to besuited to endo-clutter detections as mentionned in a previous part (in [Schleher 1976]),and, on the other hand, some detectors of the benchmark intrinsically implement amulti-look, thus, a fair comparison between detectors need to include multi-look forevery detector.
This span detector is identical to a CA-CFAR detector with a multi-look and the es-timation of clutter properties over time instead of range. Thus, it preserves the sameproperties as a CA-CFAR detector, it is CFAR in homogeneous environment (homoge-nous along the time axis, in this case).



56 Chapter 2. Counter-UAV radar and review of the litterature
srML with multi-look

The srML is based on the GLRT of the polarimetric data. This detector works by whiten-ing the signal on which the detection test is performed according to the estimated co-variance matrix of the underlying clutter:
∑

i

√
XH

i RE
−1

X i

h0
≶
h1

η0 (2.6.4)
square rootMaximum Likelihood (srML), is named that way because it is based onthe Maximum Likelihood detector for unknown steering vectors for each look, but in-stead of summing the power, the square-root of the power is considered, see appendixH

Spherically Invariant Random Vector (SIRV) with multi-look

SIRV detector makes the assumption the clutter data is SIRV, which means that XC
i =

τg, with g ∼ CN
(
0, RE

) is a random complex Gaussian variable and τ is a texture
which is statistically independent from g, with a different distribution. This detector isan adaptation of the GLRT detector to give the detector a CFAR property concerningthe texture of the distribution of the clutter [Jay et al. 2003]. In a compound Gaussiandistribution, the texture is the distribution compounded to the Gaussian distribution.It is written:
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The term √
XH

i RE
−1

X i normalizes the results with respect to the filtered polari-metric power. Therefore, this detector should be sensitive only to the polarimetric sig-nature of the target compared to the clutter, and ignore the relative power of the targetcompared to the clutter. However, SCR still plays a role, as low SCR implies the polari-metric signature of the target represent a lower proportion of the X i vector comparedto the clutter.
2.6.3 . Mono-polarimetric detector

To these classical polarimetric detectors we add amono-polarimetric detector. Thisdetector is based on the same principle as the CA-CFAR previously described. Insteadof using data of the range axis to evaluate the clutter level, we use data from the timeaxis.
∑

i

|xP ol,i|∣∣∣xE
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h0
≶
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η0 (2.6.6)
We recall:

X i = (xHh,i, xHv,i, xV h,i, xV v,i) (2.6.7)
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XE
i =

(
xE

Hh,i, xE
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V h,i, xE
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) (2.6.8)
We use this detector as a benchmark of performances for detection with the polar-izations Pol ∈ {Hh, Hv, V h, V v}. We use this detector on each of the four polarizationswhen we test the detectors on real data, to assess the interest of polarimetric detector.

2.6.4 . New detector, EVa
Finally, we introduce the EVa. It makes detection based on the eigenvalues of theSCM of the cells under test and the cells used for the estimation of the clutter. Withthe eigendecomposition of R and RE , we have (λ0, λ1, λ2, λ3) and (λE

0, λE
1, λE

2, λE
3
)

respectively. The eigenvalues are sorted by magnitude. EVa consists in the followingtest:
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λE
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h0
≶
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This detectors aims at detecting change in the dominant backscattering process.The design philosophy of this detector is the following: for a clutter with a given set ofeigenvalues the inclusion of a target it the same range cell will alter the eigenvalues. Atarget with low SCR might not be able to alter the highest eigenvalue much but shouldbe able to alter the other eigenvalues especially if they are a lot lower than the highestone.Preliminary tests of the srML, EVa andmonopolarimetric detector (for theHh polar-ization) on real UAV and clutter data from the measurement campaign described in 4.2are in a NATO STO journal article [Rozel, Brouard, and Oriot 2022].
To use these detectors we have to determine several parameters. First, we need todetermine Doppler integration time to extract the clutter data in which we intend todetect the UAVs. We want to determine this parameter while maximizing the perfor-mances of the detectors. We then need to determine how we choose the data usedin the clutter estimation. We need to determine if it is better to use data in the samerange cell but at different times as estimation data, or data from adjacent range cell atthe same time as the detection test. We also need to quantify the mismatch betweenthe dataset under test and the estimation data to quantify its effect on the detetectorperformances. In this thesis we develop methods to choose these different parame-ters.
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Chapter 3 |
Outline of the thesis

3.1 . Goals

In this thesis we intend to propose a method to choose the best detector for endo-clutter detections of UAVs as a function of the encountered clutter. We propose tooptimize the detection of endo-clutter UAVs taking into consideration:
• The type of detector used
• The Doppler integration time
• The mismatch between the estimated clutter covariance matrix and the cluttercovariance matrix in the CUT

3.2 . Methods

In order to achieve these goals, we study the covariance matrices of real clutters ob-tained with a measurement campaign of a semi-urban environment. The presentationof the experimental setup and the measurement campaign is done in section 4.1 and4.2.First, we make the hypothesis that a clutter with covariance matrices that have alow rank are best suited for good detector performances. We confirm this hypothesisin section 5.4.With this criterion, we determine that the estimation of the covariance matrix ofa clutter cell is more accurate using samples from the clutter cell at different timesinstead of using samples from adjacent clutter cells at the same time. This analysis ispresented in 4.4.5.We then study the behaviour of themeasured clutter, through its covariancematrix.We show that we can minimize the rank of the covariance matrices of clutter cells byadjusting the Doppler integration time (the results are presented in 4.4.4).Then we propose to model the temporal behavior of the covariance matrices with:
• An eigenvalue distribution (see 4.4.6).
• An angle, called the mismatch angle, that characterizes the mismatch between apair of covariance matrices of the same cell estimated at two different times. Themismatch angles measured are then linked to the time interval between the twoclutter estimations and fitted with an exponential decay law (see 4.4.7).
Using this model, we are able to represent temporal clutter behaviors and analyzethe performances of different detectors (in our case the detectors presented in section
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2.6) for different clutter types. This analysis confirms that covariance matrices with lowrank lead to good performances for polarimetric detectors (see section 5.4). They alsoconfirm that a low mismatch angle between the estimated clutter and the clutter ofthe CUT leads to good performances (see section 5.5). However, the drawback of thismethod is that it does not take into account the polarimetric structure of the clutter.Instead it relies on random polarimetric structures for the estimated clutter and theclutter of CUT, by forcing this randompolarimetric structures to correspondwith a givenmismatch angle. In order to overcome this drawback we perform hybrid simulations,more representative of the real clutter data (see section 5.6). We make simulationsto measure the performances of the detectors with the time interval between clutterestimation and the detector test using measured clutter signature and measured UAVsignature.This simulation procedures provide a methodology for analyzing clutter and choos-ing the best polarimetric detectors and the best parameters for its operation.Part of this work has been published in:

• Rozel, Brouard, and Oriot 2022: Publication related to preliminary tests of thepolarimetric detectors on measured clutter data .
• Rozel et al. 2022a: Publication on the evaluation of the influence of the mismatchangle on the performances of the detectors.
• Rozel et al. 2022b: Publication related to the upgrade and automatization of theradar system used in this thesis.

3.3 . Outline of the work presented

The next parts are structured as follows:
• Wepresent themeasurement campaign onwhichwebased thework of this thesis.We present the 3 clutters we study in this thesis and that provide a case study forour methodology
• We analyze the polarimetric clutter properties
• We make synthetic simulations of clutter to evaluate the performances of detec-tors and the influence of the eigenvalue distributions andmismatch angles on theperformances
• We make hybrid simulations using measured clutters and UAV signature to testthe influence of the time interval between the estimation and detection test onthe performances of the detectors.
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Experimental Study of the Polarimetric
Clutter

Since an accurate estimation of the environment properties is necessary for accu-rate detections, this chapter addresses several essential properties of the ground clut-ter in a low-grazing configuration. These properties are paramount to accurately assessthe performances of polarimetric detectors.
In this chapter we present a measurement campaign on a UAV and semi-urban clut-ter and the radar used for this measurement campaign, HYCAM.
We then study the polarimetric properties of the low-grazing clutter. We first showthat Hv and V h polarization do not necessarily correlate if the receive elements for hand v polar are not perfectly colocated. We deduce that we have information on the4 polarization channels instead of 3 in our polarimetric data vectors, this additionaldegree of freedom can be used to enhance the detection step. As clutter is extractedwith Doppler processing, we introduce a metric to determine the optimal integrationtimes.
As we use the time axis to estimate clutter properties and clutter composed ofchanging objects (vegetation, slow moving objects, etc.), their properties change andthe estimated properties need to be updated. We introduce a metric to measure howclutter changeswith time, and atwhich rate. Bymeasuring thismetric we derive a decaytime of the clutter which can serve as a guide for determining the clutter estimation up-date time. Furthermore, we show a distinct advantage in using the time axis for clutterestimation, as it further reduces the introducedmetric and provide a better descriptionof the clutter than using the range axis for clutter estimation.

4.1 . HYCAM

4.1.1 . HYCAM radar architecture

HYCAM is a Software Defined Radar (SDR); it means that analog parts are reducedto a minimum. Each element of the transmitting antenna can emit an independent ar-bitrary waveform within the bandwidth constraints. On the receive side, beamformingis done digitally. This approach means the radar system is highly versatile, and can beused to test many aspects of the radar processing, such as detection and the effect ofDoppler processing time on detections.
Figure 4.1 presents a flow chart of the radar architecture, each part is addressed inthe following section.
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Figure 4.1: Flow chart detailing HYCAM architecture.

Antennas

HYCAM has two antennas mounted on a turret, a transmit antenna and a receive an-tenna (Figure 4.2). Both antennas are array antennas. The individual radiating elementis a cross-shaped pair of perpendicular electrical dipoles slanted at 45° (See Figure 4.4).By shifting the phase of one of the dipole the transmitted polarization is changed (seefigure 4.3).The aperture of a single element is 120° in both azimuth and elevation. These ele-ments are grouped in column of 32 elements. The spacing between two consecutiveelements of a column is λ/2 and the spacing between two consecutive columns is λ/2,as shown in Figure 4.4.
Transmit antenna The transmit antenna is composed of 12 columns (Figure 4.5),which corresponds to a surface of 12 × 32 cross-shaped pair of dipoles. The small-est individually adressable unit is a column pair, each pair can transmit independently.Each pair has an aperture of 60° in azimuth and 4° in elevation. The full antenna az-imuth aperture is 10°. The polarization of the transmitted can be controlled from pulseto pulse. The polarization is controled by phase shifters. In the measurement cam-paign we transmitted the same waveform with all column pairs, alternating betweenpolarization at each pulse.
Receive antenna The receive antenna has 16 independent columns, which corre-sponds to a surface of 16 × 32 cross-shaped pair of dipoles. The signal from eachcolumns can be addressed in both polarizations in various combinations. (Figure 4.5).Figure 4.6 shows two possible configurations for a group of 4 columns. In the singlepolarization configuration, each column returns the signal in one given polarization (hor v, h in the case presented Figure 4.6). Thuswe have four independent signals, one foreach column. In themultiple polarization configuration, for each columnwe receive thesignal in both polarizations. Thuswe have 8 different signals but only 4 output channels.Thus, we sum full column signal in pairs for each polarization. h signals from columnC0and C1 are summed together, and so are h signals from column C2 and C3. The sameis true for the v signals of these columns. The four channels contains the sum of thesignals from C0 + C1 and C2 + C3 columns in both h and v polarizations.
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Figure 4.2: HYCAM radar and its two antennas

Figure 4.3: Description of an element of the transmit (Tx) antenna.
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Figure 4.4: Radiating elements of the antennas and antenna columns.

Figure 4.5: Columns of the Tx and receive (Rx) antennas
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Figure 4.6: Monopolarimetric and fully polarimetric configuration of the receive antenna, weonly show 4 columns for clarity. h designate the horizontal polarization and v the vertical polar-ization. chi designate the ith channel.

The azimuth receive aperture for a single column is 120° and 60° for a column pair,the elevation aperture is 4°. The full antenna azimuth aperture is 8°.
In the multiple polarization configuration used in the following thesis we used thesignal of 2 channels from configuration presented in figure 4.6. We used channel 0 andchannel 3. This means that the antenna that receive the signal in h polarization is notcolocatedwith the antenna receiving the v polarization. Thismeans that there is a delaybetween the receive channels for off-axis targets that depends on the relative azimuthof the targets to the radar due to the 2λ distance between the receive channels.

Turret

The antennas of HYCAM are mounted on a turret with unlimited rotation in azimuthand elevation angles varying between −4° and 50°. This turret allows the radar to tracktargets with a given target designation. The radar is located in ONERA’s Palaiseau re-search center on top of a 4-storey building meaning it has a panoramic view on thesurrounding region, allowing for clutter measurements.
HYCAM has a rotating joint to pass the data through the turret.
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Transmitted signal generation and amplification

The transmitted signal has a maximum bandwidth of 500 MHz around a central fre-quency of 3.15 GHz. We generate the transmitted signal with an AWG with 6 indepen-dent channels, one channel per column pair of the transmit antenna. The signal isgenerated in Intermediary Frequency (IF) around 1.5 GHz and transposed to the Radio
Frequency (RF) around 3.15 GHz. The transmitted signal is then passed through the ro-tating joint of the turret to the power amplifiers. The radar has a peak output power of700 W with a maximum duty cycle of 30%.
Digitizing the received signal

After reception, the radar signal is amplified by LNAs and then goes through the rotatingjoint to a RF down-converter, converting the signals center frequency from 3.15 GHzto the IF 1.5 GHz. Finally the signal is recorded on a 4-channel 12-bit digitizer able toaccommodate the 500 MHz bandwidth.
Sequencer

To synchronize different parts of the radar, namely, polarization switching at transmis-sion, power amplification blanking (to avoid transmitting noise when no signal is sup-posed to be transmitted), the AWGand the digitizer, HYCAMuses a sequencer. All thesecomponents use a common local oscillator to have a common reference frequency.
Control software

All of HYCAM components are controlled digitally. We created a new control softwarefor the radar system that unifies the different components of the radar. The controlsoftware is able to control and monitor the turret. On the transmit side, the softwarecan modify the waveforms transmitted by the AWG and the sequences used by thesequencer. On the receive side the software controls the digitizer, and its main param-eters, such as sampling frequency, number of channels or acquisition time.As the new control software controls both the transmit and receive side, it is ableto prepare a measurement on all the devices and launch the measurement via the se-quencer. The turret can automatically follow any targetwith appropriate target designa-tion frames. This new control software coupled with the Opensky Network Application
Programming Interface (API) was used to acquire automatically a large database of air-craft radar signatures as explained in a communication at the 10thOpensky symposium[Rozel et al. 2022b].

4.1.2 . Radar configuration for the measurement campaign
For themeasurement campaign described in 4.2 we use a Single-InputMulti-Output(SIMO) waveform using the six transmit column pairs (meaning the same waveform istransmitted on all independent columns). Thus, the transmit azimuth aperture is 10°.We used a waveformwith 10 MHz bandwidth, PRI of 100 µs between the polar switchingand a pulse duration τ of 10 µs , alternating between transmitting H and V polarisation(See Figure 2.11 and Figure 4.7).The maximum unambiguous range is then 15 km. The maximum unambiguous ve-locity depends on whether or not the waveform is polarimetric. In 2.1.2 we explained
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that a fully polarimetric waveform (transmitting both polarizations successively) meansthe PRF is effectively divided by 21, therefore, the velocity ambiguity is also divided by 2.Thus, with a fully polarimetric waveform the velocity ambiguity is ±120 m · s−1 and forthe non polarimetric waveforms the velocity ambiguity is ±240 m · s−1 because of thepolarimetric PRF being half of the non-polarimetric PRF. The waveforms parametersare detailed in Table 4.1.

Parameter ValueCarrier frequency 3.15 GHz
τ 10 µsPRI 100 µsBandwidth 10 MHzSampling Frequency 25 MHzRadar resolution 15 mRange ambiguity 15 kmVelocity ambiguity ± 120 m · s−1

Transmitted polarization H, VCoupling range 1500 m
Table 4.1: Parameters used in the measurement campaign.

As explained in 4.1.1, we used one pair of columns of the receive antenna for eachpolarization (using ch0 and ch3 in the configuration outlined in Figure 4.6): one in hpolarization and the other in v polarization. These two receiving pairs are separated bytwo wavelengths, i.e., about 20 cm. As a result, Hv and Vh signals backscattered by atarget off boresight of the radar will have different phases.
For each measurement, we made a calibration measurement using a transponderas described in 4.1.3.
With 10 MHz of bandwidth and with 10° transmit beam azimuth aperture, the rangecell measures 15 meters and is r 10

180π ∼ r
7 wide, with r the range. For instance, at 3.5 kmrange, the range cell has a surface of roughly 9,000 m2. This large surface area impliesthat a large number of backscaterrers are present in one single clutter range cell.Thus,there is a high variability of the polarimetric signature from cell to cell.

4.1.3 . Polarimetric radar characterization and calibration
Characterization and calibration of the radar is essential. We need to ensure thatthe phase and amplitude between the different polarimetric channels is stable withtime as the analyses we make in the next parts are based on the stability of the cluttersignature. Furthermore, we want to ensure that the transfer function of the systemdoes not depend on frequency, which means that the received signal is not distortedby the RF components. The knowledge of the transfer function also means we areable to compensate radar response in the received signal. We detail in this part thecalibration and characterization procedure as well as the obtained results.
1It is also possible to use orthogonal waveforms to emit both polarizations at the same time [Titin-Schnaider and Attia 2003], thus not altering the PRF
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Figure 4.7: Description of the time sequences of data transmitted and received by the radar.

Using a transponder to characterize the radar

To characterize and calibrate HYCAMONERA uses a transponder system. The transpon-der is equipped with two horn antennas. The transponder receives the radar signalthrough the receive horn antenna, then it amplifies the signal. Next the signal is fed inan optical fiber of 10 km to shift the position of the radar return (changing its relativeposition). This is important since the transponder is approximately 250 meters awayfrom the radar, in the coupling domain which would degrade the measurement. At 10km the clutter returns are far lower so it helps avoid disturbances in the measurementof the transfer function. In addition, the transponder also applies a phase ramp frompulse to pulse if the signal is strong enough. It simulates a moving target and reemitsthe signal toward the radar with the Tx horn antenna. The flowchart of the transponderis described in Figure 4.8.
Itmeans the “target” is exo-cluttermeaning themeasurement of the returnedpoweris not polluted by the clutter signal as shown in Figure 4.9.
The two horn antennas can be rotated to receive and transmit in a specific linearpolarization. In our case we use the two horn antennas in a configuration in whichthey are rotated by 45°. According to the malus law [Collett 2005], the receive hornantenna receives in either H or V polarization with a reduced amplitude of -3 dB. Dif-ferent configurations of the horn antennas are outlined in Figure 4.10, in particular theconfigurations with both antennas at 45°. This method allows for an accurate determi-nation of the transfer function, moreover, it allows for the measurement of the relativeamplitude and phase of the different polarimetric channels.

Measuring the transfer function. To compute the transfer function, we take a largenumber of consecutive waveforms received from the transponder. To increase theSNR on the measured radar data we want to sum these consecutive data. Integrating1000 consecutive pulses gives a SNR of 80 dB of SNR. We align their phases beforesumming them. We use thismethod to avoid facing the off-grid problemwhen trying to
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Figure 4.8: Transponder flow chart.

Figure 4.9: Doppler-range map with the transponder returns. Note the shift of 20m · s−1 on theDoppler-range map due to the phase shift (the Doppler artefacts on the transponder signalsare due to a small default of the transponder).
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Figure 4.10: Several antenna configurations of the transponder.

measure the transponder response on the Doppler-range map. As we transmit chirps,we can use the fact that the phase of a chirp is a parabola. Thus, for each waveforma polynomial fit is performed to get the phase and correct it. Once the phases of thechirps are realigned, we take the mean of the measured chirps to estimate the “real”chirp. We use a Fourier transform on this chirp to get the received signal spectrum. Bycomparing the received signal spectrum to the spectrum of a perfect chirp we obtainthe transfer function of the radar system.
Measuring the amplitude and phase stability between the polarimetric channels.When the radar returns from the transponder are isolated we can measure the rela-tive amplitude and phase between the channels. The transponder has, as any target,a backscattering matrix, S, depending on the horn antenna configuration. For the con-figuration in which both horn antennas are oriented at 45° the backscattering matrix is[Sarabandi, Oh, and Ulaby 1992]:

S =
(

1 −1
−1 1

)
(4.1.1)

It means that there will be a phase between the polarimetric channels due to thetransponder, but this phase is independent with time. It allows us to check for thestability of the phase difference beween the channels has well has to determine thesystematic phase difference and the amplitude ratios between the channels.
HYCAM Calibration

We outlined a method for the calibration of polarimetric radars, we now apply thismethod to the HYCAM radar, we first measure the transfer function. We notice the the-oretical and received chirps are different in Figure 4.11. This is to be expected, since theradar radio frequency chain is not perfect. The auto-correlation of the pulse compres-sion gives the highest output possible (and thus the highest SNR), when the waveformused to compute the correlation is identical with the one emitted by the radar.We see that the chirp power slightly varies across the band of interest for our mea-surement (less than 2dB over the 10 MHz under consideration). Which is confirmedby the transfer function (The ratio of the measured chirp spectrum and the theoreti-cal chirp spectrum) shown in Figure 4.12, we notice that the amplitude variation in thebandwidth is less than 2 dB.



4.1. HYCAM 71

Figure 4.11: Comparison of the theoretical chirp (left), the chirp measured with 1 pulse (middle),and the chirp measured with a 1000 pulses (right) (Hh polarization). The chirp parameters arethe following: 23 MHz bandwidth and a τ of 10 µs.

Figure 4.12: Transfer function of the HYCAM radar for the 10 MHz of the chirp used in this thesis.
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Figure 4.13: Relative phase and power between the Hh and V v channels.

With the transponder with both horn antennas at 45°wemeasure the relative phaseand amplitude between the co-polar channels Hh and V v (see Figure 4.13). As the restof our work takes interest only on the relative stability of polarimetric backscaterringprocesses of the clutter, via the covariance matrices anlysis on the time axis, it onlynecessitate that the amplitude and phase of the radar are stable during time.
It does not require for the ratio of the amplitudes to be equal to 1 or for the phasedifference to be 0°.
As further analysis, we compute the polarimetric SCMof the data from the transpon-der (Figure ??) as follows:

Rtrans = 1
Nt

∑
t

XtXt
H (4.1.2)

with Xt the polarimetric vector received from the transponder at a given time. Thiscovariance let us estimate the phase and amplitude noise of the radar system. The nor-malized eigenvalues of this covariancematrix are {0 dB, −41.4 dB, −45.9 dB, −76.5 dB}.We are measuring one polarimetric state with the system (as all the polarimetric chan-nels should be perfectly correlated), as such perfect system would have a rank 1 covari-ance matrix. In our case the interval between the first and second eigenvalue is -41.4dB, which gives the sensitivity of the system for polarimetric measurements.

Conclusion

We provided a description of the radar system used in this thesis and a method tocalibrate it. We have explained why the characteristics of the HYCAM radar are suitablefor the polarimetric analysis we conduct in the next parts. Namely, the radar has bothstable phase and power ratios between the different polarimetric channels, and we areable to measure data with a dynamic range of more than 40 dB between the dominantpolarimetric backscattering process and the less intense polarimetric backscatteringprocess.
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Figure 4.14: Picture of the UAV used in the measurement campaign. The crown carbon fibercrown was not fitted on the UAV during the campaign.

4.2 . Measurement campaign

The measurement campaign was carried out with the HYCAM radar and a UAV (Fig-ure 4.14) with pre-defined flight patterns (Figure 4.16):
1. Two consecutive circles of 150 m of diameter with the UAV flying at 5 m · s−1

2. A 300 m length and 100 width hippodrome m with its main axis pointing towardthe radar with the UAV flying at 10 m · s−1

3. An hippodrome of length 250 m and width 50 m with its long axis pointing per-pendicular to the aiming line of the radar with the UAV flying at 10 m · s−1

4. The drone hovering for 90 s
We chose these patterns to have a large variety of UAV positions in the range-Dopplerspace. The circles give us constant variation of both Doppler and range of the target.The hippodrome perpendicular to the line of sight of the radar represents a part of thetrajectory in which the UAV has a very weak Doppler signature but is nonetheless flyingat important speed. conversely, the hippodrome aligned with the line of sight of theradar gives the UAV a stable attitude (to hover UAVs make a lot of adjustments andthus change their attitude) and a large Doppler shift. The hovering phase gives us longphases of endo-clutter UAV signal. Figure 4.15 shows an example of flight log informa-tion projected on Google Earth’s. We distinguish the two hippodrome trajectories andthe circle. The blue line is the line of sight. The radar antenna aimed at the trajectoryof the UAV.
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Figure 4.15: Projection of the trajectory of UAV on the map. Source : Google Earth

Figure 4.16 shows the surroundings, which is a typical semi-urban clutter. It fea-tures sparsely and densely forested areas and large fields. It also features roads, bothoriented along the radar Line of Sight (LoS), with a Doppler signature for the cars, andperpendicular to the radar LoS meaning that the cars have Doppler signature similarto the clutter. Finally, the clutter also contains buildings either isolated or grouped insmall towns.

4.3 . Study of the low-grazing polarimetric clutter

The data of this measurement campaign allows us to determine key quantities forthe polarimetric signature of the clutter. We determine that in spite of reciprocity prin-ciple Hv and V h returns are not fully correlated in most clutter cells, which is partiallydue to the use of 2 different elements to record Hv and V h data, as we show with asimple model. We also establish an optimal Doppler processing time that minimize thedegrees of freedom of our clutter. In addition, we carry out a space-time analysis ofthe clutter variations , with respect to received power and polarimetric signature. Wealso determine the existence of a decay time for the polarimetric signature of the low-grazing ground clutter.
4.3.1 . Non-correlation of the cross-polarization channels in the presented config-

uration
For any measurement with a colocalized radar we expect correlated returns for Hvand V h polarization because of the reciprocity principle. We show this is not the casein our experiment due to the geometry of the antenna and in our experiment.

Measure of the correlation of the cross-polarization channels

Given the reciprocity principle, SHv = SV h, the cross-polarization terms of the backscat-tering matrix are equal, we expect XHv = XV h, the cross-polarization returns from a



4.3. Study of the low-grazing polarimetric clutter 75

Figure 4.16: Map of the zone measured by the radar during the experiments, the orange linesrepresents the limit of the aperture of the radar and the blue line is the radar LoS.

given target are equal [Boerner et al. 1981]. However, we observe that for the cluttercells in ourmeasurement campaign this relation is not verified (Figure 4.17). By definingthe correlation rate for the clutter cell as:
ρXHvXV h

= σXHvXV h√
σ2

XHv
σX2

V h

(4.3.1)
With σXY and σ2

X respectively the estimated covariance between X and Y and esti-mated variance of X defined as follows:
σXY = 1

N

N∑
i=1

(
Xi − X

) (
Yi − Y

)∗ (4.3.2)
σ2

X = σXX (4.3.3)
Where z∗ is the conjugate of z. We compute the correlation along the time axis.The maximum expected correlation rate that we expect can be expressed as a functionof the Clutter to Noise Ratio (CNR) on the XHv and XV h channels (see appendix C fordemonstration).

ρmax =
√

CNRHv × CNRV h√
1 + CNRHv ×

√
1 + CNRV h

(4.3.4)
We estimate the CNR by making 128 consecutive Doppler-range maps with a 0.4 sintegration time (Figure 4.18).In Figure 4.18 cells with a speed of 0m ·s−1 represent the clutter and the cells with anarbitrary non zero speed (large enough to not be contaminated by the clutter) represent
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Figure 4.17: CNR (left) and expected (right, ρmax) andmeasured correlation (right, ρXHvXV h
) ratebetween V h and Hv channels.

Figure 4.18: Doppler-range map. The clutter appears at 0 m · s−1.
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Figure 4.19: Height level along the radar LoS, and satellite image of the fort of Buc, outlined onthe altitude profile. This range corresponds to a reciprocal clutter (correlation between Hv and
V h).

the noise (since there are no targets). We take the incoherent mean of the cells overtime to get the noise and clutter power at each range. (Figure 4.17)In Figure 4.17 we observe ρmax and ρXHvXV h
as functions of range. We observe thatthe correlation rate is lower than the expected value except for rare range cells. Thiscorrelation should be ρmax since SHv = SV h except for noise. Amongst the exceptions,we notice a strong correlation between 10.5 km and 11 km.Figure 4.19 shows that it corresponds to a small military fort. This fort is partiallyburied; however, it culminates 20 m higher than its surroundings with its trees. Thesetrees are very densely packed. Furthermore, it is located in the center of the aperture,whichmean that the amplitude received from this backscatterer is very similar for bothantennas and the relative phase is close to 0°.

Modeling and simulation

To analyse this deviation from the expected values a simple clutter model was created.We run simulations to determine the radar returns of a unique range cell. In the saidrange cell at r=10 kmwehaveNbackscatterers spread over the aperturewithS = SHv =
SV h, the backscattering is given by:

S ∼ CN (0, 1) (4.3.5)
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Figure 4.20: Drawing of the configuration of one clutter backscatterer.

CN (0, 1) is the complex normal distribution ofmean0 and variance 1. Each backscat-terer is located at an angle θ away from the radar LoS, with:
θ ∼ U (−π, π) (4.3.6)

U (−π, π) is the uniform distribution between −π and π.We model the separation between the Hv and V h phase centers (Figure 4.20) byapplying a phase, ϕ (θ), to the received power of the backscatterer and we apply a fac-tor to take into account the radar transmit and receive apertures, AHv (θ) and AV h (θ)denoting respectively the v and h receiving element, AXy the product of the transmitaperture in X polarization and receiving aperture in y polarization. We then have fol-lowing couple: {
XHv = S × AHv (θ) × eiϕ(θ) + nv

XV h = S × AV h (θ) × eiϕ(−θ) + nh
(4.3.7)

with nx the noise that corresponds to the x polarization receive channel. The signalphase is then defined as:

ϕ (θ) = 2π
−r +

√
r2 + a2

4 − ar sinθ

λ
(4.3.8)

With λ = 1 · 10−1 m the wavelength of the carrier wave. To obtain AHv (θ) and
AV h (θ), we measured the receiving aperture of HYCAM leading to the measurementpresented in appendix B. By generating N sets (corresponding to N clutter cells) of Mbackscatterers we can estimate the signature of the N cells by the two antennas bycoherently adding the backscatterer returns. We have:{

XHv = ∑M
i=1 Si × AHv (θi) × eiϕ(θi) + nv

XV h = ∑M
i=1 Si × AV h (θi) × eiϕ(−θi) + nh

(4.3.9)
Wemake an ergodic hypothesis, instead of measuring the correlation rate betweenthe N iterations of the same clutter we measure the correlation rate between N setsof clutter cells measured in v and h polarizations.Figure 4.21(a) shows the results of a 64 simulations with M = 2048 backscatterers,

N = 128 clutter cells , r = 10 km, a separation between the pairs of column a = 2λ = 20cm with varying CNR between -5 dB and 25 dB. The blue line is the average correlation
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Figure 4.21: Theoretical correlation with the reciprocity principle and simulated correlation withthe receiving pairs of columns separated by 2λ = 20 cm with identically distributed backscatter-ers (a), and an additional strong backscatterer (10 dB above the other backscatter) (b)

obtained with the simulations for each CNR and the outline is the standard deviation.The dark red line is the expected result for colocated antennas.These results demonstrates that even though the reciprocity principle applies, themeasured signature of the clutter for the Hv and V h polarization do not necessarilycorrelate.If we generate a stronger backscatter in the center of the aperture (correspondingto the military fort at 10.5 km in our measurement), the correlation rate should go backup and be close to the theoretical maximum if the proposed model is valid consideringthe results observed on the real data (Figure 4.17). The Figure 4.21(b) shows the re-sults of simulations with the same parameters as for Figure 4.21(a), with an additionalbackscatterer in the center of the aperture with a greater magnitude, S = 10 dBsm.These results confirms that with a strong backscatterer in the center of the aperturethe correlation is close to the theoretical maximum.Thus a semi-urban clutter with no dominant backscatterer can have different signa-tures for the Hv and Vh polarization. Hence, we considere the two cross polarizationchannels should bring an additional degree of freedom, which, when taken into accountin the detection processing could result in better detection performances.According to these results the measured polarimetric we consider in the followingwork is:
X = {XV h, XV v, XHh, XHv} (4.3.10)

4.4 . Polarimetric Clutter Properties

In order to improve performances of endo-clutter polarimetric detectors, we needto study polarimetric clutter properties. Since detectors require an estimation of clutterproperties, we need to determine how to estimate polarimetric covariance matrix of
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the clutter. The estimation should be as close as possible to the clutter in the CUT, aswe suppose that cells closer to the CUT should be similar to the CUT, leading to betterestimation of the clutter in the detection test, thus better performances. To make theestimation of the covariancematrix of a cell we need a dataset withN measurements ofthe cell at different times orN measurements of similar cells (surrounding the CUT). Weneed to choose how this estimation is done to better represent the clutter. If the clutteris perfectly stable with time the covariance matrix estimated along the time axis will beof rank 1 (if the covariance matrix is estimated on the range axis and the covariancematrix is stable with range it should also be of rank 1). Simulations conducted in 5.4show that rank 1 matrices lead to better performances for polarimetric detectors.

Therefore, we try to minimize the rank of the covariance matrices. Thus, we choosethe axis for the covariance matrix estimation that minimizes the rank of the covariancematrices obtained.
Then, we detail the properties of the polarimetric clutter using the covariancematrixformalism. We estimate the covariancematriceswith SCMestimator and determine theDoppler processing time that also minimizes the rank of the covariance matrix.
We also define a decay time for the polarimetric signature of the clutter and pos-tulate that we can partially decouple the polarimetric signature from the power of theclutter.
These tests serve the simulation establishing the performances of polarimetric de-tectors for endo-clutter UAVs we present in the final part.

4.4.1 . Presentation of the studied clutter range cells
In this thesis, we illustrate our work on three different clutter range cells. Theseranges are representative of different clutters we find in a semi-urban environment.

Farmland Clutter

The first clutter we study is farmland clutter located 3.54 km away from the radar. Thisclutter is composed almost exclusively of unharvested farmland (Figure 4.22). The CNRof this range cell is 14.5 dB for a 10 ms integration time.

Farmland and Road Clutter

The farmland and road clutter is characterized by a nearly tangential road to the radarmeaning that during themeasurement clutter will contain cars with a low radial velocity.The rest of the clutter is composed of unharvested farmland (Figure 4.23). The CNR ofthis range cell is 19.4 dB for a 10 ms integration time.

Urban Clutter

A third kind of clutter is composed of buildings which dominate signature of clutterin this range cell even though the other 2/3 are composed of woodland and farmland(Figure 4.24). The CNR of this range cell is 12.2 dB for a 10 ms integration time.
The properties of these three clutters which will be detailed in this chapter and aresummed up in 4.4.8.
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Figure 4.22: Map of the farmland clutter.

Figure 4.23: Map of the farmland and road clutter.



82 Chapter 4. Experimental Study of the Polarimetric Clutter

Figure 4.24: Map of the urban clutter.

4.4.2 . Covariance matrix estimation
We use the polarimetric covariance matrix to analyze the properties of the polari-metric clutter. After the Doppler-range processing we format each clutter cell as:

X (t, d) = {XHh, XHv, XV h, XV v} (4.4.1)
with d and t respectively being the distance and time coordinates of the clutter cell. Asemphasized previously, we use both XHv and XV h as they do not completely correlate.We compute an estimate of the covariance matrix, using the SCM. The SCM is averagedover the time axis as illustrated in Figure 4.25 as we justify in 4.4.5.Each clutter cell contains a large number of different backscatterers, which meanstheir polarimetric signature can strongly vary with distance. On the other hand, there

Figure 4.25: Estimation of the covariance matrix from the Doppler-range maps.
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are few variations in the nature and number of backscatterers in a clutter cell duringtime (except the presence of target or rare phenomena). It means that the polarimetricsignature should be more stable along the time axis than along the distance axis. Thecovariance matrix estimates is written:

R (t, d) = 1
N

N−1∑
i=0

X (t + iδt, d) XH (t + iδt, d) (4.4.2)
4.4.3 . Eigenvalues

To characterize the covariance matrices we use the eigenvalue decomposition. Wehave:
R = U−1ΛU (4.4.3)

L = diag {λ0, λ1, λ2, λ3} (4.4.4)
λi are the sorted eigenvalues and U the eigenvectors basis. Each eigenvalue repre-sents a set of backscattering processes and its power. An equal repartition of powerbetween the eigenvalues means that no set of backscattering process is dominant dur-ing the time of analysis, whereas a concentration of power in a single eigenvalue meanthat the backscattering processes are stable during the time of analysis. A 4x4 complexcovariance matrix estimated with the SCM has 16 independent parameters; the eigen-values reduce these 16 independent parameters to 4 and allows an analysis based onthe stability of the clutter signature.We characterize the covariance matrices by their rank as some detectors (srML forexample) project the data from the CUT in the orthogonal subspace to the estimatedclutter. Due to the rank-nullity theorem, the orthogonal subspace is larger as the rankof the covariance matrix is lower, thus the target is more likely to be in this orthogonalsubspace.The clutter return is a composition of several polarimetric backscattering processesshifting during the time of analysis. The rank of the SCM represents how much thepolarimetric signature of the clutter changes during its estimation. To measure therank of the SCM we introduce the eigenvalues’ Shannon entropy [Shannon 1948]:

H = −
Nchan−1∑

i=0
pilogNchan

pi (4.4.5)
with:

pi = λi

ΣNchan−1
j=0 λj

(4.4.6)
We introduce the effective rank as a usefulmetric forNchan-channel coherent signalsthat, related with a finite number of parameters, to estimate dimension of the problem.[Roy and Vetterli 2007] shows:

reff = NS
chan =

Nchan−1∏
i=0

pi
−pi (4.4.7)
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Figure 4.26: Mean effective rank over the duration of the measurement as a function of therange cell and the Doppler processing time, normalized for each range under consideration.Markers indicate the minimum effective range for each range cell.

Weexpect a loweffective rank in range cellswhere the clutter polarimetric scatteringmechanism are stable with time. As we detail in 5.4, a low effective rank is conduciveto high performance for the detectors based on the structure of the covariance matrixof the clutter.
4.4.4 . Doppler integration time influence on the SCM

Wemeasure the effective rank as a function of the Doppler processing time. We ap-ply Doppler processing on the data with different integration time ranging from 200 µs(no Doppler processing) to 1 s (Doppler processing over 5000 pulses). We compute theSCMs over these Doppler processed data with a fixed number of samples (N = 20). Wemeasure the effective rank for each range cell and each integration time. We searchlocal minima of the effective rank, as lower rank matrices means the clutter filteringproblem has a lower number of degrees of freedom and thus, is easier to address. Fig-ure 4.27 shows the effective rank as function of range and of the Doppler processingtime. The dynamic is normalized at each range to emphasize the local minimum. Mark-ers show minimum of the effective rank at each range. We observe that a Dopplerprocessing time of the order of magnitude of 10−2 s seems to consistently minimizethe effective rank for most ranges. At ranges inferior to 2 km, the radar is still receivingthe signal from backscatters in near field and the signal is akin to radar coupling, mean-ing that this data is not representative of the clutter returns we expect. Returns fromranges further than 8 km suffer from a low CNR (Figure 4.17 and Figure 4.28b).
Figure 4.27 shows the minimum effective rank at each range. We see a high disper-sion of value at further ranges, most probably due to the low CNR. The effective ranklevel at range closer than 9 km are all lower than 2, which suggests that clutter filtering
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Figure 4.27: Minimum effective rank measured at each range.

works well at this ranges. In the next parts, we choose the integration time followingthree constraints:
1. The Doppler integration and the estimation of the SCM must be long enough toensure a sufficient CNR and an adequate estimation.
2. The total integration time should be short enough to be actionable, as an integra-tion time too long masks rapid variations of the clutter and might be longer thanthe time the target spends in the clutter.
3. The integration time plays a role in the effective rank of the covariance matrix asdiscussed in 4.4.4 and we want to minimize this effective rank.
These computation enables an adaptive Doppler processing time, depending on theclutter cell under consideration.As we also want to keep our processing close to what can be achieved operationally,which means a common integration time for each range cell, even if the integrationtime doesn’t minimize the effective rank at every ranges. The Doppler processing wascomputed over 10 ms (50 pulses long burst per polarization), and the SCM estimatesover 50 samples. It means, each covariance matrix, and eigenvalue set, represent 500ms of data. This Doppler processing time is the one chosen for every studied clutter cellin the following, except if specified otherwise. This value is a compromise between ad-equate estimation of the covariance matrix and a fast integration time to have a largernumber of uncorrelated data to study (or in an operational context a faster refresh rateof the detector).

4.4.5 . Comparison between range and time estimated SCM
The clutter we study in this part exhibits several different behaviors. Figure 4.28aand 4.28b show the mean eigenvalue over time as a function of the distance for covari-ance matrices computed over the range axis (Figure 4.28a) and the time axis (Figure4.28b). To compute the mean eigenvalues we compute covariance matrices of the clut-ter using a 10 ms Doppler processing time and 50 samples, for each range cell we have
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(a) Covariancematrices computed over the range axis. The outlining shape shows the standard deviationof the log-distribution of the eigenvalues during time at each range.

(b) Covariance matrices computed over the time axis. The outlining shape shows the standard deviationof the log-distribution of the eigenvalues during time at each range.
Figure 4.28: Mean eigenvalues at each range

several covariancematrices. Thismatrices are diagonalized andwe average their eigen-values. The profile of the highest eigenvalue are similar, (with some plateaus in Figure4.28a caused by the spatial averaging) however the lower eigenvalues are significantlydifferent with the two averagingmethods. The lower eigenvalues are significantly lowerwith the temporal averaging compared to the spatial averaging.
This leads to an overall higher effective rank when using spatial averaging as shownin Figure 4.29.
In addition we notice plateaus corresponding to high values, which means that highclutter signal will contaminate nearby cells. These plateaus reduce the SCR of the targetin the CUT even if the target is not in a cell in which the clutter signal is strong, as longas a cell with high clutter signal is close to the CUT. The eigenvalues vary sharply withrespect to range (as shown in Figure 4.28b), which means that clutter from one rangecell to another can be very different. As clutter cells differ from range to range, we can-not estimate the polarimetric properties of a clutter cell by observing a neighboring cell,and prevents clutter estimations on range data. As two neighboring range clutter cellscan have drastically different behaviors estimating the properties of one of these range
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Figure 4.29: Histograms of the mean effective ranks using spatial and temporal averaging

cells with the other one is not possible. We cannot use spatial data for estimations sowe focus on the time series of eigenvalues as we will use temporal data for estimations,as we outlined.
4.4.6 . Eigenvalues time series for the selected clutter

In this section we show the time serie of the selected clutter and we study the distri-butions of these time series. We use these time series to characterize the clutter cellsas they exhibit different properties for different range cells. Figure 4.30 shows the timeseries of the eigenvalues of the farmland clutter.
The distributions of the log-eigenvalues time series for the selected range cell areshown in relation to each others in Figure 4.31

Figure 4.30: Eigenvalues time series of farmland clutter.
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Figure 4.31: Eigenvalues time series distributions for the farmland clutter. The dashed line isthe median of the distributions of the eigenvalues.

There is an overlap between the eigenvalue distribution meaning that the classifica-tionmethod based on the rank of the eigenvalue is limited as they can “switch” depend-ing on the fluctuations. To better characterize the eigenvalue distribution we fit themwith different distributions (Figure 4.32).
1st Eigenvalue 2nd Eigenvalue 3rd Eigenvalue 4th EigenvalueLog-Normal 1.3 · 10−5 3.4 · 10−3 2.0 · 10−2 4.3 · 10−1

Exponential Weibull 1.4 · 10−5 3.1 · 10−3 1.5 · 10−2 3.4 · 10−1

Gamma 1.4 · 10−5 3.3 · 10−3 6.4 · 10−2 8.2 · 10−1

χ2 1.4 · 10−5 3.3 · 10−3 6.4 · 10−2 8.3 · 10−1

Table 4.2: Sum square error for the distribution fit shown in Figure 4.32
Figure 4.32 shows the eigenvalue distributions fitted with a different distributionto approximate the eigenvalue distribution. The sum square error of each fitted dis-tribution are given in Table 4.2. The log-normal distribution corresponds to a modelused for the amplitude of non-polarimetric clutter [Shnidman 1999] and properly fitsour eigenvalue distributions. Since no model exists for the polarimetric ground clutterin the geometry we consider, we assume the eigenvalues time series are lognormaldistributed in the simulations of the following parts. We prefer the lognormal distri-bution on the exponential Weibull distribution as the lognormal distribution has fewerparameters.Time series of urban clutter and road clutter show an important gap between thefirst and following eigenvalues. The road and farmland clutter time series are typical oflow effective rank matrices with a dominant eigenvalue (15 dB above in Figure 4.33(a)).The road is nearly perpendicular to the radar LoS, whichmeans that car passing by havelow relative velocity and are endo-clutter. In Figure 4.33(b), we have urban clutter withone dominant eigenvalue. We expect a stable signature as building’s backscatteringprocesses are stable with time, however this does not seem to be the case here, whichis probably due to the fact that there are roads in the same clutter cell with traffic.

4.4.7 . Temporal stability of the polarimetric signature
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Figure 4.32: Distribution of the 4 eigenvalues time series of the farmland clutter (from left toright and top to bottom, the lowest to highest ranked eigenvalues distribution), fitted with alog-normal distribution.

Figure 4.33: Eigenvalues time series at two additional ranges, (a) is road and farmland clutterand (b) is urban clutter.
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The eigenvalues time series show that there is a tendency to have stable total clut-ter power and stable ratios between eigenvalues. We make the hypothesis that theeigenvalue temporal distributions are stationnary. We want to quantify the temporalstability of the clutter polarimetric stability to better model its evolution.To furhter quantify the stability of the clutter we measure a distance between thecovariance matrices of a same range cell according to their relative time point of esti-mation. With the hypothesis that the eigenvalues distributions are stable, we proposeto use the angle between the matrices as distance measurement. This angle gives usa measure of the temporal stability. This measurement has a sampling rate limited bythe Doppler integration time and the number of sample in the SCM estimation. In or-der to measure the temporal stability on a shorter time scale we modify the Dopplerintegration and the SCM estimation processes. Using no Doppler integration increasesthe sampling rate but reduces the CNR of the clutter cells and the values gives differentmismatch angles. The range cells with the lower CNR exhibit lower mismatch angle, wehypothesize that this is due to the high proportion of noise in the clutter data. We ex-plain that such behaviour is expected for covariance matrices containing mainly noise.We conclude that themismatch anglemodel is valid for high CNR data, which is the casewhen the Doppler integration time is long enough. Finally we test the hypothesis thatcovariance matrix with low CNR behave similarly to noise matrices by measuring theimpact of the number of samples in the SCM estimation. We expect that noise covari-ance matrices should have lowmismatch if the number of samples of the estimation ishigh.

Mismatch angle

We define the mismatch angle as the angle between the two square matrices:
cosθAB = ⟨A, B⟩

∥A∥ ∥B∥
(4.4.8)

Using the canonical inner product for square matrices, ⟨A, B⟩ = Trace
(
ABH

) and
∥·∥ its associated norm. We call this quantity the mismatch angle; it aims at measuringthe difference of polarimetric signature using the covariance matrices as an angle. Fora given set of eigenvalues distributions, the mismatch angle depends almost only onthe eigenvectors (see appendix E), which allows us to monitor the fluctuations of thepolarimetric signature while ignoring the fluctuation of total clutter power. To assessthe extent to which the signature of the clutter changes with time we use themismatchangle, θ (t, t + δt).

cosθ (t, t + δt) =

〈
R (t) , R (t + δt)

〉
∥∥∥R (t)

∥∥∥ ∥∥∥R (t + δt)
∥∥∥ (4.4.9)

With R (t) the SCM estimate at time t. In the following we focus on the study of thecosine of the mismatch angle, cosθ (t, t + δt), except if specified otherwise. We intro-duce:
D (t, δt) = cosθ (t, t − δt) + cosθ (t, t + δt)

2 (4.4.10)
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Figure 4.34: Plot of D for the 3 clutter. Lower D value means the clutter is less stable.

Which represents the mismatch between the SCM at time t and the SCMs at a dis-tance of δt. A large D means the covariance matrix at t is misaligned with the matricesat time δt.
Figure 4.34 shows the mean cosine of the mismatch angle between a reference ma-trix measured at time t and and the matrices measured at t + δt and t − δt (equation4.4.10). The lower the value of the cosine, the higher themismatch angle is and thus thehigher the mismatch between the matrices is. Figure 4.34 shows that different rangecells give vastly different results. For the farmland range cell, we notice the cosine ofthe mismatch angle gets to low values even for as for small δt, which means that theSCM of the clutter as this range tends to be unstable, despite the stability of eigenvaluedistribution with time. It means that the polarimetric signature of the clutter changeswith time. Similarly, we see an instable clutter signature for the farmland and road. Inthe same way, the urban clutter shows lower mismatch than the previous clutter, how-ever, between 40 s and 200 s and 600 s and 800 s, there is a set of SCM, which have astrong mismatch for every δt.
We introduce:

D (δt) = 1
Nt

ΣtD (t, δt) (4.4.11)
by averaging D (t, δt) over the time axis.

To assess the typical time of the decay, we do an exponential fit on the data D (δt).We exclude the data point at t = 0 from the fit since there is no mismatch between twoidenticalmatrices. The gap betweenD (0) andD (t0) can indicate that the sampling rateof D (δt) is too low to measure correctly the typical time of decay. In Figure 4.35(a) we
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Figure 4.35: Mean of the decay of the cosine of the mismatch angle over the time axis. Heremean is shown for two different integration time, no integration (CI) and typical integration of10 ms (DR).
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observe a large gap betweenD (0) andD (t0) for Doppler integrated data. The cosine ofthe mismatch angle starts at approximately 0.8 meaning that δt resolution is lacking toproperlymeasure the decay time. However it is sufficient to observe a further decreasefrom 0.78 to 0.52 with a time constant of 1.35 s, this corresponds with the observationof low stability made with Figure 4.34(a). Figure 4.35(b) exhibits a similar decrease withthe floor being higher at 0.77 and the initial drop is less pronounced and the decreasetime is longer: 3.68 s. Finally, Figure 4.35(c) shows a long decay time of 7.53 s and ahigher match during the time, which is expected for urban clutter and a higher floor at0.8.
Influence of the Doppler integration time on the mismatch angle evolution

In order to increase the sampling rate, and measure the mismatch angle other shorter
δtwe computeD (δt) using the pulse-compressed datawithout any Doppler processingand we compute the SCMs over 20 samples. This means the SCMs use 4 ms of data.Since we do not use Doppler processing the CNR is reduced by 17 dB compared to anintegration time of 10 ms: the farmland clutter stands around -3 dB, the urban clutterCNR stands around -5 dB, and the farmland and road clutter has a CNR around 2 dB.Figure 4.35(b) shows that the behaviors of the farmland and road clutter are dif-ferent between long and short integration times. The short time integration leads tohigher mismatch (the dark blue line in Figure 4.35(b)), we make the hypothesis that itis due to the presence of the road and the clutter signature exhibits high frequencyvariations due to the cars, that are averaged by a longer integration time.The farmland clutter and the urban clutter show lower mismatch whithout Dopplerintegration (the dark blue line in Figure 4.35(a) and Figure 4.35(b)). This behaviour typ-ical of the decay for low CNR range cell. Indeed, if the CNR is lower, the porportionof noise in the covariance matrix is higher. Since the covariance matrix of the noise iswritten:


σ2

v 0 0 0
0 σ2

v 0 0
0 0 σ2

h 0
0 0 0 σ2

h

 (4.4.12)

With σ2
x the noise on the x reception channel, we expect the noise matrices to matchwhen between each other if the noise is stationnary. The SCM cell in which noise isimportant tends toward the value of equation 4.4.12 (see appendix D). This constantdiagonal component added in clutter covariance matrix reduces the mismatch.

Influence of number of samples of the SCM estimate

The quality of the SCM estimation is linked to the number of samples used in the esti-mation. As noise matrices are identical in our measurements the source of mismatchbetween two noise matrices is the estimation quality. Thus, we expect the noise matri-ces to closely match if they are well estimated. This means the higher the number ofsample we have the lower the mismatch angle should be. This means that for highernumbers of samples the match between the covariance matrices should be higher ifthere is a low CNR. A more accurate estimate leads to a higher match between the
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noise covariance matrices. Meanwhile it should not modify significantly the match ofclutter covariance matrices in which the CNR is high.

Figure 4.36: Cosine of the mismatch angle with different number of samples for the SCM esti-mates. There is no Doppler integration, the total integration time are 4 ms, 8 ms, 20 ms and 40ms.
With a higher number of samples, Figure 4.36(a) shows decreased mismatch anglebetween the covariancematrices for the Farmland clutter, whichmatches with explana-tion discussed beforehand. It matches with the discussion of appendix D, which showsthat the variance of the terms of the noise SCM decreases with the number of samples,implying that a high number of samples would lead to the different noise SCM beingcloser to the expected value and thus less mismatched. For the farmland and roadclutter and the urban clutter, the number of samples for the SCM estimation doesn’tseem to affect the mismatch, which suggests the quality of the SCM estimation, is goodenough even with a low number of sample to accurately measure the mismatch. How-ever, we would expect urban clutter to have a similar behavior to the farmland clutterhas they both have a negative CNR so they should behave as noise. Nonetheless, it ispossible that the underlying structure of the clutter covariance matrix (which has lowervalue than the noise covariance matrix due to the low CNR) is more conducive to lowmismatch, which is plausible as the mismatch of this clutter covariance matrix is loweven for high CNR.We emphasize that this behavior forces us to adapt the detection scheme with clut-ter compared to noise. On the one hand, noise is stable during time and its covariancematrices have near zero mismatch angle between themselves, as they are very stable.On the other hand, this is not the case for clutter, which shows instability, and its esti-
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mation needs to be frequent whereas noise estimation can be less frequent as noise isstable with time.Furthermore, these results show that it is important to have a long enough Dopplerintegration time tomeasure a covariancematrix that is mainly representative of clutterand not noise. It implies a further constraint on the Doppler integration time. Howeverthis constraint should be met when we minimize the effective rank of the covariancematrix, as a noise covariance matrix has an effective rank close to Nchan which maxi-mizes the effective rank.
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4.4.8 . Summary of the clutter range cell analysis

Farmland clutter

Parameter ValueDistance 3.54 kmSpan CNR 14.5 dBEffective-rank 1.63 ± 0.32Log-eigenvalues (normalized) (0 ± 2.4, −10.7 ± 2.3, −16.1 ± 1.7, −19.4 ± 1.1)Mismatch decay time constant 1.35 sMismatch angle asymptotic cosine 0.52
Table 4.3: Summary of the farmland clutter extracted with a 10ms Doppler integrationtime. The log-eigenvalues are normalized with the median of the highest eigenvalue.

Figure 4.37: Violin plot of the eigenvalue distribution of the farmland clutter, with the medianand standard deviation of each distribution outlined. The log-eigenvalues are normalized withthe median of the highest eigenvalue.
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Farmland and road clutter

Parameter ValueDistance 4.68 kmSpan CNR 19.4 dBEffective-rank 1.22 ± 0.14Log-eigenvalues (normalized) (0 ± 2.2, −16.7 ± 2.1, −22.0 ± 1.4, −24.9 ± 0.9)Mismatch decay time constant 3.68 sMismatch angle asymptotic cosine 0.77
Table 4.4: Summary of the farmland and road clutter extracted with a 10ms Dopplerintegration time. The log-eigenvalues are normalized with the median of the highesteigenvalue.

Figure 4.38: Violin plot of the eigenvalue distribution of the farmland clutter, with the medianand standard deviation of each distribution outlined. The log-eigenvalues are normalized withthe median of the highest eigenvalue.
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Urban clutter

Parameter ValueDistance 8.69 kmSpan CNR 12.2 dBEffective-rank 1.38 ± 0.23Log-eigenvalues (normalized) (0 ± 2.5, −15.6 ± 1.0, −17.3 ± 0.6, −18.8 ± 0.6)Mismatch decay time constant 7.53 sMismatch angle asymptotic cosine 0.80
Table 4.5: Summary of the urban clutter extractedwith a 10msDoppler integration time.The log-eigenvalues are normalized with the median of the highest eigenvalue.

Figure 4.39: Violin plot of the eigenvalue distribution of the farmland clutter, with the medianand standard deviation of each distribution outlined. The log-eigenvalues are normalized withthe median of the highest eigenvalue.



Chapter 5 |
Evaluation of detectors for low-grazing
endo-clutter detections

In this part we establish the performances of polarimetric detectors for low-grazingendo-clutter detection. We present the detectors we use to assess the gain of polari-metric detection in the clutter, and study their properties; we show the effective-rankof the covariancematrix of the polarimetric clutter affects the performances, and that alow effective-rank is desirable for most polarimetric detectors. We also show that a lowmismatch angle between the clutter estimation of the detector and the actual clutterin the cells under test enhance the detections for the detectors using covariance ma-trix as a clutter filter (namely srML and P-SIRV), and does not impact the performances(with the hypothesis made, constant target and nomodel for the eigenvectors) of thoseusing the polarimetric power (span and EVa). Finally, we describe a hybrid simulationprocess to test the detectors with the clutter data measured during the measurementcampaign as well as the UAV data extracted from this same campaign. This hybrid sim-ulation allows us to estimate the performances of the polarimetric detector as well asmono-polarimetric detectors. This comparison shows that polarimetric detectors havebetter performances than the monopolarimetric detectors for endo-clutter detectionsin a low-grazing geometry. In addition we show, with this method, that even powerbased detectors are sensitive to the mismatch. We propose to use the hybrid simula-tion method to adaptively estimate the best detector for the clutter range cells underinvestigation.

5.1 . Detection framework

As outlined in part 2.5, a good detector needs to be adaptive to fit different types ofclutter or noise. This is achieved by using RC , the covariance matrix of the clutter andnoise in the cell we are testing for a target, in the detector to adjust the output level.Adjusting the output level aims at keeping the False Alarm Rate as stable as possiblewhatever the properties of the clutter are. Unfortunately, we cannot estimate RC aswe only estimate R (based on X , see equation 5.3.1) which might contain target data.We need to use secondary data to estimate RC (Figure 5.1).
As explained in 4.4.5, the clutter range cells next to the tested clutter cell are likelyto have different properties so we cannot estimate the covariance matrix of the rangecell under test with data from neighbouring clutter range cell. Therefore we use neigh-bouring data on the time axis as shown in Figure 4.25, meaning the secondary data

are measured in the same range cell asX i, at a previous time, this set is {XE
i

}
i∈[0,N−1]

.{
XE

i

}
i
are clutter data with a the covariancematrixRE , therefore, we have: {XE

i

}
i

∼
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Figure 5.1: Representation of the clutter and the detctor test.
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As the clutter under the target and the clutter used for estimation are mismatched

we define the SCR according to RE as the radar operator cannot measure RC . Wewrite:

SCR =

√
Trace

(
RUAV

)
√

Trace
(
RE

) (5.1.5)

We define the couple (RE, RC
) as being a CovarianceMatrix Couple (CMC) of the

detection test. This CMC represents the mismatch between actual clutter matrix underthe target and the matrix used to estimate the clutter porperties.
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5.2 . General Simulation Framework

In the following analyses, we use simulations to determine the performances ofdetectors. We describe the generic framework of every simulation carried out in thefollowing parts. The goal of the simulations is to determine the performances of a de-tector for:
• A given SCR
• A given property Θ of the CMC. This property can be: the effective rank of bothcovariance matrices, the mismatch angle between the covariance matrices andeventually the time interval between the estimation covariance matrices of thecouple.
We recall that the h0 hypothesis is the "target is absent" hypothesis and the h1 hy-pothesis is the "target is present" hypothesis. To test a detector for h0 hypothesis wegenerate clutter data to execute a detector test without a target. To test a detector for

h1 hypothesis we generate clutter data to execute a detector test with a target. For eachof these detector tests we generate a new clutter dataset. The detector tests for, a givenhypothesis (h0 or h1), a given SCR and value a given value ofΘ, is a random variable, andthe output of the tests are outcomes of a random variable. To assess the performancesof a detector for a SCR and Θ we need to characterize both the random variables asso-ciated with hypothesis h0 and h1. The outcomes of the h0 hypothesis tests let us assessthe CumulativeDistribution Function (CDF) of the random variables associated with theFAR which provides the PF A − threshold relationship. conversely, the outcomes of thetests following the h1 hypothesis gives the CDF of the random variables associated withdetection rates which provides PD − threshold relationship.

5.3 . Testing a detector with a CMC and SCR

As explained in 5.1, a detector has two inputs: a clutter dataset used to estimate the
properties of the clutter, {XE

i

}
i
, and a clutter dataset in which a target with a given

SCR is or is not present (hypothesis h0 or h1):h0 : {X i}i =
{
XC

i

}
i

h0 : {X i}i =
{
XC

i + SCR × XUAV
i

}
i

(5.3.1)
To test the detector we need to compute the clutter datasets corresponding to a

given CMC, (RE, RC
):

• {XE
i

}
i
is generated from RE

• {XC
i

}
i
is generated from RC

• We use a synthetic or measured target polarimetric signature {XUAV
i

}
i

• We use the SCR for which we want to test the detector
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To test the h0 hypothesis we feed to the detector the clutter datasets, {XE

i

}
i
and

{X i}i =
{
XC

i

}
i
, excluding the target from our test, the output we get is yh0 . We

test the h1 hypothesis with by feeding the detector test with {
XE

i

}
i
and {X i}i ={

XC
i + SCR × XUAV

i

}
i
. The output of this test is yh1 .

5.3.1 . Testing a detector with a value of Θ and SCR
yh0 and yh1 are the results we get with a single test of the detector and a specificCMC. However, using a specific CMC might introduce biases in the results. A rule ofthumb used in detector tests is that in order to establish performances in terms of PF A,we need at least ntest > 100

PF A
measures (this is also true for PD) [Echard 1991]. To addressthese issues we need to:

1. Use different CMCs with the same value of Θ, to limit the possibility of biases inthe results.
2. Do several tests per CMC to have enough outcomes to properly assess the per-formances.
Assuming we have m different CMCs sharing the same value of Θ, we need n testsper CMC to properly assess the PF A and n′ additional tests per CMC to evaluate the PD,meeting the following conditions:

PF A >
100

m × n
(5.3.2)

PD >
100

m × n′ (5.3.3)
This condition concerns only the accuracy of the PF A and P ′

D estimations. In addi-tion, the m CMCs should be representative of the parameter Θ. For instance when wesimulate detection tests to establish the PF A, we have yh0 , an outcome the test of thedetector with a specific CMC. This is the outcome of a random variable associated withthe detector and value Θ of this CMC. We can index the outcomes of the simulated de-tection tests depending on which CMC was used for the test and which of the n testsfor that specific CMC it was, yh0
j,k is the kth test of the jth CMC. With this tests we obtain

the set of outcomes {yh0
j,k

}
j<m,k<n

. We use this set of outcomes to assess the PF A.
For a given SCR, and the same set of CMCs (therefore the same value of Θ) we use

the exact same process to create {yh1
j,k

}
j<m,k<n′

we use to assess the PD.
5.3.2 . Assessing the PF A − threshold and PD − threshold from the set of detector

test outcomes

We want to obtain the PF A − threshold from the set of outcomes {yh0
j,k

}
j<m,k<n

. For
any given threshold, some elements of the set of outcomes will be inferior to that valueand somewill be superior. The proportion of values in the set superior to the thresholdis the PF A.
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PF A (threshold) =
Card

({
yh0

j,k > threshold
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i,j

)
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) (5.3.4)

Similarly for the PD − threshold relationship we have:

PD (threshold) =
Card
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yh1

j,k > threshold
}

i,j

)
Card
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yh1

j,k

}
i,j

) (5.3.5)

These two relationships allow us to fully characterize the performances of our de-tector for a given SCR and value of Θ.
5.3.3 . Assessing the performances of detector for different values of Θ and differ-

ent SCR
Themethod explained in the previous part can be used for any value of the SCR and

Θ. We can sample the (SCR, Θ) space to assess how our detectors behave in a widevariety of situations and for various target levels.
5.3.4 . Global parameters of the radar data and detectors

We recall that when real data are used the Doppler integration time is 10 ms, therange resolution is 15 m. The multilook number N is 50. The detector used are themultilook srML, themultilook span, themultilook P-SIRV and the EVa detector describerin 2.6.

5.4 . Influence of the effective rank on the detectors

In 4.4.4, we measured the effective rank of the clutter cells at each range as a func-tion of the Doppler integration time. The effective rank is a continuous generalizationof the discrete concept of the rank of the matrix (the number of non-zero eigenvalues)and is a measure of the degree of freedom of the phenomenon we represent with ourcovariance matrix. In this part, we determine the influence of the effective rank of thecovariance matrix of the clutter on the polarimetric detectors performances. We showan influence of the effective rank on the performances and an interest in its minimiza-tion for most polarimetric detectors, especially those using the structure of the covari-ancematrix to filter the clutter. We do notmake physical hypothesis on the polarimetricsignature of the clutter.
5.4.1 . Simulation procedure

The simulation process described in 5.3.1 test detectors for two parameters, Θ andSCR. In this part, the matrices of the CMC are identical RE = RC and Θ is the effec-tive rank of the matrices. To test the influence of the effective rank we create cluttercells with various effective ranks. We must therefore create bins of covariance ma-trix couples sharing similar effective rank. We use the Metropolis-Hastings algorithm[Metropolis et al. 1953; Hastings 1970] to create 16 bins of matrix couples. Each bincontains matrices with an effective rank comprised between two boundary values. Thebins uniformly sample the log of the effective ranks, meaning the boundary of the ith
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bin is given by 1 + (Nchan − 1)

i
n < e − rank < 1 + (Nchan − 1)

i+1
n , with i going from 0to n − 1; Nchan is the dimension of the problem, here we have 4 polarization states, so

Nchan = 4. We fill each bin with the same number of samples by rejecting any matrixthat exhibits an effective rank included in a bin already full.To generate eachmatrix we first generate a vector of eigenvalue,Λ = (λi)0≤i≤4, witheach λi being uniformly distributed between 0 and 1:
λi = U (0, 1) (5.4.1)

We define L = diag (Λ) with:
diag (Λ) =

{
li,j = xi if i = j
li,j = 0 if i ̸= j

(5.4.2)
We then generate a transfer matrix of an Hermitian matrix. We generate a 4 × 4

Hermitian matrix, A =
(
zij + z∗

ij

), with zij ∼ CN (0, 1), CN being the complex normal
distribution. The eigendecomposition of A gives its transfer matrix U . RC = ULU−1

is the covariance matrix of the clutter cell.Since the covariance matrices are not biased toward any polarization, and wemakeno physical assumption on the target signature, the target used in those simulationshas a constant signature in only one polarization XUAV
i = (1, 0, 0, 0), with no loss ofgenerality. We then compute the PF A − threshold and PD − threshold relationshipsaccording to the part 5.3.1.

5.4.2 . Simulation parameters
To run the simulationwe create 16 bins with eachm = 210 CMC, andwemake n = 210

PF A tests per CMC to estimate the PF A − threshold relationship. Which means we have
m×n = 220 tests per value of the effective rank. We can assess performances for a PF Aas low as PF A = 10−4 > 100

220 . We assess the PD − threshold relationship with n′ = 1 testper CMC, we have m × n′ = 210 tests to assess the PD − threshold relationship for eachSCR, we measure a PD as low as PD = 10−1 > 100
220 . The reason why the lowest accurate

PD is lower, is that a detector with aPD lower than 0.1 is not of interest, it allows to sparecomputing time. This is especially important since the estimation of the PD − thresholdrelationship has to be computed for each SCR.
5.4.3 . Simulation results

Figure 5.2 presents the probability of detection for each detector for a probability offalse alarm of 10−4 as a function of the SCR and the effective rank. The performancesof every detector are influenced by the effective rank of the covariance matrices. Theperformance of the span detector is the least affected by the effective rank of the cluttercovariance matrix. The span performances (as represented by the PD at a given PF A)decreasewith the effective rank, whichmeans that span is better suited to high effectiverank clutter (clutter similar to polarimetric white noise).
The span detector is identical to the srML with RE ∝ I4, which is the case of thecovariance matrix with effective rank 4 clutter in its own basis (Figure 5.3(d) shows thatML and span have near identical performances for clutter of effective rank 4). However,it is not true for a clutter with an effective rank inferior to 4, as the span does not filterany polarimetric backscattering process, it does not filter the dominant one, leading to
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reduced performances as this processmasks the targets in the detection test. Howeverthe loss of performances between the ideal case, effective rank of 4, and the worstcases, effective rank of 1, is low, it represents at most a loss of 1.8 dB of equivalent SCR.

All the other tested detectors exhibit an opposite behavior; they have better perfor-mances for low effective ranks than for high effective ranks. This is expected as thepower of the clutter is concentrated in a smaller proportion of the total polarimetricspace, thus, a larger portion of power of the target is in the orthogonal space of theclutter and thus not filtered.
For srML, the relationship between the performances and the effective rank for agiven SCR is monotonous. The srML detector consistently outperforms the other detec-tors. Decreasing the effective rank results in better or equal performances. Betweenan effective rank of 1 and 4 the loss of equivalent SCR is substantial and represents 5.5dB. In addition the worst SCR (worst means highest, since we want to be able to makedetection at the lowest possible SCR) at which a PD of 1 is attained is -0.5 dB which isthe best SCR (conversely best means lowest) at which span attains a PD of 1.
EVa and P-SIRV performances are not monotonous and while they exhibit perfor-mances similar to srML for the extreme values of the effective rank, their worst perfor-mances are not found for an effective rank of 4 but for effective ranks between 3 and4.

5.4.4 . conclusion

When RE = RC the effective rank impacts the performances of the polarimetricdetectors: a minimal effective rank improves the performances of all the polarimetricdetectors but the span. Figure 5.3 srML is the best detector in these simulations. How-ever, the covariancematrices are not based on a physical modelling, and are notmeantto be representative of a real clutter.
In the simulations we present in the rest of this part we use real data either in part(when we simulate to test the influence of the mismatch angle we use the measuredeigenvalues) or in whole. Using real data means we have extracted the clutter withDoppler processing. Therefore we use the Doppler integration time that minimizes theeffective rank. As shown in 4.4.4, the Doppler processing time influences the effectiverank, and, in particular, a Doppler processing time of 10 ms minimizes the effectiverank for a large number of polarimetric clutter range cells. Thus, we choose to usethis Doppler processing time for the real data we use in the following simulations. Thischoice undermines the performances of the span detector over the other detectors,which could gain up to 2 dB of equivalent SCR if the effective rank was maximized. Thisdecision of advantaging the other polarimetric detectors is justified by the fact that theycan expect a greater improvement from theminimization of the effective rank than theimprovement the span can get if we maximise the effective rank. In addition, we notethat noise covariance matrix should have an effective rank of 4, thus maximizing theeffective rank with integration time would most probably result in minimizing the CNR,essentially defeating the role of clutter in our study, by trying to detetect the targetagainst noise.

5.5 . Robustness of detectors with the covariance matrices mismatch
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Figure 5.2: Probability of Detection (PD) for the polarimetric detectors for a PF A = 10−4, as afunction of the single look SCR of the target and the Effective rank of the covariance matrices ofthe CMC. 50 multilooks.
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Figure 5.3: PD − SCR relationship for the polarimetric detectors for a PF A = 10−4, for theeffective ranks of whole number effective rank of the CMC. 50 multilooks.
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In 4.4.7 we introduced themismatch angle as ametric tomeasure themisalignmentbetween covariance matrices representing the polarimetric clutter properties. In thispart, we assess the impact of the mismatch angle on the performances of the polari-metric detectors. We model the mismatch for a given eigenvalues distribution and themismatch angle. We show a strong influence of the mismatch angle on performancesfor the P-SIRV and srML detectors, whereas the span and EVa detectors seem to haveperformances that are not correlated with the mismatch angle. The method presentedin this part is the subject of a communication at the International Radar Conference2022 in Edinburgh [Rozel et al. 2022a].

5.5.1 . Generating the covariance matrix couples with mismatch
As we mentioned in 4.4.7 clutter cells at a given range have stationnary eigenvaluedistributions during time. As RE and RC are at the same range in our framework, theyhave the same eigenvalue distributions. The analysis of 4.4.7 points out that each eigen-value of the covariancematrix is distributedwith a log-normal distributionparametrizedby the mean and standard deviation of the associated normal distribution.Using the simulation process described in 5.3, we test detectors for two parameters,

Θ and SCR. In this part Θ represents the cosine of the mismatch angle between the twomatrices of the CMC, RE and RC . We recall that the cosine of the mismatch angle isgiven by:

Θ = cosθ =

〈
RE, RC

〉
∥∥∥RE

∥∥∥ ∥∥∥RC
∥∥∥ (5.5.1)

RE and RC are the covariance matrices used to generate both clutters. RE gives
us {XE

i

}
i
the clutter dataset that the detector uses for the estimation of the clutter

properties while RC is used to generate {XC
i

}
i
the clutter dataset of the CUT.

We have Λ̃ the vector of with the mean of the four distributions, Λ̃ =
(
λ̃i

)
i<4

and σ̃

the vector of the standard deviations σ̃ = (σ̃i)i<4. For RE and RC we generate ΛE and
ΛC their eigenvalue vector. We have:

ΛE =
(
λE

i

)
i<4

(5.5.2)
ΛC =

(
λC

i

)
i<4

(5.5.3)
With:

λE
i, λC

i = lognormal
(
λ̃i, σ̃2

i

) (5.5.4)
We define LE = diag(ΛE) and LC = diag(ΛC), and we generate transfer matrices

UE and UC in the same way as defined in 4.3.1.We then have:
RE = UELE

(
UE

)−1 (5.5.5)
RC = UCLC

(
UC

)−1 (5.5.6)
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This gives us one CMC. This CMC has a mismatch angle θ. We use the Metropolis-Hastings algorithm to have CMC in bins according to the cosine of their mismatch angle.A CMC in the ith bin has its mismatch angle meeting the following condition:

i

n
< cosθ <

i + 1
n

(5.5.7)
with n different bins. To favor CMCwith amismatch angle close to 0 - which are veryrare with this sampling method - we use a resampling method detailed in appendix F.Thematrices generatedwith thismethod follow the clutter properties as far as power isconcerned, whichmeans that their power can fluctuate as the power of the polarimetricclutter, and the CMC are rated according to their mismatch angle.

5.5.2 . Simulation parameters
To generate the bins of CMCs we need to use eigenvalues distributions, we use theeigenvales distributions from the clutter cells presented in 4.4.8. These distributionsare computed with the empirical SCM estimates in the corresponding range cells.The we have the following eigenvalue distribution for the three clutter cells:
Clutter Eigenvalue mean Eigenvalue standard deviation(Λ̃, in dB) (σ̃, in dB)Farmland (0, −10.7, −16.1, −19.4) (2.4, 2.3, 1.7, 1.1)Farmland and road (0, −16.7, −22.0, −24.9) (2.2, 2.1, 1.4, 0.9)Urban (0, −15.6, −17.3, −18.8) (2.5, 1.0, 0.6, 0.6)We run the simulation with parameters identical to the one we used in 4.3.2.1. I.e.16 bins with each m = 210 CMCs, and n = 210 PFA tests per CMC, therefore we have

m × n = 220 tests per value of the mismatch angle. We measure PF A as low as PF A =
10−4 > 100

220 . We have n′ = 1 test per CMC, therefore we have m × n′ = 210 tests wemeasure PD as low as PD = 10−1 > 100
210 .

5.5.3 . Results according to covariance matrix eigenvalue distributions
The results are presented in Figure 5.4, 5.5 and 5.6. These figures present the PDfor a PF A of 10−4 as a function of SCR and the mismatch angle of the SCR. We can makeseveral observations common to the three clutter. The performances of the P-SIRV andsrML detectors correlate with the mismatch angle. All other parameters being equals,the higher the mismatch angle the lower the PD is. conversely, the performances ofspan and EVa do not correlate with the mismatch angle.This shows that for given eigenvalue distributions, the eigenvectors play an impor-tant role in filtering the clutter, thanks to its estimated covariancematrix, for P-SIRV andsrML. However span and EVa seem to have stable performances even in case of strongmismatch. With Figure 5.7, 5.8 and 5.9, we see that in the range of expected mismatch(a cosine of the mismatch angle between 1 and the asymptotic mismatch measured in4.4.7, Figure 4.35), the equivalent SCR losses varied 4 between 7 dB. However for farm-land clutter and farmland and road clutter the performances of srML are better thanthose of span and EVa for all mismatch angles in the expected range, which suggeststhat for these two clutters, they are the best detector to use, even with the SCR lossesassociated with mismatch. For urban clutter the EVa outperforms the other detectorsfor all mismatch angles except angles lower 15°which makes it a good detector for thisclutter type.
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For farmland clutter and farmland and road clutter span and EVa perform similarly.

5.5.4 . Conclusion
This simulation show that the mismatch angle plays an important role in the perfor-mances of the srML and P-SIRV. Important gains of performances are obtainable withclosely matched CMC when using these detectors.
The performances of the polarimetric detectors presented vary with the eigenvaluedistributions used in the simulations. For the farmland clutter, the srML detector out-performs the other detectors for almost every mismatch angle, which means they arethe best detectors to use in this case. Conversely, for urban clutter the EVa detectoroutperforms all the other detectors for all mismatch angles but 0 (cosine of 1) whichmeans it is the best detector for this case. However, for the road and farmland nodetector consistently outperforms the others for every mismatch angle. These simula-tions give a link between the mismatch angle and the performances of the detectors.We propose a method to then project these results on the mismatch angle measuredon the real data of those clutter range cells.

5.5.5 . Assessing the best performing detector
Framework

For each clutter range cell, we established D (δt) in 4.4.7. D (δt) gives the value of
cosθ, the polarimetric mismatch between two covariance matrices estimated at differ-ent times, and δt, the time interval separating the matrices. D (δt) gives us an estima-tion of themismatch between the clutter under the target and the clutter estimated forthe detector test. For given PF A and PD, we can write the minimum SCR needed for adetection as a function of cosθ, the cosine of the mismatch angle. Given these relation-ships we can estimate the SCR as a function of the time interval δt for each detectors.We expect that the minimum SCR required to a make a detection for a given PF A and
PD will increase with the time interval.

Results

Figure 5.10, 5.11 and 5.12 present the minimum SCR for a detection with PF A = 10−4 and
PD = 0.95, for each clutter.

Farmland clutter We see that for the farmland clutter the srML consistently outper-forms the other detectors for all time intervals. They have identical performances. Fortime interval greater than 4 s, approximately thrice the decay time of the exponentialfit on D (δt) in 4.4.7 and Figure 4.35 (1.35 s), the SCR is stable for all detectors. EVaand span have mostly constant performances with time, as their performances wheremostly independant from the mismatch.
These results suggest we should use the srML in this clutter range cell. Moreover tomaximize the performancewe shouldmake covariancematrix estimation as frequentlyas possible to eliminate the effect of the decay of the cosine of the mismatch angle. Ifwe do not minimize the mismatch, with frequent estimations the srML can loose up to2.5 dB of equivalent SCR
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Figure 5.4: Performances of the polarimetric detectors as a function of the SCR and cosine ofthe mismatch angle for a PF A of 10−4 for the farmland clutter.



112 Chapter 5. Evaluation of detectors for low-grazing endo-clutter detections

Figure 5.5: Performances of the polarimetric detectors as a function of the SCR and cosine ofthe mismatch angle for a PF A of 10−4 for the farmland and road clutter.
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Figure 5.6: Performances of the polarimetric detectors as a function of the SCR and cosine ofthe mismatch angle for a PF A of 10−4 for the urban clutter.
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Figure 5.7: Performances of the polarimetric detectors for a PF A of 10−4 and PD of 0.95 forthe farmland clutter. It shows the SCR needed to achieve a PD of 0.95 with a PF A of 10−4 as afunction of mismatch angle (and its cosine).

Figure 5.8: Performances of the polarimetric detectors for a PF A of 10−4 and PD of 0.95 for thefarmland and road clutter. It shows the SCR needed to achieve a PD of 0.95 with a PF A of 10−4

as a function of mismatch angle (and its cosine).
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Figure 5.9: Performances of the polarimetric detectors for a PF A of 10−4 and PD of 0.95 for theurban clutter. It shows the SCR needed to achieve a PD of 0.95 with a PF A of 10−4 as a functionof mismatch angle (and its cosine).

Farmland and road clutter In the farmland and road clutter, we again see that thesrML outperform the other detectors for all time intervals. However, for time intervalsgreater than 3.5 s, the span performance converges with the performances of the srML.For time intervals in excess of 4 s, approximately equal to the decay time measured inFigure 4.35 (3.68 s), the performances of the detectors are stable.Similarly to the results of the farmland clutter, the results for the farmland and roadclutter show thatwe should use the srML. Reducing the time interval between the detec-tion and the estimation of the SCM will also lead to better performances in this clutterrange cell. In this range cell the effect of themismatch on the srML is a loss of equivalentSCR up to 3 dB.
Urban clutter In the urban clutter, EVa outperforms every other detectors for everypossible time intervals. For low time intervals srML and EVa have roughly the sameperformances, but as time intervals increase the performance gap widens. The per-formances of the detectors stabilize for time intervals greater than approximately 8 swhich corresponds with the decay time measured in Figure 4.35.In urban clutter the detection schemewe should adopt is different, as the EVa detec-tor outperforms the other detectors. As the performances of EVa are not affected bythe time interval between the estimation and the detection, we can make unfrequentestimations and expect good performances. This scheme provides advantages as lessfrequent estimations are less constraining for processing units and avoid the risk ofusing secondary data polluted by an undetected target.

5.5.6 . Conclusion
The study of expected performances of the different detectors as a function of thetime interval allows us to choose the detection scheme for the studied clutter cells.
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Figure 5.10: Extrapolation of the performances for the farmland clutter.

Figure 5.11: Extrapolation of the performances for the farmland and road clutter.

Figure 5.12: Extrapolation of the performances for the urban clutter.
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Either a detection scheme relying on a detector that is affected by mismatch (srML)and frequent estimation of the clutter in order to minimize the mismatch, or using adetector independant from mismatch (EVa in our case), allowing for less frequent esti-mations.Moreover we notice that the predicted performances of all the detectors stabilizeafter 4 to 8 s. For the farmland clutter it corresponds to three times the decay timemeasured in 4.4.7, which means the stabilization of the performances is mainly due tothe stabilization of the mismatch. Whereas, for the urban clutter and for the farmlandand road clutter, the stabilization occurs for time interval comparable to the measureddecay time, which means that there is further stabilization due to SCR-Cosine relation-ship shown in Figure 5.8 and 5.9. We see that the SCR-Cosine relationship stabilizes forgreater cosines (lower mismatch) for this clutter range cells.In these simulations we ensured that the eigenvalues of the covariance matriceswere based on the empirical properties of the clutter studied, however the eigenvectorswere purely synthetic and did not use any empirical model. To check if the results holdwith the actual eigenvectors and eigenvalues of the clutter tested we propose an hybridsimulation method.

5.6 . Hybrid simulations

In this part, we compare the performances of the polarimetric detectors as well asthemono-polarimetric detectors. The simulationwe present do not use any parametricmodel for the clutter or the target. The model used for the clutter data is based onestimated SCMs from the clutter data of the measurement campaign described in 4.2.These SCMs are used to generate new clutter data, identically distributed to the realclutter. The target data are extracted from the samemeasurement campaign using themethod described in appendix G. The SCR is changed in order to simulate for differentSCR. These simulations allow us to avoid any bias linked to an unfaithful model of eitherthe clutter or the target, and the method used provides a potential framework for theadaptive evaluation of detectors.
5.6.1 . Working principle

In the simulations we present in this part, the CMC is composed of two SCMs mea-sured in a range cell of the clutter of themeasurement campaign. For a given range cellwe have RE = R (t), with R (t) the SCM estimate of the clutter cell at the time t. RC isSCM estimates measured at ulterior timeRC = R (t + δt). The parameter in Θ in thesesimulations is δt, the time interval between the two SCMs estimates. To form the binsof CMC, we select a range cell. For this range cell we compute the SCM estimates fordifferent times and create the CMC with the couples sharing the right value of δt.The ideal method would consist in using directly the clutter datasets measured withthe measurement campaign. Unfortunately the duration of the measurement, 825 sec-onds, mean that we have at most 1650 non-overlapping clutter datasets, which wouldallow at most the measurement of a PF A < 100
1650 , which is not a realistic value for anyradar operation (With a 2 Hz refresh rate, the operator would experience a false alarmevery 50 seconds per range cell).To address this issue we generate additional clutter cell with the SCM estimates,

hence RE = R (t) and RC = R (t + δt) as we recall that the CMC (RE, RC
) is used to
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generate the two clutter datasets used in the detector tests.As for the target used in the detector test, we use parts of the UAV signature ex-tracted from measurement campaign (part 4.2). For a clutter dataset we use the sametarget in all the detector tests to ensure the detectors are always tested in the same con-ditions. Each set of test aimed at determining the PD is repeated for several extracts ofthe polarimetric signature of the UAV.

5.6.2 . Simulation parameters
The values of tested δt in second are:

{0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50} (5.6.1)
These values are chosen in a pseudo logarithmic way to investigate a large portionof the parameter space at a lower computational cost.Each bin has m = 210 CMCs measured over 562 seconds (RE are measured other512 seconds and RC are measured over 512 seconds as well, but with an offset goingfrom 0.5 s to 50 s compared to RE). We do n = 210 PF A tests per CMC, therefore wehave m × n = 220 tests per value of δt. We measure PF A as low as PF A = 10−4 > 100

220 .We have n′ = 1 test per CMC and per target, therefore we have m × n′ = 210 tests pertarget signature, we measure PD as low as PD = 10−1 > 100
210 . We test the detectors for120 different target signatures randomly selected in the extracted target signal.

5.6.3 . Simulation results
The clutters used to run the detector tests we present in this part are the clutter cellspresented in 4.2. A summary of the properties of these clutters is found in 4.4.8. Figure5.13, 5.14 and 5.15 give an overview of the results obtained for the 3 different cluttersand each results. For each clutter and detector they show the PD with PF a = 10−4 as afunction of the SCR and the time interval. Good performance of a detector is its abilityto attain high PD at low SCR. The PD value is the median of the PD values obtained foreach the detector tests over the different target signals tested.

Link between time and performances

Figure 5.16, 5.17 and 5.18 show the minimum SCR necessary to have PD ≥ 0.95 with
PF A = 10−4 as a function of the time interval for each polarimetric detector. The linecorresponds to the median PD over the different target signals used for the test. Theupper and lower bounds represent the upper limit of the first and third quartiles, theyshow the variability of the performances of the detector with the target.The performances of every polarimetric detector roughly correlates with the timeinterval, except for EVa in the urban clutter. The best performance is always (except forEVa in the urban clutter) for a time interval 0.5 s, the shortest possible (Figure 5.16, 5.17and 5.18).The twopeaks present at 7 and9 seconds are present because of parasitic frequencydetected in the radar signal around 1/8 Hz.These results are different from the one we obtained with the previous simulationframework, in which the mismatch was modeled with the mismatch angle and the datawere synthetic. With this framework EVa and span performances were independantfrom the mismatch angle and thus independant from time interval (see 5.5.5). This
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Figure 5.13: Performances of each detector for the farmland clutter with PF A = 10−4.
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Figure 5.14: Performances of each detector for the road and farmland clutter with PF A = 10−4.
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Figure 5.15: Performances of each detector for the urban clutter with PF A = 10−4.
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Figure 5.16: Performances of each detector for the farmland clutter with PF A = 10−4 and PD =
0.95.

Figure 5.17: Performances of each detector for the road and farmland clutter with PF A = 10−4

and PD = 0.95.
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Figure 5.18: Performances of each detector for the urban clutter with PF A = 10−4 and PD =
0.95.

is not the case with the simulation framework described in this part. It means thateven the clutter properties on which the span and EVa rely for making accurate detec-tions change with time in the studied clutter. Furthermore the EVa detector has highlyvariable performances for farmland and road clutter as well as urban clutter. The mod-elization described in 5.5 is not able to fully explain the behavior of EVa, as the targetwas constant. The constant target signature is advantageous to the EVa detector, asthe target is rank 1 and consistant.These results suggest that any polarimetric endo-clutter detection following the de-tection framework we describe should minimize the time interval between the clutterestimation and the detection test.
Comparison between mono-polarimetric and multi-polarimetric detectors

Mono-polarimetric detectors are consistently outperformed by multi-polarimetric de-tectors (Figure 5.13, 5.14 and 5.15). This result is expected as the main advantage ofmono-polarimetric detectors is that they can be implemented on mono-polarimetricradar, which all else, being equal, will provide data with higher SNR. In our case the SNRis a lot higher than the SCR and thus not limiting. Mono-polarimetric radars do not havehigher SCR than multi-polarimetric radar as explained in 2.3.1. Figure 5.19, 5.20 and 5.21show the difference of performances between the best performing mono-polarimetricdetector of each clutter and srML (which is always the best polarimetric detector or veryclose to the best). For a time interval of 0.5 s the loss of equivalent SCR ranges from 2dB for farmland clutter (Figure 5.19) to 4 dB for urban clutter (Figure 5.21).
Comparison of the results between hybrid simulation and mismatch angle simu-
lation

We compare the results obtained with the hybrid simulations described in this partto the results of the simulations using the mismatch angle (described in 5.5), in par-
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Figure 5.19: Performances of each detector for the farmland clutter for PF A = 10−4 and PD =
0.95.

Figure 5.20: Performances of each detector for the road and farmland clutter for PF A = 10−4

and PD = 0.95.

Figure 5.21: Performances of each detector for the urban clutter for PF A = 10−4.
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ticular the results shown in 5.5.5. We notice that the results for the srML are closelymatched in farmland (Figure 5.10 for mismatch angle simulation and Figure 5.16 forhybrid simulation) and farmland and road clutter (Figure 5.11 for mismatch angle simu-lation and Figure 5.17 for hybrid simulation). The difference in simulated performancesare within 2 dB. This is not the case for urban clutter and the other detectors. In urbanclutter the performances have at least 3 dB of difference. P-SIRV was consistently un-derperforming in the mismatch angle simulations - with 2 to 3 dB higher SCR neededto achieve the same PD and PF A - compared to srML (Figure 5.10, 5.11 and 5.12). Withthe hybrid simulations, especially in farmland and road and urban clutter (Figure 5.17and 5.18) the performance gap is smaller. The performances of span and EVa obtainedwith mismatch angle simulations and hybrid simulations are dissimilar. With the mis-match angle simulations, span and EVa have stable performances with regards to thetime interval, less than 1 dB of variation (Figure 5.10, 5.11 and 5.12). However, with hy-brid simulations the variation of performances are a lot larger, up to 5 dB (Figure 5.16,5.17 and 5.18). This is linked with the fact that performances of EVa and span obtainedhybrid simulations correlate with the time interval contrary to the ones obtained withmismatch angle simulations.
Variability of the performances with the target signal used in the detector test

As Figure 5.16, 5.17 and 5.18 show the median SCR necessary to have PD ≥ 0.95 with
PF A = 10−4 as well as the first and third quartiles upper bound of SCR we can see howmuch the target signature affects the detectors performances.Span has very consistent results over the different target signals in the detectortests. This is expected as we recall that span is used to define the SCR (see equations5.1.5 and 2.6.3), thus, the span directly follows the SCR whichever the target polarimet-ric signature is. In this paragraph when we mention multi-polarimetric detector weexclude span as it behaves differently due to the SCR computation method. In farm-land clutter the difference between the upper bounds of the first and third quartiles issimilar for the multi-polarimetric detectors, around 1 dB (Figure 5.16). We note that thedistribution of performances of EVa with respect to target signal is highly dissymetric,as the upper limit of the third quartile is close to the median whereas the upper limitof the first quartile is almost 1 dB lower. For farmland and road clutter and urban clut-ter (Figure 5.17 and Figure 5.18), the upper limits of the first and third quartile are alsoaround 1 dB apart for srML and P-SIRV. However EVa has a large dispersion of resultswith the target signal of the detector test, which means that the EVa detector is unpre-dictable and target signature dependant. This is probably due to the fact that targetsignal affect the eigenvalues of {Xi}i, the tested signal in inconsistent ways, depend-ing on the respective target and clutter signature (wether or not they are "aligned"). Inthe theorectical simulations, the target signature was constant and, thus, necessarilyrank 1, in the mismatch angle simulations (described in 5.5) it obfuscated this resultand overestimated the performances of EVa.
Variability of the performances with the target clutter

These simulations show that for the same PD, PF a, time interval and detector we canexpect significantly different performances (as have shown themismatch angle simula-tions). The SCR required for the same detection performances is significantly higher for
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farmland clutter than road and farmland clutter and urban clutter, up to 4.5 dB more.Farmland is less favorable for endo-clutter polarimetric detections than urban clutteror farmland and road clutter. This is probably in part a consequence of its higher effec-tive rank (as shown in 5.4) which makes it harder to filter out due to the smaller rankof the space orthotogonal to the polarimetric signature of the clutter. This method isa good predictor of the performances that can be expected for a given detector in agiven clutter range cell.We note that, in the hybrid simulations, the EVa detector can achieve lowPD, around0.2 / 0.3, at lower SCR than the other detectors (around 2 dB lower). However this factshould not influence our choice of detector since such low probabilities of detection arenot useful for radar operations as PD = 0.3 means that most detections are missed.

5.6.4 . Drawing conclusion from the hybrid simulations
With the results of the hybrid simulations we can draw several conclusions.Mono-polarimetric detectors should not be used when dealing with endo-clutterdetections as they are consistently outperformed by polarimetric detectors.The time interval between the clutter estimation and the detection should be keptas low as possible to maximize polarimetric detectors performances. If we follow thisrule srML is consistently the best performing detectors for desirable PD (above 0.9),and should probably be the detectors of predilection with this detection framework, asfar as the explored clutter range cells are concerned.Span and EVa are not more robust to the covariancematricesmismatch than P-SIRVand srML detector as the results of 5.5 seemed to indicate. The strong hypothesis onthe target signature made in 5.5, its constant signature leading to a rank 1 signatureand a target returning a constant power to the detector are probably the cause of thisdiscrepancy.EVa has inconsistent performances with regards to the signals of the target, and itsperformances were overestimated by the mismatch angle simulations described in 5.5.This is, once more, probably due to the target modelization with a constant signature.Finally, the hybrid simulation method is able to predict the performances of thepolarimetric detectors in different clutter. This method could serve as basis for anadaptive detection scheme which could switch between detectors to better suit theencountered clutter and adapting the detection scheme to each clutter range cells. Wepropose performing similar simulations to those we described at the beginning of theradar operation in order to choose the best detector. This framework could be usedfor any detector even in non-gaussian clutter. In our 3 examples srML seems to be theone to choose but maybe this might not always be the case.
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Conclusions and perspectives

In this part we conclude this PhD thesis by summarizing the main results of thiswork and giving perspective on following works. In this thesis we introduce methodsandmetrics to characterize the clutter in low-grazing angle configuration and show thatpolarimetric detectors have an edge over monopolarimetric detector for the detectionof endo-clutter targets in a low-grazing configuration.

6.1 . Summary

In the first part we use existing literature to outline the issues counter-UAV radarsface. We first give a broad description of the working principles of a radar system. Wehighlight the importance of the RCS of the target in the equation of radar and intro-duce the concept of radar clutter and the problems it causes. Thanks to a review ofthe literature about counter-UAV radar, radar signature of UAVs and the classificationmethods, we establish the lowmagnitude of the RCS of UAVs as well as the presence ofa micro-Doppler signature caused by the rotating blades of copter type drones (by farthe most common class of consumer UAVs). The micro-Doppler signature of UAVs isvery often used for classification and detection. Furthermore, this review showed thatthe flight domain of drones, namely low and slow, implies that they often are endo-clutter targets, and their signature and low RCS is to be compared with the signatureof the clutter. The review of the literature allowed us to establish that ground clutter isdifferent from noise. A very important difference is that it is notably coherent, and isoften distributed differently from Gaussian noise. The coherency of the clutter meansthat the endo-clutter targets SCR behaves differently from SNR.Whereas SNR increaseswith transmitted power and higher integration time, SCR does not. We need to intro-duce additional diversity to the radar data wemeasure. To better separate a potentiallyendo-clutter target from the clutter we proposed to use polarimetric radar, as we showthat polarization has proven to be a useful tool for radar classification in both imagingradar or weather radar, improving performances over non polarimetric radar. Finallywe review the literature on detectors, and especially endo-clutter and polarimetric de-tectors showing the importance of the estimation of the signature of the environmentwe want to detect the target against. We then present the radar, HYCAM, used in thiswork. We discuss the topic of the characterization and calibration of polarimetric radar.We follow with the presentation of the measurement campaign that is used for therest of the work of this PhD thesis. In this measurement campaign, we used HYCAMto measure a radar scene in a low-grazing geometry in which a UAV was flying along apre-determined flight path. We follow these presentations with diverse analyses of theclutter behavior. We show, that the clutter in low-grazing angle geometry has a non-reciprocal polarimetric signature if the receive antenna for the two different received
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polarizations are not colocalized. This is due to the clutter being a large collection of dif-ferent backscatterers spread in different parts of the aperture of the receive antennas.It means that in the geometry we consider (separated h and v receive antennas) andfor endo-clutter detection of UAVs, the clutter has four independent polarization sig-nals. Introducing a representation of the clutter based on its SCM computed over thetime axis, we addressed the polarimetric stability of the clutter using the effective rankof the SCM. We compute the effective rank of the SCM for different Doppler integrationtime. We found that clutter exhibits an optimal Doppler integration time thatminimizesthe effective ranks. We show in a later part that a low effective rank leads to increasedperformances of the polarimetric detectors. To minimize the effective rank for mostof the clutters measured during the campaign, we can use a Doppler integration timeof 10 ms. It indicates that for most low-grazing semi-urban clutter we measured, thisis an ideal integration time. We then introduce a metric to measure the mismatch be-tween two different signatures of the same clutter taken at different times. This metricis based on the angle between twomatrices as we characterize the signature of the clut-ter with its SCM and represents themismatch of the polarimetric signature irrespectiveof the variation of total power. We create a set of 3 different measured clutter, repre-sentative of the clutter types found in semi-urban areas and determine a decay time ofthe clutters. For two estimations of the SCM of the same clutter separated by a giventime interval themismatch growswith the time. Finally, we detail a benchmark of polari-metric detectors including a novel detector based on the eigenvalues of the SCM of thecells under test, as well as a monopolarimetric detector. We first show, as mentioned,the relationship between effective rank of the SCM of the clutter and the performancesof the polarimetric detectors. For all the detectors but one (the span, based on thetotal polarimetric power) the performances are best for a low effective rank, the per-formance gain between the worst case scenario and best case scenario are equivalentto an additional 6 dB of SCR, which prompts the use of Doppler integration that mini-mizes the effective rank in the following simulations. We follow with simulations aimedat assessing the impact of the mismatch of the clutter estimation with the actual clut-ter in the cells under test on the performances of the polarimetric detectors. Thesesimulations use randomly generated couple of covariance matrix to test the differentmismatch angles. The matrices in the couple share a common eigenvalue distribution.This eigenvalue distribution is the eigenvalue distribution measured in a specific clut-ter. We do one simulation per clutter in our set of clutter. These simulations show thatthe detectors filtering the clutter with the SCM of the estimate clutter suffer an impor-tant performance losses when the mismatch angle increases, whereas span and EVawhich use polarimetric power have performances that do not correlate with the mis-match angle. Finally we make hybrid simulations which use the SCM of the clutter ofthe clutter set to generate clutter cell identically distributed to the real clutter cell, andmake detection test by injecting real target data in this clutter cell. In these tests thecouple of covariance matrix are two SCMs of the same clutter cell estimated at two dif-ferent times separated by a fixed time interval. The results of these simulations showthat most polarimetric detectors have better performances if the clutter estimation isas close as possible to the clutter of the cells under test. This result partly correspondsto the findings of the simulation on using mismatch angle. Moreover, we find that po-larimetric detectors consistently outperform the monopolarimetric detectors, and thatno monopolarimetric consistently outperforms the others. It means that a detection
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scheme for endo-clutter UAVs should implement polarimetric feature. However, theresults of these hybrid simulation contradict the previous simulation results and showthat EVa and span do have lower performances if the time interval increases. More-over it reveals that the performances of the EVa detector depend a lot on the targetsignature.

The methods developped in this thesis could be used adaptively in a radar systemto determine the best suited detector for a given clutter.

6.2 . Perspectives

This work gives insight on the advantages of polarimetric detections for endo-clutterdrones. Several perspectives could be explored in relation with this work.
6.2.1 . Polarimetric analysis of UAV radar signature

As we have seen some detectors are very sensitive to the polarimetric signature oftargets. This thesis did not analyze the polarimetric signature of UAVs. The analysis ofthe evolution of the polarimetric signature UAV with time should be done to allow forbetter designs and better performance of endo-clutter detectors.
6.2.2 . Further analyses of the polarimetric clutter

The analysis that was conducted on a set of semi-urban clutter that show differentbehaviors. Extending this analysis to different clutters using the tools developed in thisthesis would allow for a better understanding of low-grazing polarimetric clutter. Sincethe studied clutter exhibits some vegetation features as well as man-made featuresit should exhibit some seasonality, further measurement using the effective rank andmismatchwould allow to determine if polarimetric clutter is seasonal. In addition, whilethe clutter datasets we used for our data analysis were selected to represent importantfeature of semi-urban clutter, it is obvious that it cannot be considered as representingevery type of ground clutter, therefore, analysis on different clutter not covered wouldbring a more general understanding of polarimetric clutter.
6.2.3 . Perspectives for the polarimetric detectors

Real world test for the detectors

The hybrid simulation conducted aim to be as close as possible as a real world testof the detectors while addressing the difficulty of obtaining a sufficient datasets to en-sure the robustness of the results. However, we suggest that measurement campaignsfeaturing a more extensive ground truth, could allow for the test of the detectors onreal data that would ensure a statistical robustness of the results. Such a measure-ment campaign would also allow for a test of the real-time detector. To achieve sucha measurement campaign the use of several cooperative targets could be used to takeadvantage of the capabilities of radar systems to deal simultaneously with several tar-gets. In addition, such a measurement campaign could use the metrics developed inthis work to adaptively choose the best suited detector for the situation.
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Adding diversity to the polarimetric detectors

To further improve the performances of the polarimetric detectors we could add morediversity to the data vectors serving as input for the detectors. In a similar fashion toSTAP we could use several range and Doppler cells in the tested radar data vector inaddition to polarization to enhance the performance detection of endo-clutter targets,as they might not be strictly endo-clutter but also near-clutter (in an off-grid configura-tion).
6.2.4 . Counter-UAV radar perspective

Classification with polarimetry

This work addresses the topic of the detection of drones in the specific context of low-grazing clutter with the large resolution cells containing many different backscaterrers.Polarization has proven to be a useful tool for classification, and classification is animportant topic in the context of counter-UAV radar systems as many objects sharethe same flight domain (mainly birds). Further investigation of the use of polarization,as an additional diversity of data in already proven classifiers using other data, such asmicro-Doppler signature, could prove fruitful.
Multi-target case

Another point of concern for counter-UAV radars is the multi-target scenario in whichseveral targets are close and can cause some disturbance in the normal operation ofa radar. Counter-UAV radars are especially sensitive to this kind of problem as dronesare capable of coordinated flight and can use swarming tactics. One use of polariza-tion could be to investigate target separation in swarm scenarios, as the polarimetricsignature of a cell containing several targets might be different from the polarimetricsignature of a cell with a single target. As such polarization diversity could be a viablealternative to increased bandwidth or shorter PRI for increased resolution to tackleswarm scenarios.
Radar architecture, SDR and MIMO with polarimetry

Since polarization has proven to be useful for the endo-clutter detection of UAV, its in-tegration in the architecture of counter-UAV radar is a subject of interest. In particular,the architecture of a MIMO polarimetric radar can allow for added flexibility as MIMOradar relies on added diversity of the waveforms used on the transmit size which polar-ization can provide. The large diversity of scenarios a counter-UAV radar can encounteralso suggests that a cognitive approach to radar system is warranted, using MIMO ar-chitecture and polarization to build a multi-mode platform.
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Appendix A |
Steering vectors

A steering vector is usually a phase vector that is used filter vectorised data. It gen-erally uses a phase relationship between the different elements of the data vector. Forinstance, let us consider a phased array antenna with N elements (the ith element islocated at ri) and an off-axis signal carried by a plane wave with k its wave vector (theunitary vector normal to the wave plane and oriented in the propagation direction ofthe wave). The plane wave will be measured by the different elements of the arrayantenna at different times due to the different positions of the elements. Thus, theresulting signals will be phase shifted:
X =

(
xe−jk·r1 , xe−jk·r2 , . . . , xejk·rN

) (A.0.1)
with X the collection of received signals by each antenna element, x the signal of theplanewave and e−jk·ri the phase due to the positioning of the ith element of the antenna.We define S the steering vector associated with the wave vector k of the incoming waveand considered array antenna:

S =
(
e−jk·r1 , e−jk·r2 , . . . , ejk·rN

) (A.0.2)
We thus have:

SHX = Nx (A.0.3)
the steering vectors S allows to measure the incoming signal with wave vector k,whereas the other signals with different wave vectors are not coherently summed, andthus, are filtered.This concept applies to any vectorised data in which the individual signals are linkedpredetermined phase relationship.
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HYCAM Receive apertures

To measure the receive aperture of the two pairs of column of the receive antennaof HYCAMused in themeasurement campaignwe organized ameasurement campaignin a field with an unobstructed view of HYCAM to ensure a free propagation towardsthe radar. During this campaign, we transmitted a pure frequency waveform with ahorn antenna and a synthesizer to measure the reception aperture of a single elementof the receiving antenna for both polarizations (Figure B.1).

Figure B.1: HYCAM theoretical transmit aperture and measured receive aperture in both polar-izations.
The measured diagram for h and v polarization turned out to be different with onebeing twice as large as the other one.
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Appendix C |
Link between CNR and maximum cor-
relation rate

We recall that for two different signals we have the covariance given by:
σXY = 1

N

N∑
i=1

(
Xi − X

) (
Yi − Y

) (C.0.1)
We write:

σXX = σ2
X (C.0.2)

And the correlation is given by:
ρ = σXY√

σ2
Xσ2

Y

(C.0.3)
We have two clutter identical clutter signals with different noise factor:

X = C + N0 (C.0.4)
Y = C + N1 (C.0.5)

We define their CNR CNR0 = σ2
C

σ2
N0

and CNR1 = σ2
C

σ2
N1We have:

σXY = σCC + σCN0 + σCN1 + σN0N1 = σ2
C (C.0.6)

as C is uncorrelated with N0 and N1 and N0 and N1 are themselves uncorrelated.
ρ = σXY√

σ2
Xσ2

Y

= σ2
C√

σ2
C + σ2

N0

√
σ2

C + σ2
N1

(C.0.7)

ρ =

√
σ4

C

σ2
N0

σ2
N1√

σ2
C

σ2
N0

+ 1
√

σ2
C

σ2
N1

+ 1
(C.0.8)

ρ =
√

CNR0CNR1√
(CNR0 + 1) (CNR1 + 1)

(C.0.9)
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Noise analysis

D.1 . Noise measurement

We measure the noise on the measurement campaign data used in this thesis.The noise covariance matrix is:

Rnoise =


σ2

Hh 0 0 0
0 σ2

V h 0 0
0 0 σ2

Hv 0
0 0 0 σ2

Hv

 (D.1.1)

Where σ2
αβ is the noise variance of the αβ channel. As the noise on each channelis independant, which means the non diagonal terms are null. In addition the signalof Hv and V v (conversely Hh and V h) are measured on the same physical channelat different time as only the transmit polarization changes. Therefore they should beidentically distributed as the noise depends does not depend on the transmit channel,but only on the enviromnent and receive channel. Therefore we have σ2

Hh = σ2
V h = σ2

hand σ2
Hv = σ2

V v = σ2
v . Therefore giving us the following covariance matrix :

Rnoise =


σ2

h 0 0 0
0 σ2

h 0 0
0 0 σ2

v 0
0 0 0 σ2

v

 (D.1.2)

To measure σ2
h and σ2

v we use a doppler range cell at speed 9.5m · s−1. We computethe mean covariance matrix over the whole measurement duration (836 s) using thesame parameters as in the rest of the thesis (10 ms Doppler integration time). ThisSCM is computed over 83600 samples. In Figure D.1, the covariance matrix exhibits theexpected behavior being diagonal with two distinct values on the diagonal, one for σ2
hand one for σ2

v .

D.2 . Consideration on the noise estimation with N samples

The eigenvalues of D.1.2 are {σ2
h, σ2

h, σ2
v , σ2

v}. However, the value of the SCM dependson the number of samples, we recall that expression of the terms of the SCM estimatedwith N samples is:
Rnoise =

(
1
N

N−1∑
i=0

xαβ,ix
∗
α′β′,i

)
αβ,α′β′∈{V h,V v,Hh,Hv}

(D.2.1)
We have the element-wise expected value given by:
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Figure D.1: Noise polarimetric covariance matrix.

∣∣∣∣∣E
(

1
N

N−1∑
i=0

xαβ,ix
∗
α′β′,i

)∣∣∣∣∣ =
{ 1

N
Nσ2

αβ = σ2
β if αβ = α′β′

0 if αβ ̸= α′β′ (D.2.2)
(∣∣∣∣∣E

(
1
N

N−1∑
i=0

xαβ,ix
∗
α′β′,i

)∣∣∣∣∣
)

αβ,α′β′

=


σ2

v 0 0 0
0 σ2

v 0 0
0 0 σ2

h 0
0 0 0 σ2

h

 (D.2.3)

and the element-wise variance given by:
∣∣∣∣∣Var

(
1
N

N−1∑
i=0

xαβ,ix
∗
α′β′,i

)∣∣∣∣∣ =


2
N

σ4
β if αβ = α′β′

1
N

σ4
β if β = β′

1
N

σ2
βσ2

β′ if β ̸= β′
(D.2.4)

(∣∣∣∣∣Var
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1
N

N−1∑
i=0
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∗
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)∣∣∣∣∣
)
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h
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h σ4
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 (D.2.5)

Thus, non-diagonal terms are non-zero and it affects the eigenvalues. An ’estimationnoise’ is introduced on all terms by the estimation, as a variance inversely proportionalto the number of samples used in the estimation. We expect that the higher the value of
N is, the closer the eigenvalues should be to the actual noise of the channels. We com-pute the mean eigenvalues over the measurement duration as a function of samplesused to estimates the SCM for the cell under consideration in D.1. We compare this withthe expected simulated results with D.2.3 and D.2.5. Figure D.2 shows the evolution ofthe eigenvalues with the number of samples, we see that simulation andmeasurementmatch well. The simulation results are obtained by generating noise vector using the
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Figure D.2: Measured and simulated eigenvalues for different numbers of samples used in theSCM estimation. The rectangle outlines the number of samples used in this thesis when esti-mating SCM.

Figure D.3: Mean eigenvalues for ranges from 9 to 10 km for Doppler cell of speed 8 m · s−1 (a)and 0 m·s−1 (b) (clutter cells, excerpt from Figure 4.28b, the highest eigenvalue is above 4 dB andthus hidden). The mean eigenvalues of (a) correspond to noise covariance matrix eigenvalues.We see the lowest noise eigenvalue is -0.5 dB.
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asymptotic estimate of the covariance matrix and then computing the SCM estimateswith these generated noise vectors. We see that the last eigenvalue is below the low-est noise value. This means that even an eigenvalue corresponding to clutter signalcan be lower than the noise floor as measured by the asymptotic estimate of the noisecovariance matrix. However, if a signal is to be considered as clutter signal, it shouldalways be higher than the last noise eigenvalue measured using the same number ofsamples in the estimation of both the noise and clutter covariance matrices. Figure D.3shows example of noise and clutter eigenvalue distributions. In this example, the lastclutter eigenvalue is lower than the noise floor (0.8 dB) but higher than the last noiseeigenvalue (-0.5 dB).
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Relative angle between twomatrices of
identical eigenvalue distributions and
identical eigenvectors

Wewant to measure the expected value of the angle between two covariancematri-ces sharing the same lognormal eigenvalue distribution and the exact same eigenvec-tors. We measure this expected value for each of the clutter under consideration (See4.4.8). For each clutter we use the measured lognormal distributions of each eigenval-ues to generate a pair of eigenvalue vectors. The eigenvectors we use to generate thematrices are the columns of I4 the identity matrix of dimension 4. We use the Monte-Carlo algorithm and generates 106 pairs of vectors of eigenvalues to have 106 pairs ofcovariance matrices per studied clutter. We can compute the cosine of the mismatchangle for each pair of covariance matrix. The mean cosine is the expected value of thecosine of the mismatch angle for the eigenvalues distributions under consideration.

Figure E.1: Distribution of mismatch angles obtained between matrices sharing the same eigen-vectors and the same eigenvelue distributions.
Figure E.1 shows the distributions of cosines for the 3 clutter under investigation.We see the cosine distributions are stacked close to 1. The expected value are shownin Table E.1.
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Clutter Cosine expected value Corresponding angle (°)Farmland 0.99730 4.2Farmland and road 0.99984 1.2Urban 0.99971 1.4
Table E.1: Cosine expected values and corresponding angles.
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Resampling to favormismatch angle of
0°

To favor angles close to 0° we follow the normal eigenvalue generation process de-scribed in 5.5.1. We generate both eigenvalue vectors as follows
ΛE =

(
λE

i

)
i<4

(F.0.1)
ΛC =

(
λC

i

)
i<4

(F.0.2)
With:

λE
i, λC

i = lognormal
(
λ̃i, σ̃2

i

) (F.0.3)
Then we define LE = diag(ΛE) and LC = diag(ΛC). However to favor a mismatchangle close to 0 ° we generate a unique transfer matrix for the couple U = UE = UC .We thus have:

RE = ULEU−1 (F.0.4)
RC = ULCU−1 (F.0.5)

As both of the matrices of the CMC share the same eigenvectors and eigenvaluedistributions the cosine of the mismatch angle is close to 1 (the expected value of thecosines for the clutter under consideration with this kind of resampling can be foundin appendix E).
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UAV signature extraction

As for clutter, no general model for of UAV polarimetric signature of UAVs is notdescribed in the litterature. Thus, we measure the dynamic signature of the UAV usedin the measurement campaign. The flight data of the UAV were recorded in a log file.With the log data and the radar position, we compute the distance between the radarand the UAV. We convert the GPS coordinates of both the UAV and the radar in the
WorldGeodetic System (WGS) 84 EarthCentered - Earth Fixed (ECEF) coordinate system.The ECEF is a coordinate systems using cartesian coordinates centered on the centerof the earth, allowing us to compute the Euclidian distance between the UAV and theradar system:

d =
√

(xUAV − xradar)2 + (yUAV − yradar)2 + (zUAV − zradar)2 (G.0.1)
The distance obtained with the log data, as shown on a map in Figure 4.15 (wecleaned the log data before this step), is then visually fitted to the radar data of theof the UAV flight to ensure an accurate positioning of the vehicle (Figure G.1). We com-pute the trace of the covariance matrices (computed on 500 ms of data, with a 10 msDoppler processing) for the 4 central doppler-range cells (at every range):

Tr
(
R (t, d, v)

)
=

3∑
i=0

Rii

(
R (t, d, v)

) (G.0.2)
With v being the velocity of the Doppler-range cell and Rii the element of the ith col-umn and row of the R (t, d, v) matrix. This is the total polarimetric power. We computeit in decibels and sum the doppler signals:

PdB (t, d) =
∑
v ̸=0

Tr
(
R (t, d, v)

)∣∣∣
dB

(G.0.3)
This gives a waterfall visualization of the trajectory of the UAV that can be fitted withthe log dataBy taking the differential of the log data over both the time and distance axes, wecompute the speed of the UAV relative to the radar. We show the UAV in the Doppler-range space over time (Figure G.2).With these positions we extract the UAV position during time. Since the measure-ment of the clutter were computed with a 10 ms Doppler processing we need to extractthe UAV signature with the same integration time. We use the knowledge of the UAVrelative speed to compute the Doppler processed data for its specific velocity with theappropriate Doppler steering vector (Equation G.0.4).

XDop (t, dUAV , vUAV ) =
Npulses∑

k=0
XP C (t + 2k × PRI, dUAV ) × e

2iπ

(
vUAV
vamb

k
Npulses

)
(G.0.4)
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Figure G.1: Log data visually fitted on the radar data. The other visible "tracks" are birds thatwere flying during the measurement campaign.

Figure G.2: Position of the UAV in the Doppler-range space.
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Figure G.3: UAV signal and neighbouring range cells after extraction.

Where XDop (t, d, v) is the radar signal in all four polarisation at time t, distance dand filtered at speed v over Npulses, XP C (t, d) is the radar signal from the pulse-culsecompression at distance d and timet t. vamb is the ambiguous speed associated with
PRI , the PRI of the measurement as defined in 2.1.1.Figure G.3 show the signal of the UAV signal and neighbouring range cells after ex-traction. The final step for the signature extraction is to manually remove the partswhere the UAV is in the clutter or has a SNR too low (we chose a minimum SNR of 30dB), and to keep only the central range cells.
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Appendix H |
MaximumLikelihooddetector for unknown
amplitude and steering vector for each
look

We write the likelihood ratio as follows:
LR = p (Y |h1)

p (Y |h0)
=

N−1∏
i=0

p (Xi|h1)
p (Xi|h0)

(H.0.1)
with Y = {X i}i∈[1,N ]The logarithm of LR is:

log LR ∝
N−1∑
i=0

log p (Xi|h1)
p (Xi|h0)

(H.0.2)
with

p (Xi|h1) = 1
πNchan

∥∥∥RE
∥∥∥e−(Xi−AiSi)HRE−1(Xi−AiSi) (H.0.3)

and
p (Xi|h0) = 1

πNchan

∥∥∥RE
∥∥∥e−XiRE−1

Xi (H.0.4)
thus, we have:

log LR ∝
N−1∑
i=0

Ai
∗Si

HRE−1
Xi + AiXi

HRE−1
Si − ∥Ai∥ Si

HR−1
i Si (H.0.5)

To maximize log LR over the Ai imply that log LR match the follwoing condition:
∂ (log LR)

∂Ai

= 0 (H.0.6)
Which gives us the Polarimetric GLRT (P-GLRT) (the polarimetric adaptation of theGLRT), namely:

max
{Ai}i∈[0..N−1]
{Si}i∈[0..N−1]

log LR = max
{Si}i∈[0..N−1]

N−1∑
i=0

∥∥∥SH
i RE−1

Xi

∥∥∥2

SH
i RE−1

Si

(H.0.7)
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max

{Si}i∈[0..N−1]
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∥∥∥SH
i RE−1

Xi
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SH
i RE−1

Si

=
N−1∑
i=0

max
{Si}i∈[0..N−1]

∥∥∥SH
i RE−1

Xi

∥∥∥2

SH
i RE−1

Si

(H.0.8)
with the Cauchy-Scwarz inequality we have:∥∥∥SH

i RE−1
Xi
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≤
(
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Si

) (
XH
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Xi

) (H.0.9)
the equality is met for:

Si = γiXi (H.0.10)
thus:
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{Ai}i∈[0..N−1]
{Si}i∈[0..N−1]

log LR =
N−1∑
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∥∥∥XH
i RE−1

Xi

∥∥∥ (H.0.11)

N−1∑
i=0

∥∥∥XH
i RE−1

Xi

∥∥∥h0
≶
h1

η0 (H.0.12)
Equation H.0.12 describes the ML detector with the hypothesis that the Si and Aiare different for each look.
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