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INTRODUCTION

Energy has always been a critical factor in the history of economic and social growth,
serving as an essential component of human life (Lloyd, 2017). However, the world is
currently facing a daunting energy dilemma as the demand for energy continues to rise
rapidly, while the supply of energy is becoming increasingly constrained due to environ-
mental and economic factors. Achieving a balance between demand and supply while
reducing environmental impact has become a global concern (Gan et al.2020).

According to the International Energy Agency (IEA), in 2020, the world consumed
approximately 170,000 TeraWatt-hours (TWh) of energy, with fossil fuels accounting for
about two-thirds of that total (IEA, 2020) ("Global Energy Review 2020", 2020). This
trend is expected to continue in the coming decades, with the IEA predicting a more
than 30% increase in global energy consumption between 2020 and 2040, largely driven
by growing countries (IEA, 2020) ("Global Energy Review 2020", 2020). This projected
increase in energy consumption is expected to put a strain on the current energy systems
and resources, necessitating significant investments in new technologies, energy infrastruc-
ture, and energy efficiency.

The sources of energy, including fossil fuels, nuclear energy, hydropower, and renewable
energy, have a significant impact on energy infrastructure and the environment, particu-
larly on climate change ("Energy and Climate Change — European Environment Agency,"
EEA Signals 2017). Climate change refers to long-term changes in the Earth’s average
temperature and weather patterns caused by the increase in greenhouse gas emissions
resulting from society’s development and use of fossil fuels. Greenhouse gases, such as
carbon dioxide (CO2), trap heat in the atmosphere, leading to global temperature rise,
melting of glaciers and ice caps, thermal expansion of seawater, rising sea levels, increased
frequency and intensity of extreme weather events, and other detrimental effects on infras-
tructure, agriculture, and human health. Therefore, it is imperative to change our energy
consumption and production practices to reduce their impact on the environment and
limit global temperature increase to below 2°C above pre-industrial levels, as advocated
by the Intergovernmental Panel on Climate Change (IPCC) (IPCC, 2023) (IPCC, 2022).

To achieve a balance between demand and supply while mitigating environmental im-
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pact, it is crucial to transition to sustainable energy sources and improve energy efficiency.
To tackle these issues, improving the energy efficiency of buildings has emerged as a crit-
ical area of focus. As depicted in Figure 1, buildings account for a significant portion of
global energy consumption and greenhouse gas emissions, making them a key target for
improving energy performance.

Figure 1 – Global energy share of Buildings and construction (From IEA 2021a)

There are several levers that can be used to reduce the energy consumption of build-
ings. The easiest to implement refer to sobriety, which includes the involvement of oc-
cupants in energy management. Then energy efficiency measure can be taken, such as,
the use of high-performance materials, the design of optimized products and systems, the
measurement, monitoring and analysis of performance indicators, the regulation of en-
ergy systems through intelligent technologies. Finally, after having significantly reduced
the consumption through sobriety and measures to improve efficiency, renewable energy
sources can be integrated to cover the residual demand

Prior to the deployment of renewables, effective approaches to improve the energy
efficiency of buildings are the use of high-performance materials, products, and systems.
Insulation is a key factor that can significantly enhance energy efficiency in buildings.
High-performance insulation materials, such as spray foam insulation, can greatly reduce
heat loss and help maintain a constant temperature inside the building. This means that
it can effectively reduce heat transfer and energy consumption for heating and cooling
purposes. Additionally, building thermal mass can serve as a good energy storage system
(Y. Chen et al. 2020). It can provide an energy storage solution to address the intermit-
tency problem of renewable energy, and it also can balance the demand and production
sides. For example, Turner et al. (2015) studied mechanical pre-cooling for load shifting in
residential buildings, and the results showed that at least 50% of the on-peak residential
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electricity consumption from mechanical cooling can be shifted to the off-peak period by
utilizing the building’s thermal mass. Windows and doors are also important products
that can enhance the energy efficiency of buildings. Energy-efficient windows and doors
are designed to prevent heat loss and gain, thereby reducing the amount of energy needed
for heating and cooling. Examples of energy-efficient features that can be incorporated
into windows and doors include low-emissivity coatings, gas fills, and insulated frames.
Heating, ventilation, and air conditioning (HVAC) systems are major energy consumers
in buildings, and using high-performance HVAC systems can greatly reduce energy con-
sumption and operating costs. Energy-efficient HVAC systems are designed to deliver
heating and cooling more efficiently, improving indoor air quality and providing better
control over temperature and humidity levels. Techniques such as regenerative evapora-
tive cooling and heat recovery can also be used to reduce energy consumption in HVAC
systems. For example, regenerative evaporative cooling technology can reduce the load
on the chiller system and result in lower power usage, leading to energy savings. Heat re-
covery techniques, such as using enthalpy/membrane heat exchangers or energy recovery
ventilators, can transfer heat between fluids and reduce annual energy costs.

With the development of the smart building, Building Energy Management Systems
(BEMS) have a crucial role to play in shaping energy consumption in buildings, adjust-
ing it to align more closely with the need of building occupants. Numerous studies have
confirmed the substantial impact of occupant’s presence and behavior on the energy effi-
ciency of buildings (Bazazzadeh et al. 2021, Paone et al.2018, Uddin et al.2021). Factors
such as occupant’s behavior, the efficiency of control services, and any deviations from
the design quality of the building all contribute significantly to the waste of energy during
the operational phase of a building. Research underscored that energy consumption could
swing drastically based on the occupancy.

The recent literature underlines the urgent need to develop and implement more
occupant-focused control systems. These occupant-centric systems could potentially lead
to significant energy savings by adjusting the operation of building systems like HVAC,
lighting, and others in response to the real-time presence and behavior of occupants. Ulti-
mately, the efficient operation of BEMS depends on the complex interplay between build-
ing design, control systems, and human behavior. Thus, future research and development
in this field should focus on integrating these aspects to optimize energy use in buildings.
Presently, the optimization of energy usage in buildings primarily concentrates on the
influences of the external environment and built-in equipment, with less consideration
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given to occupant’s behavior. In certain cases, standardized profiles of occupant behavior
are used as proxies for real-world behavior rather than investigating and accounting for
actual occupant behaviors and the myriad uncertainties associated with them. Needless
to say, using such an approach often results in a gap between the predicted and actual
energy consumption. Existing building systems, for instance, the HVAC system, typically
operate on a survey or expert determined schedules, with little to no adjustment for
varying occupant behaviors. This "one-size-fits-all" approach can lead to inefficiencies and
increased energy use. The study of occupant behavior in buildings is still having room
for improvement. Researcher could collect large-scale data on occupant behavior in real-
world settings. The insights gained from such data could then be used to develop more
nuanced and effective strategies for managing energy consumption in buildings, including
more flexible operation schedules for systems that are more responsive to occupant be-
havior. This shift could lead to significant energy savings and make our buildings more
sustainable and comfortable for their occupants.

As outlined in the title of this study, our goal is to contribute to the development of
theoretical foundations for building control systems that are centered around occupants,
thereby facilitating a path towards truly occupant-focused control. To fully appreciate the
aims of this study, it’s essential to first unpack the concept of "occupant-centric control".
Depending on their purpose and level of technological sophistication, buildings can house
a wide variety of control devices and systems. Our primary concern at present centers
around the indoor environmental control systems of buildings, which are intrinsically tied
to the thermal, visual, and indoor air quality conditions that occupants experience (2020
ASHRAE Handbook). Hence, the initial interpretation of occupant-centric control is one
that consistently preserves an environment that safeguards the health and comfort of
the occupants. The fields of health and comfort science provide us with a broad array
of insights into what constitutes ideal indoor conditions. These insights are typically
formalized as a variety of specifications, standards, and guidelines, proposing measurable
targets for indoor environmental conditions, such as temperature or light levels. These
targets often act as the set points for control variables (ASHRAE. Thermal Environmental
Conditions for Human Occupancy; 2017 Organization for Standardization; Lighting of
Indoor Work Places; ISO Standard 8995:2002). Therefore, achieving these targets is the
primary objective that our "occupant-centric" environmental control devices and systems
can be operated to realize.
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Occupant perception and interaction with building

Nonetheless, a relevant question appears - who should operate these control devices
and systems? Current studies suggest that certain control systems consistently strive to
keep environmental conditions near set points to maintain comfort. However, this ap-
proach invariably leads to wastage of energy and falls short of realizing "performance
optimization", a term we will elucidate further below in this introduction. An alternative
strategy allows each inhabitant the ability to manipulate their immediate surroundings.
From the perspective of occupant autonomy, this latter approach might appear more
attractive. Yet, it relies heavily on the cognitive engagement of the occupant and may
necessitate repeated adjustments to achieve a comfortable environmental range. As such,
this strategy fails to enhance convenience for occupants and can even be viewed as lacking
in sophistication. Moreover, as this method does not leverage the building’s self-perception
to regulate environmental conditions, it is ill-suited for optimizing energy consumption. In
light of these considerations, we wish to present a comprehensive theory focusing on how
occupant’s perceive and interact with their building. To this end, we envision empowering
buildings with the capability to proactively perceive indoor scenarios and occupant be-
havior. Simultaneously, we aim to establish control methods that are both economically
efficient and environmentally conscious.

Occupant privacy and comfort

Another challenge arises in the building’s process of perceiving and interacting with its
occupants: the preservation of occupant privacy and comfort. It is inevitable that during
this perception and interaction process, the building collects data on the occupants. Pin-
pointing occupants’ locations and behaviors may even require the use of surveillance tools
like cameras and microphones, which raises significant privacy concerns and could make
the occupants feel uneasy or intruded upon. Another significant contribution of our study
is our approach to this delicate issue. We strive to accurately identify and differentiate
various occupant behaviors using only environmental data. This approach bypasses the
need for potentially intrusive tools like cameras or microphones, thus prioritizing occupant
comfort and privacy.

This methodology not only addresses privacy concerns but also paves the way for more
integrated, user-friendly, and ethical building control systems.

5



Introduction

Building energy efficiency

In our point of view, "performance optimization", indicating different aspects. First as-
pect is the building energy efficiency. Building automation and controls, along with mea-
surement and performance monitoring, are essential aspects of high-performance building
design.

Advanced building automation and controls can optimize the operation of HVAC sys-
tems, lighting systems, and other building systems, resulting in significant energy savings.
For instance, programmable thermostats can automatically adjust temperature settings
based on occupancy schedules, reducing unnecessary energy consumption. Smart lighting
controls can turn off lights in unoccupied areas or adjust lighting levels based on natural
light availability. In addition, an optimized management of windows or doors openings
can reduce the building loads (e.g. summer night’s openings help decreasing or avoiding
cooling). Real-time monitoring and analytics of energy use through building automation
and controls allow for continuous optimization of building performance. By monitoring
and analyzing building state and energy use data in real-time, building owners and oper-
ators can gain valuable insights into the performance of their buildings and identify areas
of high energy consumption. This data-driven approach allows for evidence-based decision
making and targeted energy-saving initiatives.

Measurement and performance monitoring begin with identifying relevant indicators,
such as electricity consumption, gas usage, thermal comfort, indoor air quality, and oc-
cupancy levels, which serve as key performance metrics for quantifying building energy
performance. Once the indicators are identified, energy monitoring systems with appropri-
ate sensor combinations can be installed to track energy use in real-time. These systems
collect data on energy consumption, temperature, humidity, and other relevant param-
eters, providing a comprehensive view of the building’s performance. Advanced sensor
technologies, such as Internet of Things (IoT) devices, enable remote monitoring and
real-time analytics, allowing for proactive identification of energy-saving opportunities.

Buildings, whose performance is automatically monitored, analysed and potentially
improved using a set of sensors and actuators are then qualified as Smart Building. These
measures applied to Smart Buildings can be tailored to the specific needs and requirements
of the building and its occupants. Action performed by occupants can have a significant
impact on the energy consumption due to their use habits or preferences. Furthermore,
not involving people in the energy performance can be counterproductive: if an action
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performed automatically by an actuator is not understood, it may be blocked or cancelled
by occupants. As buildings are originally design for people, it is required to take a user-
centric approach to their energy efficiency optimization.

One objective of our work will be to pave the road for using user-centric optimization,
and predictive control approaches, supported by building automation and controls, along
with measurement and performance monitoring, to improve the energy efficiency of smart
buildings. By leveraging real-time data, evidence-based decision making, and continu-
ous performance monitoring, these approaches can lead to significant energy savings and
contribute to sustainable building practices. This is our first definition for "performance
optimization".

Need of accurate and diversified data

The second definition for performance optimization refers to optimal data, for which
more accuracy and more diverse data can reflect to the real building indoor state. The
study (Smart2B 2021) shows that poor data quality will lead to inefficiency and inaccuracy
assessments and decisions. Krishana CM et al. (2023) shows that it will negatively impacts
the decision-making process on time and cost, also the decision making performance in
the building. Pettersen et al. (2017) says that despite having good knowledge about the
properties of a building (like its insulation, windows, HVAC system, etc.), we still observe
a difference between predicted and actual energy performance. This difference, or "gap",
cannot be reduced without introducing larger variations in the input data models. This
means, that we cannot improve the accuracy of our predictions without considering a
broader range of possible conditions and variables in the models we use to make these
predictions. Thus, if the input data does not accurately represent the building’s conditions
and the behaviors of its occupants, the model’s predictions can deviate significantly from
the actual energy use. Thus, the quality of data - its accuracy, completeness, and relevance
- is of utmost importance to narrow the performance gap and improve the reliability of
the model’s predictions.

Furthermore, it implies the necessity of incorporating a broader range of conditions
and variables into the data models. This suggests that not only the quality but also the
diversity and comprehensiveness of data can impact the accuracy of energy performance
predictions. However, optimal data is gathered from the sensors, placing sensors into
different location will lead to a totally different result, thus, to find the optimal sensor
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location is crucial for the data. In the thesis, another contribution of ours is determining
the optimal placement of sensors in buildings in order to obtain optimal data.

Overview of the thesis

Based on the above mentioned challenges, the following points will be developed in
the thesis. The first chapter is dedicated to the presentation of the main scientific barriers
through a review of the existing bibliographic literature (Chapter 1), and a second chapter
is introducing the thesis case studies (Chapter 2).

In Chapter 3, the optimal sensor location is investigated, in order to guarantee the
data accuracy for building performance. Determining the optimal sensor placement, that
appropriately describe the building state and the user comfort, requires considering vari-
ous factors, such as building layout, sensor coverage, cost-effectiveness, and the targeted
activities or usages to be monitored. Finding optimal solutions for sensor placement is
a challenging task that involves interdisciplinary research combining building physics,
sensor technologies, data analytics, and optimization techniques.

In Chapter 4, a method for accurate detection of activity and occupancy in a building
or a room is proposed. Our primary contribution is the accurate detection of occupant
behaviors using machine learning algorithms, considering significant constraints such as
occupant privacy and the presence of unlabeled data. In addition, we also address com-
mon challenges like imbalanced data between normal and abnormal operating conditions,
creating realistic scenarios of activities and usages, and developing robust and scalable
real-time activity detection and analysis techniques. A benchmark for different machine
learning algorithms has been made for comparing performance in order to select a more
proper algorithm. The significance of real-time detection can’t be overstated, given the
quick and dynamic changes that can occur in indoor environments. Thus, the speed of
detection becomes a key factor. In our benchmark testing, we will compare the detection
speed of various algorithms and implement an alternative strategy, which remarkably
reduced the time required for detection. With these contributions, we can ensure reli-
able and accurate activity and occupancy detection in smart buildings, which forms the
foundation for effective energy management strategies and personalized user experiences.

Another significant challenge in smart buildings is the detection of multiple activities
occurring simultaneously (Chapter 5). This requires developing sophisticated algorithms
and techniques that can differentiate between overlapping activities, recognize complex
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patterns of activities, and handle the dynamic nature of activities in real-time. The de-
tection of multiple activities presents unique challenges, including the need for advanced
sensor fusion techniques, robust and adaptive algorithms, and efficient data processing
methods. Addressing these challenges would enable smart buildings to gain a holistic
understanding of the diverse activities and usages of their occupants, leading to more
effective and personalized energy management strategies that account for the dynamic
and complex nature of human activities.

As this thesis delves into these scientific challenges and issues, it aims to contribute
to the advancement of the field of smart buildings and pave the way for more energy-
efficient and sustainable building practices. By addressing these challenges, we can unlock
the full potential of user-centric optimization and predictive control approaches in smart
buildings, leading to more intelligent, responsive, and sustainable built environments.
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Chapter 1

LITERATURE REVIEW

Energy management in smart buildings involves various aspects, including accurate
measurement of building performance, reliable data collection, data analytics for predic-
tion and detection, and user-centric approaches. This chapter provides a comprehensive
review of the existing literature in these areas, highlighting the key concepts, challenges,
and research gaps. The first part 1.1 of the literature review focuses on the measurement
of energy performance and reliable data collection in buildings. Energy performance in-
dicators are first presented as important metrics for evaluating the energy efficiency of
buildings, highlighting what needs to be measured. Different types of sensors used for data
collection are then discussed, including their functionalities, applications, and limitations,
emphasizing how to measure. Furthermore, the issue of the Optimal Sensor Placement
(OSP), which refers to the strategic deployment of sensors to optimize data collection
and analysis, is introduced as a critical challenge in the field. The second part 1.2 of
the literature review shifts the focus towards the occupants of the building, recognizing
their significant influence on building performance. This part emphasizes the concept of
a user-centric approach, also known as "human in the loop", which considers occupants
as virtual sensors who can provide valuable data and information. The role of occupants
in decision-making processes related to energy management is also highlighted. The third
part 1.3 of the literature review focuses on methods for detecting and identifying activities
and events in buildings, particularly machine learning classification- and regression-based
approaches. This part centers on data analytics and prediction of building performance
based on the activities identified in the previous part. It explores techniques for analyzing
data and predicting building performance, using the information obtained from occupant
behavior detection and activity identification. Lastly, the chapter concludes in section 1.4
with an overview of model predictive control, a key approach used in user-centric energy
management to optimize building performance based on predicted outcomes.
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Chapter 1 – Literature review

1.1 Performance monitoring of buildings

Three main key levers have been presented in the general introduction to improve
the energy performance of buildings: sobriety, efficiency, and the use of renewable energy.
While the first lever, sobriety, emphasizes reducing energy consumption through behav-
ioral changes and lifestyle choices, and the second lever, efficiency, seeks to optimize the
energy use within buildings, the third lever, renewable energy utilization, promotes the use
of sustainable energy sources. This lever encompasses various aspects, including building
envelope design, HVAC systems, lighting, and appliances, among others. In the context
of efficiency, measurement and monitoring of building performance play a critical role.
Understanding the energy performance of a building is fundamental to identify areas of
improvement, validating design choices, and evaluating the effectiveness of energy-saving
measures. Therefore, the first section of this literature review chapter focuses on the
measurement and monitoring of building performance. Specifically, it addresses two key
problems. First, what defines/qualifies the energy performance of a building? This ques-
tion explores the concept of energy performance, which encompasses various aspects such
as energy consumption, energy needs, energy demand, energy efficiency, thermal comfort,
indoor air quality, and carbon footprint. It aims to provide a clear understanding of the
many aspects of building performance and the different dimensions that need to be con-
sidered. The second problem to deal with is how building performance is measured? This
question explores the methods and techniques used for measuring and monitoring building
performance. It encompasses both quantitative and qualitative approaches, ranging from
analyzing conventional utility bill and collecting data from sensors to advanced model-
ing and simulation techniques. It also discusses the challenges and limitations associated
with different measurement methods, such as accuracy, reliability, scalability, and cost-
effectiveness. By addressing these problems, this section of the literature review provides
a comprehensive overview of the concepts and methods related to the measurement and
monitoring of building performance. It establishes the foundation for the subsequent sec-
tions of this chapter, which will explore the state-of-the-art research and practices in the
fields of data analytics, and decision-making approaches for improving building energy
performance.
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1.1. Performance monitoring of buildings

1.1.1 Energy performance indicators

In the scientific community, various building Energy Performance Indicators (EnPIs)
are used to monitor and measure energy consumption in buildings. These indicators can
be categorized into five main categories:

— Energy Consumption: This indicator refers to the total amount of energy utilized
by a building or a system, measured in kilowatt-hours (kWh).The Energy Use
Index (EUI) (Fairey ad Goldstein, 2016; Hsien-te and Chia-ju,2021), belongs to
this category.

— Energy Needs: This indicator pertains to the amount of energy required to meet
the demands of a building or a system.The Energy Conservative Index (ECI) is an
example of energy-needs indicators (Lon et al.2014).

— Energy Demand: This indicator denotes the instantaneous or peak power demand of
a building or a system, measured in kilowatts (kW).The Energy Demand Intensity
(EDI) and the Peak Energy Demand (PED) are two example of energy demand
indicators.

— Energy Efficiency: This indicator signifies the ratio of energy output to energy in-
put, usually expressed as a percentage or a decimal. The Energy Efficiency Index
(EEI), the Building Energy Index (BEI), the Home Energy Rating System (HERS)
and the zero Energy Performance Index (zEPI) are four already used energy effi-
ciency indicators (Hayati et al.2014; Moghimi et al.2013).

— Carbon Footprint: This indicator quantifies the amount of carbon dioxide (CO2)
emissions associated with energy consumption, measured in metric tons of CO2 or
CO2 equivalent.

It is worth noting that these EnPIs are commonly used in the scientific and technical
literature to assess the energy performance of buildings. They provide essential metrics for
evaluating energy consumption, demand, efficiency, and environmental impact, enabling
researchers and practitioners to better understand and quantify the energy performance
of buildings.

Some of the above-mentioned indicators (EUI, ECI, EDI, EEI, BEI, HERS, zEPI and
CO2 indicator) are presented in Annex A.1

Several studies have explored the relationship between building energy performance
and energy needs. Using energy modeling or simulation software, researchers have esti-
mated the energy needs of buildings and compared them with their actual energy con-
sumption. Incorporating energy needs as an indicator of building energy performance
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provides a more accurate and comprehensive assessment of energy performance, as it is
an estimation of the amount of energy needed to meet the specific requirements of a build-
ing in terms of heating, cooling, lighting, etc.(Li et al.2022). If incorporating energy needs
as an indicator of building energy performance offers advantages in terms of accuracy and
comprehensiveness, challenges such as data quality and model complexity need to be ad-
dressed to ensure reliable and consistent assessment of building energy performance using
energy demand-based indicators. Both concepts of “energy needs” and “energy demand”
are related, but the first is a theoretical estimation based on modeling or simulation, while
the latter is the actual measurement of energy consumed. It is the measurement of the
energy used to meet the energy needs of a building, as measured by energy meters. An
example is the Peak Energy Demand (PED) measuring the peak energy demand of a build-
ing, which refers to the highest amount of energy required by the building at any given
time. It is often used to assess the capacity of a building’s energy systems and to identify
potential areas for energy demand management. Comparative analyses of building energy
performance indicators based on energy-demand have been conducted by Behzad et al.
(2019). According to the authors, energy demand-based indicators can provide a more
nuanced understanding of building energy performance, capturing the dynamic nature of
energy requirements in buildings.

By integrating an emissions indicator, such as CO2 emissions, into performance metrics
such as EUI, Energy Cost Index, and EDI, a more comprehensive assessment of a build-
ing’s environmental performance can be obtained. This allows for a more holistic approach
to evaluate the sustainability of a building, considering both energy performance and car-
bon emissions. By incorporating an emissions indicator, building owners, operators, and
stakeholders can better understand the impact of their building on the environment and
make informed decisions to optimize energy performance and reduce carbon emissions
(IEA, 2015). This approach should be coupled to an estimation of the CO2 emissions of
the other life cycle stages (building construction, renovation and end-of-life) for a more
holistic view of the impact of buildings on climate change.

Among all possible indicators, energy consumption is used as the primary focus in
this research. Specifically, the total heat load is set as the indicator for this study, which
is objective and easy to understand without the need for reference. Choosing a classic
indicator such as ’Energy Consumption’ has several compelling reasons. Firstly, Energy
Consumption is a widely used and recognized indicator in the scientific community for
monitoring and measuring energy performance in buildings. It provides a straightforward
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and quantifiable measure of the total amount of energy utilized by a building or system,
typically measured in kilowatt-hours (kWh). Secondly, Energy Consumption is easy to
measure and obtain through energy meters, making it a practical and accessible indicator
for research and analysis. Thirdly, Energy Consumption reflects the actual energy used by
a building to meet its energy needs, which makes it a relevant and meaningful indicator
in evaluating the performance of energy systems and identifying areas for improvement.
Furthermore, Energy Consumption can serve as a benchmark for comparing buildings or
systems, allowing for meaningful comparisons and assessments of relative performance.

To measure this indicator, an energy monitoring system is necessary, which requires
the use of sensors to collect data.

1.1.2 Monitoring and sensors

With the importance of energy consumption as a main indicator established, the next
step in our research is to explore the context of energy monitoring systems and sensors
for building performance measurement. The energy performance of buildings must not
solely be determined by the quality of materials, technical systems, and control strategies,
but also by the behavior of their occupants. Thus, whenever the notions of building
performance monitoring are mentioned in the remainder of this thesis report, it should be
considered that this systematically encompasses the influence of the occupants because
they have a strong impact on the building performance as it will be discussed in section
1.2.

In recent years, advancements in technology have led to advanced systems that can col-
lect, analyze, and understand how a building uses energy. These systems use a wide range
of sensors, meters, and devices to capture real-time data on energy consumption, envi-
ronmental conditions, and other relevant parameters. In particular, smart buildings have
emerged as a promising frontier in building performance evaluation, where the integration
of cutting-edge technologies enables intelligent management and optimization of energy
use. In this section, we will examine how energy monitoring systems work, the types of
sensors used for measuring building performance and detecting activities/events, and the
challenges associated with smart buildings aiming for energy efficiency and sustainability.
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1.1.2.1 Energy monitoring or management systems

Energy management systems (EMS) allows homeowners to monitor and control their
energy usage effectively. EMS offers several advantages, starting, firstly, with reduced
electricity bills by reducing unnecessary or excessive appliance usage. Secondly, it helps in
lowering greenhouse gas emissions and reducing reliance on fossil fuels, thus contributing
to environmental sustainability. Thirdly, it provides homeowners with real-time feedback
and insights on their energy usage through smart devices and apps, allowing them with
increased control and awareness.

EMSs comprise various components and functionalities. It connects diverse home appli-
ances, distributed power sources, and energy storage, along with other equipment, through
advanced metering infrastructure (AMI), facilitating monitoring and management of elec-
trical equipment. Ma et al. (2021) provides a comprehensive overview of the structure,
functions, and key technologies of home energy management systems (HEMS). The study
also analyzes the control strategies of HEMS and highlights how electricity market re-
forms have created favorable conditions for incorporating demand-side load resources into
supply-demand regulation. The increasing electrification of residential properties makes
residential load resources a valuable asset for demand-side load regulation, as resident
home appliances participate in the "two-way interaction" with the power grid in the form
of Demand response (DR).

The relationship between energy efficiency and digitalization has been studied in re-
ports from the International Energy Agency (IEA, 2017). Digital technologies can sig-
nificantly improve energy efficiency in areas like transportation, buildings, and industry.
They allow to optimize energy use and enhance connectivity between devices and ma-
chines, making the entire energy system more efficient. However, the growing number of
devices and data servers from digitalization could also lead to higher energy consumption
if not managed carefully. Policymakers face the challenge of guiding digitalization in a
way that maximizes its benefits for the energy system while minimizing negative impacts.
Their energy saving strategies necessitate the integration of users and appliances, as it
will be detailed in the section 1.2.1 on the Influence of occupants’ behavior.

1.1.2.2 Sensors for measuring building performance

With the development of EMS and smart houses, numerous sensor types have been
developed. Sensors can be classified into four main categories, as mentioned in the article
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by Bae et al. (2021), namely environmental sensors, occupancy sensors, motion and vision-
based sensors, and energy consumption sensors.

The first category, the environmental sensors, including traditional HVAC sensors, play
a crucial role in monitoring and optimizing the performance of building HVAC systems.
This kind of systems can range from packaged units to built-up systems, and commonly
used equipment including chillers, boilers, heat pumps, fans, pumps, valves, heat exchang-
ers, filters, dampers, diffusers, ducts, and pipes. HVAC sensors are used to monitor various
parameters such as temperature (e.g., outside air temperature, chilled water temperature,
supply air temperature), humidity, flow (e.g., chilled water flow rate, supply airflow rate),
pressure (e.g., chiller water pressure, duct static pressure), and gas flow for absorption
chillers or boilers. These sensors are used in the control loop that modulates the equip-
ment to maintain the controlled variable (e.g., temperature or pressure) at a set point.
For example, in a Variable Air Volume (VAV) system, the supply air temperature set
point is maintained by modulating chilled water and hot water flow, and the zone tem-
perature set point is maintained by modulating the VAV box damper position or turning
on reheating. HVAC equipment is often equipped with electrical meters, but additional
sensors such as BTU (British Thermal Units) meters may be needed to establish baseline
energy consumption and verify the improved performance enabled by advanced control
methods (Narayanan et al. 2012).

The second mentioned category is composed of the occupancy sensors which are used
to detect the presence and number of people in a room or specific area of a building,
using technologies such as motion sensors, heat body sensors, optical presence sensors,
etc. Information on occupant presence can be used to control lighting and HVAC sys-
tems, as well as adjust temperature set points. The number of occupants can be used to
modify ventilation rates, and this information can also be used to estimate and predict
various building loads for optimal HVAC system control. Finally, occupant identity and
location can potentially be used to provide customized indoor environments to maximize
occupant satisfaction while optimizing energy efficiency. Previous studies have suggested
that adopting occupancy-based control, which deploys energy where demand exists, could
significantly improve building energy efficiency without compromising occupant comfort
(Brooks et al. 2015). Occupancy-based control for lighting systems has been relatively
straightforward to implement due to their instantaneous response. Various building stan-
dards and green building rating programs have recommended occupancy-based lighting
control, with reported energy-savings potential ranging from 20% to 75% (Delaney et
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al. 2009). However, existing occupancy-sensing technologies may occasionally cause false
on/off switches of lighting systems, leading to occupant dissatisfaction and energy waste
(Guo et al. 2010). With the success of occupancy-based lighting control, efforts have
been made to incorporate occupancy information into HVAC controls. Yet, due to the
slower response time of HVAC systems, predictive strategies are often needed to en-
sure occupant comfort and minimize energy consumption, making practical and scalable
occupancy-based HVAC control more challenging compared to lighting control. Variations
in ambient conditions, such as air temperature, humidity, CO2 levels, acoustics, and light,
can also be used to infer occupancy information. One advantage of methods based on am-
bient condition variations is that they can potentially infer the number of occupants in a
space. These methods rely on the correlation between ambient condition changes and the
number of occupants and utilize differential equations or statistical/optimization-based
mapping methods, such as regression or machine learning algorithms, to establish the
relationship. However, adjusting or tuning these equations or methods for different spaces
and buildings may require additional costs for transferability (Chen et al. 2018). Among
the methods in this category, those using variations in CO2 concentration are the most
common, although the slow gas mixture in buildings may limit the estimation performance
of methods relying solely on CO2 concentration (Meyn et al. 2009).

Motion sensors, such as passive infrared (PIR), ultrasonic, and microwave sensors, com-
plete this category of occupancy sensors. They have been widely used due to their low cost,
low power consumption, small form factor, nonintrusive nature, and privacy-preserving
characteristics. PIR sensors, in particular, are popular in real-world applications due to
their robustness to environmental variations (Luo et al. 2016). However, relying solely
on motion sensors has significant limitations (Guo et al. 2010). These sensors can only
provide information about occupant presence or absence, and more detailed information
such as the number of occupants, identity, and location is typically unavailable. Moreover,
motion sensors require detectable movements to trigger, and if no movement occurs, a de-
lay of some minutes is usually applied before switching from the occupied to unoccupied
state, resulting in potential energy waste. Additionally, motion sensors can be triggered
by other objects, such as hot beverages, appliances, or pets, and PIR sensors require a
direct line of sight between the sensor and occupants in a space.

In recent years, a third category of sensors, based on vision analysis has gained atten-
tion due to rapid advancements in sensing, computing, and computer vision technologies.
These methods utilize occupants’ interactions with furniture, such as chairs and doors
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(Kim et al. 2019a), appliances like computers, communication networks such as Wi-Fi
and Bluetooth (Zou et al. 2018a), and corresponding plug loads (De Coninck and Helsen,
2016), to estimate occupancy information. Vision-based sensors offer the potential for
more detailed and accurate occupancy estimation compared to motion sensors, as they
can capture visual cues beyond just motion. However, vision-based methods may also raise
concerns related to privacy and data security, as they involve visual data capture and pro-
cessing. Thus, careful consideration of privacy protection measures should be considered
when implementing vision-based sensors for occupancy estimation.

The fourth and last category proposed by Bae et al. (2021) includes the energy con-
sumption sensors. This category integrates power meters playing an essential role in mod-
ern commercial buildings for monitoring and managing heat consumption and electricity
usage. These sensors enable building-level or submetering level measurement of energy
consumption, providing valuable insights into the factors influencing energy usage. By
analyzing energy or power metering data, opportunities for energy efficiency improve-
ments can be identified, and control methods can be explored to lower energy demand
and cost. Power measurement data are also critical for developing and validating power
consumption models used in predictive control strategies. Additionally, metering data
can provide direct feedback for advanced control techniques, such as extremum seeking
control, which systematically identifies control inputs that minimize a measured objec-
tive function, such as power consumption. Advancements in two-way communication and
power metering technologies, such as one-way automatic meter reading and bidirectional
smart meters, are enabling autonomous responses of building automation systems and
other connected devices to dynamic electricity prices and grid signals. This allows for
more precise and efficient demand response strategies, where buildings and devices can
adjust their energy usage in response to grid conditions.

In the near future of advanced building controls, smart Internet of Things (IoT) sen-
sors are emerging as a promising solution. These sensors have wide-ranging applications
in various aspects of building energy management systems, including demand-controlled
ventilation, energy recovery ventilation, outdoor air systems, CO2 sensing, ultraviolet ger-
micidal irradiation, displacement ventilation, and underfloor air distribution (Minoli et al.
2017). Additionally, GPS-based remote sensing capabilities are expected to become ubiq-
uitous, adding a layer of flexibility to building energy control schemes. IoT sensors are
also being integrated with advanced control methodologies, leading to projected energy
cost savings of 30-40% and reduced peak demand power. For example, Tran et al. (2019a)
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connected IoT sensors to lighting, plug loads, and HVAC systems, transferring data to
the cloud for scheduling optimization. Moreover, OSP strategies have been proposed by
the same first co-author (Tran et al. 2019b) to maximize sensing and observability with
minimal infrastructure within an IoT framework.

As we conclude this section about sensors, it is also important to highlight the sig-
nificance of their location in building control loops. Buildings are typically composed of
multiple thermal zones, each with unique temperature profiles influenced by factors such
as occupant behaviors or solar radiation. Even within the same thermal zone, tempera-
ture profiles may vary across different areas. but, many engineering designs and practices
often involve selecting a single sensor location based on expert knowledge and room con-
figuration, rather than installing multiple sensors due to concerns over construction and
maintenance costs. We will focus, in section 1.1.3, on the importance of sensor placement
and how it can impact the accuracy and effectiveness of building control strategies and
explore further and try to propose a solution about this point in Chapter 3.

1.1.2.3 Smart home technologies

A smart home, also known as a connected home or smart house, is a residential space
that incorporates advanced technology to provide automation, convenience, and control
of various household systems and appliances, which can greatly contribute to reduce
energy demand (Alam et al. 2012) (Balta-Ozkan et al. 2014). The concept of smart homes
has gained popularity in recent years, driven by advances in IoT technology and the
availability of affordable and easy-to-use devices (Marikyan et al. 2019). To achieve energy
conservation in a smart home, various components must work together effectively. Figure
1.1 provides an overview of a smart home energy management system with key modules.
This system includes a smart automation console that communicates with smart plugs
connected to different devices in the home, such as appliances, lighting, and door locks.
The console controls the functionality of all connected devices, profiles energy consumption
details, and monitors energy demand. It also communicates with smart grids through AMI
to provide energy demand requirements and reads energy price data from energy suppliers
via the Internet. Using this pricing data, the smart automation console presents the user
with energy-saving options by giving a complete overview of various energy-consuming
appliances. The user can then choose to switch off or schedule appliances with high energy
usage to low-price hours.

Technologies enable the connection and control of multiple appliances through wired,
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Figure 1.1 – Description of Advanced Metering Infrastructure (AMI)

wireless, or hybrid mediums. Variety of these technologies are commonly discussed in
the literature (Alhamoud et al. 2014) (Hafeez et al. 2020) including ZigBee, Z-wave,
X10, WiFi, Bluetooth, Radio Frequency (RF), Radio Frequency Identification (RFID),
PowerLine Communication (PLC), Ethernet, KNX, LoRaWan. These technologies provide
users with interfaces for intelligent control of all smart home appliances each offering
different functionality options. They communicate with different smart appliances via
wired or wireless channels to record usage time and energy consumption data. The pros
and cons of different technologies are summarized in the Table A.2 in Appendix A.

Upon analyzing the advantages and disadvantages of different smart home technolo-
gies, it becomes clear that wireless technologies offer easy installation and efficient man-
agement of multiple devices. However, the security risks associated with wireless technolo-
gies are significantly higher than those of wired technologies. On the other hand, wired
technologies can be challenging to install, particularly in old buildings where the existing
communication wiring structure may not be available.
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In this thesis, in the context of occupancy estimation, where reliable data collection,
storage, and transfer are crucial, the choice of technology plays a significant role. After
careful consideration and evaluation of various options, we have determined that WiFi is
the most suitable technology for our needs. WiFi offers several distinct advantages over
other competing technologies. Firstly, WiFi provides a widely adopted and standardized
communication protocol, ensuring compatibility and interoperability with a wide range
of devices and systems. This compatibility facilitates seamless integration into existing
infrastructures, reducing implementation complexities and costs. Secondly, WiFi offers a
higher data transfer rate compared to technologies like Bluetooth, ZigBee, or LoRaWAN,
enabling faster and more efficient transmission of occupancy-related information. Addi-
tionally, WiFi networks are known for their robustness and stability, offering reliable data
collection and minimizing the risk of signal disruptions. Moreover, WiFi provides sufficient
coverage for most indoor environments, eliminating the need for extensive deployment of
additional access points or devices. Lastly, WiFi infrastructure is readily available in
many buildings and public spaces, making it a cost-effective solution that uses existing
infrastructure.

1.1.3 The Optimal Sensor Placement (OSP) issue

As introduced at the end of section 1.1.2.2, sensor placement is an important factor
in control loops. Most engineering designs and practices pick one location arbitrarily,
or based on expert knowledge or constraint in the room layout, rather than installing
multiple sensors because adding more sensors will increase the construction costs and
maintenance costs. Finding the OSP is an important aspect of many scientific, engineering,
and industrial fields and involves a variety of applications, including (structural) health
monitoring, environmental monitoring, and many others. The goal is to determine the
best positions for sensors to collect accurate and reliable data in target environments or
situations. This OSP problem has been deepened in recent years along with advances
in sensing technologies, which have enabled the collection of vast amounts of data from
complex systems.

Determining the OSP is not a simple task; it involves trade-offs between several con-
flicting objectives, such as data accuracy, the number of sensors required, and the cost of
sensor deployment. In many cases, we want to reduce data uncertainty while achieving
the most accurate results possible. This requires careful consideration of the measure-
ment process, the environment, and the desired goals. In the following sub-sections, after
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a brief state-of-the-art of the different applications and methods found in the literature,
disadvantages and advantages of different methods are pointed out.

1.1.3.1 OSP problem in literature from various domains

As mentioned above, the search for OSP is a topic of interest in various applications,
particularly in the fields of structural health monitoring (Yi et al. 2011, Kammer, 1991),
geological disaster detection (Dong et al.2018 and Limongelli et al. 2003), wireless net-
works (Castello et al. 2010), and building performance (Yoganathan et al. 2018, Tian et
al. 2018 and Bianco et al. 2012). For example, in bridge monitoring, sensors are strategi-
cally placed to detect changes in the structural integrity of the bridge, such as cracks or
deformations (Stubbes et al.1996 and Heo et al.1997). By analyzing the data collected by
these sensors, the health of the bridge can be assessed more accurately. Similarly, in build-
ing structural monitoring, OSP can improve the accuracy of data collected on changes in
temperature, humidity, and vibration, leading to more accurate assessments of building
health.

OSP is also of paramount importance for the energy performance of buildings. Most
of the methods developed in the context of smart buildings aim to find the optimal place-
ment of sensors to improve the monitoring and control of buildings. This requires careful
consideration of significant factors that directly affect the building’s performance. Previ-
ous studies, such those of Tian et al. (2018), Yoganathan et al. (2018) or Suryanarayana
et al. (2021) have shown that sensor locations and types can have a significant impact on
building performance and HVAC system performance, respectively. For example, chang-
ing sensor positions in one of a building’s rooms resulted in an HVAC energy variation
between -0.34% and 0.14% (Du et al. 2015).

The zone air temperature, controlled by thermostats, is a commonly used parameter
for controlling the indoor thermal environment in buildings. However, simulation and
experimental studies have shown that the temperature profile along the vertical direction
at different locations in a building can be non-uniform and stratified, and the temperature
profile can also vary under different conditions such as supply airflow rate, geometry of the
zone, climate region, and seasonal variation (Du et al. 2015) (Yoganathan et al. 2018; Shan
et al. 2019). Therefore, thermostat locations significantly affect building energy usage and
occupants’ thermal comfort.

In the field of modern building automation systems, wireless sensor/actuator networks
are commonly used for lighting controls. A codesigned strategy was applied by Maasoumy
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et al. (2013) for building lighting controls, resulting in 45% energy savings and a 23% re-
duction in sensor costs. Another study from Kim et al. (2020) utilized low-cost sensor
networks for lighting glare controls. But challenges such as simultaneous monitoring of
numerous variables, data management, power consumption of wireless sensors, and main-
tenance issues remain.

1.1.3.2 Approaches and methods for addressing OSP problem

In the previous sub-section, the state of the art discussed the topic of OSP from
an application perspective. When it comes to determining where and how many sensors
should be placed in buildings, there are two main approaches. The first approach relies
solely on the expertise of domain experts, while the second combines expert knowledge
with analytical or numerical methods.

Expertise-based methods involve using the knowledge and experience of domain ex-
perts to determine optimal sensor locations. These methods are based on guidelines, best
practices, and heuristics that are developed based on expert knowledge of the system be-
ing monitored. These guidelines for good practices often establish to avoid placing sensors
in locations where there is a risk of measuring inaccurate or unreliable data (Frei et al.
2021). For example, in the case of temperature sensors, it is well-known that direct ex-
posure to sunlight can cause measurement errors. Therefore, guidelines may recommend
placing sensors in shaded areas to obtain accurate temperature measurements. Similarly,
guidelines may also recommend avoiding sensor placement in areas with high turbulence
or flow disturbances, as these can affect the accuracy of measurements. Another approach
to expertise-based sensor placement is the trial-and-error method. This method involves
initially placing sensors in specific locations and then adjusting their locations based on
observations of unexpected phenomena affecting the measurements after a certain period
of time. For example, if unexpected changes in measurement data are observed, sensors
can be moved to different locations to obtain more reliable measurements. This trial-and-
error approach relies on the experience and intuition of domain experts who can identify
potential sources of measurement errors and take corrective actions accordingly.

Expertise-based sensor placement methods can be particularly useful in cases where
analytical or numerical methods may not be feasible or practical due to limitations in
data availability, computational resources, or system complexity. Huang et al. (2014)
proposed a method based on the expert method supplementing Computational Fluid
Dynamics (CFD) simulations to control indoor temperature and improve efficiency in a
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large-scale office building. This method is simple and practical, but there are no criteria to
evaluate its effectiveness. However, these methods leverage the knowledge and experience
of domain experts to guide sensor placement decisions and can provide valuable insights
for optimizing sensor placement in real-world applications.

As the above-mentioned study by Huang et al. (2014) shows, methods based on expert
knowledge can be complementary to analytical or numerical methods. The latter methods
can themselves be the sole basis for OSP approaches.

On one hand, analytical methods for OSP are based on mathematical and statistical
models that are used to determine the optimal sensor locations. These methods are gen-
erally fast and efficient, but they are limited by the assumptions made about the system
being monitored and the measurement process. They rely on mathematical models and
statistical techniques to estimate optimal sensor locations based on minimizing measure-
ment uncertainty or enhancing the accuracy of the parameter estimate of an analytical
model. Chen and Li (2016) used Bayesian optimization to develop virtual sensors by com-
bining prior knowledge of temperature statistics and Bayesian model fusion to predict
spatial temperature distribution, aiming to reduce the number of required sensors.

Maximum entropy is another analytical method for sensor placement that aims to
minimize measurement uncertainty. It is based on the principle that when you lack other
information, the most unbiased probability distribution is the one with maximum entropy.
This method estimates the probability distribution of the system being monitored and
determine optimal sensor locations that maximize entropy, thus minimizing uncertainty
in the measurements. Maximum entropy methods can also be seen as information-theory-
based methods because they select sensor locations that provide the most informative data
to improve understanding of the system being monitored. Papadopoulou et al. (2016)
proposed a method involving three sequential sensor placement strategies based on in-
formation entropy analysis to find the optimal sensor location for outdoor wind speed
detection. This method has advantages, such as considering a time-dependent system and
modeling error. However, this method does not consider systemic errors and spatial cor-
relations between errors, and it assumes constant modeling error. Although interesting,
the two above-mentioned methods (Bayesian Optimization, Maximum Entropy) are very
rarely used for sensor location for building performance monitoring. At the time of writ-
ing, only applications in structural health monitoring (SHM) of buildings seem to have
been studied (Osegueda et al.1997).

This is also the case for methods based on Maximum Likelihood. They are very often
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cited as a potential candidate (Faridah et al. 2021) method but are still confined to
the field of SHM or geotechnics. Maximum likelihood is an analytical method for sensor
placement that is based on estimating the parameters of an analytical model. Analytical
methods aim to maximize the accuracy of parameter estimates in a mathematical model
of the system being monitored. These methods select sensor locations that are most likely
to provide accurate estimates of the parameters of interest, thus minimizing measurement
uncertainty. They may involve optimizing the sensor locations based on the trade-off
between the cost of sensor installation and the expected benefits in terms of improved
measurement accuracy or system understanding.

On the other hand, numerical methods for OSP are based on simulation and opti-
mization techniques that are used to find the optimal sensor locations. One category of
numerical methods for sensor placement involves the use of optimization methods, such
as Genetic Algorithm (GA) (Hou et al., 2018) (Villa et al., 2022) and Particle Swarm Op-
timization (PSO) (Li et al., 2022a) (Hassani and Dackermann, 2023). These optimization-
based methods involve generating a set of candidate sensor locations and iteratively op-
timizing a performance metric, such as measurement uncertainty or information gain, to
identify the optimal sensor locations. Löhner and Camelli (2005) tried to find the optimal
sensor location using GA for detecting contaminant gas emissions based on CFD simu-
lation results for a residential block and a shopping mall, but no experiments supported
the simulations. Tian et al. (2018) proposed an optimization platform that uses PSO al-
gorithm as the optimization engine to seek the optimal placement of thermostats in an
office room with displacement ventilation and a Variable Air Volume (VAV) terminal box,
achieving either the best thermal comfort or the least energy consumption.

Another category of numerical methods for sensor placement involves adapted cluster-
ing methods, such as k-means clustering (Kalluri, 2017) (Gautam et al., 2022). Clustering
methods involve grouping data points into clusters based on their similarity, and these
methods can be adapted for sensor placement by clustering potential sensor locations
based on their spatial characteristics, system dynamics, or other relevant factors. Yo-
ganathan et al. (2018) proposed a data-driven method that includes such a clustering
algorithm and the Pareto principle to select the optimal sensor measurement points in an
office building. The authors used the k-means clustering method to divide office spaces
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into homogeneous groups based on their thermal behavior. Then, they used these groups
to determine the optimal locations of temperature sensors to maximize the accuracy of
building energy consumption prediction models. On another front, Shimosaka and Saisho
(2016) proposed a statistical method using Received Signal Strength Indicator (RSSI)
sensors to detect occupants. The optimal sensor locations are chosen using a probabilistic
multi-task classification by considering, for example, financial and privacy constraints.

Compared to analytical methods, numerical approaches for OSP are often more ver-
satile, accurate, and capable of handling realistic scenarios compared to analytical ap-
proaches. However, they may also require more computational resources and time, and
may involve more complex implementation. The choice between analytical and numerical
approaches for OSP depends on the specific problem requirements, available resources,
and desired level of accuracy and complexity.

In Table A.2 (In Appendix A), we have included a common method for selecting the
best sensor locations, along with its advantages and disadvantages. For this thesis, we
aimed to find a method that combines the strengths of both analytical and numerical
approaches. Specifically, we sought a method that is straightforward, efficient, precise,
adaptable, and capable of optimizing multiple objectives simultaneously. More details can
be found in Chapter 3.

1.1.4 Other Challenges in smart building

1.1.4.1 The sensor accuracy challenge

Sensors are typically calibrated by manufacturers to ensure their accuracy. However,
sensors can still exhibit low fidelity due to various factors such as harsh environments or
manufacturing defects, resulting in sensor faults. HVAC systems can experience different
types of sensor faults, including precision faults that affect the precision of sensor readings
due to measuring noise, and bias faults that result in sensor readings deviating from the
true reading. Figure 1.2 illustrates a typical diagram of precision and bias in sensor faults.
Sensor faults, also known as incipient faults, can evolve over time and may change slowly,
potentially going unnoticed and affecting control performance. Despite this, there are
limited studies that focus on incipient faults, with one study proposing a methodology to
estimate incipient fault magnitude for HVAC systems (Zhou and Dexter, 2009).
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Figure 1.2 – Sensor faults and classification (Bae et al., 2021)

Multiple studies have investigated sensor errors and their impact on sensor fault dis-
tributions. For instance, normal distributions have been applied to model sensor errors in
a study that focused on fault impact analysis framework (Li and O’Neill, 2019). Another
study investigated the impact of sensor faults on building energy consumption for demand
control ventilation, also using normal distributions for sensor errors (Lu et al., 2020a).
As different sensor types may exhibit different error characteristics, it is important to
consider the specific error characteristics of each sensor type.

In our thesis, the issue of maintaining sensor accuracy and preventing measurement
biases was a critical consideration. We took several approaches to address this challenge.
Firstly, certain sensors, such as those integrated into the weather station, underwent
meticulous factory calibration to ensure high measurement precision. Secondly, for sen-
sors involved in volatile organic compound (VOC) detection, we used the advantage of
self-calibration through self-referencing. These sensors utilized an internal reference ma-
terial with well-established properties to continually verify and adjust measurements in
real-time. Additionally, specific calibration protocols were meticulously followed for other
sensor types. As an example, for CO2 sensors, the environment in which the sensors were
deployed was carefully regulated. The room was opened to the external atmosphere until
a consistent measurement level was achieved across all installed sensors. Manual adjust-
ments, including gains, thresholds, and offsets, were then performed to fine-tune the sensor
readings. An important aspect ensuring measurement accuracy was the presence of re-
dundancies within the sensor network. This redundancy allowed us to identify and isolate
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any faulty sensors within the system. Detailed information regarding these calibration
procedures can be found in Section 3 of Chapter 2.

1.1.4.2 The data privacy and user acceptance challenge

In addition to energy conservation, security and privacy remain substantial challenges
in the smart home market.

Ensuring data privacy in smart homes is challenging due to issues like transparency,
control, and concerns about breaches, hacking, and misuse (Guhr et al., 2020). The Con-
nectivity Standards Alliance (CSA) is addressing this with a Data Privacy Working Group
(Pattison Tuohy, 2023). They aim to provide clear information on data usage and certify
compliant devices. This is especially significant in the absence of comprehensive federal
data protection laws in the US.

Additionally, understanding how users perceive and adopt smart home tech is crucial.
Mashal et al. (2020) explored this, considering trust, awareness, enjoyment, risks, useful-
ness, and ease of use. Their findings emphasize the importance of these factors on users’
attitudes and intentions toward smart homes.

In this thesis, we addressed the challenges of data privacy and user acceptance con-
cerning the use of measurement devices for assessing energy performance and monitoring
their usage. To ensure privacy and enhance acceptance, we carefully selected a range of
sensors, excluding cameras, that respect user privacy. For instance, our sound sensors do
not record conversations, and all data collected is transmitted via secure WiFi to the
University of Angers’ secure server (UACO2). This approach ensures that personal con-
versations are not captured, and data transmission is safeguarded. By leveraging these
measures, we aimed to strike a balance between gathering valuable energy performance
insights, respecting user privacy, and maintaining a high level of data security.

1.1.5 Intermediate conclusion

The first section of Chapter 1 has provided an overview of various concepts related to
performance monitoring of buildings. This includes energy performance indicators, mon-
itoring and sensors, OSP issue, and other challenges in smart buildings such as sensor
accuracy, data privacy, and user acceptance. In the section 1.2 of this chapter, the focus
will shift towards the role of occupants in smart buildings. Occupants are not just passive
users of smart home technologies, but they can also act as virtual sensors, providing data
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and information that can influence building performance and decision-making processes.
The concept of "User centric approach" or "human in the loop" will be highlighted, show-
casing how occupants can actively contribute to the operation and management of smart
buildings.

1.2 Occupants’ activities, occupancy monitoring and
event detection

Occupants are one of the most critical factors influencing energy consumption in the
building sector. Understanding and influencing the behavior of building occupants is cru-
cial for achieving energy conservation goals. In this section, we will focus on various energy
conservation methods that prioritize the role of occupants and are based on identifying
their activities, profiling their behavior, and understanding their interaction with the
smart home system. These methods focus on the habit-loops of smart home occupants,
which are the repetitive patterns of behavior that influence their energy consumption.
By carefully analyzing these habit-loops, it is possible to detect energy wastage and make
changes to reduce overall energy consumption. For example, by identifying specific choices
made by occupants, such as leaving lights on or adjusting thermostats unnecessarily, it
is possible to modify their behavior and lead to significant energy conservation. In the
present section 1.2, our goal is to provide insights into the complex relationship between
occupant behavior and building energy performance while emphasizing the importance
of involving occupants as active participants in the energy management process. We will
discuss three key aspects of this relationship. Firstly, we will introduce the concept of
human-in-the-loop, highlighting its significance in energy management strategies. Sec-
ondly, we will present potential taxonomies to categorize the activities and behaviors of
occupants. Thirdly, we will focus on the sensors used to monitor and assess occupancy
and activities.

1.2.1 The Occupants - Human in the Loop (HiL)

The key factor for the smart home is integration of various sensors and controls to
guarantee their appropriate operation, to optimize the energy efficiency of building and
maintain the indoor comfort. However, the success of a smart house system heavily de-
pends on the involvement of the occupants, which is not always straightforward. The

30



1.2. Occupants’ activities, occupancy monitoring and event detection

concept of Human integration in the Loop (HiL) aims to address this issue by actively
involving occupants in the smart home’s operation (Bavaresco et al. 2019). The inhabi-
tants provide feedback to the system and make decisions that affect the home’s energy
consumption and comfort levels. Typically, a smart home system is meant to be adaptive,
allowing it to modify its behavior based on the input of the residents. Manual inputs,
such as altering the temperature, or automatic inputs, such as occupancy detection, can
provide this feedback.

The HiL concept in smart homes offers several advantages. First, it enables the system
to respond in real-time to changes in the environment and occupant preferences. This
results in a more efficient system that better meets the needs of the occupants. Second,
it can raise occupants’ awareness of energy consumption and encourage energy-efficient
practices, leading to a more sustainable and eco-friendlier lifestyle. HiL can ultimately
result in higher user satisfaction, as the system is better able to fulfill the demands and
preferences of the occupants.

Recent studies have focused on implementing HiL in smart homes. For example, Cho
et al. 2023 present an artificial intelligence (AI) wearable sensor-based human-in-the-
loop HVAC control system that is operated on a real-time basis reflecting the thermo-
physiological condition of the occupant to automatically improve their thermal comfort
while reducing the energy consumption of the building. The wristband-type, AI-based,
three-point wearable temperature sensor offers excellent thermal comfort prediction ac-
curacy (93.9%), enabling a human-centric HVAC control operation. Wu et al. (2022) con-
ducted a survey of existing works on HiL for machine learning from a data perspective. The
authors found that HiL can be beneficial in promoting the automation of machine learning
by integrating human domain knowledge into the system. The authors aimed to classify
the existing works into three categories with a progressive relationship and summarize
their major approaches along with their technical strengths and weaknesses. They classi-
fied existing works on HiL into three categories: (1) improving model performance from
data processing, (2) improving model performance through interventional model training,
and (3) designing system independent HiL. They also summarized major approaches in
natural language processing, computer vision, and others. In their survey, the authors
conclude that HiL can be beneficial in promoting the automation of machine learning
by integrating human domain knowledge into the system even if challenges remain. One
challenge is how to effectively integrate human knowledge into machine learning models,
particularly in domains where data is scarce. Another challenge is determining the appro-
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priate level of human involvement in the loop, as too much or too little involvement can
negatively impact the performance of the machine learning system. On the other hand,
opportunities for human-in-the-loop in machine learning include enabling the use of ma-
chine learning in complex or dynamic environments where traditional models may not be
sufficient, as well as improving the interpretability and transparency of machine learning
models (Lage et al., 2018). HiL can also help to address issues of bias and fairness in
machine learning by allowing humans to provide feedback and corrections to the system.
The extensive literature on the subject shows by consensus that HiL is an essential as-
pect of smart homes, enabling occupants to actively participate in the building’s energy
management and maintain indoor comfort levels.

In this thesis, the concept of Human-in-the-Loop is considered. Given that our case
studies (refer to Chapter 2) involve educational spaces, the humans in the loop, so to
speak, encompass students, teachers, and even cleaning staff during certain closing hours
of the facility. They are considered part of the loop because they significantly influence
various parameters through their presence and activities. When present in the classrooms,
students and teachers engage in various activities, including turning lights on or off, open-
ing or closing doors and windows, using personal computers, and engaging in conversa-
tions, among others. The number of occupants and the nature of their activities may vary
throughout the day. These activities can combine and overlap (refer to Chapter 5). Fur-
thermore, they contribute to the loop once again, as their comfort requirements translate
into constraints and/or objectives for optimized regulation (refer to Perspectives section).

1.2.2 The Activities – Occupants Behavior (OB)

1.2.2.1 Taxonomies of occupants’ activities

In smart home management, to maximize occupant comfort and minimize energy con-
sumption, detection and identification of occupant activity / actions (entering/leaving
the house, number of people) and house status (windows open, system failure) are criti-
cal. These activities and status information are highly unpredictable as they depend on
multiple factors and are subject to instantaneous changes.

But, first it is essential to have a clear understanding of what constitutes an activity
and how it can be detected and classified. Researchers have proposed various approaches
for recognizing different types of activities, such as occupancy, presence, motion, location,
and usage of appliances or devices. It remains difficult to establish a unified and com-
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prehensive taxonomy of activities. This is partly due to the diversity of building types,
occupant profiles, and cultural norms, which affect the range and variability of activities.
Several studies have attempted to classify activities based on their temporal and spatial
characteristics, such as their duration, frequency, intensity, and sequence (Ahn and Park,
2018). For instance, some works have distinguished between routine / primary activities,
such as sleeping, eating, working, or relaxing, and non-routine / secondary activities, such
as walking, talking, or listening to music, based on their context and purpose (Yamaguhci
et al., 2017). Other works have used clustering or classification algorithms to group similar
activities based on their sensor patterns and contextual information, such as the time of
day, the day of the week, the season, or the weather (D’Oca and Hong, 2015; Dong et al.,
2022). Among the many works proposing taxonomies of building occupants’ activities,
we can cite the classification method, known as DNAS, developed by Hong et al. (2015a;
2015b). DNAS stands for Drivers, Needs, Actions, and Systems. Its framework aims to
identify the key drivers (e.g., environmental concerns, health concerns, comfort prefer-
ences, social norms, etc.) that influence occupant behavior, the needs that occupants are
trying to fulfill (e.g., comfort, productivity, social interaction, personal well-being, energy
conservation, sustainability, etc.), the actions that occupants take to meet those needs
(e.g., adjusting temperature or lighting, opening or closing windows, using fans, engag-
ing in social activities, using personal electronics, etc.), and the systems in place that
shape those actions (e.g., building automation systems, control systems, social norms and
expectations, personal habits and preferences).

Overall, the literature shows that a complete and detailed taxonomy for occupant
behavior can be quite complex and depends on the specific application or domain. In
Table A.3 in Appendix A, we propose a broad taxonomy that covers different aspects of
occupant behavior. This taxonomy is not exhaustive and can be adapted to different ap-
plications and domains. Moreover, a taxonomy for occupant behavior can be constructed
by combining activity-based, location-based, time-based, etc. This merged taxonomy can
include the categories shown in Table A.4 in Appendix A.

In the following paragraphs, we will focus on the influence of occupants’ behavior
from various perspectives, including occupancy location detection, activities detection,
occupants’ habits and others (peak load shifting, energy prediction).
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1.2.2.2 Occupancy location, Activity detection and identification, Habit Pro-
filing

In the context of advanced building controls, detecting the presence and location of
occupants within a building is a fundamental step. Several studies have explored methods
for occupant presence detection. Das et al. (2006) have proposed the utilization of learn-
ing algorithms to pinpoint the location of multiple inhabitants, subsequently enabling the
efficient management of resources based on location. This location-based resource man-
agement minimizes uncertainty and optimizes energy usage by adapting to occupants’
positions. Furthermore, Barbato et al. (2009) have introduced MobiWSN, an integrated
energy management system that interfaces with Wireless Sensor Networks to oversee smart
home appliances. This system not only conducts user profiling through appliance sensor
data analysis but also assesses the performance of prediction algorithms for occupant be-
haviors using simulation data. The algorithm considers various scenarios, including the
Local Updating Algorithm and the Global Updating Algorithm, to ensure precise user
presence and behavior predictions. These advanced techniques for occupancy location de-
tection empower smart homes to make significant energy savings by automatically turning
off redundant appliances and optimizing energy consumption patterns based on the occu-
pants’ locations and behavior. These technologies contribute not only to reducing overall
energy consumption but also to enhancing user comfort and convenience in smart homes.

With the accurate detection of occupant presence established, the next vital step is
the detection of their activities. Accurate detection of occupants’ activities allows for
the efficient adjustment of energy systems, consequently promoting energy conservation.
Alhamoud et al. (2014) have introduced EnergyAdvisor, a two-step framework that first
identifies user activities and then identifies appliances irrelevant to those activities. This
framework facilitates energy conservation by detecting and reducing energy consumption
associated with unnecessary appliances. Moreover, Cottone et al. (2015) have emphasized
the importance of predicting user activities to create an energy-saving model. Monitoring
user activities and scheduling appliances accordingly can help identify peak energy usage
and reduce it. In a similar vein, Xu and Chen (2020) have developed a multi-step technique
to identify anomalies in smart home energy usage data. This approach correlates appliance
energy consumption patterns with user activities to identify normal and abnormal energy
usage situations and cluster energy usage patterns. There are numerous studies focusing
on Home Energy Management Systems (HEMS) that integrate with smart homes to
provide energy-saving suggestions, exemplified by Abrishambaf et al. (2016) and Zhou
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et al. (2014). Similarly, Machorro-Cano et al. (2020) have proposed a HEMS-IoT system
that employs machine learning algorithms to offer energy-saving recommendations while
considering user preferences and comfort. This system ensures smart home safety and
comfort, effectively conserving energy. A case study validates the system’s effectiveness in
energy conservation, while users receive energy-saving recommendations through a web
interface and mobile application.

Occupants’ habits play a significant role in impacting energy consumption, making it
imperative to address these habits effectively. The energy demand is profoundly influenced
by user habits, and suggesting ways to enhance these habits can contribute to energy
conservation. Researchers have explored techniques that recommend habit changes by
analyzing patterns in occupancy behavior. Wang et al. (2012) have proposed a system
that consists of two components: one detects people’s locations in smart homes, and the
other collects information on energy usage and user location. Using this information, a
computer recommends ways for individuals to improve their energy usage habits. Alsalemi
et al. (2019; 2020) have employed a similar approach, identifying micro-moments that
represent short energy events influencing appliance states, from inactive to active, to
understand energy consumption patterns based on people’s activities. The authors have
developed a framework that includes a micro-moment classifier, a recommendation engine
that identifies people’s routines, and an application that demonstrates the benefits of habit
changes.

This recommend system uses sensor data to classify micro-moments and generates per-
sonalized recommendations based on individuals’ energy consumption profiles, ensuring
that energy-saving suggestions are delivered at the right time for increased acceptance.
Furthermore, they have developed a synthetic data simulator to produce hourly energy
consumption data. Himeur et al. (2020) have proposed an approach based on the identi-
fication of micro-moments to detect energy consumption anomalies using a deep neural
network. Other recommend systems have been introduced by Sardianos et al. (2020) and
Varlamis et al. (2022), based on the intelligent fusion of sensor data and human feedback.
Additionally, analyzing patterns in appliance interaction schedules provides another av-
enue for reducing unnecessary energy usage, considering user actions. Diyan et al. (2020)
have employed a reinforcement learning (RL) algorithm that relies on human-appliance
interaction to develop an effective real-time scheduling system. The RL scheduling method
segments the day into different states, with agents attached to household appliances per-
forming various tasks to enhance their energy-saving rewards. However, it’s essential to
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note that the recommendations provided to the user are primarily limited to appliance
interaction behavior.

1.2.2.3 Energy prediction and peak load shifting

For the energy prediction, an accurate prediction of energy load is critical for effec-
tive energy management. Jahn et al. (2010) create a user interface for monitoring ap-
pliance energy consumption, allowing off-peak scheduling to reduce bills. Similarly, the
activity appliance energy consumption model proposed by Lima et al. (2015) combines
activity detection and appliance usage settings to recommend energy-efficient appliance
scheduling. Fakhar et al. (2023) offer a real-time off-peak scheduling technique, consider-
ing user-defined criteria. The Instant Energy Scheduling Recommendation method they
have developed uses appliance energy consumption, user-created rules, and energy price
signals to identify energy-saving recommendations for appliance scheduling. Chen and Lin
(2018) emphasize the importance of precise energy load prediction for both homes and
appliances. Arghira et al. (2012), Zhao et al. (2013) and Li and Hong (2014) present al-
gorithms that automatically schedule appliances during low-priced hours based on energy
price data, with energy storage during off-peak hours. These functions are managed by an
energy management controller (EMC), which takes input from appliances, energy prices,
user budget, and historical data to optimize energy distribution.

1.2.2.4 Intermediate conclusion

In the real cases examined in this thesis, which involved occupied classrooms by stu-
dents, teachers, and occasionally cleaning teams, we observed a wide range of occupant
behaviors that can be further contextualized using various taxonomies for occupant be-
havior, as we discussed previously. These behaviors are mainly governed by the original
activity planned in the occupied rooms (lighting, using a projector, computers). These
are also driven by objectives related to comfort preferences, energy management, and in-
door environmental quality. The occupants’ activities encompass a range of time-based or
building control-related ones (lighting, opening/closing windows, opening/closing doors),
and a significant portion of which can be characterized as unpredictable behavior. In this
work, we will not focus on the problem of occupant localization, but rather on occupancy
detection. Our primary focus is to discern whether a given space is currently occupied
and, if so, by how many individuals. Rather than pinpointing their precise locations within
occupied rooms, our emphasis lies on understanding the occupancy status itself. However,
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our interests extend beyond mere occupancy. We also aim to detect and identify events
that hold the potential to impact energy consumption, encompassing both electrical usage
(monitored through light sensors and socket meters) and comfort considerations (such as
monitoring door and window openings and closures). Furthermore, we aspire to tackle
the complex challenge of detecting and disentangling multiple concurrent activities, rec-
ognizing the need for advanced approaches and techniques (as discussed in Chapter 5).
Finally, an important aspect is our ability to identify behavioral patterns or habits that
can greatly enhance the accuracy of estimating and predicting energy needs, demands,
and usage.

1.2.3 The monitoring of occupancy and activities

After having, in the previous section, essentially presented the activities of interest
that need to be detected/identified in order to characterize the influence of occupants’
behavior on the energy performance of buildings, we intend in this new section to review
the literature on the subject of the means mostly used for their monitoring. This new
section echoes and complements subsection 1.1.2.2, primarily focused on the nature of
measured data. According to the literature consulted, we can estimate that today the main
studies are based on environmental sensors (section 1.2.3.1), cameras (1.2.3.2) and infrared
technologies (1.2.3.3), most of which are based on wireless communication (1.2.3.4). Some
alternatives have also been identified in the literature; these will also be discussed in
section 1.2.3.5.

1.2.3.1 Environmental sensors for occupancy monitoring

Environmental sensors, such as CO2, temperature, humidity and light, are commonly
combined for occupancy estimation and detection (Candanedo and Feldheim, 2016).

CO2-sensors have been found to be the most used sensor for this purpose. They are
compact and non-invasive. However, the commonly used CO2 sensors require some con-
siderations when estimating occupancy counts. This is because human CO2 production
rates vary based on factors like current level of activities, diets, and body sizes. Also, the
CO2 concentration level will vary from one location to another based on the ventilation
conditions. The CO2-based scheme has low accuracy when estimating a large number of
people and is only suitable for rough estimations. Moreover, this method has a moderate
dynamic response since it takes some time for the CO2 concentration to change when

37



Chapter 1 – Literature review

occupants enter or leave a room. If people leave the room quickly enough that the CO2

concentration hardly changes, their numbers may not be considered in the occupancy
estimation, except if their number is important. Additionally, as the CO2 concentration
varies from room to room based on ventilation, a general model to deduce the occupancy
rate using measured CO2 levels may not be applicable. Despite these precautions and
limitations to consider, the CO2 sensor is still the most widely used for detecting the
number of occupants in buildings (Gruber et al., 2014; Lapuente et al., 2022).

Multiple sensors are often combined to improve accuracy. Studies by Franco and Lec-
cese (2020), Rahman and Han (2018), Li et al. (2019), and Kim et al. (2023) explore
different methods, including Bayesian inference and machine learning algorithms, to es-
timate occupancy using CO2 concentration data along with other factors. Combining
various sensors compensates for limitations and enhances performance in occupancy de-
tection. For example, Aliero et al. (2022) proposed data fusion of thermal camera video
and CO2 concentration sensors to improve the accuracy of occupancy rate predictions.

1.2.3.2 Camera used for occupancy monitoring

Occupancy estimation via cameras typically involves analyzing images or videos to
detect occupants based on body features like heads, faces, body contours, or movements.
Jeyapadmini and Kashwan (2015) propose a hardware-based approach using a camera for
activity identification, consisting of training, comparison, and control phases. Chandran
et al. (2017) use a PTZ (Pan-Tilt-Zoom) surveillance camera to detect heads for people
counting. PTZ cameras monitor wide areas by dividing them into zones and capture
high-resolution images for head detection. Camera-based methods offer high accuracy but
face challenges like environmental obstacles, partial body exposure, and privacy concerns.
Time-of-Flight (ToF) cameras overcome some of these challenges with advantages such as
low-light performance, wide field of view, and the ability to detect shapes and movements
without capturing identifying features (Yang et al., 2021; Navarro et al., 2022). However,
ToF cameras can be costly.

1.2.3.3 Infrared technologies

The use of infrared technology, also known as infrared light, is a popular method for
estimating occupancy counts due to its low cost, privacy-preserving features, and non-
invasiveness. Naser et al. (2020) proposed a low-cost and low-power non-contact scheme
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for occupancy estimation using an infrared thermal sensor array, which accurately ex-
tracts human body temperature from a noisy environment. Tyndall et al. (2016) used
machine learning classifiers to interpret raw data obtained from a thermal detector array
and a PIR sensor to determine the number of occupants in the sensor’s field of view. Al-
though infrared-based sensors offer advantages, their ability to estimate occupancy counts
is questionable, and they are best suited for situations where only a small number of peo-
ple need to be monitored. In addition, they cannot detect stationary occupants, and the
detection range of each sensor is limited. Raykov et al. (2016) used a single PIR sensor
combined with machine learning models to solve the counting problem in a room, but this
method has limitations as people can easily block each other from the field of vision of a
single sensor. Wahl et al. (2012) used distributed strategically placed PIR sensors which
strategically placed in pairs at gateways, such as doorways and hallway sections, these
sensors work in conjunction with two algorithms which are Direction Based Algorithm
and a Probabilistic Distance Based Algorithm to accurately detect movement direction
and estimate occupant count. This system, characterized by its cost-effective and energy-
efficient design, demonstrates effectiveness in various simulated office scenarios.

1.2.3.4 Wireless communication

Wireless communication technology is commonly used to estimate occupancy counts,
using technologies like Wi-Fi, Bluetooth, Bluetooth low-energy (BLE), and RFID. Wi-Fi
and Bluetooth have become increasingly popular due to the ubiquity of mobile devices
that support them. BLE is a more energy-efficient alternative to classic Bluetooth and
Wi-Fi. Researchers have proposed various systems that utilize these technologies for occu-
pancy detection, such as Longo et al. (2019) who compared the performance of Wi-Fi and
Bluetooth/BLE for occupancy estimation. Lu et al. (2016) proposed a system that uses
commercial Wi-Fi hardware for occupancy inference, while Zou et al. (2018b) developed
a Wi-Fi-based device-free method for occupancy detection and crowd counting. However,
Wi-Fi-based systems have limitations, such as the possibility of multiple smartphones per
occupant, occupants not turning on Wi-Fi on their devices, or occupants forgetting their
phones. And alternatives, such as BLE based systems also require additional cost and
maintenance for deployment (Iannizzotto et al., 2023).
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1.2.3.5 Alternative monitoring

In addition to common sensors such as CO2, temperature, humidity, cameras, and
PIR, there are also unconventional techniques for occupancy detection in buildings. Light
sensors (photodiodes) can detect occupancy by measuring changes in light levels caused
by the movement, but they may not work well in areas with ample natural light. Ma-
chine learning with light sensors can improve accuracy (Candanedo and Feldheim, 2016).
Another technique investigated in literature is audio extraction, which involves analyzing
sound waves to detect human presence when privacy concerns limit camera use. Huang
et al. (2018) propose an audio-based occupancy estimation technique. Ultrasound sensors
emit sound waves, bounce them off objects, and analyze reflections to detect humans,
often used with other sensors for accuracy (Hammoud et al., 2017). Microwave Doppler
radar, as used by Islam et al. (2023), is unobtrusive and privacy-friendly for occupancy
estimation. Depth sensors like the Microsoft Kinect were used for crowded area counting
while preserving privacy (Diraco et al., 2015). While these non-conventional techniques
offer some advantages over traditional methods, they also have some limitations, such as
their reliance on ideal conditions for accurate detection and their susceptibility to detect
occupants when a room is empty or reversely to detect an empty room whereas people are
present. Chair sensors are another unconventional technique that detect human presence
by analyzing pressure and weight distribution when someone sits on a chair (Labeodan
et al., 2016).

Each sensor type has advantages and limitations, summarized in Table A.5 (in Ap-
pendix A). Combining data from multiple sensors is key to accurate occupancy estimation.
However, it is also important to note that even with the most advanced sensor technol-
ogy, occupancy prediction is only useful if there are effective methods of analyzing and
modeling the data. This is where the field of data analytics comes into play. Machine
learning algorithms can analyze sensor data to develop sophisticated occupancy models
(see section 1.3).

After careful consideration, we have ultimately chosen eight sensor types (CO2 sensor,
temperature sensor, humidity sensor, Light sensors, electricity power consumption sensor,
door open sensor, window open sensor,volatile organic compound sensor) from those pre-
sented in the table A.5 in Appendix A. Our objective was to encompass a broad range of
possible measurements, all of which provide valuable information for occupancy estima-
tion, occupant comfort, energy consumption, and indoor air quality. While precision was
a crucial criterion in our selection process, it was not the sole determining factor. We also
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aimed to utilize the maximum number of commonly used sensors with well-established
functionality and maintenance protocols. The use of PIR sensors was considered due to
their capability for entry and exit counting. However, we determined that these sensors
were more susceptible to "student interferences" and potential long-term reliability issues.
Additionally, certain ranges of PIR sensors are known to be sensitive to temperature and
humidity variations, limiting their ability to detect or characterize the activities of individ-
uals within the room, whether they are stationary or in motion. With these considerations
in mind, we have assembled a suite of selected sensors that collectively address our research
objectives while minimizing potential drawbacks. These sensors have demonstrated robust
performance, are easily accessible for maintenance, and offer the necessary precision and
reliability for our occupancy estimation and energy management applications.

1.3 Detection, identification and estimation

In the previous section 1.2, we have presented some taxonomies to categorize the ac-
tivities and behaviors of occupants and have focused on the sensors used to monitor and
estimate occupancy. The aim of the present section 1.3 is to focus on the detection, iden-
tification and estimation of occupants’ activities using sensors and data analytics. It is
essential to have a clear understanding of what constitutes an activity and how it can
be detected and classified. In this section and the following paragraphs, any activity of
the occupants and any change in the state of the house will be seen, at first view, as a
deviation from the "normal" operation of the building. The "normal" function is limited
to the response of the building to climatic, material variables, thus excluding any variable
associated with the above-mentioned occupant activities and change of state. In this first
vision, the activity detection problem can be considered as an anomaly detection one. The
problem of identifying one or more types of activities or changes of state will be a classi-
fication problem (section 1.3.2). Anomaly detection is also known as deviation detection
because the value of an anomaly object always deviates significantly from the expected
or common data value. This deviation can be quantitatively estimated using regression
methods (section 1.3.3). However, before moving on to a review of classification and re-
gression methods, Section 1.3.1 will provide the important elements for understanding the
differences, characteristics, and trade-offs between so-called supervised, unsupervised and
semi-supervised learning methods, and ultimately for choosing the appropriate approach
for a given problem. At the end of section 1.3, we will propose, regarding the informa-
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tion found and compared in the literature, an overall table presenting a synthesis of the
advantages and disadvantages of the methods presented in the two subsection 1.3.2 and
1.3.3.

1.3.1 Main categories of learning methods

In the field of occupancy’s detection / estimation, three main categories of learning
methods are widely used: supervised learning, unsupervised learning, and semi-supervised
learning. Each of these approaches has its own unique characteristics, applications, lim-
itations, and constraints. Supervised learning is a learning paradigm where the model is
trained on labeled data, meaning that the input samples are accompanied by their corre-
sponding target values or labels. The model learns to map the input data to the desired
output based on the provided examples. Some popular supervised learning algorithms
include Linear Regression, Support Vector Machines (SVM), Decision Trees, Random
Forests, and Neural Networks. Supervised learning excels when abundant labeled data is
available, but it may face challenges in scenarios with limited labeled data or when the
labeling process is expensive.

Unsupervised learning, on the other hand, deals with unlabeled data, where the algo-
rithm learns to identify patterns, structures, or relationships in the data without any prior
knowledge of the desired outputs. Clustering algorithms such as K-means, DBSCAN, and
Hierarchical Clustering are widely used in unsupervised learning to group similar data
points together. Dimensionality reduction techniques like Principal Component Analysis
(PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE) are employed to cap-
ture the underlying structure and reduce the dimensionality of the data. Unsupervised
learning finds applications in areas such as anomaly detection, data exploration, and rec-
ommendation systems. One of the main challenges in unsupervised learning is evaluating
the quality and interpretability of the learned representations.

Semi-supervised learning lies between supervised and unsupervised learnings, leverag-
ing a combination of labeled and unlabeled data. It aims to improve the performance of
models by utilizing the limited labeled data along with the abundance of unlabeled data.
The labeled data provides crucial supervision signals, while the unlabeled data helps in
capturing the underlying distribution and expanding the training set. Techniques like
Self-Training, Co-Training, and Generative Adversarial Networks (GANs) are commonly
employed in semi-supervised learning. This approach finds applications in scenarios where
acquiring labeled data is costly or time-consuming. However, it still faces challenges in
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scenarios with imbalanced (i.e., with very few abnormal data compared to the amount of
normal data) labeled data and ensuring the quality and reliability of the inferred labels
from the unlabeled data.

It is important to note that these categories are not mutually exclusive, and hybrid
approaches often exist. For example, transfer learning combines elements of supervised and
unsupervised learning to leverage knowledge from one domain to another. Reinforcement
learning is another learning paradigm where agents learn to interact with an environment
and make decisions based on rewards and punishments. The choice of a method depends
on factors such as the availability of labeled data, the nature of the problem, the desired
interpretability of results, and the scalability of the algorithms.

1.3.2 Detection and identification of activities – a classification
problem

As previously stated, activity detection and identification can be considered as an
anomaly detection problem and falls under the category of classification problems. In
view of the importance of the machine learning (ML)-based approaches, we will divide
subsection 1.3.2 into three parts. In the first one (§ 1.3.2.1), we quickly give the definitions
of some metrics used to assess the quality of the classification work of algorithms. The sec-
ond part (§ 1.3.2.2) will deal with traditional (i.e., non-network based) ML classification
/ fault detection methods. The third part (§ 1.3.2.3) will focus on those learning methods
based on the use of networks or on deep learning (DL)-based approaches. The methods
used for the detection of building occupancy can be classified into different categories de-
pending on the purpose of the data collection or on the data analysis approach employed.
Thus, one way to categorize these methods is by purpose: detection of presence, iden-
tification of occupants’ activities, or estimation of the number of occupants. This latter
type - estimation of the number of occupants - can be seen as a classification problem
(each number of occupants corresponds to a specific class) as well as a regression problem
(estimation of the number by a model). The main algorithms used for the estimation of
the number of occupants will be also reported in the present section. Another way is to
differentiate between supervised, unsupervised, and semi-supervised classification meth-
ods. Both categorizations are useful for understanding the state-of-the-art methods used
for occupancy detection.

Table A.6 (in Annex A) complements this state-of-the-art by summarizing and report-
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ing the methods used, their accuracies, as well as the types of data and sensors used.

1.3.2.1 Some definitions of metrics used in classification

Some (basic) concepts and indicators are used to monitor the efficiency and quality of
the classification. Most of the common indicators we limit ourselves to are derived from
the confusion matrix. The confusion matrix is a table used to evaluate the performance
of a classification algorithm (see Table 1.1 below for an example on presence detection).
The confusion matrix contains the number of true positive, true negative, false positive,
and false negative predictions made by the algorithm.

Predicted
Absence Presence

Real
Absence True negative (TN) False positive (FP)
Presence False negative (FN) True positive (TP)

Table 1.1 – Confusion Matrix

From this confusion matrix can be calculated or drawn:
— Accuracy: A measure of the overall performance of a classification algorithm and

gives the proportion of correctly classified instances (Accuracy = T P +T N
T P +T N+F N+F P

).
— Precision: A measure of the ability of a classification algorithm to avoid false pos-

itive predictions and give the proportion of true positives among all predicted
positives (Precision = T P

T P +F P
).

— Recall (or Sensitivity): A measure of the ability of a classification algorithm to find
all the positive instances in the data and gives the proportion of true positives
among all actual positives (Recall = T P

T P +F N
).

— Specificity: A measure of the ability of the model to detect negative instances
correctly and give the proportion of true negatives among all actual negatives
(Specificity = T N

T N+F P
).

— F1-score: A measure of the performance of a classification algorithm that balances
the recall and precision and corresponds to the harmonic mean of precision and
recall (F1 = 2×( Recall × precison )

Recall + Precision ).
— ROC curve: Draws a plot of true positive rate vs false positive rate and is used to

evaluate the trade-off between recall and specificity.
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1.3.2.2 Traditional classification methods

There are many examples of unsupervised clustering methods being used for occu-
pancy detection in buildings. One example is the work of Pan et al. (2017) who present a
case study in Shanghai residences using K-means cluster analysis for occupant-behavior-
based electricity load patterns in buildings. The study analyzes the electricity consumption
patterns of residents through smart meters and proposes an approach to group similar
consumption patterns based on their features. The study also identifies the characteristics
of each cluster and provides recommendations for energy management strategies. Unsu-
pervised K-means data mining approach has also been used by Yang et al. (2023) who
aims identifying and analyzing the energy consumption patterns and characteristics of
college dormitories in detail and examining three influencing factors (occupants’ gender
and floor and orientation location of rooms). A study on the use of occupancy and en-
ergy data to develop a predictive model for building energy consumption in commercial
buildings is presented by Yang et al. (2017a). The authors propose a novel method of clus-
tering to identify patterns in occupancy and energy usage data and use regression models
to predict future energy consumption based on these patterns. The results show that the
proposed method can accurately predict energy consumption in commercial buildings and
has the potential to be used for energy-efficient building operations.

Among the best-known and most used supervised clustering methods in the field of oc-
cupancy estimation, the k-Nearest Neighbors (k-NN), Support Vector Machine (SVM) and
Decision Trees methods should be mentioned. The underlying idea of the k-NN method
is quite intuitive: if the majority of the nearest neighbors of a sample in the feature
space belong to a certain category, then the sample should also belong to that category.
Nonetheless, Szczurek et al. (2017) demonstrated that k-NN, as a nonparametric, nonlin-
ear, minimum distance classifier, is effective for occupancy determination. In a study by
Vela et al. (2020), k-NN was found to be the best algorithm for occupancy estimation,
but its use may be limited due to its O(n2) time complexity and its high computational
cost. Another issue is that k-NN may not perform well when the sample size is imbal-
anced, i.e., when one class has a much larger sample size than others, which can cause
confusion among the k-neighbors of a new sample. The SVM method is a type of classifier
that is used for supervised learning in data classification and regression. It uses a decision
boundary known as the maximum margin hyperplane, which is based on the samples
used for learning. In the literature reviewed, SVM is one of the most commonly used
machine learning algorithms. Zuraimi et al. (2017) used the SVM algorithm combines
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with artificial neural networks (ANN) to identify the number of people in a space using
CO2 sensors. Chandran et al. (2017) used a cascade detector of SVM to detect human
heads. Shih (2014) used a modified SVM-based observational measurement to provide
robust day-and-night occupant tracking and counting performance. Literature globally
agrees on the fact that SVM methods work well with high-dimensional data and is very
fast in prediction when the number of classes is limited. Involving a decision tree model,
D’Oca and Hong (2015) tried to identify occupancy patterns and translate them into typ-
ical working user profile schedules that can be used as input to building energy modeling
programs. The process involves a rule induction algorithm to learn a pruned set of rules,
and a cluster analysis to obtain consistent patterns of occupancy schedules.

Two other more recent types of classification methods with great potential have re-
cently been exploited for fault detection and diagnosis (FDD) and might be good candi-
dates for occupancy detection and identification. The first type of methods is the one based
on the density-based spatial clustering of applications with noise (DBSCAN) algorithms,
relying on the identification of clusters as areas of high data point density separated by
areas of lower density (see further detals in section 4.2.1). Yan et al. (2016) utilized the
density-based clustering algorithm OPTICS (Ordering Points to Identify The Clustering
Structure) to identify sensor faults in Air Handling Units (AHUs). Novikova et al. (2020)
also employed a density-based clustering algorithm to detect anomalies in Building Au-
tomation Systems (BAS) data of a three-story building. These works demonstrated that
cluster analysis is a promising method to condense a large volume of BAS data into a
few operational patterns that can be suitable for HiL identification and building systems
faults interpretation. The second promising type of methods is the Spectral Clustering
(SC) technique, leveraging the eigenvalues and eigenvectors of a similarity matrix derived
from the data and which is effective in handling non-convex and complex-shaped cluster.
In the field of building monitoring, SC technique has been used by Ghaffar et al. (2022)
for extracting individual appliance energy usage from the aggregate energy profile of the
building. These two techniques, DBSCAN-based and SC-based, are competitive and vi-
able, with advantages of low complexity, high accuracy, no training data requirement, and
fast processing time.

Methods borrowed by machine learning from statistics have been also applied to occu-
pancy and event detection. The most frequently applied methods are the logistic regression
(LR), Gaussian mixture models (GMMs) or processes (GMPs), random forests (RFo), and
Naïve Bayes Classification (NBC). LR is a supervised classification method that seeks to
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predict the probability of a sample belonging to a particular class. It is commonly used in
binary classification tasks, where there are only two possible classes. For instance, Stazi et
al. (2017) applied and compared a logistic regression model and a linear regression model
to detect the windows status (opened or closed) in classrooms. GMMs are a probabilistic
clustering technique that assumes the data points are generated from a mixture of Gaus-
sian distributions. In the context of occupancy estimation, GMMs can be used to cluster
data from various sensors in order to identify occupancy patterns in a building. GMMs can
model complex occupancy patterns that arise due to the presence of multiple occupants,
their different schedules and activities, and the effect of external factors such as weather.
One advantage of GMMs is that they can provide uncertainty estimates for occupancy
predictions, which can be useful in decision-making processes (Xu et al., 2020). RFo is
a supervised machine learning algorithm that builds multiple decision trees, mentioned
above, to generate a prediction model. RFo can be used for classification or regression
tasks and is particularly useful when dealing with high-dimensional data (Parzinger et
al., 2022). NBC is a probabilistic algorithm based on Bayes’ theorem, which assumes that
the presence of a particular feature in a class is unrelated to the presence of any other
feature. In the context of occupancy detection, NBC can be used to classify occupancy
patterns based on the probability of different events occurring together (Fajilla et al.,
2021; Aliero et al., 2022).

1.3.2.3 Advanced classification methods based on networks

Before exploring network-based classification methods, let us introduce the Principle
Component Analysis (PCA) method. This method, used in fault detection and diagnosis,
shares key concepts with neural networks: reducing variables in a low-dimensional latent
space, constructing models in that space, and reconstructing data. By comparing the
original data to model-calculated data, we estimate a reconstruction error for each data
point. If this error is too large, it indicates differences from the majority and signifies an
abnormal situation. In the field of occupancy estimation, which is of interest to us, we
can mention for example the study by Baird et al. (2017).

However, in the evolving field of machine learning, advanced techniques like Uniform
Manifold Approximation and Projection (UMAP) (McInnes et al., 2020) have emerged as
potential alternatives to PCA for dimensionality reduction. UMAP, unlike PCA’s linear
approach, utilizes non-linear relationships and local structure preservation, excelling at
capturing complex patterns and nonlinear data relationships. This makes it suitable for
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tasks like occupancy estimation. UMAP is a rather novel learning technique for dimension
reduction and the literature in a field similar to ours is still very rare. In a similar context,
Khan et al. (2023) recently applied dimensionality reduction techniques to city-scale data
to identify key features of high consumption and generation areas based on building
character from 72,000 households in the Netherlands. UMAP competes favorably with
t-SNE in terms of visualization quality and preserving complex, non-linear relationships,
offering superior runtime performance.

Turning now to network-based machine learning approaches, the states of the art
conducted by Dai et al. (2020) and Zhang et al. (2022a) on fault detection-based methods
for occupants’ activity or presence detection show that the most recently used methods are
machine learning methods from shallow neural networks 1(SNN) to deep learning methods
such as artificial (ANN), recurrent (RNN), convolutional neural networks (CNN).

SNNs, situated within the ANN family, consist of just one hidden layer between input
and output layers. They are faster to train on smaller datasets due to their simpler struc-
ture but may have performance limitations in complex occupancy detection scenarios, as
noted by Chalapathy et al. (2021) in their study on building cooling load prediction using
shallow and deep learning models.

ANNs, a class of machine learning algorithms, consist of interconnected nodes known
as artificial neurons or perceptrons, organized in layers. They excel at recognizing patterns
and relationships between inputs and outputs. ANNs can address both classification and
regression problems, depending on the activation function in the output layer. The sigmoid
function enables binary or multiclass classification, while a linear or identity function suits
regression tasks. Although ANNs support both supervised and unsupervised learning, they
are predominantly used for supervised learning.

In the context of smart homes, ANNs find extensive application in occupancy de-
tection and energy conservation (Zhang et al., 2022b). These algorithms leverage data
from various sources like occupancy sensors, smart meters, and environmental sensors

1. A neural network is a powerful machine learning algorithm that mimics the structure and func-
tioning of the human brain. It is composed of interconnected layers of artificial neurons, which receive
inputs, perform computations, and produce outputs. Through a process called training, neural networks
can learn patterns and relationships in complex data, enabling them to make predictions, classify objects,
and solve a wide range of problems. With their ability to handle nonlinear relationships and extract
high-level features, neural networks have achieved remarkable success in various fields, including com-
puter vision, natural language processing, and speech recognition. By adjusting the network architecture
and optimizing its parameters, neural networks can adapt to different types of data and improve their
performance over time. Their capacity to handle large datasets and model intricate patterns makes them
a valuable tool in modern data-driven applications.
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to monitor occupants’ activities and habits. They make real-time decisions on appliance
control and energy optimization. Home energy management systems (HEMS) have also
been integrated with smart homes to offer energy-saving suggestions (Abrishambaf et al.,
2016; Zhou et al., 2014), employing machine learning to understand user behavior and
energy consumption patterns (Machorro-Cano et al., 2020). For instance, one system clus-
ters homes based on energy loads and delivers energy-saving advice using RuleML 2 and
Apache Mahout 3 while ensuring smart home safety and comfort.

In the field of activity recognition, Fang and Hu (2014) employed motion sensors
to record human activities and found that the Back Propagation (BP) neural network
outperformed other probabilistic algorithms, like the Naïve Bayes (NB) classifier and
Hidden Markov Model (HMM) in terms of recognition accuracy. Oniga and Sütő (2014)
utilized multiple ANNs to analyze signals from acceleration sensors for daily life activity
detection. Paradiso et al. (2013) employed a multilayer back-propagation neural network
to detect appliance power usage across eight monitored devices, achieving an accuracy
of 95.26%. For real-time occupancy detection, Kampezidou et al. (2021) developed a
physics-informed pattern-recognition machine (PI-PRM) that extracts invariant features
such as CO2 level, CO2 rate of change, and HVAC states. The proposed PI-PRM method
provides real-time estimation, achieving 97% accuracy within minutes of an occupancy
change. Similarly, Danaei-Mehr et al. (2016) employed three distinct ANN methods for
detailed human activity recognition. The Levenberg Marquardt (LM) algorithm yielded
the highest detection rate at 92.81%.

Despite the achievements of ANNs, they come with certain limitations, including ex-
tended training times, sensitivity to initial weight values, and challenges in handling exten-
sive datasets. Addressing these issues, the eXtreme Learning Machine (XLM) offers faster
training, reduced parameter tuning, and enhanced generalization performance. XLM, a
type of Artificial Neural Network initially proposed by Huang et al. (2006), deploys a
single hidden layer feedforward network structure. Unlike traditional ANNs, XLM uses
randomly generated and fixed weights between input and hidden layer neurons. The out-
put layer weights are computed using a single linear regression step. Consequently, XLM’s

2. RuleML is a knowledge representation language used to express rules and logic in a machine-readable
format. It enables the formal representation of rules and inference capabilities, making it suitable for
applications such as rule-based reasoning and expert systems.

3. Apache Mahout is an open-source machine learning library that offers a diverse set of algorithms
and tools for building intelligent applications. It is designed to handle large-scale datasets and can be
integrated with other Apache frameworks for distributed processing. The library provides functionalities
for tasks like clustering, classification, recommendation systems, and collaborative filtering.
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training process is much quicker than traditional ANN methods, as it does not involve
iterative weight updates through backpropagation or other techniques.

Chen et al. (2016) investigated occupancy presence detection using indoor environment
sensors and various algorithms, including XLM, ANN, SVM, k-NN, linear discriminant
analysis (LDA), classification and regression tree (CART), gradient boosting machine
(GBM), and RFo methods (the last three methods are more specifically categorized as
ensemble learning or EL methods, as mentioned in paragraph 1.3.2). They found that
XLM outperformed the others in terms of accuracy (99.3%), closely followed by SVM and
RFo. XLM also boasted the advantage of being significantly faster than the other methods,
rendering it more practical for real-time applications. However, the authors noted that
XLM’s effectiveness might diminish when handling high-dimensional data, and the choice
of input features could significantly influence the performance of all methods.

While ANNs or XLMs have shown promise in smart home applications like occupancy
detection and energy conservation, they have limitations. For instance, they struggle to
model sequential data, which is common in smart homes, including occupancy detection
and energy forecasting. Recurrent Neural Networks (RNNs) are deep learning algorithms
capable of addressing this limitation. RNNs maintain an internal state or memory to
consider previous inputs when processing current ones, making them suitable for tasks
involving time-series data, natural language, and speech.

In our area of interest, RNNs have been applied to various building energy systems
applications, such as occupancy detection, energy consumption prediction, and fault de-
tection. Xu and Chen (2020) developed an unsupervised anomaly detection framework
using deep learning, including RNN and quantile regression. This framework can predict
abnormal energy consumption and classify anomalies into severity grades based on quan-
tile ranges. RNNs offer advantages like handling variable-length sequential data, capturing
long-term dependencies, and adapting to various input types. Long Short-Term Memory
(LSTM) networks within RNNs are effective for modeling complex temporal relationships.
While RNNs and LSTMs have been primary choices for occupancy detection, they face
limitations in scenarios involving multiple input and output signals. To overcome this,
RNN-MIMO (Multiple-Input-Multiple-Output) models have been introduced, allowing
simultaneous processing of multiple input sensors and output signals, leading to improved
occupancy detection accuracy. Chalapathy et al. (2021) achieved outstanding performance
with the RNN-MIMO model, reaching 98.8% accuracy and an F1-score of 0.99. Multi-
ple sensors enhanced prediction accuracy and reduced false alarms. Another algorithm,
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M-FRNN (Markov-based Feedback RNN), is useful for predicting time series with miss-
ing data. Wang et al. (2018a) applied M-FRNN to estimate occupants number in an
open office space using Wi-Fi probe data, environmental measurements, and camera data
as ground truth. M-FRNN demonstrated around 80% accuracy within a two-occupant
tolerance for 60 occupants. However, RNN-MIMO and M-FRNN may require more com-
putational resources compared to traditional RNNs and may not be ideal for real-time
applications.

As discussed earlier, ANNs and RNNs have their merits, but they have limitations
when dealing with tasks that involve extensive image data analysis, such as image clas-
sification, object detection, and segmentation. Convolutional Neural Networks (CNNs)
excel in these scenarios. CNNs employ convolutional layers to apply filters to input data,
followed by pooling layers to downsample the output, enabling automatic feature extrac-
tion. This makes them highly effective for tasks like autonomous driving, facial recognition,
and medical image analysis, thanks to their ability to detect subtle features. Furthermore,
CNNs have fewer parameters than ANNs, reducing the risk of overfitting and enhancing
generalization to new data.

In the domain of occupancy prediction, many people-recognition methods based on
CNNs have been developed, delivering high accuracy and precision. Conti et al. (2014)
introduced two CNN-based algorithms for counting people in a classroom, both achiev-
ing excellent results. Bao et al. (2021) devised a people-counting algorithm utilizing low
radiation impulse radio ultra-wide bandwidth radar, which employs CNN for enhanced
stability in scenarios with obstructions and superposition. Researchers have also applied
CNN to crowd counting in complex scenes, demonstrating success. Recent studies tackle
population counting by regressing a population density image, summing the density values
to determine the number of people in an image. This approach handles severe occlusion
in crowded images effectively.

Also relying on CNN, Lee et al. (2017) used various data sources, including indoor
environmental data and triaxial accelerometer data from users’ smartphones. They intro-
duced a one-dimensional CNN method to discern specific occupant activities, like walking,
running, and sitting. This method achieved an accuracy of 92.71%. In a more recent de-
velopment, Tang et al. (2020) introduced a Passive Wi-Fi Radar (PWR) technique for
occupancy detection and people counting. PWR operates within any environment covered
by an existing WiFi local area network without the need for special modifications to the
Wi-Fi access point. The proposed PWR system boasts a remarkable 99.5% accuracy in
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determining room occupancy and accurately counting people (98.1%) when up to four
people are present. This study sheds light on the potential applications of PWR tech-
niques in human resources management, optimizing energy usage in smart buildings, and
enhancing public services in future smart cities.

While previous deep learning methods have achieved success in occupancy prediction,
they often demand substantial labeled data or manual feature engineering, which can be
time-consuming and costly. To address these constraints, researchers have turned to learn-
ing techniques like Auto-Encoders (AEs). AEs can autonomously learn valuable represen-
tations of input data and extract low-dimensional representations from high-dimensional
data. An interesting aspect is their ability to generate new data by sampling from the
learned compressed representation and reconstructing it into the original data space. AEs
are sometimes classified as semi-supervised methods since they can utilize both labeled
and unlabeled data during training. The unsupervised aspect arises from AEs reconstruct-
ing input data without explicit supervision, while the supervised facet comes into play
when fine-tuning AEs on labeled data, enabling tasks like classification or regression. By
leveraging both labeled and unlabeled data, AEs can potentially enhance the performance
of these supervised tasks. For instance, using an AE as pretraining for a deep neural net-
work can mitigate overfitting and enhance the model’s generalization.

Other semi-supervised methods exist but are relatively rare in the field of occupancy
prediction. These include manifold regularization 4, mainly used in fault diagnosis tech-
niques [example of AHUs given in Yan et al. (2018)], algorithms based on transfer learn-
ing principles, such as domain adaptation 5 techniques [example of Human Occupancy
Counting method using CO2 sensor data by Arief-Ang et al. (2017)] or the transductive
SVM 6 and the label propagation 7. These methods hold promise for addressing unbal-

4. Manifold regularization: This method assumes that data points that are close in the input space
should have similar outputs. It uses a regularization term that encourages the classifier to produce similar
outputs for similar inputs.

5. Domain Adaptation: Semi-supervised domain adaptation is an approach to transfer learning (trans-
fer of knowledge gained in one task to another domain or task) in which labelled and unlabelled data from
a source domain are used to improve classification performance in a different but similar target domain.

6. Transductive support vector machines (TSVM): This method uses the labeled data to learn a
boundary in the input space and then applies this boundary to the unlabeled data to classify it.

7. Label propagation: This method assumes that data points that are close in the input space should
have similar labels. It uses the labeled data to learn a labeling function and then propagates these labels
to the imbalanced data based on their proximity in the input space.
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anced, sparse, and scarce databases but have not yet found widespread application in our
field.

Similar to traditional classification methods not based on networks, machine learning
has borrowed techniques from statistics to apply them to occupancy and event detection.
Among the approaches mentioned, Bayesian networks (BNs) and their dynamic extension
(DBNs) are widely used. BNs, also known as belief networks or graphical models, are a
type of probabilistic graphical. These models represent the joint probability distribution
of random variables using a directed acyclic graph (DAG), where nodes represent vari-
ables and edges signify probabilistic dependencies. It is important to note that BNs differ
from deep learning methods like ANNs, CNNs, and RNNs. BNs are probabilistic models
explicitly handling uncertainty and causal relationships, while deep learning methods use
deterministic functions to learn patterns. BNs excel in cases of limited or noisy data and
provide a probabilistic representation of uncertainty. They are also more interpretable
than deep learning methods, as they explicitly model variable relationships. Furthermore,
BNs can extend to dynamic systems through DBNs (Bigaud et al., 2019) and hidden
Markov models (HMMs), making them useful in fields with sequential and dynamic data.

Additionally, BNs can be used in both supervised and unsupervised tasks. In su-
pervised tasks, they are used for classification and prediction using input data and corre-
sponding class labels. In unsupervised tasks, they can be used for learning the dependency
structure between variables in the data without corresponding class labels. BNs have di-
verse applications, including energy-efficient system design (Tian et al., 2019), occupant
comfort assessment (Bortolini and Forcada, 2019 ; Hosamo et al., 2023), and technical
equipment fault detection (Bigaud et al., 2019). In building activity detection, BNs model
relationships between sensor data, (e.g., temperature, light, occupancy), human activities
(e.g., cooking, watching TV, sleeping), and technical events (e.g., lighting, HVAC, or office
equipment usage). For instance, Amayri et al. (2019) employed BNs to detect activities
(such as cooking, watching TV, and sleeping) in a smart home, outperforming other algo-
rithms. He et al. (2014) used BNs to accurately detect activities in a multi-occupancy office
building. Tian et al. (2019) used BNs to identify activities impacting energy consumption
in a commercial office building. They collected sensor data encompassing temperature,
light, motion, and power usage, which was then employed to train a Bayesian network
(BN) capable of identifying activities like lighting, HVAC, and office equipment utiliza-
tion. In contrast, Amayri et al. (2019) proposed an unsupervised method for characterizing
occupant behavior (occupancy and activity) in both office and residential buildings. This
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approach utilizes domain knowledge obtained from questionnaires and recorded sensor
data for motion detection, power consumption, hot water usage, and indoor CO2 levels.

Despite the advantages of BNs, deep learning methods have shown superior perfor-
mance in numerous tasks, especially in domains with large amounts of high-dimensional
data. However, in scenarios where interpretability, uncertainty modeling, and sequential
data modeling are important, BN and their extensions may offer a valuable alternative or
complementary approach.

To conclude this sub-section 1.3.2, it can be noted that ML methods have achieved
impressive performances but face several challenges like overfitting, vanishing gradients,
and limited data availability. To address these, researchers are exploring hybrid methods
that combine multiple machine learning architectures. This approach of hybridizing Deep
Learning (DL) methods and comparing possible combinations is part of the overall learn-
ing approach that combines multiple models to improve the accuracy and robustness of
classification. An example of hybrid method is the Auto-encoder Long-term Recurrent
Convolutional Network (ALRCN), developed by Zou et al. (2018c), which combines AEs,
RNNs, and CNNs. ALRCN is specifically designed for spatiotemporal data, such as time
series or videos, and it can learn both spatial and temporal features simultaneously. The
AE component reduces the dimensionality of the input data and captures its main fea-
tures. The CNN component extracts spatial features from the encoded data, while the
RNN component models the temporal dynamics of the data. By combining these three
architectures, ALRCN can achieve state-of-the-art performance on a wide range of spa-
tiotemporal prediction tasks. This way of hybridizing methods can be roughly likened to
a series assembly of methods. We adopt this approach in the thesis chapter dedicated to
multiple activity detection, where ANN, PCA, Hotspot (see Chapter 5), and BN meth-
ods will be used in cascade (the justification for the hybridization of such methods will
be provided in the section dedicated to its presentation). With the same ulterior motive
of combining several algorithms to improve the prediction and the robustness of the re-
sults, researchers have evolved towards the so-called ensemble learning (EL) approaches.
Drawing upon the same analogy as in the preceding paragraph, this alternative approach
to method hybridization resembles more of a parallel ensemble, where each method uti-
lizes the data, whether shared or not, collectively and simultaneously to achieve the same
objectives. The basic idea behind EL technique is that by aggregating the predictions
of multiple models, the resulting ensemble can often outperform any single model. The
ensemble is typically created by training multiple models on the same dataset using dif-
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ferent algorithms, different subsets of the data, or different feature representations. The
individual models can be of the same type (homogeneous ensemble) or different types
(heterogeneous ensemble).

EL can be applied to various machine learning algorithms, including ANN, RNN,
CNN, AE, etc. Two primary EL approaches are Bagging and Boosting. In Bagging, each
ensemble model is independently trained on a randomly sampled subset of the training
data (with replacement). The final prediction is then obtained by aggregating the models’
predictions, often through majority voting for classification problems (or averaging for
regression problems). For instance, Wang et al. (2018b) developed an Ensemble Bagging
Tree model (EBT) to efficiently predict short-term electricity demand in institutional
buildings, achieving reduced computation time without sacrificing prediction accuracy.
Boosting is an iterative EL technique where models are trained sequentially, with each
subsequent model focusing on instances misclassified by the previous ones. The final pre-
diction combines all models’ predictions, weighted by their individual performance. For
instance, Cao et al. (2020) compared single models and EL algorithms for predicting
daily electrical load in healthcare buildings, demonstrating that Extreme Gradient Boost-
ing (XGBoost), a popular boosting algorithm, outperforms single models. We employ a
similar boosting approach in our research using XGBoost techniques (see Chapter 4).

All the candidate ML algorithm are summarized and compared in Table A7 (in Ap-
pendix A).

1.3.3 Estimation and prediction – a regression problem

As previously stated, activity detection and identification can be classified as an
anomaly detection problem and fall under the category of classification problems. In
contrast, prediction requires leveraging the potential for regression or meta-model con-
struction offered by learning methods. Building a regression model aims to estimate the
probability and performance level of an event. Regression models are particularly use-
ful for making predictions over time, incorporating dynamic functions. Estimation and
prediction provide valuable insight that can be further utilized in control and regulation
models. These models focus on detecting or anticipating performance drifts, correcting
them, or optimizing the function of the complex system under study.

Many of the methods discussed earlier for detection and identification can be extended
to regression tasks. The key distinction lies in the nature of the output variable. In clas-
sification, the output variable is categorical, assuming a finite number of distinct values,
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often representing different classes. The objective is to assign each observation to the
appropriate category based on its input features. In regression, the output variable is
continuous, allowing it to assume any numerical value within a specific range. Here, the
goal is to predict the numerical value of the output variable based on the input features.

1.3.3.1 Traditional regression methods

Before considering machine learning methods themselves, it is necessary to discuss the
pioneering time-series methods that have been extensively studied. In 2010, Newsham
and Birt used the Autoregressive Integrated Moving Average (ARIMA) method to en-
hance building electricity use forecasts. They demonstrated that incorporating occupancy
data can enhance accuracy, and they employed ARIMA models to account for occupancy
effects. Although these methods have been improved over time, including variants and
improved versions like Seasonal Autoregressive Integrated Moving Average (SARIMA)
and Seasonal Decomposition of Time Series (SDTL). Chen and Soh (2017) and Wang
et al. (2019b) have indicated that machine learning-based approaches generally outper-
form these methods. Recently, Facebook introduced a promising and efficient method
called "Prophet," which uses an additive model with seasonality and trend components
for time-series forecasting, particularly effective for data with strong seasonal patterns
(Parise et al.2021). Despite these improvements, the prevailing trend among researchers
is to hybridize these temporal (or even frequency) decomposition approaches with machine
learning techniques to improve prediction. For instance, Yuan et al. (2021) presented a hy-
brid approach integrating temporal-sequential analysis and machine learning for building
occupancy prediction, showing potential for improving building energy efficiency.

Returning to the machine learning methods that we have already mentioned for their
ability to do the classification work, and following time series processing, we can cite sta-
tistical methods such as logistic or linear regressions. Linear regression predicts the target
value as a linear combination of input variables, making it easy to model and widely
used in statistical analysis. Kim and Srebric (2017) used linear regression to explore the
correlation between occupancy and electricity consumption. In contrast, logistic regres-
sion models the relationship between features and the target using a logistic function,
predicting the probability of a new test sample belonging to a certain category. Yuan et
al. (2019) applied the Softmax Regression Model, a generalization of logistic regression
for multi-classification, to elucidate the dynamic relationship between environmental pa-
rameters and indoor occupancy. These simple machine learning methods, based on linear
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or logistic regressions, clearly compete with the Prophet or hybrid methods mentioned
earlier.

When the relationship between the input variables and the output variable is nonlin-
ear, and data contains outliers, Support Vector Regression (SVR) may outperform logistic
or linear regressions. Unlike these, SVR is a nonparametric method that does not assume
data distribution. It also incorporates a regularization parameter that prevents overfit-
ting and enhances model generalization. Moradzadeh et al. (2020) assessed two machine
learning techniques, namely ANN and SVR, for predicting residential building heating
and cooling loads. The study demonstrated that both methods yield accurate predictions,
but SVR surpasses ANN in terms of accuracy and computational efficiency. Moreover,
the results suggest that combining weather data with building data significantly enhances
load forecasting accuracy.

Always considering traditional methods used for regression/prediction of performance
and/or occupancy, Candanedo et al. (2016) assessed Hidden Markov Models (HMM) ac-
curacy in estimating occupancy using various environmental parameters (temperature,
humidity, humidity ratio, CO2, and light time series data). The accuracy varied based
on data collection and fusion of these parameters, emphasizing the effectiveness of sen-
sor fusion. HMMs offer the ability to model intricate variable dependencies and capture
multiple sources of variability simultaneously compared to time-series methods. However,
they may be less interpretable and demand substantial data to train effectively. HMMs are
often preferred over logistic regression when dealing with complex data dependencies and
temporal dynamics. They excel in handling sequential data, where relationships between
inputs and outputs evolve over time, as they can model hidden state evolution and tran-
sitions. And, in contrast to SVR, HMMs exhibit greater flexibility in modeling complex
temporal dynamics, especially when data includes multiple intertwined sources of variabil-
ity that defy traditional regression models. Nonetheless, HMMs can be computationally
demanding and necessitate ample data for effective training.

Before delving into deep machine learning methods, it is important to mention rule-
based methods, used for occupancy prediction in regression analysis. Rule-based methods
define a set of rules based on prior knowledge or data exploration for occupancy predic-
tion. These rules typically take the form of ’if-then’ statements, specifying conditions (if)
and actions (then). For example, a rule-based method can be created by specifying con-
ditions based on the time of day, temperature, and historical occupancy patterns, using
these rules to predict future occupancy. Rule-based methods offer interpretable outcomes
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comprehensible to non-experts. However, they often require significant manual effort for
rule development and fine-tuning and may have limited performance with complex or
noisy data. Consequently, they are sometimes combined with deep learning methods.
Dorokhova et al. (2020) proposed a rule-based scheduling approach for commercial build-
ing air conditioning systems using occupancy forecasting. This approach merges machine
learning-based occupancy prediction models with a rule-based scheduling system to op-
timize air conditioning system operation, underscoring the potential of uniting machine
learning with rule-based systems for energy-efficient building automation.

1.3.3.2 Advanced regression methods based on networks

Traditional regression approaches, including time-series analysis, logistic regression,
linear regression, SVR, HMM, and rule-based approaches, while effective for occupancy
prediction, have inherent limitations. They rely on predefined assumptions, linear rela-
tionships, or manual rule crafting, making it challenging to capture intricate and nonlinear
patterns in occupancy data, ultimately leading to suboptimal performance. To overcome
these limitations and enhance occupancy prediction, researchers have turned to deep
learning-based regression methods.

In fact, a large majority of the algorithms mentioned in the section on classification
task (section 1.3.2) can be used for regression task. Their relative efficiencies vary ac-
cording to the type of objective (classification or regression). While the literature on
deep learning for occupancy and activity prediction is extensive, traditional ANNs still
find utility. For instance, Chen et al. (2021) combined ANN with fuzzy logic to predict
office building electricity demand across different occupancy rates, achieving promising
predictive capabilities. Manno et al. (2022) employed a Shallow NN (SNN) approach to
successfully forecast hourly electricity and heating demands in the short term, emphasiz-
ing computational efficiency and interpretability advantages compared to ARIMA, SVR
and LSTM networks.

As already mentioned above, a summary table, outlining key occupancy prediction
methods based on their features, applications, data types, complexity, strengths, and
weaknesses, is provided in Appendix A (Table A.7). In this thesis, we explored a diverse
range of methods listed in this Table A.7 , but not all were thoroughly examined. Some
were excluded due to specific data requirements, such as the CNN method for image
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processing (even though sequential encoded data could be used with this method), which
relied on camera data not available in our study. We aimed for a balance between method-
ological diversity and practicality, selecting methods aligned with our needs and suited to
the nature and dimensionality of the data. For both supervised and unsupervised classi-
fication and / or regression techniques, we deliberately incorporated a range of method
complexities in our analysis. For classification tasks, we compared unsupervised meth-
ods like PCA and DBSCAN (considered as basic methods) with the MGD and UMAP
methods (respectively, an intermediate approach capable of handling correlated variables
and an approach capable of capturing non-linear relationships and preserving complex
structures within the data). For multiple activity detection, we combined ANN, PCA,
Monte Carlo Tree Search (MCTS), and BN methods, exploring different complexity levels
and employing graph-based and Deep Learning techniques. For regression in supervised
settings, we explored both basic logistic regression methods and advanced ANN models.
Detailed justifications for these method selections will be provided in their respective
sections.

In addition, it should be noted that measured data from sensors are mostly used to run
classification or regression algorithm. Although less frequently observed in the literature,
it is also possible to train the algorithms on simulated data.

1.3.4 Some problems in using machine learning for activities
and events detection, estimation/prediction

Occupancy estimation/prediction methods, particularly those using machine learning
techniques, have limitations. In Table A.8 (Appendix A), we aim to summarize these lim-
itations concisely. The first column of the table presents identified limitations, followed
by explanations and their impact in the second column. The last two columns provide
examples of methods that are most and least sensitive to these limitations. We have orga-
nized these limitations hierarchically based on their perceived impact, with the first two
limitations considered to have a very important impact, the next three with a significant
impact, and the last four with a moderate but still significant impact. The severity may
vary depending on the specific context and data characteristics.

In this thesis, focused on accurate activities / events detection, we face central chal-
lenges stemming from data nature, often unlabeled and high-dimensional, and various
algorithmic aspects, such as tuning parameters and overfitting. This section outlines key
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challenges and implemented solutions.
Among the nine major problems presented in Table A.8 (Appendix A), our primary

focus lies in tackling the issues of data scarcity and the need for labeled data. We aim to
process data without pre-assigned labels, addressing real-world scenarios where manual
data labeling is time-consuming and labor-intensive, potentially raising privacy concerns.
To achieve this, we employ unsupervised and semi-supervised learning methods, as shown
in Chapter 4 on Single activity detection, featuring as DBSCAN and AE. These methods
identify patterns or anomalies in data without relying on labels. Another key objective
related to these problems and parameter sensitivity is establishing universal principles
for selecting tuning parameters and thresholds. In the same Chapter 4, we explore the
impact of different parameters and thresholds on algorithm performance and develop
visualization methods for different algorithms to establish reliable foundations for future
work in the field. Building upon the foundation in addressing the primary challenge, we
extend our work to the more challenging task of detecting multiple activities and events
using unsupervised and semi-supervised techniques, which will be discussed in Chapter
5, focusing on multi-activity detection.

Other challenges will be addressed in this thesis, including overfitting, data non-
linearities, and imbalanced data. Overfitting, along with its counterpart, underfitting, is a
common issue in machine learning, arising from the bias-variance trade-off. Bias refers to
the error resulting from model assumptions, potentially causing the algorithm to overlook
relevant feature-target relationships (underfitting). Variance, on the other hand, pertains
to errors due to model sensitivity to training data fluctuations, leading to poor per-
formance on unseen data (overfitting). Finding the right balance between overfitting and
underfitting is crucial. In Chapter 4, we will address these challenges employing techniques
such as polynomial feature generation to adapt model complexity and regularization to
penalize and prevent overfitting.

Another challenge arises from processing data with strong non-linearities, which can
be seen as a sub-category or inherent feature of previously discussed challenges like over-
fitting, non-stationarity, and parameter sensitivity. Real-world data frequently exhibits
complex non-linear relationships between variables, adding complexity to modeling and
prediction. For instance, overfitting can be exacerbated by non-linear data as complex
models tend to overlearn unique non-linear patterns from the training data. The abun-
dance of features and strong non-linearity can overwhelm some machine learning algo-
rithms, making it challenging to discern data patterns.
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In Chapter 4, we will address this challenge by utilizing UMAP to visualize data
patterns in lower dimensions. Additionally, we will compare UMAP to PCA, a traditional
dimensionality reduction technique that simplifies data structure while preserving most
variation.

Lastly, the challenge related to imbalanced data in real-world scenarios is addressed,
particularly the class-imbalance problem between normal and abnormal classes in super-
vised activity detection. In cases like fault detection, anomalies are scarce compared to
normal samples, making it difficult to learn effective rules with limited negative samples
(outlier). Usually, classification machine learning tasks expect the samples size of each cat-
egory to be balanced. In our study, the classes are strongly (and deliberately) imbalanced.
In our analysis, we will first present the results without handling the imbalanced data,
and then we will adopt two preprocessing methods for class-imbalance (refer to figures 1.3
and 1.4). The first method is under-sampling (Liu et al., 2009), which involves selecting
a small number of samples at random from the majority class (in our study, the closed
window state class). These samples are then combined with the original minority class
samples to create a new training dataset. The second method is over-sampling, which
expands the minority class by duplicating observations from that class.

Figure 1.3 – Illustration of under and over -sampling techniques for imbalanced data.

While the random oversampling algorithm is the simplest method, it can lead to model
overfitting as it makes the model too specific to the learned information. To address this,
we will improve upon the method by using data synthesis to generate more data based
on existing data. In Chapter 4, we will address this specific challenge by using logistic
regression and ANN combined with under- sampling, over-sampling, and the Synthetic
Minority Oversampling Technique - SMOTE - (Chawia et al. 2002) to balance the in-
puts. We also compare the effects of different imbalance handling techniques on various
algorithms in Chapter 4, along with the analysis of the root causes of these effects.
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Figure 1.4 – Illustration of Synthetic Minority Over-sampling Technique – SMOTE -
(Chawla et al., 2002)

1.4 Performance prediction and control of buildings

To achieve user-centric optimization in smart buildings, energy systems require effec-
tive control strategies. These strategies are important for optimizing building systems like,
HVAC to improve both energy consumption and comfort. Traditionally, building thermal
control methods rely on model-based approaches. However, model uncertainties and mod-
eling errors always exist in the modeling process. Model effective control stands out as
one of the most efficient model-based technique in building thermal control.

1.4.1 Control strategy in buildings

As already mentioned, buildings currently contribute to approximately 50% of global
electricity consumption and around 25% of carbon dioxide (CO2) emissions, with HVAC
systems responsible for about half of this energy usage. To enhance energy efficiency
and occupant thermal comfort in modern smart homes, advanced HVAC controls have
been extensively explored, showing potential energy savings ranging from 13% to 28%
(Gyalistras et al.2010; del Mar et al.2014; Roth et al.2002). Optimally, the full utilization
of this technology could lead to annual energy savings of 8 to 18 petawatt-hours (PWh)
(Drgona et al.2020). Understanding this potential, the European Union has mandated
the installation of building automation and control systems in large buildings by 2025
(Europeancommission,2019), highlighting the significance of advanced control theory in
future building energy management.

However, despite the substantial energy-saving potential, the majority of buildings still
rely on basic rule-based control (RBC) methods, such as "if- then" rules, due to their sim-
plicity (Kawakami et al.2014 ; Shakeri et al.2017). These approaches lack the predictive
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capabilities of more sophisticated control strategies and may limit energy savings (Aghemo
et al.2013 ; Mechri et al.2010). Other traditional control systems use "bang-bang" con-
trollers or Proportional-Integral-Derivative (PID) controllers, which are straightforward
but ill-equipped to optimize complex objective functions or plan ahead, leading to exces-
sive energy consumption.

Further complications emerge due to uncertain and fluctuating disturbances. For ex-
ample, if the system initiates heating in the morning on a sunny day, there is a high
likelihood that - given the slow thermal dynamics and heat gains through windows - the
temperature could surpass comfort limits if the controller does not halt heating in a timely
manner.

A more advanced approach is Model Predictive Control (MPC), which uses a model
of the system to anticipate future results and adjust control inputs based on forecasted
states, rather than solely relying on present or past states, a significant improvement over
the traditional "bang-bang" and Proportional-Integral-Derivative (PID) controllers. MPC
also takes into consideration weather and occupancy forecasts. The OptiControl research
project (Gyalistras D et al.2009) assessed MPC’s potential for energy savings in building
climate control, revealing its effectiveness and superior energy-saving potential compared
to other control theories (Oldewurtel et al.2010 ; Oldewurtel et al.2012).

Importantly, MPC consistently integrates occupancy information into the control pro-
cess, simplifying the comparison of various occupancy data types for ideal building con-
trol based on occupancy forecasts. This approach works independently of parameters or
threshold adjustments required in other control theories.

1.4.2 Importance of occupancy centric control

As previously mentioned, the MPC framework consistently incorporates occupancy
information into control, and it is crucial to understand why this inclusion is so important.
Klepeis et al. (2001) found that people spend over 87% of their lives indoors. Building
energy consumption is influenced by various factors, including engineering innovations,
cultural norms, occupancy behavior, and social justice concerns. Occupancy behavior
encompasses the number of people in a space, their interactions like adjusting windows,
blinds, and lights, and their preferences for temperature and illumination. Occupants also
affect the indoor climate by generating heat, CO2, and using energy-intensive devices like
laptops, which contribute to internal heat gains and power consumption. These dynamics
significantly impact a building’s thermal behavior, making occupancy data essential for
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accurately simulating building dynamics and ensuring comfort levels throughout the day.
While much research focuses on specific aspects of building management, such as

demand response, energy cost reduction, and thermal comfort, there is a notable lack of
studies in occupant-centric control. Many prioritize energy savings over occupant comfort,
even though earlier research has explored HVAC systems’ potential for demand response
and the impact of occupant presence on energy use. Understanding individual occupants’
preferences is important for their well-being and satisfaction, reducing conflicts between
residents and building energy systems, ultimately improving both energy efficiency and
occupant comfort. The integration of occupant behavior into building control can sig-
nificantly enhance both aspects. To address occupant-oriented demand response, various
techniques, including occupancy schedules, building models, and data sources, have been
identified. Some studies, like those by Jin et al.(2017) and Biyik et al.(2019) employed
Resistor-Capacitor (RC) models with thermal parameters from actual building data, en-
suring reliability and applicability for Model Predictive Control (MPC). However, these
studies did not incorporate an occupancy schedule into their MPC algorithms. In con-
trast, studies like Hu et al.(2019) used attendance schedules but relied on artificial data
from TRNSYS simulations.

An occupant-centric MPC strategy can be deployed to reduce energy expenses while
increasing occupant comfort. Upon detecting occupants, one approach is to employ a
feedback controller for adjusting lighting and ventilation promptly. However, thermal
dynamics can be slow, and heating or cooling systems may require several hours to return
to a comfortable temperature after an adjustment.

Hence, forecasting future occupancy is critical. Another option is a predictive con-
troller with a flexible occupancy schedule to maintain temperature limits over time, en-
suring comfort for early and late occupants. However, it may become less effective if
tenant behavior or room assignments change. Studies have shown substantial energy sav-
ings potential with occupancy prediction-based cooling control, ranging from 7% to 52%
compared to conventional systems (Peng et al.2018). Incorporating occupancy data into
MPC represents a paradigm shift in building energy management. While traditional meth-
ods have merits, MPC with predictive capabilities effectively optimizes energy use and
occupant comfort. Success depends on accurate occupancy forecasting and the building’s
thermal model complexity. Future research could explore machine learning algorithms to
enhance occupancy predictions, improving MPC’s effectiveness.
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1.5 Conclusion of this chapter

This chapter extensively reviews smart building energy management literature, cov-
ering topics that include performance metrics, demand-side regulation, sensor placement,
communication technologies, occupants activities, occupancy monitoring, detection meth-
ods and building control algorithms. It begins by highlighting the critical role of smart
houses in the global energy optimization, addressing current challenges, and emphasiz-
ing user-centric control’s significance. Key issues, including sensor placement and non-
intrusive multi-occupant activity detection, are discussed. The chapter compares various
communication systems, sensors, optimal sensor location algorithms, and user behavior
categories. It also evaluates methods for detection, identification, and estimation. Identi-
fying these challenges and research gaps not only underscores the importance of this study
but also serves as a guiding framework for methodological choices in this and future study.
In subsequent chapters, the chapter 3 will address the issue the placement of sensors using
the information-based and statistical method whom choice is motivated by the robustness
and information independence characteristic of the method. In chapter 4, we will address
the issue of occupancy activity detection with considering the occupancy privacy by using
ML algorithm whom choice is motivated by the model performance, robustness and the
degree of label data demand. In chapter 5, we will address the issue of multi-activities
detection under the premise of respect the occupancy privacy using two hybrid method.
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Chapter 2

PRESENTATION OF THE CASE STUDIES

The developments of this thesis will be applied to two case studies in the following
three chapters. The purpose of this chapter is to describe these two case studies. The first
is a simulated case study. Dynamic building energy simulations (DBES) are performed
on a virtual building consisting of one thermal zone. CFD simulations are then performed
to obtain information about the spatial distribution of temperature fields in the room.
The second case study concerns a real educational building, in which two classrooms were
instrumented during the thesis to collect data on occupancy and indoor comfort.

2.1 Introduction of the chapter

The aim of the thesis is to improve the energy management of buildings by better tak-
ing into account the occupant’s actions and preferences. To this end, several methods will
be investigated in the following three chapters to optimise the placement of multiphysical
sensors to detect one or more occupant’s actions that will be used to develop optimal user-
centric management strategies. The consistency of the proposed general framework will
be demonstrated by applying the methods to the case studies presented hereafter in this
chapter. Data on buildings and occupancies are required to train and test the algorithms
included in the thesis framework. The originality of the project is to use both virtual and
real data. Therefore, two cases have been studied: a simulated case study and a real one.
Firstly, a fictitious case study has been developed using simulation softwares. The building
modelling allows to perform both dynamic building energy simulations (DBES) and CFD
simulations. It can therefore be used to estimate indoor temperatures and energy loads
for different predefined occupancy scenarios. The building, the software, the modelling as-
sumptions and the first results are presented in the second section of this chapter (§ 2.2).
Secondly, as the methods were applied to the first case study, an instrumentation has
been designed and deployed in a real building as part of the thesis project 1. The smart

1. Project RFI-Wise Building Internet of Things (BIoT)
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multiphysical sensors installed allow the collection of data on the indoor environment,
as well as on occupancy. In the third section of this chapter (§ 2.3), the instrumented
building is presented and the solution designed to collect the data is explained.

2.2 Simulation-based case study

2.2.1 Aim of the case study

The methods in the thesis framework are first applied to virtual building data obtained
using DBES and CFD simulations. As pointed out in the previous chapter, machine learn-
ing and statistical methods have been less frequently used to handle simulated building
data. However, it has several advantages. Firstly, occupancy data can be collected eas-
ily, cheaply and non-intrusively, as there is no need to install sensors. Secondly, several
occupancy and climate scenarios can be studied on a building during the same period
of time. The ability of machine learning methods to detect the actions of occupants in
different circumstances can then be tested. Therefore, the use of virtual building data is
an interesting option prior to the deployment of sensors in a new or existing building.
Furthermore, it can be useful for finding the best locations for sensors installation, as
well as for evaluating the effectiveness of energy management strategies. Finally, dealing
with virtual data is an appropriate way to obtain well-calibrated models to detect faults
in real systems, as shown by the concept of in situ virtual calibration (Yoon et Yu 2017;
Yoon 2020), which involves training a model using virtual data first, and then improving it
based on the data collected by the sensors. However, using virtual data can be challenging.
The building being assessed must be accurately modelled, while the physical properties
of existing buildings are usually unknown. Realistic occupancy scenarios must be defined
in the simulations. Additionally, multiphysical simulations have to be performed to get
an overview of the indoor ambient conditions.

In this work, the simulation-based case study is considered as a preliminary step to
the real-data-based case study. While the statistical methods were studied and deployed
on the virtual case study, the monitoring of the real building described in the second case
study was prepared. In this preliminary step, a fictitious single-zone building, consisting of
one room, is considered. In addition, the indoor temperature is the only physical quantity
assessed.
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2.2.2 Modelling tools

The DesignBuilder 2 software was chosen as the modelling tool to simulate the dynam-
ics of heat transfer in the building. It has the advantage of integrating both DBES and
CFD simulations in one software. DBES are necessary in this work to obtain the evolution
of the air temperature in each thermal zone. The changes in the temperature profile are
then analysed to identify the user’s actions in Chapter 3 and Chapter 4. CFD simulations
provide additional information: temperatures can be computed at different positions in
the same thermal zone. Air temperatures at several points near the wall and at specific
locations (where occupants are more likely to be) are used to select the optimal set of
sensors to identify user’s actions and comfort in Chapter 3.

The DBES engine of DesignBuilder is the well-recognised open-source program Ener-
gyPlus 3, developed by the National Renewable Energy Laboratory (NREL, US), as well as
other research laboratories and private companies. In EnergyPlus, heat and mass balances
are performed at user-definable time steps on all thermal zones of the modelled building.
The temperature in each thermal zone is then obtained and the heating or cooling loads
can be computed. In addition, HVAC systems can be described to calculate energy con-
sumptions. The reliability of the results given by EnergyPlus has been demonstrated in the
past by experimental comparison (Spitz et al. 2013) and model inter-comparison (Judkoff
et Neymark 1995; 2013; Brun et al. 2013).

The CFD engine developed by DesignBuilder is used to perform CFD simulations. The
boundary conditions (surface temperature, heat sources, and airflow rate) are entered
into the CFD engine based on the EnergyPlus results. The spatial distribution of the
temperature fields in a thermal zone of a building is obtained, taking into account the
effect of HVAC systems. The indoor thermal comfort can thus be studied. The validity
of the engine has been tested in the past by Northumbria University 4 against the CFD
software Phoenics 5, which in turn has been validated by comparison with experimental
results and theoretical analyses.

2. https://designbuilder.co.uk/
3. https://energyplus.net/
4. https://designbuilder.co.uk/cfd
5. https://www.cham.co.uk/phoenics.php

69



Chapter 2 – Presentation of the case studies

2.2.3 Building description

A fictitious building is modelled in DesignBuilder. It consists of one room, which is
considered to be an office building, with a floor area of 120 m2. The room has a rectangular
shape of 12 m × 10 m, with a 3.5 m height. The main façades face north and south
respectively. Three large windows open on the north façade. Two smaller windows and a
door open to the south. An image of the building modelling is given in Figure 2.1.

Figure 2.1 – Fictitious building modelling in DesignBuilder.

The building is a partially refurbished building. An external insulation is considered.
Windows U-value is 2 W/m2/K and a solar factor of 0.62. The external walls and the roof
are in contact with the exterior and the rooms’ floor is in contact with the ground. The
wall compositions are given in the following three tables. It is assumed that the building
is heated by a gas boiler and has natural ventilation.

Table 2.1 – External walls composition

Thickness λ ρg CS R

(cm) W
m·K

kg
m3

J
kg·K

m2·K
W

Cement mortar plaster 1 0.72 1,760 840 0.01
XPS extruded polystyrene-CO2 blowing 20 0.034 35 1,400 5.88
Concrete, cast-heavy weight, moist 16 1.7 2,000 840 0.09
Gypsum plastering 1.3 0.4 1,000 1,000 0.03

Wall 6.02
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Table 2.2 – Roof composition

Thickness λ ρ CS R

(cm) W
m·K

kg
m3

J
kg·K

m2·K
W

Sealing layer 1 0.7 2,100 1,000 0.01
XPS extruded polystyrene-CO2 blowing 25 0.034 35 1,400 7.35
Concrete, cast-heavy weight, moist 15 1.7 2,000 840 0.09
Air gap 2 - - - 0.18
Plasterboard 1.3 0.25 2,800 896 0.05

Wall 7.69

Table 2.3 – Floor composition

Thickness λ ρg CS R

(cm) W
m·K

kg
m3

J
kg·K

m2·K
W

Sealing layer 1 0.7 2,100 1,000 0.01
XPS extruded polystyrene-CO2 blowing 20 0.034 35 1,400 5.88
Concrete, cast-heavy weight, moist 20 1.7 2,000 840 0.12
Timber flooring 3 0.14 750 1,200 0.21

Wall 6.23

2.2.4 Building energy modelling

2.2.4.1 Assumptions

The modelled classroom is built as a monozone building: only one air temperature will
be computed for this room. The simulation period is one year from first of January with
a 15 minutes time step. The weather file for Nantes, available in DesignBuilder, has been
linked to the simulation. The degree-hours 6reach 56,400 for this location. The building
airtightness was set to a constant rate of 0.15 air change per hour.

The following use scenarios were assumed. The heating setpoint is 22 ◦C, the heat set
back point during nights is 18 ◦C. Occupants are assumed to be in the building on working
days during office hours, i.e. between 9 a.m. to 7 p.m. on weekdays. There is no occupancy

6. The degree-hours are a metric to quantify the energy loads. For each hour of the year, the tem-
perature differences between the outdoor temperature and a threshold are summed. For instance, on
January 1st between midnight and 1 a.m., if the outdoor temperature is 3 ◦C and the heating threshold
temperature is 18 ◦C, then 18 − 3 = 15 ◦C are registered; the same thing is done for each hour of the
heating season for which the outdoor temperature remains below the threshold. A high value for the
heating degree-hours indicates a cold climate.
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during weekends, from 15th December to 15th January, and in July and August. The
occupied duration is randomly chosen between 1.5h to 7h. Up to ten people can be in
the building. In order to consider a diversity of building use, an occupants’ schedule has
been randomly generated. Each day, a different occupancy is considered, as it is assumed
that the occupancy may vary considerably in this building. In the simulation, occupancy
is modelled using an internal gain scenario describing metabolic rates. It is assumed that
one occupant generates 123 W 7. The light and the working equipments are assumed to
be on when occupants are in the building. They provide additional internal gains. An
example of a weekly occupancy schedule is shown in Figure 2.2

Figure 2.2 – A week occupancy schedule from the generated scenario.

One occupant action has also been modelled: actions on windows. Two window opening
schedules were randomly generated considering some constraints: window opening can
only occur between 8 a.m. to 7 p.m. on weekdays, window status can change every 15
minutes, and windows remain opened for up to 30 minutes. In the next chapters on
occupants’ action detection, window opening will be recorded as 1 and the closing as 0. In
order to study the ability of the machine learning algorithm to detect rare events, highly
imbalance classes were generated. In the first randomly generated schedule, only 147 cases
of window opening were assumed among the 35,040 time steps simulated. The window

7. Metabolic rate per person for light office work
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opening rate in the whole datasheet is thus about 0.0042. A second more realistic window
opening schedule has been randomly generated with 993 window openings over the year.
The window opening rate is then 0.028.

2.2.4.2 Example of results

The DesignBuilder simulation allows to obtain the evolution of the temperature in
each thermal zone throughout the simulated year at an interval corresponding to the
fixed time step. This gives an idea of the thermal comfort within each zone. Based on this
result and on the defined setpoints, the heating or cooling loads are obtained, indicating
the building energy performance. For this case study, each simulation required 3 min of
calculation in the software. Considering the baseline case study, the yearly heating loads
reached 26.8 kWh/m2, which correspond to a good energy performance 8. The evolution
of the temperature in the room is given in Figure 2.3, with the corresponding outdoor
temperature. Windows opening from the first scenario are marked with a green cross on
the indoor temperature points.

Figure 2.3 – Evolutions of the indoor and outdoor temperatures during the simulated
year.

In winter, the temperature oscillated between the heating setpoint and setback point.
As no summer comfort strategies have been modelled (e.g. night free cooling, use of

8. The heating load is quite close to that required for the very energy-efficient Passivhouse standard
(15 kWh/m2), whereas the average heating loads for French buildings is about 200 kWh/m2.
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blinds), the temperature increases a lot in summer. Openings often correspond to an
indoor temperature drop as the outdoor temperature is generally lower than the indoor
one.

2.2.5 Building CFD modelling

2.2.5.1 Assumptions

For a few days distributed over the year, CFD simulations are performed. On these
days, one simulation is done every hour. The information from the energy simulation of
the given hour is imported and used as boundary conditions for the CFD simulation.
Among this information, the air inlet temperature is taken from the weather file and wall
temperature are calculated in the energy simulation. Then the building is meshed into a
series of interconnected cells. Each cell is assigned a set of properties, such as temperature,
pressure, and airflow rate, which are solved using a set of partial differential equations.

2.2.5.1.1 Grid resolution In the CFD, higher grid resolution means that the geo-
metric domain is divided into smaller cells, which allows for more accurate representation
of the fluid flow properties within each cell. It can better capture flow phenomena, such
as boundary layers, turbulence, and complex geometries. However,a larger grid with more
cells requires more memory and processing power, which can significantly increase the
simulation time. So adjusting the grid size and resolution is a trade-off between accuracy
and simulation speed. Designbuilder has the adaptive grid refinement techniques which
can automatically refine the grid in regions where higher resolution is needed, such as near
walls or areas with complex flow phenomena. This allows for more accurate simulations
without significantly increasing the overall grid size and computational cost. In this study,
the default adaptative grid resolution was used, resulting in the grid shown in Figure 2.4.
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Figure 2.4 – Grid resolution.

2.2.5.1.2 Solver settings DesignBuilder uses a finite volume method that involves
subdividing the calculation domain into non-overlapping adjoining rectilinear volumes or
cells. The differential equations are then converted into a set of linear algebraic equa-
tions for each cell. The equations are solved using an iterative scheme, accounting for the
nonlinearity of the equations through nested iterations. The outer loop iterates until the
solution converges. Convergence in this context means that the values of the dependent
variables satisfy the finite difference equations for all the cells. However, because the coeffi-
cients of the equations contain variables dependant to each other, convergence isn’t always
guaranteed. To help achieve convergence, DesignBuilder uses false time steps, which are
part of a pseudo-transient formulation. This formulation effectively slows the change in
dependent variables, leading to a more stable solution. The following convergence criteria
are considered in DesignBuilder:

— Termination Residual: sets the maximum acceptable change in the dependent vari-
ables between consecutive iterations. The simulation will be considered converged
when the changes in all dependent variables are less than the specified tolerance.

— Maximum iteration: sets the maximum number of iterations that the solver will
perform before stopping. If the simulation does not reach the desired tolerance
level within the specified maximum iterations, the solver will stop and report a
non-converged solution.

— Under-relaxation factors: help control the rate of change of the dependent variables
during the iterative process. By adjusting these factors, it is possible to influence
the stability and speed of the convergence process. Lower values can lead to slower
but more stable convergence, while higher values can speed up the process at the
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risk of instability.
In the CFD computations performed for the case study, the termination residual is

set as 0.00001, the maximum iterations is 5000, the under relaxation factors is 1. Setting
the Termination Residual to 0.00001 indicates that a high degree of accuracy is desired
for the solution. The lower the termination residual, the smaller the allowed discrepancy
between the current and desired solutions. This means that the iterative process will
continue until the residuals of the dependent variables for all cells in the domain are less
than 0.00001. In other words, the solution must be very close to the true result before
the process is considered to have converged. This may lead to longer computation times
but higher accuracy. Setting the Relaxation Factor to 1 implies that there is no under-
relaxation, and the full calculated value of the current iteration dependent variable is
assigned to the variable. This means that the iterative process will progress at its full
speed without damping the updates in the dependent variables. In some cases, this can
result in faster convergence; however, it might also lead to instability or divergence in
certain situations. The choice to set the Termination Residual to 0.00001, the Relaxation
Factor to 1 are desire for a high degree of accuracy, a relatively fast convergence, and the
maximum iteration 5000 is for time control, the computation will stop at 5000 iterations,
even if the solution has not yet reached the specified Termination Residual of 0.00001.

2.2.5.2 Example of results

Once the input data for the CFD simulation are defined, the simulations are launched.
Results can be extracted in form of air velocity and temperature for different slices of the
building, allowing a better understanding of convection phenomena at specific locations
in the room. Each CFD simulation required 15 min of computation. An example of results
is given in Figure 2.5 for January 1st at 12 am. The air velocity and temperature are given
for two slices of the building.
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Figure 2.5 – CFD simulation results for January 1st at 12 am.

For every selected slice, the air velocity and the air temperature can be extracted at a
spatial interval of 30 cm. For the chapter 3 on optimal sensor location, temperatures are
extracted from slices as close to the four external walls as possible (at a distance of 15 cm
from the walls, because the sensors are assumed to be placed on the walls. Each extracted
temperature is assumed to correspond to one possible sensor location. An additional slice
is extracted at 1 m height in order to get the temperature at possible locations in the
room, at some places were sitting occupants are assumed to be. The idea is to assess the
comfort at these places.

2.3 Real data based case study

2.3.1 Aim of the case study

In contrast to the above-mentioned case study, the second one does not rely on simu-
lated data but on real data collected in a building. Thus, the suitability of the methodology
is investigated for a real application where data interpretation is more challenging because
i) data may be missing due to various recording problems; and ii) occupancy information
may be unknown (e.g. unrecorded presence) or inaccurate (e.g. difference between the
actual and the reported number of occupants). However, processing real data offers new
possibilities: instead of only processing temperature and heating loads, other physical val-
ues can be recorded, such as humidity, CO2 concentration, or noise. This will potentially
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facilitate the detection of occupant activities and the study of OSP.

2.3.2 Presentation of the monitored building

Data are collected in two classrooms of Polytech Angers Engineering School (which
hosts the LARIS laboratory) of the University of Angers. A specific instrumentation has
been designed and deployed in this building as part of the RFI Wise BIoT 9project, granted
by the French Region of Pays de la Loire, in which the PhD thesis was conducted. The
university building is located in Angers, 62 avenue de Notre Dame du Lac. It was built in
the 1950s as a residential building, before being completely refurbished in the early 1990s
for conversion into an educational building. Two extensions were added, one in the early
2000s and the other in 2014. The total surface of the school is 7,383 m2 and is spread over
five floors. The general shape of the building is rectangular with the main façades facing
the north-east and the south-west, as shown in the site plan in Figure 2.6.

Figure 2.6 – Site plan of Polytech Angers. Adapted from Google Maps.

Two rooms have been selected to be monitored. They were chosen because they were
among the most used classrooms during the academic year 2020-2021 according to the
room booking tool of Polytech Angers. In addition, they both have north-east facing
windows. In order to be representative of different teaching mode, the following rooms
were selected:

9. https://laris.univ-angers.fr/fr/projets/projets-anterieurs/biot.html and https://biot.u-angers.fr/
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— Room 114, located on the 1st floor, is a conventional lecture room of about 51
m2. The only wall to the outside contains three windows. On the opposite wall,
a window and a door open onto a corridor. The other two doors open to other
classrooms. A picture and a sketch of room 114 are shown in Figure 2.7.

— Room 219, located on the 2nd floor, is a computer room of about 52 m2 used for
exercises and projects. As in room 114, the four windows are north-east facing.
Two doors and a window open onto the corridor. The two remaining walls are in
contact with other heated rooms. A picture and a sketch of room 219 are shown
in Figure 2.8.

Figure 2.7 – Picture and sketch of room 114.

Figure 2.8 – Picture and sketch of room 219.

The two monitored rooms are located in the historical part of the building, highlighted
in orange in Figure 2.6. For this oldest part of the building, the composition of the walls is
unknown, hindering the possibility of modelling the same rooms in a simulation software
in a simple and accurate way. Methods could have been used in order to assess the heat
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transfer coefficient (Juricic et al. 2022), or to calibrate the model from measurements
(Robillart 2015), but this is beyond the initial scope of this thesis.

2.3.3 Description of the monitoring

In this work, one of the objectives will be to optimize the placement of multi-physical
sensors to detect one or more occupant’s actions. It is intended to detect user’s actions
using a set of low-cost and non-intrusive sensors. The use of cameras and microphones
has thus been discarded. A solution based on ambient sensors was preferred. Therefore, in
the frame of the BIoT project, a specific instrumentation was developed; it is presented in
§ 2.3.3.1. In order to investigate the increase in the prediction quality when complementary
measured data are used, a meteorological station was installed on the building (§ 2.3.3.2).
Finally, labelled data on occupant’s actions is required to train the algorithm. The set of
real and soft sensors described in § 2.3.3.3 is used for this purpose.

2.3.3.1 Indoor ambiance measurement

In order to detect user’s actions (see chapters 4 and 5) with low-cost and non-intrusive
sensors, the instrumentation described in the following paragraphs was developed. It relies
on the use of sensors measuring information about the indoor ambiance, such as temper-
ature, humidity and CO2. As the optimal placement of sensors will be investigated in
chapter 3, a first typology of multiphysical ambient sensors was placed on the walls all
around the two instrumented rooms. Then, a second typology of multiphysical sensors has
been installed at some student’s location. The data provided by this second typology will
be used in chapter 3 to describe the comfort at the user’s location, based on the optimal
set of sensors on the wall.

2.3.3.1.1 Multiphysical sensors on the walls The first typology of multiphysical
ambient sensors consists of a printed circuit board on which various commercially available
sensors are welded. The printed circuit board, the deployment in the rooms and the data
collection strategy have been designed by Alain Godon, associate professor at Polytech
Angers, involved in the BIoT project. All members of the BIoT project were involved in
the production of multiphysical ambient sensors: welding of individual sensors onto the
boards and installation them in the rooms. Pictures of the assembly workshop and of a
finished board are available in Figure 2.9.
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Figure 2.9 – Multiphysical sensor boards’ assembly workshop and completed board.

Each board consists of four sensors able to measure the six values listed in Table 2.4.
Temperature and humidity are natural quantities for assessing the occupants’ comfort
and their measurement can be performed with low-cost sensors. As mentioned in chapter
1, CO2, noise and light have proven to be useful indicators for detecting the presence of
occupants and eventually their actions. More expensive sensors are necessary for reliable
measurement of CO2. In addition, total volatile organic compounds (VOC) sensor were
added to complement the measurement of CO2 concentration, to provide information on
the indoor air quality of the rooms. VOC sensor are often used as low-cost CO2 sensors,
but they do not directly measure CO2 concentration. The data for all sensors is measured
every 2 seconds and stored by an ATMEGA 328P microcontroller on the board. The
microcontroller then averages the data over 60 seconds before transmitting it via a wire
connection.
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Table 2.4 – Measurement characteristics of each ambient sensor

Sensor Measured value Unit Resolution Range Accuracy
Sensirion SCD30 Temperature ◦C 0.1 -40 to +70 ± 0.4

Humidity % 1 0 to 95 ± 3
CO2 ppm 1 0 to 40,000 ± 30

Sensirion SGP30
Total VOC ppm2 0.2% 0 to 1,000 15% (ethanol)

Luna NSL-19M51

Light V 4.9mV 0 to 5 V N/A

GY-MAX4466

Noise V 4.9mV 0 to 5 V N/A

Some sensors were not calibrated at the factory. Calibration was therefore required.
For the CO2 concentration sensor, calibration was performed by placing the sensors for
more than one hour in a highly ventilated room, so that the CO2 level inside the room
became homogeneous and reaches the outdoor CO2 concentration. A calibrated CO2 con-
centration sensor (Class’Air 10) was placed in the same room. Its measurement was taken
as a reference value and a correction was applied to the measurement of the other sensors
to make them consistent with the reference value. The noise sensors were subjected to a
calibrated sinusoidal signal and the gain of the GY-MAX4466 modules was adjusted to
obtain the same output on all sensors. The important thing was not to obtain a calibrated
value in a given unit such as decibels, but to obtain consistent values between the different
sensors for differential analysis.

The multiphysical ambient sensors boards are placed approximately every two meters
in the rooms. They are placed closed to the ceiling to avoid being accidentally damaged
by students. 12 boards were installed in room 114 and 14 boards in room 219. Sensor
placement is shown in Figure 2.10.

10. https://pyres.com/solutions/classair/
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Figure 2.10 – Multiphysical sensor locations in room 114 (a) and 219 (b).

All boards are connected to each other, forming a sensor daisy chain. The four wires
connecting all boards run through the false ceilings. In the chain, two wires are used for
power supply and the other two for data transmission. For every three or four sensors in
the chain, a microcontroller installed in the false ceiling collects the measured data by
querying the boards the one after the other. Then, the microcontrollers send the data via
Wi-Fi to the servers of the University of Angers. The measurements are accessible from
the BIoT website 11. The recording started in February 2022 but the first two months of
monitoring corresponds to a test and adjustment phase. Thus, reliable data were measured
from May 2022.

2.3.3.1.2 Multiphysical sensors at students’ locations The second typology of
multiphysical sensors has been installed at some student’s locations in the classroom.
Each board measures temperature, humidity and CO2 concentration, using the Sensirion
SCD30 sensor, which is also installed in the first typology. Three boards have been installed
under the student’s desk in room 219 only and they are plugged on sockets for their power
supply. These boards were not installed in room 114 as student’s desk are movable in this
room, and the boards were more likely to be disconnected. The data is collected every
10 minutes since the end of September 2022 and is sent via Wi-Fi to the university’s
servers.

11. For instance, data collected in room 219 in October 2022 is accessible from this address:
https://biot.u-angers.fr/data/s219/2022/10
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Figure 2.11 – Multiphysical sensor board at student’s locations in the classroom 219.

2.3.3.2 Outdoor condition measurements

Besides monitoring indoor conditions, information on outdoor conditions are collected.
This additional data can help to improve the quality of the user’s actions detection. For
instance, a long period of absence outside the heating period could be identified if the
indoor and outdoor temperatures follow each other for a long period. In addition, if
windows are opened for a long period of time, the temperatures given by the sensors
near the windows are more likely to be similar to the outdoor temperatures. The outdoor
conditions are measured using the Vantage Pro2 weather station, from Davis Instruments,
installed as part of the BIoT project on the roof of Polytech Angers (see Figure 2.12 a).

Figure 2.12 – Weather station installed on the roof (a) and data extraction module (b).
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Various values are measured with this weather station: temperature, humidity, pres-
sure, solar radiation, wind speed and direction. The accuracy of the measurements is
shown in Table 2.5.

Table 2.5 – Measurement characteristics of the weather station, from the provided docu-
mentation

Unit Resolution Range Accuracy
Temperature ◦C 0.1 -40 to +65 ± 0.3
Humidity % 1 1 to 100 ± 2
Pressure hPa 0.1 540 to 1,100 ± 1.0
Solar radiation W/m2 1 0 to 1,800 5%
Wind speed km/h 1 1 to 320 5%
Wind direction ◦ 1 0 to 360 3

The data is sent in real-time to a console (see Figure 2.12 b), which stores all mea-
surements. The console must be regularly connected to a computer in order to empty the
console’s internal storage card, access the recorded data and analyse it. Since February
2022, meteorological data are recorded every 5 minutes on the Polytech Angers building.
As the weather station is provided by a company, no calibration of the sensors has been
carried out.

2.3.3.3 Occupancy detection

Labelled occupancy data are required to train the algorithm to detect occupants’
actions. Therefore, specific sensors have been installed and some information is collected
from additional sources (later called “soft sensors”). This allows for the identification of
three kinds of user-related activities: actions on windows, use of electrical devices and
presence.

2.3.3.3.1 Windows and doors openings detection Sensors have been installed
on the windows and doors to report any change in state: opening or closing. The Shelly
sensors have been selected for their ability to send data via a Wi-Fi network. They consist
in two pieces containing magnets: in case of an opening, the change of the magnet position
causes the electric circuit to close. An opening state information is then sent. Another
state information is sent in case of closing. The data is collected using the same Wi-
Fi network as the one used for the indoor ambiance measurement and is stored on the
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university’s servers 12.

Figure 2.13 – A sensor placed on a door (upper right corner).

All windows facing the outside have been equipped with sensors in February 2022. The
doors to the corridors were equipped in September 2022. No sensors were installed on the
windows to the corridors, nor on the doors to the adjacent rooms, which are only supposed
to be opened in case of emergency. The locations of sensors and their identification in the
measurement database are shown in Figure 2.14.

Figure 2.14 – Names and locations of windows and doors sensors in room 114 (a) and 219
(b).

12. https://biot.u-angers.fr/shelly.php
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2.3.3.3.2 Electricity consumption The electricity consumption of the monitored
rooms is followed to identify various actions, such as the use of light, computers or pro-
jectors. The Gulplug Company Save-it-yourself solution was chosen to record the instan-
taneous power of the different equipment. It consists of a magnetic core (Figure 2.15 a)
placed around the wires of each electrical appliance to be monitored. The measured power
is sent wirelessly to a box (E-Access on Figure 2.15 b), and transmitted to a datalogger
(E-Log on Figure 2.15 b) capable of sending data to a server using the GSM network.
The students do not have access to the electricity consumption monitoring equipment.

Figure 2.15 – Magnetic core (a) and recording device (b) to monitor the electricity con-
sumption.

The data has been recorded every minutes since February 2022 and is accessible online
via the equipment manufacturer’s platform 13. Overall electricity and lighting consump-
tions are monitored in both rooms. In room 114, the consumption of the sockets and video
projector are also measured.

Table 2.6 – Measurement deployment in rooms 114 and 219

Room 114 Room 219
Global electricity consumption 1 core 3 cores (one per phase)
Lighting 1 core 1 core
Sockets 1 core -
Video projector 1 core -

13. https://www.save-it-yourself.com/index.php
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2.3.3.3.3 Occupants presence The different sensors presented in the previous para-
graphs give information on the use of the building: actions on the windows or on the
equipment. A priori, these actions are performed when occupants are present in the room.
However, occupants can be present without interacting with windows and systems. Fur-
thermore, occupants may leave the room without switching off electrical devices. There-
fore, an alternative strategy was proposed to obtain labelled data on the presence of
occupants. Instead of installing a presence sensor capable of counting the number of en-
tries and exists in the rooms (a method that requires additional sensors and has proven
to be unreliable in other experiments), it was decided to rely on the use of a so called
“soft-sensor” in this study. Here, school’s time management tool will be used to find out
if and when the rooms were occupied. No additional sensors are installed. This strategy
also has some drawbacks:

— Only the presence of occupants for a class is reported, which excludes the presence
of the cleaning staff in the morning, as well as the presence of students or teachers
for meetings during the day.

— Teachers may decide to teach in another room at the last minute, without notifying
it in the tool, i.e. the room may appear as booked while it was empty (and the
reverse situation is also possible).

— Only the teaching slots appear as booked in the tool: when a group stays in a
room for two consecutive slots, there is uncertainty about the presence of the
group during the breaks.

Room occupancy can be exported from the school’s time management tool and the data
are stored on the university’s servers. Additionally, a paper survey is available in the
two monitored rooms. On a voluntary basis, occupants can report their presence, as
shown in Figure 2.16. This data is manually added to the database. A paper version,
placed near the entrance door, seemed more appropriate than a numerical version for
this additional occupancy reporting: we considered that users would be more likely to
report their presence if they did not need to log in to an application. The paper survey is
complemented by a project explanation sheet.

2.3.4 Data recorded

It is not always possible to process the recorded raw data as we will see in the following
chapters. Gaps and outliers have been observed in the recorded raw data. A first pre-
processing is therefore required. In the framework of the BIoT project, the pre-processing

88



2.3. Real data based case study

Figure 2.16 – Survey and information on the monitoring available in the rooms.

of the data was investigated together with a master student: Ahmed Es-Sabar. The first
pre-processing consisted of finding outliers. A measured value was identified as an outlier
if it was outside the measurement range of the corresponding sensor. In this case, the
measurement point was removed from the database. The second pre-processing was the
treatment of missing data that could occur due to technical problems with a sensor or the
data collection devices. The process of replacing missing data with probable data is called
data imputation and has been studied by Es-Sabar (Es-Sabar et al. 2022; Es-Sabar 2022).
Many imputation methods are available in the literature (Hasan et al. 2021; Weerakody et
al. 2021; Es-Sabar et al. 2022). Some methods simply remove the features for which data
are missing or replace the missing value with a constant value (i.e., zeros, mean, last or
next observed values). These methods can introduce a bias into the data processing (Luo
et al. 2018; Osman et al. 2018) and advanced imputation approaches based on machine
learning (Chong et al. 2016; Pazhoohesh et al. 2019; Cho et al. 2020) and deep learning
(Che et al. 2018; Fouladgar et Främling 2020; Okafor et Delaney 2021) have recently been
proposed. In the BIoT project, the choice of the imputation method has been discussed
in order to identify the method that performs the best regressions for estimating the elec-
tricity consumption of the classroom. In the developed methodology, 10 to 60% of data
is first removed from the database using different missing data generation mechanisms.
Then, a set of ten imputation methods was tested. The performance of the imputation
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was evaluated by comparison with the original complete data and quantified using the
RMSE indicator. As an example, the imputation performance of the ten methods for CO2

measurements are given in Figure 2.17 from (Es-Sabar 2022). The Missing Completely
at Random 14 (MCAR) missing data generation mechanisms were used in this example
in order to remove 10 and 60% of the available measured data. It turns that the linear,
polynomial, and quadratic interpolations (LI, PI and QI) were the best performing im-
putation methods regardless of the features to input (e.g. CO2, temperature, . . . ), of the
amount of missing data, and of the missing data generation mechanism (Es-Sabar 2022).

Figure 2.17 – Comparison of the RMSE for some CO2 sensors of room 219 using the
MCAR missing data generation mechanism and for 10 % (a) and 60 % (b) of missing
data. From (Es-Sabar 2022).

The effect of the imputation method on the final task (prediction of electric power in
room 219) is shown in Figure 2.18. As in the previous example, the MCAR missing data
generation mechanisms were used in order to remove 10 and 60% of data. It turns out
that the performance is insensitive to the imputation method: regardless of the imputation
method used, the performance of the final task remains similar (Es-Sabar 2022). These
results were confirmed by another case study (Es-Sabar et al. 2022). Furthermore, it
was found that the feature extraction steps are more important than the choice of an
imputation method in improving the performance of the final task (Es-Sabar 2022).

In this thesis, the methodology developed in the BIoT project was used and the fol-
lowing pre-processing was performed. Outlier values were filtered out following the above-
mentioned procedure. Then, when data is missing, two cases are considered. Firstly, if
data is missing more than 30% of the time for a feature, this feature is not further consid-
ered in the assessment. Secondly, for shorter data gaps, the linear interpolation method

14. In the MCAR mecanism, the distribution of missing data for one input is independant of the
distribution of missing data for others inputs, and it is also indenpendant of the missing value itself.
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Figure 2.18 – Comparison of the RMSE on the final regression task using the MCAR
missing data generation mechanism for 10 % (a) and 60 % (b) of missing data. Adapted
from (Es-Sabar 2022).

was chosen to capture the data. If data is missing at the beginning of the time serie,
it is replaced by the first known value. Conversely, if data is missing at the end of the
time serie, it is replaced by the last known value. The measurements obtained after the
pre-processing are available in Figure 2.19 to Figure 2.28. The graphs are given for the
last seven days of September 2022 (from Saturday September 24 to Friday September 30).
The indoor measurements in the graphs were performed in room 219, by sensors close to
the windows.
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Figure 2.22 – Humidity Figure 2.23 – Total VOC Figure 2.24 – Light

Figure 2.25 – Electricity consump-
tion Figure 2.26 – Opened windows Figure 2.27 – Outdoor temperature

Figure 2.28 – Sun radiation



2.4. Conclusion of the chapter

Correlations are clearly visible between the presence of occupants (Figure 2.19) and
other features such as: CO2 concentration (Figure 2.20), total VOC (Figure 2.23) and elec-
tricity consumption (Figure 2.25). In addition, when occupancy is present, temperature
(Figure 2.21) and humidity (Figure 2.22) are more likely to vary, which is related to the
openings of windows (Figure 2.26). On Monday September 26, for example, the CO2 con-
centration (Figure 2.20) and total VOC values (Figure 2.23) suggest that a small group of
occupants was present, but this was not reported on either the time management tool or
on the paper presence survey (no corresponding lightblue background). In September, the
birghtness feature (Figure 2.24) is not very representative of the occupancy: the occupants
are mainly present during the day, and the brightness value follows the solar radiation
values (Figure 2.28). Only the presence of cleaning staff is visible in the early morning. In
case of absence, all multiphysical sensor boards of a room give consistent measurements.
A significant deviation between the boards is only visible in case of presence. For instance,
the CO2 concentration measured by a sensor is higher if occupants are close to this sensor,
or lower if the sensor is placed near an opened window. In view of this first analysis of the
data measured data Polytech Angers, the actions of the occupants should be trackable
with the algorithms chosen in the following chapters.

2.4 Conclusion of the chapter

The two case studies that will be use throughout the thesis have been presented in
this chapter. For the first case study, DBES and CFD simulations of a virtual educational
building are performed using DesignBuilder. The software and the modelling assumptions
have been described. The simulations are performed for different occupancy scenarios in
order to model a variety of uses and to have enough data to train the algorithms applied
in the following chapters. As an output, the temperature evolution is obtained throughout
the simulated period for a thermal zone or at different location within a thermal zone.
The inputs and outputs of the DBES will be extracted from the software and used in
chapters 4 and 5, to train machine learning algorithms to identify presence of occupants
and their actions on the windows. In addition, the CFD results will be used in chapter 3
to select the set of sensors that best describe the user’s actions and comfort conditions.
In the second case study, real data from two classrooms of Polytech Angers are recorded.
The data collection strategy has been developed in the framework of the BIoT project,
in which this thesis is part of. The monitoring has been fully described in this chapter. It
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consists of multiphysical sensors designed and produced at Polytech Angers to monitor
the indoor ambiance. The outdoor conditions are monitored using a weather station.
Finally, occupancy is detected using window opening sensors, smart-meters and the room
occupancy schedule. All measured data are used for activity detection purpose in chapters
4 and 5, to study the optimal placement of sensors in chapter 3.
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Chapter 3

OPTIMAL SENSOR LOCATION

This chapter focuses on the problem of optimal sensor location. To this end, a com-
prehensive review of the available methods and their importance in various fields is first
proposed. After evaluating multiple techniques, the Effective Independence Method (EIM)
and Information Entropy (IE) methods emerged as the most promising solutions. Both
methods were explained in detail. Their efficacy was tested through simulations that mir-
rored real-world deployment scenarios. The optimality of sensor placements was gauged
using model stability and Root Mean Square Error (RMSE) metrics. In complex environ-
ments, we explored multi-zone and multi-wall scenarios, testing the flexibility of the chosen
methods. Further validation was achieved by applying these techniques to real-world data,
assessing predictions and RMSE. While our findings are optimistic, it is paramount to note
that the term ’optimal’ is contingent on specific application contexts. Future endeavors
should aim to refine these techniques, promoting their adaptability to diverse conditions.

3.1 Introduction

As mentioned in Chapter 1, finding the optimal location for sensors is a critical aspect
of various scientific, engineering, and industrial fields. It encompasses a wide range of
applications, including structural health monitoring (Kammer et al.1991), environmental
monitoring (Dong et al.2018), and acoustic control, geological disaster detection (Padula
et al.1998, Lee et al.2018). Sensor location is a crucial aspect in our study enabling an
accurate occupant behavior detection and efficient user-centric predictive control. The
purpose of occupant behavior detection in a smart building is to monitor and analyze the
activities and behaviors of people inside the building in order to improve their comfort,
security, and the building’s energy efficiency. The location of the sensors monitoring the
activities can greatly affect the quality of the data collected and hence the accuracy of the
machine learning models. The optimal placement of these sensors is important to capture
the spatial variability of environmental parameters (like temperature and humidity) and
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the dynamic effects of the building’s occupants and systems. Poor sensor placement can
lead to inadequate or misleading data, which can cause the user centric predictive control
to make suboptimal or even incorrect control decisions, leading to discomfort for the
occupants or unnecessary energy use.

However, determining the optimal sensor location is a challenging task that involves
trade-offs between conflicting objectives, such as data accuracy, the number of required
sensors, and the cost of sensor deployment. In many applications, the goal is to minimize
data uncertainty while maximizing the accuracy of the results. This necessitates careful
consideration of the measurement process, the environment, and the desired objectives.

In this Chapter, we will first present in section 3.2 two selected methods for finding the
optimal sensor locations, addressing the specific cases of this thesis. Secondly, in section
3.3, we will apply these methods to our two study cases: simulation and real scenarios, as
mentioned in Chapter 2. The problem of optimization will then be formulated and also
discussed in detailed terms. Finally, we will analyze and evaluate the result in section 3.4,
3.5 and 3.6.

3.2 Complementary state of the art and theoretical
aspects

In the next subsections and regarding the conclusions of the state-of-the-art in Chap-
ter 1, we will explore further two selected methods for determining the Optimal Sensor
Placement (OSP) for temperature measurement.

The firs method, known as the Effective Independence Method (EIM), proposed by
Kammer (1991), involves analytical calculations for certain aspects but primarily relies on
numerical approaches to determine the optimal sensor positions. As a result, this method
inherits the advantages of analytical methods, such as computational speed, as it employs
closed-form equations or formulas. Furthermore, the EIM method also exhibits some ad-
vantages of numerical methods, including accuracy, as it relies on numerical computation
techniques that can deliver more precise and robust solutions. Moreover, it demonstrates
adaptability by effectively handling complex and realistic scenarios using detailed models,
rendering it suitable for a wide range of OSP problems. Kammer. (1991) argued that the
optimal arrangement for measuring and estimating structural vibration can be achieved
by minimizing the norm of the Fisher information matrix (FIM) constructed from modal
and measurement covariance matrices. EIM aims to maximize sensor efficiency in terms
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of spatial coverage and measurement accuracy, identifying optimal positions that provide
maximum system coverage while minimizing the total number of sensors required. This
approach yields precise measurements with fewer sensors, reducing installation and main-
tenance costs. Additionally, EIM considers the noise term in the linear model, making
it more robust to noise by incorporating the noise variance when computing the Fisher
information matrix. Another strength of the EIM is its ability to optimize multiple ob-
jectives simultaneously, allowing for the consideration of various performance criteria in
sensor placement decisions.

The second method we will explore is the information entropy (IE) method, which
leverages the concept of entropy as a measure of uncertainty in a probability distribu-
tion. IE captures the diverse information provided by sensors, making it an advantageous
approach for sensor placement. By maximizing the IE, the sensor placement problem
aims to maximize the diversity of information captured by the sensors, resulting in a
more informative system. This method is based on the probability distribution of sensor
measurements and can effectively guide the selection of sensor locations.

Given the strengths and advantages of the EIM and IE methods, both are well-suited
for the task of finding optimal sensor locations for temperature measurement in indoor
environments. In the following subsections 3.2.1 and 3.2.2, we will provide detailed ex-
planations of these two methods: Section 3.2.1 will focus on the EIM, presenting its
theoretical elements and computational techniques, while Section 3.2.2 will deal with the
IE method, discussing its underlying principles and practical applications. Subsequently,
in section 3.3, we will adapt these methods to our specific context of temperature spatial
measurement, estimation, apply them to simulation and real case studies to compare their
performance and effectiveness.

3.2.1 The effective independent method (EIM)

The EIM is widely used in the field of mathematical physics and has demonstrated
success in OSP for structural health monitoring (SHM). This method, initially proposed
by Kammer (1991) involves discretizing the studied system, considering a virtual sensor at
each point of the mesh. The information matrix is then formed using a modal matrix and
the points are sorted based on their contribution to the independence of the target modal
matrix (which can be seen in Equation 3.1). The rank of this matrix, denoted as rank(Φ),
is a measure of the linear independence of its column vectors (the mode shapes in the
original work of Kammer). It is related to the maximum number of linearly independent
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column vectors in the matrix.
In the original Kammer’s study, a large structure for spatial application was stud-

ied. This structure was represented as a finite element model (FEM), which discretizes
the geometry into interconnected nodes representing the elements of the structure (e.g.,
beams, plates). These nodes define the degrees of freedom (DOFs) of the structure, such
as translational and rotational directions. By performing modal analysis using the FEM,
the natural frequencies, mode shapes, and modal damping ratios of the structure can be
determined. The mode shapes represent the displacement patterns of the structure at its
natural frequencies, and the modal matrix Φ is assembled using these mode shapes. For a
structure with N degrees of freedom (DOF) and r modes of interest, the modal matrix Φ
is an N x r matrix, where each column represents a mode shape associated with a specific
natural frequency. This modal matrix Φ is given by :

Φ = [Φ1, Φ2, . . . , Φr] (3.1)

where Φi is the i-th (ranging from 1 to r) mode shape vector of the structure:

Φi = [ϕ1i · · ·ϕji · · ·ϕNi]T (3.2)

where each ϕij provides information about the relative displacements (or any other modal
quantity, such as speed or acceleration) associated to the i-th mode and the j-th DOF
(ranging from 1 to N).

To assess the contribution of each sensor to the independence of the mode shapes, an
Effective Independence measure is derived from the determinant of the Fisher information
matrix. The Fisher information matrix, represented by F , is formed as F = ΦT Φ.

The independence measure is then defined as:

Independence measure = det(ΦT Φ) (3.3)

By maximizing this measure, it aims to choose sensor locations that provide the most
independent information about the mode shapes of the structure.

The number of virtual sensors and measurement points is then progressively reduced
by eliminating points that contribute the least to the rank of the modal matrix. This
involves optimizing the Fisher information array while preserving the linear independence
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of the modal vector to the greatest extent possible. It is based on this principle that the
optimal number and location of sensors will be determined.

An alternative effective independence measure ED is calculated using the modal matrix
(Φ), the eigenvalues (λ), and eigenvectors (φ) of the Fisher information matrix. The ED

coefficient represents the magnitude of the contribution of a given sensor position to the
linear independence of the target modal matrix Φ:

ED = Φφ⊗ Φφλ−1 (3.4)

Also, the ED can be calculated directly from the diagonal elements of the projection
matrix formed by the modal matrix :

ED = diag
(

Φ
∣∣∣ΦT Φ

∣∣∣−1
ΦT
)

(3.5)

where diag() represents the extraction of the diagonal elements of the matrix in the
brackets, and the matrix Φ

∣∣∣ΦT Φ
∣∣∣−1

ΦT is the projection matrix of the vector space tensed
by the modal matrix Φ.

Another indicator derived from the Fisher information matrix is its "condition num-
ber". This is a measure of its numerical sensitivity. It quantifies the stability and reliability
of calculations based on the matrix. Specifically, the condition number of a Fisher informa-
tion matrix is defined as the ratio between the largest and smallest singular values of the
matrix. It represents the ratio between the largest and smallest eigenvalues of the matrix.
A high condition number indicates that the Fisher information matrix is ill-conditioned,
meaning that small perturbations in the input data can result in large variations in the
computed results. This can make numerical calculations unstable and the results less re-
liable. On the other hand, a low condition number indicates a well-conditioned Fisher
information matrix, where calculations are less sensitive to numerical perturbations and
more reliable. The condition number will be used to guide the selection of rows to remove
from the Fisher information matrix. The row whose removal leads to the smallest condi-
tion number is selected, which means that removing this row has the least impact on the
overall information contained in the matrix, making it the most "independent".

To summarize, the EIM can be divided into the following iterative steps:
— Step 1: Identification of the least contributing sensor: Find the sensor

position corresponding to the smallest element in the EI measure. This position
represents the sensor that contributes the least to the independence of the target
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modal matrix Φ.
— Step 2: Deletion of the least contributing sensor: Eliminate the row corre-

sponding to this sensor from the Fisher information matrix. This step effectively
removes the least contributing sensor from consideration in subsequent iterations.

— Step 3: Reconstitution of the Fisher Information Matrix: With the row
corresponding to the least contributing sensor removed, recalculate the Fisher In-
formation Matrix.

— Step 4: Repetition of the Process: Repeat steps 1-3 iteratively, each time
identifying and removing the sensor that currently contributes the least to the
independence of the target modal matrix Φ.

The iteration continues until the desired number of sensors is reached. This approach
ensures that the sensors that remain are those that contribute the most to the indepen-
dence of the target modal matrix, effectively optimizing sensor placement.

3.2.2 The information entropy (IE) method

The IE method is a powerful approach in optimal sensor location, based on the concept
of information theory, introduced by Claude Shannon (1948). Information theory provides
a mathematical framework for quantifying and analyzing the amount of information con-
veyed in signals or data. A key concept in information theory is information entropy, which
measures the uncertainty or randomness in a system. In the context of OSP, the objective
is to find sensor locations that provide the most informative and diverse measurements
about the system.

The IE method aims to achieve this by selecting sensor locations that maximize the
information entropy, which quantifies the average amount of information required to de-
scribe the outcome of a random variable.

Mathematically, the information entropy H for a discrete random variable X with
probability mass function p(x) can be defined as:

H(X) = −
∑
x∈X

p(x) log p(x) (3.6)

Maximizing the information entropy or, equivalently, minimizing the uncertainty in
the system is typically achieved by solving an optimization problem where the sensor
locations are the decision variables, and the information entropy is the objective function.

There are several approaches to implement the information entropy method in optimal
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sensor location, including:
— Maximizing the mutual information between the sensor measurements and the

underlying state of the system.
— Minimizing the conditional entropy of the system state given the sensor measure-

ments.
— Employing greedy algorithms, heuristic approaches that make locally optimal choices

at each step in order to achieve a globally optimal solution, that iteratively select
the sensor location that provides the largest information gain at each step.

Lee et al. (2008) addressed the use of the IE method to determine the optimal location
for a set of combination temperature sensors in a greenhouse. They proposed the following
function to obtain the combined optimal sensor locations, aiming to minimize redundant
information and maximize the amount of information for the combined sensors.

n∑
i=1

T (Xi, Xj, . . . Xp) = H (Xk) + · · ·+ H (Xp) +
n−p∑
i=1

p∑
j=k

H (Xi, Xj) (3.7)

Here, n is the total number of sensors inside the greenhouse, p is the number of sensors
that should be selected, ∑n

i=1 T (Xi, Xj, . . . Xp) is the total information entropy.
The IE for sensor placement, inspired by the concepts of entropy in information theory,

can be described as follows:
— Step 1: Identification of Sensor Information Entropy: Compute the en-

tropy of the information provided by each sensor. The entropy is a measure of the
uncertainty or randomness of the information.

— Step 2: Ranking of Sensors: Rank the sensors based on their information en-
tropy. The sensors with higher entropy are considered to provide more diverse or
uncertain information.

— Step 3: Selection of Sensors: Select the desired number of sensors starting from
the one with the highest entropy. This ensures that the selected sensors provide
the most diverse set of information.

— Step 4: Iteration of the Process: If necessary, repeat the steps iteratively until
the entropy condition is satisfied or the desired number of sensors is reached.

This method assumes that sensors providing more diverse information (higher entropy)
contribute more to the understanding of the system dynamics and thus should be preferred
for placement.
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3.3 Necessary adaptations before application on sim-
ulation data with EIM and IE method

As a recall of the simulation case discussed in Chapter 2, the simulated building, de-
picted in the Figure 3.1, is oriented towards the north and has dimensions of 10 m wideth,
12 m length, and 3.5 m height. On the left wall, the temperature values at m=528 points,
representing the temperature measured by potential / candidate sensors, are evaluated
through CFD simulations using the DesignBuilder software. In our first application of
OSP methods, we started from simplest scenario by dealing only with one wall, in other
words, sensors can only be installed on one wall which is the left wall in this figure. The
optimization problem is to find the (M =) 3 optimal sensor locations among the (m =)
528 candidate locations able to provide the best estimation of the temperature at n target
points. In this first application, we arbitrarily predefined n=9 target points taken at the
same slice at 1 m-height. These 9 targets correspond to potential location of occupants in
the room. The rationale for this approach is that we intend to choose the sensor on the
wall to best describe their comfort.

Each CFD simulation represents the result for a single time point. Consequently, we
performed T=11 separate CFD simulations (at different time intervals), spanning from
December 1st at 7:00 AM to 5:00 PM. Each simulation accounts for updated boundary
conditions.

Figure 3.1 – Layout of the room and sensors (m = 528 candidate), targets (n = 9) locations
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3.3.1 Adaptation and application of EIM

The EIM has been adapted to building performance context. Our goal is to selected
the optimal set of sensors to monitor the indoor temperature at some specific or target
location were occupants are supposed to be. The idea is to get information on their
comfort without placing sensors exactly at people’s location: sensors remain on the wall
for convenience. An improved greedy algorithm, derived from the EIM, has been developed
to identify the optimal sensor locations using simulation data from CFD.

The original EIM uses a measure of EI derived from the mode shape matrix of a
structure, which essentially quantifies the extent to which a given sensor location pro-
vides information not captured by other locations. In our case, it calculates a measure
of independence by computing the condition number of a matrix which results from a
multiplication operation involving temperature readings from potential sensor locations
and target locations. In addition, in the original EIM, after selecting a sensor location, the
remaining rows of the mode shape matrix are re-orthogonalized to remain independent of
the selected row. For our case, we exclude the row (i.e., the location) with the minimum
condition number (which indicates maximum independence) from the matrix of potential
sensor locations, we also applied the distance coefficient to avoid sensors cluster around
the same points in the system with redundancy information. This algorithm leverages the
condition number of the Fisher information matrix to enhance its performance.

In practical terms, the objective is to determine, through the iterative method pre-
sented at the end of section 3.2.1, the M optimal sensor locations among the m candidate
locations on a wall to accurately and robustly infer the temperatures at n target (occu-
pants) points located within the instrumented area of the room, based on the measure-
ments collected at these M optimal locations. The key point is the determination of the
Fisher information matrix.

Assuming the m potential sensors on the wall with T time intervals, and M represents
the required number of optimal sensor locations (m representing all potential sensors, it
should be much bigger than M), the U (m × T ) matrix, representing the temperature
calculated or measured at the candidate sensor locations on the wall is expressed:

U =


U11 . . . U1T

. . . . . .

Um1 . . . UmT

 (3.8)
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Similarly, the q (n×T ) matrix, corresponding to the temperatures estimated at the target
points inside the room, with the same T time intervals can be expressed:

q =


q11 . . . q1T

. . . . . .

qn1 . . . qnT

 (3.9)

A responses function φ, under the form of a m×n matrix, found in the initial EIM, repre-
senting the relationship between U and q matrices, i,e., between temperatures measured
at the wall and temperatures inferred inside the room can be written as:

U = φ · q =
m∑

i=1
φi · qi (3.10)

The covariance matrix P , an unbiased estimator of the error between actual matrix q

(i.e., actual temperatures at target points) and estimated q̂ (i.e., estimated temperatures
through a least-square estimation of response function φ) can be given as:

P = E
[
(q − q̂)(q − q̂)T

]
=
[ 1
δ2 φT φ

]−1
= Q−1 (3.11)

In the above equation, the δ represents the noise level or uncertainty associated with the
measurements or observations. Q is the Fisher information matrix of dimension (n× n),
we look for in order to perform the EIM.

It is important here to open a parenthesis and provide some clarifications regarding
the Fisher information matrix. Physically, the dimensions of a Fisher information matrix
correspond to the number of parameters or variables that are being estimated or inferred
in a given statistical model. Each element of the matrix represents the sensitivity of the
model’s likelihood function to changes in the parameters. The diagonal elements of the
matrix represent the precision or information content associated with each individual pa-
rameter, while the off-diagonal elements capture the correlations or dependencies between
different parameters. In the context of sensor placement, the dimensions of the Fisher in-
formation matrix would depend on the number of sensor locations being considered and
the specific parameters being estimated or characterized by the sensor measurements.

For the sake of simplicity in the analysis, it is assumed that the calculated noise for
each sensor is uncorrelated and possesses identical statistical properties.
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Thus, the Fisher information matrix can also be re-written as:

Q = 1
δ2 · A0 = 1

δ2 φT φ (3.12)

Since A0 is equal to a multiplicative constant time the Fisher information matrix, it
is this A0 matrix that will serve as the basis for applying the EIM method. The OSP
problem will therefore consist in identifying the rows (i.e., the sensor locations) of matrix
A0 that contributes the most to its stability or influences the least the covariance P of the
estimation error, leading to the most robust or most unbiased estimation. We determine
the target row in A0 by employing the EIM algorithm, which focuses on finding the row
with the smallest condition number, as calculated using the cond() function. Additionaly,
we introduce a distance coefficient. Initially, we establish a distance metric for potential
sensor locations, which is based on the Euclidean distance in 3D sensor location space.
These distances are then computed and recorded in a distance matrix, denoted as D,
where Dij represents the distance between sensor locations i and j.

Then, during each iteration of the main loop, where the condition number is calculated,
we also calculate a penalty term for each potential sensor location. This is based on its
distance to already selected locations.

penalty =
n∑

k=1

1
Dik

for priorityk ̸= 0 (3.13)

The penalty term is then incorporated into the selection criterion. Instead of merely
choosing the location with the smallest condition number, we select the location with the
smallest adjusted condition number. The adjustment is a function of the penalty:

di = cond(Fi, 2) + λ× penalty (3.14)

Then in each iteration, the line with the minimum condition number combined with
penalty (i.e., the best sensor location) will be deleted, and then an updated information
matrix is calculated. This process is repeated one by one until the required number of
sensors is achieved.

The pseudocode for optimal sensor location using adapted EIM is given in Algorithm
1.
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Algorithm 1 EIM algorithm
1: mj ← m ▷ % m is the total number of candidate locations (e.g., 528)
2: Initialize priority as an empty array
3: for j = 1 to m do
4: for i = 1 to mj do
5: for k = 1 to i− 1 do
6: Ui[k, 1 : T ]← U [k, 1 : T ] ▷ % T is the number of time intervals (e.g., 11)
7: end for
8: for k = i to mj − 1 do
9: Ui[k, 1 : T ]← U [k + 1, 1 : m]

10: end for
11: δi ← Ui · pinv(q) ▷ % Illustrative calculation of response function δ, in

Equation 3.11
12: A0i

← δT
i · δi ▷ % Illustrative calculation of matrix A0 in Equation 3.12

13: d[i]← cond(A0i
, 2)

14: end for
15: Find imin such that d[imin] is the minimum value in d

16: priority[imin]← j/n

17: Update U by removing row imin

18: mj ← mj − 1
19: end for

In real-world scenarios, the number of occupants and their distribution within a room
can vary. Different occupancy levels can be represented as different scenarios, each with
its own set of target points. To ensure that the selected sensor locations are optimal
across various occupancy scenarios, we need to adapt the EIM algorithm to consider each
scenario separately and then aggregate the results. For each occupancy scenario, the target
matrix q will have a different set of rows, corresponding to the temperatures at the target
points for that scenario. The response function φ and the subsequent matrices derived
from it will also vary for each scenario.

The EIM algorithm can be adapted to handle multiple scenarios by introducing an
outer loop that iterates over each occupancy scenario. For each scenario, the algorithm
determines the optimal sensor locations based on the target points for that scenario. The
results from all scenarios are then aggregated to select the final set of optimal sensor
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locations.

3.3.2 Adaptation and application of IE method

Information entropy is a measure of the uncertainty associated with a set of data. In a
similar scenario to EIM application, there are m potential sensors on a wall, and n target
positions inside a room, each sensor measures temperature over T time intervals.The
temperature measurements can be represented in the same matrix U of size m× T :

To find the optimal sensor locations using IE, we need first to compute the (m ×m)
covariance matrix C for the sensor data matrix U .

C = 1
T − 1

(
U − Ū

) (
U − Ū

)T
(3.15)

where Ū is the mean of the sensor data matrix U .
The entropy H is a scalar value representing the uncertainty in the sensor data, and

is derived from the covariance matrix C:

H = 1
2 log ((2πe)m det(C)) (3.16)

where det(C) is the determinant of the covariance matrix C.

The final step consists in selecting the sensor locations that minimize the entropy
H. This can be achieved by iteratively removing one sensor at a time and computing
the entropy of the reduced covariance matrix. The sensor whose removal results in the
smallest increase in entropy is considered the optimal sensor location.

In some cases, it may be desirable to find a set of sensors that collectively provide
the best information about the target temperatures. To accomplish this, we can employ
a combined optimization approach by considering multiple sensors simultaneously. One
approach is to use a greedy algorithm that, iteratively adds sensor to the selected set
in a way that maximizes the reducation in entropy at each step. The algorithm can be
described as follows:

1. Determine the number of candidate sensor locations n and the number of target
points m.

2. For each candidate sensor location, combine it with the target points and compute
the entropy H of the combined system.
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3. Repeat this process for all candidate sensor locations.

4. After calculating the entropy for each candidate location, identify and select the
sensor locations that contribute to the maximum entropy.

The objective of this algorithm is to find the sensor locations that yield the highest
information entropy, indicating they provide the most diverse and rich information about
the system’s state. This approach offers a balance between computational complexity and
solution quality. The pseudocode for the IE method can be found follows in the Algorithm
(2) below:

Algorithm 2 Information Entropy algorithm
1: m← number of rows in U

2: Initialize entropy as a vector of zeros with length n

3: cov_U ← covariance of UT

4: for i = 1 to n do
5: A← concatenate U and q[i, :]
6: cov_A← covariance of AT

7: entropy[i]← 0.5 · log(det(cov_A)/ det(cov_U))
8: end for
9: max_entropy_index← argmax(entropy) ▷ Find the index of the maximum entropy

10: Display U [max_entropy_index, :] ▷ Display the optimal sensor location
corresponding to the maximum entropy

3.3.3 Further discussions about Optimal Sensor Placement

3.3.3.1 Discussion about information independence

The definition of optimal sensor location has traditionally focused on information
independence which refers to the uniqueness of the information provided by each sensor
in the system. In the context of temperature monitoring within building, it implies that
each sensor offers distinct information about the temperature distribution in the room,
which is neither redundant nor correlated with the information provided by other sensors.
This is important because independent information enables a better overall understanding
and control of the temperature distribution.
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Mathematically speaking, information independence can be related to the rank of a
matrix. This latter is the maximum number of linearly independent columns (or rows) it
possesses. A higher rank indicates a system with more independent information. In the
algorithm associated with EIM, maximizing the determinant of the information matrix
A0 of Equation 3.12 ensures that the columns of the matrix ϕ are as linearly independent
as possible. This is because the determinant of a matrix is the product of its eigenval-
ues, and if any of the eigenvalues is zero, the determinant becomes zero,indicating linear
dependence among the columns.

For example, consider an n×n square matrix Q, which has n eigenvalues λ1, λ2, ..., λn.
We can decompose Q into its eigenvectors and eigenvalues using the following equation:

QV = V Λ (3.17)

Where V is an n× n matrix composed of the eigenvectors of Q as its columns, and Λ
is an n× n diagonal matrix containing the eigenvalues of Q:

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
... ... . . . ...
0 0 · · · λn

 (3.18)

If the matrix Q is diagonalizable (i.e., it has linearly independent eigenvectors), we
can write the following:

Q = V ΛV −1 (3.19)

Now, we can compute the determinant of Q:

det(Q) = det(V ΛV −1) (3.20)

Using the properties of determinants, we can rewrite this as:

det(Q) = det(V ) det(Λ) det(V −1) (3.21)

Since the determinant of the inverse of a matrix is the inverse of the determinant:

det(Q) = det(V ) det(Λ) 1
det(V ) (3.22)
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The determinants of V cancel out:

det(Q) = det(Λ) (3.23)

For a diagonal matrix, the determinant is the product of its diagonal elements, which
are the eigenvalues of Q:

det(Q) = λ1 · λ2 · · ·λn (3.24)

As you can see from this equation, if any of the eigenvalues λi is zero, the determinant
of the matrix Q will be zero. By maximizing the determinant, we ensure that the columns
of Q are as independent as possible, leading to a higher rank for the matrix. Maximizing
the determinant of Q is therefore a key aspect of finding the optimal sensor location, as
it guarantees the highest possible linear independence between the columns.

3.3.3.2 Discussion about stability

Stability, in the context of this problem, refers to the numerical stability of the system.
A stable system is less sensitive to small perturbations or changes, such as variations in
sensor readings due to noise or other factors. A stable system can provide more reliable
and accurate measurements. Mathematically speaking, as already stated, stability can be
related to the condition number of a matrix. A lower condition number indicates that the
system is more stable and less sensitive to change. Specifically, the condition number is
defined as the ratio of the largest eigenvalue to the smallest eigenvalue of the matrix. For
example, consider a linear system:

Qx = b (3.25)

where Q is an n×n matrix, x is an n×1 vector of unknowns, and b is an n×1 vector.

Now, let us consider a small perturbation in b, denoted as ∆b. We want to find the
perturbation in the solution x, denoted as ∆x. And the perturbed system can be written
as:

Q(x + ∆x) = b + ∆b (3.26)
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Expanding this equation and subtracting Qx = b from both sides, we get:

Q∆x = ∆b (3.27)

Now, we want to find a bound on the relative change in x due to the perturbation in
b. The relative change in x can be represented as:

|∆x|
|x|

(3.28)

From the equation Q∆x = ∆b, we have:

|Q∆x| = |∆b| (3.29)

Now, we use the fact that the condition number (κ(Q)) of a matrix Q is defined as:

κ(Q) = |Q||Q−1| (3.30)

where |Q| is the norm of the matrix Q. Using this definition, we can bound the relative
change in x:

|∆x|
|x|
≤ κ(Q) |∆b|

|b|
(3.31)

This inequality demonstrates that the relative change in the solution x is bounded
by the condition number of Q multiplied by the relative change in b. A larger condition
number means that the system is more sensitive to perturbations in b (noise), while a
smaller condition number suggests less sensitivity to noise.

In the context of the EIM, the matrix Q represents the Fisher information matrix,
and the condition number of this matrix measures the sensitivity of the system to noise.
By maximizing the determinant of Q, the EIM indirectly reduces the condition number,
leading to a more stable system at the optimal sensor locations. Additionally, the EIM
incorporate the noise term in the linear model. When computing the Fisher information
matrix Q, it accounts for the noise variance δ, as seen in the Equation 3.12. Hence, the
method implicitly considers the uncertainty introduced by the noise when determining
the OSP.

On the other hand, the IE method aims to find sensor locations that maximize the
information content provided by the sensors. It is achieved by considering the system’s
uncertainty, represented by the covariance matrix. This covariance matrix measures the
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relationship between variables in the system. A larger determinant of the covariance ma-
trix indicates greater variation and less correlation between variables, which corresponds
to higher information content. By maximizing the entropy of the system, the IE method
selects sensor locations that provide the most independent and informative data. These
sensor locations are considered optimal as they offer the greatest potential for understand-
ing and controlling the temperature distribution in the room.

3.3.3.3 Discussion about modal linearity

In the context of a sensor location problem, both the EIM and the IE method operate
under the assumption of model linearity. This linearity implies that each sensor’s read-
ings correspond linearly to the state of the system. For instance, if we are considering
temperature sensors, this would mean that the temperature reading from each sensor is
a linear function of the actual temperatures at different locations in the room. This can
be mathematically represented as:

y = Ax + w (3.32)

where:
— y is the vector of sensor readings,
— A is the sensing matrix, where each row corresponds to a sensor and each column

corresponds to a location in the room,
— x is the vector of the actual temperatures at different locations in the room, and
— w is the vector of noise terms.
If the relationship between the sensor readings and the actual state of the room is

perfectly linear and known, and if the noise w is minimal, then the sensor readings y
would provide an accurate representation of the room’s state x. However, in real-world
scenarios, there are often uncertainties in the sensing matrix A, and the noise w can be
significant.

This implies that even if a sensor provides readings that seem optimal based on past
data, it might not necessarily be the best location to capture the true state of the room.
The sensor’s readings might be influenced by its specific location, nearby heat sources,
airflow patterns, or other factors that do not represent the overall room environment.

Therefore, when choosing the optimal sensor location, it is essential to consider not
just the sensor readings themselves but also how well those readings reflect the broader
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environment. This is where methods like the EIM and IE methods come into play, as they
aim to identify sensor locations that provide the most informative and representative data
about the environment.

3.4 First applications and results on a single room
case study

In this new section, we will apply the two methods detailed previously to the simple
case of a single-zone room, as shown in Figure 3.1 (a more complex study will be conducted
for a case with multiple zones in the subsequent section).

As discussed before, in the EIM, the primary objective in the optimal sensor location
problem is to determine the M (1 in here) optimal sensor locations among the m (528
in here) candidate locations on a wall. This is achieved by iteratively minimizing the
condition number of the matrix A0i

, which is proportional to the Fisher information
matrix Q, i refers to a specific candidate location among locations. The objective function
can be mathematically expressed as:

min
i

cond(A0i
, 2) + λ× penalty (3.33)

where cond(A0i
, 2) is the condition number of the matrix A0i

in the 2-norm, and the
penalty term is based on the distance to already selected locations.

For the IE method, the primary objective is to select sensor locations M (1 in here) that
maximize the information entropy among the m (528 in here) candidate. The objective
function can be mathematically expressed as:

max
s

H(s) (3.34)

where s represents the selected sensor locations, and H(s) is the entropy of the selected
sensor locations.

As we have written in the previous sections, both chosen methods are suitable for
identifying the optimal placement of a defined number of sensors. Their principles and
formalisms also encompass the ability to estimate temperatures at the target locations.
Thus, the two methods can be compared on several aspects: the selection of the best
sensor locations (whether both methods yield the same optimal positions for the sensors),
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their stability, and accuracy.
To get straight to the point, the two methods do not propose the same optimal location,

as can be seen in Figure 3.2 depicting the 528 candidate positions on the left wall. The
optimal location suggested by the EIM method is marked in red, while the one based on
IE is marked in blue. There is a heater on the left wall, marked by a green square.

Figure 3.2 – Comparison of optimal sensor locations found from EIM and IE methods

As far as EIM is concerned, it selects the sensor location that minimizes the condi-
tion number of the resulting Fisher information matrix. The amount of data that each
potential sensor location can collect regarding the temperature at the target locations
is encapsulated in the Fisher information matrix (in the middle of the room). Since the
heater is a primary source of heat, it causes significant temperature variation in its vicin-
ity. The closer a sensor is to this heat source, the more sensitive it is to the changes in the
system. It can capture finer details about temperature changes, making it a rich source
of information. Additionally, in the EIM, a more stable and dependable system is implied
by a lower condition number. Since they give less numerical instability and hence provide
more precise estimations of the system’s status, sensor placements that produce lower
condition numbers are thought to be preferable. Therefore, it makes sense that a location
near the heater, which can provide ample information about the system’s state due to
its proximity to the primary heat source, would result in a low condition number and be
chosen as an optimal sensor location.

For the IE method, it focuses on maximizing uncertainty or entropy. It aims to choose
sensor locations that provide the most uncertain or diverse set of data, effectively max-
imizing the potential information gain. In our context, the location close to the heater
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might show a high degree of variability or uncertainty in temperature readings (due to
the heater turning on and off, for instance), leading to a high entropy value and making
it an attractive location for sensor placement.

Overall, it is not unexpected that both techniques selected areas near the heater.
Placement of a sensor next to the heater would allow for close observation of the change
in temperature, which would likely reveal important details about the room’s overall
temperature dynamics.

In the first case study analyzed above, both the EIM and IE methods demonstrate
their ability to determine the optimal location for a single sensor. Interestingly, these
methods face no greater challenge when it comes to determine the placement of multi-
ple sensors. Figure 3.3 illustrates the example of the definition of three optimal sensor
locations for each algorithm are depicted. The IE algorithm determines locations that
maximize information gain. Notably, the three red points, representing this algorithm’s
optimal locations, are concentrated in the vicinity of the heater. This suggests that the
algorithm recognizes the area near the heater as one of high informational value.

Figure 3.3 – Comparison of multiple optimal sensor locations from EIM and IE methods

On the other hand, the EIM algorithm pinpoints locations conducive to produce well-
conditioned matrices, which are numerically stable and independent, facilitating subse-
quent computations. The primary objective of EIM is to minimize the correlation between
data gathered by the sensors. Consequently, the optimal locations it selects, represented
by the blue markers, tend to be distributed more widely across the room. This distribution
ensures that the acquired measurements are as independent as feasible.

Given the distinct priorities of the two methods — one emphasizing information inde-
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pendence and the other focusing on data uncertainty — it is reasonable to find disparities
in the exact sensor locations chosen by each technique.

The next step is to verify and compare the two methods in terms of stability by
assessing their sensitivity to measurement errors (generated by introducing noise around
the reference values), and accuracy of the temperature estimations obtained from the
sensors placed at their optimal locations.

3.4.1 Stability analysis

For the stability analysis, it is essential to ensure that the selection of optimal sensor
location remains robust to various perturbations, including sensor errors, environmental
changes, or other unmodeled factors. To assess this robustness, we simulate these pertur-
bations by adding noise to original measured data.

We separate the process into four steps:
— Add noise or perturbations to the data: Modify the original data by intro-

ducing random noise or perturbations to simulate measurements uncertainties. We
add a small random value to each data point using the equation below,

Unoisy = Uoriginal + ϵ ·A (3.35)

Here, Unoisy represents the noisy data, Uoriginal is the original data, ϵ is the noise
level, and A is a matrix of random values with the same dimensions (m × T ) as
the original data. The elements of these matrices are temperature values.

— Re-calculate the optimal sensor locations: Use the modified data to calculate
the optimal sensor locations using the EIM and the IE method.

— Assess the stability of the system: Compare the optimal sensor locations ob-
tained from the original data and the modified data. If the optimal sensor locations
remain similar or identical, it indicates that the system is stable and robust against
noise and perturbations. Conversely, significant variations in the optimal sensor lo-
cations suggest that the system may be sensitive to noise and perturbations.

— Compare with other sensor configurations: Perform the same stability anal-
ysis for other randomly sensor configurations which from the walls and compare
their performance with the optimal sensor locations. The optimal sensor locations
should demonstrate higher stability and robustness against noise and perturba-
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tions compared to other sensor configurations. In the case of the IE method, we
randomly select ten sensors to compare their information entropy with the original
optimal sensor in both the original and modified data.

In Figure 3.4, we illustrate as an example the stability of the EIM method. The y-axis
represents the absolute difference between the original data and the noisy data for each
candidate sensor position (on the x-axis, representing the 528 possible positions). Notably,
the EIM method consistently identifies the same location for the best sensor (at position
488 out of the 528 possible positions), which demonstrates its high mathematical stability
and robustness.

Figure 3.4 – Stablility evaluation of the EIM

The results of the stability study of the IE method are presented in a different form in
Figure 3.5 and 3.6. In Figure 3.5, the entropy values of the data are plotted on the y-axis for
each of the 528 possible sensor positions. From this figure, we can observe that the optimal
sensor location is not consistently selected in the same positions for the original data and
modified data. However, the difference of information entropy when placing the sensors at
their respective optimal location (for original and modified with noise or perturbations)
is relatively small compared to those calculated for sensor locations taken randomly. This
is reported in Figure 3.6, where the information entropy values are compared between the
original and noisy datasets for the optimal location and other random location. The small
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difference between the information entropy values for the original and modified data, with
sensors placed at their respective optimal positions, supports the notion that this second
method is also relatively stable and robust in the presence of noise and perturbations.

Overall, from the results, EIM is slightly more stable than the IE method, since the
EIM inherently takes this uncertainty into account. Remember, one of the primary aims
of the EIM is to ensure stability, which is closely tied to the ability to handle noise. This
is because the EIM maximizes the determinant of the Fisher information matrix. When
calculating this matrix, the method implicitly considers the noise variance. Hence, it is
less sensitive to noise in the data.

In essence, the EIM focus on stability and its implicit consideration of noise make it
more robust to noise in the data compared to the IE method.

Figure 3.5 – Stability evaluation of IE method
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Figure 3.6 – information entropy for original and noisy data

3.4.2 Accuracy analysis

As mentioned in the introduction of section 3.4, we aim to evaluate the accuracy of
the two methods when used to predict the temperature at the target points, thanks to
their adapted formalisms. For that, we use the RMSE which is a common metric used to
assess the performance of models or estimations by measuring the differences between the
predicted values and the actual values. Considering that we have n target points, T time
intervals, the RMSE is defined here as follows:

RMSE =

√√√√√ 1
n

n∑
i=1

 1
T

T∑
j=1

(qij − q̂ij)2

 (3.36)

where qij and q̂ij represent respectively the actual (by CFD simulations) and predicted
(using Equation 3.10) value of temperature at the i-th target point and j-th time interval.

Smaller RMSE values indicate better performance, as the differences between the
predicted and actual values are smaller. Theoretically, the RMSE value obtained using
the optimal arrangement of wall sensors should be the smallest or at least one of the
smallest calculated values. To verify this, we randomly generated 1000 sets of triplets
(M = 3 being the number of wall sensors we want to keep) representing wall sensor
positions, to establish the response function ϕ of equation 3.10 for each of them, and
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then calculated the estimated temperature values q̂ij at the n = 9 target points. Figures
3.7 and 3.8 below show the RMSE obtained for the 1000 random repetitions, and the
specific RMSE obtained for the optimally defined location using the EIM and IE methods
(indicated by the red line).

In an ideal scenario, as already mentioned, the red line (representing the optimal
sensor location) should have a lower RMSE value compared to the majority of the random
configurations. This would imply that the selected optimal sensor location provides better
information than a randomly chosen configurations. From Figures 3.7 and 3.8, we observe
that the red line is positioned to the left of the histogram (indicating a lower RMSE value
compared to most random configurations). This result suggests that the optimal sensor
location outperforms the majority of random configurations in terms of RMSE.

However, this also suggests that certain configurations may perform better than those
obtained through our two methods. This arises from two factors with difficult-to-prioritize
effects. The first contributing element to this situation, where configurations other than
those provided by our chosen methods may be preferred, is the introduction of noise
that disrupts the selection of optimal locations using our methods. The second factor to
consider is the assumption of linear independence underlying both our approaches, which
may not accurately reflect real-world conditions.

Nevertheless, we maintain a favorable view of our methods, especially the first method
EIM, which provides better estimations than the majority of random configurations of
wall-mounted sensors.

Figure 3.7 – RMSE of the value optimal sensor in EIM with target value
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Figure 3.8 – RMSE of the value optimal sensor in IE methods with target value
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3.5 Result for multi-wall and multi-zone

In this section, we will address two different scenarios. In both of them, the initial
room size remains unchanged, and we still intend to find the optimal locations of M = 3
sensors among candidate locations. The first scenario (Figure 3.11) involves a multi-wall
case where two walls in the room are considered as potential candidate locations for wall
sensors, with 528 possible locations each. One of the walls (the left one) is situated close
to a heater, resulting in a high-temperature distribution, while the other wall is farther
the heater (no heater on this wall) and has a cooler temperature distribution. The n = 9
targets remain unchanged in this setup.

Figure 3.9 – At the left, a larger image
of the point on Hot wall

Figure 3.10 – At the right, a larger image
of the point on Cold wall

Figure 3.11 – Result for multi-wall configuration
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The second scenario is a multi-zone configuration (Figure 3.14). The room is divided
by a wall, and 9 targets are evenly distributed in the two zones. We select two walls
that are farthest from each other as potential sensor locations, providing a total of 528
locations each.

Figure 3.12 – At the left, a larger image
of the point on zone left

Figure 3.13 – At the right, a larger image
of the point on zone right

Figure 3.14 – Result for multi-zone

The observed results (in Figures 3.11 and 3.14) from both the EIM and IE methods
underscore the difference in criteria when determining optimal sensor locations on the
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walls. These distinctions arise from the inherent objectives of each method.
The EIM method prioritizes the independence of measurements. Its primary goal is

to minimize the correlation between data collected by various sensors. Thus, the ideal
placement of sensors, as determined by this method, tends to be dispersed across the
room. This scattered distribution ensures that each sensor provides a unique perspective,
minimizing overlap and redundancy in the data they collect. In Figure 3.11, the spread of
the blue markers (representing the EIM method) on the warmer left wall is an evidence
of this principle. This spread contrasts with the more clustered distribution of the red
markers, which represent the IE method’s optimal locations. The latter’s concentration
suggests a focus on specific areas, rather than a broad coverage.

The IE method is anchored in the principle of maximizing information extraction. The
sensors’ ideal locations, as per this method, are those where temperature fluctuations are
most pronounced. Such locations are information-rich, offering insights into the environ-
mental dynamics. This principle is evident in the placement of the red markers near the
heater on the left wall. The proximity of these sensors to the heater ensures that they
capture the most significant temperature gradients, thus maximizing information gain.

A consistent observation for both methods is the recurrent preference for the left wall.
In most scenarios, two of the three optimal sensors are positioned on this wall. This choice
is logical, given that the left wall is most influenced by the heater, resulting in pronounced
temperature variations. Such variations make this wall an information hotspot. On the
other hand, the cooler right wall typically receives just one sensor. Though it may seem
counterintuitive, this placement is strategic. By ensuring a sensor’s presence on the colder
wall, the system guarantees a baseline measurement. This baseline aids in capturing the
complete temperature spectrum, ensuring holistic monitoring while simultaneously bol-
stering the robustness and stability of the modeling processes.

3.6 Result for real case study

3.6.1 Essential key elements of the real case study

As a reminder of the real case study presented in Chapter 2, two classrooms at the
Polytech Angers school were extensively equipped with multi-sensor boards. Both class-

124



3.6. Result for real case study

rooms have dimensions of 7.8 meters in length and 6.6 meters in width. Specifically,
Classroom 219 was equipped with three target sensors identified as (1097BD2AE2CC,
1097BD29A4A8, 1097BD2B0D44). Additionally, 14 multi-sensor electronic boards (la-
belled as "100" to "113") were placed in the classroom, as shown in Figure 3.15, at a
height of 2.5 meters.

Each electronic board on the multi-sensor network (either target or wall sensors) can
measure various parameters, including temperature, humidity, CO2, VOCs (volatile or-
ganic compounds), brightness, and noise levels. Moreover, two sensors measure the overall
power consumption of the room and the lighting power, and their data is also saved in
another database through Wi-Fi communication. Additionally, window-opening sensors
are installed, and a weather station has been set up on the school roof.

Figure 3.15 – Layout of the sensors in Real case

Due to frequent disconnections experienced, the data from the target sensors is only
available for a specific time frame, ranging from October 3, 2022, at 12 noon to October
7, 2022, at 12 noon. Consequently, filtering the data from all 14 multi-sensors to match
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this time frame was required. The number and percentage of missing data for each sensor
can be found in Table 3.1.

Parameter Missing Data Percentage (%)

CO2_100 2819 21.88
CO2_101 2842 22.07
CO2_102 2837 22.03
CO2_103 2867 22.26
CO2_104 2782 21.60
CO2_105 2820 21.90
CO2_106 2805 21.77
CO2_107 2826 21.93
CO2_108 11968 92.96
CO2_109 11528 89.49
CO2_110 11593 90.00
CO2_111 2731 21.20
CO2_112 2778 21.57
humidity_100 2819 21.88
humidity_101 2842 22.07
humidity_102 2837 22.03
humidity_103 2867 22.26
humidity_104 2782 21.60
humidity_105 2820 21.90
humidity_106 2805 21.77
humidity_107 2826 21.93
humidity_108 11968 92.96
humidity_109 11528 89.49
humidity_110 11593 90.00
humidity_111 2731 21.20
humidity_112 2778 21.57
temperature_100 2819 21.88
temperature_101 2842 22.07
temperature_102 2837 22.03
temperature_103 2867 22.26
temperature_104 2782 21.60
temperature_105 2820 21.90
temperature_106 2805 21.77
temperature_107 2826 21.93
temperature_108 11968 92.96
temperature_109 11528 89.49
temperature_110 11593 90.00
temperature_111 2731 21.20
temperature_112 2778 21.57

Table 3.1 – Missing data for each parameter and sensor

The target sensor data is aligned with the multi-sensor data based on the time. Sensors
108, 109, and 110 have no available data (percentage of missing data higher or equal to
90%) and are thus excluded from the analysis. For the remaining sensors, any missing
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data points are imputed by taking the mean of the surrounding values. Only two target
sensors, 1097B2AE2CC and 1097B29A4A8, have been finally used in this study, providing
sufficient amount of data for analysis.

In summary, using the same notations as in the previous sections, our goal is to
determine the M = 3 optimal sensor locations out of m = 10 candidate locations (3
sensors, 108, 109, 110, having been excluded) that enable robust and accurate prediction of
temperature, humidity, and/or CO2 levels (the sensors are multi-physical) at n = 2 target
locations in the room. These data are collected over T = 409 time intervals. Data collected
in site by the multi-sensors (wall and target points) for each parameters Temperature,
CO2 and Humidity are provided in Figures 3.16 to 3.18

Figure 3.16 – CO2 variation measured at different sensors and targets
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Figure 3.17 – Humidity variation measured at different sensors and targets

Figure 3.18 – Temperature variation measured at different sensors and targets

3.6.2 Finding the optimal sensor location

Since we have access to multi-physical data, it is essential to leverage them as much
as possible to extract the maximum information and knowledge. Therefore, the EIM
and IE methods used earlier will be revisited here, combining the information collected
simultaneously on temperatures (T), CO2 levels (CO2), and humidity (H). Thus, separate
matrices are created for each of these parameters – (T), (CO2) and (H) -, containing
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target point data ([q]) and potential sensor location data ([U ]). Additionally, weights are
assigned to each parameter, reflecting their importance in the decision-making process.
For this study, the weights assigned to temperature, CO2 concentration, and humidity are
w = [0.4, 0.4, 0.2], as we place higher importance on temperature and CO2 concentration
due to their potential direct connection with occupancy, respectively. These weights can
be adjusted based on the relative importance of each parameter.

For the EIM, the A0 matrix (see Equation 3.12), up to a multiplicative constant,
corresponding to the Fisher information matrix, is expressed as follows:

A0i
= (Ui pinv(q))T · (Ui pinv(q)) (3.37)

Then, we can compute the condition number of A0 (and of the Fisher Information Ma-
trix) for each physical parameter p (T, CO2 or H), and adding them using the assigned
weights to form a single combined condition number for each measurement point. Next,
we identify the measurement point with the lowest combined condition number and mark
it as eliminated. Then, we update the priority vector to indicate the priority of this point,
and remove the eliminated measurement point from the U matrices of all parameters and
repeat the process until all measurement points have been considered.

For the IE, the entropy for a single parameter p is calculated as follows:

entropyp = 0.5 log det(covT OT )
det(covq)

(3.38)

where covT OT is the covariance matrix of the combined data (q and U) for parameter
p, and covq is the covariance matrix of the target points data (a) for parameter p.

The combined entropy for a candidate location is obtained by summing the weighted
entropy for each parameter:

entropycombined =
num_parameters∑

p=1
w(p) · entropyp (3.39)

To find the optimal sensor locations, the combined information entropy is calculated for
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all candidate locations. The locations with the highest combined entropies are considered
the best choices for sensor placement.

We present in Figure 3.19 the three prioritized optimal locations selected by the EIM
(framed by blue lines) and IE methods (framed by red lines) among the ten pre-defined
wall sensor locations. Naturally, given the smaller number of possible candidates (10 in-
stead of 528 or double in CFD-based simulation case studies), there is a higher probability
of locations being selected by both methods. The EIM method prioritizes the selection of
sensor 101, followed by 105 and 100.Information entropy methods prioritizes sensor 100,
followed by 101, and 103. Both algorithms choose 100 and 101 as priorities.

Observing the figure, we can see that it aligns well with the features each method
emphasizes EIM favors locations with more independent information (the selected sensors
are installed in a wider area), while IE method prioritize locations with ample information
(the sensors are both closer to the windows, where stronger entropy variations can be
captured, as well as to the target points).

Figure 3.19 – Top three optimal sensor location for each method

In Table 3.2, the condition number, relative to the use of EIM, is calculated for each
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Round Cond.
Number
Temp.

Cond.
Number
CO2

Cond.
Number
Humid-
ity

Total
Cond.
Number

Priority Deleted Location

1 50.015 496.622 7.185 220.091 0.1 102
2 4.599 438.044 7.185 178.494 0.2 111
3 8.650 383.483 9.448 158.743 0.3 104
4 15.240 333.839 8.615 141.354 0.4 112
5 24.461 281.738 7.508 123.981 0.5 103
6 39.868 233.760 7.508 110.953 0.6 106
7 65.872 193.598 8.309 105.450 0.7 107
8 110.934 156.097 7.809 108.374 0.8 100
9 247.015 985.289 8.122 494.546 0.9 105

10 2581.029 460.338 8.122 1218.171 1.0 101

Table 3.2 – Condition numbers and priority for EIM

parameters. Reminding that a smaller condition number for a sensor means that remov-
ing that sensor causes a smaller increase in system unobservability, indicating that the
sensor provides less unique information to the system. The combined condition number is
calculated based on the weight of each parameters. This is used to find the sensor location
that provides the least amount of unique information across all parameters (temperature,
CO2, and humidity). In other words, the sensor with the smallest combined condition
number in each round is the least valuable sensor and is therefore removed first. The
priority of each sensor location is determined by the round in which it is removed. The
later a sensor is removed, the higher its priority, as it means that the sensor provides more
unique information to the system. Therefore, the sensors with the highest priorities are
the optimal locations as they contribute most to the system observability. In the table,
the line in bold shows the OSP for EIM in this case.

So in summary:
— The condition number is used to measure the information contribution of each

sensor.
— The combined condition number is used to determine which sensor to remove in

each round.
— The priority is used to determine the optimal sensor locations. The higher the

priority, the more optimal the sensor location.
In Table 3.3 for the specific use of IE method, the entropy is calculated for each

parameters, and the total entropy is calculated based on the weight of each parameters,
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Location Entropy (Temperature) Entropy (CO2) Entropy (Humidity) Total Entropy
100 -0.821 4.381 0.272 1.478
101 -0.994 4.491 0.105 1.420
102 -1.071 4.418 0.126 1.364
103 -1.116 4.449 0.257 1.385
104 -1.016 4.374 0.100 1.363
105 -1.226 4.323 0.031 1.245
106 -1.300 4.311 0.202 1.245
107 -1.152 4.255 0.270 1.295
111 -1.539 4.390 0.490 1.238
112 -1.720 4.394 0.523 1.174

Table 3.3 – Parameter entropy and total entropy

then a higher entropy value suggests a more "optimal" sensor location in the context of
this code. This is because a higher entropy value indicates more uncertainty or variability
in the data, which can provide more informative measurements about the state of the
system. The line in bold shows the OSP for IE in this case.

3.6.3 Prediction of physical parameters at target locations using
values at optimal sensor locations

To predict the physical parameters of temperature and CO2 levels (which are presumed
to be more directly related to occupancy) at the target points, we decided to explore an
alternative method to those embedded in the formalisms of the EIM and IE methods.

In this section, we propose to use ANN to build individual metamodels that predict
the temperature and CO2 levels at the target points based on data available from a
specific multi-sensor network. Our aim is not only to construct regression models but also
to validate, through a different approach, the appropriateness of the sensors selected for
the optimal locations. To achieve this, we will compare the parameter values provided by
ANNs to the actual values at the target points using the RMSE as the comparison metric.
The sensors that yield the lowest RMSE values will be considered the best predictors of
the parameter values at the target points.

The datasets used for learning consist of sensor measurements for CO2 levels, temper-
ature, and humidity at ten different locations taken separately (100, 101, 102, 103, 104,
105, 106, 107, 111, and 112); thus, we have ten separate 3-by-409 (the number of time
intervals) input datasets. The goal is to use these measurements to build individual ANNs
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(one for each wall sensor) that separately predict the target values of CO2 concentration
and temperature 1. The output data consists of two 1-by-409 vectors (one vector for each
metamodel or parameter), which are used for learning purposes (training and testing)
and are identical for all sensors (i.e., for all ten separate 3-by-409 input datasets). The
datasets are conventionally split into 80 percent training and 20 percent testing subsets.
We emphasize that each sensor’s data is used separately for training and testing, ensuring
that the trained model is specific to that sensor location.

A simple feedforward ANN with one hidden layer is employed to predict the target
values. The activation functions used in the ANN play a crucial role in determining its
performance. Here, the Rectified Linear Unit (ReLU) function is used as the activation
function for the hidden layer neurons, while the output layer uses a linear activation
function. The ANN is trained on the sensor data using backpropagation, an optimization
algorithm that minimizes the error between the predicted and actual target values by
adjusting the weights and biases of the network.

Figures 3.20 and 3.21 along with Tables 3.4 and 3.5 present the combined RMSE be-
tween the predicted and actual results for target sensors 1097BD29A4A8 and 1097BD2AE2CC,
respectively.

For sensor 1097BD29A4A8, a close examination of Figure 3.20 reveals that sensors 100,
101, 104, 105, and 111 exhibit notably low combined RMSE values for temperature. Par-
ticularly, sensors 101, 100, and 105 display minimal combined RMSE for CO2. Table 3.4
further quantifies these observations: Sensor 105 registers the lowest RMSE for tempera-
ture at 0.66, closely followed by sensors 101 and 103, both at 0.72, and then by sensor 100
at 0.98. For CO2 predictions, sensor 101 stands out with an RMSE of 43.67, with sensor
105 trailing at 58.1. Although sensors 107, 111, 112, and 100 demonstrate commendable
performance in predicting CO2, the subpar performance of sensors 107 and 112 in tem-
perature prediction cannot be overlooked. Consequently, based on a holistic evaluation,
sensors 101, 105, 100, and 111 emerge as the most reliable.

1. one metamodel for each of these two parameters, humidity being excluded from the parameters
of interest. Given the significance of CO2 and temperature parameters in future occupant detection
applications within the machine learning domain, these two parameters are our main focus. Although
humidity is included in the sensor data, its weight is relatively lower compared to CO2 and temperature
when determining optimal sensor locations, reflecting its lesser importance in our analysis
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Figure 3.20 – RMSE for all sensors with regard to target point 1097BD2A4A8

Sensor RMSE for CO2 RMSE for Temperature
100 63.09 0.98
101 43.67 0.72
102 60.44 19.68
103 65.28 0.72
104 63.49 1.13
105 58.10 0.66
106 67.35 19.25
107 62.19 19.07
111 61.50 0.73
112 62.59 19.15

Table 3.4 – Combined RMSE for each wall sensor to target point 1097BD2A4A8

For sensor 1097BD2AE2CC, Figure 3.21 indicates superior performance by sensors 100,
101, 105, and 111. Focusing on the results presented in Table 3.5, sensor 105 has the most
accurate temperature predictions with an RMSE of 0.5. This is followed closely by sensors
101 and 104, both at 0.58, then sensor 111 at 0.61, sensor 103 at 0.75, and sensor 100 at
1.02. In terms of CO2 predictions, sensor 101 leads with an RMSE of 57.86, succeeded
by sensor 106 at 60.84. Sensors 105, 107, 111, 112, and 100 all cluster around an RMSE
value of 80. Factoring in performance across both metrics, sensors 101, 105, 111, and 100
distinguish themselves as the foremost choices.
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Figure 3.21 – RMSE for all sensors with regard to target point 1097BD2E2CC

Sensor RMSE for CO2 RMSE for Temperature
100 80.86 1.02
101 57.86 0.58
102 84.77 19.71
103 83.85 0.75
104 84.26 0.58
105 74.00 0.50
106 60.84 19.27
107 79.71 19.08
111 77.35 0.61
112 78.35 19.16

Table 3.5 – Combined RMSE for each wall sensor to target point 1097BD2E2CC

For a general assessment, Figures 3.22 to 3.41 show a comparison between actual and
predicted values of parameters (CO2 level and Temperature). From the figures, we can
notice the good performance for the 101, 105, 100 and 111 as well.The cumulative results
unequivocally highlight that sensor 101 consistently exhibits the lowest RMSE for both
CO2 and Temperature, signifying its superior performance. This is closely followed by
sensors 105, 100, and 111 in that order. Notably, the EIM method prioritizes sensor 101
as its primary choice, with sensors 105 and 100 as its subsequent selections. On the other
hand, the IE method ranks sensor 100 as its top pick, followed by sensor 101. Given this
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alignment in sensor rankings between empirical RMSE results and the two methodologies,
we can assert with confidence that our approach is both robust and compelling.
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Figure 3.22 – Sensor
100 CO2 VS target
CO2

Figure 3.23 – Sensor
100 Temperature VS
target Temperature

Figure 3.24 – Sensor
101 CO2 VS target
CO2

Figure 3.25 – Sensor
101 Temperature VS
target Temperature

Figure 3.26 – Sensor
102 CO2 VS target
CO2

Figure 3.27 – Sensor
102 Temperature VS
target Temperature

Figure 3.28 – Sensor
103 CO2 VS target
CO2

Figure 3.29 – Sensor
103 Temperature VS
target Temperature

Figure 3.30 – Sensor
104 CO2 VS target
CO2

Figure 3.31 – Sensor
104 Temperature VS
target Temperature

Figure 3.32 – Sensor
105 CO2 VS target
CO2

Figure 3.33 – Sensor
105 Temperature VS
target Temperature

Figure 3.34 – Sensor
106 CO2 VS target
CO2

Figure 3.35 – Sensor
106 Temperature VS
target Temperature

Figure 3.36 – Sensor
107 CO2 VS target
CO2

Figure 3.37 – Sensor
107 Temperature VS
target Temperature

Figure 3.38 – Sensor
111 CO2 VS target
CO2

Figure 3.39 – Sensor
111 Temperature VS
target Temperature

Figure 3.40 – Sensor
112 CO2 VS target
CO2

Figure 3.41 – Sensor
112 Temperature VS
target Temperature
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3.7 Conclusion of the chapter

In this chapter, we focused on the complexity of the optimal sensor location problem,
which holds significant importance in various scientific, engineering, and industrial appli-
cations. Our thorough examination aimed to provide a clear overview of the problem, its
various aspects, and the state-of-the-art solutions developed to address it.

After carefully evaluating different methods, we have chosen the EIM and IE methods
and have successfully transferred them for the first time to the building indoor environ-
ment monitoring sensor placement problem. We provide a comprehensive introduction to
both methods, explaining their basic principles, their operation, and their advantageous
conditions.

To validate our choices and understand their real-world performance, we applied both
methods to simulated data, closely mimicking actual deployment scenarios. The optimality
of the selected sensor locations was then validated using two distinct parameters: model
stability, examining how robust the models are against input variations, and RMSE,
quantifying the accuracy of sensor readings compared to actual target values.

Our research also expanded into complex scenarios, exploring multi-zone and multi-
wall environments. This investigation was designed to test the adaptability and versatility
of our chosen methods, as real-world applications often involve complex and variable
environments.

Furthermore, we moved beyond simulations and applied the two methods to real-world
data, validating the results using prediction and RMSE. These real-world tests provided
concrete evidence of how well our methods performed under actual operating conditions,
demonstrating their reliability.

However, it is essential to consider that ’optimal’ is a term defined within the context of
a specific application. While our results are promising, they should be interpreted within
the parameters of our study. Future work should further explore and refine these methods,
extending their applicability to a broader range of environments and conditions.
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Chapter 4

SINGLE EVENT DETECTION

As previously discussed in earlier chapters of this thesis, the field of activity detection
in buildings is rapidly evolving, focusing on the automatic identification and classifica-
tion of human behavior within indoor environments. In this chapter, our attention turns
to machine learning techniques, where we will undertake a comparative analysis of the
advantages and disadvantages associated with various approaches, including supervised
methods such as Logistic Regression, ANN, and XGBoost, as well as semi-supervised
techniques like AutoEncoder, and unsupervised methods such as DBSCAN, PCA, and
Mixture of Gaussian Distributions (MGD). These machine learning approaches will be
applied to both simulated (for highly imbalanced and more realistic occupancy scenario)
and real-time data for the detection of window status and the presence of occupants.
After conducting a thorough analysis and testing, it becomes evident that DBSCAN and
XGBoost emerge as the most suitable algorithms for our purposes. In the final stages, we
also explore techniques for accelerating these algorithms. Notably, we achieve a significant
enhancement in computation time for DBSCAN, which is now ten times faster than its
previous iteration. Additionally, parameter grid search computation time is halved. In the
case of XGBoost, computation time is improved, resulting in an 85% reduction.

4.1 Introduction

In Chapter 1, we proposed a state-of-the-art literature, showing remaining challenges
in using machine learning techniques for occupancy detection. The primary challenge is
the presence of imbalanced datasets. Anomalies or rare activities, essential for detection,
often represent a small fraction of the data. This imbalance can skew algorithms towards
the majority class, compromising their ability to identify anomalies effectively. Strategies
such as resampling techniques have been explored to mitigate this issue and improve
detection accuracy, as discussed in previous research.

Acquiring labeled data, especially for abnormal behavior, remains the second main
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challenge. Supervised machine learning techniques necessitate labeled data for training,
which is often scarce and expensive to obtain. In response, innovative approaches like
NormA (Boniol et al.2021) and others have emerged, offering unsupervised and scalable
subsequence anomaly detection solutions. These methods alleviate the need for extensive
domain-specific knowledge and open doors to broader applications.

The third challenge is the adaptability to dynamic environments. Real-world data
is subject to changes in patterns and conditions over time. Static anomaly detection
models struggle to adapt, resulting in reduced performance. Recognizing the importance of
adaptability, recent research has proposed dynamic ensemble algorithms and incremental
learning techniques, which demonstrate promise in handling evolving data streams with
various types of changes.

The fourth challenge is the high false positive and false negative rates. Achieving a bal-
anced trade-off between these rates is critical, particularly in applications with high stakes,
such as healthcare and industrial maintenance. Research has delved into the development
of reliable and accurate anomaly detection techniques, emphasizing their significance in
real-world scenarios.

Building on these challenges, the present chapter seeks to refine anomaly detection in
building IoT systems. We will address these challenges systematically, leveraging optimal
sensor selection and data fusion techniques to improve accuracy. Strategies for handling
imbalanced datasets, privacy-preserving methods relying solely on environmental sensor
data, and the exploration of unsupervised and semi-supervised algorithms will be at the
forefront of our investigation.

Drawing a connection between the machine learning methods discussed in Chapter 1
and the challenges we aim to address here in the context of occupant activity detection, we
have emphasized the importance of studying the seven algorithms summarized in Table
4.1 below.

Method Type Algorithms
Unsupervised DBSCAN, PCA, MGD
Supervised Logistic Regression, ANN, XGBoost
Semi-supervised AutoEncoder

Table 4.1 – Machine Learning Methods

By combining these seven algorithms appropriately and tuning their parameters, it is
possible to develop a robust anomaly detection system capable of effectively addressing
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the challenges of activity detection in buildings.

4.2 Methodologies detailed

4.2.1 Unsupervised DBSCAN

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is an unsu-
pervised clustering algorithm, proposed by Ester et al. (1996), which can serve as a tool
for unsupervised anomaly detection. Unlike partitioning and hierarchical clustering meth-
ods, DBSCAN is designed to discover clusters of arbitrary shape in datasets containing
noise and outliers.

Considering the four challenges highlighted in the introduction of the present chapter,
despite being an unsupervised algorithm, DBSCAN can be adapted to imbalanced data by
appropriately setting parameters to identify anomalies as isolated or low-density points.
This is helpful in detecting rare events in the presence of mostly normal data. It can also
adapt to dynamic environments by identifying clusters of points based on density. When
new data is introduced, DBSCAN can adjust clusters based on density changes, making
it suitable for evolving environments. And generally, DBSCAN, is known to contribute to
reducing false positives by identifying anomalies based on density.

In practice, DBSCAN operates on the principle that clusters in a dataset correspond
to dense regions separated by areas of lower density. The algorithm classifies data points
into three categories: core points, border points, and noise points (anomalies). These
classifications are essential for understanding how DBSCAN identifies window opening
cases within our context.

The key terms used in DBSCAN include:

1. Neighborhood: The neighborhood of a point p in DBSCAN is simply the set
of points that lie within a distance eps from p. DBSCAN uses this concept to
understand the density of points around a given point. If there are minPts within
the eps-neighborhood of a point, that point is considered a "core" point. The eps-
neighborhood of a point p in the database D is defined as:

Neps(p) = {q ∈ D|dist(p, q) ≤ eps} (4.1)

where dist(p, q) is a function returning the distance between points p and q.
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2. eps: eps is a user-defined parameter 1 that specifies the maximum distance between
two points for them to be considered as in the same neighborhood. The optimal
value of eps varies based on the dataset and should be chosen such that it best
meets the objective of the analysis. One common approach is to use a k-distance
graph to find the best eps.

3. minPts: minPts is a user-defined parameter1 that specifies the minimum number
of points required to form a dense region. Like eps, the optimal value of minPts

can depend on the dataset, and it is often chosen based on domain knowledge. A
common rule of thumb is to set minPts to twice the dimensionality of the dataset,
although this may not be optimal in all cases.

4. Directly Density-Reachable: In the DBSCAN algorithm, a point p is directly
density-reachable from a point q if p is within the eps-neighborhood of q, and q is a
core point (i.e., q has at least minPts within its eps-neighborhood). This concept
is used during the expansion of clusters. When a core point is found, all points
that are directly density-reachable from the core point (i.e., all points within its
eps-neighborhood) are added to the same cluster.

5. Density-Reachable: A point p is density-reachable from a point q if there is a
sequence of points p1, ..., pn such that p1 = q, pn = p, and each point pi + 1 is
directly density-reachable from pi. This concept is used to add points to existing
clusters. If a point is density-reachable from any point in a cluster, it is added to
that cluster.

6. Density-Connected: A point p is density-connected to a point q if there is a
point o such that both p and q are density-reachable from o. This concept ensures
that all points in a cluster are connected. That is, for any two points in a cluster,
there is a chain of points within the cluster such that each point in the chain is
directly density-reachable from the previous point. This results in a set of points
that are all density-connected, forming a cluster.

7. Cluster: A cluster C with respect to eps and minPts is a non-empty subset of the
database D satisfying the following conditions:
— For all points p, q: if p is in C and q is density-reachable from p with respect

to eps and minPts, then q is in C (Maximality).

1. domain expertise can help in setting these parameters initially. If we know the scale at which we
expect clusters to appear or how dense they should be, this can guide the choice.
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— For all points p, q in C: p is density-connected to q with respect to eps and
minPts (Connectivity).

These concepts are utilized in the DBSCAN’s cluster formation process and the iden-
tification of core, border, and noise points. Core points are central to cluster formation,
while border points surround core points, and noise points do not belong to any cluster.

Figure 4.1 – Illustration of core, border and noise points associated with DBSCAN algo-
rithm (from Amini et al. (2014)).

To adapt DBSCAN to our window opening detection (considered as anomalies) con-
text, we follow these steps:

1. Initialize: Starting with an arbitrary unvisited point in the dataset and retrieve
its eps-neighborhood, which includes all points within a distance of eps from the
selected point.

2. Check for Core Point: Determine if the selected point qualifies as a core point. A
point is a core point if there are at least minPts in its eps-neighborhood, including
the point itself. In the context of our case study, a core point can be a data point
where the window is closed and shares similar feature values with its neighboring
points. If it meets the criteria of a core point, a new cluster is created, and all
points in the eps-neighborhood are added to this cluster.

3. Expand the Cluster: If the initial point is a core point, iteratively check all the
points within the eps-neighborhood of the initial point and include nearby core
points to the cluster.

4. Identify Border Points: While the algorithm progresses through the points in
the eps-neighborhood of the initial core point, it may encounter points that are

143



Chapter 4 – Single event detection

not core points themselves but fall within the eps-neighborhood of a core point.
These points are classified as border points and are added to the cluster associated
with the nearby core point. In our case study, a border point might represent a
data point where the window is closed but exhibits slightly different feature values
compared to a nearby core point, possibly due to minor variations in environmental
conditions.

5. Repeat: Repeat the process for all unvisited points in the dataset. If a point fails
to meet the criteria of a core point and does not fall within the eps-neighborhood
of any core point, it is categorized as noise.

6. Anomaly Detection: Once all points have been visited, and clusters have been
formed, points labeled as noise are considered anomalies. In our case study, the
anomalies would likely instances where the window is open. These events are rare
(only 147 occurrences out of 35,040 time steps of our in the very imbalanced simu-
lated case study) and exhibit distinctive feature values compared to the remainder
of the dataset. These points does not belong to any cluster and do not share prox-
imity with the denser regions of the dataset to qualify as border points.

The pseudocode of DBSCAN is shown as follows.
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Algorithm 3 DBSCAN-Anomaly-Detection
1: function DBSCAN-Anomaly-Detection(D, eps, minPts)
2: C = 0
3: Noise = {}
4: for each unvisited point P in dataset D do
5: mark P as visited
6: NeighborP ts = regionQuery(P, eps)
7: if sizeof(NeighborP ts) < minPts then
8: add P to Noise

9: else
10: C = nextCluster()
11: expandCluster(P, NeighborP ts, C, eps, minPts)
12: end if
13: end for
14: return Noise

15: end function
16: function expandCluster(P, NeighborP ts, C, eps, minPts)
17: add P to cluster C

18: for each point P ′ in NeighborP ts do
19: if P ′ is not visited then
20: mark P ′ as visited
21: NeighborP ts′ = regionQuery(P ′, eps)
22: if sizeof(NeighborP ts′) ≥ minPts then
23: NeighborP ts = NeighborP ts joined with NeighborP ts′

24: end if
25: end if
26: if P ′ is not yet a member of any cluster then
27: add P ′ to cluster C

28: end if
29: end for
30: end function
31: function regionQuery(P, eps)
32: return all points within P ’s eps-neighborhood (including P )
33: end function
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4.2.2 Unsupervised Principal Component Analysis (PCA)

PCA, first proposed by Karl Pearson in 1901, is a widely used unsupervised learning
algorithm in machine learning and statistics. PCA’s primary objective is to reduce the
dimensionality of a high-dimensional dataset while retaining as much of the data’s varia-
tion as possible. It accomplishes this by identifying new uncorrelated variables known as
principal components, which are linear combinations of the original variables. These prin-
cipal components are ordered so that the first few capture most of the variation present
in all of the original variables.

PCA offers solutions to several challenges discussed in the introduction. It can assist
in handling imbalanced data by reducing data dimensionality while preserving important
information, thereby creating a more balanced dataset in a projection space where anoma-
lies may become more apparent. Additionally, PCA can adapt to dynamic environments
by recalculating principal components as new data arrives, maintaining an efficient rep-
resentation of evolving data. Similar to DBSCAN, PCA can contribute to reducing false
positives by identifying anomalies based on unusual data characteristics, thus increasing
anomaly detection specificity.

When given a dataset represented as a d × n matrix X, where d is the number of
dimensions (features) and n is the number of observations, PCA aims to find a set of
d orthogonal vectors (principal components) that can optimally reconstruct the original
data. These vectors are the eigenvectors of the covariance matrix of X, corresponding to
its largest eigenvalues.

The steps to perform PCA are as follows:

1. Standardize the dataset: PCA is sensitive to the scales of the variables. If
the scales are not similar, standardizing the features to have zero mean and unit
variance is often crucial preprocessing step.

2. Compute the covariance matrix: Calculate the covariance matrix, denoted as
C, is a d × d matrix where each element represents the covariance between two
features. The covariance between two features xi and xj is calculated as:

Cij = 1
n− 1

n∑
k=1

(xik − x̄i)(xjk − x̄j) (4.2)

where x̄i and x̄j are the means of the features xi and xj respectively.
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3. Compute the eigenvectors and eigenvalues of the covariance matrix: The
eigenvectors (principal components) of the covariance matrix are orthogonal vectors
that define the new feature space. The eigenvalues represent the variance of the data
along the corresponding eigenvectors. In other words, they give the "importance"
of different features in the dataset.

4. Sort the eigenvectors: Arrange the eigenvectors in decreasing order of their
corresponding eigenvalues. The sorted eigenvectors form a matrix P that is used
for projecting the original data onto the new feature space.

5. Project the original data: Transform the original dataset X into the new feature
space Y by multiplying it with the projection matrix P, resulting in a dataset of
reduced dimensions.

Y = PT X (4.3)

PCA is effectively used for unsupervised anomaly detection. The core idea is that
normal data instances (non-anomalies) will be closer to the subspace spanned by the
principal components, while anomalies are more likely to be distant from this subspace.
Hence, the distance or error of an instance when projected onto the subspace serves as an
anomaly score.

One approach to compute anomalies is to reconstruct the original dataset from the
projected data (after first obtaining the principal components and projecting data).This
can be achieved by multiplying the projected data with the transpose of the projection
matrix:

Xrec = PY (4.4)

Xrec may not be identical to the original dataset X, especially if some dimensions
(principal components) were discarded during dimensionality reduction. The difference
between the original data and the reconstructed data, often measured by the mean squared
error (MSE), serves as the anomaly score:

MSE = 1
n

n∑
i=1

(Xi−Xrec, i)2 (4.5)

where Xi and Xrec, i are the i-th instances in the original and reconstructed datasets,
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respectively. Anomalies are instances with high anomaly scores, indicating poor recon-
struction by the PCA model. A common way to identify anomalies is by setting a thresh-
old on the anomaly score, which can be defined in various ways, such as a fixed value,
a specific percentile of the anomaly scores (e.g., 99th percentile), or a certain number of
standard deviations from the mean anomaly score.

4.2.3 Unsupervised Multivariate Gaussian distribution (MGD)

The MGD proves to be a robust tool for anomaly detection, particularly in scenarios
involving multidimensional data. It excels at modeling the probability distribution of
datasets in multidimensional spaces, effectively capturing correlations between various
features.

In the light of the four challenges outlined in the introduction, MGD can be tailored
to address imbalanced data issues by adjusting the mixture of Gaussian distribution.
This adaptation allows MGD to better represent data patterns where anomalies are rare
compared to normal data. Furthermore, MGD is adaptable to changing environments, as
it can dynamically adjust its Gaussian distribution parameters with the introduction of
new data. This feature enables it to model dynamic environments effectively and track
changes in data structure over time.

For d-dimensional random vector X = [X1, X2, ..., Xd]T , the MGD of X is given by
the following probability density function (pdf):

f(x; µ, Σ) = 1
(2π)d/2|Σ|1/2 exp

(
−1

2(x− µ)T Σ−1(x− µ)
)

(4.6)

where, - x = [x1, x2, ..., xd]T is a real d-dimensional column vector. - µ = [µ1, µ2, ..., µd]T

is a d-dimensional mean vector. - Σ is a d×d covariance matrix, and |Σ| is the determinant
of Σ.

The parameters of the MGD are estimated using Maximum Likelihood Estimation
(MLE). The MLE for mean vector µ and covariance matrix Σ are given by:

µ = 1
n

n∑
i=1

x(i) (4.7)

Σ = 1
n

n∑
i=1

(x(i) − µ)(x(i) − µ)T (4.8)
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where x(i) represents the ith training example and n is the number of training ex-
amples. The covariance matrix Σ is a crucial element of this distribution, as it not only
provides variances for individual variables (along the diagonal) but also captures correla-
tions between variables (off-diagonal elements).

With our objective to use MGD for detection purpose, we follow these steps:

1. Model Training: First, the parameters of the MGD, namely the mean vector
µ and the covariance matrix Σ, are estimated from the training data using the
Maximum Likelihood Estimation (MLE) method.

2. Anomaly Score Calculation: For a new instance in the test set, its anomaly
score is computed using the probability (pdf) of the trained MGD. Instances with
the lower probabilities are more likely to be anomalies. Specifically, for an instance
x, its anomaly score is computed using the probability density function of the
MGD:

p(x; µ, Σ) = 1
(2π)d/2|Σ|1/2 exp

(
−1

2(x− µ)T Σ−1(x− µ)
)

(4.9)

3. Anomaly Determination: If the anomaly score of an instance falls below a pre-
defined threshold, it is labeled as an anomaly.

One notable advantage of this method lies in its ability to capture correlations among
different features, which proves valuable when individual features are not independently
distributed. However, it is essential to note that obtaining an accurate estimate of the
covariance matrix can be challenging, particularly when dealing with high-dimensional
data and limited data points.

4.2.4 Supervised Logistic regression

Logistic Regression is a statistical method primarily used for binary classification
problems. This algorithm predicts the probability of an event’s occurrence by fitting data
to a logistic function, hence its name. As it deals with probabilities, its output values
lie between 0 and 1. In scenarios involving imbalanced data, logistic regression can be
coupled with sampling techniques such as oversampling (e.g., SMOTE, see Chapter 1,
section 1.3.5) or undersampling to address the data imbalance challenge. Similar to other
supervised algorithms, logistic regression can be fine-tuned to minimize false positives
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and false negatives. This optimization involves adjusting decision thresholds, employing
hyperparameter tuning methods, and selecting relevant features.

The fundamental formula for Logistic Regression is encapsulated in the logistic func-
tion, also known as the sigmoid function. This function maps any real-valued numbers
into a range between 0 and 1, and its formula is as follows:

P (Y = 1|X) = 1
1 + e−z

(4.10)

Here, z is determined by z = β0 + β1X and P (Y = 1|X) represents the probability
that the class is 1 given the predictor variable X. The z equation describes a straight line,
and when plotted, it resembles an “S”-shaped curve. In this context, ’X’ serves as the
input to the function, and the output falls within the 0 to 1 range. If the output surpasses
0.5, the classification outcome is typically labeled as 1 (or YES), while values below 0.5
are classified as 0 (or NO).

In the context of anomaly detection, the logistic regression model is trained using
labelled dataset with the binary target variable indicating whether an instance is normal or
anomalous. The logistic regression model learns to establish the boundary that separates
normal instances from anomalies. Once trained, the model can predict whether a new
instance is an anomaly by checking on which side of the boundary it falls.

4.2.5 Supervised Artificial neural network

ANN represent a class of machine learning models inspired by the biological neural
networks. These models are renowned for their remarkable flexibility and ability to ap-
proximate a wide array of functions, rendering them exceptionally valuable across various
applications, including anomaly detection. To tackle data imbalances, ANNs can effec-
tively leverage oversampling or undersampling techniques. Similar to Logistic Regression,
ANNs can also undergo optimization to discern intricate patterns and minimize classifi-
cation errors.

The fundamental building block of an ANN is the artificial neuron or node. Each node
accepts a set of input values, applies weighted summation to these inputs, incorporates a
bias term, and subsequently applies an activation function to produce an output.

The nodes are organized into layers: an input layer, one or more hidden layers, and
an output layer. The input layer receives the input data, the hidden layers perform com-
putations, and the output layer generates the final network output. This arrangement,
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where information flows sequentially from one layer to the next, gives rise to the term
“feedforward neural network”, the most prevalent ANN architecture.

The ANN’s weights and biases are learned through a process called backpropagation.
This process involves tracing the network’s output error backward through the layers to
iteratively adjust the weights and biases, ultimately minimizing this error.

For anomaly detection, an ANN can be trained to recognize the normal data behav-
ior. Anomalies are then identified as instances significantly deviating from this learned
norm. In a supervised context, this entails training the ANN on a labeled dataset, where
each instance is categorized as either normal or anomalous. Post-training, the ANN can
be utilized to predict whether a new, unseen instance falls within the normal or anoma-
lous category. This prediction is achieved by inputting the instance into the network’s
input layer, allowing values to propagate forward through the layers, and extracting the
network’s output as the predicted label for the instance.

4.2.6 Supervised XGBoost

XGBoost builds upon the concept of boosting, an ensemble meta-algorithm in machine
learning aimed at reducing bias and variance. Boosting combines multiple "weak learners,"
which are models slightly better than random guessing, to create a robust predictive
model. In the case of XGBoost, these weak learners take the form of decision trees. Each
tree strives to correct errors or enhance predictive capabilities where previous trees may
have failed. This work of optimization is founded on the objective function denoted as
“L” which provides a quantifiable metric that the algorithm seeks to minimize during the
training process.

L(ϕ) =
n∑

i=1
l(yi, ŷi) +

K∑
k=1

Ω(fk) (4.11)

The objective function L(ϕ) is composed of two terms:
1. ∑n

i=1 l(yi, ŷi): This term represents the loss function, which quantifies how well the
model’s predictions ŷi match the actual data yi. The algorithm aims to minimize this loss.

2. ∑K
k=1 Ω(fk): This is the regularization term, which penalizes the complexity of the

overall model.
The inclusion of a regularization term (Ω(f)) in the objective function helps to control

the complexity of the individual trees fk. Regularization avoids the risk of overfitting,
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where the model learns the training data too well but performs poorly on unseen data.

Ω(f) = γT + 1
2λ∥w∥2 (4.12)

In this equation, T represents the number of terminal nodes (or leaves), w is the
vector of scores on the leaves, and γ and λ are regularization parameters that control tree
complexity and leaf scoring, respectively.

XGBoost relies on first (gi) and second-order (hi) derivatives of the loss function to
find the best splits and leaf values:

gi = ∂l(yi, ŷi)
∂ŷi

(4.13)

hi = ∂2l(yi, ŷi)
∂ŷ2

i

(4.14)

These partial derivatives are important because they are used to find the optimal split
points and leaf node values that minimize the objective function L(ϕ).

The key steps in the XGBoost algorithm include:

1. Initialization: The model starts with a constant prediction value which can be
set based on the proportion of instances of that class relative to all others for each
class k in a problem with K classes.

2. Gradient Computation: In each iteration, first and second-order gradients are
computed based on the current predictions and the loss function.

3. Tree Construction: A new tree is built using these gradients to find the optimal
splits and leaf values.

4. Model Update: The model is updated with the newly constructed tree.

5. Iteration: Steps 2-4 are repeated until a predefined stopping criterion is met.

6. Prediction: For making predictions, the sum of scores from each tree is used.

XGBoost is a powerful method for classifying window states. It combines weak learn-
ers and an optimized objective function L(ϕ) with regularization terms (Ω(f)) to control
model complexity, which helps prevent overfitting. In simple terms, XGBoost strikes a
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balance between accurate predictions and model complexity, making it effective for clas-
sification tasks. XGBoost simplifies the process of building decision trees by enabling
concurrent / parallel execution of certain parts, enhancing scalability, in contrast to tra-
ditional decision trees built sequentially. A critical computational challenge in tree-based
algorithms is identifying the best split points for nodes. XGBoost employs a faster ap-
proximate algorithm, outperforming exact algorithms in efficiency. The regularization pa-
rameters in XGBoost encourage simpler trees, averting overfitting and facilitating parallel
tree construction for increased efficiency.

Additionally, XGBoost stores data efficiently in-memory using a structure called a
"column block." This organization enables efficient data access patterns, further speeding
up the algorithm. Finally, XGBoost excels at handling sparse data by efficiently bypassing
missing or zero values, thereby reducing computation time.

4.2.7 Semi-supervised AutoEncoder

AutoEncoders, a type of artificial neural network, are used to efficiently represent
input data. They work in an unsupervised manner but can be applied in a semi-supervised
setting, particularly for tasks like anomaly detection where one type of data (e.g., normal)
is common, and the other (e.g., anomalies) is scarce.

An AutoEncoder has two main components: an encoder and a decoder. The encoder
transforms input data into a lower-dimensional representation or ’code’, while the decoder
maps this code back to the original data dimension.

For an input x ∈ Rn, the encoder and decoder are represented as follows:

h = fθ(x) (encoder) (4.15)

x′ = gϕ(h) (decoder) (4.16)

Here, h ∈ Rd is the encoded version of x, x′ is the reconstructed input, fθ and gϕ are
learned non-linear transformations parameterized by θ and ϕ respectively, during training.

The training process involves finding the parameters θ and ϕ that minimize a loss func-
tion, typically measuring the difference between the original input x and its reconstruction
x′:
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L(x, gϕ(fθ(x))) (4.17)

The mean squared error is commonly used as the loss function:

L(x, x′) = ||x− x′||2 (4.18)

In the context of anomaly detection, AutoEncoders are trained on ’normal’ data. The
idea is that they will accurately reconstruct ’normal’ instances while failing to do so for
anomalous ones. Anomalies are identified by measuring the reconstruction error of an
instance; a high error indicates an anomaly. The entire process for AutoEncoder-based
anomaly detection is illustrated in Figure 4.2

Figure 4.2 – Anomaly detection process of AutoEncoder [from Youngrok et al. (2021)]

4.3 Case study simulation data

In this section, we will test the level of performance offered by the various algorithms
chosen, with or without adaptation, by applying them to an initial database of simulated
data. This will be a highly imbalanced database, where abnormal data, corresponding to
the opening of the window, will be rare. The proposed scenario is not necessarily realistic,
but is nevertheless designed to push the algorithms to some of their limits. A second,
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more realistic database will be proposed in section 4.4 with the aim of using the initial
observations made in this section to define more definitively the comparative performance
levels of the selected algorithms.

4.3.1 First case study – Imbalanced dataset

4.3.1.1 A first glance at the imbalanced dataset

In Chapter 2, we introduced the simulated dataset, which originally comprised thirteen
distinct features. These features are expected to have a higher correlation with window
opening and occupants’ presence. The generated dataset is highly imbalance regarding
windows opening status. Indeed, out of 35,040 simulated time steps, only 147 instances
represent window ’opening’ events, resulting in a window opening rate of approximately
0.0042 for the entire dataset.

For a more targeted efficient analysis, we narrowed our focus to seven of the most rel-
evant features from the original thirteen. These selected features include one categorical
variable, the window status, and six continuous variables: computers heat gains, occu-
pants’ heat gain, solar gain from the window, heat consumption, and both indoor and
outdoor temperatures.

In order to visualize the dataset into 2D or 3D representations, preserving both global
and local data structures, we employ the dimensionality reduction technique known as
UMAP. UMAP follows the idea that high-dimensional data can be accurately represented
in lower dimensions while respecting the data’s geometric characteristics. Consequently,
it generates new dimensions that are combinations of the original features. These new
dimensions aim to maximize the separation between different data groups, although their
direct interpretation in terms of the original feature space may be less intuitive. Nonethe-
less, the relative distances between data points along these UMAP-generated axes hold
meaning. Data points closer to each other in this space share greater similarity based on
the original high-dimensional data, whereas those situated farther apart show reduced
similarity. Figure 4.3 provides a 2D visualization of our input features. From this figure,
it becomes apparent that the dataset is imbalanced between the closed / normal (green
dots) and open / abnormal (red dots) status, with overlapping classes. The two classes
are not distinctly separable based on these features. In such cases, standard clustering
methods may not perform optimally.
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Figure 4.3 – UMAP of simulation dataset: green (closed/normal) and red (open/abnormal)
dots show data imbalance

In the remainder of Section 4.3.1, we will systematically compare the various unsu-
pervised, supervised, and semi-supervised methods according to their ability to assist in
event detection, specifically window openings.

4.3.1.2 Comparison of the unsupervised methods

In our study, each unsupervised algorithm is applied to the entire year’s dataset. Six
features (computer heat gains, occupants’ heat gain, solar gain from windows, heat con-
sumption, indoor and outdoor temperatures) serve as inputs for each algorithm, with the
goal of detecting anomalies in window status (seventh feature). Since this is an unsuper-
vised approach, the window status is stored separately as the ground truth to evaluate
the performance.

In our implementation, carried out using Python, we standardize all input features be-
fore applying the unsupervised methods. Standardization is achieved using the StandardScaler
function from the sklearn.preprocessing module 2. Standardizing the features is essen-
tial as many machine learning algorithms perform optimally when input data features

2. sklearn.preprocessing is a module in scikit-learn that provides several common utility functions
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have similar scales, approximating a standard normal distribution with a mean of 0 and
a standard deviation of 1.

One of the unsupervised algorithms utilized in this study is the DBSCAN algorithm,
we can use the algorithm from the sklearn.cluster module 3. We need to specify two
key parameters : Epsilon (eps) and Min_samples (see subsection 4.2.1). For this study,
we randomly set epsilon to 0.1, aiming for a balance between sensitivity to outliers and
the ability to cluster non-outlier data points. A common rule of thumb suggests setting
Min_samples as ‘D+1’, where ‘D’ is the number of input features. However, this can be
adjusted to suit the dataset. For this study, we set Min_samples to 7.

The second unsupervised learning algorithm is the PCA technique, implemented from
the sklearn.decomposition module 3 to reduce the dimensionality of our standardized
feature set. Specifically, we transform our initial 6-dimensional data into 2-dimensional
data for enhanced visualization and computationally efficient anomaly detection. The
two dimensions chosen by PCA correspond to the directions in the original data that
maximize variance, essentially representing the directions along which the data is most
dispersed. After reducing the dimensionality, the original dataset is reconstructed, and
the reconstruction error is calculated. Instances with a reconstruction error exceeding a
predefined threshold are treated as window openings. Typically, the threshold is set as the
mean plus one or two standard deviations of the reconstruction errors, following statistical
conventions.

The third unsupervised learning method, MGD, we do not compute a reconstruction
error as in PCA but rather calculate the likelihood of a data point within the learned mul-
tivariate Gaussian distribution. This likelihood is calculated using the probability density
function (PDF) of the multivariate Gaussian distribution. MGD offers a probability dis-
tribution that assesses the likelihood of a data point under a multivariate Gaussian model.
High likelihood values are associated with normal data, while anomalies yield lower like-
lihood scores. Therefore, a common rule of thumb for setting the threshold in MGD is to
use the mean minus one or two standard deviations of the likelihoods. Instances with a
likelihood below this threshold are considered anomalies. In our case study, we initially
set the threshold based on this general guideline.

and transformer classes to change raw feature vectors into a representation that is more suitable for the
downstream estimators.

3. it is part of the Scikit-learn library in Python
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4.3.1.2.1 First comparison of the unsupervised methods without thresholds
and hyper-parameters optimization

After running the window open detection models for all three algorithms, their per-
formances are assessed using various metrics, including Precision, Recall, F1 Score, and
the confusion matrix (see subsection 1.3.2.1). To facilitate visual model comparisons, we
create Receiver Operating Characteristic (ROC) curves for each model. The ROC curve
plots the true positive rate (Recall) against the false positive rate (1 - specificity) across
various classifier thresholds. Additionally, we compute the Area Under the Curve (AUC)
of the ROC curve as a single metric summarizing the classifier’s overall performance.

Precision Recall F1 Score
DBSCAN 0 0 0
PCA 0.497 0.042 0.077
MGD 0 0 0

Table 4.2 – Comparison of Precision, recall, and F1 Score for unsupervised DBSCAN,
PCA, and MGD methods.

As a reminder from Chapter 1, let us briefly summarize the meaning of the True
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) in the
context of the confusion matrix:

— True Positive (TP): The algorithm correctly identifies a window as being open.
In other words, when the ground truth is that the window is open, the algorithm
also predicts it as open.

— True Negative (TN): The algorithm correctly identifies a window as being
closed. When the ground truth is that the window is closed, the algorithm also
predicts it as closed.

— False Positive (FP): The algorithm incorrectly identifies a window as being open.
This occurs when the algorithm predicts that a window is open when, in fact, it is
closed. This is akin to "inventing openings" that do not exist in reality.

— False Negative (FN): The algorithm incorrectly identifies a window as being
closed. In this case, the algorithm predicts a window as closed when it is actually
open. This means the algorithm is "missing real openings."
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Method True Negative (TN) False Negative (FN) False Positive (FP) True Positive (TP)
DBSCAN 23609 11284 147 0

PCA 33215 1678 74 73
MGD 33288 1605 147 0

Table 4.3 – Comparison of confusion matrix results for DBSCAN, PCA, and MGD meth-
ods

In Table 4.2, along with the corresponding confusion matrix in Table 4.3, we can
observe that with the initial parameters and threshold selections, all methods exhibit
fair recall but not-so-great precision. This suggests that all models have a false positive
rate, meaning they incorrectly identify many positive cases as negative. Specifically, both
DBSCAN and MGD have a TP value of 0, indicating that they never correctly identify
real openings. This implies that these models are not very precise in their predictions,
and they tend to "invent" window openings.

4.3.1.2.2 Comparison of the unsupervised methods after thresholds and hyper-
parameters fine tuning by grid search

It is worth noting that the selection of parameters and thresholds is crucial for the per-
formance of unsupervised models. Sometimes, there’s a trade-off involved because setting
the threshold too low can lead to many false positives (resulting in low precision), while
setting it too high can result in many false negatives (leading to low recall). Considering
this, we plan to conduct a grid search for all potential parameter values for DBSCAN 4

parameters, and PCA, MGD thresholds. The F1 score will be used as a criterion because
it balances the trade-off between precision and recall. The grid search will explore various
parameter combinations and thresholds to identify the ones that optimize the results.

Figure 4.4 displays the ROC curve and precision-recall curve for DBSCAN with various
parameter combinations. The red line represents the best-performing DBSCAN model,

4. For ϵ (Epsilon): Lower Bound (0.1): A very small ϵ would mean that a point’s neighborhood would
be too limited, possibly leading to many small clusters or even making most points noise. This is often
undesirable in clustering contexts.

Upper Bound (1): A very large ϵ would include too many points in the neighborhood, potentially
merging clusters that should be separate. Keeping it at 1 ensures that the clusters are not overly broad.
For min_samples: Lower Bound (1): A smaller min_samples value would make it easier for points to
become core points, thereby potentially creating more clusters, some of which might just be noise. A
value of 1 is a reasonable starting point that balances sensitivity and specificity.

Upper Bound (20): A larger min_samples value would make it harder to form clusters, as more
neighboring points would be needed for a point to become a core point. This could result in many points
being labeled as noise. The upper bound of 20 is chosen.
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which achieved the highest F1 score. Figure 4.5 illustrates how the F1 score varies with
different threshold selections for PCA and MGD.

Figure 4.4 – Grid search for DBSCAN parameters chosen
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Figure 4.5 – Grid search for PCA and MGD threshold chosen

Table 4.4 provides a comparison between the original and optimized values for thresh-
olds and hyperparameters. In the case of DBSCAN, a significant deviation in the best
epsilon value from the initial setting may suggest that the original value did not adequately
capture the inherent density variations among the clusters. Similarly, a substantial change
in the optimized Min_samples value compared to the initial one could indicate that the
initial setting was either too restrictive or too permissive for cluster formation.

For PCA, a higher new threshold compared to the original suggests that the initial
setting was likely too conservative, potentially flagging an excessive number of instances
as anomalies. Conversely, a lower threshold would suggest the opposite.

In the context of MGD, a markedly different new threshold from the original could
imply that the initial concept of "normality" was inaccurate. A higher threshold would
mean that a larger number of points are now considered "normal," whereas a lower one
would imply a stricter criterion for "normality."

Clearly, the selection of parameters and thresholds has a significant impact on the
analysis outcomes. However, crafting a universal rule for this purpose is challenging due
to the diversity of data characteristics and specific problem requirements. Furthermore, in
real-world scenarios, ground truth data is often unavailable, complicating the validation
process.
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Method New Threshold or parameters Original Threshold or parameters
DBSCAN eps=0.5, min_samples=10 eps=0.25, min_samples=7

PCA 1.83e-01 8.15e-01
MGD 5.22e-10 1.15e-04

Table 4.4 – Comparison of Original and New Thresholds and Parameters for DBSCAN,
PCA, and MGD

Table 4.5 shows the new precision, recall, and F1 score after finding the best parameters
and threshold, we can notice that all F1 scores have a significant improvement.

Precision Recall F1 Score
DBSCAN 0.925 0.581 0.714
PCA 0.442 0.929 0.599
MGD 0.830 0.348 0.490

Table 4.5 – Comparison of precision, recall, and F1 Score for DBSCAN, PCA, and MGD
methods after Grid search

Method True Negative (TN) False Negative (FN) False Positive (FP) True Positive (TP) Time (seconds)
DBSCAN 34795 98 11 136 6.007

PCA 34888 5 82 65 0.309
MGD 34664 229 25 122 0.014

Table 4.6 – Comparison of confusion matrix results and computation times for DBSCAN,
PCA, and MGD methods after Grid search

From the results, DBSCAN exhibits the highest precision (0.925) and F1 score (0.714)
among the three methods. Furthermore, in Figure 4.6, we can observe the ROC curve,
where the area under the ROC curve, often referred to as the AUC (Area Under the
Curve), provides a measure of how well a parameter can distinguish between two diag-
nostic groups (abnormal/normal). The higher the AUC, the better the model generally
performs. This is because the curve will approach to the top-left corner of the plot, which
corresponds to a greater true positive rate and a lower false positive rate.
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Figure 4.6 – ROC curve for three algorithms

DBSCAN shows an AUC of 0.96, indicating that the model has a good trade-off
between sensitivity (true positive rate) and specificity (1 - false positive rate). In simple
terms, the model can correctly identifies a large proportion of positive cases (high True
positive rate) while maintaining a relatively low number of false alarms (False positive
rate). The high recall and ROC area indicate that DBSCAN is very effective at identifying
positive cases (anomalies) in the data. However, the precision is relatively low (0.581),
implying that it might classify instances as anomalies somewhat generously, leading to
a higher rate of false positives. The density-based nature of DBSCAN could account for
its high recall and ROC area, as it does not assume a specific data distribution, and it is
capable of discovering clusters of various shapes and sizes.

PCA shows the highest precision (0.928) among the three methods. This means that
when PCA predicts an anomaly, it is very likely to be correct. However, the recall is
relatively low (0.442), suggesting that PCA misses a significant number of anomalies.
The ROC area is 0.72, which is lower than that of DBSCAN and MGD, indicating a
less optimal trade-off between sensitivity and specificity. These results for PCA might be
attributed to its assumptions and nature. PCA assumes linear correlations among features
and tries to capture the majority of the data’s variance in fewer dimensions. However, if
anomalies do not follow these linear patterns, PCA might struggle to detect them, leading
to a lower recall.

The MGD method has the lowest precision (0.347) but a relatively high recall (0.829).
The F1 score is also the lowest among the three (0.489). However, the ROC area is 0.91,

163



Chapter 4 – Single event detection

which is higher than PCA but lower than DBSCAN. This suggests that despite its lower
precision and F1 score, MGD may provide a better trade-off between sensitivity and
specificity than PCA. The results for MGD could be explained by its nature. Indeed,
MGD assumes a Gaussian distribution for the data, and its effectiveness heavily depends
on how well this assumption holds. It is also sensitive to the initial parameters and the
number of iterations, which could impact its performance.

In term of computation time, DBSCAN took the longest time to execute, with a
computation time of 6.007 seconds. This is significantly higher compared to the other
two algorithms. Given that it is a density-based clustering algorithm, it might take longer
on certain datasets, especially if there are many data points to cluster. PCA, being a
dimensionality reduction technique, generally has a moderate computation time, especially
when dealing with high-dimensional data. However, in this context, it is much quicker than
DBSCAN. MGD was the fastest among the three, with a computation time of just 0.014
seconds. This suggests that MGD is highly efficient in terms of time complexity, at least
for the dataset in question.

To sum up, DBSCAN performs best in terms of precision, F1 score, and ROC area,
indicating its effectiveness in anomaly detection in this case. However, the best method
depends on the specific needs of task. If precision is of utmost important (minimizing false
positives), then DBSCAN would be the preferred choice. Conversely, if maximizing recall
(capturing as many anomalies as possible) is the goal, then PCA is the best option. If
seeking a balance between these metrics, we might favor DBSCAN.

4.3.1.2.3 Comparison of the unsupervised methods after thresholds and hyper-
parameters optimization

In unsupervised method, the absence of ground truth labels makes the trial-and-error
approach ineffective for fine-tuning each algorithm’s parameters and threshold. In such
cases, visualization methods become valuable assistants for parameter selection. In the
case of DBSCAN, we can use the k-distance graph as a tool for determining the parameters
in DBSCAN, especially the epsilon parameter. The k-distance of a data point refers to
its distance to the k-th nearest neighbor. Calculating this metric for all points allows
us to understand the distribution of local densities. When these k-distances are plotted
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in ascending order, we gain valuable insights. Specifically, a data point located within a
dense cluster will have its k-th nearest neighbor close by, resulting in a small k-distance.
Conversely, a point in a less dense area will exhibit a larger k-distance. When we create a
k-distance plot, we look for the ’elbow’ point, where the graph sharply turns, indicating a
significant increase in k-distances. This ‘elbow’ point corresponds to the distance at which
points are no longer densely clustered, effectively distinguishing dense regions (potential
clusters) from sparse regions (potential noise). Setting epsilon to the k-distance at the
‘elbow’ point ensures that DBSCAN forms clusters with points in dense regions while
classifying points in sparse regions as noise.

The overall process can be summarized as follows:

1. Compute the k-distances for all points: Calculate the distance to the k-th
nearest neighbor for each point in the dataset. The value of k is typically chosen
by the user, often set to a low value like k = 4.

2. Sort and plot the k-distances: Sort the computed k-distances in ascending
order, and create a plot. The y-axis represents the k-distance, while the x-axis
displays the sorted points.

3. Identify the ‘eps‘ parameter from the graph: Determine the ‘eps‘ parame-
ter by locating the y-coordinate of the ‘elbow’ point in the k-distance graph. By
choosing this point as ‘eps‘, we can cover as many points in the same neighborhood
as possible, while excluding those that are farther away, likely belonging to other
clusters or representing noise.

In Figure 4.7, we observe the "elbow" point, and the corresponding epsilon value is
approximately 0.5, which aligns with our previous grid search results.
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Figure 4.7 – K-distance graph

For PCA-based anomaly detection, visualization methods can be useful in determining
the threshold for classifying a data point as an anomaly. A common approach involves
plotting the reconstruction error against instances and determining a value that keeps
most reconstruction below a certain threshold. Reconstruction error is computed as the
difference between the original data and the reconstructed data (i.e., after transforming
to the PCA space and then inversely transforming back to the original space). In the
resulting Figure 4.8, an appropriate threshold might be a value close to 0 since most
values have a small reconstruction error. To sum up, because it relies on a vizualisation-
based method, the threshold chosen is all about the balance between precision and recall
that we wish to achieve. A low threshold increases recall but might reduce precision. It
is often beneficial to experiment with different thresholds to determine the most suitable
one for a specific use case.
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Figure 4.8 – PCA reconstruction error VS instance

For MGD-based anomaly detection, a common way to visualize and determine the
threshold is by using a histogram of the calculated probabilities (or scores) for instances
in the training set. The idea is to compute the probability of each instance under the
learned multivariate Gaussian distribution, and then plot a histogram of these probabili-
ties. Typically, normal instances should have higher probabilities, while anomalies should
have lower probabilities. In the resulting Figure 4.9, the histogram displays a right-skewed
distribution, indicating that most data points are considered as "normal”, with only a few
classified as anomalies by the MGD model. The threshold should be set after the 0.05 per-
centile, and comparing it with the value from the grid search, this choice should yield good
precision but might affect recall.As with other anomaly detection techniques, selecting an
optimal threshold often involves some trial and error.
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Figure 4.9 – Histogram of MGD scores

To conclude with this subsection dedicated to the comparison of the unsupervised
learning algorithms selected, DBSCAN exhibits the highest number of True Positives (136)
and the lowest number of False Positives (11). This suggests that it excels in correctly
identifying openings while maintaining a low rate of false alarms. PCA has the highest
number of True Negatives (34888) and the lowest number of False Negatives (5), indicating
it is excellent at identifying non-openings and not missing actual openings. MGD has a
higher number of False Negatives (229), meaning it misses quite a few actual openings.

4.3.1.3 Comparison of the supervised methods

4.3.1.3.1 Imbalance data issue for supervised methods

As discussed in Chapter 1, dealing with class imbalance is a significant challenge
in supervised activity detection. Learning effective rules from a supervised model with
a limited number of negative samples (outliers) becomes more challenging when facing
strong class imbalance, which is present in our study due to the very low window opening
rate of approximately 0.0042 in the entire dataset.

In the following sections, we will explore two preprocessing methods to tackle class
imbalance and compared their efficiency in terms of improvement compared to the results
obtained without addressing the class imbalance.
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On one hand, we perform an undersampling (Liu et al. 2009), which involves selecting
a small number of samples at random from the majority class (in our study, the closed
window state class). These selected samples are then combined with the original minority
class samples to create a new training dataset. On the other hand oversampling, where the
minority class is expanded by duplicating observations from that class is used. The random
oversampling algorithm is the simplest approach, but it can lead to model overfitting as
it makes the learned information too specific. To mitigate this, data synthesis techniques,
such as the Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al. 2002),
are used in our study to generate more data based on existing data.

4.3.1.3.2 Data preprocessing and splitting

In supervised methods for activity detection, the dataset undergoes preprocessing be-
fore being divided into training and testing subsets. For data preprocessing, the dataset,
encompassing one year’s worth of data from six features (computers’ heat gains, occupants’
heat gain, solar gain from windows, heat consumption, and indoor and outdoor tempera-
tures), is loaded into a pandas DataFrame 5. These features serve as inputs for each super-
vised algorithm, with window status (open or closed) as the output variable. To ensure uni-
formity, the data are normalized using StandardScaler from sklearn.preprocessing,
which scales the features to have a zero mean and unit variance. Subsequently, the prepro-
cessed dataset is then partitioned into training and testing sets in a 80:20 ratio. This split is
achieved with the help of train_test_split module from sklearn.model_selection 6.
Under this configuration, 80% of the data is allocated for training the model, while the
remaining 20% is reserved for testing its performance.

4.3.1.3.3 Model training and Evaluation with Logistic Regression

As far as the LogisticRegression model is concerned, it is instantiated using the
sklearn.linear_model 7 library and then fitted to the training data. Once trained, the
model is applied to the unseen test data for making predictions. Subsequently, the model’s
performance similar as the following XGBoost and ANN methods, is evaluated using
evaluation metrics such as Precision, Recall, and F1 Score, all of which are available in

5. Pandas is a Python package used for data manipulation and analysis.
6. Scikit-learn (sklearn) is a machine learning library for Python.
7. The sklearn.linear model module in scikit-learn provides tools for logistic regression.
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the sklearn.metrics 8 library.
For XGBoost classifier, it is initiated using the xgboost.XGBClassifier 9 library.

Several critical hyperparameters are configured to optimize the model’s performance. The
learning_rate is set to 0.1. This small learning rate ensures the model’s stability by
taking smaller optimization steps during training. To prevent overfitting, the max_depth
is restricted to 3. Limiting the depth of the trees is a common practice in boosting frame-
works, favoring smaller trees to maintain weak individual learners. The n_estimators
hyperparameter is set to 100. This parameter controls the number of boosting rounds
and ultimately determines how many decision trees will be constructed. A value of 100
strikes a balance between model complexity and computation time. Regularization pa-
rameters, lambda and alpha, are set to 1. These correspond to L2 and L1 regularization
terms, respectively. Regularization plays a crucial role in controlling overfitting by in-
troducing penalties to the model’s complexity. Setting them to 1 represents a moderate
choice that helps in mitigating overfitting without excessively penalizing the model. The
model employs the default "binary:logistic" objective function for binary classification.
This objective function combines both the loss function and regularization terms, pro-
viding a comprehensive approach to the classification task. Training the model begins
with the fit method applied to the training dataset, which includes feature variables and
the target variable, indicating whether the window is open or closed. During training,
decision trees are constructed sequentially, with each tree designed to correct the errors
of the cumulative preceding trees. The tree-building process involves identifying optimal
splits based on criteria like Gini impurity and information gain. It calculates gradient and
Hessian values to determine these optimal splits and optimizes leaf nodes to minimize
the loss function. After constructing each tree, the algorithm prunes leaves and branches
that do not contribute sufficient gain, following guidelines set by the regularization pa-
rameters (gamma). Fine-tuning of hyperparameters such as learning_rate, max_depth,
and n_estimators can be performed using cross-validation techniques like k-fold cross-
validation, which is available through xgboost.cv.

Finally, for training and evaluating ANN, we follow a structured process. First, con-
cerning the model architecture, tensorflow.keras.models 10 library is used to build a
sequential model. The architecture of the model involves an input layer with twelve nodes

8. sklearn.metrics provides various metrics for evaluating machine learning models.
9. XGBoost is an open-source software library that provides gradient boosting for Python.

10. TensorFlow is an open-source machine learning framework, and Keras is its high-level API for
building neural networks.
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and two hidden layers with twelve and eight nodes, respectively. These node configurations
are chosen to allow the network to capture sufficient complexity without risking overfit-
ting. The final layer consists of one output node. We apply the ’relu’ activation function in
the input and hidden layers, which is known for handling complex patterns effectively. For
the output layer, we use the ’sigmoid’ activation function. The ANN structure is shown
in Figure 4.10.

Figure 4.10 – ANN structure

After designing the architecture, the model is compiled. In our case, we use binary
cross-entropy as the loss function, the Adam optimization algorithm 11 for training, and
accuracy as the metric to measure the model’s performance. Next, we train the ANN on
the training dataset. We choose to train it for 150 epochs, where each epoch represents
a complete pass through the entire training dataset. It is important to strike a balance
here, as training for too many epochs can lead to overfitting. Additionally, we use a
batch size of 10, which determines the number of samples used in each weight update
during training. Smaller batch sizes introduce regularization and reduce generalization
error, but excessively small batches can result in unstable convergence. Our choice of 150
epochs indicates that it was sufficient for the model to learn the data without significant
overfitting. A batch size of 10 strikes a balance between computational efficiency and

11. Adam is a popular optimization algorithm for training deep learning models, well-known for its
efficiency and low memory requirements. It mixed the advantages of two other stochastic gradient descent
extensions: AdaGrad, effective with sparse gradients, and RMSProp, well-suited for online and non-
stationary settings.
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model performance.

4.3.1.3.4 Supervised methods - Effect of (re)sampling

In Figure 4.11 and 4.13, we present the learning curve (LC) respectively for logistic
regression, XGBoost and ANN, without sampling (i.e., with the original dataset). Learn-
ing curves offer insights into the model’s behavior and learning process, often consisting
of two parts: the training learning curve and the validation learning curve. The training
learning curve reflects how well the model learns from the training data. A descending
curve indicates effective learning, while a flat curve suggests overfitting or a lack of learn-
ing. The validation learning curve displays the model’s performance on an unseen dataset,
commonly referred to as the validation set, providing important insights into its gener-
alization capabilities. When both curves reach a plateau, it indicates underfitting. If the
validation curve rises while the training curve continues to decrease, it suggests overfit-
ting. However, if both curves converge to a point with minimal errors and a small gap
between them, it signifies a good fit.

Figure 4.11 – LC logistic regression Figure 4.12 – LC XGBoost Figure 4.13 – LC ANN

For logistic regression, both training and validation scores continue to rise as the
training dataset size increases. This suggests that the model is still learning and could
benefit from additional data. Logistic regression attains a balanced accuracy of 0.875,
meaning that the model correctly classifies 87.5% of instances for both the positive and
negative classes, considering the dataset’s imbalance.
Effect of Undersampling
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After undersampling in logistic regression, the Balanced Accuracy and ROC AUC
Score increase to 0.97 and 0.99, respectively. This indicates improved overall performance
across both classes and stronger class separability. Undersampling does not significantly
improve XGBoost and ANN, and even leads to a significant reduction in the precision
and F1 score of XGBoost. This is because ANNs, especially deep networks, and advanced
boosting algorithms like XGBoost are highly complex models capable of fitting very com-
plex boundaries. These models might already be performing well on imbalanced data by
capturing the underlying complexities of the data, so undersampling doesn’t lead to a no-
ticeable performance improvement. And undersampling involves removing instances from
the majority class, which can result in a significant loss of information. If the instances
removed contain important nuances or patterns, the model might perform worse because
it’s not seeing the full picture of the data.

Figures 4.14 to 4.16 focus on the specific case of logistic regression where learning
curves with different sampling methods are compared. From the learning curve in Figure
4.14, at the beginning of training, the model quickly learns to correctly classify the ma-
jority of instances, resulting in a rapid increase in the cross-validation score. Over time, as
the model begins to fit the training data more closely, both training and cross-validation
scores gradually increase. Overall, the model has achieved a good fit after undersam-
pling without overfitting and underfitting. But even though the recall has increased, the
precision is dropped significantly, because undersampling discards information from the
majority class to make the dataset balanced. In this case, the oversampling or SMOTE
should be considered.
Effect of Oversampling and SMOTE

Following oversampling and SMOTE, logistic regression achieves perfect results, as
demonstrated in Table 4.7. This improvement results from the increased representation
of the minority class, enabling the model to better understand the characteristics of these
instances and make more accurate predictions. However, examining the learning curves
(refer to Figures 4.15 and 4.16) raises concerns about overfitting. The training score
remains consistently high, while the cross-validation score significantly decreases after a
certain point. This pattern suggests that the model performs exceptionally well on the
training data but struggles to generalize to unseen data.
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Figure 4.14 – Logistic regression
Undersampling

Figure 4.15 – Logistic regression
Oversampling

Figure 4.16 – Logistic regression
SMOTE

To address potential overfitting in logistic regression, we employ cross-validation. In
this approach, the original dataset is randomly divided into five equal-sized subsamples.
One subsample serves as the validation data for testing the model, while the remaining
four subsamples constitute the training data. This cross-validation process repeats four
times, with each subsample acting as the validation data once. Figure 4.17 provides an
illustration of this process. By validating the model on a hold-out set not used during
training, we can evaluate how well it is likely to perform on new data. If the model
excels on the training data but performs poorly on the validation data, it is indicative of
overfitting, implying that the model does not generalize effectively to new data.

Figure 4.17 – 5 folder cross validation

Furthermore, employing multiple rounds of cross-validation with varying data subsets
in each round contributes to a more robust performance estimate. This approach mitigates
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the risk of overly optimistic estimates resulting from a fortunate choice of train/test
splits. Consequently, it reduces the likelihood of selecting an overly complex model that
merely performs well on a particular data partition. The Violin plot 12 depicted in Figure
4.18 demonstrates the effectiveness of cross-validation in both oversampling and SMOTE.
Moreover, it indicates the absence of overfitting in both of these algorithms.

Figure 4.18 – Violin plot

The learning curve for XGBoost in Figure 4.12 indicates overfitting, a common is-
sue, particularly with highly imbalanced data. XGBoost has learned the training data
thoroughly but fails to generalize to new data. However, with data preprocessing using
SMOTE and Oversampling, XGBoost starts to achieve perfect results, with both balanced
accuracy and ROC AUC score reaching 1, as shown in Tables 4.7 and 4.8.

For the ANN (Figure 4.13), the training and validation losses decrease to zero, and
precision, recall, and F1 scores confirm this "perfection" as shown in the Table 4.7 (row
“ANN (Original)”). This “perfection” possibly indicated overfitting. To dispel this doubt,
we need additional information such as balanced accuracy 13, AUC-ROC 14 that account
for imbalanced datasets. Table 4.8 compiles these other metrics which score a perfect
1.0 for ANN with original dataset. It confirms the exceptional modelling performance of
ANN.

12. In a Violin plot, the width of the violin at a given accuracy level (y-coordinate) indicates how many
times that accuracy level was observed across the five folds (model frequently achieved that accuracy
score), and a narrower part means that the model less frequently achieved that accuracy level

13. The Balanced Accuracy Score is an average of recall (or sensitivity) obtained on each class. It’s a
useful metric when dealing with imbalanced datasets.

14. AUC-ROC score is the area under the receiver operating characteristic (ROC) curve, it is usually
computed using trapezoidal rule integration over the ROC curve
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Precision Recall F1 Score Computation Time (s)
Logistic Regression (Original) 1.0 0.75 0.86 0.14
Logistic Regression (Undersampling) 0.32 1.0 0.48 0.1
Logistic Regression (Oversampling) 1.0 1.0 1.0 0.11
Logistic Regression (SMOTE) 1.0 1.0 1.0 0.12
XGBoost (Original) 1.0 0.8966 0.9455 3.05
XGBoost (UnderSampling) 0.0900 0.9655 0.1647 0.05
XGBoost (OverSampling) 1.0 0.9655 0.9825 2.48
XGBoost (SMOTE) 1.0 1.0 1.0 3.66
ANN (Original) 1.0 1.0 1.0 924
ANN (Undersampling) 1.0 1.0 1.0 202
ANN (Oversampling) 1.0 1.0 1.0 1582
ANN (SMOTE) 1.0 1.0 1.0 1642

Table 4.7 – Performance Metrics for Different Models and Sampling Techniques

Method Balanced Accuracy ROC AUC Score
Logistic Regression (Original) 0.875 1.0
Logistic Regression (Undersampling) 0.9766 0.9995
Logistic Regression (Oversampling) 1.0 1.0
Logistic Regression (SMOTE) 1.0 1.0
XGBoost (Original) 0.9483 0.9483
XGBoost (UnderSampling) 0.9625 0.9625
XGBoost (OverSampling) 0.9828 0.9828
XGBoost (SMOTE) 1.0 1.0
ANN (Original) 1.0 1.0
ANN (Undersampling) 1.0 1.0
ANN (Oversampling) 1.0 1.0
ANN (SMOTE) 1.0 1.0

Table 4.8 – Balanced Accuracy and ROC AUC Score for Different Models and Sampling
Techniques

To conclude this section, XGBoost and ANN consistently outperformed or achieved
equal scores compared to Logistic Regression. This superiority could be attributed to
ANNs’ ability to model intricate data relationships. However, it is important to note that
ANNs come with significantly higher computational complexity, as reflected in Table 4.7,
where the ANN consumed more time and resources. Decision trees, on the other hand,
are simpler and offer greater interpretability compared to neural networks. They require
fewer computations and iterations to capture complex patterns. XGBoost, in particular,
excels in handling sparse and categorical data efficiently, and it can deal with parallel
and distributed computing more effectively than ANNs, leading to faster results. Given
its strong performance, XGBoost is a favorable choice for single or multi-activity detec-
tion tasks. Meanwhile, logistic regression, when coupled with oversampling and SMOTE,
also delivers promising results. Further analysis will be needed for datasets with greater
complexity.

176



4.3. Case study simulation data

4.3.1.4 Semi-supervised method result

The AutoEncoder model utilized in this first simulated data case study comprises an
input layer, an encoder, a decoder, and an output layer (see Figure 4.19). The choice
of a single encoder and decoder design prioritizes model simplicity and efficiency. While
adding more layers to the encoder and decoder could enhance the model’s capacity to learn
intricate representations, it also elevates the risk of overfitting and necessitates increased
computational resources.

Figure 4.19 – AutoEncoder architecture

The input layer’s dimensionality of our AutoEncoder aligns with the number of fea-
tures in the dataset. The encoder, a feedforward network, reduces the input data’s di-
mensionality to learn a compact representation. In our study, the encoder consists of two
layers, with the first layer comprising fourteen neurons and the second containing half
that number. The LeakyReLU activation function, mitigating the "dying ReLU" prob-
lem by allowing small negative values for inputs less than zero, is employed. This makes
LeakyReLU suitable for preserving gradient flow.

The decoder mirrors the encoder’s architecture. It takes the compressed data from
the encoder and reconstructs the original input data. Similar to the encoder, the de-
coder comprises two layers with seven and fourteen neurons, respectively, and utilizes the
LeakyReLU activation function. The output layer generates the final reconstruction of
the input data.

The AutoEncoder’s objective is to minimize the discrepancy between input and output,
which is the reconstruction error. This is accomplished by employing mean squared error
as the loss function and the Adam optimization algorithm. In the semi-supervised learning
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context, the data is divided into an 80% training set and a 20% test set to assess model
performance on unseen data. During training, the AutoEncoder learns to reconstruct
only normal instances (window closed) with low error. Anomalies (window open), being
dissimilar to what the model has learned, result in higher reconstruction errors. For each
instance, the mean squared error (MSE) between the original and reconstructed data is
computed. Instances with an MSE exceeding a predefined threshold are deemed anomalies.
The threshold is set to the mean MSE plus 2.5 times the standard deviation of the
MSE on the training set, accommodating the variation in the reconstruction error. This
statistical technique is commonly used to detect outliers. The model’s performance is
finally evaluated using the classical precision, recall, and F1 score metrics (see Table
4.10), computed from the model’s predictions’ confusion matrix (see Table 4.9).

Method True Negative (TN) False Negative (FN) False Positive (FP) True Positive (TP)
AutoEncoder 6983 1 11 13

Table 4.9 – Confusion matrix for AutoEncoder

Metric Score
Precision 0.542

Recall 0.929
F1 Score 0.684

Table 4.10 – Performance Metrics for AutoEncoder

The results in Table 4.9 reveal that the AutoEncoder model exhibits a high number of
False Positives (FP=11) in comparison to True Positives (TP=13). This suggests that the
model tends to make incorrect predictions of the window being open when it is, in fact,
closed. While its precision, recall, and F1 score performance (Table 4.10) falls short of that
achieved by supervised learning, it outperforms unsupervised learning methods without
the selection of an optimal threshold. Since the AutoEncoder’s performance hinges on
threshold selection, a grid search similar to that conducted for unsupervised methods was
employed to determine the threshold yielding the highest F1 score. Figure 4.20 illustrates
the F1 score variation with changing thresholds, along with the updated confusion matrix.
The refined precision, recall, and F1 score metrics underscore the AutoEncoder’s enhanced
performance in detecting window openings. Notably, the optimal threshold improved the
model’s performance, particularly by eliminating false negatives and increasing true pos-

178



4.3. Case study simulation data

itives. Consequently, the model does not miss any genuine instances of window closure,
affirming the AutoEncoder’s mastery of this feature. The model achieves a perfect recall
score of 1.0, indicating that it identifies every actual window opening correctly. With a
precision score of 0.625, the model accurately classifies 62.5% of the instances it predicts
as window closures. The F1 score, representing the harmonic mean of precision and re-
call, reaches 0.77. While this result does not match the performance of supervised learning
methods, it aligns with the levels achieved by unsupervised methods such as DBSCAN,
which also yielded an F1 score of 0.71.

Figure 4.20 – Finding the best threshold for AutoEncoder

Method True Negative (TN) False Negative (FN) False Positive (FP) True Positive (TP)
AutoEncoder 6984 0 9 15

Table 4.11 – Confusion matrix for AutoEncoder with optimal threshold

Metric Score
Precision 0.625

Recall 1
F1 Score 0.77

Table 4.12 – Performance Metrics for AutoEncoder with optimal threshold
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4.3.2 Second case study – A more realistic and balanced dataset

4.3.2.1 New simulation dataset

The methods employed in the previous sections were applied to raw data collected
over a single year, and the scenarios considered for window opening were deemed unre-
alistic, resulting in a significant class imbalance. This unfavorable situation limited the
algorithms’ performance potential. In the subsequent sub-sections, we aim to compare
the performance of the algorithms on a new (more) balanced, and thus realistic dataset
and to study ways of improvement. The new simulation is conducted using DesignBuilder
software, spanning one-year simulation with 5-minute intervals. Several assumptions were
made regarding new occupancy and window schedules for this simulation. Occupancy is
considered to occur on weekdays from 9 am to 7 pm, with varying durations ranging from
1.5 to 7 hours. The occupancy rate varies randomly between 0.25, 0.5, and 0.75 during
occupied periods. No occupancy is assumed during weekends, from December 15th to
January 15th, and throughout July and August. Regarding the window schedule, win-
dows are allowed to be opened on weekdays from 9 am to 7 pm, with an open durations
ranging from 30 minutes to 7 hours. Window status can change every 30 minutes. Similar
to occupancy, windows are not opened during weekends, from December 15th to January
15th, and in July and August. Following the simulation, seven parameters are selected
in the datasheet include electricity consumption, heat consumption, indoor temperature,
occupancy schedule, outdoor temperature, solar gain, window status. With the new win-
dow open schedule, we have totally 8131 openings. In this case, data is no more highly
imbalance, window opening occupied 23% of the total dataset.

4.3.2.2 Window status detection in new data

To create 2D representations of the dataset, similar to the first case study, we utilized
UMAP. In Figure 4.21, the UMAP representation reveals a more balanced dataset than
the one of the first case study, although there are no distinct characteristics such as distinct
clusters or outlier points for the two types of data.
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Figure 4.21 – UMAP window status for balanced case

4.3.2.3 Comparison of the unsupervised methods

Typically, balanced datasets often offer a benefit for many machine learning tasks.
However, in certain cases, particularly in unsupervised learning scenarios, a balanced
dataset can lead to challenges in finding underlying patterns. Imbalanced datasets often
contain rarer classes or clusters that carry unique and distinctive patterns, which models
can learn to identify. As datasets become more balanced, these unique patterns might
become diluted or harder to discern amidst a wider array of patterns.

For instance, DBSCAN, as clustering algorithm, excels when clusters exhibit similar
densities and are separated by low-density regions. However, it struggles when clusters
have significantly different densities. Adjusting the epsilon (eps) and min_samples pa-
rameters appropriately for all clusters becomes challenging in such cases. For example,
consider a case where there are two clusters, one with high density and another with
low density. If epsilon (eps) and min_samples are set to values that are suitable for
the high-density cluster, the low-density one may be completely missed, classifying it as
noise. Conversely, setting these parameters for the low-density cluster could result in over-
segmenting the high-density cluster into multiple smaller clusters, as the algorithm would
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consider even small variations in the high-density region as separate clusters. Instead of
categorizing DBSCAN as suitable for either balanced or imbalanced datasets, it is more
accurate to say that its effectiveness depends on the density and separation characteristics
of the clusters within the data.

As far as PCA is concerned, it exhibits limitations when dealing with data that are
not linearly separable or when the variance captured by its principal components fails
to align with class boundaries. Notably, PCA lacks consideration for class labels when
calculating its components. On the other hand, MGD assigns each data point to Gaussian
distributions with associated probabilities. MGD’s strength lies in its capacity to model
diverse variance-covariance structures, rendering it a versatile tool for real-world data,
irrespective of whether the dataset is balanced or imbalanced.

The results of the three unsupervised ML algorithm for the new scenario are given
below. In this scenario, parameters and threshold have been selected by the grid search
as well to find their optimal values.

Method True Negative (TN) False Negative (FN) False Positive (FP) True Positive (TP)
DBSCAN 20962 5947 115 8016

PCA 10009 16900 0 8131
MGD 18307 8602 2779 5352

Table 4.13 – Comparison of confusion-matrix-based indicators for DBSCAN, PCA, and
MGD methods after Grid search

Precision Recall F1 Score
DBSCAN 0.986 0.574 0.726
PCA 1 0.325 0.490
MGD 0.658 0.384 0.485

Table 4.14 – Comparison of different algorithm precision, Recall and F1

From Table 4.14, it can be observed that DBSCAN outperforms the other methods
in terms of the F1 score and demonstrates a remarkably high precision, along with a
moderate recall. This indicates that DBSCAN is particularly effective in correctly identi-
fying true positives while maintaining a low rate of false positives, offering superior overall
performance on this dataset compared to PCA and MGD.

Contrary to the typical trade-off between precision and recall, PCA excels in precision
with a perfect score of 1.0 but shows a relatively lower recall. Its perfect precision implies
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that when PCA identifies a data point as an anomaly, it is highly likely to be correct.
However, its lower recall, compared to DBSCAN, indicates that PCA misses a significant
number of true anomalies, despite its high accuracy in the anomalies it does detect.

MGD exhibits a moderate level of precision, recall, and F1 score. This suggests a
balanced rate of errors, where it neither excels in identifying all true anomalies nor in
avoiding false positives. Its performance, with a lower recall compared to DBSCAN and
PCA, and a precision that is not as high as PCA’s, indicates a moderate capability in
distinguishing between normal data points and anomalies.

4.3.2.4 Comparison of the supervised methods

As previously shown, both the original ANN and XGBoost models demonstrated ex-
cellent performance, obviating the need for additional imbalance processing techniques.
Additionally, logistic regression with oversampling or with applying SMOTE presents
commendable performance.

Precision Recall F1 Score
Logistic Regression (Original) 0.93 0.87 0.90
Logistic Regression (Oversampling) 0.82 0.91 0.87
Logistic Regression (SMOTE) 0.82 0.91 0.87
ANN (Original) 0.91 0.93 0.92
XGBoost (Original) 0.93 0.87 0.90

Table 4.15 – Comparison of Performance Metrics for Different Models and Sampling Tech-
niques

From Table 4.15, we can see that logistic regression achieves a balanced accuracy score
of 0.93, indicating that accuracy does not favor the majority class due to the balanced
nature of the dataset. Moreover, precision, recall, and F1 score trend towards perfection for
logistic regression. As far as ANN algorithm is concerned, its precision, recall, and F1 score
for ANN do not perform as well as with the imbalanced dataset. The learning curve in the
case of ANN shown in Figure 4.22 suggests overfitting in the model. This may be attributed
to the inherent complexity of ANN, which possesses more capacity than required for the
problem at hand. One potential solution is the introduction of dropout layers during
training. Dropout means temporarily deactivating a random subset of neurons, along
with all their incoming and outgoing connections, meaning they do not contribute to
the training in that particular forward and backward pass. This regularization technique
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can help mitigate overfitting and improve model generalization. Finally, the XGBoost
model demonstrates strong performance on this dataset (as for imbalanced dataset), with
slightly varying metrics. On the second more balanced dataset, the model has slightly
lower precision but a marginally higher recall, leading to an F1 score of 0.9. In contrast,
on the highly imbalanced dataset, the model achieves perfect precision but has a slightly
reduced recall.

Figure 4.22 – Learning curve ANN

4.3.2.5 Semi-supervised method result

Table 4.16 and 4.17 present the results for the AutoEncoder applied to the new bal-
anced simulation data. The model demonstrates a moderate level of precision, with a
score of approximately 0.52. This suggests that while the AutoEncoder is fairly accurate
in identifying true anomalies, it does encounter a notable number of false positives. How-
ever, the recall is quite high at approximately 0.97, indicating that the model is very
effective in detecting the true anomalies present in the data. This could be attributed
to its ability to learn and recognize patterns from the normal state, allowing it to dis-
tinguish anomalies with high accuracy. The F1 Score, at approximately 0.68, reflects a
balance between precision and recall

Method True Negative (TN) False Negative (FN) False Positive (FP) True Positive (TP)
AutoEncoder 5355 24 781 848

Table 4.16 – Confusion matrix for AutoEncoder in balanced simulation data
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Metric Score
Precision 0.52

Recall 0.97
F1 Score 0.68

Table 4.17 – Performance Metrics for AutoEncoder in balanced simulation data

4.3.3 Occupant presence detection

The second, "more balanced" database also simulates the influence of occupants in ad-
dition to the window open/close effect. Therefore, this database can be utilized to further
explore the effectiveness of the previously employed methods in detecting occupancy. The
analysis, centered on the same aspects, will be expedited here since the trends observed
previously are largely confirmed.

4.3.3.1 Comparison of the unsupervised methods

Table 4.18 and Table 4.19 show the comparison result of the unsupervised methods
(DBSCAN, PCA, and MGD). Parameters and threshold for the three methods have been
updated by the grid search in here as well.

Method True Negative (TN) False Negative (FN) False Positive (FP) True Positive (TP)
DBSCAN 11446 12929 3627 7038

PCA 1 24374 0 10665
MGD 16209 8166 4825 5840

Table 4.18 – Comparison of confusion matrix results for DBSCAN, PCA, and MGD
methods after Grid search

Precision Recall F1 Score
DBSCAN 0.660 0.352 0.460
PCA 0.304 1 0.467
MGD 0.548 0.417 0.473

Table 4.19 – Comparison of different algorithm precision, Recall and F1

Based on the results obtained with the unsupervised methods presented in Table
4.18 and Table 4.19, it is evident that among the three methods, PCA achieves the
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highest precision with a perfect score of 1.0, but this comes with a relatively lower recall.
DBSCAN, while not achieving the perfect precision of PCA, strikes a balance between
precision and recall. MGD, although it does not reach the precision level of PCA, performs
moderately in terms of both precision and recall.

4.3.3.2 Comparison of the supervised methods

The performance metrics presented in Table 4.20 for various models and sampling
techniques on the second simulation dataset offer several noteworthy insights.

The XGBoost model stands out, exhibiting superior performance in terms of precision,
recall, and F1 score among all the models evaluated. This underscores XGBoost’s efficacy
for this specific dataset, both in terms of accurately identifying positive instances and in
capturing a significant proportion of actual positive instances. The robustness of XGBoost
can be attributed to its gradient boosting mechanism, which iteratively refines the model’s
predictions by focusing on instances that were previously misclassified. This iterative
refinement, combined with its capability to handle missing data and its inherent resistance
to overfitting, makes XGBoost a compelling choice for this dataset.

The ANN (Original) model also demonstrates commendable performance, particularly
in terms of recall, emphasizing its capability in identifying the majority of actual posi-
tive cases. However, the computational complexity and the potential for overfitting in
deep neural networks might make XGBoost a more favorable choice in scenarios where
interpretability, scalability, and computational efficiency are paramount.

Logistic Regression, when applied to the original dataset, achieves a harmonious bal-
ance between precision and recall, culminating in a respectable F1 score. Interestingly, its
performance experiences a slight enhancement in terms of the F1 score when oversampling
and SMOTE techniques are employed. However, this comes at the cost of a minor dip in
precision. For the Logistic Regression model, the performance metrics remain invariant
whether the Oversampling or SMOTE technique is applied. This observation underscores
the equivalent efficacy of both techniques in addressing class imbalance for this dataset-
model combination.

In conclusion, while all models present specific strengths, the XGBoost model’s combi-
nation of accuracy, efficiency, and scalability makes it a particularly compelling choice for
this dataset. But the selection of the model and the sampling technique can profoundly
influence the performance metrics, and it is imperative to calibrate the model choice based
on the specific exigencies of the application.
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Precision Recall F1 Score
Logistic Regression (Original) 0.74 0.64 0.69
Logistic Regression (Oversampling) 0.66 0.76 0.71
Logistic Regression (SMOTE) 0.66 0.76 0.71
ANN (Original) 0.79 0.83 0.81
XGBoost 0.84 0.81 0.825

Table 4.20 – Comparison of Performance Metrics for Different Models and Sampling Tech-
niques

4.3.3.3 Semi-supervised method results

Based on the provided confusion matrix and performance metrics, presented in Tables
4.21 and 4.22, respectively, the AutoEncoder model shows moderate performance in de-
tecting presence. Its precision score of approximately 0.559 suggests that while the model
is reasonably accurate in classifying a case as ’presence’, it does encounter a number of
false positives. However, the recall score of approximately 0.677 indicates that the model
is quite effective in capturing actual ’presence’ cases, missing fewer instances than im-
plied by the term ’substantial’. Overall, the model strikes a balance between precision and
recall, as reflected in the F1 score of approximately 0.612.

Method True Negative (TN) False Negative (FN) False Positive (FP) True Positive (TP)
AutoEncoder 4284 573 949 1202

Table 4.21 – Confusion matrix for the AutoEncoder for presence detection

Metric Score
Precision 0.559

Recall 0.677
F1 Score 0.612

Table 4.22 – Performance Metrics for the AutoEncoder for presence detection

4.3.4 An intermediate conclusion following case studies with
simulation data

In the previous sub-sections (4.3.1 to 4.3.3), we conducted an extensive comparative
analysis involving a combination of unsupervised, supervised, and semi-supervised algo-
rithms applied on two distinct simulation datasets. One dataset exhibited a high level of
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class imbalance and an unrealistic scenario, primarily designed for testing purposes, while
the second represented a more balanced and realistic scenario. For the unsupervised meth-
ods, for both simulation cases, we employed three learning methods: DBSCAN, PCA, and
MGD. Among them, DBSCAN consistently demonstrated the highest performance met-
rics, including precision, recall, and F1 Score, on both datasets. This notable performance
can be attributed to DBSCAN’s proficiency in effectively identifying clusters of varying
shapes and sizes, making it particularly advantageous for handling imbalanced datasets.
However, it is important to note that this superior performance came at the expense of
computational speed, as DBSCAN was the slowest among the tested algorithms. This
limitation renders it less suitable for real-time applications or the analysis of extensive
datasets.

On the contrary, PCA proved to be computationally efficient but its linear nature
and emphasis on capturing variance make it less suitable for classifying scenarios with
intricate or poorly separated class boundaries. It consistently produced a high number of
false negatives in exchange for good recall. This behavior could be attributed to PCA’s
approach of capturing variance in the dataset. Principal components derived from PCA
may not align well with class boundaries, potentially blurring distinctions between dif-
ferent classes. In the specific context of window opening detection, if PCA’s principal
components predominantly capture factors other than the open/closed state of windows,
the algorithm may struggle to classify this feature accurately, resulting in a high rate of
false negatives.

MGD consistently achieved high precision but exhibited lower recall. This characteris-
tic can be linked to the foundational principles and assumptions of MGD. MGD operates
on the assumption that class features follow a Gaussian distribution. Its high precision
indicates MGD’s effectiveness in correctly identifying ’open’ window cases as such, re-
sulting in a lower rate of false positives. However, the lower recall suggests that MGD
might be missing a significant number of actual ’open’ cases, leading to a higher number
of false negatives. The underlying reasons for this behavior are rooted in MGD’s Gaussian
distribution assumptions. If the Gaussian distributions for ’open’ and ’closed’ states do
not have a clear separation, MGD might struggle to detect all ’open’ cases, which results
in lower recall. The degree of conformance of the dataset to the Gaussian distribution
assumptions and the distinctness between ’open’ and ’closed’ categories in the feature
space significantly impact MGD’s ability to discern between these two states effectively.

To conclude, we have chosen DBSCAN as the potential algorithm, although its com-
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putational requirements are a drawback, and we will explore acceleration methods in a
later section of this chapter.

For the supervised learning algorithms, for both simulation cases, we used XGBoost,
ANN, and Logistic Regression. Logistic Regression initially underperformed on the im-
balanced dataset but demonstrated significant improvement with the application of tech-
niques such as oversampling and SMOTE. Despite achieving near-perfect performance
metrics post-resampling, it faced challenges in a more complex simulation case study.
These challenges could be attributed to its inherent limitations in capturing non-linear
relationships and sensitivity to class imbalance.

Conversely, XGBoost showcased robust performance across both datasets. Although
it wasn’t flawless on the imbalanced dataset, its effectiveness significantly improved when
complemented with resampling techniques like oversampling and SMOTE. XGBoost’s ver-
satility enables it to handle balanced and imbalanced datasets efficiently, accommodating
both linear and non-linear patterns. While it may not be as fast as Logistic Regression,
it remains well-suited for medium-to-large datasets where some level of model complexity
is acceptable.

Finally, ANN emerged as the most accurate but computationally intensive algorithm.
It excelled in capturing complex, non-linear relationships, making it the most accurate
model for both datasets. However, its high accuracy came at the cost of computational
speed, rendering it less suitable for real-time or resource-constrained scenarios.

Thus, for the supervised methods, XGBoost emerges as the potentially most appro-
priate algorithm, while ANN may be suitable for simulations without stringent time con-
straints.

Regarding semi-supervised methods, their performance was not as impressive as the
supervised methods and did not significantly outperform the unsupervised methods. Ad-
ditionally, considering the multi-activities detection requirements, we will not consider
semi-supervised methods as potential algorithms for our case study.

We finally state that DBSCAN and XGBoost emerge as the top choices for each
respective category. Further discussions on acceleration methods for these two algorithms
will be covered in a later section.
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4.4 Real case study results

4.4.1 Presentation of the real case dataset

In this section, we will discuss a real-world case study using data collected from a
computer lecture room at Polytech Angers. Within this lecture room, fourteen combined
ambient sensors were installed to determine the optimal sensor location. As we identified
the optimal sensor (sensor 101) in the previous chapter, our focus in this study is solely
on utilizing this optimal sensor’s data. After collecting and preprocessing the data, we
obtained over eight parameters and 80,000 data points for the period between October
1, 2022, and December 1, 2022. Among the eight parameters, we carefully selected those
with a strong correlation to window status, including ambient data from sensor 101 (CO2

, TVOC, Humidity, Light, Sound, Temperature), outside temperature, and window status
itself. It is worth noting that some data points were missing. To address these gaps in
the data, we employed a strategy of imputing missing values by taking the mean of data
points before and after the missing values. If two or more consecutive lines of data are
missing, the entire row is removed from consideration. After processing, we were left with
17,000 data points at 5-minute intervals for the specified period.

To gain insights into the data distribution corresponding to window status, we em-
ployed UMAP for dimensionality reduction, resulting in Figure 4.23. The plot shows two
intricately intertwined datasets, indicating the complex relationships and interdependen-
cies between them. The balance between the two types of data in the plot suggests that
they share a high degree of similarity in the dimensional space visualized. The observed
overlap in the UMAP plot serves as an indication that the selected features do not easily
differentiate between the two types of data. This observation might inform us about the
underlying structure of the data and lead to further investigations.
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Figure 4.23 – UMAP in real data

4.4.2 Comparison of learning algorithms - Main results for real
case study

4.4.2.1 Comparison of the unsupervised methods

The results of the unsupervised method are presented in Table 4.23 and Table 4.24. For
each method, hyperparameters or thresholds have been determined through grid search,
as used previously. In the results, PCA and MGD exhibit extremely low True Negative
(TN), indicating that these models tend to classify almost everything as the positive class.

Method True Negative (TN) False Negative (FN) False Positive (FP) True Positive (TP)
DBSCAN 401 6498 417 14860

PCA 0 6899 1 15276
MGD 1 6898 0 15277

Table 4.23 – Comparison of confusion matrix results for DBSCAN, PCA, and MGD
methods after Grid search
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Precision Recall F1 Score
DBSCAN 0.973 0.696 0.811
PCA 1 0.689 0.816
MGD 1 0.689 0.816

Table 4.24 – Comparison of different algotithm precision, recall and F1 in real data

One primary reason for this behavior is the class imbalance present in the dataset.
Specifically, there are 15,277 instances of windows being open (’1’) and only 6,899 in-
stances of them being closed (’0’). Consequently, many instances are classified as open,
resulting in high recall but low precision, especially for the minority class (closed win-
dows). However, this imbalance alone cannot explain the entire issue, as the simulation
dataset is also highly imbalanced. To further understand the challenge posed by the data,
we can examine the feature distributions shown in Figures 4.24 to 4.27. In these Fig-
ures, the y-axis represents the density of data points, with higher density meaning more
data points falling within that range. The x-axis depicts the value range for each feature.
These figures display the characteristics of the first four features (CO2,TVOC,temperature
and humidity), categorized by window state (open or closed). Notably, the feature dis-
tributions exhibit significant overlap between the two classes (’Open’ and ’Closed’). This
overlap could make it difficult for algorithms to effectively distinguish between the two
states.

In summary, despite DBSCAN gives relatively high false negatives, it still outperforms
other unsupervised methods in this challenging environment. This superiority can be
attributed to DBSCAN’s strengths, such as its ability to handle noise and outliers, its
lack of a predefined number of clusters, and its neighborhood-based search approach.

4.4.2.2 Comparison of the supervised method

Table 4.25 presents the performance of supervised methods. Among the supervised
methods, both ANN and XGBoost still emerge as the most suitable algorithms for this
dataset, as they consistently deliver high precision, recall, and F1 scores. Furthermore,
when we take into account computational complexity, XGBoost remains the preferred
choice in this context. While Logistic Regression demonstrates relative effectiveness, it falls
short in comparison to the performance achieved by ANN and XGBoost. Additionally, the
application of oversampling and SMOTE techniques does not appear to yield significant
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Figure 4.24 – Features distribution Figure 4.25 – Features distribution

Figure 4.26 – Features distribution Figure 4.27 – Features distribution
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benefits over the original logistic regression model for this particular dataset.

Precision Recall F1 Score
Logistic regression (Original) 0.82 0.90 0.87
ANN (Original) 0.95 0.97 0.96
Logistic Regression (Oversampling) 0.88 0.79 0.83
Logistic Regression (SMOTE) 0.88 0.79 0.83
XGBoost (Original) 0.99 0.99 0.99

Table 4.25 – Comparison of Performance Metrics for Different Models and Sampling Tech-
niques

4.4.2.3 Semi-supervised method results

In Tables 4.26 and 4.27, We observe that the AutoEncoder demonstrates an impres-
sively high recall score of 0.993, indicating that it successfully identifies nearly all actual
’positive’ instances. This high recall suggests that when a ’positive’ instance occurs, the
model is almost always able to detect it. However, the model’s precision score is extremely
low at 0.044, meaning it generates a significant number of false positives. In essence, while
the model is adept at identifying positives, it also incorrectly labels many instances as
positive. The F1 score, the harmonic mean of precision and recall, is consequently low
at 0.085, highlighting the model’s lack of balance and overall poor performance. Despite
its ability to detect most positive instances, the AutoEncoder’s excessive rate of false
positives makes it impractical for effective use in this context.

Method True Negative (TN) False Negative (FN) False Positive (FP) True Positive (TP)
AutoEncoder 1399 1 2901 135

Table 4.26 – Confusion matrix for the AutoEncoder for real case

Metric Score
Precision 0.044

Recall 0.993
F1 Score 0.085

Table 4.27 – Performance metrics for the AutoEncoder for real case
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4.4.2.4 Ending note

For the real case study, DBSCAN and XGBoost remain our selected algorithms. In
this positively imbalanced dataset, both DBSCAN and XGBoost have exhibited strong
performance in both unsupervised and supervised methods. Striking a balance between
accuracy and computational complexity, we have ultimately chosen DBSCAN and XG-
Boost algorithms.

4.5 Algorithms acceleration

Incorporating occupant behavior detection as a feedback signal in a building control
system necessitates a swift detection process, particularly in real-time scenarios. Occupant
comfort can be highly dynamic, and rapid adjustments based on real-time occupancy
data can minimize energy usage, leading to improved user experience and satisfaction.
Therefore, to be optimized for real-time usage, the previously selected algorithms can or
should be "accelerated"

4.5.1 DBSCAN acceleration

DBSCAN poses computational challenges because it requires comparing each data
point with every other point to identify neighbors. It exhibits a computational complexity
of O(n2), where n represent number of observation. Even with an indexing structure such
as a k-d tree is used to speed up the region queries, it retains a computational complexity
of O(n log n). As seen in the previous section, DBSCAN was shown as the slowest among
the unsupervised methods.

Without compromising detection accuracy, a precomputed distance matrix approach
is used associated with DBSCAN algorithm. Typically, DBSCAN calculates the distance
between each pair of data points, which can be time-consuming. So, the precomputed
distance matrix is a matrix where the distance between each pair of points is calculated
in advance and stored. When the DBSCAN requires distance calculations, it can use this
precomputed matrix, avoiding redundant distance calculations and significantly speeding
up the process. With this method, the calculation time for DBSCAN decreases from 6
seconds to a mere 0.0035 seconds 15.

15. All the time computations are obtained using the environment of Intel Core i7-3630 CPU @2.50GHz,
8G RAM.
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4.5.1.1 DBSCAN parameter selection acceleration

In addition to DBSCAN acceleration techniques, optimizing the selection of param-
eters such as eps and minPts to enhance clustering quality is a critical focus for future
research, as noted by Wen et al. (2021). However, conducting parameter optimization via
Grid search is computationally expensive and time-consuming. Thus, we have developed
an optimized methodology based on our grid search approach for parameter selection in
DBSCAN that significantly reduces computation time without compromising clustering
quality.

The methodology comprises two main steps: a "coarse-to-fine" parameter search and
data pre-filtering of data.

Step 1: Coarse-to-Fine Parameter Search Rather than searching the entire pa-
rameters space, we use a two-stage grid search strategy. The coarse-to-fine approach en-
ables us to efficiently focus ona smaller, more pertinent area within the parameter space.
And by conducting a fine search around the best results from the coarse search, the
method ensures a good trade-off between computational effort and quality of clustering.

Coarse Search:

Coarse Search: Initially, the algorithm explores a broad range of parameter values to
find a "good enough" solution quickly. This phase gives us an initial idea of what parameter
values may be effective without having to search the entire parameter space exhaustively.

1. Select Ranges: Define broad ranges for ϵ and min_samples.
— ϵ = [0, 0.3, . . . , 0.9]
— min_samples = [5, 10, . . . , 15]

2. Grid Search: Perform a standard grid search on this coarse grid to identify the
best parameters.

Best F1 score = max
ϵ,min_samples

F1(ϵ, min_samples) (4.19)

Fine Search:
Based on the results of the coarse search, a narrower range is defined around the most
promising parameter values. A more detailed search is conducted within this refined range.

1. Narrow Down Ranges: Based on the best parameters (ϵ∗, min_samples*) from
the coarse search, define a finer grid around these values.
— ϵ = [ϵ∗ − 0.1, ϵ∗, ϵ∗ + 0.1]
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— min_samples = [min_samples* - 1, min_samples*, min_samples* + 1]

2. Grid Search: Perform grid search on this fine grid.

Best F1 score = max
ϵ,min_samples

F1(ϵ, min_samples) (4.20)

Step 2: Pre-filtering (Optional) Pre-filtering techniques can be applied to the
dataset to remove outliers or irrelevant points before performing the DBSCAN clustering.
This can further speed up the process. Quantile Filtering can be employed as a pre-
processing step to remove potential outliers in the dataset. Let X be our dataset with n

features. The pre-filtering can be formulated mathematically as follows:
For each feature fi, i = 1, . . . , n, do the following:

1. Calculate the 1st quartile (Q1i) and 3rd quartile (Q3i):

Q1i = Quantile(Xfi
, 0.25), Q3i = Quantile(Xfi

, 0.75) (4.21)

2. Compute the Interquartile Range (IQRi):

IQRi = Q3i −Q1i (4.22)

3. Determine the Lower Bound (LBi) and Upper Bound (UBi):

LBi = Q1i − 1.5× IQRi, UBi = Q3i + 1.5× IQRi (4.23)

4. For each data point x in X, remove x if any of its features fi fall outside the
bounds:

x = {x ∈ X | ∀i, LBi ≤ xfi
≤ UBi} (4.24)

By applying this quantile filtering, we can effectively remove outliers based on the
IQR method for each feature, thus preparing the data for more accurate clustering by the
DBSCAN algorithm.

4.5.1.2 Result:

The optimized methodology showed significant improvements in computation time
while maintaining the quality of clustering. The performance are as follows:
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Metric Standard Grid Search Optimized Search
Time (seconds) 415.64 145.78 (65% reduction)
Best F1 score 0.4595 0.4595
Best ϵ 0.1 0.1
Best min_samples 14 14

Table 4.28 – Comparison of Standard and Optimized Search on Simulation Dataset

From the results, it is evident that the optimized search process can significantly
reduce computation time by 65%, all without compromising the quality of clustering,
as evidenced by the maintained F1 score. This method proves particularly advantageous
for large datasets where a conventional grid search would be prohibitively expensive.
Therefore, it serves as a valuable tool for applications demanding efficient and effective
clustering processes.

4.5.2 XGBoost acceleration

In gradient boosting, multiple trees are constructed sequentially, each correcting the er-
rors of its predecessor, ultimately improving predictive performance. However, construct-
ing optimal decision trees is a computationally challenging task.

4.5.2.1 XGBoost parameter selection acceleration

Our original algorithm employs exact tree learning, a traditional method for growing
decision trees in a greedy manner. This approach involves iterating through all features
and their possible splits to find the best split based on a predefined objective function.
The objective function combines a loss function and a regularization term. The objective
function aims to minimize:

Obj =
n∑

i=1
l(yi, ŷi) +

|T |∑
j=1

Ω(fj) (4.25)

Here Ω(fj) typically is a function of the structure of the tree T and the output score
at leaf j. It is often written as:

Ω(f) = γ|T |+ 1
2λ

|T |∑
j=1

w2
j (4.26)
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To find the optimal structure, the algorithm explores every possible split for each
feature, leading to exhaustive computation.

Starting from a root node containing all data points, Exact Tree Learning iteratively
considers each feature and evaluates all potential split points. The algorithm quantifies
the efficacy of each split using metrics such as "gain" or "information gain." The gain from
a split point s on feature j is calculated as:

Gain(s) = 1
HL + λ

(
G2

L

HL + λ
+ G2

R

HR + λ
− (GL + GR)2

HL + HR + λ

)
(4.27)

After identifying the most effective split, the data is partitioned into two subsets
accordingly. This process of evaluation and splitting is recursively applied to each new
child node.

While this method is more likely to yield a good result, it is computationally intensive,
especially for datasets with numerous features or high cardinality.

An alternative to exact tree learning is histogram-based tree learning. This approach
prioritizes computational efficiency by approximating the continuous feature space. Each
feature is discretized into discrete bins:

Bin(xj) = argminb∈k||xj − b|| (4.28)

Histograms are created based on these bins, reducing the number of potential split points.
The algorithm then looks for the best split based on aggregated gradients and hessians of
the bins, forming Gbin and Hbin.

Just like in Exact Tree Learning, the objective remains the same: to minimize the
objective function. However, the algorithm operates on these pre-aggregated bins, making
it computationally less demanding. The tree starts at the root node and evaluates the
aggregated gradients and hessians for each bin. The best split is chosen based on these
aggregated values, and the data is divided into two child nodes. This process is then
recursively applied to each of the new child nodes. In this method, the same Gain function
as in the exact method is used, but the gain is calculated for each bin instead of each
data point:
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Gain(Bin) = 1
Hbin,L + λ

(
G2

bin,L

Hbin,L + λ
+

G2
bin,R

Hbin,R + λ
− (Gbin,L + Gbin,R)2

Hbin,L + Hbin,R + λ

)
(4.29)

While this method sacrifices some accuracy due to approximations, it significantly
reduces computational demands.

Another solution is the XGBoost-Ray, which is an innovative backend designed to sup-
port distributed learning in XGBoost. It takes advantage of Ray, a powerful framework
tailored for distributed computing. XGBoost-Ray facilitates XGBoost training across a
cluster of hundreds of nodes, offering scalability, fault resilience, flexible training capabili-
ties, and seamless integration with the Ray Tune library for hyperparameters optimization.

Unlike the standard XGBoost library, which is limited to a single CPU or GPU on one
machine, XGBoost-Ray extends these limitations by enabling the use of multiple proces-
sors and GPUs across multiple machines. This becomes essential for handling extensive
datasets that cannot to fit into the memory of a single computing unit, making distributed
training indispensable.

The architecture of XGBoost-Ray enables distributed learning to occur across a multi-
node, multi-GPU cluster, enhancing the capability and speed of the training process.

Figure 4.28 – Architecture of XGBoost-Ray

During the training phase, XGBoost-Ray sets up a group of training actors that cover
the entire computational cluster. Each of these actors takes charge of training the model
on a specific segment of the dataset. This methodology is referred to as data-parallel
training. To ensure that all actors contribute to improving the model collectively, they
exchange gradient information using a tree-based AllReduce algorithm, as illustrated in
the subsequent Figure 4.29.
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Figure 4.29 – XGBoost-Ray training actors

4.5.2.2 Result for XGBoost acceleration

The XGBoost acceleration method with different dataset will be summed up in the
Table 4.29 below. The data reveals that the histogram tree learning method offers a
remarkable 85% improvement in computation time and efficiency without significantly
compromising performance. In contrast, the XGBoost-ray method did not consistently
achieve the expected results. While XGBoost-ray should theoretically be faster, especially
when making efficient use of parallelization and GPU acceleration, certain factors can
impede its performance. Notably, when dealing with smaller datasets, data transfer to the
GPU can counteract the speedup gained through parallelization. Additionally, overheads
related to initializing and communicating with Ray and GPU acceleration can extend
runtimes.

Dataset Method Training Time (s) Precision Recall F1-Score

Imbalanced Simulation
Distributed 5.78 1.0 0.5833 0.7368

Origin 1.33 1.0 0.8966 0.9455
Hist 0.18 1.0 0.7083 0.8293

Real
Distributed 4.34 0.9759 0.9733 0.9746

Origin 3.60 0.9951 0.9944 0.9947
Hist 0.29 0.9960 0.9941 0.9951

Balanced Simulation
Distributed 8.01 0.9580 0.7974 0.8704

Origin 2.19 0.9266 0.8674 0.8960
Hist 0.28 0.9361 0.8631 0.8981

Table 4.29 – Performance metrics for different training methods across various datasets.
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4.6 Conclusion of the chapter

This fourth chapter provides an extensive comparison of various machine learning and
statistical methods. It outlines the selection process for candidate algorithms based on
their respective strengths and weaknesses. Specifically, we have chosen DBSCAN, PCA,
and MGD for unsupervised methods; Logistic Regression, ANN, and XGBoost for su-
pervised methods; and AutoEncoder for semi-supervised methods. These algorithms were
selected for their suitability in predictive modeling across different datasets, including
imbalanced simulations, balanced simulations, and real-world data, with a primary fo-
cus on detecting specific building activities, notably window status. Each algorithm was
applied meticulously, taking into account their underlying assumptions and the need for
appropriate parameter settings. For the unsupervised methods, DBSCAN demonstrated
promising results across all three datasets, especially excelling in the case of imbalanced
data. Conversely, PCA and MGD consistently produced high false negatives due to their
tendency to classify a significant portion of data as positive. DBSCAN’s strengths, such
as its ability to discover clusters of arbitrary shapes without requiring the user to prede-
fine the number of clusters, were noteworthy. However, it faces challenges when dealing
with clusters of varying densities. In the supervised methods context, the ANN exhibited
the capacity to learn complex, non-linear relationships, delivering strong performance.
Nonetheless, it demands substantial computational resources and time, particularly for
larger networks, and is susceptible to overfitting. Logistic Regression, on the other hand, is
quick to implement and train but is less effective in handling complex, non-linear relation-
ships. XGBoost, by combining the strengths of both, proves capable of managing complex
systems efficiently without excessive computational costs. Within the semi-supervised ap-
proach, the AutoEncoder stands out for its proficiency in learning representations and
dimension reduction, especially when trained with a single data type.

As a result of performance evaluations and specific requirements, we identified the need
for both unsupervised and supervised methods. Among unsupervised methods, DBSCAN
was selected for further use in Chapter 5, in conjunction with root cause analysis, for
detecting household behavior. In the supervised approach, we opted for XGBoost, which
will be employed to distinguish four occupants’ scenarios in Chapter 5 using a limited
amount of labeled data and self-supervised learning. Throughout this chapter, we also
implemented strategies to enhance computational efficiency, such as using precomputed
matrices to accelerate DBSCAN by ten fold and employing histogram tree learning to
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boost XGBoost’s speed by nine fold.
One lesson of this fourth chapter is the importance of understanding the characteristics

of the dataset, methods assumptions, and the balance between model complexity and
overfitting. It emphasizes that there is no universal approach; the choice of method should
align with the specific requirements and constraints of the problem at hand.
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Chapter 5

MULTI ACTIVITIES DETECTION BASED ON

ROOT CAUSE ANALYSIS

Understanding occupancy behaviors is crucial for energy-efficient building operations.
As discussed previously, while traditional supervised methods have achieved significant
success in detecting occupancy-driven behaviors, they have some drawbacks: they rely
heavily on labeled data, which can be costly, time-consuming, and intrusive. In addition,
methods requiring less labeled data perform well in detecting occupation, but struggle
with classifying different activities. In this chapter, firstly, we present a novel approach
to classify between window-opening and occupancy presence events using only ambient
sensor and thereby reducing intrusiveness. It consists in applying self-supervision for data
augmentation, followed by transfer learning from the models trained on an initial, or so-
called "pretext" task. The result of self-supervision has an accuracy of 86.85% to classify
the behaviors. Secondly, we present another novel hybrid approach based on Hotspot
algorithm to identify the root cause of the occupancy-driven behaviors. It is complemented
by applying a BN to classify window-opening and occupancy presence events. The result
shows a good ability to detect the multi activities under unsupervised method.

5.1 Introduction

Accurate prediction and understanding of occupants’ behaviors can assist in the de-
velopment of energy-efficient building management systems, such as predefined behavior
schedules for control systems or real-time detection for adjusting control systems in real
time. Additionally, it can help alert building users or managers to unintentionally left
open windows, thereby reducing unnecessary ventilation heat losses.

Besides the privacy issue (Cody et al. 2021), methods for activity detection have been
proven to be not entirely accurate. This inaccuracy can be attributed (i) to the sensor
layout, (ii) to the availability of labelled data and (iii) to ability of methods to distinguish
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between several activities. This first aspect, sensor layout, has been already handled in
Chapter 3. Traditional supervised machine learning approaches have been successfully
employed for classification tasks. However, these methods heavily rely on the availability
of labeled data, which can be intrusive to obtain and often require significant manual
effort. This aspect was discussed in Chapter 4 where unsupervised methods have been ex-
plored and compared. In this previous chapter, it was also shown that the non-intrusive,
unsupervised, or semi-supervised methods (requiring less labeled data and manual effort)
can detect the occurrence of a behavior. However, classifying and distinguishing between
each behavior is more challenging, as illustrated in the PCA example in Chapter 4 (dif-
ferent behaviors mixed together and unable to be classified). Different activities (e.g.,
windows opening, people entering and leaving a room, etc.) can cause fluctuations in
multidimensional attributes (e.g., temperature, CO2, etc.). Conversely, different combi-
nations of attributes can reflect different combinations of activities. There is generally no
unique solution and no unique relationship between changes in activities and changes in
attributes, making the detection process more complex.

In the present Chapter 5, our objective is then to improve multi-activities detec-
tion in buildings by addressing the related challenges: (i) intrusive sensors, (ii) labeled
data, and (iii) classification problems in unsupervised methods. To tackle these chal-
lenges, we initially rely solely on ambient sensors to gather environmental information,
thereby sidestepping potential privacy issues. Next, we examine the feasibility of acquiring
semantic interpretations without supervision, thus eliminating the need for manual label-
ing of sensor data with explicit categories, such as activity types. Specifically, we aim to
derive features of comparable quality to those obtained using fully supervised techniques.

One possible solution is a rising approach to feature learning called self-supervised
learning. This method is presented in section 5.3 and sub-section 5.3.2, and then applied
in section 5.3.2.2. Self-supervised learning method introduces auxiliary tasks, often re-
ferred to as pretext or surrogate tasks, where labels are directly extractable from the
data without human intervention. By exploiting these powerful guidance cues from the
surrogate tasks, we can employ objective functions similar to those used in traditional
supervised learning scenarios. The field of vision has already introduced numerous self-
supervised tasks to enhance representation learning from static images, videos, and sound.
In the building context application, this method remains largely unexplored in the existing
literature. In the present chapter, our primary contribution is the pioneering application
of self-supervised learning to ambient sensory data for distinguishing different occupant
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behaviors.
Another objective is to identify the underlying causes that lead to different occupant

behaviors. Once we understand these root causes, we can use them to infer the likeli-
hood of a particular behavior occurring. This represents a thorough form of unsupervised
learning. In this chapter, another key contribution is the adaptation of the Hotspot algo-
rithm to the building context for continuous time-series data. Traditionally, the Hotspot
algorithm relied on predicted KPIs (Key Performance Indicators) to detect activities or
faults, but its accuracy was highly dependent on a strong correlation assumption between
the KPIs and root causes. To improve activity and fault detection capabilities and reduce
the search space, we integrated DBSCAN with the Hotspot algorithm. Finally, to tackle
the performance evaluation challenge and establish a link between root causes and activ-
ities, we implemented BNs to infer the probabilities of various activities. We also tested
different network structure estimation and parameter estimation methods to achieve bet-
ter accuracy. The background and methodology for this second approach is presented in
sections 5.4, and sub-sections 5.4.2 and 5.4.3.

5.2 Case study

In this section, we will remind the specificity of the case studies (introduced in Chapter
2) for the multi-activity detection.

5.2.1 Simulation case study

The balanced dataset introduced in Chapter 2 is used. As a reminder, several assump-
tions have been made for the occupancy and window schedules. For occupancy, the room
may be occupied on weekdays from 9 am to 7 pm. The duration of occupancy is ran-
dom, ranging between 1.5 to 7 hours. The occupancy number varies randomly between
0.25, 0.5, and 0.75 during the occupied periods. There is no occupancy during weekends,
from December 15th to January 15th, and throughout July and August. As for the win-
dow schedule, the window status can change every 30 minutes and windows can only be
opened during presence time slots. After the simulation, seven parameters are selected
from the datasheet, including electricity consumption, heat consumption, indoor temper-
ature, occupancy schedule, outdoor temperature, solar gain, and window status. The plot
of these parameters can be seen from Figure 5.1 to Figure 5.7. From the Figure 5.3 (indoor
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temperature), we can notice that the temperature fluctuates around the heating setpoint
at 22◦C during the heating period. We can also observe a set back point at 20◦C during
the night. Additionally, we also notice that the cooling setpoint at summer is 28 ◦C. The
simulation also indicates breaks during July and August from the window status (Figure
5.7) and occupancy status (Figure 5.4). In the latter Figure 5.4, the y-axis values indicate
the heat gain from the occupants. All the values will be converted to 0 and 1 to represent
the presence or absence of occupants.
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Figure 5.1 – Electricity simulation case Figure 5.2 – Heat consumption simulation case

Figure 5.3 – Indoor temperature simulation case Figure 5.4 – Occupancy status simulation case

Figure 5.5 – Outdoor temperature simulation case Figure 5.6 – Solar gain simulation case

Figure 5.7 – Window status simulation case
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5.2.2 Real case study

As mentioned in Chapter 1, one challenge we face is that the performance of activity
detection can be affected by sensor placement. Therefore, only the optimal sensor (sensor
101) found in the Chapter 3 is used in this study. In addition to the ambient sensor, there
are four window status sensors on each window and two door status sensors (see layout
in Figure 5.8), a weather station, electricity consumption sensors, and a class schedule
file. As the class schedule file may not accurately reflect reality due to random room
entries and absences of students, so for the multi-activities detection, we will only use the
simulation data to test our methodology.

Figure 5.8 – Window door sensor and selected sensor

5.3 Self-learning supervised method

5.3.1 Background of self-learning supervised method

In order to understand self-supervised learning, remember that the main difference
between supervised and unsupervised is whether the model requires manually labeled
information during training. Typically, supervised learning is trained for a specific task
using large manually labeled datasets. It not only relies heavily on expensive manual la-
beling, but also suffers from generalization errors. In order to solve this challenge, we aim
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to find models that can learn more with fewer labels, fewer samples or fewer trials. As a
promising candidate, self-supervised learning has received a lot of attention for its excel-
lent data efficiency and generalization ability. Figure 5.9 vividly illustrates the differences
between supervised, unsupervised, and self-supervised learning. In an autoencoder (un-

Figure 5.9 – Supervised VS unsupervised VS self supervised learning (Liu et al.2023)

supervised learning), the encoder maps the input samples to a latent/hidden Hermitian
vector, and the decoder maps this latent/hidden vector back to the sample space. The
goal is to achieve consistency between the input and output (ideally, lossless reconstruc-
tion), while the dimension of the latent/hidden vector is much smaller than that of the
input samples. This achieves the dimensionality reduction objective. Utilizing the learned
latent/hidden vectors simplifies tasks such as clustering and other downstream processes.
The process of learning these latent/hidden vectors is known as Representation Learning.
However, the encoding-decoding structure of autoencoders has limitations. Reconstruc-
tion losses based on individual data usually assume data independence, reducing their
ability to model correlations or complex structures. In particular, the use of L1 (least
absolute deviation) or L2 (least square errors) losses to measure the gap between inputs
and outputs lacks semantic information. Overemphasis on individual data-level details
neglects more important semantic features.

In the case of self-encoders, dimensionality reduction alone may not suffice. The goal
of learning is not just dimensionality reduction but also capturing more semantic fea-
tures, allowing the model to understand what the inputs actually are, and thus aiding
downstream tasks; the main goal of self-supervised learning is to learn richer features
representations.

Self-supervised learning mainly utilizes auxiliary tasks (pretext) to mine its own su-
pervised information from large-scale unsupervised data. The network is trained with this
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constructed supervised information so that it can learn representations that are valuable
for downstream tasks.

However, self-supervised learning raises three fundamental questions: (i) How to per-
form representation learning on a large amount of unlabeled data? (ii) How to design
effective auxiliary pretext tasks derived from the data itself? (iii) How to evaluate the
effectiveness of the learned representations?

To address these questions, the ability of self-supervised learning is primarily assessed
by the Pretrain-Finetune paradigm. The Pretrain-Finetune process is akin to supervised
learning. First, a model is pre-trained on a large set of labeled data. Then, for a new down-
stream task, the pre-trained model’s parameters are fine-tuned on the new labeled task to
adapt it to the new objective. In self-supervised learning, the Pretrain-Finetune process
involves training the network on a large amount of unlabeled data by constructing pseudo-
labels through pretext tasks based on the data’s inherent structure or characteristics. For
example, in computer vision, transformations such as rotation, cropping, or flipping may
be applied to images. Predicting attributes like the angle before and after rotation or the
direction before and after flipping based on these transformations automatically generates
labels. Training on these labels helps the model to understand the structure and features
of the image and thus learn the computer vision task. Once a pre-trained model has been
obtained, all that is required for new downstream tasks, as with supervised learning, is
fine-tuning after migrating the learned parameters.

Self-supervised learning is a machine learning approach where models learn from unla-
beled data through pretext tasks. For instance, in Natural Langage Processing (NLP), it
involves predicting surrounding words of a central word. In NLP, MASK LM training re-
moves words from sentences, and models predict the missing words (Devlin et al. 2019). In
image processing, the ’Jigsaw’ method divides images into segments, and models predict
their relative positions (Doersch et al. 2015). Advanced pretext tasks include inpainting,
where models predict missing image parts (Deepak et al. 2016). Colorization tasks require
predicting colors in grayscale images (Zhang et al. 2016). Split-Brain Autoencoders di-
vide data into parts, encouraging models to understand semantic information (Zhang et
al. 2017). More detail about these studies can be found in Appendix B.1

Self-supervised learning has seen success in computer vision and NLP but remains
underutilized in building contexts like multi-activity detection. Saeed et al. (2019) used
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wearable sensors to explore self-supervised learning, distinguishing human activities with
limited labeled data. These methods show potential for enhancing transfer and semi-
supervised learning. Inspired by these efforts, we investigate self-supervised learning’s
suitability for multi-occupant behavior detection using only ambient sensor data for rep-
resentation learning.

5.3.2 Methodology and result for the Multi-Occupant Behavior
Self-Supervision Learning

5.3.2.1 Self-supervison learning methodology

In this section, we will apply the Multi-Occupant Behavior Self-Supervision Learning
on the simulation dataset, aiming to classify four different scenarios: window open without
occupants, window closed with occupants, window open with occupants presence, and
window closed without occupants presence.

As the cornerstone of our self-supervised learning pipeline, we need to employ a pretext
task that facilitates rich feature learning, data efficiency and transferability to downstream
tasks. For this purpose, we utilize centered time shuffling. Sensor readings naturally follow
a temporal order, and this temporal structure contains valuable information about the
system’s dynamics. By shuffling the time indices and training the model to predict the
original sequence, we force the model to learn the underlying temporal patterns and
correlations between different sensors.

In the pretext phase, we employ the ANN method, which was introduced and elabo-
rated upon in the previous chapter, to predict the correct temporal sequence. The same
structure than in Chapter 4 is employed, consisting in one input layer with six nodes,
following with hidden layer with twelve nodes, another hidden layer with eight nodes,
and the output layer with one node for the temporal ordering of the data. This choice
is motivated by the ANN’s exceptional performance seen in the previous chapter, where
it effectively captured intricate underlying patterns. Computational time is of less con-
cern during the pretext phase, allowing for the utilization of more complex models. Then,
features will be extracted from the final layer of the ANN, which represent the learned
representation of all features.

Subsequently, we proceed with transfer learning to adapt the learned representations
for downstream tasks. Fine-tuning is performed based on the specific requirements of the
downstream application, which, in our case, involves distinguishing among four different
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scenarios. For this purpose, we employ the Histogram-Based Tree Learning XGBoost al-
gorithm, as chosen in the previous chapter. The rationale behind this selection lies in
XGBoost’s proven high accuracy and minimal computational time requirements, estab-
lishing a robust foundation for future building management control scenarios.

The steps are outlined below and illustrated in the flowchart of Figure 5.10:

1. Shuffling time and create labels. In this step, we will need shuffling time to create
pretext, and creating pseudo labels, as following,

— Data Preparation: Start with a dataset D that contains sensor readings along
with their timestamps.

D = {(X1, t1), (X2, t2), . . . , (XN , tN)} (5.1)

— Randomization: Shuffle the dataset D to produce D′.

D′ = Shuffle(D) = {(Xi1 , ti1), (Xi2 , ti2), . . . , (XiN
, tiN

)} (5.2)

— Label Creation: The shuffled sensor readings X become the features, and their
original timestamps t become the labels.

Features: X ′ = [Xi1 , Xi2 , . . . , XiN
] (5.3)

Labels: T ′ = [ti1 , ti2 , . . . , tiN
] (5.4)

— Data Splitting: Divide the shuffled features X ′ and labels T ′ into training and
test sets.

Then an ANN model F will be buld and used to predict shuffled sensor readings X ′

to their corresponding original timestamps t. The model is parameterized by θ. The ANN
structure will be same as the one in the last chapter, except the output will be timestamps.

F : X ′ → t̂ (5.5)
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t̂ = F (X ′ | θ) (5.6)

Here, we could measure the Mean absolute error (MAE) as follows to assess the per-
formance of the model F , by calculating the difference between predicted timestamps t̂

and the actual timestamps t.

J(θ) = min
θ

1
N

∑
(X′,t)∈D′

|F (X ′ | θ)− t| (5.7)

But this step is not necessary, since we will extract features from last layer before the
output layer.

2. Transfer learning to downstream task
In this step, the learned representation must be transferred to new downstream task,

after the pretext task. Following the pretext task, our trained ANN model F serves as a
feature extractor. Specifically, we use the activations from the last fully connected layer
as the feature vector for each data point.

ϕ(X) = Ffeat(X | θ) (5.8)

Given a dataset D of N data points, each data point transformed through Ffeat becomes
a row in the feature matrix A.

A =


ϕ(X1)
ϕ(X2)

...
ϕ(XN)

 (5.9)

3. Fine tuning for downstream task
Here, transferred learned representation will be used for downstream task, specifically

for classifying four scenarios of occupants’ activities. The feature matrix Φ will serves as
the input, while the labels corresponding to the four scenarios will serve as the output.

Training Data: {(ϕ(x1), y1), (ϕ(x2), y2), . . . , (ϕ(xN), yN)} (5.10)
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A small part of labeled data (5%, 10%, and 20% to the whole dataset) will be provided
to the Histogram based tree learning XGBoost for training. Additionally, we will run a
supervised method by XGBoost and ANN as a baseline for comparison. The Histogram

based tree learning XGBoost model C is trained to map the feature vector ϕ(x) to the
corresponding label y. The model is parameterized by ϕ.

C(ϕ(x) | ϕ) = y (5.11)

The objective function J(ϕ) for the XGBoost is to minimize a loss function L that
measures the difference between the predicted and actual labels like equation below.

J(ϕ) = min
ϕ

N∑
i=1

L(C(ϕ(xi) | ϕ), yi) + Regularization Term (5.12)

Whole steps can be seen in the Figure 5.10,

Figure 5.10 – Self supervision learning steps
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5.3.2.2 First results obtained by crude self-learning

The essence of our experiment lies in transferring the learning capabilities from the
pretext task to a downstream task. In this downstream task, the objective was to classify
four distinct scenarios based on occupant activities and window positions. We fine-tuned
the XGBoost model using a small fraction of labeled data, specifically 5%, 10%, and 20%
of the entire dataset. The goal was to evaluate how well the model could generalize to this
new task with minimal labeled data. By doing so, we aimed to demonstrate the efficiency
of self-supervised learning in achieving high performance on the downstream task with
limited labeled information. We also used supervised methods (ANN and XGBoost) as
the baseline for the performance evaluation.

From the Table 5.1. we can see the accuracy (as defined in Chapter 1) for the self
supervision learning with different percentages of label data and supervised method for
comparison.

Table 5.1 – Algorithm Accuracy Comparison

Algorithm Accuracy
5% label data self learning 81.05%
10% label data self learning 83.63%
20% label data self learning 86.85%

XGBoost 86.24%
ANN 84.90%
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Figure 5.11 shows algorithms effectiveness on 5%, 10% and 20% labeled data.

Figure 5.11 – Three algorithms with low percentage labeled data

Figure 5.12 displays the confusion matrix for the self-supervised learning approach
with 20% labeled data.

Figure 5.12 – Self supervision learning confusion matrix

Both the ANN and XGBoost models yielded robust results. Interestingly, when using

218



5.4. Combination of DBSCAN, BN and Hotspot algorithm for multiactivities detection

only 20% of labeled data, our self-supervised learning approach not only matched but
also slightly outperformed the fully supervised models. This suggests that the features
extracted through the pretext task are highly informative for the downstream task. The
efficiency of our approach is likely bolstered by the inherent strength of the XGBoost
model, which adeptly leverages the available features. In contrast, both XGBoost and
ANN are trained based on 80% labeled data. This underscores the evident advantages
of the self-learning algorithm, especially in scenarios with limited labeled data or when
there is a need to uphold user privacy.

The confusion matrix confirms the model’s effectiveness. A predominance of values
along the diagonal underscores the model’s commendable accuracy across varied scenarios.
Notably, the model exhibits heightened precision when predicting scenarios of "window
closed with no presence" and "window open with presence." This suggests that these
situations exert a significant influence on the building’s state, enabling the model to
discern the underlying relationships more adeptly.

Our findings are consistent with existing research. For instance, Chen et al. (2020)
demonstrated that their self-supervised learning algorithm, SimCLR, outperformed super-
vised methods in image recognition tasks. They further noted that increasing the number
of parameters in the dataset could lead to even better performance. This supports the
effectiveness and potential of self-supervised learning approaches in different fields.

5.4 Combination of DBSCAN, BN and Hotspot al-
gorithm for multiactivities detection

In the present section, our main objective is now to develop a second method able to
identify which activity causes a change of state in the ambient conditions. This method
combines the Hotspot algorithm, DBSCAN, and a BN. The BN structure can be learned
from historical sensor data and can be used to infer the probability of different activities
based on new sensor data. As BN will infer from the found root causes, we have to
introduce the BN before the root causes analysis. Finally, we will provide an overview of
hybridized Hotspot and DBSCAN methods applied to our context.
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5.4.1 BN in the perspective of root cause analysis

As mentioned in the introduction, evaluating the performance of unsupervised method
poses a challenge. Furthermore, various activities, such as opening windows or people en-
tering and exiting a room, can result in variations in multiple attributes (e.g., temperature,
CO2, etc.) within a building. Conversely, distinct attribute combinations can represent dif-
ferent combinations of activities. Therefore, we need a method capable of inferring the
relationships between variables and activities. The BN offers a promising method. BNs
have been applied in the building domain for diverse purposes, including energy consump-
tion prediction, building control, and occupancy detection based on sensor data. These
applications leverage the ability of BNs to model complex, multi-variable systems and
make predictions under uncertainty.

5.4.1.1 General aspects and BNs steps

In the context of building activity detection, BNs can be employed to model the
relationships between sensor data (e.g. temperature, light, occupancy) and activities (e.g.
cooking, watching TV, sleeping). The structure of a BN is defined by its directed acyclic
graph (DAG), which specifies these relationships between variables. The probability of
each variable is represented by a conditional probability distribution (CPD), which is
conditioned on the values of its parents in the DAG. Once the structure and CPDs of a
BN are defined, the network can be used to make inferences about the variables.

The BN can perform various types of queries such as calculating the probability of a
certain variable given the values of other variables or determining the most likely state
of a variable given the values of other variables. This capability is particularly valuable
when making predictions or decisions based on uncertain information.

The general steps for BN to perform inference can be summed up as follows:

1. Define the problem: Identify the relevant variables and their relationships based
on expert experience. Determine the specific query you want to answer and the
available evidence / knowledge.

2. Model the BN: Create a directed acyclic graph (DAG) representing the depen-
dencies between the variables. Each node in the graph corresponds to a variable,
and the directed edges indicate the causal relationships between these variables.

3. Specify the conditional probability tables (CPTs): For each variable, define a
CPT that describes the probability distribution of that variable given its parents in
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the graph. The CPTs represent the quantitative information about the relationships
between the variables.

4. Incorporate evidence: Update the CPTs with any known evidence, which in-
cludes observed values of variables. This step is also referred as the conditioning
step, where you condition the network on the observed evidence.

5. Perform inference: Use an inference algorithm to compute the posterior proba5.bilities
of the unobserved variables (or the variables of interest) given the provided evi-
dence. Various algorithms can be employed for this step, including exact inference
methods (e.g., variable elimination, clique tree propagation) and approximate in-
ference methods (e.g., Markov Chain Monte Carlo, belief propagation).

6. Interpret the results: Analyze the inferred posterior probabilities to answer the
query or make informed decisions. These posterior probabilities reflect the updated
beliefs about the variables of interest after incorporating the evidence.

5.4.1.2 BN architecture design

For designing a BN, the most important aspect is building its structure or architecture,
as it significantly influences the reliability of the inferences derived from the network. In
the following, we will explore different methods for estimating the BN structure (domain
knowledge, constraint-based MMHC, Tabu search, Chow-Liu tree, Hill-Climb). We will
evaluate their performance based on the accuracy of inferred window opening using sim-
ulation data. Ultimately, we will compare the accuracy of different estimated structure
to identify the most suitable one. The variables for simulation case and their designated
letters will be introduced below,

Table 5.2 – Variables for the simulation case study

Variable Name Symbol Levels and Categories
WindowOpen W close:0 and open:1
Electricity E A, B, C
Solar S A, B, C
Heating H A, B, C
Indoor temperature I A, C
Occupancy O without:0 and with:1
Outdoor temperature Ou A, B, C

Each parameter, except for window status and occupancy, will be discretized using
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the KBinsDiscretizer technique. This method divides the observed data range of each
continuous variable into four equally spaced bins. These bins are then labeled with ordinal
symbols from A to D. During the data transformation process, the value of each data point
is evaluated to determine the bin to which it belongs. Once identified, the original value is
substituted with the corresponding ordinal label—A, B, C, or D—for that bin. Converting
the data in this manner facilitates its use in algorithms optimized for categorical input.

The BN structure estimation methods can be categorized into four different groups:
Score-based structure estimation (hill climb/tabu search/chow-liu); Hybrid structure es-
timation (e.g.MMHC); Constraint-based structure estimation [e.g. Peter-Clart algorithm
(PC)]; Domain knowledge. Each algorithm in each group will be introduced in Appendix
B.2. Their performance will be compared in the next sections.

5.4.1.3 Comparison of the methods dedicated to the estimation of the BN
structure

The summary result for the performance evaluation for each BN structure estimation
algorithm is shown in Figure 5.13. The simulation datasheet will be divided into 75%
training datasheet for the BN to learn the observed data (i.e. to estimate the Conditional
Probability Tables (CPTs) for each node in the network). The remaining 25% of the
test datasheet will be used to infer the window openings. After using a given estimation
algorithm to initialize the BN structure, and this specifying parent-child relationships,
the datasheet has been split. This has been done this by setting the observed variables
and querying the "Window Open" variable. The inference gives a probability distribution
for "Window Open". We took the value that corresponds to the highest probability as our
"predicted" value for that instance. In the end, we compare the true detection with the
ground truth value to calculate the accuracy.
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Figure 5.13 – BN structure comparison for simulated case study

In Figure 5.13 , we can observe that all the methods do not achieve good performance
besides the Domain knowledge method. In the Hill climbing, Tabu search, and MMHC
algorithms, we noted that all the algorithms converge in the early stage, which means
they are getting stuck in local optima. The search terminates in a suboptimal network
structure, leading to the lower accuracy, even though the Tabu search aims to explore
the search space more effectively by using a memory structure (the Tabu list) that stores
recently visited solutions and prevents the search from returning to them. However, this
does not necessarily ensure that the search will escape all local optima. If the true network
is complex and not well-represented by the assumptions underlying these algorithms,
the learned structure may deviate significantly from the true structure. For instance,
Chow-Liu algorithm assumes a tree-structured network, while the PC algorithm assumes
faithfulness. If the true structure does not meet these assumptions, the learned structure
might be poor, which can explain the poor results for the Chow-Liu and PC algorithms.

To compare the speed of different algorithms for BN structure estimation, except
domain knowledge, because its structure has been defined based on expert knowledge.
Chow-Liu is the quickest because it scales linearly with the number of variables, especially
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when the networks are tree-structured. Constraint-based estimation comes in second in
terms of speed, being more efficient when dealing with a smaller set of variables. MMHC
ranks as the third fastest ; it is a hybrid approach that merges the strengths of both
constraint- based and score-based methods, offering a balanced trade-off between speed
and accuracy. Tabu search is slower, coming in fourth place, largely due to the overhead
of maintaining and updating the Tabu list. Hill climbing is the slowest among the five ;
its time complexity is dependent on both the number of iterations needed for convergence
and the size of the neighborhood it explores at each step.

Finally, relying on the domain knowledge, the BN structure for simulation case study
is estimated and given in Figure 5.14 (the BN structure for real case study can be found
in appendix).

Figure 5.14 – BN structure of the simulation case study

As mentioned before, the direction of influence is indicated by the direction of the
arrow between nodes. The arrows are from "parent nodes to "child nodes". For example
in the simulation structure, Window Opening (W) directly influences its child nodes such
as Outdoor temperature (Ou), Solar gain (S) and Indoor temperature (I). Additionally,
Heat consumption (H) is a child node of the Indoor temperature (I).

In a BN, inference can flow in any direction—either from parent nodes to child nodes,
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from child nodes to parent nodes, or even between nodes that do not have a direct parent-
child relationship but are connected through other nodes. For example, when dealing with
a parent node W and a child node Ou, given the conditional probability distribution
P (Ou|W ), if we acquire new evidence E related to the child node C (e.g., Ou = c), we
can apply Bayes’ theorem to revise the belief (probability distribution) of the parent node
W :

P (W |Ou = c) = P (Ou = c|W )× P (W )
P (Ou = c) (5.13)

5.4.1.4 Parameter learning

Parameter learning in a BN involves estimating the parameters of the CPDs (repre-
senting the probability of a random variable given its parent variables in the network).
A BN encodes the joint probability distributions of the variables involved by factoring it
into a product of CPDs. In the case of discrete variables, the CPDs can be represented as
tables of probabilities. Let θxi|pa(Xi) denote the probability of Xi = xi given the specific
instantiation pa(Xi) of its parents:

P (Xi = xi | Pa(Xi) = pa(Xi)) = θxi|pa(Xi) (5.14)

The goal of parameter learning is to estimate the values of θxi|pa(Xi) for all i, xi, and
pa(Xi).

Each node of the discrete set of random variables D = {x1, x2, . . . , xn} is conditionally
independent of its non-descendants, given its immediate parents. It is thus possible to
factorize the conditional probability distributions over the set of variables by taking their
product.

P (D) =
∏

xi∈D

P (xi | pa (xi)) =
∏

xi∈D

θxi|pa(xi) (5.15)

The result of this expression is sometimes denoted as Joint Probability Distribution (JPD).
Two popular methods for estimating parameters of statistical models or the table of

probabilities exist: Maximum Likelihood Estimation (MLE) and Bayesian Estimation.
Further details about these two methods and their application in the context of learning
CPD parameters can found in Appendix B.3.

In general, Maximum Likelihood Estimation (MLE) is more suitable for scenarios
where simplicity and computational efficiency are prioritized, especially when there is no
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available or relevant prior knowledge about the parameter values. On the other hand,
Bayesian Estimation is more appropriate when it is essential to incorporate prior knowl-
edge, or when a detailed probability distribution over the parameter values is crucial for
decision-making or uncertainty quantification.

In our Bayesian estimation framework, we utilized the "BDeu" (Bayesian Dirichlet
equivalent uniform) as our prior type. This represents a non-informative prior, suggesting
that before any actual data observation, all potential outcomes or states of our variables
are perceived as equally likely. The equivalent sample size (ESS) for this prior is set at
10. This can be practically interpreted as if we have introduced 10 pseudo-observations
that resonate perfectly with a uniform belief. The comparison results between MLE and
Bayesian estimation are presented in table 5.3.

With the Bayesian Estimation method, an accuracy of 85% was achieved, demon-
strating the influence of the non-informative prior and the actual data on the posterior
distribution.

Estimation Method Accuracy (%)
Maximum Likelihood Estimation 78

Bayesian Estimation 85

Table 5.3 – Comparison of accuracies between Maximum Likelihood Estimation and
Bayesian Estimation in simulation case study

Conclusively, by setting the ESS prior to 10, the Bayesian estimation tends to lean
towards the prior information when estimating the parameters of the CPDs, rather than
predominantly relying on the actual data. This approach might lead to improved general-
ization when juxtaposed with Maximum Likelihood Estimation. The heightened accuracy
can be attributed to the model’s proficiency in discerning the latent structure of the data
by leveraging the prior information. This makes the model more resilient to noise and
variations in the training dataset. Especially, Bayesian estimation proves beneficial when
the training dataset is noisy or limited, as it curtails the model’s tendency to overfit the
training data, ensuring it grasps the core structure of the problem more efficiently. As a
result, Bayesian estimation emerged as the chosen method for parameter estimation.

5.4.1.4.1 General aspects
The next step is to compute the JPD. To compute the JPD of a specific assignment of
values to the variables in the BN, we follow these steps:
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1. Give values to all variables in the network according to the specific assignment.
For example, if we want to know the probability of "Window Open" (’W’) being
true when "Electricity" is ’A’, "Solar" is ’B’, and "Heating" is ’C’,

2. For each node, look up the corresponding conditional probability given the values
of its parents in the CPDs.

3. Multiply the conditional probabilities obtained in step 2 for all nodes in the net-
work.

The result of this process is the joint probability of the specific assignment of values
to the variables in the network.

Applied to our simulated case (shown in Figure 5.14), we can compute the joint proba-
bility of a specific assignment, say P (W = w, E = e, O = o, S = s, H = h, I = i, Ou = u),
following the steps outlined:

1. Assign values: W = w, E = e, O = o, S = s, H = h, I = i, Ou = u.

2. Look up the corresponding conditional probabilities for each node given the values
of its parents:
— P (W = w)
— P (E = e|O = o)
— P (O = o)
— P (S = s|W = w)
— P (H = h|I = i)
— P (I = i|W = w, O = o)
— P (Ou = u|W = w)

3. Multiply the conditional probabilities obtained in step 2 to get the joint probability:

P (W = w, E = e, O = o, S = s, H = h, I = i, Ou = u) = P (W = w) · P (E = e|O = o)·

P (O = o) · P (S = s|W = w) · P (H = h|I = i) · P (I = i|W = w, O = o)·

P (Ou = u|W = w)
(5.16)

By following the steps outlined, we can compute the joint probability of any specific
assignment of values to the variables in the network. This JPD forms the foundation
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for conducting inference tasks in BNs, such as calculating conditional probabilities and
making predictions based on observed evidence.

5.4.1.4.2 Dealing with computational complexity

BNs often involve expensive computations, especially when dealing with large or high-
dimensional datasets. For example, performing inference in a BN requires the computation
of the posterior probabilities for certain variables given evidence from others. To mitigate
the computational complexity, the Variable Elimination (VE) algorithm is widely em-
ployed in BNs. This algorithm leverages the conditional independence structure inherent
in BNs, reducing the computational burden and enhancing the efficiency of inference. In
this section, we will introduce the variable elimination algorithm and provide a simulated
case study example.

The main idea behind the Variable Elimination algorithm is to iteratively eliminate
variables from the JPD by summing them out. By doing so, we can compute the marginal
probabilities of the remaining variables without the need to calculate the entire joint
probability distribution. The algorithm consists of the following steps:

1. Identify the query variable (i.e. the variable for which we want to compute the
probability distribution) and the evidence variables (i.e. variables with observed
data, if any) from the BN.

2. Select an elimination order for the non-query and non-evidence variables. The
choice of order significantly affect the efficiency of the Variable Elimination al-
gorithm. A correct selection of the elimination order can drastically reduces the
computational cost of inference. In here, we adopted the Min-Neighbors algorithm
which prioritizes the elimination of variables that have the fewest neighbors first.
A "neighbor" refers to any other variable (or node) directly connected to the cur-
rent variable (or node) within the network. The reasoning is that variables with
fewer neighbors contribute to smaller factor tables when summation is performed.
Smaller factor tables require less computation to handle, which can make the over-
all inference process faster.

3. For each variable to be eliminated, compute a factor representing the product of
all the factors involving that the variable and subsequently eliminate the variable
from this product.
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4. Multiply the remaining factors to derive the marginal probability distribution for
the query variable.

5. If evidence variables are present, condition the marginal probability distribution
based on the observed evidence.

Variables included in simulation case BN with the discretized level or categories data
given in Table 5.2 (in the beginning of section 5.4.1.2), suppose we want to compute the
probability distribution of the window status (W) given the following evidence:

S = C, H = D, I = A, Ou = B (5.17)

We can use the Variable Elimination algorithm to compute the conditional probability
distribution P (W |S = C, H = D, I = A, Ou = B). In this case, our query variable is W,
and the evidence variables are S, H, I, Ou.

For the elimination order, we can choose the following ordering: S, H, I, Ou. Now, we
will eliminate each variable according to this order:

— Eliminate S: Compute the factor ϕS(W ) = ∑
S P (S = C|W ), and sum out S.

— Eliminate H: Compute the factor ϕH(I) = ∑
H P (H = D|I), and sum out H.

— Eliminate I: Compute the factor ϕI(W, O) = ∑
I P (I = A|W, O)× ϕH(I), and sum

out I.
— Eliminate Ou: Compute the factor ϕOu(W ) = ∑

Ou P (Ou = B|W ), and sum out
Ou.

We finally obtain the factor ϕOu(W ), which represents the unnormalized probability dis-
tribution of the window status (W) given the evidence. To normalize the distribution, we
can compute the following:

P (W |S = C, H = D, I = A, Ou = B) = ϕOu(W )∑
W ϕOu(W ) (5.18)

This gives us the conditional probability distribution of the window status given the
observed evidence.

5.4.1.4.3 Ending note

This section has outlined the procedure for constructing the BN structure. The next
step involves utilizing inference within the BN to discern the activity responsible for
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inducing a change in the ambient conditions, effectively pinpointing the root cause. We
will now delve into a more detailed explanation of how root cause analysis operates.

5.4.2 Comparison of Root Cause Analysis algorithms and choice

Root Cause Analysis (RCA) is a systematic process used to identify the underlying
causes of a problem or an incident. Instead of solely addressing the symptoms or immediate
consequences, RCA seeks to uncover the fundamental issues that led to the problem in
the first place.

RCA has found successful applications in various domains, including quality control
issues (Burhabuddin et al.2022, Nanda et al. 2021, Sulistiyowati et al.2020), medical
malpractice analysis (Slakey et al.2014), accident analysis (Arman et al.2022, Koo et
al.2021), engineering failure analysis (Zwainy et al.2018, Martinez et al.2022). In recent
years, root cause analysis has received a lot of attention and has been successfully applied
to intelligent operation and maintenance in the community focused on anomaly detection
and failure identification (Xu et al.2018, Zou et al.2022). We draw inspiration from the
performance of RCA in anomaly detection, as occupant behaviors within buildings can
be consider as root causes of anomalies. By employing root cause analysis to determine
which attributes or combinations of attributes act as the root cause of an anomaly, we
can detect and classify various behaviors without the need of labeled data. To the best of
our knowledge, this marks the first instance of applying RCA to the detection of building
occupant behaviors.

The main RCA algorithms documented in the literature can be categorized into two
groups. The first group of RCA algorithms involves approaching the problem as an asso-
ciation rule mining task. Association rule mining is a method used to uncover patterns,
correlations, associations or causal structures in datasets. Association rules are formulated
as if/then statements, which help to find associations between independent data elements
within the dataset. The efficacy of association rule mining heavily relies on selecting suit-
able thresholds. However, different datasets and fault cases may require different optimal
threshold values, leading to less stable results. Because of these limitations, we have chosen
not to use association rule mining and, instead, will employ heuristic search methods.
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5.4.2.1 Heuristic search

The methods of this second group of RCA algorithms require defining an objective
function, denoted as f : attribute combinations → R, which involves evaluating the root
cause score given a combination (or a set) of attributes. Subsequently, the entire space is
explored to identify the combination of attributes that maximizes the objective function
and serves as the root cause. As most fault detection is oriented towards big data, the
search space is often very large, necessitating the application of various heuristics and
pruning techniques to reduce the search space. We compare five of the most significant
heuristic search methods found in the literature. A short description is provided in Table
5.4 below. A detailed presentation is given in Appendix B.5.
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Method Description Main Features
and Focus

Applicability Advantages/Strengths Disadvantages/Weaknesses Metrics Comments

Adtributor (Ranjita et al., 2014) Identifies root
causes with a
simplified approach.

Assumes only one
attribute as the root
cause.

Suitable for simple
scenarios with sin-
gle causes.

Simplicity Limited to single-cause scenar-
ios

Explanatory
Power, Surprise

Useful for
straightforward
cases.

Recursive Adtributor (persson et al., 2018) Extends Adtributor
for more complex
scenarios.

Iteratively applies
Adtributor in a
multidimensional
context.

Handles scenarios
with multiple con-
tributing factors.

Handling multidimen-
sional data

Limited by Adtributor’s single-
cause assumption

Explanatory
Power, Surprise

Useful for sce-
narios with mul-
tiple factors.

iDice (Lin et al., 2016) Targets anomalies
in multidimensional
time series data.

Uses pruning steps
to narrow down
search space and
ranks root causes
based on a score.

Effective for time
series data, may not
reduce complexity
significantly.

Effective for time series
data

May not significantly reduce
complexity

Fisher Distance,
Root Cause
Evaluation
Score

Suitable for time
series data but
complex.

Hotspot (Sun et al., 2017) Focuses on perfor-
mance data analy-
sis.

Identifies significant
factors affecting
overall system
performance.

Applicable in per-
formance monitor-
ing and optimiza-
tion.

Performance-focused Limited to performance analysis Performance
Metrics, Impact
Analysis, others

Useful in opti-
mizing system
performance.

Squeeze (Li et al., 2019) Extends Hotspot for
basic and derived
KPIs.

Applies heuris-
tic strategies for
faster root cause
identification.

Suitable for a wide
range of scenarios
and KPI types.

Wide applicability Heuristic methods may not
cover all cases

Heuristic Strate-
gies, Clustering,
Anomaly Detec-
tion

Offers versatility
and speed in
RCA.

Table 5.4 – Summary of heuristic search methods
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From the summary table of heuristic search methods (Table 5.4), it is evident that
each algorithm has its unique strengths and weaknesses tailored to specific scenarios. In
the search for an optimal Root Cause Analysis (RCA) algorithm for our study which
aimed at deciphering the root causes of various activities inside a building, it is crucial
that we align our choice with the specific constraints and requirements of the project. The
building under investigation represents a complex system, thereby raising the possibility
that the root causes of activities could be attributed to a singular or a multitude of factors.
Given that the study’s focus on multi-dimensional time-series data, our algorithm must
also possess robust capabilities to effectively navigate and analyze such data.

The Adtributor method, though efficient in simple scenarios, is inherently designed
for cases with only a singular root cause. This makes its applicability limited in our
multifaceted setting. The Recursive Adtributor, while extending its capabilities for mul-
tidimensional contexts, remains bounded by the Adtributor’s foundational single-cause
assumption.

iDice offers a tailored solution for anomalies in multi-dimensional time-series data. Yet,
its inherent complexity and potential inefficiencies in managing large-scale data could pose
challenges. The Squeeze method, with its versatility, primarily relies on heuristic methods.
Such strategies might lead to overlooking specific potential root causes due to their nature.

In contrast, the Hotspot algorithm stands out as the most fitting choice. Its design,
centered around performance data analysis, makes it capable at identifying significant
performance influencing factors. Unlike other methods, Hotspot does not rely on rigid
assumptions or aggressive data pruning. This adaptability, coupled with its proven profi-
ciency in performance monitoring and optimization, ensures it is equipped to determine
root causes even in vast search environments. Thus, making it ideally suited to our study’s
objective of identifying multiple activities inside buildings.

In light of these comparisons and the specific requirements of our study, the Hotspot
algorithm is the method we have chosen for root cause analysis.

5.4.3 Development of a novel hybrid for occupant behavior anal-
ysis

The primary objective of the development presented in Chapter 5 is to conduct a
comprehensive analysis of occupant behavior through the integration of fault detection
and root cause analysis applied to time series data. This innovative approach is founded
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on dividing the analysis problem into four distinct stages, each serving a specific purpose.
These stages encompass the creation of a predictive model for heat consumption, unsu-
pervised fault detection and classification, root cause determination, and the inference of
window and occupancy status. Drawing upon our in-depth analysis and comparison of
various methods conducted in the previous chapters and sections, we designed the hybrid
approach detailed below.

The entire process is described in the flowchart in Figure 5.15. We use an ANN to
predict heating (our KPI) through an ANN. We then use the DBSCAN-based anomaly
detection to identify faults (occupant behavior) related to the window opening and oc-
cupancy status. Subsequently, the HotSpot algorithm identifies the root causes of these
faults. Finally, a BN model is employed to infer the probabilities of different fault causes
to determine different occupant behavior.

Therefore, the four underlisted steps are as follows:

1. Metamodeling Using Artificial Neural Network (ANN).
An ANN is trained using normal state simulated data features to create a

regression model to predict ‘instantaneous heat consumption’. More details of this
steps are described in §5.4.3.1

2. Unsupervised Fault Detection with DBSCAN
DBSCAN method is used to detect faults at different time points. It identifies

instances / moments where the predictions significantly differ from the baseline
simulation. It shows better and more stable performance for both simulated and
real case studies in the last chapter. This step is detailed in §5.4.3.2.

3. Root Cause Analysis with Hotspot Algorithm
Once anomalies or faults are detected, the Hotspot algorithm comes into play.

It analyzes the data around each detected fault point (occupant behavior) using a
temporal window. This window includes historical data necessary for causal anal-
ysis. Since the simulation data has 5-minute time intervals, we use a temporal
window that includes 30 minutes before and after the fault. We then use Monte
Carlo Tree Search (MCTS) to find the best combination of dimensions that can
explain the fault. This step is described in §5.4.3.3.

4. BN for Window and Occupancy Status Inference
Finally, a BN is utilized to infer the window and occupancy status. It does this

by computing posterior probabilities based on the information gathered from the
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previous steps. This step is detailed in §5.4.3.4.

Figure 5.15 – Flow chart for multi activities detection

5.4.3.1 Step 1 : Metamodeling using Artificial neural network

In our context, KPIs essentially measure of how well a specific subset of the data
explains the observed data. The predicted heating values serve as the "normal" baseline
(no occupancy nor fault occurring).

An ANN model is constructed to predict the KPI using input features from the dataset.
The model is designed as a feedforward neural network with two hidden layers since two
hidden layers provide a balance between model complexity and the ability to learn non-
linear patterns in the data. The network in Figure 5.16 shown the ANN structure for
simulation with five inputs (Indoor temperature, Light, Electricity, Outdoor temperature,
Solar gain) and heat consumption as the output:
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Figure 5.16 – ANN for simulation

The Rectified Linear Unit (ReLU) activation function is used in both input and hidden
layers, while linear activation is used in the output layer. This choice aligns with the task
at hand, which involves regression. ReLU introduces non-linearity in the model, enabling
it to capture complex patterns efficiently. Additionally, it is computationally efficient and
it can help mitigate the vanishing gradient problem during backpropagation.

Then model is trained using the ADAptive Moment estimation (Adam) optimizer
(Chandra et al. 2021), enabling it to adjust the learning rate for each parameter indi-
vidually, resulting in an adaptive learning rate. This facilitates faster convergence of the
optimizer and requires less fine-tuning of the learning rate compared to other optimization
algorithms like stochastic gradient descent (SGD).

During training, the mean squared error (MSE) is used as the loss function. Minimizing
the MSE during training assists the model in learning the underlying patterns in the data.
In the prediction process, only normal data (representing scenarios with no occupant
behavior, i.e., no window openings and no occupancy presence) are used for training the
ANN. This approach allows the ANN to learn the underlying patterns based on standard
scenarios. Consequently, when a fault occurs, there will be a significant difference in heat
consumption, as demonstrated by the prediction results depicted in Figure 5.17 below.
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Figure 5.17 – ANN prediction for the simulation case

In the displayed figure, the Y-axis is the instantaneous heat consumption, and the X-
axis is the Date time information, and the orange lines represent predicted values derived
from standard data, while the blue lines show the actual values. Both sets of values
exhibit a consistent trend across the year, suggesting that the prediction model effectively
mirrors the underlying patterns in the real data. These cyclical patterns likely arise from
daily fluctuations and seasonal influences. However, there are notable intervals where the
predicted values significantly diverge from the real values, which might be attributed to
anomalies in the data.

5.4.3.2 Step 2: Unsupervised Fault Detection with DBSCAN

The precomputed distance matrix DBSCAN method is used as in the chapter 4. The
result to detect windows openings and presence of occupants can be seen in Tables 5.5
and 5.6 below,

Table 5.5 – Simulation window open confusion matrix

Predicted
Closed Open

Actual
Closed 20962 5974
Open 115 8016
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Table 5.6 – Simulation presence of occupancy confusion matrix

Predicted
Absence Presence

Actual
Absence 11446 12929
Presence 3627 7038

From the two confusion matrices, we can notice than the accuracy is relatively high.
However, it is noteworthy that DBSCAN frequently misclassified instances as openings or
occupants. This misclassification is especially pronounced in the second case (presence),
where the majority of actual absences are predicted as presence. However, in the Hotspot
analysis, to follow the primary focus is on identifying the root causes surrounding each
detected activity, irrespective of the nature of these activities. The Hotspot approach does
not hinge on the specific types of detected activities but instead leverages the ripple effect
and a scoring mechanism to pinpoint the root cause. Thus, while there might be misclas-
sifications, their influence on the final outcomes is minimal. Moreover, since the Hotspot
method examines activities within a given time window, it inherently encompasses some
undetected activities. This feature allows the Hotspot to effectively counteract and com-
pensate for the limitations of DBSCAN, such as misclassification and detection lapses. In
summary, numerous faults are detected and subsequently, the identified fault points for
each simulation case will be inputted into the Hotspot algorithm to calculate the root
cause during each fault occurrence.

5.4.3.3 Step 3: Root Cause Analysis with Hotspot algorithm

The purpose of this step is to identify the root causes within the window size of
identified fault (Occupant behavior which was detected in Step 2). The output of this
step will be used in the BN to infer the probability of each occupant behavior.

As previously mentioned in this chapter’s introduction, the Hotspot algorithm is not
well-suited for continuous time series data. Therefore, the first step will involve discretizing
the continuous data into bins or discrete values. This discretization process enables spatial
aggregation, making it feasible to identify patterns while reducing the influence of noise,
emphasizing more significant patterns and relationships, and enhancing the speed of data
analysis.
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But, before proceeding with data discretization, it is crucial to consider the data’s dis-
tribution characteristics to ensure that the discretization method captures the underlying
data structure accurately. To accomplish this, we employ the Quantile-Quantile (Q-Q)
plot, a graphical technique for comparing two probability distributions by plotting their
quantiles against each other. Specifically, we utilize the Q-Q plot to verify if the data fol-
lows a normal distribution. In these plots, the red line represents the theoretical quantiles
of the normal distribution.

The figures below illustrate the use of the Q-Q plot for simulation case parameters.
If a parameter adheres to a normal distribution, the data points should align closely
with the red line. However, in our case, it is evident that the data deviates from the red
line. Notably, skewness can be observed in the indoor temperature, occupancy, outdoor
temperature, and solar gain parameters, indicating a curve that diverges from the red line.
Additionally, kurtosis is apparent in the heat consumption, window open, and electricity
parameters, signifying a plot that rises more steeply or shallowly than the red line. These
observations collectively suggest that the data does not conform to a normal distribution.
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Figure 5.18 – Q-Q plot heat con-
sumption

Figure 5.19 – Q-Q plot indoor tem-
perature Figure 5.20 – Q-Q plot Occupancy

Figure 5.21 – Q-Q plot Outdoor
temperature Figure 5.22 – Q-Q plot Electricity

Figure 5.23 – Q-Q plot Window
open

Figure 5.24 – Q-Q plot solar gain
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With these observations in mind, we adopt the technique on which relies KBinsDis-
cretizer, an algorithm available as a class in the Scikit-learn library, in order to partition
continuous features into discrete bins. One of its notable advantages is that it does not
require the data to follow a normal distribution, making it suitable for our specific case.
This technique allows us to specify the number of bins and select the binning strategy from
options such as ’uniform’, ’quantile’, or ’kmeans’. For our purposes, we adapted the K-
means clustering algorithm, which groups the data points into four bins. This adaptation
takes into account the underlying data distribution and may yield better results, espe-
cially when dealing with time series data characterized by complex patterns or multiple
clusters.

After completing the discretization process, the Hotspot algorithm can be used as
an RCA method. As mentioned before, KPIs essentially measure of how well a specific
subset of the data explains the observed data. In network operation and maintenance,
internet companies often use KPIs to provide good quality of service. This also gives us
inspiration that in buildings we can also find our own KPIs to evaluate what is happening
in the building. For example, instantaneous heat production is usually caused by changes
in events in the building (window opening or presence occupancy). In order to ensure the
value of the set point, the control system will cause the instantaneous heat production
to fluctuate. A KPI record can correspond to several attributes. For example, in Table
5.7, with the KPI (Heat) we have Solar (S), Temperature (I), Electricity (E), Outside
(Ou), each attribute has a range of distinct values S={s}, I={i}, E={e}, Ou={ou}. And
a vector of the distinct attribute value combination is called an element in this study
as e = (s, i, e, ou), where (s ∈ S or s = ∗), (i ∈ I or i = ∗), (e ∈ E or e = ∗), (ou ∈
Ou or ou = ∗), The asterisk serves as a wildcard. In this table, it shows one example of
instantaneous heating consumption and its attributes as a function of fault duration, the
attribute values are normalization value. The KPI values is record in every time interval
(5 min in the study), for each distinct combination of the attribute values, e.g., (1.1151,-
0.1197,1.5835,-1.0107). These elements are most fine-grained KPI recoreds, becuase we
are using the instantaneous heat production, then the KPI has the additive nature, can
be naturally summed up into more coarse-grained KPIs, for example, all the KPI records
with Solar=1.1151, Temperature=-0.1197 and Electricity=1.5835 regardless of Outside
can be summed up into (1.1151,−0.1197, 1.5835, ∗). When we detected one fault, in the
fault duration window, we can observe the increase and decrease, happens to a total KPI
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(∗, ∗, ∗, ∗). The elements most likely to influence the aggregate KPI during this period are
considered the principal contributors to the anomaly.

Table 5.7 – Attributes and Heat value

Time Solar(S) Temperature(I) Electricity(E) Outside(Ou) Heat
2002/1/24 11:15 1.1151 -0.1197 1.5835 -1.0107 0.318
2002/1/24 11:20 1.3643 -0.1197 1.5835 -0.9794 0.279
2002/1/24 11:25 1.5801 -0.1197 1.5835 -0.9401 0.239
2002/1/24 11:30 1.8002 -0.1812 1.5835 -0.9009 4.363
2002/1/24 11:35 1.9125 -0.1219 1.5835 -0.8617 0.327
2002/1/24 11:40 2.0176 -0.1197 1.5835 -0.8225 0.037
2002/1/24 11:45 2.1148 -0.1197 0.7807 -0.7872 0.161

Table 5.8 – Attributes and real/predicted Heat (Discretized)

Time Electricity(E) Solar(S) Temperature(I) Outside(Ou) PredictedHeat Heat
2002/1/24 11:15 B B C A 0.783 0.318
2002/1/24 11:20 B B C A 0.783 0.279
2002/1/24 11:25 B B C A 0.633 0.239
2002/1/24 11:30 B B A B 0.496 4.363
2002/1/24 11:35 B B B B 0.326 0.327
2002/1/24 11:40 B B C C 0.274 0.037
2002/1/24 11:45 A B C C 0.352 0.161
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Figure 5.25 depicts a 4-D cuboid data structure created from the simulation data.

Figure 5.25 – 4-D cuboids

In each dimension, these cuboids group data points based on combinations of di-
mensions, such as pairs (e.g., electricity and temperature) and triples (e.g., electricity,
temperature, and solar radiation). For example, BS is a 1-d cuboid and BSI is a 3-d
cuboid. The element set of a cuboid BS is denoted as E(BS), then we can have,

E (BS) = {e | e = (s, ∗, ∗, ∗), s ̸= ∗} (5.19)

E (BSI) = {e | e = (s, i, ∗, ∗), s ̸= ∗, i ̸= ∗} (5.20)

In the study, all the cuboid and elements can be treat as a tree data structure to explore
different combinations, e.g., BS is the father cuboid of the BSI, and their elements also
have the father-and-child relationships. The gather of all these most fine-grained elements
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are known as LEAF which is the ending nodes without children, it can be represent as:

LEAF = {(s, i, e, ou) | s ̸= ∗, i ̸= ∗, e ̸= ∗, ou ̸= ∗} (5.21)

So, the other previous nodes (father nodes) which has one or more attribute value is
asterisk, we can derive other element values by summing based on the elements in LEAF.
As an illustration:

v(i = C, e = B) = 0.783 + 0.783 + 0.633 + 0.274 = 2.473 (5.22)

v(i = C, ∗) = 0.783 + 0.783 + 0.633 + 0.274 + 0.352 = 2.825 (5.23)

Hence, only the heat value (KPI) is directily record for the LEAF, If e′ the descendant of
e, then the aggregated heat value can be calculated as:

v(e) =
∑

e′∈Desc′(e)
v (e′) (5.24)

In order to develop a metric which can be globally used to compare the root cause potential
for all different element sets. Hotspot develop an idea called potential score, the idea
behind is the KPI values of all descendant LEAF elements should also change with the root
cause element. If an element is truly the root cause of a change, the effects of this change
will be observed consistently in its descendant elements. This is because the descendants
are, by definition, influenced by or dependent on their predecessor. If the actual changes
in the descendants align well with the expected changes hypothesized by assuming a
certain root cause, this serves as a confirmation (or at least a strong indication) that the
root cause hypothesis is correct. Then, in here we have another definition ripple effect
which refers to a conceptual model used to describe how changes in one element can cause
subsequent changes in interconnected elements. This term is often used in various fields
to denote a cascading sequence of events triggered by a single action.

The Table 5.9 show how to propagate the KPI change of a element to its descen-
dant elements, in each cell, the first number is the actual Heating value v(i, e) , and
the second number is the predicted Heating value f(i, e). And the equation 5.25 show
how the ripple effect works, Let x′

i denote the descendant elements of x. When the KPI
value of x changes by h(x) which is h(x)=f(x)-v(x). x′

i will get its share of h(x) accord-
ing to the proportions of their forecast values. In the equation, the forecast/predicted
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value is adjusted, contingent on the overall discrepancy observed, h(x). The reduction
is not uniform across predictions; instead, the discrepancy is distributed based on the
relative size of each prediction. Consequently, larger predicted values undergo larger ad-
justments, and vice versa. Through this adjust, we can express the a⃗ be the vector of
a (yi), i.e., a⃗ = [a (y1) , a (y2) , a (y3) , . . . , a (yn)], where n is the element count of LEAF ,
if yi ∈ LEAF , it denote the newly deduced KPI values of an assumed root cause set
S with a (yi). if yi /∈ Desc′(S), a (yi) = f (yi), the a⃗ represents the adjusted values after
considering root cause. This is an "ought-to-be" state, i.e., the state the system is ex-
pected to present if the activities were accurately identified and accounted for. Similarly,
we can have the observation value vector v⃗ = [v (y1) , v (y2) , v (y3) , . . . , v (yn)], and pre-
dicted/forecast value vector f⃗ = [f (y1) , f (y2) , f (y3) , . . . , f (yn)]. a⃗ are calculated based
on this distribution of change. Theoretically, if this distribution accurately reflects the
actual situation, the adjusted values should be very close to the actual observed values.

v (x′
i) = f (x′

i)− h(x)× f (x′
i)

f(x) , (f(x) ̸= 0) (5.25)

Table 5.9 – Discrepancies between actual and predicted KPI

v(i,e)→f(i,e)
E

A B C *

I
A 0→0 0→0 0.16→0.35 0.16→0.35
B 4.36→0.49 0.327→0.326 0.84→2.46 5.52→3.27
* 4.36→0.49 0.327→0.326 1→2.81 5.68→3.62

In the Hotspot, it do not consider the direction whether to increase or decrease the
values in f⃗ ,so we can add a direction equation for ripple effect

direction = sign(v⃗ − f⃗) (5.26)

Here, the sign function returns −1, 0, or 1, corresponding to f⃗ being greater than, equal
to, or less than v⃗, respectively.

a⃗[i] = f⃗ [i] + direction ·


∣∣∣f⃗ [i]− v⃗[i]

∣∣∣∑ ∣∣∣f⃗ − v⃗
∣∣∣
 · h(x) for all i ∈ {1, . . . , n} (5.27)
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With this, regardless of whether h(x) is positive or negative, the adjustment will bring
a⃗ closer to v⃗. Then in the Table 5.9, the KPI of (A, ∗) decreases from 4.36 (v( A,∗)) to
0.49 (f( A,∗)), given that v(A, ∗) is aggregated from its descendant elements v(A, A) and
v(A, B), these elements should exhibit corresponding changes. Let’s define this change
value as h(A, ∗) = 3.87, then the ripple effect of element (A, B) is calculated as

v(A, B)f(A, B) + h(A, ∗)× f(A, B)
f(A, ∗) = 0.49 + 3.87 ∗ 0.49

0.49 = 4.36

.
Then we can have the potential score which will be used to compare the root cause

potential for all different element sets. The equation as follow:

Potential Score = max
(

1− d(v⃗, a⃗)
d(v⃗, f⃗)

, 0
)

(5.28)

where d(u⃗, w⃗) represents the Euclidean distance of the vectors u⃗ and w⃗:

d(u⃗, w⃗) =
√∑

i

(ui − wi)2. (5.29)

In the equation 5.28, the d(v⃗, a⃗) measures the discrepancy or distance between the
actual observed values and these inferred values. A larger distance indicates a significant
deviation between the actual observed values and the expected state based on activity,
suggesting that there may be other factors in the system not explained by the current
activity. A smaller distance indicates that the actual observed values are close to the
expected values considering anomaly adjustments, suggesting that the influence of the
activity has been well captured and explained in a⃗.

And d(v⃗, f⃗) represents the distance between the actual observed values and the ex-
pected values under normal operating conditions. The larger this distance, the further the
actual observed values deviate from the normal expected state.

When considering the ratio d(v⃗,⃗a)
d(v⃗,f⃗) , we are essentially comparing the degree of deviation

of the actual observed data relative to these two expected states. If this ratio is less than 1,
it means that the actual observed values are closer to the state considering the activity (⃗a),
indicating that the current activity explanation is more consistent with the observed data,
and the activity influence may be the primary factor for the deviation. If this ratio is close
to or greater than 1, it means that the degree of deviation of the actual observed values
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from the normal expected state (f⃗) is greater than or equal to the degree of deviation
from the activity state (⃗a), suggesting that there may be other root cause affecting the
data. Therefore, this ratio provides a method for assessing whether the current activity
sufficiently explains the observed data changes, or whether there are other potential factors
that need further exploration. In this way, it helps guide response measures, whether
further investigation is needed, and the accuracy of predictive models. In order to make
the search process more efficient, HotSpot uses a method called hierarchical pruning. This
means that after it looks at the simpler layers, it removes some elements from the more
complex layers that probably didn’t cause the problem. This is because if a parent element
is not likely involved in the problem, then each of the children elements is unlikely to be
a root cause element, and thus can be pruned. This idea is similar to a known strategy
in Association Rule Mining. The method is called "hierarchical" because it uses the layer
information to decide.

The algorithm will continue to calculate the potential scores for each element and
each cuboid until the maximum potential score is reached. At this point, the root cause
for the given fault time duration is identified. The algorithm will then proceed to repeat
this process for all fault points detected by DBSCAN, ensuring that each fault point is
addressed. As mentioned before, the heating serves as a KPI in the HotSpot method is
used to measure the significance of the deviation between observed and expected values
for a particular attribute combination (referred to as an "element"). By isolating the root
cause, one can take targeted actions to address the issue, rather than treating symptoms
or secondary effects.

After finding the root causes, we will combine them with a BN in the next step to
infer the probability of each occupant behavior.

5.4.3.4 Step 4: BN for Window and Occupancy Status

Figures 5.26 to 5.29 depict the results of applying the BN to the training data. It turns
out that the BN with our structure (described in §5.4.1.3.) is highly effective at capturing
the relationships and dependencies among the variables, leading to reliable predictions
or estimations. In Figure 5.26 and Figure 5.28 respectively, we can observe the inferred
probability of occupancy status (and window status, respectively), Orange lines indicate
the inferred probability of occupant presence (and windows openings, respectively), while
blue lines indicate the inferred probability of occupant absence (and closed windows,
respectively). In Figure 5.27 (Figure 5.29 respectively), the BN selects high probability
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as the true detection and compares it with the ground truth. In the Figure 5.30, it shows
extracted one day window status and occupancy status inference with the ground truth.
The blue round shows the window status 0 inference, and yellow round shows the window
status 1 inference, green round shows the occupancy status 1 inference, red round shows
the occupancy status 0 inference, and black cross shows the ground truth for window
status, and red cross shows the ground truth for occupancy status, for the ground truth
0 means close or no presence, 1 means open or presence. In the window status, if the
blue round (window status 0) reach a higher probability than the yellow round (window
status 1), then we can consider the window status is 0, and vice versa. It also applies to
occupancy status as well. We also can notice that most of points are detected correctly.

Figure 5.26 – BN for occupancy status inference

Figure 5.27 – Occupancy status real VS inference
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Figure 5.28 – BN for window status inference

Figure 5.29 – Window status real VS inference
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Figure 5.30 – Extracted one day BN inference

Particularly, the inference of window status in simulation data achieves a 85 % accu-
racy, which can be attributed to the correct network structure. This enables the network
to make reliable inferences by accurately propagating the evidence through the nodes.
Moreover, the appropriate discretization strategy allows the network to effectively repre-
sent the relationships between variables.

Another key factor contributing to the model’s accuracy is the choice of a suitable
parameter estimation algorithm. The selection of the weight assigned to the prior dis-
tribution and observed data is crucial for achieving high model accuracy. However, the
inference of occupancy status yields a less impressive result, with an accuracy of 70%.
This may be due to the weak correlation between occupancy status and other variables,
making it difficult for the model to learn the underlying relationships between them. One
possible solution to improve the occupancy status inference is to generate more corre-
lated data with occupancy status, which would enable the model to better capture the
relationships and ultimately enhance its performance.

5.4.3.5 Results for our Integrated Behavior Analysis and Root Cause Detec-
tion hybrid method

To remind the whole concept of our approach, the ANN will be used to predict the
instantaneous heating to serve as an auxiliary KPI in the HotSpot algorithm. We trained
the ANN using all normal data (no window open and no occupant presence), and then the
ANN predicted the instantaneous heating for the entire dataset. This predicted instanta-
neous heating can be considered as a baseline for when the building has no faults. Then,
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in the HotSpot algorithm, we can observe variations in the real instantaneous heating be-
cause both of window open and occupancy presence lead to changes in the instantaneous
heating. The results for the ANN are shown in Figure 5.17 (§5.4.3.1).

Secondly, the speeded-up DBSCAN will be applied to the dataset to detect faults
(window open and occupant presence). There are a total of 12576 faults, as shown in
Figure 5.31. The values represent the Heating consumption for the entire year, and the
red spots indicate the detected faults.

Figure 5.31 – Detected faults

Thirdly, root causes will be identified at each fault point within±30 min period of the
fault. The HotSpot algorithm will calculate the root causes based on the predicted KPI,
which is calculated from the ANN with ripple effect and potential scores. The Detailed
steps can be found in section §5.4.3.3. Afterward, we can perform Hotspot RCA method
for each fault window as shown in Table 5.10 below, each line indicate the found root
cause parameter in each fault index, corresponding value, and calculated potential score.
For example, in the fault index 14, the root cause is indoor temperature, it actually
might imply that temperature is a key indicator or signal that the system’s state has
changed like the environmental changes, rather than the direct cause of the activities.
And in mathematical terms, as temperature is a root cause, its changes are likely to have
strong correlations with changes in all its descendants. This implies that when a change
in temperature occurs, we can anticipate corresponding changes in these downstream
variables. And we also can notice, there is root cause like solar radiation which is typically
independent of direct human action within a facility or an immediate environment, while
even it not directly altered by human behavior, solar radiation can still have a significant
impact on internal conditions. For instance, a rise in solar radiation could lead to an
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increase in room temperature, potentially triggering anomalies.

Fault Index Cuboid Value(discretize) Score

11 Solar 0.1 0.433417
12 Electricity 1.58 0.404714
14 Indoor temperature -1.79 0.425119
15 Indoor temperature -1.79 0.423188
16 Solar 0.61 0.522567
18 Solar -0.31 0.696077
19 Solar -0.31 0.691519
etc. etc. etc. etc.

Table 5.10 – Root Causes

Fourthly, the identified root causes will be used as evidence to input into the BN
(structure show in Figure 5.14) for inferring the probability of the window opening and
occupancy. The results can be seen in Figure 5.32. Many points are stacked together
because: (i) there is a large number of faults; (ii) each fault will have a window of ±30 min;
(iii) and for each fault point, BN will give two inferences (one is the probability of window
open, and the other is the probability of presence occupant). It should be noted that
because the instantaneous heat is used as a KPI, faults occurring in seasons without heat
consumption are discarded, resulting in gaps in the picture. Another enlarged picture at
a specific time frame can be seen in Figure 5.33.

Figure 5.32 – Inference probability VS ground truth
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From the Figure 5.33, blue and yellow round represent the window status inferred
probability for 0 or 1, green and red round represent the occupancy status inferred prob-
ability for 0 or 1, and black cross indicate real window status, red cross indicate the
occupancy status. If the probability of the blue round is bigger than the yellow round,
we will consider the window status is close (0) as the true detection. We can notice that,
the modal is good to the detect the window close status, but for the two inferred values
(window open and presence of occupant) in each fault window, if both values exceed 60%,
we consider them to have occurred simultaneously. Because it is not possible to correctly
predict the state of occupancy, this also leads to inaccuracies in the classification detection
of four types of activities (open and presence, close and presence, close and no presence,
open and no presence).

Figure 5.33 – Zoom in inference probability

Then; the final results will be compared with the ground truth and provide the con-
fusion matrix below.
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Figure 5.34 – Confusion matrix for the ANN-DBSCAN-HOTSPOT-BN

The confusion matrix offers a comprehensive overview of the classification model’s
performance across distinct scenarios. Diagonal values in a confusion matrix represent
the True Positives for each scenario, indicating instances where the model’s predictions
align with the actual data. However, in this confusion matrix, not all diagonal values are
maximized, highlighting areas where prediction accuracy is compromised. And the accu-
racy of the this ANN-DBSCAN-HOTSPOT-BN method can be calculated as 45%. This
outcome is less than ideal, indicating that the model under unsupervised conditions lacks
the ability to accurately discern different behaviors, but discerning different behaviors
under unsupervised conditions is inherently a very challenging task. How to better and
more appropriately select the root cause and how to choose the right attributes to input
into RCA will be key to advancing the model

In the context of building environments, the indoor system exhibits intricate complex-
ities. Various parameters undergo fluctuations in response to alterations in the building
state, intertwining the real root causes with a multitude of factors. Given this intricate web
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of interactions, pinpointing the authentic root causes emerges as a formidable challenge.
Our proposed model embodies this complexity, operating as an intricate system built

upon the synergistic interplay of neural network predictions, unsupervised detection, Root
Cause Analysis (RCA), and BNs. Within this delicate framework, even minor deviations
can have cascading impacts, potentially undermining the entire system’s efficacy.

The confusion matrix offers critical insights into the model’s performance. we can
notice the model’s challenges in discerning between diverse behaviors. Given our stringent
criteria, necessitating both inferred values (Window Open status and Occupant Presence)
to surpass the 60% threshold, the model grapples notably with predictions pertaining
to window openings and the presence of occupants. Despite the multifaceted challenges
inherent in such a complex scenario, this model can still provide considerable successful
detection, so it provides a good direction for future research.

Future research should delve into the intricacies of detection within such multifarious
scenarios. Identifying wholly accurate root causes remains paramount. Additionally, deter-
mining suitable thresholds from BNs to accurately discern multiple concurrent activities
will be instrumental in refining the model’s precision. Another key area for improvement
is the choice of root cause analysis methods. Unlike in web operations and maintenance,
the original application domain for Hotspot, not all features in a building context can be
directly aggregated. Therefore, finding a root cause analysis method that is better tailored
to building environments could be crucial for improving performance.

5.5 Conclusion of the chapter

In this chapter, we first introduced a self-supervised learning approach to understand
and model multi- occupant behaviors. We introduced a novel self-supervised learning ap-
proach, leveraging time shuffling as a pretext task for an Artificial Neural Network (ANN).
Through transfer learning, we harnessed the power of this ANN for downstream tasks fo-
cused on detecting various occupant behaviors. Remarkably, our self-learning algorithm
achieved an impressive accuracy rate of 86.85%, surpassing the performance of traditional
supervised methods.

Next, we focused on the potential of BNs. We established a comprehensive benchmark
to evaluate different methods for estimating the structure of BNs. Our analysis revealed
that, particularly for complex BN structures, incorporating domain knowledge appears to
yield the most effective results, as alternative methods often found themselves trapped in
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local optima. We also explored parameter learning and variable elimination techniques,
ultimately presenting the finalized structure of our BN. Subsequently, we proposed a
method for identifying root causes underlying various occupant behaviors. We initially
selected ’instantaneous heat consumption’ as the KPI and employed an ANN to forecast
this KPI under normal conditions. The precomputed distance matrix using DBSCAN
method—chosen based on our findings in Chapter 4 allowed us to detect individual occu-
pant behaviors. Following this, the Hotspot algorithm was employed to identify the root
causes associated with each detected behavior. These root causes were then incorporated
into the BN for further inference. While the results from the ANN-DBSCAN-HOTSPOT-
BN algorithm indicate a certain level of proficiency in detecting different occupant behav-
iors, it is evident that there is substantial room for improvement.

From the observed results, the self-learning algorithm significantly outperforms the
ANN-DBSCAN-HOTSPOT-BN method in both detecting single activities and distin-
guishing among multiple activities. Notably, the self-learning algorithm achieves this su-
perior performance using only 5% of labeled data, aligning well with our objective of
preserving user privacy. On the other hand, while the ANN-DBSCAN-HOTSPOT-BN
approach is a multi-acitivities detection that moves towards unsupervised learning, its
potential and relevance in this domain make it an avenue worth exploring in depth.

Future work could involve optimizing the root cause analysis methods to better align
with the specific nuances of building environments. Additionally, further refinement of
the BN structure and parameter learning techniques could enhance predictive accuracy.
Ultimately, this chapter presents a multi-faceted approach to understanding and detecting
occupant behaviors. These insights carry the potential to improve energy efficiency and
occupant well-being, marking a significant contribution and laying the foundation for
future advancements in the field of building management.

256



CONCLUSIONS AND PERSPECTIVES

Conclusions

The conclusion of this thesis brings together a comprehensive exploration into the
improvement of energy efficiency, sustainability, and occupant comfort within the realm
of smart buildings. As introduced earlier, across multiple chapters, this research primar-
ily addresses two significant challenges: the understanding of user interactions with the
building, and the occupant privacy and comfort. And it also address two optimization
problems: enhancing building energy efficiency and obtaining accurate and diversified
data.

In Chapter 1, our journey began with an exhaustive literature review detailing en-
ergy management in smart buildings. Smart buildings are poised at the intersection of
technology, sustainability, and human experience. They are not merely architectural mar-
vels but have a pivotal role in global energy optimization. Recognizing and addressing
challenges such as user-centric control, sensor placement, and multi-occupant activity de-
tection remains paramount. A profound understanding of various communication systems
and sensors, coupled with a detailed analysis of user behaviors, is central to this discourse.
This chapter laid the groundwork, identifying key research gaps that guided our subse-
quent exploration, emphasizing that to drive the future of sustainable living, the buildings
must evolve, considering both technological advances and the very humans they house.

Considering the current state of the art, optimal sensor placement and occupants
activities detection have been identified as challenges to study in the thesis, Chapter 2
introduces two instrumental case studies which serve as the backbone of our analysis.
Harnessing the power of DesignBuilder, we simulated energy consumption patterns for
various occupancy scenarios. This approach allowed for a versatile examination of energy
usage and management, which would later serve as training data for our machine learn-
ing occupants activities detection algorithms. Our real-world case, however, anchored us,
ensuring our theoretical conclusions remained grounded, relevant, and applicable. The
dynamic between these two methods — simulation and real - world observation — proved
invaluable.
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The dilemma of optimal sensor placement, as dissected in Chapter 3, is the crux
of efficient energy management in smart environments. Ensuring the correct placement
is not just a matter of technological prowess but requires an intricate understanding of
environmental behavior and user interactions. It also directly link to the occupancy privacy
and comfort with the question of data quality. Our exploration endorsed the Effective
Independence Method and Information Entropy as standout solutions. Furthermore, we
have given our definition for the word ’optimal’, which is the information independence
and stability. Our dive into complex scenarios like multi-wall environments validated the
versatility of our chosen techniques. The conclusion from this chapter which the optimality
of the locations chosen by our algorithm was verified through different experiments from
simulation and real datasets.

In the age of artificial intelligence, the fourth chapter emphasized the irreplaceable role
of machine learning and statistical methods in energy management. Through a meticu-
lous process, we identified DBSCAN, PCA, MGD, Logistic Regression, ANN, XGBoost,
and AutoEncoder as potential candidates for various prediction tasks. We benchmarked
these algorithms to assess their strengths and weaknesses, ranging from their accuracy to
adaptability. Given DBSCAN’s superior detection accuracy and its unique capability to
identify clusters of varied shapes, combined with the potential for significant speed-up via
precomputed distance matrices, it emerges as a highly suitable choice. On the other hand,
XGBoost consistently delivers commendable performance across diverse datasets. Its in-
herent design incorporates L1 and L2 regularization, offering a robust countermeasure
against overfitting. Additionally, its parallel processing capabilities ensure swift computa-
tion, further enhancing its appeal. Consequently, we selected DBSCAN and XGBoost as
interesting methods to detect occupants presence or window openings.

Based on selected algorithm, Chapter 5 represented a synthesis of our cumulative
insights, culminating in the challenge of detecting multi-occupant behaviors. The empha-
sis on multi-occupant scenarios is rooted in the real-world complexities, be they office
spaces, residential apartments, or educational institutions. Unlike single-occupant detec-
tion, multi-occupancy introduces intricacies that demand higher granularity in observa-
tion, interpretation, and response. At the same time, we have once again emphasized
occupational privacy, so we need to use unsupervised or very little labeled data to detect
multi-occupant behaviors. Our exploration began with the self-supervised learning ap-
proach, utilizing ANN XGBoost combined with time shuffling. In the context of occupant
behavior, this approach offers the possibility of buildings ’learning’ from the limited la-
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beled data. The application of time shuffling was a particularly innovative touch, allowing
the model to gain a deeper understanding of time-bound behaviors, which are central to
energy use patterns. The self supervised showed excellent performance, which surpassing
many traditional approaches even with only 5% labeled data to train the model. Then,
we introduced the composite ANN-DBSCAN-HOTSPOT-BN method which combined the
clustering capability of DBSCAN, the predictive prowess of ANNs, the root cause analy-
sis of Hotspot, and the statistical depth of BN. Finally, ANN-DBSCAN-HOTSPOT-BN
demonstrated a 45% accuracy in distinguishing different activities. Although the results
from self-learning are much better, it is moving in the right direction as an unsupervised
method to distinguish different activities.

In conclusion, this thesis represents a significant contribution to the field of smart
buildings, developing and validating novel methodologies that solve the challenge for in-
teraction between buildings and occupants, occupants privacy and optimal data. It paved
the road for the user centric optimization control.

Perspectives

This thesis has several promising perspectives. In the Chapter 3, EIM using target sen-
sors inside the room, in order to express the dynamic human behaviors, can be considered
to develop dynamic sensor networks that can adjust their sensitivity or focus based on
real-time data or feedback loops. This might involve sensors that can "communicate" with
one another to optimize data capture based on observed movements or behaviors, and
introducing analytics that predict human movement patterns might also be beneficial. By
understanding typical trajectories or paths individuals take in a room, sensor placements
can be preemptively optimized for expected behaviors. And one way to further enhance
optimality is by using reinforcement learning techniques, where sensor placements and
parameters are iterative fine-tuned based on real-time feedback loops. Because there is no
underlying assumption for specific environment, EIM and information entropy methods
are adaptable to other case studies, but given the different communication systems and
sensor types discussed, when deploying the methods in a new building environment, it
might be necessary to customize the choice of communication systems and sensors based
on the building’s size, or infrastructure.

In the Chapter 4 and 5, we expect the unsupervised and supervised methods selected
(like DBSCAN or XGBoost) can be broadly applied to other scenarios. But, parameter
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tuning and adjustments will be necessary based on the specifics of the new data and
objectives. In the multi-activities task, trying to use unsupervised method or only few label
to detection multi-activities is a challenge work, for the self learning supervised method.
the idea can be broadly applied to other scenarios, but the performance is highly related
to the pretext, so based on the specifics of different scenarios, finding an appropriate
pretext is always worth trying. For the ANN-DBSCAN-HOTSPOT-BN method, within
the complexity environment, it is not enough to determine root causes only through
theory. One possible solution is using experiment by applying different activities in the
room and combined with reinforcement learning to find the real root causes, which will
greatly increase the detection capability.

With the detected user information, all the outputs should be seamlessly integrated
with BMS, ensuring that insights drawn from data lead to actionable outcomes, such
as adjusting HVAC, lighting, heating, or cooling systems. This would involve checking
communication protocols, data formats, and integration capabilities. BMS is a system
which integrated data network and control system for automation, monitoring, and control
of HVAC, lighting, and other functions in a building. Control in building management
is important for ensuring the effectiveness and efficiency of operations, reliable financial
reporting, and compliance with laws, regulations, and policies. Based on the discussion
and literature review in Chapter 1, the MPC is a feasible and reliable method in our
application. One of the key advantages of MPC in the operation of HVAC systems is
its ability to consider constraints, predict disturbances, and balance multiple conflicting
objectives, such as indoor thermal comfort and building energy demand. In addition,
MPC has been successfully implemented for building thermal regulation, maximizing the
potential of building thermal mass (Serale et al.2018). An introduction to MPC can be
found in Appendix C.1. Even though, various works have investigated the application
of MPC algorithms in building control, it still facing some challenges, such as building
modeling and integration of the user information. One suggestion approach for building
modeling (in appendix C.2) and integration of the user information (in appendix C.3) can
be found in Appendix.

The integration of user information into BMS via MPC represents a crucial step to-
wards achieving energy-efficient and user-centric building operations. Firstly, an accurate
building modeling is most important. The adoption of grey-box models, particularly the
Resistance and Capacitance (RC) models, offers a promising balance between model ac-
curacy and computational feasibility. By bridging the gap between data-driven black-box
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models and physics-based white-box models, grey-box models ensure that the dynamic
thermal behavior of buildings is captured with reasonable accuracy while remaining com-
putationally efficient. Then, we need to estimate the model parameters, particularly using
optimization techniques like Genetic Algorithm (GA), and further refines these models
by fine-tuning model parameters based on observed building data.

With the increasing availability of user occupancy data, thanks to advancements in
sensor technology and occupancy detection methods, the potential for optimizing building
operations based on real-time user information has become more evident. Integrating this
information into MPC allows for dynamic adjustment of building operational constraints
based on actual and predicted occupancy, ensuring both energy efficiency and occupant
comfort. Through the dynamic setting of temperature constraints, buildings can transition
between comfort and setback modes, optimizing energy usage during unoccupied periods
without compromising user comfort when the building is occupied.

However, the practical implementation of user-centric MPC in BMS is far from trivial.
As highlighted, while the foundational concepts are established, real-world applications
involve a myriad of interacting activities, with each potentially introducing additional
constraints and considerations. For instance, the influence of different building zones,
variability in user preferences, and external factors like weather conditions further com-
plicate the decision-making process. As the research landscape continues to evolve, it is
imperative to focus on developing holistic models that can seamlessly integrate diverse
user information and adapt dynamically to ever-changing building environments. Fur-
thermore, the advancement of efficient computational techniques and robust optimization
algorithms will be crucial in ensuring the scalability and real-time applicability of such
integrated systems.

In summary, the integration of user information into BMS using MPC holds immense
promise for the future of sustainable and user-centric building operations. While challenges
remain, as research continues in this direction, it is anticipated that the benefits of such
integration, both in terms of energy savings and enhanced occupant comfort, will become
increasingly evident in real-world applications.
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Appendix A

ANNEX ON CHAPTER 1

A.1 Energy performance indicators

Eight energy performance indicators have been identified in the the literature (section
1.1.1). The ones that were not defined in Chapter 1 are presented below.

The Energy Use Index (EUI), belonging to the first category of indicators above, is a
common EnPI used to compare building energy performance, but it has limitations as it
does not account for building characteristics, occupant behavior, weather conditions, or
energy service levels (Fairey and Goldstein, 2016). (Hsien-te and Chia-ju, 2021) propose
a dynamic zone EUI method for hotels in Taiwan that considers different energy zones
within a hotel and their corresponding EUIs, using electricity consumption as the evalua-
tion indicator. They also suggest using yearly occupancy rate as a modifying factor. The
authors test their method on 89 hotels and show that it provides a fair and customized
assessment of hotel energy performance. However, the article lacks empirical evidence on
the influence of the proposed rating system on hotel owners’ or managers’ behavior and
does not discuss its applicability to other building types or regions. Zheng et al. (2019)
propose a method to evaluate overall energy consumption of buildings based on energy
index obtained from different functional sectors, focusing on multifunctional buildings.
Their study develops a linear regression model using monitoring data from single func-
tional and multifunctional buildings, showing that the sub-item EUI from multifunctional
buildings has lower error. However, this study only considers electricity consumption as
the evaluation indicator for EUI.

Energy Conservative Index (ECI) which measures the energy conservation performance
of a building by comparing its actual energy consumption with its estimated energy needs
(Long et al.2014). It is calculated by dividing the actual energy consumption by the
estimated energy needs, with a value below 1 indicating higher energy conservation per-
formance.

Energy Demand Intensity (EDI) which measures the intensity of a building’s energy
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demand by expressing the amount of energy required to meet its specific energy needs,
such as heating, cooling, lighting, etc. It is calculated by dividing the total energy required
to meet the building’s demand by its surface area or volume.

The indicators mentioned above (EUI, ECI, EDI. . . ) are often employed as indicators
of efficiency; however, this interpretation may be flawed if one considers the definition
of efficiency provided in this context. Indeed, low energy use could potentially indicate
high efficiency, effective operations and maintenance (O&M) in an inefficient building,
or minimal tenant demands for energy services. The Energy Efficiency Index (EEI), also
known as the Building Energy Index (BEI), is a widely used indicator for assessing and
comparing the energy consumption performance of buildings. The EEI has gained popu-
larity as a universal measure for evaluating energy efficiency in buildings. Typically, the
EEI is calculated as the ratio of energy input to a factor associated with the energy-using
component. A study conducted by Hayati et al. (2014) on sustainable energy management
practices and their effect on EEI in university buildings used the EEI model to compare
energy consumption performance of buildings with a focus on the air-conditioning area as
the normalizing factor. Another study by Moghimi et al. (2013) conducted a case study
on the EEI of commercial buildings, which was based on the occupied air conditioning
area. The measurement of EEI may vary depending on the activities that take place in
a building, as the energy consumption and gross floor area size may differ. This index
was used to compare end-use energy consumption in a large-scale hospital building in
Malaysia. The case study was carried out at Universiti Kebangsaan Malaysia Medical
Centre, where the EEI of the hospital was calculated and compared to the EEI of other
hospitals to assess the level of energy usage in this hospital.

The Home Energy Rating System (HERS) rating was developed by RESNET, a non-
profit organization that sets standards for home energy ratings, in 2006. This system
establishes a reference house that complies with the International Energy Conservation
Code of 2006 and present an ideal maximum score of 100. A net-zero energy house has
a score of 0, and scores extend linearly in both directions, with lower scores indicating
better energy performance. Since its inception, almost 2 million homes have been rated
using the HERS system, with most of these homes being rated during construction to
guide energy efficiency improvements. On the other hand, the zero Energy Performance
Index (zEPI) target applies to buildings that are not covered under the scope of IECC
residential buildings. This system establishes a reference building with a score of 100,
which represents the average energy use of a building of the same type in the same cli-
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mate zone at the turn of the millennium. Like the HERS system, a score of 0 represents
zero net energy, and lower scores indicate better energy performance. Recently, ASHRAE
(American Society of Heating, Refrigerating and Air-Conditioning Engineers) has estab-
lished an energy standard compliance path for its Standard 90.1 based on the zEPI score,
providing a benchmark for evaluating the energy performance of commercial and other
non-residential buildings.

The carbon dioxide (CO2) emissions indicator is a crucial tool in measuring the en-
vironmental impact of buildings during their operational and construction phases. This
metric provides valuable insights into the amount of CO2 emissions generated by build-
ings, allowing us to assess their contribution to greenhouse gas emissions, track progress
in emission reduction efforts, and identify areas where further action is needed.

A.2 Pros and Cons of different technologies of IoT
technologies
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Table A.1 – Description, strengths, and weaknesses of monitoring and data collecting and transferring technologies.

Technology Communication Type Short Description Strengths Weaknesses
Bluetooth Wireless Low-power wireless technology

with support for short-range
communication, widely avail-
able in many devices.

- Low-power wireless technol-
ogy with support for short-
range communication.
- Widely available in many de-
vices, such as smartphones and
wearables.

- Limited range and bandwidth
compared to some other wire-
less technologies.
- May not be suitable for large-
scale smart home applications
with numerous devices.

EnOcean Wireless Wireless communication tech-
nology that uses energy har-
vesting and ultra-low power
consumption for self-powered
wireless sensor networks.

- Self-powered and battery-free
operation.
- Low power consumption.
- Wireless communication
without the need for batteries
or external power source.
- Suitable for energy-efficient
and maintenance-free applica-
tions.

- Limited range compared to
other wireless technologies.
- Lower data rates.
- May require specific hardware
and protocols for compatibil-
ity.

Ethernet Wired Wired communication technol-
ogy that uses Ethernet cables
to connect devices in a local
area network (LAN).

- Reliable and widely used
technology for wired communi-
cation.
- Supports high data rates and
long distances.
- Provides stable and low-
latency communication.

- Requires physical cabling in-
frastructure for installation.
- May require professional in-
stallation and configuration.
- Not suitable for remote or
wireless communication.

KNX Wired Wired communication protocol
for home and building automa-
tion, widely used in Europe.

- Wired communication proto-
col with high reliability and
stability.
- Supports a wide range of de-
vices and applications.

- Requires wiring for installa-
tion, which may increase in-
stallation cost.

LoRaWAN Wireless Low-power, long-range wireless
protocol for IoT applications,
enabling long-range communi-
cation with low power con-
sumption.

- Long-range communication
capability with low power con-
sumption, suitable for IoT ap-
plications.
- Scalable and cost-effective for
large-scale networks.

- Lower data rates compared to
other wireless technologies.
- Limited bandwidth for data
transmission.
- Requires gateway devices for
connecting to the internet.

Continued on next page



Table A.1 – continued from previous page
Technology Communication Type Short Description Strengths Weaknesses
PLC Wired/Hybrid Wired/hybrid technology us-

ing existing power lines for
communication, suitable for
both data and power transmis-
sion.

- PLC (Powerline Communica-
tion) is a wired/hybrid tech-
nology that uses existing power
lines for communication, elim-
inating the need for additional
wiring.
- Can be used for both data
and power transmission.

- May be affected by electri-
cal noise and interference from
other devices.
- Data rates may be lower com-
pared to some wireless tech-
nologies.

RF Wireless Wireless technology using ra-
dio frequency, widely used in
various applications including
smart home devices.

- RF (Radio Frequency) tech-
nology is wireless and widely
used in various applications,
including smart home devices.
- Can operate on multiple
frequency bands, allowing for
flexibility in deployment.

- Limited range compared to
some other wireless technolo-
gies.
- May be susceptible to in-
terference in crowded environ-
ments.

RFID Wireless Wireless technology for short-
range communication and
identification purposes, with
low cost and small form factor.

- RFID (Radio Frequency
Identification) is a wireless
technology used for short-
range communication and
identification purposes.
- Low cost and small form fac-
tor make it suitable for certain
smart home applications.

- Limited data storage and
transmission capabilities com-
pared to other wireless tech-
nologies.
- Short range may require prox-
imity for communication.

Thread Wireless Wireless mesh networking pro-
tocol designed for low-power
devices, based on IPv6, suit-
able for smart home applica-
tions.

- Wireless mesh networking
protocol designed for low-
power devices, based on IPv6.
- Supports large-scale networks
with high reliability and secu-
rity.

- Limited availability of
Thread-enabled devices com-
pared to other technologies.
- May require additional con-
figuration for interoperability
with other protocols.

Continued on next page



Table A.1 – continued from previous page
Technology Communication Type Short Description Strengths Weaknesses
UPnP Hybrid Hybrid communication pro-

tocol for device discovery
and control in local networks,
widely used in smart home
applications.

- Hybrid communication pro-
tocol for device discovery and
control in local networks.
- Provides interoperability and
easy integration of devices
from different manufacturers.

- Limited to local networks,
may not support remote ac-
cess without additional config-
uration.
- Security concerns due to po-
tential vulnerabilities in device
discovery and control.

WiFi Wireless Widely used wireless technol-
ogy with high data rates and
extensive range.

- Widely used wireless technol-
ogy with high data rates and
extensive range.
- The IEEE 802.11 standard is
supported, and there is com-
patibility with many devices.

- Higher power consumption
compared to some other wire-
less technologies.
- Possible interference from
other WiFi networks or de-
vices.

X10 Wired/Hybrid Wired/hybrid technology for
home automation widely used
in older systems.

- Wired/hybrid technology for
home automation, widely used
in older systems.
- Affordable cost and compati-
bility with a wide range of de-
vices.

- May be less reliable and
slower compared to wireless
technologies.
- Limited in terms of features
and capabilities compared to
newer technologies.

Z-Wave Wireless Wireless communication pro-
tocol specifically designed for
smart home applications with
low power consumption and
extended range.

- Specifically designed wire-
less communication protocol
for smart home applications,
with low power consumption
and extended range.
- Supports IP and offers a high
range but is relatively less ex-
pensive.
- Uses licensed frequency band
to minimize interference.

- To maintain security, a cer-
tain level of expertise is neces-
sary.
- Limited in terms of band-
width and data rates.
- May require gateway devices
for compatibility with other
technologies.

Continued on next page



Table A.1 – continued from previous page
Technology Communication Type Short Description Strengths Weaknesses
ZigBee Wireless Wireless communication pro-

tocol for smart appliances with
IPv6 support, cost-effective,
energy-efficient, and designed
for low data rates.

- The IEEE 802.15.4 standard
is a wireless communication
protocol that supports IPv6
and is cost-effective, energy-
efficient, and designed for low
data rates. It enables easy con-
nectivity of smart devices and
has a flexible structure for a
high number of nodes.

- Limited available bandwidth,
which may result in lower data
rates.
- Security concerns may be
higher compared to WiFi.



A.3 Optimal sesnor location algorithms
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Table A.2 – Summary of optimal sensor location algorithms

Methodology Example Method Main Features Advantage Limitation Application Reference

Optimization
Genetic Algorithm Global search, adapt-

able heuristics
Robust, handles com-
plex landscapes

Convergence speed, pa-
rameter tuning

Structural health holland et al.1992

Particle Swarm Stochastic, population-
based

Simple, easy to imple-
ment

Convergence speed, lo-
cal optima

Structural health Kennedy et al.1995

Simulated Annealing Exploration and ex-
ploitation, annealing

Escapes local optima,
adaptable

Parameter tuning, lo-
cal optima

Structural health Kirkpatrick et al.1983

Information-based
Information Entropy Maximizes information

gain
Captures diverse infor-
mation

Assumes independence Structural health , building Shanon 1984

Mutual Information Takes into account re-
dundancy

Addresses dependen-
cies between sensors

Computational com-
plexity

Building Shanon 1984

Statistical
Effective Independence Minimizes condition

number of FIM
Robust to noise, linear
model

Assumes linear Gaus-
sian model

Control systems, finance Kammer et al.1991

Maximum Likelihood Maximizes likelihood
of observed data

Considers underlying
model, well-established

Model-dependent,
computational com-
plexity

Structural health Fisher et al.1922

Model-based

Modal Kinetic Method Modal decomposition,
kinetic energy

Applicable to large-
scale systems

Limited to linear, un-
damped systems

Structural health Larson et al.1994

Drive Point Residue Frequency response,
residues

Works for a wide range
of frequencies

Limited to linear sys-
tems

Structural health Doebling et al.1996

QR Decomposition Orthogonal decompo-
sition, linear indepen-
dence

Handles ill-conditioned
problems

Assumes linear Gaus-
sian model

Structural health Gander et al.2012

Guyan Reduction Reduced-order models,
static condensation

Fast, computationally
efficient

Limited to linear, un-
damped systems

Structural health Guyan et al.1965

Data-driven
Space Domain Sampling Uniform sampling in

space domain
Easy to implement, in-
tuitive

Assumes uniformity,
ignores local features

Structural health Stubbs et al.1996

Cluster Algorithm Groups similar data
points, centroid

Reduces redundancy,
simplifies data

Requires distance met-
ric, pre-defined

Structural health ,Building Yoganathan et al.2018

Empirical
Experience Method Based on expert knowl-

edge, trial-and-error
Utilizes domain knowl-
edge, adaptable

Subjective, may lack
generalization

Building, Geological disaster lohner et al.2005

Statistical Method Data-driven, distribu-
tion fitting

Empirical, accounts for
uncertainties

Assumes underlying
statistical model

Building Shimosaka et al.2016
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Table A.3 – Example of taxonomy for occupant behavior

Taxonomy Features Examples

Activity-based taxonomy

Personal activities Sleeping, cooking, watching TV, reading,
working...

Professional activities Facilitating/attending a meeting, giving/-
following training, using a computer, de-
signing working documents...

Shared activities Socializing, hosting guests...
Building-related activities Maintenance, cleaning...

Building control-related activities Adjusting thermostat, opening/closing
windows...

Location-based taxonomy
Indoor spaces Living room, bedroom, kitchen, bath-

room...
Outdoor spaces Balcony, terrace, garden...

Time-based taxonomy
Daily routines Waking up, going to work, coming back

home, going to bed
Weekly routines Grocery shopping, doing laundry...
Seasonal routines Turning on/off heating or cooling systems,

opening/closing windows...

Behavioral patterns-based taxonomy
Predictable behavior Regular daily routines and activities

Unpredictable behavior Irregular activities, unexpected visitors...

Preference-based taxonomy
Comfort preferences Preferred temperature, lighting...
Personal preferences Preferred furniture, decorations...
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Table A.4 – Other example of taxonomy for occupant behavior

Related behaviors Short description
Adaptive These behaviors are based on the adaptation of occupants

to their environment, including adjusting to lighting con-
ditions, noise levels, and air quality.

Comfort-related Close to the previous one, these include actions that oc-
cupants take to regulate their comfort levels such as ad-
justing thermostats, opening windows, and using fans.

Energy-related These behaviors are related to energy use in a building
such as turning off lights, unplugging electronics, and us-
ing energy-efficient appliances.

Environmentally conscious These behaviors are related to occupant concern for the
environment such as recycling, using green products, and
conserving water.

Health-related These behaviors are related to occupant health such as
exercising, taking medication, and using medical equip-
ment.

Information-related These involve information seeking or information sharing
behaviors such as searching for information on the inter-
net, using social media, and participating in surveys or
focus groups.

Movement-related These behaviors involve the movement of occupants
within a building such as walking, running, and using
stairs or elevators.

Personal habits These include individual behaviors such as smoking,
drinking, and sleeping.

Safety-related These behaviors are related to safety measures taken by
occupants such as locking doors and windows, turning off
appliances, and responding to fire alarms.

Social-related These behaviors involve interactions with other occupants
or visitors such as talking, playing music, and hosting
gatherings.

Task-related These behaviors are related to specific tasks that occu-
pants perform in a building such as cooking, cleaning, and
doing laundry.
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A.5 Strengths and weakness of occupancy detection
sensors
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Table A.5 – Strengths and weaknesses of some sensors used for building occupancy estimation.

Sensor Strengths Weaknesses
Audio (extraction) - Audio sensors can detect occupancy without re-

quiring any invasion of privacy. - They can detect a
range of different sounds, from footsteps to conver-
sations, allowing them to accurately detect occu-
pancy in various types of spaces. - They are often
less expensive than other types of occupancy sen-
sors.

- Audio sensors can potentially record conversations and other sen-
sitive information. - Ambient noise can interfere with the accuracy
of audio sensors. - They typically have a limited range and may not
be suitable for monitoring large spaces or detecting occupancy in
multiple rooms simultaneously.

Camera - Cameras provide visual information that can be
used to detect and track occupants. - They can
provide information about occupancy and activi-
ties, such as posture, gestures, and facial expres-
sions. - They can be used for security purposes in
addition to occupancy detection.

- Cameras can be invasive and raise privacy concerns. - They can
be expensive and require additional processing power to analyze
the visual data. - They require a line-of-sight, so they may miss
detections if occupants are obstructed by objects or if the camera
is in a blind spot.

Chair - Chair sensors can accurately detect occupancy in
a given space. - They do not require any physical
contact or wearable devices. - They are relatively
inexpensive compared to other occupancy detec-
tion methods. - They require minimal power to
operate.

- Chair sensors are limited to the area where the sensor is placed
and may not provide a comprehensive view of the entire space.

CO2 - CO2 sensors are inexpensive and compact. - They
are non-invasive and easy to install. - They can
provide rough occupancy estimations.

- They present limited accuracy when estimating a large number of
people. - The dynamic response of CO2 sensors is slow.

Depth - Depth sensors can capture spatial information
about a room or space, including the number of
people, their position, and movement. - They are
not affected by ambient lighting conditions, unlike
cameras or light sensors. - They can work even in
complete darkness, making them suitable for 24/7
monitoring.

- Depth sensors may have difficulty distinguishing between people
and objects that are similar in shape or size, such as furniture or
large bags. - They may have difficulty detecting people partially
or completely obstructed by objects. - Depth sensors are typically
more expensive than some other types of occupancy sensors.

Continued on next page



Table A.5 – Continued from previous page
Sensor Strengths Weaknesses

Doppler Radar - Doppler radar sensors can detect motion at
ranges of several meters, making them suitable for
use in larger spaces. - They can operate effectively
in a range of environmental conditions, including
darkness, dust, smoke, and temperature extremes.
- Unlike PIR sensors, Doppler radar sensors can
detect multiple individuals in a single zone.

- Doppler radar sensors can be relatively expensive compared to
other types of sensors. - They require power to operate. - They rely
on detecting changes in motion to sense occupancy, which means
that they may not be suitable for use in environments where move-
ment patterns are unpredictable or irregular.

Door and Window Opening/Closing - These sensors provide valuable information about
the opening and closing of doors and windows, al-
lowing for accurate occupancy estimation. - By de-
tecting open windows or doors, these sensors can
trigger actions such as adjusting heating or cool-
ing systems, resulting in energy savings. - Door and
window sensors contribute to security systems by
alerting occupants to potential unauthorized ac-
cess or open entry points.

- Mounting door and window sensors may require careful placement
and alignment to ensure accurate detection. - Sensors are limited
to monitoring specific entry points, and additional sensors may be
needed to cover larger areas or multiple access points. - Factors such
as sensor sensitivity, environmental conditions, and human behavior
can lead to false readings, impacting the accuracy of occupancy
estimation.

Electric Power Consumption - These sensors can be installed without disrupt-
ing the electrical infrastructure, as they typically
rely on current and voltage measurements. - They
provide detailed information about energy usage
patterns, allowing for better energy management
and optimization. - By analyzing the power con-
sumption signatures, these sensors can help iden-
tify specific appliances or devices contributing to
overall energy consumption.

- Proper installation and connection to electrical circuits may re-
quire professional expertise, especially in larger-scale deployments.
- Monitoring electric power consumption raises privacy issues, as
it provides insights into occupants’ activities and appliance usage
patterns. - They focus solely on energy monitoring and may not
capture other occupancy-related information or behaviors.

Humidity - Humidity sensors are inexpensive and widely
available. - They are non-invasive and easy to in-
stall. - They can be used to detect changes in occu-
pancy based on moisture generated by occupants.

- They present limited accuracy when estimating occupancy count.
- Humidity can be influenced by factors other than occupancy, such
as outdoor humidity, HVAC system, and ventilation.

Light - Light sensors are non-intrusive and non-invasive.
- They can be used to estimate occupancy in areas
where other sensors may not be suitable, such as
areas with high ceilings or difficult to access places.
- They can be used to detect changes in occupancy
patterns over time.

- Light sensors may not be suitable for detecting occupancy during
daylight hours or in areas with large windows or skylights that allow
natural light to enter the space. - Changes in lighting levels due to
factors such as cloud cover, shadows, reflections, and other visual
obstructions can affect the accuracy of occupancy detection.

Continued on next page



Table A.5 – Continued from previous page
Sensor Strengths Weaknesses

PIR - PIR sensors are widely available and inexpensive.
- They detect infrared radiation, which is emitted
by humans and animals. - They have a fast re-
sponse time and can detect people moving quickly.

- PIR sensors can be affected by changes in temperature and hu-
midity, leading to false detections or missed detections. - They are
not effective in detecting static occupants, such as someone sitting
at a desk.

Temperature - Temperature sensors are inexpensive and widely
available. - They are non-invasive and easy to in-
stall. - They can be used to detect changes in room
occupancy based on body heat.

- They present limited accuracy when estimating occupancy count.
- Temperature can be influenced by factors other than occupancy,
such as outdoor temperature, HVAC system, and sunlight.

Ultrasound - Ultrasonic sensors are non-invasive and do not
require line-of-sight, so they can detect occupants
even if they are obstructed by objects. - They have
a fast response time and can detect people moving
quickly.

- Ultrasonic sensors can be affected by changes in temperature and
humidity, leading to false detections or missed detections. - They
can be affected by acoustic noise and echoes, leading to false detec-
tions.

Volatile Organic Compound (VOC) - VOC sensors provide real-time feedback on the
presence of volatile organic compounds, allowing
for quick response and action. - These sensors can
help monitor and improve the air quality in in-
door environments by detecting harmful or odor-
ous gases. - VOC levels can serve as an indirect
indicator of occupancy, as human activities and
behaviors often result in the release of volatile or-
ganic compounds.

- VOC sensors may not be able to differentiate between different
types of volatile organic compounds, leading to less precise iden-
tification of specific pollutants. - Regular calibration and mainte-
nance are required to ensure accurate readings, as environmental
factors and sensor drift can affect the performance of VOC sensors.
- High-quality VOC sensors can be relatively expensive, especially
if multiple sensors are needed for comprehensive coverage.



A.6 Application of artificial intelligence to detect oc-
cupancy related activities and events
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Table A.6 – Examples of applications, with information on the different types of sensor data used, the methods used and
their accuracy.

Type of detected activities / events References Sensors Algorithm / Method Environment Accuracy

Occupancy presence

Arief-Ang et al. (2018) CO2 data and indoor
human occupancy

Seasonal-trend decom-
position (STD)

An academic office and
a cinema theatre

Average of 94.68 %

Candanedo et al. (2017
a-b)

Temperature, humid-
ity, humidity ratio,
CO2 and light time
series data

Hidden Markov Models
(HMM)

Low energy residential
building

Max. 90.24 %

Chen et al. (2016) CO2, humidity, tem-
perature and pressure
levels

Support vector ma-
chine (SVM), artificial
neural network (ANN),
k-nearest neighbors
(KNN), linear discrim-
inant analysis (LDA)
and classification
and regression tree
(CART)

Office buildings Around 93 %

D’Oca and Hong
(2015)

Occupancy schedules
data

Decision tree and clus-
ter analysis

16 offices Max. 90.53 %

Kampezidou et al.
(2021)

CO2 and temperature Physics-Informed
Pattern-Recognition
Machine

Different types of
buildings

Max. 97 %

Kim et al. (2019b) Temperature, illumi-
nance, lighting power,
occupancy status,
relative humidity,
CO2, EHP energy con-
sumption, PC energy
consumption

Classification and re-
gression tree (CART)
and Support Vector
Machine (SVM)

1 private office space Average of 95 %

Vanus et al. (2019) Relative humidity,
temperature, and CO2

Linear Regression,
Neural Networks, and
Random Tree

A laboratory Higher than 90 %

Continued on next page



Table A.6 – continued from previous page
Type of detected activities / events References Sensors Algorithm / Method Environment Accuracy

Yang et al. (2014) Twelve ambient sen-
sor variables (tempera-
ture, CO2, door status,
light, etc.)

Support vector ma-
chine (SVM), k-nearest
neighbors (k-NN),
artificial neural net-
work (ANN), naive
Bayesian, tree aug-
mented naive Bayesian
network, Decision tree

Different types of
buildings

Range 69.2-92.6 %

Occupancy number

Apostolo et al. (2021) 28 Wi-Fi Apps Multilayer Perceptron
ANN

5 floors of classrooms RMSPE of 0.29

Arora et al. (2015) Power consumption,
Motion detector, CO2,
Door contact, Window
contact, Indoor tem-
perature

Decision Tree Office buildings Average estimation er-
ror of 0.47 occupants

Salimi et al. (2019) Real-Time Locating
System

Inhomogeneous
Markov chain

A research laboratory 86% on average

Sharma et al. (2021) Wireless communi-
cation, ambient RF
sensing

CNN Residential building 82% real occupancy
number

Tang et al. (2020) Passive Wi-Fi Radar
(PWR)

CNN Office building Max. 98.14%

Wang et al. (2018a) WiFi probes Markov based feedback
recurrent neural net-
work (M-FRNN)

Graduate student office Max. 93.9%

Wang et al. (2018c) Three data sources, in-
cluding environmental
data, Wi-Fi data, and
fused data

k-nearest neighbors
(kNN), support vector
machine (SVM), and
artificial neural net-
work (ANN)

Graduate student office ANN works best for en-
vironmental data and
fused data, SVM works
best for Wi-Fi data

Wang et al. (2019a) Wi-Fi probes and in-
door air temperature,
relative humidity, and
airflow rate

Gradient tree boosting,
Random forests, Ad-
aBoost

A large office room, 200
m2

Max. 72.7%

Continued on next page



Table A.6 – continued from previous page
Type of detected activities / events References Sensors Algorithm / Method Environment Accuracy

Zou et al. (2018b) WiFi-enabled IoT de-
vices

Deep learning-based
human activity recog-
nition scheme (Deep-
hare)

Conference room, of-
fice, and apartment

Max. 97.6%

Occupancy activities

Fang and Hu (2014) Smart phones Back Propagation
(BP) neural network,
Naïve Bayes (NB)
classifier and Hidden
Markov Model (HMM)

Residential building BP neural network
more accurate

Huchuk et al. (2019) Temperature and PIR
sensors

Markov model (MM),
HMM, and RNN

Single family homes Under 80 % average

Lee et al. (2017) Smart phones One-dimensional Con-
volutional neural net-
work

Residential building Max. 92.71%

Lu et al. (2020b) Social networks Random Forest and
XGBoost

A public museum RMSE within 30%

Tien et al. (2021) Camera CNN Office space Average of 92.2%



A.7 Strengths and weakness of artificial intelligence
algorithms

The columns descriptions of Table A.7 on the strengths and weakness of artificial
intelligence algorithms, is explained below:

Main Features — Family: Statistical methods; Machine learning method; Deep learn-
ing method; Ensemble learning method; Decision Tree and Graphical-based
models.

— Primary usage: Classification; Regression; Detection; Time-series forecasting;
Probabilistic Reasoning; Data generation; etc.

— Main category: Supervised, semi-supervised, unsupervised or specific to time-
series.

Type of Data — Image data: for computer vision models that can capture spatial
patterns and extract relevant visual features.

— Sequential data: for sequence models that can capture temporal dependencies
and model long-term relationships.

— Text data: for Natural Language Processing models that can understand lan-
guage structure and relationships and can be used for tasks such as text clas-
sification, text generation, or machine translation.

— Anomaly detection data: for models that can learn to reconstruct normal data
and detect examples that deviate from the norm.

— Structured data: for structured data with well-defined features, that can handle
categorical and numerical variables and are often used in classification and
regression tasks.

Complexity — Basic or Simple Models: These are the simplest models that provide
a basic approximation of the relationships between variables.

— Intermediate Models: These models have slightly higher complexity and are
capable of capturing more complex relationships between input and output
variables.

— Advanced or Complex Models: These models are more sophisticated and are ca-
pable of representing non-linear relationships and complex interactions between
variables.

— Cutting-edge or Advanced Models: These are the most complex and power-
ful models, often utilizing deep architectures or advanced learning methods to

318



capture complex structures in the data.

Selected references: These articles were chosen from the literature consulted and se-
lected for their pedagogical quality, completeness, representativeness or originality.
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Table A.7 – Examples of models, with their main features, categories, type of data, complexity, strengths and weaknesses.

Models (alphabetical
order)

Main features and ap-
plications

Main category Best-suited
data type

Complexity Strengths Weaknesses Selected refer-
ences

Adaptive Boosting
(AdaBoost)

Ensemble learning
method for classifica-
tion and regression

Supervised Structured
data

Intermediate
models

1. Handling high-dimensional
data, 2. Mitigating overfitting,
3. Combining weak classifiers
into a strong one

1. Sensitive to noisy data and
outliers, 2. Potential model
complexity, 3. Longer training
time

Wang et al.
(2019a)

Artificial Neural Net-
work (ANN)

Deep learning method
for classification and
regression

Supervised Various data
types (can han-
dle structured,
sequential, and
image data)

Advanced or
complex mod-
els

1. Learning complex patterns,
2. Scalability to large datasets,
3. Handling various data types

1. Need for large amounts of la-
beled data, 2. Potential overfit-
ting, 3. Lack of interpretability

Oniga and Sütô
(2014), Zhang
et al.(2022b)

Auto-encoder (AE) Deep learning method
for dimensionality
reduction, feature ex-
traction (unsupervised
learning)

Semi-
supervised
or unsuper-
vised

Any type of
data (that can
be used for
representation
learning and
feature extrac-
tion)

Intermediate
models

1. Effective in learning com-
pressed representations or la-
tent features from input data,
2. Capturing meaningful repre-
sentations of complex patterns
and correlations in the data, 3.
Useful for denoising data and
removing redundancy

1. Reconstruction may not be
perfect, leading to some loss of
information, 2. Showing sensi-
tivity to hyperparameters and
architecture design choices, 3.
Requiring a large amount of
training data

Liu et al.
(2017)

Auto-encoder Long-
term Recurrent Con-
volutional Network
(ALRCN)

Deep learning method
for regression and
(anomaly) detection

Semi-
supervised

Sequential data Advanced or
complex mod-
els

1. Capturing long-term depen-
dencies, 2. Handling sequential
data, 3. Extracting hierarchical
features

1. Requiring a large amount of
training data, 2. Longer train-
ing time, 3. Potential overfit-
ting

Zou et al.
(2018c)

Autoregressive Inte-
grated Moving Average
(ARIMA)

Statistical method for
time series forecasting

Specific Sequential data Intermediate
models

1. Modeling time series data, 2.
Capturing trends and seasonal-
ity, 3. Providing interpretable
forecasts

1. Assumption of linear rela-
tionships, 2. Difficulty in han-
dling nonlinear data patterns,
3. Limited ability to capture
long-term dependencies

Newsham and
Birt (2010)

Bayesian Network
(BN)

Graphical-based mod-
els for classification
and probabilistic rea-
soning

Unsupervised Structured
data with
dependencies
between vari-
ables

Intermediate
models

1. Capturing probabilistic re-
lationships, 2. Handling uncer-
tainty, 3. Allowing for causal
reasoning

1. Requiring prior knowledge
for model specification, 2.
Computationally expensive, 3.
Sensitive to parameter estima-
tion

Amayri et al.
(2017)

Continued on next page



Table A.7 – Continued from previous page
Models (alphabetical
order)

Main features and ap-
plications

Main category Best-suited
data type

Complexity Strengths Weaknesses Selected refer-
ences

Classification and Re-
gression Trees (CART)

Decision tree for classi-
fication and regression

Supervised Structured
data with
categorical
and numerical
features

Basic or Simple
Models

1. Being interpretable, 2. Han-
dling both categorical and nu-
merical features, 3. Being non-
parametric

1. Prone to overfitting, 2. Lack
of robustness to small changes
in data, 3. Can create complex
trees

Chen et al.
(2016), Koklu
and Tutuncu
(2019)

Convolutional Neural
Network (CNN)

Deep learning method
for (image) classifica-
tion and (object) de-
tection

Unsupervised Image data Advanced or
complex Mod-
els

1. Capturing spatial patterns,
2. Translation-invariant, 3. Us-
ing hierarchical feature extrac-
tion

1. Requiring large amounts of
labeled data, 2. Computation-
ally expensive, 3. Lack of inter-
pretability

Bao et al.
(2021), Conti
et al. (2014)

Decision Tree (DT) Same as CART
Density-Based Spatial
Clustering of Applica-
tions with Noise (DB-
SCAN)

Clustering and outlier
detection

Unsupervised Structured
data with
spatial or
density-based
patterns

Basic or Simple
Models

1. Discovering clusters of arbi-
trary shape, 2. Robust to noise
and outliers, 3. Not requiring
the number of clusters as input

1. Sensitive to the choice of pa-
rameters, 2. Difficulty in han-
dling varying densities, 3. Not
suitable for high-dimensional
data

Novikova et al.
(2020), Yan et
al. (2016)

Extreme Gradient
Boosting (XGBoost)

Ensemble learning
method for classifica-
tion and regression

Unsupervised Structured
data with
numerical fea-
tures

Intermediate
Models

1. High predictive perfor-
mance, 2. Handling missing
data, 3. Effective feature selec-
tion

1. Requiring tuning of hyper-
parameters, 2. Longer training
time compared to simple mod-
els, 3. Lack of interpretability

Lu et al.
(2020b), Mo-
hammadabadi
et al. (2022)

Extreme learning
model (XLM)

Machine Learning
method for regression

Unsupervised Structured
data

Intermediate
Models

1. Fast training and inference,
2. Good generalization perfor-
mance, 3. Handling large-scale
datasets efficiently

1. Limited interpretability, 2.
Lack of fine-tuning options, 3.
May require careful parame-
ter tuning for optimal perfor-
mance

Huang et al.
(2006), Chen et
al. (2016)

Gaussian mixture
models (GMM)

Statistical methods for
clustering and density
estimation

Unsupervised Structured
data with
probabilistic
distributions

Intermediate
Models

1. Capturing complex data dis-
tributions, 2. Flexible cluster-
ing, 3. Handling mixed data
types

1. Sensitive to initialization, 2.
Prone to local optima, 3. Com-
putationally expensive

Xu et al. (2020)

Generative Adversarial
Network (GAN)

Deep learning method
for data generation and
unsupervised learning

Unsupervised Any type of
data

Cutting-edge
or Advanced
Models

1. Generating realistic syn-
thetic data, 2. Capturing com-
plex data distributions

1. Training instability, 2. Mode
collapse, 3. Challenging opti-
mization

Chen and Jiang
(2018), Chok-
witthaya et al.
(2019)

Continued on next page



Table A.7 – Continued from previous page
Models (alphabetical
order)

Main features and ap-
plications

Main category Best-suited
data type

Complexity Strengths Weaknesses Selected refer-
ences

Hidden Markov Model
(HMM)

Graphical-based mod-
els for sequential data
modeling and predic-
tion

Unsupervised Sequential data
with under-
lying hidden
states

Intermediate
Models

1. Capturing sequential depen-
dencies, 2. Handling proba-
bilistic modeling, 3. Handling
missing data

1. Assuming a fixed number of
hidden states, 2. Limited rep-
resentation power, 3. Sensitive
to initialization

Amayri et al.
(2017), Can-
danedo et al.
(2017b)

K-means Clustering and data
partitioning

Unsupervised Structured
data with
numerical fea-
tures

Basic or Simple
Models

1. Simple and fast, 2. Scales
well to large datasets, 3. Easy
interpretation of cluster cen-
troids

1. Requiring the number of
clusters as input, 2. Sensitive
to initialization, 3. Assuming
spherical clusters

Pan et al.
(2017), Prab-
hakaran et al.
(2022)

k-Nearest Neighbors
(k-NN)

Machine learning
method for classifica-
tion and regression

Unsupervised Any type of
data

Basic or Simple
Models

1. Handling multi-class prob-
lems, 2. Suitable for large, dy-
namic datasets, 3. Handling
noisy training data

1. Slower prediction for large
datasets, 2. Sensitive to ir-
relevant features, 3. Memory-
intensive

Soofi and Awan
(2017)

Linear Discriminant
Analysis (LDA)

Statistical methods for
dimensionality reduc-
tion and classification

Supervised Structured
data with cate-
gorical features

Basic or Simple
Models

1. Effective for multi-class
problems of categorical inputs,
2. Handling multicollinearity,
3. Relying on interpretable lin-
ear transformations

1. Assuming normality and
equal covariance matrices, 2.
Limited representation power
for complex data, 3. Prone to
overfitting with small sample
sizes

Chen et al.
(2016), Neale
et al. (2022)

Linear Regression Statistical methods for
regression and predic-
tion

Supervised Structured
data with
numerical fea-
tures

Basic or Simple
Models

1. Simple to comprehend and
describe, 2. Guaranteeing the
discovery of optimal weights, 3.
Providing insights into feature
importance and relationships

1. Incapable of handling non-
linear relationships, 2. Sensi-
tive to outliers, 3. Limited rep-
resentation power for complex
data patterns

Kim and Sre-
bric (2017),
Zheng et al.
(2019)

Logistic Regression Statistical methods for
(binary) classification
and probability estima-
tion

Supervised Structured
data with
numerical fea-
tures

Basic or Simple
Models

1. Interpretation of parame-
ters is possible, 2. Handling
categorical and numerical fea-
tures and providing probabilis-
tic outputs, 3. Regularization
can be applied to prevent over-
fitting

1. Incapable of handling non-
linear relationships, 2. Sensi-
tive to outliers, 3. Limited rep-
resentation power for complex
data patterns

Stazi et al.
(2017)

Continued on next page
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Main features and ap-
plications

Main category Best-suited
data type

Complexity Strengths Weaknesses Selected refer-
ences

Long Short-Term
Memory (LSTM)

Deep learning method
for sequential data
modeling and predic-
tion

Semi-
supervised

Sequential data
with long-term
dependencies

Advanced or
Complex Mod-
els

1. Capturing long-term depen-
dencies, 2. Handling variable-
length sequences, 3. Mitigating
the vanishing gradient problem

1. Expensive and prone to over-
fitting with small datasets, 2.
Showing challenging interpre-
tation of learned representa-
tions

Qolomany et
al. (2017)

Naïve Bayesian Classi-
fier (NBC)

Machine learning
method for classifica-
tion and probabilistic
modeling

Semi-
supervised

Structured
data with cate-
gorical features

Basic or Simple
Models

1. Fast training and prediction,
2. Handling high-dimensional
data, 3. Providing probabilistic
outputs

1. Assuming independence be-
tween features, 2. Limited rep-
resentation power for complex
dependencies, 3. Sensitive to ir-
relevant features

Fajilla et al.
(2021), Fang
and Hu (2014)

Principal Component
analysis (PCA)

Statistical method for
dimensionality reduc-
tion

Unsupervised Structured
data

Basic or Simple
Models

1. Offering to reduce noise
and redundancy in the data,
2. Improving computational ef-
ficiency and visualization, 3.
Preserving the original struc-
ture and relationships inherent
to the data

1. Assuming linear relation-
ships between variables, which
may limit its effectiveness in
capturing complex nonlinear
patterns, 2. Challenging to in-
terpret with a large number of
variables, 3. Sensitive to scal-
ing and normalization of the
data

Baird et al.
(2017), Dridi
et al. (2022)

Random Forest (RFo) Ensemble learning
method for classifica-
tion and regression

Supervised Structured
data with nu-
merical and
categorical
features

Intermediate
Models

1. Handling high-dimensional
data, 2. Robust to outliers, 3.
Providing feature importance
estimation

1. Less interpretable than deci-
sion trees, 2. Memory-intensive
for large forests, 3. Slower in-
ference compared to single de-
cision trees

Parzinger et al.
(2022), Wang
et al. (2019a)

Recurrent Neural Net-
work (RNN)

Deep learning method
for sequential data
modeling and predic-
tion

Semi-
supervised

Sequential data
with dependen-
cies

Intermediate
Models

1. Capturing sequential depen-
dencies, 2. Handling variable-
length sequences, 3. Support-
ing online learning

1. Vulnerable to vanishing/ex-
ploding gradients, 2. Challeng-
ing long-term memory reten-
tion, 3. Computationally ex-
pensive

Chalapathy
et al. (2021),
Huchuk et al.
(2019)

Rules-based methods Classification and
decision-making based
on predefined rules

Unsupervised Structured
data with
interpretable
rules

Basic or Simple
Models

1. Being Interpretable, 2. Pro-
viding fast inference, 3. Giving
explicit rule-based decision-
making

1. Limited representation
power for complex data pat-
terns, 2. Challenging in rule
discovery, 3. Limited adapt-
ability to unseen patterns

Aliero et
al. (2022),
Dorokhova et
al. (2020)

Continued on next page
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Main features and ap-
plications

Main category Best-suited
data type

Complexity Strengths Weaknesses Selected refer-
ences

Seasonal Autoregres-
sive Integrated Moving
Average (SARIMA)

Statistical method for
time series forecasting

Specific Time series
data with sea-
sonal patterns

Intermediate
Models

1. Capturing and modeling sea-
sonal patterns in time series, 2.
Providing a flexible framework
for incorporating autoregres-
sive, moving average, and dif-
ferencing components, 3. Han-
dling non-stationary time se-
ries by differencing operations

1. Requiring determining the
appropriate order of autore-
gressive (AR), integrated (I),
and moving average (MA), 2.
Assuming that the underlying
data follows a linear relation-
ship, 3. Struggling with irregu-
lar or highly volatile time series
data

Fang and
Lahdelma
(2016), Ngo et
al.

Seasonal Decomposi-
tion of Time Series
(SDTL)

Statistical methods for
time series decomposi-
tion and analysis

Specific Time series
data with
seasonal com-
ponents

Basic or Simple
Models

1. Separating time series into
trend, 2. Facilitating trend and
seasonality analysis

1. Assuming additive or mul-
tiplicative decomposition, 2.
Showing limited forecasting ca-
pabilities, 3. Being challenged
with irregular patterns

Arief-Ang et al.
(2018)

Shallow Neural Net-
work (SNN)

Deep learning method
for classification and
regression

Unsupervised Structured
data with
numerical fea-
tures

Intermediate
Models

1. Handling non-linear model-
ing, 2. Handling complex re-
lationships, 3. Faster training
compared to deeper architec-
tures

1. Limited representation
power for very complex data,
2. Vulnerable to overfitting, 3.
Requiring careful hyperparam-
eter tuning

Chalapathy
et al. (2021),
Manno et al.
(2022)

Spectral Clustering Machine learning
method for unsu-
pervised learning,
particularly clustering

Unsupervised Unlabeled data
or data with
no predefined
class labels

Intermediate
Models

1. Effective in clustering data
points based on their similar-
ity or affinity, even when the
clusters have complex shapes,
2. Handling nonlinear relation-
ships and capturing intricate
structures in the data, 3. Less
sensitivity to the shape and
size of clusters vs traditional
clustering algorithms

1. Requiring determining the
number of clusters in ad-
vance, which can be challeng-
ing, 2. Computationally ex-
pensive, especially for large
datasets, 3. Sensitivity to the
choice of affinity or similarity
measure

Ghaffar et al.
(2022), Yang et
al. (2017b)

Support Vector Ma-
chine (SVM)

Machine learning
method for classifica-
tion and regression

Supervised Structured
data with
numerical fea-
tures

Intermediate
Models

1. Effective for high-
dimensional data, 2. Robust
to outliers, 3. Working well
with small to medium-sized
datasets

1. Computationally expensive
for large datasets, 2. Sensitive
to hyperparameters, 3. Lim-
ited interpretability of learned
models

Kondratovich
et al. (2013),
Zuraimi et al.
(2017)

Continued on next page



Table A.7 – Continued from previous page
Models (alphabetical
order)

Main features and ap-
plications

Main category Best-suited
data type

Complexity Strengths Weaknesses Selected refer-
ences

Support Vector Re-
gression (SVR)

Machine learning
method for regression
and prediction

Supervised Structured
data with
numerical fea-
tures

Intermediate
Models

1. Effective for high-
dimensional data, 2. Handling
non-linear relationships, 3.
Robust to outliers

1. Computationally expensive
for large datasets, 2. Sensitive
to hyperparameters, 3. Lim-
ited interpretability of learned
models

Li and
Dong (2018),
Moradzadeh et
al. (2020)

t-Distributed Stochas-
tic Neighbor Embed-
ding (t-SNE)

Statistical method for
dimensionality reduc-
tion

Unsupervised High-
dimensional
structured
data

Intermediate
Models

1. Capturing both local and
global structure in the data,
2. Being effective in visualiz-
ing clusters, patterns, and re-
lationships, 3. Revealing com-
plex, nonlinear relationships

1. Being computationally ex-
pensive for large datasets, 2.
Requiring careful parameter
tuning for optimal results, 3.
Showing outcomes sensitive to
the initial configuration and
random seed

Kim and Cho
(2021)

Uniform Manifold Ap-
proximation and Pro-
jection (UMAP)

Statistical method for
(non-linear) dimen-
sionality reduction

Unsupervised
(or even semi-
supervised)

Any type of
data

Advanced or
Complex Mod-
els

1. Capturing non-linear rela-
tionships preserving complex
structures within the data, 2.
Highly scalable and handling
large datasets efficiently, 3.
Flexibility in terms of parame-
ter tuning and can be adapted
to various types of data and ap-
plications

1. Sensitive to the choice of
hyperparameters (number of
neighbors, minimum distance),
2. Lack of interpretability, 3.
May struggle to handle outliers
or anomalies in the data and
may affect the overall represen-
tation of the data

Khan et al.
(2023)

Variational Auto-
encoder (VAE)

Deep learning method
for data generation and
dimensionality reduc-
tion

Semi-
supervised
or unsuper-
vised

Any type of
data

Advanced or
Complex Mod-
els

1. Capturing latent represen-
tations, 2. Generating syn-
thetic data, 3. Handling high-
dimensional data

1. Being challenged by train-
ing dynamics, 2. Showing mode
collapse, 3. Less interpretabil-
ity compared to traditional
auto-encoders

Konstantakopoulos
et al. (2019),
Mendes et al.
(2023)



A.8 Current problems with the application of ma-
chine learning algorithms for occupancy activi-
ties and event detection
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Table A.8 – Some problems associated with the use of machine learning for classification and regression and examples of
methods most and least sensitive to the identified weaknesses.

Limitations Explanation and impact Most sensitive methods Less sensitive or able to miti-
gate limitation

Data scarcity The lack of data can be consid-
ered as one of the most penal-
izing limitations, as an insuffi-
cient number of learning exam-
ples can compromise the abil-
ity of models to generalize cor-
rectly.

e.g., ANN (it typically requires a
large labeled dataset to effectively
learn complex patterns and rep-
resentations. Training ANN from
scratch with limited data can
lead to poor generalization perfor-
mance).

e.g., Naïve Bayesian Classifier (it
relies on simplifying assumptions
of independence between variables
and still provides reasonable pre-
dictions by leveraging the informa-
tion available in the training data).

Overfitting Overlearning, or overfitting,
can lead to poor performance
on new data, as the model has
learned the specific details of
the training set too well with-
out generalizing properly. All
learning methods may be sub-
ject to overfitting if the models
are too complex for the amount
and quality of training data
available.

e.g., complex models such as Deep
NN (their high capacity and flex-
ibility make them prone to over-
fitting, however techniques such as
regularization, dropout, early stop-
ping, or reducing the number of
layers or neurons can help mitigate
overfitting).

Regularized regression methods,
such as Lasso regression used for
Bayesian Networks (they control
complexity of model and reduce
tendency to overfit the training
data).

Imbalanced data When the classes of events
are unbalanced, i.e., there are
many more examples of one
class than another, this can
lead to a bias in the perfor-
mance of the learning method,
favoring the majority class.

e.g., SVM (it aims to find an op-
timal hyperplane to separate dif-
ferent classes, however, when one
class significantly outnumbers the
others, it tends to prioritize the
majority class and may struggle
to accurately classify the minority
class).

e.g., Synthetic Minority Over-
sampling Technique - SMOTE
(oversampling technique that ad-
dresses the class imbalance prob-
lem by generating synthetic exam-
ples of the minority class).

Continued on next page



Table A.8 – Continued from previous page
Limitations Explanation and impact Most sensitive methods Less sensitive or able to miti-

gate limitation
Non-stationarity Real environments are often

dynamic and subject to tem-
poral changes. When the char-
acteristics of the data change
over time, the models may have
difficulty adapting to these
variations, which can lead to a
decline in performance.

Time-dependent models (e.g.,
ARIMA-SARIMA) (they assume
that the underlying time series
data exhibit stationarity, however,
many real-world time series exhibit
non-stationary behavior, charac-
terized by trends, seasonality, or
changing statistical properties).

e.g., RNN, such as LSTM (it cap-
tures temporal dependencies and
patterns in the data, making them
more robust to changes over time).

Sensitivity to parame-
ters

Learning methods often re-
quire parameter settings to op-
timize their performance. How-
ever, poor parameter selection
can lead to sub-optimal results
or even instability in predic-
tions.

e.g., SVM (it relies on tuning hy-
perparameters, such as the regu-
larization parameter (C) and the
kernel parameters, to find the opti-
mal decision boundary and whose
choice significantly influence its
performance and generalization).

e.g., Random Forest (the algorithm
aggregates the predictions of mul-
tiple individual trees, reducing the
impact of parameter variations in
each tree).

Interpretability Difficulty in interpreting mod-
els can be an important limita-
tion, especially if clear and un-
derstandable explanations are
needed to make decisions or
communicate results. Under-
standing how and why these
models make decisions can be
difficult, which may limit their
acceptance and use in some
sensitive applications.

e.g., CNN (it is highly complex
due to the lack of transparency in
their internal workings. The intri-
cate layers and connections make
it challenging to interpret how the
input data is transformed and how
decisions are made).

e.g., Decision trees (their hierarchi-
cal structure allows for clear visu-
alization and understanding of the
decision-making process).

Sensitivity to noise Real data may contain noise
or errors, which can affect the
performance of learning meth-
ods. Models may be sensitive
to outliers or measurement er-
rors, which can lead to incor-
rect predictions.

e.g., k-NN (it is a non-parametric
algorithm that classifies or pre-
dicts based on the similarity of in-
put data points to their neighbors,
thus, noisy data points that devi-
ate significantly from the underly-
ing patterns can lead to incorrect
classifications or predictions).

e.g. SVM (by adjusting its regular-
ization parameter, it can be tuned
to be more or less sensitive to indi-
vidual data points, including noisy
ones).

Continued on next page



Table A.8 – Continued from previous page
Limitations Explanation and impact Most sensitive methods Less sensitive or able to miti-

gate limitation
Need for labeled data Many learning methods require

annotated data, i.e., data la-
belled by human experts. Man-
ual annotation of data can
be costly and time-consuming,
limiting the availability of
large, annotated data sets.

e.g., logistic Regression methods
(they rely on modeling the re-
lationship between input features
and a binary outcome and it re-
quires a sufficient amount of la-
beled data).

e.g., GAN (the generator part
learns to capture the underlying
data distribution without relying
on explicit labels or annotations
and it is possible to generate syn-
thetic labeled data that can be
used to augment the limited anno-
tated data).

Missing data Missing data can lead to prob-
lems in learning, as important
information can be lost, re-
quiring imputation strategies
or missing data management
techniques.

e.g., GMM (it does not explic-
itly model missing data or pro-
vide mechanisms for imputation
and may struggle to accurately es-
timate the parameters and capture
the underlying patterns in the data
when faced with missing data).

e.g., Bayesian Networks (they en-
code prior knowledge and condi-
tional dependencies between vari-
ables using probability distribu-
tions and thus can estimate miss-
ing values by considering the ob-
served variables and their depen-
dencies).





Appendix B

ANNEX ON CHAPTER 5

B.1 Review of self-learning supervised method

The methods for self-supervised learning can be primarily categorized into three types,
1. Context based, 2. Temporal based, 3. Contrastive based

Self-supervised learning leverages the inherent context within the data to construct
pretext tasks. For instance, in the Natural language processing (NLP) domain, one of the
most important algorithms is Word2Vec (Mikolov et al.2015). This model mainly predicts
a central word based on surrounding words or predicts surrounding words based on a
central word within a sentence. In the domain of image processing, Carl et al.2015 used
a technique known as "Jigsaw" to design auxiliary tasks. In this approach, an image is
divided into nine segments, and the model is trained to predict the relative positions
of these segments, enhancing its semantic understanding. Subsequent works (Norozzi et
al.2016) have expanded this Jigsaw concept, introducing more complex or challenging
tasks. For example, an image is still divided into nine pieces but shuffled in one of 64
predefined orders. The model then learns to classify the shuffled sequence, requiring it to
grasp more intricate relative positional information. The insight gained from this work is
that stronger supervision, or harder auxiliary tasks, leads to better performance.

Deepak et al.2016 also used the inpainting technique, where a portion of an image
is randomly removed, and the model learns to predict the missing part based on the
remaining image. Only when the model truly understands the meaning represented by
this graph can it effectively complete it. This technique parallels the MASK LM training
approach used in BERT (Devlin et al.2019) for NLP, where random words are removed
from a sentence, and the model learns to predict them.

Zhang et al.2016 proposed a colorization tasks for the self-supervised learning. In
this case, a model is trained to predict the colors in a grayscale image. The model must
understand the semantic information in the image to color it appropriately, like making
the sky blue and the grass green. These color-prediction generative models have opened
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up new avenues in research, showing that any decoupled features can be used for mutual
supervision. The renowned Split-Brain Autoencoders (Zhang et al.2017) work on a similar
principle. They first divide the raw data into two parts and use information from one part
to predict the other, finally synthesizing the complete data. Unlike traditional encoders,
this prediction mechanism necessitates that the model genuinely understands the semantic
information in the data. Hence, it indirectly constrains the encoder to train beyond just
pixel-wise levels and to consider more semantic features. Next, we discuss self-supervised
contexts found through data augmentation techniques. Gidaris et al.2018 proposed a study
which involved taking an input image and rotating it at various angles; the model aims to
predict the degree of rotation which can be seen in Figure B.1. This straightforward idea
led to significant gains, highlighting the benefits of data augmentation in self-supervised
learning.

Figure B.1 – Figure rotation pretext

Most previously discussed methods focus on the sample itself, such as rotation, color,
and cropping. However, constraints also exist between samples. Here, we introduce self-
supervised learning methods that leverage temporal constraints. Video data best exem-
plifies temporality. One approach is frame-based similarity (Sermanet et al.2017), where
adjacent frames in a video are assumed to have similar features while those far apart do
not. The model is trained with such similar (positive) and dissimilar (negative) samples.
Another idea is unsupervised tracking (Wang et al.2015). In this method, object tracking
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frames are obtained from a large number of unlabeled videos. The features of an object in
different frames should be similar (positive), while those of different objects should be dis-
similar (negative). Beyond feature similarity, the sequential order in videos also serves as a
self-supervised cue. For instance, Misra et al.2016 proposed a method based on sequential
constraints. It uses both correct and incorrect video sequences as positive and negative
samples for training. Essentially, a model is designed to determine whether a given video
sequence is in the correct order. This sequence-based constraint has also been applied to
dialogue systems. Wu et al.2019 proposed a self-supervised dialogue learning model based
on this concept. The aim is to improve the coherence of generated dialogues, ensuring
that machine-generated responses align with prior conversational style and habits. The
model is trained to predict the correct sequence from a large corpus of historical data,
generating more coherent dialogues through adversarial training upon completion.

The third category of self-supervised learning methods is based on contrastive con-
straints, which build representations by learning to encode the similarity or dissimilarity
between two entities. Hjelm et al.2019 proposed a DIM algorithm. The core idea behind
DIM is to differentiate between global features (the final output of the encoder) and local
features (features from intermediate layers of the encoder). The model is trained to de-
termine whether the global and local features originate from the same image. Here, the
positive sample is the local feature from the same image, and the negative sample is the
local feature from a different image. This pioneering work has been adapted for other do-
mains, such as deep graphs (Velickovic et al.2018). Contrastive predictive coding (CPC)
is another contrastive-constraint-based self-supervised framework that can be applied to
any data form that can be represented in a sequential manner, such as text, speech, video,
or even images (which can be viewed as sequences of pixels or blocks). CPC primarily
employs an autoregressive approach to encode shared information between data points
separated by multiple time steps, where the positive sample is the input at a future time
t, and the negative sample is randomly sampled from other sequences. The main idea
behind CPC is to predict future data based on past information, and it’s trained through
sampling.

B.2 Estimation BN architecture

Before introducing the four groupes of BN structure (score-based, constraints based,
hybrid, and domain knowledge), we have to introduce the Bayesian Information Criterion
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(BIC) which is commonly used as a scoring function. BIC, also known as Schwarz criterion,
is an approximation of the Bayesian marginal likelihood of the data given the model. BIC
balances the goodness of fit of the model with its complexity by introducing a penalty
term proportional to the number of parameters in the model.

The BIC score for a BN is defined as follows:

BIC(G) = log P (D|G)− d

2 log N (B.1)

where:
— G is the graph (network structure)
— D is the data
— P (D|G) is the likelihood of the data given the graph
— d is the number of independent parameters in the model
— N is the number of data points (sample size)
The likelihood term, log P (D|G), measures the goodness of fit of the model to the

data, while the penalty term, d
2 log N , discourages overly complex models. The objective

is to find a network structure that maximizes the BIC score.

B.2.1 Score based structure estimation

For the Score-based structure estimation, Hill Climbing starts with an initial network
structure and iteratively refines the structure by performing local operations, such as
adding, deleting, or reversing edges, to optimize a scoring function. The algorithm ter-
minates when no further improvement can be made or a predefined stopping criterion is
met. The limitation of the hill climbing method is that it can be stuck in the optima, and
it can be computationally expensive, especially when the search space is large.

The Hill Climbing algorithm for BN structure estimation can be described as follows:

1. Initialize a network structure, G0.

2. Repeat until a stopping criterion (The algorithm stops when no modification leads
to a better BIC score than the current network) is met:

(a) For each possible modification (add, delete, or reverse an edge) of the current
network structure, Gt, compute the BIC score of the resulting network, Gt+1.

(b) Choose the modification that results in the highest BIC score.
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(c) If the highest BIC score of the modified networks is greater than the BIC score
of the current network, Gt, update the current network to the modified network
with the highest BIC score, Gt+1.

(d) Otherwise, terminate the algorithm.

Tabu search is another Score-based structure estimation that can be used for esti-
mating the structure of BNs. It is a global search method that aims to overcome the
limitations of local search algorithms, such as Hill Climbing, which can get stuck in local
optima. Tabu search employs a memory structure called a tabu list to guide the search
process and prevent revisiting recently explored solutions.

The Tabu search algorithm for BN structure estimation can be described as follows:

1. Initialize a network structure, G0, and an empty tabu list, T .

2. Set the best solution found so far, Gbest, to the initial network structure, G0.

3. Repeat until a stopping criterion (The algorithm stops if there has been no im-
provement in the best solution found so far, Gbest, for a predefined number of
iterations) is met:
(a) Generate a set of candidate network structures, C, by applying all possible

single modifications (add, delete, or reverse an edge) to the current network
structure, Gt, subject to the constraint that no modification results in a network
structure in the tabu list, T .

(b) Choose the candidate network structure, Gt+1, with the highest score according
to a scoring function (e.g., BIC) from the set C.

(c) If the score of Gt+1 is higher than the score of Gbest, update Gbest to Gt+1.
(d) Update the tabu list, T , by adding the reverse modification applied to obtain

Gt+1 from Gt, and removing the oldest modification if the size of T exceeds a
predefined maximum size, Tmax.

(e) Set the current network structure, Gt, to the chosen candidate network struc-
ture, Gt+1.

The Chow-Liu algorithm is another Score-based structure estimation for estimating the
structure of a BN that uses a tree-structured network to maximize the mutual information
between variables. The Chow-Liu algorithm aims to find the best tree-structured BN
that approximates the joint distribution of the data. This is achieved by minimizing
the Kullback-Leibler (KL) divergence between the true joint distribution and the one
represented by the tree-structured BN.
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The Chow-Liu algorithm can be described as following steps:

1. Calculate the mutual information I(Xi; Xj) for all pairs of variables (Xi, Xj) in
the dataset.

2. Create a complete graph with the variables as nodes and the mutual information
between pairs of variables as edge weights.

3. Find the maximum spanning tree (MST) of the complete graph using an algorithm
such as Kruskal’s or Prim’s algorithm. This tree will represent the optimal tree-
structured BN.

For the mutual information, the mutual information between two variables Xi and Xj

is a measure of the dependency between the variables and is defined as follows:

I(Xi; Xj) =
∑

xi∈Xi

∑
xj∈Xj

P (xi, xj) log P (xi, xj)
P (xi)P (xj)

(B.2)

where Xi and Xj are the domains of the variables Xi and Xj, respectively, and P (xi, xj)
is the joint probability distribution of Xi and Xj. The mutual information is non-negative
and symmetric, i.e., I(Xi; Xj) = I(Xj; Xi).

A spanning tree of an undirected graph is a subgraph that includes all the vertices and
is a tree. The MST is a spanning tree with the maximum possible sum of edge weights.
The MST can be found using algorithms such as Kruskal’s or Prim’s algorithm. The
MST of the complete graph created in the Chow-Liu algorithm represents the optimal
tree-structured BN.
Score-based structure estimation of the BN is a method that relies on a scoring function
to evaluate how well the network structure fits the data. These algorithms have some
advantages, such as handle large and complex data sets, as it does not require conditional
independence tests for each variable pair, and it can avoid ambiguity, as it can select a
unique network structure that has the highest score among the equivalent ones. Also, It
can incorporate prior knowledge, such as Bayesian priors, to influence the scoring function
and the search algorithm. But, they alsi have some drawbacks, such as it can be biased
by the choice of the scoring function, and it can be trapped in local optima, as it depends
on the quality of the search algorithm and the initial network structure.
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B.2.2 Constraint-based structure estimation

Constraint-based structure learning is a method for learning the structure of BNs
from data. The key idea behind this approach is to identify conditional independence re-
lationships in the data and construct a directed acyclic graph (DAG) based on these
relationships. Because BN is a probabilistic graphical model that represents a set of
variables and their conditional dependencies via a directed acyclic graph (DAG). Let
X1, X2, . . . , Xn be a set of random variables. A BN B is a pair (G, P ), where G is a
DAG with nodes corresponding to the variables X1, X2, . . . , Xn, and P is a set of con-
ditional probability distributions associated with each variable given its parents in the
graph. Then, Constraint-based structure learning starts by identifying (conditional) in-
dependence relationships in the data using hypothesis tests. For this purpose, we use the
chi-squared test for conditional independence. The test statistic is defined as:

χ2 = N
∑
i,j,k

(Oijk − Eijk)2

Eijk

(B.3)

where N is the number of samples, Oijk is the observed frequency of the combination
of variable values i, j, and k, and Eijk is the expected frequency under the null hypothesis
of independence.

The Peter-Clark (PC) algorithm is the method that we tried in here, PC algorithm
is a popular constraint-based structure learning algorithm that proceeds in two phases:
skeleton identification and orientation of edges. The algorithm can be summarized as
follows:

1. Initialize the undirected graph with nodes corresponding to variables and fully
connected edges.

2. For each pair of variables Xi and Xj and increasing conditioning set size k =
0, 1, . . . , K:

(a) If there exists a conditioning set Z of size k such that Xi ⊥ Xj |Z, remove the
edge between Xi and Xj.

3. For each pair of non-adjacent variables Xi and Xj:

(a) If there exists an intermediate variable Xk such that Xi → Xk → Xj, orient
the undirected edges as Xi → Xk and Xk → Xj.

4. Return the resulting DAG.
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constraint-based algorithms are based on conditional independence tests to infer the net-
work structure from the data. These algorithms have some advantages, such as capturing
the causal relationships among the variables, handling missing values and continuous vari-
ables, and incorporating prior knowledge. However, they also have some drawbacks, such
as being sensitive to errors in the conditional independence tests, being computationally
expensive, and being ambiguous.

B.2.3 Hybrid structure estimation

Max-Min Hill-Climbing (MMHC) is a hybrid algorithm for learning the structure of
BNs. It combines the strengths of constraint-based and score-based approaches. MMHC
consists of two main phases: the first phase is a constraint-based phase, where the algo-
rithm identifies a skeleton of the network by applying the max-min parents and children
(MMPC) algorithm; the second phase is a score-based phase, where the algorithm refines
the structure using a greedy hill-climbing algorithm. The MMHC algorithm is known for
its ability to efficiently learn the structure of BNs, even when the number of variables is
large.

The MMPC algorithm aims to find the Markov blanket of each variable, which includes
its parents, children, and children’s other parents. The algorithm operates in two stages,
a forward search and a backward elimination. Given a variable X, the algorithm starts
with an empty set of candidate parents and children, denoted as PC(X).

1. Forward search: In this stage, the algorithm iteratively adds variables to the
PC(X) set based on the conditional mutual information I(X; Y |Z), where Y is
a candidate variable and Z is a subset of already included variables in PC(X).
The algorithm stops adding variables when no further significant dependencies are
detected.

2. Backward elimination: In the second stage, the algorithm tests the variables
already included in PC(X) for conditional independence, given the other variables
in PC(X). If a variable is found to be conditionally independent, it is removed
from the set. This process continues until all remaining variables in PC(X) are
conditionally dependent on X given the others.

After obtaining the skeleton of the network using the MMPC algorithm, the MMHC
algorithm refines the structure using a greedy hill-climbing search. This search aims to
maximize the score of the BN structure. The BN structure score is given by:
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S(G) =
n∑

i=1
Si(Pai(G)), (B.4)

where G represents the network structure, n is the number of variables, Pai(G) is the
set of parents of variable i in the structure G, and Si is the score of variable i given its
parent set.

The hill-climbing search starts with an initial structure and iteratively modifies it
by applying local operations, such as adding, deleting, or reversing an edge. The search
continues until no operation can improve the structure score or a predefined stopping
criterion is reached. The following local search operations are considered in MMHC:

1. Addition: Adding an edge between two variables if it is not already present and
does not introduce a cycle.

2. Deletion: Deleting an existing edge between two variables.

3. Reversal: Reversing the direction of an existing edge, if the new edge direction
does not introduce a cycle.

The MMHC algorithm can be summarized as follows:

1. For each variable X, apply the MMPC algorithm to find its Markov blanket
MB(X).

2. Construct an initial network structure by connecting variables in each Markov
blanket, avoiding cycles.

3. Refine the initial network structure using a hill-climbing search to maximize the
BN structure score.

MMHC is a popular algorithm for learning BN structures due to its efficiency and
scalability. It combines the advantages of constraint-based and score-based methods, pro-
viding a powerful approach for structure learning in complex domains. Such as it can
reduce the computational cost, as it uses conditional independence tests only for the
Markov blanket of each variable, rather than for all variable pairs. And,it can improve
the accuracy, as it uses both conditional independence tests and scoring functions to infer
the network structure. It also can avoid local optima, as it uses a tabu list to prevent
revisiting previous network structures.
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B.2.4 Domain knowledge

Domain knowledge in BN structure estimation refers to the use of expert knowledge
or information about the relationships between variables to guide the construction of
the network, so we have to understand of the causal or influential relationships among
variables. Firstly, we need list all the variables that are relevant to the problem which
we are trying to model, these variables will be the nodes in the BN. Secondly, we need
determine the scope of the model, the scope will guide you in establishing the relationships
among variables. Based on your domain knowledge, identify which variables have direct
causal relationships or strong correlations. For example, window status will likely influence
indoor temperature. Then, we need create an initial network structure by drawing arrows
from "parent nodes to "child nodes", the terms "parent nodes" and "child nodes" are used
to describe the relationships between variables. Specifically, a parent node is a variable
that directly influences another variable, and the influenced variable is called the "child
node." In terms of conditional probabilities, the parent nodes are the conditions given
which the child node’s probability is defined. In the graphical representation of a BN, an
arrow points from the parent node to the child node to signify this causal or influential
relationship. Once the network is built with these relationships in place, we can perform
probabilistic inference to find the conditional probabilities of interest.

B.3 CPD parameters learning methods

B.3.1 Maximum Likelihood Estimation (MLE)

MLE is a frequentist approach to estimate the parameters of a model. The main idea
behind MLE is to find the parameter values that maximize the likelihood function. The
likelihood function measures how likely it is to observe the given data under the chosen
parameter values. Mathematically, given a set of observed data D = {x1, x2, . . . , xn} and
a parameterized model with parameters θ, the likelihood function is defined as:

L(θ | D) = P(D | θ) ∝
∏

xi∈D

θxi|pa(xi) (B.5)

The Maximum Likelihood Estimate θ̂MLE is the value of θ that maximizes the likeli-
hood function:
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θ̂MLE = arg max
θ

L(θ|D) (B.6)

MLE has the advantages such as being relatively simple to compute and often having
good asymptotic properties. It does not require prior knowledge about the parameter
values, but it is also sensitive to the choice of the likelihood function. It can sometimes
produce biased estimates for small sample sizes. It does not provide a full probability
distribution over the parameter values; it only gives point estimates.

B.3.2 Bayesian Estimation

Bayesian Estimation is a probabilistic approach to estimate the parameters of a model.
In contrast to MLE, Bayesian Estimation incorporates prior knowledge or belief about the
parameter values in the form of a prior distribution. The prior distribution is combined
with the likelihood function using Bayes’ theorem to compute the posterior distribution
over the parameter values:

P (θ|D) = P (D|θ)P (θ)
P (D) (B.7)

where P (θ|D) represent the posterior distribution of the parameters θ, given the ob-
served data D, P (D|θ) describes, as previously written, the likelihood function describing
the probability of observing the data D, given the parameters θ, P (θ) is the prior distri-
bution representing our initial beliefs about the parameters θ.

P (D) is the marginal likelihood or evidence, which is the probability of observing the
data D regardless of the parameters θ. It serves as a normalization constant to ensure
that the posterior distribution integrates to 1. The posterior distribution represents the
updated beliefs about the parameter values after observing the data. The likelihood func-
tion P (D|θ) is modeled using the Multinomial distribution. The prior distribution P (θ)
is modeled using the Dirichlet distribution. In our case study,even though window status
and occupancy are binary (simulated case), their relationships with other variables like
’Electricity’, ’Cooling’, ’Solar’, etc. in the Bayesian network (which have multiple states)
lead the choice of a Multinomial distribution, especially when considering joint or con-
ditional probabilities. As the Dirichlet distribution serves as the conjugate prior for the
Multinomial distribution, simplifying the Bayesian updating process.

Bayesian estimation can provide a full probability distribution over the parameter
values, allowing for uncertainty quantification. Additionally, it allows incorporating prior
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knowledge or belief about the parameter values, which can lead to more robust estimates
in cases where MLE might be sensitive to the choice of the likelihood function or when
dealing with small sample sizes. However, Bayesian Estimation can be computationally
expensive, particularly for high-dimensional models or complex likelihood functions. And
the choice of prior distribution can have a significant impact on the posterior distribution,
which might be undesirable in some situations. In some cases, the choice of an appropriate
prior might be subjective or unclear, leading to potential biases in the estimation.

If we set the amount of prior information, expressed as the effective or “equivalent”
sample size (ESS), to a value, say M , we can interpret this as if we have seen M virtual
observations from the prior distribution that conform perfectly to our prior beliefs. In the
case of the Dirichlet-Multinomial conjugate prior, the ESS prior is the sum of the αI|s,w

parameters for each combination of ′S ′ and ′W ′. For example, the CPD of ’I’ (Indoor tem-
perature) given ’S’ (Solar gain) and ’W’ (windows), the multinomial likelihood function
for the observed data is given by:

L
(
θI|S,W | X

)
=

S∏
s=1

W∏
w=1

C∏
I=1

θ
nI|s,w

I|s,w (B.8)

Where S, W , and I are the number of discrete bins for solar gain, windows, and indoor
temperature, respectively. nI|s,w is the observed count of indoor temperature = I when
solar gain = s and windows = w.

The Dirichlet distribution is the conjugate prior for the multinomial distribution and
is given by:

P
(
θI|S,W | α

)
= 1

Z(α)

S∏
s=1

W∏
w=1

C∏
I=1

θ
αI|s,w−1
I|s,w (B.9)

Where αI|s,w are the parameters of the Dirichlet distribution, and Z(α) is a normalization
constant.

Using Bayes’ theorem, the posterior distribution of θI|S,W is also a Dirichlet distribu-
tion:

P
(
θI|S,W | X, α

)
∝

S∏
s=1

W∏
w=1

C∏
I=1

θ
nIs,w+αI|s,w−1
I|s,w (B.10)

By increasing the ESS prior value, we are giving more weight to your prior beliefs,
and the updated estimates of θI|S,W will be pulled closer to the prior beliefs.

When we set the ESS prior to a large value, we inform the Bayesian estimation process
that we hold strong prior beliefs, and that these beliefs should carry more weight when
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estimating the CPDs’ parameters. In other words, the estimation process will rely more on
the prior information and less on the actual data when updating the CPDs’ parameters.

In the simulation study, the dataset was was judiciously split into training and test
sets. Specifically, 75% was allocated for training, while the remaining 25% was designated
for testing. In our Bayesian estimation framework, we employed the "BDeu" (Bayesian
Dirichlet equivalent uniform) as our prior type. This choice represents a non-informative
prior, suggesting that before any data observation, all potential outcomes or states of our
variables are perceived with equal likelihood. The equivalent sample size (ESS) of this prior
is set at 10. Practically, this can be conceived as introducing 10 pseudo-observations that
perfectly align with a uniform belief. The likelihood distribution is formulated based on the
observed data. The structural design of our Bayesian network specifies the inter-variable
relationships, and we estimate the conditional probability distributions (CPDs). These
CPDs encapsulate the likelihoods. For instance, the likelihood of registering a specific
"Occupancy" state, given the states of other variables, is inherently captured in its CPD.

The Figure B.2 shows the prior distribution of the varibale occupancy when employing
the "BDeu" (Bayesian Dirichlet equivalent uniform) prior with an ESS of 10.

The Beta distribution, characterized by parameters α = β = 5 (half of the ESS),
exhibits symmetry around 0.5. This implies that, in the absence of any observed data,
the assumption is that both states (e.g., Occupancy = 0 or 1) are equally probable. This
is evident from the distribution’s peak at 0.5. The peak’s density value is influenced by
the shape parameters α and β.

This visualization elucidates that prior to any data observation, the inherent belief is an
equal likelihood of either state (e.g., the room being occupied or vacant). This represents a
non-informative or weakly informative prior, indicating an absence of strong prior beliefs
about the probability of either state. As data is acquired and beliefs are updated, the
posterior distribution may undergo shifts based on the observed data. However, the prior
commences from this neutral stance.

B.4 Application of the BN to the real case study

B.4.1 Bayesian network architecture for real case

The BN network for the simulation case study was provided in Chapter 5. In this
annex, it is shown for the real case study. The variables for the real case study as below,
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Figure B.2 – prior distribution of a variable

— W: Window status (0, 1, 2, 4)
— c: CO2 level
— O: TVOC level
— S: Temperature
— H: Humidity
— I: Light intensity
— Ou: Sound level
— Oi: Outdoor weather

Based on the domain knowledge, BN structure for real data can be given as follow,
The real case BN can be written as FigureB.3

B.4.2 Joint Probability Distribution in BNs in real case

Using the real case study BN structure, we can compute the joint probability of a
specific assignment, say P (W = w, c = c, O = o, S = s, H = h, I = i, Ou = u, Oi = l).
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Figure B.3 – BN structure of the real case study

Following the steps outlined above:

1. Assign values: W=w, c=c, O=o, S=s, H=h, I=i, Ou=u, Oi=l

2. Look up the corresponding conditional probabilities for each node given the values
of its parents:
— P (W = w)
— P (c = c|W = w)
— P (O = o|W = w, c = c)
— P (S = s|W = w, Oi = l)
— P (H = h|W = w, Oi = l)
— P (I = i|S = s)
— P (Ou = u|c = c)
— P (Oi = l|W = w)

3. Multiply the conditional probabilities obtained in step 2:
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P (W = w, c = c, O = o, S = s, H = h, I = i, Ou = u, Oi = l)

= P (W = w) · P (c = c|W = w) · P (O = o|W = w, c = c)

·P (S = s|W = w, Oi = l) · P (H = h|W = w, Oi = l)

·P (I = i|S = s) · P (Ou = u|c = c)

·P (Oi = l|W = w)

(B.11)

The result of this computation is the joint probability of the specific assignment of
values W = w, c = c, O = o, S = s, H = h, I = i, Ou = u, Oi = l in the BN. By following
the steps outlined above, we can compute the joint probability of any specific assignment
of values to the variables in the network. This joint probability distribution forms the
basis for performing inference tasks in BNs, such as computing conditional probabilities
and making predictions based on observed evidence.

B.4.3 Variable elimination real case

Using the real case BN as an example, the network structure is recalled in here: With
the discretized data of each variables as follows:

— Windows (W): 0, 1, 2, 3,4
— CO2 (c): A, B, C, D
— TVOC (O): A, B, C, D
— Temperature (S): A, B, C, D
— Humidity (H): A, B, C, D
— Light (I): A, B, C, D
— Sound (Ou): A, B, C, D
— Weather (Oi): A, B, C, D
Suppose we want to compute the probability distribution of the window status (W)

given the following evidence:

c = A, O = B, S = C, H = D, I = A, Ou = B, Oi = C (B.12)

We can use the Variable Elimination algorithm to compute the conditional probability
distribution P (W |c = A, O = B, S = C, H = D, I = A, Ou = B, Oi = C). In this case,
our query variable is W, and the evidence variables are c, O, S, H, I, Ou, and Oi.

For the elimination order, we can choose the following ordering: Ou, I, H, S, O, c, Oi.
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Now, we will eliminate each variable according to this order:
— Eliminate Ou: Compute the factor ϕOu(c) = ∑

Ou P (Ou|c), and sum out Ou.
— Eliminate I: Compute the factor ϕI(S) = ∑

I P (I|S), and sum out I.
— Eliminate H: Compute the factor ϕH(W, Oi) = ∑

H P (H|W, Oi), and sum out H.
— Eliminate S: Compute the factor ϕS(W, Oi, c) = ∑

S P (S|W, Oi)P (c|S), and sum
out S.

— Eliminate O: Compute the factor ϕO(c) = ∑
O P (O|c), and sum out O.

— Eliminate c: Compute the factor ϕc(W, Oi) = ∑
c P (c|W )ϕO(c)ϕOu(c), and sum out

c.
— Eliminate Oi: Compute the factor ϕOi(W ) = ∑

Oi P (Oi|W )ϕH(W, Oi)ϕS(W, Oi, c),
and sum out Oi.

Now, we have obtained the factor ϕOi(W ), which represents the unnormalized probability
distribution of the window status (W) given the evidence. To normalize the distribution,
we can compute the following:

P (W |c = A, O = B, S = C, H = D, I = A, Ou = B, Oi = C) = ϕOi(W )∑
W ϕOi(W ) (B.13)

This gives us the conditional probability distribution of the window status given the
observed evidence.

B.5 RCA heuristic search algorithms

The principle of the two most significant RCA types found in the literature are detailled
in the following section.

B.5.1 Adtributor

Ranjita et al.(2014) proposed the Adtributor algorithm. The application scenario of
the article is the anomaly analysis of advertising revenue. Adtributor assumes that the root
cause can be only one attribute that is wrong, which greatly simplifies the problem, but
obviously does not cover the actual needs. Adtributor used the auto-regressive and moving
average model (ARMA) model for key performance indicators (KPIprediction. What is
important to note here is that KPI as indicator can be divided into two types. Classic KPI
with additive quantities such as number of successes, and derived KPI which derived from
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classic KPI such as success rate. Meanwhile, Adtributor proposes two metrics to evaluate
the combination of attributes. It proposes explanatory power which can defined as the
percentage of change in the overall value of the measure that is explained by change in
the given element’s value. The equation shows below:

EPij = (Aij(m)− Fij(m)) /(A(m)− F (m)) (B.14)

In the equation,Aij(m) and Fij(m) are the actual and predicted value for an element j

in dimension i separately. A(m) and F (m) are the actual and predicted total number of
searches separately.

Then based on the Jensen-Shannon divergence, the author proposed the surprise which
can be defined as a dimension that has large change in its distribution that is more likely
to be a root-cause than the dimension that does not exhibit such a change. The equation
is given in the following:

For the element Eij, the pij is denoted as the forecasted or prior probability value

pij(m) = Fij(m)/F (m), ∀Eij (B.15)

The qij is denoted as the actual or posterior probability value

qij(m) = Aij(m)/A(m), ∀Eij (B.16)

Then the difference of two distribution is measured by Jensen-Shannon divergence DJS,
which is a number between 0 and 1: 0 ≤ DJS ≤ 1, meaning the two distributions are the
same, the larger the value the greater the difference.

DJS(P, Q) = 0.5
(

Σipi log 2pi

pi + qi

+ Σiqi log 2qi

pi + qi

)
(B.17)

Then the surprise of Sij of Eij is computed as following:

Sij(m) = 0.5 ∗
(

plog 2p
p + q + q log 2q

p + q

)
(B.18)

Author used these two metrics to quantify the definition of the root cause. Finally, the
algorithm ranks the dimensions by calculating the dimensional surprise (the sum of the
surprise of all elements within the dimension) and determines the dimension in which
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the root cause is located. The explanatory power of each element is calculated within
the dimension, and when the sum of the explanatory powers of the elements exceeds a
threshold, these elements are considered root causes.

In addition, Adtributor’s root cause analysis relies heavily on the overall KPI changes.
It does not perform well for data with little overall change, but it is convenient for more
drastic internal fluctuations. It is not very suitable for KPIs of derived categories.

Adtributor first introduced explanatory power and surprise, which makes root causes
quantifiable and has strong implications. The assumption of limiting the root cause to one
dimension also greatly simplifies the complexity of the problem, but such an assumption
does not quite fit our actual scenario, and it is not entirely reasonable to measure the root
cause by the magnitude of the explanatory power and surprise.

Beside the Adtributor, Linnea et al.(2018) proposed the Recursice adtributor. Recur-
sive adtributor is mainly designed to solve the problem of unreasonable assumptions of
adtributor. The basic idea is to recursively use the adtributor, and in each dimension,
the adtributor will return a root cause attribute and the corresponding value. The al-
gorithm will recursively invoke the adtributor on the next selected dimension to obtain
the following root cause attributes and corresponding values until finally obtaining the
values of all dimensions. Lin et al. 2016 proposed the iDice which is an algorithm designed
to identify the root cause of anomalies in multi-dimensional time series data, such as a
sudden increase in issue reports for software systems. The algorithm employs sequentially
three pruning steps: impact-based pruning, change detection-based pruning, and isola-
tion power-based pruning. These steps reduce the search space and focus on significant
attribute combinations. Finally, iDice ranks potential root causes using a score similar to
the Fisher distance. While iDice effectively utilizes time series data and proposes a root
cause evaluation metric, it may not significantly reduce complexity and could miss real
root causes in some KPIs, particularly derived ones like success rate.

Li et al.(2019) proposed the squeeze which extends the Hotspot algorithm with a gen-
eralized ripple effect, making it applicable to both basic and derived KPIs. The algorithm
employs heuristic strategies to accelerate the root cause search process while maintaining
performance, clustering fine-grained attribute combinations, and identifying anomalous
KPIs corresponding to the root cause.
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B.5.2 Hotspot

Before introducing the Hotspot, some terms have been defined in the table B.1 for
clear understanding.
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Table B.1 – Definitions and Notations

Term Definition Notation Example
Attributes The categories of the informa-

tion of each sensor record
- Temperature(T), Outside

Temperature(C), ...
Attributes values The candidate values of each

attribute
- {20℃,21℃,23℃,etc.} for

Temperature
Element A combination vector of dis-

tinct values of each attribute
e=(t,c,n,l,h) (20℃,*,*,*,*), (*,4kwh,*,*,*),

(20℃,4kwh,*,*,*)
Value number Heat consumption as KPI V(e_i)
Forecast value number Forecast heat consumption as

KPI
f(e_i)

Data cube A data structure of multi-
dimensional data

n-d cube A 4-d data cube with the di-
mensions {OU,N,S,E}

Cuboids A cuboid is a data cube whose
dimensions are in a subset of
all dimensions

B_i (B_ou B_s B_N B_E)

Potential score A concept of measuring the
potential of a set of elements
to be the root cause

ps



Sun et al.(2017) proposed the Hotspot algorithm. The application scenario in their
article is web page views. The article uses the difference between the actual and predicted
values of web page views to determine the anomaly and then further locates the dimen-
sion where the anomaly occurs. In the article, it uses four main dimensions: province,
operator, data center, and channel. Hotspot and Adtributor use the same strategy, which
is prediction plus search, to propose a root cause determination method based on ripple
effect for basic additive types of KPI (page view, transaction volume, etc.). The ripple
effect describes how the KPI change of the root cause node propagates to its elements.
Its purpose is that when we assume that an anomaly occurs in an element, then all the
children of that element should change accordingly, and the amount of change (true value
- predicted value) of that element needs to be distributed to all its descendants in propor-
tion of the predicted value. The likelihood of a factor being the root cause is determined
by how much it satisfies the ripple effect condition when considered in combination with
its dependent variables or "children." In other words, if the dimensional combinations with
its children exhibit a strong ripple effect, it’s more likely that the factor in question is the
actual root cause. The ripple effect equation is shown below:

v(x′
i) = f(x′

i)− h(x)× f(x′
i)

f(x) , (f(x) ̸= 0). (B.19)

In the equation, x′
i is denoted as the descendants of x, when the page view value of x

changes by h(x), i.e.,h(x) = f(x)− v(x),f(x) denoted as the predicted page view number
of an element, v(x) denoted as the number of access logs according to an element. x′

i will
get its share of h(x) according to the proportions of their forecast values.

Hotspot therefore proposes a potential score to quantify the degree to which a node
satisfies the ripple effect among all its leaf nodes. The possibility that the set of elements
is a root cause is determined by comparing the similarity (Euclidean distance) between
the vector of derived values from ripple effect and the vector of true values. The equation
is shown below:

ps = max
(

1− d( real, deduced )
d( real, forecast ) , 0

)
(B.20)

d(u⃗, w⃗) =
√∑

i

(ui − wi)2 (B.21)

Beside, Hotspot is very different from other work such as iDice in that it considers root
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cause combinations in the same dimension, e.g. not only elements such as (province1, op-
erator1), but also elements such as ( Province1, Province2) such elements, which of course
brings additional search complexity and the search space will be greatly increased. So the
authors propose a pruning strategy based on Monte Carlo tree search and hierarchical
pruning, which searches according to the path that obtains the maximum potential score
gain, and prunes the children nodes of an element if its potential score is low(hierarchical
pruning).

Hotspot proposes an inspired root cause judgment method ripple effect, and innova-
tively applies Monte Carlo tree search to pruning, which greatly reduces the complexity of
search, but Hotspot also has some limitations and does not take into account non-additive
KPI, such as success rate.

Li et al.(2019) proposed the squeeze which extends the Hotspot algorithm with a gen-
eralized ripple effect, making it applicable to both basic and derived KPIs. The algorithm
employs heuristic strategies to accelerate the root cause search process while maintaining
performance, clustering fine-grained attribute combinations, and identifying anomalous
KPIs corresponding to the root cause.

B.6 Real case BN result

The BN results for the real case study are shown in Figure B.4 and Figure B.5, Figure
B.4 shows the inferred probability for window status from 0 to 4 which indicate the number
of window opened. The inferred probability can be seen in the Table B.2. And Figure B.5
shows the real and predicted window status.
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Figure B.4 – BN for real case window status inference

Figure B.5 – Real case window status VS inference
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Table B.2 – Merged Inferred Probabilities and Ground Truth

Sample
Window Status Occupancy Status Ground Truth

Status 0 Status 1 Status 0 Status 1 Window Occupancy

0 0.589319 0.410681 0.689737 0.310263 0 0
1 0.589319 0.410681 0.689737 0.310263 0 0
2 0.589319 0.410681 0.689737 0.310263 0 0
... ... ... ... ... ... ...
68 0.331055 0.668945 0.573473 0.426527 1 1
69 0.331055 0.668945 0.573473 0.426527 1 1
70 0.331055 0.668945 0.573473 0.426527 1 1
... ... ... ... ... ... ...
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Appendix C

ANNEX ON PERSPECTIVES

C.1 Methodology proposal for model predictive con-
trol in this study

Model Predictive Control (MPC) is an advanced method of process control widely used
in industry. It has been in use in some form or other since the early times of automatic
control theory. MPC uses a model of the system to predict future outcomes and optimize
the current control input based on these predictions.

The principle of MPC is to use a mathematical model of the system to predict the
future behavior of the system, and then solve an optimization problem to find the best
control action. The optimization problem is usually formulated as:

min
u

J(x, u) =
N−1∑
k=0

(x(k)−xref(k))T Q(x(k)−xref(k)) + (u(k)−uref(k))T R(u(k)−uref(k))

(C.1)
subject to:

x(k + 1) = Ax(k) + Bu(k), k = 0, ..., N − 1 (C.2)

where x is the state, u is the control input, xref and uref are the references for the state
and control input, Q and R are the weighting matrices, A and B are the state and input
matrices of the system, and N is the prediction horizon.

The optimization problem finds the sequence of control inputs u that minimize the
cost function J(x, u) while satisfying the system dynamics.
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Figure C.1 – MPC example

MPC has proven its effectiveness in various fields such as process control, automotive
control, and energy-efficient building control.

Model Predictive Control (MPC) is a powerful control strategy that uses a model
of the system to predict future behavior and optimize the current control input. It is an
effective solution for managing complex systems with constraints and interactions between
variables.

C.2 Building model

Model Predictive Control (MPC) is an optimization strategy that relies heavily on
first-principle models, like white-box models, which are highly accurate but mathemati-
cally complex. These models need a lot of building data, processing capacity, and upkeep
because they are based on physical rules (such as equations for the balance of energy,
mass, and momentum). They take a lot of time and are therefore not always appropriate
for MPC in buildings. It should be noted that BPS software like Modelica, EnergyPlus,
and IDA frequently uses these models. However, data-driven MPCs have begun to gain
popularity as a result of the expanding usage of sensors in buildings. Black-box mod-
els or grey-box models are frequently used by these MPCs. Black-box models are purely
data-driven approaches that use statistical regression or artificial neural network (ANN)
techniques to analyze measurable time-series data from the system. These models require
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a large amount of training data to ensure their quality, and the performance of the model
can be greatly impacted by the quality of the training data.

On the other hand, grey-box models combine the fundamentals of both white-box
and black-box models. They construct the model structure using the dominant physical
process of the system and then use measurement data to fit the model’s parameters. For
applications including load estimation, optimal control, and building-grid integration, the
grey box has shown its outstanding ability.

In the building context, Resistance and capacitance models (i.e., RC models) are a
popular approach to creating the structure of grey-box models which effectively simulate
building thermal dynamics, Then, the thermal behavior of the building is represented
using an analogy to an electrical circuit, where the thermal resistance R is akin to elec-
trical resistance, and thermal capacitance C is similar to electrical capacitance. In the
model, thermal resistance stands for the obstruction to heat transfer between various
building components or zones, such as walls, roofs, or internal and external surroundings.
On the other hand, the thermal capacitance designates the capacity to store thermal en-
ergy of a specific building component (such as walls, air, or furniture). These elements
could come together to create a network that replicates the structure’s thermal behavior.
Therefore, it’s asserted that grey-box models demonstrate superior extrapolation capa-
bilities when contrasted with black-box models. Yang et al.(2019) used an adaptable and
reliable forecasting model to optimize the indoor environment. This model is based on
a thorough grey-box model whose parameters are updated everyday. Another study by
Zhang et al.(2022) created an adaptive grey-box model for buildings by introducing a
technique for predicting a time-dependent solar aperture based on B-splines. Freund et
al.(2019)used the R4C3 model, a grey-box model with three capacitances and four resis-
tances to describe a thermal zone. This model was further developed with the inclusion
of a thermally activated building system (TABS) model that incorporated an additional
capacitance, two resistances, and an air-handling unit (AHU) resistance. By including an
extra node to reflect interior thermal inertia (such as room air, furniture, etc.), Hedegaard
et al.(2020) improved the ISO 13790 standard and increased the model’s prediction pow-
ers under dynamic operating settings. In order to forecast thermal reactions in occupied
buildings. Hedegaard et al.(2017) proposed various model structures in order to estimate
the parameters of the grey-box model, effectively characterizing a building’s thermal prop-
erties. The first model, a 2R2C model, took into account the thermal inertia of both the
wall and air, with solar gains calculated via the effective window area and solar irradiance.
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They expanded this model with the 3R2C, 4R3C, and 4R3Cw models, which progressively
added heat loss resistance, interior capacity, and third thermal mass node respectively.
The 3R2C and 4R3Cw models demonstrated accurate and consistent estimates across all
datasets.Hu et al.(2017) applied a 5R4C grey-box model to predict room temperature,
incorporating a more comprehensive understanding of room thermal dynamics. Given the
Hong Kong climate, most residential buildings use lightweight wall and roof materials. As
such, their model considered the external wall as one thermal resistance and two equal
thermal capacitances, with an additional two capacitances accounting for indoor air and
internal mass. Harb et al.(2016) developed a number of grey-box models that adhered to
the equations established by the VDI 6007 standard for interior-exterior heat exchange
and solar heat gains. In order to individually account for infiltration and window conduc-
tion gains, Blum et al.(2018) examined three grey-box model architectures and added an
additional resistance to the 5R4C model.

In summary, The ability to capture the thermal dynamics of the building, computing
cost, and the accessibility of measurement data are some of the criteria that influence
the choice of model order. For single-zone models, second-order and third-order models
are usually preferred due to their balance between accuracy and computational cost.
Higher-order models may lead to overfitting problems if insufficient measurements are
available. A second-order model is typically utilized as the basic model for each thermal
zone in multi-zone models. Then, to connect these thermal zones, thermal resistances
and occasionally capacitances are employed. For multi-zone models, the choice of model
order also depends on the accessibility of measurement data. Given the variety of building
kinds and structures, several model structures of the same order can exhibit acceptable
prediction performance, demonstrating flexibility in model structure selection.

In the grey box mode, it also involve the parameter estimation, and finding the best
values for the unknown parameters in a grey-box model involves a non-linear optimization
process. With a defined set of resistances (R) and capacitances (C), the grey-box model
can forecast the indoor air temperature profile. An objective function can then be used
to assess the level of fit between the model’s predicted data and actual measured data
collected from in-home smart sensors during this optimization process. The goal of this
optimization is to reduce the integrated root-mean-square error to its smallest possible
value. Optimization techniques are required to find the optimal values of R and C which
make the objective function reach the minimal value. Genetic algorithm (GA) is employed
to identify the RC value. GA has been successfully used to solve the optimization problems
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in the domain of HVAC. Arendt et al.(2018) used the GA combined with a gradient-based
method to solve non-convex optimization problems for identifying the parameters of grey-
box models. Smullen et al.(2014) develop a simulation optimization tool combined with
GA to a building energy simulation engine to select the optimal values of parameters with
the envelope to minimize energy use

C.2.1 Grey box model

Based on the review, a single zone 5R3C model can be used for this thesis as shown
in FigureC.2

Figure C.2 – RC model 5R3C

Thermal dynamic based on Figure C.2 can be seen below,

dTwex

dt
= (To − Twex)

Rwo

+ (Twin
− Twex)
Rw

+ Qsolar_windows + Qbuilding_envelope

Cw

(C.3)

dTwin

dt
= (Twex − Twin

)
Rw

+ (Ti − Twin
)

Rwi

(C.4)

dTi

dt
= (Tm − Ti)

Rim

+(Twin
− Ti)

Rwi

+Qsolar_windows + Qinternal_gain + QHV AC + Qinfiltration_ventilation

Ci
(C.5)

361



dTm

dt
= (Ti − Tm)

Rim

+ Qinternal_gain

Cm

(C.6)

Within the equations and RC model. notations are given as below,
— Twex : Exterior wall surface temperature
— Twin

: Interior wall surface temperature
— Ti: Indoor temperature
— Tm: Internal mass temperature
— To: Outdoor temperature
— Rwo: Resistance between outdoor and exterior wall
— Rw: Resistance between exterior and interior wall
— Rwi: Resistance between interior wall and indoor
— Rim: Resistance between indoor and internal mass
— Cw: Capacitance of wall
— Ci: Capacitance of indoor air
— Cm: Capacitance of internal mass
— Qsolar_windows: Heat gain from solar through windows
— Qbuilding_envelope: Heat transfer through building envelope
— Qinternal_gain: Internal heat gain from sources like computers, occupants, etc.
— QHV AC : Heat provided by HVAC system
— Qinfiltration_ventilation: Heat loss or gain due to infiltration and ventilation

C.2.2 Parameter estimation

To improve the accuracy and computation efficiency of the optimizations, the optimal
parameters can be accurately and efficiently obtained by following procedure
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Figure C.3 – Parameter estimation flow chart

J (Cw, Ci, Cm, Rwin, Rw, Rw,o, Rw,i, Ri,m) = minimize

√√√√ 1
N

N∑
i=1

(Tmodel ,i − Tsample ,i)2

(C.7)
Finding the best values for the unknown parameters in a grey-box model involves a non-
linear optimization process. With a defined set of resistances (R) and capacitances (C),
the grey-box model can forecast the indoor air temperature profile. An objective function
can then be used to assess the level of fit between the model’s predicted data and actual
measured data collected from in-home smart sensors during this optimization process.
The goal of this optimization is to reduce the integrated root-mean-square error to its
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smallest possible value. Optimization techniques are required to find the optimal values
of R and C which make the objective function reach the minimal value. Genetic algorithm
(GA) is employed to identify the RC value. GA has been successfully used to solve the
optimization problems in the domain of HVAC. Arendt et al., used the GA combined with
a gradient-based method to solve non-convex optimization problems for identifying the
parameters of grey-box models. Daniel et al.2010 develop a simulation optimization tool
combined with GA to a building energy simulation engine to select the optimal values of
parameters with the envelope to minimize energy use.

C.2.3 Model validation

After applying the Genetic Algorithm (GA) for model optimization, validating the
model’s performance on unseen data becomes crucial.

1. Mean Absolute Error (MAE)

MAE = 1
n

n∑
i=1
|Tmodel,i − Tsample,i|

MAE calculates the average absolute difference between the predicted and ac-
tual values. It provides a general sense of the model’s accuracy.

2. Mean Absolute Percentage Error (MAPE)

MAPE = 1
n

n∑
i=1

∣∣∣∣∣Tmodel,i − Tsample,i

Tsample,i

∣∣∣∣∣
MAPE calculates the average of the absolute percentage errors.It’s useful when

you want to understand the error in terms of the relative size compared to the
actual values.

3. Root Mean Squared Error (RMSE)

RMSE =
√√√√ 1

n

n∑
i=1

(Tmodel,i − Tsample,i)2

RMSE is the square root of the average of the squared differences between the
predicted values and the actual values. By squaring the differences and then taking
the square root, RMSE gives a higher weight to larger errors..
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C.3 User information integration

As mentioned in the beginning of this Chapter, MPC has its advantage which can
considering different constraints. With the detected user information from our research,
we can transfer our information to a user schedules, this schedule can be predefined or
real time updated. The user schedules could include information such as occupied or
unoccupied. And within each building state, we can given state constrains that are in
terms of lower and upper temperature bounds. At any time step k, these constraints are
given by:

Xk = [Tlower, Tupper] (C.8)

where:
— Tlower is the lower temperature bound.
— Tupper is the upper temperature bound.
During occupied states, the constraints are:

Xk = Xcomfort = [Tcomfort_lower, Tcomfort_upper] (C.9)

There’s a potential to save energy by relaxing these constraints during unoccupied
times, allowing for broader temperature ranges. During unoccupied states, the constraints
are:

Xk = Xsetback = [Tsetback_lower, Tsetback_upper] (C.10)

Temperature constraints should be set dynamically based on predicted occupancy. If
pk is the occupancy probability at time k from BN:

if pk < thl then Xk = Xsetback

if pk > thuthen Xk = Xcomfort

Where thl and thu are the lower and upper thresholds for occupancy prediction respec-
tively. For probabilities between thl and thu, a smooth function such as a sigmoid can be
used:

Xk = f(pk; parameters) (C.11)

365



where f represents the function used. Then, the constraints can be integrated into
MPC, the objective of the MPC is to minimize the cost over a prediction horizon N :

J =
N∑

i=1

(
xT

i Qxi + uT
i Rui

)
(C.12)

Subject to:
— System dynamics: xi+1 = Axi + Bui

— Control constraints: umin ≤ ui ≤ umax

— State constraints: xmin ≤ xi ≤ xmax

For a building system, the state xi represents the temperature, and ui is the control
input (e.g., heating or cooling amount). The temperature constraints can be integrated
as:

Tlower(i) ≤ xi ≤ Tupper(i) (C.13)

Where:
— Tlower(i) and Tupper(i) are the temperature bounds at time i.
— These bounds can be either the comfort or setback bounds, based on predicted

occupancy or a predefined schedule.
If the predicted occupancy probability at time i is above a certain threshold thu:

Tlower(i) = Tcomfort_lower

Tupper(i) = Tcomfort_upper

Otherwise:

Tlower(i) = Tsetback_lower

Tupper(i) = Tsetback_upper

Above shows example illustration for integrating the user information into MPC, but
in real application, it should be much more complexity, since there are interaction of
different activities. And many more constraints need to be considered into the MPC in
order to guarantee the energy save and comfort.
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Titre : Vers des approaches d’optimisation centrée sur l’utilisateur et de contrôle prédictif de la
performance des bâtiments intelligents

Mot clés : Maison intelligente, Apprentissage automatique, Optimisation du placement de cap-

teur, Détection des actions des occupants

Résumé : En réponse aux transitions éner-
gétique et numérique dans le secteur du bâ-
timent, le concept de Smart Building gagne
en importance. La gestion optimisée de ces
bâtiments devrait permettre une réduction des
coûts et des consommations énergétiques en
phase d’exploitation. Cependant, l’améliora-
tion des performances énergétiques ne doit
pas se faire au détriment du confort des usa-
gers. Le succès d’un système de gestion intel-
ligente des bâtiments dépend en grande par-
tie de la participation active de ses occupants
et il est important de prendre en compte les
"humains dans la boucle". De plus, pour des
raisons économiques et environnementales,
le déploiement de capteurs et actionneurs in-
telligents doit se faire avec parcimonie. Dans
ce contexte, l’objectif de la thèse est d’optimi-
ser le placement de capteurs multi-physiques
pour détecter une ou plusieurs actions de l’oc-
cupant qui serviront à développer des straté-
gies de gestion efficaces centrées sur l’utilisa-
teur.

Une détection correcte de l’occupation
peut nécessiter l’utilisation de nombreux cap-
teurs intelligents mesurant diverses grandeurs
physiques. De plus, les quelques ensembles
de capteurs sélectionnés doivent être adap-
tés pour décrire le confort à certains endroits
précis du bâtiment où les occupants sont plus
susceptibles de se trouver. Le placement op-
timal des capteurs a été étudié en utilisant la
méthode indépendante efficace afin d’assurer
une caractérisation parcimonieuse et efficace
de l’occupation et du confort (chapitre 3).

L’inclusion des utilisateurs nécessite une
meilleure compréhension de leurs activités.

Des algorithmes d’apprentissage automatique
sont ensuite appliqués pour détecter soit
les ouvertures de fenêtres, soit la présence
d’occupants dans une pièce. L’un des dé-
fis concerne l’efficacité de la détection d’ac-
tivité pour les données non étiquetées (c’est-
à-dire lorsque le statut d’occupation réel est
inconnu). Elle a été abordée à l’aide d’algo-
rithmes non supervisés ou semi-supervisés
(chapitre 4). Un autre défi consiste à deter-
mine’ quel type d’activité est associé à diffé-
rents effets sur les conditions environnemen-
tales intérieures. Pour traiter cet aspect, il a
été proposé dans la thèse d’utiliser des mé-
thodes d’analyse des causes racines et plus
particulièrement les réseaux bayésiens (cha-
pitre 5).

Une fois que l’occupation est mieux com-
prise à partir d’un ensemble réduit de cap-
teurs, une stratégie de gestion plus efficace et
centrée sur l’usager peut être défine.

La cohérence du cadre proposé a été
prouvée en appliquant les méthodes sur deux
études de cas complémentaires. Le premier
est une étude de cas simulée sur laquelle
des simulations énergétiques dynamiques de
bâtiments et des simulations CFD sont ef-
fectuées pour évaluer les températures inté-
rieures et les charges énergétiques pour diffé-
rents scénarios d’occupation prédéfinis. Pour
la deuxième étude de cas, une instrumenta-
tion a été conçue et déployée dans un bâ-
timent réel : les capteurs multi-physiques in-
telligents installés permettent de collecter des
données sur l’environnement intérieur, ainsi
que sur l’occupation.



Title: Towards user-centric optimisation and predictive control approaches of the performance
of smart buildings

Keywords: Smart house, Machine learning, Optimal sensor placement, Occupants activity

detection

Abstract: In response to the energy and dig-
ital transitions in the building sector, the con-
cept of Smart Building is gaining importance.
The optimized management of these buildings
should enable a reduction in costs and energy
consumption in the operating phase. However,
the improvement of the energy performances
should not be at the expense of user comfort.
The success of a smart house system largely
depends on the active participation of its occu-
pants and it is important considering the ”hu-
mans in the loop”. In addition, for economic
and environmental reasons, the deployment
of smart sensors and actuators must be done
sparingly. In this context, the aim of the PhD
is to optimize the placement of multi-physical
sensors to detect one or more occupant’s ac-
tions that will serve to develop efficient user-
centric management strategies.

A correct detection of occupancy may re-
quire using a lot of smart sensors measur-
ing various physical quantities. Furthermore,
the few sets of sensors selected must be
adapted to describe the comfort at some spe-
cific places in the building where the occu-
pants are more likely to be. Optimal sensor
placement has been investigated using the ef-
fective independent method in order ensure a
sparse and efficient characterization of the oc-
cupancy and comfort (chapter 3).

The inclusion of humans in the loop re-
quires a better understanding of their activi-

ties. Machine learning algorithms are then ap-
plied to detect either windows openings or
the presence of occupants in a room. One of
the challenges concerns the efficiency of ac-
tivity detection for unlabeled data (i.e., when
the actual occupancy status is unknown). It
has been approached using unsupervised or
semi-supervised algorithms (chapter 4). An-
other challenge is to classify which type of
activity is associated with different effects on
indoor environmental conditions. To deal with
this aspect, it has been proposed in the the-
sis to use self learning algorithm and root
cause analysis methods and more particulary
Bayesian networks (chapter 5).

Once the occupancy is better understood
from a reduced set of sensors, this knowledge
is intended to be used to define an efficient
user-centric energy management strategy.

The consistency of the proposed frame-
work was proven by applying the methods on
two complementary case studies. The first one
is a simulated case study on which dynamic
building energy simulations and computational
fluid dynamics simulations are performed to
assess indoor temperatures and energy loads
for different predefined occupancy scenarios.
For the second case study, an instrumenta-
tion has been designed and deployed in a
real building: the installed smart multi-physical
sensors allow collecting data on the indoor en-
vironment, as well as on the occupancy.
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