
HAL Id: tel-04498083
https://theses.hal.science/tel-04498083

Submitted on 11 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tackling heterogeneity in federated learning systems
Othmane Marfoq

To cite this version:
Othmane Marfoq. Tackling heterogeneity in federated learning systems. Artificial Intelligence [cs.AI].
Université Côte d’Azur, 2023. English. �NNT : 2023COAZ4104�. �tel-04498083�

https://theses.hal.science/tel-04498083
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT
Surmonter l’Hétérogénéité dans les
Systèmes d’Apprentissage Fédéré

Othmane MARFOQ
Centre Inria d’Université Côte d’Azur, Équipe NEO

Présentée en vue de l’obtention du grade de docteur en Informatique de
l’Université Côte d’Azur

Dirigée par : Giovanni NEGLIA, Directeur de Recherche, Centre Inria
d’Université Côte d’Azur

Devant le jury, composé de :
Frédéric GIROIRE, Directeur de Recherche, CNRS
Peter RICHTARIK, Full Professor, King Abdullah University of Science and Technology
Marc TOMMASI, Professeur des Universités, Université de Lille
Martin JAGGI, Associate Professor, École Polytechnique Fédérale de Lausanne
Gauri JOSHI, Associate Professor, Carnegie Mellon University
Laetitia KAMENI, AI R&D Lead, Accenture Labs

SURMONTER L’HÉTÉROGÉNÉITÉ DANS LES SYSTÈMES
D’APPRENTISSAGE FÉDÉRÉ

Tackling Heterogeneity in Federated Learning Systems

Othmane MARFOQ

▷◁

Jury :

Président du jury
Frédéric GIROIRE, Directeur de Recherche, CNRS

Rapporteurs
Peter RICHTARIK, Full Professor, King Abdullah University of Science and Technology
Marc TOMMASI, Professeur des Universités, Université de Lille

Examinateurs
Martin JAGGI, Associate Professor, École Polytechnique Fédérale de Lausanne
Gauri JOSHI, Associate Professor, Carnegie Mellon University

Directeur de thèse
Giovanni NEGLIA, Directeur de Recherche, Centre Inria d’Université Côte d’Azur

Membres invités
Laetitia KAMENI, AI R&D Lead, Accenture Labs

Université Côte d’Azur

Othmane MARFOQ

Surmonter l’Hétérogénéité dans les Systèmes d’Apprentissage Fédéré
xiv+332 p.

To my mentor, who illuminated the path, and to my family, whose unwavering support made this
journey possible.

Surmonter l’Hétérogénéité dans les Systèmes d’Apprentissage Fédéré

Résumé

L’apprentissage fédéré, qui provient de l’anglais “Federated Learning” (FL), se présente comme
un cadre facilitant l’apprentissage collaboratif de modèles d’apprentissage automatique par des
clients géographiquement répartis sans divulguer leurs données locales. Cette thèse se concentre
sur la prise en charge de l’hétérogénéité, un défi majeur dans le domaine de l’apprentissage
fédéré. L’hétérogénéité se manifeste par des variations entre les ensembles de données locaux
des clients (hétérogénéité statistique), des disparités dans les capacités de stockage et de calcul
(hétérogénéité système), et des fluctuations dans les ensembles de données locaux au fil du
temps (hétérogénéité temporelle). Cette thèse explore différentes sources d’hétérogénéité dans
le contexte de l’apprentissage fédéré et propose des algorithmes pratiques pour atténuer l’impact
de l’hétérogénéité.
La première partie de la thèse se concentre sur la résolution des défis associés à l’hétérogénéité
du système dans deux scénarios distincts : inter-silos et inter-appareils. Dans les environnements
inter-silos, nous exploitons la théorie des systèmes linéaires dans l’algèbre max-plus pour
modéliser le débit, c’est-à-dire le nombre de cycles complets par unité de temps, dans un
système d’apprentissage fédéré entièrement décentralisé en inter-silos. Ensuite, nous proposons
des algorithmes pratiques qui, en utilisant les caractéristiques mesurables du réseau, trouvent
une topologie avec le débit le plus élevé ou avec des garanties de débit vérifiables. Dans les
environnements inter-appareils, où les contraintes du système influencent la disponibilité et
l’activité des clients, nous explorons différents niveaux de participation des clients, souvent
présentant une corrélation au fil du temps et avec d’autres clients. Dans ce contexte, nous
analysons un algorithme similaire à FedAvgsous une disponibilité hétérogène et corrélée des
clients. L’analyse met en évidence comment la corrélation affecte négativement le taux de
convergence de l’algorithme et comment la stratégie d’agrégation peut atténuer cet effet, même
au prix de diriger l’entraînement vers un modèle biaisé. Guidé par l’analyse théorique, nous
proposons “Correlation-Aware FL” (CA-Fed), un nouvel algorithme FL qui tente d’équilibrer
les objectifs contradictoires de maximiser la vitesse de convergence et de minimiser le biais du
modèle. À cette fin, CA-Fed ajuste dynamiquement le poids attribué à chaque client et peut
ignorer les clients avec une faible disponibilité et une forte corrélation.
La deuxième partie traite de l’hétérogénéité statistique grâce à deux algorithmes de personnali-
sation. Le premier algorithme, appelé FedEM, repose sur une hypothèse souple selon laquelle
l’ensemble de données de chaque client est généré à partir d’un mélange de distributions
sous-jacentes communes inconnues. Le deuxième algorithme, appelé kNN-Per, combine un
modèle global entraîné collectivement avec un modèle local de plus proches voisins (kNN)
pour la personnalisation. Des garanties théoriques, notamment des bornes de convergence et de
généralisation, sont fournies pour les deux algorithmes.
La troisième partie explore l’apprentissage fédéré pour les flux de données, en considérant deux
scénarios : des échantillons indépendants tirés d’une distribution inconnue et des distributions
de données composées de mélanges de distributions sous-jacentes inconnues. Pour le premier
scénario, un meta-algorithme est proposé, offrant des informations sur la configuration et le
compromis entre le temps d’entraînement et le biais du modèle appris. Pour le deuxième
scénario, une variante fédérée de la descente du miroir séquentielle appelée FEM-OMD est
introduite, avec un regret asymptotiquement sous-linéaire dans le cas des modèles de mélange
Gaussien.

Mots-clés : Apprentissage fédéré, Personalisation, Apprentissage séquentiel, Optimisation dis-
tribuée.

Tackling Heterogeneity in Federated Learning Systems
Abstract

Federated Learning (FL) stands as a framework facilitating geographically distributed clients to
collaboratively learn machine learning models without divulging their local data. This thesis
focuses on addressing heterogeneity, a major challenge in federated learning. Heterogeneity
manifests in variations across clients’ local datasets (statistical heterogeneity), disparities in
storage and computational capabilities (system heterogeneity), and fluctuations in local datasets
over time (temporal heterogeneity). This thesis investigates different sources of heterogeneity in
the context of federated learning, and proposes practical algorithms to mitigate the impact of
heterogeneity.
The first part of the thesis focuses on tackling challenges associated with system heterogeneity
in two distinct scenarios: cross-silo and cross-device settings. In the cross-silo environments,
we leverage the theory of linear systems in the max-plus algebra to model the throughput—the
number of completed rounds per time unit—in a fully decentralized cross-silo federated learning
system. Subsequently, we proffer practical algorithms that, under the knowledge of measurable
network characteristics, find a topology with the largest throughput or with provable throughput
guarantees. In the cross-device settings, where system constraints influence the availability and
activity of clients, we explore varying degrees of client participation, often exhibiting correlation
over time and with other clients. Within this context, we analyze a FedAvg-like algorithm
under heterogeneous and correlated client availability. The analysis highlights how correlation
adversely affects the algorithm’s convergence rate and how the aggregation strategy can alleviate
this effect at the cost of steering training toward a biased model. Guided by the theoretical
analysis, we propose Correlation-Aware FL (CA-Fed), a new FL algorithm that tries to balance
the conflicting goals of maximizing convergence speed and minimizing model bias. To this
purpose, CA-Fed dynamically adapts the weight given to each client and may ignore clients
with low availability and large correlation.
The second part of the thesis proposes two personalized federated learning algorithms. The
first algorithm, FedEM, is a federated EM-like algorithm based on the flexible assumption that
the dataset of each client is generated according to a mixture of unknown common underlying
distributions. The second algorithm, kNN-Per, is based on local memorization, achieving
personalization by interpolating a collectively trained global model with a local k-nearest
neighbors (kNN) model based on the shared representation provided by the global model.
Theoretical guarantees for both algorithms are provided. Convergence bounds for FedEM are
established through a novel federated surrogate optimization framework; generalization bounds
for kNN-Per are also presented.
The third part investigates federated learning for data streams. Two scenarios corresponding
to different assumptions about the data process are considered. In the first scenario, a general
FL algorithm is proposed for learning from data streams through weighted empirical risk
minimization. The theoretical analysis provides insights into configuring such an algorithm and
reveals a bias-optimization trade-off. In the second scenario, assuming client data distributions
are mixtures of a finite number of unknown common underlying distributions with varying
mixing weights, a federated variant of online mirror descent, named FEM-OMD, is proposed. In
the case of Gaussian mixture models, it is shown that the regret of FEM-OMD is asymptotically
sub-linear in the sample size.

Keywords: Federated learning, Personalization, Online learning, Distributed optimization.

Acknowledgements

I extend my deepest gratitude to those who have been instrumental in the completion of this Ph.D.
journey, contributing to both the challenges and successes that define this academic endeavor.

First and foremost, I wish to convey my heartfelt appreciation to my thesis advisor, Giovanni
Neglia. Your steadfast guidance, profound expertise, unwavering trust, and continuous encourage-
ment have served as the cornerstone of this thesis. Your emphasis on rigor has not only elevated my
research skills but has also instilled in me a dedication to consistently deliver work of the highest
standards. Throughout this thesis, I gained valuable insights from you, both academically and on a
personal level. Collaborating with you proved to be a truly enriching experience, surpassing the
typical expectations of a Ph.D. advisor.

I express my sincere gratitude to my esteemed thesis committee members: Frédéric Giroire,
Martin Jaggi, Gauri Joshi, Peter Richtarik, and Marc Tommasi. I am profoundly thankful for their
willingness to be part of my Ph.D. defense jury. Their dedication, as demonstrated by the time they
invested in reviewing my thesis, participating in the defense, and offering invaluable comments and
advice, is truly appreciated. The opportunity to defend my work and engage in discussions with
experts in the field has been both challenging and rewarding.

I am grateful to collaborate with exceptional individuals. Chuan Xu brought an infectious
optimism to our research, playing a pivotal role in driving the initial contributions of this thesis.
Aurélien Bellet provided invaluable insights, and his positive outlook proved instrumental in shaping
and enhancing our work. Additionally, working with Aryan Mokhtari during my visit to UT Austin
was a privilege. I extend my thanks for the warm hospitality at UT Austin and for the fruitful
discussions that significantly influenced the final chapter of this thesis. I am grateful to collaborate
with talented researchers, including Angelo Rodio, Caelin Kaplan, Francescomaria Faticanti, and
Emilio Leonardi. The exchanges with these individuals have tremendously benefited this thesis,
enriching it with diverse perspectives and insights.

I am exceedingly grateful to have conducted my research at the rich and supportive learning
environments of Inria Sophia Antipolis research laboratory and Côte d’Azur University. I am
thankful to work along side the superb NEO team members, Younes Ben Mazziane, Tareq Si Salem,
Angelo Rodio, Caelin Kaplan, Mikhail Kamalov, Olga Chuchuk, Jose Francisco Daunas Torre, Louis
Hauseux, Xufeng Zhang, Xinying Zou, Ibtihal El Mimouni, Jacopo Talpini, Lucas Gamertsfelder,
Haleh Dizaji, Rahul Misra, Maximilien Dreveton, Andrei Bobu, Kishor Patil, Guilherme Iecker
Ricardo, Ashok Krishnan Komalan Sindhu, Vijith Kumar, Ke Sun, Sadaf Ul-Zuhra, Emmanouil
Athanasakos, Gabriele Castellano, Vinay Kumar B.R., Jake Clarkson, Francescomaria Faticanti,
Suhail Mohmad Shah, Sara Alouf, Samir M. Perlaza, Konstantin Avrachenkov, Eitan Altman, and
Alain Jean-Marie with whom I had enjoyable lunch discussions, coffee pauses, and social activities.

Special thanks are due to my family, in particular to my parents Mohamed and Touria, to my
brother Ali, and to my sisters Fatima Zahra and Malak, for their unconditional love, encouragement,
and understanding throughout this challenging yet rewarding pursuit. Their unwavering support
and belief in my abilities have been a constant source of motivation.

This work would not have been possible without the support and encouragement of all those
mentioned above, as well as many others who have played a part, however small, in this endeavor.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 A Typical Federated Learning System . 3

1.2.1 Problem Formulation . 3
1.2.2 Federated Averaging: A Typical Federated Training Process 4
1.2.3 Review of Theoretical Results of Federated Learning 4

1.3 Fully-Decentralized Federated Learning . 9
1.4 Challenges and Open Problems in Federated Learning 9

1.4.1 Statistical, System, and Temporal Heterogeneity 10
1.4.2 Other Challenges . 12

1.5 Summary of the Main Contributions of the Thesis 13
1.6 Additional Contributions . 14

1.6.1 The Role of Reference Data in Empirical Privacy Defenses 14
1.6.2 FLamby: Datasets and Benchmarks for Cross-Silo FL 18

1.7 Publications . 20
1.7.1 Published . 20
1.7.2 Submitted . 21

2 System Considerations in Heterogeneous Federated Learning 23
2.1 Throughput-Optimal Topology Design for Cross-Silo Federated Learning 23

2.1.1 Introduction . 24
2.1.2 Problem Formulation . 25
2.1.3 Theoretical Results and Algorithms . 28
2.1.4 Numerical Experiments . 32
2.1.5 Conclusion . 41

2.2 Federated Learning under Heterogeneous and Correlated Client Availability . . . 42
2.2.1 Introduction . 42
2.2.2 Background and Related Works . 43
2.2.3 Analysis . 46
2.2.4 Proposed Algorithm . 50
2.2.5 Fairness, and Computational Cost of CA-Fed 52
2.2.6 Experimental Evaluation . 53
2.2.7 Conclusion . 58

3 Personalized Federated Learning 59
3.1 Introduction . 59

3.1.1 Contributions . 60
3.1.2 Organization . 61

3.2 Related Work . 62
3.2.1 Statistical Heterogeneity . 62

xi

3.2.2 System Heterogeneity . 63
3.3 Problem Formulation . 64
3.4 An Impossibility Result . 64
3.5 Personalized Federated Learning under a Mixture of Distributions 65

3.5.1 The Mixture Assumption . 65
3.5.2 Relation with Other Personalized Federated Learning Frameworks 66
3.5.3 Federated Expectation-Maximization 68
3.5.4 Federated Surrogate Optimization . 73
3.5.5 Distributed Surrogate Optimization with Black-Box Solver 76
3.5.6 Numerical Experiments . 78
3.5.7 Conclusion . 82

3.6 Personalized Federated Learning through Local Memorization 82
3.6.1 kNN-Per Algorithm . 83
3.6.2 Generalization Bound . 84
3.6.3 Numerical Experiments . 86
3.6.4 Conclusion . 94

3.7 A Comparison between FedEM and kNN-Per 96

4 Federated Learning in Dynamic Environments 97
4.1 Introduction . 97

4.1.1 Contributions . 99
4.1.2 Organization . 99

4.2 Related Work . 100
4.3 Federated Learning for Data Streams . 101

4.3.1 Problem Formulation . 102
4.3.2 Federated Learning Meta-Algorithm for Data Streams 103
4.3.3 Case Study . 108
4.3.4 Numerical Experiments . 110
4.3.5 Conclusion . 115

4.4 Online Federated Learning with Mixture Models 116
4.4.1 Problem Formulation . 116
4.4.2 FEM-OMD Algorithm . 118
4.4.3 Federated Online Learning with Gaussian Mixture Models 119
4.4.4 FEM-OMD for Discriminative Models 124
4.4.5 Experimental Results . 125
4.4.6 Conclusion and Perspectives . 128

5 Conclusion 129
5.1 Summary of the Main Contributions . 129
5.2 Perspectives and Future Research Directions . 133
5.3 Concluding Reflections . 135

Bibliography 137

List of Figures 173

xii

List of Tables 177

Appendix
A Background on Numeric Optimization . 183

A.1 Differentiability . 183
A.2 Lipschitzianity and Smoothness . 183
A.3 Convexity . 184

B Background on Graph Theory . 185
C Throughput-Optimal Topology Design for Cross-Silo Federated Learning 187

C.1 Proofs . 187
C.2 Additional Experiments . 194

D Federated Learning under Heterogeneous and Correlated Client Availability . . . 202
D.1 Proof of Theorem 2.2.2 . 202
D.2 Proof of Theorem 2.2.3 . 204
D.3 Proof of Theorem 2.2.4 . 226
D.4 Convexity of ϵ̄opt + ϵ̄bias . 227
D.5 Minimizing ϵ̄opt . 229
D.6 Background on Markov Chains . 231
D.7 Details on Experimental Setup . 234

E Personalized Federated Learning under a Mixture of Distributions 237
E.1 Proof of Proposition 3.5.1 . 237
E.2 Proofs for Centralized Expectation Maximization 241
E.3 Proofs for Client-Server Setting . 244
E.4 Proofs for Fully Decentralized Setting 260
E.5 Proof of Theorem 3.5.5′ . 275
E.6 Proof of Theorem 3.5.5 . 277
E.7 Supporting Lemmas . 277
E.8 Additional Experiments . 285
E.9 Fully Decentralized Federated Expectation-Maximization 285
E.10 Comparison with MOCHA . 286
E.11 Generalization to Unseen Clients . 286
E.12 FedEM and Clustering . 287
E.13 Effect of M in Time-Constrained Setting 288
E.14 Additional Results under Client Sampling 289
E.15 Convergence Plots . 289

F Personalized Federated Learning through Local Memorization 296
F.1 Proof of Theorem 3.6.1 . 296
F.2 Intermediate Lemmas . 297

G Federated Learning for Data Streams . 300
G.1 Proofs . 300
G.2 Proof of Lemma 4.3.2 . 305
G.3 Bound σ̄2(λ) . 312
G.4 Case Study . 315

H Online Federated Learning with Mixture Models 323
H.1 Proof of Theorem 4.4.2 . 323

xiii

H.2 Proof of Theorem 4.4.3 . 323
H.3 Proof of Theorem 4.4.5 . 324
H.4 Supporting Lemmas . 327

xiv

CHAPTER 1
Introduction

1.1 Motivation

The increasing size of data generated by smartphones and IoT devices motivated the development
of Federated Learning (FL) [Kon+17a; McM+17], a framework allowing geographically distributed
clients to jointly learn machine learning (ML) models, without the need to share their own local
data.

The term federated learning was introduced in 2016* in the seminal works Konečny et al.
[Kon+17a] and McMahan et al. [McM+17]: “We investigate a learning technique that allows users
to collectively reap the benefits of shared models trained from this rich data, without the need to
centrally store it. We term our approach Federated Learning, since the learning task is solved by a
loose federation of participating devices (which we refer to as clients) which are coordinated by a
central server.”

Federated learning distinguishes itself through a crucial feature: it ensures that the data held
by each client remains securely stored locally, avoiding any exchange or transfer of sensitive
information. This approach to local data storage brings forth two compelling promises, each with
its unique set of advantages. Firstly, the emphasis on local data storage significantly bolsters
privacy protection. By keeping data confined to its originating device, federated learning reduces
the potential attack surface of the system. This, in turn, minimizes the risk of data breaches and
unauthorized access, aligning with the fundamental principle of data minimization in privacy
and security practices [Par16]. Secondly, the local data storage approach also leads to notable
efficiencies in communication resources. Since data does not need to be replicated in a centralized
cloud server, the burden on network bandwidth is substantially reduced. This reduction in data
transmission requirements not only alleviates congestion and latency issues but also conserves
valuable network resources, ultimately resulting in faster and more cost-effective data processing.

The concept of federated learning, as elucidated previously, has attracted a surge of attention
from both the academic and industrial spheres. This field has witnessed a remarkable evolution,
transitioning from a mere handful of papers in 2016 to an impressive influx of over 17, 000 new pub-
lications incorporating the term "federated learning" in the year 2022 (as illustrated in Figure 1.1).
Concurrently, in the industrial landscape, federated learning is gaining significant momentum as
organizations increasingly recognize its potential to revolutionize data-driven decision-making pro-
cesses. Major tech giants like Google have embraced federated learning in various applications, such
as Gboard’s next word prediction [Har+19], emoji suggestion [Ram+19], and out-of-vocabulary

*Reference [McM+17] was initially disseminated on arXiv on the 17th of February in 2016, preceding its appearance
in the Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS) in 2017. On
the other hand, Reference [Kon+17a] was first made public on arXiv on the 18th of October in 2016, with a subsequent
version uploaded on the 30th of October in 2017

1

2 CHAPTER 1 — Introduction

2016 2017 2018 2019 2020 2021 2022
Year

0
25
00

50
00

75
00

10
00
0

12
50
0

15
00
0

17
50
0

Oc
cu
re
nc
es

Figure 1.1: Occurrences of the key word “federated learning” over time in academic papers (from
Google Scholar). The results were obtained using the code from https://github.com/
Pold87/academic-keyword-occurrence [Str18]

word discovery [Che+19]. Apple has also integrated federated learning into iOS 13 for key functions
like the QuickType keyboard and the voice classifier for "Hey Siri" [App19]. Beyond the realm of
mobile applications, federated learning finds application in diverse sectors, such as the banking
industry, where institutions like WeBank employ it for money laundering detection[WeB19], and in
healthcare, where it is harnessed to tackle critical and poorly understood diseases like triple-negative
breast cancer [Ter+21] and the ongoing challenges posed by COVID-19 [Day+21].

Heterogeneity is a core and fundamental challenge in federated learning [Li+20a]. Indeed,
clients highly differ both in size and distribution of their local datasets (statistical heterogene-
ity), and in their storage, computational, and communication capabilities (system heterogeneity).
Moreover, local datasets may vary over time, an aspect that has been neglected until now and
we call temporal heterogeneity. Heterogeneity often hinders the performance of federated learn-
ing. Statistical heterogeneity in general slows convergence down and may lead to unfair models,
unsuited for minorities. System heterogeneity, if ignored, may lead to intolerably long training
period or to models too simple for the most powerful clients, and, if naively addressed, to biased
final models. Similarly, ignoring temporal data-access heterogeneity limits the possibility to use
federated learning in online and dynamic settings, but simple solutions introduce bias in the final
model.

Given the set of challenges related to the heterogeneity in federated learning, this thesis aims at
providing theoretical understanding of distributed and federated learning systems. Inspired by the
theoretical insights, we seek to design large-scale distributed/federated learning algorithms that can
efficiently exploit data and system resources. Ultimately, this thesis delves into the multifaceted
sources of heterogeneity within FL and introduces practical algorithms endowed with provable
theoretical guarantees, aimed at mitigating the adverse effects of heterogeneity on the learning
process.

In the rest of this chapter, we describe a typical (centralized) federated learning system in

https://github.com/Pold87/academic-keyword-occurrence
https://github.com/Pold87/academic-keyword-occurrence

1.2 – 1.2 A Typical Federated Learning System 3

(a) Cross-device federated learning (b) Cross-silo federated learning

Figure 1.2: Federated learning system. Left: the cross-device scenario includes a large number of unreliable
mobile devices with limited computing resources and slow Internet connections; it requires a client server
architecture where mobiles communicate only with the server. Right: the cross-silo scenario includes at most
a few hundred reliable data silos with powerful computing resources and high-speed access links; it may
take advantage of peer-to-peer communications.

Section 1.2, and a fully-decentralized one in Section 1.3, before providing an overview of the
main challenges and open problems in federated learning, Section 1.4. To provide a roadmap for
readers, we summarize the principal contributions of this manuscript and outline the forthcoming
chapters in Section 1.5. Additionally, we present an overview of two supplementary contributions
not exhaustively expounded upon in this manuscript in Section 1.6. Lastly, we compile a list of the
related publications in Section 1.7.

1.2 A Typical Federated Learning System

In this section, we describe the original federated learning system introduced in [McM+17], usually
referred to as cross-device federated learning (as depicted in Figure 1.2a). The system includes
a large number of unreliable mobile devices with limited computing resources and slow Internet
connections; it requires a client server architecture where mobiles communicate only with the
server.

1.2.1 Problem Formulation

The canonical federated learning formulation in [McM+17] involves learning a single, global
statistical model from data stored on a finite number C > 0 of remote clients. In particular, the goal
is typically to minimize the following objective function:

min
w∈Rd

F (w) =
C∑

c=1

Nc

N
Fc (w) . (1.1)

Here Fc is the local objective function for the c-th device, Nc is the number of samples available
locally at client c ∈ [C], and N =

∑C
c=1Nc. The local objective function is often defined as the

4 CHAPTER 1 — Introduction

empirical risk over the local dataset, i.e.,

Fc(w) =
∑

(x,y)∈Sc
ℓ(w; x, y)

Nc
, (1.2)

where ℓ(w; x, y) is the loss induced by model w on the example (x, y), and Sc is the local data of
client c.

Remark 1. The global objective F in (1.1) could be rewritten as follows:

F (w) =
C∑

c=1

Nc

N
Fc (w) =

C∑
c=1

Nc

N
×
∑

(x,y)∈Sc
ℓ(w; x, y)

Nc
=
∑

(x,y)∈S ℓ(w; x, y)
N

, (1.3)

Therefore, F could be interpreted as the empirical loss associated with the aggregated dataset
S ≜

⋃C
c=1 Sc.

1.2.2 Federated Averaging: A Typical Federated Training Process

A typical algorithm to solve (1.1) is federated averaging (FedAvg), first proposed in [McM+17].
FedAvg (Algorithm 1) is an iterative algorithm that divides the training process into T > 0
communication rounds. At the beginning of the t-th communication round, the server selects a
set of clients meeting eligibility requirements (Line 3). Specifically, for mobile phones, a device
is typically considered eligible if it is currently plugged in, connected to an unmetered WiFi
network, and idle, as described in [Kai+21, Section 1.1.2]. Then, the server broadcasts the current
model wt to the selected clients Ct (Line 4). Upon reception of the model wt, each client c ∈ Ct

locally updates the model, usually through a finite number of local stochastic gradient descent
(SGD) updates, using its local dataset Sc (Line 6). Afterwards, the client sends-back the resulting
model w(c)

t+1 to the server (Line 7). Finally, the server aggregates the local update models w(c)
t+1 in

order to produce a new global model wt+1 (Line 9).
The FedAvg algorithm can be extended to a versatile framework known as FedOpt [Red+21]

(refer to Algorithm 2), which grants the algorithm designer the flexibility to modify the client
selection protocol, the client local update rule, the aggregation method, or the server global update
rule. FedOpt maintains the same fundamental structure as FedAvg, but it incorporates two
significant distinctions. Firstly, each client transmits the local model change ∆(k)

t to the server, as
opposed to sending the model itself (see Line 7). Secondly, the server leverages the negative of the
aggregated local changes, denoted as −∆t, as a pseudo-gradient and applies it to the global model,
rather than aggregating the gradients (see Line 10). In the original FedAvg algorithm, the default
settings implicitly configure ServerUpdate and ClientUpdate to be Stochastic Gradient
Descent (SGD), with a fixed server learning rate of ηs = 1.0. FedOpt is a widely used framework
for describing and analyzing federated training processes, as illustrated in a recent survey by Wang
et al. [Wan+21a].

1.2.3 Review of Theoretical Results of Federated Learning

The purpose of this manuscript is to provide theoretical understanding of distributed and federated
learning systems. In particular, we are interested in two types of results: optimization results, which
focus on the behavior and convergence of the learning algorithms, and generalization results, which
assess the model’s performance on unseen data. In this section, we give an overview of some known
convergence and generalization results for federated learning.

1.2 – 1.2.3 Review of Theoretical Results of Federated Learning 5

Algorithm 1: FedAvg: Federated Averaging [McM+17, Algorithm 1].
Input : Data S1:C ; number of communication rounds T ; number of local epochs E;

learning rate η
1 server randomly initialize w1;
2 for t = 1, . . . , T do
3 server selects a subset Ct of clients ;
4 server broadcast wt to the selected clients Ct;
5 for each client c ∈ Ct in parallel do
6 w(c)

t+1 ← ClientUpdate(wt, Sc, E) ;

7 client sends w(c)
t+1 to the server ;

8 end
9 server aggregates clients’ updates: wt+1 ←

∑
c∈Ct

(Nc/N) ·w(c)
t+1;

10 end
11 Function ClientUpdate(w, S, E):
12 for e = 1, . . . , E do
13 Sample indexes I uniformly from 1, . . . , |S|;
14 w← w− η

∑
i∈I ℓ (w; xi, yi);

15 end
16 return w;

1.2.3.1 An Optimization Result

Federated optimization algorithms have been extensively studied, with a substantial body of
literature dedicated to their analysis, as highlighted in several notable works [Li+20c; Sti19;
KMR20; WJ21]. For a comprehensive overview of this research landscape, readers can refer to the
recent surveys by Wang et al. [Wan+21a]. In the subsequent section, we will leverage the FedOpt
framework to explore and discuss key theoretical tools frequently employed in the convergence
analysis of the vanilla FedAvg algorithm.

For simplicity, in this section, we suppose that each client contributes the same number of
samples, i.e., Nc ≡ N/C, and participates at every round, i.e., Ct ≡ [C]. Therefore, the aggregation
step (Line 9 in Algorithm 2) becomes ∆t = ∆(c)

t /C. Moreover, we assume that the local objective
function Fc are convex and L-smooth, as defined in Appendix A. Additionally, we consider a
simplified instance of FedOpt, where the server-update takes a unit descent step, i.e., wt+1 =
wt + ∆t, and the client update consists in E local steps of SGD with constant learning rate η > 0,
i.e.,

w(c)
t,1 = wt, (1.4)

w(c)
t,e+1 = w(c)

t,e − η · gc

(
w(c)

t,e

)
; e = 1, . . . , E − 1, (1.5)

w(c)
t+1 = w(c)

t,E . (1.6)

Here gc is the stochastic gradient of Fc, that is usually assumed to verify the following unbiasedness
and bounded variance property:

Assumption 1. (Unbiased gradients and bounded variance) Each client c ∈ [C] can compute an

6 CHAPTER 1 — Introduction

Algorithm 2: FedOpt Algorithm [Red+21, Algorithm 1].
Input : Data S1:C ; ClientUpdate(); ServerUpdate(); Aggregate()

1 server randomly initialize w1;
2 for t = 1, . . . , T do
3 server selects a subset Ct of clients ;
4 server broadcast wt to the selected clients Ct;
5 for each client c ∈ Ct in parallel do
6 w(c)

t+1 ← ClientUpdate(wt, Sc) ;

7 client computes local model change ∆(c)
t = w(c)

t+1 −wt and sends it to the server ;
8 end
9 server aggregates clients’ updates: ∆t ← Aggregate(

{
∆(c)

t , c ∈ Ct

}
) ;

10 server updates global model: wt+1 ← ServerUpdate(wt, −∆t) ;
11 end

unbiased estimator gc of the local gradient with bounded variance, i.e.,

E
[
gc

(
w(c)

t,e

)
|w(c)

t,e

]
= ∇Fc

(
w(c)

t,e

)
, E

[∥∥∥gc

(
w(c)

t,e

)
−∇Fc

(
w(c)

t,e

)∥∥∥2
|w(c)

t,e

]
≤ σ2. (1.7)

In contrast to the conventional SGD algorithm, which updates model parameters by iteratively
moving them in the direction opposite to the current stochastic gradient, vanilla FedAvg updates
the global model parameters with a single unitary step in the direction of the aggregated local
changes ∆t. The vector ∆t is the result of multiple local SGD iterates performed by each client.
To handle iterates from multiple clients, a concept of shadow sequence is introduced [Lia+17;
YLY16; Wan+21a; Sti19], and defined as: w̄t,e ≜

∑C

c=1 w(c)
t,e/C. Given this notation, we have for

e ∈ {1, . . . , E − 1}

w̄t,e+1 = w̄t,e −
η

K

C∑
c=1

gc

(
w(c)

t,e

)
. (1.8)

In light of (1.8), we observe that the average iterate w̄t,e+1 performs a perturbed stochastic gradient
descent, where the gradient is evaluate at w(c)

t,e instead of w̄t,e. If the distance between w(c)
t,e and

w̄t,e+1 is uniformly bounded, then one proves that the vanilla-FedAvg algorithm is in expectation
making progress at each round, as quantified by Lemma 1.2.1

Lemma 1.2.1. (Per round progress [Wan+21a, Lemma 1]) If the learning rate satisfies η ≤ 1/4L,
then

E
[

1
E

E∑
e=1

F (w̄t,e)− F (w∗)
]
≤ 1

2ηE (∥wt −w∗∥ − ∥wt+1 −w∗∥) + ησ2

C

+ L

CE

C∑
c=1

E∑
e=1

E
∥∥∥w(c)

t,e − w̄t,e+1
∥∥∥2
, (1.9)

where w∗ is a minimizer of F .

The result presented in Lemma 1.2.1 closely resembles the convergence outcome of the standard
(centralized) SGD algorithm. The key distinction lies in the additional term on the right-hand side

1.2 – 1.2.3 Review of Theoretical Results of Federated Learning 7

of equation (1.9), which introduces L/CE
∑C

c=1
∑E

e=1 E∥w
(c)
t,e − w̄t,e+1∥2. This term captures the

divergence between each client’s local iterate w(c)
t,e and the shadow iterate w̄t,e. Fortunately, under

the assumption that the local objective functions exhibit limited dissimilarity (as stipulated by
Assumption 2), all client iterates tend to remain in close proximity to the global average.

Assumption 2. (Bounded dissimilarity) The difference of of local gradient ∇Fc and the global
gradient ∇F is B-uniformly bounded, i.e.,

max
c

sup
w
∥∇Fc (w)−∇F (w)∥ ≤ B. (1.10)

When Assumption 2 holds, the client drift is bounded, as shown by Lemma 1.2.2.

Lemma 1.2.2. (Bounded client drift [Wan+21a, Lemma 2]) Assuming the client learning rate
satisfies η ≤ 1/4L,

∀c ∈ [C], matchalE
∥∥∥w(c)

t,e − w̄t,e+1
∥∥∥2
≤ 18E2η2B2 + 4Eη2σ2. (1.11)

Combining Lemmas 1.2.1 and 1.2.2 and telescoping t for 1 to T , we obtain the main convergence
theorem for vanilla FedAvg:

Theorem 1.2.3. [Wan+21a, Theorem 1] Assuming the client learning rate satisfies η ≤ 1/4L,

E
[

1
ET

T∑
t=1

E∑
e=1

F (w̄t,e)− F (w∗)
]
≤ ∥w1 −w∗∥2

2ηET + ησ2

C
+ 4Eη2Lσ2 + 18E2η2LB2. (1.12)

Furthermore, when the client learning rate is chosen as

η = min
{

1
4L,
√
C ∥w1 −w∗∥√

ETσ
,
∥w1 −w∗∥2/3

E2/3T 1/3L1/3σ2/3
,
∥w1 −w∗∥2/3

E2/3T 1/3L1/3B2/3

}
, (1.13)

we have

E
[

1
ET

T∑
t=1

E∑
e=1

F (w̄t,e)− F (w∗)
]

= O
(
L

ET
+ σ√

CET
+ L1/3σ2/3

C1/3T 2/3
+ L1/3B2/3

T 2/3

)
. (1.14)

1.2.3.2 A Generalization Result

As previously discussed, the fundamental aim of federated learning is to enable clients to col-
lectively harness the advantages of shared models trained on the abundant data amassed collec-
tively [McM+17]. The underlying promise is that through collaborative efforts, each client can
derive benefits from the data holdings of all other participating clients. This naturally prompts
the question of whether it is indeed advantageous for a client to engage in global model train-
ing, a pursuit pursued by many federated learning algorithms, including FedAvg [McM+17],
FedProx [Li+20b], and SCAFFOLD [Kar+20a]. To address this question, our aim is to conduct a
comparative analysis of the generalization capabilities of the global model, trained on data from all
clients, and of the local model trained exclusively on a specific client’s data. A similar discussion
on this topic can be found in [Man+20, Section 2].

We start with some general notation used throughout this section. Let X and Y denote the
input and output space, respectively. Let H be a hypothesis class of functions mapping X to

8 CHAPTER 1 — Introduction

Y , and let dH is the pseudo-dimension of the hypothesis class H [MRT18, Chapter 11]. Note
that pseudo-dimension coincides with the VC dimension for the 0 − 1 loss. A given client, say
k ∈ [K], has access to a dataset Sc of examples independently and identically distributed (i.i.d.)
according to a probability distribution Pc over X × Y , i.e., Sc

i.i.d.∼ PNc
c . The client c wants to learn

a hypothesis/model minimizing its own population risk, defined as

Lc (h) ≜ LPc (h) ≜ E(x,y)∼Pc
[ℓ(h(x), y)] , (1.15)

where ℓ(h(x), y) is the loss induced by the hypothesis h ∈ H on the example (x, y). Note however
that this expectation cannot be computed by a given client since it requires full knowledge of
the data distribution Pc, which is usually unknown. Instead the client can compute an empirical
estimation defined as

L̂c (h) ≜ LSc (h) ≜ 1
Nc

Nc∑
i=1

ℓ(h(xi), yi). (1.16)

The purely local model of client c is obtained by minimizing the empirical risk L̂c (h) asso-
ciated with client c. We use ĥc to denote such model. By standard statistical learning theoretic
tools [MRT18], the generalization performance of this model can by bounded as shown in Proposi-
tion 1.2.4.

Proposition 1.2.4. Let δ ∈ (0, 1). With probability at least 1− δ, the following holds:

Lc

(
ĥc

)
−min

h∈H
Lc (h) = O

√dH + log 1/δ

Nc

 . (1.17)

Proposition 1.2.4 underscores that the purely local model ĥc demonstrates strong generalization
when the sample size Nc is sufficiently large. However, it’s important to note that this favorable
outcome is not always guaranteed. To address this challenge, conventional federated learning
approaches adopt a different strategy: they train a global model h̄ by minimizing the empirical loss
associated with the aggregated dataset S =

⋃C
c=1 Sc, as elaborated in Remark 1. Proposition 1.2.5

bounds the generalization performance of the global model.

Proposition 1.2.5. [Man+20, Eq. 2] Let δ ∈ (0, 1). With probability at least 1− δ, the following
holds:

Lc

(
h̄
)
−min

h∈H
Lc (h) = O

√dH + log 1/δ

N

+ discH

(
Pc,

∑
c′

Nc′

N
Pc′

)
, (1.18)

where discH is the label discrepancy [MRT18] associated to the hypothesis class H defined for
two distributions over X × Y , P1 and P2 as:

discH (P1,P2) = max
h∈H
|LP1(h)− LP2(h)| . (1.19)

Since the global model is trained on the concatenation of all users’ data, it generalizes well.
However, due to the distribution mismatch, the model may not perform well for a specific user. In
particular if Pc is substantially different from P̄ (≡

∑
c′ Nc′/NPc′), the second term in the RHS

of (1.18) will be large.

1.4 – 1.3 Fully-Decentralized Federated Learning 9

1.3 Fully-Decentralized Federated Learning

As we have seen in Section 1.2, in federated learning, clients usually train the model through an
iterative procedure under the supervision of a central orchestrator, which, for example, decides to
launch the training process and coordinates training advances. Often—e.g., in FedAvg [McM+17],
SCAFFOLD [Kar+20a], and FedProx [Li+20b]—the orchestrator directly participates to the train-
ing, by aggregating clients’ updates, generating a new model, and pushing it back to the clients.
Hence, clients only communicate with a potentially far-away (e.g., in another continent) orchestrator
and do not exploit communication opportunities with close-by clients. This choice is justified in
the cross-device setting, where inter-device communication is unreliable (devices may drop-out
from training at any time) and slow (a message needs to traverse two slow access links). But in
the cross-silo setting (depicted in Figure 1.2b), data silos (e.g., data centers) are almost always
available, enjoy high-speed connectivity comparable to the orchestrator’s one, and may exchange
information faster with some other silos than with the orchestrator. An orchestrator-centered com-
munication topology is then potentially inefficient, because it ignores fast inter-silo communication
opportunities and makes the orchestrator a candidate for congestion. A current trend [Wan+19a;
VBT17; Tan+18; Bel+18; Lia+17; Lia+18] is then to replace communication with the orchestrator
by peer-to-peer communications between individual silos, which perform local partial aggregations
of model updates. The approach of replacing communication with the server by peer-to-peer com-
munication between individual clients is commonly referred to as fully-decentralized federated
learning [Kai+21, Section 2.1].

In fully-decentralized federated learning, the clients are represented as vertices of a (connected)
graph, usually referred to as the communication topology. In this decentralized learning approach,
each client maintains a local copy of the model, iteratively updating it through one or a few local
stochastic gradient steps. Subsequently, the client transmits its updated model to its out-neighboring
nodes within the communication topology. Afterward, the client aggregates its model with those
received from its in-neighboring nodes. In Section 2.1, we give more details on fully-decentralized
federated learning, and we show that this approach has the potential to significantly speed-up the
training in comparison to the server-client architecture.

1.4 Challenges and Open Problems in Federated Learning

As highlighted in Section 1.1, federated learning emerges as a promising solution to address critical
concerns such as privacy [McM+18] and environmental impact [Qiu+23] associated with traditional
centralized model training, which necessitates aggregating all data at powerful data centers for
computation. Additionally, we recognize heterogeneity as a central challenge in federated learning,
with statistical, system, and temporal data-access heterogeneity being the primary sources. While
addressing heterogeneity stands as the primary focus of this manuscript, federated learning presents
various other challenges. This section is dedicated to providing a concise overview of the core
challenges encountered in federated learning and discussing ongoing efforts to overcome them.
Several recent surveys, including [Kai+21; Wan+21a; Li+20a], offer comprehensive insights into
the open challenges and unresolved issues within the field of federated learning.

10 CHAPTER 1 — Introduction

1.4.1 Statistical, System, and Temporal Heterogeneity

Within this section, our attention is directed towards elucidating the challenges imposed by statistical,
system, and temporal heterogeneity within the framework of federated learning. Our objective here
is to underscore the noticeable gaps in research when it comes to addressing these heterogeneity
sources and to offer clarity on how this manuscript adeptly addresses and bridges these gaps.
In essence, this section serves as an exploration of the intricacies and shortcomings in current
approaches to handling statistical, system, and temporal heterogeneity, while simultaneously
highlighting the novel contributions and solutions provided by our manuscript to address these
challenges effectively.

1.4.1.1 Statistical Heterogeneity

In federated learning, data is generated and gathered by clients with varying behaviors and prefer-
ences. Therefore, the local data of a particular client will not be representative of the population
distribution. Further, the number of data points across devices may vary significantly. This imbalance
and the fact that the data is not identically and independently distributed (non-IID) were introduced
as fundamental challenges in federated learning. These challenges set it apart from traditional
distributed optimization methods, as highlighted by the work of McMahan et al. [McM+17].

Statistical heterogeneity presents a dual challenge within the context of a federated learning
system, manifesting in both convergence hurdles and the viability of a shared model for diverse
clients.

On one hand, statistical heterogeneity hinders and slows down the convergence of federated
learning algorithms, such as FedAvg, as shown by [Kar+20a; Li+19; Red+21; Li+20b]. In particu-
lar, [Kar+20a] shows that FedAvg suffers from “client drift” when the data is heterogeneous—i.e.,
when performing local updates from the same global model, clients will drift towards the minima of
local objectives and end up with different local models, resulting in unstable and slow convergence.
As a solution, Karimireddy et al. propose the SCAFFOLD algorithm which uses control variates
(variance reduction) to correct for the client drift in its local updates. Li et al. [Li+20b] propose
adding a proximal term to the objective in order to improve the stability of federated optimization,
they name the approach FedProx. Both methods provide a principled way for the server to account
for heterogeneity.

On the other hand, statistical heterogeneity challenges the assumption that clients should train a
common model. In fact, as discussed in [SMS20], the existence of such a global model suited for
all clients is at odds with the statistical heterogeneity observed across different clients. Consider for
example a language modeling task: given the sequence of tokens“I love eating,” the next word can
be arbitrarily different from one client to another. Moreover, in presence of statistical heterogeneity,
a global model may be arbitrarily bad for some clients raising important fairness concerns [Li+21].
Thus, having personalized models for each client is a necessity in many FL applications. The few
recent years have seen the development of a plethora of personalized federated learning techniques.
We dedicate Chapter 3 to the discussion of personalized federated learning, and we introduce
two novel personalized federated learning algorithm, namely FedEM (Section 3.5) and kNN-Per
(Section 3.6).

1.4 – 1.4.1 Statistical, System, and Temporal Heterogeneity 11

1.4.1.2 System Heterogeneity

Within the domain of federated learning, clients exhibit a diverse range of characteristics, encom-
passing disparities in storage capacity, computational resources, and communication capabilities.
These disparities arise from variations in hardware specifications (CPU power, memory capacity),
network connectivity types (3G, 4G, 5G, WiFi), and power availability (battery levels) [Li+20a]. In
this section, we delineate the challenges associated with system heterogeneity across three distinct
scenarios: cross-silo, cross-device, and heterogeneous hardware environments.

In cross-silo scenarios, the communication capabilities between each data silo (e.g., data center)
and the training orchestrator, as well as among different data silos, can exhibit significant variations
from one silo to another. In this scenario, an orchestrator-centered communication topology is then
potentially inefficient, because it ignores fast inter-silo communication opportunities and makes
the orchestrator a candidate for congestion. As a response to this challenge, a current trend is to
replace the conventional communication with the orchestrator with peer-to-peer communications
among individual silos, as evidenced by recent works such as [Tan+18; Bel+18; Wan+19a; Yua+21;
Yua+23], as we have discussed in Section 1.3. In this context, an important question arises: How
can we design a communication setup that allows for the fastest convergence, considering that
different silos have different communication capabilities? This question is the focus of Section 2.1.
In Section 2.1, we formally define the problem of topology design for cross-silo federated learning
using the theory of max-plus linear systems to compute the system throughput—number of com-
munication rounds per time unit. We also propose practical algorithms that, under the knowledge of
measurable network characteristics, find a topology with the largest throughput or with provable
throughput guarantees.

In the cross-device settings, the system constraints affects the availability/activity of the clients.
For instance, only smartphones that are idle, under charge, and connected to broadband networks
are commonly allowed to participate in the training process [McM+17]. These system charac-
teristics dramatically exacerbate challenges such as straggler mitigation and fault tolerance. The
techniques to mitigate the stragglers problem could be grouped into three groups: asynchronous
communication [Lia+18], active device sampling [NY19], and fault tolerance [XNS21]. Moreover,
the heterogeneous clients participation patterns may introduce statistical bias if the less active
clients have specific data characteristic. Previous effort on federated learning [Tan+22c; RVd23;
Tan+22a; CHR22; Fra+21] considered this problem and, under different assumptions on the clients’
availability, designed aggregation strategies that unbias the federated updates through an appropriate
choice of the aggregation weights. However, most of the aforementioned works ignore the temporal
and spatial correlation in the clients’ availability patterns. The temporal correlation may originate
from a smartphone being under charge for a few consecutive hours and then ineligible for the
rest of the day. The spatial correlation refers instead to correlation across different clients, which
often emerges as consequence of users’ different geographical distribution. For instance, clients in
the same time zone often exhibit similar availability patterns, e.g., due to time-of-day effects. We
dedicate Section 2.2 to the analysis of a FedAvg-like under heterogeneous and correlated client
availability. Our analysis leads to the development of a Correlation-Aware FL (CA-Fed) algorithm.

In FL scenarios with highly heterogeneous hardware (like smartphones, IoT devices, edge com-
puting servers, and the cloud), each client would ideally learn a different model architecture, suited
to its capabilities. Common approaches to achieve this goal include knowledge distillation, sub-
model training [Hor+21; DDT20], and collaboration trough prototypes communication [Tan+22b].
Our kNN-Per algorithm (discussed in Section 3.6) offers a simple and efficient way to achieve

12 CHAPTER 1 — Introduction

this goal by partially relieving the most powerful clients from the need to align their model to the
weakest ones.

1.4.1.3 Temporal Heterogeneity

Federated learning [McM+17] usually involves the minimization of an objective function, which is
only available through unbiased estimates of its gradients [BCN18]. The objective function is either
the expected risk, when clients can sample new data points at every iteration, or the empirical risk,
when they rely on a fixed dataset.

Most previous works on federated learning, e.g., [McM+17; Kon+17a], focus on the second case,
i.e., the minimization of the empirical risk. They assume that clients operate in static environments
and have access to identically distributed examples collected before training starts. Learning on static
datasets can be sub-optimal (or even impossible) in many cases, because (1) new samples collected
during training are ignored, and (2) clients may have limited memory capacities, and cannot store a
large number of data samples. For example, nodes in a sensor network may continuously collect
new measurements, but may be able to store only a few of them in the local memory [De +16].
Moreover, in many real-world applications, clients’ underlying data distributions are non-stationary
and constantly evolve. For instance, user sentiment and preference change drastically due to external
environments such as the pandemic and macroeconomics [Koh+21; Gar+21].

Regrettably, there is a scarcity of work that systematically formalizes the intricacies of federated
learning in the context of data streams, along with offering a comprehensive theoretical analysis. To
the best of our knowledge, this deficiency is only addressed by a handful of exceptions, specifically,
the studies conducted in [Che+20b], [Yoo+21], [OZ21], and [Jot+23]. In response to this research
gap, we dedicate Chapter 4 to the investigation of federated learning within dynamic environments,
where clients engage in collaborative learning from distributed data streams, characterized by the
continuous generation of data. Our inquiry is particularly focused on two distinct scenarios, each
corresponding to different assumptions regarding the data process. The first scenario delves into
the case where samples within the data stream are independently drawn from an undisclosed fixed
distribution. In the second scenario, we assume that client data distributions are mixtures of a finite
number of undisclosed common underlying distributions, each varying over time in terms of mixing
coefficients.

1.4.2 Other Challenges

In this section, we present a comprehensive overview of additional challenges in federated learning
that extend beyond the realms of statistical, system, and temporal heterogeneity. Although these
challenges are not the primary focal point of this manuscript, their significance cannot be understated.
Effectively addressing these issues is imperative for the development of efficient federated learning
systems. It is worth emphasizing that the challenges we delve into in this section often exhibit a
degree of independence from the techniques we propose to mitigate the effects of statistical, system,
and temporal heterogeneity. In essence, tackling these challenges operates in parallel with our
primary focus, enhancing the overall robustness and effectiveness of federated learning frameworks.

1.4.2.1 Privacy

Federated learning, with its distributed model training across numerous edge devices, brings forth a
set of intricate privacy challenges. The core principle of federated learning is to keep data localized

1.5 – 1.5 Summary of the Main Contributions of the Thesis 13

and secure, minimizing the need for centralized data aggregation. However, this very advantage
introduces concerns regarding the privacy of sensitive information at the individual device level.
One of the foremost concerns is the potential leakage of private data through model updates and
gradients exchanged between the central server and participating devices [McM+17]. Federated
learning systems may be vulnerable to various forms of attacks, including model inversion and
membership inference attacks, which aim to extract confidential information about individual data
contributors [NSH19a].

In order to limit these vulnerabilities, ongoing efforts are made to anonymize the model updates
and gradients exchanged between the central server and participating devices. Addressing the
privacy challenges in federated learning has spurred a significant body of research, reflecting the
community’s commitment to preserving user confidentiality while harnessing the potential of
decentralized machine learning. Prominent efforts include the development of advanced crypto-
graphic techniques, such as Secure Multi-Party Computation (SMPC) [Yao86; Lap+16; Ara+16]
and Homomorphic Encryption (HE) [Gen09; Bra12; CLT14], which allow model updates to be
aggregated without exposing individual data points. While theoretically promising, their practical
adoption faces limitations due to their computational intensity and the potential susceptibility to
malicious attacks. Differential privacy mechanisms have also gained attention, offering a mathemat-
ical framework to quantify and control information leakage during federated learning iterations.
Comprehensive surveys on these techniques and their application in federated learning can be found
in recent surveys by [Kai+21] and [Yan+20a].

As federated learning continues to evolve, addressing these privacy challenges remains a pivotal
research area, necessitating robust privacy-preserving mechanisms and encryption techniques to
safeguard user data while reaping the benefits of decentralized machine learning [Kai+21].

1.4.2.2 Expensive Communication

In federated learning, communication cost is often a critical bottleneck to scale up distributed
optimization algorithms to collaboratively learn a model from millions of devices with potentially
unreliable or limited communication and heterogeneous data distributions. The expensive communi-
cations in federated learning have sparked considerable interest in the development of compression
schemes aimed at reducing the communication overhead [Had+21; Bez+22; PD21; KSJ19].

1.5 Summary of the Main Contributions of the Thesis

This thesis investigates different sources of heterogeneity in the context of federated learning, and
proposes practical algorithms to mitigate the impact of heterogeneity.

In Chapter 2, we focus on tackling challenges associated with system heterogeneity in two
scenarios: cross-silo and cross-device settings. In the cross-silo settings, Section 2.1 uses the
theory of linear systems in the max-plus algebra to model the throughput, i.e., the number of
completed rounds per time unit, of a fully decentralized cross-silo federated learning system.
Afterwards, Section 2.1 proposes practical algorithms that, under the knowledge of measurable
network characteristics, find a topology with the largest throughput or with provable throughput
guarantees. In the cross-device settings, where the system constraints affects the availability/activity
of the clients, clients may exhibit different levels of participation, often correlated over time and
with other clients. In Section 2.2, we analyze a FedAvg-like algorithm under heterogeneous
and correlated client availability. Our analysis highlights how correlation adversely affects the

14 CHAPTER 1 — Introduction

algorithm’s convergence rate and how the aggregation strategy can alleviate this effect at the cost of
steering training toward a biased model. Guided by the theoretical analysis, we propose Correlation-
Aware FL (CA-Fed), a new FL algorithm that tries to balance the conflicting goals of maximizing
convergence speed and minimizing model bias. To this purpose, CA-Fed dynamically adapts the
weight given to each client and may ignore clients with low availability and large correlation.

In Chapter 3, we propose two personalized federated learning algorithms. The first algorithm,
named FedEM, is a federated EM-like algorithm based on the flexible assumption that the dataset
of each client is generated according to mixture of unknown common underlying distributions. The
second algorithm, named kNN-Per, is based on local memorization; personalization is obtained
by interpolating a collectively trained global model with a local k-nearest neighbors (kNN) model
based on the shared representation provided by the global model. We provide theoretical guarantees
for both algorithm; we provide convergence bounds for FedEM through a novel federated surrogate
optimization framework, which can be of general interest, and we provide generalization bounds
for kNN-Per.

In Chapter 4 we investigate federated learning for data streams (continuously generated data).
Specifically, we focus on two scenarios corresponding to two different assumptions about the data
process. The first focuses on the case where samples in the data stream are drawn independently
from some fixed unknown distribution. In this case, we propose a general FL algorithm to learn
from data streams through an opportune weighted empirical risk minimization. Our theoretical
analysis provides insights to configure such an algorithm and shows a bias-optimization trade-off:
by controlling the relative importance of older samples in comparison to newer ones; one can speed
training up at the cost of a larger bias of the learned model or reduce the bias at the cost of a longer
training time. In the second scenario, we assume that client’s data distributions are mixtures of
a finite number of unknown common underlying distributions with varying mixing weights. In
this case, we propose FEM-OMD, a federated variant of online mirror descent , where the gradient
of the cost function is estimated through an EM-like algorithm at each time step. In the case of
Gaussian mixture models, we show that the regret of FEM-OMD is asymptotically (in the sample
size) sub-linear.

1.6 Additional Contributions

In addition to the contributions outlined in Section 1.5, which address the challenges of statistical,
system, and temporal heterogeneity in federated learning, this thesis also encompasses two addi-
tional noteworthy contributions: a comprehensive analysis highlighting the role of reference data in
empirical privacy defenses, and the creation of a novel cross-silo dataset suite tailored for healthcare
applications. While these contributions are substantial, we have chosen not to dedicate separate
chapters to them. This decision is based on the desire to maintain a streamlined and cohesive
structure within the thesis, allowing for a more focused presentation of the main contributions while
still providing essential insights into these supplementary aspects. Instead of dedicating separate
chapters, we provide concise overviews of each in this section.

1.6.1 The Role of Reference Data in Empirical Privacy Defenses

This Section is based on our work [Kap+24b], published at the 24th Privacy Enhancing Technolo-
gies Symposium (PETS’24).

1.6 – 1.6.1 The Role of Reference Data in Empirical Privacy Defenses 15

Data-driven applications, often using machine learning models, are proliferating throughout
industry and society. Consequently, concerns about the use of data relating to individual persons has
led to a growing body of legislation, most notably the European Union’s General Data Protection
Regulation (GDPR) [Par16]. According to the GDPR principle of data minimization, it is necessary
to reduce the degree to which data can be connected to individuals, even when that data is used for
the purposes of training a statistical model [Par20]. It has therefore become important to ensure
that a machine learning model is not leaking private information about its training data.

Membership inference attacks, which seek to discern whether or not a given data point has been
used during training, have emerged as the de-facto standard for empirically measuring a machine
learning model’s privacy leakage [Sho+17]. Indeed, inferring training dataset membership can
be thought of as the most fundamental privacy violation. Although other attacks exist, such as
model inversion [FJR15], property inference [Gan+18], dataset reconstruction [Sal+20], and model
extraction [He+21; Kri+19; Tra+16], they all require a stronger adversary than is necessary to
execute a membership inference attack.

Many methods have been proposed to defend against membership inference attacks. The use of
differential privacy [DR+14] has emerged as a leading candidate for two reasons. First, it provides
mathematically rigorous guarantees that upper-bound the influence a given data point can exert
on the final machine learning model. Second, it is straightforward to integrate differential privacy
into a machine learning model’s training procedure with algorithms such as differentially private
gradient descent (DP-SGD) [Aba+16] or PATE [Pap+16]. Despite the many advantages associated
with differential privacy, there are several key drawbacks that include: the significant degradation
of model utility when using differential privacy during training [TB20], the difficulty of translating
differential privacy’s theoretical privacy guarantees to real-world privacy leakage [Nas+21; Ber+19],
and the fact that the decrease in accuracy resulting from differentially private training methods has
been shown to more adversely affect underrepresented groups [BPS19; Uni+21; GOD22].

To address these issues, empirical privacy defenses (i.e., without theoretical privacy guarantees)
have been developed to protect the privacy of training data against membership inference attacks. Ex-
isting empirical privacy defenses may be categorized by their method of protecting the training data
(e.g., regularization [LLR21; NSH18], confidence-vector masking [Jia+19; Yan+20b], knowledge
distillation [Tan+21]). Alternatively, one can group defenses by whether they use only the private
training data [Tan+21] or require access to reference data [NSH18; LLR21; SH21; Jia+19; Yan+20b;
Wan+20d], defined as additional data from the same underlying distribution [NSH18]. The two most
prominent differentially private defenses can also be distinguished according to this distinction,
where PATE [Pap+16] requires access to (unlabeled) reference data but DP-SGD [Aba+16] does
not.

There are several problems with the current evaluation strategy of empirical privacy defenses.
First, today’s best practice is to produce a utility-privacy curve that compares a model’s classification
accuracy with its training data privacy for different values of a given defense parameter. Although
this approach appears valid in the general case, assuming access to reference data makes the situation
more complicated. This additional dataset may have its own privacy requirements, especially since
it is assumed to come from the same underlying distribution as private training data. As gains in
model utility and/or training data privacy may come at the expense of reference data privacy, it is
only possible to meaningfully compare defenses when the relative level of privacy considerations
between these two datasets is made explicit. In Figure 1.3, we present an example evaluation where

16 CHAPTER 1 — Introduction

0.650 0.675 0.700 0.725 0.750 0.775 0.800 0.825
Test Accuracy

0.50

0.52

0.54

0.56

0.58

0.60

0.62

M
IA

 A
cc

ur
ac

y

Purchase100 - Comprehensive Tradeoff Analysis
Defense Method

AdvReg
AdvReg-RT

Target Dataset
training
reference

Figure 1.3: Tradeoff between a defended classifier’s prediction accuracy on test data (i.e., its
model utility), membership inference attack accuracy on training data (i.e., training data privacy
leakage), membership inference attack accuracy on reference data (i.e., reference data privacy
leakage) for Purchase100 dataset. “AdvReg” corresponds to the original formulation of adversarial
regularization [NSH18] and “AdvReg-RT” corresponds to a revisited version that we propose.

this issue becomes apparent. Looking only at the utility-privacy curves* with respect to training
data, it seems that AdvReg-RT is strictly better than AdvReg: for a target value of membership
inference attack accuracy on the training data (resp. of test accuracy), AdvReg-RT is able to achieve
a higher test accuracy (resp. lower membership inference attack accuracy). Alternatively, when the
utility-privacy curves are examined with respect to both training and reference data, one cannot
determine the better method without knowing their relative privacy considerations. Despite the
necessity of measuring reference data privacy leakage to conduct a complete evaluation, as can be
seen in Table 1.1, existing empirical privacy defenses are surprisingly reticent about this aspect.

A second problem with the current evaluation methodology of empirical privacy defenses
is the lack of a well-understood and simple baseline. The literature contains several examples
where proposed empirical privacy defenses have been later shown to leak significantly more
training data privacy than originally reported and sometimes to even perform worse than simpler
defenses [Cho+21; LLR21; SM21]. A well-established baseline could have provided more accurate
expectations about such defenses. While early stopping [CLG00] has recently been suggested as a
candidate to play such role [SM21], it does not utilize reference data and therefore fails to allow
for a fair comparison with privacy defense techniques that exploit reference data. Thus, there is a
strong need for the development of a baseline designed to operate in the same assumption setting
as the vast majority of existing empirical privacy defenses.

Contributions. We introduce the notion of a training-reference data privacy tradeoff and
conduct the first comprehensive investigation into how empirical privacy defenses perform with
respect to all three relevant metrics: model utility, training data privacy leakage, and reference
data privacy leakage. Given this evaluation setting, we propose a well-motivated baseline for

*For the AdvReg and AdvReg-RT, the curves are obtained by changing the relative importance of the classification
loss and the attacker loss [NSH18].

1.6 – 1.6.1 The Role of Reference Data in Empirical Privacy Defenses 17

Table 1.1: Comparison of existing privacy defenses by reference data treatment. In the second
column, “relative level unspecified” means the target level of relative privacy requirements between
training and reference data is not stated. In the third column, “single privacy level” means the
reference data privacy leakage is evaluated at a single point on the utility-privacy curve. We use a
dashed line (—) to convey that the defense either does not use reference data (column 2) or does
not need to evaluate reference data privacy leakage (column 3).

defense reference data privacy setting reference data privacy evaluation

Adversarial Regularization [NSH18] not mentioned no evaluation
MemGuard [Jia+19] not mentioned no evaluation
Model Pruning [Wan+20d] not mentioned no evaluation
MMD-based Regularization [LLR21] private (relative level unspecified) yes (single privacy level)
Distillation for Membership Privacy [SH21] private (relative level unspecified) yes (single privacy level)
Prediction Purification [Yan+20b] private (relative level unspecified) yes (single privacy level)
Self-Distillation [Tan+21] — —
PATE [Pap+16] public —
DP-SGD [Aba+16] — —

empirical privacy defenses that has guarantees on the resulting classifier’s generalization bound and,
when coupled with DP-SGD, on the privacy leakage of training and reference data. Our method
introduces the privacy requirement as a constraint on the generalization capability of the learned
model. By evaluating the generalization error [SB14] as we will describe, the formulation leads to
a convenient weighted empirical risk minimization (WERM) over the training and reference data.
We evaluate our WERM baseline using three standard datasets in the field of privacy-preserving
machine learning (Purchase100, Texas100, CIFAR100).

Our results show that, surprisingly, compared to state-of-the-art empirical privacy defenses using
reference data, WERM is the best-performing method in nearly all privacy regimes. Additionally,
we demonstrate that existing methods are only capable of extracting limited information from
reference data during training and fail to effectively trade off reference data privacy for model
utility and/or training data privacy. Our analysis reveals that the mechanisms provided by these
defenses to control the utility-privacy tradeoff with respect to the three aforementioned factors do
not function as expected, since they are only able to operate in the high reference data privacy case.
By contrast, WERM is interpretable, straightforward to train, and highly effective. These traits
enable it to serve as a baseline for evaluating future empirical privacy defenses using reference data.
Importantly, comparing against our method requires selecting relative weights for the loss on the
training data explicit any underlying assumption about their relative privacy.

In summary:

• We highlight the importance of clearly specifying the privacy requirements for reference data
when training empirical privacy defenses.

• We propose a baseline that yields a better and more comprehensive utility-privacy landscape
than state-of-the-art defenses using reference data.

• We provide an extensive theoretical analysis of our method, demonstrating how the weight
term that governs the balance between training and reference data has a direct impact on the
generalization bound and privacy leakage.

18 CHAPTER 1 — Introduction

• We reveal that existing empirical privacy defenses do not function as expected, as they are
unable to operate outside of the high reference data privacy regime.

In this work, we have analyzed the role of reference data in empirical privacy defenses and
identified the issue that reference data privacy leakage must be explicitly considered to conduct a
meaningful evaluation. We advanced the current state-of-the-art by proposing a generalization error
constrained ERM, which can in practice be evaluated as a weighted ERM over the training and
reference datasets. As WERM is intended to function as a baseline, we derive theoretical guarantees
about its utility and privacy to ensure that its results will be well-understood in all utility-privacy
settings. We present experimental results showing that our principled baseline outperforms the most
well-studied and current state-of-the-art empirical privacy defenses in nearly all privacy regimes
(i.e., independent of the nature of reference data and its level of privacy). Our experiments also
reveal that existing methods are unable to trade off reference data privacy for model utility and/or
training data privacy, and thus cannot operate outside of the highly private reference data case.

Regarding ethical concerns, our proposed baseline operates on the defense side of machine
learning privacy; no novel attack has been proposed. Nevertheless, our experiments have analyzed
the average privacy leakage over the whole dataset, but privacy protection is not always fair across
groups in a dataset [Kul+19; Oli+23]. Future work can evaluate then the fairness of various defense
mechanisms using reference data or propose the creation of privacy defenses intended to operate in
use-case dependent settings. We hope that our work will continue to motivate the development of a
robust evaluation framework for privacy defenses.

1.6.2 FLamby: Datasets and Benchmarks for Cross-Silo FL

This section is based on our work [Ogi+22b], published at the 36th Conference on Neural
Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.

As previously highlighted in this chapter, statistical heterogeneity is a distinctive characteristic
and a fundamental challenge in FL, and it is necessary to take it into consideration when evaluating
FL algorithms. Most FL papers simulate statistical heterogeneity by artificially partitioning classic
datasets, e.g., CIFAR-10/100 [Kri09], MNIST [LC10] or ImageNet [Den+09], on a given number
of clients. Common approaches to produce synthetic partitions of classification datasets include
associating samples from a limited number of classes to each client [McM+17], Dirichlet sampling
on the class labels [HQB19; Yur+19], and using Pachinko Allocation Method (PAM) [LM06;
Red+21] (which is only possible when the labels have a hierarchical structure). In the case of
regression tasks, [PD22] partitions the superconduct dataset [CJB04] across 20 clients using
Gaussian Mixture clustering based on t-SNE representations [VH08] of the features. Such synthetic
partition approaches may fall short of modeling the complex statistical heterogeneity of real
federated datasets. Evaluating FL strategies on datasets with natural client splits is a safer approach
to ensuring that new strategies address real-world issues.

For cross-device FL, the LEAF dataset suite [Cal+19] includes five datasets with natural parti-
tion, spanning a wide range of machine learning tasks: natural language modeling (Reddit [Vol+17]),
next character prediction (Shakespeare [McM+17]), sentiment analysis (Sent140 [GBH09]), image
classification (CelebA [Liu+15]) and handwritten-character recognition (FEMNIST [Coh+17]).
TensorFlow Federated [Bon+19] complements LEAF and provides three additional naturally split
federated benchmarks, i.e., StackOverflow [Ten19], Google Landmark v2 [HQB20] and iNatu-
ralist [Van+18]. Further, FLSim [Res12] provides cross-device examples based on LEAF and
CIFAR10 [Kri09] with a synthetic split, and FedScale [Lai+22] introduces a large FL benchmark

1.6 – 1.6.2 FLamby: Datasets and Benchmarks for Cross-Silo FL 19

Table 1.2: Overview of the datasets, tasks, metrics and baseline models in FLamby. For Fed-
Camelyon16 the two different sizes refer to the size of the dataset before and after tiling.

Dataset Fed-Camelyon16 Fed-LIDC-IDRI Fed-IXI Fed-TCGA-BRCA Fed-KITS2019 Fed-ISIC2019 Fed-Heart-
Disease

Input (x) Slides CT-scans T1WI Patient info. CT-scans Dermoscopy Patient info.

Preprocessing Matter extraction
+ tiling Patch Sampling Registration None Patch Sampling Various image

transforms
Removing missing

data

Task type binary classification 3D segmentation 3D segmentation survival 3D segmentation multi-class
classification binary classification

Prediction (y) Tumor on slide Lung Nodule Mask Brain mask Risk of death Kidney and tumor
masks Melanoma class Heart disease

Center extraction Hospital Scanner
Manufacturer Hospital Group of Hospitals Group of Hospitals Hospital Hospital

Thumbnails

Original paper Litjens et al.
2018

Armato et al.
2011

Perez et al.
2021

Liu et al.
2018

Heller et al.
2019

Tschandl et al. 2018 /
Codella et al. 2017 /
Combalia et al. 2019

Janosi et al.
1988

clients 2 5 3 5 6 5 4
examples 399 1,018 566 1, 088 96 23, 247 740

examples per
center 239, 150 670, 205, 69, 74 311, 181, 74 311, 196, 206, 162,

51
12, 14, 12, 12,

16, 30
12413, 3954, 3363,

2259, 819, 439 303, 261, 46, 130

Model DeepMIL [ITW] Vnet [MNA16;
Nik19] 3D U-net [Çiç+16] Cox Model [Cox72] nnU-Net [Ise+21] efficientnet [TL19]

+ linear layer Logistic Regression

Metric AUC DICE DICE C-index DICE Balanced Accuracy Accuracy
Size 50G (850G total) 115G 444M 115K 54G 9G 40K

Image resolution 0.5 µm / pixel ∼1.0 × 1.0 × 1.0
mm / voxel

∼ 1.0 × 1.0 × 1.0
mm / voxel NA ∼1.0 × 1.0 × 1.0

mm / voxel ∼0.02 mm / pixel NA

Input dimension 10, 000 x 2048 128 x 128 x 128 48 x 60 x 48 39 64 x 192 x 192 200 x 200 x 3 13

focused on mobile applications. Apart from iNaturalist, the aforementioned datasets target the
cross-device setting.

In contrast, publicly available datasets for the cross-silo FL setting are scarce. As a conse-
quence, researchers usually rely on heuristics to artificially generate heterogeneous data partitions
from a single dataset and assign them to hypothetical clients. Such heuristics might fall short of
replicating the complexity of natural heterogeneity found in real-world datasets. The example of
digital histopathology [Vet+14], a crucial data type in cancer research, illustrates the potential limi-
tations of such synthetic partition methods. In digital histopathology, tissue samples are extracted
from patients, stained, and finally digitized. In this process, known factors of data heterogeneity
across hospitals include patient demographics, staining techniques, storage methodologies of the
physical slides, and digitization processes [Jan+19; Fu+20; How+21]. Although staining normaliza-
tion [Lah+20; Haa+21] has seen recent progress, mitigating this source of heterogeneity, the other
highlighted sources of heterogeneity are difficult to replicate with synthetic partitioning [How+21]
and some may be unknown, which calls for actual cross-silo cohort experiments. This observation
is also valid for many other application domains, e.g. radiology [HBB06], dermatology [Bad+15],
retinal images [Bad+15] and more generally computer vision [TE11].

In order to address the lack of realistic cross-silo datasets, we propose FLamby, an open source
cross-silo federated dataset suite with natural partitions focused on healthcare, accompanied by
code examples, and benchmarking guidelines. Table 1.2 gives an overview of FLamby. To the
best of our knowledge, apart from some promising isolated works to build realistic cross-silo FL
datasets, our work is the first standard benchmark allowing to systematically study healthcare
cross-silo FL on different data modalities and tasks. Our contributions are threefold:

20 CHAPTER 1 — Introduction

1. We build an open-source federated cross-silo healthcare dataset suite including 7 datasets.
These datasets cover different tasks (classification/segmentation/survival) in multiple ap-
plication domains and with different data modalities and scale. Crucially, all datasets are
partitioned using natural splits.

2. We provide guidelines to help compare FL strategies in a fair and reproducible manner, and
provide illustrative results for this benchmark.

3. We make open-source code accessible at https://github.com/owkin/FLamby for benchmark
reproducibility and easy integration in different FL frameworks, but also to allow the research
community to contribute to FLamby development, by adding more datasets, benchmarking
types and FL strategies.

Currently, FLamby is limited to healthcare datasets. In the longer run and with the help of the FL
community, it could be enriched with datasets from other application domains to better reflect the
diversity of cross-silo FL applications, which is possible thanks to its modular design. Regarding
machine learning back-ends, FLamby only provides PyTorch [Pas+19] code: supporting other
back-ends, such as TensorFlow [Mar+15] or JAX [Bra+18], is a relevant future direction if there
is such demand from the community. Further, our benchmark currently does not integrate all
constraints of cross-silo FL, especially privacy aspects, which are important in this setting.

In terms of FL setting, the benchmark mainly focuses on the heterogeneity induced by nat-
ural splits. In order to make it more realistic, future developments might include in depth study
of Differential Privacy (DP) training [DR+14], cryptographic protocols such as Secure Aggrega-
tion [Bon+17], Personalized FL [FMO20], or communication constraints [Sat+19] when applicable.

1.7 Publications

The contributions of this manuscript led to the following publications and submissions in confer-
ences and peer-reviewed journals

1.7.1 Published

[Kap+24a] Caelin Kaplan, Chuan Xu, Othmane Marfoq, Giovanni Neglia, and Anderson
Santana de Oliveira. “A Cautionary Tale: On the Role of Reference Data in Empirical
Privacy Defenses”. In: Proceedings on Privacy Enhancing Technologies (2024).

[Mar+21a] Othmane Marfoq, Giovanni Neglia, Aurélien Bellet, Laetitia Kameni, and Richard
Vidal. “Federated Multi-Task Learning under a Mixture of Distributions”. In: Ad-
vances in Neural Information Processing Systems. Vol. 34. 2021.

[Mar+23a] Othmane Marfoq, Giovanni Neglia, Laetitia Kameni, and Richard Vidal. “Federated
Learning for Data Streams”. In: Proceedings of The 26th International Conference
on Artificial Intelligence and Statistics. Ed. by Francisco Ruiz, Jennifer Dy, and Jan-
Willem van de Meent. Vol. 206. Proceedings of Machine Learning Research. PMLR,
Apr. 2023, pp. 8889–8924. URL: https://proceedings.mlr.press/
v206/marfoq23a.html.

https://github.com/owkin/FLamby
https://proceedings.mlr.press/v206/marfoq23a.html
https://proceedings.mlr.press/v206/marfoq23a.html

1.7 – 1.7.2 Submitted 21

[Mar+22a] Othmane Marfoq, Giovanni Neglia, Laetitia Kameni, and Richard Vidal. “Personal-
ized Federated Learning through Local Memorization”. In: Proceedings of the 39th
International Conference on Machine Learning. Proceedings of Machine Learning
Research. PMLR, 2022.

[Mar+20a] Othmane Marfoq, Chuan Xu, Giovanni Neglia, and Richard Vidal. “Throughput-
Optimal Topology Design for Cross-Silo Federated Learning”. In: Advances in Neural
Information Processing Systems. Vol. 33. 2020.

[Ogi+22a] Jean Ogier du Terrail, Samy-Safwan Ayed, Edwige Cyffers, Felix Grimberg,
Chaoyang He, Regis Loeb, Paul Mangold, Tanguy Marchand, Othmane Mar-
foq, Erum Mushtaq, Boris Muzellec, Constantin Philippenko, Santiago Silva,
Maria Teleńczuk, Shadi Albarqouni, Salman Avestimehr, Aurélien Bellet, Aymeric
Dieuleveut, Martin Jaggi, Sai Praneeth Karimireddy, Marco Lorenzi, Giovanni Neglia,
Marc Tommasi, and Mathieu Andreux. “FLamby: Datasets and Benchmarks for
Cross-Silo Federated Learning in Realistic Settings”. Proceedings of The 36th Con-
ference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets
and Benchmarks. https://openreview.net/forum?id=GgM5DiAb6A2.
2022.

[Rod+23a] Angelo Rodio, Francescomaria Faticanti, Othmane Marfoq, Giovanni Neglia, and
Emilio Leonardi. “Federated Learning under Heterogeneous and Correlated Client
Availability”. In: IEEE INFOCOM 2023 - IEEE Conference on Computer Communi-
cations. 2023, pp. 1–10. DOI: 10.1109/INFOCOM53939.2023.10228876.

1.7.2 Submitted

[MMa] Othmane Marfoq and Aryan Mokhtari. Online Federated Learning with Mixture
Models.

https://openreview.net/forum?id=GgM5DiAb6A2
https://doi.org/10.1109/INFOCOM53939.2023.10228876

CHAPTER 2
System Considerations

in Heterogeneous
Federated Learning

As discussed in Chapter 1, clients in federated learning exhibit a diverse range of characteristics,
encompassing disparities in storage capacity, computational resources, and communication capa-
bilities. These disparities arise from variations in hardware specifications (CPU power, memory
capacity), network connectivity types (3G, 4G, 5G, WiFi), and power availability (battery levels).
The system heterogeneity results in different challenges depending on the learning scenario. In
Section 1.4, we delineated the challenges associated with system heterogeneity across three distinct
scenarios: cross-silo, cross-device, and heterogeneous hardware environments. In this chapter,
we focus on the cross-silo and cross-device scenarios, and we leave the heterogeneous hardware
environments to Chapter 3 (Section 3.6).

In Section 2.1, we define the problem of topology design for cross-silo federated learning using
the theory of max-plus linear systems to compute the system throughput—number of communi-
cation rounds per time unit. We also propose practical algorithms that, under the knowledge of
measurable network characteristics, find a topology with the largest throughput or with provable
throughput guarantees.

In Section 2.2, we provide a novel analysis for a FedAvg-like algorithm under heterogeneous
and correlated client availability. Our analysis highlights how correlation adversely affects the
algorithm’s convergence rate and how the aggregation strategy can alleviate this effect at the cost of
steering training toward a biased model. Guided by the theoretical analysis, we propose CA-Fed,
a new FL algorithm that tries to balance the conflicting goals of maximizing convergence speed
and minimizing model bias. To this purpose, CA-Fed dynamically adapts the weight given to each
client and may ignore clients with low availability and large correlation.

This chapter is based on our works [Mar+20b], published in Advances in Neural Information
Processing Systems 2020 (NeurIPS’20), and [Rod+23b], published in the IEEE/ACM Transactions
on Networking.

2.1 Throughput-Optimal Topology Design for Cross-Silo Federated
Learning

As discussed in Chapter 1, specifically in Section 1.3 and Section 1.4.1.2, the standard federated
learning approach, employing a server-client architecture where an orchestrator iteratively aggre-

23

24 CHAPTER 2 — System Considerations in Heterogeneous Federated Learning

gates model updates from remote clients and pushes them back a refined model, may be inefficient
in cross-silo settings, as close-by data silos with high-speed access links may exchange information
faster than with the orchestrator, and the orchestrator may become a communication bottleneck.
In this context, an important question arises: How can we design a communication topology that
allows for the fastest convergence, considering that different silos have different communication
capabilities?

In this chapter, we define the problem of topology design for cross-silo federated learning using
the theory of max-plus linear systems to compute the system throughput—number of communi-
cation rounds per time unit. We also propose practical algorithms that, under the knowledge of
measurable network characteristics, find a topology with the largest throughput or with provable
throughput guarantees. In realistic Internet networks with 10 Gbps access links at silos, our algo-
rithms speed up training by a factor 9 and 1.5 in comparison to the server-client architecture and to
state-of-the-art MATCHA, respectively. Speedups are even larger with slower access links.

2.1.1 Introduction

In federated learning, clients (e.g., mobile devices or whole organizations) usually train the model
through an iterative procedure under the supervision of a central orchestrator, which, for exam-
ple, decides to launch the training process and coordinates training advances. Often—e.g., in
FedAvg [McM+17], SCAFFOLD [Kar+20b], and FedProx [Li+20b]—the orchestrator directly
participates to the training, by aggregating clients’ updates, generating a new model, and pushing it
back to the clients. Hence, clients only communicate with a potentially far-away (e.g., in another
continent) orchestrator and do not exploit communication opportunities with close-by clients. This
choice is justified in the cross-device setting, where inter-device communication is unreliable (de-
vices may drop-out from training at any time) and slow (a message needs to traverse two slow access
links). But in the cross-silo setting, data silos (e.g., data centers) are almost always available, enjoy
high-speed connectivity comparable to the orchestrator’s one, and may exchange information faster
with some other silos than with the orchestrator. An orchestrator-centered communication topology
is then potentially inefficient, because it ignores fast inter-silo communication opportunities and
makes the orchestrator a candidate for congestion. A current trend [Tan+18; Bel+18; Wan+19a;
Yua+21; Yua+23] is then to replace communication with the orchestrator by peer-to-peer communi-
cations between individual silos, which perform local partial aggregations of model updates. We
also consider this scenario and study how to design the communication topology.

The communication topology has two contrasting effects on training duration. First, a more
connected topology leads to faster convergence in terms of iterations or communication rounds,
as quantified by convergence bounds in terms of the spectral properties of the topology [NOR18;
DAW12; Sca+17; Sca+18; WJ21; Jia+17]. Second, a more connected topology increases the
duration of a communication round (e.g., it may cause network congestion), motivating the use of
degree-bounded topologies where every client sends and receives a small number of messages at
each round [Ass+19; Lia+17]. Recent experimental and theoretical work suggests the second effect
may dominate the first one (see [Lia+17; Lia+18; Luo+19; POP20b; Ass+19] and the discussion
in [Neg+20]).

Only a few studies have designed topologies taking into account the duration of a communica-
tion round. Under the simplistic assumption that the communication time is proportional to node
degree, MATCHA [Wan+19a] decomposes the set of possible communications into matchings
(disjoint pairs of clients) and, at each communication round, randomly selects some matchings and

2.1 – 2.1.2 Problem Formulation 25

allows their pairs to transmit. MATCHA chooses the matchings’ selection probabilities in order to
optimize the algebraic connectivity of the expected topology. Reference [Neg+19] studies how to
select the degree of a regular topology when the duration of a communication round is determined
by stragglers [Kar+17; Li+18]. Apart from these corner cases, “how to design a [decentralized]
model averaging policy that achieves the fastest convergence remains an open problem” [Kai+21].

In this chapter, we address this open problem, by using the theory of linear systems in the
max-plus algebra [Bac92] to design topologies for cross-silo distributed learning. The theory
holds for synchronous systems and has been successfully applied in other fields (e.g., manufactur-
ing [CMK01], communication networks [LT01], biology [BRH12], railway systems [Gov98], and
road networks [FGQ11]). Synchronous optimization algorithms are often preferred for federated
learning [Bon+19], because they enjoy stronger convergence guarantees than their asynchronous
counterparts and can be easily combined with cryptographic secure aggregation protocols [Bon+17],
differential privacy techniques [Aba+16], and model and update compression [SL21].

This work is the first work to take explicitly in consideration all delay components contributing
to the total training time including computation times, link latencies, transmission times, and
queueing delays. It complements the topology design approaches listed above that only account for
congestion at access links [Wan+19a] and straggler effect [Neg+19].

2.1.2 Problem Formulation

2.1.2.1 Machine Learning Training

We consider a network of N siloed data centers who collaboratively train a global machine learning
model, solving the following optimization problem:

minimize
w∈Rd

N∑
i=1

Eξi
[fi(w, ξi)] , (2.1)

where fi(w, ξi) is the loss of model w at a sample ξi drawn from data distribution at silo i. (It
is also possible to weight each loss with the size of the local dataset).

In order to solve Problem (2.1) in an FL scenario, silos do not share the local datasets, but
periodically transmit model updates, and different distributed algorithms have been proposed
[Li+20b; McM+17; Kar+20b; Wan+19a; Kon+17a; WJ21].

In this section we consider as archetype the decentralized periodic averaging stochastic gradient
descent (DPASGD) [WJ21], where silos are represented as vertices of a communication graph
that we call overlay. Each silo i maintains a local model wi and performs s mini-batch gradient
updates before sending its model to a subset of silos N−

i (its out-neighbors in the overlay). It
then aggregates its model with those received by a (potentially different) set of silos N+

i (its
in-neighbors). Formally, the algorithm is described by the following equations:

wi(k + 1) =


∑

j∈N +
i ∪{i} Ai,jwj(k) , if k ≡ 0 (mod s+ 1),

wi(k)− αk
1
m

∑m
h=1∇fi

(
wi(k) , ξ(h)

i (k)
)
, otherwise.

(2.2)

where m is the batch size, αk > 0 is a potentially varying learning rate, and A ∈ RN×N is
a matrix of non-negative weights, referred to as the consensus matrix. For particular choices of
the matrix A and the number of local updates s, DPASGD reduces to other schemes previously

26 CHAPTER 2 — System Considerations in Heterogeneous Federated Learning

(a) Underlay Gu = (V ∪ V ′, Eu)
(b) Connectivity graph Gc =
(V, Ec) (c) Overlay Go = (V, Eo)

Figure 2.1: Examples for underlay, connectivity graph, and overlay, with routers (blue nodes), silos
(red nodes), underlay links (solid black lines), and information exchanges (dashed lines).

proposed [Lia+17; Yua+19], including FedAvg [McM+17], where the orchestrator just performs
the averaging step (this corresponds to its local loss function fi(.) being a constant). Convergence
of (2.2) was proved in [WJ21].

In this chapter, we study how to design the overlay in order to minimize the training time. While
we consider DPASGD, our results are applicable to any synchronous iterative algorithm where each
silo alternates a local computation phase and a communication phase during which it needs to receive
inputs from a given subset of silos before moving to the next computation phase. This includes
the distributed algorithms already cited, as well as push-sum training schemes [Ass+19; Shi+15;
RNV12; NOS17; DS16; TLR12; ZY17] and in general the black-box optimization procedures as
defined in [Sca+17].

2.1.2.2 Underlay, Connectivity graph, and Overlay

FL silos are connected by a communication infrastructure (e.g., the Internet or some private
network), which we call underlay. The underlay can be represented as a directed graph (digraph)
Gu = (V ∪ V ′, Eu), where V denotes the set of silos, V ′ the set of other nodes (e.g., routers) in the
network, and Eu the set of communication links. For simplicity, we consider that each silo i ∈ V is
connected to the rest of the network through a single link (i, i′), where i′ ∈ V ′, with uplink capacity
CUP(i) and downlink capacity CDN(i). The example in Fig. 2.1 illustrates the underlay and the
other concepts we are going to define.

The connectivity graph Gc = (V, Ec) captures the possible direct communications among silos.
Often the connectivity graph is fully connected, but specific NAT or firewall configurations may
prevent some pairs of silos to communicate. If (i, j) ∈ Ec, i can transmit its updated model to j.
The message experiences a delay that is the sum of two contributions: 1) an end-to-end delay l(i, j)
accounting for link latencies, and queueing delays along the path, and 2) a term depending on the
model size M and the available bandwidth * A(i, j) of the path. Each pair of silos (i, j) can use
probing packets [JD02; Pra+03; Hsi+17] to measure end-to-end delays and available bandwidths
and communicate them to the orchestrator, which then designs the topology. We assume that in
the stable cross-silo setting these quantities do not vary or vary slowly, so that the topology is
recomputed only occasionally, if at all.

The training algorithm in (2.2) does not need to use all potential connections. The orchestrator
can select a connected subgraph of Gc. We call such subgraph overlay and denote it by Go = (V, Eo),
where Eo ⊂ Ec. Only nodes directly connected in Go will exchange messages. We can associate a

*The available bandwidth of a path is the maximum rate that the path can provide to a flow, taking into account the
rest of the traffic [CC96; JD02]; it is then smaller than the minimum link capacity of the path.

2.1 – 2.1.2 Problem Formulation 27

delay to each link (i, j) ∈ Eo, corresponding to the time interval between the beginning of a local
computation at node i, and the receiving of i’s updated model by j:

do(i, j) = s×Tc(i)+l(i, j)+
M

A(i, j) = s×Tc(i)+l(i, j)+
M

min
(

CUP(i)
|N −

i | ,
CDN(j)
|N +

j | , A(i′, j′)
) , (2.3)

where Tc(i) denotes the time to compute one local update of the model. We also define
do(i, i) = s × Tc(i). Equation (2.3) holds under the following assumptions. First, each silo i
uploads its model in parallel to its out-neighbors inN−

i (with a rate at most CUP(i)/|N−
i |). Second,

downloads at j happen in parallel too. While messages from different in-neighbors may not arrive
at the same time at j’s downlink, their transmissions are likely to partially overlap. Finally, different
messages do not interfere significantly in the core network, where they are only a minor component
of the total network traffic (A(i′, j′) does not depend on Go).

Our model is more general than those considered in related work: [Wan+19a] considers
do(i, j) = M × |N−

i |/CUP(i) and [Neg+19] considers do(i, j) = Tc(i) (but it accounts for
random computation times).

2.1.2.3 Time per Communication Round (Cycle Time)

Let ti(k) denote the time at which worker i starts computing wi((s+ 1)k + 1) according to (2.2)
with ti(0) = 0. As i needs to wait for the inputs wj((s+ 1)k) from its in-neighbors, the following
recurrence relation holds

ti(k + 1) = max
j∈N +

i ∪{i}
(tj(k) + do(j, i)). (2.4)

This set of relations generalizes the concept of a linear system in the max-plus algebra, where
the max operator replaces the usual sum and the + operator replaces the usual product. We refer
the reader to [Bac92] for the general theory of such systems and we present here only the key
results for our analysis.

We call the time interval between ti(k) and ti(k + 1) a cycle. The average cycle time for
silo i is defined as τi = limk→∞ ti(k)/k. The cycle time 1) does not depend on the specific silo
(i.e., τi = τj) [Bac92, Sect. 7.3.4], and 2) can be computed directly from the graph Go [Bac92,
Thm. 3.23]. In fact:

τ(Go) = max
γ

do(γ)
|γ|

, (2.5)

where γ is a generic circuit, i.e., a path (i1, . . . , ip = i1) where the initial node and the final
node coincide, |γ| = p is the length of the circuit, and do(γ) =

∑p−1
k=1 do(ik, ik+1) is the sum of

delays on γ. A circuit γ of Go is called critical if τ(Go) = do(γ)/|γ|. There exist algorithms with
different complexity to compute the cycle time [Kar78; DG98].

The cycle time is a key performance metric for the system because the difference |ti(k) −
τ(Go)× k| is bounded for all k ≥ 0 so that, for large enough k, ti(k) ≈ τ(Go)× k. In particular,
the inverse of the cycle time is the throughput of the system, i.e., the number of communication
rounds per time unit. An overlay with minimal cycle time minimizes the time required for a given
number of communication rounds. This observation leads to our optimization problem.

28 CHAPTER 2 — System Considerations in Heterogeneous Federated Learning

Table 2.1: Algorithms to design the overlay Go from the connectivity graph Gc.

Network Conditions Algorithm Complexity Guarantees

Edge-capacitated Undirected Go Prim’s Algorithm [Pri57] O(|Ec|+ |V| log |V|) Optimal solution (Prop. 2.1.1)
Edge/Node-capacitated Euclidean Gc Christofides’ Algorithm [MPT02] O(|V|2 log |V|) 3N -approximation (Proposition 2.1.3,2.1.6)

Node-capacitated
Euclidean Gc

and undirected Go
Algorithm 3 O(|Ec||V| log |V|) 6-approximation (Prop. 2.1.5)

2.1.2.4 Optimization Problem

Given a connectivity graph Gc, we want the overlay Go to be a strong digraph (i.e., a strongly
connected directed graph) with minimal cycle time. Formally, we define the following Minimal
Cycle Time problem:

Minimal Cycle Time (MCT)
Input: A strong digraph Gc =(V, Ec), {CUP(i), CDN(j), l(i, j), A(i′, j′), Tc(i),∀(i, j) ∈

Ec}
Question: What is the strong spanning subdigraph of Gc with minimal cycle time?

Note that the input does not include detailed information about the underlay Gu, but only
information available or measurable at the silos (see Sect. 2.1.2.2). To the best of our knowledge,
our work is the first effort to study MCT. The closest problem considered in the literature is, for a
given overlay, to select the largest delays that guarantee a minimum throughput [Gau95; Dav+14].

2.1.3 Theoretical Results and Algorithms

In this section we present complexity results for MCT and algorithms to design the optimal topology
in different settings. Table 2.1 lists these algorithms, their time-complexity, and their guarantees.
We note that in some cases we adapt known algorithms to solve MCT. All proofs are in App. C.1.

Borrowing the terminology from P2P networks [Mas+07] we call a network edge-capacitated or
node-capacitated, respectively, if access links delays can be neglected or not. While in cross-device
FL the network is definitely node-capacitated, in cross-silo FL—the focus of our work—silos may
be geo-distributed data centers or branches of a company and then have high-speed connections, so
that neglecting access link delays may be an acceptable approximation.

2.1.3.1 Edge-capacitated networks

FL algorithms often use an undirected overlay with symmetric communications, i.e., (i, j) ∈
Eo ⇒ (j, i) ∈ Eo. This is the case of centralized schemes, like FedAvg, but is also common for
other consensus-based optimization schemes where the consensus matrix A is required to be
doubly-stochastic [NO09; RNV12; WJ21]—a condition simpler to achieve when Go is undirected.

When building an undirected overlay, we can restrict ourselves to consider trees as solutions
of MCT. In fact, additional links can only increase the number of circuits and then increase the
cycle time (see (2.5)). Moreover, we can prove that the overlay has simple critical circuits of the
form γ = (i, j, i), for which do(γ)/|γ| = (do(i, j) + do(j, i))/2. Intuitively, if we progressively
build a tree using the links in Gc with the smallest average of delays in the two directions, we obtain
the overlay with minimal cycle time. This construction corresponds to finding a minimum weight
spanning tree (MST) in an opportune undirected version of Gc:

2.1 – 2.1.3 Theoretical Results and Algorithms 29

Proposition 2.1.1. Consider an undirected weighted graph G(u)
c = (V, E(u)

c), where (i, j) ∈ E(u)
c

iff (i, j) ∈ Ec and (j, i) ∈ Ec and where (i, j) ∈ E(u)
c has weight d(u)(i, j) = (do(i, j)+do(j, i))/2.

A minimum weight spanning tree of G(u)
c is a solution of MCT when Gc is edge-capacitated and Go

is required to be undirected.

Prim’s algorithm [Pri57] is an efficient algorithm to find an MST with complexity O(|Ec| +
|V| log |V|) and then suited for the usual cross-silo scenarios with at most a few hundred nodes
[Kai+21].

We have pointed out a simple algorithm when the overlay is undirected, but directed overlays
can have arbitrarily shorter cycle times than undirected ones even in simple settings where all links
in the underlay are bidirectional with identical delays in the two directions (see Example 1).

(a) Simplest example. (b) Example with an arbitrarily different cycle times.

Figure 2.2: Networks where a directed topology outperforms an undirected one.

Example 1. We provide two examples where the underlay network is undirected and still a directed
overlay can have shorter cycle time than directed overlays. Examples are in Fig. 2.2, where numbers
associated to links are the corresponding delays (in the two directions).

The network in Fig. 2.2a has only three nodes, V = {1, 2, 3}. We have dc(1, 2) = dc(2, 1) = 1,
dc(2, 3) = dc(3, 2) = 3, and dc(1, 3) = dc(3, 1) = 4. The fastest undirected overlay is G(u)

o =
(V, {(1, 2), (2, 3)}). Consider the directed ring Go = (V, {(1, 2), (2, 3), (3, 1)}). We have:

τ
(
G(u)

o

)
= max

{1 + 1
2 ,

3 + 3
2 ,

1 + 3 + 1 + 3
4

}
= 3, (2.6)

τ (Go) = 1 + 3 + (3 + 1)
3 = 8

3 < 3. (2.7)

The network in Fig. 2.2b shows that a directed ring can be arbitrarily faster than an undirected
one. Similarly to above, the fastest undirected overlay is G(u)

o coincides with the underlay. The
directed overlay is the ring (1→ 2→ 3→ . . . n→ n+ 1→ 1). We have

τ
(
G(u)

o

)
= n, (2.8)

τ (Go) = (n− 1)× 1 + n+ (n+ (n− 1)× 1)
n+ 1 = 4n− 2

n+ 1 < 4. (2.9)

The ratio of the two cycle times can be made arbitrarily large.

Despite these advantageous features of directed topologies, it’s worth noting that the computa-
tion of optimal directed overlays poses a challenge due to its NP-hard nature (Proposition 2.1.2).
Consequently, the pursuit of finding optimal solutions for such overlays remains a complex task
that demands innovative approaches.

Proposition 2.1.2. MCT is NP-hard even when Gc is a complete Euclidean edge-capacitated graph.

30 CHAPTER 2 — System Considerations in Heterogeneous Federated Learning

We call a connectivity graph Gc Euclidean if its delays dc(i, j) ≜ s×Tc(i)+l(i, j)+M/A(i′, j′)
are symmetric (dc(i, j) = dc(j, i), ∀i, j ∈ V) and satisfy the triangle inequality (dc(i, j) ≤
dc(i, k) +dc(k, j),∀i, j, k ∈ V). These assumptions are roughly satisfied for geographically distant
computing clusters with similar computation times, as the delay to transmit a message between
two silos is roughly an affine function of the geodesic distance between them [Gue+04]. Under this
condition MCT can be approximated:

Proposition 2.1.3. Christofides’ algorithm [MPT02] is a 3N -approximation algorithm for MCT

when Gc is edge-capacitated and Euclidean.

The result follows from Christofides’ algorithm being a 1.5-approximation algorithm for the
Traveling Salesman Problem [MPT02], and our proof shows that a solution of the Traveling
Salesman Problem provides a 2N -approximation of MCT. Note that Christofides’ algorithm finds
ring topologies. Note that the obtained approximation factor is exact (up to a multiplicative constant),
we provide Example 2 where the TSP solution is an Ω(N) of the optimal solution of MCT.

Example 2. We provide an example of an euclidean underlay where using a ring as overlay is N
times worse then the optimal overlay. We consider a complete connectivity graph Gc = (V,V × V)
to which we associate a delay function du verifying

∀(i, j) ∈ V × V; d(i, j) =
{

0 i, j ∈ {1, . . . , N}
1 i ∈ {N + 1, . . . , 2N} or j ∈ {N + 1, . . . , 2N} (2.10)

Gc is clearly an Euclidean graph.
A Hamiltonian cycleH of Gc needs to use exactly 2N different edges, thus it has a cost at least

N × 0 +N × 1 = N , and a cycle time τ(H) ≥ N
2N = 1

2 .
Consider a directed overlay Go = (V, Eo), with

Eo = {(i, i+ 1); i ∈ {1, . . . , N − 1}} ∪
⋃

K∈{N+1,...,2N}
{(N,K), (K, 1)} (2.11)

The set of elementary circuits of Eo is exactly the set C = {CK = (1, . . . , N,K, 1);K ∈ {N + 1, 2N}}.
For any circuit CK ∈ C, τ(CK) = 0×N+2×1

N+2 = 2
N+2 .

It follows that the minimal cycle time τOPT that a strong spanning subdigraph of Gc can achieve
is such that τOPT ≤ 2

N+2 . Thus τ(H) ≥ N+2
4 τOPT for any Hamiltonian cycleH of Gc.

2.1.3.2 Node-capacitated networks

When silos do not enjoy high-speed connectivity, congestion at access links can become the
dominant contribution to network delays, especially when one silo communicates with many others.
Intuitively, in this setting, good overlays will exhibit small degrees.

If Go is required to be undirected, MCT can be reduced from the problem of finding the
minimum bottleneck spanning tree with bounded degree δ > 1 (δ-MBST for short), * which is
NP-hard.

Proposition 2.1.4. In node-capacitated networks MCT is NP-hard even when the overlay is required
to be undirected.

*A δ-MBST is a spanning tree with degree at most δ in which the largest edge delay is as small as possible.

2.1 – 2.1.3 Theoretical Results and Algorithms 31

We propose Algorithm 3, which combines existing approximation algorithms for δ-MBST on a
particular undirected graph built from Gc and denoted by G(u)

c (lines 1-3). Lemma C.4 establishes a
connection between the bottleneck of the MBST of G(u)

c and the cycle time of MCT on Gc when the
overlay is required to be undirected. To get an approximated 2-MBST on G(u)

c , we apply the best
known 3-approximation algorithm from [AR16, Sect. 3.2.1] (lines 6-8) which requires G(u)

c to be
Euclidean (Lemma C.5), and take its result as one candidate for our solution (line 9). The cube of
a graph G, denoted by G3, is the super-graph of G such that the edge (u, v) is in G3 if and only if
there is a path between u and v in G with three or fewer edges. It has been proved that the cube of
a connected graph is Hamiltonian and to find a Hamiltonian path in such a cube can be done in
polynomial time. * Other δ-BSTs built by Algorithm 4 for 3 ≤ δ ≤ N are considered as candidates
(lines 10-11) and we finally provide as solution the overlay with the smallest cycle time (line 13).

Algorithm 3: Approximation algorithm for MCT on node-capacitated networks.
Input :Gc = (V, Ec), uplink capacity CUP(i), end-to-end delay l(i, j), computation time

Tc(i) and model size M .
Result: Undirected overlay Go.

1 Create G(u)
c = (V, E(u)

c) where (i, j) ∈ E(u)
c iff (i, j) ∈ Ec and (j, i) ∈ Ec ;

2 for (i, j) ∈ E(u)
c do

3 d(u)(i, j) = [s× (Tc(i) + Tc(j)) + l(i, j) + l(j, i) + M
CUP(i) + M

CUP(j)]/2
4 end
5 S← ∅ ; // the set of candidate solutions

/* consider 2-MBST approximate solution on G(u)
c as one

candidate */

6 T ← a minimum weight spanning tree of G(u)
c ;

7 T 3 ← the cube of T ;
8 H ← a Hamiltonian path in T 3 ;
9 S← H;
/* consider other δ-BST for 3 ≤ δ ≤ N as candidates */

10 for δ ∈ {3, 4, 5, ..., N} do
11 S← S ∪ δ-PRIM(G(u)

c) // δ-PRIM(G(u)
c) gives a δ-BST on G(u)

c

12 end
/* choose the one with the minimum cycle time as output

overlay */
13 Go ← arg minG∈S τ̃(G)

*Jerome J.Karaganis. “On the cube of a graph,” 1968.

32 CHAPTER 2 — System Considerations in Heterogeneous Federated Learning

Algorithm 4: δ-PRIM[AR19]

1 Function δ-PRIM(G = (V, E)):
2 VT := {v0} for some v0 ∈ V;
3 ET := {};
4 T = (VT , ET);
5 while |ET | < |V| − 1 do
6 Find the smallest weight edge (u, v) such that u ∈ VT , v ̸∈ VT , and

DEGREET (u) < δ;
7 Add v to VT ;
8 Add (u, v) to ET ;
9 end

10 return T ;

Proposition 2.1.5. Algorithm 3 is a 6-approximation algorithm for MCT when Gc is node-
capacitated and Euclidean with CDN(j) = A(i′, j′) = ∞ for all j ∈ V , and Go is required
to be undirected.

Finding directed overlays is obviously an NP-hard problem also for node-capacitated networks.
Christofides’ algorithm holds its approximation factor also in this more general case:

Proposition 2.1.6. Christofides’ algorithm is a 3N -approximation algorithm for MCT when Gc is
node-capacitated and Euclidean.

2.1.4 Numerical Experiments

2.1.4.1 Time Simulator

Algorithm 5: Time Simulator
Input :(li,j)(i,j)∈G≀

, (T c
i)i∈V , (CDN(i))i∈V and (CUP(i))i∈V

Result: t ∈ RN×K

1 for i ∈ V do
2 ti(0) = 0
3 end
4 for k ∈ {1, . . . ,K} do

5 ti(k) = maxj∈N +
i

tj(k − 1) + l(i, j) + M

min
(

CUP(i)
|N −

i
|

,
CDN(j)
|N +

j
|

,A(i′,j′)
)
 .

6 ti(k) = ti(k) + s× Tc(i)
7 end

We adapted PyTorch with the MPI backend to run DPASGD (see (2.2)) on a GPU cluster. We
also developed a separate network simulator that takes as input an arbitrary underlay topology
described in the Graph Modeling Language [Him97] and silos’ computation times and calculates
the time instants at which local models wi(k) are computed according to (2.2). While PyTorch

2.1 – 2.1.4 Numerical Experiments 33

trains the model as fast as the cluster permits, the network simulator reconstructs the real time-
line on the considered underlay. The code is available at https://github.com/omarfoq/
communication-in-cross-silo-fl

The time simulator reconstructs the wall-clock time. We suppose that we have complete
knowledge about the underlay topology, i.e., we know the capacities of all physical links, and
the upload and download capacities for each silo. For a given overlay topology Go = (V, Eo), the
purpose of the proposed time simulator (Alg. 7) is to compute t(k) = (ti(k))1≤i≤N , i.e., the time
at which each silo starts computing for the k-th time. The simulator needs to compute the delay
required to send a message with a known size on each physical link of the underlay. This delay is
the sum of two terms [Lia+04]:

• Latency: it is the time required by the first transmitted bit to travel from the source to the
destination. The latency of a link (i, j) essentially depends on the length of the link and the
speed of the light in the link’s transmission medium. We have estimated the latency using the
formula proposed in [Gue+04]: 0.0085× distance(i, j) + 4, where the distance is expressed
in kilometers and the latency in milliseconds. The latency of a path is the sum of the link
latencies.

• Transmission Delay: it is the time between the reception of the first bit of the message and
the reception of the last bit. It depends on the capacities of each link along the path and the

other traffic. We compute it as M/min
(

CUP(i)
|N −

i | ,
CDN(j)
|N +

j | , A(i′, j′)
)

.

Finally, the simulator also accounts for the total time spent in computation by each node, that is
the the product of the number of local steps s and the time needed to perform one local step (in
milliseconds), i.e., s× Tc(i).

2.1.4.2 Networks and Communication model

We considered three real topologies from Rocketfuel engine [Spr+04] (Exodus and Ebone) and from
The Internet Topology Zoo [Kni+11] (Géant), and two synthetic topologies (AWS North-America
and Gaia) built from the geographical locations of AWS data centers [Hsi+17; AWS20] (Table 2.5).

For the synthetic topologies, we consider a full-meshed underlay. We assume all underlays
support a shortest path routing with metric the geographical distance (or equivalently the latency).
These topologies have between 11 and 87 nodes located in the same continent with the exception
of Gaia, which spans four continents. The Géant and Ebone network consist of European cities
and Exodus network consist of American cities. We considered that each node is connected to a
geographically close silo by a symmetric access link.

Some underlays and examples of overlays are shown in Figures 2.5, 2.4, and 2.6.

2.1.4.3 Datasets and Models

We provide full details on datasets and models used in our experiments. We use multiple datasets
spanning a wide range of machine learning tasks (sentiment analysis, language modeling, image
classification, handwritten character recognition), including those used in prior work on federated
learning [McM+17], and in LEAF [Cal+19] benchmark, and a cross-silo specific dataset based on
iNaturalist [Hor+18].

https://github.com/omarfoq/communication-in-cross-silo-fl
https://github.com/omarfoq/communication-in-cross-silo-fl

34 CHAPTER 2 — System Considerations in Heterogeneous Federated Learning

(a) Available bandwidth between some pairs of silos
in Géant as computed through our model.

(b) Available bandwidth measurements between Gaia
sites [Hsi+17, Fig. 2].

Figure 2.3: Our simulator with 1 Gbps capacity links generates a distribution of available bandwidths
with the same variability observed in real networks.

(a) Underlay (b) Star (c) MST (d) Ring

Figure 2.4: Géant Network: the underlay (a) and selected overlays computed when core links have 1 Gbps
capacity and access links have 10 Gbps capacity (b-d).

(a) Underlay (b) Star (c) MST (d) Ring

Figure 2.5: Gaia Network: the underlay (a) and selected overlays computed when core links have 1 Gbps
capacity and access links have 10 Gbps capacity (b-d).

2.1 – 2.1.4 Numerical Experiments 35

(a) Underlay (b) Star (c) MST (d) Ring

Figure 2.6: AWS-North America Network: the underlay (a) and selected overlays computed when core
links have 1 Gbps capacity and access links have 10 Gbps capacity (b-d).

iNaturalist dataset. iNaturalist [Hor+18] consists of images from over 5,000 different species
of plants and animals. We train the full dataset from iNaturalist 2018 competition * where the
geo-locations of these images are provided. For the sub-iNaturalist training, we use a subset of the
original iNaturalist dataset, by selecting images containing the 80 most popular species. †

In order to simulate a realistic cross-silo environment with non-iid local datasets, one can assign
the images to the geographically closest silo obtaining local datasets different in size and in the
species represented. This distribution would lead some silos to have no point. We decided then to
assign half of the images uniformly at random and half to the closest silo. Moreover, since most
of the images in iNaturalist are from North America, for European networks such as Ebone and
Géant, we mapped the European cities 90 degrees to the west. Table 2.2 shows that our method
generates quite unbalanced data distribution (e.g., for Ebone, one silo can have up to 43 times more
images than another one). Moreover Figure 2.7 shows pairwise Jenson-Shanon (JS) divergence
[Lin91] across workers labels distributions for different networks both using our method and when
the samples are distributed uniformly across the workers. The JS divergence across workers is
larger when the samples are distributed following our method in comparison the the uniform case,
suggesting that our data is non-iid.

To classify iNaturalist images we fine-tuned pretrained ResNet-18 and ResNet-50 on Ima-
geNet [Den+09] in particular we used the Torchvision [MR10] implementation of ResNet-18 and
ResNet-50.

LEAF datasets. LEAF [Cal+19] is a benchmark framework for learning in federated settings.
We used three LEAF datasets in our experiments on AWS North America network where we took
20% of the samples randomly as our dataset. ‡ Statistics for the corresponding data distributions
are in Table 2.3.

• FEMNIST (Federated Extended MNIST): A 62-class image classification dataset built by
partitioning the data of Extended MNIST based on the writer of the digits/characters. In our
experiments, we associate each silo with a random number of writers following a lognormal

*iNaturalist 2018 competition is part of the F GV C5 workshop at CVPR (https://github.com/
visipedia/inat_comp/blob/master/2018/README.md). This dataset (120GB) contains around 450, 000
images of 8142 different classes.

†The dataset size is reduced from 120 GB to 18 GB containing 67, 000 images. We sub-sample then 20% from this
dataset for training.

‡Actually, the amount of data we considered is comparable to the federated learning paper [Li+20a]: we considered
10 times more data for FEMNIST and the same amount of data for Sentiment140 and Shakespeare.

https://github.com/visipedia/inat_comp/blob/master/2018/README.md
https://github.com/visipedia/inat_comp/blob/master/2018/README.md

36 CHAPTER 2 — System Considerations in Heterogeneous Federated Learning

(a) Gaia (b) AWS NA (c) Géant (d) Exodus (e) Ebone

Figure 2.7: Pairwise Jensen-Shanon divergence across workers labels distributions for iNaturalist dataset on
different networks. First row is for data distributed with our method and second row is for data uniformly
distributed at random.

Table 2.2: Statistics of iNaturalist dataset distribution for different networks.

Network name Silos
Samples/silo

Mean Stdev Min Max

Gaia 11 37795 29986 19344 112745
AWS North America 22 18897 9915 10502 50727
Géant 40 10393 17535 5102 116498
Exodus 79 5262 3368 2710 18454
Ebone 87 4778 11222 2264 98886

distribution with mean equal to 5 and standard deviation equal to 1.5. We train a convolutional
neural network, similar to LeNet, with two convolutional layers followed by a max-pooling
layer and two fully connected layers.

• Shakespeare: A dataset built from The Complete Works of William Shakespeare, which is
partitioned by the speaking roles [McM+17]. In our experiment, we associate each silo with
a random number of speaking roles following a lognormal distribution with mean equal to 5
and standard deviation equal to 1.5. We consider character-level based language modeling on
this dataset. The model takes as input a sequence of 200 English characters and predicts the
next character. The model embeds the 200 characters into a learnable 16D embedding space,
and uses two stacked-GRU layers with 256 hidden units, followed by a densely-connected
layer.

• Sentiment140 [GBH09]: An automatically generated sentiment analysis dataset that an-
notates tweets based on their emoticons. In our experiment,we associate each silo with a
random number of twitter accounts following a lognormal distribution with mean equal to 5
and standard deviation equal to 1.5. We use a two layer bi-directional LSTM binary classifier
containing 256 hidden units with pretrained 100D GloVe embedding [PSM14].

2.1 – 2.1.4 Numerical Experiments 37

Table 2.3: Statistics of LEAF dataset distribution for AWS North America network (22 silos).

Dataset
Samples/silo

Mean Stdev Min Max

Shakespeare 36359 6837 24207 50736
FEMNIST 6847 7473 196 26469
Sentiment140 13101 14273 424 50562

2.1.4.4 Implementation Details

Machines. The experiments have been run on a CPU/GPU cluster, with different GPUs available
(e.g., Nvidia Tesla V100, GeForce GTX 1080 Ti, and Titan X).

Libraries. All code is implemented in PyTorch Version 1.4.0. We offer two possibilities for
running the code: sequential (using only one GPU) and parallel (using multiple GPUs). In the
parallel setting MPI backend is used for inter-GPU communications.

Hyperparameters. The dataset is randomly split into an 80% training set and a 20% testing
set. For LEAF and sub-iNaturalist datasets, when training on Gaia, AWS North America, and
Géant networks, the initial learning rate is set to 0.001 with Adam optimizer. When training on
Exodus and Ebone networks, the initial learning rate is set to 0.1 with SGD optimizer. We decay
the learning rate based on the inverse square root of the communication rounds. For iNaturalist
dataset, when training on Gaia, AWS North America and Géant networks, the initial learning rate is
set to 5e-5 with Adam optimizer. When training on Exodus and Ebone networks, the initial learning
rate is set to 0.1 with SGD optimizer. We decay the learning rate by half every epoch.

The batch size is set to 512 for Sentiment140 and Shakespeare datasets, to 128 for Femnist
dataset, to 16 for sub-iNaturalist dataset and to 96 for iNautralist dataset.

Consensus Matrix. For a given overlay Go = (V, Eo), the consensus matrix A is selected
according to the local-degree rule [LB03]. The weight on an arc is based on the larger in-degree of
its two incident nodes:

Ai,j = 1
1 + max{|N−

i |, |N
−
j |}

, ∀(i, j) ∈ Eo (2.12)

Ai,i = 1−
∑

j∈N −
i

Ai,j , ∀i ∈ V. (2.13)

The matrix A so-built is doubly stochastic. The weights can be determined in a fully-distributed
way: every node just needs to exchange degree information with its neighbours.

MATCHA. We implemented MATCHA as described in [Wan+19a] but for one difference. In
MATCHA each matching is selected independently with some probability. With some probability
no matching is selected and then no communication occurs. This is equivalent to perform a random
number of local steps s between two communication rounds. In order to compare fairly the different

38 CHAPTER 2 — System Considerations in Heterogeneous Federated Learning

Table 2.4: Datasets and Models. Mini-batch gradient computation time with NVIDIA Tesla P100.

Dataset Task Samples Batch Model Parameters Model Size Computation
(x 103) Size (x 103) (Mbits) Time (ms)

Shakespeare Next-Character Prediction 4, 226 512 Stacked-GRU 840 3.23 389.6
FEMNIST Image classification 805 128 2-layers CNN 1, 207 4.62 4.6
Sentiment140 Sentiment analysis 1, 600 512 GloVe + LSTM 4, 810 18.38 9.8
sub-iNaturalist Image classification 13 16 ResNet-18 11, 217 42.88 25.4
iNaturalist Image classification 450 96 ResNet-50 25, 557 161.06 946.7

approaches and isolate the effect of s, we fixed s also for MATCHA as follows. Silos perform
a given number of local steps s and then, when a communication should occur, matchings are
independent sampled until at least one of them is selected. In practice, in our experiments there
was always a matching selected with probability almost one, so that the two approaches are not
practically distinguishable. Finally, we observe that MATCHA computes the matchings coloring
an initial topology, but it is not explained how this initial topology is selected. MATCHA and
MATCHA+ operate exactly in the same way but starting from two different initial topologies:
the connectivity graph Gc and the underlay Gu, respectively. The silos can easily discover the
connectivity graph Gc; reconstructing the underlay is much more complicated. Nevertheless, as
MATCHA+ was in general outperforming MATCHA, we showed the results for MATCHA+.

We evaluated our solutions on three standard federated datasets from LEAF [Cal+19] and
on iNaturalist dataset [Hor+18] with geolocalized images from over 8, 000 different species of
plants and animals (Table 2.4). We trained ResNet-18 and ResNet-50 on a sub-set and a full-set of
iNaturalist dataset respectively to simulate different training environments in silos (i.e., different
computation times and model sizes). For LEAF datasets, we generated non-iid data distributions
following the procedure in [Li+20a]. For iNaturalist we assigned half of the images uniformly
at random and half to the closest silo obtaining local datasets different in size and in the species
represented.

2.1.4.5 Main Results

Table 2.5 shows the effect of 6 different overlays when training ResNet-18 over sub-iNaturalist in
networks with capacities equal to 1 Gbps and 10 Gbps for core links and access links, respectively.*
These overlays are (1) the STAR, corresponding to the usual master-slave setting, where the
orchestrator (located at the node with the highest load centrality [Bra08]) averages all models
at each communication round, (2) a dynamic topology built from MATCHA starting from the
connectivity graph, (3) one built starting from the underlay and denoted as MATCHA+ (in both cases
MATCHA’s parameter Cb equals 0.5 as in experiments in [Wan+19a]), (4) the minimum spanning
tree (MST) from Prop. 2.1.1, (5) the δ-minimum bottleneck tree (δ-MBST) from Prop. 2.1.5, and
(6) the directed RING from Prop. 2.1.6. In this particular setting, δ-MBST selects the same overlay
as MST. The consensus matrix A is selected according to the local-degree rule [LB03].

The overlays found by our algorithms achieve a higher throughput (smaller cycle time) than
the STAR (the master-slave architecture) and, in most cases, than state-of-the-art MATCHA(+). †

*The delay in the core network is determined by the available bandwidth as in (2.3). Available bandwidths are
often limited to tens or hundreds of Mbps even over inter-datacenter links with capacities between 100 Gbps and
1 Tbps [Hsi+17; LL17; Per+17; Kat+18]. By selecting 1 Gbps core links in our simulator, which ignores other traffic, we
obtain available bandwidth distributions comparable to those observed in experimental studies like [Hsi+17].

†As MATCHA(+) overlays are random, we compute their empirical cycle time.

2.1 – 2.1.4 Numerical Experiments 39

Table 2.5: Sub-iNaturalist training over different networks. 1 Gbps core links capacities, 10 Gbps
access links capacities. One local computation step (s = 1).

Network name Silos Links Cycle time (ms) Ring’s training speed-up
STAR MATCHA(+) MST δ-MBST RING vs STAR vs MATCHA(+)

Gaia [Hsi+17] 11 55 391 228 (228) 138 138 118 2.65 1.54 (1.54)
AWS North America [AWS20] 22 231 288 124 (124) 90 90 81 3.41 1.47 (1.47)
Géant [20a] 40 61 634 452 (106) 101 101 109 4.85 3.46 (0.81)
Exodus [Mah+02] 79 147 912 593 (142) 145 145 103 8.78 5.71 (1.37)
Ebone [Mah+02] 87 161 902 580 (123) 122 122 95 8.83 6.09 (1.29)

Table 2.6: iNaturalist training over different networks. 1 Gbps core links capacities, 1 Gbps access
links capacities. One local computation step (s = 1).

Network name Silos Links Cycle time (ms) Ring’s training speed-up
STAR MATCHA(+) MST δ-MBST RING vs STAR vs MATCHA(+)

Gaia [Hsi+17] 11 55 4444 2721 (2721) 1498 1363 1156 3.84 12.10 (12.10)
AWS North America [AWS20] 22 231 7785 4384 (4384) 1441 1297 1119 6.96 23.50 (23.50)
Géant [20a] 40 61 13585 4912 (1894) 1944 1464 1196 11.35 4.10 (1.58)
Exodus [Mah+02] 79 147 26258 6180 (1825) 2078 1481 1194 13.74 2.59 (0.96)
Ebone [Mah+02] 87 161 28753 8045 (1933) 2448 1481 1178 19.52 5.80 (1.39)

(a) Shakespeare (b) FEMNIST (c) Sentiment140 (d) iNaturalist

Figure 2.8: Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock
time (bottom row) when training four different datasets on AWS North America underlay. 1 Gbps core links
capacities, 100 Mbps access links capacities, s = 1.

40 CHAPTER 2 — System Considerations in Heterogeneous Federated Learning

(a) Homogeneous access link capacities (b) Central node with 10 Gbps access link capacity

Figure 2.9: Effect of access link capacities on the cycle time and the training time when training iNaturalist
on Géant network. 1 Gbps core links capacities, s = 1. (2.9a): All access links have the same capacity. (2.9b):
One node (the center of the star) has a fixed 10 Gbps access link capacity. The training time is the time when
training accuracy reaches 55%.

In particular, the RING is between 3.3 (≈ 391/118 on Gaia) and 9.4 (≈ 902/95 on Ebone) times
faster than the STAR and between 1.5 and 6 times faster than MATCHA. MATCHA+ relies on the
knowledge of the underlay—probably an unrealistic assumption in an Internet setting—while our
algorithms only require information about the connectivity graph. Still, the RING is also faster than
MATCHA+ but on Géant network (where MST is the fastest overlay). From now on, we show only
the results for MATCHA+, as it outperforms MATCHA.

The final training time is the product of the cycle time and the number of communication
rounds required to converge. The overlay also influences the number of communication rounds,
with sparser overlays demanding more rounds [NOR18; DAW12].The last two columns in the
table show that this is a second order effect: the RING requires at most 20% more communication
rounds than the STAR and then maintains almost the same relative performance in terms of the
training time. * These results (and those in Fig. 2.8) confirm that the number of communication
rounds to converge is weakly sensitive to the topology (as already observed in [Lia+17; Lia+18;
KSJ19; Luo+19] and partially explained in [POP20a; Ass+19; Neg+20]): overlays should indeed
be designed for throughput improvement—as our algorithms do.

Table 2.6 shows the effect of 6 different overlays when training ResNet-50 over (full) iNaturalist
in networks with capacities equal to 1 Gbps for core links and access links. †

The same qualitative results hold for other datasets and Fig. 2.8 shows the training loss versus
the number of communication rounds (top row) and versus time (bottom row) when training on
AWS North America with 100 times slower access links. The advantage of designing the topology
on the basis of the underlay characteristics is evident also in this setting.

Figure 2.9 illustrates the effect of access link speeds on the cycle time and the training time.
When all silos have the same access link capacity (Fig. 2.9a), for capacity values smaller than
6 Gbps, the RING has the largest throughput followed by δ-MBST, MST and MATCHA+ almost
paired, and finally the STAR. In fact, Eq. (2.5) shows that, with N silos, the RING is up to 2N (=80
for Géant) times faster than the STAR and Cb×max(degree(Gu)) (= 5 for Géant) times faster then
MATCHA(+) for slow access links as confirmed in Fig. 2.9a (left plot). RING’s throughput speedups

*Training time is evaluated as the time to reach a training accuracy equal to 65%, 55%, 55%, 50% and 50% for
Gaia, AWS North America, Géant, Exodus, and Ebone networks, respectively. Note that data distribution is different in
each networks, so that a different global model is learned when solving Problem (2.1).

†Training time is evaluated as the time to reach a Top 5 training accuracy equal to 18% for Gaia and to 13% for
other networks. Full iNaturalist contains 400,000 training images covering 8142 classes. The top 5 training accuracy
reached by centralized training ResNet-50 after 50 epochs is up to around 20%.

2.2 – 2.1.5 Conclusion 41

Figure 2.10: Throughput speedup in comparison to the STAR, when training iNaturalist over
Exodus network. All links with 1 Gbps capacity.

lead to almost as large training time speedups, even larger than those in Table 2.5: e.g. 72× in
comparison to the STAR and 5.6× in comparison to MATCHA+ for 100 Mbps access link capacities.
When the most central node (which is also the center of the STAR) maintains a fixed capacity value
equal to 10 Gbps (Fig. 2.9b), the STAR performs better, but still is twice slower than the RING and
only as fast as δ-MBST. This result may appear surprising at first, but it is another consequence of
Eq. (2.5). Again the relative performance of different overlays in terms of throughput is essentially
maintained when looking at the final training time, with differences across topologies emerging
only for those with very close throughputs, i.e., MST and MATCHA+, and STAR and δ-MBST in
the heterogeneous setting.

When local computation requires less time than transmission of model updates, the silo may per-
form s local computation steps before a communication round. As s increases, the total computation
time (s× Tc(i)) becomes dominant in (2.3) and the throughput of different overlays become more
and more similar (Fig. 2.10). * Too many local steps may degrade the quality of the final model,
and how to tune s is still an open research area [Wan+20c; WJ19; Lin+20b; Woo+20; Kol+20]. Our
next research goal is to study this aspect in conjunction with topology design. Intuitively, a faster
overlay reduces the number of local steps needed to amortize the communication cost and may lead
to better models given the available time budget for training.

2.1.5 Conclusion

We used the theory of max-plus linear systems to propose topology design algorithms that can
significantly speed-up federated learning training by maximizing the system throughput. Our
results show that this approach is more promising than targeting topologies with the best algebraic
connectivity, as MATCHA(+) does.

Expanding upon the concept of targeting topologies with high throughput, rather than exclu-
sively aiming for optimal consensus rates, recent research conducted by Takezawa et al. [Tak+23]
introduces topologies that boast both rapid consensus rates and minimal maximum degree. Unlike
existing topologies, their design, known as Base-(k + 1) Graph, guarantees that all nodes reach
exact consensus after a finite number of iterations, regardless of the number and maximum degree
k.

Related to the problem of topology design, several recent works [Dan+22; Le +23] have started
to consider data heterogeneity when crafting fully-decentralized learning topologies.

*In Appendix C.2 we show tables similar to Table 2.5 for different values of s.

42 CHAPTER 2 — System Considerations in Heterogeneous Federated Learning

2.2 Federated Learning under Heterogeneous and Correlated Client
Availability

In Section 1.4.1.2, we have seen that clients exhibit a diverse range of characteristics, encom-
passing disparities in storage capacity, computational resources, and communication capabilities.
These disparities arise from variations in hardware specifications (CPU power, memory capac-
ity),network connectivity types (3G, 4G, 5G, WiFi), and power availability (battery levels). In
the cross-device settings, these system constraints affect the availability/activity of the clients. In
general, the clients exhibit heterogeneous availability patterns, often correlated over time and with
other clients. This chapter addresses the problem of heterogeneous and correlated client availability
in FL. Our theoretical analysis is the first to demonstrate the negative impact of correlation on
FL algorithms’ convergence rate and highlights a trade-off between optimization error (related
to convergence speed) and bias error (indicative of model quality). To optimize this trade-off, we
propose Correlation-Aware FL (CA-Fed), a novel algorithm that dynamically balances the compet-
ing objectives of fast convergence and minimal model bias. CA-Fed achieves this by dynamically
adjusting the aggregation weight assigned to each client and selectively excluding clients with high
temporal correlation and low availability. Experimental evaluations on diverse datasets demonstrate
the effectiveness of CA-Fed compared to state-of-the-art methods. Specifically, CA-Fed achieves
the best trade-off between training time and test accuracy. By dynamically handling clients with
high temporal correlation and low availability, CA-Fed emerges as a promising solution to mitigate
the detrimental impact of correlated client availability in FL.

2.2.1 Introduction

In the original FedAvg algorithm [McM+17], described in Section 1.2, a central server selects a
random subset of clients from the set of available clients and broadcasts them the shared model.
The sampled clients perform a number of independent Stochastic Gradient Descent (SGD) steps
over their local datasets and send their local model updates back to the server. Then, the server
aggregates all the received client updates to produce a new global model, and a new training round
begins. In each iteration of FedAvg, typically a few hundred devices are chosen randomly by the
server to participate [Eic+19; Wan+21a].

In real-world scenarios, the availability/activity of clients is dictated by exogenous factors that
are beyond the control of the orchestrating server and hard to predict, as previously elucidated
in Section 1.4.1.2. For example, only smartphones that are idle, under charge, and connected
to broadband networks are commonly allowed to participate in the training process [McM+17;
Bon+19]. These eligibility requirements can make the availability of devices correlated over time
and space [Eic+19; Din+20; Zhu+22; Doa20]. For example, temporal correlation may origin from
a smartphone being under charge for a few consecutive hours and then ineligible for the rest of
the day. Similarly, the activity of a sensor powered by renewable energy may depend on natural
phenomena intrinsically correlated over time (e.g., solar light). Spatial correlation refers instead to
correlation across different clients, which often emerges as consequence of users’ geographical
distribution. For example, clients in the same time zone often exhibit similar availability patterns,
e.g., due to time-of-day effects.

Temporal correlation in the data sampling procedure is known to negatively affect the perfor-
mance of ML training even in the centralized setting [Doa+20a; SSY18] and can potentially lead to
catastrophic forgetting: the data used during the final training phases can have a disproportionate

2.2 – 2.2.2 Background and Related Works 43

effect on the final model, “erasing” the memory of previously learned information [MC89; Kir+17].
Catastrophic forgetting has also been observed in FL, where clients in the same geographical
area have more similar local data distributions and clients’ participation follows a cyclic daily
pattern (leading to spatial correlation) [Eic+19; Din+20; Zhu+22; Tan+22c]. Despite this evidence,
a theoretical study of the convergence of FL algorithms under temporally and spatially correlated
client participation is still missing.

This section provides a convergence analysis of FedAvg [McM+17] under heterogeneous
and correlated client availability. We assume that clients’ temporal and spatial availability follows
an arbitrary finite-state Markov process: this assumption models a realistic scenario in which the
activity of clients is correlated and, at the same time, still allows the analytical tractability of the
system. Our theoretical analysis (i) quantifies the negative effect of correlation on the algorithm’s
convergence rate through an additional term depending on the spectral properties of the Markov
chain; (ii) points out a trade-off between two conflicting objectives: slow convergence to the optimal
model, or fast convergence to a biased model, i.e., a model that minimizes an objective function
different from the initial target. Guided by insights from the theoretical analysis, we propose
CA-Fed, a federated learning algorithm which dynamically assigns weights to clients and balances
the trade-off between maximizing convergence speed and minimizing model bias. Interesting
that CA-Fed can decide to ignore clients with low availability and large time-correlation. Our
experimental results demonstrate that excluding clients with high temporal correlation and low
availability is an effective approach to handle the heterogeneous and correlated client availability in
federated learning. Indeed, while CA-Fed achieves a comparable maximum test accuracy as the
state-of-the-art methods F3AST [RVd23] and AdaFed [Tan+22a], it achieves a higher time-average
and a lower standard deviation of the test accuracy.

The remainder of this section is organized as follows. The next section describes the problem
of correlated device availability in FL and discusses the main related works. Section 2.2.3 pro-
vides a convergence analysis of FedAvg under heterogeneous and correlated device participation.
CA-Fed, our correlation-aware FL algorithm, is presented in Section 2.2.4. We evaluate CA-Fed
in Section 2.2.6, comparing it with other state-of-the-art methods. Section 2.2.7 concludes the
section.

2.2.2 Background and Related Works

We consider a finite set K of N clients. Each client k ∈ K holds a local dataset Dk. Clients aim
to jointly learn the parameters w ∈W ⊆ Rd of a global ML model (e.g., the weights of a neural
network architecture). During training, the quality of the model with parameters w on a data sample
ξ ∈ Dk is measured by a loss function f(w; ξ). The clients solve, under the orchestration of a
central server, the following optimization problem:

min
w∈W ⊆Rd

F (w) :=
∑
k∈K

αkFk(w)

 , (2.14)

where Fk(w) := 1
|Dk|

∑
ξ∈Dk

f(w; ξ) is the average loss computed on client k’s local dataset, and
α = (αk)k∈K are positive coefficients such that

∑
k αk = 1. They represent the target importance

assigned by the central server to each client k. Typically (αk)k∈K are set proportional to the clients’
dataset size |Dk|, such that the objective function F in (2.14) coincides with the average loss
computed on the union of the clients’ local datasets D = ∪k∈KDk.

44 CHAPTER 2 — System Considerations in Heterogeneous Federated Learning

Under proper assumptions, precised in Section 4.4.3.2, Problem (2.14) admits a unique solution.
We use w∗ (resp. F ∗) to denote the minimizer (resp. the minimum value) of F . Moreover, for
k ∈ K, Fk admits a unique minimizer. We use w∗

k (resp. F ∗
k) to denote the minimizer (resp. the

minimum value) of Fk.
Problem (2.14) is commonly solved through iterative algorithms [McM+17; Wan+21a] requiring

multiple communication rounds between the server and the clients. At round t > 0, the server
broadcasts the latest estimate of the global model wt,0 to the set of available clients (At). Client
k ∈ At updates the global model with its local data through E ≥ 1 steps of local Stochastic
Gradient Descent (SGD):

wk
t,j+1 = wk

t,j − ηt∇Fk(wk
t,j ,Bk

t,j) j = 0, . . . , E − 1, (2.15)

where ηt > 0 is an appropriately chosen learning rate, referred to as local learning rate; Bk
t,j

is a random batch sampled from client-k’s local dataset at round t and step j; ∇Fk(·,B) :=
1

|B|
∑

ξ∈B∇f(·, ξ) is an unbiased estimator of the local gradient ∇Fk. Then, each client sends its
local model update ∆k

t := wk
t,E −wk

t,0 to the server. The server computes ∆t :=
∑

k∈At
qk ·∆k

t ,
a weighted average of the clients’ local updates with non-negative aggregation weights q =
(qk)k∈K. The choice of the aggregation weights defines an aggregation strategy (we will discuss
different aggregation strategies later). The aggregated update ∆t can be interpreted as a proxy for
−∇F (wt,0); the server applies it to the global model:

wt+1,0 = ΠW (wt,0 + η̄ ·∆t) , (2.16)

where ΠW (·) denotes the projection over the set W , and η̄ > 0 is an appropriately chosen learning
rate, referred to as the server learning rate.*

The aggregate update ∆t is generally a biased estimator of the pseudo-gradient −∇F (wt,0), to
which each client k contributes proportionally to its frequency of appearance in the set At and its
aggregation weight qk. More specifically, under proper assumptions specified in Section 2.2.3, we
will prove in Theorem 2.2.3 that the update rule described by (2.15) and (2.16) converges to the
unique minimizer of a biased global objective FB . This objective function depends depends both
on the clients’ availability (i.e., on the sequence (At)t>0) and on the aggregation strategy (i.e., on
q = (qk)k∈K):

FB(w) :=
∑N

k=1 pkFk(w), with pk := πkqk∑N

h=1 πhqh

, (2.17)

where πk represents the asymptotic availability of client k, defined as πk := limt→+∞ P(k ∈ At).
We denote π = (πk)k∈K. Moreover, the coefficients p = (pk)k∈K in (2.17) can be interpreted as
the biased importance the server is giving to each client k during training, in general different
from the target importance α. In what follows, w∗

B (resp. F ∗
B) denotes the minimizer (resp. the

minimum value) of FB .
In some large-scale FL applications, like training Google keyboard next-word prediction models,

each client participates in training at most for one round. The orchestrator usually selects a few
hundred clients at each round for a few thousand rounds (e.g., see [Kai+21, Table 2]), but the
available set of clients may include hundreds of millions of Android devices. In this scenario, it is

*The aggregation rule (2.16) has been considered also in other works, e.g., [NAS18; Red+21; Wan+21a]. In other FL
algorithms, the server computes an average of clients’ local models. This aggregation rule can be obtained with minor
changes to (2.16).

2.2 – 2.2.2 Background and Related Works 45

difficult to address the potential bias unless there is some a-priori information about each client’s
availability. Anyway, FL can be used by service providers with access to a much smaller set of
clients (e.g., smartphone users that have installed a specific app). In this case, a client participates
multiple times in training: the orchestrating server may keep track of each client’s availability and
try to compensate for the potentially dangerous heterogeneity in their participation.

Much previous effort on federated learning [McM+17; Li+19; Li+20a; CHR22; Fra+21;
Tan+22c; Tan+22a; RVd23] considered this problem and, under different assumptions on the
clients’ availability (i.e., on (At)t>0), designed aggregation strategies that unbias ∆t through an
appropriate choice of q. Reference [Li+19] provides the first analysis of FedAvg on non-iid data
under clients’ partial participation. Their analysis covers both the case when active clients are sam-
pled uniformly at random without replacement from K and assigned aggregation weights equal to
their target importance (as assumed in [McM+17]), and the case when active clients are sampled iid
with replacement from K with probabilities α and assigned equal weights (as assumed in [Li+20a]).
However, references [McM+17; Li+19; Li+20a] ignore the variance induced by the clients stochas-
tic availability. The authors of [CHR22] reduce such variance by considering only the clients with
important updates, as measured by the value of their norm. References [Tan+22c] and [Fra+21]
reduce the aggregation variance through clustered and soft-clustered sampling, respectively.

Some recent works [Tan+22a; RVd23; JWJ22] do not actively pursue the optimization of the
unbiased objective. Instead, they derive bounds for the convergence error and propose heuristics to
minimize those bounds, potentially introducing some bias. Our work follows a similar development:
we compare our algorithm with F3AST from [RVd23] and AdaFed from [Tan+22a].

The novelty of our study is in considering the spatial and temporal correlation in clients’
availability dynamics. As discussed in Section 2.2.1, such correlations are also introduced by
clients’ eligibility criteria, e.g., smartphones being under charge and connected to broadband
networks. The effect of correlation has been ignored until now, probably due to the additional
complexity in studying FL algorithms’ convergence. To the best of our knowledge, the only
exception is [RVd23], which scratches the issue of spatial correlation by proposing two different
algorithms for the case when clients’ availabilities are uncorrelated and for the case when they are
positively correlated (there is no smooth transition from one algorithm to the other as a function of
the degree of correlation).

The effect of temporal correlation on centralized stochastic gradient methods has been addressed
in [SSY18; Doa+20a; Doa+20b; Doa20]: these works study a variant of stochastic gradient descent
where samples are drawn according to a Markov chain. Reference [Doa20] extends its analysis to a
FL setting where each client draws samples according to a Markov chain. In contrast, our work does
not assume a correlation in the data sampling but rather in the client’s availability. Nevertheless,
some of our proof techniques are similar to those used in this line of work and, in particular, we
rely on some results in [SSY18].

46 CHAPTER 2 — System Considerations in Heterogeneous Federated Learning

2.2.3 Analysis

2.2.3.1 Main assumptions

We consider a time-slotted system where a slot corresponds to a single FL communication round.
We assume that clients’ availability over the timeslots t ∈ N follows a discrete-time Markov chain
(At)t≥0.*

Assumption 3. The Markov chain (At)t≥0 on the M -finite state spaceM is time-homogeneous,
irreducible, and aperiodic. It has transition matrix P , stationary distribution ρ, and has state
distribution ρ at time t = 0.

Markov chains have already been used in the literature to model the dynamics of stochastic net-
works where some nodes or edges in the graph can switch between active and inactive states [MY21;
OYJ97]. The previous Markovian assumption, while allowing a great degree of flexibility, still
guarantees the analytical tractability of the system. The distance dynamics between the current
and the stationary distributions of the Markov process can be characterized in terms of the spectral
properties of its transition matrix P [LP17]. Let λ̄2(P) denote the the second largest module of the
eigenvalues of P . Previous work [SSY18] has shown that:

max
i,j∈[M]

∣∣[P t]i,j − ρj

∣∣ ≤ CP · λ(P)t, for t ≥ TP , (2.18)

where the parameters λ(P) := (λ̄2(P) + 1)/2, CP , and TP are positive constants whose values
are defined in [SSY18, Lemma 1] and reported for completeness in Appendix D.2.2, Lemma D.17.†

Note that λ(P) quantifies the correlation of the Markov process (At)t≥0: the closer λ(P) is to one,
the slower the Markov chain converges to its stationary distribution.

In our analysis, we make the following additional assumptions.

Assumption 4. The hypothesis class W is convex and compact with diameter diam(W), and
contains the minimizers w∗,w∗

B,w
∗
k in its interior.

The following assumptions concern clients’ local objective functions {Fk}k∈K. Assumptions 5
and 6 are standard in the literature on convex optimization [BCN18, Sections 4.1, 4.2]. Assumption 7
is a standard hypothesis in the analysis of federated optimization algorithms [Wan+21a, Section 6.1].

Assumption 5 (L-smoothness). The local functions {Fk}Nk=1 have L-Lipschitz continuous gradients:
Fk(v) ≤ Fk(w) + ⟨∇Fk(w),v −w⟩+ L

2 ∥v −w∥22, ∀v,w ∈W .

Assumption 6 (Strong convexity). The local functions {Fk}Nk=1 are µ-strongly convex: Fk(v) ≥
Fk(w) + ⟨∇Fk(w),v −w⟩+ µ

2 ∥v −w∥22 , ∀v,w ∈W .

Assumption 7 (Bounded variance). The variance of stochastic gradients in each device is bounded:
E∥∇Fk(w,B)−∇Fk(w)∥2 ≤ σ2

k, k = 1, . . . , N .

Assumptions 4–7 imply the following properties for the local functions, described by
Lemma 2.2.1 (proof in Appendix D.2).

*In Section 2.2.3.4 we will focus on the case where this chain is the superposition of N independent Markov chains,
one for each client.

†Note that (2.18) holds for different definitions of λ(P) as long as λ(P) ∈ (λ̄2(P), 1). The specific choice for
λ(P) changes the values of CP and TP .

2.2 – 2.2.3 Analysis 47

Lemma 2.2.1. Under Assumptions 4–7, there exist constants D, G, and H > 0, such that, for all
w ∈W and k ∈ K, we have:

∥∇Fk(w)∥ ≤ D, (2.19)

E∥∇Fk(w,B)∥2 ≤ G2, (2.20)

|Fk(w)− Fk(w∗
B)| ≤ H. (2.21)

Similarly to other works [Li+19; Li+20a; Wan+20b; Wan+21a], we introduce a metric to
quantify the heterogeneity of clients’ local datasets, typically referred to as statistical heterogeneity:

Γ := max
k∈K
{Fk(w∗)− F ∗

k }. (2.22)

If the local datasets are identical, the local functions {Fk}k∈K coincide among them and with
F , w∗ is a minimizer of each local function, and Γ = 0. In general, Γ is smaller the closer the
distributions the local datasets are drawn from.

2.2.3.2 Main theorems

Theorem 2.2.2 (Decomposing the total error). Let κ := L/µ. Under Assumptions 4–6, the opti-
mization error of the target global objective ϵ = F (w)− F ∗ can be bounded as follows:

ϵ ≤ 2κ2(FB(w)− F ∗
B︸ ︷︷ ︸

:=ϵopt

+F (w∗
B)− F ∗︸ ︷︷ ︸

:=ϵbias

). (2.23)

Moreover, let χ2
α∥p

:=
∑N

k=1 (αk − pk)2/pk. Then:

ϵbias ≤ κ2 · χ2
α∥p · Γ︸ ︷︷ ︸
:=ϵ̄bias

. (2.24)

Theorem 2.2.2 (proof in Appendix D.1) decomposes the error of the target objective (ϵ)
as the sum of an optimization error for the biased objective (ϵopt) and a bias error (ϵbias). The
term ϵopt, evaluated on the trajectory determined by scheme (2.16), quantifies the optimization error
associated with the biased objective FB and asymptotically vanishes (see Theorem 2.2.3 below).
The non-vanishing bias error ϵbias captures the discrepancy between F (w∗

B) and F ∗. This term is
bounded by the chi-square divergence χ2

α∥p between the target and biased probability distributions
α = (αk)k∈K and p = (pk)k∈K, and by Γ, that quantifies the degree of heterogeneity of the local
functions. When all local functions are identical (Γ = 0), the bias term ϵbias also vanishes. For
Γ > 0, the bias error can still be controlled by the aggregation weights assigned to the devices. In
particular, the bias term vanishes when qk ∝ αk/πk, ∀k ∈ K. Since it asymptotically cancels the
bias error, we refer to this choice as unbiased aggregation strategy.

However, in practice, FL training is limited to a finite number of iterations T (typically a few
hundreds [Eic+19; Kai+21]), and the previous asymptotic considerations may not apply. In this
regime, the unbiased aggregation strategy can be sub-optimal, since the minimization of ϵbias not
necessarily leads to the minimization of the total error ϵ ≤ 2κ2(ϵopt + ϵbias). This motivates the
analysis of the optimization error ϵopt.

48 CHAPTER 2 — System Considerations in Heterogeneous Federated Learning

Theorem 2.2.3 (Convergence of the optimization error ϵopt). Let Assumptions 3–7 hold and the
constants M,L,D,G,H,Γ, σk, CP , TP , and λ(P) defined above. Let Q :=

∑
k∈K qk. We require

a diminishing step-size ηt > 0 satisfying:

η1 ≤ 1
2L(1+2EQ) ,

+∞∑
t=1

ηt = +∞,
+∞∑
t=1

ln(t) · η2
t < +∞. (2.25)

Let T denote the total communication rounds. For T ≥ TP , the expected optimization error can be
bounded as follows:

E[FB(w̄T,0)− F ∗
B] ≤

1
2 q⊺Σq+υ

π⊺q + ψ + ϕ
ln(1/λ(P))

(
∑T

t=1 ηt)
,︸ ︷︷ ︸

:=ϵ̄opt

(2.26)

where w̄T,0 :=
∑T

t=1 ηtwt,0∑T

t=1 ηt
, and

Σ := diag(2(E + 1)σ2
kπk

∑+∞
t=1 η

2
t),

υ := 2
E diam(W)2 + 1

4MQ
∑+∞

t=1 (η2
t + 1

t2),
ψ := (4L(1 + EQ)Γ + 2E2G2)

∑+∞
t=1 η

2
t +H(

∑TP −1
t=1 ηt),

Jt := min {max {⌈ln (2CPHt)/ln (1/λ(P))⌉ , TP } , t} ,
ϕ := 2EDGQ

∑+∞
t=1 ln(2CPHt)η2

t−Jt
.

Theorem 2.2.3 (proof in Appendix D.2) proves convergence of the expected biased objective
FB to its minimum F ∗

B under correlated client participation. Our bound (2.26) captures the effect
of correlation through the factor ln (1/λ(P)): a high correlation worsens the convergence rate. In
particular, we found that the numerator of (2.26) has a quadratic-over-linear fractional dependence
on q. Minimizing ϵ̄opt leads, in general, to a different choice of q than minimizing ϵ̄bias.

2.2.3.3 Minimizing the total error ϵ ≤ 2κ2(ϵ̄opt + ϵ̄bias)

Our analysis points out a trade-off between minimizing ϵ̄opt or ϵ̄bias. Our goal is to find the optimal
aggregation weights q∗ that minimize the upper bound on total error ϵ(q) in (2.23):

minimize
q

ϵ̄opt(q) + ϵ̄bias(q);

subject to q ≥ 0,
∥q∥1 = Q.

(2.27)

In Appendix D.4 we prove that (2.27) is a convex optimization problem, which can be solved
with the method of Lagrange multipliers. However, its solution lacks practical utility because the
constants in (2.23) and (2.26) (e.g., L, µ, Γ, CP) are in general problem-dependent and difficult
to estimate during training. In particular, Γ poses particular difficulties as it is defined in terms
of the minimizer of the target objective F , but the FL algorithm generally minimizes the biased
function FB . Moreover, the bound in (2.23), as well as the bound in [Wan+20b], diverges when
setting some qk values equal to 0, but this divergence is merely an artifact of the proof technique.
For more practical considerations, we present the following result (proof in Appendix D.3):

2.2 – 2.2.3 Analysis 49

Theorem 2.2.4 (An alternative bound on the bias error ϵbias). Under the same assumptions of
Theorem 2.2.2, define Γ′ := maxk{Fk(w∗

B)− F ∗
k }. The following result holds:

ϵbias ≤ 4κ2 · d2
T V (α,p) · Γ′︸ ︷︷ ︸

:=ϵ̄′
bias

, (2.28)

where dT V (α,p) := 1
2
∑N

k=1|αk − pk| is the total variation distance between the probability
distributions α and p.

The new constant Γ′ is defined in terms of w∗
B , and then it is easier to evaluate during training.

However, Γ′ depends on q, because it is evaluated at the point of minimum of FB . This dependence
makes the minimization of the right-hand side of (2.28) more challenging (for example, the
corresponding problem is not convex). We study the minimization of the two terms ϵ̄opt and ϵ̄′bias
separately and learn some insights, which we use to design the new FL algorithm CA-Fed.

2.2.3.4 Minimizing ϵ̄opt

The minimization of ϵ̄opt is still a convex optimization problem (Appendix D.5). In particular, at the
optimum, non-negative weights are set accordingly to q∗

k = a(ι∗πk − θ∗) with a and ι∗ positive
constants (Appendix D.5.2). It follows that clients with smaller availability get smaller weights
in the aggregation. In particular, this suggests that clients with the smallest availability can be
excluded from the aggregation, leading to the following guideline:

Guideline A: to accelerate convergence, we can exclude clients with low availability πk by
setting q∗

k = 0.
This guideline can be justified intuitively: updates from clients with low participation may be

too sporadic to allow the FL algorithm to keep track of their local objectives. Their updates act as a
noise slowing down the algorithm’s convergence. It may then be advantageous to exclude these
clients.

We observe that the choice of the aggregation weights q does not affect the clients’ availability
process and, in particular, λ(P). However, if the algorithm excludes some clients, it is possible to
consider the state space of the Markov chain that only specifies the availability state of the remaining
clients, and this Markov chain may have different spectral properties. For the sake of concreteness,
unless otherwise specified, we consider from now on the particular case when the availability of
each client k evolves according to a Markov chain (Ak

t)t≥0 with transition probability matrix Pk

and these Markov chains are all independent [LP17, Exercise 12.6]. In this case, the aggregate
process is described by the product Markov chain (At)t≥0 with transition matrix P =

⊗
k∈K Pk

and λ(P) = maxk∈K λ(Pk), where Pi
⊗

Pj denotes the Kronecker product between matrices
Pi and Pj (Appendix D.6.2). In this setting, it is possible to redefine the Markov chain (At)t≥0
by taking into account the reduced state space defined by the clients with a non-null aggregation
weight, i.e., P ′ =

⊗
k′∈K|qk′ >0 Pk′ and λ(P ′) = maxk′∈K|qk′ >0 λ(Pk′), which is potentially

smaller w.r.t. the case when all clients participate to the aggregation. These considerations lead to
the following guideline:

Guideline B: to accelerate convergence, we can exclude clients with high correlation (high
λ(Pk)) by setting their q∗

k = 0.
Intuition also supports this guideline. Clients with large λ(Pk) tend to be available or unavailable

for long periods of time. Due to the well-known catastrophic forgetting problem affecting gradient
methods [Goo+15; Kem+18], these clients may unfairly steer the algorithm toward their local

50 CHAPTER 2 — System Considerations in Heterogeneous Federated Learning

objective when they appear at the final stages of the training period. Moreover, their participation in
the early stages may be useless, as their contribution will be forgotten during their long absence.
The FL algorithm may benefit from directly neglecting such clients.

We observe that Guideline B strictly applies to this specific setting where clients’ dynamics
are independent (and there is no spatial correlation). We do not provide a corresponding guideline
for the case when clients are spatially correlated (we leave this task for future research). However,
in this more general setting, it is possible to ignore Guideline B but still draw on Guidelines A
and C, or still consider Guideline B if the spatially correlated clients can be grouped in clusters,
each cluster evolving as an independent Markov chain (see Section 2.2.6.2, Paragraph 2.2.6.2).

2.2.3.5 Minimizing ϵ̄′bias

The bias error ϵ̄′bias in (2.28) vanishes when the total variation distance between the target im-
portance α and the biased importance p is zero, i.e., when qk ∝ αk/πk,∀k ∈ K. Then, after
excluding the clients that contribute the most to the optimization error and particularly slow down
the convergence (Guidelines A and B), we can assign to the remaining clients an aggregation weight
inversely proportional to their availability, such that the bias error ϵ̄′bias is minimized.

Guideline C: to minimize the bias error, we assign q∗
k ∝ αk/πk to the clients not excluded by

the previous guidelines.

2.2.4 Proposed Algorithm

Guidelines A and B in Section 4.4.3.2 suggest that minimizing ϵ̄opt can lead to the exclusion of
some available clients from the aggregation step (2.16), in particular those with low availability
and/or high correlation. For the remaining clients, Guideline C proposes setting their aggregation
weight inversely proportional to their availability to reduce the bias error ϵ̄′bias. Motivated by these
insights, we propose CA-Fed, a client aggregation strategy that considers the problem of correlated
client availability in FL, described in Algorithm 6. CA-Fed learns during training which clients
to exclude and how to set the aggregation weights of the remaining clients to achieve a good
trade-off between ϵ̄opt and ϵ̄′bias. While Guidelines A and B indicate which clients to remove, the
exact number of clients to remove at round t is identified by minimizing ϵ(t) as a proxy for the
bounds in (2.23) and (2.28):

ϵ(t) := FB(wt,0)− F ∗
B︸ ︷︷ ︸

ϵopt

+ 4κ̄2 · d2
T V (α,p)Γ′︸ ︷︷ ︸

ϵ̄′
bias

, (2.29)

where κ̄2 ≥ 0 is a hyper-parameter that weights the relative importance of the optimization and
bias error (see Section 2.2.4.3).

2.2.4.1 CA-Fed’s core steps

At each communication round t, the server sends the current model wt,0 to all active clients
and each client k sends back a noisy estimate F (t)

k of the current loss computed on a batch of
samples Bk

t,0, i.e., F (t)
k = 1

|Bk
t,0|
∑

ξ∈Bk
t,0
f(wt,0, ξ) (line 3). The server uses these values and the

information about the current set of available clients At to refine its own estimates of each client’s
loss (F̂ (t) = (F̂ (t)

k)k∈K), and each client’s loss minimum value (F̂ ∗ = (F̂ ∗
k)k∈K), as well as

2.2 – 2.2.4 Proposed Algorithm 51

Algorithm 6: CA-Fed (Correlation-Aware FL)
Input : w0,0, α, q(0), {ηt}T

t=1, η̄, E, κ̄2, β, τ
1 Initialize F̂ (0), F̂ ∗, Γ̂′(0), π̂(0), and λ̂(0);
2 for t = 1, . . . , T do
3 Receive set of active client At, loss vector F (t);
4 Update F̂ (t), Γ̂′(t), π̂(t), and λ̂(t);
5 Initialize q(t) = α

π̂(t) ;
6 q(t) ← get(q(t),α, F̂ (t), F̂ ∗, Γ̂′(t), π̂(t), λ̂(t));
7 q(t) ← get(q(t),α, F̂ (t), F̂ ∗, Γ̂′(t), π̂(t), 9π̂(t));

8 for client {k ∈ At; q(t)
k > 0}, in parallel do

9 for j = 0, . . . , E − 1 do
10 wk

t,j+1 = wk
t,j − ηt∇Fk(wk

t,j ,Bk
t,j) ;

11 end
12 ∆k

t ← wt,E −wt,0;
13 end
14 wt+1,0 ← ΠWwt,0 + η̄

∑
k∈At

q(t)
k ·∆k

t ;
15 end

16 Function get(q, α, F , F ∗, Γ, π, ρ):
17 Sort K by descending order in ρ;
18 ϵ̂← ⟨F − F ∗,π⊙̃q⟩+ 4κ̄2 · d2

T V (α,π⊙̃q)Γ;
19 for k ∈ K do
20 q+

k ← 0;
21 ϵ̂+ ← ⟨F − F ∗,π⊙̃q+⟩+ 4κ̄2 · d2

T V (α,π⊙̃q+)Γ;
22 if ϵ̂− ϵ̂+ ≥ τ then
23 ϵ̂← ϵ̂+;
24 q ← q+;
25 end
26 return q

of Γ′, πk, λ(Pk), and ϵ(t), denoted as Γ̂′(t), π̂(t)
k , λ̂(t)

k , and ϵ̂(t), respectively (possible estimators are
described below) (line 4).

The server decides whether excluding clients whose availability pattern exhibits high correlation
(high λ̂(t)

k) (line 6). First, the server considers all clients in descending order of λ̂(t) (line 17), and
evaluates if, by excluding them (line 20), ϵ̂(t) appears to be decreasing by more than a threshold τ ≥
0 (line 22). Then, the server considers clients in ascending order of π̂(t), and repeats the same
procedure to possibly exclude some of the clients with low availability (low π̂(t)

k) (lines 7).
Once the participating clients (those with qk > 0) have been selected, the server notifies them

to proceed updating the current models (lines 9–10) according to (2.15), while the other available
clients stay idle. Finally, model’s updates are aggregated according to (2.16) (line 14).

52 CHAPTER 2 — System Considerations in Heterogeneous Federated Learning

2.2.4.2 Estimators

We now briefly discuss possible implementation of the estimators F̂ (t)
k , F̂ ∗

k , Γ̂′(t), π̂(t)
k , and λ̂(t)

k .
Server’s estimates for the clients’ local losses (F̂ (t) = (F̂ (t)

k)k∈K) can be obtained from the
received active clients’ losses (F (t) = (F (t)

k)k∈At) through an auto-regressive filter with parameter
β ∈ (0, 1]:

F̂ (t) = (1− β1At)⊙ F̂ (t−1) + β1At ⊙ F (t), (2.30)

where ⊙ denotes the component-wise multiplication between vectors, and 1At is a N -dimensions
binary vector whose k-th component equals 1 if and only if client k is active at round t, i.e., k ∈ At.
The server can estimate client-k’s loss minimum value F ∗

k as F̂ ∗
k = mins∈[0,t] F̂

(s)
k . The values of

FB(wt,0), F ∗
B , Γ′, and ϵ(t) can be estimated as follows:

F̂ (t)
B − F̂ ∗

B = ⟨F̂ (t) − F̂ ∗, π̂(t)⊙̃q(t)⟩, (2.31)

Γ̂′(t) = maxk∈K(F̂ (t)
k − F̂ ∗

k), (2.32)

ϵ̂(t) = F̂ (t)
B − F̂ ∗

B + 4κ̄2 · d2
T V (α, π̂(t)⊙̃q(t))Γ̂′(t). (2.33)

where π⊙̃q ∈ RN , such that (π⊙̃q)k := πkqk∑N

h=1 πhqh

, k ∈ K.

For π̂(t)
k , the server can simply keep track of the total number of times client k was available up

to time t and compute π̂(t)
k using a Bayesian estimator with beta prior, i.e., π̂(t)

k = (
∑

s≤t 1k∈As +
nk)/(t+ nk +mk), where nk and mk are the initial parameters of the beta prior.

For λ̂(t)
k , the server can assume the client’s availability evolves according to a Markov chain with

two states (active and inactive), track the corresponding number of state transitions, and estimate
the transition matrix P̂ (t)

k through a Bayesian estimator similarly to what done for π̂(t)
k . Finally, λ̂(t)

k

is obtained computing the eigenvalues of P̂ (t)
k .

2.2.4.3 The role of the hyper-parameter κ̄2

Theorems 2.2.2 and 2.2.4 suggest that the condition number κ2 has a significant impact on the
minimization of the total error ϵ. Our algorithm uses a proxy (ϵ(t)) for the total error (see (2.29)).
To account for the effect of κ2, we introduced the hyper-parameter κ̄2 ≥ 0, which weights the
relative importance of the optimization and bias error in (2.29). In practice, κ̄2 controls the number
of excluded clients by CA-Fed. A small value of κ̄2 penalizes the bias term in favor of the
optimization error, resulting in a larger number of excluded clients. Conversely, the bias term
dominates for large values of κ̄2, and CA-Fed tends to include more clients. Asymptotically, for
κ̄2 →∞, CA-Fed reduces to the unbiased aggregation strategy.

2.2.5 Fairness, and Computational Cost of CA-Fed

2.2.5.1 CA-Fed’s computation/communication cost

CA-Fed aims to improve training convergence and not to reduce its computation and communica-
tion overhead. Nevertheless, excluding some available clients reduces the overall training cost, as
we will discuss in this section referring, for the sake of concreteness, to neural networks’ training.

In terms of computation, the available clients not selected for training are only requested to
evaluate their local loss on the current model once on a single batch instead than performing E

2.2 – 2.2.6 Experimental Evaluation 53

0 40 80 120 160 200
Communication round

75

78

81

84

87

90

Te
st

 a
cc

ur
ac

y

More available
Unbiased
F3AST
AdaFed
CA-Fed (2 = 1)

(a) Synthetic

0 10 20 30 40 50
Communication round

80

82

84

86

88

90

92

Te
st

 a
cc

ur
ac

y

More available
Unbiased
F3AST
AdaFed
CA-Fed (2 = 1)

(b) MNIST

0 20 40 60 80 100
Communication round

50

55

60

65

70

Te
st

 a
cc

ur
ac

y

More available
Unbiased
F3AST
AdaFed
CA-Fed (2 = 1)

(c) CIFAR-10

More Available Less Available
Correlated

Less Available
Weakly Correlated

Clients

Cu
m

ul
at

iv
e

we
ig

ht

Unbiased
F3AST

AdaFed
CA-Fed

(d) Cumulative impor-
tance

Figure 2.11: Average test accuracy among N = 100 clients achieved by the algorithms on the
Synthetic, MNIST, and CIFAR-10 datasets. Cumulative importance assigned by the algorithms to
the clients after T = 200 rounds on the Synthetic dataset.

gradient updates, which would require roughly 2×E−1 more calculations (because of the forward
and backward pass). The selected clients have no extra computation cost as computing the loss
corresponds to the forward pass they should, in any case, perform during the first local gradient
update.

In terms of communication, the excluded clients only transmit the loss, a single scalar, much
smaller than the model update. Conversely, participating clients transmit the local loss and the
model update. Still, this additional overhead is negligible and likely fully compensated by the
communication savings for the excluded clients.

2.2.5.2 About CA-Fed’s fairness

Strategies that exclude clients from the training phase, such as CA-Fed, may raise concerns about
fairness. The concept of fairness in federated learning does not have a unified definition in the
literature [LB22, Chapter 8]. Fairness goals can be established by appropriately selecting the
target weights α = {αk}k∈K in the definition of the global target objective (2.14). For instance,
per-client fairness can be achieved by setting αk to be equal for every client (i.e., αk = 1/N),
while per-sample fairness can be accomplished by setting αk proportional to the local dataset size
|Dk| (i.e, αk = |Dk|/|D|).

Assuming that the global objective in (2.14) truly reflects fairness concerns, then CA-Fed can
be considered intrinsically fair. This is because CA-Fed continually focuses on minimizing the
total error ϵ := F (wT)−F ∗, which guarantees that the performance objective of the learned model
is as close as possible to its optimal value at every time. Although CA-Fed occasionally excludes
clients with low availability and high temporal correlation, the optimization problem (2.14) is
carefully designed to ensure that the learned model performs well for these clients. As a result,
CA-Fed effectively learns a model that is consistently accurate and fair across all clients, regardless
of their availability or temporal correlation.

2.2.6 Experimental Evaluation

2.2.6.1 Experimental Setup

Federated system simulator In our experiments, we consider a population of N = |K| = 100
clients. We model the activity of each client k ∈ K as a two-state homogeneous Markov process
with state space S = {“active”, “inactive”}, characterized by a transition matrix Pk, a stationary

54 CHAPTER 2 — System Considerations in Heterogeneous Federated Learning

distribution π(k), and a second largest absolute eigenvalue λ̄2(Pk) (see Appendix D.6.3 for details).
Our goal is to simulate realistic dynamics of federated systems featuring varying levels of clients’
availability and correlation. To introduce heterogeneity in clients’ availability patterns, we divide the
population in two equally-sized classes: the “more available” clients with a steady-state probability
of being active πk,active = 1/2+g, and the “less available” clients with πk,active = 1/2−g. Here, the
parameter g ∈ (0, 1/2) controls the degree of heterogeneity in clients’ availability. We furthermore
divide each class of clients in two equally-sized sub-classes: clients exhibiting a largely correlated
time behavior (in the following referred to as “correlated” clients) that tend to persist in the same
state for rather long periods (λk = ν with values of ν close to 1), and clients exhibiting a weakly
correlated time behavior (referred to as “weakly correlated” clients) that are almost as likely to keep
as to change their state at every t (λk ∼ N (0, ε2), with ε close to 0). We use g = 0.4, ν = 0.9, and
ε = 10−2.

Datasets and models We conduct experiments on the LEAF Synthetic dataset [Cal+19], a
benchmark for multinomial classification tasks, and on the real-world MNIST [LC10] and CIFAR-
10 [Kri09] datasets, respectively for handwritten digits and image recognition tasks. To simulate the
statistical heterogeneity present in the federated learning system, we use common approaches in the
literature. For the Synthetic dataset, we tune the parameters (γ, δ), which control data heterogeneity
among clients [Li+19]. For MNIST and CIFAR-10, we distribute samples from the same class
across the clients according to a symmetric Dirichlet distribution with parameter ς , following the
same approach as [Wan+20a]. Unless otherwise indicated, we set γ = δ = ς = 0.5. We use the
original training/test data split of MNIST and reserve 20% of the training dataset as the validation
dataset. For Synthetic and MNIST, we use a linear classifier with a ridge penalization of parameter
10−2, which corresponds to a strongly convex objective function. For CIFAR-10, we use a neural
network with two convolutional and one fully connected layers.

Benchmarks We compare CA-Fed, defined in Algorithm 6, with four baselines including two
state-of-the-art FL algorithms discussed in Section 2.2.2: 1) Unbiased, which aggregates the
active clients k ∈ At with weights qk = αk/πk; 2) More available, which considers only
the “more available” clients and always excludes the “less available” ones; 3) AdaFed [Tan+22a],
which, similarly to Unbiased, aggregates all active clients, but normalizes their aggregation
weights (i.e., it considers qk = αk/πk∑

k∈At
αk/πk

); 4) F3AST [RVd23], which, oppositely to More

available, favors the “less available” clients. For all algorithms, we tuned the learning rates η, η̄
via grid search. For CA-Fed, we use β = τ = 0. Unless otherwise specified, we assume that the
algorithms can access an oracle providing the true availability parameters for each client: in practice,
all the algorithms rely on the exact knowledge of πk,active; in addition, CA-Fed also receives λ(Pk).
In Section 2.2.6.2, Paragraph 2.2.6.2, we will relax this assumption by considering the estimators
π̂(t)

k and λ̂(t)
k . The code for this section is available at: https://github.com/arodio/CA-Fed.

2.2.6.2 Experimental Results

CA-Fed vs. baselines Figure 2.11 compares the test accuracy achieved by CA-Fed (κ̄2 = 1)
and the baselines on the Synthetic (Fig. 2.11a), MNIST (Fig. 2.11b), and CIFAR-10 (Fig. 2.11c)
datasets over 10 different runs. Across all three datasets, CA-Fed consistently outperforms the
baselines, achieving higher test accuracy (+1.56 pp on Synthetic; +0.94 pp on MNIST; +1.32 pp on

https://github.com/arodio/CA-Fed

2.2 – 2.2.6 Experimental Evaluation 55

CIFAR-10) compared to the second best performing method, AdaFed. These results demonstrate
that CA-Fed achieves the best balance between convergence speed and test accuracy. For deeper
insights into the algorithms’ behavior, Figure 2.11d illustrates the cumulative aggregation weights
{ 1

T

∑T
t=1 q

(t)
k }k∈K, representing the cumulative importance that the algorithms assigned to the

clients at the end of the training. In Figure 2.11d, we grouped the clients into three categories:
“more available”, “less available, weakly correlated”, and “less available, correlated”. By setting
the aggregation weights inversely proportional to the clients’ availabilities, Unbiased equalizes
the importance for all clients (see Fig. 2.11d), but achieves a slower convergence (as shown in
Figs. 2.11a, 2.11b, and 2.11c). On the contrary, by excluding all the “less available” clients, More
available achieves a faster convergence but introduces a non-vanishing bias error ϵbias, which,
in practice, leads to poor accuracy performance. The state-of-the-art algorithm AdaFed, similarly
to Unbiased, considers all the active clients, but normalizes their aggregation weights at each
communication round. As a result, similarly to CA-Fed, AdaFed indeed prioritizes the “more
available” clients (as shown in Fig. 2.11d), and then a convergence speed-up could be expected.
However, AdaFed does not exclude the “less available and correlated” clients, and therefore their
presence causes a convergence slowdown. Finally, F3AST favors the “less available, correlated”
clients and achieves a slower convergence with a non-vanishing bias error, which corresponds to
lower accuracy performance. By opportunely excluding some of the “less available and correlated”
clients, CA-Fed achieves the best test accuracy by the end of the training time.

Convergence speed vs. Bias error The trade-off between ϵopt or ϵbias discussed in Section 4.4.3.2
is visible in our experiments. In particular, Figure 2.12a compares the test accuracy achieved by
More available, Unbiased, and CA-Fed on the Synthetic dataset for T = 500 commu-
nication rounds. As expected, by targeting the minimization of ϵopt and thus excluding the “less
available” clients, More available achieves the fastest convergence at the expense of a large
non-vanishing bias error ϵbias. On the other hand, by targeting the minimization of ϵbias and thus
equalizing the clients’ importance, Unbiased asymptotically removes this error and ultimately
achieves the highest test accuracy at communication round T = 500, but suffers from slower
convergence due to the presence of the “correlated” clients. Our algorithm, CA-Fed, leverages
the trade-off between convergence speed and model bias and achieves fast convergence to the
neighborhood of the target objective. To explore this trade-off, in Figure 2.12a, we varied the value
of the hyper-parameter κ̄2 in the range {10−2, 10−1, 100, 101, 102}. CA-Fed tends to exclude
more clients for low values of κ̄2 and achieves a similar convergence rate as More available
for κ̄2 = 10−2. For intermediate values of κ̄2, CA-Fed trades a small accuracy decrease for faster
convergence (refer, for example, to the curves κ̄2 = 100, 101). For κ̄2 = 102, CA-Fed reduces to
Unbiased (their curves overlap in Fig. 2.12a). Moreover, we observe that the optimal value of
κ̄2 depends on the available time for training. Low values of κ̄2 speed-up convergence and then
they can be beneficial for short training durations (e.g., CA-Fed (κ̄ = 10−1) achieves a higher
test accuracy of +2.8 pp with respect to Unbiased at communication round t = 40). For longer
training periods, a larger value of κ̄2 may be preferable as it reduces the bias error and increases the
test accuracy (e.g., CA-Fed (κ̄ = 102) improves of +3.8 pp with respect to More available
at communication round t = 500). Figure 2.12b illustrates the optimal value of κ̄2 for different
durations of the training period T .

Effect of statistical heterogeneity The bias error bounds ϵ̄bias and ϵ̄′bias in Theorems 2.2.2
and 2.2.4 are influenced by the degree of heterogeneity among local functions, commonly known as

56 CHAPTER 2 — System Considerations in Heterogeneous Federated Learning

0 100 200 300 400 500
Communication round

80

82

84

86

88

90

92

Te
st

 a
cc

ur
ac

y

More available
CA-Fed (2 = 10 2)
CA-Fed (2 = 10 1)
CA-Fed (2 = 100)
CA-Fed (2 = 101)
CA-Fed (2 = 102)
Unbiased

(a) Test accuracy

0 50 100 150 200 250 300 350
Training duration (rounds)

10 2

10 1

100

101

102

Op
tim

al

2
(b) Optimal κ̄2

Figure 2.12: Convergence speed vs. Model bias trade-off for different values of κ̄2 on the Synthetic
dataset, for γ = δ = 0.5.

0.0 0.25 0.5 0.75 1.0
Data heterogeneity (=)

84

86

88

90

92

94

96

Te
st

 a
cc

ur
ac

y

More available
CA-Fed (2 = 10 2)
CA-Fed (2 = 10 1)
CA-Fed (2 = 100)

CA-Fed (2 = 101)
CA-Fed (2 = 102)
Unbiased

Figure 2.13: Effects of data heterogeneity on the Synthetic dataset after T = 200 rounds.

101 102 103 104

Historical observations
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Es
tim

at
io

n
er

ro
r

1
N

N

k = 1
| (t)

k k|

1
N

N

k = 1
| (t)

k k|

(a) Estimation error

101 102 103 104

Historical observations

86

87

88

89

90

91

Te
st

 a
cc

ur
ac

y

More available
Unbiased
F3AST
AdaFed
CA-Fed (2 = 1)

(b) Test accuracy

Figure 2.14: Estimation of the clients’ activities (π̂(t)
k , λ̂(t)

k) for different priors t ∈
{101, 101.5, 102, 102.5, 103, 103.5, 104} and test accuracy after T = 50 rounds on the MNIST
dataset.

2.2 – 2.2.6 Experimental Evaluation 57

0

10

20

30

40

M
or

e
Av

ai
la

bl
e

0 20 40 60 80 100
Communication round

50

60

70

80

90

100

Le
ss

 A
va

ila
bl

e
Co

rre
la

te
d

Client
Inactive

Client
Excluded

Client
Included

Cl
ie

nt
s

Homogeneous/Homogeneous Data Distrubution

(a) Homogeneous / Homo-
geneous

0

10

20

30

40

M
or

e
Av

ai
la

bl
e

0 20 40 60 80 100
Communication round

50

60

70

80

90

100

Le
ss

 A
va

ila
bl

e
Co

rre
la

te
d

Client
Inactive

Client
Excluded

Client
Included

Cl
ie

nt
s

Homogeneous/Heterogeneous Data Distribution

(b) Homogeneous / Het-
erogeneous

0

10

20

30

40

M
or

e
Av

ai
la

bl
e

0 20 40 60 80 100
Communication round

50

60

70

80

90

100

Le
ss

 A
va

ila
bl

e
Co

rre
la

te
d

Client
Inactive

Client
Excluded

Client
Included

Cl
ie

nt
s

Heterogeneous/Heterogeneous Data Distrubution

(c) Heterogeneous / Het-
erogeneous

0 20 40 60 80 100
Communication round

82

84

86

88

90

Te
st

 a
cc

ur
ac

y

More available
Unbiased
F3AST
AdaFed
CA-Fed (2 = 1)

(d) Test accuracy

Figure 2.15: Clients’ activities and CA-Fed’s inclusion/exclusion decisions in the presence of
spatial correlation for different degrees of intra-cluster/inter-cluster data distributions. Average
test accuracy after T = 100 rounds on the MNIST dataset.

statistical heterogeneity, characterized by the constants Γ and Γ′ in (2.24) and (2.28), respectively.
To control statistical heterogeneity, we manipulate the dissimilarity among the clients’ local datasets,
specifically through the parameters γ and δ in the case of the Synthetic dataset, as explained in
Section 2.2.6.1. Figure 2.13 illustrates the impact of γ and δ on the test accuracy achieved by
CA-Fed after T = 200 communication rounds on the Synthetic dataset. As expected, in the extreme
IID setting (when γ = δ = 0), Γ and Γ′ are small, and the bias error ϵbias is negligible. As a result,
More available and CA-Fed (κ̄2 = 10−2) reach the highest test accuracy, whereas CA-Fed
(κ̄2 = 102) and Unbiased present slow convergence. Nevertheless, More available and
CA-Fed (κ̄2 = 10−2) perform poorly as the statistical heterogeneity increases (i.e., γ = δ ≥ 0.25).
In the extreme non-IID setting (when γ = δ = 1), Γ and Γ′ are large, and ϵbias dominates. In this
case, CA-Fed (κ̄2 = 102) and Unbiased should be preferred. For γ = δ = {0.25, 0.5, 0.75},
CA-Fed (with κ̄2 = 1 or κ̄2 = 10) achieves the highest test accuracy (+1.6 pp, +1.2 pp, and +1.0
pp with respect to Unbiased).

Estimation of the clients’ availability and correlation In this experiment, CA-Fed utilizes
estimators π̂(t)

k and λ̂(t)
k to estimate the clients’ πk and λk values. We employ a Bayesian estimator

with a beta prior to estimate P̂ (t)
k , which we generate by observing the evolution of the Markov

chain defined by Pk over t′ time-steps. We compute π̂(t)
k and λ̂(t)

k analytically, following the
methodology explained in Section 2.2.4.2 and described in detail in Appendix D.6.3. Figure 2.14a
shows the estimation errors 1

N

∑
k∈K|π̂

(t)
k −πk| and 1

N

∑
k∈K|λ̂

(t)
k −λk| as a function of the number

of historical observations t′. As expected, both errors decrease with an increasing number of
observations, and the estimation error for λk is larger than that for πk. Furthermore, Figure 2.14b
compares the final test accuracy obtained by CA-Fed and the baselines for varying numbers of
historical observations t′ ∈ {101, 101.5, 102, 102.5, 103, 103.5, 104} when training for T = 50
rounds on the MNIST dataset. In this setting, CA-Fed outperforms the baselines for t′ ≥ 100. This
value is reasonable, because estimating λk requires a number of observations comparable to the
expected hitting time for the slowest Markov chain, which is given by maxk∈K

1
(1−λk)πk

= 100.

CA-Fed with Spatial Correlation Although CA-Fed is primarily designed to handle temporal
correlation (as discussed in Section 2.2.3.4), we also evaluate its performance in the presence of
spatial correlation. In the considered spatially correlated scenario, clients are grouped into clusters,
and each cluster c ∈ C is characterized by an underlying Markov chain that determines when

58 CHAPTER 2 — System Considerations in Heterogeneous Federated Learning

all clients in the cluster are available or unavailable. The Markov chains of different clusters are
independent. Let λc denote the second-largest eigenvalue in magnitude of cluster c’s Markov chain.
To reduce the eigenvalue of the aggregate Markov chain, CA-Fed needs to exclude all clients in
the cluster c̄ = arg maxc∈C λc. In this experiment, we consider a population of N = 100 clients
grouped into |C| = 10 clusters. We equally split the clients, or equivalently, the clusters, into two
categories: “more available” with πc = 0.9 and λc = 0 for c = 0, . . . , 4, and “less available,
correlated” with πc = 0.1 and λc = c/10 for c = 5, . . . , 9. In Figures 2.15a, 2.15b, and 2.15c, each
pixel represents, for each client k ∈ K and for each communication round, the client’s activity
(active/inactive) and CA-Fed’s decision (included/excluded in training). From the experiments, we
observe that CA-Fed’s decisions depend on the degree of statistical heterogeneity among clients
within a cluster (i.e., intra-cluster) and among clusters (i.e., inter-cluster). When both the intra-
cluster and inter-cluster clients’ data distributions are homogeneous, CA-Fed starts considering
the clients in cluster c̄ = 9 with λc̄ = 0.9, and sequentially excludes, in order, all clients from
clusters {9, 8, 7, 6} (as shown in Fig. 2.15a). When the clients’ data distributions are homogeneous
within clusters, but heterogeneous among clusters (Fig. 2.15b), CA-Fed still excludes all clients
from clusters c = {9, 7, 6}, but decides to include clients from cluster c = 8. This is because these
clients happen to have a lower value of F̂ (t)

k − F̂ ∗
k , and despite having a large λc, CA-Fed decides

to include them. Finally, when both the intra-cluster and inter-cluster clients’ data distributions are
heterogeneous (Fig. 2.15c), CA-Fed can partially include clients from the more correlated clusters,
even though their λc is large. Figure 2.15d compares the test accuracy achieved by CA-Fed and the
baselines with spatial correlation in the same setting as in Figure 2.15c. The experimental results
show that CA-Fed can operate correctly in the presence of spatial correlation and still outperforms
the baselines (+0.6 pp w.r.t. AdaFed).

2.2.7 Conclusion

This section presents the first convergence analysis of a FedAvg-like federated learning (FL)
algorithm in presence of heterogeneous and correlated client availability. The analysis reveals the
detrimental effect of correlation on the convergence rate and highlights a fundamental trade-off
between convergence speed and model bias. To navigate this tradeoff, we introduce CA-Fed, a
novel FL algorithm, which adaptively manages the conflicting aims of enhancing convergence
speed and reducing model bias, with the ultimate objective of maximizing model quality within the
constraints of the training time available. CA-Fed achieves this goal by dynamically excluding
clients who exhibit high temporal correlation and limited availability, contingent on their data
distributions. Indeed, model updates from such clients may act as noise, increasing variance and
slowing down the algorithm’s convergence. CA-Fed disregards such clients unless their local
datasets notably enhance the quality of the final model. The experimental results validate the
effectiveness of our strategy, demonstrating that CA-Fed is a versatile and resilient FL algorithm,
well-suited to address real-world scenarios characterized by heterogeneous and correlated client
availability.

CHAPTER 3
Personalized Federated

Learning
In Chapter 1, we established that in federated learning, data is sourced from clients with varying
behaviors and preferences. Consequently, the local data of any single client fails to capture the
complete population distribution, resulting in a phenomenon known as statistical heterogeneity.
The presence of statistical heterogeneity challenges the conventional assumption that clients should
collectively train a common model. Therefore, the adoption of personalized models becomes a
necessity in federated learning.

This chapter is dedicated to an in-depth exploration of personalized federated learning, wherein
we introduce two novel personalization algorithms: FedEM (Section 3.5) and kNN-Per (Sec-
tion 3.6). While FedEM primarily targets the resolution of statistical heterogeneity, kNN-Per goes
a step further. In addition to addressing statistical heterogeneity, kNN-Per provides a straightfor-
ward and efficient approach to tackle system heterogeneity and temporal heterogeneity. It achieves
this by 1) freeing the most powerful clients from the requirement to fully align their model with the
weakest ones, and 2) enabling learning in dynamic environments where client data distributions
change post-training. This triple focus on statistical, system, and temporal heterogeneity paves the
way for more adaptable and efficient personalized federated learning models.

This chapter is based on our works [Mar+21b], published in Advances in Neural Information
Processing Systems 2021 (NeurIPS’21), and [Mar+22b], published in the proceedings of the 39th

International Conference on Machine Learning (ICML’22).

3.1 Introduction

As elucidated in Section 1.4, heterogeneity is a core and fundamental challenge in federated learning.
Within federated learning ecosystems, clients highly differ both in size and distribution of their
local datasets (statistical heterogeneity), and in their storage and computational capabilities (system
heterogeneity). These dual facets pose a challenge to the conventional assumption that all clients
should collaborate in training a single, global model—an approach often advocated in numerous
seminal papers on federated learning [McM+17; Kon+17b; MSS19]. In fact, the pursuit of training
a single global model encounters a fundamental limitation: all clients should be content with a
model’s architecture constrained by the minimum common capabilities. Even when clients have
similar hardware (e.g., they are all smartphones), in presence of statistical heterogeneity, a global
model may be arbitrarily bad for some clients, raising important fairness concerns [Li+21]. To
illustrate this point, consider a language modeling task where the input sequence is "I love eating."
The prediction of the next word can exhibit significant divergence from one client to another due

59

60 CHAPTER 3 — Personalized Federated Learning

to their individual datasets and usage patterns. An alternative approach, in lieu of disseminating
a single global model to all clients, is to serve each client with a personalized model, potentially
tailored to their unique requirements, including a personalized model architecture.

We recall the essential findings presented in Propositions 1.2.4 and 1.2.5, which expound on the
generalization aspects of both purely local and global models. Proposition 1.2.4 underscores a key
limitation of purely local models, demonstrating their suboptimal performance in scenarios where
the local sample size remains notably limited. This scenario frequently arises in federated learning
applications, where individual clients possess access to only a small subset of data samples. In
contrast, Proposition 1.2.5 shows that the global model generalizes well, by increasing the number
of samples linearly in the number of clients, at the cost of a non-vanishing additive bias term
resulting from distribution mismatches among clients. Consequently, the global model suffers from
a dramatically poor generalization error on local dataset. Addressing this intricate generalization
challenge, a potential solution emerges in the form of personalized models—a middle ground
between the extremes of global and purely local modeling paradigms. This raises the fundamental
question: what is the optimal tradeoff between personalization and coordination, and how can this
delicate equilibrium be achieved?

Numerous studies within the literature have undertaken the task of providing a theoretical
framework to address this critical question. Notably, [SMS20; Man+20] propose cluster users into
groups and train a model for each group. Collins et al. [Col+21] study personalized federated
learning (PFL) when clients share a global feature representation. [EMS22; DW22] introduce
a personalized federated learning approach founded on the detection of collaboration patterns.
This method leverages prior knowledge regarding some measure of distance between local data
distributions, often relying on Integral Probability Metrics. Clients utilize this information to identify
potential collaboration partners and design aggregation schemes that strike a balance between bias
and variance. For an in-depth exploration of the personalized federated learning literature, please
refer to Section 3.2, where we provide a comprehensive overview.

3.1.1 Contributions

The above-mentioned lines of work all stipulate some assumption on the underlying clients’
distribution; clustered FL approaches assume the existence of a cluster structure, Collins et al.
[Col+21] assumes that clients share a global feature representation, and [EMS22; DW22] require the
prior knowledge on some notion of distance between local data distributions. However, it is unclear
if an assumption on the data distributions is necessary for collaboration to be provably beneficial.
In Section 3.4, we answer this question, and we show that federated learning is impossible without
assumptions on local data distributions.

Motivated by this negative result, we formulate two general and flexible assumption. The first,
named the mixture assumption (Assumption 8), stipulates that the data distribution of each client
is a mixture of M underlying distributions. The second, named the representation assumption
(Assumption 21), stipulates that if two samples have close representations, then their labels are
likely to be the same. This is all the more so, the more suitable the global model is for the local
distribution.

The mixture assumption is a flexible and generic assumption that encompasses most of the
personalized FL approaches previously proposed in the literature (as we show in Section 3.5.2).
The proposed formulation has the advantage that each client can benefit from knowledge distilled
from all other clients’ datasets (even if any two clients can be arbitrarily different from each

3.2 – 3.1.2 Organization 61

other). All clients jointly learn the M components, while each client learns its personalized mixture
weights. We show that federated EM-like algorithms can be used for training under the mixture
assumption. In particular, we propose FedEM and D-FedEM for the client-server and the fully
decentralized settings, respectively, and we prove convergence guarantees. Our approach also
provides a principled and efficient way to infer personalized models for clients unseen at training
time. Our algorithms can easily be adapted to solve more general problems in a novel framework,
which can be seen as a federated extension of the centralized surrogate optimization approach
in [Mai13]. To the best of our knowledge, our work is the first to propose federated surrogate
optimization algorithms with convergence guarantees.

The representation assumption leads to the development of kNN-Per, a PFL algorithm based
on local memorization. kNN-Per combines a global model trained collectively with a kNN model
on a client’s local datastore. The global model also provides the shared representation used by
the local kNN. Local memorization at each FL client can capture the client’s local distribution
shift with respect to the global distribution. In addition to addressing statistical heterogeneity,
kNN-Per provides a straightforward and efficient approach to tackle system heterogeneity by
relieving the most powerful clients from the obligation to align their model entirely with the weakest
ones. Furthermore, kNN-Per offers a simple and effective way to address statistical heterogeneity
even in a dynamic environment where client’s data distributions change after training. It is indeed
sufficient to update the local datastore with new data without the need to retrain the global model.
As such, it presents a valuable solution to cope with temporal heterogeneity.

Through extensive experiments on FL benchmark datasets, we show that both algorithms
(FedEM and kNN-Per) generally yields models that 1) are on average more accurate, 2) are fairer
across clients, and 3) generalize better to unseen clients than state-of-the-art personalized and non-
personalized FL approaches. Moreover, we demonstrate the ability of kNN-Per to address both
statistical and system heterogeneity even in a dynamic environment where client’s data distributions
change after training.

3.1.2 Organization

The rest of this chapter is organized as follows. In Section 3.2, we provide an overview of related
work. In Section 3.3, we formalize the problem of personalized federated learning. In Section 3.4,
we provide our impossibility result, showing that federated learning is impossible without assump-
tions on local data distributions. Section 3.5 introduces and analyses the FedEM algorithm. In
Section 3.5.1, we introduce the underlying assumption of FedEM: the mixture assumption (As-
sumption 8), and show that several popular personalization approaches can be obtained as special
cases of our mixture-based framework. In Section 3.5.3, we introduce the FedEM algorithm and its
fully-decentralized version D-FedEM, and we state their convergence results. In Section 3.5.4, we
present our general federated surrogate optimization framework, used to establish the convergence
of FedEM and D-FedEM. Finally, we provide FedEM’s experimental results in Section 3.5.6.
Section 3.6 is dedicated to the presentation and analysis of the kNN-Per algorithm. After mo-
tivating the use of the local memorization techniques for personalization, we present kNN-Per
in Section 3.6.1 and provide it generalization bound in Section 3.6.2. kNN-Per’s experimental
setup and results are described in Section 3.6.3. Finally, Section 3.7 provides a comparison between
FedEM and kNN-Per, and concluding remarks.

62 CHAPTER 3 — Personalized Federated Learning

3.2 Related Work

We discuss personalized FL approaches for addressing statistical heterogeneity and system hetero-
geneity.

3.2.1 Statistical Heterogeneity

This body of work considers that all clients have the same model architecture but potentially
different parameters.

A simple approach to FL personalization is learning first a global model and then fine-tuning
its parameters at each client through stochastic gradient descent for a few epochs [Jia+23; YBS22];
we refer later to this approach as FedAvg+. FedAvg+ was later studied by [CC22] and [CCD22].
The global model can then be considered as a meta-model to be used as initialization for a few-shot
adaptation at each client. Later work [KBT19; FMO20; Aca+21] has formally established the con-
nection with Model Agnostic Meta Learning (MAML) [Jia+23] and proposed different algorithms
to train a more suitable meta-model for local personalization. However, if local distributions are
far from the average distribution, a relevant global model does not exist and this approach boils
down to every client learning only on its own local data. This issue is formally captured by the
generalization bound in [DKM20, Theorem 1].

ClusteredFL [SMS20; Gho+20; Man+20] addresses the potential lack of a global model by
assuming that clients can be partitioned into several clusters. Clients belonging to the same cluster
share the same optimal model, but those models can be arbitrarily different across clusters (see
[SMS20, Assumption 2] for a rigorous formulation). During training, clients learn the cluster to
which they belong as well as the cluster model. The Clustered FL assumption is also quite limiting,
as no knowledge transfer is possible across clusters. In the extreme case where each client has
its own optimal local model (recall the example on language modeling), the number of clusters
coincides with the number of clients and no federated learning is possible. Our FedEM [Mar+21b]
can be considered as a soft clustering algorithm, as clients learn personalized models as mixtures of
a limited number of component models.

Multi-Task Learning (MTL) has recently emerged as an alternative approach to learn per-
sonalized models in the federated setting and allows for more nuanced relations among clients’
models [Smi+17; VBT17; ZBT20; HR21; TTN20]. The authors of [Smi+17; VBT17] were the first
to frame FL personalization as a MTL problem. In particular, they defined federated MTL as a
penalized optimization problem, where the penalization term models relationships among tasks
(clients). The work [Smi+17] proposed the MOCHA algorithm for the client-server scenario, while
[VBT17; ZBT20] presented decentralized algorithms for the same problem. Unfortunately, these
algorithms can only learn simple models (linear models or linear combination of pre-trained mod-
els), because of the complex penalization term. Other MTL-based approaches [HR21; Han+20b;
TTN20] are able to train more general models at the cost of considering simpler penalization terms
(e.g., the distance to the average model), thereby losing the capability to capture complex relations
among tasks. Moreover, a general limitation of this line of work is that the penalization term is
justified qualitatively and not on the basis of clear statistical assumptions on local data distributions.

An alternative approach is to interpolate a global model and one local model per client [DKM20;
CBB21; Man+20]. [Zha+21] extended this idea by letting each client interpolate the local models
of other clients with opportune weights learned during training. Our algorithm, kNN-Per, also

3.3 – 3.2.2 System Heterogeneity 63

interpolates a global and a local model, but the global model plays a double role as it is also used to
provide a useful representation for the local kNN.

A recent research direction has cast personalization as a stochastic optimization problem
involving biased gradients, exemplified by works such as [Cha+22; Gri+21; Bea+21]. These studies
revolve around the training of a single client while incorporating biased gradient information
from another group of clients. Their results are articulated in terms of quantifying the distance
between a client’s objective function and the average objective function of all clients. Similarly,
Even et al. [EMS22] study personalized federated learning under the lens of stochastic optimization.
They introduce both lower and upper bounds on the number of samples needed from all clients to
approximate the generalization error of a specific client and provide corresponding strategies that
align with the lower bounds. However, their approach, which relies on gradient filtering, necessitates
prior knowledge about the divergence between local data distributions. This divergence is quantified
using specific Integral Probability Metrics (IPMs). Similarly, Ding et al. [DW22], concurrently with
[EMS22], presents a personalization approach hinging on the detection of collaboration partners.
These partners are selected based on an optimization problem that depends on clients’ sample sizes
and the divergence between their data distributions, quantified using a specific IPM notion. Distinct
from these research lines, our methods do not demand prior quantified knowledge of the divergence
between clients’ local distributions.

Overall, although current personalization approaches can lead to superior empirical performance
in comparison to a shared global model or individually trained local models, it is still not well
understood whether and under which conditions clients are guaranteed to benefit from collaboration.

3.2.2 System Heterogeneity

Some FL application scenarios envision clients with highly heterogeneous hardware, like smart-
phones, IoT devices, edge computing servers, and the cloud. Ideally, each client could learn a po-
tentially different model architecture, suited to its capabilities. Such system heterogeneity has been
studied much less than statistical heterogeneity. Some work [Lin+20a; LW19; ZHZ21; ZWY22]
proposed to address system heterogeneity by distilling the knowledge from a global teacher to
clients’ student models with different architectures. While early methods [LW19; Lin+20a] required
the access to an extra (unlabeled) public dataset, more recent ones [ZHZ21; ZWY22] eliminated
this requirement.

Some papers [DDT20; Hor+21; PFT21] propose that each client only trains a sub-model of
a global model. The sub-model size is determined by the client’s computational capabilities. The
approach appears particularly advantageous for convolutional neural networks with clients selecting
only a limited subset of channels.

Reference [Tan+22b] followed another approach where devices and server communicate pro-
totypes, i.e., average representations for all samples in a given class, instead of communicating
model’s gradients or parameters, allowing each client to have a different model architecture and
input space.

To the best of our knowledge, the only existing method that takes into account both system
and statistical heterogeneity is pFedHN [Sha+21]. pFedHN feeds local clients representations
to a global (across clients) hypernetwork, which can output personalized heterogeneous models.
Unfortunately, the hypernetwork has a large memory footprint already for small clients’ models
(e.g., the hypernetwork in the experiments in [Sha+21] has 100 more parameters than the output
model): it is not clear if pFedHN can scale to complex models.

64 CHAPTER 3 — Personalized Federated Learning

3.3 Problem Formulation

We consider a (countable) set T of classification (or regression) tasks which represent the set of
possible clients. We will use the terms task and client interchangeably. Data at client t ∈ T is
generated according to a local distribution Dt over X × Y . Local data distributions {Dt}t∈T are
in general different, thus it is natural to fit a separate model (hypothesis) ht ∈ H to each data
distribution Dt. The goal is thus to solve (in parallel) the following optimization problems

∀t ∈ T , minimize
ht∈H

LDt(ht), (3.1)

where ht : X 7→ ∆|Y| (∆D denoting the unitary simplex of dimension D), l : ∆|Y| × Y 7→ R+ is
a loss function,* and LDt(ht) = E(x,y)∼Dt

[l(ht(x), y)] is the true risk of a model ht under data
distribution Dt. For (x, y) ∈ X × Y , we will denote the joint distribution density associated to Dt

by pt(x, y), and the marginal densities by pt(x) and pt(y).
A set of T clients [T] ≜ {1, 2, . . . T} ⊆ T participate to the initial training phase; other clients

may join the system in a later stage. We denote by St = {s(i)
t = (x(i)

t , y
(i)
t)}nt

i=1 the dataset at
client t ∈ [T] drawn i.i.d. from Dt, and by n =

∑T
t=1 nt the total dataset size.

The idea of federated learning is to enable each client to benefit from data samples available
at other clients in order to get a better estimation of LDt , and therefore get a model with a better
generalization ability to unseen examples.

3.4 An Impossibility Result

We start by showing that some assumptions on the local distributions pt(x, y), t ∈ T are needed
for federated learning to be possible, i.e., for each client to be able to take advantage of the data
at other clients. This holds even if all clients are observed during the initial training phase (i.e.,
T = [T]).

Our argument relies on a reduction to an impossibility result for semi-supervised learning (SSL).
If clients have arbitrarily different label distributions, the information carried by pt′(y|x), t′ ∈
[T]\{t} is not relevant for client t, and client t can only use the information carried by the marginals
pt′(x). Assuming that these marginals are identical for all clients, federated learning with T clients
is then equivalent to T SSL problems, where the SSL problem associated with client t relies on
labeled samples in St and unlabeled samples in Ut = ∪t′∈[T]\{t} {x : (x, y) ∈ St′}.†

The authors of [BLP08] conjectured that even when the quantity of unlabeled data goes to
infinity, the worst-case sample complexity of SSL improves over supervised learning at most
by a constant factor that only depends on the hypothesis class [BLP08, Conjecture 4]. Later
work has shown the conjecture to hold for the realizable case and hypothesis classes of finite
VC dimension [DSS13, Theorem 1], even when the marginal distribution is known [Göp+19,
Theorem 2] (whether the conjecture in [BLP08] holds in the agnostic case is still an open problem).
The main consequence for FL is that, without further assumptions, a client cannot provably benefit
from larger amounts of data available at other clients.

*In the case of (multi-output) regression, we have ht : X 7→ Rd for some d ≥ 1 and l : Rd × Rd 7→ R+.
†Note that in FL settings, we have the extra difficulty that client t cannot have direct access to samples Ut, since

local data cannot be moved across clients.

3.5 – 3.5 Personalized Federated Learning under a Mixture of Distributions 65

3.5 Personalized Federated Learning under a Mixture of Distribu-
tions

In this section, we propose to study personalized federated learning under the flexible assumption
that each local data distribution is a mixture of unknown underlying distributions. This assumption
encompasses most of the existing personalized FL approaches and leads to federated EM-like
algorithms for both client-server and fully decentralized settings. Moreover, it provides a principled
way to serve personalized models to clients not seen at training time. The algorithms’ convergence
is analyzed through a novel federated surrogate optimization framework, which can be of general
interest. Experimental results on FL benchmarks show that our approach provides models with
higher accuracy and fairness than state-of-the-art methods.

3.5.1 The Mixture Assumption

Motivated by the above impossibility result (Section 3.4), we propose that each local data distribu-
tion Dt is a mixture of M underlying distributions D̃m, 1 ≤ m ≤M , as formalized below.

Assumption 8. There exist M underlying (independent) distributions D̃m, 1 ≤ m ≤M , such that
for t ∈ T , Dt is mixture of the distributions {D̃m}Mm=1 with weights π∗

t = [π∗
t1, . . . , π

∗
tM] ∈ ∆M ,

i.e.
zt ∼M(π∗

t), ((xt, yt) |zt = m) ∼ D̃m, ∀t ∈ T , (3.2)

whereM(π) is a multinomial (categorical) distribution with parameters π.

Similarly to what was done above, we use pm(x, y), pm(x), and pm(y) to denote the probability
distribution densities associated to D̃m. We further assume that marginals over X are identical.

Assumption 9. For all m ∈ [M], we have pm(x) = p(x).

Assumption 9 is not strictly required for our analysis to hold, but, in the most general case,
solving Problem (3.1) requires to learn generative models. Instead, under Assumption 9 we can
restrict our attention to discriminative models (e.g., neural networks). More specifically, we consider
a parameterized set of models H̃ with the following properties.

Assumption 10. H̃ = {hθ}θ∈Rd is a set of hypotheses parameterized by θ ∈ Rd, whose convex
hull is inH. For each distribution D̃m with m ∈ [M], there exists a hypothesis hθ∗

m
, such that

ℓ
(
hθ∗

m
(x) , y

)
= − log pm(y|x) + c, (3.3)

where c ∈ R, is a normalization constant. ℓ(·, ·) is then the log loss associated to pm(y|x).

We refer to the hypotheses in H̃ as component models or simply components. We denote by
Θ∗ ∈ RM×d the matrix whose m-th row is θ∗

m, and by Π∗ ∈ ∆T ×M the matrix whose t-th row is
π∗

t ∈ ∆M . Similarly, we will use Θ and Π to denote arbitrary parameters.

Remark 2. Assumptions 9–10 are mainly technical and are not required for our approach to
work in practice. Experiments in Sec. 3.5.6 show that our algorithms perform well on standard FL
benchmark datasets, for which these assumptions do not hold in general.

66 CHAPTER 3 — Personalized Federated Learning

Note that, under the above assumptions, pt(x, y) depends on Θ∗ and π∗
t . Moreover, we can

prove (see App. E.1) that the optimal local model h∗
t ∈ H for client t is a weighted average of

models in H̃.

Proposition 3.5.1. Let ℓ(·, ·) be the mean squared error loss, the logistic loss or the cross-entropy
loss, and Θ̆ and Π̆ be a solution of the following optimization problem:

minimize
Θ,Π

Et∼DT E(x,y)∼Dt
[− log pt(x, y|Θ, πt)] , (3.4)

where DT is any distribution with support T . Under Assumptions 8, 9, and 10, the predictors

h∗
t =

M∑
m=1

π̆tmhθ̆m
(x) , ∀t ∈ T (3.5)

minimize E(x,y)∼Dt
[ℓ(ht(x), y)] and thus solve Problem (3.1).

Proposition 3.5.1 suggests the following approach to solve Problem (3.1). First, we estimate
the parameters Θ̆ and π̆t, 1 ≤ t ≤ T , by minimizing the empirical version of Problem (3.4) on the
training data, i.e., minimizing:

f(Θ,Π) ≜ − log p(S1:T |Θ,Π)
n

≜ − 1
n

T∑
t=1

nt∑
i=1

log p(s(i)
t |Θ, πt), (3.6)

which is the (negative) likelihood of the probabilistic model (3.2).* Second, we use (3.5) to get the
client predictor for the T clients present at training time. Finally, to deal with a client tnew /∈ [T] not
seen during training, we keep the mixture component models fixed and simply choose the weights
πtnew that maximize the likelihood of the client data and get the client predictor via (3.5).

3.5.2 Relation with Other Personalized Federated Learning Frameworks

Before presenting our federated learning algorithms in Section 3.5, we show that the generative
model in Assumption 8 extends some popular multi-task/personalized FL formulations in the
literature.

Clustered Federated Learning [SMS20; Gho+20] assumes that each client belongs to one
among C clusters and proposes that all clients in the same cluster learn the same model. Our
framework recovers this scenario considering M = C and π∗

tc = 1 if task (client) t is in cluster c
and π∗

tc = 0 otherwise.
Personalization via model interpolation [Man+20; DKM20] relies on learning a global

model hglob and T local models hloc,t, and then using at each client the linear interpolation ht =
αthloc,t + (1−αt)hglob. Each client model can thus be seen as a linear combination of M = T + 1
models hm = hloc,m for m ∈ [T] and h0 = hglob with specific weights π∗

tt = αt, π∗
t0 = 1 − αt,

and π∗
tt′ = 0 for t′ ∈ [T] \ {t}.

*As the distribution DT over tasks in Prop. 3.5.1 is arbitrary, any positively weighted sum of clients’ empirical
losses could be considered.

3.5 – 3.5.2 Relation with Other Personalized Federated Learning Frameworks 67

Alternating Structure Optimization [ZCY11]. Alternating structure optimization (ASO) is a
popular MTL approach that learns a shared low-dimensional predictive structure on hypothesis
spaces from multiple related tasks, i.e., all tasks are assumed to share a common feature space
P ∈ Rd′×d, where d′ ≤ min(T, d) is the dimensionality of the shared feature space and P has
orthonormal columns (PP ⊺ = Id′), i.e., P is semi-orthogonal matrix. ASO leads to the following
formulation:

minimize
W,P :P P ⊺=Id′

T∑
t=1

nt∑
i=1

l
(
hwt

(
x(i)

t

)
, y

(i)
t

)
+ α (tr (WW ⊺)− tr (WP ⊺PW ⊺)) + β tr (WW ⊺) ,

(3.7)
where α ≥ 0 is the regularization parameter for task relatedness and β ≥ 0 is an additional L2
regularization parameter.

When the hypothesis (hθ)θ are assumed to be linear, Eq. (3.5) can be written as W = ΠΘ.
Writing the LQ decomposition* of matrix Θ, i.e., Θ = LQ, where L ∈ RM×M is a lower
triangular matrix and Q ∈ RM×d is a semi-orthogonal matrix (QQ⊺ = IM), (3.5) becomes W =
ΠLQ ∈ RT ×d, thus, W = WQ⊺Q, leading to the constraint ∥W −WQ⊺Q∥2F = tr (WW ⊺) −
tr (WQ⊺QW ⊺) = 0. If we assume ∥θm∥22 to be bounded by a constant B > 0 for all m ∈ [M],
we get the constraint tr (WW ⊺) ≤ TB. It means that minimizing

∑T
t=1

∑nt
i=1 l

(
hwt

(
x(i)

t

)
, y

(i)
t

)
under our Assumption 8 can be formulated as the following constrained optimization problem

minimize
W,Q:QQ⊺=IM

T∑
t=1

nt∑
i=1

l
(
hwt

(
x(i)

t

)
, y

(i)
t

)
,

subject to tr {WW ⊺} − tr {WQ⊺QW ⊺} = 0,
tr (WW ⊺) ≤ TB.

(3.8)

Thus, there exists Lagrange multipliers α ∈ R and β > 0, for which Problem (3.8) is equivalent
to the following regularized optimization problem

minimize
W,Q:QQ⊺=IM

T∑
t=1

nt∑
i=1

l
(
hwt

(
x(i)

t

)
, y

(i)
t

)
+ α (tr {WW ⊺} − tr {WQ⊺QW ⊺}) + β tr {WW ⊺} ,

(3.9)
which is exactly Problem (3.7).

Federated MTL via task relationships. The ASO formulation above motivated the authors
of [Smi+17] to learn personalized models by solving the following problem

min
W,Ω

T∑
t=1

nt∑
i=1

l
(
hwt

(
x(i)

t

)
, y

(i)
t

)
+ λ tr (WΩW ⊺) , (3.10)

Two alternative MTL formulations are presented in [Smi+17] to justify Problem (3.10): MTL with
probabilistic priors [ZY10] and MTL with graphical models [Lau96]. Both of them can be covered
using our Assumption 8 as follows:

• Considering T = M and Π = IM in Assumption 8 and introducing a prior on Θ of the form

Θ ∼
(∏
N
(
0, σ2Id

))
MN (Id ⊗ Ω) (3.11)

lead to a formulation similar to MTL with probabilistic priors [ZY10].
*Note that when Θ is a full rank matrix, this decomposition is unique.

68 CHAPTER 3 — Personalized Federated Learning

• Two tasks t and t′ are independent if ⟨πt, πt′⟩ = 0, thus using Ωt,t′ = ⟨πt, πt′⟩ leads to the
same graphical model as in [Lau96].

Several personalized FL formulations, e.g., pFedMe [TTN20], FedU [Din+22] and the formulation
studied in [HR21] and in [Han+20b], are special cases of formulation (3.11).

3.5.3 Federated Expectation-Maximization

3.5.3.1 Centralized Expectation-Maximization

Our goal is to estimate the optimal components’ parameters Θ∗ = (θ∗
m)1≤m≤M and mixture

weights Π∗ = (π∗
t)1≤t≤T by minimizing the negative log-likelihood f(Θ,Π) in (3.6). A natural

approach to solve such non-convex problems is the Expectation-Maximization algorithm (EM),
which alternates between two steps. Expectation steps update the distribution (denoted by qt)
over the latent variables z(i)

t for every data point s(i)
t = (x(i)

t , y
(i)
t) given the current estimates

of the parameters {Θ,Π}. Maximization steps update the parameters {Θ,Π} by maximizing the
expected log-likelihood, where the expectation is computed according to the current latent variables’
distributions.

The following proposition provides the EM updates for our problem (proof in Appendix E.2).

Proposition 3.5.2. Under Assumptions 8 and 9, at the k-th iteration the EM algorithm updates
parameter estimates through the following steps:

E-step: qk+1
t (z(i)

t = m) ∝ πk
tm · exp

(
−l(hθk

m
(x(i)

t), y(i)
t)
)
, t ∈ [T], m ∈ [M], i ∈ [nt]

(3.12)

M-step: πk+1
tm =

∑nt
i=1 q

k+1
t (z(i)

t = m)
nt

, t ∈ [T], m ∈ [M]

(3.13)

θk+1
m ∈ arg min

θ∈Rd

T∑
t=1

nt∑
i=1

qk+1
t (z(i)

t = m)l
(
hθ(x(i)

t), y(i)
t

)
, m ∈ [M]

(3.14)

The EM updates in Proposition 3.5.2 have a natural interpretation. In the E-step, given cur-
rent component models Θk and mixture weights Πk, (3.12) updates the a-posteriori probability
qk+1

t (z(i)
t = m) that point s(i)

t of client t was drawn from the m-th distribution based on the current
mixture weight πk

tm and on how well the corresponding component θk
m classifies s(i)

t . The M-step
consists of two updates under fixed probabilities qk+1

t . First, (3.13) updates the mixture weights
πk+1

t to reflect the prominence of each distribution D̃m in St as given by qk+1
t . Finally, (3.14)

updates the components’ parameters Θk+1 by solving M independent, weighted empirical risk
minimization problems with weights given by qk+1

t . These weights aim to construct an unbiased
estimate of the true risk over each underlying distribution D̃m using only points sampled from the
client mixtures, similarly to importance sampling strategies used to learn from data with sample
selection bias [Sug+07; Cor+08; CMM10; Vog+20].

3.5 – 3.5.3 Federated Expectation-Maximization 69

3.5.3.2 Client-Server Algorithm

Federated learning aims to train machine learning models directly on the clients, without exchanging
raw data, and thus we should run EM while assuming that only client t has access to dataset St.
The E-step (3.12) and the Π update (3.13) in the M-step operate separately on each local dataset St

and can thus be performed locally at each client t. On the contrary, the Θ update (3.14) requires
interaction with other clients, since the computation spans all data samples S1:T .

In this section, we consider a client-server setting, in which each client t can communicate
only with a centralized server (the orchestrator) and wants to learn components’ parameters
Θ∗ = (θ∗

m)1≤m≤M and its own mixture weights π∗
t .

We propose the algorithm FedEM for Federated Expectation-Maximization (Algorithm 7).
FedEM proceeds through communication rounds similarly to most FL algorithms including
FedAvg [McM+17], FedProx [Li+20b], SCAFFOLD [Kar+20a], and pFedMe [TTN20]. At
each round, 1) the central server broadcasts the (shared) component models to the clients, 2) each
client locally updates components and its personalized mixture weights, and 3) sends the updated
components back to the server, 4) the server aggregates the updates. The local update performed at
client t consists in performing the steps in (3.12) and (3.13) and updating the local estimates of θm

through a solver which approximates the exact minimization in (3.14) using only the local dataset
St (see line 13). FedEM can operate with different local solvers—even different across clients—as
far as they satisfy some local improvement guarantees (see the discussion in Section 3.5.5). In what
follows, we restrict our focus on the practically important case where the local solver performs
multiple stochastic gradient descent updates (local SGD [Sti19]).

Remark 3. A simultaneously published work [Die+21] proposes a federated EM algorithm (also
called FedEM), which does not address personalization but reduces communication requirements
by compressing appropriately defined complete data sufficient statistics.

Under the following standard assumptions (see e.g., [Wan+20b]), FedEM converges to a
stationary point of f . Below, we use the more compact notation l(θ; s(i)

t) ≜ l(hθ(x(i)
t), y(i)

t).

Assumption 11. The negative log-likelihood f is bounded below by f∗ ∈ R.

Assumption 12. (Smoothness) For all t ∈ [T] and i ∈ [nt], the function θ 7→ l(θ; s(i)
t) is L-smooth

and twice continuously differentiable.

Assumption 13. (Unbiased gradients and bounded variance) Each client t ∈ [T] can sample a ran-
dom batch ξ from St and compute an unbiased estimator gt(θ, ξ) of the local gradient with bounded
variance, i.e., Eξ[gt(θ, ξ)] = 1

nt

∑nt
i=1∇θl(θ; s

(i)
t) and Eξ∥gt(θ, ξ)− 1

nt

∑nt
i=1∇θl(θ; s

(i)
t)∥2 ≤ σ2.

Assumption 14. (Bounded dissimilarity) There exist β and G such that for any set of weights
α ∈ ∆M :

T∑
t=1

nt

n

∥∥∥ 1
nt

nt∑
i=1

M∑
m=1

αm · l(θ; s(i)
t)
∥∥∥2
≤ G2 + β2

∥∥∥ 1
n

T∑
t=1

nt∑
i=1

M∑
m=1

αm · l(θ; s(i)
t)
∥∥∥2
.

Assumption 14 limits the level of dissimilarity of the different tasks, similarly to what is done
in [Wan+20b].

70 CHAPTER 3 — Personalized Federated Learning

Algorithm 7: FedEM: Federated Expectation-Maximization
Input : Data S1:T ; number of mixture components M ; number of communication

rounds K; number of local steps J
Output : θK

m for 1 ∈ [M]; πK
t for t ∈ [T]

// Initialization

1 server randomly initialize θ0
m ∈ Rd for 1 ≤ m ≤M ;

2 for tasks t = 1, . . . , T in parallel over T clients do
3 Randomly initialize π0

t ∈ ∆M ;
4 end
// Main loop

5 for iterations k = 1, . . . ,K do
6 server broadcasts θk−1

m , 1 ≤ m ≤M to the T clients ;
7 for tasks t = 1, . . . , T in parallel over T clients do
8 for component m = 1, . . . ,M do

// E-step
9 for sample i = 1, . . . , nt do

10 qk
t

(
z

(i)
t = m

)
←

πk
tm·exp

(
−l(h

θk
m

(x(i)
t),y(i)

t)
)

∑M

m′=1 πk
tm′ ·exp

(
−l(h

θk
m′

(x(i)
t),y(i)

t)
) ;

11 end
// M-step

12 πk
tm ←

∑nt
i=1 qk

t (z(i)
t =m)

nt
;

13 θk
m,t ← LocalSolver(J , m, θk−1

m , qk
t , St) ;

14 end
15 client t sends θk

m,t, 1 ≤ m ≤M to the server ;
16 end
17 for component m = 1, . . . ,M do
18 θk

m ←
∑T

t=1
nt
n · θ

k
m,t;

19 end
20 end

21 Function LocalSolver(J , m, θ, q, S):
22 for j = 0, . . . , J − 1 do
23 Sample indexes I uniformly from 1, . . . , |S|;
24 θ ← θ − ηk−1,j

∑
i∈I q(z(i) = m) · ∇θl

(
hθ

(
x(i)

)
, y(i)

)
;

25 end
26 return θ;

3.5 – 3.5.3 Federated Expectation-Maximization 71

Theorem 3.5.3. Under Assumptions 8–14, when clients use SGD as local solver with learning rate
η = a0√

K
, after a large enough number of communication rounds K, FedEM’s iterates satisfy:

1
K

K∑
k=1

E
∥∥∥∇Θf

(
Θk,Πk

)∥∥∥2

F
≤ O

(1√
K

)
,

1
K

K∑
k=1

∆Πf(Θk,Πk) ≤ O
(1
K3/4

)
, (3.15)

where the expectation is over the random batches samples, and ∆Πf(Θk,Πk) ≜ f
(
Θk,Πk

)
−

f
(
Θk,Πk+1

)
≥ 0.

Theorem 3.5.3 (proof in App. E.3) expresses the convergence of both sets of parameters (Θ and
Π) to a stationary point of f . Indeed, the gradient of f with respect to Θ becomes arbitrarily small
(left inequality in (3.15)) and the update in Eq. (3.13) leads to arbitrarily small improvements of f
(right inequality in (3.15)).

We conclude this section observing that FedEM allows an unseen client, i.e., a client tnew /∈ T
arriving after the distributed training procedure, to learn its personalized model. The client simply
retrieves the learned components’ parameters ΘK and computes its personalized weights πtnew

(starting for example from a uniform initialization) through one E-step (3.12) and the first update in
the M-step (3.13).

3.5.3.3 Fully Decentralized Algorithm

In some cases, clients may want to communicate directly in a peer-to-peer fashion instead of relying
on the central server mediation [see Kai+21, Section 2.1]. In fact, fully decentralized schemes may
provide stronger privacy guarantees [CB22] and speed-up training as they better use communication
resources [Lia+17; Mar+20b] and reduce the effect of stragglers [Neg+19]. For these reasons, they
have attracted significant interest recently in the machine learning community [Lia+17; Lia+18;
VBT17; Bel+18; Neg+20; Mar+20b; Kol+20]. We refer to [NOR18] for a comprehensive survey of
fully decentralized optimization (also known as consensus-based optimization), and to [Kol+20]
for a unified theoretical analysis of decentralized SGD.

We propose D-FedEM (Algorithm 8)), a fully decentralized version of our federated expectation
maximization algorithm. As in FedEM, the M-step for Θ update is replaced by an approximate
maximization step consisting of local updates. The global aggregation step in FedEM (Alg. 7,
line 18) is replaced by a partial aggregation step, where each client computes a weighted average
of its current components and those of a subset of clients (its neighborhood), which may vary
over time. The convergence of decentralized optimization schemes requires certain assumptions to
guarantee that each client can influence the estimates of other clients over time. We consider the
general assumption in [Kol+20, Assumption 4], restated as Assumption 15:

Assumption 15 ([Kol+20, Assumption 4]). Symmetric doubly stochastic mixing matrices are drawn
at each round k from (potentially different) distributions W k ∼ Wk and there exists two constants
p ∈ (0, 1], and integer τ ≥ 1 such that for all Ξ ∈ RM×d×T and all integers l ∈ {0, . . . ,K/τ}:

E
∥∥∥ΞWl,τ − Ξ̄

∥∥∥2

F
≤ (1− p)

∥∥∥Ξ− Ξ̄
∥∥∥2

F
, (3.16)

where Wl,τ ≜ W (l+1)τ−1 . . .W lτ , Ξ̄ ≜ Ξ11⊺

T , and the expectation is taken over the random
distributions W k ∼ Wk.

72 CHAPTER 3 — Personalized Federated Learning

Algorithm 8: D-FedEM: Fully Decentralized Federated Expectation-
Maximization

Input : Data S1:T ; number of mixture components M ; number of iterations K;
number of local steps J ; mixing matrix distributionsWk for k ∈ [K]

Output : θK
m,t for m ∈ [M] and t ∈ [T]; πt for t ∈ [T]

// Initialization
1 for tasks t = 1, . . . , T in parallel over T clients do
2 Randomly initialize Θt = (θm,t)1≤m≤M ∈ RM×d ;
3 Randomly initialize π0

t ∈ ∆M ;
4 end
// Main loop

5 for iterations k = 1, . . . ,K do
// Select the communication topology and the

aggregation weights

6 Sample W k−1 ∼ Wk−1;
7 for tasks t = 1, . . . , T in parallel over T clients do
8 for component m = 1, . . . ,M do

// E-step
9 for sample i = 1, . . . , nt do

10 qk
t

(
z

(i)
t = m

)
←

πk
tm·exp

(
−l(h

θk
m

(x(i)
t),y(i)

t)
)

∑M

m′=1 πk
tm′ ·exp

(
−l(h

θk
m′

(x(i)
t),y(i)

t)
) ;

11 end
// M-step

12 πk
tm ←

∑nt
i=1 qk

t (z(i)
t =m)

nt
;

13 θ
k− 1

2
m,t ← LocalSolver(J , m, θk−1

m,t , qk
t , St, t);

14 end

15 Send θ
k− 1

2
m,t , 1 ≤ m ≤M to neighbors;

16 Receive θ
k− 1

2
m,s , 1 ≤ m ≤M from neighbors;

17 for component m = 1, . . . ,M do

18 θk
m,t ←

∑T
s=1w

k−1
s,t · θ

k− 1
2

m,s ;
19 end
20 end
21 end

22 Function LocalSolver(J , m, θ, q, S, t):
23 for j = 0, . . . , J − 1 do
24 Sample indexes I uniformly from 1, . . . , |S|;
25 θ ← θ − nt

n · ηk−1,j
∑

i∈I q(z(i) = m) · ∇θl
(
hθ

(
x(i)

)
, y(i)

)
;

26 end
27 return θ;

3.5 – 3.5.4 Federated Surrogate Optimization 73

Assumption 15 expresses the fact that the sequence of mixing matrices, on average and every
τ communication rounds, brings the values in the columns of Ξ closer to their row-wise average
(thereby mixing the clients’ updates over time). For instance, the assumption is satisfied if the
communication graph is strongly connected every τ rounds, i.e., the graph ([T], E), where the edge
(i, j) belongs to the graph if wh

i,j > 0 for some h ∈ {k + 1, . . . , k + τ} is connected. D-FedEM
converges to a stationary point of f (proof in Appendix E.4).

Theorem 3.5.4. Under Assumptions 8–15, when clients use SGD as local solver with learning rate
η = a0√

K
, D-FedEM’s iterates satisfy the following inequalities after a large enough number of

communication rounds K:

1
K

K∑
k=1

E
∥∥∥∇Θf

(
Θ̄k,Πk

)∥∥∥2

F
≤ O

(1√
K

)
,

1
K

K∑
k=1

T∑
t=1

nt

n
KL

(
πk

t , π
k−1
t

)
≤ O

(1
K

)
,

(3.17)
where Θ̄k =

[
Θk

1, . . .Θk
T

]
· 11⊺

T . Moreover, individual estimates
(
Θk

t

)
1≤t≤T

converge to consensus,

i.e., to Θ̄k:

min
k∈[K]

E
T∑

t=1

∥∥∥Θk
t − Θ̄k

∥∥∥2

F
≤ O

(1√
K

)
. (3.18)

3.5.4 Federated Surrogate Optimization

FedEM and D-FedEM can be seen as particular instances of a more general framework—of
potential interest for other applications—that we call federated surrogate optimization.

The standard majorization-minimization principle [LHY00] iteratively minimizes, at each
iteration k, a surrogate function gk majorizing the objective function f . The work [Mai13] studied
this approach when each gk is a first-order surrogate of f (the formal definition from [Mai13] is
given by Definition 3.5.1).

Our novel federated surrogate optimization framework considers that the objective function f is
a weighted sum f =

∑T
t=1 ωtft of T functions and iteratively minimizes f in a distributed fashion

using partial first-order surrogates gk
t for each function ft. “Partial” refers to the fact that gk

t is not
required to be a first order surrogate wrt the whole set of parameters, as defined formally below.

Definition 1 (Partial first-order surrogate). A function g(u,v) : Rdu × V → R is a partial-first-
order surrogate of f(u,v) wrt u near (u0,v0) ∈ Rdu × V when the following conditions are
satisfied:

1. g(u,v) ≥ f(u,v) for all u ∈ Rdu and v ∈ V;
2. r(u,v) ≜ g(u,v)− f(u,v) is differentiable and L-smooth with respect to u. Moreover, we

have r(u0,v0) = 0 and ∇ur(u0,v0) = 0.
3. g(u,v0)− g(u,v) = dV (v0,v) for all u ∈ Rdu and v ∈ arg minv′∈V g(u,v′), where dV

is non-negative and dV(v,v′) = 0 ⇐⇒ v = v′.

Under the assumption that each client t can compute a partial first-order surrogate of ft, we
propose algorithms for federated surrogate optimization in both the client-server setting (Algo-
rithm 10) and the fully decentralized one (Algorithm 11) and prove their convergence under mild
conditions (Appendix E.3 and E.4). FedEM and D-FedEM can be seen as particular instances of
these algorithms and Theorem 3.5.3 and Theorem 3.5.4 follow from the more general convergence
results for federated surrogate optimization.

74 CHAPTER 3 — Personalized Federated Learning

3.5.4.1 Reminder on Basic (Centralized) Surrogate Optimization

In this appendix, we recall the (centralized) first-order surrogate optimization framework introduced
in [Mai13]. In this framework, given a continuous function f : Rd 7→ R, we are interested in
solving

min
θ∈Rd

f(θ)

using the majoration-minimization scheme presented in Alg. 9.

Algorithm 9: Basic Surrogate Optimization

Input : θ0 ∈ Rd; number of iterations K;
Output : θK

1 for iterations k = 1, . . . ,K do
2 Compute gk, a surrogate function of f near θk−1;
3 Update solution: θk ∈ arg minθ g

k(θ);
4 end

This procedure relies on surrogate functions, that approximate well the objective function in
a neighborhood of a point. Reference [Mai13] focuses on first-order surrogate functions defined
below.

Definition 3.5.1 (First-Order Surrogate [Mai13]). A function g : Rd 7→ R is a first order surrogate
of f near θk ∈ Rd when the following is satisfied:

• Majorization: we have g(θ′) ≥ f(θ′) for all θ′ ∈ arg minθ∈Rd g(θ). When the more general
condition g ≥ f holds, we say that g is a majorant function.

• Smoothness: the approximation error r ≜ g − f is differentiable, and its gradient is L-
Lipschitz. Moreover, we have r(θk) = 0 and ∇r(θk) = 0.

3.5.4.2 Novel Federated Version

Our novel federated surrogate optimization framework minimizes an objective function (u,v1:T) 7→
f (u,v1:T) that can be written as a weighted sum f (u,v1:T) =

∑T
t=1 ωtft (u,vt) of T functions.

We suppose that each client t ∈ [T] can compute a partial first order surrogate of ft (Definition 1).
Under the assumption that each client t can compute a partial first order surrogate of ft, we

propose algorithms for federated surrogate optimization in both the client-server setting (Alg. 10)
and the fully decentralized one (Alg. 11). Both algorithms are iterative and distributed: at each
iteration k > 0, client t ∈ [T] computes a partial first-order surrogate gk

t of ft near
{
uk−1, vk−1

t

}
(resp.

{
uk−1

t , vk−1
t

}
) for federated surrogate optimization in Alg. 10 (resp. for fully decentralized

surrogate optimization in Alg 11).
The convergence of those two algorithms requires the following standard assumptions. Each of

them generalizes one of the Assumptions 11–14 for our EM algorithms.

Assumption 11′. The objective function f is bounded below by f∗ ∈ R.

Assumption 12′. (Smoothness) For all t ∈ [T] and k > 0, gk
t is L-smooth wrt to u.

3.5 – 3.5.4 Federated Surrogate Optimization 75

Algorithm 10: Federated Surrogate Optimization

Input : u0 ∈ Rdu ; V0 =
(
v0

t

)
1≤t≤T ∈ V

T ; number of iterations K; number of
local steps J

Output : uK ; vK
t

1 for iterations k = 1, . . . ,K do
2 server broadcasts uk−1 to the T clients ;
3 for tasks t = 1, . . . , T in parallel over T clients do
4 Compute partial first-order surrogate function gk

t of ft near
{

uk−1,vk−1
t

}
;

5 vk
t ← arg min

v∈V
gk

t

(
uk−1,v

)
;

6 uk
t ← LocalSolver(J , uk−1

t , vk−1
t , gk

t , St);
7 client t sends uk

t to the server ;
8 end
9 uk ←

∑T
t=1 ωt · uk

t ;
10 end

11 Function LocalSolver(J , u, v, g, S):
12 for j = 0, . . . , J − 1 do
13 sample ξk−1,j from S;
14 u← u− ηk−1,j · ∇ug(u,v; ξk−1,j);
15 end
16 return Θ;

Assumption 13′. (Unbiased gradients and bounded variance) Each client t ∈ [T] can sample
a random batch ξ from St and compute an unbiased estimator ∇ug

k
t (u,v; ξ) of the local gra-

dient with bounded variance, i.e., Eξ[∇ug
k
t (u,v; ξ)] = ∇ug

k
t (u,v) and Eξ∥∇ug

k
t (u,v; ξ) −

∇ug
k
t (u,v)∥2 ≤ σ2.

Assumption 14′. (Bounded dissimilarity) There exist β and G such that

T∑
t=1

ωt ·
∥∥∥∇ug

k
t (u,v)

∥∥∥2
≤ G2 + β2

∥∥∥ T∑
t=1

ωt · ∇ug
k
t (u,v)

∥∥∥2
.

Under these assumptions a parallel result to Thm. 3.5.3 holds for the client-server setting.

Theorem 3.5.3′. Under Assumptions 11′–14′, when clients use SGD as local solver with learning
rate η = a0√

K
, after a large enough number of communication rounds K, the iterates of federated

surrogate optimization (Alg. 10) satisfy:

1
K

K∑
k=1

E
∥∥∥∇uf

(
uk,vk

1:T

)∥∥∥2

F
≤ O

(1√
K

)
,

1
K

K∑
k=1

∆vf(uk,vk
1:T) ≤ O

(1
K3/4

)
, (3.19)

where the expectation is over the random batches samples, and ∆vf(uk,vk
1:T) ≜ f

(
uk,vk

1:T

)
−

f
(
uk,vk+1

1:T

)
≥ 0.

76 CHAPTER 3 — Personalized Federated Learning

In the fully decentralized setting, if in addition to Assumptions 11′-14′, we suppose that
Assumption 15 holds, a parallel result to Thm. 3.5.4 holds.

Theorem 3.5.4′. Under Assumptions 11′–14′ and Assumption 15, when clients use SGD as local
solver with learning rate η = a0√

K
, after a large enough number of communication rounds K, the

iterates of fully decentralized federated surrogate optimization (Alg. 11) satisfy:

1
K

K∑
k=1

E
∥∥∥∇uf

(
ūk, vk

1:T

)∥∥∥2
= O

(1√
K

)
,

1
K

K∑
k=1

T∑
t=1

ωt · dV
(
vk

t ,vk+1
t

)
= O

(1
K

)
,

(3.20)
where ūk = 1

T

∑T
t=1 uk

t . Moreover, local estimates
(
uk

t

)
1≤t≤T

converge to consensus, i.e., to ūk:

1
K

K∑
k=1

T∑
t=1

∥∥∥uk
t − ūk

∥∥∥2
≤ O

(1√
K

)
.

The proofs of Theorem 3.5.3′ and Theorem 3.5.4′ are in Appendix E.3 and Appendix 0 E.4,
respectively.

3.5.5 Distributed Surrogate Optimization with Black-Box Solver

In this section, we cover the scenario where the local SGD solver used in our algorithms (Alg. 10
and Alg. 11) is replaced by a (possibly non-iterative) black-box solver that is guaranteed to provide
a local inexact solution of

∀m ∈ [M], minimize
θ∈Rd

nt∑
i=1

qk(zi
t = m) · l(hθ(x(i)

t), y(i)
t), (3.21)

with the following approximation guarantee.

Assumption 16 (Local α-approximate solution). There exists 0 < α < 1 such that for t ∈ [T],
m ∈ [M] and k > 0,

nt∑
i=1

qk(zi
t = m)·

{
l(hθk

m,t
(x(i)

t), y(i)
t)− l(hθk

m,t,∗
(x(i)

t), y(i)
t)
}
≤

α ·
nt∑

i=1
qk(zi

t = m) ·
{
l(hθk−1

m
(x(i)

t), y(i)
t)− l(hθk

m,t,∗
(x(i)

t), y(i)
t)
}
, (3.22)

where θk
m,t,∗ ∈ arg minθ∈Rd

∑nt
i=1 q

k(zi
t = m) · l(hθ(x(i)

t), y(i)
t), θk

m,t is the output of the local
solver at client t and θk−1

m is its starting point (see Alg. 7).

We further assume strong convexity.

Assumption 17. For t ∈ [T] and i ∈ [nt], we suppose that θ 7→ l
(
hθ

(
x(i)

t

)
, y

(i)
t

)
is µ-strongly

convex.

3.5 – 3.5.5 Distributed Surrogate Optimization with Black-Box Solver 77

Algorithm 11: Fully-Decentralized Federated Surrogate Optimization

Input : u0 ∈ Rdu ; V0 =
(
v0

t

)
1≤t≤T ∈ V

T ; number of iterations K; number of
local step J ; mixing matrix distributionsWk for k ∈ [K]

Output : uK
t for t ∈ [T]; vK

t for t ∈ [T]
1 for iterations k = 1, . . . ,K do

// Select the communication topology and the
aggregation weights

2 Sample W k−1 ∼ Wk−1;
3 for tasks t = 1, . . . , T in parallel over T clients do
4 compute partial first-order surrogate function gk

t of ft near
{

uk−1
t ,vk−1

t

}
;

5 vk
t ← arg min

v∈V
gk

t

(
uk−1

t ,v
)

;

6 uk− 1
2

t ← LocalSolver(J , uk−1
t , vk−1

t , gk
t , t);

7 Send uk− 1
2

t to neighbors;

8 Receive uk− 1
2

s from neighbors;

9 uk
t ←

∑T
s=1w

k−1
ts × uk− 1

2
s ;

10 end
11 end

12 Function LocalSolver(J , u, v, g, S, t):
13 for j = 0, . . . , J − 1 do
14 sample ξk−1,j from S ;
15 u← u− ωt · ηk−1,j∇ug(u,v, ξk−1,j);
16 end
17 return u;

Assumption 16 is equivalent to the γ-inexact solution used in [Li+20a] (Lemma. E.19), when
local functions (Φt)1≤t≤T are assumed to be convex. We also need to have G2 = 0 in Assump-
tion 14 as in [Li+20b, Definition 3], in order to ensure the convergence of Alg. 7 and Alg. 8 to a
stationary point of f , as shown by [Wan+20b, Thm. 2].*

Theorem 3.5.5. Suppose that Assumptions 8–14, 16 and 17 hold with G2 = 0 and α < 1
β2κ4 , then

the updates of federated surrogate optimization converge to a stationary point of f , i.e.,

lim
k→+∞

∥∥∥∇Θf(Θk,Πk)
∥∥∥2

F
= 0, (3.23)

and

lim
k→+∞

T∑
t=1

nt

n
KL

(
πk

t , π
k−1
t

)
= 0. (3.24)

*As shown by [Wan+20b, Thm. 2], the convergence is guaranteed in two scenarios: 1) G2 = 0, 2) All clients use
take the same number of local steps using the same local solver. Note that we allow each client to use an arbitrary
approximate local solver.

78 CHAPTER 3 — Personalized Federated Learning

We provide the analysis for the general case of federated surrogate optimization (Algorithm 10)
before showing that FedEM (Algorithm 7) is a particular case.

We suppose that, at iteration k > 0, the partial first-order surrogate functions gk
t , t ∈ [T] used

in Alg. 10 verifies, in addition to Assumptions 11′–14′, the following assumptions that generalize
Assumptions 16 and 17,

Assumption 16′ (Local α-inexact solution). There exists 0 < α < 1 such that for t ∈ [T] and
k > 0,

∀v ∈ V, gk
t (uk

t ,v)− gk
t (uk

t,∗,v) ≤ α ·
{
gk

t

(
uk−1,v

)
− gk

t

(
uk

t,∗,v
)}

, (3.25)

where uk
t,∗ ∈ arg minu∈Rdu gk

t

(
u,vk

t

)
.

Assumption 17′. For t ∈ [T] and k > 0, gk
t is µ-strongly convex in u.

Under these assumptions a parallel result to Thm. 3.5.5 holds.

Theorem 3.5.5′. Suppose that Assumptions 11′–14′, Assumptions 16′ and 17′ hold with G2 = 0
and α < 1

β2κ4 , then the updates of federated surrogate optimization converges to a stationary point
of f , i.e.,

lim
k→+∞

∥∥∥∇uf(uk,vk
1:T)

∥∥∥2
= 0, (3.26)

and

lim
k→+∞

T∑
t=1

ωt · dV
(
vk

t ,vk−1
t

)
= 0. (3.27)

3.5.6 Numerical Experiments

3.5.6.1 Datasets and Models

In this section we provide detailed description of the datasets and models used in our experiments.
We used a synthetic dataset, verifying Assumptions 8-10, and five "real" datasets (CIFAR-10/CIFAR-
100 [Kri09], sub part of EMNIST [Coh+17], sub part of FEMNIST [Cal+19; McM+17] and
Shakespeare [Cal+19; McM+17]) from which, two (FEMNIST and Shakespeare) has natural client
partitioning. Below, we give a detailed description of the datasets and the models / tasks considered
for each of them.

CIFAR-10 / CIFAR-100 CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny
images dataset. They both share the same 60, 000 input images. CIFAR-100 has a finer labeling,
with 100 unique labels, in comparison to CIFAR-10, having 10 unique label. We used Dirichlet
allocation [Wan+20a], with parameter α = 0.4 to partition CIFAR-10 among 80 clients. We used
Pachinko allocation [Red+21] with parameters α = 0.4 and β = 10 to partition CIFAR-100 on 100
clients. For both of them we train MobileNet-v2 [San+18] architecture with an additional linear
layer. We used TorchVision [MR10] implementation of MobileNet-v2.

EMNIST EMNIST (Extended MNIST) is a 62-class image classification dataset, extending the
classic MNIST dataset. In our experiments, we consider 10% of the EMNIST dataset, that we
partition using Dirichlet allocation of parameter α = 0.4 over 100 clients. We train the same
convolutional network as in [Red+21]. The network has two convolutional layers (with 3 × 3
kernels), max pooling, and dropout, followed by a 128 unit dense layer.

3.5 – 3.5.6 Numerical Experiments 79

Table 3.1: Average computation time and used GPU for each dataset.

Dataset GPU Simulation time

Shakespeare Quadro RTX 8000 4h42min
FEMNIST Quadro RTX 8000 1h14min
EMNIST GeForce GTX 1080 Ti 46min
CIFAR10 GeForce GTX 1080 Ti 2h37min
CIFAR100 GeForce GTX 1080 Ti 3h9min
Synthetic GeForce GTX 1080 Ti 20min

FEMNIST FEMNIST (Federated Extended MNIST) is a 62-class image classification dataset
built by partitioning the data of Extended MNIST based on the writer of the digits/characters. In
our experiments, we used a subset with 15% of the total number of writers in FEMNIST. We train
the same convolutional network as in [Red+21]. The network has two convolutional layers (with
3× 3 kernels), max pooling, and dropout, followed by a 128 unit dense layer.

Shakespeare This dataset is built from The Complete Works of William Shakespeare and is
partitioned by the speaking roles [McM+17]. In our experiments, we discarded roles with less
than two sentences. We consider character-level based language modeling on this dataset. The
model takes as input a sequence of 200 English characters and predicts the next character. The
model embeds the 80 characters into a learnable 8-dimensional embedding space, and uses two
stacked-LSTM layers with 256 hidden units, followed by a densely-connected layer. We also
normalized each character by its frequency of appearance.

3.5.6.2 Implementation Details

Machines We ran the experiments on a CPU/GPU cluster, with different GPUs available (e.g.,
Nvidia Tesla V100, GeForce GTX 1080 Ti, Titan X, Quadro RTX 6000, and Quadro RTX 8000).
Most experiments with CIFAR10/CIFAR-100 and EMNIST were run on GeForce GTX 1080 Ti
cards, while most experiments with Shakespeare and FEMNIST were run on the Quadro RTX 8000
cards. For each dataset, we ran around 30 experiments (not counting the development/debugging
time). Table 3.1 gives the average amount of time needed to run one simulation for each dataset.
The time needed per simulation was extremely long for Shakespeare dataset, because we used a
batch size of 128. We remarked that increasing the batch size beyond 128 caused the model to
converge to poor local minima, where the model keeps predicting a white space as next character.

Libraries We used PyTorch [Pas+19] to build and train our models. We also used Torchvi-
sion [MR10] implementation of MobileNet-v2 [San+18], and for image datasets preprossessing.
We used LEAF [Cal+19] to build FEMNIST dataset and the federated version of Shakespeare
dataset.

Hyperparameters For each method and each task, the learning rate was set via grid search on the
set
{
10−0.5, 10−1, 10−1.5, 10−2, 10−2.5, 10−3}. FedProx and pFedMe’s penalization parameter

µ was tuned via grid search on
{
101, 100, 10−1, 10−2, 10−3}. For clustered FL, we used the same

80 CHAPTER 3 — Personalized Federated Learning

Table 3.2: Test accuracy: average across clients / bottom decile.

Dataset Local FedAvg FedProx FedAvg+ Clustered FL pFedMe FedEM (Ours)

FEMNIST 71.0 / 57.5 78.6 / 63.9 78.9 / 64.0 75.3 / 53.0 73.5 / 55.1 74.9 / 57.6 79.9 / 64.8
EMNIST 71.9 / 64.3 82.6 / 75.0 83.0 / 75.4 83.1 / 75.8 82.7 / 75.0 83.3 / 76.4 83.5 / 76.6
CIFAR10 70.2 / 48.7 78.2 / 72.4 78.0 / 70.8 82.3 / 70.6 78.6 / 71.2 81.7 / 73.6 84.3 / 78.1
CIFAR100 31.5 / 19.9 40.9 / 33.2 41.0 / 33.2 39.0 / 28.3 41.5 / 34.1 41.8 / 32.5 44.1 / 35.0
Shakespeare 32.0 / 16.6 46.7 / 42.8 45.7 / 41.9 40.0 / 25.5 46.6 / 42.7 41.2 / 36.8 46.7 / 43.0
Synthetic 65.7 / 58.4 68.2 / 58.9 68.2 / 59.0 68.9 / 60.2 69.1 / 59.0 69.2 / 61.2 74.7 / 66.7

values of tolerance as the ones used in its official implementation [SMS20]. We found tuning tol1
and tol2 particularly hard: no empirical rule is provided in [SMS20], and the few random setting
we tried did not show any improvement in comparison to the default ones.

3.5.6.3 Main Results

Other FL approaches. We compared our algorithms with global models trained with
FedAvg [McM+17] and FedProx [Li+20b] as well as different personalization approaches: a per-
sonalized model trained only on the local dataset, FedAvg with local tuning (FedAvg+) [Jia+23],
clustered FL [SMS20] and pFedMe [TTN20]. For each method and each task, the learning rate and
the other hyper-parameters were tuned via grid search (details in App. 3.5.6.2). FedAvg+ updated
the local model through a single pass on the local dataset. Unless otherwise stated, the number of
components considered by FedEM was M = 3, training occurred over 80 communication rounds
for Shakespeare and 200 rounds for all other datasets. At each round, clients train for one epoch.
Results for D-FedEM are in Appendix E.9.

Average performance of personalized models. The performance of each personalized model
(which is the same for all clients in the case of FedAvg and FedProx) is evaluated on the local
test dataset (unseen at training). Table 3.2 shows the average weighted accuracy with weights
proportional to local dataset sizes. We observe that FedEM obtains the best performance across all
datasets.

Fairness across clients. FedEM’s improvement in terms of average accuracy could be the
result of learning particularly good models for some clients at the expense of bad models for other
clients. Table 3.2 shows the bottom decile of the accuracy of local models, i.e., the (T/10)-th worst
accuracy (the minimum accuracy is particularly noisy, notably because some local test datasets are
very small). Even clients with the worst personalized models are still better off when FedEM is
used for training.

Clients sampling. In cross-device federated learning, only a subset of clients may be available
at each round. We ran CIFAR10 experiments with different levels of participation: at each round a
given fraction of all clients were sampled uniformly without replacement. We restrict the comparison
to FedEM and FedAvg+, as 1) FedAvg+ performed better than FedProx and FedAvg in the
previous CIFAR10 experiments, 2) it is not clear how to extend pFedMe and clustered FL to
handle client sampling. Results in Fig. 3.1 (left) show that FedEM is more robust to low clients’
participation levels.

Generalization to unseen clients. As discussed in Section 3.5.3.2, FedEM allows new clients
arriving after the distributed training to easily learn their personalized models. With the exception of
FedAvg+, it is not clear if and how the other personalized FL algorithms can tackle the same goal.
In order to evaluate the quality of new clients’ personalized models, we performed an experiment

3.5 – 3.5.6 Numerical Experiments 81

Table 3.3: Average test accuracy across clients unseen at training (train accuracy in parenthesis).

Dataset FedAvg FedAvg+ FedEM (Ours)

FEMNIST 78.3 (80.9) 74.2 (84.2) 79.1 (81.5)
EMNIST 83.4 (82.7) 83.7 (92.9) 84.0 (83.3)
CIFAR10 77.3 (77.5) 80.4 (80.5) 85.9 (90.7)
CIFAR100 41.1 (42.1) 36.5 (55.3) 47.5 (46.6)
Shakespeare 46.7 (47.1) 40.2 (93.0) 46.7 (46.6)
Synthetic 68.6 (70.0) 69.1 (72.1) 73.0 (74.1)

Figure 3.1: Effect of client sampling rate (left) and FedEM number of mixture components M
(right) on the test accuracy for CIFAR10 [Kri09].

where only 80% of the clients (“old” clients) participate to the training. The remaining 20% join the
system in a second phase and use their local training datasets to learn their personalized weights.
Table 3.3 shows that FedEM allows new clients to learn a personalized model at least as good as
FedAvg’s global one and always better than FedAvg+’s one. Unexpectedly, new clients achieve
sometimes a significantly higher test accuracy than old clients (e.g., 47.5% against 44.1% on
CIFAR100). Our investigation (App. E.11) suggests that, by selecting their mixture weights on
local datasets that were not used to train the components, new clients can compensate for potential
overfitting in the initial training phase.

Effect of M . A limitation of FedEM is that each client needs to update and transmit M
components at each round, requiring roughly M times more computation and M times larger
messages. Nevertheless, the number of components to consider in practice is quite limited. We
used M = 3 in our previous experiments, and Fig. 3.1 (right) shows that larger values do not
yield much improvement and M = 2 already provides a significant level of personalization. In all
experiments above, the number of communication rounds allowed all approaches to converge. As
a consequence, even if other methods trained over M = 3 times more rounds—in order to have
as much computation and communication as FedEM—the conclusions would not change. As a
final experiment, we considered a time-constrained setting, where FedEM is limited to run one
third (= 1/M) of the rounds (Table 6 in App. E.13). Even if FedEM does not reach its maximum
accuracy, it still outperforms the other methods on 3 datasets.

82 CHAPTER 3 — Personalized Federated Learning

3.5.7 Conclusion

In this section, we proposed a novel federated MTL approach based on the flexible assumption
that local data distributions are mixtures of underlying distributions. Our EM-like algorithms allow
clients to jointly learn shared component models and personalized mixture weights in client-server
and fully decentralized settings. We proved convergence guarantees for our algorithms through
a general federated surrogate optimization framework which can be used to analyze other FL
formulations. Extensive empirical evaluation shows that our approach learns models with higher
accuracy and fairness than state-of-the-art FL algorithms, even for clients not present at training
time.

In future work, we aim to reduce the local computation and communication of our algorithms.
Aside from standard compression schemes [Had+21], a promising direction is to limit the number
of component models that a client updates/transmits at each step. This could be done in an adaptive
manner based on the client’s current mixture weights. A second interesting research direction is
to study personalized FL approaches under privacy constraints (quite unexplored until now with
the notable exception of [Bel+18]). Some features of our algorithms may be beneficial for privacy
(e.g., the fact that personalized weights are kept locally and that all users contribute to all shared
models). We hope to design differentially private versions of our algorithms and characterize their
privacy-utility trade-offs.

Since introducing the mixture assumption and the FedEM algorithm in [Mar+21b], several
personalization approaches have emerged, expanding on this paradigm. Notable contributions to
this growing field include soft-clustering (FedSoft) [RJ22], federated Gaussian mixture models
(FedGMM) [Wu+23], federated modular networks (FedMN) [Wan+22a], and personalized federated
learning with the right collaborators (FedRiCo) [Sui+22]. Beyond its original context, our FedEM
approach has found applications in characterizing internal evasion attacks within federated learn-
ing [Kim+23]. Its unique capability to measure data distribution similarity among clients has been
instrumental in this regard. Moreover, mixture models have been used to address the challenging
problem of diverse distribution shifts in federated learning [GTL23; Jot+23; Zhu+22]. In Chapter 4,
we explore online federated learning under the assumption that clients’ data distributions consist of
mixtures of a finite number of unknown underlying distributions with varying mixing weights.

Apart from its theoretical impact and its adoption as a foundational element in various personal-
ization approaches and distribution shift mitigation strategies, the FedEM’s accompanying code
(accessible at https://github.com/omarfoq/FedEM) has provided a versatile framework
for simulating federated learning. This resource has facilitated numerous researchers in experiment-
ing with new algorithms, as seen in recent works such as [TH23; Sui+22].

3.6 Personalized Federated Learning through Local Memorization

In this section, we exploit the ability of deep neural networks to extract high quality vectorial
representations (embeddings) from non-tabular data, e.g., images and text, to propose a person-
alization mechanism based on local memorization. Personalization is obtained by interpolating
a collectively trained global model with a local k-nearest neighbors (kNN) model based on the
shared representation provided by the global model.

Motivated by the recent success of memorization techniques based on nearest neighbors for natu-
ral language processing, [Kha+19; Kha+21], computer vision [PM18; Orh18], and few-shot classifi-
cation [SSZ17; Wan+19b], we propose kNN-Per, a personalized FL algorithm based on local mem-

https://github.com/omarfoq/FedEM

3.6 – 3.6.1 kNN-Per Algorithm 83

orization. kNN-Per combines a global model trained collectively (e.g., via FedAvg [McM+17])
with a kNN model on a client’s local datastore. The global model also provides the shared represen-
tation used by the local kNN.

kNN-Per offers a simple and effective way to address statistical heterogeneity even in a
dynamic environment where client’s data distributions change after training. It is indeed sufficient
to update the local datastore with new data without the need to retrain the global model. Moreover,
each client can independently tune the local kNN to its storage and computing capabilities, partially
relieving the most powerful clients from the need to align their model to the weakest ones. Finally,
kNN-Per has a limited leakage of private information, as personalization only occurs once
communication exchanges have ended, and, if needed, it can be easily combined with differential
privacy techniques.

3.6.1 kNN-Per Algorithm

In this section, we suppose that all tasks have access to a global discriminative model hS minimizing
the empirical risk on the aggregated dataset S ≜

⋃T
t=1 St, i.e.,

hS ∈ arg min
h∈H

LS (h) , (3.28)

where LS (h) ≜
∑T

t=1
nt
n ·

1
nt

∑nt
i=1 l

(
h
(
x(i)

t

)
, y

(i)
t

)
, and n =

∑T
t=1 nt. Typically hS is a feed-

forward neural network, jointly trained by the clients using a standard FL algorithm like FedAvg.
We also suppose that the global model can be used to compute a fixed-length representation for

any input x ∈ X , and we use ϕhS : X 7→ Rp to denote the function that maps the input x ∈ X to
its representation.

The intermediate representation can be, for example, the output of the last convolutional layer
in the case of CNNs, or the last hidden state in the case of recurrent networks or the output of an
arbitrary self-attention layer in the case of transformers. Note that an alternative possible approach
would be to separately learn an independent shared representation, e.g., using metric learning
techniques [BHS15].

Our method (see 12) involves augmenting the global model with a local nearest neighbors’
retrieval mechanism at each client. The proposed method does not need any additional training;
it only requires a single forward pass over the local dataset St, t ∈ [T]: client m computes the
intermediate representation ϕhS (x) for each sample (x, y) ∈ St. The corresponding representation-
label pairs are stored in a local key-value datastore (Kt,Vt) that is queried during inference.
Formally,

(Kt,Vt) =
{(
ϕhS

(
x(i)

t

)
, y

(i)
t

)
,∀
(
x(i)

t , y
(i)
t

)
∈ St

}
. (3.29)

At inference time, given input data x ∈ X , client t ∈ [T] computes hS(x) and the intermediate
representation ϕhS (x). Then, it queries its local datastore (Kt,Vt) with ϕhS (x) to retrieve its
k-nearest neighbors N (k)

t (x) according to a distance d (·, ·):

N (k)
t (x) =

(
ϕhS

(
x

π
(i)
t (x)

)
, y

π
(i)
t (x)

)
1≤i≤k

, (3.30)

where π(1)
t (x) , . . . , π(nt)

t (x) is a permutation of [nt] corresponding to the distance of the samples

84 CHAPTER 3 — Personalized Federated Learning

Algorithm 12: kNN-Per (Typical usage)

1 Learn global model using available clients with FedAvg;
2 for each client t ∈ [T] (in parallel) do
3 Build datastore using St;
4 At inference on x ∈ X , return ht,λt (x) given by (3.33) ;
5 end

in St from x, i.e., for i ∈ [nt − 1],

d
(
ϕhS

(
x
)
, ϕhS

(
x

π
(i)
t (x)

))
≤ d

(
ϕhS

(
x
)
, ϕhS

(
x

π
(i+1)
t (x)

))
. (3.31)

Then, the client computes a local hypothesis h(k)
St

which estimates the conditional probability
Dt(y|x) using a kNN method, e.g., with a Gaussian kernel:

[
h

(k)
St

(x)
]

y
∝

k∑
i=1

1{
y=y

π
(i)
t

(x)

} × exp
{
−d

(
ϕhS (x) , ϕhS

(
x

π
(i)
t (x)

))}
. (3.32)

The final decision rule (hypothesis) at client t ∈ [T] (ht,λt) is obtained interpolating the
nearest neighbor distribution h(k)

St
with the distribution obtained from the global model hS using a

hyper-parameter λt ∈ (0, 1) to produce the final prediction, i.e.,

ht,λt (x) ≜ λt · h(k)
St

(x) + (1− λt) · hS(x) . (3.33)

As ht,λt may not belong toH, we are considering an improper learning setting. The parameter λt

is tuned at client t through a local validation dataset or cross-validation as in [CBB21; Man+20;
Zha+21; Li+21]. Clients could also use different values kt and different distance metrics dt(·), but,
in what follows, we consider them equal across clients. Also our experiments in Section 3.6.3 show
that k and d(·) do not require careful tuning.

3.6.2 Generalization Bound

In this section we provide a generalization bound associated with the proposed approach in the case
of binary classification, namely Y = {0, 1}, when only one neighbour is used for kNN estimation,
i.e., k = 1, and d (·, ·) is the Euclidean distance. For client t ∈ [T], we denote by ηt : X 7→ R the
true conditional probability of label 1, that is

ηt (x) = Dt (y = 1|x) . (3.34)

Our result holds under the following assumptions:

Assumption 18 (Bounded representation). ϕhS : X 7→ [0, 1]p.

Assumption 19 (Bounded loss). l : ∆|Y| × Y 7→ [0, 1]. Moreover, for y, y′ ∈ {0, 1}, l(ey, y
′) =

1y ̸=y′ , where ey ∈ ∆|Y| is the vector having all entries equal to 0 except the entry on the y-th
coordinate.

3.6 – 3.6.2 Generalization Bound 85

Remark 4. Loss boundedness is a common assumption, e.g., [Man+20],[SB14, Ch. 4]. The second
requirement is that the maximum loss is achieved when the model is fully confident about a predic-
tion, but this is wrong. A simple transformation of common loss functions—e.g., exponentiating the
logistic function—make them satisfy Assumption 19.

Assumption 20 (Loss convexity). The loss function is convex on the first variable

∀y1, y2 ∈ ∆|Y|, ∀y ∈ Y, ∀λt ∈ [0, 1],
l(λt · y1 + (1− λt) · y2, y) ≤ λt · l(y1, y) + (1− λt) · l(y2, y). (3.35)

Remark 5. Assumption 20 holds for most loss functions used in supervised machine learning,
including the mean squared error loss, the cross-entropy loss, and the hinge loss.

Assumption 21. There exist constants γ1, γ2 > 0, such that for any dataset S drawn from X × Y
and any data points x,x′ ∈ X , we have∣∣ηt (x)− ηt

(
x′) ∣∣ ≤ d (ϕhS (x) , ϕhS

(
x′))× (γ1 + γ2 (LDt (hS)− LDt (h∗

t))) , (3.36)

where h∗
t ∈ arg minh∈H LDt (h).

This assumption means that if two samples x and x′ have close representations ϕhS (x) and
ϕhS (x′), then their labels are likely to be the same (|ηt(x)− ηt(x′)| is small). This is all the more
so, the better hS predictions are for distribution Dt, t ∈ [T] (the smaller LDt (hS)− LDt (h∗

t) is).
Experimental results support Assumption 21 (see 3.4).

Our generalization bound depends, as usual, on the complexity of the hypothesis class H
(expressed by its VC-dimension, dH) and on the size of the local and global datasets (nt and n,
respectively), but also on the distance between the local distribution Dt and the average distribution
D̄ =

∑T
t=1

nt
n · Dt, which is the one the global model hS is targeting (see (3.28)). The distance

between two distributions D and D′ associated to a hypothesis class H can be quantified by the
label discrepancy [Man+20]:

discH
(
D,D′) = max

h∈H
|LD (h)− LD′ (h)| . (3.37)

Theorem 3.6.1. Suppose that Assumptions 18–21 hold, and consider t ∈ [T] and λt ∈ (0, 1), then
there exist constants c1, c2, c3, c4, and c5 ∈ R, such that

ES∼⊗T
t=1Dnt

t
[LDt (ht,λt)] ≤ (1 + λt) · LDt (h∗

t) + c1 (1− λt) · discH
(
D̄,Dt

)
+ c2λt ·

√
p

p+1
√
nt
·
(
discH

(
D̄,Dt

)
+ 1

)
+ c3 (1− λt) ·

√
dH
n
·
√
c4 + log

(
n

dH

)

+ c5λt ·

√
dH
n
·
√
c4 + log

(
n

dH

)
·
√
p

p+1
√
nt
, (3.38)

where dH is the the VC dimension of the hypothesis classH, n =
∑M

t=1 nt, D̄ =
∑T

t=1
nt
n · Dt, p is

the dimension of representations, and discH is the label discrepancy associated to the hypothesis
classH.

86 CHAPTER 3 — Personalized Federated Learning

Table 3.4: Datasets and models.

DATASET TASK CLIENTS TOTAL SAMPLES MODEL

FEMNIST CHARACTER RECOGNITION 3, 550 805, 263 MOBILENET-V2
CIFAR-10 IMAGE CLASSIFICATION 200 60, 000 MOBILENET-V2
CIFAR-100 IMAGE CLASSIFICATION 200 60, 000 MOBILENET-V2
SHAKESPEARE NEXT-CHARACTER PREDICTION 778 4, 226, 158 STACKED-LSTM

The proof of Theorem 3.6.1 is in Appendix F. Let us consider, for simplicity, the non-agnostic
case, i.e, LDt (h∗

t) = 0. We observe that, when clients only use the global model (λt = 0), our
generalization bound is analogous to the probabilistic bound in [Man+20, Eq. (2)]. In particular, if
data is i.i.d. distributed across the clients (discH

(
D̄,Dt

)
= 0), the difference between the expected

losses of the learned model and the optimal one decreases with rate Õ
(√

dH
n

)
. Instead, when each

client only uses the kNN model (λt = 1),* we recover the kNN generalization bound in [SB14,
Thm 19.3].

The bound (3.38) leads to predict that client t should give a larger weight (λt > 1/2) to its
kNN model, when nt exceeds a given threshold, even when local distributions are identical. The
bound contributes then to explain why adding a memorization mechanism on top of a pretrained
model can improve performance, as observed in [Kha+19] and [Kha+21]. While it is difficult to
quantify the threshold analytically (also because the constants involved depend on γ1 and γ2 in
Assumption 21), our experiments in Section 3.6.3 show that even clients with a few tens of samples
weigh more the kNN model than the global one.

3.6.3 Numerical Experiments

We evaluate kNN-Per on four federated datasets spanning a wide range of machine learning
tasks: language modeling (Shakespeare [Cal+19; McM+17]), image classification (CIFAR-10 and
CIFAR-100 [Kri09]), handwritten character recognition (FEMNIST [Cal+19]). Unless otherwise
said, kNN-Per’s global model hS is trained by all clients through FedAvg. Code is available at
https://github.com/omarfoq/knn-per.

Datasets. For Shakespeare and FEMNIST datasets there is a natural way to partition data through
clients (by character and by writer, respectively). We relied on common approaches in the literature
to sample heterogeneous local datasets from CIFAR-10 and CIFAR-100. We created a federated
version of CIFAR-10 by randomly partitioning the dataset among clients using a symmetric Dirichlet
distribution, as done in [Wan+20a]. In particular, for each label y we sampled a vector py from a
Dirichlet distribution of order M = 200 and parameter α = 0.3 (unless otherwise specified) and
allocated to client m a py,m fraction of all training instances of class y. The approach ensures that
the number of data points and label distributions are unbalanced across clients. For CIFAR-100,
we exploit the availability of “coarse" and “fine" label structure, to partition the dataset using
Pachinko allocation method [LM06] as in [Red+21]. The method generates local datasets with
heterogeneous distributions by combining a per-client Dirichlet distribution with parameter α = 0.3

*Note that the kNN model still relies on the representation provided by the global model.

https://github.com/omarfoq/knn-per

3.6 – 3.6.3 Numerical Experiments 87

(unless otherwise specified) over the coarse labels and a per-coarse-label Dirichlet distribution
with parameter β = 10 over the corresponding fine labels. We also partitioned CIFAR-10 and
CIFAR-100 in a different way following [Ach+21]: each client has only samples from two and ten
classes for CIFAR-10 and CIFAR-100, respectively. We refer to the resulting datasets as CIFAR-10
(v2) and CIFAR-100 (v2). For FEMNIST and Shakespeare, we randomly split each local dataset
into training (60%), validation (20%), and test (20%) sets. For CIFAR-10 and CIFAR-100, we
maintained the original training/test data split and used 20% of the training dataset as validation
dataset. Table 3.4 summarizes datasets, models and number of clients.

Models and representations. For CIFAR-100, CIFAR-10, and FEMNIST, we used MobileNet-v2
[San+18] as a base model with the output of the last hidden layer—a 1280-dimensional vector—as
representation. For Shakespeare, the base model was a stacked LSTM model with two layers, each
of them with 256 units; a 1024-dimensional representation was obtained by concatenating the
hidden states and the cell states.

Benchmarks. We compared kNN-Per with locally trained models (with no collaboration across
clients) and FedAvg [McM+17], as well as with one method for each of the personalization
approaches described in Section 3.2, namely, FedAvg+ [Jia+23],* ClusteredFL [SMS20],
Ditto [Li+21], FedRep [Col+21], APFL [DKM20], and pFedGP [Ach+21].† For each
method, and each dataset, we tuned the learning rate via grid search on the values{
10−0.5, 10−1, 10−1.5, 10−2, 10−2.5}. FedPer’s learning rate for network heads’ training was

separately tuned on the same grid. Ditto’s penalization parameter λt was selected among the
values

{
101, 100, 10−1, 10−2} on a per-client basis. For ClusteredFL, we used the same values

of tolerance specified in its official implementation [SMS20]. We found tuning tol1 and tol2
particularly hard: no empirical rule is provided in [SMS20], and the few random settings we tried
did not show any improvement in comparison to the default ones. For APFL, the mixing parameter
α was tuned via grid search on the grid {0.1, 0.3, 0.5, 0.7, 0.9}. For pFedGP, we used the same
hyperparameters as in [Ach+21]. The parameter λt of kNN-Per was tuned for each client via
grid search on the grid {0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}, and the number of neighbors was set to
k = 10. Once the optimal hyperparameters’ values were selected, models were retrained on the
concatenation of training and validation sets.

Training details. In all experiments with CIFAR-10 and CIFAR-100, training spanned 200 rounds
with full clients’ participation at each round for all methods. The learning rate was reduced by a
factor 10 at round 100 and then again at round 150. For Shakespeare, 10% of clients were sampled
uniformly at random without replacement at each round, and we trained for 300 rounds with a
constant learning rate. For FEMNIST, 5% of the clients participated at each round for a total 1000
rounds, with the learning rate dropping by a factor 10 at round 500 and 750. In all our experiments
we employed the following aggregation scheme

wk+1 =
∑
t/∈Sk

nt

n
wk +

∑
t∈Sk

nt

n
wt

k, (3.39)

*We also implemented the more sophisticated first-order MAML approach from [FMO20], but had worse perfor-
mance than FedAvg+.

†We were able to run the official pFedGP’s code (https://github.com/IdanAchituve/pFedGP) only
on datasets partitioned as in [Ach+21].

https://github.com/IdanAchituve/pFedGP

88 CHAPTER 3 — Personalized Federated Learning

Table 3.5: Test accuracy: average across clients / bottom decile.

DATASET LOCAL FEDAVG FEDAVG+ CLUSTEREDFL DITTO FEDREP APFL PFEDGP
KNN-PER
(OURS)

FEMNIST 71.0 / 57.5 83.4 / 68.9 84.3 / 69.4 83.7 / 69.4 84.3 / 71.3 85.3 / 72.7 84.1 / 69.4 − /− 88.2 /78.8
CIFAR-10 57.6 / 41.1 72.8 / 59.6 75.2 / 62.3 73.3 / 61.5 80.0 / 66.5 77.7 / 65.2 78.9 / 68.1 − /− 83.0 /71.4
CIFAR-10 (V2) 82.4 / 71.3 67.9 / 60.1 85.0 / 79.6 79.9 / 72.3 86.3 / 80.6 89.1 / 85.3 82.6 / 76.4 88.9 / 84.1 93.8 /88.2
CIFAR-100 31.5 / 19.8 47.4 / 36.0 51.4 / 41.1 47.2 / 36.2 52.0 / 41.4 53.2 / 41.7 51.7 / 41.1 − /− 55.0 /43.6
CIFAR-100 (V2) 45.7 / 38.2 42.3 / 34.8 48.1 / 41.9 43.5 / 37.2 48.7 / 40.3 70.1 / 65.2 48.3 / 42.1 61.1 / 50.0 74.6 /67.3
SHAKESPEARE 32.0 / 16.0 48.1 / 43.1 47.0 / 42.2 46.7 / 41.4 47.9 / 42.6 47.2 / 42.3 45.9 / 42.4 − /− 51.4 /45.4

Table 3.6: Average test accuracy across clients unseen at training (train accuracy between parenthe-
ses).

Dataset FedAvg FedAvg+ ClusteredFL Ditto FedRep APFL pFedGP
kNN-Per

(Ours)

FEMNIST 83.1 (83.3) 84.2 (88.5) 83.2 (86.0) 83.9 (86.9) 85.4 (88.9) 84.2 (85.5) − 88.1 (90.5)
CIFAR-10 72.9 (72.8) 75.3 (78.2) 73.9 (76.2) 79.7 (84.3) 76.4 (79.5) 79.2 (80.6) − 82.4 (87.1)
CIFAR-10 (v2) 67.5 (68.1) 85.1 (85.0) 79.6 (79.9) 85.9 (86.0) 89.0 (89.1) 82.3 (82.5) 89.0 (88.8) 93.0 (93.1)
CIFAR-100 47.1 (47.5) 50.8 (53.4) 47.1 (48.2) 52.1 (57.3) 53.5 (58.2) 49.1 (52.7) − 56.1 (59.3)
CIFAR-100 (v2) 42.1 (42.2) 47.9 (48.1) 43.2 (43.4) 48.8 (48.5) 69.8 (70.0) 48.2 (48.4) 61.3 (61.0) 74.3 (74.5)
Shakespeare 49.0 (48.3) 49.3 (48.1) 49.4 (46.7) 48.1 (49.2) 48.7 (47.8) 46.1 (52.7) − 50.7 (64.2)

where wk, wt
k, and Sk denote, respectively, the global model, the updated model at client t, and the

set of clients participating to training at round k.
In all our experiments, local hypotheses follow Eq. (3.32) with d(·) being the Euclidean distance.

kNN retrieval relied on FAISS library [JDJ19].

Average performance of personalized models. The performance of each personalized model
(which coincides with the global one in the case of FedAvg) is evaluated on the local test dataset
(unseen at training). Table 3.5 shows the average weighted accuracy with weights proportional
to local dataset sizes. kNN-Per consistently achieves the highest accuracy across all datasets.
We observe that Local performs much worse than any other FL method as expected (e.g., 25
pp w.r.t. kNN-Per or 22 pp w.r.t. to Ditto on CIFAR-10). Local outperforms some other FL
methods on CIFAR-10/100 (v2). This splitting was proposed in pFedGP’s paper—where the same
result is observed [Ach+21, Table 1]. This occurs because each client only receives samples for a
few classes, and then its local task is much easier than the global one.

Fairness across clients. Table 3.5 also shows the bottom decile of the accuracy of personalized
models, i.e., the (T/10)-th worst accuracy (the minimum accuracy is particularly noisy, notably
because some local test datasets are very small). We observe that even clients with the worst
personalized models are still better off when kNN-Per is used for training.

3.6 – 3.6.3 Numerical Experiments 89

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Capacity

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

Te
st

 a
cc

ur
ac

y
=0.1
=0.3
=0.5
=0.7
=1.0
=

(a) CIFAR-10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Capacity

48

50

52

54

56

58

60

Te
st

 a
cc

ur
ac

y

=0.1
=0.3
=0.5
=0.7
=1.0
=

(b) CIFAR-100

Figure 3.2: Test accuracy vs capacity (local datastore size). The capacity is normalized with respect to
the initial size of the client’s dataset partition. Smaller values of α correspond to more heterogeneous data
distributions across clients.

Generalization to unseen clients. An advantage of kNN-Per is that a “new” client arriving after
training may easily learn a personalized model: it may simply retrieve the global model (whose
training it did not participate to) from the orchestrator and use it to build the local datastore for kNN.
Even if this scenario was not explicitly considered in their original papers, other personalized FL
methods can also be adapted to new clients as follows. FedAvg+ personalizes the global model
through stochastic gradient updates on the new client’s local dataset. Ditto operates similarly, but
maintains a penalization term proportional to the distance between the personalized model and the
global model. FedRep trains the network head using the local dataset, while freezing the body as
in the global model. For pFedGP new clients inherit the previously trained shared network and
compute their local kernel. ClusteredFL assigns the new client to one learned cluster model
using a held-out validation set. In the case of FedAvg, there is no personalization and the new
client uses directly the global model. We performed an experiment where only 80% of the clients
participated to the training and the remaining 20% joined later. Results in Table 3.6 show that,
despite its simplicity in dealing with new clients, kNN-Per still outperforms all other methods.

Effect of local dataset’s size. Beside its relevance for some practical scenarios, the distinction
between old and new clients also helps us to evaluate how different factors contribute to the final
performance of kNN-Per. For example, to understand how the size of the local dataset affects
performance, we reduced proportionally the size of new clients’ local datasets, while maintaining
unchanged the global model, which was trained on old clients. Figure 3.2 shows that new clients
still reap most of kNN-Per’s benefits even if their local datastore is reduced by a factor 3. Note
that if we had changed the local dataset sizes also for old clients, the global model (and then the
representation) would have changed too, making it difficult to isolate the effect of the local datastore
size. We show the results for this experiment in Figure 3.7.

Effect of data heterogeneity. Figure 3.2 also shows that, as expected by Theorem 3.6.1, the
benefit of the memorization mechanism is larger when data distributions are more heterogeneous
(smaller α). While other methods also benefit from higher heterogeneity, kNN-Per appears to

90 CHAPTER 3 — Personalized Federated Learning

0.0 0.2 0.4 0.6 0.8 1.0
40

50

60

70

80

Te
st

 a
cc

ur
ac

y

nm = 5
nm = 25
nm = 100
nm = 250

(a) CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0
10

20

30

40

50

Te
st

 a
cc

ur
ac

y

nm = 5
nm = 25
nm = 100
nm = 250

(b) CIFAR-100

Figure 3.3: Test accuracy vs the interpolation parameter λ (shared across clients) for different average local
dataset sizes. For λ = 1 (resp. λ = 0) the client uses only the kNN model (resp. the global model).

address statistical heterogeneity more effectively (Figure 3.11). Note that if local distributions were
identical (α→∞), no personalization method would provide any advantage.

Hyperparameters. kNN-Per’s performance is not highly sensitive to the value k which can be
selected between 7 and 14 for CIFAR-10 and between 5 and 12 for CIFAR-100 with less than 0.2
percentage points of accuracy variation (see Figure 3.6). Similarly, scaling the Euclidean distance
by a factor σ has almost no effect for values of σ between 0.1 and 100 and between 1 and 100,
respectively for CIFAR-10 and CIFAR-100 (see Figure 3.8). The interpolation parameter λt plays
a more important role. Figure 3.9 shows that, as expected, the larger the local dataset, the more
clients rely on the local kNN model. Interestingly, clients give a larger weight to the kNN model
than to the global one (λ > 1/2) for datasets with just one hundred samples (Figure 3.3).

Effect of global model’s quality. Assumption 21 stipulates that the smaller the expected loss of
the global model, the better representations’ distances capture the variability of x 7→ Dt (·|x) and
then the more accurate the kNN model. This effect is quantified by Lemma F.2, where the loss of
the local memorization mechanism is upper bounded by a term that depends linearly on the loss
of the global model. In order to validate this assumption, we study the relation between the test
accuracies of the global model and kNN-Per. In particular, we train two global models, one for
CIFAR-10 and the other for CIFAR-100, in a centralized way, and we save the weights at different
stages of the training, leading to global models with different qualities. Figure 3.4 shows the test
accuracy of kNN-Per with λ = 1 (i.e., when only the kNNpredictor is used) as a function of the
global model’s test accuracy for different levels of heterogeneity on CIFAR-10 and CIFAR-100
datasets. We observe that, quite unexpectedly, the relation between the two accuracies is almost
linear. The experiments also confirm what observed in Figure 3.2: kNN-Perperforms better when
local distributions are more heterogeneous (smaller α). Similar plots with λ optimized locally at
every client are shown in Figure 3.5.

3.6 – 3.6.3 Numerical Experiments 91

10 20 30 40 50 60 70 80 90
Global model's test accuracy

30

40

50

60

70

80

90

100

kN
N-

Pe
r's

 te
st

 a
cc

ur
ac

y
=0.1
=0.3
=1.0

(a) CIFAR-10.

0 10 20 30 40 50 60
Global model's test accuracy

10

20

30

40

50

60

kN
N-

Pe
r's

 te
st

 a
cc

ur
ac

y

=0.1
=0.3
=1.0

(b) CIFAR-100.

Figure 3.4: Effect of the global model quality on the test accuracy of kNN-Per with λt = 1 for each
t ∈ [T].

10 20 30 40 50 60 70 80 90
Global model's test accuracy

30

40

50

60

70

80

90

100

kN
N-

Pe
r's

 te
st

 a
cc

ur
ac

y

=0.1
=0.3
=1.0

(a) CIFAR-10.

0 10 20 30 40 50 60
Global model's test accuracy

10

20

30

40

50

60

70
kN

N-
Pe

r's
 te

st
 a

cc
ur

ac
y

=0.1
=0.3
=1.0

(b) CIFAR-100.

Figure 3.5: Effect of the global model quality on the test accuracy of kNN-Per with λt tuned per client.

Effect of kernel scale parameter σ. We consider distance metrics of the form

∀z, z′ ∈ Rp; dσ
(
z, z′) = ∥z− z′∥2

σ
, (3.40)

where σ ∈ R+ is a scale parameter. Figure 3.8 shows that kNN-Per’s performance is not highly
sensitive to the selection of the length scale parameter, as scaling the Euclidean distance by a
constant factor σ has almost no effect for values of σ between 0.1 and 1000.

Effect of datastore’s size on the optimal λ. Figure 3.9 shows the effect of the local number of
samples nt on the optimal mixing parameter λopt (evaluated on the client’s test dataset). The number
of samples changes across clients and, for the same client, with different values of the capacity. The
figure shows a positive correlation between the local number of samples and the optimal mixing
parameter and then validates the intuition that clients with more samples tend to rely more on the

92 CHAPTER 3 — Personalized Federated Learning

1 3 5 7 10 12 14 16
k

79.0

79.5

80.0

80.5

81.0

81.5

82.0

82.5

83.0

Te
st

 a
cc

ur
ac

y

(a) CIFAR-10.

1 3 5 7 10 12 14 16
k

50.0

50.5

51.0

51.5

52.0

52.5

Te
st

 a
cc

ur
ac

y

(b) CIFAR-100.

Figure 3.6: Test accuracy vs number of neighbors k.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Capacity

65

70

75

80

85

90

Te
st

 a
cc

ur
ac

y

=0.1
=0.3
=0.5
=0.7
=1.0

(a) CIFAR-10.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Capacity

44

46

48

50

52

54

56

Te
st

 a
cc

ur
ac

y

=0.1
=0.3
=0.5
=0.7
=1.0

(b) CIFAR-100.

Figure 3.7: Test accuracy vs capacity (local datastore size) when the global model is retrained for each value
of α. The capacity is normalized with respect to the initial size of the client’s dataset partition. Smaller values
of α correspond to more heterogeneous data distributions across clients. The curves start from different
accuracy values for zero capacity, but are qualitatively similar to those in Figure 3.2 for large capacities. As
expected, the global model performs worse the more heterogeneous the local distributions are, but the local
model is able to compensate such effect (at least partially) as far as the datastore is large enough.

memorization mechanism than on the base model, as captured by the generalization bound from
Theorem 3.6.1.

Effect of hardware heterogeneity. In our experiments above, clients’ local datasets had different
size, which can also be due to different memory capabilities. In order to investigate more in depth
the effect of system heterogeneity, we split the new clients in two groups: “weak” clients with
normalized capacity 1/2−∆C and “strong” clients with normalized capacity 1/2 + ∆C, where
∆C ∈ (0, 1/2) is a parameter controlling the hardware heterogeneity of the system. Note that the
total amount of memory in the system is constant, but varying ∆C changes its distribution across
clients from a homogeneous scenario (∆C = 0) to an extremely heterogeneous one (∆C = 0.5).

3.6 – 3.6.3 Numerical Experiments 93

0.0 0.2 0.4 0.6 0.8 1.0
0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

Te
st

 a
cc

ur
ac

y

=0.01
=0.03
=0.10
=1.00
=10.00
=100.00

(a) CIFAR-10.

0.0 0.2 0.4 0.6 0.8 1.0

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

Te
st

 a
cc

ur
ac

y

=0.01
=0.03
=0.10
=1.00
=10.00
=100.00

(b) CIFAR-100.

Figure 3.8: Test accuracy vs the interpolation parameter λ for different values of the kernel scale parameter
σ.

Figure 3.10 shows the effect of the hardware heterogeneity, as captured by ∆C. As the marginal
improvement from additional memory is decreasing (see, e.g., Figure 3.2) the gain for strong clients
does not compensate the loss for weak ones. The overall effect is then that the average test accuracy
decreases as system heterogeneity increases.

Adding compression techniques. kNN-Per can be combined with nearest neighbors compres-
sion techniques as ProtoNN [Gup+17]. ProtoNN reduces the amount of memory required by
jointly learning 1) a small number of prototypes to represent the entire training set and 2) a data
projection into a low dimensional space. We combined kNN-Per and ProtoNN and explored both
the effect of the number of prototypes and the projection dimension used in ProtoNN. For each
client, the number of prototypes is set to a given fraction of the total number of available samples.
We refer to this quantity also as capacity. We varied the capacity in the grid {i× 10−1, i ∈ [10]},
and the projection dimension in the grid {i× 100, i ∈ [12]} ∪ {1280}. Note that smaller projection
dimension and less prototypes correspond to a smaller memory footprint, suited for more restricted
hardware. Our implementation is based on ProtoNN’s official.* Figure 3.12a shows that, on
CIFAR-10, ProtoNN allows to reduce the kNN-Per’s memory footprint by a factor four (using
nt/3 prototypes and projection dimension 1000) at the cost of a limited reduction in test accuracy
(82.3% versus 83.0% in Table 3.5). Note that kNN-Per with ProtoNN still outperforms all
other methods. On CIFAR-100, ProtoNN’s compression techniques appear less advantageous: the
approach loses about 3 percentage points (52.1% versus 55.0% in Table 3.5) while only reducing
memory requirement by 20%.

Robustness to distribution shift. As previously mentioned, kNN-Per offers a simple and
effective way to address statistical heterogeneity in a dynamic environment where client’s data
distributions change after training. We simulate such a dynamic environment as follows. Client t
initially has a datastore built using instances sampled from a data distribution Dt. For time step
k < k0, client t receives a batch of n(k)

t instances drawn from Dt. At time step k0, we suppose that
a data distribution shift takes place, i.e., for k0 ≤ k ≤ K, client t receives n(k)

t instances drawn

*https://github.com/Microsoft/EdgeML.

https://github.com/Microsoft/EdgeML

94 CHAPTER 3 — Personalized Federated Learning

0 100 200 300 400 500
nm

0.0

0.2

0.4

0.6

0.8

1.0

op
t

(a) CIFAR-10.

0 50 100 150 200 250
nm

0.0

0.2

0.4

0.6

0.8

1.0

op
t

(b) CIFAR-100.

Figure 3.9: λopt vs local number of samples nt.

from a data distribution D′
t ̸= Dt. Upon receiving new instances, client t may use those instances

to update its datastore. We consider 3 different strategies: (1) first-in-first-out (FIFO) where, at
time step t, the n(k)

t oldest samples are replaced by the newly obtained samples; (2) concatenate,
where the new samples are simply added to the datastore; (3) fixed datastore, where the datastore is
not updated at all. In our simulations, we consider CIFAR-10/100 datasets with T = 100 clients.
Once again, we used a symmetric Dirichlet distribution to generate two datasets for every client.
In particular, for each label y we sampled two vectors py and p′

y from a Dirichlet distribution of
order T = 100 and parameter α = 0.3. Then, for client t, we generated two datasets St and S′

t by
allocating py,t and p′

y,t fraction of all training instances of class y.* Both St and S′
t are partitioned

into training and test sets following the original CIFAR training/test data split. Half of the training
set obtained from St is stored in the datastore, while the rest is further partitioned into k0 batches
S(0)

t , . . . ,S(k0−1)
t . These batches are the new samples arriving at client t. Similarly, S′

t is partitioned
into K − k0 equally sized batches. Figure 3.13 shows the evaluation of the test accuracy across
time. If clients do not update their datastores, there is a significant drop in accuracy as soon as the
distribution changes at k0 = 50. If datastores are updated using FIFO, we observe some random
fluctuations for the accuracy for k < k0, as repository changes affect the kNN predictions. While
accuracy inevitably drops for k = k0, it then increases as datastores are progressively populated by
instances from the new distributions. Once all samples from the previous distributions are evicted,
the accuracy settles around a new value (higher or lower than the one for k < k0 depending on the
difference between the new and the old distributions). If clients keep adding new samples to their
datastores (the “concatenate” strategy), results are similar, but 1) accuracy increases for k < k0 as
the quality of kNN predictors improves for larger datastores, 2) accuracy increases also for k > k0,
but at a slower pace than what observed under FIFO, as samples from the old distribution are never
evicted.

3.6.4 Conclusion

In this section, we showed that local memorization at each client is a simple and effective way to
address statistical heterogeneity in federated learning. In particular, while a global model trained

*We always make sure that |St| ≤ |S′
t|.

3.7 – 3.6.4 Conclusion 95

0.0 0.1 0.2 0.3 0.4 0.5
C

48

50

52

54

56

Te
st

 a
cc

ur
ac

y

weak clients
strong clients
Average

Figure 3.10: Effect of system heterogeneity
across clients on CIFAR-100 dataset. The size
of the local datastore increases (resp. decreases)
with ∆C for strong (resp. weak) clients.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Capacity

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

Te
st

 a
cc

ur
ac

y

kNN-Per (Ours)
FedAvg+
Ditto

= 0.1
= 0.3
= 1.0

Figure 3.11: Test accuracy vs capacity (local
datastore size) for different methods on CIFAR-
10. The capacity is normalized with respect to
the initial size of the client’s dataset partition.

(a) CIFAR-10. (b) CIFAR-100.

Figure 3.12: Test accuracy when the kNN mechanism is implemented through ProtoNN for different
values of projection dimension and number of prototypes (expressed as a fraction of the local dataset).
CIFAR-10 (left) and CIFAR-100 (right) datasets.

with classic FL techniques, like FedAvg, may not deliver accurate predictions at each client, it
may still provide a good representation of the input, which can be advantageously used by a local
kNN model. This finding suggests that combining memorization techniques with neural networks
has additional benefits other than those highlighted in the seminal papers [Gre+15; JM15] and the
recent applications to natural language processing [Kha+19; Kha+21].

The better performance of kNN-Per in comparison to FedRep and pFedGP show that jointly
learning the shared representation and the local models (as FedRep and pFedGP do) may lead
to potentially conflicting and interfering goals, but further study is required to understand this
interaction. Semi-parametric learning [Bic+93] could be the right framework to formalize this
problem, but its extension to a federated setting is still unexplored.

96 CHAPTER 3 — Personalized Federated Learning

0 20 40 60 80 100
Time Step

74

76

78

80

82

Te
st

 a
cc

ur
ac

y

Concatenate
FIFO
Fixed datastore

(a) CIFAR-10.

0 20 40 60 80 100
Time Step

48

49

50

51

52

53

54

55

Te
st

 a
cc

ur
ac

y

Concatenate
FIFO
Fixed datastore

(b) CIFAR-100.

Figure 3.13: Test accuracy when a distribution shift happens at time step k0 = 50 for different datastore
management strategies.

3.7 A Comparison between FedEM and kNN-Per

In this chapter, we have conducted an extensive exploration of personalized federated learning,
demonstrating its efficacy not only in addressing statistical heterogeneity but also in mitigating
system and temporal heterogeneity challenges. We have introduced two novel personalization
algorithms, each grounded in distinct principles. The first approach, FedEM, leverages the mixture
assumption, positing that each local data distribution is a composite of unknown underlying distri-
butions. In contrast, the second approach, kNN-Per, operates on the representation assumption. It
presupposes the existence of a global model capable of serving as a feature/representation extractor.
Furthermore, it establishes that when two samples exhibit similar representations, the likelihood of
their labels being the same increases.

The mixture assumption is a flexible and generic assumption that encompasses most of the
personalized FL approaches previously proposed in the literature (as we show in Section 3.5.2).
Notably, it provides a principled means of quantifying data distribution similarity among clients—a
feature exploited by Kim et al. [Kim+23] to analyze and characterize internal evasion attacks within
the federated learning context. Additionally, owing to its adaptability, the mixture assumption has
been instrumental in modeling and mitigating the issue of distributed concept shift in federated
learning [Zhu+22; Jot+23]. However, one significant drawback of employing a mixture model
lies in the local computational and communication overhead incurred due to the maintenance and
parallel training of multiple base models.

Conversely, the representation assumption, while less flexible, offers a streamlined approach
that effectively addresses not only statistical heterogeneity but also system and temporal hetero-
geneity. The local memorization technique employed in kNN-Per serves as a straightforward and
efficient solution to these challenges. Moreover, thanks to its simplicity, kNN-Per can seamlessly
integrate as a lightweight module atop standard federated learning approaches, requiring minimal
modification to these established methods.

CHAPTER 4
Federated Learning in

Dynamic Environments
In the preceding chapters of this manuscript, our focus has been on scenarios wherein clients operate
within static environments and possess access to identically distributed examples gathered prior to
the initiation of training. However, as elucidated in Section 1.4, relying solely on static datasets can
prove to be suboptimal, and in some cases, impractical. This is primarily due to the fact that, firstly,
newly acquired samples during training are often disregarded, and secondly, clients may grapple
with limited memory capacities, hindering the storage of an extensive number of data samples.
To illustrate, nodes within a sensor network continually amass new measurements, yet their local
memory may only accommodate a fraction of this influx [De +16]. Furthermore, in various real-
world applications, the underlying data distributions of clients exhibit non-stationary characteristics
and undergo constant evolution. For instance, user sentiments and preferences can undergo drastic
changes owing to external factors such as pandemics and macroeconomic shifts [Koh+21; Gar+21].

This chapter explores federated learning within dynamic environments, where clients collab-
oratively learn from distributed data streams characterized by the continual generation of data.
Our focus is specifically on two distinct scenarios, each rooted in differing assumptions about the
data process. The first scenario (Section 4.3) addresses instances where samples within the data
stream are independently drawn from an undisclosed fixed distribution. In the second scenario
(Section 4.4), we posit that client data distributions are mixtures of a finite number of undisclosed
common underlying distributions, each varying in terms of mixing coefficients.

This chapter builds upon our works [Mar+23b], presented in the proceedings of the 26th

International Conference on Artificial Intelligence and Statistics (AISTATS’23), and [MMb],
currently under review.

4.1 Introduction

Collaboration in dynamic environments introduces a distinct set of challenges and opportunities
that go beyond those encountered in traditional federated learning scenarios with static datasets.
Two distinct and orthogonal challenges come to the forefront in this context.

First, when learning from a data stream, every client only has access to samples currently
present in its local memory. Due to the limited storage capacity at each client and to the variability
in the number of new samples arriving across time, samples may spend different amounts of time
in memory and then be used a different number of times during training (see Figure 4.1). In order
to potentially compensate for such temporal data-access heterogeneity, one has to allow samples to
be weighted differently over time and across clients. In Section 4.3, we provide a formal definition

97

98 CHAPTER 4 — Federated Learning in Dynamic Environments

Figure 4.1: A depiction of a data stream: The client/device, with a limited storage capacity (C = 3),
updates its local memory following a FIFO (First-In-First-Out) rule. This involves evicting the
oldest samples from memory to make space for the most recent ones. Consequently, various samples,
represented by distinct colors, reside in memory for varying durations.

of this challenge and conduct an analysis within the specific scenario where samples within the data
stream are independently drawn from an undisclosed stationary distribution that may vary across
clients. Our analysis (Section 4.3.2) shows a bias-optimization trade-off : by controlling the relative
importance of older samples in comparison to newer ones, one can speed training up at the cost of
a larger bias of the learned model, or reduce the bias at the cost of a longer training time.

The second challenge emerges in uncertain environments, characterized by clients receiving
data in an online fashion, with the information revealed only after the clients make their model
predictions. This intriguing challenge, termed online federated learning, and initially presented in
[MHP21], introduces learning intricacies even when samples spend the same duration in memory—
such as when all samples are stored in memory only during the time step of their collection. This
dynamic scenario adds an extra layer of complexity to the federated learning framework, requiring
adaptive strategies to effectively learn from data that is only fully disclosed post-prediction.

The authors of [MHP21] makes no statistical assumptions about the data stream and considers a
worst-case scenario where an adversary picks at every time-step the worst instance to provide clients
with. This work provides performance guarantees in terms of an appropriately defined collective
regret metric. However, this worst-case analysis falls short of demonstrating any collaboration
benefit. In fact, as we have seen in Chapter 3, collaborative learning is impossible with no assumption
on local data distributions, in the sense that some assumption on local data distributions are needed
for collaboration to be provably beneficial (Section 3.4). Motivated by this impossibility result, our
analysis in Section 4.4 considers online federated learning in constrained adversarial scenarios, as
opposed to [MHP21] that does not constrain the adversary. In particular, we consider a dynamic
version of the mixture assumption introduced in Section 3.5: client data distributions are mixtures
of a finite number of fixed undisclosed common underlying distributions, each varying (potentially
adversarially) in terms of mixing coefficients. Our formulation has the advantage of showing
the benefit of collaboration. In particular, our proposed Federated EM Online Mirror Descent
(FEM-OMD, Algorithm 14) algorithm leverages all of the data stored across clients to learn the
parameters of the underlying distributions using EM-type updates, while enabling each client to
adapt to the temporal variation of its data distribution, by locally learning the mixing coefficients.

4.1 – 4.1.1 Contributions 99

4.1.1 Contributions

In this chapter, we study two orthogonal challenges encountered in federated learning within
dynamic environments. The first challenge takes place due to the limited storage capacity at each
client and to the variability in the number of new samples arriving across time. As a result, various
samples reside in memory for varying durations. In Section 4.3, we formulate and study the problem
of learning from separate data streams, in the particular (and “easy”) setting where samples within
the data stream are independently drawn from an undisclosed stationary distribution. Our analysis
shows a bias-optimization trade-off: by controlling the relative importance of older samples in
comparison to newer ones, one can speed training up at the cost of a larger bias of the learned
model, or reduce the bias at the cost of a longer training time. The analysis also provides insights to
optimally configure our federated algorithm. We demonstrate the relevance of our theoretical results
through simulations spanning a wide range of machine learning tasks. In particular, experiments
show that “reasonable” ways to extend FedAvg to data streams may lead to poor learned models,
while our configuration rule consistently leads to almost-optimal performance.

The second challenge takes place due to the variability of the client’ underlying distributions
variability across time. In Section 4.4, we provide a novel formulation for the problem of online
federated learning based on the assumption that clients’ data distributions are mixtures of a
finite number of unknown underlying distributions with varying mixing weights. In comparison
to previous work, e.g. [MHP21], our assumption allows the clients to provably benefit from
collaboration, while allowing clients’ data distributions to vary in a potentially (constrained)
adversarial manner. Afterwards, we propose Federated Expectation-Maximization Online Mirror
Descent (FEM-OMD), a federated variant of the OMD algorithm, where the gradient of the cost
function is estimated through an EM-like algorithm at each time-step. FEM-OMD leverages all of
the data stored across clients to learn the parameters of the underlying distributions using EM
updates, while enabling each client to adapt to the temporal variation of its data distribution. We
analyze the regret guarantees of FEM-OMD in the case of well-separated spherical Gaussian mixture
models. Specifically, we establish a O(

√
T log(m) + T/

√
n) regret bound, where T is the time

horizon, m is the number of the underlying distributions, and n is the number of samples received
by each client. Finally, through experimental results on synthetic datasets and FL benchmarks, we
demonstrate the effectiveness of our approach in online federated settings and show that our scheme
allows the clients to benefit from collaboration.

4.1.2 Organization

The rest of this chapter is organized as follows. Section 4.2 provides a review of related work.
Section 4.3.1 formulates the problem of federated learning for data streams, when each clients
have limited storage capacity, and receives a varying number of new samples at each time-step
from some stationary undisclosed underlying data distribution, that potentially depends on the
client identity. Section 4.3.2 describes our FL algorithm for data streams and states its convergence
results. Section 4.3.3 studies a scenario of practical interest and exploits the theoretical result in
Section 4.3.2 to provide configuration rules for our algorithm. Section 4.3.4 empirically evaluates
the performance of our algorithm.

In Section 4.4.1, we formulate the problem of online federated learning within constrained
adversarial scenarios, and introduces the mixture assumption: clients’ data distributions are mix-
tures of a finite number of unknown underlying distributions with varying mixing coefficients.

100 CHAPTER 4 — Federated Learning in Dynamic Environments

Section 4.4.2 describes our algorithm FEM-OMD, used to learn under the mixture assumption.
Section 4.4.3.1 studies the particular scenario where the underlying distributions are well-separated
Gaussians, and states the regret guarantees of FEM-OMD in this scenario. Finally, we provide
experimental results in Section 4.4.5 before concluding in Section 4.4.6.

4.2 Related Work

Since its introduction in the seminal works [Kon+17b; McM+17], federated learning has received
increasing attention as a promising large-scale distributed learning framework and has been applied
to a wide range of tasks, including language modeling [Yan+18], automatic speech recognition
[Gao+22], medical imaging [Cou+19; Sil+19], and recommender systems [Yan+20a]. Our focus on
data streams is a key difference with respect to most of the FL literature, which assumes clients
have static datasets. In particular, this assumption is shared by the theoretical work studying FL
algorithms’ convergence on non-iid data and under partial clients’ participation [Li+19], PAC
learning bounds [MSS19], privacy guarantees [Wei+20], or resilience to Byzantine faults [Bla+17].

Learning from a data stream enjoys an extensive literature with applications, for example, to the
financial sector [ZS02], network monitoring [BW01], and sensor networks [De +16]. In this field,
we can roughly distinguish three main lines of research corresponding to different assumptions
about the data process. The first focuses on the case where samples in the data stream are drawn
independently from some fixed unknown distribution; this setting can be analyzed through stochastic
approximation [MB11]. The second line allows the data distribution to change over time and falls
then in the context of continual learning, where a model is trained on a sequence of tasks and
each task can correspond to a different data distribution [Thr94; KD12; RE13; Kir+17; Sch+18].
Finally, the third line drops any assumption about the data stream, which may be thought to be
generated by an adversary. This setting can be studied in the framework of online learning with
regret guarantees [Zin03]. We consider that data at each client is drawn from the same distribution.
Learning from multiple data streams with different samples’ generation rates and clients’ memory
sizes sets our work apart from the papers mentioned above.

There is almost no work formalizing the problem of federated learning for data streams and
providing a theoretical analysis. To the best of our knowledge, the only exceptions are [Che+20b],
[Yoo+21], and [OZ21].

[Che+20b] propose ASO-Fed, an asynchronous FL algorithm to minimize the empirical loss
computed over the aggregation of clients’ data streams. Although some convergence results are
stated in the paper, their interest and applicability are questionable, as the analysis requires that
all clients have the same optimal model and that updates at any time t are consistent with new
samples arriving in the future. Indeed, the paper mentions that clients can receive new samples
during training (see Fig. 2), but also requires that, at any time t and for any client k, the expected
value of the update∇ζk(w) has a non-null component in the direction of the gradient of the global
empirical loss F , which depends on samples arriving after time t (see Assumption 1). Moreover,
the bounded gradient dissimilarity assumption implies that the minimizer of F (F is assumed to be
strongly-convex) is also a stationary point of each local objective function fk (consider β = 0 and
λ = 0). On the contrary, the theoretical analysis in our work holds under statistical heterogeneity
across clients’ local data distributions and accounts for the bias due to working with samples
currently stored at clients. Moreover, we provide statistical learning guarantees for our algorithm.

[Yoo+21] propose FedWeIT, which extends regularization-based algorithms for continual

4.3 – 4.3 Federated Learning for Data Streams 101

learning to the FL setting. The main goal of FedWeIT is to minimize interference between
incompatible tasks while allowing positive knowledge transfer across clients during learning, but
no generalization guarantee is provided. [OZ21] consider the problem of online federated learning
under constraints on the amount of resources consumed over the whole time horizon and proposes
an online mirror descent-based algorithm with regret guarantees. Differently from our contribution,
both [OZ21] and [Yoo+21] assume each client can only use the most recent data. Our experiments
show that reusing as little as 5% of the collected samples may be highly beneficial.

Federated learning from temporally shifting distributions [Zhu+22; Eic+19; Din+20; GLT23]
is a related, yet different, problem to learning from a data stream. These papers assume the shift
is due to changes in the set of available clients (e.g., because of diurnal patterns), but clients’
local datasets do not change. The only exception is [GLT23], which can capture a setting where
clients keep collecting data during training without storage constraints. The model considered in
[GLT23] can capture a setting where clients keep collecting data during training without storage
constraints. Indeed, clients track the dynamic objective in [GLT23, Eq. (2)] which depends on data
samples received until the current time. Theoretical results assume that new data is drawn from
a client-independent distribution. This is shown by [GLT23, Eq. (5)], which requires that local
gradients computed on new data samples are unbiased estimators of the gradient of the global
objective function. Instead, our analysis takes into account both memory constraints and statistical
heterogeneity across clients’ local data distributions.

Finally, we mention a number of papers studying different variants of “online federated learning”
problems, mostly focusing on dynamic resource allocation. Many of them are discussed in the
recent survey [DM22]. Among these papers, [Dam+20] propose Fleet, a middleware between
the edge device operating system and the machine learning application, which can be used to learn
on data streams. The middleware is designed with the device’s energy minimization as the main
concern. [Jin+20] propose an online algorithm to dynamically select the participating clients and
their number of local gradient iterations at each communication round to minimize the cumulative
resource usage over time under a constraint on the quality of the final model. [Zho+20] study a
similar problem. They include the possibility of discarding new data points or distributing them
to clients with more resources and propose a resource allocation algorithm based on Lyapunov
optimization [Nee10]. Both [Jin+20] and [Zho+20] ignore the possibility of reusing samples across
multiple communication rounds.

4.3 Federated Learning for Data Streams

In this section, we aim to investigate the challenge of learning from distributed data streams.
Our focus is on scenarios where samples collected by each client are independently drawn from
undisclosed stationary distributions, potentially unique to each client. The technical focal point of
this section centers around a new form of heterogeneity termed temporal data-access heterogeneity.
This heterogeneity stems from the evolving nature of local datasets over time, a consequence
of the limited storage capacity at each client and the variability in the influx of new samples. It
manifests as variability in sample stay-time, indicating that samples may reside in memory for
varying durations and be used different numbers of times during training.

To address the variability in stay-time, we propose a general FL algorithm designed for learning
from dynamic data streams. This algorithm relies on a thoughtful weighted empirical risk mini-
mization approach, as outlined in Section 4.3.2. Our theoretical analysis, detailed in Section 4.3.1,

102 CHAPTER 4 — Federated Learning in Dynamic Environments

provides insights for configuring such an algorithm. We subsequently assess its performance across
a wide range of machine learning tasks, as outlined in Section 4.3.4.

4.3.1 Problem Formulation

In this work, we use [M] ≜ {1, . . . ,M} to denote the set of positive integers up to M . We consider
M > 0 clients; each of them corresponds to a potentially different learning task. We associate to
each client m ∈ [M]: 1) a probability distribution Pm over a domain Z = X × Y , 2) a counting
process N (t)

m , t ≥ 0, and 3) a dynamic memory/cacheM(t)
m , t > 0 of capacity Cm > 0. At time

step t > 0, client m ∈ [M] receives a batch B(t)
m =

{
z(t,i)

m =
(
x(t,i)

m , y
(t,i)
m

)
, i ∈ [b(t)

m]
}

containing

b
(t)
m ≜ N

(t)
m −N (t−1)

m samples drawn i.i.d. from Pm. Client m ∈ [M] can cache a sub-part of the
samples in its local memory, without exceeding the capacity Cm. Without loss of generality we
suppose that 1 ≤ b

(t)
m ≤ Cm. We consider a finite time horizon T > 0, and we let Nm ≜ N

(T)
m

and Sm ≜
⋃T

t=1 B
(t)
m denote the number and the set of samples gathered by client m up to the

time horizon T . We write Sm =
{

z(i)
m , i ∈ [Nm]

}
, where we arbitrarily ordered the elements of

Sm. We define I(t)
m ⊂ [Nm] to be the set of the indices of samples present at memoryM(t)

m , i.e.,
j ∈ I(t)

m if and only if z(j)
m ∈M(t)

m . Finally, S ≜
⋃M

m=1 Sm denotes the training dataset (aggregated
across clients and across time) with size N ≜

∑M
m=1Nm. The relative size of client-m’s dataset is

nm ≜ Nm/N .
LetH =

{
hθ : X 7→ Y, θ ∈ Θ ⊂ Rd

}
be a set of parametric hypotheses/models mapping X

to Y , and ℓ : Θ×Z 7→ R+ be a loss function.
We use Pdim (ℓ ◦ H) to denote the pseudo-dimension [MRT18] of the hypothesis class

H w.r.t. the loss ℓ. The pseudo-dimension generalizes the Vapnik–Chervonenkis (VC) dimen-
sion [VC15] to loss functions different from the 0−1 loss.

We define LP (θ) ≜ Ez∼P [ℓ(θ; z)] to be the true (expected) risk of hypothesis hθ ∈ H under a
generic probability distribution P over Z and we define LS (θ) = 1

|S|
∑

(x,y)∈S ℓ(θ; z) to be the
empirical risk of model (hypothesis) hθ ∈ H on a generic dataset S of samples from Z .

In federated learning, clients, usually, collaborate to solve

minimize
θ∈Θ

LP(α) (θ) =
M∑

m=1
αmLPm (θ) , (4.1)

where P(α) ≜
∑M

m=1 αm · Pm and α ≜ (αm)1≤m≤M with αm ≥ 0 and ∥α∥1 = 1. Common
choices for α are αm = nm and αm = 1

M . The first one corresponds to minimizing the empirical
loss over the aggregate training dataset S =

⋃M
m=1 Sm, which gives the same importance to each

sample. The second choice instead targets per-client fairness, by giving the same importance to
each client.

In standard federated learning, local datasets {Sm}m∈[M] are available since the beginning of
the training and the following empirical risk minimization problem is considered as a proxy for
Problem (4.1):

minimize
θ∈Θ

M∑
m=1

αm · LSm (θ) . (4.2)

Our goal is to design a potentially randomized algorithm A solving, in a federated fashion,
Problem (3.1) using clients’ data streams and taking into account clients’ memory constraints.

4.3 – 4.3.2 Federated Learning Meta-Algorithm for Data Streams 103

Algorithm 13: Meta Algorithm for Federated Learning from Data Streams
Input :Nbr of local epochs E; mini-batch size K; local learning rate η > 0;

sample weights λ =
{
λ

(t,j)
m ;m ∈ [M], t ∈ [T], j ∈ I(t)

m

}
Output : θ̄(T) =

∑T
t=1 q

(t)θ(t)

1 for t = 1, . . . , T do
2 Server selects a subset S(t) ⊆ [M] of clients;
3 for m ∈ S(t) (in parallel) do
4 θ

(t,1)
m ← θ(t);

5 Sample B(t)
m = {z(t,1)

m , . . . z(t,b(t)
m)

m } ∼ Pb
(t)
m

m ;

6 M(t)
m ← Update

(
M(t−1)

m ,B(t)
m

)
;

7 for e = 1, . . . , E do
8 Sample min

{
K, |I(t)

m |
}

indices ξ(t,e)
m uniformly from I(t)

m ;

9 g(t,e)
m ← |I(t)

m |
|ξ(t,e)

m |

∑
j∈ξ

(t,e)
m

λ
(t,j)
m∑

j′∈I(t)
m

λ
(t,j′)
m

· ∇ℓ(θ(t,e)
m ; z(t,j)

m) ;

10 θ
(t,e+1)
m ← θ

(t,e)
m − η · g(t,e)

m ;
11 end
12 end
13 ∆(t) ←

∑M
m=1 p

(t)
m ·

(
θ

(t,E+1)
m − θ(t)

)
;

14 θ(t+1) ← ΠΘ
(
θ(t) + ∆(t)

)
;

15 end

4.3.2 Federated Learning Meta-Algorithm for Data Streams

When learning from a data stream, every client only has access to samples currently present in its
local memory. Due to the limited storage capacity at each client and to the variability in the number
of new samples arriving across time, samples may spend different amounts of time in memory and
then be used a different number of times during training. In order to potentially compensate for
such heterogeneity, we allow samples to be weighted differently over time and across clients. In
particular, we denote by λ(t,j)

m ≥ 0 the weight assigned at time t to sample j stored in client m’s
memory (then j ∈ I(t)

m), and by λ ≜
{
λ

(t,j)
m ;m ∈ [M], t ∈ [T], j ∈ I(t)

m

}
the set of all weights.

We define the weighted local objective associated to client-m’s local memory at time step t ∈ [T]
as

L(λ)
M(t)

m

(θ) ≜
∑

j∈I(t)
m
λ

(t,j)
m ℓ

(
θ, z(j)

m

)
∑

j∈I(t)
m
λ

(t,j)
m

, (4.3)

and similarly the global weighted empirical risk as

L(λ)
S (θ) ≜

∑M
m=1

∑T
t=1

∑
j∈I(t)

m
λ

(t,j)
m · ℓ

(
θ; z(j)

m

)
∑M

m=1
∑T

t=1
∑

j∈I(t)
m
λ

(t,j)
m

. (4.4)

104 CHAPTER 4 — Federated Learning in Dynamic Environments

We additionally define client-m’s aggregation weight as

p(t)
m ≜

∑
j∈I(t)

m
λ

(t,j)
m∑M

m′=1
∑

j∈I(t)
m′
λ

(t,j)
m′

, (4.5)

and

q(t) ≜

∑M
m=1

∑
j∈I(t)

m
λ

(t,j)
m∑T

s=1
∑M

m′=1
∑

j∈I(s)
m′
λ

(s,j)
m′

. (4.6)

In this work we consider a meta-algorithm similar to vanilla FedAvg [McM+17] to minimize
the weighted empirical risk (4.4). Algorithm 13 operates in an iterative fashion: at time step t ∈ [T]
(also called communication round), the central server broadcasts the global model θ(t) to a subset
of clients (line 4). Then every selected client, say it m, receives a new batch of data (line 5) that
is used to update the client’s local memoryM(t)

m (line 6). The selected clients perform E local
stochastic gradient steps (line 10), where the stochastic gradient g(t,e)

m is an unbiased estimator of
∇L(λ)

M(t)
m

(
θ

(t,e)
m

)
computed using at most K samples (line 9). After E local steps, clients send back

their models to the central server for aggregation (line 13, 14). The update at time step t can also
written as follows

θ(t+1) = Π
Θ

(
θ(t) − η ·

M∑
m=1

p(t)
m

E∑
e=1

g(t,e)
m

)
, (4.7)

where ΠΘ(·) denotes the projection over the set Θ.
Note that the output of Algorithm 13 depends on the actual sample arrival sequences at clients,

on the memory update rule, and on the weights λ. In particular, the memory update rule determines
which samples can be considered at a given time step and then which weights can be different from
zero. Nevertheless, for the sake of simplicity, we denote the output simply as A(λ)(S).

In this work, we restrict our analysis to the case where both the memory update rule and
the weight selection rule are deterministic and do not depend on the features or the labels of the
samples in the memory. More formally, given a particular instance of the counting process N (t)

m ,
the weights {λ(t,i)

m }t∈[T] of sample z(i)
m ∈ Sm remain unchanged if z(i)

m =
(
x(i)

m , y
(i)
m

)
is replaced

by z(i)
m =

(
x̃(i)

m , ỹ
(i)
m

)
with x̃(i)

m ̸= x(i)
m or ỹ(i)

m ̸= y
(i)
m .

For a given sample arrival sequence and memory update rule, the quality of the algorithm is
evaluated through the true error

ϵtrue ≜ EA(λ),S

[
LP(α)

(
A(λ) (S)

)]
−min

θ∈Θ
LP(α) (θ) , (4.8)

where the expectation is taken over the potential randomness of algorithm A(λ), i.e., clients’ (line 2)
and batches’ (line 8) sampling processes, and the samples collected.

4.3 – 4.3.2 Federated Learning Meta-Algorithm for Data Streams 105

4.3.2.1 General Analysis

The true error ϵtrue of our meta-algorithm in (4.8) can be bounded as follows (see proof in Ap-
pendix G.1.1)

ϵtrue ≤ ES,A(λ)

[
L(λ)

S

(
A(λ)

(
S(T)

))
−min

θ∈Θ
L(λ)

S (θ)
]

︸ ︷︷ ︸
≜ϵopt

+2ES

[
sup
θ∈Θ

∣∣∣LP(α)(θ)− L(λ)
S (θ)

∣∣∣]︸ ︷︷ ︸
≜ϵgen

. (4.9)

The generalization error ϵgen is the expected value of the representativeness of the dataset S , which
is the maximal distance between the true risk LP(α) and the empirical risk L(λ)

S . Intuitively, the
smaller the generalization error, the better we can approach the minimum of LP(α) by minimizing
L(λ)

S .
The optimization error ϵopt measures how well Algorithm 13 approaches the minimizer of the

weighted empirical risk L(λ)
S .

In the rest of this section, we first provide bounds for for the generalization error ϵgen (Theo-
rem 4.3.1) and for the optimization error ϵopt (Theorem 4.3.3) and and then combine them to bound
the overall error ϵtrue (Theorem 4.3.4). Our results rely on the following assumptions:

Assumption 22. (Bounded loss) The loss function is bounded, i.e., ∀θ ∈ Θ, z ∈ Z, ℓ(θ; z) ∈
[0, B].

Assumption 23. (Bounded domain) We suppose that Θ is convex, closed and bounded with diameter
D.

Assumption 24. (Convexity) For all z ∈ Z , the function θ 7→ ℓ(θ; z) is convex on Rd.

Assumption 25. (Smoothness) For all z ∈ Z , the function θ 7→ ℓ(θ; z) is L-smooth on Rd.

Assumption 18 is a standard assumption in statistical learning theory (e.g., [MRT18]
and [SB14]). Assumptions 23–25 are common assumptions in the analysis of (stochastic) gradient
methods (see for example [Bub15] and [BCN18]) and online convex optimization [Haz19].

Remark 6. Assumptions 22 and 25 imply that (it follows from Lemma G.2 in Appendix G.1.2)

σ2
0 ≜ max

m
Ez∼Pm

[
sup
θ∈Θ
∥∇ℓ(θ; z)−∇LPm (θ)∥2

]
≤
(
2 ·
√

2LB
)2
, (4.10)

and (it follows from Lemma G.3 in Appendix G.1.2)

ζ ≜ max
m,m′

sup
θ∈Θ

∥∥∥∇LPm′ (θ)−∇LPm (θ)
∥∥∥ ≤ 2 ·

√
2LB. (4.11)

These properties are similar to the stochastic gradients’ bounded variance, and the clients’
bounded dissimilarity assumptions usually employed in the analysis of federated learning al-
gorithms [Wan+21a].

106 CHAPTER 4 — Federated Learning in Dynamic Environments

4.3.2.2 Bounding the Generalization Error

Theorem 4.3.1 (proof in Appendix G.1.3) quantifies the generalization error and in particular how
the weighted empirical risk L(λ)

S differs from the target expected risk LP(α) for the minimizer of the
first one, i.e., it bounds |LP(α)(θ′)−L(λ)

S (θ′)| for θ′ ∈ arg minθ∈Θ L
(λ)
S (θ). The bound differs from

classic statistical learning results (as those in [SB14]) because L(λ)
S is a weighted empirical risk and

its expected value does not necessarily coincide with LP(α) . We recall that the label discrepancy
associated to a hypothesis classH quantifies the distance between two distributions P and P ′ as
follows discH (P,P ′) ≜ maxh∈H |LP (h)− LP ′ (h)| [Man+20].

Theorem 4.3.1. Suppose that Assumption 22 holds, and that 1 < Pdim (ℓ ◦ H) < N . When using
Algorithm 13 with weights λ, it follows that

ϵgen ≤ discH
(
P(α),P(p)

)
+ Õ

√Pdim (ℓ ◦ H)
Neff

 , (4.12)

where Neff =
(∑M

m=1
∑Nm

i=1 p
2
m,i

)−1
,

pm,i =
∑T

t=1
∑

j∈I(t)
m
1 {j = i} · λ(t,j)

m∑M
m′=1

∑T
t=1

∑
j∈I(t)

m′
λ

(t,j)
m′

, i ∈ [Nm], (4.13)

and p =
(∑Nm

i=1 pm,i

)
1≤m≤M

.

The coefficient pm,i represents the relative importance given, during the whole training period,
to sample i with respect to all the samples collected by all clients and pm =

∑Nm
i=1 pm,i represents

the relative importance given to client m during training. Note that pm =
∑T

t=1 q
(t)p

(t)
m and the p(t)

m

coincides with the relative importance pm, when p(t)
m is constant over time.

In general, there is an inconsistency between the importance we should give to clients (quantified
by α in (4.1)) and the one we actually give them during training (quantified by p). The first term on
the RHS of (4.12) captures the mismatch between the target distribution P(α) and the “effective
distribution” P(p) =

∑M
m=1 pmPm through the discrepancy.

The second term in the RHS of (4.12) is similar in shape to the usual bounds observed in
statistical learning theory, e.g., [SB14], which are proportional to the square root of the ratio of the
VC dimension of the hypotheses class and the total number of samples N .

In our case, Neff plays the role of the effective number of samples and Lemma 4.3.2 (proof in
Appendix G.2) shows that, as expected, Neff is at most N , and reaches this value when each sample
is given the same importance.

Lemma 4.3.2. It holdsNeff ≤ N and the bound is attained when each sample has the same relative
importance, i.e., pm,i = pm,j , for each i, j ∈ [Nm].

The generalization error ϵgen decreases the closer α and p are and the larger Neff is. When
αm = nm (remember that nm = Nm/N), the choice pm,i = 1/N minimizes the bound, as it leads
both to p = n = α and to Neff = N .

In our streaming learning setting, pm,i = 1/N can be obtained by different combina-
tions of memory update rules and sample weight selection rules. For example, this is the

4.3 – 4.3.2 Federated Learning Meta-Algorithm for Data Streams 107

case when clients’ memories only contain the samples received during the current round (i.e.,
Update(M(t−1)

m ,B(t)
m) = B(t)

m in line 6 of Alg. 13) and all samples currently in the memory get
weight 1 (i.e., λ(t,j)

m = 1 for each j ∈ I(t)
m). But it is also the case when the memory update rule lets

samples stay in memory for multiple consecutive rounds (e.g., τ (j)
m rounds for sample j at client

m) and samples receive a weight inversely proportional to the number of consecutive rounds (i.e.,
λ

(t,j)
m = 1/τ (j)

m). In what follows, we refer to any combination of memory update rules and weight
selection rules leading to pm,i = 1/N as a Uniform strategy.

While a Uniform strategy minimizes the bound for the generalization error ϵgen when α = n,
it is in general suboptimal in terms of the optimization error ϵopt, as we are going to show in the
next section.

4.3.2.3 Bounding the Optimization Error

We provide our bound on ϵopt under full clients participation (S(t) = [M]) with full batch (K ≥
|I(t)

m |). Under mini-batch gradients an additional vanishing error term appears. The proof is provided
in Appendix G.2.1.

Theorem 4.3.3. Suppose that Assumptions 22–25 hold, the sequence
(
q(t)
)

t
is non increasing,

and verifies q(1) = O (1/T), and η ∝ 1/
√
T ·min{1, 1/σ̄ (λ)}. Under full clients participation

(S(t) = [M]) with full batch (K ≥ |I(t)
m |), we have

ϵopt ≤ O
(
σ̄ (λ)

)
+O

(σ̄ (λ)√
T

)
+O

(1√
T

)
, (4.14)

where,

σ̄2 (λ) ≜
T∑

t=1
q(t) × ES

[
sup
θ∈Θ

∥∥∥∥∥∇L(λ)
S (θ)−

M∑
m=1

p(t)
m∇L

(λ)
M(t)

m

(θ)
∥∥∥∥∥

2]
. (4.15)

Moreover, there exist a data arrival process and a loss function ℓ, such that, under FIFO memory
update rule,* for any choice of weights λ, ϵopt = Ω (σ̄ (λ)).

The coefficient σ̄2 (λ) quantifies the variability of the gradient considered in the update at
round t w.r.t. the gradient of the global objective L(λ)

S and, as shown by Theorem 4.3.3, it prevents
the optimization error to vanish when T diverges. Lemma G.5 provides a general upper bound for
σ̄2 (λ) in terms of stochastic gradients’ variance and clients’ dissimilarity.

The optimization error ϵopt is smaller the closer σ̄2(λ) is to zero. In our streaming learning
setting, σ̄2(λ) = 0 may be obtained if the memory is never updated (Update(M(t−1)

m , B
(t)
m) =

M(t−1)
m ,∀t ≥ 1) and the aggregation weights are constant over time (p(t)

m = pm,∀t ∈ [T]). It is
indeed easy to check that under these conditions L(λ)

S (θ) =
∑M

m=1 p
(t)
m L(λ)

M(t)
m

(θ) (and they equal∑M
m=1 pmL(λ)

M(0)
m

(θ)). Any set of time-independent sample weights leads to constant aggregation

weights, but, among them, the choice λ(t,j)
m = 1 reduces the generalization bound ϵgen. We refer to

these memory update and weight selection rules as the Historical strategy.
The Historical strategy minimizes the optimization bound by ignoring all the samples

collected during training. It is in sharp contrast with the Uniform strategy, which assigns the same
relative importance to all collected samples.

*The FIFO (First-In-First-Out) update rule evicts the oldest samples in the memory to store the most recent ones.

108 CHAPTER 4 — Federated Learning in Dynamic Environments

10 1 100 101

c2/c1

0.0

0.2

0.4

0.6

0.8

1.0
p
* h
is
t

Nhist/N=95.0%

Nhist/N=70.0%

Nhist/N=40.0%

Nhist/N=20.0%

Nhist/N=5.0%

Figure 4.2: Effect of c2/c1 on the historical clients relative importance p∗
hist for different values of

Nhist/N , when M = 50 and Mhist = 25. The dashed vertical line corresponds to our estimation of
c2/c1 on CIFAR-10 experiments (ĉ2/ĉ1 = 0.15).

4.3.2.4 Main Result

The tension between the two error components ϵgen and ϵopt is evident from our discussion above.
One can minimize ϵgen by considering at each time only the most recent samples, and, at the
opposite, ϵopt by ignoring those samples. By combining Theorems 4.3.1 and 4.3.3, Theorem 4.3.4
formally quantifies this trade-off and provides a bound on ϵtrue.

Theorem 4.3.4. Under the same assumptions as in Theorem 4.3.1 and Theorem 4.3.3,

ϵtrue ≤O
(1√

T

)
+O

(
σ̄ (λ)

)
+ 2discH

(
P(α),P(p)

)
+ Õ

√Pdim (ℓ ◦ H)
Neff

 . (4.16)

4.3.3 Case Study

In fog computing environments, IoT devices, edge servers, and cloud servers can jointly participate
to train an ML model [Bon+12]. IoT devices keep generating new data, but may not be able to
store them permanently due to sever memory constraints. Instead, edge servers may contribute with
larger static datasets [Hos+20b; Wan+21b]. Motivated by this scenario, we consider two groups of
clients: Mhist clients with “historical” datasets, which do not change during training, and M −Mhist
clients, who collect “fresh” samples with constant rates {bm > 0,m ∈ JMhist + 1,MK} and only
store the most recent bm samples due to memory constraints (i.e., Cm = bm).* We refer to these
two categories as historical clients and fresh clients, respectively. Fresh clients can also capture the
setting where clients are available during a single communication round.

At each client all samples are used the same number of times (T and 1 at historical and fresh
clients, respectively). Then, one can prove that each client, say it m, should assign the same weight
to any sample currently available at its local memory, i.e., λ(t,j)

m = λ
(t)
m . For simplicity, we consider

stationary weights, i.e., λ(t)
m = λm, and we want then to determine per-client sample weights

*Note that we are implicitly selecting FIFO as memory update rule.

4.3 – 4.3.3 Case Study 109

0.2 0.4 0.6 0.8

Nhist/N

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(
h
is
t

*)
/c

2

log(c2/c1) = 1.5

log(c2/c1) = 1.3

log(c2/c1) = 1.0

log(c2/c1) = 0.5

log(c2/c1) = 2.0

0.2 0.4 0.6 0.8

Nhist/N

0

1

2

3

4

(
u
n
if

*)
/c

2

0.0 0.2 0.4 0.6 0.8 1.0

Nhist/N

4

3

2

1

0

1

2

3

(
h
is
t

u
n
if
)/
c 2

Figure 4.3: The differences ψhist − ψ∗ (left), ψuniform − ψ∗ (center), and ψhist − ψuniform (right) as
a function of Nhist/N for different values of c2/c1, on CIFAR-10 dataset (N = 5 × 105) when
M = 50 and Mhist = 25.

(λm)m∈[M] leading to the best guarantees in terms of ϵtrue.* Equivalently, we want to determine the

clients’ relative importance values p = (pm)m∈[M], where pm = λmNm/
(∑M

m′=1 λm′Nm′

)
. Note

that in this setting aggregation weights and relative importance values coincide (i.e., p(t)
m = pm).

Corollary 4.3.5′ (Appendix G.4) bounds ϵtrue as a function of p in this scenario. For the sake of
simplicity, we provide here the bound for the case αm = nm,m ∈ [M] (which we assume to hold
in the rest of this section):

Corollary 4.3.5. Consider the scenario with Mhist historical clients, and M −Mhist fresh clients.
Suppose that the same assumptions of Theorem 4.3.4 hold, that α = n, and that Algorithm 13 is
used with clients’ aggregation weights p = (pm)m∈[M] ∈ ∆M−1, then

ϵtrue ≤ ψ(p; c) ≜ c0 + c1 ·

√√√√ M∑
m=Mhist+1

p2
m + c2 ·

√√√√ M∑
m=1

p2
m

nm
, (4.17)

where c = (c0, c1, c2) are non-negative constants not depending on p, given as:

c0 = (C1 + C3) + C2
T
− 2 ·max

m,m′
disc (Pm,Pm′) (4.18)

c1 = σ0
√
M −M0 ·

(
D + 2√

T

)
(4.19)

c2 = 10B
√

1 + log
(

N

Pdim (ℓ ◦ H)

)√Pdim (ℓ ◦ H)
N

+ 2 ·max
m,m′

disc (Pm,Pm′) (4.20)

and C1, C2, and C3 are the constants defined in the proof of Theorem 4.3.3, and σ0 is defined in
Remark 6.

The second term in (4.17) captures the gradient variability (second term in (4.16)), while the
third term in (4.17) captures both contributions to the generalization error, i.e., the distribution
discrepancy and the effective number of samples (third and fourth terms in (4.17)). In particular, it
holds

∑M
m=1

p2
m

nm
∝ 1/Neff.

*Restricting the weights to be stationary, i.e., λ
(t)
m = λm, might be suboptimal.

110 CHAPTER 4 — Federated Learning in Dynamic Environments

Table 4.1: Average test accuracy across clients for different datasets in the settings when Nhist/N =
50%.

DATASET D G B d

SYNTHETIC 1.9 0.4 0.7 21
CIFAR-10 1.0 5.5 2.3 3, 353, 034
CIFAR-100 1.0 4.7 4.6 3, 537, 444
FEMNIST 5.9 12.9 3.5 867, 390
SHAKESPEARE 2.6 1.4 6.1 226, 180

The minimization of ψ over the unitary simplex is a convex optimization problem (proof in
Appendix G.4.4), which can then be solved efficiently with, for example, projected gradient descent.
We use ψ∗, p∗, and p∗

hist to denote the minimum of ψ, its minimizer, and the aggregate relative
importance given to historical clients (p∗

hist ≜
∑Mhist

m=1 p
∗
m), respectively.

The solution p∗ depends on the value of n—in particular on the fraction of historical samples
Nhist/N (where Nhist ≜

∑Mhist
m=1Nm)—and on the ratio c2/c1. The ratio c2/c1 only depends on the

intrinsic properties of the learning problem (Pdim (ℓ ◦ H), D, B, and σ0), and the total number of
samples N (see Appendix G.4.3).

Figure 4.2 illustrates how the optimal clients’ importance values change as a function of the
ratio c2/c1 and the fraction of historical samples Nhist/N (other results are in Figure G.22). Beside
the specific numerical values, one can distinguish two corner cases. When c2/c1 ≫ 1, the optimal
solution corresponds to minimize

∑M
m=1 p

2
m/nm, i.e., to maximize the effective number of samples.

The optimal strategy is then the Uniform one and the aggregate relative importance for historical
clients is p∗

hist = Nhist/N . On the contrary, when c2/c1 ≪ 1, the optimal solution corresponds to
minimize

∑
m>Mhist

p2
m, i.e., the gradient variability. The Historical strategy is then optimal

and corresponds to p∗
m = Nm/Nhist = N

Nhist
nm for m ∈ [Mhist] and p∗

hist = 1.
For general values of c2/c1, the optimal strategy to assign clients’ importance values—or

equivalently sample weights—differs from both the Uniform and the Historical ones. We
propose then the following heuristic, which we evaluate in the next section. At the beginning
of training, clients cooperatively estimate c2/c1 using a fraction of their historical samples, as

ĉ2/ĉ1 ≈
B+
√

d/N

GD
√

M−Mhist
(see details in Appendix G.4.6). Then, clients’ importance values are selected

minimizing the bound in (4.17), i.e., p̂∗ = arg minψ (·, ĉ).
Beside providing configuration rules for our meta-algorithm, our analysis allows us also to

evaluate how the performances of different strategies like Uniform and Historical depend
on the different parameters as in Figure 4.3. Our experimental results in the next section confirm
these theoretical predictions.

4.3.4 Numerical Experiments

4.3.4.1 Datasets and Models

In this section, we provide detailed description of the datasets and models used in our experi-
ments. We considered five federated benchmark datasets with different machine learning tasks:
image classification (CIFAR10 and CIFAR100 [Kri09]), handwritten character recognition (FEM-

4.3 – 4.3.4 Numerical Experiments 111

NIST [Cal+19]), and language modeling (Shakespeare [Cal+19; McM+17]), as well as a synthetic
dataset described in Appendix 4.3.4.1. For Shakespeare and FEMNIST datasets there is a natu-
ral way to partition data through clients (by character and by writer, respectively). We relied on
common approaches in the literature to sample heterogeneous local datasets from CIFAR-10 and
CIFAR-100. Below, we give a detailed description of the datasets and the models / tasks considered
for each of them.

Synthetic Dataset. Our synthetic dataset has been generated as follows:

1. Sample θ0 ∈ Rd ∼ N (0, Id), from the multivariate normal distribution of dimension d, with
zero mean and unitary variance

2. Sample θm ∈ Rd ∼ N (θ0, ε
2Id),m ∈ [M] from from the multivariate normal distribution

of dimension d, centered around θ0 and variance equal to ε2

3. For m ∈ [M] and i ∈ [Nm], sample x(i)
m ∼ U

(
[−1, 1]d

)
from a uniform distribution over

[−1, 1]d

4. For m ∈ [M] and i ∈ [Nm], sample y(i)
m ∼ B

(
sigmoid

(
⟨x(i)

t , θm⟩
))

, where B is the
standard Bernoulli distribution

CIFAR-10 / CIFAR-100 We created federated versions of CIFAR-10 by distributing samples
with the same label across the clients according to a symmetric Dirichlet distribution with parameter
0.4, as in [Wan+20a]. For CIFAR100, we exploited the availability of “coarse” and “fine” labels,
using a two-stage Pachinko allocation method [LM06] to distribute the samples across the clients,
as in [Red+21]. We train a shallow convolutional neural network for CIFAR-10/100 datasets.

FEMNIST. FEMNIST (Federated Extended MNIST) is a 62-class image classification dataset
built by partitioning the data of Extended MNIST based on the writer of the digits/characters. We
train two-layer fully connected neural network for FEMNIST dataset

Shakespeare. Shakespeare is a language modeling dataset built from the collective works of
William Shakespeare. In this dataset, each client corresponds to a speaking role with at least two
lines. The task is next character prediction. We use an RNN that first takes a series of characters as
input and embeds each of them into a learned 8-dimensional space. The embedded characters are
then passed through 2 RNN layers, each with 256 nodes, followed by a densely connected softmax
output layer. We split the lines of each speaking role into into sequences of 80 characters, padding
if necessary.

4.3.4.2 Training Details.

In all experiments, the learning rate was tuned via grid search on the grid {10−3.5, 10−3, 10−2.5,
10−2, 10−1.5, 10−1} using the validation set. Once the learning rate had been selected, we retrained
the models on the concatenation of the training and validation sets. Each experiment was repeated
for three different seeds for the random number generator; we report the mean value and the 95%
confidence bound.

112 CHAPTER 4 — Federated Learning in Dynamic Environments

Table 4.2: Datasets and models.

DATASET CLIENTS TOTAL SAMPLES MODEL

SYNTHETIC 11 200 LINEAR MODEL
CIFAR-10 / 100 50 50, 000 2 CNN + 2 FC
FEMNIST 3, 597 817, 851 2 FC
SHAKESPEARE 916 3, 436, 096 STACKED-LSTM

4.3.4.3 Arrival Process

For CIFAR-10/100 datasets, we consider an arrival process with Mhist = 25 clients with “historical”
datasets, which do not change during training, and M −Mhist = 25 clients, who collect “fresh”
samples with constant rates {bm > 0,m ∈ JMhist + 1,MK} and only store the most recent bm

samples due to memory constraints (i.e., Cm = bm). For a given value of Nhist/N , we split the train
part of the original CIFAR-10/100 into two groups, historical and fresh, with Nhist and N −Nhist
samples, respectively. We then distribute the samples from the historical (resp. fresh) group across
Mhist historical (resp. M −Mhist fresh) clients. A symmetric Dirichlet distribution is employed in
the case of CIFAR-10, and a Pachinko allocation method is employed in the case of CIFAR-100.

Shakespeare and FEMNIST datasets have a natural partition across clients—by character and by
writer, respectively. In our experiments, we split the natural clients of FEMNIST and Shakespeare
into two groups, historical and fresh, with Mhist and M −Mhist clients, respectively. The historical
clients participate to every communication round, while each fresh client is only available in a single
communication round in the case of FEMNIST and for at most two consecutive communication
rounds for Shakespeare dataset.

4.3.4.4 Numerical Values for ĉ2/ĉ1

Table 4.1 provide the values of D, G, B, and d used to estimate the ratio ĉ2/ĉ1.

4.3.4.5 Benchmarks

We compared our strategy to select clients’ importance values, (see Section 4.3.3), with three base-
lines: the Uniform and Historical strategies described above as well as the Fresh strategy
which only considers fresh clients. We observe that under our samples’ arrival process and α = n,
there could be two natural ways to extend the classic FedAvg’s aggregation rule [McM+17]: set
each client’s aggregation weight proportional to (1) the number of samples collected by the client
over the whole time-horizon, or (2) the number of samples currently in the client’s memory. The
first aggregation rule coincides with the Uniform strategy, the second one leads in all settings
we considered to very small aggregation weights for fresh clients so that it is practically indistin-
guishable from the Historical strategy. Interestingly, both these rules are in general suboptimal,
motivating the practical interest of our study and of the strategy we propose.

4.3 – 4.3.4 Numerical Experiments 113

Table 4.3: Average test accuracy across clients for different datasets in the settings when Nhist/N =
20%.

DATASET ĉ2/ĉ1 p̂
∗
HIST

TEST ACCURACY
FRESH HISTORICAL UNIFORM OURS OPTIMAL

SYNTHETIC 0.092 0.20 84.7± 1.44 77.3± 3.15 85.5± 1.60 85.5± 1.60 85.5± 1.60
CIFAR-10 0.150 0.45 59.6± 0.94 59.8± 2.16 61.5± 0.63 66.9± 0.81 67.7± 0.91
CIFAR-100 0.284 0.32 22.4± 0.57 22.6± 0.50 25.3± 0.43 28.5± 0.57 31.5± 0.25
FEMNIST 0.001 1.00 53.3± 1.85 66.1± 0.20 55.4± 0.80 66.1± 0.20 66.1± 0.80
SHAKESPEARE 0.064 1.00 38.4± 0.43 49.0± 0.26 39.3± 0.38 49.0± 0.26 49.0± 0.26

0 200 400 600 800
Time step

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 a
cc

ur
ac

y

phist=0.00
phist=0.05

̂p*
hist=0.12

phist=0.20
phist=0.50
phist=0.80
phist=1.00

0 200 400 600 800
Time step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 a
cc

ur
ac

y

phist=0.00
phist=0.20

̂p*
hist=0.45

phist=0.50
phist=0.80
phist=1.00

0 200 400 600 800
Time step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 a
cc

ur
ac

y

phist=0.00
phist=0.20
phist=0.50
phist=0.80

̂p*
hist=0.95

phist=1.00

Figure 4.4: Evolution of the test accuracy when using different values of phist for CIFAR-10 (left)
dataset, when Nhist/N = 5% (left), 20% (center), and 50% (right). The setting phist = Nhist/N
corresponds to Uniform strategy.

4.3.4.6 Main Results

Table 4.3 reports the test accuracy when Nhist/N = 20% for the different strategies together
with the optimal test accuracy obtained selecting the value of phist =

∑Mhist
m=1 pm in the grid

{0, 0.2, 0.5, 0.8, 1.0}. Our observations are confirmed for other values of Nhist/N (see Table 4.4
and Table 4.5. A first remark is that working only with new data (as Fresh does) is never optimal,
not even when historical data account for just 5% of the total dataset (Table 4.4). Second, neither of
the two “reasonable” ways to extend FedAvg consistently achieves good accuracy: Historical
performs poorly over Synthetic and Uniform over FEMNIST and Shakespeare. On the contrary,
our method always performs at least as well as the best baseline and it often achieves a test accuracy
similar to the (estimated) optimal one. In particular, it correctly sets weights as Uniform over
Synthetic and as Historical over FEMNIST and Shakespeare. We observe that our analysis
also helps to explain the counter-intuitive conclusion that, on FEMNIST and Shakespeare, it is
beneficial to ignore new collected samples (even for Nhist/N = 5%, see Table 4.4). Our strategy
correctly sets p̂∗

hist = 1, because it estimates that, for these two datasets, the ratio of the number
of parameters to the aggregate training dataset size (d/N) is much smaller than the gradients’
norm (G)—numerical values are provided in Appendix 4.3.4.4. This information suggests that we
can use a small subset of the original dataset to identify a good model in the selected hypotheses
class, and in particular we can rely only on historical data avoiding the potential noise introduced
by new samples.

Figure 4.4 shows the effect of p on CIFAR-10 test accuracy for different values of the ratio
Nhist/N—similar figures for other datasets are provided in Figures 4.5— 4.8. It confirms that

114 CHAPTER 4 — Federated Learning in Dynamic Environments

Table 4.4: Average test accuracy across clients for different datasets in the settings when Nhist/N =
5%.

DATASET ĉ2/ĉ1 p
∗
HIST

TEST ACCURACY
FRESH HISTORICAL UNIFORM OURS OPTIMAL

SYNTHETIC 0.094 0.06 82.4± 1.89 68.1± 2.39 82.7± 1.94 82.7± 1.90 82.9± 2.17
CIFAR-10 0.150 0.12 59.5± 0.77 48.2± 0.21 60.7± 0.58 61.0± 0.42 63.7± 0.57
CIFAR-100 0.284 0.08 23.5± 0.65 13.5± 0.41 24.4± 0.54 25.2± 0.66 27.8± 0.39
FEMNIST 0.001 1.00 55.2± 1.79 65.7± 0.09 58.4± 1.80 65.7± 0.09 65.7± 0.09
SHAKESPEARE 0.064 1.00 40.2± 0.34 49.0± 0.06 41.0± 1.33 49.0± 0.06 49.0± 0.06

0 25 50 75 100 125 150

Time step

0.55

0.60

0.65

0.70

0.75

0.80

0.85

T
e
st

 a
cc

u
ra

cy

phist=0.00

p*
hist=0.05

phist=0.20

phist=0.50

phist=0.80

phist=1.00

0 25 50 75 100 125 150

Time step

0.55

0.60

0.65

0.70

0.75

0.80

0.85

T
e
st

 a
cc

u
ra

cy

phist=0.00

p*
hist=0.20

phist=0.50

phist=0.80

phist=1.00

0 25 50 75 100 125 150

Time step

0.55

0.60

0.65

0.70

0.75

0.80

0.85

T
e
st

 a
cc

u
ra

cy

phist=0.00

phist=0.20

p*
hist=0.50

phist=0.80

phist=1.00

Figure 4.5: Evolution of the test accuracy when using different values of phist for the synthetic
dataset, when Nhist/N = 5% (left), 20% (center), and 50% (right).

performances in terms of final test accuracy match the predictions of our model on the bound ψ
illustrated in Figure 4.3. First, Figure 4.4 shows that the performance gap between Historical
and the optimal assignment p∗ decreases when Nhist/N increases (as predicted in Figure 4.3
(left)): the gap is 15.5± 0.30, 7.9± 1.17, and 5.3± 2.8 pp when Nhist/N is 5%, 20%, and 50%,
respectively. Second, Figure 4.4 confirms that the performance gap between Uniform and the
optimal assignment first increases and then decreases, when Nhist/N increases (as in Figure 4.3
(center)): the gap is 3.0± 0.57, 6.2± 0.55, and 4.3± 0.35 pp when Nhist/N is 5%, 20%, and 50%,
respectively. Finally, Figure 4.4 shows that the relative ranking of Uniform and Historical
changes, with Uniform being a better option for smaller values of Nhist/N and Historical
becoming slightly better for larger values. Again, this behavior is predicted by our analysis.
Indeed, in this experiment, our estimation for the ratio c2/c1 is ĉ2/ĉ1 ≈ 0.15 ∈ [10−1.3, 10−0.5]
corresponding to a setting for which ψhist − ψunif changes sign in Figure 4.3 (right).

4.3.4.7 Effect of the optimization algorithm

We experimentally evaluated the performance of our heuristic when the federated optimization algo-
rithm is SCAFFOLD and FedProx for CIFAR-10 dataset (Nhist/N = 20%). While SCAFFOLD
and FedProx provide some performance improvement, they do not alter the relative performance
of the aggregation strategies and our heuristic is still the best one. FedProx with penalization
parameter 0.1 (/SCAFFOLD) achieves a test accuracy of 59.6% (/60.1%), 59.8% (/59.8%), 61.6%
(/62.6%), and 67.1% (/67.4%) for Fresh, Historical, Uniform, and Ours, respectively.

4.4 – 4.3.5 Conclusion 115

Table 4.5: Average test accuracy across clients for different datasets in the settings when Nhist/N =
50%.

DATASET ĉ2/ĉ1 pHIST
TEST ACCURACY

FRESH HISTORICAL UNIFORM OURS OPTIMAL

SYNTHETIC 0.085 0.50 84.2± 1.27 84.8± 1.58 86.5± 1.20 86.5± 1.20 86.5± 1.20
CIFAR-10 0.150 0.95 52.1± 2.98 64.1± 5.60 65.1± 0.66 68.7± 0.37 69.4± 0.25
CIFAR-100 0.284 0.69 17.5± 0.57 29.4± 1.40 29.7± 0.55 34.4± 0.31 34.4± 0.31
FEMNIST 0.001 1.00 48.3± 2.98 66.2± 0.23 57.8± 1.93 66.2± 0.23 66.2± 0.23
SHAKESPEARE 0.095 1.00 30.9± 0.51 44.1± 0.27 41.1± 0.56 44.1± 0.27 44.1± 0.27

0 200 400 600 800
Time step

0.00

0.05

0.10

0.15

0.20

0.25

Te
st

 a
cc

ur
ac

y

phist=0.00
phist=0.05

̂p*
hist=0.08

phist=0.20
phist=0.50
phist=0.80
phist=1.00

0 200 400 600 800
Time step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Te
st

 a
cc

ur
ac

y

phist=0.00
phist=0.20

̂p*
hist=0.32

phist=0.50
phist=0.80
phist=1.00

0 200 400 600 800
Time step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Te
st

 a
cc

ur
ac

y

phist=0.00
phist=0.20
phist=0.50

̂p*
hist=0.69

phist=0.80
phist=1.00

Figure 4.6: Evolution of the test accuracy when using different values of phist for CIFAR-100
dataset, when Nhist/N = 5% (left), 20% (center), and 50% (right).

4.3.5 Conclusion

In this section, we formalized the problem of federated learning for data streams and highlighted
a new source of heterogeneity resulting from local datasets’ variability over time. We proposed
a general federated algorithm to learn in this setting and studied its theoretical guarantees. Our
analysis reveals a new bias-optimization trade-off controlled by the relative importance of older
samples in comparison to newer ones and leads to practical guidelines to configure such importance
in our algorithm. Experiments show that our configuration rule outperforms natural ways to extend
the usual FedAvg aggregation rule in the presence of data streams. Moreover, experimental results
confirm other theoretical conclusions, despite the theoretical assumptions and the mismatch in the
corresponding performance metrics (e.g., test accuracy versus a loss bound).

To the best of our knowledge, this work is the first to frame the problem of federated learning
for data streams. It highlights new challenges and—we believe—lays the foundations for further
research. For example, part of our results are restricted to the important, but still quite specific,
scenario where some clients have static datasets and others process new samples at each step. In this
setting, samples are used a different number of times across clients but exactly the same number
of times at a given client, simplifying the analysis. But what happens if heterogeneity in samples’
availability also appears at the level of a single client? How do different memory update rules affect
such heterogeneity, and how can we design such policies to minimize the total error of the final
model? Finally, how do our results change if local data distributions change over time?

116 CHAPTER 4 — Federated Learning in Dynamic Environments

0 200 400 600 800
Time step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 a
cc

ur
ac

y

phist=0.00
phist=0.20
phist=0.50
phist=0.80

̂p*
hist=1.00

0 200 400 600 800
Time step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 a
cc

ur
ac

y

phist=0.00
phist=0.20
phist=0.50
phist=0.80

̂p*
hist=1.00

0 200 400 600 800
Time step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 a
cc

ur
ac

y

phist=0.00
phist=0.20
phist=0.50
phist=0.80

̂p*
hist=1.00

Figure 4.7: Evolution of the test accuracy when using different values of phist for FEMNIST dataset,
when Mhist/M = 5% (left), 20% (center), and 50% (right).

0 200 400 600 800 1000 1200 1400
Time step

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 a
cc

ur
ac

y

phist=0.00
phist=0.20
phist=0.50
phist=0.80

̂p*
hist=1.00

0 200 400 600 800 1000 1200
Time step

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 a
cc

ur
ac

y

phist=0.00
phist=0.20
phist=0.50
phist=0.80

̂p*
hist=1.00

0 100 200 300 400 500
Time step

0.0

0.1

0.2

0.3

0.4

Te
st

 a
cc

ur
ac

y

phist=0.00
phist=0.20
phist=0.50
phist=0.80

̂p*
hist=1.00

Figure 4.8: Evolution of the test accuracy when using different values of phist for Shakespeare
dataset, when Mhist/M = 5% (left), 20% (center), and 50% (right).

4.4 Online Federated Learning with Mixture Models

In this section, we propose to study online federated learning under the assumption that clients’
data distributions are mixtures of a finite number of unknown underlying distributions with vary-
ing mixing weights. We propose Federated Expectation-Maximization Online Mirror Descent
(FEM-OMD), a federated variant of the OMD algorithm, where the gradient of the cost function is
estimated through an EM-like algorithm at each time-step. We analyze the regret guarantees of this
algorithm in the case of Gaussian Mixture Models (GMMs); in particular, we show that the regret
is asymptotically (in the sample size) sub-linear.

4.4.1 Problem Formulation

Let T > 0 be a finite time horizon. We consider a setting with a central server and a finite set of
clients C = {1, . . . , C}. Data at each time t ∈ [T] and each client c ∈ C is generated according to
a parametric distribution Pt,c ≜ Pθ∗

t,c
over a domain Z , with unknown parameter θ∗

t,c ∈ Θ. The
data distributions Pt,c generally vary both in the dimension of clients and time, thus it is natural
to fit a separate model θt,c ∈ Θ to each distribution Pt,c. At each time-step t ∈ [T], clients c ∈ C
collaboratively make predictions θt,c ∈ Θ based on the information they have acquired up to
time-step t− 1. Once the predictions θt,c have been made, each client c ∈ C suffers the following
expected log-loss [SB14, Chapter 24]

LPt,c (θt,c) ≜ −Ez∼Pθ∗
t,c

[
log

(
Pθt,c

)]
= DKL

(
Pθ∗

t,c
∥Pθt,c

)
+ Ez∼Pθ∗

t,c

[
log

(
Pθ∗

t,c

)]
. (4.21)

4.4 – 4.4.1 Problem Formulation 117

Finally, the data distribution Pt,c is partially revealed to client c ∈ C through a finite sample St,c of
n > 0 examples drawn i.i.d. from Pt,c. Crucially, the clients predict the models θt,c before getting
any information on the actual distributions Pt,c. In this online setting, the goal of each client c ∈ C
is to minimize its regret

RT,c ≜
T∑

t=1
LPt,c (θt,c)−min

θ∈Θ

T∑
s=1
LPs,c (θ) . (4.22)

This regret is the difference between the total loss that client c suffers during T rounds and the loss
suffered by the optimal decision-maker with full access to distributions Pt,c, t ∈ [T] in hindsight.

The goal of FL is to enable each client c to benefit from samples available at other clients
in order to get a better estimation of LPt,c , and therefore, obtain a model that generalizes better
to unseen examples drawn from Pt,c. However, as we argue in Section 3.4, some assumption on
clients distributions Pt,c, c ∈ C is essential for FL to be provably beneficial, and in the most general
case, there may be no gain in collaboration. Hence, similar to Section 3.5, we make the following
assumption which is relatively weak and only requires the data for each client to be drawn from a
mixture of m distributions, while the mixing coefficients are changing over time and are different
for different clients.

Assumption 26. There exists m > 0 distributions P̌j ≜ P̌ω∗
j
, j ∈ [m] (parameterized with

unknown ω∗
j ∈ Ω) over Z , such that, at time-step t ∈ [T], client c’s distribution Pt,c is a mixture of

the distributions P̌j , j ∈ [m] with weights π∗
t,c ∈ ∆m−1, i.e.,

∀z ∈ Z, Pt,c(z) =
m∑

j=1
π∗

t,c,jP̌j(z). (4.23)

Assumption 26 motivates a multiple-model solution consisting in learning a set of global
models ωt,j for each underlying distribution P̌j , j ∈ [m] and personalized mixture weights πt,c ∈
∆m−1. In this case, θt,c = {(ωt,j , πt,c,j) : j ∈ [m]}, while θ∗

t,c =
{(

ω∗
j , πt,c,j

)
: j ∈ [m]

}
. Under

Assumption 26, our learning problem can be interpreted as a game where C clients collaborate
against a potentially adversarial environment. At the start of the game, the environment selects
the parameters ω∗

j of the underlying distributions P̌j , j ∈ [m]. At time-step t ∈ [T], the clients
collaboratively make predictions ωt,j ∈ Ω, j ∈ [m] of the underlying distribution parameters, and
πt,c ∈ ∆m−1 of their personalized mixture weights. Then, the environment independently chooses
mixture weights π∗

t,c ∈ ∆m−1 for each client c ∈ C. Afterwards, each client c ∈ C suffers a loss
φt,c (θt,c), defined as

φt,c (θt,c) ≜ φ
(
θt,c = {(ωt,j , πt,c,j) : j ∈ [m]} ; θ∗

t,c =
{(

ω∗
j , π

∗
t,c,j

)
: j ∈ [m]

})
≜ DKL

(m∑
j=1

π∗
t,c,jPω∗

j
∥

m∑
j=1

πt,c,jPωt,j

)
. (4.24)

Finally, the environment (partially) reveals the selected mixture weights to the clients, through n
samples drawn i.i.d. from Pt,c =

∑m
j=1 π

∗
t,jP̌j . The goal of client c is to minimize its personal

regret given by

RT,c ≜
T∑

t=1
φt,c (θt,c)−min

θ∈Θ

T∑
s=1

φs,c (θ) . (4.25)

The environment cannot change the parameters ω∗
j of the underlying distributions across time.

Instead, the dynamic of the problem comes from how the mixing weights πt,c change across time.

118 CHAPTER 4 — Federated Learning in Dynamic Environments

Algorithm 14: Federated Expectation-Maximization Online Mirror Descent
(FEM-OMD)

Input : learning rate η > 0, number K of EM steps
1 Initialize ω1,1, . . . ,ω1,m ∈ Ω and π1,1, . . . ,π1,C ∈ ∆m−1 ;
2 for t = 1, . . . , T do
3 Server broadcasts ωt,j , j ∈ [m] to each client c ∈ C;
4 for client c ∈ C in parallel over C clients do
5 Play parameters θt,c = {(ωt,j , πt,c,j) : j ∈ [m]};
6 Receive sample St,c = zt,c,1, . . . ,zt,c,n

i.i.d.∼ Pt,c =
∑m

j=1 π
∗
t,c,jP̌ω∗

j
;

7 Initialize π̃
(1)
t,c ∈ ∆m−1 and set ω̃

(1)
t,j ← ωt,j , j ∈ [m] ;

8 for k = 1, . . . ,K do
9

{(
ω̃

(k+1)
t,c,j , π̃

(k+1)
t,c,j

)
: j ∈ [m]

}
←

EM_update
(
St,c,

{(
ω̃

(k)
t,,j , π̃

(k)
t,c,j

)
: j ∈ [m]

})
;

10 Synchronize ω̃
(k+1)
t+1,j ←

∑C
c=1 π̃

(k+1)
t,c,j ω̃

(k+1)
t+1,c,j/

∑C
c=1 π̃

(k+1)
t,c,j with the

server and other clients ;
11 end
12 ωt+1,j ← t

t+1ωt+1,j + 1
t+1 ω̃

(K+1)
t+1,j , j ∈ [m] ;

13 ∇̂t,c,j ←

Approxn

(
−E

Z∼
∑m

r=1 π̃
(K+1)
t,c,r P̌ωt+1,r

[
P̌ωt+1,j (Z)∑m

l=1 πt,lP̌ωt+1,c,l
(Z)

])
, j ∈ [m] ;

14 πt+1,c,j ← πt,c,j exp
(
−η∇̂t,c,j

)
/
∑m

l=1 πt,c,l exp
(
−η · ∇̂t,c,l

)
, j ∈ [m] ;

15 end
16 end

4.4.2 FEM-OMD Algorithm

Unlike traditional online convex optimization, where the decision maker directly receives the cost
function from the environment, in our case, the cost function is indirectly revealed to each client
through a set of samples. In practical terms, this means that each client has to estimate their cost
function at each time step using a finite number of samples. Once clients obtain a good estimate of
their cost functions, they can apply an online mirror descent step to decide their next action.

This iterative process is outlined in Algorithm 14. After committing to a set of actions (Line 5),
the samples are received from the environment (Line 6), and clients collaborate to build a global
estimator ω̃

(K+1)
t,j of the underlying distribution P̌j parameter ω∗

j for j ∈ [m]. Meanwhile, each

client c ∈ C builds locally an estimator π̃
(K+1)
t,c of its current mixing weight π∗

t,c (Lines 7– 11). In

order to build the estimators θ̃t,c ≜
{(

ω̃
(K+1)
t,j , π̃

(K+1)
t,c,j

)
: j ∈ [m]

}
, FEM-OMD alternates between

the client local updates and the synchronization steps at the server. In round k ∈ [K] of the inner
loop, each client c ∈ C performs an EM local update leading to local estimators ω̃

(k+1)
t,c,j , j ∈ [m]

and π̃
(k+1)
t,c,j of the distribution Pt,c parameters (Line 9). Subsequently, clients synchronize their

estimators ω̃
(k+1)
t,c,j , j ∈ [m], c ∈ C with the aid of a central server; the central server averages the

4.4 – 4.4.3 Federated Online Learning with Gaussian Mixture Models 119

local estimators ω̃
(k+1)
t,c,j , j ∈ [m] and broadcasts the result back to all clients. The purpose of the

inner loop (Lines 7– 11) is to solve, in a distributed manner, the following maximum likelihood
problem

maximize
(ωj)j∈[m],(πc)c∈C

1
nC

C∑
c=1

n∑
i=1

log
(m∑

j=1
πc,jP̌j (zt,c,i)

)
. (4.26)

The empirical likelihood in (4.26) is based on the aggregated samples St ≜ ∪c∈CSt,c, i.e., containing
all samples collected by the clients at time step t. Solving this problem collaboratively enables each
client to benefit from other clients’ data to build a more accurate estimator of ωj∗.

To approximate the unknown cost function φt,c, the client c ∈ C uses the estimator θ̃t,c and
computes its corresponding approximation φ̃t,c. In Algorithm 14, the gradient of the true cost
function∇φt,c is approximated using the gradient of the estimate∇φ̃t,c. The gradients of the cost
function φt,c and its estimate φ̃t,c with respect to π, evaluated at θt,c = {(ωt,j , πt,c,j) : j ∈ [m},
are given by

∇t,c,j ≜
∂φt,c

∂πj
(θt,c) = −EZ∼

∑m

r=1 π∗
t,c,rP̌ω∗

r

 P̌ω∗
j
(Z)∑m

l=1 πt,lP̌ω∗
l
(Z)

 , (4.27)

∇̃t,c,j ≜
∂φ̃t,c

∂πj
(θt,c) = −E

Z∼
∑m

r=1 π̃
(K+1)
t,c,r P̌ωt+1,r

[
P̌ωt+1,j (Z)∑m

l=1 πt,lP̌ωt+1,l
(Z)

]
. (4.28)

Both ∇t,c,j and ∇̃t,c,j are given as expectations (integrals) that cannot be computed analytically.
Therefore, in FEM-OMD, ∇̃t,c,j is approximated by ∇̂t,c,j , which is computed using Monte-Carlo
approximation (Line 13). Finally, client c ∈ C computes the mixing weights πt+1,c using a
multiplicative update rule (Line 14). In Section 4.4.3.2, we show that this update rule is an Online
Mirror Descent (OMD) step with negative entropy regularization.

4.4.3 Federated Online Learning with Gaussian Mixture Models

In this section, we analyze an instance of Assumption 8 where the underlying distributions are
spherical Gaussian distributions, i.e., ∀j ∈ [m], P̌ω∗

j
= N

(
µ∗

j , Id

)
, and µj ∈ Rd. In this case, the

distribution Pt,c of client c at time t is a Gaussian Mixture Model (GMM), with mixing weights
π∗

t,c ∈ ∆m−1. The goal of the clients is to collaboratively learn the parameters of a sequence of
GMMs, that share the same components but have time-varying mixing weights.

Learning the parameters of a GMM is a well-established problem [Das99; KSV05; GHK15;
KC20] in the offline setting. The authors of [RV17] established that separation of Ω

(√
log(m)

)
is necessary and sufficient for identifiability of the GMM’s parameters with polynomial sample
complexity. Assumption 27 formalizes a similar separation condition for the online setting that we
consider.

Assumption 27. (Separation) Suppose that there exists a constant C ′ ≥ 128 such that

∀j′ ̸= j ∈ [m],
∥∥µ∗,j − µ∗,j′

∥∥ ≥ C ′

√√√√√log

 m

minl,t π
(t)
∗,l

. (4.29)

120 CHAPTER 4 — Federated Learning in Dynamic Environments

In [KC20], the authors show that, with separation Ω
(√

log(m)
)

, the (sample-splitting) finite-
sample EM algorithm converges to the ground truth given an O (1)-close initialization. Assump-
tions 28 and 29 formalizes the requirements for the initialization of the EM algorithm.

Assumption 28. (Mean initialization) The means initialization µ1,1, . . . ,µ1,m satisfies

∀j ∈ [m],
∥∥∥µ1,j − µ∗

j

∥∥∥ ≤ min
j′ ̸=j

∥∥∥µ∗
j − µ∗

j′

∥∥∥ /16. (4.30)

Assumption 29. (Mixture weights initialization) At every time step t ≥ 0, the mixture weights
initialization π̃

(1)
t satisfies

∀j ∈ [m],
∣∣∣π̃(1)

t,c,j − π
∗
t,c,j

∣∣∣ ≤ π∗
t,c,j/2. (4.31)

When the separation (Assumption 27), and the initialization (Assumption 28 and 29) assump-
tions hold, [KC20, Theorem 7] shows that n = O(d/ϵ2 minl π

(t)
∗,l

) samples are sufficient to recover
the ground truth parameters up to ϵ accuracy with high probability.

Theorem 4.4.1. [KC20, Theorem 7] If Assumptions 27– 29 hold, and n ≥ C′′d

ϵ2 minl π
(t)
∗,l

·log2 (m2T K/δ)

for a sufficiently large universal constant C ′′, and further the number of inner iterations is K =
O (log(1/ϵ)), then for all j ∈ [m], with probability at least 1−O (δ/T)−O (K/nc−2m30) we have∣∣∣π̃(K+1)

t,j − π∗
t,c,j

∣∣∣ ≤ ϵπ∗
t,c,j ,

∥∥∥µ̃(K+1)
t,c,j − µ∗

j

∥∥∥ ≤ ϵ. (4.32)

Remark 7. Note that the initialization assumptions, i.e., Assumptions 28 and 29, could be relaxed
and replaced by the following separation condition, at the cost of running one step of k-means
[KC20];

∀j ∈ [m],
∥∥∥µ1,j − µ∗

j

∥∥∥ ≤ min
j′ ̸=j

∥∥∥µ∗
j − µ∗

j′

∥∥∥ /4. (4.33)

Since the sample complexity of Theorem 4.4.1 depends on the inverse of the minimal mixing
weight, we make the following assumption in order to guarantee finite sample complexity.

Assumption 30. (Positive mixture weights) Suppose that there exists a positive constant β ∈
(0, 1/m], such that minj π

∗
t,j ≥ β for t ≥ 0.

4.4.3.1 FEM-OMD for Gaussian Mixture Models

Now we are ready to present the realization of FEM-OMD for the GMM setting. The steps of this
algorithm is presented in Algorithm 15. For a mixture of spherical Gaussian distributions, each step
of the EM algorithm is given in closed form as

E-step: w̃
(k)
t,c,j,i =

π̃
(k)
t,c,jfµ̃

(k)
t,j

(
x

(k)
t,c,i

)
∑m

l=1 π̃
(k)
t,c,lfµ̃

(k)
t,l

(
x

(k)
t,c,i

) , i ∈ [n/K], j ∈ [m] (4.34)

M-step: π̃
(k+1)
t,c,j =

n∑
i=1

w̃
(k)
t,c,j,i/n, j ∈ [m] (4.35)

µ̃
(k+1)
t+1,c,j =

n∑
i=1

w̃
(k)
t,j,ix

(k)
t,c,i/

n∑
i=1

w̃
(k)
t,j,i, j ∈ [m] (4.36)

4.4 – 4.4.3 Federated Online Learning with Gaussian Mixture Models 121

Algorithm 15: FEM-OMD for Gaussian Mixture Models
Input : learning rate η > 0, number of inner loop steps K

1 Initialize µ1,1, . . . ,µ1,m ∈ Rd and π1,1, . . . ,π1,C ∈ ∆m−1 ;
2 for t = 1, . . . , T do
3 Server broadcasts ωt,j , j ∈ [m] to each client c ∈ C;
4 for client c ∈ C in parallel over C clients do
5 Play parameters θt,c = {(µt,j , πt,c,j) : j ∈ [m]};
6 Receive sample xt,c,1, . . . ,xt,c,n

i.i.d.∼
∑m

j=1 π
∗
t,jN

(
µ∗

j , Id

)
;

7 Split samples into K equally-sized batches

B(k)
t,c =

{
(x(k)

t,c,1, . . . ,x
(k)
t,c,n/K)

}
, k ∈ [K] ;

8 Initialize π̃
(1)
t,c ∈ ∆m−1 and set µ̃

(1)
t,j ← µt,j , j ∈ [m] ;

9 for k = 1, . . . ,K do
10 Update

{(
µ̃

(k+1)
t,c,j , π̃

(k+1)
t,c,j

)
: j ∈ [m]

}
using Equations (4.34)–(4.36) ;

11 Synchronize µ̃
(k+1)
t+1,,j ←

∑C
c=1 π̃

(k+1)
t,c,j µ̃

(k+1)
t+1,c,j/

∑C
c=1 π̃

(k+1)
t,c,j with the

server and other clients ;
12 end
13 µt+1,j ← t

t+1µt+1,j + 1
t+1 µ̃

(K+1)
t+1,j ;

14 ∇̂t,j ←

Approxn

(
−E

X∼
∑m

r=1 π̃
(K+1)
t,c,r N (µt+1,r,Id)

[
fµt+1,j (X)∑m

l=1 πt,lfµt+1,l
(X)

])
, j ∈

[m] ;

15 πt+1,j ← πt,j exp
(
−η · ∇̂t,j

)
/
∑m

l=1 πt,l exp
(
−η · ∇̂t,l

)
, j ∈ [m] ;

16 end
17 end

The E-step constructs the expectation of the log-likelihood on the current estimators, and the M-step
maximizes this expectation.

Sample-splitting EM. Algorithm 15 employs the common variant of the iterative EM algorithm
which is often referred to as the sample-splitting scheme. This scheme divides the n examples into
K batches of size n/K, and uses a new batch of samples in each iteration, which removes the
probabilistic dependency between the iterations of the inner loop (Line 7– 12).

Remark 8. Let θ̆∗
t,c ≜

{(
µ∗

j , πt,c,j

)
: j ∈ [m]

}
, and θ̆t,c ≜ {(µt+1,j , πt,c,j) : j ∈ [m]}. We remark

that

πt,c,j∇t,c,j = −EX∼Dθ∗
t

[
w
(
X; θ̆∗

t,c

)]
, πt,c,j∇̃t,c,j = −EX∼Dθ̃t

[
w
(
X; θ̆t,c

)]
, (4.37)

where w(x; θ) ≜ fµj (x)∑m

l=1 πlfµl
(x) is the weight assigned by the EM algorithm to the example x ∈ Rd.

4.4.3.2 Analysis

Algorithm 15 can be interpreted as an online mirror descent with incorrect gradients (Algorithm 16).
Line 15 of Algorithm 15 is an online mirror descent step with entropy regularization using the

122 CHAPTER 4 — Federated Learning in Dynamic Environments

gradient of φ̃t,c instead of the gradient of φt,c. In order to analyze the performance of Algorithm 15,
we first analyze the more general online mirror descent with incorrect gradients. Our analysis
(Theorem 4.4.3) shows that the regret of Algorithm 16 is upper bounded by the sum of a sub-linear
term and a term that depends on the distance between the gradients of φ̃t,c and φt,c. Second, we
obtain an upper bound on the distance between the gradients of φ̃t,c and φt,c (Lemma H.1). The
bound is expressed using the distance between the true parameters θ∗

t,c of the environment’s GMM
and their estimation θ̃t,c obtained using K steps of the EM algorithm, at time step t (Theorem 4.4.4).
Finally, we use previous results on the convergence of the EM algorithm [KC20], to prove that,
under Assumption 27–30, the distance between θ∗

t,c and θ̃t,c is upper bounded by a term O(1/
√
n)

with high probability (Theorem 4.4.1). By combining Theorem 4.4.3 and Theorem 4.4.5, we obtain
our main regret bound presented in the following theorem. The proof is available in Appendix H.1.

Theorem 4.4.2. Suppose that assumptions 27– 30 hold. Suppose that n ≥ C′′d
βϵ2 · log2

(
m2T K

δ

)
with

sufficiently large universal constant C ′′, and K = O (log(1/ϵ)). Algorithm 15 has regret bounded
by

∀c ∈ C, RT,c = O (Tϵ) +O
(√

T log(m)
)
, (4.38)

with probability at least 1−O (δ)−O (T K/nc′−2m30).

Next, we characterize the steps mentioned above to obtain the result in Theorem 4.4.2.

Online Mirror Descent with Inexact Gradients The update rule (Line 15) of Algorithm 15
is an online mirror descent (OMD) step with entropy regularization [Haz16, Section 5.4.2]. The
OMD step (in Line 15) employees ∇̂t instead of the correct gradient∇ψt (θt) of the cost function
ψt. Theorem 4.4.3 bounds the regret of OMD when the correct gradient is replaced by an estimate
(Algorithm 16).

Algorithm 16: Online Mirror Descent with Incorrect Gradients
Input : learning rate sequence η, regularization function R(x)

1 Initialize y1 such that∇R(y1) = 0 and x1 ∈ arg minx∈X BR (x∥y1) ;
2 for t = 1, . . . , T do
3 Play xt ;
4 Observe ∇̂t ;
5 ∇R(yt+1)← ∇R(xt)− η∇̂t ;
6 xt+1 ← arg minx∈X BR (x∥yt+1)
7 end

In this section, we borrow the notation of [Haz16, Chapter 5]. We consider regularization
functions, denotedR : X 7→ R, which are smooth, strongly convex and twice differentiable. We
denote the diameter of the setX relative to the functionR asDR ≜

√
maxx,y∈X {R (x)−R (y)}.

We use BR (·∥·) to denote the Bregman divergence with respect to the function R, defined for
x,y ∈ X as BR (x∥y) ≜ R (x)−R (y)− ⟨∇R (x) ,x− y⟩.

For x,y ∈ X , we consider the norm ∥x∥y ≜
√

x⊺∇2R (y) x, and its dual norm ∥x∥∗y ≜√
x⊺∇−2R (y) x. The mean-value theorem asserts the existence of a point z ∈ [x,y] such that

BR (x∥y) = ∥x− y∥z. y. Therefore, the Bregman divergence defines a local norm, which has

4.4 – 4.4.3 Federated Online Learning with Gaussian Mixture Models 123

a dual norm. We denote this dual norm by ∥·∥∗x,y ≜ ∥·∥∗z. For two consecutive decision points
xt and xt+1 of Algorithm 16, we use ∥·∥t ≜ ∥·∥xt,xt+1

to denote the local norm at iteration t of
Algorithm 16.

Theorem 4.4.3. Let (ψt)0≤t≤T be a sequence of convex functions, and u ∈ X . Suppose the
gradient norm is bounded as ∥∇̂t∥∗t ≤ GR, and the stepsize is η = DR

GR
√

T
. Then, for Algorithm 16

we have

T∑
t=1

ψt (xt)−min
x∈X

T∑
s=1

ψs (x) ≤ DRGR
√
T +DX ·

T∑
t=1

∥∥∥∇ψt (xt)− ∇̂t

∥∥∥ , (4.39)

where DX ≜ supx,y∈X ∥x− y∥ is the diameter of X .

The first term in the above upper bound is the standard regret bound of the online mirror descent
algorithm [Haz16, Theorem 5.6]. The second term is due to the fact that we have access to inexact
gradients, and it is proportional to the cumulative distance between ∇̂t and ∇ψt (xt).

Application to FEM-OMD. The regret bound of Algorithm 15 can be obtained by using the
result in Theorem 4.4.3. More precisely, suppose that the decision set is the (m − 1)-unitary
simplex, i.e., X = ∆m−1, the regularization function is the negative entropy function, i.e.,R (π) ≜∑m

j=1 πj log (πj), and the cost function is defined as ψ (π) = DKL
(∑m

j=1 π
∗
t,c,jfµ∗

j

∥∥∥∑m
j=1 πjfµ∗

j

)
Note that in this case, the gradient of the negative entropy function is given by ∂R

∂πj
(π) = 1 +

log (πj). Therefore, the update rule of Algorithm 16 becomes

log (qt+1,c,j) ≜ log (πt,c,j)− η∇̂t,c,j , πt+1,c = arg min
π∈∆m−1

m∑
j=1

qt+1,c,j log (πj) . (4.40)

Hence,

πt+1,c,j = qt+1,c,j∑m
l=1 qt+1,c,l

=
πt,c,j exp

(
−η · ∇̂t,c,j

)
∑m

l=1 πt,c,l exp
(
−η · ∇̂t,c,l

) , (4.41)

which corresponds to Line 15 of Algorithm 15. In this case, the diameter of the set ∆m−1 relative
to the negative entropy functions is DR =

√
log(m) (Lemma H.4). Additionally, one can prove

that ∥∇̂t∥∗t ≤ ∥∇̂t∥∞ = O (1) (Lemma H.5). Considering these points, Theorem 4.4.3 implies that
the regret of Algorithm 15 is upper-bounded as

∀c ∈ C, RT,c ≤ O
(√

T log (m)
)

+ 2
T∑

t=1

∥∥∥∇t,c − ∇̂t,c

∥∥∥ . (4.42)

Gradient Estimation Error In Section 4.4.3.2, we viewed Algorithm 15 as a particular instance
of online mirror descent with incorrect gradients (Algorithm 16). The expression in (4.42) bounds
the regret of Algorithm 15 by the sum of a sub-linear term and the cumulative sum of the estimation
error of cost functions’ gradients. In this section, we bound the gradient estimation error ∥∇t,c −
∇̂t,c∥ that appears in (4.42). We remind that ∇̂t,c is a Monte-Carlo approximation of ∇̂t,c using
n samples, hence ∥∇̂t,c − ∇̃t,c∥ = O(1/

√
n). Therefore, in order to prove that ∥∇t,c − ∇̂t,c∥ =

124 CHAPTER 4 — Federated Learning in Dynamic Environments

O(1/
√

n), it is enough to prove that ∥∇t,c − ∇̃t,c∥ = O(1/
√

n). Starting from Remark 8, we bound
the components-wise gradient estimation error |∇t,c,j − ∇̃t,c,j | using the distance between the true
parameters θ∗

t,c of the environment’s GMM and their estimation θ̃t,c obtained using K steps of the
EM algorithm, at time step t, as shown by Theorem 4.4.4.

Theorem 4.4.4. Suppose Assumptions 27– 30 hold, and the number of samples satisfies n ≥
C′′d
βϵ2 · log2 (m2T K/δ), where C ′′ is a sufficiently large universal constant, and the number of inner

loop steps satisfies K = O (log(1/ϵ)). Then, for all t ∈ [T], c ∈ C and j ∈ [m], we have

πt,c,j ·
∣∣∣∇t,c,j − ∇̃t,c,j

∣∣∣ ≤ 3
2 · sup

q∈[m]

∥∥∥µt+1,q − µ∗
q

∥∥∥+
∥∥∥π̃(K+1)

t,c,j − π∗
t,c,j

∥∥∥
1
. (4.43)

The next step consists in upper bounding the RHS of (4.43). We use the convergence results
(Theorem 4.4.1) of the EM algorithm from [KC20] to prove that the output θ̃t,c of the inner loop of
Algorithm 15 is close to the true parameters θ∗

t,c. When EM is initialized close to the ground truth
(Assumptions 28, and 29), and the ground truth components are separated (Assumption 27), EM
converges to the ground truth with high probability (Theorem 4.4.1). Combining Theorem 4.4.1
and Theorem 4.4.4, we prove Theorem 4.4.5 showing that the gradient estimation error ∥∇t − ∇̂t∥
is upper bounded by O(1/

√
n) with high probability, where n is the number of samples that the

environment reveals to the decision-maker at each time step.

Theorem 4.4.5. Suppose Assumptions 27– 30 hold, and the number of samples satisfies the
condition n ≥ C′′d

βϵ2 · log2 (m2T K/δ), C ′′ is a sufficiently large universal constant, and the number of
inner loop iterations is selected as K = O (log(1/ϵ)). Then, for all t ∈ [T] and for all c ∈ C, with
probability at least 1−O (δ/T)−O (K/nc−2m30), we have

∥∥∥∇t,c − ∇̃t,c

∥∥∥ = O (ϵ).

4.4.4 FEM-OMD for Discriminative Models

Our problem formulation in Section 4.4.1 focuses on generative models, where the purpose is to
learn the underlying data generation process. In this section, we focus on the discriminative case,
where the purpose is to model the conditional probability distribution of the target variable given the
input variables. In this section, we consider the case that Z = X × Y , where X is the input space
and Y is the target/output space. We consider a set HΩ = {hω : X 7→ Y, ω ∈ Ω} of parametric
hypotheses/models mapping X to Y . We useH to denote the convex hull ofHΩ, and we consider a
loss function ℓ : H×Z 7→ R+, quantifying the discrepancy between the predicted output h(x) of
a hypothesis h and the target value y, for (x, y) ∈ Z . For ω ∈ Ω, let P̌ω be the distribution defined
by P̌ω (z) ∝ exp {−ℓ (hω; z)} for z ∈ Z .

In the discriminative case, the goal is to learn a hypothesis/model mapping the input space to
the target space. In our settings, where the mixture assumption (Assumption 8) holds, we learn a set
of global models {hωt,j} for each underlying distribution j ∈ [m], and time-varying personalized
mixing weights πt,c for each client c ∈ C. Motivated by [Mar+21b, Proposition 2.1], client c’s
model at time-step t is given by ht,c ≜

∑m
j=1 πt,chωt,j .

The steps of FEM-OMD for discriminative models are presented in Algorithm 17. In particular,

4.4 – 4.4.5 Experimental Results 125

Algorithm 17: FEM-OMD for discriminative models
Input : learning rate η > 0, number K of EM steps

1 Initialize ω1,1, . . . ,ω1,m ∈ Ω and π1,1, . . . ,π1,C ∈ ∆m−1 ;
2 for t = 1, . . . , T do
3 Server broadcasts ωt,j , j ∈ [m] to each client c ∈ C;
4 for client c ∈ C in parallel over C clients do
5 Play parameters θt,c = {(ωt,j , πt,c,j) : j ∈ [m]};
6 Receive sample St,c = zt,c,1, . . . ,zt,c,n

i.i.d.∼ Pt,c =
∑m

j=1 π
∗
t,c,jP̌ω∗

j
;

7 Initialize π̃
(1)
t,c ∈ ∆m−1 and set ω̃

(1)
t,j ← ωt,j , j ∈ [m] ;

8 for k = 1, . . . ,K do
9 Update ω̃

(k+1)
t,c,j and π̃(k+1)

t,c,j according to (4.45) and (4.46);

10 Synchronize ω̃
(k+1)
t+1,j ←

∑C
c=1 π̃

(k+1)
t,c,j ω̃

(k+1)
t+1,c,j/

∑C
c=1 π̃

(k+1)
t,c,j with the

server and other clients ;
11 end
12 ωt+1,j ← t

t+1ωt+1,j + 1
t+1 ω̃

(K+1)
t+1,j , j ∈ [m] ;

13 ∇̂t,c,j ←

Approxn

(
−E

Z∼
∑m

r=1 π̃
(K+1)
t,c,r P̌ωt+1,j

[
P̌ωt+1,j (Z)∑m

l=1 πt,lP̌ωt+1,c,l
(Z)

])
, j ∈ [m] ;

14 πt+1,c,j ← πt,c,j exp
(
−η · ∇̂t,c,j

)
/
∑m

l=1 πt,c,l exp
(
−η · ∇̂t,c,l

)
, j ∈ [m]

;
15 end
16 end

the local EM update performed by client c is summarized as follows:

E-step: w̃
(k+1)
t,c,j,i =

π̃
(k)
t,c,jP̌ω̃

(k)
t,j

(xt,c,i, yt,c,i)∑m
l=1 π̃

(k)
t,c,lP̌ω̃

(k)
t,l

(xt,c,i, yt,c,i)
, i ∈ [n], j ∈ [m] (4.44)

M-step: π̃
(k+1)
t,c,j =

n∑
i=1

w̃
(k)
t,c,j,i/n, j ∈ [m] (4.45)

ω̃
(k+1)
t,c,j = ω̃

(k)
t,c,j − η

n∑
i=1

w̃
(k)
t,c,j,i∇ωℓ

(
h

ω
(k)
t,c,j

(xt,c,i) , yt,c,i

)
, j ∈ [m] (4.46)

The local EM update consists in performing the steps in (4.44) and (4.45) and updating the local
estimates of ω∗ through one step of stochastic gradient descent using only the local dataset St,c.

4.4.5 Experimental Results

4.4.5.1 Synthetic data.

We investigate the Gaussian mixture model analyzed in Section 4.4.3.2. We randomly generate
centers µ∗

j ∈ Rd by sampling from N (0, sId), where s = 5 controls the distance between the

126 CHAPTER 4 — Federated Learning in Dynamic Environments

0 1000 2000 3000 4000 5000
Time

10

20

30

40

50

60

70

80

90

R̄ t

n=1
n=10
n=30

0 1000 2000 3000 4000 5000
Time

0

200

400

600

800

R̄ t

C=10
C=50
C=100

0 1000 2000 3000 4000 5000
Time

0

100

200

300

400

R̄ t

s=1.0
s=2.5
s=5.0

Figure 4.9: Evolution of average regret across clients (R̄t) as a function of number of samples and
clients. Left: R̄t for different values of n. Center: R̄t for different values of C with each client
receiving only one sample per time-step. Right: R̄t for different values of s.

centers. The mixing weights π∗
t,c ∈ ∆m−1 associated with each client c at time step t ∈ [T] are

generated using a symmetric Dirichlet distribution with parameter α = 0.1. We set C = 50 and
n = 30, unless otherwise specified.

To investigate the effect of the number of samples, we plot the evolution of the average regret
across clients, R̄t, in Figure 4.9 (left) for different values of n. We observe that the regret is sub-
linear for n ≥ 10 and linear for n = 1, in accordance with Theorem 4.4.2. For large values of n, the
second term O(

√
T log(m)) dominates the first term O(T/

√
n) in the RHS of (4.38). In Figure 4.9

(center), we investigate the benefit of collaboration by plotting the evolution of R̄t for different
values of the number of clients C, when n = 1. The plot shows the regret of FEM-OMD improves
with larger values of C. More precisely, larger values of C (= 100) lead to a sub-linear regret, while
smaller values lead to a linear regret. This result demonstrates the benefit of collaboration when the
number of local samples n is small. In Figure 4.9 (right), we plot the evolution of the average regret
across clients for different values of the parameter s controlling the distance between the centers
of the Gaussian distributions. We observe that the regret is sub-linear for large s ≥ 2.5 and linear
for s = 1.0. This result demonstrates the necessity of the separation assumption (Assumption 27);
when Assumption 27 does not hold, the regret of Algorithm 15 is linear, even if the number of
participating clients is large (C = 50), and each client receives a large number of samples (n = 30).

4.4.5.2 Federated Learning Datasets

Datasets and models. We consider two image classification datasets: MNIST [LC10] and CIFAR-
10 [Kri09]. To create distinct subsets, we divide the 10 classes of CIFAR-10 and MNIST into
m = 4 subsets, where each subset corresponds to an underlying distribution. For the CIFAR-10
dataset, we train a shallow convolutional neural network with two convolutional layers followed by
two fully connected layers. For MNIST, we use a two-layer fully connected neural network. At
each time-step t, let nt (resp. n′

t) be a realization of the random variable distributed according to
the multinomial distributionM (n, πt,c,j) (resp.M (n′, πt,c,j)). Each client c receives nt,j training
samples, denoted as St,c, and nt,j test samples, denoted as S ′

t,c, drawn from the j-th subset for
j ∈ [m]. The mixing weights π∗

t,c ∈ ∆m−1 associated with each client c at time-step t ∈ [T],
are generated according to a symmetric Dirichlet distribution with parameter α = 0.1. In our
experiments, we set C = 10, n′ = 1, n = 5 for CIFAR-10, and n = 6 for MNIST, resulting in a
time horizon of approximately T = 1, 000. Our code will be made available upon acceptance.

Baseline. In Section 4.2, we discussed that most online federated learning approaches have

4.4 – 4.4.5 Experimental Results 127

0 200 400 600 800
Time

0

100

200

300

400

R̄ t
FEM-OMD (Ours)
FedOMD

0 200 400 600 800
Time

0

50

100

150

200

250

R̄ t

FEM-OMD (Ours)
FedOMD

Figure 4.10: Evolution of average regret across clients (R̄′
t) for CIFAR-10 (right) and MNIST (left).

The curves are smoothed using a discount factor of 0.7.

two main characteristics. Firstly, they either require prior knowledge about the proportion of
clients/samples from each underlying distribution, as seen in [Eic+19; Din+20; Zhu+22]. Secondly,
they determine the models to be served to clients based on feedback from the environment, as
described in [Jot+23]. These approaches differ from our framework, where clients predict the
models θt,c before receiving any information about the actual distributions Pt,c. It is important
to note that FedOMD [MHP21] is the only exception to this. In our evaluation, we compare our
algorithm with the L2-regularized implementation of FedOMD

Metric. In this section, we introduce an alternative formulation of regret denoted asR′
T,c, which

is defined as the cumulative difference between the accuracy of the optimal model h∗ trained on the
aggregated samples S ≜ ∪t∈[T] ∪c∈C St,c and the accuracy of the model ht,c trained during each
learning round t. The formulation is given by the equation:

R′
T,c ≜

T∑
t=1

{
Acc

(
h∗,S ′

t,c

)
− Acc

(
ht,c,S ′

t,c

)}
. (4.47)

Here, Acc(h,S) represents the accuracy of the model h on the dataset S . It’s important to note that
h∗ is the optimal model trained using the aggregated samples S collected by all clients during the
T learning rounds

Machines and libraries. We used PyTorch [Pas+19] to build and train our models. We ran the
experiments on a GeForce GTX 1080 Ti Nvidia card.

Results. In Figure 4.10, we present the evolution of the average regret across clients (R̄′
t) for the

CIFAR-10 and MNIST datasets, depicted on the right and left sides, respectively. When considering
the MNIST dataset, our proposed method (FED-OMD) achieves a sub-linear regret before reaching
time-step t0 = 200, whereas FedOMD takes longer to enter the sub-linear regime. However, for
the more challenging CIFAR-10 dataset, neither FedOMD nor FED-OMD achieves sub-linear regret
with T = 1, 000 time-steps. It remains unclear whether this absence of sub-linear behavior stems
from the inherent limitations of FedOMD and FED-OMD, or if the time horizon (T = 1, 000) is
simply insufficient to demonstrate the sub-linear behavior.

128 CHAPTER 4 — Federated Learning in Dynamic Environments

4.4.6 Conclusion and Perspectives

We have proposed a novel formulation for online federated learning under the assumption that
clients’ data distributions are mixtures of a finite number of unknown underlying distributions with
varying mixing weights. Our proposed Federated Expectation-Maximization Online Mirror Descent
(FEM-OMD) algorithm leverages all of the data stored across clients to learn the parameters of
the underlying distributions using EM updates, while enabling each client to adapt to the temporal
variation of its data distribution. Through theoretical analysis and experimental results, we have
demonstrated the effectiveness of our approach in online federated settings, particularly in the case
of Gaussian mixture models. We believe that our work opens up new directions for research in online
federated learning, where clients’ data distributions are allowed to vary in constrained adversarial
manners, and we hope that our proposed algorithm will pave the way for further improvements in
this field.

CHAPTER 5
Conclusion

In this manuscript, we conducted a comprehensive investigation into various sources of heterogene-
ity in federated learning, proposing novel algorithms to mitigate their adverse impacts on federated
and collaborative learning systems.

System Heterogeneity. Chapter 2 is dedicated to addressing system heterogeneity in cross-
silo (Section 2.1) and cross-device (Section 2.2) federated learning. Additionally, Section 3.6
(within Chapter 3) introduces the local memorization technique, proven effective in addressing
system heterogeneity in federated learning scenarios featuring highly diverse hardware, such as
smartphones, IoT devices, edge computing servers, and the cloud.

Statistical Heterogeneity. Chapter 3 focuses on tackling statistical heterogeneity in federated
learning. It provides an overview of personalization techniques, presents a learning impossibility
result, and introduces two novel personalization algorithms, namely FedEM (Section 3.5) and
kNN-Per (Section 3.6), with applications to federated learning.

Temporal Heterogeneity. Chapter 4 is devoted to the exploration of federated learning in
dynamic environments, where clients collaboratively learn from distributed data streams character-
ized by the continuous generation of data. Specifically, Chapter 4 aims to address two orthogonal
challenges encountered in federated learning within dynamic environments. The first challenge
(addressed in Section 4.3) arises from the variability, across time and across clients, in the duration
that different samples reside in memory, while the second challenge (addressed in Section 4.4) is
attributed to the variability in the underlying distributions of clients across time.

In this chapter, we provide a concise summary of the main contributions of the manuscript in
Section 5.1, followed by an overview of potential future research directions in Section 5.2. The
manuscript concludes with final remarks presented in Section 5.3.

5.1 Summary of the Main Contributions

Throughput-Optimal Topology Design for Cross-Silo Federated Learning

Section 2.1 sheds light on the inefficiencies of the standard federated learning approach, particularly
in cross-silo settings, where the server-client architecture may lead to suboptimal communication
speeds due to potential bottlenecks at the orchestrator. Recognizing this limitation, the central
question addressed in this chapter is: “how can we design a communication topology that facilitates
the fastest convergence, considering the varied communication capabilities of different silos.” The
contributions of Section 2.1 are threefold:

• The section formulates the problem of topology design for cross-silo federated learning,
employing the theory of max-plus linear systems to quantify system throughput.

129

130 CHAPTER 5 — Conclusion

• It proposes practical algorithms that, based on measurable network characteristics, can
identify topologies with either the maximum throughput or guaranteed throughput.

• It empirically demonstrates the practical impact of the proposed algorithms, showcasing
significant speed-ups in real-world Internet networks. Specifically, our algorithms a 9×
acceleration compared to the server-client architecture and 1.5× faster than state-of-the-art
MATCHA, with even more pronounced speed-ups in scenarios featuring slower access links.

Building upon the idea, introduced in Section 2.1, of prioritizing high throughput in topolo-
gies, as opposed to exclusively targeting optimal consensus rates, recent research by Takezawa
et al. [Tak+23] introduces a novel class of topologies. These topologies not only exhibit rapid
consensus rates but also maintain a minimal maximum degree.

Federated Learning under Heterogeneous and Correlated Client Availability

Section 2.2 analyzes a FedAvg-like algorithm under heterogeneous and correlated client avail-
ability. The analysis highlights how correlation adversely affects the algorithm’s convergence rate
and how the aggregation strategy can alleviate this effect at the cost of steering training toward a
biased model. Guided by the theoretical analysis, we propose Correlation- Aware FL (CA-Fed), a
new FL algorithm that tries to balance the conflicting goals of maximizing convergence speed and
minimizing model bias. To this purpose, CA-Fed dynamically adapts the weight given to each client
and may ignore clients with low availability and large correlation. The contributions of Section 2.2
are threefold:

• The section provides a novel analysis of FedAvg under heterogeneous and correlated
client availability. The analysis assumes clients’ temporal and spatial availability follows
an arbitrary finite-state Markov process, providing a realistic modeling of correlated client
activity while maintaining analytical tractability. The theoretical quantifies the negative effect
of correlation on convergence rate, introducing an additional term dependent on Markov
chain spectral properties, and highlights a trade-off between slow convergence to the optimal
model and fast convergence to a biased model, providing theoretical insights.

• Guided by insights from the theoretical analysis, the section proposes CA-Fed, a federated
learning algorithm designed to dynamically assign weights to clients. The algorithm aims at
balancing the trade-off between maximizing convergence speed and minimizing model bias
based on the theoretical analysis.

• Empirically demonstrates that CA-Fed achieves comparable maximum test accuracy as
state-of-the-art methods (F3AST[RVd23] and AdaFed[Tan+22a]) while achieving higher
time-average and lower standard deviation of the test accuracy. Moreover, the experimental
results demonstrate the effectiveness of excluding clients with high temporal correlation and
low availability in federated learning.

Personalized Federated Learning under a Mixture of Distributions

Section 3.5 studies personalized federated learning (also known as federated multi-task learning)
under the flexible assumption that each local data distribution is a mixture of unknown underlying
distributions. This formulation allows every client to harness insights distilled from the diverse

5.1 – 5.1 Summary of the Main Contributions 131

datasets of all other clients, even in scenarios where clients exhibit substantial dissimilarities. Addi-
tionally, this assumption encompasses the majority of personalized federated learning approaches
previously proposed in the literature. Beyond the flexible mixture assumption, Section 3.5 makes
the following contributions:

• It establishes that, under the mixture assumption, a personalized model is elegantly expressed
as a linear combination of a finite number of shared component models. The collaborative
learning process involves all clients jointly acquiring knowledge of the shared components,
while each client fine-tunes its personalized mixture weights, thereby facilitating personalized
federated learning.

• It introduces innovative federated EM-like algorithms, namely FedEM tailored for the client-
server setting and D-FedEM designed for fully decentralized settings..

• It provides rigorous theoretical proofs establishing convergence guarantees for the intro-
duced algorithms. This contributes to a principled and efficient methodology for inferring
personalized models for clients not encountered during the training phase.

• It conducts extensive experiments on benchmark datasets for federated learning in Section 3.5,
illustrating that our proposed approach consistently produces models that are, on average,
more accurate, fairer across clients, and better generalize to unseen clients compared to
contemporary state-of-the-art personalized and non-personalized federated learning methods.

After introducing the mixture assumption and FedEM algorithm in [Mar+21b], personalized
federated learning approaches like FedSoft [RJ22], FedGMM [Wu+23], FedMN [Wan+22a],
and FedRiCo [Sui+22] have emerged. The FedEM approach, originally designed for federated
learning, has been applied to characterize internal evasion attacks [Kim+23] and address distribution
shifts [GTL23; Jot+23; Zhu+22].

Personalized Federated Learning through Local Memorization

In Section 3.6, we exploit the ability of deep neural networks to extract high quality vectorial
representations (embeddings) from non-tabular data (e.g., images and text) to propose kNN-Per,
a personalization mechanism based on local memorization. kNN-Per combines a global model
trained collectively (e.g., via FedAvg) with a kNN model on a client’s local datastore. The global
model also provides the shared representation used by the local kNN. Local memorization at each
FL client can capture the client’s local distribution shift with respect to the global distribution. The
contributions of Section 3.6 are threefold:

• It proposes kNN-Per a simple personalization mechanism based on local memorization.

• It provides generalization bounds for the proposed approach in the case of binary classification

• Through extensive experiments on FL benchmarks, it shows that kNN-Per achieves signifi-
cantly higher accuracy and fairness than state-of-the-art methods.

kNN-Per offers a simple and effective way to address statistical heterogeneity even in a
dynamic environment where client’s data distributions change after training. It is indeed sufficient
to update the local datastore with new data without the need to retrain the global model. Moreover,
each client can independently tune the local kNN to its storage and computing capabilities, partially
relieving the most powerful clients from the need to align their model to the weakest ones.

132 CHAPTER 5 — Conclusion

Federated Learning for Data Streams

Section 4.3 drifts from the standard federated approach consisting in learning from static datasets
collected before the start of the training and considers the problem of learning from distributed data
streams. The contributions of Section 4.3 are threefold:

• Formulates the problem of federated learning for data streams.

• Proposes and theoretically analyze a general federated algorithm for learning from distributed
data streams. Our analysis shows a bias-optimization trade-off: by controlling the relative
importance of older samples in comparison to newer ones, one can speed training up at the
cost of a larger bias of the learned model, or reduce the bias at the cost of a longer training
time. The analysis also provides insights to optimally configure our federated algorithm.

• Empirically demonstrates the relevance of our theoretical results through simulations span-
ning a wide range of machine learning tasks. In particular, experiments show that “reasonable”
ways to extend FedAvg to data streams may lead to poor learned models, while our configu-
ration rule consistently leads to almost-optimal performance.

Online Federated Learning with Mixture Models

Section 4.4 studies online federated learning under the assumption that clients’ data distributions
are mixtures of a finite number of unknown underlying distributions with varying mixing weights.
Within this context, we introduced Federated Expectation-Maximization Online Mirror Descent
(FEM-OMD), a federated adaptation of the OMD algorithm, for which the gradient of the cost
function is estimated using an EM-like algorithm at each time-step.

The contributions of Section 4.4 are threefold:

• It provides a novel formulation for the problem of online federated learning based on the
assumption that clients’ data distributions are mixtures of a finite number of unknown
underlying distributions with varying mixing weights. In comparison to previous work, our
assumption allows the clients to provably benefit from collaboration, while allowing clients’
data distributions to vary in a potentially (constrained) adversarial manner.

• It proposes Federated Expectation-Maximization Online Mirror Descent (FEM-OMD), a
federated variant of the OMD algorithm, where the gradient of the cost function is estimated
through an EM-like algorithm at each time-step. FEM-OMD leverages all of the data stored
across clients to learn the parameters of the underlying distributions using Expectation-
Maximization updates, while enabling each client to adapt to the temporal variation of its
data distribution. We analyze the regret guarantees of FEM-OMD in the case of well-separated
spherical Gaussian mixture models. Specifically, we establish a O(

√
T log(m) + T/

√
n)

regret bound, where T is the time horizon, m is the number of the underlying distributions,
and n is the number of samples received by each client.

• Through experimental results on synthetic datasets and FL benchmarks, it demonstrates the
effectiveness of our approach in online federated settings and show that our scheme allows
the clients to benefit from collaboration.

5.2 – 5.2 Perspectives and Future Research Directions 133

5.2 Perspectives and Future Research Directions

In this manuscript, our emphasis has been on addressing the multifaceted challenges stemming
from system, statistical, and temporal heterogeneity within collaborative and federated learning
systems. Although we have introduced novel algorithms to alleviate the adverse impacts of these
factors, it is crucial to acknowledge that several challenges persistently resist complete resolution.
Within this section, we provide a comprehensive overview of these challenges, elucidating their
complexities, and suggest potential strategies to navigate them.

Quantification of Statistical Heterogeneity

In this manuscript, we have explored the various generalization bounds associated with collaborative
learning algorithms, all of which encompass a term quantifying the “dissimilarity” between the
underlying distributions of clients. For example, Proposition 1.2.5 reveals that the generalization
error of the global model at a specific client is upper-bounded by an expression featuring a term
related to the label discrepancy between the average distribution and the underlying distribution of
that client.

Similar dependencies arise in the generalization bound of kNN-Per (as per Theorem 3.6.1)
and the generalization bound of Algorithm 13 designed for learning from distributed data streams
(refer to Theorem 4.3.1 and Corollary 4.3.5′). Notably, the generalization bound of Algorithm 13 in-
troduces a pairwise label discrepancy among clients’ underlying distributions. The quantification of
statistical heterogeneity plays a pivotal role in determining the hyperparameters of these algorithms,
such as the interpolation parameter λ for kNN-Per and the samples’ weights λ for Algorithm 13.

Beyond the algorithms elucidated in this manuscript, other works (e.g., [Sui+22; EMS22;
DKM20]) that examine the statistical learning properties of collaborative learning often hinge on
prior knowledge of some form of pseudo-distance between clients’ underlying distributions. For
instance, [EMS22] proposes a gradient filtering approach for collaborative learning, where clients
filter and aggregate stochastic gradients received from other clients based on the knowledge of the
Integral Probability Metric associated with the gradient of the loss function.

However, the quantification of statistical heterogeneity in collaborative learning remains poorly
understood. In this context, we believe that two fundamental questions warrant attention: 1) how
to choose among the different notions of pseudo-distance? 2) how to estimate the dissimilarity
between two distributions for a specific notion of pseudo-distance?

To the best of our knowledge, the first question has not been thoroughly investigated. On the
other hand, the second question has garnered significant interest within the federated learning
community. For instance, [Kim+23] quantifies data distribution similarity among clients based on
our introduced mixture assumption (in Section 3.5), while [EMS22] estimates pairwise distribution
distances under the structural assumption of a low-dimensional linear representation (introduced
in [Col+21]). Nevertheless, it is crucial to note that the current attempts to address the second ques-
tion may fall short of providing comprehensive solutions, as they only cover particular assumptions
on the clients’ underlying distributions.

Data-Heterogeneity-Aware Topology Design

In Chapter 2.1, our focus centered on addressing the topology design challenge in cross-silo
federated learning. Utilizing the framework of max-plus linear systems, we aimed to compute

134 CHAPTER 5 — Conclusion

the system throughput—the number of communication rounds per unit of time. Our contribution
included the development of practical algorithms that, based on measurable network characteristics,
identify a topology maximizing throughput or offering provable throughput guarantees. However,
these algorithms did not account for the statistical heterogeneity across different clients; rather, they
concentrated solely on optimizing the system throughput.

Recent works, such as [Dan+22; Le +23], have begun incorporating data heterogeneity consid-
erations into the crafting of fully-decentralized learning topologies. Notably, [Le +23] introduces a
novel concept, termed neighborhood heterogeneity, and highlights its crucial role in influencing
the convergence rate of decentralized SGD. This analysis sheds light on the intricate interplay
between communication topology and statistical heterogeneity. However, minimizing neighborhood
heterogeneity in a general setting proves to be challenging without additional statistical assumptions
and can only be optimized in specific cases, particularly in scenarios involving classification with
label skew. We believe that further exploration of this research avenue is essentials.

Privacy-Preserving Personalized Federated Learning

As we have seen in Chapter 1, privacy remains a significant concern in federated learning even
when data is kept locally. One of the foremost concerns is the potential leakage of private data
through model updates and gradients exchanged between the central server and participating
devices [McM+17]. Even though efforts are made to anonymize these updates, there exists a risk
of reverse engineering and information inference, potentially revealing sensitive attributes about
users [SS15]. Traditional differential privacy mechanisms, while effective at a global level [GKN18;
Bel+18], confront novel challenges in the personalized landscape.

In personalized FL, the heterogeneity of user data, varying levels of individual sensitivity, and
dynamic participation patterns introduce complexities that may render standard differential privacy
mechanisms less effective. For example, in our FedEM approach, each client needs to update and
transmit M components at each round, meaning that it is potentially revealing more information to
the server in comparison with the FedAvg baseline algorithm. However, as we previously remarked
in Section 3.5.7, some features of our FedEM approach may be beneficial for privacy, e.g., the fact
that personalized weights are kept locally and that all users contribute to all shared models. It is
worth highlighting that the privacy guarantees of other prominent personalized federated learning
paradigms, such as ClusteredFL [SMS20], APFL [DKM20], and FedRep [Col+21], are not
yet fully understood. To the best of our knowledge, a unified framework for privacy-preserving
federated learning is still elusive. We contend that formulating such a framework merits considerable
attention from the personalized federated learning community. Addressing this gap could pave
the way for more robust and standardized approaches to privacy preservation in personalized FL
scenarios.

Local Cache Update Rules for Federated Learning

In this manuscript, we considered two scenarios where each client is associated with a local
memory/caches that can be used to store data samples, as it is the case in Section 4.3, or their
embeddings, as it is the case in Section 3.6. In both cases, we have discussed how the caching
policy—e.g., the local memory update rule—may influence the performance of the algorithms we
proposed in Section 3.6 and Section 4.3. Both algorithms consider simple memory update rules,
usually variations of the first-in-first-out (FIFO) update rule. The new work [WBX23], in addition

5.3 – 5.3 Concluding Reflections 135

to FIFO, considers two local cache update rules; Static Ratio Selective Replacement (SRSR), and
Dynamic Ratio Selective Replacement (DRSR). However, all the aforementioned update rules
are deterministic and do not depend on the features or the labels of the samples currently in the
memory. We deem it important to answer the following question: how do different memory update
rules affect the performance of such algorithms, and how can we design sample dependent caching
policies?

Incentivizing Client Participation in Federated Learning

One interesting avenue to explore involves investigating the adoption of federated learning (FL)
within a setting where users have the option to opt out of the federation. This raises questions about
the stability of the federation and the economic incentives that can be developed to encourage
user participation. Game-theoretic studies of federated learning’s stability can provide valuable
insights into this aspect, drawing on existing research such as [Tu+22], [DK21], and [Blu+21].
Additionally, investigating economic incentives for users, building upon [Kan+19] and [Cho+22],
can offer novel approaches to encourage engagement and active participation. Another intriguing
direction for future exploration involves developing novel FL algorithms that empower clients
to learn personalized models adapted to their local data distribution. By addressing open issues
related to quantifying statistical heterogeneity across clients and determining the value of each
client’s dataset, it becomes possible to unlock the potential of personalized models within the FL
framework. These challenges gain further significance in the context of the evolving data economy,
which encompasses various online data exchange platforms like AWS data exchange. The inherent
complexity of these challenges is magnified within the FL setting, where participants only have
access to their own data.

5.3 Concluding Reflections

In concluding this thesis, I humbly acknowledge the modest role this work plays within the vast
landscape of knowledge. The insights gained and the contributions made are but small steps forward
in the ongoing journey of understanding. As we reflect on the limitations and possibilities outlined
herein, it is my sincere hope that future researchers will build upon these foundations with humility,
recognizing the collaborative nature of academic progress. In the grand tapestry of research, each
thread, no matter how modest, contributes to the richness of the whole.

Bibliography

[Aba+16] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. “Deep Learning with Differential Privacy”. In: Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. CCS ’16. Vienna, Austria: Association for Computing Machinery, 2016,
pp. 308–318. ISBN: 9781450341394. DOI: 10.1145/2976749.2978318. URL:
https://doi.org/10.1145/2976749.2978318.

[Aca+21] Durmus Alp Emre Acar, Yue Zhao, Ruizhao Zhu, Ramon Matas, Matthew Mattina,
Paul Whatmough, and Venkatesh Saligrama. “Debiasing Model Updates for Im-
proving Personalized Federated Training”. In: Proceedings of the 38th International
Conference on Machine Learning. Ed. by Marina Meila and Tong Zhang. Vol. 139.
Proceedings of Machine Learning Research. PMLR, July 2021, pp. 21–31. URL:
https://proceedings.mlr.press/v139/acar21a.html.

[Ach+21] Idan Achituve, Aviv Shamsian, Aviv Navon, Gal Chechik, and Ethan Fetaya. “Person-
alized Federated Learning With Gaussian Processes”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan. Vol. 34. Curran Associates, Inc., 2021, pp. 8392–8406.
URL: https://proceedings.neurips.cc/paper_files/paper/
2021/file/46d0671dd4117ea366031f87f3aa0093-Paper.pdf.

[AR19] Patrick J. Andersen and Charl J. Ras. “Algorithms for Euclidean Degree Bounded
Spanning Tree Problems”. In: Int. J. Comput. Geometry Appl. 29.2 (2019), pp. 121–
160.

[AR16] Patrick J. Andersen and Charl J. Ras. “Minimum bottleneck spanning trees with
degree bounds”. In: Networks 68.4 (2016), pp. 302–314. DOI: 10.1002/net.
21710.

[AZ05] Rie Kubota Ando and Tong Zhang. “A Framework for Learning Predictive Structures
from Multiple Tasks and Unlabeled Data”. In: Journal of Machine Learning Research
6.61 (2005), pp. 1817–1853.

[App19] Apple. Designing for privacy (video and slide deck. https://developer.
apple.com/videos/play/wwdc2019/708[Retrieved: Aug 2023]. 2019.

[App+07] David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William J. Cook. The
Traveling Salesman Problem: A Computational Study (Princeton Series in Applied
Mathematics). USA: Princeton University Press, 2007. ISBN: 0691129932.

[Ara+16] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.
“High-Throughput Semi-Honest Secure Three-Party Computation with an Honest
Majority”. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’16. Vienna, Austria: Association for Computing
Machinery, 2016, pp. 805–817. ISBN: 9781450341394. DOI: 10.1145/2976749.
2978331. URL: https://doi.org/10.1145/2976749.2978331.

137

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://proceedings.mlr.press/v139/acar21a.html
https://proceedings.neurips.cc/paper_files/paper/2021/file/46d0671dd4117ea366031f87f3aa0093-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/46d0671dd4117ea366031f87f3aa0093-Paper.pdf
https://doi.org/10.1002/net.21710
https://doi.org/10.1002/net.21710
https://developer.apple.com/videos/play/wwdc2019/708
https://developer.apple.com/videos/play/wwdc2019/708
https://doi.org/10.1145/2976749.2978331
https://doi.org/10.1145/2976749.2978331
https://doi.org/10.1145/2976749.2978331

138 BIBLIOGRAPHY

[Ass+19] Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Mike Rabbat. “Stochastic Gra-
dient Push for Distributed Deep Learning”. In: Proceedings of the 36th International
Conference on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdi-
nov. Vol. 97. Proceedings of Machine Learning Research. PMLR, June 2019, pp. 344–
353. URL: https://proceedings.mlr.press/v97/assran19a.html.

[AWS20] AWS. The AWS Cloud in North America. https://aws.amazon.com/about-
aws/global-infrastructure/?nc1=h_ls[Retrieved: Aug 2020]. 2020.

[BW01] Shivnath Babu and Jennifer Widom. “Continuous Queries over Data Streams”. In:
SIGMOD Rec. 30.3 (Sept. 2001), pp. 109–120. ISSN: 0163-5808. DOI: 10.1145/
603867.603884. URL: https://doi.org/10.1145/603867.603884.

[Bac92] F. Baccelli. Synchronization and Linearity: An Algebra for Discrete Event Systems.
Probability and Statistics Series. Wiley, 1992. ISBN: 9780471936091. URL: https:
//books.google.co.ma/books?id=l8FnQgAACAAJ.

[Bad+15] Aldo Badano, Craig Revie, Andrew Casertano, Wei-Chung Cheng, Phil Green, Tom
Kimpe, Elizabeth Krupinski, Christye Sisson, Stein Skrøvseth, Darren Treanor, et al.
“Consistency and standardization of color in medical imaging: a consensus report”.
In: Journal of digital imaging 28.1 (2015), pp. 41–52.

[BPS19] Eugene Bagdasaryan, Omid Poursaeed, and Vitaly Shmatikov. “Differential pri-
vacy has disparate impact on model accuracy”. In: Advances in neural information
processing systems 32 (2019).

[Bea+21] Martin Beaussart, Felix Grimberg, Mary-Anne Hartley, and Martin Jaggi. WAF-
FLE: Weighted Averaging for Personalized Federated Learning. 2021. arXiv: 2110.
06978 [cs.LG].

[Bel+18] Aurélien Bellet, Rachid Guerraoui, Mahsa Taziki, and Marc Tommasi. “Personalized
and Private Peer-to-Peer Machine Learning”. In: Proceedings of the Twenty-First In-
ternational Conference on Artificial Intelligence and Statistics. Ed. by Amos Storkey
and Fernando Perez-Cruz. Vol. 84. Proceedings of Machine Learning Research.
PMLR, Apr. 2018, pp. 473–481. URL: https://proceedings.mlr.press/
v84/bellet18a.html.

[BHS15] Aurélien Bellet, Amaury Habrard, and Marc Sebban. Metric Learning. Vol. 9. Synthe-
sis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Pub-
lishers (USA), Synthesis Lectures on Artificial Intelligence and Machine Learning, pp
1-151, Jan. 2015, pp. 1–151. DOI: 10.2200/S00626ED1V01Y201501AIM030.
URL: https://hal.archives-ouvertes.fr/hal-01121733.

[BLP08] Shai Ben-David, Tyler Lu, and D. Pál. “Does Unlabeled Data Provably Help? Worst-
case Analysis of the Sample Complexity of Semi-Supervised Learning”. In: COLT.
2008.

[Ben12] Yoshua Bengio. “Deep learning of representations for unsupervised and transfer
learning”. In: Proceedings of ICML workshop on unsupervised and transfer learning.
JMLR Workshop and Conference Proceedings. 2012, pp. 17–36.

[Ber+19] Daniel Bernau, Philip-William Grassal, Jonas Robl, and Florian Kerschbaum. “As-
sessing differentially private deep learning with membership inference”. In: arXiv
preprint arXiv:1912.11328 (2019).

https://proceedings.mlr.press/v97/assran19a.html
https://aws.amazon.com/about-aws/global-infrastructure/?nc1=h_ls
https://aws.amazon.com/about-aws/global-infrastructure/?nc1=h_ls
https://doi.org/10.1145/603867.603884
https://doi.org/10.1145/603867.603884
https://doi.org/10.1145/603867.603884
https://books.google.co.ma/books?id=l8FnQgAACAAJ
https://books.google.co.ma/books?id=l8FnQgAACAAJ
https://arxiv.org/abs/2110.06978
https://arxiv.org/abs/2110.06978
https://proceedings.mlr.press/v84/bellet18a.html
https://proceedings.mlr.press/v84/bellet18a.html
https://doi.org/10.2200/S00626ED1V01Y201501AIM030
https://hal.archives-ouvertes.fr/hal-01121733

BIBLIOGRAPHY 139

[Bez+22] Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On Bi-
ased Compression for Distributed Learning. 2022. arXiv: 2002.12410 [cs.LG].

[Bha+22] Romil Bhardwaj, Zhengxu Xia, Ganesh Ananthanarayanan, Junchen Jiang, Yuanchao
Shu, Nikolaos Karianakis, Kevin Hsieh, Paramvir Bahl, and Ion Stoica. “Ekya:
Continuous Learning of Video Analytics Models on Edge Compute Servers”. In:
19th USENIX Symposium on Networked Systems Design and Implementation (NSDI
22). Renton, WA: USENIX Association, Apr. 2022, pp. 119–135. ISBN: 978-1-
939133-27-4. URL: https://www.usenix.org/conference/nsdi22/
presentation/bhardwaj.

[Bic+93] Peter J Bickel, Chris AJ Klaassen, Peter J Bickel, Ya’acov Ritov, J Klaassen, Jon A
Wellner, and YA’Acov Ritov. Efficient and adaptive estimation for semiparametric
models. Vol. 4. Johns Hopkins University Press Baltimore, 1993.

[Bla+17] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. “Ma-
chine Learning with Adversaries: Byzantine Tolerant Gradient Descent”. In: Ad-
vances in Neural Information Processing Systems. Ed. by I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran
Associates, Inc., 2017. URL: https://proceedings.neurips.cc/paper/
2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf.

[Blu+21] Avrim Blum, Nika Haghtalab, Richard Lanas Phillips, and Han Shao. “One for One,
or All for All: Equilibria and Optimality of Collaboration in Federated Learning”.
In: Proceedings of the 38th International Conference on Machine Learning. Ed. by
Marina Meila and Tong Zhang. Vol. 139. Proceedings of Machine Learning Research.
PMLR, 18–24 Jul 2021, pp. 1005–1014. URL: https://proceedings.mlr.
press/v139/blum21a.html.

[Bon+19] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Inger-
man, Vladimir Ivanov, Chloé Kiddon, Jakub Konečný, Stefano Mazzocchi, Brendan
McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, and Jason Rose-
lander. “Towards Federated Learning at Scale: System Design”. In: Proceedings of
Machine Learning and Systems. Ed. by A. Talwalkar, V. Smith, and M. Zaharia. Vol. 1.
2019, pp. 374–388. URL: https://proceedings.mlsys.org/paper_
files/paper/2019/file/7b770da633baf74895be22a8807f1a8f-
Paper.pdf.

[Bon+17] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. “Practical
Secure Aggregation for Privacy-Preserving Machine Learning”. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security. CCS
’17. Dallas, Texas, USA: Association for Computing Machinery, 2017, pp. 1175–
1191. ISBN: 9781450349468. DOI: 10.1145/3133956.3133982. URL: https:
//doi.org/10.1145/3133956.3133982.

[Bon+12] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. “Fog Computing
and Its Role in the Internet of Things”. In: Proceedings of the First Edition of
the MCC Workshop on Mobile Cloud Computing. MCC ’12. Helsinki, Finland:
Association for Computing Machinery, 2012, pp. 13–16. ISBN: 9781450315197.

https://arxiv.org/abs/2002.12410
https://www.usenix.org/conference/nsdi22/presentation/bhardwaj
https://www.usenix.org/conference/nsdi22/presentation/bhardwaj
https://proceedings.neurips.cc/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://proceedings.mlr.press/v139/blum21a.html
https://proceedings.mlr.press/v139/blum21a.html
https://proceedings.mlsys.org/paper_files/paper/2019/file/7b770da633baf74895be22a8807f1a8f-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2019/file/7b770da633baf74895be22a8807f1a8f-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2019/file/7b770da633baf74895be22a8807f1a8f-Paper.pdf
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/3133956.3133982

140 BIBLIOGRAPHY

DOI: 10.1145/2342509.2342513. URL: https://doi.org/10.1145/
2342509.2342513.

[BCN18] Léon Bottou, Frank E Curtis, and Jorge Nocedal. “Optimization Methods for Large-
Scale Machine Learning”. In: Siam Review 60.2 (2018), pp. 223–311.

[BDX03] Stephen Boyd, Persi Diaconis, and Lin Xiao. “Fastest Mixing Markov Chain on A
Graph”. In: SIAM REVIEW 46 (2003), pp. 667–689.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, Mar. 2004. ISBN: 9780511804441. DOI: 10.1017/CBO9780511804441.
(Visited on 05/23/2023).

[Bra+18] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,
Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-
Milne, and Qiao Zhang. JAX: composable transformations of Python+NumPy pro-
grams. Version 0.3.13. 2018. URL: http://github.com/google/jax.

[Bra12] Zvika Brakerski. “Fully homomorphic encryption without modulus switching from
classical GapSVP”. In: Annual Cryptology Conference. Springer. 2012, pp. 868–886.

[Bra08] Ulrik Brandes. “On variants of shortest-path betweenness centrality and their generic
computation”. In: Social Networks 30.2 (2008), pp. 136–145. ISSN: 0378-8733.
DOI: https : / / doi . org / 10 . 1016 / j . socnet . 2007 . 11 . 001.
URL: https://www.sciencedirect.com/science/article/pii/
S0378873307000731.

[BRH12] T. Brunsch, J. Raisch, and L. Hardouin. “Modeling and control of high-throughput
screening systems”. In: Control Engineering Practice 20.1 (2012). Special Section:
IFAC Conference on Analysis and Design of Hybrid Systems (ADHS’09) in Zaragoza,
Spain, 16th-18th September, 2009, pp. 14–23. ISSN: 0967-0661. DOI: https://
doi.org/10.1016/j.conengprac.2010.12.006. URL: https://www.
sciencedirect.com/science/article/pii/S0967066110002662.

[Bub15] Sébastien Bubeck. Convex Optimization: Algorithms and Complexity. 2015. arXiv:
1405.4980 [math.OC].

[Cal+19] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný,
H. Brendan McMahan, Virginia Smith, and Ameet Talwalkar. LEAF: A Benchmark
for Federated Settings. 2019. arXiv: 1812.01097 [cs.LG].

[CC96] Robert L. Carter and Mark E. Crovella. “Measuring Bottleneck Link Speed in Packet-
Switched Networks”. In: Performance Evaluation 27-28 (1996), pp. 297–318. ISSN:
0166-5316. DOI: https://doi.org/10.1016/S0166-5316(96)90032-
2. URL: http://www.sciencedirect.com/science/article/pii/
S0166531696900322.

[CJB04] Rich Caruana, Thorsten Joachims, and Lars Backstrom. “KDD-Cup 2004: results
and analysis”. In: ACM SIGKDD Explorations Newsletter 6.2 (2004), pp. 95–108.

[CLG00] Rich Caruana, Steve Lawrence, and C Giles. “Overfitting in neural nets: Backpropa-
gation, conjugate gradient, and early stopping”. In: Advances in neural information
processing systems 13 (2000).

https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1017/CBO9780511804441
http://github.com/google/jax
https://doi.org/https://doi.org/10.1016/j.socnet.2007.11.001
https://www.sciencedirect.com/science/article/pii/S0378873307000731
https://www.sciencedirect.com/science/article/pii/S0378873307000731
https://doi.org/https://doi.org/10.1016/j.conengprac.2010.12.006
https://doi.org/https://doi.org/10.1016/j.conengprac.2010.12.006
https://www.sciencedirect.com/science/article/pii/S0967066110002662
https://www.sciencedirect.com/science/article/pii/S0967066110002662
https://arxiv.org/abs/1405.4980
https://arxiv.org/abs/1812.01097
https://doi.org/https://doi.org/10.1016/S0166-5316(96)90032-2
https://doi.org/https://doi.org/10.1016/S0166-5316(96)90032-2
http://www.sciencedirect.com/science/article/pii/S0166531696900322
http://www.sciencedirect.com/science/article/pii/S0166531696900322

BIBLIOGRAPHY 141

[CMK01] V. Chandra, S.R. Mohanty, and R. Kumar. “Automated control synthesis for an
assembly line using discrete event system control theory”. In: Proceedings of the
2001 American Control Conference. (Cat. No.01CH37148). Vol. 6. 2001, 4956–4961
vol.6. DOI: 10.1109/ACC.2001.945770.

[Cha+22] El Mahdi Chayti, Sai Praneeth Karimireddy, Sebastian U. Stich, Nicolas Flammarion,
and Martin Jaggi. Linear Speedup in Personalized Collaborative Learning. 2022.
arXiv: 2111.05968 [cs.LG].

[Che+20a] Dingfan Chen, Ning Yu, Yang Zhang, and Mario Fritz. “Gan-leaks: A taxonomy of
membership inference attacks against generative models”. In: Proceedings of the
2020 ACM SIGSAC conference on computer and communications security. 2020,
pp. 343–362.

[CC22] Hong-You Chen and Wei-Lun Chao. “On Bridging Generic and Personalized Fed-
erated Learning for Image Classification”. In: International Conference on Learn-
ing Representations. 2022. URL: https://openreview.net/forum?id=
I1hQbx10Kxn.

[Che+19] Mingqing Chen, Rajiv Mathews, Tom Ouyang, and Françoise Beaufays. Federated
Learning Of Out-Of-Vocabulary Words. 2019. arXiv: 1903.10635 [cs.CL].

[CHR22] Wenlin Chen, Samuel Horváth, and Peter Richtárik. “Optimal Client Sampling for
Federated Learning”. In: Transactions on Machine Learning Research (Aug. 2022).
ISSN: 2835-8856. (Visited on 05/23/2023).

[Che+20b] Yujing Chen, Yue Ning, Martin Slawski, and Huzefa Rangwala. “Asynchronous
Online Federated Learning for Edge Devices with Non-IID Data”. In: 2020 IEEE
International Conference on Big Data (Big Data). IEEE. 2020, pp. 15–24.

[CCD22] Gary Cheng, Karan Chadha, and John Duchi. Federated Asymptotics: a model to
compare federated learning algorithms. 2022. arXiv: 2108.07313 [cs.LG].

[Cho+14] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio.
“On the Properties of Neural Machine Translation: Encoder-Decoder Approaches”.
In: Proceedings of SSST@EMNLP 2014, Eighth Workshop on Syntax, Semantics
and Structure in Statistical Translation, Doha, Qatar, 25 October 2014. Ed. by
Dekai Wu, Marine Carpuat, Xavier Carreras, and Eva Maria Vecchi. Association for
Computational Linguistics, 2014, pp. 103–111. DOI: 10.3115/v1/W14-4012.
URL: https://www.aclweb.org/anthology/W14-4012/.

[Cho+22] Yae Jee Cho, Divyansh Jhunjhunwala, Tian Li, Virginia Smith, and Gauri Joshi. “To
Federate or Not To Federate: Incentivizing Client Participation in Federated Learning”.
In: Workshop on Federated Learning: Recent Advances and New Challenges (in
Conjunction with NeurIPS 2022). 2022. URL: https://openreview.net/
forum?id=pG08eM0CQba.

[Cho+21] Christopher A Choquette-Choo, Florian Tramer, Nicholas Carlini, and Nicolas Pa-
pernot. “Label-only membership inference attacks”. In: International conference on
machine learning. PMLR. 2021, pp. 1964–1974.

https://doi.org/10.1109/ACC.2001.945770
https://arxiv.org/abs/2111.05968
https://openreview.net/forum?id=I1hQbx10Kxn
https://openreview.net/forum?id=I1hQbx10Kxn
https://arxiv.org/abs/1903.10635
https://arxiv.org/abs/2108.07313
https://doi.org/10.3115/v1/W14-4012
https://www.aclweb.org/anthology/W14-4012/
https://openreview.net/forum?id=pG08eM0CQba
https://openreview.net/forum?id=pG08eM0CQba

142 BIBLIOGRAPHY

[Çiç+16] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf
Ronneberger. “3D U-Net: learning dense volumetric segmentation from sparse an-
notation”. In: International conference on medical image computing and computer-
assisted intervention. Springer. 2016, pp. 424–432.

[Coh+17] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. “EMNIST:
Extending MNIST to handwritten letters”. In: 2017 International Joint Conference
on Neural Networks (IJCNN). IEEE. 2017, pp. 2921–2926.

[Col+21] Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. “Exploiting
Shared Representations for Personalized Federated Learning”. In: Proceedings of
the 38th International Conference on Machine Learning. Ed. by Marina Meila and
Tong Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR, July
2021, pp. 2089–2099. URL: https://proceedings.mlr.press/v139/
collins21a.html.

[Com+16] Federal Communications Commission et al. “Protecting the Privacy of Customers of
Broadband and Other Telecommunications Service (2016)”. In: (2016).

[COR19] CORDIS. Machine Learning Ledger Orchestration for Drug Discovery (MELLODY).
https://cordis.europa.eu/project/id/831472?WT.mc_id=
RSS-Feed&WT.rss_f=project&WT.rss_a=223634&WT.rss_ev=a
[Retrieved: Aug 2019]. 2019.

[CBB21] Luca Corinzia, Ami Beuret, and Joachim M. Buhmann. Variational Federated Multi-
Task Learning. 2021. arXiv: 1906.06268 [cs.LG].

[CLT14] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. “Scale-invariant fully
homomorphic encryption over the integers”. In: Public-Key Cryptography–PKC
2014: 17th International Conference on Practice and Theory in Public-Key Cryptog-
raphy, Buenos Aires, Argentina, March 26-28, 2014. Proceedings 17. Springer. 2014,
pp. 311–328.

[CMM10] Corinna Cortes, Yishay Mansour, and Mehryar Mohri. “Learning Bounds for Impor-
tance Weighting”. In: Advances in Neural Information Processing Systems. Ed. by
J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta. Vol. 23. Curran
Associates, Inc., 2010. URL: https://proceedings.neurips.cc/paper/
2010/file/59c33016884a62116be975a9bb8257e3-Paper.pdf.

[Cor+08] Corinna Cortes, Mehryar Mohri, Michael Riley, and Afshin Rostamizadeh. “Sample
Selection Bias Correction Theory”. In: ALT. 2008.

[Cou+19] Pierre Courtiol, Charles Maussion, Matahi Moarii, Elodie Pronier, Samuel Pilcer,
Meriem Sefta, Pierre Manceron, Sylvain Toldo, Mikhail Zaslavskiy, Nolwenn Le
Stang, et al. “Deep Learning-Based Classification of Mesothelioma Improves Predic-
tion of Patient Outcome”. In: Nature medicine 25.10 (2019), pp. 1519–1525.

[Cox72] David R Cox. “Regression models and life-tables”. In: Journal of the Royal Statistical
Society: Series B (Methodological) 34.2 (1972), pp. 187–202.

https://proceedings.mlr.press/v139/collins21a.html
https://proceedings.mlr.press/v139/collins21a.html
https://cordis.europa.eu/project/id/831472?WT.mc_id=RSS-Feed&WT.rss_f=project&WT.rss_a=223634&WT.rss_ev=a
https://cordis.europa.eu/project/id/831472?WT.mc_id=RSS-Feed&WT.rss_f=project&WT.rss_a=223634&WT.rss_ev=a
https://arxiv.org/abs/1906.06268
https://proceedings.neurips.cc/paper/2010/file/59c33016884a62116be975a9bb8257e3-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/59c33016884a62116be975a9bb8257e3-Paper.pdf

BIBLIOGRAPHY 143

[CB22] Edwige Cyffers and Aurélien Bellet. “Privacy Amplification by Decentralization”. In:
Proceedings of The 25th International Conference on Artificial Intelligence and Statis-
tics. Ed. by Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera. Vol. 151.
Proceedings of Machine Learning Research. PMLR, Mar. 2022, pp. 5334–5353. URL:
https://proceedings.mlr.press/v151/cyffers22a.html.

[DM22] Shuang Dai and Fanlin Meng. “Addressing Modern and Practical Challenges in
Machine Learning: A Survey of Online Federated and Transfer Learning”. In: arXiv
preprint arXiv:2202.03070 (2022).

[Dam+20] Georgios Damaskinos, Rachid Guerraoui, Anne-Marie Kermarrec, Vlad Nitu,
Rhicheek Patra, and François Taiani. “FLeet: Online Federated Learning via Stale-
ness Awareness and Performance Prediction”. In: ACM/IFIP Middleware conference.
2020.

[Dan+22] Yatin Dandi, Anastasia Koloskova, Martin Jaggi, and Sebastian U Stich. “Data-
heterogeneity-aware Mixing for Decentralized Learning”. In: OPT 2022: Optimiza-
tion for Machine Learning (NeurIPS 2022 Workshop). 2022.

[DSS13] Malte Darnstädt, H. U. Simon, and Balázs Szörényi. “Unlabeled Data Does Provably
Help”. In: STACS. 2013.

[DG98] A. Dasdan and R.K. Gupta. “Faster Maximum and Minimum Mean Cycle Algo-
rithms for System-Performance Analysis”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 17.10 (1998), pp. 889–899. DOI:
10.1109/43.728912.

[Das99] S. Dasgupta. “Learning Mixtures of Gaussians”. In: 40th Annual Symposium on
Foundations of Computer Science (Cat. No.99CB37039). 1999, pp. 634–644. DOI:
10.1109/SFFCS.1999.814639.

[Dav+14] Xavier David-Henriet2014, Laurent Hardouin, Jörg Raisch, and Bertrand Cottenceau.
“Holding Time Maximization Preserving Output Performance for Timed Event
Graphs”. In: IEEE Transactions on Automatic Control 59.7 (2014), pp. 1968–1973.
DOI: 10.1109/TAC.2013.2297202.

[Day+21] Ittai Dayan, Holger R Roth, Aoxiao Zhong, Ahmed Harouni, Amilcare Gentili, Anas
Z Abidin, Andrew Liu, Anthony Beardsworth Costa, Bradford J Wood, Chien-Sung
Tsai, et al. “Federated learning for predicting clinical outcomes in patients with
COVID-19”. In: Nature medicine 27.10 (2021), pp. 1735–1743.

[De +16] Gianmarco De Francisci Morales, Albert Bifet, Latifur Khan, Joao Gama, and Wei
Fan. “IoT Big Data Stream Mining”. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD ’16. San
Francisco, California, USA: Association for Computing Machinery, 2016, pp. 2119–
2120. ISBN: 9781450342322. DOI: 10.1145/2939672.2945385. URL: https:
//doi.org/10.1145/2939672.2945385.

[Den+09] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “ImageNet: A Large-
Scale Hierarchical Image Database”. In: CVPR09. 2009.

[DKM20] Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive Person-
alized Federated Learning. 2020. arXiv: 2003.13461 [cs.LG].

https://proceedings.mlr.press/v151/cyffers22a.html
https://doi.org/10.1109/43.728912
https://doi.org/10.1109/SFFCS.1999.814639
https://doi.org/10.1109/TAC.2013.2297202
https://doi.org/10.1145/2939672.2945385
https://doi.org/10.1145/2939672.2945385
https://doi.org/10.1145/2939672.2945385
https://arxiv.org/abs/2003.13461

144 BIBLIOGRAPHY

[DS16] Paolo Di Lorenzo and Gesualdo Scutari. “Distributed Nonconvex Optimization over
Time-Varying Networks”. In: 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 2016, pp. 4124–4128. DOI: 10.1109/
ICASSP.2016.7472453.

[DDT20] Enmao Diao, Jie Ding, and Vahid Tarokh. “HeteroFL: Computation and Communi-
cation Efficient Federated Learning for Heterogeneous Clients”. In: International
Conference on Learning Representations. 2020.

[Die+21] Aymeric Dieuleveut, Gersende Fort, Eric Moulines, and Geneviève Robin. “Federated-
EM with heterogeneity mitigation and variance reduction”. In: Advances in Neural
Information Processing Systems. Ed. by M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S.
Liang, and J. Wortman Vaughan. Vol. 34. Curran Associates, Inc., 2021, pp. 29553–
29566. URL: https://proceedings.neurips.cc/paper_files/
paper/2021/file/f740c8d9c193f16d8a07d3a8a751d13f-Paper.
pdf.

[DW22] Shu Ding and Wei Wang. “Collaborative Learning by Detecting Collabora-
tion Partners”. In: Advances in Neural Information Processing Systems. Ed.
by S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh.
Vol. 35. Curran Associates, Inc., 2022, pp. 15629–15641. URL: https : / /
proceedings . neurips . cc / paper _ files / paper / 2022 / file /
646ca7b994bc46afe33d680dbe7ed67a-Paper-Conference.pdf.

[Din+20] Yucheng Ding, Chaoyue Niu, Yikai Yan, Zhenzhe Zheng, Fan Wu, Guihai Chen,
Shaojie Tang, and Rongfei Jia. Distributed Optimization over Block-Cyclic Data.
2020. arXiv: 2002.07454 [cs.LG].

[Din+22] Canh T. Dinh, Tung T. Vu, Nguyen H. Tran, Minh N. Dao, and Hongyu Zhang. “A
New Look and Convergence Rate of Federated Multitask Learning With Laplacian
Regularization”. In: IEEE Transactions on Neural Networks and Learning Systems
(2022), pp. 1–11. DOI: 10.1109/TNNLS.2022.3224252.

[Doa20] Thinh T. Doan. Local Stochastic Approximation: A Unified View of Federated Learn-
ing and Distributed Multi-Task Reinforcement Learning Algorithms. 2020. arXiv:
2006.13460 [cs.LG].

[Doa+20a] Thinh T. Doan, Lam M. Nguyen, Nhan H. Pham, and Justin Romberg. Convergence
Rates of Accelerated Markov Gradient Descent with Applications in Reinforcement
Learning. 2020. arXiv: 2002.02873 [math.OC].

[Doa+20b] Thinh T. Doan, Lam M. Nguyen, Nhan H. Pham, and Justin Romberg. Finite-Time
Analysis of Stochastic Gradient Descent under Markov Randomness. 2020. arXiv:
2003.10973 [math.OC].

[DK21] Kate Donahue and Jon Kleinberg. “Model-sharing Games: Analyzing Federated
Learning Under Voluntary Participation”. In: Proceedings of the AAAI Conference
on Artificial Intelligence 35.6 (May 2021), pp. 5303–5311. DOI: 10.1609/aaai.
v35i6.16669. URL: https://ojs.aaai.org/index.php/AAAI/
article/view/16669.

https://doi.org/10.1109/ICASSP.2016.7472453
https://doi.org/10.1109/ICASSP.2016.7472453
https://proceedings.neurips.cc/paper_files/paper/2021/file/f740c8d9c193f16d8a07d3a8a751d13f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f740c8d9c193f16d8a07d3a8a751d13f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f740c8d9c193f16d8a07d3a8a751d13f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/646ca7b994bc46afe33d680dbe7ed67a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/646ca7b994bc46afe33d680dbe7ed67a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/646ca7b994bc46afe33d680dbe7ed67a-Paper-Conference.pdf
https://arxiv.org/abs/2002.07454
https://doi.org/10.1109/TNNLS.2022.3224252
https://arxiv.org/abs/2006.13460
https://arxiv.org/abs/2002.02873
https://arxiv.org/abs/2003.10973
https://doi.org/10.1609/aaai.v35i6.16669
https://doi.org/10.1609/aaai.v35i6.16669
https://ojs.aaai.org/index.php/AAAI/article/view/16669
https://ojs.aaai.org/index.php/AAAI/article/view/16669

BIBLIOGRAPHY 145

[DAW12] John C. Duchi, Alekh Agarwal, and Martin J. Wainwright. “Dual Averaging for
Distributed Optimization: Convergence Analysis and Network Scaling”. In: IEEE
Transactions on Automatic Control 57.3 (2012), pp. 592–606. DOI: 10.1109/TAC.
2011.2161027.

[DR+14] Cynthia Dwork, Aaron Roth, et al. “The algorithmic foundations of differential
privacy.” In: Found. Trends Theor. Comput. Sci. 9.3-4 (2014), pp. 211–407.

[Eic+19] Hubert Eichner, Tomer Koren, Brendan Mcmahan, Nathan Srebro, and Kunal Talwar.
“Semi-Cyclic Stochastic Gradient Descent”. In: Proceedings of the 36th Interna-
tional Conference on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan
Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. PMLR, June
2019, pp. 1764–1773. URL: https://proceedings.mlr.press/v97/
eichner19a.html.

[Elv17] Stacy-Ann Elvy. “Paying for privacy and the personal data economy”. In: Colum. L.
Rev. 117 (2017), p. 1369.

[ER59] P. Erdös and A. Rényi. “On Random Graphs I”. In: Publicationes Mathematicae
Debrecen 6 (1959), p. 290.

[EMS22] Mathieu Even, Laurent Massoulié, and Kevin Scaman. “On Sample Optimality in
Personalized Collaborative and Federated Learning”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K.
Cho, and A. Oh. Vol. 35. Curran Associates, Inc., 2022, pp. 212–225. URL: https:
//proceedings.neurips.cc/paper_files/paper/2022/file/
01cea7793f3c68af2e4989fc66bf8fb0-Paper-Conference.pdf.

[FMO20] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. “Personalized Federated
Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach”.
In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle, M.
Ranzato, R. Hadsell, M. F. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc.,
2020, pp. 3557–3568. URL: https://proceedings.neurips.cc/paper/
2020/file/24389bfe4fe2eba8bf9aa9203a44cdad-Paper.pdf.

[FGQ11] N. Farhi, M. Goursat, and J.-P. Quadrat. “The traffic phases of road networks”. In:
Transportation Research Part C: Emerging Technologies 19.1 (2011), pp. 85–102.
ISSN: 0968-090X. DOI: https://doi.org/10.1016/j.trc.2010.03.
011. URL: https://www.sciencedirect.com/science/article/
pii/S0968090X10000379.

[Fra+21] Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco Lorenzi. “Clustered Sam-
pling: Low-Variance and Improved Representativity for Clients Selection in Federated
Learning”. In: Proceedings of the 38th International Conference on Machine Learn-
ing. PMLR, July 2021, pp. 3407–3416. (Visited on 05/23/2023).

[FJR15] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. “Model inversion attacks that
exploit confidence information and basic countermeasures”. In: Proceedings of the
22nd ACM SIGSAC conference on computer and communications security. 2015,
pp. 1322–1333.

https://doi.org/10.1109/TAC.2011.2161027
https://doi.org/10.1109/TAC.2011.2161027
https://proceedings.mlr.press/v97/eichner19a.html
https://proceedings.mlr.press/v97/eichner19a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/01cea7793f3c68af2e4989fc66bf8fb0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/01cea7793f3c68af2e4989fc66bf8fb0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/01cea7793f3c68af2e4989fc66bf8fb0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper/2020/file/24389bfe4fe2eba8bf9aa9203a44cdad-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/24389bfe4fe2eba8bf9aa9203a44cdad-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.trc.2010.03.011
https://doi.org/https://doi.org/10.1016/j.trc.2010.03.011
https://www.sciencedirect.com/science/article/pii/S0968090X10000379
https://www.sciencedirect.com/science/article/pii/S0968090X10000379

146 BIBLIOGRAPHY

[Fu+20] Yu Fu, Alexander W Jung, Ramon Viñas Torne, Santiago Gonzalez, Harald Vöhringer,
Artem Shmatko, Lucy R Yates, Mercedes Jimenez-Linan, Luiza Moore, and Moritz
Gerstung. “Pan-cancer computational histopathology reveals mutations, tumor com-
position and prognosis”. In: Nature Cancer 1.8 (2020), pp. 800–810.

[GOD22] Georgi Ganev, Bristena Oprisanu, and Emiliano De Cristofaro. “Robin Hood and
Matthew Effects: Differential Privacy Has Disparate Impact on Synthetic Data”. In:
International Conference on Machine Learning. PMLR. 2022, pp. 6944–6959.

[Gan+18] Karan Ganju, Qi Wang, Wei Yang, Carl A Gunter, and Nikita Borisov. “Property
inference attacks on fully connected neural networks using permutation invariant
representations”. In: Proceedings of the 2018 ACM SIGSAC conference on computer
and communications security. 2018, pp. 619–633.

[Gao+22] Yan Gao, Titouan Parcollet, Salah Zaiem, Javier Fernandez-Marques, Pedro PB de
Gusmao, Daniel J Beutel, and Nicholas D Lane. “End-to-end Speech Recognition
from Federated Acoustic Models”. In: ICASSP 2022-2022 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2022, pp. 7227–
7231.

[Gar+21] Abhinav Garg, Naman Shukla, Lavanya Marla, and Sriram Somanchi. Distribution
Shift in Airline Customer Behavior during COVID-19. 2021. arXiv: 2111.14938
[cs.LG].

[GG23] Guillaume Garrigos and Robert M. Gower. Handbook of Convergence Theorems for
(Stochastic) Gradient Methods. 2023. arXiv: 2301.11235 [math.OC].

[Gau95] S. Gaubert. “Resource Optimization and (min,+) Spectral Theory”. In: IEEE Trans-
actions on Automatic Control 40.11 (1995), pp. 1931–1934. DOI: 10.1109/9.
471219.

[GHK15] Rong Ge, Qingqing Huang, and Sham M. Kakade. “Learning Mixtures of Gaussians in
High Dimensions”. In: Proceedings of the Forty-Seventh Annual ACM Symposium on
Theory of Computing. STOC ’15. Portland, Oregon, USA: Association for Computing
Machinery, 2015, pp. 761–770. ISBN: 9781450335362. DOI: 10.1145/2746539.
2746616. URL: https://doi.org/10.1145/2746539.2746616.

[20a] GÉANT - the pan-european research and education network. https://www.
geant.org/Networks[Retrieved: Aug 2020]. 2020.

[Gen09] Craig Gentry. “Fully Homomorphic Encryption Using Ideal Lattices”. In: Proceed-
ings of the Forty-First Annual ACM Symposium on Theory of Computing. STOC
’09. Bethesda, MD, USA: Association for Computing Machinery, 2009, pp. 169–
178. ISBN: 9781605585062. DOI: 10.1145/1536414.1536440. URL: https:
//doi.org/10.1145/1536414.1536440.

[GKN18] Robin C. Geyer, Tassilo Klein, and Moin Nabi. Differentially Private Federated
Learning: A Client Level Perspective. 2018. arXiv: 1712.07557 [cs.CR].

https://arxiv.org/abs/2111.14938
https://arxiv.org/abs/2111.14938
https://arxiv.org/abs/2301.11235
https://doi.org/10.1109/9.471219
https://doi.org/10.1109/9.471219
https://doi.org/10.1145/2746539.2746616
https://doi.org/10.1145/2746539.2746616
https://doi.org/10.1145/2746539.2746616
https://www.geant.org/Networks
https://www.geant.org/Networks
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://arxiv.org/abs/1712.07557

BIBLIOGRAPHY 147

[Gho+20] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. “An Effi-
cient Framework for Clustered Federated Learning”. In: Advances in Neural Infor-
mation Processing Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 19586–19597.
URL: https : / / proceedings . neurips . cc / paper / 2020 / file /
e32cc80bf07915058ce90722ee17bb71-Paper.pdf.

[GBH09] Alec Go, Richa Bhayani, and Lei Huang. “Twitter Sentiment Classification using Dis-
tant Supervision”. In: Processing (2009), pp. 1–6. URL: http://www.stanford.
edu/~alecmgo/papers/TwitterDistantSupervision09.pdf.

[Goo+20] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative adversarial net-
works”. In: Communications of the ACM 63.11 (2020), pp. 139–144.

[Goo+15] Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio.
An Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural
Networks. 2015. arXiv: 1312.6211 [stat.ML].

[Göp+19] Christina Göpfert, Shai Ben-David, Olivier Bousquet, Sylvain Gelly, Ilya Tolstikhin,
and Ruth Urner. “When can unlabeled data improve the learning rate?” In: Conference
on Learning Theory. PMLR. 2019, pp. 1500–1518.

[Gov98] Rob MP Goverde. “The max-plus algebra approach to railway timetable design”. In:
WIT Transactions on The Built Environment 37 (1998).

[Gre+15] Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blun-
som. “Learning to Transduce with Unbounded Memory”. In: Advances in Neu-
ral Information Processing Systems. Ed. by C. Cortes, N. Lawrence, D. Lee, M.
Sugiyama, and R. Garnett. Vol. 28. Curran Associates, Inc., 2015. URL: https:
//proceedings.neurips.cc/paper_files/paper/2015/file/
b9d487a30398d42ecff55c228ed5652b-Paper.pdf.

[Gri+21] Felix Grimberg, Mary-Anne Hartley, Sai P. Karimireddy, and Martin Jaggi. Optimal
Model Averaging: Towards Personalized Collaborative Learning. 2021. arXiv: 2110.
12946 [cs.LG].

[Gue+04] Bamba Gueye, Artur Ziviani, Mark Crovella, and Serge Fdida. “Constraint-Based Ge-
olocation of Internet Hosts”. In: Proceedings of the 4th ACM SIGCOMM Conference
on Internet Measurement. IMC ’04. Taormina, Sicily, Italy: Association for Comput-
ing Machinery, 2004, pp. 288–293. ISBN: 1581138210. DOI: 10.1145/1028788.
1028828. URL: https://doi.org/10.1145/1028788.1028828.

[GLT23] Yongxin Guo, Tao Lin, and Xiaoying Tang. Towards Federated Learning on Time-
Evolving Heterogeneous Data. 2023. arXiv: 2112.13246 [cs.LG].

[GTL23] Yongxin Guo, Xiaoying Tang, and Tao Lin. FedRC: Tackling Diverse Distribution
Shifts Challenge in Federated Learning by Robust Clustering. 2023. arXiv: 2301.
12379 [cs.LG].

https://proceedings.neurips.cc/paper/2020/file/e32cc80bf07915058ce90722ee17bb71-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e32cc80bf07915058ce90722ee17bb71-Paper.pdf
http://www.stanford.edu/~alecmgo/papers/TwitterDistantSupervision09.pdf
http://www.stanford.edu/~alecmgo/papers/TwitterDistantSupervision09.pdf
https://arxiv.org/abs/1312.6211
https://proceedings.neurips.cc/paper_files/paper/2015/file/b9d487a30398d42ecff55c228ed5652b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/b9d487a30398d42ecff55c228ed5652b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/b9d487a30398d42ecff55c228ed5652b-Paper.pdf
https://arxiv.org/abs/2110.12946
https://arxiv.org/abs/2110.12946
https://doi.org/10.1145/1028788.1028828
https://doi.org/10.1145/1028788.1028828
https://doi.org/10.1145/1028788.1028828
https://arxiv.org/abs/2112.13246
https://arxiv.org/abs/2301.12379
https://arxiv.org/abs/2301.12379

148 BIBLIOGRAPHY

[Gup+17] Chirag Gupta, Arun Sai Suggala, Ankit Goyal, Harsha Vardhan Simhadri, Bhargavi
Paranjape, Ashish Kumar, Saurabh Goyal, Raghavendra Udupa, Manik Varma, and
Prateek Jain. “ProtoNN: Compressed and Accurate kNN for Resource-scarce De-
vices”. In: Proceedings of the 34th International Conference on Machine Learning.
Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning
Research. PMLR, Aug. 2017, pp. 1331–1340. URL: https://proceedings.
mlr.press/v70/gupta17a.html.

[GP06] Gregory Gutin and Abraham P Punnen. The traveling salesman problem and its
variations. Vol. 12. Springer Science & Business Media, 2006.

[Haa+21] Kevin de Haan, Yijie Zhang, Jonathan E Zuckerman, Tairan Liu, Anthony E Sisk,
Miguel FP Diaz, Kuang-Yu Jen, Alexander Nobori, Sofia Liou, Sarah Zhang, et al.
“Deep learning-based transformation of H&E stained tissues into special stains”. In:
Nature communications 12.1 (2021), pp. 1–13.

[Had+21] Farzin Haddadpour, Mohammad Mahdi Kamani, Aryan Mokhtari, and Mehrdad
Mahdavi. “Federated Learning with Compression: Unified Analysis and Sharp Guar-
antees”. In: Proceedings of The 24th International Conference on Artificial Intel-
ligence and Statistics. Ed. by Arindam Banerjee and Kenji Fukumizu. Vol. 130.
Proceedings of Machine Learning Research. PMLR, Apr. 2021, pp. 2350–2358. URL:
https://proceedings.mlr.press/v130/haddadpour21a.html.

[HBB06] Peter F Hahn, Michael A Blake, and Giles WL Boland. “Adrenal lesions: attenuation
measurement differences between CT scanners”. In: Radiology 240.2 (2006), pp. 458–
463.

[Han+20a] Catherine Han, Irwin Reyes, Álvaro Feal, Joel Reardon, Primal Wijesekera, Narseo
Vallina-Rodriguez, Amit Elazar, Kenneth A Bamberger, and Serge Egelman. “The
price is (not) right: Comparing privacy in free and paid apps”. In: Proceedings on
Privacy Enhancing Technologies 2020.3 (2020).

[Han+20b] Filip Hanzely, Slavomír Hanzely, Samuel Horváth, and Peter Richtarik. “Lower
Bounds and Optimal Algorithms for Personalized Federated Learning”. In: Advances
in Neural Information Processing Systems. Ed. by H. Larochelle, M. Ranzato, R.
Hadsell, M. F. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 2304–
2315. URL: https://proceedings.neurips.cc/paper/2020/file/
187acf7982f3c169b3075132380986e4-Paper.pdf.

[HR21] Filip Hanzely and Peter Richtárik. Federated Learning of a Mixture of Global and
Local Models. 2021. arXiv: 2002.05516 [cs.LG].

[Har+19] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage.
Federated Learning for Mobile Keyboard Prediction. 2019. arXiv: 1811.03604
[cs.CL].

[Haz16] Elad Hazan. “Introduction to Online Convex Optimization”. In: Foundations and
Trends® in Optimization 2.3-4 (2016), pp. 157–325. ISSN: 2167-3888. DOI: 10.
1561/2400000013. URL: http://dx.doi.org/10.1561/2400000013.

[Haz19] Elad Hazan. “Introduction to Online Convex Optimization”. In: arXiv preprint
arXiv:1909.05207 (2019).

https://proceedings.mlr.press/v70/gupta17a.html
https://proceedings.mlr.press/v70/gupta17a.html
https://proceedings.mlr.press/v130/haddadpour21a.html
https://proceedings.neurips.cc/paper/2020/file/187acf7982f3c169b3075132380986e4-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/187acf7982f3c169b3075132380986e4-Paper.pdf
https://arxiv.org/abs/2002.05516
https://arxiv.org/abs/1811.03604
https://arxiv.org/abs/1811.03604
https://doi.org/10.1561/2400000013
https://doi.org/10.1561/2400000013
http://dx.doi.org/10.1561/2400000013

BIBLIOGRAPHY 149

[He+16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning
for Image Recognition”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). June 2016.

[He+21] Xinlei He, Jinyuan Jia, Michael Backes, Neil Zhenqiang Gong, and Yang Zhang.
“Stealing links from graph neural networks”. In: 30th USENIX Security Symposium
(USENIX Security 21). 2021, pp. 2669–2686.

[Him97] Michael Himsolt. GML: A portable graph file format. Tech. rep. Technical report,
Universitat Passau, 1997.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural
Computation 9.8 (1997), pp. 1735–1780.

[Hor+18] G. Van Horn, O. Mac Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard, H. Adam,
P. Perona, and S. Belongie. “The iNaturalist Species Classification and Detec-
tion Dataset”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). Los Alamitos, CA, USA: IEEE Computer Society, June 2018,
pp. 8769–8778. DOI: 10.1109/CVPR.2018.00914. URL: https://doi.
ieeecomputersociety.org/10.1109/CVPR.2018.00914.

[Hor+21] Samuel Horváth, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos
Venieris, and Nicholas Donald Lane. “FjORD: Fair and Accurate Federated Learn-
ing under heterogeneous targets with Ordered Dropout”. In: Advances in Neural
Information Processing Systems. Ed. by A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan. 2021. URL: https://openreview.net/forum?id=
4fLr7H5D_eT.

[Hos+20a] Seyyedali Hosseinalipour, Christopher G Brinton, Vaneet Aggarwal, Huaiyu Dai,
and Mung Chiang. “From federated to fog learning: Distributed machine learning
over heterogeneous wireless networks”. In: IEEE Communications Magazine 58.12
(2020), pp. 41–47.

[Hos+20b] Seyyedali Hosseinalipour, Christopher G. Brinton, Vaneet Aggarwal, Huaiyu Dai,
and Mung Chiang. “From Federated to Fog Learning: Distributed Machine Learning
over Heterogeneous Wireless Networks”. In: IEEE Communications Magazine 58.12
(Dec. 2020). Conference Name: IEEE Communications Magazine, pp. 41–47. ISSN:
1558-1896. DOI: 10.1109/MCOM.001.2000410.

[How+21] Frederick M Howard, James Dolezal, Sara Kochanny, Jefree Schulte, Heather Chen,
Lara Heij, Dezheng Huo, Rita Nanda, Olufunmilayo I Olopade, Jakob N Kather,
et al. “The impact of site-specific digital histology signatures on deep learning model
accuracy and bias”. In: Nature communications 12.1 (2021), pp. 1–13.

[Hsi+17] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R.
Ganger, Phillip B. Gibbons, and Onur Mutlu. “Gaia: Geo-Distributed Machine Learn-
ing Approaching LAN Speeds”. In: Proceedings of the 14th USENIX Conference
on Networked Systems Design and Implementation. NSDI’17. Boston, MA, USA:
USENIX Association, 2017, pp. 629–647. ISBN: 9781931971379.

[HQB20] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. “Federated visual classification
with real-world data distribution”. In: European Conference on Computer Vision.
Springer. 2020, pp. 76–92.

https://doi.org/10.1109/CVPR.2018.00914
https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00914
https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00914
https://openreview.net/forum?id=4fLr7H5D_eT
https://openreview.net/forum?id=4fLr7H5D_eT
https://doi.org/10.1109/MCOM.001.2000410

150 BIBLIOGRAPHY

[HQB19] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. “Measuring the effects of
non-identical data distribution for federated visual classification”. In: arXiv preprint
arXiv:1909.06335 (2019).

[ITW] Maximilian Ilse, Jakub M. Tomczak, and Max Welling. Attention-based Deep Mul-
tiple Instance Learning. https : / / github . com / AMLab - Amsterdam /
AttentionDeepMIL. Accessed: 2022-02-02.

[Ise+21] Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-
Hein. “nnU-Net: a self-configuring method for deep learning-based biomedical image
segmentation”. In: Nature methods 18.2 (2021), pp. 203–211.

[JD02] Manish Jain and Constantinos Dovrolis. “End-to-End Available Bandwidth: Measure-
ment Methodology, Dynamics, and Relation with TCP Throughput”. In: SIGCOMM
Comput. Commun. Rev. 32.4 (Aug. 2002), pp. 295–308. ISSN: 0146-4833. DOI:
10.1145/964725.633054. URL: https://doi.org/10.1145/964725.
633054.

[Jan+19] Andrew Janowczyk, Ren Zuo, Hannah Gilmore, Michael Feldman, and Anant Mad-
abhushi. “HistoQC: an open-source quality control tool for digital pathology slides”.
In: JCO clinical cancer informatics 3 (2019), pp. 1–7.

[JWJ22] Yae Jee Cho, Jianyu Wang, and Gauri Joshi. “Towards Understanding Biased Client
Selection in Federated Learning”. In: Proceedings of The 25th International Confer-
ence on Artificial Intelligence and Statistics. PMLR, 2022, pp. 10351–10375.

[Jia+19] Jinyuan Jia, Ahmed Salem, Michael Backes, Yang Zhang, and Neil Zhenqiang
Gong. “Memguard: Defending against black-box membership inference attacks via
adversarial examples”. In: Proceedings of the 2019 ACM SIGSAC conference on
computer and communications security. 2019, pp. 259–274.

[Jia+23] Yihan Jiang, Jakub Konečný, Keith Rush, and Sreeram Kannan. Improving Federated
Learning Personalization via Model Agnostic Meta Learning. 2023. arXiv: 1909.
12488 [cs.LG].

[Jia+17] Zhanhong Jiang, Aditya Balu, Chinmay Hegde, and Soumik Sarkar. “Collaborative
Deep Learning in Fixed Topology Networks”. In: Advances in Neural Information
Processing Systems. Ed. by I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R.
Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc., 2017. URL:
https://proceedings.neurips.cc/paper_files/paper/2017/
file/a74c3bae3e13616104c1b25f9da1f11f-Paper.pdf.

[Jin+20] Yibo Jin, Lei Jiao, Zhuzhong Qian, Sheng Zhang, Sanglu Lu, and Xiaoliang Wang.
“Resource-Efficient and Convergence-Preserving Online Participant Selection in
Federated Learning”. In: 2020 IEEE 40th International Conference on Distributed
Computing Systems (ICDCS) (2020), pp. 606–616.

[JDJ19] Jeff Johnson, Matthijs Douze, and Herve Jegou. “Billion-scale similarity search with
GPUs”. In: IEEE Transactions on Big Data (2019), pp. 1–1.

https://github.com/AMLab-Amsterdam/AttentionDeepMIL
https://github.com/AMLab-Amsterdam/AttentionDeepMIL
https://doi.org/10.1145/964725.633054
https://doi.org/10.1145/964725.633054
https://doi.org/10.1145/964725.633054
https://arxiv.org/abs/1909.12488
https://arxiv.org/abs/1909.12488
https://proceedings.neurips.cc/paper_files/paper/2017/file/a74c3bae3e13616104c1b25f9da1f11f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/a74c3bae3e13616104c1b25f9da1f11f-Paper.pdf

BIBLIOGRAPHY 151

[Jot+23] Ellango Jothimurugesan, Kevin Hsieh, Jianyu Wang, Gauri Joshi, and Phillip B.
Gibbons. “Federated Learning under Distributed Concept Drift”. In: Proceedings of
The 26th International Conference on Artificial Intelligence and Statistics. Ed. by
Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent. Vol. 206. Proceedings
of Machine Learning Research. PMLR, Apr. 2023, pp. 5834–5853. URL: https:
//proceedings.mlr.press/v206/jothimurugesan23a.html.

[JM15] Armand Joulin and Tomas Mikolov. “Inferring Algorithmic Patterns with Stack-
Augmented Recurrent Nets”. In: Advances in Neural Information Processing Systems.
Ed. by C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett. Vol. 28. Curran
Associates, Inc., 2015. URL: https://proceedings.neurips.cc/paper_
files/paper/2015/file/26657d5ff9020d2abefe558796b99584-
Paper.pdf.

[Kai+21] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb,
David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B.
Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo,
Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak,
Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède
Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür,
Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn
Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Flo-
rian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang,
Felix X. Yu, Han Yu, and Sen Zhao. Advances and Open Problems in Federated
Learning. 2021. arXiv: 1912.04977 [cs.LG].

[Kan+19] Jiawen Kang, Zehui Xiong, Dusit Niyato, Han Yu, Ying-Chang Liang, and Dong In
Kim. “Incentive Design for Efficient Federated Learning in Mobile Networks: A
Contract Theory Approach”. In: 2019 IEEE VTS Asia Pacific Wireless Communica-
tions Symposium (APWCS). 2019, pp. 1–5. DOI: 10.1109/VTS-APWCS.2019.
8851649.

[KSV05] Ravindran Kannan, Hadi Salmasian, and Santosh Vempala. “The Spectral Method
for General Mixture Models”. In: Learning Theory. Ed. by Peter Auer and Ron
Meir. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 444–457. ISBN:
978-3-540-31892-7.

[Kap+24b] Caelin Kaplan, Chuan Xu, Othmane Marfoq, Giovanni Neglia, and Anderson Santana
de Oliveira. “A Cautionary Tale: On the Role of Reference Data in Empirical Privacy
Defenses”. In: Proceedings on Privacy Enhancing Technologies (2024).

[Kar+17] Can Karakus, Yifan Sun, Suhas Diggavi, and Wotao Yin. “Straggler Mitigation in
Distributed Optimization Through Data Encoding”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R.
Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc., 2017. URL:
https://proceedings.neurips.cc/paper_files/paper/2017/
file/663772ea088360f95bac3dc7ffb841be-Paper.pdf.

https://proceedings.mlr.press/v206/jothimurugesan23a.html
https://proceedings.mlr.press/v206/jothimurugesan23a.html
https://proceedings.neurips.cc/paper_files/paper/2015/file/26657d5ff9020d2abefe558796b99584-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/26657d5ff9020d2abefe558796b99584-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/26657d5ff9020d2abefe558796b99584-Paper.pdf
https://arxiv.org/abs/1912.04977
https://doi.org/10.1109/VTS-APWCS.2019.8851649
https://doi.org/10.1109/VTS-APWCS.2019.8851649
https://proceedings.neurips.cc/paper_files/paper/2017/file/663772ea088360f95bac3dc7ffb841be-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/663772ea088360f95bac3dc7ffb841be-Paper.pdf

152 BIBLIOGRAPHY

[Kar+20a] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian
Stich, and Ananda Theertha Suresh. “SCAFFOLD: Stochastic Controlled Averaging
for Federated Learning”. In: International Conference on Machine Learning. PMLR.
2020, pp. 5132–5143.

[Kar+20b] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian
Stich, and Ananda Theertha Suresh. “SCAFFOLD: Stochastic Controlled Averaging
for Federated Learning”. In: Proceedings of the 37th International Conference on
Machine Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings
of Machine Learning Research. PMLR, July 2020, pp. 5132–5143. URL: https:
//proceedings.mlr.press/v119/karimireddy20a.html.

[Kar78] Richard M. Karp. “A Characterization of the Minimum Cycle Mean in a Digraph”.
In: Discrete Mathematics 23.3 (1978), pp. 309–311. ISSN: 0012-365X. DOI: https:
//doi.org/10.1016/0012-365X(78)90011-0. URL: https://www.
sciencedirect.com/science/article/pii/0012365X78900110.

[Kat+18] P. Kathiravelu, M. Chiesa, P. Marcos, M. Canini, and L. Veiga. “Moving Bits with
a Fleet of Shared Virtual Routers”. In: 2018 IFIP Networking Conference (IFIP
Networking) and Workshops. 2018, pp. 1–9.

[Kem+18] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher
Kanan. “Measuring Catastrophic Forgetting in Neural Networks”. In: Proceedings of
the AAAI Conference on Artificial Intelligence 32.1 (Apr. 2018). ISSN: 2374-3468.
DOI: 10.1609/aaai.v32i1.11651. (Visited on 05/23/2023).

[KMR20] Ahmed Khaled, Konstantin Mishchenko, and Peter Richtarik. “Tighter Theory for
Local SGD on Identical and Heterogeneous Data”. In: Proceedings of the Twenty
Third International Conference on Artificial Intelligence and Statistics. Ed. by Silvia
Chiappa and Roberto Calandra. Vol. 108. Proceedings of Machine Learning Re-
search. PMLR, Aug. 2020, pp. 4519–4529. URL: https://proceedings.mlr.
press/v108/bayoumi20a.html.

[Kha+21] Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis.
Nearest Neighbor Machine Translation. 2021. arXiv: 2010.00710 [cs.CL].

[Kha+19] Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis.
“Generalization through Memorization: Nearest Neighbor Language Models”. In:
International Conference on Learning Representations. 2019.

[Kha+23] Mehrdad Khani, Ganesh Ananthanarayanan, Kevin Hsieh, Junchen Jiang, Ravi Ne-
travali, Yuanchao Shu, Mohammad Alizadeh, and Victor Bahl. “RECL: Responsive
Resource-Efficient Continuous Learning for Video Analytics”. In: 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 23). Boston,
MA: USENIX Association, Apr. 2023, pp. 917–932. ISBN: 978-1-939133-33-5. URL:
https://www.usenix.org/conference/nsdi23/presentation/
khani.

[KBT19] Mikhail Khodak, Maria-Florina F Balcan, and Ameet S Talwalkar. “Adaptive
Gradient-Based Meta-Learning Methods”. In: Advances in Neural Information Pro-
cessing Systems. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-
Buc, E. Fox, and R. Garnett. Vol. 32. Curran Associates, Inc., 2019. URL: https:

https://proceedings.mlr.press/v119/karimireddy20a.html
https://proceedings.mlr.press/v119/karimireddy20a.html
https://doi.org/https://doi.org/10.1016/0012-365X(78)90011-0
https://doi.org/https://doi.org/10.1016/0012-365X(78)90011-0
https://www.sciencedirect.com/science/article/pii/0012365X78900110
https://www.sciencedirect.com/science/article/pii/0012365X78900110
https://doi.org/10.1609/aaai.v32i1.11651
https://proceedings.mlr.press/v108/bayoumi20a.html
https://proceedings.mlr.press/v108/bayoumi20a.html
https://arxiv.org/abs/2010.00710
https://www.usenix.org/conference/nsdi23/presentation/khani
https://www.usenix.org/conference/nsdi23/presentation/khani
https://proceedings.neurips.cc/paper_files/paper/2019/file/f4aa0dd960521e045ae2f20621fb4ee9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f4aa0dd960521e045ae2f20621fb4ee9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f4aa0dd960521e045ae2f20621fb4ee9-Paper.pdf

BIBLIOGRAPHY 153

//proceedings.neurips.cc/paper_files/paper/2019/file/
f4aa0dd960521e045ae2f20621fb4ee9-Paper.pdf.

[Kim+23] Taejin Kim, Shubhranshu Singh, Nikhil Madaan, and Carlee Joe-Wong. Character-
izing Internal Evasion Attacks in Federated Learning. 2023. arXiv: 2209.08412
[cs.LG].

[KB14] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[Kir+17] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. “Overcoming Catastrophic Forgetting in Neural Networks”.
In: Proceedings of the national academy of sciences 114.13 (2017), pp. 3521–3526.

[Kni+11] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. “The Internet
Topology Zoo”. In: Selected Areas in Communications, IEEE Journal on 29.9 (Oct.
2011), pp. 1765–1775. ISSN: 0733-8716. DOI: 10.1109/JSAC.2011.111002.

[Koh+21] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang,
Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips,
Irena Gao, Tony Lee, Etienne David, Ian Stavness, Wei Guo, Berton Earnshaw,
Imran Haque, Sara M Beery, Jure Leskovec, Anshul Kundaje, Emma Pierson, Sergey
Levine, Chelsea Finn, and Percy Liang. “WILDS: A Benchmark of in-the-Wild
Distribution Shifts”. In: Proceedings of the 38th International Conference on Machine
Learning. Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings of Machine
Learning Research. PMLR, 18–24 Jul 2021, pp. 5637–5664. URL: https://
proceedings.mlr.press/v139/koh21a.html.

[Kol+20] Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian
Stich. “A Unified Theory of Decentralized SGD with Changing Topology and Local
Updates”. In: Proceedings of the 37th International Conference on Machine Learning.
Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine Learning
Research. PMLR, July 2020, pp. 5381–5393. URL: https://proceedings.
mlr.press/v119/koloskova20a.html.

[KSJ19] Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. “Decentralized Stochastic
Optimization and Gossip Algorithms with Compressed Communication”. In: Pro-
ceedings of the 36th International Conference on Machine Learning (ICML). Ed. by
Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine
Learning Research. Long Beach, California, USA: PMLR, June 2019, pp. 3478–3487.
URL: http://proceedings.mlr.press/v97/koloskova19a.html.

[Kon+17a] Jakub Konečny, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha
Suresh, and Dave Bacon. Federated Learning: Strategies for Improving Communica-
tion Efficiency. 2017. arXiv: 1610.05492 [cs.LG].

[Kon+17b] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha
Suresh, and Dave Bacon. Federated Learning: Strategies for Improving Communica-
tion Efficiency. 2017. arXiv: 1610.05492 [cs.LG].

https://proceedings.neurips.cc/paper_files/paper/2019/file/f4aa0dd960521e045ae2f20621fb4ee9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f4aa0dd960521e045ae2f20621fb4ee9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f4aa0dd960521e045ae2f20621fb4ee9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f4aa0dd960521e045ae2f20621fb4ee9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f4aa0dd960521e045ae2f20621fb4ee9-Paper.pdf
https://arxiv.org/abs/2209.08412
https://arxiv.org/abs/2209.08412
https://doi.org/10.1109/JSAC.2011.111002
https://proceedings.mlr.press/v139/koh21a.html
https://proceedings.mlr.press/v139/koh21a.html
https://proceedings.mlr.press/v119/koloskova20a.html
https://proceedings.mlr.press/v119/koloskova20a.html
http://proceedings.mlr.press/v97/koloskova19a.html
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492

154 BIBLIOGRAPHY

[Kri+19] Kalpesh Krishna, Gaurav Singh Tomar, Ankur P Parikh, Nicolas Papernot, and Mohit
Iyyer. “Thieves on sesame street! model extraction of bert-based apis”. In: arXiv
preprint arXiv:1910.12366 (2019).

[Kri09] Alex Krizhevsky. “Learning multiple layers of features from tiny images”. MSc
thesis. 2009.

[Kul+19] Bogdan Kulynych, Mohammad Yaghini, Giovanni Cherubin, Michael Veale, and
Carmela Troncoso. “Disparate vulnerability to membership inference attacks”. In:
arXiv preprint arXiv:1906.00389 (2019).

[KD12] Abhishek Kumar and Hal Daumé III. “Learning Task Grouping and Overlap in Multi-
Task Learning”. In: Proceedings of the 29th International Coference on International
Conference on Machine Learning. 2012, pp. 1723–1730.

[KC20] Jeongyeol Kwon and Constantine Caramanis. “The EM Algorithm gives Sample-
Optimality for Learning Mixtures of Well-Separated Gaussians”. In: Proceedings
of Thirty Third Conference on Learning Theory. Ed. by Jacob Abernethy and Shiv-
ani Agarwal. Vol. 125. Proceedings of Machine Learning Research. PMLR, July
2020, pp. 2425–2487. URL: https://proceedings.mlr.press/v125/
kwon20a.html.

[Lah+20] Amal Lahiani, Irina Klaman, Nassir Navab, Shadi Albarqouni, and Eldad Klaiman.
“Seamless virtual whole slide image synthesis and validation using perceptual em-
bedding consistency”. In: IEEE Journal of Biomedical and Health Informatics 25.2
(2020), pp. 403–411.

[Lai+22] Fan Lai, Yinwei Dai, Sanjay Singapuram, Jiachen Liu, Xiangfeng Zhu, Harsha
Madhyastha, and Mosharaf Chowdhury. “FedScale: Benchmarking model and system
performance of federated learning at scale”. In: International Conference on Machine
Learning. PMLR. 2022, pp. 11814–11827.

[LHY00] Kenneth Lange, David R. Hunter, and Ilsoon Yang. “Optimization Transfer Using
Surrogate Objective Functions”. In: Journal of Computational and Graphical Statis-
tics 9.1 (2000), pp. 1–20. ISSN: 10618600. URL: http://www.jstor.org/
stable/1390605.

[Lap+16] Andrei Lapets, Nikolaj Volgushev, Azer Bestavros, Frederick Jansen, and Mayank
Varia. “Secure MPC for Analytics as a Web Application”. In: 2016 IEEE Cyberse-
curity Development (SecDev). 2016, pp. 73–74. DOI: 10.1109/SecDev.2016.
027.

[Lau96] Steffen L. Lauritzen. Graphical models. English. Oxford Statistical Science Series
17. Clarendon Press, 1996. ISBN: 0198522193.

[Le +23] Batiste Le Bars, Aurélien Bellet, Marc Tommasi, Erick Lavoie, and Anne-Marie
Kermarrec. “Refined Convergence and Topology Learning for Decentralized SGD
with Heterogeneous Data”. In: Proceedings of The 26th International Conference
on Artificial Intelligence and Statistics. Ed. by Francisco Ruiz, Jennifer Dy, and
Jan-Willem van de Meent. Vol. 206. Proceedings of Machine Learning Research.
PMLR, 25–27 Apr 2023, pp. 1672–1702. URL: https://proceedings.mlr.
press/v206/le-bars23a.html.

https://proceedings.mlr.press/v125/kwon20a.html
https://proceedings.mlr.press/v125/kwon20a.html
http://www.jstor.org/stable/1390605
http://www.jstor.org/stable/1390605
https://doi.org/10.1109/SecDev.2016.027
https://doi.org/10.1109/SecDev.2016.027
https://proceedings.mlr.press/v206/le-bars23a.html
https://proceedings.mlr.press/v206/le-bars23a.html

BIBLIOGRAPHY 155

[LT01] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A Theory of Determin-
istic Queuing Systems for the Internet. Berlin, Heidelberg: Springer-Verlag, 2001.
ISBN: 354042184X.

[LC10] Yann LeCun and Corinna Cortes. “MNIST Handwritten Digit Database”. In: (2010).
URL: http://yann.lecun.com/exdb/mnist/.

[LP17] David A Levin and Yuval Peres. Markov Chains and Mixing Times: Second Edition.
Vol. 107. American Mathematical Soc., 2017.

[LW19] Daliang Li and Junpu Wang. FedMD: Heterogenous Federated Learning via Model
Distillation. 2019. arXiv: 1910.03581 [cs.LG].

[LLR21] Jiacheng Li, Ninghui Li, and Bruno Ribeiro. “Membership inference attacks and
defenses in classification models”. In: Proceedings of the Eleventh ACM Conference
on Data and Application Security and Privacy. 2021, pp. 5–16.

[Li+18] Songze Li, Seyed Mohammadreza Mousavi Kalan, A. Salman Avestimehr, and
Mahdi Soltanolkotabi. “Near-Optimal Straggler Mitigation for Distributed Gradient
Methods”. In: 2018 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW). 2018, pp. 857–866. DOI: 10.1109/IPDPSW.2018.
00137.

[Li+21] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. “Ditto: Fair and Robust
Federated Learning Through Personalization”. In: Proceedings of the 38th Inter-
national Conference on Machine Learning. Ed. by Marina Meila and Tong Zhang.
Vol. 139. Proceedings of Machine Learning Research. PMLR, July 2021, pp. 6357–
6368. URL: https://proceedings.mlr.press/v139/li21h.html.

[Li+20a] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. “Federated Learn-
ing: Challenges, Methods, and Future Directions”. In: IEEE Signal Processing Maga-
zine 37.3 (2020), pp. 50–60. DOI: 10.1109/MSP.2020.2975749.

[Li+20b] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. “Federated Optimization in Heterogeneous Networks”.
In: Proceedings of Machine Learning and Systems. Ed. by I. Dhillon, D.
Papailiopoulos, and V. Sze. Vol. 2. 2020, pp. 429–450. URL: https : / /
proceedings . mlsys . org / paper _ files / paper / 2020 / file /
1f5fe83998a09396ebe6477d9475ba0c-Paper.pdf.

[LM06] Wei Li and Andrew McCallum. “Pachinko Allocation: DAG-Structured Mixture
Models of Topic Correlations”. In: Proceedings of the 23rd International Con-
ference on Machine Learning. ICML ’06. Pittsburgh, Pennsylvania, USA: Asso-
ciation for Computing Machinery, 2006, pp. 577–584. ISBN: 1595933832. DOI:
10.1145/1143844.1143917. URL: https://doi.org/10.1145/
1143844.1143917.

[Li+19] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. “On the
Convergence of FedAvg on Non-IID Data”. In: International Conference on Learning
Representations. 2019.

http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1910.03581
https://doi.org/10.1109/IPDPSW.2018.00137
https://doi.org/10.1109/IPDPSW.2018.00137
https://proceedings.mlr.press/v139/li21h.html
https://doi.org/10.1109/MSP.2020.2975749
https://proceedings.mlsys.org/paper_files/paper/2020/file/1f5fe83998a09396ebe6477d9475ba0c-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/1f5fe83998a09396ebe6477d9475ba0c-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/1f5fe83998a09396ebe6477d9475ba0c-Paper.pdf
https://doi.org/10.1145/1143844.1143917
https://doi.org/10.1145/1143844.1143917
https://doi.org/10.1145/1143844.1143917

156 BIBLIOGRAPHY

[Li+20c] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. “On
the Convergence of FedAvg on Non-IID Data”. In: International Conference on
Learning Representations. 2020. URL: https://openreview.net/forum?
id=HJxNAnVtDS.

[Lia+04] Athanassios Liakopoulos, Basil Maglaris, Christos Bouras, and Afrodite Sevasti.
“Providing and verifying advanced IP services in hierarchical DiffServ networks-the
case of GEANT”. In: International Journal of Communication Systems 17.4 (2004),
pp. 321–336. DOI: 10.1002/dac.645. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/dac.645.

[Lia+17] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. “Can
Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for
Decentralized Parallel Stochastic Gradient Descent”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R.
Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc., 2017. URL:
https://proceedings.neurips.cc/paper_files/paper/2017/
file/f75526659f31040afeb61cb7133e4e6d-Paper.pdf.

[Lia+18] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. “Asynchronous Decentralized
Parallel Stochastic Gradient Descent”. In: Proceedings of the 35th International
Conference on Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80.
Proceedings of Machine Learning Research. PMLR, July 2018, pp. 3043–3052. URL:
https://proceedings.mlr.press/v80/lian18a.html.

[Lin91] J. Lin. “Divergence Measures Based on the Shannon Entropy”. In: IEEE Transactions
on Information Theory 37.1 (1991), pp. 145–151.

[Lin+20a] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. “Ensemble Distillation
for Robust Model Fusion in Federated Learning”. In: Advances in Neural Information
Processing Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 2351–2363. URL: https:
//proceedings.neurips.cc/paper_files/paper/2020/file/
18df51b97ccd68128e994804f3eccc87-Paper.pdf.

[Lin+20b] Tao Lin, Sebastian U. Stich, Kumar Kshitij Patel, and Martin Jaggi. “Don’t Use Large
Mini-batches, Use Local SGD”. In: International Conference on Learning Represen-
tations. 2020. URL: https://openreview.net/forum?id=B1eyO1BFPr.

[LB03] Lin Xiao and S. Boyd. “Fast linear iterations for distributed averaging”. In: 42nd
IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).
Vol. 5. Dec. 2003, 4997–5002 Vol.5. DOI: 10.1109/CDC.2003.1272421.

[LL17] S. Liu and B. Li. “Stemflow: Software-Defined Inter-Datacenter Overlay as a Service”.
In: IEEE Journal on Selected Areas in Communications 35.11 (2017), pp. 2563–2573.

[Liu+15] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. “Deep learning face at-
tributes in the wild”. In: Proceedings of the IEEE international conference on com-
puter vision. 2015, pp. 3730–3738.

[LB22] Heiko Ludwig and Nathalie Baracaldo. Federated Learning: A Comprehensive
Overview of Methods and Applications. Springer Cham, 2022, pp. VI, 534. DOI:
https://doi.org/10.1007/978-3-030-96896-0.

https://openreview.net/forum?id=HJxNAnVtDS
https://openreview.net/forum?id=HJxNAnVtDS
https://doi.org/10.1002/dac.645
https://onlinelibrary.wiley.com/doi/pdf/10.1002/dac.645
https://onlinelibrary.wiley.com/doi/pdf/10.1002/dac.645
https://proceedings.neurips.cc/paper_files/paper/2017/file/f75526659f31040afeb61cb7133e4e6d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f75526659f31040afeb61cb7133e4e6d-Paper.pdf
https://proceedings.mlr.press/v80/lian18a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/18df51b97ccd68128e994804f3eccc87-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/18df51b97ccd68128e994804f3eccc87-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/18df51b97ccd68128e994804f3eccc87-Paper.pdf
https://openreview.net/forum?id=B1eyO1BFPr
https://doi.org/10.1109/CDC.2003.1272421
https://doi.org/https://doi.org/10.1007/978-3-030-96896-0

BIBLIOGRAPHY 157

[Luo+19] Qinyi Luo, Jinkun Lin, Youwei Zhuo, and Xuehai Qian. “Hop: Heterogeneity-Aware
Decentralized Training”. In: Proceedings of the Twenty-Fourth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems.
ASPLOS ’19. Providence, RI, USA: Association for Computing Machinery, 2019,
pp. 893–907. ISBN: 9781450362405. DOI: 10.1145/3297858.3304009. URL:
https://doi.org/10.1145/3297858.3304009.

[Mah+02] Ratul Mahajan, Neil Spring, David Wetherall, and Tom Anderson. “Inferring Link
Weights using End-to-End Measurements”. In: Workshop on Internet measurment
(IMW). Aug. 2002.

[Mai13] Julien Mairal. “Optimization with First-Order Surrogate Functions”. In: Proceedings
of the 30th International Conference on Machine Learning. Ed. by Sanjoy Dasgupta
and David McAllester. Vol. 28. Proceedings of Machine Learning Research 3. Atlanta,
Georgia, USA: PMLR, June 2013, pp. 783–791. URL: https://proceedings.
mlr.press/v28/mairal13.html.

[20b] Mammogram Assessment with NVIDIA Clara Federated Learning. EU research
project. 2020. URL: https://blogs.nvidia.com/blog/2020/04/15/
federated-learning-mammogram-assessment/.

[Man+20] Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three Ap-
proaches for Personalization with Applications to Federated Learning. 2020. arXiv:
2002.10619 [cs.LG].

[MR10] Sébastien Marcel and Yann Rodriguez. “Torchvision the Machine-Vision Package of
Torch”. In: Proceedings of the 18th ACM International Conference on Multimedia.
MM ’10. Firenze, Italy: Association for Computing Machinery, 2010, pp. 1485–1488.
ISBN: 9781605589336. DOI: 10.1145/1873951.1874254. URL: https:
//doi.org/10.1145/1873951.1874254.

[MMb] Othmane Marfoq and Aryan Mokhtari. Online Federated Learning with Mixture
Models.

[Mar+21b] Othmane Marfoq, Giovanni Neglia, Aurélien Bellet, Laetitia Kameni, and Richard Vi-
dal. “Federated Multi-Task Learning under a Mixture of Distributions”. In: Advances
in Neural Information Processing Systems. Vol. 34. 2021.

[Mar+23b] Othmane Marfoq, Giovanni Neglia, Laetitia Kameni, and Richard Vidal. “Federated
Learning for Data Streams”. In: Proceedings of The 26th International Conference
on Artificial Intelligence and Statistics. Ed. by Francisco Ruiz, Jennifer Dy, and Jan-
Willem van de Meent. Vol. 206. Proceedings of Machine Learning Research. PMLR,
Apr. 2023, pp. 8889–8924. URL: https://proceedings.mlr.press/
v206/marfoq23a.html.

[Mar+22b] Othmane Marfoq, Giovanni Neglia, Laetitia Kameni, and Richard Vidal. “Personal-
ized Federated Learning through Local Memorization”. In: Proceedings of the 39th
International Conference on Machine Learning. Proceedings of Machine Learning
Research. PMLR, 2022.

[Mar+20b] Othmane Marfoq, Chuan Xu, Giovanni Neglia, and Richard Vidal. “Throughput-
Optimal Topology Design for Cross-Silo Federated Learning”. In: Advances in Neural
Information Processing Systems. Vol. 33. 2020.

https://doi.org/10.1145/3297858.3304009
https://doi.org/10.1145/3297858.3304009
https://proceedings.mlr.press/v28/mairal13.html
https://proceedings.mlr.press/v28/mairal13.html
https://blogs.nvidia.com/blog/2020/04/15/federated-learning-mammogram-assessment/
https://blogs.nvidia.com/blog/2020/04/15/federated-learning-mammogram-assessment/
https://arxiv.org/abs/2002.10619
https://doi.org/10.1145/1873951.1874254
https://doi.org/10.1145/1873951.1874254
https://doi.org/10.1145/1873951.1874254
https://proceedings.mlr.press/v206/marfoq23a.html
https://proceedings.mlr.press/v206/marfoq23a.html

158 BIBLIOGRAPHY

[Mar+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-
lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. Software available from
tensorflow.org. 2015. URL: https://www.tensorflow.org/.

[Mas+07] Laurent Massoulie, Andy Twigg, Christos Gkantsidis, and Pablo Rodriguez. “Ran-
domized Decentralized Broadcasting Algorithms”. In: Proceedings of the IEEE
INFOCOM 2007 - 26th IEEE International Conference on Computer Communi-
cations. USA: IEEE Computer Society, 2007, pp. 1073–1081. ISBN: 1424410479.
DOI: 10.1109/INFCOM.2007.129. URL: https://doi.org/10.1109/
INFCOM.2007.129.

[MC89] Michael McCloskey and Neal J. Cohen. “Catastrophic Interference in Connection-
ist Networks: The Sequential Learning Problem”. In: ed. by Gordon H. Bower.
Vol. 24. Psychology of Learning and Motivation. Academic Press, 1989, pp. 109–
165. DOI: https://doi.org/10.1016/S0079-7421(08)60536-8.
URL: https://www.sciencedirect.com/science/article/pii/
S0079742108605368.

[McM+17] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera
y Arcas. “Communication-efficient learning of deep networks from decentralized
data”. In: Artificial intelligence and statistics. PMLR. 2017, pp. 1273–1282.

[McM+18] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. “Learning
Differentially Private Recurrent Language Models”. In: International Conference on
Learning Representations. 2018. URL: https://openreview.net/forum?
id=BJ0hF1Z0b.

[Mey01] Carl D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2001.

[MY21] Adam Meyers and Hui Yang. “Markov Chains for Fault-Tolerance Modeling of
Stochastic Networks”. In: IEEE Transactions on Automation Science and Engineering
(2021).

[MNA16] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. “V-net: Fully convolu-
tional neural networks for volumetric medical image segmentation”. In: 2016 fourth
international conference on 3D vision (3DV). IEEE. 2016, pp. 565–571.

[MHP21] Aritra Mitra, Hamed Hassani, and George J. Pappas. “Online Federated Learning”. In:
2021 60th IEEE Conference on Decision and Control (CDC). 2021, pp. 4083–4090.
DOI: 10.1109/CDC45484.2021.9683589.

[MRT18] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine
Learning. 2nd ed. Adaptive Computation and Machine Learning. Cambridge, MA:
MIT Press, 2018. 504 pp. ISBN: 978-0-262-03940-6.

https://www.tensorflow.org/
https://doi.org/10.1109/INFCOM.2007.129
https://doi.org/10.1109/INFCOM.2007.129
https://doi.org/10.1109/INFCOM.2007.129
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://openreview.net/forum?id=BJ0hF1Z0b
https://openreview.net/forum?id=BJ0hF1Z0b
https://doi.org/10.1109/CDC45484.2021.9683589

BIBLIOGRAPHY 159

[MSS19] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. “Agnostic Federated
Learning”. In: International Conference on Machine Learning. 2019, pp. 4615–4625.

[MPT02] Jérôme Monnot, Vangelis Th. Paschos, and Sophie Toulouse. “Approximation al-
gorithms for the traveling salesman problem”. In: Mathematical Models of Oper-
ations Research 56 (2002), pp. 387–405. URL: https://hal.archives-
ouvertes.fr/hal-00003997.

[MB11] Eric Moulines and Francis Bach. “Non-Asymptotic Analysis of Stochastic Ap-
proximation Algorithms for Machine Learning”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira,
and K.Q. Weinberger. Vol. 24. Curran Associates, Inc., 2011. URL: https://
proceedings . neurips . cc / paper _ files / paper / 2011 / file /
40008b9a5380fcacce3976bf7c08af5b-Paper.pdf.

[Mus19] Musketeer. Musketeer: About, 2019. http://musketeer.eu/project/
[Retrieved: Aug 2019]. 2019.

[NSH19a] Milad Nasr, Reza Shokri, and Amir Houmansadr. “Comprehensive Privacy Analysis
of Deep Learning: Passive and Active White-box Inference Attacks against Central-
ized and Federated Learning”. In: 2019 IEEE Symposium on Security and Privacy
(SP). 2019, pp. 739–753. DOI: 10.1109/SP.2019.00065.

[NSH19b] Milad Nasr, Reza Shokri, and Amir Houmansadr. “Comprehensive privacy analysis
of deep learning: Passive and active white-box inference attacks against centralized
and federated learning”. In: 2019 IEEE symposium on security and privacy (SP).
IEEE. 2019, pp. 739–753.

[NSH18] Milad Nasr, Reza Shokri, and Amir Houmansadr. “Machine learning with mem-
bership privacy using adversarial regularization”. In: Proceedings of the 2018 ACM
SIGSAC conference on computer and communications security. 2018, pp. 634–646.

[Nas+21] Milad Nasr, Shuang Songi, Abhradeep Thakurta, Nicolas Papemoti, and Nicholas
Carlin. “Adversary instantiation: Lower bounds for differentially private machine
learning”. In: 2021 IEEE Symposium on Security and Privacy (SP). 2021, pp. 866–
882.

[NOS17] Angelia Nedic, Alex Olshevsky, and Wei Shi. “Achieving Geometric Convergence
for Distributed Optimization Over Time-Varying Graphs”. In: SIAM J. Optimization
27.4 (2017), pp. 2597–2633.

[NOR18] Angelia Nedić, Alex Olshevsky, and Michael G. Rabbat. “Network Topology and
Communication-Computation Tradeoffs in Decentralized Optimization”. In: Pro-
ceedings of the IEEE 106.5 (2018), pp. 953–976. DOI: 10.1109/JPROC.2018.
2817461.

[NO09] Angelia Nedić and Asuman E. Ozdaglar. “Distributed Subgradient Methods for
Multi-Agent Optimization”. In: IEEE Trans. Automat. Contr. 54.1 (2009), pp. 48–61.

[Nee10] Michael J Neely. “Stochastic Network Optimization with Application to Communi-
cation and Queueing Systems”. In: Synthesis Lectures on Communication Networks
3.1 (2010), pp. 1–211.

https://hal.archives-ouvertes.fr/hal-00003997
https://hal.archives-ouvertes.fr/hal-00003997
https://proceedings.neurips.cc/paper_files/paper/2011/file/40008b9a5380fcacce3976bf7c08af5b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/40008b9a5380fcacce3976bf7c08af5b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/40008b9a5380fcacce3976bf7c08af5b-Paper.pdf
http://musketeer.eu/project/
https://doi.org/10.1109/SP.2019.00065
https://doi.org/10.1109/JPROC.2018.2817461
https://doi.org/10.1109/JPROC.2018.2817461

160 BIBLIOGRAPHY

[Neg+19] Giovanni Neglia, Gianmarco Calbi, Don Towsley, and Gayane Vardoyan. “The Role
of Network Topology for Distributed Machine Learning”. In: IEEE INFOCOM
2019 - IEEE Conference on Computer Communications. 2019, pp. 2350–2358. DOI:
10.1109/INFOCOM.2019.8737602.

[Neg+20] Giovanni Neglia, Chuan Xu, Don Towsley, and Gianmarco Calbi. “Decentralized
gradient methods: does topology matter?” In: Proceedings of the Twenty Third Inter-
national Conference on Artificial Intelligence and Statistics. Ed. by Silvia Chiappa
and Roberto Calandra. Vol. 108. Proceedings of Machine Learning Research. PMLR,
Aug. 2020, pp. 2348–2358. URL: https://proceedings.mlr.press/
v108/neglia20a.html.

[Nes03] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. 1st ed.
Applied Optimization. Springer, 2003. URL: http://gen.lib.rus.ec/book/
index.php?md5=488d3c36f629a6e021fc011675df02ef.

[NAS18] Alex Nichol, Joshua Achiam, and John Schulman. On First-Order Meta-Learning
Algorithms. 2018. arXiv: 1803.02999 [cs.LG].

[Nik19] Adaloglou Nikolaos. “Deep learning in medical image analysis: a comparative analy-
sis of multi-modal brain-MRI segmentation with 3D deep neural networks”. https:
//github.com/black0017/MedicalZooPytorch. MA thesis. University
of Patras, 2019.

[NY19] Takayuki Nishio and Ryo Yonetani. “Client Selection for Federated Learning with
Heterogeneous Resources in Mobile Edge”. In: ICC 2019 - 2019 IEEE International
Conference on Communications (ICC). 2019, pp. 1–7. DOI: 10.1109/ICC.2019.
8761315.

[OZ21] Olusola Odeyomi and Gergely Zaruba. “Differentially-Private Federated Learn-
ing with Long-Term Constraints Using Online Mirror Descent”. In: 2021 IEEE
International Symposium on Information Theory (ISIT). 2021, pp. 1308–1313. DOI:
10.1109/ISIT45174.2021.9518177.

[Ogi+22b] Jean Ogier du Terrail, Samy-Safwan Ayed, Edwige Cyffers, Felix Grimberg,
Chaoyang He, Regis Loeb, Paul Mangold, Tanguy Marchand, Othmane Marfoq, Erum
Mushtaq, Boris Muzellec, Constantin Philippenko, Santiago Silva, Maria Teleńczuk,
Shadi Albarqouni, Salman Avestimehr, Aurélien Bellet, Aymeric Dieuleveut, Martin
Jaggi, Sai Praneeth Karimireddy, Marco Lorenzi, Giovanni Neglia, Marc Tommasi,
and Mathieu Andreux. “FLamby: Datasets and Benchmarks for Cross-Silo Federated
Learning in Realistic Settings”. Proceedings of The 36th Conference on Neural In-
formation Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.
https://openreview.net/forum?id=GgM5DiAb6A2. 2022.

[Oli+23] Anderson Santana de Oliveira, Caelin Kaplan, Khawla Mallat, and Tanmay
Chakraborty. “An Empirical Analysis of Fairness Notions under Differential Privacy”.
In: arXiv preprint arXiv:2302.02910 (2023).

[OYJ97] Häggström Olle, Peres Yuval, and E Steif Jeffrey. “Dynamical Percolation”. In:
Annales de l’Institut Henri Poincare (B) Probability and Statistics. Vol. 33. 4. Elsevier.
1997, pp. 497–528.

https://doi.org/10.1109/INFOCOM.2019.8737602
https://proceedings.mlr.press/v108/neglia20a.html
https://proceedings.mlr.press/v108/neglia20a.html
http://gen.lib.rus.ec/book/index.php?md5=488d3c36f629a6e021fc011675df02ef
http://gen.lib.rus.ec/book/index.php?md5=488d3c36f629a6e021fc011675df02ef
https://arxiv.org/abs/1803.02999
https://github.com/black0017/MedicalZooPytorch
https://github.com/black0017/MedicalZooPytorch
https://doi.org/10.1109/ICC.2019.8761315
https://doi.org/10.1109/ICC.2019.8761315
https://doi.org/10.1109/ISIT45174.2021.9518177
https://openreview.net/forum?id=GgM5DiAb6A2

BIBLIOGRAPHY 161

[Orh18] Emin Orhan. “A Simple Cache Model for Image Recognition”. In: Advances in
Neural Information Processing Systems. Ed. by S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett. Vol. 31. Curran Associates, Inc., 2018.
URL: https://proceedings.neurips.cc/paper_files/paper/
2018/file/6e0917469214d8fbd8c517dcdc6b8dcf-Paper.pdf.

[Pap+16] Nicolas Papernot, Martín Abadi, Ulfar Erlingsson, Ian Goodfellow, and Kunal Talwar.
“Semi-supervised knowledge transfer for deep learning from private training data”.
In: arXiv preprint arXiv:1610.05755 (2016).

[PM18] Nicolas Papernot and Patrick McDaniel. Deep k-Nearest Neighbors: Towards Con-
fident, Interpretable and Robust Deep Learning. 2018. arXiv: 1803 . 04765
[cs.LG].

[Pap+18] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Tal-
war, and Úlfar Erlingsson. “Scalable private learning with pate”. In: arXiv preprint
arXiv:1802.08908 (2018).

[PS21] Nicolas Papernot and Thomas Steinke. “Hyperparameter tuning with renyi differential
privacy”. In: arXiv preprint arXiv:2110.03620 (2021).

[Par16] European Parliament. General Data Protection Regulation (GDPR). European Parlia-
ment. Apr. 14, 2016. URL: https://gdpr-info.eu/ (visited on 11/30/2022).

[Par20] European Parliament. The impact of the General Data Protection Regulation (GDPR)
on artificial intelligence. European Parliamentary Research Service. June 1, 2020.
URL: https://www.europarl.europa.eu/RegData/etudes/STUD/
2020/641530/EPRS_STU(2020)641530_EN.pdf (visited on 11/30/2022).

[Pas+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. “PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library”. In: Advances in Neural Information Processing Systems 32. Ed. by
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Gar-
nett. Curran Associates, Inc., 2019, pp. 8024–8035. URL: http://papers.
neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher D Manning. “Glove: Global
Vectors for Word Representation.” In: EMNLP. Vol. 14. 2014, pp. 1532–1543.

[Per+17] Valerio Persico, Alessio Botta, Pietro Marchetta, Antonio Montieri, and Antonio
Pescapé. “On the performance of the wide-area networks interconnecting public-cloud
datacenters around the globe”. In: Computer Networks 112 (2017), pp. 67–83. ISSN:
1389-1286. DOI: https://doi.org/10.1016/j.comnet.2016.10.013.
URL: http://www.sciencedirect.com/science/article/pii/
S138912861630353X.

[PD22] Constantin Philippenko and Aymeric Dieuleveut. Bidirectional compression in het-
erogeneous settings for distributed or federated learning with partial participation:
tight convergence guarantees. 2022. arXiv: 2006.14591 [cs.LG].

https://proceedings.neurips.cc/paper_files/paper/2018/file/6e0917469214d8fbd8c517dcdc6b8dcf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/6e0917469214d8fbd8c517dcdc6b8dcf-Paper.pdf
https://arxiv.org/abs/1803.04765
https://arxiv.org/abs/1803.04765
https://gdpr-info.eu/
https://www.europarl.europa.eu/RegData/etudes/STUD/2020/641530/EPRS_STU(2020)641530_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/STUD/2020/641530/EPRS_STU(2020)641530_EN.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/https://doi.org/10.1016/j.comnet.2016.10.013
http://www.sciencedirect.com/science/article/pii/S138912861630353X
http://www.sciencedirect.com/science/article/pii/S138912861630353X
https://arxiv.org/abs/2006.14591

162 BIBLIOGRAPHY

[PD21] Constantin Philippenko and Aymeric Dieuleveut. “Preserved central model for faster
bidirectional compression in distributed settings”. In: Advances in Neural Information
Processing Systems. Ed. by M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan. Vol. 34. Curran Associates, Inc., 2021, pp. 2387–2399. URL:
https://proceedings.neurips.cc/paper_files/paper/2021/
file/13d63838ef1fb6f34ca2dc6821c60e49-Paper.pdf.

[PFT21] Amaury Bouchra Pilet, Davide Frey, and François Taiani. “Simple, Efficient and
Convenient Decentralized Multi-task Learning for Neural Networks.” In: IDA. 2021,
pp. 37–49.

[Pra+03] R. Prasad, C. Dovrolis, M. Murray, and K. Claffy. “Bandwidth Estimation: Metrics,
Measurement Techniques, and Tools”. In: IEEE Network 17.6 (2003), pp. 27–35.

[Pri57] R. C. Prim. “Shortest Connection Networks and Some Generalizations”. In: The Bell
System Technical Journal 36.6 (1957), pp. 1389–1401. DOI: 10.1002/j.1538-
7305.1957.tb01515.x.

[POP20a] Shi Pu, Alex Olshevsky, and Ioannis Ch. Paschalidis. “Asymptotic Network Inde-
pendence in Distributed Stochastic Optimization for Machine Learning: Examining
Distributed and Centralized Stochastic Gradient Descent”. In: IEEE Signal Process.
Mag. 37.3 (2020), pp. 114–122.

[POP20b] Shi Pu, Alex Olshevsky, and Ioannis Ch. Paschalidis. “Asymptotic Network Inde-
pendence in Distributed Stochastic Optimization for Machine Learning: Examining
Distributed and Centralized Stochastic Gradient Descent”. In: IEEE Signal Processing
Magazine 37.3 (2020), pp. 114–122. DOI: 10.1109/MSP.2020.2975212.

[Qiu+23] Xinchi Qiu, Titouan Parcollet, Javier Fernandez-Marques, Pedro P. B. Gusmao, Yan
Gao, Daniel J. Beutel, Taner Topal, Akhil Mathur, and Nicholas D. Lane. “A First
Look into the Carbon Footprint of Federated Learning”. In: Journal of Machine
Learning Research 24.129 (2023), pp. 1–23. URL: http://jmlr.org/papers/
v24/21-0445.html.

[RNV12] S. Sundhar Ram, Angelia Nedic, and Venugopal V. Veeravalli. “A New Class of
Distributed Optimization Algorithms: Application to Regression of Distributed
Data”. In: Optimization Methods and Software 27.1 (2012), pp. 71–88. DOI: 10.
1080/10556788.2010.511669. URL: https://doi.org/10.1080/
10556788.2010.511669.

[Ram+19] Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Françoise Beaufays.
Federated Learning for Emoji Prediction in a Mobile Keyboard. 2019. arXiv: 1906.
04329 [cs.CL].

[Red+21] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush,
Jakub Konečný, Sanjiv Kumar, and Hugh Brendan McMahan. “Adaptive Federated
Optimization”. In: International Conference on Learning Representations. 2021. URL:
https://openreview.net/forum?id=LkFG3lB13U5.

[RV17] Oded Regev and Aravindan Vijayaraghavan. “On Learning Mixtures of Well-
Separated Gaussians”. In: 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS). 2017, pp. 85–96. DOI: 10.1109/FOCS.2017.17.

https://proceedings.neurips.cc/paper_files/paper/2021/file/13d63838ef1fb6f34ca2dc6821c60e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/13d63838ef1fb6f34ca2dc6821c60e49-Paper.pdf
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://doi.org/10.1109/MSP.2020.2975212
http://jmlr.org/papers/v24/21-0445.html
http://jmlr.org/papers/v24/21-0445.html
https://doi.org/10.1080/10556788.2010.511669
https://doi.org/10.1080/10556788.2010.511669
https://doi.org/10.1080/10556788.2010.511669
https://doi.org/10.1080/10556788.2010.511669
https://arxiv.org/abs/1906.04329
https://arxiv.org/abs/1906.04329
https://openreview.net/forum?id=LkFG3lB13U5
https://doi.org/10.1109/FOCS.2017.17

BIBLIOGRAPHY 163

[Res12] Meta AI Research. Federated Learning Simulator (FLSim). https://github.
com/facebookresearch/FLSim/tree/main/examples. 2012.

[RVd23] Mónica Ribero, Haris Vikalo, and Gustavo de Veciana. “Federated Learning Under
Intermittent Client Availability and Time-Varying Communication Constraints”. In:
IEEE Journal of Selected Topics in Signal Processing 17.1 (Jan. 2023), pp. 98–111.
ISSN: 1941-0484. DOI: 10.1109/JSTSP.2022.3224590.

[Rod+23b] Angelo Rodio, Francescomaria Faticanti, Othmane Marfoq, Giovanni Neglia, and
Emilio Leonardi. “Federated Learning under Heterogeneous and Correlated Client
Availability”. In: IEEE INFOCOM 2023 - IEEE Conference on Computer Communi-
cations. 2023, pp. 1–10. DOI: 10.1109/INFOCOM53939.2023.10228876.

[RJ22] Yichen Ruan and Carlee Joe-Wong. “FedSoft: Soft Clustered Federated Learning
with Proximal Local Updating”. In: Proceedings of the AAAI Conference on Artificial
Intelligence 36.7 (June 2022), pp. 8124–8131. DOI: 10.1609/aaai.v36i7.
20785. URL: https://ojs.aaai.org/index.php/AAAI/article/
view/20785.

[RE13] Paul Ruvolo and Eric Eaton. “ELLA: An Efficient Lifelong Learning Algorithm”.
In: Proceedings of the 30th International Conference on Machine Learning. Ed. by
Sanjoy Dasgupta and David McAllester. Vol. 28. Proceedings of Machine Learning
Research 1. Atlanta, Georgia, USA: PMLR, June 2013, pp. 507–515. URL: https:
//proceedings.mlr.press/v28/ruvolo13.html.

[Sal+20] Ahmed Salem, Apratim Bhattacharya, Michael Backes, Mario Fritz, and Yang Zhang.
“{Updates-Leak}: Data Set Inference and Reconstruction Attacks in Online Learning”.
In: 29th USENIX security symposium (USENIX Security 20). 2020, pp. 1291–1308.

[San+18] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. “Mobilenetv2: Inverted residuals and linear bottlenecks”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2018, pp. 4510–
4520.

[SMS20] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. “Clustered Federated Learn-
ing: Model-Agnostic Distributed Multitask Optimization Under Privacy Constraints”.
In: IEEE Transactions on Neural Networks and Learning Systems (2020).

[Sat+19] Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. “Sparse
binary compression: Towards distributed deep learning with minimal communication”.
In: 2019 International Joint Conference on Neural Networks (IJCNN). IEEE. 2019,
pp. 1–8.

[Sca+18] Kevin Scaman, Francis Bach, Sebastien Bubeck, Laurent Massoulié, and Yin Tat Lee.
“Optimal Algorithms for Non-Smooth Distributed Optimization in Networks”. In:
Advances in Neural Information Processing Systems. Ed. by S. Bengio, H. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. Vol. 31. Curran Associates,
Inc., 2018. URL: https://proceedings.neurips.cc/paper_files/
paper/2018/file/8fb21ee7a2207526da55a679f0332de2-Paper.
pdf.

https://github.com/facebookresearch/FLSim/tree/main/examples
https://github.com/facebookresearch/FLSim/tree/main/examples
https://doi.org/10.1109/JSTSP.2022.3224590
https://doi.org/10.1109/INFOCOM53939.2023.10228876
https://doi.org/10.1609/aaai.v36i7.20785
https://doi.org/10.1609/aaai.v36i7.20785
https://ojs.aaai.org/index.php/AAAI/article/view/20785
https://ojs.aaai.org/index.php/AAAI/article/view/20785
https://proceedings.mlr.press/v28/ruvolo13.html
https://proceedings.mlr.press/v28/ruvolo13.html
https://proceedings.neurips.cc/paper_files/paper/2018/file/8fb21ee7a2207526da55a679f0332de2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/8fb21ee7a2207526da55a679f0332de2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/8fb21ee7a2207526da55a679f0332de2-Paper.pdf

164 BIBLIOGRAPHY

[Sca+17] Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Mas-
soulié. “Optimal Algorithms for Smooth and Strongly Convex Distributed Opti-
mization in Networks”. In: Proceedings of the 34th International Conference on
Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings
of Machine Learning Research. PMLR, Aug. 2017, pp. 3027–3036. URL: https:
//proceedings.mlr.press/v70/scaman17a.html.

[Sch+18] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-
Barwinska, Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. “Progress & Com-
press: A Scalable Framework for Continual Learning”. In: International Conference
on Machine Learning. PMLR. 2018, pp. 4528–4537.

[SL21] Suhail Mohmad Shah and Vincent K. N. Lau. “Model Compression for Communica-
tion Efficient Federated Learning”. In: IEEE Transactions on Neural Networks and
Learning Systems (2021), pp. 1–15. DOI: 10.1109/TNNLS.2021.3131614.

[SB14] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.

[Sha+21] Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. “Personalized Federated
Learning using Hypernetworks”. In: Proceedings of the 38th International Conference
on Machine Learning. Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings
of Machine Learning Research. PMLR, July 2021, pp. 9489–9502. URL: https:
//proceedings.mlr.press/v139/shamsian21a.html.

[SH21] Virat Shejwalkar and Amir Houmansadr. “Membership privacy for machine learning
models through knowledge transfer”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 35. 11. 2021, pp. 9549–9557.

[Shi+15] Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. “EXTRA: An Exact First-Order
Algorithm for Decentralized Consensus Optimization”. In: SIAM J. Optimization
25.2 (2015), pp. 944–966.

[SS15] Reza Shokri and Vitaly Shmatikov. “Privacy-Preserving Deep Learning”. In: Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications Secu-
rity. CCS ’15. Denver, Colorado, USA: Association for Computing Machinery, 2015,
pp. 1310–1321. ISBN: 9781450338325. DOI: 10.1145/2810103.2813687.
URL: https://doi.org/10.1145/2810103.2813687.

[Sho+17] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. “Membership
inference attacks against machine learning models”. In: 2017 IEEE symposium on
security and privacy (SP). IEEE. 2017, pp. 3–18.

[Sil+20] Santiago Silva, Andre Altmann, Boris Gutman, and Marco Lorenzi. “Fed-BioMed: A
General Open-Source Frontend Framework for Federated Learning in Healthcare”.
In: Domain Adaptation and Representation Transfer, and Distributed and Collabora-
tive Learning. Ed. by Shadi Albarqouni, Spyridon Bakas, Konstantinos Kamnitsas,
M. Jorge Cardoso, Bennett Landman, Wenqi Li, Fausto Milletari, Nicola Rieke,
Holger Roth, Daguang Xu, and Ziyue Xu. Cham: Springer International Publishing,
2020, pp. 201–210. ISBN: 978-3-030-60548-3.

https://proceedings.mlr.press/v70/scaman17a.html
https://proceedings.mlr.press/v70/scaman17a.html
https://doi.org/10.1109/TNNLS.2021.3131614
https://proceedings.mlr.press/v139/shamsian21a.html
https://proceedings.mlr.press/v139/shamsian21a.html
https://doi.org/10.1145/2810103.2813687
https://doi.org/10.1145/2810103.2813687

BIBLIOGRAPHY 165

[Sil+19] Santiago Silva, Boris A Gutman, Eduardo Romero, Paul M Thompson, Andre Alt-
mann, and Marco Lorenzi. “Federated Learning in Distributed Medical Databases:
Meta-Analysis of Large-Scale subcortical brain data”. In: 2019 IEEE 16th Interna-
tional Symposium on Biomedical Imaging (ISBI 2019). IEEE. 2019, pp. 270–274.

[Smi+17] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. “Federated
Multi-Task Learning”. In: Proceedings of the 31st International Conference on Neural
Information Processing Systems. NIPS’17. Long Beach, California, USA: Curran
Associates Inc., 2017, pp. 4427–4437. ISBN: 9781510860964.

[SSZ17] Jake Snell, Kevin Swersky, and Richard Zemel. “Prototypical Networks for Few-
shot Learning”. In: Advances in Neural Information Processing Systems. Ed. by
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett. Vol. 30. Curran Associates, Inc., 2017. URL: https : / /
proceedings . neurips . cc / paper _ files / paper / 2017 / file /
cb8da6767461f2812ae4290eac7cbc42-Paper.pdf.

[SM21] Liwei Song and Prateek Mittal. “Systematic evaluation of privacy risks of machine
learning models”. In: 30th USENIX Security Symposium (USENIX Security 21). 2021,
pp. 2615–2632.

[Spr+04] Neil Spring, Ratul Mahajan, David Wetherall, and Thomas Anderson. “Measuring
ISP Topologies with Rocketfuel”. In: IEEE/ACM Trans. Netw. 12.1 (Feb. 2004),
pp. 2–16. ISSN: 1063-6692. DOI: 10.1109/TNET.2003.822655. URL: https:
//doi.org/10.1109/TNET.2003.822655.

[Sti19] Sebastian U. Stich. “Local SGD Converges Fast and Communicates Little”. In:
International Conference on Learning Representations. 2019. URL: https://
openreview.net/forum?id=S1g2JnRcFX.

[Str18] Volker Strobel. Pold87/academic-keyword-occurrence: First release. Version v1.0.0.
Apr. 2018. DOI: 10.5281/zenodo.1218409. URL: https://doi.org/10.
5281/zenodo.1218409.

[Sug+07] Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul Buenau, and Motoaki
Kawanabe. “Direct Importance Estimation with Model Selection and Its Applica-
tion to Covariate Shift Adaptation”. In: Advances in Neural Information Processing
Systems. Ed. by J. Platt, D. Koller, Y. Singer, and S. Roweis. Vol. 20. Curran As-
sociates, Inc., 2007. URL: https://proceedings.neurips.cc/paper_
files/paper/2007/file/be83ab3ecd0db773eb2dc1b0a17836a1-
Paper.pdf.

[Sui+22] Yi Sui, Junfeng Wen, Yenson Lau, Brendan Leigh Ross, and Jesse C Cresswell.
“Find Your Friends: Personalized Federated Learning with the Right Collaborators”.
In: Workshop on Federated Learning: Recent Advances and New Challenges (in
Conjunction with NeurIPS 2022). 2022.

[SSY18] Tao Sun, Yuejiao Sun, and Wotao Yin. “On Markov Chain Gradient Descent”. In:
Advances in Neural Information Processing Systems. Ed. by S. Bengio, H. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. Vol. 31. Curran Associates,
Inc., 2018. URL: https://proceedings.neurips.cc/paper_files/

https://proceedings.neurips.cc/paper_files/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf
https://doi.org/10.1109/TNET.2003.822655
https://doi.org/10.1109/TNET.2003.822655
https://doi.org/10.1109/TNET.2003.822655
https://openreview.net/forum?id=S1g2JnRcFX
https://openreview.net/forum?id=S1g2JnRcFX
https://doi.org/10.5281/zenodo.1218409
https://doi.org/10.5281/zenodo.1218409
https://doi.org/10.5281/zenodo.1218409
https://proceedings.neurips.cc/paper_files/paper/2007/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/1371bccec2447b5aa6d96d2a540fb401-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/1371bccec2447b5aa6d96d2a540fb401-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/1371bccec2447b5aa6d96d2a540fb401-Paper.pdf

166 BIBLIOGRAPHY

paper/2018/file/1371bccec2447b5aa6d96d2a540fb401-Paper.
pdf.

[Sup+] Abhijit Suprem, Joy Arulraj, Calton Pu, and Joao Ferreira. “ODIN: Automated
Drift Detection and Recovery in Video Analytics”. In: Proceedings of the VLDB
Endowment 13.11 ().

[TTN20] Canh T. Dinh, Nguyen Tran, and Josh Nguyen. “Personalized Federated Learning with
Moreau Envelopes”. In: Advances in Neural Information Processing Systems. Ed. by
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin. Vol. 33. Curran Asso-
ciates, Inc., 2020, pp. 21394–21405. URL: https://proceedings.neurips.
cc / paper / 2020 / file / f4f1f13c8289ac1b1ee0ff176b56fc60 -
Paper.pdf.

[Tak+23] Yuki Takezawa, Ryoma Sato, Han Bao, Kenta Niwa, and Makoto Yamada. Beyond
Exponential Graph: Communication-Efficient Topologies for Decentralized Learning
via Finite-time Convergence. 2023. arXiv: 2305.11420 [cs.LG].

[Tan+22a] Lei Tan, Xiaoxi Zhang, Yipeng Zhou, Xinkai Che, Miao Hu, Xu Chen, and Di
Wu. “AdaFed: Optimizing Participation-Aware Federated Learning with Adaptive
Aggregation Weights”. In: IEEE Transactions on Network Science and Engineering
(2022).

[TL19] Mingxing Tan and Quoc Le. “EfficientNet: Rethinking Model Scaling for Convolu-
tional Neural Networks”. In: Proceedings of the 36th International Conference on
Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97.
Proceedings of Machine Learning Research. PMLR, Sept. 2019, pp. 6105–6114. URL:
https://proceedings.mlr.press/v97/tan19a.html.

[Tan+22b] Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi
Zhang. “FedProto: Federated Prototype Learning across Heterogeneous Clients”. In:
AAAI Conference on Artificial Intelligence. 2022.

[Tan+18] Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu. “D2: Decentralized
Training over Decentralized Data”. In: Proceedings of the 35th International Con-
ference on Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80.
Proceedings of Machine Learning Research. PMLR, July 2018, pp. 4848–4856. URL:
https://proceedings.mlr.press/v80/tang18a.html.

[Tan+22c] Minxue Tang, Xuefei Ning, Yitu Wang, Jingwei Sun, Yu Wang, Hai Li, and Yi-
ran Chen. “FedCor: Correlation-Based Active Client Selection Strategy for Het-
erogeneous Federated Learning”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2022.

[Tan+21] Xinyu Tang, Saeed Mahloujifar, Liwei Song, Virat Shejwalkar, Milad Nasr,
Amir Houmansadr, and Prateek Mittal. “Mitigating membership inference attacks
by self-distillation through a novel ensemble architecture”. In: arXiv preprint
arXiv:2110.08324 (2021).

[Ten19] Tensorflow. TensorFlow Federated Stack Overflow Dataset. https : / /
www . tensorflow . org / federated / api _ docs / python / tff /
simulation/datasets/stackoverflow/load_data. 2019.

https://proceedings.neurips.cc/paper_files/paper/2018/file/1371bccec2447b5aa6d96d2a540fb401-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/1371bccec2447b5aa6d96d2a540fb401-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/1371bccec2447b5aa6d96d2a540fb401-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/1371bccec2447b5aa6d96d2a540fb401-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/1371bccec2447b5aa6d96d2a540fb401-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f4f1f13c8289ac1b1ee0ff176b56fc60-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f4f1f13c8289ac1b1ee0ff176b56fc60-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f4f1f13c8289ac1b1ee0ff176b56fc60-Paper.pdf
https://arxiv.org/abs/2305.11420
https://proceedings.mlr.press/v97/tan19a.html
https://proceedings.mlr.press/v80/tang18a.html
https: //www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/ stackoverflow/load_data
https: //www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/ stackoverflow/load_data
https: //www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/ stackoverflow/load_data

BIBLIOGRAPHY 167

[TH23] Naoyuki Terashita and Satoshi Hara. Decentralized Hyper-Gradient Computation
over Time-Varying Directed Networks. 2023. arXiv: 2210.02129 [stat.ML].

[Ter+21] Jean Ogier du Terrail, Armand Léopold, Clément Joly, Constance Beguier, Math-
ieu Andreux, Charles Maussion, Benoit Schmauch, Eric W. Tramel, Etienne Bend-
jebbar, Mikhail Zaslavskiy, Gilles Wainrib, Maud Milder, Julie Gervasoni, Julien
Guérin, Thierry Durand, Alain Livartowski, Kelvin Moutet, Clément Gautier, Inal
Djafar, Anne-Laure Moisson, Camille Marini, Mathieu Galtier, Guillaume Batail-
lon, and Pierre-Etienne Heudel. “Collaborative Federated Learning behind Hospi-
tals’ Firewalls for Predicting Histological Response to Neoadjuvant Chemotherapy
in Triple-Negative Breast Cancer”. In: medRxiv (2021). DOI: 10.1101/2021.
10.27.21264834. eprint: https://www.medrxiv.org/content/
early/2021/10/28/2021.10.27.21264834.full.pdf. URL: https:
//www.medrxiv.org/content/early/2021/10/28/2021.10.27.
21264834.

[Thr94] S. Thrun. “A Lifelong Learning Perspective for Mobile Robot Control”. In: Pro-
ceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS’94). Vol. 1. 1994, 23–30 vol.1. DOI: 10.1109/IROS.1994.407413.

[TE11] Antonio Torralba and Alexei A Efros. “Unbiased look at dataset bias”. In: CVPR
2011. IEEE. 2011, pp. 1521–1528.

[TB20] Florian Tramer and Dan Boneh. “Differentially private learning needs better features
(or much more data)”. In: arXiv preprint arXiv:2011.11660 (2020).

[Tra+16] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
“Stealing machine learning models via prediction {APIs}”. In: 25th USENIX security
symposium (USENIX Security 16). 2016, pp. 601–618.

[TLR12] Konstantinos I. Tsianos, Sean Lawlor, and Michael G. Rabbat. “Consensus-based
distributed optimization: Practical issues and applications in large-scale machine
learning”. In: 2012 50th Annual Allerton Conference on Communication, Control,
and Computing (Allerton). 2012, pp. 1543–1550. DOI: 10.1109/Allerton.
2012.6483403.

[Tsy08] Alexandre B. Tsybakov. Introduction to Nonparametric Estimation. 1st. Springer
Publishing Company, Incorporated, 2008. ISBN: 0387790519.

[Tu+22] Xuezhen Tu, Kun Zhu, Nguyen Cong Luong, Dusit Niyato, Yang Zhang, and Juan Li.
“Incentive Mechanisms for Federated Learning: From Economic and Game Theoretic
Perspective”. In: IEEE Transactions on Cognitive Communications and Networking
8.3 (2022), pp. 1566–1593. DOI: 10.1109/TCCN.2022.3177522.

[Uni+21] Archit Uniyal, Rakshit Naidu, Sasikanth Kotti, Sahib Singh, Patrik Joslin Kenfack,
Fatemehsadat Mireshghallah, and Andrew Trask. “DP-SGD vs PATE: Which Has
Less Disparate Impact on Model Accuracy?” In: arXiv preprint arXiv:2106.12576
(2021).

https://arxiv.org/abs/2210.02129
https://doi.org/10.1101/2021.10.27.21264834
https://doi.org/10.1101/2021.10.27.21264834
https://www.medrxiv.org/content/early/2021/10/28/2021.10.27.21264834.full.pdf
https://www.medrxiv.org/content/early/2021/10/28/2021.10.27.21264834.full.pdf
https://www.medrxiv.org/content/early/2021/10/28/2021.10.27.21264834
https://www.medrxiv.org/content/early/2021/10/28/2021.10.27.21264834
https://www.medrxiv.org/content/early/2021/10/28/2021.10.27.21264834
https://doi.org/10.1109/IROS.1994.407413
https://doi.org/10.1109/Allerton.2012.6483403
https://doi.org/10.1109/Allerton.2012.6483403
https://doi.org/10.1109/TCCN.2022.3177522

168 BIBLIOGRAPHY

[Vol+17] Michael V"olske, Martin Potthast, Shahbaz Syed, and Benno Stein. “TL;DR: Mining
Reddit to Learn Automatic Summarization”. In: Proceedings of the Workshop on New
Frontiers in Summarization. Copenhagen, Denmark: Association for Computational
Linguistics, Sept. 2017, pp. 59–63. DOI: 10.18653/v1/W17- 4508. URL:
https://www.aclweb.org/anthology/W17-4508.

[VH08] Laurens Van der Maaten and Geoffrey Hinton. “Visualizing data using t-SNE”. In:
Journal of machine learning research 9.11 (2008).

[Van+18] G. Van Horn, O. Mac Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard, H. Adam, P. Perona,
and S. Belongie. “The iNaturalist Species Classification and Detection Dataset”. In:
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018,
pp. 8769–8778.

[VBT17] Paul Vanhaesebrouck, Aurélien Bellet, and Marc Tommasi. “Decentralized Collab-
orative Learning of Personalized Models over Networks”. In: Proceedings of the
20th International Conference on Artificial Intelligence and Statistics. Ed. by Aarti
Singh and Jerry Zhu. Vol. 54. Proceedings of Machine Learning Research. PMLR,
Apr. 2017, pp. 509–517. URL: https://proceedings.mlr.press/v54/
vanhaesebrouck17a.html.

[VC15] V. N. Vapnik and A. Ya. Chervonenkis. “On the Uniform Convergence of Relative
Frequencies of Events to Their Probabilities”. In: Measures of Complexity: Festschrift
for Alexey Chervonenkis. Cham: Springer International Publishing, 2015, pp. 11–30.
ISBN: 978-3-319-21852-6. DOI: 10.1007/978-3-319-21852-6_3. URL:
https://doi.org/10.1007/978-3-319-21852-6_3.

[Vet+14] Mitko Veta, Josien PW Pluim, Paul J Van Diest, and Max A Viergever. “Breast cancer
histopathology image analysis: A review”. In: IEEE transactions on biomedical
engineering 61.5 (2014), pp. 1400–1411.

[Vog+20] Robin Vogel, Mastane Achab, Stéphan Clémençon, and Charles Tillier. “Weighted
Emprirical Risk Minimization: Transfer Learning based on Importance Sampling”.
In: ESANN. 2020.

[WBX23] Heqiang Wang, Jieming Bian, and Jie Xu. On the Local Cache Update Rules in
Streaming Federated Learning. 2023. arXiv: 2303.16340 [cs.LG].

[Wan+20a] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman
Khazaeni. “Federated Learning with Matched Averaging”. In: International Confer-
ence on Learning Representations. 2020. URL: https://openreview.net/
forum?id=BkluqlSFDS.

[Wan+21a] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan
Al-Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al.
“A Field Guide to Federated Optimization”. In: arXiv preprint arXiv:2107.06917
(2021).

[WJ19] Jianyu Wang and Gauri Joshi. “Adaptive Communication Strategies to Achieve the
Best Error-Runtime Trade-off in Local-Update SGD”. In: Proceedings of Machine
Learning and Systems. Ed. by A. Talwalkar, V. Smith, and M. Zaharia. Vol. 1. 2019,
pp. 212–229. URL: https://proceedings.mlsys.org/paper_files/

https://doi.org/10.18653/v1/W17-4508
https://www.aclweb.org/anthology/W17-4508
https://proceedings.mlr.press/v54/vanhaesebrouck17a.html
https://proceedings.mlr.press/v54/vanhaesebrouck17a.html
https://doi.org/10.1007/978-3-319-21852-6_3
https://doi.org/10.1007/978-3-319-21852-6_3
https://arxiv.org/abs/2303.16340
https://openreview.net/forum?id=BkluqlSFDS
https://openreview.net/forum?id=BkluqlSFDS
https://proceedings.mlsys.org/paper_files/paper/2019/file/4a0151b47bd93c5de2a0b57831981a0d-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2019/file/4a0151b47bd93c5de2a0b57831981a0d-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2019/file/4a0151b47bd93c5de2a0b57831981a0d-Paper.pdf

BIBLIOGRAPHY 169

paper/2019/file/4a0151b47bd93c5de2a0b57831981a0d-Paper.
pdf.

[WJ21] Jianyu Wang and Gauri Joshi. “Cooperative SGD: A Unified Framework for the
Design and Analysis of Local-Update SGD Algorithms”. In: Journal of Machine
Learning Research 22.213 (2021), pp. 1–50. URL: http://jmlr.org/papers/
v22/20-147.html.

[Wan+20b] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. “Tackling
the Objective Inconsistency Problem in Heterogeneous Federated Optimization”.
In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle, M.
Ranzato, R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc.,
2020, pp. 7611–7623. URL: https://proceedings.neurips.cc/paper_
files/paper/2020/file/564127c03caab942e503ee6f810f54fd-
Paper.pdf.

[Wan+19a] Jianyu Wang, Anit Kumar Sahu, Zhouyi Yang, Gauri Joshi, and Soummya Kar.
“MATCHA: Speeding Up Decentralized SGD via Matching Decomposition Sam-
pling”. In: 2019 Sixth Indian Control Conference (ICC). 2019, pp. 299–300. DOI:
10.1109/ICC47138.2019.9123209.

[Wan+20c] Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. SlowMo: Improv-
ing Communication-Efficient Distributed SGD with Slow Momentum. 2020. arXiv:
1910.00643 [cs.LG].

[Wan+21b] Su Wang, Yichen Ruan, Yuwei Tu, Satyavrat Wagle, Christopher G. Brinton, and Car-
lee Joe-Wong. “Network-Aware Optimization of Distributed Learning for Fog Com-
puting”. In: IEEE/ACM Transactions on Networking 29.5 (Oct. 2021). Conference
Name: IEEE/ACM Transactions on Networking, pp. 2019–2032. ISSN: 1558-2566.
DOI: 10.1109/TNET.2021.3075432.

[Wan+22a] Tianchun Wang, Wei Cheng, Dongsheng Luo, Wenchao Yu, Jingchao Ni, Liang Tong,
Haifeng Chen, and Xiang Zhang. “Personalized Federated Learning via Heteroge-
neous Modular Networks”. In: 2022 IEEE International Conference on Data Mining
(ICDM). 2022, pp. 1197–1202. DOI: 10.1109/ICDM54844.2022.00154.

[Wan+22b] Tianchun Wang, Wei Cheng, Dongsheng Luo, Wenchao Yu, Jingchao Ni, Liang Tong,
Haifeng Chen, and Xiang Zhang. “Personalized Federated Learning via Heteroge-
neous Modular Networks”. In: 2022 IEEE International Conference on Data Mining
(ICDM). 2022, pp. 1197–1202. DOI: 10.1109/ICDM54844.2022.00154.

[Wan+19b] Yan Wang, Wei-Lun Chao, Kilian Q. Weinberger, and Laurens van der Maaten.
SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning. 2019.
arXiv: 1911.04623 [cs.CV].

[Wan+20d] Yijue Wang, Chenghong Wang, Zigeng Wang, Shanglin Zhou, Hang Liu, Jinbo Bi,
Caiwen Ding, and Sanguthevar Rajasekaran. “Against membership inference attack:
Pruning is all you need”. In: arXiv preprint arXiv:2008.13578 (2020).

[WeB19] WeBank. WeBank and Swiss Resigned Cooperation MOU, 2019. https : / /
finance.yahoo.com/news/webank-swiss-signed-cooperation-
mou-112300218.html [Retrieved: Aug 2019]. 2019.

https://proceedings.mlsys.org/paper_files/paper/2019/file/4a0151b47bd93c5de2a0b57831981a0d-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2019/file/4a0151b47bd93c5de2a0b57831981a0d-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2019/file/4a0151b47bd93c5de2a0b57831981a0d-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2019/file/4a0151b47bd93c5de2a0b57831981a0d-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2019/file/4a0151b47bd93c5de2a0b57831981a0d-Paper.pdf
http://jmlr.org/papers/v22/20-147.html
http://jmlr.org/papers/v22/20-147.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/564127c03caab942e503ee6f810f54fd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/564127c03caab942e503ee6f810f54fd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/564127c03caab942e503ee6f810f54fd-Paper.pdf
https://doi.org/10.1109/ICC47138.2019.9123209
https://arxiv.org/abs/1910.00643
https://doi.org/10.1109/TNET.2021.3075432
https://doi.org/10.1109/ICDM54844.2022.00154
https://doi.org/10.1109/ICDM54844.2022.00154
https://arxiv.org/abs/1911.04623
https://finance.yahoo.com/news/webank-swiss-signed-cooperation-mou-112300218.html
https://finance.yahoo.com/news/webank-swiss-signed-cooperation-mou-112300218.html
https://finance.yahoo.com/news/webank-swiss-signed-cooperation-mou-112300218.html

170 BIBLIOGRAPHY

[Wei+20] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi
Jin, Tony QS Quek, and H Vincent Poor. “Federated Learning with Differential Pri-
vacy: Algorithms and Performance Analysis”. In: IEEE Transactions on Information
Forensics and Security 15 (2020), pp. 3454–3469.

[Woo+20] Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins,
Brendan Mcmahan, Ohad Shamir, and Nathan Srebro. “Is Local SGD Better than
Minibatch SGD?” In: Proceedings of the 37th International Conference on Ma-
chine Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of
Machine Learning Research. PMLR, July 2020, pp. 10334–10343. URL: https:
//proceedings.mlr.press/v119/woodworth20a.html.

[Wu+23] Yue Wu, Shuaicheng Zhang, Wenchao Yu, Yanchi Liu, Quanquan Gu, Dawei Zhou,
Haifeng Chen, and Wei Cheng. Personalized Federated Learning under Mixture of
Distributions. 2023. arXiv: 2305.01068 [cs.LG].

[XNS21] Chuan Xu, Giovanni Neglia, and Nicola Sebastianelli. “Dynamic backup workers
for parallel machine learning”. In: Computer Networks 188 (2021), p. 107846. ISSN:
1389-1286. DOI: https://doi.org/10.1016/j.comnet.2021.107846.
URL: https://www.sciencedirect.com/science/article/pii/
S1389128621000256.

[Yan+20a] Liu Yang, Ben Tan, Vincent W. Zheng, Kai Chen, and Qiang Yang. “Federated
Recommendation Systems”. In: Federated Learning: Privacy and Incentive. Ed. by
Qiang Yang, Lixin Fan, and Han Yu. Cham: Springer International Publishing, 2020,
pp. 225–239. ISBN: 978-3-030-63076-8. DOI: 10.1007/978-3-030-63076-
8_16. URL: https://doi.org/10.1007/978-3-030-63076-8_16.

[Yan+18] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong,
Daniel Ramage, and Françoise Beaufays. Applied Federated Learning: Improving
Google Keyboard Query Suggestions. 2018. arXiv: 1812.02903 [cs.LG].

[Yan+20b] Ziqi Yang, Bin Shao, Bohan Xuan, Ee-Chien Chang, and Fan Zhang. “Defending
model inversion and membership inference attacks via prediction purification”. In:
arXiv preprint arXiv:2005.03915 (2020).

[Yao86] Andrew Chi-Chih Yao. “How to generate and exchange secrets”. In: 27th Annual
Symposium on Foundations of Computer Science (sfcs 1986). 1986, pp. 162–167.
DOI: 10.1109/SFCS.1986.25.

[Ye+22] Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda, Vincent Bindschaedler, and
Reza Shokri. “Enhanced membership inference attacks against machine learning
models”. In: CCS ’22 (2022).

[Yeo+20] Samuel Yeom, Irene Giacomelli, Alan Menaged, Matt Fredrikson, and Somesh Jha.
“Overfitting, robustness, and malicious algorithms: A study of potential causes of
privacy risk in machine learning”. In: Journal of Computer Security 28.1 (2020),
pp. 35–70.

https://proceedings.mlr.press/v119/woodworth20a.html
https://proceedings.mlr.press/v119/woodworth20a.html
https://arxiv.org/abs/2305.01068
https://doi.org/https://doi.org/10.1016/j.comnet.2021.107846
https://www.sciencedirect.com/science/article/pii/S1389128621000256
https://www.sciencedirect.com/science/article/pii/S1389128621000256
https://doi.org/10.1007/978-3-030-63076-8_16
https://doi.org/10.1007/978-3-030-63076-8_16
https://doi.org/10.1007/978-3-030-63076-8_16
https://arxiv.org/abs/1812.02903
https://doi.org/10.1109/SFCS.1986.25

BIBLIOGRAPHY 171

[Yoo+21] Jaehong Yoon, Wonyong Jeong, Giwoong Lee, Eunho Yang, and Sung Ju Hwang.
“Federated Continual Learning with Weighted Inter-client Transfer”. In: Proceedings
of the 38th International Conference on Machine Learning. Ed. by Marina Meila
and Tong Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR, July
2021, pp. 12073–12086. URL: https://proceedings.mlr.press/v139/
yoon21b.html.

[YBS22] Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. Salvaging Federated Learning
by Local Adaptation. 2022. arXiv: 2002.04758 [cs.LG].

[YLY16] Kun Yuan, Qing Ling, and Wotao Yin. “On the Convergence of Decentralized Gradi-
ent Descent”. In: SIAM Journal on Optimization 26.3 (2016), pp. 1835–1854. DOI:
10.1137/130943170. eprint: https://doi.org/10.1137/130943170.
URL: https://doi.org/10.1137/130943170.

[Yua+19] Kun Yuan, Bicheng Ying, Xiaochuan Zhao, and Ali H. Sayed. “Exact Diffusion for
Distributed Optimization and Learning—Part I: Algorithm Development”. In: IEEE
Transactions on Signal Processing 67.3 (2019), pp. 708–723. DOI: 10.1109/TSP.
2018.2875898.

[Yua+23] Liangqi Yuan, Lichao Sun, Philip S. Yu, and Ziran Wang. Decentralized Federated
Learning: A Survey and Perspective. 2023. arXiv: 2306.01603 [cs.LG].

[Yua+21] Ye Yuan, Jun Liu, Dou Jin, Zuogong Yue, Ruijuan Chen, Maolin Wang, Chuan Sun,
Lei Xu, Feng Hua, Xin He, Xinlei Yi, Tao Yang, Hai-Tao Zhang, Shaochun Sui, and
Han Ding. DeceFL: A Principled Decentralized Federated Learning Framework.
2021. arXiv: 2107.07171 [cs.LG].

[Yur+19] Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia
Hoang, and Yasaman Khazaeni. “Bayesian Nonparametric Federated Learning of
Neural Networks”. In: Proceedings of the 36th International Conference on Ma-
chine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97.
Proceedings of Machine Learning Research. PMLR, Sept. 2019, pp. 7252–7261.
URL: https://proceedings.mlr.press/v97/yurochkin19a.html.

[ZBT20] Valentina Zantedeschi, Aurélien Bellet, and Marc Tommasi. “Fully Decentralized
Joint Learning of Personalized Models and Collaboration Graphs”. In: ed. by Silvia
Chiappa and Roberto Calandra. Vol. 108. Proceedings of Machine Learning Research.
Online: PMLR, Aug. 2020, pp. 864–874. URL: http://proceedings.mlr.
press/v108/zantedeschi20a.html.

[ZY17] Jinshan Zeng and Wotao Yin. “Extrapush for Convex Smooth Decentralized Opti-
mization Over Directed Networks”. In: Journal of Computational Mathematics 35.4
(2017), pp. 383–396. ISSN: 02549409, 19917139. URL: http://www.jstor.
org/stable/45151444 (visited on 07/30/2023).

[ZWY22] L. Zhang, D. Wu, and X. Yuan. “FedZKT: Zero-Shot Knowledge Transfer towards
Resource-Constrained Federated Learning with Heterogeneous On-Device Models”.
In: 2022 IEEE 42nd International Conference on Distributed Computing Systems
(ICDCS). Los Alamitos, CA, USA: IEEE Computer Society, July 2022, pp. 928–
938. DOI: 10.1109/ICDCS54860.2022.00094. URL: https://doi.
ieeecomputersociety.org/10.1109/ICDCS54860.2022.00094.

https://proceedings.mlr.press/v139/yoon21b.html
https://proceedings.mlr.press/v139/yoon21b.html
https://arxiv.org/abs/2002.04758
https://doi.org/10.1137/130943170
https://doi.org/10.1137/130943170
https://doi.org/10.1137/130943170
https://doi.org/10.1109/TSP.2018.2875898
https://doi.org/10.1109/TSP.2018.2875898
https://arxiv.org/abs/2306.01603
https://arxiv.org/abs/2107.07171
https://proceedings.mlr.press/v97/yurochkin19a.html
http://proceedings.mlr.press/v108/zantedeschi20a.html
http://proceedings.mlr.press/v108/zantedeschi20a.html
http://www.jstor.org/stable/45151444
http://www.jstor.org/stable/45151444
https://doi.org/10.1109/ICDCS54860.2022.00094
https://doi.ieeecomputersociety.org/10.1109/ICDCS54860.2022.00094
https://doi.ieeecomputersociety.org/10.1109/ICDCS54860.2022.00094

172 BIBLIOGRAPHY

[Zha+21] Michael Zhang, Karan Sapra, Sanja Fidler, Serena Yeung, and Jose M. Alvarez. “Per-
sonalized Federated Learning with First Order Model Optimization”. In: International
Conference on Learning Representations. 2021. URL: https://openreview.
net/forum?id=ehJqJQk9cw.

[ZY10] Yu Zhang and Dit Yan Yeung. “A Convex Formulation for Learning Task Relation-
ships in Multi-task Learning”. In: Proceedings of the 26th Conference on Uncertainty
in Artificial Intelligence, UAI 2010. 2010, p. 733.

[ZCY11] Jiayu Zhou, Jianhui Chen, and Jieping Ye. “Clustered Multi-Task Learning
Via Alternating Structure Optimization”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by J. Shawe-Taylor, R. Zemel, P. Bartlett, F.
Pereira, and K. Q. Weinberger. Vol. 24. Curran Associates, Inc., 2011. URL:
https : / / proceedings . neurips . cc / paper / 2011 / file /
a516a87cfcaef229b342c437fe2b95f7-Paper.pdf.

[Zho+20] Zhi Zhou, Song Yang, Lingjun Pu, and Shuai Yu. “CEFL: Online Admission Control,
Data Scheduling, and Accuracy Tuning for Cost-Efficient Federated Learning Across
Edge Nodes”. In: IEEE Internet of Things Journal 7 (2020), pp. 9341–9356.

[Zhu+22] Chen Zhu, Zheng Xu, Mingqing Chen, Jakub Konečný, Andrew Hard, and Tom
Goldstein. “Diurnal or Nocturnal? Federated Learning of Multi-branch Networks
from Periodically Shifting Distributions”. In: International Conference on Learning
Representations. 2022. URL: https://openreview.net/forum?id=E4EE_
ohFGz.

[ZS02] Yunyue Zhu and Dennis Shasha. “StatStream: Statistical Monitoring of Thousands of
Data Streams in Real Time”. In: VLDB. 2002.

[ZHZ21] Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. “Data-Free Knowledge Distillation
for Heterogeneous Federated Learning”. In: Proceedings of the 38th International
Conference on Machine Learning. Ed. by Marina Meila and Tong Zhang. Vol. 139.
Proceedings of Machine Learning Research. PMLR, July 2021, pp. 12878–12889.
URL: https://proceedings.mlr.press/v139/zhu21b.html.

[Zin03] Martin Zinkevich. “Online Convex Programming and Generalized Infinitesimal Gra-
dient Ascent.” In: ICML. Ed. by Tom Fawcett and Nina Mishra. AAAI Press, 2003,
pp. 928–936. ISBN: 1-57735-189-4. URL: http://dblp.uni-trier.de/db/
conf/icml/icml2003.html#Zinkevich03.

https://openreview.net/forum?id=ehJqJQk9cw
https://openreview.net/forum?id=ehJqJQk9cw
https://proceedings.neurips.cc/paper/2011/file/a516a87cfcaef229b342c437fe2b95f7-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/a516a87cfcaef229b342c437fe2b95f7-Paper.pdf
https://openreview.net/forum?id=E4EE_ohFGz
https://openreview.net/forum?id=E4EE_ohFGz
https://proceedings.mlr.press/v139/zhu21b.html
http://dblp.uni-trier.de/db/conf/icml/icml2003.html#Zinkevich03
http://dblp.uni-trier.de/db/conf/icml/icml2003.html#Zinkevich03

List of Figures

1.1 Occurrences of the key word “federated learning” over time in academic papers
(from Google Scholar). The results were obtained using the code from https:
//github.com/Pold87/academic-keyword-occurrence [Str18] . . 2

1.2 Federated learning system. Left: the cross-device scenario includes a large number of
unreliable mobile devices with limited computing resources and slow Internet connections;
it requires a client server architecture where mobiles communicate only with the server.
Right: the cross-silo scenario includes at most a few hundred reliable data silos with
powerful computing resources and high-speed access links; it may take advantage of
peer-to-peer communications. 3

1.3 Tradeoff between a defended classifier’s prediction accuracy on test data (i.e., its
model utility), membership inference attack accuracy on training data (i.e., training
data privacy leakage), membership inference attack accuracy on reference data (i.e.,
reference data privacy leakage) for Purchase100 dataset. “AdvReg” corresponds to
the original formulation of adversarial regularization [NSH18] and “AdvReg-RT”
corresponds to a revisited version that we propose. 16

2.1 Examples for underlay, connectivity graph, and overlay, with routers (blue nodes),
silos (red nodes), underlay links (solid black lines), and information exchanges
(dashed lines). 26

2.2 Networks where a directed topology outperforms an undirected one. 29
2.10 Throughput speedup in comparison to the STAR, when training iNaturalist over

Exodus network. All links with 1 Gbps capacity. 41
2.11 Average test accuracy among N = 100 clients achieved by the algorithms on the

Synthetic, MNIST, and CIFAR-10 datasets. Cumulative importance assigned by
the algorithms to the clients after T = 200 rounds on the Synthetic dataset. . . . 53

2.12 Convergence speed vs. Model bias trade-off for different values of κ̄2 on the
Synthetic dataset, for γ = δ = 0.5. 56

2.13 Effects of data heterogeneity on the Synthetic dataset after T = 200 rounds. . . . 56
2.14 Estimation of the clients’ activities (π̂(t)

k , λ̂(t)
k) for different priors t ∈

{101, 101.5, 102, 102.5, 103, 103.5, 104} and test accuracy after T = 50 rounds on
the MNIST dataset. 56

2.15 Clients’ activities and CA-Fed’s inclusion/exclusion decisions in the presence of
spatial correlation for different degrees of intra-cluster/inter-cluster data distribu-
tions. Average test accuracy after T = 100 rounds on the MNIST dataset. 57

3.1 Effect of client sampling rate (left) and FedEM number of mixture components M
(right) on the test accuracy for CIFAR10 [Kri09]. 81

3.10 Effect of system heterogeneity across clients on CIFAR-100 dataset. The size of the local
datastore increases (resp. decreases) with ∆C for strong (resp. weak) clients. 95

173

https://github.com/Pold87/academic-keyword-occurrence
https://github.com/Pold87/academic-keyword-occurrence

174 LIST OF FIGURES

3.11 Test accuracy vs capacity (local datastore size) for different methods on CIFAR-10. The
capacity is normalized with respect to the initial size of the client’s dataset partition. . . . 95

4.1 A depiction of a data stream: The client/device, with a limited storage capacity
(C = 3), updates its local memory following a FIFO (First-In-First-Out) rule. This
involves evicting the oldest samples from memory to make space for the most
recent ones. Consequently, various samples, represented by distinct colors, reside
in memory for varying durations. 98

4.2 Effect of c2/c1 on the historical clients relative importance p∗
hist for different values

of Nhist/N , when M = 50 and Mhist = 25. The dashed vertical line corresponds
to our estimation of c2/c1 on CIFAR-10 experiments (ĉ2/ĉ1 = 0.15). 108

4.3 The differences ψhist − ψ∗ (left), ψuniform − ψ∗ (center), and ψhist − ψuniform (right)
as a function of Nhist/N for different values of c2/c1, on CIFAR-10 dataset (N =
5× 105) when M = 50 and Mhist = 25. 109

4.4 Evolution of the test accuracy when using different values of phist for CIFAR-10
(left) dataset, when Nhist/N = 5% (left), 20% (center), and 50% (right). The
setting phist = Nhist/N corresponds to Uniform strategy. 113

4.5 Evolution of the test accuracy when using different values of phist for the synthetic
dataset, when Nhist/N = 5% (left), 20% (center), and 50% (right). 114

4.6 Evolution of the test accuracy when using different values of phist for CIFAR-100
dataset, when Nhist/N = 5% (left), 20% (center), and 50% (right). 115

4.7 Evolution of the test accuracy when using different values of phist for FEMNIST
dataset, when Mhist/M = 5% (left), 20% (center), and 50% (right). 116

4.8 Evolution of the test accuracy when using different values of phist for Shakespeare
dataset, when Mhist/M = 5% (left), 20% (center), and 50% (right). 116

4.9 Evolution of average regret across clients (R̄t) as a function of number of samples
and clients. Left: R̄t for different values of n. Center: R̄t for different values of C
with each client receiving only one sample per time-step. Right: R̄t for different
values of s. 126

4.10 Evolution of average regret across clients (R̄′
t) for CIFAR-10 (right) and MNIST

(left). The curves are smoothed using a discount factor of 0.7. 127

E.15 Effect of the number of samples on the average test accuracy across clients unseen
at training on CIFAR100 dataset. 287

E.16 Train loss, train accuracy, test loss, and test accuracy for CIFAR10 [Kri09]. . . . 290
E.17 Train loss, train accuracy, test loss, and test accuracy for CIFAR100 [Kri09]. . . . 291
E.18 Train loss, train accuracy, test loss, and test accuracy for EMNIST [Coh+17]. . . 292
E.19 Train loss, train accuracy, test loss, and test accuracy for FEMNIST [Cal+19;

McM+17]. 293
E.20 Train loss, train accuracy, test loss, and test accuracy for Shakespeare [Cal+19;

McM+17]. 294
E.21 Train loss, train accuracy, test loss, and test accuracy for synthetic dataset. 295

LIST OF FIGURES 175

G.22 From left to the right: effect of c2/c1 on the effective number of samples, the
normalized gradient noise, and the historical clients relative importance p∗

hist for
CIFAR-10 dataset (N = 5× 105) and different values of Nhist/N , when M = 50,
and Mhist = 25. The dashed vertical line corresponds to our estimation of c2/c1 on
CIFAR-10 experiments (ĉ2/ĉ1 = 0.15). 321

List of Tables

1.1 Comparison of existing privacy defenses by reference data treatment. In the second
column, “relative level unspecified” means the target level of relative privacy
requirements between training and reference data is not stated. In the third column,
“single privacy level” means the reference data privacy leakage is evaluated at a
single point on the utility-privacy curve. We use a dashed line (—) to convey that
the defense either does not use reference data (column 2) or does not need to
evaluate reference data privacy leakage (column 3). 17

1.2 Overview of the datasets, tasks, metrics and baseline models in FLamby. For Fed-
Camelyon16 the two different sizes refer to the size of the dataset before and after
tiling. 19

2.1 Algorithms to design the overlay Go from the connectivity graph Gc. 28
2.2 Statistics of iNaturalist dataset distribution for different networks. 36
2.3 Statistics of LEAF dataset distribution for AWS North America network (22 silos). 37
2.4 Datasets and Models. Mini-batch gradient computation time with NVIDIA Tesla

P100. 38
2.5 Sub-iNaturalist training over different networks. 1 Gbps core links capacities, 10

Gbps access links capacities. One local computation step (s = 1). 39
2.6 iNaturalist training over different networks. 1 Gbps core links capacities, 1 Gbps

access links capacities. One local computation step (s = 1). 39

3.1 Average computation time and used GPU for each dataset. 79
3.2 Test accuracy: average across clients / bottom decile. 80
3.3 Average test accuracy across clients unseen at training (train accuracy in parenthe-

sis). 81
3.4 Datasets and models. 86
3.5 Test accuracy: average across clients / bottom decile. 88
3.6 Average test accuracy across clients unseen at training (train accuracy between

parentheses). 88

4.1 Average test accuracy across clients for different datasets in the settings when
Nhist/N = 50%. 110

4.2 Datasets and models. 112
4.3 Average test accuracy across clients for different datasets in the settings when

Nhist/N = 20%. 113
4.4 Average test accuracy across clients for different datasets in the settings when

Nhist/N = 5%. 114
4.5 Average test accuracy across clients for different datasets in the settings when

Nhist/N = 50%. 115

177

178 LIST OF TABLES

1 Sub-iNaturalist training over different networks. 1 Gbps core links capacities, 10
Gbps access links capacities. Five local computation steps. 194

2 Sub-iNaturalist training over different networks. 1 Gbps core links capacities, 10
Gbps access links capacities. Ten local computation steps. 194

3 Average computation time and used CPU/GPU for each dataset. 235
4 Learning rates η and η̄ used for the experiments in Figure 2.11. 235
5 Test accuracy: average across clients. 286
6 Test and train accuracy comparison across different tasks. For each method, the

best test accuracy is reported. For FedEM we run only K
M rounds, where K is the

total number of rounds for other methods–K = 80 for Shakespeare and K = 200
for all other datasets–and M = 3 is the number of components used in FedEM. . 288

7 Test accuracy under 20% client sampling: average across clients with +/- standard
deviation over 3 independent runs. All experiments with 1200 communication rounds.289

List of Algorithms

1 FedAvg: Federated Averaging [McM+17, Algorithm 1]. 5
2 FedOpt Algorithm [Red+21, Algorithm 1]. 6

3 Approximation algorithm for MCT on node-capacitated networks. 31
4 δ-PRIM[AR19] . 32
5 Time Simulator . 32
6 CA-Fed (Correlation-Aware FL) . 51

7 FedEM: Federated Expectation-Maximization . 70
8 D-FedEM: Fully Decentralized Federated Expectation-Maximization 72
9 Basic Surrogate Optimization . 74
10 Federated Surrogate Optimization . 75
11 Fully-Decentralized Federated Surrogate Optimization 77
12 kNN-Per (Typical usage) . 84

13 Meta Algorithm for Federated Learning from Data Streams 103
14 Federated Expectation-Maximization Online Mirror Descent (FEM-OMD) 118
15 FEM-OMD for Gaussian Mixture Models . 121
16 Online Mirror Descent with Incorrect Gradients 122
17 FEM-OMD for discriminative models . 125

179

Appendix

Background

A Background on Numeric Optimization

In this section, we revisit essential concepts utilized in numerical optimization, drawing insights
from the comprehensive handbook by Garrigos et al. [GG23].

A.1 Differentiability

Definition 2. (Differentiability and Jacobian) A function f : Rm 7→ Rn is said to be differentiable
at point x0 ∈ Rm if there exists a linear map Df (x0) : Rm 7→ Rn such that

lim
h→0

∥f(x0 + h)− f(x0)−Df (x0) · h∥Rn

∥h∥Rm

= 0.

If the function f is differentiable at x0, then all of its first partial derivatives exist at x0, and the
linear map Df (x0) is given by the Jacobian matrix J(x0) ∈ Rn×m, which is the matrix defined by
the first partial derivatives of f :

Ji,j (x) = ∂fi

∂xj
(x) , i = 1, . . . , n, j = 1, . . . ,m,

where we write f(x) = (f1(x), . . . , fn(x)).

Definition 3. (Gradient) If f : Rd 7→ R is differentiable, then J(x) ∈ R1×d is a row vector, whose
transpose is called the gradient of f at x: ∇f(x) = J(x)⊺ ∈ Rd×1.

Definition 4. (Hessian) Let f : Rd 7→ R be twice differentiable, and x ∈ Rd. Then we note
∇2f(x) ∈ Rd×d the Hessian of f at x, which is the matrix defined by its second-order partial
derivatives: [

∇2f (x)
]

i,j
= ∂2f

∂xi∂xj
(x) , i, j = 1, . . . , d.

A.2 Lipschitzianity and Smoothness

Definition 5. (Lipschitzianity) Let f : Rm 7→ Rn, and L > 0. We say that f is L-Lipschitz if for
all x,y ∈ Rm,

∥f(x)− f(y)∥Rn ≤ L · ∥x− y∥Rm .

A differentiable function is L-Lipschitz if and only if its differential is uniformly bounded by
L.

Lemma A.1. ([GG23, Lemm 2.6]) Let f : Rm 7→ Rn, and L > 0. Then, f is L-Lipschitz if and
only if for all x ∈ Rm,

∥Df (x)∥ ≤ L.

183

184 APPENDIX

Definition 6. (Smoothness) Let f : Rd 7→ R, and L > 0. We say that f is L-smooth if it is
differentiable and if∇f : Rd 7→ Rd is L-Lipschitz: for all x ∈ Rd,

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ .

Lemma A.2. ([GG23, Lemm 2.25]) If f : Rd 7→ R is L-smooth then, for all x,y ∈ Rd,

f(y) ≤ f(x) + ⟨∇f(x),y− x⟩+ L

2 ∥x− y∥2 .

Lemma A.3. ([GG23, Lemm 2.26]) Let f : Rd 7→ R be a twice differentiable L-smooth function.
Then for all xRd, for every eigenvalue λ of∇2f(x), we have |λ| ≤ L.

A.3 Convexity

Definition 7. (Convexity) We say that f : Rd 7→ R is convex if, for all x,y ∈ Rd, and for all
t ∈ [0, 1],

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y).

The next two lemmas characterize the convexity of a function with the help of first and second-
order derivatives.

Lemma A.4. ([GG23, Lemma 2.8]) If f : Rd 7→ R is convex and differentiable then, for all
x,y ∈ Rd,

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩

Lemma A.5. ([GG23, Lemma 2.9]) Let f : Rd 7→ R be convex and twice differentiable. Then for
all x ∈ Rd, for every eigenvalue λ of∇2f(x), we have λ ≥ 0.

Definition 8. (Strong Convexity) Let f : Rd 7→ R, and µ > 0. We say that f is µ-strongly convex if,
for every x,y ∈ Rd, and every t ∈ [0, 1] we have that

µ
t(t− 1)

2 ∥x− y∥2 + f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y).

The next two lemmas characterize the strong convexity of a function with the help of first and
second-order derivatives.

Lemma A.6. ([GG23, Lemma 2.14]) If f : Rd 7→ R is µ-strongly convex and differentiable then,
for all x,y ∈ Rd,

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩+ µ

2 ∥y − x∥
2

Lemma A.7. ([GG23, Lemma 2.15]) Let f : Rd 7→ R be µ-strongly convex and twice differentiable.
Then for all x ∈ Rd, for every eigenvalue λ of ∇2f(x), we have λ ≥ µ > 0.

APPENDIX 185

B Background on Graph Theory

We now list concepts of graph theory which will be used later on.

• Predecessor, successor, neighbour: If in a graph (i, j) ∈ E , then i is called a predecessor
of j, j is called a successor of i and j, resp. i is called a neighbour of i , resp. j. The set of
predecessors of j is indicated by π(j) (or N−

j), the set of all successors of i is denoted σ(i)
(or N+

i) and the set of neighbours of i is denoted Ni. Note that in the case of undirected
graphs, Ni = π(i) = σ(i).

• Path, circuit and full walk: A path is a sequence is a sequence of nodes (i1, . . . , ip), p > 1,
such that ij ∈ π(ij+1), j = 1, . . . , p−1. An elementary path is a path where no node appears
more then once. When the initial node and the final node coincide, one speaks of circuit. A
circuit C = (i1, . . . , ip = i1) is an elementary circuit if the path (i1, . . . , ip−1) is elementary,
an elementary circuit is sometimes referred to as a cycle. If a cycle spans all vertices of the
graph it is called a Hamiltonian cycle. The length of circuit C = (i1, . . . , ip) is the number
of the arcs of which it is composed, i.e., |C| = p, and its weight is the sum of the weights of
its arcs, i.e, d(C) =

∑p−1
k=1 d(ik, ik+1). We define also the notion of "Full-Walk" on a graph

as the result of a depth-first search (DFS) of this graph. We define the weight of a graph
G = (V, E) as the weight of the circuit made of all its arcs.

• Subgraph, spanning subgraph: Given a graph G = (V, E), a graph G′ = (V ′, E ′) is said
to be a subgraph of G if V ′ ⊂ V and if E ′ consists of the set of arcs of G which have their
destination and origins in V ′. G′ is said to be a spanning subgraph if V ′ = V .

• Strongly connected graph: A digraph is said to be strongly connected or strong if for any
two different nodes i and j in V there exists a path from i to j.

• Optimal tour: In a Hamiltonian graph (i.e., a graph having a Hamiltonian cycle) if a
Hamiltonian cycle is the Hamiltonian cycle with the lowest weight we say that it is an optimal
tour. Finding the optimal tour in a complete graph is a well known problem and is referred to
as the Traveling Salesman Problem (TSP), see for example [App+07] for the definition of
this problem.

• Tree, acyclic graph and Minimum Spanning Tree (MST): A tree, or equivalently a
connected acyclic undirected graph, is an undirected graph in which any two vertices are
connected by exactly one path,=. An acyclic graph T is said to be a spanning tree of an
undirected graph G if T is a spanning subgraph of G. T is said to be an MST of G if it has a
minimal weight, sum of the weights of all its edges, among all spanning trees of G

• Cut, cut-set and cut property: A cut is a partition of the vertices of a graph into two disjoint
subsets. For a cut c, the cut-set is the set of edges connecting two nodes from the two disjoint
subsets. In a tree, deleting an edge, induces a partition of the vertices sets into two disjoint
subsets. For any cut c of the graph, if the weight of an edge e in the cut-set of c is strictly
smaller than the weights of all other edges of the cut-set of c, then this edge belongs to all
MSTs of the graph.

Proofs and Experiments

C Throughput-Optimal Topology Design for Cross-Silo Federated
Learning

C.1 Proofs

We use some graph terminology and notation introduced in Appendix B.

C.1.1 Proof of Proposition 2.1.1

When we require the overlay Go to be undirected, if we include link (i, j) ∈ Gc then we will
also include link (j, i). It is then convenient to consider the undirected graph G(u)

c = (V, E(u)
c),

where (i, j) ∈ E(u)
c iff (i, j) ∈ Ec, from which we want to extract an undirected strong subgraph

Go with minimal cycle time. We also associate to each edge (i, j) ∈ G(u)
c the weight d(u)

c (i, j) =
(dc(i, j) + dc(j, i))/2. Remember that dc(i, j) is defined as follows

dc(i, j) ≜ s× Tc(i) + l(i, j) +M/A(i′, j′).

Note that an undirected weighted graph can be also seen as a particular directed graph where
for each link (i, j) in one direction, there exists a link (j, i) with the opposite direction and the
same weight. The concept of cycle time can then immediately be extended to undirected graphs.

Lemma C.1. Consider the undirected weighted graph G(u)
c = (V, E(u)

c), where (i, j) ∈ E(u)
c iff

(i, j) ∈ Ec. There exists a spanning tree of G(u)
c in the set of solutions MCT when Gc is edge-

capacitated and Go is required to be undirected.

Proof. MCT is a discrete optimization problem on a finite set, * thus the set of solution of MCT is
non-empty. Suppose by contradiction that the set of solutions does not contain any spanning tree of
Gc and consider G∗

o an element in the set of solutions which is an undirected spanning subgraph of
Gc.

As G∗
o is not a spanning tree and it is strongly connected, there exists circuits in G∗

o . For
any circuit C = (i1, i2, . . . , ip = i1) in G∗

o , we consider the edge eC , such that d(u)
c (eC) =

maxk=1,...,p−1 d
(u)
c (ik, ik+1). The graph obtained from G∗

o by deleting eC for every circuit C of G∗
o

is a spanning tree of G(u)
c and its cycle time is not greater then the cycle time of G∗

o . Thus, it is also
a solution of MCT, and this contradicts the fact that no spanning tree is in the set of solutions.

Lemma C.2. Consider an undirected tree T = (V, E), weighted with a delay function d(u)
c :

V × V 7→ R+. Its cycle time is τ(T) = max{i,j}∈E d
(u)
c (i, j).

*The set of subgraphs of an undirected graph Gc is finite.

187

188 APPENDIX

Proof. The cycle time of T is given by Equation (2.5). τ(T) = maxC
w(C)
|C| , where the maximum

is taken over all the elementary circuits of T . Since T is acyclic, the only elementary circuits of T
are of the form (i, j, i) for some {i, j} ∈ E . By definition |(i, j, i)| = 2 and w((i, j, i)) = d(u)c. It

follows that τ(T) = max{i,j}∈E
d

(u)
c (i,j)+d

(u)
c (j,i)

2 = d
(u)
c (i, j).

Proposition 2.1.1. Consider an undirected weighted graph G(u)
c = (V, E(u)

c), where (i, j) ∈ E(u)
c

iff (i, j) ∈ Ec and (j, i) ∈ Ec and where (i, j) ∈ E(u)
c has weight d(u)(i, j) = (do(i, j)+do(j, i))/2.

A minimum weight spanning tree of G(u)
c is a solution of MCT when Gc is edge-capacitated and Go

is required to be undirected.

Proof. Denote G∗ the solution of MCT when Gc is edge-capacitated and Go is required to be
undirected, and denote T ∗ an MST of G(u)

c weighted with d(u)
c , and suppose by contradiction that

τ(T ∗) > τ(G∗). By Lemma C.2, it follows that there is an edge eT ∗ of T ∗ such that d(u)
c (eT ∗) =

τ(T ∗). Moreover, it follows that ∀e ∈ E(G∗), d(u)
c (e) ≤ τ(G∗) < τ(T ∗) = d

(u)
c (eT ∗). If we

remove eT ∗ from T ∗, the two components define a cut of Gc. The edge of G∗, say ecut belonging
to the cut-set is such that d(u)

c (ecut) < d
(u)
c (eT ∗), and this is a contradiction with the cut property

satisfied by minimum cost spanning trees.

C.1.2 Proof of Proposition 2.1.2

Proposition 2.1.2. MCT is NP-hard even when Gc is a complete Euclidean edge-capacitated graph.

Proof. When Gc is an edge-capacitated graph, dc(i, j) = s×Tc(i)+l(i, j)+ M
A(i′,j′) . Gc is complete

and Euclidean means that dc(i, j) = dc(j, i), for all (i, j) ∈ V × V and that dc verifies triangular
inequality, i.e., dc(i, j) ≤ dc(i, k) + dc(k, j), for every i, j, k ∈ V .

We consider the decision problem associated to the particular case of MCT when Gc is an
Euclidean edge-capacitated graph, namely Euclidean Edge-Capacitated Minimal Cycle Time -
Decision- (MCT-DECISION) and we prove that it is NP-complete.

Euclidean Edge-Capacitated Minimal Cycle Time - Decision (MCT-DECISION)
Input: A strong digraph Gc =(V, Ec), delays function dc and a real number τ0
Question: Is there a strong spanning subdigraph of Gc with cycle time at most τ0?

We first prove that MCT-DECISION is NP.* Several algorithms (e.g., Karp’s Algorithm [DG98])
determines the cycle time of a given graph in a polynomial time. Thus for a proposed solution of
MCT-DECISION, we can compute its cycle time in polynomial time, and we can verify if the graph
is strongly connected using for example depth first search. It follows that MCT-DECISION is NP.

To prove that MCT-DECISION is NP-complete, we show that Hamiltonian Cycle (HC) can be
reduced in a polynomial time into MCT-DECISION, i.e., HC ≤p MCT-DECISION.

Hamiltonian cycle problem is the following decision problem:

Hamiltonian Cycle (HC)
Input: A strongly connected directed graph D = (V, E).
Question: Is there a Hamiltonian cycle in D?

*A decision problem is NP if we can verify in a polynomial time that the answer for a given instance is YES.

APPENDIX 189

Given an instance of HC with a directed graph D = (V, E), we construct an instance of
MCT-DECISION with a complete digraph Gc = (V,V × V), a real number τ0 = N+2

N where N is
the size of V , and delay function dc, where for a given arbitrary choice of vertex v0, dc is defined as:

dc(i, j) =


1 if ((i, j) ∈ E) ∧ (j ̸= v0) ∧ (i ̸= v0),
2 if [((i, j) ∈ E) ∧ ((j = v0) ∨ (i = v0))] ∨ [((i, j) /∈ E) ∧ (j ̸= v0)] ,
3 otherwise.

The constructed digraph Gc is complete and the delays are symmetric and verify the triangular
inequality. In fact for three distinct nodes i, j and k in V , two cases are possible: 1) If they are all
different from v0, then dc(i, j) ≤ 2 and 2 ≤ dc(i, k) + dc(k, j), it follows that dc(i, j) ≤ dc(i, k) +
dc(k, j); 2) If one of them is v0, say k = v0, then d(i, j) ≤ 2 ≤ dc(i, v0) ≤ dc(i, v0) + dc(v0, j),
where the first inequality is due to the fact that d(i, j) = 3 only when j = v0, and d(i, v0) ≤ 3 ≤
dc(i, j) + dc(j, v0), where the second inequality is due to the fact 2 ≤ dc(j, v0).

If D has a Hamiltonian cycle, then the graph induced by this cycle is a strong spanning
subdigraph of Gc and its cycle time is τHC = 1×(N−2)+2+2

N = N+2
N ≤ τ0.

If Gc has a strong spanning sub-digraph, say G∗, having a cycle time τ∗ ≤ N+2
N , let C be an

elementary circuit of G∗ containing v0 (such a circuit always exists because the graph is strongly
connected). By definition of cycle time, dc(C)

|C| ≤ τ
∗ = 1 + 2

N . We are going to prove that C is a
Hamiltonian cycle of D.

We prove first by contradiction that C contains only the arcs from E . Suppose by contradiction
that there exists an arc (i, j) /∈ E in C, two cases are possible:

1. If j ̸= v0, then dc(i, j) = 2 and since v0 ∈ C, there exist two nodes v−
0 ∈ σ(v0) and

v+
0 ∈ π(v0) inC. It follows that dc(C) ≥ dc(i, j)+d(v+

0 , v0)+dc(v0, v
−
0)+1×(|C|−3) ≥

2 + 2 + 2 + |C| − 3 = |C|+ 3. Since C is an elementary circuit, it follows that |C| ≤ N ,
thus dc(C)

|C| ≥ 1 + 3
N , and this contradicts dc(C)

|C| ≤ 1 + 2
N .

2. If j = v0, let v−
0 the successor of v0 in C, it follows that dc(C) ≥ dc(i, v0) + d(v0, v

−
0) +

1 × (|C| − 2) ≥ 3 + 2 + |C| − 2 = 3 + |C|, thus dc(C)
|C| ≥ 1 + 3

|C| , and using the same
argument as for the first case we get a contradiction.

It follows that any arc of C is in E .
We prove next thatC is a Hamiltonian Cycle, i.e., |C| = N . Since v0 ∈ C, there exist two nodes

v+
0 ∈ σ(v0) and v−

0 ∈ π(v0) inC, it follows that dc(C) = dc(v−
0 , v0)+dc(v0, v

+
0)+1×(|C|−2) =

2 + 2 + |C| − 2 = 2 + |C|.
Since dc(C)

|C| ≤ τ∗ = 1 + 2
N , it follows that 1 + 2

|C| ≤ 1 + 2
N , thus |C| ≥ N . As C is an

elementary circuit it follows that |C| = N , i.e., C is a Hamiltonian cycle. Since C is a circuit
containing only arcs from D, it follows that D has a Hamiltonian cycle.

So we have proved that D has a Hamiltonian cycle if and only if Gc has strong spanning
subdigraph of cycle time at most τ0 = N+2

N . It follows that MCT-DECISION is NP-complete, thus
MCT is NP-hard even when Gc is a complete Euclidean edge-capacitated graph.

C.1.3 Proof of Proposition 2.1.3

Under the assumption that the connectivity topology is Euclidean (delays are symmetric and verify
triangular inequality), we first show that the solution of Traveling Salesman Problem (TSP) [GP06]

190 APPENDIX

is guaranteed to be within a 2N -multiplicative factor of the solution of MCT (Lemma C.3). As a
result, the Christofides algorithm [MPT02] which is a 1.5-approximation algorithm for TSP, is a
3N -approximation algorithm for MCT (Prop. 2.1.3).

Lemma C.3. Consider an Euclidean digraph Gc with N nodes and let H∗ denote its optimal
tour. Then dc(H∗)

|H∗| ≤ 2N × τ∗, where τ∗ is the optimal cycle time that can be achieved by a strong
spanning subdigraph of Gc.

Proof. Let G∗ be a spanning digraph of Gc with optimal cycle time τ∗.
Let {Ci}i=1,...,c be a minimal set of elementary circuits of G∗, so that ∪c

i=1Ci = G∗ and
∪i ̸=jCi ̸= G∗ for each j. Consider an auxiliary graph G′ whose c nodes represent the c circuits and
whose links correspond to two circuits sharing a node. Let T be a spanning tree of G′. Starting
from the root of T , we can define an order of the nodes in each circuit and an order of the children
of each circuit as follows. Given the orientation of the circuit corresponding to the root, consider
the first node they share with each child. We order the children according to such order (solving
arbitrarily possible ties). For each child we reorder its nodes starting from the node they share with
the father and following the orientation of the circuit. We consider then the ordered traversal of
the circuits Γ = (Ci1 , Ci2 , . . . , Ci2c+1 = Ci1) obtained using DFS on T and visiting the children
according to the order introduced above.

From Γ we can build two closed walksW1 andW2, both spanning all nodes of G∗. The walk
W1 is built by considering all circuits in the order they appear in Γ, and then concatenating their
nodes as follows. The first time we visit one circuit we take all nodes in the circuit in their order
(but the last one in each circuit that coincides with the first one). When we come back to the circuit,
we only pick the nodes needed to move to the following circuit in Γ. The walk W2 is built by
considering the c circuits in the order they first appear in Γ, and then again concatenating their
nodes (but the last one in each circuit that coincides with the first one). Both sequences of nodes
define walks as Gc is Euclidean and then complete. The length ofW2 is |W2| =

∑c
i=1 |Ci| ≤ N2,

as we can have at most N − 1 elementary circuits and each of them has length at most N .
We observe that dc(W1) ≤ 2

∑c
i=1 dc(Ci) as the walkW2 passes through each link in each

circuit Ci at most twice: it walks through the first |Ci| − 1 edges of Ci the first time it visits Ci, and
uses once more the edges in Ci to visit the other circuits and go back to the root. AsW2 is a sublist
of the nodes inW1 and delays satisfy the triangle inequality, it holds dc(W2) ≤ dc(W1).

Finally, from the walkW2 we can extract a Hamiltonian cycleH that has an even smaller delay.
LetH∗ be an optimal tour. It follows

τ(H∗) = dc(H∗)
|H∗|

≤ dc(H)
|H∗|

≤ dc(W2)
|H∗|

(C.1)

= |W2|
|H∗|

dc(W2)
|W2|

(C.2)

≤ N2

N

dc(W1)∑c
i=1 |Ci|

(C.3)

≤ 2N
∑c

i=1 dc(Ci)∑c
i=1 |Ci|

(C.4)

≤ 2N max
i=1,...,c

dc(Ci)
|Ci|

= τ∗. (C.5)

APPENDIX 191

Proposition 2.1.3. Christofides’ algorithm [MPT02] is a 3N -approximation algorithm for MCT

when Gc is edge-capacitated and Euclidean.

Proof. Christofides algorithm provides a 3
2 -approximation for the traveling salesman problem TSP

defined in [App+07].* Given an instance of MCT let Ĉ denote the output of Christofides algorithm
and C∗ denote the optimal tour of Gc. It follows that dc(Ĉ) ≤ 3

2dc(C∗). Since both Ĉ and C∗ are

Hamiltonian cycles, |Ĉ| = |C∗|. Using Lemma C.3. it follows that dc(Ĉ)
|Ĉ| ≤ 2N× 3

2×τ∗ = 3N×τ∗.

Thus the graph obtained using only the edges of Ĉ is a 3N -approximation of the MCT problem
when Gc is edge-capacitated and Euclidean.

C.1.4 Proof of Proposition 2.1.4

We prove that in a node-capacitated network, MCT is NP-hard even when Go is required to be
undirected. We start introducing the associated decision problem:

MCT-U-Decision
Input: A strongly connected directed graph Gc = (V, Ec), model size M ,

{CUP(i), CDN(j), l(i, j), A(i′, j′), Tc(i), ∀(i, j) ∈ Ec}, and a constant τ0 > 0
Question: Is there a strong spanning undirected subgraph Go of Gc, such that τ(Go) ≤ τ0?

MCT-U-Decision is closely related to the degree-constrained spanning tree (DCST) defined
below:

Degree-constrained spanning tree (DCST)
Input: An N -node connected undirected graph G = (V, E); positive integer k ≤ n
Question: Does G have a spanning tree in which no node has degree greater than k?

DCST is a simpler version of δ-MBST, where we look for a spanning tree with degree at most k
and minimum bottleneck.

DCST is NP-complete. † For example for k = 2 it can be shown by a reduction from HC.

Proposition 2.1.4. In node-capacitated networks MCT is NP-hard even when the overlay is required
to be undirected.

Proof. Our proof is bases on a reduction of DCST to MCT-U-Decision.
Given an instance of DCST with an N -node connected undirected graph G = (V, E) and

a positive integer k ≤ N , we define an instance of MCT-U-Decision with a connected graph
Π(G) := Gc = (Vc, Ec) where, for each node v in V , there are two nodes v(1) and v(2) in Vc and
(v(1), v(2)) ∈ Ec, and for an arc (vi, vj) ∈ E , there is an arc (v(1)

i , v
(1)
j) in Ec. We set M

CUP(v(1)) = 1,
M

CUP(v(2)) = k + 1 for all v ∈ V , Tc(i) = 0, CDN (i) = ∞ for all i ∈ Vc, and l(i, j) = 0 for all
(i, j) ∈ Ec . Finally, we consider τ0 = k + 1.

Suppose that G has a spanning tree T = (V, ET) in which no node has degree greater than
k, and denote Tc = Π(T) (i.e., we apply the same mapping described above). Tc is a spanning
tree of Gc (it is acyclic and spans all nodes of Gc). All elementary circuits of Tc are either of
the form (v(1)

i , v
(2)
i , v

(1)
i) for some vi ∈ V , or of the form (v(1)

i , v
(1)
j , v

(1)
i) for some (vi, vj) ∈

*See [MPT02] for the proof.
†See reference: M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness, 1979.

192 APPENDIX

ET , moreover τ((v(1)
i , v

(2)
i , v

(1)
i)) = k+1+degreeT (vi)+1

2 ≤ k + 1 and τ((v(1)
i , v

(1)
j , v

(1)
i)) =

degreeT (vi)+1+degreeT (vj)+1
2 ≤ k + 1. * It follows that τ(Tc) ≤ k + 1 = τ0.

Inversely, suppose that Gc has an MST Tc having a cycle time at most τ0, and let T =
Π−1(Tc), where Π−1(T) is obtained by deleting all the vertices of the form v

(2)
i for vi ∈ V . T

is a spanning tree of G (it contains all nodes of G and is acyclic). We prove by contradiction that
degree(T) ≤ k. Suppose that there exists a node v ∈ V such that |N−

v (T)| > k, it follows that

circuit {v(1)
i , v

(2)
i , v

(1)
i } is a circuit of Tc, and τ((v(1)

i , v
(2)
i , v

(1)
i)) = k+1+|N −

v (T)|+1
2 > k + 1. It

follows that τ(T) > k + 1, thus k + 1 < τ0 = k + 1 (contradiction).

C.1.5 Proof of Proposition 2.1.5

To prove Prop. 2.1.5, we start by proving the bottleneck of MBST of the particular-built undirected
graph G(u)

c (lines 1-3 in Algo. 3) is smaller than or equal to the minimal cycle time of connectivity
graph Gc. The bottleneck of a tree T is its maximum edge weight, denoted by B(T).

Since we consider the node-capacitated case where A(i′, j′) = +∞ and CDN(i) = ∞, the
overlay Go has weights

do(i, j) = s× Tc(i) + l(i, j) + M |N−
i |

CUP(i) , ∀(i, j) ∈ V. (C.6)

Remind that the weights defined for the particular-built undirected graph G(u)
c = (V, E(u)

c) are

d(u)(i, j) = [s× (Tc(i)+Tc(j))+ l(i, j)+ l(j, i)+ M

CUP(i) + M

CUP(j)]/2, ∀(i, j) ∈ E(u)
c . (C.7)

Lemma C.4. Consider the case where Gc is node-capacitated with CDN(j) = A(i′, j′) =∞ for
all i, j ∈ V and the overlay is required to be undirected. Let τ∗(Gc) be the cycle time of MCT on
Gc and TBST (G(u)

c) be the MBST of G(u)
c . The bottleneck of TBST (G(u)

c) is smaller than or equal
to τ∗(Gc), i.e. B(TBST (G(u)

c)) ≤ τ∗(Gc).

Proof. Denote T ∗(Gc) the undirected overlay of Gc with minimal cycle time. We consider the edge

(w, v) = arg max
(i,j)∈E(T ∗(Gc))

d(u)(i, j).

By definition, B(TBST (G(u)
c)) = minT ∈ST (G(u)

c) max(i,j)∈E(T) d
(u)(i, j) where ST (G(u)

c) is the

set of spanning trees of G(u)
c . Since T ∗(Gc) ∈ ST (G(u)

c), we have:

B(TBST (G(u)
c)) ≤ d(u)(w, v)

(C.7)
=

s× (Tc(w) + Tc(v)) + l(w, v) + l(v, w) +M/CUP(w) +M/CUP(v)
2

≤ s× (Tc(w) + Tc(v)) + l(w, v) + l(v, w) + |N−
w |M/CUP(w) + |N−

v |M/CUP(v)
2

(C.6)
=

do(w, v) + do(v, w)
2

≤ τ∗(Gc),

*Note that a circuit, like (v(1)
i , v

(2)
i , v

(1)
i), is also a graph, and as such its cycle time τ((v(1)

i , v
(2)
i , v

(1)
i)) is well

defined.

APPENDIX 193

where the second inequality follows from |N−
w |, |N−

v | ≥ 1, and the last inequality comes from the
definition of cycle time.

Lemma C.5. If Gc is Euclidean, then G(u)
c is Euclidean.

Proof. Remind that the connectivity graph Gc is Euclidean on a node-capacitated network, if its
delays dc(i, j) = s× Tc(i) + l(i, j) are symmetric (dc(i, j) = dc(j, i),∀i, j ∈ V) and satisfy the
triangle inequality. Consider three nodes i, j, k ∈ V , we have:

d(u)(i, j) = dc(i, j) + dc(j, i) +M/CUP(i) +M/CUP(j)
2

≤ dc(i, k) + dc(k, j) + dc(j, k) + dc(k, i) +M/CUP(i) +M/CUP(j)
2

≤ dc(i, k) + dc(k, j) + dc(j, k) + dc(k, i) +M/CUP(i) +M/CUP(j) + 2M/CUP(k)
2

= d(u)(i, k) + d(u)(k, j),

where the first inequality follows from the triangle inequality for dc(i, j) and the second inequality
from CUP(k) ≥ 0.

Proposition 2.1.5. Algorithm 3 is a 6-approximation algorithm for MCT when Gc is node-
capacitated and Euclidean with CDN(j) = A(i′, j′) = ∞ for all i, j ∈ V , and Go is required
to be undirected.

Proof. Algorithm 3 considers, as a candidate solution, an opportune Hamiltonian pathH (line 8)
for which reference [AR16, Thm. 8] proves that B(H) ≤ 3×B(TBST (G(u)

c)) as G(u)
c is Euclidean

(Lemma C.5). Moreover,

τ(H) = max
(i,j)∈E(H)

do(i, j) + do(j, i)
2

= max
(i,j)∈E(H)

s× Tc(i) + s× Tc(j) + l(i, j) + l(j, i) + M |N −
i |

CUP(i) + M |N −
j |

CUP(j)
2

≤ max
(i,j)∈E(H)

s× Tc(i) + s× Tc(j) + l(i, j) + l(j, i) + 2 M
CUP(i) + 2 M

CUP(j)
2

≤ max
(i,j)∈E(H)

s× Tc(i) + s× Tc(j) + l(i, j) + l(j, i) + M

CUP(i) + M

CUP(j)
= 2 max

(i,j)∈E(H)
d(u)(i, j)

= 2B(H),

where the first inequality follows from nodes in a path having degree at most 2. Combining these
results with Lemma C.4, it follows that τ(H) ≤ 6× τ∗(Gc).

C.1.6 Proof of Proposition 2.1.6

Proposition 2.1.6. Christofides’ algorithm is a 3N -approximation algorithm for MCT when Gc is
node-capacitated and Euclidean.

194 APPENDIX

Table 1: Sub-iNaturalist training over different networks. 1 Gbps core links capacities, 10 Gbps
access links capacities. Five local computation steps.

Network name Silos Links Cycle time (ms) Ring’s training speed-up
STAR MATCHA(+) MST δ-MBST RING vs STAR vs MATCHA(+)

Gaia [Hsi+17] 11 55 492.4 329.3(329.3) 239.7 239.8 219.7 1.79 1.50(1.50)
AWS NA [AWS20] 22 231 389.8 226.0(226.0) 191.3 191.3 182.9 1.40 1.24(1.24)
Géant [20a] 40 61 736.0 553.8(207.4) 202.6 202.6 210.6 3.49 2.63(2.96)
Exodus(us) [Mah+02] 79 147 1013.4 695.0(243.8) 246.9 246.9 205.5 3.95 2.25(1.18)
Ebone(eu) [Mah+02] 87 161 1003.2 681.6(224.9) 223.2 223.2 196.9 3.04 2.29(1.21)

Table 2: Sub-iNaturalist training over different networks. 1 Gbps core links capacities, 10 Gbps
access links capacities. Ten local computation steps.

Network name Silos Links Cycle time (ms) Ring’s training speed-up
STAR MATCHA(+) MST δ-MBST RING vs STAR vs MATCHA(+)

Gaia [Hsi+17] 11 55 619.4 456.4(456.4) 366.7 366.7 346.7 1.79 1.32(1.32)
AWS NA [AWS20] 22 231 516.8 353.2(353.2) 318.3 318.3 309.9 0.69 0.47(0.47)
Géant [20a] 40 61 609.0 680.8(334.7) 329.6 329.6 337.6 0.90 1.00(1.98)
Exodus(us) [Mah+02] 79 147 1140.4 822.0(370.9) 373.9 373.9 332.5 1.52 1.10(1.23)
Ebone(eu) [Mah+02] 87 161 1130.2 808.6(352.1) 350.4 350.4 323.9 1.74 1.25(1.09)

Proof. Let G′
c be a weighted graph with the same topology as Gc with weights d′(i, j) = s×Tc(i)+

l(i, j) + M
min(CUP(i),CDN(j),A(i′,j′)) . Denote Ĉ the output of Christofides’ algorithm when used on G′

c,
and denote C∗ the optimal tour of G′

c. Since Christofides’ algorithm provides a 3
2 -approximation

to TSP, it follows that d′(Ĉ) ≤ 3
2d

′(C∗). As Ĉ and C∗ are rings, it holds d′(Ĉ) = do(Ĉ) and
d′(C∗) = do(C∗). Using Lemma C.3 it follows that

τ(Ĉ) = do(Ĉ)
|Ĉ|

= d′(Ĉ)
|Ĉ|

≤ 3
2
d′(C∗)
|C∗|

= 3
2
do(C∗)
|C∗|

= 3
2τ(C∗) ≤ 3Nτ∗.

Thus the graph obtained using only the edges of Ĉ is a 3N -approximation algorithm for MCT when
Gc is node-capacitated and Euclidean.

C.2 Additional Experiments

C.2.1 Similar tables of Table 2.5 for different local steps

Tables 1 and 2 show the effect of 6 different overlays when training ResNet-18 over sub-iNaturalist
in networks with 1 Gbps core links and 10 Gbps access links and local steps equal to 5 and 10,
respectively. For 5 local steps, the training time is evaluated as the time to reach a training accuracy
equal to 65%, 55%, 60%, 45%, and 45% for Gaia, AWS North America, Géant, Exodus and Ebone,
respectively. For 10 local steps, the training time is evaluated as the time to reach a training accuracy
equal to 65%, 50%, 50%, 45% and 40%, respectively.

APPENDIX 195

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure C.1: Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock
time (bottom row) when training Shakespeare on AWS North America underlay. 1 Gbps core links capacities,
100 Mbps access links capacities, s = 1.

C.2.2 Full results for training every dataset on AWS North America

In Figure 2.8, we have shown the training loss w.r.t. communication rounds and wall-clock time
when training four different datasets on AWS North America. Here we give the complete results
(Figures C.1-C.4) which include training loss, training accuracy, test loss, and test accuracy w.r.t
communication rounds and wall-clock time.

C.2.3 Additional experiments

In our experiments, we considered 5 underlays, for which we compared 6 different overlays
(e.g., Table 2.5). Moreover, we tested 4 different datasets (e.g., Fig. 2.8) and 3 different values for
the number of local steps s = 1, 5, 10 (e.g., Tables 1 and 2). We were not able to run experiments
for all 360 possible combinations. Here, we show some representative additional results. For each
experimental result, four metrics are shown including the train loss, train accuracy, test loss, and
test accuracy w.r.t. communication rounds and wall-clock time. The common observation is that
the overlay Ring converges faster than MATCHA+ and STAR in terms of wall-clock time. In some
cases, the test loss and accuracy of the model learned by the RING start becoming worse after
some time, with overfitting being a possible explanation in some cases (see Figs. C.5, C.7, C.10
and C.12).

196 APPENDIX

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure C.2: Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock
time (bottom row) when training FEMNIST on AWS North America underlay. 1 Gbps core links capacities,
100 Mbps access links capacities, s = 1.

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure C.3: Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training Sentiment140 on AWS North America underlay. 1 Gbps core links capacities,
100 Mbps access links capacities, s = 1.

APPENDIX 197

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure C.4: Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock
time (bottom row) when training iNaturalist on AWS North America underlay. 1 Gbps core links capacities,
100 Mbps access links capacities, s = 1.

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure C.5: Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock
time (bottom row) when training ResNet-18 image classification model using iNaturalist on Gaia underlay.
1 Gbps core links capacities, 100 Mbps access links capacities, s = 1.

198 APPENDIX

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure C.6: Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock
time (bottom row) when training ResNet-18 image classification model using iNaturalist on AWS North
America underlay. 1 Gbps core links capacities, 100 Mbps access links capacities, s = 1.

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure C.7: Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock
time (bottom row) when training ResNet-18 image classification model using iNaturalist on Géant underlay.
1 Gbps core links capacities, 100 Mbps access links capacities, s = 1.

APPENDIX 199

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure C.8: Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock
time (bottom row) when training ResNet-18 image classification model using iNaturalist on Exodus underlay.
1 Gbps core links capacities, 100 Mbps access links capacities, s = 1.

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure C.9: Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock
time (bottom row) when training ResNet-18 image classification model using iNaturalist on Ebone underlay.
1 Gbps core links capacities, 100 Mbps access links capacities, s = 1.

200 APPENDIX

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure C.10: Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock
time (bottom row) when training ResNet-18 image classification model using iNaturalist on Gaia underlay.
1 Gbps core links capacities, 100 Mbps access links capacities, s = 5.

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure C.11: Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock
time (bottom row) when training ResNet-18 image classification model using iNaturalist on AWS North
America underlay. 1 Gbps core links capacities, 100 Mbps access links capacities, s = 5.

APPENDIX 201

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure C.12: Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock
time (bottom row) when training ResNet-18 image classification model using iNaturalist on Géant underlay.
1 Gbps core links capacities, 100 Mbps access links capacities, s = 5.

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure C.13: Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock
time (bottom row) when training ResNet-18 image classification model using iNaturalist on Exodus underlay.
1 Gbps core links capacities, 100 Mbps access links capacities, s = 5.

202 APPENDIX

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure C.14: Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock
time (bottom row) when training ResNet-18 image classification model using iNaturalist on Ebone underlay.
1 Gbps core links capacities, 100 Mbps access links capacities, s = 5.

D Federated Learning under Heterogeneous and Correlated Client
Availability

D.1 Proof of Theorem 2.2.2

Theorem D.1 (Decomposing the total error). Let κ := L/µ. Under Assumptions 4–6, the optimiza-
tion error of the target global objective ϵ = F (w)− F ∗ can be bounded as follows:

ϵ ≤ 2κ2(FB(w)− F ∗
B︸ ︷︷ ︸

:=ϵopt

+F (w∗
B)− F ∗︸ ︷︷ ︸

:=ϵbias

). (2.23)

Moreover, let χ2
α∥p

:=
∑N

k=1 (αk − pk)2/pk. Then:

ϵbias ≤ κ2 · χ2
α∥p · Γ︸ ︷︷ ︸
:=ϵ̄bias

. (2.24)

The proof of Theorem D.1 employs well-established techniques from convex optimization. It is
based on the proof presented in [Wan+20b, Theorem 2].

Proof of Theorem D.1. By leveraging the L-smoothness and µ-strong convexity properties of F ,
we obtain:

F (w)− F ∗ ≤ 1
2µ ∥∇F (w)∥2 (D.8)

≤ L2

2µ ∥w −w∗∥2 (D.9)

≤ L2

µ
(∥w −w∗

B∥
2 + ∥w∗

B −w∗∥2) (D.10)

APPENDIX 203

≤ 2L2

µ2

(
FB(w)− F ∗

B︸ ︷︷ ︸
:=ϵopt

+F (w∗
B)− F ∗︸ ︷︷ ︸

:=ϵbias

)
, (D.11)

where the inequality in (D.8) follows from Assumption 6 and is commonly referred to as the
Polyak-Lojasiewicz inequality; the inequality in (D.9) is derived using the fact that∇F (w∗) = 0
(Assumption 4) and the definition of L-Lipschitz continuous gradient for F (Assumption 5); the
inequality in (D.10) is based on (a + b)2 ≤ 2(a2 + b2); lastly, the inequality in (D.11) follows
from the µ-strong convexity of both FB and F (Assumptions 6), and uses ∇FB(w∗

B) = 0 and
∇F (w∗) = 0 (Assumption 4). The obtained results complete the first part of the proof, establishing
the bound in (2.23).

Next, to prove the relation in (2.24), we proceed by bounding the term ϵbias as follows:

ϵbias := (F (w∗
B)− F ∗) ≤ 1

2µ ∥∇F (w∗
B)∥2 , (D.12)

where the inequality in (D.12) directly follows from the Polyak-Lojasiewicz inequality (Assump-
tion 6).

Furthermore, we bound the term ∥∇F (w∗
B)∥ as follows:

∥∇F (w∗
B)∥ =

∥∥∥∥∥
N∑

k=1
(αk − pk)∇Fk(w∗

B)
∥∥∥∥∥ (D.13)

≤
N∑

k=1
|αk − pk| ∥∇Fk(w∗

B)∥ (D.14)

≤ L
N∑

k=1
|αk − pk| ∥w∗

B −w∗
k∥ (D.15)

≤ L
√

2
µ

N∑
k=1
|αk − pk|

√
(Fk(w∗

B)− F ∗
k), (D.16)

where, in (D.13), we use ∇FB(w∗
B) = 0 (Assumption 4) and apply the definitions of F and FB

given in (2.14) and (2.17), respectively. The bound in (D.14) follows from the triangle inequality.
Next, the inequality in (D.15) uses ∇Fk(w∗

k) = 0 (Assumption 4) and the L-smoothness of
Fk (Assumption 5). Finally, the inequality in (D.16) leverages the µ-strong convexity of Fk

(Assumption 6) and∇Fk(w∗
k) = 0 (Assumption 4), and follows multiplying and dividing by

√
pk.

By squaring both sides of Equation (D.16), we obtain:

∥∇F (w∗
B)∥2 ≤ 2L2

µ

(
N∑

k=1

|αk − pk|√
pk

√
pk(Fk(w∗

B)− F ∗
k)
)2

(D.17)

≤ 2L2

µ

(
N∑

k=1

(αk − pk)2

pk

)(
N∑

k=1
pk(Fk(w∗

B)− F ∗
k)
)

(D.18)

≤ 2L2

µ
· χ2

α∥p · Γ, (D.19)

where the inequality in (D.18) follows from the Cauchy-Schwarz inequality. Furthermore, the
inequality in (D.19) holds because:

N∑
k=1

pk(Fk(w∗
B)− F ∗

k) = F ∗
B −

N∑
k=1

pkF
∗
k (D.20)

204 APPENDIX

≤ FB(w∗)−
N∑

k=1
pkF

∗
k (D.21)

=
N∑

k=1
pk(Fk(w∗)− F ∗

k) (D.22)

≤ max
k∈K
{Fk(w∗)− F ∗

k } := Γ. (D.23)

We remark that the inequality in (D.21) only holds if w∗
B is the global minimizer of FB , as

guaranteed by Assumption 4. By replacing (D.19) into (D.12), we have:

ϵbias ≤
1

2µ ∥∇F (w∗
B)∥2 ≤ L2

µ2 · χ
2
α∥p · Γ, (D.24)

which concludes the proof of Equation (2.24), and therefore, of Theorem D.1.

D.2 Proof of Theorem 2.2.3

D.2.1 Algorithm Overview and Supplementary Notation

Let wk
t,j represent the model parameter maintained by the k-th client during the t-th global

communication round and the j-th local step. The t-th global communication round can be described
as follows: 1) The server broadcasts the model parameter wt,0 to the active clients, which adopt it as
their local model, i.e., wk

t,0 = wt,0 for k ∈ At; 2) Each active client k ∈ At generates a sequence
of local models {wk

t,j}Ej=1 using the local-SGD update rule defined in (2.15); 3) The active clients
send their model updates ∆k

t := wk
t,E −wt,0 back to the server; 4) The server aggregates the model

updates using the aggregation rule specified in (2.16), resulting in the new global model parameter
wt+1,0.

wk
t,j+1 = wk

t,j − ηt∇Fk(wk
t,j ,Bk

t,j)for j = 0, . . . , E − 1; (2.15)

wt+1,0 = ΠWwt,0 +
∑

k∈At

qk

(
wk

t,E −wt,0
)

for j = E. (2.16)

The projection operator in (2.16) ensures that the current iterate wt+1,0 in the optimization
algorithm defined by (2.15) and (2.16) remains within the feasible region W .

Sources of randomness. In the system, we model two sources of randomness. The first arises
from the availability of random clients, which follows a Markov process as stated in Assumption 3.
The second source of randomness originates from the random sampling of batches for computing
stochastic gradients. Remember that At denotes the random set of clients available at the t-th
communication round and that Bk

t,j denotes the random batch independently sampled from client-
k’s local dataset at round t, local iteration j. For the analysis, we introduce the following additional
notation:

• Ai:j := {Ai, . . . ,Aj}: the family of random sets of clients available from the i-th to the j-th
communication rounds, i<j;

APPENDIX 205

• Bk
t := {Bk

t,j}
E−1
j=0 : the set of random batches sampled by the k-th client at the t-th communi-

cation round;

• Bt := {Bk
t }k∈At : the set of random batches sampled by the available clients (At) in the t-th

communication round;

• Bk
t,i:j := {Bk

t,i, . . . ,Bk
t,j}: the set of random batches sampled by the k-th client at the t-th

communication round between the i-th and the j-th local iterations, i < j;

• Bi:j := {Bi, . . . ,Bj}: the set of random batches sampled by the available clients (Ai:j)
between the i-th and j-th communication rounds, i < j.

With this notation established, the randomness in the t-th communication round, which starts with
the initial model wt,0 and yields the updated model wt+1,0, is fully determined by the sets At

and Bt. This implies that the evolution of the algorithm, governed by the update rules in (2.15)
and (2.16), from round 0 to round t can be completely described by the tuple:

Ht := (A0, . . . ,At−1;B0, . . . ,Bt−1) , (D.25)

which represents the historical information up to the t-th communication round.
We introduce the following additional quantities for our analysis:

gt(At,Bt) :=
∑

k∈At

qk

E−1∑
j=0
∇Fk(wk

t,j ,Bk
t,j), (D.26)

and

ḡt(At,Bt) :=
∑

k∈At

qk

E−1∑
j=0
∇Fk(wk

t,j), (D.27)

where gt(At,Bt) denotes the global pseudo-gradient computed at communication round t, ag-
gregated from the active clients in At, and ḡt(At,Bt) denotes its expected value with respect to
the choices of the random batches Bk

t,j , for all j = 0, . . . , E − 1 and k ∈ At. With this notation
established, the global update rule for the t-th communication round can be expressed as:

wt+1,0 = ΠWwt,0 − ηtgt(At,Bt). (D.28)

D.2.2 Supporting Lemmas

In this section, we introduce several lemmas that are instrumental in proving Theorem D.20.
Firstly, we prove Lemma 2.2.1, introduced in Section 2.2.3.1. Its proof relies on the convexity and
compactness of the hypothesis class W (Assumption 4), on the L-smoothness of the functions
{Fk}k∈K (Assumption 5), and on the bounded variance of the stochastic gradients (Assumption 7).

Lemma D.2. Under Assumptions 4, 5, and 7, there exist constants D, G, and H > 0, such that,
for w ∈W and k ∈ K, we have:

∥∇Fk(w)∥ ≤ D, (2.19)

E∥∇Fk(w, ξ)∥2 ≤ G2, (2.20)

|Fk(w)− Fk(w∗
B)| ≤ H. (2.21)

206 APPENDIX

Proof of Lemma D.2. The boundedness of the hypothesis class W (Assumption 4) provides a
bound on the sequence (wt,0)t≥0 generated by the scheme defined in Equations (2.15) and (2.16).
Moreover, since w∗

k minimizes∇Fk(w), we have ∇Fk(w∗
k) = 0. Furthermore, the L-smoothness

of {Fk}k∈K (Assumption 5) leads to the following inequality:

∥∇Fk(w)∥ = ∥∇Fk(w)−∇Fk(w∗
k)∥ ≤ L ∥w −w∗

k∥ := D < +∞. (D.29)

The bound in (2.19) is directly derived from (D.29), while the bound in (2.21) follows from the
continuity of {Fk}k∈K over the compact set W (Assumption 4). Finally, the inequality in (2.20)
requires a bound on the variance of the stochastic gradients (Assumption 7). In particular, it holds
that:

E∥∇Fk(w, ξ)∥2 ≤ D2 + max
k∈K
{σ2

k} := G2. (D.30)

The following lemma proves that the global pseudo-gradient gt(At,Bt) is an unbiased estimator
of ḡt(At,Bt). A similar result has been used in previous works, specifically in [Wan+20b, Appendix
C1]. Here, we provide a comprehensive proof for this result.

Lemma D.3. Let gt(At,Bt) and ḡt(At,Bt) be defined as in (D.26) and (D.27), respectively. The
following equality holds:

EBt|At,Ht
[gt(At,Bt)] = EBt|At,Ht

[ḡt(At,Bt)] . (D.31)

Proof of Lemma D.3.

EBt|At,Ht
[gt(At,Bt)] = (D.32)

= EBt|At,Ht

∑
k∈At

qk

E−1∑
j=0
∇Fk(wk

t,j ,Bk
t,j)

 (D.33)

=
∑

k∈At

qkEBk
t

E−1∑
j=0
∇Fk(wk

t,j ,Bk
t,j)

 (D.34)

=
∑

k∈At

qk

[
EBk

t,0
[∇Fk(wt,0,Bk

t,0)] + EBk
t,0,Bk

t,1
[∇Fk(wk

t,1,Bk
t,1)] + . . .

+ EBk
t,0:E−1

[∇Fk(wk
t,E−1,Bk

t,E−1)]
]

(D.35)

=
∑

k∈At

qk

[
∇Fk(wt,0) + EBk

t,0

[
EBk

t,1|Bk
t,0

[
∇Fk(wk

t,1,Bk
t,1)
]]

+ . . .

+ EBk
t,0:E−2

[
EBk

t,E−1|Bk
t,0:E−2

[
∇Fk(wk

t,E−1,Bk
t,E−1)

]]]
(D.36)

=
∑

k∈At

qk

[
∇Fk(wt,0) + EBk

t,0
[∇Fk(wk

t,1)] + · · ·+ EBk
t,0:E−2

[∇Fk(wk
t,E−1)]

]
(D.37)

=
∑

k∈At

qkEBk
t,0:E−2

E−1∑
j=0
∇Fk(wk

t,j)

 (D.38)

APPENDIX 207

= EBt|At,Ht

∑
k∈At

qk

E−1∑
j=0
∇Fk(wk

t,j)

 = EBt|At,Ht
[ḡt(At,Bt)] , (D.39)

where, in (D.34), we considered that both the evolution of the local models {wk
t,j}

E−1
j=0 and the

choices of the random batches {Bk
t,j}

E−1
j=0 are independent among different clients k ∈ At within

the same communication round t ∈ T .

For the sake of simplicity, we will henceforth denote gt(At,Bt) and ḡt(At,Bt) as gt and ḡt,
respectively. The following lemma decomposes the optimization error into multiple components,
which we will bound separately in subsequent lemmas.

Lemma D.4 (Decomposition of the error in a global communication round). Let Assumption 4
hold. We have:

EBt|At,Ht
∥wt+1,0 −w∗

B∥
2 ≤ ∥wt,0 −w∗

B∥
2−2ηtEBt|At,Ht

⟨wt,0 −w∗
B, ḡt⟩︸ ︷︷ ︸

bounded in Lemma D.5

+ η2
t EBt|At,Ht

∥ḡt∥2︸ ︷︷ ︸
bounded in Lemma D.6

+ 2ηtEBt|At,Ht
⟨wt,0 −w∗

B − ηtḡt, ḡt − gt⟩︸ ︷︷ ︸
bounded in Lemma D.7

+ η2
t EBt|At,Ht

∥gt − ḡt∥2︸ ︷︷ ︸
bounded in Lemma D.8

. (D.40)

Proof of Lemma D.4.

∥wt+1,0 −w∗
B∥

2 = ∥ΠWwt,0 − ηtgt −ΠWw∗
B∥

2 (D.41)

≤ ∥wt,0 − ηtgt −w∗
B + ηtḡt − ηtḡt∥2 (D.42)

= ∥wt,0 −w∗
B − ηtḡt∥2 + 2ηt⟨wt,0 −w∗

B − ηtḡt, ḡt − gt⟩+ η2
t ∥gt − ḡt∥2

(D.43)

= ∥wt,0 −w∗
B∥

2 − 2ηt⟨wt,0 −w∗
B, ḡt⟩+ η2

t ∥ḡt∥2

+ 2ηt⟨wt,0 −w∗
B − ηtḡt, ḡt − gt⟩+ η2

t ∥gt − ḡt∥2 , (D.44)

where, in (D.41), we used Assumption 4; whereas, the inequality in (D.42) is due to the contracting
property of projection. We observe that (D.42) does not hold in general if w∗

B ̸∈W .

In what follows, we present a series of lemmas to establish bounds for the error in (D.40).

Lemma D.5. Let Assumption 5 hold and the local functions {Fk}Nk=1 be convex. We have:

−2ηt⟨wt,0 −w∗
B, ḡt⟩ ≤ − 2ηt(1− ηtL)

∑
k∈At

qk

E−1∑
j=0

(
Fk(wk

t,j)− Fk(w∗
B)
)

+
∑

k∈At

qk

E−1∑
j=0

∥∥∥wk
t,j −wt,0

∥∥∥2

︸ ︷︷ ︸
bounded in Lemma D.10

+2η2
tLE

∑
k∈At

qk (Fk(w∗
B)− F ∗

k)

︸ ︷︷ ︸
bounded in Lemma D.11

.

(D.45)

Proof of Lemma D.5. We decompose the term −2ηt⟨wt,0 −w∗
B, ḡt⟩, by adding and subtracting

wk
t,j :

−2ηt⟨wt,0 −w∗
B, ḡt⟩ = −2ηt⟨wt,0 −wk

t,j , ḡt⟩︸ ︷︷ ︸
developed in Eq. (D.47)

−2ηt⟨wk
t,j −w∗

B, ḡt⟩︸ ︷︷ ︸
developed in Eq. (D.51)

. (D.46)

208 APPENDIX

We bound the two terms separately. We bound the first term in (D.46) as:

−2ηt⟨wt,0−wk
t,j , ḡt⟩ = −2ηt

∑
k∈At

qk

E−1∑
j=0
⟨∇Fk(wk

t,j),wt,0 −wk
t,j⟩ (D.47)

≤ η2
t

∑
k∈At

qk

E−1∑
j=0

∥∥∥∇Fk(wk
t,j)
∥∥∥2

+
∑

k∈At

qk

E−1∑
j=0

∥∥∥wk
t,j −wt,0

∥∥∥2
(D.48)

≤ 2η2
tL

∑
k∈At

qk

E−1∑
j=0

(
Fk(wk

t,j)− F ∗
k

)
+
∑

k∈At

qk

E−1∑
j=0

∥∥∥wk
t,j −wt,0

∥∥∥2
(D.49)

= 2η2
tL

∑
k∈At

qk

E−1∑
j=0

(
Fk(wk

t,j)− Fk(w∗
B)
)

+
∑

k∈At

qk

E−1∑
j=0

∥∥∥wk
t,j −wt,0

∥∥∥2

+ 2η2
tLE

∑
k∈At

qk (Fk(w∗
B)− F ∗

k) , (D.50)

where, in (D.48), we used |⟨a, b⟩| ≤ 1
2 ∥a∥

2 + 1
2 ∥b∥

2; in (D.49), we applied the L-smoothness of
{Fk(w)}k∈K (Assumption 5); in (D.50), we added and subtracted Fk(w∗

B).
We bound the second term in (D.46) as:

−2ηt⟨wk
t,j −w∗

B, ḡt⟩ = −2ηt

∑
k∈At

qk

E−1∑
j=0
⟨wk

t,j −w∗
B,∇Fk(wk

t,j)⟩ (D.51)

≤ −2ηt

∑
k∈At

qk

E−1∑
j=0

(
Fk(wk

t,j)− Fk(w∗
B)
)
, (D.52)

where, in (D.52), we use the convexity of {Fk(w)}k∈K.
By summing the bounds provided in (D.50) and (D.52), we conclude the proof.

Lemma D.6 (Bound on the squared norm of a global gradient step). Let Assumption 5 hold. We
have:

η2
t ∥ḡt∥2 ≤ 2η2

tLEQ
∑

k∈At

qk

E−1∑
j=0

(
Fk(wk

t,j)− Fk(w∗
B)
)

+ 2η2
tLE

2Q
∑

k∈At

qk (Fk(w∗
B)− F ∗

k)

︸ ︷︷ ︸
bounded in Lemma D.11

.

(D.53)

Proof of Lemma D.6.

η2
t ∥ḡt∥2 = η2

t

∥∥∥∥ ∑
k∈At

qk

E−1∑
j=0
∇Fk(wk

t,j)
∥∥∥∥2

(D.54)

≤ η2
t

∑
k′∈At

qk′
∑

k∈At

qk

∥∥∥∥E−1∑
j=0
∇Fk(wk

t,j)
∥∥∥∥2

(D.55)

≤ η2
tQE

∑
k∈At

qk

E−1∑
j=0

∥∥∥∇Fk(wk
t,j)
∥∥∥2

(D.56)

APPENDIX 209

≤ 2η2
tQLE

∑
k∈At

qk

E−1∑
j=0

(
Fk(wk

t,j)− F ∗
k

)
(D.57)

= 2η2
tLEQ

∑
k∈At

qk

E−1∑
j=0

(
Fk(wk

t,j)− Fk(w∗
B)
)

+ 2η2
tLE

2Q
∑

k∈At

qk (Fk(w∗
B)− F ∗

k) ,

(D.58)

where, in (D.55) and in (D.56), we applied the Jensen’s inequality; in (D.56), we also observed
that

∑
k∈At

qk ≤
∑

k∈K qk := Q; in (D.57), we used the L-smoothness of {Fk(w)}k∈K (Assump-
tion 5); in (D.58), we added and subtracted Fk(w∗

B) to the sum.

Lemma D.7. Let Assumption 7 hold. We have:

2ηtEBt|At,Ht

[
⟨wt,0 −w∗

B − ηtḡt, ḡt − gt⟩
]
≤

2η2
tLEQ

∑
k∈At

qk

E−1∑
j=1

EBk
t |At,Ht

[
Fk(wk

t,j)− Fk(w∗
B)
]

+ 1
2η

2
tE(E − 1)

∑
k∈At

q2
kσ

2
k

+ 2η2
tLE

2Q
∑

k∈At

qk (Fk(w∗
B)− F ∗

k)

︸ ︷︷ ︸
bounded in Lemma D.11

. (D.59)

Proof of Lemma D.7. We decompose the term ⟨wt,0 −w∗
B − ηtḡt, ḡt − gt⟩ in two parts:

2ηt⟨wt,0 −w∗
B − ηtḡt, ḡt − gt⟩ = 2ηt⟨wt,0 −w∗

B, ḡt − gt⟩ − 2η2
t ⟨ḡt, ḡt − gt⟩. (D.60)

From Lemma D.3, we conclude that EBt|At,Ht
⟨wt,0 −w∗

B, ḡt − gt⟩ = 0.
We now focus on:

− 2η2
t EBt|At,Ht

[⟨ḡt, ḡt − gt⟩] = (D.61)

= −2η2
t EBt|At,Ht

∑
k∈At

∑
k′∈At

qkqk′

E−1∑
j=0

E−1∑
j′=0
⟨∇Fk(wk

t,j),∇Fk′(wk′
t,j′)−∇Fk′(wk′

t,j′ ,Bk′
t,j′)⟩


(D.62)

= −2η2
t EBt|At,Ht

∑
k∈At

q2
k

E−1∑
j=0

E−1∑
j′=0
⟨∇Fk(wk

t,j),∇Fk(wk
t,j′)−∇Fk(wk

t,j′ ,Bk
t,j′)⟩



− 2η2
t EBt|At,Ht

∑
k∈At

∑
k′∈At
k′ ̸=k

qkqk′

E−1∑
j=0

E−1∑
j′=0
⟨∇Fk(wk

t,j),∇Fk′(wk′
t,j′)−∇Fk′(wk′

t,j′ ,Bk′
t,j′)⟩


(D.63)

= −2η2
t

∑
k∈At

q2
kEBk

t |At,Ht

E−1∑
j=0

E−1∑
j′=0
⟨∇Fk(wk

t,j),∇Fk(wk
t,j′)−∇Fk(wk

t,j′ ,Bk
t,j′)⟩



210 APPENDIX

− 2η2
t

∑
k∈At

∑
k′∈At
k′ ̸=k

qkqk′

E−1∑
j=0

E−1∑
j′=0

〈
EBk

t |At,Ht

[
∇Fk(wk

t,j)
]
,

EBk′
t,0:j′−1|At,Ht

[
EBk′

t,j′ |Bk′
t,0:j′−1,At,Ht

[
∇Fk′(wk′

t,j′)−∇Fk′(wk′
t,j′ ,Bk′

t,j′)
]]

︸ ︷︷ ︸
=0

〉
, (D.64)

where, in (D.62), we replaced the definitions of gt and ḡt given in (D.26) and in (D.27), respec-
tively; in (D.63), we consider the cases k = k′ and k ̸= k′ separately; (D.64) follows from the
consideration that local models of different clients evolve independently and then all the terms with
k′ ̸= k equal zero because∇Fk(w,B) is an unbiased estimator of∇Fk(w). It follows that:

−2η2
t EBt|At,Ht

[⟨ḡt, ḡt − gt⟩] = (D.65)

= −2η2
t

∑
k∈At

q2
kEBk

t |At,Ht

E−1∑
j=0

E−1∑
j′=0
⟨∇Fk(wk

t,j),∇Fk(wk
t,j′)−∇Fk(wk

t,j′ ,Bk
t,j′)⟩


(D.66)

= −2η2
t

∑
k∈At

q2
kEBk

t |At,Ht


E−1∑
j=0

E−1∑
j′=0
j′<j

⟨∇Fk(wk
t,j),∇Fk(wk

t,j′)−∇Fk(wk
t,j′ ,Bk

t,j′)⟩



− 2η2
t

∑
k∈At

q2
kEBk

t |At,Ht


E−1∑
j=0

E−1∑
j′=0
j′≥j

⟨∇Fk(wk
t,j),∇Fk(wk

t,j′)−∇Fk(wk
t,j′ ,Bk

t,j′)⟩


(D.67)

= −2η2
t

∑
k∈At

q2
k

E−1∑
j=0

E−1∑
j′=0
j′<j

EBk
t |At,Ht

[〈
∇Fk(wk

t,j),∇Fk(wk
t,j′)−∇Fk(wk

t,j′ ,Bk
t,j′)

〉]

− 2η2
t

∑
k∈At

q2
k

E−1∑
j=0

E−1∑
j′=0
j′≥j

EBk
t,0:j′−1|At,Ht

[
EBk

t,j′ |Bk
t,0:j′−1,At,Ht

[〈
∇Fk(wk

t,j),

∇Fk(wk
t,j′)−∇Fk(wk

t,j′ ,Bk
t,j′)

〉]]
(D.68)

= −2η2
t

∑
k∈At

q2
k

E−1∑
j=0

E−1∑
j′=0
j′<j

EBk
t |At,Ht

[
⟨∇Fk(wk

t,j),∇Fk(wk
t,j′)−∇Fk(wk

t,j′ ,Bk
t,j′)⟩

]

− 2η2
t

∑
k∈At

q2
k

E−1∑
j=0

E−1∑
j′=0
j′≥j

EBk
t,0:j′−1|At,Ht

[〈
∇Fk(wk

t,j),

APPENDIX 211

EBk
t,j′ |Bk

t,0:j′−1,At,Ht

[
∇Fk(wk

t,j′)−∇Fk(wk
t,j′ ,Bk

t,j′)
]

︸ ︷︷ ︸
=0

〉]
, (D.69)

where, in (D.67), we consider the cases j′ < j and j′ ≥ j separately; then, in (D.68) and in (D.69),
we use the law of total expectation.

Finally, we bound the remaining term in the right-hand side of (D.69) as follows:

−2η2
t EBt|At,Ht

[⟨ḡt, ḡt − gt⟩] (D.70)

= −2η2
t

∑
k∈At

q2
k

E−1∑
j=1

∑
j′<j

EBk
t |At,Ht

⟨∇Fk(wk
t,j),∇Fk(wk

t,j′)−∇Fk(wk
t,j′ ,Bk

t,j′)⟩ (D.71)

= η2
t

∑
k∈At

q2
k

E−1∑
j=1

∑
j′<j

EBk
t |At,Ht

[∥∥∥∇Fk(wk
t,j)
∥∥∥2

+
∥∥∥∇Fk(wk

t,j′)−∇Fk(wk
t,j′ ,Bk

t,j′)
∥∥∥2
]

(D.72)

= η2
t

∑
k∈At

q2
k

E−1∑
j=1

∑
j′<j

EBk
t |At,Ht

[∥∥∥∇Fk(wk
t,j)
∥∥∥]

+ η2
t

∑
k∈At

q2
k

E−1∑
j=1

∑
j′<j

EBk
t,0:j′−1|At,Ht[

EBk
t,j′ |Bk

t,0:j′−1,At,Ht

∥∥∥∇Fk(wk
t,j′)−∇Fk(wk

t,j′ ,Bk
t,j′)

∥∥∥2
]

︸ ︷︷ ︸
bounded with Assumption 7

(D.73)

≤ η2
t

∑
k∈At

q2
k

E−1∑
j=1

∑
j′<j

EBk
t |At,Ht

∥∥∥∇Fk(wk
t,j)
∥∥∥2

+ 1
2η

2
tE(E − 1)

∑
k∈At

q2
kσ

2
k (D.74)

≤ η2
tL(E − 1)

∑
k∈At

q2
k

E−1∑
j=1

EBk
t |At,Ht

[(
Fk(wk

t,j)− F ∗
k

)]
+ 1

2η
2
tE(E − 1)

∑
k∈At

q2
kσ

2
k

(D.75)

= η2
tL(E − 1)

∑
k∈At

q2
k

E−1∑
j=1

EBk
t |At,Ht

[(
Fk(wk

t,j)− Fk(w∗
B)
)]

+ η2
tLE(E − 1)

∑
k∈At

q2
k (Fk(w∗

B)− F ∗
k) + 1

2η
2
tE(E − 1)

∑
k∈At

q2
kσ

2
k (D.76)

≤ η2
tL(E − 1)Q

∑
k∈At

qk

E−1∑
j=1

EBk
t |At,Ht

[(
Fk(wk

t,j)− Fk(w∗
B)
)]

+ η2
tLE(E − 1)Q

∑
k∈At

qk (Fk(w∗
B)− F ∗

k)

︸ ︷︷ ︸
bounded in Lemma D.11

+1
2η

2
tE(E − 1)

∑
k∈At

q2
kσ

2
k, (D.77)

where, in (D.72), we used |⟨a, b⟩| ≤ 1
2 ∥a∥

2 + 1
2 ∥b∥

2; in (D.74), we applied Assumption 7;
in (D.75), we used the L-smoothness of {Fk(w)}k∈K; in (D.76), we added and subtracted Fk(w∗

B)
from the sum; finally, in (D.77), we used

∑
k∈At

q2
kf(k) ≤ (

∑
k∈At

qk)(
∑

k∈At
qkf(k)) and∑

k∈At
qk ≤

∑N
k=1 qk := Q. Noting that E − 1 < 2E concludes the proof of Lemma D.7.

212 APPENDIX

Lemma D.8 (Bound on the variance of the stochastic gradients). Let Assumption 7 hold. Similarly
to [Li+19, Lemma 2], we have:

η2
t EBt|At,Ht

∥gt − ḡt∥2 ≤ η2
tE

∑
k∈At

q2
kσ

2
k. (D.78)

Proof of Lemma D.8.

EBt|At,Ht
∥gt − ḡt∥2 =

= EBt|At,Ht

∥∥∥∥ ∑
k∈At

qk

E−1∑
j=0

(
∇Fk(wk

t,j ,Bk
t,j)−∇Fk(wk

t,j)
) ∥∥∥∥2

(D.79)

=
∑

k∈At

q2
k

E−1∑
j=0

EBk
t |At,Ht

∥∥∥∇Fk(wk
t,j ,Bk

t,j)−∇Fk(wk
t,j)
∥∥∥2

+
∑

k∈At

q2
kEBk

t |At,Ht

[
E−1∑
j=0

E−1∑
j′=0
j′ ̸=j

〈
∇Fk(wk

t,j ,Bk
t,j)−∇Fk(wk

t,j),

∇Fk(wk
t,j′ ,Bk

t,j′)−∇Fk(wk
t,j′)

〉]

+
∑

k∈At

∑
k′∈At
k′ ̸=k

qkqk′

E−1∑
j=0

〈
EBk

t,0:j−1|At,Ht

[
EBk

t,j |Bk
t,0:j−1,At,Ht

[
∇Fk(wk

t,j ,Bk
t,j)−∇Fk(wk

t,j)
]]

︸ ︷︷ ︸
=0

,

EBk′
t,0:j−1|At,Ht

[
EBk′

t,j |Bk′
t,0:j−1,At,Ht

[
∇Fk′(wk′

t,j ,Bk′
t,j)−∇Fk′(wk′

t,j)
]]

︸ ︷︷ ︸
=0

〉

+
∑

k∈At

∑
k′∈At
k′ ̸=k

qkqk′

E−1∑
j=0

E−1∑
j′=0
j′ ̸=j

〈
EBk

t,0:j−1|At,Ht

[
EBk

t,j |Bk
t,0:j−1,At,Ht

[
∇Fk(wk

t,j ,Bk
t,j)−∇Fk(wk

t,j)
]]

︸ ︷︷ ︸
=0

,

EBk′
t,0:j′−1|At,Ht

[
EBk′

t,j′ |Bk′
t,0:j′−1,At,Ht

[
∇Fk′(wk′

t,j′ ,Bk′
t,j′)−∇Fk′(wk′

t,j′)
]]

︸ ︷︷ ︸
=0

〉

(D.80)

=
∑

k∈At

q2
k

E−1∑
j=0

EBk
t,j |At,Ht

∥∥∥∇Fk(wk
t,j ,Bk

t,j)−∇Fk(wk
t,j)
∥∥∥2

︸ ︷︷ ︸
bounded with Assumption 7

+
∑

k∈At

q2
k

E−1∑
j=0

E−1∑
j′=0
j′<j

EBk
t,0:j−1|At,Ht

[
EBk

t,j |Bk
t,0:j−1,At,Ht

[〈
∇Fk(wk

t,j ,Bk
t,j)−∇Fk(wk

t,j),

∇Fk(wk
t,j′ ,Bk

t,j′)−∇Fk(wk
t,j′)

〉]]

APPENDIX 213

+
∑

k∈At

q2
k

E−1∑
j=0

E−1∑
j′=0
j′>j

EBk
t,0:j′−1|At,Ht

[
EBk

t,j′ |Bk
t,0:j′−1,At,Ht

[〈
∇Fk(wk

t,j ,Bk
t,j)−∇Fk(wk

t,j),

∇Fk(wk
t,j′ ,Bk

t,j′)−∇Fk(wk
t,j′)

〉]]
(D.81)

=
∑

k∈At

q2
k

E−1∑
j=0

EBk
t,j |At,Ht

∥∥∥∇Fk(wk
t,j ,Bk

t,j)−∇Fk(wk
t,j)
∥∥∥2

︸ ︷︷ ︸
bounded with Assumption 7

+
∑

k∈At

q2
k

E−1∑
j=0

E−1∑
j′=0
j′<j

EBk
t,0:j−1|At,Ht

[〈
EBk

t,j |Bk
t,0:j−1,At,Ht

[
∇Fk(wk

t,j ,Bk
t,j)−∇Fk(wk

t,j)
]

︸ ︷︷ ︸
=0

,

∇Fk(wk
t,j′ ,Bk

t,j′)−∇Fk(wk
t,j′)

〉]

+
∑

k∈At

q2
k

E−1∑
j=0

E−1∑
j′=0
j′>j

EBk
t,0:j′−1|At,Ht

[〈
∇Fk(wk

t,j ,Bk
t,j)−∇Fk(wk

t,j),

EBk
t,j′ |Bk

t,0:j′−1,At,Ht

[
∇Fk(wk

t,j′ ,Bk
t,j′)−∇Fk(wk

t,j′)
]

︸ ︷︷ ︸
=0

〉]
(D.82)

≤ E
∑

k∈At

q2
kσ

2
k, (D.83)

where, in (D.80), (D.81), and (D.82), we used the law of total expectation; in (D.83), we applied
Assumption 7.
Multiplying both sides of (D.83) by η2

t completes the proof of Lemma D.8.

Lemma D.9. Let Assumption 5 hold and let the local functions {Fk}Nk=1 be convex. Define
γt := 2ηt(1− ηtL(1 + 2EQ)).
For a diminishing step-size 0 < ηt ≤ 1

2L(1+2EQ) , satisfying γt > 0, we have:

−γt

∑
k∈At

qk

E−1∑
j=0

(
Fk(wk

t,j)− Fk(w∗
B)
)

≤ −1
2ηtE

∑
k∈At

qk (Fk(wt,0)− Fk(w∗
B)) +

∑
k∈At

qk

E−1∑
j=0

∥∥∥wk
t,j −wt,0

∥∥∥2

︸ ︷︷ ︸
bounded in Lemma D.10

+ 2η2
tLE

∑
k∈At

qk (Fk(w∗
B)− F ∗

k)

︸ ︷︷ ︸
bounded in Lemma D.11

, (D.84)

Proof of Lemma D.9. In the following, we require γt > 0.

− γt

∑
k∈At

qk

E−1∑
j=0

(
Fk(wk

t,j)− Fk(w∗
B)
)

(D.85)

214 APPENDIX

= −γt

∑
k∈At

qk

E−1∑
j=0

(
Fk(wk

t,j)− Fk(wt,0)
)
− γt

∑
k∈At

qk

E−1∑
j=0

(Fk(wt,0)− Fk(w∗
B)) (D.86)

≤ −γt

∑
k∈At

qk

E−1∑
j=0
⟨∇Fk(wt,0),wk

t,j −wt,0⟩ − γtE
∑

k∈At

qk (Fk(wt,0)− Fk(w∗
B)) (D.87)

≤ γt

∑
k∈At

qk

E−1∑
j=0

1
2

[
ηt ∥∇Fk(wt,0)∥2 + 1

ηt

∥∥∥wk
t,j −wt,0

∥∥∥2
]
− γtE

∑
k∈At

qk (Fk(wt,0)− Fk(w∗
B))

(D.88)

≤ γtηtLE
∑

k∈At

qk (Fk(wt,0)− F ∗
k) + γt

2ηt

∑
k∈At

qk

E−1∑
j=0

∥∥∥wk
t,j −wt,0

∥∥∥2

− γtE
∑

k∈At

qk (Fk(wt,0)− Fk(w∗
B)) (D.89)

≤ −γtE(1− ηtL)
∑

k∈At

qk (Fk(wt,0)− Fk(w∗
B)) + γt

2ηt

∑
k∈At

qk

E−1∑
j=0

∥∥∥wk
t,j −wt,0

∥∥∥2

+ γtηtLE
∑

k∈At

qk (Fk(w∗
B)− F ∗

k) (D.90)

where, in (D.86), we added and subtracted Fk(wt,0) to the sum; in (D.87), we used the convexity
of {Fk(w)}k∈K; note that (D.87) also requires γt > 0; in (D.88), we used the inequality |⟨a, b⟩| ≤
1
2 ∥a∥

2 + 1
2 ∥b∥

2; in (D.89), we applied the L-smoothness of {Fk(w)}k∈K (Assumption 5); finally,
in (D.90), we added and subtracted Fk(w∗

B) to the sum.
In particular, for γt := 2ηt(1 − ηtL(1 + 2EQ)) > 0, since 0 < ηt ≤ 1

2L(1+2EQ) , we further
obtain:

− γt

∑
k∈At

qk

E−1∑
j=0

(
Fk(wk

t,j)− Fk(w∗
B)
)

≤ −1
2ηtE

∑
k∈At

qk (Fk(wt,0)− Fk(w∗
B)) +

∑
k∈At

qk

E−1∑
j=0

∥∥∥wk
t,j −wt,0

∥∥∥2

︸ ︷︷ ︸
bounded in Lemma D.10

(D.91)

+ 2η2
tLE

∑
k∈At

qk (Fk(w∗
B)− F ∗

k)

︸ ︷︷ ︸
bounded in Lemma D.11

, (D.92)

where, in (D.92), we used 0 < ηt ≤ 1
2L(1+2EQ) , which gives − γtE(1 − ηtL) = − 2ηtE (1 −

ηtL(1 + 2EQ)) (1 − ηtL) ≤ −1
2ηtE. Moreover, since γt ≤ 2ηt, we also used γtηt ≤ 2η2

t , and
γt

2ηt
≤ 1.

Lemma D.10 (Bound on the divergence of local models). Let Assumption 4, 5, and 7 hold, the
local functions {Fk}Nk=1 be convex and G be defined as in Lemma D.2, Equation (2.20). Similarly
to [Li+19, Lemma 3], we obtain the following inequality:

EBt|At,Ht

∑
k∈At

qk

E−1∑
j=0

∥∥∥wk
t,j −wt,0

∥∥∥2
 ≤ 1

2η
2
tE

3G2

∑
k∈At

qk

 . (D.93)

APPENDIX 215

Proof of Lemma D.10.

EBt|At,Ht

∑
k∈At

qk

E−1∑
j=0

∥∥∥wk
t,j −wt,0

∥∥∥2
 = EBt|At,Ht

∑
k∈At

qk

E−1∑
j=1

η2
t

∥∥∥∥∥∥
j−1∑
j′=0
∇Fk(wk

t,j′ ,Bk
t,j′)

∥∥∥∥∥∥
2


(D.94)

≤ η2
t

∑
k∈At

qk

E−1∑
j=1

j
j−1∑
j′=0

EBk
t |At,Ht

[∥∥∥∇Fk(wk
t,j′ ,Bk

t,j′)
∥∥∥2
]

(D.95)

≤ η2
tG

2

E−1∑
j=1

j2

∑
k∈At

qk

 (D.96)

= 1
6η

2
tE(E − 1)(2E − 1)G2

∑
k∈At

qk

 , (D.97)

where, in (D.95), we used the triangle and the Jensen’s inequalities; in (D.96), we applied the bound
in Lemma 2.2.1, Equation (2.20); finally, in (D.97), we developed the sum of sequence of squares∑E−1

j=1 j
2 = 1

6E(E − 1)(2E − 1) ≤ 1
2E

3 since E ≥ 1.

Lemma D.11 (Bound on the dissimilarity of local functions). Let Assumption 3 hold and (At)t≥0
defined therein. We have:

E

∑
k∈At

qk (Fk(w∗
B)− F ∗

k)

 ≤ (N∑
k=1

πkqk

)
Γ, (D.98)

where Γ is defined in (2.22).

Proof of Lemma D.11.

E

∑
k∈At

qk (Fk(w∗
B)− F ∗

k)

 =
N∑

k=1
πkqk (Fk(w∗

B)− F ∗
k) (D.99)

=
(

N∑
k′=1

πk′qk′

)
N∑

k=1
pk (Fk(w∗

B)− F ∗
k) (D.100)

≤
(

N∑
k′=1

πk′qk′

)
N∑

k=1
pk (Fk(w∗)− F ∗

k) (D.101)

≤
(

N∑
k′=1

πk′qk′

)
max
k∈K
{(Fk(w∗)− F ∗

k)}︸ ︷︷ ︸
:=Γ

=
(

N∑
k=1

πkqk

)
Γ,

(D.102)

where, in (D.99), we solved the total expectation, observing that E
[∑

k∈At
qkf(k)

]
=∑N

k=1 πkqkf(k) (Assumption 3); in (D.100), we applied pk := πkqk∑N

k′=1 πk′ qk′
; in (D.101), we used

FB(w) :=
∑N

k=1 pkFk(w) and we observed FB(w∗
B) ≤ FB(w∗); finally, in (D.102), we used∑N

k=1 pk = 1 and Γ := maxk∈K{(Fk(w∗)− F ∗
k)}.

216 APPENDIX

Lemma D.12 (Convergence results under heterogeneous client availability). Let Assumptions 3–5
and 7 hold and the functions {Fk}Nk=1 be convex. For a diminishing step-size 0 < ηt ≤ 1

2L(1+2EQ)
satisfying

∑+∞
t=1 η

2
t < +∞, for any t0 ≤ T , we have:

T∑
t=t0

ηtE

∑
k∈At

qk

(
Fk(wt,0)− Fk(w∗

B)
) ≤ 2

E
diam(W)2 + (E + 1)

(
N∑

k=1
πkq

2
kσ

2
k

)(+∞∑
t=1

η2
t

)

+ 2E2G2
(

N∑
k=1

πkqk

)(+∞∑
t=1

η2
t

)

+ 4L(1 + EQ)Γ
(

N∑
k=1

πkqk

)(+∞∑
t=1

η2
t

)
:= C0 < +∞. (D.103)

Proof of Lemma D.12. We take expectation over Bt | At,Ht on Lemma D.4:

EBt|At,Ht
∥wt+1,0 −w∗

B∥
2 ≤∥wt,0 −w∗

B∥
2−2ηtEBt|At,Ht

⟨wt,0 −w∗
B, ḡt⟩︸ ︷︷ ︸

bounded in Lemma D.5

+ η2
t EBt|At,Ht

∥ḡt∥2︸ ︷︷ ︸
bounded in Lemma D.6

+ 2ηtEBt|At,Ht
⟨wt,0 −w∗

B − ηtḡt, ḡt − gt⟩︸ ︷︷ ︸
bounded in Lemma D.7

+ η2
t EBt|At,Ht

∥gt − ḡt∥2︸ ︷︷ ︸
bounded in Lemma D.8

.

(D.104)

Replacing Lemmas D.5–D.8 in (D.104), we obtain:

EBt|At,Ht
∥wt+1,0 −w∗

B∥
2

≤ ∥wt,0 −w∗
B∥

2 + 2η2
tLE(1 + 2EQ)EBt|At,Ht

∑
k∈At

qk (Fk(w∗
B)− F ∗

k)


− 2ηt(1− ηtL(1 + 2EQ))︸ ︷︷ ︸

γt

EBt|At,Ht

∑
k∈At

qk

E−1∑
j=1

(
Fk(wk

t,j)− Fk(w∗
B)
)

︸ ︷︷ ︸
bounded in Lemma D.9

+ 1
2η

2
tE(E + 1)

∑
k∈At

q2
kσ

2
k + EBt|At,Ht

∑
k∈At

qk

E−1∑
j=0

∥∥∥wk
t,j −wt,0

∥∥∥2


︸ ︷︷ ︸
bounded in Lemma D.10

(D.105)

We apply Lemmas D.9 and D.10 to (D.105) with γt := 2ηt(1− ηtL(1 + 2EQ)). We observe
that γt > 0 because:

0 ≤ ηt ≤
1

2L(1 + 2EQ) . (D.106)

We obtain:

EBt|At,Ht
∥wt+1,0 −w∗

B∥
2 ≤ ∥wt,0 −w∗

B∥
2 − 1

2ηtEEBt|At,Ht

∑
k∈At

qk (Fk(wt,0)− Fk(w∗
B))



APPENDIX 217

+ 1
2η

2
tE(E + 1)

∑
k∈At

q2
kσ

2
k + η2

tE
3G2 ∑

k∈At

qk

+ 4η2
tLE(1 + EQ)

∑
k∈At

qk (Fk(w∗
B)− F ∗

k)

 . (D.107)

Computing the total expectation on (D.107), we have:

EAt,Bt,Ht ∥wt+1,0 −w∗
B∥

2

≤ EHt ∥wt,0 −w∗
B∥

2 − 1
2ηtEEAt,Bt,Ht

∑
k∈At

qk (Fk(wt,0)− Fk(w∗
B))


+ 1

2η
2
tE(E + 1)EAt,Ht

∑
k∈At

q2
kσ

2
k

+ η2
tE

3G2EAt,Ht

∑
k∈At

qk


+ 4η2

tLE(1 + EQ)EAt,Ht

∑
k∈At

qk (Fk(w∗
B)− F ∗

k)


︸ ︷︷ ︸

bounded in Lemma D.11

(D.108)

Applying Lemma D.11 to (D.108) and considering E
[∑

k∈At
ak

]
=
∑N

k=1 πkak (Assump-
tion 3), the following inequality holds:

E ∥wt+1,0 −w∗
B∥

2 ≤ E ∥wt,0 −w∗
B∥

2 − 1
2ηtEE

∑
k∈At

qk (Fk(wt,0)− Fk(w∗
B))


+ 1

2η
2
tE(E + 1)

(
N∑

k=1
πkq

2
kσ

2
k

)
+ η2

tE
3G2

(
N∑

k=1
πkqk

)
+ 4η2

tLE(1 + EQ)Γ
(

N∑
k=1

πkqk

)
.

(D.109)

Rearranging and summing over t = t0, . . . , T , we obtain the following inequality:

T∑
t=t0

ηtE

∑
k∈At

qk

(
Fk(wt,0)− Fk(w∗

B)
) ≤ 2

E

T∑
t=t0

E
[(
∥wt,0 −w∗

B∥
2 − ∥wt+1,0 −w∗

B∥
2
)]

+ (E + 1)
(

N∑
k=1

πkq
2
kσ

2
k

) T∑
t=t0

η2
t


+ 2E2G2

(
N∑

k=1
πkqk

) T∑
t=t0

η2
t


+ 4L(1 + EQ)Γ

(
N∑

k=1
πkqk

) T∑
t=t0

η2
t

 . (D.110)

The first term in the right-hand side of (D.110) is a telescoping sum and we remove the negative
term −E ∥wT +1,0 −w∗

B∥
2:

T∑
t=t0

ηtE
[∑

k∈At

qk

(
Fk(wt,0)− Fk(w∗

B)
)]

218 APPENDIX

≤ 2
E
E ∥wt0,0 −w∗

B∥
2 + (E + 1)

(
N∑

k=1
πkq

2
kσ

2
k

) T∑
t=t0

η2
t


+ 2E2G2

(
N∑

k=1
πkqk

) T∑
t=t0

η2
t


+ 4L(1 + EQ)Γ

(
N∑

k=1
πkqk

) T∑
t=t0

η2
t

 . (D.111)

Finally, by noting that ∥wt0,0 −w∗
B∥ ≤ diam(W) and

∑T
t=t0 η

2
t ≤

∑+∞
t=1 η

2
t < +∞, we

complete the proof of Lemma D.12.

Lemma D.13. Let Assumptions 4 and 5 hold, and the local functions {Fk}Nk=1 be convex. We have:

|Fk(v)− Fk(w)| ≤ D · ∥v −w∥ , ∀v,w ∈W (D.112)

Proof of Lemma D.13. In Lemma D.2, under Assumptions 4 and 5, we have already proved that:

∥∇Fk(w)∥ ≤ D. (2.19)

Moreover, from the convexity of {Fk}k∈K, it follows that:

⟨∇Fk(v),v −w⟩ ≤ Fk(v)− Fk(w) ≤ ⟨∇Fk(w),v −w⟩. (D.113)

The Cauchy–Schwarz inequality completes the proof of Lemma D.13:

|Fk(v)− Fk(w)| ≤ max{∥∇Fk(v)∥ , ∥∇Fk(w)∥} · ∥v −w∥ ≤ D · ∥v −w∥ . (D.114)

Lemma D.14. Let Assumptions 4, 5, and 7 hold. We have:

EBt|At,Ht
∥wt+1,0 −wt,0∥ ≤ ηtEG

∑
k∈At

qk

 . (D.115)

Proof of Lemma D.14. The proof is based on [SSY18, Proposition 1.4].

EBt|At,Ht
∥wt+1,0 −wt,0∥ =

EBt|At,Ht

∥∥∥∥∥∥−ηt

∑
k∈At

qk

E−1∑
j=0
∇Fk(wk

t,j ,Bk
t,j)

∥∥∥∥∥∥ (D.116)

≤ηt

∑
k∈At

qk

E−1∑
j=0

EBk
t,0:j−1|At,Ht

[
EBk

t,j |Bk
t,0:j−1,At,Ht

[
∇Fk(wk

t,j ,Bk
t,j)
]]

(D.117)

≤ηtEG

∑
k∈At

qk

 , (D.118)

where, in (D.117), we used the triangle inequality and the law of total expectation; in (D.118), we
applied Lemma 2.2.1, Equation (2.20).

APPENDIX 219

Similarly to [SSY18, Theorem 1], we provide the following definition.

Definition 9. For communication round t ≥ 1, denote the positive integer Jt as follows:

Jt := min
{

max
{⌈ ln (2CPHt)

ln (1/λ(P))

⌉
, TP

}
, t

}
. (D.119)

The parameter Jt is crucial in our analysis: it represents the communication rounds needed
to bound the stationary distribution convergence of the Markov process (At)t>0. It will play a
key role in Lemmas D.15–D.19 and in the proof of Theorem D.20. We remark that, by definition:
TP ≤ Jt ≤ t.

Our definition of Jt corrects a typo in [SSY18, (6.27)], which considered ln (t/(2CPH)) rather
than ln (2CPHt). In fact, we observe that [SSY18, (6.28)] and consequently [SSY18, (6.35)] do
not hold when Jt is defined as in [SSY18, (6.27)].

Lemma D.15 (Convergence results under heterogeneous and correlated client availability af-
ter Jt communication rounds). Let Assumptions 3–5, and 7 hold, the local functions {Fk}Nk=1
be convex, and the parameter Jt ≤ t be as in Definition 9. For a diminishing step-size {ηt}t≥1
satisfying

∑+∞
t=1 ln(t) · η2

t , for any t0 ≤ T , we have:

T∑
t=t0

ηtE

∑
k∈At

qk

(
Fk(wt−Jt,0)− Fk(wt,0)

) ≤ C1
ln(1/λ(P)) < +∞, (D.120)

where:

C1 := EDGQ

(
N∑

k=1
πkqk

)(+∞∑
t=1

ln (2CPHt) η2
t−Jt

)
. (D.121)

Proof of Lemma D.15. This proof is based on [SSY18, Equation (6.31)].

T∑
t=t0

ηtE
[∑

k∈At

qk(Fk(wt−Jt,0)− Fk(wt,0))
]

≤ Q
T∑

t=t0

ηtE
[
max
k∈K
{Fk(wt−Jt,0)− Fk(wt,0)}

]
(D.122)

≤ DQ
T∑

t=t0

ηtE ∥wt−Jt,0 −wt,0∥ (D.123)

≤ DQ
T∑

t=t0

ηt

t−1∑
d=t−Jt

EAd,Hd

[
EBd|Ad,Hd

∥wd,0 −wd+1,0∥
]

(D.124)

≤ EDGQ
T∑

t=t0

t−1∑
d=t−Jt

ηtηdE

 ∑
k∈Ad

qk

 (D.125)

≤ EDGQ
(

N∑
k=1

πkqk

)
T∑

t=t0

t−1∑
d=t−Jt

ηtηd (D.126)

≤ EDGQ

2

(
N∑

k=1
πkqk

)
T∑

t=t0

t−1∑
d=t−Jt

(
η2

t + η2
d

)
(D.127)

220 APPENDIX

≤ EDGQ
(

N∑
k=1

πkqk

)
T∑

t=t0

Jtη
2
t−Jt

, (D.128)

where, in (D.122), we used
∑

k∈At
qkak ≤

∑N
k=1 qkak ≤ (

∑N
k=1 qk) · maxk∈K {ak} = Q ·

maxk∈K {ak}; in (D.123), we applied Lemma D.13; in (D.124), we used the triangle inequality
and the law of total expectation; in (D.125), we applied Lemma D.14 and again the law of total
expectation; in (D.126), we observed that E

[∑
k∈Ad

qk

]
=
∑N

k=1 πkqk (Assumption 3); in (D.127),
we used 2ab ≤ a2 + b2; finally, in (D.128), we applied ηt < ηd ≤ ηt−Jt due to the diminishing
learning rate.

We apply then the definition of Jt in (D.119) and we observe that
∑T

t=t0 ln(t)η2
t−Jt

≤∑+∞
t=1 ln(t)η2

t−Jt
:

T∑
t=t0

ηtE
[∑

k∈At

qk(Fk(wt−Jt,0)− Fk(wt,0))
]
≤ EDGQ

(
N∑

k=1
πkqk

) T∑
t=t0

ln (2CPHt)
ln(1/λ(P))η

2
t−Jt


(D.129)

≤ EDGQ
(

N∑
k=1

πkqk

)(+∞∑
t=1

ln (2CPHt)
ln(1/λ(P))η

2
t−Jt

)
= C1

ln(1/λ(P)) . (D.130)

Finally, we conclude that C1 is finite. To this purpose, we observe that Jt ≤ a ln(t) + b, for
opportune positive values a and b. Let t′ be a positive integer such that t ≥ a ln(t) + b for any
t ≥ t′. Then:

T∑
t=t′

ln(t) · η2
t−Jt

=
T −Jt∑

t=t′−Jt

ln(t+ Jt) · η2
t (D.131)

≤
+∞∑
t=1

ln(t+ a ln t+ b) · η2
t (D.132)

≤
+∞∑
t=1

ln ((1 + a+ b) t) · η2
t < +∞. (D.133)

Lemma D.16. Let Assumptions 4, 5 and 7 hold, the local functions {Fk}Nk=1 be convex, and Jt ≤ t
be as in Definition 9. Let the step-size be decreasing and satisfy:

∑+∞
t=1 ln(t) · η2

t < +∞. For any
t0 ≤ T , we have:(

N∑
k=1

πkqk

)
T∑

t=t0

ηtE [FB(wt,0)− FB(wt−Jt,0)] ≤ C1
ln (1/λ(P)) < +∞, (D.134)

where:

C1 := EDGQ

(
N∑

k=1
πkqk

)(+∞∑
t=1

ln (2CPHt) η2
t−Jt

)
. (D.135)

APPENDIX 221

Proof of Lemma D.16. This proof is based on [SSY18, Equation (6.38)].(
N∑

k=1
πkqk

)
T∑

t=t0

ηtE [FB(wt,0)− FB(wt−Jt,0)] =

T∑
t=t0

ηt

N∑
k=1

πkqkE [Fk(wt,0)− Fk(wt−Jt,0)] (D.136)

≤ D
(

N∑
k=1

πkqk

)
T∑

t=t0

ηtE ∥wt−Jt,0 −wt,0∥ (D.137)

≤ D
(

N∑
k=1

πkqk

)
T∑

t=t0

ηt

t−1∑
d=t−Jt

EAd,Hd

[
EBd|Ad,Hd

∥wd,0 −wd+1,0∥
]

(D.138)

≤ DEGQ
(

N∑
k=1

πkqk

)
T∑

t=t0

t−1∑
d=t−Jt

ηtηd (D.139)

≤ DEGQ

2

(
N∑

k=1
πkqk

)
T∑

t=t0

t−1∑
d=t−Jt

(
η2

t + η2
d

)
(D.140)

≤ DEGQ
(

N∑
k=1

πkqk

)
T∑

t=t0

Jt · η2
t−Jt

(D.141)

≤ EDGQ
(

N∑
k=1

πkqk

)(+∞∑
t=1

ln (2CPHt)
ln(1/λ(P))η

2
t−Jt

)
= C1

ln(1/λ(P)) , (D.142)

where, in (D.136), we applied FB(w) =
∑N

k=1 pkFk(w), where pk = πkqk∑N

h=1 πhqh

; in (D.137), we

applied Lemma D.13; in (D.138), we applied the triangle inequality and the law of total expectation;
in (D.139), we applied Lemma D.14; in (D.140), we used 2ab ≤ a2 + b2; in (D.141), we observed
that η2

t + η2
d ≤ 2η2

t−Jt
due to the diminishing learning rate; finally, in (D.142), we applied the

definition of Jt given in (D.119) and we observed that
∑T

t=t0 ln(t)η2
t−Jt

≤
∑+∞

t=1 ln(t)η2
t−Jt

<
+∞ and then C1 < +∞.

Lemma D.17 (Bound on the distance dynamics between the current and the stationary distributions
of the Markov process). Let Assumption 3 hold, and P , ρ defined therein. The following inequality
holds:

max
i,j∈[M]

∣∣∣[P t]i,j − ρj

∣∣∣ ≤ CP · λ(P)t, for t ≥ TP , (5)

where CP and TP are positive constants defined as:

CP :=
(

d∑
i=2

n2
i

) 1
2

· ∥U∥F ∥U−1∥F , (D.143)

TP := max

max
1≤i≤d




2ni(ni − 1)(ln(2ni

ln λ(P)/|λ̄2(P)|)− 1)

(ni + 1) ln(λ(P)/|λ̄2(P)|)


 , 0

 . (D.144)

Here, d, ni, and U are quantities related to the Jordan canonical form of P . Specifically, P =
UJU−1, where J denotes the Jordan M ×M matrix with d blocks Ji, i = 2, . . . , d. Each block

222 APPENDIX

Ji, i = 2, 3, . . . , d, has a dimension ni ≥ 1, and
∑d

i=1 ni = M . Moreover, |U |F denotes the
Frobenius norm of the matrix U .

Furthermore, let Assumptions 4 and 5 hold, H be defined as in Lemma D.2, Equation (2.21),
and TP ≤ Jt ≤ t be defined in (D.119). We obtain the additional inequality:∣∣∣[P Jt]i,j − ρj

∣∣∣ ≤ CP · λ(P)t ≤ CPλ(P)Jt = 1
2Ht, ∀i, j ∈ [M] and ∀t ≥ TP . (D.145)

Proof of Lemma D.17. The inequality in (2.18) is proven in[SSY18, Lemma 1] and holds for
any t ≥ TP . Here, TP is a constant dependent on the transition matrix P of the Markov chain
(At)t≥0 defined in Assumption 3. To prove (D.145), we further observe that 0 < λ(P) ≤ 1 and
TP ≤ Jt ≤ t. The last inequality in (D.145) follows from the definition of Jt in (D.119).

We remark that the bounds in [SSY18, Lemma 1], and consequently our (D.145), require
t ≥ TP . Therefore, the derivations in [SSY18, (6.28)] and [SSY18, (6.35)–(6.37)] are not accurate,
since they hold for t ≥ TP . We address this problem with Lemmas D.18 and D.19.

Lemma D.18. Let Assumptions 3–5 hold, and TP be defined as in (D.144). The following inequality
holds: (

N∑
k=1

πkqk

)
TP −1∑
t=1

ηtE [FB(wt−Jt,0)− F ∗
B] ≤ C2 < +∞, (D.146)

where:

C2 := H

TP −1∑
t=1

ηt

(N∑
k=1

πkqk

)
< +∞. (D.147)

Proof of Lemma D.18.(
N∑

k=1
πkqk

)
TP −1∑
t=1

ηtE [FB(wt−Jt,0)− F ∗
B] =

TP −1∑
t=1

ηt

N∑
k=1

πkqkE [Fk(wt−Jt,0)− Fk(w∗
B)]

(D.148)

≤ H

TP −1∑
t=1

ηt

(N∑
k=1

πkqk

)
:= C2 < +∞,

(D.149)

where, in (D.148), we used the definition of FB from (2.17), and in (D.149), we applied
Lemma 2.2.1, Equation (2.21), which holds for any w ∈ W . Lastly, it is worth noting that
C2 is a sum of finite elements, and is therefore finite.

Lemma D.19. Let Assumptions 3–5 and 7 hold, and {Fk}Nk=1 be convex. Recall the definitions of
Jt and TP in (D.119) and in (D.144), respectively. Let the step-size (ηt)t≥1 decrease and satisfy
η1 ≤ 1

2L(1+2EQ) ,
∑+∞

t=1 η
2
t < +∞, and

∑+∞
t=1 ln (t) · η2

t < +∞. For t ≥ TP , we have:

(
N∑

k=1
πkqk

)
T∑

t=TP

ηtE [FB(wt−Jt,0)− F ∗
B] ≤ C1

ln (1/λ(P)) + C3 < +∞, (D.150)

APPENDIX 223

where:

C1 := EDGQ

(
N∑

k=1
πkqk

)(+∞∑
t=1

ln (2CPHt) · η2
t−Jt

)
< +∞. (D.151)

C3 := C0 + MQ

4

+∞∑
t=1

(
η2

t + 1
t2

)
< +∞; (D.152)

Proof of Lemma D.19. Assume t ≥ TP . With a similar proof technique to [SSY18, (6.35)], we
derive the following lower bound:

EAt|At−Jt ,Ht−Jt

∑
k∈At

qk

(
Fk(wt−Jt,0)− Fk(w∗

B)
) =

=
∑

a∈M
P(At = a | At−Jt ,Ht−Jt)

∑
k∈a

qk

(
Fk(wt−Jt,0)− Fk(w∗

B)
)

(D.153)

=
∑

a∈M

[
P Jt

]
At−Jt ,a

∑
k∈a

qk

(
Fk(wt−Jt,0)− Fk(w∗

B)
)

(D.154)

≥
∑

a∈M

(
ρa −

1
2Ht

)∑
k∈a

qk

(
Fk(wt−Jt,0)− Fk(w∗

B)
)

(D.155)

=
N∑

k=1
E [1k∈At] qk

(
Fk(wt−Jt,0)− Fk(w∗

B)
)
− 1

2Ht
∑

a∈M

∑
k∈a

qk

(
Fk(wt−Jt,0)− Fk(w∗

B)
)

(D.156)

≥
N∑

k=1
πkqk

(
Fk(wt−Jt,0)− Fk(w∗

B)
)
− MQ

2Ht max
k∈K
{Fk(wt−Jt,0)− Fk(w∗

B)} (D.157)

≥
(

N∑
k=1

πkqk

)
·
(
FB(wt−Jt,0)− F ∗

B

)
− MQ

2t , (D.158)

where, in (D.153), we applied the definition of expected value to the random variable At, with a
representing a realization ofAt, that is a state in the state spaceM, and P(At = a | At−Jt ,Ht−Jt)
denoting the conditional probability of the event At = a given (At−Jt ,Ht−Jt); in (D.154),
we applied the Markov property (Assumption 3), observing that P(At = a | At−Jt) =
[P Jt]At−Jt ,a, where [P k]i,j denotes the (i, j)-th element of the k-th power of the transition
matrix P ; in (D.155), we applied Lemma D.17, Equation (D.145); for the first term in (D.156),
we used

∑
a∈M ρa

∑
k∈a f(k) =

∑
a∈M ρa

∑N
k=1 1{k∈a}f(k) =

∑N
k=1 f(k)

∑
a∈M ρa1k∈a =∑N

k=1 f(k)E [1k∈At], where 1k∈At is the indicator function that equals 1 if and only if k ∈ At;
in (D.157), we used E [1k∈At] = P(k ∈ At) := πk for the first term, and

∑
k∈a qkf(k) ≤∑N

k=1 qkf(k) ≤ (
∑N

k=1 qk)(maxk∈K f(k)) = Qmaxk∈K f(k) and
∑

a∈M 1 = M for the second
term; finally, in (D.158), we used the definition of FB in (2.17) for the first term, and we used
Lemma 2.2.1, Equation (2.21) for the second term.

Our derivations in (D.157) and (D.158) correct a typo in [SSY18, (6.35)], which considered
Q/(2t) instead of (MQ)/(2t). In (D.158), the dimension (M) of the state space (M) of the Markov
chain (At)t≥0 appears in the numerator of the second term.

Note that the steps in (D.155)–(D.158) require t ≥ TP . Multiplying by ηt and summing
for t = TP , . . . , T , rearranging, and computing the total expectation, we obtain the following

224 APPENDIX

inequality:(
N∑

k=1
πkqk

)
T∑

t=TP

ηtE [FB(wt−Jt,0)− F ∗
B] ≤

T∑
t=TP

ηtE

∑
k∈At

qk

(
Fk(wt−Jt,0)− Fk(w∗

B)
)+ MQ

2

T∑
t=TP

ηt

t
(D.159)

≤
T∑

t=TP

ηtE

∑
k∈At

qk

(
Fk(wt−Jt,0)− Fk(w∗

B)
)

︸ ︷︷ ︸
bounded with Lemma D.12 + Lemma D.15

+MQ

4

T∑
t=1

(
η2

t + 1
t2

)
, (D.160)

where, in (D.160), we used 2ab ≤ a2 + b2 and we observed that
∑T

t=TP

(
η2

t + 1
t2

)
≤∑T

t=1

(
η2

t + 1
t2

)
since t > 0 and ηt > 0.

Moreover, if the step-size (ηt)t≥1 decreases and satisfies η1 ≤ 1
2L(1+2EQ) ,

∑+∞
t=1 η

2
t < +∞,

and
∑+∞

t=1 ln (t) · η2
t < +∞, we can further bound the first term in (D.160) by combining

Lemma D.12 and Lemma D.15 for t0 = TP , and we obtain:

T∑
t=TP

ηtE

∑
k∈At

qk

(
Fk(wt−Jt,0)− Fk(w∗

B)
) ≤ C0 + C1

ln (1/λ(P)) < +∞, (D.161)

where:

C0 := 2
E

diam(W)2 + (E + 1)
(

N∑
k=1

πkq
2
kσ

2
k

)(+∞∑
t=1

η2
t

)

+ 2E2G2
(

N∑
k=1

πkqk

)(+∞∑
t=1

η2
t

)

+ 4L(1 + EQ)Γ
(

N∑
k=1

πkqk

)(+∞∑
t=1

η2
t

)
. (D.162)

Finally, plugging (D.161) into (D.160), observing that
∑T

t=1

(
η2

t + 1
t2

)
≤
∑+∞

t=1

(
η2

t + 1
t2

)
<

+∞ because
∑+∞

t=1 η
2
t < +∞ and

∑+∞
t=1

1
t2 = π

6 < +∞, and denoting C3 := C0 +
MQ

4
∑+∞

t=1

(
η2

t + 1
t2

)
< +∞, we conclude the proof of Lemma D.19.

D.2.3 Proof of Theorem 2.2.3

Theorem D.20 (Convergence of the optimization error ϵopt). Let Assumptions 3–5 and 7 hold
and the functions {Fk}Nk=1 be convex. Recall the constants M,L,D,G,H,Γ, σk, CP , TP ,Jt, and
λ(P) defined above. Let Q =

∑
k∈K qk.

Let the step-size ηt > 0 decrease and satisfy:

η1 ≤
1

2L(1 + 2EQ) ,
+∞∑
t=1

ηt = +∞,
+∞∑
t=1

ln(t) · η2
t < +∞. (2.25)

APPENDIX 225

Let T denote the total communication rounds.
For T ≥ TP , the expected optimization error E[FB(w̄T,0)− F ∗

B] can be bounded as follows:

E[FB(w̄T,0)− F ∗
B] ≤

1
2 q⊺Σq+υ

π⊺q + ψ + ϕ
ln(1/λ(P))

(
∑T

t=1 ηt)
, (2.26)

where w̄T,0 =
∑T

t=1 ηtwt,0∑T

t=1 ηt
, and:

Σ := diag
(

2 (E + 1)πkσ
2
k

+∞∑
t=1

η2
t

)
; (D.163)

υ := 2
E

diam(W)2 + MQ

4

+∞∑
t=1

(
η2

t + 1
t2

)
; (D.164)

ψ := 4L(1 + EQ)Γ
(+∞∑

t=1
η2

t

)
+ 2E2G2

(+∞∑
t=1

η2
t

)
+H

TP −1∑
t=1

ηt

 ; (D.165)

ϕ := 2EDGQ
(+∞∑

t=1
ln(2CPHt) · η2

t−Jt

)
. (D.166)

Proof of Theorem D.20. The proof involves three main steps.

Step 1. From Lemma D.16, observe that:(
N∑

k=1
πkqk

)
T∑

t=1
ηtE[FB(wt,0)− FB(wt−Jt,0)] ≤ C1

ln(1/λ(P)) < +∞, (D.167)

where:

C1 := EDGQ

(
N∑

k=1
πkqk

)(+∞∑
t=1

ln (2CPHt) · η2
t−Jt

)
< +∞. (D.168)

Step 2 By combining Lemma D.18 and Lemma D.19, we obtain:(
N∑

k=1
πkqk

)
T∑

t=1
ηtE[FB(wt−Jt,0)− F ∗

B)] ≤ C1
ln(1/λ(P)) + C2 + C3 < +∞, (D.169)

where C1 is defined in (D.168), and:

C2 := H

TP −1∑
t=1

ηt

(N∑
k=1

πkqk

)
< +∞; (D.170)

C3 := 2
E

diam(W)2 + (E + 1)
(

N∑
k=1

πkq
2
kσ

2
k

)(+∞∑
t=1

η2
t

)

+ 2E2G2
(

N∑
k=1

πkqk

)(+∞∑
t=1

η2
t

)

+ 4L(1 + EQ)Γ
(

N∑
k=1

πkqk

)(+∞∑
t=1

η2
t

)
+ MQ

4

+∞∑
t=1

(
η2

t + 1
t2

)
< +∞. (D.171)

226 APPENDIX

Step 3. By summing the results from Steps 1 and 2, given in (D.167) and (D.169), respectively,
we have:(

N∑
k=1

πkqk

)
T∑

t=1
ηtE[FB(wt,0)− F ∗

B] ≤ 2C1
ln(1/λ(P)) + C2 + C3 < +∞. (D.172)

With the convexity of FB(·), applying the Jensen’s inequality, we complete Step 3:(
T∑

t=1
ηt

)(
N∑

k=1
πkqk

)
E[FB(w̄T,0)− F ∗

B] ≤
(

N∑
k=1

πkqk

)
T∑

t=1
ηtE[FB(wt,0)− F ∗

B] (D.173)

≤ 2C1
ln(1/λ(P)) + C2 + C3 < +∞, (D.174)

where w̄T,0 :=
∑T

t=1 ηtwt,0∑T

t=1 ηt
, and the constants C1, C2, and C3 are defined in (D.168), (D.170),

and (D.171), respectively.
By dividing (D.173) and (D.174) by

(∑T
t=1 ηt

)
·
(∑N

k=1 πkqk

)
, we obtain the expression for

Theorem D.20 given in (2.26).

D.3 Proof of Theorem 2.2.4

Theorem D.21 (An alternative bound on the bias error ϵbias). Under the same assumptions of
Theorem 2.2.2, define Γ′ := maxk{Fk(w∗

B)− F ∗
k }. The following result holds:

ϵbias ≤ 4κ2 · d2
T V (α,p) · Γ′︸ ︷︷ ︸

:=ϵ̄′
bias

, (2.28)

where dT V (α,p) := 1
2
∑N

k=1|αk − pk| denotes the total variation distance between the probability
distributions α and p.

Proof of Theorem D.21. The proof follows the same steps as in Theorem D.1, proceeding
from (D.16) as follows:

∥∇F (w∗
B)∥ ≤ L

√
2
µ

N∑
k=1
|αk − pk|

√
(Fk(w∗

B)− F ∗
k) (D.16)

≤ 2L
√

2
µ
dT V (α,p)

√
Γ′, (D.175)

where, in (D.175), we applied the definitions of dT V (α,p) := 1
2
∑N

k=1|αk − pk| and Γ′ :=
maxk{Fk(w∗

B)− F ∗
k }.

Squaring (D.175), we obtain the following expression:

∥∇F (w∗
B)∥2 ≤ 8L2

µ
d2

T V (α,p)Γ′. (D.176)

Then, replacing (D.176) in (D.12), we obtain:

ϵbias := (F (w∗
B)− F ∗) ≤ 1

2µ ∥∇F (w∗
B)∥2 ≤ 4L

2

µ2 d
2
T V (α,p)Γ′︸ ︷︷ ︸

:=ϵ̄′
bias

, (D.177)

which concludes the proof of Theorem D.21.

APPENDIX 227

D.4 Convexity of ϵ̄opt + ϵ̄bias

For the proof of the convexity of ϵ̄opt(q), please refer to Appendix D.5.1. To prove that ϵ̄bias(q)
is also convex, we need to study the convexity of χ2

α∥p
:=
∑N

k=1 (αk − pk)2/pk in q ∈ {qk >

0 ∀k, ∥q∥1 = Q > 0}. To this purpose, we define the following functions:

hk : RN
≥0 \ {0} → R≥0, hk(q) := πkqk∑N

k′=1 πk′qk′
; (D.178)

gk : R>0 → R≥0, gk(pk) := (pk − αk)2

pk
. (D.179)

Finally, we write the chi-square divergence χ2
α∥p between the target and biased probability

distributions α and p as:

χ2
α∥p(q) =

N∑
k=1

(gk ◦ hk)(q) =
N∑

k=1
gk(hk(q)). (D.180)

We observe that:

• hk(q) is a particular case of linear-fractional functions [BV04, Example 3.32, p. 97];

• gk(·) is a convex in pk over R>0 because sum of convex functions;

• each gk ◦ hk is quasi-convex in q ∈ RN
>0 because composition of a convex function (gk) and

a linear-fractional function (hk) [BV04, p. 102].

However, note that the sum of quasi-convex functions is not necessarily quasi-convex.

Proposition D.22. The function χ2
α∥p(q) is not convex over RN

>0.

Proof of Proposition D.22. To analyze the convexity of χ2
α∥p(q) =

∑N
k=1(gk ◦ hk)(q) over RN

>0,
a possible approach is to check whether each function (gk ◦ hk)(q) is convex over RN

>0. In what
follows, we show that (gk ◦ hk) is not convex over RN

>0.
Consider the case when πk = 1 ∀k ∈ K. We can rewrite (gk ◦ hk)(q) as follows:

(gk ◦ hk)(q) =

(
qk

∥q∥1
− αk

)2

qk
∥q∥1

. (D.181)

We show that this function fails to satisfy the definition of convexity, i.e., ∃ q, q′ ∈ RN
>0, ζ ∈

[0, 1] such that:

(gk ◦ hk)
(
ζq + (1− ζ)q′) > ζ (gk ◦ hk) (q) + (1− ζ) (gk ◦ hk) (q′). (D.182)

The left-hand side (LHS) of (D.182) is:

(gk ◦ hk)
(
ζq + (1− ζ)q′) =

(
ζqk+(1−ζ)q′

k
ζ∥q∥1+(1−ζ)∥q′∥1

− αk

)2

ζqk+(1−ζ)q′
k

ζ∥q∥1+(1−ζ)∥q′∥1

. (D.183)

228 APPENDIX

If we take q : ∥q∥1 = 1, qk = αk, ζ = 1
2 , q′ = Q

N 1, and we let Q → +∞, then the LHS
in (D.183) converges to:

lim
Q→+∞

(
1
2 αk+ 1

2
Q
N

1
2 1+ 1

2 Q
− αk

)2

1
2 αk+ 1

2
Q
N

1
2 1+ 1

2 Q

=

(
1
N − αk

)2

1
N

. (D.184)

On the other hand, for the same choices of qk, q, q′, and ζ, and if we let Q → +∞, the
right-hand side (RHS) of (D.182) is:

ζ (gk ◦ hk) (q) + (1− ζ) (gk ◦ hk) (q′) = 0 + 1
2

(
1
N − αk

)2

1
N

. (D.185)

Finally, comparing (D.184) and (D.185), we conclude that, for Q large enough, the LHS
in (D.182) is larger than the RHS.

Proposition D.23. The function χ2
α∥p(q) is convex over RN

>0 ∩ {q : ∥q∥1 = Q > 0}.

Proof of Proposition D.23. To verify the convexity of χ2
α∥p(q) =

∑N
k=1(gk ◦ hk)(q) over RN

>0 ∩
{q : ∥q∥1 = Q > 0}, one possible approach is to demonstrate the convexity of each function
(gk ◦ hk)(q) over the set RN

>0 ∩ {q : ∥q∥1 = Q > 0}.
We prove this result for a more general case. We show that, if

g̃ is a convex function over its domain Dg (D.186)

and

h̃(q) = Aq + b

c⊺q + d
, (D.187)

then

g̃ ◦ h̃ is convex over D = RN
>0 ∩ {q : c⊺q + d = Q > 0, Aq + b

c⊺q + d
∈ Dg}. (D.188)

It is then sufficient to apply this result to each pair (gk, hk) to conclude that (gk ◦ hk) is convex
and then χ2

α∥p(q) is convex.
By direct inspection, for all q, q′ ∈ D, ∀ ζ ∈ [0, 1], the following equality holds:

(
g̃ ◦ h̃

) (
ζq + (1− ζ)q′) = g̃

(
h̃
(
ζq + (1− ζ)q′)) = g̃

(
ζ ′ Aq + b

c⊺q + d
+ (1− ζ ′) Aq′ + b

c⊺q′ + d

)
,

(D.189)

where:

ζ ′ = ζ (c⊺q + d)
ζ (c⊺q + d) + (1− ζ) (c⊺q′ + d) ∈ [0, 1]. (D.190)

APPENDIX 229

Applying the convexity of g̃, we bound Equation (D.189) as follows:

g̃

(
ζ ′ Aq + b

c⊺q + d
+ (1− ζ ′) Aq′ + b

c⊺q′ + d

) convexity of g̃
≤ ζ ′g̃

(
Aq + b

c⊺q + d

)
+ (1− ζ ′)g̃

(
Aq′ + b

c⊺q′ + d

)
(D.191)

= ζ ′
(
g̃ ◦ h̃

)
(q) + (1− ζ ′)

(
g̃ ◦ h̃

)
(q′). (D.192)

Finally, to conclude the proof, we show that ζ ′ = ζ . This is true because, for any q and q′ ∈ D,
c⊺q + d = c⊺q′ + d = Q > 0. In fact, by using this condition in Equation (D.190), we have that:

ζ ′ = ζQ

ζQ+ (1− ζ)Q = ζ, (D.193)

which establishes the convexity of g̃ ◦ h̃ by definition.

D.5 Minimizing ϵ̄opt

Equation (2.26) can be rewritten as:(
T∑

t=1
ηt

)
E [FB(w̄T,0)− F ∗

B] ≤
1
2q⊺Σq + υ

π⊺q
+ ψ + ϕ

ln(1/λ(P)) (D.194)

=
1
2q⊺Aq +B

π⊺q
+ C := J(q), (D.195)

where:

A := Σ = diag
(

2 (E + 1)πkσ
2
k

+∞∑
t=1

η2
t

)
; (D.196)

B := υ = 2
E

diam(W)2 + MQ

4

+∞∑
t=1

(
η2

t + 1
t2

)
; (D.197)

C := ψ + ϕ

ln(1/λ(P)) (D.198)

=
(
4L(1 + EQ)Γ + 2E2G2

)(+∞∑
t=1

η2
t

)
+ 2EDGQ

(+∞∑
t=1
Jt · η2

t−Jt

)
+H

TP −1∑
t=1

ηt

 .
(D.199)

The minimization of (D.195), defines the following optimization problem:

minimize
q

J(q) :=
1
2q⊺Aq +B

π⊺q
+ C;

subject to q ≥ 0,
π⊺q > 0,
∥q∥1 = Q.

(D.200)

Remark 9. In Problem (D.200), when setting some qk to zero, we do not consider the possibility
of redefining the Markov chain (At)t≥0 in Assumption 3 by considering the reduced state space
of clients with qk > 0. In this case, the redefined Markov chain would have a different transition
matrix P ′ ̸= P with λ(P ′) ̸= λ(P), resulting in C no longer being constant.

230 APPENDIX

D.5.1 The optimization problem in (D.200) is convex

Let us rewrite the problem by adding a variable s := 1/π⊺q and then replacing y := sq. We have:

J(y, s) = s

(1
2

y⊺

s
A

y

s
+B

)
+ C = s ·K

(
y

s

)
+ C, (D.201)

where K : RN → R, K(q) := 1
2q⊺Aq +B is a (strictly) convex function, and:

minimize
y, s

J(y, s) = 1
2sy⊺Ay +Bs+ C

subject to y ≥ 0,
s > 0,
π⊺y = 1,
∥y∥1 = Qs.

(D.202)

Note that the objective function J(y, s) : RN+1 → R, J(y, s) = s ·K(y/s) + C in (D.201) is
the perspective of the convex function K(q) + C, and is therefore convex [BV04, pp. 89–90].
Moreover, the constraints in (D.202) define a convex set, and then the optimization problem (D.202)
is convex. We solve it with the method of Lagrange multipliers.

D.5.2 Support for Guideline A (Section 4.4.3.2)

The Lagrangian function L is as follows:

L(y, s, ι, θ,ω) = 1
2sy⊺Ay +Bs+ C + ι(1− π⊺y) + θ(∥y∥1 −Qs)− ω⊺y. (D.203)

Since the constraint s > 0 defines an open set, the set defined by the constraints in (D.202) is not
closed. However, the solution of the optimization problem (D.202) is never on the boundary s = 0
because L → +∞ as s→ 0+, therefore we can consider s ≥ 0. Moreover, strong duality holds for
the Slater’s constraint qualification for convex problems.

The KKT conditions read:

∂L
∂s

(y∗, s∗, ι∗, θ∗,ω∗) = 0, (D.204)

∇yL(y∗, s∗, ι∗, θ∗,ω∗) = 0, (D.205)

π⊺y∗ − 1 = 0, (D.206)

∥y∗∥1 −Qs = 0, (D.207)

ω∗⊺y∗ = 0, (D.208)

y∗,ω∗ ≥ 0. (D.209)

In particular, the KKT condition for y∗ read:

∇yL(y∗, s∗, ι∗, θ∗,ω∗) = 1
s∗ Ay∗ − ι∗π + θ∗1− ω∗ = 0, (D.210)

which is satisfied when:

∂L
∂y∗

k

= 1
s∗Akky

∗
k − ι∗πk + θ∗ − ω∗

k = 0, ∀k ∈ K, (D.211)

APPENDIX 231

where Aij denotes the element on the i-th row and the j-th column of matrix A.
Furthermore, the Complementary Slackness conditions in (D.208) and (D.209) present two

cases:

1. If y∗
k > 0 (and q∗

k > 0), then ω∗
k = 0 and:

y∗
k = s∗

Akk
(ι∗πk − θ∗), q∗

k = 1
Akk

(ι∗πk − θ∗); (D.212)

2. y∗
k = q∗

k = 0 otherwise.

By replacing the third equality constraint in Problem (D.202) with the inequality constraint
π⊺y ≥ 1, we establish an equivalent optimization problem. The equivalence holds because, for
any feasible solution y′ with π⊺y′ > 1, we can consider the solution y′′ = y′

π⊺y′ < y′, leading to a
lower objective function value. Additionally, the new problem states that the Lagrange multiplier
(ι∗) associated with the inequality constraint must be non-negative. By considering Akk ≥ 0 and
ι∗ ≥ 0 in Equation (D.212), we conclude that q∗

k increases with πk, providing analytical support
for Guideline A.

D.5.3 Closed-form solution of the optimization problem (D.200)

The solution of the optimization problem in (D.200) is not of practical utility because its constants
(e.g., L, ω, Γ, CP) are in general problem-dependent and difficult to estimate during training. In
particular, Γ poses particular difficulties as it is defined in terms of the minimizer of the target
objective F , but the FL algorithm generally minimizes the biased function FB . Nevertheless, we
include the closed-formed solution of the optimization problem (D.200) for completeness.

We use the active-set method: let X be the set of coordinates corresponding to the active
inequalities, i.e., X = {k | y∗

k = 0}.
From the KKT condition in (D.206), we derive a relation between ι∗ and θ∗:

π⊺y∗ =
∑
k ̸∈X

πky
∗
k =

∑
k ̸∈X

πk
s∗

Akk
(ι∗πk − θ∗) = ι∗s∗ ∑

k ̸∈X

π2
k

Akk
− θ∗s∗ ∑

k ̸∈X

πk

Akk
= 1. (D.213)

We use the KKT condition in (D.207) to derive another relation between ι∗ and θ∗:

∥y∗∥1 =
∑
k ̸∈X

y∗
k =

∑
k ̸∈X

s∗

Akk
(ι∗πk − θ∗) = Qs ⇔ ι∗ =

Q+ θ∗∑
k ̸∈X

1
Akk∑

k ̸∈X
πk

Akk

, (D.214)

and, replacing (D.214) in (D.213), we derive the closed-form solution for θ∗:

θ∗ =
∑

k ̸∈X
πk

Akk
−Qs∗∑

k ̸∈X
π2

k
Akk

s∗
[(∑

k ̸∈X
1

Akk

)
·
(∑

k ̸∈X
π2

k
Akk

)
−
(∑

k ̸∈X
πk

Akk

)2
] . (D.215)

D.6 Background on Markov Chains

D.6.1 Markov Chain for the Analysis (Section 4.4.3.2)

We recall some existing results [LP17; SSY18] for the Markov chain (At)t≥0 used in our analysis
(Assumption 3).

232 APPENDIX

Assumption 31. The Markov chain (At)t≥0 on the M -finite state spaceM is time-homogeneous,
irreducible, and aperiodic. It has transition matrix P , stationary distribution ρ, and has state
distribution ρ at time t = 0.

Let ρ(t) = [ρ(t)
1 , ρ

(t)
2 , . . . , ρ

(t)
M],

∑M
i=1 ρ

(t)
i = 1 be the state probability distribution on the

Markov chain (At)t≥0 at time step t. Assumption 31 guarantees the existence of a stationary
distribution ρ = limt→+∞ ρ(t) = [ρ1, ρ2, . . . , ρM] with mini{ρi} > 0 and ρ⊺P = ρ⊺. Then ρ is
a left eigenvector relative to the eigenvalue 1, which is the largest eigenvalue of the matrix P .

For the transition matrix P , we label its eigenvalues in decreasing order:

1 = λ1(P) > λ2(P) ≥ · · · ≥ λM (P). (D.216)

We define:

λ̄2(P) := max {|λ2(P)|, |λM (P)|} and λ(P) := λ̄2(P) + 1
2 . (D.217)

The second largest absolute eigenvalue λ̄2(P) of the transition matrix P characterizes the
mixing time of a Markov chain. The absolute spectral gap γ := 1 − λ̄2(P) and its reciprocal,
the relaxation time trel := 1

γ , play a role in this relationship. To quantify the convergence of the
Markov chain towards stationarity, we use the parameter d(t) := maxa∈M∥[P t]a,· − ρ∥T V , which
measures the maximum distance between the distribution [P t]a,· and the stationary distribution
ρ for all initial states a ∈ M. The mixing time tmix(ε) is defined as the minimum time at which
the distance d(t) becomes less than or equal to a given threshold ε: tmix(ε) := min {t : d(t) ≤ ε}.
Upper and lower bounds exist for the mixing time based on the relaxation time and the stationary
distribution: (trel − 1) log

(
1
2ε

)
≤ tmix(ε) ≤ log

(
1

ερmin

)
trel, where ρmin := mina∈M ρa [LP17, pp.

154–156].

D.6.2 Markov Chain for Guideline B (Section 2.2.4)

In Section 2.2.3.4 (Guideline B), we examine a specific scenario where the availability of each
client k follows an independent Markov chain (Ak

t)t≥0 with transition probability matrix Pk. This
setup allows us to model the aggregate process as a product of independent Markov chains, known
as a Product Chain [LP17, Section 12.4].

Definition 10 (Product Chain). Let P1 and P2 be transition matrices on state spacesM1 and
M2 respectively, with corresponding stationary distributions π1 and π2. We consider a Markov
Chain on the state spaceM1 ×M2 that moves independently in the first and second coordinates
according to P1 and P2 respectively. The transition matrix of this Markov Chain is the Kronecker
product P̃ = P1 ⊗ P2, defined as:

P̃ ((x, y), (z, w)) = P1(x, z)P2(y, w). (D.218)

Proposition D.24. The stationary distribution of the Markov chain defined by P̃ = P1 ⊗ P2 is the
Kronecker product ρ̃ = π1 ⊗ π2.

Proof. We can observe the following:

ρ̃⊺P̃ = (π1 ⊗ π2)⊺ · (P1 ⊗ P2) = (π⊺
1P1)⊗ (π⊺

2P2) = π⊺
1 ⊗ π⊺

2 = ρ̃⊺, (D.219)

APPENDIX 233

where, in (D.219), we used the mixed-product property of the Kronecker product in the second
step, and in the third step, we noted that π1 and π2 are the stationary distributions for P1 and P2,
respectively. For a comprehensive list of properties that the Kronecker product satisfies, please refer
to [Mey01, p. 597].

Proposition D.25 ([LP17, Exercise 12.6]). Let u and v be eigenvectors of P1 and P2, respectively,
with eigenvalues λ and µ. Then u⊗ v is an eigenvector of P1 ⊗ P2 with eigenvalue λµ.

Proof. We can verify the following:

(u⊗ v)⊺(P1 ⊗ P2) = (u⊺P1)⊗ (v⊺P2) = (λu⊺)⊗ (µv⊺) = λµ(u⊗ v)⊺. (D.220)

In (D.220), we used the mixed-product property and the associativity of the scalar multiplication
with the Kronecker product.

In general, let P1 be am×mmatrix with eigenvalues λ1, ..., λm, and P2 be a n×nmatrix with
eigenvalues µ1, ..., µn. The complete eigen-decomposition of P1 ⊗ P2 depends on the Kronecker
product structure and involves combinations of the eigenvalues and eigenvectors of P1 and P2.

Proposition D.26 (Spectrum of the Kronecker product, [Mey01, Exercise 7.8.11]). Let the eigen-
values of P1 ∈ Rm×m be denoted by λi and let the eigenvalues of P2 ∈ Rn×n be denoted by µj .
The eigenvalues of P1 ⊗ P2 are the mn numbers {λiµj}m,n

i=1,j=1.

Proof. Let J1 = A−1
1 P1A1 and J2 = A−1

2 P2A2 be the respective Jordan forms for P1 and P2.
We use the mixed-product property and the inverse property of the Kronecker product to show that
P1 ⊗ P2 is similar to J1 ⊗ J2:

J1 ⊗ J2 = (A−1
1 P1A1)⊗ (A−1

2 P2A2) (D.221)

= (A−1
1 ⊗A−1

2)(P1 ⊗ P2)(A1 ⊗A2) (D.222)

= (A1 ⊗A2)−1(P1 ⊗ P2)(A1 ⊗A2). (D.223)

Consequently, the eigenvalues of P1 ⊗ P2 coincide with those of J1 ⊗ J2. Since J1 and J2 are
upper triangular with {λi}mi=1 and {µj}nj=1 on the diagonals, respectively, J1 ⊗ J2 is also upper
triangular with diagonal entries given by {λiµj}m,n

i=1,j=1.

Proposition D.27. Let λ̄2(Pk) denote the second largest eigenvalue in absolute value of the
transition matrix Pk associated with the k-th client, and define λ(Pk) := λ̄2(Pk)+1

2 . For the product
chain defined by P =

⊗
k∈K Pk, the second largest eigenvalue in absolute value λ̄2(P) and

λ(P) := λ̄2(P)+1
2 satisfy:

λ̄2(P) = max
k∈K

λ̄2(Pk) and λ(P) = max
k∈K

λ(Pk). (D.224)

The proof of Proposition D.27 follows a similar structure to the one in [LP17, Corollary 12.13].

Proof. From Proposition D.26, we know that the eigenvalues of P =
⊗

k∈K Pk are given by:∏
k∈K

λi(Pk) : λi(Pk) an eigenvalue of Pk

 . (D.225)

234 APPENDIX

Recall that λ̄2(Pk) is the second largest eigenvalue of Pk in absolute value. If k∗ denotes the index
such that λ̄2(Pk∗) = maxk∈K λ̄2(Pk), the second largest eigenvalue in module of P is the product
of λ̄2(Pk∗) for the k∗-th client and λ1(Pj) = 1 for the remaining clients j ̸= k∗. The second result
in (D.224) follows from the definitions of λ(P) and λ(Pk).

D.6.3 Markov Chain for the Experiments (Section 2.2.6)

In the experiments (Section 2.2.6.1), we consider a scenario where the activity of each client
k ∈ K follows a two-state homogeneous Markov process. The state spaceM consists of two states:
“inactive” (with value 0) and “active” (with value 1):

0 1p
(k)
0

1− p(k)
0

p
(k)
1

1− p(k)
1

We provide detailed expressions of the transition matrix Pk, stationary distribution π(k), and
the second eigenvalue λ2(Pk) used in the experiments for each client k ∈ K:

Pk =
[

p
(k)
0 1− p(k)

0
1− p(k)

1 p
(k)
1

]
=
[

1− (1− λ2(Pk))πk (1− λ2(Pk))πk

(1− λ2(Pk))(1− πk) λ2(Pk) + (1− λ2(Pk))πk

]
.

(D.226)

π(k) = [1− πk, πk] =
[

1− p(k)
1

2− p(k)
0 − p

(k)
1
,

1− p(k)
0

2− p(k)
0 − p

(k)
1

]
. (D.227)

λ2(Pk) = p
(k)
0 + p

(k)
1 − 1. (D.228)

D.7 Details on Experimental Setup

Datasets and Models In this section, we provide a detailed description of the datasets and models
used in our experiments. We considered a total of N = 100 clients. We tested CA-Fed on the
benchmark synthetic LEAF dataset [Cal+19] for regularized logistic regression tasks, which satisfy
Assumptions 5-6. Additionally, we incorporated two “real-world” datasets: MNIST [LC10] for
handwritten digit recognition and CIFAR-10 [Kri09] for image recognition. Detailed descriptions
of the datasets and the models used for each of them are provided below.

Synthetic LEAF dataset Synthetic data provides us with precise control over heterogeneity. The
Synthetic LEAF dataset achieves this by using parameters γ and δ, where γ determines the degree
of variation among local models and δ determines the variability in the local data across different
devices. The generation process follows the setup described in [Li+20a; Li+19]:

1. For each client k ∈ K, sample the model parameters Wk ∈ R10×60 and bk ∈ R10 from
a normal distribution with mean µk and standard deviation 1, where µk is sampled from
N (0, γ).

APPENDIX 235

Table 3: Average computation time and used CPU/GPU for each dataset.

Dataset CPU/GPU Simulation time

Binary Synthetic Intel(R) Xeon(R) CPU 10min
Synthetic LEAF Intel(R) Xeon(R) CPU 6min
MNIST [LC10] GeForce GTX 1080 Ti 42min
CIFAR10 [Kri09] GeForce GTX 1080 Ti 2h37min

Table 4: Learning rates η and η̄ used for the experiments in Figure 2.11.

Dataset Unbiased More available CA-Fed (κ̄ = 1) AdaFed [Tan+22a] F3AST [RVd23]

Synthetic LEAF 2.0/2.0 1.0/7.0 2.0/3.0 1.0/1.0 2.0/2.0
MNIST 0.03/1.0 0.1/4.0 0.1/1.0 0.03/1.0 0.1/0.3
CIFAR10 0.03/1.0 0.03/3.0 0.03/1.0 0.03/1.0 0.03/0.3

2. For each client k ∈ K, generate the client’s input data Xk ∈ Rnk×60 as follows: sample each
element (xk)j from a normal distribution with mean vk and standard deviation 1

j1.2 , where
vk is sampled from N (Bk, 1) and Bk is sampled from N (0, δ).

3. Generate synthetic samples (Xk,Yk), where Yk ∈ Rnk , according to the model y =
arg max(softmax(Wkx + bk)), where x ∈ R60.

The distribution of samples nk = |Dk| among the clients follows a power law, resulting in
an imbalanced data distribution. We refer to the synthetic dataset with parameters γ and δ as
synthetic(γ, δ). We set (γ, δ) values to (0, 0), (0.25, 0.25), (0.5, 0.5), (0.75, 0.75), and (1, 1) to
investigate various levels of heterogeneity in the data.

MNIST To classify handwritten digits in the MNIST dataset, we employ multinomial logistic
regression. The model takes a flattened 784-dimensional (28 × 28) image as input and predicts a
class label from 0 to 9 as output. To introduce heterogeneity in the data distribution, we distribute
the dataset among N = 100 clients using a Dirichlet allocation method [Wan+20a] with parameter
ς . This allocation scheme allows for varying proportions of the dataset to be assigned to each client,
contributing to the heterogeneous nature of our experimental setting.

CIFAR-10 The CIFAR-10 dataset consists of 60,000 input images, sourced from a collection of
80 million tiny images, with 10 distinct labels. To partition the CIFAR-10 dataset among N = 100
clients, we employ a Dirichlet allocation [Wan+20a] with parameter ς . For this particular dataset, we
train a shallow neural network comprising two convolutional layers followed by one fully connected
layer. This network architecture is designed to capture relevant features from the CIFAR-10 images
and facilitate accurate classification.

D.7.1 Implementation Details

236 APPENDIX

Machines The experiments were conducted on a CPU/GPU cluster, utilizing various available
GPUs such as Nvidia Tesla V100, GeForce GTX 1080 Ti, and Quadro RTX 8000. The majority
of experiments involving Synthetic datasets were executed on an Intel(R) Xeon(R) CPU E5-1660
v3 @ 3.00GHz. On the other hand, experiments involving MNIST and CIFAR-10 datasets were
performed using GeForce GTX 1080 Ti cards. For each dataset, we conducted approximately 50
experiments, excluding the time dedicated to development and debugging. Due to the usage of
a train batch size of 32 samples, the experiments with MNIST and CIFAR-10 datasets exhibited
slower execution times. Table 3 provides the average duration required to execute one simulation
for each dataset. The authors are grateful to the OPAL infrastructure from Université Côte d’Azur
for providing resources and support.

Libraries We extensively employed the PyTorch deep learning framework throughout our ex-
periments. PyTorch provided us with a comprehensive set of tools and functionalities for model
construction, training, and evaluation. It allowed us to efficiently implement and optimize various
neural network architectures, including the multinomial logistic regression model for the MNIST
dataset and the shallow neural network for the CIFAR-10 dataset. To simplify the data prepa-
ration process, we utilized Torchvision, a PyTorch package designed for computer vision tasks.
Torchvision facilitated seamless dataset management, including the download and pre-processing
of MNIST and CIFAR-10, enabling us to transform the raw image data into a suitable format for
training and evaluation.

Hyper-parameters For each method and task, we performed a grid search to determine the
optimal learning rates η and η̄. For the MNIST and CIFAR-10 datasets, we explored the grids
η = {2.0, 1.0, 0.3, 0.1, 0.03, 0.01} and η̄ = {5.0, 4.0, 3.0, 2.0, 1.0, 0.3, 0.1}. For the Synthetic
LEAF dataset, we shifted the grid to η̄ = {8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0}. Table 4 reports the
learning rates η and η̄ corresponding to the results in Figure 2.11 for each dataset and method. For
CA-Fed, we use the hyper-parameters β = τ = 0. In the case of AdaFed, we set full device
participation, where the parameter server samples all active clients (|St| = |At|). To ensure a fair
comparison, we set the number of clients sampled by F3AST to the average number of clients
included by CA-Fed, which is 45 on average. Furthermore, we set the smoothness parameter β of
F3AST to be O(1/T), as suggested by the authors in [RVd23, Appendix D].

APPENDIX 237

E Personalized Federated Learning under a Mixture of Distributions

E.1 Proof of Proposition 3.5.1

For h ∈ H and (x, y) ∈ X × Y , let ph (y|x) denote the conditional probability distribution of y
given x under model h, i.e.,

ph (y|x) ≜ ech(x) × exp
{
− l (h (x) , y)

}
, (E.229)

where
ch (x) ≜ − log

[∫
y∈Y

exp
{
− l (h (x) , y)

}
d y
]
. (E.230)

We also remind that the entropy of a probability distribution q over Y is given by

H (q) ≜ −
∫

y∈Y
q (y) · log q (y) d y, (E.231)

and that the Kullback-Leibler divergence between two probability distributions q1 and q2 over Y is
given by

KL (q1||q2) ≜
∫

y∈Y
q1 (y) · log q1 (y)

q2 (y) d y. (E.232)

Proposition 3.5.1. Let l(·, ·) be the mean squared error loss, the logistic loss or the cross-entropy
loss, and Θ̆ and Π̆ be a solution of the following optimization problem:

minimize
Θ,Π

Et∼DT E(x,y)∼Dt
[− log pt(x, y|Θ, πt)] , (3.4)

where DT is any distribution with support T . Under Assumptions 8, 9, and 10, the predictors

h∗
t =

M∑
m=1

π̆tmhθ̆m
, ∀t ∈ T (3.5)

minimize E(x,y)∼Dt
[l(ht(x), y)] and thus solve Problem (3.1).

Proof. We prove the result for each of the three possible cases of the loss function. We verify that
ch does not depend on h in each of the three cases, then we use Lemma E.3 to conclude.

Mean Squared Error Loss This is the case of a regression problem where Y = Rd for some
d > 0. For x, y ∈ X × Y and h ∈ H, we have

ph (y|x) = 1√
(2π)d

· exp
{
−∥h (x)− y∥2

2

}
, (E.233)

and
ch (x) = − log

(√
(2π)d

)
(E.234)

238 APPENDIX

Logistic Loss This is the case of a binary classification problem where Y = {0, 1}. For x, y ∈
X × Y and h ∈ H, we have

ph (y|x) = (h (x))y · (1− h (x))1−y , (E.235)

and
ch (x) = 0 (E.236)

Cross-entropy loss This is the case of a classification problem where Y = [L] for some L > 1.
For x, y ∈ X × Y and h ∈ H, we have

ph (y|x) =
L∏

l=1
(h (x))1{y=l} , (E.237)

and
ch (x) = 0 (E.238)

Conclusion For t ∈ T , consider a predictor h∗
t minimizing E(x,y)∼Dt

[l(ht(x), y)]. Using
Lemma E.3, for (x, y) ∈ X × Y , we have

ph∗
t

(y|x) =
M∑

m=1
π̆tm · pm

(
y|x, θ̆m

)
. (E.239)

We multiply both sides of this equality by y and we integrate over y ∈ Y . Note that in all three
cases we have

∀x ∈ X ,
∫

y∈Y
y · ph (·|x) d y = h(x). (E.240)

It follows that

h∗
t =

M∑
m=1

π̆tmhθ̆m
, ∀t ∈ T . (E.241)

Supporting Lemmas

Lemma E.1. Suppose that Assumptions 8 and 10 hold, and consider Θ̆ and Π̆ to be a solution of
Problem (3.4). Then

pt(x, y|Θ̆, π̆t) = pt(x, y|Θ∗, π∗
t), ∀t ∈ T . (E.242)

Proof. For t ∈ T ,

E(x,y)∼Dt

[
− log pt(x, y|Θ̆, π̆t)

]
(E.243)

= −
∫

(x,y)∈X ×Y
pt(x, y|Θ∗, π∗

t) · log pt(x, y|Θ̆, π̆t) d x d y (E.244)

= −
∫

(x,y)∈X ×Y
pt(x, y|Θ∗, π∗

t) · log pt(x, y|Θ̆, π̆t)
pt(x, y|Θ∗, π∗

t) d x d y

APPENDIX 239

−
∫

(x,y)∈X ×Y
pt(x, y|Θ∗, π∗

t) · log pt(x, y|Θ∗, π∗
t) d x d y (E.245)

= KL
(
pt (·|Θ∗, π∗

t) ∥pt
(
· |Θ̆, π̆t

))
+H [pt (·|Θ∗, π∗

t)] , (E.246)

Since the KL divergence is non-negative, we have

E(x,y)∼Dt

[
− log pt(x, y|Θ̆, π̆t)

]
≥ H [pt (·|Θ∗, π∗

t)] = E(x,y)∼Dt
[− log pt(x, y|Θ∗, π∗

t)] .
(E.247)

Taking the expectation over t ∼ DT , we write

Et∼DT E(x,y)∼Dt

[
− log pt(x, y|Θ̆, π̆t)

]
≥ Et∼DT E(x,y)∼Dt

[− log pt(x, y|Θ∗, π∗
t)] . (E.248)

Since Θ̆ and Π̆ is a solution of Problem (3.4), we also have

Et∼DT E(x,y)∼Dt

[
− log pt(x, y|Θ̆, π̆t)

]
≤ Et∼DT E(x,y)∼Dt

[− log pt(x, y|Θ∗, π∗
t)] . (E.249)

Combining (E.248), (E.249), and (E.246), we have

Et∼DT KL
(
pt (·|Θ∗, π∗

t) ∥pt
(
· |Θ̆, π̆t

))
= 0. (E.250)

Since KL divergence is non-negative, and the support of DT is the countable set T , it follows that

∀t ∈ T , KL
(
pt (·|Θ∗, π∗

t) ∥pt
(
· |Θ̆, π̆t

))
= 0. (E.251)

Thus,
pt(x, y|Θ̆, π̆t) = pt(x, y|Θ∗, π∗

t), ∀t ∈ T . (E.252)

Lemma E.2. Consider M probability distributions on Y , that we denote qm, m ∈ [M], and
α = (α1, . . . , αm) ∈ ∆M . For any probability distribution q over Y , we have

M∑
m=1

αm · KL
(
qm∥

M∑
m′=1

αm′ · qm′

)
≤

M∑
m=1

αm · KL (qm∥q) , (E.253)

with equality if and only if,

q =
M∑

m=1
αm · qm. (E.254)

Proof.

M∑
m=1

αm · KL (qm∥q)−
M∑

m=1
αm · KL

(
qm∥

M∑
m′=1

αm′ · qm′

)

=
M∑

m=1
αm ·

[
KL (qm∥q)−KL

(
qm∥

M∑
m′=1

αm′ · qm′

)]
(E.255)

= −
M∑

m=1
αm

∫
y∈Y

qm (y) · log
(

q (y)∑M
m′=1 αm′ · qm′ (y)

)
(E.256)

240 APPENDIX

= −
∫

y∈Y

{
M∑

m=1
αm · qm (y)

}
· log

(
q (y)∑M

m′=1 αm′ · qm′ (y)

)
d y (E.257)

= KL
(

M∑
m=1

αm · qm∥q
)
≥ 0. (E.258)

The equality holds, if and only if,

q =
M∑

m=1
αm · qm. (E.259)

Lemma E.3. Consider Θ̆ and Π̆ to be a solution of Problem (3.4). Under Assumptions 8, 9, and 10,
if ch does not depend on h ∈ H, then the predictors h∗

t , t ∈ T , minimizing E(x,y)∼Dt
[l(ht(x), y)],

verify for (x, y) ∈ X × Y

ph∗
t

(y|x) =
M∑

m=1
π̆tm · pm

(
y|x, θ̆m

)
. (E.260)

Proof. For t ∈ T and ht ∈ H, under Assumptions 8, 9, and 10, we have

E(x,y)∼Dt
[l(ht(x), y)] =

∫
x,y∈X ×Y

l(ht(x), y) · pt (x, y|Θ∗, π∗
t) d x d y. (E.261)

Using Lemma E.1, it follows that

E(x,y)∼Dt
[l(ht(x), y)] =

∫
x,y∈X ×Y

l(ht(x), y) · pt

(
x, y|Θ̆, π̆t

)
d x d y. (E.262)

Thus, using Assumptions 8 and 9 we have,

E(x,y)∼Dt
[l(ht(x), y)] (E.263)

=
∫

x,y∈X ×Y
l(ht(x), y) · pt

(
x, y|Θ̆, π̆t

)
d x d y (E.264)

=
∫

x,y∈X ×Y
l(ht(x), y) ·

(
M∑

m=1
π̆tm · pm

(
y|x, θ̆m

))
p (x) d x d y (E.265)

=
∫

x∈X

[
M∑

m=1
π̆tm

∫
y∈Y

l(ht(x), y) · pm

(
y|x, θ̆m

)
d y
]
p (x) d x (E.266)

=
∫

x∈X

[
M∑

m=1
π̆tm

{
cht (x)−

∫
y∈Y

pm

(
y|x, θ̆m

)
log pht (y|x) d y

}]
p (x) d x (E.267)

=
∫

x∈X

[
cht (x)−

M∑
m=1

π̆tm

∫
y∈Y

pm

(
y|x, θ̆m

)
log pht (y|x) d y

]
p (x) d x (E.268)

=
∫

x∈X

[
cht (x) +

M∑
m=1

π̆tm ·H
(
pm

(
·|x, θ̆m

))]
p (x) d x

+
∫

x∈X

[
M∑

m=1
π̆tm · KL

(
pm
(
· |x, θ̆m

)
∥pht (·|x)

)]
p (x) d x. (E.269)

APPENDIX 241

Let h◦
t be a predictor satisfying the following equality:

ph◦
t

(y|x) =
M∑

m=1
π̆tm · pm

(
y|x, θ̆m

)
.

Using Lemma E.2, we have

M∑
m=1

π̆tm · KL
(
pm
(
· |x, θ̆m

)
∥pht (·|x)

)
≥

M∑
m=1

π̆tm · KL
(
pm
(
· |x, θ̆m

)
∥ph◦

t
(·|x)

)
(E.270)

with equality if and only if
pht (·|x) = ph◦

t
(·|x) . (E.271)

Since ch does not depend on h, replacing (E.270) in (E.269), it follows that

E(x,y)∼Dt
[l(ht(x), y)] ≥ E(x,y)∼Dt

[l(h◦
t (x), y)] . (E.272)

This inequality holds for any predictor ht and in particular for h∗
t ∈ arg minE(x,y)∼Dt

[l(ht(x), y)],
for which it also holds the opposite inequality, then:

E(x,y)∼Dt
[l(h∗

t (x), y)] = E(x,y)∼Dt
[l(h◦

t (x), y)] , (E.273)

and the equality implies that

ph∗
t

(·|x) = ph◦
t

(·|x) =
M∑

m=1
π̆tm · pm

(
·|x, θ̆m

)
. (E.274)

E.2 Proofs for Centralized Expectation Maximization

Proposition 3.5.2. Under Assumptions 8 and 9, at the k-th iteration the EM algorithm updates
parameter estimates through the following steps:

E-step: qk+1
t (z(i)

t = m) ∝ πk
tm · exp

(
−l(hθk

m
(x(i)

t), y(i)
t)
)
, t ∈ [T], m ∈ [M], i ∈ [nt]

(3.12)

M-step: πk+1
tm =

∑nt
i=1 q

k+1
t (z(i)

t = m)
nt

, t ∈ [T], m ∈ [M]

(3.13)

θk+1
m ∈ arg min

θ∈Rd

T∑
t=1

nt∑
i=1

qk+1
t (z(i)

t = m)l
(
hθ(x(i)

t), y(i)
t

)
, m ∈ [M]

(3.14)

242 APPENDIX

Proof. The objective is to learn parameters {Θ̆, Π̆} from the data S1:T by maximizing the likelihood
p (S1:T |Θ,Π). We introduce functions qt(z), t ∈ [T] such that qt ≥ 0 and

∑M
z=1 qt(z) = 1 in the

expression of the likelihood. For Θ ∈ RM×d and Π ∈ ∆T ×M , we have

log p(S1:T |Θ,Π) =
T∑

t=1

nt∑
i=1

log pt

(
s

(i)
t |Θ, πt

)
(E.275)

=
T∑

t=1

nt∑
i=1

log

 M∑
m=1

pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

)
qt

(
z

(i)
t = m

)
 qt

(
z

(i)
t = m

) (E.276)

≥
T∑

t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

)
log

pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

)
qt

(
z

(i)
t = m

) (E.277)

=
T∑

t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

)
log pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

)

−
T∑

t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

)
log qt

(
z

(i)
t = m

)
(E.278)

≜ L(Θ,Π, Q1:T), (E.279)

where we used Jensen’s inequality because log is concave. L(Θ,Π, Q1:T) is an evidence lower
bound. The centralized EM-algorithm corresponds to iteratively maximizing this bound with respect
to Q1:T (E-step) and with respect to {Θ,Π} (M-step).

E-step. The difference between the log-likelihood and the evidence lower bound L(Θ,Π, Q1:T)
can be expressed in terms of a sum of KL divergences:

logp(S1:T |Θ,Π)− L(Θ,Π, Q1:T) =

=
T∑

t=1

nt∑
i=1

log pt

(
s

(i)
t |Θ, πt

)
−

M∑
m=1

qt

(
z

(i)
t = m

)
log

pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

)
qt

(
z

(i)
t = m

)


(E.280)

=
T∑

t=1

nt∑
t=1

M∑
m=1

qt

(
z

(i)
t = m

)log pt

(
s

(i)
t |Θ, πt

)
− log

pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

)
qt

(
z

(i)
t = m

)
 (E.281)

=
T∑

t=1

nt∑
t=1

M∑
m=1

qt

(
z

(i)
t = m

)
log

pt

(
s

(i)
t |Θ, πt

)
· qt

(
z

(i)
t = m

)
pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

) (E.282)

=
T∑

t=1

nt∑
t=1

M∑
m=1

qt

(
z

(i)
t = m

)
log

qt

(
z

(i)
t = m

)
pt

(
z

(i)
t = m|s(i)

t ,Θ, πt

) (E.283)

=
T∑

t=1

nt∑
i=1
KL

(
qt

(
z

(i)
t

)
||pt

(
z

(i)
t |s

(i)
t ,Θ, πt

))
≥ 0. (E.284)

APPENDIX 243

For fixed parameters {Θ,Π}, the maximum of L(Θ,Π, Q1:T) is reached when

T∑
t=1

nt∑
i=1
KL

(
qt

(
z

(i)
t

)
||pt

(
z

(i)
t |s

(i)
t ,Θ, πt

))
= 0.

Thus for t ∈ [T] and i ∈ [nt], we have:

qt(z(i)
t = m) = pt(z(i)

t = m|s(i)
t ,Θ, πt) (E.285)

= pt(s(i)
t |z

(i)
t = m,Θ, πt)× pt(z(i)

t = m|Θ, πt)
pt

(
s

(i)
t |Θ, πt

) (E.286)

= pm(s(i)
t |θm)× πtm∑M

m′=1 pm′(s(i)
t)× πtm′

(E.287)

=
pm

(
y

(i)
t |x

(i)
t , θm

)
× pm

(
x(i)

t

)
× πtm∑M

m′=1 pm′

(
y

(i)
t |x

(i)
t , θm′

)
× pm′

(
x(i)

t

)
× πtm′

(E.288)

=
pm

(
y

(i)
t |x

(i)
t , θm

)
× p

(
x(i)

t

)
× πtm∑M

m′=1 pm′

(
y

(i)
t |x

(i)
t , , θm′

)
× p

(
x(i)

t

)
× πtm′

, (E.289)

where (E.289) relies on Assumption 9. It follows that

qt(z(i)
t = m) = pt(z(i)

t = m|s(i)
t ,Θ, πt) =

pm

(
y

(i)
t |x

(i)
t , θm

)
× πtm∑M

m′=1 pm′

(
y

(i)
t |x

(i)
t , θm′

)
× πtm′

. (E.290)

M-step. We maximize now L(Θ,Π, Q1:T) with respect to {Θ,Π}. By dropping the terms not
depending on {Θ,Π} in the expression of L(Θ,Π, Q1:T) we write:

L(Θ,Π, Q1:T)

=
T∑

t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

)
log pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

)
+ c (E.291)

=
T∑

t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

) [
log pt

(
s

(i)
t |z

(i)
t = m,Θ, πt

)
+ log pt

(
z

(i)
t = m|Θ, πt

)]
+ c

(E.292)

=
T∑

t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

) [
log pθm

(
s

(i)
t

)
+ log πtm

]
+ c (E.293)

=
T∑

t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

) [
log pθm

(
y

(i)
t |x

(i)
t

)
+ log pm

(
x(i)

t

)
+ log πtm

]
+ c (E.294)

=
T∑

t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

) [
log pθm

(
y

(i)
t |x

(i)
t

)
+ log πtm

]
+ c′, (E.295)

(E.296)

244 APPENDIX

where c and c′ are constant not depending on {Θ,Π}.
Thus, for t ∈ [T] and m ∈ [M], by solving a simple optimization problem we update πtm as

follows:

πtm =
∑nt

i=1 qt(z(i)
t = m)

nt
. (E.297)

On the other hand, for m ∈ [M], we update θm by solving:

θm ∈ arg min
θ∈Rd

T∑
t=1

nt∑
i=1

qt(z(i)
t = m)× l

(
hθ(x(i)

t), y(i)
t

)
. (E.298)

E.3 Proofs for Client-Server Setting

E.3.1 Additional Notations

Remark 10. For convenience and without loss of generality, we suppose in this section that
ω ∈ ∆T , i.e., ∀t ∈ [T], ωt ≥ 0 and

∑T
t′=1 ωt′ = 1.

At iteration k > 0, we use uk−1,j
t to denote the j-th iterate of the local solver at client t ∈ [T],

thus
uk−1,0

t = uk−1, (E.299)

and

uk =
T∑

t=1
ωt · uk−1,J

t . (E.300)

At iteration k > 0, the local solver’s updates at client t ∈ [T] can be written as (for 0 ≤ j ≤ J − 1):

uk−1,j+1
t = uk−1,j

t − ηk−1,j∇ug
k
t

(
uk−1,j

t ,vk−1
t ; ξk−1,j

t

)
, (E.301)

where ξk−1,j
t is the batch drawn at the j-th local update of uk−1

t .
We introduce ηk−1 =

∑J−1
j=0 ηk−1,j , and we define the normalized update of the local solver at

client t ∈ [T] as,

δ̂k−1
t ≜ −uk−1,J

t − uk−1,0
t

ηk−1
=
∑J−1

j=0 ηk−1,j · ∇ug
k
t

(
uk−1,j

t ,vk−1
t ; ξk−1,j

t

)
∑J−1

j=0 ηk−1,j

, (E.302)

and also define

δk−1
t ≜

∑J−1
j=0 ηk−1,j · ∇ug

k
t

(
uk−1,j

t ,vk−1
t

)
ηk−1

. (E.303)

With this notation,

uk − uk−1 = −ηk−1 ·
T∑

t=1
ωt · δ̂k−1

t . (E.304)

Finally, we define gk, k > 0 as

gk (u,v1:T) ≜
T∑

t=1
ωt · gk

t (u,vt) . (E.305)

Note that gk is a convex combination of functions gk
t , t ∈ [T].

APPENDIX 245

E.3.2 Proof of Theorem 3.5.3′

Lemma E.4. Suppose that Assumptions 12′–14′ hold. Then, for k > 0, and (ηk,j)0≤j≤J−1 such that

ηk ≜
∑J−1

j=0 ηk,j ≤ min
{

1
2
√

2L
, 1

4Lβ

}
, the updates of federated surrogate optimization (Alg 10)

verify

E
[
f(uk,vk

1:T)− f(uk−1,vk−1
1:T)

ηk−1

]
≤

− 1
4E
∥∥∥∇uf

(
uk−1,vk−1

1:T

)∥∥∥2
− 1
ηk−1

T∑
t=1

ωt · dV
(
vk−1

t ,vk
t

)

+ 2ηk−1L

J−1∑
j=0

η2
k−1,j

ηk−1
L+ 1

σ2 + 4η2
k−1L

2G2. (E.306)

Proof. This proof uses standard techniques from distributed stochastic optimization. It is inspired
by [Wan+20b, Theorem 1].

For k > 0, gk is L-smooth wrt u, because it is a convex combination of L-smooth functions
gk

t , t ∈ [T]. Thus, we write

gk
(
uk,vk−1

1:T

)
− gk

(
uk−1,vk−1

1:T

)
≤
〈

uk − uk−1,∇ug
k(uk−1,vk−1

1:T)
〉

+ L

2

∥∥∥uk − uk−1
∥∥∥2
,

(E.307)
where < u,u′ > denotes the scalar product of vectors u and u′. Using Eq. (E.304), and taking the
expectation over random batches

(
ξk−1,j

t

)
0≤j≤J−1

1≤t≤T

, we have

E
[
gk(uk,vk−1

1:T
)
− gk

(
uk−1,vk−1

1:T

)]
≤

− ηk−1 E
〈 T∑

t=1
ωt · δ̂k−1

t ,∇ug
k(uk−1,vk−1

1:T)
〉

︸ ︷︷ ︸
≜T1

+
Lη2

k−1
2 · E

∥∥∥∥∥
T∑

t=1
ωt · δ̂k−1

t

∥∥∥∥∥
2

︸ ︷︷ ︸
≜T2

. (E.308)

We bound each of those terms separately. For T1 we have

T1 = E
〈 T∑

t=1
ωt · δ̂k−1

t ,∇ug
k
(
uk−1,vk−1

1:T

)〉
(E.309)

= E
〈 T∑

t=1
ωt ·

(
δ̂k−1

t − δk−1
t

)
,∇ug

k
(
uk−1,vk−1

1:T

)〉

+ E
〈 T∑

t=1
ωt · δk−1

t ,∇ug
k
(
uk−1,vk−1

1:T

)〉
. (E.310)

Because stochastic gradients are unbiased (Assumption 13′), we have

E
[
δ̂k−1

t − δk−1
t

]
= 0, (E.311)

246 APPENDIX

thus,

T1 = E
〈 T∑

t=1
ωt · δk−1

t ,∇ug
k
(
uk−1,vk−1

1:T

)〉
(E.312)

= 1
2

∥∥∥∇ug
k
(
uk−1,vk−1

1:T

)∥∥∥2
+ E

∥∥∥∥∥
T∑

t=1
ωt · δk−1

t

∥∥∥∥∥
2

− 1
2E
∥∥∥∥∥∇ug

k
(
uk−1,vk−1

1:T

)
−

T∑
t=1

ωt · δk−1
t

∥∥∥∥∥
2

. (E.313)

For T2 we have for k > 0,

T2 = E
∥∥∥∥∥

T∑
t=1

ωt · δ̂k−1
t

∥∥∥∥∥
2

(E.314)

= E
∥∥∥∥∥

T∑
t=1

ωt ·
(
δ̂k−1

t − δk−1
t

)
+

T∑
t=1

ωt · δk−1
t

∥∥∥∥∥
2

(E.315)

≤ 2E
∥∥∥∥∥

T∑
t=1

ωt ·
(
δ̂k−1

t − δk−1
t

)∥∥∥∥∥
2

+ 2E
∥∥∥∥∥

T∑
t=1

ωt · δk−1
t

∥∥∥∥∥
2

(E.316)

= 2
T∑

t=1
ω2

t · E
∥∥∥δ̂k−1

t − δk−1
t

∥∥∥2
+ 2

∑
1≤s ̸=t≤T

ωtωsE
〈
δ̂k−1

t − δk−1
t , δ̂k−1

s − δk−1
s

〉

+ 2E
∥∥∥∥∥

T∑
t=1

ωtδ
k−1
t

∥∥∥∥∥
2

. (E.317)

Since clients sample batches independently, and stochastic gradients are unbiased (Assumption 13′),
we have

E
〈
δ̂k−1

t − δk−1
t , δ̂k−1

s − δk−1
s

〉
= 0, (E.318)

thus,

T2 ≤ 2
T∑

t=1
ω2

t · E
∥∥∥δ̂k−1

t − δk−1
t

∥∥∥2
+ 2E

∥∥∥∥∥
T∑

t=1
ωtδ

k−1
t

∥∥∥∥∥
2

(E.319)

= 2
T∑

t=1
ω2

t E

∥∥∥∥∥∥
J−1∑
j=0

ηk−1,j

ηk−1

[
∇ug

k
t

(
uk−1,j

t ,vk−1
t

)
−∇ug

k
t

(
uk−1,j

t ,vk−1
t ; ξk−1,j

t

)]∥∥∥∥∥∥
2

+ 2E
∥∥∥∥∥

T∑
t=1

ωtδ
k−1
t

∥∥∥∥∥
2

. (E.320)

Using Jensen inequality, we have∥∥∥∥∥∥
J−1∑
j=0

ηk−1,j

ηk−1

[
∇ug

k
t

(
uk−1,j

t ,vk−1
t

)
−∇ug

k
t

(
uk−1,j

t ,vk−1
t ; ξk−1,j

t

)]∥∥∥∥∥∥
2

≤

APPENDIX 247

J−1∑
j=0

ηk−1,j

ηk−1

∥∥∥∇ug
k
t

(
uk−1,j

t ,vk−1
t

)
−∇ug

k
t

(
uk−1,j

t ,vk−1
t ; ξk−1,j

t

)∥∥∥2
, (E.321)

and since the variance of stochastic gradients is bounded by σ2 (Assumption 13′), it follows that

E

∥∥∥∥∥∥
J−1∑
j=0

ηk−1,j

ηk−1

[
∇ug

k
t

(
uk−1,j

t ,vk−1
t

)
−∇ug

k
t

(
uk−1,j

t ,vk−1
t ; ξk−1,j

t

)]∥∥∥∥∥∥
2

≤
J−1∑
j=0

ηk−1,j

ηk−1
σ2 = σ2. (E.322)

Replacing back in the expression of T2, we have

T2 ≤ 2
T∑

t=1
ω2

t σ
2 + 2E

∥∥∥∥∥
T∑

t=1
ωt · δk−1

t

∥∥∥∥∥
2

. (E.323)

Finally, since 0 ≤ ωt ≤ 1, t ∈ [T] and
∑T

t=1 ωt = 1, we have

T2 ≤ 2σ2 + 2E
∥∥∥∥∥

T∑
t=1

ωt · δk−1
t

∥∥∥∥∥
2

. (E.324)

Having bounded T1 and T2, we can replace Eq. (E.313) and Eq. (E.324) in Eq. (E.308), and we get

E
[
gk(uk,vk−1

1:T)− gk(uk−1,vk−1
1:T)

]
≤ −ηk−1

2

∥∥∥∇ug
k
(
uk−1,vk−1

1:T

)∥∥∥2
+ η2

k−1Lσ
2

− ηk−1
2 (1− 2Lηk−1) · E

∥∥∥∥∥
T∑

t=1
ωt · δk−1

t

∥∥∥∥∥
2

+ ηk−1
2 E

∥∥∥∇ug
k
(
uk−1,vk−1

1:T

)
−

T∑
t=1

ωt · δk−1
t

∥∥∥2
. (E.325)

As ηk−1 ≤ 1
2
√

2L
≤ 1

2L , we have

E
[
gk(uk,vk−1

1:T)− gk(uk−1,vk−1
1:T)

]
≤ −ηk−1

2

∥∥∥∇ug
k
(
uk−1,vk−1

1:T

)∥∥∥2
+ η2

k−1Lσ
2

+ ηk−1
2 E

∥∥∥∇ug
k
(
uk−1,vk−1

1:T

)
−

T∑
t=1

ωtδ
k−1
t

∥∥∥2
. (E.326)

Replacing∇ug
k
(
uk−1,vk−1

1:T

)
=
∑T

t=1 ωt · ∇ug
k
t

(
uk−1,vk−1

t

)
, and using Jensen inequality to

bound the last term in the RHS of Eq. (E.326), we have

E
[
gk(uk,vk−1

1:T)− gk(uk−1,vk−1
1:T)

]
≤ −ηk−1

2

∥∥∥∇ug
k
(
uk−1,vk−1

1:T

)∥∥∥2
+ η2

k−1Lσ
2

+ ηk−1
2

T∑
t=1

ωt · E
∥∥∥∇ug

k
t

(
uk−1,vk−1

t

)
− δk−1

t

∥∥∥2

︸ ︷︷ ︸
≜T3

. (E.327)

248 APPENDIX

We now bound the term T3:

T3 = E
∥∥∥∇ug

k
t

(
uk−1,vk−1

t

)
− δk−1

t

∥∥∥2
(E.328)

= E

∥∥∥∥∥∥∇ug
k
t

(
uk−1,vk−1

t

)
−

J−1∑
j=0

ηk−1,j

ηk−1
∇ug

k
t

(
uk−1,j

t ,vk−1
t

)∥∥∥∥∥∥
2

(E.329)

= E

∥∥∥∥∥∥
J−1∑
j=0

ηk−1,j

ηk−1

[
∇ug

k
t

(
uk−1,vk−1

t

)
−∇ug

k
t

(
uk−1,j

t ,vk−1
t

)]∥∥∥∥∥∥
2

(E.330)

≤
J−1∑
j=0

ηk−1,j

ηk−1
E
∥∥∥∇ug

k
t

(
uk−1,vk−1

t

)
−∇ug

k
t

(
uk−1,j

t ,vk−1
t

)∥∥∥2
(E.331)

≤
J−1∑
j=0

ηk−1,j

ηk−1
L2E

∥∥∥uk−1 − uk−1,j
t

∥∥∥2
, (E.332)

where the first inequality follows from Jensen inequality and the second one follow from the
L-smoothness of gk

t (Assumption 12′). We bound now the term E
∥∥∥uk−1 − uk−1,j

t

∥∥∥ for j ∈
{0, . . . , J − 1} and t ∈ [T],

E
∥∥∥uk−1 − uk−1,j

t

∥∥∥2
= E

∥∥∥uk−1,j
t − uk−1,0

t

∥∥∥2
(E.333)

= E

∥∥∥∥∥∥
j−1∑
l=0

(
uk−1,l+1

t − uk−1,l
t

)∥∥∥∥∥∥
2

(E.334)

= E

∥∥∥∥∥∥
j−1∑
l=0

ηk−1,l∇ug
k
t

(
uk−1,j

t ,vk−1
t ; ξk−1,l

t

)∥∥∥∥∥∥
2

(E.335)

≤ 2E
∥∥∥∥∥

j−1∑
l=0

ηk−1,l

[
∇ug

k
t

(
uk−1,l

t ,vk−1
t ; ξk−1,l

t

)
−∇ug

k
t

(
uk−1,l

t ,vk−1
t

)] ∥∥∥∥∥
2

+ 2E

∥∥∥∥∥∥
j−1∑
l=0

ηk−1,l∇ug
k
t

(
uk−1,l

t ,vk−1
t

)∥∥∥∥∥∥
2

(E.336)

= 2
j−1∑
l=0

η2
k−1,lE

∥∥∥∥∥∇ug
k
t

(
uk−1,l

t ,vk−1
t ; ξk−1,l

t

)
−∇ug

k
t

(
uk−1,l

t ,vk−1
t

) ∥∥∥∥∥
2

+ 2E
∥∥∥∥∥

j−1∑
l=0

ηk−1,l∇ug
k
t

(
uk−1,l

t ,vk−1
t

) ∥∥∥∥∥
2

(E.337)

≤ 2σ2
j−1∑
l=0

η2
k−1,l + 2E

∥∥∥∥∥∥
j−1∑
l=0

ηk−1,l∇ug
k
t

(
uk−1,l

t ,vk−1
t

)∥∥∥∥∥∥
2

, (E.338)

where, in the last two steps, we used the fact that stochastic gradients are unbiased and have bounded
variance (Assumption 13′). We bound now the last term in the RHS of Eq. (E.338),

E
∥∥∥∥∥

j−1∑
l=0

ηk−1,l∇ug
k
t

(
uk−1,l

t ,vk−1
t

) ∥∥∥∥∥
2

=

APPENDIX 249

E
∥∥∥∥∥
j−1∑

l′=0
ηk−1,l′

 · j−1∑
l=0

ηk−1,l∑j−1
l′=0 ηk−1,l′

∇ug
k
t

(
uk−1,l

t ,vk−1
t

) ∥∥∥∥∥
2

(E.339)

≤

j−1∑
l′=0

ηk−1,l′

2

·
j−1∑
l=0

ηk−1,l∑j−1
l′=0 ηk−1,l′

E
∥∥∥∇ug

k
t

(
uk−1,l

t ,vk−1
t

)∥∥∥2
(E.340)

=

j−1∑
l=0

ηk−1,l

 · j−1∑
l=0

ηk−1,lE
∥∥∥∇ug

k
t

(
uk−1,l

t ,vk−1
t

)∥∥∥2
(E.341)

=

j−1∑
l=0

ηk−1,l

 · j−1∑
l=0

ηk−1,lE
∥∥∥∇ug

k
t

(
uk−1,0

t ,vk−1
t

)
−∇ug

k
t

(
uk−1,0

t ,vk−1
t

)
+∇ug

k
t

(
uk−1,l

t ,vk−1
t

) ∥∥∥2
(E.342)

≤2

j−1∑
l=0

ηk−1,l

 · j−1∑
l=0

ηk−1,l ·
[
E
∥∥∥∇ug

k
t

(
uk−1,0

t ,vk−1
t

)∥∥∥2

+ E
∥∥∥∇ug

k
t

(
uk−1,l

t ,vk−1
t

)
−∇ug

k
t

(
uk−1,0

t ,vk−1
t

)∥∥∥2
]

(E.343)

=2

j−1∑
l=0

ηk−1,l

 · j−1∑
l=0

ηk−1,l ·
[
E
∥∥∥∇ug

k
t

(
uk−1,vk−1

t

)∥∥∥2

+ E
∥∥∥∇ug

k
t

(
uk−1,l

t ,vk−1
t

)
−∇ug

k
t

(
uk−1,vk−1

t

)∥∥∥2
]

(E.344)

≤2

j−1∑
l=0

ηk−1,l

 j−1∑
l=0

ηk−1,l

[
E
∥∥∥∇ug

k
t

(
uk−1,vk−1

t

)∥∥∥2
+ L2E

∥∥∥uk−1,l
t − uk−1

∥∥∥2
]

(E.345)

=2L2

j−1∑
l=0

ηk−1,l

 j−1∑
l=0

ηk−1,l · E
∥∥∥uk−1,l

t − uk−1
∥∥∥2

+ 2

j−1∑
l=0

ηk−1,l

2

E
∥∥∥∇ug

k
t

(
uk−1,vk−1

t

)∥∥∥2
, (E.346)

where the first inequality is obtained using Jensen inequality, and the last one is a result of the
L-smoothness of gt (Assumption 12′). Replacing Eq. (E.346) in Eq. (E.338), we have

J−1∑
j=0

ηk−1,j

ηk−1
· E
∥∥∥uk−1 − uk−1,j

t

∥∥∥2
≤ 2σ2

J−1∑
j=0

ηk−1,j

ηk−1
·

j−1∑
l=0

η2
k−1,l


+ 4L2

J−1∑
j=0

ηk−1,j

ηk−1

j−1∑
l=0

ηk−1,l

 ·
j−1∑

l=0
ηk−1,l · E

∥∥∥uk−1,l
t − uk−1

t

∥∥∥2


+ 4

J−1∑
j=0

ηk−1,j

ηk−1

j−1∑
l=0

ηk−1,l

2
 · E ∥∥∥∇ug

k
t

(
uk−1

t ,vk−1
t

)∥∥∥2
. (E.347)

250 APPENDIX

Since
∑j−1

l=0 ηk−1,l · E
∥∥∥uk−1,l

t − uk−1
t

∥∥∥2
≤
∑J−1

j=0 ηk−1,j · E
∥∥∥uk−1,j

t − uk−1
t

∥∥∥2
, we have

J−1∑
j=0

ηk−1,j

ηk−1
· E
∥∥∥uk−1 − uk−1,j

t

∥∥∥2
≤ 2σ2

J−1∑
j=0

ηk−1,j

ηk−1
·

j−1∑
l=0

η2
k−1,l


+ 4L2

J−1∑
j=0

ηk−1,j

ηk−1

j−1∑
l=0

ηk−1,l

 ·
J−1∑

j=0
ηk−1,j · E

∥∥∥uk−1,j
t − uk−1

∥∥∥2


+ 4

J−1∑
j=0

ηk−1,j

ηk−1

j−1∑
l=0

ηk−1,l

2
 · E ∥∥∥∇ug

k
t

(
uk−1,vk−1

t

)∥∥∥2
. (E.348)

We use Lemma E.14 to simplify the last expression, obtaining

J−1∑
j=0

ηk−1,j

ηk−1
· E
∥∥∥uk−1 − uk−1,j

t

∥∥∥2
≤ 2σ2 ·


J−1∑
j=0

η2
k−1,j


+ 4η2

k−1E
∥∥∥∇ug

k
t

(
uk−1,vk−1

t

)∥∥∥2
+ 4ηk−1L

2 ·
J−1∑
j=0

ηk−1,jE
∥∥∥uk−1,j

t − uk−1
∥∥∥2
. (E.349)

Rearranging the terms, we have

(
1− 4η2

k−1L
2
)
·

J−1∑
j=0

ηk−1,j

ηk−1
· E
∥∥∥uk−1 − uk−1,j

t

∥∥∥2
≤ 2σ2 ·


J−1∑
j=0

η2
k−1,j


+ 4η2

k−1 · E
∥∥∥∇ug

k
t

(
uk−1,vk−1

t

)∥∥∥2
. (E.350)

Finally, replacing Eq. (E.350) into Eq. (E.332), we have

(
1− 4η2

k−1L
2
)
· T3 ≤ 2σ2L2 ·

J−1∑
j=0

η2
k−1,j

+ 4η2
k−1L

2 · E
∥∥∥∇ug

k
t

(
uk−1,vk−1

t

)∥∥∥2
. (E.351)

For ηk−1 small enough, in particular if ηk−1 ≤ 1
2
√

2L
, then 1

2 ≤ 1− 4η2
k−1L

2, thus

T3
2 ≤ 2σ2L2 ·

J−1∑
j=0

η2
k−1,j

+ 4η2
k−1L

2 · E
∥∥∥∇ug

k
t

(
uk−1,vk−1

t

)∥∥∥2
. (E.352)

Replacing the bound of T3 from Eq. (E.352) into Eq. (E.327), we have obtained

E
[
gk(uk,vk−1

1:T)− gk(uk−1,vk−1
1:T)

]
≤ −ηk−1

2 E
∥∥∥∇ug

k
(
uk−1,vk−1

1:T

)∥∥∥2

+ 4η3
k−1L

2
T∑

t=1
ωt · E

∥∥∥∇ug
k
t

(
uk−1,vk−1

t

)∥∥∥2

+ 2ηk−1L

J−1∑
j=0

η2
k−1,jL+ ηk−1

 · σ2. (E.353)

APPENDIX 251

Using Assumption 14′, we have

E
[
gk(uk,vk−1

1:T)− gk(uk−1,vk−1
1:T)

]
≤ −ηk−1

2 E
∥∥∥∇ug

k
(
uk−1,vk−1

1:T

)∥∥∥2

+ 4η3
k−1L

2β2 · E
∥∥∥∥∥

T∑
t=1

ωt · ∇ug
k
t

(
uk−1,vk−1

t

)∥∥∥∥∥
2

+ 2ηk−1L

J−1∑
j=0

η2
k−1,jL+ ηk−1

 · σ2 + 4η3
k−1L

2G2. (E.354)

Dividing by ηk−1, we get

E
[gk(uk,vk−1

1:T)− gk(uk−1,vk−1
1:T)

ηk−1

]
≤

8η2
k−1L

2β2 − 1
2 E

∥∥∥∇ug
k
(
uk−1,vk−1

1:T

)∥∥∥2

+ 2ηk−1L

J−1∑
j=0

η2
k−1,j

ηk−1
L+ 1

 · σ2 + 4η2
k−1L

2G2. (E.355)

For ηk−1 small enough, if ηk−1 ≤ 1
4Lβ , then 8η2

k−1L
2β2 − 1 ≤ 1

2 . Thus,

E
[gk(uk,vk−1

1:T)− gk(uk−1,vk−1
1:T)

ηk−1

]
≤ −1

4E
∥∥∥∇ug

k
(
uk−1,vk−1

1:T

)∥∥∥2

+ 2ηk−1L

J−1∑
j=0

η2
k−1,j

ηk−1
L+ 1

 · σ2 + 4η2
k−1L

2G2. (E.356)

Since for t ∈ [T], gk
t is a partial first-order surrogate of ft near

{
uk−1,vk−1

t

}
, we have (see Def. 1)

gk
t

(
uk−1,vk−1

t

)
= ft

(
uk−1,vk−1

t

)
, (E.357)

∇ug
k
t

(
uk−1,vk−1

t

)
= ∇uft

(
uk−1,vk−1

t

)
, (E.358)

gk
t

(
uk,vk−1

t

)
= gk

t

(
uk,vk

t

)
+ dV

(
vk−1

t ,vk
t

)
. (E.359)

Multiplying by ωt and summing over t ∈ [T], we have

gk
(
uk−1,vk−1

1:T

)
= f

(
uk−1,vk−1

1:T

)
, (E.360)

∇ug
k
(
uk−1,vk−1

1:T

)
= ∇uf

(
uk−1,vk−1

1:T

)
, (E.361)

gk
(
uk,vk−1

1:T

)
= gk

(
uk,vk

1:T

)
+

T∑
t=1

ωt · dV
(
vk−1

t ,vk
t

)
. (E.362)

Replacing Eq. (E.360), Eq. (E.361) and Eq. (E.362) in Eq. (E.356), we have

E
[
gk(uk,vk

1:T)− f(uk−1,vk−1
1:T)

ηk−1

]
≤

− 1
4E
∥∥∥∇uf

(
uk−1,vk−1

1:T

)∥∥∥2
− 1
ηk−1

T∑
t=1

ωt · dV
(
vk−1

t ,vk
t

)

252 APPENDIX

+ 2ηk−1L


J−1∑
j=0

η2
k−1,j

ηk−1

L+ 1

 · σ2 + 4η2
k−1L

2G2. (E.363)

Using again Definition 1, we have

gk(uk,vk
1:T) ≥ f(uk,vk

1:T), (E.364)

thus,

E
[
f(uk,vk

1:T)− f(uk−1,vk−1
1:T)

ηk−1

]
≤

− 1
4E
∥∥∥∇uf

(
uk−1,vk−1

1:T

)∥∥∥2
− 1
ηk−1

T∑
t=1

ωt · dV
(
vk−1

t ,vk
t

)

+ 2ηk−1L

J−1∑
j=0

η2
k−1,j

ηk−1
L+ 1

 · σ2 + 4η2
k−1L

2G2. (E.365)

Lemma E.5. For k ≥ 0 and t ∈ [T], the iterates of Alg. 10 verify

0 ≤ dV
(
vk+1

t ,vk
t

)
≤ ft

(
uk,vk

t

)
− ft(uk,vk+1

t) (E.366)

Proof. Since vk+1
t ∈ arg minv∈V g

k
t

(
uk−1, v

)
, and gk

t is a partial first-order surrogate of ft near

{uk−1,vk−1
t }, we have

gk
t

(
uk−1,vk−1

t

)
− gk

t

(
uk−1,vk

t

)
= dV

(
vk−1

t ,vk
t

)
, (E.367)

thus,
ft

(
uk−1,vk−1

t

)
− ft

(
uk−1,vk

t

)
≥ dV

(
vk−1

t ,vk
t

)
, (E.368)

where we used the fact that

gk
t

(
uk−1,vk−1

t

)
= ft

(
uk−1,vk−1

t

)
, (E.369)

and,
gk

t

(
uk−1,vk

t

)
≥ ft

(
uk−1,vk

t

)
. (E.370)

Theorem 3.5.3′. Under Assumptions 11′–14′, when clients use SGD as local solver with learning
rate η = a0√

K
, after a large enough number of communication rounds K, the iterates of federated

surrogate optimization (Alg. 10) satisfy:

1
K

K∑
k=1

E
∥∥∥∇uf

(
uk,vk

1:T

)∥∥∥2

F
≤ O

(1√
K

)
,

1
K

K∑
k=1

E
[
∆vf(uk,vk

1:T)
]
≤ O

(1
K3/4

)
,

(3.19)
where the expectation is over the random batches samples, and ∆vf(uk,vk

1:T) ≜ f
(
uk,vk

1:T

)
−

f
(
uk,vk+1

1:T

)
≥ 0.

APPENDIX 253

Proof. For K large enough, η = a0√
K
≤ 1

J min
{

1
2
√

2L
, 1

4Lβ

}
, thus the assumptions of Lemma E.4

are satisfied. Lemma E.4 and non-negativity of dV lead to

E
[f(uk,vk

1:T)− f(uk−1,vk−1
1:T)

Jη

]
≤ −1

4E
∥∥∥∇uf

(
uk−1,vk−1

1:T

)∥∥∥2

+ 2ηL (ηL+ 1) · σ2 + 4J2η2L2G2. (E.371)

Rearranging the terms and summing for k ∈ [K], we have

1
K

K∑
k=1

E
∥∥∥∇uf

(
uk−1,vk−1

1:T

)∥∥∥2

≤ 4E
[f(u0,v0

1:T)− f(uK ,vK
1:T)

JηK

]
+ 8ηL (ηL+ 1) · σ2 + 2J2η2L2G2

K
(E.372)

≤ 4E
[f(u0,v0

1:T)− f∗

JηK

]
+ 8ηL (ηL+ 1) · σ2 + 2J2η2L2G2

K
, (E.373)

where we use Assumption 11′ to obtain (E.373). Thus,

1
K

K∑
k=1

E
∥∥∥∇uf

(
uk−1,vk−1

1:T

)∥∥∥2
= O

(1√
K

)
. (E.374)

To prove the second part of Eq. (3.19), we first decompose ∆v ≜ f
(
uk,vk

1:T

)
−f

(
uk,vk+1

1:T

)
≥ 0

as follow,

∆v = f
(
uk,vk

1:T

)
− f

(
uk+1,vk+1

1:T

)
︸ ︷︷ ︸

≜T k
1

+ f
(
uk+1,vk+1

1:T

)
− f

(
uk,vk+1

1:T

)
︸ ︷︷ ︸

≜T k
2

. (E.375)

Using again Lemma E.4 and Eq. (E.374), it follows that

1
K

K∑
k=1

E
[
T k

1

]
≤ O

(1
K

)
. (E.376)

For T k
2 , we use the fact that f is 2L-smooth (Lemma E.15) w.r.t. u and Cauchy-Schwartz inequality.

Thus, for k > 0, we write

T k
2 = f

(
uk+1,vk+1

1:T

)
− f

(
uk,vk+1

1:T

)
(E.377)

≤
∥∥∥∇uf

(
uk+1,vk+1

1:T

)∥∥∥ · ∥∥∥uk+1 − uk
∥∥∥+ 2L2

∥∥∥uk+1 − uk
∥∥∥2
. (E.378)

Summing over k and taking expectation:

1
K

K∑
k=1

E
[
T k

2

]
≤ 1
K

K∑
k=1

E
[∥∥∥∇uf

(
uk+1,vk+1

1:T

)∥∥∥ · ∥∥∥uk+1 − uk
∥∥∥]

+ 1
K

K∑
k=1

2L2E
[∥∥∥uk+1 − uk

∥∥∥2
]

(E.379)

254 APPENDIX

≤ 1
K

√√√√ K∑
k=1

E
[∥∥∥∇uf

(
uk+1,vk+1

1:T

)∥∥∥2
]√√√√ K∑

k=1
E
[
∥uk+1 − uk∥2

]

+ 1
K

K∑
k=1

2L2E
[∥∥∥uk+1 − uk

∥∥∥2
]
, (E.380)

where the second inequality follows from Cauchy-Schwarz inequality. From Eq. (E.350), with
ηk−1 = Jη, we have for t ∈ [T]

E
∥∥∥uk − uk−1,J

t

∥∥∥2
≤ 4σ2Jη2 + 8J3η2 · E

∥∥∥∇ug
k
t

(
uk−1,vk−1

t

)∥∥∥2
. (E.381)

Multiplying the previous by ωt and summing for t ∈ [T], we have

T∑
t=1

ωt · E
∥∥∥uk−1 − uk−1,J

t

∥∥∥2
≤ 4J2σ2η2 + 8J3η2 ·

T∑
t=1

ωtE
∥∥∥∇ug

k
t

(
uk−1,vk−1

t

)∥∥∥2
. (E.382)

Using Assumption 14′, it follows that

T∑
t=1

ωtE
∥∥∥uk−1 − uk−1,J

t

∥∥∥2
≤ 4J2η2

(
2JG2 + σ2

)
+ 8J3η2β2E

∥∥∥∥∥
T∑

t=1
ωt∇ug

k
t

(
uk−1,vk−1

t

)∥∥∥∥∥
2

.

(E.383)
Finally using Jensen inequality and the fact that gk

t is a partial first-order of ft near
{
uk−1, vk−1

t

}
,

we have

E
∥∥∥uk−1 − uk

∥∥∥2
≤ 4J2η2

(
2JG2 + σ2

)
+ 8J3η2β2E

∥∥∥∇uf
(
uk−1,vk−1

1:T

)∥∥∥2
. (E.384)

From Eq. (E.374) and η ≤ O(1/
√
K), we obtain

1
K

K∑
k=1

E
∥∥∥uk−1 − uk

∥∥∥2
≤ O (1) , (E.385)

Replacing the last inequality in Eq. (E.380) and using again Eq. (E.374), we obtain

1
K

K∑
k=1

E
[
T k

2

]
≤ O

(1
K3/4

)
. (E.386)

Combining Eq. (E.376) and Eq. (E.386), it follows that

1
K

K∑
k=1

E
[
∆vf(uk,vk

1:T)
]
≤ O

(1
K3/4

)
. (E.387)

APPENDIX 255

E.3.3 Proof of Theorem 3.5.3

In this section, f denotes the negative log-likelihood function defined in Eq. (3.6). Moreover, we
introduce the negative log-likelihood at client t as follows

ft(Θ,Π) ≜ − log p(St|Θ,Π)
n

≜ − 1
nt

nt∑
i=1

log p(s(i)
t |Θ, πt). (E.388)

Theorem 3.5.3. Under Assumptions 8–14, when clients use SGD as local solver with learning rate
η = a0√

K
, after a large enough number of communication rounds K, FedEM’s iterates satisfy:

1
K

K∑
k=1

E
∥∥∥∇Θf

(
Θk,Πk

)∥∥∥2

F
≤ O

(1√
K

)
,

1
K

K∑
k=1

∆Πf(Θk,Πk) ≤ O
(1
K3/4

)
, (3.15)

where the expectation is over the random batches samples, and ∆Πf(Θk,Πk) ≜ f
(
Θk,Πk

)
−

f
(
Θk,Πk+1

)
≥ 0.

Proof. We prove this result as a particular case of Theorem 3.5.3′. To this purpose, in this section,
we consider that V ≜ ∆M , u = Θ ∈ RdM , vt = πt, and ωt = nt/n for t ∈ [T]. For k > 0, we
define gk

t as follows:

gk
t

(
Θ, πt

)
= 1
nt

nt∑
i=1

M∑
m=1

qk
t

(
z

(i)
t = m

)
·
(
l
(
hθm(x(i)

t), y(i)
t

)
− log pm(x(i)

t)− log πt

+ log qk
t

(
z

(i)
t = m

)
− c
)
, (E.389)

where c is the same constant appearing in Assumption 10, Eq. (3.3). With this definition, it is easy
to check that the federated surrogate optimization algorithm (Alg. 10) reduces to FedEM (Alg. 7).
Theorem 3.5.3 then follows immediately from Theorem 3.5.3′, once we verify that

(
gk

t

)
1≤t≤T

satisfy the assumptions of Theorem 3.5.3′.
Assumption 11′, Assumption 13′, and Assumption 14′ follow directly from Assumption 11,

Assumption 13, and Assumption 14, respectively. Lemma E.6 shows that for k > 0, gk is smooth
w.r.t. Θ and then Assumption 12′ is satisfied. Finally, Lemmas E.7–E.9 show that for t ∈ [T] gk

t is
a partial first-order surrogate of ft w.r.t. Θ near

{
Θk−1, πt

}
with dV(·, ·) = KL(·∥·).

Lemma E.6. Under Assumption 12, for t ∈ [T] and k > 0, gk
t is L-smooth w.r.t Θ.

Proof. gk
t is a convex combination of L-smooth function θ 7→ l(θ; s(i)

t), i ∈ [nt]. Thus it is also
L-smooth.

Lemma E.7. Suppose that Assumptions 8–10, hold. Then, for t ∈ [T], Θ ∈ RM×d and πt ∈ ∆M

rk
t (Θ, πt) ≜ gk

t (Θ, πt)− ft (Θ, πt) = 1
nt

nt∑
i=1
KL

(
qk

t

(
z

(t)
i

)
∥pt

(
z

(t)
i |s

(t)
i ,Θ, πt

))
,

where KL is Kullback–Leibler divergence.

256 APPENDIX

Proof. Let k > 0 and t ∈ [T], and consider Θ ∈ RM×d and πt ∈ ∆M , then

gk
t

(
Θ, πt

)
= 1
nt

nt∑
i=1

M∑
m=1

qk
t

(
z

(i)
t = m

)
·
(
l
(
hθm(x(i)

t), y(i)
t

)
− log pm(x(i)

t)− log πt

+ log qk
t

(
z

(i)
t = m

)
− c
)
, (E.390)

= 1
nt

nt∑
i=1

M∑
m=1

qk
t

(
z

(i)
t = m

)
·
(
− log pm

(
y

(i)
t |x

(i)
t , θm

)
− log pm(x(i)

t)− log πt

+ log qk
t

(
z

(i)
t = m

))
(E.391)

= 1
nt

nt∑
i=1

M∑
m=1

qk
t

(
z

(i)
t = m

)
·
(
− log pm

(
y

(i)
t |x

(i)
t , θm

)
· pm(x(i)

t) · pt

(
z

(i)
t = m

)
+ log qk

t

(
z

(i)
t = m

))
(E.392)

= 1
nt

nt∑
i=1

M∑
m=1

qk
t

(
z

(i)
t = m

)
·
(
log qk

t

(
z

(i)
t = m

)
− log pt

(
s

(i)
t , z

(i)
t = m

∣∣∣Θ, πt)
)

(E.393)

= 1
nt

nt∑
t=1

M∑
m=1

qk
t

(
z

(i)
t = m

)
log

qk
t

(
z

(i)
t = m

)
pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

) . (E.394)

Thus,

rk
t

(
Θ, πt

)
≜ gk

t (Θ, πt)− ft (Θ, πt) (E.395)

= − 1
nt

nt∑
t=1

M∑
m=1

qk
t

(
z

(i)
t = m

)
· log

pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

)
qk

t

(
z

(i)
t = m

)


+ 1
nt

nt∑
i=1

log pt

(
s

(i)
t |Θ, πt

)
(E.396)

= 1
nt

nt∑
t=1

M∑
m=1

qk
t

(
z

(i)
t = m

)(
log pt

(
s

(i)
t |Θ, πt

)

− log
pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

)
qk

t

(
z

(i)
t = m

))
(E.397)

= 1
nt

nt∑
t=1

M∑
m=1

qk
t

(
z

(i)
t = m

)
log

pt

(
s

(i)
t |Θ, πt

)
· qk

t

(
z

(i)
t = m

)
pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

) (E.398)

= 1
nt

nt∑
t=1

M∑
m=1

qk
t

(
z

(i)
t = m

)
· log

qk
t

(
z

(i)
t = m

)
pt

(
z

(i)
t = m|s(i)

t ,Θ, πt

) . (E.399)

APPENDIX 257

Thus,

rk
t (Θ, πt) = 1

nt

nt∑
i=1
KL

(
qk

t (·)∥pt(·|s(t)
i ,Θ, πt)

)
≥ 0. (E.400)

The following lemma shows that gk
t and gk (as defined in Eq. E.305) satisfy the first two

properties in Definition 1.

Lemma E.8. Suppose that Assumptions 8–10 and Assumption 12 hold. For all k ≥ 0 and t ∈ [T],
gk

t is a majorant of ft and rk
t ≜ gk

t − ft is L-smooth in Θ. Moreover rk
t

(
Θk−1, πk−1

t

)
= 0 and

∇Θr
k
t

(
Θk−1, πk−1

t

)
= 0.

The same holds for gk, i.e., gk is a majorant of f , rk ≜ gk − f is L-smooth in Θ,
rk
(
Θk−1,Πk−1

)
= 0 and ∇Θr

k
(
Θk−1,Πk−1

)
= 0

Proof. For t ∈ [T], consider Θ ∈ RM×d and πt ∈ ∆M , we have (Lemma E.7)

rk
t (Θ, πt) ≜ gk

t (Θ, πt)− ft (Θ, πt) = 1
nt

nt∑
i=1
KL

(
qk

t

(
z

(t)
i

)
∥pt

(
z

(i)
t |s

(i)
t ,Θ, πt

))
. (E.401)

Since KL divergence is non-negative, it follows that gk
t is a majorant of ft, i.e.,

∀ Θ ∈ RM×d, πt ∈ ∆M : gk
t (Θ, π) ≥ ft (Θ, πt) . (E.402)

Moreover since, qk
t

(
z

(i)
t

)
= pt

(
z

(i)
t |s

(i)
t ,Θk−1, πk−1

t

)
for k > 0, it follows that

rk
t

(
Θk−1, πk−1

t

)
= 0. (E.403)

For i ∈ [nt] and m ∈ [M], from Eq. E.290, we have

pt

(
z

(i)
t = m|s(i)

t ,Θ, πt

)
=

pm

(
y

(i)
t |x

(i)
t , θm

)
× πtm∑M

m′=1 pm′

(
y

(i)
t |x

(i)
t , θm′

)
× πtm′

(E.404)

=
exp

[
−l
(
hθm(x(i)

t), y(i)
t

)]
× πtm∑M

m′=1 exp
[
−l
(
hθm′ (x

(i)
t), y(i)

t

)]
× πtm′

(E.405)

=
exp

[
−l
(
hθm(x(i)

t), y(i)
t

)
+ log πtm

]
∑M

m′=1 exp
[
−l
(
hθm′ (x

(i)
t), y(i)

t

)
+ log πtm′

] . (E.406)

For ease of notation, we introduce

li(θ) ≜ l
(
hθ(x(i)

t), y(i)
t

)
, θ ∈ Rd, m ∈ [M], i ∈ [nt], (E.407)

γm (Θ) ≜ pt

(
z

(i)
t = m|s(i)

t ,Θ, πt

)
, m ∈ [M], (E.408)

and,
φi (Θ) ≜ KL

(
qk

t

(
z

(t)
i

)
∥pt

(
z

(i)
t |s

(i)
t ,Θ, πt

))
. (E.409)

258 APPENDIX

For i ∈ [nt], function li is differentiable because smooth (Assum 12), thus γm, m ∈ [M] is differ-
entiable as the composition of the softmax function and the function {Θ 7→ −li (Θ) + log πtm}.
Its gradient is given by{

∇θmγm (Θ) = −γm (Θ) · (1− γm (Θ)) · ∇li (θm) ,
∇θm′γm (Θ) = γm (Θ) · γm′ (Θ) · ∇li (θm) , m′ ̸= m.

(E.410)

Thus for m ∈ [M], we have

∇θmφi (Θ) =
M∑

m′=1
qk

t

(
z

(t)
i = m′

)
· ∇θmγm′ (Θ)

γm′ (Θ) (E.411)

=
∑

m′=1
m′ ̸=m

[
qk

t

(
z

(t)
i = m′

)
· γm (Θ) · γm′ (Θ)

γm′ (Θ) · · ∇li (θm)
]

− qk
t

(
z

(t)
i = m

)
· γm (Θ) · (1− γm (Θ))

γm (Θ) · ∇li (θm) . (E.412)

Using the fact that
∑M

m′=1 q
k
t

(
z

(t)
i = m

)
= 1, it follows that

∇θmφi (Θ) =
(
γm (Θ)− qk

t

(
z

(t)
i = m

))
· ∇li (θm) . (E.413)

Since li, i ∈ [nt] is twice continuously differentiable (Assumption 12), and γm, m ∈ [M]
is differentiable, then ϕi, i ∈ [nt] is twice continuously differentiable. We use H (φi (Θ)) ∈
RdM×dM (resp. H (li (θ)) ∈ Rd×d) to denote the Hessian of φ (resp. li) at Θ (resp. θ). The Hessian
of φi is a block matrix given by

(
H (φi (Θ))

)
m,m

= −γm (Θ) · (1− γm (Θ)) ·
(
∇li(θm)

)
·
(
∇li(θm)

)⊺
+
(
γm(Θ)− qk

t

(
z

(t)
i = m

))
·H (li (θm))(

H (φi (Θ))
)

m,m′
= γm (Θ) · γm′ (Θ) ·

(
∇li(θm′)

)
·
(
∇li(θm)

)⊺
, m′ ̸= m.

(E.414)
We introduce the block matrix H̃ ∈ RdM×dM , defined by

H̃m,m = −γm (Θ) ·
(
1− γm (Θ)

)
·
(
∇li(θm)

)
· (∇li(θm))⊺

H̃m,m′ = γm (Θ) · γm (Θ) ·
(
∇θli(θm)

)
·
(
∇li(θm′)

)⊺
, m′ ̸= m,

(E.415)

Eq. (E.414) can be written as
(
H (φi (Θ))

)
m,m
− H̃m,m =

(
γm(Θ)− qk

t

(
z

(t)
i = m

))
·H (li (θm))(

H (φi (Θ))
)

m,m′
− H̃m,m′ = 0, m′ ̸= m.

(E.416)
We recall that a twice differentiable function is L smooth if and only if the eigenvalues of its
Hessian are smaller then L, see e.g., [Nes03, Lemma 1.2.2] or [Bub15, Section 3.2]. Since li and
also −li are L-smooth (Assumption 12), we have for θ ∈ Rd,

−L · Id ≼ H (li (θ)) ≼ L · Id. (E.417)

APPENDIX 259

Using Lemma E.18, we can conclude that matrix H̃ is semi-definite negative. Since

−1 ≤ γm(Θ)− qk
t

(
z

(t)
i = m

)
≤ 1, (E.418)

it follows that
H (φi (Θ)) ≼ L · IdM . (E.419)

The last equation proves that φi is L-smooth. Thus rk
t is L-smooth with respect to Θ as the average

of L-smooth function.
Moreover, since rk

t (Θk−1, πk−1
t) = 0 and ∀Θ,Π; rk

t (Θ, πt) ≥ 0, it follows that Θk−1 is a
minimizer of

{
Θ 7→ rk

t

(
Θ, πk−1

t

)}
. Thus,∇Θr

k
t (Θk−1, πk−1

t) = 0.

For Θ ∈ RM×d and Π ∈ ∆T ×M , we have

rk (Θ,Π) ≜ gk (Θ,Π)− f (Θ,Π) (E.420)

≜
T∑

t=1

nt

n
·
[
gk

t (Θ, πt)− ft (Θ, πt)
]

(E.421)

=
T∑

t=1

nt

n
rk

t (Θ, πt) . (E.422)

We see that rk is a weighted average of
(
rk

t

)
1≤t≤T

. Thus, rk
t is L-smooth in Θ, rk (Θ,Π) ≥ 0,

moreover rk
t

(
Θk−1,Πk−1

)
= 0 and ∇Θr

k
t

(
Θk−1,Πk−1

)
= 0.

The following lemma shows that gk
t and gk satisfy the third property in Definition 1.

Lemma E.9. Suppose that Assumption 8 holds and consider Θ ∈ RM×d and Π ∈ ∆T ×M , for
k > 0, the iterates of Alg. 10 verify

gk (Θ,Π) = gk
(
Θ,Πk

)
+

T∑
t=1

nt

n
KL

(
πk

t , πt

)
.

Proof. For t ∈ [T] and k > 0, consider Θ ∈ RM×d and πt ∈ ∆M such that ∀m ∈ [M];πtm ̸= 0,
we have

gk
t (Θ, πt)− gk

t

(
Θ, πk

t

)
=

M∑
m=1

{
1
nt

nt∑
i=1

qk
t

(
z

(i)
t = m

)}
︸ ︷︷ ︸

=πk
tm (Prop. 3.5.2)

×
(
log πk

tm − log πtm

)
(E.423)

=
M∑

m=1
πk

tm log π
k
tm

πtm
(E.424)

= KL
(
πk

t , πt

)
. (E.425)

We multiply by nt
n and some for t ∈ [T]. It follows that

gk
(
Θ,Πk

)
+

T∑
t=1

nt

n
KL

(
πk

t , πt

)
= gk (Θ,Π) . (E.426)

260 APPENDIX

E.4 Proofs for Fully Decentralized Setting

E.4.1 Additional Notations

Remark 11. For convenience and without loss of generality, we suppose in this section that
ωt = 1, t ∈ [T].

We introduce the following matrix notation:

Uk ≜
[
uk

1 , . . . ,uk
T

]
∈ Rdu×T (E.427)

Ūk ≜
[
ūk, . . . , ūk

]
∈ Rdu×T (E.428)

∂gk
(
Uk,vk

1:T ; ξk
)
≜
[
∇ug

k
1

(
uk

1 ,vk
1; ξk

1

)
, . . . ,∇ug

k
T

(
uk

T ,vk
T ; ξk

T

)]
∈ Rdu×T (E.429)

where ūk = 1
T

∑T
t=1 uk

t and vk
1:T =

(
vk

t

)
1≤t≤T

∈ VT .

We denote by uk−1,j
t the j-th iterate of the local solver at global iteration k at client t ∈ [T],

and by Uk−1,j the matrix whose column t is uk−1,j
t , thus,

uk−1,0
t = uk−1

t ; Uk−1,0 = Uk−1, (E.430)

and,

uk
t =

T∑
s=1

wk−1
st uk−1,J

s ; Uk = Uk−1,JW k−1. (E.431)

Using this notation, the updates of Alg. 11 can be summarized as

Uk =

Uk−1 −
J−1∑
j=0

ηk−1,j∂g
k
(
Uk−1,j ,v1:T ; ξk−1,j

)W k−1. (E.432)

Similarly to the client-server setting, we define the normalized update of local solver at client
t ∈ [T]:

δ̂k−1
t ≜ −uk−1,J

t − uk−1,0
t

ηk−1
=
∑J−1

j=0 ηk−1,j∇ug
k
t

(
uk−1,j

t ,vk
t ; ξk−1,j

t

)
∑J−1

j=0 ηk−1,j

, (E.433)

and

δk−1
t ≜

∑J−1
j=0 ηk−1,j∇ug

k
t

(
uk−1,j

t ,vk
t

)
ηk−1

. (E.434)

Because clients updates are independent, and stochastic gradient are unbiased, it is clear that

E
[
δk−1

t − δ̂k−1
t

]
= 0, (E.435)

and that
∀ t, s ∈ [T] s.t. s ̸= t, E⟨δk−1

t − δ̂k−1
t , δk−1

s − δ̂k−1
s ⟩ = 0. (E.436)

We introduce the matrix notation,

Υ̂k−1 ≜
[
δ̂k−1

1 , . . . , δ̂k−1
T

]
∈ Rdu×T ; Υk−1 ≜

[
δk−1

1 , . . . , δk−1
T

]
∈ Rdu×T . (E.437)

Using this notation, Eq. (E.432) becomes

Uk =
[
Uk−1 − ηk−1Υ̂k−1

]
W k−1. (E.438)

APPENDIX 261

E.4.2 Proof of Theorem 3.5.4′

In fully decentralized optimization, proving the convergence usually consists in deriving a re-
currence on a term measuring the optimality of the average iterate (in our case this term is

E
∥∥∥∇uf

(
ūk,vk

1:T

)∥∥∥2
) and a term measuring the distance to consensus, i.e., E

∑T
t=1

∥∥∥uk
t − ūk

∥∥∥2
.

In what follows we obtain those two recurrences, and then prove the convergence.

Lemma E.10 (Average iterate term recursion). Suppose that Assumptions 12′–14′ and Assump-
tion 15 hold. Then, for k > 0, and (ηk,j)1≤j≤J−1 such that ηk ≜

∑J−1
j=0 ηk,j ≤ min

{
1

2
√

2L
, 1

8Lβ

}
,

the updates of fully decentralized federated surrogate optimization (Alg. 11) verify

E
[
f(ūk,vk

1:T)− f(ūk−1,vk−1
1:T)

]
≤ − 1

T

T∑
t=1

EdV
(
vk

t ,vk−1
t

)

− ηk−1
8 E

∥∥∥∇uf
(
ūk−1,vk−1

1:T

)∥∥∥2
+ (12 + T) ηk−1L

2

4T ·
T∑

t=1
E
∥∥∥uk−1

t − ūk−1
∥∥∥2

+
η2

k−1L

T

4
J−1∑
j=0

L · η2
k−1,j

ηk−1
+ 1

σ2 +
16η3

k−1L
2

T
G2. (E.439)

Proof. We multiply both sides of Eq. (E.438) by 11⊺

T , thus for k > 0 we have,

Uk · 11⊺

T
=
[
Uk−1 − ηk−1Υ̂k−1

]
W k−1 11⊺

T
, (E.440)

since W k−1 is doubly stochastic (Assumption 15), i.e., W k−1 11⊺

T = 11⊺

T , is follows that,

Ūk = Ūk−1 − ηk−1Υ̂k−1 · 11⊺

T
, (E.441)

thus,

ūk = ūk−1 − ηk−1
T
·

T∑
t=1

δ̂k−1
t . (E.442)

Using the fact that gk is L-smooth with respect to u (Assumption 12′), we write

E
[
gk
(
ūk,vk−1

1:T

)]
= E

[
gk

(
ūk−1 − ηk−1

T

T∑
t=1

δ̂k−1
t ,vk−1

1:T

)]
(E.443)

≤ gk(ūk−1,vk−1
1:T)− E

〈
∇ug

k(ūk−1,vk−1
1:T), ηk−1

T

T∑
t=1

δ̂k−1
t

〉

+ L

2 E
∥∥∥∥∥ηk−1
T

T∑
t=1

δ̂k−1
t

∥∥∥∥∥
2

(E.444)

= gk(ūk−1,vk−1
1:T)− ηk−1 E

〈
∇ug

k(ūk−1,vk−1
1:T), 1

T

T∑
t=1

δ̂k−1
t

〉
︸ ︷︷ ︸

≜T1

262 APPENDIX

+
η2

k−1 · L
2T 2 E

∥∥∥∥∥
T∑

t=1
δ̂k−1

t

∥∥∥∥∥
2

︸ ︷︷ ︸
≜T2

, (E.445)

where the expectation is taken over local random batches. As in the client-server case, we bound
the terms T1 and T2. First, we bound T1, for k > 0, we have

T1 = E
〈
∇ug

k(ūk−1,vk−1
1:T), 1

T

T∑
t=1

δ̂k−1
t

〉
(E.446)

= E
〈
∇ug

k
(
ūk−1,vk−1

1:T

)
,

1
T

T∑
t=1

(
δ̂k−1

t − δk−1
t

)〉
︸ ︷︷ ︸

=0, because E[δk−1
t −δ̂k−1

t]=0

+ E
〈
∇ug

k
(
ūk−1,vk−1

1:T

)
,

1
T

T∑
t=1

δk−1
t

〉
(E.447)

= E
〈
∇ug

k
(
ūk−1,vk−1

1:T

)
,

1
T

T∑
t=1

δk−1
t

〉
(E.448)

= 1
2E
∥∥∥∇ug

k
(
ūk−1,vk−1

1:T

)∥∥∥2
+ 1

2E
∥∥∥∥∥ 1
T

T∑
t=1

δk−1
t

∥∥∥∥∥
2

− 1
2E
∥∥∥∥∥∇ug

k
(
ūk−1,vk−1

1:T

)
− 1
T

T∑
t=1

δk−1
t

∥∥∥∥∥
2

. (E.449)

We bound now T2. For k > 0, we have,

T2 = E
∥∥∥∥∥

T∑
t=1

δ̂k−1
t

∥∥∥∥∥
2

(E.450)

= E
∥∥∥∥∥

T∑
t=1

(
δ̂k−1

t − δk−1
t

)
+

T∑
t=1

δk−1
t

∥∥∥∥∥
2

(E.451)

≤ 2E
∥∥∥∥∥

T∑
t=1

(
δ̂k−1

t − δk−1
t

)∥∥∥∥∥
2

+ 2 · E
∥∥∥∥∥

T∑
t=1

δk−1
t

∥∥∥∥∥
2

(E.452)

= 2 ·
T∑

t=1
E
∥∥∥δ̂k−1

t − δk−1
t

∥∥∥2
+ 2

∑
1≤t̸=s≤T

E
〈
δ̂k−1

t − δk−1
t , δ̂k−1

s − δk−1
s

〉
︸ ︷︷ ︸

=0; because of Eq. (E.436)

+ 2E
∥∥∥∥∥

T∑
t=1

δk−1
t

∥∥∥∥∥
2

(E.453)

= 2 ·
T∑

t=1
E
∥∥∥δ̂k−1

t − δk−1
t

∥∥∥2
+ 2 · E

∥∥∥∥∥
T∑

t=1
δk−1

t

∥∥∥∥∥
2

(E.454)

= 2 · E
∥∥∥∥∥

T∑
t=1

δk−1
t

∥∥∥∥∥
2

+ 2 ·
T∑

t=1

(
1

η2
k−1

E
∥∥∥∥∥

J−1∑
j=0

ηk−1,j ·
[
∇ug

k
t

(
uk−1,j

t ,vk−1
t

)

APPENDIX 263

−∇ug
k
t

(
uk−1,j

t ,vk−1
t ; ξk−1,j

t

)]∥∥∥∥∥
2)
. (E.455)

Since batches are sampled independently, and stochastic gradients are unbiased with finite variance
(Assumption 13′), the last term in the RHS of the previous equation can be bounded using σ2,
leading to

T2 ≤ 2 ·
T∑

t=1

[∑J−1
j=0 η

2
k−1,j

η2
k−1

σ2
]

+ 2 · E
∥∥∥∥∥

T∑
t=1

δk−1
t

∥∥∥∥∥
2

(E.456)

= 2T · σ2 ·
(

T∑
t=1
·
∑J−1

j=0 η
2
k−1,j

η2
k−1

)
+ 2E

∥∥∥∥∥
T∑

t=1
δk−1

t

∥∥∥∥∥
2

(E.457)

≤ 2T · σ2 + 2 · E
∥∥∥∥∥

T∑
t=1

δk−1
t

∥∥∥∥∥
2

. (E.458)

Replacing Eq. (E.449) and Eq. (E.458) in Eq. (E.445), we have

E
[
gk(ūk,vk−1

1:T)− gk(ūk−1,vk−1
1:T)

]
≤

− ηk−1
2 E

∥∥∥∇ug
k
(
ūk−1,vk−1

1:T

)∥∥∥2
− ηk−1

2 (1− 2Lηk−1)E
∥∥∥∥∥ 1
T

T∑
t=1

δk−1
t

∥∥∥∥∥
2

+ L

T
η2

k−1σ
2 + ηk−1

2 E
∥∥∥∥∥∇ug

k
(
ūk−1,vk−1

1:T

)
− 1
T

T∑
t=1

δk−1
t

∥∥∥∥∥
2

. (E.459)

For ηk−1 small enough, in particular for ηk−1 ≤ 1
2L , we have

E
[
gk(ūk,vk−1

1:T)− gk(ūk−1,vk−1
1:T)

]
≤

− ηk−1
2 E

∥∥∥∇ug
k
(
ūk−1,vk−1

1:T

)∥∥∥2
+ L

T
η2

k−1σ
2

+ ηk−1
2 E

∥∥∥∥∥ 1
T

T∑
t=1

(
∇ug

k
t

(
ūk−1,vk−1

t

)
− δk−1

t

)∥∥∥∥∥
2

. (E.460)

We use Jensen inequality to bound the last term in the RHS of the previous equation, leading to

E
[
gk(ūk,vk−1

1:T)− gk(ūk−1,vk−1
1:T)

]
≤

− ηk−1
2 E

∥∥∥∇ug
k
(
ūk−1,vk−1

1:T

)∥∥∥2
+ L

T
η2

k−1σ
2

+ ηk−1
2T ·

T∑
t=1

E
∥∥∥∇ug

k
t

(
ūk−1,vk−1

t

)
− δk−1

t

∥∥∥2

︸ ︷︷ ︸
T3

. (E.461)

264 APPENDIX

We bound now the term T3:

T3 = E
∥∥∥∇ug

k
t

(
ūk−1,vk−1

t

)
− δk−1

t

∥∥∥2
(E.462)

= E

∥∥∥∥∥∥∇ug
k
t

(
ūk−1,vk−1

t

)
−
∑J−1

j=0 ηk−1,j · ∇ug
k
t

(
uk−1,j

t ,vk−1
t

)
ηk−1

∥∥∥∥∥∥
2

(E.463)

= E

∥∥∥∥∥∥
J−1∑
j=0

ηk−1,j

ηk−1
·
[
∇ug

k
t

(
ūk−1,vk−1

t

)
−∇ug

k
t

(
uk−1,j

t ,vk−1
t

)]∥∥∥∥∥∥
2

. (E.464)

Using Jensen inequality, it follows that

T3 ≤
J−1∑
j=0

ηk−1,j

ηk−1
· E
∥∥∥∇ug

k
t

(
ūk−1,vk−1

t

)
−∇ug

k
t

(
uk−1,j

t ,vk−1
t

)∥∥∥2
(E.465)

=
J−1∑
j=0

ηk−1,j

ηk−1
· E
∥∥∥∥∥∇ug

k
t

(
ūk−1,vk−1

t

)
−∇ug

k
t

(
uk−1

t ,vk−1
t

)

+∇ug
k
t

(
uk−1

t ,vk−1
t

)
−∇ug

k
t

(
uk−1,j

t ,vk−1
t

) ∥∥∥∥∥
2

(E.466)

≤ 2 · E
∥∥∥∥∥∇ug

k
t

(
ūk−1,vk−1

t

)
−∇ug

k
t

(
uk−1

t ,vk−1
t

) ∥∥∥∥∥
2

+ 2 ·
J−1∑
j=0

ηk−1,j

ηk−1
· E
∥∥∥∥∥∇ug

k
t

(
uk−1

t ,vk−1
t

)
−∇ug

k
t

(
uk−1,j

t ,vk−1
t

) ∥∥∥∥∥
2

(E.467)

≤ 2L2 · E
∥∥∥ūk−1 − uk−1

t

∥∥∥2
+ 2L2 ·

J−1∑
j=0

ηk−1,j

ηk−1
· E
∥∥∥uk−1,j

t − uk−1,0
t

∥∥∥2
, (E.468)

where we used the L-smoothness of gk
t (Assumption 12′) to obtain the last inequality. As in the

centralized case (Lemma E.4), we bound terms
∥∥∥uk−1,j

t − uk−1,0
t

∥∥∥2
, j ∈ {0, . . . , J − 1}. Using

exactly the same steps as in the proof of Lemma E.4, Eq. (E.350) holds with uk−1,0
t instead of

uk−1
t , i.e.,

(
1− 4η2

k−1L
2
)
·

J−1∑
j=0

ηk−1,j

ηk−1
· E
∥∥∥uk−1,0

t − uk−1,j
t

∥∥∥2
≤ 2σ2 ·


J−1∑
j=0

η2
k−1,j


+ 4η2

k−1 · E
∥∥∥∇ug

k
t

(
uk−1,0

t ,vk−1
t

)∥∥∥2
. (E.469)

For ηk−1 small enough, in particular for ηk−1 ≤ 1
2
√

2L
, we have

J−1∑
j=0

ηk−1,j

ηk−1
· E
∥∥∥uk−1,0

t − uk−1,j
t

∥∥∥2

≤ 8η2
k−1 · E

∥∥∥∇ug
k
t

(
uk−1,0

t ,vk−1
t

)∥∥∥2
+ 4σ2 ·


J−1∑
j=0

η2
k−1,j

 (E.470)

APPENDIX 265

≤ 8η2
k−1 · E

∥∥∥∇ug
k
t

(
uk−1,0

t ,vk−1
t

)
−∇ug

k
t

(
ūk−1,vk−1

t

)
+∇ug

k
t

(
ūk−1,vk−1

t

)∥∥∥2

+ 4σ2 ·


J−1∑
j=0

η2
k−1,j

 (E.471)

≤ 16η2
k−1 · E

∥∥∥∇ug
k
t

(
uk−1,0

t ,vk−1
t

)
−∇ug

k
t

(
ūk−1,vk−1

t

)∥∥∥2

+ 16η2
k−1 ·

∥∥∥∇ug
k
t

(
ūk−1,vk−1

t

)∥∥∥2
+ 4σ2 ·


J−1∑
j=0

η2
k−1,j

 (E.472)

≤ 16η2
k−1L

2 · E
∥∥∥uk−1

t − ūk−1
∥∥∥2

+ 16η2
k−1 ·

∥∥∥∇ug
k
t

(
ūk−1,vk−1

t

)∥∥∥2

+ 4σ2 ·


J−1∑
j=0

η2
k−1,j

 , (E.473)

where the last inequality follows from theL-smoothness of gk
t . Replacing Eq. (E.473) in Eq. (E.468),

we have

T3 ≤ 32η2
k−1L

4 · E
∥∥∥uk−1

t − ūk−1
∥∥∥2

+ 8L2σ2 ·


J−1∑
j=0

η2
k−1,j


+ 32η2

k−1L
2 · E

∥∥∥∇ug
k
t

(
ūk−1,vk−1

t

)∥∥∥2
+ 2L2 · E

∥∥∥ūk−1 − uk−1
t

∥∥∥2
. (E.474)

For ηk small enough, in particular if ηk ≤ 1
2
√

2L
we have,

T3 ≤ 6L2E
∥∥∥uk−1

t − ūk−1
∥∥∥2

+ 8L2σ2
J−1∑
j=0

η2
k−1,j + 32η2

k−1L
2
∥∥∥∇ug

k
t

(
ūk−1,vk−1

t

)∥∥∥2
.

(E.475)

Replacing Eq. (E.475) in Eq. (E.461), we have

E
[
gk(ūk,vk−1

1:T)− gk(ūk−1,vk−1
1:T)

]
≤

3ηk−1L
2

T
·

T∑
t=1

E
∥∥∥uk−1

t − ūk−1
∥∥∥2

+
η2

k−1L

T

4
J−1∑
j=0

TL · η2
k−1,j

ηk−1
+ 1

σ2

− ηk−1
2 E

∥∥∥∇ug
k
(
ūk−1,vk−1

1:T

)∥∥∥2
+

16η3
k−1L

2

T

T∑
t=1

∥∥∥∇ug
k
t

(
ūk−1,vk−1

t

)∥∥∥2
. (E.476)

We use now Assumption 14′ to bound the last term in the RHS of the previous equation, leading to

E
[
gk(ūk,vk−1

1:T)− gk(ūk−1,vk−1
1:T)

]
≤

3ηk−1L
2

T
·

T∑
t=1

E
∥∥∥uk−1

t − ūk−1
∥∥∥2

+
η2

k−1L

T

4
J−1∑
j=0

TL · η2
k−1,j

ηk−1
+ 1

σ2

266 APPENDIX

−
ηk−1 ·

(
1− 32η2

k−1L
2β2

)
2 E

∥∥∥∇ug
k
(
ūk−1,vk−1

1:T

)∥∥∥2
+

16η3
k−1L

2

T
G2. (E.477)

For ηk−1 small enough, in particular, if ηk−1 ≤ 1
8Lβ , we have

E
[
gk(ūk,vk−1

1:T)− gk(ūk−1,vk−1
1:T)

]
≤

− ηk−1
4 E

∥∥∥∇ug
k
(
ūk−1,vk−1

1:T

)∥∥∥2
+ 3ηk−1L

2

T
·

T∑
t=1

E
∥∥∥uk−1

t − ūk−1
∥∥∥2

+
η2

k−1L

T

4
J−1∑
j=0

TL · η2
k−1,j

ηk−1
+ 1

σ2 +
16η3

k−1L
2

T
G2. (E.478)

We use Lemma E.17 to get

E
[
gk(ūk,vk−1

1:T)− f(ūk−1,vk−1
1:T)

]
≤

− ηk−1
8 E

∥∥∥∇uf
(
ūk−1,vk−1

1:T

)∥∥∥2
+ (12 + T) ηk−1L

2

4T ·
T∑

t=1
E
∥∥∥uk−1

t − ūk−1
∥∥∥2

+
η2

k−1L

T

4
J−1∑
j=0

L · η2
k−1,j

ηk−1
+ 1

σ2 +
16η3

k−1L
2

T
G2. (E.479)

Finally, since gk
t is a partial first-order surrogate of ft near

{
uk−1,vk−1

t

}
, we have

E
[
f(ūk,vk

1:T)− f(ūk−1,vk−1
1:T)

]
≤ − 1

T

T∑
t=1

EdV
(
vk

t ,vk−1
t

)

− ηk−1
8 E

∥∥∥∇uf
(
ūk−1,vk−1

1:T

)∥∥∥2
+ (12 + T) ηk−1L

2

4T ·
T∑

t=1
E
∥∥∥uk−1

t − ūk−1
∥∥∥2

+
η2

k−1L

T

4
J−1∑
j=0

L · η2
k−1,j

ηk−1
+ 1

σ2 +
16η3

k−1L
2

T
G2. (E.480)

Lemma E.11 (Recursion for consensus distance, part 1). Suppose that Assumptions 12′–14′

and Assumption 15 hold. For k ≥ τ , consider m = ⌊∗⌋k
τ − 1 and (ηk,j)1≤j≤J−1 such that

ηk ≜
∑J−1

j=0 ηk,j ≤ min
{

1
4L ,

1
4Lβ

}
then, the updates of fully decentralized federated surrogate

optimization (Alg 11) verify

E
T∑

t=1

∥∥∥uk
t − ūk

∥∥∥2

F
≤

(1− p

2)E
∥∥∥Umτ − Ūmτ

∥∥∥2

F
+ 44τ

(
1 + 2

p

)
L2

k−1∑
l=mτ

η2
l E
∥∥∥Ul − Ūl

∥∥∥2

F

APPENDIX 267

+ T · σ2 ·
k−1∑

l=mτ

η2
l + 16τL2

(
1 + 2

p

)
·


J−1∑
j=0

η2
l,j


+ 16τ

(
1 + 2

p

)
G2

k−1∑
l=mτ

η2
l

+ 16τ
(

1 + 2
p

)
β2

k−1∑
l=mτ

η2
l E
∥∥∥∇uf

(
ūl,j ,vl

1:T

)∥∥∥2
.

Proof. For k ≥ τ , and m = ⌊∗⌋k
τ − 1, we have

E
T∑

t=1

∥∥∥uk
t − ūk

∥∥∥2

F
= E

∥∥∥Uk − Ūk
∥∥∥2

F
(E.481)

= E
∥∥∥Uk − Ūmτ −

(
Ūk − Ūmτ

)∥∥∥2

F
(E.482)

≤ E
∥∥∥Uk − Ūmτ

∥∥∥2

F
, (E.483)

where we used the fact that
∥∥∥A− Ā∥∥∥2

F
=
∥∥∥A · (I − 11⊺

T

)∥∥∥
F
≤
∥∥∥I − 11⊺

T

∥∥∥
2
· ∥A∥2F = ∥A∥2F to

obtain the last inequality. Using Eq. (E.438) recursively, we have

Uk = Umτ

{
k−1∏

l′=mτ

W l′
}
−

k−1∑
l=mτ

ηlΥ̂l

{
k−1∏
l′=l

W l′
}
. (E.484)

Thus,

E
T∑

t=1

∥∥∥uk
t − ūk

∥∥∥2

F
≤ E

∥∥∥∥∥Umτ

{
k−1∏

l′=mτ

W l′
}
− Ūmτ −

k−1∑
l=mτ

ηlΥ̂l

{
k−1∏
l′=l

W l′
}∥∥∥∥∥

2

F

(E.485)

= E
∥∥∥∥∥Umτ

{
k−1∏

l′=mτ

W l′
}
− Ūmτ −

k−1∑
l=mτ

ηlΥl

{
k−1∏
l′=l

W l′
}

+
k−1∑

l=mτ

ηl

(
Υl − Υ̂l

){k−1∏
l′=l

W l′
}∥∥∥∥∥

2

F

(E.486)

= E
∥∥∥∥∥Umτ

{
k−1∏

l′=mτ

W l′
}
− Ūmτ −

k−1∑
l=mτ

ηlΥl

{
k−1∏
l′=l

W l′
}∥∥∥∥∥

2

F

+ E
∥∥∥∥∥

k−1∑
l=mτ

ηl

(
Υl − Υ̂l

){k−1∏
l′=l

W l′
}∥∥∥∥∥

2

F

+ 2E
〈

Umτ

{
k−1∏

l′=mτ

W l′
}
− Ūmτ −

k−1∑
l=mτ

ηlΥl

{
k−1∏
l′=l

W l′
}
,

k−1∑
l=mτ

ηl

(
Υl − Υ̂l

){k−1∏
l′=l

W l′
}〉

F

. (E.487)

Since stochastic gradients are unbiased, the last term in the RHS of the previous equation is equal
to zero. Using the following standard inequality for Euclidean norm with α > 0,

∥a + b∥2 ≤ (1 + α) ∥a∥2 +
(
1 + α−1

)
∥b∥2 , (E.488)

268 APPENDIX

we have

E
T∑

t=1

∥∥∥uk
t − ūk

∥∥∥2

F
≤ (E.489)

(1 + α)E
∥∥∥∥∥Umτ

{
k−1∏

l′=mτ

W l′
}
− Ūmτ

∥∥∥∥∥
2

F

+
(
1 + α−1

)
E
∥∥∥∥∥

k−1∑
l=mτ

ηlΥl

{
k−1∏
l′=l

W l′
}∥∥∥∥∥

2

F

+
k−1∑

l=mτ

η2
l E
∥∥∥∥∥(Υl − Υ̂l

){k−1∏
l′=l

W l′
}∥∥∥∥∥

2

F

. (E.490)

Since k ≥ (m+ 1)τ and matrices
(
W l
)

l≥0
are doubly stochastic, we have

E
T∑

t=1

∥∥∥uk
t − ūk

∥∥∥2

F
≤

(1 + α)E

∥∥∥∥∥∥Umτ


(m+1)τ−1∏

l′=mτ

W l′

− Ūmτ

∥∥∥∥∥∥
2

F

+
(
1 + α−1

)
E
∥∥∥∥∥

k−1∑
l=mτ

ηlΥl

∥∥∥∥∥
2

F

+
k−1∑

l=mτ

η2
l E
∥∥∥Υl − Υ̂l

∥∥∥2

F
(E.491)

≤ (1 + α)E

∥∥∥∥∥∥Umτ


(m+1)τ−1∏

l′=mτ

W l′

− Ūmτ

∥∥∥∥∥∥
2

F

+
(
1 + α−1

)
· (k −mτ)

k−1∑
l=mτ

η2
l E
∥∥∥Υl

∥∥∥2

F

+
k−1∑

l=mτ

η2
l E
∥∥∥Υl − Υ̂l

∥∥∥2

F
, (E.492)

where we use the fact that ∥AB∥F ≤ ∥A∥2 ∥B∥F and that ∥A∥ = 1 when A is a doubly stochastic
matrix to obtain the first inequality, and Cauchy-Schwarz inequality to obtain the second one. Using
Assumption 15 to bound the first term of the RHS of the previous equation and the fact that that
k ≤ (m+ 2)τ , it follows that

E
T∑

t=1

∥∥∥uk
t − ūk

∥∥∥2

F
≤

(1 + α)(1− p)E
∥∥∥Umτ − Ūmτ

∥∥∥2

F
+ 2τ

(
1 + α−1

) k−1∑
l=mτ

η2
l E
∥∥∥Υl

∥∥∥2

F

+
k−1∑

l=mτ

η2
l E
∥∥∥Υl − Υ̂l

∥∥∥2

F
. (E.493)

We use the fact that stochastic gradients have bounded variance (Assumption 13′) to bound

E
∥∥∥Υl − Υ̂l

∥∥∥2

F
as follows,

E
∥∥∥Υl − Υ̂l

∥∥∥2

F
=

T∑
t=1

E
∥∥∥δl

t − δ̂l
t

∥∥∥2
(E.494)

APPENDIX 269

=
T∑

t=1
E
∥∥∥∥∥

J−1∑
j=0

ηl,j

ηl
·
(
∇ug

l+1
t

(
ul,j

t ,vk−1
t

)
−∇ug

l+1
t

(
ul,j

t ,vl
t; ξ

l,j
t

))∥∥∥∥∥
2

(E.495)

≤
T∑

t=1

J−1∑
j=0

ηl,j

ηl
· E
∥∥∥∥∥
(
∇ug

l+1
t

(
ul,j

t ,vk−1
t

)
−∇ug

l+1
t

(
ul,j

t ,vl
t; ξ

l,j
t

))∥∥∥∥∥
2

(E.496)

≤
T∑

t=1

J−1∑
j=0

ηl,j

ηl
σ2 (E.497)

= T · σ2, (E.498)

where we used Jensen inequality to obtain the first inequality and Assumption 13′ to obtain the
second inequality. Replacing back in Eq. (E.493), we have

E
T∑

t=1

∥∥∥uk
t − ūk

∥∥∥2

F
≤

(1 + α)(1− p)E
∥∥∥Umτ − Ūmτ

∥∥∥2

F
+ 2τ

(
1 + α−1

) k−1∑
l=mτ

η2
l E
∥∥∥Υl

∥∥∥2

F
+ T · σ2 ·

{
k−1∑

l=mτ

η2
l

}
.

(E.499)

The last step of the proof consists in bounding E
∥∥∥Υl

∥∥∥2

F
for l ∈ {mτ, . . . , k − 1},

E
∥∥∥Υl

∥∥∥2

F
=

T∑
t=1

E
∥∥∥δl

t

∥∥∥2
(E.500)

=
T∑

t=1
E

∥∥∥∥∥∥
J−1∑
j=0

ηl,j

ηl
· ∇ug

l+1
t

(
ul,j

t ,vl
t

)∥∥∥∥∥∥
2

(E.501)

≤
T∑

t=1

J−1∑
j=0

ηl,j

ηl
· E
∥∥∥∇ug

l+1
t

(
ul,j

t ,vl
t

)∥∥∥2
(E.502)

≤
T∑

t=1

J−1∑
j=0

ηl,j

ηl
· E
∥∥∥∇ug

l+1
t

(
ul,j

t ,vl
t

)
−∇uft

(
ul

t,vl
t

)
+∇uft

(
ul

t,vl
t

)∥∥∥2
(E.503)

≤ 2
T∑

t=1

J−1∑
j=0

ηl,j

ηl
· E
∥∥∥∇ug

l+1
t

(
ul,j

t ,vl
t

)
−∇uft

(
ul

t,vl
t

)∥∥∥2

+ 2
T∑

t=1
E
∥∥∥∇uft

(
ul

t,vl
t

)∥∥∥2
. (E.504)

Since gl+1
t is a first order surrogate of f near

{
ul

t,vl
t

}
, we have

E
∥∥∥Υl

∥∥∥2

F
≤ 2

T∑
t=1

J−1∑
j=0

ηl,j

ηl
· E
∥∥∥∇ug

l+1
t

(
ul,j

t ,vl
t

)
−∇ug

l+1
t

(
ul,0

t ,vl
t

)∥∥∥2

270 APPENDIX

+ 2
T∑

t=1
E
∥∥∥∇uft

(
ul

t,vl
t

)
−∇uft

(
ūl,vl

t

)
+∇uft

(
ūl,vl

t

)∥∥∥2
(E.505)

≤ 2
T∑

t=1

J−1∑
j=0

ηl,j

ηl
· E
∥∥∥∇ug

l+1
t

(
ul,j

t ,vl
t

)
−∇ug

l+1
t

(
ul,0

t ,vl
t

)∥∥∥2

+ 4
T∑

t=1
E
∥∥∥∇uft

(
ul

t,vl
t

)
−∇uft

(
ūl,vl

t

)∥∥∥2
+ 4

T∑
t=1

E
∥∥∥∇uft

(
ūl,vl

t

)∥∥∥2
. (E.506)

Since f is 2L-smooth w.r.t u (Lemma E.15) and g is L-smooth w.r.t u (Assumption 12′), we have

E
∥∥∥Υl

∥∥∥2

F
≤ 2

T∑
t=1

J−1∑
j=0

ηl,j

ηl
· L2E

∥∥∥ul,j
t − ul,0

t

∥∥∥2
+ 16L2 ·

T∑
t=1

E
∥∥∥ul

t − ūl
∥∥∥2

+ 4
T∑

t=1
E
∥∥∥∇uft

(
ūl,vl

t

)∥∥∥2
. (E.507)

We use Eq. (E.473) to bound the first term in the RHS of the previous equation, leading to

E
∥∥∥Υl

∥∥∥2

F
≤ 32η2

l L
2

T∑
t=1

E
∥∥∥∇ug

l+1
t

(
ūl,j ,vl

t

)∥∥∥2
+ 16L2

(
1 + 2η2

l L
2
)
·

T∑
t=1

E
∥∥∥ul

t − ūl
∥∥∥2

+ 4
T∑

t=1
E
∥∥∥∇uft

(
ūl,vl

t

)∥∥∥2
+ 8TL2σ2 ·


J−1∑
j=0

η2
l,j

 . (E.508)

Using Lemma E.17, we have

E
∥∥∥Υl

∥∥∥2

F
≤ 4

(
1 + 16η2

l L
2
)
·

T∑
t=1

E
∥∥∥∇uft

(
ūl,j ,vl

t

)∥∥∥2

+ 16L2
(
1 + 6η2

l L
2
)
·

T∑
t=1

E
∥∥∥ul

t − ūl
∥∥∥2

+ 8L2σ2T ·


J−1∑
j=0

η2
l,j

 . (E.509)

For ηl small enough, in particular, for ηl ≤ 1
4L , we have

E
∥∥∥Υl

∥∥∥2

F
≤ 8

T∑
t=1

E
∥∥∥∇uft

(
ūl,j ,vl

t

)∥∥∥2
+ 22L2E

∥∥∥Ul − Ūl
∥∥∥2

F
+ 8L2σ2T


J−1∑
j=0

η2
l,j

 . (E.510)

Replacing Eq. (E.510) in Eq. (E.499), we have

E
T∑

t=1

∥∥∥uk
t − ūk

∥∥∥2

F
≤

(1 + α)(1− p)E
∥∥∥Umτ − Ūmτ

∥∥∥2

F
+ 44τ

(
1 + α−1

)
L2

k−1∑
l=mτ

η2
l E
∥∥∥Ul − Ūl

∥∥∥2

F

+ 16τ
(
1 + α−1

) k−1∑
l=mτ

η2
l

T∑
t=1

E
∥∥∥∇uft

(
ūl,j ,vl

t

)∥∥∥2

APPENDIX 271

+ T · σ2 ·
k−1∑

l=mτ

η2
l + 16τL2

(
1 + α−1

)
·


J−1∑
j=0

η2
l,j


 . (E.511)

Using Lemma E.16 and considering α = p
2 , we have

E
T∑

t=1

∥∥∥uk
t − ūk

∥∥∥2

F
≤

(1− p

2)E
∥∥∥Umτ − Ūmτ

∥∥∥2

F
+ 44τ

(
1 + 2

p

)
L2

k−1∑
l=mτ

η2
l E
∥∥∥Ul − Ūl

∥∥∥2

F

+ T · σ2 ·
k−1∑

l=mτ

η2
l + 16τL2

(
1 + 2

p

)
·


J−1∑
j=0

η2
l,j


+ 16τ

(
1 + 2

p

)
G2

k−1∑
l=mτ

η2
l

+ 16τ
(

1 + 2
p

)
β2

k−1∑
l=mτ

η2
l E
∥∥∥∇uf

(
ūl,j ,vl

1:T

)∥∥∥2
. (E.512)

Lemma E.12 (Recursion for consensus distance, part 2). Suppose that Assumptions 12′–14′ and
Assumption 15 hold. Consider m = ⌊∗⌋k

τ , then, for (ηk,j)1≤j≤J−1 such that ηk ≜
∑J−1

j=0 ηk,j ≤
min

{
1

4L ,
1

4Lβ

}
, the updates of fully decentralized federated surrogate optimization (Alg 11) verify

E
T∑

t=1

∥∥∥uk
t − ūk

∥∥∥2

F
≤

(1 + p

2)E
∥∥∥Umτ − Ūmτ

∥∥∥2

F
+ 44τ

(
1 + 2

p

)
L2

k−1∑
l=mτ

η2
l E
∥∥∥Ul − Ūl

∥∥∥2

F

+ T · σ2 ·
k−1∑

l=mτ

η2
l + 16τL2

(
1 + 2

p

)
·


J−1∑
j=0

η2
l,j


+ 16τ

(
1 + 2

p

)
G2

k−1∑
l=mτ

η2
l

+ 16τ
(

1 + 2
p

)
β2

k−1∑
l=mτ

η2
l E
∥∥∥∇uf

(
ūl,j ,vl

1:T

)∥∥∥2
. (E.513)

Proof. We use exactly the same proof as in Lemma E.11, with the only difference that Eq. (E.491)–
Eq. (E.493) is replaced by

E
T∑

t=1

∥∥∥uk
t − ūk

∥∥∥2

F
≤

(1 + α)E
∥∥∥Umτ − Ūmτ

∥∥∥2

F
+ 2τ

(
1 + α−1

) k−1∑
l=mτ

η2
l E
∥∥∥Υl

∥∥∥2

F

+
k−1∑

l=mτ

η2
l E
∥∥∥Υl − Υ̂l

∥∥∥2

F
, (E.514)

resulting from the fact that
{∏(m+1)τ−1

l′=mτ W l′
}

is a doubly stochastic matrix.

272 APPENDIX

Lemma E.13. Under Assum. 12′-14′ and Assum 15. For ηk,j = η
J with

η ≤ min
{ 1

4L,
p

92τL,
1

4βL,
1

32
√

2
· p
τβ

}
,

the iterates of Alg. 11 verifies

(12 + T)L2

4T

K∑
k=0

E
∥∥∥Uk − Ūk

∥∥∥2

F
≤ 1

16

K∑
k=0

E
∥∥∥∇uf

(
ūk,vk

1:T

)∥∥∥2
+16A·12 + T

T
· τL

2

p
(K+1)η2,

(E.515)
for some constant A > 0 and K > 0.

Proof. Note that for k > 0, ηk =
∑J−1

j=0 ηkj = η, and that
∑k−1

l=mτ η
2
l =

∑k−1
l=mτ η

2 ≤ 2τ · η2

Using Lemma E.11 and Lemma E.12, and the fact that p ≤ 1, we have for m = ⌊∗⌋k
τ − 1

E
∥∥∥Uk − Ūk

∥∥∥2

F
≤ (1− p

2)E
∥∥∥Umτ − Ūmτ

∥∥∥2

F
+ 132τ

p
L2η2

k−1∑
l=mτ

E
∥∥∥Ul − Ūl

∥∥∥2

F

+η2 2τ
{
Tσ2

(
1 + 16τL2

J

(
1 + 2

p

))
+ 16τ

(
1 + 2

p

)
G2
}

︸ ︷︷ ︸
≜A

+16τ
p
β2η2

k−1∑
l=mτ

E
∥∥∥∇uf

(
ūl,vl

1:T

)∥∥∥2
. (E.516)

and for m = ⌊∗⌋k
τ ,

E
∥∥∥Uk − Ūk

∥∥∥2

F
≤ (1 + p

2)E
∥∥∥Umτ − Ūmτ

∥∥∥2

F
+ 132τ

p
L2η2

k−1∑
l=mτ

E
∥∥∥Ul − Ūl

∥∥∥2

F

+η2 2τ
{
Tσ2

(
1 + 16τL2

J

(
1 + 2

p

))
+ 16τ

(
1 + 2

p

)
G2
}

︸ ︷︷ ︸
≜A

+ 16τ
p
β2

︸ ︷︷ ︸
≜D

η2
k−1∑

l=mτ

E
∥∥∥∇uf

(
ūl,vl

1:T

)∥∥∥2
. (E.517)

Using the fact that η ≤ p
92τL , it follows that for m = ⌊∗⌋k

τ − 1

E
∥∥∥Uk − Ūk

∥∥∥2

F
≤ (1− p

2)E
∥∥∥Umτ − Ūmτ

∥∥∥2

F
+ p

64τ

k−1∑
l=mτ

E
∥∥∥Ul − Ūl

∥∥∥2

+η2A+Dη2
k−1∑

l=mτ

E
∥∥∥∇uf

(
ūl,vl

1:T

)∥∥∥2
, (E.518)

and for m = ⌊∗⌋k
τ ,

E
∥∥∥Uk − Ūk

∥∥∥2

F
≤ (1 + p

2)E
∥∥∥Umτ − Ūmτ

∥∥∥2

F
+ p

64τ

k−1∑
l=mτ

E
∥∥∥Ul − Ūl

∥∥∥2

F

APPENDIX 273

+η2A+Dη2
k−1∑

l=mτ

E
∥∥∥∇uf

(
ūl,vl

1:T

)∥∥∥2
. (E.519)

The rest of the proof follows using [Kol+20, Lemma 14] with B = (12+T)L2

4T , b = 1
8 , constant (thus

8τ
p -slow*) steps-size η ≤ 1

32
√

2
p

τβ = 1
16

√
p/8
Dτ and constant weights ωk = 1.

Theorem 3.5.4′. Under Assumptions 11′–14′ and Assumption 15, when clients use SGD as local
solver with learning rate η = a0√

K
, after a large enough number of communication rounds K, the

iterates of fully decentralized federated surrogate optimization (Alg. 11) satisfy:

1
K

K∑
k=1

E
∥∥∥∇uf

(
ūk,vk

1:T

)∥∥∥2
≤ O

(1√
K

)
, (E.520)

and,
1
K

K∑
k=1

T∑
t=1

ωt · EdV
(
vk

t ,vk+1
t

)
≤ O

(1
K

)
, (E.521)

where ūk = 1
T

∑T
t=1 uk

t . Moreover, local estimates
(
uk

t

)
1≤t≤T

converge to consensus, i.e., to ūk:

1
K

K∑
k=1

T∑
t=1

E
∥∥∥uk

t − ūk
∥∥∥2
≤ O

(1√
K

)
. (E.522)

Proof. We prove first the convergence to a stationary point in u, i.e. Eq. (E.520), using [Kol+20,
Lemma 17], then we prove Eq. (E.521) and Eq. (E.522).

Note that for K large enough, η ≤ min
{

1
4L ,

p
92τL ,

1
4βL ,

1
32

√
2 ·

p
τβ

}
.

Proof of Eq. E.520. Rearranging the terms in the result of Lemma E.10 and dividing it by η we
have

1
η
· E
[
f(ūk,vk

1:T)− f(ūk−1,vk−1
1:T)

]
≤ −1

8E
∥∥∥∇uf

(
ūk−1,vk−1

1:T

)∥∥∥2

+ (12 + T)L2

4T · E
∥∥∥Uk−1 − Ūk−1

∥∥∥2
+ ηL

T

(4L
J

+ 1
)
σ2 + 16η2L2

T
G2. (E.523)

Summing over k ∈ [K + 1], we have

1
η
· E
[
f(ūK+1,vK+1

1:T)− f(ū0,v0
1:T)

]
≤ −1

8

K∑
k=0

E
∥∥∥∇uf

(
ūk,vk

1:T

)∥∥∥2

+ (12 + T)L2

4T ·
K∑

k=0
E
∥∥∥Uk − Ūk

∥∥∥2
+ (K + 1)ηL

T

(4L
J

+ 1
)
σ2

+ 16(K + 1) · η2L2

T
G2. (E.524)

*The notion of τ -slow decreasing sequence is defined in [Kol+20, Defintion 2].

274 APPENDIX

Using Lemma E.13, we have

1
η
· E
[
f(ūK+1,vK+1

1:T)− f(ū0,v0
1:T)

]
≤ − 1

16

K∑
k=0

E
∥∥∥∇uf

(
ūk,vk

1:T

)∥∥∥2

+ 16A · 12 + T

T
· τL

2

p
(K + 1)η2 + (K + 1)ηL

T

(4L
J

+ 1
)
σ2

+ 16(K + 1)η2L2

T
G2. (E.525)

Using Assumption 11′, it follows that

1
16

K∑
k=0

E
∥∥∥∇uf

(
ūk,vk

1:T

)∥∥∥2
≤ f(ū0,v0

1:T)− f∗

η

+ 16A · 12 + T

T
· τL

2

p
(K + 1)η2 + (K + 1)ηL

T

(4L
J

+ 1
)
σ2 + 16(K + 1)η2L2

T
G2.

(E.526)

We divide by K + 1 and we have

1
16(K + 1)

K∑
k=0

E
∥∥∥∇uf

(
ūk,vk

1:T

)∥∥∥2
≤ f(ū0,v0

1:T)− f∗

η(K + 1)

+ 16A · 12 + T

T
· τL

2

p
η2 + ηL

T

(4L
J

+ 1
)
σ2 + 16η2L2

T
G2. (E.527)

The final result follows from [Kol+20, Lemma 17].

Proof of Eq. E.522. We multiply Eq. (E.515) (Lemma E.13) by 1
K+1 , and we have

1
K + 1

K∑
k=0

E
∥∥∥Uk − Ūk

∥∥∥2

F
≤ 1

16(K + 1)

K∑
k=0

E
∥∥∥∇uf

(
ūk,vk

1:T

)∥∥∥2

F
+ 64Aτ
p(K + 1)Kη

2, (E.528)

since η ≤ O
(

1√
K

)
, using Eq. (E.520), it follows that

1
K

K∑
k=1

E
∥∥∥Uk − Ūk

∥∥∥2

F
≤ O

(1√
K

)
. (E.529)

Thus,
1
K

K∑
k=1

T∑
t=1

E
∥∥∥uk

t − ūk
∥∥∥2

F
≤ O

(1√
K

)
. (E.530)

Proof of Eq. E.521. Using the result of Lemma E.10 we have

1
T

T∑
t=1

E
[
dV
(
vk

t ,vk−1
t

)]
≤ E

[
f(ūk−1,vk−1

1:T)− f(ūk,vk
1:T)

]

APPENDIX 275

+ (12 + T) ηk−1L
2

4T ·
T∑

t=1
E
∥∥∥uk−1

t − ūk−1
∥∥∥2

+
η2

k−1L

T

4
J−1∑
j=0

L · η2
k−1,j

ηk−1
+ 1

σ2 +
16η3

k−1L
2

T
G2. (E.531)

The final result follows from the fact that η = O
(

1√
K

)
and Eq. (E.522).

E.4.3 Proof of Theorem 3.5.4

We state the formal version of Theorem 3.5.4, for which only an informal version was given in the
main text.

Theorem 3.5.4. Under Assumptions 8–15, when clients use SGD as local solver with learning rate
η = a0√

K
, D-FedEM’s iterates satisfy the following inequalities after a large enough number of

communication rounds K:

1
K

K∑
k=1

E
∥∥∥∇Θf

(
Θ̄k,Πk

)∥∥∥2

F
≤ O

(1√
K

)
,

1
K

K∑
k=1

T∑
t=1

nt

n
KL

(
πk

t , π
k−1
t

)
≤ O

(1
K

)
,

(E.532)
where Θ̄k =

[
Θk

1, . . .Θk
T

]
· 11⊺

T . Moreover, individual estimates
(
Θk

t

)
1≤t≤T

converge to consensus,

i.e., to Θ̄k:

min
k∈[K]

E
T∑

t=1

∥∥∥Θk
t − Θ̄k

∥∥∥2

F
≤ O

(1√
K

)
.

Proof. We prove this result as a particular case of Theorem 3.5.4′. To this purpose, we consider that
V ≜ ∆M , u = Θ ∈ RdM , vt = πt, and ωt = nt/n for t ∈ [T]. For k > 0, we define gk

t as follow,

gk
t

(
Θ, πt

)
= 1
nt

nt∑
i=1

M∑
m=1

qk
t

(
z

(i)
t = m

)
·
(
l
(
hθm(x(i)

t), y(i)
t

)
− log pm(x(i)

t)− log πt

+ log qk
t

(
z

(i)
t = m

)
− c
)
, (E.533)

where c is the same constant appearing in Assumption 10, Eq. (3.3). With this definition, it is easy to
check that the federated surrogate optimization algorithm (Alg. 11) reduces to D-FedEM (Alg. 8).
Theorem 3.5.4 then follows immediately from Theorem 3.5.4′, once we verify that

(
gk

t

)
1≤t≤T

satisfy the assumptions of Theorem 3.5.4′.
Assumption 11′, Assumption 13′, and Assumption 14′ follow directly from Assumption 11,

Assumption 13, and Assumption 14, respectively. Lemma E.6 shows that for k > 0, gk is smooth
w.r.t. Θ and then Assumption 12′ is satisfied. Finally, Lemmas E.7–E.9 show that for t ∈ [T] gk

t is
a partial first-order surrogate of ft near

{
Θk−1

t , πt

}
with dV(·, ·) = KL(·∥·).

E.5 Proof of Theorem 3.5.5′

Combining the previous lemmas we prove the convergence of Alg. 10 with a black box solver.

276 APPENDIX

Theorem 3.5.5′. Suppose that Assumptions 11′–14′, Assumptions 16′ and 17′ hold withG2 = 0 and
α ≤ 1

β2κ4 , then the updates of federated surrogate optimization (Alg. 10) converge to a stationary
point of f , i.e.,

lim
k→+∞

∥∥∥∇uf(uk,vk
1:T)

∥∥∥2
= 0, (E.534)

and,

lim
k→+∞

T∑
t=1

ωt · dV
(
vk

t ,vk−1
t

)
= 0. (E.535)

Proof.
f(uk,vk

1:T) = gk(uk,vk
1:T)− rk(uk,vk

1:T). (E.536)

Computing the gradient norm, we have,∥∥∥∇uf(uk,vk
1:T)

∥∥∥ =
∥∥∥∇ug

k(uk,vk
1:T)−∇ur

k(uk,vk
1:T)

∥∥∥ (E.537)

≤
∥∥∥∇ug

k(uk,vk
1:T)

∥∥∥+
∥∥∥∇ur

k(uk,vk
1:T)

∥∥∥ . (E.538)

Since gk is L-smooth in u, we write∥∥∥∇ug
k(uk,vk

1:T)
∥∥∥ =

∥∥∥∇ug
k(uk,vk)−∇ug

k(uk
∗ ,vk

1:T)
∥∥∥ (E.539)

≤ L
∥∥∥uk − uk

∗

∥∥∥ . (E.540)

Thus by replacing Eq. (E.540) in Eq. (E.538), we have∥∥∥∇uf(uk,vk
1:T)

∥∥∥ ≤ L2
∥∥∥uk − uk

∗

∥∥∥2
+
∥∥∥∇ur

k(uk,vk
1:T)

∥∥∥ . (E.541)

Using Lemma E.20, there exists 0 < α̃ < 1, such that[
gk(uk,vk

1:T)− gk(uk
∗ ,vk

1:T)
]
≤ α̃×

[
gk(uk−1,vk−1

1:T)− gk(uk
∗ ,vk

1:T)
]
. (E.542)

Thus, the conditions of Lemma E.21 hold, and we can use Eq. (E.610) and (E.612), i.e.∥∥∥∇ur
k(uk,vk

1:T)
∥∥∥2
−−−−→
k→+∞

0 (E.543)∥∥∥uk − uk
∗

∥∥∥2
−−−−→
k→+∞

0. (E.544)

Finally, combining this with Eq. (E.541), we get the final result

lim
k→+∞

∥∥∥∇uf(uk,vk
1:T)

∥∥∥ = 0. (E.545)

Since gk
t is a partial first-order surrogate of ft near

{
uk−1,vk−1

t

}
for k > 0 and t ∈ [T], it

follows that

T∑
t=1

ω · dV
(
vk

t ,vk−1
t

)
= gk

(
uk−1,vk−1

1:T

)
− gk

(
uk−1,vk

1:T

)
(E.546)

≤ gk
(
uk−1,vk−1

1:T

)
− gk

(
uk,vk

1:T

)
(E.547)

APPENDIX 277

Thus,
T∑

t=1
ωt · dV

(
vk

t ,vk−1
t

)
≤ f

(
uk−1,vk−1

1:T

)
− f

(
uk,vk

1:T

)
(E.548)

Since dV
(
vk

t ,vk−1
t

)
is non-negative for k > 0 and t ∈ [T], it follows that

lim
k→+∞

T∑
t=1

ωt · dV
(
vk

t ,vk−1
t

)
= 0 (E.549)

E.6 Proof of Theorem 3.5.5

Theorem 3.5.5. Suppose that Assumptions 8–14 and Assumptions 16, 17 hold with G2 = 0 and
α ≤ 1

β2κ5 , then the updates of FedEM (Alg. 7) converge to a stationary point of f , i.e.,

lim
k→+∞

∥∥∥∇Θf(Θk,Πk)
∥∥∥2

F
= 0, (E.550)

and,

lim
k→+∞

T∑
t=1

nt

n
KL

(
πk

t , π
k−1
t

)
= 0. (E.551)

Proof. We prove this result as a particular case of Theorem 3.5.5′. To this purpose, we consider that
V ≜ ∆M , u = Θ ∈ RdM , vt = πt, and ωt = nt/n for t ∈ [T]. For k > 0, we define gk

t as follow,

gk
t

(
Θ, πt

)
= 1
nt

nt∑
i=1

M∑
m=1

qk
t

(
z

(i)
t = m

)
·
(
l
(
hθm(x(i)

t), y(i)
t

)
− log pm(x(i)

t)− log πt

+ log qk
t

(
z

(i)
t = m

)
− c
)
, (E.552)

where c is the same constant appearing in Assumption 10, Eq. (3.3). With this definition, it is easy
to check that the federated surrogate optimization algorithm (Alg. 10) reduces to FedEM (Alg. 7).
Theorem 3.5.5 then follows immediately from Theorem 3.5.5′, once we verify that

(
gk

t

)
1≤t≤T

satisfy the assumptions of Theorem 3.5.5′.
Assumption 11′, Assumption 13′, Assumption 14′, Assumption 16′ and Assumption 17′ follow

directly from Assumption 11, Assumption 13, Assumption 14, Assumption 16 and Assumption 17,
respectively. Lemma E.6 shows that for k > 0, gk is smooth w.r.t. Θ and then Assumption 12′ is
satisfied. Finally, Lemmas E.7–E.9 show that for t ∈ [T] gk

t is a partial first-order surrogate of ft

w.r.t. Θ near
{

Θk−1, πt

}
with dV(·, ·) = KL(·∥·).

E.7 Supporting Lemmas

Lemma E.14. Consider J ≥ 2 and positive real numbers ηj , j = 0, . . . , J − 1, then:

1∑J−1
j=0 ηj

·
J−1∑
j=0

ηj ·
j−1∑
l=0

ηl

 ≤
J−2∑
j=0

ηj ,

278 APPENDIX

1∑J−1
j=0 ηj

·
J−1∑
j=0

ηj ·
j−1∑
l=0

η2
l

 ≤
J−2∑
j=0

ηj
2,

1∑J−1
j=0 ηj

·
J−1∑
j=0

ηj ·

j−1∑
l=0

ηl

2
 ≤

J−1∑
j=0

ηj ·
J−2∑
j=0

ηj .

Proof. For the first inequality,

1∑J−1
j=0 ηj

·
J−1∑
j=0

ηj ·
j−1∑
l=0

ηl

 ≤ 1∑J−1
j=0 ηj

·
J−1∑
j=0

{
ηj ·

J−2∑
l=0

ηl

}
=

J−2∑
l=0

ηl. (E.553)

For the second inequality

1∑J−1
j=0 ηj

·
J−1∑
j=0

ηj ·
j−1∑
l=0

η2
l

 ≤ 1∑J−1
j=0 ηj

·
J−1∑
j=0

{
ηj ·

J−2∑
l=0

η2
l

}
=

J−2∑
l=0

η2
l . (E.554)

For the third inequality,

1∑J−1
j=0 ηj

·
J−1∑
j=0

ηj ·

j−1∑
l=0

ηl

2
 ≤ 1∑J−1

j=0 ηj

·
J−1∑
j=0

ηj ·
(

J−2∑
l=0

ηl

)2 (E.555)

≤

J−2∑
j=0

ηj

2

(E.556)

≤
J−1∑
j=0

ηj ·
J−2∑
j=0

ηj . (E.557)

Lemma E.15. Suppose that g is a partial first-order surrogate of f , and that g is L-smooth, where
L is the constant appearing in Definition 1, then f is 2L-smooth.

Proof. The difference between f and g is L-smooth, and g is L-smooth, thus f is 2L-smooth as
the sum of two L-smooth functions.

Lemma E.16. Consider f =
∑T

t=1 ωt · ft, for weights ω ∈ ∆T . Suppose that for all (u,v) ∈
Rdu × V , and t ∈ [T], ft admits a partial first-order surrogate g{u,v}

t near {u,v}, and that
g{u,v} =

∑T
t=1 ωt · g{u,v}

t verifies Assumption 14′ for t ∈ [T]. Then f also verifies Assumption 14′.

Proof. Consider arbitrary u,v ∈ Rdu×V , and for t ∈ [T], consider g{u,v} to be a partial first-order
surrogate of ft near {u,v}. We write Assumption 14′ for g{u,v},

T∑
t=1

ωt ·
∥∥∥∇ug

{u,v}
t (u,v)

∥∥∥2
≤ G2 + β2

∥∥∥ T∑
t=1

ωt · ∇ug
{u,v}
t (u,v)

∥∥∥2
. (E.558)

APPENDIX 279

Since g{u,v}
t is a partial first-order surrogate of ft near {u, v}, it follows that

T∑
t=1

ωt ·
∥∥∥∇uft(u,v)

∥∥∥2
≤ G2 + β2

∥∥∥ T∑
t=1

ωt · ∇uft(u,v)
∥∥∥2
. (E.559)

Remark 12. Note that the assumption of Lemma E.16 is implicitly verified in Algorithm 10 and
Algorithm 11, where we assume that every client t ∈ T can compute a partial first-order surrogate
of its local objective ft near any iterate (u,v) ∈ Rdu × V .

Lemma E.17. For k > 0, the iterates of Alg. 11, verify the following inequalities:

gk
(
ūk−1,vk−1

1:T

)
≤ f

(
ūk−1,vk−1

1:T

)
+ L

2

T∑
t=1

ωt

∥∥∥ūk−1 − uk−1
t

∥∥∥2
,

∥∥∥∇uf
(
ūk−1,vk−1

1:T

)∥∥∥2
≤ 2

∥∥∥∇ug
k
(
ūk−1,vk−1

1:T

)∥∥∥2
+ 2L2

T∑
t=1

ωt

∥∥∥ūk−1 + uk−1
t

∥∥∥2
,

and,

∥∥∥∇ug
k
(
ūk−1,vk−1

1:T

)∥∥∥2
≤ 2

∥∥∥∇uf
(
ūk−1,vk−1

1:T

)∥∥∥2
+ 2L2

T∑
t=1

ωt

∥∥∥ūk−1 − uk−1
t

∥∥∥2
,

Proof. For k > 0 and t ∈ [T], we have

gk
t

(
ūk−1,vk−1

t

)
=

gk
t

(
ūk−1,vk−1

t

)
+ ft

(
ūk−1,vk−1

t

)
− ft

(
ūk−1,vk−1

t

)
(E.560)

= ft

(
ūk−1,vk−1

t

)
+ rk

t

(
ūk−1,vk−1

t

)
(E.561)

= ft

(
ūk−1,vk−1

t

)
+ rk

t

(
ūk−1,vk−1

t

)
− rk

t

(
uk−1

t ,vk−1
t

)
+ rk

t

(
uk−1

t ,vk−1
t

)
. (E.562)

Since gk
t

(
uk

t ,vk−1
t

)
= ft

(
uk

t ,vk−1
t

)
(Definition 1), it follows that

gk
t

(
ūk−1,vk−1

t

)
= ft

(
ūk−1,vk−1

t

)
+ rk

t

(
ūk−1,vk−1

t

)
− rk

t

(
uk−1

t ,vk−1
t

)
. (E.563)

Because rk
t is L-smooth in u (Definition 1), we have

rk
t

(
ūk−1,vk−1

t

)
−rk

t

(
uk−1

t ,vk−1
t

)
≤
〈
∇ur

k
t

(
uk−1

t ,vk−1
t

)
, ūk−1 − uk−1

t

〉
+ L

2

∥∥∥ūk−1 − uk−1
t

∥∥∥2
. (E.564)

Since gk
t is a partial first order surrogate of We have∇ur

k
t

(
uk−1

t ,vk−1
t

)
= 0, thus

gk
t

(
ūk−1,vk−1

t

)
≤ ft

(
ūk−1,vk−1

t

)
+ L

2

∥∥∥ūk−1 − uk−1
t

∥∥∥2
. (E.565)

280 APPENDIX

Multiplying by ωt and summing for t ∈ [T], we have

gk
(
ūk−1,vk−1

1:T

)
≤ f

(
ūk−1,vk−1

1:T

)
+ L

2

T∑
t=1

ωt

∥∥∥ūk−1 − uk−1
t

∥∥∥2
, (E.566)

and the first inequality is proved.
Writing the gradient of Eq. (E.563), we have

∇ug
k
t

(
ūk−1,vk−1

t

)
= ∇uft

(
ūk−1,vk−1

t

)
+∇ur

k
t

(
ūk−1,vk−1

t

)
−∇ur

k
t

(
uk−1

t ,vk−1
t

)
.

(E.567)
Multiplying by ωt and summing for t ∈ [T], we have

∇ug
k
(
ūk−1,vk−1

1:T

)
= ∇uf

(
ūk−1,vk−1

1:T

)
+

+
T∑

t=1
ωt

[
∇ur

k
t

(
ūk−1,vk−1

t

)
−∇ur

k
t

(
uk−1

t ,vk−1
t

)]
. (E.568)

Thus,∥∥∥∥∥∇ug
k
(
ūk−1,vk−1

1:T

) ∥∥∥∥∥
2

=

∥∥∥∥∥∇uf
(
ūk−1,vk−1

1:T

)
+

T∑
t=1

ωt

[
∇ur

k
t

(
ūk−1,vk−1

t

)
−∇ur

k
t

(
uk−1

t ,vk−1
t

)]∥∥∥∥∥
2

(E.569)

≥1
2

∥∥∥∇uf
(
ūk−1,vk−1

1:T

)∥∥∥2
−
∥∥∥∥∥

T∑
t=1

ωt

[
∇ur

k
t

(
ūk−1,vk−1

t

)
−∇ur

k
t

(
uk−1

t ,vk−1
t

)]∥∥∥∥∥
2

(E.570)

≥1
2

∥∥∥∇uf
(
ūk−1,vk−1

1:T

)∥∥∥2
−

T∑
t=1

ωt

∥∥∥∇ur
k
t

(
ūk−1,vk−1

t

)
−∇ur

k
t

(
uk−1

t ,vk−1
t

)∥∥∥2
(E.571)

≥1
2

∥∥∥∇uf
(
ūk−1,vk−1

1:T

)∥∥∥2
− L2

T∑
t=1

ωt

∥∥∥ūk−1 − uk−1
t

∥∥∥2
, (E.572)

where (E.570) follows from ∥a∥2 = ∥a+ b− b∥2 ≤ 2 ∥a+ b∥2 + 2 ∥b∥2. Thus,

∥∥∥∇uft

(
ūk−1,vk−1

t

)∥∥∥2
≤ 2

∥∥∥∇ug
k
t

(
ūk−1,vk−1

t

)∥∥∥2
+ 2L2

T∑
t=1

ωt

∥∥∥ūk−1 − uk−1
t

∥∥∥2
. (E.573)

The proof of the last inequality is similar, it leverages ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥a∥2 to upper bound
(E.569).

Lemma E.18. Consider u1, . . . ,uM ∈ Rd and α = (α1, . . . , αM) ∈ ∆M . Define the block matrix
H with {

Hm,m = −αm · (1− αm) · um · u⊺
m

Hm,m′ = αm · αm′ · um · u⊺
m′ ; m′ ̸= m,

(E.574)

then H is a semi-definite negative matrix.

APPENDIX 281

Proof. Consider x = [x1, . . . ,xM] ∈ RdM , we want to prove that

x⊺ ·H · x ≤ 0. (E.575)

We have:

X⊺ ·H ·X =
M∑

m=1

M∑
m′=1

x⊺
m ·Hm,m′ · xm′ (E.576)

=
M∑

m=1

x⊺
m ·Hm,m · xm +

M∑
m′=1
m′ ̸=m

x⊺
m ·Hm,m · xm′

 (E.577)

=
M∑

m=1
(−αm · (1− αm) · x⊺

m · um · u⊺
m · xm) (E.578)

+
M∑

m=1

 M∑
m′=1
m′ ̸=m

(
αm · αm′ · x⊺

m · um · u⊺
m′ · xm′

) (E.579)

=
M∑

m=1

−αm · (1− αm) · ⟨xm,um⟩2 + αm · ⟨xm,um⟩
M∑

m′=1
m′ ̸=m

αm′ · ⟨xm′ ,um′⟩

 .
(E.580)

Since α ∈ ∆M ,

∀m ∈ [M],
M∑

m′=1
m′ ̸=m

αm′ = (1− αm) , (E.581)

thus,

x⊺ ·H · x =
M∑

m=1
αm · ⟨xm,um⟩ ·

M∑
m′=1
m′ ̸=m

αm′

(
⟨xm′ ,um′⟩ − ⟨xm,um⟩

)
(E.582)

=
M∑

m=1
αm · ⟨xm,um⟩ ·

M∑
m′=1

αm′

(
⟨xm′ ,um′⟩ − ⟨xm,um⟩

)
(E.583)

=
(

M∑
m=1

αm · ⟨xm,um⟩
)2

−
M∑

m=1
αm · ⟨xm,um⟩2. (E.584)

Using Jensen inequality, we have x⊺ ·H · x ≤ 0.

Lemma E.19. Under Assumptions 12′, 16′ and 17′, the iterates of Alg. 7 verify for k > 0 and
t ∈ [T],

∀v ∈ V,
∥∥∥∇ug

k
t

(
uk

t ,v
)∥∥∥ ≤ √ακ · ∥∥∥∇ug

k
t

(
uk−1,v

)∥∥∥ , (E.585)

where κ = L/µ.

282 APPENDIX

Proof. Consider v ∈ V . Since gk
t is L-smooth in u (Assumption 12′), we have using Assump-

tion 16′,∥∥∥∇ug
k
t

(
uk

t ,v
)∥∥∥2

F
≤ 2L

(
gk

t

(
uk

t ,v
)
− gk

t

(
uk

t,∗,v
))
≤ 2Lα

(
gk

t

(
uk−1,v

)
− gk

t

(
uk

t,∗,v
))
.

(E.586)
Since Φk

t is µ-strongly convex (Assumption 17′), we can use Polyak-Lojasiewicz (PL) inequality,

gk
t

(
uk−1

t ,v
)
− 1

2µ

∥∥∥∇ug
k
t

(
uk−1,v

)∥∥∥2
≤ gk

t

(
uk−1

t,∗ ,v
)
, (E.587)

thus,

2µ
(
gk

t

(
uk−1

t ,v
)
− gk

t

(
uk

t,∗,v
))
≤
∥∥∥∇ug

k
t

(
uk−1,v

)∥∥∥2
. (E.588)

Combining Eq. (E.586) and Eq. (E.588), we have∥∥∥∇ug
k
t

(
uk−1,v

)∥∥∥2
≤ L

µ
α
∥∥∥∇ug

k−1
t

(
uk−1,v

)∥∥∥2
, (E.589)

thus, ∥∥∥∇ug
k
t (uk

t ,v)
∥∥∥ ≤ √ακ ∥∥∥∇ug

k
t (uk−1,v)

∥∥∥ . (E.590)

Lemma E.20. Suppose that Assumptions 12′, 14′, 16′ and 17′ hold with G2 = 0. Then,

gk
(
uk,vk

)
− gk

(
uk

∗ ,vk
)
≤ α̃×

{
gk
(
uk−1,vk−1

)
− gk

(
uk

∗ ,vk
)}

, (E.591)

where α̃ = β2κ4α, and uk
∗ ≜ arg minu g

k
(
u,vk

1:T

)
where gk is defined in (E.305)

Proof. Consider k > 0 and t ∈ [T]. Since gt is µ-convex in u (Assumption 17′), we write∥∥∥uk
t − uk

∗

∥∥∥
F
≤ 1
µ

∥∥∥∇ug
k
t

(
uk

t ,vk
t

)
−∇ug

k
t

(
uk

∗ ,vk
t

)∥∥∥ (E.592)

≤ 1
µ

∥∥∥∇ug
k
t

(
uk

t ,vk
t

)∥∥∥+ 1
µ

∥∥∥∇ug
k
t

(
uk

∗ ,vk
t

)∥∥∥ (E.593)

≤
√
ακ

µ

∥∥∥∇ug
k
t

(
uk−1,vk

t

)∥∥∥+ 1
µ

∥∥∥∇ug
k
t

(
uk

∗ ,vk
t

)∥∥∥ , (E.594)

where the last inequality is a result of Lemma E.19. Using Jensen inequality, we have

∥∥∥uk − uk
∗

∥∥∥
F

=
∥∥∥∥∥

T∑
t=1

ωt ·
(
uk

t − uk
∗

)∥∥∥∥∥ (E.595)

≤
T∑

t=1
ωt ·

∥∥∥uk
t − uk

∗

∥∥∥ (E.596)

≤
T∑

t=1
ωt ·

{√
ακ

µ

∥∥∥∇ug
k
t

(
uk−1,vk

t

)∥∥∥+ 1
µ

∥∥∥∇ug
k
t

(
uk

∗ ,vk
t

)∥∥∥} . (E.597)

APPENDIX 283

Using Assumption 14′ and Jensen inequality with the "
√
·" function, it follows that∥∥∥uk − uk

∗

∥∥∥ ≤ √ακβ
µ

∥∥∥∇ug
k
(
uk,vk

1:T

)∥∥∥+ β

µ

∥∥∥∇ug
k
(
uk

∗ ,vk
1:T

)∥∥∥ (E.598)

=
√
ακ

β

µ

∥∥∥∇ug
k
(
uk−1,vk

1:T

)∥∥∥ . (E.599)

Since gk is L-smooth in u as a convex combination of L-smooth function, we have∥∥∥∇ug
k
(
uk,vk

1:T

)∥∥∥ =
∥∥∥∇ug

k
(
uk−1,vk

1:T

)
−∇ug

k
(
uk

∗ ,vk
1:T

)∥∥∥ (E.600)

≤ L
∥∥∥uk − uk

∗

∥∥∥ (E.601)

≤ β
√
ακ3

∥∥∥∇ug
k
(
uk−1,vk

1:T

)∥∥∥ . (E.602)

Using Polyak-Lojasiewicz (PL), we have

gk
(
uk,vk

1:T

)
− gk

(
uk

∗ ,vk
1:T

)
≤ 1

2µ

∥∥∥∇ug
k
(
uk,vk

1:T

)∥∥∥2
≤ β2ακ3

2µ

∥∥∥∇ug
k
(
uk−1,vk

1:T

)∥∥∥2
.

(E.603)
Using the L-smoothness of gk in u, we have∥∥∥∇ug

k
(
uk−1,vk

1:T

)∥∥∥2
≤ 2L

[
gk
(
uk−1,vk

1:T

)
− gk

(
uk

∗ ,vk
1:T

)]
. (E.604)

Thus,

gk
(
uk,vk

1:T

)
− gk

(
uk

∗ ,vk
1:T

)
≤ β2κ4α︸ ︷︷ ︸

≜α̃

(
gk
(
uk−1,vk

1:T

)
− gk

(
uk

∗ ,vk
1:T

))
. (E.605)

Since vk
t = arg minv∈V g

k
t

(
uk−1,v

)
, it follows that

gk
t

(
uk−1,vk

t

)
≤ gk

t

(
uk−1,vk−1

t

)
. (E.606)

Thus,

gk
(
uk,vk

1:T

)
− gk

(
uk

∗ ,vk
1:T

)
≤ α̃×

{
gk
(
uk−1,vk−1

1:T

)
− gk

(
uk

∗ ,vk
1:T

)}
. (E.607)

For t ∈ [T] and k > 0, we introduce rk
t ≜ gk

t − ft and rk ≜ gk − f =
∑T

t=1 ωt

(
gk

t − ft

)
.

Since gk
t is a partial first-order surrogate of ft, it follows that rk

t

(
uk−1,vk−1

t

)
= 0 and that rk

t is
non-negative and L-smooth in u.

Lemma E.21. Suppose that Assumptions 11′ and 12′ hold and that

gk(uk,vk
1:T) ≤ gk(uk−1,vk−1

1:T), ∀k > 0, (E.608)

then

lim
k→∞

rk(uk,vk
1:T) =0 (E.609)

284 APPENDIX

lim
k→∞

∥∥∥∇ur
k(uk,vk

1:T)
∥∥∥2

=0 (E.610)

If we moreover suppose that Assumption 17′ holds and that there exists 0 < α̃ < 1 such that for all
k > 0,

gk(uk,vk
1:T)− gk(uk

∗ ,vk
1:T) ≤ α̃×

(
gk(uk−1,vk−1

1:T)− gk(uk
∗ ,vk

1:T)
)
, (E.611)

then,

lim
k→∞

∥∥∥uk − uk
∗

∥∥∥2
= 0 (E.612)

where uk
∗ is the minimizer of u 7→ gk

(
u,vk

1:T

)
.

Proof. Since gt is a partial first-order surrogate of f near
{

uk−1,vk−1
t

}
for t ∈ [T] and k > 0, it

follows that gk is a majorant of f and that gk(uk−1,vk−1) = f(uk−1,vk−1). Thus, the following
holds,

f(uk,vk) ≤ gk(uk,vk) ≤ gk(uk−1,vk−1) = f(uk−1,vk−1), (E.613)

It follows that the sequence
(
f
(
uk,vk

))
k≥0

is a non-increasing sequence. Since f is bounded

below (Assum. 11′), it follows that
(
f
(
uk,vk

))
k≥0

is convergent. Denote by f∞ its limit. The

sequence
(
gk(uk,vk)

)
k≥0

also converges to f∞.

Proof of Eq. E.609 Using the fact that gk(uk,vk) ≤ gk(uk−1,vk), we write for k > 0,

f(uk,vk
1:T) + rk(uk,vk

1:T) = gk(uk,vk
1:T) ≤ gk(uk−1,vk−1

1:T) = f(uk−1,vk−1
1:T), (E.614)

Thus,
rk(uk,vk

1:T) ≤ f(uk−1,vk−1
1:T)− f(uk,vk), (E.615)

By summing over k then passing to the limit when k → +∞, we have

∞∑
k=1

rk(uk,vk
1:T) ≤ f(u0,v0

1:T)− f∞, (E.616)

Finally since rk(uk,vk
1:T) is non negative for k > 0, the sequence

(
rk(uk,vk

1:T)
)

k≥0
necessarily

converges to zero, i.e.,
lim

k→∞
rk(uk,vk

1:T) = 0. (E.617)

Proof of Eq. E.610 Because the L-smoothness of u 7→ rk
(
u,vk

1:T

)
, we have

rk
(

uk − 1
L
∇ur

k
(
uk,vk

1:T

)
,vk

1:T

)
≤ rk

(
uk,vk

1:T

)
− 1

2L

∥∥∥∇ur
k
(
uk,vk

1:T

)∥∥∥2
(E.618)

Thus,∥∥∥∇ur
k
(
uk,vk

1:T

)∥∥∥2

F
≤ 2L

(
rk
(
uk,vk

1:T

)
− rk

(
uk − 1

L
∇ur

k
(
uk,vk

1:T

)
,vk

1:T

))
(E.619)

APPENDIX 285

≤ 2Lrk
(
uk,vk

1:T

)
, (E.620)

because rk is a non-negative function (Definition 1). Finally, using Eq. (E.609), it follows that

lim
k→∞

∥∥∥∇ur
k(uk,vk

1:T)
∥∥∥2

= 0. (E.621)

Proof of Eq. E.612 We suppose now that there exists 0 < α̃ < 1 such that

∀k > 0, gk(uk,vk
1:T)− gk(uk

∗ ,vk
1:T) ≤ α̃

(
gk(uk−1,vk−1

1:T)− gk(uk
∗ ,vk

1:T)
)
, (E.622)

It follows that,
gk(uk,vk

1:T)− α̃gk(uk−1,vk−1
1:T) ≤ (1− α̃)gk(uk

∗ ,vk
1:T), (E.623)

then,

gk(uk
∗ ,vk

1:T) ≥ 1
1− α̃ ×

[
gk(uk,vk

1:T)− α̃× gk(uk−1,vk−1
1:T)

]
, (E.624)

and by using the definition of gk we have,

gk(uk
∗ ,vk

1:T) ≥ 1
1− α̃ ×

[
gk(uk,vk

1:T)− α̃× f(uk−1,vk−1
1:T)

]
, (E.625)

Since gk
(
uk

∗ ,vk
1:T

)
≤ gk

(
uk,vk

1:T

)
≤ gk

(
uk−1,vk−1

1:T

)
, we have

gk(uk
∗ ,vk

1:T) ≤ gk(uk−1,vk−1
1:T) = f(uk−1,vk−1

1:T). (E.626)

From Eq. (E.625) and Eq. (E.626), it follows that,
1

1− α̃ ×
[
gk(uk,vk

1:T)− α̃× f(uk−1,vk−1
1:T)

]
≤ gk(uk

∗ ,vk
1:T) ≤ f(uk−1,vk−1

1:T), (E.627)

Finally, since f
(
uk−1,vk−1

1:T

)
−−−−→
k→+∞

f∞ and gk
(
uk,vk

1:T

)
−−−−→
k→+∞

f∞, it follows from

Eq. (E.627) that,
lim

k→∞
gk
(
uk

∗ ,vk
1:T

)
= f∞. (E.628)

Since gk is µ-strongly convex in u (Assumption 17), we write
µ

2

∥∥∥uk − uk
∗

∥∥∥2
≤ gk

(
uk,vk

1:T

)
− gk

(
uk

∗ ,vk
1:T

)
, (E.629)

It follows that,
lim

k→+∞

∥∥∥uk − uk
∗

∥∥∥2
= 0. (E.630)

E.8 Additional Experiments

E.9 Fully Decentralized Federated Expectation-Maximization

D-FedEM considers the scenario where clients communicate directly in a peer-to-peer fashion
instead of relying on the central server mediation. In order to simulate D-FedEM, we consider
a binomial Erdős-Rényi graph [ER59] with parameter p = 0.5, and we set the mixing weight
using Fast Mixing Markov Chain [BDX03] rule. We report the result of this experiment in Table 5,
showing the average weighted accuracy with weight proportional to local dataset sizes. We observe
that D-FedEM often performs better than other FL approaches and slightly worst than FedEM,
except on CIFAR-10 where it has low performances.

286 APPENDIX

Table 5: Test accuracy: average across clients.

Dataset Local FedAvg FedAvg+ Clustered FL pFedMe FedEM (Ours) D-FedEM (Ours)

FEMNIST 71.0 78.6 75.3 73.5 74.9 79.9 77.2
EMNIST 71.9 82.6 83.1 82.7 83.3 83.5 83.5
CIFAR10 70.2 78.2 82.3 78.6 81.7 84.3 77.0
CIFAR100 31.5 40.9 39.0 41.5 41.8 44.1 43.9
Shakespeare 32.0 46.7 40.0 46.6 41.2 46.7 45.4
Synthetic 65.7 68.2 68.9 69.1 69.2 74.7 73.8

E.10 Comparison with MOCHA

In the case of synthetic dataset, for which train a linear model, we compare FedEM with
MOCHA [Smi+17]. We implemented MOCHA in Python following the official implementation*

in MATLAB. We tuned the parameter λ of MOCHA on a holdout validation set via
grid search in {101, 100, 10−1, 10−2, 10−3}, and we found that the optimal value of λ is
100. For this value, we ran MOCHA on the synthetic dataset with three different seeds, and we found
that the average accuracy is 73.4± 0.05 in comparison to 74.7± 0.01 achieved by FedEM. Note
that MOCHA is the second best method after FedEM on this dataset. Unfortunately, MOCHA only
works for linear models.

E.11 Generalization to Unseen Clients

Table 3.3 shows that FedEM allows new clients to learn a personalized model at least as good as
FedAvg’s global one and always better than FedAvg+’s one. Unexpectedly, new clients achieve
sometimes a significantly higher test accuracy than old clients (e.g., 47.5% against 44.1% on
CIFAR100).

In order to better understand this difference, we looked at the distribution of FedEM personalized
weights for the old clients and new ones. The average distribution entropy equals 0.27 and 0.92 for
old and new clients, respectively. This difference shows that old clients tend to have more skewed
distributions, suggesting that some components may be overfitting the local training dataset leading
the old clients to give them a high weight.

We also considered a setting where unseen clients progressively collect their own dataset. We
investigate the effect of the number of samples on the average test accuracy across unseen clients,
starting from no local data (and therefore using uniform weights to mix the M components) and
progressively adding more labeled examples until the full local labeled training set is assumed to
be available. Figure E.15 shows that FedEM achieves a significant level of personalization as soon
as clients collect a labeled dataset whose size is about 20% of what the original clients used for
training.

As we mentioned in the main text, it is not clear how the other personalized FL algorithms
(e.g., pFedMe and Clustered FL) should be extended to handle unseen clients. For example, the
global model learned by pFedMe during training can then be used to perform some “fine-tuning”
at the new clients, but how exactly? The original pFedMe paper [TTN20] does not even mention
this issue. For example, the client could use the global model as initial vector for some local
SGD steps (similarly to what done in FedAvg+ or the MAML approaches) or it could perform
a local pFedMe update (lines 6-9 in [TTN20, Alg. 1]). The problem is even more complex for

*https://github.com/gingsmith/fmtl

https://github.com/gingsmith/fmtl

APPENDIX 287

Figure E.15: Effect of the number of samples on the average test accuracy across clients unseen at
training on CIFAR100 dataset.

Clustered FL (and again not discussed in [SMS20]). The new client should be assigned to one of the
clusters identified. One can think to compute the cosine distances of the new client from those who
participated in training, but this would require the server to maintain not only the model learned, but
also the last-iteration gradients of all clients that participated in the training. Moreover, it is not clear
which metric should be considered to assign the new client to a given cluster (perhaps the average
cosine similarity from all clients in the cluster?). This is an arbitrary choice as [SMS20] does not
provide a criterion to assign clients to a cluster, but only to decide if a given cluster should be split
in two new ones. It appears that many options are possible and they deserve separate investigation.
Despite these considerations, we performed an additional experiment extending pFedMe to unseen
clients as described in the second option above on CIFAR-100 dataset with a sampling rate of
20%. pFedMe achieves a test accuracy of 40.5%± 1.66%, in comparison to 38.9%± 0.97% for
FedAvg and 42.7% ± 0.33% for FedEM. FedEM thus performs better on unseen clients, and
pFedMe’s accuracy shows a much larger variability.

E.12 FedEM and Clustering

We performed additional experiments with synthetic datasets to check if FedEM recovers clusters
in practice. We modified the synthetic dataset generation so that the mixture weight vector πt

of each client t has a single entry equal to 1 that is selected uniformly at random. We consider
two scenarios both with T = 300 client, the first with M = 2 component and the second with
M = 3 components. In both cases FedEM recovered almost the correct Π∗ and Θ∗: we have
cosine_distance

(
Θ∗, Θ̆

)
≤ 10−2 and cosine_distance

(
Π∗, Π̆

)
≤ 10−8. A simple

clustering algorithm that assigns each client to the component with the largest mixture weight
achieves 100% accuracy, i.e., it partitions the clients in sets coinciding with the original clusters.

288 APPENDIX

Table 6: Test and train accuracy comparison across different tasks. For each method, the best test
accuracy is reported. For FedEM we run only K

M rounds, where K is the total number of rounds
for other methods–K = 80 for Shakespeare and K = 200 for all other datasets–and M = 3 is the
number of components used in FedEM.

Dataset Local FedAvg FedProx FedAvg+ Clustered
pFedMe FedEM (Ours)

FL

FEMNIST 71.0 (99.2) 78.6 (79.5) 78.6 (79.6) 75.3 (86.0) 73.5 (74.3) 74.9 (91.9) 74.0 (80.9)
EMNIST 71.9 (99.9) 82.6 (86.5) 82.7 (86.6) 83.1 (93.5) 82.7 (86.6) 83.3 (91.1) 82.7 (89.4)
CIFAR10 70.2 (99.9) 78.2 (96.8) 78.0 (96.7) 82.3 (98.9) 78.6 (96.8) 81.7 (99.8) 82.5 (92.2)
CIFAR100 31.5 (99.9) 41.0 (78.5) 40.9 (78.6) 39.0 (76.7) 41.5 (78.9) 41.8 (99.6) 42.0 (72.9)
Shakespeare 32.0 (95.3) 46.7 (48.7) 45.7 (47.3) 40.0 (93.1) 46.6 (48.7) 41.2 (42.1) 43.8 (44.6)
Synthetic 65.7 (91.0) 68.2 (68.7) 68.2 (68.7) 68.9 (71.0) 69.1 (85.1) 69.2 (72.8) 73.2 (74.7)

E.13 Effect of M in Time-Constrained Setting

Recall that in FedEM, each client needs to update and transmit M components at each round,
requiring roughly M times more computation and M times larger messages than the competitors in
our study. In this experiment, we considered a challenging time-constrained setting, where FedEM
is limited to run one third (= 1/M) of the rounds of the other methods. The results in Table 6 show
that even if FedEM does not reach its maximum accuracy, it still outperforms the other methods on
3 datasets.

We additionally compared FedEM with a model having the same number of parameters in
order to check if FedEM’s advantage comes from the additional model parameters rather than by its
specific formulation. To this purpose, we trained Resnet-18 and Resnet-34 on CIFAR10. The first
one has about 3 times more parameters than MobileNet-v2 and then roughly as many parameters as
FedEM with M = 3. The second one has about 6 times more parameters than FedEM with M = 3.
We observed that both architectures perform even worse than MobileNet-v2, so the comparison
with these larger models does not suggest that FedEM’s advantage comes from the larger number
of parameters.

We note that there are many possible choices of (more complex) model architectures, and
finding one that works well for the task at hand is quite challenging due to the large search space,
the bias-variance trade-off, and the specificities of the FL setting.

APPENDIX 289

Table 7: Test accuracy under 20% client sampling: average across clients with +/- standard deviation
over 3 independent runs. All experiments with 1200 communication rounds.

Dataset FedAvg FedAvg+ pFedMe APFL FedEM (Ours)

CIFAR-10 73.1 ± 0.14 77.7 ± 0.16 77.8 ± 0.07 78.2 ± 0.27 82.1 ± 0.13
CIFAR-100 40.6 ± 0.17 39.7 ± 0.75 39.9 ± 0.08 40.3 ± 0.71 43.2 ± 0.23
Synthetic 68.2 ± 0.02 69.0 ± 0.03 69.1 ± 0.03 69.1 ± 0.04 74.7 ± 0.01

E.14 Additional Results under Client Sampling

In our experiments, except for Figure 3.1, we considered that all clients participate at each round.
We run extra experiments with client sampling, by allowing only 20% of the clients to participate
at each round. We also incorporate APFL [DKM20] into the comparison. Table 7 summarizes our
findings, giving the average and standard deviation of the test accuracy across 3 independent runs.

E.15 Convergence Plots

Figures E.16 to E.21 show the evolution of average train loss, train accuracy, test loss, and test
accuracy over time for each experiment shown in Table 3.2.

290 APPENDIX

Figure E.16: Train loss, train accuracy, test loss, and test accuracy for CIFAR10 [Kri09]. .

APPENDIX 291

Figure E.17: Train loss, train accuracy, test loss, and test accuracy for CIFAR100 [Kri09].

292 APPENDIX

Figure E.18: Train loss, train accuracy, test loss, and test accuracy for EMNIST [Coh+17].

APPENDIX 293

Figure E.19: Train loss, train accuracy, test loss, and test accuracy for FEMNIST [Cal+19;
McM+17].

294 APPENDIX

Figure E.20: Train loss, train accuracy, test loss, and test accuracy for Shakespeare [Cal+19;
McM+17].

APPENDIX 295

Figure E.21: Train loss, train accuracy, test loss, and test accuracy for synthetic dataset.

296 APPENDIX

F Personalized Federated Learning through Local Memorization

In the general description of kNN-Per, and in our experiments, we considered that each client
t ∈ [T] uses its whole dataset St both to train the base shared model hS—and the corresponding
representation function ϕhS —and to populate the local datastore.

In the analysis, for simplicity, we deviate by this operation and consider that each local
dataset St is split in two disjoint parts (St = S ′

t

⋃̇
S ′′

t), with S ′
t used to train the base model

and S ′′
t used to populate the local datastore. Moreover, we assume that the two parts have the

same size, i.e., n′
t = n′′

t = nt/2 for all t ∈ [T], where n′
t and n′′

t denote the size of S ′
t and S ′′

t ,
respectively. In general, the result holds if the two parts have a fixed relative size across clients (i.e.,
n′

t1/nt1 = n′
t2/nt2 for all t1 and t2 in [T]).

Let S ′ denote the whole data used to train the base model, i.e., S ′ =
⋃

m∈[M] S ′
m. We observe

that the base model hS is only function of S ′, and then we can write hS′ . Instead, the local model
h

(1)
Sm

is both a function of S ′ (used to learn the shared representation ϕ′
S) and of S ′′

m (used to

populate the datastore). In order to stress such dependence, we then write h(1)
S′′

m,S′ .

F.1 Proof of Theorem 3.6.1

Theorem 3.6.1. Suppose that Assumptions 18–21 hold, and consider t ∈ [T] and λt ∈ (0, 1), then
there exist constants c1, c2, c3, c4, and c5 ∈ R, such that

ES∼⊗T
t=1Dnt

t
[LDt (ht,λt)] ≤ (1 + λt) · LDt (h∗

t) + c1 (1− λt) ·
(
discH

(
D̄,Dt

)
+ 1

)
+ c2λt ·

√
p

p+1
√
nt
· discH

(
D̄,Dt

)
+ c3 (1− λt) ·

√
dH
n
·
√
c4 + log

(
n

dH

)

+ c5λt ·

√
dH
n
·
√
c4 + log

(
n

dH

)
·
√
p

p+1
√
nt
, (F.631)

where dH is the the VC dimension of the hypothesis classH, n =
∑T

t=1 nt, D̄ =
∑T

t=1
nt
n · Dt, p is

the dimension of representations, and discH is the label discrepancy associated to the hypothesis
classH.

Proof. The idea of the proof is to bound both the expected error of the shared base model
(Lemma F.1) and the error of the local kNN retrieval mechanism (Lemma F.2) before using
the convexity of the loss function to bound the error of ht,λt .

Consider S ∼ ⊗T
t=1D

nt
t or, equivalently, S = S ′ ∪ S ′′, where S ′ ∼ ⊗T

t=1D
nt/2
t , and S ′′ =

∪t∈[T]S ′′
t and S ′′

t ∼ D
nt/2
t .

For t ∈ [T], and λt ∈ (0, 1), we have

ht,λt = λt · h(1)
S′′

t ,S′ + (1− λt) · hS′ . (F.632)

From Assumption 20 and the linearity of the expectation, it follows

LDt (ht,λt) ≤ λt · LDt

(
h

(1)
S′′

t ,S′

)
+ (1− λt) · LDt (hS′) . (F.633)

APPENDIX 297

Using Lemma F.2 and Lemma F.1, and applying expectation over samples S ∼ ⊗T
t=1D

nt
t , we have

ES∼⊗T
t=1Dnt

t
[LDt (ht,λt)] ≤ λt · ES′∼⊗T

t=1Dnt/2
t

[
ES′′∼⊗T

t=1Dnt/2
t

[
LDt

(
h

(1)
S′′

t ,S′

)]]
+ (1− λt) · ES′∼⊗T

t=1Dnt/2
t

[
ES′′∼⊗T

t=1Dnt/2
t

[
LDt (hS′)

]]
(F.634)

≤ 2λtLDt (h∗
t) + 6λtγ1

√
p

p+1
√
nt

+ 6λtγ2

√
p

p+1
√
nt
·
(
ES′∼⊗T

t=1Dnt/2
t

[LDt (hS′)]− LDt (h∗
t)
)

+ (1− λt) · ES′∼⊗T
t=1Dnt/2

t

[LDt (hS′)] (F.635)

≤ 2λtLDt (h∗
t) + 6λtγ1

√
p

p+1
√
nt

+ 6λtγ2

√
p

p+1
√
nt
·

δ1 ·

√
dH
n
·
√
δ2 + log

(
n

dH

)
+ 2 · discH

(
D̄,Dt

)
+ (1− λt) ·

LDt (h∗
t) + δ1 ·

√
dH
n
·
√
δ2 + log

(
n

dH

)
+ 2 · discH

(
D̄,Dt

)
(F.636)

= (1 + λt)LDt (h∗
t) + 6λtγ1

√
p

p+1
√
nt

+ 6λtγ2

√
p

p+1
√
nt
δ1 ·

√
dH
n
·
√
δ2 + log

(
n

dH

)
+ 12λtγ2

√
p

p+1
√
nt
· discH

(
D̄,Dt

)

+ δ1(1− λt) ·

√
dH
n
·
√
δ2 + log

(
n

dH

)
+ 2 · (1− λt) discH

(
D̄,Dt

)
. (F.637)

Rearranging the terms and taking c1 ≜ 2, c2 ≜ max{12γ2, 6γ1}, c3 ≜ δ1, c4 ≜ δ2 and c5 ≜ 6γ2δ1,
the final result follows.

F.2 Intermediate Lemmas

Lemma F.1. Consider t ∈ [T], then there exists constants δ1, δ2 ∈ R such that

ES′∼⊗T
t=1Dnt/2

t

[LDt (hS′)] ≤ LDt (h∗
t) + δ1 ·

√
dH
n
·
√
δ2 + log

(
n

dH

)
+ 2 · discH

(
D̄,Dt

)
,

(F.638)
where d is the VC dimension of the hypothesis classH, D̄ =

∑T
t=1

nt
n · Dt and discH is the label

discrepancy associated to the hypothesis classH.

Proof. We remind that the label discrepancy associated to the hypothesis classH for two distribu-
tions D1 and D2 over features and labels is defined as [Man+20]:

discH (D1,D2) = max
h∈H
|LD1 (h)− LD2 (h)| . (F.639)

298 APPENDIX

Consider t ∈ [T] and h∗ ∈ arg minh∈H LD̄(h). For S ′ ∼ ⊗T
t=1D

nt/2
t , we have

LDt(hS′)− LDt (h∗
t)

= LDt(hS′)− LD̄ (hS′) + LD̄ (hS′)− LD̄ (h∗
t) + LD̄ (h∗

t)− LD̄ (h∗) + LD̄ (h∗)− LDt (h∗
t)

(F.640)

= LDt(hS′)− LD̄ (hS′)︸ ︷︷ ︸
≤discH(Dt,D̄)

+LD̄ (h∗
t)− LDt (h∗

t)︸ ︷︷ ︸
≤discH(Dt,D̄)

+LD̄ (h∗)− LD̄ (h∗
t)︸ ︷︷ ︸

≤0

+LD̄ (hS′)− LD̄ (h∗)

(F.641)

≤ 2 · discH
(
Dt, D̄

)
+ LD̄ (hS′)− LD̄ (h∗) (F.642)

= 2 · discH
(
Dt, D̄

)
+ LD̄ (hS′)− LS′ (hS′) + LS′ (hS′)− LS′ (h∗)︸ ︷︷ ︸

≤0

+LS′ (h∗)− LD̄ (h∗)

(F.643)

≤ 2 · discH
(
Dt, D̄

)
+ 2 · sup

h∈H
|LD̄ (h)− LS′ (h)| . (F.644)

We now bound ES′∼⊗T
t=1Dnt/2

t

suph∈H |LD̄ (h)− LS′ (h)|. We first observe that for every h ∈ H,

we can write LD̄(h) = ES′∼⊗T
t=1Dnt/2

t

LS′ (h). Therefore, despite the fact that the samples in S ′

are not i.i.d., we can follow the same steps as in the proof of [SB14, Theorem 6.11], and conclude

ES′∼⊗T
t=1Dnt/2

t

sup
h∈H
|LD̄ (h)− LS′ (h)| ≤ 4 +

√
log (τH (n))√
n

, (F.645)

where τH is the growth function of classH.
Let d denote the VC dimension of H. From Sauer’s lemma [SB14, Lemma 6.10], we have

that for n > d+ 1, τH(n) ≤ (en/d)dH . Therefore, there exist constants δ1, δ2 ∈ R (e.g., δ1 = 4,
δ2 = max{4/

√
dH, 1}), such that

ES′∼⊗T
t=1Dnt/2

t

sup
h∈H
|LD̄ (h)− LS′ (h)| ≤ δ1

2 ·

√
dH
n
·
√
δ2 + log

(
n

dH

)
. (F.646)

Taking the expectation in (F.644) and using this inequality, we have

ES′∼⊗T
t=1Dnt/2

t

[LDt (hS′)] ≤ LDt (h∗
t) + δ1 ·

√
dH
n
·
√
δ2 + log

(
n

dH

)
+ 2 · discH

(
D̄,Dt

)
.

(F.647)

The following Lemma proves an upper bound on the expected error of the 1-NN learning rule.

Lemma F.2 (Adapted from [SB14, Thm 19.3]). Under Assumptions 18, 19, and 21 for all t ∈ [T],
it holds

ES′′
t ∼Dnt/2

t

[
LDt

(
h

(1)
S′′

t ,S′

)]
≤ 2LDt (h∗

t)+6
{
γ1+γ2·

[
LDt (hS′)−LDt (h∗

t)
]}
·
√
p

p+1
√
nt
. (F.648)

APPENDIX 299

Proof. Recall that for t ∈ [T], the Bayes optimal rule, i.e., the hypothesis that minimizes LDt(h)
over all functions, is

h∗
t (x) = 1{ηt(x)>1/2}. (F.649)

We note that the 1-NN rule can be expressed as follows:[
h

(1)
S′′

t ,S′ (x)
]

y
= 1{

y=π
(1)
S′′

t
(x)
}, (F.650)

where we are putting in evidence that the permutation πt depends on the dataset S ′′
t . Then, under

Assumption 19, the loss function l(·) reduces to the 0-1 loss.
Consider samples S ∼ ⊗T

t=1D
nt
t . Using Assumptions 18, 19 and 21, and following the same

steps as in [SB14, Lemma 19.1], we have

ES′′
t ∼Dnt/2

t

[
LDt

(
h

(1)
S′′

t ,S′

)]
− 2LDt (h∗

t) ≤{
γ1 + γ2 ·

[
LDt (hS′)− LDt (h∗

t)
]}
× ES′′

t,X ∼Dnt/2
t,X , x∼Dt,X

[
d
(
ϕhS′ (x) , ϕhS′

(
π

(1)
S′′

t
(x)
))]

︸ ︷︷ ︸
≜TS′

,

(F.651)

where S ′′
t,X denotes the set of input features in the dataset S ′′

t and Dt,X the marginal distribution of
Dt over X . Note that S ′′

t is independent from S ′.
As in the proof of [SB14, Theorem 19.3], let K be an integer to be precised later on. We

consider r = Kp and C1, . . . , Cr to be the cover of the set [0, 1]p using boxes with side 1/T . We
bound the term TS′ independently from S ′ as follows

ES′′
t ∼Dnt/2

t,X , x∼Dt,X

[
d
(
ϕhS′ (x) , ϕhS′

(
π

(1)
S′′

t
(x)
))]

≤ √p
(2Kp

nte
+ 1
K

)
. (F.652)

If we set ϵ = 2
(

2
nt

) 1
p+1 and K = ⌈1/ϵ⌉, it follows 1/ϵ ≤ K < 2/ϵ and then

ES′′
t ∼Dnt/2

t,X , x∼Dt,X

[
d
(
ϕhS′ (x) , ϕhS′

(
π

(1)
S′′

t
(x)
))]

≤ √p
(2(2/ϵ)p

nte
+ ϵ

)
(F.653)

= √p
(1
e

+ 2
)(2

nt

) 1
p+1

(F.654)

≤ 6
√
p

p+1
√
nt
. (F.655)

Thus,

ES′
t∼Dnt

t

[
LDt

(
h

(1)
S′′

t ,S′

)]
≤ 2LDt (h∗

t) + 6
√
p

p+1
√
nt

{
γ1 + γ2 ·

[
LDt (hS)−LDt (h∗

t)
]}
. (F.656)

300 APPENDIX

G Federated Learning for Data Streams

G.1 Proofs

We remind that all our results rely on the following assumptions:

Assumption 18. (Bounded loss) The loss function is bounded, i.e., ∀θ ∈ Θ, z ∈ Z, ℓ(θ; z) ∈ [0, B]

Assumption 23. (Bounded domain) We suppose that Θ is convex, closed and bounded; we use D
to denote its diameter, i.e., ∀θ, θ′ ∈ Θ, ∥θ − θ′∥ ≤ D.

Assumption 24. (Convexity) For all z ∈ Z , the function θ 7→ ℓ(θ; z) is convex on Rd.

Assumption 12. (Smoothness) For all z ∈ Z , the function θ 7→ ℓ(θ; z) is L-smooth on Rd.

In what follows, we use ∆D−1 to denote the unitary simplex of dimension D− 1, i.e., ∆D−1 ={
f ∈ RD

+ ,
∑D

i=1 fi = 1
}

G.1.1 Proof of (4.9)

ϵtrue = ES,A(λ)

[
LP(α)

(
A(λ) (S)

)
− L(λ)

S

(
A(λ) (S)

)]
+ ES,A(λ)

[
L(λ)

S

(
A(λ) (S)

)
−min

θ∈Θ
L(λ)

S (θ)
]

+ ES

[
min
θ∈Θ
L(λ)

S (θ)
]
−min

θ∈Θ
LP(α) (θ) (G.657)

≤ 2ES

[
sup
θ∈Θ

∣∣∣LP(α) (θ)− L(λ)
S (θ)

∣∣∣]︸ ︷︷ ︸
≜ϵgen

+ES,A(λ)

[
L(λ)

S

(
A(λ) (S)

)
−min

θ∈Θ
L(λ)

S (θ)
]

︸ ︷︷ ︸
≜ϵopt

,

(G.658)

where we exploited the fact that minx∈X f(x)−minx∈X g(x) ≤ supx∈X |f(x)− g(x)|.

G.1.2 Properties

Lemma G.1. Let f be an L-smooth function taking values in [0, B], then ∥∇f∥ ≤
√

2LB.

Proof. Let θ ∈ Θ, then using the definition of the L-smoothness of f with θ′ = θ − 1
L∇f (θ), we

have

f(θ′) = f(θ − 1
L
∇f (θ)) ≤ f (θ)− 1

L
⟨∇f (θ) ,∇f (θ)⟩+ L

2

∥∥∥∥ 1
L
∇f (θ)

∥∥∥∥2
(G.659)

= f (θ)− 1
2L ∥∇f (θ)∥2 . (G.660)

If follows that,
∥∇f (θ)∥2 ≤ 2L

(
f (θ)− f

(
θ′)) ≤ 2LB. (G.661)

APPENDIX 301

Lemma G.2. Suppose that Assumptions 18, and 12 hold. For all

sup
θ∈Θ
∥∇ℓ(θ; z)−∇LPm (θ)∥2 ≤

(
2
√

2LB
)2

(G.662)

.

Proof. Let z ∈ Z , and m ∈ [M]. Both ℓ (·, z), and LPmare L-smooth and bounded within [0, B].
For θ ∈ Θ, we have

∥∇ℓ(θ; z)−∇LPm (θ)∥2 ≤ 2 ∥∇ℓ(θ; z)∥2 + 2 ∥∇LPm (θ)∥2 (G.663)

≤ 2 · 2LB + 2 · 2LB (G.664)

= 8LB =
(
2
√

2LB
)2
, (G.665)

where we used Lemma G.1 to obtain the last inequality.

Lemma G.3. Suppose that Assumptions 18, and 12 hold. For all z ∈ Z , we have

max
m,m′

sup
θ∈Θ

∥∥∥∇LPm′ (θ)−∇LPm (θ)
∥∥∥ ≤ 2

√
2LB. (G.666)

.

Proof. The proof follows using the triangular inequality and Lemma G.1.

G.1.3 Proof of Theorem 4.3.1

In this section we express the loss ℓ as a function of the hypothesis function h ∈ H, rather than as a
function of the parameter vector θ ∈ Θ.

G.1.4 A Particular Case: Binary Classification with 0−1 loss

We first prove the result in the particular case when Y = {0, 1}, and the loss function is the 0−1
loss..

Theorem G.4. Suppose that Y = {0, 1}, and the loss function is the 0−1 loss, when using
Algorithm 13 with weights λ, it follows that

ϵgen ≤ discH
(
P(α),P(p)

)
+ Õ

√VCdim (H)
Neff

 ,
where

pm,i =
∑T

t=1
∑

j∈I(t)
m
1 {j = i} · λ(t,j)

m∑M
m′=1

∑T
t=1

∑
j∈I(t)

m′
λ

(t,j)
m′

, i ∈ [Nm],

p =
(

Nm∑
i=1

pm,i

)
1≤m≤M

,

Neff =
(

M∑
m=1

Nm∑
i=1

p2
m,i

)−1

.

302 APPENDIX

Proof. For client, m ∈ [M], we remind that pm ≜
∑Nm

i=1 pm,i is the relative importance of client
m in comparison to the other clients. We define

LS,p =
M∑

m=1

Nm∑
i=1

pm,i · ℓ(·; z(i)
m). (G.667)

Note that LS,p = L(λ)
S , and ES [LS,p (θ)] =

∑
m pmLPm (θ) = LP (p) (θ) for any θ ∈ Θ, where

P(p) =
∑

m pmPm. We have

ϵgen = ES

[
sup
h∈H
|LP(α) (h)− LS,p (h)|

]
(G.668)

= ES

[
sup
h∈H
|LP(α) (h)− LP(p) (h) + LP(p) (h)− LS,p (h)|

]
(G.669)

≤ ES

[
sup
h∈H
|LP(α) (h)− LP(p) (h)|

]
+ ES

[
sup
h∈H
|LP(p) (h)− LS,p (h)|

]
(G.670)

≤ discH
(
P(α),P(p)

)
+ ES

[
sup
h∈H
|LP(p) (h)− LS,p (h)|

]
. (G.671)

We bound now the second term in the right-hand side of Eq. (G.671). Note that, for h ∈ H, we
can write LP(p) (h) = ES′

[
LS′,p (h)

]
, where S ′ =

⋃M
m=1 S ′

m and S ′
m ∼ PNm

m is a dataset of
Nm samples drawn i.i.d. from Pm such that Sm =

{
z

(i)
m , i ∈ [Nm]

}
and S ′

m =
{
z′(i)

m , i ∈ [Nm]
}

.
Using triangular inequality, it follows that

ES

[
sup
h∈H
|LP(p) (h)− LS,p (h)|

]
≤ ES,S′

[
sup
h∈H

∣∣LS′,p (h)− LS,p (h)
∣∣] (G.672)

= ES,S′

[
sup
h∈H

∣∣∣∣∣
M∑

m=1

Nm∑
i=1

pm,i

(
ℓ(h; z(i)

m)− ℓ(h; z′(i)
m)
)∣∣∣∣∣
]

(G.673)

= ES,S′Eσ

[
sup
h∈H

∣∣∣∣∣
M∑

m=1

Nm∑
i=1

σ(i)
m · pm,i

(
ℓ(h; z(i)

m)− ℓ(h; z′(i)
m)
)∣∣∣∣∣
]
,

(G.674)

where σ(i)
m , m ∈ [M], i ∈ [Nm] is a random variable drawn from uniform distribution over {±1}.

Fix S and S ′ and let C be the instances appearing in S and S ′, andHC be the restriction ofH to
C, as defined in [SB14, Defintion 6.2]. It follows that

ES

[
sup
h∈H
|LP(p) (h)− LS,p (h)|

]
≤ ES,S′Eσ

[
sup

h∈HC

∣∣∣∣∣
M∑

m=1

Nm∑
i=1

σ(i)
m · pm,i

(
ℓ(h; z(i)

m)− ℓ(h; z′(i)
m)
)∣∣∣∣∣
]
.

(G.675)

Fix some h ∈ HC and denote γ(i)
m = σ

(i)
m · pm,i

(
ℓ(h; z(i)

m)− ℓ(h; z′(i)
m)
)

for m ∈ [M] and i ∈

[Nm]. We have that E
[
γ

(i)
m

]
= 0 and from Assumption 18, we have that γ(i)

m ∈ [−pm,i, pm,i]. Since

APPENDIX 303

the random variables
{
γ

(i)
m , m ∈ [M], i ∈ [Nm]

}
are independent, using Hoeffding inequality it

follows that, for all ρ ≥ 0, we have

P
[∣∣∣∣∣

M∑
m=1

Nm∑
i=1

σ(i)
m · pm,i

(
ℓ(h; z(i)

m)− ℓ(h; z′(i)
m)
)∣∣∣∣∣ ≥ ρ

]
≤ 2 exp

(
−2Neffρ

2
)
, (G.676)

where Neff =
(∑M

m=1
∑Nm

i=1 (pm,i)2
)−1

. Applying the union bound over h ∈ HC and using [SB14,
Lemma A.4],* it follows that

Eσ

[
sup

h∈HC

∣∣∣∣∣
M∑

m=1

Nm∑
i=1

σ(i)
m · pm,i

(
ℓ(h; z(i)

m)− ℓ(h; z′(i)
m)
)∣∣∣∣∣
]
≤ 4 + 3

√
log (|HC |)√
2Neff

. (G.677)

Let τH be the growth function of H as defined in [SB14, Definition 6.9]. It holds |HΘ,C | ≤
τH(|C|) ≤ τH(N). This leads to:

Eσ

[
sup

h∈HC

∣∣∣∣∣
M∑

m=1

Nm∑
i=1

σ(i)
m · pm,i

(
ℓ(h; z(i)

m)− ℓ(h; z′(i)
m)
)∣∣∣∣∣
]
≤ 4 + 3

√
log (τH (N))√
2Neff

. (G.678)

Replacing this bound in (G.675), we obtain:

ES

[
sup
h∈H
|LP(p) (h)− LS,p (h)|

]
≤ 4 + 3

√
log (τH (N))√
2Neff

, (G.679)

Using Sauer’s Lemma [SB14, Lemma 6.10] and following the same steps as in the proof of
[Mar+22b, Lemma A.1] we have

ES

[
sup
h∈H
|LP(p) (h)− LS,p (h)|

]
≤ 5

√
VCdim (H)

Neff
·
√

1 + log
(

N

VCdim (H)

)
. (G.680)

Thus,

ES

[
sup
h∈H
|LP(p) (h)− LS,p (h)|

]
≤ Õ

√VCdim (H)
Neff

 , (G.681)

thus,

ϵgen ≤ Õ

√VCdim (H)
Neff

+ discH
(
P(α),P(p)

)
. (G.682)

*If we follow the statement of [SB14, Lemma A.4], the RHS of (G.676) would be 4+2
√

log(|HC |)√
2Neff

. However, by

carefully checking the proof of this lemma, we observe that there is a missing term. Including the missing term leads to a
constant 3 rather than 2.

304 APPENDIX

G.1.5 The General Case

We remind the definition of the pseudo-dimension and shattering from [MRT18].

Definition G.1. [MRT18, Definition 11.4] Let F be a family of functions mapping from X to R. A
set {x1, . . . ,xm} is said to be shattered by F if there exists t1, . . . , tm ∈ R such that,∣∣∣∣∣∣∣


 sgn (f (x1)− t1)

...
sgn (f (xm)− t1)

 : f ∈ F


∣∣∣∣∣∣∣ = 2m (G.683)

Definition G.2. [MRT18, Definition 11.5] Let F be a family of functions mapping from X to R.
Then, the pseudo-dimension of F , denoted by Pdim (F), is the size of the largest set shattered by
F .

The notion of pseudo-dimension of a family of real-valued functions coincides with that of the
VC-dimension of the corresponding thresholded functions mapping X to {0, 1}:

Pdim (F) = VCdim
({

(x, s) 7→ 1f(x)−s>0 : f ∈ F
})

. (G.684)

In particular, we call the pseudo-dimension of the family ℓ ◦ H ≜ {z 7→ ℓ(h, z) : h ∈ H} the
pseudo-dimension of the hypothesis classH w.r.t. the loss ℓ.

Theorem 4.3.1. Suppose that Assumption 18 holds, when using Algorithm 13 with weights λ, it
follows that

ϵgen ≤ discH
(
P(α),P(p)

)
+ Õ

√Pdim (ℓ ◦ H)
Neff

 ,
where ,

pm,i =
∑T

t=1
∑

j∈I(t)
m
1 {j = i} · λ(t,j)

m∑M
m′=1

∑T
t=1

∑
j∈I(t)

m′
λ

(t,j)
m′

, i ∈ [Nm],

p =
(

Nm∑
i=1

pm,i

)
1≤m≤M

,

Neff =
(

M∑
m=1

Nm∑
i=1

p2
m,i

)−1

.

Proof. Using exactly the same steps as in the proof of Theorem G.4, we obtain:

ϵgen ≤ discH
(
P(α),P(p)

)
+ ES

[
sup
h∈H
|LP(p) (h)− LS,p (h)|

]
. (G.671)

The rest of the proof employs a technique similar to the one used in the proof of [MRT18,
Theorem 11.8] in order to bound the second term in RHS of (G.671). The technique consists of
reducing the problem of learning inH to that of binary classification.

For h ∈ H and t ∈ R, we denote by ch,t the classifier defined by ch,t : (x, y) 7→ 1ℓ(h,(x,y))>t.
For such classifier, z ∈ Z is an input vector and ȳ ∈ {0, 1} is a label. We denote by H̄ ≜ {ch,t :

APPENDIX 305

h ∈ H, t ∈ [0, B]} the hypothesis class of these binary classifiers. Let P̄(p) denote the distribution
over Z̄ = Z × {0, 1}, such that P̄(p)(Z × {1}) = 0 and P̄(p)(· × {0}) = P(p)(·), i.e., the
label ȳ = 1 is observed with probability 0, and the distribution of input vectors when ȳ = 0
coincides with P̄(p). Finally, let P̂(p) denote the empirical distribution where point z(i)

m is drawn
with probability pm,i.

We consider the 0−1 loss function ℓ̄(ch,t, (z, ȳ)) ≜ 1ch,t(x,y)̸=ȳ. The expected risk of ch,t is
then

L̄P̄(p)(ch,t) = Ez̄∼P̄(p) [ℓ̄(ch,t, (z̄))] = Ez∼P(p) [ch,t(z)] = P
z∼P(p)

[ℓ(h, z) > t]. (G.685)

Similarly, the (weighted) empirical risk of ch,t is

L̄S,p(ch,t) =
M∑

m=1

Nm∑
i=1

pm,iℓ̄(ch,t, (z(i)
m , 0)) =

M∑
m=1

Nm∑
i=1

pm,i·ch,t(z(i)
m) = Ez∼P̂(p) [ch,t(z)] = P

z∼P̂(p)
[ℓ(h, z) > t].

(G.686)
For any distribution P and any non-negative measurable function f , it holds [MRT18, Eq. 11.5]:

Ez∼P [f(z)] =
∫ ∞

0
P

z∼P
[f(z) > t]dt. (G.687)

In view of identity (G.687) and the fact that the loss function ℓ is bounded by B, we can write:

ES

[
sup
h∈H
|LP(p) (h)− LS,p (h)|

]
= ES

[
sup
h∈H

∣∣∣∣∣
∫ B

0
P

z∼P(p)
[ℓ(h, z) > t]dt−

∫ B

0
P

z∼P̂(p)
[ℓ(h, z) > t]dt

∣∣∣∣∣
]

(G.688)

≤ B · ES

[
sup

h∈H,t∈[0,B]

∣∣∣L̄P̄(p)(ch,t)− L̄S,p(ch,t)
∣∣∣] (G.689)

= B · ES

[
sup

h∈H,t∈R

∣∣∣L̄P̄(p)(ch,t)− L̄S,p(ch,t)
∣∣∣] (G.690)

= B · ES

 sup
ch,t∈H̄Θ

∣∣∣L̄P̄(p)(ch,t)− L̄S,p(ch,t)
∣∣∣
 . (G.691)

The right-hand side can be bounded using Theorem G.4 in terms of the VC-dimension of the family
of hypothesis H̄, which by definition of the pseudo-dimension and of the classifiers ch,t is precisely
Pdim(ℓ ◦ H). We obtain

ES

[
sup
h∈H
|LP(p) (h)− LS,p (h)|

]
≤ 5B ·

√
Pdim (ℓ ◦ H)

Neff
·
√

1 + log
(

N

Pdim (ℓ ◦ H)

)
. (G.692)

G.2 Proof of Lemma 4.3.2

Lemma 4.3.2. With the same notation as in Theorem 4.3.1, Neff ≤ N and this bound is attained
when p is uniform.

306 APPENDIX

Proof. We remind that

Neff =
(

M∑
m=1

Nm∑
i=1

(pm,i)2
)−1

. (G.693)

Let u ∈ ∆N be the vector obtained by concatenating all the values pm,i for m ∈ [M] and i ∈ [Nm].
It follows that

Neff =
(

N∑
n=1

u2
n

)−1

= ∥u∥−2
2 . (G.694)

Let u∗ ≜ 1/N , it is clear that u∗ ∈ ∆N , and ∥u∗∥22 = 1/N . Let u ∈ ∆N , using Cauchy-Shwartz
inequality, we have

1 =
N∑

n=1
un =

N∑
n=1

(un × 1) ≤

√√√√ N∑
n=1

u2
n ·

√√√√ N∑
n=1

1 = ∥u∥2 ·
√
N. (G.695)

Thus, ∥u∥−2
2 ≤ N , which concludes the proof.

G.2.1 Proof of Theorem 4.3.3

Theorem 4.3.3. Suppose that Assumptions 18–12 hold, the sequence
(
q(t)
)

t
is non increasing,

and verifies q(1) = O (1/T), and η ∝ 1/
√
T ·min{1, 1/σ̄ (λ)}. Under full clients participation

(S(t) = [M]) with full batch (K ≥ |I(t)
m |), we have

ϵopt ≤ O
(
σ̄ (λ)

)
+O

(σ̄ (λ)√
T

)
+O

(1√
T

)
,

where,

σ̄2 (λ) ≜
T∑

t=1
q(t) × ES

[
sup
θ∈Θ

∥∥∥∥∥∇L(λ)
S (θ)−

M∑
m=1

p(t)
m∇L

(λ)
M(t)

m

(θ)
∥∥∥∥∥

2]
.

Moreover, there exist a data arrival process and a loss function ℓ, such that, under FIFO memory
update rule, for any choice of weights λ, ϵopt = Ω (σ̄ (λ)).

Proof. We remind that

p(t)
m =

∑
j∈I(t)

m
λ

(t,j)
m∑M

m′=1
∑

j∈I(t)
m′
λ

(t,j)
m′

, (G.696)

and

q(t) =
∑M

m=1
∑

j∈I(t)
m
λ

(t,j)
m∑T

s=1
∑M

m=1
∑

j∈I(s)
m′
λ

(s,j)
m′

. (G.697)

APPENDIX 307

For ease of notation we introduce the following functions defined on Θ;

f (t)
m ≜ L(λ)

M(t)
m

, (G.698)

F (t) ≜
M∑

m=1
p(t)

m · L
(λ)
M(t)

m

=
M∑

m=1
p(t)

m · f (t)
m , (G.699)

F ≜ L(λ)
S =

T∑
t=1

q(t) · F (t). (G.700)

Note that this notation hides the dependence of the functions f (t)
m , F (t) and F on the samples S

and the parameters λ. In this proof we simply use E to refer to the expectation of the samples S,
e.g., E [∇F (θ)] = ES

[
∇L(λ)

S (θ)
]
.

We remind that

∆(t) =
M∑

m=1
p(t)

m ·
(
θ(t,E+1)

m − θ(t)
)

= −η ·
E∑

e=1

M∑
m=1

p(t)
m · ∇f (t)

m

(
θ(t,e)

m

)
. (G.701)

We define η̃ ≜ ηE > 0 and ∇̃(t) ≜ −∆(t)

η̃ ∈ Rd. The coefficient η̃ and the vector ∇̃(t) can be seen
as the efficient learning rate and the pseudo-gradient used at global iteration t ∈ [T], respectively
[Wan+21a, Section 2]. With this set of notation, the update rule of Algorithm 13 can be summarized
as

∇̃(t) = 1
E

E∑
e=1

M∑
m=1

p(t)
m · ∇f (t)

m

(
θ(t,e)

m

)
(G.702)

θ(t+1) = Π
Θ

(
θ(t) − η̃ · ∇̃(t)

)
(G.703)

Under Assumptions 24–12, the functions f (t)
m , F (t), and F are bounded, convex and L-smooth

as convex combinations of bounded, convex and L-smooth functions.
Let θ∗ be a minimizer of F over Θ, and F ∗ ≜ F (θ∗) (note that θ∗ and F ∗ depend on S). By

convexity of F , we have

−
〈
∇F (θ), θ − θ∗

〉
≤ − (F (θ)− F ∗) . (G.704)

Lemma G.1 and Jensen inequality imply that

max
{∥∥∥∇f (t,e)

m (θ)
∥∥∥ , ∥∥∥∇F (t) (θ)

∥∥∥ , ∥∇F (θ)∥ ,
∥∥∥∇̃(t)

∥∥∥} ≤ G, (G.705)

where G ≜
√

2LB.
For convenience, we quantify the variance between the current and global functions’ gradients

with
σt = sup

θ∈Θ

∥∥∥∇F (θ)−∇F (t) (θ)
∥∥∥ . (G.706)

We define σ2 (λ) ≜
∑T

t=1 q
(t)σ2

t . Therefore, σ̄2 (λ) = E
[
σ2 (λ)

]
.

308 APPENDIX

The idea of the proof it to bound the distance between the pseudo-gradient ∇̃(t) and the correct
gradient,∇F

(
θ(t)
)

, that should have been used at iteration t > 0. One can write

E
[∥∥∥θ(t+1)−θ∗

∥∥∥2
]

= E
[∥∥∥∥ΠΘ (θ(t) − η̃∇̃

)
− θ∗

∥∥∥∥2
]

(G.707)

≤ E
[∥∥∥θ(t) − η̃∇̃ − θ∗

∥∥∥2
]

(G.708)

= E
[∥∥∥θ(t) − η̃∇F

(
θ(t)
)
− θ∗ + η̃

(
∇F

(
θt
)
− ∇̃(t)

)∥∥∥2
]

(G.709)

= E
[∥∥∥θ(t) − η̃∇F

(
θ(t)
)
− θ∗

∥∥∥2

︸ ︷︷ ︸
≜T1

]
+ η̃2E

[∥∥∥∇F (θ(t)
)
− ∇̃(t)

∥∥∥2

︸ ︷︷ ︸
≜T2

]

+ 2η̃E
[〈
∇F

(
θ(t)
)
− ∇̃(t), θ(t) − η̃∇F

(
θ(t)
)
− θ∗

〉
︸ ︷︷ ︸

≜T3

]
. (G.710)

Bound T1. We have,

T1 =
∥∥∥θ(t) − η̃∇F

(
θ(t)
)
− θ∗

∥∥∥2
(G.711)

=
∥∥∥θ(t) − θ∗

∥∥∥2
+ η̃2

∥∥∥∇F (θ(t)
)∥∥∥2
− 2η̃ ·

〈
∇F

(
θ(t)
)
, θ(t) − θ∗

〉
(G.712)

≤
∥∥∥θ(t) − θ∗

∥∥∥2
+ η̃2G2 − 2η̃

(
F
(
θ(t)
)
− F ∗

)
, (G.713)

where we used (G.704) and (G.705) to obtain the last inequality.

Bound T2. Let α > 0, we have,

T2 =
∥∥∥∇F (θt

)
− ∇̃(t)

∥∥∥2
(G.714)

=
∥∥∥∥∥∇F (θ(t)

)
−

M∑
m=1

p(t)
m∇f (t)

m

(
θ(t)
)

+
M∑

m=1
p(t)

m∇f (t)
m

(
θ(t)
)
− ∇̃(t)

∥∥∥∥∥
2

(G.715)

≤ (1 + α)
∥∥∥∇F (θ(t)

)
−∇F (t)

(
θ(t)
)∥∥∥2

+ (1 + α−1)
∥∥∥∥∥

M∑
m=1

p(t)
m∇f (t)

m

(
θ(t)
)
− ∇̃(t)

∥∥∥∥∥
2

,

(G.716)

where we used the fact that for any two vectors a,b ∈ Rd and a coefficient α > 0, it holds
that ∥a + b∥2 ≤ (1 + α) ∥a∥2 + (1 + α−1) ∥b∥2, with the particular choice a = ∇F

(
θ(t)
)
−

∇F (t)
(
θ(t)
)

, and b =
∑M

m=1 p
(t)
m∇f (t)

m

(
θ(t)
)
− ∇̃(t).

We remind that,

∇̃ = −∆(t)

ηE
=

E∑
e=1

M∑
m=1

p
(t)
m

E
g(t,e)

m =
E∑

e=1

M∑
m=1

p
(t)
m

E
∇f (t)

m

(
θ(t,e)

m

)
. (G.717)

APPENDIX 309

Thus,

∥∥∥ M∑
m=1

p(t)
m∇f (t)

m

(
θ(t)
)
− ∇̃(t)

∥∥∥2
=
∥∥∥∥∥

E∑
e=1

M∑
m=1

p
(t)
m

E

(
∇f (t)

m

(
θ(t)
)
−∇f (t)

m

(
θ(t,e)

))∥∥∥∥∥
2

(G.718)

≤
E∑

e=1

M∑
m=1

p
(t)
m

E

∥∥∥∇f (t)
m

(
θ(t)
)
−∇f (t)

m

(
θ(t,e)

m

)∥∥∥2
(G.719)

=
E∑

e=1

M∑
m=1

p
(t)
m

E

∥∥∥∇f (t)
m

(
θ(t,1)

m

)
−∇f (t)

m

(
θ(t,e)

m

)∥∥∥2
(G.720)

≤ L2
E∑

e=1

M∑
m=1

p
(t)
m

E

∥∥∥θ(t,1)
m − θ(t,e)

m

∥∥∥2
(G.721)

= L2
E∑

e=1

M∑
m=1

p
(t)
m

E

∥∥∥∥∥
e−1∑
e′=1

θ(t,e′)
m − θ(t,e′+1)

m

∥∥∥∥∥
2

(G.722)

= η̃2L2

E3

M∑
m=1

p(t)
m

E∑
e=1

∥∥∥∥∥
e−1∑
e′=1
∇f (t)

m

(
θ(t,e′)

m

)∥∥∥∥∥
2

(G.723)

≤ η̃2L2

E3

M∑
m=1

p(t)
m

E∑
e=1

(e− 1)
e−1∑
e′=1

∥∥∥∇f (t)
m

(
θ(t,e′)

m

)∥∥∥2
(G.724)

≤ η̃2L2G2

E3

E∑
e=1

(e− 1)2 (G.725)

≤ 2η̃2L2G2(1− E−1), (G.726)

where we used Jensen inequality to obtain (G.719) and (G.724), the L-smoothness of f (t)
m to obtain

(G.721), and (G.705) to obtain (G.725). Replacing (G.726) in (G.716) and using σt defined in
(G.706), we have

T2 ≤ (1 + α)σ2
t + 2

(
1 + α−1

)
η̃2L2G2(1− E−1). (G.727)

With the particular choice α = η̃LG
σt
·
√

2 (1− E−1), it follows that

T2 ≤
(
σt + η̃LG

√
2 (1− E−1)

)2
≤ 2σ2

t + 4η̃2L2G2
(
1− E−1

)
(G.728)

Our bound ((G.728)) shows that, as expected, the term T2, measuring the deviation between the
true gradient ∇F

(
θ(t)
)

and the pseudo-gradient ∇̃(t), is equal to zero when E = 1 and σt = 0.
This scenario corresponds exactly to the centralized version of gradient descent.

Bound T3. We have

T3 =
〈
∇F

(
θ(t)
)
− ∇̃(t), θ(t) − η̃∇F

(
θ(t)
)
− θ∗

〉
(G.729)

=
〈
∇F

(
θ(t)
)
−∇F (t)

(
θ(t)
)
, θ(t) − θ∗

〉
+
〈
∇F (t)

(
θ(t)
)
− ∇̃(t), θ(t) − θ∗

〉
− η̃

〈
∇F

(
θ(t)
)
− ∇̃(t),∇F

(
θ(t)
) 〉
. (G.730)

310 APPENDIX

We remind that Θ is bounded and that D is its diameter. Using Cauchy-Schwarz inequality, we have〈
∇F (t)

(
θ(t)
)
− ∇̃(t), θ(t) − θ∗

〉
≤
∥∥∥∇F (t)

(
θ(t)
)
− ∇̃(t)

∥∥∥ · ∥∥∥θ(t) − θ∗
∥∥∥ (G.731)

=
∥∥∥∥∥

M∑
m=1

p(t)
m∇f (t)

m

(
θ(t)
)
− ∇̃(t)

∥∥∥∥∥ · ∥∥∥θ(t) − θ∗
∥∥∥ (G.732)

≤ η̃LDG
√

2 (1− E−1), (G.733)

where we used (G.726) to obtain the last inequality. Using Cauchy-Shwartz inequality again and
the fact that gradients are bounded ((G.705)), we have

−η̃
〈
∇F

(
θ(t)
)
− ∇̃(t),∇F

(
θ(t)
) 〉
≤ η̃

∥∥∥∇F (θ(t)
)
− ∇̃(t)

∥∥∥ · ∥∥∥∇F (θ(t)
)∥∥∥ ≤ 2η̃ ·G2.

(G.734)

Finally using Cauchy-Shwartz inequality and the boundedness of Θ, we have〈
∇F

(
θ(t)
)
−∇F (t)

(
θ(t)
)
, θ(t) − θ∗

〉
≤ σ(t) ·D. (G.735)

Replacing (G.733), (G.734), and (G.735) in (G.730), we have

T3 ≤ σ(t) ·D + η̃G

(
2G+ LD

√
2 (1− E−1)

)
(G.736)

Bound ϵopt. Replacing (G.713), (G.728), and (G.736) in (G.710), we have

E
[∥∥∥θ(t+1)−θ∗

∥∥∥2
]

= E
[∥∥∥θ(t) − θ∗

∥∥∥2
]
− 2η̃ · E

[
F
(
θ(t)
)
− F ∗

]
+ 2η̃ · σ̄(t)D

+ η̃2 ·
(

2σ̄2
t +G

(
5G+ 2LD

√
2 (1− E−1)

))
+ 4η̃4 · L2G2

(
1− E−1

)
,

(G.737)

where σ̄2
t = E

[
σ2

t

]
= E

[
supθ∈Θ

∥∥∥∇F (θ)−∇F (t) (θ)
∥∥∥2
]
.

The sequence
(
q(t)
)

t
is non increasing, i.e., for t ∈ [T] q(t+1) ≤ q(t). It follows from (G.737)

that, for t > 0, we have

q(t+1)E
[∥∥∥θ(t+1)−θ∗

∥∥∥2
]
≤ q(t)E

[∥∥∥θ(t+1) − θ∗
∥∥∥2
]

(G.738)

≤ q(t)E
[∥∥∥θ(t) − θ∗

∥∥∥2
]
− 2η̃q(t)E

[
F
(
θ(t)
)
− F ∗

]
+ 2η̃ · q(t)σ̄(t)D

+ 2η̃2 · q(t)σ̄2
t + 2η̃2q(t) · C1 + 2η̃4q(t) · C2, (G.739)

where C1 = G
(

5
2G+ LD

√
2 (1− E−1)

)
, and C2 = 2L2G2 (1− E−1). Rearranging the terms

and summing over t ∈ {1, . . . , T}, we have

T∑
t=1

q(t)E
[
F
(
θ(t)
)
− F ∗

]
≤
(

T∑
t=1

q(t)σ̄t

)
·D + Tq(1) · D

2

2η̃T + η̃ ·
(

T∑
t=1

q(t)σ̄2
t

)
+ η̃ ·

(
C1 + η̃2C2

)
(G.740)

APPENDIX 311

We remind that σ̄2 (λ) =
∑T

t=1 q
(t)σ̄2

t . Using the concavity of the function
√
·, it follows that

σ̄ (λ) ≥
∑T

t=1 q
(t)σ̄t. It follows that

E
[
F
(
θ̄(t)
)
− F ∗

]
≤ σ̄ (λ) ·D + Tq(1) · D

2

2η̃T + η̃ · σ̄2 (λ) + η̃C1 + η̃3C2. (G.741)

The final results is obtained by using O
(
Tq(1)

)
= 1. We have

E
[
F
(
θ̄(t)
)
− F ∗

]
≤ σ̄ (λ) ·D + σ̄ (λ)√

T
+ C1 + C3√

T
+ C2√

T 3
, (G.742)

where C3 is a constant proportional to D2.

Lower Bound. In the rest of this proof, we use θ to denote the model parameters, and θ1, and θ2
its components.

We artificially construct a simple problem and a particular arrival process, such that the
output of Algorithm 13, with M = 1, C1 = 1, FIFO update rule, and η = Ω

(
1/
√
T
)

, verifies

limT →∞ F
(
θ̄(T)

)
− F ∗ ≥ c · σ̄2 (λ), where c > 0 is a constant. We consider a setting with

Θ = [−1, 1]2, Z = {1, 2}, and a loss function defined for θ ∈ Θ with

ℓ(θ; 1) ≜ (θ1 + 1)2 + 1
2(θ1 + θ2 + 1)2, (G.743)

and
ℓ (θ; 2) ≜ 1

2 (θ1 − 1)2 + 1
2(θ1 + θ2 − 1)2. (G.744)

We observe that the minimizer of ℓ(·; 1) (resp. ℓ(·; 2)) is θ∗
1 = (−1, 0) (resp. θ∗

2 = (1, 0)).
For time horizon T , we consider the arrival process, where one sample, say z1, is drawn

uniformly at random from Z at time step t1 = 1, and a second sample, z2, is drawn uniformly at
random from Z a time step t2 = T/2. We define q ≜

∑T/2
t=1 q

(t). Since
(
q(t)
)

t≥1
is non increasing,

then q ≥ 1/2. We remark that, in this setting, the trajectory of Algorithm 13 is only determined by
the values of z1 and z2, i.e., the values taken by the sequence

(
θ(t)
)

t≥1
are only determined by the

values of z1 and z2.
We have

ϵopt = ES

[
L(λ)

S

(
θ̄(T)

)
−min

θ∈Θ
L(λ)

S (θ)
]

(G.745)

= 1
2ES

[
L(λ)

S

(
θ̄(T)

)
−min

θ∈Θ
L(λ)

S (θ)
∣∣S = {1, 2}

]
+ 1

4ES

[
L(λ)

S

(
θ̄(T)

)
−min

θ∈Θ
L(λ)

S (θ)
∣∣S = {1}

]
(G.746)

+ 1
4ES

[
L(λ)

S

(
θ̄(T)

)
−min

θ∈Θ
L(λ)

S (θ)
∣∣S = {2}

]
(G.747)

≥ 1
2ES

[
L(λ)

S

(
θ̄(T)

)
−min

θ∈Θ
L(λ)

S (θ)
∣∣S = {1, 2}

]
, (G.748)

312 APPENDIX

and

σ̄2(λ) = q (1− q)ES

[
max
θ∈Θ
∥∇ℓ(θ; z1)−∇ℓ(θ; z2)∥2

]
(G.749)

≤ q(1− q)
2 ·max

θ∈Θ
∥∇ℓ(θ; 1)−∇ℓ(θ; 2)∥2 (G.750)

≤ 20 · q (1− q) . (G.751)

We consider the case when z1 = 1, and z2 = 2. Thus

L(λ)
S (θ) = q · ℓ(θ; 1) + (1− q) · ℓ(θ; 2). (G.752)

Let θ∗ be a minimizer of L(λ)
S , then

θ∗
1 = 1− 3q

1 + q
and θ∗

2 = 1− 2q − 1− 3q
1 + q

. (G.753)

Moreover, one can prove that

min
θ∈[−1,1]

L(λ)
S ((θ, 0))−min

θ∈Θ
L(λ)

S (θ) ≥ 6 · q(1− q) (G.754)

For ϵ > 0, it exists E ≥ 1, and T0 ≥ 1, such that for any T ≥ T0, we have
∣∣∣θ̄(T)

2

∣∣∣ ≤ ϵ.
Therefore,

L(λ)
S

(
θ̄(T)

)
−min

θ∈Θ
L(λ)

S (θ) ∼ϵ→0 L(λ)
S

(
(θ(T)

1 , 0)
)
−min

θ∈Θ
L(λ)

S (θ) (G.755)

≥ min
θ∈[−1,1]

L(λ)
S ((θ, 0))−min

θ∈Θ
L(λ)

S (θ) (G.756)

≥ 6 · q(1− q) (G.757)

= 3
10 σ̄

2 (λ) (G.758)

The same holds when z1 = 2, and z2 = 1. It follows that

ϵopt ≥
3
20 σ̄

2 (λ) . (G.759)

G.3 Bound σ̄2(λ)

We remind, from Remark 6, that

σ2
0 ≜ max

m
Ez∼Pm

[
sup
θ∈Θ
∥∇ℓ(θ; z)−∇LPm (θ)∥2

]
, (G.760)

and

ζ ≜ max
m,m′

sup
θ∈Θ

∥∥∥∇LPm′ (θ)−∇LPm (θ)
∥∥∥ . (G.761)

APPENDIX 313

Lemma G.5. For any memory update rule and any choice of memory parameters λ we have

σ̄2 (λ) = O
(
σ2

0 + ζ2 ·
T∑

t=1
q(t)

M∑
m=1

(
pm − p(t)

m

)2
)
. (G.762)

Proof. We remind that

σ̄2 (λ) =
T∑

t=1
q(t)ES

sup
θ∈Θ

∥∥∥∥∥∇L(λ)
S (θ)−

M∑
m=1

p(t)
m∇L

(λ)
M(t)

m

(θ)
∥∥∥∥∥

2 , (G.763)

and, for m ∈ [M], we define

L(λ)
Sm

(·) ≜
∑T

t=1
∑

j∈I(t)
m
λ

(t,j)
m ℓ

(
·, z(j)

m

)
∑T

s=1
∑

i∈I(s)
m
λ

(s,i)
m

, (G.764)

and we remind (see Theorem 4.3.1) that

pm =
∑T

t=1
∑

j∈I(t)
m
λ

(t,j)
m∑M

m′=1
∑T

s=1
∑

i∈I(s)
m
λ

(s,i)
m

. (G.765)

L(λ)
Sm

and pm represent client m’s weighted empirical risk of client m and its relative importance,
respectively. We remark that

L(λ)
S =

M∑
m=1

pmL(λ)
Sm
, (G.766)

and

pm =
T∑

t=1
q(t)p(t)

m . (G.767)

For t ∈ [T] and θ ∈ Θ, we have

∥∥∥∇L(λ)
S (θ)−

M∑
m=1

p(t)
m∇L

(λ)
M(t)

m

(θ)
∥∥∥2

=
∥∥∥∇L(λ)

S (θ)−
M∑

m=1
p(t)

m∇L
(λ)
Sm

(θ) +
M∑

m=1
p(t)

m∇L
(λ)
Sm

(θ)−
M∑

m=1
p(t)

m∇L
(λ)
M(t)

m

(θ)
∥∥∥2

(G.768)

≤ 2
∥∥∥∇L(λ)

S (θ)−
M∑

m=1
p(t)

m∇L
(λ)
Sm

(θ)
∥∥∥2

+ 2
∥∥∥ M∑

m=1
p(t)

m∇L
(λ)
Sm

(θ)−
M∑

m=1
p(t)

m∇L
(λ)
M(t)

m

(θ)
∥∥∥2

(G.769)

= 2
∥∥∥∥∥

M∑
m=1

p(t)
m

(
∇L(λ)

Sm
(θ)−∇L(λ)

M(t)
m

(θ)
)∥∥∥∥∥

2

︸ ︷︷ ︸
≜T1

+2
∥∥∥ M∑

m=1

(
pm − p(t)

m

)
· ∇L(λ)

Sm
(θ)
∥∥∥2

︸ ︷︷ ︸
≜T2

.

(G.770)

314 APPENDIX

Bound T1. We have

T1 =
∥∥∥∥∥

M∑
m=1

p(t)
m

(
∇L(λ)

Sm
(θ)−∇L(λ)

M(t)
m

(θ)
)∥∥∥∥∥

2

(G.771)

≤
M∑

m=1
p(t)

m

∥∥∥∥∇L(λ)
Sm

(θ)−∇L(λ)
M(t)

m

(θ)
∥∥∥∥2

(G.772)

=
M∑

m=1
p(t)

m

∥∥∥∥∇L(λ)
Sm

(θ)−∇LPm (θ) +∇LPm (θ)−∇L(λ)
M(t)

m

(θ)
∥∥∥∥2

(G.773)

≤ 2
M∑

m=1
p(t)

m

∥∥∥∇L(λ)
Sm

(θ)−∇LPm (θ)
∥∥∥2

+ 2
M∑

m=1
p(t)

m

∥∥∥∥∇LPm (θ)−∇L(λ)
M(t)

m

(θ)
∥∥∥∥2
. (G.774)

Bound T2. For m′ ∈ [m], we have

T2 =
∥∥∥ M∑

m=1

(
pm − p(t)

m

)
· ∇L(λ)

Sm
(θ)
∥∥∥2

(G.775)

=
∥∥∥ M∑

m=1

(
pm − p(t)

m

)
·
(
∇L(λ)

Sm
(θ)−∇L(λ)

Sm′ (θ)
) ∥∥∥2

(G.776)

≤
M∑

m=1

(
pm − p(t)

m

)2
·

M∑
m=1

∥∥∥∇L(λ)
Sm

(θ)−∇L(λ)
Sm′ (θ)

∥∥∥2
(G.777)

=
M∑

m=1

(
pm − p(t)

m

)2
·

M∑
m=1

∥∥∥∥∥∇L(λ)
Sm

(θ)−∇LPm (θ) +∇LPm (θ)−∇LPm′ (θ)

+∇LPm′ (θ)−∇L(λ)
Sm′ (θ)

∥∥∥2
(G.778)

≤ 3
M∑

m=1

(
pm − p(t)

m

)2
·
(

M∑
m=1

∥∥∥∇L(λ)
Sm

(θ)−∇LPm (θ)
∥∥∥2

+
∥∥∥∇L(λ)

Sm′ (θ)−∇LPm′ (θ)
∥∥∥2
)

+ 3
M∑

m=1

(
pm − p(t)

m

)2
·

M∑
m=1

∥∥∥∇LPm (θ)−∇LPm′ (θ)
∥∥∥2
. (G.779)

≤ 3
M∑

m=1

(
pm − p(t)

m

)2
·
(

M∑
m=1

∥∥∥∇L(λ)
Sm

(θ)−∇LPm (θ)
∥∥∥2

+
∥∥∥∇L(λ)

Sm′ (θ)−∇LPm′ (θ)
∥∥∥2
)

+ 3Mζ2
M∑

m=1

(
pm − p(t)

m

)2
. (G.780)

We observe that

∇L(λ)
Sm

(θ) =
Nm∑
i=1

p̃m,i∇ℓ(θ; z(i)
m), (G.781)

where, for i ∈ Nm,

p̃m,i =
∑T

t=1
∑

j∈Im
1 {j = i} · λ(t,j)

m∑T
t=1

∑
j∈I(t)

m
λ

(t,j)
m

. (G.782)

APPENDIX 315

Thus,

ES

[∥∥∥∇L(λ)
Sm

(θ)−∇LPm (θ)
∥∥∥2
]

= ESm

[∥∥∥∇L(λ)
Sm

(θ)−∇LPm (θ)
∥∥∥2
]

(G.783)

= ESm

∥∥∥∥∥
Nm∑
i=1

p̃m,i∇ℓ(θ; z(i)
m)−∇LPm (θ)

∥∥∥∥∥
2 (G.784)

= ESm

[∥∥∥∥∥
Nm∑
i=1

p̃m,i

(
∇ℓ(θ; z(i)

m)−∇LPm (θ)
∥∥∥2
)]

(G.785)

≤
Nm∑
i=1

p̃m,iESm

[∥∥∥∇ℓ(θ; z(i)
m)−∇LPm (θ)

∥∥∥2
]

(G.786)

=
Nm∑
i=1

p̃m,iEz(i)
m

[∥∥∥∇ℓ(θ; z(i)
m)−∇LPm (θ)

∥∥∥2
]

(G.787)

≤
Nm∑
i=1

p̃m,iσ
2
0 (G.788)

= σ2
0. (G.789)

In the same way we prove that

ES

∥∥∥∥∇LPm (θ)−∇L(λ)
M(t)

m

(θ)
∥∥∥∥2
≤ σ2

0. (G.790)

We conclude by combining (G.770), (G.774), (G.780), (G.789), and (G.790).

G.3.1 Proof of Theorem 4.3.4

Theorem 4.3.4. Under the same assumptions as in Theorem 4.3.1 and Theorem 4.3.3,

ϵtrue ≤O
(1√

T

)
+O

(
σ̄ (λ)

)
+ 2discH

(
P(α),P(p)

)
+ Õ

√Pdim (ℓ ◦ H)
Neff

 .
Proof. This result is an immediate implication of Theorem 4.3.1 and Theorem 4.3.3 using (4.9).

G.4 Case Study

G.4.1 Intermittent Client Availability

In Section 4.3.3, we considered the scenario with two groups of clients:Mhist clients with “historical”
datasets, which do not change during training, and M −Mhist clients, who collect “fresh” samples
with constant rates {bm > 0,m ∈ JMhist + 1,MK} and only store the most recent bm samples due
to memory constraints (i.e., Cm = bm). Fresh clients can also capture the setting where clients are
available during a single communication round: we would then have Mhist “permanent” clients,
which are are always available and do not change during training, and M −Mhist “intermittent”
clients, each of them available during one or a few consecutive communication rounds.

316 APPENDIX

In the settings of Section 4.3.3, every client assigns the same weight to all the samples present
in its memory independently from the time; let λm be the weight assigned by client m ∈ [M] to
the samples currently present in ts memory, i.e., λ(t,j)

m = λm for every t ∈ [T] and j ∈ I(t)
m .

We remind that the total number of samples collected by client m ∈ [M] is Nm. For a fresh
client, say it m > Mhist, Nm = bmT .

G.4.2 General Case

Corollary 4.3.5′. Consider the scenario with Mhist historical clients, and M −Mhist fresh clients.
Suppose that the same assumption of Theorem 4.3.4 hold, and that Algorithm 13 is used with with
clients’ aggregation weights p = (pm)m∈[M] ∈ ∆M−1, then

ϵtrue ≤
(C1 + C3)√

T
+ C2√

T 3
+
(
D + 2√

T

)
σ0
√
M −Mhist

√√√√ M∑
m=Mhist+1

p2
m (G.791)

+ 2 ·max
m,m′

disc (Pm,Pm′) · ∥α− p∥1

+ 10B ·
√

1 + log
(

N

Pdim (ℓ ◦ H)

)
·

√
Pdim (ℓ ◦ H)

N
·

√√√√ M∑
m=1

p2
m

nm
, (G.792)

where C1, C2 and C3 are constants defined in the proof of Theorem 4.3.3, and σ0 is defined in
Remark 6.

Proof. We remind that

pm,i =
∑T

t=1
∑

j∈I(t)
m
1 {j = i} · λ(t,j)

m∑M
m′=1

∑T
t=1

∑
j∈I(t)

m′
λ

(t,j)
m′

, i ∈ N (T)
m , (G.793)

and

p(t)
m =

∑
j∈I(t)

m
λ

(t,j)
m∑M

m′=1
∑

j∈I(t)
m′
λ

(t,j)
m′

, t ∈ [T]. (G.794)

Replacing λ(t,j)
m = λm, we have

pm,i =
λm ·

∑T
t=1

∑
j∈I(t)

m
1 {j = i}∑M

m′=1 λm′
∑T

t=1

∣∣∣I(t)
m′

∣∣∣ , (G.795)

and,

p(t)
m =

λm

∣∣∣I(t)
m

∣∣∣∑M
m′=1 λm′

∣∣∣I(t)
m′

∣∣∣ . (G.796)

In the settings of Corollary 4.3.5′, we have

I(t)
m =

{
{1, . . . , Nm} , m ∈ {1, . . . ,Mhist}
{(t− 1) · bm + 1, . . . , t · bm − 1} , m ∈ {Mhist + 1, . . . ,M} .

(G.797)

APPENDIX 317

Thus,

p(t)
m = Nmλm · 1 {m ∈ J1,MhistK}+ bmλm · 1 {m ∈ JMhist + 1,MK}∑Mhist

m′=1Nm′λm′ +
∑M

m′=Mhist+1 bm′λm′
, (G.798)

and

pm,i = λmT · 1 {m ∈ J1,MhistK}+ λm · 1 {m ∈ JMhist + 1,MK}∑M
m′=1Nm′λm′

. (G.799)

Therefore, pm,i = pm

Nm
, for every sample i ∈ [Nm].

Bound discH
(
P(α),P(p)

)
Let m′ ∈ [M], we have

discH
(
P(α),P(p)

)
= sup

θ∈Θ

∣∣∣∣∣
M∑

m=1
(αm − pm) · LPm (θ)

∣∣∣∣∣ (G.800)

= sup
θ∈Θ

∣∣∣∣∣
M∑

m=1
(αm − pm) ·

(
LPm (θ)− LPm′ (θ)

)∣∣∣∣∣ , (G.801)

where the last equality follows from the fact that
∑M

m=1 αm =
∑M

m=1 pm = 1. For all m ∈ [M],
we have

(αm − pm) ·
(
LPm (θ)− LPm′ (θ)

)
≤ |αm − pm| ·

∣∣∣LPm (θ)− LPm′ (θ)
∣∣∣ (G.802)

≤ |αm − pm| · sup
θ∈Θ

∣∣∣LPm (θ)− LPm′ (θ)
∣∣∣ (G.803)

= |αm − pm| · discH (Pm,Pm′) (G.804)

≤ |αm − pm|max
m,m′

discH (Pm,Pm′) . (G.805)

Combining (G.801), and (G.805), we have

discH
(
P(α),P(p)

)
≤

M∑
m=1
|αm − pm| ·max

m,m′
discH (Pm,Pm′) (G.806)

= ∥α− p∥1 ·max
m,m′

discH (Pm,Pm′) . (G.807)

Compute N−1
eff We have N−1

eff =
∑M

m=1
∑Nm

i=1

(
pm

Nm

)2
=
∑M

m=1
p2

m
Nm

= 1
N

∑M
m=1

p2
m

nm
.

Bound σ̄ (λ) We have

σ̄2 (λ) =
T∑

t=1
q(t)ES

sup
θ∈Θ

∥∥∥∥∥∇L(λ)
S (θ)−

M∑
m=1

p(t)
m∇L

(λ)
M(t)

m

(θ)
∥∥∥∥∥

2 . (G.808)

In the settings of Corollary 4.3.5′, q(t) = 1/T , and p(t)
m = pm, thus

σ̄2 (λ) = 1
T

T∑
t=1

ES

sup
θ∈Θ

∥∥∥∥∥∇L(λ)
S (θ)−

M∑
m=1

pm∇LM(t)
m

(θ)
∥∥∥∥∥

2 , (G.809)

318 APPENDIX

where LM(t)
m

=
∑

j∈I(t)
m
ℓ
(
·, z(j)

m

)
/
∣∣∣I(t)

m

∣∣∣. Moreover, it is easy to check that, in this setting,

L(λ)
S = 1

T

T∑
t=1

M∑
m=1

pm · LM(t)
m
. (G.810)

Moreover,M(t)
m =M(1)

m for m ∈ [Mhist], thus for θ ∈ Θ,

∇L(λ)
S (θ)−

M∑
m=1

pm∇LM(t)
m

(θ) =
M∑

m=Mhist+1
pm ·

1
T

T∑
s=1

(
∇LM(s)

m
(θ)−∇LM(t)

m
(θ)
)
.

(G.811)

It follows that,

∥∥∥∇L(λ)
S (θ)−

M∑
m=1

pm∇LM(t)
m

(θ)
∥∥∥2

=

∥∥∥∥∥∥
M∑

m=Mhist+1
pm ·

1
T

T∑
s=1

(
∇LM(s)

m
(θ)−∇LM(t)

m
(θ)
)∥∥∥∥∥∥

2

(G.812)

≤ (M −Mhist)
M∑

m=Mhist+1
p2

m

∥∥∥∥∥ 1
T

T∑
s=1

(
∇LM(s)

m
(θ)−∇LM(t)

m
(θ)
)∥∥∥∥∥

2

(G.813)

≤ (M −Mhist)
M∑

m=Mhist+1

p2
m

T

T∑
t=1

∥∥∥∇LM(s)
m

(θ)−∇LM(t)
m

(θ)
∥∥∥2
. (G.814)

For the fresh clients, i.e., for m > M0, we have LM(t)
m

(θ) =
∑bm

i=1 ℓ(θ, z
(t,i)
m)/bm, thus

ES
∥∥∥∇LM(s)

m
(θ)−∇LM(t)

m
(θ)
∥∥∥2
≤ ES

∥∥∥∥∥∥ 1
bm

bm∑
i=1
∇ℓ
(
θ; z(t,i)

m

)
−∇ℓ

(
θ; z(s,i)

m

)∥∥∥∥∥∥
2

(G.815)

≤ 1
bm

bm∑
i=1

ES
∥∥∥∇ℓ (θ; z(t,i)

m

)
−∇ℓ

(
θ; z(s,i)

m

)∥∥∥2
(G.816)

≤ σ2
0. (G.817)

Thus,

ES
∥∥∥∇L(λ)

S (θ)−
M∑

m=1
pm∇LM(t)

m
(θ)
∥∥∥2
≤ σ2

0 (M −Mhist) ·
M∑

m=1
p2

m (G.818)

Conclusion We conclude the proof by precising that: c̃0 = (C1 + C3)/
√
T + C2/

√
T 3, where

C1, C2, and C3 are the constant introduced in the proof of Theorem 4.3.3.

The third term of (G.791) originates from the variability of the gradients across time as captured
by σ̄2 (λ) in (4.16). In particular, it only depends on the weights of the fresh clients (as there is
no gradient variability for the historical clients). The fourth term in (G.791) corresponds to the
discrepancy between the target distribution, P(α), and the effective distribution P(p) in (4.16). As
expected, it vanishes when all clients have the same distribution, and, for a given heterogeneity

APPENDIX 319

of the local distributions, it is smaller the closer the target relative importance of clients and the
effective one are (i.e., the closer α and p are). Finally, the fifth term in (G.791), corresponds to the
term Õ

(√
Pdim (ℓ ◦ H) /Neff

)
in (4.16), as Neff = N/

(∑M
m=1 p

2
m/nm

)
in this setting.

G.4.3 Proof of Corollary 4.3.5

Corollary 4.3.5. Consider the scenario with Mhist historical clients, and M −Mhist fresh clients.
Suppose that the same assumptions of Theorem 4.3.4 hold, that α = n, and that Algorithm 13 is
used with clients’ aggregation weights p = (pm)m∈[M] ∈ ∆M−1, then

ϵtrue ≤ ψ(p; c) ≜

c0 + c1 ·

√√√√ M∑
m=Mhist+1

p2
m + c2 ·

√√√√ M∑
m=1

p2
m

nm
,

where c = (c0, c1, c2) are non-negative constants not depending on p, given as:

c0 = (C1 + C3) + C2
T

c1 = σ0
√
M −Mhist ·

(
D + 2√

T

)

c2 = 10B ·
√

1 + log
(

N

Pdim (ℓ ◦ H)

)
·

√
Pdim (ℓ ◦ H)

N
+ 2 ·max

m,m′
disc (Pm,Pm′)

and C1, C2, and C3 are the constants defined in the proof of Theorem 4.3.3, and σ0 is defined in
Remark 6.

Proof. We remind that Corollary 4.3.5′ implies that

ϵtrue ≤
(C1 + C3)√

T
+ C2√

T 3
+ 2 ·max

m,m′
disc (Pm,Pm′) · ∥n− p∥1

+ 10B
√

1 + log
(

N

Pdim (ℓ ◦ H)

)
·

√
Pdim (ℓ ◦ H)

N
·

√√√√ M∑
m=1

p2
m

nm

+
(
D + 2√

T

)
σ0
√
M −Mhist

√√√√ M∑
m=Mhist+1

p2
m. (G.819)

The result follows using the fact that ∥p− n∥1 ≤
√∑M

m=1 p
2
m/nm − 1, which we prove below.

∥p− n∥1 =
M∑

m=1
|pm − nm| (G.820)

=
M∑

m=1

|pm − nm|√
nm

·
√
nm (G.821)

≤

√√√√ M∑
m=1

(pm − nm)2

nm
·

M∑
m=1

nm (G.822)

320 APPENDIX

=

√√√√ M∑
m=1

(pm − nm)2

nm
(G.823)

=

√√√√ M∑
m=1

p2
m

nm
− 2

M∑
m=1

pmnm

nm
+

M∑
m=1

n2
m

nm
(G.824)

=

√√√√ M∑
m=1

p2
m

nm
− 1, (G.825)

where we used Cauchy-Schwarz inequality to bound
∑M

m=1
|pm−nm|√

nm
· √nm.

G.4.4 Proof of the Convexity of ψ

We remind that for p ∈ ∆M−1, and c ∈ R3
+, we have

ψ(p; c) = c0√
T

+ c1 ·

√√√√ M∑
m=Mhist+1

p2
m + c2 ·

√√√√ M∑
m=1

p2
m

nm
. (G.826)

In order to prove the convexity of p 7→
√∑M

m=1
p2

m
nm

, and p 7→
√∑M

m=Mhist
p2

m, it is sufficient to

prove that the function φβ : p 7→
√∑M

m=1 βmp2
m is convex for any vector β ∈ RM

+ . Let β ∈ RM
+ ,

p, p̃ ∈ ∆M , and γ ∈ [0, 1], we have

φ2
β

(
γ · p + (1− γ) · p̃

)
=

M∑
m=1

βm ·
(
γ · pm + (1− γ) · p̃m

)2 (G.827)

= γ2 ·
M∑

m=1
βmp

2
m + (1− γ)2 ·

M∑
m=1

βmp̃
2
m + 2γ(1− γ) ·

M∑
m=1

βmpmp̃m (G.828)

≤ γ2 ·
M∑

m=1
βmp

2
m + (1− γ)2 ·

M∑
m=1

βmp̃
2
m + 2γ(1− γ) ·

√√√√ M∑
m=1

βmp2
m ·

√√√√ M∑
m=1

βmp̃2
m

(G.829)

=

γ ·
√√√√ M∑

m=1
βmp2

m + (1− γ) ·

√√√√ M∑
m=1

βmp̃2
m

2

(G.830)

= (γ · φβ(p) + (1− γ) · φβ(p̃))2 , (G.831)

where we use Cauchy-Shwartz inequality to bound
∑M

m=1 βmpmp̃m, as follows

M∑
m=1

βmpmp̃m =
M∑

m=1

(
pm

√
βm

)
·
(
p̃m

√
βmp̃m

)
≤

√√√√ M∑
m=1

βmp2
m ·

√√√√ M∑
m=1

βmp̃2
m. (G.832)

Since φβ is a non-negative function, we have

φβ

(
γ · p + (1− γ) · p

)
≤ γ · φβ(p) + (1− γ) · φβ(p̃), (G.833)

proving that φβ is convex.

APPENDIX 321

10 1 100 101

c2/c1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M

m
=
1
(p

* m
)2
/n

m

Nhist/N=95.0%

Nhist/N=70.0%

Nhist/N=40.0%

Nhist/N=20.0%

Nhist/N=5.0%

10 1 100 101

c2/c1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M

m
=
M

h
is
t
+
1
(p

* m
)2

×10 2

10 1 100 101

c2/c1

0.0

0.2

0.4

0.6

0.8

1.0

p
* h
is
t

Figure G.22: From left to the right: effect of c2/c1 on the effective number of samples, the
normalized gradient noise, and the historical clients relative importance p∗

hist for CIFAR-10 dataset
(N = 5 × 105) and different values of Nhist/N , when M = 50, and Mhist = 25. The dashed
vertical line corresponds to our estimation of c2/c1 on CIFAR-10 experiments (ĉ2/ĉ1 = 0.15).

G.4.5 Numerical Study of Bound Minimization

Figure G.22 illustrates how the solution and important system quantities change as a function of
the ratio c2/c1, and fraction of historical samples Nhist/N , in the particular setting when M = 50
and Mhist = 25. Beside the specific numerical values, one can distinguish two corner cases. When
c2/c1 ≫ 1, the optimal solution corresponds to minimize

∑M
m=1 p

2
m/nm, i.e., to maximize the

effective number of samples, and then
∑

m (p∗
m)2 /nm. The optimal aggregation vector p∗ is then

the Uniform one: each sample is assigned the same importance during the whole training and
each client a relative importance proportional to its number of samples (p∗

m = nm). In particular,
the aggregate relative importance for historical clients is p∗

hist = Nhist/N . On the contrary, when
c2/c1 ≪ 1, the optimal solution corresponds to minimize

∑
m>Mhist

pm, i.e., the gradient variability.
The Historical strategy is then optimal: fresh clients are ignored and historical clients receive
a relative importance proportional to the size of their local dataset (i.e., p∗

m = Nm/Nhist = N
Nhist

nm

form ∈ [Mhist] and p∗
hist = 1). Figure G.22 confirms these qualitative considerations, but also shows

that the transition between these two regimes depends on Nhist/N , with the transition occurring at
smaller values of c2/c1 for smaller values of the Nhist/N .

G.4.6 Details on the Estimation of the c2/c1

Using the expression of c1 and c2 from Corollary 4.3.5, we have

c2
c1

= 2 ·
maxm,m′ disc (Pm,Pm′) + 5B ·

√
1 + log

(
N

Pdim(ℓ◦H)

)
·
√

Pdim(ℓ◦H)
N

σ0
√
M −Mhist ·

(
D + 2√

T

) . (G.834)

We use the approximations √
1 + log

(
N

Pdim (ℓ ◦ H)

)
≈ 2, (G.835)

D + 2√
T
≈ D, (G.836)

Pdim (ℓ ◦ H) ≈ d/(10B)2, (G.837)

322 APPENDIX

where d is the number of parameters of the model θ ∈ Θ ⊂ Rd (see Section 4.3.1). We remind the
definition of σ0 from Remark 6:

σ0 =

√√√√max
m

Ez∼Pm

[
sup
θ∈Θ
∥∇ℓ(θ; z)−∇LPm (θ)∥2

]
≤ 2
√

2 · LB = 2G, (G.838)

where G was defined in (G.705). We use the approximation σ0 ≈ 2G. Finally, we remark that
maxm,m′ disc (Pm,Pm′) ≤ B, therefore, we approximate c2/c1 as

ĉ2
ĉ1
≈ B +

√
d/N

GD
√
M −Mhist

. (G.839)

In our experiments, clients cooperatively estimate ĉ2/ĉ1 using a fraction of their historical
samples, with the particularity that D is estimated as D̂ = maxM

m=1

∥∥∥θ̂∗
m − θ(1)

∥∥∥, where θ̂∗
m is the

model obtained after few iterations of stochastic gradient descent using a fraction of the historical
data of client m ∈ [M].

APPENDIX 323

H Online Federated Learning with Mixture Models

H.1 Proof of Theorem 4.4.2

Theorem 4.4.2. Suppose that assumptions 27– 30 hold. Suppose that n ≥ C′′d
βϵ2 · log2

(
m2T K

δ

)
with

sufficiently large universal constant C ′′, and K = O (log(1/ϵ)). Algorithm 15 has regret bounded
by

∀c ∈ C, RT,c = O (Tϵ) +O
(√

T log(m)
)
, (H.840)

with probability at least 1−O (δ)−O (T K/nc′−2m30).

Proof. The result follows by combining (4.42) and Theorem 4.4.5.

H.2 Proof of Theorem 4.4.3

Theorem 4.4.3. Let (ψt)0≤t≤T be a sequence of convex functions, and u ∈ X . Suppose the
gradient norm is bounded as ∥∇̂t∥∗t ≤ GR, and the stepsize is η = DR

GR
√

T
. Then, for Algorithm 16

we have

T∑
t=1

ψt (xt)−min
x∈X

T∑
s=1

ψs (x) ≤ DRGR
√
T +DX ·

T∑
t=1

∥∥∥∇ψt (xt)− ∇̂t

∥∥∥ , (H.841)

where DX ≜ supx,y∈X ∥x− y∥ is the diameter of X .

Proof. Let x∗ ∈ arg minx∈X
∑T

t=1 ψ(x). For t ∈ [T], the function ψt is convex. Therefore,

ψ (xt)− ψ (x∗)
≤ ⟨∇ψt (xt) ,xt − x∗⟩ (H.842)

= ⟨∇̂t,xt − x∗⟩+ ⟨∇̂t −∇ψt (xt) ,xt − x∗⟩ (H.843)

= ⟨∇R (xt)−∇R (yt+1) ,xt − x∗⟩
η

+ ⟨∇̂t −∇ψt (xt) ,xt − x∗⟩ (H.844)

= R (x∗∥xt)−R (x∗∥yt+1) +R (xt∥yt+1)
η

+ ⟨∇̂t −∇ψt (xt) ,xt − x∗⟩ (H.845)

≤ R (x∗∥xt)−R (x∗∥xt+1) +R (xt∥yt+1)
η

+
∥∥∥∇̂t −∇ψt (xt)

∥∥∥ · ∥xt − x∗∥ (H.846)

≤ R (x∗∥xt)−R (x∗∥xt+1) +R (xt∥yt+1)
η

+DX ·
∥∥∥∇̂t −∇ψt (xt)

∥∥∥ (H.847)

Thus, summing over time we have

T∑
t=1

ψt (xt)−min
x∈X

T∑
s=1

ψs (x)

≤ R (x∗∥x1)−R (x∗∥xt)
η

+
T∑

t=1

R (xt∥yt+1)
η

+DX ·
T∑

t=1

∥∥∥∇̂t −∇ψt (xt)
∥∥∥

(H.848)

324 APPENDIX

≤
T∑

t=1

R (xt∥yt+1)
η

+ D2
R
η

+DX ·
T∑

t=1

∥∥∥∇̂t −∇ψt (xt)
∥∥∥ . (H.849)

The rest of the proof follows exactly as in the proof of [Haz16, Theorem 5.6].

H.3 Proof of Theorem 4.4.5

Theorem 4.4.4. Suppose Assumptions 27– 30 hold, and the number of samples satisfies n ≥
C′′d
βϵ2 · log2 (m2T K/δ), where C ′′ is a sufficiently large universal constant, and the number of inner

loop steps satisfies K = O (log(1/ϵ)). Then, for all t ∈ [T], c ∈ C and j ∈ [m], we have

πt,c,j ·
∣∣∣∇t,c,j − ∇̃t,c,j

∣∣∣ ≤ 3
2 · sup

q∈[m]

∥∥∥µt+1,q − µ∗
q

∥∥∥+
∥∥∥π̃(K+1)

t,c,j − π∗
t,c,j

∥∥∥
1
. (H.850)

Proof. From Lemma H.1, we have

πt,c,j ·
∣∣∣∇t,c,j − ∇̃t,c,j

∣∣∣ ≤
∥∥∥∥∥∥

m∑
j=1

π̃
(K+1)
t,c,j N (µt+1,j , Id)−

m∑
j=1

π∗
t,c,jN

(
µ∗

j , Id

)∥∥∥∥∥∥
TV

+ γ · sup
q∈[m]

∥∥∥µt+1,q − µ∗
q

∥∥∥ . (H.851)

Therefore, we need to bound ∥
∑m

j=1 π̃
(K+1)
t,c,j N (µt+1,j , Id)−

∑m
j=1 π

∗
t,c,jN (µ∗

j , Id)∥TV in order
to prove Theorem 4.4.4. Using Lemma H.9, we have∥∥∥∥∥

m∑
j=1

π̃
(K+1)
t,c,j N (µt+1,j , Id)−

m∑
j=1

π∗
t,c,jN

(
µ∗

j , Id

) ∥∥∥∥∥
TV

≤
m∑

i=1
π∗

t,c,j

∥∥∥µt+1,j − µ∗
j

∥∥∥
2 +

∥∥∥π̃(K+1)
t,c,j − π∗

t,c,j

∥∥∥
1

(H.852)

≤
m∑

i=1

π∗
t,c,j

2 sup
q∈[m]

∥∥∥µt+1,q − µ∗
q

∥∥∥+
∥∥∥π̃(K+1)

t,c,j − π∗
t,c,j

∥∥∥
1

(H.853)

≤ 1
2 sup

q∈[m]

∥∥∥µt+1,q − µ∗
q

∥∥∥+
∥∥∥π̃(K+1)

t,c,j − π∗
t,c,j

∥∥∥
1
. (H.854)

Theorem 4.4.5. Suppose Assumptions 27– 30 hold, and the number of samples satisfies the
condition n ≥ C′′d

βϵ2 · log2 (m2T K/δ), C ′′ is a sufficiently large universal constant, and the number of
inner loop iterations is selected as K = O (log(1/ϵ)). Then, for all t ∈ [T] and for all c ∈ C, with
probability at least 1−O (δ/T)−O (K/nc′−2m30), we have

∥∥∥∇t,c − ∇̃t,c

∥∥∥ = O (ϵ).

Proof. From Theorem4.4.1, with probability at least 1 − O (δ/T) − O (K/nc−2m30), we have for
j ∈ [m] ∣∣∣π̃(K+1)

t,j − π∗
t,c,j

∣∣∣ ≤ ϵπ∗
t,c,j ,

∥∥∥µ̃(K+1)
t,c,j − µ∗

j

∥∥∥ ≤ ϵ. (H.855)

APPENDIX 325

From Theorem 4.4.4, we have

πt,c,j ·
∣∣∣∇t,c,j − ∇̃t,c,j

∣∣∣ ≤ 3
2 · sup

q∈[m]

∥∥∥µt+1,q − µ∗
q

∥∥∥+
∥∥∥π̃(K+1)

t,c,j − π∗
t,c,j

∥∥∥
1
. (H.856)

Therefore ∣∣∣∇t,c,j − ∇̃t,c,j

∣∣∣ = O (ϵ) . (H.857)

Lemma H.1. For t ∈ [T] and j ∈ [m], we have

πt,c,j ·
∣∣∣∇t,c,j − ∇̃t,c,j

∣∣∣ ≤
∥∥∥∥∥∥

m∑
j=1

π̃
(K+1)
t,c,j N (µt+1,j , Id)−

m∑
j=1

π∗
t,c,jN

(
µ∗

j , Id

)∥∥∥∥∥∥
TV

+ γ · sup
q∈[m]

∥∥∥µt+1,q − µ∗
q

∥∥∥ , (H.858)

for some absolute constant γ < 1.

Proof. We define θ̃′
t,c ≜

{(
µ̃t+1,j , π̃

(K+1)
t,c,j

)
: j ∈ [m]

}
For t ∈ [T] and j ∈ [m], we have

πt,j ·
∣∣∣∇t,c,j − ∇̃t,c,j

∣∣∣ (H.859)

=
∣∣∣∣∣EX∼Pθ∗

t,c

[
πt,c,jfµ∗

j
(X)∑m

l=1 πt,c,lfµ∗
l

(X)

]
− EX∼Pθ̃′

t,c

[
πt,c,jfµt+1,j (X)∑m
l=1 πt,c,lfµt+1,l

(X)

]∣∣∣∣∣ (H.860)

=
∣∣∣∣∣EX∼Pθ∗

t,c

[
πt,c,jfµ∗

j
(X)∑m

l=1 πt,c,lfµ∗
l

(X)

]
− EX∼Pθ∗

t,c

[
πt,c,jfµt+1,j (X)∑m
l=1 πt,c,lfµt+1,l

(X)

]

+ EX∼Pθ∗
t,c

[
πt,c,jfµt+1,j (X)∑m
l=1 πt,c,lfµt+1,l

(X)

]
− EX∼Pθ̃′

t,c

[
πt,c,jfµt+1,j (X)∑m
l=1 πt,c,lfµt+1,l

(X)

] ∣∣∣∣∣ (H.861)

≤
∣∣∣∣∣EX∼Pθ∗

t,c

[
πt,c,jfµt+1,j (X)∑m
l=1 πt,c,lfµt+1,l

(X)

]
− EX∼Pθ̃′

t,c

[
πt,c,jfµt+1,j (X)∑m
l=1 πt,c,lfµt+1,l

(X)

]∣∣∣∣∣
+
∣∣∣∣∣EX∼Pθ∗

t,c

[
πt,c,jfµ∗

j
(X)∑m

l=1 πt,c,lfµ∗
l

(X) −
πt,c,jfµt+1,j (X)∑m
l=1 πt,c,lfµt+1,l

(X)

]∣∣∣∣∣ (H.862)

≤ max
x∈Rd

{
πt,c,jfµt+1,j (x)∑m
l=1 πt,c,lfµt+1,l

(x)

}
·

∥∥∥∥∥∥
m∑

j=1
π̃

(K+1)
t,c,j N (µt+1,j , Id)−

m∑
j=1

π∗
t,c,jN

(
µ∗

j , Id

)∥∥∥∥∥∥
TV

+
∣∣∣∣∣EX∼Pθ∗

t,c

[
πt,c,jfµ∗

j
(X)∑m

l=1 πt,c,lfµ∗
l

(X) −
πt,c,jfµt+1,j (X)∑m
l=1 πt,c,lfµt+1,l

(X)

]∣∣∣∣∣ (H.863)

≤

∣∣∣∣∣∣∣∣∣∣∣
EX∼Pθ∗

t,c

[
πt,c,jfµt+1,j (X)∑m
l=1 πt,c,lfµt+1,l

(X) −
πt,c,jfµ∗

j
(X)∑m

l=1 πt,c,lfµ∗
l

(X)

]
︸ ︷︷ ︸

≜A(X)

∣∣∣∣∣∣∣∣∣∣∣

326 APPENDIX

+ ≤

∥∥∥∥∥∥
m∑

j=1
π̃

(K+1)
t,c,j N (µt+1,j , Id)−

m∑
j=1

π∗
t,c,jN

(
µ∗

j , Id

)∥∥∥∥∥∥
TV

. (H.864)

The last part of the proof consist in bounding the first term of the RHS of (H.864). We use the
same technique as in [KC20, Appendix E] and borrow their notation; for u ∈ [0, 1], we define the
function

ψ (u) =
πt,c,jfµu

t+1,j
(X)∑m

l=1 πt,c,lfµu
t+1,l

(X) −
πt,c,jfµ∗

j
(X)∑m

l=1 πt,c,lfµ∗
l

(X) , (H.865)

where µu
t+1,l = µt+1,l + u (µ∗

l − µt+1,l) for l ∈ [m]. The function ψ is differentiable on the open
interval (0, 1). Furthermore, we observe that ψ (1) = 0 and ψ (1) = A (X). Using the mean value
theorem, there exists u ∈ (0, 1) such that ψ′(u) = A (X). Therefore,

A (X) = −
πt,c,jfµu

t+1,j
(X)∑m

l=1 πt,c,lfµu
t+1,l

(X)

(
1−

πt,c,jfµu
t+1,j

(X)∑m
l=1 πt,c,lfµu

t+1,l
(X)

)
·
(
X − µu

t+1,j

)⊺ (
µt+1,j − µ∗

j

)
+
∑
q ̸=j

πt,c,jfµu
t+1,j

(X)∑m
l=1 πt,c,lfµu

t+1,l
(X)

πt,c,jfµu
t+1,q

(X)∑m
l=1 πt,c,lfµu

t+1,l
(X) ·

(
X − µu

t+1,q

)⊺ (
µt+1,q − µ∗

q

)
.

(H.866)

For r ̸= j, we bound the first term of the RHS of (H.866).

er,1 ≜

∣∣∣∣∣EN (µr,Id)

[
πt,c,jfµu

t+1,j
(X)∑m

l=1 πt,c,lfµu
t+1,l

(X)

(
1−

πt,c,jfµu
t+1,j

(X)∑m
l=1 πt,c,lfµu

t+1,l
(X)

)
(H.867)

×
(
X − µu

t+1,j

)⊺ (
µt+1,j − µ∗

j

)]∣∣∣∣∣ (H.868)

≤ 2
∥∥∥µt+1,j − µ∗

j

∥∥∥ · sup
∥s∥=1

EN (µr,Id)

[
πt,c,jfµu

t+1,j
(X)∑m

l=1 πt,c,lfµu
t+1,l

(X)⟨X − µu
t+1,j , s⟩

]
(H.869)

≤ γ · sup
q

∥∥∥µ∗
q − µt+1,q

∥∥∥ , (H.870)

where we used Lemma H.2 to obtain the last inequality. Similarly, We bound now the second term
the RHS of (H.866).

er,2 ≜

∣∣∣∣∣EN (µr,Id)

[∑
q ̸=j

πt,c,jfµu
t+1,j

(X)∑m
l=1 πt,c,lfµu

t+1,l
(X)

πt,c,jfµu
t+1,q

(X)∑m
l=1 πt,c,lfµu

t+1,l
(X) (H.871)

×
(
X − µu

t+1,q

)⊺ (
µt+1,q − µ∗

q

)]∣∣∣∣∣ (H.872)

≤ 2
∑
q ̸=j

∥∥∥µt+1,q − µ∗
q

∥∥∥ (H.873)

×
∥∥∥∥∥EN (µr,Id)

[
πt,c,jfµu

t+1,j
(X)∑m

l=1 πt,c,lfµu
t+1,l

(X)
πt,c,jfµu

t+1,q
(X)∑m

l=1 πt,c,lfµu
t+1,l

(X) ·
(
X − µu

t+1,q

)]∥∥∥∥∥
(H.874)

APPENDIX 327

≤ 2 sup
q

∥∥∥µ∗
q − µt+1,q

∥∥∥
√√√√EN (µr,Id)

[
πt,c,jfµu

t+1,j
(X)∑m

l=1 πt,c,lfµu
t+1,l

(X)

]
(H.875)

×
∑
q ̸=j

√√√√ sup
∥s∥=1

EN (µr,Id)

[
πt,c,jfµu

t+1,q
(X)∑m

l=1 πt,c,lfµu
t+1,l

(X)⟨X − µu
t+1,q, s⟩2

]
(H.876)

≤ γ · sup
q

∥∥∥µ∗
q − µt+1,q

∥∥∥ , (H.877)

where we used Lemma H.2 and Lemma H.3 to obtain the last inequality.
Combining (H.870) and (H.877), we have

EX∼Pθ∗
t,c

[A(X)] = γ · sup
q

∥∥∥µt+1,q − µ∗
q

∥∥∥ , (H.878)

for some small γ < 1.

Lemma H.2. There exists a sufficiently small constant γ, such that

EN (µr,Id)

[
πt,c,jfµu

t+1,j
(X)∑m

l=1 πt,c,lfµu
t+1,l

(X)

]
≤ γ (H.879)

sup
∥s∥=1

EN (µr,Id)

[
πt,c,jfµu

t+1,j
(X)∑m

l=1 πt,c,lfµu
t+1,l

(X)⟨X − µu
t+1,j , s⟩

]
≤ γ (H.880)

Proof. The result follows from [KC20, Lemma 6] and [KC20, Corollary 5].

Lemma H.3. [KC20, Lemma 27] Let j ∈ [m]. There exists a small constant c0 > 0, such that

∑
q ̸=j

√√√√ sup
∥s∥=1

EN (µr,Id)

[
πt,c,jfµu

t+1,q
(X)∑m

l=1 πt,c,lfµu
t+1,l

(X)⟨X − µu
t+1,q, s⟩2

]
≤ c0. (H.881)

H.4 Supporting Lemmas

Lemma H.4. We have

sup
π,π′∈∆m−1

m∑
j=1

{
πj log (πj)− π′

j log
(
π′

j

)}
= log (m) . (H.882)

Proof. We first remark that
∑

j πj log(πj) ≤ 0 for every π ∈ ∆m−1. Let ϵ > 0, and consider
πϵ = [1− ϵ, ϵ/m−1, . . . , ϵ/m−1] ∈ ∆m−1. Then,

lim
ϵ→0

m∑
j=1

πϵ,j log (πϵ,j) = lim
ϵ→0

(1− ϵ) log (1− ϵ) + ϵ log(ϵ

m− 1) = 0. (H.883)

Therefore, supπ

∑
j πj log(πj) = 0. Using the the concavity of the log function and Jensen’s

inequality, we prove that

−
m∑

j=1
πj log (πj) =

m∑
j=1

πj log
(

1
πj

)
≤ log

 m∑
j=1

πj

πj

 = log(m), (H.884)

with equality if and only if π = [1/m, . . . , 1/m]. Therefore, supπ

{
−
∑

j πj log(πj)
}

= log(m).

328 APPENDIX

Lemma H.5. Suppose that assumptions 27– 30 hold. Suppose that n ≥ C′d
βϵ2 · log2

(
m2T K

δ

)
with

sufficiently large universal constant C ′, and K = O (log(1/ϵ)). The iterates of Algorithm 15 verify
∥∇̂t∥∞ = O (1).

Proof. Since ∇̂t is a Monte-Carlo approximation of ∇̃t, it is enough to prove that ∥∇̃t∥∞ = O (1).
The result from the separation assumption (Assumption 27) using [KC20, Corollary 5].

Lemma H.6. (Pinsker’s inequality [Tsy08, Lemma 2.5]) Let P and Q be two probability distribu-
tions on the same measurable space, then

∥P −Q∥2TV ≤
DKL (P ||Q)

2 (H.885)

Lemma H.7. Let µ,µ′ ∈ Rd. Then,

DKL
(
fµ∥fµ′

)
= ∥µ− µ′∥2

2 (H.886)

Proof. We have

DKL
(
fµ∥fµ′

)
=
∫

x∈Rd
fµ (x) log

(
fµ (x)
fµ′ (x)

)
d x (H.887)

=
∫

x∈Rd
fµ (x) · ∥x− µ∥2 − ∥x− µ′∥2

2 d x (H.888)

=
∫

x∈Rd
fµ (x) · 2⟨µ′ − µ,x⟩+ ∥µ′∥2 − ∥µ∥2

2 d x (H.889)

= 2⟨µ′ − µ,µ⟩+ ∥µ′∥2 − ∥µ∥2

2 (H.890)

= ∥µ− µ′∥2

2 . (H.891)

Lemma H.8. Let µ,µ ∈ Rd. Then,

∥∥fµ − fµ′
∥∥

TV ≤
∥µ− µ′∥

2 . (H.892)

Proof. The result follows using Lemma H.6 and Lemma H.7.

Lemma H.9. Let µ1, . . . ,µm, µ′
1, . . . ,µ

′
m ∈ Rd, and π,π′ ∈ δm−1. Then,∥∥∥∥∥

m∑
i=1

πifµi −
m∑

i=1
π′

ifµ′
i

∥∥∥∥∥
TV
≤

m∑
i=1

πi
∥µi − µ′

i∥
2 +

∥∥π − π′∥∥
1 . (H.893)

Proof. We have∥∥∥∥∥
m∑

i=1
πifµi −

m∑
i=1

π′
ifµ′

i

∥∥∥∥∥
TV

=
∥∥∥∥∥

m∑
i=1

πifµi −
m∑

i=1
πifµ′

i
+

m∑
i=1

πifµ′
i
−

m∑
i=1

π′
ifµ′

i

∥∥∥∥∥
TV

(H.894)

APPENDIX 329

=
∥∥∥∥∥

m∑
i=1

πi

(
fµi − fµ′

i

)
+

m∑
i=1

(
πi − π′

i

)
fµ′

i

∥∥∥∥∥
TV

(H.895)

≤
m∑

i=1
πi

∥∥∥(fµi − fµ′
i

)∥∥∥
TV

+
m∑

i=1

∣∣πi − π′
i

∣∣ (H.896)

≤
m∑

i=1
πi
∥µi − µ′

i∥
2 +

∥∥π − π′∥∥
1 . (H.897)

Lemma H.10. For µ1, . . . ,µm ∈ Rd, the function π 7→ DKL
(∑m

j=1 π
∗
t,jfµ∗

j

∥∥∥∑m
j=1 πjfµj

)
,

defined on ∆m−1 is convex.

Proof. The result follows from the convexity of the function x 7→ − log(x).

Surmonter l’Hétérogénéité dans les Systèmes d’Apprentissage
Fédéré

Othmane MARFOQ

Résumé

L’apprentissage fédéré, qui provient de l’anglais “Federated Learning” (FL), se présente comme
un cadre facilitant l’apprentissage collaboratif de modèles d’apprentissage automatique par des
clients géographiquement répartis sans divulguer leurs données locales. Cette thèse se concentre
sur la prise en charge de l’hétérogénéité, un défi majeur dans le domaine de l’apprentissage
fédéré. L’hétérogénéité se manifeste par des variations entre les ensembles de données locaux
des clients (hétérogénéité statistique), des disparités dans les capacités de stockage et de calcul
(hétérogénéité système), et des fluctuations dans les ensembles de données locaux au fil du
temps (hétérogénéité temporelle). Cette thèse explore différentes sources d’hétérogénéité dans
le contexte de l’apprentissage fédéré et propose des algorithmes pratiques pour atténuer l’impact
de l’hétérogénéité.
La première partie de la thèse se concentre sur la résolution des défis associés à l’hétérogénéité
du système dans deux scénarios distincts : inter-silos et inter-appareils. Dans les environnements
inter-silos, nous exploitons la théorie des systèmes linéaires dans l’algèbre max-plus pour
modéliser le débit, c’est-à-dire le nombre de cycles complets par unité de temps, dans un
système d’apprentissage fédéré entièrement décentralisé en inter-silos. Ensuite, nous proposons
des algorithmes pratiques qui, en utilisant les caractéristiques mesurables du réseau, trouvent
une topologie avec le débit le plus élevé ou avec des garanties de débit vérifiables. Dans les
environnements inter-appareils, où les contraintes du système influencent la disponibilité et
l’activité des clients, nous explorons différents niveaux de participation des clients, souvent
présentant une corrélation au fil du temps et avec d’autres clients. Dans ce contexte, nous
analysons un algorithme similaire à FedAvgsous une disponibilité hétérogène et corrélée des
clients. L’analyse met en évidence comment la corrélation affecte négativement le taux de
convergence de l’algorithme et comment la stratégie d’agrégation peut atténuer cet effet, même
au prix de diriger l’entraînement vers un modèle biaisé. Guidé par l’analyse théorique, nous
proposons “Correlation-Aware FL” (CA-Fed), un nouvel algorithme FL qui tente d’équilibrer
les objectifs contradictoires de maximiser la vitesse de convergence et de minimiser le biais du
modèle. À cette fin, CA-Fed ajuste dynamiquement le poids attribué à chaque client et peut
ignorer les clients avec une faible disponibilité et une forte corrélation.
La deuxième partie traite de l’hétérogénéité statistique grâce à deux algorithmes de personnali-
sation. Le premier algorithme, appelé FedEM, repose sur une hypothèse souple selon laquelle
l’ensemble de données de chaque client est généré à partir d’un mélange de distributions
sous-jacentes communes inconnues. Le deuxième algorithme, appelé kNN-Per, combine un
modèle global entraîné collectivement avec un modèle local de plus proches voisins (kNN)
pour la personnalisation. Des garanties théoriques, notamment des bornes de convergence et de
généralisation, sont fournies pour les deux algorithmes.
La troisième partie explore l’apprentissage fédéré pour les flux de données, en considérant deux
scénarios : des échantillons indépendants tirés d’une distribution inconnue et des distributions
de données composées de mélanges de distributions sous-jacentes inconnues. Pour le premier
scénario, un meta-algorithme est proposé, offrant des informations sur la configuration et le
compromis entre le temps d’entraînement et le biais du modèle appris. Pour le deuxième
scénario, une variante fédérée de la descente du miroir séquentielle appelée FEM-OMD est
introduite, avec un regret asymptotiquement sous-linéaire dans le cas des modèles de mélange
Gaussien.

Mots-clés : Apprentissage fédéré, Personalisation, Apprentissage séquentiel, Optimisation distribuée.

	Introduction
	Motivation
	A Typical Federated Learning System
	Problem Formulation
	Federated Averaging: A Typical Federated Training Process
	Review of Theoretical Results of Federated Learning

	Fully-Decentralized Federated Learning
	Challenges and Open Problems in Federated Learning
	Statistical, System, and Temporal Heterogeneity
	Other Challenges

	Summary of the Main Contributions of the Thesis
	Additional Contributions
	The Role of Reference Data in Empirical Privacy Defenses
	FLamby: Datasets and Benchmarks for Cross-Silo FL

	Publications
	Published
	Submitted

	System Considerations in Heterogeneous Federated Learning
	Throughput-Optimal Topology Design for Cross-Silo Federated Learning
	Introduction
	Problem Formulation
	Theoretical Results and Algorithms
	Numerical Experiments
	Conclusion

	Federated Learning under Heterogeneous and Correlated Client Availability
	Introduction
	Background and Related Works
	Analysis
	Proposed Algorithm
	Fairness, and Computational Cost of CA-Fed
	Experimental Evaluation
	Conclusion

	Personalized Federated Learning
	Introduction
	Contributions
	Organization

	Related Work
	Statistical Heterogeneity
	System Heterogeneity

	Problem Formulation
	An Impossibility Result
	Personalized Federated Learning under a Mixture of Distributions
	The Mixture Assumption
	Relation with Other Personalized Federated Learning Frameworks
	Federated Expectation-Maximization
	Federated Surrogate Optimization
	Distributed Surrogate Optimization with Black-Box Solver
	Numerical Experiments
	Conclusion

	Personalized Federated Learning through Local Memorization
	kNN-Per Algorithm
	Generalization Bound
	Numerical Experiments
	Conclusion

	A Comparison between FedEM and kNN-Per

	Federated Learning in Dynamic Environments
	Introduction
	Contributions
	Organization

	Related Work
	Federated Learning for Data Streams
	Problem Formulation
	Federated Learning Meta-Algorithm for Data Streams
	Case Study
	Numerical Experiments
	Conclusion

	Online Federated Learning with Mixture Models
	Problem Formulation
	FEM-OMD Algorithm
	Federated Online Learning with Gaussian Mixture Models
	FEM-OMD for Discriminative Models
	Experimental Results
	Conclusion and Perspectives

	Conclusion
	Summary of the Main Contributions
	Perspectives and Future Research Directions
	Concluding Reflections

	Bibliography
	List of Figures
	List of Tables
	Appendix
	Background on Numeric Optimization
	Differentiability
	Lipschitzianity and Smoothness
	Convexity

	Background on Graph Theory
	Throughput-Optimal Topology Design for Cross-Silo Federated Learning
	Proofs
	Additional Experiments

	Federated Learning under Heterogeneous and Correlated Client Availability
	Proof of Theorem 2.2.2
	Proof of Theorem 2.2.3
	Proof of Theorem 2.2.4
	Convexity of the total error
	Minimizing the optimization error
	Background on Markov Chains
	Details on Experimental Setup

	Personalized Federated Learning under a Mixture of Distributions
	Proof of Proposition 3.5.1
	Proofs for Centralized Expectation Maximization
	Proofs for Client-Server Setting
	Proofs for Fully Decentralized Setting
	Proof of Theorem 3.5.5'
	Proof of Theorem 3.5.5
	Supporting Lemmas
	Additional Experiments
	Fully Decentralized Federated Expectation-Maximization
	Comparison with MOCHA
	Generalization to Unseen Clients
	FedEM and Clustering
	Effect of M in Time-Constrained Setting
	Additional Results under Client Sampling
	Convergence Plots

	Personalized Federated Learning through Local Memorization
	Proof of Theorem 3.6.1
	Intermediate Lemmas

	Federated Learning for Data Streams
	Proofs
	Proof of Lemma 4.3.2
	Bound 2()
	Case Study

	Online Federated Learning with Mixture Models
	Proof of Theorem 4.4.2
	Proof of Theorem 4.4.3
	Proof of Theorem 4.4.5
	Supporting Lemmas

